1//===- MipsInstrInfo.cpp - Mips Instruction Information -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the Mips implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "MipsInstrInfo.h"
14#include "MCTargetDesc/MipsBaseInfo.h"
15#include "MCTargetDesc/MipsMCTargetDesc.h"
16#include "MipsSubtarget.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineOperand.h"
24#include "llvm/CodeGen/TargetOpcodes.h"
25#include "llvm/CodeGen/TargetSubtargetInfo.h"
26#include "llvm/IR/DebugInfoMetadata.h"
27#include "llvm/IR/DebugLoc.h"
28#include "llvm/MC/MCInstrDesc.h"
29#include "llvm/Target/TargetMachine.h"
30#include <cassert>
31
32using namespace llvm;
33
34#define GET_INSTRINFO_CTOR_DTOR
35#include "MipsGenInstrInfo.inc"
36
37// Pin the vtable to this file.
38void MipsInstrInfo::anchor() {}
39
40MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr)
41 : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP),
42 Subtarget(STI), UncondBrOpc(UncondBr) {}
43
44const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) {
45 if (STI.inMips16Mode())
46 return createMips16InstrInfo(STI);
47
48 return createMipsSEInstrInfo(STI);
49}
50
51bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const {
52 return op.isImm() && op.getImm() == 0;
53}
54
55/// insertNoop - If data hazard condition is found insert the target nop
56/// instruction.
57void MipsInstrInfo::
58insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const
59{
60 DebugLoc DL;
61 BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: get(Opcode: Mips::NOP));
62}
63
64MachineInstrBuilder MipsInstrInfo::insertNop(MachineBasicBlock &MBB,
65 MachineBasicBlock::iterator MI,
66 DebugLoc DL) const {
67 assert(!Subtarget.inMips16Mode() &&
68 "insertNop does not support MIPS16e mode at this time");
69 const unsigned MMOpc =
70 Subtarget.hasMips32r6() ? Mips::SLL_MMR6 : Mips::SLL_MM;
71 const unsigned Opc =
72 Subtarget.inMicroMipsMode() ? MMOpc : (unsigned)Mips::SLL;
73 return BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: get(Opcode: Opc), DestReg: Mips::ZERO)
74 .addReg(RegNo: Mips::ZERO)
75 .addImm(Val: 0);
76}
77
78MachineMemOperand *
79MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI,
80 MachineMemOperand::Flags Flags) const {
81 MachineFunction &MF = *MBB.getParent();
82 MachineFrameInfo &MFI = MF.getFrameInfo();
83
84 return MF.getMachineMemOperand(PtrInfo: MachinePointerInfo::getFixedStack(MF, FI),
85 F: Flags, Size: MFI.getObjectSize(ObjectIdx: FI),
86 BaseAlignment: MFI.getObjectAlign(ObjectIdx: FI));
87}
88
89//===----------------------------------------------------------------------===//
90// Branch Analysis
91//===----------------------------------------------------------------------===//
92
93void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc,
94 MachineBasicBlock *&BB,
95 SmallVectorImpl<MachineOperand> &Cond) const {
96 assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch");
97 int NumOp = Inst->getNumExplicitOperands();
98
99 // for both int and fp branches, the last explicit operand is the
100 // MBB.
101 BB = Inst->getOperand(i: NumOp-1).getMBB();
102 Cond.push_back(Elt: MachineOperand::CreateImm(Val: Opc));
103
104 for (int i = 0; i < NumOp-1; i++)
105 Cond.push_back(Elt: Inst->getOperand(i));
106}
107
108bool MipsInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
109 MachineBasicBlock *&TBB,
110 MachineBasicBlock *&FBB,
111 SmallVectorImpl<MachineOperand> &Cond,
112 bool AllowModify) const {
113 SmallVector<MachineInstr*, 2> BranchInstrs;
114 BranchType BT = analyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs);
115
116 return (BT == BT_None) || (BT == BT_Indirect);
117}
118
119void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
120 const DebugLoc &DL,
121 ArrayRef<MachineOperand> Cond) const {
122 unsigned Opc = Cond[0].getImm();
123 const MCInstrDesc &MCID = get(Opcode: Opc);
124 MachineInstrBuilder MIB = BuildMI(BB: &MBB, MIMD: DL, MCID);
125
126 for (unsigned i = 1; i < Cond.size(); ++i) {
127 assert((Cond[i].isImm() || Cond[i].isReg()) &&
128 "Cannot copy operand for conditional branch!");
129 MIB.add(MO: Cond[i]);
130 }
131 MIB.addMBB(MBB: TBB);
132}
133
134unsigned MipsInstrInfo::insertBranch(MachineBasicBlock &MBB,
135 MachineBasicBlock *TBB,
136 MachineBasicBlock *FBB,
137 ArrayRef<MachineOperand> Cond,
138 const DebugLoc &DL,
139 int *BytesAdded) const {
140 // Shouldn't be a fall through.
