1 | //===- X86AvoidStoreForwardingBlocks.cpp - Avoid HW Store Forward Block ---===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // If a load follows a store and reloads data that the store has written to |
10 | // memory, Intel microarchitectures can in many cases forward the data directly |
11 | // from the store to the load, This "store forwarding" saves cycles by enabling |
12 | // the load to directly obtain the data instead of accessing the data from |
13 | // cache or memory. |
14 | // A "store forward block" occurs in cases that a store cannot be forwarded to |
15 | // the load. The most typical case of store forward block on Intel Core |
16 | // microarchitecture that a small store cannot be forwarded to a large load. |
17 | // The estimated penalty for a store forward block is ~13 cycles. |
18 | // |
19 | // This pass tries to recognize and handle cases where "store forward block" |
20 | // is created by the compiler when lowering memcpy calls to a sequence |
21 | // of a load and a store. |
22 | // |
23 | // The pass currently only handles cases where memcpy is lowered to |
24 | // XMM/YMM registers, it tries to break the memcpy into smaller copies. |
25 | // breaking the memcpy should be possible since there is no atomicity |
26 | // guarantee for loads and stores to XMM/YMM. |
27 | // |
28 | // It could be better for performance to solve the problem by loading |
29 | // to XMM/YMM then inserting the partial store before storing back from XMM/YMM |
30 | // to memory, but this will result in a more conservative optimization since it |
31 | // requires we prove that all memory accesses between the blocking store and the |
32 | // load must alias/don't alias before we can move the store, whereas the |
33 | // transformation done here is correct regardless to other memory accesses. |
34 | //===----------------------------------------------------------------------===// |
35 | |
36 | #include "X86.h" |
37 | #include "X86InstrInfo.h" |
38 | #include "X86Subtarget.h" |
39 | #include "llvm/Analysis/AliasAnalysis.h" |
40 | #include "llvm/CodeGen/MachineBasicBlock.h" |
41 | #include "llvm/CodeGen/MachineFunction.h" |
42 | #include "llvm/CodeGen/MachineFunctionPass.h" |
43 | #include "llvm/CodeGen/MachineInstr.h" |
44 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
45 | #include "llvm/CodeGen/MachineOperand.h" |
46 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
47 | #include "llvm/IR/DebugInfoMetadata.h" |
48 | #include "llvm/IR/DebugLoc.h" |
49 | #include "llvm/IR/Function.h" |
50 | #include "llvm/InitializePasses.h" |
51 | #include "llvm/MC/MCInstrDesc.h" |
52 | |
53 | using namespace llvm; |
54 | |
55 | #define DEBUG_TYPE "x86-avoid-SFB" |
56 | |
57 | static cl::opt<bool> DisableX86AvoidStoreForwardBlocks( |
58 | "x86-disable-avoid-SFB" , cl::Hidden, |
59 | cl::desc("X86: Disable Store Forwarding Blocks fixup." ), cl::init(Val: false)); |
60 | |
61 | static cl::opt<unsigned> X86AvoidSFBInspectionLimit( |
62 | "x86-sfb-inspection-limit" , |
63 | cl::desc("X86: Number of instructions backward to " |
64 | "inspect for store forwarding blocks." ), |
65 | cl::init(Val: 20), cl::Hidden); |
66 | |
67 | namespace { |
68 | |
69 | using DisplacementSizeMap = std::map<int64_t, unsigned>; |
70 | |
71 | class X86AvoidSFBPass : public MachineFunctionPass { |
72 | public: |
73 | static char ID; |
74 | X86AvoidSFBPass() : MachineFunctionPass(ID) { } |
75 | |
76 | StringRef getPassName() const override { |
77 | return "X86 Avoid Store Forwarding Blocks" ; |
78 | } |
79 | |
80 | bool runOnMachineFunction(MachineFunction &MF) override; |
81 | |
82 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
83 | MachineFunctionPass::getAnalysisUsage(AU); |
84 | AU.addRequired<AAResultsWrapperPass>(); |
85 | } |
86 | |
87 | private: |
88 | MachineRegisterInfo *MRI = nullptr; |
89 | const X86InstrInfo *TII = nullptr; |
90 | const X86RegisterInfo *TRI = nullptr; |
91 | SmallVector<std::pair<MachineInstr *, MachineInstr *>, 2> |
