1 | |
2 | //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===// |
3 | // |
4 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
5 | // See https://llvm.org/LICENSE.txt for license information. |
6 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | // |
10 | /// \file |
11 | /// This tablegen backend emits code for use by the GlobalISel instruction |
12 | /// selector. See include/llvm/Target/GlobalISel/Target.td. |
13 | /// |
14 | /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen |
15 | /// backend, filters out the ones that are unsupported, maps |
16 | /// SelectionDAG-specific constructs to their GlobalISel counterpart |
17 | /// (when applicable: MVT to LLT; SDNode to generic Instruction). |
18 | /// |
19 | /// Not all patterns are supported: pass the tablegen invocation |
20 | /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped, |
21 | /// as well as why. |
22 | /// |
23 | /// The generated file defines a single method: |
24 | /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const; |
25 | /// intended to be used in InstructionSelector::select as the first-step |
26 | /// selector for the patterns that don't require complex C++. |
27 | /// |
28 | /// FIXME: We'll probably want to eventually define a base |
29 | /// "TargetGenInstructionSelector" class. |
30 | /// |
31 | //===----------------------------------------------------------------------===// |
32 | |
33 | #include "Basic/CodeGenIntrinsics.h" |
34 | #include "Common/CodeGenDAGPatterns.h" |
35 | #include "Common/CodeGenInstruction.h" |
36 | #include "Common/CodeGenRegisters.h" |
37 | #include "Common/CodeGenTarget.h" |
38 | #include "Common/GlobalISel/GlobalISelMatchTable.h" |
39 | #include "Common/GlobalISel/GlobalISelMatchTableExecutorEmitter.h" |
40 | #include "Common/InfoByHwMode.h" |
41 | #include "llvm/ADT/Statistic.h" |
42 | #include "llvm/CodeGenTypes/LowLevelType.h" |
43 | #include "llvm/CodeGenTypes/MachineValueType.h" |
44 | #include "llvm/Support/CodeGenCoverage.h" |
45 | #include "llvm/Support/CommandLine.h" |
46 | #include "llvm/Support/Error.h" |
47 | #include "llvm/Support/ScopedPrinter.h" |
48 | #include "llvm/TableGen/Error.h" |
49 | #include "llvm/TableGen/Record.h" |
50 | #include "llvm/TableGen/TableGenBackend.h" |
51 | #include <string> |
52 | |
53 | using namespace llvm; |
54 | using namespace llvm::gi; |
55 | |
56 | using action_iterator = RuleMatcher::action_iterator; |
57 | |
58 | #define DEBUG_TYPE "gisel-emitter" |
59 | |
60 | STATISTIC(NumPatternTotal, "Total number of patterns" ); |
61 | STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG" ); |
62 | STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped" ); |
63 | STATISTIC(NumPatternsTested, |
64 | "Number of patterns executed according to coverage information" ); |
65 | |
66 | static cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel" ); |
67 | |
68 | static cl::opt<bool> WarnOnSkippedPatterns( |
69 | "warn-on-skipped-patterns" , |
70 | cl::desc("Explain why a pattern was skipped for inclusion " |
71 | "in the GlobalISel selector" ), |
72 | cl::init(Val: false), cl::cat(GlobalISelEmitterCat)); |
73 | |
74 | static cl::opt<bool> GenerateCoverage( |
75 | "instrument-gisel-coverage" , |
76 | cl::desc("Generate coverage instrumentation for GlobalISel" ), |
77 | cl::init(Val: false), cl::cat(GlobalISelEmitterCat)); |
78 | |
79 | static cl::opt<std::string> UseCoverageFile( |
80 | "gisel-coverage-file" , cl::init(Val: "" ), |
81 | cl::desc("Specify file to retrieve coverage information from" ), |
82 | cl::cat(GlobalISelEmitterCat)); |
83 | |
84 | static cl::opt<bool> OptimizeMatchTable( |
85 | "optimize-match-table" , |
86 | cl::desc("Generate an optimized version of the match table" ), |
87 | cl::init(Val: true), cl::cat(GlobalISelEmitterCat)); |
88 | |
89 | namespace { |
90 | |
91 | static std::string explainPredicates(const TreePatternNode &N) { |
92 | std::string Explanation; |
93 | StringRef Separator = "" ; |
94 | for (const TreePredicateCall &Call : N.getPredicateCalls()) { |
95 | const TreePredicateFn &P = Call.Fn; |
96 | Explanation += |
97 | (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str(); |
98 | Separator = ", " ; |
99 | |
100 | if (P.isAlwaysTrue()) |
101 | Explanation += " always-true" ; |
102 | if (P.isImmediatePattern()) |
103 | Explanation += " immediate" ; |
104 | |
105 | if (P.isUnindexed()) |
106 | Explanation += " unindexed" ; |
107 | |
108 | if (P.isNonExtLoad()) |
109 | Explanation += " non-extload" ; |
110 | if (P.isAnyExtLoad()) |
111 | Explanation += " extload" ; |
112 | if (P.isSignExtLoad()) |
113 | Explanation += " sextload" ; |
114 | if (P.isZeroExtLoad()) |
115 | Explanation += " zextload" ; |
116 | |
117 | if (P.isNonTruncStore()) |
118 | Explanation += " non-truncstore" ; |
119 | if (P.isTruncStore()) |
120 | Explanation += " truncstore" ; |
121 | |
122 | if (const Record *VT = P.getMemoryVT()) |
123 | Explanation += (" MemVT=" + VT->getName()).str(); |
124 | if (const Record *VT = P.getScalarMemoryVT()) |
125 | Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str(); |
126 | |
127 | if (const ListInit *AddrSpaces = P.getAddressSpaces()) { |
128 | raw_string_ostream OS(Explanation); |
129 | OS << " AddressSpaces=[" ; |
130 | |
131 | StringRef AddrSpaceSeparator; |
132 | for (const Init *Val : AddrSpaces->getElements()) { |
133 | const IntInit *IntVal = dyn_cast<IntInit>(Val); |
134 | if (!IntVal) |
135 | continue; |
136 | |
137 | OS << AddrSpaceSeparator << IntVal->getValue(); |
138 | AddrSpaceSeparator = ", " ; |
139 | } |
140 | |
141 | OS << ']'; |
142 | } |
143 | |
144 | int64_t MinAlign = P.getMinAlignment(); |
145 | if (MinAlign > 0) |
146 | Explanation += " MinAlign=" + utostr(X: MinAlign); |
147 | |
148 | if (P.isAtomicOrderingMonotonic()) |
149 | Explanation += " monotonic" ; |
150 | if (P.isAtomicOrderingAcquire()) |
151 | Explanation += " acquire" ; |
152 | if (P.isAtomicOrderingRelease()) |
153 | Explanation += " release" ; |
154 | if (P.isAtomicOrderingAcquireRelease()) |
155 | Explanation += " acq_rel" ; |
156 | if (P.isAtomicOrderingSequentiallyConsistent()) |
157 | Explanation += " seq_cst" ; |
158 | if (P.isAtomicOrderingAcquireOrStronger()) |
159 | Explanation += " >=acquire" ; |
160 | if (P.isAtomicOrderingWeakerThanAcquire()) |
161 | Explanation += " <acquire" ; |
162 | if (P.isAtomicOrderingReleaseOrStronger()) |
163 | Explanation += " >=release" ; |
164 | if (P.isAtomicOrderingWeakerThanRelease()) |
165 | Explanation += " <release" ; |
166 | } |
167 | return Explanation; |
168 | } |
169 | |
170 | std::string explainOperator(const Record *Operator) { |
171 | if (Operator->isSubClassOf(Name: "SDNode" )) |
172 | return (" (" + Operator->getValueAsString(FieldName: "Opcode" ) + ")" ).str(); |
173 | |
174 | if (Operator->isSubClassOf(Name: "Intrinsic" )) |
175 | return (" (Operator is an Intrinsic, " + Operator->getName() + ")" ).str(); |
176 | |
177 | if (Operator->isSubClassOf(Name: "ComplexPattern" )) |
178 | return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() + |
179 | ")" ) |
180 | .str(); |
181 | |
182 | if (Operator->isSubClassOf(Name: "SDNodeXForm" )) |
183 | return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() + |
184 | ")" ) |
185 | .str(); |
186 | |
187 | return (" (Operator " + Operator->getName() + " not understood)" ).str(); |
188 | } |
189 | |
190 | /// Helper function to let the emitter report skip reason error messages. |
191 | static Error failedImport(const Twine &Reason) { |
192 | return make_error<StringError>(Args: Reason, Args: inconvertibleErrorCode()); |
193 | } |
194 | |
195 | static Error isTrivialOperatorNode(const TreePatternNode &N) { |
196 | std::string Explanation; |
197 | std::string Separator; |
198 | |
199 | bool HasUnsupportedPredicate = false; |
200 | for (const TreePredicateCall &Call : N.getPredicateCalls()) { |
201 | const TreePredicateFn &Predicate = Call.Fn; |
202 | |
203 | if (Predicate.isAlwaysTrue()) |
204 | continue; |
205 | |
206 | if (Predicate.isImmediatePattern()) |
207 | continue; |
208 | |
209 | if (Predicate.hasNoUse() || Predicate.hasOneUse()) |
210 | continue; |
211 | |
212 | if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() || |
213 | Predicate.isSignExtLoad() || Predicate.isZeroExtLoad()) |
214 | continue; |
215 | |
216 | if (Predicate.isNonTruncStore() || Predicate.isTruncStore()) |
217 | continue; |
218 | |
219 | if (Predicate.isLoad() && Predicate.getMemoryVT()) |
220 | continue; |
221 | |
222 | if (Predicate.isStore() && Predicate.getMemoryVT()) |
223 | continue; |
224 | |
225 | if (Predicate.isLoad() || Predicate.isStore()) { |
226 | if (Predicate.isUnindexed()) |
227 | continue; |
228 | } |
229 | |
230 | if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { |
231 | const ListInit *AddrSpaces = Predicate.getAddressSpaces(); |
232 | if (AddrSpaces && !AddrSpaces->empty()) |
233 | continue; |
234 | |
235 | if (Predicate.getMinAlignment() > 0) |
236 | continue; |
237 | } |
238 | |
239 | if (Predicate.isAtomic() && Predicate.getMemoryVT()) |
240 | continue; |
241 | |
242 | if (Predicate.isAtomic() && |
243 | (Predicate.isAtomicOrderingMonotonic() || |
244 | Predicate.isAtomicOrderingAcquire() || |
245 | Predicate.isAtomicOrderingRelease() || |
246 | Predicate.isAtomicOrderingAcquireRelease() || |
247 | Predicate.isAtomicOrderingSequentiallyConsistent() || |
248 | Predicate.isAtomicOrderingAcquireOrStronger() || |
249 | Predicate.isAtomicOrderingWeakerThanAcquire() || |
250 | Predicate.isAtomicOrderingReleaseOrStronger() || |
251 | Predicate.isAtomicOrderingWeakerThanRelease())) |
252 | continue; |
253 | |
254 | if (Predicate.hasGISelPredicateCode()) |
255 | continue; |
256 | |
257 | HasUnsupportedPredicate = true; |
258 | Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")" ; |
259 | Separator = ", " ; |
260 | Explanation += (Separator + "first-failing:" + |
261 | Predicate.getOrigPatFragRecord()->getRecord()->getName()) |
262 | .str(); |
263 | break; |
264 | } |
265 | |
266 | if (!HasUnsupportedPredicate) |
267 | return Error::success(); |
268 | |
269 | return failedImport(Reason: Explanation); |
270 | } |
271 | |
272 | static const Record *getInitValueAsRegClass(const Init *V) { |
273 | if (const DefInit *VDefInit = dyn_cast<DefInit>(Val: V)) { |
274 | if (VDefInit->getDef()->isSubClassOf(Name: "RegisterOperand" )) |
275 | return VDefInit->getDef()->getValueAsDef(FieldName: "RegClass" ); |
276 | if (VDefInit->getDef()->isSubClassOf(Name: "RegisterClass" )) |
277 | return VDefInit->getDef(); |
278 | } |
279 | return nullptr; |
280 | } |
281 | |
282 | static std::string getScopedName(unsigned Scope, const std::string &Name) { |
283 | return ("pred:" + Twine(Scope) + ":" + Name).str(); |
284 | } |
285 | |
286 | static std::string getMangledRootDefName(StringRef DefOperandName) { |
287 | return ("DstI[" + DefOperandName + "]" ).str(); |
288 | } |
289 | |
290 | //===- GlobalISelEmitter class --------------------------------------------===// |
291 | |
292 | static Expected<LLTCodeGen> getInstResultType(const TreePatternNode &Dst, |
293 | const CodeGenTarget &Target) { |
294 | // While we allow more than one output (both implicit and explicit defs) |
295 | // below, we only expect one explicit def here. |
296 | assert(Dst.getOperator()->isSubClassOf("Instruction" )); |
297 | CodeGenInstruction &InstInfo = Target.getInstruction(InstRec: Dst.getOperator()); |
298 | if (!InstInfo.Operands.NumDefs) |
299 | return failedImport(Reason: "Dst pattern child needs a def" ); |
300 | |
301 | ArrayRef<TypeSetByHwMode> ChildTypes = Dst.getExtTypes(); |
302 | if (ChildTypes.size() < 1) |
303 | return failedImport(Reason: "Dst pattern child has no result" ); |
304 | |
305 | // If there are multiple results, just take the first one (this is how |
306 | // SelectionDAG does it). |
307 | std::optional<LLTCodeGen> MaybeOpTy; |
308 | if (ChildTypes.front().isMachineValueType()) { |
309 | MaybeOpTy = MVTToLLT(SVT: ChildTypes.front().getMachineValueType().SimpleTy); |
310 | } |
311 | |
312 | if (!MaybeOpTy) |
313 | return failedImport(Reason: "Dst operand has an unsupported type" ); |
314 | return *MaybeOpTy; |
315 | } |
316 | |
317 | class GlobalISelEmitter final : public GlobalISelMatchTableExecutorEmitter { |
318 | public: |
319 | explicit GlobalISelEmitter(const RecordKeeper &RK); |
320 | |
321 | void emitAdditionalImpl(raw_ostream &OS) override; |
322 | |
323 | void emitMIPredicateFns(raw_ostream &OS) override; |
324 | void emitLeafPredicateFns(raw_ostream &OS) override; |
325 | void emitI64ImmPredicateFns(raw_ostream &OS) override; |
326 | void emitAPFloatImmPredicateFns(raw_ostream &OS) override; |
327 | void emitAPIntImmPredicateFns(raw_ostream &OS) override; |
328 | void emitTestSimplePredicate(raw_ostream &OS) override; |
329 | void emitRunCustomAction(raw_ostream &OS) override; |
330 | |
331 | const CodeGenTarget &getTarget() const override { return Target; } |
332 | StringRef getClassName() const override { return ClassName; } |
333 | |
334 | void run(raw_ostream &OS); |
335 | |
336 | private: |
337 | std::string ClassName; |
338 | |
339 | const RecordKeeper &RK; |
340 | const CodeGenDAGPatterns CGP; |
341 | const CodeGenTarget &Target; |
342 | CodeGenRegBank &CGRegs; |
343 | |
344 | ArrayRef<const Record *> AllPatFrags; |
345 | |
346 | /// Keep track of the equivalence between SDNodes and Instruction by mapping |
347 | /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to |
348 | /// check for attributes on the relation such as CheckMMOIsNonAtomic. |
349 | /// This is defined using 'GINodeEquiv' in the target description. |
350 | DenseMap<const Record *, const Record *> NodeEquivs; |
351 | |
352 | /// Keep track of the equivalence between ComplexPattern's and |
353 | /// GIComplexOperandMatcher. Map entries are specified by subclassing |
354 | /// GIComplexPatternEquiv. |
355 | DenseMap<const Record *, const Record *> ComplexPatternEquivs; |
356 | |
357 | /// Keep track of the equivalence between SDNodeXForm's and |
358 | /// GICustomOperandRenderer. Map entries are specified by subclassing |
359 | /// GISDNodeXFormEquiv. |
360 | DenseMap<const Record *, const Record *> SDNodeXFormEquivs; |
361 | |
362 | /// Keep track of Scores of PatternsToMatch similar to how the DAG does. |
