1 | //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the ARM-specific support for the FastISel class. Some |
10 | // of the target-specific code is generated by tablegen in the file |
11 | // ARMGenFastISel.inc, which is #included here. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "ARM.h" |
16 | #include "ARMBaseInstrInfo.h" |
17 | #include "ARMBaseRegisterInfo.h" |
18 | #include "ARMCallingConv.h" |
19 | #include "ARMConstantPoolValue.h" |
20 | #include "ARMISelLowering.h" |
21 | #include "ARMMachineFunctionInfo.h" |
22 | #include "ARMSubtarget.h" |
23 | #include "MCTargetDesc/ARMAddressingModes.h" |
24 | #include "MCTargetDesc/ARMBaseInfo.h" |
25 | #include "Utils/ARMBaseInfo.h" |
26 | #include "llvm/ADT/APFloat.h" |
27 | #include "llvm/ADT/APInt.h" |
28 | #include "llvm/ADT/DenseMap.h" |
29 | #include "llvm/ADT/SmallVector.h" |
30 | #include "llvm/CodeGen/CallingConvLower.h" |
31 | #include "llvm/CodeGen/FastISel.h" |
32 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
33 | #include "llvm/CodeGen/ISDOpcodes.h" |
34 | #include "llvm/CodeGen/MachineBasicBlock.h" |
35 | #include "llvm/CodeGen/MachineConstantPool.h" |
36 | #include "llvm/CodeGen/MachineFrameInfo.h" |
37 | #include "llvm/CodeGen/MachineFunction.h" |
38 | #include "llvm/CodeGen/MachineInstr.h" |
39 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
40 | #include "llvm/CodeGen/MachineMemOperand.h" |
41 | #include "llvm/CodeGen/MachineOperand.h" |
42 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
43 | #include "llvm/CodeGen/RuntimeLibcallUtil.h" |
44 | #include "llvm/CodeGen/TargetInstrInfo.h" |
45 | #include "llvm/CodeGen/TargetLowering.h" |
46 | #include "llvm/CodeGen/TargetOpcodes.h" |
47 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
48 | #include "llvm/CodeGen/ValueTypes.h" |
49 | #include "llvm/CodeGenTypes/MachineValueType.h" |
50 | #include "llvm/IR/Argument.h" |
51 | #include "llvm/IR/Attributes.h" |
52 | #include "llvm/IR/CallingConv.h" |
53 | #include "llvm/IR/Constant.h" |
54 | #include "llvm/IR/Constants.h" |
55 | #include "llvm/IR/DataLayout.h" |
56 | #include "llvm/IR/DerivedTypes.h" |
57 | #include "llvm/IR/Function.h" |
58 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
59 | #include "llvm/IR/GlobalValue.h" |
60 | #include "llvm/IR/GlobalVariable.h" |
61 | #include "llvm/IR/InstrTypes.h" |
62 | #include "llvm/IR/Instruction.h" |
63 | #include "llvm/IR/Instructions.h" |
64 | #include "llvm/IR/IntrinsicInst.h" |
65 | #include "llvm/IR/Intrinsics.h" |
66 | #include "llvm/IR/Module.h" |
67 | #include "llvm/IR/Operator.h" |
68 | #include "llvm/IR/Type.h" |
69 | #include "llvm/IR/User.h" |
70 | #include "llvm/IR/Value.h" |
71 | #include "llvm/MC/MCInstrDesc.h" |
72 | #include "llvm/MC/MCRegisterInfo.h" |
73 | #include "llvm/Support/Casting.h" |
74 | #include "llvm/Support/Compiler.h" |
75 | #include "llvm/Support/ErrorHandling.h" |
76 | #include "llvm/Support/MathExtras.h" |
77 | #include "llvm/Target/TargetMachine.h" |
78 | #include "llvm/Target/TargetOptions.h" |
79 | #include <cassert> |
80 | #include <cstdint> |
81 | #include <utility> |
82 | |
83 | using namespace llvm; |
84 | |
85 | namespace { |
86 | |
87 | // All possible address modes, plus some. |
88 | struct Address { |
89 | enum { |
90 | RegBase, |
91 | FrameIndexBase |
92 | } BaseType = RegBase; |
93 | |
94 | union { |
95 | unsigned Reg; |
96 | int FI; |
97 | } Base; |
98 | |
99 | int Offset = 0; |
100 | |
101 | // Innocuous defaults for our address. |
102 | Address() { |
103 | Base.Reg = 0; |
104 | } |
105 | }; |
106 | |
107 | class ARMFastISel final : public FastISel { |
108 | /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can |
109 | /// make the right decision when generating code for different targets. |
110 | const ARMSubtarget *Subtarget; |
111 | Module &M; |
112 | const TargetMachine &TM; |
113 | const TargetInstrInfo &TII; |
114 | const TargetLowering &TLI; |
115 | ARMFunctionInfo *AFI; |
116 | |
117 | // Convenience variables to avoid some queries. |
118 | bool isThumb2; |
119 | LLVMContext *Context; |
120 | |
121 | public: |
122 | explicit ARMFastISel(FunctionLoweringInfo &funcInfo, |
123 | const TargetLibraryInfo *libInfo) |
124 | : FastISel(funcInfo, libInfo), |
125 | Subtarget(&funcInfo.MF->getSubtarget<ARMSubtarget>()), |
126 | M(const_cast<Module &>(*funcInfo.Fn->getParent())), |
127 | TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), |
128 | TLI(*Subtarget->getTargetLowering()) { |
129 | AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); |
130 | isThumb2 = AFI->isThumbFunction(); |
131 | Context = &funcInfo.Fn->getContext(); |
132 | } |
133 | |
134 | private: |
135 | // Code from FastISel.cpp. |
136 | |
137 | unsigned fastEmitInst_r(unsigned MachineInstOpcode, |
138 | const TargetRegisterClass *RC, unsigned Op0); |
139 | unsigned fastEmitInst_rr(unsigned MachineInstOpcode, |
140 | const TargetRegisterClass *RC, |
141 | unsigned Op0, unsigned Op1); |
142 | unsigned fastEmitInst_ri(unsigned MachineInstOpcode, |
143 | const TargetRegisterClass *RC, |
144 | unsigned Op0, uint64_t Imm); |
145 | unsigned fastEmitInst_i(unsigned MachineInstOpcode, |
146 | const TargetRegisterClass *RC, |
147 | uint64_t Imm); |
148 | |
149 | // Backend specific FastISel code. |
150 | |
151 | bool fastSelectInstruction(const Instruction *I) override; |
152 | unsigned fastMaterializeConstant(const Constant *C) override; |
153 | unsigned fastMaterializeAlloca(const AllocaInst *AI) override; |
154 | bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, |
155 | const LoadInst *LI) override; |
156 | bool fastLowerArguments() override; |
157 | |
158 | #include "ARMGenFastISel.inc" |
159 | |
160 | // Instruction selection routines. |
161 | |
162 | bool SelectLoad(const Instruction *I); |
163 | bool SelectStore(const Instruction *I); |
164 | bool SelectBranch(const Instruction *I); |
165 | bool SelectIndirectBr(const Instruction *I); |
166 | bool SelectCmp(const Instruction *I); |
167 | bool SelectFPExt(const Instruction *I); |
168 | bool SelectFPTrunc(const Instruction *I); |
169 | bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); |
170 | bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); |
171 | bool SelectIToFP(const Instruction *I, bool isSigned); |
172 | bool SelectFPToI(const Instruction *I, bool isSigned); |
173 | bool SelectDiv(const Instruction *I, bool isSigned); |
174 | bool SelectRem(const Instruction *I, bool isSigned); |
175 | bool SelectCall(const Instruction *I, const char *IntrMemName); |
176 | bool SelectIntrinsicCall(const IntrinsicInst &I); |
177 | bool SelectSelect(const Instruction *I); |
178 | bool SelectRet(const Instruction *I); |
179 | bool SelectTrunc(const Instruction *I); |
180 | bool SelectIntExt(const Instruction *I); |
181 | bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); |
182 | |
183 | // Utility routines. |
184 | |
185 | bool isPositionIndependent() const; |
186 | bool isTypeLegal(Type *Ty, MVT &VT); |
187 | bool isLoadTypeLegal(Type *Ty, MVT &VT); |
188 | bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, |
189 | bool isZExt); |
190 | bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, |
191 | MaybeAlign Alignment = std::nullopt, bool isZExt = true, |
192 | bool allocReg = true); |
193 | bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, |
194 | MaybeAlign Alignment = std::nullopt); |
195 | bool ARMComputeAddress(const Value *Obj, Address &Addr); |
196 | void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); |
197 | bool ARMIsMemCpySmall(uint64_t Len); |
198 | bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, |
199 | MaybeAlign Alignment); |
200 | unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); |
201 | unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); |
202 | unsigned ARMMaterializeInt(const Constant *C, MVT VT); |
203 | unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); |
204 | unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); |
205 | unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); |
206 | unsigned ARMSelectCallOp(bool UseReg); |
207 | unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT); |
208 | |
209 | const TargetLowering *getTargetLowering() { return &TLI; } |
210 | |
211 | // Call handling routines. |
212 | |
213 | CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, |
214 | bool Return, |
215 | bool isVarArg); |
216 | bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, |
217 | SmallVectorImpl<Register> &ArgRegs, |
218 | SmallVectorImpl<MVT> &ArgVTs, |
219 | SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, |
220 | SmallVectorImpl<Register> &RegArgs, |
221 | CallingConv::ID CC, |
222 | unsigned &NumBytes, |
223 | bool isVarArg); |
224 | unsigned getLibcallReg(const Twine &Name); |
225 | bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, |
226 | const Instruction *I, CallingConv::ID CC, |
227 | unsigned &NumBytes, bool isVarArg); |
228 | bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); |
229 | |
230 | // OptionalDef handling routines. |
231 | |
232 | bool isARMNEONPred(const MachineInstr *MI); |
233 | bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); |
234 | const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); |
235 | void AddLoadStoreOperands(MVT VT, Address &Addr, |
236 | const MachineInstrBuilder &MIB, |
237 | MachineMemOperand::Flags Flags, bool useAM3); |
238 | }; |
239 | |
240 | } // end anonymous namespace |
241 | |
242 | // DefinesOptionalPredicate - This is different from DefinesPredicate in that |
243 | // we don't care about implicit defs here, just places we'll need to add a |
244 | // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. |
245 | bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { |
246 | if (!MI->hasOptionalDef()) |
247 | return false; |
248 | |
249 | // Look to see if our OptionalDef is defining CPSR or CCR. |
250 | for (const MachineOperand &MO : MI->operands()) { |
251 | if (!MO.isReg() || !MO.isDef()) continue; |
252 | if (MO.getReg() == ARM::CPSR) |
253 | *CPSR = true; |
254 | } |
255 | return true; |
256 | } |
257 | |
258 | bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { |
259 | const MCInstrDesc &MCID = MI->getDesc(); |
260 | |
261 | // If we're a thumb2 or not NEON function we'll be handled via isPredicable. |
262 | if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || |
263 | AFI->isThumb2Function()) |
264 | return MI->isPredicable(); |
265 | |
266 | for (const MCOperandInfo &opInfo : MCID.operands()) |
267 | if (opInfo.isPredicate()) |
268 | return true; |
269 | |
270 | return false; |
271 | } |
272 | |
273 | // If the machine is predicable go ahead and add the predicate operands, if |
274 | // it needs default CC operands add those. |
275 | // TODO: If we want to support thumb1 then we'll need to deal with optional |
276 | // CPSR defs that need to be added before the remaining operands. See s_cc_out |
277 | // for descriptions why. |
278 | const MachineInstrBuilder & |
279 | ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { |
280 | MachineInstr *MI = &*MIB; |
281 | |
282 | // Do we use a predicate? or... |
283 | // Are we NEON in ARM mode and have a predicate operand? If so, I know |
284 | // we're not predicable but add it anyways. |
285 | if (isARMNEONPred(MI)) |
286 | MIB.add(MOs: predOps(Pred: ARMCC::AL)); |
287 | |
288 | // Do we optionally set a predicate? Preds is size > 0 iff the predicate |
289 | // defines CPSR. All other OptionalDefines in ARM are the CCR register. |
290 | bool CPSR = false; |
291 | if (DefinesOptionalPredicate(MI, CPSR: &CPSR)) |
292 | MIB.add(MO: CPSR ? t1CondCodeOp() : condCodeOp()); |
293 | return MIB; |
294 | } |
295 | |
296 | unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, |
297 | const TargetRegisterClass *RC, |
298 | unsigned Op0) { |
299 | Register ResultReg = createResultReg(RC); |
300 | const MCInstrDesc &II = TII.get(Opcode: MachineInstOpcode); |
301 | |
302 | // Make sure the input operand is sufficiently constrained to be legal |
303 | // for this instruction. |
304 | Op0 = constrainOperandRegClass(II, Op: Op0, OpNum: 1); |
305 | if (II.getNumDefs() >= 1) { |
306 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, |
307 | DestReg: ResultReg).addReg(RegNo: Op0)); |
308 | } else { |
309 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
310 | .addReg(RegNo: Op0)); |
311 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
312 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg) |
313 | .addReg(RegNo: II.implicit_defs()[0])); |
314 | } |
315 | return ResultReg; |
316 | } |
317 | |
318 | unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, |
319 | const TargetRegisterClass *RC, |
320 | unsigned Op0, unsigned Op1) { |
321 | Register ResultReg = createResultReg(RC); |
322 | const MCInstrDesc &II = TII.get(Opcode: MachineInstOpcode); |
323 | |
324 | // Make sure the input operands are sufficiently constrained to be legal |
325 | // for this instruction. |
326 | Op0 = constrainOperandRegClass(II, Op: Op0, OpNum: 1); |
327 | Op1 = constrainOperandRegClass(II, Op: Op1, OpNum: 2); |
328 | |
329 | if (II.getNumDefs() >= 1) { |
330 | AddOptionalDefs( |
331 | MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg) |
332 | .addReg(RegNo: Op0) |
333 | .addReg(RegNo: Op1)); |
334 | } else { |
335 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
336 | .addReg(RegNo: Op0) |
337 | .addReg(RegNo: Op1)); |
338 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
339 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg) |
340 | .addReg(RegNo: II.implicit_defs()[0])); |
341 | } |
342 | return ResultReg; |
343 | } |
344 | |
345 | unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, |
346 | const TargetRegisterClass *RC, |
347 | unsigned Op0, uint64_t Imm) { |
348 | Register ResultReg = createResultReg(RC); |
349 | const MCInstrDesc &II = TII.get(Opcode: MachineInstOpcode); |
350 | |
351 | // Make sure the input operand is sufficiently constrained to be legal |
352 | // for this instruction. |
353 | Op0 = constrainOperandRegClass(II, Op: Op0, OpNum: 1); |
354 | if (II.getNumDefs() >= 1) { |
355 | AddOptionalDefs( |
356 | MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg) |
357 | .addReg(RegNo: Op0) |
358 | .addImm(Val: Imm)); |
359 | } else { |
360 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
361 | .addReg(RegNo: Op0) |
362 | .addImm(Val: Imm)); |
363 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
364 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg) |
365 | .addReg(RegNo: II.implicit_defs()[0])); |
366 | } |
367 | return ResultReg; |
368 | } |
369 | |
370 | unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, |
371 | const TargetRegisterClass *RC, |
372 | uint64_t Imm) { |
373 | Register ResultReg = createResultReg(RC); |
374 | const MCInstrDesc &II = TII.get(Opcode: MachineInstOpcode); |
375 | |
376 | if (II.getNumDefs() >= 1) { |
377 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, |
378 | DestReg: ResultReg).addImm(Val: Imm)); |
379 | } else { |
380 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
381 | .addImm(Val: Imm)); |
382 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
383 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg) |
384 | .addReg(RegNo: II.implicit_defs()[0])); |
385 | } |
386 | return ResultReg; |
387 | } |
388 | |
389 | // TODO: Don't worry about 64-bit now, but when this is fixed remove the |
390 | // checks from the various callers. |
