| 1 | |
| 2 | //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===// |
| 3 | // |
| 4 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 5 | // See https://llvm.org/LICENSE.txt for license information. |
| 6 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | /// \file |
| 11 | /// This tablegen backend emits code for use by the GlobalISel instruction |
| 12 | /// selector. See include/llvm/Target/GlobalISel/Target.td. |
| 13 | /// |
| 14 | /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen |
| 15 | /// backend, filters out the ones that are unsupported, maps |
| 16 | /// SelectionDAG-specific constructs to their GlobalISel counterpart |
| 17 | /// (when applicable: MVT to LLT; SDNode to generic Instruction). |
| 18 | /// |
| 19 | /// Not all patterns are supported: pass the tablegen invocation |
| 20 | /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped, |
| 21 | /// as well as why. |
| 22 | /// |
| 23 | /// The generated file defines a single method: |
| 24 | /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const; |
| 25 | /// intended to be used in InstructionSelector::select as the first-step |
| 26 | /// selector for the patterns that don't require complex C++. |
| 27 | /// |
| 28 | /// FIXME: We'll probably want to eventually define a base |
| 29 | /// "TargetGenInstructionSelector" class. |
| 30 | /// |
| 31 | //===----------------------------------------------------------------------===// |
| 32 | |
| 33 | #include "Basic/CodeGenIntrinsics.h" |
| 34 | #include "Common/CodeGenDAGPatterns.h" |
| 35 | #include "Common/CodeGenInstruction.h" |
| 36 | #include "Common/CodeGenRegisters.h" |
| 37 | #include "Common/CodeGenTarget.h" |
| 38 | #include "Common/GlobalISel/GlobalISelMatchTable.h" |
| 39 | #include "Common/GlobalISel/GlobalISelMatchTableExecutorEmitter.h" |
| 40 | #include "Common/InfoByHwMode.h" |
| 41 | #include "llvm/ADT/Statistic.h" |
| 42 | #include "llvm/CodeGenTypes/LowLevelType.h" |
| 43 | #include "llvm/CodeGenTypes/MachineValueType.h" |
| 44 | #include "llvm/Support/CodeGenCoverage.h" |
| 45 | #include "llvm/Support/CommandLine.h" |
| 46 | #include "llvm/Support/Error.h" |
| 47 | #include "llvm/Support/ScopedPrinter.h" |
| 48 | #include "llvm/TableGen/Error.h" |
| 49 | #include "llvm/TableGen/Record.h" |
| 50 | #include "llvm/TableGen/TableGenBackend.h" |
| 51 | #include <string> |
| 52 | |
| 53 | using namespace llvm; |
| 54 | using namespace llvm::gi; |
| 55 | |
| 56 | using action_iterator = RuleMatcher::action_iterator; |
| 57 | |
| 58 | #define DEBUG_TYPE "gisel-emitter" |
| 59 | |
| 60 | STATISTIC(NumPatternTotal, "Total number of patterns" ); |
| 61 | STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG" ); |
| 62 | STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped" ); |
| 63 | STATISTIC(NumPatternsTested, |
| 64 | "Number of patterns executed according to coverage information" ); |
| 65 | |
| 66 | static cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel" ); |
| 67 | |
| 68 | static cl::opt<bool> WarnOnSkippedPatterns( |
| 69 | "warn-on-skipped-patterns" , |
| 70 | cl::desc("Explain why a pattern was skipped for inclusion " |
| 71 | "in the GlobalISel selector" ), |
| 72 | cl::init(Val: false), cl::cat(GlobalISelEmitterCat)); |
| 73 | |
| 74 | static cl::opt<bool> GenerateCoverage( |
| 75 | "instrument-gisel-coverage" , |
| 76 | cl::desc("Generate coverage instrumentation for GlobalISel" ), |
| 77 | cl::init(Val: false), cl::cat(GlobalISelEmitterCat)); |
| 78 | |
| 79 | static cl::opt<std::string> UseCoverageFile( |
| 80 | "gisel-coverage-file" , cl::init(Val: "" ), |
| 81 | cl::desc("Specify file to retrieve coverage information from" ), |
| 82 | cl::cat(GlobalISelEmitterCat)); |
| 83 | |
| 84 | static cl::opt<bool> OptimizeMatchTable( |
| 85 | "optimize-match-table" , |
| 86 | cl::desc("Generate an optimized version of the match table" ), |
| 87 | cl::init(Val: true), cl::cat(GlobalISelEmitterCat)); |
| 88 | |
| 89 | namespace { |
| 90 | |
| 91 | static std::string explainPredicates(const TreePatternNode &N) { |
| 92 | std::string Explanation; |
| 93 | StringRef Separator = "" ; |
| 94 | for (const TreePredicateCall &Call : N.getPredicateCalls()) { |
| 95 | const TreePredicateFn &P = Call.Fn; |
| 96 | Explanation += |
| 97 | (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str(); |
| 98 | Separator = ", " ; |
| 99 | |
| 100 | if (P.isAlwaysTrue()) |
| 101 | Explanation += " always-true" ; |
| 102 | if (P.isImmediatePattern()) |
| 103 | Explanation += " immediate" ; |
| 104 | |
| 105 | if (P.isUnindexed()) |
| 106 | Explanation += " unindexed" ; |
| 107 | |
| 108 | if (P.isNonExtLoad()) |
| 109 | Explanation += " non-extload" ; |
| 110 | if (P.isAnyExtLoad()) |
| 111 | Explanation += " extload" ; |
| 112 | if (P.isSignExtLoad()) |
| 113 | Explanation += " sextload" ; |
| 114 | if (P.isZeroExtLoad()) |
| 115 | Explanation += " zextload" ; |
| 116 | |
| 117 | if (P.isNonTruncStore()) |
| 118 | Explanation += " non-truncstore" ; |
| 119 | if (P.isTruncStore()) |
| 120 | Explanation += " truncstore" ; |
| 121 | |
| 122 | if (const Record *VT = P.getMemoryVT()) |
| 123 | Explanation += (" MemVT=" + VT->getName()).str(); |
| 124 | if (const Record *VT = P.getScalarMemoryVT()) |
| 125 | Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str(); |
| 126 | |
| 127 | if (const ListInit *AddrSpaces = P.getAddressSpaces()) { |
| 128 | raw_string_ostream OS(Explanation); |
| 129 | OS << " AddressSpaces=[" ; |
| 130 | |
| 131 | StringRef AddrSpaceSeparator; |
| 132 | for (const Init *Val : AddrSpaces->getElements()) { |
| 133 | const IntInit *IntVal = dyn_cast<IntInit>(Val); |
| 134 | if (!IntVal) |
| 135 | continue; |
| 136 | |
| 137 | OS << AddrSpaceSeparator << IntVal->getValue(); |
| 138 | AddrSpaceSeparator = ", " ; |
| 139 | } |
| 140 | |
| 141 | OS << ']'; |
| 142 | } |
| 143 | |
| 144 | int64_t MinAlign = P.getMinAlignment(); |
| 145 | if (MinAlign > 0) |
| 146 | Explanation += " MinAlign=" + utostr(X: MinAlign); |
| 147 | |
| 148 | if (P.isAtomicOrderingMonotonic()) |
| 149 | Explanation += " monotonic" ; |
| 150 | if (P.isAtomicOrderingAcquire()) |
| 151 | Explanation += " acquire" ; |
| 152 | if (P.isAtomicOrderingRelease()) |
| 153 | Explanation += " release" ; |
| 154 | if (P.isAtomicOrderingAcquireRelease()) |
| 155 | Explanation += " acq_rel" ; |
| 156 | if (P.isAtomicOrderingSequentiallyConsistent()) |
| 157 | Explanation += " seq_cst" ; |
| 158 | if (P.isAtomicOrderingAcquireOrStronger()) |
| 159 | Explanation += " >=acquire" ; |
| 160 | if (P.isAtomicOrderingWeakerThanAcquire()) |
| 161 | Explanation += " <acquire" ; |
| 162 | if (P.isAtomicOrderingReleaseOrStronger()) |
| 163 | Explanation += " >=release" ; |
| 164 | if (P.isAtomicOrderingWeakerThanRelease()) |
| 165 | Explanation += " <release" ; |
| 166 | } |
| 167 | return Explanation; |
| 168 | } |
| 169 | |
| 170 | std::string explainOperator(const Record *Operator) { |
| 171 | if (Operator->isSubClassOf(Name: "SDNode" )) |
| 172 | return (" (" + Operator->getValueAsString(FieldName: "Opcode" ) + ")" ).str(); |
| 173 | |
| 174 | if (Operator->isSubClassOf(Name: "Intrinsic" )) |
| 175 | return (" (Operator is an Intrinsic, " + Operator->getName() + ")" ).str(); |
| 176 | |
| 177 | if (Operator->isSubClassOf(Name: "ComplexPattern" )) |
| 178 | return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() + |
| 179 | ")" ) |
| 180 | .str(); |
| 181 | |
| 182 | if (Operator->isSubClassOf(Name: "SDNodeXForm" )) |
| 183 | return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() + |
| 184 | ")" ) |
| 185 | .str(); |
| 186 | |
| 187 | return (" (Operator " + Operator->getName() + " not understood)" ).str(); |
| 188 | } |
| 189 | |
| 190 | /// Helper function to let the emitter report skip reason error messages. |
| 191 | static Error failedImport(const Twine &Reason) { |
| 192 | return make_error<StringError>(Args: Reason, Args: inconvertibleErrorCode()); |
| 193 | } |
| 194 | |
| 195 | static Error isTrivialOperatorNode(const TreePatternNode &N) { |
| 196 | std::string Explanation; |
| 197 | std::string Separator; |
| 198 | |
| 199 | bool HasUnsupportedPredicate = false; |
| 200 | for (const TreePredicateCall &Call : N.getPredicateCalls()) { |
| 201 | const TreePredicateFn &Predicate = Call.Fn; |
| 202 | |
| 203 | if (Predicate.isAlwaysTrue()) |
| 204 | continue; |
| 205 | |
| 206 | if (Predicate.isImmediatePattern()) |
| 207 | continue; |
| 208 | |
| 209 | if (Predicate.hasNoUse() || Predicate.hasOneUse()) |
| 210 | continue; |
| 211 | |
| 212 | if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() || |
| 213 | Predicate.isSignExtLoad() || Predicate.isZeroExtLoad()) |
| 214 | continue; |
| 215 | |
| 216 | if (Predicate.isNonTruncStore() || Predicate.isTruncStore()) |
| 217 | continue; |
| 218 | |
| 219 | if (Predicate.isLoad() && Predicate.getMemoryVT()) |
| 220 | continue; |
| 221 | |
| 222 | if (Predicate.isStore() && Predicate.getMemoryVT()) |
| 223 | continue; |
| 224 | |
| 225 | if (Predicate.isLoad() || Predicate.isStore()) { |
| 226 | if (Predicate.isUnindexed()) |
| 227 | continue; |
| 228 | } |
| 229 | |
| 230 | if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { |
| 231 | const ListInit *AddrSpaces = Predicate.getAddressSpaces(); |
| 232 | if (AddrSpaces && !AddrSpaces->empty()) |
| 233 | continue; |
| 234 | |
| 235 | if (Predicate.getMinAlignment() > 0) |
| 236 | continue; |
| 237 | } |
| 238 | |
| 239 | if (Predicate.isAtomic() && Predicate.getMemoryVT()) |
| 240 | continue; |
| 241 | |
| 242 | if (Predicate.isAtomic() && |
| 243 | (Predicate.isAtomicOrderingMonotonic() || |
| 244 | Predicate.isAtomicOrderingAcquire() || |
| 245 | Predicate.isAtomicOrderingRelease() || |
| 246 | Predicate.isAtomicOrderingAcquireRelease() || |
| 247 | Predicate.isAtomicOrderingSequentiallyConsistent() || |
| 248 | Predicate.isAtomicOrderingAcquireOrStronger() || |
| 249 | Predicate.isAtomicOrderingWeakerThanAcquire() || |
| 250 | Predicate.isAtomicOrderingReleaseOrStronger() || |
| 251 | Predicate.isAtomicOrderingWeakerThanRelease())) |
| 252 | continue; |
| 253 | |
| 254 | if (Predicate.hasGISelPredicateCode()) |
| 255 | continue; |
| 256 | |
| 257 | HasUnsupportedPredicate = true; |
| 258 | Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")" ; |
| 259 | Separator = ", " ; |
| 260 | Explanation += (Separator + "first-failing:" + |
| 261 | Predicate.getOrigPatFragRecord()->getRecord()->getName()) |
| 262 | .str(); |
| 263 | break; |
| 264 | } |
| 265 | |
| 266 | if (!HasUnsupportedPredicate) |
| 267 | return Error::success(); |
| 268 | |
| 269 | return failedImport(Reason: Explanation); |
| 270 | } |
| 271 | |
| 272 | static const Record *getInitValueAsRegClass(const Init *V) { |
| 273 | if (const DefInit *VDefInit = dyn_cast<DefInit>(Val: V)) { |
| 274 | if (VDefInit->getDef()->isSubClassOf(Name: "RegisterOperand" )) |
| 275 | return VDefInit->getDef()->getValueAsDef(FieldName: "RegClass" ); |
| 276 | if (VDefInit->getDef()->isSubClassOf(Name: "RegisterClass" )) |
| 277 | return VDefInit->getDef(); |
| 278 | } |
| 279 | return nullptr; |
| 280 | } |
| 281 | |
| 282 | static std::string getScopedName(unsigned Scope, const std::string &Name) { |
| 283 | return ("pred:" + Twine(Scope) + ":" + Name).str(); |
| 284 | } |
| 285 | |
| 286 | static std::string getMangledRootDefName(StringRef DefOperandName) { |
| 287 | return ("DstI[" + DefOperandName + "]" ).str(); |
| 288 | } |
| 289 | |
| 290 | //===- GlobalISelEmitter class --------------------------------------------===// |
| 291 | |
| 292 | static Expected<LLTCodeGen> getInstResultType(const TreePatternNode &Dst, |
| 293 | const CodeGenTarget &Target) { |
| 294 | // While we allow more than one output (both implicit and explicit defs) |
| 295 | // below, we only expect one explicit def here. |
| 296 | assert(Dst.getOperator()->isSubClassOf("Instruction" )); |
| 297 | CodeGenInstruction &InstInfo = Target.getInstruction(InstRec: Dst.getOperator()); |
| 298 | if (!InstInfo.Operands.NumDefs) |
| 299 | return failedImport(Reason: "Dst pattern child needs a def" ); |
| 300 | |
| 301 | ArrayRef<TypeSetByHwMode> ChildTypes = Dst.getExtTypes(); |
| 302 | if (ChildTypes.size() < 1) |
| 303 | return failedImport(Reason: "Dst pattern child has no result" ); |
| 304 | |
| 305 | // If there are multiple results, just take the first one (this is how |
| 306 | // SelectionDAG does it). |
| 307 | std::optional<LLTCodeGen> MaybeOpTy; |
| 308 | if (ChildTypes.front().isMachineValueType()) { |
| 309 | MaybeOpTy = MVTToLLT(SVT: ChildTypes.front().getMachineValueType().SimpleTy); |
| 310 | } |
| 311 | |
| 312 | if (!MaybeOpTy) |
| 313 | return failedImport(Reason: "Dst operand has an unsupported type" ); |
| 314 | return *MaybeOpTy; |
| 315 | } |
| 316 | |
| 317 | class GlobalISelEmitter final : public GlobalISelMatchTableExecutorEmitter { |
| 318 | public: |
| 319 | explicit GlobalISelEmitter(const RecordKeeper &RK); |
| 320 | |
| 321 | void emitAdditionalImpl(raw_ostream &OS) override; |
| 322 | |
| 323 | void emitMIPredicateFns(raw_ostream &OS) override; |
| 324 | void emitLeafPredicateFns(raw_ostream &OS) override; |
| 325 | void emitI64ImmPredicateFns(raw_ostream &OS) override; |
| 326 | void emitAPFloatImmPredicateFns(raw_ostream &OS) override; |
| 327 | void emitAPIntImmPredicateFns(raw_ostream &OS) override; |
| 328 | void emitTestSimplePredicate(raw_ostream &OS) override; |
| 329 | void emitRunCustomAction(raw_ostream &OS) override; |
| 330 | |
| 331 | const CodeGenTarget &getTarget() const override { return Target; } |
| 332 | StringRef getClassName() const override { return ClassName; } |
| 333 | |
| 334 | void run(raw_ostream &OS); |
| 335 | |
| 336 | private: |
| 337 | std::string ClassName; |
| 338 | |
| 339 | const RecordKeeper &RK; |
| 340 | const CodeGenDAGPatterns CGP; |
| 341 | const CodeGenTarget &Target; |
| 342 | CodeGenRegBank &CGRegs; |
| 343 | |
| 344 | ArrayRef<const Record *> AllPatFrags; |
| 345 | |
| 346 | /// Keep track of the equivalence between SDNodes and Instruction by mapping |
| 347 | /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to |
| 348 | /// check for attributes on the relation such as CheckMMOIsNonAtomic. |
| 349 | /// This is defined using 'GINodeEquiv' in the target description. |
| 350 | DenseMap<const Record *, const Record *> NodeEquivs; |
| 351 | |
| 352 | /// Keep track of the equivalence between ComplexPattern's and |
| 353 | /// GIComplexOperandMatcher. Map entries are specified by subclassing |
| 354 | /// GIComplexPatternEquiv. |
| 355 | DenseMap<const Record *, const Record *> ComplexPatternEquivs; |
| 356 | |
| 357 | /// Keep track of the equivalence between SDNodeXForm's and |
| 358 | /// GICustomOperandRenderer. Map entries are specified by subclassing |
| 359 | /// GISDNodeXFormEquiv. |
| 360 | DenseMap<const Record *, const Record *> SDNodeXFormEquivs; |
| 361 | |
| 362 | /// Keep track of Scores of PatternsToMatch similar to how the DAG does. |
