1//===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the PowerPC implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
14#define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
15
16#include "MCTargetDesc/PPCMCTargetDesc.h"
17#include "PPC.h"
18#include "PPCRegisterInfo.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/CodeGen/TargetInstrInfo.h"
21
22#define GET_INSTRINFO_HEADER
23#include "PPCGenInstrInfo.inc"
24
25namespace llvm {
26
27// Instructions that have an immediate form might be convertible to that
28// form if the correct input is a result of a load immediate. In order to
29// know whether the transformation is special, we might need to know some
30// of the details of the two forms.
31struct ImmInstrInfo {
32 // Is the immediate field in the immediate form signed or unsigned?
33 uint64_t SignedImm : 1;
34 // Does the immediate need to be a multiple of some value?
35 uint64_t ImmMustBeMultipleOf : 5;
36 // Is R0/X0 treated specially by the original r+r instruction?
37 // If so, in which operand?
38 uint64_t ZeroIsSpecialOrig : 3;
39 // Is R0/X0 treated specially by the new r+i instruction?
40 // If so, in which operand?
41 uint64_t ZeroIsSpecialNew : 3;
42 // Is the operation commutative?
43 uint64_t IsCommutative : 1;
44 // The operand number to check for add-immediate def.
45 uint64_t OpNoForForwarding : 3;
46 // The operand number for the immediate.
47 uint64_t ImmOpNo : 3;
48 // The opcode of the new instruction.
49 uint64_t ImmOpcode : 16;
50 // The size of the immediate.
51 uint64_t ImmWidth : 5;
52 // The immediate should be truncated to N bits.
53 uint64_t TruncateImmTo : 5;
54 // Is the instruction summing the operand
55 uint64_t IsSummingOperands : 1;
56};
57
58// Information required to convert an instruction to just a materialized
59// immediate.
60struct LoadImmediateInfo {
61 unsigned Imm : 16;
62 unsigned Is64Bit : 1;
63 unsigned SetCR : 1;
64};
65
66// Index into the OpcodesForSpill array.
67enum SpillOpcodeKey {
68 SOK_Int4Spill,
69 SOK_Int8Spill,
70 SOK_Float8Spill,
71 SOK_Float4Spill,
72 SOK_CRSpill,
73 SOK_CRBitSpill,
74 SOK_VRVectorSpill,
75 SOK_VSXVectorSpill,
76 SOK_VectorFloat8Spill,
77 SOK_VectorFloat4Spill,
78 SOK_SpillToVSR,
79 SOK_PairedVecSpill,
80 SOK_AccumulatorSpill,
81 SOK_UAccumulatorSpill,
82 SOK_WAccumulatorSpill,
83 SOK_SPESpill,
84 SOK_PairedG8Spill,
85 SOK_LastOpcodeSpill // This must be last on the enum.
86};
87
88// PPC MachineCombiner patterns
89enum PPCMachineCombinerPattern : unsigned {
90 // These are patterns matched by the PowerPC to reassociate FMA chains.
91 REASSOC_XY_AMM_BMM = MachineCombinerPattern::TARGET_PATTERN_START,
92 REASSOC_XMM_AMM_BMM,
93
94 // These are patterns matched by the PowerPC to reassociate FMA and FSUB to
95 // reduce register pressure.
96 REASSOC_XY_BCA,
97 REASSOC_XY_BAC,
98
99};
100
101// Define list of load and store spill opcodes.
