| 1 | //===- VPlanHelpers.h - VPlan-related auxiliary helpers -------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// This file contains the declarations of different VPlan-related auxiliary |
| 11 | /// helpers. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLANHELPERS_H |
| 16 | #define LLVM_TRANSFORMS_VECTORIZE_VPLANHELPERS_H |
| 17 | |
| 18 | #include "VPlanAnalysis.h" |
| 19 | #include "VPlanDominatorTree.h" |
| 20 | #include "llvm/ADT/DenseMap.h" |
| 21 | #include "llvm/ADT/SmallPtrSet.h" |
| 22 | #include "llvm/ADT/SmallVector.h" |
| 23 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 24 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 25 | #include "llvm/IR/DebugLoc.h" |
| 26 | #include "llvm/IR/ModuleSlotTracker.h" |
| 27 | #include "llvm/Support/InstructionCost.h" |
| 28 | |
| 29 | namespace llvm { |
| 30 | |
| 31 | class AssumptionCache; |
| 32 | class BasicBlock; |
| 33 | class DominatorTree; |
| 34 | class InnerLoopVectorizer; |
| 35 | class IRBuilderBase; |
| 36 | class LoopInfo; |
| 37 | class SCEV; |
| 38 | class Type; |
| 39 | class VPBasicBlock; |
| 40 | class VPRegionBlock; |
| 41 | class VPlan; |
| 42 | class Value; |
| 43 | |
| 44 | /// Returns a calculation for the total number of elements for a given \p VF. |
| 45 | /// For fixed width vectors this value is a constant, whereas for scalable |
| 46 | /// vectors it is an expression determined at runtime. |
| 47 | Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF); |
| 48 | |
| 49 | /// Return a value for Step multiplied by VF. |
| 50 | Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, |
| 51 | int64_t Step); |
| 52 | |
| 53 | /// A helper function that returns how much we should divide the cost of a |
| 54 | /// predicated block by. Typically this is the reciprocal of the block |
| 55 | /// probability, i.e. if we return X we are assuming the predicated block will |
| 56 | /// execute once for every X iterations of the loop header so the block should |
| 57 | /// only contribute 1/X of its cost to the total cost calculation, but when |
| 58 | /// optimizing for code size it will just be 1 as code size costs don't depend |
| 59 | /// on execution probabilities. |
| 60 | /// |
| 61 | /// TODO: We should use actual block probability here, if available. Currently, |
| 62 | /// we always assume predicated blocks have a 50% chance of executing. |
| 63 | inline unsigned |
| 64 | getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind) { |
| 65 | return CostKind == TTI::TCK_CodeSize ? 1 : 2; |
| 66 | } |
| 67 | |
| 68 | /// A range of powers-of-2 vectorization factors with fixed start and |
| 69 | /// adjustable end. The range includes start and excludes end, e.g.,: |
| 70 | /// [1, 16) = {1, 2, 4, 8} |
| 71 | struct VFRange { |
| 72 | // A power of 2. |
| 73 | const ElementCount Start; |
| 74 | |
| 75 | // A power of 2. If End <= Start range is empty. |
| 76 | ElementCount End; |
| 77 | |
| 78 | bool isEmpty() const { |
| 79 | return End.getKnownMinValue() <= Start.getKnownMinValue(); |
| 80 | } |
| 81 | |
| 82 | VFRange(const ElementCount &Start, const ElementCount &End) |
| 83 | : Start(Start), End(End) { |
| 84 | assert(Start.isScalable() == End.isScalable() && |
| 85 | "Both Start and End should have the same scalable flag" ); |
| 86 | assert(isPowerOf2_32(Start.getKnownMinValue()) && |
| 87 | "Expected Start to be a power of 2" ); |
| 88 | assert(isPowerOf2_32(End.getKnownMinValue()) && |
| 89 | "Expected End to be a power of 2" ); |
| 90 | } |
| 91 | |
| 92 | /// Iterator to iterate over vectorization factors in a VFRange. |
| 93 | class iterator |
| 94 | : public iterator_facade_base<iterator, std::forward_iterator_tag, |
| 95 | ElementCount> { |
| 96 | ElementCount VF; |
| 97 | |
| 98 | public: |
| 99 | iterator(ElementCount VF) : VF(VF) {} |
| 100 | |
| 101 | bool operator==(const iterator &Other) const { return VF == Other.VF; } |
