1//===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// These classes wrap the information about a call or function
10// definition used to handle ABI compliancy.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGCall.h"
15#include "ABIInfo.h"
16#include "ABIInfoImpl.h"
17#include "CGBlocks.h"
18#include "CGCXXABI.h"
19#include "CGCleanup.h"
20#include "CGRecordLayout.h"
21#include "CodeGenFunction.h"
22#include "CodeGenModule.h"
23#include "TargetInfo.h"
24#include "clang/AST/Attr.h"
25#include "clang/AST/Decl.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/Basic/CodeGenOptions.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/CodeGen/CGFunctionInfo.h"
31#include "clang/CodeGen/SwiftCallingConv.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/IR/Assumptions.h"
35#include "llvm/IR/AttributeMask.h"
36#include "llvm/IR/Attributes.h"
37#include "llvm/IR/CallingConv.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/InlineAsm.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/Intrinsics.h"
42#include "llvm/IR/Type.h"
43#include "llvm/Transforms/Utils/Local.h"
44#include <optional>
45using namespace clang;
46using namespace CodeGen;
47
48/***/
49
50unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
51 switch (CC) {
52 default: return llvm::CallingConv::C;
53 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
54 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
55 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
56 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
57 case CC_Win64: return llvm::CallingConv::Win64;
58 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
59 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
60 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
61 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
62 // TODO: Add support for __pascal to LLVM.
63 case CC_X86Pascal: return llvm::CallingConv::C;
64 // TODO: Add support for __vectorcall to LLVM.
65 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
66 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
67 case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall;
68 case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL;
69 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
70 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
71 case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
72 case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
73 case CC_Swift: return llvm::CallingConv::Swift;
74 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
75 case CC_M68kRTD: return llvm::CallingConv::M68k_RTD;
76 case CC_PreserveNone: return llvm::CallingConv::PreserveNone;
77 // clang-format off
78 case CC_RISCVVectorCall: return llvm::CallingConv::RISCV_VectorCall;
79 // clang-format on
80 }
81}
82
83/// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
84/// qualification. Either or both of RD and MD may be null. A null RD indicates
85/// that there is no meaningful 'this' type, and a null MD can occur when
86/// calling a method pointer.
87CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
88 const CXXMethodDecl *MD) {
89 QualType RecTy;
90 if (RD)
91 RecTy = Context.getTagDeclType(Decl: RD)->getCanonicalTypeInternal();
92 else
93 RecTy = Context.VoidTy;
94
95 if (MD)
96 RecTy = Context.getAddrSpaceQualType(T: RecTy, AddressSpace: MD->getMethodQualifiers().getAddressSpace());
97 return Context.getPointerType(T: CanQualType::CreateUnsafe(Other: RecTy));
98}
99
100/// Returns the canonical formal type of the given C++ method.
101static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
102 return MD->getType()->getCanonicalTypeUnqualified()
103 .getAs<FunctionProtoType>();
104}
105
106/// Returns the "extra-canonicalized" return type, which discards
107/// qualifiers on the return type. Codegen doesn't care about them,
108/// and it makes ABI code a little easier to be able to assume that
109/// all parameter and return types are top-level unqualified.
110static CanQualType GetReturnType(QualType RetTy) {
111 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
112}
113
114/// Arrange the argument and result information for a value of the given
115/// unprototyped freestanding function type.
116const CGFunctionInfo &
117CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
118 // When translating an unprototyped function type, always use a
119 // variadic type.
120 return arrangeLLVMFunctionInfo(returnType: FTNP->getReturnType().getUnqualifiedType(),
121 opts: FnInfoOpts::None, argTypes: std::nullopt,
122 info: FTNP->getExtInfo(), paramInfos: {}, args: RequiredArgs(0));
123}
124
125static void addExtParameterInfosForCall(
126 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
127 const FunctionProtoType *proto,
128 unsigned prefixArgs,
129 unsigned totalArgs) {
130 assert(proto->hasExtParameterInfos());
131 assert(paramInfos.size() <= prefixArgs);
132 assert(proto->getNumParams() + prefixArgs <= totalArgs);
133
134 paramInfos.reserve(N: totalArgs);
135
136 // Add default infos for any prefix args that don't already have infos.
137 paramInfos.resize(N: prefixArgs);
138
139 // Add infos for the prototype.
140 for (const auto &ParamInfo : proto->getExtParameterInfos()) {
141 paramInfos.push_back(Elt: ParamInfo);
142 // pass_object_size params have no parameter info.
143 if (ParamInfo.hasPassObjectSize())
144 paramInfos.emplace_back();
145 }
146
147 assert(paramInfos.size() <= totalArgs &&
148 "Did we forget to insert pass_object_size args?");
149 // Add default infos for the variadic and/or suffix arguments.
150 paramInfos.resize(N: totalArgs);
151}
152
153/// Adds the formal parameters in FPT to the given prefix. If any parameter in
154/// FPT has pass_object_size attrs, then we'll add parameters for those, too.
155static void appendParameterTypes(const CodeGenTypes &CGT,
156 SmallVectorImpl<CanQualType> &prefix,
157 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
158 CanQual<FunctionProtoType> FPT) {
159 // Fast path: don't touch param info if we don't need to.
160 if (!FPT->hasExtParameterInfos()) {
161 assert(paramInfos.empty() &&
162 "We have paramInfos, but the prototype doesn't?");
163 prefix.append(in_start: FPT->param_type_begin(), in_end: FPT->param_type_end());
164 return;
165 }
166
167 unsigned PrefixSize = prefix.size();
168 // In the vast majority of cases, we'll have precisely FPT->getNumParams()
169 // parameters; the only thing that can change this is the presence of
170 // pass_object_size. So, we preallocate for the common case.
171 prefix.reserve(N: prefix.size() + FPT->getNumParams());
172
173 auto ExtInfos = FPT->getExtParameterInfos();
174 assert(ExtInfos.size() == FPT->getNumParams());
175 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
176 prefix.push_back(Elt: FPT->getParamType(i: I));
177 if (ExtInfos[I].hasPassObjectSize())
178 prefix.push_back(Elt: CGT.getContext().getSizeType());
179 }
180
181 addExtParameterInfosForCall(paramInfos, proto: FPT.getTypePtr(), prefixArgs: PrefixSize,
182 totalArgs: prefix.size());
183}
184
185/// Arrange the LLVM function layout for a value of the given function
186/// type, on top of any implicit parameters already stored.
187static const CGFunctionInfo &
188arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
189 SmallVectorImpl<CanQualType> &prefix,
190 CanQual<FunctionProtoType> FTP) {
191 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
192 RequiredArgs Required = RequiredArgs::forPrototypePlus(prototype: FTP, additional: prefix.size());
193 // FIXME: Kill copy.
194 appendParameterTypes(CGT, prefix, paramInfos, FPT: FTP);
195 CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
196
197 FnInfoOpts opts =
198 instanceMethod ? FnInfoOpts::IsInstanceMethod : FnInfoOpts::None;
199 return CGT.arrangeLLVMFunctionInfo(returnType: resultType, opts, argTypes: prefix,
200 info: FTP->getExtInfo(), paramInfos, args: Required);
201}
202
203/// Arrange the argument and result information for a value of the
204/// given freestanding function type.
205const CGFunctionInfo &
206CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
207 SmallVector<CanQualType, 16> argTypes;
208 return ::arrangeLLVMFunctionInfo(CGT&: *this, /*instanceMethod=*/false, prefix&: argTypes,
209 FTP);
210}
211
212static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
213 bool IsWindows) {
214 // Set the appropriate calling convention for the Function.
215 if (D->hasAttr<StdCallAttr>())
216 return CC_X86StdCall;
217
218 if (D->hasAttr<FastCallAttr>())
219 return CC_X86FastCall;
220
221 if (D->hasAttr<RegCallAttr>())
222 return CC_X86RegCall;
223
224 if (D->hasAttr<ThisCallAttr>())
225 return CC_X86ThisCall;
226
227 if (D->hasAttr<VectorCallAttr>())
228 return CC_X86VectorCall;
229
230 if (D->hasAttr<PascalAttr>())
231 return CC_X86Pascal;
232
233 if (PcsAttr *PCS = D->getAttr<PcsAttr>())
234 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
235
236 if (D->hasAttr<AArch64VectorPcsAttr>())
237 return CC_AArch64VectorCall;
238
239 if (D->hasAttr<AArch64SVEPcsAttr>())
240 return CC_AArch64SVEPCS;
241
242 if (D->hasAttr<AMDGPUKernelCallAttr>())
243 return CC_AMDGPUKernelCall;
244
245 if (D->hasAttr<IntelOclBiccAttr>())
246 return CC_IntelOclBicc;
247
248 if (D->hasAttr<MSABIAttr>())
249 return IsWindows ? CC_C : CC_Win64;
250
251 if (D->hasAttr<SysVABIAttr>())
252 return IsWindows ? CC_X86_64SysV : CC_C;
253
254 if (D->hasAttr<PreserveMostAttr>())
255 return CC_PreserveMost;
256
257 if (D->hasAttr<PreserveAllAttr>())
258 return CC_PreserveAll;
259
260 if (D->hasAttr<M68kRTDAttr>())
261 return CC_M68kRTD;
262
263 if (D->hasAttr<PreserveNoneAttr>())
264 return CC_PreserveNone;
265
266 if (D->hasAttr<RISCVVectorCCAttr>())
267 return CC_RISCVVectorCall;
268
269 return CC_C;
270}
271
272/// Arrange the argument and result information for a call to an
273/// unknown C++ non-static member function of the given abstract type.
274/// (A null RD means we don't have any meaningful "this" argument type,
275/// so fall back to a generic pointer type).
276/// The member function must be an ordinary function, i.e. not a
277/// constructor or destructor.
278const CGFunctionInfo &
279CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
280 const FunctionProtoType *FTP,
281 const CXXMethodDecl *MD) {
282 SmallVector<CanQualType, 16> argTypes;
283
284 // Add the 'this' pointer.
285 argTypes.push_back(Elt: DeriveThisType(RD, MD));
286
287 return ::arrangeLLVMFunctionInfo(
288 CGT&: *this, /*instanceMethod=*/true, prefix&: argTypes,
289 FTP: FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
290}
291
292/// Set calling convention for CUDA/HIP kernel.
293static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
294 const FunctionDecl *FD) {
295 if (FD->hasAttr<CUDAGlobalAttr>()) {
296 const FunctionType *FT = FTy->getAs<FunctionType>();
297 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
298 FTy = FT->getCanonicalTypeUnqualified();
299 }
300}
301
302/// Arrange the argument and result information for a declaration or
303/// definition of the given C++ non-static member function. The
304/// member function must be an ordinary function, i.e. not a
305/// constructor or destructor.
306const CGFunctionInfo &
307CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
308 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
309 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
310
311 CanQualType FT = GetFormalType(MD).getAs<Type>();
312 setCUDAKernelCallingConvention(FTy&: FT, CGM, FD: MD);
313 auto prototype = FT.getAs<FunctionProtoType>();
314
315 if (MD->isImplicitObjectMemberFunction()) {
316 // The abstract case is perfectly fine.
317 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(GD: MD);
318 return arrangeCXXMethodType(RD: ThisType, FTP: prototype.getTypePtr(), MD);
319 }
320
321 return arrangeFreeFunctionType(FTP: prototype);
322}
323
324bool CodeGenTypes::inheritingCtorHasParams(
325 const InheritedConstructor &Inherited, CXXCtorType Type) {
326 // Parameters are unnecessary if we're constructing a base class subobject
327 // and the inherited constructor lives in a virtual base.
328 return Type == Ctor_Complete ||
329 !Inherited.getShadowDecl()->constructsVirtualBase() ||
330 !Target.getCXXABI().hasConstructorVariants();
331}
332
333const CGFunctionInfo &
334CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
335 auto *MD = cast<CXXMethodDecl>(Val: GD.getDecl());
336
337 SmallVector<CanQualType, 16> argTypes;
338 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
339
340 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(GD);
341 argTypes.push_back(Elt: DeriveThisType(RD: ThisType, MD));
342
343 bool PassParams = true;
344
345 if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: MD)) {
346 // A base class inheriting constructor doesn't get forwarded arguments
347 // needed to construct a virtual base (or base class thereof).
348 if (auto Inherited = CD->getInheritedConstructor())
349 PassParams = inheritingCtorHasParams(Inherited, Type: GD.getCtorType());
350 }
351
352 CanQual<FunctionProtoType> FTP = GetFormalType(MD);
353
354 // Add the formal parameters.
355 if (PassParams)
356 appendParameterTypes(CGT: *this, prefix&: argTypes, paramInfos, FPT: FTP);
357
358 CGCXXABI::AddedStructorArgCounts AddedArgs =
359 TheCXXABI.buildStructorSignature(GD, ArgTys&: argTypes);
360 if (!paramInfos.empty()) {
361 // Note: prefix implies after the first param.
362 if (AddedArgs.Prefix)
363 paramInfos.insert(I: paramInfos.begin() + 1, NumToInsert: AddedArgs.Prefix,
364 Elt: FunctionProtoType::ExtParameterInfo{});
365 if (AddedArgs.Suffix)
366 paramInfos.append(NumInputs: AddedArgs.Suffix,
367 Elt: FunctionProtoType::ExtParameterInfo{});
368 }
369
370 RequiredArgs required =
371 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
372 : RequiredArgs::All);
373
374 FunctionType::ExtInfo extInfo = FTP->getExtInfo();
375 CanQualType resultType = TheCXXABI.HasThisReturn(GD)
376 ? argTypes.front()
377 : TheCXXABI.hasMostDerivedReturn(GD)
378 ? CGM.getContext().VoidPtrTy
379 : Context.VoidTy;
380 return arrangeLLVMFunctionInfo(returnType: resultType, opts: FnInfoOpts::IsInstanceMethod,
381 argTypes, info: extInfo, paramInfos, args: required);
382}
383
384static SmallVector<CanQualType, 16>
385getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
386 SmallVector<CanQualType, 16> argTypes;
387 for (auto &arg : args)
388 argTypes.push_back(Elt: ctx.getCanonicalParamType(T: arg.Ty));
389 return argTypes;
390}
391
392static SmallVector<CanQualType, 16>
393getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
394 SmallVector<CanQualType, 16> argTypes;
395 for (auto &arg : args)
396 argTypes.push_back(Elt: ctx.getCanonicalParamType(T: arg->getType()));
397 return argTypes;
398}
399
400static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
401getExtParameterInfosForCall(const FunctionProtoType *proto,
402 unsigned prefixArgs, unsigned totalArgs) {
403 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
404 if (proto->hasExtParameterInfos()) {
405 addExtParameterInfosForCall(paramInfos&: result, proto, prefixArgs, totalArgs);
406 }
407 return result;
408}
409
410/// Arrange a call to a C++ method, passing the given arguments.
411///
412/// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
413/// parameter.
414/// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
415/// args.
416/// PassProtoArgs indicates whether `args` has args for the parameters in the
417/// given CXXConstructorDecl.
418const CGFunctionInfo &
419CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
420 const CXXConstructorDecl *D,
421 CXXCtorType CtorKind,
422 unsigned ExtraPrefixArgs,
423 unsigned ExtraSuffixArgs,
424 bool PassProtoArgs) {
425 // FIXME: Kill copy.
426 SmallVector<CanQualType, 16> ArgTypes;
427 for (const auto &Arg : args)
428 ArgTypes.push_back(Elt: Context.getCanonicalParamType(T: Arg.Ty));
429
430 // +1 for implicit this, which should always be args[0].
431 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
432
433 CanQual<FunctionProtoType> FPT = GetFormalType(MD: D);
434 RequiredArgs Required = PassProtoArgs
435 ? RequiredArgs::forPrototypePlus(
436 prototype: FPT, additional: TotalPrefixArgs + ExtraSuffixArgs)
437 : RequiredArgs::All;
438
439 GlobalDecl GD(D, CtorKind);
440 CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
441 ? ArgTypes.front()
442 : TheCXXABI.hasMostDerivedReturn(GD)
443 ? CGM.getContext().VoidPtrTy
444 : Context.VoidTy;
445
446 FunctionType::ExtInfo Info = FPT->getExtInfo();
447 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
448 // If the prototype args are elided, we should only have ABI-specific args,
449 // which never have param info.
450 if (PassProtoArgs && FPT->hasExtParameterInfos()) {
451 // ABI-specific suffix arguments are treated the same as variadic arguments.
452 addExtParameterInfosForCall(paramInfos&: ParamInfos, proto: FPT.getTypePtr(), prefixArgs: TotalPrefixArgs,
453 totalArgs: ArgTypes.size());
454 }
455
456 return arrangeLLVMFunctionInfo(returnType: ResultType, opts: FnInfoOpts::IsInstanceMethod,
457 argTypes: ArgTypes, info: Info, paramInfos: ParamInfos, args: Required);
458}
459
460/// Arrange the argument and result information for the declaration or
461/// definition of the given function.
462const CGFunctionInfo &
463CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
464 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD))
465 if (MD->isImplicitObjectMemberFunction())
466 return arrangeCXXMethodDeclaration(MD);
467
468 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
469
470 assert(isa<FunctionType>(FTy));
471 setCUDAKernelCallingConvention(FTy, CGM, FD);
472
473 // When declaring a function without a prototype, always use a
474 // non-variadic type.
475 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
476 return arrangeLLVMFunctionInfo(returnType: noProto->getReturnType(), opts: FnInfoOpts::None,
477 argTypes: std::nullopt, info: noProto->getExtInfo(), paramInfos: {},
478 args: RequiredArgs::All);
479 }
480
481 return arrangeFreeFunctionType(FTP: FTy.castAs<FunctionProtoType>());
482}
483
484/// Arrange the argument and result information for the declaration or
485/// definition of an Objective-C method.
486const CGFunctionInfo &
487CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
488 // It happens that this is the same as a call with no optional
489 // arguments, except also using the formal 'self' type.
490 return arrangeObjCMessageSendSignature(MD, receiverType: MD->getSelfDecl()->getType());
491}
492
493/// Arrange the argument and result information for the function type
494/// through which to perform a send to the given Objective-C method,
495/// using the given receiver type. The receiver type is not always
496/// the 'self' type of the method or even an Objective-C pointer type.
497/// This is *not* the right method for actually performing such a
498/// message send, due to the possibility of optional arguments.
499const CGFunctionInfo &
500CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
501 QualType receiverType) {
502 SmallVector<CanQualType, 16> argTys;
503 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(
504 MD->isDirectMethod() ? 1 : 2);
505 argTys.push_back(Elt: Context.getCanonicalParamType(T: receiverType));
506 if (!MD->isDirectMethod())
507 argTys.push_back(Elt: Context.getCanonicalParamType(T: Context.getObjCSelType()));
508 // FIXME: Kill copy?
509 for (const auto *I : MD->parameters()) {
510 argTys.push_back(Elt: Context.getCanonicalParamType(T: I->getType()));
511 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
512 NoEscape: I->hasAttr<NoEscapeAttr>());
513 extParamInfos.push_back(Elt: extParamInfo);
514 }
515
516 FunctionType::ExtInfo einfo;
517 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
518 einfo = einfo.withCallingConv(cc: getCallingConventionForDecl(D: MD, IsWindows));
519
520 if (getContext().getLangOpts().ObjCAutoRefCount &&
521 MD->hasAttr<NSReturnsRetainedAttr>())
522 einfo = einfo.withProducesResult(producesResult: true);
523
524 RequiredArgs required =
525 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
526
527 return arrangeLLVMFunctionInfo(returnType: GetReturnType(RetTy: MD->getReturnType()),
528 opts: FnInfoOpts::None, argTypes: argTys, info: einfo, paramInfos: extParamInfos,
529 args: required);
530}
531
532const CGFunctionInfo &
533CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
534 const CallArgList &args) {
535 auto argTypes = getArgTypesForCall(ctx&: Context, args);
536 FunctionType::ExtInfo einfo;
537
538 return arrangeLLVMFunctionInfo(returnType: GetReturnType(RetTy: returnType), opts: FnInfoOpts::None,
539 argTypes, info: einfo, paramInfos: {}, args: RequiredArgs::All);
540}
541
542const CGFunctionInfo &
543CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
544 // FIXME: Do we need to handle ObjCMethodDecl?
545 const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl());
546
547 if (isa<CXXConstructorDecl>(Val: GD.getDecl()) ||
548 isa<CXXDestructorDecl>(Val: GD.getDecl()))
549 return arrangeCXXStructorDeclaration(GD);
550
551 return arrangeFunctionDeclaration(FD);
552}
553
554/// Arrange a thunk that takes 'this' as the first parameter followed by
555/// varargs. Return a void pointer, regardless of the actual return type.
556/// The body of the thunk will end in a musttail call to a function of the
557/// correct type, and the caller will bitcast the function to the correct
558/// prototype.
559const CGFunctionInfo &
560CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
561 assert(MD->isVirtual() && "only methods have thunks");
562 CanQual<FunctionProtoType> FTP = GetFormalType(MD);
563 CanQualType ArgTys[] = {DeriveThisType(RD: MD->getParent(), MD)};
564 return arrangeLLVMFunctionInfo(returnType: Context.VoidTy, opts: FnInfoOpts::None, argTypes: ArgTys,
565 info: FTP->getExtInfo(), paramInfos: {}, args: RequiredArgs(1));
566}
567
568const CGFunctionInfo &
569CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
570 CXXCtorType CT) {
571 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
572
573 CanQual<FunctionProtoType> FTP = GetFormalType(MD: CD);
574 SmallVector<CanQualType, 2> ArgTys;
575 const CXXRecordDecl *RD = CD->getParent();
576 ArgTys.push_back(Elt: DeriveThisType(RD, MD: CD));
577 if (CT == Ctor_CopyingClosure)
578 ArgTys.push_back(Elt: *FTP->param_type_begin());
579 if (RD->getNumVBases() > 0)
580 ArgTys.push_back(Elt: Context.IntTy);
581 CallingConv CC = Context.getDefaultCallingConvention(
582 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
583 return arrangeLLVMFunctionInfo(returnType: Context.VoidTy, opts: FnInfoOpts::IsInstanceMethod,
584 argTypes: ArgTys, info: FunctionType::ExtInfo(CC), paramInfos: {},
585 args: RequiredArgs::All);
586}
587
588/// Arrange a call as unto a free function, except possibly with an
589/// additional number of formal parameters considered required.
590static const CGFunctionInfo &
591arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
592 CodeGenModule &CGM,
593 const CallArgList &args,
594 const FunctionType *fnType,
595 unsigned numExtraRequiredArgs,
596 bool chainCall) {
597 assert(args.size() >= numExtraRequiredArgs);
598
599 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
600
601 // In most cases, there are no optional arguments.
602 RequiredArgs required = RequiredArgs::All;
603
604 // If we have a variadic prototype, the required arguments are the
605 // extra prefix plus the arguments in the prototype.
606 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(Val: fnType)) {
607 if (proto->isVariadic())
608 required = RequiredArgs::forPrototypePlus(prototype: proto, additional: numExtraRequiredArgs);
609
610 if (proto->hasExtParameterInfos())
611 addExtParameterInfosForCall(paramInfos, proto, prefixArgs: numExtraRequiredArgs,
612 totalArgs: args.size());
613
614 // If we don't have a prototype at all, but we're supposed to
615 // explicitly use the variadic convention for unprototyped calls,
616 // treat all of the arguments as required but preserve the nominal
617 // possibility of variadics.
618 } else if (CGM.getTargetCodeGenInfo()
619 .isNoProtoCallVariadic(args,
620 fnType: cast<FunctionNoProtoType>(Val: fnType))) {
621 required = RequiredArgs(args.size());
622 }
623
624 // FIXME: Kill copy.
625 SmallVector<CanQualType, 16> argTypes;
626 for (const auto &arg : args)
627 argTypes.push_back(Elt: CGT.getContext().getCanonicalParamType(T: arg.Ty));
628 FnInfoOpts opts = chainCall ? FnInfoOpts::IsChainCall : FnInfoOpts::None;
629 return CGT.arrangeLLVMFunctionInfo(returnType: GetReturnType(RetTy: fnType->getReturnType()),
630 opts, argTypes, info: fnType->getExtInfo(),
631 paramInfos, args: required);
632}
633
634/// Figure out the rules for calling a function with the given formal
635/// type using the given arguments. The arguments are necessary
636/// because the function might be unprototyped, in which case it's
637/// target-dependent in crazy ways.
638const CGFunctionInfo &
639CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
640 const FunctionType *fnType,
641 bool chainCall) {
642 return arrangeFreeFunctionLikeCall(CGT&: *this, CGM, args, fnType,
643 numExtraRequiredArgs: chainCall ? 1 : 0, chainCall);
644}
645
646/// A block function is essentially a free function with an
647/// extra implicit argument.
648const CGFunctionInfo &
649CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
650 const FunctionType *fnType) {
651 return arrangeFreeFunctionLikeCall(CGT&: *this, CGM, args, fnType, numExtraRequiredArgs: 1,
652 /*chainCall=*/false);
653}
654
655const CGFunctionInfo &
656CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
657 const FunctionArgList &params) {
658 auto paramInfos = getExtParameterInfosForCall(proto, prefixArgs: 1, totalArgs: params.size());
659 auto argTypes = getArgTypesForDeclaration(ctx&: Context, args: params);
660
661 return arrangeLLVMFunctionInfo(returnType: GetReturnType(RetTy: proto->getReturnType()),
662 opts: FnInfoOpts::None, argTypes,
663 info: proto->getExtInfo(), paramInfos,
664 args: RequiredArgs::forPrototypePlus(prototype: proto, additional: 1));
665}
666
667const CGFunctionInfo &
668CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
669 const CallArgList &args) {
670 // FIXME: Kill copy.
671 SmallVector<CanQualType, 16> argTypes;
672 for (const auto &Arg : args)
673 argTypes.push_back(Elt: Context.getCanonicalParamType(T: Arg.Ty));
674 return arrangeLLVMFunctionInfo(returnType: GetReturnType(RetTy: resultType), opts: FnInfoOpts::None,
675 argTypes, info: FunctionType::ExtInfo(),
676 /*paramInfos=*/{}, args: RequiredArgs::All);
677}
678
679const CGFunctionInfo &
680CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
681 const FunctionArgList &args) {
682 auto argTypes = getArgTypesForDeclaration(ctx&: Context, args);
683
684 return arrangeLLVMFunctionInfo(returnType: GetReturnType(RetTy: resultType), opts: FnInfoOpts::None,
685 argTypes, info: FunctionType::ExtInfo(), paramInfos: {},
686 args: RequiredArgs::All);
687}
688
689const CGFunctionInfo &
690CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
691 ArrayRef<CanQualType> argTypes) {
692 return arrangeLLVMFunctionInfo(returnType: resultType, opts: FnInfoOpts::None, argTypes,
693 info: FunctionType::ExtInfo(), paramInfos: {},
694 args: RequiredArgs::All);
695}
696
697/// Arrange a call to a C++ method, passing the given arguments.
698///
699/// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
700/// does not count `this`.
701const CGFunctionInfo &
702CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
703 const FunctionProtoType *proto,
704 RequiredArgs required,
705 unsigned numPrefixArgs) {
706 assert(numPrefixArgs + 1 <= args.size() &&
707 "Emitting a call with less args than the required prefix?");
708 // Add one to account for `this`. It's a bit awkward here, but we don't count
709 // `this` in similar places elsewhere.
710 auto paramInfos =
711 getExtParameterInfosForCall(proto, prefixArgs: numPrefixArgs + 1, totalArgs: args.size());
712
713 // FIXME: Kill copy.