92 | BlockedLoadsStoresPairs; |
93 | SmallVector<MachineInstr *, 2> ForRemoval; |
94 | AliasAnalysis *AA = nullptr; |
95 | |
96 | /// Returns couples of Load then Store to memory which look |
97 | /// like a memcpy. |
98 | void findPotentiallylBlockedCopies(MachineFunction &MF); |
99 | /// Break the memcpy's load and store into smaller copies |
100 | /// such that each memory load that was blocked by a smaller store |
101 | /// would now be copied separately. |
102 | void breakBlockedCopies(MachineInstr *LoadInst, MachineInstr *StoreInst, |
103 | const DisplacementSizeMap &BlockingStoresDispSizeMap); |
104 | /// Break a copy of size Size to smaller copies. |
105 | void buildCopies(int Size, MachineInstr *LoadInst, int64_t LdDispImm, |
106 | MachineInstr *StoreInst, int64_t StDispImm, |
107 | int64_t LMMOffset, int64_t SMMOffset); |
108 | |
109 | void buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, int64_t LoadDisp, |
110 | MachineInstr *StoreInst, unsigned NStoreOpcode, |
111 | int64_t StoreDisp, unsigned Size, int64_t LMMOffset, |
112 | int64_t SMMOffset); |
113 | |
114 | bool alias(const MachineMemOperand &Op1, const MachineMemOperand &Op2) const; |
115 | |
116 | unsigned getRegSizeInBytes(MachineInstr *Inst); |
117 | }; |
118 | |
119 | } // end anonymous namespace |
120 | |
121 | char X86AvoidSFBPass::ID = 0; |
122 | |
123 | INITIALIZE_PASS_BEGIN(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking" , |
124 | false, false) |
125 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
126 | INITIALIZE_PASS_END(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking" , false, |
127 | false) |
128 | |
129 | FunctionPass *llvm::createX86AvoidStoreForwardingBlocks() { |
130 | return new X86AvoidSFBPass(); |
131 | } |
132 | |
133 | static bool isXMMLoadOpcode(unsigned Opcode) { |
134 | return Opcode == X86::MOVUPSrm || Opcode == X86::MOVAPSrm || |
135 | Opcode == X86::VMOVUPSrm || Opcode == X86::VMOVAPSrm || |
136 | Opcode == X86::VMOVUPDrm || Opcode == X86::VMOVAPDrm || |
137 | Opcode == X86::VMOVDQUrm || Opcode == X86::VMOVDQArm || |
138 | Opcode == X86::VMOVUPSZ128rm || Opcode == X86::VMOVAPSZ128rm || |
139 | Opcode == X86::VMOVUPDZ128rm || Opcode == X86::VMOVAPDZ128rm || |
140 | Opcode == X86::VMOVDQU64Z128rm || Opcode == X86::VMOVDQA64Z128rm || |
141 | Opcode == X86::VMOVDQU32Z128rm || Opcode == X86::VMOVDQA32Z128rm; |
142 | } |
143 | static bool isYMMLoadOpcode(unsigned Opcode) { |
144 | return Opcode == X86::VMOVUPSYrm || Opcode == X86::VMOVAPSYrm || |
145 | Opcode == X86::VMOVUPDYrm || Opcode == X86::VMOVAPDYrm || |
146 | Opcode == X86::VMOVDQUYrm || Opcode == X86::VMOVDQAYrm || |
147 | Opcode == X86::VMOVUPSZ256rm || Opcode == X86::VMOVAPSZ256rm || |
148 | Opcode == X86::VMOVUPDZ256rm || Opcode == X86::VMOVAPDZ256rm || |
149 | Opcode == X86::VMOVDQU64Z256rm || Opcode == X86::VMOVDQA64Z256rm || |
150 | Opcode == X86::VMOVDQU32Z256rm || Opcode == X86::VMOVDQA32Z256rm; |
151 | } |
152 | |
153 | static bool isPotentialBlockedMemCpyLd(unsigned Opcode) { |
154 | return isXMMLoadOpcode(Opcode) || isYMMLoadOpcode(Opcode); |
155 | } |
156 | |
157 | static bool isPotentialBlockedMemCpyPair(unsigned LdOpcode, unsigned StOpcode) { |
158 | switch (LdOpcode) { |
159 | case X86::MOVUPSrm: |
160 | case X86::MOVAPSrm: |
161 | return StOpcode == X86::MOVUPSmr || StOpcode == X86::MOVAPSmr; |
162 | case X86::VMOVUPSrm: |
163 | case X86::VMOVAPSrm: |
164 | return StOpcode == X86::VMOVUPSmr || StOpcode == X86::VMOVAPSmr; |
165 | case X86::VMOVUPDrm: |
166 | case X86::VMOVAPDrm: |
167 | return StOpcode == X86::VMOVUPDmr || StOpcode == X86::VMOVAPDmr; |
168 | case X86::VMOVDQUrm: |
169 | case X86::VMOVDQArm: |
170 | return StOpcode == X86::VMOVDQUmr || StOpcode == X86::VMOVDQAmr; |
171 | case X86::VMOVUPSZ128rm: |
172 | case X86::VMOVAPSZ128rm: |
173 | return StOpcode == X86::VMOVUPSZ128mr || StOpcode == X86::VMOVAPSZ128mr; |
174 | case X86::VMOVUPDZ128rm: |
175 | case X86::VMOVAPDZ128rm: |
