| 1 | //===- VPlanSLP.cpp - SLP Analysis based on VPlan -------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// This file implements SLP analysis based on VPlan. The analysis is based on |
| 9 | /// the ideas described in |
| 10 | /// |
| 11 | /// Look-ahead SLP: auto-vectorization in the presence of commutative |
| 12 | /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, |
| 13 | /// Luís F. W. Góes |
| 14 | /// |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "VPlanSLP.h" |
| 18 | #include "VPlan.h" |
| 19 | #include "VPlanCFG.h" |
| 20 | #include "VPlanValue.h" |
| 21 | #include "llvm/ADT/DenseMap.h" |
| 22 | #include "llvm/ADT/SmallVector.h" |
| 23 | #include "llvm/Analysis/LoopInfo.h" |
| 24 | #include "llvm/Analysis/VectorUtils.h" |
| 25 | #include "llvm/IR/Instruction.h" |
| 26 | #include "llvm/IR/Instructions.h" |
| 27 | #include "llvm/IR/Type.h" |
| 28 | #include "llvm/IR/Value.h" |
| 29 | #include "llvm/Support/Casting.h" |
| 30 | #include "llvm/Support/Debug.h" |
| 31 | #include "llvm/Support/ErrorHandling.h" |
| 32 | #include "llvm/Support/raw_ostream.h" |
| 33 | #include <algorithm> |
| 34 | #include <cassert> |
| 35 | #include <optional> |
| 36 | #include <utility> |
| 37 | |
| 38 | using namespace llvm; |
| 39 | |
| 40 | #define DEBUG_TYPE "vplan-slp" |
| 41 | |
| 42 | // Number of levels to look ahead when re-ordering multi node operands. |
| 43 | static unsigned LookaheadMaxDepth = 5; |
| 44 | |
| 45 | void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, |
| 46 | Old2NewTy &Old2New, |
| 47 | InterleavedAccessInfo &IAI) { |
| 48 | ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT( |
| 49 | Region->getEntry()); |
| 50 | for (VPBlockBase *Base : RPOT) { |
| 51 | visitBlock(Block: Base, Old2New, IAI); |
| 52 | } |
| 53 | } |
| 54 | |
| 55 | void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, |
| 56 | InterleavedAccessInfo &IAI) { |
| 57 | if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Val: Block)) { |
| 58 | for (VPRecipeBase &VPI : *VPBB) { |
| 59 | if (isa<VPWidenPHIRecipe>(Val: &VPI)) |
| 60 | continue; |
| 61 | auto *VPInst = dyn_cast<VPInstruction>(Val: &VPI); |
| 62 | if (!VPInst) |
| 63 | continue; |
| 64 | auto *Inst = dyn_cast_or_null<Instruction>(Val: VPInst->getUnderlyingValue()); |
| 65 | if (!Inst) |
| 66 | continue; |
| 67 | auto *IG = IAI.getInterleaveGroup(Instr: Inst); |
| 68 | if (!IG) |
| 69 | continue; |
| 70 | |
| 71 | auto NewIGIter = Old2New.find(Val: IG); |
| 72 | if (NewIGIter == Old2New.end()) |
| 73 | Old2New[IG] = new InterleaveGroup<VPInstruction>( |
| 74 | IG->getFactor(), IG->isReverse(), IG->getAlign()); |
| 75 | |
| 76 | if (Inst == IG->getInsertPos()) |
| 77 | Old2New[IG]->setInsertPos(VPInst); |
| 78 | |
| 79 | InterleaveGroupMap[VPInst] = Old2New[IG]; |
| 80 | InterleaveGroupMap[VPInst]->insertMember( |
| 81 | Instr: VPInst, Index: IG->getIndex(Instr: Inst), |
| 82 | NewAlign: Align(IG->isReverse() ? (-1) * int(IG->getFactor()) |