141 assert(TBB && "insertBranch must not be told to insert a fallthrough");
142 assert(!BytesAdded && "code size not handled");
143
144 // # of condition operands:
145 // Unconditional branches: 0
146 // Floating point branches: 1 (opc)
147 // Int BranchZero: 2 (opc, reg)
148 // Int Branch: 3 (opc, reg0, reg1)
149 assert((Cond.size() <= 3) &&
150 "# of Mips branch conditions must be <= 3!");
151
152 // Two-way Conditional branch.
153 if (FBB) {
154 BuildCondBr(MBB, TBB, DL, Cond);
155 BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: UncondBrOpc)).addMBB(MBB: FBB);
156 return 2;
157 }
158
159 // One way branch.
160 // Unconditional branch.
161 if (Cond.empty())
162 BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: UncondBrOpc)).addMBB(MBB: TBB);
163 else // Conditional branch.
164 BuildCondBr(MBB, TBB, DL, Cond);
165 return 1;
166}
167
168unsigned MipsInstrInfo::removeBranch(MachineBasicBlock &MBB,
169 int *BytesRemoved) const {
170 assert(!BytesRemoved && "code size not handled");
171
172 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
173 unsigned removed = 0;
174
175 // Up to 2 branches are removed.
176 // Note that indirect branches are not removed.
177 while (I != REnd && removed < 2) {
178 // Skip past debug instructions.
179 if (I->isDebugInstr()) {
180 ++I;
181 continue;
182 }
183 if (!getAnalyzableBrOpc(Opc: I->getOpcode()))
184 break;
185 // Remove the branch.
186 I->eraseFromParent();
187 I = MBB.rbegin();
188 ++removed;
189 }
190
191 return removed;
192}
193
194/// reverseBranchCondition - Return the inverse opcode of the
195/// specified Branch instruction.
196bool MipsInstrInfo::reverseBranchCondition(
197 SmallVectorImpl<MachineOperand> &Cond) const {
198 assert( (Cond.size() && Cond.size() <= 3) &&
199 "Invalid Mips branch condition!");
200 Cond[0].setImm(getOppositeBranchOpc(Opc: Cond[0].getImm()));
201 return false;
202}
203
204MipsInstrInfo::BranchType MipsInstrInfo::analyzeBranch(
205 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
206 SmallVectorImpl<MachineOperand> &Cond, bool AllowModify,
207 SmallVectorImpl<MachineInstr *> &BranchInstrs) const {
208 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
209
210 // Skip all the debug instructions.
211 while (I != REnd && I->isDebugInstr())
212 ++I;
213
214 if (I == REnd || !isUnpredicatedTerminator(MI: *I)) {
215 // This block ends with no branches (it just falls through to its succ).
216 // Leave TBB/FBB null.
217 TBB = FBB = nullptr;
218 return BT_NoBranch;
219 }
220
221 MachineInstr *LastInst = &*I;
222 unsigned LastOpc = LastInst->getOpcode();
223 BranchInstrs.push_back(Elt: LastInst);
224
225 // Not an analyzable branch (e.g., indirect jump).
226 if (!getAnalyzableBrOpc(Opc: LastOpc))
227 return LastInst->isIndirectBranch() ? BT_Indirect : BT_None;
228
229 // Get the second to last instruction in the block.
230 unsigned SecondLastOpc = 0;
231 MachineInstr *SecondLastInst = nullptr;
232
233 // Skip past any debug instruction to see if the second last actual
234 // is a branch.
235 ++I;
236 while (I != REnd && I->isDebugInstr())
237 ++I;
238
239 if (I != REnd) {
240 SecondLastInst = &*I;
241 SecondLastOpc = getAnalyzableBrOpc(Opc: SecondLastInst->getOpcode());
242
243 // Not an analyzable branch (must be an indirect jump).
244 if (isUnpredicatedTerminator(MI: *SecondLastInst) && !SecondLastOpc)
245 return BT_None;
246 }
247
248 // If there is only one terminator instruction, process it.
249 if (!SecondLastOpc) {
250 // Unconditional branch.
251 if (LastInst->isUnconditionalBranch()) {
252 TBB = LastInst->getOperand(i: 0).getMBB();
253 return BT_Uncond;
254 }
255
256 // Conditional branch
257 AnalyzeCondBr(Inst: LastInst, Opc: LastOpc, BB&: TBB, Cond);
258 return BT_Cond;
259 }
260
261 // If we reached here, there are two branches.
262 // If there are three terminators, we don't know what sort of block this is.
263 if (++I != REnd && isUnpredicatedTerminator(MI: *I))
264 return BT_None;
265
266 BranchInstrs.insert(I: BranchInstrs.begin(), Elt: SecondLastInst);
267
268 // If second to last instruction is an unconditional branch,
269 // analyze it and remove the last instruction.
270 if (SecondLastInst->isUnconditionalBranch()) {
271 // Return if the last instruction cannot be removed.
