1 | //===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===---------------------------------------------------------------------===// |
8 | // |
9 | // This pass aims to reduce the number of logical operations on bits in the CR |
10 | // register. These instructions have a fairly high latency and only a single |
11 | // pipeline at their disposal in modern PPC cores. Furthermore, they have a |
12 | // tendency to occur in fairly small blocks where there's little opportunity |
13 | // to hide the latency between the CR logical operation and its user. |
14 | // |
15 | //===---------------------------------------------------------------------===// |
16 | |
17 | #include "PPC.h" |
18 | #include "PPCInstrInfo.h" |
19 | #include "PPCTargetMachine.h" |
20 | #include "llvm/ADT/Statistic.h" |
21 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
22 | #include "llvm/CodeGen/MachineDominators.h" |
23 | #include "llvm/CodeGen/MachineFunctionPass.h" |
24 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
25 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
26 | #include "llvm/Config/llvm-config.h" |
27 | #include "llvm/InitializePasses.h" |
28 | #include "llvm/Support/Debug.h" |
29 | |
30 | using namespace llvm; |
31 | |
32 | #define DEBUG_TYPE "ppc-reduce-cr-ops" |
33 | |
34 | STATISTIC(NumContainedSingleUseBinOps, |
35 | "Number of single-use binary CR logical ops contained in a block" ); |
36 | STATISTIC(NumToSplitBlocks, |
37 | "Number of binary CR logical ops that can be used to split blocks" ); |
38 | STATISTIC(TotalCRLogicals, "Number of CR logical ops." ); |
39 | STATISTIC(TotalNullaryCRLogicals, |
40 | "Number of nullary CR logical ops (CRSET/CRUNSET)." ); |
41 | STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops." ); |
42 | STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops." ); |
43 | STATISTIC(NumBlocksSplitOnBinaryCROp, |
44 | "Number of blocks split on CR binary logical ops." ); |
45 | STATISTIC(NumNotSplitIdenticalOperands, |
46 | "Number of blocks not split due to operands being identical." ); |
47 | STATISTIC(NumNotSplitChainCopies, |
48 | "Number of blocks not split due to operands being chained copies." ); |
49 | STATISTIC(NumNotSplitWrongOpcode, |
50 | "Number of blocks not split due to the wrong opcode." ); |
51 | |
52 | /// Given a basic block \p Successor that potentially contains PHIs, this |
53 | /// function will look for any incoming values in the PHIs that are supposed to |
54 | /// be coming from \p OrigMBB but whose definition is actually in \p NewMBB. |
55 | /// Any such PHIs will be updated to reflect reality. |
56 | static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB, |
57 | MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) { |
58 | for (auto &MI : Successor->instrs()) { |
59 | if (!MI.isPHI()) |
60 | continue; |
61 | // This is a really ugly-looking loop, but it was pillaged directly from |
62 | // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). |
63 | for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { |
64 | MachineOperand &MO = MI.getOperand(i); |
65 | if (MO.getMBB() == OrigMBB) { |
66 | // Check if the instruction is actually defined in NewMBB. |
67 | if (MI.getOperand(i: i - 1).isReg()) { |
68 | MachineInstr *DefMI = MRI->getVRegDef(Reg: MI.getOperand(i: i - 1).getReg()); |
69 | if (DefMI->getParent() == NewMBB || |
70 | !OrigMBB->isSuccessor(MBB: Successor)) { |
71 | MO.setMBB(NewMBB); |
72 | break; |
73 | } |
74 | } |
75 | } |
76 | } |
77 | } |
78 | } |
79 | |
80 | /// Given a basic block \p Successor that potentially contains PHIs, this |
81 | /// function will look for PHIs that have an incoming value from \p OrigMBB |
82 | /// and will add the same incoming value from \p NewMBB. |
83 | /// NOTE: This should only be used if \p NewMBB is an immediate dominator of |
84 | /// \p OrigMBB. |
85 | static void addIncomingValuesToPHIs(MachineBasicBlock *Successor, |
86 | MachineBasicBlock *OrigMBB, |
87 | MachineBasicBlock *NewMBB, |
88 | MachineRegisterInfo *MRI) { |
