1 | //===- HexagonConstExtenders.cpp ------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "HexagonInstrInfo.h" |
10 | #include "HexagonRegisterInfo.h" |
11 | #include "HexagonSubtarget.h" |
12 | #include "llvm/ADT/SetVector.h" |
13 | #include "llvm/ADT/SmallVector.h" |
14 | #include "llvm/CodeGen/MachineDominators.h" |
15 | #include "llvm/CodeGen/MachineFunctionPass.h" |
16 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
17 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
18 | #include "llvm/CodeGen/Register.h" |
19 | #include "llvm/InitializePasses.h" |
20 | #include "llvm/Pass.h" |
21 | #include "llvm/Support/CommandLine.h" |
22 | #include "llvm/Support/raw_ostream.h" |
23 | #include <map> |
24 | #include <set> |
25 | #include <utility> |
26 | #include <vector> |
27 | |
28 | #define DEBUG_TYPE "hexagon-cext-opt" |
29 | |
30 | using namespace llvm; |
31 | |
32 | static cl::opt<unsigned> CountThreshold( |
33 | "hexagon-cext-threshold" , cl::init(Val: 3), cl::Hidden, |
34 | cl::desc("Minimum number of extenders to trigger replacement" )); |
35 | |
36 | static cl::opt<unsigned> |
37 | ReplaceLimit("hexagon-cext-limit" , cl::init(Val: 0), cl::Hidden, |
38 | cl::desc("Maximum number of replacements" )); |
39 | |
40 | namespace llvm { |
41 | void initializeHexagonConstExtendersPass(PassRegistry&); |
42 | FunctionPass *createHexagonConstExtenders(); |
43 | } |
44 | |
45 | static int32_t adjustUp(int32_t V, uint8_t A, uint8_t O) { |
46 | assert(isPowerOf2_32(A)); |
47 | int32_t U = (V & -A) + O; |
48 | return U >= V ? U : U+A; |
49 | } |
50 | |
51 | static int32_t adjustDown(int32_t V, uint8_t A, uint8_t O) { |
52 | assert(isPowerOf2_32(A)); |
53 | int32_t U = (V & -A) + O; |
54 | return U <= V ? U : U-A; |
55 | } |
56 | |
57 | namespace { |
58 | struct OffsetRange { |
59 | // The range of values between Min and Max that are of form Align*N+Offset, |
60 | // for some integer N. Min and Max are required to be of that form as well, |
61 | // except in the case of an empty range. |
62 | int32_t Min = INT_MIN, Max = INT_MAX; |
63 | uint8_t Align = 1; |
64 | uint8_t Offset = 0; |
65 | |
66 | OffsetRange() = default; |
67 | OffsetRange(int32_t L, int32_t H, uint8_t A, uint8_t O = 0) |
68 | : Min(L), Max(H), Align(A), Offset(O) {} |
69 | OffsetRange &intersect(OffsetRange A) { |
70 | if (Align < A.Align) |
71 | std::swap(a&: *this, b&: A); |
72 | |
73 | // Align >= A.Align. |
74 | if (Offset >= A.Offset && (Offset - A.Offset) % A.Align == 0) { |
75 | Min = adjustUp(V: std::max(a: Min, b: A.Min), A: Align, O: Offset); |
76 | Max = adjustDown(V: std::min(a: Max, b: A.Max), A: Align, O: Offset); |
77 | } else { |
78 | // Make an empty range. |
79 | Min = 0; |
80 | Max = -1; |
81 | } |
82 | // Canonicalize empty ranges. |
83 | if (Min > Max) |
84 | std::tie(args&: Min, args&: Max, args&: Align) = std::make_tuple(args: 0, args: -1, args: 1); |
85 | return *this; |
86 | } |
87 | OffsetRange &shift(int32_t S) { |
88 | Min += S; |
89 | Max += S; |
90 | Offset = (Offset+S) % Align; |
91 | return *this; |
92 | } |
93 | OffsetRange &extendBy(int32_t D) { |
94 | // If D < 0, extend Min, otherwise extend Max. |
95 | assert(D % Align == 0); |
96 | if (D < 0) |
97 | Min = (INT_MIN-D < Min) ? Min+D : INT_MIN; |
98 | else |
99 | Max = (INT_MAX-D > Max) ? Max+D : INT_MAX; |
100 | return *this; |
101 | } |
102 | bool empty() const { |
103 | return Min > Max; |
104 | } |
105 | bool contains(int32_t V) const { |
106 | return Min <= V && V <= Max && (V-Offset) % Align == 0; |
107 | } |
108 | bool operator==(const OffsetRange &R) const { |
109 | return Min == R.Min && Max == R.Max && Align == R.Align; |
110 | } |
111 | bool operator!=(const OffsetRange &R) const { |
112 | return !operator==(R); |
113 | } |
114 | bool operator<(const OffsetRange &R) const { |
115 | if (Min != R.Min) |
116 | return Min < R.Min; |
117 | if (Max != R.Max) |
118 | return Max < R.Max; |
119 | return Align < R.Align; |
120 | } |
121 | static OffsetRange zero() { return {0, 0, 1}; } |
122 | }; |
123 | |
124 | struct RangeTree { |
125 | struct Node { |
126 | Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {} |
127 | unsigned Height = 1; |
128 | unsigned Count = 1; |
129 | int32_t MaxEnd; |
130 | const OffsetRange &Range; |
131 | Node *Left = nullptr, *Right = nullptr; |
132 | }; |
133 | |
134 | Node *Root = nullptr; |
135 | |
136 | void add(const OffsetRange &R) { |
137 | Root = add(N: Root, R); |
138 | } |
139 | void erase(const Node *N) { |
140 | Root = remove(N: Root, D: N); |
141 | delete N; |
142 | } |
143 | void order(SmallVectorImpl<Node*> &Seq) const { |
144 | order(N: Root, Seq); |
145 | } |
146 | SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) { |
147 | SmallVector<Node*,8> Nodes; |
148 | nodesWith(N: Root, P, CheckA: CheckAlign, Seq&: Nodes); |
149 | return Nodes; |
150 | } |
151 | void dump() const; |
152 | ~RangeTree() { |
153 | SmallVector<Node*,8> Nodes; |
154 | order(Seq&: Nodes); |
155 | for (Node *N : Nodes) |
156 | delete N; |
157 | } |
158 | |
159 | private: |
160 | void dump(const Node *N) const; |
161 | void order(Node *N, SmallVectorImpl<Node*> &Seq) const; |
162 | void nodesWith(Node *N, int32_t P, bool CheckA, |
163 | SmallVectorImpl<Node*> &Seq) const; |
164 | |
165 | Node *add(Node *N, const OffsetRange &R); |
166 | Node *remove(Node *N, const Node *D); |
167 | Node *rotateLeft(Node *Lower, Node *Higher); |
168 | Node *rotateRight(Node *Lower, Node *Higher); |
169 | unsigned height(Node *N) { |
170 | return N != nullptr ? N->Height : 0; |
171 | } |
172 | Node *update(Node *N) { |
173 | assert(N != nullptr); |
174 | N->Height = 1 + std::max(a: height(N: N->Left), b: height(N: N->Right)); |
175 | if (N->Left) |
176 | N->MaxEnd = std::max(a: N->MaxEnd, b: N->Left->MaxEnd); |
177 | if (N->Right) |
178 | N->MaxEnd = std::max(a: N->MaxEnd, b: N->Right->MaxEnd); |
179 | return N; |
180 | } |
181 | Node *rebalance(Node *N) { |
182 | assert(N != nullptr); |
183 | int32_t Balance = height(N: N->Right) - height(N: N->Left); |
184 | if (Balance < -1) |
185 | return rotateRight(Lower: N->Left, Higher: N); |
186 | if (Balance > 1) |
187 | return rotateLeft(Lower: N->Right, Higher: N); |
188 | return N; |
189 | } |
190 | }; |
191 | |
192 | struct Loc { |
193 | MachineBasicBlock *Block = nullptr; |
194 | MachineBasicBlock::iterator At; |
195 | |
196 | Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It) |
197 | : Block(B), At(It) { |
198 | if (B->end() == It) { |
199 | Pos = -1; |
200 | } else { |
201 | assert(It->getParent() == B); |
202 | Pos = std::distance(first: B->begin(), last: It); |
203 | } |
204 | } |
205 | bool operator<(Loc A) const { |
206 | if (Block != A.Block) |
207 | return Block->getNumber() < A.Block->getNumber(); |
208 | if (A.Pos == -1) |
209 | return Pos != A.Pos; |
210 | return Pos != -1 && Pos < A.Pos; |
211 | } |
212 | private: |
213 | int Pos = 0; |
214 | }; |
215 | |
216 | struct HexagonConstExtenders : public MachineFunctionPass { |
217 | static char ID; |
218 | HexagonConstExtenders() : MachineFunctionPass(ID) {} |
219 | |
220 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
221 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
222 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
223 | MachineFunctionPass::getAnalysisUsage(AU); |
224 | } |
225 | |
226 | StringRef getPassName() const override { |
227 | return "Hexagon constant-extender optimization" ; |
228 | } |
229 | bool runOnMachineFunction(MachineFunction &MF) override; |
230 | |
231 | private: |
232 | struct Register { |
233 | Register() = default; |
234 | Register(llvm::Register R, unsigned S) : Reg(R), Sub(S) {} |
235 | Register(const MachineOperand &Op) |
236 | : Reg(Op.getReg()), Sub(Op.getSubReg()) {} |
237 | Register &operator=(const MachineOperand &Op) { |
238 | if (Op.isReg()) { |
239 | Reg = Op.getReg(); |
240 | Sub = Op.getSubReg(); |
241 | } else if (Op.isFI()) { |
242 | Reg = llvm::Register::index2StackSlot(FI: Op.getIndex()); |
243 | } |
244 | return *this; |
245 | } |
246 | bool isVReg() const { |
247 | return Reg != 0 && !Reg.isStack() && Reg.isVirtual(); |
248 | } |
249 | bool isSlot() const { return Reg != 0 && Reg.isStack(); } |
250 | operator MachineOperand() const { |
251 | if (isVReg()) |
252 | return MachineOperand::CreateReg(Reg, /*Def*/isDef: false, /*Imp*/isImp: false, |
253 | /*Kill*/isKill: false, /*Dead*/isDead: false, /*Undef*/isUndef: false, |
254 | /*EarlyClobber*/isEarlyClobber: false, SubReg: Sub); |
255 | if (Reg.isStack()) { |
256 | int FI = llvm::Register::stackSlot2Index(Reg); |
257 | return MachineOperand::CreateFI(Idx: FI); |
258 | } |
259 | llvm_unreachable("Cannot create MachineOperand" ); |
260 | } |
261 | bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; } |
262 | bool operator!=(Register R) const { return !operator==(R); } |
263 | bool operator<(Register R) const { |
264 | // For std::map. |
265 | return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub); |
266 | } |
267 | llvm::Register Reg; |
268 | unsigned Sub = 0; |
269 | }; |
270 | |
271 | struct ExtExpr { |
272 | // A subexpression in which the extender is used. In general, this |
273 | // represents an expression where adding D to the extender will be |
274 | // equivalent to adding D to the expression as a whole. In other |
275 | // words, expr(add(##V,D) = add(expr(##V),D). |
276 | |
277 | // The original motivation for this are the io/ur addressing modes, |
278 | // where the offset is extended. Consider the io example: |
279 | // In memw(Rs+##V), the ##V could be replaced by a register Rt to |
280 | // form the rr mode: memw(Rt+Rs<<0). In such case, however, the |
281 | // register Rt must have exactly the value of ##V. If there was |
282 | // another instruction memw(Rs+##V+4), it would need a different Rt. |
283 | // Now, if Rt was initialized as "##V+Rs<<0", both of these |
284 | // instructions could use the same Rt, just with different offsets. |
285 | // Here it's clear that "initializer+4" should be the same as if |
286 | // the offset 4 was added to the ##V in the initializer. |
287 | |
288 | // The only kinds of expressions that support the requirement of |