102#define NoInstr PPC::INSTRUCTION_LIST_END
103#define Pwr8LoadOpcodes \
104 { \
105 PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
106 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, \
107 PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr, NoInstr, PPC::EVLDD, \
108 PPC::RESTORE_QUADWORD \
109 }
110
111#define Pwr9LoadOpcodes \
112 { \
113 PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
114 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
115 PPC::DFLOADf32, PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr, \
116 NoInstr, NoInstr, PPC::RESTORE_QUADWORD \
117 }
118
119#define Pwr10LoadOpcodes \
120 { \
121 PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
122 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
123 PPC::DFLOADf32, PPC::SPILLTOVSR_LD, PPC::LXVP, PPC::RESTORE_ACC, \
124 PPC::RESTORE_UACC, NoInstr, NoInstr, PPC::RESTORE_QUADWORD \
125 }
126
127#define FutureLoadOpcodes \
128 { \
129 PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
130 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
131 PPC::DFLOADf32, PPC::SPILLTOVSR_LD, PPC::LXVP, PPC::RESTORE_ACC, \
132 PPC::RESTORE_UACC, PPC::RESTORE_WACC, NoInstr, PPC::RESTORE_QUADWORD \
133 }
134
135#define Pwr8StoreOpcodes \
136 { \
137 PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
138 PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, \
139 PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, NoInstr, PPC::EVSTDD, \
140 PPC::SPILL_QUADWORD \
141 }
142
143#define Pwr9StoreOpcodes \
144 { \
145 PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
146 PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
147 PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, NoInstr, NoInstr, \
148 PPC::SPILL_QUADWORD \
149 }
150
151#define Pwr10StoreOpcodes \
152 { \
153 PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
154 PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
155 PPC::SPILLTOVSR_ST, PPC::STXVP, PPC::SPILL_ACC, PPC::SPILL_UACC, \
156 NoInstr, NoInstr, PPC::SPILL_QUADWORD \
157 }
158
159#define FutureStoreOpcodes \
160 { \
161 PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
162 PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
163 PPC::SPILLTOVSR_ST, PPC::STXVP, PPC::SPILL_ACC, PPC::SPILL_UACC, \
164 PPC::SPILL_WACC, NoInstr, PPC::SPILL_QUADWORD \
165 }
166
167// Initialize arrays for load and store spill opcodes on supported subtargets.
168#define StoreOpcodesForSpill \
169 { Pwr8StoreOpcodes, Pwr9StoreOpcodes, Pwr10StoreOpcodes, FutureStoreOpcodes }
170#define LoadOpcodesForSpill \
171 { Pwr8LoadOpcodes, Pwr9LoadOpcodes, Pwr10LoadOpcodes, FutureLoadOpcodes }
172
173class PPCSubtarget;
174class PPCInstrInfo : public PPCGenInstrInfo {
175 PPCSubtarget &Subtarget;
176 const PPCRegisterInfo RI;
177 const unsigned StoreSpillOpcodesArray[4][SOK_LastOpcodeSpill] =
178 StoreOpcodesForSpill;
179 const unsigned LoadSpillOpcodesArray[4][SOK_LastOpcodeSpill] =
180 LoadOpcodesForSpill;
181
182 void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill,
183 int FrameIdx, const TargetRegisterClass *RC,
184 SmallVectorImpl<MachineInstr *> &NewMIs) const;
185 void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
186 unsigned DestReg, int FrameIdx,
187 const TargetRegisterClass *RC,
188 SmallVectorImpl<MachineInstr *> &NewMIs) const;
189
190 // Replace the instruction with single LI if possible. \p DefMI must be LI or
191 // LI8.
192 bool simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
193 unsigned OpNoForForwarding, MachineInstr **KilledDef) const;
194 // If the inst is imm-form and its register operand is produced by a ADDI, put
195 // the imm into the inst directly and remove the ADDI if possible.
196 bool transformToNewImmFormFedByAdd(MachineInstr &MI, MachineInstr &DefMI,
197 unsigned OpNoForForwarding) const;
198 // If the inst is x-form and has imm-form and one of its operand is produced
199 // by a LI, put the imm into the inst directly and remove the LI if possible.
200 bool transformToImmFormFedByLI(MachineInstr &MI, const ImmInstrInfo &III,
201 unsigned ConstantOpNo,
202 MachineInstr &DefMI) const;
203 // If the inst is x-form and has imm-form and one of its operand is produced
204 // by an add-immediate, try to transform it when possible.
205 bool transformToImmFormFedByAdd(MachineInstr &MI, const ImmInstrInfo &III,
206 unsigned ConstantOpNo, MachineInstr &DefMI,
207 bool KillDefMI) const;
208 // Try to find that, if the instruction 'MI' contains any operand that
209 // could be forwarded from some inst that feeds it. If yes, return the
210 // Def of that operand. And OpNoForForwarding is the operand index in
211 // the 'MI' for that 'Def'. If we see another use of this Def between
212 // the Def and the MI, SeenIntermediateUse becomes 'true'.
