| 1 | ///===- FastISelEmitter.cpp - Generate an instruction selector ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This tablegen backend emits code for use by the "fast" instruction |
| 10 | // selection algorithm. See the comments at the top of |
| 11 | // lib/CodeGen/SelectionDAG/FastISel.cpp for background. |
| 12 | // |
| 13 | // This file scans through the target's tablegen instruction-info files |
| 14 | // and extracts instructions with obvious-looking patterns, and it emits |
| 15 | // code to look up these instructions by type and operator. |
| 16 | // |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | #include "Common/CodeGenDAGPatterns.h" |
| 20 | #include "Common/CodeGenInstruction.h" |
| 21 | #include "Common/CodeGenRegisters.h" |
| 22 | #include "Common/CodeGenTarget.h" |
| 23 | #include "Common/InfoByHwMode.h" |
| 24 | #include "llvm/ADT/StringSwitch.h" |
| 25 | #include "llvm/Support/ErrorHandling.h" |
| 26 | #include "llvm/TableGen/Error.h" |
| 27 | #include "llvm/TableGen/Record.h" |
| 28 | #include "llvm/TableGen/TableGenBackend.h" |
| 29 | #include <set> |
| 30 | #include <utility> |
| 31 | using namespace llvm; |
| 32 | |
| 33 | /// InstructionMemo - This class holds additional information about an |
| 34 | /// instruction needed to emit code for it. |
| 35 | /// |
| 36 | namespace { |
| 37 | struct InstructionMemo { |
| 38 | StringRef Name; |
| 39 | const CodeGenRegisterClass *RC; |
| 40 | std::string SubRegNo; |
| 41 | std::vector<std::string> PhysRegs; |
| 42 | std::string PredicateCheck; |
| 43 | |
| 44 | InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC, |
| 45 | std::string SubRegNo, std::vector<std::string> PhysRegs, |
| 46 | std::string PredicateCheck) |
| 47 | : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)), |
| 48 | PhysRegs(std::move(PhysRegs)), |
| 49 | PredicateCheck(std::move(PredicateCheck)) {} |
| 50 | |
| 51 | // Make sure we do not copy InstructionMemo. |
| 52 | InstructionMemo(const InstructionMemo &Other) = delete; |
| 53 | InstructionMemo(InstructionMemo &&Other) = default; |
| 54 | }; |
| 55 | } // End anonymous namespace |
| 56 | |
| 57 | /// ImmPredicateSet - This uniques predicates (represented as a string) and |
| 58 | /// gives them unique (small) integer ID's that start at 0. |
| 59 | namespace { |
| 60 | class ImmPredicateSet { |
| 61 | DenseMap<TreePattern *, unsigned> ImmIDs; |
| 62 | std::vector<TreePredicateFn> PredsByName; |
| 63 | |
| 64 | public: |
| 65 | unsigned getIDFor(TreePredicateFn Pred) { |
| 66 | unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()]; |
| 67 | if (Entry == 0) { |
| 68 | PredsByName.push_back(x: Pred); |
| 69 | Entry = PredsByName.size(); |
| 70 | } |
| 71 | return Entry - 1; |
| 72 | } |
| 73 | |
| 74 | const TreePredicateFn &getPredicate(unsigned Idx) { return PredsByName[Idx]; } |
| 75 | |
| 76 | typedef std::vector<TreePredicateFn>::const_iterator iterator; |
| 77 | iterator begin() const { return PredsByName.begin(); } |
| 78 | iterator end() const { return PredsByName.end(); } |
| 79 | }; |
| 80 | } // End anonymous namespace |
| 81 | |
| 82 | /// OperandsSignature - This class holds a description of a list of operand |
| 83 | /// types. It has utility methods for emitting text based on the operands. |
| 84 | /// |
| 85 | namespace { |
| 86 | struct OperandsSignature { |
| 87 | class OpKind { |
| 88 | enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 }; |
| 89 | char Repr = OK_Invalid; |
| 90 | |
| 91 | public: |
| 92 | OpKind() {} |
| 93 | |
| 94 | bool operator<(OpKind RHS) const { return Repr < RHS.Repr; } |
| 95 | bool operator==(OpKind RHS) const { return Repr == RHS.Repr; } |
| 96 | |
| 97 | static OpKind getReg() { |
| 98 | OpKind K; |
| 99 | K.Repr = OK_Reg; |
| 100 | return K; |
| 101 | } |
| 102 | static OpKind getFP() { |
| 103 | OpKind K; |
| 104 | K.Repr = OK_FP; |
| 105 | return K; |
| 106 | } |
| 107 | static OpKind getImm(unsigned V) { |
| 108 | assert((unsigned)OK_Imm + V < 128 && |
| 109 | "Too many integer predicates for the 'Repr' char" ); |
| 110 | OpKind K; |
| 111 | K.Repr = OK_Imm + V; |
| 112 | return K; |
| 113 | } |
| 114 | |
| 115 | bool isReg() const { return Repr == OK_Reg; } |
| 116 | bool isFP() const { return Repr == OK_FP; } |