| 83 | : IG->getFactor())); |
| 84 | } |
| 85 | } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) { |
| 86 | visitRegion(Region, Old2New, IAI); |
| 87 | } else { |
| 88 | llvm_unreachable("Unsupported kind of VPBlock." ); |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, |
| 93 | InterleavedAccessInfo &IAI) { |
| 94 | Old2NewTy Old2New; |
| 95 | visitRegion(Region: Plan.getVectorLoopRegion(), Old2New, IAI); |
| 96 | } |
| 97 | |
| 98 | VPInstruction *VPlanSlp::markFailed() { |
| 99 | // FIXME: Currently this is used to signal we hit instructions we cannot |
| 100 | // trivially SLP'ize. |
| 101 | CompletelySLP = false; |
| 102 | return nullptr; |
| 103 | } |
| 104 | |
| 105 | void VPlanSlp::addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New) { |
| 106 | if (all_of(Range&: Operands, P: [](VPValue *V) { |
| 107 | return cast<VPInstruction>(Val: V)->getUnderlyingInstr(); |
| 108 | })) { |
| 109 | unsigned BundleSize = 0; |
| 110 | for (VPValue *V : Operands) { |
| 111 | Type *T = cast<VPInstruction>(Val: V)->getUnderlyingInstr()->getType(); |
| 112 | assert(!T->isVectorTy() && "Only scalar types supported for now" ); |
| 113 | BundleSize += T->getScalarSizeInBits(); |
| 114 | } |
| 115 | WidestBundleBits = std::max(a: WidestBundleBits, b: BundleSize); |
| 116 | } |
| 117 | |
| 118 | auto Res = BundleToCombined.try_emplace(Key: to_vector<4>(Range&: Operands), Args&: New); |
| 119 | assert(Res.second && |
| 120 | "Already created a combined instruction for the operand bundle" ); |
| 121 | (void)Res; |
| 122 | } |
| 123 | |
| 124 | bool VPlanSlp::areVectorizable(ArrayRef<VPValue *> Operands) const { |
| 125 | // Currently we only support VPInstructions. |
| 126 | if (!all_of(Range&: Operands, P: [](VPValue *Op) { |
| 127 | return Op && isa<VPInstruction>(Val: Op) && |
| 128 | cast<VPInstruction>(Val: Op)->getUnderlyingInstr(); |
| 129 | })) { |
| 130 | LLVM_DEBUG(dbgs() << "VPSLP: not all operands are VPInstructions\n" ); |
| 131 | return false; |
| 132 | } |
| 133 | |
| 134 | // Check if opcodes and type width agree for all instructions in the bundle. |
| 135 | // FIXME: Differing widths/opcodes can be handled by inserting additional |
| 136 | // instructions. |
| 137 | // FIXME: Deal with non-primitive types. |
| 138 | const Instruction *OriginalInstr = |
| 139 | cast<VPInstruction>(Val: Operands[0])->getUnderlyingInstr(); |
| 140 | unsigned Opcode = OriginalInstr->getOpcode(); |
| 141 | unsigned Width = OriginalInstr->getType()->getPrimitiveSizeInBits(); |
| 142 | if (!all_of(Range&: Operands, P: [Opcode, Width](VPValue *Op) { |
| 143 | const Instruction *I = cast<VPInstruction>(Val: Op)->getUnderlyingInstr(); |
| 144 | return I->getOpcode() == Opcode && |
| 145 | I->getType()->getPrimitiveSizeInBits() == Width; |
| 146 | })) { |
| 147 | LLVM_DEBUG(dbgs() << "VPSLP: Opcodes do not agree \n" ); |
| 148 | return false; |
| 149 | } |
| 150 | |
