| 1 | //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// This file contains the declarations of the Vectorization Plan base classes: |
| 11 | /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual |
| 12 | /// VPBlockBase, together implementing a Hierarchical CFG; |
| 13 | /// 2. Pure virtual VPRecipeBase serving as the base class for recipes contained |
| 14 | /// within VPBasicBlocks; |
| 15 | /// 3. Pure virtual VPSingleDefRecipe serving as a base class for recipes that |
| 16 | /// also inherit from VPValue. |
| 17 | /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned |
| 18 | /// instruction; |
| 19 | /// 5. The VPlan class holding a candidate for vectorization; |
| 20 | /// These are documented in docs/VectorizationPlan.rst. |
| 21 | // |
| 22 | //===----------------------------------------------------------------------===// |
| 23 | |
| 24 | #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| 25 | #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| 26 | |
| 27 | #include "VPlanAnalysis.h" |
| 28 | #include "VPlanValue.h" |
| 29 | #include "llvm/ADT/DenseMap.h" |
| 30 | #include "llvm/ADT/SmallBitVector.h" |
| 31 | #include "llvm/ADT/SmallPtrSet.h" |
| 32 | #include "llvm/ADT/SmallVector.h" |
| 33 | #include "llvm/ADT/Twine.h" |
| 34 | #include "llvm/ADT/ilist.h" |
| 35 | #include "llvm/ADT/ilist_node.h" |
| 36 | #include "llvm/Analysis/IVDescriptors.h" |
| 37 | #include "llvm/Analysis/VectorUtils.h" |
| 38 | #include "llvm/IR/DebugLoc.h" |
| 39 | #include "llvm/IR/FMF.h" |
| 40 | #include "llvm/IR/Operator.h" |
| 41 | #include "llvm/Support/InstructionCost.h" |
| 42 | #include <algorithm> |
| 43 | #include <cassert> |
| 44 | #include <cstddef> |
| 45 | #include <string> |
| 46 | |
| 47 | namespace llvm { |
| 48 | |
| 49 | class BasicBlock; |
| 50 | class DominatorTree; |
| 51 | class InnerLoopVectorizer; |
| 52 | class IRBuilderBase; |
| 53 | struct VPTransformState; |
| 54 | class raw_ostream; |
| 55 | class RecurrenceDescriptor; |
| 56 | class SCEV; |
| 57 | class Type; |
| 58 | class VPBasicBlock; |
| 59 | class VPBuilder; |
| 60 | class VPDominatorTree; |
| 61 | class VPRegionBlock; |
| 62 | class VPlan; |
| 63 | class VPLane; |
| 64 | class VPReplicateRecipe; |
| 65 | class VPlanSlp; |
| 66 | class Value; |
| 67 | class LoopVectorizationCostModel; |
| 68 | class LoopVersioning; |
| 69 | |
| 70 | struct VPCostContext; |
| 71 | |
| 72 | namespace Intrinsic { |
| 73 | typedef unsigned ID; |
| 74 | } |
| 75 | |
| 76 | using VPlanPtr = std::unique_ptr<VPlan>; |
| 77 | |
| 78 | /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. |
| 79 | /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. |
| 80 | class VPBlockBase { |
| 81 | friend class VPBlockUtils; |
| 82 | |
| 83 | const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). |
| 84 | |
| 85 | /// An optional name for the block. |
| 86 | std::string Name; |
| 87 | |
| 88 | /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if |
| 89 | /// it is a topmost VPBlockBase. |
| 90 | VPRegionBlock *Parent = nullptr; |
| 91 | |
| 92 | /// List of predecessor blocks. |
| 93 | SmallVector<VPBlockBase *, 1> Predecessors; |
| 94 | |
| 95 | /// List of successor blocks. |
| 96 | SmallVector<VPBlockBase *, 1> Successors; |
| 97 | |
| 98 | /// VPlan containing the block. Can only be set on the entry block of the |
| 99 | /// plan. |
| 100 | VPlan *Plan = nullptr; |
| 101 | |
| 102 | /// Add \p Successor as the last successor to this block. |
| 103 | void appendSuccessor(VPBlockBase *Successor) { |
| 104 | assert(Successor && "Cannot add nullptr successor!" ); |
| 105 | Successors.push_back(Elt: Successor); |
| 106 | } |
| 107 | |
| 108 | /// Add \p Predecessor as the last predecessor to this block. |
| 109 | void appendPredecessor(VPBlockBase *Predecessor) { |
| 110 | assert(Predecessor && "Cannot add nullptr predecessor!" ); |
| 111 | Predecessors.push_back(Elt: Predecessor); |
| 112 | } |
| 113 | |
| 114 | /// Remove \p Predecessor from the predecessors of this block. |
| 115 | void removePredecessor(VPBlockBase *Predecessor) { |
| 116 | auto Pos = find(Range&: Predecessors, Val: Predecessor); |
| 117 | assert(Pos && "Predecessor does not exist" ); |
| 118 | Predecessors.erase(CI: Pos); |
| 119 | } |
| 120 | |
| 121 | /// Remove \p Successor from the successors of this block. |
| 122 | void removeSuccessor(VPBlockBase *Successor) { |
| 123 | auto Pos = find(Range&: Successors, Val: Successor); |
| 124 | assert(Pos && "Successor does not exist" ); |
| 125 | Successors.erase(CI: Pos); |
| 126 | } |
| 127 | |
| 128 | /// This function replaces one predecessor with another, useful when |
| 129 | /// trying to replace an old block in the CFG with a new one. |
| 130 | void replacePredecessor(VPBlockBase *Old, VPBlockBase *New) { |
| 131 | auto I = find(Range&: Predecessors, Val: Old); |
| 132 | assert(I != Predecessors.end()); |
| 133 | assert(Old->getParent() == New->getParent() && |
| 134 | "replaced predecessor must have the same parent" ); |
| 135 | *I = New; |
| 136 | } |
| 137 | |
| 138 | /// This function replaces one successor with another, useful when |
| 139 | /// trying to replace an old block in the CFG with a new one. |
| 140 | void replaceSuccessor(VPBlockBase *Old, VPBlockBase *New) { |
| 141 | auto I = find(Range&: Successors, Val: Old); |
| 142 | assert(I != Successors.end()); |
| 143 | assert(Old->getParent() == New->getParent() && |
| 144 | "replaced successor must have the same parent" ); |
| 145 | *I = New; |
| 146 | } |
| 147 | |
| 148 | protected: |
| 149 | VPBlockBase(const unsigned char SC, const std::string &N) |
| 150 | : SubclassID(SC), Name(N) {} |
| 151 | |
| 152 | public: |
| 153 | /// An enumeration for keeping track of the concrete subclass of VPBlockBase |
| 154 | /// that are actually instantiated. Values of this enumeration are kept in the |
| 155 | /// SubclassID field of the VPBlockBase objects. They are used for concrete |
| 156 | /// type identification. |
| 157 | using VPBlockTy = enum { VPRegionBlockSC, VPBasicBlockSC, VPIRBasicBlockSC }; |
| 158 | |
| 159 | using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; |
| 160 | |
| 161 | virtual ~VPBlockBase() = default; |
| 162 | |
| 163 | const std::string &getName() const { return Name; } |
| 164 | |
| 165 | void setName(const Twine &newName) { Name = newName.str(); } |
| 166 | |
| 167 | /// \return an ID for the concrete type of this object. |
| 168 | /// This is used to implement the classof checks. This should not be used |
| 169 | /// for any other purpose, as the values may change as LLVM evolves. |
| 170 | unsigned getVPBlockID() const { return SubclassID; } |
| 171 | |
| 172 | VPRegionBlock *getParent() { return Parent; } |
| 173 | const VPRegionBlock *getParent() const { return Parent; } |
| 174 | |
| 175 | /// \return A pointer to the plan containing the current block. |
| 176 | VPlan *getPlan(); |
| 177 | const VPlan *getPlan() const; |
| 178 | |
| 179 | /// Sets the pointer of the plan containing the block. The block must be the |
| 180 | /// entry block into the VPlan. |
| 181 | void setPlan(VPlan *ParentPlan); |
| 182 | |
| 183 | void setParent(VPRegionBlock *P) { Parent = P; } |
| 184 | |
| 185 | /// \return the VPBasicBlock that is the entry of this VPBlockBase, |
| 186 | /// recursively, if the latter is a VPRegionBlock. Otherwise, if this |
| 187 | /// VPBlockBase is a VPBasicBlock, it is returned. |
| 188 | const VPBasicBlock *getEntryBasicBlock() const; |
| 189 | VPBasicBlock *getEntryBasicBlock(); |
| 190 | |
| 191 | /// \return the VPBasicBlock that is the exiting this VPBlockBase, |
| 192 | /// recursively, if the latter is a VPRegionBlock. Otherwise, if this |
| 193 | /// VPBlockBase is a VPBasicBlock, it is returned. |
| 194 | const VPBasicBlock *getExitingBasicBlock() const; |
| 195 | VPBasicBlock *getExitingBasicBlock(); |
| 196 | |
| 197 | const VPBlocksTy &getSuccessors() const { return Successors; } |
| 198 | VPBlocksTy &getSuccessors() { return Successors; } |
| 199 | |
| 200 | iterator_range<VPBlockBase **> successors() { return Successors; } |
| 201 | iterator_range<VPBlockBase **> predecessors() { return Predecessors; } |
| 202 | |
| 203 | const VPBlocksTy &getPredecessors() const { return Predecessors; } |
| 204 | VPBlocksTy &getPredecessors() { return Predecessors; } |
| 205 | |
| 206 | /// \return the successor of this VPBlockBase if it has a single successor. |
| 207 | /// Otherwise return a null pointer. |
| 208 | VPBlockBase *getSingleSuccessor() const { |
| 209 | return (Successors.size() == 1 ? *Successors.begin() : nullptr); |
| 210 | } |
| 211 | |
| 212 | /// \return the predecessor of this VPBlockBase if it has a single |
| 213 | /// predecessor. Otherwise return a null pointer. |
| 214 | VPBlockBase *getSinglePredecessor() const { |
| 215 | return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); |
| 216 | } |
| 217 | |
| 218 | size_t getNumSuccessors() const { return Successors.size(); } |
| 219 | size_t getNumPredecessors() const { return Predecessors.size(); } |
| 220 | |
| 221 | /// An Enclosing Block of a block B is any block containing B, including B |
| 222 | /// itself. \return the closest enclosing block starting from "this", which |
| 223 | /// has successors. \return the root enclosing block if all enclosing blocks |
| 224 | /// have no successors. |
| 225 | VPBlockBase *getEnclosingBlockWithSuccessors(); |
| 226 | |
| 227 | /// \return the closest enclosing block starting from "this", which has |
| 228 | /// predecessors. \return the root enclosing block if all enclosing blocks |
| 229 | /// have no predecessors. |
| 230 | VPBlockBase *getEnclosingBlockWithPredecessors(); |
| 231 | |
| 232 | /// \return the successors either attached directly to this VPBlockBase or, if |
| 233 | /// this VPBlockBase is the exit block of a VPRegionBlock and has no |
| 234 | /// successors of its own, search recursively for the first enclosing |
| 235 | /// VPRegionBlock that has successors and return them. If no such |
| 236 | /// VPRegionBlock exists, return the (empty) successors of the topmost |
| 237 | /// VPBlockBase reached. |
| 238 | const VPBlocksTy &getHierarchicalSuccessors() { |
| 239 | return getEnclosingBlockWithSuccessors()->getSuccessors(); |
| 240 | } |
| 241 | |
| 242 | /// \return the hierarchical successor of this VPBlockBase if it has a single |
| 243 | /// hierarchical successor. Otherwise return a null pointer. |
| 244 | VPBlockBase *getSingleHierarchicalSuccessor() { |
| 245 | return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); |
| 246 | } |
| 247 | |
| 248 | /// \return the predecessors either attached directly to this VPBlockBase or, |
| 249 | /// if this VPBlockBase is the entry block of a VPRegionBlock and has no |
| 250 | /// predecessors of its own, search recursively for the first enclosing |
| 251 | /// VPRegionBlock that has predecessors and return them. If no such |
| 252 | /// VPRegionBlock exists, return the (empty) predecessors of the topmost |
| 253 | /// VPBlockBase reached. |
| 254 | const VPBlocksTy &getHierarchicalPredecessors() { |
| 255 | return getEnclosingBlockWithPredecessors()->getPredecessors(); |
| 256 | } |
| 257 | |
| 258 | /// \return the hierarchical predecessor of this VPBlockBase if it has a |
| 259 | /// single hierarchical predecessor. Otherwise return a null pointer. |
| 260 | VPBlockBase *getSingleHierarchicalPredecessor() { |
| 261 | return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); |
| 262 | } |
| 263 | |
| 264 | /// Set a given VPBlockBase \p Successor as the single successor of this |
| 265 | /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. |
| 266 | /// This VPBlockBase must have no successors. |
| 267 | void setOneSuccessor(VPBlockBase *Successor) { |
| 268 | assert(Successors.empty() && "Setting one successor when others exist." ); |
| 269 | assert(Successor->getParent() == getParent() && |
| 270 | "connected blocks must have the same parent" ); |
| 271 | appendSuccessor(Successor); |
| 272 | } |
| 273 | |
| 274 | /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two |
| 275 | /// successors of this VPBlockBase. This VPBlockBase is not added as |
| 276 | /// predecessor of \p IfTrue or \p IfFalse. This VPBlockBase must have no |
| 277 | /// successors. |
| 278 | void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) { |
| 279 | assert(Successors.empty() && "Setting two successors when others exist." ); |
| 280 | appendSuccessor(Successor: IfTrue); |
| 281 | appendSuccessor(Successor: IfFalse); |
| 282 | } |
| 283 | |
| 284 | /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. |
| 285 | /// This VPBlockBase must have no predecessors. This VPBlockBase is not added |
| 286 | /// as successor of any VPBasicBlock in \p NewPreds. |
| 287 | void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { |
| 288 | assert(Predecessors.empty() && "Block predecessors already set." ); |
| 289 | for (auto *Pred : NewPreds) |
| 290 | appendPredecessor(Predecessor: Pred); |
| 291 | } |
| 292 | |
| 293 | /// Set each VPBasicBlock in \p NewSuccss as successor of this VPBlockBase. |
| 294 | /// This VPBlockBase must have no successors. This VPBlockBase is not added |
| 295 | /// as predecessor of any VPBasicBlock in \p NewSuccs. |
| 296 | void setSuccessors(ArrayRef<VPBlockBase *> NewSuccs) { |
| 297 | assert(Successors.empty() && "Block successors already set." ); |
| 298 | for (auto *Succ : NewSuccs) |
| 299 | appendSuccessor(Successor: Succ); |
| 300 | } |
| 301 | |
| 302 | /// Remove all the predecessor of this block. |
| 303 | void clearPredecessors() { Predecessors.clear(); } |
| 304 | |
| 305 | /// Remove all the successors of this block. |
| 306 | void clearSuccessors() { Successors.clear(); } |
| 307 | |
| 308 | /// Swap predecessors of the block. The block must have exactly 2 |
| 309 | /// predecessors. |
| 310 | void swapPredecessors() { |
| 311 | assert(Predecessors.size() == 2 && "must have 2 predecessors to swap" ); |
| 312 | std::swap(a&: Predecessors[0], b&: Predecessors[1]); |
| 313 | } |
| 314 | |
| 315 | /// Swap successors of the block. The block must have exactly 2 successors. |
| 316 | // TODO: This should be part of introducing conditional branch recipes rather |
| 317 | // than being independent. |
| 318 | void swapSuccessors() { |
| 319 | assert(Successors.size() == 2 && "must have 2 successors to swap" ); |
| 320 | std::swap(a&: Successors[0], b&: Successors[1]); |
| 321 | } |
| 322 | |
| 323 | /// Returns the index for \p Pred in the blocks predecessors list. |
| 324 | unsigned getIndexForPredecessor(const VPBlockBase *Pred) const { |
| 325 | assert(count(Predecessors, Pred) == 1 && |
| 326 | "must have Pred exactly once in Predecessors" ); |
| 327 | return std::distance(first: Predecessors.begin(), last: find(Range: Predecessors, Val: Pred)); |
| 328 | } |
| 329 | |
| 330 | /// Returns the index for \p Succ in the blocks successor list. |
| 331 | unsigned getIndexForSuccessor(const VPBlockBase *Succ) const { |
| 332 | assert(count(Successors, Succ) == 1 && |
| 333 | "must have Succ exactly once in Successors" ); |
| 334 | return std::distance(first: Successors.begin(), last: find(Range: Successors, Val: Succ)); |
| 335 | } |
| 336 | |
| 337 | /// The method which generates the output IR that correspond to this |
| 338 | /// VPBlockBase, thereby "executing" the VPlan. |
| 339 | virtual void execute(VPTransformState *State) = 0; |
| 340 | |
| 341 | /// Return the cost of the block. |
| 342 | virtual InstructionCost cost(ElementCount VF, VPCostContext &Ctx) = 0; |
| 343 | |
| 344 | /// Return true if it is legal to hoist instructions into this block. |
| 345 | bool isLegalToHoistInto() { |
| 346 | // There are currently no constraints that prevent an instruction to be |
| 347 | // hoisted into a VPBlockBase. |
| 348 | return true; |
| 349 | } |
| 350 | |
| 351 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 352 | void printAsOperand(raw_ostream &OS, bool PrintType = false) const { |
| 353 | OS << getName(); |
| 354 | } |
| 355 | |
| 356 | /// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines |
| 357 | /// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using |
| 358 | /// consequtive numbers. |
| 359 | /// |
| 360 | /// Note that the numbering is applied to the whole VPlan, so printing |
| 361 | /// individual blocks is consistent with the whole VPlan printing. |
| 362 | virtual void print(raw_ostream &O, const Twine &Indent, |
| 363 | VPSlotTracker &SlotTracker) const = 0; |
| 364 | |
| 365 | /// Print plain-text dump of this VPlan to \p O. |
| 366 | void print(raw_ostream &O) const; |
| 367 | |
| 368 | /// Print the successors of this block to \p O, prefixing all lines with \p |
| 369 | /// Indent. |
| 370 | void printSuccessors(raw_ostream &O, const Twine &Indent) const; |
| 371 | |
| 372 | /// Dump this VPBlockBase to dbgs(). |
| 373 | LLVM_DUMP_METHOD void dump() const { print(dbgs()); } |
| 374 | #endif |
| 375 | |
| 376 | /// Clone the current block and it's recipes without updating the operands of |
| 377 | /// the cloned recipes, including all blocks in the single-entry single-exit |
| 378 | /// region for VPRegionBlocks. |
| 379 | virtual VPBlockBase *clone() = 0; |
| 380 | }; |
| 381 | |
| 382 | /// VPRecipeBase is a base class modeling a sequence of one or more output IR |
| 383 | /// instructions. VPRecipeBase owns the VPValues it defines through VPDef |
| 384 | /// and is responsible for deleting its defined values. Single-value |
| 385 | /// recipes must inherit from VPSingleDef instead of inheriting from both |
| 386 | /// VPRecipeBase and VPValue separately. |
| 387 | class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>, |
| 388 | public VPDef, |
| 389 | public VPUser { |
| 390 | friend VPBasicBlock; |
| 391 | friend class VPBlockUtils; |
| 392 | |
| 393 | /// Each VPRecipe belongs to a single VPBasicBlock. |
| 394 | VPBasicBlock *Parent = nullptr; |
| 395 | |
| 396 | /// The debug location for the recipe. |
| 397 | DebugLoc DL; |
| 398 | |
| 399 | public: |
| 400 | VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| 401 | DebugLoc DL = {}) |
| 402 | : VPDef(SC), VPUser(Operands), DL(DL) {} |
| 403 | |
| 404 | virtual ~VPRecipeBase() = default; |
| 405 | |
| 406 | /// Clone the current recipe. |
| 407 | virtual VPRecipeBase *clone() = 0; |
| 408 | |
| 409 | /// \return the VPBasicBlock which this VPRecipe belongs to. |
| 410 | VPBasicBlock *getParent() { return Parent; } |
| 411 | const VPBasicBlock *getParent() const { return Parent; } |
| 412 | |
| 413 | /// The method which generates the output IR instructions that correspond to |
| 414 | /// this VPRecipe, thereby "executing" the VPlan. |
| 415 | virtual void execute(VPTransformState &State) = 0; |
| 416 | |
| 417 | /// Return the cost of this recipe, taking into account if the cost |
| 418 | /// computation should be skipped and the ForceTargetInstructionCost flag. |
| 419 | /// Also takes care of printing the cost for debugging. |
| 420 | InstructionCost cost(ElementCount VF, VPCostContext &Ctx); |
| 421 | |
| 422 | /// Insert an unlinked recipe into a basic block immediately before |
| 423 | /// the specified recipe. |
| 424 | void insertBefore(VPRecipeBase *InsertPos); |
| 425 | /// Insert an unlinked recipe into \p BB immediately before the insertion |
| 426 | /// point \p IP; |
| 427 | void insertBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator IP); |
| 428 | |
| 429 | /// Insert an unlinked Recipe into a basic block immediately after |
| 430 | /// the specified Recipe. |
| 431 | void insertAfter(VPRecipeBase *InsertPos); |
| 432 | |
| 433 | /// Unlink this recipe from its current VPBasicBlock and insert it into |
| 434 | /// the VPBasicBlock that MovePos lives in, right after MovePos. |
| 435 | void moveAfter(VPRecipeBase *MovePos); |
| 436 | |
| 437 | /// Unlink this recipe and insert into BB before I. |
| 438 | /// |
| 439 | /// \pre I is a valid iterator into BB. |
| 440 | void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I); |
| 441 | |
| 442 | /// This method unlinks 'this' from the containing basic block, but does not |
| 443 | /// delete it. |
| 444 | void removeFromParent(); |
| 445 | |
| 446 | /// This method unlinks 'this' from the containing basic block and deletes it. |
| 447 | /// |
| 448 | /// \returns an iterator pointing to the element after the erased one |
| 449 | iplist<VPRecipeBase>::iterator eraseFromParent(); |
| 450 | |
| 451 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 452 | static inline bool classof(const VPDef *D) { |
| 453 | // All VPDefs are also VPRecipeBases. |
| 454 | return true; |
| 455 | } |
| 456 | |
| 457 | static inline bool classof(const VPUser *U) { return true; } |
| 458 | |
| 459 | /// Returns true if the recipe may have side-effects. |
| 460 | bool mayHaveSideEffects() const; |
| 461 | |
| 462 | /// Returns true for PHI-like recipes. |
| 463 | bool isPhi() const; |
| 464 | |
| 465 | /// Returns true if the recipe may read from memory. |
| 466 | bool mayReadFromMemory() const; |
| 467 | |
| 468 | /// Returns true if the recipe may write to memory. |
| 469 | bool mayWriteToMemory() const; |
| 470 | |
| 471 | /// Returns true if the recipe may read from or write to memory. |
| 472 | bool mayReadOrWriteMemory() const { |
| 473 | return mayReadFromMemory() || mayWriteToMemory(); |
| 474 | } |
| 475 | |
| 476 | /// Returns the debug location of the recipe. |
| 477 | DebugLoc getDebugLoc() const { return DL; } |
| 478 | |
| 479 | /// Return true if the recipe is a scalar cast. |
| 480 | bool isScalarCast() const; |
| 481 | |
| 482 | /// Set the recipe's debug location to \p NewDL. |
| 483 | void setDebugLoc(DebugLoc NewDL) { DL = NewDL; } |
| 484 | |
| 485 | protected: |
| 486 | /// Compute the cost of this recipe either using a recipe's specialized |
| 487 | /// implementation or using the legacy cost model and the underlying |
| 488 | /// instructions. |
| 489 | virtual InstructionCost computeCost(ElementCount VF, |
| 490 | VPCostContext &Ctx) const; |
| 491 | }; |
| 492 | |
| 493 | // Helper macro to define common classof implementations for recipes. |
| 494 | #define VP_CLASSOF_IMPL(VPDefID) \ |
| 495 | static inline bool classof(const VPDef *D) { \ |
| 496 | return D->getVPDefID() == VPDefID; \ |
| 497 | } \ |
| 498 | static inline bool classof(const VPValue *V) { \ |
| 499 | auto *R = V->getDefiningRecipe(); \ |
| 500 | return R && R->getVPDefID() == VPDefID; \ |
| 501 | } \ |
| 502 | static inline bool classof(const VPUser *U) { \ |
| 503 | auto *R = dyn_cast<VPRecipeBase>(U); \ |
| 504 | return R && R->getVPDefID() == VPDefID; \ |
| 505 | } \ |
| 506 | static inline bool classof(const VPRecipeBase *R) { \ |
| 507 | return R->getVPDefID() == VPDefID; \ |
| 508 | } \ |
| 509 | static inline bool classof(const VPSingleDefRecipe *R) { \ |
| 510 | return R->getVPDefID() == VPDefID; \ |
| 511 | } |
| 512 | |
| 513 | /// VPSingleDef is a base class for recipes for modeling a sequence of one or |
| 514 | /// more output IR that define a single result VPValue. |
| 515 | /// Note that VPRecipeBase must be inherited from before VPValue. |
| 516 | class VPSingleDefRecipe : public VPRecipeBase, public VPValue { |
| 517 | public: |
