1 | //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines a pass that optimizes call sequences on x86. |
10 | // Currently, it converts movs of function parameters onto the stack into |
11 | // pushes. This is beneficial for two main reasons: |
12 | // 1) The push instruction encoding is much smaller than a stack-ptr-based mov. |
13 | // 2) It is possible to push memory arguments directly. So, if the |
14 | // the transformation is performed pre-reg-alloc, it can help relieve |
15 | // register pressure. |
16 | // |
17 | //===----------------------------------------------------------------------===// |
18 | |
19 | #include "MCTargetDesc/X86BaseInfo.h" |
20 | #include "X86.h" |
21 | #include "X86FrameLowering.h" |
22 | #include "X86InstrInfo.h" |
23 | #include "X86MachineFunctionInfo.h" |
24 | #include "X86RegisterInfo.h" |
25 | #include "X86Subtarget.h" |
26 | #include "llvm/ADT/DenseSet.h" |
27 | #include "llvm/ADT/SmallVector.h" |
28 | #include "llvm/ADT/StringRef.h" |
29 | #include "llvm/CodeGen/MachineBasicBlock.h" |
30 | #include "llvm/CodeGen/MachineFrameInfo.h" |
31 | #include "llvm/CodeGen/MachineFunction.h" |
32 | #include "llvm/CodeGen/MachineFunctionPass.h" |
33 | #include "llvm/CodeGen/MachineInstr.h" |
34 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
35 | #include "llvm/CodeGen/MachineOperand.h" |
36 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
37 | #include "llvm/CodeGen/TargetInstrInfo.h" |
38 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
39 | #include "llvm/IR/DebugLoc.h" |
40 | #include "llvm/IR/Function.h" |
41 | #include "llvm/MC/MCDwarf.h" |
42 | #include "llvm/Support/CommandLine.h" |
43 | #include "llvm/Support/ErrorHandling.h" |
44 | #include "llvm/Support/MathExtras.h" |
45 | #include <cassert> |
46 | #include <cstddef> |
47 | #include <cstdint> |
48 | #include <iterator> |
49 | |
50 | using namespace llvm; |
51 | |
52 | #define DEBUG_TYPE "x86-cf-opt" |
53 | |
54 | static cl::opt<bool> |
55 | NoX86CFOpt("no-x86-call-frame-opt" , |
56 | cl::desc("Avoid optimizing x86 call frames for size" ), |
57 | cl::init(Val: false), cl::Hidden); |
58 | |
59 | namespace { |
60 | |
61 | class X86CallFrameOptimization : public MachineFunctionPass { |
62 | public: |
63 | X86CallFrameOptimization() : MachineFunctionPass(ID) { } |
64 | |
65 | bool runOnMachineFunction(MachineFunction &MF) override; |
66 | |
67 | static char ID; |
68 | |
69 | private: |
70 | // Information we know about a particular call site |
71 | struct CallContext { |
72 | CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {} |
73 | |
74 | // Iterator referring to the frame setup instruction |
75 | MachineBasicBlock::iterator FrameSetup; |
76 | |
77 | // Actual call instruction |
78 | MachineInstr *Call = nullptr; |
79 | |
80 | // A copy of the stack pointer |
81 | MachineInstr *SPCopy = nullptr; |
82 | |
83 | // The total displacement of all passed parameters |
84 | int64_t ExpectedDist = 0; |
85 | |
86 | // The sequence of storing instructions used to pass the parameters |
87 | SmallVector<MachineInstr *, 4> ArgStoreVector; |
88 | |
89 | // True if this call site has no stack parameters |
90 | bool NoStackParams = false; |
91 | |
92 | // True if this call site can use push instructions |
93 | bool UsePush = false; |
94 | }; |
95 | |
96 | typedef SmallVector<CallContext, 8> ContextVector; |
97 | |
98 | bool isLegal(MachineFunction &MF); |
99 | |
100 | bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap); |
101 | |
102 | void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB, |
103 | MachineBasicBlock::iterator I, CallContext &Context); |
104 | |