| 151 | // For now, all operands must be defined in the same BB. |
| 152 | if (any_of(Range&: Operands, P: [this](VPValue *Op) { |
| 153 | return cast<VPInstruction>(Val: Op)->getParent() != &this->BB; |
| 154 | })) { |
| 155 | LLVM_DEBUG(dbgs() << "VPSLP: operands in different BBs\n" ); |
| 156 | return false; |
| 157 | } |
| 158 | |
| 159 | if (any_of(Range&: Operands, |
| 160 | P: [](VPValue *Op) { return Op->hasMoreThanOneUniqueUser(); })) { |
| 161 | LLVM_DEBUG(dbgs() << "VPSLP: Some operands have multiple users.\n" ); |
| 162 | return false; |
| 163 | } |
| 164 | |
| 165 | // For loads, check that there are no instructions writing to memory in |
| 166 | // between them. |
| 167 | // TODO: we only have to forbid instructions writing to memory that could |
| 168 | // interfere with any of the loads in the bundle |
| 169 | if (Opcode == Instruction::Load) { |
| 170 | unsigned LoadsSeen = 0; |
| 171 | VPBasicBlock *Parent = cast<VPInstruction>(Val: Operands[0])->getParent(); |
| 172 | for (auto &I : *Parent) { |
| 173 | auto *VPI = dyn_cast<VPInstruction>(Val: &I); |
| 174 | if (!VPI) |
| 175 | break; |
| 176 | if (VPI->getOpcode() == Instruction::Load && |
| 177 | llvm::is_contained(Range&: Operands, Element: VPI)) |
| 178 | LoadsSeen++; |
| 179 | |
| 180 | if (LoadsSeen == Operands.size()) |
| 181 | break; |
| 182 | if (LoadsSeen > 0 && VPI->mayWriteToMemory()) { |
| 183 | LLVM_DEBUG( |
| 184 | dbgs() << "VPSLP: instruction modifying memory between loads\n" ); |
| 185 | return false; |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | if (!all_of(Range&: Operands, P: [](VPValue *Op) { |
| 190 | return cast<LoadInst>(Val: cast<VPInstruction>(Val: Op)->getUnderlyingInstr()) |
| 191 | ->isSimple(); |
| 192 | })) { |
| 193 | LLVM_DEBUG(dbgs() << "VPSLP: only simple loads are supported.\n" ); |
| 194 | return false; |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | if (Opcode == Instruction::Store) |
| 199 | if (!all_of(Range&: Operands, P: [](VPValue *Op) { |
| 200 | return cast<StoreInst>(Val: cast<VPInstruction>(Val: Op)->getUnderlyingInstr()) |
| 201 | ->isSimple(); |
| 202 | })) { |
| 203 | LLVM_DEBUG(dbgs() << "VPSLP: only simple stores are supported.\n" ); |
| 204 | return false; |
| 205 | } |
| 206 | |
| 207 | return true; |
| 208 | } |
| 209 | |
| 210 | static SmallVector<VPValue *, 4> getOperands(ArrayRef<VPValue *> Values, |
| 211 | unsigned OperandIndex) { |
| 212 | SmallVector<VPValue *, 4> Operands; |
| 213 | for (VPValue *V : Values) { |
| 214 | // Currently we only support VPInstructions. |
| 215 | auto *U = cast<VPInstruction>(Val: V); |
| 216 | Operands.push_back(Elt: U->getOperand(N: OperandIndex)); |
| 217 | } |
| 218 | return Operands; |
| 219 | } |
| 220 | |
| 221 | static bool areCommutative(ArrayRef<VPValue *> Values) { |
| 222 | return Instruction::isCommutative( |
| 223 | Opcode: cast<VPInstruction>(Val: Values[0])->getOpcode()); |
| 224 | } |
| 225 | |
