1 | //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "MCTargetDesc/X86BaseInfo.h" |
10 | #include "MCTargetDesc/X86EncodingOptimization.h" |
11 | #include "MCTargetDesc/X86FixupKinds.h" |
12 | #include "llvm/ADT/StringSwitch.h" |
13 | #include "llvm/BinaryFormat/ELF.h" |
14 | #include "llvm/BinaryFormat/MachO.h" |
15 | #include "llvm/MC/MCAsmBackend.h" |
16 | #include "llvm/MC/MCAssembler.h" |
17 | #include "llvm/MC/MCCodeEmitter.h" |
18 | #include "llvm/MC/MCContext.h" |
19 | #include "llvm/MC/MCDwarf.h" |
20 | #include "llvm/MC/MCELFObjectWriter.h" |
21 | #include "llvm/MC/MCELFStreamer.h" |
22 | #include "llvm/MC/MCExpr.h" |
23 | #include "llvm/MC/MCFixupKindInfo.h" |
24 | #include "llvm/MC/MCInst.h" |
25 | #include "llvm/MC/MCInstrInfo.h" |
26 | #include "llvm/MC/MCMachObjectWriter.h" |
27 | #include "llvm/MC/MCObjectStreamer.h" |
28 | #include "llvm/MC/MCObjectWriter.h" |
29 | #include "llvm/MC/MCRegisterInfo.h" |
30 | #include "llvm/MC/MCSectionMachO.h" |
31 | #include "llvm/MC/MCSubtargetInfo.h" |
32 | #include "llvm/MC/MCValue.h" |
33 | #include "llvm/MC/TargetRegistry.h" |
34 | #include "llvm/Support/CommandLine.h" |
35 | #include "llvm/Support/ErrorHandling.h" |
36 | #include "llvm/Support/raw_ostream.h" |
37 | |
38 | using namespace llvm; |
39 | |
40 | namespace { |
41 | /// A wrapper for holding a mask of the values from X86::AlignBranchBoundaryKind |
42 | class X86AlignBranchKind { |
43 | private: |
44 | uint8_t AlignBranchKind = 0; |
45 | |
46 | public: |
47 | void operator=(const std::string &Val) { |
48 | if (Val.empty()) |
49 | return; |
50 | SmallVector<StringRef, 6> BranchTypes; |
51 | StringRef(Val).split(A&: BranchTypes, Separator: '+', MaxSplit: -1, KeepEmpty: false); |
52 | for (auto BranchType : BranchTypes) { |
53 | if (BranchType == "fused" ) |
54 | addKind(Value: X86::AlignBranchFused); |
55 | else if (BranchType == "jcc" ) |
56 | addKind(Value: X86::AlignBranchJcc); |
57 | else if (BranchType == "jmp" ) |
58 | addKind(Value: X86::AlignBranchJmp); |
59 | else if (BranchType == "call" ) |
60 | addKind(Value: X86::AlignBranchCall); |
61 | else if (BranchType == "ret" ) |
62 | addKind(Value: X86::AlignBranchRet); |
63 | else if (BranchType == "indirect" ) |
64 | addKind(Value: X86::AlignBranchIndirect); |
65 | else { |
66 | errs() << "invalid argument " << BranchType.str() |
67 | << " to -x86-align-branch=; each element must be one of: fused, " |
68 | "jcc, jmp, call, ret, indirect.(plus separated)\n" ; |
69 | } |
70 | } |
71 | } |
72 | |
73 | operator uint8_t() const { return AlignBranchKind; } |
74 | void addKind(X86::AlignBranchBoundaryKind Value) { AlignBranchKind |= Value; } |
75 | }; |
76 | |
77 | X86AlignBranchKind X86AlignBranchKindLoc; |
78 | |
79 | cl::opt<unsigned> X86AlignBranchBoundary( |
80 | "x86-align-branch-boundary" , cl::init(Val: 0), |
81 | cl::desc( |
82 | "Control how the assembler should align branches with NOP. If the " |
83 | "boundary's size is not 0, it should be a power of 2 and no less " |
84 | "than 32. Branches will be aligned to prevent from being across or " |
85 | "against the boundary of specified size. The default value 0 does not " |
86 | "align branches." )); |
87 | |
88 | cl::opt<X86AlignBranchKind, true, cl::parser<std::string>> X86AlignBranch( |
89 | "x86-align-branch" , |
90 | cl::desc( |
91 | "Specify types of branches to align (plus separated list of types):" |
92 | "\njcc indicates conditional jumps" |
93 | "\nfused indicates fused conditional jumps" |
94 | "\njmp indicates direct unconditional jumps" |
95 | "\ncall indicates direct and indirect calls" |
96 | "\nret indicates rets" |
97 | "\nindirect indicates indirect unconditional jumps" ), |
98 | cl::location(L&: X86AlignBranchKindLoc)); |
99 | |
100 | cl::opt<bool> X86AlignBranchWithin32BBoundaries( |
101 | "x86-branches-within-32B-boundaries" , cl::init(Val: false), |
102 | cl::desc( |
103 | "Align selected instructions to mitigate negative performance impact " |
104 | "of Intel's micro code update for errata skx102. May break " |
105 | "assumptions about labels corresponding to particular instructions, " |
106 | "and should be used with caution." )); |
107 | |
108 | cl::opt<unsigned> X86PadMaxPrefixSize( |
109 | "x86-pad-max-prefix-size" , cl::init(Val: 0), |
110 | cl::desc("Maximum number of prefixes to use for padding" )); |
111 | |
112 | cl::opt<bool> X86PadForAlign( |
113 | "x86-pad-for-align" , cl::init(Val: false), cl::Hidden, |
114 | cl::desc("Pad previous instructions to implement align directives" )); |
115 | |
116 | cl::opt<bool> X86PadForBranchAlign( |
117 | "x86-pad-for-branch-align" , cl::init(Val: true), cl::Hidden, |
118 | cl::desc("Pad previous instructions to implement branch alignment" )); |
119 | |
120 | class X86AsmBackend : public MCAsmBackend { |
121 | const MCSubtargetInfo &STI; |
122 | std::unique_ptr<const MCInstrInfo> MCII; |
123 | X86AlignBranchKind AlignBranchType; |
124 | Align AlignBoundary; |
125 | unsigned TargetPrefixMax = 0; |
126 | |
127 | MCInst PrevInst; |
128 | unsigned PrevInstOpcode = 0; |
129 | MCBoundaryAlignFragment *PendingBA = nullptr; |
130 | std::pair<MCFragment *, size_t> PrevInstPosition; |
131 | bool IsRightAfterData = false; |
132 | |
133 | uint8_t determinePaddingPrefix(const MCInst &Inst) const; |
134 | bool isMacroFused(const MCInst &Cmp, const MCInst &Jcc) const; |
135 | bool needAlign(const MCInst &Inst) const; |
136 | bool canPadBranches(MCObjectStreamer &OS) const; |
137 | bool canPadInst(const MCInst &Inst, MCObjectStreamer &OS) const; |
138 | |
139 | public: |
140 | X86AsmBackend(const Target &T, const MCSubtargetInfo &STI) |
141 | : MCAsmBackend(llvm::endianness::little), STI(STI), |
142 | MCII(T.createMCInstrInfo()) { |
143 | if (X86AlignBranchWithin32BBoundaries) { |
144 | // At the moment, this defaults to aligning fused branches, unconditional |
145 | // jumps, and (unfused) conditional jumps with nops. Both the |
146 | // instructions aligned and the alignment method (nop vs prefix) may |
147 | // change in the future. |
148 | AlignBoundary = assumeAligned(Value: 32); |
149 | AlignBranchType.addKind(Value: X86::AlignBranchFused); |
150 | AlignBranchType.addKind(Value: X86::AlignBranchJcc); |
151 | AlignBranchType.addKind(Value: X86::AlignBranchJmp); |
152 | } |
153 | // Allow overriding defaults set by main flag |
154 | if (X86AlignBranchBoundary.getNumOccurrences()) |
155 | AlignBoundary = assumeAligned(Value: X86AlignBranchBoundary); |
156 | if (X86AlignBranch.getNumOccurrences()) |
157 | AlignBranchType = X86AlignBranchKindLoc; |
158 | if (X86PadMaxPrefixSize.getNumOccurrences()) |
159 | TargetPrefixMax = X86PadMaxPrefixSize; |
160 | } |
161 | |
162 | bool allowAutoPadding() const override; |
163 | bool allowEnhancedRelaxation() const override; |
164 | void emitInstructionBegin(MCObjectStreamer &OS, const MCInst &Inst, |
165 | const MCSubtargetInfo &STI); |
166 | void emitInstructionEnd(MCObjectStreamer &OS, const MCInst &Inst); |
167 | |
168 | unsigned getNumFixupKinds() const override { |
169 | return X86::NumTargetFixupKinds; |
170 | } |
171 | |
172 | std::optional<MCFixupKind> getFixupKind(StringRef Name) const override; |
173 | |
174 | const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override; |
175 | |
176 | bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup, |
177 | const MCValue &Target, |
178 | const MCSubtargetInfo *STI) override; |
179 | |
180 | void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, |
181 | const MCValue &Target, MutableArrayRef<char> Data, |
182 | uint64_t Value, bool IsResolved, |
183 | const MCSubtargetInfo *STI) const override; |
184 | |
185 | bool mayNeedRelaxation(const MCInst &Inst, |
186 | const MCSubtargetInfo &STI) const override; |
187 | |
188 | bool fixupNeedsRelaxation(const MCFixup &Fixup, |
189 | uint64_t Value) const override; |
190 | |
191 | void relaxInstruction(MCInst &Inst, |
192 | const MCSubtargetInfo &STI) const override; |
