| 1 | //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the PredicateInfo class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/Transforms/Utils/PredicateInfo.h" |
| 14 | #include "llvm/ADT/DenseMap.h" |
| 15 | #include "llvm/ADT/DepthFirstIterator.h" |
| 16 | #include "llvm/ADT/STLExtras.h" |
| 17 | #include "llvm/ADT/SmallPtrSet.h" |
| 18 | #include "llvm/Analysis/AssumptionCache.h" |
| 19 | #include "llvm/IR/AssemblyAnnotationWriter.h" |
| 20 | #include "llvm/IR/Dominators.h" |
| 21 | #include "llvm/IR/IRBuilder.h" |
| 22 | #include "llvm/IR/InstIterator.h" |
| 23 | #include "llvm/IR/IntrinsicInst.h" |
| 24 | #include "llvm/IR/Module.h" |
| 25 | #include "llvm/IR/PatternMatch.h" |
| 26 | #include "llvm/Support/CommandLine.h" |
| 27 | #include "llvm/Support/Debug.h" |
| 28 | #include "llvm/Support/DebugCounter.h" |
| 29 | #include "llvm/Support/FormattedStream.h" |
| 30 | #define DEBUG_TYPE "predicateinfo" |
| 31 | using namespace llvm; |
| 32 | using namespace PatternMatch; |
| 33 | |
| 34 | static cl::opt<bool> VerifyPredicateInfo( |
| 35 | "verify-predicateinfo" , cl::init(Val: false), cl::Hidden, |
| 36 | cl::desc("Verify PredicateInfo in legacy printer pass." )); |
| 37 | DEBUG_COUNTER(RenameCounter, "predicateinfo-rename" , |
| 38 | "Controls which variables are renamed with predicateinfo" ); |
| 39 | |
| 40 | // Maximum number of conditions considered for renaming for each branch/assume. |
| 41 | // This limits renaming of deep and/or chains. |
| 42 | static const unsigned MaxCondsPerBranch = 8; |
| 43 | |
| 44 | namespace { |
| 45 | // Given a predicate info that is a type of branching terminator, get the |
| 46 | // branching block. |
| 47 | const BasicBlock *getBranchBlock(const PredicateBase *PB) { |
| 48 | assert(isa<PredicateWithEdge>(PB) && |
| 49 | "Only branches and switches should have PHIOnly defs that " |
| 50 | "require branch blocks." ); |
| 51 | return cast<PredicateWithEdge>(Val: PB)->From; |
| 52 | } |
| 53 | |
| 54 | // Given a predicate info that is a type of branching terminator, get the |
| 55 | // branching terminator. |
| 56 | static Instruction *getBranchTerminator(const PredicateBase *PB) { |
| 57 | assert(isa<PredicateWithEdge>(PB) && |
| 58 | "Not a predicate info type we know how to get a terminator from." ); |
| 59 | return cast<PredicateWithEdge>(Val: PB)->From->getTerminator(); |
| 60 | } |
| 61 | |
| 62 | // Given a predicate info that is a type of branching terminator, get the |
| 63 | // edge this predicate info represents |
| 64 | std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const PredicateBase *PB) { |
| 65 | assert(isa<PredicateWithEdge>(PB) && |
| 66 | "Not a predicate info type we know how to get an edge from." ); |
| 67 | const auto *PEdge = cast<PredicateWithEdge>(Val: PB); |
| 68 | return std::make_pair(x: PEdge->From, y: PEdge->To); |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | namespace llvm { |
| 73 | enum LocalNum { |
| 74 | // Operations that must appear first in the block. |
| 75 | LN_First, |
| 76 | // Operations that are somewhere in the middle of the block, and are sorted on |
| 77 | // demand. |
| 78 | LN_Middle, |
| 79 | // Operations that must appear last in a block, like successor phi node uses. |
| 80 | LN_Last |
| 81 | }; |
| 82 | |
| 83 | // Associate global and local DFS info with defs (PInfo set) and uses (U set), |
| 84 | // so we can sort them into a global domination ordering. |
| 85 | struct ValueDFS { |
| 86 | int DFSIn = 0; |
| 87 | int DFSOut = 0; |
| 88 | unsigned int LocalNum = LN_Middle; |
| 89 | // Only one of U or PInfo will be set. |
| 90 | Use *U = nullptr; |
| 91 | PredicateBase *PInfo = nullptr; |
| 92 | }; |
| 93 | |
| 94 | // This compares ValueDFS structures. Doing so allows us to walk the minimum |
| 95 | // number of instructions necessary to compute our def/use ordering. |
| 96 | struct ValueDFS_Compare { |
| 97 | DominatorTree &DT; |
| 98 | ValueDFS_Compare(DominatorTree &DT) : DT(DT) {} |
| 99 | |
| 100 | bool operator()(const ValueDFS &A, const ValueDFS &B) const { |
| 101 | if (&A == &B) |
| 102 | return false; |
| 103 | |
| 104 | // Order by block first. |
| 105 | if (A.DFSIn != B.DFSIn) |
| 106 | return A.DFSIn < B.DFSIn; |
| 107 | assert(A.DFSOut == B.DFSOut && |
| 108 | "Equal DFS-in numbers imply equal out numbers" ); |
| 109 | |
| 110 | // Then order by first/middle/last. |
| 111 | if (A.LocalNum != B.LocalNum) |
| 112 | return A.LocalNum < B.LocalNum; |
| 113 | |
| 114 | // We want to put the def that will get used for a given set of phi uses, |
| 115 | // before those phi uses. |
| 116 | // So we sort by edge, then by def. |
| 117 | // Note that only phi nodes uses and defs can come last. |
| 118 | if (A.LocalNum == LN_Last) |
| 119 | return comparePHIRelated(A, B); |
| 120 | |