| 102 | |
| 103 | ElementCount operator*() const { return VF; } |
| 104 | |
| 105 | iterator &operator++() { |
| 106 | VF *= 2; |
| 107 | return *this; |
| 108 | } |
| 109 | }; |
| 110 | |
| 111 | iterator begin() { return iterator(Start); } |
| 112 | iterator end() { |
| 113 | assert(isPowerOf2_32(End.getKnownMinValue())); |
| 114 | return iterator(End); |
| 115 | } |
| 116 | }; |
| 117 | |
| 118 | /// In what follows, the term "input IR" refers to code that is fed into the |
| 119 | /// vectorizer whereas the term "output IR" refers to code that is generated by |
| 120 | /// the vectorizer. |
| 121 | |
| 122 | /// VPLane provides a way to access lanes in both fixed width and scalable |
| 123 | /// vectors, where for the latter the lane index sometimes needs calculating |
| 124 | /// as a runtime expression. |
| 125 | class VPLane { |
| 126 | public: |
| 127 | /// Kind describes how to interpret Lane. |
| 128 | enum class Kind : uint8_t { |
| 129 | /// For First, Lane is the index into the first N elements of a |
| 130 | /// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>. |
| 131 | First, |
| 132 | /// For ScalableLast, Lane is the offset from the start of the last |
| 133 | /// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For |
| 134 | /// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of |
| 135 | /// 1 corresponds to `((vscale - 1) * N) + 1`, etc. |
| 136 | ScalableLast |
| 137 | }; |
| 138 | |
| 139 | private: |
| 140 | /// in [0..VF) |
| 141 | unsigned Lane; |
| 142 | |
| 143 | /// Indicates how the Lane should be interpreted, as described above. |
| 144 | Kind LaneKind = Kind::First; |
| 145 | |
| 146 | public: |
| 147 | VPLane(unsigned Lane) : Lane(Lane) {} |
| 148 | VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {} |
| 149 | |
| 150 | static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); } |
| 151 | |
| 152 | static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset) { |
| 153 | assert(Offset > 0 && Offset <= VF.getKnownMinValue() && |
| 154 | "trying to extract with invalid offset" ); |
| 155 | unsigned LaneOffset = VF.getKnownMinValue() - Offset; |
| 156 | Kind LaneKind; |
| 157 | if (VF.isScalable()) |
| 158 | // In this case 'LaneOffset' refers to the offset from the start of the |
| 159 | // last subvector with VF.getKnownMinValue() elements. |
| 160 | LaneKind = VPLane::Kind::ScalableLast; |
| 161 | else |
| 162 | LaneKind = VPLane::Kind::First; |
| 163 | return VPLane(LaneOffset, LaneKind); |
| 164 | } |
| 165 | |
| 166 | static VPLane getLastLaneForVF(const ElementCount &VF) { |
| 167 | return getLaneFromEnd(VF, Offset: 1); |
| 168 | } |
| 169 | |
| 170 | /// Returns a compile-time known value for the lane index and asserts if the |
| 171 | /// lane can only be calculated at runtime. |
| 172 | unsigned getKnownLane() const { |
| 173 | assert(LaneKind == Kind::First && |
| 174 | "can only get known lane from the beginning" ); |
| 175 | return Lane; |
| 176 | } |
| 177 | |
| 178 | /// Returns an expression describing the lane index that can be used at |
| 179 | /// runtime. |
| 180 | Value *getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const; |
| 181 | |
| 182 | /// Returns the Kind of lane offset. |
| 183 | Kind getKind() const { return LaneKind; } |
| 184 | |
| 185 | /// Returns true if this is the first lane of the whole vector. |
| 186 | bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; } |
| 187 | |
| 188 | /// Maps the lane to a cache index based on \p VF. |
| 189 | unsigned mapToCacheIndex(const ElementCount &VF) const { |
| 190 | switch (LaneKind) { |
| 191 | case VPLane::Kind::ScalableLast: |
| 192 | assert(VF.isScalable() && Lane < VF.getKnownMinValue() && |
| 193 | "ScalableLast can only be used with scalable VFs" ); |
| 194 | return VF.getKnownMinValue() + Lane; |
| 195 | default: |
| 196 | assert(Lane < VF.getKnownMinValue() && |