193 | |
194 | bool padInstructionViaRelaxation(MCRelaxableFragment &RF, |
195 | MCCodeEmitter &Emitter, |
196 | unsigned &RemainingSize) const; |
197 | |
198 | bool padInstructionViaPrefix(MCRelaxableFragment &RF, MCCodeEmitter &Emitter, |
199 | unsigned &RemainingSize) const; |
200 | |
201 | bool padInstructionEncoding(MCRelaxableFragment &RF, MCCodeEmitter &Emitter, |
202 | unsigned &RemainingSize) const; |
203 | |
204 | void finishLayout(const MCAssembler &Asm) const override; |
205 | |
206 | unsigned getMaximumNopSize(const MCSubtargetInfo &STI) const override; |
207 | |
208 | bool writeNopData(raw_ostream &OS, uint64_t Count, |
209 | const MCSubtargetInfo *STI) const override; |
210 | }; |
211 | } // end anonymous namespace |
212 | |
213 | static bool isRelaxableBranch(unsigned Opcode) { |
214 | return Opcode == X86::JCC_1 || Opcode == X86::JMP_1; |
215 | } |
216 | |
217 | static unsigned getRelaxedOpcodeBranch(unsigned Opcode, |
218 | bool Is16BitMode = false) { |
219 | switch (Opcode) { |
220 | default: |
221 | llvm_unreachable("invalid opcode for branch" ); |
222 | case X86::JCC_1: |
223 | return (Is16BitMode) ? X86::JCC_2 : X86::JCC_4; |
224 | case X86::JMP_1: |
225 | return (Is16BitMode) ? X86::JMP_2 : X86::JMP_4; |
226 | } |
227 | } |
228 | |
229 | static unsigned getRelaxedOpcode(const MCInst &MI, bool Is16BitMode) { |
230 | unsigned Opcode = MI.getOpcode(); |
231 | return isRelaxableBranch(Opcode) ? getRelaxedOpcodeBranch(Opcode, Is16BitMode) |
232 | : X86::getOpcodeForLongImmediateForm(Opcode); |
233 | } |
234 | |
235 | static X86::CondCode getCondFromBranch(const MCInst &MI, |
236 | const MCInstrInfo &MCII) { |
237 | unsigned Opcode = MI.getOpcode(); |
238 | switch (Opcode) { |
239 | default: |
240 | return X86::COND_INVALID; |
241 | case X86::JCC_1: { |
242 | const MCInstrDesc &Desc = MCII.get(Opcode); |
243 | return static_cast<X86::CondCode>( |
244 | MI.getOperand(i: Desc.getNumOperands() - 1).getImm()); |
245 | } |
246 | } |
247 | } |
248 | |
249 | static X86::SecondMacroFusionInstKind |
250 | classifySecondInstInMacroFusion(const MCInst &MI, const MCInstrInfo &MCII) { |
251 | X86::CondCode CC = getCondFromBranch(MI, MCII); |
252 | return classifySecondCondCodeInMacroFusion(CC); |
253 | } |
254 | |
255 | /// Check if the instruction uses RIP relative addressing. |
256 | static bool isRIPRelative(const MCInst &MI, const MCInstrInfo &MCII) { |
257 | unsigned Opcode = MI.getOpcode(); |
258 | const MCInstrDesc &Desc = MCII.get(Opcode); |
259 | uint64_t TSFlags = Desc.TSFlags; |
260 | unsigned CurOp = X86II::getOperandBias(Desc); |
261 | int MemoryOperand = X86II::getMemoryOperandNo(TSFlags); |
262 | if (MemoryOperand < 0) |
263 | return false; |
264 | unsigned BaseRegNum = MemoryOperand + CurOp + X86::AddrBaseReg; |
265 | unsigned BaseReg = MI.getOperand(i: BaseRegNum).getReg(); |
266 | return (BaseReg == X86::RIP); |
267 | } |
268 | |
269 | /// Check if the instruction is a prefix. |
270 | static bool isPrefix(unsigned Opcode, const MCInstrInfo &MCII) { |
271 | return X86II::isPrefix(TSFlags: MCII.get(Opcode).TSFlags); |
272 | } |
273 | |
274 | /// Check if the instruction is valid as the first instruction in macro fusion. |
275 | static bool isFirstMacroFusibleInst(const MCInst &Inst, |
276 | const MCInstrInfo &MCII) { |
277 | // An Intel instruction with RIP relative addressing is not macro fusible. |
278 | if (isRIPRelative(MI: Inst, MCII)) |
279 | return false; |
280 | X86::FirstMacroFusionInstKind FIK = |
281 | X86::classifyFirstOpcodeInMacroFusion(Opcode: Inst.getOpcode()); |
282 | return FIK != X86::FirstMacroFusionInstKind::Invalid; |
283 | } |
284 | |
285 | /// X86 can reduce the bytes of NOP by padding instructions with prefixes to |
286 | /// get a better peformance in some cases. Here, we determine which prefix is |
287 | /// the most suitable. |
288 | /// |
289 | /// If the instruction has a segment override prefix, use the existing one. |
290 | /// If the target is 64-bit, use the CS. |
291 | /// If the target is 32-bit, |
292 | /// - If the instruction has a ESP/EBP base register, use SS. |
293 | /// - Otherwise use DS. |
294 | uint8_t X86AsmBackend::determinePaddingPrefix(const MCInst &Inst) const { |
295 | assert((STI.hasFeature(X86::Is32Bit) || STI.hasFeature(X86::Is64Bit)) && |
296 | "Prefixes can be added only in 32-bit or 64-bit mode." ); |
297 | const MCInstrDesc &Desc = MCII->get(Opcode: Inst.getOpcode()); |
298 | uint64_t TSFlags = Desc.TSFlags; |
299 | |
300 | // Determine where the memory operand starts, if present. |
301 | int MemoryOperand = X86II::getMemoryOperandNo(TSFlags); |
302 | if (MemoryOperand != -1) |
303 | MemoryOperand += X86II::getOperandBias(Desc); |
304 | |
305 | unsigned SegmentReg = 0; |
306 | if (MemoryOperand >= 0) { |
307 | // Check for explicit segment override on memory operand. |
308 | SegmentReg = Inst.getOperand(i: MemoryOperand + X86::AddrSegmentReg).getReg(); |
309 | } |
310 | |
311 | switch (TSFlags & X86II::FormMask) { |
312 | default: |
313 | break; |
314 | case X86II::RawFrmDstSrc: { |
315 | // Check segment override opcode prefix as needed (not for %ds). |
316 | if (Inst.getOperand(i: 2).getReg() != X86::DS) |
317 | SegmentReg = Inst.getOperand(i: 2).getReg(); |
318 | break; |
319 | } |
320 | case X86II::RawFrmSrc: { |
321 | // Check segment override opcode prefix as needed (not for %ds). |
322 | if (Inst.getOperand(i: 1).getReg() != X86::DS) |
323 | SegmentReg = Inst.getOperand(i: 1).getReg(); |
324 | break; |
325 | } |
326 | case X86II::RawFrmMemOffs: { |
327 | // Check segment override opcode prefix as needed. |
328 | SegmentReg = Inst.getOperand(i: 1).getReg(); |
329 | break; |
330 | } |
331 | } |
332 | |
333 | if (SegmentReg != 0) |
334 | return X86::getSegmentOverridePrefixForReg(Reg: SegmentReg); |
335 | |
336 | if (STI.hasFeature(Feature: X86::Is64Bit)) |
337 | return X86::CS_Encoding; |
338 | |
339 | if (MemoryOperand >= 0) { |
340 | unsigned BaseRegNum = MemoryOperand + X86::AddrBaseReg; |
341 | unsigned BaseReg = Inst.getOperand(i: BaseRegNum).getReg(); |
342 | if (BaseReg == X86::ESP || BaseReg == X86::EBP) |
343 | return X86::SS_Encoding; |
344 | } |
345 | return X86::DS_Encoding; |
346 | } |
347 | |
348 | /// Check if the two instructions will be macro-fused on the target cpu. |
349 | bool X86AsmBackend::isMacroFused(const MCInst &Cmp, const MCInst &Jcc) const { |
350 | const MCInstrDesc &InstDesc = MCII->get(Opcode: Jcc.getOpcode()); |
351 | if (!InstDesc.isConditionalBranch()) |
352 | return false; |
353 | if (!isFirstMacroFusibleInst(Inst: Cmp, MCII: *MCII)) |
354 | return false; |
355 | const X86::FirstMacroFusionInstKind CmpKind = |
356 | X86::classifyFirstOpcodeInMacroFusion(Opcode: Cmp.getOpcode()); |
357 | const X86::SecondMacroFusionInstKind BranchKind = |
358 | classifySecondInstInMacroFusion(MI: Jcc, MCII: *MCII); |
359 | return X86::isMacroFused(FirstKind: CmpKind, SecondKind: BranchKind); |
360 | } |
361 | |
362 | /// Check if the instruction has a variant symbol operand. |
363 | static bool hasVariantSymbol(const MCInst &MI) { |
364 | for (auto &Operand : MI) { |
365 | if (!Operand.isExpr()) |
366 | continue; |
367 | const MCExpr &Expr = *Operand.getExpr(); |
368 | if (Expr.getKind() == MCExpr::SymbolRef && |
369 | cast<MCSymbolRefExpr>(Val: Expr).getKind() != MCSymbolRefExpr::VK_None) |
370 | return true; |
371 | } |
372 | return false; |
373 | } |
374 | |
375 | bool X86AsmBackend::allowAutoPadding() const { |
376 | return (AlignBoundary != Align(1) && AlignBranchType != X86::AlignBranchNone); |
377 | } |
378 | |
379 | bool X86AsmBackend::allowEnhancedRelaxation() const { |
380 | return allowAutoPadding() && TargetPrefixMax != 0 && X86PadForBranchAlign; |
381 | } |
382 | |
383 | /// X86 has certain instructions which enable interrupts exactly one |
384 | /// instruction *after* the instruction which stores to SS. Return true if the |