363 | /// This adds compatibility for RuleMatchers to use this for ordering rules. |
364 | DenseMap<uint64_t, int> RuleMatcherScores; |
365 | |
366 | // Rule coverage information. |
367 | std::optional<CodeGenCoverage> RuleCoverage; |
368 | |
369 | /// Variables used to help with collecting of named operands for predicates |
370 | /// with 'let PredicateCodeUsesOperands = 1'. WaitingForNamedOperands is set |
371 | /// to the number of named operands that predicate expects. Store locations in |
372 | /// StoreIdxForName correspond to the order in which operand names appear in |
373 | /// predicate's argument list. |
374 | /// When we visit named operand and WaitingForNamedOperands is not zero, add |
375 | /// matcher that will record operand and decrease counter. |
376 | unsigned WaitingForNamedOperands = 0; |
377 | StringMap<unsigned> StoreIdxForName; |
378 | |
379 | void gatherOpcodeValues(); |
380 | void gatherTypeIDValues(); |
381 | void gatherNodeEquivs(); |
382 | |
383 | const Record *findNodeEquiv(const Record *N) const; |
384 | const CodeGenInstruction *getEquivNode(const Record &Equiv, |
385 | const TreePatternNode &N) const; |
386 | |
387 | Error importRulePredicates(RuleMatcher &M, |
388 | ArrayRef<const Record *> Predicates); |
389 | Expected<InstructionMatcher &> |
390 | createAndImportSelDAGMatcher(RuleMatcher &Rule, |
391 | InstructionMatcher &InsnMatcher, |
392 | const TreePatternNode &Src, unsigned &TempOpIdx); |
393 | Error importComplexPatternOperandMatcher(OperandMatcher &OM, const Record *R, |
394 | unsigned &TempOpIdx) const; |
395 | Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher, |
396 | const TreePatternNode &SrcChild, |
397 | bool OperandIsAPointer, bool OperandIsImmArg, |
398 | unsigned OpIdx, unsigned &TempOpIdx); |
399 | |
400 | Expected<BuildMIAction &> |
401 | createAndImportInstructionRenderer(RuleMatcher &M, |
402 | InstructionMatcher &InsnMatcher, |
403 | const TreePatternNode &Dst) const; |
404 | Expected<action_iterator> createAndImportSubInstructionRenderer( |
405 | action_iterator InsertPt, RuleMatcher &M, const TreePatternNode &Dst, |
406 | unsigned TempReg) const; |
407 | Expected<action_iterator> |
408 | createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M, |
409 | const TreePatternNode &Dst) const; |
410 | |
411 | Expected<action_iterator> |
412 | importExplicitDefRenderers(action_iterator InsertPt, RuleMatcher &M, |
413 | BuildMIAction &DstMIBuilder, |
414 | const TreePatternNode &Dst, bool IsRoot) const; |
415 | |
416 | Expected<action_iterator> |
417 | importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M, |
418 | BuildMIAction &DstMIBuilder, |
419 | const TreePatternNode &Dst) const; |
420 | |
421 | Error importNamedNodeRenderer(RuleMatcher &M, BuildMIAction &MIBuilder, |
422 | const TreePatternNode &N) const; |
423 | |
424 | Error importLeafNodeRenderer(RuleMatcher &M, BuildMIAction &MIBuilder, |
425 | const TreePatternNode &N, |
426 | action_iterator InsertPt) const; |
427 | |
428 | Error importXFormNodeRenderer(RuleMatcher &M, BuildMIAction &MIBuilder, |
429 | const TreePatternNode &N) const; |
430 | |
431 | Error importInstructionNodeRenderer(RuleMatcher &M, BuildMIAction &MIBuilder, |
432 | const TreePatternNode &N, |
433 | action_iterator &InsertPt) const; |
434 | |
435 | Error importNodeRenderer(RuleMatcher &M, BuildMIAction &MIBuilder, |
436 | const TreePatternNode &N, |
437 | action_iterator &InsertPt) const; |
438 | |
439 | Error importImplicitDefRenderers(BuildMIAction &DstMIBuilder, |
440 | ArrayRef<const Record *> ImplicitDefs) const; |
441 | |
442 | /// Analyze pattern \p P, returning a matcher for it if possible. |
443 | /// Otherwise, return an Error explaining why we don't support it. |
444 | Expected<RuleMatcher> runOnPattern(const PatternToMatch &P); |
445 | |
446 | void declareSubtargetFeature(const Record *Predicate); |
447 | |
448 | unsigned declareHwModeCheck(StringRef HwModeFeatures); |
449 | |
450 | MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize, |
451 | bool WithCoverage); |
452 | |
453 | /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned |
454 | /// CodeGenRegisterClass will support the CodeGenRegisterClass of |
455 | /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode. |
456 | /// If no register class is found, return nullptr. |
457 | const CodeGenRegisterClass * |
458 | inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty, |
459 | const TreePatternNode &SuperRegNode, |
460 | const TreePatternNode &SubRegIdxNode) const; |
461 | const CodeGenSubRegIndex * |
462 | inferSubRegIndexForNode(const TreePatternNode &SubRegIdxNode) const; |
463 | |
464 | /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode. |
465 | /// Return nullptr if no such class exists. |
466 | const CodeGenRegisterClass * |
467 | inferSuperRegisterClass(const TypeSetByHwMode &Ty, |
468 | const TreePatternNode &SubRegIdxNode) const; |
469 | |
470 | /// Return the CodeGenRegisterClass associated with \p Leaf if it has one. |
471 | const CodeGenRegisterClass * |
472 | getRegClassFromLeaf(const TreePatternNode &Leaf) const; |
473 | |
474 | /// Return a CodeGenRegisterClass for \p N if one can be found. Return |
475 | /// nullptr otherwise. |
476 | const CodeGenRegisterClass * |
477 | inferRegClassFromPattern(const TreePatternNode &N) const; |
478 | |
479 | const CodeGenRegisterClass * |
480 | inferRegClassFromInstructionPattern(const TreePatternNode &N, |
481 | unsigned ResIdx) const; |
482 | |
483 | Error constrainOperands(action_iterator InsertPt, RuleMatcher &M, |
484 | unsigned InsnID, const TreePatternNode &Dst) const; |
485 | |
486 | /// Return the size of the MemoryVT in this predicate, if possible. |
487 | std::optional<unsigned> |
488 | getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate); |
489 | |
490 | // Add builtin predicates. |
491 | Expected<InstructionMatcher &> |
492 | addBuiltinPredicates(const Record *SrcGIEquivOrNull, |
493 | const TreePredicateFn &Predicate, |
494 | InstructionMatcher &InsnMatcher, bool &HasAddedMatcher); |
495 | }; |
496 | |
497 | StringRef getPatFragPredicateEnumName(const Record *R) { return R->getName(); } |
498 | |
499 | void GlobalISelEmitter::gatherOpcodeValues() { |
500 | InstructionOpcodeMatcher::initOpcodeValuesMap(Target); |
501 | } |
502 | |
503 | void GlobalISelEmitter::gatherTypeIDValues() { |
504 | LLTOperandMatcher::initTypeIDValuesMap(); |
505 | } |
506 | |
507 | void GlobalISelEmitter::gatherNodeEquivs() { |
508 | assert(NodeEquivs.empty()); |
509 | for (const Record *Equiv : RK.getAllDerivedDefinitions(ClassName: "GINodeEquiv" )) |
510 | NodeEquivs[Equiv->getValueAsDef(FieldName: "Node" )] = Equiv; |
511 | |
512 | assert(ComplexPatternEquivs.empty()); |
513 | for (const Record *Equiv : |
514 | RK.getAllDerivedDefinitions(ClassName: "GIComplexPatternEquiv" )) { |
515 | const Record *SelDAGEquiv = Equiv->getValueAsDef(FieldName: "SelDAGEquivalent" ); |
516 | if (!SelDAGEquiv) |
517 | continue; |
518 | ComplexPatternEquivs[SelDAGEquiv] = Equiv; |
519 | } |
520 | |
521 | assert(SDNodeXFormEquivs.empty()); |
522 | for (const Record *Equiv : |
523 | RK.getAllDerivedDefinitions(ClassName: "GISDNodeXFormEquiv" )) { |
524 | const Record *SelDAGEquiv = Equiv->getValueAsDef(FieldName: "SelDAGEquivalent" ); |
525 | if (!SelDAGEquiv) |
526 | continue; |
527 | SDNodeXFormEquivs[SelDAGEquiv] = Equiv; |
528 | } |
529 | } |
530 | |
531 | const Record *GlobalISelEmitter::findNodeEquiv(const Record *N) const { |
532 | return NodeEquivs.lookup(Val: N); |
533 | } |
534 | |
535 | const CodeGenInstruction * |
536 | GlobalISelEmitter::getEquivNode(const Record &Equiv, |
537 | const TreePatternNode &N) const { |
538 | if (N.getNumChildren() >= 1) { |
539 | // setcc operation maps to two different G_* instructions based on the type. |
540 | if (!Equiv.isValueUnset(FieldName: "IfFloatingPoint" ) && |
541 | MVT(N.getChild(N: 0).getSimpleType(ResNo: 0)).isFloatingPoint()) |
542 | return &Target.getInstruction(InstRec: Equiv.getValueAsDef(FieldName: "IfFloatingPoint" )); |
543 | } |
544 | |
545 | if (!Equiv.isValueUnset(FieldName: "IfConvergent" ) && |
546 | N.getIntrinsicInfo(CDP: CGP)->isConvergent) |
547 | return &Target.getInstruction(InstRec: Equiv.getValueAsDef(FieldName: "IfConvergent" )); |
548 | |
549 | for (const TreePredicateCall &Call : N.getPredicateCalls()) { |
550 | const TreePredicateFn &Predicate = Call.Fn; |
551 | if (!Equiv.isValueUnset(FieldName: "IfSignExtend" ) && |
552 | (Predicate.isLoad() || Predicate.isAtomic()) && |
553 | Predicate.isSignExtLoad()) |
554 | return &Target.getInstruction(InstRec: Equiv.getValueAsDef(FieldName: "IfSignExtend" )); |
555 | if (!Equiv.isValueUnset(FieldName: "IfZeroExtend" ) && |
556 | (Predicate.isLoad() || Predicate.isAtomic()) && |
557 | Predicate.isZeroExtLoad()) |
558 | return &Target.getInstruction(InstRec: Equiv.getValueAsDef(FieldName: "IfZeroExtend" )); |
559 | } |
560 | |
561 | return &Target.getInstruction(InstRec: Equiv.getValueAsDef(FieldName: "I" )); |
562 | } |
563 | |
564 | GlobalISelEmitter::GlobalISelEmitter(const RecordKeeper &RK) |
565 | : GlobalISelMatchTableExecutorEmitter(), RK(RK), CGP(RK), |
566 | Target(CGP.getTargetInfo()), CGRegs(Target.getRegBank()) { |
567 | ClassName = Target.getName().str() + "InstructionSelector" ; |
568 | } |
569 | |
570 | //===- Emitter ------------------------------------------------------------===// |
571 | |
572 | Error GlobalISelEmitter::importRulePredicates( |
573 | RuleMatcher &M, ArrayRef<const Record *> Predicates) { |
574 | for (const Record *Pred : Predicates) { |
575 | if (Pred->getValueAsString(FieldName: "CondString" ).empty()) |
576 | continue; |
577 | declareSubtargetFeature(Predicate: Pred); |
578 | M.addRequiredFeature(Feature: Pred); |
579 | } |
580 | |
581 | return Error::success(); |
582 | } |
583 | |
584 | std::optional<unsigned> GlobalISelEmitter::getMemSizeBitsFromPredicate( |
585 | const TreePredicateFn &Predicate) { |
586 | std::optional<LLTCodeGen> MemTyOrNone = |
587 | MVTToLLT(SVT: getValueType(Rec: Predicate.getMemoryVT())); |
588 | |
589 | if (!MemTyOrNone) |
590 | return std::nullopt; |
591 | |
592 | // Align so unusual types like i1 don't get rounded down. |
593 | return llvm::alignTo( |
594 | Value: static_cast<unsigned>(MemTyOrNone->get().getSizeInBits()), Align: 8); |
595 | } |
596 | |
597 | Expected<InstructionMatcher &> GlobalISelEmitter::addBuiltinPredicates( |
598 | const Record *SrcGIEquivOrNull, const TreePredicateFn &Predicate, |
599 | InstructionMatcher &InsnMatcher, bool &HasAddedMatcher) { |
600 | if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { |
601 | if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) { |
602 | SmallVector<unsigned, 4> ParsedAddrSpaces; |
603 | |
604 | for (const Init *Val : AddrSpaces->getElements()) { |
605 | const IntInit *IntVal = dyn_cast<IntInit>(Val); |
606 | if (!IntVal) |
607 | return failedImport(Reason: "Address space is not an integer" ); |
608 | ParsedAddrSpaces.push_back(Elt: IntVal->getValue()); |
609 | } |
610 | |
611 | if (!ParsedAddrSpaces.empty()) { |
612 | InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>( |
613 | args: 0, args&: ParsedAddrSpaces); |
614 | return InsnMatcher; |
615 | } |
616 | } |
617 | |
618 | int64_t MinAlign = Predicate.getMinAlignment(); |
619 | if (MinAlign > 0) { |
620 | InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(args: 0, args&: MinAlign); |
621 | return InsnMatcher; |
622 | } |
623 | } |
624 | |
625 | // G_LOAD is used for both non-extending and any-extending loads. |
626 | if (Predicate.isLoad() || Predicate.isAtomic()) { |
627 | if (Predicate.isNonExtLoad()) { |
628 | InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( |
629 | args: 0, args: MemoryVsLLTSizePredicateMatcher::EqualTo, args: 0); |
630 | return InsnMatcher; |
631 | } |
632 | if (Predicate.isAnyExtLoad()) { |
633 | InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( |
634 | args: 0, args: MemoryVsLLTSizePredicateMatcher::LessThan, args: 0); |
635 | return InsnMatcher; |
636 | } |
637 | } |
638 | |
639 | if (Predicate.isStore()) { |
640 | if (Predicate.isTruncStore()) { |
641 | if (Predicate.getMemoryVT() != nullptr) { |
642 | // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size. |
643 | auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); |
644 | if (!MemSizeInBits) |
645 | return failedImport(Reason: "MemVT could not be converted to LLT" ); |
646 | |
647 | InsnMatcher.addPredicate<MemorySizePredicateMatcher>(args: 0, args: *MemSizeInBits / |
648 | 8); |
649 | } else { |
650 | InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( |
651 | args: 0, args: MemoryVsLLTSizePredicateMatcher::LessThan, args: 0); |
652 | } |
653 | return InsnMatcher; |
654 | } |
655 | if (Predicate.isNonTruncStore()) { |
656 | // We need to check the sizes match here otherwise we could incorrectly |
657 | // match truncating stores with non-truncating ones. |
658 | InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>( |
659 | args: 0, args: MemoryVsLLTSizePredicateMatcher::EqualTo, args: 0); |
660 | } |
661 | } |
662 | |
663 | assert(SrcGIEquivOrNull != nullptr && "Invalid SrcGIEquivOrNull value" ); |
664 | // No check required. We already did it by swapping the opcode. |
665 | if (!SrcGIEquivOrNull->isValueUnset(FieldName: "IfSignExtend" ) && |
666 | Predicate.isSignExtLoad()) |
667 | return InsnMatcher; |
668 | |
669 | // No check required. We already did it by swapping the opcode. |
670 | if (!SrcGIEquivOrNull->isValueUnset(FieldName: "IfZeroExtend" ) && |
671 | Predicate.isZeroExtLoad()) |
672 | return InsnMatcher; |
673 | |
674 | // No check required. G_STORE by itself is a non-extending store. |
675 | if (Predicate.isNonTruncStore()) |
676 | return InsnMatcher; |
677 | |
678 | if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) { |
679 | if (Predicate.getMemoryVT() != nullptr) { |
680 | auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate); |
681 | if (!MemSizeInBits) |
682 | return failedImport(Reason: "MemVT could not be converted to LLT" ); |
683 | |
684 | InsnMatcher.addPredicate<MemorySizePredicateMatcher>(args: 0, |
685 | args: *MemSizeInBits / 8); |
686 | return InsnMatcher; |
687 | } |
688 | } |
689 | |
690 | if (Predicate.isLoad() || Predicate.isStore()) { |
691 | // No check required. A G_LOAD/G_STORE is an unindexed load. |