| 197 | "Cannot extract lane larger than VF" ); |
| 198 | return Lane; |
| 199 | } |
| 200 | } |
| 201 | }; |
| 202 | |
| 203 | /// VPTransformState holds information passed down when "executing" a VPlan, |
| 204 | /// needed for generating the output IR. |
| 205 | struct VPTransformState { |
| 206 | VPTransformState(const TargetTransformInfo *TTI, ElementCount VF, |
| 207 | LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, |
| 208 | IRBuilderBase &Builder, VPlan *Plan, Loop *CurrentParentLoop, |
| 209 | Type *CanonicalIVTy); |
| 210 | /// Target Transform Info. |
| 211 | const TargetTransformInfo *TTI; |
| 212 | |
| 213 | /// The chosen Vectorization Factor of the loop being vectorized. |
| 214 | ElementCount VF; |
| 215 | |
| 216 | /// Hold the index to generate specific scalar instructions. Null indicates |
| 217 | /// that all instances are to be generated, using either scalar or vector |
| 218 | /// instructions. |
| 219 | std::optional<VPLane> Lane; |
| 220 | |
| 221 | struct DataState { |
| 222 | // Each value from the original loop, when vectorized, is represented by a |
| 223 | // vector value in the map. |
| 224 | DenseMap<const VPValue *, Value *> VPV2Vector; |
| 225 | |
| 226 | DenseMap<const VPValue *, SmallVector<Value *, 4>> VPV2Scalars; |
| 227 | } Data; |
| 228 | |
| 229 | /// Get the generated vector Value for a given VPValue \p Def if \p IsScalar |
| 230 | /// is false, otherwise return the generated scalar. \See set. |
| 231 | Value *get(const VPValue *Def, bool IsScalar = false); |
| 232 | |
| 233 | /// Get the generated Value for a given VPValue and given Part and Lane. |
| 234 | Value *get(const VPValue *Def, const VPLane &Lane); |
| 235 | |
| 236 | bool hasVectorValue(const VPValue *Def) { |
| 237 | return Data.VPV2Vector.contains(Val: Def); |
| 238 | } |
| 239 | |
| 240 | bool hasScalarValue(const VPValue *Def, VPLane Lane) { |
| 241 | auto I = Data.VPV2Scalars.find(Val: Def); |
| 242 | if (I == Data.VPV2Scalars.end()) |
| 243 | return false; |
| 244 | unsigned CacheIdx = Lane.mapToCacheIndex(VF); |
| 245 | return CacheIdx < I->second.size() && I->second[CacheIdx]; |
| 246 | } |
| 247 | |
| 248 | /// Set the generated vector Value for a given VPValue, if \p |
| 249 | /// IsScalar is false. If \p IsScalar is true, set the scalar in lane 0. |
| 250 | void set(const VPValue *Def, Value *V, bool IsScalar = false) { |
| 251 | if (IsScalar) { |
| 252 | set(Def, V, Lane: VPLane(0)); |
| 253 | return; |
| 254 | } |
| 255 | assert((VF.isScalar() || isVectorizedTy(V->getType())) && |
| 256 | "scalar values must be stored as (0, 0)" ); |
| 257 | Data.VPV2Vector[Def] = V; |
| 258 | } |
| 259 | |
| 260 | /// Reset an existing vector value for \p Def and a given \p Part. |
| 261 | void reset(const VPValue *Def, Value *V) { |
| 262 | assert(Data.VPV2Vector.contains(Def) && "need to overwrite existing value" ); |
| 263 | Data.VPV2Vector[Def] = V; |
| 264 | } |
| 265 | |
| 266 | /// Set the generated scalar \p V for \p Def and the given \p Lane. |
| 267 | void set(const VPValue *Def, Value *V, const VPLane &Lane) { |
| 268 | auto &Scalars = Data.VPV2Scalars[Def]; |
| 269 | unsigned CacheIdx = Lane.mapToCacheIndex(VF); |
| 270 | if (Scalars.size() <= CacheIdx) |
| 271 | Scalars.resize(N: CacheIdx + 1); |
| 272 | assert(!Scalars[CacheIdx] && "should overwrite existing value" ); |
| 273 | Scalars[CacheIdx] = V; |
| 274 | } |
| 275 | |
| 276 | /// Reset an existing scalar value for \p Def and a given \p Lane. |
| 277 | void reset(const VPValue *Def, Value *V, const VPLane &Lane) { |
| 278 | auto Iter = Data.VPV2Scalars.find(Val: Def); |
| 279 | assert(Iter != Data.VPV2Scalars.end() && |
| 280 | "need to overwrite existing value" ); |
| 281 | unsigned CacheIdx = Lane.mapToCacheIndex(VF); |
| 282 | assert(CacheIdx < Iter->second.size() && |
| 283 | "need to overwrite existing value" ); |
| 284 | Iter->second[CacheIdx] = V; |
| 285 | } |