105 | void adjustCallSequence(MachineFunction &MF, const CallContext &Context); |
106 | |
107 | MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup, |
108 | Register Reg); |
109 | |
110 | enum InstClassification { Convert, Skip, Exit }; |
111 | |
112 | InstClassification classifyInstruction(MachineBasicBlock &MBB, |
113 | MachineBasicBlock::iterator MI, |
114 | const X86RegisterInfo &RegInfo, |
115 | DenseSet<unsigned int> &UsedRegs); |
116 | |
117 | StringRef getPassName() const override { return "X86 Optimize Call Frame" ; } |
118 | |
119 | const X86InstrInfo *TII = nullptr; |
120 | const X86FrameLowering *TFL = nullptr; |
121 | const X86Subtarget *STI = nullptr; |
122 | MachineRegisterInfo *MRI = nullptr; |
123 | unsigned SlotSize = 0; |
124 | unsigned Log2SlotSize = 0; |
125 | }; |
126 | |
127 | } // end anonymous namespace |
128 | char X86CallFrameOptimization::ID = 0; |
129 | INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE, |
130 | "X86 Call Frame Optimization" , false, false) |
131 | |
132 | // This checks whether the transformation is legal. |
133 | // Also returns false in cases where it's potentially legal, but |
134 | // we don't even want to try. |
135 | bool X86CallFrameOptimization::isLegal(MachineFunction &MF) { |
136 | if (NoX86CFOpt.getValue()) |
137 | return false; |
138 | |
139 | // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset |
140 | // in the compact unwind encoding that Darwin uses. So, bail if there |
141 | // is a danger of that being generated. |
142 | if (STI->isTargetDarwin() && |
143 | (!MF.getLandingPads().empty() || |
144 | (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF)))) |
145 | return false; |
146 | |
147 | // It is not valid to change the stack pointer outside the prolog/epilog |
148 | // on 64-bit Windows. |
149 | if (STI->isTargetWin64()) |
150 | return false; |
151 | |
152 | // You would expect straight-line code between call-frame setup and |
153 | // call-frame destroy. You would be wrong. There are circumstances (e.g. |
154 | // CMOV_GR8 expansion of a select that feeds a function call!) where we can |
155 | // end up with the setup and the destroy in different basic blocks. |
156 | // This is bad, and breaks SP adjustment. |
157 | // So, check that all of the frames in the function are closed inside |
158 | // the same block, and, for good measure, that there are no nested frames. |
159 | // |
160 | // If any call allocates more argument stack memory than the stack |
161 | // probe size, don't do this optimization. Otherwise, this pass |
162 | // would need to synthesize additional stack probe calls to allocate |
163 | // memory for arguments. |
164 | unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); |
165 | unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); |
166 | bool EmitStackProbeCall = STI->getTargetLowering()->hasStackProbeSymbol(MF); |
167 | unsigned StackProbeSize = STI->getTargetLowering()->getStackProbeSize(MF); |
168 | for (MachineBasicBlock &BB : MF) { |
169 | bool InsideFrameSequence = false; |
170 | for (MachineInstr &MI : BB) { |
171 | if (MI.getOpcode() == FrameSetupOpcode) { |
172 | if (TII->getFrameSize(I: MI) >= StackProbeSize && EmitStackProbeCall) |
173 | return false; |
174 | if (InsideFrameSequence) |
175 | return false; |
176 | InsideFrameSequence = true; |
177 | } else if (MI.getOpcode() == FrameDestroyOpcode) { |
178 | if (!InsideFrameSequence) |
179 | return false; |
180 | InsideFrameSequence = false; |
181 | } |
182 | } |
183 | |
184 | if (InsideFrameSequence) |
185 | return false; |
186 | } |
187 | |
188 | return true; |
189 | } |
190 | |
191 | // Check whether this transformation is profitable for a particular |