176 | return StOpcode == X86::VMOVUPDZ128mr || StOpcode == X86::VMOVAPDZ128mr; |
177 | case X86::VMOVUPSYrm: |
178 | case X86::VMOVAPSYrm: |
179 | return StOpcode == X86::VMOVUPSYmr || StOpcode == X86::VMOVAPSYmr; |
180 | case X86::VMOVUPDYrm: |
181 | case X86::VMOVAPDYrm: |
182 | return StOpcode == X86::VMOVUPDYmr || StOpcode == X86::VMOVAPDYmr; |
183 | case X86::VMOVDQUYrm: |
184 | case X86::VMOVDQAYrm: |
185 | return StOpcode == X86::VMOVDQUYmr || StOpcode == X86::VMOVDQAYmr; |
186 | case X86::VMOVUPSZ256rm: |
187 | case X86::VMOVAPSZ256rm: |
188 | return StOpcode == X86::VMOVUPSZ256mr || StOpcode == X86::VMOVAPSZ256mr; |
189 | case X86::VMOVUPDZ256rm: |
190 | case X86::VMOVAPDZ256rm: |
191 | return StOpcode == X86::VMOVUPDZ256mr || StOpcode == X86::VMOVAPDZ256mr; |
192 | case X86::VMOVDQU64Z128rm: |
193 | case X86::VMOVDQA64Z128rm: |
194 | return StOpcode == X86::VMOVDQU64Z128mr || StOpcode == X86::VMOVDQA64Z128mr; |
195 | case X86::VMOVDQU32Z128rm: |
196 | case X86::VMOVDQA32Z128rm: |
197 | return StOpcode == X86::VMOVDQU32Z128mr || StOpcode == X86::VMOVDQA32Z128mr; |
198 | case X86::VMOVDQU64Z256rm: |
199 | case X86::VMOVDQA64Z256rm: |
200 | return StOpcode == X86::VMOVDQU64Z256mr || StOpcode == X86::VMOVDQA64Z256mr; |
201 | case X86::VMOVDQU32Z256rm: |
202 | case X86::VMOVDQA32Z256rm: |
203 | return StOpcode == X86::VMOVDQU32Z256mr || StOpcode == X86::VMOVDQA32Z256mr; |
204 | default: |
205 | return false; |
206 | } |
207 | } |
208 | |
209 | static bool isPotentialBlockingStoreInst(unsigned Opcode, unsigned LoadOpcode) { |
210 | bool PBlock = false; |
211 | PBlock |= Opcode == X86::MOV64mr || Opcode == X86::MOV64mi32 || |
212 | Opcode == X86::MOV32mr || Opcode == X86::MOV32mi || |
213 | Opcode == X86::MOV16mr || Opcode == X86::MOV16mi || |
214 | Opcode == X86::MOV8mr || Opcode == X86::MOV8mi; |
215 | if (isYMMLoadOpcode(Opcode: LoadOpcode)) |
216 | PBlock |= Opcode == X86::VMOVUPSmr || Opcode == X86::VMOVAPSmr || |
217 | Opcode == X86::VMOVUPDmr || Opcode == X86::VMOVAPDmr || |
218 | Opcode == X86::VMOVDQUmr || Opcode == X86::VMOVDQAmr || |
219 | Opcode == X86::VMOVUPSZ128mr || Opcode == X86::VMOVAPSZ128mr || |
220 | Opcode == X86::VMOVUPDZ128mr || Opcode == X86::VMOVAPDZ128mr || |
221 | Opcode == X86::VMOVDQU64Z128mr || |
222 | Opcode == X86::VMOVDQA64Z128mr || |
223 | Opcode == X86::VMOVDQU32Z128mr || Opcode == X86::VMOVDQA32Z128mr; |
224 | return PBlock; |
225 | } |
226 | |
227 | static const int MOV128SZ = 16; |
228 | static const int MOV64SZ = 8; |
229 | static const int MOV32SZ = 4; |
230 | static const int MOV16SZ = 2; |
231 | static const int MOV8SZ = 1; |
232 | |
233 | static unsigned getYMMtoXMMLoadOpcode(unsigned LoadOpcode) { |
234 | switch (LoadOpcode) { |
235 | case X86::VMOVUPSYrm: |
236 | case X86::VMOVAPSYrm: |
237 | return X86::VMOVUPSrm; |
238 | case X86::VMOVUPDYrm: |
239 | case X86::VMOVAPDYrm: |
240 | return X86::VMOVUPDrm; |
241 | case X86::VMOVDQUYrm: |
242 | case X86::VMOVDQAYrm: |
243 | return X86::VMOVDQUrm; |
244 | case X86::VMOVUPSZ256rm: |
245 | case X86::VMOVAPSZ256rm: |
246 | return X86::VMOVUPSZ128rm; |
247 | case X86::VMOVUPDZ256rm: |
248 | case X86::VMOVAPDZ256rm: |
249 | return X86::VMOVUPDZ128rm; |
250 | case X86::VMOVDQU64Z256rm: |
251 | case X86::VMOVDQA64Z256rm: |
252 | return X86::VMOVDQU64Z128rm; |
253 | case X86::VMOVDQU32Z256rm: |
254 | case X86::VMOVDQA32Z256rm: |
255 | return X86::VMOVDQU32Z128rm; |
256 | default: |
257 | llvm_unreachable("Unexpected Load Instruction Opcode" ); |
258 | } |
259 | return 0; |
260 | } |
261 | |
262 | static unsigned getYMMtoXMMStoreOpcode(unsigned StoreOpcode) { |
263 | switch (StoreOpcode) { |
264 | case X86::VMOVUPSYmr: |
265 | case X86::VMOVAPSYmr: |
266 | return X86::VMOVUPSmr; |
267 | case X86::VMOVUPDYmr: |
268 | case X86::VMOVAPDYmr: |
269 | return X86::VMOVUPDmr; |
270 | case X86::VMOVDQUYmr: |
271 | case X86::VMOVDQAYmr: |
272 | return X86::VMOVDQUmr; |
273 | case X86::VMOVUPSZ256mr: |