89 | assert(OrigMBB->isSuccessor(NewMBB) && |
90 | "NewMBB must be a successor of OrigMBB" ); |
91 | for (auto &MI : Successor->instrs()) { |
92 | if (!MI.isPHI()) |
93 | continue; |
94 | // This is a really ugly-looking loop, but it was pillaged directly from |
95 | // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). |
96 | for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { |
97 | MachineOperand &MO = MI.getOperand(i); |
98 | if (MO.getMBB() == OrigMBB) { |
99 | MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI); |
100 | MIB.addReg(RegNo: MI.getOperand(i: i - 1).getReg()).addMBB(MBB: NewMBB); |
101 | break; |
102 | } |
103 | } |
104 | } |
105 | } |
106 | |
107 | struct BlockSplitInfo { |
108 | MachineInstr *OrigBranch; |
109 | MachineInstr *SplitBefore; |
110 | MachineInstr *SplitCond; |
111 | bool InvertNewBranch; |
112 | bool InvertOrigBranch; |
113 | bool BranchToFallThrough; |
114 | const MachineBranchProbabilityInfo *MBPI; |
115 | MachineInstr *MIToDelete; |
116 | MachineInstr *NewCond; |
117 | bool allInstrsInSameMBB() { |
118 | if (!OrigBranch || !SplitBefore || !SplitCond) |
119 | return false; |
120 | MachineBasicBlock *MBB = OrigBranch->getParent(); |
121 | if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB) |
122 | return false; |
123 | if (MIToDelete && MIToDelete->getParent() != MBB) |
124 | return false; |
125 | if (NewCond && NewCond->getParent() != MBB) |
126 | return false; |
127 | return true; |
128 | } |
129 | }; |
130 | |
131 | /// Splits a MachineBasicBlock to branch before \p SplitBefore. The original |
132 | /// branch is \p OrigBranch. The target of the new branch can either be the same |
133 | /// as the target of the original branch or the fallthrough successor of the |
134 | /// original block as determined by \p BranchToFallThrough. The branch |
135 | /// conditions will be inverted according to \p InvertNewBranch and |
136 | /// \p InvertOrigBranch. If an instruction that previously fed the branch is to |
137 | /// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as |
138 | /// the branch condition. The branch probabilities will be set if the |
139 | /// MachineBranchProbabilityInfo isn't null. |
140 | static bool splitMBB(BlockSplitInfo &BSI) { |
141 | assert(BSI.allInstrsInSameMBB() && |
142 | "All instructions must be in the same block." ); |
143 | |
144 | MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent(); |
145 | MachineFunction *MF = ThisMBB->getParent(); |
146 | MachineRegisterInfo *MRI = &MF->getRegInfo(); |
147 | assert(MRI->isSSA() && "Can only do this while the function is in SSA form." ); |
148 | if (ThisMBB->succ_size() != 2) { |
149 | LLVM_DEBUG( |
150 | dbgs() << "Don't know how to handle blocks that don't have exactly" |
151 | << " two successors.\n" ); |
152 | return false; |
153 | } |
154 | |
155 | const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); |
156 | unsigned OrigBROpcode = BSI.OrigBranch->getOpcode(); |
157 | unsigned InvertedOpcode = |
158 | OrigBROpcode == PPC::BC |
159 | ? PPC::BCn |
160 | : OrigBROpcode == PPC::BCn |
161 | ? PPC::BC |
162 | : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR; |
163 | unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode; |
164 | MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(i: 1).getMBB(); |
165 | MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin() |
166 | ? *ThisMBB->succ_rbegin() |
167 | : *ThisMBB->succ_begin(); |
168 | MachineBasicBlock *NewBRTarget = |
169 | BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget; |
170 | |
171 | // It's impossible to know the precise branch probability after the split. |
172 | // But it still needs to be reasonable, the whole probability to original |
173 | // targets should not be changed. |
174 | // After split NewBRTarget will get two incoming edges. Assume P0 is the |
175 | // original branch probability to NewBRTarget, P1 and P2 are new branch |
176 | // probabilies to NewBRTarget after split. If the two edge frequencies are |
177 | // same, then |
178 | // F * P1 = F * P0 / 2 ==> P1 = P0 / 2 |