272 if (!AllowModify)
273 return BT_None;
274
275 TBB = SecondLastInst->getOperand(i: 0).getMBB();
276 LastInst->eraseFromParent();
277 BranchInstrs.pop_back();
278 return BT_Uncond;
279 }
280
281 // Conditional branch followed by an unconditional branch.
282 // The last one must be unconditional.
283 if (!LastInst->isUnconditionalBranch())
284 return BT_None;
285
286 AnalyzeCondBr(Inst: SecondLastInst, Opc: SecondLastOpc, BB&: TBB, Cond);
287 FBB = LastInst->getOperand(i: 0).getMBB();
288
289 return BT_CondUncond;
290}
291
292bool MipsInstrInfo::isBranchOffsetInRange(unsigned BranchOpc,
293 int64_t BrOffset) const {
294 switch (BranchOpc) {
295 case Mips::B:
296 case Mips::BAL:
297 case Mips::BAL_BR:
298 case Mips::BAL_BR_MM:
299 case Mips::BC1F:
300 case Mips::BC1FL:
301 case Mips::BC1T:
302 case Mips::BC1TL:
303 case Mips::BEQ: case Mips::BEQ64:
304 case Mips::BEQL:
305 case Mips::BGEZ: case Mips::BGEZ64:
306 case Mips::BGEZL:
307 case Mips::BGEZAL:
308 case Mips::BGEZALL:
309 case Mips::BGTZ: case Mips::BGTZ64:
310 case Mips::BGTZL:
311 case Mips::BLEZ: case Mips::BLEZ64:
312 case Mips::BLEZL:
313 case Mips::BLTZ: case Mips::BLTZ64:
314 case Mips::BLTZL:
315 case Mips::BLTZAL:
316 case Mips::BLTZALL:
317 case Mips::BNE: case Mips::BNE64:
318 case Mips::BNEL:
319 return isInt<18>(x: BrOffset);
320
321 // microMIPSr3 branches
322 case Mips::B_MM:
323 case Mips::BC1F_MM:
324 case Mips::BC1T_MM:
325 case Mips::BEQ_MM:
326 case Mips::BGEZ_MM:
327 case Mips::BGEZAL_MM:
328 case Mips::BGTZ_MM:
329 case Mips::BLEZ_MM:
330 case Mips::BLTZ_MM:
331 case Mips::BLTZAL_MM:
332 case Mips::BNE_MM:
333 case Mips::BEQZC_MM:
334 case Mips::BNEZC_MM:
335 return isInt<17>(x: BrOffset);
336
337 // microMIPSR3 short branches.
338 case Mips::B16_MM:
339 return isInt<11>(x: BrOffset);
340
341 case Mips::BEQZ16_MM:
342 case Mips::BNEZ16_MM:
343 return isInt<8>(x: BrOffset);
344
345 // MIPSR6 branches.
346 case Mips::BALC:
347 case Mips::BC:
348 return isInt<28>(x: BrOffset);
349
350 case Mips::BC1EQZ:
351 case Mips::BC1NEZ:
352 case Mips::BC2EQZ:
353 case Mips::BC2NEZ:
354 case Mips::BEQC: case Mips::BEQC64:
355 case Mips::BNEC: case Mips::BNEC64:
356 case Mips::BGEC: case Mips::BGEC64:
357 case Mips::BGEUC: case Mips::BGEUC64:
358 case Mips::BGEZC: case Mips::BGEZC64:
359 case Mips::BGTZC: case Mips::BGTZC64:
360 case Mips::BLEZC: case Mips::BLEZC64:
361 case Mips::BLTC: case Mips::BLTC64:
362 case Mips::BLTUC: case Mips::BLTUC64:
363 case Mips::BLTZC: case Mips::BLTZC64:
364 case Mips::BNVC:
365 case Mips::BOVC:
366 case Mips::BGEZALC:
367 case Mips::BEQZALC:
368 case Mips::BGTZALC:
369 case Mips::BLEZALC:
370 case Mips::BLTZALC:
371 case Mips::BNEZALC:
372 return isInt<18>(x: BrOffset);
373
374 case Mips::BEQZC: case Mips::BEQZC64:
375 case Mips::BNEZC: case Mips::BNEZC64:
376 return isInt<23>(x: BrOffset);
377
378 // microMIPSR6 branches
379 case Mips::BC16_MMR6:
380 return isInt<11>(x: BrOffset);
381
382 case Mips::BEQZC16_MMR6:
383 case Mips::BNEZC16_MMR6:
384 return isInt<8>(x: BrOffset);
385
386 case Mips::BALC_MMR6:
387 case Mips::BC_MMR6:
388 return isInt<27>(x: BrOffset);
389
390 case Mips::BC1EQZC_MMR6:
391 case Mips::BC1NEZC_MMR6:
392 case Mips::BC2EQZC_MMR6:
393 case Mips::BC2NEZC_MMR6:
394 case Mips::BGEZALC_MMR6:
395 case Mips::BEQZALC_MMR6:
396 case Mips::BGTZALC_MMR6:
397 case Mips::BLEZALC_MMR6:
398 case Mips::BLTZALC_MMR6:
399 case Mips::BNEZALC_MMR6:
400 case Mips::BNVC_MMR6:
401 case Mips::BOVC_MMR6:
402 return isInt<17>(x: BrOffset);
403
404 case Mips::BEQC_MMR6:
405 case Mips::BNEC_MMR6:
406 case Mips::BGEC_MMR6:
407 case Mips::BGEUC_MMR6:
408 case Mips::BGEZC_MMR6:
409 case Mips::BGTZC_MMR6:
410 case Mips::BLEZC_MMR6:
411 case Mips::BLTC_MMR6:
412 case Mips::BLTUC_MMR6:
413 case Mips::BLTZC_MMR6:
414 return isInt<18>(x: BrOffset);
415
416 case Mips::BEQZC_MMR6:
417 case Mips::BNEZC_MMR6:
418 return isInt<23>(x: BrOffset);
419
420 // DSP branches.