| 363 | /// This adds compatibility for RuleMatchers to use this for ordering rules. |
| 364 | DenseMap<uint64_t, int> RuleMatcherScores; |
| 365 | |
| 366 | // Rule coverage information. |
| 367 | std::optional<CodeGenCoverage> RuleCoverage; |
| 368 | |
| 369 | /// Variables used to help with collecting of named operands for predicates |
| 370 | /// with 'let PredicateCodeUsesOperands = 1'. WaitingForNamedOperands is set |
| 371 | /// to the number of named operands that predicate expects. Store locations in |
| 372 | /// StoreIdxForName correspond to the order in which operand names appear in |
| 373 | /// predicate's argument list. |
| 374 | /// When we visit named operand and WaitingForNamedOperands is not zero, add |
| 375 | /// matcher that will record operand and decrease counter. |
| 376 | unsigned WaitingForNamedOperands = 0; |
| 377 | StringMap<unsigned> StoreIdxForName; |
| 378 | |
| 379 | void gatherOpcodeValues(); |
| 380 | void gatherTypeIDValues(); |
| 381 | void gatherNodeEquivs(); |
| 382 | |
| 383 | const Record *findNodeEquiv(const Record *N) const; |
| 384 | const CodeGenInstruction *getEquivNode(const Record &Equiv, |
| 385 | const TreePatternNode &N) const; |
| 386 | |
| 387 | Error importRulePredicates(RuleMatcher &M, |
| 388 | ArrayRef<const Record *> Predicates); |
| 389 | Expected<InstructionMatcher &> |
| 390 | createAndImportSelDAGMatcher(RuleMatcher &Rule, |
| 391 | InstructionMatcher &InsnMatcher, |
| 392 | const TreePatternNode &Src, unsigned &TempOpIdx); |
| 393 | Error importComplexPatternOperandMatcher(OperandMatcher &OM, const Record *R, |
| 394 | unsigned &TempOpIdx) const; |
| 395 | Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher, |
| 396 | const TreePatternNode &SrcChild, |
| 397 | bool OperandIsAPointer, bool OperandIsImmArg, |
| 398 | unsigned OpIdx, unsigned &TempOpIdx); |
| 399 | |
| 400 | Expected<BuildMIAction &> |
| 401 | createAndImportInstructionRenderer(RuleMatcher &M, |
| 402 | InstructionMatcher &InsnMatcher, |
| 403 | const TreePatternNode &Dst) const; |
| 404 | Expected<action_iterator> createAndImportSubInstructionRenderer( |
| 405 | action_iterator InsertPt, RuleMatcher &M, const TreePatternNode &Dst, |
| 406 | unsigned TempReg) const; |
| 407 | Expected<action_iterator> |
| 408 | createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M, |
| 409 | const TreePatternNode &Dst) const; |
| 410 | |
| 411 | Expected<action_iterator> |
| 412 | importExplicitDefRenderers(action_iterator InsertPt, RuleMatcher &M, |
| 413 | BuildMIAction &DstMIBuilder, |
| 414 | const TreePatternNode &Dst, bool IsRoot) const; |
| 415 | |
| 416 | Expected<action_iterator> |
| 417 | importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M, |
| 418 | BuildMIAction &DstMIBuilder, |
| 419 | const TreePatternNode &Dst) const; |
| 420 | |
| 421 | Error importNamedNodeRenderer(RuleMatcher &M, BuildMIAction &MIBuilder, |
| 422 | const TreePatternNode &N) const; |
| 423 | |
| 424 | Error importLeafNodeRenderer(RuleMatcher &M, BuildMIAction &MIBuilder, |
| 425 | const TreePatternNode &N, |
| 426 | action_iterator InsertPt) const; |
| 427 | |
| 428 | Error importXFormNodeRenderer(RuleMatcher &M, BuildMIAction &MIBuilder, |
| 429 | const TreePatternNode &N) const; |
| 430 | |
| 431 | Error importInstructionNodeRenderer(RuleMatcher &M, BuildMIAction &MIBuilder, |
| 432 | const TreePatternNode &N, |
| 433 | action_iterator &InsertPt) const; |
| 434 | |
| 435 | Error importNodeRenderer(RuleMatcher &M, BuildMIAction &MIBuilder, |
| 436 | const TreePatternNode &N, |
| 437 | action_iterator &InsertPt) const; |
| 438 | |
| 439 | Error importImplicitDefRenderers(BuildMIAction &DstMIBuilder, |
| 440 | ArrayRef<const Record *> ImplicitDefs) const; |
| 441 | |
| 442 | /// Analyze pattern \p P, returning a matcher for it if possible. |
| 443 | /// Otherwise, return an Error explaining why we don't support it. |
| 444 | Expected<RuleMatcher> runOnPattern(const PatternToMatch &P); |
| 445 | |
| 446 | void declareSubtargetFeature(const Record *Predicate); |
| 447 | |
| 448 | unsigned declareHwModeCheck(StringRef HwModeFeatures); |
| 449 | |
| 450 | MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize, |
| 451 | bool WithCoverage); |
| 452 | |
| 453 | /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned |
| 454 | /// CodeGenRegisterClass will support the CodeGenRegisterClass of |
| 455 | /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode. |
| 456 | /// If no register class is found, return nullptr. |
| 457 | const CodeGenRegisterClass * |
| 458 | inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty, |
| 459 | const TreePatternNode &SuperRegNode, |
| 460 | const TreePatternNode &SubRegIdxNode) const; |
| 461 | const CodeGenSubRegIndex * |
| 462 | inferSubRegIndexForNode(const TreePatternNode &SubRegIdxNode) const; |
| 463 | |
| 464 | /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode. |
| 465 | /// Return nullptr if no such class exists. |
| 466 | const CodeGenRegisterClass * |
| 467 | inferSuperRegisterClass(const TypeSetByHwMode &Ty, |
| 468 | const TreePatternNode &SubRegIdxNode) const; |
| 469 | |
| 470 | /// Return the CodeGenRegisterClass associated with \p Leaf if it has one. |
| 471 | const CodeGenRegisterClass * |
| 472 | getRegClassFromLeaf(const TreePatternNode &Leaf) const; |
| 473 | |
| 474 | /// Return a CodeGenRegisterClass for \p N if one can be found. Return |
| 475 | /// nullptr otherwise. |
| 476 | const CodeGenRegisterClass * |
| 477 | inferRegClassFromPattern(const TreePatternNode &N) const; |
| 478 | |
| 479 | const CodeGenRegisterClass * |
| 480 | inferRegClassFromInstructionPattern(const TreePatternNode &N, |
| 481 | unsigned ResIdx) const; |
| 482 | |
| 483 | Error constrainOperands(action_iterator InsertPt, RuleMatcher &M, |
| 484 | unsigned InsnID, const TreePatternNode &Dst) const; |
| 485 | |
| 486 | /// Return the size of the MemoryVT in this predicate, if possible. |
| 487 | std::optional<unsigned> |
| 488 | getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate); |
| 489 | |
| 490 | // Add builtin predicates. |
| 491 | Expected<InstructionMatcher &> |
| 492 | addBuiltinPredicates(const Record *SrcGIEquivOrNull, |
| 493 | const TreePredicateFn &Predicate, |
| 494 | InstructionMatcher &InsnMatcher, bool &HasAddedMatcher); |
| 495 | }; |
| 496 | |
| 497 | StringRef getPatFragPredicateEnumName(const Record *R) { return R->getName(); } |
| 498 | |
| 499 | void GlobalISelEmitter::gatherOpcodeValues() { |
| 500 | InstructionOpcodeMatcher::initOpcodeValuesMap(Target); |
| 501 | } |
| 502 | |
| 503 | void GlobalISelEmitter::gatherTypeIDValues() { |
| 504 | LLTOperandMatcher::initTypeIDValuesMap(); |
| 505 | } |
| 506 | |
| 507 | void GlobalISelEmitter::gatherNodeEquivs() { |
| 508 | assert(NodeEquivs.empty()); |
| 509 | for (const Record *Equiv : RK.getAllDerivedDefinitions(ClassName: "GINodeEquiv" )) |
| 510 | NodeEquivs[Equiv->getValueAsDef(FieldName: "Node" )] = Equiv; |
| 511 | |
| 512 | assert(ComplexPatternEquivs.empty()); |
| 513 | for (const Record *Equiv : |
| 514 | RK.getAllDerivedDefinitions(ClassName: "GIComplexPatternEquiv" )) { |
| 515 | const Record *SelDAGEquiv = Equiv->getValueAsDef(FieldName: "SelDAGEquivalent" ); |
| 516 | if (!SelDAGEquiv) |
| 517 | continue; |
| 518 | ComplexPatternEquivs[SelDAGEquiv] = Equiv; |
| 519 | } |
| 520 | |
| 521 | assert(SDNodeXFormEquivs.empty()); |
| 522 | for (const Record *Equiv : |
| 523 | RK.getAllDerivedDefinitions(ClassName: "GISDNodeXFormEquiv" )) { |
| 524 | const Record *SelDAGEquiv = Equiv->getValueAsDef(FieldName: "SelDAGEquivalent" ); |
| 525 | if (!SelDAGEquiv) |
| 526 | continue; |
| 527 | SDNodeXFormEquivs[SelDAGEquiv] = Equiv; |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | const Record *GlobalISelEmitter::findNodeEquiv(const Record *N) const { |
| 532 | return NodeEquivs.lookup(Val: N); |
| 533 | } |
| 534 | |
| 535 | const CodeGenInstruction * |
| 536 | GlobalISelEmitter::getEquivNode(const Record &Equiv, |
| 537 | const TreePatternNode &N) const { |
| 538 | if (N.getNumChildren() >= 1) { |
| 539 | // setcc operation maps to two different G_* instructions based on the type. |
| 540 | if (!Equiv.isValueUnset(FieldName: "IfFloatingPoint" ) && |
| 541 | MVT(N.getChild(N: 0).getSimpleType(ResNo: 0)).isFloatingPoint()) |
| 542 | return &Target.getInstruction(InstRec: Equiv.getValueAsDef(FieldName: "IfFloatingPoint" )); |
| 543 | } |
| 544 | |
| 545 | if (!Equiv.isValueUnset(FieldName: "IfConvergent" ) && |
| 546 | N.getIntrinsicInfo(CDP: CGP)->isConvergent) |
| 547 | return &Target.getInstruction(InstRec: Equiv.getValueAsDef(FieldName: "IfConvergent" )); |
| 548 | |
| 549 | for (const TreePredicateCall &Call : N.getPredicateCalls()) { |
| 550 | const TreePredicateFn &Predicate = Call.Fn; |
| 551 | if (!Equiv.isValueUnset(FieldName: "IfSignExtend" ) && |
| 552 | (Predicate.isLoad() || Predicate.isAtomic()) && |
| 553 | Predicate.isSignExtLoad()) |
| 554 | return &Target.getInstruction(InstRec: Equiv.getValueAsDef(FieldName: "IfSignExtend" )); |
| 555 | if (!Equiv.isValueUnset(FieldName: "IfZeroExtend" ) && |
| 556 | (Predicate.isLoad() || Predicate.isAtomic()) && |
| 557 | Predicate.isZeroExtLoad()) |
| 558 | return &Target.getInstruction(InstRec: Equiv.getValueAsDef(FieldName: "IfZeroExtend" )); |
| 559 | } |
| 560 | |
| 561 | return &Target.getInstruction(InstRec: Equiv.getValueAsDef(FieldName: "I" )); |
| 562 | } |
| 563 | |
| 564 | GlobalISelEmitter::GlobalISelEmitter(const RecordKeeper &RK) |
| 565 | : GlobalISelMatchTableExecutorEmitter(), RK(RK), CGP(RK), |
| 566 | Target(CGP.getTargetInfo()), CGRegs(Target.getRegBank()) { |
| 567 | ClassName = Target.getName().str() + "InstructionSelector" ; |
| 568 | } |
| 569 | |
| 570 | //===- Emitter ------------------------------------------------------------===// |
| 571 | |
| 572 | Error GlobalISelEmitter::importRulePredicates( |
| 573 | RuleMatcher &M, ArrayRef<const Record *> Predicates) { |
| 574 | for (const Record *Pred : Predicates) { |
| 575 | if (Pred->getValueAsString(FieldName: "CondString" ).empty()) |
| 576 | continue; |
| 577 | declareSubtargetFeature(Predicate: Pred); |
| 578 | M.addRequiredFeature(Feature: Pred); |
| 579 | } |
| 580 | |
| 581 | return Error::success(); |
| 582 | } |
| 583 | |
| 584 | std::optional<unsigned> GlobalISelEmitter::getMemSizeBitsFromPredicate( |
| 585 | const TreePredicateFn &Predicate) { |
| 586 | std::optional<LLTCodeGen> MemTyOrNone = |
| 587 | MVTToLLT(SVT: getValueType(Rec: Predicate.getMemoryVT())); |
| 588 | |
| 589 | if (!MemTyOrNone) |
| 590 | return std::nullopt; |
| 591 | |
| 592 | // Align so unusual types like i1 don't get rounded down. |
| 593 | return llvm::alignTo( |
| 594 | Value: static_cast<unsigned>(MemTyOrNone->get().getSizeInBits()), Align: 8); |
| 595 | } |
| 596 | |
| 597 | Expected<InstructionMatcher &> GlobalISelEmitter::addBuiltinPredicates( |
| 598 | const Record *SrcGIEquivOrNull, const TreePredicateFn &Predicate, |
| 599 | InstructionMatcher &InsnMatcher, bool &HasAddedMatcher) { |
| 600 | if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { |
| 601 | if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) { |
| 602 | SmallVector<unsigned, 4> ParsedAddrSpaces; |
| 603 | |
| 604 | for (const Init *Val : AddrSpaces->getElements()) { |
| 605 | const IntInit *IntVal = dyn_cast<IntInit>(Val); |
| 606 | if (!IntVal) |
| 607 | return failedImport(Reason: "Address space is not an integer" ); |
| 608 | ParsedAddrSpaces.push_back(Elt: IntVal->getValue()); |
| 609 | } |
| 610 | |
| 611 | if (!ParsedAddrSpaces.empty()) { |
| 612 | InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>( |
| 613 | args: 0, args&: ParsedAddrSpaces); |
| 614 | return InsnMatcher; |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | int64_t MinAlign = Predicate.getMinAlignment(); |
| 619 | if (MinAlign > 0) { |
| 620 | InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(args: 0, args&: MinAlign); |
| 621 | return InsnMatcher; |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | // G_LOAD is used for both non-extending and any-extending loads. |
| 626 | if (Predicate.isLoad() || Predicate.isAtomic()) { |
| 627 | if (Predicate.isNonExtLoad()) { |
| 628 | InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( |
| 629 | args: 0, args: MemoryVsLLTSizePredicateMatcher::EqualTo, args: 0); |
| 630 | return InsnMatcher; |
| 631 | } |
| 632 | if (Predicate.isAnyExtLoad()) { |
| 633 | InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( |
| 634 | args: 0, args: MemoryVsLLTSizePredicateMatcher::LessThan, args: 0); |
| 635 | return InsnMatcher; |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | if (Predicate.isStore()) { |
| 640 | if (Predicate.isTruncStore()) { |
| 641 | if (Predicate.getMemoryVT() != nullptr) { |
| 642 | // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size. |
| 643 | auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); |
| 644 | if (!MemSizeInBits) |
| 645 | return failedImport(Reason: "MemVT could not be converted to LLT" ); |
| 646 | |
| 647 | InsnMatcher.addPredicate<MemorySizePredicateMatcher>(args: 0, args: *MemSizeInBits / |
| 648 | 8); |
| 649 | } else { |
| 650 | InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( |
| 651 | args: 0, args: MemoryVsLLTSizePredicateMatcher::LessThan, args: 0); |
| 652 | } |
| 653 | return InsnMatcher; |
| 654 | } |
| 655 | if (Predicate.isNonTruncStore()) { |
| 656 | // We need to check the sizes match here otherwise we could incorrectly |
| 657 | // match truncating stores with non-truncating ones. |
| 658 | InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( |
| 659 | args: 0, args: MemoryVsLLTSizePredicateMatcher::EqualTo, args: 0); |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | assert(SrcGIEquivOrNull != nullptr && "Invalid SrcGIEquivOrNull value" ); |
| 664 | // No check required. We already did it by swapping the opcode. |
| 665 | if (!SrcGIEquivOrNull->isValueUnset(FieldName: "IfSignExtend" ) && |
| 666 | Predicate.isSignExtLoad()) |
| 667 | return InsnMatcher; |
| 668 | |
| 669 | // No check required. We already did it by swapping the opcode. |
| 670 | if (!SrcGIEquivOrNull->isValueUnset(FieldName: "IfZeroExtend" ) && |
| 671 | Predicate.isZeroExtLoad()) |
| 672 | return InsnMatcher; |
| 673 | |
| 674 | // No check required. G_STORE by itself is a non-extending store. |
| 675 | if (Predicate.isNonTruncStore()) |
| 676 | return InsnMatcher; |
| 677 | |
| 678 | if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { |
| 679 | if (Predicate.getMemoryVT() != nullptr) { |
| 680 | auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); |
| 681 | if (!MemSizeInBits) |
| 682 | return failedImport(Reason: "MemVT could not be converted to LLT" ); |
| 683 | |
| 684 | InsnMatcher.addPredicate<MemorySizePredicateMatcher>(args: 0, |
| 685 | args: *MemSizeInBits / 8); |