179 | // F * (1 - P1) * P2 = F * P1 ==> P2 = P1 / (1 - P1) |
180 | BranchProbability ProbToNewTarget, ProbFallThrough; // Prob for new Br. |
181 | BranchProbability ProbOrigTarget, ProbOrigFallThrough; // Prob for orig Br. |
182 | ProbToNewTarget = ProbFallThrough = BranchProbability::getUnknown(); |
183 | ProbOrigTarget = ProbOrigFallThrough = BranchProbability::getUnknown(); |
184 | if (BSI.MBPI) { |
185 | if (BSI.BranchToFallThrough) { |
186 | ProbToNewTarget = BSI.MBPI->getEdgeProbability(Src: ThisMBB, Dst: OrigFallThrough) / 2; |
187 | ProbFallThrough = ProbToNewTarget.getCompl(); |
188 | ProbOrigFallThrough = ProbToNewTarget / ProbToNewTarget.getCompl(); |
189 | ProbOrigTarget = ProbOrigFallThrough.getCompl(); |
190 | } else { |
191 | ProbToNewTarget = BSI.MBPI->getEdgeProbability(Src: ThisMBB, Dst: OrigTarget) / 2; |
192 | ProbFallThrough = ProbToNewTarget.getCompl(); |
193 | ProbOrigTarget = ProbToNewTarget / ProbToNewTarget.getCompl(); |
194 | ProbOrigFallThrough = ProbOrigTarget.getCompl(); |
195 | } |
196 | } |
197 | |
198 | // Create a new basic block. |
199 | MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore; |
200 | const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); |
201 | MachineFunction::iterator It = ThisMBB->getIterator(); |
202 | MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(BB: LLVM_BB); |
203 | MF->insert(MBBI: ++It, MBB: NewMBB); |
204 | |
205 | // Move everything after SplitBefore into the new block. |
206 | NewMBB->splice(Where: NewMBB->end(), Other: ThisMBB, From: InsertPoint, To: ThisMBB->end()); |
207 | NewMBB->transferSuccessors(FromMBB: ThisMBB); |
208 | if (!ProbOrigTarget.isUnknown()) { |
209 | auto MBBI = find(Range: NewMBB->successors(), Val: OrigTarget); |
210 | NewMBB->setSuccProbability(I: MBBI, Prob: ProbOrigTarget); |
211 | MBBI = find(Range: NewMBB->successors(), Val: OrigFallThrough); |
212 | NewMBB->setSuccProbability(I: MBBI, Prob: ProbOrigFallThrough); |
213 | } |
214 | |
215 | // Add the two successors to ThisMBB. |
216 | ThisMBB->addSuccessor(Succ: NewBRTarget, Prob: ProbToNewTarget); |
217 | ThisMBB->addSuccessor(Succ: NewMBB, Prob: ProbFallThrough); |
218 | |
219 | // Add the branches to ThisMBB. |
220 | BuildMI(BB&: *ThisMBB, I: ThisMBB->end(), MIMD: BSI.SplitBefore->getDebugLoc(), |
221 | MCID: TII->get(Opcode: NewBROpcode)) |
222 | .addReg(RegNo: BSI.SplitCond->getOperand(i: 0).getReg()) |
223 | .addMBB(MBB: NewBRTarget); |
224 | BuildMI(BB&: *ThisMBB, I: ThisMBB->end(), MIMD: BSI.SplitBefore->getDebugLoc(), |
225 | MCID: TII->get(Opcode: PPC::B)) |
226 | .addMBB(MBB: NewMBB); |
227 | if (BSI.MIToDelete) |
228 | BSI.MIToDelete->eraseFromParent(); |
229 | |
230 | // Change the condition on the original branch and invert it if requested. |
231 | auto FirstTerminator = NewMBB->getFirstTerminator(); |
232 | if (BSI.NewCond) { |
233 | assert(FirstTerminator->getOperand(0).isReg() && |
234 | "Can't update condition of unconditional branch." ); |
235 | FirstTerminator->getOperand(i: 0).setReg(BSI.NewCond->getOperand(i: 0).getReg()); |
236 | } |
237 | if (BSI.InvertOrigBranch) |
238 | FirstTerminator->setDesc(TII->get(Opcode: InvertedOpcode)); |
239 | |
240 | // If any of the PHIs in the successors of NewMBB reference values that |
241 | // now come from NewMBB, they need to be updated. |
242 | for (auto *Succ : NewMBB->successors()) { |
243 | updatePHIs(Successor: Succ, OrigMBB: ThisMBB, NewMBB, MRI); |
244 | } |
245 | addIncomingValuesToPHIs(Successor: NewBRTarget, OrigMBB: ThisMBB, NewMBB, MRI); |
246 | |
247 | LLVM_DEBUG(dbgs() << "After splitting, ThisMBB:\n" ; ThisMBB->dump()); |
248 | LLVM_DEBUG(dbgs() << "NewMBB:\n" ; NewMBB->dump()); |
249 | LLVM_DEBUG(dbgs() << "New branch-to block:\n" ; NewBRTarget->dump()); |
250 | return true; |
251 | } |
252 | |
253 | static bool isBinary(MachineInstr &MI) { |
254 | return MI.getNumOperands() == 3; |
255 | } |
256 | |
257 | static bool isNullary(MachineInstr &MI) { |
258 | return MI.getNumOperands() == 1; |
259 | } |
260 | |