421 case Mips::BPOSGE32:
422 return isInt<18>(x: BrOffset);
423 case Mips::BPOSGE32_MM:
424 case Mips::BPOSGE32C_MMR3:
425 return isInt<17>(x: BrOffset);
426
427 // cnMIPS branches.
428 case Mips::BBIT0:
429 case Mips::BBIT032:
430 case Mips::BBIT1:
431 case Mips::BBIT132:
432 return isInt<18>(x: BrOffset);
433
434 // MSA branches.
435 case Mips::BZ_B:
436 case Mips::BZ_H:
437 case Mips::BZ_W:
438 case Mips::BZ_D:
439 case Mips::BZ_V:
440 case Mips::BNZ_B:
441 case Mips::BNZ_H:
442 case Mips::BNZ_W:
443 case Mips::BNZ_D:
444 case Mips::BNZ_V:
445 return isInt<18>(x: BrOffset);
446 }
447
448 llvm_unreachable("Unknown branch instruction!");
449}
450
451/// Return the corresponding compact (no delay slot) form of a branch.
452unsigned MipsInstrInfo::getEquivalentCompactForm(
453 const MachineBasicBlock::iterator I) const {
454 unsigned Opcode = I->getOpcode();
455 bool canUseShortMicroMipsCTI = false;
456
457 if (Subtarget.inMicroMipsMode()) {
458 switch (Opcode) {
459 case Mips::BNE:
460 case Mips::BNE_MM:
461 case Mips::BEQ:
462 case Mips::BEQ_MM:
463 // microMIPS has NE,EQ branches that do not have delay slots provided one
464 // of the operands is zero.
465 if (I->getOperand(i: 1).getReg() == Subtarget.getABI().GetZeroReg())
466 canUseShortMicroMipsCTI = true;
467 break;
468 // For microMIPS the PseudoReturn and PseudoIndirectBranch are always
469 // expanded to JR_MM, so they can be replaced with JRC16_MM.
470 case Mips::JR:
471 case Mips::PseudoReturn:
472 case Mips::PseudoIndirectBranch:
473 canUseShortMicroMipsCTI = true;
474 break;
475 }
476 }
477
478 // MIPSR6 forbids both operands being the zero register.
479 if (Subtarget.hasMips32r6() && (I->getNumOperands() > 1) &&
480 (I->getOperand(i: 0).isReg() &&
481 (I->getOperand(i: 0).getReg() == Mips::ZERO ||
482 I->getOperand(i: 0).getReg() == Mips::ZERO_64)) &&
483 (I->getOperand(i: 1).isReg() &&
484 (I->getOperand(i: 1).getReg() == Mips::ZERO ||
485 I->getOperand(i: 1).getReg() == Mips::ZERO_64)))
486 return 0;
487
488 if (Subtarget.hasMips32r6() || canUseShortMicroMipsCTI) {
489 switch (Opcode) {
490 case Mips::B:
491 return Mips::BC;
492 case Mips::BAL:
493 return Mips::BALC;
494 case Mips::BEQ:
495 case Mips::BEQ_MM:
496 if (canUseShortMicroMipsCTI)
497 return Mips::BEQZC_MM;
498 else if (I->getOperand(i: 0).getReg() == I->getOperand(i: 1).getReg())
499 return 0;
500 return Mips::BEQC;
501 case Mips::BNE:
502 case Mips::BNE_MM:
503 if (canUseShortMicroMipsCTI)
504 return Mips::BNEZC_MM;
505 else if (I->getOperand(i: 0).getReg() == I->getOperand(i: 1).getReg())
506 return 0;
507 return Mips::BNEC;
508 case Mips::BGE:
509 if (I->getOperand(i: 0).getReg() == I->getOperand(i: 1).getReg())
510 return 0;
511 return Mips::BGEC;
512 case Mips::BGEU:
513 if (I->getOperand(i: 0).getReg() == I->getOperand(i: 1).getReg())
514 return 0;
515 return Mips::BGEUC;
516 case Mips::BGEZ:
517 return Mips::BGEZC;
518 case Mips::BGTZ:
519 return Mips::BGTZC;
520 case Mips::BLEZ:
521 return Mips::BLEZC;
522 case Mips::BLT:
523 if (I->getOperand(i: 0).getReg() == I->getOperand(i: 1).getReg())
524 return 0;
525 return Mips::BLTC;
526 case Mips::BLTU:
527 if (I->getOperand(i: 0).getReg() == I->getOperand(i: 1).getReg())
528 return 0;
529 return Mips::BLTUC;
530 case Mips::BLTZ:
531 return Mips::BLTZC;
532 case Mips::BEQ64:
533 if (I->getOperand(i: 0).getReg() == I->getOperand(i: 1).getReg())
534 return 0;
535 return Mips::BEQC64;
536 case Mips::BNE64:
537 if (I->getOperand(i: 0).getReg() == I->getOperand(i: 1).getReg())
538 return 0;
539 return Mips::BNEC64;
540 case Mips::BGTZ64:
541 return Mips::BGTZC64;
542 case Mips::BGEZ64:
543 return Mips::BGEZC64;
544 case Mips::BLTZ64:
545 return Mips::BLTZC64;
546 case Mips::BLEZ64:
547 return Mips::BLEZC64;
548 // For MIPSR6, the instruction 'jic' can be used for these cases. Some
549 // tools will accept 'jrc reg' as an alias for 'jic 0, $reg'.