| 121 | // Use block-local ordering for instructions in the middle. |
| 122 | if (A.LocalNum == LN_Middle) |
| 123 | return localComesBefore(A, B); |
| 124 | |
| 125 | // The order of PredicateInfo definitions at the start of the block does not |
| 126 | // matter. |
| 127 | assert(A.LocalNum == LN_First); |
| 128 | assert(A.PInfo && B.PInfo && "Must be predicate info def" ); |
| 129 | return false; |
| 130 | } |
| 131 | |
| 132 | // For a phi use, or a non-materialized def, return the edge it represents. |
| 133 | std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const ValueDFS &VD) const { |
| 134 | if (VD.U) { |
| 135 | auto *PHI = cast<PHINode>(Val: VD.U->getUser()); |
| 136 | return std::make_pair(x: PHI->getIncomingBlock(U: *VD.U), y: PHI->getParent()); |
| 137 | } |
| 138 | // This is really a non-materialized def. |
| 139 | return ::getBlockEdge(PB: VD.PInfo); |
| 140 | } |
| 141 | |
| 142 | // For two phi related values, return the ordering. |
| 143 | bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { |
| 144 | BasicBlock *ASrc, *ADest, *BSrc, *BDest; |
| 145 | std::tie(args&: ASrc, args&: ADest) = getBlockEdge(VD: A); |
| 146 | std::tie(args&: BSrc, args&: BDest) = getBlockEdge(VD: B); |
| 147 | |
| 148 | #ifndef NDEBUG |
| 149 | // This function should only be used for values in the same BB, check that. |
| 150 | DomTreeNode *DomASrc = DT.getNode(ASrc); |
| 151 | DomTreeNode *DomBSrc = DT.getNode(BSrc); |
| 152 | assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn && |
| 153 | "DFS numbers for A should match the ones of the source block" ); |
| 154 | assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn && |
| 155 | "DFS numbers for B should match the ones of the source block" ); |
| 156 | assert(A.DFSIn == B.DFSIn && "Values must be in the same block" ); |
| 157 | #endif |
| 158 | (void)ASrc; |
| 159 | (void)BSrc; |
| 160 | |
| 161 | // Use DFS numbers to compare destination blocks, to guarantee a |
| 162 | // deterministic order. |
| 163 | DomTreeNode *DomADest = DT.getNode(BB: ADest); |
| 164 | DomTreeNode *DomBDest = DT.getNode(BB: BDest); |
| 165 | unsigned AIn = DomADest->getDFSNumIn(); |
| 166 | unsigned BIn = DomBDest->getDFSNumIn(); |
| 167 | bool isAUse = A.U; |
| 168 | bool isBUse = B.U; |
| 169 | assert((!A.PInfo || !A.U) && (!B.PInfo || !B.U) && |
| 170 | "Def and U cannot be set at the same time" ); |
| 171 | // Now sort by edge destination and then defs before uses. |
| 172 | return std::tie(args&: AIn, args&: isAUse) < std::tie(args&: BIn, args&: isBUse); |
| 173 | } |
| 174 | |
| 175 | const Instruction *getDefOrUser(const ValueDFS &VD) const { |
| 176 | if (VD.U) |
| 177 | return cast<Instruction>(Val: VD.U->getUser()); |
| 178 | |
| 179 | // For the purpose of ordering, we pretend the def is right after the |
| 180 | // assume, because that is where we will insert the info. |
| 181 | assert(VD.PInfo && "No use, and no predicateinfo should not occur" ); |
| 182 | assert(isa<PredicateAssume>(VD.PInfo) && |
| 183 | "Middle of block should only occur for assumes" ); |
| 184 | return cast<PredicateAssume>(Val: VD.PInfo)->AssumeInst->getNextNode(); |
| 185 | } |
| 186 | |
| 187 | // This performs the necessary local basic block ordering checks to tell |
| 188 | // whether A comes before B, where both are in the same basic block. |
| 189 | bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { |
| 190 | const Instruction *AInst = getDefOrUser(VD: A); |
| 191 | const Instruction *BInst = getDefOrUser(VD: B); |
| 192 | return AInst->comesBefore(Other: BInst); |
| 193 | } |
| 194 | }; |
| 195 | |
| 196 | class PredicateInfoBuilder { |
| 197 | // Used to store information about each value we might rename. |
| 198 | struct ValueInfo { |
| 199 | SmallVector<PredicateBase *, 4> Infos; |
| 200 | }; |
| 201 | |
| 202 | PredicateInfo &PI; |
| 203 | Function &F; |
| 204 | DominatorTree &DT; |
| 205 | AssumptionCache &AC; |
| 206 | |
| 207 | // This stores info about each operand or comparison result we make copies |
| 208 | // of. The real ValueInfos start at index 1, index 0 is unused so that we |
| 209 | // can more easily detect invalid indexing. |
| 210 | SmallVector<ValueInfo, 32> ValueInfos; |
| 211 | |
| 212 | // This gives the index into the ValueInfos array for a given Value. Because |
| 213 | // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell |
| 214 | // whether it returned a valid result. |
| 215 | DenseMap<Value *, unsigned int> ValueInfoNums; |
| 216 | |
| 217 | BumpPtrAllocator &Allocator; |
| 218 | |
| 219 | ValueInfo &getOrCreateValueInfo(Value *); |
| 220 | const ValueInfo &getValueInfo(Value *) const; |
| 221 | |
| 222 | void processAssume(IntrinsicInst *, BasicBlock *, |
| 223 | SmallVectorImpl<Value *> &OpsToRename); |
| 224 | void processBranch(BranchInst *, BasicBlock *, |