289 | // commuting with addition are addition and subtraction from ##V. |
290 | // Include shifting the Rs to account for the ur addressing mode: |
291 | // ##Val + Rs << S |
292 | // ##Val - Rs |
293 | Register Rs; |
294 | unsigned S = 0; |
295 | bool Neg = false; |
296 | |
297 | ExtExpr() = default; |
298 | ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {} |
299 | // Expression is trivial if it does not modify the extender. |
300 | bool trivial() const { |
301 | return Rs.Reg == 0; |
302 | } |
303 | bool operator==(const ExtExpr &Ex) const { |
304 | return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg; |
305 | } |
306 | bool operator!=(const ExtExpr &Ex) const { |
307 | return !operator==(Ex); |
308 | } |
309 | bool operator<(const ExtExpr &Ex) const { |
310 | if (Rs != Ex.Rs) |
311 | return Rs < Ex.Rs; |
312 | if (S != Ex.S) |
313 | return S < Ex.S; |
314 | return !Neg && Ex.Neg; |
315 | } |
316 | }; |
317 | |
318 | struct ExtDesc { |
319 | MachineInstr *UseMI = nullptr; |
320 | unsigned OpNum = -1u; |
321 | // The subexpression in which the extender is used (e.g. address |
322 | // computation). |
323 | ExtExpr Expr; |
324 | // Optional register that is assigned the value of Expr. |
325 | Register Rd; |
326 | // Def means that the output of the instruction may differ from the |
327 | // original by a constant c, and that the difference can be corrected |
328 | // by adding/subtracting c in all users of the defined register. |
329 | bool IsDef = false; |
330 | |
331 | MachineOperand &getOp() { |
332 | return UseMI->getOperand(i: OpNum); |
333 | } |
334 | const MachineOperand &getOp() const { |
335 | return UseMI->getOperand(i: OpNum); |
336 | } |
337 | }; |
338 | |
339 | struct ExtRoot { |
340 | union { |
341 | const ConstantFP *CFP; // MO_FPImmediate |
342 | const char *SymbolName; // MO_ExternalSymbol |
343 | const GlobalValue *GV; // MO_GlobalAddress |
344 | const BlockAddress *BA; // MO_BlockAddress |
345 | int64_t ImmVal; // MO_Immediate, MO_TargetIndex, |
346 | // and MO_ConstantPoolIndex |
347 | } V; |
348 | unsigned Kind; // Same as in MachineOperand. |
349 | unsigned char TF; // TargetFlags. |
350 | |
351 | ExtRoot(const MachineOperand &Op); |
352 | bool operator==(const ExtRoot &ER) const { |
353 | return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal; |
354 | } |
355 | bool operator!=(const ExtRoot &ER) const { |
356 | return !operator==(ER); |
357 | } |
358 | bool operator<(const ExtRoot &ER) const; |
359 | }; |
360 | |
361 | struct ExtValue : public ExtRoot { |
362 | int32_t Offset; |
363 | |
364 | ExtValue(const MachineOperand &Op); |
365 | ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {} |
366 | ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {} |
367 | bool operator<(const ExtValue &EV) const; |
368 | bool operator==(const ExtValue &EV) const { |
369 | return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset; |
370 | } |
371 | bool operator!=(const ExtValue &EV) const { |
372 | return !operator==(EV); |
373 | } |
374 | explicit operator MachineOperand() const; |
375 | }; |
376 | |
377 | using IndexList = SetVector<unsigned>; |
378 | using ExtenderInit = std::pair<ExtValue, ExtExpr>; |
379 | using AssignmentMap = std::map<ExtenderInit, IndexList>; |
380 | using LocDefList = std::vector<std::pair<Loc, IndexList>>; |
381 | |
382 | const HexagonSubtarget *HST = nullptr; |
383 | const HexagonInstrInfo *HII = nullptr; |
384 | const HexagonRegisterInfo *HRI = nullptr; |
385 | MachineDominatorTree *MDT = nullptr; |
386 | MachineRegisterInfo *MRI = nullptr; |
387 | std::vector<ExtDesc> Extenders; |
388 | std::vector<unsigned> NewRegs; |
389 | |
390 | bool isStoreImmediate(unsigned Opc) const; |
391 | bool isRegOffOpcode(unsigned ExtOpc) const ; |
392 | unsigned getRegOffOpcode(unsigned ExtOpc) const; |
393 | unsigned getDirectRegReplacement(unsigned ExtOpc) const; |
394 | OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const; |
395 | OffsetRange getOffsetRange(const ExtDesc &ED) const; |
396 | OffsetRange getOffsetRange(Register Rd) const; |
397 | |
398 | void recordExtender(MachineInstr &MI, unsigned OpNum); |
399 | void collectInstr(MachineInstr &MI); |
400 | void collect(MachineFunction &MF); |
401 | void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, |
402 | AssignmentMap &IMap); |
403 | void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, |
404 | LocDefList &Defs); |
405 | Register insertInitializer(Loc DefL, const ExtenderInit &ExtI); |
406 | bool replaceInstrExact(const ExtDesc &ED, Register ExtR); |
407 | bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, |
408 | Register ExtR, int32_t &Diff); |
409 | bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI); |
410 | bool replaceExtenders(const AssignmentMap &IMap); |
411 | |
412 | unsigned getOperandIndex(const MachineInstr &MI, |
413 | const MachineOperand &Op) const; |
414 | const MachineOperand &getPredicateOp(const MachineInstr &MI) const; |
415 | const MachineOperand &getLoadResultOp(const MachineInstr &MI) const; |
416 | const MachineOperand &getStoredValueOp(const MachineInstr &MI) const; |
417 | |
418 | friend struct PrintRegister; |
419 | friend struct PrintExpr; |
420 | friend struct PrintInit; |
421 | friend struct PrintIMap; |
422 | friend raw_ostream &operator<< (raw_ostream &OS, |
423 | const struct PrintRegister &P); |
424 | friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P); |
425 | friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P); |
426 | friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED); |
427 | friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER); |
428 | friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV); |
429 | friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR); |
430 | friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P); |
431 | }; |
432 | |
433 | using HCE = HexagonConstExtenders; |
434 | |
435 | LLVM_ATTRIBUTE_UNUSED |
436 | raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) { |
437 | if (OR.Min > OR.Max) |
438 | OS << '!'; |
439 | OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align) |
440 | << '+' << unsigned(OR.Offset); |
441 | return OS; |
442 | } |
443 | |
444 | struct PrintRegister { |
445 | PrintRegister(HCE::Register R, const HexagonRegisterInfo &I) |
446 | : Rs(R), HRI(I) {} |
447 | HCE::Register Rs; |
448 | const HexagonRegisterInfo &HRI; |
449 | }; |
450 | |
451 | LLVM_ATTRIBUTE_UNUSED |
452 | raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) { |
453 | if (P.Rs.Reg != 0) |
454 | OS << printReg(Reg: P.Rs.Reg, TRI: &P.HRI, SubIdx: P.Rs.Sub); |
455 | else |
456 | OS << "noreg" ; |
457 | return OS; |
458 | } |
459 | |
460 | struct PrintExpr { |
461 | PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I) |
462 | : Ex(E), HRI(I) {} |
463 | const HCE::ExtExpr &Ex; |
464 | const HexagonRegisterInfo &HRI; |
465 | }; |
466 | |
467 | LLVM_ATTRIBUTE_UNUSED |
468 | raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) { |
469 | OS << "## " << (P.Ex.Neg ? "- " : "+ " ); |
470 | if (P.Ex.Rs.Reg != 0) |
471 | OS << printReg(Reg: P.Ex.Rs.Reg, TRI: &P.HRI, SubIdx: P.Ex.Rs.Sub); |
472 | else |
473 | OS << "__" ; |
474 | OS << " << " << P.Ex.S; |
475 | return OS; |
476 | } |
477 | |
478 | struct PrintInit { |
479 | PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I) |
480 | : ExtI(EI), HRI(I) {} |
481 | const HCE::ExtenderInit &ExtI; |
482 | const HexagonRegisterInfo &HRI; |
483 | }; |
484 | |
485 | LLVM_ATTRIBUTE_UNUSED |
486 | raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) { |
487 | OS << '[' << P.ExtI.first << ", " |
488 | << PrintExpr(P.ExtI.second, P.HRI) << ']'; |
489 | return OS; |
490 | } |
491 | |
492 | LLVM_ATTRIBUTE_UNUSED |
493 | raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) { |
494 | assert(ED.OpNum != -1u); |
495 | const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent(); |
496 | const MachineFunction &MF = *MBB.getParent(); |
497 | const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
498 | OS << "bb#" << MBB.getNumber() << ": " ; |
499 | if (ED.Rd.Reg != 0) |
500 | OS << printReg(Reg: ED.Rd.Reg, TRI: &HRI, SubIdx: ED.Rd.Sub); |
501 | else |
502 | OS << "__" ; |
503 | OS << " = " << PrintExpr(ED.Expr, HRI); |
504 | if (ED.IsDef) |
505 | OS << ", def" ; |
506 | return OS; |
507 | } |
508 | |
509 | LLVM_ATTRIBUTE_UNUSED |
510 | raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) { |
511 | switch (ER.Kind) { |
512 | case MachineOperand::MO_Immediate: |
513 | OS << "imm:" << ER.V.ImmVal; |
514 | break; |
515 | case MachineOperand::MO_FPImmediate: |
516 | OS << "fpi:" << *ER.V.CFP; |
517 | break; |
518 | case MachineOperand::MO_ExternalSymbol: |
519 | OS << "sym:" << *ER.V.SymbolName; |
520 | break; |
521 | case MachineOperand::MO_GlobalAddress: |
522 | OS << "gad:" << ER.V.GV->getName(); |
523 | break; |
524 | case MachineOperand::MO_BlockAddress: |
525 | OS << "blk:" << *ER.V.BA; |
526 | break; |
527 | case MachineOperand::MO_TargetIndex: |
528 | OS << "tgi:" << ER.V.ImmVal; |
529 | break; |
530 | case MachineOperand::MO_ConstantPoolIndex: |
531 | OS << "cpi:" << ER.V.ImmVal; |
532 | break; |
533 | case MachineOperand::MO_JumpTableIndex: |
534 | OS << "jti:" << ER.V.ImmVal; |
535 | break; |
536 | default: |
537 | OS << "???:" << ER.V.ImmVal; |
538 | break; |
539 | } |
540 | return OS; |
541 | } |
542 | |
543 | LLVM_ATTRIBUTE_UNUSED |
544 | raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) { |
545 | OS << HCE::ExtRoot(EV) << " off:" << EV.Offset; |
546 | return OS; |
547 | } |
548 | |
549 | struct PrintIMap { |
550 | PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I) |
551 | : IMap(M), HRI(I) {} |
552 | const HCE::AssignmentMap &IMap; |
553 | const HexagonRegisterInfo &HRI; |
554 | }; |
555 | |
556 | LLVM_ATTRIBUTE_UNUSED |
557 | raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) { |
558 | OS << "{\n" ; |
559 | for (const std::pair<const HCE::ExtenderInit, HCE::IndexList> &Q : P.IMap) { |
560 | OS << " " << PrintInit(Q.first, P.HRI) << " -> {" ; |
561 | for (unsigned I : Q.second) |
562 | OS << ' ' << I; |
563 | OS << " }\n" ; |
564 | } |
565 | OS << "}\n" ; |
566 | return OS; |
567 | } |