| 117 | bool isImm() const { return Repr >= OK_Imm; } |
| 118 | |
| 119 | unsigned getImmCode() const { |
| 120 | assert(isImm()); |
| 121 | return Repr - OK_Imm; |
| 122 | } |
| 123 | |
| 124 | void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, |
| 125 | bool StripImmCodes) const { |
| 126 | if (isReg()) |
| 127 | OS << 'r'; |
| 128 | else if (isFP()) |
| 129 | OS << 'f'; |
| 130 | else { |
| 131 | OS << 'i'; |
| 132 | if (!StripImmCodes) |
| 133 | if (unsigned Code = getImmCode()) |
| 134 | OS << "_" << ImmPredicates.getPredicate(Idx: Code - 1).getFnName(); |
| 135 | } |
| 136 | } |
| 137 | }; |
| 138 | |
| 139 | SmallVector<OpKind, 3> Operands; |
| 140 | |
| 141 | bool operator<(const OperandsSignature &O) const { |
| 142 | return Operands < O.Operands; |
| 143 | } |
| 144 | bool operator==(const OperandsSignature &O) const { |
| 145 | return Operands == O.Operands; |
| 146 | } |
| 147 | |
| 148 | bool empty() const { return Operands.empty(); } |
| 149 | |
| 150 | bool hasAnyImmediateCodes() const { |
| 151 | return llvm::any_of(Range: Operands, P: [](OpKind Kind) { |
| 152 | return Kind.isImm() && Kind.getImmCode() != 0; |
| 153 | }); |
| 154 | } |
| 155 | |
| 156 | /// getWithoutImmCodes - Return a copy of this with any immediate codes forced |
| 157 | /// to zero. |
| 158 | OperandsSignature getWithoutImmCodes() const { |
| 159 | OperandsSignature Result; |
| 160 | Result.Operands.resize(N: Operands.size()); |
| 161 | llvm::transform(Range: Operands, d_first: Result.Operands.begin(), F: [](OpKind Kind) { |
| 162 | return Kind.isImm() ? OpKind::getImm(V: 0) : Kind; |
| 163 | }); |
| 164 | return Result; |
| 165 | } |
| 166 | |
| 167 | void emitImmediatePredicate(raw_ostream &OS, |
| 168 | ImmPredicateSet &ImmPredicates) const { |
| 169 | ListSeparator LS(" &&\n " ); |
| 170 | for (auto [Idx, Opnd] : enumerate(First: Operands)) { |
| 171 | if (!Opnd.isImm()) |
| 172 | continue; |
| 173 | |
| 174 | unsigned Code = Opnd.getImmCode(); |
| 175 | if (Code == 0) |
| 176 | continue; |
| 177 | |
| 178 | TreePredicateFn PredFn = ImmPredicates.getPredicate(Idx: Code - 1); |
| 179 | |
| 180 | // Emit the type check. |
| 181 | TreePattern *TP = PredFn.getOrigPatFragRecord(); |
| 182 | ValueTypeByHwMode VVT = TP->getTree(i: 0)->getType(ResNo: 0); |
| 183 | assert(VVT.isSimple() && |
| 184 | "Cannot use variable value types with fast isel" ); |
| 185 | OS << LS << "VT == " << getEnumName(T: VVT.getSimple().SimpleTy) << " && " ; |
| 186 | |
| 187 | OS << PredFn.getFnName() << "(imm" << Idx << ')'; |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | /// initialize - Examine the given pattern and initialize the contents |
| 192 | /// of the Operands array accordingly. Return true if all the operands |
| 193 | /// are supported, false otherwise. |
| 194 | /// |
| 195 | bool initialize(TreePatternNode &InstPatNode, const CodeGenTarget &Target, |
| 196 | MVT::SimpleValueType VT, ImmPredicateSet &ImmediatePredicates, |
| 197 | const CodeGenRegisterClass *OrigDstRC) { |
| 198 | if (InstPatNode.isLeaf()) |
| 199 | return false; |
| 200 | |
| 201 | if (InstPatNode.getOperator()->getName() == "imm" ) { |
| 202 | Operands.push_back(Elt: OpKind::getImm(V: 0)); |
| 203 | return true; |
| 204 | } |
| 205 | |
| 206 | if (InstPatNode.getOperator()->getName() == "fpimm" ) { |
| 207 | Operands.push_back(Elt: OpKind::getFP()); |
| 208 | return true; |
| 209 | } |
| 210 | |
| 211 | const CodeGenRegisterClass *DstRC = nullptr; |
| 212 | |
| 213 | for (const TreePatternNode &Op : InstPatNode.children()) { |
| 214 | // Handle imm operands specially. |
| 215 | if (!Op.isLeaf() && Op.getOperator()->getName() == "imm" ) { |
| 216 | unsigned PredNo = 0; |
| 217 | if (!Op.getPredicateCalls().empty()) { |
| 218 | TreePredicateFn PredFn = Op.getPredicateCalls()[0].Fn; |
| 219 | // If there is more than one predicate weighing in on this operand |
| 220 | // then we don't handle it. This doesn't typically happen for |
| 221 | // immediates anyway. |
| 222 | if (Op.getPredicateCalls().size() > 1 || |
| 223 | !PredFn.isImmediatePattern() || PredFn.usesOperands()) |
| 224 | return false; |
| 225 | // Ignore any instruction with 'FastIselShouldIgnore', these are |