| 686 | return InsnMatcher; |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | if (Predicate.isLoad() || Predicate.isStore()) { |
| 691 | // No check required. A G_LOAD/G_STORE is an unindexed load. |
| 692 | if (Predicate.isUnindexed()) |
| 693 | return InsnMatcher; |
| 694 | } |
| 695 | |
| 696 | if (Predicate.isAtomic()) { |
| 697 | if (Predicate.isAtomicOrderingMonotonic()) { |
| 698 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(args: "Monotonic" ); |
| 699 | return InsnMatcher; |
| 700 | } |
| 701 | if (Predicate.isAtomicOrderingAcquire()) { |
| 702 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(args: "Acquire" ); |
| 703 | return InsnMatcher; |
| 704 | } |
| 705 | if (Predicate.isAtomicOrderingRelease()) { |
| 706 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(args: "Release" ); |
| 707 | return InsnMatcher; |
| 708 | } |
| 709 | if (Predicate.isAtomicOrderingAcquireRelease()) { |
| 710 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
| 711 | args: "AcquireRelease" ); |
| 712 | return InsnMatcher; |
| 713 | } |
| 714 | if (Predicate.isAtomicOrderingSequentiallyConsistent()) { |
| 715 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
| 716 | args: "SequentiallyConsistent" ); |
| 717 | return InsnMatcher; |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | if (Predicate.isAtomicOrderingAcquireOrStronger()) { |
| 722 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
| 723 | args: "Acquire" , args: AtomicOrderingMMOPredicateMatcher::AO_OrStronger); |
| 724 | return InsnMatcher; |
| 725 | } |
| 726 | if (Predicate.isAtomicOrderingWeakerThanAcquire()) { |
| 727 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
| 728 | args: "Acquire" , args: AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); |
| 729 | return InsnMatcher; |
| 730 | } |
| 731 | |
| 732 | if (Predicate.isAtomicOrderingReleaseOrStronger()) { |
| 733 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
| 734 | args: "Release" , args: AtomicOrderingMMOPredicateMatcher::AO_OrStronger); |
| 735 | return InsnMatcher; |
| 736 | } |
| 737 | if (Predicate.isAtomicOrderingWeakerThanRelease()) { |
| 738 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
| 739 | args: "Release" , args: AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); |
| 740 | return InsnMatcher; |
| 741 | } |
| 742 | HasAddedMatcher = false; |
| 743 | return InsnMatcher; |
| 744 | } |
| 745 | |
| 746 | Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher( |
| 747 | RuleMatcher &Rule, InstructionMatcher &InsnMatcher, |
| 748 | const TreePatternNode &Src, unsigned &TempOpIdx) { |
| 749 | const auto SavedFlags = Rule.setGISelFlags(Src.getGISelFlagsRecord()); |
| 750 | |
| 751 | const Record *SrcGIEquivOrNull = nullptr; |
| 752 | const CodeGenInstruction *SrcGIOrNull = nullptr; |
| 753 | |
| 754 | // Start with the defined operands (i.e., the results of the root operator). |
| 755 | if (Src.isLeaf()) { |
| 756 | const Init *SrcInit = Src.getLeafValue(); |
| 757 | if (isa<IntInit>(Val: SrcInit)) { |
| 758 | InsnMatcher.addPredicate<InstructionOpcodeMatcher>( |
| 759 | args: &Target.getInstruction(InstRec: RK.getDef(Name: "G_CONSTANT" ))); |
| 760 | } else { |
| 761 | return failedImport( |
| 762 | Reason: "Unable to deduce gMIR opcode to handle Src (which is a leaf)" ); |
| 763 | } |
| 764 | } else { |
| 765 | SrcGIEquivOrNull = findNodeEquiv(N: Src.getOperator()); |
| 766 | if (!SrcGIEquivOrNull) |
| 767 | return failedImport(Reason: "Pattern operator lacks an equivalent Instruction" + |
| 768 | explainOperator(Operator: Src.getOperator())); |
| 769 | SrcGIOrNull = getEquivNode(Equiv: *SrcGIEquivOrNull, N: Src); |
| 770 | |
| 771 | // The operators look good: match the opcode |
| 772 | InsnMatcher.addPredicate<InstructionOpcodeMatcher>(args&: SrcGIOrNull); |
| 773 | } |
| 774 | |
| 775 | // Since there are no opcodes for atomic loads and stores comparing to |
| 776 | // SelectionDAG, we add CheckMMOIsNonAtomic predicate immediately after the |
| 777 | // opcode predicate to make a logical combination of them. |
| 778 | if (SrcGIEquivOrNull && |
| 779 | SrcGIEquivOrNull->getValueAsBit(FieldName: "CheckMMOIsNonAtomic" )) |
| 780 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(args: "NotAtomic" ); |
| 781 | else if (SrcGIEquivOrNull && |
| 782 | SrcGIEquivOrNull->getValueAsBit(FieldName: "CheckMMOIsAtomic" )) { |
| 783 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
| 784 | args: "Unordered" , args: AtomicOrderingMMOPredicateMatcher::AO_OrStronger); |
| 785 | } |
| 786 | |
| 787 | unsigned OpIdx = 0; |
| 788 | for (const TypeSetByHwMode &VTy : Src.getExtTypes()) { |
| 789 | // Results don't have a name unless they are the root node. The caller will |
| 790 | // set the name if appropriate. |
| 791 | const bool OperandIsAPointer = |
| 792 | SrcGIOrNull && SrcGIOrNull->isOutOperandAPointer(i: OpIdx); |
| 793 | OperandMatcher &OM = InsnMatcher.addOperand(OpIdx: OpIdx++, SymbolicName: "" , AllocatedTemporariesBaseID: TempOpIdx); |
| 794 | if (auto Error = OM.addTypeCheckPredicate(VTy, OperandIsAPointer)) |
| 795 | return failedImport(Reason: toString(E: std::move(Error)) + |
| 796 | " for result of Src pattern operator" ); |
| 797 | } |
| 798 | |
| 799 | for (const TreePredicateCall &Call : Src.getPredicateCalls()) { |
| 800 | const TreePredicateFn &Predicate = Call.Fn; |
| 801 | bool HasAddedBuiltinMatcher = true; |
| 802 | if (Predicate.isAlwaysTrue()) |
| 803 | continue; |
| 804 | |
| 805 | if (Predicate.isImmediatePattern()) { |
| 806 | InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(args: Predicate); |
| 807 | continue; |
| 808 | } |
| 809 | |
| 810 | auto InsnMatcherOrError = addBuiltinPredicates( |
| 811 | SrcGIEquivOrNull, Predicate, InsnMatcher, HasAddedMatcher&: HasAddedBuiltinMatcher); |
| 812 | if (auto Error = InsnMatcherOrError.takeError()) |
| 813 | return std::move(Error); |
| 814 | |
| 815 | // FIXME: This should be part of addBuiltinPredicates(). If we add this at |
| 816 | // the start of addBuiltinPredicates() without returning, then there might |
| 817 | // be cases where we hit the last return before which the |
| 818 | // HasAddedBuiltinMatcher will be set to false. The predicate could be |
| 819 | // missed if we add it in the middle or at the end due to return statements |
| 820 | // after the addPredicate<>() calls. |
| 821 | if (Predicate.hasNoUse()) { |
| 822 | InsnMatcher.addPredicate<NoUsePredicateMatcher>(); |
| 823 | HasAddedBuiltinMatcher = true; |
| 824 | } |
| 825 | if (Predicate.hasOneUse()) { |
| 826 | InsnMatcher.addPredicate<OneUsePredicateMatcher>(); |
| 827 | HasAddedBuiltinMatcher = true; |
| 828 | } |
| 829 | |
| 830 | if (Predicate.hasGISelPredicateCode()) { |
| 831 | if (Predicate.usesOperands()) { |
| 832 | assert(WaitingForNamedOperands == 0 && |
| 833 | "previous predicate didn't find all operands or " |
| 834 | "nested predicate that uses operands" ); |
| 835 | TreePattern *TP = Predicate.getOrigPatFragRecord(); |
| 836 | WaitingForNamedOperands = TP->getNumArgs(); |
| 837 | for (unsigned I = 0; I < WaitingForNamedOperands; ++I) |
| 838 | StoreIdxForName[getScopedName(Scope: Call.Scope, Name: TP->getArgName(i: I))] = I; |
| 839 | } |
| 840 | InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(args: Predicate); |
| 841 | continue; |
| 842 | } |
| 843 | if (!HasAddedBuiltinMatcher) { |
| 844 | return failedImport(Reason: "Src pattern child has predicate (" + |
| 845 | explainPredicates(N: Src) + ")" ); |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | if (Src.isLeaf()) { |
| 850 | const Init *SrcInit = Src.getLeafValue(); |
| 851 | if (const IntInit *SrcIntInit = dyn_cast<IntInit>(Val: SrcInit)) { |
| 852 | OperandMatcher &OM = |
| 853 | InsnMatcher.addOperand(OpIdx: OpIdx++, SymbolicName: Src.getName().str(), AllocatedTemporariesBaseID: TempOpIdx); |
| 854 | OM.addPredicate<LiteralIntOperandMatcher>(args: SrcIntInit->getValue()); |
| 855 | } else { |
| 856 | return failedImport( |
| 857 | Reason: "Unable to deduce gMIR opcode to handle Src (which is a leaf)" ); |
| 858 | } |
| 859 | } else { |
| 860 | assert(SrcGIOrNull && |
| 861 | "Expected to have already found an equivalent Instruction" ); |
| 862 | if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" || |
| 863 | SrcGIOrNull->TheDef->getName() == "G_FCONSTANT" || |
| 864 | SrcGIOrNull->TheDef->getName() == "G_FRAME_INDEX" ) { |
| 865 | // imm/fpimm still have operands but we don't need to do anything with it |
| 866 | // here since we don't support ImmLeaf predicates yet. However, we still |
| 867 | // need to note the hidden operand to get GIM_CheckNumOperands correct. |
| 868 | InsnMatcher.addOperand(OpIdx: OpIdx++, SymbolicName: "" , AllocatedTemporariesBaseID: TempOpIdx); |
| 869 | return InsnMatcher; |
| 870 | } |
| 871 | |
| 872 | // Special case because the operand order is changed from setcc. The |
| 873 | // predicate operand needs to be swapped from the last operand to the first |
| 874 | // source. |
| 875 | |
| 876 | unsigned NumChildren = Src.getNumChildren(); |
| 877 | bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP" ; |
| 878 | |
| 879 | if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP" ) { |
| 880 | const TreePatternNode &SrcChild = Src.getChild(N: NumChildren - 1); |
| 881 | if (SrcChild.isLeaf()) { |
| 882 | const DefInit *DI = dyn_cast<DefInit>(Val: SrcChild.getLeafValue()); |
| 883 | const Record *CCDef = DI ? DI->getDef() : nullptr; |
| 884 | if (!CCDef || !CCDef->isSubClassOf(Name: "CondCode" )) |
| 885 | return failedImport(Reason: "Unable to handle CondCode" ); |
| 886 | |
| 887 | OperandMatcher &OM = InsnMatcher.addOperand( |
| 888 | OpIdx: OpIdx++, SymbolicName: SrcChild.getName().str(), AllocatedTemporariesBaseID: TempOpIdx); |
| 889 | StringRef PredType = IsFCmp ? CCDef->getValueAsString(FieldName: "FCmpPredicate" ) |
| 890 | : CCDef->getValueAsString(FieldName: "ICmpPredicate" ); |
| 891 | |
| 892 | if (!PredType.empty()) { |
| 893 | OM.addPredicate<CmpPredicateOperandMatcher>(args: PredType.str()); |
| 894 | // Process the other 2 operands normally. |
| 895 | --NumChildren; |
| 896 | } |
| 897 | } |
| 898 | } |
| 899 | |
| 900 | // Match the used operands (i.e. the children of the operator). |
| 901 | bool IsIntrinsic = |
| 902 | SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" || |
| 903 | SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS" || |
| 904 | SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_CONVERGENT" || |
| 905 | SrcGIOrNull->TheDef->getName() == |
| 906 | "G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS" ; |
| 907 | const CodeGenIntrinsic *II = Src.getIntrinsicInfo(CDP: CGP); |
| 908 | if (IsIntrinsic && !II) |
| 909 | return failedImport(Reason: "Expected IntInit containing intrinsic ID)" ); |
| 910 | |
| 911 | for (unsigned I = 0; I != NumChildren; ++I) { |
| 912 | const TreePatternNode &SrcChild = Src.getChild(N: I); |
| 913 | |
| 914 | // We need to determine the meaning of a literal integer based on the |
| 915 | // context. If this is a field required to be an immediate (such as an |
| 916 | // immarg intrinsic argument), the required predicates are different than |
| 917 | // a constant which may be materialized in a register. If we have an |
| 918 | // argument that is required to be an immediate, we should not emit an LLT |
| 919 | // type check, and should not be looking for a G_CONSTANT defined |
| 920 | // register. |
| 921 | bool OperandIsImmArg = SrcGIOrNull->isInOperandImmArg(i: I); |
| 922 | |
| 923 | // SelectionDAG allows pointers to be represented with iN since it doesn't |
| 924 | // distinguish between pointers and integers but they are different types |
| 925 | // in GlobalISel. Coerce integers to pointers to address space 0 if the |
| 926 | // context indicates a pointer. |
| 927 | // |
| 928 | bool OperandIsAPointer = SrcGIOrNull->isInOperandAPointer(i: I); |
| 929 | |
| 930 | if (IsIntrinsic) { |
| 931 | // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately |
| 932 | // following the defs is an intrinsic ID. |
| 933 | if (I == 0) { |
| 934 | OperandMatcher &OM = InsnMatcher.addOperand( |
| 935 | OpIdx: OpIdx++, SymbolicName: SrcChild.getName().str(), AllocatedTemporariesBaseID: TempOpIdx); |
| 936 | OM.addPredicate<IntrinsicIDOperandMatcher>(args&: II); |
| 937 | continue; |
| 938 | } |
| 939 | |
| 940 | // We have to check intrinsics for llvm_anyptr_ty and immarg parameters. |
| 941 | // |
| 942 | // Note that we have to look at the i-1th parameter, because we don't |
| 943 | // have the intrinsic ID in the intrinsic's parameter list. |
| 944 | OperandIsAPointer |= II->isParamAPointer(ParamIdx: I - 1); |
| 945 | OperandIsImmArg |= II->isParamImmArg(ParamIdx: I - 1); |
| 946 | } |
| 947 | |
| 948 | if (auto Error = |
| 949 | importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer, |
| 950 | OperandIsImmArg, OpIdx: OpIdx++, TempOpIdx)) |
| 951 | return std::move(Error); |
| 952 | } |
| 953 | } |
| 954 | |
| 955 | return InsnMatcher; |
| 956 | } |
| 957 | |
| 958 | Error GlobalISelEmitter::importComplexPatternOperandMatcher( |
| 959 | OperandMatcher &OM, const Record *R, unsigned &TempOpIdx) const { |
| 960 | const auto &ComplexPattern = ComplexPatternEquivs.find(Val: R); |
| 961 | if (ComplexPattern == ComplexPatternEquivs.end()) |
| 962 | return failedImport(Reason: "SelectionDAG ComplexPattern (" + R->getName() + |
| 963 | ") not mapped to GlobalISel" ); |
| 964 | |
| 965 | OM.addPredicate<ComplexPatternOperandMatcher>(args&: OM, args: *ComplexPattern->second); |
| 966 | TempOpIdx++; |
| 967 | return Error::success(); |
| 968 | } |
| 969 | |
| 970 | // Get the name to use for a pattern operand. For an anonymous physical register |
| 971 | // input, this should use the register name. |
| 972 | static StringRef getSrcChildName(const TreePatternNode &SrcChild, |
| 973 | const Record *&PhysReg) { |
| 974 | StringRef SrcChildName = SrcChild.getName(); |
| 975 | if (SrcChildName.empty() && SrcChild.isLeaf()) { |
| 976 | if (auto *ChildDefInit = dyn_cast<DefInit>(Val: SrcChild.getLeafValue())) { |
| 977 | auto *ChildRec = ChildDefInit->getDef(); |
| 978 | if (ChildRec->isSubClassOf(Name: "Register" )) { |
| 979 | SrcChildName = ChildRec->getName(); |
| 980 | PhysReg = ChildRec; |
| 981 | } |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | return SrcChildName; |
| 986 | } |
| 987 | |
| 988 | Error GlobalISelEmitter::importChildMatcher( |
| 989 | RuleMatcher &Rule, InstructionMatcher &InsnMatcher, |
| 990 | const TreePatternNode &SrcChild, bool OperandIsAPointer, |
| 991 | bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) { |
| 992 | |
| 993 | const Record *PhysReg = nullptr; |
| 994 | std::string SrcChildName = getSrcChildName(SrcChild, PhysReg).str(); |
| 995 | if (!SrcChild.isLeaf() && |
| 996 | SrcChild.getOperator()->isSubClassOf(Name: "ComplexPattern" )) { |
| 997 | // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is |