274 | case X86::VMOVAPSZ256mr: |
275 | return X86::VMOVUPSZ128mr; |
276 | case X86::VMOVUPDZ256mr: |
277 | case X86::VMOVAPDZ256mr: |
278 | return X86::VMOVUPDZ128mr; |
279 | case X86::VMOVDQU64Z256mr: |
280 | case X86::VMOVDQA64Z256mr: |
281 | return X86::VMOVDQU64Z128mr; |
282 | case X86::VMOVDQU32Z256mr: |
283 | case X86::VMOVDQA32Z256mr: |
284 | return X86::VMOVDQU32Z128mr; |
285 | default: |
286 | llvm_unreachable("Unexpected Load Instruction Opcode" ); |
287 | } |
288 | return 0; |
289 | } |
290 | |
291 | static int getAddrOffset(const MachineInstr *MI) { |
292 | const MCInstrDesc &Descl = MI->getDesc(); |
293 | int AddrOffset = X86II::getMemoryOperandNo(TSFlags: Descl.TSFlags); |
294 | assert(AddrOffset != -1 && "Expected Memory Operand" ); |
295 | AddrOffset += X86II::getOperandBias(Desc: Descl); |
296 | return AddrOffset; |
297 | } |
298 | |
299 | static MachineOperand &getBaseOperand(MachineInstr *MI) { |
300 | int AddrOffset = getAddrOffset(MI); |
301 | return MI->getOperand(i: AddrOffset + X86::AddrBaseReg); |
302 | } |
303 | |
304 | static MachineOperand &getDispOperand(MachineInstr *MI) { |
305 | int AddrOffset = getAddrOffset(MI); |
306 | return MI->getOperand(i: AddrOffset + X86::AddrDisp); |
307 | } |
308 | |
309 | // Relevant addressing modes contain only base register and immediate |
310 | // displacement or frameindex and immediate displacement. |
311 | // TODO: Consider expanding to other addressing modes in the future |
312 | static bool isRelevantAddressingMode(MachineInstr *MI) { |
313 | int AddrOffset = getAddrOffset(MI); |
314 | const MachineOperand &Base = getBaseOperand(MI); |
315 | const MachineOperand &Disp = getDispOperand(MI); |
316 | const MachineOperand &Scale = MI->getOperand(i: AddrOffset + X86::AddrScaleAmt); |
317 | const MachineOperand &Index = MI->getOperand(i: AddrOffset + X86::AddrIndexReg); |
318 | const MachineOperand &Segment = MI->getOperand(i: AddrOffset + X86::AddrSegmentReg); |
319 | |
320 | if (!((Base.isReg() && Base.getReg() != X86::NoRegister) || Base.isFI())) |
321 | return false; |
322 | if (!Disp.isImm()) |
323 | return false; |
324 | if (Scale.getImm() != 1) |
325 | return false; |
326 | if (!(Index.isReg() && Index.getReg() == X86::NoRegister)) |
327 | return false; |
328 | if (!(Segment.isReg() && Segment.getReg() == X86::NoRegister)) |
329 | return false; |
330 | return true; |
331 | } |
332 | |
333 | // Collect potentially blocking stores. |
334 | // Limit the number of instructions backwards we want to inspect |
335 | // since the effect of store block won't be visible if the store |
336 | // and load instructions have enough instructions in between to |
337 | // keep the core busy. |
338 | static SmallVector<MachineInstr *, 2> |
339 | findPotentialBlockers(MachineInstr *LoadInst) { |
340 | SmallVector<MachineInstr *, 2> PotentialBlockers; |
341 | unsigned BlockCount = 0; |
342 | const unsigned InspectionLimit = X86AvoidSFBInspectionLimit; |
343 | for (auto PBInst = std::next(x: MachineBasicBlock::reverse_iterator(LoadInst)), |
344 | E = LoadInst->getParent()->rend(); |
345 | PBInst != E; ++PBInst) { |
346 | if (PBInst->isMetaInstruction()) |
347 | continue; |
348 | BlockCount++; |
349 | if (BlockCount >= InspectionLimit) |
350 | break; |
351 | MachineInstr &MI = *PBInst; |
352 | if (MI.getDesc().isCall()) |
353 | return PotentialBlockers; |
354 | PotentialBlockers.push_back(Elt: &MI); |
355 | } |
356 | // If we didn't get to the instructions limit try predecessing blocks. |
357 | // Ideally we should traverse the predecessor blocks in depth with some |
358 | // coloring algorithm, but for now let's just look at the first order |
359 | // predecessors. |
360 | if (BlockCount < InspectionLimit) { |
361 | MachineBasicBlock *MBB = LoadInst->getParent(); |
362 | int LimitLeft = InspectionLimit - BlockCount; |
363 | for (MachineBasicBlock *PMBB : MBB->predecessors()) { |
364 | int PredCount = 0; |
365 | for (MachineInstr &PBInst : llvm::reverse(C&: *PMBB)) { |
