1 | //===- RDFLiveness.cpp ----------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Computation of the liveness information from the data-flow graph. |
10 | // |
11 | // The main functionality of this code is to compute block live-in |
12 | // information. With the live-in information in place, the placement |
13 | // of kill flags can also be recalculated. |
14 | // |
15 | // The block live-in calculation is based on the ideas from the following |
16 | // publication: |
17 | // |
18 | // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin. |
19 | // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs." |
20 | // ACM Transactions on Architecture and Code Optimization, Association for |
21 | // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance |
22 | // and Embedded Architectures and Compilers", 8 (4), |
23 | // <10.1145/2086696.2086706>. <hal-00647369> |
24 | // |
25 | #include "llvm/ADT/BitVector.h" |
26 | #include "llvm/ADT/DenseMap.h" |
27 | #include "llvm/ADT/STLExtras.h" |
28 | #include "llvm/ADT/SetVector.h" |
29 | #include "llvm/ADT/SmallSet.h" |
30 | #include "llvm/CodeGen/MachineBasicBlock.h" |
31 | #include "llvm/CodeGen/MachineDominanceFrontier.h" |
32 | #include "llvm/CodeGen/MachineDominators.h" |
33 | #include "llvm/CodeGen/MachineFunction.h" |
34 | #include "llvm/CodeGen/MachineInstr.h" |
35 | #include "llvm/CodeGen/RDFGraph.h" |
36 | #include "llvm/CodeGen/RDFLiveness.h" |
37 | #include "llvm/CodeGen/RDFRegisters.h" |
38 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
39 | #include "llvm/MC/LaneBitmask.h" |
40 | #include "llvm/MC/MCRegisterInfo.h" |
41 | #include "llvm/Support/CommandLine.h" |
42 | #include "llvm/Support/ErrorHandling.h" |
43 | #include "llvm/Support/raw_ostream.h" |
44 | #include <algorithm> |
45 | #include <cassert> |
46 | #include <cstdint> |
47 | #include <iterator> |
48 | #include <map> |
49 | #include <unordered_map> |
50 | #include <utility> |
51 | #include <vector> |
52 | |
53 | using namespace llvm; |
54 | |
55 | static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec" , cl::init(Val: 25), |
56 | cl::Hidden, |
57 | cl::desc("Maximum recursion level" )); |
58 | |
59 | namespace llvm::rdf { |
60 | |
61 | raw_ostream &operator<<(raw_ostream &OS, const Print<Liveness::RefMap> &P) { |
62 | OS << '{'; |
63 | for (const auto &I : P.Obj) { |
64 | OS << ' ' << printReg(Reg: I.first, TRI: &P.G.getTRI()) << '{'; |
65 | for (auto J = I.second.begin(), E = I.second.end(); J != E;) { |
66 | OS << Print(J->first, P.G) << PrintLaneMaskShort(J->second); |
67 | if (++J != E) |
68 | OS << ','; |
69 | } |
70 | OS << '}'; |
71 | } |
72 | OS << " }" ; |
73 | return OS; |
74 | } |
75 | |
76 | // The order in the returned sequence is the order of reaching defs in the |
77 | // upward traversal: the first def is the closest to the given reference RefA, |
78 | // the next one is further up, and so on. |
79 | // The list ends at a reaching phi def, or when the reference from RefA is |
80 | // covered by the defs in the list (see FullChain). |
81 | // This function provides two modes of operation: |
82 | // (1) Returning the sequence of reaching defs for a particular reference |
83 | // node. This sequence will terminate at the first phi node [1]. |
84 | // (2) Returning a partial sequence of reaching defs, where the final goal |
85 | // is to traverse past phi nodes to the actual defs arising from the code |
86 | // itself. |
87 | // In mode (2), the register reference for which the search was started |
88 | // may be different from the reference node RefA, for which this call was |
89 | // made, hence the argument RefRR, which holds the original register. |
90 | // Also, some definitions may have already been encountered in a previous |
91 | // call that will influence register covering. The register references |
92 | // already defined are passed in through DefRRs. |
93 | // In mode (1), the "continuation" considerations do not apply, and the |
94 | // RefRR is the same as the register in RefA, and the set DefRRs is empty. |
95 | // |
96 | // [1] It is possible for multiple phi nodes to be included in the returned |
97 | // sequence: |
98 | // SubA = phi ... |
99 | // SubB = phi ... |
100 | // ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB) |
101 | // However, these phi nodes are independent from one another in terms of |
102 | // the data-flow. |
103 | |
104 | NodeList Liveness::getAllReachingDefs(RegisterRef RefRR, |
105 | NodeAddr<RefNode *> RefA, bool TopShadows, |
106 | bool FullChain, |
107 | const RegisterAggr &DefRRs) { |
108 | NodeList RDefs; // Return value. |
109 | SetVector<NodeId> DefQ; |
110 | DenseMap<MachineInstr *, uint32_t> OrdMap; |
111 | |
112 | // Dead defs will be treated as if they were live, since they are actually |
113 | // on the data-flow path. They cannot be ignored because even though they |
114 | // do not generate meaningful values, they still modify registers. |
115 | |
116 | // If the reference is undefined, there is nothing to do. |
117 | if (RefA.Addr->getFlags() & NodeAttrs::Undef) |
118 | return RDefs; |
119 | |
120 | // The initial queue should not have reaching defs for shadows. The |
121 | // whole point of a shadow is that it will have a reaching def that |
122 | // is not aliased to the reaching defs of the related shadows. |
123 | NodeId Start = RefA.Id; |
124 | auto SNA = DFG.addr<RefNode *>(N: Start); |
125 | if (NodeId RD = SNA.Addr->getReachingDef()) |
126 | DefQ.insert(X: RD); |
127 | if (TopShadows) { |
128 | for (auto S : DFG.getRelatedRefs(IA: RefA.Addr->getOwner(G: DFG), RA: RefA)) |
129 | if (NodeId RD = NodeAddr<RefNode *>(S).Addr->getReachingDef()) |
130 | DefQ.insert(X: RD); |
131 | } |
132 | |
133 | // Collect all the reaching defs, going up until a phi node is encountered, |
134 | // or there are no more reaching defs. From this set, the actual set of |
135 | // reaching defs will be selected. |
136 | // The traversal upwards must go on until a covering def is encountered. |
137 | // It is possible that a collection of non-covering (individually) defs |