391 | unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { |
392 | if (VT == MVT::f64) return 0; |
393 | |
394 | Register MoveReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
395 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
396 | MCID: TII.get(Opcode: ARM::VMOVSR), DestReg: MoveReg) |
397 | .addReg(RegNo: SrcReg)); |
398 | return MoveReg; |
399 | } |
400 | |
401 | unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { |
402 | if (VT == MVT::i64) return 0; |
403 | |
404 | Register MoveReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
405 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
406 | MCID: TII.get(Opcode: ARM::VMOVRS), DestReg: MoveReg) |
407 | .addReg(RegNo: SrcReg)); |
408 | return MoveReg; |
409 | } |
410 | |
411 | // For double width floating point we need to materialize two constants |
412 | // (the high and the low) into integer registers then use a move to get |
413 | // the combined constant into an FP reg. |
414 | unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { |
415 | const APFloat Val = CFP->getValueAPF(); |
416 | bool is64bit = VT == MVT::f64; |
417 | |
418 | // This checks to see if we can use VFP3 instructions to materialize |
419 | // a constant, otherwise we have to go through the constant pool. |
420 | if (TLI.isFPImmLegal(Val, VT)) { |
421 | int Imm; |
422 | unsigned Opc; |
423 | if (is64bit) { |
424 | Imm = ARM_AM::getFP64Imm(FPImm: Val); |
425 | Opc = ARM::FCONSTD; |
426 | } else { |
427 | Imm = ARM_AM::getFP32Imm(FPImm: Val); |
428 | Opc = ARM::FCONSTS; |
429 | } |
430 | Register DestReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
431 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
432 | MCID: TII.get(Opcode: Opc), DestReg).addImm(Val: Imm)); |
433 | return DestReg; |
434 | } |
435 | |
436 | // Require VFP2 for loading fp constants. |
437 | if (!Subtarget->hasVFP2Base()) return false; |
438 | |
439 | // MachineConstantPool wants an explicit alignment. |
440 | Align Alignment = DL.getPrefTypeAlign(Ty: CFP->getType()); |
441 | unsigned Idx = MCP.getConstantPoolIndex(C: cast<Constant>(Val: CFP), Alignment); |
442 | Register DestReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
443 | unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; |
444 | |
445 | // The extra reg is for addrmode5. |
446 | AddOptionalDefs( |
447 | MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg) |
448 | .addConstantPoolIndex(Idx) |
449 | .addReg(RegNo: 0)); |
450 | return DestReg; |
451 | } |
452 | |
453 | unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { |
454 | if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) |
455 | return 0; |
456 | |
457 | // If we can do this in a single instruction without a constant pool entry |
458 | // do so now. |
459 | const ConstantInt *CI = cast<ConstantInt>(Val: C); |
460 | if (Subtarget->hasV6T2Ops() && isUInt<16>(x: CI->getZExtValue())) { |
461 | unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; |
462 | const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : |
463 | &ARM::GPRRegClass; |
464 | Register ImmReg = createResultReg(RC); |
465 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
466 | MCID: TII.get(Opcode: Opc), DestReg: ImmReg) |
467 | .addImm(Val: CI->getZExtValue())); |
468 | return ImmReg; |
469 | } |
470 | |
471 | // Use MVN to emit negative constants. |
472 | if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { |
473 | unsigned Imm = (unsigned)~(CI->getSExtValue()); |
474 | bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Arg: Imm) != -1) : |
475 | (ARM_AM::getSOImmVal(Arg: Imm) != -1); |
476 | if (UseImm) { |
477 | unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; |
478 | const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : |
479 | &ARM::GPRRegClass; |
480 | Register ImmReg = createResultReg(RC); |
481 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
482 | MCID: TII.get(Opcode: Opc), DestReg: ImmReg) |
483 | .addImm(Val: Imm)); |
484 | return ImmReg; |
485 | } |
486 | } |
487 | |
488 | unsigned ResultReg = 0; |
489 | if (Subtarget->useMovt()) |
490 | ResultReg = fastEmit_i(VT, RetVT: VT, Opcode: ISD::Constant, imm0: CI->getZExtValue()); |
491 | |
492 | if (ResultReg) |
493 | return ResultReg; |
494 | |
495 | // Load from constant pool. For now 32-bit only. |
496 | if (VT != MVT::i32) |
497 | return 0; |
498 | |
499 | // MachineConstantPool wants an explicit alignment. |
500 | Align Alignment = DL.getPrefTypeAlign(Ty: C->getType()); |
501 | unsigned Idx = MCP.getConstantPoolIndex(C, Alignment); |
502 | ResultReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
503 | if (isThumb2) |
504 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
505 | MCID: TII.get(Opcode: ARM::t2LDRpci), DestReg: ResultReg) |
506 | .addConstantPoolIndex(Idx)); |
507 | else { |
508 | // The extra immediate is for addrmode2. |
509 | ResultReg = constrainOperandRegClass(II: TII.get(Opcode: ARM::LDRcp), Op: ResultReg, OpNum: 0); |
510 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
511 | MCID: TII.get(Opcode: ARM::LDRcp), DestReg: ResultReg) |
512 | .addConstantPoolIndex(Idx) |
513 | .addImm(Val: 0)); |
514 | } |
515 | return ResultReg; |
516 | } |
517 | |
518 | bool ARMFastISel::isPositionIndependent() const { |
519 | return TLI.isPositionIndependent(); |
520 | } |
521 | |
522 | unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { |
523 | // For now 32-bit only. |
524 | if (VT != MVT::i32 || GV->isThreadLocal()) return 0; |
525 | |
526 | // ROPI/RWPI not currently supported. |
527 | if (Subtarget->isROPI() || Subtarget->isRWPI()) |
528 | return 0; |
529 | |
530 | bool IsIndirect = Subtarget->isGVIndirectSymbol(GV); |
531 | const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass |
532 | : &ARM::GPRRegClass; |
533 | Register DestReg = createResultReg(RC); |
534 | |
535 | // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. |
536 | const GlobalVariable *GVar = dyn_cast<GlobalVariable>(Val: GV); |
537 | bool IsThreadLocal = GVar && GVar->isThreadLocal(); |
538 | if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; |
539 | |
540 | bool IsPositionIndependent = isPositionIndependent(); |
541 | // Use movw+movt when possible, it avoids constant pool entries. |
542 | // Non-darwin targets only support static movt relocations in FastISel. |
543 | if (Subtarget->useMovt() && |
544 | (Subtarget->isTargetMachO() || !IsPositionIndependent)) { |
545 | unsigned Opc; |
546 | unsigned char TF = 0; |
547 | if (Subtarget->isTargetMachO()) |
548 | TF = ARMII::MO_NONLAZY; |
549 | |
550 | if (IsPositionIndependent) |
551 | Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; |
552 | else |
553 | Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; |
554 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
555 | MCID: TII.get(Opcode: Opc), DestReg).addGlobalAddress(GV, Offset: 0, TargetFlags: TF)); |
556 | } else { |
557 | // MachineConstantPool wants an explicit alignment. |
558 | Align Alignment = DL.getPrefTypeAlign(Ty: GV->getType()); |
559 | |
560 | if (Subtarget->isTargetELF() && IsPositionIndependent) |
561 | return ARMLowerPICELF(GV, VT); |
562 | |
563 | // Grab index. |
564 | unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; |
565 | unsigned Id = AFI->createPICLabelUId(); |
566 | ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(C: GV, ID: Id, |
567 | Kind: ARMCP::CPValue, |
568 | PCAdj); |
569 | unsigned Idx = MCP.getConstantPoolIndex(V: CPV, Alignment); |
570 | |
571 | // Load value. |
572 | MachineInstrBuilder MIB; |
573 | if (isThumb2) { |
574 | unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci; |
575 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), |
576 | DestReg).addConstantPoolIndex(Idx); |
577 | if (IsPositionIndependent) |
578 | MIB.addImm(Val: Id); |
579 | AddOptionalDefs(MIB); |
580 | } else { |
581 | // The extra immediate is for addrmode2. |
582 | DestReg = constrainOperandRegClass(II: TII.get(Opcode: ARM::LDRcp), Op: DestReg, OpNum: 0); |
583 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
584 | MCID: TII.get(Opcode: ARM::LDRcp), DestReg) |
585 | .addConstantPoolIndex(Idx) |
586 | .addImm(Val: 0); |
587 | AddOptionalDefs(MIB); |
588 | |
589 | if (IsPositionIndependent) { |
590 | unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; |
591 | Register NewDestReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
592 | |
593 | MachineInstrBuilder MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, |
594 | MIMD, MCID: TII.get(Opcode: Opc), DestReg: NewDestReg) |
595 | .addReg(RegNo: DestReg) |
596 | .addImm(Val: Id); |
597 | AddOptionalDefs(MIB); |
598 | return NewDestReg; |
599 | } |
600 | } |
601 | } |
602 | |
603 | if ((Subtarget->isTargetELF() && Subtarget->isGVInGOT(GV)) || |
604 | (Subtarget->isTargetMachO() && IsIndirect)) { |
605 | MachineInstrBuilder MIB; |
606 | Register NewDestReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
607 | if (isThumb2) |
608 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
609 | MCID: TII.get(Opcode: ARM::t2LDRi12), DestReg: NewDestReg) |
610 | .addReg(RegNo: DestReg) |
611 | .addImm(Val: 0); |
612 | else |
613 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
614 | MCID: TII.get(Opcode: ARM::LDRi12), DestReg: NewDestReg) |
615 | .addReg(RegNo: DestReg) |
616 | .addImm(Val: 0); |
617 | DestReg = NewDestReg; |
618 | AddOptionalDefs(MIB); |
619 | } |
620 | |
621 | return DestReg; |
622 | } |
623 | |
624 | unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { |
625 | EVT CEVT = TLI.getValueType(DL, Ty: C->getType(), AllowUnknown: true); |
626 | |
627 | // Only handle simple types. |
628 | if (!CEVT.isSimple()) return 0; |
629 | MVT VT = CEVT.getSimpleVT(); |
630 | |
631 | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Val: C)) |
632 | return ARMMaterializeFP(CFP, VT); |
633 | else if (const GlobalValue *GV = dyn_cast<GlobalValue>(Val: C)) |
634 | return ARMMaterializeGV(GV, VT); |
635 | else if (isa<ConstantInt>(Val: C)) |
636 | return ARMMaterializeInt(C, VT); |
637 | |
638 | return 0; |
639 | } |
640 | |
641 | // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); |
642 | |
643 | unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { |
644 | // Don't handle dynamic allocas. |
645 | if (!FuncInfo.StaticAllocaMap.count(Val: AI)) return 0; |
646 | |
647 | MVT VT; |
648 | if (!isLoadTypeLegal(Ty: AI->getType(), VT)) return 0; |
649 | |
650 | DenseMap<const AllocaInst*, int>::iterator SI = |
651 | FuncInfo.StaticAllocaMap.find(Val: AI); |
652 | |
653 | // This will get lowered later into the correct offsets and registers |
654 | // via rewriteXFrameIndex. |
655 | if (SI != FuncInfo.StaticAllocaMap.end()) { |
656 | unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; |
657 | const TargetRegisterClass* RC = TLI.getRegClassFor(VT); |
658 | Register ResultReg = createResultReg(RC); |
659 | ResultReg = constrainOperandRegClass(II: TII.get(Opcode: Opc), Op: ResultReg, OpNum: 0); |
660 | |
661 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
662 | MCID: TII.get(Opcode: Opc), DestReg: ResultReg) |
663 | .addFrameIndex(Idx: SI->second) |
664 | .addImm(Val: 0)); |
665 | return ResultReg; |
666 | } |
667 | |
668 | return 0; |
669 | } |
670 | |
671 | bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { |
672 | EVT evt = TLI.getValueType(DL, Ty, AllowUnknown: true); |
673 | |
674 | // Only handle simple types. |
675 | if (evt == MVT::Other || !evt.isSimple()) return false; |
676 | VT = evt.getSimpleVT(); |
677 | |
678 | // Handle all legal types, i.e. a register that will directly hold this |
679 | // value. |
680 | return TLI.isTypeLegal(VT); |
681 | } |
682 | |
683 | bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { |
684 | if (isTypeLegal(Ty, VT)) return true; |
685 | |
686 | // If this is a type than can be sign or zero-extended to a basic operation |
687 | // go ahead and accept it now. |
688 | if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) |
689 | return true; |
690 | |
691 | return false; |
692 | } |
693 | |
694 | // Computes the address to get to an object. |
695 | bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { |
696 | // Some boilerplate from the X86 FastISel. |
697 | const User *U = nullptr; |
698 | unsigned Opcode = Instruction::UserOp1; |
699 | if (const Instruction *I = dyn_cast<Instruction>(Val: Obj)) { |
700 | // Don't walk into other basic blocks unless the object is an alloca from |
701 | // another block, otherwise it may not have a virtual register assigned. |
702 | if (FuncInfo.StaticAllocaMap.count(Val: static_cast<const AllocaInst *>(Obj)) || |
703 | FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { |
704 | Opcode = I->getOpcode(); |
705 | U = I; |
706 | } |
707 | } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Val: Obj)) { |
708 | Opcode = C->getOpcode(); |
709 | U = C; |
710 | } |
711 | |
712 | if (PointerType *Ty = dyn_cast<PointerType>(Val: Obj->getType())) |
713 | if (Ty->getAddressSpace() > 255) |
714 | // Fast instruction selection doesn't support the special |
715 | // address spaces. |
716 | return false; |
717 | |
718 | switch (Opcode) { |
719 | default: |
720 | break; |
721 | case Instruction::BitCast: |
722 | // Look through bitcasts. |
723 | return ARMComputeAddress(Obj: U->getOperand(i: 0), Addr); |
724 | case Instruction::IntToPtr: |
725 | // Look past no-op inttoptrs. |
726 | if (TLI.getValueType(DL, Ty: U->getOperand(i: 0)->getType()) == |
727 | TLI.getPointerTy(DL)) |
728 | return ARMComputeAddress(Obj: U->getOperand(i: 0), Addr); |
729 | break; |
730 | case Instruction::PtrToInt: |
731 | // Look past no-op ptrtoints. |
732 | if (TLI.getValueType(DL, Ty: U->getType()) == TLI.getPointerTy(DL)) |
733 | return ARMComputeAddress(Obj: U->getOperand(i: 0), Addr); |
734 | break; |
735 | case Instruction::GetElementPtr: { |
736 | Address SavedAddr = Addr; |
737 | int TmpOffset = Addr.Offset; |
738 | |
739 | // Iterate through the GEP folding the constants into offsets where |
740 | // we can. |
741 | gep_type_iterator GTI = gep_type_begin(GEP: U); |
742 | for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); |
743 | i != e; ++i, ++GTI) { |
744 | const Value *Op = *i; |
745 | if (StructType *STy = GTI.getStructTypeOrNull()) { |
746 | const StructLayout *SL = DL.getStructLayout(Ty: STy); |
747 | unsigned Idx = cast<ConstantInt>(Val: Op)->getZExtValue(); |
748 | TmpOffset += SL->getElementOffset(Idx); |
749 | } else { |
750 | uint64_t S = GTI.getSequentialElementStride(DL); |
751 | while (true) { |
752 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: Op)) { |
753 | // Constant-offset addressing. |
754 | TmpOffset += CI->getSExtValue() * S; |
755 | break; |
756 | } |
757 | if (canFoldAddIntoGEP(GEP: U, Add: Op)) { |
758 | // A compatible add with a constant operand. Fold the constant. |
759 | ConstantInt *CI = |
760 | cast<ConstantInt>(Val: cast<AddOperator>(Val: Op)->getOperand(i_nocapture: 1)); |
761 | TmpOffset += CI->getSExtValue() * S; |
762 | // Iterate on the other operand. |
763 | Op = cast<AddOperator>(Val: Op)->getOperand(i_nocapture: 0); |
764 | continue; |
765 | } |
766 | // Unsupported |
767 | goto unsupported_gep; |
768 | } |
769 | } |
770 | } |
771 | |
772 | // Try to grab the base operand now. |
773 | Addr.Offset = TmpOffset; |
774 | if (ARMComputeAddress(Obj: U->getOperand(i: 0), Addr)) return true; |
775 | |
776 | // We failed, restore everything and try the other options. |
777 | Addr = SavedAddr; |
778 | |
779 | unsupported_gep: |
780 | break; |
781 | } |