192 | // function - in terms of code size. |
193 | bool X86CallFrameOptimization::isProfitable(MachineFunction &MF, |
194 | ContextVector &CallSeqVector) { |
195 | // This transformation is always a win when we do not expect to have |
196 | // a reserved call frame. Under other circumstances, it may be either |
197 | // a win or a loss, and requires a heuristic. |
198 | bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects(); |
199 | if (CannotReserveFrame) |
200 | return true; |
201 | |
202 | Align StackAlign = TFL->getStackAlign(); |
203 | |
204 | int64_t Advantage = 0; |
205 | for (const auto &CC : CallSeqVector) { |
206 | // Call sites where no parameters are passed on the stack |
207 | // do not affect the cost, since there needs to be no |
208 | // stack adjustment. |
209 | if (CC.NoStackParams) |
210 | continue; |
211 | |
212 | if (!CC.UsePush) { |
213 | // If we don't use pushes for a particular call site, |
214 | // we pay for not having a reserved call frame with an |
215 | // additional sub/add esp pair. The cost is ~3 bytes per instruction, |
216 | // depending on the size of the constant. |
217 | // TODO: Callee-pop functions should have a smaller penalty, because |
218 | // an add is needed even with a reserved call frame. |
219 | Advantage -= 6; |
220 | } else { |
221 | // We can use pushes. First, account for the fixed costs. |
222 | // We'll need a add after the call. |
223 | Advantage -= 3; |
224 | // If we have to realign the stack, we'll also need a sub before |
225 | if (!isAligned(Lhs: StackAlign, SizeInBytes: CC.ExpectedDist)) |
226 | Advantage -= 3; |
227 | // Now, for each push, we save ~3 bytes. For small constants, we actually, |
228 | // save more (up to 5 bytes), but 3 should be a good approximation. |
229 | Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3; |
230 | } |
231 | } |
232 | |
233 | return Advantage >= 0; |
234 | } |
235 | |
236 | bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) { |
237 | STI = &MF.getSubtarget<X86Subtarget>(); |
238 | TII = STI->getInstrInfo(); |
239 | TFL = STI->getFrameLowering(); |
240 | MRI = &MF.getRegInfo(); |
241 | |
242 | const X86RegisterInfo &RegInfo = |
243 | *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); |
244 | SlotSize = RegInfo.getSlotSize(); |
245 | assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size" ); |
246 | Log2SlotSize = Log2_32(Value: SlotSize); |
247 | |
248 | if (skipFunction(F: MF.getFunction()) || !isLegal(MF)) |
249 | return false; |
250 | |
251 | unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); |
252 | |
253 | bool Changed = false; |
254 | |
255 | ContextVector CallSeqVector; |
256 | |
257 | for (auto &MBB : MF) |
258 | for (auto &MI : MBB) |
259 | if (MI.getOpcode() == FrameSetupOpcode) { |
260 | CallContext Context; |
261 | collectCallInfo(MF, MBB, I: MI, Context); |
262 | CallSeqVector.push_back(Elt: Context); |
263 | } |
264 | |
265 | if (!isProfitable(MF, CallSeqVector)) |
266 | return false; |
267 | |
268 | for (const auto &CC : CallSeqVector) { |
269 | if (CC.UsePush) { |
270 | adjustCallSequence(MF, Context: CC); |
271 | Changed = true; |
272 | } |
273 | } |
274 | |
275 | return Changed; |
276 | } |
277 | |
278 | X86CallFrameOptimization::InstClassification |
279 | X86CallFrameOptimization::classifyInstruction( |
280 | MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
281 | const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) { |
282 | if (MI == MBB.end()) |
283 | return Exit; |
284 | |
285 | // The instructions we actually care about are movs onto the stack or special |
286 | // cases of constant-stores to stack |