| 226 | // not needed and just bloat the fast instruction selector. For |
| 227 | // example, X86 doesn't need to generate code to match ADD16ri8 since |
| 228 | // ADD16ri will do just fine. |
| 229 | const Record *Rec = PredFn.getOrigPatFragRecord()->getRecord(); |
| 230 | if (Rec->getValueAsBit(FieldName: "FastIselShouldIgnore" )) |
| 231 | return false; |
| 232 | |
| 233 | PredNo = ImmediatePredicates.getIDFor(Pred: PredFn) + 1; |
| 234 | } |
| 235 | |
| 236 | Operands.push_back(Elt: OpKind::getImm(V: PredNo)); |
| 237 | continue; |
| 238 | } |
| 239 | |
| 240 | // For now, filter out any operand with a predicate. |
| 241 | // For now, filter out any operand with multiple values. |
| 242 | if (!Op.getPredicateCalls().empty() || Op.getNumTypes() != 1) |
| 243 | return false; |
| 244 | |
| 245 | if (!Op.isLeaf()) { |
| 246 | if (Op.getOperator()->getName() == "fpimm" ) { |
| 247 | Operands.push_back(Elt: OpKind::getFP()); |
| 248 | continue; |
| 249 | } |
| 250 | // For now, ignore other non-leaf nodes. |
| 251 | return false; |
| 252 | } |
| 253 | |
| 254 | assert(Op.hasConcreteType(0) && "Type infererence not done?" ); |
| 255 | |
| 256 | // For now, all the operands must have the same type (if they aren't |
| 257 | // immediates). Note that this causes us to reject variable sized shifts |
| 258 | // on X86. |
| 259 | if (Op.getSimpleType(ResNo: 0) != VT) |
| 260 | return false; |
| 261 | |
| 262 | const DefInit *OpDI = dyn_cast<DefInit>(Val: Op.getLeafValue()); |
| 263 | if (!OpDI) |
| 264 | return false; |
| 265 | const Record *OpLeafRec = OpDI->getDef(); |
| 266 | |
| 267 | // For now, the only other thing we accept is register operands. |
| 268 | const CodeGenRegisterClass *RC = nullptr; |
| 269 | if (OpLeafRec->isSubClassOf(Name: "RegisterOperand" )) |
| 270 | OpLeafRec = OpLeafRec->getValueAsDef(FieldName: "RegClass" ); |
| 271 | if (OpLeafRec->isSubClassOf(Name: "RegisterClass" )) |
| 272 | RC = &Target.getRegisterClass(R: OpLeafRec); |
| 273 | else if (OpLeafRec->isSubClassOf(Name: "Register" )) |
| 274 | RC = Target.getRegBank().getRegClassForRegister(R: OpLeafRec); |
| 275 | else if (OpLeafRec->isSubClassOf(Name: "ValueType" )) |
| 276 | RC = OrigDstRC; |
| 277 | else |
| 278 | return false; |
| 279 | |
| 280 | // For now, this needs to be a register class of some sort. |
| 281 | if (!RC) |
| 282 | return false; |
| 283 | |
| 284 | // For now, all the operands must have the same register class or be |
| 285 | // a strict subclass of the destination. |
| 286 | if (DstRC) { |
| 287 | if (DstRC != RC && !DstRC->hasSubClass(RC)) |
| 288 | return false; |
| 289 | } else { |
| 290 | DstRC = RC; |
| 291 | } |
| 292 | Operands.push_back(Elt: OpKind::getReg()); |
| 293 | } |
| 294 | return true; |
| 295 | } |
| 296 | |
| 297 | void PrintParameters(raw_ostream &OS) const { |
| 298 | ListSeparator LS; |
| 299 | for (auto [Idx, Opnd] : enumerate(First: Operands)) { |
| 300 | OS << LS; |
| 301 | if (Opnd.isReg()) |
| 302 | OS << "Register Op" << Idx; |
| 303 | else if (Opnd.isImm()) |
| 304 | OS << "uint64_t imm" << Idx; |
| 305 | else if (Opnd.isFP()) |
| 306 | OS << "const ConstantFP *f" << Idx; |
| 307 | else |
| 308 | llvm_unreachable("Unknown operand kind!" ); |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | void PrintArguments(raw_ostream &OS, ArrayRef<std::string> PhyRegs) const { |
| 313 | ListSeparator LS; |
| 314 | for (auto [Idx, Opnd, PhyReg] : enumerate(First: Operands, Rest&: PhyRegs)) { |
| 315 | if (!PhyReg.empty()) { |
| 316 | // Implicit physical register operand. |
| 317 | continue; |
| 318 | } |
| 319 | |
| 320 | OS << LS; |
| 321 | if (Opnd.isReg()) |
| 322 | OS << "Op" << Idx; |
| 323 | else if (Opnd.isImm()) |
| 324 | OS << "imm" << Idx; |
| 325 | else if (Opnd.isFP()) |
| 326 | OS << "f" << Idx; |
| 327 | else |
| 328 | llvm_unreachable("Unknown operand kind!" ); |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | void PrintArguments(raw_ostream &OS) const { |
| 333 | ListSeparator LS; |
| 334 | for (auto [Idx, Opnd] : enumerate(First: Operands)) { |
| 335 | OS << LS; |
| 336 | if (Opnd.isReg()) |
| 337 | OS << "Op" << Idx; |
| 338 | else if (Opnd.isImm()) |
| 339 | OS << "imm" << Idx; |
| 340 | else if (Opnd.isFP()) |
| 341 | OS << "f" << Idx; |