782 | case Instruction::Alloca: { |
783 | const AllocaInst *AI = cast<AllocaInst>(Val: Obj); |
784 | DenseMap<const AllocaInst*, int>::iterator SI = |
785 | FuncInfo.StaticAllocaMap.find(Val: AI); |
786 | if (SI != FuncInfo.StaticAllocaMap.end()) { |
787 | Addr.BaseType = Address::FrameIndexBase; |
788 | Addr.Base.FI = SI->second; |
789 | return true; |
790 | } |
791 | break; |
792 | } |
793 | } |
794 | |
795 | // Try to get this in a register if nothing else has worked. |
796 | if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(V: Obj); |
797 | return Addr.Base.Reg != 0; |
798 | } |
799 | |
800 | void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { |
801 | bool needsLowering = false; |
802 | switch (VT.SimpleTy) { |
803 | default: llvm_unreachable("Unhandled load/store type!" ); |
804 | case MVT::i1: |
805 | case MVT::i8: |
806 | case MVT::i16: |
807 | case MVT::i32: |
808 | if (!useAM3) { |
809 | // Integer loads/stores handle 12-bit offsets. |
810 | needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); |
811 | // Handle negative offsets. |
812 | if (needsLowering && isThumb2) |
813 | needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && |
814 | Addr.Offset > -256); |
815 | } else { |
816 | // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. |
817 | needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); |
818 | } |
819 | break; |
820 | case MVT::f32: |
821 | case MVT::f64: |
822 | // Floating point operands handle 8-bit offsets. |
823 | needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); |
824 | break; |
825 | } |
826 | |
827 | // If this is a stack pointer and the offset needs to be simplified then |
828 | // put the alloca address into a register, set the base type back to |
829 | // register and continue. This should almost never happen. |
830 | if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { |
831 | const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass |
832 | : &ARM::GPRRegClass; |
833 | Register ResultReg = createResultReg(RC); |
834 | unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; |
835 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
836 | MCID: TII.get(Opcode: Opc), DestReg: ResultReg) |
837 | .addFrameIndex(Idx: Addr.Base.FI) |
838 | .addImm(Val: 0)); |
839 | Addr.Base.Reg = ResultReg; |
840 | Addr.BaseType = Address::RegBase; |
841 | } |
842 | |
843 | // Since the offset is too large for the load/store instruction |
844 | // get the reg+offset into a register. |
845 | if (needsLowering) { |
846 | Addr.Base.Reg = fastEmit_ri_(VT: MVT::i32, Opcode: ISD::ADD, Op0: Addr.Base.Reg, |
847 | Imm: Addr.Offset, ImmType: MVT::i32); |
848 | Addr.Offset = 0; |
849 | } |
850 | } |
851 | |
852 | void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, |
853 | const MachineInstrBuilder &MIB, |
854 | MachineMemOperand::Flags Flags, |
855 | bool useAM3) { |
856 | // addrmode5 output depends on the selection dag addressing dividing the |
857 | // offset by 4 that it then later multiplies. Do this here as well. |
858 | if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) |
859 | Addr.Offset /= 4; |
860 | |
861 | // Frame base works a bit differently. Handle it separately. |
862 | if (Addr.BaseType == Address::FrameIndexBase) { |
863 | int FI = Addr.Base.FI; |
864 | int Offset = Addr.Offset; |
865 | MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( |
866 | PtrInfo: MachinePointerInfo::getFixedStack(MF&: *FuncInfo.MF, FI, Offset), F: Flags, |
867 | Size: MFI.getObjectSize(ObjectIdx: FI), BaseAlignment: MFI.getObjectAlign(ObjectIdx: FI)); |
868 | // Now add the rest of the operands. |
869 | MIB.addFrameIndex(Idx: FI); |
870 | |
871 | // ARM halfword load/stores and signed byte loads need an additional |
872 | // operand. |
873 | if (useAM3) { |
874 | int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; |
875 | MIB.addReg(RegNo: 0); |
876 | MIB.addImm(Val: Imm); |
877 | } else { |
878 | MIB.addImm(Val: Addr.Offset); |
879 | } |
880 | MIB.addMemOperand(MMO); |
881 | } else { |
882 | // Now add the rest of the operands. |
883 | MIB.addReg(RegNo: Addr.Base.Reg); |
884 | |
885 | // ARM halfword load/stores and signed byte loads need an additional |
886 | // operand. |
887 | if (useAM3) { |
888 | int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; |
889 | MIB.addReg(RegNo: 0); |
890 | MIB.addImm(Val: Imm); |
891 | } else { |
892 | MIB.addImm(Val: Addr.Offset); |
893 | } |
894 | } |
895 | AddOptionalDefs(MIB); |
896 | } |
897 | |
898 | bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, |
899 | MaybeAlign Alignment, bool isZExt, |
900 | bool allocReg) { |
901 | unsigned Opc; |
902 | bool useAM3 = false; |
903 | bool needVMOV = false; |
904 | const TargetRegisterClass *RC; |
905 | switch (VT.SimpleTy) { |
906 | // This is mostly going to be Neon/vector support. |
907 | default: return false; |
908 | case MVT::i1: |
909 | case MVT::i8: |
910 | if (isThumb2) { |
911 | if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) |
912 | Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; |
913 | else |
914 | Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; |
915 | } else { |
916 | if (isZExt) { |
917 | Opc = ARM::LDRBi12; |
918 | } else { |
919 | Opc = ARM::LDRSB; |
920 | useAM3 = true; |
921 | } |
922 | } |
923 | RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; |
924 | break; |
925 | case MVT::i16: |
926 | if (Alignment && *Alignment < Align(2) && |
927 | !Subtarget->allowsUnalignedMem()) |
928 | return false; |
929 | |
930 | if (isThumb2) { |
931 | if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) |
932 | Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; |
933 | else |
934 | Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; |
935 | } else { |
936 | Opc = isZExt ? ARM::LDRH : ARM::LDRSH; |
937 | useAM3 = true; |
938 | } |
939 | RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; |
940 | break; |
941 | case MVT::i32: |
942 | if (Alignment && *Alignment < Align(4) && |
943 | !Subtarget->allowsUnalignedMem()) |
944 | return false; |
945 | |
946 | if (isThumb2) { |
947 | if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) |
948 | Opc = ARM::t2LDRi8; |
949 | else |
950 | Opc = ARM::t2LDRi12; |
951 | } else { |
952 | Opc = ARM::LDRi12; |
953 | } |
954 | RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; |
955 | break; |
956 | case MVT::f32: |
957 | if (!Subtarget->hasVFP2Base()) return false; |
958 | // Unaligned loads need special handling. Floats require word-alignment. |
959 | if (Alignment && *Alignment < Align(4)) { |
960 | needVMOV = true; |
961 | VT = MVT::i32; |
962 | Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; |
963 | RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; |
964 | } else { |
965 | Opc = ARM::VLDRS; |
966 | RC = TLI.getRegClassFor(VT); |
967 | } |
968 | break; |
969 | case MVT::f64: |
970 | // Can load and store double precision even without FeatureFP64 |
971 | if (!Subtarget->hasVFP2Base()) return false; |
972 | // FIXME: Unaligned loads need special handling. Doublewords require |
973 | // word-alignment. |
974 | if (Alignment && *Alignment < Align(4)) |
975 | return false; |
976 | |
977 | Opc = ARM::VLDRD; |
978 | RC = TLI.getRegClassFor(VT); |
979 | break; |
980 | } |
981 | // Simplify this down to something we can handle. |
982 | ARMSimplifyAddress(Addr, VT, useAM3); |
983 | |
984 | // Create the base instruction, then add the operands. |
985 | if (allocReg) |
986 | ResultReg = createResultReg(RC); |
987 | assert(ResultReg > 255 && "Expected an allocated virtual register." ); |
988 | MachineInstrBuilder MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
989 | MCID: TII.get(Opcode: Opc), DestReg: ResultReg); |
990 | AddLoadStoreOperands(VT, Addr, MIB, Flags: MachineMemOperand::MOLoad, useAM3); |
991 | |
992 | // If we had an unaligned load of a float we've converted it to an regular |
993 | // load. Now we must move from the GRP to the FP register. |
994 | if (needVMOV) { |
995 | Register MoveReg = createResultReg(RC: TLI.getRegClassFor(VT: MVT::f32)); |
996 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
997 | MCID: TII.get(Opcode: ARM::VMOVSR), DestReg: MoveReg) |
998 | .addReg(RegNo: ResultReg)); |
999 | ResultReg = MoveReg; |
1000 | } |
1001 | return true; |
1002 | } |
1003 | |
1004 | bool ARMFastISel::SelectLoad(const Instruction *I) { |
1005 | // Atomic loads need special handling. |
1006 | if (cast<LoadInst>(Val: I)->isAtomic()) |
1007 | return false; |
1008 | |
1009 | const Value *SV = I->getOperand(i: 0); |
1010 | if (TLI.supportSwiftError()) { |
1011 | // Swifterror values can come from either a function parameter with |
1012 | // swifterror attribute or an alloca with swifterror attribute. |
1013 | if (const Argument *Arg = dyn_cast<Argument>(Val: SV)) { |
1014 | if (Arg->hasSwiftErrorAttr()) |
1015 | return false; |
1016 | } |
1017 | |
1018 | if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(Val: SV)) { |
1019 | if (Alloca->isSwiftError()) |
1020 | return false; |
1021 | } |
1022 | } |
1023 | |
1024 | // Verify we have a legal type before going any further. |
1025 | MVT VT; |
1026 | if (!isLoadTypeLegal(Ty: I->getType(), VT)) |
1027 | return false; |
1028 | |
1029 | // See if we can handle this address. |
1030 | Address Addr; |
1031 | if (!ARMComputeAddress(Obj: I->getOperand(i: 0), Addr)) return false; |
1032 | |
1033 | Register ResultReg; |
1034 | if (!ARMEmitLoad(VT, ResultReg, Addr, Alignment: cast<LoadInst>(Val: I)->getAlign())) |
1035 | return false; |
1036 | updateValueMap(I, Reg: ResultReg); |
1037 | return true; |
1038 | } |
1039 | |
1040 | bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, |
1041 | MaybeAlign Alignment) { |
1042 | unsigned StrOpc; |
1043 | bool useAM3 = false; |
1044 | switch (VT.SimpleTy) { |
1045 | // This is mostly going to be Neon/vector support. |
1046 | default: return false; |
1047 | case MVT::i1: { |
1048 | Register Res = createResultReg(RC: isThumb2 ? &ARM::tGPRRegClass |
1049 | : &ARM::GPRRegClass); |
1050 | unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; |
1051 | SrcReg = constrainOperandRegClass(II: TII.get(Opcode: Opc), Op: SrcReg, OpNum: 1); |
1052 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1053 | MCID: TII.get(Opcode: Opc), DestReg: Res) |
1054 | .addReg(RegNo: SrcReg).addImm(Val: 1)); |
1055 | SrcReg = Res; |
1056 | [[fallthrough]]; |
1057 | } |
1058 | case MVT::i8: |
1059 | if (isThumb2) { |
1060 | if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) |
1061 | StrOpc = ARM::t2STRBi8; |
1062 | else |
1063 | StrOpc = ARM::t2STRBi12; |
1064 | } else { |
1065 | StrOpc = ARM::STRBi12; |
1066 | } |
1067 | break; |
1068 | case MVT::i16: |
1069 | if (Alignment && *Alignment < Align(2) && |
1070 | !Subtarget->allowsUnalignedMem()) |
1071 | return false; |
1072 | |
1073 | if (isThumb2) { |
1074 | if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) |
1075 | StrOpc = ARM::t2STRHi8; |
1076 | else |
1077 | StrOpc = ARM::t2STRHi12; |
1078 | } else { |
1079 | StrOpc = ARM::STRH; |
1080 | useAM3 = true; |
1081 | } |
1082 | break; |
1083 | case MVT::i32: |
1084 | if (Alignment && *Alignment < Align(4) && |
1085 | !Subtarget->allowsUnalignedMem()) |
1086 | return false; |
1087 | |
1088 | if (isThumb2) { |
1089 | if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) |
1090 | StrOpc = ARM::t2STRi8; |
1091 | else |
1092 | StrOpc = ARM::t2STRi12; |
1093 | } else { |
1094 | StrOpc = ARM::STRi12; |
1095 | } |
1096 | break; |
1097 | case MVT::f32: |
1098 | if (!Subtarget->hasVFP2Base()) return false; |
1099 | // Unaligned stores need special handling. Floats require word-alignment. |
1100 | if (Alignment && *Alignment < Align(4)) { |
1101 | Register MoveReg = createResultReg(RC: TLI.getRegClassFor(VT: MVT::i32)); |
1102 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1103 | MCID: TII.get(Opcode: ARM::VMOVRS), DestReg: MoveReg) |
1104 | .addReg(RegNo: SrcReg)); |
1105 | SrcReg = MoveReg; |
1106 | VT = MVT::i32; |
1107 | StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; |
1108 | } else { |
1109 | StrOpc = ARM::VSTRS; |
1110 | } |
1111 | break; |
1112 | case MVT::f64: |
1113 | // Can load and store double precision even without FeatureFP64 |
1114 | if (!Subtarget->hasVFP2Base()) return false; |
1115 | // FIXME: Unaligned stores need special handling. Doublewords require |
1116 | // word-alignment. |
1117 | if (Alignment && *Alignment < Align(4)) |
1118 | return false; |
1119 | |
1120 | StrOpc = ARM::VSTRD; |
1121 | break; |
1122 | } |
1123 | // Simplify this down to something we can handle. |
1124 | ARMSimplifyAddress(Addr, VT, useAM3); |
1125 | |
1126 | // Create the base instruction, then add the operands. |
1127 | SrcReg = constrainOperandRegClass(II: TII.get(Opcode: StrOpc), Op: SrcReg, OpNum: 0); |
1128 | MachineInstrBuilder MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1129 | MCID: TII.get(Opcode: StrOpc)) |
1130 | .addReg(RegNo: SrcReg); |
1131 | AddLoadStoreOperands(VT, Addr, MIB, Flags: MachineMemOperand::MOStore, useAM3); |
1132 | return true; |
1133 | } |
1134 | |
1135 | bool ARMFastISel::SelectStore(const Instruction *I) { |
1136 | Value *Op0 = I->getOperand(i: 0); |
1137 | unsigned SrcReg = 0; |
1138 | |
1139 | // Atomic stores need special handling. |
1140 | if (cast<StoreInst>(Val: I)->isAtomic()) |
1141 | return false; |
1142 | |
1143 | const Value *PtrV = I->getOperand(i: 1); |
1144 | if (TLI.supportSwiftError()) { |
1145 | // Swifterror values can come from either a function parameter with |
1146 | // swifterror attribute or an alloca with swifterror attribute. |
1147 | if (const Argument *Arg = dyn_cast<Argument>(Val: PtrV)) { |
1148 | if (Arg->hasSwiftErrorAttr()) |
1149 | return false; |
1150 | } |
1151 | |
1152 | if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(Val: PtrV)) { |
1153 | if (Alloca->isSwiftError()) |
1154 | return false; |
1155 | } |
1156 | } |
1157 | |
1158 | // Verify we have a legal type before going any further. |
1159 | MVT VT; |
1160 | if (!isLoadTypeLegal(Ty: I->getOperand(i: 0)->getType(), VT)) |
1161 | return false; |
1162 | |
1163 | // Get the value to be stored into a register. |
1164 | SrcReg = getRegForValue(V: Op0); |
1165 | if (SrcReg == 0) return false; |
1166 | |
1167 | // See if we can handle this address. |
1168 | Address Addr; |
1169 | if (!ARMComputeAddress(Obj: I->getOperand(i: 1), Addr)) |
1170 | return false; |
1171 | |
1172 | if (!ARMEmitStore(VT, SrcReg, Addr, Alignment: cast<StoreInst>(Val: I)->getAlign())) |
1173 | return false; |
1174 | return true; |
1175 | } |
1176 | |
1177 | static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { |
1178 | switch (Pred) { |
1179 | // Needs two compares... |
1180 | case CmpInst::FCMP_ONE: |
1181 | case CmpInst::FCMP_UEQ: |
1182 | default: |
1183 | // AL is our "false" for now. The other two need more compares. |
1184 | return ARMCC::AL; |
1185 | case CmpInst::ICMP_EQ: |
1186 | case CmpInst::FCMP_OEQ: |
1187 | return ARMCC::EQ; |
1188 | case CmpInst::ICMP_SGT: |
1189 | case CmpInst::FCMP_OGT: |
1190 | return ARMCC::GT; |
1191 | case CmpInst::ICMP_SGE: |
1192 | case CmpInst::FCMP_OGE: |
1193 | return ARMCC::GE; |
1194 | case CmpInst::ICMP_UGT: |
1195 | case CmpInst::FCMP_UGT: |
1196 | return ARMCC::HI; |
1197 | case CmpInst::FCMP_OLT: |
1198 | return ARMCC::MI; |
1199 | case CmpInst::ICMP_ULE: |
1200 | case CmpInst::FCMP_OLE: |
1201 | return ARMCC::LS; |
1202 | case CmpInst::FCMP_ORD: |
1203 | return ARMCC::VC; |
1204 | case CmpInst::FCMP_UNO: |