| 518 | VPSingleDefRecipe(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| 519 | DebugLoc DL = {}) |
| 520 | : VPRecipeBase(SC, Operands, DL), VPValue(this) {} |
| 521 | |
| 522 | VPSingleDefRecipe(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| 523 | Value *UV, DebugLoc DL = {}) |
| 524 | : VPRecipeBase(SC, Operands, DL), VPValue(this, UV) {} |
| 525 | |
| 526 | static inline bool classof(const VPRecipeBase *R) { |
| 527 | switch (R->getVPDefID()) { |
| 528 | case VPRecipeBase::VPDerivedIVSC: |
| 529 | case VPRecipeBase::VPEVLBasedIVPHISC: |
| 530 | case VPRecipeBase::VPExpandSCEVSC: |
| 531 | case VPRecipeBase::VPExpressionSC: |
| 532 | case VPRecipeBase::VPInstructionSC: |
| 533 | case VPRecipeBase::VPReductionEVLSC: |
| 534 | case VPRecipeBase::VPReductionSC: |
| 535 | case VPRecipeBase::VPReplicateSC: |
| 536 | case VPRecipeBase::VPScalarIVStepsSC: |
| 537 | case VPRecipeBase::VPVectorPointerSC: |
| 538 | case VPRecipeBase::VPVectorEndPointerSC: |
| 539 | case VPRecipeBase::VPWidenCallSC: |
| 540 | case VPRecipeBase::VPWidenCanonicalIVSC: |
| 541 | case VPRecipeBase::VPWidenCastSC: |
| 542 | case VPRecipeBase::VPWidenGEPSC: |
| 543 | case VPRecipeBase::VPWidenIntrinsicSC: |
| 544 | case VPRecipeBase::VPWidenSC: |
| 545 | case VPRecipeBase::VPWidenSelectSC: |
| 546 | case VPRecipeBase::VPBlendSC: |
| 547 | case VPRecipeBase::VPPredInstPHISC: |
| 548 | case VPRecipeBase::VPCanonicalIVPHISC: |
| 549 | case VPRecipeBase::VPActiveLaneMaskPHISC: |
| 550 | case VPRecipeBase::VPFirstOrderRecurrencePHISC: |
| 551 | case VPRecipeBase::VPWidenPHISC: |
| 552 | case VPRecipeBase::VPWidenIntOrFpInductionSC: |
| 553 | case VPRecipeBase::VPWidenPointerInductionSC: |
| 554 | case VPRecipeBase::VPReductionPHISC: |
| 555 | case VPRecipeBase::VPPartialReductionSC: |
| 556 | return true; |
| 557 | case VPRecipeBase::VPBranchOnMaskSC: |
| 558 | case VPRecipeBase::VPInterleaveSC: |
| 559 | case VPRecipeBase::VPIRInstructionSC: |
| 560 | case VPRecipeBase::VPWidenLoadEVLSC: |
| 561 | case VPRecipeBase::VPWidenLoadSC: |
| 562 | case VPRecipeBase::VPWidenStoreEVLSC: |
| 563 | case VPRecipeBase::VPWidenStoreSC: |
| 564 | case VPRecipeBase::VPHistogramSC: |
| 565 | // TODO: Widened stores don't define a value, but widened loads do. Split |
| 566 | // the recipes to be able to make widened loads VPSingleDefRecipes. |
| 567 | return false; |
| 568 | } |
| 569 | llvm_unreachable("Unhandled VPDefID" ); |
| 570 | } |
| 571 | |
| 572 | static inline bool classof(const VPUser *U) { |
| 573 | auto *R = dyn_cast<VPRecipeBase>(Val: U); |
| 574 | return R && classof(R); |
| 575 | } |
| 576 | |
| 577 | virtual VPSingleDefRecipe *clone() override = 0; |
| 578 | |
| 579 | /// Returns the underlying instruction. |
| 580 | Instruction *getUnderlyingInstr() { |
| 581 | return cast<Instruction>(Val: getUnderlyingValue()); |
| 582 | } |
| 583 | const Instruction *getUnderlyingInstr() const { |
| 584 | return cast<Instruction>(Val: getUnderlyingValue()); |
| 585 | } |
| 586 | |
| 587 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 588 | /// Print this VPSingleDefRecipe to dbgs() (for debugging). |
| 589 | LLVM_DUMP_METHOD void dump() const; |
| 590 | #endif |
| 591 | }; |
| 592 | |
| 593 | /// Class to record and manage LLVM IR flags. |
| 594 | class VPIRFlags { |
| 595 | enum class OperationType : unsigned char { |
| 596 | Cmp, |
| 597 | OverflowingBinOp, |
| 598 | DisjointOp, |
| 599 | PossiblyExactOp, |
| 600 | GEPOp, |
| 601 | FPMathOp, |
| 602 | NonNegOp, |
| 603 | Other |
| 604 | }; |
| 605 | |
| 606 | public: |
| 607 | struct WrapFlagsTy { |
| 608 | char HasNUW : 1; |
| 609 | char HasNSW : 1; |
| 610 | |
| 611 | WrapFlagsTy(bool HasNUW, bool HasNSW) : HasNUW(HasNUW), HasNSW(HasNSW) {} |
| 612 | }; |
| 613 | |
| 614 | struct DisjointFlagsTy { |
| 615 | char IsDisjoint : 1; |
| 616 | DisjointFlagsTy(bool IsDisjoint) : IsDisjoint(IsDisjoint) {} |
| 617 | }; |
| 618 | |
| 619 | struct NonNegFlagsTy { |
| 620 | char NonNeg : 1; |
| 621 | NonNegFlagsTy(bool IsNonNeg) : NonNeg(IsNonNeg) {} |
| 622 | }; |
| 623 | |
| 624 | private: |
| 625 | struct ExactFlagsTy { |
| 626 | char IsExact : 1; |
| 627 | }; |
| 628 | struct FastMathFlagsTy { |
| 629 | char AllowReassoc : 1; |
| 630 | char NoNaNs : 1; |
| 631 | char NoInfs : 1; |
| 632 | char NoSignedZeros : 1; |
| 633 | char AllowReciprocal : 1; |
| 634 | char AllowContract : 1; |
| 635 | char ApproxFunc : 1; |
| 636 | |
| 637 | FastMathFlagsTy(const FastMathFlags &FMF); |
| 638 | }; |
| 639 | |
| 640 | OperationType OpType; |
| 641 | |
| 642 | union { |
| 643 | CmpInst::Predicate CmpPredicate; |
| 644 | WrapFlagsTy WrapFlags; |
| 645 | DisjointFlagsTy DisjointFlags; |
| 646 | ExactFlagsTy ExactFlags; |
| 647 | GEPNoWrapFlags GEPFlags; |
| 648 | NonNegFlagsTy NonNegFlags; |
| 649 | FastMathFlagsTy FMFs; |
| 650 | unsigned AllFlags; |
| 651 | }; |
| 652 | |
| 653 | public: |
| 654 | VPIRFlags() : OpType(OperationType::Other), AllFlags(0) {} |
| 655 | |
| 656 | VPIRFlags(Instruction &I) { |
| 657 | if (auto *Op = dyn_cast<CmpInst>(Val: &I)) { |
| 658 | OpType = OperationType::Cmp; |
| 659 | CmpPredicate = Op->getPredicate(); |
| 660 | } else if (auto *Op = dyn_cast<PossiblyDisjointInst>(Val: &I)) { |
| 661 | OpType = OperationType::DisjointOp; |
| 662 | DisjointFlags.IsDisjoint = Op->isDisjoint(); |
| 663 | } else if (auto *Op = dyn_cast<OverflowingBinaryOperator>(Val: &I)) { |
| 664 | OpType = OperationType::OverflowingBinOp; |
| 665 | WrapFlags = {Op->hasNoUnsignedWrap(), Op->hasNoSignedWrap()}; |
| 666 | } else if (auto *Op = dyn_cast<PossiblyExactOperator>(Val: &I)) { |
| 667 | OpType = OperationType::PossiblyExactOp; |
| 668 | ExactFlags.IsExact = Op->isExact(); |
| 669 | } else if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: &I)) { |
| 670 | OpType = OperationType::GEPOp; |
| 671 | GEPFlags = GEP->getNoWrapFlags(); |
| 672 | } else if (auto *PNNI = dyn_cast<PossiblyNonNegInst>(Val: &I)) { |
| 673 | OpType = OperationType::NonNegOp; |
| 674 | NonNegFlags.NonNeg = PNNI->hasNonNeg(); |
| 675 | } else if (auto *Op = dyn_cast<FPMathOperator>(Val: &I)) { |
| 676 | OpType = OperationType::FPMathOp; |
| 677 | FMFs = Op->getFastMathFlags(); |
| 678 | } else { |
| 679 | OpType = OperationType::Other; |
| 680 | AllFlags = 0; |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | VPIRFlags(CmpInst::Predicate Pred) |
| 685 | : OpType(OperationType::Cmp), CmpPredicate(Pred) {} |
| 686 | |
| 687 | VPIRFlags(WrapFlagsTy WrapFlags) |
| 688 | : OpType(OperationType::OverflowingBinOp), WrapFlags(WrapFlags) {} |
| 689 | |
| 690 | VPIRFlags(FastMathFlags FMFs) : OpType(OperationType::FPMathOp), FMFs(FMFs) {} |
| 691 | |
| 692 | VPIRFlags(DisjointFlagsTy DisjointFlags) |
| 693 | : OpType(OperationType::DisjointOp), DisjointFlags(DisjointFlags) {} |
| 694 | |
| 695 | VPIRFlags(NonNegFlagsTy NonNegFlags) |
| 696 | : OpType(OperationType::NonNegOp), NonNegFlags(NonNegFlags) {} |
| 697 | |
| 698 | VPIRFlags(GEPNoWrapFlags GEPFlags) |
| 699 | : OpType(OperationType::GEPOp), GEPFlags(GEPFlags) {} |
| 700 | |
| 701 | public: |
| 702 | void transferFlags(VPIRFlags &Other) { |
| 703 | OpType = Other.OpType; |
| 704 | AllFlags = Other.AllFlags; |
| 705 | } |
| 706 | |
| 707 | /// Drop all poison-generating flags. |
| 708 | void dropPoisonGeneratingFlags() { |
| 709 | // NOTE: This needs to be kept in-sync with |
| 710 | // Instruction::dropPoisonGeneratingFlags. |
| 711 | switch (OpType) { |
| 712 | case OperationType::OverflowingBinOp: |
| 713 | WrapFlags.HasNUW = false; |
| 714 | WrapFlags.HasNSW = false; |
| 715 | break; |
| 716 | case OperationType::DisjointOp: |
| 717 | DisjointFlags.IsDisjoint = false; |
| 718 | break; |
| 719 | case OperationType::PossiblyExactOp: |
| 720 | ExactFlags.IsExact = false; |
| 721 | break; |
| 722 | case OperationType::GEPOp: |
| 723 | GEPFlags = GEPNoWrapFlags::none(); |
| 724 | break; |
| 725 | case OperationType::FPMathOp: |
| 726 | FMFs.NoNaNs = false; |
| 727 | FMFs.NoInfs = false; |
| 728 | break; |
| 729 | case OperationType::NonNegOp: |
| 730 | NonNegFlags.NonNeg = false; |
| 731 | break; |
| 732 | case OperationType::Cmp: |
| 733 | case OperationType::Other: |
| 734 | break; |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | /// Apply the IR flags to \p I. |
| 739 | void applyFlags(Instruction &I) const { |
| 740 | switch (OpType) { |
| 741 | case OperationType::OverflowingBinOp: |
| 742 | I.setHasNoUnsignedWrap(WrapFlags.HasNUW); |
| 743 | I.setHasNoSignedWrap(WrapFlags.HasNSW); |
| 744 | break; |
| 745 | case OperationType::DisjointOp: |
| 746 | cast<PossiblyDisjointInst>(Val: &I)->setIsDisjoint(DisjointFlags.IsDisjoint); |
| 747 | break; |
| 748 | case OperationType::PossiblyExactOp: |
| 749 | I.setIsExact(ExactFlags.IsExact); |
| 750 | break; |
| 751 | case OperationType::GEPOp: |
| 752 | cast<GetElementPtrInst>(Val: &I)->setNoWrapFlags(GEPFlags); |
| 753 | break; |
| 754 | case OperationType::FPMathOp: |
| 755 | I.setHasAllowReassoc(FMFs.AllowReassoc); |
| 756 | I.setHasNoNaNs(FMFs.NoNaNs); |
| 757 | I.setHasNoInfs(FMFs.NoInfs); |
| 758 | I.setHasNoSignedZeros(FMFs.NoSignedZeros); |
| 759 | I.setHasAllowReciprocal(FMFs.AllowReciprocal); |
| 760 | I.setHasAllowContract(FMFs.AllowContract); |
| 761 | I.setHasApproxFunc(FMFs.ApproxFunc); |
| 762 | break; |
| 763 | case OperationType::NonNegOp: |
| 764 | I.setNonNeg(NonNegFlags.NonNeg); |
| 765 | break; |
| 766 | case OperationType::Cmp: |
| 767 | case OperationType::Other: |
| 768 | break; |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | CmpInst::Predicate getPredicate() const { |
| 773 | assert(OpType == OperationType::Cmp && |
| 774 | "recipe doesn't have a compare predicate" ); |
| 775 | return CmpPredicate; |
| 776 | } |
| 777 | |
| 778 | void setPredicate(CmpInst::Predicate Pred) { |
| 779 | assert(OpType == OperationType::Cmp && |
| 780 | "recipe doesn't have a compare predicate" ); |
| 781 | CmpPredicate = Pred; |
| 782 | } |
| 783 | |
| 784 | GEPNoWrapFlags getGEPNoWrapFlags() const { return GEPFlags; } |
| 785 | |
| 786 | /// Returns true if the recipe has fast-math flags. |
| 787 | bool hasFastMathFlags() const { return OpType == OperationType::FPMathOp; } |
| 788 | |
| 789 | FastMathFlags getFastMathFlags() const; |
| 790 | |
| 791 | /// Returns true if the recipe has non-negative flag. |
| 792 | bool hasNonNegFlag() const { return OpType == OperationType::NonNegOp; } |
| 793 | |
| 794 | bool isNonNeg() const { |
| 795 | assert(OpType == OperationType::NonNegOp && |
| 796 | "recipe doesn't have a NNEG flag" ); |
| 797 | return NonNegFlags.NonNeg; |
| 798 | } |
| 799 | |
| 800 | bool hasNoUnsignedWrap() const { |
| 801 | assert(OpType == OperationType::OverflowingBinOp && |
| 802 | "recipe doesn't have a NUW flag" ); |
| 803 | return WrapFlags.HasNUW; |
| 804 | } |
| 805 | |
| 806 | bool hasNoSignedWrap() const { |
| 807 | assert(OpType == OperationType::OverflowingBinOp && |
| 808 | "recipe doesn't have a NSW flag" ); |
| 809 | return WrapFlags.HasNSW; |
| 810 | } |
| 811 | |
| 812 | bool isDisjoint() const { |
| 813 | assert(OpType == OperationType::DisjointOp && |
| 814 | "recipe cannot have a disjoing flag" ); |
| 815 | return DisjointFlags.IsDisjoint; |
| 816 | } |
| 817 | |
| 818 | #if !defined(NDEBUG) |
| 819 | /// Returns true if the set flags are valid for \p Opcode. |
| 820 | bool flagsValidForOpcode(unsigned Opcode) const; |
| 821 | #endif |
| 822 | |
| 823 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 824 | void printFlags(raw_ostream &O) const; |
| 825 | #endif |
| 826 | }; |
| 827 | |
| 828 | /// A pure-virtual common base class for recipes defining a single VPValue and |
| 829 | /// using IR flags. |
| 830 | struct VPRecipeWithIRFlags : public VPSingleDefRecipe, public VPIRFlags { |
| 831 | VPRecipeWithIRFlags(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| 832 | DebugLoc DL = {}) |
| 833 | : VPSingleDefRecipe(SC, Operands, DL), VPIRFlags() {} |
| 834 | |
| 835 | VPRecipeWithIRFlags(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| 836 | Instruction &I) |
| 837 | : VPSingleDefRecipe(SC, Operands, &I, I.getDebugLoc()), VPIRFlags(I) {} |
| 838 | |
| 839 | VPRecipeWithIRFlags(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| 840 | const VPIRFlags &Flags, DebugLoc DL = {}) |
| 841 | : VPSingleDefRecipe(SC, Operands, DL), VPIRFlags(Flags) {} |
| 842 | |
| 843 | static inline bool classof(const VPRecipeBase *R) { |
| 844 | return R->getVPDefID() == VPRecipeBase::VPInstructionSC || |
| 845 | R->getVPDefID() == VPRecipeBase::VPWidenSC || |
| 846 | R->getVPDefID() == VPRecipeBase::VPWidenGEPSC || |
| 847 | R->getVPDefID() == VPRecipeBase::VPWidenCallSC || |
| 848 | R->getVPDefID() == VPRecipeBase::VPWidenCastSC || |
| 849 | R->getVPDefID() == VPRecipeBase::VPWidenIntrinsicSC || |
| 850 | R->getVPDefID() == VPRecipeBase::VPWidenSelectSC || |
| 851 | R->getVPDefID() == VPRecipeBase::VPReductionSC || |
| 852 | R->getVPDefID() == VPRecipeBase::VPReductionEVLSC || |
| 853 | R->getVPDefID() == VPRecipeBase::VPReplicateSC || |
| 854 | R->getVPDefID() == VPRecipeBase::VPVectorEndPointerSC || |
| 855 | R->getVPDefID() == VPRecipeBase::VPVectorPointerSC; |
| 856 | } |
| 857 | |
| 858 | static inline bool classof(const VPUser *U) { |
| 859 | auto *R = dyn_cast<VPRecipeBase>(Val: U); |
| 860 | return R && classof(R); |
| 861 | } |
| 862 | |
| 863 | static inline bool classof(const VPValue *V) { |
| 864 | auto *R = dyn_cast_or_null<VPRecipeBase>(Val: V->getDefiningRecipe()); |
| 865 | return R && classof(R); |
| 866 | } |
| 867 | |
| 868 | void execute(VPTransformState &State) override = 0; |
| 869 | }; |
| 870 | |
| 871 | /// Helper to access the operand that contains the unroll part for this recipe |
| 872 | /// after unrolling. |
| 873 | template <unsigned PartOpIdx> class VPUnrollPartAccessor { |
| 874 | protected: |
| 875 | /// Return the VPValue operand containing the unroll part or null if there is |
| 876 | /// no such operand. |
| 877 | VPValue *getUnrollPartOperand(VPUser &U) const; |
| 878 | |
| 879 | /// Return the unroll part. |
| 880 | unsigned getUnrollPart(VPUser &U) const; |
| 881 | }; |
| 882 | |
| 883 | /// Helper to manage IR metadata for recipes. It filters out metadata that |
| 884 | /// cannot be propagated. |
| 885 | class VPIRMetadata { |
| 886 | SmallVector<std::pair<unsigned, MDNode *>> Metadata; |
| 887 | |
| 888 | public: |
| 889 | VPIRMetadata() {} |
| 890 | |
| 891 | /// Adds metatadata that can be preserved from the original instruction |
| 892 | /// \p I. |
| 893 | VPIRMetadata(Instruction &I) { getMetadataToPropagate(Inst: &I, Metadata); } |
| 894 | |
| 895 | /// Adds metatadata that can be preserved from the original instruction |
| 896 | /// \p I and noalias metadata guaranteed by runtime checks using \p LVer. |
| 897 | VPIRMetadata(Instruction &I, LoopVersioning *LVer); |
| 898 | |
| 899 | /// Copy constructor for cloning. |
| 900 | VPIRMetadata(const VPIRMetadata &Other) : Metadata(Other.Metadata) {} |
| 901 | |
| 902 | /// Add all metadata to \p I. |
| 903 | void applyMetadata(Instruction &I) const; |
| 904 | |
| 905 | /// Add metadata with kind \p Kind and \p Node. |
| 906 | void addMetadata(unsigned Kind, MDNode *Node) { |
| 907 | Metadata.emplace_back(Args&: Kind, Args&: Node); |
| 908 | } |
| 909 | }; |
| 910 | |
| 911 | /// This is a concrete Recipe that models a single VPlan-level instruction. |
| 912 | /// While as any Recipe it may generate a sequence of IR instructions when |
| 913 | /// executed, these instructions would always form a single-def expression as |
| 914 | /// the VPInstruction is also a single def-use vertex. |
| 915 | class VPInstruction : public VPRecipeWithIRFlags, |
| 916 | public VPIRMetadata, |
| 917 | public VPUnrollPartAccessor<1> { |
| 918 | friend class VPlanSlp; |
| 919 | |
| 920 | public: |
| 921 | /// VPlan opcodes, extending LLVM IR with idiomatics instructions. |
| 922 | enum { |
| 923 | FirstOrderRecurrenceSplice = |
| 924 | Instruction::OtherOpsEnd + 1, // Combines the incoming and previous |
| 925 | // values of a first-order recurrence. |
| 926 | Not, |
| 927 | SLPLoad, |
| 928 | SLPStore, |
| 929 | ActiveLaneMask, |
| 930 | ExplicitVectorLength, |
| 931 | CalculateTripCountMinusVF, |
| 932 | // Increment the canonical IV separately for each unrolled part. |
| 933 | CanonicalIVIncrementForPart, |
| 934 | BranchOnCount, |
| 935 | BranchOnCond, |
| 936 | Broadcast, |
| 937 | /// Given operands of (the same) struct type, creates a struct of fixed- |
| 938 | /// width vectors each containing a struct field of all operands. The |
| 939 | /// number of operands matches the element count of every vector. |
| 940 | BuildStructVector, |
| 941 | /// Creates a fixed-width vector containing all operands. The number of |
| 942 | /// operands matches the vector element count. |
| 943 | BuildVector, |
| 944 | /// Compute the final result of a AnyOf reduction with select(cmp(),x,y), |
| 945 | /// where one of (x,y) is loop invariant, and both x and y are integer type. |
| 946 | ComputeAnyOfResult, |
| 947 | ComputeFindIVResult, |
| 948 | ComputeReductionResult, |
| 949 | // Extracts the last lane from its operand if it is a vector, or the last |
| 950 | // part if scalar. In the latter case, the recipe will be removed during |
| 951 | // unrolling. |
| 952 | , |
| 953 | // Extracts the second-to-last lane from its operand or the second-to-last |
| 954 | // part if it is scalar. In the latter case, the recipe will be removed |
| 955 | // during unrolling. |
| 956 | , |
| 957 | LogicalAnd, // Non-poison propagating logical And. |
| 958 | // Add an offset in bytes (second operand) to a base pointer (first |
| 959 | // operand). Only generates scalar values (either for the first lane only or |
| 960 | // for all lanes, depending on its uses). |
| 961 | PtrAdd, |
| 962 | // Returns a scalar boolean value, which is true if any lane of its |
| 963 | // (boolean) vector operands is true. It produces the reduced value across |
| 964 | // all unrolled iterations. Unrolling will add all copies of its original |
| 965 | // operand as additional operands. |
| 966 | AnyOf, |
| 967 | // Calculates the first active lane index of the vector predicate operands. |
| 968 | // It produces the lane index across all unrolled iterations. Unrolling will |
| 969 | // add all copies of its original operand as additional operands. |
| 970 | FirstActiveLane, |
| 971 | |
| 972 | // The opcodes below are used for VPInstructionWithType. |
| 973 | // |
| 974 | /// Scale the first operand (vector step) by the second operand |
| 975 | /// (scalar-step). Casts both operands to the result type if needed. |
| 976 | WideIVStep, |
| 977 | /// Start vector for reductions with 3 operands: the original start value, |
| 978 | /// the identity value for the reduction and an integer indicating the |
| 979 | /// scaling factor. |
| 980 | ReductionStartVector, |
| 981 | // Creates a step vector starting from 0 to VF with a step of 1. |
| 982 | StepVector, |
| 983 | |
| 984 | }; |
| 985 | |
| 986 | private: |
| 987 | typedef unsigned char OpcodeTy; |
| 988 | OpcodeTy Opcode; |
| 989 | |
| 990 | /// An optional name that can be used for the generated IR instruction. |
| 991 | const std::string Name; |
| 992 | |
| 993 | /// Returns true if this VPInstruction generates scalar values for all lanes. |
| 994 | /// Most VPInstructions generate a single value per part, either vector or |
| 995 | /// scalar. VPReplicateRecipe takes care of generating multiple (scalar) |
| 996 | /// values per all lanes, stemming from an original ingredient. This method |
| 997 | /// identifies the (rare) cases of VPInstructions that do so as well, w/o an |
| 998 | /// underlying ingredient. |
| 999 | bool doesGeneratePerAllLanes() const; |
| 1000 | |
| 1001 | /// Returns true if we can generate a scalar for the first lane only if |
| 1002 | /// needed. |
| 1003 | bool canGenerateScalarForFirstLane() const; |
| 1004 | |
| 1005 | /// Utility methods serving execute(): generates a single vector instance of |
| 1006 | /// the modeled instruction. \returns the generated value. . In some cases an |
| 1007 | /// existing value is returned rather than a generated one. |
| 1008 | Value *generate(VPTransformState &State); |
| 1009 | |
| 1010 | /// Utility methods serving execute(): generates a scalar single instance of |
| 1011 | /// the modeled instruction for a given lane. \returns the scalar generated |
| 1012 | /// value for lane \p Lane. |
| 1013 | Value *generatePerLane(VPTransformState &State, const VPLane &Lane); |
| 1014 | |
| 1015 | #if !defined(NDEBUG) |
| 1016 | /// Return the number of operands determined by the opcode of the |
| 1017 | /// VPInstruction. Returns -1u if the number of operands cannot be determined |
| 1018 | /// directly by the opcode. |
| 1019 | static unsigned getNumOperandsForOpcode(unsigned Opcode); |
| 1020 | #endif |
| 1021 | |
| 1022 | public: |
| 1023 | VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, DebugLoc DL = {}, |
| 1024 | const Twine &Name = "" ) |
| 1025 | : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, DL), |
| 1026 | VPIRMetadata(), Opcode(Opcode), Name(Name.str()) {} |
| 1027 | |
| 1028 | VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| 1029 | const VPIRFlags &Flags, DebugLoc DL = {}, |
| 1030 | const Twine &Name = "" ); |
| 1031 | |
| 1032 | VP_CLASSOF_IMPL(VPDef::VPInstructionSC) |
| 1033 | |
| 1034 | VPInstruction *clone() override { |
| 1035 | SmallVector<VPValue *, 2> Operands(operands()); |
| 1036 | auto *New = new VPInstruction(Opcode, Operands, *this, getDebugLoc(), Name); |
| 1037 | if (getUnderlyingValue()) |
| 1038 | New->setUnderlyingValue(getUnderlyingInstr()); |
| 1039 | return New; |
| 1040 | } |
| 1041 | |
| 1042 | unsigned getOpcode() const { return Opcode; } |
| 1043 | |
| 1044 | /// Generate the instruction. |
| 1045 | /// TODO: We currently execute only per-part unless a specific instance is |
| 1046 | /// provided. |
| 1047 | void execute(VPTransformState &State) override; |
| 1048 | |
| 1049 | /// Return the cost of this VPInstruction. |
| 1050 | InstructionCost computeCost(ElementCount VF, |
| 1051 | VPCostContext &Ctx) const override; |
| 1052 | |
| 1053 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1054 | /// Print the VPInstruction to \p O. |
| 1055 | void print(raw_ostream &O, const Twine &Indent, |
| 1056 | VPSlotTracker &SlotTracker) const override; |
| 1057 | |
| 1058 | /// Print the VPInstruction to dbgs() (for debugging). |
| 1059 | LLVM_DUMP_METHOD void dump() const; |
| 1060 | #endif |
| 1061 | |
| 1062 | bool hasResult() const { |
| 1063 | // CallInst may or may not have a result, depending on the called function. |
| 1064 | // Conservatively return calls have results for now. |
| 1065 | switch (getOpcode()) { |
| 1066 | case Instruction::Ret: |
| 1067 | case Instruction::Br: |
| 1068 | case Instruction::Store: |
| 1069 | case Instruction::Switch: |
| 1070 | case Instruction::IndirectBr: |
| 1071 | case Instruction::Resume: |
| 1072 | case Instruction::CatchRet: |
| 1073 | case Instruction::Unreachable: |
| 1074 | case Instruction::Fence: |
| 1075 | case Instruction::AtomicRMW: |
| 1076 | case VPInstruction::BranchOnCond: |
| 1077 | case VPInstruction::BranchOnCount: |
