1 | //===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This implements a simple VLIW packetizer using DFA. The packetizer works on |
10 | // machine basic blocks. For each instruction I in BB, the packetizer consults |
11 | // the DFA to see if machine resources are available to execute I. If so, the |
12 | // packetizer checks if I depends on any instruction J in the current packet. |
13 | // If no dependency is found, I is added to current packet and machine resource |
14 | // is marked as taken. If any dependency is found, a target API call is made to |
15 | // prune the dependence. |
16 | // |
17 | //===----------------------------------------------------------------------===// |
18 | |
19 | #include "HexagonVLIWPacketizer.h" |
20 | #include "Hexagon.h" |
21 | #include "HexagonInstrInfo.h" |
22 | #include "HexagonRegisterInfo.h" |
23 | #include "HexagonSubtarget.h" |
24 | #include "llvm/ADT/BitVector.h" |
25 | #include "llvm/ADT/DenseSet.h" |
26 | #include "llvm/ADT/STLExtras.h" |
27 | #include "llvm/ADT/StringExtras.h" |
28 | #include "llvm/Analysis/AliasAnalysis.h" |
29 | #include "llvm/CodeGen/MachineBasicBlock.h" |
30 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
31 | #include "llvm/CodeGen/MachineDominators.h" |
32 | #include "llvm/CodeGen/MachineFrameInfo.h" |
33 | #include "llvm/CodeGen/MachineFunction.h" |
34 | #include "llvm/CodeGen/MachineFunctionPass.h" |
35 | #include "llvm/CodeGen/MachineInstr.h" |
36 | #include "llvm/CodeGen/MachineInstrBundle.h" |
37 | #include "llvm/CodeGen/MachineLoopInfo.h" |
38 | #include "llvm/CodeGen/MachineOperand.h" |
39 | #include "llvm/CodeGen/ScheduleDAG.h" |
40 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
41 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
42 | #include "llvm/IR/DebugLoc.h" |
43 | #include "llvm/InitializePasses.h" |
44 | #include "llvm/MC/MCInstrDesc.h" |
45 | #include "llvm/Pass.h" |
46 | #include "llvm/Support/CommandLine.h" |
47 | #include "llvm/Support/Debug.h" |
48 | #include "llvm/Support/ErrorHandling.h" |
49 | #include "llvm/Support/raw_ostream.h" |
50 | #include <cassert> |
51 | #include <cstdint> |
52 | #include <iterator> |
53 | |
54 | using namespace llvm; |
55 | |
56 | #define DEBUG_TYPE "packets" |
57 | |
58 | static cl::opt<bool> |
59 | DisablePacketizer("disable-packetizer" , cl::Hidden, |
60 | cl::desc("Disable Hexagon packetizer pass" )); |
61 | |
62 | static cl::opt<bool> Slot1Store("slot1-store-slot0-load" , cl::Hidden, |
63 | cl::init(Val: true), |
64 | cl::desc("Allow slot1 store and slot0 load" )); |
65 | |
66 | static cl::opt<bool> PacketizeVolatiles( |
67 | "hexagon-packetize-volatiles" , cl::Hidden, cl::init(Val: true), |
68 | cl::desc("Allow non-solo packetization of volatile memory references" )); |
69 | |
70 | static cl::opt<bool> |
71 | EnableGenAllInsnClass("enable-gen-insn" , cl::Hidden, |
72 | cl::desc("Generate all instruction with TC" )); |
73 | |
74 | static cl::opt<bool> |
75 | DisableVecDblNVStores("disable-vecdbl-nv-stores" , cl::Hidden, |
76 | cl::desc("Disable vector double new-value-stores" )); |
77 | |
78 | extern cl::opt<bool> ScheduleInlineAsm; |
79 | |
80 | namespace llvm { |
81 | |
82 | FunctionPass *createHexagonPacketizer(bool Minimal); |
83 | void initializeHexagonPacketizerPass(PassRegistry&); |
84 | |
85 | } // end namespace llvm |
86 | |
87 | namespace { |
88 | |
89 | class HexagonPacketizer : public MachineFunctionPass { |
90 | public: |
91 | static char ID; |
92 | |
93 | HexagonPacketizer(bool Min = false) |
94 | : MachineFunctionPass(ID), Minimal(Min) {} |
95 | |
96 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
97 | AU.setPreservesCFG(); |
98 | AU.addRequired<AAResultsWrapperPass>(); |
99 | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); |
100 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
101 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
102 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
103 | AU.addPreserved<MachineLoopInfoWrapperPass>(); |
104 | MachineFunctionPass::getAnalysisUsage(AU); |
105 | } |
106 | |
107 | StringRef getPassName() const override { return "Hexagon Packetizer" ; } |
108 | bool runOnMachineFunction(MachineFunction &Fn) override; |
109 | |
110 | MachineFunctionProperties getRequiredProperties() const override { |
111 | return MachineFunctionProperties().set( |
112 | MachineFunctionProperties::Property::NoVRegs); |
113 | } |
114 | |
115 | private: |
116 | const HexagonInstrInfo *HII = nullptr; |
117 | const HexagonRegisterInfo *HRI = nullptr; |
118 | const bool Minimal = false; |
119 | }; |
120 | |
121 | } // end anonymous namespace |
122 | |
123 | char HexagonPacketizer::ID = 0; |
124 | |
125 | INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer" , |
126 | "Hexagon Packetizer" , false, false) |
127 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
128 | INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) |
129 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) |
130 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
131 | INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer" , |
132 | "Hexagon Packetizer" , false, false) |
133 | |
134 | HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF, |
135 | MachineLoopInfo &MLI, AAResults *AA, |
136 | const MachineBranchProbabilityInfo *MBPI, bool Minimal) |
137 | : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI), |
138 | Minimal(Minimal) { |
139 | HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); |
140 | HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
141 | |
142 | addMutation(Mutation: std::make_unique<HexagonSubtarget::UsrOverflowMutation>()); |
143 | addMutation(Mutation: std::make_unique<HexagonSubtarget::HVXMemLatencyMutation>()); |
144 | addMutation(Mutation: std::make_unique<HexagonSubtarget::BankConflictMutation>()); |
145 | } |
146 | |
147 | // Check if FirstI modifies a register that SecondI reads. |
148 | static bool hasWriteToReadDep(const MachineInstr &FirstI, |
149 | const MachineInstr &SecondI, |
150 | const TargetRegisterInfo *TRI) { |
151 | for (auto &MO : FirstI.operands()) { |
152 | if (!MO.isReg() || !MO.isDef()) |
153 | continue; |
154 | Register R = MO.getReg(); |
155 | if (SecondI.readsRegister(Reg: R, TRI)) |
156 | return true; |
157 | } |
158 | return false; |
159 | } |
160 | |
161 | |
162 | static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI, |
163 | MachineBasicBlock::iterator BundleIt, bool Before) { |
164 | MachineBasicBlock::instr_iterator InsertPt; |
165 | if (Before) |
166 | InsertPt = BundleIt.getInstrIterator(); |
167 | else |
168 | InsertPt = std::next(x: BundleIt).getInstrIterator(); |
169 | |
170 | MachineBasicBlock &B = *MI.getParent(); |
171 | // The instruction should at least be bundled with the preceding instruction |
172 | // (there will always be one, i.e. BUNDLE, if nothing else). |
173 | assert(MI.isBundledWithPred()); |
174 | if (MI.isBundledWithSucc()) { |
175 | MI.clearFlag(Flag: MachineInstr::BundledSucc); |
176 | MI.clearFlag(Flag: MachineInstr::BundledPred); |
177 | } else { |
178 | // If it's not bundled with the successor (i.e. it is the last one |
179 | // in the bundle), then we can simply unbundle it from the predecessor, |
180 | // which will take care of updating the predecessor's flag. |
181 | MI.unbundleFromPred(); |
182 | } |
183 | B.splice(Where: InsertPt, Other: &B, From: MI.getIterator()); |
184 | |
185 | // Get the size of the bundle without asserting. |
186 | MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator(); |
187 | MachineBasicBlock::const_instr_iterator E = B.instr_end(); |
188 | unsigned Size = 0; |
189 | for (++I; I != E && I->isBundledWithPred(); ++I) |
190 | ++Size; |
191 | |
192 | // If there are still two or more instructions, then there is nothing |
193 | // else to be done. |
194 | if (Size > 1) |
195 | return BundleIt; |
196 | |
197 | // Otherwise, extract the single instruction out and delete the bundle. |
198 | MachineBasicBlock::iterator NextIt = std::next(x: BundleIt); |
199 | MachineInstr &SingleI = *BundleIt->getNextNode(); |
200 | SingleI.unbundleFromPred(); |
201 | assert(!SingleI.isBundledWithSucc()); |
202 | BundleIt->eraseFromParent(); |
203 | return NextIt; |
204 | } |
205 | |
206 | bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) { |
207 | // FIXME: This pass causes verification failures. |
208 | MF.getProperties().set( |
209 | MachineFunctionProperties::Property::FailsVerification); |
210 | |
211 | auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
212 | HII = HST.getInstrInfo(); |
213 | HRI = HST.getRegisterInfo(); |
214 | auto &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
215 | auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
216 | auto *MBPI = |
217 | &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); |
218 | |
219 | if (EnableGenAllInsnClass) |
220 | HII->genAllInsnTimingClasses(MF); |
221 | |
222 | // Instantiate the packetizer. |
223 | bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() || |
224 | skipFunction(F: MF.getFunction()); |
225 | HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly); |
226 | |
227 | // DFA state table should not be empty. |
228 | assert(Packetizer.getResourceTracker() && "Empty DFA table!" ); |
229 | |
230 | // Loop over all basic blocks and remove KILL pseudo-instructions |
231 | // These instructions confuse the dependence analysis. Consider: |
232 | // D0 = ... (Insn 0) |
233 | // R0 = KILL R0, D0 (Insn 1) |
234 | // R0 = ... (Insn 2) |
235 | // Here, Insn 1 will result in the dependence graph not emitting an output |
236 | // dependence between Insn 0 and Insn 2. This can lead to incorrect |
237 | // packetization |
238 | for (MachineBasicBlock &MB : MF) { |
239 | for (MachineInstr &MI : llvm::make_early_inc_range(Range&: MB)) |
240 | if (MI.isKill()) |
241 | MB.erase(I: &MI); |
242 | } |