| 286 | |
| 287 | /// Set the debug location in the builder using the debug location \p DL. |
| 288 | void setDebugLocFrom(DebugLoc DL); |
| 289 | |
| 290 | /// Insert the scalar value of \p Def at \p Lane into \p Lane of \p WideValue |
| 291 | /// and return the resulting value. |
| 292 | Value *packScalarIntoVectorizedValue(const VPValue *Def, Value *WideValue, |
| 293 | const VPLane &Lane); |
| 294 | |
| 295 | /// Hold state information used when constructing the CFG of the output IR, |
| 296 | /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. |
| 297 | struct CFGState { |
| 298 | /// The previous VPBasicBlock visited. Initially set to null. |
| 299 | VPBasicBlock *PrevVPBB = nullptr; |
| 300 | |
| 301 | /// The previous IR BasicBlock created or used. Initially set to the new |
| 302 | /// header BasicBlock. |
| 303 | BasicBlock *PrevBB = nullptr; |
| 304 | |
| 305 | /// The last IR BasicBlock in the output IR. Set to the exit block of the |
| 306 | /// vector loop. |
| 307 | BasicBlock *ExitBB = nullptr; |
| 308 | |
| 309 | /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case |
| 310 | /// of replication, maps the BasicBlock of the last replica created. |
| 311 | SmallDenseMap<const VPBasicBlock *, BasicBlock *> VPBB2IRBB; |
| 312 | |
| 313 | /// Updater for the DominatorTree. |
| 314 | DomTreeUpdater DTU; |
| 315 | |
| 316 | CFGState(DominatorTree *DT) |
| 317 | : DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy) {} |
| 318 | } CFG; |
| 319 | |
| 320 | /// Hold a pointer to LoopInfo to register new basic blocks in the loop. |
| 321 | LoopInfo *LI; |
| 322 | |
| 323 | /// Hold a pointer to AssumptionCache to register new assumptions after |
| 324 | /// replicating assume calls. |
| 325 | AssumptionCache *AC; |
| 326 | |
| 327 | /// Hold a reference to the IRBuilder used to generate output IR code. |
| 328 | IRBuilderBase &Builder; |
| 329 | |
| 330 | /// Pointer to the VPlan code is generated for. |
| 331 | VPlan *Plan; |
| 332 | |
| 333 | /// The parent loop object for the current scope, or nullptr. |
| 334 | Loop *CurrentParentLoop = nullptr; |
| 335 | |
| 336 | /// VPlan-based type analysis. |
| 337 | VPTypeAnalysis TypeAnalysis; |
| 338 | |
| 339 | /// VPlan-based dominator tree. |
| 340 | VPDominatorTree VPDT; |
| 341 | }; |
| 342 | |
| 343 | /// Struct to hold various analysis needed for cost computations. |
| 344 | struct VPCostContext { |
| 345 | const TargetTransformInfo &TTI; |
| 346 | const TargetLibraryInfo &TLI; |
| 347 | VPTypeAnalysis Types; |
| 348 | LLVMContext &LLVMCtx; |
| 349 | LoopVectorizationCostModel &CM; |
| 350 | SmallPtrSet<Instruction *, 8> SkipCostComputation; |
| 351 | TargetTransformInfo::TargetCostKind CostKind; |
| 352 | |
| 353 | VPCostContext(const TargetTransformInfo &TTI, const TargetLibraryInfo &TLI, |
| 354 | Type *CanIVTy, LoopVectorizationCostModel &CM, |
| 355 | TargetTransformInfo::TargetCostKind CostKind) |
| 356 | : TTI(TTI), TLI(TLI), Types(CanIVTy), LLVMCtx(CanIVTy->getContext()), |
| 357 | CM(CM), CostKind(CostKind) {} |
| 358 | |
| 359 | /// Return the cost for \p UI with \p VF using the legacy cost model as |
| 360 | /// fallback until computing the cost of all recipes migrates to VPlan. |
| 361 | InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const; |
| 362 | |
| 363 | /// Return true if the cost for \p UI shouldn't be computed, e.g. because it |
| 364 | /// has already been pre-computed. |
| 365 | bool skipCostComputation(Instruction *UI, bool IsVector) const; |
| 366 | |
| 367 | /// Returns the OperandInfo for \p V, if it is a live-in. |
| 368 | TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const; |
| 369 | |
| 370 | /// Return true if \p I is considered uniform-after-vectorization in the |
| 371 | /// legacy cost model for \p VF. Only used to check for additional VPlan |
| 372 | /// simplifications. |
| 373 | bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const; |