385 | /// given instruction may have such an interrupt delay slot. |
386 | static bool mayHaveInterruptDelaySlot(unsigned InstOpcode) { |
387 | switch (InstOpcode) { |
388 | case X86::POPSS16: |
389 | case X86::POPSS32: |
390 | case X86::STI: |
391 | return true; |
392 | |
393 | case X86::MOV16sr: |
394 | case X86::MOV32sr: |
395 | case X86::MOV64sr: |
396 | case X86::MOV16sm: |
397 | // In fact, this is only the case if the first operand is SS. However, as |
398 | // segment moves occur extremely rarely, this is just a minor pessimization. |
399 | return true; |
400 | } |
401 | return false; |
402 | } |
403 | |
404 | /// Check if the instruction to be emitted is right after any data. |
405 | static bool |
406 | isRightAfterData(MCFragment *CurrentFragment, |
407 | const std::pair<MCFragment *, size_t> &PrevInstPosition) { |
408 | MCFragment *F = CurrentFragment; |
409 | // Since data is always emitted into a DataFragment, our check strategy is |
410 | // simple here. |
411 | // - If the fragment is a DataFragment |
412 | // - If it's empty (section start or data after align), return false. |
413 | // - If it's not the fragment where the previous instruction is, |
414 | // returns true. |
415 | // - If it's the fragment holding the previous instruction but its |
416 | // size changed since the previous instruction was emitted into |
417 | // it, returns true. |
418 | // - Otherwise returns false. |
419 | // - If the fragment is not a DataFragment, returns false. |
420 | if (auto *DF = dyn_cast_or_null<MCDataFragment>(Val: F)) |
421 | return DF->getContents().size() && |
422 | (DF != PrevInstPosition.first || |
423 | DF->getContents().size() != PrevInstPosition.second); |
424 | |
425 | return false; |
426 | } |
427 | |
428 | /// \returns the fragment size if it has instructions, otherwise returns 0. |
429 | static size_t getSizeForInstFragment(const MCFragment *F) { |
430 | if (!F || !F->hasInstructions()) |
431 | return 0; |
432 | // MCEncodedFragmentWithContents being templated makes this tricky. |
433 | switch (F->getKind()) { |
434 | default: |
435 | llvm_unreachable("Unknown fragment with instructions!" ); |
436 | case MCFragment::FT_Data: |
437 | return cast<MCDataFragment>(Val: *F).getContents().size(); |
438 | case MCFragment::FT_Relaxable: |
439 | return cast<MCRelaxableFragment>(Val: *F).getContents().size(); |
440 | case MCFragment::FT_CompactEncodedInst: |
441 | return cast<MCCompactEncodedInstFragment>(Val: *F).getContents().size(); |
442 | } |
443 | } |
444 | |
445 | /// Return true if we can insert NOP or prefixes automatically before the |
446 | /// the instruction to be emitted. |
447 | bool X86AsmBackend::canPadInst(const MCInst &Inst, MCObjectStreamer &OS) const { |
448 | if (hasVariantSymbol(MI: Inst)) |
449 | // Linker may rewrite the instruction with variant symbol operand(e.g. |
450 | // TLSCALL). |
451 | return false; |
452 | |
453 | if (mayHaveInterruptDelaySlot(InstOpcode: PrevInstOpcode)) |
454 | // If this instruction follows an interrupt enabling instruction with a one |
455 | // instruction delay, inserting a nop would change behavior. |
456 | return false; |
457 | |
458 | if (isPrefix(Opcode: PrevInstOpcode, MCII: *MCII)) |
459 | // If this instruction follows a prefix, inserting a nop/prefix would change |
460 | // semantic. |
461 | return false; |
462 | |
463 | if (isPrefix(Opcode: Inst.getOpcode(), MCII: *MCII)) |
464 | // If this instruction is a prefix, inserting a prefix would change |
465 | // semantic. |
466 | return false; |
467 | |
468 | if (IsRightAfterData) |
469 | // If this instruction follows any data, there is no clear |
470 | // instruction boundary, inserting a nop/prefix would change semantic. |
471 | return false; |
472 | |
473 | return true; |
474 | } |
475 | |
476 | bool X86AsmBackend::canPadBranches(MCObjectStreamer &OS) const { |
477 | if (!OS.getAllowAutoPadding()) |
478 | return false; |
479 | assert(allowAutoPadding() && "incorrect initialization!" ); |
480 | |
481 | // We only pad in text section. |
482 | if (!OS.getCurrentSectionOnly()->isText()) |
483 | return false; |
484 | |
485 | // To be Done: Currently don't deal with Bundle cases. |
486 | if (OS.getAssembler().isBundlingEnabled()) |
487 | return false; |
488 | |
489 | // Branches only need to be aligned in 32-bit or 64-bit mode. |
490 | if (!(STI.hasFeature(Feature: X86::Is64Bit) || STI.hasFeature(Feature: X86::Is32Bit))) |
491 | return false; |
492 | |
493 | return true; |
494 | } |
495 | |
496 | /// Check if the instruction operand needs to be aligned. |
497 | bool X86AsmBackend::needAlign(const MCInst &Inst) const { |
498 | const MCInstrDesc &Desc = MCII->get(Opcode: Inst.getOpcode()); |
499 | return (Desc.isConditionalBranch() && |
500 | (AlignBranchType & X86::AlignBranchJcc)) || |
501 | (Desc.isUnconditionalBranch() && |
502 | (AlignBranchType & X86::AlignBranchJmp)) || |
503 | (Desc.isCall() && (AlignBranchType & X86::AlignBranchCall)) || |
504 | (Desc.isReturn() && (AlignBranchType & X86::AlignBranchRet)) || |
505 | (Desc.isIndirectBranch() && |
506 | (AlignBranchType & X86::AlignBranchIndirect)); |
507 | } |
508 | |
509 | /// Insert BoundaryAlignFragment before instructions to align branches. |
510 | void X86AsmBackend::emitInstructionBegin(MCObjectStreamer &OS, |
511 | const MCInst &Inst, const MCSubtargetInfo &STI) { |
512 | // Used by canPadInst. Done here, because in emitInstructionEnd, the current |
513 | // fragment will have changed. |
514 | IsRightAfterData = |
515 | isRightAfterData(CurrentFragment: OS.getCurrentFragment(), PrevInstPosition); |
516 | |
517 | if (!canPadBranches(OS)) |
518 | return; |
519 | |
520 | // NB: PrevInst only valid if canPadBranches is true. |
521 | if (!isMacroFused(Cmp: PrevInst, Jcc: Inst)) |
522 | // Macro fusion doesn't happen indeed, clear the pending. |
523 | PendingBA = nullptr; |
524 | |
525 | // When branch padding is enabled (basically the skx102 erratum => unlikely), |
526 | // we call canPadInst (not cheap) twice. However, in the common case, we can |
527 | // avoid unnecessary calls to that, as this is otherwise only used for |
528 | // relaxable fragments. |
529 | if (!canPadInst(Inst, OS)) |
530 | return; |
531 | |
532 | if (PendingBA && PendingBA->getNext() == OS.getCurrentFragment()) { |
533 | // Macro fusion actually happens and there is no other fragment inserted |
534 | // after the previous instruction. |
535 | // |
536 | // Do nothing here since we already inserted a BoudaryAlign fragment when |
537 | // we met the first instruction in the fused pair and we'll tie them |
538 | // together in emitInstructionEnd. |
539 | // |
540 | // Note: When there is at least one fragment, such as MCAlignFragment, |
541 | // inserted after the previous instruction, e.g. |
542 | // |
543 | // \code |
544 | // cmp %rax %rcx |
545 | // .align 16 |
546 | // je .Label0 |
547 | // \ endcode |
548 | // |
549 | // We will treat the JCC as a unfused branch although it may be fused |
550 | // with the CMP. |
551 | return; |
552 | } |
553 | |
554 | if (needAlign(Inst) || ((AlignBranchType & X86::AlignBranchFused) && |
555 | isFirstMacroFusibleInst(Inst, MCII: *MCII))) { |
556 | // If we meet a unfused branch or the first instuction in a fusiable pair, |
557 | // insert a BoundaryAlign fragment. |
558 | PendingBA = OS.getContext().allocFragment<MCBoundaryAlignFragment>( |
559 | args&: AlignBoundary, args: STI); |
560 | OS.insert(F: PendingBA); |
561 | } |
562 | } |
563 | |
564 | /// Set the last fragment to be aligned for the BoundaryAlignFragment. |
565 | void X86AsmBackend::emitInstructionEnd(MCObjectStreamer &OS, |
566 | const MCInst &Inst) { |
567 | MCFragment *CF = OS.getCurrentFragment(); |
568 | if (auto *F = dyn_cast_or_null<MCRelaxableFragment>(Val: CF)) |
569 | F->setAllowAutoPadding(canPadInst(Inst, OS)); |
570 | |
571 | // Update PrevInstOpcode here, canPadInst() reads that. |
572 | PrevInstOpcode = Inst.getOpcode(); |