243 | |
244 | // TinyCore with Duplexes: Translate to big-instructions. |
245 | if (HST.isTinyCoreWithDuplex()) |
246 | HII->translateInstrsForDup(MF, ToBigInstrs: true); |
247 | |
248 | // Loop over all of the basic blocks. |
249 | for (auto &MB : MF) { |
250 | auto Begin = MB.begin(), End = MB.end(); |
251 | while (Begin != End) { |
252 | // Find the first non-boundary starting from the end of the last |
253 | // scheduling region. |
254 | MachineBasicBlock::iterator RB = Begin; |
255 | while (RB != End && HII->isSchedulingBoundary(MI: *RB, MBB: &MB, MF)) |
256 | ++RB; |
257 | // Find the first boundary starting from the beginning of the new |
258 | // region. |
259 | MachineBasicBlock::iterator RE = RB; |
260 | while (RE != End && !HII->isSchedulingBoundary(MI: *RE, MBB: &MB, MF)) |
261 | ++RE; |
262 | // Add the scheduling boundary if it's not block end. |
263 | if (RE != End) |
264 | ++RE; |
265 | // If RB == End, then RE == End. |
266 | if (RB != End) |
267 | Packetizer.PacketizeMIs(MBB: &MB, BeginItr: RB, EndItr: RE); |
268 | |
269 | Begin = RE; |
270 | } |
271 | } |
272 | |
273 | // TinyCore with Duplexes: Translate to tiny-instructions. |
274 | if (HST.isTinyCoreWithDuplex()) |
275 | HII->translateInstrsForDup(MF, ToBigInstrs: false); |
276 | |
277 | Packetizer.unpacketizeSoloInstrs(MF); |
278 | return true; |
279 | } |
280 | |
281 | // Reserve resources for a constant extender. Trigger an assertion if the |
282 | // reservation fails. |
283 | void HexagonPacketizerList::reserveResourcesForConstExt() { |
284 | if (!tryAllocateResourcesForConstExt(Reserve: true)) |
285 | llvm_unreachable("Resources not available" ); |
286 | } |
287 | |
288 | bool HexagonPacketizerList::canReserveResourcesForConstExt() { |
289 | return tryAllocateResourcesForConstExt(Reserve: false); |
290 | } |
291 | |
292 | // Allocate resources (i.e. 4 bytes) for constant extender. If succeeded, |
293 | // return true, otherwise, return false. |
294 | bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) { |
295 | auto *ExtMI = MF.CreateMachineInstr(MCID: HII->get(Opcode: Hexagon::A4_ext), DL: DebugLoc()); |
296 | bool Avail = ResourceTracker->canReserveResources(MI&: *ExtMI); |
297 | if (Reserve && Avail) |
298 | ResourceTracker->reserveResources(MI&: *ExtMI); |
299 | MF.deleteMachineInstr(MI: ExtMI); |
300 | return Avail; |
301 | } |
302 | |
303 | bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI, |
304 | SDep::Kind DepType, unsigned DepReg) { |
305 | // Check for LR dependence. |
306 | if (DepReg == HRI->getRARegister()) |
307 | return true; |
308 | |
309 | if (HII->isDeallocRet(MI)) |
310 | if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister()) |
311 | return true; |
312 | |
313 | // Call-like instructions can be packetized with preceding instructions |
314 | // that define registers implicitly used or modified by the call. Explicit |
315 | // uses are still prohibited, as in the case of indirect calls: |
316 | // r0 = ... |
317 | // J2_jumpr r0 |
318 | if (DepType == SDep::Data) { |
319 | for (const MachineOperand &MO : MI.operands()) |
320 | if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit()) |
321 | return true; |
322 | } |
323 | |
324 | return false; |
325 | } |
326 | |
327 | static bool isRegDependence(const SDep::Kind DepType) { |
328 | return DepType == SDep::Data || DepType == SDep::Anti || |
329 | DepType == SDep::Output; |
330 | } |
331 | |
332 | static bool isDirectJump(const MachineInstr &MI) { |
333 | return MI.getOpcode() == Hexagon::J2_jump; |
334 | } |
335 | |
336 | static bool isSchedBarrier(const MachineInstr &MI) { |
337 | switch (MI.getOpcode()) { |
338 | case Hexagon::Y2_barrier: |
339 | return true; |
340 | } |
341 | return false; |
342 | } |
343 | |
344 | static bool isControlFlow(const MachineInstr &MI) { |
345 | return MI.getDesc().isTerminator() || MI.getDesc().isCall(); |
346 | } |
347 | |
348 | /// Returns true if the instruction modifies a callee-saved register. |
349 | static bool doesModifyCalleeSavedReg(const MachineInstr &MI, |
350 | const TargetRegisterInfo *TRI) { |
351 | const MachineFunction &MF = *MI.getParent()->getParent(); |
352 | for (auto *CSR = TRI->getCalleeSavedRegs(MF: &MF); CSR && *CSR; ++CSR) |
353 | if (MI.modifiesRegister(Reg: *CSR, TRI)) |
354 | return true; |
355 | return false; |
356 | } |
357 | |
358 | // Returns true if an instruction can be promoted to .new predicate or |
359 | // new-value store. |
360 | bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI, |
361 | const TargetRegisterClass *NewRC) { |
362 | // Vector stores can be predicated, and can be new-value stores, but |
363 | // they cannot be predicated on a .new predicate value. |
364 | if (NewRC == &Hexagon::PredRegsRegClass) { |
365 | if (HII->isHVXVec(MI) && MI.mayStore()) |
366 | return false; |
367 | return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, MBPI: nullptr) > 0; |
368 | } |
369 | // If the class is not PredRegs, it could only apply to new-value stores. |
370 | return HII->mayBeNewStore(MI); |
371 | } |
372 | |
373 | // Promote an instructiont to its .cur form. |
374 | // At this time, we have already made a call to canPromoteToDotCur and made |
375 | // sure that it can *indeed* be promoted. |
376 | bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI, |
377 | SDep::Kind DepType, MachineBasicBlock::iterator &MII, |
378 | const TargetRegisterClass* RC) { |
379 | assert(DepType == SDep::Data); |
380 | int CurOpcode = HII->getDotCurOp(MI); |
381 | MI.setDesc(HII->get(Opcode: CurOpcode)); |
382 | return true; |
383 | } |
384 | |
385 | void HexagonPacketizerList::cleanUpDotCur() { |
386 | MachineInstr *MI = nullptr; |
387 | for (auto *BI : CurrentPacketMIs) { |
388 | LLVM_DEBUG(dbgs() << "Cleanup packet has " ; BI->dump();); |
389 | if (HII->isDotCurInst(MI: *BI)) { |
390 | MI = BI; |
391 | continue; |
392 | } |
393 | if (MI) { |
394 | for (auto &MO : BI->operands()) |
395 | if (MO.isReg() && MO.getReg() == MI->getOperand(i: 0).getReg()) |
396 | return; |
397 | } |
398 | } |
399 | if (!MI) |
400 | return; |
401 | // We did not find a use of the CUR, so de-cur it. |
402 | MI->setDesc(HII->get(Opcode: HII->getNonDotCurOp(MI: *MI))); |
403 | LLVM_DEBUG(dbgs() << "Demoted CUR " ; MI->dump();); |
404 | } |
405 | |
406 | // Check to see if an instruction can be dot cur. |
407 | bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI, |
408 | const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII, |
409 | const TargetRegisterClass *RC) { |
410 | if (!HII->isHVXVec(MI)) |
411 | return false; |
412 | if (!HII->isHVXVec(MI: *MII)) |
413 | return false; |
414 | |
415 | // Already a dot new instruction. |
416 | if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI)) |
417 | return false; |
418 | |
419 | if (!HII->mayBeCurLoad(MI)) |
420 | return false; |
421 | |
422 | // The "cur value" cannot come from inline asm. |
423 | if (PacketSU->getInstr()->isInlineAsm()) |
424 | return false; |
425 | |
426 | // Make sure candidate instruction uses cur. |
427 | LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n" ; MI.dump(); |
428 | dbgs() << "in packet\n" ;); |
429 | MachineInstr &MJ = *MII; |
430 | LLVM_DEBUG({ |
431 | dbgs() << "Checking CUR against " ; |
432 | MJ.dump(); |
433 | }); |
434 | Register DestReg = MI.getOperand(i: 0).getReg(); |
435 | bool FoundMatch = false; |
436 | for (auto &MO : MJ.operands()) |
437 | if (MO.isReg() && MO.getReg() == DestReg) |
438 | FoundMatch = true; |
439 | if (!FoundMatch) |
440 | return false; |
441 | |
442 | // Check for existing uses of a vector register within the packet which |
443 | // would be affected by converting a vector load into .cur formt. |
444 | for (auto *BI : CurrentPacketMIs) { |
445 | LLVM_DEBUG(dbgs() << "packet has " ; BI->dump();); |
446 | if (BI->readsRegister(Reg: DepReg, TRI: MF.getSubtarget().getRegisterInfo())) |
447 | return false; |
448 | } |
449 | |
450 | LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n" ; MI.dump();); |
451 | // We can convert the opcode into a .cur. |
452 | return true; |
453 | } |
454 | |
455 | // Promote an instruction to its .new form. At this time, we have already |
456 | // made a call to canPromoteToDotNew and made sure that it can *indeed* be |
457 | // promoted. |
458 | bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI, |
459 | SDep::Kind DepType, MachineBasicBlock::iterator &MII, |
460 | const TargetRegisterClass* RC) { |
461 | assert(DepType == SDep::Data); |
462 | int NewOpcode; |
463 | if (RC == &Hexagon::PredRegsRegClass) |
464 | NewOpcode = HII->getDotNewPredOp(MI, MBPI); |
465 | else |
466 | NewOpcode = HII->getDotNewOp(MI); |
467 | MI.setDesc(HII->get(Opcode: NewOpcode)); |
468 | return true; |
469 | } |
470 | |
471 | bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) { |
472 | int NewOpcode = HII->getDotOldOp(MI); |
473 | MI.setDesc(HII->get(Opcode: NewOpcode)); |
474 | return true; |
475 | } |
476 | |
477 | bool HexagonPacketizerList::(MachineInstr &MI) { |
478 | unsigned Opc = MI.getOpcode(); |
479 | switch (Opc) { |
480 | case Hexagon::S2_storerd_io: |
481 | case Hexagon::S2_storeri_io: |
482 | case Hexagon::S2_storerh_io: |
483 | case Hexagon::S2_storerb_io: |
484 | break; |
485 | default: |
486 | llvm_unreachable("Unexpected instruction" ); |
487 | } |
488 | unsigned FrameSize = MF.getFrameInfo().getStackSize(); |
489 | MachineOperand &Off = MI.getOperand(i: 1); |
490 | int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE); |
491 | if (HII->isValidOffset(Opcode: Opc, Offset: NewOff, TRI: HRI)) { |
492 | Off.setImm(NewOff); |
493 | return true; |
494 | } |
495 | return false; |
496 | } |
497 | |
498 | void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) { |
499 | unsigned Opc = MI.getOpcode(); |
500 | switch (Opc) { |
501 | case Hexagon::S2_storerd_io: |
502 | case Hexagon::S2_storeri_io: |