550 case Mips::JR:
551 case Mips::PseudoIndirectBranchR6:
552 case Mips::PseudoReturn:
553 case Mips::TAILCALLR6REG:
554 if (canUseShortMicroMipsCTI)
555 return Mips::JRC16_MM;
556 return Mips::JIC;
557 case Mips::JALRPseudo:
558 return Mips::JIALC;
559 case Mips::JR64:
560 case Mips::PseudoIndirectBranch64R6:
561 case Mips::PseudoReturn64:
562 case Mips::TAILCALL64R6REG:
563 return Mips::JIC64;
564 case Mips::JALR64Pseudo:
565 return Mips::JIALC64;
566 default:
567 return 0;
568 }
569 }
570
571 return 0;
572}
573
574/// Predicate for distingushing between control transfer instructions and all
575/// other instructions for handling forbidden slots. Consider inline assembly
576/// as unsafe as well.
577bool MipsInstrInfo::SafeInForbiddenSlot(const MachineInstr &MI) const {
578 if (MI.isInlineAsm())
579 return false;
580
581 return (MI.getDesc().TSFlags & MipsII::IsCTI) == 0;
582}
583
584bool MipsInstrInfo::SafeInFPUDelaySlot(const MachineInstr &MIInSlot,
585 const MachineInstr &FPUMI) const {
586 if (MIInSlot.isInlineAsm())
587 return false;
588
589 if (HasFPUDelaySlot(MI: MIInSlot))
590 return false;
591
592 switch (MIInSlot.getOpcode()) {
593 case Mips::BC1F:
594 case Mips::BC1FL:
595 case Mips::BC1T:
596 case Mips::BC1TL:
597 return false;
598 }
599
600 for (const MachineOperand &Op : FPUMI.defs()) {
601 if (!Op.isReg())
602 continue;
603
604 bool Reads, Writes;
605 std::tie(args&: Reads, args&: Writes) = MIInSlot.readsWritesVirtualRegister(Reg: Op.getReg());
606
607 if (Reads || Writes)
608 return false;
609 }
610
611 return true;
612}
613
614/// Predicate for distinguishing instructions that are hazardous in a load delay
615/// slot. Consider inline assembly as unsafe as well.
616bool MipsInstrInfo::SafeInLoadDelaySlot(const MachineInstr &MIInSlot,
617 const MachineInstr &LoadMI) const {
618 if (MIInSlot.isInlineAsm())
619 return false;
620
621 return !llvm::any_of(Range: LoadMI.defs(), P: [&](const MachineOperand &Op) {
622 return Op.isReg() && MIInSlot.readsRegister(Reg: Op.getReg(), /*TRI=*/nullptr);
623 });
624}
625
626/// Predicate for distingushing instructions that have forbidden slots.
627bool MipsInstrInfo::HasForbiddenSlot(const MachineInstr &MI) const {
628 return (MI.getDesc().TSFlags & MipsII::HasForbiddenSlot) != 0;
629}
630
631/// Predicate for distingushing instructions that have FPU delay slots.
632bool MipsInstrInfo::HasFPUDelaySlot(const MachineInstr &MI) const {
633 switch (MI.getOpcode()) {
634 case Mips::MTC1:
635 case Mips::MFC1:
636 case Mips::MTC1_D64:
637 case Mips::MFC1_D64:
638 case Mips::DMTC1:
639 case Mips::DMFC1:
640 case Mips::FCMP_S32:
641 case Mips::FCMP_D32:
642 case Mips::FCMP_D64:
643 return true;
644
645 default:
646 return false;
647 }
648}
649
650/// Predicate for distingushing instructions that have load delay slots.