1205 | return ARMCC::VS; |
1206 | case CmpInst::FCMP_UGE: |
1207 | return ARMCC::PL; |
1208 | case CmpInst::ICMP_SLT: |
1209 | case CmpInst::FCMP_ULT: |
1210 | return ARMCC::LT; |
1211 | case CmpInst::ICMP_SLE: |
1212 | case CmpInst::FCMP_ULE: |
1213 | return ARMCC::LE; |
1214 | case CmpInst::FCMP_UNE: |
1215 | case CmpInst::ICMP_NE: |
1216 | return ARMCC::NE; |
1217 | case CmpInst::ICMP_UGE: |
1218 | return ARMCC::HS; |
1219 | case CmpInst::ICMP_ULT: |
1220 | return ARMCC::LO; |
1221 | } |
1222 | } |
1223 | |
1224 | bool ARMFastISel::SelectBranch(const Instruction *I) { |
1225 | const BranchInst *BI = cast<BranchInst>(Val: I); |
1226 | MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(i: 0)]; |
1227 | MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(i: 1)]; |
1228 | |
1229 | // Simple branch support. |
1230 | |
1231 | // If we can, avoid recomputing the compare - redoing it could lead to wonky |
1232 | // behavior. |
1233 | if (const CmpInst *CI = dyn_cast<CmpInst>(Val: BI->getCondition())) { |
1234 | if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { |
1235 | // Get the compare predicate. |
1236 | // Try to take advantage of fallthrough opportunities. |
1237 | CmpInst::Predicate Predicate = CI->getPredicate(); |
1238 | if (FuncInfo.MBB->isLayoutSuccessor(MBB: TBB)) { |
1239 | std::swap(a&: TBB, b&: FBB); |
1240 | Predicate = CmpInst::getInversePredicate(pred: Predicate); |
1241 | } |
1242 | |
1243 | ARMCC::CondCodes ARMPred = getComparePred(Pred: Predicate); |
1244 | |
1245 | // We may not handle every CC for now. |
1246 | if (ARMPred == ARMCC::AL) return false; |
1247 | |
1248 | // Emit the compare. |
1249 | if (!ARMEmitCmp(Src1Value: CI->getOperand(i_nocapture: 0), Src2Value: CI->getOperand(i_nocapture: 1), isZExt: CI->isUnsigned())) |
1250 | return false; |
1251 | |
1252 | unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; |
1253 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: BrOpc)) |
1254 | .addMBB(MBB: TBB).addImm(Val: ARMPred).addReg(RegNo: ARM::CPSR); |
1255 | finishCondBranch(BranchBB: BI->getParent(), TrueMBB: TBB, FalseMBB: FBB); |
1256 | return true; |
1257 | } |
1258 | } else if (TruncInst *TI = dyn_cast<TruncInst>(Val: BI->getCondition())) { |
1259 | MVT SourceVT; |
1260 | if (TI->hasOneUse() && TI->getParent() == I->getParent() && |
1261 | (isLoadTypeLegal(Ty: TI->getOperand(i_nocapture: 0)->getType(), VT&: SourceVT))) { |
1262 | unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; |
1263 | Register OpReg = getRegForValue(V: TI->getOperand(i_nocapture: 0)); |
1264 | OpReg = constrainOperandRegClass(II: TII.get(Opcode: TstOpc), Op: OpReg, OpNum: 0); |
1265 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1266 | MCID: TII.get(Opcode: TstOpc)) |
1267 | .addReg(RegNo: OpReg).addImm(Val: 1)); |
1268 | |
1269 | unsigned CCMode = ARMCC::NE; |
1270 | if (FuncInfo.MBB->isLayoutSuccessor(MBB: TBB)) { |
1271 | std::swap(a&: TBB, b&: FBB); |
1272 | CCMode = ARMCC::EQ; |
1273 | } |
1274 | |
1275 | unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; |
1276 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: BrOpc)) |
1277 | .addMBB(MBB: TBB).addImm(Val: CCMode).addReg(RegNo: ARM::CPSR); |
1278 | |
1279 | finishCondBranch(BranchBB: BI->getParent(), TrueMBB: TBB, FalseMBB: FBB); |
1280 | return true; |
1281 | } |
1282 | } else if (const ConstantInt *CI = |
1283 | dyn_cast<ConstantInt>(Val: BI->getCondition())) { |
1284 | uint64_t Imm = CI->getZExtValue(); |
1285 | MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; |
1286 | fastEmitBranch(MSucc: Target, DbgLoc: MIMD.getDL()); |
1287 | return true; |
1288 | } |
1289 | |
1290 | Register CmpReg = getRegForValue(V: BI->getCondition()); |
1291 | if (CmpReg == 0) return false; |
1292 | |
1293 | // We've been divorced from our compare! Our block was split, and |
1294 | // now our compare lives in a predecessor block. We musn't |
1295 | // re-compare here, as the children of the compare aren't guaranteed |
1296 | // live across the block boundary (we *could* check for this). |
1297 | // Regardless, the compare has been done in the predecessor block, |
1298 | // and it left a value for us in a virtual register. Ergo, we test |
1299 | // the one-bit value left in the virtual register. |
1300 | unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; |
1301 | CmpReg = constrainOperandRegClass(II: TII.get(Opcode: TstOpc), Op: CmpReg, OpNum: 0); |
1302 | AddOptionalDefs( |
1303 | MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TstOpc)) |
1304 | .addReg(RegNo: CmpReg) |
1305 | .addImm(Val: 1)); |
1306 | |
1307 | unsigned CCMode = ARMCC::NE; |
1308 | if (FuncInfo.MBB->isLayoutSuccessor(MBB: TBB)) { |
1309 | std::swap(a&: TBB, b&: FBB); |
1310 | CCMode = ARMCC::EQ; |
1311 | } |
1312 | |
1313 | unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; |
1314 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: BrOpc)) |
1315 | .addMBB(MBB: TBB).addImm(Val: CCMode).addReg(RegNo: ARM::CPSR); |
1316 | finishCondBranch(BranchBB: BI->getParent(), TrueMBB: TBB, FalseMBB: FBB); |
1317 | return true; |
1318 | } |
1319 | |
1320 | bool ARMFastISel::SelectIndirectBr(const Instruction *I) { |
1321 | Register AddrReg = getRegForValue(V: I->getOperand(i: 0)); |
1322 | if (AddrReg == 0) return false; |
1323 | |
1324 | unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; |
1325 | assert(isThumb2 || Subtarget->hasV4TOps()); |
1326 | |
1327 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1328 | MCID: TII.get(Opcode: Opc)).addReg(RegNo: AddrReg)); |
1329 | |
1330 | const IndirectBrInst *IB = cast<IndirectBrInst>(Val: I); |
1331 | for (const BasicBlock *SuccBB : IB->successors()) |
1332 | FuncInfo.MBB->addSuccessor(Succ: FuncInfo.MBBMap[SuccBB]); |
1333 | |
1334 | return true; |
1335 | } |
1336 | |
1337 | bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, |
1338 | bool isZExt) { |
1339 | Type *Ty = Src1Value->getType(); |
1340 | EVT SrcEVT = TLI.getValueType(DL, Ty, AllowUnknown: true); |
1341 | if (!SrcEVT.isSimple()) return false; |
1342 | MVT SrcVT = SrcEVT.getSimpleVT(); |
1343 | |
1344 | if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) |
1345 | return false; |
1346 | |
1347 | if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) |
1348 | return false; |
1349 | |
1350 | // Check to see if the 2nd operand is a constant that we can encode directly |
1351 | // in the compare. |
1352 | int Imm = 0; |
1353 | bool UseImm = false; |
1354 | bool isNegativeImm = false; |
1355 | // FIXME: At -O0 we don't have anything that canonicalizes operand order. |
1356 | // Thus, Src1Value may be a ConstantInt, but we're missing it. |
1357 | if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Val: Src2Value)) { |
1358 | if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || |
1359 | SrcVT == MVT::i1) { |
1360 | const APInt &CIVal = ConstInt->getValue(); |
1361 | Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); |
1362 | // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather |
1363 | // then a cmn, because there is no way to represent 2147483648 as a |
1364 | // signed 32-bit int. |
1365 | if (Imm < 0 && Imm != (int)0x80000000) { |
1366 | isNegativeImm = true; |
1367 | Imm = -Imm; |
1368 | } |
1369 | UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Arg: Imm) != -1) : |
1370 | (ARM_AM::getSOImmVal(Arg: Imm) != -1); |
1371 | } |
1372 | } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Val: Src2Value)) { |
1373 | if (SrcVT == MVT::f32 || SrcVT == MVT::f64) |
1374 | if (ConstFP->isZero() && !ConstFP->isNegative()) |
1375 | UseImm = true; |
1376 | } |
1377 | |
1378 | unsigned CmpOpc; |
1379 | bool isICmp = true; |
1380 | bool needsExt = false; |
1381 | switch (SrcVT.SimpleTy) { |
1382 | default: return false; |
1383 | // TODO: Verify compares. |
1384 | case MVT::f32: |
1385 | isICmp = false; |
1386 | CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS; |
1387 | break; |
1388 | case MVT::f64: |
1389 | isICmp = false; |
1390 | CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD; |
1391 | break; |
1392 | case MVT::i1: |
1393 | case MVT::i8: |
1394 | case MVT::i16: |
1395 | needsExt = true; |
1396 | [[fallthrough]]; |
1397 | case MVT::i32: |
1398 | if (isThumb2) { |
1399 | if (!UseImm) |
1400 | CmpOpc = ARM::t2CMPrr; |
1401 | else |
1402 | CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; |
1403 | } else { |
1404 | if (!UseImm) |
1405 | CmpOpc = ARM::CMPrr; |
1406 | else |
1407 | CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; |
1408 | } |
1409 | break; |
1410 | } |
1411 | |
1412 | Register SrcReg1 = getRegForValue(V: Src1Value); |
1413 | if (SrcReg1 == 0) return false; |
1414 | |
1415 | unsigned SrcReg2 = 0; |
1416 | if (!UseImm) { |
1417 | SrcReg2 = getRegForValue(V: Src2Value); |
1418 | if (SrcReg2 == 0) return false; |
1419 | } |
1420 | |
1421 | // We have i1, i8, or i16, we need to either zero extend or sign extend. |
1422 | if (needsExt) { |
1423 | SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg: SrcReg1, DestVT: MVT::i32, isZExt); |
1424 | if (SrcReg1 == 0) return false; |
1425 | if (!UseImm) { |
1426 | SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg: SrcReg2, DestVT: MVT::i32, isZExt); |
1427 | if (SrcReg2 == 0) return false; |
1428 | } |
1429 | } |
1430 | |
1431 | const MCInstrDesc &II = TII.get(Opcode: CmpOpc); |
1432 | SrcReg1 = constrainOperandRegClass(II, Op: SrcReg1, OpNum: 0); |
1433 | if (!UseImm) { |
1434 | SrcReg2 = constrainOperandRegClass(II, Op: SrcReg2, OpNum: 1); |
1435 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
1436 | .addReg(RegNo: SrcReg1).addReg(RegNo: SrcReg2)); |
1437 | } else { |
1438 | MachineInstrBuilder MIB; |
1439 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
1440 | .addReg(RegNo: SrcReg1); |
1441 | |
1442 | // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. |
1443 | if (isICmp) |
1444 | MIB.addImm(Val: Imm); |
1445 | AddOptionalDefs(MIB); |
1446 | } |
1447 | |
1448 | // For floating point we need to move the result to a comparison register |
1449 | // that we can then use for branches. |
1450 | if (Ty->isFloatTy() || Ty->isDoubleTy()) |
1451 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1452 | MCID: TII.get(Opcode: ARM::FMSTAT))); |
1453 | return true; |
1454 | } |
1455 | |
1456 | bool ARMFastISel::SelectCmp(const Instruction *I) { |
1457 | const CmpInst *CI = cast<CmpInst>(Val: I); |
1458 | |
1459 | // Get the compare predicate. |
1460 | ARMCC::CondCodes ARMPred = getComparePred(Pred: CI->getPredicate()); |
1461 | |
1462 | // We may not handle every CC for now. |
1463 | if (ARMPred == ARMCC::AL) return false; |
1464 | |
1465 | // Emit the compare. |
1466 | if (!ARMEmitCmp(Src1Value: CI->getOperand(i_nocapture: 0), Src2Value: CI->getOperand(i_nocapture: 1), isZExt: CI->isUnsigned())) |
1467 | return false; |
1468 | |
1469 | // Now set a register based on the comparison. Explicitly set the predicates |
1470 | // here. |
1471 | unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; |
1472 | const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass |
1473 | : &ARM::GPRRegClass; |
1474 | Register DestReg = createResultReg(RC); |
1475 | Constant *Zero = ConstantInt::get(Ty: Type::getInt32Ty(C&: *Context), V: 0); |
1476 | unsigned ZeroReg = fastMaterializeConstant(C: Zero); |
1477 | // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. |
1478 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: MovCCOpc), DestReg) |
1479 | .addReg(RegNo: ZeroReg).addImm(Val: 1) |
1480 | .addImm(Val: ARMPred).addReg(RegNo: ARM::CPSR); |
1481 | |
1482 | updateValueMap(I, Reg: DestReg); |
1483 | return true; |
1484 | } |
1485 | |
1486 | bool ARMFastISel::SelectFPExt(const Instruction *I) { |
1487 | // Make sure we have VFP and that we're extending float to double. |
1488 | if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; |
1489 | |
1490 | Value *V = I->getOperand(i: 0); |
1491 | if (!I->getType()->isDoubleTy() || |
1492 | !V->getType()->isFloatTy()) return false; |
1493 | |
1494 | Register Op = getRegForValue(V); |
1495 | if (Op == 0) return false; |
1496 | |
1497 | Register Result = createResultReg(RC: &ARM::DPRRegClass); |
1498 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1499 | MCID: TII.get(Opcode: ARM::VCVTDS), DestReg: Result) |
1500 | .addReg(RegNo: Op)); |
1501 | updateValueMap(I, Reg: Result); |
1502 | return true; |
1503 | } |
1504 | |
1505 | bool ARMFastISel::SelectFPTrunc(const Instruction *I) { |
1506 | // Make sure we have VFP and that we're truncating double to float. |
1507 | if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; |
1508 | |
1509 | Value *V = I->getOperand(i: 0); |
1510 | if (!(I->getType()->isFloatTy() && |
1511 | V->getType()->isDoubleTy())) return false; |
1512 | |
1513 | Register Op = getRegForValue(V); |
1514 | if (Op == 0) return false; |
1515 | |
1516 | Register Result = createResultReg(RC: &ARM::SPRRegClass); |
1517 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1518 | MCID: TII.get(Opcode: ARM::VCVTSD), DestReg: Result) |
1519 | .addReg(RegNo: Op)); |
1520 | updateValueMap(I, Reg: Result); |
1521 | return true; |
1522 | } |
1523 | |
1524 | bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { |
1525 | // Make sure we have VFP. |
1526 | if (!Subtarget->hasVFP2Base()) return false; |
1527 | |
1528 | MVT DstVT; |
1529 | Type *Ty = I->getType(); |
1530 | if (!isTypeLegal(Ty, VT&: DstVT)) |
1531 | return false; |
1532 | |
1533 | Value *Src = I->getOperand(i: 0); |
1534 | EVT SrcEVT = TLI.getValueType(DL, Ty: Src->getType(), AllowUnknown: true); |
1535 | if (!SrcEVT.isSimple()) |
1536 | return false; |
1537 | MVT SrcVT = SrcEVT.getSimpleVT(); |
1538 | if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) |
1539 | return false; |
1540 | |
1541 | Register SrcReg = getRegForValue(V: Src); |
1542 | if (SrcReg == 0) return false; |
1543 | |
1544 | // Handle sign-extension. |
1545 | if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { |
1546 | SrcReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT: MVT::i32, |
1547 | /*isZExt*/!isSigned); |
1548 | if (SrcReg == 0) return false; |
1549 | } |
1550 | |
1551 | // The conversion routine works on fp-reg to fp-reg and the operand above |
1552 | // was an integer, move it to the fp registers if possible. |
1553 | unsigned FP = ARMMoveToFPReg(VT: MVT::f32, SrcReg); |
1554 | if (FP == 0) return false; |
1555 | |
1556 | unsigned Opc; |
1557 | if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; |
1558 | else if (Ty->isDoubleTy() && Subtarget->hasFP64()) |
1559 | Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; |
1560 | else return false; |
1561 | |
1562 | Register ResultReg = createResultReg(RC: TLI.getRegClassFor(VT: DstVT)); |
1563 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1564 | MCID: TII.get(Opcode: Opc), DestReg: ResultReg).addReg(RegNo: FP)); |
1565 | updateValueMap(I, Reg: ResultReg); |
1566 | return true; |
1567 | } |
1568 | |
1569 | bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { |
1570 | // Make sure we have VFP. |
1571 | if (!Subtarget->hasVFP2Base()) return false; |
1572 | |
1573 | MVT DstVT; |
1574 | Type *RetTy = I->getType(); |
1575 | if (!isTypeLegal(Ty: RetTy, VT&: DstVT)) |
1576 | return false; |
1577 | |
1578 | Register Op = getRegForValue(V: I->getOperand(i: 0)); |
1579 | if (Op == 0) return false; |
1580 | |
1581 | unsigned Opc; |
1582 | Type *OpTy = I->getOperand(i: 0)->getType(); |
1583 | if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; |