503 | case Hexagon::S2_storerh_io: |
504 | case Hexagon::S2_storerb_io: |
505 | break; |
506 | default: |
507 | llvm_unreachable("Unexpected instruction" ); |
508 | } |
509 | unsigned FrameSize = MF.getFrameInfo().getStackSize(); |
510 | MachineOperand &Off = MI.getOperand(i: 1); |
511 | Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE); |
512 | } |
513 | |
514 | /// Return true if we can update the offset in MI so that MI and MJ |
515 | /// can be packetized together. |
516 | bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) { |
517 | assert(SUI->getInstr() && SUJ->getInstr()); |
518 | MachineInstr &MI = *SUI->getInstr(); |
519 | MachineInstr &MJ = *SUJ->getInstr(); |
520 | |
521 | unsigned BPI, OPI; |
522 | if (!HII->getBaseAndOffsetPosition(MI, BasePos&: BPI, OffsetPos&: OPI)) |
523 | return false; |
524 | unsigned BPJ, OPJ; |
525 | if (!HII->getBaseAndOffsetPosition(MI: MJ, BasePos&: BPJ, OffsetPos&: OPJ)) |
526 | return false; |
527 | Register Reg = MI.getOperand(i: BPI).getReg(); |
528 | if (Reg != MJ.getOperand(i: BPJ).getReg()) |
529 | return false; |
530 | // Make sure that the dependences do not restrict adding MI to the packet. |
531 | // That is, ignore anti dependences, and make sure the only data dependence |
532 | // involves the specific register. |
533 | for (const auto &PI : SUI->Preds) |
534 | if (PI.getKind() != SDep::Anti && |
535 | (PI.getKind() != SDep::Data || PI.getReg() != Reg)) |
536 | return false; |
537 | int Incr; |
538 | if (!HII->getIncrementValue(MI: MJ, Value&: Incr)) |
539 | return false; |
540 | |
541 | int64_t Offset = MI.getOperand(i: OPI).getImm(); |
542 | if (!HII->isValidOffset(Opcode: MI.getOpcode(), Offset: Offset+Incr, TRI: HRI)) |
543 | return false; |
544 | |
545 | MI.getOperand(i: OPI).setImm(Offset + Incr); |
546 | ChangedOffset = Offset; |
547 | return true; |
548 | } |
549 | |
550 | /// Undo the changed offset. This is needed if the instruction cannot be |
551 | /// added to the current packet due to a different instruction. |
552 | void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) { |
553 | unsigned BP, OP; |
554 | if (!HII->getBaseAndOffsetPosition(MI, BasePos&: BP, OffsetPos&: OP)) |
555 | llvm_unreachable("Unable to find base and offset operands." ); |
556 | MI.getOperand(i: OP).setImm(ChangedOffset); |
557 | } |
558 | |
559 | enum PredicateKind { |
560 | PK_False, |
561 | PK_True, |
562 | PK_Unknown |
563 | }; |
564 | |
565 | /// Returns true if an instruction is predicated on p0 and false if it's |
566 | /// predicated on !p0. |
567 | static PredicateKind getPredicateSense(const MachineInstr &MI, |
568 | const HexagonInstrInfo *HII) { |
569 | if (!HII->isPredicated(MI)) |
570 | return PK_Unknown; |
571 | if (HII->isPredicatedTrue(MI)) |
572 | return PK_True; |
573 | return PK_False; |
574 | } |
575 | |
576 | static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI, |
577 | const HexagonInstrInfo *HII) { |
578 | assert(HII->isPostIncrement(MI) && "Not a post increment operation." ); |
579 | #ifndef NDEBUG |
580 | // Post Increment means duplicates. Use dense map to find duplicates in the |
581 | // list. Caution: Densemap initializes with the minimum of 64 buckets, |
582 | // whereas there are at most 5 operands in the post increment. |
583 | DenseSet<unsigned> DefRegsSet; |
584 | for (auto &MO : MI.operands()) |
585 | if (MO.isReg() && MO.isDef()) |
586 | DefRegsSet.insert(MO.getReg()); |
587 | |
588 | for (auto &MO : MI.operands()) |
589 | if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg())) |
590 | return MO; |
591 | #else |
592 | if (MI.mayLoad()) { |
593 | const MachineOperand &Op1 = MI.getOperand(i: 1); |
594 | // The 2nd operand is always the post increment operand in load. |
595 | assert(Op1.isReg() && "Post increment operand has be to a register." ); |
596 | return Op1; |
597 | } |
598 | if (MI.getDesc().mayStore()) { |
599 | const MachineOperand &Op0 = MI.getOperand(i: 0); |
600 | // The 1st operand is always the post increment operand in store. |
601 | assert(Op0.isReg() && "Post increment operand has be to a register." ); |
602 | return Op0; |
603 | } |
604 | #endif |
605 | // we should never come here. |
606 | llvm_unreachable("mayLoad or mayStore not set for Post Increment operation" ); |
607 | } |
608 | |
609 | // Get the value being stored. |
610 | static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) { |
611 | // value being stored is always the last operand. |
612 | return MI.getOperand(i: MI.getNumOperands()-1); |
613 | } |
614 | |
615 | static bool isLoadAbsSet(const MachineInstr &MI) { |
616 | unsigned Opc = MI.getOpcode(); |
617 | switch (Opc) { |
618 | case Hexagon::L4_loadrd_ap: |
619 | case Hexagon::L4_loadrb_ap: |
620 | case Hexagon::L4_loadrh_ap: |
621 | case Hexagon::L4_loadrub_ap: |
622 | case Hexagon::L4_loadruh_ap: |
623 | case Hexagon::L4_loadri_ap: |
624 | return true; |
625 | } |
626 | return false; |
627 | } |
628 | |
629 | static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) { |
630 | assert(isLoadAbsSet(MI)); |
631 | return MI.getOperand(i: 1); |
632 | } |
633 | |
634 | // Can be new value store? |
635 | // Following restrictions are to be respected in convert a store into |
636 | // a new value store. |
637 | // 1. If an instruction uses auto-increment, its address register cannot |
638 | // be a new-value register. Arch Spec 5.4.2.1 |
639 | // 2. If an instruction uses absolute-set addressing mode, its address |
640 | // register cannot be a new-value register. Arch Spec 5.4.2.1. |
641 | // 3. If an instruction produces a 64-bit result, its registers cannot be used |
642 | // as new-value registers. Arch Spec 5.4.2.2. |
643 | // 4. If the instruction that sets the new-value register is conditional, then |
644 | // the instruction that uses the new-value register must also be conditional, |
645 | // and both must always have their predicates evaluate identically. |
646 | // Arch Spec 5.4.2.3. |
647 | // 5. There is an implied restriction that a packet cannot have another store, |
648 | // if there is a new value store in the packet. Corollary: if there is |
649 | // already a store in a packet, there can not be a new value store. |
650 | // Arch Spec: 3.4.4.2 |
651 | bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI, |
652 | const MachineInstr &PacketMI, unsigned DepReg) { |
653 | // Make sure we are looking at the store, that can be promoted. |
654 | if (!HII->mayBeNewStore(MI)) |
655 | return false; |
656 | |
657 | // Make sure there is dependency and can be new value'd. |
658 | const MachineOperand &Val = getStoreValueOperand(MI); |
659 | if (Val.isReg() && Val.getReg() != DepReg) |
660 | return false; |
661 | |
662 | const MCInstrDesc& MCID = PacketMI.getDesc(); |
663 | |
664 | // First operand is always the result. |
665 | const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, OpNum: 0, TRI: HRI, MF); |
666 | // Double regs can not feed into new value store: PRM section: 5.4.2.2. |
667 | if (PacketRC == &Hexagon::DoubleRegsRegClass) |
668 | return false; |
669 | |
670 | // New-value stores are of class NV (slot 0), dual stores require class ST |
671 | // in slot 0 (PRM 5.5). |
672 | for (auto *I : CurrentPacketMIs) { |
673 | SUnit *PacketSU = MIToSUnit.find(x: I)->second; |
674 | if (PacketSU->getInstr()->mayStore()) |
675 | return false; |
676 | } |
677 | |
678 | // Make sure it's NOT the post increment register that we are going to |
679 | // new value. |
680 | if (HII->isPostIncrement(MI) && |
681 | getPostIncrementOperand(MI, HII).getReg() == DepReg) { |
682 | return false; |
683 | } |
684 | |
685 | if (HII->isPostIncrement(MI: PacketMI) && PacketMI.mayLoad() && |
686 | getPostIncrementOperand(MI: PacketMI, HII).getReg() == DepReg) { |
687 | // If source is post_inc, or absolute-set addressing, it can not feed |
688 | // into new value store |
689 | // r3 = memw(r2++#4) |
690 | // memw(r30 + #-1404) = r2.new -> can not be new value store |
691 | // arch spec section: 5.4.2.1. |
692 | return false; |
693 | } |
694 | |
695 | if (isLoadAbsSet(MI: PacketMI) && getAbsSetOperand(MI: PacketMI).getReg() == DepReg) |
696 | return false; |
697 | |
698 | // If the source that feeds the store is predicated, new value store must |
699 | // also be predicated. |
700 | if (HII->isPredicated(MI: PacketMI)) { |
701 | if (!HII->isPredicated(MI)) |
702 | return false; |
703 | |
704 | // Check to make sure that they both will have their predicates |
705 | // evaluate identically. |
706 | unsigned predRegNumSrc = 0; |
707 | unsigned predRegNumDst = 0; |
708 | const TargetRegisterClass* predRegClass = nullptr; |
709 | |
710 | // Get predicate register used in the source instruction. |
711 | for (auto &MO : PacketMI.operands()) { |
712 | if (!MO.isReg()) |
713 | continue; |
714 | predRegNumSrc = MO.getReg(); |
715 | predRegClass = HRI->getMinimalPhysRegClass(Reg: predRegNumSrc); |
716 | if (predRegClass == &Hexagon::PredRegsRegClass) |
717 | break; |
718 | } |
719 | assert((predRegClass == &Hexagon::PredRegsRegClass) && |
720 | "predicate register not found in a predicated PacketMI instruction" ); |
721 | |
722 | // Get predicate register used in new-value store instruction. |
723 | for (auto &MO : MI.operands()) { |
724 | if (!MO.isReg()) |
725 | continue; |
726 | predRegNumDst = MO.getReg(); |
727 | predRegClass = HRI->getMinimalPhysRegClass(Reg: predRegNumDst); |
728 | if (predRegClass == &Hexagon::PredRegsRegClass) |
729 | break; |
730 | } |
731 | assert((predRegClass == &Hexagon::PredRegsRegClass) && |
732 | "predicate register not found in a predicated MI instruction" ); |
733 | |
734 | // New-value register producer and user (store) need to satisfy these |
735 | // constraints: |
736 | // 1) Both instructions should be predicated on the same register. |
737 | // 2) If producer of the new-value register is .new predicated then store |