| 374 | }; |
| 375 | |
| 376 | /// This class can be used to assign names to VPValues. For VPValues without |
| 377 | /// underlying value, assign consecutive numbers and use those as names (wrapped |
| 378 | /// in vp<>). Otherwise, use the name from the underlying value (wrapped in |
| 379 | /// ir<>), appending a .V version number if there are multiple uses of the same |
| 380 | /// name. Allows querying names for VPValues for printing, similar to the |
| 381 | /// ModuleSlotTracker for IR values. |
| 382 | class VPSlotTracker { |
| 383 | /// Keep track of versioned names assigned to VPValues with underlying IR |
| 384 | /// values. |
| 385 | DenseMap<const VPValue *, std::string> VPValue2Name; |
| 386 | /// Keep track of the next number to use to version the base name. |
| 387 | StringMap<unsigned> BaseName2Version; |
| 388 | |
| 389 | /// Number to assign to the next VPValue without underlying value. |
| 390 | unsigned NextSlot = 0; |
| 391 | |
| 392 | /// Lazily created ModuleSlotTracker, used only when unnamed IR instructions |
| 393 | /// require slot tracking. |
| 394 | std::unique_ptr<ModuleSlotTracker> MST; |
| 395 | |
| 396 | void assignName(const VPValue *V); |
| 397 | void assignNames(const VPlan &Plan); |
| 398 | void assignNames(const VPBasicBlock *VPBB); |
| 399 | std::string getName(const Value *V); |
| 400 | |
| 401 | public: |
| 402 | VPSlotTracker(const VPlan *Plan = nullptr) { |
| 403 | if (Plan) |
| 404 | assignNames(Plan: *Plan); |
| 405 | } |
| 406 | |
| 407 | /// Returns the name assigned to \p V, if there is one, otherwise try to |
| 408 | /// construct one from the underlying value, if there's one; else return |
| 409 | /// <badref>. |
| 410 | std::string getOrCreateName(const VPValue *V) const; |
| 411 | }; |
| 412 | |
| 413 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 414 | /// VPlanPrinter prints a given VPlan to a given output stream. The printing is |
| 415 | /// indented and follows the dot format. |
| 416 | class VPlanPrinter { |
| 417 | raw_ostream &OS; |
| 418 | const VPlan &Plan; |
| 419 | unsigned Depth = 0; |
| 420 | unsigned TabWidth = 2; |
| 421 | std::string Indent; |
| 422 | unsigned BID = 0; |
| 423 | SmallDenseMap<const VPBlockBase *, unsigned> BlockID; |
| 424 | |
| 425 | VPSlotTracker SlotTracker; |
| 426 | |
| 427 | /// Handle indentation. |
| 428 | void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } |
| 429 | |
| 430 | /// Print a given \p Block of the Plan. |
| 431 | void dumpBlock(const VPBlockBase *Block); |
| 432 | |
| 433 | /// Print the information related to the CFG edges going out of a given |
| 434 | /// \p Block, followed by printing the successor blocks themselves. |
| 435 | void dumpEdges(const VPBlockBase *Block); |
| 436 | |
| 437 | /// Print a given \p BasicBlock, including its VPRecipes, followed by printing |
| 438 | /// its successor blocks. |
| 439 | void dumpBasicBlock(const VPBasicBlock *BasicBlock); |
| 440 | |
| 441 | /// Print a given \p Region of the Plan. |
| 442 | void dumpRegion(const VPRegionBlock *Region); |
| 443 | |
| 444 | unsigned getOrCreateBID(const VPBlockBase *Block) { |
| 445 | return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; |
| 446 | } |
| 447 | |
| 448 | Twine getOrCreateName(const VPBlockBase *Block); |
| 449 | |
| 450 | Twine getUID(const VPBlockBase *Block); |
| 451 | |
| 452 | /// Print the information related to a CFG edge between two VPBlockBases. |
| 453 | void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, |
| 454 | const Twine &Label); |
| 455 | |
| 456 | public: |
| 457 | VPlanPrinter(raw_ostream &O, const VPlan &P) |
| 458 | : OS(O), Plan(P), SlotTracker(&P) {} |
| 459 | |
| 460 | LLVM_DUMP_METHOD void dump(); |
| 461 | }; |
| 462 | #endif |
| 463 | |
| 464 | } // end namespace llvm |
| 465 | |
| 466 | #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| 467 | |