138 | // will be sufficient, but keep going until a covering one is found. |
139 | for (unsigned i = 0; i < DefQ.size(); ++i) { |
140 | auto TA = DFG.addr<DefNode *>(N: DefQ[i]); |
141 | if (TA.Addr->getFlags() & NodeAttrs::PhiRef) |
142 | continue; |
143 | // Stop at the covering/overwriting def of the initial register reference. |
144 | RegisterRef RR = TA.Addr->getRegRef(G: DFG); |
145 | if (!DFG.IsPreservingDef(DA: TA)) |
146 | if (RegisterAggr::isCoverOf(RA: RR, RB: RefRR, PRI)) |
147 | continue; |
148 | // Get the next level of reaching defs. This will include multiple |
149 | // reaching defs for shadows. |
150 | for (auto S : DFG.getRelatedRefs(IA: TA.Addr->getOwner(G: DFG), RA: TA)) |
151 | if (NodeId RD = NodeAddr<RefNode *>(S).Addr->getReachingDef()) |
152 | DefQ.insert(X: RD); |
153 | // Don't visit sibling defs. They share the same reaching def (which |
154 | // will be visited anyway), but they define something not aliased to |
155 | // this ref. |
156 | } |
157 | |
158 | // Return the MachineBasicBlock containing a given instruction. |
159 | auto Block = [this](NodeAddr<InstrNode *> IA) -> MachineBasicBlock * { |
160 | if (IA.Addr->getKind() == NodeAttrs::Stmt) |
161 | return NodeAddr<StmtNode *>(IA).Addr->getCode()->getParent(); |
162 | assert(IA.Addr->getKind() == NodeAttrs::Phi); |
163 | NodeAddr<PhiNode *> PA = IA; |
164 | NodeAddr<BlockNode *> BA = PA.Addr->getOwner(G: DFG); |
165 | return BA.Addr->getCode(); |
166 | }; |
167 | |
168 | SmallSet<NodeId, 32> Defs; |
169 | |
170 | // Remove all non-phi defs that are not aliased to RefRR, and separate |
171 | // the the remaining defs into buckets for containing blocks. |
172 | std::map<NodeId, NodeAddr<InstrNode *>> Owners; |
173 | std::map<MachineBasicBlock *, SmallVector<NodeId, 32>> Blocks; |
174 | for (NodeId N : DefQ) { |
175 | auto TA = DFG.addr<DefNode *>(N); |
176 | bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef; |
177 | if (!IsPhi && !PRI.alias(RA: RefRR, RB: TA.Addr->getRegRef(G: DFG))) |
178 | continue; |
179 | Defs.insert(V: TA.Id); |
180 | NodeAddr<InstrNode *> IA = TA.Addr->getOwner(G: DFG); |
181 | Owners[TA.Id] = IA; |
182 | Blocks[Block(IA)].push_back(Elt: IA.Id); |
183 | } |
184 | |
185 | auto Precedes = [this, &OrdMap](NodeId A, NodeId B) { |
186 | if (A == B) |
187 | return false; |
188 | NodeAddr<InstrNode *> OA = DFG.addr<InstrNode *>(N: A); |
189 | NodeAddr<InstrNode *> OB = DFG.addr<InstrNode *>(N: B); |
190 | bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt; |
191 | bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt; |
192 | if (StmtA && StmtB) { |
193 | const MachineInstr *InA = NodeAddr<StmtNode *>(OA).Addr->getCode(); |
194 | const MachineInstr *InB = NodeAddr<StmtNode *>(OB).Addr->getCode(); |
195 | assert(InA->getParent() == InB->getParent()); |
196 | auto FA = OrdMap.find(Val: InA); |
197 | if (FA != OrdMap.end()) |
198 | return FA->second < OrdMap.find(Val: InB)->second; |
199 | const MachineBasicBlock *BB = InA->getParent(); |
200 | for (auto It = BB->begin(), E = BB->end(); It != E; ++It) { |
201 | if (It == InA->getIterator()) |
202 | return true; |
203 | if (It == InB->getIterator()) |
204 | return false; |
205 | } |
206 | llvm_unreachable("InA and InB should be in the same block" ); |
207 | } |
208 | // One of them is a phi node. |
209 | if (!StmtA && !StmtB) { |
210 | // Both are phis, which are unordered. Break the tie by id numbers. |
211 | return A < B; |
212 | } |
213 | // Only one of them is a phi. Phis always precede statements. |
214 | return !StmtA; |
215 | }; |
216 | |
217 | auto GetOrder = [&OrdMap](MachineBasicBlock &B) { |
218 | uint32_t Pos = 0; |
219 | for (MachineInstr &In : B) |
220 | OrdMap.insert(KV: {&In, ++Pos}); |
221 | }; |
222 | |
223 | // For each block, sort the nodes in it. |
224 | std::vector<MachineBasicBlock *> TmpBB; |
225 | for (auto &Bucket : Blocks) { |
226 | TmpBB.push_back(x: Bucket.first); |
227 | if (Bucket.second.size() > 2) |
228 | GetOrder(*Bucket.first); |
229 | llvm::sort(C&: Bucket.second, Comp: Precedes); |
230 | } |
231 | |
232 | // Sort the blocks with respect to dominance. |
233 | llvm::sort(C&: TmpBB, |
234 | Comp: [this](auto A, auto B) { return MDT.properlyDominates(A, B); }); |
235 | |
236 | std::vector<NodeId> TmpInst; |
237 | for (MachineBasicBlock *MBB : llvm::reverse(C&: TmpBB)) { |
238 | auto &Bucket = Blocks[MBB]; |
239 | TmpInst.insert(position: TmpInst.end(), first: Bucket.rbegin(), last: Bucket.rend()); |
240 | } |
241 | |
242 | // The vector is a list of instructions, so that defs coming from |
243 | // the same instruction don't need to be artificially ordered. |
244 | // Then, when computing the initial segment, and iterating over an |
245 | // instruction, pick the defs that contribute to the covering (i.e. is |
246 | // not covered by previously added defs). Check the defs individually, |
247 | // i.e. first check each def if is covered or not (without adding them |
248 | // to the tracking set), and then add all the selected ones. |
249 | |
250 | // The reason for this is this example: |
251 | // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes). |
252 | // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be |
253 | // covered if we added A first, and A would be covered |
254 | // if we added B first. |
255 | // In this example we want both A and B, because we don't want to give |
256 | // either one priority over the other, since they belong to the same |
257 | // statement. |
258 | |
259 | RegisterAggr RRs(DefRRs); |
260 | |
261 | auto DefInSet = [&Defs](NodeAddr<RefNode *> TA) -> bool { |
262 | return TA.Addr->getKind() == NodeAttrs::Def && Defs.count(V: TA.Id); |
263 | }; |
264 | |
265 | for (NodeId T : TmpInst) { |
266 | if (!FullChain && RRs.hasCoverOf(RR: RefRR)) |
267 | break; |
268 | auto TA = DFG.addr<InstrNode *>(N: T); |
269 | bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(BA: TA); |
270 | NodeList Ds; |
271 | for (NodeAddr<DefNode *> DA : TA.Addr->members_if(P: DefInSet, G: DFG)) { |
272 | RegisterRef QR = DA.Addr->getRegRef(G: DFG); |