568 | } |
569 | |
570 | INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt" , |
571 | "Hexagon constant-extender optimization" , false, false) |
572 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
573 | INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt" , |
574 | "Hexagon constant-extender optimization" , false, false) |
575 | |
576 | static unsigned ReplaceCounter = 0; |
577 | |
578 | char HCE::ID = 0; |
579 | |
580 | #ifndef NDEBUG |
581 | LLVM_DUMP_METHOD void RangeTree::dump() const { |
582 | dbgs() << "Root: " << Root << '\n'; |
583 | if (Root) |
584 | dump(Root); |
585 | } |
586 | |
587 | LLVM_DUMP_METHOD void RangeTree::dump(const Node *N) const { |
588 | dbgs() << "Node: " << N << '\n'; |
589 | dbgs() << " Height: " << N->Height << '\n'; |
590 | dbgs() << " Count: " << N->Count << '\n'; |
591 | dbgs() << " MaxEnd: " << N->MaxEnd << '\n'; |
592 | dbgs() << " Range: " << N->Range << '\n'; |
593 | dbgs() << " Left: " << N->Left << '\n'; |
594 | dbgs() << " Right: " << N->Right << "\n\n" ; |
595 | |
596 | if (N->Left) |
597 | dump(N->Left); |
598 | if (N->Right) |
599 | dump(N->Right); |
600 | } |
601 | #endif |
602 | |
603 | void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const { |
604 | if (N == nullptr) |
605 | return; |
606 | order(N: N->Left, Seq); |
607 | Seq.push_back(Elt: N); |
608 | order(N: N->Right, Seq); |
609 | } |
610 | |
611 | void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA, |
612 | SmallVectorImpl<Node*> &Seq) const { |
613 | if (N == nullptr || N->MaxEnd < P) |
614 | return; |
615 | nodesWith(N: N->Left, P, CheckA, Seq); |
616 | if (N->Range.Min <= P) { |
617 | if ((CheckA && N->Range.contains(V: P)) || (!CheckA && P <= N->Range.Max)) |
618 | Seq.push_back(Elt: N); |
619 | nodesWith(N: N->Right, P, CheckA, Seq); |
620 | } |
621 | } |
622 | |
623 | RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) { |
624 | if (N == nullptr) |
625 | return new Node(R); |
626 | |
627 | if (N->Range == R) { |
628 | N->Count++; |
629 | return N; |
630 | } |
631 | |
632 | if (R < N->Range) |
633 | N->Left = add(N: N->Left, R); |
634 | else |
635 | N->Right = add(N: N->Right, R); |
636 | return rebalance(N: update(N)); |
637 | } |
638 | |
639 | RangeTree::Node *RangeTree::remove(Node *N, const Node *D) { |
640 | assert(N != nullptr); |
641 | |
642 | if (N != D) { |
643 | assert(N->Range != D->Range && "N and D should not be equal" ); |
644 | if (D->Range < N->Range) |
645 | N->Left = remove(N: N->Left, D); |
646 | else |
647 | N->Right = remove(N: N->Right, D); |
648 | return rebalance(N: update(N)); |
649 | } |
650 | |
651 | // We got to the node we need to remove. If any of its children are |
652 | // missing, simply replace it with the other child. |
653 | if (N->Left == nullptr || N->Right == nullptr) |
654 | return (N->Left == nullptr) ? N->Right : N->Left; |
655 | |
656 | // Find the rightmost child of N->Left, remove it and plug it in place |
657 | // of N. |
658 | Node *M = N->Left; |
659 | while (M->Right) |
660 | M = M->Right; |
661 | M->Left = remove(N: N->Left, D: M); |
662 | M->Right = N->Right; |
663 | return rebalance(N: update(N: M)); |
664 | } |
665 | |
666 | RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) { |
667 | assert(Higher->Right == Lower); |
668 | // The Lower node is on the right from Higher. Make sure that Lower's |
669 | // balance is greater to the right. Otherwise the rotation will create |
670 | // an unbalanced tree again. |
671 | if (height(N: Lower->Left) > height(N: Lower->Right)) |
672 | Lower = rotateRight(Lower: Lower->Left, Higher: Lower); |
673 | assert(height(Lower->Left) <= height(Lower->Right)); |
674 | Higher->Right = Lower->Left; |
675 | update(N: Higher); |
676 | Lower->Left = Higher; |
677 | update(N: Lower); |
678 | return Lower; |
679 | } |
680 | |
681 | RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) { |
682 | assert(Higher->Left == Lower); |
683 | // The Lower node is on the left from Higher. Make sure that Lower's |
684 | // balance is greater to the left. Otherwise the rotation will create |
685 | // an unbalanced tree again. |
686 | if (height(N: Lower->Left) < height(N: Lower->Right)) |
687 | Lower = rotateLeft(Lower: Lower->Right, Higher: Lower); |
688 | assert(height(Lower->Left) >= height(Lower->Right)); |
689 | Higher->Left = Lower->Right; |
690 | update(N: Higher); |
691 | Lower->Right = Higher; |
692 | update(N: Lower); |
693 | return Lower; |
694 | } |
695 | |
696 | |
697 | HCE::ExtRoot::ExtRoot(const MachineOperand &Op) { |
698 | // Always store ImmVal, since it's the field used for comparisons. |
699 | V.ImmVal = 0; |
700 | if (Op.isImm()) |
701 | ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root). |
702 | else if (Op.isFPImm()) |
703 | V.CFP = Op.getFPImm(); |
704 | else if (Op.isSymbol()) |
705 | V.SymbolName = Op.getSymbolName(); |
706 | else if (Op.isGlobal()) |
707 | V.GV = Op.getGlobal(); |
708 | else if (Op.isBlockAddress()) |
709 | V.BA = Op.getBlockAddress(); |
710 | else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI()) |
711 | V.ImmVal = Op.getIndex(); |
712 | else |
713 | llvm_unreachable("Unexpected operand type" ); |
714 | |
715 | Kind = Op.getType(); |
716 | TF = Op.getTargetFlags(); |
717 | } |
718 | |
719 | bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const { |
720 | if (Kind != ER.Kind) |
721 | return Kind < ER.Kind; |
722 | switch (Kind) { |
723 | case MachineOperand::MO_Immediate: |
724 | case MachineOperand::MO_TargetIndex: |
725 | case MachineOperand::MO_ConstantPoolIndex: |
726 | case MachineOperand::MO_JumpTableIndex: |
727 | return V.ImmVal < ER.V.ImmVal; |
728 | case MachineOperand::MO_FPImmediate: { |
729 | const APFloat &ThisF = V.CFP->getValueAPF(); |
730 | const APFloat &OtherF = ER.V.CFP->getValueAPF(); |
731 | return ThisF.bitcastToAPInt().ult(RHS: OtherF.bitcastToAPInt()); |
732 | } |
733 | case MachineOperand::MO_ExternalSymbol: |
734 | return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName); |
735 | case MachineOperand::MO_GlobalAddress: |
736 | // Do not use GUIDs, since they depend on the source path. Moving the |
737 | // source file to a different directory could cause different GUID |
738 | // values for a pair of given symbols. These symbols could then compare |
739 | // "less" in one directory, but "greater" in another. |
740 | assert(!V.GV->getName().empty() && !ER.V.GV->getName().empty()); |
741 | return V.GV->getName() < ER.V.GV->getName(); |
742 | case MachineOperand::MO_BlockAddress: { |
743 | const BasicBlock *ThisB = V.BA->getBasicBlock(); |
744 | const BasicBlock *OtherB = ER.V.BA->getBasicBlock(); |
745 | assert(ThisB->getParent() == OtherB->getParent()); |
746 | const Function &F = *ThisB->getParent(); |
747 | return std::distance(first: F.begin(), last: ThisB->getIterator()) < |
748 | std::distance(first: F.begin(), last: OtherB->getIterator()); |
749 | } |
750 | } |
751 | return V.ImmVal < ER.V.ImmVal; |
752 | } |
753 | |
754 | HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) { |
755 | if (Op.isImm()) |
756 | Offset = Op.getImm(); |
757 | else if (Op.isFPImm() || Op.isJTI()) |
758 | Offset = 0; |
759 | else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() || |
760 | Op.isCPI() || Op.isTargetIndex()) |
761 | Offset = Op.getOffset(); |
762 | else |
763 | llvm_unreachable("Unexpected operand type" ); |
764 | } |
765 | |
766 | bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const { |
767 | const ExtRoot &ER = *this; |
768 | if (!(ER == ExtRoot(EV))) |
769 | return ER < EV; |
770 | return Offset < EV.Offset; |
771 | } |
772 | |
773 | HCE::ExtValue::operator MachineOperand() const { |
774 | switch (Kind) { |
775 | case MachineOperand::MO_Immediate: |
776 | return MachineOperand::CreateImm(Val: V.ImmVal + Offset); |
777 | case MachineOperand::MO_FPImmediate: |
778 | assert(Offset == 0); |
779 | return MachineOperand::CreateFPImm(CFP: V.CFP); |
780 | case MachineOperand::MO_ExternalSymbol: |
781 | assert(Offset == 0); |
782 | return MachineOperand::CreateES(SymName: V.SymbolName, TargetFlags: TF); |
783 | case MachineOperand::MO_GlobalAddress: |
784 | return MachineOperand::CreateGA(GV: V.GV, Offset, TargetFlags: TF); |
785 | case MachineOperand::MO_BlockAddress: |
786 | return MachineOperand::CreateBA(BA: V.BA, Offset, TargetFlags: TF); |
787 | case MachineOperand::MO_TargetIndex: |
788 | return MachineOperand::CreateTargetIndex(Idx: V.ImmVal, Offset, TargetFlags: TF); |
789 | case MachineOperand::MO_ConstantPoolIndex: |
790 | return MachineOperand::CreateCPI(Idx: V.ImmVal, Offset, TargetFlags: TF); |
791 | case MachineOperand::MO_JumpTableIndex: |
792 | assert(Offset == 0); |
793 | return MachineOperand::CreateJTI(Idx: V.ImmVal, TargetFlags: TF); |
794 | default: |
795 | llvm_unreachable("Unhandled kind" ); |
796 | } |
797 | } |
798 | |
799 | bool HCE::isStoreImmediate(unsigned Opc) const { |
800 | switch (Opc) { |
801 | case Hexagon::S4_storeirbt_io: |
802 | case Hexagon::S4_storeirbf_io: |
803 | case Hexagon::S4_storeirht_io: |
804 | case Hexagon::S4_storeirhf_io: |
805 | case Hexagon::S4_storeirit_io: |
806 | case Hexagon::S4_storeirif_io: |
807 | case Hexagon::S4_storeirb_io: |
808 | case Hexagon::S4_storeirh_io: |
809 | case Hexagon::S4_storeiri_io: |
810 | return true; |
811 | default: |
812 | break; |
813 | } |
814 | return false; |
815 | } |
816 | |
817 | bool HCE::isRegOffOpcode(unsigned Opc) const { |
818 | switch (Opc) { |
819 | case Hexagon::L2_loadrub_io: |
820 | case Hexagon::L2_loadrb_io: |
821 | case Hexagon::L2_loadruh_io: |
822 | case Hexagon::L2_loadrh_io: |
823 | case Hexagon::L2_loadri_io: |
824 | case Hexagon::L2_loadrd_io: |
825 | case Hexagon::L2_loadbzw2_io: |
826 | case Hexagon::L2_loadbzw4_io: |
827 | case Hexagon::L2_loadbsw2_io: |
828 | case Hexagon::L2_loadbsw4_io: |
829 | case Hexagon::L2_loadalignh_io: |
830 | case Hexagon::L2_loadalignb_io: |
831 | case Hexagon::L2_ploadrubt_io: |
832 | case Hexagon::L2_ploadrubf_io: |
833 | case Hexagon::L2_ploadrbt_io: |
834 | case Hexagon::L2_ploadrbf_io: |
835 | case Hexagon::L2_ploadruht_io: |
836 | case Hexagon::L2_ploadruhf_io: |
837 | case Hexagon::L2_ploadrht_io: |