213 MachineInstr *getForwardingDefMI(MachineInstr &MI,
214 unsigned &OpNoForForwarding,
215 bool &SeenIntermediateUse) const;
216
217 // Can the user MI have it's source at index \p OpNoForForwarding
218 // forwarded from an add-immediate that feeds it?
219 bool isUseMIElgibleForForwarding(MachineInstr &MI, const ImmInstrInfo &III,
220 unsigned OpNoForForwarding) const;
221 bool isDefMIElgibleForForwarding(MachineInstr &DefMI,
222 const ImmInstrInfo &III,
223 MachineOperand *&ImmMO,
224 MachineOperand *&RegMO) const;
225 bool isImmElgibleForForwarding(const MachineOperand &ImmMO,
226 const MachineInstr &DefMI,
227 const ImmInstrInfo &III,
228 int64_t &Imm,
229 int64_t BaseImm = 0) const;
230 bool isRegElgibleForForwarding(const MachineOperand &RegMO,
231 const MachineInstr &DefMI,
232 const MachineInstr &MI, bool KillDefMI,
233 bool &IsFwdFeederRegKilled,
234 bool &SeenIntermediateUse) const;
235 unsigned getSpillTarget() const;
236 ArrayRef<unsigned> getStoreOpcodesForSpillArray() const;
237 ArrayRef<unsigned> getLoadOpcodesForSpillArray() const;
238 unsigned getSpillIndex(const TargetRegisterClass *RC) const;
239 int16_t getFMAOpIdxInfo(unsigned Opcode) const;
240 void reassociateFMA(MachineInstr &Root, unsigned Pattern,
241 SmallVectorImpl<MachineInstr *> &InsInstrs,
242 SmallVectorImpl<MachineInstr *> &DelInstrs,
243 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
244 Register
245 generateLoadForNewConst(unsigned Idx, MachineInstr *MI, Type *Ty,
246 SmallVectorImpl<MachineInstr *> &InsInstrs) const;
247 virtual void anchor();
248
249protected:
250 /// Commutes the operands in the given instruction.
251 /// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
252 ///
253 /// Do not call this method for a non-commutable instruction or for
254 /// non-commutable pair of operand indices OpIdx1 and OpIdx2.
255 /// Even though the instruction is commutable, the method may still
256 /// fail to commute the operands, null pointer is returned in such cases.
257 ///
258 /// For example, we can commute rlwimi instructions, but only if the
259 /// rotate amt is zero. We also have to munge the immediates a bit.
260 MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
261 unsigned OpIdx1,
262 unsigned OpIdx2) const override;
263
264public:
265 explicit PPCInstrInfo(PPCSubtarget &STI);
266
267 bool isLoadFromConstantPool(MachineInstr *I) const;
268 const Constant *getConstantFromConstantPool(MachineInstr *I) const;
269
270 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
271 /// such, whenever a client has an instance of instruction info, it should
272 /// always be able to get register info as well (through this method).