| 998 | // "MY_PAT:op1:op2" and the ones with same "name" represent same operand. |
| 999 | std::string PatternName = SrcChild.getOperator()->getName().str(); |
| 1000 | for (const TreePatternNode &Child : SrcChild.children()) { |
| 1001 | PatternName += ":" ; |
| 1002 | PatternName += Child.getName(); |
| 1003 | } |
| 1004 | SrcChildName = PatternName; |
| 1005 | } |
| 1006 | |
| 1007 | OperandMatcher &OM = |
| 1008 | PhysReg ? InsnMatcher.addPhysRegInput(Reg: PhysReg, OpIdx, TempOpIdx) |
| 1009 | : InsnMatcher.addOperand(OpIdx, SymbolicName: SrcChildName, AllocatedTemporariesBaseID: TempOpIdx); |
| 1010 | if (OM.isSameAsAnotherOperand()) |
| 1011 | return Error::success(); |
| 1012 | |
| 1013 | ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild.getExtTypes(); |
| 1014 | if (ChildTypes.size() != 1) |
| 1015 | return failedImport(Reason: "Src pattern child has multiple results" ); |
| 1016 | |
| 1017 | // Check MBB's before the type check since they are not a known type. |
| 1018 | if (!SrcChild.isLeaf()) { |
| 1019 | if (SrcChild.getOperator()->getName() == "bb" ) { |
| 1020 | OM.addPredicate<MBBOperandMatcher>(); |
| 1021 | return Error::success(); |
| 1022 | } |
| 1023 | if (SrcChild.getOperator()->getName() == "timm" ) { |
| 1024 | OM.addPredicate<ImmOperandMatcher>(); |
| 1025 | |
| 1026 | // Add predicates, if any |
| 1027 | for (const TreePredicateCall &Call : SrcChild.getPredicateCalls()) { |
| 1028 | const TreePredicateFn &Predicate = Call.Fn; |
| 1029 | |
| 1030 | // Only handle immediate patterns for now |
| 1031 | if (Predicate.isImmediatePattern()) { |
| 1032 | OM.addPredicate<OperandImmPredicateMatcher>(args: Predicate); |
| 1033 | } |
| 1034 | } |
| 1035 | |
| 1036 | return Error::success(); |
| 1037 | } |
| 1038 | } else if (auto *ChildDefInit = dyn_cast<DefInit>(Val: SrcChild.getLeafValue())) { |
| 1039 | auto *ChildRec = ChildDefInit->getDef(); |
| 1040 | if (ChildRec->isSubClassOf(Name: "ValueType" ) && !SrcChild.hasName()) { |
| 1041 | // An unnamed ValueType as in (sext_inreg GPR:$foo, i8). GISel represents |
| 1042 | // this as a literal constant with the scalar size. |
| 1043 | MVT::SimpleValueType VT = llvm::getValueType(Rec: ChildRec); |
| 1044 | OM.addPredicate<LiteralIntOperandMatcher>(args: MVT(VT).getScalarSizeInBits()); |
| 1045 | return Error::success(); |
| 1046 | } |
| 1047 | } |
| 1048 | |
| 1049 | // Immediate arguments have no meaningful type to check as they don't have |
| 1050 | // registers. |
| 1051 | if (!OperandIsImmArg) { |
| 1052 | if (auto Error = |
| 1053 | OM.addTypeCheckPredicate(VTy: ChildTypes.front(), OperandIsAPointer)) |
| 1054 | return failedImport(Reason: toString(E: std::move(Error)) + " for Src operand (" + |
| 1055 | to_string(Value: SrcChild) + ")" ); |
| 1056 | } |
| 1057 | |
| 1058 | // Try look up SrcChild for a (named) predicate operand if there is any. |
| 1059 | if (WaitingForNamedOperands) { |
| 1060 | auto &ScopedNames = SrcChild.getNamesAsPredicateArg(); |
| 1061 | if (!ScopedNames.empty()) { |
| 1062 | auto PA = ScopedNames.begin(); |
| 1063 | std::string Name = getScopedName(Scope: PA->getScope(), Name: PA->getIdentifier()); |
| 1064 | OM.addPredicate<RecordNamedOperandMatcher>(args&: StoreIdxForName[Name], args&: Name); |
| 1065 | --WaitingForNamedOperands; |
| 1066 | } |
| 1067 | } |
| 1068 | |
| 1069 | // Check for nested instructions. |
| 1070 | if (!SrcChild.isLeaf()) { |
| 1071 | if (SrcChild.getOperator()->isSubClassOf(Name: "ComplexPattern" )) { |
| 1072 | // When a ComplexPattern is used as an operator, it should do the same |
| 1073 | // thing as when used as a leaf. However, the children of the operator |
| 1074 | // name the sub-operands that make up the complex operand and we must |
| 1075 | // prepare to reference them in the renderer too. |
| 1076 | unsigned RendererID = TempOpIdx; |
| 1077 | if (auto Error = importComplexPatternOperandMatcher( |
| 1078 | OM, R: SrcChild.getOperator(), TempOpIdx)) |
| 1079 | return Error; |
| 1080 | |
| 1081 | for (unsigned I = 0, E = SrcChild.getNumChildren(); I != E; ++I) { |
| 1082 | auto &SubOperand = SrcChild.getChild(N: I); |
| 1083 | if (!SubOperand.getName().empty()) { |
| 1084 | if (auto Error = Rule.defineComplexSubOperand( |
| 1085 | SymbolicName: SubOperand.getName(), ComplexPattern: SrcChild.getOperator(), RendererID, SubOperandID: I, |
| 1086 | ParentSymbolicName: SrcChildName)) |
| 1087 | return Error; |
| 1088 | } |
| 1089 | } |
| 1090 | |
| 1091 | return Error::success(); |
| 1092 | } |
| 1093 | |
| 1094 | auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( |
| 1095 | args&: InsnMatcher.getRuleMatcher(), args: SrcChild.getName()); |
| 1096 | if (!MaybeInsnOperand) { |
| 1097 | // This isn't strictly true. If the user were to provide exactly the same |
| 1098 | // matchers as the original operand then we could allow it. However, it's |
| 1099 | // simpler to not permit the redundant specification. |
| 1100 | return failedImport( |
| 1101 | Reason: "Nested instruction cannot be the same as another operand" ); |
| 1102 | } |
| 1103 | |
| 1104 | // Map the node to a gMIR instruction. |
| 1105 | InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; |
| 1106 | auto InsnMatcherOrError = createAndImportSelDAGMatcher( |
| 1107 | Rule, InsnMatcher&: InsnOperand.getInsnMatcher(), Src: SrcChild, TempOpIdx); |
| 1108 | if (auto Error = InsnMatcherOrError.takeError()) |
| 1109 | return Error; |
| 1110 | |
| 1111 | return Error::success(); |
| 1112 | } |
| 1113 | |
| 1114 | if (SrcChild.hasAnyPredicate()) { |
| 1115 | for (const TreePredicateCall &Call : SrcChild.getPredicateCalls()) { |
| 1116 | const TreePredicateFn &Predicate = Call.Fn; |
| 1117 | |
| 1118 | if (!Predicate.hasGISelLeafPredicateCode()) |
| 1119 | return failedImport(Reason: "Src pattern child has unsupported predicate" ); |
| 1120 | OM.addPredicate<OperandLeafPredicateMatcher>(args: Predicate); |
| 1121 | } |
| 1122 | return Error::success(); |
| 1123 | } |
| 1124 | |
| 1125 | // Check for constant immediates. |
| 1126 | if (auto *ChildInt = dyn_cast<IntInit>(Val: SrcChild.getLeafValue())) { |
| 1127 | if (OperandIsImmArg) { |
| 1128 | // Checks for argument directly in operand list |
| 1129 | OM.addPredicate<LiteralIntOperandMatcher>(args: ChildInt->getValue()); |
| 1130 | } else { |
| 1131 | // Checks for materialized constant |
| 1132 | OM.addPredicate<ConstantIntOperandMatcher>(args: ChildInt->getValue()); |
| 1133 | } |
| 1134 | return Error::success(); |
| 1135 | } |
| 1136 | |
| 1137 | // Check for def's like register classes or ComplexPattern's. |
| 1138 | if (auto *ChildDefInit = dyn_cast<DefInit>(Val: SrcChild.getLeafValue())) { |
| 1139 | auto *ChildRec = ChildDefInit->getDef(); |
| 1140 | |
| 1141 | // Check for register classes. |
| 1142 | if (ChildRec->isSubClassOf(Name: "RegisterClass" ) || |
| 1143 | ChildRec->isSubClassOf(Name: "RegisterOperand" )) { |
| 1144 | OM.addPredicate<RegisterBankOperandMatcher>( |
| 1145 | args: Target.getRegisterClass(R: getInitValueAsRegClass(V: ChildDefInit))); |
| 1146 | return Error::success(); |
| 1147 | } |
| 1148 | |
| 1149 | if (ChildRec->isSubClassOf(Name: "Register" )) { |
| 1150 | // This just be emitted as a copy to the specific register. |
| 1151 | ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode(); |
| 1152 | const CodeGenRegisterClass *RC = |
| 1153 | CGRegs.getMinimalPhysRegClass(RegRecord: ChildRec, VT: &VT); |
| 1154 | if (!RC) { |
| 1155 | return failedImport( |
| 1156 | Reason: "Could not determine physical register class of pattern source" ); |
| 1157 | } |
| 1158 | |
| 1159 | OM.addPredicate<RegisterBankOperandMatcher>(args: *RC); |
| 1160 | return Error::success(); |
| 1161 | } |
| 1162 | |
| 1163 | // Check for ValueType. |
| 1164 | if (ChildRec->isSubClassOf(Name: "ValueType" )) { |
| 1165 | // We already added a type check as standard practice so this doesn't need |
| 1166 | // to do anything. |
| 1167 | return Error::success(); |
| 1168 | } |
| 1169 | |
| 1170 | // Check for ComplexPattern's. |
| 1171 | if (ChildRec->isSubClassOf(Name: "ComplexPattern" )) |
| 1172 | return importComplexPatternOperandMatcher(OM, R: ChildRec, TempOpIdx); |
| 1173 | |
| 1174 | if (ChildRec->isSubClassOf(Name: "ImmLeaf" )) { |
| 1175 | return failedImport( |
| 1176 | Reason: "Src pattern child def is an unsupported tablegen class (ImmLeaf)" ); |
| 1177 | } |
| 1178 | |
| 1179 | // Place holder for SRCVALUE nodes. Nothing to do here. |
| 1180 | if (ChildRec->getName() == "srcvalue" ) |
| 1181 | return Error::success(); |
| 1182 | |
| 1183 | const bool ImmAllOnesV = ChildRec->getName() == "immAllOnesV" ; |
| 1184 | if (ImmAllOnesV || ChildRec->getName() == "immAllZerosV" ) { |
| 1185 | auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( |
| 1186 | args&: InsnMatcher.getRuleMatcher(), args: SrcChild.getName(), args: false); |
| 1187 | InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; |
| 1188 | |
| 1189 | ValueTypeByHwMode VTy = ChildTypes.front().getValueTypeByHwMode(); |
| 1190 | |
| 1191 | const CodeGenInstruction &BuildVector = |
| 1192 | Target.getInstruction(InstRec: RK.getDef(Name: "G_BUILD_VECTOR" )); |
| 1193 | const CodeGenInstruction &BuildVectorTrunc = |
| 1194 | Target.getInstruction(InstRec: RK.getDef(Name: "G_BUILD_VECTOR_TRUNC" )); |
| 1195 | |
| 1196 | // Treat G_BUILD_VECTOR as the canonical opcode, and G_BUILD_VECTOR_TRUNC |
| 1197 | // as an alternative. |
| 1198 | InsnOperand.getInsnMatcher().addPredicate<InstructionOpcodeMatcher>( |
| 1199 | args: ArrayRef({&BuildVector, &BuildVectorTrunc})); |
| 1200 | |
| 1201 | // TODO: Handle both G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC We could |
| 1202 | // theoretically not emit any opcode check, but getOpcodeMatcher currently |
| 1203 | // has to succeed. |
| 1204 | OperandMatcher &OM = |
| 1205 | InsnOperand.getInsnMatcher().addOperand(OpIdx: 0, SymbolicName: "" , AllocatedTemporariesBaseID: TempOpIdx); |
| 1206 | if (auto Error = OM.addTypeCheckPredicate(VTy: TypeSetByHwMode(VTy), |
| 1207 | /*OperandIsAPointer=*/false)) |
| 1208 | return failedImport(Reason: toString(E: std::move(Error)) + |
| 1209 | " for result of Src pattern operator" ); |
| 1210 | |
| 1211 | InsnOperand.getInsnMatcher().addPredicate<VectorSplatImmPredicateMatcher>( |
| 1212 | args: ImmAllOnesV ? VectorSplatImmPredicateMatcher::AllOnes |
| 1213 | : VectorSplatImmPredicateMatcher::AllZeros); |
| 1214 | return Error::success(); |
| 1215 | } |
| 1216 | |
| 1217 | return failedImport( |
| 1218 | Reason: "Src pattern child def is an unsupported tablegen class" ); |
| 1219 | } |
| 1220 | |
| 1221 | return failedImport(Reason: "Src pattern child is an unsupported kind" ); |
| 1222 | } |
| 1223 | |
| 1224 | // Equivalent of MatcherGen::EmitResultOfNamedOperand. |
| 1225 | Error GlobalISelEmitter::importNamedNodeRenderer( |
| 1226 | RuleMatcher &M, BuildMIAction &MIBuilder, const TreePatternNode &N) const { |
| 1227 | StringRef NodeName = N.getName(); |
| 1228 | |
| 1229 | if (auto SubOperand = M.getComplexSubOperand(SymbolicName: NodeName)) { |
| 1230 | auto [ComplexPatternRec, RendererID, SubOperandIdx] = *SubOperand; |
| 1231 | MIBuilder.addRenderer<RenderComplexPatternOperand>( |
| 1232 | args: *ComplexPatternRec, args&: NodeName, args&: RendererID, args&: SubOperandIdx); |
| 1233 | return Error::success(); |
| 1234 | } |
| 1235 | |
| 1236 | if (!N.isLeaf()) { |
| 1237 | StringRef OperatorName = N.getOperator()->getName(); |
| 1238 | |
| 1239 | if (OperatorName == "imm" ) { |
| 1240 | MIBuilder.addRenderer<CopyConstantAsImmRenderer>(args&: NodeName); |
| 1241 | return Error::success(); |
| 1242 | } |
| 1243 | |
| 1244 | if (OperatorName == "fpimm" ) { |
| 1245 | MIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(args&: NodeName); |
| 1246 | return Error::success(); |
| 1247 | } |
| 1248 | |
| 1249 | // TODO: 'imm' and 'fpimm' are the only nodes that need special treatment. |
| 1250 | // Remove this check and add CopyRenderer unconditionally for other nodes. |
| 1251 | if (OperatorName == "bb" || OperatorName == "timm" || |
| 1252 | OperatorName == "tframeindex" ) { |
| 1253 | MIBuilder.addRenderer<CopyRenderer>(args&: NodeName); |
| 1254 | return Error::success(); |
| 1255 | } |
| 1256 | |
| 1257 | return failedImport(Reason: "node has unsupported operator " + to_string(Value: N)); |
| 1258 | } |
| 1259 | |
| 1260 | if (const auto *DI = dyn_cast<DefInit>(Val: N.getLeafValue())) { |
| 1261 | const Record *R = DI->getDef(); |
| 1262 | |
| 1263 | if (N.getNumResults() != 1) |
| 1264 | return failedImport(Reason: "node does not have one result " + to_string(Value: N)); |
| 1265 | |
| 1266 | if (R->isSubClassOf(Name: "ComplexPattern" )) { |
| 1267 | auto I = ComplexPatternEquivs.find(Val: R); |
| 1268 | if (I == ComplexPatternEquivs.end()) |
| 1269 | return failedImport(Reason: "ComplexPattern " + R->getName() + |
| 1270 | " does not have GISel equivalent" ); |
| 1271 | |
| 1272 | const OperandMatcher &OM = M.getOperandMatcher(Name: NodeName); |
| 1273 | MIBuilder.addRenderer<RenderComplexPatternOperand>( |
| 1274 | args: *I->second, args&: NodeName, args: OM.getAllocatedTemporariesBaseID()); |
| 1275 | return Error::success(); |
| 1276 | } |
| 1277 | |
| 1278 | if (R->isSubClassOf(Name: "RegisterOperand" ) && |
| 1279 | !R->isValueUnset(FieldName: "GIZeroRegister" )) { |
| 1280 | MIBuilder.addRenderer<CopyOrAddZeroRegRenderer>( |
| 1281 | args&: NodeName, args: R->getValueAsDef(FieldName: "GIZeroRegister" )); |
| 1282 | return Error::success(); |
| 1283 | } |
| 1284 | |
| 1285 | // TODO: All special cases are handled above. Remove this check and add |
| 1286 | // CopyRenderer unconditionally. |
| 1287 | if (R->isSubClassOf(Name: "RegisterClass" ) || |
| 1288 | R->isSubClassOf(Name: "RegisterOperand" ) || R->isSubClassOf(Name: "ValueType" )) { |
| 1289 | MIBuilder.addRenderer<CopyRenderer>(args&: NodeName); |
| 1290 | return Error::success(); |
| 1291 | } |
| 1292 | } |
| 1293 | |
| 1294 | // TODO: Change this to assert and move to the beginning of the function. |
| 1295 | if (!M.hasOperand(SymbolicName: NodeName)) |
| 1296 | return failedImport(Reason: "could not find node $" + NodeName + |
| 1297 | " in the source DAG" ); |
| 1298 | |
| 1299 | // TODO: Remove this check and add CopyRenderer unconditionally. |
| 1300 | // TODO: Handle nodes with multiple results (provided they can reach here). |
| 1301 | if (isa<UnsetInit>(Val: N.getLeafValue())) { |
| 1302 | MIBuilder.addRenderer<CopyRenderer>(args&: NodeName); |
| 1303 | return Error::success(); |
| 1304 | } |
| 1305 | |
| 1306 | return failedImport(Reason: "unsupported node " + to_string(Value: N)); |
| 1307 | } |
| 1308 | |
| 1309 | // Equivalent of MatcherGen::EmitResultLeafAsOperand. |
| 1310 | Error GlobalISelEmitter::importLeafNodeRenderer( |
| 1311 | RuleMatcher &M, BuildMIAction &MIBuilder, const TreePatternNode &N, |
| 1312 | action_iterator InsertPt) const { |
| 1313 | if (const auto *II = dyn_cast<IntInit>(Val: N.getLeafValue())) { |