651bool MipsInstrInfo::HasLoadDelaySlot(const MachineInstr &MI) const {
652 switch (MI.getOpcode()) {
653 case Mips::LB:
654 case Mips::LBu:
655 case Mips::LH:
656 case Mips::LHu:
657 case Mips::LW:
658 case Mips::LWR:
659 case Mips::LWL:
660 return true;
661 default:
662 return false;
663 }
664}
665
666/// Return the number of bytes of code the specified instruction may be.
667unsigned MipsInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
668 switch (MI.getOpcode()) {
669 default:
670 return MI.getDesc().getSize();
671 case TargetOpcode::INLINEASM:
672 case TargetOpcode::INLINEASM_BR: { // Inline Asm: Variable size.
673 const MachineFunction *MF = MI.getParent()->getParent();
674 const char *AsmStr = MI.getOperand(i: 0).getSymbolName();
675 return getInlineAsmLength(Str: AsmStr, MAI: *MF->getTarget().getMCAsmInfo());
676 }
677 case Mips::CONSTPOOL_ENTRY:
678 // If this machine instr is a constant pool entry, its size is recorded as
679 // operand #2.
680 return MI.getOperand(i: 2).getImm();
681 }
682}
683
684MachineInstrBuilder
685MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc,
686 MachineBasicBlock::iterator I) const {
687 MachineInstrBuilder MIB;
688
689 // Certain branches have two forms: e.g beq $1, $zero, dest vs beqz $1, dest
690 // Pick the zero form of the branch for readable assembly and for greater
691 // branch distance in non-microMIPS mode.
692 // Additional MIPSR6 does not permit the use of register $zero for compact
693 // branches.
694 // FIXME: Certain atomic sequences on mips64 generate 32bit references to
695 // Mips::ZERO, which is incorrect. This test should be updated to use
696 // Subtarget.getABI().GetZeroReg() when those atomic sequences and others
697 // are fixed.
698 int ZeroOperandPosition = -1;
699 bool BranchWithZeroOperand = false;
700 if (I->isBranch() && !I->isPseudo()) {
701 auto TRI = I->getParent()->getParent()->getSubtarget().getRegisterInfo();
702 ZeroOperandPosition = I->findRegisterUseOperandIdx(Reg: Mips::ZERO, TRI, isKill: false);
703 BranchWithZeroOperand = ZeroOperandPosition != -1;
704 }
705
706 if (BranchWithZeroOperand) {
707 switch (NewOpc) {
708 case Mips::BEQC:
709 NewOpc = Mips::BEQZC;
710 break;
711 case Mips::BNEC:
712 NewOpc = Mips::BNEZC;
713 break;
714 case Mips::BGEC:
715 NewOpc = Mips::BGEZC;
716 break;
717 case Mips::BLTC:
718 NewOpc = Mips::BLTZC;
719 break;
720 case Mips::BEQC64:
721 NewOpc = Mips::BEQZC64;
722 break;
723 case Mips::BNEC64:
724 NewOpc = Mips::BNEZC64;
725 break;
726 }
727 }
728
729 MIB = BuildMI(BB&: *I->getParent(), I, MIMD: I->getDebugLoc(), MCID: get(Opcode: NewOpc));
730
731 // For MIPSR6 JI*C requires an immediate 0 as an operand, JIALC(64) an
732 // immediate 0 as an operand and requires the removal of it's implicit-def %ra
733 // implicit operand as copying the implicit operations of the instructio we're
734 // looking at will give us the correct flags.
735 if (NewOpc == Mips::JIC || NewOpc == Mips::JIALC || NewOpc == Mips::JIC64 ||
736 NewOpc == Mips::JIALC64) {
737
738 if (NewOpc == Mips::JIALC || NewOpc == Mips::JIALC64)
739 MIB->removeOperand(OpNo: 0);
740
741 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) {
742 MIB.add(MO: I->getOperand(i: J));
743 }
744
745 MIB.addImm(Val: 0);
746
747 // If I has an MCSymbol operand (used by asm printer, to emit R_MIPS_JALR),
748 // add it to the new instruction.