692 | if (Predicate.isUnindexed()) |
693 | return InsnMatcher; |
694 | } |
695 | |
696 | if (Predicate.isAtomic()) { |
697 | if (Predicate.isAtomicOrderingMonotonic()) { |
698 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(args: "Monotonic" ); |
699 | return InsnMatcher; |
700 | } |
701 | if (Predicate.isAtomicOrderingAcquire()) { |
702 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(args: "Acquire" ); |
703 | return InsnMatcher; |
704 | } |
705 | if (Predicate.isAtomicOrderingRelease()) { |
706 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(args: "Release" ); |
707 | return InsnMatcher; |
708 | } |
709 | if (Predicate.isAtomicOrderingAcquireRelease()) { |
710 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
711 | args: "AcquireRelease" ); |
712 | return InsnMatcher; |
713 | } |
714 | if (Predicate.isAtomicOrderingSequentiallyConsistent()) { |
715 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
716 | args: "SequentiallyConsistent" ); |
717 | return InsnMatcher; |
718 | } |
719 | } |
720 | |
721 | if (Predicate.isAtomicOrderingAcquireOrStronger()) { |
722 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
723 | args: "Acquire" , args: AtomicOrderingMMOPredicateMatcher::AO_OrStronger); |
724 | return InsnMatcher; |
725 | } |
726 | if (Predicate.isAtomicOrderingWeakerThanAcquire()) { |
727 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
728 | args: "Acquire" , args: AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); |
729 | return InsnMatcher; |
730 | } |
731 | |
732 | if (Predicate.isAtomicOrderingReleaseOrStronger()) { |
733 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
734 | args: "Release" , args: AtomicOrderingMMOPredicateMatcher::AO_OrStronger); |
735 | return InsnMatcher; |
736 | } |
737 | if (Predicate.isAtomicOrderingWeakerThanRelease()) { |
738 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
739 | args: "Release" , args: AtomicOrderingMMOPredicateMatcher::AO_WeakerThan); |
740 | return InsnMatcher; |
741 | } |
742 | HasAddedMatcher = false; |
743 | return InsnMatcher; |
744 | } |
745 | |
746 | Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher( |
747 | RuleMatcher &Rule, InstructionMatcher &InsnMatcher, |
748 | const TreePatternNode &Src, unsigned &TempOpIdx) { |
749 | const auto SavedFlags = Rule.setGISelFlags(Src.getGISelFlagsRecord()); |
750 | |
751 | const Record *SrcGIEquivOrNull = nullptr; |
752 | const CodeGenInstruction *SrcGIOrNull = nullptr; |
753 | |
754 | // Start with the defined operands (i.e., the results of the root operator). |
755 | if (Src.isLeaf()) { |
756 | const Init *SrcInit = Src.getLeafValue(); |
757 | if (isa<IntInit>(Val: SrcInit)) { |
758 | InsnMatcher.addPredicate<InstructionOpcodeMatcher>( |
759 | args: &Target.getInstruction(InstRec: RK.getDef(Name: "G_CONSTANT" ))); |
760 | } else { |
761 | return failedImport( |
762 | Reason: "Unable to deduce gMIR opcode to handle Src (which is a leaf)" ); |
763 | } |
764 | } else { |
765 | SrcGIEquivOrNull = findNodeEquiv(N: Src.getOperator()); |
766 | if (!SrcGIEquivOrNull) |
767 | return failedImport(Reason: "Pattern operator lacks an equivalent Instruction" + |
768 | explainOperator(Operator: Src.getOperator())); |
769 | SrcGIOrNull = getEquivNode(Equiv: *SrcGIEquivOrNull, N: Src); |
770 | |
771 | // The operators look good: match the opcode |
772 | InsnMatcher.addPredicate<InstructionOpcodeMatcher>(args&: SrcGIOrNull); |
773 | } |
774 | |
775 | // Since there are no opcodes for atomic loads and stores comparing to |
776 | // SelectionDAG, we add CheckMMOIsNonAtomic predicate immediately after the |
777 | // opcode predicate to make a logical combination of them. |
778 | if (SrcGIEquivOrNull && |
779 | SrcGIEquivOrNull->getValueAsBit(FieldName: "CheckMMOIsNonAtomic" )) |
780 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(args: "NotAtomic" ); |
781 | else if (SrcGIEquivOrNull && |
782 | SrcGIEquivOrNull->getValueAsBit(FieldName: "CheckMMOIsAtomic" )) { |
783 | InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>( |
784 | args: "Unordered" , args: AtomicOrderingMMOPredicateMatcher::AO_OrStronger); |
785 | } |
786 | |
787 | unsigned OpIdx = 0; |
788 | for (const TypeSetByHwMode &VTy : Src.getExtTypes()) { |
789 | // Results don't have a name unless they are the root node. The caller will |
790 | // set the name if appropriate. |
791 | const bool OperandIsAPointer = |
792 | SrcGIOrNull && SrcGIOrNull->isOutOperandAPointer(i: OpIdx); |
793 | OperandMatcher &OM = InsnMatcher.addOperand(OpIdx: OpIdx++, SymbolicName: "" , AllocatedTemporariesBaseID: TempOpIdx); |
794 | if (auto Error = OM.addTypeCheckPredicate(VTy, OperandIsAPointer)) |
795 | return failedImport(Reason: toString(E: std::move(Error)) + |
796 | " for result of Src pattern operator" ); |
797 | } |
798 | |
799 | for (const TreePredicateCall &Call : Src.getPredicateCalls()) { |
800 | const TreePredicateFn &Predicate = Call.Fn; |
801 | bool HasAddedBuiltinMatcher = true; |
802 | if (Predicate.isAlwaysTrue()) |
803 | continue; |
804 | |
805 | if (Predicate.isImmediatePattern()) { |
806 | InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(args: Predicate); |
807 | continue; |
808 | } |
809 | |
810 | auto InsnMatcherOrError = addBuiltinPredicates( |
811 | SrcGIEquivOrNull, Predicate, InsnMatcher, HasAddedMatcher&: HasAddedBuiltinMatcher); |
812 | if (auto Error = InsnMatcherOrError.takeError()) |
813 | return std::move(Error); |
814 | |
815 | // FIXME: This should be part of addBuiltinPredicates(). If we add this at |
816 | // the start of addBuiltinPredicates() without returning, then there might |
817 | // be cases where we hit the last return before which the |
818 | // HasAddedBuiltinMatcher will be set to false. The predicate could be |
819 | // missed if we add it in the middle or at the end due to return statements |
820 | // after the addPredicate<>() calls. |
821 | if (Predicate.hasNoUse()) { |
822 | InsnMatcher.addPredicate<NoUsePredicateMatcher>(); |
823 | HasAddedBuiltinMatcher = true; |
824 | } |
825 | if (Predicate.hasOneUse()) { |
826 | InsnMatcher.addPredicate<OneUsePredicateMatcher>(); |
827 | HasAddedBuiltinMatcher = true; |
828 | } |
829 | |
830 | if (Predicate.hasGISelPredicateCode()) { |
831 | if (Predicate.usesOperands()) { |
832 | assert(WaitingForNamedOperands == 0 && |
833 | "previous predicate didn't find all operands or " |
834 | "nested predicate that uses operands" ); |
835 | TreePattern *TP = Predicate.getOrigPatFragRecord(); |
836 | WaitingForNamedOperands = TP->getNumArgs(); |
837 | for (unsigned I = 0; I < WaitingForNamedOperands; ++I) |
838 | StoreIdxForName[getScopedName(Scope: Call.Scope, Name: TP->getArgName(i: I))] = I; |
839 | } |
840 | InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(args: Predicate); |
841 | continue; |
842 | } |
843 | if (!HasAddedBuiltinMatcher) { |
844 | return failedImport(Reason: "Src pattern child has predicate (" + |
845 | explainPredicates(N: Src) + ")" ); |
846 | } |
847 | } |
848 | |
849 | if (Src.isLeaf()) { |
850 | const Init *SrcInit = Src.getLeafValue(); |
851 | if (const IntInit *SrcIntInit = dyn_cast<IntInit>(Val: SrcInit)) { |
852 | OperandMatcher &OM = |
853 | InsnMatcher.addOperand(OpIdx: OpIdx++, SymbolicName: Src.getName().str(), AllocatedTemporariesBaseID: TempOpIdx); |
854 | OM.addPredicate<LiteralIntOperandMatcher>(args: SrcIntInit->getValue()); |
855 | } else { |
856 | return failedImport( |
857 | Reason: "Unable to deduce gMIR opcode to handle Src (which is a leaf)" ); |
858 | } |
859 | } else { |
860 | assert(SrcGIOrNull && |
861 | "Expected to have already found an equivalent Instruction" ); |
862 | if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" || |
863 | SrcGIOrNull->TheDef->getName() == "G_FCONSTANT" || |
864 | SrcGIOrNull->TheDef->getName() == "G_FRAME_INDEX" ) { |
865 | // imm/fpimm still have operands but we don't need to do anything with it |
866 | // here since we don't support ImmLeaf predicates yet. However, we still |
867 | // need to note the hidden operand to get GIM_CheckNumOperands correct. |
868 | InsnMatcher.addOperand(OpIdx: OpIdx++, SymbolicName: "" , AllocatedTemporariesBaseID: TempOpIdx); |
869 | return InsnMatcher; |
870 | } |
871 | |
872 | // Special case because the operand order is changed from setcc. The |
873 | // predicate operand needs to be swapped from the last operand to the first |
874 | // source. |
875 | |
876 | unsigned NumChildren = Src.getNumChildren(); |
877 | bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP" ; |
878 | |
879 | if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP" ) { |
880 | const TreePatternNode &SrcChild = Src.getChild(N: NumChildren - 1); |
881 | if (SrcChild.isLeaf()) { |
882 | const DefInit *DI = dyn_cast<DefInit>(Val: SrcChild.getLeafValue()); |
883 | const Record *CCDef = DI ? DI->getDef() : nullptr; |
884 | if (!CCDef || !CCDef->isSubClassOf(Name: "CondCode" )) |
885 | return failedImport(Reason: "Unable to handle CondCode" ); |
886 | |
887 | OperandMatcher &OM = InsnMatcher.addOperand( |
888 | OpIdx: OpIdx++, SymbolicName: SrcChild.getName().str(), AllocatedTemporariesBaseID: TempOpIdx); |
889 | StringRef PredType = IsFCmp ? CCDef->getValueAsString(FieldName: "FCmpPredicate" ) |
890 | : CCDef->getValueAsString(FieldName: "ICmpPredicate" ); |
891 | |
892 | if (!PredType.empty()) { |
893 | OM.addPredicate<CmpPredicateOperandMatcher>(args: PredType.str()); |
894 | // Process the other 2 operands normally. |
895 | --NumChildren; |
896 | } |
897 | } |
898 | } |
899 | |
900 | // Match the used operands (i.e. the children of the operator). |
901 | bool IsIntrinsic = |
902 | SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" || |
903 | SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS" || |
904 | SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_CONVERGENT" || |
905 | SrcGIOrNull->TheDef->getName() == |
906 | "G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS" ; |
907 | const CodeGenIntrinsic *II = Src.getIntrinsicInfo(CDP: CGP); |
908 | if (IsIntrinsic && !II) |
909 | return failedImport(Reason: "Expected IntInit containing intrinsic ID)" ); |
910 | |
911 | for (unsigned I = 0; I != NumChildren; ++I) { |
912 | const TreePatternNode &SrcChild = Src.getChild(N: I); |
913 | |
914 | // We need to determine the meaning of a literal integer based on the |
915 | // context. If this is a field required to be an immediate (such as an |
916 | // immarg intrinsic argument), the required predicates are different than |
917 | // a constant which may be materialized in a register. If we have an |
918 | // argument that is required to be an immediate, we should not emit an LLT |
919 | // type check, and should not be looking for a G_CONSTANT defined |
920 | // register. |
921 | bool OperandIsImmArg = SrcGIOrNull->isInOperandImmArg(i: I); |
922 | |
923 | // SelectionDAG allows pointers to be represented with iN since it doesn't |
924 | // distinguish between pointers and integers but they are different types |
925 | // in GlobalISel. Coerce integers to pointers to address space 0 if the |
926 | // context indicates a pointer. |
927 | // |
928 | bool OperandIsAPointer = SrcGIOrNull->isInOperandAPointer(i: I); |
929 | |
930 | if (IsIntrinsic) { |
931 | // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately |
932 | // following the defs is an intrinsic ID. |
933 | if (I == 0) { |
934 | OperandMatcher &OM = InsnMatcher.addOperand( |
935 | OpIdx: OpIdx++, SymbolicName: SrcChild.getName().str(), AllocatedTemporariesBaseID: TempOpIdx); |
936 | OM.addPredicate<IntrinsicIDOperandMatcher>(args&: II); |
937 | continue; |
938 | } |
939 | |
940 | // We have to check intrinsics for llvm_anyptr_ty and immarg parameters. |
941 | // |
942 | // Note that we have to look at the i-1th parameter, because we don't |
943 | // have the intrinsic ID in the intrinsic's parameter list. |
944 | OperandIsAPointer |= II->isParamAPointer(ParamIdx: I - 1); |
945 | OperandIsImmArg |= II->isParamImmArg(ParamIdx: I - 1); |
946 | } |
947 | |
948 | if (auto Error = |
949 | importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer, |
950 | OperandIsImmArg, OpIdx: OpIdx++, TempOpIdx)) |
951 | return std::move(Error); |
952 | } |
953 | } |
954 | |
955 | return InsnMatcher; |
956 | } |
957 | |
958 | Error GlobalISelEmitter::importComplexPatternOperandMatcher( |
959 | OperandMatcher &OM, const Record *R, unsigned &TempOpIdx) const { |
960 | const auto &ComplexPattern = ComplexPatternEquivs.find(Val: R); |
961 | if (ComplexPattern == ComplexPatternEquivs.end()) |
962 | return failedImport(Reason: "SelectionDAG ComplexPattern (" + R->getName() + |
963 | ") not mapped to GlobalISel" ); |
964 | |
965 | OM.addPredicate<ComplexPatternOperandMatcher>(args&: OM, args: *ComplexPattern->second); |
966 | TempOpIdx++; |
967 | return Error::success(); |
968 | } |
969 | |
970 | // Get the name to use for a pattern operand. For an anonymous physical register |
971 | // input, this should use the register name. |
972 | static StringRef getSrcChildName(const TreePatternNode &SrcChild, |
973 | const Record *&PhysReg) { |
974 | StringRef SrcChildName = SrcChild.getName(); |
975 | if (SrcChildName.empty() && SrcChild.isLeaf()) { |
976 | if (auto *ChildDefInit = dyn_cast<DefInit>(Val: SrcChild.getLeafValue())) { |
977 | auto *ChildRec = ChildDefInit->getDef(); |
978 | if (ChildRec->isSubClassOf(Name: "Register" )) { |
979 | SrcChildName = ChildRec->getName(); |
980 | PhysReg = ChildRec; |
981 | } |
982 | } |
983 | } |
984 | |
985 | return SrcChildName; |
986 | } |
987 | |
988 | Error GlobalISelEmitter::importChildMatcher( |
989 | RuleMatcher &Rule, InstructionMatcher &InsnMatcher, |
990 | const TreePatternNode &SrcChild, bool OperandIsAPointer, |
991 | bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) { |
992 | |
993 | const Record *PhysReg = nullptr; |
994 | std::string SrcChildName = getSrcChildName(SrcChild, PhysReg).str(); |
995 | if (!SrcChild.isLeaf() && |
996 | SrcChild.getOperator()->isSubClassOf(Name: "ComplexPattern" )) { |
997 | // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is |
998 | // "MY_PAT:op1:op2" and the ones with same "name" represent same operand. |
999 | std::string PatternName = SrcChild.getOperator()->getName().str(); |