287 | switch (MI->getOpcode()) { |
288 | case X86::AND16mi: |
289 | case X86::AND32mi: |
290 | case X86::AND64mi32: { |
291 | const MachineOperand &ImmOp = MI->getOperand(i: X86::AddrNumOperands); |
292 | return ImmOp.getImm() == 0 ? Convert : Exit; |
293 | } |
294 | case X86::OR16mi: |
295 | case X86::OR32mi: |
296 | case X86::OR64mi32: { |
297 | const MachineOperand &ImmOp = MI->getOperand(i: X86::AddrNumOperands); |
298 | return ImmOp.getImm() == -1 ? Convert : Exit; |
299 | } |
300 | case X86::MOV32mi: |
301 | case X86::MOV32mr: |
302 | case X86::MOV64mi32: |
303 | case X86::MOV64mr: |
304 | return Convert; |
305 | } |
306 | |
307 | // Not all calling conventions have only stack MOVs between the stack |
308 | // adjust and the call. |
309 | |
310 | // We want to tolerate other instructions, to cover more cases. |
311 | // In particular: |
312 | // a) PCrel calls, where we expect an additional COPY of the basereg. |
313 | // b) Passing frame-index addresses. |
314 | // c) Calling conventions that have inreg parameters. These generate |
315 | // both copies and movs into registers. |
316 | // To avoid creating lots of special cases, allow any instruction |
317 | // that does not write into memory, does not def or use the stack |
318 | // pointer, and does not def any register that was used by a preceding |
319 | // push. |
320 | // (Reading from memory is allowed, even if referenced through a |
321 | // frame index, since these will get adjusted properly in PEI) |
322 | |
323 | // The reason for the last condition is that the pushes can't replace |
324 | // the movs in place, because the order must be reversed. |
325 | // So if we have a MOV32mr that uses EDX, then an instruction that defs |
326 | // EDX, and then the call, after the transformation the push will use |
327 | // the modified version of EDX, and not the original one. |
328 | // Since we are still in SSA form at this point, we only need to |
329 | // make sure we don't clobber any *physical* registers that were |
330 | // used by an earlier mov that will become a push. |
331 | |
332 | if (MI->isCall() || MI->mayStore()) |
333 | return Exit; |
334 | |
335 | for (const MachineOperand &MO : MI->operands()) { |
336 | if (!MO.isReg()) |
337 | continue; |
338 | Register Reg = MO.getReg(); |
339 | if (!Reg.isPhysical()) |
340 | continue; |
341 | if (RegInfo.regsOverlap(RegA: Reg, RegB: RegInfo.getStackRegister())) |
342 | return Exit; |
343 | if (MO.isDef()) { |
344 | for (unsigned int U : UsedRegs) |
345 | if (RegInfo.regsOverlap(RegA: Reg, RegB: U)) |
346 | return Exit; |
347 | } |
348 | } |
349 | |
350 | return Skip; |
351 | } |
352 | |
353 | void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF, |
354 | MachineBasicBlock &MBB, |
355 | MachineBasicBlock::iterator I, |
356 | CallContext &Context) { |
357 | // Check that this particular call sequence is amenable to the |
358 | // transformation. |
359 | const X86RegisterInfo &RegInfo = |
360 | *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); |
361 | |
362 | // We expect to enter this at the beginning of a call sequence |
363 | assert(I->getOpcode() == TII->getCallFrameSetupOpcode()); |
364 | MachineBasicBlock::iterator FrameSetup = I++; |
365 | Context.FrameSetup = FrameSetup; |
366 | |
367 | // How much do we adjust the stack? This puts an upper bound on |
368 | // the number of parameters actually passed on it. |
369 | unsigned int MaxAdjust = TII->getFrameSize(I: *FrameSetup) >> Log2SlotSize; |
370 | |
371 | // A zero adjustment means no stack parameters |
372 | if (!MaxAdjust) { |
373 | Context.NoStackParams = true; |
374 | return; |
375 | } |
376 | |
377 | // Skip over DEBUG_VALUE. |