| 1314 | MIBuilder.addRenderer<ImmRenderer>(args: II->getValue()); |
| 1315 | return Error::success(); |
| 1316 | } |
| 1317 | |
| 1318 | if (const auto *DI = dyn_cast<DefInit>(Val: N.getLeafValue())) { |
| 1319 | const Record *R = DI->getDef(); |
| 1320 | |
| 1321 | if (R->isSubClassOf(Name: "Register" ) || R->getName() == "zero_reg" ) { |
| 1322 | MIBuilder.addRenderer<AddRegisterRenderer>(args: Target, args&: R); |
| 1323 | return Error::success(); |
| 1324 | } |
| 1325 | |
| 1326 | if (R->getName() == "undef_tied_input" ) { |
| 1327 | std::optional<LLTCodeGen> OpTyOrNone = MVTToLLT(SVT: N.getSimpleType(ResNo: 0)); |
| 1328 | if (!OpTyOrNone) |
| 1329 | return failedImport(Reason: "unsupported type" ); |
| 1330 | |
| 1331 | unsigned TempRegID = M.allocateTempRegID(); |
| 1332 | M.insertAction<MakeTempRegisterAction>(InsertPt, args&: *OpTyOrNone, args&: TempRegID); |
| 1333 | |
| 1334 | auto I = M.insertAction<BuildMIAction>( |
| 1335 | InsertPt, args: M.allocateOutputInsnID(), |
| 1336 | args: &Target.getInstruction(InstRec: RK.getDef(Name: "IMPLICIT_DEF" ))); |
| 1337 | auto &ImpDefBuilder = static_cast<BuildMIAction &>(**I); |
| 1338 | ImpDefBuilder.addRenderer<TempRegRenderer>(args&: TempRegID, /*IsDef=*/args: true); |
| 1339 | |
| 1340 | MIBuilder.addRenderer<TempRegRenderer>(args&: TempRegID); |
| 1341 | return Error::success(); |
| 1342 | } |
| 1343 | |
| 1344 | if (R->isSubClassOf(Name: "SubRegIndex" )) { |
| 1345 | const CodeGenSubRegIndex *SubRegIndex = CGRegs.findSubRegIdx(Def: R); |
| 1346 | MIBuilder.addRenderer<ImmRenderer>(args: SubRegIndex->EnumValue); |
| 1347 | return Error::success(); |
| 1348 | } |
| 1349 | |
| 1350 | // There are also RegisterClass / RegisterOperand operands of REG_SEQUENCE / |
| 1351 | // COPY_TO_REGCLASS, but these instructions are currently handled elsewhere. |
| 1352 | } |
| 1353 | |
| 1354 | return failedImport(Reason: "unrecognized node " + to_string(Value: N)); |
| 1355 | } |
| 1356 | |
| 1357 | // Equivalent of MatcherGen::EmitResultSDNodeXFormAsOperand. |
| 1358 | Error GlobalISelEmitter::importXFormNodeRenderer( |
| 1359 | RuleMatcher &M, BuildMIAction &MIBuilder, const TreePatternNode &N) const { |
| 1360 | const Record *XFormRec = N.getOperator(); |
| 1361 | auto I = SDNodeXFormEquivs.find(Val: XFormRec); |
| 1362 | if (I == SDNodeXFormEquivs.end()) |
| 1363 | return failedImport(Reason: "SDNodeXForm " + XFormRec->getName() + |
| 1364 | " does not have GISel equivalent" ); |
| 1365 | |
| 1366 | // TODO: Fail to import if GISDNodeXForm does not have RendererFn. |
| 1367 | // This currently results in a fatal error in emitRenderOpcodes. |
| 1368 | const Record *XFormEquivRec = I->second; |
| 1369 | |
| 1370 | // The node to apply the transformation function to. |
| 1371 | // FIXME: The node may not have a name and may be a leaf. It should be |
| 1372 | // rendered first, like any other nodes. This may or may not require |
| 1373 | // introducing a temporary register, and we can't tell that without |
| 1374 | // inspecting the node (possibly recursively). This is a general drawback |
| 1375 | // of appending renderers directly to BuildMIAction. |
| 1376 | const TreePatternNode &Node = N.getChild(N: 0); |
| 1377 | StringRef NodeName = Node.getName(); |
| 1378 | |
| 1379 | const Record *XFormOpc = CGP.getSDNodeTransform(R: XFormRec).first; |
| 1380 | if (XFormOpc->getName() == "timm" ) { |
| 1381 | // If this is a TargetConstant, there won't be a corresponding |
| 1382 | // instruction to transform. Instead, this will refer directly to an |
| 1383 | // operand in an instruction's operand list. |
| 1384 | MIBuilder.addRenderer<CustomOperandRenderer>(args: *XFormEquivRec, args&: NodeName); |
| 1385 | } else { |
| 1386 | MIBuilder.addRenderer<CustomRenderer>(args: *XFormEquivRec, args&: NodeName); |
| 1387 | } |
| 1388 | |
| 1389 | return Error::success(); |
| 1390 | } |
| 1391 | |
| 1392 | // Equivalent of MatcherGen::EmitResultInstructionAsOperand. |
| 1393 | Error GlobalISelEmitter::importInstructionNodeRenderer( |
| 1394 | RuleMatcher &M, BuildMIAction &MIBuilder, const TreePatternNode &N, |
| 1395 | action_iterator &InsertPt) const { |
| 1396 | Expected<LLTCodeGen> OpTy = getInstResultType(Dst: N, Target); |
| 1397 | if (!OpTy) |
| 1398 | return OpTy.takeError(); |
| 1399 | |
| 1400 | // TODO: See the comment in importXFormNodeRenderer. We rely on the node |
| 1401 | // requiring a temporary register, which prevents us from using this |
| 1402 | // function on the root of the destination DAG. |
| 1403 | unsigned TempRegID = M.allocateTempRegID(); |
| 1404 | InsertPt = M.insertAction<MakeTempRegisterAction>(InsertPt, args&: *OpTy, args&: TempRegID); |
| 1405 | MIBuilder.addRenderer<TempRegRenderer>(args&: TempRegID); |
| 1406 | |
| 1407 | auto InsertPtOrError = |
| 1408 | createAndImportSubInstructionRenderer(InsertPt: ++InsertPt, M, Dst: N, TempReg: TempRegID); |
| 1409 | if (!InsertPtOrError) |
| 1410 | return InsertPtOrError.takeError(); |
| 1411 | |
| 1412 | InsertPt = *InsertPtOrError; |
| 1413 | return Error::success(); |
| 1414 | } |
| 1415 | |
| 1416 | // Equivalent of MatcherGen::EmitResultOperand. |
| 1417 | Error GlobalISelEmitter::importNodeRenderer(RuleMatcher &M, |
| 1418 | BuildMIAction &MIBuilder, |
| 1419 | const TreePatternNode &N, |
| 1420 | action_iterator &InsertPt) const { |
| 1421 | if (N.hasName()) |
| 1422 | return importNamedNodeRenderer(M, MIBuilder, N); |
| 1423 | |
| 1424 | if (N.isLeaf()) |
| 1425 | return importLeafNodeRenderer(M, MIBuilder, N, InsertPt); |
| 1426 | |
| 1427 | if (N.getOperator()->isSubClassOf(Name: "SDNodeXForm" )) |
| 1428 | return importXFormNodeRenderer(M, MIBuilder, N); |
| 1429 | |
| 1430 | if (N.getOperator()->isSubClassOf(Name: "Instruction" )) |
| 1431 | return importInstructionNodeRenderer(M, MIBuilder, N, InsertPt); |
| 1432 | |
| 1433 | // Should not reach here. |
| 1434 | return failedImport(Reason: "unrecognized node " + llvm::to_string(Value: N)); |
| 1435 | } |
| 1436 | |
| 1437 | /// Generates code that builds the resulting instruction(s) from the destination |
| 1438 | /// DAG. Note that to do this we do not and should not need the source DAG. |
| 1439 | /// We do need to know whether a generated instruction defines a result of the |
| 1440 | /// source DAG; this information is available via RuleMatcher::hasOperand. |
| 1441 | Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer( |
| 1442 | RuleMatcher &M, InstructionMatcher &InsnMatcher, |
| 1443 | const TreePatternNode &Dst) const { |
| 1444 | auto InsertPtOrError = createInstructionRenderer(InsertPt: M.actions_end(), M, Dst); |
| 1445 | if (auto Error = InsertPtOrError.takeError()) |
| 1446 | return std::move(Error); |
| 1447 | |
| 1448 | action_iterator InsertPt = InsertPtOrError.get(); |
| 1449 | BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get()); |
| 1450 | |
| 1451 | for (auto PhysOp : M.physoperands()) { |
| 1452 | InsertPt = M.insertAction<BuildMIAction>( |
| 1453 | InsertPt, args: M.allocateOutputInsnID(), |
| 1454 | args: &Target.getInstruction(InstRec: RK.getDef(Name: "COPY" ))); |
| 1455 | BuildMIAction &CopyToPhysRegMIBuilder = |
| 1456 | *static_cast<BuildMIAction *>(InsertPt->get()); |
| 1457 | CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(args: Target, |
| 1458 | args&: PhysOp.first, args: true); |
| 1459 | CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(args&: PhysOp.first); |
| 1460 | } |
| 1461 | |
| 1462 | if (auto Error = importExplicitDefRenderers(InsertPt, M, DstMIBuilder, Dst, |
| 1463 | /*IsRoot=*/true) |
| 1464 | .takeError()) |
| 1465 | return std::move(Error); |
| 1466 | |
| 1467 | if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst) |
| 1468 | .takeError()) |
| 1469 | return std::move(Error); |
| 1470 | |
| 1471 | return DstMIBuilder; |
| 1472 | } |
| 1473 | |
| 1474 | Expected<action_iterator> |
| 1475 | GlobalISelEmitter::createAndImportSubInstructionRenderer( |
| 1476 | action_iterator InsertPt, RuleMatcher &M, const TreePatternNode &Dst, |
| 1477 | unsigned TempRegID) const { |
| 1478 | auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst); |
| 1479 | |
| 1480 | // TODO: Assert there's exactly one result. |
| 1481 | |
| 1482 | if (auto Error = InsertPtOrError.takeError()) |
| 1483 | return std::move(Error); |
| 1484 | |
| 1485 | BuildMIAction &DstMIBuilder = |
| 1486 | *static_cast<BuildMIAction *>(InsertPtOrError.get()->get()); |
| 1487 | |
| 1488 | // Assign the result to TempReg. |
| 1489 | DstMIBuilder.addRenderer<TempRegRenderer>(args&: TempRegID, args: true); |
| 1490 | |
| 1491 | // Handle additional (ignored) results. |
| 1492 | InsertPtOrError = importExplicitDefRenderers( |
| 1493 | InsertPt: std::prev(x: *InsertPtOrError), M, DstMIBuilder, Dst, /*IsRoot=*/false); |
| 1494 | if (auto Error = InsertPtOrError.takeError()) |
| 1495 | return std::move(Error); |
| 1496 | |
| 1497 | InsertPtOrError = |
| 1498 | importExplicitUseRenderers(InsertPt: InsertPtOrError.get(), M, DstMIBuilder, Dst); |
| 1499 | if (auto Error = InsertPtOrError.takeError()) |
| 1500 | return std::move(Error); |
| 1501 | |
| 1502 | if (auto Error = |
| 1503 | constrainOperands(InsertPt, M, InsnID: DstMIBuilder.getInsnID(), Dst)) |
| 1504 | return std::move(Error); |
| 1505 | |
| 1506 | return InsertPtOrError.get(); |
| 1507 | } |
| 1508 | |
| 1509 | Expected<action_iterator> |
| 1510 | GlobalISelEmitter::createInstructionRenderer(action_iterator InsertPt, |
| 1511 | RuleMatcher &M, |
| 1512 | const TreePatternNode &Dst) const { |
| 1513 | const Record *DstOp = Dst.getOperator(); |
| 1514 | if (!DstOp->isSubClassOf(Name: "Instruction" )) { |
| 1515 | if (DstOp->isSubClassOf(Name: "ValueType" )) |
| 1516 | return failedImport( |
| 1517 | Reason: "Pattern operator isn't an instruction (it's a ValueType)" ); |
| 1518 | return failedImport(Reason: "Pattern operator isn't an instruction" ); |
| 1519 | } |
| 1520 | CodeGenInstruction *DstI = &Target.getInstruction(InstRec: DstOp); |
| 1521 | |
| 1522 | // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction |
| 1523 | // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy. |
| 1524 | StringRef Name = DstI->TheDef->getName(); |
| 1525 | if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG" ) |
| 1526 | DstI = &Target.getInstruction(InstRec: RK.getDef(Name: "COPY" )); |
| 1527 | |
| 1528 | return M.insertAction<BuildMIAction>(InsertPt, args: M.allocateOutputInsnID(), |
| 1529 | args&: DstI); |
| 1530 | } |
| 1531 | |
| 1532 | Expected<action_iterator> GlobalISelEmitter::importExplicitDefRenderers( |
| 1533 | action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, |
| 1534 | const TreePatternNode &Dst, bool IsRoot) const { |
| 1535 | const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); |
| 1536 | |
| 1537 | // Process explicit defs. The caller may have already handled the first def. |
| 1538 | for (unsigned I = IsRoot ? 0 : 1, E = DstI->Operands.NumDefs; I != E; ++I) { |
| 1539 | const CGIOperandList::OperandInfo &OpInfo = DstI->Operands[I]; |
| 1540 | std::string OpName = getMangledRootDefName(DefOperandName: OpInfo.Name); |
| 1541 | |
| 1542 | // If the def is used in the source DAG, forward it. |
| 1543 | if (IsRoot && M.hasOperand(SymbolicName: OpName)) { |
| 1544 | // CopyRenderer saves a StringRef, so cannot pass OpName itself - |
| 1545 | // let's use a string with an appropriate lifetime. |
| 1546 | StringRef PermanentRef = M.getOperandMatcher(Name: OpName).getSymbolicName(); |
| 1547 | DstMIBuilder.addRenderer<CopyRenderer>(args&: PermanentRef); |
| 1548 | continue; |
| 1549 | } |
| 1550 | |
| 1551 | // A discarded explicit def may be an optional physical register. |
| 1552 | // If this is the case, add the default register and mark it as dead. |
| 1553 | if (OpInfo.Rec->isSubClassOf(Name: "OptionalDefOperand" )) { |
| 1554 | for (const TreePatternNode &DefaultOp : |
| 1555 | make_pointee_range(Range: CGP.getDefaultOperand(R: OpInfo.Rec).DefaultOps)) { |
| 1556 | // TODO: Do these checks in ParseDefaultOperands. |
| 1557 | if (!DefaultOp.isLeaf()) |
| 1558 | return failedImport(Reason: "optional def is not a leaf" ); |
| 1559 | |
| 1560 | const auto *RegDI = dyn_cast<DefInit>(Val: DefaultOp.getLeafValue()); |
| 1561 | if (!RegDI) |
| 1562 | return failedImport(Reason: "optional def is not a record" ); |
| 1563 | |
| 1564 | const Record *Reg = RegDI->getDef(); |
| 1565 | if (!Reg->isSubClassOf(Name: "Register" ) && Reg->getName() != "zero_reg" ) |
| 1566 | return failedImport(Reason: "optional def is not a register" ); |
| 1567 | |
| 1568 | DstMIBuilder.addRenderer<AddRegisterRenderer>( |
| 1569 | args: Target, args&: Reg, /*IsDef=*/args: true, /*IsDead=*/args: true); |
| 1570 | } |
| 1571 | continue; |
| 1572 | } |
| 1573 | |
| 1574 | // The def is discarded, create a dead virtual register for it. |
| 1575 | const TypeSetByHwMode &ExtTy = Dst.getExtType(ResNo: I); |
| 1576 | if (!ExtTy.isMachineValueType()) |
| 1577 | return failedImport(Reason: "unsupported typeset" ); |
| 1578 | |
| 1579 | auto OpTy = MVTToLLT(SVT: ExtTy.getMachineValueType().SimpleTy); |
| 1580 | if (!OpTy) |
| 1581 | return failedImport(Reason: "unsupported type" ); |
| 1582 | |
| 1583 | unsigned TempRegID = M.allocateTempRegID(); |
| 1584 | InsertPt = |
| 1585 | M.insertAction<MakeTempRegisterAction>(InsertPt, args&: *OpTy, args&: TempRegID); |
| 1586 | DstMIBuilder.addRenderer<TempRegRenderer>( |
| 1587 | args&: TempRegID, /*IsDef=*/args: true, /*SubReg=*/args: nullptr, /*IsDead=*/args: true); |
| 1588 | } |
| 1589 | |
| 1590 | // Implicit defs are not currently supported, mark all of them as dead. |
| 1591 | for (const Record *Reg : DstI->ImplicitDefs) { |
| 1592 | std::string OpName = getMangledRootDefName(DefOperandName: Reg->getName()); |
| 1593 | assert(!M.hasOperand(OpName) && "The pattern should've been rejected" ); |
| 1594 | DstMIBuilder.setDeadImplicitDef(Reg); |
| 1595 | } |
| 1596 | |
| 1597 | return InsertPt; |
| 1598 | } |
| 1599 | |
| 1600 | Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers( |
| 1601 | action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, |
| 1602 | const TreePatternNode &Dst) const { |
| 1603 | const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); |
| 1604 | CodeGenInstruction *OrigDstI = &Target.getInstruction(InstRec: Dst.getOperator()); |
| 1605 | |
| 1606 | StringRef Name = OrigDstI->TheDef->getName(); |
| 1607 | unsigned ExpectedDstINumUses = Dst.getNumChildren(); |
| 1608 | |
| 1609 | // EXTRACT_SUBREG needs to use a subregister COPY. |
| 1610 | if (Name == "EXTRACT_SUBREG" ) { |
| 1611 | if (!Dst.getChild(N: 1).isLeaf()) |
| 1612 | return failedImport(Reason: "EXTRACT_SUBREG child #1 is not a leaf" ); |
| 1613 | const DefInit *SubRegInit = |
| 1614 | dyn_cast<DefInit>(Val: Dst.getChild(N: 1).getLeafValue()); |
| 1615 | if (!SubRegInit) |
| 1616 | return failedImport(Reason: "EXTRACT_SUBREG child #1 is not a subreg index" ); |