1584 | else if (OpTy->isDoubleTy() && Subtarget->hasFP64()) |
1585 | Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; |
1586 | else return false; |
1587 | |
1588 | // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. |
1589 | Register ResultReg = createResultReg(RC: TLI.getRegClassFor(VT: MVT::f32)); |
1590 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1591 | MCID: TII.get(Opcode: Opc), DestReg: ResultReg).addReg(RegNo: Op)); |
1592 | |
1593 | // This result needs to be in an integer register, but the conversion only |
1594 | // takes place in fp-regs. |
1595 | unsigned IntReg = ARMMoveToIntReg(VT: DstVT, SrcReg: ResultReg); |
1596 | if (IntReg == 0) return false; |
1597 | |
1598 | updateValueMap(I, Reg: IntReg); |
1599 | return true; |
1600 | } |
1601 | |
1602 | bool ARMFastISel::SelectSelect(const Instruction *I) { |
1603 | MVT VT; |
1604 | if (!isTypeLegal(Ty: I->getType(), VT)) |
1605 | return false; |
1606 | |
1607 | // Things need to be register sized for register moves. |
1608 | if (VT != MVT::i32) return false; |
1609 | |
1610 | Register CondReg = getRegForValue(V: I->getOperand(i: 0)); |
1611 | if (CondReg == 0) return false; |
1612 | Register Op1Reg = getRegForValue(V: I->getOperand(i: 1)); |
1613 | if (Op1Reg == 0) return false; |
1614 | |
1615 | // Check to see if we can use an immediate in the conditional move. |
1616 | int Imm = 0; |
1617 | bool UseImm = false; |
1618 | bool isNegativeImm = false; |
1619 | if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Val: I->getOperand(i: 2))) { |
1620 | assert(VT == MVT::i32 && "Expecting an i32." ); |
1621 | Imm = (int)ConstInt->getValue().getZExtValue(); |
1622 | if (Imm < 0) { |
1623 | isNegativeImm = true; |
1624 | Imm = ~Imm; |
1625 | } |
1626 | UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Arg: Imm) != -1) : |
1627 | (ARM_AM::getSOImmVal(Arg: Imm) != -1); |
1628 | } |
1629 | |
1630 | unsigned Op2Reg = 0; |
1631 | if (!UseImm) { |
1632 | Op2Reg = getRegForValue(V: I->getOperand(i: 2)); |
1633 | if (Op2Reg == 0) return false; |
1634 | } |
1635 | |
1636 | unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; |
1637 | CondReg = constrainOperandRegClass(II: TII.get(Opcode: TstOpc), Op: CondReg, OpNum: 0); |
1638 | AddOptionalDefs( |
1639 | MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TstOpc)) |
1640 | .addReg(RegNo: CondReg) |
1641 | .addImm(Val: 1)); |
1642 | |
1643 | unsigned MovCCOpc; |
1644 | const TargetRegisterClass *RC; |
1645 | if (!UseImm) { |
1646 | RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; |
1647 | MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; |
1648 | } else { |
1649 | RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; |
1650 | if (!isNegativeImm) |
1651 | MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; |
1652 | else |
1653 | MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; |
1654 | } |
1655 | Register ResultReg = createResultReg(RC); |
1656 | if (!UseImm) { |
1657 | Op2Reg = constrainOperandRegClass(II: TII.get(Opcode: MovCCOpc), Op: Op2Reg, OpNum: 1); |
1658 | Op1Reg = constrainOperandRegClass(II: TII.get(Opcode: MovCCOpc), Op: Op1Reg, OpNum: 2); |
1659 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: MovCCOpc), |
1660 | DestReg: ResultReg) |
1661 | .addReg(RegNo: Op2Reg) |
1662 | .addReg(RegNo: Op1Reg) |
1663 | .addImm(Val: ARMCC::NE) |
1664 | .addReg(RegNo: ARM::CPSR); |
1665 | } else { |
1666 | Op1Reg = constrainOperandRegClass(II: TII.get(Opcode: MovCCOpc), Op: Op1Reg, OpNum: 1); |
1667 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: MovCCOpc), |
1668 | DestReg: ResultReg) |
1669 | .addReg(RegNo: Op1Reg) |
1670 | .addImm(Val: Imm) |
1671 | .addImm(Val: ARMCC::EQ) |
1672 | .addReg(RegNo: ARM::CPSR); |
1673 | } |
1674 | updateValueMap(I, Reg: ResultReg); |
1675 | return true; |
1676 | } |
1677 | |
1678 | bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { |
1679 | MVT VT; |
1680 | Type *Ty = I->getType(); |
1681 | if (!isTypeLegal(Ty, VT)) |
1682 | return false; |
1683 | |
1684 | // If we have integer div support we should have selected this automagically. |
1685 | // In case we have a real miss go ahead and return false and we'll pick |
1686 | // it up later. |
1687 | if (Subtarget->hasDivideInThumbMode()) |
1688 | return false; |
1689 | |
1690 | // Otherwise emit a libcall. |
1691 | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
1692 | if (VT == MVT::i8) |
1693 | LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; |
1694 | else if (VT == MVT::i16) |
1695 | LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; |
1696 | else if (VT == MVT::i32) |
1697 | LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; |
1698 | else if (VT == MVT::i64) |
1699 | LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; |
1700 | else if (VT == MVT::i128) |
1701 | LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; |
1702 | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!" ); |
1703 | |
1704 | return ARMEmitLibcall(I, Call: LC); |
1705 | } |
1706 | |
1707 | bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { |
1708 | MVT VT; |
1709 | Type *Ty = I->getType(); |
1710 | if (!isTypeLegal(Ty, VT)) |
1711 | return false; |
1712 | |
1713 | // Many ABIs do not provide a libcall for standalone remainder, so we need to |
1714 | // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double |
1715 | // multi-reg returns, we'll have to bail out. |
1716 | if (!TLI.hasStandaloneRem(VT)) { |
1717 | return false; |
1718 | } |
1719 | |
1720 | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
1721 | if (VT == MVT::i8) |
1722 | LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; |
1723 | else if (VT == MVT::i16) |
1724 | LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; |
1725 | else if (VT == MVT::i32) |
1726 | LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; |
1727 | else if (VT == MVT::i64) |
1728 | LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; |
1729 | else if (VT == MVT::i128) |
1730 | LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; |
1731 | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!" ); |
1732 | |
1733 | return ARMEmitLibcall(I, Call: LC); |
1734 | } |
1735 | |
1736 | bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { |
1737 | EVT DestVT = TLI.getValueType(DL, Ty: I->getType(), AllowUnknown: true); |
1738 | |
1739 | // We can get here in the case when we have a binary operation on a non-legal |
1740 | // type and the target independent selector doesn't know how to handle it. |
1741 | if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) |
1742 | return false; |
1743 | |
1744 | unsigned Opc; |
1745 | switch (ISDOpcode) { |
1746 | default: return false; |
1747 | case ISD::ADD: |
1748 | Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; |
1749 | break; |
1750 | case ISD::OR: |
1751 | Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; |
1752 | break; |
1753 | case ISD::SUB: |
1754 | Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; |
1755 | break; |
1756 | } |
1757 | |
1758 | Register SrcReg1 = getRegForValue(V: I->getOperand(i: 0)); |
1759 | if (SrcReg1 == 0) return false; |
1760 | |
1761 | // TODO: Often the 2nd operand is an immediate, which can be encoded directly |
1762 | // in the instruction, rather then materializing the value in a register. |
1763 | Register SrcReg2 = getRegForValue(V: I->getOperand(i: 1)); |
1764 | if (SrcReg2 == 0) return false; |
1765 | |
1766 | Register ResultReg = createResultReg(RC: &ARM::GPRnopcRegClass); |
1767 | SrcReg1 = constrainOperandRegClass(II: TII.get(Opcode: Opc), Op: SrcReg1, OpNum: 1); |
1768 | SrcReg2 = constrainOperandRegClass(II: TII.get(Opcode: Opc), Op: SrcReg2, OpNum: 2); |
1769 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1770 | MCID: TII.get(Opcode: Opc), DestReg: ResultReg) |
1771 | .addReg(RegNo: SrcReg1).addReg(RegNo: SrcReg2)); |
1772 | updateValueMap(I, Reg: ResultReg); |
1773 | return true; |
1774 | } |
1775 | |
1776 | bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { |
1777 | EVT FPVT = TLI.getValueType(DL, Ty: I->getType(), AllowUnknown: true); |
1778 | if (!FPVT.isSimple()) return false; |
1779 | MVT VT = FPVT.getSimpleVT(); |
1780 | |
1781 | // FIXME: Support vector types where possible. |
1782 | if (VT.isVector()) |
1783 | return false; |
1784 | |
1785 | // We can get here in the case when we want to use NEON for our fp |
1786 | // operations, but can't figure out how to. Just use the vfp instructions |
1787 | // if we have them. |
1788 | // FIXME: It'd be nice to use NEON instructions. |
1789 | Type *Ty = I->getType(); |
1790 | if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) |
1791 | return false; |
1792 | if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) |
1793 | return false; |
1794 | |
1795 | unsigned Opc; |
1796 | bool is64bit = VT == MVT::f64 || VT == MVT::i64; |
1797 | switch (ISDOpcode) { |
1798 | default: return false; |
1799 | case ISD::FADD: |
1800 | Opc = is64bit ? ARM::VADDD : ARM::VADDS; |
1801 | break; |
1802 | case ISD::FSUB: |
1803 | Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; |
1804 | break; |
1805 | case ISD::FMUL: |
1806 | Opc = is64bit ? ARM::VMULD : ARM::VMULS; |
1807 | break; |
1808 | } |
1809 | Register Op1 = getRegForValue(V: I->getOperand(i: 0)); |
1810 | if (Op1 == 0) return false; |
1811 | |
1812 | Register Op2 = getRegForValue(V: I->getOperand(i: 1)); |
1813 | if (Op2 == 0) return false; |
1814 | |
1815 | Register ResultReg = createResultReg(RC: TLI.getRegClassFor(VT: VT.SimpleTy)); |
1816 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1817 | MCID: TII.get(Opcode: Opc), DestReg: ResultReg) |
1818 | .addReg(RegNo: Op1).addReg(RegNo: Op2)); |
1819 | updateValueMap(I, Reg: ResultReg); |
1820 | return true; |
1821 | } |
1822 | |
1823 | // Call Handling Code |
1824 | |
1825 | // This is largely taken directly from CCAssignFnForNode |
1826 | // TODO: We may not support all of this. |
1827 | CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, |
1828 | bool Return, |
1829 | bool isVarArg) { |
1830 | switch (CC) { |
1831 | default: |
1832 | report_fatal_error(reason: "Unsupported calling convention" ); |
1833 | case CallingConv::Fast: |
1834 | if (Subtarget->hasVFP2Base() && !isVarArg) { |
1835 | if (!Subtarget->isAAPCS_ABI()) |
1836 | return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); |
1837 | // For AAPCS ABI targets, just use VFP variant of the calling convention. |
1838 | return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); |
1839 | } |
1840 | [[fallthrough]]; |
1841 | case CallingConv::C: |
1842 | case CallingConv::CXX_FAST_TLS: |
1843 | // Use target triple & subtarget features to do actual dispatch. |
1844 | if (Subtarget->isAAPCS_ABI()) { |
1845 | if (Subtarget->hasFPRegs() && |
1846 | TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) |
1847 | return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); |
1848 | else |
1849 | return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); |
1850 | } else { |
1851 | return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); |
1852 | } |
1853 | case CallingConv::ARM_AAPCS_VFP: |
1854 | case CallingConv::Swift: |
1855 | case CallingConv::SwiftTail: |
1856 | if (!isVarArg) |
1857 | return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); |
1858 | // Fall through to soft float variant, variadic functions don't |
1859 | // use hard floating point ABI. |
1860 | [[fallthrough]]; |
1861 | case CallingConv::ARM_AAPCS: |
1862 | return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); |
1863 | case CallingConv::ARM_APCS: |
1864 | return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); |
1865 | case CallingConv::GHC: |
1866 | if (Return) |
1867 | report_fatal_error(reason: "Can't return in GHC call convention" ); |
1868 | else |
1869 | return CC_ARM_APCS_GHC; |
1870 | case CallingConv::CFGuard_Check: |
1871 | return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check); |
1872 | } |
1873 | } |
1874 | |
1875 | bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, |
1876 | SmallVectorImpl<Register> &ArgRegs, |
1877 | SmallVectorImpl<MVT> &ArgVTs, |
1878 | SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, |
1879 | SmallVectorImpl<Register> &RegArgs, |
1880 | CallingConv::ID CC, |
1881 | unsigned &NumBytes, |
1882 | bool isVarArg) { |
1883 | SmallVector<CCValAssign, 16> ArgLocs; |
1884 | CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); |
1885 | CCInfo.AnalyzeCallOperands(ArgVTs, Flags&: ArgFlags, |
1886 | Fn: CCAssignFnForCall(CC, Return: false, isVarArg)); |
1887 | |
1888 | // Check that we can handle all of the arguments. If we can't, then bail out |
1889 | // now before we add code to the MBB. |
1890 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
1891 | CCValAssign &VA = ArgLocs[i]; |
1892 | MVT ArgVT = ArgVTs[VA.getValNo()]; |
1893 | |
1894 | // We don't handle NEON/vector parameters yet. |
1895 | if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) |
1896 | return false; |
1897 | |
1898 | // Now copy/store arg to correct locations. |
1899 | if (VA.isRegLoc() && !VA.needsCustom()) { |
1900 | continue; |
1901 | } else if (VA.needsCustom()) { |
1902 | // TODO: We need custom lowering for vector (v2f64) args. |
1903 | if (VA.getLocVT() != MVT::f64 || |
1904 | // TODO: Only handle register args for now. |
1905 | !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) |
1906 | return false; |
1907 | } else { |
1908 | switch (ArgVT.SimpleTy) { |
1909 | default: |
1910 | return false; |
1911 | case MVT::i1: |
1912 | case MVT::i8: |
1913 | case MVT::i16: |
1914 | case MVT::i32: |
1915 | break; |
1916 | case MVT::f32: |
1917 | if (!Subtarget->hasVFP2Base()) |
1918 | return false; |
1919 | break; |
1920 | case MVT::f64: |
1921 | if (!Subtarget->hasVFP2Base()) |
1922 | return false; |
1923 | break; |
1924 | } |
1925 | } |
1926 | } |
1927 | |
1928 | // At the point, we are able to handle the call's arguments in fast isel. |
1929 | |
1930 | // Get a count of how many bytes are to be pushed on the stack. |
1931 | NumBytes = CCInfo.getStackSize(); |
1932 | |
1933 | // Issue CALLSEQ_START |
1934 | unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); |
1935 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1936 | MCID: TII.get(Opcode: AdjStackDown)) |
1937 | .addImm(Val: NumBytes).addImm(Val: 0)); |
1938 | |
1939 | // Process the args. |
1940 | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
1941 | CCValAssign &VA = ArgLocs[i]; |
1942 | const Value *ArgVal = Args[VA.getValNo()]; |
1943 | Register Arg = ArgRegs[VA.getValNo()]; |
1944 | MVT ArgVT = ArgVTs[VA.getValNo()]; |
1945 | |
1946 | assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && |
1947 | "We don't handle NEON/vector parameters yet." ); |
1948 | |
1949 | // Handle arg promotion, etc. |
1950 | switch (VA.getLocInfo()) { |
1951 | case CCValAssign::Full: break; |
1952 | case CCValAssign::SExt: { |
1953 | MVT DestVT = VA.getLocVT(); |
1954 | Arg = ARMEmitIntExt(SrcVT: ArgVT, SrcReg: Arg, DestVT, /*isZExt*/false); |
1955 | assert(Arg != 0 && "Failed to emit a sext" ); |
1956 | ArgVT = DestVT; |
1957 | break; |
1958 | } |
1959 | case CCValAssign::AExt: |
1960 | // Intentional fall-through. Handle AExt and ZExt. |
1961 | case CCValAssign::ZExt: { |
1962 | MVT DestVT = VA.getLocVT(); |
1963 | Arg = ARMEmitIntExt(SrcVT: ArgVT, SrcReg: Arg, DestVT, /*isZExt*/true); |
1964 | assert(Arg != 0 && "Failed to emit a zext" ); |
1965 | ArgVT = DestVT; |
1966 | break; |
1967 | } |