838 | case Hexagon::L2_ploadrhf_io: |
839 | case Hexagon::L2_ploadrit_io: |
840 | case Hexagon::L2_ploadrif_io: |
841 | case Hexagon::L2_ploadrdt_io: |
842 | case Hexagon::L2_ploadrdf_io: |
843 | case Hexagon::S2_storerb_io: |
844 | case Hexagon::S2_storerh_io: |
845 | case Hexagon::S2_storerf_io: |
846 | case Hexagon::S2_storeri_io: |
847 | case Hexagon::S2_storerd_io: |
848 | case Hexagon::S2_pstorerbt_io: |
849 | case Hexagon::S2_pstorerbf_io: |
850 | case Hexagon::S2_pstorerht_io: |
851 | case Hexagon::S2_pstorerhf_io: |
852 | case Hexagon::S2_pstorerft_io: |
853 | case Hexagon::S2_pstorerff_io: |
854 | case Hexagon::S2_pstorerit_io: |
855 | case Hexagon::S2_pstorerif_io: |
856 | case Hexagon::S2_pstorerdt_io: |
857 | case Hexagon::S2_pstorerdf_io: |
858 | case Hexagon::A2_addi: |
859 | return true; |
860 | default: |
861 | break; |
862 | } |
863 | return false; |
864 | } |
865 | |
866 | unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const { |
867 | // If there exists an instruction that takes a register and offset, |
868 | // that corresponds to the ExtOpc, return it, otherwise return 0. |
869 | using namespace Hexagon; |
870 | switch (ExtOpc) { |
871 | case A2_tfrsi: return A2_addi; |
872 | default: |
873 | break; |
874 | } |
875 | const MCInstrDesc &D = HII->get(Opcode: ExtOpc); |
876 | if (D.mayLoad() || D.mayStore()) { |
877 | uint64_t F = D.TSFlags; |
878 | unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask; |
879 | switch (AM) { |
880 | case HexagonII::Absolute: |
881 | case HexagonII::AbsoluteSet: |
882 | case HexagonII::BaseLongOffset: |
883 | switch (ExtOpc) { |
884 | case PS_loadrubabs: |
885 | case L4_loadrub_ap: |
886 | case L4_loadrub_ur: return L2_loadrub_io; |
887 | case PS_loadrbabs: |
888 | case L4_loadrb_ap: |
889 | case L4_loadrb_ur: return L2_loadrb_io; |
890 | case PS_loadruhabs: |
891 | case L4_loadruh_ap: |
892 | case L4_loadruh_ur: return L2_loadruh_io; |
893 | case PS_loadrhabs: |
894 | case L4_loadrh_ap: |
895 | case L4_loadrh_ur: return L2_loadrh_io; |
896 | case PS_loadriabs: |
897 | case L4_loadri_ap: |
898 | case L4_loadri_ur: return L2_loadri_io; |
899 | case PS_loadrdabs: |
900 | case L4_loadrd_ap: |
901 | case L4_loadrd_ur: return L2_loadrd_io; |
902 | case L4_loadbzw2_ap: |
903 | case L4_loadbzw2_ur: return L2_loadbzw2_io; |
904 | case L4_loadbzw4_ap: |
905 | case L4_loadbzw4_ur: return L2_loadbzw4_io; |
906 | case L4_loadbsw2_ap: |
907 | case L4_loadbsw2_ur: return L2_loadbsw2_io; |
908 | case L4_loadbsw4_ap: |
909 | case L4_loadbsw4_ur: return L2_loadbsw4_io; |
910 | case L4_loadalignh_ap: |
911 | case L4_loadalignh_ur: return L2_loadalignh_io; |
912 | case L4_loadalignb_ap: |
913 | case L4_loadalignb_ur: return L2_loadalignb_io; |
914 | case L4_ploadrubt_abs: return L2_ploadrubt_io; |
915 | case L4_ploadrubf_abs: return L2_ploadrubf_io; |
916 | case L4_ploadrbt_abs: return L2_ploadrbt_io; |
917 | case L4_ploadrbf_abs: return L2_ploadrbf_io; |
918 | case L4_ploadruht_abs: return L2_ploadruht_io; |
919 | case L4_ploadruhf_abs: return L2_ploadruhf_io; |
920 | case L4_ploadrht_abs: return L2_ploadrht_io; |
921 | case L4_ploadrhf_abs: return L2_ploadrhf_io; |
922 | case L4_ploadrit_abs: return L2_ploadrit_io; |
923 | case L4_ploadrif_abs: return L2_ploadrif_io; |
924 | case L4_ploadrdt_abs: return L2_ploadrdt_io; |
925 | case L4_ploadrdf_abs: return L2_ploadrdf_io; |
926 | case PS_storerbabs: |
927 | case S4_storerb_ap: |
928 | case S4_storerb_ur: return S2_storerb_io; |
929 | case PS_storerhabs: |
930 | case S4_storerh_ap: |
931 | case S4_storerh_ur: return S2_storerh_io; |
932 | case PS_storerfabs: |
933 | case S4_storerf_ap: |
934 | case S4_storerf_ur: return S2_storerf_io; |
935 | case PS_storeriabs: |
936 | case S4_storeri_ap: |
937 | case S4_storeri_ur: return S2_storeri_io; |
938 | case PS_storerdabs: |
939 | case S4_storerd_ap: |
940 | case S4_storerd_ur: return S2_storerd_io; |
941 | case S4_pstorerbt_abs: return S2_pstorerbt_io; |
942 | case S4_pstorerbf_abs: return S2_pstorerbf_io; |
943 | case S4_pstorerht_abs: return S2_pstorerht_io; |
944 | case S4_pstorerhf_abs: return S2_pstorerhf_io; |
945 | case S4_pstorerft_abs: return S2_pstorerft_io; |
946 | case S4_pstorerff_abs: return S2_pstorerff_io; |
947 | case S4_pstorerit_abs: return S2_pstorerit_io; |
948 | case S4_pstorerif_abs: return S2_pstorerif_io; |
949 | case S4_pstorerdt_abs: return S2_pstorerdt_io; |
950 | case S4_pstorerdf_abs: return S2_pstorerdf_io; |
951 | default: |
952 | break; |
953 | } |
954 | break; |
955 | case HexagonII::BaseImmOffset: |
956 | if (!isStoreImmediate(Opc: ExtOpc)) |
957 | return ExtOpc; |
958 | break; |
959 | default: |
960 | break; |
961 | } |
962 | } |
963 | return 0; |
964 | } |
965 | |
966 | unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const { |
967 | switch (ExtOpc) { |
968 | case Hexagon::A2_addi: return Hexagon::A2_add; |
969 | case Hexagon::A2_andir: return Hexagon::A2_and; |
970 | case Hexagon::A2_combineii: return Hexagon::A4_combineri; |
971 | case Hexagon::A2_orir: return Hexagon::A2_or; |
972 | case Hexagon::A2_paddif: return Hexagon::A2_paddf; |
973 | case Hexagon::A2_paddit: return Hexagon::A2_paddt; |
974 | case Hexagon::A2_subri: return Hexagon::A2_sub; |
975 | case Hexagon::A2_tfrsi: return TargetOpcode::COPY; |
976 | case Hexagon::A4_cmpbeqi: return Hexagon::A4_cmpbeq; |
977 | case Hexagon::A4_cmpbgti: return Hexagon::A4_cmpbgt; |
978 | case Hexagon::A4_cmpbgtui: return Hexagon::A4_cmpbgtu; |
979 | case Hexagon::A4_cmpheqi: return Hexagon::A4_cmpheq; |
980 | case Hexagon::A4_cmphgti: return Hexagon::A4_cmphgt; |
981 | case Hexagon::A4_cmphgtui: return Hexagon::A4_cmphgtu; |
982 | case Hexagon::A4_combineii: return Hexagon::A4_combineir; |
983 | case Hexagon::A4_combineir: return TargetOpcode::REG_SEQUENCE; |
984 | case Hexagon::A4_combineri: return TargetOpcode::REG_SEQUENCE; |
985 | case Hexagon::A4_rcmpeqi: return Hexagon::A4_rcmpeq; |
986 | case Hexagon::A4_rcmpneqi: return Hexagon::A4_rcmpneq; |
987 | case Hexagon::C2_cmoveif: return Hexagon::A2_tfrpf; |
988 | case Hexagon::C2_cmoveit: return Hexagon::A2_tfrpt; |
989 | case Hexagon::C2_cmpeqi: return Hexagon::C2_cmpeq; |
990 | case Hexagon::C2_cmpgti: return Hexagon::C2_cmpgt; |
991 | case Hexagon::C2_cmpgtui: return Hexagon::C2_cmpgtu; |
992 | case Hexagon::C2_muxii: return Hexagon::C2_muxir; |
993 | case Hexagon::C2_muxir: return Hexagon::C2_mux; |
994 | case Hexagon::C2_muxri: return Hexagon::C2_mux; |
995 | case Hexagon::C4_cmpltei: return Hexagon::C4_cmplte; |
996 | case Hexagon::C4_cmplteui: return Hexagon::C4_cmplteu; |
997 | case Hexagon::C4_cmpneqi: return Hexagon::C4_cmpneq; |
998 | case Hexagon::M2_accii: return Hexagon::M2_acci; // T -> T |
999 | /* No M2_macsin */ |
1000 | case Hexagon::M2_macsip: return Hexagon::M2_maci; // T -> T |
1001 | case Hexagon::M2_mpysin: return Hexagon::M2_mpyi; |
1002 | case Hexagon::M2_mpysip: return Hexagon::M2_mpyi; |
1003 | case Hexagon::M2_mpysmi: return Hexagon::M2_mpyi; |
1004 | case Hexagon::M2_naccii: return Hexagon::M2_nacci; // T -> T |
1005 | case Hexagon::M4_mpyri_addi: return Hexagon::M4_mpyri_addr; |
1006 | case Hexagon::M4_mpyri_addr: return Hexagon::M4_mpyrr_addr; // _ -> T |
1007 | case Hexagon::M4_mpyrr_addi: return Hexagon::M4_mpyrr_addr; // _ -> T |
1008 | case Hexagon::S4_addaddi: return Hexagon::M2_acci; // _ -> T |
1009 | case Hexagon::S4_addi_asl_ri: return Hexagon::S2_asl_i_r_acc; // T -> T |
1010 | case Hexagon::S4_addi_lsr_ri: return Hexagon::S2_lsr_i_r_acc; // T -> T |
1011 | case Hexagon::S4_andi_asl_ri: return Hexagon::S2_asl_i_r_and; // T -> T |
1012 | case Hexagon::S4_andi_lsr_ri: return Hexagon::S2_lsr_i_r_and; // T -> T |
1013 | case Hexagon::S4_ori_asl_ri: return Hexagon::S2_asl_i_r_or; // T -> T |
1014 | case Hexagon::S4_ori_lsr_ri: return Hexagon::S2_lsr_i_r_or; // T -> T |
1015 | case Hexagon::S4_subaddi: return Hexagon::M2_subacc; // _ -> T |
1016 | case Hexagon::S4_subi_asl_ri: return Hexagon::S2_asl_i_r_nac; // T -> T |
1017 | case Hexagon::S4_subi_lsr_ri: return Hexagon::S2_lsr_i_r_nac; // T -> T |
1018 | |
1019 | // Store-immediates: |
1020 | case Hexagon::S4_storeirbf_io: return Hexagon::S2_pstorerbf_io; |
1021 | case Hexagon::S4_storeirb_io: return Hexagon::S2_storerb_io; |
1022 | case Hexagon::S4_storeirbt_io: return Hexagon::S2_pstorerbt_io; |
1023 | case Hexagon::S4_storeirhf_io: return Hexagon::S2_pstorerhf_io; |
1024 | case Hexagon::S4_storeirh_io: return Hexagon::S2_storerh_io; |
1025 | case Hexagon::S4_storeirht_io: return Hexagon::S2_pstorerht_io; |
1026 | case Hexagon::S4_storeirif_io: return Hexagon::S2_pstorerif_io; |
1027 | case Hexagon::S4_storeiri_io: return Hexagon::S2_storeri_io; |
1028 | case Hexagon::S4_storeirit_io: return Hexagon::S2_pstorerit_io; |
1029 | |
1030 | default: |
1031 | break; |
1032 | } |
1033 | return 0; |
1034 | } |
1035 | |
1036 | // Return the allowable deviation from the current value of Rb (i.e. the |
1037 | // range of values that can be added to the current value) which the |
1038 | // instruction MI can accommodate. |
1039 | // The instruction MI is a user of register Rb, which is defined via an |
1040 | // extender. It may be possible for MI to be tweaked to work for a register |
1041 | // defined with a slightly different value. For example |
1042 | // ... = L2_loadrub_io Rb, 1 |
1043 | // can be modifed to be |
1044 | // ... = L2_loadrub_io Rb', 0 |
1045 | // if Rb' = Rb+1. |
1046 | // The range for Rb would be [Min+1, Max+1], where [Min, Max] is a range |
1047 | // for L2_loadrub with offset 0. That means that Rb could be replaced with |
1048 | // Rc, where Rc-Rb belongs to [Min+1, Max+1]. |
1049 | OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const { |
1050 | unsigned Opc = MI.getOpcode(); |
1051 | // Instructions that are constant-extended may be replaced with something |
1052 | // else that no longer offers the same range as the original. |
1053 | if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI)) |
1054 | return OffsetRange::zero(); |
1055 | |
1056 | if (Opc == Hexagon::A2_addi) { |
1057 | const MachineOperand &Op1 = MI.getOperand(i: 1), &Op2 = MI.getOperand(i: 2); |
1058 | if (Rb != Register(Op1) || !Op2.isImm()) |