| 1617 | |
| 1618 | const CodeGenSubRegIndex *SubIdx = |
| 1619 | CGRegs.findSubRegIdx(Def: SubRegInit->getDef()); |
| 1620 | const TreePatternNode &ValChild = Dst.getChild(N: 0); |
| 1621 | if (!ValChild.isLeaf()) { |
| 1622 | // We really have to handle the source instruction, and then insert a |
| 1623 | // copy from the subregister. |
| 1624 | auto = getInstResultType(Dst: ValChild, Target); |
| 1625 | if (!ExtractSrcTy) |
| 1626 | return ExtractSrcTy.takeError(); |
| 1627 | |
| 1628 | unsigned TempRegID = M.allocateTempRegID(); |
| 1629 | InsertPt = M.insertAction<MakeTempRegisterAction>(InsertPt, args&: *ExtractSrcTy, |
| 1630 | args&: TempRegID); |
| 1631 | |
| 1632 | auto InsertPtOrError = createAndImportSubInstructionRenderer( |
| 1633 | InsertPt: ++InsertPt, M, Dst: ValChild, TempRegID); |
| 1634 | if (auto Error = InsertPtOrError.takeError()) |
| 1635 | return std::move(Error); |
| 1636 | |
| 1637 | DstMIBuilder.addRenderer<TempRegRenderer>(args&: TempRegID, args: false, args&: SubIdx); |
| 1638 | return InsertPt; |
| 1639 | } |
| 1640 | |
| 1641 | // If this is a source operand, this is just a subregister copy. |
| 1642 | const Record *RCDef = getInitValueAsRegClass(V: ValChild.getLeafValue()); |
| 1643 | if (!RCDef) |
| 1644 | return failedImport(Reason: "EXTRACT_SUBREG child #0 could not " |
| 1645 | "be coerced to a register class" ); |
| 1646 | |
| 1647 | CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef); |
| 1648 | |
| 1649 | const auto SrcRCDstRCPair = |
| 1650 | RC->getMatchingSubClassWithSubRegs(RegBank&: CGRegs, SubIdx); |
| 1651 | if (SrcRCDstRCPair) { |
| 1652 | assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass" ); |
| 1653 | if (SrcRCDstRCPair->first != RC) |
| 1654 | return failedImport(Reason: "EXTRACT_SUBREG requires an additional COPY" ); |
| 1655 | } |
| 1656 | |
| 1657 | StringRef RegOperandName = Dst.getChild(N: 0).getName(); |
| 1658 | if (const auto &SubOperand = M.getComplexSubOperand(SymbolicName: RegOperandName)) { |
| 1659 | DstMIBuilder.addRenderer<RenderComplexPatternOperand>( |
| 1660 | args: *std::get<0>(t: *SubOperand), args&: RegOperandName, args: std::get<1>(t: *SubOperand), |
| 1661 | args: std::get<2>(t: *SubOperand), args&: SubIdx); |
| 1662 | return InsertPt; |
| 1663 | } |
| 1664 | |
| 1665 | DstMIBuilder.addRenderer<CopySubRegRenderer>(args&: RegOperandName, args&: SubIdx); |
| 1666 | return InsertPt; |
| 1667 | } |
| 1668 | |
| 1669 | if (Name == "REG_SEQUENCE" ) { |
| 1670 | if (!Dst.getChild(N: 0).isLeaf()) |
| 1671 | return failedImport(Reason: "REG_SEQUENCE child #0 is not a leaf" ); |
| 1672 | |
| 1673 | const Record *RCDef = |
| 1674 | getInitValueAsRegClass(V: Dst.getChild(N: 0).getLeafValue()); |
| 1675 | if (!RCDef) |
| 1676 | return failedImport(Reason: "REG_SEQUENCE child #0 could not " |
| 1677 | "be coerced to a register class" ); |
| 1678 | |
| 1679 | if ((ExpectedDstINumUses - 1) % 2 != 0) |
| 1680 | return failedImport(Reason: "Malformed REG_SEQUENCE" ); |
| 1681 | |
| 1682 | for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) { |
| 1683 | const TreePatternNode &ValChild = Dst.getChild(N: I); |
| 1684 | const TreePatternNode &SubRegChild = Dst.getChild(N: I + 1); |
| 1685 | |
| 1686 | if (const DefInit *SubRegInit = |
| 1687 | dyn_cast<DefInit>(Val: SubRegChild.getLeafValue())) { |
| 1688 | const CodeGenSubRegIndex *SubIdx = |
| 1689 | CGRegs.findSubRegIdx(Def: SubRegInit->getDef()); |
| 1690 | |
| 1691 | if (Error Err = importNodeRenderer(M, MIBuilder&: DstMIBuilder, N: ValChild, InsertPt)) |
| 1692 | return Err; |
| 1693 | |
| 1694 | DstMIBuilder.addRenderer<SubRegIndexRenderer>(args&: SubIdx); |
| 1695 | } |
| 1696 | } |
| 1697 | |
| 1698 | return InsertPt; |
| 1699 | } |
| 1700 | |
| 1701 | // Render the explicit uses. |
| 1702 | unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs; |
| 1703 | if (Name == "COPY_TO_REGCLASS" ) { |
| 1704 | DstINumUses--; // Ignore the class constraint. |
| 1705 | ExpectedDstINumUses--; |
| 1706 | } |
| 1707 | |
| 1708 | // NumResults - This is the number of results produced by the instruction in |
| 1709 | // the "outs" list. |
| 1710 | unsigned NumResults = OrigDstI->Operands.NumDefs; |
| 1711 | |
| 1712 | // Number of operands we know the output instruction must have. If it is |
| 1713 | // variadic, we could have more operands. |
| 1714 | unsigned NumFixedOperands = DstI->Operands.size(); |
| 1715 | |
| 1716 | // Loop over all of the fixed operands of the instruction pattern, emitting |
| 1717 | // code to fill them all in. The node 'N' usually has number children equal to |
| 1718 | // the number of input operands of the instruction. However, in cases where |
| 1719 | // there are predicate operands for an instruction, we need to fill in the |
| 1720 | // 'execute always' values. Match up the node operands to the instruction |
| 1721 | // operands to do this. |
| 1722 | unsigned Child = 0; |
| 1723 | |
| 1724 | // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the |
| 1725 | // number of operands at the end of the list which have default values. |
| 1726 | // Those can come from the pattern if it provides enough arguments, or be |
| 1727 | // filled in with the default if the pattern hasn't provided them. But any |
| 1728 | // operand with a default value _before_ the last mandatory one will be |
| 1729 | // filled in with their defaults unconditionally. |
| 1730 | unsigned NonOverridableOperands = NumFixedOperands; |
| 1731 | while (NonOverridableOperands > NumResults && |
| 1732 | CGP.operandHasDefault(Op: DstI->Operands[NonOverridableOperands - 1].Rec)) |
| 1733 | --NonOverridableOperands; |
| 1734 | |
| 1735 | unsigned NumDefaultOps = 0; |
| 1736 | for (unsigned I = 0; I != DstINumUses; ++I) { |
| 1737 | unsigned InstOpNo = DstI->Operands.NumDefs + I; |
| 1738 | |
| 1739 | // Determine what to emit for this operand. |
| 1740 | const Record *OperandNode = DstI->Operands[InstOpNo].Rec; |
| 1741 | |
| 1742 | // If the operand has default values, introduce them now. |
| 1743 | if (CGP.operandHasDefault(Op: OperandNode) && |
| 1744 | (InstOpNo < NonOverridableOperands || Child >= Dst.getNumChildren())) { |
| 1745 | // This is a predicate or optional def operand which the pattern has not |
| 1746 | // overridden, or which we aren't letting it override; emit the 'default |
| 1747 | // ops' operands. |
| 1748 | for (const TreePatternNode &OpNode : |
| 1749 | make_pointee_range(Range: CGP.getDefaultOperand(R: OperandNode).DefaultOps)) { |
| 1750 | if (Error Err = importNodeRenderer(M, MIBuilder&: DstMIBuilder, N: OpNode, InsertPt)) |
| 1751 | return Err; |
| 1752 | } |
| 1753 | |
| 1754 | ++NumDefaultOps; |
| 1755 | continue; |
| 1756 | } |
| 1757 | |
| 1758 | if (Error Err = |
| 1759 | importNodeRenderer(M, MIBuilder&: DstMIBuilder, N: Dst.getChild(N: Child), InsertPt)) |
| 1760 | return Err; |
| 1761 | |
| 1762 | ++Child; |
| 1763 | } |
| 1764 | |
| 1765 | if (NumDefaultOps + ExpectedDstINumUses != DstINumUses) |
| 1766 | return failedImport(Reason: "Expected " + llvm::to_string(Value: DstINumUses) + |
| 1767 | " used operands but found " + |
| 1768 | llvm::to_string(Value: ExpectedDstINumUses) + |
| 1769 | " explicit ones and " + llvm::to_string(Value: NumDefaultOps) + |
| 1770 | " default ones" ); |
| 1771 | |
| 1772 | return InsertPt; |
| 1773 | } |
| 1774 | |
| 1775 | Error GlobalISelEmitter::importImplicitDefRenderers( |
| 1776 | BuildMIAction &DstMIBuilder, ArrayRef<const Record *> ImplicitDefs) const { |
| 1777 | if (!ImplicitDefs.empty()) |
| 1778 | return failedImport(Reason: "Pattern defines a physical register" ); |
| 1779 | return Error::success(); |
| 1780 | } |
| 1781 | |
| 1782 | Error GlobalISelEmitter::constrainOperands(action_iterator InsertPt, |
| 1783 | RuleMatcher &M, unsigned InsnID, |
| 1784 | const TreePatternNode &Dst) const { |
| 1785 | const Record *DstOp = Dst.getOperator(); |
| 1786 | const CodeGenInstruction &DstI = Target.getInstruction(InstRec: DstOp); |
| 1787 | StringRef DstIName = DstI.TheDef->getName(); |
| 1788 | |
| 1789 | if (DstIName == "COPY_TO_REGCLASS" ) { |
| 1790 | // COPY_TO_REGCLASS does not provide operand constraints itself but the |
| 1791 | // result is constrained to the class given by the second child. |
| 1792 | const Record *DstIOpRec = |
| 1793 | getInitValueAsRegClass(V: Dst.getChild(N: 1).getLeafValue()); |
| 1794 | |
| 1795 | if (DstIOpRec == nullptr) |
| 1796 | return failedImport(Reason: "COPY_TO_REGCLASS operand #1 isn't a register class" ); |
| 1797 | |
| 1798 | M.insertAction<ConstrainOperandToRegClassAction>( |
| 1799 | InsertPt, args&: InsnID, args: 0, args: Target.getRegisterClass(R: DstIOpRec)); |
| 1800 | } else if (DstIName == "EXTRACT_SUBREG" ) { |
| 1801 | const CodeGenRegisterClass *SuperClass = |
| 1802 | inferRegClassFromPattern(N: Dst.getChild(N: 0)); |
| 1803 | if (!SuperClass) |
| 1804 | return failedImport( |
| 1805 | Reason: "Cannot infer register class from EXTRACT_SUBREG operand #0" ); |
| 1806 | |
| 1807 | const CodeGenSubRegIndex *SubIdx = inferSubRegIndexForNode(SubRegIdxNode: Dst.getChild(N: 1)); |
| 1808 | if (!SubIdx) |
| 1809 | return failedImport(Reason: "EXTRACT_SUBREG child #1 is not a subreg index" ); |
| 1810 | |
| 1811 | // It would be nice to leave this constraint implicit but we're required |
| 1812 | // to pick a register class so constrain the result to a register class |
| 1813 | // that can hold the correct MVT. |
| 1814 | // |
| 1815 | // FIXME: This may introduce an extra copy if the chosen class doesn't |
| 1816 | // actually contain the subregisters. |
| 1817 | const auto SrcRCDstRCPair = |
| 1818 | SuperClass->getMatchingSubClassWithSubRegs(RegBank&: CGRegs, SubIdx); |
| 1819 | if (!SrcRCDstRCPair) { |
| 1820 | return failedImport(Reason: "subreg index is incompatible " |
| 1821 | "with inferred reg class" ); |
| 1822 | } |
| 1823 | |
| 1824 | assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass" ); |
| 1825 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 0, |
| 1826 | args&: *SrcRCDstRCPair->second); |
| 1827 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 1, |
| 1828 | args&: *SrcRCDstRCPair->first); |
| 1829 | } else if (DstIName == "INSERT_SUBREG" ) { |
| 1830 | // We need to constrain the destination, a super regsister source, and a |
| 1831 | // subregister source. |
| 1832 | const CodeGenRegisterClass *SubClass = |
| 1833 | inferRegClassFromPattern(N: Dst.getChild(N: 1)); |
| 1834 | if (!SubClass) |
| 1835 | return failedImport( |
| 1836 | Reason: "Cannot infer register class from INSERT_SUBREG operand #1" ); |
| 1837 | const CodeGenRegisterClass *SuperClass = inferSuperRegisterClassForNode( |
| 1838 | Ty: Dst.getExtType(ResNo: 0), SuperRegNode: Dst.getChild(N: 0), SubRegIdxNode: Dst.getChild(N: 2)); |
| 1839 | if (!SuperClass) |
| 1840 | return failedImport( |
| 1841 | Reason: "Cannot infer register class for INSERT_SUBREG operand #0" ); |
| 1842 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 0, |
| 1843 | args: *SuperClass); |
| 1844 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 1, |
| 1845 | args: *SuperClass); |
| 1846 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 2, |
| 1847 | args: *SubClass); |
| 1848 | } else if (DstIName == "SUBREG_TO_REG" ) { |
| 1849 | // We need to constrain the destination and subregister source. |
| 1850 | // Attempt to infer the subregister source from the first child. If it has |
| 1851 | // an explicitly given register class, we'll use that. Otherwise, we will |
| 1852 | // fail. |
| 1853 | const CodeGenRegisterClass *SubClass = |
| 1854 | inferRegClassFromPattern(N: Dst.getChild(N: 1)); |
| 1855 | if (!SubClass) |
| 1856 | return failedImport( |
| 1857 | Reason: "Cannot infer register class from SUBREG_TO_REG child #1" ); |
| 1858 | // We don't have a child to look at that might have a super register node. |
| 1859 | const CodeGenRegisterClass *SuperClass = |
| 1860 | inferSuperRegisterClass(Ty: Dst.getExtType(ResNo: 0), SubRegIdxNode: Dst.getChild(N: 2)); |
| 1861 | if (!SuperClass) |
| 1862 | return failedImport( |
| 1863 | Reason: "Cannot infer register class for SUBREG_TO_REG operand #0" ); |
| 1864 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 0, |
| 1865 | args: *SuperClass); |
| 1866 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 2, |
| 1867 | args: *SubClass); |
| 1868 | } else if (DstIName == "REG_SEQUENCE" ) { |
| 1869 | const CodeGenRegisterClass *SuperClass = |
| 1870 | inferRegClassFromPattern(N: Dst.getChild(N: 0)); |
| 1871 | |
| 1872 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 0, |
| 1873 | args: *SuperClass); |
| 1874 | |
| 1875 | unsigned Num = Dst.getNumChildren(); |
| 1876 | for (unsigned I = 1; I != Num; I += 2) { |
| 1877 | const TreePatternNode &SubRegChild = Dst.getChild(N: I + 1); |
| 1878 | |
| 1879 | const CodeGenSubRegIndex *SubIdx = inferSubRegIndexForNode(SubRegIdxNode: SubRegChild); |
| 1880 | if (!SubIdx) |
| 1881 | return failedImport(Reason: "REG_SEQUENCE child is not a subreg index" ); |
| 1882 | |
| 1883 | const auto SrcRCDstRCPair = |
| 1884 | SuperClass->getMatchingSubClassWithSubRegs(RegBank&: CGRegs, SubIdx); |
| 1885 | |
| 1886 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args&: I, |
| 1887 | args&: *SrcRCDstRCPair->second); |
| 1888 | } |
| 1889 | } else { |
| 1890 | M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt, args&: InsnID); |
| 1891 | } |
| 1892 | |
| 1893 | return Error::success(); |
| 1894 | } |
| 1895 | |
| 1896 | const CodeGenRegisterClass * |
| 1897 | GlobalISelEmitter::getRegClassFromLeaf(const TreePatternNode &Leaf) const { |
| 1898 | assert(Leaf.isLeaf() && "Expected leaf?" ); |
| 1899 | const Record *RCRec = getInitValueAsRegClass(V: Leaf.getLeafValue()); |
| 1900 | if (!RCRec) |
| 1901 | return nullptr; |
| 1902 | return CGRegs.getRegClass(RCRec); |
| 1903 | } |
| 1904 | |
| 1905 | const CodeGenRegisterClass * |
| 1906 | GlobalISelEmitter::inferRegClassFromPattern(const TreePatternNode &N) const { |
| 1907 | if (N.isLeaf()) |
| 1908 | return getRegClassFromLeaf(Leaf: N); |
| 1909 | |
| 1910 | // We don't have a leaf node, so we have to try and infer something. Check |
| 1911 | // that we have an instruction that we can infer something from. |
| 1912 | |
| 1913 | // Only handle things that produce at least one value (if multiple values, |
| 1914 | // just take the first one). |
| 1915 | if (N.getNumTypes() < 1) |
| 1916 | return nullptr; |
| 1917 | const Record *OpRec = N.getOperator(); |
| 1918 | |
| 1919 | // We only want instructions. |
| 1920 | if (!OpRec->isSubClassOf(Name: "Instruction" )) |
| 1921 | return nullptr; |
| 1922 | |
| 1923 | // Don't want to try and infer things when there could potentially be more |
| 1924 | // than one candidate register class. |
| 1925 | return inferRegClassFromInstructionPattern(N, /*ResIdx=*/0); |
| 1926 | } |
| 1927 | |
| 1928 | const CodeGenRegisterClass * |