273 | // Add phi defs even if they are covered by subsequent defs. This is |
274 | // for cases where the reached use is not covered by any of the defs |
275 | // encountered so far: the phi def is needed to expose the liveness |
276 | // of that use to the entry of the block. |
277 | // Example: |
278 | // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2. |
279 | // d2<R3>(d1,,u3), ... |
280 | // ..., u3<D1>(d2) This use needs to be live on entry. |
281 | if (FullChain || IsPhi || !RRs.hasCoverOf(RR: QR)) |
282 | Ds.push_back(Elt: DA); |
283 | } |
284 | llvm::append_range(C&: RDefs, R&: Ds); |
285 | for (NodeAddr<DefNode *> DA : Ds) { |
286 | // When collecting a full chain of definitions, do not consider phi |
287 | // defs to actually define a register. |
288 | uint16_t Flags = DA.Addr->getFlags(); |
289 | if (!FullChain || !(Flags & NodeAttrs::PhiRef)) |
290 | if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here. |
291 | RRs.insert(RR: DA.Addr->getRegRef(G: DFG)); |
292 | } |
293 | } |
294 | |
295 | auto DeadP = [](const NodeAddr<DefNode *> DA) -> bool { |
296 | return DA.Addr->getFlags() & NodeAttrs::Dead; |
297 | }; |
298 | llvm::erase_if(C&: RDefs, P: DeadP); |
299 | |
300 | return RDefs; |
301 | } |
302 | |
303 | std::pair<NodeSet, bool> |
304 | Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode *> RefA, |
305 | NodeSet &Visited, const NodeSet &Defs) { |
306 | return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, Nest: 0, MaxNest: MaxRecNest); |
307 | } |
308 | |
309 | std::pair<NodeSet, bool> |
310 | Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode *> RefA, |
311 | NodeSet &Visited, const NodeSet &Defs, |
312 | unsigned Nest, unsigned MaxNest) { |
313 | if (Nest > MaxNest) |
314 | return {NodeSet(), false}; |
315 | // Collect all defined registers. Do not consider phis to be defining |
316 | // anything, only collect "real" definitions. |
317 | RegisterAggr DefRRs(PRI); |
318 | for (NodeId D : Defs) { |
319 | const auto DA = DFG.addr<const DefNode *>(N: D); |
320 | if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) |
321 | DefRRs.insert(RR: DA.Addr->getRegRef(G: DFG)); |
322 | } |
323 | |
324 | NodeList RDs = getAllReachingDefs(RefRR, RefA, TopShadows: false, FullChain: true, DefRRs); |
325 | if (RDs.empty()) |
326 | return {Defs, true}; |
327 | |
328 | // Make a copy of the preexisting definitions and add the newly found ones. |
329 | NodeSet TmpDefs = Defs; |
330 | for (NodeAddr<NodeBase *> R : RDs) |
331 | TmpDefs.insert(x: R.Id); |
332 | |
333 | NodeSet Result = Defs; |
334 | |
335 | for (NodeAddr<DefNode *> DA : RDs) { |
336 | Result.insert(x: DA.Id); |
337 | if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) |
338 | continue; |
339 | NodeAddr<PhiNode *> PA = DA.Addr->getOwner(G: DFG); |
340 | if (!Visited.insert(x: PA.Id).second) |
341 | continue; |
342 | // Go over all phi uses and get the reaching defs for each use. |
343 | for (auto U : PA.Addr->members_if(P: DFG.IsRef<NodeAttrs::Use>, G: DFG)) { |
344 | const auto &T = getAllReachingDefsRecImpl(RefRR, RefA: U, Visited, Defs: TmpDefs, |
345 | Nest: Nest + 1, MaxNest); |
346 | if (!T.second) |
347 | return {T.first, false}; |
348 | Result.insert(first: T.first.begin(), last: T.first.end()); |
349 | } |
350 | } |
351 | |
352 | return {Result, true}; |
353 | } |
354 | |
355 | /// Find the nearest ref node aliased to RefRR, going upwards in the data |
356 | /// flow, starting from the instruction immediately preceding Inst. |
357 | NodeAddr<RefNode *> Liveness::getNearestAliasedRef(RegisterRef RefRR, |
358 | NodeAddr<InstrNode *> IA) { |
359 | NodeAddr<BlockNode *> BA = IA.Addr->getOwner(G: DFG); |
360 | NodeList Ins = BA.Addr->members(G: DFG); |
361 | NodeId FindId = IA.Id; |
362 | auto E = Ins.rend(); |
363 | auto B = |
364 | std::find_if(first: Ins.rbegin(), last: E, pred: [FindId](const NodeAddr<InstrNode *> T) { |
365 | return T.Id == FindId; |
366 | }); |
367 | // Do not scan IA (which is what B would point to). |
368 | if (B != E) |
369 | ++B; |
370 | |
371 | do { |
372 | // Process the range of instructions from B to E. |
373 | for (NodeAddr<InstrNode *> I : make_range(x: B, y: E)) { |
374 | NodeList Refs = I.Addr->members(G: DFG); |
375 | NodeAddr<RefNode *> Clob, Use; |
376 | // Scan all the refs in I aliased to RefRR, and return the one that |
377 | // is the closest to the output of I, i.e. def > clobber > use. |
378 | for (NodeAddr<RefNode *> R : Refs) { |
379 | if (!PRI.alias(RA: R.Addr->getRegRef(G: DFG), RB: RefRR)) |
380 | continue; |
381 | if (DFG.IsDef(BA: R)) { |
382 | // If it's a non-clobbering def, just return it. |
383 | if (!(R.Addr->getFlags() & NodeAttrs::Clobbering)) |
384 | return R; |
385 | Clob = R; |
386 | } else { |
387 | Use = R; |
388 | } |
389 | } |
390 | if (Clob.Id != 0) |
391 | return Clob; |
392 | if (Use.Id != 0) |
393 | return Use; |
394 | } |
395 | |
396 | // Go up to the immediate dominator, if any. |
397 | MachineBasicBlock *BB = BA.Addr->getCode(); |
398 | BA = NodeAddr<BlockNode *>(); |
399 | if (MachineDomTreeNode *N = MDT.getNode(BB)) { |
400 | if ((N = N->getIDom())) |
401 | BA = DFG.findBlock(BB: N->getBlock()); |
402 | } |
403 | if (!BA.Id) |
404 | break; |
405 | |
406 | Ins = BA.Addr->members(G: DFG); |
407 | B = Ins.rbegin(); |
408 | E = Ins.rend(); |
409 | } while (true); |
410 | |
411 | return NodeAddr<RefNode *>(); |
412 | } |
413 | |
414 | NodeSet Liveness::getAllReachedUses(RegisterRef RefRR, NodeAddr<DefNode *> DefA, |
415 | const RegisterAggr &DefRRs) { |
416 | NodeSet Uses; |
417 | |
418 | // If the original register is already covered by all the intervening |
419 | // defs, no more uses can be reached. |
420 | if (DefRRs.hasCoverOf(RR: RefRR)) |
421 | return Uses; |
422 | |
423 | // Add all directly reached uses. |
424 | // If the def is dead, it does not provide a value for any use. |
425 | bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead; |
426 | NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0; |
427 | while (U != 0) { |
428 | auto UA = DFG.addr<UseNode *>(N: U); |