714 auto argTypes = getArgTypesForCall(ctx&: Context, args);
715
716 FunctionType::ExtInfo info = proto->getExtInfo();
717 return arrangeLLVMFunctionInfo(returnType: GetReturnType(RetTy: proto->getReturnType()),
718 opts: FnInfoOpts::IsInstanceMethod, argTypes, info,
719 paramInfos, args: required);
720}
721
722const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
723 return arrangeLLVMFunctionInfo(returnType: getContext().VoidTy, opts: FnInfoOpts::None,
724 argTypes: std::nullopt, info: FunctionType::ExtInfo(), paramInfos: {},
725 args: RequiredArgs::All);
726}
727
728const CGFunctionInfo &
729CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
730 const CallArgList &args) {
731 assert(signature.arg_size() <= args.size());
732 if (signature.arg_size() == args.size())
733 return signature;
734
735 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
736 auto sigParamInfos = signature.getExtParameterInfos();
737 if (!sigParamInfos.empty()) {
738 paramInfos.append(in_start: sigParamInfos.begin(), in_end: sigParamInfos.end());
739 paramInfos.resize(N: args.size());
740 }
741
742 auto argTypes = getArgTypesForCall(ctx&: Context, args);
743
744 assert(signature.getRequiredArgs().allowsOptionalArgs());
745 FnInfoOpts opts = FnInfoOpts::None;
746 if (signature.isInstanceMethod())
747 opts |= FnInfoOpts::IsInstanceMethod;
748 if (signature.isChainCall())
749 opts |= FnInfoOpts::IsChainCall;
750 if (signature.isDelegateCall())
751 opts |= FnInfoOpts::IsDelegateCall;
752 return arrangeLLVMFunctionInfo(returnType: signature.getReturnType(), opts, argTypes,
753 info: signature.getExtInfo(), paramInfos,
754 args: signature.getRequiredArgs());
755}
756
757namespace clang {
758namespace CodeGen {
759void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
760}
761}
762
763/// Arrange the argument and result information for an abstract value
764/// of a given function type. This is the method which all of the
765/// above functions ultimately defer to.
766const CGFunctionInfo &CodeGenTypes::arrangeLLVMFunctionInfo(
767 CanQualType resultType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes,
768 FunctionType::ExtInfo info,
769 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
770 RequiredArgs required) {
771 assert(llvm::all_of(argTypes,
772 [](CanQualType T) { return T.isCanonicalAsParam(); }));
773
774 // Lookup or create unique function info.
775 llvm::FoldingSetNodeID ID;
776 bool isInstanceMethod =
777 (opts & FnInfoOpts::IsInstanceMethod) == FnInfoOpts::IsInstanceMethod;
778 bool isChainCall =
779 (opts & FnInfoOpts::IsChainCall) == FnInfoOpts::IsChainCall;
780 bool isDelegateCall =
781 (opts & FnInfoOpts::IsDelegateCall) == FnInfoOpts::IsDelegateCall;
782 CGFunctionInfo::Profile(ID, InstanceMethod: isInstanceMethod, ChainCall: isChainCall, IsDelegateCall: isDelegateCall,
783 info, paramInfos, required, resultType, argTypes);
784
785 void *insertPos = nullptr;
786 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos&: insertPos);
787 if (FI)
788 return *FI;
789
790 unsigned CC = ClangCallConvToLLVMCallConv(CC: info.getCC());
791
792 // Construct the function info. We co-allocate the ArgInfos.
793 FI = CGFunctionInfo::create(llvmCC: CC, instanceMethod: isInstanceMethod, chainCall: isChainCall, delegateCall: isDelegateCall,
794 extInfo: info, paramInfos, resultType, argTypes, required);
795 FunctionInfos.InsertNode(N: FI, InsertPos: insertPos);
796
797 bool inserted = FunctionsBeingProcessed.insert(Ptr: FI).second;
798 (void)inserted;
799 assert(inserted && "Recursively being processed?");
800
801 // Compute ABI information.
802 if (CC == llvm::CallingConv::SPIR_KERNEL) {
803 // Force target independent argument handling for the host visible
804 // kernel functions.
805 computeSPIRKernelABIInfo(CGM, FI&: *FI);
806 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
807 swiftcall::computeABIInfo(CGM, FI&: *FI);
808 } else {
809 getABIInfo().computeInfo(FI&: *FI);
810 }
811
812 // Loop over all of the computed argument and return value info. If any of
813 // them are direct or extend without a specified coerce type, specify the
814 // default now.
815 ABIArgInfo &retInfo = FI->getReturnInfo();
816 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
817 retInfo.setCoerceToType(ConvertType(T: FI->getReturnType()));
818
819 for (auto &I : FI->arguments())
820 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
821 I.info.setCoerceToType(ConvertType(T: I.type));
822
823 bool erased = FunctionsBeingProcessed.erase(Ptr: FI); (void)erased;
824 assert(erased && "Not in set?");
825
826 return *FI;
827}
828
829CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, bool instanceMethod,
830 bool chainCall, bool delegateCall,
831 const FunctionType::ExtInfo &info,
832 ArrayRef<ExtParameterInfo> paramInfos,
833 CanQualType resultType,
834 ArrayRef<CanQualType> argTypes,
835 RequiredArgs required) {
836 assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
837 assert(!required.allowsOptionalArgs() ||
838 required.getNumRequiredArgs() <= argTypes.size());
839
840 void *buffer =
841 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>(
842 Counts: argTypes.size() + 1, Counts: paramInfos.size()));
843
844 CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
845 FI->CallingConvention = llvmCC;
846 FI->EffectiveCallingConvention = llvmCC;
847 FI->ASTCallingConvention = info.getCC();
848 FI->InstanceMethod = instanceMethod;
849 FI->ChainCall = chainCall;
850 FI->DelegateCall = delegateCall;
851 FI->CmseNSCall = info.getCmseNSCall();
852 FI->NoReturn = info.getNoReturn();
853 FI->ReturnsRetained = info.getProducesResult();
854 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
855 FI->NoCfCheck = info.getNoCfCheck();
856 FI->Required = required;
857 FI->HasRegParm = info.getHasRegParm();
858 FI->RegParm = info.getRegParm();
859 FI->ArgStruct = nullptr;
860 FI->ArgStructAlign = 0;
861 FI->NumArgs = argTypes.size();
862 FI->HasExtParameterInfos = !paramInfos.empty();
863 FI->getArgsBuffer()[0].type = resultType;
864 FI->MaxVectorWidth = 0;
865 for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
866 FI->getArgsBuffer()[i + 1].type = argTypes[i];
867 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
868 FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
869 return FI;
870}
871
872/***/
873
874namespace {
875// ABIArgInfo::Expand implementation.
876
877// Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
878struct TypeExpansion {
879 enum TypeExpansionKind {
880 // Elements of constant arrays are expanded recursively.
881 TEK_ConstantArray,
882 // Record fields are expanded recursively (but if record is a union, only
883 // the field with the largest size is expanded).
884 TEK_Record,
885 // For complex types, real and imaginary parts are expanded recursively.
886 TEK_Complex,
887 // All other types are not expandable.
888 TEK_None
889 };
890
891 const TypeExpansionKind Kind;
892
893 TypeExpansion(TypeExpansionKind K) : Kind(K) {}
894 virtual ~TypeExpansion() {}
895};
896
897struct ConstantArrayExpansion : TypeExpansion {
898 QualType EltTy;
899 uint64_t NumElts;
900
901 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
902 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
903 static bool classof(const TypeExpansion *TE) {
904 return TE->Kind == TEK_ConstantArray;
905 }
906};
907
908struct RecordExpansion : TypeExpansion {
909 SmallVector<const CXXBaseSpecifier *, 1> Bases;
910
911 SmallVector<const FieldDecl *, 1> Fields;
912
913 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
914 SmallVector<const FieldDecl *, 1> &&Fields)
915 : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
916 Fields(std::move(Fields)) {}
917 static bool classof(const TypeExpansion *TE) {
918 return TE->Kind == TEK_Record;
919 }
920};
921
922struct ComplexExpansion : TypeExpansion {
923 QualType EltTy;
924
925 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
926 static bool classof(const TypeExpansion *TE) {
927 return TE->Kind == TEK_Complex;
928 }
929};
930
931struct NoExpansion : TypeExpansion {
932 NoExpansion() : TypeExpansion(TEK_None) {}
933 static bool classof(const TypeExpansion *TE) {
934 return TE->Kind == TEK_None;
935 }
936};
937} // namespace
938
939static std::unique_ptr<TypeExpansion>
940getTypeExpansion(QualType Ty, const ASTContext &Context) {
941 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T: Ty)) {
942 return std::make_unique<ConstantArrayExpansion>(args: AT->getElementType(),
943 args: AT->getZExtSize());
944 }
945 if (const RecordType *RT = Ty->getAs<RecordType>()) {
946 SmallVector<const CXXBaseSpecifier *, 1> Bases;
947 SmallVector<const FieldDecl *, 1> Fields;
948 const RecordDecl *RD = RT->getDecl();
949 assert(!RD->hasFlexibleArrayMember() &&
950 "Cannot expand structure with flexible array.");
951 if (RD->isUnion()) {
952 // Unions can be here only in degenerative cases - all the fields are same
953 // after flattening. Thus we have to use the "largest" field.
954 const FieldDecl *LargestFD = nullptr;
955 CharUnits UnionSize = CharUnits::Zero();
956
957 for (const auto *FD : RD->fields()) {
958 if (FD->isZeroLengthBitField(Ctx: Context))
959 continue;
960 assert(!FD->isBitField() &&
961 "Cannot expand structure with bit-field members.");
962 CharUnits FieldSize = Context.getTypeSizeInChars(T: FD->getType());
963 if (UnionSize < FieldSize) {
964 UnionSize = FieldSize;
965 LargestFD = FD;
966 }
967 }
968 if (LargestFD)
969 Fields.push_back(Elt: LargestFD);
970 } else {
971 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) {
972 assert(!CXXRD->isDynamicClass() &&
973 "cannot expand vtable pointers in dynamic classes");
974 llvm::append_range(C&: Bases, R: llvm::make_pointer_range(Range: CXXRD->bases()));
975 }
976
977 for (const auto *FD : RD->fields()) {
978 if (FD->isZeroLengthBitField(Ctx: Context))
979 continue;
980 assert(!FD->isBitField() &&
981 "Cannot expand structure with bit-field members.");
982 Fields.push_back(Elt: FD);
983 }
984 }
985 return std::make_unique<RecordExpansion>(args: std::move(Bases),
986 args: std::move(Fields));
987 }
988 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
989 return std::make_unique<ComplexExpansion>(args: CT->getElementType());
990 }
991 return std::make_unique<NoExpansion>();
992}
993
994static int getExpansionSize(QualType Ty, const ASTContext &Context) {
995 auto Exp = getTypeExpansion(Ty, Context);
996 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Val: Exp.get())) {
997 return CAExp->NumElts * getExpansionSize(Ty: CAExp->EltTy, Context);
998 }
999 if (auto RExp = dyn_cast<RecordExpansion>(Val: Exp.get())) {
1000 int Res = 0;
1001 for (auto BS : RExp->Bases)
1002 Res += getExpansionSize(Ty: BS->getType(), Context);
1003 for (auto FD : RExp->Fields)
1004 Res += getExpansionSize(Ty: FD->getType(), Context);
1005 return Res;
1006 }
1007 if (isa<ComplexExpansion>(Val: Exp.get()))
1008 return 2;
1009 assert(isa<NoExpansion>(Exp.get()));
1010 return 1;
1011}
1012
1013void
1014CodeGenTypes::getExpandedTypes(QualType Ty,
1015 SmallVectorImpl<llvm::Type *>::iterator &TI) {
1016 auto Exp = getTypeExpansion(Ty, Context);
1017 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Val: Exp.get())) {
1018 for (int i = 0, n = CAExp->NumElts; i < n; i++) {
1019 getExpandedTypes(Ty: CAExp->EltTy, TI);
1020 }
1021 } else if (auto RExp = dyn_cast<RecordExpansion>(Val: Exp.get())) {
1022 for (auto BS : RExp->Bases)
1023 getExpandedTypes(Ty: BS->getType(), TI);
1024 for (auto FD : RExp->Fields)
1025 getExpandedTypes(Ty: FD->getType(), TI);
1026 } else if (auto CExp = dyn_cast<ComplexExpansion>(Val: Exp.get())) {
1027 llvm::Type *EltTy = ConvertType(T: CExp->EltTy);
1028 *TI++ = EltTy;
1029 *TI++ = EltTy;
1030 } else {
1031 assert(isa<NoExpansion>(Exp.get()));
1032 *TI++ = ConvertType(T: Ty);
1033 }
1034}
1035
1036static void forConstantArrayExpansion(CodeGenFunction &CGF,
1037 ConstantArrayExpansion *CAE,
1038 Address BaseAddr,
1039 llvm::function_ref<void(Address)> Fn) {
1040 for (int i = 0, n = CAE->NumElts; i < n; i++) {
1041 Address EltAddr = CGF.Builder.CreateConstGEP2_32(Addr: BaseAddr, Idx0: 0, Idx1: i);
1042 Fn(EltAddr);
1043 }
1044}
1045
1046void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1047 llvm::Function::arg_iterator &AI) {
1048 assert(LV.isSimple() &&
1049 "Unexpected non-simple lvalue during struct expansion.");
1050
1051 auto Exp = getTypeExpansion(Ty, Context: getContext());
1052 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Val: Exp.get())) {
1053 forConstantArrayExpansion(
1054 CGF&: *this, CAE: CAExp, BaseAddr: LV.getAddress(), Fn: [&](Address EltAddr) {
1055 LValue LV = MakeAddrLValue(Addr: EltAddr, T: CAExp->EltTy);
1056 ExpandTypeFromArgs(Ty: CAExp->EltTy, LV, AI);
1057 });
1058 } else if (auto RExp = dyn_cast<RecordExpansion>(Val: Exp.get())) {
1059 Address This = LV.getAddress();
1060 for (const CXXBaseSpecifier *BS : RExp->Bases) {
1061 // Perform a single step derived-to-base conversion.
1062 Address Base =
1063 GetAddressOfBaseClass(Value: This, Derived: Ty->getAsCXXRecordDecl(), PathBegin: &BS, PathEnd: &BS + 1,
1064 /*NullCheckValue=*/false, Loc: SourceLocation());
1065 LValue SubLV = MakeAddrLValue(Addr: Base, T: BS->getType());
1066
1067 // Recurse onto bases.
1068 ExpandTypeFromArgs(Ty: BS->getType(), LV: SubLV, AI);
1069 }
1070 for (auto FD : RExp->Fields) {
1071 // FIXME: What are the right qualifiers here?
1072 LValue SubLV = EmitLValueForFieldInitialization(Base: LV, Field: FD);
1073 ExpandTypeFromArgs(Ty: FD->getType(), LV: SubLV, AI);
1074 }
1075 } else if (isa<ComplexExpansion>(Val: Exp.get())) {
1076 auto realValue = &*AI++;
1077 auto imagValue = &*AI++;
1078 EmitStoreOfComplex(V: ComplexPairTy(realValue, imagValue), dest: LV, /*init*/ isInit: true);
1079 } else {
1080 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1081 // primitive store.
1082 assert(isa<NoExpansion>(Exp.get()));
1083 llvm::Value *Arg = &*AI++;
1084 if (LV.isBitField()) {
1085 EmitStoreThroughLValue(Src: RValue::get(V: Arg), Dst: LV);
1086 } else {
1087 // TODO: currently there are some places are inconsistent in what LLVM
1088 // pointer type they use (see D118744). Once clang uses opaque pointers
1089 // all LLVM pointer types will be the same and we can remove this check.
1090 if (Arg->getType()->isPointerTy()) {
1091 Address Addr = LV.getAddress();
1092 Arg = Builder.CreateBitCast(V: Arg, DestTy: Addr.getElementType());
1093 }
1094 EmitStoreOfScalar(value: Arg, lvalue: LV);
1095 }
1096 }
1097}
1098
1099void CodeGenFunction::ExpandTypeToArgs(
1100 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1101 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1102 auto Exp = getTypeExpansion(Ty, Context: getContext());
1103 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Val: Exp.get())) {
1104 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1105 : Arg.getKnownRValue().getAggregateAddress();
1106 forConstantArrayExpansion(
1107 CGF&: *this, CAE: CAExp, BaseAddr: Addr, Fn: [&](Address EltAddr) {
1108 CallArg EltArg = CallArg(
1109 convertTempToRValue(addr: EltAddr, type: CAExp->EltTy, Loc: SourceLocation()),
1110 CAExp->EltTy);
1111 ExpandTypeToArgs(Ty: CAExp->EltTy, Arg: EltArg, IRFuncTy, IRCallArgs,
1112 IRCallArgPos);
1113 });
1114 } else if (auto RExp = dyn_cast<RecordExpansion>(Val: Exp.get())) {
1115 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1116 : Arg.getKnownRValue().getAggregateAddress();
1117 for (const CXXBaseSpecifier *BS : RExp->Bases) {
1118 // Perform a single step derived-to-base conversion.
1119 Address Base =
1120 GetAddressOfBaseClass(Value: This, Derived: Ty->getAsCXXRecordDecl(), PathBegin: &BS, PathEnd: &BS + 1,
1121 /*NullCheckValue=*/false, Loc: SourceLocation());
1122 CallArg BaseArg = CallArg(RValue::getAggregate(addr: Base), BS->getType());
1123
1124 // Recurse onto bases.
1125 ExpandTypeToArgs(Ty: BS->getType(), Arg: BaseArg, IRFuncTy, IRCallArgs,
1126 IRCallArgPos);
1127 }
1128
1129 LValue LV = MakeAddrLValue(Addr: This, T: Ty);
1130 for (auto FD : RExp->Fields) {
1131 CallArg FldArg =
1132 CallArg(EmitRValueForField(LV, FD, Loc: SourceLocation()), FD->getType());
1133 ExpandTypeToArgs(Ty: FD->getType(), Arg: FldArg, IRFuncTy, IRCallArgs,
1134 IRCallArgPos);
1135 }
1136 } else if (isa<ComplexExpansion>(Val: Exp.get())) {
1137 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1138 IRCallArgs[IRCallArgPos++] = CV.first;
1139 IRCallArgs[IRCallArgPos++] = CV.second;
1140 } else {
1141 assert(isa<NoExpansion>(Exp.get()));
1142 auto RV = Arg.getKnownRValue();
1143 assert(RV.isScalar() &&
1144 "Unexpected non-scalar rvalue during struct expansion.");
1145
1146 // Insert a bitcast as needed.
1147 llvm::Value *V = RV.getScalarVal();
1148 if (IRCallArgPos < IRFuncTy->getNumParams() &&
1149 V->getType() != IRFuncTy->getParamType(i: IRCallArgPos))
1150 V = Builder.CreateBitCast(V, DestTy: IRFuncTy->getParamType(i: IRCallArgPos));
1151
1152 IRCallArgs[IRCallArgPos++] = V;
1153 }
1154}
1155
1156/// Create a temporary allocation for the purposes of coercion.
1157static RawAddress CreateTempAllocaForCoercion(CodeGenFunction &CGF,
1158 llvm::Type *Ty,
1159 CharUnits MinAlign,
1160 const Twine &Name = "tmp") {
1161 // Don't use an alignment that's worse than what LLVM would prefer.
1162 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty);
1163 CharUnits Align = std::max(a: MinAlign, b: CharUnits::fromQuantity(Quantity: PrefAlign));
1164
1165 return CGF.CreateTempAlloca(Ty, align: Align, Name: Name + ".coerce");
1166}
1167
1168/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1169/// accessing some number of bytes out of it, try to gep into the struct to get
1170/// at its inner goodness. Dive as deep as possible without entering an element
1171/// with an in-memory size smaller than DstSize.
1172static Address
1173EnterStructPointerForCoercedAccess(Address SrcPtr,
1174 llvm::StructType *SrcSTy,
1175 uint64_t DstSize, CodeGenFunction &CGF) {
1176 // We can't dive into a zero-element struct.
1177 if (SrcSTy->getNumElements() == 0) return SrcPtr;
1178
1179 llvm::Type *FirstElt = SrcSTy->getElementType(N: 0);
1180
1181 // If the first elt is at least as large as what we're looking for, or if the
1182 // first element is the same size as the whole struct, we can enter it. The
1183 // comparison must be made on the store size and not the alloca size. Using
1184 // the alloca size may overstate the size of the load.
1185 uint64_t FirstEltSize =
1186 CGF.CGM.getDataLayout().getTypeStoreSize(Ty: FirstElt);
1187 if (FirstEltSize < DstSize &&
1188 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(Ty: SrcSTy))
1189 return SrcPtr;
1190
1191 // GEP into the first element.
1192 SrcPtr = CGF.Builder.CreateStructGEP(Addr: SrcPtr, Index: 0, Name: "coerce.dive");
1193
1194 // If the first element is a struct, recurse.
1195 llvm::Type *SrcTy = SrcPtr.getElementType();
1196 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(Val: SrcTy))
1197 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1198
1199 return SrcPtr;
1200}
1201
1202/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1203/// are either integers or pointers. This does a truncation of the value if it
1204/// is too large or a zero extension if it is too small.
1205///
1206/// This behaves as if the value were coerced through memory, so on big-endian
1207/// targets the high bits are preserved in a truncation, while little-endian
1208/// targets preserve the low bits.
1209static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1210 llvm::Type *Ty,
1211 CodeGenFunction &CGF) {
1212 if (Val->getType() == Ty)
1213 return Val;
1214
1215 if (isa<llvm::PointerType>(Val: Val->getType())) {
1216 // If this is Pointer->Pointer avoid conversion to and from int.
1217 if (isa<llvm::PointerType>(Val: Ty))
1218 return CGF.Builder.CreateBitCast(V: Val, DestTy: Ty, Name: "coerce.val");
1219
1220 // Convert the pointer to an integer so we can play with its width.
1221 Val = CGF.Builder.CreatePtrToInt(V: Val, DestTy: CGF.IntPtrTy, Name: "coerce.val.pi");
1222 }
1223
1224 llvm::Type *DestIntTy = Ty;
1225 if (isa<llvm::PointerType>(Val: DestIntTy))
1226 DestIntTy = CGF.IntPtrTy;
1227
1228 if (Val->getType() != DestIntTy) {
1229 const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1230 if (DL.isBigEndian()) {
1231 // Preserve the high bits on big-endian targets.
1232 // That is what memory coercion does.
1233 uint64_t SrcSize = DL.getTypeSizeInBits(Ty: Val->getType());
1234 uint64_t DstSize = DL.getTypeSizeInBits(Ty: DestIntTy);
1235
1236 if (SrcSize > DstSize) {
1237 Val = CGF.Builder.CreateLShr(LHS: Val, RHS: SrcSize - DstSize, Name: "coerce.highbits");
1238 Val = CGF.Builder.CreateTrunc(V: Val, DestTy: DestIntTy, Name: "coerce.val.ii");
1239 } else {
1240 Val = CGF.Builder.CreateZExt(V: Val, DestTy: DestIntTy, Name: "coerce.val.ii");
1241 Val = CGF.Builder.CreateShl(LHS: Val, RHS: DstSize - SrcSize, Name: "coerce.highbits");
1242 }
1243 } else {
1244 // Little-endian targets preserve the low bits. No shifts required.
1245 Val = CGF.Builder.CreateIntCast(V: Val, DestTy: DestIntTy, isSigned: false, Name: "coerce.val.ii");
1246 }
1247 }
1248
1249 if (isa<llvm::PointerType>(Val: Ty))
1250 Val = CGF.Builder.CreateIntToPtr(V: Val, DestTy: Ty, Name: "coerce.val.ip");
1251 return Val;
1252}
1253
1254
1255
1256/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1257/// a pointer to an object of type \arg Ty, known to be aligned to
1258/// \arg SrcAlign bytes.
1259///
1260/// This safely handles the case when the src type is smaller than the
1261/// destination type; in this situation the values of bits which not
1262/// present in the src are undefined.
1263static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1264 CodeGenFunction &CGF) {
1265 llvm::Type *SrcTy = Src.getElementType();
1266
1267 // If SrcTy and Ty are the same, just do a load.
1268 if (SrcTy == Ty)
1269 return CGF.Builder.CreateLoad(Addr: Src);
1270
1271 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1272
1273 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(Val: SrcTy)) {
1274 Src = EnterStructPointerForCoercedAccess(SrcPtr: Src, SrcSTy,
1275 DstSize: DstSize.getFixedValue(), CGF);
1276 SrcTy = Src.getElementType();
1277 }
1278
1279 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty: SrcTy);
1280
1281 // If the source and destination are integer or pointer types, just do an
1282 // extension or truncation to the desired type.
1283 if ((isa<llvm::IntegerType>(Val: Ty) || isa<llvm::PointerType>(Val: Ty)) &&
1284 (isa<llvm::IntegerType>(Val: SrcTy) || isa<llvm::PointerType>(Val: SrcTy))) {
1285 llvm::Value *Load = CGF.Builder.CreateLoad(Addr: Src);
1286 return CoerceIntOrPtrToIntOrPtr(Val: Load, Ty, CGF);
1287 }
1288
1289 // If load is legal, just bitcast the src pointer.
1290 if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1291 SrcSize.getFixedValue() >= DstSize.getFixedValue()) {
1292 // Generally SrcSize is never greater than DstSize, since this means we are
1293 // losing bits. However, this can happen in cases where the structure has
1294 // additional padding, for example due to a user specified alignment.
1295 //
1296 // FIXME: Assert that we aren't truncating non-padding bits when have access
1297 // to that information.
1298 Src = Src.withElementType(ElemTy: Ty);
1299 return CGF.Builder.CreateLoad(Addr: Src);
1300 }
1301
1302 // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1303 // the types match, use the llvm.vector.insert intrinsic to perform the
1304 // conversion.
1305 if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(Val: Ty)) {
1306 if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(Val: SrcTy)) {
1307 // If we are casting a fixed i8 vector to a scalable i1 predicate
1308 // vector, use a vector insert and bitcast the result.
1309 if (ScalableDstTy->getElementType()->isIntegerTy(Bitwidth: 1) &&
1310 ScalableDstTy->getElementCount().isKnownMultipleOf(RHS: 8) &&
1311 FixedSrcTy->getElementType()->isIntegerTy(Bitwidth: 8)) {
1312 ScalableDstTy = llvm::ScalableVectorType::get(
1313 ElementType: FixedSrcTy->getElementType(),
1314 MinNumElts: ScalableDstTy->getElementCount().getKnownMinValue() / 8);
1315 }
1316 if (ScalableDstTy->getElementType() == FixedSrcTy->getElementType()) {
1317 auto *Load = CGF.Builder.CreateLoad(Addr: Src);
1318 auto *UndefVec = llvm::UndefValue::get(T: ScalableDstTy);
1319 auto *Zero = llvm::Constant::getNullValue(Ty: CGF.CGM.Int64Ty);
1320 llvm::Value *Result = CGF.Builder.CreateInsertVector(
1321 DstType: ScalableDstTy, SrcVec: UndefVec, SubVec: Load, Idx: Zero, Name: "cast.scalable");
1322 if (ScalableDstTy != Ty)
1323 Result = CGF.Builder.CreateBitCast(V: Result, DestTy: Ty);
1324 return Result;
1325 }
1326 }
1327 }
1328
1329 // Otherwise do coercion through memory. This is stupid, but simple.
1330 RawAddress Tmp =
1331 CreateTempAllocaForCoercion(CGF, Ty, MinAlign: Src.getAlignment(), Name: Src.getName());
1332 CGF.Builder.CreateMemCpy(
1333 Dst: Tmp.getPointer(), DstAlign: Tmp.getAlignment().getAsAlign(),
1334 Src: Src.emitRawPointer(CGF), SrcAlign: Src.getAlignment().getAsAlign(),
1335 Size: llvm::ConstantInt::get(Ty: CGF.IntPtrTy, V: SrcSize.getKnownMinValue()));
1336 return CGF.Builder.CreateLoad(Addr: Tmp);
1337}
1338
1339void CodeGenFunction::CreateCoercedStore(llvm::Value *Src, Address Dst,
1340 llvm::TypeSize DstSize,
1341 bool DstIsVolatile) {
1342 if (!DstSize)
1343 return;
1344
1345 llvm::Type *SrcTy = Src->getType();
1346 llvm::TypeSize SrcSize = CGM.getDataLayout().getTypeAllocSize(Ty: SrcTy);
1347
1348 // GEP into structs to try to make types match.
1349 // FIXME: This isn't really that useful with opaque types, but it impacts a
1350 // lot of regression tests.
1351 if (SrcTy != Dst.getElementType()) {
1352 if (llvm::StructType *DstSTy =
1353 dyn_cast<llvm::StructType>(Val: Dst.getElementType())) {
1354 assert(!SrcSize.isScalable());
1355 Dst = EnterStructPointerForCoercedAccess(SrcPtr: Dst, SrcSTy: DstSTy,
1356 DstSize: SrcSize.getFixedValue(), CGF&: *this);
1357 }
1358 }
1359
1360 if (SrcSize.isScalable() || SrcSize <= DstSize) {
1361 if (SrcTy->isIntegerTy() && Dst.getElementType()->isPointerTy() &&
1362 SrcSize == CGM.getDataLayout().getTypeAllocSize(Ty: Dst.getElementType())) {
1363 // If the value is supposed to be a pointer, convert it before storing it.