| 1929 | GlobalISelEmitter::inferRegClassFromInstructionPattern(const TreePatternNode &N, |
| 1930 | unsigned ResIdx) const { |
| 1931 | const CodeGenInstruction &Inst = Target.getInstruction(InstRec: N.getOperator()); |
| 1932 | assert(ResIdx < Inst.Operands.NumDefs && |
| 1933 | "Can only infer register class for explicit defs" ); |
| 1934 | |
| 1935 | // Handle any special-case instructions which we can safely infer register |
| 1936 | // classes from. |
| 1937 | StringRef InstName = Inst.TheDef->getName(); |
| 1938 | if (InstName == "REG_SEQUENCE" ) { |
| 1939 | // (outs $super_dst), (ins $dst_regclass, variable_ops) |
| 1940 | // Destination register class is explicitly specified by the first operand. |
| 1941 | const TreePatternNode &RCChild = N.getChild(N: 0); |
| 1942 | if (!RCChild.isLeaf()) |
| 1943 | return nullptr; |
| 1944 | return getRegClassFromLeaf(Leaf: RCChild); |
| 1945 | } |
| 1946 | |
| 1947 | if (InstName == "COPY_TO_REGCLASS" ) { |
| 1948 | // (outs $dst), (ins $src, $dst_regclass) |
| 1949 | // Destination register class is explicitly specified by the second operand. |
| 1950 | const TreePatternNode &RCChild = N.getChild(N: 1); |
| 1951 | if (!RCChild.isLeaf()) |
| 1952 | return nullptr; |
| 1953 | return getRegClassFromLeaf(Leaf: RCChild); |
| 1954 | } |
| 1955 | |
| 1956 | if (InstName == "INSERT_SUBREG" ) { |
| 1957 | // (outs $super_dst), (ins $super_src, $sub_src, $sub_idx); |
| 1958 | // If we can infer the register class for the first operand, use that. |
| 1959 | // Otherwise, find a register class that supports both the specified |
| 1960 | // sub-register index and the type of the instruction's result. |
| 1961 | const TreePatternNode &Child0 = N.getChild(N: 0); |
| 1962 | assert(Child0.getNumTypes() == 1 && "Unexpected number of types!" ); |
| 1963 | return inferSuperRegisterClassForNode(Ty: N.getExtType(ResNo: 0), SuperRegNode: Child0, |
| 1964 | SubRegIdxNode: N.getChild(N: 2)); |
| 1965 | } |
| 1966 | |
| 1967 | if (InstName == "EXTRACT_SUBREG" ) { |
| 1968 | // (outs $sub_dst), (ins $super_src, $sub_idx) |
| 1969 | // Find a register class that can be used for a sub-register copy from |
| 1970 | // the specified source at the specified sub-register index. |
| 1971 | const CodeGenRegisterClass *SuperRC = |
| 1972 | inferRegClassFromPattern(N: N.getChild(N: 0)); |
| 1973 | if (!SuperRC) |
| 1974 | return nullptr; |
| 1975 | |
| 1976 | const CodeGenSubRegIndex *SubIdx = inferSubRegIndexForNode(SubRegIdxNode: N.getChild(N: 1)); |
| 1977 | if (!SubIdx) |
| 1978 | return nullptr; |
| 1979 | |
| 1980 | const auto SubRCAndSubRegRC = |
| 1981 | SuperRC->getMatchingSubClassWithSubRegs(RegBank&: CGRegs, SubIdx); |
| 1982 | if (!SubRCAndSubRegRC) |
| 1983 | return nullptr; |
| 1984 | |
| 1985 | return SubRCAndSubRegRC->second; |
| 1986 | } |
| 1987 | |
| 1988 | if (InstName == "SUBREG_TO_REG" ) { |
| 1989 | // (outs $super_dst), (ins $super_src, $sub_src, $sub_idx) |
| 1990 | // Find a register class that supports both the specified sub-register |
| 1991 | // index and the type of the instruction's result. |
| 1992 | return inferSuperRegisterClass(Ty: N.getExtType(ResNo: 0), SubRegIdxNode: N.getChild(N: 2)); |
| 1993 | } |
| 1994 | |
| 1995 | // Handle destination record types that we can safely infer a register class |
| 1996 | // from. |
| 1997 | const auto &DstIOperand = Inst.Operands[ResIdx]; |
| 1998 | const Record *DstIOpRec = DstIOperand.Rec; |
| 1999 | if (DstIOpRec->isSubClassOf(Name: "RegisterOperand" )) |
| 2000 | return &Target.getRegisterClass(R: DstIOpRec->getValueAsDef(FieldName: "RegClass" )); |
| 2001 | |
| 2002 | if (DstIOpRec->isSubClassOf(Name: "RegisterClass" )) |
| 2003 | return &Target.getRegisterClass(R: DstIOpRec); |
| 2004 | |
| 2005 | return nullptr; |
| 2006 | } |
| 2007 | |
| 2008 | const CodeGenRegisterClass *GlobalISelEmitter::inferSuperRegisterClass( |
| 2009 | const TypeSetByHwMode &Ty, const TreePatternNode &SubRegIdxNode) const { |
| 2010 | // We need a ValueTypeByHwMode for getSuperRegForSubReg. |
| 2011 | if (!Ty.isValueTypeByHwMode(AllowEmpty: false)) |
| 2012 | return nullptr; |
| 2013 | if (!SubRegIdxNode.isLeaf()) |
| 2014 | return nullptr; |
| 2015 | const DefInit *SubRegInit = dyn_cast<DefInit>(Val: SubRegIdxNode.getLeafValue()); |
| 2016 | if (!SubRegInit) |
| 2017 | return nullptr; |
| 2018 | const CodeGenSubRegIndex *SubIdx = CGRegs.findSubRegIdx(Def: SubRegInit->getDef()); |
| 2019 | |
| 2020 | // Use the information we found above to find a minimal register class which |
| 2021 | // supports the subregister and type we want. |
| 2022 | return CGRegs.getSuperRegForSubReg(Ty: Ty.getValueTypeByHwMode(), SubIdx, |
| 2023 | /*MustBeAllocatable=*/true); |
| 2024 | } |
| 2025 | |
| 2026 | const CodeGenRegisterClass *GlobalISelEmitter::inferSuperRegisterClassForNode( |
| 2027 | const TypeSetByHwMode &Ty, const TreePatternNode &SuperRegNode, |
| 2028 | const TreePatternNode &SubRegIdxNode) const { |
| 2029 | // Check if we already have a defined register class for the super register |
| 2030 | // node. If we do, then we should preserve that rather than inferring anything |
| 2031 | // from the subregister index node. We can assume that whoever wrote the |
| 2032 | // pattern in the first place made sure that the super register and |
| 2033 | // subregister are compatible. |
| 2034 | if (const CodeGenRegisterClass *SuperRegisterClass = |
| 2035 | inferRegClassFromPattern(N: SuperRegNode)) |
| 2036 | return SuperRegisterClass; |
| 2037 | return inferSuperRegisterClass(Ty, SubRegIdxNode); |
| 2038 | } |
| 2039 | |
| 2040 | const CodeGenSubRegIndex *GlobalISelEmitter::inferSubRegIndexForNode( |
| 2041 | const TreePatternNode &SubRegIdxNode) const { |
| 2042 | if (!SubRegIdxNode.isLeaf()) |
| 2043 | return nullptr; |
| 2044 | |
| 2045 | const DefInit *SubRegInit = dyn_cast<DefInit>(Val: SubRegIdxNode.getLeafValue()); |
| 2046 | if (!SubRegInit) |
| 2047 | return nullptr; |
| 2048 | return CGRegs.findSubRegIdx(Def: SubRegInit->getDef()); |
| 2049 | } |
| 2050 | |
| 2051 | Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) { |
| 2052 | // Keep track of the matchers and actions to emit. |
| 2053 | int Score = P.getPatternComplexity(CGP); |
| 2054 | RuleMatcher M(P.getSrcRecord()->getLoc()); |
| 2055 | RuleMatcherScores[M.getRuleID()] = Score; |
| 2056 | M.addAction<DebugCommentAction>(args: llvm::to_string(Value: P.getSrcPattern()) + |
| 2057 | " => " + |
| 2058 | llvm::to_string(Value: P.getDstPattern())); |
| 2059 | |
| 2060 | SmallVector<const Record *, 4> Predicates; |
| 2061 | P.getPredicateRecords(PredicateRecs&: Predicates); |
| 2062 | if (auto Error = importRulePredicates(M, Predicates)) |
| 2063 | return std::move(Error); |
| 2064 | |
| 2065 | if (!P.getHwModeFeatures().empty()) |
| 2066 | M.addHwModeIdx(Idx: declareHwModeCheck(HwModeFeatures: P.getHwModeFeatures())); |
| 2067 | |
| 2068 | // Next, analyze the pattern operators. |
| 2069 | TreePatternNode &Src = P.getSrcPattern(); |
| 2070 | TreePatternNode &Dst = P.getDstPattern(); |
| 2071 | |
| 2072 | // If the root of either pattern isn't a simple operator, ignore it. |
| 2073 | if (auto Err = isTrivialOperatorNode(N: Dst)) |
| 2074 | return failedImport(Reason: "Dst pattern root isn't a trivial operator (" + |
| 2075 | toString(E: std::move(Err)) + ")" ); |
| 2076 | if (auto Err = isTrivialOperatorNode(N: Src)) |
| 2077 | return failedImport(Reason: "Src pattern root isn't a trivial operator (" + |
| 2078 | toString(E: std::move(Err)) + ")" ); |
| 2079 | |
| 2080 | // The different predicates and matchers created during |
| 2081 | // addInstructionMatcher use the RuleMatcher M to set up their |
| 2082 | // instruction ID (InsnVarID) that are going to be used when |
| 2083 | // M is going to be emitted. |
| 2084 | // However, the code doing the emission still relies on the IDs |
| 2085 | // returned during that process by the RuleMatcher when issuing |
| 2086 | // the recordInsn opcodes. |
| 2087 | // Because of that: |
| 2088 | // 1. The order in which we created the predicates |
| 2089 | // and such must be the same as the order in which we emit them, |
| 2090 | // and |
| 2091 | // 2. We need to reset the generation of the IDs in M somewhere between |
| 2092 | // addInstructionMatcher and emit |
| 2093 | // |
| 2094 | // FIXME: Long term, we don't want to have to rely on this implicit |
| 2095 | // naming being the same. One possible solution would be to have |
| 2096 | // explicit operator for operation capture and reference those. |
| 2097 | // The plus side is that it would expose opportunities to share |
| 2098 | // the capture accross rules. The downside is that it would |
| 2099 | // introduce a dependency between predicates (captures must happen |
| 2100 | // before their first use.) |
| 2101 | InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(SymbolicName: Src.getName()); |
| 2102 | unsigned TempOpIdx = 0; |
| 2103 | |
| 2104 | const auto SavedFlags = M.setGISelFlags(P.getSrcRecord()); |
| 2105 | |
| 2106 | auto InsnMatcherOrError = |
| 2107 | createAndImportSelDAGMatcher(Rule&: M, InsnMatcher&: InsnMatcherTemp, Src, TempOpIdx); |
| 2108 | if (auto Error = InsnMatcherOrError.takeError()) |
| 2109 | return std::move(Error); |
| 2110 | InstructionMatcher &InsnMatcher = InsnMatcherOrError.get(); |
| 2111 | |
| 2112 | if (Dst.isLeaf()) { |
| 2113 | if (const Record *RCDef = getInitValueAsRegClass(V: Dst.getLeafValue())) { |
| 2114 | const CodeGenRegisterClass &RC = Target.getRegisterClass(R: RCDef); |
| 2115 | |
| 2116 | // We need to replace the def and all its uses with the specified |
| 2117 | // operand. However, we must also insert COPY's wherever needed. |
| 2118 | // For now, emit a copy and let the register allocator clean up. |
| 2119 | auto &DstI = Target.getInstruction(InstRec: RK.getDef(Name: "COPY" )); |
| 2120 | const auto &DstIOperand = DstI.Operands[0]; |
| 2121 | |
| 2122 | OperandMatcher &OM0 = InsnMatcher.getOperand(OpIdx: 0); |
| 2123 | OM0.setSymbolicName(DstIOperand.Name); |
| 2124 | M.defineOperand(SymbolicName: OM0.getSymbolicName(), OM&: OM0); |
| 2125 | OM0.addPredicate<RegisterBankOperandMatcher>(args: RC); |
| 2126 | |
| 2127 | auto &DstMIBuilder = |
| 2128 | M.addAction<BuildMIAction>(args: M.allocateOutputInsnID(), args: &DstI); |
| 2129 | DstMIBuilder.addRenderer<CopyRenderer>(args: DstIOperand.Name); |
| 2130 | DstMIBuilder.addRenderer<CopyRenderer>(args: Dst.getName()); |
| 2131 | M.addAction<ConstrainOperandToRegClassAction>(args: 0, args: 0, args: RC); |
| 2132 | |
| 2133 | // Erase the root. |
| 2134 | unsigned RootInsnID = M.getInsnVarID(InsnMatcher); |
| 2135 | M.addAction<EraseInstAction>(args&: RootInsnID); |
| 2136 | |
| 2137 | // We're done with this pattern! It's eligible for GISel emission; return |
| 2138 | // it. |
| 2139 | ++NumPatternImported; |
| 2140 | return std::move(M); |
| 2141 | } |
| 2142 | |
| 2143 | return failedImport(Reason: "Dst pattern root isn't a known leaf" ); |
| 2144 | } |
| 2145 | |
| 2146 | // Start with the defined operands (i.e., the results of the root operator). |
| 2147 | const Record *DstOp = Dst.getOperator(); |
| 2148 | if (!DstOp->isSubClassOf(Name: "Instruction" )) |
| 2149 | return failedImport(Reason: "Pattern operator isn't an instruction" ); |
| 2150 | |
| 2151 | const CodeGenInstruction &DstI = Target.getInstruction(InstRec: DstOp); |
| 2152 | |
| 2153 | // Count both implicit and explicit defs in the dst instruction. |
| 2154 | // This avoids errors importing patterns that have inherent implicit defs. |
| 2155 | unsigned DstExpDefs = DstI.Operands.NumDefs, |
| 2156 | DstNumDefs = DstI.ImplicitDefs.size() + DstExpDefs, |
| 2157 | SrcNumDefs = Src.getExtTypes().size(); |
| 2158 | if (DstNumDefs < SrcNumDefs) { |
| 2159 | if (DstNumDefs != 0) |
| 2160 | return failedImport(Reason: "Src pattern result has more defs than dst MI (" + |
| 2161 | to_string(Value: SrcNumDefs) + " def(s) vs " + |
| 2162 | to_string(Value: DstNumDefs) + " def(s))" ); |
| 2163 | |
| 2164 | bool FoundNoUsePred = false; |
| 2165 | for (const auto &Pred : InsnMatcher.predicates()) { |
| 2166 | if ((FoundNoUsePred = isa<NoUsePredicateMatcher>(Val: Pred.get()))) |
| 2167 | break; |
| 2168 | } |
| 2169 | if (!FoundNoUsePred) |
| 2170 | return failedImport(Reason: "Src pattern result has " + to_string(Value: SrcNumDefs) + |
| 2171 | " def(s) without the HasNoUse predicate set to true " |
| 2172 | "but Dst MI has no def" ); |
| 2173 | } |
| 2174 | |
| 2175 | // The root of the match also has constraints on the register bank so that it |
| 2176 | // matches the result instruction. |
| 2177 | unsigned N = std::min(a: DstExpDefs, b: SrcNumDefs); |
| 2178 | for (unsigned I = 0; I < N; ++I) { |
| 2179 | const auto &DstIOperand = DstI.Operands[I]; |
| 2180 | |
| 2181 | OperandMatcher &OM = InsnMatcher.getOperand(OpIdx: I); |
| 2182 | // The operand names declared in the DstI instruction are unrelated to |
| 2183 | // those used in pattern's source and destination DAGs, so mangle the |
| 2184 | // former to prevent implicitly adding unexpected |
| 2185 | // GIM_CheckIsSameOperand predicates by the defineOperand method. |
| 2186 | OM.setSymbolicName(getMangledRootDefName(DefOperandName: DstIOperand.Name)); |
| 2187 | M.defineOperand(SymbolicName: OM.getSymbolicName(), OM); |
| 2188 | |
| 2189 | const CodeGenRegisterClass *RC = |
| 2190 | inferRegClassFromInstructionPattern(N: Dst, ResIdx: I); |
| 2191 | if (!RC) |
| 2192 | return failedImport(Reason: "Could not infer register class for result #" + |
| 2193 | Twine(I) + " from pattern " + to_string(Value: Dst)); |
| 2194 | OM.addPredicate<RegisterBankOperandMatcher>(args: *RC); |
| 2195 | } |
| 2196 | |
| 2197 | auto DstMIBuilderOrError = |
| 2198 | createAndImportInstructionRenderer(M, InsnMatcher, Dst); |
| 2199 | if (auto Error = DstMIBuilderOrError.takeError()) |
| 2200 | return std::move(Error); |
| 2201 | BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get(); |
| 2202 | |
| 2203 | // Render the implicit defs. |
| 2204 | // These are only added to the root of the result. |
| 2205 | if (auto Error = importImplicitDefRenderers(DstMIBuilder, ImplicitDefs: P.getDstRegs())) |
| 2206 | return std::move(Error); |
| 2207 | |
| 2208 | DstMIBuilder.chooseInsnToMutate(Rule&: M); |
| 2209 | |
| 2210 | // Constrain the registers to classes. This is normally derived from the |
| 2211 | // emitted instruction but a few instructions require special handling. |
| 2212 | if (auto Error = |
| 2213 | constrainOperands(InsertPt: M.actions_end(), M, InsnID: DstMIBuilder.getInsnID(), Dst)) |
| 2214 | return std::move(Error); |
| 2215 | |
| 2216 | // Erase the root. |
| 2217 | unsigned RootInsnID = M.getInsnVarID(InsnMatcher); |
| 2218 | M.addAction<EraseInstAction>(args&: RootInsnID); |
| 2219 | |
| 2220 | // We're done with this pattern! It's eligible for GISel emission; return it. |
| 2221 | ++NumPatternImported; |
| 2222 | return std::move(M); |
| 2223 | } |