429 | if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) { |
430 | RegisterRef UR = UA.Addr->getRegRef(G: DFG); |
431 | if (PRI.alias(RA: RefRR, RB: UR) && !DefRRs.hasCoverOf(RR: UR)) |
432 | Uses.insert(x: U); |
433 | } |
434 | U = UA.Addr->getSibling(); |
435 | } |
436 | |
437 | // Traverse all reached defs. This time dead defs cannot be ignored. |
438 | for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) { |
439 | auto DA = DFG.addr<DefNode *>(N: D); |
440 | NextD = DA.Addr->getSibling(); |
441 | RegisterRef DR = DA.Addr->getRegRef(G: DFG); |
442 | // If this def is already covered, it cannot reach anything new. |
443 | // Similarly, skip it if it is not aliased to the interesting register. |
444 | if (DefRRs.hasCoverOf(RR: DR) || !PRI.alias(RA: RefRR, RB: DR)) |
445 | continue; |
446 | NodeSet T; |
447 | if (DFG.IsPreservingDef(DA)) { |
448 | // If it is a preserving def, do not update the set of intervening defs. |
449 | T = getAllReachedUses(RefRR, DefA: DA, DefRRs); |
450 | } else { |
451 | RegisterAggr NewDefRRs = DefRRs; |
452 | NewDefRRs.insert(RR: DR); |
453 | T = getAllReachedUses(RefRR, DefA: DA, DefRRs: NewDefRRs); |
454 | } |
455 | Uses.insert(first: T.begin(), last: T.end()); |
456 | } |
457 | return Uses; |
458 | } |
459 | |
460 | void Liveness::computePhiInfo() { |
461 | RealUseMap.clear(); |
462 | |
463 | NodeList Phis; |
464 | NodeAddr<FuncNode *> FA = DFG.getFunc(); |
465 | NodeList Blocks = FA.Addr->members(G: DFG); |
466 | for (NodeAddr<BlockNode *> BA : Blocks) { |
467 | auto Ps = BA.Addr->members_if(P: DFG.IsCode<NodeAttrs::Phi>, G: DFG); |
468 | llvm::append_range(C&: Phis, R&: Ps); |
469 | } |
470 | |
471 | // phi use -> (map: reaching phi -> set of registers defined in between) |
472 | std::map<NodeId, std::map<NodeId, RegisterAggr>> PhiUp; |
473 | std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation. |
474 | std::unordered_map<NodeId, RegisterAggr> |
475 | PhiDRs; // Phi -> registers defined by it. |
476 | |
477 | // Go over all phis. |
478 | for (NodeAddr<PhiNode *> PhiA : Phis) { |
479 | // Go over all defs and collect the reached uses that are non-phi uses |
480 | // (i.e. the "real uses"). |
481 | RefMap &RealUses = RealUseMap[PhiA.Id]; |
482 | NodeList PhiRefs = PhiA.Addr->members(G: DFG); |
483 | |
484 | // Have a work queue of defs whose reached uses need to be found. |
485 | // For each def, add to the queue all reached (non-phi) defs. |
486 | SetVector<NodeId> DefQ; |
487 | NodeSet PhiDefs; |
488 | RegisterAggr DRs(PRI); |
489 | for (NodeAddr<RefNode *> R : PhiRefs) { |
490 | if (!DFG.IsRef<NodeAttrs::Def>(BA: R)) |
491 | continue; |
492 | DRs.insert(RR: R.Addr->getRegRef(G: DFG)); |
493 | DefQ.insert(X: R.Id); |
494 | PhiDefs.insert(x: R.Id); |
495 | } |
496 | PhiDRs.insert(x: std::make_pair(x&: PhiA.Id, y&: DRs)); |
497 | |
498 | // Collect the super-set of all possible reached uses. This set will |
499 | // contain all uses reached from this phi, either directly from the |
500 | // phi defs, or (recursively) via non-phi defs reached by the phi defs. |
501 | // This set of uses will later be trimmed to only contain these uses that |
502 | // are actually reached by the phi defs. |
503 | for (unsigned i = 0; i < DefQ.size(); ++i) { |
504 | NodeAddr<DefNode *> DA = DFG.addr<DefNode *>(N: DefQ[i]); |
505 | // Visit all reached uses. Phi defs should not really have the "dead" |
506 | // flag set, but check it anyway for consistency. |
507 | bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead; |
508 | NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0; |
509 | while (UN != 0) { |
510 | NodeAddr<UseNode *> A = DFG.addr<UseNode *>(N: UN); |
511 | uint16_t F = A.Addr->getFlags(); |
512 | if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) { |
513 | RegisterRef R = A.Addr->getRegRef(G: DFG); |
514 | RealUses[R.Reg].insert(x: {A.Id, R.Mask}); |
515 | } |
516 | UN = A.Addr->getSibling(); |
517 | } |
518 | // Visit all reached defs, and add them to the queue. These defs may |
519 | // override some of the uses collected here, but that will be handled |
520 | // later. |
521 | NodeId DN = DA.Addr->getReachedDef(); |
522 | while (DN != 0) { |
523 | NodeAddr<DefNode *> A = DFG.addr<DefNode *>(N: DN); |
524 | for (auto T : DFG.getRelatedRefs(IA: A.Addr->getOwner(G: DFG), RA: A)) { |
525 | uint16_t Flags = NodeAddr<DefNode *>(T).Addr->getFlags(); |
526 | // Must traverse the reached-def chain. Consider: |
527 | // def(D0) -> def(R0) -> def(R0) -> use(D0) |
528 | // The reachable use of D0 passes through a def of R0. |
529 | if (!(Flags & NodeAttrs::PhiRef)) |
530 | DefQ.insert(X: T.Id); |
531 | } |
532 | DN = A.Addr->getSibling(); |
533 | } |
534 | } |
535 | // Filter out these uses that appear to be reachable, but really |
536 | // are not. For example: |
537 | // |
538 | // R1:0 = d1 |
539 | // = R1:0 u2 Reached by d1. |
540 | // R0 = d3 |
541 | // = R1:0 u4 Still reached by d1: indirectly through |
542 | // the def d3. |
543 | // R1 = d5 |
544 | // = R1:0 u6 Not reached by d1 (covered collectively |
545 | // by d3 and d5), but following reached |
546 | // defs and uses from d1 will lead here. |
547 | for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE;) { |
548 | // For each reached register UI->first, there is a set UI->second, of |
549 | // uses of it. For each such use, check if it is reached by this phi, |
550 | // i.e. check if the set of its reaching uses intersects the set of |
551 | // this phi's defs. |
552 | NodeRefSet Uses = UI->second; |
553 | UI->second.clear(); |
554 | for (std::pair<NodeId, LaneBitmask> I : Uses) { |
555 | auto UA = DFG.addr<UseNode *>(N: I.first); |
556 | // Undef flag is checked above. |
557 | assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0); |
558 | RegisterRef UseR(UI->first, I.second); // Ref from Uses |
559 | // R = intersection of the ref from the phi and the ref from Uses |
560 | RegisterRef R = PhiDRs.at(k: PhiA.Id).intersectWith(RR: UseR); |
561 | if (!R) |
562 | continue; |
563 | // Calculate the exposed part of the reached use. |