749 for (unsigned J = I->getDesc().getNumOperands(), E = I->getNumOperands();
750 J < E; ++J) {
751 const MachineOperand &MO = I->getOperand(i: J);
752 if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR))
753 MIB.addSym(Sym: MO.getMCSymbol(), TargetFlags: MipsII::MO_JALR);
754 }
755
756
757 } else {
758 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) {
759 if (BranchWithZeroOperand && (unsigned)ZeroOperandPosition == J)
760 continue;
761
762 MIB.add(MO: I->getOperand(i: J));
763 }
764 }
765
766 MIB.copyImplicitOps(OtherMI: *I);
767 MIB.cloneMemRefs(OtherMI: *I);
768 return MIB;
769}
770
771bool MipsInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
772 unsigned &SrcOpIdx1,
773 unsigned &SrcOpIdx2) const {
774 assert(!MI.isBundle() &&
775 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
776
777 const MCInstrDesc &MCID = MI.getDesc();
778 if (!MCID.isCommutable())
779 return false;
780
781 switch (MI.getOpcode()) {
782 case Mips::DPADD_U_H:
783 case Mips::DPADD_U_W:
784 case Mips::DPADD_U_D:
785 case Mips::DPADD_S_H:
786 case Mips::DPADD_S_W:
787 case Mips::DPADD_S_D:
788 // The first operand is both input and output, so it should not commute
789 if (!fixCommutedOpIndices(ResultIdx1&: SrcOpIdx1, ResultIdx2&: SrcOpIdx2, CommutableOpIdx1: 2, CommutableOpIdx2: 3))
790 return false;
791
792 if (!MI.getOperand(i: SrcOpIdx1).isReg() || !MI.getOperand(i: SrcOpIdx2).isReg())
793 return false;
794 return true;
795 }
796 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
797}
798
799// ins, ext, dext*, dins have the following constraints:
800// X <= pos < Y
801// X < size <= Y
802// X < pos+size <= Y
803//
804// dinsm and dinsu have the following constraints:
805// X <= pos < Y
806// X <= size <= Y
807// X < pos+size <= Y
808//
809// The callee of verifyInsExtInstruction however gives the bounds of
810// dins[um] like the other (d)ins (d)ext(um) instructions, so that this
811// function doesn't have to vary it's behaviour based on the instruction
812// being checked.
813static bool verifyInsExtInstruction(const MachineInstr &MI, StringRef &ErrInfo,
814 const int64_t PosLow, const int64_t PosHigh,
815 const int64_t SizeLow,
816 const int64_t SizeHigh,
817 const int64_t BothLow,
818 const int64_t BothHigh) {
819 MachineOperand MOPos = MI.getOperand(i: 2);
820 if (!MOPos.isImm()) {
821 ErrInfo = "Position is not an immediate!";
822 return false;
823 }
824 int64_t Pos = MOPos.getImm();
825 if (!((PosLow <= Pos) && (Pos < PosHigh))) {
826 ErrInfo = "Position operand is out of range!";
827 return false;
828 }
829
830 MachineOperand MOSize = MI.getOperand(i: 3);
831 if (!MOSize.isImm()) {
832 ErrInfo = "Size operand is not an immediate!";
833 return false;
834 }
835 int64_t Size = MOSize.getImm();
836 if (!((SizeLow < Size) && (Size <= SizeHigh))) {
837 ErrInfo = "Size operand is out of range!";
838 return false;
839 }
840
841 if (!((BothLow < (Pos + Size)) && ((Pos + Size) <= BothHigh))) {
842 ErrInfo = "Position + Size is out of range!";
843 return false;
844 }
845
846 return true;
847}
848
849// Perform target specific instruction verification.
850bool MipsInstrInfo::verifyInstruction(const MachineInstr &MI,
851 StringRef &ErrInfo) const {
852 // Verify that ins and ext instructions are well formed.
853 switch (MI.getOpcode()) {
854 case Mips::EXT:
855 case Mips::EXT_MM:
856 case Mips::INS:
857 case Mips::INS_MM:
858 case Mips::DINS:
859 return verifyInsExtInstruction(MI, ErrInfo, PosLow: 0, PosHigh: 32, SizeLow: 0, SizeHigh: 32, BothLow: 0, BothHigh: 32);
860 case Mips::DINSM:
861 // The ISA spec has a subtle difference between dinsm and dextm
862 // in that it says:
863 // 2 <= size <= 64 for 'dinsm' but 'dextm' has 32 < size <= 64.
864 // To make the bounds checks similar, the range 1 < size <= 64 is checked
865 // for 'dinsm'.
866 return verifyInsExtInstruction(MI, ErrInfo, PosLow: 0, PosHigh: 32, SizeLow: 1, SizeHigh: 64, BothLow: 32, BothHigh: 64);
867 case Mips::DINSU:
868 // The ISA spec has a subtle difference between dinsu and dextu in that
869 // the size range of dinsu is specified as 1 <= size <= 32 whereas size
870 // for dextu is 0 < size <= 32. The range checked for dinsu here is
871 // 0 < size <= 32, which is equivalent and similar to dextu.