1059 | return OffsetRange::zero(); |
1060 | OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 }; |
1061 | return R.shift(S: Op2.getImm()); |
1062 | } |
1063 | |
1064 | // HII::getBaseAndOffsetPosition returns the increment position as "offset". |
1065 | if (HII->isPostIncrement(MI)) |
1066 | return OffsetRange::zero(); |
1067 | |
1068 | const MCInstrDesc &D = HII->get(Opcode: Opc); |
1069 | assert(D.mayLoad() || D.mayStore()); |
1070 | |
1071 | unsigned BaseP, OffP; |
1072 | if (!HII->getBaseAndOffsetPosition(MI, BasePos&: BaseP, OffsetPos&: OffP) || |
1073 | Rb != Register(MI.getOperand(i: BaseP)) || |
1074 | !MI.getOperand(i: OffP).isImm()) |
1075 | return OffsetRange::zero(); |
1076 | |
1077 | uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & |
1078 | HexagonII::MemAccesSizeMask; |
1079 | uint8_t A = HexagonII::getMemAccessSizeInBytes(S: HexagonII::MemAccessSize(F)); |
1080 | unsigned L = Log2_32(Value: A); |
1081 | unsigned S = 10+L; // sint11_L |
1082 | int32_t Min = -alignDown(Value: (1<<S)-1, Align: A); |
1083 | |
1084 | // The range will be shifted by Off. To prefer non-negative offsets, |
1085 | // adjust Max accordingly. |
1086 | int32_t Off = MI.getOperand(i: OffP).getImm(); |
1087 | int32_t Max = Off >= 0 ? 0 : -Off; |
1088 | |
1089 | OffsetRange R = { Min, Max, A }; |
1090 | return R.shift(S: Off); |
1091 | } |
1092 | |
1093 | // Return the allowable deviation from the current value of the extender ED, |
1094 | // for which the instruction corresponding to ED can be modified without |
1095 | // using an extender. |
1096 | // The instruction uses the extender directly. It will be replaced with |
1097 | // another instruction, say MJ, where the extender will be replaced with a |
1098 | // register. MJ can allow some variability with respect to the value of |
1099 | // that register, as is the case with indexed memory instructions. |
1100 | OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const { |
1101 | // The only way that there can be a non-zero range available is if |
1102 | // the instruction using ED will be converted to an indexed memory |
1103 | // instruction. |
1104 | unsigned IdxOpc = getRegOffOpcode(ExtOpc: ED.UseMI->getOpcode()); |
1105 | switch (IdxOpc) { |
1106 | case 0: |
1107 | return OffsetRange::zero(); |
1108 | case Hexagon::A2_addi: // s16 |
1109 | return { -32767, 32767, 1 }; |
1110 | case Hexagon::A2_subri: // s10 |
1111 | return { -511, 511, 1 }; |
1112 | } |
1113 | |
1114 | if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore()) |
1115 | return OffsetRange::zero(); |
1116 | const MCInstrDesc &D = HII->get(Opcode: IdxOpc); |
1117 | uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & |
1118 | HexagonII::MemAccesSizeMask; |
1119 | uint8_t A = HexagonII::getMemAccessSizeInBytes(S: HexagonII::MemAccessSize(F)); |
1120 | unsigned L = Log2_32(Value: A); |
1121 | unsigned S = 10+L; // sint11_L |
1122 | int32_t Min = -alignDown(Value: (1<<S)-1, Align: A); |
1123 | int32_t Max = 0; // Force non-negative offsets. |
1124 | return { Min, Max, A }; |
1125 | } |
1126 | |
1127 | // Get the allowable deviation from the current value of Rd by checking |
1128 | // all uses of Rd. |
1129 | OffsetRange HCE::getOffsetRange(Register Rd) const { |
1130 | OffsetRange Range; |
1131 | for (const MachineOperand &Op : MRI->use_operands(Reg: Rd.Reg)) { |
1132 | // Make sure that the register being used by this operand is identical |
1133 | // to the register that was defined: using a different subregister |
1134 | // precludes any non-trivial range. |
1135 | if (Rd != Register(Op)) |
1136 | return OffsetRange::zero(); |
1137 | Range.intersect(A: getOffsetRange(Rb: Rd, MI: *Op.getParent())); |
1138 | } |
1139 | return Range; |
1140 | } |
1141 | |
1142 | void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) { |
1143 | unsigned Opc = MI.getOpcode(); |
1144 | ExtDesc ED; |
1145 | ED.OpNum = OpNum; |
1146 | |
1147 | bool IsLoad = MI.mayLoad(); |
1148 | bool IsStore = MI.mayStore(); |
1149 | |
1150 | // Fixed stack slots have negative indexes, and they cannot be used |
1151 | // with TRI::stackSlot2Index and TRI::index2StackSlot. This is somewhat |
1152 | // unfortunate, but should not be a frequent thing. |
1153 | for (MachineOperand &Op : MI.operands()) |
1154 | if (Op.isFI() && Op.getIndex() < 0) |
1155 | return; |
1156 | |
1157 | if (IsLoad || IsStore) { |
1158 | unsigned AM = HII->getAddrMode(MI); |
1159 | switch (AM) { |
1160 | // (Re: ##Off + Rb<<S) = Rd: ##Val |
1161 | case HexagonII::Absolute: // (__: ## + __<<_) |
1162 | break; |
1163 | case HexagonII::AbsoluteSet: // (Rd: ## + __<<_) |
1164 | ED.Rd = MI.getOperand(i: OpNum-1); |
1165 | ED.IsDef = true; |
1166 | break; |
1167 | case HexagonII::BaseImmOffset: // (__: ## + Rs<<0) |
1168 | // Store-immediates are treated as non-memory operations, since |
1169 | // it's the value being stored that is extended (as opposed to |
1170 | // a part of the address). |
1171 | if (!isStoreImmediate(Opc)) |
1172 | ED.Expr.Rs = MI.getOperand(i: OpNum-1); |
1173 | break; |
1174 | case HexagonII::BaseLongOffset: // (__: ## + Rs<<S) |
1175 | ED.Expr.Rs = MI.getOperand(i: OpNum-2); |
1176 | ED.Expr.S = MI.getOperand(i: OpNum-1).getImm(); |
1177 | break; |
1178 | default: |
1179 | llvm_unreachable("Unhandled memory instruction" ); |
1180 | } |
1181 | } else { |
1182 | switch (Opc) { |
1183 | case Hexagon::A2_tfrsi: // (Rd: ## + __<<_) |
1184 | ED.Rd = MI.getOperand(i: 0); |
1185 | ED.IsDef = true; |
1186 | break; |
1187 | case Hexagon::A2_combineii: // (Rd: ## + __<<_) |
1188 | case Hexagon::A4_combineir: |
1189 | ED.Rd = { MI.getOperand(i: 0).getReg(), Hexagon::isub_hi }; |
1190 | ED.IsDef = true; |
1191 | break; |
1192 | case Hexagon::A4_combineri: // (Rd: ## + __<<_) |
1193 | ED.Rd = { MI.getOperand(i: 0).getReg(), Hexagon::isub_lo }; |
1194 | ED.IsDef = true; |
1195 | break; |
1196 | case Hexagon::A2_addi: // (Rd: ## + Rs<<0) |
1197 | ED.Rd = MI.getOperand(i: 0); |
1198 | ED.Expr.Rs = MI.getOperand(i: OpNum-1); |
1199 | break; |
1200 | case Hexagon::M2_accii: // (__: ## + Rs<<0) |
1201 | case Hexagon::M2_naccii: |
1202 | case Hexagon::S4_addaddi: |
1203 | ED.Expr.Rs = MI.getOperand(i: OpNum-1); |
1204 | break; |
1205 | case Hexagon::A2_subri: // (Rd: ## - Rs<<0) |
1206 | ED.Rd = MI.getOperand(i: 0); |
1207 | ED.Expr.Rs = MI.getOperand(i: OpNum+1); |
1208 | ED.Expr.Neg = true; |
1209 | break; |
1210 | case Hexagon::S4_subaddi: // (__: ## - Rs<<0) |
1211 | ED.Expr.Rs = MI.getOperand(i: OpNum+1); |
1212 | ED.Expr.Neg = true; |
1213 | break; |
1214 | default: // (__: ## + __<<_) |
1215 | break; |
1216 | } |
1217 | } |
1218 | |
1219 | ED.UseMI = &MI; |
1220 | |
1221 | // Ignore unnamed globals. |
1222 | ExtRoot ER(ED.getOp()); |
1223 | if (ER.Kind == MachineOperand::MO_GlobalAddress) |
1224 | if (ER.V.GV->getName().empty()) |
1225 | return; |
1226 | // Ignore block address that points to block in another function |
1227 | if (ER.Kind == MachineOperand::MO_BlockAddress) |
1228 | if (ER.V.BA->getFunction() != &(MI.getMF()->getFunction())) |
1229 | return; |
1230 | Extenders.push_back(x: ED); |
1231 | } |
1232 | |
1233 | void HCE::collectInstr(MachineInstr &MI) { |
1234 | if (!HII->isConstExtended(MI)) |
1235 | return; |
1236 | |
1237 | // Skip some non-convertible instructions. |
1238 | unsigned Opc = MI.getOpcode(); |
1239 | switch (Opc) { |
1240 | case Hexagon::M2_macsin: // There is no Rx -= mpyi(Rs,Rt). |
1241 | case Hexagon::C4_addipc: |
1242 | case Hexagon::S4_or_andi: |
1243 | case Hexagon::S4_or_andix: |
1244 | case Hexagon::S4_or_ori: |
1245 | return; |
1246 | } |
1247 | recordExtender(MI, OpNum: HII->getCExtOpNum(MI)); |
1248 | } |
1249 | |
1250 | void HCE::collect(MachineFunction &MF) { |
1251 | Extenders.clear(); |
1252 | for (MachineBasicBlock &MBB : MF) { |
1253 | // Skip unreachable blocks. |
1254 | if (MBB.getNumber() == -1) |
1255 | continue; |
1256 | for (MachineInstr &MI : MBB) |
1257 | collectInstr(MI); |
1258 | } |
1259 | } |
1260 | |
1261 | void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, |
1262 | AssignmentMap &IMap) { |
1263 | // Basic correctness: make sure that all extenders in the range [Begin..End) |
1264 | // share the same root ER. |
1265 | for (unsigned I = Begin; I != End; ++I) |
1266 | assert(ER == ExtRoot(Extenders[I].getOp())); |
1267 | |
1268 | // Construct the list of ranges, such that for each P in Ranges[I], |
1269 | // a register Reg = ER+P can be used in place of Extender[I]. If the |
1270 | // instruction allows, uses in the form of Reg+Off are considered |
1271 | // (here, Off = required_value - P). |
1272 | std::vector<OffsetRange> Ranges(End-Begin); |
1273 | |
1274 | // For each extender that is a def, visit all uses of the defined register, |
1275 | // and produce an offset range that works for all uses. The def doesn't |
1276 | // have to be checked, because it can become dead if all uses can be updated |
1277 | // to use a different reg/offset. |
1278 | for (unsigned I = Begin; I != End; ++I) { |
1279 | const ExtDesc &ED = Extenders[I]; |
1280 | if (!ED.IsDef) |
1281 | continue; |
1282 | ExtValue EV(ED); |
1283 | LLVM_DEBUG(dbgs() << " =" << I << ". " << EV << " " << ED << '\n'); |
1284 | assert(ED.Rd.Reg != 0); |
1285 | Ranges[I-Begin] = getOffsetRange(Rd: ED.Rd).shift(S: EV.Offset); |
1286 | // A2_tfrsi is a special case: it will be replaced with A2_addi, which |
1287 | // has a 16-bit signed offset. This means that A2_tfrsi not only has a |
1288 | // range coming from its uses, but also from the fact that its replacement |
1289 | // has a range as well. |
1290 | if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) { |
1291 | int32_t D = alignDown(Value: 32767, Align: Ranges[I-Begin].Align); // XXX hardcoded |
1292 | Ranges[I-Begin].extendBy(D: -D).extendBy(D); |
1293 | } |
1294 | } |
1295 | |
1296 | // Visit all non-def extenders. For each one, determine the offset range |
1297 | // available for it. |
1298 | for (unsigned I = Begin; I != End; ++I) { |
1299 | const ExtDesc &ED = Extenders[I]; |
1300 | if (ED.IsDef) |
1301 | continue; |
1302 | ExtValue EV(ED); |
1303 | LLVM_DEBUG(dbgs() << " " << I << ". " << EV << " " << ED << '\n'); |