564 | RegisterAggr Covered(PRI); |
565 | for (NodeAddr<DefNode *> DA : getAllReachingDefs(RefRR: R, RefA: UA)) { |
566 | if (PhiDefs.count(x: DA.Id)) |
567 | break; |
568 | Covered.insert(RR: DA.Addr->getRegRef(G: DFG)); |
569 | } |
570 | if (RegisterRef RC = Covered.clearIn(RR: R)) { |
571 | // We are updating the map for register UI->first, so we need |
572 | // to map RC to be expressed in terms of that register. |
573 | RegisterRef S = PRI.mapTo(RR: RC, R: UI->first); |
574 | UI->second.insert(x: {I.first, S.Mask}); |
575 | } |
576 | } |
577 | UI = UI->second.empty() ? RealUses.erase(position: UI) : std::next(x: UI); |
578 | } |
579 | |
580 | // If this phi reaches some "real" uses, add it to the queue for upward |
581 | // propagation. |
582 | if (!RealUses.empty()) |
583 | PhiUQ.push_back(x: PhiA.Id); |
584 | |
585 | // Go over all phi uses and check if the reaching def is another phi. |
586 | // Collect the phis that are among the reaching defs of these uses. |
587 | // While traversing the list of reaching defs for each phi use, accumulate |
588 | // the set of registers defined between this phi (PhiA) and the owner phi |
589 | // of the reaching def. |
590 | NodeSet SeenUses; |
591 | |
592 | for (auto I : PhiRefs) { |
593 | if (!DFG.IsRef<NodeAttrs::Use>(BA: I) || SeenUses.count(x: I.Id)) |
594 | continue; |
595 | NodeAddr<PhiUseNode *> PUA = I; |
596 | if (PUA.Addr->getReachingDef() == 0) |
597 | continue; |
598 | |
599 | RegisterRef UR = PUA.Addr->getRegRef(G: DFG); |
600 | NodeList Ds = getAllReachingDefs(RefRR: UR, RefA: PUA, TopShadows: true, FullChain: false, DefRRs: NoRegs); |
601 | RegisterAggr DefRRs(PRI); |
602 | |
603 | for (NodeAddr<DefNode *> D : Ds) { |
604 | if (D.Addr->getFlags() & NodeAttrs::PhiRef) { |
605 | NodeId RP = D.Addr->getOwner(G: DFG).Id; |
606 | std::map<NodeId, RegisterAggr> &M = PhiUp[PUA.Id]; |
607 | auto F = M.find(x: RP); |
608 | if (F == M.end()) |
609 | M.insert(x: std::make_pair(x&: RP, y&: DefRRs)); |
610 | else |
611 | F->second.insert(RG: DefRRs); |
612 | } |
613 | DefRRs.insert(RR: D.Addr->getRegRef(G: DFG)); |
614 | } |
615 | |
616 | for (NodeAddr<PhiUseNode *> T : DFG.getRelatedRefs(IA: PhiA, RA: PUA)) |
617 | SeenUses.insert(x: T.Id); |
618 | } |
619 | } |
620 | |
621 | if (Trace) { |
622 | dbgs() << "Phi-up-to-phi map with intervening defs:\n" ; |
623 | for (auto I : PhiUp) { |
624 | dbgs() << "phi " << Print(I.first, DFG) << " -> {" ; |
625 | for (auto R : I.second) |
626 | dbgs() << ' ' << Print(R.first, DFG) << Print(R.second, DFG); |
627 | dbgs() << " }\n" ; |
628 | } |
629 | } |
630 | |
631 | // Propagate the reached registers up in the phi chain. |
632 | // |
633 | // The following type of situation needs careful handling: |
634 | // |
635 | // phi d1<R1:0> (1) |
636 | // | |
637 | // ... d2<R1> |
638 | // | |
639 | // phi u3<R1:0> (2) |
640 | // | |
641 | // ... u4<R1> |
642 | // |
643 | // The phi node (2) defines a register pair R1:0, and reaches a "real" |
644 | // use u4 of just R1. The same phi node is also known to reach (upwards) |
645 | // the phi node (1). However, the use u4 is not reached by phi (1), |
646 | // because of the intervening definition d2 of R1. The data flow between |
647 | // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0. |
648 | // |
649 | // When propagating uses up the phi chains, get the all reaching defs |
650 | // for a given phi use, and traverse the list until the propagated ref |
651 | // is covered, or until reaching the final phi. Only assume that the |
652 | // reference reaches the phi in the latter case. |
653 | |
654 | // The operation "clearIn" can be expensive. For a given set of intervening |
655 | // defs, cache the result of subtracting these defs from a given register |
656 | // ref. |
657 | using RefHash = std::hash<RegisterRef>; |
658 | using RefEqual = std::equal_to<RegisterRef>; |
659 | using SubMap = std::unordered_map<RegisterRef, RegisterRef>; |
660 | std::unordered_map<RegisterAggr, SubMap> Subs; |
661 | auto ClearIn = [](RegisterRef RR, const RegisterAggr &Mid, SubMap &SM) { |
662 | if (Mid.empty()) |
663 | return RR; |
664 | auto F = SM.find(x: RR); |
665 | if (F != SM.end()) |
666 | return F->second; |
667 | RegisterRef S = Mid.clearIn(RR); |
668 | SM.insert(x: {RR, S}); |
669 | return S; |
670 | }; |
671 | |
672 | // Go over all phis. |
673 | for (unsigned i = 0; i < PhiUQ.size(); ++i) { |
674 | auto PA = DFG.addr<PhiNode *>(N: PhiUQ[i]); |
675 | NodeList PUs = PA.Addr->members_if(P: DFG.IsRef<NodeAttrs::Use>, G: DFG); |
676 | RefMap &RUM = RealUseMap[PA.Id]; |
677 | |
678 | for (NodeAddr<UseNode *> UA : PUs) { |
679 | std::map<NodeId, RegisterAggr> &PUM = PhiUp[UA.Id]; |
680 | RegisterRef UR = UA.Addr->getRegRef(G: DFG); |
681 | for (const std::pair<const NodeId, RegisterAggr> &P : PUM) { |
682 | bool Changed = false; |
683 | const RegisterAggr &MidDefs = P.second; |
684 | // Collect the set PropUp of uses that are reached by the current |
685 | // phi PA, and are not covered by any intervening def between the |
686 | // currently visited use UA and the upward phi P. |
687 | |
688 | if (MidDefs.hasCoverOf(RR: UR)) |
689 | continue; |
690 | if (Subs.find(x: MidDefs) == Subs.end()) { |
691 | Subs.insert(x: {MidDefs, SubMap(1, RefHash(), RefEqual(PRI))}); |
692 | } |
693 | SubMap &SM = Subs.at(k: MidDefs); |
694 | |
695 | // General algorithm: |
696 | // for each (R,U) : U is use node of R, U is reached by PA |
697 | // if MidDefs does not cover (R,U) |
698 | // then add (R-MidDefs,U) to RealUseMap[P] |
699 | // |
700 | for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) { |
701 | RegisterRef R(T.first); |
702 | // The current phi (PA) could be a phi for a regmask. It could |
703 | // reach a whole variety of uses that are not related to the |
704 | // specific upward phi (P.first). |
705 | const RegisterAggr &DRs = PhiDRs.at(k: P.first); |
706 | if (!DRs.hasAliasOf(RR: R)) |
707 | continue; |
708 | R = PRI.mapTo(RR: DRs.intersectWith(RR: R), R: T.first); |
709 | for (std::pair<NodeId, LaneBitmask> V : T.second) { |