1000 | for (const TreePatternNode &Child : SrcChild.children()) { |
1001 | PatternName += ":" ; |
1002 | PatternName += Child.getName(); |
1003 | } |
1004 | SrcChildName = PatternName; |
1005 | } |
1006 | |
1007 | OperandMatcher &OM = |
1008 | PhysReg ? InsnMatcher.addPhysRegInput(Reg: PhysReg, OpIdx, TempOpIdx) |
1009 | : InsnMatcher.addOperand(OpIdx, SymbolicName: SrcChildName, AllocatedTemporariesBaseID: TempOpIdx); |
1010 | if (OM.isSameAsAnotherOperand()) |
1011 | return Error::success(); |
1012 | |
1013 | ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild.getExtTypes(); |
1014 | if (ChildTypes.size() != 1) |
1015 | return failedImport(Reason: "Src pattern child has multiple results" ); |
1016 | |
1017 | // Check MBB's before the type check since they are not a known type. |
1018 | if (!SrcChild.isLeaf()) { |
1019 | if (SrcChild.getOperator()->getName() == "bb" ) { |
1020 | OM.addPredicate<MBBOperandMatcher>(); |
1021 | return Error::success(); |
1022 | } |
1023 | if (SrcChild.getOperator()->getName() == "timm" ) { |
1024 | OM.addPredicate<ImmOperandMatcher>(); |
1025 | |
1026 | // Add predicates, if any |
1027 | for (const TreePredicateCall &Call : SrcChild.getPredicateCalls()) { |
1028 | const TreePredicateFn &Predicate = Call.Fn; |
1029 | |
1030 | // Only handle immediate patterns for now |
1031 | if (Predicate.isImmediatePattern()) { |
1032 | OM.addPredicate<OperandImmPredicateMatcher>(args: Predicate); |
1033 | } |
1034 | } |
1035 | |
1036 | return Error::success(); |
1037 | } |
1038 | } else if (auto *ChildDefInit = dyn_cast<DefInit>(Val: SrcChild.getLeafValue())) { |
1039 | auto *ChildRec = ChildDefInit->getDef(); |
1040 | if (ChildRec->isSubClassOf(Name: "ValueType" ) && !SrcChild.hasName()) { |
1041 | // An unnamed ValueType as in (sext_inreg GPR:$foo, i8). GISel represents |
1042 | // this as a literal constant with the scalar size. |
1043 | MVT::SimpleValueType VT = llvm::getValueType(Rec: ChildRec); |
1044 | OM.addPredicate<LiteralIntOperandMatcher>(args: MVT(VT).getScalarSizeInBits()); |
1045 | return Error::success(); |
1046 | } |
1047 | } |
1048 | |
1049 | // Immediate arguments have no meaningful type to check as they don't have |
1050 | // registers. |
1051 | if (!OperandIsImmArg) { |
1052 | if (auto Error = |
1053 | OM.addTypeCheckPredicate(VTy: ChildTypes.front(), OperandIsAPointer)) |
1054 | return failedImport(Reason: toString(E: std::move(Error)) + " for Src operand (" + |
1055 | to_string(Value: SrcChild) + ")" ); |
1056 | } |
1057 | |
1058 | // Try look up SrcChild for a (named) predicate operand if there is any. |
1059 | if (WaitingForNamedOperands) { |
1060 | auto &ScopedNames = SrcChild.getNamesAsPredicateArg(); |
1061 | if (!ScopedNames.empty()) { |
1062 | auto PA = ScopedNames.begin(); |
1063 | std::string Name = getScopedName(Scope: PA->getScope(), Name: PA->getIdentifier()); |
1064 | OM.addPredicate<RecordNamedOperandMatcher>(args&: StoreIdxForName[Name], args&: Name); |
1065 | --WaitingForNamedOperands; |
1066 | } |
1067 | } |
1068 | |
1069 | // Check for nested instructions. |
1070 | if (!SrcChild.isLeaf()) { |
1071 | if (SrcChild.getOperator()->isSubClassOf(Name: "ComplexPattern" )) { |
1072 | // When a ComplexPattern is used as an operator, it should do the same |
1073 | // thing as when used as a leaf. However, the children of the operator |
1074 | // name the sub-operands that make up the complex operand and we must |
1075 | // prepare to reference them in the renderer too. |
1076 | unsigned RendererID = TempOpIdx; |
1077 | if (auto Error = importComplexPatternOperandMatcher( |
1078 | OM, R: SrcChild.getOperator(), TempOpIdx)) |
1079 | return Error; |
1080 | |
1081 | for (unsigned I = 0, E = SrcChild.getNumChildren(); I != E; ++I) { |
1082 | auto &SubOperand = SrcChild.getChild(N: I); |
1083 | if (!SubOperand.getName().empty()) { |
1084 | if (auto Error = Rule.defineComplexSubOperand( |
1085 | SymbolicName: SubOperand.getName(), ComplexPattern: SrcChild.getOperator(), RendererID, SubOperandID: I, |
1086 | ParentSymbolicName: SrcChildName)) |
1087 | return Error; |
1088 | } |
1089 | } |
1090 | |
1091 | return Error::success(); |
1092 | } |
1093 | |
1094 | auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( |
1095 | args&: InsnMatcher.getRuleMatcher(), args: SrcChild.getName()); |
1096 | if (!MaybeInsnOperand) { |
1097 | // This isn't strictly true. If the user were to provide exactly the same |
1098 | // matchers as the original operand then we could allow it. However, it's |
1099 | // simpler to not permit the redundant specification. |
1100 | return failedImport( |
1101 | Reason: "Nested instruction cannot be the same as another operand" ); |
1102 | } |
1103 | |
1104 | // Map the node to a gMIR instruction. |
1105 | InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; |
1106 | auto InsnMatcherOrError = createAndImportSelDAGMatcher( |
1107 | Rule, InsnMatcher&: InsnOperand.getInsnMatcher(), Src: SrcChild, TempOpIdx); |
1108 | if (auto Error = InsnMatcherOrError.takeError()) |
1109 | return Error; |
1110 | |
1111 | return Error::success(); |
1112 | } |
1113 | |
1114 | if (SrcChild.hasAnyPredicate()) { |
1115 | for (const TreePredicateCall &Call : SrcChild.getPredicateCalls()) { |
1116 | const TreePredicateFn &Predicate = Call.Fn; |
1117 | |
1118 | if (!Predicate.hasGISelLeafPredicateCode()) |
1119 | return failedImport(Reason: "Src pattern child has unsupported predicate" ); |
1120 | OM.addPredicate<OperandLeafPredicateMatcher>(args: Predicate); |
1121 | } |
1122 | return Error::success(); |
1123 | } |
1124 | |
1125 | // Check for constant immediates. |
1126 | if (auto *ChildInt = dyn_cast<IntInit>(Val: SrcChild.getLeafValue())) { |
1127 | if (OperandIsImmArg) { |
1128 | // Checks for argument directly in operand list |
1129 | OM.addPredicate<LiteralIntOperandMatcher>(args: ChildInt->getValue()); |
1130 | } else { |
1131 | // Checks for materialized constant |
1132 | OM.addPredicate<ConstantIntOperandMatcher>(args: ChildInt->getValue()); |
1133 | } |
1134 | return Error::success(); |
1135 | } |
1136 | |
1137 | // Check for def's like register classes or ComplexPattern's. |
1138 | if (auto *ChildDefInit = dyn_cast<DefInit>(Val: SrcChild.getLeafValue())) { |
1139 | auto *ChildRec = ChildDefInit->getDef(); |
1140 | |
1141 | // Check for register classes. |
1142 | if (ChildRec->isSubClassOf(Name: "RegisterClass" ) || |
1143 | ChildRec->isSubClassOf(Name: "RegisterOperand" )) { |
1144 | OM.addPredicate<RegisterBankOperandMatcher>( |
1145 | args: Target.getRegisterClass(R: getInitValueAsRegClass(V: ChildDefInit))); |
1146 | return Error::success(); |
1147 | } |
1148 | |
1149 | if (ChildRec->isSubClassOf(Name: "Register" )) { |
1150 | // This just be emitted as a copy to the specific register. |
1151 | ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode(); |
1152 | const CodeGenRegisterClass *RC = |
1153 | CGRegs.getMinimalPhysRegClass(RegRecord: ChildRec, VT: &VT); |
1154 | if (!RC) { |
1155 | return failedImport( |
1156 | Reason: "Could not determine physical register class of pattern source" ); |
1157 | } |
1158 | |
1159 | OM.addPredicate<RegisterBankOperandMatcher>(args: *RC); |
1160 | return Error::success(); |
1161 | } |
1162 | |
1163 | // Check for ValueType. |
1164 | if (ChildRec->isSubClassOf(Name: "ValueType" )) { |
1165 | // We already added a type check as standard practice so this doesn't need |
1166 | // to do anything. |
1167 | return Error::success(); |
1168 | } |
1169 | |
1170 | // Check for ComplexPattern's. |
1171 | if (ChildRec->isSubClassOf(Name: "ComplexPattern" )) |
1172 | return importComplexPatternOperandMatcher(OM, R: ChildRec, TempOpIdx); |
1173 | |
1174 | if (ChildRec->isSubClassOf(Name: "ImmLeaf" )) { |
1175 | return failedImport( |
1176 | Reason: "Src pattern child def is an unsupported tablegen class (ImmLeaf)" ); |
1177 | } |
1178 | |
1179 | // Place holder for SRCVALUE nodes. Nothing to do here. |
1180 | if (ChildRec->getName() == "srcvalue" ) |
1181 | return Error::success(); |
1182 | |
1183 | const bool ImmAllOnesV = ChildRec->getName() == "immAllOnesV" ; |
1184 | if (ImmAllOnesV || ChildRec->getName() == "immAllZerosV" ) { |
1185 | auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>( |
1186 | args&: InsnMatcher.getRuleMatcher(), args: SrcChild.getName(), args: false); |
1187 | InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand; |
1188 | |
1189 | ValueTypeByHwMode VTy = ChildTypes.front().getValueTypeByHwMode(); |
1190 | |
1191 | const CodeGenInstruction &BuildVector = |
1192 | Target.getInstruction(InstRec: RK.getDef(Name: "G_BUILD_VECTOR" )); |
1193 | const CodeGenInstruction &BuildVectorTrunc = |
1194 | Target.getInstruction(InstRec: RK.getDef(Name: "G_BUILD_VECTOR_TRUNC" )); |
1195 | |
1196 | // Treat G_BUILD_VECTOR as the canonical opcode, and G_BUILD_VECTOR_TRUNC |
1197 | // as an alternative. |
1198 | InsnOperand.getInsnMatcher().addPredicate<InstructionOpcodeMatcher>( |
1199 | args: ArrayRef({&BuildVector, &BuildVectorTrunc})); |
1200 | |
1201 | // TODO: Handle both G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC We could |
1202 | // theoretically not emit any opcode check, but getOpcodeMatcher currently |
1203 | // has to succeed. |
1204 | OperandMatcher &OM = |
1205 | InsnOperand.getInsnMatcher().addOperand(OpIdx: 0, SymbolicName: "" , AllocatedTemporariesBaseID: TempOpIdx); |
1206 | if (auto Error = OM.addTypeCheckPredicate(VTy: TypeSetByHwMode(VTy), |
1207 | /*OperandIsAPointer=*/false)) |
1208 | return failedImport(Reason: toString(E: std::move(Error)) + |
1209 | " for result of Src pattern operator" ); |
1210 | |
1211 | InsnOperand.getInsnMatcher().addPredicate<VectorSplatImmPredicateMatcher>( |
1212 | args: ImmAllOnesV ? VectorSplatImmPredicateMatcher::AllOnes |
1213 | : VectorSplatImmPredicateMatcher::AllZeros); |
1214 | return Error::success(); |
1215 | } |
1216 | |
1217 | return failedImport( |
1218 | Reason: "Src pattern child def is an unsupported tablegen class" ); |
1219 | } |
1220 | |
1221 | return failedImport(Reason: "Src pattern child is an unsupported kind" ); |
1222 | } |
1223 | |
1224 | // Equivalent of MatcherGen::EmitResultOfNamedOperand. |
1225 | Error GlobalISelEmitter::importNamedNodeRenderer( |
1226 | RuleMatcher &M, BuildMIAction &MIBuilder, const TreePatternNode &N) const { |
1227 | StringRef NodeName = N.getName(); |
1228 | |
1229 | if (auto SubOperand = M.getComplexSubOperand(SymbolicName: NodeName)) { |
1230 | auto [ComplexPatternRec, RendererID, SubOperandIdx] = *SubOperand; |
1231 | MIBuilder.addRenderer<RenderComplexPatternOperand>( |
1232 | args: *ComplexPatternRec, args&: NodeName, args&: RendererID, args&: SubOperandIdx); |
1233 | return Error::success(); |
1234 | } |
1235 | |
1236 | if (!N.isLeaf()) { |
1237 | StringRef OperatorName = N.getOperator()->getName(); |
1238 | |
1239 | if (OperatorName == "imm" ) { |
1240 | MIBuilder.addRenderer<CopyConstantAsImmRenderer>(args&: NodeName); |
1241 | return Error::success(); |
1242 | } |
1243 | |
1244 | if (OperatorName == "fpimm" ) { |
1245 | MIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(args&: NodeName); |
1246 | return Error::success(); |
1247 | } |
1248 | |
1249 | // TODO: 'imm' and 'fpimm' are the only nodes that need special treatment. |
1250 | // Remove this check and add CopyRenderer unconditionally for other nodes. |
1251 | if (OperatorName == "bb" || OperatorName == "timm" || |
1252 | OperatorName == "tframeindex" ) { |
1253 | MIBuilder.addRenderer<CopyRenderer>(args&: NodeName); |
1254 | return Error::success(); |
1255 | } |
1256 | |
1257 | return failedImport(Reason: "node has unsupported operator " + to_string(Value: N)); |
1258 | } |
1259 | |
1260 | if (const auto *DI = dyn_cast<DefInit>(Val: N.getLeafValue())) { |
1261 | const Record *R = DI->getDef(); |
1262 | |
1263 | if (N.getNumResults() != 1) |
1264 | return failedImport(Reason: "node does not have one result " + to_string(Value: N)); |
1265 | |
1266 | if (R->isSubClassOf(Name: "ComplexPattern" )) { |
1267 | auto I = ComplexPatternEquivs.find(Val: R); |
1268 | if (I == ComplexPatternEquivs.end()) |
1269 | return failedImport(Reason: "ComplexPattern " + R->getName() + |
1270 | " does not have GISel equivalent" ); |
1271 | |
1272 | const OperandMatcher &OM = M.getOperandMatcher(Name: NodeName); |
1273 | MIBuilder.addRenderer<RenderComplexPatternOperand>( |
1274 | args: *I->second, args&: NodeName, args: OM.getAllocatedTemporariesBaseID()); |
1275 | return Error::success(); |
1276 | } |
1277 | |
1278 | if (R->isSubClassOf(Name: "RegisterOperand" ) && |
1279 | !R->isValueUnset(FieldName: "GIZeroRegister" )) { |
1280 | MIBuilder.addRenderer<CopyOrAddZeroRegRenderer>( |
1281 | args&: NodeName, args: R->getValueAsDef(FieldName: "GIZeroRegister" )); |
1282 | return Error::success(); |
1283 | } |
1284 | |
1285 | // TODO: All special cases are handled above. Remove this check and add |
1286 | // CopyRenderer unconditionally. |
1287 | if (R->isSubClassOf(Name: "RegisterClass" ) || |
1288 | R->isSubClassOf(Name: "RegisterOperand" ) || R->isSubClassOf(Name: "ValueType" )) { |
1289 | MIBuilder.addRenderer<CopyRenderer>(args&: NodeName); |
1290 | return Error::success(); |
1291 | } |
1292 | } |
1293 | |
1294 | // TODO: Change this to assert and move to the beginning of the function. |
1295 | if (!M.hasOperand(SymbolicName: NodeName)) |
1296 | return failedImport(Reason: "could not find node $" + NodeName + |
1297 | " in the source DAG" ); |
1298 | |
1299 | // TODO: Remove this check and add CopyRenderer unconditionally. |
1300 | // TODO: Handle nodes with multiple results (provided they can reach here). |
1301 | if (isa<UnsetInit>(Val: N.getLeafValue())) { |
1302 | MIBuilder.addRenderer<CopyRenderer>(args&: NodeName); |
1303 | return Error::success(); |
1304 | } |
1305 | |
1306 | return failedImport(Reason: "unsupported node " + to_string(Value: N)); |
1307 | } |
1308 | |
1309 | // Equivalent of MatcherGen::EmitResultLeafAsOperand. |
1310 | Error GlobalISelEmitter::importLeafNodeRenderer( |
1311 | RuleMatcher &M, BuildMIAction &MIBuilder, const TreePatternNode &N, |
1312 | action_iterator InsertPt) const { |
1313 | if (const auto *II = dyn_cast<IntInit>(Val: N.getLeafValue())) { |
1314 | MIBuilder.addRenderer<ImmRenderer>(args: II->getValue()); |
1315 | return Error::success(); |