| 342 | else |
| 343 | llvm_unreachable("Unknown operand kind!" ); |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | void PrintManglingSuffix(raw_ostream &OS, ArrayRef<std::string> PhyRegs, |
| 348 | ImmPredicateSet &ImmPredicates, |
| 349 | bool StripImmCodes = false) const { |
| 350 | for (auto [PhyReg, Opnd] : zip_equal(t&: PhyRegs, u: Operands)) { |
| 351 | if (!PhyReg.empty()) { |
| 352 | // Implicit physical register operand. e.g. Instruction::Mul expect to |
| 353 | // select to a binary op. On x86, mul may take a single operand with |
| 354 | // the other operand being implicit. We must emit something that looks |
| 355 | // like a binary instruction except for the very inner fastEmitInst_* |
| 356 | // call. |
| 357 | continue; |
| 358 | } |
| 359 | Opnd.printManglingSuffix(OS, ImmPredicates, StripImmCodes); |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, |
| 364 | bool StripImmCodes = false) const { |
| 365 | for (OpKind Opnd : Operands) |
| 366 | Opnd.printManglingSuffix(OS, ImmPredicates, StripImmCodes); |
| 367 | } |
| 368 | }; |
| 369 | } // End anonymous namespace |
| 370 | |
| 371 | namespace { |
| 372 | class FastISelMap { |
| 373 | // A multimap is needed instead of a "plain" map because the key is |
| 374 | // the instruction's complexity (an int) and they are not unique. |
| 375 | typedef std::multimap<int, InstructionMemo> PredMap; |
| 376 | typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; |
| 377 | typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; |
| 378 | typedef std::map<StringRef, TypeRetPredMap> OpcodeTypeRetPredMap; |
| 379 | typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> |
| 380 | OperandsOpcodeTypeRetPredMap; |
| 381 | |
| 382 | OperandsOpcodeTypeRetPredMap SimplePatterns; |
| 383 | |
| 384 | // This is used to check that there are no duplicate predicates |
| 385 | std::set<std::tuple<OperandsSignature, StringRef, MVT::SimpleValueType, |
| 386 | MVT::SimpleValueType, std::string>> |
| 387 | SimplePatternsCheck; |
| 388 | |
| 389 | std::map<OperandsSignature, std::vector<OperandsSignature>> |
| 390 | SignaturesWithConstantForms; |
| 391 | |
| 392 | StringRef InstNS; |
| 393 | ImmPredicateSet ImmediatePredicates; |
| 394 | |
| 395 | public: |
| 396 | explicit FastISelMap(StringRef InstNS); |
| 397 | |
| 398 | void collectPatterns(const CodeGenDAGPatterns &CGP); |
| 399 | void printImmediatePredicates(raw_ostream &OS); |
| 400 | void printFunctionDefinitions(raw_ostream &OS); |
| 401 | |
| 402 | private: |
| 403 | void emitInstructionCode(raw_ostream &OS, const OperandsSignature &Operands, |
| 404 | const PredMap &PM, StringRef RetVTName); |
| 405 | }; |
| 406 | } // End anonymous namespace |
| 407 | |
| 408 | static std::string getLegalCName(StringRef OpName) { |
| 409 | std::string CName = OpName.str(); |
| 410 | std::string::size_type Pos = CName.find(s: "::" ); |
| 411 | if (Pos != std::string::npos) |
| 412 | CName.replace(pos: Pos, n1: 2, s: "_" ); |
| 413 | return CName; |
| 414 | } |
| 415 | |
| 416 | FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {} |
| 417 | |
| 418 | static std::string PhysRegForNode(const TreePatternNode &Op, |
| 419 | const CodeGenTarget &Target) { |
| 420 | std::string PhysReg; |
| 421 | |
| 422 | if (!Op.isLeaf()) |
| 423 | return PhysReg; |
| 424 | |
| 425 | const Record *OpLeafRec = cast<DefInit>(Val: Op.getLeafValue())->getDef(); |
| 426 | if (!OpLeafRec->isSubClassOf(Name: "Register" )) |
| 427 | return PhysReg; |
| 428 | |
| 429 | PhysReg += cast<StringInit>(Val: OpLeafRec->getValue(Name: "Namespace" )->getValue()) |
| 430 | ->getValue(); |
| 431 | PhysReg += "::" ; |
| 432 | PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName(); |
| 433 | return PhysReg; |
| 434 | } |
| 435 | |
| 436 | void FastISelMap::collectPatterns(const CodeGenDAGPatterns &CGP) { |
| 437 | const CodeGenTarget &Target = CGP.getTargetInfo(); |
| 438 | |
| 439 | // Scan through all the patterns and record the simple ones. |
| 440 | for (const PatternToMatch &Pattern : CGP.ptms()) { |
| 441 | // For now, just look at Instructions, so that we don't have to worry |
| 442 | // about emitting multiple instructions for a pattern. |
| 443 | TreePatternNode &Dst = Pattern.getDstPattern(); |