1364 Src = CoerceIntOrPtrToIntOrPtr(Val: Src, Ty: Dst.getElementType(), CGF&: *this);
1365 Builder.CreateStore(Val: Src, Addr: Dst, IsVolatile: DstIsVolatile);
1366 } else if (llvm::StructType *STy =
1367 dyn_cast<llvm::StructType>(Val: Src->getType())) {
1368 // Prefer scalar stores to first-class aggregate stores.
1369 Dst = Dst.withElementType(ElemTy: SrcTy);
1370 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1371 Address EltPtr = Builder.CreateStructGEP(Addr: Dst, Index: i);
1372 llvm::Value *Elt = Builder.CreateExtractValue(Agg: Src, Idxs: i);
1373 Builder.CreateStore(Val: Elt, Addr: EltPtr, IsVolatile: DstIsVolatile);
1374 }
1375 } else {
1376 Builder.CreateStore(Val: Src, Addr: Dst.withElementType(ElemTy: SrcTy), IsVolatile: DstIsVolatile);
1377 }
1378 } else if (SrcTy->isIntegerTy()) {
1379 // If the source is a simple integer, coerce it directly.
1380 llvm::Type *DstIntTy = Builder.getIntNTy(N: DstSize.getFixedValue() * 8);
1381 Src = CoerceIntOrPtrToIntOrPtr(Val: Src, Ty: DstIntTy, CGF&: *this);
1382 Builder.CreateStore(Val: Src, Addr: Dst.withElementType(ElemTy: DstIntTy), IsVolatile: DstIsVolatile);
1383 } else {
1384 // Otherwise do coercion through memory. This is stupid, but
1385 // simple.
1386
1387 // Generally SrcSize is never greater than DstSize, since this means we are
1388 // losing bits. However, this can happen in cases where the structure has
1389 // additional padding, for example due to a user specified alignment.
1390 //
1391 // FIXME: Assert that we aren't truncating non-padding bits when have access
1392 // to that information.
1393 RawAddress Tmp =
1394 CreateTempAllocaForCoercion(CGF&: *this, Ty: SrcTy, MinAlign: Dst.getAlignment());
1395 Builder.CreateStore(Val: Src, Addr: Tmp);
1396 Builder.CreateMemCpy(Dst: Dst.emitRawPointer(CGF&: *this),
1397 DstAlign: Dst.getAlignment().getAsAlign(), Src: Tmp.getPointer(),
1398 SrcAlign: Tmp.getAlignment().getAsAlign(),
1399 Size: Builder.CreateTypeSize(DstType: IntPtrTy, Size: DstSize));
1400 }
1401}
1402
1403static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1404 const ABIArgInfo &info) {
1405 if (unsigned offset = info.getDirectOffset()) {
1406 addr = addr.withElementType(ElemTy: CGF.Int8Ty);
1407 addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr: addr,
1408 Offset: CharUnits::fromQuantity(Quantity: offset));
1409 addr = addr.withElementType(ElemTy: info.getCoerceToType());
1410 }
1411 return addr;
1412}
1413
1414namespace {
1415
1416/// Encapsulates information about the way function arguments from
1417/// CGFunctionInfo should be passed to actual LLVM IR function.
1418class ClangToLLVMArgMapping {
1419 static const unsigned InvalidIndex = ~0U;
1420 unsigned InallocaArgNo;
1421 unsigned SRetArgNo;
1422 unsigned TotalIRArgs;
1423
1424 /// Arguments of LLVM IR function corresponding to single Clang argument.
1425 struct IRArgs {
1426 unsigned PaddingArgIndex;
1427 // Argument is expanded to IR arguments at positions
1428 // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1429 unsigned FirstArgIndex;
1430 unsigned NumberOfArgs;
1431
1432 IRArgs()
1433 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1434 NumberOfArgs(0) {}
1435 };
1436
1437 SmallVector<IRArgs, 8> ArgInfo;
1438
1439public:
1440 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1441 bool OnlyRequiredArgs = false)
1442 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1443 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1444 construct(Context, FI, OnlyRequiredArgs);
1445 }
1446
1447 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1448 unsigned getInallocaArgNo() const {
1449 assert(hasInallocaArg());
1450 return InallocaArgNo;
1451 }
1452
1453 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1454 unsigned getSRetArgNo() const {
1455 assert(hasSRetArg());
1456 return SRetArgNo;
1457 }
1458
1459 unsigned totalIRArgs() const { return TotalIRArgs; }
1460
1461 bool hasPaddingArg(unsigned ArgNo) const {
1462 assert(ArgNo < ArgInfo.size());
1463 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1464 }
1465 unsigned getPaddingArgNo(unsigned ArgNo) const {
1466 assert(hasPaddingArg(ArgNo));
1467 return ArgInfo[ArgNo].PaddingArgIndex;
1468 }
1469
1470 /// Returns index of first IR argument corresponding to ArgNo, and their
1471 /// quantity.
1472 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1473 assert(ArgNo < ArgInfo.size());
1474 return std::make_pair(x: ArgInfo[ArgNo].FirstArgIndex,
1475 y: ArgInfo[ArgNo].NumberOfArgs);
1476 }
1477
1478private:
1479 void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1480 bool OnlyRequiredArgs);
1481};
1482
1483void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1484 const CGFunctionInfo &FI,
1485 bool OnlyRequiredArgs) {
1486 unsigned IRArgNo = 0;
1487 bool SwapThisWithSRet = false;
1488 const ABIArgInfo &RetAI = FI.getReturnInfo();
1489
1490 if (RetAI.getKind() == ABIArgInfo::Indirect) {
1491 SwapThisWithSRet = RetAI.isSRetAfterThis();
1492 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1493 }
1494
1495 unsigned ArgNo = 0;
1496 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1497 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1498 ++I, ++ArgNo) {
1499 assert(I != FI.arg_end());
1500 QualType ArgType = I->type;
1501 const ABIArgInfo &AI = I->info;
1502 // Collect data about IR arguments corresponding to Clang argument ArgNo.
1503 auto &IRArgs = ArgInfo[ArgNo];
1504
1505 if (AI.getPaddingType())
1506 IRArgs.PaddingArgIndex = IRArgNo++;
1507
1508 switch (AI.getKind()) {
1509 case ABIArgInfo::Extend:
1510 case ABIArgInfo::Direct: {
1511 // FIXME: handle sseregparm someday...
1512 llvm::StructType *STy = dyn_cast<llvm::StructType>(Val: AI.getCoerceToType());
1513 if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1514 IRArgs.NumberOfArgs = STy->getNumElements();
1515 } else {
1516 IRArgs.NumberOfArgs = 1;
1517 }
1518 break;
1519 }
1520 case ABIArgInfo::Indirect:
1521 case ABIArgInfo::IndirectAliased:
1522 IRArgs.NumberOfArgs = 1;
1523 break;
1524 case ABIArgInfo::Ignore:
1525 case ABIArgInfo::InAlloca:
1526 // ignore and inalloca doesn't have matching LLVM parameters.
1527 IRArgs.NumberOfArgs = 0;
1528 break;
1529 case ABIArgInfo::CoerceAndExpand:
1530 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1531 break;
1532 case ABIArgInfo::Expand:
1533 IRArgs.NumberOfArgs = getExpansionSize(Ty: ArgType, Context);
1534 break;
1535 }
1536
1537 if (IRArgs.NumberOfArgs > 0) {
1538 IRArgs.FirstArgIndex = IRArgNo;
1539 IRArgNo += IRArgs.NumberOfArgs;
1540 }
1541
1542 // Skip over the sret parameter when it comes second. We already handled it
1543 // above.
1544 if (IRArgNo == 1 && SwapThisWithSRet)
1545 IRArgNo++;
1546 }
1547 assert(ArgNo == ArgInfo.size());
1548
1549 if (FI.usesInAlloca())
1550 InallocaArgNo = IRArgNo++;
1551
1552 TotalIRArgs = IRArgNo;
1553}
1554} // namespace
1555
1556/***/
1557
1558bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1559 const auto &RI = FI.getReturnInfo();
1560 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1561}
1562
1563bool CodeGenModule::ReturnTypeHasInReg(const CGFunctionInfo &FI) {
1564 const auto &RI = FI.getReturnInfo();
1565 return RI.getInReg();
1566}
1567
1568bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1569 return ReturnTypeUsesSRet(FI) &&
1570 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1571}
1572
1573bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1574 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1575 switch (BT->getKind()) {
1576 default:
1577 return false;
1578 case BuiltinType::Float:
1579 return getTarget().useObjCFPRetForRealType(T: FloatModeKind::Float);
1580 case BuiltinType::Double:
1581 return getTarget().useObjCFPRetForRealType(T: FloatModeKind::Double);
1582 case BuiltinType::LongDouble:
1583 return getTarget().useObjCFPRetForRealType(T: FloatModeKind::LongDouble);
1584 }
1585 }
1586
1587 return false;
1588}
1589
1590bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1591 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1592 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1593 if (BT->getKind() == BuiltinType::LongDouble)
1594 return getTarget().useObjCFP2RetForComplexLongDouble();
1595 }
1596 }
1597
1598 return false;
1599}
1600
1601llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1602 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1603 return GetFunctionType(Info: FI);
1604}
1605
1606llvm::FunctionType *
1607CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1608
1609 bool Inserted = FunctionsBeingProcessed.insert(Ptr: &FI).second;
1610 (void)Inserted;
1611 assert(Inserted && "Recursively being processed?");
1612
1613 llvm::Type *resultType = nullptr;
1614 const ABIArgInfo &retAI = FI.getReturnInfo();
1615 switch (retAI.getKind()) {
1616 case ABIArgInfo::Expand:
1617 case ABIArgInfo::IndirectAliased:
1618 llvm_unreachable("Invalid ABI kind for return argument");
1619
1620 case ABIArgInfo::Extend:
1621 case ABIArgInfo::Direct:
1622 resultType = retAI.getCoerceToType();
1623 break;
1624
1625 case ABIArgInfo::InAlloca:
1626 if (retAI.getInAllocaSRet()) {
1627 // sret things on win32 aren't void, they return the sret pointer.
1628 QualType ret = FI.getReturnType();
1629 unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(T: ret);
1630 resultType = llvm::PointerType::get(C&: getLLVMContext(), AddressSpace: addressSpace);
1631 } else {
1632 resultType = llvm::Type::getVoidTy(C&: getLLVMContext());
1633 }
1634 break;
1635
1636 case ABIArgInfo::Indirect:
1637 case ABIArgInfo::Ignore:
1638 resultType = llvm::Type::getVoidTy(C&: getLLVMContext());
1639 break;
1640
1641 case ABIArgInfo::CoerceAndExpand:
1642 resultType = retAI.getUnpaddedCoerceAndExpandType();
1643 break;
1644 }
1645
1646 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1647 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1648
1649 // Add type for sret argument.
1650 if (IRFunctionArgs.hasSRetArg()) {
1651 QualType Ret = FI.getReturnType();
1652 unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(T: Ret);
1653 ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1654 llvm::PointerType::get(C&: getLLVMContext(), AddressSpace);
1655 }
1656
1657 // Add type for inalloca argument.
1658 if (IRFunctionArgs.hasInallocaArg())
1659 ArgTypes[IRFunctionArgs.getInallocaArgNo()] =
1660 llvm::PointerType::getUnqual(C&: getLLVMContext());
1661
1662 // Add in all of the required arguments.
1663 unsigned ArgNo = 0;
1664 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1665 ie = it + FI.getNumRequiredArgs();
1666 for (; it != ie; ++it, ++ArgNo) {
1667 const ABIArgInfo &ArgInfo = it->info;
1668
1669 // Insert a padding type to ensure proper alignment.
1670 if (IRFunctionArgs.hasPaddingArg(ArgNo))
1671 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1672 ArgInfo.getPaddingType();
1673
1674 unsigned FirstIRArg, NumIRArgs;
1675 std::tie(args&: FirstIRArg, args&: NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1676
1677 switch (ArgInfo.getKind()) {
1678 case ABIArgInfo::Ignore:
1679 case ABIArgInfo::InAlloca:
1680 assert(NumIRArgs == 0);
1681 break;
1682
1683 case ABIArgInfo::Indirect:
1684 assert(NumIRArgs == 1);
1685 // indirect arguments are always on the stack, which is alloca addr space.
1686 ArgTypes[FirstIRArg] = llvm::PointerType::get(
1687 C&: getLLVMContext(), AddressSpace: CGM.getDataLayout().getAllocaAddrSpace());
1688 break;
1689 case ABIArgInfo::IndirectAliased:
1690 assert(NumIRArgs == 1);
1691 ArgTypes[FirstIRArg] = llvm::PointerType::get(
1692 C&: getLLVMContext(), AddressSpace: ArgInfo.getIndirectAddrSpace());
1693 break;
1694 case ABIArgInfo::Extend:
1695 case ABIArgInfo::Direct: {
1696 // Fast-isel and the optimizer generally like scalar values better than
1697 // FCAs, so we flatten them if this is safe to do for this argument.
1698 llvm::Type *argType = ArgInfo.getCoerceToType();
1699 llvm::StructType *st = dyn_cast<llvm::StructType>(Val: argType);
1700 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1701 assert(NumIRArgs == st->getNumElements());
1702 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1703 ArgTypes[FirstIRArg + i] = st->getElementType(N: i);
1704 } else {
1705 assert(NumIRArgs == 1);
1706 ArgTypes[FirstIRArg] = argType;
1707 }
1708 break;
1709 }
1710
1711 case ABIArgInfo::CoerceAndExpand: {
1712 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1713 for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1714 *ArgTypesIter++ = EltTy;
1715 }
1716 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1717 break;
1718 }
1719
1720 case ABIArgInfo::Expand:
1721 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1722 getExpandedTypes(Ty: it->type, TI&: ArgTypesIter);
1723 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1724 break;
1725 }
1726 }
1727
1728 bool Erased = FunctionsBeingProcessed.erase(Ptr: &FI); (void)Erased;
1729 assert(Erased && "Not in set?");
1730
1731 return llvm::FunctionType::get(Result: resultType, Params: ArgTypes, isVarArg: FI.isVariadic());
1732}
1733
1734llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1735 const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: GD.getDecl());
1736 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1737
1738 if (!isFuncTypeConvertible(FT: FPT))
1739 return llvm::StructType::get(Context&: getLLVMContext());
1740
1741 return GetFunctionType(GD);
1742}
1743
1744static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1745 llvm::AttrBuilder &FuncAttrs,
1746 const FunctionProtoType *FPT) {
1747 if (!FPT)
1748 return;
1749
1750 if (!isUnresolvedExceptionSpec(ESpecType: FPT->getExceptionSpecType()) &&
1751 FPT->isNothrow())
1752 FuncAttrs.addAttribute(Val: llvm::Attribute::NoUnwind);
1753
1754 unsigned SMEBits = FPT->getAArch64SMEAttributes();
1755 if (SMEBits & FunctionType::SME_PStateSMEnabledMask)
1756 FuncAttrs.addAttribute(A: "aarch64_pstate_sm_enabled");
1757 if (SMEBits & FunctionType::SME_PStateSMCompatibleMask)
1758 FuncAttrs.addAttribute(A: "aarch64_pstate_sm_compatible");
1759
1760 // ZA
1761 if (FunctionType::getArmZAState(AttrBits: SMEBits) == FunctionType::ARM_Preserves)
1762 FuncAttrs.addAttribute(A: "aarch64_preserves_za");
1763 if (FunctionType::getArmZAState(AttrBits: SMEBits) == FunctionType::ARM_In)
1764 FuncAttrs.addAttribute(A: "aarch64_in_za");
1765 if (FunctionType::getArmZAState(AttrBits: SMEBits) == FunctionType::ARM_Out)
1766 FuncAttrs.addAttribute(A: "aarch64_out_za");
1767 if (FunctionType::getArmZAState(AttrBits: SMEBits) == FunctionType::ARM_InOut)
1768 FuncAttrs.addAttribute(A: "aarch64_inout_za");
1769
1770 // ZT0
1771 if (FunctionType::getArmZT0State(AttrBits: SMEBits) == FunctionType::ARM_Preserves)
1772 FuncAttrs.addAttribute(A: "aarch64_preserves_zt0");
1773 if (FunctionType::getArmZT0State(AttrBits: SMEBits) == FunctionType::ARM_In)
1774 FuncAttrs.addAttribute(A: "aarch64_in_zt0");
1775 if (FunctionType::getArmZT0State(AttrBits: SMEBits) == FunctionType::ARM_Out)
1776 FuncAttrs.addAttribute(A: "aarch64_out_zt0");
1777 if (FunctionType::getArmZT0State(AttrBits: SMEBits) == FunctionType::ARM_InOut)
1778 FuncAttrs.addAttribute(A: "aarch64_inout_zt0");
1779}
1780
1781static void AddAttributesFromOMPAssumes(llvm::AttrBuilder &FuncAttrs,
1782 const Decl *Callee) {
1783 if (!Callee)
1784 return;
1785
1786 SmallVector<StringRef, 4> Attrs;
1787
1788 for (const OMPAssumeAttr *AA : Callee->specific_attrs<OMPAssumeAttr>())
1789 AA->getAssumption().split(A&: Attrs, Separator: ",");
1790
1791 if (!Attrs.empty())
1792 FuncAttrs.addAttribute(A: llvm::AssumptionAttrKey,
1793 V: llvm::join(Begin: Attrs.begin(), End: Attrs.end(), Separator: ","));
1794}
1795
1796bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1797 QualType ReturnType) const {
1798 // We can't just discard the return value for a record type with a
1799 // complex destructor or a non-trivially copyable type.
1800 if (const RecordType *RT =
1801 ReturnType.getCanonicalType()->getAs<RecordType>()) {
1802 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl()))
1803 return ClassDecl->hasTrivialDestructor();
1804 }
1805 return ReturnType.isTriviallyCopyableType(Context);
1806}
1807
1808static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy,
1809 const Decl *TargetDecl) {
1810 // As-is msan can not tolerate noundef mismatch between caller and
1811 // implementation. Mismatch is possible for e.g. indirect calls from C-caller
1812 // into C++. Such mismatches lead to confusing false reports. To avoid
1813 // expensive workaround on msan we enforce initialization event in uncommon
1814 // cases where it's allowed.
1815 if (Module.getLangOpts().Sanitize.has(K: SanitizerKind::Memory))
1816 return true;
1817 // C++ explicitly makes returning undefined values UB. C's rule only applies
1818 // to used values, so we never mark them noundef for now.
1819 if (!Module.getLangOpts().CPlusPlus)
1820 return false;
1821 if (TargetDecl) {
1822 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Val: TargetDecl)) {
1823 if (FDecl->isExternC())
1824 return false;
1825 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(Val: TargetDecl)) {
1826 // Function pointer.
1827 if (VDecl->isExternC())
1828 return false;
1829 }
1830 }
1831
1832 // We don't want to be too aggressive with the return checking, unless
1833 // it's explicit in the code opts or we're using an appropriate sanitizer.
1834 // Try to respect what the programmer intended.
1835 return Module.getCodeGenOpts().StrictReturn ||
1836 !Module.MayDropFunctionReturn(Context: Module.getContext(), ReturnType: RetTy) ||
1837 Module.getLangOpts().Sanitize.has(K: SanitizerKind::Return);
1838}
1839
1840/// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the
1841/// requested denormal behavior, accounting for the overriding behavior of the
1842/// -f32 case.
1843static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode,
1844 llvm::DenormalMode FP32DenormalMode,
1845 llvm::AttrBuilder &FuncAttrs) {
1846 if (FPDenormalMode != llvm::DenormalMode::getDefault())
1847 FuncAttrs.addAttribute(A: "denormal-fp-math", V: FPDenormalMode.str());
1848
1849 if (FP32DenormalMode != FPDenormalMode && FP32DenormalMode.isValid())
1850 FuncAttrs.addAttribute(A: "denormal-fp-math-f32", V: FP32DenormalMode.str());
1851}
1852
1853/// Add default attributes to a function, which have merge semantics under
1854/// -mlink-builtin-bitcode and should not simply overwrite any existing
1855/// attributes in the linked library.
1856static void
1857addMergableDefaultFunctionAttributes(const CodeGenOptions &CodeGenOpts,
1858 llvm::AttrBuilder &FuncAttrs) {
1859 addDenormalModeAttrs(FPDenormalMode: CodeGenOpts.FPDenormalMode, FP32DenormalMode: CodeGenOpts.FP32DenormalMode,
1860 FuncAttrs);
1861}
1862
1863static void getTrivialDefaultFunctionAttributes(
1864 StringRef Name, bool HasOptnone, const CodeGenOptions &CodeGenOpts,
1865 const LangOptions &LangOpts, bool AttrOnCallSite,
1866 llvm::AttrBuilder &FuncAttrs) {
1867 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1868 if (!HasOptnone) {
1869 if (CodeGenOpts.OptimizeSize)
1870 FuncAttrs.addAttribute(Val: llvm::Attribute::OptimizeForSize);
1871 if (CodeGenOpts.OptimizeSize == 2)
1872 FuncAttrs.addAttribute(Val: llvm::Attribute::MinSize);
1873 }
1874
1875 if (CodeGenOpts.DisableRedZone)
1876 FuncAttrs.addAttribute(Val: llvm::Attribute::NoRedZone);
1877 if (CodeGenOpts.IndirectTlsSegRefs)
1878 FuncAttrs.addAttribute(A: "indirect-tls-seg-refs");
1879 if (CodeGenOpts.NoImplicitFloat)
1880 FuncAttrs.addAttribute(Val: llvm::Attribute::NoImplicitFloat);
1881
1882 if (AttrOnCallSite) {
1883 // Attributes that should go on the call site only.
1884 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking
1885 // the -fno-builtin-foo list.
1886 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1887 FuncAttrs.addAttribute(Val: llvm::Attribute::NoBuiltin);
1888 if (!CodeGenOpts.TrapFuncName.empty())
1889 FuncAttrs.addAttribute(A: "trap-func-name", V: CodeGenOpts.TrapFuncName);
1890 } else {
1891 switch (CodeGenOpts.getFramePointer()) {
1892 case CodeGenOptions::FramePointerKind::None:
1893 // This is the default behavior.
1894 break;
1895 case CodeGenOptions::FramePointerKind::Reserved:
1896 case CodeGenOptions::FramePointerKind::NonLeaf:
1897 case CodeGenOptions::FramePointerKind::All:
1898 FuncAttrs.addAttribute(A: "frame-pointer",
1899 V: CodeGenOptions::getFramePointerKindName(
1900 Kind: CodeGenOpts.getFramePointer()));
1901 }
1902
1903 if (CodeGenOpts.LessPreciseFPMAD)
1904 FuncAttrs.addAttribute(A: "less-precise-fpmad", V: "true");
1905
1906 if (CodeGenOpts.NullPointerIsValid)
1907 FuncAttrs.addAttribute(Val: llvm::Attribute::NullPointerIsValid);
1908
1909 if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore)
1910 FuncAttrs.addAttribute(A: "no-trapping-math", V: "true");
1911
1912 // TODO: Are these all needed?
1913 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1914 if (LangOpts.NoHonorInfs)
1915 FuncAttrs.addAttribute(A: "no-infs-fp-math", V: "true");
1916 if (LangOpts.NoHonorNaNs)
1917 FuncAttrs.addAttribute(A: "no-nans-fp-math", V: "true");
1918 if (LangOpts.ApproxFunc)
1919 FuncAttrs.addAttribute(A: "approx-func-fp-math", V: "true");
1920 if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip &&
1921 LangOpts.NoSignedZero && LangOpts.ApproxFunc &&
1922 (LangOpts.getDefaultFPContractMode() ==
1923 LangOptions::FPModeKind::FPM_Fast ||
1924 LangOpts.getDefaultFPContractMode() ==
1925 LangOptions::FPModeKind::FPM_FastHonorPragmas))
1926 FuncAttrs.addAttribute(A: "unsafe-fp-math", V: "true");
1927 if (CodeGenOpts.SoftFloat)
1928 FuncAttrs.addAttribute(A: "use-soft-float", V: "true");
1929 FuncAttrs.addAttribute(A: "stack-protector-buffer-size",
1930 V: llvm::utostr(X: CodeGenOpts.SSPBufferSize));
1931 if (LangOpts.NoSignedZero)
1932 FuncAttrs.addAttribute(A: "no-signed-zeros-fp-math", V: "true");
1933
1934 // TODO: Reciprocal estimate codegen options should apply to instructions?
1935 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1936 if (!Recips.empty())
1937 FuncAttrs.addAttribute(A: "reciprocal-estimates",
1938 V: llvm::join(R: Recips, Separator: ","));
1939
1940 if (!CodeGenOpts.PreferVectorWidth.empty() &&
1941 CodeGenOpts.PreferVectorWidth != "none")
1942 FuncAttrs.addAttribute(A: "prefer-vector-width",
1943 V: CodeGenOpts.PreferVectorWidth);
1944
1945 if (CodeGenOpts.StackRealignment)
1946 FuncAttrs.addAttribute(A: "stackrealign");
1947 if (CodeGenOpts.Backchain)
1948 FuncAttrs.addAttribute(A: "backchain");
1949 if (CodeGenOpts.EnableSegmentedStacks)
1950 FuncAttrs.addAttribute(A: "split-stack");
1951
1952 if (CodeGenOpts.SpeculativeLoadHardening)
1953 FuncAttrs.addAttribute(Val: llvm::Attribute::SpeculativeLoadHardening);
1954
1955 // Add zero-call-used-regs attribute.
1956 switch (CodeGenOpts.getZeroCallUsedRegs()) {
1957 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip:
1958 FuncAttrs.removeAttribute(A: "zero-call-used-regs");
1959 break;
1960 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg:
1961 FuncAttrs.addAttribute(A: "zero-call-used-regs", V: "used-gpr-arg");
1962 break;
1963 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR:
1964 FuncAttrs.addAttribute(A: "zero-call-used-regs", V: "used-gpr");
1965 break;
1966 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg:
1967 FuncAttrs.addAttribute(A: "zero-call-used-regs", V: "used-arg");
1968 break;
1969 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used:
1970 FuncAttrs.addAttribute(A: "zero-call-used-regs", V: "used");
1971 break;
1972 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg:
1973 FuncAttrs.addAttribute(A: "zero-call-used-regs", V: "all-gpr-arg");
1974 break;
1975 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR:
1976 FuncAttrs.addAttribute(A: "zero-call-used-regs", V: "all-gpr");
1977 break;
1978 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg:
1979 FuncAttrs.addAttribute(A: "zero-call-used-regs", V: "all-arg");
1980 break;
1981 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All:
1982 FuncAttrs.addAttribute(A: "zero-call-used-regs", V: "all");
1983 break;
1984 }
1985 }
1986
1987 if (LangOpts.assumeFunctionsAreConvergent()) {
1988 // Conservatively, mark all functions and calls in CUDA and OpenCL as
1989 // convergent (meaning, they may call an intrinsically convergent op, such
1990 // as __syncthreads() / barrier(), and so can't have certain optimizations
1991 // applied around them). LLVM will remove this attribute where it safely
1992 // can.
1993 FuncAttrs.addAttribute(Val: llvm::Attribute::Convergent);
1994 }
1995
1996 // TODO: NoUnwind attribute should be added for other GPU modes HIP,
1997 // OpenMP offload. AFAIK, neither of them support exceptions in device code.