1304 | OffsetRange Dev = getOffsetRange(ED); |
1305 | Ranges[I-Begin].intersect(A: Dev.shift(S: EV.Offset)); |
1306 | } |
1307 | |
1308 | // Here for each I there is a corresponding Range[I]. Construct the |
1309 | // inverse map, that to each range will assign the set of indexes in |
1310 | // [Begin..End) that this range corresponds to. |
1311 | std::map<OffsetRange, IndexList> RangeMap; |
1312 | for (unsigned I = Begin; I != End; ++I) |
1313 | RangeMap[Ranges[I-Begin]].insert(X: I); |
1314 | |
1315 | LLVM_DEBUG({ |
1316 | dbgs() << "Ranges\n" ; |
1317 | for (unsigned I = Begin; I != End; ++I) |
1318 | dbgs() << " " << I << ". " << Ranges[I-Begin] << '\n'; |
1319 | dbgs() << "RangeMap\n" ; |
1320 | for (auto &P : RangeMap) { |
1321 | dbgs() << " " << P.first << " ->" ; |
1322 | for (unsigned I : P.second) |
1323 | dbgs() << ' ' << I; |
1324 | dbgs() << '\n'; |
1325 | } |
1326 | }); |
1327 | |
1328 | // Select the definition points, and generate the assignment between |
1329 | // these points and the uses. |
1330 | |
1331 | // For each candidate offset, keep a pair CandData consisting of |
1332 | // the total number of ranges containing that candidate, and the |
1333 | // vector of corresponding RangeTree nodes. |
1334 | using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>; |
1335 | std::map<int32_t, CandData> CandMap; |
1336 | |
1337 | RangeTree Tree; |
1338 | for (const OffsetRange &R : Ranges) |
1339 | Tree.add(R); |
1340 | SmallVector<RangeTree::Node*,8> Nodes; |
1341 | Tree.order(Seq&: Nodes); |
1342 | |
1343 | auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes, |
1344 | uint8_t Align, uint8_t Offset) { |
1345 | for (RangeTree::Node *N : Nodes) { |
1346 | if (N->Range.Align <= Align || N->Range.Offset < Offset) |
1347 | continue; |
1348 | if ((N->Range.Offset - Offset) % Align != 0) |
1349 | continue; |
1350 | Align = N->Range.Align; |
1351 | Offset = N->Range.Offset; |
1352 | } |
1353 | return std::make_pair(x&: Align, y&: Offset); |
1354 | }; |
1355 | |
1356 | // Construct the set of all potential definition points from the endpoints |
1357 | // of the ranges. If a given endpoint also belongs to a different range, |
1358 | // but with a higher alignment, also consider the more-highly-aligned |
1359 | // value of this endpoint. |
1360 | std::set<int32_t> CandSet; |
1361 | for (RangeTree::Node *N : Nodes) { |
1362 | const OffsetRange &R = N->Range; |
1363 | auto P0 = MaxAlign(Tree.nodesWith(P: R.Min, CheckAlign: false), R.Align, R.Offset); |
1364 | CandSet.insert(x: R.Min); |
1365 | if (R.Align < P0.first) |
1366 | CandSet.insert(x: adjustUp(V: R.Min, A: P0.first, O: P0.second)); |
1367 | auto P1 = MaxAlign(Tree.nodesWith(P: R.Max, CheckAlign: false), R.Align, R.Offset); |
1368 | CandSet.insert(x: R.Max); |
1369 | if (R.Align < P1.first) |
1370 | CandSet.insert(x: adjustDown(V: R.Max, A: P1.first, O: P1.second)); |
1371 | } |
1372 | |
1373 | // Build the assignment map: candidate C -> { list of extender indexes }. |
1374 | // This has to be done iteratively: |
1375 | // - pick the candidate that covers the maximum number of extenders, |
1376 | // - add the candidate to the map, |
1377 | // - remove the extenders from the pool. |
1378 | while (true) { |
1379 | using CMap = std::map<int32_t,unsigned>; |
1380 | CMap Counts; |
1381 | for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) { |
1382 | auto &&V = Tree.nodesWith(P: *It); |
1383 | unsigned N = std::accumulate(first: V.begin(), last: V.end(), init: 0u, |
1384 | binary_op: [](unsigned Acc, const RangeTree::Node *N) { |
1385 | return Acc + N->Count; |
1386 | }); |
1387 | if (N != 0) |
1388 | Counts.insert(x: {*It, N}); |
1389 | It = (N != 0) ? std::next(x: It) : CandSet.erase(position: It); |
1390 | } |
1391 | if (Counts.empty()) |
1392 | break; |
1393 | |
1394 | // Find the best candidate with respect to the number of extenders covered. |
1395 | auto BestIt = llvm::max_element( |
1396 | Range&: Counts, C: [](const CMap::value_type &A, const CMap::value_type &B) { |
1397 | return A.second < B.second || (A.second == B.second && A < B); |
1398 | }); |
1399 | int32_t Best = BestIt->first; |
1400 | ExtValue BestV(ER, Best); |
1401 | for (RangeTree::Node *N : Tree.nodesWith(P: Best)) { |
1402 | for (unsigned I : RangeMap[N->Range]) |
1403 | IMap[{BestV,Extenders[I].Expr}].insert(X: I); |
1404 | Tree.erase(N); |
1405 | } |
1406 | } |
1407 | |
1408 | LLVM_DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI)); |
1409 | |
1410 | // There is some ambiguity in what initializer should be used, if the |
1411 | // descriptor's subexpression is non-trivial: it can be the entire |
1412 | // subexpression (which is what has been done so far), or it can be |
1413 | // the extender's value itself, if all corresponding extenders have the |
1414 | // exact value of the initializer (i.e. require offset of 0). |
1415 | |
1416 | // To reduce the number of initializers, merge such special cases. |
1417 | for (std::pair<const ExtenderInit,IndexList> &P : IMap) { |
1418 | // Skip trivial initializers. |
1419 | if (P.first.second.trivial()) |
1420 | continue; |
1421 | // If the corresponding trivial initializer does not exist, skip this |
1422 | // entry. |
1423 | const ExtValue &EV = P.first.first; |
1424 | AssignmentMap::iterator F = IMap.find(x: {EV, ExtExpr()}); |
1425 | if (F == IMap.end()) |
1426 | continue; |
1427 | |
1428 | // Finally, check if all extenders have the same value as the initializer. |
1429 | // Make sure that extenders that are a part of a stack address are not |
1430 | // merged with those that aren't. Stack addresses need an offset field |
1431 | // (to be used by frame index elimination), while non-stack expressions |
1432 | // can be replaced with forms (such as rr) that do not have such a field. |
1433 | // Example: |
1434 | // |
1435 | // Collected 3 extenders |
1436 | // =2. imm:0 off:32968 bb#2: %7 = ## + __ << 0, def |
1437 | // 0. imm:0 off:267 bb#0: __ = ## + SS#1 << 0 |
1438 | // 1. imm:0 off:267 bb#1: __ = ## + SS#1 << 0 |
1439 | // Ranges |
1440 | // 0. [-756,267]a1+0 |
1441 | // 1. [-756,267]a1+0 |
1442 | // 2. [201,65735]a1+0 |
1443 | // RangeMap |
1444 | // [-756,267]a1+0 -> 0 1 |
1445 | // [201,65735]a1+0 -> 2 |
1446 | // IMap (before fixup) = { |
1447 | // [imm:0 off:267, ## + __ << 0] -> { 2 } |
1448 | // [imm:0 off:267, ## + SS#1 << 0] -> { 0 1 } |
1449 | // } |
1450 | // IMap (after fixup) = { |
1451 | // [imm:0 off:267, ## + __ << 0] -> { 2 0 1 } |
1452 | // [imm:0 off:267, ## + SS#1 << 0] -> { } |
1453 | // } |
1454 | // Inserted def in bb#0 for initializer: [imm:0 off:267, ## + __ << 0] |
1455 | // %12:intregs = A2_tfrsi 267 |
1456 | // |
1457 | // The result was |
1458 | // %12:intregs = A2_tfrsi 267 |
1459 | // S4_pstorerbt_rr %3, %12, %stack.1, 0, killed %4 |
1460 | // Which became |
1461 | // r0 = #267 |
1462 | // if (p0.new) memb(r0+r29<<#4) = r2 |
1463 | |
1464 | bool IsStack = any_of(Range&: F->second, P: [this](unsigned I) { |
1465 | return Extenders[I].Expr.Rs.isSlot(); |
1466 | }); |
1467 | auto SameValue = [&EV,this,IsStack](unsigned I) { |
1468 | const ExtDesc &ED = Extenders[I]; |
1469 | return ED.Expr.Rs.isSlot() == IsStack && |
1470 | ExtValue(ED).Offset == EV.Offset; |
1471 | }; |
1472 | if (all_of(Range&: P.second, P: SameValue)) { |
1473 | F->second.insert(Start: P.second.begin(), End: P.second.end()); |
1474 | P.second.clear(); |
1475 | } |
1476 | } |
1477 | |
1478 | LLVM_DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI)); |
1479 | } |
1480 | |
1481 | void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, |
1482 | LocDefList &Defs) { |
1483 | if (Refs.empty()) |
1484 | return; |
1485 | |
1486 | // The placement calculation is somewhat simple right now: it finds a |
1487 | // single location for the def that dominates all refs. Since this may |
1488 | // place the def far from the uses, producing several locations for |
1489 | // defs that collectively dominate all refs could be better. |
1490 | // For now only do the single one. |
1491 | DenseSet<MachineBasicBlock*> Blocks; |
1492 | DenseSet<MachineInstr*> RefMIs; |
1493 | const ExtDesc &ED0 = Extenders[Refs[0]]; |
1494 | MachineBasicBlock *DomB = ED0.UseMI->getParent(); |
1495 | RefMIs.insert(V: ED0.UseMI); |
1496 | Blocks.insert(V: DomB); |
1497 | for (unsigned i = 1, e = Refs.size(); i != e; ++i) { |
1498 | const ExtDesc &ED = Extenders[Refs[i]]; |
1499 | MachineBasicBlock *MBB = ED.UseMI->getParent(); |
1500 | RefMIs.insert(V: ED.UseMI); |
1501 | DomB = MDT->findNearestCommonDominator(A: DomB, B: MBB); |
1502 | Blocks.insert(V: MBB); |
1503 | } |
1504 | |
1505 | #ifndef NDEBUG |
1506 | // The block DomB should be dominated by the def of each register used |
1507 | // in the initializer. |
1508 | Register Rs = ExtI.second.Rs; // Only one reg allowed now. |
1509 | const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr; |
1510 | |
1511 | // This should be guaranteed given that the entire expression is used |
1512 | // at each instruction in Refs. Add an assertion just in case. |
1513 | assert(!DefI || MDT->dominates(DefI->getParent(), DomB)); |
1514 | #endif |
1515 | |
1516 | MachineBasicBlock::iterator It; |
1517 | if (Blocks.count(V: DomB)) { |
1518 | // Try to find the latest possible location for the def. |
1519 | MachineBasicBlock::iterator End = DomB->end(); |
1520 | for (It = DomB->begin(); It != End; ++It) |
1521 | if (RefMIs.count(V: &*It)) |
1522 | break; |
1523 | assert(It != End && "Should have found a ref in DomB" ); |
1524 | } else { |
1525 | // DomB does not contain any refs. |
1526 | It = DomB->getFirstTerminator(); |
1527 | } |
1528 | Loc DefLoc(DomB, It); |
1529 | Defs.emplace_back(args&: DefLoc, args: Refs); |
1530 | } |
1531 | |
1532 | HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) { |
1533 | llvm::Register DefR = MRI->createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
1534 | MachineBasicBlock &MBB = *DefL.Block; |
1535 | MachineBasicBlock::iterator At = DefL.At; |
1536 | DebugLoc dl = DefL.Block->findDebugLoc(MBBI: DefL.At); |
1537 | const ExtValue &EV = ExtI.first; |
1538 | MachineOperand ExtOp(EV); |
1539 | |
1540 | const ExtExpr &Ex = ExtI.second; |