573 | PrevInstPosition = std::make_pair(x&: CF, y: getSizeForInstFragment(F: CF)); |
574 | |
575 | if (!canPadBranches(OS)) |
576 | return; |
577 | |
578 | // PrevInst is only needed if canPadBranches. Copying an MCInst isn't cheap. |
579 | PrevInst = Inst; |
580 | |
581 | if (!needAlign(Inst) || !PendingBA) |
582 | return; |
583 | |
584 | // Tie the aligned instructions into a pending BoundaryAlign. |
585 | PendingBA->setLastFragment(CF); |
586 | PendingBA = nullptr; |
587 | |
588 | // We need to ensure that further data isn't added to the current |
589 | // DataFragment, so that we can get the size of instructions later in |
590 | // MCAssembler::relaxBoundaryAlign. The easiest way is to insert a new empty |
591 | // DataFragment. |
592 | if (isa_and_nonnull<MCDataFragment>(Val: CF)) |
593 | OS.insert(F: OS.getContext().allocFragment<MCDataFragment>()); |
594 | |
595 | // Update the maximum alignment on the current section if necessary. |
596 | MCSection *Sec = OS.getCurrentSectionOnly(); |
597 | Sec->ensureMinAlignment(MinAlignment: AlignBoundary); |
598 | } |
599 | |
600 | std::optional<MCFixupKind> X86AsmBackend::getFixupKind(StringRef Name) const { |
601 | if (STI.getTargetTriple().isOSBinFormatELF()) { |
602 | unsigned Type; |
603 | if (STI.getTargetTriple().getArch() == Triple::x86_64) { |
604 | Type = llvm::StringSwitch<unsigned>(Name) |
605 | #define ELF_RELOC(X, Y) .Case(#X, Y) |
606 | #include "llvm/BinaryFormat/ELFRelocs/x86_64.def" |
607 | #undef ELF_RELOC |
608 | .Case(S: "BFD_RELOC_NONE" , Value: ELF::R_X86_64_NONE) |
609 | .Case(S: "BFD_RELOC_8" , Value: ELF::R_X86_64_8) |
610 | .Case(S: "BFD_RELOC_16" , Value: ELF::R_X86_64_16) |
611 | .Case(S: "BFD_RELOC_32" , Value: ELF::R_X86_64_32) |
612 | .Case(S: "BFD_RELOC_64" , Value: ELF::R_X86_64_64) |
613 | .Default(Value: -1u); |
614 | } else { |
615 | Type = llvm::StringSwitch<unsigned>(Name) |
616 | #define ELF_RELOC(X, Y) .Case(#X, Y) |
617 | #include "llvm/BinaryFormat/ELFRelocs/i386.def" |
618 | #undef ELF_RELOC |
619 | .Case(S: "BFD_RELOC_NONE" , Value: ELF::R_386_NONE) |
620 | .Case(S: "BFD_RELOC_8" , Value: ELF::R_386_8) |
621 | .Case(S: "BFD_RELOC_16" , Value: ELF::R_386_16) |
622 | .Case(S: "BFD_RELOC_32" , Value: ELF::R_386_32) |
623 | .Default(Value: -1u); |
624 | } |
625 | if (Type == -1u) |
626 | return std::nullopt; |
627 | return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type); |
628 | } |
629 | return MCAsmBackend::getFixupKind(Name); |
630 | } |
631 | |
632 | const MCFixupKindInfo &X86AsmBackend::getFixupKindInfo(MCFixupKind Kind) const { |
633 | const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = { |
634 | {.Name: "reloc_riprel_4byte" , .TargetOffset: 0, .TargetSize: 32, .Flags: MCFixupKindInfo::FKF_IsPCRel}, |
635 | {.Name: "reloc_riprel_4byte_movq_load" , .TargetOffset: 0, .TargetSize: 32, .Flags: MCFixupKindInfo::FKF_IsPCRel}, |
636 | {.Name: "reloc_riprel_4byte_relax" , .TargetOffset: 0, .TargetSize: 32, .Flags: MCFixupKindInfo::FKF_IsPCRel}, |
637 | {.Name: "reloc_riprel_4byte_relax_rex" , .TargetOffset: 0, .TargetSize: 32, .Flags: MCFixupKindInfo::FKF_IsPCRel}, |
638 | {.Name: "reloc_signed_4byte" , .TargetOffset: 0, .TargetSize: 32, .Flags: 0}, |
639 | {.Name: "reloc_signed_4byte_relax" , .TargetOffset: 0, .TargetSize: 32, .Flags: 0}, |
640 | {.Name: "reloc_global_offset_table" , .TargetOffset: 0, .TargetSize: 32, .Flags: 0}, |
641 | {.Name: "reloc_global_offset_table8" , .TargetOffset: 0, .TargetSize: 64, .Flags: 0}, |
642 | {.Name: "reloc_branch_4byte_pcrel" , .TargetOffset: 0, .TargetSize: 32, .Flags: MCFixupKindInfo::FKF_IsPCRel}, |
643 | }; |
644 | |
645 | // Fixup kinds from .reloc directive are like R_386_NONE/R_X86_64_NONE. They |
646 | // do not require any extra processing. |
647 | if (Kind >= FirstLiteralRelocationKind) |
648 | return MCAsmBackend::getFixupKindInfo(Kind: FK_NONE); |
649 | |
650 | if (Kind < FirstTargetFixupKind) |
651 | return MCAsmBackend::getFixupKindInfo(Kind); |
652 | |
653 | assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && |
654 | "Invalid kind!" ); |
655 | assert(Infos[Kind - FirstTargetFixupKind].Name && "Empty fixup name!" ); |
656 | return Infos[Kind - FirstTargetFixupKind]; |
657 | } |
658 | |
659 | bool X86AsmBackend::shouldForceRelocation(const MCAssembler &, |
660 | const MCFixup &Fixup, const MCValue &, |
661 | const MCSubtargetInfo *STI) { |
662 | return Fixup.getKind() >= FirstLiteralRelocationKind; |
663 | } |
664 | |
665 | static unsigned getFixupKindSize(unsigned Kind) { |
666 | switch (Kind) { |
667 | default: |
668 | llvm_unreachable("invalid fixup kind!" ); |
669 | case FK_NONE: |
670 | return 0; |
671 | case FK_PCRel_1: |
672 | case FK_SecRel_1: |
673 | case FK_Data_1: |
674 | return 1; |
675 | case FK_PCRel_2: |
676 | case FK_SecRel_2: |
677 | case FK_Data_2: |
678 | return 2; |
679 | case FK_PCRel_4: |
680 | case X86::reloc_riprel_4byte: |
681 | case X86::reloc_riprel_4byte_relax: |
682 | case X86::reloc_riprel_4byte_relax_rex: |
683 | case X86::reloc_riprel_4byte_movq_load: |
684 | case X86::reloc_signed_4byte: |
685 | case X86::reloc_signed_4byte_relax: |
686 | case X86::reloc_global_offset_table: |
687 | case X86::reloc_branch_4byte_pcrel: |
688 | case FK_SecRel_4: |
689 | case FK_Data_4: |
690 | return 4; |
691 | case FK_PCRel_8: |
692 | case FK_SecRel_8: |
693 | case FK_Data_8: |
694 | case X86::reloc_global_offset_table8: |
695 | return 8; |
696 | } |
697 | } |
698 | |
699 | void X86AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, |
700 | const MCValue &Target, |
701 | MutableArrayRef<char> Data, |
702 | uint64_t Value, bool IsResolved, |
703 | const MCSubtargetInfo *STI) const { |
704 | unsigned Kind = Fixup.getKind(); |
705 | if (Kind >= FirstLiteralRelocationKind) |
706 | return; |
707 | unsigned Size = getFixupKindSize(Kind); |
708 | |
709 | assert(Fixup.getOffset() + Size <= Data.size() && "Invalid fixup offset!" ); |
710 | |
711 | int64_t SignedValue = static_cast<int64_t>(Value); |
712 | if ((Target.isAbsolute() || IsResolved) && |
713 | getFixupKindInfo(Kind: Fixup.getKind()).Flags & |
714 | MCFixupKindInfo::FKF_IsPCRel) { |
715 | // check that PC relative fixup fits into the fixup size. |
716 | if (Size > 0 && !isIntN(N: Size * 8, x: SignedValue)) |
717 | Asm.getContext().reportError( |
718 | L: Fixup.getLoc(), Msg: "value of " + Twine(SignedValue) + |
719 | " is too large for field of " + Twine(Size) + |
720 | ((Size == 1) ? " byte." : " bytes." )); |
721 | } else { |
722 | // Check that uppper bits are either all zeros or all ones. |
723 | // Specifically ignore overflow/underflow as long as the leakage is |
724 | // limited to the lower bits. This is to remain compatible with |
725 | // other assemblers. |
726 | assert((Size == 0 || isIntN(Size * 8 + 1, SignedValue)) && |
727 | "Value does not fit in the Fixup field" ); |
728 | } |
729 | |
730 | for (unsigned i = 0; i != Size; ++i) |
731 | Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8)); |
732 | } |
733 | |
734 | bool X86AsmBackend::mayNeedRelaxation(const MCInst &MI, |
735 | const MCSubtargetInfo &STI) const { |
736 | unsigned Opcode = MI.getOpcode(); |
737 | unsigned SkipOperands = X86::isCCMPCC(Opcode) ? 2 : 0; |
738 | return isRelaxableBranch(Opcode) || |
739 | (X86::getOpcodeForLongImmediateForm(Opcode) != Opcode && |
740 | MI.getOperand(i: MI.getNumOperands() - 1 - SkipOperands).isExpr()); |
741 | } |
742 | |
743 | bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, |
744 | uint64_t Value) const { |
745 | // Relax if the value is too big for a (signed) i8. |
746 | return !isInt<8>(x: Value); |
747 | } |
748 | |
749 | // FIXME: Can tblgen help at all here to verify there aren't other instructions |
750 | // we can relax? |
751 | void X86AsmBackend::relaxInstruction(MCInst &Inst, |
752 | const MCSubtargetInfo &STI) const { |
753 | // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel. |
754 | bool Is16BitMode = STI.hasFeature(Feature: X86::Is16Bit); |