1316 | } |
1317 | |
1318 | if (const auto *DI = dyn_cast<DefInit>(Val: N.getLeafValue())) { |
1319 | const Record *R = DI->getDef(); |
1320 | |
1321 | if (R->isSubClassOf(Name: "Register" ) || R->getName() == "zero_reg" ) { |
1322 | MIBuilder.addRenderer<AddRegisterRenderer>(args: Target, args&: R); |
1323 | return Error::success(); |
1324 | } |
1325 | |
1326 | if (R->getName() == "undef_tied_input" ) { |
1327 | std::optional<LLTCodeGen> OpTyOrNone = MVTToLLT(SVT: N.getSimpleType(ResNo: 0)); |
1328 | if (!OpTyOrNone) |
1329 | return failedImport(Reason: "unsupported type" ); |
1330 | |
1331 | unsigned TempRegID = M.allocateTempRegID(); |
1332 | M.insertAction<MakeTempRegisterAction>(InsertPt, args&: *OpTyOrNone, args&: TempRegID); |
1333 | |
1334 | auto I = M.insertAction<BuildMIAction>( |
1335 | InsertPt, args: M.allocateOutputInsnID(), |
1336 | args: &Target.getInstruction(InstRec: RK.getDef(Name: "IMPLICIT_DEF" ))); |
1337 | auto &ImpDefBuilder = static_cast<BuildMIAction &>(**I); |
1338 | ImpDefBuilder.addRenderer<TempRegRenderer>(args&: TempRegID, /*IsDef=*/args: true); |
1339 | |
1340 | MIBuilder.addRenderer<TempRegRenderer>(args&: TempRegID); |
1341 | return Error::success(); |
1342 | } |
1343 | |
1344 | if (R->isSubClassOf(Name: "SubRegIndex" )) { |
1345 | const CodeGenSubRegIndex *SubRegIndex = CGRegs.findSubRegIdx(Def: R); |
1346 | MIBuilder.addRenderer<ImmRenderer>(args: SubRegIndex->EnumValue); |
1347 | return Error::success(); |
1348 | } |
1349 | |
1350 | // There are also RegisterClass / RegisterOperand operands of REG_SEQUENCE / |
1351 | // COPY_TO_REGCLASS, but these instructions are currently handled elsewhere. |
1352 | } |
1353 | |
1354 | return failedImport(Reason: "unrecognized node " + to_string(Value: N)); |
1355 | } |
1356 | |
1357 | // Equivalent of MatcherGen::EmitResultSDNodeXFormAsOperand. |
1358 | Error GlobalISelEmitter::importXFormNodeRenderer( |
1359 | RuleMatcher &M, BuildMIAction &MIBuilder, const TreePatternNode &N) const { |
1360 | const Record *XFormRec = N.getOperator(); |
1361 | auto I = SDNodeXFormEquivs.find(Val: XFormRec); |
1362 | if (I == SDNodeXFormEquivs.end()) |
1363 | return failedImport(Reason: "SDNodeXForm " + XFormRec->getName() + |
1364 | " does not have GISel equivalent" ); |
1365 | |
1366 | // TODO: Fail to import if GISDNodeXForm does not have RendererFn. |
1367 | // This currently results in a fatal error in emitRenderOpcodes. |
1368 | const Record *XFormEquivRec = I->second; |
1369 | |
1370 | // The node to apply the transformation function to. |
1371 | // FIXME: The node may not have a name and may be a leaf. It should be |
1372 | // rendered first, like any other nodes. This may or may not require |
1373 | // introducing a temporary register, and we can't tell that without |
1374 | // inspecting the node (possibly recursively). This is a general drawback |
1375 | // of appending renderers directly to BuildMIAction. |
1376 | const TreePatternNode &Node = N.getChild(N: 0); |
1377 | StringRef NodeName = Node.getName(); |
1378 | |
1379 | const Record *XFormOpc = CGP.getSDNodeTransform(R: XFormRec).first; |
1380 | if (XFormOpc->getName() == "timm" ) { |
1381 | // If this is a TargetConstant, there won't be a corresponding |
1382 | // instruction to transform. Instead, this will refer directly to an |
1383 | // operand in an instruction's operand list. |
1384 | MIBuilder.addRenderer<CustomOperandRenderer>(args: *XFormEquivRec, args&: NodeName); |
1385 | } else { |
1386 | MIBuilder.addRenderer<CustomRenderer>(args: *XFormEquivRec, args&: NodeName); |
1387 | } |
1388 | |
1389 | return Error::success(); |
1390 | } |
1391 | |
1392 | // Equivalent of MatcherGen::EmitResultInstructionAsOperand. |
1393 | Error GlobalISelEmitter::importInstructionNodeRenderer( |
1394 | RuleMatcher &M, BuildMIAction &MIBuilder, const TreePatternNode &N, |
1395 | action_iterator &InsertPt) const { |
1396 | Expected<LLTCodeGen> OpTy = getInstResultType(Dst: N, Target); |
1397 | if (!OpTy) |
1398 | return OpTy.takeError(); |
1399 | |
1400 | // TODO: See the comment in importXFormNodeRenderer. We rely on the node |
1401 | // requiring a temporary register, which prevents us from using this |
1402 | // function on the root of the destination DAG. |
1403 | unsigned TempRegID = M.allocateTempRegID(); |
1404 | InsertPt = M.insertAction<MakeTempRegisterAction>(InsertPt, args&: *OpTy, args&: TempRegID); |
1405 | MIBuilder.addRenderer<TempRegRenderer>(args&: TempRegID); |
1406 | |
1407 | auto InsertPtOrError = |
1408 | createAndImportSubInstructionRenderer(InsertPt: ++InsertPt, M, Dst: N, TempReg: TempRegID); |
1409 | if (!InsertPtOrError) |
1410 | return InsertPtOrError.takeError(); |
1411 | |
1412 | InsertPt = *InsertPtOrError; |
1413 | return Error::success(); |
1414 | } |
1415 | |
1416 | // Equivalent of MatcherGen::EmitResultOperand. |
1417 | Error GlobalISelEmitter::importNodeRenderer(RuleMatcher &M, |
1418 | BuildMIAction &MIBuilder, |
1419 | const TreePatternNode &N, |
1420 | action_iterator &InsertPt) const { |
1421 | if (N.hasName()) |
1422 | return importNamedNodeRenderer(M, MIBuilder, N); |
1423 | |
1424 | if (N.isLeaf()) |
1425 | return importLeafNodeRenderer(M, MIBuilder, N, InsertPt); |
1426 | |
1427 | if (N.getOperator()->isSubClassOf(Name: "SDNodeXForm" )) |
1428 | return importXFormNodeRenderer(M, MIBuilder, N); |
1429 | |
1430 | if (N.getOperator()->isSubClassOf(Name: "Instruction" )) |
1431 | return importInstructionNodeRenderer(M, MIBuilder, N, InsertPt); |
1432 | |
1433 | // Should not reach here. |
1434 | return failedImport(Reason: "unrecognized node " + llvm::to_string(Value: N)); |
1435 | } |
1436 | |
1437 | /// Generates code that builds the resulting instruction(s) from the destination |
1438 | /// DAG. Note that to do this we do not and should not need the source DAG. |
1439 | /// We do need to know whether a generated instruction defines a result of the |
1440 | /// source DAG; this information is available via RuleMatcher::hasOperand. |
1441 | Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer( |
1442 | RuleMatcher &M, InstructionMatcher &InsnMatcher, |
1443 | const TreePatternNode &Dst) const { |
1444 | auto InsertPtOrError = createInstructionRenderer(InsertPt: M.actions_end(), M, Dst); |
1445 | if (auto Error = InsertPtOrError.takeError()) |
1446 | return std::move(Error); |
1447 | |
1448 | action_iterator InsertPt = InsertPtOrError.get(); |
1449 | BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get()); |
1450 | |
1451 | for (auto PhysOp : M.physoperands()) { |
1452 | InsertPt = M.insertAction<BuildMIAction>( |
1453 | InsertPt, args: M.allocateOutputInsnID(), |
1454 | args: &Target.getInstruction(InstRec: RK.getDef(Name: "COPY" ))); |
1455 | BuildMIAction &CopyToPhysRegMIBuilder = |
1456 | *static_cast<BuildMIAction *>(InsertPt->get()); |
1457 | CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(args: Target, |
1458 | args&: PhysOp.first, args: true); |
1459 | CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(args&: PhysOp.first); |
1460 | } |
1461 | |
1462 | if (auto Error = importExplicitDefRenderers(InsertPt, M, DstMIBuilder, Dst, |
1463 | /*IsRoot=*/true) |
1464 | .takeError()) |
1465 | return std::move(Error); |
1466 | |
1467 | if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst) |
1468 | .takeError()) |
1469 | return std::move(Error); |
1470 | |
1471 | return DstMIBuilder; |
1472 | } |
1473 | |
1474 | Expected<action_iterator> |
1475 | GlobalISelEmitter::createAndImportSubInstructionRenderer( |
1476 | action_iterator InsertPt, RuleMatcher &M, const TreePatternNode &Dst, |
1477 | unsigned TempRegID) const { |
1478 | auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst); |
1479 | |
1480 | // TODO: Assert there's exactly one result. |
1481 | |
1482 | if (auto Error = InsertPtOrError.takeError()) |
1483 | return std::move(Error); |
1484 | |
1485 | BuildMIAction &DstMIBuilder = |
1486 | *static_cast<BuildMIAction *>(InsertPtOrError.get()->get()); |
1487 | |
1488 | // Assign the result to TempReg. |
1489 | DstMIBuilder.addRenderer<TempRegRenderer>(args&: TempRegID, args: true); |
1490 | |
1491 | // Handle additional (ignored) results. |
1492 | InsertPtOrError = importExplicitDefRenderers( |
1493 | InsertPt: std::prev(x: *InsertPtOrError), M, DstMIBuilder, Dst, /*IsRoot=*/false); |
1494 | if (auto Error = InsertPtOrError.takeError()) |
1495 | return std::move(Error); |
1496 | |
1497 | InsertPtOrError = |
1498 | importExplicitUseRenderers(InsertPt: InsertPtOrError.get(), M, DstMIBuilder, Dst); |
1499 | if (auto Error = InsertPtOrError.takeError()) |
1500 | return std::move(Error); |
1501 | |
1502 | if (auto Error = |
1503 | constrainOperands(InsertPt, M, InsnID: DstMIBuilder.getInsnID(), Dst)) |
1504 | return std::move(Error); |
1505 | |
1506 | return InsertPtOrError.get(); |
1507 | } |
1508 | |
1509 | Expected<action_iterator> |
1510 | GlobalISelEmitter::createInstructionRenderer(action_iterator InsertPt, |
1511 | RuleMatcher &M, |
1512 | const TreePatternNode &Dst) const { |
1513 | const Record *DstOp = Dst.getOperator(); |
1514 | if (!DstOp->isSubClassOf(Name: "Instruction" )) { |
1515 | if (DstOp->isSubClassOf(Name: "ValueType" )) |
1516 | return failedImport( |
1517 | Reason: "Pattern operator isn't an instruction (it's a ValueType)" ); |
1518 | return failedImport(Reason: "Pattern operator isn't an instruction" ); |
1519 | } |
1520 | CodeGenInstruction *DstI = &Target.getInstruction(InstRec: DstOp); |
1521 | |
1522 | // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction |
1523 | // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy. |
1524 | StringRef Name = DstI->TheDef->getName(); |
1525 | if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG" ) |
1526 | DstI = &Target.getInstruction(InstRec: RK.getDef(Name: "COPY" )); |
1527 | |
1528 | return M.insertAction<BuildMIAction>(InsertPt, args: M.allocateOutputInsnID(), |
1529 | args&: DstI); |
1530 | } |
1531 | |
1532 | Expected<action_iterator> GlobalISelEmitter::importExplicitDefRenderers( |
1533 | action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, |
1534 | const TreePatternNode &Dst, bool IsRoot) const { |
1535 | const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); |
1536 | |
1537 | // Process explicit defs. The caller may have already handled the first def. |
1538 | for (unsigned I = IsRoot ? 0 : 1, E = DstI->Operands.NumDefs; I != E; ++I) { |
1539 | const CGIOperandList::OperandInfo &OpInfo = DstI->Operands[I]; |
1540 | std::string OpName = getMangledRootDefName(DefOperandName: OpInfo.Name); |
1541 | |
1542 | // If the def is used in the source DAG, forward it. |
1543 | if (IsRoot && M.hasOperand(SymbolicName: OpName)) { |
1544 | // CopyRenderer saves a StringRef, so cannot pass OpName itself - |
1545 | // let's use a string with an appropriate lifetime. |
1546 | StringRef PermanentRef = M.getOperandMatcher(Name: OpName).getSymbolicName(); |
1547 | DstMIBuilder.addRenderer<CopyRenderer>(args&: PermanentRef); |
1548 | continue; |
1549 | } |
1550 | |
1551 | // A discarded explicit def may be an optional physical register. |
1552 | // If this is the case, add the default register and mark it as dead. |
1553 | if (OpInfo.Rec->isSubClassOf(Name: "OptionalDefOperand" )) { |
1554 | for (const TreePatternNode &DefaultOp : |
1555 | make_pointee_range(Range: CGP.getDefaultOperand(R: OpInfo.Rec).DefaultOps)) { |
1556 | // TODO: Do these checks in ParseDefaultOperands. |
1557 | if (!DefaultOp.isLeaf()) |
1558 | return failedImport(Reason: "optional def is not a leaf" ); |
1559 | |
1560 | const auto *RegDI = dyn_cast<DefInit>(Val: DefaultOp.getLeafValue()); |
1561 | if (!RegDI) |
1562 | return failedImport(Reason: "optional def is not a record" ); |
1563 | |
1564 | const Record *Reg = RegDI->getDef(); |
1565 | if (!Reg->isSubClassOf(Name: "Register" ) && Reg->getName() != "zero_reg" ) |
1566 | return failedImport(Reason: "optional def is not a register" ); |
1567 | |
1568 | DstMIBuilder.addRenderer<AddRegisterRenderer>( |
1569 | args: Target, args&: Reg, /*IsDef=*/args: true, /*IsDead=*/args: true); |
1570 | } |
1571 | continue; |
1572 | } |
1573 | |
1574 | // The def is discarded, create a dead virtual register for it. |
1575 | const TypeSetByHwMode &ExtTy = Dst.getExtType(ResNo: I); |
1576 | if (!ExtTy.isMachineValueType()) |
1577 | return failedImport(Reason: "unsupported typeset" ); |
1578 | |
1579 | auto OpTy = MVTToLLT(SVT: ExtTy.getMachineValueType().SimpleTy); |
1580 | if (!OpTy) |
1581 | return failedImport(Reason: "unsupported type" ); |
1582 | |
1583 | unsigned TempRegID = M.allocateTempRegID(); |
1584 | InsertPt = |
1585 | M.insertAction<MakeTempRegisterAction>(InsertPt, args&: *OpTy, args&: TempRegID); |
1586 | DstMIBuilder.addRenderer<TempRegRenderer>( |
1587 | args&: TempRegID, /*IsDef=*/args: true, /*SubReg=*/args: nullptr, /*IsDead=*/args: true); |
1588 | } |
1589 | |
1590 | // Implicit defs are not currently supported, mark all of them as dead. |
1591 | for (const Record *Reg : DstI->ImplicitDefs) { |
1592 | std::string OpName = getMangledRootDefName(DefOperandName: Reg->getName()); |
1593 | assert(!M.hasOperand(OpName) && "The pattern should've been rejected" ); |
1594 | DstMIBuilder.setDeadImplicitDef(Reg); |
1595 | } |
1596 | |
1597 | return InsertPt; |
1598 | } |
1599 | |
1600 | Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers( |
1601 | action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder, |
1602 | const TreePatternNode &Dst) const { |
1603 | const CodeGenInstruction *DstI = DstMIBuilder.getCGI(); |
1604 | CodeGenInstruction *OrigDstI = &Target.getInstruction(InstRec: Dst.getOperator()); |
1605 | |
1606 | StringRef Name = OrigDstI->TheDef->getName(); |
1607 | unsigned ExpectedDstINumUses = Dst.getNumChildren(); |
1608 | |
1609 | // EXTRACT_SUBREG needs to use a subregister COPY. |
1610 | if (Name == "EXTRACT_SUBREG" ) { |
1611 | if (!Dst.getChild(N: 1).isLeaf()) |
1612 | return failedImport(Reason: "EXTRACT_SUBREG child #1 is not a leaf" ); |
1613 | const DefInit *SubRegInit = |
1614 | dyn_cast<DefInit>(Val: Dst.getChild(N: 1).getLeafValue()); |
1615 | if (!SubRegInit) |
1616 | return failedImport(Reason: "EXTRACT_SUBREG child #1 is not a subreg index" ); |
1617 | |
1618 | const CodeGenSubRegIndex *SubIdx = |