1541 | const MachineInstr *InitI = nullptr; |
1542 | |
1543 | if (Ex.Rs.isSlot()) { |
1544 | assert(Ex.S == 0 && "Cannot have a shift of a stack slot" ); |
1545 | assert(!Ex.Neg && "Cannot subtract a stack slot" ); |
1546 | // DefR = PS_fi Rb,##EV |
1547 | InitI = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: Hexagon::PS_fi), DestReg: DefR) |
1548 | .add(MO: MachineOperand(Ex.Rs)) |
1549 | .add(MO: ExtOp); |
1550 | } else { |
1551 | assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register" ); |
1552 | if (Ex.trivial()) { |
1553 | // DefR = ##EV |
1554 | InitI = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: Hexagon::A2_tfrsi), DestReg: DefR) |
1555 | .add(MO: ExtOp); |
1556 | } else if (Ex.S == 0) { |
1557 | if (Ex.Neg) { |
1558 | // DefR = sub(##EV,Rb) |
1559 | InitI = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: Hexagon::A2_subri), DestReg: DefR) |
1560 | .add(MO: ExtOp) |
1561 | .add(MO: MachineOperand(Ex.Rs)); |
1562 | } else { |
1563 | // DefR = add(Rb,##EV) |
1564 | InitI = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: Hexagon::A2_addi), DestReg: DefR) |
1565 | .add(MO: MachineOperand(Ex.Rs)) |
1566 | .add(MO: ExtOp); |
1567 | } |
1568 | } else { |
1569 | if (HST->useCompound()) { |
1570 | unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri |
1571 | : Hexagon::S4_addi_asl_ri; |
1572 | // DefR = add(##EV,asl(Rb,S)) |
1573 | InitI = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: NewOpc), DestReg: DefR) |
1574 | .add(MO: ExtOp) |
1575 | .add(MO: MachineOperand(Ex.Rs)) |
1576 | .addImm(Val: Ex.S); |
1577 | } else { |
1578 | // No compounds are available. It is not clear whether we should |
1579 | // even process such extenders where the initializer cannot be |
1580 | // a single instruction, but do it for now. |
1581 | llvm::Register TmpR = MRI->createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass); |
1582 | BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: Hexagon::S2_asl_i_r), DestReg: TmpR) |
1583 | .add(MO: MachineOperand(Ex.Rs)) |
1584 | .addImm(Val: Ex.S); |
1585 | if (Ex.Neg) |
1586 | InitI = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: Hexagon::A2_subri), DestReg: DefR) |
1587 | .add(MO: ExtOp) |
1588 | .add(MO: MachineOperand(Register(TmpR, 0))); |
1589 | else |
1590 | InitI = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: Hexagon::A2_addi), DestReg: DefR) |
1591 | .add(MO: MachineOperand(Register(TmpR, 0))) |
1592 | .add(MO: ExtOp); |
1593 | } |
1594 | } |
1595 | } |
1596 | |
1597 | assert(InitI); |
1598 | (void)InitI; |
1599 | LLVM_DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber() |
1600 | << " for initializer: " << PrintInit(ExtI, *HRI) << "\n " |
1601 | << *InitI); |
1602 | return { DefR, 0 }; |
1603 | } |
1604 | |
1605 | // Replace the extender at index Idx with the register ExtR. |
1606 | bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) { |
1607 | MachineInstr &MI = *ED.UseMI; |
1608 | MachineBasicBlock &MBB = *MI.getParent(); |
1609 | MachineBasicBlock::iterator At = MI.getIterator(); |
1610 | DebugLoc dl = MI.getDebugLoc(); |
1611 | unsigned ExtOpc = MI.getOpcode(); |
1612 | |
1613 | // With a few exceptions, direct replacement amounts to creating an |
1614 | // instruction with a corresponding register opcode, with all operands |
1615 | // the same, except for the register used in place of the extender. |
1616 | unsigned RegOpc = getDirectRegReplacement(ExtOpc); |
1617 | |
1618 | if (RegOpc == TargetOpcode::REG_SEQUENCE) { |
1619 | if (ExtOpc == Hexagon::A4_combineri) |
1620 | BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: RegOpc)) |
1621 | .add(MO: MI.getOperand(i: 0)) |
1622 | .add(MO: MI.getOperand(i: 1)) |
1623 | .addImm(Val: Hexagon::isub_hi) |
1624 | .add(MO: MachineOperand(ExtR)) |
1625 | .addImm(Val: Hexagon::isub_lo); |
1626 | else if (ExtOpc == Hexagon::A4_combineir) |
1627 | BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: RegOpc)) |
1628 | .add(MO: MI.getOperand(i: 0)) |
1629 | .add(MO: MachineOperand(ExtR)) |
1630 | .addImm(Val: Hexagon::isub_hi) |
1631 | .add(MO: MI.getOperand(i: 2)) |
1632 | .addImm(Val: Hexagon::isub_lo); |
1633 | else |
1634 | llvm_unreachable("Unexpected opcode became REG_SEQUENCE" ); |
1635 | MBB.erase(I: MI); |
1636 | return true; |
1637 | } |
1638 | if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) { |
1639 | unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt |
1640 | : Hexagon::C2_cmpltu; |
1641 | BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: NewOpc)) |
1642 | .add(MO: MI.getOperand(i: 0)) |
1643 | .add(MO: MachineOperand(ExtR)) |
1644 | .add(MO: MI.getOperand(i: 1)); |
1645 | MBB.erase(I: MI); |
1646 | return true; |
1647 | } |
1648 | |
1649 | if (RegOpc != 0) { |
1650 | MachineInstrBuilder MIB = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: RegOpc)); |
1651 | unsigned RegN = ED.OpNum; |
1652 | // Copy all operands except the one that has the extender. |
1653 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
1654 | if (i != RegN) |
1655 | MIB.add(MO: MI.getOperand(i)); |
1656 | else |
1657 | MIB.add(MO: MachineOperand(ExtR)); |
1658 | } |
1659 | MIB.cloneMemRefs(OtherMI: MI); |
1660 | MBB.erase(I: MI); |
1661 | return true; |
1662 | } |
1663 | |
1664 | if (MI.mayLoadOrStore() && !isStoreImmediate(Opc: ExtOpc)) { |
1665 | // For memory instructions, there is an asymmetry in the addressing |
1666 | // modes. Addressing modes allowing extenders can be replaced with |
1667 | // addressing modes that use registers, but the order of operands |
1668 | // (or even their number) may be different. |
1669 | // Replacements: |
1670 | // BaseImmOffset (io) -> BaseRegOffset (rr) |
1671 | // BaseLongOffset (ur) -> BaseRegOffset (rr) |
1672 | unsigned RegOpc, Shift; |
1673 | unsigned AM = HII->getAddrMode(MI); |
1674 | if (AM == HexagonII::BaseImmOffset) { |
1675 | RegOpc = HII->changeAddrMode_io_rr(Opc: ExtOpc); |
1676 | Shift = 0; |
1677 | } else if (AM == HexagonII::BaseLongOffset) { |
1678 | // Loads: Rd = L4_loadri_ur Rs, S, ## |
1679 | // Stores: S4_storeri_ur Rs, S, ##, Rt |
1680 | RegOpc = HII->changeAddrMode_ur_rr(Opc: ExtOpc); |
1681 | Shift = MI.getOperand(i: MI.mayLoad() ? 2 : 1).getImm(); |
1682 | } else { |
1683 | llvm_unreachable("Unexpected addressing mode" ); |
1684 | } |
1685 | #ifndef NDEBUG |
1686 | if (RegOpc == -1u) { |
1687 | dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n" ; |
1688 | llvm_unreachable("No corresponding rr instruction" ); |
1689 | } |
1690 | #endif |
1691 | |
1692 | unsigned BaseP, OffP; |
1693 | HII->getBaseAndOffsetPosition(MI, BasePos&: BaseP, OffsetPos&: OffP); |
1694 | |
1695 | // Build an rr instruction: (RegOff + RegBase<<0) |
1696 | MachineInstrBuilder MIB = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: RegOpc)); |
1697 | // First, add the def for loads. |
1698 | if (MI.mayLoad()) |
1699 | MIB.add(MO: getLoadResultOp(MI)); |
1700 | // Handle possible predication. |
1701 | if (HII->isPredicated(MI)) |
1702 | MIB.add(MO: getPredicateOp(MI)); |
1703 | // Build the address. |
1704 | MIB.add(MO: MachineOperand(ExtR)); // RegOff |
1705 | MIB.add(MO: MI.getOperand(i: BaseP)); // RegBase |
1706 | MIB.addImm(Val: Shift); // << Shift |
1707 | // Add the stored value for stores. |
1708 | if (MI.mayStore()) |
1709 | MIB.add(MO: getStoredValueOp(MI)); |
1710 | MIB.cloneMemRefs(OtherMI: MI); |
1711 | MBB.erase(I: MI); |
1712 | return true; |
1713 | } |
1714 | |
1715 | #ifndef NDEBUG |
1716 | dbgs() << '\n' << MI; |
1717 | #endif |
1718 | llvm_unreachable("Unhandled exact replacement" ); |
1719 | return false; |
1720 | } |
1721 | |
1722 | // Replace the extender ED with a form corresponding to the initializer ExtI. |
1723 | bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, |
1724 | Register ExtR, int32_t &Diff) { |
1725 | MachineInstr &MI = *ED.UseMI; |
1726 | MachineBasicBlock &MBB = *MI.getParent(); |
1727 | MachineBasicBlock::iterator At = MI.getIterator(); |
1728 | DebugLoc dl = MI.getDebugLoc(); |
1729 | unsigned ExtOpc = MI.getOpcode(); |
1730 | |
1731 | if (ExtOpc == Hexagon::A2_tfrsi) { |
1732 | // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces |
1733 | // another range. One range is the one that's common to all tfrsi's uses, |
1734 | // this one is the range of immediates in A2_addi. When calculating ranges, |
1735 | // the addi's 16-bit argument was included, so now we need to make it such |
1736 | // that the produced value is in the range for the uses alone. |
1737 | // Most of the time, simply adding Diff will make the addi produce exact |
1738 | // result, but if Diff is outside of the 16-bit range, some adjustment |
1739 | // will be needed. |
1740 | unsigned IdxOpc = getRegOffOpcode(ExtOpc); |
1741 | assert(IdxOpc == Hexagon::A2_addi); |
1742 | |
1743 | // Clamp Diff to the 16 bit range. |
1744 | int32_t D = isInt<16>(x: Diff) ? Diff : (Diff > 0 ? 32767 : -32768); |
1745 | if (Diff > 32767) { |
1746 | // Split Diff into two values: one that is close to min/max int16, |
1747 | // and the other being the rest, and such that both have the same |
1748 | // "alignment" as Diff. |
1749 | uint32_t UD = Diff; |
1750 | OffsetRange R = getOffsetRange(Rd: MI.getOperand(i: 0)); |
1751 | uint32_t A = std::min<uint32_t>(a: R.Align, b: 1u << llvm::countr_zero(Val: UD)); |
1752 | D &= ~(A-1); |
1753 | } |
1754 | BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: IdxOpc)) |
1755 | .add(MO: MI.getOperand(i: 0)) |
1756 | .add(MO: MachineOperand(ExtR)) |
1757 | .addImm(Val: D); |
1758 | Diff -= D; |
1759 | #ifndef NDEBUG |
1760 | // Make sure the output is within allowable range for uses. |
1761 | // "Diff" is a difference in the "opposite direction", i.e. Ext - DefV, |
1762 | // not DefV - Ext, as the getOffsetRange would calculate. |
1763 | OffsetRange Uses = getOffsetRange(MI.getOperand(0)); |
1764 | if (!Uses.contains(-Diff)) |
1765 | dbgs() << "Diff: " << -Diff << " out of range " << Uses |
1766 | << " for " << MI; |
1767 | assert(Uses.contains(-Diff)); |
1768 | #endif |
1769 | MBB.erase(I: MI); |
1770 | return true; |
1771 | } |
1772 | |
1773 | const ExtValue &EV = ExtI.first; (void)EV; |