738 | // should also be .new predicated and if producer is not .new predicated |
739 | // then store should not be .new predicated. |
740 | // 3) Both new-value register producer and user should have same predicate |
741 | // sense, i.e, either both should be negated or both should be non-negated. |
742 | if (predRegNumDst != predRegNumSrc || |
743 | HII->isDotNewInst(MI: PacketMI) != HII->isDotNewInst(MI) || |
744 | getPredicateSense(MI, HII) != getPredicateSense(MI: PacketMI, HII)) |
745 | return false; |
746 | } |
747 | |
748 | // Make sure that other than the new-value register no other store instruction |
749 | // register has been modified in the same packet. Predicate registers can be |
750 | // modified by they should not be modified between the producer and the store |
751 | // instruction as it will make them both conditional on different values. |
752 | // We already know this to be true for all the instructions before and |
753 | // including PacketMI. Howerver, we need to perform the check for the |
754 | // remaining instructions in the packet. |
755 | |
756 | unsigned StartCheck = 0; |
757 | |
758 | for (auto *I : CurrentPacketMIs) { |
759 | SUnit *TempSU = MIToSUnit.find(x: I)->second; |
760 | MachineInstr &TempMI = *TempSU->getInstr(); |
761 | |
762 | // Following condition is true for all the instructions until PacketMI is |
763 | // reached (StartCheck is set to 0 before the for loop). |
764 | // StartCheck flag is 1 for all the instructions after PacketMI. |
765 | if (&TempMI != &PacketMI && !StartCheck) // Start processing only after |
766 | continue; // encountering PacketMI. |
767 | |
768 | StartCheck = 1; |
769 | if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence. |
770 | continue; |
771 | |
772 | for (auto &MO : MI.operands()) |
773 | if (MO.isReg() && TempSU->getInstr()->modifiesRegister(Reg: MO.getReg(), TRI: HRI)) |
774 | return false; |
775 | } |
776 | |
777 | // Make sure that for non-POST_INC stores: |
778 | // 1. The only use of reg is DepReg and no other registers. |
779 | // This handles base+index registers. |
780 | // The following store can not be dot new. |
781 | // Eg. r0 = add(r0, #3) |
782 | // memw(r1+r0<<#2) = r0 |
783 | if (!HII->isPostIncrement(MI)) { |
784 | for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) { |
785 | const MachineOperand &MO = MI.getOperand(i: opNum); |
786 | if (MO.isReg() && MO.getReg() == DepReg) |
787 | return false; |
788 | } |
789 | } |
790 | |
791 | // If data definition is because of implicit definition of the register, |
792 | // do not newify the store. Eg. |
793 | // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12 |
794 | // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343] |
795 | for (auto &MO : PacketMI.operands()) { |
796 | if (MO.isRegMask() && MO.clobbersPhysReg(PhysReg: DepReg)) |
797 | return false; |
798 | if (!MO.isReg() || !MO.isDef() || !MO.isImplicit()) |
799 | continue; |
800 | Register R = MO.getReg(); |
801 | if (R == DepReg || HRI->isSuperRegister(RegA: DepReg, RegB: R)) |
802 | return false; |
803 | } |
804 | |
805 | // Handle imp-use of super reg case. There is a target independent side |
806 | // change that should prevent this situation but I am handling it for |
807 | // just-in-case. For example, we cannot newify R2 in the following case: |
808 | // %r3 = A2_tfrsi 0; |
809 | // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1; |
810 | for (auto &MO : MI.operands()) { |
811 | if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg) |
812 | return false; |
813 | } |
814 | |
815 | // Can be dot new store. |
816 | return true; |
817 | } |
818 | |
819 | // Can this MI to promoted to either new value store or new value jump. |
820 | bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI, |
821 | const SUnit *PacketSU, unsigned DepReg, |
822 | MachineBasicBlock::iterator &MII) { |
823 | if (!HII->mayBeNewStore(MI)) |
824 | return false; |
825 | |
826 | // Check to see the store can be new value'ed. |
827 | MachineInstr &PacketMI = *PacketSU->getInstr(); |
828 | if (canPromoteToNewValueStore(MI, PacketMI, DepReg)) |
829 | return true; |
830 | |
831 | // Check to see the compare/jump can be new value'ed. |
832 | // This is done as a pass on its own. Don't need to check it here. |
833 | return false; |
834 | } |
835 | |
836 | static bool isImplicitDependency(const MachineInstr &I, bool CheckDef, |
837 | unsigned DepReg) { |
838 | for (auto &MO : I.operands()) { |
839 | if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(PhysReg: DepReg)) |
840 | return true; |
841 | if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit()) |
842 | continue; |
843 | if (CheckDef == MO.isDef()) |
844 | return true; |
845 | } |
846 | return false; |
847 | } |
848 | |
849 | // Check to see if an instruction can be dot new. |
850 | bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI, |
851 | const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII, |
852 | const TargetRegisterClass* RC) { |
853 | // Already a dot new instruction. |
854 | if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI)) |
855 | return false; |
856 | |
857 | if (!isNewifiable(MI, NewRC: RC)) |
858 | return false; |
859 | |
860 | const MachineInstr &PI = *PacketSU->getInstr(); |
861 | |
862 | // The "new value" cannot come from inline asm. |
863 | if (PI.isInlineAsm()) |
864 | return false; |
865 | |
866 | // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no |
867 | // sense. |
868 | if (PI.isImplicitDef()) |
869 | return false; |
870 | |
871 | // If dependency is trough an implicitly defined register, we should not |
872 | // newify the use. |
873 | if (isImplicitDependency(I: PI, CheckDef: true, DepReg) || |
874 | isImplicitDependency(I: MI, CheckDef: false, DepReg)) |
875 | return false; |
876 | |
877 | const MCInstrDesc& MCID = PI.getDesc(); |
878 | const TargetRegisterClass *VecRC = HII->getRegClass(MCID, OpNum: 0, TRI: HRI, MF); |
879 | if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass) |
880 | return false; |
881 | |
882 | // predicate .new |
883 | if (RC == &Hexagon::PredRegsRegClass) |
884 | return HII->predCanBeUsedAsDotNew(MI: PI, PredReg: DepReg); |
885 | |
886 | if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI)) |
887 | return false; |
888 | |
889 | // Create a dot new machine instruction to see if resources can be |
890 | // allocated. If not, bail out now. |
891 | int NewOpcode = (RC != &Hexagon::PredRegsRegClass) ? HII->getDotNewOp(MI) : |
892 | HII->getDotNewPredOp(MI, MBPI); |
893 | const MCInstrDesc &D = HII->get(Opcode: NewOpcode); |
894 | MachineInstr *NewMI = MF.CreateMachineInstr(MCID: D, DL: DebugLoc()); |
895 | bool ResourcesAvailable = ResourceTracker->canReserveResources(MI&: *NewMI); |
896 | MF.deleteMachineInstr(MI: NewMI); |
897 | if (!ResourcesAvailable) |
898 | return false; |
899 | |
900 | // New Value Store only. New Value Jump generated as a separate pass. |
901 | if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII)) |
902 | return false; |
903 | |
904 | return true; |
905 | } |
906 | |
907 | // Go through the packet instructions and search for an anti dependency between |
908 | // them and DepReg from MI. Consider this case: |
909 | // Trying to add |
910 | // a) %r1 = TFRI_cdNotPt %p3, 2 |
911 | // to this packet: |
912 | // { |
913 | // b) %p0 = C2_or killed %p3, killed %p0 |
914 | // c) %p3 = C2_tfrrp %r23 |
915 | // d) %r1 = C2_cmovenewit %p3, 4 |
916 | // } |
917 | // The P3 from a) and d) will be complements after |
918 | // a)'s P3 is converted to .new form |
919 | // Anti-dep between c) and b) is irrelevant for this case |
920 | bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI, |
921 | unsigned DepReg) { |
922 | SUnit *PacketSUDep = MIToSUnit.find(x: &MI)->second; |
923 | |
924 | for (auto *I : CurrentPacketMIs) { |
925 | // We only care for dependencies to predicated instructions |
926 | if (!HII->isPredicated(MI: *I)) |
927 | continue; |
928 | |
929 | // Scheduling Unit for current insn in the packet |
930 | SUnit *PacketSU = MIToSUnit.find(x: I)->second; |
931 | |
932 | // Look at dependencies between current members of the packet and |
933 | // predicate defining instruction MI. Make sure that dependency is |
934 | // on the exact register we care about. |
935 | if (PacketSU->isSucc(N: PacketSUDep)) { |
936 | for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { |
937 | auto &Dep = PacketSU->Succs[i]; |
938 | if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti && |
939 | Dep.getReg() == DepReg) |
940 | return true; |
941 | } |
942 | } |
943 | } |
944 | |
945 | return false; |
946 | } |
947 | |
948 | /// Gets the predicate register of a predicated instruction. |
949 | static unsigned getPredicatedRegister(MachineInstr &MI, |
950 | const HexagonInstrInfo *QII) { |
951 | /// We use the following rule: The first predicate register that is a use is |
952 | /// the predicate register of a predicated instruction. |
953 | assert(QII->isPredicated(MI) && "Must be predicated instruction" ); |
954 | |
955 | for (auto &Op : MI.operands()) { |
956 | if (Op.isReg() && Op.getReg() && Op.isUse() && |
957 | Hexagon::PredRegsRegClass.contains(Reg: Op.getReg())) |
958 | return Op.getReg(); |
959 | } |
960 | |
961 | llvm_unreachable("Unknown instruction operand layout" ); |
962 | return 0; |
963 | } |
964 | |
965 | // Given two predicated instructions, this function detects whether |
966 | // the predicates are complements. |
967 | bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1, |
968 | MachineInstr &MI2) { |
969 | // If we don't know the predicate sense of the instructions bail out early, we |
970 | // need it later. |
971 | if (getPredicateSense(MI: MI1, HII) == PK_Unknown || |
972 | getPredicateSense(MI: MI2, HII) == PK_Unknown) |
973 | return false; |
974 | |
975 | // Scheduling unit for candidate. |