755 | unsigned RelaxedOp = getRelaxedOpcode(MI: Inst, Is16BitMode); |
756 | |
757 | if (RelaxedOp == Inst.getOpcode()) { |
758 | SmallString<256> Tmp; |
759 | raw_svector_ostream OS(Tmp); |
760 | Inst.dump_pretty(OS); |
761 | OS << "\n" ; |
762 | report_fatal_error(reason: "unexpected instruction to relax: " + OS.str()); |
763 | } |
764 | |
765 | Inst.setOpcode(RelaxedOp); |
766 | } |
767 | |
768 | bool X86AsmBackend::padInstructionViaPrefix(MCRelaxableFragment &RF, |
769 | MCCodeEmitter &Emitter, |
770 | unsigned &RemainingSize) const { |
771 | if (!RF.getAllowAutoPadding()) |
772 | return false; |
773 | // If the instruction isn't fully relaxed, shifting it around might require a |
774 | // larger value for one of the fixups then can be encoded. The outer loop |
775 | // will also catch this before moving to the next instruction, but we need to |
776 | // prevent padding this single instruction as well. |
777 | if (mayNeedRelaxation(MI: RF.getInst(), STI: *RF.getSubtargetInfo())) |
778 | return false; |
779 | |
780 | const unsigned OldSize = RF.getContents().size(); |
781 | if (OldSize == 15) |
782 | return false; |
783 | |
784 | const unsigned MaxPossiblePad = std::min(a: 15 - OldSize, b: RemainingSize); |
785 | const unsigned RemainingPrefixSize = [&]() -> unsigned { |
786 | SmallString<15> Code; |
787 | X86_MC::emitPrefix(MCE&: Emitter, MI: RF.getInst(), CB&: Code, STI); |
788 | assert(Code.size() < 15 && "The number of prefixes must be less than 15." ); |
789 | |
790 | // TODO: It turns out we need a decent amount of plumbing for the target |
791 | // specific bits to determine number of prefixes its safe to add. Various |
792 | // targets (older chips mostly, but also Atom family) encounter decoder |
793 | // stalls with too many prefixes. For testing purposes, we set the value |
794 | // externally for the moment. |
795 | unsigned ExistingPrefixSize = Code.size(); |
796 | if (TargetPrefixMax <= ExistingPrefixSize) |
797 | return 0; |
798 | return TargetPrefixMax - ExistingPrefixSize; |
799 | }(); |
800 | const unsigned PrefixBytesToAdd = |
801 | std::min(a: MaxPossiblePad, b: RemainingPrefixSize); |
802 | if (PrefixBytesToAdd == 0) |
803 | return false; |
804 | |
805 | const uint8_t Prefix = determinePaddingPrefix(Inst: RF.getInst()); |
806 | |
807 | SmallString<256> Code; |
808 | Code.append(NumInputs: PrefixBytesToAdd, Elt: Prefix); |
809 | Code.append(in_start: RF.getContents().begin(), in_end: RF.getContents().end()); |
810 | RF.getContents() = Code; |
811 | |
812 | // Adjust the fixups for the change in offsets |
813 | for (auto &F : RF.getFixups()) { |
814 | F.setOffset(F.getOffset() + PrefixBytesToAdd); |
815 | } |
816 | |
817 | RemainingSize -= PrefixBytesToAdd; |
818 | return true; |
819 | } |
820 | |
821 | bool X86AsmBackend::padInstructionViaRelaxation(MCRelaxableFragment &RF, |
822 | MCCodeEmitter &Emitter, |
823 | unsigned &RemainingSize) const { |
824 | if (!mayNeedRelaxation(MI: RF.getInst(), STI: *RF.getSubtargetInfo())) |
825 | // TODO: There are lots of other tricks we could apply for increasing |
826 | // encoding size without impacting performance. |
827 | return false; |
828 | |
829 | MCInst Relaxed = RF.getInst(); |
830 | relaxInstruction(Inst&: Relaxed, STI: *RF.getSubtargetInfo()); |
831 | |
832 | SmallVector<MCFixup, 4> Fixups; |
833 | SmallString<15> Code; |
834 | Emitter.encodeInstruction(Inst: Relaxed, CB&: Code, Fixups, STI: *RF.getSubtargetInfo()); |
835 | const unsigned OldSize = RF.getContents().size(); |
836 | const unsigned NewSize = Code.size(); |
837 | assert(NewSize >= OldSize && "size decrease during relaxation?" ); |
838 | unsigned Delta = NewSize - OldSize; |
839 | if (Delta > RemainingSize) |
840 | return false; |
841 | RF.setInst(Relaxed); |
842 | RF.getContents() = Code; |
843 | RF.getFixups() = Fixups; |
844 | RemainingSize -= Delta; |
845 | return true; |
846 | } |
847 | |
848 | bool X86AsmBackend::padInstructionEncoding(MCRelaxableFragment &RF, |
849 | MCCodeEmitter &Emitter, |
850 | unsigned &RemainingSize) const { |
851 | bool Changed = false; |
852 | if (RemainingSize != 0) |
853 | Changed |= padInstructionViaRelaxation(RF, Emitter, RemainingSize); |
854 | if (RemainingSize != 0) |
855 | Changed |= padInstructionViaPrefix(RF, Emitter, RemainingSize); |
856 | return Changed; |
857 | } |
858 | |
859 | void X86AsmBackend::finishLayout(MCAssembler const &Asm) const { |
860 | // See if we can further relax some instructions to cut down on the number of |
861 | // nop bytes required for code alignment. The actual win is in reducing |
862 | // instruction count, not number of bytes. Modern X86-64 can easily end up |
863 | // decode limited. It is often better to reduce the number of instructions |
864 | // (i.e. eliminate nops) even at the cost of increasing the size and |
865 | // complexity of others. |
866 | if (!X86PadForAlign && !X86PadForBranchAlign) |
867 | return; |
868 | |
869 | // The processed regions are delimitered by LabeledFragments. -g may have more |
870 | // MCSymbols and therefore different relaxation results. X86PadForAlign is |
871 | // disabled by default to eliminate the -g vs non -g difference. |
872 | DenseSet<MCFragment *> LabeledFragments; |
873 | for (const MCSymbol &S : Asm.symbols()) |
874 | LabeledFragments.insert(V: S.getFragment(SetUsed: false)); |
875 | |
876 | for (MCSection &Sec : Asm) { |
877 | if (!Sec.isText()) |
878 | continue; |
879 | |
880 | SmallVector<MCRelaxableFragment *, 4> Relaxable; |
881 | for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) { |
882 | MCFragment &F = *I; |
883 | |
884 | if (LabeledFragments.count(V: &F)) |
885 | Relaxable.clear(); |
886 | |
887 | if (F.getKind() == MCFragment::FT_Data || |
888 | F.getKind() == MCFragment::FT_CompactEncodedInst) |
889 | // Skip and ignore |
890 | continue; |
891 | |
892 | if (F.getKind() == MCFragment::FT_Relaxable) { |
893 | auto &RF = cast<MCRelaxableFragment>(Val&: *I); |
894 | Relaxable.push_back(Elt: &RF); |
895 | continue; |
896 | } |
897 | |
898 | auto canHandle = [](MCFragment &F) -> bool { |
899 | switch (F.getKind()) { |
900 | default: |
901 | return false; |
902 | case MCFragment::FT_Align: |
903 | return X86PadForAlign; |
904 | case MCFragment::FT_BoundaryAlign: |
905 | return X86PadForBranchAlign; |
906 | } |
907 | }; |
908 | // For any unhandled kind, assume we can't change layout. |
909 | if (!canHandle(F)) { |
910 | Relaxable.clear(); |
911 | continue; |
912 | } |
913 | |
914 | #ifndef NDEBUG |
915 | const uint64_t OrigOffset = Asm.getFragmentOffset(F); |
916 | #endif |
917 | const uint64_t OrigSize = Asm.computeFragmentSize(F); |
918 | |
919 | // To keep the effects local, prefer to relax instructions closest to |
920 | // the align directive. This is purely about human understandability |
921 | // of the resulting code. If we later find a reason to expand |
922 | // particular instructions over others, we can adjust. |
923 | unsigned RemainingSize = OrigSize; |
924 | while (!Relaxable.empty() && RemainingSize != 0) { |
925 | auto &RF = *Relaxable.pop_back_val(); |
926 | // Give the backend a chance to play any tricks it wishes to increase |
927 | // the encoding size of the given instruction. Target independent code |
928 | // will try further relaxation, but target's may play further tricks. |
929 | if (padInstructionEncoding(RF, Emitter&: Asm.getEmitter(), RemainingSize)) |
930 | Sec.setHasLayout(false); |
931 | |
932 | // If we have an instruction which hasn't been fully relaxed, we can't |
933 | // skip past it and insert bytes before it. Changing its starting |
934 | // offset might require a larger negative offset than it can encode. |
935 | // We don't need to worry about larger positive offsets as none of the |
936 | // possible offsets between this and our align are visible, and the |
937 | // ones afterwards aren't changing. |
938 | if (mayNeedRelaxation(MI: RF.getInst(), STI: *RF.getSubtargetInfo())) |