273 ///
274 const PPCRegisterInfo &getRegisterInfo() const { return RI; }
275
276 bool isXFormMemOp(unsigned Opcode) const {
277 return get(Opcode).TSFlags & PPCII::XFormMemOp;
278 }
279 bool isPrefixed(unsigned Opcode) const {
280 return get(Opcode).TSFlags & PPCII::Prefixed;
281 }
282 bool isSExt32To64(unsigned Opcode) const {
283 return get(Opcode).TSFlags & PPCII::SExt32To64;
284 }
285 bool isZExt32To64(unsigned Opcode) const {
286 return get(Opcode).TSFlags & PPCII::ZExt32To64;
287 }
288
289 static bool isSameClassPhysRegCopy(unsigned Opcode) {
290 unsigned CopyOpcodes[] = {PPC::OR, PPC::OR8, PPC::FMR,
291 PPC::VOR, PPC::XXLOR, PPC::XXLORf,
292 PPC::XSCPSGNDP, PPC::MCRF, PPC::CROR,
293 PPC::EVOR, -1U};
294 for (int i = 0; CopyOpcodes[i] != -1U; i++)
295 if (Opcode == CopyOpcodes[i])
296 return true;
297 return false;
298 }
299
300 static bool hasPCRelFlag(unsigned TF) {
301 return TF == PPCII::MO_PCREL_FLAG || TF == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
302 TF == PPCII::MO_GOT_TLSLD_PCREL_FLAG ||
303 TF == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
304 TF == PPCII::MO_TPREL_PCREL_FLAG || TF == PPCII::MO_TLS_PCREL_FLAG ||
305 TF == PPCII::MO_GOT_PCREL_FLAG;
306 }
307
308 static bool hasGOTFlag(unsigned TF) {
309 return TF == PPCII::MO_GOT_FLAG || TF == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
310 TF == PPCII::MO_GOT_TLSLD_PCREL_FLAG ||
311 TF == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
312 TF == PPCII::MO_GOT_PCREL_FLAG;
313 }
314
315 static bool hasTLSFlag(unsigned TF) {
316 return TF == PPCII::MO_TLSGD_FLAG || TF == PPCII::MO_TPREL_FLAG ||
317 TF == PPCII::MO_TLSLD_FLAG || TF == PPCII::MO_TLSGDM_FLAG ||
318 TF == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
319 TF == PPCII::MO_GOT_TLSLD_PCREL_FLAG ||
320 TF == PPCII::MO_GOT_TPREL_PCREL_FLAG || TF == PPCII::MO_TPREL_LO ||
321 TF == PPCII::MO_TPREL_HA || TF == PPCII::MO_DTPREL_LO ||
322 TF == PPCII::MO_TLSLD_LO || TF == PPCII::MO_TLS ||
323 TF == PPCII::MO_TPREL_PCREL_FLAG || TF == PPCII::MO_TLS_PCREL_FLAG;
324 }
325
326 ScheduleHazardRecognizer *
327 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
328 const ScheduleDAG *DAG) const override;
329 ScheduleHazardRecognizer *
330 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
331 const ScheduleDAG *DAG) const override;
332
333 unsigned getInstrLatency(const InstrItineraryData *ItinData,
334 const MachineInstr &MI,
335 unsigned *PredCost = nullptr) const override;
336
337 std::optional<unsigned> getOperandLatency(const InstrItineraryData *ItinData,
338 const MachineInstr &DefMI,
339 unsigned DefIdx,
340 const MachineInstr &UseMI,
341 unsigned UseIdx) const override;
342 std::optional<unsigned> getOperandLatency(const InstrItineraryData *ItinData,
343 SDNode *DefNode, unsigned DefIdx,
344 SDNode *UseNode,
345 unsigned UseIdx) const override {
346 return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
347 UseNode, UseIdx);
348 }
349
350 bool hasLowDefLatency(const TargetSchedModel &SchedModel,
351 const MachineInstr &DefMI,
352 unsigned DefIdx) const override {
353 // Machine LICM should hoist all instructions in low-register-pressure
354 // situations; none are sufficiently free to justify leaving in a loop
355 // body.
356 return false;
357 }
358
359 bool useMachineCombiner() const override {
360 return true;
361 }
362
363 /// When getMachineCombinerPatterns() finds patterns, this function generates
364 /// the instructions that could replace the original code sequence
365 void genAlternativeCodeSequence(
366 MachineInstr &Root, unsigned Pattern,
367 SmallVectorImpl<MachineInstr *> &InsInstrs,
368 SmallVectorImpl<MachineInstr *> &DelInstrs,
369 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const override;
370
371 /// Return true when there is potentially a faster code sequence for a fma
372 /// chain ending in \p Root. All potential patterns are output in the \p
373 /// P array.
374 bool getFMAPatterns(MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns,
375 bool DoRegPressureReduce) const;
376
377 CombinerObjective getCombinerObjective(unsigned Pattern) const override;
378
379 /// Return true when there is potentially a faster code sequence
380 /// for an instruction chain ending in <Root>. All potential patterns are
381 /// output in the <Pattern> array.