261 | /// Given a CR logical operation \p CROp, branch opcode \p BROp as well as |
262 | /// a flag to indicate if the first operand of \p CROp is used as the |
263 | /// SplitBefore operand, determines whether either of the branches are to be |
264 | /// inverted as well as whether the new target should be the original |
265 | /// fall-through block. |
266 | static void |
267 | computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1, |
268 | bool &InvertNewBranch, bool &InvertOrigBranch, |
269 | bool &TargetIsFallThrough) { |
270 | // The conditions under which each of the output operands should be [un]set |
271 | // can certainly be written much more concisely with just 3 if statements or |
272 | // ternary expressions. However, this provides a much clearer overview to the |
273 | // reader as to what is set for each <CROp, BROp, OpUsed> combination. |
274 | if (BROp == PPC::BC || BROp == PPC::BCLR) { |
275 | // Regular branches. |
276 | switch (CROp) { |
277 | default: |
278 | llvm_unreachable("Don't know how to handle this CR logical." ); |
279 | case PPC::CROR: |
280 | InvertNewBranch = false; |
281 | InvertOrigBranch = false; |
282 | TargetIsFallThrough = false; |
283 | return; |
284 | case PPC::CRAND: |
285 | InvertNewBranch = true; |
286 | InvertOrigBranch = false; |
287 | TargetIsFallThrough = true; |
288 | return; |
289 | case PPC::CRNAND: |
290 | InvertNewBranch = true; |
291 | InvertOrigBranch = true; |
292 | TargetIsFallThrough = false; |
293 | return; |
294 | case PPC::CRNOR: |
295 | InvertNewBranch = false; |
296 | InvertOrigBranch = true; |
297 | TargetIsFallThrough = true; |
298 | return; |
299 | case PPC::CRORC: |
300 | InvertNewBranch = UsingDef1; |
301 | InvertOrigBranch = !UsingDef1; |
302 | TargetIsFallThrough = false; |
303 | return; |
304 | case PPC::CRANDC: |
305 | InvertNewBranch = !UsingDef1; |
306 | InvertOrigBranch = !UsingDef1; |
307 | TargetIsFallThrough = true; |
308 | return; |
309 | } |
310 | } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) { |
311 | // Negated branches. |
312 | switch (CROp) { |
313 | default: |
314 | llvm_unreachable("Don't know how to handle this CR logical." ); |
315 | case PPC::CROR: |
316 | InvertNewBranch = true; |
317 | InvertOrigBranch = false; |
318 | TargetIsFallThrough = true; |
319 | return; |
320 | case PPC::CRAND: |
321 | InvertNewBranch = false; |
322 | InvertOrigBranch = false; |
323 | TargetIsFallThrough = false; |
324 | return; |
325 | case PPC::CRNAND: |
326 | InvertNewBranch = false; |
327 | InvertOrigBranch = true; |
328 | TargetIsFallThrough = true; |
329 | return; |
330 | case PPC::CRNOR: |
331 | InvertNewBranch = true; |
332 | InvertOrigBranch = true; |
333 | TargetIsFallThrough = false; |
334 | return; |
335 | case PPC::CRORC: |
336 | InvertNewBranch = !UsingDef1; |
337 | InvertOrigBranch = !UsingDef1; |
338 | TargetIsFallThrough = true; |
339 | return; |
340 | case PPC::CRANDC: |
341 | InvertNewBranch = UsingDef1; |
342 | InvertOrigBranch = !UsingDef1; |
343 | TargetIsFallThrough = false; |
344 | return; |
345 | } |
346 | } else |
347 | llvm_unreachable("Don't know how to handle this branch." ); |
348 | } |
349 | |
350 | namespace { |
351 | |
352 | class PPCReduceCRLogicals : public MachineFunctionPass { |
353 | |
354 | public: |
355 | static char ID; |
356 | struct CRLogicalOpInfo { |
357 | MachineInstr *MI; |
358 | // FIXME: If chains of copies are to be handled, this should be a vector. |
359 | std::pair<MachineInstr*, MachineInstr*> CopyDefs; |
360 | std::pair<MachineInstr*, MachineInstr*> TrueDefs; |
361 | unsigned IsBinary : 1; |
362 | unsigned IsNullary : 1; |
363 | unsigned ContainedInBlock : 1; |
364 | unsigned FeedsISEL : 1; |
365 | unsigned FeedsBR : 1; |
366 | unsigned FeedsLogical : 1; |
367 | unsigned SingleUse : 1; |
368 | unsigned DefsSingleUse : 1; |
369 | unsigned SubregDef1; |
370 | unsigned SubregDef2; |
371 | CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0), |
372 | ContainedInBlock(0), FeedsISEL(0), FeedsBR(0), |
373 | FeedsLogical(0), SingleUse(0), DefsSingleUse(1), |