378 | // For globals in PIC mode, we can have some LEAs here. Skip them as well. |
379 | // TODO: Extend this to something that covers more cases. |
380 | while (I->getOpcode() == X86::LEA32r || I->isDebugInstr()) |
381 | ++I; |
382 | |
383 | Register StackPtr = RegInfo.getStackRegister(); |
384 | auto StackPtrCopyInst = MBB.end(); |
385 | // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual |
386 | // register. If it's there, use that virtual register as stack pointer |
387 | // instead. Also, we need to locate this instruction so that we can later |
388 | // safely ignore it while doing the conservative processing of the call chain. |
389 | // The COPY can be located anywhere between the call-frame setup |
390 | // instruction and its first use. We use the call instruction as a boundary |
391 | // because it is usually cheaper to check if an instruction is a call than |
392 | // checking if an instruction uses a register. |
393 | for (auto J = I; !J->isCall(); ++J) |
394 | if (J->isCopy() && J->getOperand(i: 0).isReg() && J->getOperand(i: 1).isReg() && |
395 | J->getOperand(i: 1).getReg() == StackPtr) { |
396 | StackPtrCopyInst = J; |
397 | Context.SPCopy = &*J++; |
398 | StackPtr = Context.SPCopy->getOperand(i: 0).getReg(); |
399 | break; |
400 | } |
401 | |
402 | // Scan the call setup sequence for the pattern we're looking for. |
403 | // We only handle a simple case - a sequence of store instructions that |
404 | // push a sequence of stack-slot-aligned values onto the stack, with |
405 | // no gaps between them. |
406 | if (MaxAdjust > 4) |
407 | Context.ArgStoreVector.resize(N: MaxAdjust, NV: nullptr); |
408 | |
409 | DenseSet<unsigned int> UsedRegs; |
410 | |
411 | for (InstClassification Classification = Skip; Classification != Exit; ++I) { |
412 | // If this is the COPY of the stack pointer, it's ok to ignore. |
413 | if (I == StackPtrCopyInst) |
414 | continue; |
415 | Classification = classifyInstruction(MBB, MI: I, RegInfo, UsedRegs); |
416 | if (Classification != Convert) |
417 | continue; |
418 | // We know the instruction has a supported store opcode. |
419 | // We only want movs of the form: |
420 | // mov imm/reg, k(%StackPtr) |
421 | // If we run into something else, bail. |
422 | // Note that AddrBaseReg may, counter to its name, not be a register, |
423 | // but rather a frame index. |
424 | // TODO: Support the fi case. This should probably work now that we |
425 | // have the infrastructure to track the stack pointer within a call |
426 | // sequence. |
427 | if (!I->getOperand(i: X86::AddrBaseReg).isReg() || |
428 | (I->getOperand(i: X86::AddrBaseReg).getReg() != StackPtr) || |
429 | !I->getOperand(i: X86::AddrScaleAmt).isImm() || |
430 | (I->getOperand(i: X86::AddrScaleAmt).getImm() != 1) || |
431 | (I->getOperand(i: X86::AddrIndexReg).getReg() != X86::NoRegister) || |
432 | (I->getOperand(i: X86::AddrSegmentReg).getReg() != X86::NoRegister) || |
433 | !I->getOperand(i: X86::AddrDisp).isImm()) |
434 | return; |
435 | |
436 | int64_t StackDisp = I->getOperand(i: X86::AddrDisp).getImm(); |
437 | assert(StackDisp >= 0 && |
438 | "Negative stack displacement when passing parameters" ); |
439 | |
440 | // We really don't want to consider the unaligned case. |
441 | if (StackDisp & (SlotSize - 1)) |
442 | return; |
443 | StackDisp >>= Log2SlotSize; |
444 | |
445 | assert((size_t)StackDisp < Context.ArgStoreVector.size() && |
446 | "Function call has more parameters than the stack is adjusted for." ); |
447 | |
448 | // If the same stack slot is being filled twice, something's fishy. |
449 | if (Context.ArgStoreVector[StackDisp] != nullptr) |
450 | return; |