1968 | case CCValAssign::BCvt: { |
1969 | unsigned BC = fastEmit_r(VT: ArgVT, RetVT: VA.getLocVT(), Opcode: ISD::BITCAST, Op0: Arg); |
1970 | assert(BC != 0 && "Failed to emit a bitcast!" ); |
1971 | Arg = BC; |
1972 | ArgVT = VA.getLocVT(); |
1973 | break; |
1974 | } |
1975 | default: llvm_unreachable("Unknown arg promotion!" ); |
1976 | } |
1977 | |
1978 | // Now copy/store arg to correct locations. |
1979 | if (VA.isRegLoc() && !VA.needsCustom()) { |
1980 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1981 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: VA.getLocReg()).addReg(RegNo: Arg); |
1982 | RegArgs.push_back(Elt: VA.getLocReg()); |
1983 | } else if (VA.needsCustom()) { |
1984 | // TODO: We need custom lowering for vector (v2f64) args. |
1985 | assert(VA.getLocVT() == MVT::f64 && |
1986 | "Custom lowering for v2f64 args not available" ); |
1987 | |
1988 | // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size() |
1989 | CCValAssign &NextVA = ArgLocs[++i]; |
1990 | |
1991 | assert(VA.isRegLoc() && NextVA.isRegLoc() && |
1992 | "We only handle register args!" ); |
1993 | |
1994 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1995 | MCID: TII.get(Opcode: ARM::VMOVRRD), DestReg: VA.getLocReg()) |
1996 | .addReg(RegNo: NextVA.getLocReg(), flags: RegState::Define) |
1997 | .addReg(RegNo: Arg)); |
1998 | RegArgs.push_back(Elt: VA.getLocReg()); |
1999 | RegArgs.push_back(Elt: NextVA.getLocReg()); |
2000 | } else { |
2001 | assert(VA.isMemLoc()); |
2002 | // Need to store on the stack. |
2003 | |
2004 | // Don't emit stores for undef values. |
2005 | if (isa<UndefValue>(Val: ArgVal)) |
2006 | continue; |
2007 | |
2008 | Address Addr; |
2009 | Addr.BaseType = Address::RegBase; |
2010 | Addr.Base.Reg = ARM::SP; |
2011 | Addr.Offset = VA.getLocMemOffset(); |
2012 | |
2013 | bool EmitRet = ARMEmitStore(VT: ArgVT, SrcReg: Arg, Addr); (void)EmitRet; |
2014 | assert(EmitRet && "Could not emit a store for argument!" ); |
2015 | } |
2016 | } |
2017 | |
2018 | return true; |
2019 | } |
2020 | |
2021 | bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, |
2022 | const Instruction *I, CallingConv::ID CC, |
2023 | unsigned &NumBytes, bool isVarArg) { |
2024 | // Issue CALLSEQ_END |
2025 | unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); |
2026 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2027 | MCID: TII.get(Opcode: AdjStackUp)) |
2028 | .addImm(Val: NumBytes).addImm(Val: -1ULL)); |
2029 | |
2030 | // Now the return value. |
2031 | if (RetVT != MVT::isVoid) { |
2032 | SmallVector<CCValAssign, 16> RVLocs; |
2033 | CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); |
2034 | CCInfo.AnalyzeCallResult(VT: RetVT, Fn: CCAssignFnForCall(CC, Return: true, isVarArg)); |
2035 | |
2036 | // Copy all of the result registers out of their specified physreg. |
2037 | if (RVLocs.size() == 2 && RetVT == MVT::f64) { |
2038 | // For this move we copy into two registers and then move into the |
2039 | // double fp reg we want. |
2040 | MVT DestVT = RVLocs[0].getValVT(); |
2041 | const TargetRegisterClass* DstRC = TLI.getRegClassFor(VT: DestVT); |
2042 | Register ResultReg = createResultReg(RC: DstRC); |
2043 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2044 | MCID: TII.get(Opcode: ARM::VMOVDRR), DestReg: ResultReg) |
2045 | .addReg(RegNo: RVLocs[0].getLocReg()) |
2046 | .addReg(RegNo: RVLocs[1].getLocReg())); |
2047 | |
2048 | UsedRegs.push_back(Elt: RVLocs[0].getLocReg()); |
2049 | UsedRegs.push_back(Elt: RVLocs[1].getLocReg()); |
2050 | |
2051 | // Finally update the result. |
2052 | updateValueMap(I, Reg: ResultReg); |
2053 | } else { |
2054 | assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!" ); |
2055 | MVT CopyVT = RVLocs[0].getValVT(); |
2056 | |
2057 | // Special handling for extended integers. |
2058 | if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) |
2059 | CopyVT = MVT::i32; |
2060 | |
2061 | const TargetRegisterClass* DstRC = TLI.getRegClassFor(VT: CopyVT); |
2062 | |
2063 | Register ResultReg = createResultReg(RC: DstRC); |
2064 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2065 | MCID: TII.get(Opcode: TargetOpcode::COPY), |
2066 | DestReg: ResultReg).addReg(RegNo: RVLocs[0].getLocReg()); |
2067 | UsedRegs.push_back(Elt: RVLocs[0].getLocReg()); |
2068 | |
2069 | // Finally update the result. |
2070 | updateValueMap(I, Reg: ResultReg); |
2071 | } |
2072 | } |
2073 | |
2074 | return true; |
2075 | } |
2076 | |
2077 | bool ARMFastISel::SelectRet(const Instruction *I) { |
2078 | const ReturnInst *Ret = cast<ReturnInst>(Val: I); |
2079 | const Function &F = *I->getParent()->getParent(); |
2080 | const bool IsCmseNSEntry = F.hasFnAttribute(Kind: "cmse_nonsecure_entry" ); |
2081 | |
2082 | if (!FuncInfo.CanLowerReturn) |
2083 | return false; |
2084 | |
2085 | if (TLI.supportSwiftError() && |
2086 | F.getAttributes().hasAttrSomewhere(Kind: Attribute::SwiftError)) |
2087 | return false; |
2088 | |
2089 | if (TLI.supportSplitCSR(MF: FuncInfo.MF)) |
2090 | return false; |
2091 | |
2092 | // Build a list of return value registers. |
2093 | SmallVector<unsigned, 4> RetRegs; |
2094 | |
2095 | CallingConv::ID CC = F.getCallingConv(); |
2096 | if (Ret->getNumOperands() > 0) { |
2097 | SmallVector<ISD::OutputArg, 4> Outs; |
2098 | GetReturnInfo(CC, ReturnType: F.getReturnType(), attr: F.getAttributes(), Outs, TLI, DL); |
2099 | |
2100 | // Analyze operands of the call, assigning locations to each operand. |
2101 | SmallVector<CCValAssign, 16> ValLocs; |
2102 | CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); |
2103 | CCInfo.AnalyzeReturn(Outs, Fn: CCAssignFnForCall(CC, Return: true /* is Ret */, |
2104 | isVarArg: F.isVarArg())); |
2105 | |
2106 | const Value *RV = Ret->getOperand(i_nocapture: 0); |
2107 | Register Reg = getRegForValue(V: RV); |
2108 | if (Reg == 0) |
2109 | return false; |
2110 | |
2111 | // Only handle a single return value for now. |
2112 | if (ValLocs.size() != 1) |
2113 | return false; |
2114 | |
2115 | CCValAssign &VA = ValLocs[0]; |
2116 | |
2117 | // Don't bother handling odd stuff for now. |
2118 | if (VA.getLocInfo() != CCValAssign::Full) |
2119 | return false; |
2120 | // Only handle register returns for now. |
2121 | if (!VA.isRegLoc()) |
2122 | return false; |
2123 | |
2124 | unsigned SrcReg = Reg + VA.getValNo(); |
2125 | EVT RVEVT = TLI.getValueType(DL, Ty: RV->getType()); |
2126 | if (!RVEVT.isSimple()) return false; |
2127 | MVT RVVT = RVEVT.getSimpleVT(); |
2128 | MVT DestVT = VA.getValVT(); |
2129 | // Special handling for extended integers. |
2130 | if (RVVT != DestVT) { |
2131 | if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) |
2132 | return false; |
2133 | |
2134 | assert(DestVT == MVT::i32 && "ARM should always ext to i32" ); |
2135 | |
2136 | // Perform extension if flagged as either zext or sext. Otherwise, do |
2137 | // nothing. |
2138 | if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { |
2139 | SrcReg = ARMEmitIntExt(SrcVT: RVVT, SrcReg, DestVT, isZExt: Outs[0].Flags.isZExt()); |
2140 | if (SrcReg == 0) return false; |
2141 | } |
2142 | } |
2143 | |
2144 | // Make the copy. |
2145 | Register DstReg = VA.getLocReg(); |
2146 | const TargetRegisterClass* SrcRC = MRI.getRegClass(Reg: SrcReg); |
2147 | // Avoid a cross-class copy. This is very unlikely. |
2148 | if (!SrcRC->contains(Reg: DstReg)) |
2149 | return false; |
2150 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2151 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: DstReg).addReg(RegNo: SrcReg); |
2152 | |
2153 | // Add register to return instruction. |
2154 | RetRegs.push_back(Elt: VA.getLocReg()); |
2155 | } |
2156 | |
2157 | unsigned RetOpc; |
2158 | if (IsCmseNSEntry) |
2159 | if (isThumb2) |
2160 | RetOpc = ARM::tBXNS_RET; |
2161 | else |
2162 | llvm_unreachable("CMSE not valid for non-Thumb targets" ); |
2163 | else |
2164 | RetOpc = Subtarget->getReturnOpcode(); |
2165 | |
2166 | MachineInstrBuilder MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2167 | MCID: TII.get(Opcode: RetOpc)); |
2168 | AddOptionalDefs(MIB); |
2169 | for (unsigned R : RetRegs) |
2170 | MIB.addReg(RegNo: R, flags: RegState::Implicit); |
2171 | return true; |
2172 | } |
2173 | |
2174 | unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { |
2175 | if (UseReg) |
2176 | return isThumb2 ? gettBLXrOpcode(MF: *MF) : getBLXOpcode(MF: *MF); |
2177 | else |
2178 | return isThumb2 ? ARM::tBL : ARM::BL; |
2179 | } |
2180 | |
2181 | unsigned ARMFastISel::getLibcallReg(const Twine &Name) { |
2182 | // Manually compute the global's type to avoid building it when unnecessary. |
2183 | Type *GVTy = PointerType::get(C&: *Context, /*AS=*/AddressSpace: 0); |
2184 | EVT LCREVT = TLI.getValueType(DL, Ty: GVTy); |
2185 | if (!LCREVT.isSimple()) return 0; |
2186 | |
2187 | GlobalValue *GV = M.getNamedGlobal(Name: Name.str()); |
2188 | if (!GV) |
2189 | GV = new GlobalVariable(M, Type::getInt32Ty(C&: *Context), false, |
2190 | GlobalValue::ExternalLinkage, nullptr, Name); |
2191 | |
2192 | return ARMMaterializeGV(GV, VT: LCREVT.getSimpleVT()); |
2193 | } |
2194 | |
2195 | // A quick function that will emit a call for a named libcall in F with the |
2196 | // vector of passed arguments for the Instruction in I. We can assume that we |
2197 | // can emit a call for any libcall we can produce. This is an abridged version |
2198 | // of the full call infrastructure since we won't need to worry about things |
2199 | // like computed function pointers or strange arguments at call sites. |
2200 | // TODO: Try to unify this and the normal call bits for ARM, then try to unify |
2201 | // with X86. |
2202 | bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { |
2203 | CallingConv::ID CC = TLI.getLibcallCallingConv(Call); |
2204 | |
2205 | // Handle *simple* calls for now. |
2206 | Type *RetTy = I->getType(); |
2207 | MVT RetVT; |
2208 | if (RetTy->isVoidTy()) |
2209 | RetVT = MVT::isVoid; |
2210 | else if (!isTypeLegal(Ty: RetTy, VT&: RetVT)) |
2211 | return false; |
2212 | |
2213 | // Can't handle non-double multi-reg retvals. |
2214 | if (RetVT != MVT::isVoid && RetVT != MVT::i32) { |
2215 | SmallVector<CCValAssign, 16> RVLocs; |
2216 | CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); |
2217 | CCInfo.AnalyzeCallResult(VT: RetVT, Fn: CCAssignFnForCall(CC, Return: true, isVarArg: false)); |
2218 | if (RVLocs.size() >= 2 && RetVT != MVT::f64) |
2219 | return false; |
2220 | } |
2221 | |
2222 | // Set up the argument vectors. |
2223 | SmallVector<Value*, 8> Args; |
2224 | SmallVector<Register, 8> ArgRegs; |
2225 | SmallVector<MVT, 8> ArgVTs; |
2226 | SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; |
2227 | Args.reserve(N: I->getNumOperands()); |
2228 | ArgRegs.reserve(N: I->getNumOperands()); |
2229 | ArgVTs.reserve(N: I->getNumOperands()); |
2230 | ArgFlags.reserve(N: I->getNumOperands()); |
2231 | for (Value *Op : I->operands()) { |
2232 | Register Arg = getRegForValue(V: Op); |
2233 | if (Arg == 0) return false; |
2234 | |
2235 | Type *ArgTy = Op->getType(); |
2236 | MVT ArgVT; |
2237 | if (!isTypeLegal(Ty: ArgTy, VT&: ArgVT)) return false; |
2238 | |
2239 | ISD::ArgFlagsTy Flags; |
2240 | Flags.setOrigAlign(DL.getABITypeAlign(Ty: ArgTy)); |
2241 | |
2242 | Args.push_back(Elt: Op); |
2243 | ArgRegs.push_back(Elt: Arg); |
2244 | ArgVTs.push_back(Elt: ArgVT); |
2245 | ArgFlags.push_back(Elt: Flags); |
2246 | } |
2247 | |
2248 | // Handle the arguments now that we've gotten them. |
2249 | SmallVector<Register, 4> RegArgs; |
2250 | unsigned NumBytes; |
2251 | if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, |
2252 | RegArgs, CC, NumBytes, isVarArg: false)) |
2253 | return false; |
2254 | |
2255 | Register CalleeReg; |
2256 | if (Subtarget->genLongCalls()) { |
2257 | CalleeReg = getLibcallReg(Name: TLI.getLibcallName(Call)); |
2258 | if (CalleeReg == 0) return false; |
2259 | } |
2260 | |
2261 | // Issue the call. |
2262 | unsigned CallOpc = ARMSelectCallOp(UseReg: Subtarget->genLongCalls()); |
2263 | MachineInstrBuilder MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, |
2264 | MIMD, MCID: TII.get(Opcode: CallOpc)); |
2265 | // BL / BLX don't take a predicate, but tBL / tBLX do. |
2266 | if (isThumb2) |
2267 | MIB.add(MOs: predOps(Pred: ARMCC::AL)); |
2268 | if (Subtarget->genLongCalls()) { |
2269 | CalleeReg = |
2270 | constrainOperandRegClass(II: TII.get(Opcode: CallOpc), Op: CalleeReg, OpNum: isThumb2 ? 2 : 0); |
2271 | MIB.addReg(RegNo: CalleeReg); |
2272 | } else |
2273 | MIB.addExternalSymbol(FnName: TLI.getLibcallName(Call)); |
2274 | |
2275 | // Add implicit physical register uses to the call. |
2276 | for (Register R : RegArgs) |
2277 | MIB.addReg(RegNo: R, flags: RegState::Implicit); |
2278 | |
2279 | // Add a register mask with the call-preserved registers. |
2280 | // Proper defs for return values will be added by setPhysRegsDeadExcept(). |
2281 | MIB.addRegMask(Mask: TRI.getCallPreservedMask(MF: *FuncInfo.MF, CC)); |
2282 | |
2283 | // Finish off the call including any return values. |
2284 | SmallVector<Register, 4> UsedRegs; |
2285 | if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg: false)) return false; |
2286 | |
2287 | // Set all unused physreg defs as dead. |
2288 | static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); |
2289 | |
2290 | return true; |
2291 | } |
2292 | |
2293 | bool ARMFastISel::SelectCall(const Instruction *I, |
2294 | const char *IntrMemName = nullptr) { |
2295 | const CallInst *CI = cast<CallInst>(Val: I); |
2296 | const Value *Callee = CI->getCalledOperand(); |
2297 | |
2298 | // Can't handle inline asm. |
2299 | if (isa<InlineAsm>(Val: Callee)) return false; |
2300 | |
2301 | // Allow SelectionDAG isel to handle tail calls. |
2302 | if (CI->isTailCall()) return false; |
2303 | |
2304 | // Check the calling convention. |
2305 | CallingConv::ID CC = CI->getCallingConv(); |
2306 | |
2307 | // TODO: Avoid some calling conventions? |
2308 | |
2309 | FunctionType *FTy = CI->getFunctionType(); |
2310 | bool isVarArg = FTy->isVarArg(); |
2311 | |
2312 | // Handle *simple* calls for now. |
2313 | Type *RetTy = I->getType(); |
2314 | MVT RetVT; |
2315 | if (RetTy->isVoidTy()) |
2316 | RetVT = MVT::isVoid; |
2317 | else if (!isTypeLegal(Ty: RetTy, VT&: RetVT) && RetVT != MVT::i16 && |
2318 | RetVT != MVT::i8 && RetVT != MVT::i1) |
2319 | return false; |
2320 | |
2321 | // Can't handle non-double multi-reg retvals. |
2322 | if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && |
2323 | RetVT != MVT::i16 && RetVT != MVT::i32) { |
2324 | SmallVector<CCValAssign, 16> RVLocs; |
2325 | CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); |
2326 | CCInfo.AnalyzeCallResult(VT: RetVT, Fn: CCAssignFnForCall(CC, Return: true, isVarArg)); |
2327 | if (RVLocs.size() >= 2 && RetVT != MVT::f64) |
2328 | return false; |
2329 | } |
2330 | |
2331 | // Set up the argument vectors. |
2332 | SmallVector<Value*, 8> Args; |
2333 | SmallVector<Register, 8> ArgRegs; |
2334 | SmallVector<MVT, 8> ArgVTs; |
2335 | SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; |
2336 | unsigned arg_size = CI->arg_size(); |
2337 | Args.reserve(N: arg_size); |
2338 | ArgRegs.reserve(N: arg_size); |
2339 | ArgVTs.reserve(N: arg_size); |
2340 | ArgFlags.reserve(N: arg_size); |
2341 | for (auto ArgI = CI->arg_begin(), ArgE = CI->arg_end(); ArgI != ArgE; ++ArgI) { |
2342 | // If we're lowering a memory intrinsic instead of a regular call, skip the |
2343 | // last argument, which shouldn't be passed to the underlying function. |