| 226 | static SmallVector<SmallVector<VPValue *, 4>, 4> |
| 227 | getOperands(ArrayRef<VPValue *> Values) { |
| 228 | SmallVector<SmallVector<VPValue *, 4>, 4> Result; |
| 229 | auto *VPI = cast<VPInstruction>(Val: Values[0]); |
| 230 | |
| 231 | switch (VPI->getOpcode()) { |
| 232 | case Instruction::Load: |
| 233 | llvm_unreachable("Loads terminate a tree, no need to get operands" ); |
| 234 | case Instruction::Store: |
| 235 | Result.push_back(Elt: getOperands(Values, OperandIndex: 0)); |
| 236 | break; |
| 237 | default: |
| 238 | for (unsigned I = 0, NumOps = VPI->getNumOperands(); I < NumOps; ++I) |
| 239 | Result.push_back(Elt: getOperands(Values, OperandIndex: I)); |
| 240 | break; |
| 241 | } |
| 242 | |
| 243 | return Result; |
| 244 | } |
| 245 | |
| 246 | /// Returns the opcode of Values or ~0 if they do not all agree. |
| 247 | static std::optional<unsigned> getOpcode(ArrayRef<VPValue *> Values) { |
| 248 | unsigned Opcode = cast<VPInstruction>(Val: Values[0])->getOpcode(); |
| 249 | if (any_of(Range&: Values, P: [Opcode](VPValue *V) { |
| 250 | return cast<VPInstruction>(Val: V)->getOpcode() != Opcode; |
| 251 | })) |
| 252 | return std::nullopt; |
| 253 | return {Opcode}; |
| 254 | } |
| 255 | |
| 256 | /// Returns true if A and B access sequential memory if they are loads or |
| 257 | /// stores or if they have identical opcodes otherwise. |
| 258 | static bool areConsecutiveOrMatch(VPInstruction *A, VPInstruction *B, |
| 259 | VPInterleavedAccessInfo &IAI) { |
| 260 | if (A->getOpcode() != B->getOpcode()) |
| 261 | return false; |
| 262 | |
| 263 | if (A->getOpcode() != Instruction::Load && |
| 264 | A->getOpcode() != Instruction::Store) |
| 265 | return true; |
| 266 | auto *GA = IAI.getInterleaveGroup(Instr: A); |
| 267 | auto *GB = IAI.getInterleaveGroup(Instr: B); |
| 268 | |
| 269 | return GA && GB && GA == GB && GA->getIndex(Instr: A) + 1 == GB->getIndex(Instr: B); |
| 270 | } |
| 271 | |
| 272 | /// Implements getLAScore from Listing 7 in the paper. |
| 273 | /// Traverses and compares operands of V1 and V2 to MaxLevel. |
| 274 | static unsigned getLAScore(VPValue *V1, VPValue *V2, unsigned MaxLevel, |
| 275 | VPInterleavedAccessInfo &IAI) { |
| 276 | auto *I1 = dyn_cast<VPInstruction>(Val: V1); |
| 277 | auto *I2 = dyn_cast<VPInstruction>(Val: V2); |
| 278 | // Currently we only support VPInstructions. |
| 279 | if (!I1 || !I2) |
| 280 | return 0; |
| 281 | |
| 282 | if (MaxLevel == 0) |
| 283 | return (unsigned)areConsecutiveOrMatch(A: I1, B: I2, IAI); |
| 284 | |
| 285 | unsigned Score = 0; |
| 286 | for (unsigned I = 0, EV1 = I1->getNumOperands(); I < EV1; ++I) |
| 287 | for (unsigned J = 0, EV2 = I2->getNumOperands(); J < EV2; ++J) |
| 288 | Score += |
| 289 | getLAScore(V1: I1->getOperand(N: I), V2: I2->getOperand(N: J), MaxLevel: MaxLevel - 1, IAI); |
| 290 | return Score; |
| 291 | } |
| 292 | |
| 293 | std::pair<VPlanSlp::OpMode, VPValue *> |