| 1078 | return false; |
| 1079 | default: |
| 1080 | return true; |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | /// Returns true if the underlying opcode may read from or write to memory. |
| 1085 | bool opcodeMayReadOrWriteFromMemory() const; |
| 1086 | |
| 1087 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 1088 | bool onlyFirstLaneUsed(const VPValue *Op) const override; |
| 1089 | |
| 1090 | /// Returns true if the recipe only uses the first part of operand \p Op. |
| 1091 | bool onlyFirstPartUsed(const VPValue *Op) const override; |
| 1092 | |
| 1093 | /// Returns true if this VPInstruction produces a scalar value from a vector, |
| 1094 | /// e.g. by performing a reduction or extracting a lane. |
| 1095 | bool isVectorToScalar() const; |
| 1096 | |
| 1097 | /// Returns true if this VPInstruction's operands are single scalars and the |
| 1098 | /// result is also a single scalar. |
| 1099 | bool isSingleScalar() const; |
| 1100 | |
| 1101 | /// Returns the symbolic name assigned to the VPInstruction. |
| 1102 | StringRef getName() const { return Name; } |
| 1103 | }; |
| 1104 | |
| 1105 | /// A specialization of VPInstruction augmenting it with a dedicated result |
| 1106 | /// type, to be used when the opcode and operands of the VPInstruction don't |
| 1107 | /// directly determine the result type. Note that there is no separate VPDef ID |
| 1108 | /// for VPInstructionWithType; it shares the same ID as VPInstruction and is |
| 1109 | /// distinguished purely by the opcode. |
| 1110 | class VPInstructionWithType : public VPInstruction { |
| 1111 | /// Scalar result type produced by the recipe. |
| 1112 | Type *ResultTy; |
| 1113 | |
| 1114 | public: |
| 1115 | VPInstructionWithType(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| 1116 | Type *ResultTy, const VPIRFlags &Flags, DebugLoc DL, |
| 1117 | const Twine &Name = "" ) |
| 1118 | : VPInstruction(Opcode, Operands, Flags, DL, Name), ResultTy(ResultTy) {} |
| 1119 | |
| 1120 | static inline bool classof(const VPRecipeBase *R) { |
| 1121 | // VPInstructionWithType are VPInstructions with specific opcodes requiring |
| 1122 | // type information. |
| 1123 | if (R->isScalarCast()) |
| 1124 | return true; |
| 1125 | auto *VPI = dyn_cast<VPInstruction>(Val: R); |
| 1126 | if (!VPI) |
| 1127 | return false; |
| 1128 | switch (VPI->getOpcode()) { |
| 1129 | case VPInstruction::WideIVStep: |
| 1130 | case VPInstruction::StepVector: |
| 1131 | return true; |
| 1132 | default: |
| 1133 | return false; |
| 1134 | } |
| 1135 | } |
| 1136 | |
| 1137 | static inline bool classof(const VPUser *R) { |
| 1138 | return isa<VPInstructionWithType>(Val: cast<VPRecipeBase>(Val: R)); |
| 1139 | } |
| 1140 | |
| 1141 | VPInstruction *clone() override { |
| 1142 | SmallVector<VPValue *, 2> Operands(operands()); |
| 1143 | auto *New = |
| 1144 | new VPInstructionWithType(getOpcode(), Operands, getResultType(), *this, |
| 1145 | getDebugLoc(), getName()); |
| 1146 | New->setUnderlyingValue(getUnderlyingValue()); |
| 1147 | return New; |
| 1148 | } |
| 1149 | |
| 1150 | void execute(VPTransformState &State) override; |
| 1151 | |
| 1152 | /// Return the cost of this VPInstruction. |
| 1153 | InstructionCost computeCost(ElementCount VF, |
| 1154 | VPCostContext &Ctx) const override { |
| 1155 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 1156 | return 0; |
| 1157 | } |
| 1158 | |
| 1159 | Type *getResultType() const { return ResultTy; } |
| 1160 | |
| 1161 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1162 | /// Print the recipe. |
| 1163 | void print(raw_ostream &O, const Twine &Indent, |
| 1164 | VPSlotTracker &SlotTracker) const override; |
| 1165 | #endif |
| 1166 | }; |
| 1167 | |
| 1168 | /// Helper type to provide functions to access incoming values and blocks for |
| 1169 | /// phi-like recipes. |
| 1170 | class VPPhiAccessors { |
| 1171 | protected: |
| 1172 | /// Return a VPRecipeBase* to the current object. |
| 1173 | virtual const VPRecipeBase *getAsRecipe() const = 0; |
| 1174 | |
| 1175 | public: |
| 1176 | virtual ~VPPhiAccessors() = default; |
| 1177 | |
| 1178 | /// Returns the incoming VPValue with index \p Idx. |
| 1179 | VPValue *getIncomingValue(unsigned Idx) const { |
| 1180 | return getAsRecipe()->getOperand(N: Idx); |
| 1181 | } |
| 1182 | |
| 1183 | /// Returns the incoming block with index \p Idx. |
| 1184 | const VPBasicBlock *getIncomingBlock(unsigned Idx) const; |
| 1185 | |
| 1186 | /// Returns the number of incoming values, also number of incoming blocks. |
| 1187 | virtual unsigned getNumIncoming() const { |
| 1188 | return getAsRecipe()->getNumOperands(); |
| 1189 | } |
| 1190 | |
| 1191 | /// Removes the incoming value for \p IncomingBlock, which must be a |
| 1192 | /// predecessor. |
| 1193 | void removeIncomingValueFor(VPBlockBase *IncomingBlock) const; |
| 1194 | |
| 1195 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1196 | /// Print the recipe. |
| 1197 | void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const; |
| 1198 | #endif |
| 1199 | }; |
| 1200 | |
| 1201 | struct VPPhi : public VPInstruction, public VPPhiAccessors { |
| 1202 | VPPhi(ArrayRef<VPValue *> Operands, DebugLoc DL, const Twine &Name = "" ) |
| 1203 | : VPInstruction(Instruction::PHI, Operands, DL, Name) {} |
| 1204 | |
| 1205 | static inline bool classof(const VPUser *U) { |
| 1206 | auto *R = dyn_cast<VPInstruction>(Val: U); |
| 1207 | return R && R->getOpcode() == Instruction::PHI; |
| 1208 | } |
| 1209 | |
| 1210 | VPPhi *clone() override { |
| 1211 | return new VPPhi(operands(), getDebugLoc(), getName()); |
| 1212 | } |
| 1213 | |
| 1214 | void execute(VPTransformState &State) override; |
| 1215 | |
| 1216 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1217 | /// Print the recipe. |
| 1218 | void print(raw_ostream &O, const Twine &Indent, |
| 1219 | VPSlotTracker &SlotTracker) const override; |
| 1220 | #endif |
| 1221 | |
| 1222 | protected: |
| 1223 | const VPRecipeBase *getAsRecipe() const override { return this; } |
| 1224 | }; |
| 1225 | |
| 1226 | /// A recipe to wrap on original IR instruction not to be modified during |
| 1227 | /// execution, except for PHIs. PHIs are modeled via the VPIRPhi subclass. |
| 1228 | /// Expect PHIs, VPIRInstructions cannot have any operands. |
| 1229 | class VPIRInstruction : public VPRecipeBase { |
| 1230 | Instruction &I; |
| 1231 | |
| 1232 | protected: |
| 1233 | /// VPIRInstruction::create() should be used to create VPIRInstructions, as |
| 1234 | /// subclasses may need to be created, e.g. VPIRPhi. |
| 1235 | VPIRInstruction(Instruction &I) |
| 1236 | : VPRecipeBase(VPDef::VPIRInstructionSC, ArrayRef<VPValue *>()), I(I) {} |
| 1237 | |
| 1238 | public: |
| 1239 | ~VPIRInstruction() override = default; |
| 1240 | |
| 1241 | /// Create a new VPIRPhi for \p \I, if it is a PHINode, otherwise create a |
| 1242 | /// VPIRInstruction. |
| 1243 | static VPIRInstruction *create(Instruction &I); |
| 1244 | |
| 1245 | VP_CLASSOF_IMPL(VPDef::VPIRInstructionSC) |
| 1246 | |
| 1247 | VPIRInstruction *clone() override { |
| 1248 | auto *R = create(I); |
| 1249 | for (auto *Op : operands()) |
| 1250 | R->addOperand(Operand: Op); |
| 1251 | return R; |
| 1252 | } |
| 1253 | |
| 1254 | void execute(VPTransformState &State) override; |
| 1255 | |
| 1256 | /// Return the cost of this VPIRInstruction. |
| 1257 | InstructionCost computeCost(ElementCount VF, |
| 1258 | VPCostContext &Ctx) const override; |
| 1259 | |
| 1260 | Instruction &getInstruction() const { return I; } |
| 1261 | |
| 1262 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1263 | /// Print the recipe. |
| 1264 | void print(raw_ostream &O, const Twine &Indent, |
| 1265 | VPSlotTracker &SlotTracker) const override; |
| 1266 | #endif |
| 1267 | |
| 1268 | bool usesScalars(const VPValue *Op) const override { |
| 1269 | assert(is_contained(operands(), Op) && |
| 1270 | "Op must be an operand of the recipe" ); |
| 1271 | return true; |
| 1272 | } |
| 1273 | |
| 1274 | bool onlyFirstPartUsed(const VPValue *Op) const override { |
| 1275 | assert(is_contained(operands(), Op) && |
| 1276 | "Op must be an operand of the recipe" ); |
| 1277 | return true; |
| 1278 | } |
| 1279 | |
| 1280 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 1281 | assert(is_contained(operands(), Op) && |
| 1282 | "Op must be an operand of the recipe" ); |
| 1283 | return true; |
| 1284 | } |
| 1285 | |
| 1286 | /// Update the recipes first operand to the last lane of the operand using \p |
| 1287 | /// Builder. Must only be used for VPIRInstructions with at least one operand |
| 1288 | /// wrapping a PHINode. |
| 1289 | void extractLastLaneOfFirstOperand(VPBuilder &Builder); |
| 1290 | }; |
| 1291 | |
| 1292 | /// An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use |
| 1293 | /// cast/dyn_cast/isa and execute() implementation. A single VPValue operand is |
| 1294 | /// allowed, and it is used to add a new incoming value for the single |
| 1295 | /// predecessor VPBB. |
| 1296 | struct VPIRPhi : public VPIRInstruction, public VPPhiAccessors { |
| 1297 | VPIRPhi(PHINode &PN) : VPIRInstruction(PN) {} |
| 1298 | |
| 1299 | static inline bool classof(const VPRecipeBase *U) { |
| 1300 | auto *R = dyn_cast<VPIRInstruction>(Val: U); |
| 1301 | return R && isa<PHINode>(Val: R->getInstruction()); |
| 1302 | } |
| 1303 | |
| 1304 | PHINode &getIRPhi() { return cast<PHINode>(Val&: getInstruction()); } |
| 1305 | |
| 1306 | void execute(VPTransformState &State) override; |
| 1307 | |
| 1308 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1309 | /// Print the recipe. |
| 1310 | void print(raw_ostream &O, const Twine &Indent, |
| 1311 | VPSlotTracker &SlotTracker) const override; |
| 1312 | #endif |
| 1313 | |
| 1314 | protected: |
| 1315 | const VPRecipeBase *getAsRecipe() const override { return this; } |
| 1316 | }; |
| 1317 | |
| 1318 | /// VPWidenRecipe is a recipe for producing a widened instruction using the |
| 1319 | /// opcode and operands of the recipe. This recipe covers most of the |
| 1320 | /// traditional vectorization cases where each recipe transforms into a |
| 1321 | /// vectorized version of itself. |
| 1322 | class VPWidenRecipe : public VPRecipeWithIRFlags, public VPIRMetadata { |
| 1323 | unsigned Opcode; |
| 1324 | |
| 1325 | public: |
| 1326 | VPWidenRecipe(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| 1327 | const VPIRFlags &Flags, DebugLoc DL) |
| 1328 | : VPRecipeWithIRFlags(VPDef::VPWidenSC, Operands, Flags, DL), |
| 1329 | Opcode(Opcode) {} |
| 1330 | |
| 1331 | VPWidenRecipe(Instruction &I, ArrayRef<VPValue *> Operands) |
| 1332 | : VPRecipeWithIRFlags(VPDef::VPWidenSC, Operands, I), VPIRMetadata(I), |
| 1333 | Opcode(I.getOpcode()) {} |
| 1334 | |
| 1335 | ~VPWidenRecipe() override = default; |
| 1336 | |
| 1337 | VPWidenRecipe *clone() override { |
| 1338 | auto *R = new VPWidenRecipe(*getUnderlyingInstr(), operands()); |
| 1339 | R->transferFlags(Other&: *this); |
| 1340 | return R; |
| 1341 | } |
| 1342 | |
| 1343 | VP_CLASSOF_IMPL(VPDef::VPWidenSC) |
| 1344 | |
| 1345 | /// Produce a widened instruction using the opcode and operands of the recipe, |
| 1346 | /// processing State.VF elements. |
| 1347 | void execute(VPTransformState &State) override; |
| 1348 | |
| 1349 | /// Return the cost of this VPWidenRecipe. |
| 1350 | InstructionCost computeCost(ElementCount VF, |
| 1351 | VPCostContext &Ctx) const override; |
| 1352 | |
| 1353 | unsigned getOpcode() const { return Opcode; } |
| 1354 | |
| 1355 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1356 | /// Print the recipe. |
| 1357 | void print(raw_ostream &O, const Twine &Indent, |
| 1358 | VPSlotTracker &SlotTracker) const override; |
| 1359 | #endif |
| 1360 | }; |
| 1361 | |
| 1362 | /// VPWidenCastRecipe is a recipe to create vector cast instructions. |
| 1363 | class VPWidenCastRecipe : public VPRecipeWithIRFlags, public VPIRMetadata { |
| 1364 | /// Cast instruction opcode. |
| 1365 | Instruction::CastOps Opcode; |
| 1366 | |
| 1367 | /// Result type for the cast. |
| 1368 | Type *ResultTy; |
| 1369 | |
| 1370 | public: |
| 1371 | VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, |
| 1372 | CastInst &UI) |
| 1373 | : VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op, UI), VPIRMetadata(UI), |
| 1374 | Opcode(Opcode), ResultTy(ResultTy) { |
| 1375 | assert(UI.getOpcode() == Opcode && |
| 1376 | "opcode of underlying cast doesn't match" ); |
| 1377 | } |
| 1378 | |
| 1379 | VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, |
| 1380 | const VPIRFlags &Flags = {}, DebugLoc DL = {}) |
| 1381 | : VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op, Flags, DL), |
| 1382 | VPIRMetadata(), Opcode(Opcode), ResultTy(ResultTy) { |
| 1383 | assert(flagsValidForOpcode(Opcode) && |
| 1384 | "Set flags not supported for the provided opcode" ); |
| 1385 | } |
| 1386 | |
| 1387 | ~VPWidenCastRecipe() override = default; |
| 1388 | |
| 1389 | VPWidenCastRecipe *clone() override { |
| 1390 | if (auto *UV = getUnderlyingValue()) |
| 1391 | return new VPWidenCastRecipe(Opcode, getOperand(N: 0), ResultTy, |
| 1392 | *cast<CastInst>(Val: UV)); |
| 1393 | |
| 1394 | return new VPWidenCastRecipe(Opcode, getOperand(N: 0), ResultTy); |
| 1395 | } |
| 1396 | |
| 1397 | VP_CLASSOF_IMPL(VPDef::VPWidenCastSC) |
| 1398 | |
| 1399 | /// Produce widened copies of the cast. |
| 1400 | void execute(VPTransformState &State) override; |
| 1401 | |
| 1402 | /// Return the cost of this VPWidenCastRecipe. |
| 1403 | InstructionCost computeCost(ElementCount VF, |
| 1404 | VPCostContext &Ctx) const override; |
| 1405 | |
| 1406 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1407 | /// Print the recipe. |
| 1408 | void print(raw_ostream &O, const Twine &Indent, |
| 1409 | VPSlotTracker &SlotTracker) const override; |
| 1410 | #endif |
| 1411 | |
| 1412 | Instruction::CastOps getOpcode() const { return Opcode; } |
| 1413 | |
| 1414 | /// Returns the result type of the cast. |
| 1415 | Type *getResultType() const { return ResultTy; } |
| 1416 | }; |
| 1417 | |
| 1418 | /// A recipe for widening vector intrinsics. |
| 1419 | class VPWidenIntrinsicRecipe : public VPRecipeWithIRFlags, public VPIRMetadata { |
| 1420 | /// ID of the vector intrinsic to widen. |
| 1421 | Intrinsic::ID VectorIntrinsicID; |
| 1422 | |
| 1423 | /// Scalar return type of the intrinsic. |
| 1424 | Type *ResultTy; |
| 1425 | |
| 1426 | /// True if the intrinsic may read from memory. |
| 1427 | bool MayReadFromMemory; |
| 1428 | |
| 1429 | /// True if the intrinsic may read write to memory. |
| 1430 | bool MayWriteToMemory; |
| 1431 | |
| 1432 | /// True if the intrinsic may have side-effects. |
| 1433 | bool MayHaveSideEffects; |
| 1434 | |
| 1435 | public: |
| 1436 | VPWidenIntrinsicRecipe(CallInst &CI, Intrinsic::ID VectorIntrinsicID, |
| 1437 | ArrayRef<VPValue *> CallArguments, Type *Ty, |
| 1438 | DebugLoc DL = {}) |
| 1439 | : VPRecipeWithIRFlags(VPDef::VPWidenIntrinsicSC, CallArguments, CI), |
| 1440 | VPIRMetadata(CI), VectorIntrinsicID(VectorIntrinsicID), ResultTy(Ty), |
| 1441 | MayReadFromMemory(CI.mayReadFromMemory()), |
| 1442 | MayWriteToMemory(CI.mayWriteToMemory()), |
| 1443 | MayHaveSideEffects(CI.mayHaveSideEffects()) {} |
| 1444 | |
| 1445 | VPWidenIntrinsicRecipe(Intrinsic::ID VectorIntrinsicID, |
| 1446 | ArrayRef<VPValue *> CallArguments, Type *Ty, |
| 1447 | DebugLoc DL = {}) |
| 1448 | : VPRecipeWithIRFlags(VPDef::VPWidenIntrinsicSC, CallArguments, DL), |
| 1449 | VPIRMetadata(), VectorIntrinsicID(VectorIntrinsicID), ResultTy(Ty) { |
| 1450 | LLVMContext &Ctx = Ty->getContext(); |
| 1451 | AttributeSet Attrs = Intrinsic::getFnAttributes(C&: Ctx, id: VectorIntrinsicID); |
| 1452 | MemoryEffects ME = Attrs.getMemoryEffects(); |
| 1453 | MayReadFromMemory = !ME.onlyWritesMemory(); |
| 1454 | MayWriteToMemory = !ME.onlyReadsMemory(); |
| 1455 | MayHaveSideEffects = MayWriteToMemory || |
| 1456 | !Attrs.hasAttribute(Kind: Attribute::NoUnwind) || |
| 1457 | !Attrs.hasAttribute(Kind: Attribute::WillReturn); |
| 1458 | } |
| 1459 | |
| 1460 | ~VPWidenIntrinsicRecipe() override = default; |
| 1461 | |
| 1462 | VPWidenIntrinsicRecipe *clone() override { |
| 1463 | if (Value *CI = getUnderlyingValue()) |
| 1464 | return new VPWidenIntrinsicRecipe(*cast<CallInst>(Val: CI), VectorIntrinsicID, |
| 1465 | operands(), ResultTy, getDebugLoc()); |
| 1466 | return new VPWidenIntrinsicRecipe(VectorIntrinsicID, operands(), ResultTy, |
| 1467 | getDebugLoc()); |
| 1468 | } |
| 1469 | |
| 1470 | VP_CLASSOF_IMPL(VPDef::VPWidenIntrinsicSC) |
| 1471 | |
| 1472 | /// Produce a widened version of the vector intrinsic. |
| 1473 | void execute(VPTransformState &State) override; |
| 1474 | |
| 1475 | /// Return the cost of this vector intrinsic. |
| 1476 | InstructionCost computeCost(ElementCount VF, |
| 1477 | VPCostContext &Ctx) const override; |
| 1478 | |
| 1479 | /// Return the ID of the intrinsic. |
| 1480 | Intrinsic::ID getVectorIntrinsicID() const { return VectorIntrinsicID; } |
| 1481 | |
| 1482 | /// Return the scalar return type of the intrinsic. |
| 1483 | Type *getResultType() const { return ResultTy; } |
| 1484 | |
| 1485 | /// Return to name of the intrinsic as string. |
| 1486 | StringRef getIntrinsicName() const; |
| 1487 | |
| 1488 | /// Returns true if the intrinsic may read from memory. |
| 1489 | bool mayReadFromMemory() const { return MayReadFromMemory; } |
| 1490 | |
| 1491 | /// Returns true if the intrinsic may write to memory. |
| 1492 | bool mayWriteToMemory() const { return MayWriteToMemory; } |
| 1493 | |
| 1494 | /// Returns true if the intrinsic may have side-effects. |
| 1495 | bool mayHaveSideEffects() const { return MayHaveSideEffects; } |
| 1496 | |
| 1497 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1498 | /// Print the recipe. |
| 1499 | void print(raw_ostream &O, const Twine &Indent, |
| 1500 | VPSlotTracker &SlotTracker) const override; |
| 1501 | #endif |
| 1502 | |
| 1503 | bool onlyFirstLaneUsed(const VPValue *Op) const override; |
| 1504 | }; |
| 1505 | |
| 1506 | /// A recipe for widening Call instructions using library calls. |
| 1507 | class VPWidenCallRecipe : public VPRecipeWithIRFlags, public VPIRMetadata { |
| 1508 | /// Variant stores a pointer to the chosen function. There is a 1:1 mapping |
| 1509 | /// between a given VF and the chosen vectorized variant, so there will be a |
| 1510 | /// different VPlan for each VF with a valid variant. |
| 1511 | Function *Variant; |
| 1512 | |
| 1513 | public: |
| 1514 | VPWidenCallRecipe(Value *UV, Function *Variant, |
| 1515 | ArrayRef<VPValue *> CallArguments, DebugLoc DL = {}) |
| 1516 | : VPRecipeWithIRFlags(VPDef::VPWidenCallSC, CallArguments, |
| 1517 | *cast<Instruction>(Val: UV)), |
| 1518 | VPIRMetadata(*cast<Instruction>(Val: UV)), Variant(Variant) { |
| 1519 | assert( |
| 1520 | isa<Function>(getOperand(getNumOperands() - 1)->getLiveInIRValue()) && |
| 1521 | "last operand must be the called function" ); |
| 1522 | } |
| 1523 | |
| 1524 | ~VPWidenCallRecipe() override = default; |
| 1525 | |
| 1526 | VPWidenCallRecipe *clone() override { |
| 1527 | return new VPWidenCallRecipe(getUnderlyingValue(), Variant, operands(), |
| 1528 | getDebugLoc()); |
| 1529 | } |
| 1530 | |
| 1531 | VP_CLASSOF_IMPL(VPDef::VPWidenCallSC) |
| 1532 | |
| 1533 | /// Produce a widened version of the call instruction. |
| 1534 | void execute(VPTransformState &State) override; |
| 1535 | |
| 1536 | /// Return the cost of this VPWidenCallRecipe. |
| 1537 | InstructionCost computeCost(ElementCount VF, |
| 1538 | VPCostContext &Ctx) const override; |
| 1539 | |
| 1540 | Function *getCalledScalarFunction() const { |
| 1541 | return cast<Function>(Val: getOperand(N: getNumOperands() - 1)->getLiveInIRValue()); |
| 1542 | } |
| 1543 | |
| 1544 | operand_range args() { return make_range(x: op_begin(), y: std::prev(x: op_end())); } |
| 1545 | const_operand_range args() const { |
| 1546 | return make_range(x: op_begin(), y: std::prev(x: op_end())); |
| 1547 | } |
| 1548 | |
| 1549 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1550 | /// Print the recipe. |
| 1551 | void print(raw_ostream &O, const Twine &Indent, |
| 1552 | VPSlotTracker &SlotTracker) const override; |
| 1553 | #endif |
| 1554 | }; |
| 1555 | |
| 1556 | /// A recipe representing a sequence of load -> update -> store as part of |
| 1557 | /// a histogram operation. This means there may be aliasing between vector |
| 1558 | /// lanes, which is handled by the llvm.experimental.vector.histogram family |
| 1559 | /// of intrinsics. The only update operations currently supported are |
| 1560 | /// 'add' and 'sub' where the other term is loop-invariant. |
| 1561 | class VPHistogramRecipe : public VPRecipeBase { |
| 1562 | /// Opcode of the update operation, currently either add or sub. |
| 1563 | unsigned Opcode; |
| 1564 | |
| 1565 | public: |
| 1566 | VPHistogramRecipe(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| 1567 | DebugLoc DL = {}) |
| 1568 | : VPRecipeBase(VPDef::VPHistogramSC, Operands, DL), Opcode(Opcode) {} |
| 1569 | |
| 1570 | ~VPHistogramRecipe() override = default; |
| 1571 | |
| 1572 | VPHistogramRecipe *clone() override { |
| 1573 | return new VPHistogramRecipe(Opcode, operands(), getDebugLoc()); |
| 1574 | } |
| 1575 | |
| 1576 | VP_CLASSOF_IMPL(VPDef::VPHistogramSC); |
| 1577 | |
| 1578 | /// Produce a vectorized histogram operation. |
| 1579 | void execute(VPTransformState &State) override; |
| 1580 | |
| 1581 | /// Return the cost of this VPHistogramRecipe. |
| 1582 | InstructionCost computeCost(ElementCount VF, |
| 1583 | VPCostContext &Ctx) const override; |
| 1584 | |
| 1585 | unsigned getOpcode() const { return Opcode; } |
| 1586 | |
| 1587 | /// Return the mask operand if one was provided, or a null pointer if all |
| 1588 | /// lanes should be executed unconditionally. |
| 1589 | VPValue *getMask() const { |
| 1590 | return getNumOperands() == 3 ? getOperand(N: 2) : nullptr; |
| 1591 | } |
| 1592 | |
| 1593 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1594 | /// Print the recipe |
| 1595 | void print(raw_ostream &O, const Twine &Indent, |
| 1596 | VPSlotTracker &SlotTracker) const override; |
| 1597 | #endif |
| 1598 | }; |
| 1599 | |
| 1600 | /// A recipe for widening select instructions. |
| 1601 | struct VPWidenSelectRecipe : public VPRecipeWithIRFlags, public VPIRMetadata { |
| 1602 | VPWidenSelectRecipe(SelectInst &I, ArrayRef<VPValue *> Operands) |
| 1603 | : VPRecipeWithIRFlags(VPDef::VPWidenSelectSC, Operands, I), |
| 1604 | VPIRMetadata(I) {} |
| 1605 | |
| 1606 | ~VPWidenSelectRecipe() override = default; |
| 1607 | |
| 1608 | VPWidenSelectRecipe *clone() override { |
| 1609 | return new VPWidenSelectRecipe(*cast<SelectInst>(Val: getUnderlyingInstr()), |
| 1610 | operands()); |
| 1611 | } |
| 1612 | |
| 1613 | VP_CLASSOF_IMPL(VPDef::VPWidenSelectSC) |
| 1614 | |
| 1615 | /// Produce a widened version of the select instruction. |
| 1616 | void execute(VPTransformState &State) override; |
| 1617 | |
| 1618 | /// Return the cost of this VPWidenSelectRecipe. |
| 1619 | InstructionCost computeCost(ElementCount VF, |
| 1620 | VPCostContext &Ctx) const override; |
| 1621 | |