366 | if (PBInst.isMetaInstruction()) |
367 | continue; |
368 | PredCount++; |
369 | if (PredCount >= LimitLeft) |
370 | break; |
371 | if (PBInst.getDesc().isCall()) |
372 | break; |
373 | PotentialBlockers.push_back(Elt: &PBInst); |
374 | } |
375 | } |
376 | } |
377 | return PotentialBlockers; |
378 | } |
379 | |
380 | void X86AvoidSFBPass::buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, |
381 | int64_t LoadDisp, MachineInstr *StoreInst, |
382 | unsigned NStoreOpcode, int64_t StoreDisp, |
383 | unsigned Size, int64_t LMMOffset, |
384 | int64_t SMMOffset) { |
385 | MachineOperand &LoadBase = getBaseOperand(MI: LoadInst); |
386 | MachineOperand &StoreBase = getBaseOperand(MI: StoreInst); |
387 | MachineBasicBlock *MBB = LoadInst->getParent(); |
388 | MachineMemOperand *LMMO = *LoadInst->memoperands_begin(); |
389 | MachineMemOperand *SMMO = *StoreInst->memoperands_begin(); |
390 | |
391 | Register Reg1 = MRI->createVirtualRegister( |
392 | RegClass: TII->getRegClass(MCID: TII->get(Opcode: NLoadOpcode), OpNum: 0, TRI, MF: *(MBB->getParent()))); |
393 | MachineInstr *NewLoad = |
394 | BuildMI(BB&: *MBB, I: LoadInst, MIMD: LoadInst->getDebugLoc(), MCID: TII->get(Opcode: NLoadOpcode), |
395 | DestReg: Reg1) |
396 | .add(MO: LoadBase) |
397 | .addImm(Val: 1) |
398 | .addReg(RegNo: X86::NoRegister) |
399 | .addImm(Val: LoadDisp) |
400 | .addReg(RegNo: X86::NoRegister) |
401 | .addMemOperand( |
402 | MMO: MBB->getParent()->getMachineMemOperand(MMO: LMMO, Offset: LMMOffset, Size)); |
403 | if (LoadBase.isReg()) |
404 | getBaseOperand(MI: NewLoad).setIsKill(false); |
405 | LLVM_DEBUG(NewLoad->dump()); |
406 | // If the load and store are consecutive, use the loadInst location to |
407 | // reduce register pressure. |
408 | MachineInstr *StInst = StoreInst; |
409 | auto PrevInstrIt = prev_nodbg(It: MachineBasicBlock::instr_iterator(StoreInst), |
410 | Begin: MBB->instr_begin()); |
411 | if (PrevInstrIt.getNodePtr() == LoadInst) |
412 | StInst = LoadInst; |
413 | MachineInstr *NewStore = |
414 | BuildMI(BB&: *MBB, I: StInst, MIMD: StInst->getDebugLoc(), MCID: TII->get(Opcode: NStoreOpcode)) |
415 | .add(MO: StoreBase) |
416 | .addImm(Val: 1) |
417 | .addReg(RegNo: X86::NoRegister) |
418 | .addImm(Val: StoreDisp) |
419 | .addReg(RegNo: X86::NoRegister) |
420 | .addReg(RegNo: Reg1) |
421 | .addMemOperand( |
422 | MMO: MBB->getParent()->getMachineMemOperand(MMO: SMMO, Offset: SMMOffset, Size)); |
423 | if (StoreBase.isReg()) |
424 | getBaseOperand(MI: NewStore).setIsKill(false); |
425 | MachineOperand &StoreSrcVReg = StoreInst->getOperand(i: X86::AddrNumOperands); |
426 | assert(StoreSrcVReg.isReg() && "Expected virtual register" ); |
427 | NewStore->getOperand(i: X86::AddrNumOperands).setIsKill(StoreSrcVReg.isKill()); |
428 | LLVM_DEBUG(NewStore->dump()); |
429 | } |
430 | |
431 | void X86AvoidSFBPass::buildCopies(int Size, MachineInstr *LoadInst, |
432 | int64_t LdDispImm, MachineInstr *StoreInst, |
433 | int64_t StDispImm, int64_t LMMOffset, |
434 | int64_t SMMOffset) { |
435 | int LdDisp = LdDispImm; |
436 | int StDisp = StDispImm; |
437 | while (Size > 0) { |
438 | if ((Size - MOV128SZ >= 0) && isYMMLoadOpcode(Opcode: LoadInst->getOpcode())) { |
439 | Size = Size - MOV128SZ; |
440 | buildCopy(LoadInst, NLoadOpcode: getYMMtoXMMLoadOpcode(LoadOpcode: LoadInst->getOpcode()), LoadDisp: LdDisp, |
441 | StoreInst, NStoreOpcode: getYMMtoXMMStoreOpcode(StoreOpcode: StoreInst->getOpcode()), |
442 | StoreDisp: StDisp, Size: MOV128SZ, LMMOffset, SMMOffset); |
443 | LdDisp += MOV128SZ; |
444 | StDisp += MOV128SZ; |
445 | LMMOffset += MOV128SZ; |
446 | SMMOffset += MOV128SZ; |
447 | continue; |
448 | } |
449 | if (Size - MOV64SZ >= 0) { |
450 | Size = Size - MOV64SZ; |
451 | buildCopy(LoadInst, NLoadOpcode: X86::MOV64rm, LoadDisp: LdDisp, StoreInst, NStoreOpcode: X86::MOV64mr, StoreDisp: StDisp, |
452 | Size: MOV64SZ, LMMOffset, SMMOffset); |
453 | LdDisp += MOV64SZ; |
454 | StDisp += MOV64SZ; |