| 294 | VPlanSlp::getBest(OpMode Mode, VPValue *Last, |
| 295 | SmallPtrSetImpl<VPValue *> &Candidates, |
| 296 | VPInterleavedAccessInfo &IAI) { |
| 297 | assert((Mode == OpMode::Load || Mode == OpMode::Opcode) && |
| 298 | "Currently we only handle load and commutative opcodes" ); |
| 299 | LLVM_DEBUG(dbgs() << " getBest\n" ); |
| 300 | |
| 301 | SmallVector<VPValue *, 4> BestCandidates; |
| 302 | LLVM_DEBUG(dbgs() << " Candidates for " |
| 303 | << *cast<VPInstruction>(Last)->getUnderlyingInstr() << " " ); |
| 304 | for (auto *Candidate : Candidates) { |
| 305 | auto *LastI = cast<VPInstruction>(Val: Last); |
| 306 | auto *CandidateI = cast<VPInstruction>(Val: Candidate); |
| 307 | if (areConsecutiveOrMatch(A: LastI, B: CandidateI, IAI)) { |
| 308 | LLVM_DEBUG(dbgs() << *cast<VPInstruction>(Candidate)->getUnderlyingInstr() |
| 309 | << " " ); |
| 310 | BestCandidates.push_back(Elt: Candidate); |
| 311 | } |
| 312 | } |
| 313 | LLVM_DEBUG(dbgs() << "\n" ); |
| 314 | |
| 315 | if (BestCandidates.empty()) |
| 316 | return {OpMode::Failed, nullptr}; |
| 317 | |
| 318 | if (BestCandidates.size() == 1) |
| 319 | return {Mode, BestCandidates[0]}; |
| 320 | |
| 321 | VPValue *Best = nullptr; |
| 322 | unsigned BestScore = 0; |
| 323 | for (unsigned Depth = 1; Depth < LookaheadMaxDepth; Depth++) { |
| 324 | unsigned PrevScore = ~0u; |
| 325 | bool AllSame = true; |
| 326 | |
| 327 | // FIXME: Avoid visiting the same operands multiple times. |
| 328 | for (auto *Candidate : BestCandidates) { |
| 329 | unsigned Score = getLAScore(V1: Last, V2: Candidate, MaxLevel: Depth, IAI); |
| 330 | if (PrevScore == ~0u) |
| 331 | PrevScore = Score; |
| 332 | if (PrevScore != Score) |
| 333 | AllSame = false; |
| 334 | PrevScore = Score; |
| 335 | |
| 336 | if (Score > BestScore) { |
| 337 | BestScore = Score; |
| 338 | Best = Candidate; |
| 339 | } |
| 340 | } |
| 341 | if (!AllSame) |
| 342 | break; |
| 343 | } |
| 344 | LLVM_DEBUG(dbgs() << "Found best " |
| 345 | << *cast<VPInstruction>(Best)->getUnderlyingInstr() |
| 346 | << "\n" ); |
| 347 | Candidates.erase(Ptr: Best); |
| 348 | |
| 349 | return {Mode, Best}; |
| 350 | } |
| 351 | |
| 352 | SmallVector<VPlanSlp::MultiNodeOpTy, 4> VPlanSlp::reorderMultiNodeOps() { |
| 353 | SmallVector<MultiNodeOpTy, 4> FinalOrder; |
| 354 | SmallVector<OpMode, 4> Mode; |
| 355 | FinalOrder.reserve(N: MultiNodeOps.size()); |
| 356 | Mode.reserve(N: MultiNodeOps.size()); |
| 357 | |
| 358 | LLVM_DEBUG(dbgs() << "Reordering multinode\n" ); |
| 359 | |
| 360 | for (auto &Operands : MultiNodeOps) { |
| 361 | FinalOrder.push_back(Elt: {Operands.first, {Operands.second[0]}}); |
| 362 | if (cast<VPInstruction>(Val: Operands.second[0])->getOpcode() == |
| 363 | Instruction::Load) |
| 364 | Mode.push_back(Elt: OpMode::Load); |
| 365 | else |
| 366 | Mode.push_back(Elt: OpMode::Opcode); |
| 367 | } |
| 368 | |
| 369 | for (unsigned Lane = 1, E = MultiNodeOps[0].second.size(); Lane < E; ++Lane) { |