| 225 | SmallVectorImpl<Value *> &OpsToRename); |
| 226 | void processSwitch(SwitchInst *, BasicBlock *, |
| 227 | SmallVectorImpl<Value *> &OpsToRename); |
| 228 | void renameUses(SmallVectorImpl<Value *> &OpsToRename); |
| 229 | void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op, |
| 230 | PredicateBase *PB); |
| 231 | |
| 232 | struct StackEntry { |
| 233 | const ValueDFS *V; |
| 234 | Value *Def = nullptr; |
| 235 | |
| 236 | StackEntry(const ValueDFS *V) : V(V) {} |
| 237 | }; |
| 238 | |
| 239 | using ValueDFSStack = SmallVectorImpl<StackEntry>; |
| 240 | void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &); |
| 241 | Value *materializeStack(unsigned int &, ValueDFSStack &, Value *); |
| 242 | bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const; |
| 243 | void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &); |
| 244 | |
| 245 | public: |
| 246 | PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT, |
| 247 | AssumptionCache &AC, BumpPtrAllocator &Allocator) |
| 248 | : PI(PI), F(F), DT(DT), AC(AC), Allocator(Allocator) { |
| 249 | // Push an empty operand info so that we can detect 0 as not finding one |
| 250 | ValueInfos.resize(N: 1); |
| 251 | } |
| 252 | |
| 253 | void buildPredicateInfo(); |
| 254 | }; |
| 255 | |
| 256 | bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack, |
| 257 | const ValueDFS &VDUse) const { |
| 258 | assert(!Stack.empty() && "Should not be called with empty stack" ); |
| 259 | // If it's a phi only use, make sure it's for this phi node edge, and that the |
| 260 | // use is in a phi node. If it's anything else, and the top of the stack is |
| 261 | // a LN_Last def, we need to pop the stack. We deliberately sort phi uses |
| 262 | // next to the defs they must go with so that we can know it's time to pop |
| 263 | // the stack when we hit the end of the phi uses for a given def. |
| 264 | const ValueDFS &Top = *Stack.back().V; |
| 265 | if (Top.LocalNum == LN_Last && Top.PInfo) { |
| 266 | if (!VDUse.U) |
| 267 | return false; |
| 268 | auto *PHI = dyn_cast<PHINode>(Val: VDUse.U->getUser()); |
| 269 | if (!PHI) |
| 270 | return false; |
| 271 | // Check edge |
| 272 | BasicBlock *EdgePred = PHI->getIncomingBlock(U: *VDUse.U); |
| 273 | if (EdgePred != getBranchBlock(PB: Top.PInfo)) |
| 274 | return false; |
| 275 | |
| 276 | // Use dominates, which knows how to handle edge dominance. |
| 277 | return DT.dominates(BBE: getBlockEdge(PB: Top.PInfo), U: *VDUse.U); |
| 278 | } |
| 279 | |
| 280 | return VDUse.DFSIn >= Top.DFSIn && VDUse.DFSOut <= Top.DFSOut; |
| 281 | } |
| 282 | |
| 283 | void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack, |
| 284 | const ValueDFS &VD) { |
| 285 | while (!Stack.empty() && !stackIsInScope(Stack, VDUse: VD)) |
| 286 | Stack.pop_back(); |
| 287 | } |
| 288 | |
| 289 | // Convert the uses of Op into a vector of uses, associating global and local |
| 290 | // DFS info with each one. |
| 291 | void PredicateInfoBuilder::convertUsesToDFSOrdered( |
| 292 | Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { |
| 293 | for (auto &U : Op->uses()) { |
| 294 | if (auto *I = dyn_cast<Instruction>(Val: U.getUser())) { |
| 295 | ValueDFS VD; |
| 296 | // Put the phi node uses in the incoming block. |
| 297 | BasicBlock *IBlock; |
| 298 | if (auto *PN = dyn_cast<PHINode>(Val: I)) { |
| 299 | IBlock = PN->getIncomingBlock(U); |
| 300 | // Make phi node users appear last in the incoming block |
| 301 | // they are from. |
| 302 | VD.LocalNum = LN_Last; |
| 303 | } else { |
| 304 | // If it's not a phi node use, it is somewhere in the middle of the |
| 305 | // block. |
| 306 | IBlock = I->getParent(); |
| 307 | VD.LocalNum = LN_Middle; |
| 308 | } |
| 309 | DomTreeNode *DomNode = DT.getNode(BB: IBlock); |
| 310 | // It's possible our use is in an unreachable block. Skip it if so. |
| 311 | if (!DomNode) |
| 312 | continue; |
| 313 | VD.DFSIn = DomNode->getDFSNumIn(); |
| 314 | VD.DFSOut = DomNode->getDFSNumOut(); |
| 315 | VD.U = &U; |
| 316 | DFSOrderedSet.push_back(Elt: VD); |
| 317 | } |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | bool shouldRename(Value *V) { |
| 322 | // Only want real values, not constants. Additionally, operands with one use |
| 323 | // are only being used in the comparison, which means they will not be useful |
| 324 | // for us to consider for predicateinfo. |
| 325 | return (isa<Instruction>(Val: V) || isa<Argument>(Val: V)) && !V->hasOneUse(); |
| 326 | } |
| 327 | |
| 328 | // Collect relevant operations from Comparison that we may want to insert copies |
| 329 | // for. |
| 330 | void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { |
| 331 | auto *Op0 = Comparison->getOperand(i_nocapture: 0); |
| 332 | auto *Op1 = Comparison->getOperand(i_nocapture: 1); |
| 333 | if (Op0 == Op1) |
| 334 | return; |