451 | Context.ArgStoreVector[StackDisp] = &*I; |
452 | |
453 | for (const MachineOperand &MO : I->uses()) { |
454 | if (!MO.isReg()) |
455 | continue; |
456 | Register Reg = MO.getReg(); |
457 | if (Reg.isPhysical()) |
458 | UsedRegs.insert(V: Reg); |
459 | } |
460 | } |
461 | |
462 | --I; |
463 | |
464 | // We now expect the end of the sequence. If we stopped early, |
465 | // or reached the end of the block without finding a call, bail. |
466 | if (I == MBB.end() || !I->isCall()) |
467 | return; |
468 | |
469 | Context.Call = &*I; |
470 | if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode()) |
471 | return; |
472 | |
473 | // Now, go through the vector, and see that we don't have any gaps, |
474 | // but only a series of storing instructions. |
475 | auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end(); |
476 | for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize) |
477 | if (*MMI == nullptr) |
478 | break; |
479 | |
480 | // If the call had no parameters, do nothing |
481 | if (MMI == Context.ArgStoreVector.begin()) |
482 | return; |
483 | |
484 | // We are either at the last parameter, or a gap. |
485 | // Make sure it's not a gap |
486 | for (; MMI != MME; ++MMI) |
487 | if (*MMI != nullptr) |
488 | return; |
489 | |
490 | Context.UsePush = true; |
491 | } |
492 | |
493 | void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, |
494 | const CallContext &Context) { |
495 | // Ok, we can in fact do the transformation for this call. |
496 | // Do not remove the FrameSetup instruction, but adjust the parameters. |
497 | // PEI will end up finalizing the handling of this. |
498 | MachineBasicBlock::iterator FrameSetup = Context.FrameSetup; |
499 | MachineBasicBlock &MBB = *(FrameSetup->getParent()); |
500 | TII->setFrameAdjustment(I&: *FrameSetup, V: Context.ExpectedDist); |
501 | |
502 | const DebugLoc &DL = FrameSetup->getDebugLoc(); |
503 | bool Is64Bit = STI->is64Bit(); |
504 | // Now, iterate through the vector in reverse order, and replace the store to |
505 | // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to |
506 | // replace uses. |
507 | for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) { |
508 | MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx]; |
509 | const MachineOperand &PushOp = Store->getOperand(i: X86::AddrNumOperands); |
510 | MachineBasicBlock::iterator Push = nullptr; |
511 | unsigned PushOpcode; |
512 | switch (Store->getOpcode()) { |
513 | default: |
514 | llvm_unreachable("Unexpected Opcode!" ); |
515 | case X86::AND16mi: |
516 | case X86::AND32mi: |
517 | case X86::AND64mi32: |
518 | case X86::OR16mi: |
519 | case X86::OR32mi: |
520 | case X86::OR64mi32: |
521 | case X86::MOV32mi: |
522 | case X86::MOV64mi32: |
523 | PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSH32i; |
524 | Push = BuildMI(BB&: MBB, I: Context.Call, MIMD: DL, MCID: TII->get(Opcode: PushOpcode)).add(MO: PushOp); |
525 | Push->cloneMemRefs(MF, MI: *Store); |
526 | break; |
527 | case X86::MOV32mr: |
528 | case X86::MOV64mr: { |
529 | Register Reg = PushOp.getReg(); |
530 | |
531 | // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg |
532 | // in preparation for the PUSH64. The upper 32 bits can be undef. |
533 | if (Is64Bit && Store->getOpcode() == X86::MOV32mr) { |
534 | Register UndefReg = MRI->createVirtualRegister(RegClass: &X86::GR64RegClass); |
535 | Reg = MRI->createVirtualRegister(RegClass: &X86::GR64RegClass); |
536 | BuildMI(BB&: MBB, I: Context.Call, MIMD: DL, MCID: TII->get(Opcode: X86::IMPLICIT_DEF), DestReg: UndefReg); |
537 | BuildMI(BB&: MBB, I: Context.Call, MIMD: DL, MCID: TII->get(Opcode: X86::INSERT_SUBREG), DestReg: Reg) |