2344 | if (IntrMemName && ArgE - ArgI <= 1) |
2345 | break; |
2346 | |
2347 | ISD::ArgFlagsTy Flags; |
2348 | unsigned ArgIdx = ArgI - CI->arg_begin(); |
2349 | if (CI->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::SExt)) |
2350 | Flags.setSExt(); |
2351 | if (CI->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::ZExt)) |
2352 | Flags.setZExt(); |
2353 | |
2354 | // FIXME: Only handle *easy* calls for now. |
2355 | if (CI->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::InReg) || |
2356 | CI->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::StructRet) || |
2357 | CI->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::SwiftSelf) || |
2358 | CI->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::SwiftError) || |
2359 | CI->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::Nest) || |
2360 | CI->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::ByVal)) |
2361 | return false; |
2362 | |
2363 | Type *ArgTy = (*ArgI)->getType(); |
2364 | MVT ArgVT; |
2365 | if (!isTypeLegal(Ty: ArgTy, VT&: ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && |
2366 | ArgVT != MVT::i1) |
2367 | return false; |
2368 | |
2369 | Register Arg = getRegForValue(V: *ArgI); |
2370 | if (!Arg.isValid()) |
2371 | return false; |
2372 | |
2373 | Flags.setOrigAlign(DL.getABITypeAlign(Ty: ArgTy)); |
2374 | |
2375 | Args.push_back(Elt: *ArgI); |
2376 | ArgRegs.push_back(Elt: Arg); |
2377 | ArgVTs.push_back(Elt: ArgVT); |
2378 | ArgFlags.push_back(Elt: Flags); |
2379 | } |
2380 | |
2381 | // Handle the arguments now that we've gotten them. |
2382 | SmallVector<Register, 4> RegArgs; |
2383 | unsigned NumBytes; |
2384 | if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, |
2385 | RegArgs, CC, NumBytes, isVarArg)) |
2386 | return false; |
2387 | |
2388 | bool UseReg = false; |
2389 | const GlobalValue *GV = dyn_cast<GlobalValue>(Val: Callee); |
2390 | if (!GV || Subtarget->genLongCalls()) UseReg = true; |
2391 | |
2392 | Register CalleeReg; |
2393 | if (UseReg) { |
2394 | if (IntrMemName) |
2395 | CalleeReg = getLibcallReg(Name: IntrMemName); |
2396 | else |
2397 | CalleeReg = getRegForValue(V: Callee); |
2398 | |
2399 | if (CalleeReg == 0) return false; |
2400 | } |
2401 | |
2402 | // Issue the call. |
2403 | unsigned CallOpc = ARMSelectCallOp(UseReg); |
2404 | MachineInstrBuilder MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, |
2405 | MIMD, MCID: TII.get(Opcode: CallOpc)); |
2406 | |
2407 | // ARM calls don't take a predicate, but tBL / tBLX do. |
2408 | if(isThumb2) |
2409 | MIB.add(MOs: predOps(Pred: ARMCC::AL)); |
2410 | if (UseReg) { |
2411 | CalleeReg = |
2412 | constrainOperandRegClass(II: TII.get(Opcode: CallOpc), Op: CalleeReg, OpNum: isThumb2 ? 2 : 0); |
2413 | MIB.addReg(RegNo: CalleeReg); |
2414 | } else if (!IntrMemName) |
2415 | MIB.addGlobalAddress(GV, Offset: 0, TargetFlags: 0); |
2416 | else |
2417 | MIB.addExternalSymbol(FnName: IntrMemName, TargetFlags: 0); |
2418 | |
2419 | // Add implicit physical register uses to the call. |
2420 | for (Register R : RegArgs) |
2421 | MIB.addReg(RegNo: R, flags: RegState::Implicit); |
2422 | |
2423 | // Add a register mask with the call-preserved registers. |
2424 | // Proper defs for return values will be added by setPhysRegsDeadExcept(). |
2425 | MIB.addRegMask(Mask: TRI.getCallPreservedMask(MF: *FuncInfo.MF, CC)); |
2426 | |
2427 | // Finish off the call including any return values. |
2428 | SmallVector<Register, 4> UsedRegs; |
2429 | if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) |
2430 | return false; |
2431 | |
2432 | // Set all unused physreg defs as dead. |
2433 | static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); |
2434 | |
2435 | return true; |
2436 | } |
2437 | |
2438 | bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { |
2439 | return Len <= 16; |
2440 | } |
2441 | |
2442 | bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, |
2443 | MaybeAlign Alignment) { |
2444 | // Make sure we don't bloat code by inlining very large memcpy's. |
2445 | if (!ARMIsMemCpySmall(Len)) |
2446 | return false; |
2447 | |
2448 | while (Len) { |
2449 | MVT VT; |
2450 | if (!Alignment || *Alignment >= 4) { |
2451 | if (Len >= 4) |
2452 | VT = MVT::i32; |
2453 | else if (Len >= 2) |
2454 | VT = MVT::i16; |
2455 | else { |
2456 | assert(Len == 1 && "Expected a length of 1!" ); |
2457 | VT = MVT::i8; |
2458 | } |
2459 | } else { |
2460 | assert(Alignment && "Alignment is set in this branch" ); |
2461 | // Bound based on alignment. |
2462 | if (Len >= 2 && *Alignment == 2) |
2463 | VT = MVT::i16; |
2464 | else { |
2465 | VT = MVT::i8; |
2466 | } |
2467 | } |
2468 | |
2469 | bool RV; |
2470 | Register ResultReg; |
2471 | RV = ARMEmitLoad(VT, ResultReg, Addr&: Src); |
2472 | assert(RV && "Should be able to handle this load." ); |
2473 | RV = ARMEmitStore(VT, SrcReg: ResultReg, Addr&: Dest); |
2474 | assert(RV && "Should be able to handle this store." ); |
2475 | (void)RV; |
2476 | |
2477 | unsigned Size = VT.getSizeInBits()/8; |
2478 | Len -= Size; |
2479 | Dest.Offset += Size; |
2480 | Src.Offset += Size; |
2481 | } |
2482 | |
2483 | return true; |
2484 | } |
2485 | |
2486 | bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { |
2487 | // FIXME: Handle more intrinsics. |
2488 | switch (I.getIntrinsicID()) { |
2489 | default: return false; |
2490 | case Intrinsic::frameaddress: { |
2491 | MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); |
2492 | MFI.setFrameAddressIsTaken(true); |
2493 | |
2494 | unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; |
2495 | const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass |
2496 | : &ARM::GPRRegClass; |
2497 | |
2498 | const ARMBaseRegisterInfo *RegInfo = |
2499 | static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); |
2500 | Register FramePtr = RegInfo->getFrameRegister(MF: *(FuncInfo.MF)); |
2501 | unsigned SrcReg = FramePtr; |
2502 | |
2503 | // Recursively load frame address |
2504 | // ldr r0 [fp] |
2505 | // ldr r0 [r0] |
2506 | // ldr r0 [r0] |
2507 | // ... |
2508 | unsigned DestReg; |
2509 | unsigned Depth = cast<ConstantInt>(Val: I.getOperand(i_nocapture: 0))->getZExtValue(); |
2510 | while (Depth--) { |
2511 | DestReg = createResultReg(RC); |
2512 | AddOptionalDefs(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2513 | MCID: TII.get(Opcode: LdrOpc), DestReg) |
2514 | .addReg(RegNo: SrcReg).addImm(Val: 0)); |
2515 | SrcReg = DestReg; |
2516 | } |
2517 | updateValueMap(I: &I, Reg: SrcReg); |
2518 | return true; |
2519 | } |
2520 | case Intrinsic::memcpy: |
2521 | case Intrinsic::memmove: { |
2522 | const MemTransferInst &MTI = cast<MemTransferInst>(Val: I); |
2523 | // Don't handle volatile. |
2524 | if (MTI.isVolatile()) |
2525 | return false; |
2526 | |
2527 | // Disable inlining for memmove before calls to ComputeAddress. Otherwise, |
2528 | // we would emit dead code because we don't currently handle memmoves. |
2529 | bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); |
2530 | if (isa<ConstantInt>(Val: MTI.getLength()) && isMemCpy) { |
2531 | // Small memcpy's are common enough that we want to do them without a call |
2532 | // if possible. |
2533 | uint64_t Len = cast<ConstantInt>(Val: MTI.getLength())->getZExtValue(); |
2534 | if (ARMIsMemCpySmall(Len)) { |
2535 | Address Dest, Src; |
2536 | if (!ARMComputeAddress(Obj: MTI.getRawDest(), Addr&: Dest) || |
2537 | !ARMComputeAddress(Obj: MTI.getRawSource(), Addr&: Src)) |
2538 | return false; |
2539 | MaybeAlign Alignment; |
2540 | if (MTI.getDestAlign() || MTI.getSourceAlign()) |
2541 | Alignment = std::min(a: MTI.getDestAlign().valueOrOne(), |
2542 | b: MTI.getSourceAlign().valueOrOne()); |
2543 | if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) |
2544 | return true; |
2545 | } |
2546 | } |
2547 | |
2548 | if (!MTI.getLength()->getType()->isIntegerTy(Bitwidth: 32)) |
2549 | return false; |
2550 | |
2551 | if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) |
2552 | return false; |
2553 | |
2554 | const char *IntrMemName = isa<MemCpyInst>(Val: I) ? "memcpy" : "memmove" ; |
2555 | return SelectCall(I: &I, IntrMemName); |
2556 | } |
2557 | case Intrinsic::memset: { |
2558 | const MemSetInst &MSI = cast<MemSetInst>(Val: I); |
2559 | // Don't handle volatile. |
2560 | if (MSI.isVolatile()) |
2561 | return false; |
2562 | |
2563 | if (!MSI.getLength()->getType()->isIntegerTy(Bitwidth: 32)) |
2564 | return false; |
2565 | |
2566 | if (MSI.getDestAddressSpace() > 255) |
2567 | return false; |
2568 | |
2569 | return SelectCall(I: &I, IntrMemName: "memset" ); |
2570 | } |
2571 | case Intrinsic::trap: { |
2572 | unsigned Opcode; |
2573 | if (Subtarget->isThumb()) |
2574 | Opcode = ARM::tTRAP; |
2575 | else |
2576 | Opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP; |
2577 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode)); |
2578 | return true; |
2579 | } |
2580 | } |
2581 | } |
2582 | |
2583 | bool ARMFastISel::SelectTrunc(const Instruction *I) { |
2584 | // The high bits for a type smaller than the register size are assumed to be |
2585 | // undefined. |
2586 | Value *Op = I->getOperand(i: 0); |
2587 | |
2588 | EVT SrcVT, DestVT; |
2589 | SrcVT = TLI.getValueType(DL, Ty: Op->getType(), AllowUnknown: true); |
2590 | DestVT = TLI.getValueType(DL, Ty: I->getType(), AllowUnknown: true); |
2591 | |
2592 | if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) |
2593 | return false; |
2594 | if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) |
2595 | return false; |
2596 | |
2597 | Register SrcReg = getRegForValue(V: Op); |
2598 | if (!SrcReg) return false; |
2599 | |
2600 | // Because the high bits are undefined, a truncate doesn't generate |
2601 | // any code. |
2602 | updateValueMap(I, Reg: SrcReg); |
2603 | return true; |
2604 | } |
2605 | |
2606 | unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, |
2607 | bool isZExt) { |
2608 | if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) |
2609 | return 0; |
2610 | if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) |
2611 | return 0; |
2612 | |
2613 | // Table of which combinations can be emitted as a single instruction, |
2614 | // and which will require two. |
2615 | static const uint8_t isSingleInstrTbl[3][2][2][2] = { |
2616 | // ARM Thumb |
2617 | // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops |
2618 | // ext: s z s z s z s z |
2619 | /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, |
2620 | /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, |
2621 | /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } |
2622 | }; |
2623 | |
2624 | // Target registers for: |
2625 | // - For ARM can never be PC. |
2626 | // - For 16-bit Thumb are restricted to lower 8 registers. |
2627 | // - For 32-bit Thumb are restricted to non-SP and non-PC. |
2628 | static const TargetRegisterClass *RCTbl[2][2] = { |
2629 | // Instructions: Two Single |
2630 | /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, |
2631 | /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } |
2632 | }; |
2633 | |
2634 | // Table governing the instruction(s) to be emitted. |
2635 | static const struct InstructionTable { |
2636 | uint32_t Opc : 16; |
2637 | uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. |
2638 | uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. |
2639 | uint32_t Imm : 8; // All instructions have either a shift or a mask. |
2640 | } IT[2][2][3][2] = { |
2641 | { // Two instructions (first is left shift, second is in this table). |
2642 | { // ARM Opc S Shift Imm |
2643 | /* 1 bit sext */ { { .Opc: ARM::MOVsi , .hasS: 1, .Shift: ARM_AM::asr , .Imm: 31 }, |
2644 | /* 1 bit zext */ { .Opc: ARM::MOVsi , .hasS: 1, .Shift: ARM_AM::lsr , .Imm: 31 } }, |
2645 | /* 8 bit sext */ { { .Opc: ARM::MOVsi , .hasS: 1, .Shift: ARM_AM::asr , .Imm: 24 }, |
2646 | /* 8 bit zext */ { .Opc: ARM::MOVsi , .hasS: 1, .Shift: ARM_AM::lsr , .Imm: 24 } }, |
2647 | /* 16 bit sext */ { { .Opc: ARM::MOVsi , .hasS: 1, .Shift: ARM_AM::asr , .Imm: 16 }, |
2648 | /* 16 bit zext */ { .Opc: ARM::MOVsi , .hasS: 1, .Shift: ARM_AM::lsr , .Imm: 16 } } |
2649 | }, |
2650 | { // Thumb Opc S Shift Imm |
2651 | /* 1 bit sext */ { { .Opc: ARM::tASRri , .hasS: 0, .Shift: ARM_AM::no_shift, .Imm: 31 }, |
2652 | /* 1 bit zext */ { .Opc: ARM::tLSRri , .hasS: 0, .Shift: ARM_AM::no_shift, .Imm: 31 } }, |
2653 | /* 8 bit sext */ { { .Opc: ARM::tASRri , .hasS: 0, .Shift: ARM_AM::no_shift, .Imm: 24 }, |
2654 | /* 8 bit zext */ { .Opc: ARM::tLSRri , .hasS: 0, .Shift: ARM_AM::no_shift, .Imm: 24 } }, |
2655 | /* 16 bit sext */ { { .Opc: ARM::tASRri , .hasS: 0, .Shift: ARM_AM::no_shift, .Imm: 16 }, |
2656 | /* 16 bit zext */ { .Opc: ARM::tLSRri , .hasS: 0, .Shift: ARM_AM::no_shift, .Imm: 16 } } |
2657 | } |
2658 | }, |
2659 | { // Single instruction. |
2660 | { // ARM Opc S Shift Imm |
2661 | /* 1 bit sext */ { { .Opc: ARM::KILL , .hasS: 0, .Shift: ARM_AM::no_shift, .Imm: 0 }, |
2662 | /* 1 bit zext */ { .Opc: ARM::ANDri , .hasS: 1, .Shift: ARM_AM::no_shift, .Imm: 1 } }, |
2663 | /* 8 bit sext */ { { .Opc: ARM::SXTB , .hasS: 0, .Shift: ARM_AM::no_shift, .Imm: 0 }, |
2664 | /* 8 bit zext */ { .Opc: ARM::ANDri , .hasS: 1, .Shift: ARM_AM::no_shift, .Imm: 255 } }, |
2665 | /* 16 bit sext */ { { .Opc: ARM::SXTH , .hasS: 0, .Shift: ARM_AM::no_shift, .Imm: 0 }, |
2666 | /* 16 bit zext */ { .Opc: ARM::UXTH , .hasS: 0, .Shift: ARM_AM::no_shift, .Imm: 0 } } |
2667 | }, |
2668 | { // Thumb Opc S Shift Imm |
2669 | /* 1 bit sext */ { { .Opc: ARM::KILL , .hasS: 0, .Shift: ARM_AM::no_shift, .Imm: 0 }, |
2670 | /* 1 bit zext */ { .Opc: ARM::t2ANDri, .hasS: 1, .Shift: ARM_AM::no_shift, .Imm: 1 } }, |
2671 | /* 8 bit sext */ { { .Opc: ARM::t2SXTB , .hasS: 0, .Shift: ARM_AM::no_shift, .Imm: 0 }, |
2672 | /* 8 bit zext */ { .Opc: ARM::t2ANDri, .hasS: 1, .Shift: ARM_AM::no_shift, .Imm: 255 } }, |
2673 | /* 16 bit sext */ { { .Opc: ARM::t2SXTH , .hasS: 0, .Shift: ARM_AM::no_shift, .Imm: 0 }, |
2674 | /* 16 bit zext */ { .Opc: ARM::t2UXTH , .hasS: 0, .Shift: ARM_AM::no_shift, .Imm: 0 } } |
2675 | } |
2676 | } |
2677 | }; |
2678 | |
2679 | unsigned SrcBits = SrcVT.getSizeInBits(); |
2680 | unsigned DestBits = DestVT.getSizeInBits(); |
2681 | (void) DestBits; |
2682 | assert((SrcBits < DestBits) && "can only extend to larger types" ); |
2683 | assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && |
2684 | "other sizes unimplemented" ); |
2685 | assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && |
2686 | "other sizes unimplemented" ); |
2687 | |
2688 | bool hasV6Ops = Subtarget->hasV6Ops(); |
2689 | unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} |
2690 | assert((Bitness < 3) && "sanity-check table bounds" ); |
2691 | |
2692 | bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; |
2693 | const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; |
2694 | const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; |
2695 | unsigned Opc = ITP->Opc; |
2696 | assert(ARM::KILL != Opc && "Invalid table entry" ); |
2697 | unsigned hasS = ITP->hasS; |
2698 | ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; |
2699 | assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && |
2700 | "only MOVsi has shift operand addressing mode" ); |
2701 | unsigned Imm = ITP->Imm; |
2702 | |
2703 | // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). |
2704 | bool setsCPSR = &ARM::tGPRRegClass == RC; |
2705 | unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; |
2706 | unsigned ResultReg; |
2707 | // MOVsi encodes shift and immediate in shift operand addressing mode. |