| 1622 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1623 | /// Print the recipe. |
| 1624 | void print(raw_ostream &O, const Twine &Indent, |
| 1625 | VPSlotTracker &SlotTracker) const override; |
| 1626 | #endif |
| 1627 | |
| 1628 | VPValue *getCond() const { |
| 1629 | return getOperand(N: 0); |
| 1630 | } |
| 1631 | |
| 1632 | bool isInvariantCond() const { |
| 1633 | return getCond()->isDefinedOutsideLoopRegions(); |
| 1634 | } |
| 1635 | |
| 1636 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 1637 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 1638 | assert(is_contained(operands(), Op) && |
| 1639 | "Op must be an operand of the recipe" ); |
| 1640 | return Op == getCond() && isInvariantCond(); |
| 1641 | } |
| 1642 | }; |
| 1643 | |
| 1644 | /// A recipe for handling GEP instructions. |
| 1645 | class VPWidenGEPRecipe : public VPRecipeWithIRFlags { |
| 1646 | bool isPointerLoopInvariant() const { |
| 1647 | return getOperand(N: 0)->isDefinedOutsideLoopRegions(); |
| 1648 | } |
| 1649 | |
| 1650 | bool isIndexLoopInvariant(unsigned I) const { |
| 1651 | return getOperand(N: I + 1)->isDefinedOutsideLoopRegions(); |
| 1652 | } |
| 1653 | |
| 1654 | bool areAllOperandsInvariant() const { |
| 1655 | return all_of(Range: operands(), P: [](VPValue *Op) { |
| 1656 | return Op->isDefinedOutsideLoopRegions(); |
| 1657 | }); |
| 1658 | } |
| 1659 | |
| 1660 | public: |
| 1661 | VPWidenGEPRecipe(GetElementPtrInst *GEP, ArrayRef<VPValue *> Operands) |
| 1662 | : VPRecipeWithIRFlags(VPDef::VPWidenGEPSC, Operands, *GEP) { |
| 1663 | SmallVector<std::pair<unsigned, MDNode *>> Metadata; |
| 1664 | (void)Metadata; |
| 1665 | getMetadataToPropagate(Inst: GEP, Metadata); |
| 1666 | assert(Metadata.empty() && "unexpected metadata on GEP" ); |
| 1667 | } |
| 1668 | |
| 1669 | ~VPWidenGEPRecipe() override = default; |
| 1670 | |
| 1671 | VPWidenGEPRecipe *clone() override { |
| 1672 | return new VPWidenGEPRecipe(cast<GetElementPtrInst>(Val: getUnderlyingInstr()), |
| 1673 | operands()); |
| 1674 | } |
| 1675 | |
| 1676 | VP_CLASSOF_IMPL(VPDef::VPWidenGEPSC) |
| 1677 | |
| 1678 | /// Generate the gep nodes. |
| 1679 | void execute(VPTransformState &State) override; |
| 1680 | |
| 1681 | /// Return the cost of this VPWidenGEPRecipe. |
| 1682 | InstructionCost computeCost(ElementCount VF, |
| 1683 | VPCostContext &Ctx) const override { |
| 1684 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 1685 | return 0; |
| 1686 | } |
| 1687 | |
| 1688 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1689 | /// Print the recipe. |
| 1690 | void print(raw_ostream &O, const Twine &Indent, |
| 1691 | VPSlotTracker &SlotTracker) const override; |
| 1692 | #endif |
| 1693 | |
| 1694 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 1695 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 1696 | assert(is_contained(operands(), Op) && |
| 1697 | "Op must be an operand of the recipe" ); |
| 1698 | if (Op == getOperand(N: 0)) |
| 1699 | return isPointerLoopInvariant(); |
| 1700 | else |
| 1701 | return !isPointerLoopInvariant() && Op->isDefinedOutsideLoopRegions(); |
| 1702 | } |
| 1703 | }; |
| 1704 | |
| 1705 | /// A recipe to compute a pointer to the last element of each part of a widened |
| 1706 | /// memory access for widened memory accesses of IndexedTy. Used for |
| 1707 | /// VPWidenMemoryRecipes or VPInterleaveRecipes that are reversed. |
| 1708 | class VPVectorEndPointerRecipe : public VPRecipeWithIRFlags, |
| 1709 | public VPUnrollPartAccessor<2> { |
| 1710 | Type *IndexedTy; |
| 1711 | |
| 1712 | /// The constant stride of the pointer computed by this recipe, expressed in |
| 1713 | /// units of IndexedTy. |
| 1714 | int64_t Stride; |
| 1715 | |
| 1716 | public: |
| 1717 | VPVectorEndPointerRecipe(VPValue *Ptr, VPValue *VF, Type *IndexedTy, |
| 1718 | int64_t Stride, GEPNoWrapFlags GEPFlags, DebugLoc DL) |
| 1719 | : VPRecipeWithIRFlags(VPDef::VPVectorEndPointerSC, |
| 1720 | ArrayRef<VPValue *>({Ptr, VF}), GEPFlags, DL), |
| 1721 | IndexedTy(IndexedTy), Stride(Stride) { |
| 1722 | assert(Stride < 0 && "Stride must be negative" ); |
| 1723 | } |
| 1724 | |
| 1725 | VP_CLASSOF_IMPL(VPDef::VPVectorEndPointerSC) |
| 1726 | |
| 1727 | VPValue *getVFValue() { return getOperand(N: 1); } |
| 1728 | const VPValue *getVFValue() const { return getOperand(N: 1); } |
| 1729 | |
| 1730 | void execute(VPTransformState &State) override; |
| 1731 | |
| 1732 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 1733 | assert(is_contained(operands(), Op) && |
| 1734 | "Op must be an operand of the recipe" ); |
| 1735 | return true; |
| 1736 | } |
| 1737 | |
| 1738 | /// Return the cost of this VPVectorPointerRecipe. |
| 1739 | InstructionCost computeCost(ElementCount VF, |
| 1740 | VPCostContext &Ctx) const override { |
| 1741 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 1742 | return 0; |
| 1743 | } |
| 1744 | |
| 1745 | /// Returns true if the recipe only uses the first part of operand \p Op. |
| 1746 | bool onlyFirstPartUsed(const VPValue *Op) const override { |
| 1747 | assert(is_contained(operands(), Op) && |
| 1748 | "Op must be an operand of the recipe" ); |
| 1749 | assert(getNumOperands() <= 2 && "must have at most two operands" ); |
| 1750 | return true; |
| 1751 | } |
| 1752 | |
| 1753 | VPVectorEndPointerRecipe *clone() override { |
| 1754 | return new VPVectorEndPointerRecipe(getOperand(N: 0), getVFValue(), IndexedTy, |
| 1755 | Stride, getGEPNoWrapFlags(), |
| 1756 | getDebugLoc()); |
| 1757 | } |
| 1758 | |
| 1759 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1760 | /// Print the recipe. |
| 1761 | void print(raw_ostream &O, const Twine &Indent, |
| 1762 | VPSlotTracker &SlotTracker) const override; |
| 1763 | #endif |
| 1764 | }; |
| 1765 | |
| 1766 | /// A recipe to compute the pointers for widened memory accesses of IndexTy. |
| 1767 | class VPVectorPointerRecipe : public VPRecipeWithIRFlags, |
| 1768 | public VPUnrollPartAccessor<1> { |
| 1769 | Type *IndexedTy; |
| 1770 | |
| 1771 | public: |
| 1772 | VPVectorPointerRecipe(VPValue *Ptr, Type *IndexedTy, GEPNoWrapFlags GEPFlags, |
| 1773 | DebugLoc DL) |
| 1774 | : VPRecipeWithIRFlags(VPDef::VPVectorPointerSC, ArrayRef<VPValue *>(Ptr), |
| 1775 | GEPFlags, DL), |
| 1776 | IndexedTy(IndexedTy) {} |
| 1777 | |
| 1778 | VP_CLASSOF_IMPL(VPDef::VPVectorPointerSC) |
| 1779 | |
| 1780 | void execute(VPTransformState &State) override; |
| 1781 | |
| 1782 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 1783 | assert(is_contained(operands(), Op) && |
| 1784 | "Op must be an operand of the recipe" ); |
| 1785 | return true; |
| 1786 | } |
| 1787 | |
| 1788 | /// Returns true if the recipe only uses the first part of operand \p Op. |
| 1789 | bool onlyFirstPartUsed(const VPValue *Op) const override { |
| 1790 | assert(is_contained(operands(), Op) && |
| 1791 | "Op must be an operand of the recipe" ); |
| 1792 | assert(getNumOperands() <= 2 && "must have at most two operands" ); |
| 1793 | return true; |
| 1794 | } |
| 1795 | |
| 1796 | VPVectorPointerRecipe *clone() override { |
| 1797 | return new VPVectorPointerRecipe(getOperand(N: 0), IndexedTy, |
| 1798 | getGEPNoWrapFlags(), getDebugLoc()); |
| 1799 | } |
| 1800 | |
| 1801 | /// Return the cost of this VPHeaderPHIRecipe. |
| 1802 | InstructionCost computeCost(ElementCount VF, |
| 1803 | VPCostContext &Ctx) const override { |
| 1804 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 1805 | return 0; |
| 1806 | } |
| 1807 | |
| 1808 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1809 | /// Print the recipe. |
| 1810 | void print(raw_ostream &O, const Twine &Indent, |
| 1811 | VPSlotTracker &SlotTracker) const override; |
| 1812 | #endif |
| 1813 | }; |
| 1814 | |
| 1815 | /// A pure virtual base class for all recipes modeling header phis, including |
| 1816 | /// phis for first order recurrences, pointer inductions and reductions. The |
| 1817 | /// start value is the first operand of the recipe and the incoming value from |
| 1818 | /// the backedge is the second operand. |
| 1819 | /// |
| 1820 | /// Inductions are modeled using the following sub-classes: |
| 1821 | /// * VPCanonicalIVPHIRecipe: Canonical scalar induction of the vector loop, |
| 1822 | /// starting at a specified value (zero for the main vector loop, the resume |
| 1823 | /// value for the epilogue vector loop) and stepping by 1. The induction |
| 1824 | /// controls exiting of the vector loop by comparing against the vector trip |
| 1825 | /// count. Produces a single scalar PHI for the induction value per |
| 1826 | /// iteration. |
| 1827 | /// * VPWidenIntOrFpInductionRecipe: Generates vector values for integer and |
| 1828 | /// floating point inductions with arbitrary start and step values. Produces |
| 1829 | /// a vector PHI per-part. |
| 1830 | /// * VPDerivedIVRecipe: Converts the canonical IV value to the corresponding |
| 1831 | /// value of an IV with different start and step values. Produces a single |
| 1832 | /// scalar value per iteration |
| 1833 | /// * VPScalarIVStepsRecipe: Generates scalar values per-lane based on a |
| 1834 | /// canonical or derived induction. |
| 1835 | /// * VPWidenPointerInductionRecipe: Generate vector and scalar values for a |
| 1836 | /// pointer induction. Produces either a vector PHI per-part or scalar values |
| 1837 | /// per-lane based on the canonical induction. |
| 1838 | class : public VPSingleDefRecipe, public VPPhiAccessors { |
| 1839 | protected: |
| 1840 | (unsigned char VPDefID, Instruction *UnderlyingInstr, |
| 1841 | VPValue *Start, DebugLoc DL = DebugLoc::getUnknown()) |
| 1842 | : VPSingleDefRecipe(VPDefID, ArrayRef<VPValue *>({Start}), |
| 1843 | UnderlyingInstr, DL) {} |
| 1844 | |
| 1845 | const VPRecipeBase *() const override { return this; } |
| 1846 | |
| 1847 | public: |
| 1848 | () override = default; |
| 1849 | |
| 1850 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 1851 | static inline bool (const VPRecipeBase *B) { |
| 1852 | return B->getVPDefID() >= VPDef::VPFirstHeaderPHISC && |
| 1853 | B->getVPDefID() <= VPDef::VPLastHeaderPHISC; |
| 1854 | } |
| 1855 | static inline bool (const VPValue *V) { |
| 1856 | auto *B = V->getDefiningRecipe(); |
| 1857 | return B && B->getVPDefID() >= VPRecipeBase::VPFirstHeaderPHISC && |
| 1858 | B->getVPDefID() <= VPRecipeBase::VPLastHeaderPHISC; |
| 1859 | } |
| 1860 | |
| 1861 | /// Generate the phi nodes. |
| 1862 | void (VPTransformState &State) override = 0; |
| 1863 | |
| 1864 | /// Return the cost of this header phi recipe. |
| 1865 | InstructionCost (ElementCount VF, |
| 1866 | VPCostContext &Ctx) const override; |
| 1867 | |
| 1868 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1869 | /// Print the recipe. |
| 1870 | void print(raw_ostream &O, const Twine &Indent, |
| 1871 | VPSlotTracker &SlotTracker) const override = 0; |
| 1872 | #endif |
| 1873 | |
| 1874 | /// Returns the start value of the phi, if one is set. |
| 1875 | VPValue *() { |
| 1876 | return getNumOperands() == 0 ? nullptr : getOperand(N: 0); |
| 1877 | } |
| 1878 | VPValue *() const { |
| 1879 | return getNumOperands() == 0 ? nullptr : getOperand(N: 0); |
| 1880 | } |
| 1881 | |
| 1882 | /// Update the start value of the recipe. |
| 1883 | void (VPValue *V) { setOperand(I: 0, New: V); } |
| 1884 | |
| 1885 | /// Returns the incoming value from the loop backedge. |
| 1886 | virtual VPValue *() { |
| 1887 | return getOperand(N: 1); |
| 1888 | } |
| 1889 | |
| 1890 | /// Returns the backedge value as a recipe. The backedge value is guaranteed |
| 1891 | /// to be a recipe. |
| 1892 | virtual VPRecipeBase &() { |
| 1893 | return *getBackedgeValue()->getDefiningRecipe(); |
| 1894 | } |
| 1895 | }; |
| 1896 | |
| 1897 | /// Base class for widened induction (VPWidenIntOrFpInductionRecipe and |
| 1898 | /// VPWidenPointerInductionRecipe), providing shared functionality, including |
| 1899 | /// retrieving the step value, induction descriptor and original phi node. |
| 1900 | class VPWidenInductionRecipe : public VPHeaderPHIRecipe { |
| 1901 | const InductionDescriptor &IndDesc; |
| 1902 | |
| 1903 | public: |
| 1904 | VPWidenInductionRecipe(unsigned char Kind, PHINode *IV, VPValue *Start, |
| 1905 | VPValue *Step, const InductionDescriptor &IndDesc, |
| 1906 | DebugLoc DL) |
| 1907 | : VPHeaderPHIRecipe(Kind, IV, Start, DL), IndDesc(IndDesc) { |
| 1908 | addOperand(Operand: Step); |
| 1909 | } |
| 1910 | |
| 1911 | static inline bool classof(const VPRecipeBase *R) { |
| 1912 | return R->getVPDefID() == VPDef::VPWidenIntOrFpInductionSC || |
| 1913 | R->getVPDefID() == VPDef::VPWidenPointerInductionSC; |
| 1914 | } |
| 1915 | |
| 1916 | static inline bool classof(const VPValue *V) { |
| 1917 | auto *R = V->getDefiningRecipe(); |
| 1918 | return R && classof(R); |
| 1919 | } |
| 1920 | |
| 1921 | static inline bool (const VPHeaderPHIRecipe *R) { |
| 1922 | return classof(R: static_cast<const VPRecipeBase *>(R)); |
| 1923 | } |
| 1924 | |
| 1925 | virtual void execute(VPTransformState &State) override = 0; |
| 1926 | |
| 1927 | /// Returns the step value of the induction. |
| 1928 | VPValue *getStepValue() { return getOperand(N: 1); } |
| 1929 | const VPValue *getStepValue() const { return getOperand(N: 1); } |
| 1930 | |
| 1931 | /// Update the step value of the recipe. |
| 1932 | void setStepValue(VPValue *V) { setOperand(I: 1, New: V); } |
| 1933 | |
| 1934 | /// Returns the number of incoming values, also number of incoming blocks. |
| 1935 | /// Note that at the moment, VPWidenPointerInductionRecipe only has a single |
| 1936 | /// incoming value, its start value. |
| 1937 | unsigned getNumIncoming() const override { return 1; } |
| 1938 | |
| 1939 | PHINode *getPHINode() const { return cast<PHINode>(Val: getUnderlyingValue()); } |
| 1940 | |
| 1941 | /// Returns the induction descriptor for the recipe. |
| 1942 | const InductionDescriptor &getInductionDescriptor() const { return IndDesc; } |
| 1943 | |
| 1944 | VPValue *getBackedgeValue() override { |
| 1945 | // TODO: All operands of base recipe must exist and be at same index in |
| 1946 | // derived recipe. |
| 1947 | llvm_unreachable( |
| 1948 | "VPWidenIntOrFpInductionRecipe generates its own backedge value" ); |
| 1949 | } |
| 1950 | |
| 1951 | VPRecipeBase &getBackedgeRecipe() override { |
| 1952 | // TODO: All operands of base recipe must exist and be at same index in |
| 1953 | // derived recipe. |
| 1954 | llvm_unreachable( |
| 1955 | "VPWidenIntOrFpInductionRecipe generates its own backedge value" ); |
| 1956 | } |
| 1957 | |
| 1958 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 1959 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 1960 | assert(is_contained(operands(), Op) && |
| 1961 | "Op must be an operand of the recipe" ); |
| 1962 | // The recipe creates its own wide start value, so it only requests the |
| 1963 | // first lane of the operand. |
| 1964 | // TODO: Remove once creating the start value is modeled separately. |
| 1965 | return Op == getStartValue() || Op == getStepValue(); |
| 1966 | } |
| 1967 | }; |
| 1968 | |
| 1969 | /// A recipe for handling phi nodes of integer and floating-point inductions, |
| 1970 | /// producing their vector values. This is an abstract recipe and must be |
| 1971 | /// converted to concrete recipes before executing. |
| 1972 | class VPWidenIntOrFpInductionRecipe : public VPWidenInductionRecipe { |
| 1973 | TruncInst *Trunc; |
| 1974 | |
| 1975 | // If this recipe is unrolled it will have 2 additional operands. |
| 1976 | bool isUnrolled() const { return getNumOperands() == 5; } |
| 1977 | |
| 1978 | public: |
| 1979 | VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step, |
| 1980 | VPValue *VF, const InductionDescriptor &IndDesc, |
| 1981 | DebugLoc DL) |
| 1982 | : VPWidenInductionRecipe(VPDef::VPWidenIntOrFpInductionSC, IV, Start, |
| 1983 | Step, IndDesc, DL), |
| 1984 | Trunc(nullptr) { |
| 1985 | addOperand(Operand: VF); |
| 1986 | } |
| 1987 | |
| 1988 | VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step, |
| 1989 | VPValue *VF, const InductionDescriptor &IndDesc, |
| 1990 | TruncInst *Trunc, DebugLoc DL) |
| 1991 | : VPWidenInductionRecipe(VPDef::VPWidenIntOrFpInductionSC, IV, Start, |
| 1992 | Step, IndDesc, DL), |
| 1993 | Trunc(Trunc) { |
| 1994 | addOperand(Operand: VF); |
| 1995 | SmallVector<std::pair<unsigned, MDNode *>> Metadata; |
| 1996 | (void)Metadata; |
| 1997 | if (Trunc) |
| 1998 | getMetadataToPropagate(Inst: Trunc, Metadata); |
| 1999 | assert(Metadata.empty() && "unexpected metadata on Trunc" ); |
| 2000 | } |
| 2001 | |
| 2002 | ~VPWidenIntOrFpInductionRecipe() override = default; |
| 2003 | |
| 2004 | VPWidenIntOrFpInductionRecipe *clone() override { |
| 2005 | return new VPWidenIntOrFpInductionRecipe( |
| 2006 | getPHINode(), getStartValue(), getStepValue(), getVFValue(), |
| 2007 | getInductionDescriptor(), Trunc, getDebugLoc()); |
| 2008 | } |
| 2009 | |
| 2010 | VP_CLASSOF_IMPL(VPDef::VPWidenIntOrFpInductionSC) |
| 2011 | |
| 2012 | void execute(VPTransformState &State) override { |
| 2013 | llvm_unreachable("cannot execute this recipe, should be expanded via " |
| 2014 | "expandVPWidenIntOrFpInductionRecipe" ); |
| 2015 | } |
| 2016 | |
| 2017 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2018 | /// Print the recipe. |
| 2019 | void print(raw_ostream &O, const Twine &Indent, |
| 2020 | VPSlotTracker &SlotTracker) const override; |
| 2021 | #endif |
| 2022 | |
| 2023 | VPValue *getVFValue() { return getOperand(N: 2); } |
| 2024 | const VPValue *getVFValue() const { return getOperand(N: 2); } |
| 2025 | |
| 2026 | VPValue *getSplatVFValue() { |
| 2027 | // If the recipe has been unrolled return the VPValue for the induction |
| 2028 | // increment. |
| 2029 | return isUnrolled() ? getOperand(N: getNumOperands() - 2) : nullptr; |
| 2030 | } |
| 2031 | |
| 2032 | /// Returns the number of incoming values, also number of incoming blocks. |
| 2033 | /// Note that at the moment, VPWidenIntOrFpInductionRecipes only have a single |
| 2034 | /// incoming value, its start value. |
| 2035 | unsigned getNumIncoming() const override { return 1; } |
| 2036 | |
| 2037 | /// Returns the first defined value as TruncInst, if it is one or nullptr |
| 2038 | /// otherwise. |
| 2039 | TruncInst *getTruncInst() { return Trunc; } |
| 2040 | const TruncInst *getTruncInst() const { return Trunc; } |
| 2041 | |
| 2042 | /// Returns true if the induction is canonical, i.e. starting at 0 and |
| 2043 | /// incremented by UF * VF (= the original IV is incremented by 1) and has the |
| 2044 | /// same type as the canonical induction. |
| 2045 | bool isCanonical() const; |
| 2046 | |
| 2047 | /// Returns the scalar type of the induction. |
| 2048 | Type *getScalarType() const { |
| 2049 | return Trunc ? Trunc->getType() |
| 2050 | : getStartValue()->getLiveInIRValue()->getType(); |
| 2051 | } |
| 2052 | |
| 2053 | /// Returns the VPValue representing the value of this induction at |
| 2054 | /// the last unrolled part, if it exists. Returns itself if unrolling did not |
| 2055 | /// take place. |
| 2056 | VPValue *getLastUnrolledPartOperand() { |
| 2057 | return isUnrolled() ? getOperand(N: getNumOperands() - 1) : this; |
| 2058 | } |
| 2059 | }; |
| 2060 | |
| 2061 | class VPWidenPointerInductionRecipe : public VPWidenInductionRecipe, |
| 2062 | public VPUnrollPartAccessor<4> { |
| 2063 | bool IsScalarAfterVectorization; |
| 2064 | |
| 2065 | public: |
| 2066 | /// Create a new VPWidenPointerInductionRecipe for \p Phi with start value \p |
| 2067 | /// Start and the number of elements unrolled \p NumUnrolledElems, typically |
| 2068 | /// VF*UF. |
| 2069 | VPWidenPointerInductionRecipe(PHINode *Phi, VPValue *Start, VPValue *Step, |
| 2070 | VPValue *NumUnrolledElems, |
| 2071 | const InductionDescriptor &IndDesc, |
| 2072 | bool IsScalarAfterVectorization, DebugLoc DL) |
| 2073 | : VPWidenInductionRecipe(VPDef::VPWidenPointerInductionSC, Phi, Start, |
| 2074 | Step, IndDesc, DL), |
| 2075 | IsScalarAfterVectorization(IsScalarAfterVectorization) { |
| 2076 | addOperand(Operand: NumUnrolledElems); |
| 2077 | } |
| 2078 | |
| 2079 | ~VPWidenPointerInductionRecipe() override = default; |
| 2080 | |
| 2081 | VPWidenPointerInductionRecipe *clone() override { |
| 2082 | return new VPWidenPointerInductionRecipe( |
| 2083 | cast<PHINode>(Val: getUnderlyingInstr()), getOperand(N: 0), getOperand(N: 1), |
| 2084 | getOperand(N: 2), getInductionDescriptor(), IsScalarAfterVectorization, |
| 2085 | getDebugLoc()); |
| 2086 | } |
| 2087 | |
| 2088 | VP_CLASSOF_IMPL(VPDef::VPWidenPointerInductionSC) |
| 2089 | |
| 2090 | /// Generate vector values for the pointer induction. |
| 2091 | void execute(VPTransformState &State) override; |
| 2092 | |
| 2093 | /// Returns true if only scalar values will be generated. |
| 2094 | bool onlyScalarsGenerated(bool IsScalable); |
| 2095 | |
| 2096 | /// Returns the VPValue representing the value of this induction at |
| 2097 | /// the first unrolled part, if it exists. Returns itself if unrolling did not |
| 2098 | /// take place. |
| 2099 | VPValue *getFirstUnrolledPartOperand() { |
| 2100 | return getUnrollPart(U&: *this) == 0 ? this : getOperand(N: 3); |
| 2101 | } |
| 2102 | |
| 2103 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2104 | /// Print the recipe. |
| 2105 | void print(raw_ostream &O, const Twine &Indent, |
| 2106 | VPSlotTracker &SlotTracker) const override; |
| 2107 | #endif |
| 2108 | }; |
| 2109 | |
| 2110 | /// A recipe for widened phis. Incoming values are operands of the recipe and |
| 2111 | /// their operand index corresponds to the incoming predecessor block. If the |
| 2112 | /// recipe is placed in an entry block to a (non-replicate) region, it must have |
| 2113 | /// exactly 2 incoming values, the first from the predecessor of the region and |
| 2114 | /// the second from the exiting block of the region. |
| 2115 | class VPWidenPHIRecipe : public VPSingleDefRecipe, public VPPhiAccessors { |
| 2116 | /// Name to use for the generated IR instruction for the widened phi. |
| 2117 | std::string Name; |
| 2118 | |
| 2119 | protected: |
| 2120 | const VPRecipeBase *getAsRecipe() const override { return this; } |
| 2121 | |
| 2122 | public: |
| 2123 | /// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start and |
| 2124 | /// debug location \p DL. |
| 2125 | VPWidenPHIRecipe(PHINode *Phi, VPValue *Start = nullptr, DebugLoc DL = {}, |
| 2126 | const Twine &Name = "" ) |
| 2127 | : VPSingleDefRecipe(VPDef::VPWidenPHISC, ArrayRef<VPValue *>(), Phi, DL), |
| 2128 | Name(Name.str()) { |
| 2129 | if (Start) |
| 2130 | addOperand(Operand: Start); |
| 2131 | } |
| 2132 | |
| 2133 | VPWidenPHIRecipe *clone() override { |
| 2134 | auto *C = new VPWidenPHIRecipe(cast<PHINode>(Val: getUnderlyingValue()), |
| 2135 | getOperand(N: 0), getDebugLoc(), Name); |
| 2136 | for (VPValue *Op : llvm::drop_begin(RangeOrContainer: operands())) |
| 2137 | C->addOperand(Operand: Op); |
| 2138 | return C; |
| 2139 | } |
| 2140 | |
| 2141 | ~VPWidenPHIRecipe() override = default; |
| 2142 | |
| 2143 | VP_CLASSOF_IMPL(VPDef::VPWidenPHISC) |
| 2144 | |
| 2145 | /// Generate the phi/select nodes. |
| 2146 | void execute(VPTransformState &State) override; |
| 2147 | |