710 | LaneBitmask M = R.Mask & V.second; |
711 | if (M.none()) |
712 | continue; |
713 | if (RegisterRef SS = ClearIn(RegisterRef(R.Reg, M), MidDefs, SM)) { |
714 | NodeRefSet &RS = RealUseMap[P.first][SS.Reg]; |
715 | Changed |= RS.insert(x: {V.first, SS.Mask}).second; |
716 | } |
717 | } |
718 | } |
719 | |
720 | if (Changed) |
721 | PhiUQ.push_back(x: P.first); |
722 | } |
723 | } |
724 | } |
725 | |
726 | if (Trace) { |
727 | dbgs() << "Real use map:\n" ; |
728 | for (auto I : RealUseMap) { |
729 | dbgs() << "phi " << Print(I.first, DFG); |
730 | NodeAddr<PhiNode *> PA = DFG.addr<PhiNode *>(N: I.first); |
731 | NodeList Ds = PA.Addr->members_if(P: DFG.IsRef<NodeAttrs::Def>, G: DFG); |
732 | if (!Ds.empty()) { |
733 | RegisterRef RR = NodeAddr<DefNode *>(Ds[0]).Addr->getRegRef(G: DFG); |
734 | dbgs() << '<' << Print(RR, DFG) << '>'; |
735 | } else { |
736 | dbgs() << "<noreg>" ; |
737 | } |
738 | dbgs() << " -> " << Print(I.second, DFG) << '\n'; |
739 | } |
740 | } |
741 | } |
742 | |
743 | void Liveness::computeLiveIns() { |
744 | // Populate the node-to-block map. This speeds up the calculations |
745 | // significantly. |
746 | NBMap.clear(); |
747 | for (NodeAddr<BlockNode *> BA : DFG.getFunc().Addr->members(G: DFG)) { |
748 | MachineBasicBlock *BB = BA.Addr->getCode(); |
749 | for (NodeAddr<InstrNode *> IA : BA.Addr->members(G: DFG)) { |
750 | for (NodeAddr<RefNode *> RA : IA.Addr->members(G: DFG)) |
751 | NBMap.insert(KV: std::make_pair(x&: RA.Id, y&: BB)); |
752 | NBMap.insert(KV: std::make_pair(x&: IA.Id, y&: BB)); |
753 | } |
754 | } |
755 | |
756 | MachineFunction &MF = DFG.getMF(); |
757 | |
758 | // Compute IDF first, then the inverse. |
759 | decltype(IIDF) IDF; |
760 | for (MachineBasicBlock &B : MF) { |
761 | auto F1 = MDF.find(B: &B); |
762 | if (F1 == MDF.end()) |
763 | continue; |
764 | SetVector<MachineBasicBlock *> IDFB(F1->second.begin(), F1->second.end()); |
765 | for (unsigned i = 0; i < IDFB.size(); ++i) { |
766 | auto F2 = MDF.find(B: IDFB[i]); |
767 | if (F2 != MDF.end()) |
768 | IDFB.insert(Start: F2->second.begin(), End: F2->second.end()); |
769 | } |
770 | // Add B to the IDF(B). This will put B in the IIDF(B). |
771 | IDFB.insert(X: &B); |
772 | IDF[&B].insert(first: IDFB.begin(), last: IDFB.end()); |
773 | } |
774 | |
775 | for (auto I : IDF) |
776 | for (auto *S : I.second) |
777 | IIDF[S].insert(x: I.first); |
778 | |
779 | computePhiInfo(); |
780 | |
781 | NodeAddr<FuncNode *> FA = DFG.getFunc(); |
782 | NodeList Blocks = FA.Addr->members(G: DFG); |
783 | |
784 | // Build the phi live-on-entry map. |
785 | for (NodeAddr<BlockNode *> BA : Blocks) { |
786 | MachineBasicBlock *MB = BA.Addr->getCode(); |
787 | RefMap &LON = PhiLON[MB]; |
788 | for (auto P : BA.Addr->members_if(P: DFG.IsCode<NodeAttrs::Phi>, G: DFG)) { |
789 | for (const RefMap::value_type &S : RealUseMap[P.Id]) |
790 | LON[S.first].insert(first: S.second.begin(), last: S.second.end()); |
791 | } |
792 | } |
793 | |
794 | if (Trace) { |
795 | dbgs() << "Phi live-on-entry map:\n" ; |
796 | for (auto &I : PhiLON) |
797 | dbgs() << "block #" << I.first->getNumber() << " -> " |
798 | << Print(I.second, DFG) << '\n'; |
799 | } |
800 | |
801 | // Build the phi live-on-exit map. Each phi node has some set of reached |
802 | // "real" uses. Propagate this set backwards into the block predecessors |
803 | // through the reaching defs of the corresponding phi uses. |
804 | for (NodeAddr<BlockNode *> BA : Blocks) { |
805 | NodeList Phis = BA.Addr->members_if(P: DFG.IsCode<NodeAttrs::Phi>, G: DFG); |
806 | for (NodeAddr<PhiNode *> PA : Phis) { |
807 | RefMap &RUs = RealUseMap[PA.Id]; |
808 | if (RUs.empty()) |
809 | continue; |
810 | |
811 | NodeSet SeenUses; |
812 | for (auto U : PA.Addr->members_if(P: DFG.IsRef<NodeAttrs::Use>, G: DFG)) { |
813 | if (!SeenUses.insert(x: U.Id).second) |
814 | continue; |
815 | NodeAddr<PhiUseNode *> PUA = U; |
816 | if (PUA.Addr->getReachingDef() == 0) |
817 | continue; |
818 | |
819 | // Each phi has some set (possibly empty) of reached "real" uses, |
820 | // that is, uses that are part of the compiled program. Such a use |
821 | // may be located in some farther block, but following a chain of |
822 | // reaching defs will eventually lead to this phi. |
823 | // Any chain of reaching defs may fork at a phi node, but there |
824 | // will be a path upwards that will lead to this phi. Now, this |
825 | // chain will need to fork at this phi, since some of the reached |
826 | // uses may have definitions joining in from multiple predecessors. |
827 | // For each reached "real" use, identify the set of reaching defs |
828 | // coming from each predecessor P, and add them to PhiLOX[P]. |
829 | // |
830 | auto PrA = DFG.addr<BlockNode *>(N: PUA.Addr->getPredecessor()); |
831 | RefMap &LOX = PhiLOX[PrA.Addr->getCode()]; |
832 | |
833 | for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) { |
834 | // We need to visit each individual use. |
835 | for (std::pair<NodeId, LaneBitmask> P : RS.second) { |
836 | // Create a register ref corresponding to the use, and find |
837 | // all reaching defs starting from the phi use, and treating |
838 | // all related shadows as a single use cluster. |
839 | RegisterRef S(RS.first, P.second); |
840 | NodeList Ds = getAllReachingDefs(RefRR: S, RefA: PUA, TopShadows: true, FullChain: false, DefRRs: NoRegs); |
841 | for (NodeAddr<DefNode *> D : Ds) { |
842 | // Calculate the mask corresponding to the visited def. |
843 | RegisterAggr TA(PRI); |
844 | TA.insert(RR: D.Addr->getRegRef(G: DFG)).intersect(RR: S); |
845 | LaneBitmask TM = TA.makeRegRef().Mask; |
846 | LOX[S.Reg].insert(x: {D.Id, TM}); |
847 | } |
848 | } |
849 | } |
850 | |
851 | for (NodeAddr<PhiUseNode *> T : DFG.getRelatedRefs(IA: PA, RA: PUA)) |
852 | SeenUses.insert(x: T.Id); |
853 | } // for U : phi uses |
854 | } // for P : Phis |
855 | } // for B : Blocks |
856 | |
857 | if (Trace) { |
858 | dbgs() << "Phi live-on-exit map:\n" ; |
859 | for (auto &I : PhiLOX) |
860 | dbgs() << "block #" << I.first->getNumber() << " -> " |