| 444 | if (Dst.isLeaf()) |
| 445 | continue; |
| 446 | const Record *Op = Dst.getOperator(); |
| 447 | if (!Op->isSubClassOf(Name: "Instruction" )) |
| 448 | continue; |
| 449 | CodeGenInstruction &Inst = CGP.getTargetInfo().getInstruction(InstRec: Op); |
| 450 | if (Inst.Operands.empty()) |
| 451 | continue; |
| 452 | |
| 453 | // Allow instructions to be marked as unavailable for FastISel for |
| 454 | // certain cases, i.e. an ISA has two 'and' instruction which differ |
| 455 | // by what registers they can use but are otherwise identical for |
| 456 | // codegen purposes. |
| 457 | if (Inst.FastISelShouldIgnore) |
| 458 | continue; |
| 459 | |
| 460 | // For now, ignore multi-instruction patterns. |
| 461 | bool MultiInsts = false; |
| 462 | for (const TreePatternNode &ChildOp : Dst.children()) { |
| 463 | if (ChildOp.isLeaf()) |
| 464 | continue; |
| 465 | if (ChildOp.getOperator()->isSubClassOf(Name: "Instruction" )) { |
| 466 | MultiInsts = true; |
| 467 | break; |
| 468 | } |
| 469 | } |
| 470 | if (MultiInsts) |
| 471 | continue; |
| 472 | |
| 473 | // For now, ignore instructions where the first operand is not an |
| 474 | // output register. |
| 475 | const CodeGenRegisterClass *DstRC = nullptr; |
| 476 | std::string SubRegNo; |
| 477 | if (Op->getName() != "EXTRACT_SUBREG" ) { |
| 478 | const Record *Op0Rec = Inst.Operands[0].Rec; |
| 479 | if (Op0Rec->isSubClassOf(Name: "RegisterOperand" )) |
| 480 | Op0Rec = Op0Rec->getValueAsDef(FieldName: "RegClass" ); |
| 481 | if (!Op0Rec->isSubClassOf(Name: "RegisterClass" )) |
| 482 | continue; |
| 483 | DstRC = &Target.getRegisterClass(R: Op0Rec); |
| 484 | if (!DstRC) |
| 485 | continue; |
| 486 | } else { |
| 487 | // If this isn't a leaf, then continue since the register classes are |
| 488 | // a bit too complicated for now. |
| 489 | if (!Dst.getChild(N: 1).isLeaf()) |
| 490 | continue; |
| 491 | |
| 492 | const DefInit *SR = dyn_cast<DefInit>(Val: Dst.getChild(N: 1).getLeafValue()); |
| 493 | if (SR) |
| 494 | SubRegNo = getQualifiedName(R: SR->getDef()); |
| 495 | else |
| 496 | SubRegNo = Dst.getChild(N: 1).getLeafValue()->getAsString(); |
| 497 | } |
| 498 | |
| 499 | // Inspect the pattern. |
| 500 | TreePatternNode &InstPatNode = Pattern.getSrcPattern(); |
| 501 | if (InstPatNode.isLeaf()) |
| 502 | continue; |
| 503 | |
| 504 | // Ignore multiple result nodes for now. |
| 505 | if (InstPatNode.getNumTypes() > 1) |
| 506 | continue; |
| 507 | |
| 508 | const Record *InstPatOp = InstPatNode.getOperator(); |
| 509 | StringRef OpcodeName = CGP.getSDNodeInfo(R: InstPatOp).getEnumName(); |
| 510 | MVT::SimpleValueType RetVT = MVT::isVoid; |
| 511 | if (InstPatNode.getNumTypes()) |
| 512 | RetVT = InstPatNode.getSimpleType(ResNo: 0); |
| 513 | MVT::SimpleValueType VT = RetVT; |
| 514 | if (InstPatNode.getNumChildren()) { |
| 515 | assert(InstPatNode.getChild(0).getNumTypes() == 1); |
| 516 | VT = InstPatNode.getChild(N: 0).getSimpleType(ResNo: 0); |
| 517 | } |
| 518 | |
| 519 | // For now, filter out any instructions with predicates. |
| 520 | if (!InstPatNode.getPredicateCalls().empty()) |
| 521 | continue; |
| 522 | |
| 523 | // Check all the operands. |
| 524 | OperandsSignature Operands; |
| 525 | if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates, |
| 526 | OrigDstRC: DstRC)) |
| 527 | continue; |
| 528 | |
| 529 | std::vector<std::string> PhysRegInputs; |
| 530 | if (InstPatNode.getOperator()->getName() == "imm" || |
| 531 | InstPatNode.getOperator()->getName() == "fpimm" ) |
| 532 | PhysRegInputs.push_back(x: "" ); |
| 533 | else { |
| 534 | // Compute the PhysRegs used by the given pattern, and check that |
| 535 | // the mapping from the src to dst patterns is simple. |
| 536 | bool FoundNonSimplePattern = false; |
| 537 | unsigned DstIndex = 0; |
| 538 | for (const TreePatternNode &SrcChild : InstPatNode.children()) { |
| 539 | std::string PhysReg = PhysRegForNode(Op: SrcChild, Target); |
| 540 | if (PhysReg.empty()) { |
| 541 | if (DstIndex >= Dst.getNumChildren() || |
| 542 | Dst.getChild(N: DstIndex).getName() != SrcChild.getName()) { |
| 543 | FoundNonSimplePattern = true; |
| 544 | break; |
| 545 | } |
| 546 | ++DstIndex; |
| 547 | } |
| 548 | |