1619 | CGRegs.findSubRegIdx(Def: SubRegInit->getDef()); |
1620 | const TreePatternNode &ValChild = Dst.getChild(N: 0); |
1621 | if (!ValChild.isLeaf()) { |
1622 | // We really have to handle the source instruction, and then insert a |
1623 | // copy from the subregister. |
1624 | auto = getInstResultType(Dst: ValChild, Target); |
1625 | if (!ExtractSrcTy) |
1626 | return ExtractSrcTy.takeError(); |
1627 | |
1628 | unsigned TempRegID = M.allocateTempRegID(); |
1629 | InsertPt = M.insertAction<MakeTempRegisterAction>(InsertPt, args&: *ExtractSrcTy, |
1630 | args&: TempRegID); |
1631 | |
1632 | auto InsertPtOrError = createAndImportSubInstructionRenderer( |
1633 | InsertPt: ++InsertPt, M, Dst: ValChild, TempRegID); |
1634 | if (auto Error = InsertPtOrError.takeError()) |
1635 | return std::move(Error); |
1636 | |
1637 | DstMIBuilder.addRenderer<TempRegRenderer>(args&: TempRegID, args: false, args&: SubIdx); |
1638 | return InsertPt; |
1639 | } |
1640 | |
1641 | // If this is a source operand, this is just a subregister copy. |
1642 | const Record *RCDef = getInitValueAsRegClass(V: ValChild.getLeafValue()); |
1643 | if (!RCDef) |
1644 | return failedImport(Reason: "EXTRACT_SUBREG child #0 could not " |
1645 | "be coerced to a register class" ); |
1646 | |
1647 | CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef); |
1648 | |
1649 | const auto SrcRCDstRCPair = |
1650 | RC->getMatchingSubClassWithSubRegs(RegBank&: CGRegs, SubIdx); |
1651 | if (SrcRCDstRCPair) { |
1652 | assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass" ); |
1653 | if (SrcRCDstRCPair->first != RC) |
1654 | return failedImport(Reason: "EXTRACT_SUBREG requires an additional COPY" ); |
1655 | } |
1656 | |
1657 | StringRef RegOperandName = Dst.getChild(N: 0).getName(); |
1658 | if (const auto &SubOperand = M.getComplexSubOperand(SymbolicName: RegOperandName)) { |
1659 | DstMIBuilder.addRenderer<RenderComplexPatternOperand>( |
1660 | args: *std::get<0>(t: *SubOperand), args&: RegOperandName, args: std::get<1>(t: *SubOperand), |
1661 | args: std::get<2>(t: *SubOperand), args&: SubIdx); |
1662 | return InsertPt; |
1663 | } |
1664 | |
1665 | DstMIBuilder.addRenderer<CopySubRegRenderer>(args&: RegOperandName, args&: SubIdx); |
1666 | return InsertPt; |
1667 | } |
1668 | |
1669 | if (Name == "REG_SEQUENCE" ) { |
1670 | if (!Dst.getChild(N: 0).isLeaf()) |
1671 | return failedImport(Reason: "REG_SEQUENCE child #0 is not a leaf" ); |
1672 | |
1673 | const Record *RCDef = |
1674 | getInitValueAsRegClass(V: Dst.getChild(N: 0).getLeafValue()); |
1675 | if (!RCDef) |
1676 | return failedImport(Reason: "REG_SEQUENCE child #0 could not " |
1677 | "be coerced to a register class" ); |
1678 | |
1679 | if ((ExpectedDstINumUses - 1) % 2 != 0) |
1680 | return failedImport(Reason: "Malformed REG_SEQUENCE" ); |
1681 | |
1682 | for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) { |
1683 | const TreePatternNode &ValChild = Dst.getChild(N: I); |
1684 | const TreePatternNode &SubRegChild = Dst.getChild(N: I + 1); |
1685 | |
1686 | if (const DefInit *SubRegInit = |
1687 | dyn_cast<DefInit>(Val: SubRegChild.getLeafValue())) { |
1688 | const CodeGenSubRegIndex *SubIdx = |
1689 | CGRegs.findSubRegIdx(Def: SubRegInit->getDef()); |
1690 | |
1691 | if (Error Err = importNodeRenderer(M, MIBuilder&: DstMIBuilder, N: ValChild, InsertPt)) |
1692 | return Err; |
1693 | |
1694 | DstMIBuilder.addRenderer<SubRegIndexRenderer>(args&: SubIdx); |
1695 | } |
1696 | } |
1697 | |
1698 | return InsertPt; |
1699 | } |
1700 | |
1701 | // Render the explicit uses. |
1702 | unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs; |
1703 | if (Name == "COPY_TO_REGCLASS" ) { |
1704 | DstINumUses--; // Ignore the class constraint. |
1705 | ExpectedDstINumUses--; |
1706 | } |
1707 | |
1708 | // NumResults - This is the number of results produced by the instruction in |
1709 | // the "outs" list. |
1710 | unsigned NumResults = OrigDstI->Operands.NumDefs; |
1711 | |
1712 | // Number of operands we know the output instruction must have. If it is |
1713 | // variadic, we could have more operands. |
1714 | unsigned NumFixedOperands = DstI->Operands.size(); |
1715 | |
1716 | // Loop over all of the fixed operands of the instruction pattern, emitting |
1717 | // code to fill them all in. The node 'N' usually has number children equal to |
1718 | // the number of input operands of the instruction. However, in cases where |
1719 | // there are predicate operands for an instruction, we need to fill in the |
1720 | // 'execute always' values. Match up the node operands to the instruction |
1721 | // operands to do this. |
1722 | unsigned Child = 0; |
1723 | |
1724 | // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the |
1725 | // number of operands at the end of the list which have default values. |
1726 | // Those can come from the pattern if it provides enough arguments, or be |
1727 | // filled in with the default if the pattern hasn't provided them. But any |
1728 | // operand with a default value _before_ the last mandatory one will be |
1729 | // filled in with their defaults unconditionally. |
1730 | unsigned NonOverridableOperands = NumFixedOperands; |
1731 | while (NonOverridableOperands > NumResults && |
1732 | CGP.operandHasDefault(Op: DstI->Operands[NonOverridableOperands - 1].Rec)) |
1733 | --NonOverridableOperands; |
1734 | |
1735 | unsigned NumDefaultOps = 0; |
1736 | for (unsigned I = 0; I != DstINumUses; ++I) { |
1737 | unsigned InstOpNo = DstI->Operands.NumDefs + I; |
1738 | |
1739 | // Determine what to emit for this operand. |
1740 | const Record *OperandNode = DstI->Operands[InstOpNo].Rec; |
1741 | |
1742 | // If the operand has default values, introduce them now. |
1743 | if (CGP.operandHasDefault(Op: OperandNode) && |
1744 | (InstOpNo < NonOverridableOperands || Child >= Dst.getNumChildren())) { |
1745 | // This is a predicate or optional def operand which the pattern has not |
1746 | // overridden, or which we aren't letting it override; emit the 'default |
1747 | // ops' operands. |
1748 | for (const TreePatternNode &OpNode : |
1749 | make_pointee_range(Range: CGP.getDefaultOperand(R: OperandNode).DefaultOps)) { |
1750 | if (Error Err = importNodeRenderer(M, MIBuilder&: DstMIBuilder, N: OpNode, InsertPt)) |
1751 | return Err; |
1752 | } |
1753 | |
1754 | ++NumDefaultOps; |
1755 | continue; |
1756 | } |
1757 | |
1758 | if (Error Err = |
1759 | importNodeRenderer(M, MIBuilder&: DstMIBuilder, N: Dst.getChild(N: Child), InsertPt)) |
1760 | return Err; |
1761 | |
1762 | ++Child; |
1763 | } |
1764 | |
1765 | if (NumDefaultOps + ExpectedDstINumUses != DstINumUses) |
1766 | return failedImport(Reason: "Expected " + llvm::to_string(Value: DstINumUses) + |
1767 | " used operands but found " + |
1768 | llvm::to_string(Value: ExpectedDstINumUses) + |
1769 | " explicit ones and " + llvm::to_string(Value: NumDefaultOps) + |
1770 | " default ones" ); |
1771 | |
1772 | return InsertPt; |
1773 | } |
1774 | |
1775 | Error GlobalISelEmitter::importImplicitDefRenderers( |
1776 | BuildMIAction &DstMIBuilder, ArrayRef<const Record *> ImplicitDefs) const { |
1777 | if (!ImplicitDefs.empty()) |
1778 | return failedImport(Reason: "Pattern defines a physical register" ); |
1779 | return Error::success(); |
1780 | } |
1781 | |
1782 | Error GlobalISelEmitter::constrainOperands(action_iterator InsertPt, |
1783 | RuleMatcher &M, unsigned InsnID, |
1784 | const TreePatternNode &Dst) const { |
1785 | const Record *DstOp = Dst.getOperator(); |
1786 | const CodeGenInstruction &DstI = Target.getInstruction(InstRec: DstOp); |
1787 | StringRef DstIName = DstI.TheDef->getName(); |
1788 | |
1789 | if (DstIName == "COPY_TO_REGCLASS" ) { |
1790 | // COPY_TO_REGCLASS does not provide operand constraints itself but the |
1791 | // result is constrained to the class given by the second child. |
1792 | const Record *DstIOpRec = |
1793 | getInitValueAsRegClass(V: Dst.getChild(N: 1).getLeafValue()); |
1794 | |
1795 | if (DstIOpRec == nullptr) |
1796 | return failedImport(Reason: "COPY_TO_REGCLASS operand #1 isn't a register class" ); |
1797 | |
1798 | M.insertAction<ConstrainOperandToRegClassAction>( |
1799 | InsertPt, args&: InsnID, args: 0, args: Target.getRegisterClass(R: DstIOpRec)); |
1800 | } else if (DstIName == "EXTRACT_SUBREG" ) { |
1801 | const CodeGenRegisterClass *SuperClass = |
1802 | inferRegClassFromPattern(N: Dst.getChild(N: 0)); |
1803 | if (!SuperClass) |
1804 | return failedImport( |
1805 | Reason: "Cannot infer register class from EXTRACT_SUBREG operand #0" ); |
1806 | |
1807 | const CodeGenSubRegIndex *SubIdx = inferSubRegIndexForNode(SubRegIdxNode: Dst.getChild(N: 1)); |
1808 | if (!SubIdx) |
1809 | return failedImport(Reason: "EXTRACT_SUBREG child #1 is not a subreg index" ); |
1810 | |
1811 | // It would be nice to leave this constraint implicit but we're required |
1812 | // to pick a register class so constrain the result to a register class |
1813 | // that can hold the correct MVT. |
1814 | // |
1815 | // FIXME: This may introduce an extra copy if the chosen class doesn't |
1816 | // actually contain the subregisters. |
1817 | const auto SrcRCDstRCPair = |
1818 | SuperClass->getMatchingSubClassWithSubRegs(RegBank&: CGRegs, SubIdx); |
1819 | if (!SrcRCDstRCPair) { |
1820 | return failedImport(Reason: "subreg index is incompatible " |
1821 | "with inferred reg class" ); |
1822 | } |
1823 | |
1824 | assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass" ); |
1825 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 0, |
1826 | args&: *SrcRCDstRCPair->second); |
1827 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 1, |
1828 | args&: *SrcRCDstRCPair->first); |
1829 | } else if (DstIName == "INSERT_SUBREG" ) { |
1830 | // We need to constrain the destination, a super regsister source, and a |
1831 | // subregister source. |
1832 | const CodeGenRegisterClass *SubClass = |
1833 | inferRegClassFromPattern(N: Dst.getChild(N: 1)); |
1834 | if (!SubClass) |
1835 | return failedImport( |
1836 | Reason: "Cannot infer register class from INSERT_SUBREG operand #1" ); |
1837 | const CodeGenRegisterClass *SuperClass = inferSuperRegisterClassForNode( |
1838 | Ty: Dst.getExtType(ResNo: 0), SuperRegNode: Dst.getChild(N: 0), SubRegIdxNode: Dst.getChild(N: 2)); |
1839 | if (!SuperClass) |
1840 | return failedImport( |
1841 | Reason: "Cannot infer register class for INSERT_SUBREG operand #0" ); |
1842 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 0, |
1843 | args: *SuperClass); |
1844 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 1, |
1845 | args: *SuperClass); |
1846 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 2, |
1847 | args: *SubClass); |
1848 | } else if (DstIName == "SUBREG_TO_REG" ) { |
1849 | // We need to constrain the destination and subregister source. |
1850 | // Attempt to infer the subregister source from the first child. If it has |
1851 | // an explicitly given register class, we'll use that. Otherwise, we will |
1852 | // fail. |
1853 | const CodeGenRegisterClass *SubClass = |
1854 | inferRegClassFromPattern(N: Dst.getChild(N: 1)); |
1855 | if (!SubClass) |
1856 | return failedImport( |
1857 | Reason: "Cannot infer register class from SUBREG_TO_REG child #1" ); |
1858 | // We don't have a child to look at that might have a super register node. |
1859 | const CodeGenRegisterClass *SuperClass = |
1860 | inferSuperRegisterClass(Ty: Dst.getExtType(ResNo: 0), SubRegIdxNode: Dst.getChild(N: 2)); |
1861 | if (!SuperClass) |
1862 | return failedImport( |
1863 | Reason: "Cannot infer register class for SUBREG_TO_REG operand #0" ); |
1864 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 0, |
1865 | args: *SuperClass); |
1866 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 2, |
1867 | args: *SubClass); |
1868 | } else if (DstIName == "REG_SEQUENCE" ) { |
1869 | const CodeGenRegisterClass *SuperClass = |
1870 | inferRegClassFromPattern(N: Dst.getChild(N: 0)); |
1871 | |
1872 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args: 0, |
1873 | args: *SuperClass); |
1874 | |
1875 | unsigned Num = Dst.getNumChildren(); |
1876 | for (unsigned I = 1; I != Num; I += 2) { |
1877 | const TreePatternNode &SubRegChild = Dst.getChild(N: I + 1); |
1878 | |
1879 | const CodeGenSubRegIndex *SubIdx = inferSubRegIndexForNode(SubRegIdxNode: SubRegChild); |
1880 | if (!SubIdx) |
1881 | return failedImport(Reason: "REG_SEQUENCE child is not a subreg index" ); |
1882 | |
1883 | const auto SrcRCDstRCPair = |
1884 | SuperClass->getMatchingSubClassWithSubRegs(RegBank&: CGRegs, SubIdx); |
1885 | |
1886 | M.insertAction<ConstrainOperandToRegClassAction>(InsertPt, args&: InsnID, args&: I, |
1887 | args&: *SrcRCDstRCPair->second); |
1888 | } |
1889 | } else { |
1890 | M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt, args&: InsnID); |
1891 | } |
1892 | |
1893 | return Error::success(); |
1894 | } |
1895 | |
1896 | const CodeGenRegisterClass * |
1897 | GlobalISelEmitter::getRegClassFromLeaf(const TreePatternNode &Leaf) const { |
1898 | assert(Leaf.isLeaf() && "Expected leaf?" ); |
1899 | const Record *RCRec = getInitValueAsRegClass(V: Leaf.getLeafValue()); |
1900 | if (!RCRec) |
1901 | return nullptr; |
1902 | return CGRegs.getRegClass(RCRec); |
1903 | } |
1904 | |
1905 | const CodeGenRegisterClass * |
1906 | GlobalISelEmitter::inferRegClassFromPattern(const TreePatternNode &N) const { |
1907 | if (N.isLeaf()) |
1908 | return getRegClassFromLeaf(Leaf: N); |
1909 | |
1910 | // We don't have a leaf node, so we have to try and infer something. Check |
1911 | // that we have an instruction that we can infer something from. |
1912 | |
1913 | // Only handle things that produce at least one value (if multiple values, |
1914 | // just take the first one). |
1915 | if (N.getNumTypes() < 1) |
1916 | return nullptr; |
1917 | const Record *OpRec = N.getOperator(); |
1918 | |
1919 | // We only want instructions. |
1920 | if (!OpRec->isSubClassOf(Name: "Instruction" )) |
1921 | return nullptr; |
1922 | |
1923 | // Don't want to try and infer things when there could potentially be more |
1924 | // than one candidate register class. |
1925 | return inferRegClassFromInstructionPattern(N, /*ResIdx=*/0); |
1926 | } |
1927 | |
1928 | const CodeGenRegisterClass * |
1929 | GlobalISelEmitter::inferRegClassFromInstructionPattern(const TreePatternNode &N, |