939 | break; |
940 | } |
941 | Relaxable.clear(); |
942 | |
943 | // BoundaryAlign explicitly tracks it's size (unlike align) |
944 | if (F.getKind() == MCFragment::FT_BoundaryAlign) |
945 | cast<MCBoundaryAlignFragment>(Val&: F).setSize(RemainingSize); |
946 | |
947 | #ifndef NDEBUG |
948 | const uint64_t FinalOffset = Asm.getFragmentOffset(F); |
949 | const uint64_t FinalSize = Asm.computeFragmentSize(F); |
950 | assert(OrigOffset + OrigSize == FinalOffset + FinalSize && |
951 | "can't move start of next fragment!" ); |
952 | assert(FinalSize == RemainingSize && "inconsistent size computation?" ); |
953 | #endif |
954 | |
955 | // If we're looking at a boundary align, make sure we don't try to pad |
956 | // its target instructions for some following directive. Doing so would |
957 | // break the alignment of the current boundary align. |
958 | if (auto *BF = dyn_cast<MCBoundaryAlignFragment>(Val: &F)) { |
959 | const MCFragment *LastFragment = BF->getLastFragment(); |
960 | if (!LastFragment) |
961 | continue; |
962 | while (&*I != LastFragment) |
963 | ++I; |
964 | } |
965 | } |
966 | } |
967 | |
968 | // The layout is done. Mark every fragment as valid. |
969 | for (MCSection &Section : Asm) { |
970 | Asm.getFragmentOffset(F: *Section.curFragList()->Tail); |
971 | Asm.computeFragmentSize(F: *Section.curFragList()->Tail); |
972 | } |
973 | } |
974 | |
975 | unsigned X86AsmBackend::getMaximumNopSize(const MCSubtargetInfo &STI) const { |
976 | if (STI.hasFeature(Feature: X86::Is16Bit)) |
977 | return 4; |
978 | if (!STI.hasFeature(Feature: X86::FeatureNOPL) && !STI.hasFeature(Feature: X86::Is64Bit)) |
979 | return 1; |
980 | if (STI.hasFeature(Feature: X86::TuningFast7ByteNOP)) |
981 | return 7; |
982 | if (STI.hasFeature(Feature: X86::TuningFast15ByteNOP)) |
983 | return 15; |
984 | if (STI.hasFeature(Feature: X86::TuningFast11ByteNOP)) |
985 | return 11; |
986 | // FIXME: handle 32-bit mode |
987 | // 15-bytes is the longest single NOP instruction, but 10-bytes is |
988 | // commonly the longest that can be efficiently decoded. |
989 | return 10; |
990 | } |
991 | |
992 | /// Write a sequence of optimal nops to the output, covering \p Count |
993 | /// bytes. |
994 | /// \return - true on success, false on failure |
995 | bool X86AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count, |
996 | const MCSubtargetInfo *STI) const { |
997 | static const char Nops32Bit[10][11] = { |
998 | // nop |
999 | "\x90" , |
1000 | // xchg %ax,%ax |
1001 | "\x66\x90" , |
1002 | // nopl (%[re]ax) |
1003 | "\x0f\x1f\x00" , |
1004 | // nopl 0(%[re]ax) |
1005 | "\x0f\x1f\x40\x00" , |
1006 | // nopl 0(%[re]ax,%[re]ax,1) |
1007 | "\x0f\x1f\x44\x00\x00" , |
1008 | // nopw 0(%[re]ax,%[re]ax,1) |
1009 | "\x66\x0f\x1f\x44\x00\x00" , |
1010 | // nopl 0L(%[re]ax) |
1011 | "\x0f\x1f\x80\x00\x00\x00\x00" , |
1012 | // nopl 0L(%[re]ax,%[re]ax,1) |
1013 | "\x0f\x1f\x84\x00\x00\x00\x00\x00" , |
1014 | // nopw 0L(%[re]ax,%[re]ax,1) |
1015 | "\x66\x0f\x1f\x84\x00\x00\x00\x00\x00" , |
1016 | // nopw %cs:0L(%[re]ax,%[re]ax,1) |
1017 | "\x66\x2e\x0f\x1f\x84\x00\x00\x00\x00\x00" , |
1018 | }; |
1019 | |
1020 | // 16-bit mode uses different nop patterns than 32-bit. |
1021 | static const char Nops16Bit[4][11] = { |
1022 | // nop |
1023 | "\x90" , |
1024 | // xchg %eax,%eax |
1025 | "\x66\x90" , |
1026 | // lea 0(%si),%si |
1027 | "\x8d\x74\x00" , |
1028 | // lea 0w(%si),%si |
1029 | "\x8d\xb4\x00\x00" , |
1030 | }; |
1031 | |
1032 | const char(*Nops)[11] = |
1033 | STI->hasFeature(Feature: X86::Is16Bit) ? Nops16Bit : Nops32Bit; |
1034 | |
1035 | uint64_t MaxNopLength = (uint64_t)getMaximumNopSize(STI: *STI); |
1036 | |
1037 | // Emit as many MaxNopLength NOPs as needed, then emit a NOP of the remaining |
1038 | // length. |
1039 | do { |
1040 | const uint8_t ThisNopLength = (uint8_t) std::min(a: Count, b: MaxNopLength); |
1041 | const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10; |
1042 | for (uint8_t i = 0; i < Prefixes; i++) |
1043 | OS << '\x66'; |
1044 | const uint8_t Rest = ThisNopLength - Prefixes; |
1045 | if (Rest != 0) |
1046 | OS.write(Ptr: Nops[Rest - 1], Size: Rest); |
1047 | Count -= ThisNopLength; |
1048 | } while (Count != 0); |
1049 | |
1050 | return true; |
1051 | } |
1052 | |
1053 | /* *** */ |
1054 | |
1055 | namespace { |
1056 | |
1057 | class ELFX86AsmBackend : public X86AsmBackend { |
1058 | public: |
1059 | uint8_t OSABI; |
1060 | ELFX86AsmBackend(const Target &T, uint8_t OSABI, const MCSubtargetInfo &STI) |
1061 | : X86AsmBackend(T, STI), OSABI(OSABI) {} |
1062 | }; |
1063 | |
1064 | class ELFX86_32AsmBackend : public ELFX86AsmBackend { |
1065 | public: |
1066 | ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, |
1067 | const MCSubtargetInfo &STI) |
1068 | : ELFX86AsmBackend(T, OSABI, STI) {} |
1069 | |
1070 | std::unique_ptr<MCObjectTargetWriter> |
1071 | createObjectTargetWriter() const override { |
1072 | return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI, EMachine: ELF::EM_386); |
1073 | } |
1074 | }; |
1075 | |
1076 | class ELFX86_X32AsmBackend : public ELFX86AsmBackend { |
1077 | public: |
1078 | ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI, |
1079 | const MCSubtargetInfo &STI) |
1080 | : ELFX86AsmBackend(T, OSABI, STI) {} |
1081 | |
1082 | std::unique_ptr<MCObjectTargetWriter> |
1083 | createObjectTargetWriter() const override { |
1084 | return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI, |
1085 | EMachine: ELF::EM_X86_64); |
1086 | } |
1087 | }; |
1088 | |
1089 | class ELFX86_IAMCUAsmBackend : public ELFX86AsmBackend { |
1090 | public: |
1091 | ELFX86_IAMCUAsmBackend(const Target &T, uint8_t OSABI, |
1092 | const MCSubtargetInfo &STI) |
1093 | : ELFX86AsmBackend(T, OSABI, STI) {} |
1094 | |
1095 | std::unique_ptr<MCObjectTargetWriter> |
1096 | createObjectTargetWriter() const override { |
1097 | return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI, |
1098 | EMachine: ELF::EM_IAMCU); |
1099 | } |
1100 | }; |
1101 | |
1102 | class ELFX86_64AsmBackend : public ELFX86AsmBackend { |
1103 | public: |
1104 | ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, |
1105 | const MCSubtargetInfo &STI) |
1106 | : ELFX86AsmBackend(T, OSABI, STI) {} |
1107 | |
1108 | std::unique_ptr<MCObjectTargetWriter> |
1109 | createObjectTargetWriter() const override { |
1110 | return createX86ELFObjectWriter(/*IsELF64*/ true, OSABI, EMachine: ELF::EM_X86_64); |
1111 | } |
1112 | }; |
1113 | |
1114 | class WindowsX86AsmBackend : public X86AsmBackend { |
1115 | bool Is64Bit; |
1116 | |
1117 | public: |
1118 | WindowsX86AsmBackend(const Target &T, bool is64Bit, |
1119 | const MCSubtargetInfo &STI) |
1120 | : X86AsmBackend(T, STI) |
1121 | , Is64Bit(is64Bit) { |
1122 | } |
1123 | |
1124 | std::optional<MCFixupKind> getFixupKind(StringRef Name) const override { |
1125 | return StringSwitch<std::optional<MCFixupKind>>(Name) |
1126 | .Case(S: "dir32" , Value: FK_Data_4) |
1127 | .Case(S: "secrel32" , Value: FK_SecRel_4) |
1128 | .Case(S: "secidx" , Value: FK_SecRel_2) |
1129 | .Default(Value: MCAsmBackend::getFixupKind(Name)); |
1130 | } |
1131 | |
1132 | std::unique_ptr<MCObjectTargetWriter> |
1133 | createObjectTargetWriter() const override { |
1134 | return createX86WinCOFFObjectWriter(Is64Bit); |
1135 | } |
1136 | }; |
1137 | |
1138 | namespace CU { |
1139 | |
1140 | /// Compact unwind encoding values. |
1141 | enum CompactUnwindEncodings { |
1142 | /// [RE]BP based frame where [RE]BP is pused on the stack immediately after |
1143 | /// the return address, then [RE]SP is moved to [RE]BP. |
1144 | UNWIND_MODE_BP_FRAME = 0x01000000, |
1145 | |
1146 | /// A frameless function with a small constant stack size. |
1147 | UNWIND_MODE_STACK_IMMD = 0x02000000, |
1148 | |
1149 | /// A frameless function with a large constant stack size. |
1150 | UNWIND_MODE_STACK_IND = 0x03000000, |
1151 | |
1152 | /// No compact unwind encoding is available. |