| 335 | |
| 336 | CmpOperands.push_back(Elt: Op0); |
| 337 | CmpOperands.push_back(Elt: Op1); |
| 338 | } |
| 339 | |
| 340 | // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. |
| 341 | void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename, |
| 342 | Value *Op, PredicateBase *PB) { |
| 343 | auto &OperandInfo = getOrCreateValueInfo(Op); |
| 344 | if (OperandInfo.Infos.empty()) |
| 345 | OpsToRename.push_back(Elt: Op); |
| 346 | OperandInfo.Infos.push_back(Elt: PB); |
| 347 | } |
| 348 | |
| 349 | // Process an assume instruction and place relevant operations we want to rename |
| 350 | // into OpsToRename. |
| 351 | void PredicateInfoBuilder::processAssume( |
| 352 | IntrinsicInst *II, BasicBlock *AssumeBB, |
| 353 | SmallVectorImpl<Value *> &OpsToRename) { |
| 354 | SmallVector<Value *, 4> Worklist; |
| 355 | SmallPtrSet<Value *, 4> Visited; |
| 356 | Worklist.push_back(Elt: II->getOperand(i_nocapture: 0)); |
| 357 | while (!Worklist.empty()) { |
| 358 | Value *Cond = Worklist.pop_back_val(); |
| 359 | if (!Visited.insert(Ptr: Cond).second) |
| 360 | continue; |
| 361 | if (Visited.size() > MaxCondsPerBranch) |
| 362 | break; |
| 363 | |
| 364 | Value *Op0, *Op1; |
| 365 | if (match(V: Cond, P: m_LogicalAnd(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) { |
| 366 | Worklist.push_back(Elt: Op1); |
| 367 | Worklist.push_back(Elt: Op0); |
| 368 | } |
| 369 | |
| 370 | SmallVector<Value *, 4> Values; |
| 371 | Values.push_back(Elt: Cond); |
| 372 | if (auto *Cmp = dyn_cast<CmpInst>(Val: Cond)) |
| 373 | collectCmpOps(Comparison: Cmp, CmpOperands&: Values); |
| 374 | |
| 375 | for (Value *V : Values) { |
| 376 | if (shouldRename(V)) { |
| 377 | auto *PA = new (Allocator) PredicateAssume(V, II, Cond); |
| 378 | addInfoFor(OpsToRename, Op: V, PB: PA); |
| 379 | } |
| 380 | } |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | // Process a block terminating branch, and place relevant operations to be |
| 385 | // renamed into OpsToRename. |
| 386 | void PredicateInfoBuilder::processBranch( |
| 387 | BranchInst *BI, BasicBlock *BranchBB, |
| 388 | SmallVectorImpl<Value *> &OpsToRename) { |
| 389 | BasicBlock *FirstBB = BI->getSuccessor(i: 0); |
| 390 | BasicBlock *SecondBB = BI->getSuccessor(i: 1); |
| 391 | |
| 392 | for (BasicBlock *Succ : {FirstBB, SecondBB}) { |
| 393 | bool TakenEdge = Succ == FirstBB; |
| 394 | // Don't try to insert on a self-edge. This is mainly because we will |
| 395 | // eliminate during renaming anyway. |
| 396 | if (Succ == BranchBB) |
| 397 | continue; |
| 398 | |
| 399 | SmallVector<Value *, 4> Worklist; |
| 400 | SmallPtrSet<Value *, 4> Visited; |
| 401 | Worklist.push_back(Elt: BI->getCondition()); |
| 402 | while (!Worklist.empty()) { |
| 403 | Value *Cond = Worklist.pop_back_val(); |
| 404 | if (!Visited.insert(Ptr: Cond).second) |
| 405 | continue; |
| 406 | if (Visited.size() > MaxCondsPerBranch) |
| 407 | break; |
| 408 | |
| 409 | Value *Op0, *Op1; |
| 410 | if (TakenEdge ? match(V: Cond, P: m_LogicalAnd(L: m_Value(V&: Op0), R: m_Value(V&: Op1))) |
| 411 | : match(V: Cond, P: m_LogicalOr(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) { |
| 412 | Worklist.push_back(Elt: Op1); |
| 413 | Worklist.push_back(Elt: Op0); |
| 414 | } |
| 415 | |
| 416 | SmallVector<Value *, 4> Values; |
| 417 | Values.push_back(Elt: Cond); |
| 418 | if (auto *Cmp = dyn_cast<CmpInst>(Val: Cond)) |
| 419 | collectCmpOps(Comparison: Cmp, CmpOperands&: Values); |
| 420 | |
| 421 | for (Value *V : Values) { |
| 422 | if (shouldRename(V)) { |
| 423 | PredicateBase *PB = new (Allocator) |
| 424 | PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge); |
| 425 | addInfoFor(OpsToRename, Op: V, PB); |
| 426 | } |
| 427 | } |
| 428 | } |
| 429 | } |
| 430 | } |
| 431 | // Process a block terminating switch, and place relevant operations to be |
| 432 | // renamed into OpsToRename. |
| 433 | void PredicateInfoBuilder::processSwitch( |
| 434 | SwitchInst *SI, BasicBlock *BranchBB, |
| 435 | SmallVectorImpl<Value *> &OpsToRename) { |
| 436 | Value *Op = SI->getCondition(); |
| 437 | if ((!isa<Instruction>(Val: Op) && !isa<Argument>(Val: Op)) || Op->hasOneUse()) |
| 438 | return; |
| 439 | |
| 440 | // Remember how many outgoing edges there are to every successor. |
| 441 | SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; |
| 442 | for (BasicBlock *TargetBlock : successors(BB: BranchBB)) |
| 443 | ++SwitchEdges[TargetBlock]; |
| 444 | |
| 445 | // Now propagate info for each case value |
| 446 | for (auto C : SI->cases()) { |
| 447 | BasicBlock *TargetBlock = C.getCaseSuccessor(); |
| 448 | if (SwitchEdges.lookup(Val: TargetBlock) == 1) { |
| 449 | PredicateSwitch *PS = new (Allocator) PredicateSwitch( |
| 450 | Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); |
| 451 | addInfoFor(OpsToRename, Op, PB: PS); |