538 | .addReg(RegNo: UndefReg) |
539 | .add(MO: PushOp) |
540 | .addImm(Val: X86::sub_32bit); |
541 | } |
542 | |
543 | // If PUSHrmm is not slow on this target, try to fold the source of the |
544 | // push into the instruction. |
545 | bool SlowPUSHrmm = STI->slowTwoMemOps(); |
546 | |
547 | // Check that this is legal to fold. Right now, we're extremely |
548 | // conservative about that. |
549 | MachineInstr *DefMov = nullptr; |
550 | if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { |
551 | PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm; |
552 | Push = BuildMI(BB&: MBB, I: Context.Call, MIMD: DL, MCID: TII->get(Opcode: PushOpcode)); |
553 | |
554 | unsigned NumOps = DefMov->getDesc().getNumOperands(); |
555 | for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) |
556 | Push->addOperand(Op: DefMov->getOperand(i)); |
557 | Push->cloneMergedMemRefs(MF, MIs: {DefMov, &*Store}); |
558 | DefMov->eraseFromParent(); |
559 | } else { |
560 | PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r; |
561 | Push = BuildMI(BB&: MBB, I: Context.Call, MIMD: DL, MCID: TII->get(Opcode: PushOpcode)) |
562 | .addReg(RegNo: Reg) |
563 | .getInstr(); |
564 | Push->cloneMemRefs(MF, MI: *Store); |
565 | } |
566 | break; |
567 | } |
568 | } |
569 | |
570 | // For debugging, when using SP-based CFA, we need to adjust the CFA |
571 | // offset after each push. |
572 | // TODO: This is needed only if we require precise CFA. |
573 | if (!TFL->hasFP(MF)) |
574 | TFL->BuildCFI( |
575 | MBB, MBBI: std::next(x: Push), DL, |
576 | CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: SlotSize)); |
577 | |
578 | MBB.erase(I: Store); |
579 | } |
580 | |
581 | // The stack-pointer copy is no longer used in the call sequences. |
582 | // There should not be any other users, but we can't commit to that, so: |
583 | if (Context.SPCopy && MRI->use_empty(RegNo: Context.SPCopy->getOperand(i: 0).getReg())) |
584 | Context.SPCopy->eraseFromParent(); |
585 | |
586 | // Once we've done this, we need to make sure PEI doesn't assume a reserved |
587 | // frame. |
588 | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
589 | FuncInfo->setHasPushSequences(true); |
590 | } |
591 | |
592 | MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush( |
593 | MachineBasicBlock::iterator FrameSetup, Register Reg) { |
594 | // Do an extremely restricted form of load folding. |
595 | // ISel will often create patterns like: |
596 | // movl 4(%edi), %eax |
597 | // movl 8(%edi), %ecx |
598 | // movl 12(%edi), %edx |
599 | // movl %edx, 8(%esp) |
600 | // movl %ecx, 4(%esp) |
601 | // movl %eax, (%esp) |
602 | // call |
603 | // Get rid of those with prejudice. |
604 | if (!Reg.isVirtual()) |
605 | return nullptr; |
606 | |
607 | // Make sure this is the only use of Reg. |
608 | if (!MRI->hasOneNonDBGUse(RegNo: Reg)) |
609 | return nullptr; |
610 | |
611 | MachineInstr &DefMI = *MRI->getVRegDef(Reg); |
612 | |
613 | // Make sure the def is a MOV from memory. |
614 | // If the def is in another block, give up. |
615 | if ((DefMI.getOpcode() != X86::MOV32rm && |
616 | DefMI.getOpcode() != X86::MOV64rm) || |
617 | DefMI.getParent() != FrameSetup->getParent()) |
618 | return nullptr; |
619 | |
620 | // Make sure we don't have any instructions between DefMI and the |
621 | // push that make folding the load illegal. |
622 | for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I) |
623 | if (I->isLoadFoldBarrier()) |
624 | return nullptr; |
625 | |
626 | return &DefMI; |
627 | } |
628 | |
629 | FunctionPass *llvm::createX86CallFrameOptimization() { |
630 | return new X86CallFrameOptimization(); |
631 | } |
632 | |