| 2148 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2149 | /// Print the recipe. |
| 2150 | void print(raw_ostream &O, const Twine &Indent, |
| 2151 | VPSlotTracker &SlotTracker) const override; |
| 2152 | #endif |
| 2153 | }; |
| 2154 | |
| 2155 | /// A recipe for handling first-order recurrence phis. The start value is the |
| 2156 | /// first operand of the recipe and the incoming value from the backedge is the |
| 2157 | /// second operand. |
| 2158 | struct VPFirstOrderRecurrencePHIRecipe : public VPHeaderPHIRecipe { |
| 2159 | VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start) |
| 2160 | : VPHeaderPHIRecipe(VPDef::VPFirstOrderRecurrencePHISC, Phi, &Start) {} |
| 2161 | |
| 2162 | VP_CLASSOF_IMPL(VPDef::VPFirstOrderRecurrencePHISC) |
| 2163 | |
| 2164 | VPFirstOrderRecurrencePHIRecipe *clone() override { |
| 2165 | return new VPFirstOrderRecurrencePHIRecipe( |
| 2166 | cast<PHINode>(Val: getUnderlyingInstr()), *getOperand(N: 0)); |
| 2167 | } |
| 2168 | |
| 2169 | void execute(VPTransformState &State) override; |
| 2170 | |
| 2171 | /// Return the cost of this first-order recurrence phi recipe. |
| 2172 | InstructionCost computeCost(ElementCount VF, |
| 2173 | VPCostContext &Ctx) const override; |
| 2174 | |
| 2175 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2176 | /// Print the recipe. |
| 2177 | void print(raw_ostream &O, const Twine &Indent, |
| 2178 | VPSlotTracker &SlotTracker) const override; |
| 2179 | #endif |
| 2180 | |
| 2181 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 2182 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 2183 | assert(is_contained(operands(), Op) && |
| 2184 | "Op must be an operand of the recipe" ); |
| 2185 | return Op == getStartValue(); |
| 2186 | } |
| 2187 | }; |
| 2188 | |
| 2189 | /// A recipe for handling reduction phis. The start value is the first operand |
| 2190 | /// of the recipe and the incoming value from the backedge is the second |
| 2191 | /// operand. |
| 2192 | class VPReductionPHIRecipe : public VPHeaderPHIRecipe, |
| 2193 | public VPUnrollPartAccessor<2> { |
| 2194 | /// Descriptor for the reduction. |
| 2195 | const RecurrenceDescriptor &RdxDesc; |
| 2196 | |
| 2197 | /// The phi is part of an in-loop reduction. |
| 2198 | bool IsInLoop; |
| 2199 | |
| 2200 | /// The phi is part of an ordered reduction. Requires IsInLoop to be true. |
| 2201 | bool IsOrdered; |
| 2202 | |
| 2203 | /// When expanding the reduction PHI, the plan's VF element count is divided |
| 2204 | /// by this factor to form the reduction phi's VF. |
| 2205 | unsigned VFScaleFactor = 1; |
| 2206 | |
| 2207 | public: |
| 2208 | /// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p |
| 2209 | /// RdxDesc. |
| 2210 | VPReductionPHIRecipe(PHINode *Phi, const RecurrenceDescriptor &RdxDesc, |
| 2211 | VPValue &Start, bool IsInLoop = false, |
| 2212 | bool IsOrdered = false, unsigned VFScaleFactor = 1) |
| 2213 | : VPHeaderPHIRecipe(VPDef::VPReductionPHISC, Phi, &Start), |
| 2214 | RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered), |
| 2215 | VFScaleFactor(VFScaleFactor) { |
| 2216 | assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop" ); |
| 2217 | } |
| 2218 | |
| 2219 | ~VPReductionPHIRecipe() override = default; |
| 2220 | |
| 2221 | VPReductionPHIRecipe *clone() override { |
| 2222 | auto *R = new VPReductionPHIRecipe( |
| 2223 | dyn_cast_or_null<PHINode>(Val: getUnderlyingValue()), RdxDesc, |
| 2224 | *getOperand(N: 0), IsInLoop, IsOrdered, VFScaleFactor); |
| 2225 | R->addOperand(Operand: getBackedgeValue()); |
| 2226 | return R; |
| 2227 | } |
| 2228 | |
| 2229 | VP_CLASSOF_IMPL(VPDef::VPReductionPHISC) |
| 2230 | |
| 2231 | /// Generate the phi/select nodes. |
| 2232 | void execute(VPTransformState &State) override; |
| 2233 | |
| 2234 | /// Get the factor that the VF of this recipe's output should be scaled by. |
| 2235 | unsigned getVFScaleFactor() const { return VFScaleFactor; } |
| 2236 | |
| 2237 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2238 | /// Print the recipe. |
| 2239 | void print(raw_ostream &O, const Twine &Indent, |
| 2240 | VPSlotTracker &SlotTracker) const override; |
| 2241 | #endif |
| 2242 | |
| 2243 | const RecurrenceDescriptor &getRecurrenceDescriptor() const { |
| 2244 | return RdxDesc; |
| 2245 | } |
| 2246 | |
| 2247 | /// Returns true, if the phi is part of an ordered reduction. |
| 2248 | bool isOrdered() const { return IsOrdered; } |
| 2249 | |
| 2250 | /// Returns true, if the phi is part of an in-loop reduction. |
| 2251 | bool isInLoop() const { return IsInLoop; } |
| 2252 | |
| 2253 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 2254 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 2255 | assert(is_contained(operands(), Op) && |
| 2256 | "Op must be an operand of the recipe" ); |
| 2257 | return isOrdered() || isInLoop(); |
| 2258 | } |
| 2259 | }; |
| 2260 | |
| 2261 | /// A recipe for vectorizing a phi-node as a sequence of mask-based select |
| 2262 | /// instructions. |
| 2263 | class VPBlendRecipe : public VPSingleDefRecipe { |
| 2264 | public: |
| 2265 | /// The blend operation is a User of the incoming values and of their |
| 2266 | /// respective masks, ordered [I0, M0, I1, M1, I2, M2, ...]. Note that M0 can |
| 2267 | /// be omitted (implied by passing an odd number of operands) in which case |
| 2268 | /// all other incoming values are merged into it. |
| 2269 | VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands) |
| 2270 | : VPSingleDefRecipe(VPDef::VPBlendSC, Operands, Phi, Phi->getDebugLoc()) { |
| 2271 | assert(Operands.size() > 0 && "Expected at least one operand!" ); |
| 2272 | } |
| 2273 | |
| 2274 | VPBlendRecipe *clone() override { |
| 2275 | SmallVector<VPValue *> Ops(operands()); |
| 2276 | return new VPBlendRecipe(cast<PHINode>(Val: getUnderlyingValue()), Ops); |
| 2277 | } |
| 2278 | |
| 2279 | VP_CLASSOF_IMPL(VPDef::VPBlendSC) |
| 2280 | |
| 2281 | /// A normalized blend is one that has an odd number of operands, whereby the |
| 2282 | /// first operand does not have an associated mask. |
| 2283 | bool isNormalized() const { return getNumOperands() % 2; } |
| 2284 | |
| 2285 | /// Return the number of incoming values, taking into account when normalized |
| 2286 | /// the first incoming value will have no mask. |
| 2287 | unsigned getNumIncomingValues() const { |
| 2288 | return (getNumOperands() + isNormalized()) / 2; |
| 2289 | } |
| 2290 | |
| 2291 | /// Return incoming value number \p Idx. |
| 2292 | VPValue *getIncomingValue(unsigned Idx) const { |
| 2293 | return Idx == 0 ? getOperand(N: 0) : getOperand(N: Idx * 2 - isNormalized()); |
| 2294 | } |
| 2295 | |
| 2296 | /// Return mask number \p Idx. |
| 2297 | VPValue *getMask(unsigned Idx) const { |
| 2298 | assert((Idx > 0 || !isNormalized()) && "First index has no mask!" ); |
| 2299 | return Idx == 0 ? getOperand(N: 1) : getOperand(N: Idx * 2 + !isNormalized()); |
| 2300 | } |
| 2301 | |
| 2302 | /// Generate the phi/select nodes. |
| 2303 | void execute(VPTransformState &State) override; |
| 2304 | |
| 2305 | /// Return the cost of this VPWidenMemoryRecipe. |
| 2306 | InstructionCost computeCost(ElementCount VF, |
| 2307 | VPCostContext &Ctx) const override; |
| 2308 | |
| 2309 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2310 | /// Print the recipe. |
| 2311 | void print(raw_ostream &O, const Twine &Indent, |
| 2312 | VPSlotTracker &SlotTracker) const override; |
| 2313 | #endif |
| 2314 | |
| 2315 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 2316 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 2317 | assert(is_contained(operands(), Op) && |
| 2318 | "Op must be an operand of the recipe" ); |
| 2319 | // Recursing through Blend recipes only, must terminate at header phi's the |
| 2320 | // latest. |
| 2321 | return all_of(Range: users(), |
| 2322 | P: [this](VPUser *U) { return U->onlyFirstLaneUsed(Op: this); }); |
| 2323 | } |
| 2324 | }; |
| 2325 | |
| 2326 | /// VPInterleaveRecipe is a recipe for transforming an interleave group of load |
| 2327 | /// or stores into one wide load/store and shuffles. The first operand of a |
| 2328 | /// VPInterleave recipe is the address, followed by the stored values, followed |
| 2329 | /// by an optional mask. |
| 2330 | class VPInterleaveRecipe : public VPRecipeBase { |
| 2331 | const InterleaveGroup<Instruction> *IG; |
| 2332 | |
| 2333 | /// Indicates if the interleave group is in a conditional block and requires a |
| 2334 | /// mask. |
| 2335 | bool HasMask = false; |
| 2336 | |
| 2337 | /// Indicates if gaps between members of the group need to be masked out or if |
| 2338 | /// unusued gaps can be loaded speculatively. |
| 2339 | bool NeedsMaskForGaps = false; |
| 2340 | |
| 2341 | public: |
| 2342 | VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr, |
| 2343 | ArrayRef<VPValue *> StoredValues, VPValue *Mask, |
| 2344 | bool NeedsMaskForGaps, DebugLoc DL) |
| 2345 | : VPRecipeBase(VPDef::VPInterleaveSC, {Addr}, |
| 2346 | DL), |
| 2347 | |
| 2348 | IG(IG), NeedsMaskForGaps(NeedsMaskForGaps) { |
| 2349 | // TODO: extend the masked interleaved-group support to reversed access. |
| 2350 | assert((!Mask || !IG->isReverse()) && |
| 2351 | "Reversed masked interleave-group not supported." ); |
| 2352 | for (unsigned i = 0; i < IG->getFactor(); ++i) |
| 2353 | if (Instruction *I = IG->getMember(Index: i)) { |
| 2354 | if (I->getType()->isVoidTy()) |
| 2355 | continue; |
| 2356 | new VPValue(I, this); |
| 2357 | } |
| 2358 | |
| 2359 | for (auto *SV : StoredValues) |
| 2360 | addOperand(Operand: SV); |
| 2361 | if (Mask) { |
| 2362 | HasMask = true; |
| 2363 | addOperand(Operand: Mask); |
| 2364 | } |
| 2365 | } |
| 2366 | ~VPInterleaveRecipe() override = default; |
| 2367 | |
| 2368 | VPInterleaveRecipe *clone() override { |
| 2369 | return new VPInterleaveRecipe(IG, getAddr(), getStoredValues(), getMask(), |
| 2370 | NeedsMaskForGaps, getDebugLoc()); |
| 2371 | } |
| 2372 | |
| 2373 | VP_CLASSOF_IMPL(VPDef::VPInterleaveSC) |
| 2374 | |
| 2375 | /// Return the address accessed by this recipe. |
| 2376 | VPValue *getAddr() const { |
| 2377 | return getOperand(N: 0); // Address is the 1st, mandatory operand. |
| 2378 | } |
| 2379 | |
| 2380 | /// Return the mask used by this recipe. Note that a full mask is represented |
| 2381 | /// by a nullptr. |
| 2382 | VPValue *getMask() const { |
| 2383 | // Mask is optional and therefore the last, currently 2nd operand. |
| 2384 | return HasMask ? getOperand(N: getNumOperands() - 1) : nullptr; |
| 2385 | } |
| 2386 | |
| 2387 | /// Return the VPValues stored by this interleave group. If it is a load |
| 2388 | /// interleave group, return an empty ArrayRef. |
| 2389 | ArrayRef<VPValue *> getStoredValues() const { |
| 2390 | // The first operand is the address, followed by the stored values, followed |
| 2391 | // by an optional mask. |
| 2392 | return ArrayRef<VPValue *>(op_begin(), getNumOperands()) |
| 2393 | .slice(N: 1, M: getNumStoreOperands()); |
| 2394 | } |
| 2395 | |
| 2396 | /// Generate the wide load or store, and shuffles. |
| 2397 | void execute(VPTransformState &State) override; |
| 2398 | |
| 2399 | /// Return the cost of this VPInterleaveRecipe. |
| 2400 | InstructionCost computeCost(ElementCount VF, |
| 2401 | VPCostContext &Ctx) const override; |
| 2402 | |
| 2403 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2404 | /// Print the recipe. |
| 2405 | void print(raw_ostream &O, const Twine &Indent, |
| 2406 | VPSlotTracker &SlotTracker) const override; |
| 2407 | #endif |
| 2408 | |
| 2409 | const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; } |
| 2410 | |
| 2411 | /// Returns the number of stored operands of this interleave group. Returns 0 |
| 2412 | /// for load interleave groups. |
| 2413 | unsigned getNumStoreOperands() const { |
| 2414 | return getNumOperands() - (HasMask ? 2 : 1); |
| 2415 | } |
| 2416 | |
| 2417 | /// The recipe only uses the first lane of the address. |
| 2418 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 2419 | assert(is_contained(operands(), Op) && |
| 2420 | "Op must be an operand of the recipe" ); |
| 2421 | return Op == getAddr() && !llvm::is_contained(Range: getStoredValues(), Element: Op); |
| 2422 | } |
| 2423 | |
| 2424 | Instruction *getInsertPos() const { return IG->getInsertPos(); } |
| 2425 | }; |
| 2426 | |
| 2427 | /// A recipe to represent inloop reduction operations, performing a reduction on |
| 2428 | /// a vector operand into a scalar value, and adding the result to a chain. |
| 2429 | /// The Operands are {ChainOp, VecOp, [Condition]}. |
| 2430 | class VPReductionRecipe : public VPRecipeWithIRFlags { |
| 2431 | /// The recurrence kind for the reduction in question. |
| 2432 | RecurKind RdxKind; |
| 2433 | bool IsOrdered; |
| 2434 | /// Whether the reduction is conditional. |
| 2435 | bool IsConditional = false; |
| 2436 | |
| 2437 | protected: |
| 2438 | VPReductionRecipe(const unsigned char SC, RecurKind RdxKind, |
| 2439 | FastMathFlags FMFs, Instruction *I, |
| 2440 | ArrayRef<VPValue *> Operands, VPValue *CondOp, |
| 2441 | bool IsOrdered, DebugLoc DL) |
| 2442 | : VPRecipeWithIRFlags(SC, Operands, FMFs, DL), RdxKind(RdxKind), |
| 2443 | IsOrdered(IsOrdered) { |
| 2444 | if (CondOp) { |
| 2445 | IsConditional = true; |
| 2446 | addOperand(Operand: CondOp); |
| 2447 | } |
| 2448 | setUnderlyingValue(I); |
| 2449 | } |
| 2450 | |
| 2451 | public: |
| 2452 | VPReductionRecipe(RecurKind RdxKind, FastMathFlags FMFs, Instruction *I, |
| 2453 | VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp, |
| 2454 | bool IsOrdered, DebugLoc DL = {}) |
| 2455 | : VPReductionRecipe(VPDef::VPReductionSC, RdxKind, FMFs, I, |
| 2456 | ArrayRef<VPValue *>({ChainOp, VecOp}), CondOp, |
| 2457 | IsOrdered, DL) {} |
| 2458 | |
| 2459 | VPReductionRecipe(const RecurKind RdxKind, FastMathFlags FMFs, |
| 2460 | VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp, |
| 2461 | bool IsOrdered, DebugLoc DL = {}) |
| 2462 | : VPReductionRecipe(VPDef::VPReductionSC, RdxKind, FMFs, nullptr, |
| 2463 | ArrayRef<VPValue *>({ChainOp, VecOp}), CondOp, |
| 2464 | IsOrdered, DL) {} |
| 2465 | |
| 2466 | ~VPReductionRecipe() override = default; |
| 2467 | |
| 2468 | VPReductionRecipe *clone() override { |
| 2469 | return new VPReductionRecipe(RdxKind, getFastMathFlags(), |
| 2470 | getUnderlyingInstr(), getChainOp(), getVecOp(), |
| 2471 | getCondOp(), IsOrdered, getDebugLoc()); |
| 2472 | } |
| 2473 | |
| 2474 | static inline bool classof(const VPRecipeBase *R) { |
| 2475 | return R->getVPDefID() == VPRecipeBase::VPReductionSC || |
| 2476 | R->getVPDefID() == VPRecipeBase::VPReductionEVLSC; |
| 2477 | } |
| 2478 | |
| 2479 | static inline bool classof(const VPUser *U) { |
| 2480 | auto *R = dyn_cast<VPRecipeBase>(Val: U); |
| 2481 | return R && classof(R); |
| 2482 | } |
| 2483 | |
| 2484 | /// Generate the reduction in the loop. |
| 2485 | void execute(VPTransformState &State) override; |
| 2486 | |
| 2487 | /// Return the cost of VPReductionRecipe. |
| 2488 | InstructionCost computeCost(ElementCount VF, |
| 2489 | VPCostContext &Ctx) const override; |
| 2490 | |
| 2491 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2492 | /// Print the recipe. |
| 2493 | void print(raw_ostream &O, const Twine &Indent, |
| 2494 | VPSlotTracker &SlotTracker) const override; |
| 2495 | #endif |
| 2496 | |
| 2497 | /// Return the recurrence kind for the in-loop reduction. |
| 2498 | RecurKind getRecurrenceKind() const { return RdxKind; } |
| 2499 | /// Return true if the in-loop reduction is ordered. |
| 2500 | bool isOrdered() const { return IsOrdered; }; |
| 2501 | /// Return true if the in-loop reduction is conditional. |
| 2502 | bool isConditional() const { return IsConditional; }; |
| 2503 | /// The VPValue of the scalar Chain being accumulated. |
| 2504 | VPValue *getChainOp() const { return getOperand(N: 0); } |
| 2505 | /// The VPValue of the vector value to be reduced. |
| 2506 | VPValue *getVecOp() const { return getOperand(N: 1); } |
| 2507 | /// The VPValue of the condition for the block. |
| 2508 | VPValue *getCondOp() const { |
| 2509 | return isConditional() ? getOperand(N: getNumOperands() - 1) : nullptr; |
| 2510 | } |
| 2511 | }; |
| 2512 | |
| 2513 | /// A recipe for forming partial reductions. In the loop, an accumulator and |
| 2514 | /// vector operand are added together and passed to the next iteration as the |
| 2515 | /// next accumulator. After the loop body, the accumulator is reduced to a |
| 2516 | /// scalar value. |
| 2517 | class VPPartialReductionRecipe : public VPReductionRecipe { |
| 2518 | unsigned Opcode; |
| 2519 | |
| 2520 | /// The divisor by which the VF of this recipe's output should be divided |
| 2521 | /// during execution. |
| 2522 | unsigned VFScaleFactor; |
| 2523 | |
| 2524 | public: |
| 2525 | VPPartialReductionRecipe(Instruction *ReductionInst, VPValue *Op0, |
| 2526 | VPValue *Op1, VPValue *Cond, unsigned VFScaleFactor) |
| 2527 | : VPPartialReductionRecipe(ReductionInst->getOpcode(), Op0, Op1, Cond, |
| 2528 | VFScaleFactor, ReductionInst) {} |
| 2529 | VPPartialReductionRecipe(unsigned Opcode, VPValue *Op0, VPValue *Op1, |
| 2530 | VPValue *Cond, unsigned ScaleFactor, |
| 2531 | Instruction *ReductionInst = nullptr) |
| 2532 | : VPReductionRecipe(VPDef::VPPartialReductionSC, RecurKind::Add, |
| 2533 | FastMathFlags(), ReductionInst, |
| 2534 | ArrayRef<VPValue *>({Op0, Op1}), Cond, false, {}), |
| 2535 | Opcode(Opcode), VFScaleFactor(ScaleFactor) { |
| 2536 | [[maybe_unused]] auto *AccumulatorRecipe = |
| 2537 | getChainOp()->getDefiningRecipe(); |
| 2538 | assert((isa<VPReductionPHIRecipe>(AccumulatorRecipe) || |
| 2539 | isa<VPPartialReductionRecipe>(AccumulatorRecipe)) && |
| 2540 | "Unexpected operand order for partial reduction recipe" ); |
| 2541 | } |
| 2542 | ~VPPartialReductionRecipe() override = default; |
| 2543 | |
| 2544 | VPPartialReductionRecipe *clone() override { |
| 2545 | return new VPPartialReductionRecipe(Opcode, getOperand(N: 0), getOperand(N: 1), |
| 2546 | getCondOp(), VFScaleFactor, |
| 2547 | getUnderlyingInstr()); |
| 2548 | } |
| 2549 | |
| 2550 | VP_CLASSOF_IMPL(VPDef::VPPartialReductionSC) |
| 2551 | |
| 2552 | /// Generate the reduction in the loop. |
| 2553 | void execute(VPTransformState &State) override; |
| 2554 | |
| 2555 | /// Return the cost of this VPPartialReductionRecipe. |
| 2556 | InstructionCost computeCost(ElementCount VF, |
| 2557 | VPCostContext &Ctx) const override; |
| 2558 | |
| 2559 | /// Get the binary op's opcode. |
| 2560 | unsigned getOpcode() const { return Opcode; } |
| 2561 | |
| 2562 | /// Get the factor that the VF of this recipe's output should be scaled by. |
| 2563 | unsigned getVFScaleFactor() const { return VFScaleFactor; } |
| 2564 | |
| 2565 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2566 | /// Print the recipe. |
| 2567 | void print(raw_ostream &O, const Twine &Indent, |
| 2568 | VPSlotTracker &SlotTracker) const override; |
| 2569 | #endif |
| 2570 | }; |
| 2571 | |
| 2572 | /// A recipe to represent inloop reduction operations with vector-predication |
| 2573 | /// intrinsics, performing a reduction on a vector operand with the explicit |
| 2574 | /// vector length (EVL) into a scalar value, and adding the result to a chain. |
| 2575 | /// The Operands are {ChainOp, VecOp, EVL, [Condition]}. |
| 2576 | class VPReductionEVLRecipe : public VPReductionRecipe { |
| 2577 | public: |
| 2578 | VPReductionEVLRecipe(VPReductionRecipe &R, VPValue &EVL, VPValue *CondOp, |
| 2579 | DebugLoc DL = {}) |
| 2580 | : VPReductionRecipe( |
| 2581 | VPDef::VPReductionEVLSC, R.getRecurrenceKind(), |
| 2582 | R.getFastMathFlags(), |
| 2583 | cast_or_null<Instruction>(Val: R.getUnderlyingValue()), |
| 2584 | ArrayRef<VPValue *>({R.getChainOp(), R.getVecOp(), &EVL}), CondOp, |
| 2585 | R.isOrdered(), DL) {} |
| 2586 | |
| 2587 | ~VPReductionEVLRecipe() override = default; |
| 2588 | |
| 2589 | VPReductionEVLRecipe *clone() override { |
| 2590 | llvm_unreachable("cloning not implemented yet" ); |
| 2591 | } |
| 2592 | |
| 2593 | VP_CLASSOF_IMPL(VPDef::VPReductionEVLSC) |
| 2594 | |
| 2595 | /// Generate the reduction in the loop |
| 2596 | void execute(VPTransformState &State) override; |
| 2597 | |
| 2598 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2599 | /// Print the recipe. |
| 2600 | void print(raw_ostream &O, const Twine &Indent, |
| 2601 | VPSlotTracker &SlotTracker) const override; |
| 2602 | #endif |
| 2603 | |
| 2604 | /// The VPValue of the explicit vector length. |
| 2605 | VPValue *getEVL() const { return getOperand(N: 2); } |
| 2606 | |
| 2607 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 2608 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 2609 | assert(is_contained(operands(), Op) && |
| 2610 | "Op must be an operand of the recipe" ); |
| 2611 | return Op == getEVL(); |
| 2612 | } |
| 2613 | }; |
| 2614 | |
| 2615 | /// VPReplicateRecipe replicates a given instruction producing multiple scalar |
| 2616 | /// copies of the original scalar type, one per lane, instead of producing a |
| 2617 | /// single copy of widened type for all lanes. If the instruction is known to be |
| 2618 | /// a single scalar, only one copy, per lane zero, will be generated. |
| 2619 | class VPReplicateRecipe : public VPRecipeWithIRFlags, public VPIRMetadata { |
| 2620 | /// Indicator if only a single replica per lane is needed. |
| 2621 | bool IsSingleScalar; |
| 2622 | |
| 2623 | /// Indicator if the replicas are also predicated. |
| 2624 | bool IsPredicated; |
| 2625 | |
| 2626 | public: |
| 2627 | VPReplicateRecipe(Instruction *I, ArrayRef<VPValue *> Operands, |
| 2628 | bool IsSingleScalar, VPValue *Mask = nullptr, |
| 2629 | VPIRMetadata Metadata = {}) |
| 2630 | : VPRecipeWithIRFlags(VPDef::VPReplicateSC, Operands, *I), |
| 2631 | VPIRMetadata(Metadata), IsSingleScalar(IsSingleScalar), |
| 2632 | IsPredicated(Mask) { |
| 2633 | if (Mask) |
| 2634 | addOperand(Operand: Mask); |
| 2635 | } |
| 2636 | |
| 2637 | ~VPReplicateRecipe() override = default; |
| 2638 | |
| 2639 | VPReplicateRecipe *clone() override { |
| 2640 | auto *Copy = |
| 2641 | new VPReplicateRecipe(getUnderlyingInstr(), operands(), IsSingleScalar, |
| 2642 | isPredicated() ? getMask() : nullptr, *this); |
| 2643 | Copy->transferFlags(Other&: *this); |
| 2644 | return Copy; |
| 2645 | } |
| 2646 | |
| 2647 | VP_CLASSOF_IMPL(VPDef::VPReplicateSC) |
| 2648 | |
| 2649 | /// Generate replicas of the desired Ingredient. Replicas will be generated |
| 2650 | /// for all parts and lanes unless a specific part and lane are specified in |
| 2651 | /// the \p State. |
| 2652 | void execute(VPTransformState &State) override; |
| 2653 | |
| 2654 | /// Return the cost of this VPReplicateRecipe. |
| 2655 | InstructionCost computeCost(ElementCount VF, |
| 2656 | VPCostContext &Ctx) const override; |
| 2657 | |
| 2658 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2659 | /// Print the recipe. |
| 2660 | void print(raw_ostream &O, const Twine &Indent, |
| 2661 | VPSlotTracker &SlotTracker) const override; |
| 2662 | #endif |
| 2663 | |
| 2664 | bool isSingleScalar() const { return IsSingleScalar; } |
| 2665 | |
| 2666 | bool isPredicated() const { return IsPredicated; } |
| 2667 | |