455 | LMMOffset += MOV64SZ; |
456 | SMMOffset += MOV64SZ; |
457 | continue; |
458 | } |
459 | if (Size - MOV32SZ >= 0) { |
460 | Size = Size - MOV32SZ; |
461 | buildCopy(LoadInst, NLoadOpcode: X86::MOV32rm, LoadDisp: LdDisp, StoreInst, NStoreOpcode: X86::MOV32mr, StoreDisp: StDisp, |
462 | Size: MOV32SZ, LMMOffset, SMMOffset); |
463 | LdDisp += MOV32SZ; |
464 | StDisp += MOV32SZ; |
465 | LMMOffset += MOV32SZ; |
466 | SMMOffset += MOV32SZ; |
467 | continue; |
468 | } |
469 | if (Size - MOV16SZ >= 0) { |
470 | Size = Size - MOV16SZ; |
471 | buildCopy(LoadInst, NLoadOpcode: X86::MOV16rm, LoadDisp: LdDisp, StoreInst, NStoreOpcode: X86::MOV16mr, StoreDisp: StDisp, |
472 | Size: MOV16SZ, LMMOffset, SMMOffset); |
473 | LdDisp += MOV16SZ; |
474 | StDisp += MOV16SZ; |
475 | LMMOffset += MOV16SZ; |
476 | SMMOffset += MOV16SZ; |
477 | continue; |
478 | } |
479 | if (Size - MOV8SZ >= 0) { |
480 | Size = Size - MOV8SZ; |
481 | buildCopy(LoadInst, NLoadOpcode: X86::MOV8rm, LoadDisp: LdDisp, StoreInst, NStoreOpcode: X86::MOV8mr, StoreDisp: StDisp, |
482 | Size: MOV8SZ, LMMOffset, SMMOffset); |
483 | LdDisp += MOV8SZ; |
484 | StDisp += MOV8SZ; |
485 | LMMOffset += MOV8SZ; |
486 | SMMOffset += MOV8SZ; |
487 | continue; |
488 | } |
489 | } |
490 | assert(Size == 0 && "Wrong size division" ); |
491 | } |
492 | |
493 | static void updateKillStatus(MachineInstr *LoadInst, MachineInstr *StoreInst) { |
494 | MachineOperand &LoadBase = getBaseOperand(MI: LoadInst); |
495 | MachineOperand &StoreBase = getBaseOperand(MI: StoreInst); |
496 | auto *StorePrevNonDbgInstr = |
497 | prev_nodbg(It: MachineBasicBlock::instr_iterator(StoreInst), |
498 | Begin: LoadInst->getParent()->instr_begin()) |
499 | .getNodePtr(); |
500 | if (LoadBase.isReg()) { |
501 | MachineInstr *LastLoad = LoadInst->getPrevNode(); |
502 | // If the original load and store to xmm/ymm were consecutive |
503 | // then the partial copies were also created in |
504 | // a consecutive order to reduce register pressure, |
505 | // and the location of the last load is before the last store. |
506 | if (StorePrevNonDbgInstr == LoadInst) |
507 | LastLoad = LoadInst->getPrevNode()->getPrevNode(); |
508 | getBaseOperand(MI: LastLoad).setIsKill(LoadBase.isKill()); |
509 | } |
510 | if (StoreBase.isReg()) { |
511 | MachineInstr *StInst = StoreInst; |
512 | if (StorePrevNonDbgInstr == LoadInst) |
513 | StInst = LoadInst; |
514 | getBaseOperand(MI: StInst->getPrevNode()).setIsKill(StoreBase.isKill()); |
515 | } |
516 | } |
517 | |
518 | bool X86AvoidSFBPass::alias(const MachineMemOperand &Op1, |
519 | const MachineMemOperand &Op2) const { |
520 | if (!Op1.getValue() || !Op2.getValue()) |
521 | return true; |
522 | |
523 | int64_t MinOffset = std::min(a: Op1.getOffset(), b: Op2.getOffset()); |
524 | int64_t Overlapa = Op1.getSize().getValue() + Op1.getOffset() - MinOffset; |
525 | int64_t Overlapb = Op2.getSize().getValue() + Op2.getOffset() - MinOffset; |
526 | |
527 | return !AA->isNoAlias( |
528 | LocA: MemoryLocation(Op1.getValue(), Overlapa, Op1.getAAInfo()), |
529 | LocB: MemoryLocation(Op2.getValue(), Overlapb, Op2.getAAInfo())); |
530 | } |
531 | |
532 | void X86AvoidSFBPass::findPotentiallylBlockedCopies(MachineFunction &MF) { |
533 | for (auto &MBB : MF) |
534 | for (auto &MI : MBB) { |
535 | if (!isPotentialBlockedMemCpyLd(Opcode: MI.getOpcode())) |
536 | continue; |
537 | int DefVR = MI.getOperand(i: 0).getReg(); |
538 | if (!MRI->hasOneNonDBGUse(RegNo: DefVR)) |
539 | continue; |
540 | for (MachineOperand &StoreMO : |
541 | llvm::make_early_inc_range(Range: MRI->use_nodbg_operands(Reg: DefVR))) { |
542 | MachineInstr &StoreMI = *StoreMO.getParent(); |
543 | // Skip cases where the memcpy may overlap. |
544 | if (StoreMI.getParent() == MI.getParent() && |
545 | isPotentialBlockedMemCpyPair(LdOpcode: MI.getOpcode(), StOpcode: StoreMI.getOpcode()) && |
546 | isRelevantAddressingMode(MI: &MI) && |
547 | isRelevantAddressingMode(MI: &StoreMI) && |