1930 | unsigned ResIdx) const { |
1931 | const CodeGenInstruction &Inst = Target.getInstruction(InstRec: N.getOperator()); |
1932 | assert(ResIdx < Inst.Operands.NumDefs && |
1933 | "Can only infer register class for explicit defs" ); |
1934 | |
1935 | // Handle any special-case instructions which we can safely infer register |
1936 | // classes from. |
1937 | StringRef InstName = Inst.TheDef->getName(); |
1938 | if (InstName == "REG_SEQUENCE" ) { |
1939 | // (outs $super_dst), (ins $dst_regclass, variable_ops) |
1940 | // Destination register class is explicitly specified by the first operand. |
1941 | const TreePatternNode &RCChild = N.getChild(N: 0); |
1942 | if (!RCChild.isLeaf()) |
1943 | return nullptr; |
1944 | return getRegClassFromLeaf(Leaf: RCChild); |
1945 | } |
1946 | |
1947 | if (InstName == "COPY_TO_REGCLASS" ) { |
1948 | // (outs $dst), (ins $src, $dst_regclass) |
1949 | // Destination register class is explicitly specified by the second operand. |
1950 | const TreePatternNode &RCChild = N.getChild(N: 1); |
1951 | if (!RCChild.isLeaf()) |
1952 | return nullptr; |
1953 | return getRegClassFromLeaf(Leaf: RCChild); |
1954 | } |
1955 | |
1956 | if (InstName == "INSERT_SUBREG" ) { |
1957 | // (outs $super_dst), (ins $super_src, $sub_src, $sub_idx); |
1958 | // If we can infer the register class for the first operand, use that. |
1959 | // Otherwise, find a register class that supports both the specified |
1960 | // sub-register index and the type of the instruction's result. |
1961 | const TreePatternNode &Child0 = N.getChild(N: 0); |
1962 | assert(Child0.getNumTypes() == 1 && "Unexpected number of types!" ); |
1963 | return inferSuperRegisterClassForNode(Ty: N.getExtType(ResNo: 0), SuperRegNode: Child0, |
1964 | SubRegIdxNode: N.getChild(N: 2)); |
1965 | } |
1966 | |
1967 | if (InstName == "EXTRACT_SUBREG" ) { |
1968 | // (outs $sub_dst), (ins $super_src, $sub_idx) |
1969 | // Find a register class that can be used for a sub-register copy from |
1970 | // the specified source at the specified sub-register index. |
1971 | const CodeGenRegisterClass *SuperRC = |
1972 | inferRegClassFromPattern(N: N.getChild(N: 0)); |
1973 | if (!SuperRC) |
1974 | return nullptr; |
1975 | |
1976 | const CodeGenSubRegIndex *SubIdx = inferSubRegIndexForNode(SubRegIdxNode: N.getChild(N: 1)); |
1977 | if (!SubIdx) |
1978 | return nullptr; |
1979 | |
1980 | const auto SubRCAndSubRegRC = |
1981 | SuperRC->getMatchingSubClassWithSubRegs(RegBank&: CGRegs, SubIdx); |
1982 | if (!SubRCAndSubRegRC) |
1983 | return nullptr; |
1984 | |
1985 | return SubRCAndSubRegRC->second; |
1986 | } |
1987 | |
1988 | if (InstName == "SUBREG_TO_REG" ) { |
1989 | // (outs $super_dst), (ins $super_src, $sub_src, $sub_idx) |
1990 | // Find a register class that supports both the specified sub-register |
1991 | // index and the type of the instruction's result. |
1992 | return inferSuperRegisterClass(Ty: N.getExtType(ResNo: 0), SubRegIdxNode: N.getChild(N: 2)); |
1993 | } |
1994 | |
1995 | // Handle destination record types that we can safely infer a register class |
1996 | // from. |
1997 | const auto &DstIOperand = Inst.Operands[ResIdx]; |
1998 | const Record *DstIOpRec = DstIOperand.Rec; |
1999 | if (DstIOpRec->isSubClassOf(Name: "RegisterOperand" )) |
2000 | return &Target.getRegisterClass(R: DstIOpRec->getValueAsDef(FieldName: "RegClass" )); |
2001 | |
2002 | if (DstIOpRec->isSubClassOf(Name: "RegisterClass" )) |
2003 | return &Target.getRegisterClass(R: DstIOpRec); |
2004 | |
2005 | return nullptr; |
2006 | } |
2007 | |
2008 | const CodeGenRegisterClass *GlobalISelEmitter::inferSuperRegisterClass( |
2009 | const TypeSetByHwMode &Ty, const TreePatternNode &SubRegIdxNode) const { |
2010 | // We need a ValueTypeByHwMode for getSuperRegForSubReg. |
2011 | if (!Ty.isValueTypeByHwMode(AllowEmpty: false)) |
2012 | return nullptr; |
2013 | if (!SubRegIdxNode.isLeaf()) |
2014 | return nullptr; |
2015 | const DefInit *SubRegInit = dyn_cast<DefInit>(Val: SubRegIdxNode.getLeafValue()); |
2016 | if (!SubRegInit) |
2017 | return nullptr; |
2018 | const CodeGenSubRegIndex *SubIdx = CGRegs.findSubRegIdx(Def: SubRegInit->getDef()); |
2019 | |
2020 | // Use the information we found above to find a minimal register class which |
2021 | // supports the subregister and type we want. |
2022 | return CGRegs.getSuperRegForSubReg(Ty: Ty.getValueTypeByHwMode(), SubIdx, |
2023 | /*MustBeAllocatable=*/true); |
2024 | } |
2025 | |
2026 | const CodeGenRegisterClass *GlobalISelEmitter::inferSuperRegisterClassForNode( |
2027 | const TypeSetByHwMode &Ty, const TreePatternNode &SuperRegNode, |
2028 | const TreePatternNode &SubRegIdxNode) const { |
2029 | // Check if we already have a defined register class for the super register |
2030 | // node. If we do, then we should preserve that rather than inferring anything |
2031 | // from the subregister index node. We can assume that whoever wrote the |
2032 | // pattern in the first place made sure that the super register and |
2033 | // subregister are compatible. |
2034 | if (const CodeGenRegisterClass *SuperRegisterClass = |
2035 | inferRegClassFromPattern(N: SuperRegNode)) |
2036 | return SuperRegisterClass; |
2037 | return inferSuperRegisterClass(Ty, SubRegIdxNode); |
2038 | } |
2039 | |
2040 | const CodeGenSubRegIndex *GlobalISelEmitter::inferSubRegIndexForNode( |
2041 | const TreePatternNode &SubRegIdxNode) const { |
2042 | if (!SubRegIdxNode.isLeaf()) |
2043 | return nullptr; |
2044 | |
2045 | const DefInit *SubRegInit = dyn_cast<DefInit>(Val: SubRegIdxNode.getLeafValue()); |
2046 | if (!SubRegInit) |
2047 | return nullptr; |
2048 | return CGRegs.findSubRegIdx(Def: SubRegInit->getDef()); |
2049 | } |
2050 | |
2051 | Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) { |
2052 | // Keep track of the matchers and actions to emit. |
2053 | int Score = P.getPatternComplexity(CGP); |
2054 | RuleMatcher M(P.getSrcRecord()->getLoc()); |
2055 | RuleMatcherScores[M.getRuleID()] = Score; |
2056 | M.addAction<DebugCommentAction>(args: llvm::to_string(Value: P.getSrcPattern()) + |
2057 | " => " + |
2058 | llvm::to_string(Value: P.getDstPattern())); |
2059 | |
2060 | SmallVector<const Record *, 4> Predicates; |
2061 | P.getPredicateRecords(PredicateRecs&: Predicates); |
2062 | if (auto Error = importRulePredicates(M, Predicates)) |
2063 | return std::move(Error); |
2064 | |
2065 | if (!P.getHwModeFeatures().empty()) |
2066 | M.addHwModeIdx(Idx: declareHwModeCheck(HwModeFeatures: P.getHwModeFeatures())); |
2067 | |
2068 | // Next, analyze the pattern operators. |
2069 | TreePatternNode &Src = P.getSrcPattern(); |
2070 | TreePatternNode &Dst = P.getDstPattern(); |
2071 | |
2072 | // If the root of either pattern isn't a simple operator, ignore it. |
2073 | if (auto Err = isTrivialOperatorNode(N: Dst)) |
2074 | return failedImport(Reason: "Dst pattern root isn't a trivial operator (" + |
2075 | toString(E: std::move(Err)) + ")" ); |
2076 | if (auto Err = isTrivialOperatorNode(N: Src)) |
2077 | return failedImport(Reason: "Src pattern root isn't a trivial operator (" + |
2078 | toString(E: std::move(Err)) + ")" ); |
2079 | |
2080 | // The different predicates and matchers created during |
2081 | // addInstructionMatcher use the RuleMatcher M to set up their |
2082 | // instruction ID (InsnVarID) that are going to be used when |
2083 | // M is going to be emitted. |
2084 | // However, the code doing the emission still relies on the IDs |
2085 | // returned during that process by the RuleMatcher when issuing |
2086 | // the recordInsn opcodes. |
2087 | // Because of that: |
2088 | // 1. The order in which we created the predicates |
2089 | // and such must be the same as the order in which we emit them, |
2090 | // and |
2091 | // 2. We need to reset the generation of the IDs in M somewhere between |
2092 | // addInstructionMatcher and emit |
2093 | // |
2094 | // FIXME: Long term, we don't want to have to rely on this implicit |
2095 | // naming being the same. One possible solution would be to have |
2096 | // explicit operator for operation capture and reference those. |
2097 | // The plus side is that it would expose opportunities to share |
2098 | // the capture accross rules. The downside is that it would |
2099 | // introduce a dependency between predicates (captures must happen |
2100 | // before their first use.) |
2101 | InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(SymbolicName: Src.getName()); |
2102 | unsigned TempOpIdx = 0; |
2103 | |
2104 | const auto SavedFlags = M.setGISelFlags(P.getSrcRecord()); |
2105 | |
2106 | auto InsnMatcherOrError = |
2107 | createAndImportSelDAGMatcher(Rule&: M, InsnMatcher&: InsnMatcherTemp, Src, TempOpIdx); |
2108 | if (auto Error = InsnMatcherOrError.takeError()) |
2109 | return std::move(Error); |
2110 | InstructionMatcher &InsnMatcher = InsnMatcherOrError.get(); |
2111 | |
2112 | if (Dst.isLeaf()) { |
2113 | if (const Record *RCDef = getInitValueAsRegClass(V: Dst.getLeafValue())) { |
2114 | const CodeGenRegisterClass &RC = Target.getRegisterClass(R: RCDef); |
2115 | |
2116 | // We need to replace the def and all its uses with the specified |
2117 | // operand. However, we must also insert COPY's wherever needed. |
2118 | // For now, emit a copy and let the register allocator clean up. |
2119 | auto &DstI = Target.getInstruction(InstRec: RK.getDef(Name: "COPY" )); |
2120 | const auto &DstIOperand = DstI.Operands[0]; |
2121 | |
2122 | OperandMatcher &OM0 = InsnMatcher.getOperand(OpIdx: 0); |
2123 | OM0.setSymbolicName(DstIOperand.Name); |
2124 | M.defineOperand(SymbolicName: OM0.getSymbolicName(), OM&: OM0); |
2125 | OM0.addPredicate<RegisterBankOperandMatcher>(args: RC); |
2126 | |
2127 | auto &DstMIBuilder = |
2128 | M.addAction<BuildMIAction>(args: M.allocateOutputInsnID(), args: &DstI); |
2129 | DstMIBuilder.addRenderer<CopyRenderer>(args: DstIOperand.Name); |
2130 | DstMIBuilder.addRenderer<CopyRenderer>(args: Dst.getName()); |
2131 | M.addAction<ConstrainOperandToRegClassAction>(args: 0, args: 0, args: RC); |
2132 | |
2133 | // Erase the root. |
2134 | unsigned RootInsnID = M.getInsnVarID(InsnMatcher); |
2135 | M.addAction<EraseInstAction>(args&: RootInsnID); |
2136 | |
2137 | // We're done with this pattern! It's eligible for GISel emission; return |
2138 | // it. |
2139 | ++NumPatternImported; |
2140 | return std::move(M); |
2141 | } |
2142 | |
2143 | return failedImport(Reason: "Dst pattern root isn't a known leaf" ); |
2144 | } |
2145 | |
2146 | // Start with the defined operands (i.e., the results of the root operator). |
2147 | const Record *DstOp = Dst.getOperator(); |
2148 | if (!DstOp->isSubClassOf(Name: "Instruction" )) |
2149 | return failedImport(Reason: "Pattern operator isn't an instruction" ); |
2150 | |
2151 | const CodeGenInstruction &DstI = Target.getInstruction(InstRec: DstOp); |
2152 | |
2153 | // Count both implicit and explicit defs in the dst instruction. |
2154 | // This avoids errors importing patterns that have inherent implicit defs. |
2155 | unsigned DstExpDefs = DstI.Operands.NumDefs, |
2156 | DstNumDefs = DstI.ImplicitDefs.size() + DstExpDefs, |
2157 | SrcNumDefs = Src.getExtTypes().size(); |
2158 | if (DstNumDefs < SrcNumDefs) { |
2159 | if (DstNumDefs != 0) |
2160 | return failedImport(Reason: "Src pattern result has more defs than dst MI (" + |
2161 | to_string(Value: SrcNumDefs) + " def(s) vs " + |
2162 | to_string(Value: DstNumDefs) + " def(s))" ); |
2163 | |
2164 | bool FoundNoUsePred = false; |
2165 | for (const auto &Pred : InsnMatcher.predicates()) { |
2166 | if ((FoundNoUsePred = isa<NoUsePredicateMatcher>(Val: Pred.get()))) |
2167 | break; |
2168 | } |
2169 | if (!FoundNoUsePred) |
2170 | return failedImport(Reason: "Src pattern result has " + to_string(Value: SrcNumDefs) + |
2171 | " def(s) without the HasNoUse predicate set to true " |
2172 | "but Dst MI has no def" ); |
2173 | } |
2174 | |
2175 | // The root of the match also has constraints on the register bank so that it |
2176 | // matches the result instruction. |
2177 | unsigned N = std::min(a: DstExpDefs, b: SrcNumDefs); |
2178 | for (unsigned I = 0; I < N; ++I) { |
2179 | const auto &DstIOperand = DstI.Operands[I]; |
2180 | |
2181 | OperandMatcher &OM = InsnMatcher.getOperand(OpIdx: I); |
2182 | // The operand names declared in the DstI instruction are unrelated to |
2183 | // those used in pattern's source and destination DAGs, so mangle the |
2184 | // former to prevent implicitly adding unexpected |
2185 | // GIM_CheckIsSameOperand predicates by the defineOperand method. |
2186 | OM.setSymbolicName(getMangledRootDefName(DefOperandName: DstIOperand.Name)); |
2187 | M.defineOperand(SymbolicName: OM.getSymbolicName(), OM); |
2188 | |
2189 | const CodeGenRegisterClass *RC = |
2190 | inferRegClassFromInstructionPattern(N: Dst, ResIdx: I); |
2191 | if (!RC) |
2192 | return failedImport(Reason: "Could not infer register class for result #" + |
2193 | Twine(I) + " from pattern " + to_string(Value: Dst)); |
2194 | OM.addPredicate<RegisterBankOperandMatcher>(args: *RC); |
2195 | } |
2196 | |
2197 | auto DstMIBuilderOrError = |
2198 | createAndImportInstructionRenderer(M, InsnMatcher, Dst); |
2199 | if (auto Error = DstMIBuilderOrError.takeError()) |
2200 | return std::move(Error); |
2201 | BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get(); |
2202 | |
2203 | // Render the implicit defs. |
2204 | // These are only added to the root of the result. |
2205 | if (auto Error = importImplicitDefRenderers(DstMIBuilder, ImplicitDefs: P.getDstRegs())) |
2206 | return std::move(Error); |
2207 | |
2208 | DstMIBuilder.chooseInsnToMutate(Rule&: M); |
2209 | |
2210 | // Constrain the registers to classes. This is normally derived from the |
2211 | // emitted instruction but a few instructions require special handling. |
2212 | if (auto Error = |
2213 | constrainOperands(InsertPt: M.actions_end(), M, InsnID: DstMIBuilder.getInsnID(), Dst)) |
2214 | return std::move(Error); |
2215 | |
2216 | // Erase the root. |
2217 | unsigned RootInsnID = M.getInsnVarID(InsnMatcher); |
2218 | M.addAction<EraseInstAction>(args&: RootInsnID); |
2219 | |
2220 | // We're done with this pattern! It's eligible for GISel emission; return it. |
2221 | ++NumPatternImported; |
2222 | return std::move(M); |
2223 | } |