374 | SubregDef1(0), SubregDef2(0) { } |
375 | void dump(); |
376 | }; |
377 | |
378 | private: |
379 | const PPCInstrInfo *TII = nullptr; |
380 | MachineFunction *MF = nullptr; |
381 | MachineRegisterInfo *MRI = nullptr; |
382 | const MachineBranchProbabilityInfo *MBPI = nullptr; |
383 | |
384 | // A vector to contain all the CR logical operations |
385 | SmallVector<CRLogicalOpInfo, 16> AllCRLogicalOps; |
386 | void initialize(MachineFunction &MFParm); |
387 | void collectCRLogicals(); |
388 | bool handleCROp(unsigned Idx); |
389 | bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI); |
390 | static bool isCRLogical(MachineInstr &MI) { |
391 | unsigned Opc = MI.getOpcode(); |
392 | return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR || |
393 | Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CRNOT || |
394 | Opc == PPC::CREQV || Opc == PPC::CRANDC || Opc == PPC::CRORC || |
395 | Opc == PPC::CRSET || Opc == PPC::CRUNSET || Opc == PPC::CR6SET || |
396 | Opc == PPC::CR6UNSET; |
397 | } |
398 | bool simplifyCode() { |
399 | bool Changed = false; |
400 | // Not using a range-based for loop here as the vector may grow while being |
401 | // operated on. |
402 | for (unsigned i = 0; i < AllCRLogicalOps.size(); i++) |
403 | Changed |= handleCROp(Idx: i); |
404 | return Changed; |
405 | } |
406 | |
407 | public: |
408 | PPCReduceCRLogicals() : MachineFunctionPass(ID) { |
409 | initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry()); |
410 | } |
411 | |
412 | MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg, |
413 | MachineInstr *&CpDef); |
414 | bool runOnMachineFunction(MachineFunction &MF) override { |
415 | if (skipFunction(F: MF.getFunction())) |
416 | return false; |
417 | |
418 | // If the subtarget doesn't use CR bits, there's nothing to do. |
419 | const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); |
420 | if (!STI.useCRBits()) |
421 | return false; |
422 | |
423 | initialize(MFParm&: MF); |
424 | collectCRLogicals(); |
425 | return simplifyCode(); |
426 | } |
427 | CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI); |
428 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
429 | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); |
430 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
431 | MachineFunctionPass::getAnalysisUsage(AU); |
432 | } |
433 | }; |
434 | |
435 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
436 | LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() { |
437 | dbgs() << "CRLogicalOpMI: " ; |
438 | MI->dump(); |
439 | dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL; |
440 | dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: " ; |
441 | dbgs() << FeedsLogical << ", SingleUse: " << SingleUse; |
442 | dbgs() << ", DefsSingleUse: " << DefsSingleUse; |
443 | dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: " ; |
444 | dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock; |
445 | if (!IsNullary) { |
446 | dbgs() << "\nDefs:\n" ; |
447 | TrueDefs.first->dump(); |
448 | } |
449 | if (IsBinary) |
450 | TrueDefs.second->dump(); |
451 | dbgs() << "\n" ; |
452 | if (CopyDefs.first) { |
453 | dbgs() << "CopyDef1: " ; |
454 | CopyDefs.first->dump(); |
455 | } |
456 | if (CopyDefs.second) { |
457 | dbgs() << "CopyDef2: " ; |
458 | CopyDefs.second->dump(); |
459 | } |
460 | } |
461 | #endif |
462 | |
463 | PPCReduceCRLogicals::CRLogicalOpInfo |
464 | PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) { |
465 | CRLogicalOpInfo Ret; |
466 | Ret.MI = &MIParam; |
467 | // Get the defs |
468 | if (isNullary(MI&: MIParam)) { |
469 | Ret.IsNullary = 1; |
470 | Ret.TrueDefs = std::make_pair(x: nullptr, y: nullptr); |
471 | Ret.CopyDefs = std::make_pair(x: nullptr, y: nullptr); |
472 | } else { |
473 | MachineInstr *Def1 = lookThroughCRCopy(Reg: MIParam.getOperand(i: 1).getReg(), |
474 | Subreg&: Ret.SubregDef1, CpDef&: Ret.CopyDefs.first); |
475 | assert(Def1 && "Must be able to find a definition of operand 1." ); |
476 | Ret.DefsSingleUse &= |
477 | MRI->hasOneNonDBGUse(RegNo: Def1->getOperand(i: 0).getReg()); |