| 549 | PhysRegInputs.push_back(x: std::move(PhysReg)); |
| 550 | } |
| 551 | |
| 552 | if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst.getNumChildren()) |
| 553 | FoundNonSimplePattern = true; |
| 554 | |
| 555 | if (FoundNonSimplePattern) |
| 556 | continue; |
| 557 | } |
| 558 | |
| 559 | // Check if the operands match one of the patterns handled by FastISel. |
| 560 | std::string ManglingSuffix; |
| 561 | raw_string_ostream SuffixOS(ManglingSuffix); |
| 562 | Operands.PrintManglingSuffix(OS&: SuffixOS, ImmPredicates&: ImmediatePredicates, StripImmCodes: true); |
| 563 | if (!StringSwitch<bool>(ManglingSuffix) |
| 564 | .Cases(S0: "" , S1: "r" , S2: "rr" , S3: "ri" , S4: "i" , S5: "f" , Value: true) |
| 565 | .Default(Value: false)) |
| 566 | continue; |
| 567 | |
| 568 | // Get the predicate that guards this pattern. |
| 569 | std::string PredicateCheck = Pattern.getPredicateCheck(); |
| 570 | |
| 571 | // Ok, we found a pattern that we can handle. Remember it. |
| 572 | InstructionMemo Memo(Pattern.getDstPattern().getOperator()->getName(), |
| 573 | DstRC, std::move(SubRegNo), std::move(PhysRegInputs), |
| 574 | PredicateCheck); |
| 575 | |
| 576 | int Complexity = Pattern.getPatternComplexity(CGP); |
| 577 | |
| 578 | auto inserted_simple_pattern = SimplePatternsCheck.insert( |
| 579 | x: {Operands, OpcodeName, VT, RetVT, PredicateCheck}); |
| 580 | if (!inserted_simple_pattern.second) { |
| 581 | PrintFatalError(ErrorLoc: Pattern.getSrcRecord()->getLoc(), |
| 582 | Msg: "Duplicate predicate in FastISel table!" ); |
| 583 | } |
| 584 | |
| 585 | // Note: Instructions with the same complexity will appear in the order |
| 586 | // that they are encountered. |
| 587 | SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(args&: Complexity, |
| 588 | args: std::move(Memo)); |
| 589 | |
| 590 | // If any of the operands were immediates with predicates on them, strip |
| 591 | // them down to a signature that doesn't have predicates so that we can |
| 592 | // associate them with the stripped predicate version. |
| 593 | if (Operands.hasAnyImmediateCodes()) { |
| 594 | SignaturesWithConstantForms[Operands.getWithoutImmCodes()].push_back( |
| 595 | x: Operands); |
| 596 | } |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | void FastISelMap::printImmediatePredicates(raw_ostream &OS) { |
| 601 | if (ImmediatePredicates.begin() == ImmediatePredicates.end()) |
| 602 | return; |
| 603 | |
| 604 | OS << "\n// FastEmit Immediate Predicate functions.\n" ; |
| 605 | for (auto ImmediatePredicate : ImmediatePredicates) { |
| 606 | OS << "static bool " << ImmediatePredicate.getFnName() |
| 607 | << "(int64_t Imm) {\n" ; |
| 608 | OS << ImmediatePredicate.getImmediatePredicateCode() << "\n}\n" ; |
| 609 | } |
| 610 | |
| 611 | OS << "\n\n" ; |
| 612 | } |
| 613 | |
| 614 | void FastISelMap::emitInstructionCode(raw_ostream &OS, |
| 615 | const OperandsSignature &Operands, |
| 616 | const PredMap &PM, StringRef RetVTName) { |
| 617 | // Emit code for each possible instruction. There may be |
| 618 | // multiple if there are subtarget concerns. A reverse iterator |
| 619 | // is used to produce the ones with highest complexity first. |
| 620 | |
| 621 | bool OneHadNoPredicate = false; |
| 622 | for (const auto &[_, Memo] : reverse(C: PM)) { |
| 623 | std::string PredicateCheck = Memo.PredicateCheck; |
| 624 | |
| 625 | if (PredicateCheck.empty()) { |
| 626 | assert(!OneHadNoPredicate && |
| 627 | "Multiple instructions match and more than one had " |
| 628 | "no predicate!" ); |
| 629 | OneHadNoPredicate = true; |
| 630 | } else { |
| 631 | if (OneHadNoPredicate) { |
| 632 | PrintFatalError(Msg: "Multiple instructions match and one with no " |
| 633 | "predicate came before one with a predicate! " |
| 634 | "name:" + |
| 635 | Memo.Name + " predicate: " + PredicateCheck); |
| 636 | } |
| 637 | OS << " if (" + PredicateCheck + ") {\n" ; |
| 638 | OS << " " ; |
| 639 | } |
| 640 | |
| 641 | for (auto [Idx, PhyReg] : enumerate(First: Memo.PhysRegs)) { |
| 642 | if (!PhyReg.empty()) |
| 643 | OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, " |
| 644 | << "TII.get(TargetOpcode::COPY), " << PhyReg << ").addReg(Op" << Idx |
| 645 | << ");\n" ; |
| 646 | } |
| 647 | |