| 2668 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 2669 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 2670 | assert(is_contained(operands(), Op) && |
| 2671 | "Op must be an operand of the recipe" ); |
| 2672 | return isSingleScalar(); |
| 2673 | } |
| 2674 | |
| 2675 | /// Returns true if the recipe uses scalars of operand \p Op. |
| 2676 | bool usesScalars(const VPValue *Op) const override { |
| 2677 | assert(is_contained(operands(), Op) && |
| 2678 | "Op must be an operand of the recipe" ); |
| 2679 | return true; |
| 2680 | } |
| 2681 | |
| 2682 | /// Returns true if the recipe is used by a widened recipe via an intervening |
| 2683 | /// VPPredInstPHIRecipe. In this case, the scalar values should also be packed |
| 2684 | /// in a vector. |
| 2685 | bool shouldPack() const; |
| 2686 | |
| 2687 | /// Return the mask of a predicated VPReplicateRecipe. |
| 2688 | VPValue *getMask() { |
| 2689 | assert(isPredicated() && "Trying to get the mask of a unpredicated recipe" ); |
| 2690 | return getOperand(N: getNumOperands() - 1); |
| 2691 | } |
| 2692 | |
| 2693 | unsigned getOpcode() const { return getUnderlyingInstr()->getOpcode(); } |
| 2694 | }; |
| 2695 | |
| 2696 | /// A recipe for generating conditional branches on the bits of a mask. |
| 2697 | class VPBranchOnMaskRecipe : public VPRecipeBase { |
| 2698 | public: |
| 2699 | VPBranchOnMaskRecipe(VPValue *BlockInMask, DebugLoc DL) |
| 2700 | : VPRecipeBase(VPDef::VPBranchOnMaskSC, {BlockInMask}, DL) {} |
| 2701 | |
| 2702 | VPBranchOnMaskRecipe *clone() override { |
| 2703 | return new VPBranchOnMaskRecipe(getOperand(N: 0), getDebugLoc()); |
| 2704 | } |
| 2705 | |
| 2706 | VP_CLASSOF_IMPL(VPDef::VPBranchOnMaskSC) |
| 2707 | |
| 2708 | /// Generate the extraction of the appropriate bit from the block mask and the |
| 2709 | /// conditional branch. |
| 2710 | void execute(VPTransformState &State) override; |
| 2711 | |
| 2712 | /// Return the cost of this VPBranchOnMaskRecipe. |
| 2713 | InstructionCost computeCost(ElementCount VF, |
| 2714 | VPCostContext &Ctx) const override; |
| 2715 | |
| 2716 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2717 | /// Print the recipe. |
| 2718 | void print(raw_ostream &O, const Twine &Indent, |
| 2719 | VPSlotTracker &SlotTracker) const override { |
| 2720 | O << Indent << "BRANCH-ON-MASK " ; |
| 2721 | printOperands(O, SlotTracker); |
| 2722 | } |
| 2723 | #endif |
| 2724 | |
| 2725 | /// Returns true if the recipe uses scalars of operand \p Op. |
| 2726 | bool usesScalars(const VPValue *Op) const override { |
| 2727 | assert(is_contained(operands(), Op) && |
| 2728 | "Op must be an operand of the recipe" ); |
| 2729 | return true; |
| 2730 | } |
| 2731 | }; |
| 2732 | |
| 2733 | /// A recipe to combine multiple recipes into a single 'expression' recipe, |
| 2734 | /// which should be considered a single entity for cost-modeling and transforms. |
| 2735 | /// The recipe needs to be 'decomposed', i.e. replaced by its individual |
| 2736 | /// expression recipes, before execute. The individual expression recipes are |
| 2737 | /// completely disconnected from the def-use graph of other recipes not part of |
| 2738 | /// the expression. Def-use edges between pairs of expression recipes remain |
| 2739 | /// intact, whereas every edge between an expression recipe and a recipe outside |
| 2740 | /// the expression is elevated to connect the non-expression recipe with the |
| 2741 | /// VPExpressionRecipe itself. |
| 2742 | class VPExpressionRecipe : public VPSingleDefRecipe { |
| 2743 | /// Recipes included in this VPExpressionRecipe. |
| 2744 | SmallVector<VPSingleDefRecipe *> ExpressionRecipes; |
| 2745 | |
| 2746 | /// Temporary VPValues used for external operands of the expression, i.e. |
| 2747 | /// operands not defined by recipes in the expression. |
| 2748 | SmallVector<VPValue *> LiveInPlaceholders; |
| 2749 | |
| 2750 | enum class ExpressionTypes { |
| 2751 | /// Represents an inloop extended reduction operation, performing a |
| 2752 | /// reduction on an extended vector operand into a scalar value, and adding |
| 2753 | /// the result to a chain. |
| 2754 | ExtendedReduction, |
| 2755 | /// Represent an inloop multiply-accumulate reduction, multiplying the |
| 2756 | /// extended vector operands, performing a reduction.add on the result, and |
| 2757 | /// adding the scalar result to a chain. |
| 2758 | ExtMulAccReduction, |
| 2759 | /// Represent an inloop multiply-accumulate reduction, multiplying the |
| 2760 | /// vector operands, performing a reduction.add on the result, and adding |
| 2761 | /// the scalar result to a chain. |
| 2762 | MulAccReduction, |
| 2763 | }; |
| 2764 | |
| 2765 | /// Type of the expression. |
| 2766 | ExpressionTypes ExpressionType; |
| 2767 | |
| 2768 | /// Construct a new VPExpressionRecipe by internalizing recipes in \p |
| 2769 | /// ExpressionRecipes. External operands (i.e. not defined by another recipe |
| 2770 | /// in the expression) are replaced by temporary VPValues and the original |
| 2771 | /// operands are transferred to the VPExpressionRecipe itself. Clone recipes |
| 2772 | /// as needed (excluding last) to ensure they are only used by other recipes |
| 2773 | /// in the expression. |
| 2774 | VPExpressionRecipe(ExpressionTypes ExpressionType, |
| 2775 | ArrayRef<VPSingleDefRecipe *> ExpressionRecipes); |
| 2776 | |
| 2777 | public: |
| 2778 | VPExpressionRecipe(VPWidenCastRecipe *Ext, VPReductionRecipe *Red) |
| 2779 | : VPExpressionRecipe(ExpressionTypes::ExtendedReduction, {Ext, Red}) {} |
| 2780 | VPExpressionRecipe(VPWidenRecipe *Mul, VPReductionRecipe *Red) |
| 2781 | : VPExpressionRecipe(ExpressionTypes::MulAccReduction, {Mul, Red}) {} |
| 2782 | VPExpressionRecipe(VPWidenCastRecipe *Ext0, VPWidenCastRecipe *Ext1, |
| 2783 | VPWidenRecipe *Mul, VPReductionRecipe *Red) |
| 2784 | : VPExpressionRecipe(ExpressionTypes::ExtMulAccReduction, |
| 2785 | {Ext0, Ext1, Mul, Red}) {} |
| 2786 | |
| 2787 | ~VPExpressionRecipe() override { |
| 2788 | for (auto *R : reverse(C&: ExpressionRecipes)) |
| 2789 | delete R; |
| 2790 | for (VPValue *T : LiveInPlaceholders) |
| 2791 | delete T; |
| 2792 | } |
| 2793 | |
| 2794 | VP_CLASSOF_IMPL(VPDef::VPExpressionSC) |
| 2795 | |
| 2796 | VPExpressionRecipe *clone() override { |
| 2797 | assert(!ExpressionRecipes.empty() && "empty expressions should be removed" ); |
| 2798 | SmallVector<VPSingleDefRecipe *> NewExpressiondRecipes; |
| 2799 | for (auto *R : ExpressionRecipes) |
| 2800 | NewExpressiondRecipes.push_back(Elt: R->clone()); |
| 2801 | for (auto *New : NewExpressiondRecipes) { |
| 2802 | for (const auto &[Idx, Old] : enumerate(First&: ExpressionRecipes)) |
| 2803 | New->replaceUsesOfWith(From: Old, To: NewExpressiondRecipes[Idx]); |
| 2804 | // Update placeholder operands in the cloned recipe to use the external |
| 2805 | // operands, to be internalized when the cloned expression is constructed. |
| 2806 | for (const auto &[Placeholder, OutsideOp] : |
| 2807 | zip(t&: LiveInPlaceholders, u: operands())) |
| 2808 | New->replaceUsesOfWith(From: Placeholder, To: OutsideOp); |
| 2809 | } |
| 2810 | return new VPExpressionRecipe(ExpressionType, NewExpressiondRecipes); |
| 2811 | } |
| 2812 | |
| 2813 | /// Return the VPValue to use to infer the result type of the recipe. |
| 2814 | VPValue *getOperandOfResultType() const { |
| 2815 | unsigned OpIdx = |
| 2816 | cast<VPReductionRecipe>(Val: ExpressionRecipes.back())->isConditional() ? 2 |
| 2817 | : 1; |
| 2818 | return getOperand(N: getNumOperands() - OpIdx); |
| 2819 | } |
| 2820 | |
| 2821 | /// Insert the recipes of the expression back into the VPlan, directly before |
| 2822 | /// the current recipe. Leaves the expression recipe empty, which must be |
| 2823 | /// removed before codegen. |
| 2824 | void decompose(); |
| 2825 | |
| 2826 | /// Method for generating code, must not be called as this recipe is abstract. |
| 2827 | void execute(VPTransformState &State) override { |
| 2828 | llvm_unreachable("recipe must be removed before execute" ); |
| 2829 | } |
| 2830 | |
| 2831 | InstructionCost computeCost(ElementCount VF, |
| 2832 | VPCostContext &Ctx) const override; |
| 2833 | |
| 2834 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2835 | /// Print the recipe. |
| 2836 | void print(raw_ostream &O, const Twine &Indent, |
| 2837 | VPSlotTracker &SlotTracker) const override; |
| 2838 | #endif |
| 2839 | |
| 2840 | /// Returns true if this expression contains recipes that may read from or |
| 2841 | /// write to memory. |
| 2842 | bool mayReadOrWriteMemory() const; |
| 2843 | |
| 2844 | /// Returns true if this expression contains recipes that may have side |
| 2845 | /// effects. |
| 2846 | bool mayHaveSideEffects() const; |
| 2847 | }; |
| 2848 | |
| 2849 | /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when |
| 2850 | /// control converges back from a Branch-on-Mask. The phi nodes are needed in |
| 2851 | /// order to merge values that are set under such a branch and feed their uses. |
| 2852 | /// The phi nodes can be scalar or vector depending on the users of the value. |
| 2853 | /// This recipe works in concert with VPBranchOnMaskRecipe. |
| 2854 | class VPPredInstPHIRecipe : public VPSingleDefRecipe { |
| 2855 | public: |
| 2856 | /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi |
| 2857 | /// nodes after merging back from a Branch-on-Mask. |
| 2858 | VPPredInstPHIRecipe(VPValue *PredV, DebugLoc DL) |
| 2859 | : VPSingleDefRecipe(VPDef::VPPredInstPHISC, PredV, DL) {} |
| 2860 | ~VPPredInstPHIRecipe() override = default; |
| 2861 | |
| 2862 | VPPredInstPHIRecipe *clone() override { |
| 2863 | return new VPPredInstPHIRecipe(getOperand(N: 0), getDebugLoc()); |
| 2864 | } |
| 2865 | |
| 2866 | VP_CLASSOF_IMPL(VPDef::VPPredInstPHISC) |
| 2867 | |
| 2868 | /// Generates phi nodes for live-outs (from a replicate region) as needed to |
| 2869 | /// retain SSA form. |
| 2870 | void execute(VPTransformState &State) override; |
| 2871 | |
| 2872 | /// Return the cost of this VPPredInstPHIRecipe. |
| 2873 | InstructionCost computeCost(ElementCount VF, |
| 2874 | VPCostContext &Ctx) const override { |
| 2875 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 2876 | return 0; |
| 2877 | } |
| 2878 | |
| 2879 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2880 | /// Print the recipe. |
| 2881 | void print(raw_ostream &O, const Twine &Indent, |
| 2882 | VPSlotTracker &SlotTracker) const override; |
| 2883 | #endif |
| 2884 | |
| 2885 | /// Returns true if the recipe uses scalars of operand \p Op. |
| 2886 | bool usesScalars(const VPValue *Op) const override { |
| 2887 | assert(is_contained(operands(), Op) && |
| 2888 | "Op must be an operand of the recipe" ); |
| 2889 | return true; |
| 2890 | } |
| 2891 | }; |
| 2892 | |
| 2893 | /// A common base class for widening memory operations. An optional mask can be |
| 2894 | /// provided as the last operand. |
| 2895 | class VPWidenMemoryRecipe : public VPRecipeBase, public VPIRMetadata { |
| 2896 | protected: |
| 2897 | Instruction &Ingredient; |
| 2898 | |
| 2899 | /// Whether the accessed addresses are consecutive. |
| 2900 | bool Consecutive; |
| 2901 | |
| 2902 | /// Whether the consecutive accessed addresses are in reverse order. |
| 2903 | bool Reverse; |
| 2904 | |
| 2905 | /// Whether the memory access is masked. |
| 2906 | bool IsMasked = false; |
| 2907 | |
| 2908 | void setMask(VPValue *Mask) { |
| 2909 | assert(!IsMasked && "cannot re-set mask" ); |
| 2910 | if (!Mask) |
| 2911 | return; |
| 2912 | addOperand(Operand: Mask); |
| 2913 | IsMasked = true; |
| 2914 | } |
| 2915 | |
| 2916 | VPWidenMemoryRecipe(const char unsigned SC, Instruction &I, |
| 2917 | std::initializer_list<VPValue *> Operands, |
| 2918 | bool Consecutive, bool Reverse, |
| 2919 | const VPIRMetadata &Metadata, DebugLoc DL) |
| 2920 | : VPRecipeBase(SC, Operands, DL), VPIRMetadata(Metadata), Ingredient(I), |
| 2921 | Consecutive(Consecutive), Reverse(Reverse) { |
| 2922 | assert((Consecutive || !Reverse) && "Reverse implies consecutive" ); |
| 2923 | } |
| 2924 | |
| 2925 | public: |
| 2926 | VPWidenMemoryRecipe *clone() override { |
| 2927 | llvm_unreachable("cloning not supported" ); |
| 2928 | } |
| 2929 | |
| 2930 | static inline bool classof(const VPRecipeBase *R) { |
| 2931 | return R->getVPDefID() == VPRecipeBase::VPWidenLoadSC || |
| 2932 | R->getVPDefID() == VPRecipeBase::VPWidenStoreSC || |
| 2933 | R->getVPDefID() == VPRecipeBase::VPWidenLoadEVLSC || |
| 2934 | R->getVPDefID() == VPRecipeBase::VPWidenStoreEVLSC; |
| 2935 | } |
| 2936 | |
| 2937 | static inline bool classof(const VPUser *U) { |
| 2938 | auto *R = dyn_cast<VPRecipeBase>(Val: U); |
| 2939 | return R && classof(R); |
| 2940 | } |
| 2941 | |
| 2942 | /// Return whether the loaded-from / stored-to addresses are consecutive. |
| 2943 | bool isConsecutive() const { return Consecutive; } |
| 2944 | |
| 2945 | /// Return whether the consecutive loaded/stored addresses are in reverse |
| 2946 | /// order. |
| 2947 | bool isReverse() const { return Reverse; } |
| 2948 | |
| 2949 | /// Return the address accessed by this recipe. |
| 2950 | VPValue *getAddr() const { return getOperand(N: 0); } |
| 2951 | |
| 2952 | /// Returns true if the recipe is masked. |
| 2953 | bool isMasked() const { return IsMasked; } |
| 2954 | |
| 2955 | /// Return the mask used by this recipe. Note that a full mask is represented |
| 2956 | /// by a nullptr. |
| 2957 | VPValue *getMask() const { |
| 2958 | // Mask is optional and therefore the last operand. |
| 2959 | return isMasked() ? getOperand(N: getNumOperands() - 1) : nullptr; |
| 2960 | } |
| 2961 | |
| 2962 | /// Generate the wide load/store. |
| 2963 | void execute(VPTransformState &State) override { |
| 2964 | llvm_unreachable("VPWidenMemoryRecipe should not be instantiated." ); |
| 2965 | } |
| 2966 | |
| 2967 | /// Return the cost of this VPWidenMemoryRecipe. |
| 2968 | InstructionCost computeCost(ElementCount VF, |
| 2969 | VPCostContext &Ctx) const override; |
| 2970 | |
| 2971 | Instruction &getIngredient() const { return Ingredient; } |
| 2972 | }; |
| 2973 | |
| 2974 | /// A recipe for widening load operations, using the address to load from and an |
| 2975 | /// optional mask. |
| 2976 | struct VPWidenLoadRecipe final : public VPWidenMemoryRecipe, public VPValue { |
| 2977 | VPWidenLoadRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask, |
| 2978 | bool Consecutive, bool Reverse, |
| 2979 | const VPIRMetadata &Metadata, DebugLoc DL) |
| 2980 | : VPWidenMemoryRecipe(VPDef::VPWidenLoadSC, Load, {Addr}, Consecutive, |
| 2981 | Reverse, Metadata, DL), |
| 2982 | VPValue(this, &Load) { |
| 2983 | setMask(Mask); |
| 2984 | } |
| 2985 | |
| 2986 | VPWidenLoadRecipe *clone() override { |
| 2987 | return new VPWidenLoadRecipe(cast<LoadInst>(Val&: Ingredient), getAddr(), |
| 2988 | getMask(), Consecutive, Reverse, *this, |
| 2989 | getDebugLoc()); |
| 2990 | } |
| 2991 | |
| 2992 | VP_CLASSOF_IMPL(VPDef::VPWidenLoadSC); |
| 2993 | |
| 2994 | /// Generate a wide load or gather. |
| 2995 | void execute(VPTransformState &State) override; |
| 2996 | |
| 2997 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 2998 | /// Print the recipe. |
| 2999 | void print(raw_ostream &O, const Twine &Indent, |
| 3000 | VPSlotTracker &SlotTracker) const override; |
| 3001 | #endif |
| 3002 | |
| 3003 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3004 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 3005 | assert(is_contained(operands(), Op) && |
| 3006 | "Op must be an operand of the recipe" ); |
| 3007 | // Widened, consecutive loads operations only demand the first lane of |
| 3008 | // their address. |
| 3009 | return Op == getAddr() && isConsecutive(); |
| 3010 | } |
| 3011 | }; |
| 3012 | |
| 3013 | /// A recipe for widening load operations with vector-predication intrinsics, |
| 3014 | /// using the address to load from, the explicit vector length and an optional |
| 3015 | /// mask. |
| 3016 | struct VPWidenLoadEVLRecipe final : public VPWidenMemoryRecipe, public VPValue { |
| 3017 | VPWidenLoadEVLRecipe(VPWidenLoadRecipe &L, VPValue &EVL, VPValue *Mask) |
| 3018 | : VPWidenMemoryRecipe(VPDef::VPWidenLoadEVLSC, L.getIngredient(), |
| 3019 | {L.getAddr(), &EVL}, L.isConsecutive(), |
| 3020 | L.isReverse(), L, L.getDebugLoc()), |
| 3021 | VPValue(this, &getIngredient()) { |
| 3022 | setMask(Mask); |
| 3023 | } |
| 3024 | |
| 3025 | VP_CLASSOF_IMPL(VPDef::VPWidenLoadEVLSC) |
| 3026 | |
| 3027 | /// Return the EVL operand. |
| 3028 | VPValue *getEVL() const { return getOperand(N: 1); } |
| 3029 | |
| 3030 | /// Generate the wide load or gather. |
| 3031 | void execute(VPTransformState &State) override; |
| 3032 | |
| 3033 | /// Return the cost of this VPWidenLoadEVLRecipe. |
| 3034 | InstructionCost computeCost(ElementCount VF, |
| 3035 | VPCostContext &Ctx) const override; |
| 3036 | |
| 3037 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3038 | /// Print the recipe. |
| 3039 | void print(raw_ostream &O, const Twine &Indent, |
| 3040 | VPSlotTracker &SlotTracker) const override; |
| 3041 | #endif |
| 3042 | |
| 3043 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3044 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 3045 | assert(is_contained(operands(), Op) && |
| 3046 | "Op must be an operand of the recipe" ); |
| 3047 | // Widened loads only demand the first lane of EVL and consecutive loads |
| 3048 | // only demand the first lane of their address. |
| 3049 | return Op == getEVL() || (Op == getAddr() && isConsecutive()); |
| 3050 | } |
| 3051 | }; |
| 3052 | |
| 3053 | /// A recipe for widening store operations, using the stored value, the address |
| 3054 | /// to store to and an optional mask. |
| 3055 | struct VPWidenStoreRecipe final : public VPWidenMemoryRecipe { |
| 3056 | VPWidenStoreRecipe(StoreInst &Store, VPValue *Addr, VPValue *StoredVal, |
| 3057 | VPValue *Mask, bool Consecutive, bool Reverse, |
| 3058 | const VPIRMetadata &Metadata, DebugLoc DL) |
| 3059 | : VPWidenMemoryRecipe(VPDef::VPWidenStoreSC, Store, {Addr, StoredVal}, |
| 3060 | Consecutive, Reverse, Metadata, DL) { |
| 3061 | setMask(Mask); |
| 3062 | } |
| 3063 | |
| 3064 | VPWidenStoreRecipe *clone() override { |
| 3065 | return new VPWidenStoreRecipe(cast<StoreInst>(Val&: Ingredient), getAddr(), |
| 3066 | getStoredValue(), getMask(), Consecutive, |
| 3067 | Reverse, *this, getDebugLoc()); |
| 3068 | } |
| 3069 | |
| 3070 | VP_CLASSOF_IMPL(VPDef::VPWidenStoreSC); |
| 3071 | |
| 3072 | /// Return the value stored by this recipe. |
| 3073 | VPValue *getStoredValue() const { return getOperand(N: 1); } |
| 3074 | |
| 3075 | /// Generate a wide store or scatter. |
| 3076 | void execute(VPTransformState &State) override; |
| 3077 | |
| 3078 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3079 | /// Print the recipe. |
| 3080 | void print(raw_ostream &O, const Twine &Indent, |
| 3081 | VPSlotTracker &SlotTracker) const override; |
| 3082 | #endif |
| 3083 | |
| 3084 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3085 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 3086 | assert(is_contained(operands(), Op) && |
| 3087 | "Op must be an operand of the recipe" ); |
| 3088 | // Widened, consecutive stores only demand the first lane of their address, |
| 3089 | // unless the same operand is also stored. |
| 3090 | return Op == getAddr() && isConsecutive() && Op != getStoredValue(); |
| 3091 | } |
| 3092 | }; |
| 3093 | |
| 3094 | /// A recipe for widening store operations with vector-predication intrinsics, |
| 3095 | /// using the value to store, the address to store to, the explicit vector |
| 3096 | /// length and an optional mask. |
| 3097 | struct VPWidenStoreEVLRecipe final : public VPWidenMemoryRecipe { |
| 3098 | VPWidenStoreEVLRecipe(VPWidenStoreRecipe &S, VPValue &EVL, VPValue *Mask) |
| 3099 | : VPWidenMemoryRecipe(VPDef::VPWidenStoreEVLSC, S.getIngredient(), |
| 3100 | {S.getAddr(), S.getStoredValue(), &EVL}, |
| 3101 | S.isConsecutive(), S.isReverse(), S, |
| 3102 | S.getDebugLoc()) { |
| 3103 | setMask(Mask); |
| 3104 | } |
| 3105 | |
| 3106 | VP_CLASSOF_IMPL(VPDef::VPWidenStoreEVLSC) |
| 3107 | |
| 3108 | /// Return the address accessed by this recipe. |
| 3109 | VPValue *getStoredValue() const { return getOperand(N: 1); } |
| 3110 | |
| 3111 | /// Return the EVL operand. |
| 3112 | VPValue *getEVL() const { return getOperand(N: 2); } |
| 3113 | |
| 3114 | /// Generate the wide store or scatter. |
| 3115 | void execute(VPTransformState &State) override; |
| 3116 | |
| 3117 | /// Return the cost of this VPWidenStoreEVLRecipe. |
| 3118 | InstructionCost computeCost(ElementCount VF, |
| 3119 | VPCostContext &Ctx) const override; |
| 3120 | |
| 3121 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3122 | /// Print the recipe. |
| 3123 | void print(raw_ostream &O, const Twine &Indent, |
| 3124 | VPSlotTracker &SlotTracker) const override; |
| 3125 | #endif |
| 3126 | |
| 3127 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3128 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 3129 | assert(is_contained(operands(), Op) && |
| 3130 | "Op must be an operand of the recipe" ); |
| 3131 | if (Op == getEVL()) { |
| 3132 | assert(getStoredValue() != Op && "unexpected store of EVL" ); |
| 3133 | return true; |
| 3134 | } |
| 3135 | // Widened, consecutive memory operations only demand the first lane of |
| 3136 | // their address, unless the same operand is also stored. That latter can |
| 3137 | // happen with opaque pointers. |
| 3138 | return Op == getAddr() && isConsecutive() && Op != getStoredValue(); |
| 3139 | } |
| 3140 | }; |
| 3141 | |
| 3142 | /// Recipe to expand a SCEV expression. |
| 3143 | class VPExpandSCEVRecipe : public VPSingleDefRecipe { |
| 3144 | const SCEV *Expr; |
| 3145 | ScalarEvolution &SE; |
| 3146 | |
| 3147 | public: |
| 3148 | VPExpandSCEVRecipe(const SCEV *Expr, ScalarEvolution &SE) |
| 3149 | : VPSingleDefRecipe(VPDef::VPExpandSCEVSC, {}), Expr(Expr), SE(SE) {} |
| 3150 | |
| 3151 | ~VPExpandSCEVRecipe() override = default; |
| 3152 | |
| 3153 | VPExpandSCEVRecipe *clone() override { |
| 3154 | return new VPExpandSCEVRecipe(Expr, SE); |
| 3155 | } |
| 3156 | |
| 3157 | VP_CLASSOF_IMPL(VPDef::VPExpandSCEVSC) |
| 3158 | |
| 3159 | /// Generate a canonical vector induction variable of the vector loop, with |
| 3160 | void execute(VPTransformState &State) override; |
| 3161 | |
| 3162 | /// Return the cost of this VPExpandSCEVRecipe. |
| 3163 | InstructionCost computeCost(ElementCount VF, |
| 3164 | VPCostContext &Ctx) const override { |
| 3165 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 3166 | return 0; |
| 3167 | } |
| 3168 | |
| 3169 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3170 | /// Print the recipe. |
| 3171 | void print(raw_ostream &O, const Twine &Indent, |
| 3172 | VPSlotTracker &SlotTracker) const override; |
| 3173 | #endif |
| 3174 | |
| 3175 | const SCEV *getSCEV() const { return Expr; } |
| 3176 | }; |
| 3177 | |
| 3178 | /// Canonical scalar induction phi of the vector loop. Starting at the specified |
| 3179 | /// start value (either 0 or the resume value when vectorizing the epilogue |