| 452 | } |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | // Build predicate info for our function |
| 457 | void PredicateInfoBuilder::buildPredicateInfo() { |
| 458 | DT.updateDFSNumbers(); |
| 459 | // Collect operands to rename from all conditional branch terminators, as well |
| 460 | // as assume statements. |
| 461 | SmallVector<Value *, 8> OpsToRename; |
| 462 | for (BasicBlock &BB : F) { |
| 463 | if (!DT.isReachableFromEntry(A: &BB)) |
| 464 | continue; |
| 465 | |
| 466 | if (auto *BI = dyn_cast<BranchInst>(Val: BB.getTerminator())) { |
| 467 | if (!BI->isConditional()) |
| 468 | continue; |
| 469 | // Can't insert conditional information if they all go to the same place. |
| 470 | if (BI->getSuccessor(i: 0) == BI->getSuccessor(i: 1)) |
| 471 | continue; |
| 472 | processBranch(BI, BranchBB: &BB, OpsToRename); |
| 473 | } else if (auto *SI = dyn_cast<SwitchInst>(Val: BB.getTerminator())) { |
| 474 | processSwitch(SI, BranchBB: &BB, OpsToRename); |
| 475 | } |
| 476 | } |
| 477 | for (auto &Assume : AC.assumptions()) { |
| 478 | if (auto *II = dyn_cast_or_null<IntrinsicInst>(Val&: Assume)) |
| 479 | if (DT.isReachableFromEntry(A: II->getParent())) |
| 480 | processAssume(II, AssumeBB: II->getParent(), OpsToRename); |
| 481 | } |
| 482 | // Now rename all our operations. |
| 483 | renameUses(OpsToRename); |
| 484 | } |
| 485 | |
| 486 | // Given the renaming stack, make all the operands currently on the stack real |
| 487 | // by inserting them into the IR. Return the last operation's value. |
| 488 | Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter, |
| 489 | ValueDFSStack &RenameStack, |
| 490 | Value *OrigOp) { |
| 491 | // Find the first thing we have to materialize |
| 492 | auto RevIter = RenameStack.rbegin(); |
| 493 | for (; RevIter != RenameStack.rend(); ++RevIter) |
| 494 | if (RevIter->Def) |
| 495 | break; |
| 496 | |
| 497 | size_t Start = RevIter - RenameStack.rbegin(); |
| 498 | // The maximum number of things we should be trying to materialize at once |
| 499 | // right now is 4, depending on if we had an assume, a branch, and both used |
| 500 | // and of conditions. |
| 501 | for (auto RenameIter = RenameStack.end() - Start; |
| 502 | RenameIter != RenameStack.end(); ++RenameIter) { |
| 503 | auto *Op = |
| 504 | RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; |
| 505 | StackEntry &Result = *RenameIter; |
| 506 | auto *ValInfo = Result.V->PInfo; |
| 507 | ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin() |
| 508 | ? OrigOp |
| 509 | : (RenameStack.end() - Start - 1)->Def; |
| 510 | auto CreateSSACopy = [this](IRBuilderBase &B, Value *Op, |
| 511 | const Twine &Name = "" ) { |
| 512 | auto It = PI.DeclarationCache.try_emplace(Key: Op->getType()); |
| 513 | if (It.second) { |
| 514 | // The number of named values is used to detect if a new declaration |
| 515 | // was added. If so, that declaration is tracked so that it can be |
| 516 | // removed when the analysis is done. The corner case were a new |
| 517 | // declaration results in a name clash and the old name being renamed |
| 518 | // is not considered as that represents an invalid module. |
| 519 | auto NumDecls = F.getParent()->getNumNamedValues(); |
| 520 | Function *IF = Intrinsic::getOrInsertDeclaration( |
| 521 | M: F.getParent(), id: Intrinsic::ssa_copy, Tys: Op->getType()); |
| 522 | if (NumDecls != F.getParent()->getNumNamedValues()) |
| 523 | PI.CreatedDeclarations.insert(V: IF); |
| 524 | It.first->second = IF; |
| 525 | } |
| 526 | return B.CreateCall(Callee: It.first->second, Args: Op, Name); |
| 527 | }; |
| 528 | // For edge predicates, we can just place the operand in the block before |
| 529 | // the terminator. For assume, we have to place it right after the assume |
| 530 | // to ensure we dominate all uses except assume itself. Always insert |
| 531 | // right before the terminator or after the assume, so that we insert in |
| 532 | // proper order in the case of multiple predicateinfo in the same block. |
| 533 | if (isa<PredicateWithEdge>(Val: ValInfo)) { |
| 534 | IRBuilder<> B(getBranchTerminator(PB: ValInfo)); |
| 535 | CallInst *PIC = |
| 536 | CreateSSACopy(B, Op, Op->getName() + "." + Twine(Counter++)); |
| 537 | PI.PredicateMap.insert(KV: {PIC, ValInfo}); |
| 538 | Result.Def = PIC; |
| 539 | } else { |
| 540 | auto *PAssume = dyn_cast<PredicateAssume>(Val: ValInfo); |
| 541 | assert(PAssume && |
| 542 | "Should not have gotten here without it being an assume" ); |
| 543 | // Insert the predicate directly after the assume. While it also holds |
| 544 | // directly before it, assume(i1 true) is not a useful fact. |
| 545 | IRBuilder<> B(PAssume->AssumeInst->getNextNode()); |
| 546 | CallInst *PIC = CreateSSACopy(B, Op); |
| 547 | PI.PredicateMap.insert(KV: {PIC, ValInfo}); |