548 | MI.hasOneMemOperand() && StoreMI.hasOneMemOperand()) { |
549 | if (!alias(Op1: **MI.memoperands_begin(), Op2: **StoreMI.memoperands_begin())) |
550 | BlockedLoadsStoresPairs.push_back(Elt: std::make_pair(x: &MI, y: &StoreMI)); |
551 | } |
552 | } |
553 | } |
554 | } |
555 | |
556 | unsigned X86AvoidSFBPass::getRegSizeInBytes(MachineInstr *LoadInst) { |
557 | const auto *TRC = TII->getRegClass(MCID: TII->get(Opcode: LoadInst->getOpcode()), OpNum: 0, TRI, |
558 | MF: *LoadInst->getParent()->getParent()); |
559 | return TRI->getRegSizeInBits(RC: *TRC) / 8; |
560 | } |
561 | |
562 | void X86AvoidSFBPass::breakBlockedCopies( |
563 | MachineInstr *LoadInst, MachineInstr *StoreInst, |
564 | const DisplacementSizeMap &BlockingStoresDispSizeMap) { |
565 | int64_t LdDispImm = getDispOperand(MI: LoadInst).getImm(); |
566 | int64_t StDispImm = getDispOperand(MI: StoreInst).getImm(); |
567 | int64_t LMMOffset = 0; |
568 | int64_t SMMOffset = 0; |
569 | |
570 | int64_t LdDisp1 = LdDispImm; |
571 | int64_t LdDisp2 = 0; |
572 | int64_t StDisp1 = StDispImm; |
573 | int64_t StDisp2 = 0; |
574 | unsigned Size1 = 0; |
575 | unsigned Size2 = 0; |
576 | int64_t LdStDelta = StDispImm - LdDispImm; |
577 | |
578 | for (auto DispSizePair : BlockingStoresDispSizeMap) { |
579 | LdDisp2 = DispSizePair.first; |
580 | StDisp2 = DispSizePair.first + LdStDelta; |
581 | Size2 = DispSizePair.second; |
582 | // Avoid copying overlapping areas. |
583 | if (LdDisp2 < LdDisp1) { |
584 | int OverlapDelta = LdDisp1 - LdDisp2; |
585 | LdDisp2 += OverlapDelta; |
586 | StDisp2 += OverlapDelta; |
587 | Size2 -= OverlapDelta; |
588 | } |
589 | Size1 = LdDisp2 - LdDisp1; |
590 | |
591 | // Build a copy for the point until the current blocking store's |
592 | // displacement. |
593 | buildCopies(Size: Size1, LoadInst, LdDispImm: LdDisp1, StoreInst, StDispImm: StDisp1, LMMOffset, |
594 | SMMOffset); |
595 | // Build a copy for the current blocking store. |
596 | buildCopies(Size: Size2, LoadInst, LdDispImm: LdDisp2, StoreInst, StDispImm: StDisp2, LMMOffset: LMMOffset + Size1, |
597 | SMMOffset: SMMOffset + Size1); |
598 | LdDisp1 = LdDisp2 + Size2; |
599 | StDisp1 = StDisp2 + Size2; |
600 | LMMOffset += Size1 + Size2; |
601 | SMMOffset += Size1 + Size2; |
602 | } |
603 | unsigned Size3 = (LdDispImm + getRegSizeInBytes(LoadInst)) - LdDisp1; |
604 | buildCopies(Size: Size3, LoadInst, LdDispImm: LdDisp1, StoreInst, StDispImm: StDisp1, LMMOffset, |
605 | SMMOffset: LMMOffset); |
606 | } |
607 | |
608 | static bool hasSameBaseOpValue(MachineInstr *LoadInst, |
609 | MachineInstr *StoreInst) { |
610 | const MachineOperand &LoadBase = getBaseOperand(MI: LoadInst); |
611 | const MachineOperand &StoreBase = getBaseOperand(MI: StoreInst); |
612 | if (LoadBase.isReg() != StoreBase.isReg()) |
613 | return false; |
614 | if (LoadBase.isReg()) |
615 | return LoadBase.getReg() == StoreBase.getReg(); |
616 | return LoadBase.getIndex() == StoreBase.getIndex(); |
617 | } |
618 | |
619 | static bool isBlockingStore(int64_t LoadDispImm, unsigned LoadSize, |
620 | int64_t StoreDispImm, unsigned StoreSize) { |
621 | return ((StoreDispImm >= LoadDispImm) && |
622 | (StoreDispImm <= LoadDispImm + (LoadSize - StoreSize))); |
623 | } |
624 | |
625 | // Keep track of all stores blocking a load |
626 | static void |
627 | updateBlockingStoresDispSizeMap(DisplacementSizeMap &BlockingStoresDispSizeMap, |
628 | int64_t DispImm, unsigned Size) { |
629 | if (BlockingStoresDispSizeMap.count(x: DispImm)) { |
630 | // Choose the smallest blocking store starting at this displacement. |
631 | if (BlockingStoresDispSizeMap[DispImm] > Size) |
632 | BlockingStoresDispSizeMap[DispImm] = Size; |
633 | |
634 | } else |
635 | BlockingStoresDispSizeMap[DispImm] = Size; |
636 | } |
637 | |
638 | // Remove blocking stores contained in each other. |
639 | static void |
640 | removeRedundantBlockingStores(DisplacementSizeMap &BlockingStoresDispSizeMap) { |
641 | if (BlockingStoresDispSizeMap.size() <= 1) |