2224 | |
2225 | MatchTable |
2226 | GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules, |
2227 | bool Optimize, bool WithCoverage) { |
2228 | std::vector<Matcher *> InputRules; |
2229 | for (Matcher &Rule : Rules) |
2230 | InputRules.push_back(x: &Rule); |
2231 | |
2232 | if (!Optimize) |
2233 | return MatchTable::buildTable(Rules: InputRules, WithCoverage); |
2234 | |
2235 | unsigned CurrentOrdering = 0; |
2236 | StringMap<unsigned> OpcodeOrder; |
2237 | for (RuleMatcher &Rule : Rules) { |
2238 | const StringRef Opcode = Rule.getOpcode(); |
2239 | assert(!Opcode.empty() && "Didn't expect an undefined opcode" ); |
2240 | if (OpcodeOrder.try_emplace(Key: Opcode, Args&: CurrentOrdering).second) |
2241 | ++CurrentOrdering; |
2242 | } |
2243 | |
2244 | llvm::stable_sort( |
2245 | Range&: InputRules, C: [&OpcodeOrder](const Matcher *A, const Matcher *B) { |
2246 | auto *L = static_cast<const RuleMatcher *>(A); |
2247 | auto *R = static_cast<const RuleMatcher *>(B); |
2248 | return std::tuple(OpcodeOrder[L->getOpcode()], |
2249 | L->insnmatchers_front().getNumOperandMatchers()) < |
2250 | std::tuple(OpcodeOrder[R->getOpcode()], |
2251 | R->insnmatchers_front().getNumOperandMatchers()); |
2252 | }); |
2253 | |
2254 | for (Matcher *Rule : InputRules) |
2255 | Rule->optimize(); |
2256 | |
2257 | std::vector<std::unique_ptr<Matcher>> MatcherStorage; |
2258 | std::vector<Matcher *> OptRules = |
2259 | optimizeRules<GroupMatcher>(Rules: InputRules, MatcherStorage); |
2260 | |
2261 | for (Matcher *Rule : OptRules) |
2262 | Rule->optimize(); |
2263 | |
2264 | OptRules = optimizeRules<SwitchMatcher>(Rules: OptRules, MatcherStorage); |
2265 | |
2266 | return MatchTable::buildTable(Rules: OptRules, WithCoverage); |
2267 | } |
2268 | |
2269 | void GlobalISelEmitter::emitAdditionalImpl(raw_ostream &OS) { |
2270 | OS << "bool " << getClassName() |
2271 | << "::selectImpl(MachineInstr &I, CodeGenCoverage " |
2272 | "&CoverageInfo) const {\n" |
2273 | << " const PredicateBitset AvailableFeatures = " |
2274 | "getAvailableFeatures();\n" |
2275 | << " MachineIRBuilder B(I);\n" |
2276 | << " State.MIs.clear();\n" |
2277 | << " State.MIs.push_back(&I);\n\n" |
2278 | << " if (executeMatchTable(*this, State, ExecInfo, B" |
2279 | << ", getMatchTable(), TII, MF->getRegInfo(), TRI, RBI, AvailableFeatures" |
2280 | << ", &CoverageInfo)) {\n" |
2281 | << " return true;\n" |
2282 | << " }\n\n" |
2283 | << " return false;\n" |
2284 | << "}\n\n" ; |
2285 | } |
2286 | |
2287 | void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) { |
2288 | std::vector<const Record *> MatchedRecords; |
2289 | llvm::copy_if(Range&: AllPatFrags, Out: std::back_inserter(x&: MatchedRecords), |
2290 | P: [](const Record *R) { |
2291 | return !R->getValueAsString(FieldName: "GISelPredicateCode" ).empty(); |
2292 | }); |
2293 | emitMIPredicateFnsImpl<const Record *>( |
2294 | OS, |
2295 | AdditionalDecls: " const MachineFunction &MF = *MI.getParent()->getParent();\n" |
2296 | " const MachineRegisterInfo &MRI = MF.getRegInfo();\n" |
2297 | " const auto &Operands = State.RecordedOperands;\n" |
2298 | " (void)Operands;\n" |
2299 | " (void)MRI;" , |
2300 | Predicates: ArrayRef<const Record *>(MatchedRecords), GetPredEnumName: &getPatFragPredicateEnumName, |
2301 | GetPredCode: [](const Record *R) { return R->getValueAsString(FieldName: "GISelPredicateCode" ); }, |
2302 | Comment: "PatFrag predicates." ); |
2303 | } |
2304 | |
2305 | void GlobalISelEmitter::emitLeafPredicateFns(raw_ostream &OS) { |
2306 | std::vector<const Record *> MatchedRecords; |
2307 | llvm::copy_if(Range&: AllPatFrags, Out: std::back_inserter(x&: MatchedRecords), |
2308 | P: [](const Record *R) { |
2309 | return (!R->getValueAsOptionalString(FieldName: "GISelLeafPredicateCode" ) |
2310 | .value_or(u: std::string()) |
2311 | .empty()); |
2312 | }); |
2313 | emitLeafPredicateFnsImpl<const Record *>( |
2314 | OS, |
2315 | AdditionalDecls: " const auto &Operands = State.RecordedOperands;\n" |
2316 | " Register Reg = MO.getReg();\n" |
2317 | " (void)Operands;\n" |
2318 | " (void)Reg;" , |
2319 | Predicates: ArrayRef<const Record *>(MatchedRecords), GetPredEnumName: &getPatFragPredicateEnumName, |
2320 | GetPredCode: [](const Record *R) { |
2321 | return R->getValueAsString(FieldName: "GISelLeafPredicateCode" ); |
2322 | }, |
2323 | Comment: "PatFrag predicates." ); |
2324 | } |
2325 | |
2326 | void GlobalISelEmitter::emitI64ImmPredicateFns(raw_ostream &OS) { |
2327 | std::vector<const Record *> MatchedRecords; |
2328 | llvm::copy_if(Range&: AllPatFrags, Out: std::back_inserter(x&: MatchedRecords), |
2329 | P: [](const Record *R) { |
2330 | bool Unset; |
2331 | return !R->getValueAsString(FieldName: "ImmediateCode" ).empty() && |
2332 | !R->getValueAsBitOrUnset(FieldName: "IsAPFloat" , Unset) && |
2333 | !R->getValueAsBit(FieldName: "IsAPInt" ); |
2334 | }); |
2335 | emitImmPredicateFnsImpl<const Record *>( |
2336 | OS, TypeIdentifier: "I64" , ArgType: "int64_t" , Predicates: ArrayRef<const Record *>(MatchedRecords), |
2337 | GetPredEnumName: &getPatFragPredicateEnumName, |
2338 | GetPredCode: [](const Record *R) { return R->getValueAsString(FieldName: "ImmediateCode" ); }, |
2339 | Comment: "PatFrag predicates." ); |
2340 | } |
2341 | |
2342 | void GlobalISelEmitter::emitAPFloatImmPredicateFns(raw_ostream &OS) { |
2343 | std::vector<const Record *> MatchedRecords; |
2344 | llvm::copy_if(Range&: AllPatFrags, Out: std::back_inserter(x&: MatchedRecords), |
2345 | P: [](const Record *R) { |
2346 | bool Unset; |
2347 | return !R->getValueAsString(FieldName: "ImmediateCode" ).empty() && |
2348 | R->getValueAsBitOrUnset(FieldName: "IsAPFloat" , Unset); |
2349 | }); |
2350 | emitImmPredicateFnsImpl<const Record *>( |
2351 | OS, TypeIdentifier: "APFloat" , ArgType: "const APFloat &" , |
2352 | Predicates: ArrayRef<const Record *>(MatchedRecords), GetPredEnumName: &getPatFragPredicateEnumName, |
2353 | GetPredCode: [](const Record *R) { return R->getValueAsString(FieldName: "ImmediateCode" ); }, |
2354 | Comment: "PatFrag predicates." ); |
2355 | } |
2356 | |
2357 | void GlobalISelEmitter::emitAPIntImmPredicateFns(raw_ostream &OS) { |
2358 | std::vector<const Record *> MatchedRecords; |
2359 | llvm::copy_if(Range&: AllPatFrags, Out: std::back_inserter(x&: MatchedRecords), |
2360 | P: [](const Record *R) { |
2361 | return !R->getValueAsString(FieldName: "ImmediateCode" ).empty() && |
2362 | R->getValueAsBit(FieldName: "IsAPInt" ); |
2363 | }); |
2364 | emitImmPredicateFnsImpl<const Record *>( |
2365 | OS, TypeIdentifier: "APInt" , ArgType: "const APInt &" , Predicates: ArrayRef<const Record *>(MatchedRecords), |
2366 | GetPredEnumName: &getPatFragPredicateEnumName, |
2367 | GetPredCode: [](const Record *R) { return R->getValueAsString(FieldName: "ImmediateCode" ); }, |
2368 | Comment: "PatFrag predicates." ); |
2369 | } |
2370 | |
2371 | void GlobalISelEmitter::emitTestSimplePredicate(raw_ostream &OS) { |
2372 | OS << "bool " << getClassName() << "::testSimplePredicate(unsigned) const {\n" |
2373 | << " llvm_unreachable(\"" + getClassName() + |
2374 | " does not support simple predicates!\");\n" |
2375 | << " return false;\n" |
2376 | << "}\n" ; |
2377 | } |
2378 | |
2379 | void GlobalISelEmitter::emitRunCustomAction(raw_ostream &OS) { |
2380 | OS << "bool " << getClassName() |
2381 | << "::runCustomAction(unsigned, const MatcherState&, NewMIVector &) const " |
2382 | "{\n" |
2383 | << " llvm_unreachable(\"" + getClassName() + |
2384 | " does not support custom C++ actions!\");\n" |
2385 | << "}\n" ; |
2386 | } |
2387 | |
2388 | bool hasBFloatType(const TreePatternNode &Node) { |
2389 | for (unsigned I = 0, E = Node.getNumTypes(); I < E; I++) { |
2390 | auto Ty = Node.getType(ResNo: I); |
2391 | for (auto T : Ty) |
2392 | if (T.second == MVT::bf16 || |
2393 | (T.second.isVector() && T.second.getScalarType() == MVT::bf16)) |
2394 | return true; |
2395 | } |
2396 | for (const TreePatternNode &C : Node.children()) |
2397 | if (hasBFloatType(Node: C)) |
2398 | return true; |
2399 | return false; |
2400 | } |
2401 | |
2402 | void GlobalISelEmitter::run(raw_ostream &OS) { |
2403 | if (!UseCoverageFile.empty()) { |
2404 | RuleCoverage = CodeGenCoverage(); |
2405 | auto RuleCoverageBufOrErr = MemoryBuffer::getFile(Filename: UseCoverageFile); |
2406 | if (!RuleCoverageBufOrErr) { |
2407 | PrintWarning(WarningLoc: SMLoc(), Msg: "Missing rule coverage data" ); |
2408 | RuleCoverage = std::nullopt; |
2409 | } else { |
2410 | if (!RuleCoverage->parse(Buffer&: *RuleCoverageBufOrErr.get(), BackendName: Target.getName())) { |
2411 | PrintWarning(WarningLoc: SMLoc(), Msg: "Ignoring invalid or missing rule coverage data" ); |
2412 | RuleCoverage = std::nullopt; |
2413 | } |
2414 | } |
2415 | } |
2416 | |
2417 | // Track the run-time opcode values |
2418 | gatherOpcodeValues(); |
2419 | // Track the run-time LLT ID values |
2420 | gatherTypeIDValues(); |
2421 | |
2422 | // Track the GINodeEquiv definitions. |
2423 | gatherNodeEquivs(); |
2424 | |
2425 | AllPatFrags = RK.getAllDerivedDefinitions(ClassName: "PatFrags" ); |
2426 | |
2427 | emitSourceFileHeader( |
2428 | Desc: ("Global Instruction Selector for the " + Target.getName() + " target" ) |
2429 | .str(), |
2430 | OS); |
2431 | std::vector<RuleMatcher> Rules; |
2432 | // Look through the SelectionDAG patterns we found, possibly emitting some. |
2433 | for (const PatternToMatch &Pat : CGP.ptms()) { |
2434 | ++NumPatternTotal; |
2435 | |
2436 | if (Pat.getGISelShouldIgnore()) |
2437 | continue; // skip without warning |
2438 | |
2439 | // Skip any patterns containing BF16 types, as GISel cannot currently tell |
2440 | // the difference between fp16 and bf16. FIXME: This can be removed once |
2441 | // BF16 is supported properly. |
2442 | if (hasBFloatType(Node: Pat.getSrcPattern())) |
2443 | continue; |
2444 | |
2445 | auto MatcherOrErr = runOnPattern(P: Pat); |
2446 | |
2447 | // The pattern analysis can fail, indicating an unsupported pattern. |
2448 | // Report that if we've been asked to do so. |
2449 | if (auto Err = MatcherOrErr.takeError()) { |
2450 | if (WarnOnSkippedPatterns) { |
2451 | PrintWarning(WarningLoc: Pat.getSrcRecord()->getLoc(), |
2452 | Msg: "Skipped pattern: " + toString(E: std::move(Err))); |
2453 | } else { |
2454 | consumeError(Err: std::move(Err)); |
2455 | } |
2456 | ++NumPatternImportsSkipped; |
2457 | continue; |
2458 | } |
2459 | |
2460 | if (RuleCoverage) { |
2461 | if (RuleCoverage->isCovered(RuleID: MatcherOrErr->getRuleID())) |
2462 | ++NumPatternsTested; |
2463 | else |
2464 | PrintWarning(WarningLoc: Pat.getSrcRecord()->getLoc(), |
2465 | Msg: "Pattern is not covered by a test" ); |
2466 | } |
2467 | Rules.push_back(x: std::move(MatcherOrErr.get())); |
2468 | } |
2469 | |
2470 | // Comparison function to order records by name. |
2471 | auto OrderByName = [](const Record *A, const Record *B) { |
2472 | return A->getName() < B->getName(); |
2473 | }; |
2474 | |
2475 | std::vector<const Record *> ComplexPredicates = |
2476 | RK.getAllDerivedDefinitions(ClassName: "GIComplexOperandMatcher" ); |
2477 | llvm::sort(C&: ComplexPredicates, Comp: OrderByName); |
2478 | |
2479 | std::vector<StringRef> CustomRendererFns; |
2480 | transform(Range: RK.getAllDerivedDefinitions(ClassName: "GICustomOperandRenderer" ), |
2481 | d_first: std::back_inserter(x&: CustomRendererFns), F: [](const auto &Record) { |
2482 | return Record->getValueAsString("RendererFn" ); |
2483 | }); |
2484 | // Sort and remove duplicates to get a list of unique renderer functions, in |
2485 | // case some were mentioned more than once. |
2486 | llvm::sort(C&: CustomRendererFns); |
2487 | CustomRendererFns.erase(first: llvm::unique(R&: CustomRendererFns), |
2488 | last: CustomRendererFns.end()); |
2489 | |
2490 | // Create a table containing the LLT objects needed by the matcher and an enum |
2491 | // for the matcher to reference them with. |
2492 | std::vector<LLTCodeGen> TypeObjects; |
2493 | append_range(C&: TypeObjects, R&: KnownTypes); |
2494 | llvm::sort(C&: TypeObjects); |
2495 | |
2496 | // Sort rules. |
2497 | llvm::stable_sort(Range&: Rules, C: [&](const RuleMatcher &A, const RuleMatcher &B) { |
2498 | int ScoreA = RuleMatcherScores[A.getRuleID()]; |
2499 | int ScoreB = RuleMatcherScores[B.getRuleID()]; |
2500 | if (ScoreA > ScoreB) |
2501 | return true; |
2502 | if (ScoreB > ScoreA) |
2503 | return false; |
2504 | if (A.isHigherPriorityThan(B)) { |
2505 | assert(!B.isHigherPriorityThan(A) && "Cannot be more important " |
2506 | "and less important at " |
2507 | "the same time" ); |
2508 | return true; |
2509 | } |
2510 | return false; |
2511 | }); |
2512 | |
2513 | unsigned MaxTemporaries = 0; |
2514 | for (const auto &Rule : Rules) |
2515 | MaxTemporaries = std::max(a: MaxTemporaries, b: Rule.countRendererFns()); |
2516 | |
2517 | // Build match table |
2518 | const MatchTable Table = |
2519 | buildMatchTable(Rules, Optimize: OptimizeMatchTable, WithCoverage: GenerateCoverage); |
2520 | |
2521 | emitPredicateBitset(OS, IfDefName: "GET_GLOBALISEL_PREDICATE_BITSET" ); |
2522 | emitTemporariesDecl(OS, IfDefName: "GET_GLOBALISEL_TEMPORARIES_DECL" ); |
2523 | emitTemporariesInit(OS, MaxTemporaries, IfDefName: "GET_GLOBALISEL_TEMPORARIES_INIT" ); |
2524 | emitExecutorImpl(OS, Table, TypeObjects, Rules, ComplexOperandMatchers: ComplexPredicates, |
2525 | CustomOperandRenderers: CustomRendererFns, IfDefName: "GET_GLOBALISEL_IMPL" ); |
2526 | emitPredicatesDecl(OS, IfDefName: "GET_GLOBALISEL_PREDICATES_DECL" ); |
2527 | emitPredicatesInit(OS, IfDefName: "GET_GLOBALISEL_PREDICATES_INIT" ); |
2528 | } |
2529 | |
2530 | void GlobalISelEmitter::declareSubtargetFeature(const Record *Predicate) { |
2531 | SubtargetFeatures.try_emplace(k: Predicate, args&: Predicate, args: SubtargetFeatures.size()); |
2532 | } |
2533 | |
2534 | unsigned GlobalISelEmitter::declareHwModeCheck(StringRef HwModeFeatures) { |
2535 | return HwModes.emplace(args: HwModeFeatures.str(), args: HwModes.size()).first->second; |
2536 | } |
2537 | |
2538 | } // end anonymous namespace |
2539 | |
2540 | //===----------------------------------------------------------------------===// |
2541 | |
2542 | static TableGen::Emitter::OptClass<GlobalISelEmitter> |
2543 | X("gen-global-isel" , "Generate GlobalISel selector" ); |
2544 | |