| 548 | Result.Def = PIC; |
| 549 | } |
| 550 | } |
| 551 | return RenameStack.back().Def; |
| 552 | } |
| 553 | |
| 554 | // Instead of the standard SSA renaming algorithm, which is O(Number of |
| 555 | // instructions), and walks the entire dominator tree, we walk only the defs + |
| 556 | // uses. The standard SSA renaming algorithm does not really rely on the |
| 557 | // dominator tree except to order the stack push/pops of the renaming stacks, so |
| 558 | // that defs end up getting pushed before hitting the correct uses. This does |
| 559 | // not require the dominator tree, only the *order* of the dominator tree. The |
| 560 | // complete and correct ordering of the defs and uses, in dominator tree is |
| 561 | // contained in the DFS numbering of the dominator tree. So we sort the defs and |
| 562 | // uses into the DFS ordering, and then just use the renaming stack as per |
| 563 | // normal, pushing when we hit a def (which is a predicateinfo instruction), |
| 564 | // popping when we are out of the dfs scope for that def, and replacing any uses |
| 565 | // with top of stack if it exists. In order to handle liveness without |
| 566 | // propagating liveness info, we don't actually insert the predicateinfo |
| 567 | // instruction def until we see a use that it would dominate. Once we see such |
| 568 | // a use, we materialize the predicateinfo instruction in the right place and |
| 569 | // use it. |
| 570 | // |
| 571 | // TODO: Use this algorithm to perform fast single-variable renaming in |
| 572 | // promotememtoreg and memoryssa. |
| 573 | void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) { |
| 574 | ValueDFS_Compare Compare(DT); |
| 575 | // Compute liveness, and rename in O(uses) per Op. |
| 576 | for (auto *Op : OpsToRename) { |
| 577 | LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n" ); |
| 578 | unsigned Counter = 0; |
| 579 | SmallVector<ValueDFS, 16> OrderedUses; |
| 580 | const auto &ValueInfo = getValueInfo(Op); |
| 581 | // Insert the possible copies into the def/use list. |
| 582 | // They will become real copies if we find a real use for them, and never |
| 583 | // created otherwise. |
| 584 | for (const auto &PossibleCopy : ValueInfo.Infos) { |
| 585 | ValueDFS VD; |
| 586 | // Determine where we are going to place the copy by the copy type. |
| 587 | // The predicate info for branches always come first, they will get |
| 588 | // materialized in the split block at the top of the block. |
| 589 | // The predicate info for assumes will be somewhere in the middle, |
| 590 | // it will get materialized right after the assume. |
| 591 | if (const auto *PAssume = dyn_cast<PredicateAssume>(Val: PossibleCopy)) { |
| 592 | VD.LocalNum = LN_Middle; |
| 593 | DomTreeNode *DomNode = DT.getNode(BB: PAssume->AssumeInst->getParent()); |
| 594 | if (!DomNode) |
| 595 | continue; |
| 596 | VD.DFSIn = DomNode->getDFSNumIn(); |
| 597 | VD.DFSOut = DomNode->getDFSNumOut(); |
| 598 | VD.PInfo = PossibleCopy; |
| 599 | OrderedUses.push_back(Elt: VD); |
| 600 | } else if (isa<PredicateWithEdge>(Val: PossibleCopy)) { |
| 601 | // If we can only do phi uses, we treat it like it's in the branch |
| 602 | // block, and handle it specially. We know that it goes last, and only |
| 603 | // dominate phi uses. |
| 604 | auto BlockEdge = getBlockEdge(PB: PossibleCopy); |
| 605 | if (!BlockEdge.second->getSinglePredecessor()) { |
| 606 | VD.LocalNum = LN_Last; |
| 607 | auto *DomNode = DT.getNode(BB: BlockEdge.first); |
| 608 | if (DomNode) { |
| 609 | VD.DFSIn = DomNode->getDFSNumIn(); |
| 610 | VD.DFSOut = DomNode->getDFSNumOut(); |
| 611 | VD.PInfo = PossibleCopy; |
| 612 | OrderedUses.push_back(Elt: VD); |
| 613 | } |
| 614 | } else { |
| 615 | // Otherwise, we are in the split block (even though we perform |
| 616 | // insertion in the branch block). |
| 617 | // Insert a possible copy at the split block and before the branch. |
| 618 | VD.LocalNum = LN_First; |
| 619 | auto *DomNode = DT.getNode(BB: BlockEdge.second); |
| 620 | if (DomNode) { |
| 621 | VD.DFSIn = DomNode->getDFSNumIn(); |
| 622 | VD.DFSOut = DomNode->getDFSNumOut(); |
| 623 | VD.PInfo = PossibleCopy; |
| 624 | OrderedUses.push_back(Elt: VD); |
| 625 | } |
| 626 | } |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | convertUsesToDFSOrdered(Op, DFSOrderedSet&: OrderedUses); |
| 631 | // Here we require a stable sort because we do not bother to try to |
| 632 | // assign an order to the operands the uses represent. Thus, two |
| 633 | // uses in the same instruction do not have a strict sort order |
| 634 | // currently and will be considered equal. We could get rid of the |
| 635 | // stable sort by creating one if we wanted. |
| 636 | llvm::stable_sort(Range&: OrderedUses, C: Compare); |
| 637 | SmallVector<StackEntry, 8> RenameStack; |