1998 if ((LangOpts.CUDA && LangOpts.CUDAIsDevice) || LangOpts.OpenCL ||
1999 LangOpts.SYCLIsDevice) {
2000 FuncAttrs.addAttribute(Val: llvm::Attribute::NoUnwind);
2001 }
2002
2003 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
2004 StringRef Var, Value;
2005 std::tie(args&: Var, args&: Value) = Attr.split(Separator: '=');
2006 FuncAttrs.addAttribute(A: Var, V: Value);
2007 }
2008
2009 TargetInfo::BranchProtectionInfo BPI(LangOpts);
2010 TargetCodeGenInfo::initBranchProtectionFnAttributes(BPI, FuncAttrs);
2011}
2012
2013/// Merges `target-features` from \TargetOpts and \F, and sets the result in
2014/// \FuncAttr
2015/// * features from \F are always kept
2016/// * a feature from \TargetOpts is kept if itself and its opposite are absent
2017/// from \F
2018static void
2019overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder &FuncAttr,
2020 const llvm::Function &F,
2021 const TargetOptions &TargetOpts) {
2022 auto FFeatures = F.getFnAttribute(Kind: "target-features");
2023
2024 llvm::StringSet<> MergedNames;
2025 SmallVector<StringRef> MergedFeatures;
2026 MergedFeatures.reserve(N: TargetOpts.Features.size());
2027
2028 auto AddUnmergedFeatures = [&](auto &&FeatureRange) {
2029 for (StringRef Feature : FeatureRange) {
2030 if (Feature.empty())
2031 continue;
2032 assert(Feature[0] == '+' || Feature[0] == '-');
2033 StringRef Name = Feature.drop_front(N: 1);
2034 bool Merged = !MergedNames.insert(key: Name).second;
2035 if (!Merged)
2036 MergedFeatures.push_back(Elt: Feature);
2037 }
2038 };
2039
2040 if (FFeatures.isValid())
2041 AddUnmergedFeatures(llvm::split(Str: FFeatures.getValueAsString(), Separator: ','));
2042 AddUnmergedFeatures(TargetOpts.Features);
2043
2044 if (!MergedFeatures.empty()) {
2045 llvm::sort(C&: MergedFeatures);
2046 FuncAttr.addAttribute(A: "target-features", V: llvm::join(R&: MergedFeatures, Separator: ","));
2047 }
2048}
2049
2050void CodeGen::mergeDefaultFunctionDefinitionAttributes(
2051 llvm::Function &F, const CodeGenOptions &CodeGenOpts,
2052 const LangOptions &LangOpts, const TargetOptions &TargetOpts,
2053 bool WillInternalize) {
2054
2055 llvm::AttrBuilder FuncAttrs(F.getContext());
2056 // Here we only extract the options that are relevant compared to the version
2057 // from GetCPUAndFeaturesAttributes.
2058 if (!TargetOpts.CPU.empty())
2059 FuncAttrs.addAttribute(A: "target-cpu", V: TargetOpts.CPU);
2060 if (!TargetOpts.TuneCPU.empty())
2061 FuncAttrs.addAttribute(A: "tune-cpu", V: TargetOpts.TuneCPU);
2062
2063 ::getTrivialDefaultFunctionAttributes(Name: F.getName(), HasOptnone: F.hasOptNone(),
2064 CodeGenOpts, LangOpts,
2065 /*AttrOnCallSite=*/false, FuncAttrs);
2066
2067 if (!WillInternalize && F.isInterposable()) {
2068 // Do not promote "dynamic" denormal-fp-math to this translation unit's
2069 // setting for weak functions that won't be internalized. The user has no
2070 // real control for how builtin bitcode is linked, so we shouldn't assume
2071 // later copies will use a consistent mode.
2072 F.addFnAttrs(Attrs: FuncAttrs);
2073 return;
2074 }
2075
2076 llvm::AttributeMask AttrsToRemove;
2077
2078 llvm::DenormalMode DenormModeToMerge = F.getDenormalModeRaw();
2079 llvm::DenormalMode DenormModeToMergeF32 = F.getDenormalModeF32Raw();
2080 llvm::DenormalMode Merged =
2081 CodeGenOpts.FPDenormalMode.mergeCalleeMode(Callee: DenormModeToMerge);
2082 llvm::DenormalMode MergedF32 = CodeGenOpts.FP32DenormalMode;
2083
2084 if (DenormModeToMergeF32.isValid()) {
2085 MergedF32 =
2086 CodeGenOpts.FP32DenormalMode.mergeCalleeMode(Callee: DenormModeToMergeF32);
2087 }
2088
2089 if (Merged == llvm::DenormalMode::getDefault()) {
2090 AttrsToRemove.addAttribute(A: "denormal-fp-math");
2091 } else if (Merged != DenormModeToMerge) {
2092 // Overwrite existing attribute
2093 FuncAttrs.addAttribute(A: "denormal-fp-math",
2094 V: CodeGenOpts.FPDenormalMode.str());
2095 }
2096
2097 if (MergedF32 == llvm::DenormalMode::getDefault()) {
2098 AttrsToRemove.addAttribute(A: "denormal-fp-math-f32");
2099 } else if (MergedF32 != DenormModeToMergeF32) {
2100 // Overwrite existing attribute
2101 FuncAttrs.addAttribute(A: "denormal-fp-math-f32",
2102 V: CodeGenOpts.FP32DenormalMode.str());
2103 }
2104
2105 F.removeFnAttrs(Attrs: AttrsToRemove);
2106 addDenormalModeAttrs(FPDenormalMode: Merged, FP32DenormalMode: MergedF32, FuncAttrs);
2107
2108 overrideFunctionFeaturesWithTargetFeatures(FuncAttr&: FuncAttrs, F, TargetOpts);
2109
2110 F.addFnAttrs(Attrs: FuncAttrs);
2111}
2112
2113void CodeGenModule::getTrivialDefaultFunctionAttributes(
2114 StringRef Name, bool HasOptnone, bool AttrOnCallSite,
2115 llvm::AttrBuilder &FuncAttrs) {
2116 ::getTrivialDefaultFunctionAttributes(Name, HasOptnone, CodeGenOpts: getCodeGenOpts(),
2117 LangOpts: getLangOpts(), AttrOnCallSite,
2118 FuncAttrs);
2119}
2120
2121void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
2122 bool HasOptnone,
2123 bool AttrOnCallSite,
2124 llvm::AttrBuilder &FuncAttrs) {
2125 getTrivialDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite,
2126 FuncAttrs);
2127 // If we're just getting the default, get the default values for mergeable
2128 // attributes.
2129 if (!AttrOnCallSite)
2130 addMergableDefaultFunctionAttributes(CodeGenOpts, FuncAttrs);
2131}
2132
2133void CodeGenModule::addDefaultFunctionDefinitionAttributes(
2134 llvm::AttrBuilder &attrs) {
2135 getDefaultFunctionAttributes(/*function name*/ Name: "", /*optnone*/ HasOptnone: false,
2136 /*for call*/ AttrOnCallSite: false, FuncAttrs&: attrs);
2137 GetCPUAndFeaturesAttributes(GD: GlobalDecl(), AttrBuilder&: attrs);
2138}
2139
2140static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
2141 const LangOptions &LangOpts,
2142 const NoBuiltinAttr *NBA = nullptr) {
2143 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
2144 SmallString<32> AttributeName;
2145 AttributeName += "no-builtin-";
2146 AttributeName += BuiltinName;
2147 FuncAttrs.addAttribute(A: AttributeName);
2148 };
2149
2150 // First, handle the language options passed through -fno-builtin.
2151 if (LangOpts.NoBuiltin) {
2152 // -fno-builtin disables them all.
2153 FuncAttrs.addAttribute(A: "no-builtins");
2154 return;
2155 }
2156
2157 // Then, add attributes for builtins specified through -fno-builtin-<name>.
2158 llvm::for_each(Range: LangOpts.NoBuiltinFuncs, F: AddNoBuiltinAttr);
2159
2160 // Now, let's check the __attribute__((no_builtin("...")) attribute added to
2161 // the source.
2162 if (!NBA)
2163 return;
2164
2165 // If there is a wildcard in the builtin names specified through the
2166 // attribute, disable them all.
2167 if (llvm::is_contained(Range: NBA->builtinNames(), Element: "*")) {
2168 FuncAttrs.addAttribute(A: "no-builtins");
2169 return;
2170 }
2171
2172 // And last, add the rest of the builtin names.
2173 llvm::for_each(Range: NBA->builtinNames(), F: AddNoBuiltinAttr);
2174}
2175
2176static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
2177 const llvm::DataLayout &DL, const ABIArgInfo &AI,
2178 bool CheckCoerce = true) {
2179 llvm::Type *Ty = Types.ConvertTypeForMem(T: QTy);
2180 if (AI.getKind() == ABIArgInfo::Indirect ||
2181 AI.getKind() == ABIArgInfo::IndirectAliased)
2182 return true;
2183 if (AI.getKind() == ABIArgInfo::Extend)
2184 return true;
2185 if (!DL.typeSizeEqualsStoreSize(Ty))
2186 // TODO: This will result in a modest amount of values not marked noundef
2187 // when they could be. We care about values that *invisibly* contain undef
2188 // bits from the perspective of LLVM IR.
2189 return false;
2190 if (CheckCoerce && AI.canHaveCoerceToType()) {
2191 llvm::Type *CoerceTy = AI.getCoerceToType();
2192 if (llvm::TypeSize::isKnownGT(LHS: DL.getTypeSizeInBits(Ty: CoerceTy),
2193 RHS: DL.getTypeSizeInBits(Ty)))
2194 // If we're coercing to a type with a greater size than the canonical one,
2195 // we're introducing new undef bits.
2196 // Coercing to a type of smaller or equal size is ok, as we know that
2197 // there's no internal padding (typeSizeEqualsStoreSize).
2198 return false;
2199 }
2200 if (QTy->isBitIntType())
2201 return true;
2202 if (QTy->isReferenceType())
2203 return true;
2204 if (QTy->isNullPtrType())
2205 return false;
2206 if (QTy->isMemberPointerType())
2207 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
2208 // now, never mark them.
2209 return false;
2210 if (QTy->isScalarType()) {
2211 if (const ComplexType *Complex = dyn_cast<ComplexType>(Val&: QTy))
2212 return DetermineNoUndef(QTy: Complex->getElementType(), Types, DL, AI, CheckCoerce: false);
2213 return true;
2214 }
2215 if (const VectorType *Vector = dyn_cast<VectorType>(Val&: QTy))
2216 return DetermineNoUndef(QTy: Vector->getElementType(), Types, DL, AI, CheckCoerce: false);
2217 if (const MatrixType *Matrix = dyn_cast<MatrixType>(Val&: QTy))
2218 return DetermineNoUndef(QTy: Matrix->getElementType(), Types, DL, AI, CheckCoerce: false);
2219 if (const ArrayType *Array = dyn_cast<ArrayType>(Val&: QTy))
2220 return DetermineNoUndef(QTy: Array->getElementType(), Types, DL, AI, CheckCoerce: false);
2221
2222 // TODO: Some structs may be `noundef`, in specific situations.
2223 return false;
2224}
2225
2226/// Check if the argument of a function has maybe_undef attribute.
2227static bool IsArgumentMaybeUndef(const Decl *TargetDecl,
2228 unsigned NumRequiredArgs, unsigned ArgNo) {
2229 const auto *FD = dyn_cast_or_null<FunctionDecl>(Val: TargetDecl);
2230 if (!FD)
2231 return false;
2232
2233 // Assume variadic arguments do not have maybe_undef attribute.
2234 if (ArgNo >= NumRequiredArgs)
2235 return false;
2236
2237 // Check if argument has maybe_undef attribute.
2238 if (ArgNo < FD->getNumParams()) {
2239 const ParmVarDecl *Param = FD->getParamDecl(i: ArgNo);
2240 if (Param && Param->hasAttr<MaybeUndefAttr>())
2241 return true;
2242 }
2243
2244 return false;
2245}
2246
2247/// Test if it's legal to apply nofpclass for the given parameter type and it's
2248/// lowered IR type.
2249static bool canApplyNoFPClass(const ABIArgInfo &AI, QualType ParamType,
2250 bool IsReturn) {
2251 // Should only apply to FP types in the source, not ABI promoted.
2252 if (!ParamType->hasFloatingRepresentation())
2253 return false;
2254
2255 // The promoted-to IR type also needs to support nofpclass.
2256 llvm::Type *IRTy = AI.getCoerceToType();
2257 if (llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty: IRTy))
2258 return true;
2259
2260 if (llvm::StructType *ST = dyn_cast<llvm::StructType>(Val: IRTy)) {
2261 return !IsReturn && AI.getCanBeFlattened() &&
2262 llvm::all_of(Range: ST->elements(), P: [](llvm::Type *Ty) {
2263 return llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty);
2264 });
2265 }
2266
2267 return false;
2268}
2269
2270/// Return the nofpclass mask that can be applied to floating-point parameters.
2271static llvm::FPClassTest getNoFPClassTestMask(const LangOptions &LangOpts) {
2272 llvm::FPClassTest Mask = llvm::fcNone;
2273 if (LangOpts.NoHonorInfs)
2274 Mask |= llvm::fcInf;
2275 if (LangOpts.NoHonorNaNs)
2276 Mask |= llvm::fcNan;
2277 return Mask;
2278}
2279
2280void CodeGenModule::AdjustMemoryAttribute(StringRef Name,
2281 CGCalleeInfo CalleeInfo,
2282 llvm::AttributeList &Attrs) {
2283 if (Attrs.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef) {
2284 Attrs = Attrs.removeFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::Memory);
2285 llvm::Attribute MemoryAttr = llvm::Attribute::getWithMemoryEffects(
2286 Context&: getLLVMContext(), ME: llvm::MemoryEffects::writeOnly());
2287 Attrs = Attrs.addFnAttribute(C&: getLLVMContext(), Attr: MemoryAttr);
2288 }
2289}
2290
2291/// Construct the IR attribute list of a function or call.
2292///
2293/// When adding an attribute, please consider where it should be handled:
2294///
2295/// - getDefaultFunctionAttributes is for attributes that are essentially
2296/// part of the global target configuration (but perhaps can be
2297/// overridden on a per-function basis). Adding attributes there
2298/// will cause them to also be set in frontends that build on Clang's
2299/// target-configuration logic, as well as for code defined in library
2300/// modules such as CUDA's libdevice.
2301///
2302/// - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2303/// and adds declaration-specific, convention-specific, and
2304/// frontend-specific logic. The last is of particular importance:
2305/// attributes that restrict how the frontend generates code must be
2306/// added here rather than getDefaultFunctionAttributes.
2307///
2308void CodeGenModule::ConstructAttributeList(StringRef Name,
2309 const CGFunctionInfo &FI,
2310 CGCalleeInfo CalleeInfo,
2311 llvm::AttributeList &AttrList,
2312 unsigned &CallingConv,
2313 bool AttrOnCallSite, bool IsThunk) {
2314 llvm::AttrBuilder FuncAttrs(getLLVMContext());
2315 llvm::AttrBuilder RetAttrs(getLLVMContext());
2316
2317 // Collect function IR attributes from the CC lowering.
2318 // We'll collect the paramete and result attributes later.
2319 CallingConv = FI.getEffectiveCallingConvention();
2320 if (FI.isNoReturn())
2321 FuncAttrs.addAttribute(Val: llvm::Attribute::NoReturn);
2322 if (FI.isCmseNSCall())
2323 FuncAttrs.addAttribute(A: "cmse_nonsecure_call");
2324
2325 // Collect function IR attributes from the callee prototype if we have one.
2326 AddAttributesFromFunctionProtoType(Ctx&: getContext(), FuncAttrs,
2327 FPT: CalleeInfo.getCalleeFunctionProtoType());
2328
2329 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2330
2331 // Attach assumption attributes to the declaration. If this is a call
2332 // site, attach assumptions from the caller to the call as well.
2333 AddAttributesFromOMPAssumes(FuncAttrs, Callee: TargetDecl);
2334
2335 bool HasOptnone = false;
2336 // The NoBuiltinAttr attached to the target FunctionDecl.
2337 const NoBuiltinAttr *NBA = nullptr;
2338
2339 // Some ABIs may result in additional accesses to arguments that may
2340 // otherwise not be present.
2341 auto AddPotentialArgAccess = [&]() {
2342 llvm::Attribute A = FuncAttrs.getAttribute(Kind: llvm::Attribute::Memory);
2343 if (A.isValid())
2344 FuncAttrs.addMemoryAttr(ME: A.getMemoryEffects() |
2345 llvm::MemoryEffects::argMemOnly());
2346 };
2347
2348 // Collect function IR attributes based on declaration-specific
2349 // information.
2350 // FIXME: handle sseregparm someday...
2351 if (TargetDecl) {
2352 if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2353 FuncAttrs.addAttribute(Val: llvm::Attribute::ReturnsTwice);
2354 if (TargetDecl->hasAttr<NoThrowAttr>())
2355 FuncAttrs.addAttribute(Val: llvm::Attribute::NoUnwind);
2356 if (TargetDecl->hasAttr<NoReturnAttr>())
2357 FuncAttrs.addAttribute(Val: llvm::Attribute::NoReturn);
2358 if (TargetDecl->hasAttr<ColdAttr>())
2359 FuncAttrs.addAttribute(Val: llvm::Attribute::Cold);
2360 if (TargetDecl->hasAttr<HotAttr>())
2361 FuncAttrs.addAttribute(Val: llvm::Attribute::Hot);
2362 if (TargetDecl->hasAttr<NoDuplicateAttr>())
2363 FuncAttrs.addAttribute(Val: llvm::Attribute::NoDuplicate);
2364 if (TargetDecl->hasAttr<ConvergentAttr>())
2365 FuncAttrs.addAttribute(Val: llvm::Attribute::Convergent);
2366
2367 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(Val: TargetDecl)) {
2368 AddAttributesFromFunctionProtoType(
2369 Ctx&: getContext(), FuncAttrs, FPT: Fn->getType()->getAs<FunctionProtoType>());
2370 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2371 // A sane operator new returns a non-aliasing pointer.
2372 auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2373 if (getCodeGenOpts().AssumeSaneOperatorNew &&
2374 (Kind == OO_New || Kind == OO_Array_New))
2375 RetAttrs.addAttribute(Val: llvm::Attribute::NoAlias);
2376 }
2377 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: Fn);
2378 const bool IsVirtualCall = MD && MD->isVirtual();
2379 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2380 // virtual function. These attributes are not inherited by overloads.
2381 if (!(AttrOnCallSite && IsVirtualCall)) {
2382 if (Fn->isNoReturn())
2383 FuncAttrs.addAttribute(Val: llvm::Attribute::NoReturn);
2384 NBA = Fn->getAttr<NoBuiltinAttr>();
2385 }
2386 }
2387
2388 if (isa<FunctionDecl>(Val: TargetDecl) || isa<VarDecl>(Val: TargetDecl)) {
2389 // Only place nomerge attribute on call sites, never functions. This
2390 // allows it to work on indirect virtual function calls.
2391 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2392 FuncAttrs.addAttribute(Val: llvm::Attribute::NoMerge);
2393 }
2394
2395 // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2396 if (TargetDecl->hasAttr<ConstAttr>()) {
2397 FuncAttrs.addMemoryAttr(ME: llvm::MemoryEffects::none());
2398 FuncAttrs.addAttribute(Val: llvm::Attribute::NoUnwind);
2399 // gcc specifies that 'const' functions have greater restrictions than
2400 // 'pure' functions, so they also cannot have infinite loops.
2401 FuncAttrs.addAttribute(Val: llvm::Attribute::WillReturn);
2402 } else if (TargetDecl->hasAttr<PureAttr>()) {
2403 FuncAttrs.addMemoryAttr(ME: llvm::MemoryEffects::readOnly());
2404 FuncAttrs.addAttribute(Val: llvm::Attribute::NoUnwind);
2405 // gcc specifies that 'pure' functions cannot have infinite loops.
2406 FuncAttrs.addAttribute(Val: llvm::Attribute::WillReturn);
2407 } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2408 FuncAttrs.addMemoryAttr(ME: llvm::MemoryEffects::inaccessibleOrArgMemOnly());
2409 FuncAttrs.addAttribute(Val: llvm::Attribute::NoUnwind);
2410 }
2411 if (TargetDecl->hasAttr<RestrictAttr>())
2412 RetAttrs.addAttribute(Val: llvm::Attribute::NoAlias);
2413 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2414 !CodeGenOpts.NullPointerIsValid)
2415 RetAttrs.addAttribute(Val: llvm::Attribute::NonNull);
2416 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2417 FuncAttrs.addAttribute(A: "no_caller_saved_registers");
2418 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2419 FuncAttrs.addAttribute(Val: llvm::Attribute::NoCfCheck);
2420 if (TargetDecl->hasAttr<LeafAttr>())
2421 FuncAttrs.addAttribute(Val: llvm::Attribute::NoCallback);
2422
2423 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2424 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2425 std::optional<unsigned> NumElemsParam;
2426 if (AllocSize->getNumElemsParam().isValid())
2427 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2428 FuncAttrs.addAllocSizeAttr(ElemSizeArg: AllocSize->getElemSizeParam().getLLVMIndex(),
2429 NumElemsArg: NumElemsParam);
2430 }
2431
2432 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2433 if (getLangOpts().OpenCLVersion <= 120) {
2434 // OpenCL v1.2 Work groups are always uniform
2435 FuncAttrs.addAttribute(A: "uniform-work-group-size", V: "true");
2436 } else {
2437 // OpenCL v2.0 Work groups may be whether uniform or not.
2438 // '-cl-uniform-work-group-size' compile option gets a hint
2439 // to the compiler that the global work-size be a multiple of
2440 // the work-group size specified to clEnqueueNDRangeKernel
2441 // (i.e. work groups are uniform).
2442 FuncAttrs.addAttribute(
2443 A: "uniform-work-group-size",
2444 V: llvm::toStringRef(B: getLangOpts().OffloadUniformBlock));
2445 }
2446 }
2447
2448 if (TargetDecl->hasAttr<CUDAGlobalAttr>() &&
2449 getLangOpts().OffloadUniformBlock)
2450 FuncAttrs.addAttribute(A: "uniform-work-group-size", V: "true");
2451
2452 if (TargetDecl->hasAttr<ArmLocallyStreamingAttr>())
2453 FuncAttrs.addAttribute(A: "aarch64_pstate_sm_body");
2454 }
2455
2456 // Attach "no-builtins" attributes to:
2457 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2458 // * definitions: "no-builtins" or "no-builtin-<name>" only.
2459 // The attributes can come from:
2460 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2461 // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2462 addNoBuiltinAttributes(FuncAttrs, LangOpts: getLangOpts(), NBA);
2463
2464 // Collect function IR attributes based on global settiings.
2465 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2466
2467 // Override some default IR attributes based on declaration-specific
2468 // information.
2469 if (TargetDecl) {
2470 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2471 FuncAttrs.removeAttribute(Val: llvm::Attribute::SpeculativeLoadHardening);
2472 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2473 FuncAttrs.addAttribute(Val: llvm::Attribute::SpeculativeLoadHardening);
2474 if (TargetDecl->hasAttr<NoSplitStackAttr>())
2475 FuncAttrs.removeAttribute(A: "split-stack");
2476 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) {
2477 // A function "__attribute__((...))" overrides the command-line flag.
2478 auto Kind =
2479 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs();
2480 FuncAttrs.removeAttribute(A: "zero-call-used-regs");
2481 FuncAttrs.addAttribute(
2482 A: "zero-call-used-regs",
2483 V: ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Val: Kind));
2484 }
2485
2486 // Add NonLazyBind attribute to function declarations when -fno-plt
2487 // is used.
2488 // FIXME: what if we just haven't processed the function definition
2489 // yet, or if it's an external definition like C99 inline?
2490 if (CodeGenOpts.NoPLT) {
2491 if (auto *Fn = dyn_cast<FunctionDecl>(Val: TargetDecl)) {
2492 if (!Fn->isDefined() && !AttrOnCallSite) {
2493 FuncAttrs.addAttribute(Val: llvm::Attribute::NonLazyBind);
2494 }
2495 }
2496 }
2497 }
2498
2499 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2500 // functions with -funique-internal-linkage-names.
2501 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2502 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(Val: TargetDecl)) {
2503 if (!FD->isExternallyVisible())
2504 FuncAttrs.addAttribute(A: "sample-profile-suffix-elision-policy",
2505 V: "selected");
2506 }
2507 }
2508
2509 // Collect non-call-site function IR attributes from declaration-specific
2510 // information.
2511 if (!AttrOnCallSite) {
2512 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2513 FuncAttrs.addAttribute(A: "cmse_nonsecure_entry");
2514
2515 // Whether tail calls are enabled.
2516 auto shouldDisableTailCalls = [&] {
2517 // Should this be honored in getDefaultFunctionAttributes?
2518 if (CodeGenOpts.DisableTailCalls)
2519 return true;
2520
2521 if (!TargetDecl)
2522 return false;
2523
2524 if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2525 TargetDecl->hasAttr<AnyX86InterruptAttr>())
2526 return true;
2527
2528 if (CodeGenOpts.NoEscapingBlockTailCalls) {
2529 if (const auto *BD = dyn_cast<BlockDecl>(Val: TargetDecl))
2530 if (!BD->doesNotEscape())
2531 return true;
2532 }
2533
2534 return false;
2535 };
2536 if (shouldDisableTailCalls())
2537 FuncAttrs.addAttribute(A: "disable-tail-calls", V: "true");
2538
2539 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes
2540 // handles these separately to set them based on the global defaults.
2541 GetCPUAndFeaturesAttributes(GD: CalleeInfo.getCalleeDecl(), AttrBuilder&: FuncAttrs);
2542 }
2543
2544 // Collect attributes from arguments and return values.
2545 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2546
2547 QualType RetTy = FI.getReturnType();
2548 const ABIArgInfo &RetAI = FI.getReturnInfo();
2549 const llvm::DataLayout &DL = getDataLayout();
2550
2551 // Determine if the return type could be partially undef
2552 if (CodeGenOpts.EnableNoundefAttrs &&
2553 HasStrictReturn(Module: *this, RetTy, TargetDecl)) {
2554 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2555 DetermineNoUndef(QTy: RetTy, Types&: getTypes(), DL, AI: RetAI))
2556 RetAttrs.addAttribute(Val: llvm::Attribute::NoUndef);
2557 }
2558
2559 switch (RetAI.getKind()) {
2560 case ABIArgInfo::Extend:
2561 if (RetAI.isSignExt())
2562 RetAttrs.addAttribute(Val: llvm::Attribute::SExt);
2563 else
2564 RetAttrs.addAttribute(Val: llvm::Attribute::ZExt);
2565 [[fallthrough]];
2566 case ABIArgInfo::Direct:
2567 if (RetAI.getInReg())
2568 RetAttrs.addAttribute(Val: llvm::Attribute::InReg);
2569
2570 if (canApplyNoFPClass(AI: RetAI, ParamType: RetTy, IsReturn: true))
2571 RetAttrs.addNoFPClassAttr(NoFPClassMask: getNoFPClassTestMask(LangOpts: getLangOpts()));
2572
2573 break;
2574 case ABIArgInfo::Ignore:
2575 break;
2576
2577 case ABIArgInfo::InAlloca:
2578 case ABIArgInfo::Indirect: {
2579 // inalloca and sret disable readnone and readonly
2580 AddPotentialArgAccess();
2581 break;
2582 }
2583
2584 case ABIArgInfo::CoerceAndExpand:
2585 break;
2586
2587 case ABIArgInfo::Expand:
2588 case ABIArgInfo::IndirectAliased:
2589 llvm_unreachable("Invalid ABI kind for return argument");
2590 }
2591
2592 if (!IsThunk) {
2593 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2594 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2595 QualType PTy = RefTy->getPointeeType();
2596 if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2597 RetAttrs.addDereferenceableAttr(
2598 Bytes: getMinimumObjectSize(Ty: PTy).getQuantity());
2599 if (getTypes().getTargetAddressSpace(T: PTy) == 0 &&
2600 !CodeGenOpts.NullPointerIsValid)
2601 RetAttrs.addAttribute(Val: llvm::Attribute::NonNull);
2602 if (PTy->isObjectType()) {
2603 llvm::Align Alignment =
2604 getNaturalPointeeTypeAlignment(T: RetTy).getAsAlign();
2605 RetAttrs.addAlignmentAttr(Align: Alignment);
2606 }
2607 }
2608 }
2609
2610 bool hasUsedSRet = false;
2611 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2612
2613 // Attach attributes to sret.