| 648 | OS << " return fastEmitInst_" ; |
| 649 | if (Memo.SubRegNo.empty()) { |
| 650 | Operands.PrintManglingSuffix(OS, PhyRegs: Memo.PhysRegs, ImmPredicates&: ImmediatePredicates, |
| 651 | StripImmCodes: true); |
| 652 | OS << "(" << InstNS << "::" << Memo.Name << ", " ; |
| 653 | OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass" ; |
| 654 | if (!Operands.empty()) |
| 655 | OS << ", " ; |
| 656 | Operands.PrintArguments(OS, PhyRegs: Memo.PhysRegs); |
| 657 | OS << ");\n" ; |
| 658 | } else { |
| 659 | OS << "extractsubreg(" << RetVTName << ", Op0, " << Memo.SubRegNo |
| 660 | << ");\n" ; |
| 661 | } |
| 662 | |
| 663 | if (!PredicateCheck.empty()) |
| 664 | OS << " }\n" ; |
| 665 | } |
| 666 | // Return Register() if all of the possibilities had predicates but none |
| 667 | // were satisfied. |
| 668 | if (!OneHadNoPredicate) |
| 669 | OS << " return Register();\n" ; |
| 670 | OS << "}\n" ; |
| 671 | OS << "\n" ; |
| 672 | } |
| 673 | |
| 674 | void FastISelMap::printFunctionDefinitions(raw_ostream &OS) { |
| 675 | // Now emit code for all the patterns that we collected. |
| 676 | for (const auto &SimplePattern : SimplePatterns) { |
| 677 | const OperandsSignature &Operands = SimplePattern.first; |
| 678 | const OpcodeTypeRetPredMap &OTM = SimplePattern.second; |
| 679 | |
| 680 | for (const auto &[Opcode, TM] : OTM) { |
| 681 | OS << "// FastEmit functions for " << Opcode << ".\n" ; |
| 682 | OS << "\n" ; |
| 683 | |
| 684 | // Emit one function for each opcode,type pair. |
| 685 | for (const auto &[VT, RM] : TM) { |
| 686 | if (RM.size() != 1) { |
| 687 | for (const auto &[RetVT, PM] : RM) { |
| 688 | OS << "Register fastEmit_" << getLegalCName(OpName: Opcode) << "_" |
| 689 | << getLegalCName(OpName: getEnumName(T: VT)) << "_" |
| 690 | << getLegalCName(OpName: getEnumName(T: RetVT)) << "_" ; |
| 691 | Operands.PrintManglingSuffix(OS, ImmPredicates&: ImmediatePredicates); |
| 692 | OS << "(" ; |
| 693 | Operands.PrintParameters(OS); |
| 694 | OS << ") {\n" ; |
| 695 | |
| 696 | emitInstructionCode(OS, Operands, PM, RetVTName: getEnumName(T: RetVT)); |
| 697 | } |
| 698 | |
| 699 | // Emit one function for the type that demultiplexes on return type. |
| 700 | OS << "Register fastEmit_" << getLegalCName(OpName: Opcode) << "_" |
| 701 | << getLegalCName(OpName: getEnumName(T: VT)) << "_" ; |
| 702 | Operands.PrintManglingSuffix(OS, ImmPredicates&: ImmediatePredicates); |
| 703 | OS << "(MVT RetVT" ; |
| 704 | if (!Operands.empty()) |
| 705 | OS << ", " ; |
| 706 | Operands.PrintParameters(OS); |
| 707 | OS << ") {\nswitch (RetVT.SimpleTy) {\n" ; |
| 708 | for (const auto &[RetVT, _] : RM) { |
| 709 | OS << " case " << getEnumName(T: RetVT) << ": return fastEmit_" |
| 710 | << getLegalCName(OpName: Opcode) << "_" << getLegalCName(OpName: getEnumName(T: VT)) |
| 711 | << "_" << getLegalCName(OpName: getEnumName(T: RetVT)) << "_" ; |
| 712 | Operands.PrintManglingSuffix(OS, ImmPredicates&: ImmediatePredicates); |
| 713 | OS << "(" ; |
| 714 | Operands.PrintArguments(OS); |
| 715 | OS << ");\n" ; |
| 716 | } |
| 717 | OS << " default: return Register();\n}\n}\n\n" ; |
| 718 | |
| 719 | } else { |
| 720 | // Non-variadic return type. |
| 721 | OS << "Register fastEmit_" << getLegalCName(OpName: Opcode) << "_" |
| 722 | << getLegalCName(OpName: getEnumName(T: VT)) << "_" ; |
| 723 | Operands.PrintManglingSuffix(OS, ImmPredicates&: ImmediatePredicates); |
| 724 | OS << "(MVT RetVT" ; |
| 725 | if (!Operands.empty()) |
| 726 | OS << ", " ; |
| 727 | Operands.PrintParameters(OS); |
| 728 | OS << ") {\n" ; |
| 729 | |
| 730 | OS << " if (RetVT.SimpleTy != " << getEnumName(T: RM.begin()->first) |
| 731 | << ")\n return Register();\n" ; |
| 732 | |
| 733 | const PredMap &PM = RM.begin()->second; |
| 734 | |
| 735 | emitInstructionCode(OS, Operands, PM, RetVTName: "RetVT" ); |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | // Emit one function for the opcode that demultiplexes based on the type. |
| 740 | OS << "Register fastEmit_" << getLegalCName(OpName: Opcode) << "_" ; |
| 741 | Operands.PrintManglingSuffix(OS, ImmPredicates&: ImmediatePredicates); |
| 742 | OS << "(MVT VT, MVT RetVT" ; |
| 743 | if (!Operands.empty()) |
| 744 | OS << ", " ; |
| 745 | Operands.PrintParameters(OS); |