1153 | UNWIND_MODE_DWARF = 0x04000000, |
1154 | |
1155 | /// Mask for encoding the frame registers. |
1156 | UNWIND_BP_FRAME_REGISTERS = 0x00007FFF, |
1157 | |
1158 | /// Mask for encoding the frameless registers. |
1159 | UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF |
1160 | }; |
1161 | |
1162 | } // namespace CU |
1163 | |
1164 | class DarwinX86AsmBackend : public X86AsmBackend { |
1165 | const MCRegisterInfo &MRI; |
1166 | |
1167 | /// Number of registers that can be saved in a compact unwind encoding. |
1168 | enum { CU_NUM_SAVED_REGS = 6 }; |
1169 | |
1170 | mutable unsigned SavedRegs[CU_NUM_SAVED_REGS]; |
1171 | Triple TT; |
1172 | bool Is64Bit; |
1173 | |
1174 | unsigned OffsetSize; ///< Offset of a "push" instruction. |
1175 | unsigned MoveInstrSize; ///< Size of a "move" instruction. |
1176 | unsigned StackDivide; ///< Amount to adjust stack size by. |
1177 | protected: |
1178 | /// Size of a "push" instruction for the given register. |
1179 | unsigned PushInstrSize(unsigned Reg) const { |
1180 | switch (Reg) { |
1181 | case X86::EBX: |
1182 | case X86::ECX: |
1183 | case X86::EDX: |
1184 | case X86::EDI: |
1185 | case X86::ESI: |
1186 | case X86::EBP: |
1187 | case X86::RBX: |
1188 | case X86::RBP: |
1189 | return 1; |
1190 | case X86::R12: |
1191 | case X86::R13: |
1192 | case X86::R14: |
1193 | case X86::R15: |
1194 | return 2; |
1195 | } |
1196 | return 1; |
1197 | } |
1198 | |
1199 | private: |
1200 | /// Get the compact unwind number for a given register. The number |
1201 | /// corresponds to the enum lists in compact_unwind_encoding.h. |
1202 | int getCompactUnwindRegNum(unsigned Reg) const { |
1203 | static const MCPhysReg CU32BitRegs[7] = { |
1204 | X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0 |
1205 | }; |
1206 | static const MCPhysReg CU64BitRegs[] = { |
1207 | X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 |
1208 | }; |
1209 | const MCPhysReg *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs; |
1210 | for (int Idx = 1; *CURegs; ++CURegs, ++Idx) |
1211 | if (*CURegs == Reg) |
1212 | return Idx; |
1213 | |
1214 | return -1; |
1215 | } |
1216 | |
1217 | /// Return the registers encoded for a compact encoding with a frame |
1218 | /// pointer. |
1219 | uint32_t encodeCompactUnwindRegistersWithFrame() const { |
1220 | // Encode the registers in the order they were saved --- 3-bits per |
1221 | // register. The list of saved registers is assumed to be in reverse |
1222 | // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS. |
1223 | uint32_t RegEnc = 0; |
1224 | for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) { |
1225 | unsigned Reg = SavedRegs[i]; |
1226 | if (Reg == 0) break; |
1227 | |
1228 | int CURegNum = getCompactUnwindRegNum(Reg); |
1229 | if (CURegNum == -1) return ~0U; |
1230 | |
1231 | // Encode the 3-bit register number in order, skipping over 3-bits for |
1232 | // each register. |
1233 | RegEnc |= (CURegNum & 0x7) << (Idx++ * 3); |
1234 | } |
1235 | |
1236 | assert((RegEnc & 0x3FFFF) == RegEnc && |
1237 | "Invalid compact register encoding!" ); |
1238 | return RegEnc; |
1239 | } |
1240 | |
1241 | /// Create the permutation encoding used with frameless stacks. It is |
1242 | /// passed the number of registers to be saved and an array of the registers |
1243 | /// saved. |
1244 | uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const { |
1245 | // The saved registers are numbered from 1 to 6. In order to encode the |
1246 | // order in which they were saved, we re-number them according to their |
1247 | // place in the register order. The re-numbering is relative to the last |
1248 | // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in |
1249 | // that order: |
1250 | // |
1251 | // Orig Re-Num |
1252 | // ---- ------ |
1253 | // 6 6 |
1254 | // 2 2 |
1255 | // 4 3 |
1256 | // 5 3 |
1257 | // |
1258 | for (unsigned i = 0; i < RegCount; ++i) { |
1259 | int CUReg = getCompactUnwindRegNum(Reg: SavedRegs[i]); |
1260 | if (CUReg == -1) return ~0U; |
1261 | SavedRegs[i] = CUReg; |
1262 | } |
1263 | |
1264 | // Reverse the list. |
1265 | std::reverse(first: &SavedRegs[0], last: &SavedRegs[CU_NUM_SAVED_REGS]); |
1266 | |
1267 | uint32_t RenumRegs[CU_NUM_SAVED_REGS]; |
1268 | for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){ |
1269 | unsigned Countless = 0; |
1270 | for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j) |
1271 | if (SavedRegs[j] < SavedRegs[i]) |
1272 | ++Countless; |
1273 | |
1274 | RenumRegs[i] = SavedRegs[i] - Countless - 1; |
1275 | } |
1276 | |
1277 | // Take the renumbered values and encode them into a 10-bit number. |
1278 | uint32_t permutationEncoding = 0; |
1279 | switch (RegCount) { |
1280 | case 6: |
1281 | permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1] |
1282 | + 6 * RenumRegs[2] + 2 * RenumRegs[3] |
1283 | + RenumRegs[4]; |
1284 | break; |
1285 | case 5: |
1286 | permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2] |
1287 | + 6 * RenumRegs[3] + 2 * RenumRegs[4] |
1288 | + RenumRegs[5]; |
1289 | break; |
1290 | case 4: |
1291 | permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3] |
1292 | + 3 * RenumRegs[4] + RenumRegs[5]; |
1293 | break; |
1294 | case 3: |
1295 | permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4] |
1296 | + RenumRegs[5]; |
1297 | break; |
1298 | case 2: |
1299 | permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5]; |
1300 | break; |
1301 | case 1: |
1302 | permutationEncoding |= RenumRegs[5]; |
1303 | break; |
1304 | } |
1305 | |
1306 | assert((permutationEncoding & 0x3FF) == permutationEncoding && |
1307 | "Invalid compact register encoding!" ); |
1308 | return permutationEncoding; |
1309 | } |
1310 | |
1311 | public: |
1312 | DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, |
1313 | const MCSubtargetInfo &STI) |
1314 | : X86AsmBackend(T, STI), MRI(MRI), TT(STI.getTargetTriple()), |
1315 | Is64Bit(TT.isArch64Bit()) { |
1316 | memset(s: SavedRegs, c: 0, n: sizeof(SavedRegs)); |
1317 | OffsetSize = Is64Bit ? 8 : 4; |
1318 | MoveInstrSize = Is64Bit ? 3 : 2; |
1319 | StackDivide = Is64Bit ? 8 : 4; |
1320 | } |
1321 | |
1322 | std::unique_ptr<MCObjectTargetWriter> |
1323 | createObjectTargetWriter() const override { |
1324 | uint32_t CPUType = cantFail(ValOrErr: MachO::getCPUType(T: TT)); |
1325 | uint32_t CPUSubType = cantFail(ValOrErr: MachO::getCPUSubType(T: TT)); |
1326 | return createX86MachObjectWriter(Is64Bit, CPUType, CPUSubtype: CPUSubType); |
1327 | } |
1328 | |
1329 | /// Implementation of algorithm to generate the compact unwind encoding |
1330 | /// for the CFI instructions. |
1331 | uint64_t generateCompactUnwindEncoding(const MCDwarfFrameInfo *FI, |
1332 | const MCContext *Ctxt) const override { |
1333 | ArrayRef<MCCFIInstruction> Instrs = FI->Instructions; |
1334 | if (Instrs.empty()) return 0; |
1335 | if (!isDarwinCanonicalPersonality(Sym: FI->Personality) && |
1336 | !Ctxt->emitCompactUnwindNonCanonical()) |
1337 | return CU::UNWIND_MODE_DWARF; |
1338 | |
1339 | // Reset the saved registers. |
1340 | unsigned SavedRegIdx = 0; |
1341 | memset(s: SavedRegs, c: 0, n: sizeof(SavedRegs)); |
1342 | |
1343 | bool HasFP = false; |
1344 | |
1345 | // Encode that we are using EBP/RBP as the frame pointer. |
1346 | uint64_t CompactUnwindEncoding = 0; |
1347 | |
1348 | unsigned SubtractInstrIdx = Is64Bit ? 3 : 2; |
1349 | unsigned InstrOffset = 0; |
1350 | unsigned StackAdjust = 0; |
1351 | uint64_t StackSize = 0; |
1352 | int64_t MinAbsOffset = std::numeric_limits<int64_t>::max(); |
1353 | |
1354 | for (const MCCFIInstruction &Inst : Instrs) { |
1355 | switch (Inst.getOperation()) { |
1356 | default: |
1357 | // Any other CFI directives indicate a frame that we aren't prepared |
1358 | // to represent via compact unwind, so just bail out. |
1359 | return CU::UNWIND_MODE_DWARF; |
1360 | case MCCFIInstruction::OpDefCfaRegister: { |
1361 | // Defines a frame pointer. E.g. |
1362 | // |
1363 | // movq %rsp, %rbp |