2614 if (IRFunctionArgs.hasSRetArg()) {
2615 llvm::AttrBuilder SRETAttrs(getLLVMContext());
2616 SRETAttrs.addStructRetAttr(Ty: getTypes().ConvertTypeForMem(T: RetTy));
2617 SRETAttrs.addAttribute(Val: llvm::Attribute::Writable);
2618 SRETAttrs.addAttribute(Val: llvm::Attribute::DeadOnUnwind);
2619 hasUsedSRet = true;
2620 if (RetAI.getInReg())
2621 SRETAttrs.addAttribute(Val: llvm::Attribute::InReg);
2622 SRETAttrs.addAlignmentAttr(Align: RetAI.getIndirectAlign().getQuantity());
2623 ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2624 llvm::AttributeSet::get(C&: getLLVMContext(), B: SRETAttrs);
2625 }
2626
2627 // Attach attributes to inalloca argument.
2628 if (IRFunctionArgs.hasInallocaArg()) {
2629 llvm::AttrBuilder Attrs(getLLVMContext());
2630 Attrs.addInAllocaAttr(Ty: FI.getArgStruct());
2631 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2632 llvm::AttributeSet::get(C&: getLLVMContext(), B: Attrs);
2633 }
2634
2635 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2636 // unless this is a thunk function.
2637 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2638 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2639 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2640 auto IRArgs = IRFunctionArgs.getIRArgs(ArgNo: 0);
2641
2642 assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2643
2644 llvm::AttrBuilder Attrs(getLLVMContext());
2645
2646 QualType ThisTy =
2647 FI.arg_begin()->type.getTypePtr()->getPointeeType();
2648
2649 if (!CodeGenOpts.NullPointerIsValid &&
2650 getTypes().getTargetAddressSpace(T: FI.arg_begin()->type) == 0) {
2651 Attrs.addAttribute(Val: llvm::Attribute::NonNull);
2652 Attrs.addDereferenceableAttr(Bytes: getMinimumObjectSize(Ty: ThisTy).getQuantity());
2653 } else {
2654 // FIXME dereferenceable should be correct here, regardless of
2655 // NullPointerIsValid. However, dereferenceable currently does not always
2656 // respect NullPointerIsValid and may imply nonnull and break the program.
2657 // See https://reviews.llvm.org/D66618 for discussions.
2658 Attrs.addDereferenceableOrNullAttr(
2659 Bytes: getMinimumObjectSize(
2660 Ty: FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2661 .getQuantity());
2662 }
2663
2664 llvm::Align Alignment =
2665 getNaturalTypeAlignment(T: ThisTy, /*BaseInfo=*/nullptr,
2666 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2667 .getAsAlign();
2668 Attrs.addAlignmentAttr(Align: Alignment);
2669
2670 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(C&: getLLVMContext(), B: Attrs);
2671 }
2672
2673 unsigned ArgNo = 0;
2674 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2675 E = FI.arg_end();
2676 I != E; ++I, ++ArgNo) {
2677 QualType ParamType = I->type;
2678 const ABIArgInfo &AI = I->info;
2679 llvm::AttrBuilder Attrs(getLLVMContext());
2680
2681 // Add attribute for padding argument, if necessary.
2682 if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2683 if (AI.getPaddingInReg()) {
2684 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2685 llvm::AttributeSet::get(
2686 C&: getLLVMContext(),
2687 B: llvm::AttrBuilder(getLLVMContext()).addAttribute(Val: llvm::Attribute::InReg));
2688 }
2689 }
2690
2691 // Decide whether the argument we're handling could be partially undef
2692 if (CodeGenOpts.EnableNoundefAttrs &&
2693 DetermineNoUndef(QTy: ParamType, Types&: getTypes(), DL, AI)) {
2694 Attrs.addAttribute(Val: llvm::Attribute::NoUndef);
2695 }
2696
2697 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2698 // have the corresponding parameter variable. It doesn't make
2699 // sense to do it here because parameters are so messed up.
2700 switch (AI.getKind()) {
2701 case ABIArgInfo::Extend:
2702 if (AI.isSignExt())
2703 Attrs.addAttribute(Val: llvm::Attribute::SExt);
2704 else
2705 Attrs.addAttribute(Val: llvm::Attribute::ZExt);
2706 [[fallthrough]];
2707 case ABIArgInfo::Direct:
2708 if (ArgNo == 0 && FI.isChainCall())
2709 Attrs.addAttribute(Val: llvm::Attribute::Nest);
2710 else if (AI.getInReg())
2711 Attrs.addAttribute(Val: llvm::Attribute::InReg);
2712 Attrs.addStackAlignmentAttr(Align: llvm::MaybeAlign(AI.getDirectAlign()));
2713
2714 if (canApplyNoFPClass(AI, ParamType, IsReturn: false))
2715 Attrs.addNoFPClassAttr(NoFPClassMask: getNoFPClassTestMask(LangOpts: getLangOpts()));
2716 break;
2717 case ABIArgInfo::Indirect: {
2718 if (AI.getInReg())
2719 Attrs.addAttribute(Val: llvm::Attribute::InReg);
2720
2721 if (AI.getIndirectByVal())
2722 Attrs.addByValAttr(Ty: getTypes().ConvertTypeForMem(T: ParamType));
2723
2724 auto *Decl = ParamType->getAsRecordDecl();
2725 if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2726 Decl->getArgPassingRestrictions() ==
2727 RecordArgPassingKind::CanPassInRegs)
2728 // When calling the function, the pointer passed in will be the only
2729 // reference to the underlying object. Mark it accordingly.
2730 Attrs.addAttribute(Val: llvm::Attribute::NoAlias);
2731
2732 // TODO: We could add the byref attribute if not byval, but it would
2733 // require updating many testcases.
2734
2735 CharUnits Align = AI.getIndirectAlign();
2736
2737 // In a byval argument, it is important that the required
2738 // alignment of the type is honored, as LLVM might be creating a
2739 // *new* stack object, and needs to know what alignment to give
2740 // it. (Sometimes it can deduce a sensible alignment on its own,
2741 // but not if clang decides it must emit a packed struct, or the
2742 // user specifies increased alignment requirements.)
2743 //
2744 // This is different from indirect *not* byval, where the object
2745 // exists already, and the align attribute is purely
2746 // informative.
2747 assert(!Align.isZero());
2748
2749 // For now, only add this when we have a byval argument.
2750 // TODO: be less lazy about updating test cases.
2751 if (AI.getIndirectByVal())
2752 Attrs.addAlignmentAttr(Align: Align.getQuantity());
2753
2754 // byval disables readnone and readonly.
2755 AddPotentialArgAccess();
2756 break;
2757 }
2758 case ABIArgInfo::IndirectAliased: {
2759 CharUnits Align = AI.getIndirectAlign();
2760 Attrs.addByRefAttr(Ty: getTypes().ConvertTypeForMem(T: ParamType));
2761 Attrs.addAlignmentAttr(Align: Align.getQuantity());
2762 break;
2763 }
2764 case ABIArgInfo::Ignore:
2765 case ABIArgInfo::Expand:
2766 case ABIArgInfo::CoerceAndExpand:
2767 break;
2768
2769 case ABIArgInfo::InAlloca:
2770 // inalloca disables readnone and readonly.
2771 AddPotentialArgAccess();
2772 continue;
2773 }
2774
2775 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2776 QualType PTy = RefTy->getPointeeType();
2777 if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2778 Attrs.addDereferenceableAttr(
2779 Bytes: getMinimumObjectSize(Ty: PTy).getQuantity());
2780 if (getTypes().getTargetAddressSpace(T: PTy) == 0 &&
2781 !CodeGenOpts.NullPointerIsValid)
2782 Attrs.addAttribute(Val: llvm::Attribute::NonNull);
2783 if (PTy->isObjectType()) {
2784 llvm::Align Alignment =
2785 getNaturalPointeeTypeAlignment(T: ParamType).getAsAlign();
2786 Attrs.addAlignmentAttr(Align: Alignment);
2787 }
2788 }
2789
2790 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types:
2791 // > For arguments to a __kernel function declared to be a pointer to a
2792 // > data type, the OpenCL compiler can assume that the pointee is always
2793 // > appropriately aligned as required by the data type.
2794 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() &&
2795 ParamType->isPointerType()) {
2796 QualType PTy = ParamType->getPointeeType();
2797 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2798 llvm::Align Alignment =
2799 getNaturalPointeeTypeAlignment(T: ParamType).getAsAlign();
2800 Attrs.addAlignmentAttr(Align: Alignment);
2801 }
2802 }
2803
2804 switch (FI.getExtParameterInfo(argIndex: ArgNo).getABI()) {
2805 case ParameterABI::Ordinary:
2806 break;
2807
2808 case ParameterABI::SwiftIndirectResult: {
2809 // Add 'sret' if we haven't already used it for something, but
2810 // only if the result is void.
2811 if (!hasUsedSRet && RetTy->isVoidType()) {
2812 Attrs.addStructRetAttr(Ty: getTypes().ConvertTypeForMem(T: ParamType));
2813 hasUsedSRet = true;
2814 }
2815
2816 // Add 'noalias' in either case.
2817 Attrs.addAttribute(Val: llvm::Attribute::NoAlias);
2818
2819 // Add 'dereferenceable' and 'alignment'.
2820 auto PTy = ParamType->getPointeeType();
2821 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2822 auto info = getContext().getTypeInfoInChars(T: PTy);
2823 Attrs.addDereferenceableAttr(Bytes: info.Width.getQuantity());
2824 Attrs.addAlignmentAttr(Align: info.Align.getAsAlign());
2825 }
2826 break;
2827 }
2828
2829 case ParameterABI::SwiftErrorResult:
2830 Attrs.addAttribute(Val: llvm::Attribute::SwiftError);
2831 break;
2832
2833 case ParameterABI::SwiftContext:
2834 Attrs.addAttribute(Val: llvm::Attribute::SwiftSelf);
2835 break;
2836
2837 case ParameterABI::SwiftAsyncContext:
2838 Attrs.addAttribute(Val: llvm::Attribute::SwiftAsync);
2839 break;
2840 }
2841
2842 if (FI.getExtParameterInfo(argIndex: ArgNo).isNoEscape())
2843 Attrs.addAttribute(Val: llvm::Attribute::NoCapture);
2844
2845 if (Attrs.hasAttributes()) {
2846 unsigned FirstIRArg, NumIRArgs;
2847 std::tie(args&: FirstIRArg, args&: NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2848 for (unsigned i = 0; i < NumIRArgs; i++)
2849 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes(
2850 C&: getLLVMContext(), AS: llvm::AttributeSet::get(C&: getLLVMContext(), B: Attrs));
2851 }
2852 }
2853 assert(ArgNo == FI.arg_size());
2854
2855 AttrList = llvm::AttributeList::get(
2856 C&: getLLVMContext(), FnAttrs: llvm::AttributeSet::get(C&: getLLVMContext(), B: FuncAttrs),
2857 RetAttrs: llvm::AttributeSet::get(C&: getLLVMContext(), B: RetAttrs), ArgAttrs);
2858}
2859
2860/// An argument came in as a promoted argument; demote it back to its
2861/// declared type.
2862static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2863 const VarDecl *var,
2864 llvm::Value *value) {
2865 llvm::Type *varType = CGF.ConvertType(T: var->getType());
2866
2867 // This can happen with promotions that actually don't change the
2868 // underlying type, like the enum promotions.
2869 if (value->getType() == varType) return value;
2870
2871 assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2872 && "unexpected promotion type");
2873
2874 if (isa<llvm::IntegerType>(Val: varType))
2875 return CGF.Builder.CreateTrunc(V: value, DestTy: varType, Name: "arg.unpromote");
2876
2877 return CGF.Builder.CreateFPCast(V: value, DestTy: varType, Name: "arg.unpromote");
2878}
2879
2880/// Returns the attribute (either parameter attribute, or function
2881/// attribute), which declares argument ArgNo to be non-null.
2882static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2883 QualType ArgType, unsigned ArgNo) {
2884 // FIXME: __attribute__((nonnull)) can also be applied to:
2885 // - references to pointers, where the pointee is known to be
2886 // nonnull (apparently a Clang extension)
2887 // - transparent unions containing pointers
2888 // In the former case, LLVM IR cannot represent the constraint. In
2889 // the latter case, we have no guarantee that the transparent union
2890 // is in fact passed as a pointer.
2891 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2892 return nullptr;
2893 // First, check attribute on parameter itself.
2894 if (PVD) {
2895 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2896 return ParmNNAttr;
2897 }
2898 // Check function attributes.
2899 if (!FD)
2900 return nullptr;
2901 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2902 if (NNAttr->isNonNull(IdxAST: ArgNo))
2903 return NNAttr;
2904 }
2905 return nullptr;
2906}
2907
2908namespace {
2909 struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2910 Address Temp;
2911 Address Arg;
2912 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2913 void Emit(CodeGenFunction &CGF, Flags flags) override {
2914 llvm::Value *errorValue = CGF.Builder.CreateLoad(Addr: Temp);
2915 CGF.Builder.CreateStore(Val: errorValue, Addr: Arg);
2916 }
2917 };
2918}
2919
2920void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2921 llvm::Function *Fn,
2922 const FunctionArgList &Args) {
2923 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2924 // Naked functions don't have prologues.
2925 return;
2926
2927 // If this is an implicit-return-zero function, go ahead and
2928 // initialize the return value. TODO: it might be nice to have
2929 // a more general mechanism for this that didn't require synthesized
2930 // return statements.
2931 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: CurCodeDecl)) {
2932 if (FD->hasImplicitReturnZero()) {
2933 QualType RetTy = FD->getReturnType().getUnqualifiedType();
2934 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(T: RetTy);
2935 llvm::Constant* Zero = llvm::Constant::getNullValue(Ty: LLVMTy);
2936 Builder.CreateStore(Val: Zero, Addr: ReturnValue);
2937 }
2938 }
2939
2940 // FIXME: We no longer need the types from FunctionArgList; lift up and
2941 // simplify.
2942
2943 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2944 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2945
2946 // If we're using inalloca, all the memory arguments are GEPs off of the last
2947 // parameter, which is a pointer to the complete memory area.
2948 Address ArgStruct = Address::invalid();
2949 if (IRFunctionArgs.hasInallocaArg())
2950 ArgStruct = Address(Fn->getArg(i: IRFunctionArgs.getInallocaArgNo()),
2951 FI.getArgStruct(), FI.getArgStructAlignment());
2952
2953 // Name the struct return parameter.
2954 if (IRFunctionArgs.hasSRetArg()) {
2955 auto AI = Fn->getArg(i: IRFunctionArgs.getSRetArgNo());
2956 AI->setName("agg.result");
2957 AI->addAttr(Kind: llvm::Attribute::NoAlias);
2958 }
2959
2960 // Track if we received the parameter as a pointer (indirect, byval, or
2961 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it
2962 // into a local alloca for us.
2963 SmallVector<ParamValue, 16> ArgVals;
2964 ArgVals.reserve(N: Args.size());
2965
2966 // Create a pointer value for every parameter declaration. This usually
2967 // entails copying one or more LLVM IR arguments into an alloca. Don't push
2968 // any cleanups or do anything that might unwind. We do that separately, so
2969 // we can push the cleanups in the correct order for the ABI.
2970 assert(FI.arg_size() == Args.size() &&
2971 "Mismatch between function signature & arguments.");
2972 unsigned ArgNo = 0;
2973 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2974 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2975 i != e; ++i, ++info_it, ++ArgNo) {
2976 const VarDecl *Arg = *i;
2977 const ABIArgInfo &ArgI = info_it->info;
2978
2979 bool isPromoted =
2980 isa<ParmVarDecl>(Val: Arg) && cast<ParmVarDecl>(Val: Arg)->isKNRPromoted();
2981 // We are converting from ABIArgInfo type to VarDecl type directly, unless
2982 // the parameter is promoted. In this case we convert to
2983 // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2984 QualType Ty = isPromoted ? info_it->type : Arg->getType();
2985 assert(hasScalarEvaluationKind(Ty) ==
2986 hasScalarEvaluationKind(Arg->getType()));
2987
2988 unsigned FirstIRArg, NumIRArgs;
2989 std::tie(args&: FirstIRArg, args&: NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2990
2991 switch (ArgI.getKind()) {
2992 case ABIArgInfo::InAlloca: {
2993 assert(NumIRArgs == 0);
2994 auto FieldIndex = ArgI.getInAllocaFieldIndex();
2995 Address V =
2996 Builder.CreateStructGEP(Addr: ArgStruct, Index: FieldIndex, Name: Arg->getName());
2997 if (ArgI.getInAllocaIndirect())
2998 V = Address(Builder.CreateLoad(Addr: V), ConvertTypeForMem(T: Ty),
2999 getContext().getTypeAlignInChars(T: Ty));
3000 ArgVals.push_back(Elt: ParamValue::forIndirect(addr: V));
3001 break;
3002 }
3003
3004 case ABIArgInfo::Indirect:
3005 case ABIArgInfo::IndirectAliased: {
3006 assert(NumIRArgs == 1);
3007 Address ParamAddr = makeNaturalAddressForPointer(
3008 Ptr: Fn->getArg(i: FirstIRArg), T: Ty, Alignment: ArgI.getIndirectAlign(), ForPointeeType: false, BaseInfo: nullptr,
3009 TBAAInfo: nullptr, IsKnownNonNull: KnownNonNull);
3010
3011 if (!hasScalarEvaluationKind(T: Ty)) {
3012 // Aggregates and complex variables are accessed by reference. All we
3013 // need to do is realign the value, if requested. Also, if the address
3014 // may be aliased, copy it to ensure that the parameter variable is
3015 // mutable and has a unique adress, as C requires.
3016 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
3017 RawAddress AlignedTemp = CreateMemTemp(T: Ty, Name: "coerce");
3018
3019 // Copy from the incoming argument pointer to the temporary with the
3020 // appropriate alignment.
3021 //
3022 // FIXME: We should have a common utility for generating an aggregate
3023 // copy.
3024 CharUnits Size = getContext().getTypeSizeInChars(T: Ty);
3025 Builder.CreateMemCpy(
3026 Dst: AlignedTemp.getPointer(), DstAlign: AlignedTemp.getAlignment().getAsAlign(),
3027 Src: ParamAddr.emitRawPointer(CGF&: *this),
3028 SrcAlign: ParamAddr.getAlignment().getAsAlign(),
3029 Size: llvm::ConstantInt::get(Ty: IntPtrTy, V: Size.getQuantity()));
3030 ParamAddr = AlignedTemp;
3031 }
3032 ArgVals.push_back(Elt: ParamValue::forIndirect(addr: ParamAddr));
3033 } else {
3034 // Load scalar value from indirect argument.
3035 llvm::Value *V =
3036 EmitLoadOfScalar(Addr: ParamAddr, Volatile: false, Ty, Loc: Arg->getBeginLoc());
3037
3038 if (isPromoted)
3039 V = emitArgumentDemotion(CGF&: *this, var: Arg, value: V);
3040 ArgVals.push_back(Elt: ParamValue::forDirect(value: V));
3041 }
3042 break;
3043 }
3044
3045 case ABIArgInfo::Extend:
3046 case ABIArgInfo::Direct: {
3047 auto AI = Fn->getArg(i: FirstIRArg);
3048 llvm::Type *LTy = ConvertType(T: Arg->getType());
3049
3050 // Prepare parameter attributes. So far, only attributes for pointer
3051 // parameters are prepared. See
3052 // http://llvm.org/docs/LangRef.html#paramattrs.
3053 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
3054 ArgI.getCoerceToType()->isPointerTy()) {
3055 assert(NumIRArgs == 1);
3056
3057 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Val: Arg)) {
3058 // Set `nonnull` attribute if any.
3059 if (getNonNullAttr(FD: CurCodeDecl, PVD, ArgType: PVD->getType(),
3060 ArgNo: PVD->getFunctionScopeIndex()) &&
3061 !CGM.getCodeGenOpts().NullPointerIsValid)
3062 AI->addAttr(Kind: llvm::Attribute::NonNull);
3063
3064 QualType OTy = PVD->getOriginalType();
3065 if (const auto *ArrTy =
3066 getContext().getAsConstantArrayType(T: OTy)) {
3067 // A C99 array parameter declaration with the static keyword also
3068 // indicates dereferenceability, and if the size is constant we can
3069 // use the dereferenceable attribute (which requires the size in
3070 // bytes).
3071 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) {
3072 QualType ETy = ArrTy->getElementType();
3073 llvm::Align Alignment =
3074 CGM.getNaturalTypeAlignment(T: ETy).getAsAlign();
3075 AI->addAttrs(B&: llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Align: Alignment));
3076 uint64_t ArrSize = ArrTy->getZExtSize();
3077 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
3078 ArrSize) {
3079 llvm::AttrBuilder Attrs(getLLVMContext());
3080 Attrs.addDereferenceableAttr(
3081 Bytes: getContext().getTypeSizeInChars(T: ETy).getQuantity() *
3082 ArrSize);
3083 AI->addAttrs(B&: Attrs);
3084 } else if (getContext().getTargetInfo().getNullPointerValue(
3085 AddrSpace: ETy.getAddressSpace()) == 0 &&
3086 !CGM.getCodeGenOpts().NullPointerIsValid) {
3087 AI->addAttr(Kind: llvm::Attribute::NonNull);
3088 }
3089 }
3090 } else if (const auto *ArrTy =
3091 getContext().getAsVariableArrayType(T: OTy)) {
3092 // For C99 VLAs with the static keyword, we don't know the size so
3093 // we can't use the dereferenceable attribute, but in addrspace(0)
3094 // we know that it must be nonnull.
3095 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) {
3096 QualType ETy = ArrTy->getElementType();
3097 llvm::Align Alignment =
3098 CGM.getNaturalTypeAlignment(T: ETy).getAsAlign();
3099 AI->addAttrs(B&: llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Align: Alignment));
3100 if (!getTypes().getTargetAddressSpace(T: ETy) &&
3101 !CGM.getCodeGenOpts().NullPointerIsValid)
3102 AI->addAttr(Kind: llvm::Attribute::NonNull);
3103 }
3104 }
3105
3106 // Set `align` attribute if any.
3107 const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
3108 if (!AVAttr)
3109 if (const auto *TOTy = OTy->getAs<TypedefType>())
3110 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
3111 if (AVAttr && !SanOpts.has(K: SanitizerKind::Alignment)) {
3112 // If alignment-assumption sanitizer is enabled, we do *not* add
3113 // alignment attribute here, but emit normal alignment assumption,
3114 // so the UBSAN check could function.
3115 llvm::ConstantInt *AlignmentCI =
3116 cast<llvm::ConstantInt>(Val: EmitScalarExpr(E: AVAttr->getAlignment()));
3117 uint64_t AlignmentInt =
3118 AlignmentCI->getLimitedValue(Limit: llvm::Value::MaximumAlignment);
3119 if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
3120 AI->removeAttr(Kind: llvm::Attribute::AttrKind::Alignment);
3121 AI->addAttrs(B&: llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(
3122 Align: llvm::Align(AlignmentInt)));
3123 }
3124 }
3125 }
3126
3127 // Set 'noalias' if an argument type has the `restrict` qualifier.
3128 if (Arg->getType().isRestrictQualified())
3129 AI->addAttr(Kind: llvm::Attribute::NoAlias);
3130 }
3131
3132 // Prepare the argument value. If we have the trivial case, handle it
3133 // with no muss and fuss.
3134 if (!isa<llvm::StructType>(Val: ArgI.getCoerceToType()) &&
3135 ArgI.getCoerceToType() == ConvertType(T: Ty) &&
3136 ArgI.getDirectOffset() == 0) {
3137 assert(NumIRArgs == 1);
3138
3139 // LLVM expects swifterror parameters to be used in very restricted
3140 // ways. Copy the value into a less-restricted temporary.
3141 llvm::Value *V = AI;
3142 if (FI.getExtParameterInfo(argIndex: ArgNo).getABI()
3143 == ParameterABI::SwiftErrorResult) {
3144 QualType pointeeTy = Ty->getPointeeType();
3145 assert(pointeeTy->isPointerType());
3146 RawAddress temp =
3147 CreateMemTemp(T: pointeeTy, Align: getPointerAlign(), Name: "swifterror.temp");
3148 Address arg = makeNaturalAddressForPointer(
3149 Ptr: V, T: pointeeTy, Alignment: getContext().getTypeAlignInChars(T: pointeeTy));
3150 llvm::Value *incomingErrorValue = Builder.CreateLoad(Addr: arg);
3151 Builder.CreateStore(Val: incomingErrorValue, Addr: temp);
3152 V = temp.getPointer();
3153
3154 // Push a cleanup to copy the value back at the end of the function.
3155 // The convention does not guarantee that the value will be written
3156 // back if the function exits with an unwind exception.
3157 EHStack.pushCleanup<CopyBackSwiftError>(Kind: NormalCleanup, A: temp, A: arg);
3158 }
3159
3160 // Ensure the argument is the correct type.
3161 if (V->getType() != ArgI.getCoerceToType())
3162 V = Builder.CreateBitCast(V, DestTy: ArgI.getCoerceToType());
3163
3164 if (isPromoted)
3165 V = emitArgumentDemotion(CGF&: *this, var: Arg, value: V);
3166
3167 // Because of merging of function types from multiple decls it is
3168 // possible for the type of an argument to not match the corresponding
3169 // type in the function type. Since we are codegening the callee
3170 // in here, add a cast to the argument type.
3171 llvm::Type *LTy = ConvertType(T: Arg->getType());
3172 if (V->getType() != LTy)
3173 V = Builder.CreateBitCast(V, DestTy: LTy);
3174
3175 ArgVals.push_back(Elt: ParamValue::forDirect(value: V));
3176 break;
3177 }
3178
3179 // VLST arguments are coerced to VLATs at the function boundary for
3180 // ABI consistency. If this is a VLST that was coerced to
3181 // a VLAT at the function boundary and the types match up, use
3182 // llvm.vector.extract to convert back to the original VLST.
3183 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(Val: ConvertType(T: Ty))) {
3184 llvm::Value *Coerced = Fn->getArg(i: FirstIRArg);
3185 if (auto *VecTyFrom =
3186 dyn_cast<llvm::ScalableVectorType>(Val: Coerced->getType())) {
3187 // If we are casting a scalable i1 predicate vector to a fixed i8
3188 // vector, bitcast the source and use a vector extract.
3189 if (VecTyFrom->getElementType()->isIntegerTy(Bitwidth: 1) &&
3190 VecTyFrom->getElementCount().isKnownMultipleOf(RHS: 8) &&
3191 VecTyTo->getElementType() == Builder.getInt8Ty()) {
3192 VecTyFrom = llvm::ScalableVectorType::get(
3193 ElementType: VecTyTo->getElementType(),
3194 MinNumElts: VecTyFrom->getElementCount().getKnownMinValue() / 8);
3195 Coerced = Builder.CreateBitCast(V: Coerced, DestTy: VecTyFrom);
3196 }
3197 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
3198 llvm::Value *Zero = llvm::Constant::getNullValue(Ty: CGM.Int64Ty);
3199
3200 assert(NumIRArgs == 1);
3201 Coerced->setName(Arg->getName() + ".coerce");
3202 ArgVals.push_back(Elt: ParamValue::forDirect(value: Builder.CreateExtractVector(
3203 DstType: VecTyTo, SrcVec: Coerced, Idx: Zero, Name: "cast.fixed")));
3204 break;
3205 }
3206 }
3207 }
3208
3209 llvm::StructType *STy =
3210 dyn_cast<llvm::StructType>(Val: ArgI.getCoerceToType());
3211 if (ArgI.isDirect() && !ArgI.getCanBeFlattened() && STy &&
3212 STy->getNumElements() > 1) {
3213 [[maybe_unused]] llvm::TypeSize StructSize =
3214 CGM.getDataLayout().getTypeAllocSize(Ty: STy);
3215 [[maybe_unused]] llvm::TypeSize PtrElementSize =
3216 CGM.getDataLayout().getTypeAllocSize(Ty: ConvertTypeForMem(T: Ty));
3217 if (STy->containsHomogeneousScalableVectorTypes()) {
3218 assert(StructSize == PtrElementSize &&
3219 "Only allow non-fractional movement of structure with"
3220 "homogeneous scalable vector type");
3221
3222 ArgVals.push_back(Elt: ParamValue::forDirect(value: AI));
3223 break;
3224 }
3225 }
3226
3227 Address Alloca = CreateMemTemp(T: Ty, Align: getContext().getDeclAlign(D: Arg),
3228 Name: Arg->getName());
3229
3230 // Pointer to store into.