382 bool getMachineCombinerPatterns(MachineInstr &Root,
383 SmallVectorImpl<unsigned> &Patterns,
384 bool DoRegPressureReduce) const override;
385
386 /// On PowerPC, we leverage machine combiner pass to reduce register pressure
387 /// when the register pressure is high for one BB.
388 /// Return true if register pressure for \p MBB is high and ABI is supported
389 /// to reduce register pressure. Otherwise return false.
390 bool shouldReduceRegisterPressure(
391 const MachineBasicBlock *MBB,
392 const RegisterClassInfo *RegClassInfo) const override;
393
394 /// Fixup the placeholders we put in genAlternativeCodeSequence() for
395 /// MachineCombiner.
396 void
397 finalizeInsInstrs(MachineInstr &Root, unsigned &Pattern,
398 SmallVectorImpl<MachineInstr *> &InsInstrs) const override;
399
400 bool isAssociativeAndCommutative(const MachineInstr &Inst,
401 bool Invert) const override;
402
403 /// On PowerPC, we try to reassociate FMA chain which will increase
404 /// instruction size. Set extension resource length limit to 1 for edge case.
405 /// Resource Length is calculated by scaled resource usage in getCycles().
406 /// Because of the division in getCycles(), it returns different cycles due to
407 /// legacy scaled resource usage. So new resource length may be same with
408 /// legacy or 1 bigger than legacy.
409 /// We need to execlude the 1 bigger case even the resource length is not
410 /// perserved for more FMA chain reassociations on PowerPC.
411 int getExtendResourceLenLimit() const override { return 1; }
412
413 // PowerPC specific version of setSpecialOperandAttr that copies Flags to MI
414 // and clears nuw, nsw, and exact flags.
415 using TargetInstrInfo::setSpecialOperandAttr;
416 void setSpecialOperandAttr(MachineInstr &MI, uint32_t Flags) const;
417
418 bool isCoalescableExtInstr(const MachineInstr &MI,
419 Register &SrcReg, Register &DstReg,
420 unsigned &SubIdx) const override;
421 Register isLoadFromStackSlot(const MachineInstr &MI,
422 int &FrameIndex) const override;
423 bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override;
424 Register isStoreToStackSlot(const MachineInstr &MI,
425 int &FrameIndex) const override;
426
427 bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
428 unsigned &SrcOpIdx2) const override;
429
430 void insertNoop(MachineBasicBlock &MBB,
431 MachineBasicBlock::iterator MI) const override;
432
433
434 // Branch analysis.
435 bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
436 MachineBasicBlock *&FBB,
437 SmallVectorImpl<MachineOperand> &Cond,
438 bool AllowModify) const override;
439 unsigned removeBranch(MachineBasicBlock &MBB,
440 int *BytesRemoved = nullptr) const override;
441 unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
442 MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
443 const DebugLoc &DL,
444 int *BytesAdded = nullptr) const override;
445
446 // Select analysis.
447 bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
448 Register, Register, Register, int &, int &,
449 int &) const override;
450 void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
451 const DebugLoc &DL, Register DstReg,
452 ArrayRef<MachineOperand> Cond, Register TrueReg,
453 Register FalseReg) const override;
454
455 void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
456 const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
457 bool KillSrc) const override;
458
459 void storeRegToStackSlot(MachineBasicBlock &MBB,
460 MachineBasicBlock::iterator MBBI, Register SrcReg,
461 bool isKill, int FrameIndex,
462 const TargetRegisterClass *RC,
463 const TargetRegisterInfo *TRI,
464 Register VReg) const override;
465
466 // Emits a register spill without updating the register class for vector
467 // registers. This ensures that when we spill a vector register the
468 // element order in the register is the same as it was in memory.