| 3180 | /// loop). VPWidenCanonicalIVRecipe represents the vector version of the |
| 3181 | /// canonical induction variable. |
| 3182 | class VPCanonicalIVPHIRecipe : public VPHeaderPHIRecipe { |
| 3183 | public: |
| 3184 | VPCanonicalIVPHIRecipe(VPValue *StartV, DebugLoc DL) |
| 3185 | : VPHeaderPHIRecipe(VPDef::VPCanonicalIVPHISC, nullptr, StartV, DL) {} |
| 3186 | |
| 3187 | ~VPCanonicalIVPHIRecipe() override = default; |
| 3188 | |
| 3189 | VPCanonicalIVPHIRecipe *clone() override { |
| 3190 | auto *R = new VPCanonicalIVPHIRecipe(getOperand(N: 0), getDebugLoc()); |
| 3191 | R->addOperand(Operand: getBackedgeValue()); |
| 3192 | return R; |
| 3193 | } |
| 3194 | |
| 3195 | VP_CLASSOF_IMPL(VPDef::VPCanonicalIVPHISC) |
| 3196 | |
| 3197 | void execute(VPTransformState &State) override { |
| 3198 | llvm_unreachable("cannot execute this recipe, should be replaced by a " |
| 3199 | "scalar phi recipe" ); |
| 3200 | } |
| 3201 | |
| 3202 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3203 | /// Print the recipe. |
| 3204 | void print(raw_ostream &O, const Twine &Indent, |
| 3205 | VPSlotTracker &SlotTracker) const override; |
| 3206 | #endif |
| 3207 | |
| 3208 | /// Returns the scalar type of the induction. |
| 3209 | Type *getScalarType() const { |
| 3210 | return getStartValue()->getLiveInIRValue()->getType(); |
| 3211 | } |
| 3212 | |
| 3213 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3214 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 3215 | assert(is_contained(operands(), Op) && |
| 3216 | "Op must be an operand of the recipe" ); |
| 3217 | return true; |
| 3218 | } |
| 3219 | |
| 3220 | /// Returns true if the recipe only uses the first part of operand \p Op. |
| 3221 | bool onlyFirstPartUsed(const VPValue *Op) const override { |
| 3222 | assert(is_contained(operands(), Op) && |
| 3223 | "Op must be an operand of the recipe" ); |
| 3224 | return true; |
| 3225 | } |
| 3226 | |
| 3227 | /// Return the cost of this VPCanonicalIVPHIRecipe. |
| 3228 | InstructionCost computeCost(ElementCount VF, |
| 3229 | VPCostContext &Ctx) const override { |
| 3230 | // For now, match the behavior of the legacy cost model. |
| 3231 | return 0; |
| 3232 | } |
| 3233 | }; |
| 3234 | |
| 3235 | /// A recipe for generating the active lane mask for the vector loop that is |
| 3236 | /// used to predicate the vector operations. |
| 3237 | /// TODO: It would be good to use the existing VPWidenPHIRecipe instead and |
| 3238 | /// remove VPActiveLaneMaskPHIRecipe. |
| 3239 | class VPActiveLaneMaskPHIRecipe : public VPHeaderPHIRecipe { |
| 3240 | public: |
| 3241 | VPActiveLaneMaskPHIRecipe(VPValue *StartMask, DebugLoc DL) |
| 3242 | : VPHeaderPHIRecipe(VPDef::VPActiveLaneMaskPHISC, nullptr, StartMask, |
| 3243 | DL) {} |
| 3244 | |
| 3245 | ~VPActiveLaneMaskPHIRecipe() override = default; |
| 3246 | |
| 3247 | VPActiveLaneMaskPHIRecipe *clone() override { |
| 3248 | auto *R = new VPActiveLaneMaskPHIRecipe(getOperand(N: 0), getDebugLoc()); |
| 3249 | if (getNumOperands() == 2) |
| 3250 | R->addOperand(Operand: getOperand(N: 1)); |
| 3251 | return R; |
| 3252 | } |
| 3253 | |
| 3254 | VP_CLASSOF_IMPL(VPDef::VPActiveLaneMaskPHISC) |
| 3255 | |
| 3256 | /// Generate the active lane mask phi of the vector loop. |
| 3257 | void execute(VPTransformState &State) override; |
| 3258 | |
| 3259 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3260 | /// Print the recipe. |
| 3261 | void print(raw_ostream &O, const Twine &Indent, |
| 3262 | VPSlotTracker &SlotTracker) const override; |
| 3263 | #endif |
| 3264 | }; |
| 3265 | |
| 3266 | /// A recipe for generating the phi node for the current index of elements, |
| 3267 | /// adjusted in accordance with EVL value. It starts at the start value of the |
| 3268 | /// canonical induction and gets incremented by EVL in each iteration of the |
| 3269 | /// vector loop. |
| 3270 | class VPEVLBasedIVPHIRecipe : public VPHeaderPHIRecipe { |
| 3271 | public: |
| 3272 | VPEVLBasedIVPHIRecipe(VPValue *StartIV, DebugLoc DL) |
| 3273 | : VPHeaderPHIRecipe(VPDef::VPEVLBasedIVPHISC, nullptr, StartIV, DL) {} |
| 3274 | |
| 3275 | ~VPEVLBasedIVPHIRecipe() override = default; |
| 3276 | |
| 3277 | VPEVLBasedIVPHIRecipe *clone() override { |
| 3278 | llvm_unreachable("cloning not implemented yet" ); |
| 3279 | } |
| 3280 | |
| 3281 | VP_CLASSOF_IMPL(VPDef::VPEVLBasedIVPHISC) |
| 3282 | |
| 3283 | void execute(VPTransformState &State) override { |
| 3284 | llvm_unreachable("cannot execute this recipe, should be replaced by a " |
| 3285 | "scalar phi recipe" ); |
| 3286 | } |
| 3287 | |
| 3288 | /// Return the cost of this VPEVLBasedIVPHIRecipe. |
| 3289 | InstructionCost computeCost(ElementCount VF, |
| 3290 | VPCostContext &Ctx) const override { |
| 3291 | // For now, match the behavior of the legacy cost model. |
| 3292 | return 0; |
| 3293 | } |
| 3294 | |
| 3295 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3296 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 3297 | assert(is_contained(operands(), Op) && |
| 3298 | "Op must be an operand of the recipe" ); |
| 3299 | return true; |
| 3300 | } |
| 3301 | |
| 3302 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3303 | /// Print the recipe. |
| 3304 | void print(raw_ostream &O, const Twine &Indent, |
| 3305 | VPSlotTracker &SlotTracker) const override; |
| 3306 | #endif |
| 3307 | }; |
| 3308 | |
| 3309 | /// A Recipe for widening the canonical induction variable of the vector loop. |
| 3310 | class VPWidenCanonicalIVRecipe : public VPSingleDefRecipe, |
| 3311 | public VPUnrollPartAccessor<1> { |
| 3312 | public: |
| 3313 | VPWidenCanonicalIVRecipe(VPCanonicalIVPHIRecipe *CanonicalIV) |
| 3314 | : VPSingleDefRecipe(VPDef::VPWidenCanonicalIVSC, {CanonicalIV}) {} |
| 3315 | |
| 3316 | ~VPWidenCanonicalIVRecipe() override = default; |
| 3317 | |
| 3318 | VPWidenCanonicalIVRecipe *clone() override { |
| 3319 | return new VPWidenCanonicalIVRecipe( |
| 3320 | cast<VPCanonicalIVPHIRecipe>(Val: getOperand(N: 0))); |
| 3321 | } |
| 3322 | |
| 3323 | VP_CLASSOF_IMPL(VPDef::VPWidenCanonicalIVSC) |
| 3324 | |
| 3325 | /// Generate a canonical vector induction variable of the vector loop, with |
| 3326 | /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and |
| 3327 | /// step = <VF*UF, VF*UF, ..., VF*UF>. |
| 3328 | void execute(VPTransformState &State) override; |
| 3329 | |
| 3330 | /// Return the cost of this VPWidenCanonicalIVPHIRecipe. |
| 3331 | InstructionCost computeCost(ElementCount VF, |
| 3332 | VPCostContext &Ctx) const override { |
| 3333 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 3334 | return 0; |
| 3335 | } |
| 3336 | |
| 3337 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3338 | /// Print the recipe. |
| 3339 | void print(raw_ostream &O, const Twine &Indent, |
| 3340 | VPSlotTracker &SlotTracker) const override; |
| 3341 | #endif |
| 3342 | }; |
| 3343 | |
| 3344 | /// A recipe for converting the input value \p IV value to the corresponding |
| 3345 | /// value of an IV with different start and step values, using Start + IV * |
| 3346 | /// Step. |
| 3347 | class VPDerivedIVRecipe : public VPSingleDefRecipe { |
| 3348 | /// Kind of the induction. |
| 3349 | const InductionDescriptor::InductionKind Kind; |
| 3350 | /// If not nullptr, the floating point induction binary operator. Must be set |
| 3351 | /// for floating point inductions. |
| 3352 | const FPMathOperator *FPBinOp; |
| 3353 | |
| 3354 | /// Name to use for the generated IR instruction for the derived IV. |
| 3355 | std::string Name; |
| 3356 | |
| 3357 | public: |
| 3358 | VPDerivedIVRecipe(const InductionDescriptor &IndDesc, VPValue *Start, |
| 3359 | VPCanonicalIVPHIRecipe *CanonicalIV, VPValue *Step, |
| 3360 | const Twine &Name = "" ) |
| 3361 | : VPDerivedIVRecipe( |
| 3362 | IndDesc.getKind(), |
| 3363 | dyn_cast_or_null<FPMathOperator>(Val: IndDesc.getInductionBinOp()), |
| 3364 | Start, CanonicalIV, Step, Name) {} |
| 3365 | |
| 3366 | VPDerivedIVRecipe(InductionDescriptor::InductionKind Kind, |
| 3367 | const FPMathOperator *FPBinOp, VPValue *Start, VPValue *IV, |
| 3368 | VPValue *Step, const Twine &Name = "" ) |
| 3369 | : VPSingleDefRecipe(VPDef::VPDerivedIVSC, {Start, IV, Step}), Kind(Kind), |
| 3370 | FPBinOp(FPBinOp), Name(Name.str()) {} |
| 3371 | |
| 3372 | ~VPDerivedIVRecipe() override = default; |
| 3373 | |
| 3374 | VPDerivedIVRecipe *clone() override { |
| 3375 | return new VPDerivedIVRecipe(Kind, FPBinOp, getStartValue(), getOperand(N: 1), |
| 3376 | getStepValue()); |
| 3377 | } |
| 3378 | |
| 3379 | VP_CLASSOF_IMPL(VPDef::VPDerivedIVSC) |
| 3380 | |
| 3381 | /// Generate the transformed value of the induction at offset StartValue (1. |
| 3382 | /// operand) + IV (2. operand) * StepValue (3, operand). |
| 3383 | void execute(VPTransformState &State) override; |
| 3384 | |
| 3385 | /// Return the cost of this VPDerivedIVRecipe. |
| 3386 | InstructionCost computeCost(ElementCount VF, |
| 3387 | VPCostContext &Ctx) const override { |
| 3388 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 3389 | return 0; |
| 3390 | } |
| 3391 | |
| 3392 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3393 | /// Print the recipe. |
| 3394 | void print(raw_ostream &O, const Twine &Indent, |
| 3395 | VPSlotTracker &SlotTracker) const override; |
| 3396 | #endif |
| 3397 | |
| 3398 | Type *getScalarType() const { |
| 3399 | return getStartValue()->getLiveInIRValue()->getType(); |
| 3400 | } |
| 3401 | |
| 3402 | VPValue *getStartValue() const { return getOperand(N: 0); } |
| 3403 | VPValue *getStepValue() const { return getOperand(N: 2); } |
| 3404 | |
| 3405 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3406 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 3407 | assert(is_contained(operands(), Op) && |
| 3408 | "Op must be an operand of the recipe" ); |
| 3409 | return true; |
| 3410 | } |
| 3411 | }; |
| 3412 | |
| 3413 | /// A recipe for handling phi nodes of integer and floating-point inductions, |
| 3414 | /// producing their scalar values. |
| 3415 | class VPScalarIVStepsRecipe : public VPRecipeWithIRFlags, |
| 3416 | public VPUnrollPartAccessor<3> { |
| 3417 | Instruction::BinaryOps InductionOpcode; |
| 3418 | |
| 3419 | public: |
| 3420 | VPScalarIVStepsRecipe(VPValue *IV, VPValue *Step, VPValue *VF, |
| 3421 | Instruction::BinaryOps Opcode, FastMathFlags FMFs, |
| 3422 | DebugLoc DL) |
| 3423 | : VPRecipeWithIRFlags(VPDef::VPScalarIVStepsSC, |
| 3424 | ArrayRef<VPValue *>({IV, Step, VF}), FMFs, DL), |
| 3425 | InductionOpcode(Opcode) {} |
| 3426 | |
| 3427 | VPScalarIVStepsRecipe(const InductionDescriptor &IndDesc, VPValue *IV, |
| 3428 | VPValue *Step, VPValue *VF, DebugLoc DL = {}) |
| 3429 | : VPScalarIVStepsRecipe( |
| 3430 | IV, Step, VF, IndDesc.getInductionOpcode(), |
| 3431 | dyn_cast_or_null<FPMathOperator>(Val: IndDesc.getInductionBinOp()) |
| 3432 | ? IndDesc.getInductionBinOp()->getFastMathFlags() |
| 3433 | : FastMathFlags(), |
| 3434 | DL) {} |
| 3435 | |
| 3436 | ~VPScalarIVStepsRecipe() override = default; |
| 3437 | |
| 3438 | VPScalarIVStepsRecipe *clone() override { |
| 3439 | return new VPScalarIVStepsRecipe( |
| 3440 | getOperand(N: 0), getOperand(N: 1), getOperand(N: 2), InductionOpcode, |
| 3441 | hasFastMathFlags() ? getFastMathFlags() : FastMathFlags(), |
| 3442 | getDebugLoc()); |
| 3443 | } |
| 3444 | |
| 3445 | /// Return true if this VPScalarIVStepsRecipe corresponds to part 0. Note that |
| 3446 | /// this is only accurate after the VPlan has been unrolled. |
| 3447 | bool isPart0() { return getUnrollPart(U&: *this) == 0; } |
| 3448 | |
| 3449 | VP_CLASSOF_IMPL(VPDef::VPScalarIVStepsSC) |
| 3450 | |
| 3451 | /// Generate the scalarized versions of the phi node as needed by their users. |
| 3452 | void execute(VPTransformState &State) override; |
| 3453 | |
| 3454 | /// Return the cost of this VPScalarIVStepsRecipe. |
| 3455 | InstructionCost computeCost(ElementCount VF, |
| 3456 | VPCostContext &Ctx) const override { |
| 3457 | // TODO: Compute accurate cost after retiring the legacy cost model. |
| 3458 | return 0; |
| 3459 | } |
| 3460 | |
| 3461 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3462 | /// Print the recipe. |
| 3463 | void print(raw_ostream &O, const Twine &Indent, |
| 3464 | VPSlotTracker &SlotTracker) const override; |
| 3465 | #endif |
| 3466 | |
| 3467 | VPValue *getStepValue() const { return getOperand(N: 1); } |
| 3468 | |
| 3469 | /// Returns true if the recipe only uses the first lane of operand \p Op. |
| 3470 | bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| 3471 | assert(is_contained(operands(), Op) && |
| 3472 | "Op must be an operand of the recipe" ); |
| 3473 | return true; |
| 3474 | } |
| 3475 | }; |
| 3476 | |
| 3477 | /// Casting from VPRecipeBase -> VPPhiAccessors is supported for all recipe |
| 3478 | /// types implementing VPPhiAccessors. Used by isa<> & co. |
| 3479 | template <> struct CastIsPossible<VPPhiAccessors, const VPRecipeBase *> { |
| 3480 | static inline bool isPossible(const VPRecipeBase *f) { |
| 3481 | // TODO: include VPPredInstPHIRecipe too, once it implements VPPhiAccessors. |
| 3482 | return isa<VPIRPhi, VPHeaderPHIRecipe, VPWidenPHIRecipe, VPPhi>(Val: f); |
| 3483 | } |
| 3484 | }; |
| 3485 | /// Support casting from VPRecipeBase -> VPPhiAccessors, by down-casting to the |
| 3486 | /// recipe types implementing VPPhiAccessors. Used by cast<>, dyn_cast<> & co. |
| 3487 | template <typename SrcTy> |
| 3488 | struct CastInfoVPPhiAccessors : public CastIsPossible<VPPhiAccessors, SrcTy> { |
| 3489 | |
| 3490 | using Self = CastInfo<VPPhiAccessors, SrcTy>; |
| 3491 | |
| 3492 | /// doCast is used by cast<>. |
| 3493 | static inline VPPhiAccessors *doCast(SrcTy R) { |
| 3494 | return const_cast<VPPhiAccessors *>([R]() -> const VPPhiAccessors * { |
| 3495 | switch (R->getVPDefID()) { |
| 3496 | case VPDef::VPInstructionSC: |
| 3497 | return cast<VPPhi>(R); |
| 3498 | case VPDef::VPIRInstructionSC: |
| 3499 | return cast<VPIRPhi>(R); |
| 3500 | case VPDef::VPWidenPHISC: |
| 3501 | return cast<VPWidenPHIRecipe>(R); |
| 3502 | default: |
| 3503 | return cast<VPHeaderPHIRecipe>(R); |
| 3504 | } |
| 3505 | }()); |
| 3506 | } |
| 3507 | |
| 3508 | /// doCastIfPossible is used by dyn_cast<>. |
| 3509 | static inline VPPhiAccessors *doCastIfPossible(SrcTy f) { |
| 3510 | if (!Self::isPossible(f)) |
| 3511 | return nullptr; |
| 3512 | return doCast(R: f); |
| 3513 | } |
| 3514 | }; |
| 3515 | template <> |
| 3516 | struct CastInfo<VPPhiAccessors, VPRecipeBase *> |
| 3517 | : CastInfoVPPhiAccessors<VPRecipeBase *> {}; |
| 3518 | template <> |
| 3519 | struct CastInfo<VPPhiAccessors, const VPRecipeBase *> |
| 3520 | : CastInfoVPPhiAccessors<const VPRecipeBase *> {}; |
| 3521 | |
| 3522 | /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It |
| 3523 | /// holds a sequence of zero or more VPRecipe's each representing a sequence of |
| 3524 | /// output IR instructions. All PHI-like recipes must come before any non-PHI recipes. |
| 3525 | class VPBasicBlock : public VPBlockBase { |
| 3526 | friend class VPlan; |
| 3527 | |
| 3528 | /// Use VPlan::createVPBasicBlock to create VPBasicBlocks. |
| 3529 | VPBasicBlock(const Twine &Name = "" , VPRecipeBase *Recipe = nullptr) |
| 3530 | : VPBlockBase(VPBasicBlockSC, Name.str()) { |
| 3531 | if (Recipe) |
| 3532 | appendRecipe(Recipe); |
| 3533 | } |
| 3534 | |
| 3535 | public: |
| 3536 | using RecipeListTy = iplist<VPRecipeBase>; |
| 3537 | |
| 3538 | protected: |
| 3539 | /// The VPRecipes held in the order of output instructions to generate. |
| 3540 | RecipeListTy Recipes; |
| 3541 | |
| 3542 | VPBasicBlock(const unsigned char BlockSC, const Twine &Name = "" ) |
| 3543 | : VPBlockBase(BlockSC, Name.str()) {} |
| 3544 | |
| 3545 | public: |
| 3546 | ~VPBasicBlock() override { |
| 3547 | while (!Recipes.empty()) |
| 3548 | Recipes.pop_back(); |
| 3549 | } |
| 3550 | |
| 3551 | /// Instruction iterators... |
| 3552 | using iterator = RecipeListTy::iterator; |
| 3553 | using const_iterator = RecipeListTy::const_iterator; |
| 3554 | using reverse_iterator = RecipeListTy::reverse_iterator; |
| 3555 | using const_reverse_iterator = RecipeListTy::const_reverse_iterator; |
| 3556 | |
| 3557 | //===--------------------------------------------------------------------===// |
| 3558 | /// Recipe iterator methods |
| 3559 | /// |
| 3560 | inline iterator begin() { return Recipes.begin(); } |
| 3561 | inline const_iterator begin() const { return Recipes.begin(); } |
| 3562 | inline iterator end() { return Recipes.end(); } |
| 3563 | inline const_iterator end() const { return Recipes.end(); } |
| 3564 | |
| 3565 | inline reverse_iterator rbegin() { return Recipes.rbegin(); } |
| 3566 | inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } |
| 3567 | inline reverse_iterator rend() { return Recipes.rend(); } |
| 3568 | inline const_reverse_iterator rend() const { return Recipes.rend(); } |
| 3569 | |
| 3570 | inline size_t size() const { return Recipes.size(); } |
| 3571 | inline bool empty() const { return Recipes.empty(); } |
| 3572 | inline const VPRecipeBase &front() const { return Recipes.front(); } |
| 3573 | inline VPRecipeBase &front() { return Recipes.front(); } |
| 3574 | inline const VPRecipeBase &back() const { return Recipes.back(); } |
| 3575 | inline VPRecipeBase &back() { return Recipes.back(); } |
| 3576 | |
| 3577 | /// Returns a reference to the list of recipes. |
| 3578 | RecipeListTy &getRecipeList() { return Recipes; } |
| 3579 | |
| 3580 | /// Returns a pointer to a member of the recipe list. |
| 3581 | static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { |
| 3582 | return &VPBasicBlock::Recipes; |
| 3583 | } |
| 3584 | |
| 3585 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 3586 | static inline bool classof(const VPBlockBase *V) { |
| 3587 | return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC || |
| 3588 | V->getVPBlockID() == VPBlockBase::VPIRBasicBlockSC; |
| 3589 | } |
| 3590 | |
| 3591 | void insert(VPRecipeBase *Recipe, iterator InsertPt) { |
| 3592 | assert(Recipe && "No recipe to append." ); |
| 3593 | assert(!Recipe->Parent && "Recipe already in VPlan" ); |
| 3594 | Recipe->Parent = this; |
| 3595 | Recipes.insert(where: InsertPt, New: Recipe); |
| 3596 | } |
| 3597 | |
| 3598 | /// Augment the existing recipes of a VPBasicBlock with an additional |
| 3599 | /// \p Recipe as the last recipe. |
| 3600 | void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, InsertPt: end()); } |
| 3601 | |
| 3602 | /// The method which generates the output IR instructions that correspond to |
| 3603 | /// this VPBasicBlock, thereby "executing" the VPlan. |
| 3604 | void execute(VPTransformState *State) override; |
| 3605 | |
| 3606 | /// Return the cost of this VPBasicBlock. |
| 3607 | InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override; |
| 3608 | |
| 3609 | /// Return the position of the first non-phi node recipe in the block. |
| 3610 | iterator getFirstNonPhi(); |
| 3611 | |
| 3612 | /// Returns an iterator range over the PHI-like recipes in the block. |
| 3613 | iterator_range<iterator> phis() { |
| 3614 | return make_range(x: begin(), y: getFirstNonPhi()); |
| 3615 | } |
| 3616 | |
| 3617 | /// Split current block at \p SplitAt by inserting a new block between the |
| 3618 | /// current block and its successors and moving all recipes starting at |
| 3619 | /// SplitAt to the new block. Returns the new block. |
| 3620 | VPBasicBlock *splitAt(iterator SplitAt); |
| 3621 | |
| 3622 | VPRegionBlock *getEnclosingLoopRegion(); |
| 3623 | const VPRegionBlock *getEnclosingLoopRegion() const; |
| 3624 | |
| 3625 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3626 | /// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p |
| 3627 | /// SlotTracker is used to print unnamed VPValue's using consequtive numbers. |
| 3628 | /// |
| 3629 | /// Note that the numbering is applied to the whole VPlan, so printing |
| 3630 | /// individual blocks is consistent with the whole VPlan printing. |
| 3631 | void print(raw_ostream &O, const Twine &Indent, |
| 3632 | VPSlotTracker &SlotTracker) const override; |
| 3633 | using VPBlockBase::print; // Get the print(raw_stream &O) version. |
| 3634 | #endif |
| 3635 | |
| 3636 | /// If the block has multiple successors, return the branch recipe terminating |
| 3637 | /// the block. If there are no or only a single successor, return nullptr; |
| 3638 | VPRecipeBase *getTerminator(); |
| 3639 | const VPRecipeBase *getTerminator() const; |
| 3640 | |
| 3641 | /// Returns true if the block is exiting it's parent region. |
| 3642 | bool isExiting() const; |
| 3643 | |
| 3644 | /// Clone the current block and it's recipes, without updating the operands of |
| 3645 | /// the cloned recipes. |
| 3646 | VPBasicBlock *clone() override; |
| 3647 | |
| 3648 | /// Returns the predecessor block at index \p Idx with the predecessors as per |
| 3649 | /// the corresponding plain CFG. If the block is an entry block to a region, |
| 3650 | /// the first predecessor is the single predecessor of a region, and the |
| 3651 | /// second predecessor is the exiting block of the region. |
| 3652 | const VPBasicBlock *getCFGPredecessor(unsigned Idx) const; |
| 3653 | |
| 3654 | protected: |
| 3655 | /// Execute the recipes in the IR basic block \p BB. |
| 3656 | void executeRecipes(VPTransformState *State, BasicBlock *BB); |
| 3657 | |
| 3658 | /// Connect the VPBBs predecessors' in the VPlan CFG to the IR basic block |
| 3659 | /// generated for this VPBB. |
| 3660 | void connectToPredecessors(VPTransformState &State); |
| 3661 | |
| 3662 | private: |
| 3663 | /// Create an IR BasicBlock to hold the output instructions generated by this |
| 3664 | /// VPBasicBlock, and return it. Update the CFGState accordingly. |
| 3665 | BasicBlock *createEmptyBasicBlock(VPTransformState &State); |
| 3666 | }; |
| 3667 | |
| 3668 | inline const VPBasicBlock * |
| 3669 | VPPhiAccessors::getIncomingBlock(unsigned Idx) const { |
| 3670 | return getAsRecipe()->getParent()->getCFGPredecessor(Idx); |
| 3671 | } |
| 3672 | |
| 3673 | /// A special type of VPBasicBlock that wraps an existing IR basic block. |
| 3674 | /// Recipes of the block get added before the first non-phi instruction in the |
| 3675 | /// wrapped block. |
| 3676 | /// Note: At the moment, VPIRBasicBlock can only be used to wrap VPlan's |
| 3677 | /// preheader block. |
| 3678 | class VPIRBasicBlock : public VPBasicBlock { |
| 3679 | friend class VPlan; |
| 3680 | |
| 3681 | BasicBlock *IRBB; |
| 3682 | |
| 3683 | /// Use VPlan::createVPIRBasicBlock to create VPIRBasicBlocks. |
| 3684 | VPIRBasicBlock(BasicBlock *IRBB) |
| 3685 | : VPBasicBlock(VPIRBasicBlockSC, |
| 3686 | (Twine("ir-bb<" ) + IRBB->getName() + Twine(">" )).str()), |
| 3687 | IRBB(IRBB) {} |
| 3688 | |
| 3689 | public: |
| 3690 | ~VPIRBasicBlock() override {} |
| 3691 | |
| 3692 | static inline bool classof(const VPBlockBase *V) { |
| 3693 | return V->getVPBlockID() == VPBlockBase::VPIRBasicBlockSC; |
| 3694 | } |
| 3695 | |
| 3696 | /// The method which generates the output IR instructions that correspond to |
| 3697 | /// this VPBasicBlock, thereby "executing" the VPlan. |
| 3698 | void execute(VPTransformState *State) override; |
| 3699 | |