3231 Address Ptr = emitAddressAtOffset(CGF&: *this, addr: Alloca, info: ArgI);
3232
3233 // Fast-isel and the optimizer generally like scalar values better than
3234 // FCAs, so we flatten them if this is safe to do for this argument.
3235 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
3236 STy->getNumElements() > 1) {
3237 llvm::TypeSize StructSize = CGM.getDataLayout().getTypeAllocSize(Ty: STy);
3238 llvm::TypeSize PtrElementSize =
3239 CGM.getDataLayout().getTypeAllocSize(Ty: Ptr.getElementType());
3240 if (StructSize.isScalable()) {
3241 assert(STy->containsHomogeneousScalableVectorTypes() &&
3242 "ABI only supports structure with homogeneous scalable vector "
3243 "type");
3244 assert(StructSize == PtrElementSize &&
3245 "Only allow non-fractional movement of structure with"
3246 "homogeneous scalable vector type");
3247 assert(STy->getNumElements() == NumIRArgs);
3248
3249 llvm::Value *LoadedStructValue = llvm::PoisonValue::get(T: STy);
3250 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3251 auto *AI = Fn->getArg(i: FirstIRArg + i);
3252 AI->setName(Arg->getName() + ".coerce" + Twine(i));
3253 LoadedStructValue =
3254 Builder.CreateInsertValue(Agg: LoadedStructValue, Val: AI, Idxs: i);
3255 }
3256
3257 Builder.CreateStore(Val: LoadedStructValue, Addr: Ptr);
3258 } else {
3259 uint64_t SrcSize = StructSize.getFixedValue();
3260 uint64_t DstSize = PtrElementSize.getFixedValue();
3261
3262 Address AddrToStoreInto = Address::invalid();
3263 if (SrcSize <= DstSize) {
3264 AddrToStoreInto = Ptr.withElementType(ElemTy: STy);
3265 } else {
3266 AddrToStoreInto =
3267 CreateTempAlloca(Ty: STy, align: Alloca.getAlignment(), Name: "coerce");
3268 }
3269
3270 assert(STy->getNumElements() == NumIRArgs);
3271 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3272 auto AI = Fn->getArg(i: FirstIRArg + i);
3273 AI->setName(Arg->getName() + ".coerce" + Twine(i));
3274 Address EltPtr = Builder.CreateStructGEP(Addr: AddrToStoreInto, Index: i);
3275 Builder.CreateStore(Val: AI, Addr: EltPtr);
3276 }
3277
3278 if (SrcSize > DstSize) {
3279 Builder.CreateMemCpy(Dest: Ptr, Src: AddrToStoreInto, Size: DstSize);
3280 }
3281 }
3282 } else {
3283 // Simple case, just do a coerced store of the argument into the alloca.
3284 assert(NumIRArgs == 1);
3285 auto AI = Fn->getArg(i: FirstIRArg);
3286 AI->setName(Arg->getName() + ".coerce");
3287 CreateCoercedStore(
3288 Src: AI, Dst: Ptr,
3289 DstSize: llvm::TypeSize::getFixed(
3290 ExactSize: getContext().getTypeSizeInChars(T: Ty).getQuantity() -
3291 ArgI.getDirectOffset()),
3292 /*DstIsVolatile=*/false);
3293 }
3294
3295 // Match to what EmitParmDecl is expecting for this type.
3296 if (CodeGenFunction::hasScalarEvaluationKind(T: Ty)) {
3297 llvm::Value *V =
3298 EmitLoadOfScalar(Addr: Alloca, Volatile: false, Ty, Loc: Arg->getBeginLoc());
3299 if (isPromoted)
3300 V = emitArgumentDemotion(CGF&: *this, var: Arg, value: V);
3301 ArgVals.push_back(Elt: ParamValue::forDirect(value: V));
3302 } else {
3303 ArgVals.push_back(Elt: ParamValue::forIndirect(addr: Alloca));
3304 }
3305 break;
3306 }
3307
3308 case ABIArgInfo::CoerceAndExpand: {
3309 // Reconstruct into a temporary.
3310 Address alloca = CreateMemTemp(T: Ty, Align: getContext().getDeclAlign(D: Arg));
3311 ArgVals.push_back(Elt: ParamValue::forIndirect(addr: alloca));
3312
3313 auto coercionType = ArgI.getCoerceAndExpandType();
3314 alloca = alloca.withElementType(ElemTy: coercionType);
3315
3316 unsigned argIndex = FirstIRArg;
3317 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3318 llvm::Type *eltType = coercionType->getElementType(N: i);
3319 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
3320 continue;
3321
3322 auto eltAddr = Builder.CreateStructGEP(Addr: alloca, Index: i);
3323 auto elt = Fn->getArg(i: argIndex++);
3324 Builder.CreateStore(Val: elt, Addr: eltAddr);
3325 }
3326 assert(argIndex == FirstIRArg + NumIRArgs);
3327 break;
3328 }
3329
3330 case ABIArgInfo::Expand: {
3331 // If this structure was expanded into multiple arguments then
3332 // we need to create a temporary and reconstruct it from the
3333 // arguments.
3334 Address Alloca = CreateMemTemp(T: Ty, Align: getContext().getDeclAlign(D: Arg));
3335 LValue LV = MakeAddrLValue(Addr: Alloca, T: Ty);
3336 ArgVals.push_back(Elt: ParamValue::forIndirect(addr: Alloca));
3337
3338 auto FnArgIter = Fn->arg_begin() + FirstIRArg;
3339 ExpandTypeFromArgs(Ty, LV, AI&: FnArgIter);
3340 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
3341 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
3342 auto AI = Fn->getArg(i: FirstIRArg + i);
3343 AI->setName(Arg->getName() + "." + Twine(i));
3344 }
3345 break;
3346 }
3347
3348 case ABIArgInfo::Ignore:
3349 assert(NumIRArgs == 0);
3350 // Initialize the local variable appropriately.
3351 if (!hasScalarEvaluationKind(T: Ty)) {
3352 ArgVals.push_back(Elt: ParamValue::forIndirect(addr: CreateMemTemp(T: Ty)));
3353 } else {
3354 llvm::Value *U = llvm::UndefValue::get(T: ConvertType(T: Arg->getType()));
3355 ArgVals.push_back(Elt: ParamValue::forDirect(value: U));
3356 }
3357 break;
3358 }
3359 }
3360
3361 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3362 for (int I = Args.size() - 1; I >= 0; --I)
3363 EmitParmDecl(D: *Args[I], Arg: ArgVals[I], ArgNo: I + 1);
3364 } else {
3365 for (unsigned I = 0, E = Args.size(); I != E; ++I)
3366 EmitParmDecl(D: *Args[I], Arg: ArgVals[I], ArgNo: I + 1);
3367 }
3368}
3369
3370static void eraseUnusedBitCasts(llvm::Instruction *insn) {
3371 while (insn->use_empty()) {
3372 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(Val: insn);
3373 if (!bitcast) return;
3374
3375 // This is "safe" because we would have used a ConstantExpr otherwise.
3376 insn = cast<llvm::Instruction>(Val: bitcast->getOperand(i_nocapture: 0));
3377 bitcast->eraseFromParent();
3378 }
3379}
3380
3381/// Try to emit a fused autorelease of a return result.
3382static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3383 llvm::Value *result) {
3384 // We must be immediately followed the cast.
3385 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3386 if (BB->empty()) return nullptr;
3387 if (&BB->back() != result) return nullptr;
3388
3389 llvm::Type *resultType = result->getType();
3390
3391 // result is in a BasicBlock and is therefore an Instruction.
3392 llvm::Instruction *generator = cast<llvm::Instruction>(Val: result);
3393
3394 SmallVector<llvm::Instruction *, 4> InstsToKill;
3395
3396 // Look for:
3397 // %generator = bitcast %type1* %generator2 to %type2*
3398 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(Val: generator)) {
3399 // We would have emitted this as a constant if the operand weren't
3400 // an Instruction.
3401 generator = cast<llvm::Instruction>(Val: bitcast->getOperand(i_nocapture: 0));
3402
3403 // Require the generator to be immediately followed by the cast.
3404 if (generator->getNextNode() != bitcast)
3405 return nullptr;
3406
3407 InstsToKill.push_back(Elt: bitcast);
3408 }
3409
3410 // Look for:
3411 // %generator = call i8* @objc_retain(i8* %originalResult)
3412 // or
3413 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3414 llvm::CallInst *call = dyn_cast<llvm::CallInst>(Val: generator);
3415 if (!call) return nullptr;
3416
3417 bool doRetainAutorelease;
3418
3419 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3420 doRetainAutorelease = true;
3421 } else if (call->getCalledOperand() ==
3422 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3423 doRetainAutorelease = false;
3424
3425 // If we emitted an assembly marker for this call (and the
3426 // ARCEntrypoints field should have been set if so), go looking
3427 // for that call. If we can't find it, we can't do this
3428 // optimization. But it should always be the immediately previous
3429 // instruction, unless we needed bitcasts around the call.
3430 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3431 llvm::Instruction *prev = call->getPrevNode();
3432 assert(prev);
3433 if (isa<llvm::BitCastInst>(Val: prev)) {
3434 prev = prev->getPrevNode();
3435 assert(prev);
3436 }
3437 assert(isa<llvm::CallInst>(prev));
3438 assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3439 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3440 InstsToKill.push_back(Elt: prev);
3441 }
3442 } else {
3443 return nullptr;
3444 }
3445
3446 result = call->getArgOperand(i: 0);
3447 InstsToKill.push_back(Elt: call);
3448
3449 // Keep killing bitcasts, for sanity. Note that we no longer care
3450 // about precise ordering as long as there's exactly one use.
3451 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(Val: result)) {
3452 if (!bitcast->hasOneUse()) break;
3453 InstsToKill.push_back(Elt: bitcast);
3454 result = bitcast->getOperand(i_nocapture: 0);
3455 }
3456
3457 // Delete all the unnecessary instructions, from latest to earliest.
3458 for (auto *I : InstsToKill)
3459 I->eraseFromParent();
3460
3461 // Do the fused retain/autorelease if we were asked to.
3462 if (doRetainAutorelease)
3463 result = CGF.EmitARCRetainAutoreleaseReturnValue(value: result);
3464
3465 // Cast back to the result type.
3466 return CGF.Builder.CreateBitCast(V: result, DestTy: resultType);
3467}
3468
3469/// If this is a +1 of the value of an immutable 'self', remove it.
3470static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3471 llvm::Value *result) {
3472 // This is only applicable to a method with an immutable 'self'.
3473 const ObjCMethodDecl *method =
3474 dyn_cast_or_null<ObjCMethodDecl>(Val: CGF.CurCodeDecl);
3475 if (!method) return nullptr;
3476 const VarDecl *self = method->getSelfDecl();
3477 if (!self->getType().isConstQualified()) return nullptr;
3478
3479 // Look for a retain call. Note: stripPointerCasts looks through returned arg
3480 // functions, which would cause us to miss the retain.
3481 llvm::CallInst *retainCall = dyn_cast<llvm::CallInst>(Val: result);
3482 if (!retainCall || retainCall->getCalledOperand() !=
3483 CGF.CGM.getObjCEntrypoints().objc_retain)
3484 return nullptr;
3485
3486 // Look for an ordinary load of 'self'.
3487 llvm::Value *retainedValue = retainCall->getArgOperand(i: 0);
3488 llvm::LoadInst *load =
3489 dyn_cast<llvm::LoadInst>(Val: retainedValue->stripPointerCasts());
3490 if (!load || load->isAtomic() || load->isVolatile() ||
3491 load->getPointerOperand() != CGF.GetAddrOfLocalVar(VD: self).getBasePointer())
3492 return nullptr;
3493
3494 // Okay! Burn it all down. This relies for correctness on the
3495 // assumption that the retain is emitted as part of the return and
3496 // that thereafter everything is used "linearly".
3497 llvm::Type *resultType = result->getType();
3498 eraseUnusedBitCasts(insn: cast<llvm::Instruction>(Val: result));
3499 assert(retainCall->use_empty());
3500 retainCall->eraseFromParent();
3501 eraseUnusedBitCasts(insn: cast<llvm::Instruction>(Val: retainedValue));
3502
3503 return CGF.Builder.CreateBitCast(V: load, DestTy: resultType);
3504}
3505
3506/// Emit an ARC autorelease of the result of a function.
3507///
3508/// \return the value to actually return from the function
3509static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3510 llvm::Value *result) {
3511 // If we're returning 'self', kill the initial retain. This is a
3512 // heuristic attempt to "encourage correctness" in the really unfortunate
3513 // case where we have a return of self during a dealloc and we desperately
3514 // need to avoid the possible autorelease.
3515 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3516 return self;
3517
3518 // At -O0, try to emit a fused retain/autorelease.
3519 if (CGF.shouldUseFusedARCCalls())
3520 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3521 return fused;
3522
3523 return CGF.EmitARCAutoreleaseReturnValue(value: result);
3524}
3525
3526/// Heuristically search for a dominating store to the return-value slot.
3527static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3528 llvm::Value *ReturnValuePtr = CGF.ReturnValue.getBasePointer();
3529
3530 // Check if a User is a store which pointerOperand is the ReturnValue.
3531 // We are looking for stores to the ReturnValue, not for stores of the
3532 // ReturnValue to some other location.
3533 auto GetStoreIfValid = [&CGF,
3534 ReturnValuePtr](llvm::User *U) -> llvm::StoreInst * {
3535 auto *SI = dyn_cast<llvm::StoreInst>(Val: U);
3536 if (!SI || SI->getPointerOperand() != ReturnValuePtr ||
3537 SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType())
3538 return nullptr;
3539 // These aren't actually possible for non-coerced returns, and we
3540 // only care about non-coerced returns on this code path.
3541 // All memory instructions inside __try block are volatile.
3542 assert(!SI->isAtomic() &&
3543 (!SI->isVolatile() || CGF.currentFunctionUsesSEHTry()));
3544 return SI;
3545 };
3546 // If there are multiple uses of the return-value slot, just check
3547 // for something immediately preceding the IP. Sometimes this can
3548 // happen with how we generate implicit-returns; it can also happen
3549 // with noreturn cleanups.
3550 if (!ReturnValuePtr->hasOneUse()) {
3551 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3552 if (IP->empty()) return nullptr;
3553
3554 // Look at directly preceding instruction, skipping bitcasts and lifetime
3555 // markers.
3556 for (llvm::Instruction &I : make_range(x: IP->rbegin(), y: IP->rend())) {
3557 if (isa<llvm::BitCastInst>(Val: &I))
3558 continue;
3559 if (auto *II = dyn_cast<llvm::IntrinsicInst>(Val: &I))
3560 if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end)
3561 continue;
3562
3563 return GetStoreIfValid(&I);
3564 }
3565 return nullptr;
3566 }
3567
3568 llvm::StoreInst *store = GetStoreIfValid(ReturnValuePtr->user_back());
3569 if (!store) return nullptr;
3570
3571 // Now do a first-and-dirty dominance check: just walk up the
3572 // single-predecessors chain from the current insertion point.
3573 llvm::BasicBlock *StoreBB = store->getParent();
3574 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3575 llvm::SmallPtrSet<llvm::BasicBlock *, 4> SeenBBs;
3576 while (IP != StoreBB) {
3577 if (!SeenBBs.insert(Ptr: IP).second || !(IP = IP->getSinglePredecessor()))
3578 return nullptr;
3579 }
3580
3581 // Okay, the store's basic block dominates the insertion point; we
3582 // can do our thing.
3583 return store;
3584}
3585
3586// Helper functions for EmitCMSEClearRecord
3587
3588// Set the bits corresponding to a field having width `BitWidth` and located at
3589// offset `BitOffset` (from the least significant bit) within a storage unit of
3590// `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3591// Use little-endian layout, i.e.`Bits[0]` is the LSB.
3592static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3593 int BitWidth, int CharWidth) {
3594 assert(CharWidth <= 64);
3595 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3596
3597 int Pos = 0;
3598 if (BitOffset >= CharWidth) {
3599 Pos += BitOffset / CharWidth;
3600 BitOffset = BitOffset % CharWidth;
3601 }
3602
3603 const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3604 if (BitOffset + BitWidth >= CharWidth) {
3605 Bits[Pos++] |= (Used << BitOffset) & Used;
3606 BitWidth -= CharWidth - BitOffset;
3607 BitOffset = 0;
3608 }
3609
3610 while (BitWidth >= CharWidth) {
3611 Bits[Pos++] = Used;
3612 BitWidth -= CharWidth;
3613 }
3614
3615 if (BitWidth > 0)
3616 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3617}
3618
3619// Set the bits corresponding to a field having width `BitWidth` and located at
3620// offset `BitOffset` (from the least significant bit) within a storage unit of
3621// `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3622// `Bits` corresponds to one target byte. Use target endian layout.
3623static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3624 int StorageSize, int BitOffset, int BitWidth,
3625 int CharWidth, bool BigEndian) {
3626
3627 SmallVector<uint64_t, 8> TmpBits(StorageSize);
3628 setBitRange(Bits&: TmpBits, BitOffset, BitWidth, CharWidth);
3629
3630 if (BigEndian)
3631 std::reverse(first: TmpBits.begin(), last: TmpBits.end());
3632
3633 for (uint64_t V : TmpBits)
3634 Bits[StorageOffset++] |= V;
3635}
3636
3637static void setUsedBits(CodeGenModule &, QualType, int,
3638 SmallVectorImpl<uint64_t> &);
3639
3640// Set the bits in `Bits`, which correspond to the value representations of
3641// the actual members of the record type `RTy`. Note that this function does
3642// not handle base classes, virtual tables, etc, since they cannot happen in
3643// CMSE function arguments or return. The bit mask corresponds to the target
3644// memory layout, i.e. it's endian dependent.
3645static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3646 SmallVectorImpl<uint64_t> &Bits) {
3647 ASTContext &Context = CGM.getContext();
3648 int CharWidth = Context.getCharWidth();
3649 const RecordDecl *RD = RTy->getDecl()->getDefinition();
3650 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(D: RD);
3651 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3652
3653 int Idx = 0;
3654 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3655 const FieldDecl *F = *I;
3656
3657 if (F->isUnnamedBitField() || F->isZeroLengthBitField(Ctx: Context) ||
3658 F->getType()->isIncompleteArrayType())
3659 continue;
3660
3661 if (F->isBitField()) {
3662 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(FD: F);
3663 setBitRange(Bits, StorageOffset: Offset + BFI.StorageOffset.getQuantity(),
3664 StorageSize: BFI.StorageSize / CharWidth, BitOffset: BFI.Offset,
3665 BitWidth: BFI.Size, CharWidth,
3666 BigEndian: CGM.getDataLayout().isBigEndian());
3667 continue;
3668 }
3669
3670 setUsedBits(CGM, F->getType(),
3671 Offset + ASTLayout.getFieldOffset(FieldNo: Idx) / CharWidth, Bits);
3672 }
3673}
3674
3675// Set the bits in `Bits`, which correspond to the value representations of
3676// the elements of an array type `ATy`.
3677static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3678 int Offset, SmallVectorImpl<uint64_t> &Bits) {
3679 const ASTContext &Context = CGM.getContext();
3680
3681 QualType ETy = Context.getBaseElementType(VAT: ATy);
3682 int Size = Context.getTypeSizeInChars(T: ETy).getQuantity();
3683 SmallVector<uint64_t, 4> TmpBits(Size);
3684 setUsedBits(CGM, ETy, 0, TmpBits);
3685
3686 for (int I = 0, N = Context.getConstantArrayElementCount(CA: ATy); I < N; ++I) {
3687 auto Src = TmpBits.begin();
3688 auto Dst = Bits.begin() + Offset + I * Size;
3689 for (int J = 0; J < Size; ++J)
3690 *Dst++ |= *Src++;
3691 }
3692}
3693
3694// Set the bits in `Bits`, which correspond to the value representations of
3695// the type `QTy`.
3696static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3697 SmallVectorImpl<uint64_t> &Bits) {
3698 if (const auto *RTy = QTy->getAs<RecordType>())
3699 return setUsedBits(CGM, RTy, Offset, Bits);
3700
3701 ASTContext &Context = CGM.getContext();
3702 if (const auto *ATy = Context.getAsConstantArrayType(T: QTy))
3703 return setUsedBits(CGM, ATy, Offset, Bits);
3704
3705 int Size = Context.getTypeSizeInChars(T: QTy).getQuantity();
3706 if (Size <= 0)
3707 return;
3708
3709 std::fill_n(first: Bits.begin() + Offset, n: Size,
3710 value: (uint64_t(1) << Context.getCharWidth()) - 1);
3711}
3712
3713static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3714 int Pos, int Size, int CharWidth,
3715 bool BigEndian) {
3716 assert(Size > 0);
3717 uint64_t Mask = 0;
3718 if (BigEndian) {
3719 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3720 ++P)
3721 Mask = (Mask << CharWidth) | *P;
3722 } else {
3723 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3724 do
3725 Mask = (Mask << CharWidth) | *--P;
3726 while (P != End);
3727 }
3728 return Mask;
3729}
3730
3731// Emit code to clear the bits in a record, which aren't a part of any user
3732// declared member, when the record is a function return.
3733llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3734 llvm::IntegerType *ITy,
3735 QualType QTy) {
3736 assert(Src->getType() == ITy);
3737 assert(ITy->getScalarSizeInBits() <= 64);
3738
3739 const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3740 int Size = DataLayout.getTypeStoreSize(Ty: ITy);
3741 SmallVector<uint64_t, 4> Bits(Size);
3742 setUsedBits(CGM, RTy: QTy->castAs<RecordType>(), Offset: 0, Bits);
3743
3744 int CharWidth = CGM.getContext().getCharWidth();
3745 uint64_t Mask =
3746 buildMultiCharMask(Bits, Pos: 0, Size, CharWidth, BigEndian: DataLayout.isBigEndian());
3747
3748 return Builder.CreateAnd(LHS: Src, RHS: Mask, Name: "cmse.clear");
3749}
3750
3751// Emit code to clear the bits in a record, which aren't a part of any user
3752// declared member, when the record is a function argument.
3753llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3754 llvm::ArrayType *ATy,
3755 QualType QTy) {
3756 const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3757 int Size = DataLayout.getTypeStoreSize(Ty: ATy);
3758 SmallVector<uint64_t, 16> Bits(Size);
3759 setUsedBits(CGM, RTy: QTy->castAs<RecordType>(), Offset: 0, Bits);
3760
3761 // Clear each element of the LLVM array.
3762 int CharWidth = CGM.getContext().getCharWidth();
3763 int CharsPerElt =
3764 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3765 int MaskIndex = 0;
3766 llvm::Value *R = llvm::PoisonValue::get(T: ATy);
3767 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3768 uint64_t Mask = buildMultiCharMask(Bits, Pos: MaskIndex, Size: CharsPerElt, CharWidth,
3769 BigEndian: DataLayout.isBigEndian());
3770 MaskIndex += CharsPerElt;
3771 llvm::Value *T0 = Builder.CreateExtractValue(Agg: Src, Idxs: I);
3772 llvm::Value *T1 = Builder.CreateAnd(LHS: T0, RHS: Mask, Name: "cmse.clear");
3773 R = Builder.CreateInsertValue(Agg: R, Val: T1, Idxs: I);
3774 }
3775
3776 return R;
3777}
3778
3779void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3780 bool EmitRetDbgLoc,
3781 SourceLocation EndLoc) {
3782 if (FI.isNoReturn()) {
3783 // Noreturn functions don't return.
3784 EmitUnreachable(Loc: EndLoc);
3785 return;
3786 }
3787
3788 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3789 // Naked functions don't have epilogues.
3790 Builder.CreateUnreachable();
3791 return;
3792 }
3793
3794 // Functions with no result always return void.
3795 if (!ReturnValue.isValid()) {
3796 Builder.CreateRetVoid();
3797 return;
3798 }
3799
3800 llvm::DebugLoc RetDbgLoc;
3801 llvm::Value *RV = nullptr;
3802 QualType RetTy = FI.getReturnType();
3803 const ABIArgInfo &RetAI = FI.getReturnInfo();
3804
3805 switch (RetAI.getKind()) {
3806 case ABIArgInfo::InAlloca:
3807 // Aggregates get evaluated directly into the destination. Sometimes we
3808 // need to return the sret value in a register, though.
3809 assert(hasAggregateEvaluationKind(RetTy));
3810 if (RetAI.getInAllocaSRet()) {
3811 llvm::Function::arg_iterator EI = CurFn->arg_end();
3812 --EI;
3813 llvm::Value *ArgStruct = &*EI;
3814 llvm::Value *SRet = Builder.CreateStructGEP(
3815 Ty: FI.getArgStruct(), Ptr: ArgStruct, Idx: RetAI.getInAllocaFieldIndex());
3816 llvm::Type *Ty =
3817 cast<llvm::GetElementPtrInst>(Val: SRet)->getResultElementType();
3818 RV = Builder.CreateAlignedLoad(Ty, Addr: SRet, Align: getPointerAlign(), Name: "sret");
3819 }
3820 break;
3821
3822 case ABIArgInfo::Indirect: {
3823 auto AI = CurFn->arg_begin();
3824 if (RetAI.isSRetAfterThis())
3825 ++AI;
3826 switch (getEvaluationKind(T: RetTy)) {
3827 case TEK_Complex: {
3828 ComplexPairTy RT =
3829 EmitLoadOfComplex(src: MakeAddrLValue(Addr: ReturnValue, T: RetTy), loc: EndLoc);
3830 EmitStoreOfComplex(V: RT, dest: MakeNaturalAlignAddrLValue(V: &*AI, T: RetTy),
3831 /*isInit*/ true);
3832 break;
3833 }
3834 case TEK_Aggregate:
3835 // Do nothing; aggregates get evaluated directly into the destination.
3836 break;
3837 case TEK_Scalar: {
3838 LValueBaseInfo BaseInfo;
3839 TBAAAccessInfo TBAAInfo;
3840 CharUnits Alignment =
3841 CGM.getNaturalTypeAlignment(T: RetTy, BaseInfo: &BaseInfo, TBAAInfo: &TBAAInfo);
3842 Address ArgAddr(&*AI, ConvertType(T: RetTy), Alignment);
3843 LValue ArgVal =
3844 LValue::MakeAddr(Addr: ArgAddr, type: RetTy, Context&: getContext(), BaseInfo, TBAAInfo);
3845 EmitStoreOfScalar(
3846 value: EmitLoadOfScalar(lvalue: MakeAddrLValue(Addr: ReturnValue, T: RetTy), Loc: EndLoc), lvalue: ArgVal,
3847 /*isInit*/ true);
3848 break;
3849 }
3850 }
3851 break;
3852 }
3853
3854 case ABIArgInfo::Extend:
3855 case ABIArgInfo::Direct:
3856 if (RetAI.getCoerceToType() == ConvertType(T: RetTy) &&
3857 RetAI.getDirectOffset() == 0) {
3858 // The internal return value temp always will have pointer-to-return-type
3859 // type, just do a load.
3860
3861 // If there is a dominating store to ReturnValue, we can elide
3862 // the load, zap the store, and usually zap the alloca.
3863 if (llvm::StoreInst *SI =
3864 findDominatingStoreToReturnValue(CGF&: *this)) {
3865 // Reuse the debug location from the store unless there is
3866 // cleanup code to be emitted between the store and return
3867 // instruction.
3868 if (EmitRetDbgLoc && !AutoreleaseResult)
3869 RetDbgLoc = SI->getDebugLoc();
3870 // Get the stored value and nuke the now-dead store.
3871 RV = SI->getValueOperand();
3872 SI->eraseFromParent();
3873
3874 // Otherwise, we have to do a simple load.
3875 } else {
3876 RV = Builder.CreateLoad(Addr: ReturnValue);
3877 }
3878 } else {
3879 // If the value is offset in memory, apply the offset now.
3880 Address V = emitAddressAtOffset(CGF&: *this, addr: ReturnValue, info: RetAI);
3881
3882 RV = CreateCoercedLoad(Src: V, Ty: RetAI.getCoerceToType(), CGF&: *this);
3883 }
3884
3885 // In ARC, end functions that return a retainable type with a call
3886 // to objc_autoreleaseReturnValue.