| 638 | // For each use, sorted into dfs order, push values and replaces uses with |
| 639 | // top of stack, which will represent the reaching def. |
| 640 | for (const ValueDFS &VD : OrderedUses) { |
| 641 | // We currently do not materialize copy over copy, but we should decide if |
| 642 | // we want to. |
| 643 | if (RenameStack.empty()) { |
| 644 | LLVM_DEBUG(dbgs() << "Rename Stack is empty\n" ); |
| 645 | } else { |
| 646 | LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" |
| 647 | << RenameStack.back().V->DFSIn << "," |
| 648 | << RenameStack.back().V->DFSOut << ")\n" ); |
| 649 | } |
| 650 | |
| 651 | LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," |
| 652 | << VD.DFSOut << ")\n" ); |
| 653 | |
| 654 | // Sync to our current scope. |
| 655 | popStackUntilDFSScope(Stack&: RenameStack, VD); |
| 656 | |
| 657 | if (VD.PInfo) { |
| 658 | RenameStack.push_back(Elt: &VD); |
| 659 | continue; |
| 660 | } |
| 661 | |
| 662 | // If we get to this point, and the stack is empty we must have a use |
| 663 | // with no renaming needed, just skip it. |
| 664 | if (RenameStack.empty()) |
| 665 | continue; |
| 666 | if (!DebugCounter::shouldExecute(CounterName: RenameCounter)) { |
| 667 | LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n" ); |
| 668 | continue; |
| 669 | } |
| 670 | StackEntry &Result = RenameStack.back(); |
| 671 | |
| 672 | // If the possible copy dominates something, materialize our stack up to |
| 673 | // this point. This ensures every comparison that affects our operation |
| 674 | // ends up with predicateinfo. |
| 675 | if (!Result.Def) |
| 676 | Result.Def = materializeStack(Counter, RenameStack, OrigOp: Op); |
| 677 | |
| 678 | LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " |
| 679 | << *VD.U->get() << " in " << *(VD.U->getUser()) |
| 680 | << "\n" ); |
| 681 | assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && |
| 682 | "Predicateinfo def should have dominated this use" ); |
| 683 | VD.U->set(Result.Def); |
| 684 | } |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | PredicateInfoBuilder::ValueInfo & |
| 689 | PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) { |
| 690 | auto Res = ValueInfoNums.try_emplace(Key: Operand, Args: ValueInfos.size()); |
| 691 | if (Res.second) { |
| 692 | // Allocate space for new ValueInfo. |
| 693 | ValueInfos.resize(N: ValueInfos.size() + 1); |
| 694 | } |
| 695 | return ValueInfos[Res.first->second]; |
| 696 | } |
| 697 | |
| 698 | const PredicateInfoBuilder::ValueInfo & |
| 699 | PredicateInfoBuilder::getValueInfo(Value *Operand) const { |
| 700 | auto OINI = ValueInfoNums.lookup(Val: Operand); |
| 701 | assert(OINI != 0 && "Operand was not really in the Value Info Numbers" ); |
| 702 | assert(OINI < ValueInfos.size() && |
| 703 | "Value Info Number greater than size of Value Info Table" ); |
| 704 | return ValueInfos[OINI]; |
| 705 | } |
| 706 | |
| 707 | PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, |
| 708 | AssumptionCache &AC, BumpPtrAllocator &Allocator) |
| 709 | : F(F) { |
| 710 | PredicateInfoBuilder Builder(*this, F, DT, AC, Allocator); |
| 711 | Builder.buildPredicateInfo(); |
| 712 | } |
| 713 | |
| 714 | // Remove all declarations we created . The PredicateInfo consumers are |
| 715 | // responsible for remove the ssa_copy calls created. |
| 716 | PredicateInfo::~PredicateInfo() { |
| 717 | // Collect function pointers in set first, as SmallSet uses a SmallVector |
| 718 | // internally and we have to remove the asserting value handles first. |
| 719 | SmallPtrSet<Function *, 20> FunctionPtrs; |
| 720 | for (const auto &F : CreatedDeclarations) |
| 721 | FunctionPtrs.insert(Ptr: &*F); |
| 722 | CreatedDeclarations.clear(); |
| 723 | |
| 724 | for (Function *F : FunctionPtrs) { |
| 725 | assert(F->user_begin() == F->user_end() && |
| 726 | "PredicateInfo consumer did not remove all SSA copies." ); |
| 727 | F->eraseFromParent(); |
| 728 | } |
| 729 | } |
| 730 | |
| 731 | std::optional<PredicateConstraint> PredicateBase::getConstraint() const { |
| 732 | switch (Type) { |
| 733 | case PT_Assume: |
| 734 | case PT_Branch: { |
| 735 | bool TrueEdge = true; |
| 736 | if (auto *PBranch = dyn_cast<PredicateBranch>(Val: this)) |
| 737 | TrueEdge = PBranch->TrueEdge; |
| 738 | |
| 739 | if (Condition == RenamedOp) { |
| 740 | return {{.Predicate: CmpInst::ICMP_EQ, |
| 741 | .OtherOp: TrueEdge ? ConstantInt::getTrue(Ty: Condition->getType()) |
| 742 | : ConstantInt::getFalse(Ty: Condition->getType())}}; |
| 743 | } |
| 744 | |
| 745 | CmpInst *Cmp = dyn_cast<CmpInst>(Val: Condition); |
| 746 | if (!Cmp) { |
| 747 | // TODO: Make this an assertion once RenamedOp is fully accurate. |
| 748 | return std::nullopt; |
| 749 | } |
| 750 | |
| 751 | CmpInst::Predicate Pred; |
| 752 | Value *OtherOp; |