| 3700 | VPIRBasicBlock *clone() override; |
| 3701 | |
| 3702 | BasicBlock *getIRBasicBlock() const { return IRBB; } |
| 3703 | }; |
| 3704 | |
| 3705 | /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks |
| 3706 | /// which form a Single-Entry-Single-Exiting subgraph of the output IR CFG. |
| 3707 | /// A VPRegionBlock may indicate that its contents are to be replicated several |
| 3708 | /// times. This is designed to support predicated scalarization, in which a |
| 3709 | /// scalar if-then code structure needs to be generated VF * UF times. Having |
| 3710 | /// this replication indicator helps to keep a single model for multiple |
| 3711 | /// candidate VF's. The actual replication takes place only once the desired VF |
| 3712 | /// and UF have been determined. |
| 3713 | class VPRegionBlock : public VPBlockBase { |
| 3714 | friend class VPlan; |
| 3715 | |
| 3716 | /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. |
| 3717 | VPBlockBase *Entry; |
| 3718 | |
| 3719 | /// Hold the Single Exiting block of the SESE region modelled by the |
| 3720 | /// VPRegionBlock. |
| 3721 | VPBlockBase *Exiting; |
| 3722 | |
| 3723 | /// An indicator whether this region is to generate multiple replicated |
| 3724 | /// instances of output IR corresponding to its VPBlockBases. |
| 3725 | bool IsReplicator; |
| 3726 | |
| 3727 | /// Use VPlan::createVPRegionBlock to create VPRegionBlocks. |
| 3728 | VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, |
| 3729 | const std::string &Name = "" , bool IsReplicator = false) |
| 3730 | : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exiting(Exiting), |
| 3731 | IsReplicator(IsReplicator) { |
| 3732 | assert(Entry->getPredecessors().empty() && "Entry block has predecessors." ); |
| 3733 | assert(Exiting->getSuccessors().empty() && "Exit block has successors." ); |
| 3734 | Entry->setParent(this); |
| 3735 | Exiting->setParent(this); |
| 3736 | } |
| 3737 | VPRegionBlock(const std::string &Name = "" , bool IsReplicator = false) |
| 3738 | : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exiting(nullptr), |
| 3739 | IsReplicator(IsReplicator) {} |
| 3740 | |
| 3741 | public: |
| 3742 | ~VPRegionBlock() override {} |
| 3743 | |
| 3744 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 3745 | static inline bool classof(const VPBlockBase *V) { |
| 3746 | return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; |
| 3747 | } |
| 3748 | |
| 3749 | const VPBlockBase *getEntry() const { return Entry; } |
| 3750 | VPBlockBase *getEntry() { return Entry; } |
| 3751 | |
| 3752 | /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p |
| 3753 | /// EntryBlock must have no predecessors. |
| 3754 | void setEntry(VPBlockBase *EntryBlock) { |
| 3755 | assert(EntryBlock->getPredecessors().empty() && |
| 3756 | "Entry block cannot have predecessors." ); |
| 3757 | Entry = EntryBlock; |
| 3758 | EntryBlock->setParent(this); |
| 3759 | } |
| 3760 | |
| 3761 | const VPBlockBase *getExiting() const { return Exiting; } |
| 3762 | VPBlockBase *getExiting() { return Exiting; } |
| 3763 | |
| 3764 | /// Set \p ExitingBlock as the exiting VPBlockBase of this VPRegionBlock. \p |
| 3765 | /// ExitingBlock must have no successors. |
| 3766 | void setExiting(VPBlockBase *ExitingBlock) { |
| 3767 | assert(ExitingBlock->getSuccessors().empty() && |
| 3768 | "Exit block cannot have successors." ); |
| 3769 | Exiting = ExitingBlock; |
| 3770 | ExitingBlock->setParent(this); |
| 3771 | } |
| 3772 | |
| 3773 | /// Returns the pre-header VPBasicBlock of the loop region. |
| 3774 | VPBasicBlock *() { |
| 3775 | assert(!isReplicator() && "should only get pre-header of loop regions" ); |
| 3776 | return getSinglePredecessor()->getExitingBasicBlock(); |
| 3777 | } |
| 3778 | |
| 3779 | /// An indicator whether this region is to generate multiple replicated |
| 3780 | /// instances of output IR corresponding to its VPBlockBases. |
| 3781 | bool isReplicator() const { return IsReplicator; } |
| 3782 | |
| 3783 | /// The method which generates the output IR instructions that correspond to |
| 3784 | /// this VPRegionBlock, thereby "executing" the VPlan. |
| 3785 | void execute(VPTransformState *State) override; |
| 3786 | |
| 3787 | // Return the cost of this region. |
| 3788 | InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override; |
| 3789 | |
| 3790 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 3791 | /// Print this VPRegionBlock to \p O (recursively), prefixing all lines with |
| 3792 | /// \p Indent. \p SlotTracker is used to print unnamed VPValue's using |
| 3793 | /// consequtive numbers. |
| 3794 | /// |
| 3795 | /// Note that the numbering is applied to the whole VPlan, so printing |
| 3796 | /// individual regions is consistent with the whole VPlan printing. |
| 3797 | void print(raw_ostream &O, const Twine &Indent, |
| 3798 | VPSlotTracker &SlotTracker) const override; |
| 3799 | using VPBlockBase::print; // Get the print(raw_stream &O) version. |
| 3800 | #endif |
| 3801 | |
| 3802 | /// Clone all blocks in the single-entry single-exit region of the block and |
| 3803 | /// their recipes without updating the operands of the cloned recipes. |
| 3804 | VPRegionBlock *clone() override; |
| 3805 | |
| 3806 | /// Remove the current region from its VPlan, connecting its predecessor to |
| 3807 | /// its entry, and its exiting block to its successor. |
| 3808 | void dissolveToCFGLoop(); |
| 3809 | }; |
| 3810 | |
| 3811 | /// VPlan models a candidate for vectorization, encoding various decisions take |
| 3812 | /// to produce efficient output IR, including which branches, basic-blocks and |
| 3813 | /// output IR instructions to generate, and their cost. VPlan holds a |
| 3814 | /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry |
| 3815 | /// VPBasicBlock. |
| 3816 | class VPlan { |
| 3817 | friend class VPlanPrinter; |
| 3818 | friend class VPSlotTracker; |
| 3819 | |
| 3820 | /// VPBasicBlock corresponding to the original preheader. Used to place |
| 3821 | /// VPExpandSCEV recipes for expressions used during skeleton creation and the |
| 3822 | /// rest of VPlan execution. |
| 3823 | /// When this VPlan is used for the epilogue vector loop, the entry will be |
| 3824 | /// replaced by a new entry block created during skeleton creation. |
| 3825 | VPBasicBlock *Entry; |
| 3826 | |
| 3827 | /// VPIRBasicBlock wrapping the header of the original scalar loop. |
| 3828 | VPIRBasicBlock *; |
| 3829 | |
| 3830 | /// Immutable list of VPIRBasicBlocks wrapping the exit blocks of the original |
| 3831 | /// scalar loop. Note that some exit blocks may be unreachable at the moment, |
| 3832 | /// e.g. if the scalar epilogue always executes. |
| 3833 | SmallVector<VPIRBasicBlock *, 2> ExitBlocks; |
| 3834 | |
| 3835 | /// Holds the VFs applicable to this VPlan. |
| 3836 | SmallSetVector<ElementCount, 2> VFs; |
| 3837 | |
| 3838 | /// Holds the UFs applicable to this VPlan. If empty, the VPlan is valid for |
| 3839 | /// any UF. |
| 3840 | SmallSetVector<unsigned, 2> UFs; |
| 3841 | |
| 3842 | /// Holds the name of the VPlan, for printing. |
| 3843 | std::string Name; |
| 3844 | |
| 3845 | /// Represents the trip count of the original loop, for folding |
| 3846 | /// the tail. |
| 3847 | VPValue *TripCount = nullptr; |
| 3848 | |
| 3849 | /// Represents the backedge taken count of the original loop, for folding |
| 3850 | /// the tail. It equals TripCount - 1. |
| 3851 | VPValue *BackedgeTakenCount = nullptr; |
| 3852 | |
| 3853 | /// Represents the vector trip count. |
| 3854 | VPValue VectorTripCount; |
| 3855 | |
| 3856 | /// Represents the vectorization factor of the loop. |
| 3857 | VPValue VF; |
| 3858 | |
| 3859 | /// Represents the loop-invariant VF * UF of the vector loop region. |
| 3860 | VPValue VFxUF; |
| 3861 | |
| 3862 | /// Holds a mapping between Values and their corresponding VPValue inside |
| 3863 | /// VPlan. |
| 3864 | Value2VPValueTy Value2VPValue; |
| 3865 | |
| 3866 | /// Contains all the external definitions created for this VPlan. External |
| 3867 | /// definitions are VPValues that hold a pointer to their underlying IR. |
| 3868 | SmallVector<VPValue *, 16> VPLiveIns; |
| 3869 | |
| 3870 | /// Mapping from SCEVs to the VPValues representing their expansions. |
| 3871 | /// NOTE: This mapping is temporary and will be removed once all users have |
| 3872 | /// been modeled in VPlan directly. |
| 3873 | DenseMap<const SCEV *, VPValue *> SCEVToExpansion; |
| 3874 | |
| 3875 | /// Blocks allocated and owned by the VPlan. They will be deleted once the |
| 3876 | /// VPlan is destroyed. |
| 3877 | SmallVector<VPBlockBase *> CreatedBlocks; |
| 3878 | |
| 3879 | /// Construct a VPlan with \p Entry to the plan and with \p ScalarHeader |
| 3880 | /// wrapping the original header of the scalar loop. |
| 3881 | VPlan(VPBasicBlock *Entry, VPIRBasicBlock *) |
| 3882 | : Entry(Entry), ScalarHeader(ScalarHeader) { |
| 3883 | Entry->setPlan(this); |
| 3884 | assert(ScalarHeader->getNumSuccessors() == 0 && |
| 3885 | "scalar header must be a leaf node" ); |
| 3886 | } |
| 3887 | |
| 3888 | public: |
| 3889 | /// Construct a VPlan for \p L. This will create VPIRBasicBlocks wrapping the |
| 3890 | /// original preheader and scalar header of \p L, to be used as entry and |
| 3891 | /// scalar header blocks of the new VPlan. |
| 3892 | VPlan(Loop *L); |
| 3893 | |
| 3894 | /// Construct a VPlan with a new VPBasicBlock as entry, a VPIRBasicBlock |
| 3895 | /// wrapping \p ScalarHeaderBB and a trip count of \p TC. |
| 3896 | VPlan(BasicBlock *, VPValue *TC) { |
| 3897 | setEntry(createVPBasicBlock(Name: "preheader" )); |
| 3898 | ScalarHeader = createVPIRBasicBlock(IRBB: ScalarHeaderBB); |
| 3899 | TripCount = TC; |
| 3900 | } |
| 3901 | |
| 3902 | ~VPlan(); |
| 3903 | |
| 3904 | void setEntry(VPBasicBlock *VPBB) { |
| 3905 | Entry = VPBB; |
| 3906 | VPBB->setPlan(this); |
| 3907 | } |
| 3908 | |
| 3909 | /// Prepare the plan for execution, setting up the required live-in values. |
| 3910 | void prepareToExecute(Value *TripCount, Value *VectorTripCount, |
| 3911 | VPTransformState &State); |
| 3912 | |
| 3913 | /// Generate the IR code for this VPlan. |
| 3914 | void execute(VPTransformState *State); |
| 3915 | |
| 3916 | /// Return the cost of this plan. |
| 3917 | InstructionCost cost(ElementCount VF, VPCostContext &Ctx); |
| 3918 | |
| 3919 | VPBasicBlock *getEntry() { return Entry; } |
| 3920 | const VPBasicBlock *getEntry() const { return Entry; } |
| 3921 | |
| 3922 | /// Returns the preheader of the vector loop region, if one exists, or null |
| 3923 | /// otherwise. |
| 3924 | VPBasicBlock *() { |
| 3925 | VPRegionBlock *VectorRegion = getVectorLoopRegion(); |
| 3926 | return VectorRegion |
| 3927 | ? cast<VPBasicBlock>(Val: VectorRegion->getSinglePredecessor()) |
| 3928 | : nullptr; |
| 3929 | } |
| 3930 | |
| 3931 | /// Returns the VPRegionBlock of the vector loop. |
| 3932 | VPRegionBlock *getVectorLoopRegion(); |
| 3933 | const VPRegionBlock *getVectorLoopRegion() const; |
| 3934 | |
| 3935 | /// Returns the 'middle' block of the plan, that is the block that selects |
| 3936 | /// whether to execute the scalar tail loop or the exit block from the loop |
| 3937 | /// latch. If there is an early exit from the vector loop, the middle block |
| 3938 | /// conceptully has the early exit block as third successor, split accross 2 |
| 3939 | /// VPBBs. In that case, the second VPBB selects whether to execute the scalar |
| 3940 | /// tail loop or the exit bock. If the scalar tail loop or exit block are |
| 3941 | /// known to always execute, the middle block may branch directly to that |
| 3942 | /// block. This function cannot be called once the vector loop region has been |
| 3943 | /// removed. |
| 3944 | VPBasicBlock *getMiddleBlock() { |
| 3945 | VPRegionBlock *LoopRegion = getVectorLoopRegion(); |
| 3946 | assert( |
| 3947 | LoopRegion && |
| 3948 | "cannot call the function after vector loop region has been removed" ); |
| 3949 | auto *RegionSucc = cast<VPBasicBlock>(Val: LoopRegion->getSingleSuccessor()); |
| 3950 | if (RegionSucc->getSingleSuccessor() || |
| 3951 | is_contained(Range&: RegionSucc->getSuccessors(), Element: getScalarPreheader())) |
| 3952 | return RegionSucc; |
| 3953 | // There is an early exit. The successor of RegionSucc is the middle block. |
| 3954 | return cast<VPBasicBlock>(Val: RegionSucc->getSuccessors()[1]); |
| 3955 | } |
| 3956 | |
| 3957 | const VPBasicBlock *getMiddleBlock() const { |
| 3958 | return const_cast<VPlan *>(this)->getMiddleBlock(); |
| 3959 | } |
| 3960 | |
| 3961 | /// Return the VPBasicBlock for the preheader of the scalar loop. |
| 3962 | VPBasicBlock *() const { |
| 3963 | return cast<VPBasicBlock>(Val: getScalarHeader()->getSinglePredecessor()); |
| 3964 | } |
| 3965 | |
| 3966 | /// Return the VPIRBasicBlock wrapping the header of the scalar loop. |
| 3967 | VPIRBasicBlock *() const { return ScalarHeader; } |
| 3968 | |
| 3969 | /// Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of |
| 3970 | /// the original scalar loop. |
| 3971 | ArrayRef<VPIRBasicBlock *> getExitBlocks() const { return ExitBlocks; } |
| 3972 | |
| 3973 | /// Return the VPIRBasicBlock corresponding to \p IRBB. \p IRBB must be an |
| 3974 | /// exit block. |
| 3975 | VPIRBasicBlock *getExitBlock(BasicBlock *IRBB) const; |
| 3976 | |
| 3977 | /// Returns true if \p VPBB is an exit block. |
| 3978 | bool isExitBlock(VPBlockBase *VPBB); |
| 3979 | |
| 3980 | /// The trip count of the original loop. |
| 3981 | VPValue *getTripCount() const { |
| 3982 | assert(TripCount && "trip count needs to be set before accessing it" ); |
| 3983 | return TripCount; |
| 3984 | } |
| 3985 | |
| 3986 | /// Set the trip count assuming it is currently null; if it is not - use |
| 3987 | /// resetTripCount(). |
| 3988 | void setTripCount(VPValue *NewTripCount) { |
| 3989 | assert(!TripCount && NewTripCount && "TripCount should not be set yet." ); |
| 3990 | TripCount = NewTripCount; |
| 3991 | } |
| 3992 | |
| 3993 | /// Resets the trip count for the VPlan. The caller must make sure all uses of |
| 3994 | /// the original trip count have been replaced. |
| 3995 | void resetTripCount(VPValue *NewTripCount) { |
| 3996 | assert(TripCount && NewTripCount && TripCount->getNumUsers() == 0 && |
| 3997 | "TripCount must be set when resetting" ); |
| 3998 | TripCount = NewTripCount; |
| 3999 | } |
| 4000 | |
| 4001 | /// The backedge taken count of the original loop. |
| 4002 | VPValue *getOrCreateBackedgeTakenCount() { |
| 4003 | if (!BackedgeTakenCount) |
| 4004 | BackedgeTakenCount = new VPValue(); |
| 4005 | return BackedgeTakenCount; |
| 4006 | } |
| 4007 | |
| 4008 | /// The vector trip count. |
| 4009 | VPValue &getVectorTripCount() { return VectorTripCount; } |
| 4010 | |
| 4011 | /// Returns the VF of the vector loop region. |
| 4012 | VPValue &getVF() { return VF; }; |
| 4013 | |
| 4014 | /// Returns VF * UF of the vector loop region. |
| 4015 | VPValue &getVFxUF() { return VFxUF; } |
| 4016 | |
| 4017 | void addVF(ElementCount VF) { VFs.insert(X: VF); } |
| 4018 | |
| 4019 | void setVF(ElementCount VF) { |
| 4020 | assert(hasVF(VF) && "Cannot set VF not already in plan" ); |
| 4021 | VFs.clear(); |
| 4022 | VFs.insert(X: VF); |
| 4023 | } |
| 4024 | |
| 4025 | bool hasVF(ElementCount VF) const { return VFs.count(key: VF); } |
| 4026 | bool hasScalableVF() const { |
| 4027 | return any_of(Range: VFs, P: [](ElementCount VF) { return VF.isScalable(); }); |
| 4028 | } |
| 4029 | |
| 4030 | /// Returns an iterator range over all VFs of the plan. |
| 4031 | iterator_range<SmallSetVector<ElementCount, 2>::iterator> |
| 4032 | vectorFactors() const { |
| 4033 | return {VFs.begin(), VFs.end()}; |
| 4034 | } |
| 4035 | |
| 4036 | bool hasScalarVFOnly() const { |
| 4037 | bool HasScalarVFOnly = VFs.size() == 1 && VFs[0].isScalar(); |
| 4038 | assert(HasScalarVFOnly == hasVF(ElementCount::getFixed(1)) && |
| 4039 | "Plan with scalar VF should only have a single VF" ); |
| 4040 | return HasScalarVFOnly; |
| 4041 | } |
| 4042 | |
| 4043 | bool hasUF(unsigned UF) const { return UFs.empty() || UFs.contains(key: UF); } |
| 4044 | |
| 4045 | unsigned getUF() const { |
| 4046 | assert(UFs.size() == 1 && "Expected a single UF" ); |
| 4047 | return UFs[0]; |
| 4048 | } |
| 4049 | |
| 4050 | void setUF(unsigned UF) { |
| 4051 | assert(hasUF(UF) && "Cannot set the UF not already in plan" ); |
| 4052 | UFs.clear(); |
| 4053 | UFs.insert(X: UF); |
| 4054 | } |
| 4055 | |
| 4056 | /// Returns true if the VPlan already has been unrolled, i.e. it has a single |
| 4057 | /// concrete UF. |
| 4058 | bool isUnrolled() const { return UFs.size() == 1; } |
| 4059 | |
| 4060 | /// Return a string with the name of the plan and the applicable VFs and UFs. |
| 4061 | std::string getName() const; |
| 4062 | |
| 4063 | void setName(const Twine &newName) { Name = newName.str(); } |
| 4064 | |
| 4065 | /// Gets the live-in VPValue for \p V or adds a new live-in (if none exists |
| 4066 | /// yet) for \p V. |
| 4067 | VPValue *getOrAddLiveIn(Value *V) { |
| 4068 | assert(V && "Trying to get or add the VPValue of a null Value" ); |
| 4069 | auto [It, Inserted] = Value2VPValue.try_emplace(Key: V); |
| 4070 | if (Inserted) { |
| 4071 | VPValue *VPV = new VPValue(V); |
| 4072 | VPLiveIns.push_back(Elt: VPV); |
| 4073 | assert(VPV->isLiveIn() && "VPV must be a live-in." ); |
| 4074 | It->second = VPV; |
| 4075 | } |
| 4076 | |
| 4077 | assert(It->second->isLiveIn() && "Only live-ins should be in mapping" ); |
| 4078 | return It->second; |
| 4079 | } |
| 4080 | |
| 4081 | /// Return the live-in VPValue for \p V, if there is one or nullptr otherwise. |
| 4082 | VPValue *getLiveIn(Value *V) const { return Value2VPValue.lookup(Val: V); } |
| 4083 | |
| 4084 | /// Return the list of live-in VPValues available in the VPlan. |
| 4085 | ArrayRef<VPValue *> getLiveIns() const { |
| 4086 | assert(all_of(Value2VPValue, |
| 4087 | [this](const auto &P) { |
| 4088 | return is_contained(VPLiveIns, P.second); |
| 4089 | }) && |
| 4090 | "all VPValues in Value2VPValue must also be in VPLiveIns" ); |
| 4091 | return VPLiveIns; |
| 4092 | } |
| 4093 | |
| 4094 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 4095 | /// Print the live-ins of this VPlan to \p O. |
| 4096 | void printLiveIns(raw_ostream &O) const; |
| 4097 | |
| 4098 | /// Print this VPlan to \p O. |
| 4099 | void print(raw_ostream &O) const; |
| 4100 | |
| 4101 | /// Print this VPlan in DOT format to \p O. |
| 4102 | void printDOT(raw_ostream &O) const; |
| 4103 | |
| 4104 | /// Dump the plan to stderr (for debugging). |
| 4105 | LLVM_DUMP_METHOD void dump() const; |
| 4106 | #endif |
| 4107 | |
| 4108 | /// Returns the canonical induction recipe of the vector loop. |
| 4109 | VPCanonicalIVPHIRecipe *getCanonicalIV() { |
| 4110 | VPBasicBlock *EntryVPBB = getVectorLoopRegion()->getEntryBasicBlock(); |
| 4111 | if (EntryVPBB->empty()) { |
| 4112 | // VPlan native path. |
| 4113 | EntryVPBB = cast<VPBasicBlock>(Val: EntryVPBB->getSingleSuccessor()); |
| 4114 | } |
| 4115 | return cast<VPCanonicalIVPHIRecipe>(Val: &*EntryVPBB->begin()); |
| 4116 | } |
| 4117 | |
| 4118 | VPValue *getSCEVExpansion(const SCEV *S) const { |
| 4119 | return SCEVToExpansion.lookup(Val: S); |
| 4120 | } |
| 4121 | |
| 4122 | void addSCEVExpansion(const SCEV *S, VPValue *V) { |
| 4123 | assert(!SCEVToExpansion.contains(S) && "SCEV already expanded" ); |
| 4124 | SCEVToExpansion[S] = V; |
| 4125 | } |
| 4126 | |
| 4127 | /// Clone the current VPlan, update all VPValues of the new VPlan and cloned |
| 4128 | /// recipes to refer to the clones, and return it. |
| 4129 | VPlan *duplicate(); |
| 4130 | |
| 4131 | /// Create a new VPBasicBlock with \p Name and containing \p Recipe if |
| 4132 | /// present. The returned block is owned by the VPlan and deleted once the |
| 4133 | /// VPlan is destroyed. |
| 4134 | VPBasicBlock *createVPBasicBlock(const Twine &Name, |
| 4135 | VPRecipeBase *Recipe = nullptr) { |
| 4136 | auto *VPB = new VPBasicBlock(Name, Recipe); |
| 4137 | CreatedBlocks.push_back(Elt: VPB); |
| 4138 | return VPB; |
| 4139 | } |
| 4140 | |
| 4141 | /// Create a new VPRegionBlock with \p Entry, \p Exiting and \p Name. If \p |
| 4142 | /// IsReplicator is true, the region is a replicate region. The returned block |
| 4143 | /// is owned by the VPlan and deleted once the VPlan is destroyed. |
| 4144 | VPRegionBlock *createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, |
| 4145 | const std::string &Name = "" , |
| 4146 | bool IsReplicator = false) { |
| 4147 | auto *VPB = new VPRegionBlock(Entry, Exiting, Name, IsReplicator); |
| 4148 | CreatedBlocks.push_back(Elt: VPB); |
| 4149 | return VPB; |
| 4150 | } |
| 4151 | |
| 4152 | /// Create a new VPRegionBlock with \p Name and entry and exiting blocks set |
| 4153 | /// to nullptr. If \p IsReplicator is true, the region is a replicate region. |
| 4154 | /// The returned block is owned by the VPlan and deleted once the VPlan is |
| 4155 | /// destroyed. |
| 4156 | VPRegionBlock *createVPRegionBlock(const std::string &Name = "" , |
| 4157 | bool IsReplicator = false) { |
| 4158 | auto *VPB = new VPRegionBlock(Name, IsReplicator); |
| 4159 | CreatedBlocks.push_back(Elt: VPB); |
| 4160 | return VPB; |
| 4161 | } |
| 4162 | |
| 4163 | /// Create a VPIRBasicBlock wrapping \p IRBB, but do not create |
| 4164 | /// VPIRInstructions wrapping the instructions in t\p IRBB. The returned |
| 4165 | /// block is owned by the VPlan and deleted once the VPlan is destroyed. |
| 4166 | VPIRBasicBlock *createEmptyVPIRBasicBlock(BasicBlock *IRBB); |
| 4167 | |
| 4168 | /// Create a VPIRBasicBlock from \p IRBB containing VPIRInstructions for all |
| 4169 | /// instructions in \p IRBB, except its terminator which is managed by the |
| 4170 | /// successors of the block in VPlan. The returned block is owned by the VPlan |
| 4171 | /// and deleted once the VPlan is destroyed. |
| 4172 | VPIRBasicBlock *createVPIRBasicBlock(BasicBlock *IRBB); |
| 4173 | |
| 4174 | /// Returns true if the VPlan is based on a loop with an early exit. That is |
| 4175 | /// the case if the VPlan has either more than one exit block or a single exit |
| 4176 | /// block with multiple predecessors (one for the exit via the latch and one |
| 4177 | /// via the other early exit). |
| 4178 | bool hasEarlyExit() const { |
| 4179 | return ExitBlocks.size() > 1 || ExitBlocks[0]->getNumPredecessors() > 1; |
| 4180 | } |
| 4181 | |
| 4182 | /// Returns true if the scalar tail may execute after the vector loop. Note |
| 4183 | /// that this relies on unneeded branches to the scalar tail loop being |
| 4184 | /// removed. |
| 4185 | bool hasScalarTail() const { |
| 4186 | return !(getScalarPreheader()->getNumPredecessors() == 0 || |
| 4187 | getScalarPreheader()->getSinglePredecessor() == getEntry()); |
| 4188 | } |
| 4189 | }; |
| 4190 | |
| 4191 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 4192 | inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) { |
| 4193 | Plan.print(OS); |
| 4194 | return OS; |
| 4195 | } |
| 4196 | #endif |
| 4197 | |
| 4198 | } // end namespace llvm |
| 4199 | |
| 4200 | #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| 4201 | |