469 void storeRegToStackSlotNoUpd(MachineBasicBlock &MBB,
470 MachineBasicBlock::iterator MBBI,
471 unsigned SrcReg, bool isKill, int FrameIndex,
472 const TargetRegisterClass *RC,
473 const TargetRegisterInfo *TRI) const;
474
475 void loadRegFromStackSlot(MachineBasicBlock &MBB,
476 MachineBasicBlock::iterator MBBI, Register DestReg,
477 int FrameIndex, const TargetRegisterClass *RC,
478 const TargetRegisterInfo *TRI,
479 Register VReg) const override;
480
481 // Emits a register reload without updating the register class for vector
482 // registers. This ensures that when we reload a vector register the
483 // element order in the register is the same as it was in memory.
484 void loadRegFromStackSlotNoUpd(MachineBasicBlock &MBB,
485 MachineBasicBlock::iterator MBBI,
486 unsigned DestReg, int FrameIndex,
487 const TargetRegisterClass *RC,
488 const TargetRegisterInfo *TRI) const;
489
490 unsigned getStoreOpcodeForSpill(const TargetRegisterClass *RC) const;
491
492 unsigned getLoadOpcodeForSpill(const TargetRegisterClass *RC) const;
493
494 bool
495 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
496
497 bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
498 MachineRegisterInfo *MRI) const override;
499
500 bool onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
501 Register Reg) const;
502
503 // If conversion by predication (only supported by some branch instructions).
504 // All of the profitability checks always return true; it is always
505 // profitable to use the predicated branches.
506 bool isProfitableToIfCvt(MachineBasicBlock &MBB,
507 unsigned NumCycles, unsigned ExtraPredCycles,
508 BranchProbability Probability) const override {
509 return true;
510 }
511
512 bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
513 unsigned NumT, unsigned ExtraT,
514 MachineBasicBlock &FMBB,
515 unsigned NumF, unsigned ExtraF,
516 BranchProbability Probability) const override;
517
518 bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
519 BranchProbability Probability) const override {
520 return true;
521 }
522
523 bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
524 MachineBasicBlock &FMBB) const override {
525 return false;
526 }
527
528 // Predication support.
529 bool isPredicated(const MachineInstr &MI) const override;
530
531 bool isSchedulingBoundary(const MachineInstr &MI,
532 const MachineBasicBlock *MBB,
533 const MachineFunction &MF) const override;
534
535 bool PredicateInstruction(MachineInstr &MI,
536 ArrayRef<MachineOperand> Pred) const override;
537
538 bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
539 ArrayRef<MachineOperand> Pred2) const override;
540
541 bool ClobbersPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred,
542 bool SkipDead) const override;
543
544 // Comparison optimization.
545
546 bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
547 Register &SrcReg2, int64_t &Mask,
548 int64_t &Value) const override;
549
550 bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
551 Register SrcReg2, int64_t Mask, int64_t Value,
552 const MachineRegisterInfo *MRI) const override;
553
554
555 /// Return true if get the base operand, byte offset of an instruction and
556 /// the memory width. Width is the size of memory that is being
557 /// loaded/stored (e.g. 1, 2, 4, 8).
558 bool getMemOperandWithOffsetWidth(const MachineInstr &LdSt,
559 const MachineOperand *&BaseOp,
560 int64_t &Offset, LocationSize &Width,
561 const TargetRegisterInfo *TRI) const;
562
563 bool optimizeCmpPostRA(MachineInstr &MI) const;
564
565 /// Get the base operand and byte offset of an instruction that reads/writes
566 /// memory.
567 bool getMemOperandsWithOffsetWidth(
568 const MachineInstr &LdSt,
569 SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
570 bool &OffsetIsScalable, LocationSize &Width,
571 const TargetRegisterInfo *TRI) const override;
572
573 /// Returns true if the two given memory operations should be scheduled
574 /// adjacent.
575 bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
576 int64_t Offset1, bool OffsetIsScalable1,
577 ArrayRef<const MachineOperand *> BaseOps2,
578 int64_t Offset2, bool OffsetIsScalable2,
579 unsigned ClusterSize,
580 unsigned NumBytes) const override;
581
582 /// Return true if two MIs access different memory addresses and false
583 /// otherwise
584 bool
585 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
586 const MachineInstr &MIb) const override;
587
588 /// GetInstSize - Return the number of bytes of code the specified
589 /// instruction may be. This returns the maximum number of bytes.