861 | << Print(I.second, DFG) << '\n'; |
862 | } |
863 | |
864 | RefMap LiveIn; |
865 | traverse(B: &MF.front(), LiveIn); |
866 | |
867 | // Add function live-ins to the live-in set of the function entry block. |
868 | LiveMap[&MF.front()].insert(RG: DFG.getLiveIns()); |
869 | |
870 | if (Trace) { |
871 | // Dump the liveness map |
872 | for (MachineBasicBlock &B : MF) { |
873 | std::vector<RegisterRef> LV; |
874 | for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins()) |
875 | LV.push_back(x: RegisterRef(LI.PhysReg, LI.LaneMask)); |
876 | llvm::sort(C&: LV, Comp: std::less<RegisterRef>(PRI)); |
877 | dbgs() << printMBBReference(MBB: B) << "\t rec = {" ; |
878 | for (auto I : LV) |
879 | dbgs() << ' ' << Print(I, DFG); |
880 | dbgs() << " }\n" ; |
881 | // dbgs() << "\tcomp = " << Print(LiveMap[&B], DFG) << '\n'; |
882 | |
883 | LV.clear(); |
884 | for (RegisterRef RR : LiveMap[&B].refs()) |
885 | LV.push_back(x: RR); |
886 | llvm::sort(C&: LV, Comp: std::less<RegisterRef>(PRI)); |
887 | dbgs() << "\tcomp = {" ; |
888 | for (auto I : LV) |
889 | dbgs() << ' ' << Print(I, DFG); |
890 | dbgs() << " }\n" ; |
891 | } |
892 | } |
893 | } |
894 | |
895 | void Liveness::resetLiveIns() { |
896 | for (auto &B : DFG.getMF()) { |
897 | // Remove all live-ins. |
898 | std::vector<unsigned> T; |
899 | for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins()) |
900 | T.push_back(x: LI.PhysReg); |
901 | for (auto I : T) |
902 | B.removeLiveIn(Reg: I); |
903 | // Add the newly computed live-ins. |
904 | const RegisterAggr &LiveIns = LiveMap[&B]; |
905 | for (RegisterRef R : LiveIns.refs()) |
906 | B.addLiveIn(RegMaskPair: {MCPhysReg(R.Reg), R.Mask}); |
907 | } |
908 | } |
909 | |
910 | void Liveness::resetKills() { |
911 | for (auto &B : DFG.getMF()) |
912 | resetKills(B: &B); |
913 | } |
914 | |
915 | void Liveness::resetKills(MachineBasicBlock *B) { |
916 | auto CopyLiveIns = [this](MachineBasicBlock *B, BitVector &LV) -> void { |
917 | for (auto I : B->liveins()) { |
918 | MCSubRegIndexIterator S(I.PhysReg, &TRI); |
919 | if (!S.isValid()) { |
920 | LV.set(I.PhysReg); |
921 | continue; |
922 | } |
923 | do { |
924 | LaneBitmask M = TRI.getSubRegIndexLaneMask(SubIdx: S.getSubRegIndex()); |
925 | if ((M & I.LaneMask).any()) |
926 | LV.set(S.getSubReg()); |
927 | ++S; |
928 | } while (S.isValid()); |
929 | } |
930 | }; |
931 | |
932 | BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs()); |
933 | CopyLiveIns(B, LiveIn); |
934 | for (auto *SI : B->successors()) |
935 | CopyLiveIns(SI, Live); |
936 | |
937 | for (MachineInstr &MI : llvm::reverse(C&: *B)) { |
938 | if (MI.isDebugInstr()) |
939 | continue; |
940 | |
941 | MI.clearKillInfo(); |
942 | for (auto &Op : MI.all_defs()) { |
943 | // An implicit def of a super-register may not necessarily start a |
944 | // live range of it, since an implicit use could be used to keep parts |
945 | // of it live. Instead of analyzing the implicit operands, ignore |
946 | // implicit defs. |
947 | if (Op.isImplicit()) |
948 | continue; |
949 | Register R = Op.getReg(); |
950 | if (!R.isPhysical()) |
951 | continue; |
952 | for (MCPhysReg SR : TRI.subregs_inclusive(Reg: R)) |
953 | Live.reset(Idx: SR); |
954 | } |
955 | for (auto &Op : MI.all_uses()) { |
956 | if (Op.isUndef()) |
957 | continue; |
958 | Register R = Op.getReg(); |
959 | if (!R.isPhysical()) |
960 | continue; |
961 | bool IsLive = false; |
962 | for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) { |
963 | if (!Live[*AR]) |
964 | continue; |
965 | IsLive = true; |
966 | break; |
967 | } |
968 | if (!IsLive) |
969 | Op.setIsKill(true); |
970 | for (MCPhysReg SR : TRI.subregs_inclusive(Reg: R)) |
971 | Live.set(SR); |
972 | } |
973 | } |
974 | } |
975 | |
976 | // Helper function to obtain the basic block containing the reaching def |
977 | // of the given use. |
978 | MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const { |
979 | auto F = NBMap.find(Val: RN); |
980 | if (F != NBMap.end()) |
981 | return F->second; |
982 | llvm_unreachable("Node id not in map" ); |
983 | } |
984 | |
985 | void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) { |
986 | // The LiveIn map, for each (physical) register, contains the set of live |
987 | // reaching defs of that register that are live on entry to the associated |
988 | // block. |
989 | |
990 | // The summary of the traversal algorithm: |
991 | // |
992 | // R is live-in in B, if there exists a U(R), such that rdef(R) dom B |
993 | // and (U \in IDF(B) or B dom U). |
994 | // |
995 | // for (C : children) { |
996 | // LU = {} |
997 | // traverse(C, LU) |
998 | // LiveUses += LU |
999 | // } |
1000 | // |
1001 | // LiveUses -= Defs(B); |
1002 | // LiveUses += UpwardExposedUses(B); |
1003 | // for (C : IIDF[B]) |
1004 | // for (U : LiveUses) |
1005 | // if (Rdef(U) dom C) |
1006 | // C.addLiveIn(U) |
1007 | // |
1008 | |
1009 | // Go up the dominator tree (depth-first). |
1010 | MachineDomTreeNode *N = MDT.getNode(BB: B); |
1011 | for (auto *I : *N) { |
1012 | RefMap L; |
1013 | MachineBasicBlock *SB = I->getBlock(); |
1014 | traverse(B: SB, LiveIn&: L); |
1015 | |
1016 | for (auto S : L) |
1017 | LiveIn[S.first].insert(first: S.second.begin(), last: S.second.end()); |
1018 | } |
1019 | |
1020 | if (Trace) { |
1021 | dbgs() << "\n-- " << printMBBReference(MBB: *B) << ": " << __func__ |
1022 | << " after recursion into: {" ; |
1023 | for (auto *I : *N) |
1024 | dbgs() << ' ' << I->getBlock()->getNumber(); |
1025 | dbgs() << " }\n" ; |
1026 | dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; |
1027 | dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n'; |
1028 | } |
1029 | |
1030 | // Add reaching defs of phi uses that are live on exit from this block. |
1031 | RefMap &PUs = PhiLOX[B]; |
1032 | for (auto &S : PUs) |
1033 | LiveIn[S.first].insert(first: S.second.begin(), last: S.second.end()); |
1034 | |
1035 | if (Trace) { |
1036 | dbgs() << "after LOX\n" ; |
1037 | dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; |
1038 | dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n'; |