| 753 | if (Cmp->getOperand(i_nocapture: 0) == RenamedOp) { |
| 754 | Pred = Cmp->getPredicate(); |
| 755 | OtherOp = Cmp->getOperand(i_nocapture: 1); |
| 756 | } else if (Cmp->getOperand(i_nocapture: 1) == RenamedOp) { |
| 757 | Pred = Cmp->getSwappedPredicate(); |
| 758 | OtherOp = Cmp->getOperand(i_nocapture: 0); |
| 759 | } else { |
| 760 | // TODO: Make this an assertion once RenamedOp is fully accurate. |
| 761 | return std::nullopt; |
| 762 | } |
| 763 | |
| 764 | // Invert predicate along false edge. |
| 765 | if (!TrueEdge) |
| 766 | Pred = CmpInst::getInversePredicate(pred: Pred); |
| 767 | |
| 768 | return {{.Predicate: Pred, .OtherOp: OtherOp}}; |
| 769 | } |
| 770 | case PT_Switch: |
| 771 | if (Condition != RenamedOp) { |
| 772 | // TODO: Make this an assertion once RenamedOp is fully accurate. |
| 773 | return std::nullopt; |
| 774 | } |
| 775 | |
| 776 | return {{.Predicate: CmpInst::ICMP_EQ, .OtherOp: cast<PredicateSwitch>(Val: this)->CaseValue}}; |
| 777 | } |
| 778 | llvm_unreachable("Unknown predicate type" ); |
| 779 | } |
| 780 | |
| 781 | void PredicateInfo::verifyPredicateInfo() const {} |
| 782 | |
| 783 | // Replace ssa_copy calls created by PredicateInfo with their operand. |
| 784 | static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) { |
| 785 | for (Instruction &Inst : llvm::make_early_inc_range(Range: instructions(F))) { |
| 786 | const auto *PI = PredInfo.getPredicateInfoFor(V: &Inst); |
| 787 | auto *II = dyn_cast<IntrinsicInst>(Val: &Inst); |
| 788 | if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy) |
| 789 | continue; |
| 790 | |
| 791 | Inst.replaceAllUsesWith(V: II->getOperand(i_nocapture: 0)); |
| 792 | Inst.eraseFromParent(); |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, |
| 797 | FunctionAnalysisManager &AM) { |
| 798 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 799 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
| 800 | OS << "PredicateInfo for function: " << F.getName() << "\n" ; |
| 801 | BumpPtrAllocator Allocator; |
| 802 | auto PredInfo = std::make_unique<PredicateInfo>(args&: F, args&: DT, args&: AC, args&: Allocator); |
| 803 | PredInfo->print(OS); |
| 804 | |
| 805 | replaceCreatedSSACopys(PredInfo&: *PredInfo, F); |
| 806 | return PreservedAnalyses::all(); |
| 807 | } |
| 808 | |
| 809 | /// An assembly annotator class to print PredicateInfo information in |
| 810 | /// comments. |
| 811 | class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { |
| 812 | friend class PredicateInfo; |
| 813 | const PredicateInfo *PredInfo; |
| 814 | |
| 815 | public: |
| 816 | PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} |
| 817 | |
| 818 | void emitBasicBlockStartAnnot(const BasicBlock *BB, |
| 819 | formatted_raw_ostream &OS) override {} |
| 820 | |
| 821 | void emitInstructionAnnot(const Instruction *I, |
| 822 | formatted_raw_ostream &OS) override { |
| 823 | if (const auto *PI = PredInfo->getPredicateInfoFor(V: I)) { |
| 824 | OS << "; Has predicate info\n" ; |
| 825 | if (const auto *PB = dyn_cast<PredicateBranch>(Val: PI)) { |
| 826 | OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge |
| 827 | << " Comparison:" << *PB->Condition << " Edge: [" ; |
| 828 | PB->From->printAsOperand(O&: OS); |
| 829 | OS << "," ; |
| 830 | PB->To->printAsOperand(O&: OS); |
| 831 | OS << "]" ; |
| 832 | } else if (const auto *PS = dyn_cast<PredicateSwitch>(Val: PI)) { |
| 833 | OS << "; switch predicate info { CaseValue: " << *PS->CaseValue |
| 834 | << " Switch:" << *PS->Switch << " Edge: [" ; |
| 835 | PS->From->printAsOperand(O&: OS); |
| 836 | OS << "," ; |
| 837 | PS->To->printAsOperand(O&: OS); |
| 838 | OS << "]" ; |
| 839 | } else if (const auto *PA = dyn_cast<PredicateAssume>(Val: PI)) { |
| 840 | OS << "; assume predicate info {" |
| 841 | << " Comparison:" << *PA->Condition; |
| 842 | } |
| 843 | OS << ", RenamedOp: " ; |
| 844 | PI->RenamedOp->printAsOperand(O&: OS, PrintType: false); |
| 845 | OS << " }\n" ; |
| 846 | } |
| 847 | } |
| 848 | }; |
| 849 | |
| 850 | void PredicateInfo::print(raw_ostream &OS) const { |
| 851 | PredicateInfoAnnotatedWriter Writer(this); |
| 852 | F.print(OS, AAW: &Writer); |
| 853 | } |
| 854 | |
| 855 | void PredicateInfo::dump() const { |
| 856 | PredicateInfoAnnotatedWriter Writer(this); |
| 857 | F.print(OS&: dbgs(), AAW: &Writer); |
| 858 | } |
| 859 | |
| 860 | PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, |
| 861 | FunctionAnalysisManager &AM) { |
| 862 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 863 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
| 864 | BumpPtrAllocator Allocator; |
| 865 | std::make_unique<PredicateInfo>(args&: F, args&: DT, args&: AC, args&: Allocator)->verifyPredicateInfo(); |
| 866 | |
| 867 | return PreservedAnalyses::all(); |
| 868 | } |
| 869 | } |
| 870 | |