976 | SUnit *SU = MIToSUnit[&MI1]; |
977 | |
978 | // One corner case deals with the following scenario: |
979 | // Trying to add |
980 | // a) %r24 = A2_tfrt %p0, %r25 |
981 | // to this packet: |
982 | // { |
983 | // b) %r25 = A2_tfrf %p0, %r24 |
984 | // c) %p0 = C2_cmpeqi %r26, 1 |
985 | // } |
986 | // |
987 | // On general check a) and b) are complements, but presence of c) will |
988 | // convert a) to .new form, and then it is not a complement. |
989 | // We attempt to detect it by analyzing existing dependencies in the packet. |
990 | |
991 | // Analyze relationships between all existing members of the packet. |
992 | // Look for Anti dependecy on the same predicate reg as used in the |
993 | // candidate. |
994 | for (auto *I : CurrentPacketMIs) { |
995 | // Scheduling Unit for current insn in the packet. |
996 | SUnit *PacketSU = MIToSUnit.find(x: I)->second; |
997 | |
998 | // If this instruction in the packet is succeeded by the candidate... |
999 | if (PacketSU->isSucc(N: SU)) { |
1000 | for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { |
1001 | auto Dep = PacketSU->Succs[i]; |
1002 | // The corner case exist when there is true data dependency between |
1003 | // candidate and one of current packet members, this dep is on |
1004 | // predicate reg, and there already exist anti dep on the same pred in |
1005 | // the packet. |
1006 | if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data && |
1007 | Hexagon::PredRegsRegClass.contains(Reg: Dep.getReg())) { |
1008 | // Here I know that I is predicate setting instruction with true |
1009 | // data dep to candidate on the register we care about - c) in the |
1010 | // above example. Now I need to see if there is an anti dependency |
1011 | // from c) to any other instruction in the same packet on the pred |
1012 | // reg of interest. |
1013 | if (restrictingDepExistInPacket(MI&: *I, DepReg: Dep.getReg())) |
1014 | return false; |
1015 | } |
1016 | } |
1017 | } |
1018 | } |
1019 | |
1020 | // If the above case does not apply, check regular complement condition. |
1021 | // Check that the predicate register is the same and that the predicate |
1022 | // sense is different We also need to differentiate .old vs. .new: !p0 |
1023 | // is not complementary to p0.new. |
1024 | unsigned PReg1 = getPredicatedRegister(MI&: MI1, QII: HII); |
1025 | unsigned PReg2 = getPredicatedRegister(MI&: MI2, QII: HII); |
1026 | return PReg1 == PReg2 && |
1027 | Hexagon::PredRegsRegClass.contains(Reg: PReg1) && |
1028 | Hexagon::PredRegsRegClass.contains(Reg: PReg2) && |
1029 | getPredicateSense(MI: MI1, HII) != getPredicateSense(MI: MI2, HII) && |
1030 | HII->isDotNewInst(MI: MI1) == HII->isDotNewInst(MI: MI2); |
1031 | } |
1032 | |
1033 | // Initialize packetizer flags. |
1034 | void HexagonPacketizerList::initPacketizerState() { |
1035 | Dependence = false; |
1036 | PromotedToDotNew = false; |
1037 | GlueToNewValueJump = false; |
1038 | GlueAllocframeStore = false; |
1039 | FoundSequentialDependence = false; |
1040 | ChangedOffset = INT64_MAX; |
1041 | } |
1042 | |
1043 | // Ignore bundling of pseudo instructions. |
1044 | bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI, |
1045 | const MachineBasicBlock *) { |
1046 | if (MI.isDebugInstr()) |
1047 | return true; |
1048 | |
1049 | if (MI.isCFIInstruction()) |
1050 | return false; |
1051 | |
1052 | // We must print out inline assembly. |
1053 | if (MI.isInlineAsm()) |
1054 | return false; |
1055 | |
1056 | if (MI.isImplicitDef()) |
1057 | return false; |
1058 | |
1059 | // We check if MI has any functional units mapped to it. If it doesn't, |
1060 | // we ignore the instruction. |
1061 | const MCInstrDesc& TID = MI.getDesc(); |
1062 | auto *IS = ResourceTracker->getInstrItins()->beginStage(ItinClassIndx: TID.getSchedClass()); |
1063 | return !IS->getUnits(); |
1064 | } |
1065 | |
1066 | bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) { |
1067 | // Ensure any bundles created by gather packetize remain separate. |
1068 | if (MI.isBundle()) |
1069 | return true; |
1070 | |
1071 | if (MI.isEHLabel() || MI.isCFIInstruction()) |
1072 | return true; |
1073 | |
1074 | // Consider inline asm to not be a solo instruction by default. |
1075 | // Inline asm will be put in a packet temporarily, but then it will be |
1076 | // removed, and placed outside of the packet (before or after, depending |
1077 | // on dependencies). This is to reduce the impact of inline asm as a |
1078 | // "packet splitting" instruction. |
1079 | if (MI.isInlineAsm() && !ScheduleInlineAsm) |
1080 | return true; |
1081 | |
1082 | if (isSchedBarrier(MI)) |
1083 | return true; |
1084 | |
1085 | if (HII->isSolo(MI)) |
1086 | return true; |
1087 | |
1088 | if (MI.getOpcode() == Hexagon::PATCHABLE_FUNCTION_ENTER || |
1089 | MI.getOpcode() == Hexagon::PATCHABLE_FUNCTION_EXIT || |
1090 | MI.getOpcode() == Hexagon::PATCHABLE_TAIL_CALL) |
1091 | return true; |
1092 | |
1093 | if (MI.getOpcode() == Hexagon::A2_nop) |
1094 | return true; |
1095 | |
1096 | return false; |
1097 | } |
1098 | |
1099 | // Quick check if instructions MI and MJ cannot coexist in the same packet. |
1100 | // Limit the tests to be "one-way", e.g. "if MI->isBranch and MJ->isInlineAsm", |
1101 | // but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm". |
1102 | // For full test call this function twice: |
1103 | // cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI) |
1104 | // Doing the test only one way saves the amount of code in this function, |
1105 | // since every test would need to be repeated with the MI and MJ reversed. |
1106 | static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ, |
1107 | const HexagonInstrInfo &HII) { |
1108 | const MachineFunction *MF = MI.getParent()->getParent(); |
1109 | if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() && |
1110 | HII.isHVXMemWithAIndirect(I: MI, J: MJ)) |
1111 | return true; |
1112 | |
1113 | // Don't allow a store and an instruction that must be in slot0 and |
1114 | // doesn't allow a slot1 instruction. |
1115 | if (MI.mayStore() && HII.isRestrictNoSlot1Store(MI: MJ) && HII.isPureSlot0(MI: MJ)) |
1116 | return true; |
1117 | |
1118 | // An inline asm cannot be together with a branch, because we may not be |
1119 | // able to remove the asm out after packetizing (i.e. if the asm must be |
1120 | // moved past the bundle). Similarly, two asms cannot be together to avoid |
1121 | // complications when determining their relative order outside of a bundle. |
1122 | if (MI.isInlineAsm()) |
1123 | return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() || |
1124 | MJ.isCall() || MJ.isTerminator(); |
1125 | |
1126 | // New-value stores cannot coexist with any other stores. |
1127 | if (HII.isNewValueStore(MI) && MJ.mayStore()) |
1128 | return true; |
1129 | |
1130 | switch (MI.getOpcode()) { |
1131 | case Hexagon::S2_storew_locked: |
1132 | case Hexagon::S4_stored_locked: |
1133 | case Hexagon::L2_loadw_locked: |
1134 | case Hexagon::L4_loadd_locked: |
1135 | case Hexagon::Y2_dccleana: |
1136 | case Hexagon::Y2_dccleaninva: |
1137 | case Hexagon::Y2_dcinva: |
1138 | case Hexagon::Y2_dczeroa: |
1139 | case Hexagon::Y4_l2fetch: |
1140 | case Hexagon::Y5_l2fetch: { |
1141 | // These instructions can only be grouped with ALU32 or non-floating-point |
1142 | // XTYPE instructions. Since there is no convenient way of identifying fp |
1143 | // XTYPE instructions, only allow grouping with ALU32 for now. |
1144 | unsigned TJ = HII.getType(MI: MJ); |
1145 | if (TJ != HexagonII::TypeALU32_2op && |
1146 | TJ != HexagonII::TypeALU32_3op && |
1147 | TJ != HexagonII::TypeALU32_ADDI) |
1148 | return true; |
1149 | break; |
1150 | } |
1151 | default: |
1152 | break; |
1153 | } |
1154 | |
1155 | // "False" really means that the quick check failed to determine if |
1156 | // I and J cannot coexist. |
1157 | return false; |
1158 | } |
1159 | |
1160 | // Full, symmetric check. |
1161 | bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI, |
1162 | const MachineInstr &MJ) { |
1163 | return cannotCoexistAsymm(MI, MJ, HII: *HII) || cannotCoexistAsymm(MI: MJ, MJ: MI, HII: *HII); |
1164 | } |
1165 | |
1166 | void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) { |
1167 | for (auto &B : MF) { |
1168 | MachineBasicBlock::iterator BundleIt; |
1169 | for (MachineInstr &MI : llvm::make_early_inc_range(Range: B.instrs())) { |
1170 | if (MI.isBundle()) |
1171 | BundleIt = MI.getIterator(); |
1172 | if (!MI.isInsideBundle()) |
1173 | continue; |
1174 | |
1175 | // Decide on where to insert the instruction that we are pulling out. |
1176 | // Debug instructions always go before the bundle, but the placement of |
1177 | // INLINE_ASM depends on potential dependencies. By default, try to |
1178 | // put it before the bundle, but if the asm writes to a register that |
1179 | // other instructions in the bundle read, then we need to place it |
1180 | // after the bundle (to preserve the bundle semantics). |
1181 | bool InsertBeforeBundle; |
1182 | if (MI.isInlineAsm()) |
1183 | InsertBeforeBundle = !hasWriteToReadDep(FirstI: MI, SecondI: *BundleIt, TRI: HRI); |
1184 | else if (MI.isDebugInstr()) |
1185 | InsertBeforeBundle = true; |
1186 | else |
1187 | continue; |
1188 | |
1189 | BundleIt = moveInstrOut(MI, BundleIt, Before: InsertBeforeBundle); |
1190 | } |
1191 | } |
1192 | } |
1193 | |
1194 | // Check if a given instruction is of class "system". |
1195 | static bool isSystemInstr(const MachineInstr &MI) { |
1196 | unsigned Opc = MI.getOpcode(); |
1197 | switch (Opc) { |
1198 | case Hexagon::Y2_barrier: |
1199 | case Hexagon::Y2_dcfetchbo: |
1200 | case Hexagon::Y4_l2fetch: |
1201 | case Hexagon::Y5_l2fetch: |
1202 | return true; |
1203 | } |
1204 | return false; |
1205 | } |
1206 | |
1207 | bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I, |
1208 | const MachineInstr &J) { |