642 | return; |
643 | |
644 | SmallVector<std::pair<int64_t, unsigned>, 0> DispSizeStack; |
645 | for (auto DispSizePair : BlockingStoresDispSizeMap) { |
646 | int64_t CurrDisp = DispSizePair.first; |
647 | unsigned CurrSize = DispSizePair.second; |
648 | while (DispSizeStack.size()) { |
649 | int64_t PrevDisp = DispSizeStack.back().first; |
650 | unsigned PrevSize = DispSizeStack.back().second; |
651 | if (CurrDisp + CurrSize > PrevDisp + PrevSize) |
652 | break; |
653 | DispSizeStack.pop_back(); |
654 | } |
655 | DispSizeStack.push_back(Elt: DispSizePair); |
656 | } |
657 | BlockingStoresDispSizeMap.clear(); |
658 | for (auto Disp : DispSizeStack) |
659 | BlockingStoresDispSizeMap.insert(x&: Disp); |
660 | } |
661 | |
662 | bool X86AvoidSFBPass::runOnMachineFunction(MachineFunction &MF) { |
663 | bool Changed = false; |
664 | |
665 | if (DisableX86AvoidStoreForwardBlocks || skipFunction(F: MF.getFunction()) || |
666 | !MF.getSubtarget<X86Subtarget>().is64Bit()) |
667 | return false; |
668 | |
669 | MRI = &MF.getRegInfo(); |
670 | assert(MRI->isSSA() && "Expected MIR to be in SSA form" ); |
671 | TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); |
672 | TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); |
673 | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
674 | LLVM_DEBUG(dbgs() << "Start X86AvoidStoreForwardBlocks\n" ;); |
675 | // Look for a load then a store to XMM/YMM which look like a memcpy |
676 | findPotentiallylBlockedCopies(MF); |
677 | |
678 | for (auto LoadStoreInstPair : BlockedLoadsStoresPairs) { |
679 | MachineInstr *LoadInst = LoadStoreInstPair.first; |
680 | int64_t LdDispImm = getDispOperand(MI: LoadInst).getImm(); |
681 | DisplacementSizeMap BlockingStoresDispSizeMap; |
682 | |
683 | SmallVector<MachineInstr *, 2> PotentialBlockers = |
684 | findPotentialBlockers(LoadInst); |
685 | for (auto *PBInst : PotentialBlockers) { |
686 | if (!isPotentialBlockingStoreInst(Opcode: PBInst->getOpcode(), |
687 | LoadOpcode: LoadInst->getOpcode()) || |
688 | !isRelevantAddressingMode(MI: PBInst) || !PBInst->hasOneMemOperand()) |
689 | continue; |
690 | int64_t PBstDispImm = getDispOperand(MI: PBInst).getImm(); |
691 | unsigned PBstSize = (*PBInst->memoperands_begin())->getSize().getValue(); |
692 | // This check doesn't cover all cases, but it will suffice for now. |
693 | // TODO: take branch probability into consideration, if the blocking |
694 | // store is in an unreached block, breaking the memcopy could lose |
695 | // performance. |
696 | if (hasSameBaseOpValue(LoadInst, StoreInst: PBInst) && |
697 | isBlockingStore(LoadDispImm: LdDispImm, LoadSize: getRegSizeInBytes(LoadInst), StoreDispImm: PBstDispImm, |
698 | StoreSize: PBstSize)) |
699 | updateBlockingStoresDispSizeMap(BlockingStoresDispSizeMap, DispImm: PBstDispImm, |
700 | Size: PBstSize); |
701 | } |
702 | |
703 | if (BlockingStoresDispSizeMap.empty()) |
704 | continue; |
705 | |
706 | // We found a store forward block, break the memcpy's load and store |
707 | // into smaller copies such that each smaller store that was causing |
708 | // a store block would now be copied separately. |
709 | MachineInstr *StoreInst = LoadStoreInstPair.second; |
710 | LLVM_DEBUG(dbgs() << "Blocked load and store instructions: \n" ); |
711 | LLVM_DEBUG(LoadInst->dump()); |
712 | LLVM_DEBUG(StoreInst->dump()); |
713 | LLVM_DEBUG(dbgs() << "Replaced with:\n" ); |
714 | removeRedundantBlockingStores(BlockingStoresDispSizeMap); |
715 | breakBlockedCopies(LoadInst, StoreInst, BlockingStoresDispSizeMap); |
716 | updateKillStatus(LoadInst, StoreInst); |
717 | ForRemoval.push_back(Elt: LoadInst); |
718 | ForRemoval.push_back(Elt: StoreInst); |
719 | } |
720 | for (auto *RemovedInst : ForRemoval) { |
721 | RemovedInst->eraseFromParent(); |
722 | } |
723 | ForRemoval.clear(); |
724 | BlockedLoadsStoresPairs.clear(); |
725 | LLVM_DEBUG(dbgs() << "End X86AvoidStoreForwardBlocks\n" ;); |
726 | |
727 | return Changed; |
728 | } |
729 | |