| 746 | OS << ") {\n" ; |
| 747 | OS << " switch (VT.SimpleTy) {\n" ; |
| 748 | for (const auto &[VT, _] : TM) { |
| 749 | StringRef TypeName = getEnumName(T: VT); |
| 750 | OS << " case " << TypeName << ": return fastEmit_" |
| 751 | << getLegalCName(OpName: Opcode) << "_" << getLegalCName(OpName: TypeName) << "_" ; |
| 752 | Operands.PrintManglingSuffix(OS, ImmPredicates&: ImmediatePredicates); |
| 753 | OS << "(RetVT" ; |
| 754 | if (!Operands.empty()) |
| 755 | OS << ", " ; |
| 756 | Operands.PrintArguments(OS); |
| 757 | OS << ");\n" ; |
| 758 | } |
| 759 | OS << " default: return Register();\n" ; |
| 760 | OS << " }\n" ; |
| 761 | OS << "}\n" ; |
| 762 | OS << "\n" ; |
| 763 | } |
| 764 | |
| 765 | OS << "// Top-level FastEmit function.\n" ; |
| 766 | OS << "\n" ; |
| 767 | |
| 768 | // Emit one function for the operand signature that demultiplexes based |
| 769 | // on opcode and type. |
| 770 | OS << "Register fastEmit_" ; |
| 771 | Operands.PrintManglingSuffix(OS, ImmPredicates&: ImmediatePredicates); |
| 772 | OS << "(MVT VT, MVT RetVT, unsigned Opcode" ; |
| 773 | if (!Operands.empty()) |
| 774 | OS << ", " ; |
| 775 | Operands.PrintParameters(OS); |
| 776 | OS << ") " ; |
| 777 | if (!Operands.hasAnyImmediateCodes()) |
| 778 | OS << "override " ; |
| 779 | OS << "{\n" ; |
| 780 | |
| 781 | // If there are any forms of this signature available that operate on |
| 782 | // constrained forms of the immediate (e.g., 32-bit sext immediate in a |
| 783 | // 64-bit operand), check them first. |
| 784 | |
| 785 | std::map<OperandsSignature, std::vector<OperandsSignature>>::iterator MI = |
| 786 | SignaturesWithConstantForms.find(x: Operands); |
| 787 | if (MI != SignaturesWithConstantForms.end()) { |
| 788 | // Unique any duplicates out of the list. |
| 789 | llvm::sort(C&: MI->second); |
| 790 | MI->second.erase(first: llvm::unique(R&: MI->second), last: MI->second.end()); |
| 791 | |
| 792 | // Check each in order it was seen. It would be nice to have a good |
| 793 | // relative ordering between them, but we're not going for optimality |
| 794 | // here. |
| 795 | for (const OperandsSignature &Sig : MI->second) { |
| 796 | OS << " if (" ; |
| 797 | Sig.emitImmediatePredicate(OS, ImmPredicates&: ImmediatePredicates); |
| 798 | OS << ")\n if (Register Reg = fastEmit_" ; |
| 799 | Sig.PrintManglingSuffix(OS, ImmPredicates&: ImmediatePredicates); |
| 800 | OS << "(VT, RetVT, Opcode" ; |
| 801 | if (!Sig.empty()) |
| 802 | OS << ", " ; |
| 803 | Sig.PrintArguments(OS); |
| 804 | OS << "))\n return Reg;\n\n" ; |
| 805 | } |
| 806 | |
| 807 | // Done with this, remove it. |
| 808 | SignaturesWithConstantForms.erase(position: MI); |
| 809 | } |
| 810 | |
| 811 | OS << " switch (Opcode) {\n" ; |
| 812 | for (const auto &[Opcode, _] : OTM) { |
| 813 | OS << " case " << Opcode << ": return fastEmit_" << getLegalCName(OpName: Opcode) |
| 814 | << "_" ; |
| 815 | Operands.PrintManglingSuffix(OS, ImmPredicates&: ImmediatePredicates); |
| 816 | OS << "(VT, RetVT" ; |
| 817 | if (!Operands.empty()) |
| 818 | OS << ", " ; |
| 819 | Operands.PrintArguments(OS); |
| 820 | OS << ");\n" ; |
| 821 | } |
| 822 | OS << " default: return Register();\n" ; |
| 823 | OS << " }\n" ; |
| 824 | OS << "}\n" ; |
| 825 | OS << "\n" ; |
| 826 | } |
| 827 | |
| 828 | // TODO: SignaturesWithConstantForms should be empty here. |
| 829 | } |
| 830 | |
| 831 | static void EmitFastISel(const RecordKeeper &RK, raw_ostream &OS) { |
| 832 | const CodeGenDAGPatterns CGP(RK); |
| 833 | const CodeGenTarget &Target = CGP.getTargetInfo(); |
| 834 | emitSourceFileHeader(Desc: "\"Fast\" Instruction Selector for the " + |
| 835 | Target.getName().str() + " target" , |
| 836 | OS); |
| 837 | |
| 838 | // Determine the target's namespace name. |
| 839 | StringRef InstNS = Target.getInstNamespace(); |
| 840 | assert(!InstNS.empty() && "Can't determine target-specific namespace!" ); |
| 841 | |
| 842 | FastISelMap F(InstNS); |
| 843 | F.collectPatterns(CGP); |
| 844 | F.printImmediatePredicates(OS); |
| 845 | F.printFunctionDefinitions(OS); |
| 846 | } |
| 847 | |
| 848 | static TableGen::Emitter::Opt X("gen-fast-isel" , EmitFastISel, |
| 849 | "Generate a \"fast\" instruction selector" ); |
| 850 | |