| 370 | LLVM_DEBUG(dbgs() << " Finding best value for lane " << Lane << "\n" ); |
| 371 | SmallPtrSet<VPValue *, 4> Candidates; |
| 372 | LLVM_DEBUG(dbgs() << " Candidates " ); |
| 373 | for (auto Ops : MultiNodeOps) { |
| 374 | LLVM_DEBUG( |
| 375 | dbgs() << *cast<VPInstruction>(Ops.second[Lane])->getUnderlyingInstr() |
| 376 | << " " ); |
| 377 | Candidates.insert(Ptr: Ops.second[Lane]); |
| 378 | } |
| 379 | LLVM_DEBUG(dbgs() << "\n" ); |
| 380 | |
| 381 | for (unsigned Op = 0, E = MultiNodeOps.size(); Op < E; ++Op) { |
| 382 | LLVM_DEBUG(dbgs() << " Checking " << Op << "\n" ); |
| 383 | if (Mode[Op] == OpMode::Failed) |
| 384 | continue; |
| 385 | |
| 386 | VPValue *Last = FinalOrder[Op].second[Lane - 1]; |
| 387 | std::pair<OpMode, VPValue *> Res = |
| 388 | getBest(Mode: Mode[Op], Last, Candidates, IAI); |
| 389 | if (Res.second) |
| 390 | FinalOrder[Op].second.push_back(Elt: Res.second); |
| 391 | else |
| 392 | // TODO: handle this case |
| 393 | FinalOrder[Op].second.push_back(Elt: markFailed()); |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | return FinalOrder; |
| 398 | } |
| 399 | |
| 400 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 401 | void VPlanSlp::dumpBundle(ArrayRef<VPValue *> Values) { |
| 402 | dbgs() << " Ops: " ; |
| 403 | for (auto *Op : Values) { |
| 404 | if (auto *VPInstr = cast_or_null<VPInstruction>(Op)) |
| 405 | if (auto *Instr = VPInstr->getUnderlyingInstr()) { |
| 406 | dbgs() << *Instr << " | " ; |
| 407 | continue; |
| 408 | } |
| 409 | dbgs() << " nullptr | " ; |
| 410 | } |
| 411 | dbgs() << "\n" ; |
| 412 | } |
| 413 | #endif |
| 414 | |
| 415 | VPInstruction *VPlanSlp::buildGraph(ArrayRef<VPValue *> Values) { |
| 416 | assert(!Values.empty() && "Need some operands!" ); |
| 417 | |
| 418 | // If we already visited this instruction bundle, re-use the existing node |
| 419 | auto I = BundleToCombined.find(Val: to_vector<4>(Range&: Values)); |
| 420 | if (I != BundleToCombined.end()) { |
| 421 | #ifndef NDEBUG |
| 422 | // Check that the resulting graph is a tree. If we re-use a node, this means |
| 423 | // its values have multiple users. We only allow this, if all users of each |
| 424 | // value are the same instruction. |
| 425 | for (auto *V : Values) { |
| 426 | auto UI = V->user_begin(); |
| 427 | auto *FirstUser = *UI++; |
| 428 | while (UI != V->user_end()) { |
| 429 | assert(*UI == FirstUser && "Currently we only support SLP trees." ); |
| 430 | UI++; |
| 431 | } |
| 432 | } |
| 433 | #endif |
| 434 | return I->second; |
| 435 | } |
| 436 | |
| 437 | // Dump inputs |
| 438 | LLVM_DEBUG({ |
| 439 | dbgs() << "buildGraph: " ; |
| 440 | dumpBundle(Values); |
| 441 | }); |
| 442 | |
| 443 | if (!areVectorizable(Operands: Values)) |
| 444 | return markFailed(); |
| 445 | |
| 446 | assert(getOpcode(Values) && "Opcodes for all values must match" ); |
| 447 | unsigned ValuesOpcode = *getOpcode(Values); |
| 448 | |
| 449 | SmallVector<VPValue *, 4> CombinedOperands; |