| 2224 | |
| 2225 | MatchTable |
| 2226 | GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules, |
| 2227 | bool Optimize, bool WithCoverage) { |
| 2228 | std::vector<Matcher *> InputRules; |
| 2229 | for (Matcher &Rule : Rules) |
| 2230 | InputRules.push_back(x: &Rule); |
| 2231 | |
| 2232 | if (!Optimize) |
| 2233 | return MatchTable::buildTable(Rules: InputRules, WithCoverage); |
| 2234 | |
| 2235 | unsigned CurrentOrdering = 0; |
| 2236 | StringMap<unsigned> OpcodeOrder; |
| 2237 | for (RuleMatcher &Rule : Rules) { |
| 2238 | const StringRef Opcode = Rule.getOpcode(); |
| 2239 | assert(!Opcode.empty() && "Didn't expect an undefined opcode" ); |
| 2240 | if (OpcodeOrder.try_emplace(Key: Opcode, Args&: CurrentOrdering).second) |
| 2241 | ++CurrentOrdering; |
| 2242 | } |
| 2243 | |
| 2244 | llvm::stable_sort( |
| 2245 | Range&: InputRules, C: [&OpcodeOrder](const Matcher *A, const Matcher *B) { |
| 2246 | auto *L = static_cast<const RuleMatcher *>(A); |
| 2247 | auto *R = static_cast<const RuleMatcher *>(B); |
| 2248 | return std::tuple(OpcodeOrder[L->getOpcode()], |
| 2249 | L->insnmatchers_front().getNumOperandMatchers()) < |
| 2250 | std::tuple(OpcodeOrder[R->getOpcode()], |
| 2251 | R->insnmatchers_front().getNumOperandMatchers()); |
| 2252 | }); |
| 2253 | |
| 2254 | for (Matcher *Rule : InputRules) |
| 2255 | Rule->optimize(); |
| 2256 | |
| 2257 | std::vector<std::unique_ptr<Matcher>> MatcherStorage; |
| 2258 | std::vector<Matcher *> OptRules = |
| 2259 | optimizeRules<GroupMatcher>(Rules: InputRules, MatcherStorage); |
| 2260 | |
| 2261 | for (Matcher *Rule : OptRules) |
| 2262 | Rule->optimize(); |
| 2263 | |
| 2264 | OptRules = optimizeRules<SwitchMatcher>(Rules: OptRules, MatcherStorage); |
| 2265 | |
| 2266 | return MatchTable::buildTable(Rules: OptRules, WithCoverage); |
| 2267 | } |
| 2268 | |
| 2269 | void GlobalISelEmitter::emitAdditionalImpl(raw_ostream &OS) { |
| 2270 | OS << "bool " << getClassName() |
| 2271 | << "::selectImpl(MachineInstr &I, CodeGenCoverage " |
| 2272 | "&CoverageInfo) const {\n" |
| 2273 | << " const PredicateBitset AvailableFeatures = " |
| 2274 | "getAvailableFeatures();\n" |
| 2275 | << " MachineIRBuilder B(I);\n" |
| 2276 | << " State.MIs.clear();\n" |
| 2277 | << " State.MIs.push_back(&I);\n\n" |
| 2278 | << " if (executeMatchTable(*this, State, ExecInfo, B" |
| 2279 | << ", getMatchTable(), TII, MF->getRegInfo(), TRI, RBI, AvailableFeatures" |
| 2280 | << ", &CoverageInfo)) {\n" |
| 2281 | << " return true;\n" |
| 2282 | << " }\n\n" |
| 2283 | << " return false;\n" |
| 2284 | << "}\n\n" ; |
| 2285 | } |
| 2286 | |
| 2287 | void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) { |
| 2288 | std::vector<const Record *> MatchedRecords; |
| 2289 | llvm::copy_if(Range&: AllPatFrags, Out: std::back_inserter(x&: MatchedRecords), |
| 2290 | P: [](const Record *R) { |
| 2291 | return !R->getValueAsString(FieldName: "GISelPredicateCode" ).empty(); |
| 2292 | }); |
| 2293 | emitMIPredicateFnsImpl<const Record *>( |
| 2294 | OS, |
| 2295 | AdditionalDecls: " const MachineFunction &MF = *MI.getParent()->getParent();\n" |
| 2296 | " const MachineRegisterInfo &MRI = MF.getRegInfo();\n" |
| 2297 | " const auto &Operands = State.RecordedOperands;\n" |
| 2298 | " (void)Operands;\n" |
| 2299 | " (void)MRI;" , |
| 2300 | Predicates: ArrayRef<const Record *>(MatchedRecords), GetPredEnumName: &getPatFragPredicateEnumName, |
| 2301 | GetPredCode: [](const Record *R) { return R->getValueAsString(FieldName: "GISelPredicateCode" ); }, |
| 2302 | Comment: "PatFrag predicates." ); |
| 2303 | } |
| 2304 | |
| 2305 | void GlobalISelEmitter::emitLeafPredicateFns(raw_ostream &OS) { |
| 2306 | std::vector<const Record *> MatchedRecords; |
| 2307 | llvm::copy_if(Range&: AllPatFrags, Out: std::back_inserter(x&: MatchedRecords), |
| 2308 | P: [](const Record *R) { |
| 2309 | return (!R->getValueAsOptionalString(FieldName: "GISelLeafPredicateCode" ) |
| 2310 | .value_or(u: std::string()) |
| 2311 | .empty()); |
| 2312 | }); |
| 2313 | emitLeafPredicateFnsImpl<const Record *>( |
| 2314 | OS, |
| 2315 | AdditionalDecls: " const auto &Operands = State.RecordedOperands;\n" |
| 2316 | " Register Reg = MO.getReg();\n" |
| 2317 | " (void)Operands;\n" |
| 2318 | " (void)Reg;" , |
| 2319 | Predicates: ArrayRef<const Record *>(MatchedRecords), GetPredEnumName: &getPatFragPredicateEnumName, |
| 2320 | GetPredCode: [](const Record *R) { |
| 2321 | return R->getValueAsString(FieldName: "GISelLeafPredicateCode" ); |
| 2322 | }, |
| 2323 | Comment: "PatFrag predicates." ); |
| 2324 | } |
| 2325 | |
| 2326 | void GlobalISelEmitter::emitI64ImmPredicateFns(raw_ostream &OS) { |
| 2327 | std::vector<const Record *> MatchedRecords; |
| 2328 | llvm::copy_if(Range&: AllPatFrags, Out: std::back_inserter(x&: MatchedRecords), |
| 2329 | P: [](const Record *R) { |
| 2330 | bool Unset; |
| 2331 | return !R->getValueAsString(FieldName: "ImmediateCode" ).empty() && |
| 2332 | !R->getValueAsBitOrUnset(FieldName: "IsAPFloat" , Unset) && |
| 2333 | !R->getValueAsBit(FieldName: "IsAPInt" ); |
| 2334 | }); |
| 2335 | emitImmPredicateFnsImpl<const Record *>( |
| 2336 | OS, TypeIdentifier: "I64" , ArgType: "int64_t" , Predicates: ArrayRef<const Record *>(MatchedRecords), |
| 2337 | GetPredEnumName: &getPatFragPredicateEnumName, |
| 2338 | GetPredCode: [](const Record *R) { return R->getValueAsString(FieldName: "ImmediateCode" ); }, |
| 2339 | Comment: "PatFrag predicates." ); |
| 2340 | } |
| 2341 | |
| 2342 | void GlobalISelEmitter::emitAPFloatImmPredicateFns(raw_ostream &OS) { |
| 2343 | std::vector<const Record *> MatchedRecords; |
| 2344 | llvm::copy_if(Range&: AllPatFrags, Out: std::back_inserter(x&: MatchedRecords), |
| 2345 | P: [](const Record *R) { |
| 2346 | bool Unset; |
| 2347 | return !R->getValueAsString(FieldName: "ImmediateCode" ).empty() && |
| 2348 | R->getValueAsBitOrUnset(FieldName: "IsAPFloat" , Unset); |
| 2349 | }); |
| 2350 | emitImmPredicateFnsImpl<const Record *>( |
| 2351 | OS, TypeIdentifier: "APFloat" , ArgType: "const APFloat &" , |
| 2352 | Predicates: ArrayRef<const Record *>(MatchedRecords), GetPredEnumName: &getPatFragPredicateEnumName, |
| 2353 | GetPredCode: [](const Record *R) { return R->getValueAsString(FieldName: "ImmediateCode" ); }, |
| 2354 | Comment: "PatFrag predicates." ); |
| 2355 | } |
| 2356 | |
| 2357 | void GlobalISelEmitter::emitAPIntImmPredicateFns(raw_ostream &OS) { |
| 2358 | std::vector<const Record *> MatchedRecords; |
| 2359 | llvm::copy_if(Range&: AllPatFrags, Out: std::back_inserter(x&: MatchedRecords), |
| 2360 | P: [](const Record *R) { |
| 2361 | return !R->getValueAsString(FieldName: "ImmediateCode" ).empty() && |
| 2362 | R->getValueAsBit(FieldName: "IsAPInt" ); |
| 2363 | }); |
| 2364 | emitImmPredicateFnsImpl<const Record *>( |
| 2365 | OS, TypeIdentifier: "APInt" , ArgType: "const APInt &" , Predicates: ArrayRef<const Record *>(MatchedRecords), |
| 2366 | GetPredEnumName: &getPatFragPredicateEnumName, |
| 2367 | GetPredCode: [](const Record *R) { return R->getValueAsString(FieldName: "ImmediateCode" ); }, |
| 2368 | Comment: "PatFrag predicates." ); |
| 2369 | } |
| 2370 | |
| 2371 | void GlobalISelEmitter::emitTestSimplePredicate(raw_ostream &OS) { |
| 2372 | OS << "bool " << getClassName() << "::testSimplePredicate(unsigned) const {\n" |
| 2373 | << " llvm_unreachable(\"" + getClassName() + |
| 2374 | " does not support simple predicates!\");\n" |
| 2375 | << " return false;\n" |
| 2376 | << "}\n" ; |
| 2377 | } |
| 2378 | |
| 2379 | void GlobalISelEmitter::emitRunCustomAction(raw_ostream &OS) { |
| 2380 | OS << "bool " << getClassName() |
| 2381 | << "::runCustomAction(unsigned, const MatcherState&, NewMIVector &) const " |
| 2382 | "{\n" |
| 2383 | << " llvm_unreachable(\"" + getClassName() + |
| 2384 | " does not support custom C++ actions!\");\n" |
| 2385 | << "}\n" ; |
| 2386 | } |
| 2387 | |
| 2388 | bool hasBFloatType(const TreePatternNode &Node) { |
| 2389 | for (unsigned I = 0, E = Node.getNumTypes(); I < E; I++) { |
| 2390 | auto Ty = Node.getType(ResNo: I); |
| 2391 | for (auto T : Ty) |
| 2392 | if (T.second == MVT::bf16 || |
| 2393 | (T.second.isVector() && T.second.getScalarType() == MVT::bf16)) |
| 2394 | return true; |
| 2395 | } |
| 2396 | for (const TreePatternNode &C : Node.children()) |
| 2397 | if (hasBFloatType(Node: C)) |
| 2398 | return true; |
| 2399 | return false; |
| 2400 | } |
| 2401 | |
| 2402 | void GlobalISelEmitter::run(raw_ostream &OS) { |
| 2403 | if (!UseCoverageFile.empty()) { |
| 2404 | RuleCoverage = CodeGenCoverage(); |
| 2405 | auto RuleCoverageBufOrErr = MemoryBuffer::getFile(Filename: UseCoverageFile); |
| 2406 | if (!RuleCoverageBufOrErr) { |
| 2407 | PrintWarning(WarningLoc: SMLoc(), Msg: "Missing rule coverage data" ); |
| 2408 | RuleCoverage = std::nullopt; |
| 2409 | } else { |
| 2410 | if (!RuleCoverage->parse(Buffer&: *RuleCoverageBufOrErr.get(), BackendName: Target.getName())) { |
| 2411 | PrintWarning(WarningLoc: SMLoc(), Msg: "Ignoring invalid or missing rule coverage data" ); |
| 2412 | RuleCoverage = std::nullopt; |
| 2413 | } |
| 2414 | } |
| 2415 | } |
| 2416 | |
| 2417 | // Track the run-time opcode values |
| 2418 | gatherOpcodeValues(); |
| 2419 | // Track the run-time LLT ID values |
| 2420 | gatherTypeIDValues(); |
| 2421 | |
| 2422 | // Track the GINodeEquiv definitions. |
| 2423 | gatherNodeEquivs(); |
| 2424 | |
| 2425 | AllPatFrags = RK.getAllDerivedDefinitions(ClassName: "PatFrags" ); |
| 2426 | |
| 2427 | emitSourceFileHeader( |
| 2428 | Desc: ("Global Instruction Selector for the " + Target.getName() + " target" ) |
| 2429 | .str(), |
| 2430 | OS); |
| 2431 | std::vector<RuleMatcher> Rules; |
| 2432 | // Look through the SelectionDAG patterns we found, possibly emitting some. |
| 2433 | for (const PatternToMatch &Pat : CGP.ptms()) { |
| 2434 | ++NumPatternTotal; |
| 2435 | |
| 2436 | if (Pat.getGISelShouldIgnore()) |
| 2437 | continue; // skip without warning |
| 2438 | |
| 2439 | // Skip any patterns containing BF16 types, as GISel cannot currently tell |
| 2440 | // the difference between fp16 and bf16. FIXME: This can be removed once |
| 2441 | // BF16 is supported properly. |
| 2442 | if (hasBFloatType(Node: Pat.getSrcPattern())) |
| 2443 | continue; |
| 2444 | |
| 2445 | auto MatcherOrErr = runOnPattern(P: Pat); |
| 2446 | |
| 2447 | // The pattern analysis can fail, indicating an unsupported pattern. |
| 2448 | // Report that if we've been asked to do so. |
| 2449 | if (auto Err = MatcherOrErr.takeError()) { |
| 2450 | if (WarnOnSkippedPatterns) { |
| 2451 | PrintWarning(WarningLoc: Pat.getSrcRecord()->getLoc(), |
| 2452 | Msg: "Skipped pattern: " + toString(E: std::move(Err))); |
| 2453 | } else { |
| 2454 | consumeError(Err: std::move(Err)); |
| 2455 | } |
| 2456 | ++NumPatternImportsSkipped; |
| 2457 | continue; |
| 2458 | } |
| 2459 | |
| 2460 | if (RuleCoverage) { |
| 2461 | if (RuleCoverage->isCovered(RuleID: MatcherOrErr->getRuleID())) |
| 2462 | ++NumPatternsTested; |
| 2463 | else |
| 2464 | PrintWarning(WarningLoc: Pat.getSrcRecord()->getLoc(), |
| 2465 | Msg: "Pattern is not covered by a test" ); |
| 2466 | } |
| 2467 | Rules.push_back(x: std::move(MatcherOrErr.get())); |
| 2468 | } |
| 2469 | |
| 2470 | // Comparison function to order records by name. |
| 2471 | auto OrderByName = [](const Record *A, const Record *B) { |
| 2472 | return A->getName() < B->getName(); |
| 2473 | }; |
| 2474 | |
| 2475 | std::vector<const Record *> ComplexPredicates = |
| 2476 | RK.getAllDerivedDefinitions(ClassName: "GIComplexOperandMatcher" ); |
| 2477 | llvm::sort(C&: ComplexPredicates, Comp: OrderByName); |
| 2478 | |
| 2479 | std::vector<StringRef> CustomRendererFns; |
| 2480 | transform(Range: RK.getAllDerivedDefinitions(ClassName: "GICustomOperandRenderer" ), |
| 2481 | d_first: std::back_inserter(x&: CustomRendererFns), F: [](const auto &Record) { |
| 2482 | return Record->getValueAsString("RendererFn" ); |
| 2483 | }); |
| 2484 | // Sort and remove duplicates to get a list of unique renderer functions, in |
| 2485 | // case some were mentioned more than once. |
| 2486 | llvm::sort(C&: CustomRendererFns); |
| 2487 | CustomRendererFns.erase(first: llvm::unique(R&: CustomRendererFns), |
| 2488 | last: CustomRendererFns.end()); |
| 2489 | |
| 2490 | // Create a table containing the LLT objects needed by the matcher and an enum |
| 2491 | // for the matcher to reference them with. |
| 2492 | std::vector<LLTCodeGen> TypeObjects; |
| 2493 | append_range(C&: TypeObjects, R&: KnownTypes); |
| 2494 | llvm::sort(C&: TypeObjects); |
| 2495 | |
| 2496 | // Sort rules. |
| 2497 | llvm::stable_sort(Range&: Rules, C: [&](const RuleMatcher &A, const RuleMatcher &B) { |
| 2498 | int ScoreA = RuleMatcherScores[A.getRuleID()]; |
| 2499 | int ScoreB = RuleMatcherScores[B.getRuleID()]; |
| 2500 | if (ScoreA > ScoreB) |
| 2501 | return true; |
| 2502 | if (ScoreB > ScoreA) |
| 2503 | return false; |
| 2504 | if (A.isHigherPriorityThan(B)) { |
| 2505 | assert(!B.isHigherPriorityThan(A) && "Cannot be more important " |
| 2506 | "and less important at " |
| 2507 | "the same time" ); |
| 2508 | return true; |
| 2509 | } |
| 2510 | return false; |
| 2511 | }); |
| 2512 | |
| 2513 | unsigned MaxTemporaries = 0; |
| 2514 | for (const auto &Rule : Rules) |
| 2515 | MaxTemporaries = std::max(a: MaxTemporaries, b: Rule.countRendererFns()); |
| 2516 | |
| 2517 | // Build match table |
| 2518 | const MatchTable Table = |
| 2519 | buildMatchTable(Rules, Optimize: OptimizeMatchTable, WithCoverage: GenerateCoverage); |
| 2520 | |
| 2521 | emitPredicateBitset(OS, IfDefName: "GET_GLOBALISEL_PREDICATE_BITSET" ); |
| 2522 | emitTemporariesDecl(OS, IfDefName: "GET_GLOBALISEL_TEMPORARIES_DECL" ); |
| 2523 | emitTemporariesInit(OS, MaxTemporaries, IfDefName: "GET_GLOBALISEL_TEMPORARIES_INIT" ); |
| 2524 | emitExecutorImpl(OS, Table, TypeObjects, Rules, ComplexOperandMatchers: ComplexPredicates, |
| 2525 | CustomOperandRenderers: CustomRendererFns, IfDefName: "GET_GLOBALISEL_IMPL" ); |
| 2526 | emitPredicatesDecl(OS, IfDefName: "GET_GLOBALISEL_PREDICATES_DECL" ); |
| 2527 | emitPredicatesInit(OS, IfDefName: "GET_GLOBALISEL_PREDICATES_INIT" ); |
| 2528 | } |
| 2529 | |
| 2530 | void GlobalISelEmitter::declareSubtargetFeature(const Record *Predicate) { |
| 2531 | SubtargetFeatures.try_emplace(k: Predicate, args&: Predicate, args: SubtargetFeatures.size()); |
| 2532 | } |
| 2533 | |
| 2534 | unsigned GlobalISelEmitter::declareHwModeCheck(StringRef HwModeFeatures) { |
| 2535 | return HwModes.emplace(args: HwModeFeatures.str(), args: HwModes.size()).first->second; |
| 2536 | } |
| 2537 | |
| 2538 | } // end anonymous namespace |
| 2539 | |
| 2540 | //===----------------------------------------------------------------------===// |
| 2541 | |
| 2542 | static TableGen::Emitter::OptClass<GlobalISelEmitter> |
| 2543 | X("gen-global-isel" , "Generate GlobalISel selector" ); |
| 2544 | |