3887 if (AutoreleaseResult) {
3888#ifndef NDEBUG
3889 // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3890 // been stripped of the typedefs, so we cannot use RetTy here. Get the
3891 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3892 // CurCodeDecl or BlockInfo.
3893 QualType RT;
3894
3895 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3896 RT = FD->getReturnType();
3897 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3898 RT = MD->getReturnType();
3899 else if (isa<BlockDecl>(CurCodeDecl))
3900 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3901 else
3902 llvm_unreachable("Unexpected function/method type");
3903
3904 assert(getLangOpts().ObjCAutoRefCount &&
3905 !FI.isReturnsRetained() &&
3906 RT->isObjCRetainableType());
3907#endif
3908 RV = emitAutoreleaseOfResult(CGF&: *this, result: RV);
3909 }
3910
3911 break;
3912
3913 case ABIArgInfo::Ignore:
3914 break;
3915
3916 case ABIArgInfo::CoerceAndExpand: {
3917 auto coercionType = RetAI.getCoerceAndExpandType();
3918
3919 // Load all of the coerced elements out into results.
3920 llvm::SmallVector<llvm::Value*, 4> results;
3921 Address addr = ReturnValue.withElementType(ElemTy: coercionType);
3922 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3923 auto coercedEltType = coercionType->getElementType(N: i);
3924 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType: coercedEltType))
3925 continue;
3926
3927 auto eltAddr = Builder.CreateStructGEP(Addr: addr, Index: i);
3928 auto elt = Builder.CreateLoad(Addr: eltAddr);
3929 results.push_back(Elt: elt);
3930 }
3931
3932 // If we have one result, it's the single direct result type.
3933 if (results.size() == 1) {
3934 RV = results[0];
3935
3936 // Otherwise, we need to make a first-class aggregate.
3937 } else {
3938 // Construct a return type that lacks padding elements.
3939 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3940
3941 RV = llvm::PoisonValue::get(T: returnType);
3942 for (unsigned i = 0, e = results.size(); i != e; ++i) {
3943 RV = Builder.CreateInsertValue(Agg: RV, Val: results[i], Idxs: i);
3944 }
3945 }
3946 break;
3947 }
3948 case ABIArgInfo::Expand:
3949 case ABIArgInfo::IndirectAliased:
3950 llvm_unreachable("Invalid ABI kind for return argument");
3951 }
3952
3953 llvm::Instruction *Ret;
3954 if (RV) {
3955 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3956 // For certain return types, clear padding bits, as they may reveal
3957 // sensitive information.
3958 // Small struct/union types are passed as integers.
3959 auto *ITy = dyn_cast<llvm::IntegerType>(Val: RV->getType());
3960 if (ITy != nullptr && isa<RecordType>(Val: RetTy.getCanonicalType()))
3961 RV = EmitCMSEClearRecord(Src: RV, ITy, QTy: RetTy);
3962 }
3963 EmitReturnValueCheck(RV);
3964 Ret = Builder.CreateRet(V: RV);
3965 } else {
3966 Ret = Builder.CreateRetVoid();
3967 }
3968
3969 if (RetDbgLoc)
3970 Ret->setDebugLoc(std::move(RetDbgLoc));
3971}
3972
3973void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3974 // A current decl may not be available when emitting vtable thunks.
3975 if (!CurCodeDecl)
3976 return;
3977
3978 // If the return block isn't reachable, neither is this check, so don't emit
3979 // it.
3980 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3981 return;
3982
3983 ReturnsNonNullAttr *RetNNAttr = nullptr;
3984 if (SanOpts.has(K: SanitizerKind::ReturnsNonnullAttribute))
3985 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3986
3987 if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3988 return;
3989
3990 // Prefer the returns_nonnull attribute if it's present.
3991 SourceLocation AttrLoc;
3992 SanitizerMask CheckKind;
3993 SanitizerHandler Handler;
3994 if (RetNNAttr) {
3995 assert(!requiresReturnValueNullabilityCheck() &&
3996 "Cannot check nullability and the nonnull attribute");
3997 AttrLoc = RetNNAttr->getLocation();
3998 CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3999 Handler = SanitizerHandler::NonnullReturn;
4000 } else {
4001 if (auto *DD = dyn_cast<DeclaratorDecl>(Val: CurCodeDecl))
4002 if (auto *TSI = DD->getTypeSourceInfo())
4003 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
4004 AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
4005 CheckKind = SanitizerKind::NullabilityReturn;
4006 Handler = SanitizerHandler::NullabilityReturn;
4007 }
4008
4009 SanitizerScope SanScope(this);
4010
4011 // Make sure the "return" source location is valid. If we're checking a
4012 // nullability annotation, make sure the preconditions for the check are met.
4013 llvm::BasicBlock *Check = createBasicBlock(name: "nullcheck");
4014 llvm::BasicBlock *NoCheck = createBasicBlock(name: "no.nullcheck");
4015 llvm::Value *SLocPtr = Builder.CreateLoad(Addr: ReturnLocation, Name: "return.sloc.load");
4016 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(Arg: SLocPtr);
4017 if (requiresReturnValueNullabilityCheck())
4018 CanNullCheck =
4019 Builder.CreateAnd(LHS: CanNullCheck, RHS: RetValNullabilityPrecondition);
4020 Builder.CreateCondBr(Cond: CanNullCheck, True: Check, False: NoCheck);
4021 EmitBlock(BB: Check);
4022
4023 // Now do the null check.
4024 llvm::Value *Cond = Builder.CreateIsNotNull(Arg: RV);
4025 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc: AttrLoc)};
4026 llvm::Value *DynamicData[] = {SLocPtr};
4027 EmitCheck(Checked: std::make_pair(x&: Cond, y&: CheckKind), Check: Handler, StaticArgs: StaticData, DynamicArgs: DynamicData);
4028
4029 EmitBlock(BB: NoCheck);
4030
4031#ifndef NDEBUG
4032 // The return location should not be used after the check has been emitted.
4033 ReturnLocation = Address::invalid();
4034#endif
4035}
4036
4037static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
4038 const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
4039 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
4040}
4041
4042static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
4043 QualType Ty) {
4044 // FIXME: Generate IR in one pass, rather than going back and fixing up these
4045 // placeholders.
4046 llvm::Type *IRTy = CGF.ConvertTypeForMem(T: Ty);
4047 llvm::Type *IRPtrTy = llvm::PointerType::getUnqual(C&: CGF.getLLVMContext());
4048 llvm::Value *Placeholder = llvm::PoisonValue::get(T: IRPtrTy);
4049
4050 // FIXME: When we generate this IR in one pass, we shouldn't need
4051 // this win32-specific alignment hack.
4052 CharUnits Align = CharUnits::fromQuantity(Quantity: 4);
4053 Placeholder = CGF.Builder.CreateAlignedLoad(Ty: IRPtrTy, Addr: Placeholder, Align);
4054
4055 return AggValueSlot::forAddr(addr: Address(Placeholder, IRTy, Align),
4056 quals: Ty.getQualifiers(),
4057 isDestructed: AggValueSlot::IsNotDestructed,
4058 needsGC: AggValueSlot::DoesNotNeedGCBarriers,
4059 isAliased: AggValueSlot::IsNotAliased,
4060 mayOverlap: AggValueSlot::DoesNotOverlap);
4061}
4062
4063void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
4064 const VarDecl *param,
4065 SourceLocation loc) {
4066 // StartFunction converted the ABI-lowered parameter(s) into a
4067 // local alloca. We need to turn that into an r-value suitable
4068 // for EmitCall.
4069 Address local = GetAddrOfLocalVar(VD: param);
4070
4071 QualType type = param->getType();
4072
4073 // GetAddrOfLocalVar returns a pointer-to-pointer for references,
4074 // but the argument needs to be the original pointer.
4075 if (type->isReferenceType()) {
4076 args.add(rvalue: RValue::get(V: Builder.CreateLoad(Addr: local)), type);
4077
4078 // In ARC, move out of consumed arguments so that the release cleanup
4079 // entered by StartFunction doesn't cause an over-release. This isn't
4080 // optimal -O0 code generation, but it should get cleaned up when
4081 // optimization is enabled. This also assumes that delegate calls are
4082 // performed exactly once for a set of arguments, but that should be safe.
4083 } else if (getLangOpts().ObjCAutoRefCount &&
4084 param->hasAttr<NSConsumedAttr>() &&
4085 type->isObjCRetainableType()) {
4086 llvm::Value *ptr = Builder.CreateLoad(Addr: local);
4087 auto null =
4088 llvm::ConstantPointerNull::get(T: cast<llvm::PointerType>(Val: ptr->getType()));
4089 Builder.CreateStore(Val: null, Addr: local);
4090 args.add(rvalue: RValue::get(V: ptr), type);
4091
4092 // For the most part, we just need to load the alloca, except that
4093 // aggregate r-values are actually pointers to temporaries.
4094 } else {
4095 args.add(rvalue: convertTempToRValue(addr: local, type, Loc: loc), type);
4096 }
4097
4098 // Deactivate the cleanup for the callee-destructed param that was pushed.
4099 if (type->isRecordType() && !CurFuncIsThunk &&
4100 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
4101 param->needsDestruction(Ctx: getContext())) {
4102 EHScopeStack::stable_iterator cleanup =
4103 CalleeDestructedParamCleanups.lookup(Val: cast<ParmVarDecl>(Val: param));
4104 assert(cleanup.isValid() &&
4105 "cleanup for callee-destructed param not recorded");
4106 // This unreachable is a temporary marker which will be removed later.
4107 llvm::Instruction *isActive = Builder.CreateUnreachable();
4108 args.addArgCleanupDeactivation(Cleanup: cleanup, IsActiveIP: isActive);
4109 }
4110}
4111
4112static bool isProvablyNull(llvm::Value *addr) {
4113 return llvm::isa_and_nonnull<llvm::ConstantPointerNull>(Val: addr);
4114}
4115
4116static bool isProvablyNonNull(Address Addr, CodeGenFunction &CGF) {
4117 return llvm::isKnownNonZero(V: Addr.getBasePointer(), Q: CGF.CGM.getDataLayout());
4118}
4119
4120/// Emit the actual writing-back of a writeback.
4121static void emitWriteback(CodeGenFunction &CGF,
4122 const CallArgList::Writeback &writeback) {
4123 const LValue &srcLV = writeback.Source;
4124 Address srcAddr = srcLV.getAddress();
4125 assert(!isProvablyNull(srcAddr.getBasePointer()) &&
4126 "shouldn't have writeback for provably null argument");
4127
4128 llvm::BasicBlock *contBB = nullptr;
4129
4130 // If the argument wasn't provably non-null, we need to null check
4131 // before doing the store.
4132 bool provablyNonNull = isProvablyNonNull(Addr: srcAddr, CGF);
4133
4134 if (!provablyNonNull) {
4135 llvm::BasicBlock *writebackBB = CGF.createBasicBlock(name: "icr.writeback");
4136 contBB = CGF.createBasicBlock(name: "icr.done");
4137
4138 llvm::Value *isNull = CGF.Builder.CreateIsNull(Addr: srcAddr, Name: "icr.isnull");
4139 CGF.Builder.CreateCondBr(Cond: isNull, True: contBB, False: writebackBB);
4140 CGF.EmitBlock(BB: writebackBB);
4141 }
4142
4143 // Load the value to writeback.
4144 llvm::Value *value = CGF.Builder.CreateLoad(Addr: writeback.Temporary);
4145
4146 // Cast it back, in case we're writing an id to a Foo* or something.
4147 value = CGF.Builder.CreateBitCast(V: value, DestTy: srcAddr.getElementType(),
4148 Name: "icr.writeback-cast");
4149
4150 // Perform the writeback.
4151
4152 // If we have a "to use" value, it's something we need to emit a use
4153 // of. This has to be carefully threaded in: if it's done after the
4154 // release it's potentially undefined behavior (and the optimizer
4155 // will ignore it), and if it happens before the retain then the
4156 // optimizer could move the release there.
4157 if (writeback.ToUse) {
4158 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
4159
4160 // Retain the new value. No need to block-copy here: the block's
4161 // being passed up the stack.
4162 value = CGF.EmitARCRetainNonBlock(value);
4163
4164 // Emit the intrinsic use here.
4165 CGF.EmitARCIntrinsicUse(values: writeback.ToUse);
4166
4167 // Load the old value (primitively).
4168 llvm::Value *oldValue = CGF.EmitLoadOfScalar(lvalue: srcLV, Loc: SourceLocation());
4169
4170 // Put the new value in place (primitively).
4171 CGF.EmitStoreOfScalar(value, lvalue: srcLV, /*init*/ isInit: false);
4172
4173 // Release the old value.
4174 CGF.EmitARCRelease(value: oldValue, precise: srcLV.isARCPreciseLifetime());
4175
4176 // Otherwise, we can just do a normal lvalue store.
4177 } else {
4178 CGF.EmitStoreThroughLValue(Src: RValue::get(V: value), Dst: srcLV);
4179 }
4180
4181 // Jump to the continuation block.
4182 if (!provablyNonNull)
4183 CGF.EmitBlock(BB: contBB);
4184}
4185
4186static void emitWritebacks(CodeGenFunction &CGF,
4187 const CallArgList &args) {
4188 for (const auto &I : args.writebacks())
4189 emitWriteback(CGF, writeback: I);
4190}
4191
4192static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
4193 const CallArgList &CallArgs) {
4194 ArrayRef<CallArgList::CallArgCleanup> Cleanups =
4195 CallArgs.getCleanupsToDeactivate();
4196 // Iterate in reverse to increase the likelihood of popping the cleanup.
4197 for (const auto &I : llvm::reverse(C&: Cleanups)) {
4198 CGF.DeactivateCleanupBlock(Cleanup: I.Cleanup, DominatingIP: I.IsActiveIP);
4199 I.IsActiveIP->eraseFromParent();
4200 }
4201}
4202
4203static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
4204 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(Val: E->IgnoreParens()))
4205 if (uop->getOpcode() == UO_AddrOf)
4206 return uop->getSubExpr();
4207 return nullptr;
4208}
4209
4210/// Emit an argument that's being passed call-by-writeback. That is,
4211/// we are passing the address of an __autoreleased temporary; it
4212/// might be copy-initialized with the current value of the given
4213/// address, but it will definitely be copied out of after the call.
4214static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
4215 const ObjCIndirectCopyRestoreExpr *CRE) {
4216 LValue srcLV;
4217
4218 // Make an optimistic effort to emit the address as an l-value.
4219 // This can fail if the argument expression is more complicated.
4220 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(E: CRE->getSubExpr())) {
4221 srcLV = CGF.EmitLValue(E: lvExpr);
4222
4223 // Otherwise, just emit it as a scalar.
4224 } else {
4225 Address srcAddr = CGF.EmitPointerWithAlignment(Addr: CRE->getSubExpr());
4226
4227 QualType srcAddrType =
4228 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
4229 srcLV = CGF.MakeAddrLValue(Addr: srcAddr, T: srcAddrType);
4230 }
4231 Address srcAddr = srcLV.getAddress();
4232
4233 // The dest and src types don't necessarily match in LLVM terms
4234 // because of the crazy ObjC compatibility rules.
4235
4236 llvm::PointerType *destType =
4237 cast<llvm::PointerType>(Val: CGF.ConvertType(T: CRE->getType()));
4238 llvm::Type *destElemType =
4239 CGF.ConvertTypeForMem(T: CRE->getType()->getPointeeType());
4240
4241 // If the address is a constant null, just pass the appropriate null.
4242 if (isProvablyNull(addr: srcAddr.getBasePointer())) {
4243 args.add(rvalue: RValue::get(V: llvm::ConstantPointerNull::get(T: destType)),
4244 type: CRE->getType());
4245 return;
4246 }
4247
4248 // Create the temporary.
4249 Address temp =
4250 CGF.CreateTempAlloca(Ty: destElemType, align: CGF.getPointerAlign(), Name: "icr.temp");
4251 // Loading an l-value can introduce a cleanup if the l-value is __weak,
4252 // and that cleanup will be conditional if we can't prove that the l-value
4253 // isn't null, so we need to register a dominating point so that the cleanups
4254 // system will make valid IR.
4255 CodeGenFunction::ConditionalEvaluation condEval(CGF);
4256
4257 // Zero-initialize it if we're not doing a copy-initialization.
4258 bool shouldCopy = CRE->shouldCopy();
4259 if (!shouldCopy) {
4260 llvm::Value *null =
4261 llvm::ConstantPointerNull::get(T: cast<llvm::PointerType>(Val: destElemType));
4262 CGF.Builder.CreateStore(Val: null, Addr: temp);
4263 }
4264
4265 llvm::BasicBlock *contBB = nullptr;
4266 llvm::BasicBlock *originBB = nullptr;
4267
4268 // If the address is *not* known to be non-null, we need to switch.
4269 llvm::Value *finalArgument;
4270
4271 bool provablyNonNull = isProvablyNonNull(Addr: srcAddr, CGF);
4272
4273 if (provablyNonNull) {
4274 finalArgument = temp.emitRawPointer(CGF);
4275 } else {
4276 llvm::Value *isNull = CGF.Builder.CreateIsNull(Addr: srcAddr, Name: "icr.isnull");
4277
4278 finalArgument = CGF.Builder.CreateSelect(
4279 C: isNull, True: llvm::ConstantPointerNull::get(T: destType),
4280 False: temp.emitRawPointer(CGF), Name: "icr.argument");
4281
4282 // If we need to copy, then the load has to be conditional, which
4283 // means we need control flow.
4284 if (shouldCopy) {
4285 originBB = CGF.Builder.GetInsertBlock();
4286 contBB = CGF.createBasicBlock(name: "icr.cont");
4287 llvm::BasicBlock *copyBB = CGF.createBasicBlock(name: "icr.copy");
4288 CGF.Builder.CreateCondBr(Cond: isNull, True: contBB, False: copyBB);
4289 CGF.EmitBlock(BB: copyBB);
4290 condEval.begin(CGF);
4291 }
4292 }
4293
4294 llvm::Value *valueToUse = nullptr;
4295
4296 // Perform a copy if necessary.
4297 if (shouldCopy) {
4298 RValue srcRV = CGF.EmitLoadOfLValue(V: srcLV, Loc: SourceLocation());
4299 assert(srcRV.isScalar());
4300
4301 llvm::Value *src = srcRV.getScalarVal();
4302 src = CGF.Builder.CreateBitCast(V: src, DestTy: destElemType, Name: "icr.cast");
4303
4304 // Use an ordinary store, not a store-to-lvalue.
4305 CGF.Builder.CreateStore(Val: src, Addr: temp);
4306
4307 // If optimization is enabled, and the value was held in a
4308 // __strong variable, we need to tell the optimizer that this
4309 // value has to stay alive until we're doing the store back.
4310 // This is because the temporary is effectively unretained,
4311 // and so otherwise we can violate the high-level semantics.
4312 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4313 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
4314 valueToUse = src;
4315 }
4316 }
4317
4318 // Finish the control flow if we needed it.
4319 if (shouldCopy && !provablyNonNull) {
4320 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
4321 CGF.EmitBlock(BB: contBB);
4322
4323 // Make a phi for the value to intrinsically use.
4324 if (valueToUse) {
4325 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(Ty: valueToUse->getType(), NumReservedValues: 2,
4326 Name: "icr.to-use");
4327 phiToUse->addIncoming(V: valueToUse, BB: copyBB);
4328 phiToUse->addIncoming(V: llvm::UndefValue::get(T: valueToUse->getType()),
4329 BB: originBB);
4330 valueToUse = phiToUse;
4331 }
4332
4333 condEval.end(CGF);
4334 }
4335
4336 args.addWriteback(srcLV, temporary: temp, toUse: valueToUse);
4337 args.add(rvalue: RValue::get(V: finalArgument), type: CRE->getType());
4338}
4339
4340void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
4341 assert(!StackBase);
4342
4343 // Save the stack.
4344 StackBase = CGF.Builder.CreateStackSave(Name: "inalloca.save");
4345}
4346
4347void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
4348 if (StackBase) {
4349 // Restore the stack after the call.
4350 CGF.Builder.CreateStackRestore(Ptr: StackBase);
4351 }
4352}
4353
4354void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
4355 SourceLocation ArgLoc,
4356 AbstractCallee AC,
4357 unsigned ParmNum) {
4358 if (!AC.getDecl() || !(SanOpts.has(K: SanitizerKind::NonnullAttribute) ||
4359 SanOpts.has(K: SanitizerKind::NullabilityArg)))
4360 return;
4361
4362 // The param decl may be missing in a variadic function.
4363 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(I: ParmNum) : nullptr;
4364 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
4365
4366 // Prefer the nonnull attribute if it's present.
4367 const NonNullAttr *NNAttr = nullptr;
4368 if (SanOpts.has(K: SanitizerKind::NonnullAttribute))
4369 NNAttr = getNonNullAttr(FD: AC.getDecl(), PVD, ArgType, ArgNo);
4370
4371 bool CanCheckNullability = false;
4372 if (SanOpts.has(K: SanitizerKind::NullabilityArg) && !NNAttr && PVD &&
4373 !PVD->getType()->isRecordType()) {
4374 auto Nullability = PVD->getType()->getNullability();
4375 CanCheckNullability = Nullability &&
4376 *Nullability == NullabilityKind::NonNull &&
4377 PVD->getTypeSourceInfo();
4378 }
4379
4380 if (!NNAttr && !CanCheckNullability)
4381 return;
4382
4383 SourceLocation AttrLoc;
4384 SanitizerMask CheckKind;
4385 SanitizerHandler Handler;
4386 if (NNAttr) {
4387 AttrLoc = NNAttr->getLocation();
4388 CheckKind = SanitizerKind::NonnullAttribute;
4389 Handler = SanitizerHandler::NonnullArg;
4390 } else {
4391 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4392 CheckKind = SanitizerKind::NullabilityArg;
4393 Handler = SanitizerHandler::NullabilityArg;
4394 }
4395
4396 SanitizerScope SanScope(this);
4397 llvm::Value *Cond = EmitNonNullRValueCheck(RV, T: ArgType);
4398 llvm::Constant *StaticData[] = {
4399 EmitCheckSourceLocation(Loc: ArgLoc), EmitCheckSourceLocation(Loc: AttrLoc),
4400 llvm::ConstantInt::get(Ty: Int32Ty, V: ArgNo + 1),
4401 };
4402 EmitCheck(Checked: std::make_pair(x&: Cond, y&: CheckKind), Check: Handler, StaticArgs: StaticData, DynamicArgs: std::nullopt);
4403}
4404
4405void CodeGenFunction::EmitNonNullArgCheck(Address Addr, QualType ArgType,
4406 SourceLocation ArgLoc,
4407 AbstractCallee AC, unsigned ParmNum) {
4408 if (!AC.getDecl() || !(SanOpts.has(K: SanitizerKind::NonnullAttribute) ||
4409 SanOpts.has(K: SanitizerKind::NullabilityArg)))
4410 return;
4411
4412 EmitNonNullArgCheck(RV: RValue::get(Addr, CGF&: *this), ArgType, ArgLoc, AC, ParmNum);
4413}
4414
4415// Check if the call is going to use the inalloca convention. This needs to
4416// agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4417// later, so we can't check it directly.
4418static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4419 ArrayRef<QualType> ArgTypes) {
4420 // The Swift calling conventions don't go through the target-specific
4421 // argument classification, they never use inalloca.
4422 // TODO: Consider limiting inalloca use to only calling conventions supported
4423 // by MSVC.
4424 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4425 return false;
4426 if (!CGM.getTarget().getCXXABI().isMicrosoft())
4427 return false;
4428 return llvm::any_of(Range&: ArgTypes, P: [&](QualType Ty) {
4429 return isInAllocaArgument(ABI&: CGM.getCXXABI(), type: Ty);
4430 });
4431}
4432
4433#ifndef NDEBUG
4434// Determine whether the given argument is an Objective-C method
4435// that may have type parameters in its signature.
4436static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4437 const DeclContext *dc = method->getDeclContext();
4438 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4439 return classDecl->getTypeParamListAsWritten();
4440 }
4441
4442 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4443 return catDecl->getTypeParamList();
4444 }
4445
4446 return false;
4447}
4448#endif
4449
4450/// EmitCallArgs - Emit call arguments for a function.
4451void CodeGenFunction::EmitCallArgs(
4452 CallArgList &Args, PrototypeWrapper Prototype,
4453 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4454 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4455 SmallVector<QualType, 16> ArgTypes;
4456
4457 assert((ParamsToSkip == 0 || Prototype.P) &&
4458 "Can't skip parameters if type info is not provided");
4459
4460 // This variable only captures *explicitly* written conventions, not those
4461 // applied by default via command line flags or target defaults, such as
4462 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4463 // require knowing if this is a C++ instance method or being able to see
4464 // unprototyped FunctionTypes.
4465 CallingConv ExplicitCC = CC_C;
4466
4467 // First, if a prototype was provided, use those argument types.
4468 bool IsVariadic = false;
4469 if (Prototype.P) {
4470 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4471 if (MD) {
4472 IsVariadic = MD->isVariadic();
4473 ExplicitCC = getCallingConventionForDecl(
4474 D: MD, IsWindows: CGM.getTarget().getTriple().isOSWindows());
4475 ArgTypes.assign(in_start: MD->param_type_begin() + ParamsToSkip,
4476 in_end: MD->param_type_end());
4477 } else {
4478 const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4479 IsVariadic = FPT->isVariadic();
4480 ExplicitCC = FPT->getExtInfo().getCC();
4481 ArgTypes.assign(in_start: FPT->param_type_begin() + ParamsToSkip,
4482 in_end: FPT->param_type_end());
4483 }
4484
4485#ifndef NDEBUG
4486 // Check that the prototyped types match the argument expression types.
4487 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4488 CallExpr::const_arg_iterator Arg = ArgRange.begin();
4489 for (QualType Ty : ArgTypes) {
4490 assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4491 assert(
4492 (isGenericMethod || Ty->isVariablyModifiedType() ||
4493 Ty.getNonReferenceType()->isObjCRetainableType() ||
4494 getContext()
4495 .getCanonicalType(Ty.getNonReferenceType())
4496 .getTypePtr() ==
4497 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4498 "type mismatch in call argument!");
4499 ++Arg;
4500 }
4501
4502 // Either we've emitted all the call args, or we have a call to variadic
4503 // function.
4504 assert((Arg == ArgRange.end() || IsVariadic) &&
4505 "Extra arguments in non-variadic function!");
4506#endif
4507 }
4508
4509 // If we still have any arguments, emit them using the type of the argument.
4510 for (auto *A : llvm::drop_begin(RangeOrContainer&: ArgRange, N: ArgTypes.size()))
4511 ArgTypes.push_back(Elt: IsVariadic ? getVarArgType(Arg: A) : A->getType());
4512 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4513
4514 // We must evaluate arguments from right to left in the MS C++ ABI,
4515 // because arguments are destroyed left to right in the callee. As a special
4516 // case, there are certain language constructs that require left-to-right
4517 // evaluation, and in those cases we consider the evaluation order requirement
4518 // to trump the "destruction order is reverse construction order" guarantee.
4519 bool LeftToRight =
4520 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4521 ? Order == EvaluationOrder::ForceLeftToRight
4522 : Order != EvaluationOrder::ForceRightToLeft;
4523
4524 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4525 RValue EmittedArg) {
4526 if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4527 return;
4528 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4529 if (PS == nullptr)
4530 return;
4531
4532 const auto &Context = getContext();
4533 auto SizeTy = Context.getSizeType();
4534 auto T = Builder.getIntNTy(N: Context.getTypeSize(T: SizeTy));
4535 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4536 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(E: Arg, Type: PS->getType(), ResType: T,
4537 EmittedE: EmittedArg.getScalarVal(),
4538 IsDynamic: PS->isDynamic());
4539 Args.add(rvalue: RValue::get(V), type: SizeTy);
4540 // If we're emitting args in reverse, be sure to do so with
4541 // pass_object_size, as well.
4542 if (!LeftToRight)
4543 std::swap(a&: Args.back(), b&: *(&Args.back() - 1));
4544 };
4545
4546 // Insert a stack save if we're going to need any inalloca args.
4547 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4548 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4549 "inalloca only supported on x86");
4550 Args.allocateArgumentMemory(CGF&: *this);
4551 }
4552
4553 // Evaluate each argument in the appropriate order.