1364 | // L0: |
1365 | // .cfi_def_cfa_register %rbp |
1366 | // |
1367 | HasFP = true; |
1368 | |
1369 | // If the frame pointer is other than esp/rsp, we do not have a way to |
1370 | // generate a compact unwinding representation, so bail out. |
1371 | if (*MRI.getLLVMRegNum(RegNum: Inst.getRegister(), isEH: true) != |
1372 | (Is64Bit ? X86::RBP : X86::EBP)) |
1373 | return CU::UNWIND_MODE_DWARF; |
1374 | |
1375 | // Reset the counts. |
1376 | memset(s: SavedRegs, c: 0, n: sizeof(SavedRegs)); |
1377 | StackAdjust = 0; |
1378 | SavedRegIdx = 0; |
1379 | MinAbsOffset = std::numeric_limits<int64_t>::max(); |
1380 | InstrOffset += MoveInstrSize; |
1381 | break; |
1382 | } |
1383 | case MCCFIInstruction::OpDefCfaOffset: { |
1384 | // Defines a new offset for the CFA. E.g. |
1385 | // |
1386 | // With frame: |
1387 | // |
1388 | // pushq %rbp |
1389 | // L0: |
1390 | // .cfi_def_cfa_offset 16 |
1391 | // |
1392 | // Without frame: |
1393 | // |
1394 | // subq $72, %rsp |
1395 | // L0: |
1396 | // .cfi_def_cfa_offset 80 |
1397 | // |
1398 | StackSize = Inst.getOffset() / StackDivide; |
1399 | break; |
1400 | } |
1401 | case MCCFIInstruction::OpOffset: { |
1402 | // Defines a "push" of a callee-saved register. E.g. |
1403 | // |
1404 | // pushq %r15 |
1405 | // pushq %r14 |
1406 | // pushq %rbx |
1407 | // L0: |
1408 | // subq $120, %rsp |
1409 | // L1: |
1410 | // .cfi_offset %rbx, -40 |
1411 | // .cfi_offset %r14, -32 |
1412 | // .cfi_offset %r15, -24 |
1413 | // |
1414 | if (SavedRegIdx == CU_NUM_SAVED_REGS) |
1415 | // If there are too many saved registers, we cannot use a compact |
1416 | // unwind encoding. |
1417 | return CU::UNWIND_MODE_DWARF; |
1418 | |
1419 | unsigned Reg = *MRI.getLLVMRegNum(RegNum: Inst.getRegister(), isEH: true); |
1420 | SavedRegs[SavedRegIdx++] = Reg; |
1421 | StackAdjust += OffsetSize; |
1422 | MinAbsOffset = std::min(a: MinAbsOffset, b: std::abs(i: Inst.getOffset())); |
1423 | InstrOffset += PushInstrSize(Reg); |
1424 | break; |
1425 | } |
1426 | } |
1427 | } |
1428 | |
1429 | StackAdjust /= StackDivide; |
1430 | |
1431 | if (HasFP) { |
1432 | if ((StackAdjust & 0xFF) != StackAdjust) |
1433 | // Offset was too big for a compact unwind encoding. |
1434 | return CU::UNWIND_MODE_DWARF; |
1435 | |
1436 | // We don't attempt to track a real StackAdjust, so if the saved registers |
1437 | // aren't adjacent to rbp we can't cope. |
1438 | if (SavedRegIdx != 0 && MinAbsOffset != 3 * (int)OffsetSize) |
1439 | return CU::UNWIND_MODE_DWARF; |
1440 | |
1441 | // Get the encoding of the saved registers when we have a frame pointer. |
1442 | uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(); |
1443 | if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF; |
1444 | |
1445 | CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME; |
1446 | CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16; |
1447 | CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS; |
1448 | } else { |
1449 | SubtractInstrIdx += InstrOffset; |
1450 | ++StackAdjust; |
1451 | |
1452 | if ((StackSize & 0xFF) == StackSize) { |
1453 | // Frameless stack with a small stack size. |
1454 | CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD; |
1455 | |
1456 | // Encode the stack size. |
1457 | CompactUnwindEncoding |= (StackSize & 0xFF) << 16; |
1458 | } else { |
1459 | if ((StackAdjust & 0x7) != StackAdjust) |
1460 | // The extra stack adjustments are too big for us to handle. |
1461 | return CU::UNWIND_MODE_DWARF; |
1462 | |
1463 | // Frameless stack with an offset too large for us to encode compactly. |
1464 | CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND; |
1465 | |
1466 | // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP' |
1467 | // instruction. |
1468 | CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16; |
1469 | |
1470 | // Encode any extra stack adjustments (done via push instructions). |
1471 | CompactUnwindEncoding |= (StackAdjust & 0x7) << 13; |
1472 | } |
1473 | |
1474 | // Encode the number of registers saved. (Reverse the list first.) |
1475 | std::reverse(first: &SavedRegs[0], last: &SavedRegs[SavedRegIdx]); |
1476 | CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10; |
1477 | |
1478 | // Get the encoding of the saved registers when we don't have a frame |
1479 | // pointer. |
1480 | uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(RegCount: SavedRegIdx); |
1481 | if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF; |
1482 | |
1483 | // Encode the register encoding. |
1484 | CompactUnwindEncoding |= |
1485 | RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION; |
1486 | } |
1487 | |
1488 | return CompactUnwindEncoding; |
1489 | } |
1490 | }; |
1491 | |
1492 | } // end anonymous namespace |
1493 | |
1494 | MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, |
1495 | const MCSubtargetInfo &STI, |
1496 | const MCRegisterInfo &MRI, |
1497 | const MCTargetOptions &Options) { |
1498 | const Triple &TheTriple = STI.getTargetTriple(); |
1499 | if (TheTriple.isOSBinFormatMachO()) |
1500 | return new DarwinX86AsmBackend(T, MRI, STI); |
1501 | |
1502 | if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF()) |
1503 | return new WindowsX86AsmBackend(T, false, STI); |
1504 | |
1505 | uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(OSType: TheTriple.getOS()); |
1506 | |
1507 | if (TheTriple.isOSIAMCU()) |
1508 | return new ELFX86_IAMCUAsmBackend(T, OSABI, STI); |
1509 | |
1510 | return new ELFX86_32AsmBackend(T, OSABI, STI); |
1511 | } |
1512 | |
1513 | MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, |
1514 | const MCSubtargetInfo &STI, |
1515 | const MCRegisterInfo &MRI, |
1516 | const MCTargetOptions &Options) { |
1517 | const Triple &TheTriple = STI.getTargetTriple(); |
1518 | if (TheTriple.isOSBinFormatMachO()) |
1519 | return new DarwinX86AsmBackend(T, MRI, STI); |
1520 | |
1521 | if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF()) |
1522 | return new WindowsX86AsmBackend(T, true, STI); |
1523 | |
1524 | if (TheTriple.isUEFI()) { |
1525 | assert(TheTriple.isOSBinFormatCOFF() && |
1526 | "Only COFF format is supported in UEFI environment." ); |
1527 | return new WindowsX86AsmBackend(T, true, STI); |
1528 | } |
1529 | |
1530 | uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(OSType: TheTriple.getOS()); |
1531 | |
1532 | if (TheTriple.isX32()) |
1533 | return new ELFX86_X32AsmBackend(T, OSABI, STI); |
1534 | return new ELFX86_64AsmBackend(T, OSABI, STI); |
1535 | } |
1536 | |
1537 | namespace { |
1538 | class X86ELFStreamer : public MCELFStreamer { |
1539 | public: |
1540 | X86ELFStreamer(MCContext &Context, std::unique_ptr<MCAsmBackend> TAB, |
1541 | std::unique_ptr<MCObjectWriter> OW, |
1542 | std::unique_ptr<MCCodeEmitter> Emitter) |
1543 | : MCELFStreamer(Context, std::move(TAB), std::move(OW), |
1544 | std::move(Emitter)) {} |
1545 | |
1546 | void emitInstruction(const MCInst &Inst, const MCSubtargetInfo &STI) override; |
1547 | }; |
1548 | } // end anonymous namespace |
1549 | |
1550 | void X86_MC::emitInstruction(MCObjectStreamer &S, const MCInst &Inst, |
1551 | const MCSubtargetInfo &STI) { |
1552 | auto &Backend = static_cast<X86AsmBackend &>(S.getAssembler().getBackend()); |
1553 | Backend.emitInstructionBegin(OS&: S, Inst, STI); |
1554 | S.MCObjectStreamer::emitInstruction(Inst, STI); |
1555 | Backend.emitInstructionEnd(OS&: S, Inst); |
1556 | } |
1557 | |
1558 | void X86ELFStreamer::emitInstruction(const MCInst &Inst, |
1559 | const MCSubtargetInfo &STI) { |
1560 | X86_MC::emitInstruction(S&: *this, Inst, STI); |
1561 | } |
1562 | |
1563 | MCStreamer *llvm::createX86ELFStreamer(const Triple &T, MCContext &Context, |
1564 | std::unique_ptr<MCAsmBackend> &&MAB, |
1565 | std::unique_ptr<MCObjectWriter> &&MOW, |
1566 | std::unique_ptr<MCCodeEmitter> &&MCE) { |
1567 | return new X86ELFStreamer(Context, std::move(MAB), std::move(MOW), |
1568 | std::move(MCE)); |
1569 | } |
1570 | |