478 | Ret.DefsSingleUse &= |
479 | MRI->hasOneNonDBGUse(RegNo: Ret.CopyDefs.first->getOperand(i: 0).getReg()); |
480 | if (isBinary(MI&: MIParam)) { |
481 | Ret.IsBinary = 1; |
482 | MachineInstr *Def2 = lookThroughCRCopy(Reg: MIParam.getOperand(i: 2).getReg(), |
483 | Subreg&: Ret.SubregDef2, |
484 | CpDef&: Ret.CopyDefs.second); |
485 | assert(Def2 && "Must be able to find a definition of operand 2." ); |
486 | Ret.DefsSingleUse &= |
487 | MRI->hasOneNonDBGUse(RegNo: Def2->getOperand(i: 0).getReg()); |
488 | Ret.DefsSingleUse &= |
489 | MRI->hasOneNonDBGUse(RegNo: Ret.CopyDefs.second->getOperand(i: 0).getReg()); |
490 | Ret.TrueDefs = std::make_pair(x&: Def1, y&: Def2); |
491 | } else { |
492 | Ret.TrueDefs = std::make_pair(x&: Def1, y: nullptr); |
493 | Ret.CopyDefs.second = nullptr; |
494 | } |
495 | } |
496 | |
497 | Ret.ContainedInBlock = 1; |
498 | // Get the uses |
499 | for (MachineInstr &UseMI : |
500 | MRI->use_nodbg_instructions(Reg: MIParam.getOperand(i: 0).getReg())) { |
501 | unsigned Opc = UseMI.getOpcode(); |
502 | if (Opc == PPC::ISEL || Opc == PPC::ISEL8) |
503 | Ret.FeedsISEL = 1; |
504 | if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR || |
505 | Opc == PPC::BCLRn) |
506 | Ret.FeedsBR = 1; |
507 | Ret.FeedsLogical = isCRLogical(MI&: UseMI); |
508 | if (UseMI.getParent() != MIParam.getParent()) |
509 | Ret.ContainedInBlock = 0; |
510 | } |
511 | Ret.SingleUse = MRI->hasOneNonDBGUse(RegNo: MIParam.getOperand(i: 0).getReg()) ? 1 : 0; |
512 | |
513 | // We now know whether all the uses of the CR logical are in the same block. |
514 | if (!Ret.IsNullary) { |
515 | Ret.ContainedInBlock &= |
516 | (MIParam.getParent() == Ret.TrueDefs.first->getParent()); |
517 | if (Ret.IsBinary) |
518 | Ret.ContainedInBlock &= |
519 | (MIParam.getParent() == Ret.TrueDefs.second->getParent()); |
520 | } |
521 | LLVM_DEBUG(Ret.dump()); |
522 | if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) { |
523 | NumContainedSingleUseBinOps++; |
524 | if (Ret.FeedsBR && Ret.DefsSingleUse) |
525 | NumToSplitBlocks++; |
526 | } |
527 | return Ret; |
528 | } |
529 | |
530 | /// Looks through a COPY instruction to the actual definition of the CR-bit |
531 | /// register and returns the instruction that defines it. |
532 | /// FIXME: This currently handles what is by-far the most common case: |
533 | /// an instruction that defines a CR field followed by a single copy of a bit |
534 | /// from that field into a virtual register. If chains of copies need to be |
535 | /// handled, this should have a loop until a non-copy instruction is found. |
536 | MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg, |
537 | unsigned &Subreg, |
538 | MachineInstr *&CpDef) { |
539 | Subreg = -1; |
540 | if (!Register::isVirtualRegister(Reg)) |
541 | return nullptr; |
542 | MachineInstr *Copy = MRI->getVRegDef(Reg); |
543 | CpDef = Copy; |
544 | if (!Copy->isCopy()) |
545 | return Copy; |
546 | Register CopySrc = Copy->getOperand(i: 1).getReg(); |
547 | Subreg = Copy->getOperand(i: 1).getSubReg(); |
548 | if (!CopySrc.isVirtual()) { |
549 | const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); |
550 | // Set the Subreg |
551 | if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ) |
552 | Subreg = PPC::sub_eq; |
553 | if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT) |
554 | Subreg = PPC::sub_lt; |
555 | if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT) |
556 | Subreg = PPC::sub_gt; |
557 | if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN) |
558 | Subreg = PPC::sub_un; |
559 | // Loop backwards and return the first MI that modifies the physical CR Reg. |
560 | MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin(); |
561 | while (Me != B) |
562 | if ((--Me)->modifiesRegister(Reg: CopySrc, TRI)) |
563 | return &*Me; |
564 | return nullptr; |
565 | } |
566 | return MRI->getVRegDef(Reg: CopySrc); |
567 | } |
568 | |
569 | void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) { |
570 | MF = &MFParam; |