590 ///
591 unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
592
593 MCInst getNop() const override;
594
595 std::pair<unsigned, unsigned>
596 decomposeMachineOperandsTargetFlags(unsigned TF) const override;
597
598 ArrayRef<std::pair<unsigned, const char *>>
599 getSerializableDirectMachineOperandTargetFlags() const override;
600
601 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
602 bool expandVSXMemPseudo(MachineInstr &MI) const;
603
604 // Lower pseudo instructions after register allocation.
605 bool expandPostRAPseudo(MachineInstr &MI) const override;
606
607 const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const;
608 static int getRecordFormOpcode(unsigned Opcode);
609
610 bool isTOCSaveMI(const MachineInstr &MI) const;
611
612 std::pair<bool, bool>
613 isSignOrZeroExtended(const unsigned Reg, const unsigned BinOpDepth,
614 const MachineRegisterInfo *MRI) const;
615
616 // Return true if the register is sign-extended from 32 to 64 bits.
617 bool isSignExtended(const unsigned Reg,
618 const MachineRegisterInfo *MRI) const {
619 return isSignOrZeroExtended(Reg, BinOpDepth: 0, MRI).first;
620 }
621
622 // Return true if the register is zero-extended from 32 to 64 bits.
623 bool isZeroExtended(const unsigned Reg,
624 const MachineRegisterInfo *MRI) const {
625 return isSignOrZeroExtended(Reg, BinOpDepth: 0, MRI).second;
626 }
627
628 bool convertToImmediateForm(MachineInstr &MI,
629 SmallSet<Register, 4> &RegsToUpdate,
630 MachineInstr **KilledDef = nullptr) const;
631 bool foldFrameOffset(MachineInstr &MI) const;
632 bool combineRLWINM(MachineInstr &MI, MachineInstr **ToErase = nullptr) const;
633 bool isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, int64_t &Imm) const;
634 bool isADDInstrEligibleForFolding(MachineInstr &ADDMI) const;
635 bool isImmInstrEligibleForFolding(MachineInstr &MI, unsigned &BaseReg,
636 unsigned &XFormOpcode,
637 int64_t &OffsetOfImmInstr,
638 ImmInstrInfo &III) const;
639 bool isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
640 MachineInstr *&ADDIMI, int64_t &OffsetAddi,
641 int64_t OffsetImm) const;
642
643 void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const;
644 void replaceInstrOperandWithImm(MachineInstr &MI, unsigned OpNo,
645 int64_t Imm) const;
646
647 bool instrHasImmForm(unsigned Opc, bool IsVFReg, ImmInstrInfo &III,
648 bool PostRA) const;
649
650 // In PostRA phase, try to find instruction defines \p Reg before \p MI.
651 // \p SeenIntermediate is set to true if uses between DefMI and \p MI exist.
652 MachineInstr *getDefMIPostRA(unsigned Reg, MachineInstr &MI,
653 bool &SeenIntermediateUse) const;
654
655 // Materialize immediate after RA.
656 void materializeImmPostRA(MachineBasicBlock &MBB,
657 MachineBasicBlock::iterator MBBI,
658 const DebugLoc &DL, Register Reg,
659 int64_t Imm) const;
660
661 /// Check \p Opcode is BDNZ (Decrement CTR and branch if it is still nonzero).
662 bool isBDNZ(unsigned Opcode) const;
663
664 /// Find the hardware loop instruction used to set-up the specified loop.
665 /// On PPC, we have two instructions used to set-up the hardware loop
666 /// (MTCTRloop, MTCTR8loop) with corresponding endloop (BDNZ, BDNZ8)
667 /// instructions to indicate the end of a loop.
668 MachineInstr *
669 findLoopInstr(MachineBasicBlock &PreHeader,
670 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;
671
672 /// Analyze loop L, which must be a single-basic-block loop, and if the
673 /// conditions can be understood enough produce a PipelinerLoopInfo object.
674 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
675 analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;
676};
677
678}
679
680#endif
681