1209 | // The dependence graph may not include edges between dead definitions, |
1210 | // so without extra checks, we could end up packetizing two instruction |
1211 | // defining the same (dead) register. |
1212 | if (I.isCall() || J.isCall()) |
1213 | return false; |
1214 | if (HII->isPredicated(MI: I) || HII->isPredicated(MI: J)) |
1215 | return false; |
1216 | |
1217 | BitVector DeadDefs(Hexagon::NUM_TARGET_REGS); |
1218 | for (auto &MO : I.operands()) { |
1219 | if (!MO.isReg() || !MO.isDef() || !MO.isDead()) |
1220 | continue; |
1221 | DeadDefs[MO.getReg()] = true; |
1222 | } |
1223 | |
1224 | for (auto &MO : J.operands()) { |
1225 | if (!MO.isReg() || !MO.isDef() || !MO.isDead()) |
1226 | continue; |
1227 | Register R = MO.getReg(); |
1228 | if (R != Hexagon::USR_OVF && DeadDefs[R]) |
1229 | return true; |
1230 | } |
1231 | return false; |
1232 | } |
1233 | |
1234 | bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I, |
1235 | const MachineInstr &J) { |
1236 | // A save callee-save register function call can only be in a packet |
1237 | // with instructions that don't write to the callee-save registers. |
1238 | if ((HII->isSaveCalleeSavedRegsCall(MI: I) && |
1239 | doesModifyCalleeSavedReg(MI: J, TRI: HRI)) || |
1240 | (HII->isSaveCalleeSavedRegsCall(MI: J) && |
1241 | doesModifyCalleeSavedReg(MI: I, TRI: HRI))) |
1242 | return true; |
1243 | |
1244 | // Two control flow instructions cannot go in the same packet. |
1245 | if (isControlFlow(MI: I) && isControlFlow(MI: J)) |
1246 | return true; |
1247 | |
1248 | // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot |
1249 | // contain a speculative indirect jump, |
1250 | // a new-value compare jump or a dealloc_return. |
1251 | auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool { |
1252 | if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI)) |
1253 | return true; |
1254 | if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI)) |
1255 | return true; |
1256 | return false; |
1257 | }; |
1258 | |
1259 | if (HII->isLoopN(MI: I) && isBadForLoopN(J)) |
1260 | return true; |
1261 | if (HII->isLoopN(MI: J) && isBadForLoopN(I)) |
1262 | return true; |
1263 | |
1264 | // dealloc_return cannot appear in the same packet as a conditional or |
1265 | // unconditional jump. |
1266 | return HII->isDeallocRet(MI: I) && |
1267 | (J.isBranch() || J.isCall() || J.isBarrier()); |
1268 | } |
1269 | |
1270 | bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I, |
1271 | const MachineInstr &J) { |
1272 | // Adding I to a packet that has J. |
1273 | |
1274 | // Regmasks are not reflected in the scheduling dependency graph, so |
1275 | // we need to check them manually. This code assumes that regmasks only |
1276 | // occur on calls, and the problematic case is when we add an instruction |
1277 | // defining a register R to a packet that has a call that clobbers R via |
1278 | // a regmask. Those cannot be packetized together, because the call will |
1279 | // be executed last. That's also a reson why it is ok to add a call |
1280 | // clobbering R to a packet that defines R. |
1281 | |
1282 | // Look for regmasks in J. |
1283 | for (const MachineOperand &OpJ : J.operands()) { |
1284 | if (!OpJ.isRegMask()) |
1285 | continue; |
1286 | assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call" ); |
1287 | for (const MachineOperand &OpI : I.operands()) { |
1288 | if (OpI.isReg()) { |
1289 | if (OpJ.clobbersPhysReg(PhysReg: OpI.getReg())) |
1290 | return true; |
1291 | } else if (OpI.isRegMask()) { |
1292 | // Both are regmasks. Assume that they intersect. |
1293 | return true; |
1294 | } |
1295 | } |
1296 | } |
1297 | return false; |
1298 | } |
1299 | |
1300 | bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I, |
1301 | const MachineInstr &J) { |
1302 | bool SysI = isSystemInstr(MI: I), SysJ = isSystemInstr(MI: J); |
1303 | bool StoreI = I.mayStore(), StoreJ = J.mayStore(); |
1304 | if ((SysI && StoreJ) || (SysJ && StoreI)) |
1305 | return true; |
1306 | |
1307 | if (StoreI && StoreJ) { |
1308 | if (HII->isNewValueInst(MI: J) || HII->isMemOp(MI: J) || HII->isMemOp(MI: I)) |
1309 | return true; |
1310 | } else { |
1311 | // A memop cannot be in the same packet with another memop or a store. |
1312 | // Two stores can be together, but here I and J cannot both be stores. |
1313 | bool MopStI = HII->isMemOp(MI: I) || StoreI; |
1314 | bool MopStJ = HII->isMemOp(MI: J) || StoreJ; |
1315 | if (MopStI && MopStJ) |
1316 | return true; |
1317 | } |
1318 | |
1319 | return (StoreJ && HII->isDeallocRet(MI: I)) || (StoreI && HII->isDeallocRet(MI: J)); |
1320 | } |
1321 | |
1322 | // SUI is the current instruction that is outside of the current packet. |
1323 | // SUJ is the current instruction inside the current packet against which that |
1324 | // SUI will be packetized. |
1325 | bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) { |
1326 | assert(SUI->getInstr() && SUJ->getInstr()); |
1327 | MachineInstr &I = *SUI->getInstr(); |
1328 | MachineInstr &J = *SUJ->getInstr(); |
1329 | |
1330 | // Clear IgnoreDepMIs when Packet starts. |
1331 | if (CurrentPacketMIs.size() == 1) |
1332 | IgnoreDepMIs.clear(); |
1333 | |
1334 | MachineBasicBlock::iterator II = I.getIterator(); |
1335 | |
1336 | // Solo instructions cannot go in the packet. |
1337 | assert(!isSoloInstruction(I) && "Unexpected solo instr!" ); |
1338 | |
1339 | if (cannotCoexist(MI: I, MJ: J)) |
1340 | return false; |
1341 | |
1342 | Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J); |
1343 | if (Dependence) |
1344 | return false; |
1345 | |
1346 | // Regmasks are not accounted for in the scheduling graph, so we need |
1347 | // to explicitly check for dependencies caused by them. They should only |
1348 | // appear on calls, so it's not too pessimistic to reject all regmask |
1349 | // dependencies. |
1350 | Dependence = hasRegMaskDependence(I, J); |
1351 | if (Dependence) |
1352 | return false; |
1353 | |
1354 | // Dual-store does not allow second store, if the first store is not |
1355 | // in SLOT0. New value store, new value jump, dealloc_return and memop |
1356 | // always take SLOT0. Arch spec 3.4.4.2. |
1357 | Dependence = hasDualStoreDependence(I, J); |
1358 | if (Dependence) |
1359 | return false; |
1360 | |
1361 | // If an instruction feeds new value jump, glue it. |
1362 | MachineBasicBlock::iterator NextMII = I.getIterator(); |
1363 | ++NextMII; |
1364 | if (NextMII != I.getParent()->end() && HII->isNewValueJump(MI: *NextMII)) { |
1365 | MachineInstr &NextMI = *NextMII; |
1366 | |
1367 | bool secondRegMatch = false; |
1368 | const MachineOperand &NOp0 = NextMI.getOperand(i: 0); |
1369 | const MachineOperand &NOp1 = NextMI.getOperand(i: 1); |
1370 | |
1371 | if (NOp1.isReg() && I.getOperand(i: 0).getReg() == NOp1.getReg()) |
1372 | secondRegMatch = true; |
1373 | |
1374 | for (MachineInstr *PI : CurrentPacketMIs) { |
1375 | // NVJ can not be part of the dual jump - Arch Spec: section 7.8. |
1376 | if (PI->isCall()) { |
1377 | Dependence = true; |
1378 | break; |
1379 | } |
1380 | // Validate: |
1381 | // 1. Packet does not have a store in it. |
1382 | // 2. If the first operand of the nvj is newified, and the second |
1383 | // operand is also a reg, it (second reg) is not defined in |
1384 | // the same packet. |
1385 | // 3. If the second operand of the nvj is newified, (which means |
1386 | // first operand is also a reg), first reg is not defined in |
1387 | // the same packet. |
1388 | if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() || |
1389 | HII->isLoopN(MI: *PI)) { |
1390 | Dependence = true; |
1391 | break; |
1392 | } |
1393 | // Check #2/#3. |
1394 | const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1; |
1395 | if (OpR.isReg() && PI->modifiesRegister(Reg: OpR.getReg(), TRI: HRI)) { |
1396 | Dependence = true; |
1397 | break; |
1398 | } |
1399 | } |
1400 | |
1401 | GlueToNewValueJump = true; |
1402 | if (Dependence) |
1403 | return false; |
1404 | } |
1405 | |
1406 | // There no dependency between a prolog instruction and its successor. |
1407 | if (!SUJ->isSucc(N: SUI)) |
1408 | return true; |
1409 | |
1410 | for (unsigned i = 0; i < SUJ->Succs.size(); ++i) { |
1411 | if (FoundSequentialDependence) |
1412 | break; |
1413 | |
1414 | if (SUJ->Succs[i].getSUnit() != SUI) |
1415 | continue; |
1416 | |
1417 | SDep::Kind DepType = SUJ->Succs[i].getKind(); |
1418 | // For direct calls: |
1419 | // Ignore register dependences for call instructions for packetization |
1420 | // purposes except for those due to r31 and predicate registers. |
1421 | // |
1422 | // For indirect calls: |
1423 | // Same as direct calls + check for true dependences to the register |
1424 | // used in the indirect call. |
1425 | // |
1426 | // We completely ignore Order dependences for call instructions. |
1427 | // |
1428 | // For returns: |
1429 | // Ignore register dependences for return instructions like jumpr, |
1430 | // dealloc return unless we have dependencies on the explicit uses |
1431 | // of the registers used by jumpr (like r31) or dealloc return |
1432 | // (like r29 or r30). |
1433 | unsigned DepReg = 0; |
1434 | const TargetRegisterClass *RC = nullptr; |
1435 | if (DepType == SDep::Data) { |
1436 | DepReg = SUJ->Succs[i].getReg(); |
1437 | RC = HRI->getMinimalPhysRegClass(Reg: DepReg); |
1438 | } |
1439 | |
1440 | if (I.isCall() || HII->isJumpR(MI: I) || I.isReturn() || HII->isTailCall(MI: I)) { |
1441 | if (!isRegDependence(DepType)) |
1442 | continue; |
1443 | if (!isCallDependent(MI: I, DepType, DepReg: SUJ->Succs[i].getReg())) |
1444 | continue; |
1445 | } |
1446 | |
1447 | if (DepType == SDep::Data) { |
1448 | if (canPromoteToDotCur(MI: J, PacketSU: SUJ, DepReg, MII&: II, RC)) |
1449 | if (promoteToDotCur(MI&: J, DepType, MII&: II, RC)) |
1450 | continue; |
1451 | } |
1452 | |
1453 | // Data dpendence ok if we have load.cur. |