571 | MRI = &MF->getRegInfo(); |
572 | TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); |
573 | MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); |
574 | |
575 | AllCRLogicalOps.clear(); |
576 | } |
577 | |
578 | /// Contains all the implemented transformations on CR logical operations. |
579 | /// For example, a binary CR logical can be used to split a block on its inputs, |
580 | /// a unary CR logical might be used to change the condition code on a |
581 | /// comparison feeding it. A nullary CR logical might simply be removable |
582 | /// if the user of the bit it [un]sets can be transformed. |
583 | bool PPCReduceCRLogicals::handleCROp(unsigned Idx) { |
584 | // We can definitely split a block on the inputs to a binary CR operation |
585 | // whose defs and (single) use are within the same block. |
586 | bool Changed = false; |
587 | CRLogicalOpInfo CRI = AllCRLogicalOps[Idx]; |
588 | if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR && |
589 | CRI.DefsSingleUse) { |
590 | Changed = splitBlockOnBinaryCROp(CRI); |
591 | if (Changed) |
592 | NumBlocksSplitOnBinaryCROp++; |
593 | } |
594 | return Changed; |
595 | } |
596 | |
597 | /// Splits a block that contains a CR-logical operation that feeds a branch |
598 | /// and whose operands are produced within the block. |
599 | /// Example: |
600 | /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 |
601 | /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 |
602 | /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 |
603 | /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 |
604 | /// %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8 |
605 | /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9 |
606 | /// Becomes: |
607 | /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 |
608 | /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 |
609 | /// BC %vr6<kill>, <BB#2>; CRBITRC:%vr6 |
610 | /// |
611 | /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 |
612 | /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 |
613 | /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9 |
614 | bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) { |
615 | if (CRI.CopyDefs.first == CRI.CopyDefs.second) { |
616 | LLVM_DEBUG(dbgs() << "Unable to split as the two operands are the same\n" ); |
617 | NumNotSplitIdenticalOperands++; |
618 | return false; |
619 | } |
620 | if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() || |
621 | CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) { |
622 | LLVM_DEBUG( |
623 | dbgs() << "Unable to split because one of the operands is a PHI or " |
624 | "chain of copies.\n" ); |
625 | NumNotSplitChainCopies++; |
626 | return false; |
627 | } |
628 | // Note: keep in sync with computeBranchTargetAndInversion(). |
629 | if (CRI.MI->getOpcode() != PPC::CROR && |
630 | CRI.MI->getOpcode() != PPC::CRAND && |
631 | CRI.MI->getOpcode() != PPC::CRNOR && |
632 | CRI.MI->getOpcode() != PPC::CRNAND && |
633 | CRI.MI->getOpcode() != PPC::CRORC && |
634 | CRI.MI->getOpcode() != PPC::CRANDC) { |
635 | LLVM_DEBUG(dbgs() << "Unable to split blocks on this opcode.\n" ); |
636 | NumNotSplitWrongOpcode++; |
637 | return false; |
638 | } |
639 | LLVM_DEBUG(dbgs() << "Splitting the following CR op:\n" ; CRI.dump()); |
640 | MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first; |
641 | MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second; |
642 | |
643 | bool UsingDef1 = false; |
644 | MachineInstr *SplitBefore = &*Def2It; |
645 | for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) { |
646 | if (Def1It == Def2It) { // Def2 comes before Def1. |
647 | SplitBefore = &*Def1It; |
648 | UsingDef1 = true; |
649 | break; |
650 | } |
651 | } |
652 | |
653 | LLVM_DEBUG(dbgs() << "We will split the following block:\n" ;); |
654 | LLVM_DEBUG(CRI.MI->getParent()->dump()); |
655 | LLVM_DEBUG(dbgs() << "Before instruction:\n" ; SplitBefore->dump()); |
656 | |
657 | // Get the branch instruction. |
658 | MachineInstr *Branch = |