1039 | } |
1040 | |
1041 | // The LiveIn map at this point has all defs that are live-on-exit from B, |
1042 | // as if they were live-on-entry to B. First, we need to filter out all |
1043 | // defs that are present in this block. Then we will add reaching defs of |
1044 | // all upward-exposed uses. |
1045 | |
1046 | // To filter out the defs, first make a copy of LiveIn, and then re-populate |
1047 | // LiveIn with the defs that should remain. |
1048 | RefMap LiveInCopy = LiveIn; |
1049 | LiveIn.clear(); |
1050 | |
1051 | for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) { |
1052 | RegisterRef LRef(LE.first); |
1053 | NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled. |
1054 | const NodeRefSet &OldDefs = LE.second; |
1055 | for (NodeRef OR : OldDefs) { |
1056 | // R is a def node that was live-on-exit |
1057 | auto DA = DFG.addr<DefNode *>(N: OR.first); |
1058 | NodeAddr<InstrNode *> IA = DA.Addr->getOwner(G: DFG); |
1059 | NodeAddr<BlockNode *> BA = IA.Addr->getOwner(G: DFG); |
1060 | if (B != BA.Addr->getCode()) { |
1061 | // Defs from a different block need to be preserved. Defs from this |
1062 | // block will need to be processed further, except for phi defs, the |
1063 | // liveness of which is handled through the PhiLON/PhiLOX maps. |
1064 | NewDefs.insert(x: OR); |
1065 | continue; |
1066 | } |
1067 | |
1068 | // Defs from this block need to stop the liveness from being |
1069 | // propagated upwards. This only applies to non-preserving defs, |
1070 | // and to the parts of the register actually covered by those defs. |
1071 | // (Note that phi defs should always be preserving.) |
1072 | RegisterAggr RRs(PRI); |
1073 | LRef.Mask = OR.second; |
1074 | |
1075 | if (!DFG.IsPreservingDef(DA)) { |
1076 | assert(!(IA.Addr->getFlags() & NodeAttrs::Phi)); |
1077 | // DA is a non-phi def that is live-on-exit from this block, and |
1078 | // that is also located in this block. LRef is a register ref |
1079 | // whose use this def reaches. If DA covers LRef, then no part |
1080 | // of LRef is exposed upwards.A |
1081 | if (RRs.insert(RR: DA.Addr->getRegRef(G: DFG)).hasCoverOf(RR: LRef)) |
1082 | continue; |
1083 | } |
1084 | |
1085 | // DA itself was not sufficient to cover LRef. In general, it is |
1086 | // the last in a chain of aliased defs before the exit from this block. |
1087 | // There could be other defs in this block that are a part of that |
1088 | // chain. Check that now: accumulate the registers from these defs, |
1089 | // and if they all together cover LRef, it is not live-on-entry. |
1090 | for (NodeAddr<DefNode *> TA : getAllReachingDefs(RefA: DA)) { |
1091 | // DefNode -> InstrNode -> BlockNode. |
1092 | NodeAddr<InstrNode *> ITA = TA.Addr->getOwner(G: DFG); |
1093 | NodeAddr<BlockNode *> BTA = ITA.Addr->getOwner(G: DFG); |
1094 | // Reaching defs are ordered in the upward direction. |
1095 | if (BTA.Addr->getCode() != B) { |
1096 | // We have reached past the beginning of B, and the accumulated |
1097 | // registers are not covering LRef. The first def from the |
1098 | // upward chain will be live. |
1099 | // Subtract all accumulated defs (RRs) from LRef. |
1100 | RegisterRef T = RRs.clearIn(RR: LRef); |
1101 | assert(T); |
1102 | NewDefs.insert(x: {TA.Id, T.Mask}); |
1103 | break; |
1104 | } |
1105 | |
1106 | // TA is in B. Only add this def to the accumulated cover if it is |
1107 | // not preserving. |
1108 | if (!(TA.Addr->getFlags() & NodeAttrs::Preserving)) |
1109 | RRs.insert(RR: TA.Addr->getRegRef(G: DFG)); |
1110 | // If this is enough to cover LRef, then stop. |
1111 | if (RRs.hasCoverOf(RR: LRef)) |
1112 | break; |
1113 | } |
1114 | } |
1115 | } |
1116 | |
1117 | emptify(M&: LiveIn); |
1118 | |
1119 | if (Trace) { |
1120 | dbgs() << "after defs in block\n" ; |
1121 | dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; |
1122 | dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n'; |
1123 | } |
1124 | |
1125 | // Scan the block for upward-exposed uses and add them to the tracking set. |
1126 | for (auto I : DFG.getFunc().Addr->findBlock(BB: B, G: DFG).Addr->members(G: DFG)) { |
1127 | NodeAddr<InstrNode *> IA = I; |
1128 | if (IA.Addr->getKind() != NodeAttrs::Stmt) |
1129 | continue; |
1130 | for (NodeAddr<UseNode *> UA : IA.Addr->members_if(P: DFG.IsUse, G: DFG)) { |
1131 | if (UA.Addr->getFlags() & NodeAttrs::Undef) |
1132 | continue; |
1133 | RegisterRef RR = UA.Addr->getRegRef(G: DFG); |
1134 | for (NodeAddr<DefNode *> D : getAllReachingDefs(RefA: UA)) |
1135 | if (getBlockWithRef(RN: D.Id) != B) |
1136 | LiveIn[RR.Reg].insert(x: {D.Id, RR.Mask}); |
1137 | } |
1138 | } |
1139 | |
1140 | if (Trace) { |
1141 | dbgs() << "after uses in block\n" ; |
1142 | dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; |
1143 | dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n'; |
1144 | } |
1145 | |
1146 | // Phi uses should not be propagated up the dominator tree, since they |
1147 | // are not dominated by their corresponding reaching defs. |
1148 | RegisterAggr &Local = LiveMap[B]; |
1149 | RefMap &LON = PhiLON[B]; |
1150 | for (auto &R : LON) { |
1151 | LaneBitmask M; |
1152 | for (auto P : R.second) |
1153 | M |= P.second; |
1154 | Local.insert(RR: RegisterRef(R.first, M)); |
1155 | } |
1156 | |
1157 | if (Trace) { |
1158 | dbgs() << "after phi uses in block\n" ; |
1159 | dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; |
1160 | dbgs() << " Local: " << Print(Local, DFG) << '\n'; |
1161 | } |
1162 | |
1163 | for (auto *C : IIDF[B]) { |
1164 | RegisterAggr &LiveC = LiveMap[C]; |
1165 | for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn) |
1166 | for (auto R : S.second) |
1167 | if (MDT.properlyDominates(A: getBlockWithRef(RN: R.first), B: C)) |
1168 | LiveC.insert(RR: RegisterRef(S.first, R.second)); |
1169 | } |
1170 | } |
1171 | |
1172 | void Liveness::emptify(RefMap &M) { |
1173 | for (auto I = M.begin(), E = M.end(); I != E;) |
1174 | I = I->second.empty() ? M.erase(position: I) : std::next(x: I); |
1175 | } |
1176 | |
1177 | } // namespace llvm::rdf |
1178 | |