1454 | if (DepType == SDep::Data && HII->isDotCurInst(MI: J)) { |
1455 | if (HII->isHVXVec(MI: I)) |
1456 | continue; |
1457 | } |
1458 | |
1459 | // For instructions that can be promoted to dot-new, try to promote. |
1460 | if (DepType == SDep::Data) { |
1461 | if (canPromoteToDotNew(MI: I, PacketSU: SUJ, DepReg, MII&: II, RC)) { |
1462 | if (promoteToDotNew(MI&: I, DepType, MII&: II, RC)) { |
1463 | PromotedToDotNew = true; |
1464 | if (cannotCoexist(MI: I, MJ: J)) |
1465 | FoundSequentialDependence = true; |
1466 | continue; |
1467 | } |
1468 | } |
1469 | if (HII->isNewValueJump(MI: I)) |
1470 | continue; |
1471 | } |
1472 | |
1473 | // For predicated instructions, if the predicates are complements then |
1474 | // there can be no dependence. |
1475 | if (HII->isPredicated(MI: I) && HII->isPredicated(MI: J) && |
1476 | arePredicatesComplements(MI1&: I, MI2&: J)) { |
1477 | // Not always safe to do this translation. |
1478 | // DAG Builder attempts to reduce dependence edges using transitive |
1479 | // nature of dependencies. Here is an example: |
1480 | // |
1481 | // r0 = tfr_pt ... (1) |
1482 | // r0 = tfr_pf ... (2) |
1483 | // r0 = tfr_pt ... (3) |
1484 | // |
1485 | // There will be an output dependence between (1)->(2) and (2)->(3). |
1486 | // However, there is no dependence edge between (1)->(3). This results |
1487 | // in all 3 instructions going in the same packet. We ignore dependce |
1488 | // only once to avoid this situation. |
1489 | auto Itr = find(Range&: IgnoreDepMIs, Val: &J); |
1490 | if (Itr != IgnoreDepMIs.end()) { |
1491 | Dependence = true; |
1492 | return false; |
1493 | } |
1494 | IgnoreDepMIs.push_back(x: &I); |
1495 | continue; |
1496 | } |
1497 | |
1498 | // Ignore Order dependences between unconditional direct branches |
1499 | // and non-control-flow instructions. |
1500 | if (isDirectJump(MI: I) && !J.isBranch() && !J.isCall() && |
1501 | DepType == SDep::Order) |
1502 | continue; |
1503 | |
1504 | // Ignore all dependences for jumps except for true and output |
1505 | // dependences. |
1506 | if (I.isConditionalBranch() && DepType != SDep::Data && |
1507 | DepType != SDep::Output) |
1508 | continue; |
1509 | |
1510 | if (DepType == SDep::Output) { |
1511 | FoundSequentialDependence = true; |
1512 | break; |
1513 | } |
1514 | |
1515 | // For Order dependences: |
1516 | // 1. Volatile loads/stores can be packetized together, unless other |
1517 | // rules prevent is. |
1518 | // 2. Store followed by a load is not allowed. |
1519 | // 3. Store followed by a store is valid. |
1520 | // 4. Load followed by any memory operation is allowed. |
1521 | if (DepType == SDep::Order) { |
1522 | if (!PacketizeVolatiles) { |
1523 | bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef(); |
1524 | if (OrdRefs) { |
1525 | FoundSequentialDependence = true; |
1526 | break; |
1527 | } |
1528 | } |
1529 | // J is first, I is second. |
1530 | bool LoadJ = J.mayLoad(), StoreJ = J.mayStore(); |
1531 | bool LoadI = I.mayLoad(), StoreI = I.mayStore(); |
1532 | bool NVStoreJ = HII->isNewValueStore(MI: J); |
1533 | bool NVStoreI = HII->isNewValueStore(MI: I); |
1534 | bool IsVecJ = HII->isHVXVec(MI: J); |
1535 | bool IsVecI = HII->isHVXVec(MI: I); |
1536 | |
1537 | // Don't reorder the loads if there is an order dependence. This would |
1538 | // occur if the first instruction must go in slot0. |
1539 | if (LoadJ && LoadI && HII->isPureSlot0(MI: J)) { |
1540 | FoundSequentialDependence = true; |
1541 | break; |
1542 | } |
1543 | |
1544 | if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() && |
1545 | ((LoadJ && StoreI && !NVStoreI) || |
1546 | (StoreJ && LoadI && !NVStoreJ)) && |
1547 | (J.getOpcode() != Hexagon::S2_allocframe && |
1548 | I.getOpcode() != Hexagon::S2_allocframe) && |
1549 | (J.getOpcode() != Hexagon::L2_deallocframe && |
1550 | I.getOpcode() != Hexagon::L2_deallocframe) && |
1551 | (!HII->isMemOp(MI: J) && !HII->isMemOp(MI: I)) && (!IsVecJ && !IsVecI)) |
1552 | setmemShufDisabled(true); |
1553 | else |
1554 | if (StoreJ && LoadI && alias(MI1: J, MI2: I)) { |
1555 | FoundSequentialDependence = true; |
1556 | break; |
1557 | } |
1558 | |
1559 | if (!StoreJ) |
1560 | if (!LoadJ || (!LoadI && !StoreI)) { |
1561 | // If J is neither load nor store, assume a dependency. |
1562 | // If J is a load, but I is neither, also assume a dependency. |
1563 | FoundSequentialDependence = true; |
1564 | break; |
1565 | } |
1566 | // Store followed by store: not OK on V2. |
1567 | // Store followed by load: not OK on all. |
1568 | // Load followed by store: OK on all. |
1569 | // Load followed by load: OK on all. |
1570 | continue; |
1571 | } |
1572 | |
1573 | // Special case for ALLOCFRAME: even though there is dependency |
1574 | // between ALLOCFRAME and subsequent store, allow it to be packetized |
1575 | // in a same packet. This implies that the store is using the caller's |
1576 | // SP. Hence, offset needs to be updated accordingly. |
1577 | if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) { |
1578 | unsigned Opc = I.getOpcode(); |
1579 | switch (Opc) { |
1580 | case Hexagon::S2_storerd_io: |
1581 | case Hexagon::S2_storeri_io: |
1582 | case Hexagon::S2_storerh_io: |
1583 | case Hexagon::S2_storerb_io: |
1584 | if (I.getOperand(i: 0).getReg() == HRI->getStackRegister()) { |
1585 | // Since this store is to be glued with allocframe in the same |
1586 | // packet, it will use SP of the previous stack frame, i.e. |
1587 | // caller's SP. Therefore, we need to recalculate offset |
1588 | // according to this change. |
1589 | GlueAllocframeStore = useCallersSP(MI&: I); |
1590 | if (GlueAllocframeStore) |
1591 | continue; |
1592 | } |
1593 | break; |
1594 | default: |
1595 | break; |
1596 | } |
1597 | } |
1598 | |
1599 | // There are certain anti-dependencies that cannot be ignored. |
1600 | // Specifically: |
1601 | // J2_call ... implicit-def %r0 ; SUJ |
1602 | // R0 = ... ; SUI |
1603 | // Those cannot be packetized together, since the call will observe |
1604 | // the effect of the assignment to R0. |
1605 | if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) { |
1606 | // Check if I defines any volatile register. We should also check |
1607 | // registers that the call may read, but these happen to be a |
1608 | // subset of the volatile register set. |
1609 | for (const MachineOperand &Op : I.operands()) { |
1610 | if (Op.isReg() && Op.isDef()) { |
1611 | Register R = Op.getReg(); |
1612 | if (!J.readsRegister(Reg: R, TRI: HRI) && !J.modifiesRegister(Reg: R, TRI: HRI)) |
1613 | continue; |
1614 | } else if (!Op.isRegMask()) { |
1615 | // If I has a regmask assume dependency. |
1616 | continue; |
1617 | } |
1618 | FoundSequentialDependence = true; |
1619 | break; |
1620 | } |
1621 | } |
1622 | |
1623 | // Skip over remaining anti-dependences. Two instructions that are |
1624 | // anti-dependent can share a packet, since in most such cases all |
1625 | // operands are read before any modifications take place. |
1626 | // The exceptions are branch and call instructions, since they are |
1627 | // executed after all other instructions have completed (at least |
1628 | // conceptually). |
1629 | if (DepType != SDep::Anti) { |
1630 | FoundSequentialDependence = true; |
1631 | break; |
1632 | } |
1633 | } |
1634 | |
1635 | if (FoundSequentialDependence) { |
1636 | Dependence = true; |
1637 | return false; |
1638 | } |
1639 | |
1640 | return true; |
1641 | } |
1642 | |
1643 | bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) { |
1644 | assert(SUI->getInstr() && SUJ->getInstr()); |
1645 | MachineInstr &I = *SUI->getInstr(); |
1646 | MachineInstr &J = *SUJ->getInstr(); |
1647 | |
1648 | bool Coexist = !cannotCoexist(MI: I, MJ: J); |
1649 | |
1650 | if (Coexist && !Dependence) |
1651 | return true; |
1652 | |
1653 | // Check if the instruction was promoted to a dot-new. If so, demote it |
1654 | // back into a dot-old. |
1655 | if (PromotedToDotNew) |
1656 | demoteToDotOld(MI&: I); |
1657 | |
1658 | cleanUpDotCur(); |
1659 | // Check if the instruction (must be a store) was glued with an allocframe |
1660 | // instruction. If so, restore its offset to its original value, i.e. use |
1661 | // current SP instead of caller's SP. |
1662 | if (GlueAllocframeStore) { |
1663 | useCalleesSP(MI&: I); |
1664 | GlueAllocframeStore = false; |
1665 | } |
1666 | |
1667 | if (ChangedOffset != INT64_MAX) |
1668 | undoChangedOffset(MI&: I); |
1669 | |
1670 | if (GlueToNewValueJump) { |
1671 | // Putting I and J together would prevent the new-value jump from being |
1672 | // packetized with the producer. In that case I and J must be separated. |
1673 | GlueToNewValueJump = false; |
1674 | return false; |
1675 | } |
1676 | |
1677 | if (!Coexist) |
1678 | return false; |
1679 | |
1680 | if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) { |
1681 | FoundSequentialDependence = false; |
1682 | Dependence = false; |
1683 | return true; |
1684 | } |
1685 | |
1686 | return false; |
1687 | } |
1688 | |
1689 | |
1690 | bool HexagonPacketizerList::foundLSInPacket() { |
1691 | bool FoundLoad = false; |
1692 | bool FoundStore = false; |
1693 | |
1694 | for (auto *MJ : CurrentPacketMIs) { |
1695 | unsigned Opc = MJ->getOpcode(); |
1696 | if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe) |
1697 | continue; |
1698 | if (HII->isMemOp(MI: *MJ)) |
1699 | continue; |
1700 | if (MJ->mayLoad()) |
1701 | FoundLoad = true; |
1702 | if (MJ->mayStore() && !HII->isNewValueStore(MI: *MJ)) |
1703 | FoundStore = true; |
1704 | } |
1705 | return FoundLoad && FoundStore; |
1706 | } |
1707 | |
1708 | |
1709 | MachineBasicBlock::iterator |
1710 | HexagonPacketizerList::addToPacket(MachineInstr &MI) { |
1711 | MachineBasicBlock::iterator MII = MI.getIterator(); |
1712 | MachineBasicBlock *MBB = MI.getParent(); |
1713 | |
1714 | if (CurrentPacketMIs.empty()) { |
1715 | PacketStalls = false; |