| 450 | if (areCommutative(Values)) { |
| 451 | bool MultiNodeRoot = !MultiNodeActive; |
| 452 | MultiNodeActive = true; |
| 453 | for (auto &Operands : getOperands(Values)) { |
| 454 | LLVM_DEBUG({ |
| 455 | dbgs() << " Visiting Commutative" ; |
| 456 | dumpBundle(Operands); |
| 457 | }); |
| 458 | |
| 459 | auto OperandsOpcode = getOpcode(Values: Operands); |
| 460 | if (OperandsOpcode && OperandsOpcode == getOpcode(Values)) { |
| 461 | LLVM_DEBUG(dbgs() << " Same opcode, continue building\n" ); |
| 462 | CombinedOperands.push_back(Elt: buildGraph(Values: Operands)); |
| 463 | } else { |
| 464 | LLVM_DEBUG(dbgs() << " Adding multinode Ops\n" ); |
| 465 | // Create dummy VPInstruction, which will we replace later by the |
| 466 | // re-ordered operand. |
| 467 | VPInstruction *Op = new VPInstruction(0, {}); |
| 468 | CombinedOperands.push_back(Elt: Op); |
| 469 | MultiNodeOps.emplace_back(Args&: Op, Args&: Operands); |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | if (MultiNodeRoot) { |
| 474 | LLVM_DEBUG(dbgs() << "Reorder \n" ); |
| 475 | MultiNodeActive = false; |
| 476 | |
| 477 | auto FinalOrder = reorderMultiNodeOps(); |
| 478 | |
| 479 | MultiNodeOps.clear(); |
| 480 | for (auto &Ops : FinalOrder) { |
| 481 | VPInstruction *NewOp = buildGraph(Values: Ops.second); |
| 482 | Ops.first->replaceAllUsesWith(New: NewOp); |
| 483 | for (unsigned i = 0; i < CombinedOperands.size(); i++) |
| 484 | if (CombinedOperands[i] == Ops.first) |
| 485 | CombinedOperands[i] = NewOp; |
| 486 | delete Ops.first; |
| 487 | Ops.first = NewOp; |
| 488 | } |
| 489 | LLVM_DEBUG(dbgs() << "Found final order\n" ); |
| 490 | } |
| 491 | } else { |
| 492 | LLVM_DEBUG(dbgs() << " NonCommuntative\n" ); |
| 493 | if (ValuesOpcode == Instruction::Load) |
| 494 | for (VPValue *V : Values) |
| 495 | CombinedOperands.push_back(Elt: cast<VPInstruction>(Val: V)->getOperand(N: 0)); |
| 496 | else |
| 497 | for (auto &Operands : getOperands(Values)) |
| 498 | CombinedOperands.push_back(Elt: buildGraph(Values: Operands)); |
| 499 | } |
| 500 | |
| 501 | unsigned Opcode; |
| 502 | switch (ValuesOpcode) { |
| 503 | case Instruction::Load: |
| 504 | Opcode = VPInstruction::SLPLoad; |
| 505 | break; |
| 506 | case Instruction::Store: |
| 507 | Opcode = VPInstruction::SLPStore; |
| 508 | break; |
| 509 | default: |
| 510 | Opcode = ValuesOpcode; |
| 511 | break; |
| 512 | } |
| 513 | |
| 514 | if (!CompletelySLP) |
| 515 | return markFailed(); |
| 516 | |
| 517 | assert(CombinedOperands.size() > 0 && "Need more some operands" ); |
| 518 | auto *Inst = cast<VPInstruction>(Val: Values[0])->getUnderlyingInstr(); |
| 519 | auto *VPI = new VPInstruction(Opcode, CombinedOperands, Inst->getDebugLoc()); |
| 520 | |
| 521 | LLVM_DEBUG(dbgs() << "Create VPInstruction " << *VPI << " " << Values[0] |
| 522 | << "\n" ); |
| 523 | addCombined(Operands: Values, New: VPI); |
| 524 | return VPI; |
| 525 | } |
| 526 | |