872 return verifyInsExtInstruction(MI, ErrInfo, PosLow: 32, PosHigh: 64, SizeLow: 0, SizeHigh: 32, BothLow: 32, BothHigh: 64);
873 case Mips::DEXT:
874 return verifyInsExtInstruction(MI, ErrInfo, PosLow: 0, PosHigh: 32, SizeLow: 0, SizeHigh: 32, BothLow: 0, BothHigh: 63);
875 case Mips::DEXTM:
876 return verifyInsExtInstruction(MI, ErrInfo, PosLow: 0, PosHigh: 32, SizeLow: 32, SizeHigh: 64, BothLow: 32, BothHigh: 64);
877 case Mips::DEXTU:
878 return verifyInsExtInstruction(MI, ErrInfo, PosLow: 32, PosHigh: 64, SizeLow: 0, SizeHigh: 32, BothLow: 32, BothHigh: 64);
879 case Mips::TAILCALLREG:
880 case Mips::PseudoIndirectBranch:
881 case Mips::JR:
882 case Mips::JR64:
883 case Mips::JALR:
884 case Mips::JALR64:
885 case Mips::JALRPseudo:
886 if (!Subtarget.useIndirectJumpsHazard())
887 return true;
888
889 ErrInfo = "invalid instruction when using jump guards!";
890 return false;
891 default:
892 return true;
893 }
894
895 return true;
896}
897
898std::pair<unsigned, unsigned>
899MipsInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
900 return std::make_pair(x&: TF, y: 0u);
901}
902
903ArrayRef<std::pair<unsigned, const char*>>
904MipsInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
905 using namespace MipsII;
906
907 static const std::pair<unsigned, const char*> Flags[] = {
908 {MO_GOT, "mips-got"},
909 {MO_GOT_CALL, "mips-got-call"},
910 {MO_GPREL, "mips-gprel"},
911 {MO_ABS_HI, "mips-abs-hi"},
912 {MO_ABS_LO, "mips-abs-lo"},
913 {MO_TLSGD, "mips-tlsgd"},
914 {MO_TLSLDM, "mips-tlsldm"},
915 {MO_DTPREL_HI, "mips-dtprel-hi"},
916 {MO_DTPREL_LO, "mips-dtprel-lo"},
917 {MO_GOTTPREL, "mips-gottprel"},
918 {MO_TPREL_HI, "mips-tprel-hi"},
919 {MO_TPREL_LO, "mips-tprel-lo"},
920 {MO_GPOFF_HI, "mips-gpoff-hi"},
921 {MO_GPOFF_LO, "mips-gpoff-lo"},
922 {MO_GOT_DISP, "mips-got-disp"},
923 {MO_GOT_PAGE, "mips-got-page"},
924 {MO_GOT_OFST, "mips-got-ofst"},
925 {MO_HIGHER, "mips-higher"},
926 {MO_HIGHEST, "mips-highest"},
927 {MO_GOT_HI16, "mips-got-hi16"},
928 {MO_GOT_LO16, "mips-got-lo16"},
929 {MO_CALL_HI16, "mips-call-hi16"},
930 {MO_CALL_LO16, "mips-call-lo16"},
931 {MO_JALR, "mips-jalr"}
932 };
933 return ArrayRef(Flags);
934}
935
936std::optional<ParamLoadedValue>
937MipsInstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
938 DIExpression *Expr =
939 DIExpression::get(Context&: MI.getMF()->getFunction().getContext(), Elements: {});
940
941 // TODO: Special MIPS instructions that need to be described separately.
942 if (auto RegImm = isAddImmediate(MI, Reg)) {
943 Register SrcReg = RegImm->Reg;
944 int64_t Offset = RegImm->Imm;
945 // When SrcReg is $zero, treat loaded value as immediate only.
946 // Ex. $a2 = ADDiu $zero, 10
947 if (SrcReg == Mips::ZERO || SrcReg == Mips::ZERO_64) {
948 return ParamLoadedValue(MI.getOperand(i: 2), Expr);
949 }
950 Expr = DIExpression::prepend(Expr, Flags: DIExpression::ApplyOffset, Offset);
951 return ParamLoadedValue(MachineOperand::CreateReg(Reg: SrcReg, isDef: false), Expr);
952 } else if (auto DestSrc = isCopyInstr(MI)) {
953 const MachineFunction *MF = MI.getMF();
954 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
955 Register DestReg = DestSrc->Destination->getReg();
956 // TODO: Handle cases where the Reg is sub- or super-register of the
957 // DestReg.
958 if (TRI->isSuperRegister(RegA: Reg, RegB: DestReg) || TRI->isSubRegister(RegA: Reg, RegB: DestReg))
959 return std::nullopt;
960 }
961
962 return TargetInstrInfo::describeLoadedValue(MI, Reg);
963}
964
965std::optional<RegImmPair> MipsInstrInfo::isAddImmediate(const MachineInstr &MI,
966 Register Reg) const {
967 // TODO: Handle cases where Reg is a super- or sub-register of the
968 // destination register.
969 const MachineOperand &Op0 = MI.getOperand(i: 0);
970 if (!Op0.isReg() || Reg != Op0.getReg())
971 return std::nullopt;
972
973 switch (MI.getOpcode()) {
974 case Mips::ADDiu:
975 case Mips::DADDiu: {
976 const MachineOperand &Dop = MI.getOperand(i: 0);
977 const MachineOperand &Sop1 = MI.getOperand(i: 1);
978 const MachineOperand &Sop2 = MI.getOperand(i: 2);
979 // Value is sum of register and immediate. Immediate value could be
980 // global string address which is not supported.
981 if (Dop.isReg() && Sop1.isReg() && Sop2.isImm())
982 return RegImmPair{Sop1.getReg(), Sop2.getImm()};
983 // TODO: Handle case where Sop1 is a frame-index.
984 }
985 }
986 return std::nullopt;
987}
988