659 | MRI->use_nodbg_begin(RegNo: CRI.MI->getOperand(i: 0).getReg())->getParent(); |
660 | |
661 | // We want the new block to have no code in it other than the definition |
662 | // of the input to the CR logical and the CR logical itself. So we move |
663 | // those to the bottom of the block (just before the branch). Then we |
664 | // will split before the CR logical. |
665 | MachineBasicBlock *MBB = SplitBefore->getParent(); |
666 | auto FirstTerminator = MBB->getFirstTerminator(); |
667 | MachineBasicBlock::iterator FirstInstrToMove = |
668 | UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second; |
669 | MachineBasicBlock::iterator SecondInstrToMove = |
670 | UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second; |
671 | |
672 | // The instructions that need to be moved are not guaranteed to be |
673 | // contiguous. Move them individually. |
674 | // FIXME: If one of the operands is a chain of (single use) copies, they |
675 | // can all be moved and we can still split. |
676 | MBB->splice(Where: FirstTerminator, Other: MBB, From: FirstInstrToMove); |
677 | if (FirstInstrToMove != SecondInstrToMove) |
678 | MBB->splice(Where: FirstTerminator, Other: MBB, From: SecondInstrToMove); |
679 | MBB->splice(Where: FirstTerminator, Other: MBB, From: CRI.MI); |
680 | |
681 | unsigned Opc = CRI.MI->getOpcode(); |
682 | bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough; |
683 | computeBranchTargetAndInversion(CROp: Opc, BROp: Branch->getOpcode(), UsingDef1, |
684 | InvertNewBranch, InvertOrigBranch, |
685 | TargetIsFallThrough); |
686 | MachineInstr *SplitCond = |
687 | UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first; |
688 | LLVM_DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy" )); |
689 | LLVM_DEBUG(dbgs() << " the original branch and the target is the " |
690 | << (TargetIsFallThrough ? "fallthrough block\n" |
691 | : "orig. target block\n" )); |
692 | LLVM_DEBUG(dbgs() << "Original branch instruction: " ; Branch->dump()); |
693 | BlockSplitInfo BSI { .OrigBranch: Branch, .SplitBefore: SplitBefore, .SplitCond: SplitCond, .InvertNewBranch: InvertNewBranch, |
694 | .InvertOrigBranch: InvertOrigBranch, .BranchToFallThrough: TargetIsFallThrough, .MBPI: MBPI, .MIToDelete: CRI.MI, |
695 | .NewCond: UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second }; |
696 | bool Changed = splitMBB(BSI); |
697 | // If we've split on a CR logical that is fed by a CR logical, |
698 | // recompute the source CR logical as it may be usable for splitting. |
699 | if (Changed) { |
700 | bool Input1CRlogical = |
701 | CRI.TrueDefs.first && isCRLogical(MI&: *CRI.TrueDefs.first); |
702 | bool Input2CRlogical = |
703 | CRI.TrueDefs.second && isCRLogical(MI&: *CRI.TrueDefs.second); |
704 | if (Input1CRlogical) |
705 | AllCRLogicalOps.push_back(Elt: createCRLogicalOpInfo(MIParam&: *CRI.TrueDefs.first)); |
706 | if (Input2CRlogical) |
707 | AllCRLogicalOps.push_back(Elt: createCRLogicalOpInfo(MIParam&: *CRI.TrueDefs.second)); |
708 | } |
709 | return Changed; |
710 | } |
711 | |
712 | void PPCReduceCRLogicals::collectCRLogicals() { |
713 | for (MachineBasicBlock &MBB : *MF) { |
714 | for (MachineInstr &MI : MBB) { |
715 | if (isCRLogical(MI)) { |
716 | AllCRLogicalOps.push_back(Elt: createCRLogicalOpInfo(MIParam&: MI)); |
717 | TotalCRLogicals++; |
718 | if (AllCRLogicalOps.back().IsNullary) |
719 | TotalNullaryCRLogicals++; |
720 | else if (AllCRLogicalOps.back().IsBinary) |
721 | TotalBinaryCRLogicals++; |
722 | else |
723 | TotalUnaryCRLogicals++; |
724 | } |
725 | } |
726 | } |
727 | } |
728 | |
729 | } // end anonymous namespace |
730 | |
731 | INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE, |
732 | "PowerPC Reduce CR logical Operation" , false, false) |
733 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
734 | INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE, |
735 | "PowerPC Reduce CR logical Operation" , false, false) |
736 | |
737 | char PPCReduceCRLogicals::ID = 0; |
738 | FunctionPass* |
739 | llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); } |
740 | |