1716 | PacketStallCycles = 0; |
1717 | } |
1718 | PacketStalls |= producesStall(MI); |
1719 | PacketStallCycles = std::max(a: PacketStallCycles, b: calcStall(MI)); |
1720 | |
1721 | if (MI.isImplicitDef()) { |
1722 | // Add to the packet to allow subsequent instructions to be checked |
1723 | // properly. |
1724 | CurrentPacketMIs.push_back(x: &MI); |
1725 | return MII; |
1726 | } |
1727 | assert(ResourceTracker->canReserveResources(MI)); |
1728 | |
1729 | bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI); |
1730 | bool Good = true; |
1731 | |
1732 | if (GlueToNewValueJump) { |
1733 | MachineInstr &NvjMI = *++MII; |
1734 | // We need to put both instructions in the same packet: MI and NvjMI. |
1735 | // Either of them can require a constant extender. Try to add both to |
1736 | // the current packet, and if that fails, end the packet and start a |
1737 | // new one. |
1738 | ResourceTracker->reserveResources(MI); |
1739 | if (ExtMI) |
1740 | Good = tryAllocateResourcesForConstExt(Reserve: true); |
1741 | |
1742 | bool ExtNvjMI = HII->isExtended(MI: NvjMI) || HII->isConstExtended(MI: NvjMI); |
1743 | if (Good) { |
1744 | if (ResourceTracker->canReserveResources(MI&: NvjMI)) |
1745 | ResourceTracker->reserveResources(MI&: NvjMI); |
1746 | else |
1747 | Good = false; |
1748 | } |
1749 | if (Good && ExtNvjMI) |
1750 | Good = tryAllocateResourcesForConstExt(Reserve: true); |
1751 | |
1752 | if (!Good) { |
1753 | endPacket(MBB, MI); |
1754 | assert(ResourceTracker->canReserveResources(MI)); |
1755 | ResourceTracker->reserveResources(MI); |
1756 | if (ExtMI) { |
1757 | assert(canReserveResourcesForConstExt()); |
1758 | tryAllocateResourcesForConstExt(Reserve: true); |
1759 | } |
1760 | assert(ResourceTracker->canReserveResources(NvjMI)); |
1761 | ResourceTracker->reserveResources(MI&: NvjMI); |
1762 | if (ExtNvjMI) { |
1763 | assert(canReserveResourcesForConstExt()); |
1764 | reserveResourcesForConstExt(); |
1765 | } |
1766 | } |
1767 | CurrentPacketMIs.push_back(x: &MI); |
1768 | CurrentPacketMIs.push_back(x: &NvjMI); |
1769 | return MII; |
1770 | } |
1771 | |
1772 | ResourceTracker->reserveResources(MI); |
1773 | if (ExtMI && !tryAllocateResourcesForConstExt(Reserve: true)) { |
1774 | endPacket(MBB, MI); |
1775 | if (PromotedToDotNew) |
1776 | demoteToDotOld(MI); |
1777 | if (GlueAllocframeStore) { |
1778 | useCalleesSP(MI); |
1779 | GlueAllocframeStore = false; |
1780 | } |
1781 | ResourceTracker->reserveResources(MI); |
1782 | reserveResourcesForConstExt(); |
1783 | } |
1784 | |
1785 | CurrentPacketMIs.push_back(x: &MI); |
1786 | return MII; |
1787 | } |
1788 | |
1789 | void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB, |
1790 | MachineBasicBlock::iterator EndMI) { |
1791 | // Replace VLIWPacketizerList::endPacket(MBB, EndMI). |
1792 | LLVM_DEBUG({ |
1793 | if (!CurrentPacketMIs.empty()) { |
1794 | dbgs() << "Finalizing packet:\n" ; |
1795 | unsigned Idx = 0; |
1796 | for (MachineInstr *MI : CurrentPacketMIs) { |
1797 | unsigned R = ResourceTracker->getUsedResources(Idx++); |
1798 | dbgs() << " * [res:0x" << utohexstr(R) << "] " << *MI; |
1799 | } |
1800 | } |
1801 | }); |
1802 | |
1803 | bool memShufDisabled = getmemShufDisabled(); |
1804 | if (memShufDisabled && !foundLSInPacket()) { |
1805 | setmemShufDisabled(false); |
1806 | LLVM_DEBUG(dbgs() << " Not added to NoShufPacket\n" ); |
1807 | } |
1808 | memShufDisabled = getmemShufDisabled(); |
1809 | |
1810 | OldPacketMIs.clear(); |
1811 | for (MachineInstr *MI : CurrentPacketMIs) { |
1812 | MachineBasicBlock::instr_iterator NextMI = std::next(x: MI->getIterator()); |
1813 | for (auto &I : make_range(x: HII->expandVGatherPseudo(MI&: *MI), y: NextMI)) |
1814 | OldPacketMIs.push_back(x: &I); |
1815 | } |
1816 | CurrentPacketMIs.clear(); |
1817 | |
1818 | if (OldPacketMIs.size() > 1) { |
1819 | MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front()); |
1820 | MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator()); |
1821 | finalizeBundle(MBB&: *MBB, FirstMI, LastMI); |
1822 | auto BundleMII = std::prev(x: FirstMI); |
1823 | if (memShufDisabled) |
1824 | HII->setBundleNoShuf(BundleMII); |
1825 | |
1826 | setmemShufDisabled(false); |
1827 | } |
1828 | |
1829 | PacketHasDuplex = false; |
1830 | PacketHasSLOT0OnlyInsn = false; |
1831 | ResourceTracker->clearResources(); |
1832 | LLVM_DEBUG(dbgs() << "End packet\n" ); |
1833 | } |
1834 | |
1835 | bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) { |
1836 | if (Minimal) |
1837 | return false; |
1838 | |
1839 | if (producesStall(MI)) |
1840 | return false; |
1841 | |
1842 | // If TinyCore with Duplexes is enabled, check if this MI can form a Duplex |
1843 | // with any other instruction in the existing packet. |
1844 | auto &HST = MI.getParent()->getParent()->getSubtarget<HexagonSubtarget>(); |
1845 | // Constraint 1: Only one duplex allowed per packet. |
1846 | // Constraint 2: Consider duplex checks only if there is atleast one |
1847 | // instruction in a packet. |
1848 | // Constraint 3: If one of the existing instructions in the packet has a |
1849 | // SLOT0 only instruction that can not be duplexed, do not attempt to form |
1850 | // duplexes. (TODO: This will invalidate the L4_return* instructions to form a |
1851 | // duplex) |
1852 | if (HST.isTinyCoreWithDuplex() && CurrentPacketMIs.size() > 0 && |
1853 | !PacketHasDuplex) { |
1854 | // Check for SLOT0 only non-duplexable instruction in packet. |
1855 | for (auto &MJ : CurrentPacketMIs) |
1856 | PacketHasSLOT0OnlyInsn |= HII->isPureSlot0(MI: *MJ); |
1857 | // Get the Big Core Opcode (dup_*). |
1858 | int Opcode = HII->getDuplexOpcode(MI, ForBigCore: false); |
1859 | if (Opcode >= 0) { |
1860 | // We now have an instruction that can be duplexed. |
1861 | for (auto &MJ : CurrentPacketMIs) { |
1862 | if (HII->isDuplexPair(MIa: MI, MIb: *MJ) && !PacketHasSLOT0OnlyInsn) { |
1863 | PacketHasDuplex = true; |
1864 | return true; |
1865 | } |
1866 | } |
1867 | // If it can not be duplexed, check if there is a valid transition in DFA |
1868 | // with the original opcode. |
1869 | MachineInstr &MIRef = const_cast<MachineInstr &>(MI); |
1870 | MIRef.setDesc(HII->get(Opcode)); |
1871 | return ResourceTracker->canReserveResources(MI&: MIRef); |
1872 | } |
1873 | } |
1874 | |
1875 | return true; |
1876 | } |
1877 | |
1878 | // V60 forward scheduling. |
1879 | unsigned int HexagonPacketizerList::calcStall(const MachineInstr &I) { |
1880 | // Check whether the previous packet is in a different loop. If this is the |
1881 | // case, there is little point in trying to avoid a stall because that would |
1882 | // favor the rare case (loop entry) over the common case (loop iteration). |
1883 | // |
1884 | // TODO: We should really be able to check all the incoming edges if this is |
1885 | // the first packet in a basic block, so we can avoid stalls from the loop |
1886 | // backedge. |
1887 | if (!OldPacketMIs.empty()) { |
1888 | auto *OldBB = OldPacketMIs.front()->getParent(); |
1889 | auto *ThisBB = I.getParent(); |
1890 | if (MLI->getLoopFor(BB: OldBB) != MLI->getLoopFor(BB: ThisBB)) |
1891 | return 0; |
1892 | } |
1893 | |
1894 | SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)]; |
1895 | if (!SUI) |
1896 | return 0; |
1897 | |
1898 | // If the latency is 0 and there is a data dependence between this |
1899 | // instruction and any instruction in the current packet, we disregard any |
1900 | // potential stalls due to the instructions in the previous packet. Most of |
1901 | // the instruction pairs that can go together in the same packet have 0 |
1902 | // latency between them. The exceptions are |
1903 | // 1. NewValueJumps as they're generated much later and the latencies can't |
1904 | // be changed at that point. |
1905 | // 2. .cur instructions, if its consumer has a 0 latency successor (such as |
1906 | // .new). In this case, the latency between .cur and the consumer stays |
1907 | // non-zero even though we can have both .cur and .new in the same packet. |
1908 | // Changing the latency to 0 is not an option as it causes software pipeliner |
1909 | // to not pipeline in some cases. |
1910 | |
1911 | // For Example: |
1912 | // { |
1913 | // I1: v6.cur = vmem(r0++#1) |
1914 | // I2: v7 = valign(v6,v4,r2) |
1915 | // I3: vmem(r5++#1) = v7.new |
1916 | // } |
1917 | // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2. |
1918 | |
1919 | for (auto *J : CurrentPacketMIs) { |
1920 | SUnit *SUJ = MIToSUnit[J]; |
1921 | for (auto &Pred : SUI->Preds) |
1922 | if (Pred.getSUnit() == SUJ) |
1923 | if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) || |
1924 | HII->isNewValueJump(MI: I) || HII->isToBeScheduledASAP(MI1: *J, MI2: I)) |
1925 | return 0; |
1926 | } |
1927 | |
1928 | // Check if the latency is greater than one between this instruction and any |
1929 | // instruction in the previous packet. |
1930 | for (auto *J : OldPacketMIs) { |
1931 | SUnit *SUJ = MIToSUnit[J]; |
1932 | for (auto &Pred : SUI->Preds) |
1933 | if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1) |
1934 | return Pred.getLatency(); |
1935 | } |
1936 | |
1937 | return 0; |
1938 | } |
1939 | |
1940 | bool HexagonPacketizerList::producesStall(const MachineInstr &I) { |
1941 | unsigned int Latency = calcStall(I); |
1942 | if (Latency == 0) |
1943 | return false; |
1944 | // Ignore stall unless it stalls more than previous instruction in packet |
1945 | if (PacketStalls) |
1946 | return Latency > PacketStallCycles; |
1947 | return true; |
1948 | } |
1949 | |
1950 | //===----------------------------------------------------------------------===// |
1951 | // Public Constructor Functions |
1952 | //===----------------------------------------------------------------------===// |
1953 | |
1954 | FunctionPass *llvm::createHexagonPacketizer(bool Minimal) { |
1955 | return new HexagonPacketizer(Minimal); |
1956 | } |
1957 | |