1774 | const ExtExpr &Ex = ExtI.second; (void)Ex; |
1775 | |
1776 | if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) { |
1777 | // If addi/subri are replaced with the exactly matching initializer, |
1778 | // they amount to COPY. |
1779 | // Check that the initializer is an exact match (for simplicity). |
1780 | #ifndef NDEBUG |
1781 | bool IsAddi = ExtOpc == Hexagon::A2_addi; |
1782 | const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2); |
1783 | const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1); |
1784 | assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi && |
1785 | "Initializer mismatch" ); |
1786 | #endif |
1787 | BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: TargetOpcode::COPY)) |
1788 | .add(MO: MI.getOperand(i: 0)) |
1789 | .add(MO: MachineOperand(ExtR)); |
1790 | Diff = 0; |
1791 | MBB.erase(I: MI); |
1792 | return true; |
1793 | } |
1794 | if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii || |
1795 | ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) { |
1796 | // M2_accii: add(Rt,add(Rs,V)) (tied) |
1797 | // M2_naccii: sub(Rt,add(Rs,V)) |
1798 | // S4_addaddi: add(Rt,add(Rs,V)) |
1799 | // S4_subaddi: add(Rt,sub(V,Rs)) |
1800 | // Check that Rs and V match the initializer expression. The Rs+V is the |
1801 | // combination that is considered "subexpression" for V, although Rx+V |
1802 | // would also be valid. |
1803 | #ifndef NDEBUG |
1804 | bool IsSub = ExtOpc == Hexagon::S4_subaddi; |
1805 | Register Rs = MI.getOperand(IsSub ? 3 : 2); |
1806 | ExtValue V = MI.getOperand(IsSub ? 2 : 3); |
1807 | assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch" ); |
1808 | #endif |
1809 | unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub |
1810 | : Hexagon::A2_add; |
1811 | BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: NewOpc)) |
1812 | .add(MO: MI.getOperand(i: 0)) |
1813 | .add(MO: MI.getOperand(i: 1)) |
1814 | .add(MO: MachineOperand(ExtR)); |
1815 | MBB.erase(I: MI); |
1816 | return true; |
1817 | } |
1818 | |
1819 | if (MI.mayLoadOrStore()) { |
1820 | unsigned IdxOpc = getRegOffOpcode(ExtOpc); |
1821 | assert(IdxOpc && "Expecting indexed opcode" ); |
1822 | MachineInstrBuilder MIB = BuildMI(BB&: MBB, I: At, MIMD: dl, MCID: HII->get(Opcode: IdxOpc)); |
1823 | // Construct the new indexed instruction. |
1824 | // First, add the def for loads. |
1825 | if (MI.mayLoad()) |
1826 | MIB.add(MO: getLoadResultOp(MI)); |
1827 | // Handle possible predication. |
1828 | if (HII->isPredicated(MI)) |
1829 | MIB.add(MO: getPredicateOp(MI)); |
1830 | // Build the address. |
1831 | MIB.add(MO: MachineOperand(ExtR)); |
1832 | MIB.addImm(Val: Diff); |
1833 | // Add the stored value for stores. |
1834 | if (MI.mayStore()) |
1835 | MIB.add(MO: getStoredValueOp(MI)); |
1836 | MIB.cloneMemRefs(OtherMI: MI); |
1837 | MBB.erase(I: MI); |
1838 | return true; |
1839 | } |
1840 | |
1841 | #ifndef NDEBUG |
1842 | dbgs() << '\n' << PrintInit(ExtI, *HRI) << " " << MI; |
1843 | #endif |
1844 | llvm_unreachable("Unhandled expr replacement" ); |
1845 | return false; |
1846 | } |
1847 | |
1848 | bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) { |
1849 | if (ReplaceLimit.getNumOccurrences()) { |
1850 | if (ReplaceLimit <= ReplaceCounter) |
1851 | return false; |
1852 | ++ReplaceCounter; |
1853 | } |
1854 | const ExtDesc &ED = Extenders[Idx]; |
1855 | assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def" ); |
1856 | const ExtValue &DefV = ExtI.first; |
1857 | assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch" ); |
1858 | const ExtExpr &DefEx = ExtI.second; |
1859 | |
1860 | ExtValue EV(ED); |
1861 | int32_t Diff = EV.Offset - DefV.Offset; |
1862 | const MachineInstr &MI = *ED.UseMI; |
1863 | LLVM_DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:" |
1864 | << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n'); |
1865 | |
1866 | // These two addressing modes must be converted into indexed forms |
1867 | // regardless of what the initializer looks like. |
1868 | bool IsAbs = false, IsAbsSet = false; |
1869 | if (MI.mayLoadOrStore()) { |
1870 | unsigned AM = HII->getAddrMode(MI); |
1871 | IsAbs = AM == HexagonII::Absolute; |
1872 | IsAbsSet = AM == HexagonII::AbsoluteSet; |
1873 | } |
1874 | |
1875 | // If it's a def, remember all operands that need to be updated. |
1876 | // If ED is a def, and Diff is not 0, then all uses of the register Rd |
1877 | // defined by ED must be in the form (Rd, imm), i.e. the immediate offset |
1878 | // must follow the Rd in the operand list. |
1879 | std::vector<std::pair<MachineInstr*,unsigned>> RegOps; |
1880 | if (ED.IsDef && Diff != 0) { |
1881 | for (MachineOperand &Op : MRI->use_operands(Reg: ED.Rd.Reg)) { |
1882 | MachineInstr &UI = *Op.getParent(); |
1883 | RegOps.push_back(x: {&UI, getOperandIndex(MI: UI, Op)}); |
1884 | } |
1885 | } |
1886 | |
1887 | // Replace the instruction. |
1888 | bool Replaced = false; |
1889 | if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet) |
1890 | Replaced = replaceInstrExact(ED, ExtR); |
1891 | else |
1892 | Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff); |
1893 | |
1894 | if (Diff != 0 && Replaced && ED.IsDef) { |
1895 | // Update offsets of the def's uses. |
1896 | for (std::pair<MachineInstr*,unsigned> P : RegOps) { |
1897 | unsigned J = P.second; |
1898 | assert(P.first->getNumOperands() > J+1 && |
1899 | P.first->getOperand(J+1).isImm()); |
1900 | MachineOperand &ImmOp = P.first->getOperand(i: J+1); |
1901 | ImmOp.setImm(ImmOp.getImm() + Diff); |
1902 | } |
1903 | // If it was an absolute-set instruction, the "set" part has been removed. |
1904 | // ExtR will now be the register with the extended value, and since all |
1905 | // users of Rd have been updated, all that needs to be done is to replace |
1906 | // Rd with ExtR. |
1907 | if (IsAbsSet) { |
1908 | assert(ED.Rd.Sub == 0 && ExtR.Sub == 0); |
1909 | MRI->replaceRegWith(FromReg: ED.Rd.Reg, ToReg: ExtR.Reg); |
1910 | } |
1911 | } |
1912 | |
1913 | return Replaced; |
1914 | } |
1915 | |
1916 | bool HCE::replaceExtenders(const AssignmentMap &IMap) { |
1917 | LocDefList Defs; |
1918 | bool Changed = false; |
1919 | |
1920 | for (const std::pair<const ExtenderInit, IndexList> &P : IMap) { |
1921 | const IndexList &Idxs = P.second; |
1922 | if (Idxs.size() < CountThreshold) |
1923 | continue; |
1924 | |
1925 | Defs.clear(); |
1926 | calculatePlacement(ExtI: P.first, Refs: Idxs, Defs); |
1927 | for (const std::pair<Loc,IndexList> &Q : Defs) { |
1928 | Register DefR = insertInitializer(DefL: Q.first, ExtI: P.first); |
1929 | NewRegs.push_back(x: DefR.Reg); |
1930 | for (unsigned I : Q.second) |
1931 | Changed |= replaceInstr(Idx: I, ExtR: DefR, ExtI: P.first); |
1932 | } |
1933 | } |
1934 | return Changed; |
1935 | } |
1936 | |
1937 | unsigned HCE::getOperandIndex(const MachineInstr &MI, |
1938 | const MachineOperand &Op) const { |
1939 | for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i) |
1940 | if (&MI.getOperand(i) == &Op) |
1941 | return i; |
1942 | llvm_unreachable("Not an operand of MI" ); |
1943 | } |
1944 | |
1945 | const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const { |
1946 | assert(HII->isPredicated(MI)); |
1947 | for (const MachineOperand &Op : MI.operands()) { |
1948 | if (!Op.isReg() || !Op.isUse() || |
1949 | MRI->getRegClass(Reg: Op.getReg()) != &Hexagon::PredRegsRegClass) |
1950 | continue; |
1951 | assert(Op.getSubReg() == 0 && "Predicate register with a subregister" ); |
1952 | return Op; |
1953 | } |
1954 | llvm_unreachable("Predicate operand not found" ); |
1955 | } |
1956 | |
1957 | const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const { |
1958 | assert(MI.mayLoad()); |
1959 | return MI.getOperand(i: 0); |
1960 | } |
1961 | |
1962 | const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const { |
1963 | assert(MI.mayStore()); |
1964 | return MI.getOperand(i: MI.getNumExplicitOperands()-1); |
1965 | } |
1966 | |
1967 | bool HCE::runOnMachineFunction(MachineFunction &MF) { |
1968 | if (skipFunction(F: MF.getFunction())) |
1969 | return false; |
1970 | if (MF.getFunction().hasPersonalityFn()) { |
1971 | LLVM_DEBUG(dbgs() << getPassName() << ": skipping " << MF.getName() |
1972 | << " due to exception handling\n" ); |
1973 | return false; |
1974 | } |
1975 | LLVM_DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr)); |
1976 | |
1977 | HST = &MF.getSubtarget<HexagonSubtarget>(); |
1978 | HII = HST->getInstrInfo(); |
1979 | HRI = HST->getRegisterInfo(); |
1980 | MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
1981 | MRI = &MF.getRegInfo(); |
1982 | AssignmentMap IMap; |
1983 | |
1984 | collect(MF); |
1985 | llvm::sort(C&: Extenders, Comp: [this](const ExtDesc &A, const ExtDesc &B) { |
1986 | ExtValue VA(A), VB(B); |
1987 | if (VA != VB) |
1988 | return VA < VB; |
1989 | const MachineInstr *MA = A.UseMI; |
1990 | const MachineInstr *MB = B.UseMI; |
1991 | if (MA == MB) { |
1992 | // If it's the same instruction, compare operand numbers. |
1993 | return A.OpNum < B.OpNum; |
1994 | } |
1995 | |
1996 | const MachineBasicBlock *BA = MA->getParent(); |
1997 | const MachineBasicBlock *BB = MB->getParent(); |
1998 | assert(BA->getNumber() != -1 && BB->getNumber() != -1); |
1999 | if (BA != BB) |
2000 | return BA->getNumber() < BB->getNumber(); |
2001 | return MDT->dominates(A: MA, B: MB); |
2002 | }); |
2003 | |
2004 | bool Changed = false; |
2005 | LLVM_DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n" ); |
2006 | for (unsigned I = 0, E = Extenders.size(); I != E; ) { |
2007 | unsigned B = I; |
2008 | const ExtRoot &T = Extenders[B].getOp(); |
2009 | while (I != E && ExtRoot(Extenders[I].getOp()) == T) |
2010 | ++I; |
2011 | |
2012 | IMap.clear(); |
2013 | assignInits(ER: T, Begin: B, End: I, IMap); |
2014 | Changed |= replaceExtenders(IMap); |
2015 | } |
2016 | |
2017 | LLVM_DEBUG({ |
2018 | if (Changed) |
2019 | MF.print(dbgs() << "After " << getPassName() << '\n', nullptr); |
2020 | else |
2021 | dbgs() << "No changes\n" ; |
2022 | }); |
2023 | return Changed; |
2024 | } |
2025 | |
2026 | FunctionPass *llvm::createHexagonConstExtenders() { |
2027 | return new HexagonConstExtenders(); |
2028 | } |
2029 | |