2708 | // The following condition has the same value when emitting two |
2709 | // instruction sequences: both are shifts. |
2710 | bool ImmIsSO = (Shift != ARM_AM::no_shift); |
2711 | |
2712 | // Either one or two instructions are emitted. |
2713 | // They're always of the form: |
2714 | // dst = in OP imm |
2715 | // CPSR is set only by 16-bit Thumb instructions. |
2716 | // Predicate, if any, is AL. |
2717 | // S bit, if available, is always 0. |
2718 | // When two are emitted the first's result will feed as the second's input, |
2719 | // that value is then dead. |
2720 | unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; |
2721 | for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { |
2722 | ResultReg = createResultReg(RC); |
2723 | bool isLsl = (0 == Instr) && !isSingleInstr; |
2724 | unsigned Opcode = isLsl ? LSLOpc : Opc; |
2725 | ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; |
2726 | unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShOp: ShiftAM, Imm) : Imm; |
2727 | bool isKill = 1 == Instr; |
2728 | MachineInstrBuilder MIB = BuildMI( |
2729 | BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode), DestReg: ResultReg); |
2730 | if (setsCPSR) |
2731 | MIB.addReg(RegNo: ARM::CPSR, flags: RegState::Define); |
2732 | SrcReg = constrainOperandRegClass(II: TII.get(Opcode), Op: SrcReg, OpNum: 1 + setsCPSR); |
2733 | MIB.addReg(RegNo: SrcReg, flags: isKill * RegState::Kill) |
2734 | .addImm(Val: ImmEnc) |
2735 | .add(MOs: predOps(Pred: ARMCC::AL)); |
2736 | if (hasS) |
2737 | MIB.add(MO: condCodeOp()); |
2738 | // Second instruction consumes the first's result. |
2739 | SrcReg = ResultReg; |
2740 | } |
2741 | |
2742 | return ResultReg; |
2743 | } |
2744 | |
2745 | bool ARMFastISel::SelectIntExt(const Instruction *I) { |
2746 | // On ARM, in general, integer casts don't involve legal types; this code |
2747 | // handles promotable integers. |
2748 | Type *DestTy = I->getType(); |
2749 | Value *Src = I->getOperand(i: 0); |
2750 | Type *SrcTy = Src->getType(); |
2751 | |
2752 | bool isZExt = isa<ZExtInst>(Val: I); |
2753 | Register SrcReg = getRegForValue(V: Src); |
2754 | if (!SrcReg) return false; |
2755 | |
2756 | EVT SrcEVT, DestEVT; |
2757 | SrcEVT = TLI.getValueType(DL, Ty: SrcTy, AllowUnknown: true); |
2758 | DestEVT = TLI.getValueType(DL, Ty: DestTy, AllowUnknown: true); |
2759 | if (!SrcEVT.isSimple()) return false; |
2760 | if (!DestEVT.isSimple()) return false; |
2761 | |
2762 | MVT SrcVT = SrcEVT.getSimpleVT(); |
2763 | MVT DestVT = DestEVT.getSimpleVT(); |
2764 | unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); |
2765 | if (ResultReg == 0) return false; |
2766 | updateValueMap(I, Reg: ResultReg); |
2767 | return true; |
2768 | } |
2769 | |
2770 | bool ARMFastISel::SelectShift(const Instruction *I, |
2771 | ARM_AM::ShiftOpc ShiftTy) { |
2772 | // We handle thumb2 mode by target independent selector |
2773 | // or SelectionDAG ISel. |
2774 | if (isThumb2) |
2775 | return false; |
2776 | |
2777 | // Only handle i32 now. |
2778 | EVT DestVT = TLI.getValueType(DL, Ty: I->getType(), AllowUnknown: true); |
2779 | if (DestVT != MVT::i32) |
2780 | return false; |
2781 | |
2782 | unsigned Opc = ARM::MOVsr; |
2783 | unsigned ShiftImm; |
2784 | Value *Src2Value = I->getOperand(i: 1); |
2785 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: Src2Value)) { |
2786 | ShiftImm = CI->getZExtValue(); |
2787 | |
2788 | // Fall back to selection DAG isel if the shift amount |
2789 | // is zero or greater than the width of the value type. |
2790 | if (ShiftImm == 0 || ShiftImm >=32) |
2791 | return false; |
2792 | |
2793 | Opc = ARM::MOVsi; |
2794 | } |
2795 | |
2796 | Value *Src1Value = I->getOperand(i: 0); |
2797 | Register Reg1 = getRegForValue(V: Src1Value); |
2798 | if (Reg1 == 0) return false; |
2799 | |
2800 | unsigned Reg2 = 0; |
2801 | if (Opc == ARM::MOVsr) { |
2802 | Reg2 = getRegForValue(V: Src2Value); |
2803 | if (Reg2 == 0) return false; |
2804 | } |
2805 | |
2806 | Register ResultReg = createResultReg(RC: &ARM::GPRnopcRegClass); |
2807 | if(ResultReg == 0) return false; |
2808 | |
2809 | MachineInstrBuilder MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2810 | MCID: TII.get(Opcode: Opc), DestReg: ResultReg) |
2811 | .addReg(RegNo: Reg1); |
2812 | |
2813 | if (Opc == ARM::MOVsi) |
2814 | MIB.addImm(Val: ARM_AM::getSORegOpc(ShOp: ShiftTy, Imm: ShiftImm)); |
2815 | else if (Opc == ARM::MOVsr) { |
2816 | MIB.addReg(RegNo: Reg2); |
2817 | MIB.addImm(Val: ARM_AM::getSORegOpc(ShOp: ShiftTy, Imm: 0)); |
2818 | } |
2819 | |
2820 | AddOptionalDefs(MIB); |
2821 | updateValueMap(I, Reg: ResultReg); |
2822 | return true; |
2823 | } |
2824 | |
2825 | // TODO: SoftFP support. |
2826 | bool ARMFastISel::fastSelectInstruction(const Instruction *I) { |
2827 | switch (I->getOpcode()) { |
2828 | case Instruction::Load: |
2829 | return SelectLoad(I); |
2830 | case Instruction::Store: |
2831 | return SelectStore(I); |
2832 | case Instruction::Br: |
2833 | return SelectBranch(I); |
2834 | case Instruction::IndirectBr: |
2835 | return SelectIndirectBr(I); |
2836 | case Instruction::ICmp: |
2837 | case Instruction::FCmp: |
2838 | return SelectCmp(I); |
2839 | case Instruction::FPExt: |
2840 | return SelectFPExt(I); |
2841 | case Instruction::FPTrunc: |
2842 | return SelectFPTrunc(I); |
2843 | case Instruction::SIToFP: |
2844 | return SelectIToFP(I, /*isSigned*/ true); |
2845 | case Instruction::UIToFP: |
2846 | return SelectIToFP(I, /*isSigned*/ false); |
2847 | case Instruction::FPToSI: |
2848 | return SelectFPToI(I, /*isSigned*/ true); |
2849 | case Instruction::FPToUI: |
2850 | return SelectFPToI(I, /*isSigned*/ false); |
2851 | case Instruction::Add: |
2852 | return SelectBinaryIntOp(I, ISDOpcode: ISD::ADD); |
2853 | case Instruction::Or: |
2854 | return SelectBinaryIntOp(I, ISDOpcode: ISD::OR); |
2855 | case Instruction::Sub: |
2856 | return SelectBinaryIntOp(I, ISDOpcode: ISD::SUB); |
2857 | case Instruction::FAdd: |
2858 | return SelectBinaryFPOp(I, ISDOpcode: ISD::FADD); |
2859 | case Instruction::FSub: |
2860 | return SelectBinaryFPOp(I, ISDOpcode: ISD::FSUB); |
2861 | case Instruction::FMul: |
2862 | return SelectBinaryFPOp(I, ISDOpcode: ISD::FMUL); |
2863 | case Instruction::SDiv: |
2864 | return SelectDiv(I, /*isSigned*/ true); |
2865 | case Instruction::UDiv: |
2866 | return SelectDiv(I, /*isSigned*/ false); |
2867 | case Instruction::SRem: |
2868 | return SelectRem(I, /*isSigned*/ true); |
2869 | case Instruction::URem: |
2870 | return SelectRem(I, /*isSigned*/ false); |
2871 | case Instruction::Call: |
2872 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) |
2873 | return SelectIntrinsicCall(I: *II); |
2874 | return SelectCall(I); |
2875 | case Instruction::Select: |
2876 | return SelectSelect(I); |
2877 | case Instruction::Ret: |
2878 | return SelectRet(I); |
2879 | case Instruction::Trunc: |
2880 | return SelectTrunc(I); |
2881 | case Instruction::ZExt: |
2882 | case Instruction::SExt: |
2883 | return SelectIntExt(I); |
2884 | case Instruction::Shl: |
2885 | return SelectShift(I, ShiftTy: ARM_AM::lsl); |
2886 | case Instruction::LShr: |
2887 | return SelectShift(I, ShiftTy: ARM_AM::lsr); |
2888 | case Instruction::AShr: |
2889 | return SelectShift(I, ShiftTy: ARM_AM::asr); |
2890 | default: break; |
2891 | } |
2892 | return false; |
2893 | } |
2894 | |
2895 | // This table describes sign- and zero-extend instructions which can be |
2896 | // folded into a preceding load. All of these extends have an immediate |
2897 | // (sometimes a mask and sometimes a shift) that's applied after |
2898 | // extension. |
2899 | static const struct FoldableLoadExtendsStruct { |
2900 | uint16_t Opc[2]; // ARM, Thumb. |
2901 | uint8_t ExpectedImm; |
2902 | uint8_t isZExt : 1; |
2903 | uint8_t ExpectedVT : 7; |
2904 | } FoldableLoadExtends[] = { |
2905 | { .Opc: { ARM::SXTH, ARM::t2SXTH }, .ExpectedImm: 0, .isZExt: 0, .ExpectedVT: MVT::i16 }, |
2906 | { .Opc: { ARM::UXTH, ARM::t2UXTH }, .ExpectedImm: 0, .isZExt: 1, .ExpectedVT: MVT::i16 }, |
2907 | { .Opc: { ARM::ANDri, ARM::t2ANDri }, .ExpectedImm: 255, .isZExt: 1, .ExpectedVT: MVT::i8 }, |
2908 | { .Opc: { ARM::SXTB, ARM::t2SXTB }, .ExpectedImm: 0, .isZExt: 0, .ExpectedVT: MVT::i8 }, |
2909 | { .Opc: { ARM::UXTB, ARM::t2UXTB }, .ExpectedImm: 0, .isZExt: 1, .ExpectedVT: MVT::i8 } |
2910 | }; |
2911 | |
2912 | /// The specified machine instr operand is a vreg, and that |
2913 | /// vreg is being provided by the specified load instruction. If possible, |
2914 | /// try to fold the load as an operand to the instruction, returning true if |
2915 | /// successful. |
2916 | bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, |
2917 | const LoadInst *LI) { |
2918 | // Verify we have a legal type before going any further. |
2919 | MVT VT; |
2920 | if (!isLoadTypeLegal(Ty: LI->getType(), VT)) |
2921 | return false; |
2922 | |
2923 | // Combine load followed by zero- or sign-extend. |
2924 | // ldrb r1, [r0] ldrb r1, [r0] |
2925 | // uxtb r2, r1 => |
2926 | // mov r3, r2 mov r3, r1 |
2927 | if (MI->getNumOperands() < 3 || !MI->getOperand(i: 2).isImm()) |
2928 | return false; |
2929 | const uint64_t Imm = MI->getOperand(i: 2).getImm(); |
2930 | |
2931 | bool Found = false; |
2932 | bool isZExt; |
2933 | for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) { |
2934 | if (FLE.Opc[isThumb2] == MI->getOpcode() && |
2935 | (uint64_t)FLE.ExpectedImm == Imm && |
2936 | MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) { |
2937 | Found = true; |
2938 | isZExt = FLE.isZExt; |
2939 | } |
2940 | } |
2941 | if (!Found) return false; |
2942 | |
2943 | // See if we can handle this address. |
2944 | Address Addr; |
2945 | if (!ARMComputeAddress(Obj: LI->getOperand(i_nocapture: 0), Addr)) return false; |
2946 | |
2947 | Register ResultReg = MI->getOperand(i: 0).getReg(); |
2948 | if (!ARMEmitLoad(VT, ResultReg, Addr, Alignment: LI->getAlign(), isZExt, allocReg: false)) |
2949 | return false; |
2950 | MachineBasicBlock::iterator I(MI); |
2951 | removeDeadCode(I, E: std::next(x: I)); |
2952 | return true; |
2953 | } |
2954 | |
2955 | unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, MVT VT) { |
2956 | bool UseGOT_PREL = !GV->isDSOLocal(); |
2957 | LLVMContext *Context = &MF->getFunction().getContext(); |
2958 | unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); |
2959 | unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; |
2960 | ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( |
2961 | C: GV, ID: ARMPCLabelIndex, Kind: ARMCP::CPValue, PCAdj, |
2962 | Modifier: UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier, |
2963 | /*AddCurrentAddress=*/UseGOT_PREL); |
2964 | |
2965 | Align ConstAlign = |
2966 | MF->getDataLayout().getPrefTypeAlign(Ty: PointerType::get(C&: *Context, AddressSpace: 0)); |
2967 | unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(V: CPV, Alignment: ConstAlign); |
2968 | MachineMemOperand *CPMMO = |
2969 | MF->getMachineMemOperand(PtrInfo: MachinePointerInfo::getConstantPool(MF&: *MF), |
2970 | F: MachineMemOperand::MOLoad, Size: 4, BaseAlignment: Align(4)); |
2971 | |
2972 | Register TempReg = MF->getRegInfo().createVirtualRegister(RegClass: &ARM::rGPRRegClass); |
2973 | unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp; |
2974 | MachineInstrBuilder MIB = |
2975 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg: TempReg) |
2976 | .addConstantPoolIndex(Idx) |
2977 | .addMemOperand(MMO: CPMMO); |
2978 | if (Opc == ARM::LDRcp) |
2979 | MIB.addImm(Val: 0); |
2980 | MIB.add(MOs: predOps(Pred: ARMCC::AL)); |
2981 | |
2982 | // Fix the address by adding pc. |
2983 | Register DestReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
2984 | Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR |
2985 | : ARM::PICADD; |
2986 | DestReg = constrainOperandRegClass(II: TII.get(Opcode: Opc), Op: DestReg, OpNum: 0); |
2987 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg) |
2988 | .addReg(RegNo: TempReg) |
2989 | .addImm(Val: ARMPCLabelIndex); |
2990 | |
2991 | if (!Subtarget->isThumb()) |
2992 | MIB.add(MOs: predOps(Pred: ARMCC::AL)); |
2993 | |
2994 | if (UseGOT_PREL && Subtarget->isThumb()) { |
2995 | Register NewDestReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
2996 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2997 | MCID: TII.get(Opcode: ARM::t2LDRi12), DestReg: NewDestReg) |
2998 | .addReg(RegNo: DestReg) |
2999 | .addImm(Val: 0); |
3000 | DestReg = NewDestReg; |
3001 | AddOptionalDefs(MIB); |
3002 | } |
3003 | return DestReg; |
3004 | } |
3005 | |
3006 | bool ARMFastISel::fastLowerArguments() { |
3007 | if (!FuncInfo.CanLowerReturn) |
3008 | return false; |
3009 | |
3010 | const Function *F = FuncInfo.Fn; |
3011 | if (F->isVarArg()) |
3012 | return false; |
3013 | |
3014 | CallingConv::ID CC = F->getCallingConv(); |
3015 | switch (CC) { |
3016 | default: |
3017 | return false; |
3018 | case CallingConv::Fast: |
3019 | case CallingConv::C: |
3020 | case CallingConv::ARM_AAPCS_VFP: |
3021 | case CallingConv::ARM_AAPCS: |
3022 | case CallingConv::ARM_APCS: |
3023 | case CallingConv::Swift: |
3024 | case CallingConv::SwiftTail: |
3025 | break; |
3026 | } |
3027 | |
3028 | // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments |
3029 | // which are passed in r0 - r3. |
3030 | for (const Argument &Arg : F->args()) { |
3031 | if (Arg.getArgNo() >= 4) |
3032 | return false; |
3033 | |
3034 | if (Arg.hasAttribute(Kind: Attribute::InReg) || |
3035 | Arg.hasAttribute(Kind: Attribute::StructRet) || |
3036 | Arg.hasAttribute(Kind: Attribute::SwiftSelf) || |
3037 | Arg.hasAttribute(Kind: Attribute::SwiftError) || |
3038 | Arg.hasAttribute(Kind: Attribute::ByVal)) |
3039 | return false; |
3040 | |
3041 | Type *ArgTy = Arg.getType(); |
3042 | if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) |
3043 | return false; |
3044 | |
3045 | EVT ArgVT = TLI.getValueType(DL, Ty: ArgTy); |
3046 | if (!ArgVT.isSimple()) return false; |
3047 | switch (ArgVT.getSimpleVT().SimpleTy) { |
3048 | case MVT::i8: |
3049 | case MVT::i16: |
3050 | case MVT::i32: |
3051 | break; |
3052 | default: |
3053 | return false; |
3054 | } |
3055 | } |
3056 | |
3057 | static const MCPhysReg GPRArgRegs[] = { |
3058 | ARM::R0, ARM::R1, ARM::R2, ARM::R3 |
3059 | }; |
3060 | |
3061 | const TargetRegisterClass *RC = &ARM::rGPRRegClass; |
3062 | for (const Argument &Arg : F->args()) { |
3063 | unsigned ArgNo = Arg.getArgNo(); |
3064 | unsigned SrcReg = GPRArgRegs[ArgNo]; |
3065 | Register DstReg = FuncInfo.MF->addLiveIn(PReg: SrcReg, RC); |
3066 | // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. |
3067 | // Without this, EmitLiveInCopies may eliminate the livein if its only |
3068 | // use is a bitcast (which isn't turned into an instruction). |
3069 | Register ResultReg = createResultReg(RC); |
3070 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
3071 | MCID: TII.get(Opcode: TargetOpcode::COPY), |
3072 | DestReg: ResultReg).addReg(RegNo: DstReg, flags: getKillRegState(B: true)); |
3073 | updateValueMap(I: &Arg, Reg: ResultReg); |
3074 | } |
3075 | |
3076 | return true; |
3077 | } |
3078 | |
3079 | namespace llvm { |
3080 | |
3081 | FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, |
3082 | const TargetLibraryInfo *libInfo) { |
3083 | if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel()) |
3084 | return new ARMFastISel(funcInfo, libInfo); |
3085 | |
3086 | return nullptr; |
3087 | } |
3088 | |
3089 | } // end namespace llvm |
3090 | |