4554 size_t CallArgsStart = Args.size();
4555 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4556 unsigned Idx = LeftToRight ? I : E - I - 1;
4557 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4558 unsigned InitialArgSize = Args.size();
4559 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4560 // the argument and parameter match or the objc method is parameterized.
4561 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4562 getContext().hasSameUnqualifiedType((*Arg)->getType(),
4563 ArgTypes[Idx]) ||
4564 (isa<ObjCMethodDecl>(AC.getDecl()) &&
4565 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4566 "Argument and parameter types don't match");
4567 EmitCallArg(args&: Args, E: *Arg, ArgType: ArgTypes[Idx]);
4568 // In particular, we depend on it being the last arg in Args, and the
4569 // objectsize bits depend on there only being one arg if !LeftToRight.
4570 assert(InitialArgSize + 1 == Args.size() &&
4571 "The code below depends on only adding one arg per EmitCallArg");
4572 (void)InitialArgSize;
4573 // Since pointer argument are never emitted as LValue, it is safe to emit
4574 // non-null argument check for r-value only.
4575 if (!Args.back().hasLValue()) {
4576 RValue RVArg = Args.back().getKnownRValue();
4577 EmitNonNullArgCheck(RV: RVArg, ArgType: ArgTypes[Idx], ArgLoc: (*Arg)->getExprLoc(), AC,
4578 ParmNum: ParamsToSkip + Idx);
4579 // @llvm.objectsize should never have side-effects and shouldn't need
4580 // destruction/cleanups, so we can safely "emit" it after its arg,
4581 // regardless of right-to-leftness
4582 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4583 }
4584 }
4585
4586 if (!LeftToRight) {
4587 // Un-reverse the arguments we just evaluated so they match up with the LLVM
4588 // IR function.
4589 std::reverse(first: Args.begin() + CallArgsStart, last: Args.end());
4590 }
4591}
4592
4593namespace {
4594
4595struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4596 DestroyUnpassedArg(Address Addr, QualType Ty)
4597 : Addr(Addr), Ty(Ty) {}
4598
4599 Address Addr;
4600 QualType Ty;
4601
4602 void Emit(CodeGenFunction &CGF, Flags flags) override {
4603 QualType::DestructionKind DtorKind = Ty.isDestructedType();
4604 if (DtorKind == QualType::DK_cxx_destructor) {
4605 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4606 assert(!Dtor->isTrivial());
4607 CGF.EmitCXXDestructorCall(D: Dtor, Type: Dtor_Complete, /*for vbase*/ ForVirtualBase: false,
4608 /*Delegating=*/false, This: Addr, ThisTy: Ty);
4609 } else {
4610 CGF.callCStructDestructor(Dst: CGF.MakeAddrLValue(Addr, T: Ty));
4611 }
4612 }
4613};
4614
4615struct DisableDebugLocationUpdates {
4616 CodeGenFunction &CGF;
4617 bool disabledDebugInfo;
4618 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4619 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(Val: E) && CGF.getDebugInfo()))
4620 CGF.disableDebugInfo();
4621 }
4622 ~DisableDebugLocationUpdates() {
4623 if (disabledDebugInfo)
4624 CGF.enableDebugInfo();
4625 }
4626};
4627
4628} // end anonymous namespace
4629
4630RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4631 if (!HasLV)
4632 return RV;
4633 LValue Copy = CGF.MakeAddrLValue(Addr: CGF.CreateMemTemp(T: Ty), T: Ty);
4634 CGF.EmitAggregateCopy(Dest: Copy, Src: LV, EltTy: Ty, MayOverlap: AggValueSlot::DoesNotOverlap,
4635 isVolatile: LV.isVolatile());
4636 IsUsed = true;
4637 return RValue::getAggregate(addr: Copy.getAddress());
4638}
4639
4640void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4641 LValue Dst = CGF.MakeAddrLValue(Addr, T: Ty);
4642 if (!HasLV && RV.isScalar())
4643 CGF.EmitStoreOfScalar(value: RV.getScalarVal(), lvalue: Dst, /*isInit=*/true);
4644 else if (!HasLV && RV.isComplex())
4645 CGF.EmitStoreOfComplex(V: RV.getComplexVal(), dest: Dst, /*init=*/isInit: true);
4646 else {
4647 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
4648 LValue SrcLV = CGF.MakeAddrLValue(Addr, T: Ty);
4649 // We assume that call args are never copied into subobjects.
4650 CGF.EmitAggregateCopy(Dest: Dst, Src: SrcLV, EltTy: Ty, MayOverlap: AggValueSlot::DoesNotOverlap,
4651 isVolatile: HasLV ? LV.isVolatileQualified()
4652 : RV.isVolatileQualified());
4653 }
4654 IsUsed = true;
4655}
4656
4657void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4658 QualType type) {
4659 DisableDebugLocationUpdates Dis(*this, E);
4660 if (const ObjCIndirectCopyRestoreExpr *CRE
4661 = dyn_cast<ObjCIndirectCopyRestoreExpr>(Val: E)) {
4662 assert(getLangOpts().ObjCAutoRefCount);
4663 return emitWritebackArg(CGF&: *this, args, CRE);
4664 }
4665
4666 assert(type->isReferenceType() == E->isGLValue() &&
4667 "reference binding to unmaterialized r-value!");
4668
4669 if (E->isGLValue()) {
4670 assert(E->getObjectKind() == OK_Ordinary);
4671 return args.add(rvalue: EmitReferenceBindingToExpr(E), type);
4672 }
4673
4674 bool HasAggregateEvalKind = hasAggregateEvaluationKind(T: type);
4675
4676 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4677 // However, we still have to push an EH-only cleanup in case we unwind before
4678 // we make it to the call.
4679 if (type->isRecordType() &&
4680 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4681 // If we're using inalloca, use the argument memory. Otherwise, use a
4682 // temporary.
4683 AggValueSlot Slot = args.isUsingInAlloca()
4684 ? createPlaceholderSlot(CGF&: *this, Ty: type) : CreateAggTemp(T: type, Name: "agg.tmp");
4685
4686 bool DestroyedInCallee = true, NeedsCleanup = true;
4687 if (const auto *RD = type->getAsCXXRecordDecl())
4688 DestroyedInCallee = RD->hasNonTrivialDestructor();
4689 else
4690 NeedsCleanup = type.isDestructedType();
4691
4692 if (DestroyedInCallee)
4693 Slot.setExternallyDestructed();
4694
4695 EmitAggExpr(E, AS: Slot);
4696 RValue RV = Slot.asRValue();
4697 args.add(rvalue: RV, type);
4698
4699 if (DestroyedInCallee && NeedsCleanup) {
4700 // Create a no-op GEP between the placeholder and the cleanup so we can
4701 // RAUW it successfully. It also serves as a marker of the first
4702 // instruction where the cleanup is active.
4703 pushFullExprCleanup<DestroyUnpassedArg>(kind: NormalAndEHCleanup,
4704 A: Slot.getAddress(), A: type);
4705 // This unreachable is a temporary marker which will be removed later.
4706 llvm::Instruction *IsActive =
4707 Builder.CreateFlagLoad(Addr: llvm::Constant::getNullValue(Ty: Int8PtrTy));
4708 args.addArgCleanupDeactivation(Cleanup: EHStack.stable_begin(), IsActiveIP: IsActive);
4709 }
4710 return;
4711 }
4712
4713 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(Val: E) &&
4714 cast<CastExpr>(Val: E)->getCastKind() == CK_LValueToRValue &&
4715 !type->isArrayParameterType()) {
4716 LValue L = EmitLValue(E: cast<CastExpr>(Val: E)->getSubExpr());
4717 assert(L.isSimple());
4718 args.addUncopiedAggregate(LV: L, type);
4719 return;
4720 }
4721
4722 args.add(rvalue: EmitAnyExprToTemp(E), type);
4723}
4724
4725QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4726 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4727 // implicitly widens null pointer constants that are arguments to varargs
4728 // functions to pointer-sized ints.
4729 if (!getTarget().getTriple().isOSWindows())
4730 return Arg->getType();
4731
4732 if (Arg->getType()->isIntegerType() &&
4733 getContext().getTypeSize(T: Arg->getType()) <
4734 getContext().getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default) &&
4735 Arg->isNullPointerConstant(Ctx&: getContext(),
4736 NPC: Expr::NPC_ValueDependentIsNotNull)) {
4737 return getContext().getIntPtrType();
4738 }
4739
4740 return Arg->getType();
4741}
4742
4743// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4744// optimizer it can aggressively ignore unwind edges.
4745void
4746CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4747 if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4748 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4749 Inst->setMetadata(Kind: "clang.arc.no_objc_arc_exceptions",
4750 Node: CGM.getNoObjCARCExceptionsMetadata());
4751}
4752
4753/// Emits a call to the given no-arguments nounwind runtime function.
4754llvm::CallInst *
4755CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4756 const llvm::Twine &name) {
4757 return EmitNounwindRuntimeCall(callee, args: ArrayRef<llvm::Value *>(), name);
4758}
4759
4760/// Emits a call to the given nounwind runtime function.
4761llvm::CallInst *
4762CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4763 ArrayRef<Address> args,
4764 const llvm::Twine &name) {
4765 SmallVector<llvm::Value *, 3> values;
4766 for (auto arg : args)
4767 values.push_back(Elt: arg.emitRawPointer(CGF&: *this));
4768 return EmitNounwindRuntimeCall(callee, args: values, name);
4769}
4770
4771llvm::CallInst *
4772CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4773 ArrayRef<llvm::Value *> args,
4774 const llvm::Twine &name) {
4775 llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4776 call->setDoesNotThrow();
4777 return call;
4778}
4779
4780/// Emits a simple call (never an invoke) to the given no-arguments
4781/// runtime function.
4782llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4783 const llvm::Twine &name) {
4784 return EmitRuntimeCall(callee, args: std::nullopt, name);
4785}
4786
4787// Calls which may throw must have operand bundles indicating which funclet
4788// they are nested within.
4789SmallVector<llvm::OperandBundleDef, 1>
4790CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4791 // There is no need for a funclet operand bundle if we aren't inside a
4792 // funclet.
4793 if (!CurrentFuncletPad)
4794 return (SmallVector<llvm::OperandBundleDef, 1>());
4795
4796 // Skip intrinsics which cannot throw (as long as they don't lower into
4797 // regular function calls in the course of IR transformations).
4798 if (auto *CalleeFn = dyn_cast<llvm::Function>(Val: Callee->stripPointerCasts())) {
4799 if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) {
4800 auto IID = CalleeFn->getIntrinsicID();
4801 if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID))
4802 return (SmallVector<llvm::OperandBundleDef, 1>());
4803 }
4804 }
4805
4806 SmallVector<llvm::OperandBundleDef, 1> BundleList;
4807 BundleList.emplace_back(Args: "funclet", Args&: CurrentFuncletPad);
4808 return BundleList;
4809}
4810
4811/// Emits a simple call (never an invoke) to the given runtime function.
4812llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4813 ArrayRef<llvm::Value *> args,
4814 const llvm::Twine &name) {
4815 llvm::CallInst *call = Builder.CreateCall(
4816 Callee: callee, Args: args, OpBundles: getBundlesForFunclet(Callee: callee.getCallee()), Name: name);
4817 call->setCallingConv(getRuntimeCC());
4818
4819 if (CGM.shouldEmitConvergenceTokens() && call->isConvergent())
4820 return addControlledConvergenceToken(Input: call);
4821 return call;
4822}
4823
4824/// Emits a call or invoke to the given noreturn runtime function.
4825void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4826 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4827 SmallVector<llvm::OperandBundleDef, 1> BundleList =
4828 getBundlesForFunclet(Callee: callee.getCallee());
4829
4830 if (getInvokeDest()) {
4831 llvm::InvokeInst *invoke =
4832 Builder.CreateInvoke(Callee: callee,
4833 NormalDest: getUnreachableBlock(),
4834 UnwindDest: getInvokeDest(),
4835 Args: args,
4836 OpBundles: BundleList);
4837 invoke->setDoesNotReturn();
4838 invoke->setCallingConv(getRuntimeCC());
4839 } else {
4840 llvm::CallInst *call = Builder.CreateCall(Callee: callee, Args: args, OpBundles: BundleList);
4841 call->setDoesNotReturn();
4842 call->setCallingConv(getRuntimeCC());
4843 Builder.CreateUnreachable();
4844 }
4845}
4846
4847/// Emits a call or invoke instruction to the given nullary runtime function.
4848llvm::CallBase *
4849CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4850 const Twine &name) {
4851 return EmitRuntimeCallOrInvoke(callee, args: std::nullopt, name);
4852}
4853
4854/// Emits a call or invoke instruction to the given runtime function.
4855llvm::CallBase *
4856CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4857 ArrayRef<llvm::Value *> args,
4858 const Twine &name) {
4859 llvm::CallBase *call = EmitCallOrInvoke(Callee: callee, Args: args, Name: name);
4860 call->setCallingConv(getRuntimeCC());
4861 return call;
4862}
4863
4864/// Emits a call or invoke instruction to the given function, depending
4865/// on the current state of the EH stack.
4866llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4867 ArrayRef<llvm::Value *> Args,
4868 const Twine &Name) {
4869 llvm::BasicBlock *InvokeDest = getInvokeDest();
4870 SmallVector<llvm::OperandBundleDef, 1> BundleList =
4871 getBundlesForFunclet(Callee: Callee.getCallee());
4872
4873 llvm::CallBase *Inst;
4874 if (!InvokeDest)
4875 Inst = Builder.CreateCall(Callee, Args, OpBundles: BundleList, Name);
4876 else {
4877 llvm::BasicBlock *ContBB = createBasicBlock(name: "invoke.cont");
4878 Inst = Builder.CreateInvoke(Callee, NormalDest: ContBB, UnwindDest: InvokeDest, Args, OpBundles: BundleList,
4879 Name);
4880 EmitBlock(BB: ContBB);
4881 }
4882
4883 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4884 // optimizer it can aggressively ignore unwind edges.
4885 if (CGM.getLangOpts().ObjCAutoRefCount)
4886 AddObjCARCExceptionMetadata(Inst);
4887
4888 return Inst;
4889}
4890
4891void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4892 llvm::Value *New) {
4893 DeferredReplacements.push_back(
4894 Elt: std::make_pair(x: llvm::WeakTrackingVH(Old), y&: New));
4895}
4896
4897namespace {
4898
4899/// Specify given \p NewAlign as the alignment of return value attribute. If
4900/// such attribute already exists, re-set it to the maximal one of two options.
4901[[nodiscard]] llvm::AttributeList
4902maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4903 const llvm::AttributeList &Attrs,
4904 llvm::Align NewAlign) {
4905 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4906 if (CurAlign >= NewAlign)
4907 return Attrs;
4908 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Context&: Ctx, Alignment: NewAlign);
4909 return Attrs.removeRetAttribute(C&: Ctx, Kind: llvm::Attribute::AttrKind::Alignment)
4910 .addRetAttribute(C&: Ctx, Attr: AlignAttr);
4911}
4912
4913template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4914protected:
4915 CodeGenFunction &CGF;
4916
4917 /// We do nothing if this is, or becomes, nullptr.
4918 const AlignedAttrTy *AA = nullptr;
4919
4920 llvm::Value *Alignment = nullptr; // May or may not be a constant.
4921 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4922
4923 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4924 : CGF(CGF_) {
4925 if (!FuncDecl)
4926 return;
4927 AA = FuncDecl->getAttr<AlignedAttrTy>();
4928 }
4929
4930public:
4931 /// If we can, materialize the alignment as an attribute on return value.
4932 [[nodiscard]] llvm::AttributeList
4933 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4934 if (!AA || OffsetCI || CGF.SanOpts.has(K: SanitizerKind::Alignment))
4935 return Attrs;
4936 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Val: Alignment);
4937 if (!AlignmentCI)
4938 return Attrs;
4939 // We may legitimately have non-power-of-2 alignment here.
4940 // If so, this is UB land, emit it via `@llvm.assume` instead.
4941 if (!AlignmentCI->getValue().isPowerOf2())
4942 return Attrs;
4943 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4944 Ctx&: CGF.getLLVMContext(), Attrs,
4945 NewAlign: llvm::Align(
4946 AlignmentCI->getLimitedValue(Limit: llvm::Value::MaximumAlignment)));
4947 AA = nullptr; // We're done. Disallow doing anything else.
4948 return NewAttrs;
4949 }
4950
4951 /// Emit alignment assumption.
4952 /// This is a general fallback that we take if either there is an offset,
4953 /// or the alignment is variable or we are sanitizing for alignment.
4954 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4955 if (!AA)
4956 return;
4957 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4958 AA->getLocation(), Alignment, OffsetCI);
4959 AA = nullptr; // We're done. Disallow doing anything else.
4960 }
4961};
4962
4963/// Helper data structure to emit `AssumeAlignedAttr`.
4964class AssumeAlignedAttrEmitter final
4965 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4966public:
4967 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4968 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4969 if (!AA)
4970 return;
4971 // It is guaranteed that the alignment/offset are constants.
4972 Alignment = cast<llvm::ConstantInt>(Val: CGF.EmitScalarExpr(E: AA->getAlignment()));
4973 if (Expr *Offset = AA->getOffset()) {
4974 OffsetCI = cast<llvm::ConstantInt>(Val: CGF.EmitScalarExpr(E: Offset));
4975 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4976 OffsetCI = nullptr;
4977 }
4978 }
4979};
4980
4981/// Helper data structure to emit `AllocAlignAttr`.
4982class AllocAlignAttrEmitter final
4983 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4984public:
4985 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4986 const CallArgList &CallArgs)
4987 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4988 if (!AA)
4989 return;
4990 // Alignment may or may not be a constant, and that is okay.
4991 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4992 .getRValue(CGF)
4993 .getScalarVal();
4994 }
4995};
4996
4997} // namespace
4998
4999static unsigned getMaxVectorWidth(const llvm::Type *Ty) {
5000 if (auto *VT = dyn_cast<llvm::VectorType>(Val: Ty))
5001 return VT->getPrimitiveSizeInBits().getKnownMinValue();
5002 if (auto *AT = dyn_cast<llvm::ArrayType>(Val: Ty))
5003 return getMaxVectorWidth(Ty: AT->getElementType());
5004
5005 unsigned MaxVectorWidth = 0;
5006 if (auto *ST = dyn_cast<llvm::StructType>(Val: Ty))
5007 for (auto *I : ST->elements())
5008 MaxVectorWidth = std::max(a: MaxVectorWidth, b: getMaxVectorWidth(Ty: I));
5009 return MaxVectorWidth;
5010}
5011
5012RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
5013 const CGCallee &Callee,
5014 ReturnValueSlot ReturnValue,
5015 const CallArgList &CallArgs,
5016 llvm::CallBase **callOrInvoke, bool IsMustTail,
5017 SourceLocation Loc,
5018 bool IsVirtualFunctionPointerThunk) {
5019 // FIXME: We no longer need the types from CallArgs; lift up and simplify.
5020
5021 assert(Callee.isOrdinary() || Callee.isVirtual());
5022
5023 // Handle struct-return functions by passing a pointer to the
5024 // location that we would like to return into.
5025 QualType RetTy = CallInfo.getReturnType();
5026 const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
5027
5028 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(FI: CallInfo);
5029
5030 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
5031 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: TargetDecl)) {
5032 // We can only guarantee that a function is called from the correct
5033 // context/function based on the appropriate target attributes,
5034 // so only check in the case where we have both always_inline and target
5035 // since otherwise we could be making a conditional call after a check for
5036 // the proper cpu features (and it won't cause code generation issues due to
5037 // function based code generation).
5038 if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
5039 (TargetDecl->hasAttr<TargetAttr>() ||
5040 (CurFuncDecl && CurFuncDecl->hasAttr<TargetAttr>())))
5041 checkTargetFeatures(Loc, TargetDecl: FD);
5042 }
5043
5044 // Some architectures (such as x86-64) have the ABI changed based on
5045 // attribute-target/features. Give them a chance to diagnose.
5046 CGM.getTargetCodeGenInfo().checkFunctionCallABI(
5047 CGM, CallLoc: Loc, Caller: dyn_cast_or_null<FunctionDecl>(Val: CurCodeDecl),
5048 Callee: dyn_cast_or_null<FunctionDecl>(Val: TargetDecl), Args: CallArgs, ReturnType: RetTy);
5049
5050 // 1. Set up the arguments.
5051
5052 // If we're using inalloca, insert the allocation after the stack save.
5053 // FIXME: Do this earlier rather than hacking it in here!
5054 RawAddress ArgMemory = RawAddress::invalid();
5055 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
5056 const llvm::DataLayout &DL = CGM.getDataLayout();
5057 llvm::Instruction *IP = CallArgs.getStackBase();
5058 llvm::AllocaInst *AI;
5059 if (IP) {
5060 IP = IP->getNextNode();
5061 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
5062 "argmem", IP);
5063 } else {
5064 AI = CreateTempAlloca(Ty: ArgStruct, Name: "argmem");
5065 }
5066 auto Align = CallInfo.getArgStructAlignment();
5067 AI->setAlignment(Align.getAsAlign());
5068 AI->setUsedWithInAlloca(true);
5069 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
5070 ArgMemory = RawAddress(AI, ArgStruct, Align);
5071 }
5072
5073 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
5074 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
5075
5076 // If the call returns a temporary with struct return, create a temporary
5077 // alloca to hold the result, unless one is given to us.
5078 Address SRetPtr = Address::invalid();
5079 RawAddress SRetAlloca = RawAddress::invalid();
5080 llvm::Value *UnusedReturnSizePtr = nullptr;
5081 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
5082 if (IsVirtualFunctionPointerThunk && RetAI.isIndirect()) {
5083 SRetPtr = makeNaturalAddressForPointer(Ptr: CurFn->arg_begin() +
5084 IRFunctionArgs.getSRetArgNo(),
5085 T: RetTy, Alignment: CharUnits::fromQuantity(Quantity: 1));
5086 } else if (!ReturnValue.isNull()) {
5087 SRetPtr = ReturnValue.getAddress();
5088 } else {
5089 SRetPtr = CreateMemTemp(T: RetTy, Name: "tmp", Alloca: &SRetAlloca);
5090 if (HaveInsertPoint() && ReturnValue.isUnused()) {
5091 llvm::TypeSize size =
5092 CGM.getDataLayout().getTypeAllocSize(Ty: ConvertTypeForMem(T: RetTy));
5093 UnusedReturnSizePtr = EmitLifetimeStart(Size: size, Addr: SRetAlloca.getPointer());
5094 }
5095 }
5096 if (IRFunctionArgs.hasSRetArg()) {
5097 IRCallArgs[IRFunctionArgs.getSRetArgNo()] =
5098 getAsNaturalPointerTo(Addr: SRetPtr, PointeeType: RetTy);
5099 } else if (RetAI.isInAlloca()) {
5100 Address Addr =
5101 Builder.CreateStructGEP(Addr: ArgMemory, Index: RetAI.getInAllocaFieldIndex());
5102 Builder.CreateStore(Val: getAsNaturalPointerTo(Addr: SRetPtr, PointeeType: RetTy), Addr);
5103 }
5104 }
5105
5106 RawAddress swiftErrorTemp = RawAddress::invalid();
5107 Address swiftErrorArg = Address::invalid();
5108
5109 // When passing arguments using temporary allocas, we need to add the
5110 // appropriate lifetime markers. This vector keeps track of all the lifetime
5111 // markers that need to be ended right after the call.
5112 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
5113
5114 // Translate all of the arguments as necessary to match the IR lowering.
5115 assert(CallInfo.arg_size() == CallArgs.size() &&
5116 "Mismatch between function signature & arguments.");
5117 unsigned ArgNo = 0;
5118 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
5119 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
5120 I != E; ++I, ++info_it, ++ArgNo) {
5121 const ABIArgInfo &ArgInfo = info_it->info;
5122
5123 // Insert a padding argument to ensure proper alignment.
5124 if (IRFunctionArgs.hasPaddingArg(ArgNo))
5125 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
5126 llvm::UndefValue::get(T: ArgInfo.getPaddingType());
5127
5128 unsigned FirstIRArg, NumIRArgs;
5129 std::tie(args&: FirstIRArg, args&: NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
5130
5131 bool ArgHasMaybeUndefAttr =
5132 IsArgumentMaybeUndef(TargetDecl, NumRequiredArgs: CallInfo.getNumRequiredArgs(), ArgNo);
5133
5134 switch (ArgInfo.getKind()) {
5135 case ABIArgInfo::InAlloca: {
5136 assert(NumIRArgs == 0);
5137 assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
5138 if (I->isAggregate()) {
5139 RawAddress Addr = I->hasLValue()
5140 ? I->getKnownLValue().getAddress()
5141 : I->getKnownRValue().getAggregateAddress();
5142 llvm::Instruction *Placeholder =
5143 cast<llvm::Instruction>(Val: Addr.getPointer());
5144
5145 if (!ArgInfo.getInAllocaIndirect()) {
5146 // Replace the placeholder with the appropriate argument slot GEP.
5147 CGBuilderTy::InsertPoint IP = Builder.saveIP();
5148 Builder.SetInsertPoint(Placeholder);
5149 Addr = Builder.CreateStructGEP(Addr: ArgMemory,
5150 Index: ArgInfo.getInAllocaFieldIndex());
5151 Builder.restoreIP(IP);
5152 } else {
5153 // For indirect things such as overaligned structs, replace the
5154 // placeholder with a regular aggregate temporary alloca. Store the
5155 // address of this alloca into the struct.
5156 Addr = CreateMemTemp(T: info_it->type, Name: "inalloca.indirect.tmp");
5157 Address ArgSlot = Builder.CreateStructGEP(
5158 Addr: ArgMemory, Index: ArgInfo.getInAllocaFieldIndex());
5159 Builder.CreateStore(Val: Addr.getPointer(), Addr: ArgSlot);
5160 }
5161 deferPlaceholderReplacement(Old: Placeholder, New: Addr.getPointer());
5162 } else if (ArgInfo.getInAllocaIndirect()) {
5163 // Make a temporary alloca and store the address of it into the argument
5164 // struct.
5165 RawAddress Addr = CreateMemTempWithoutCast(
5166 T: I->Ty, Align: getContext().getTypeAlignInChars(T: I->Ty),
5167 Name: "indirect-arg-temp");
5168 I->copyInto(CGF&: *this, Addr);
5169 Address ArgSlot =
5170 Builder.CreateStructGEP(Addr: ArgMemory, Index: ArgInfo.getInAllocaFieldIndex());
5171 Builder.CreateStore(Val: Addr.getPointer(), Addr: ArgSlot);
5172 } else {
5173 // Store the RValue into the argument struct.
5174 Address Addr =
5175 Builder.CreateStructGEP(Addr: ArgMemory, Index: ArgInfo.getInAllocaFieldIndex());
5176 Addr = Addr.withElementType(ElemTy: ConvertTypeForMem(T: I->Ty));
5177 I->copyInto(CGF&: *this, Addr);
5178 }
5179 break;
5180 }
5181
5182 case ABIArgInfo::Indirect:
5183 case ABIArgInfo::IndirectAliased: {
5184 assert(NumIRArgs == 1);
5185 if (I->isAggregate()) {
5186 // We want to avoid creating an unnecessary temporary+copy here;
5187 // however, we need one in three cases:
5188 // 1. If the argument is not byval, and we are required to copy the
5189 // source. (This case doesn't occur on any common architecture.)
5190 // 2. If the argument is byval, RV is not sufficiently aligned, and
5191 // we cannot force it to be sufficiently aligned.
5192 // 3. If the argument is byval, but RV is not located in default
5193 // or alloca address space.
5194 Address Addr = I->hasLValue()
5195 ? I->getKnownLValue().getAddress()
5196 : I->getKnownRValue().getAggregateAddress();
5197 CharUnits Align = ArgInfo.getIndirectAlign();
5198 const llvm::DataLayout *TD = &CGM.getDataLayout();
5199
5200 assert((FirstIRArg >= IRFuncTy->getNumParams() ||
5201 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
5202 TD->getAllocaAddrSpace()) &&
5203 "indirect argument must be in alloca address space");
5204
5205 bool NeedCopy = false;
5206 if (Addr.getAlignment() < Align &&
5207 llvm::getOrEnforceKnownAlignment(V: Addr.emitRawPointer(CGF&: *this),
5208 PrefAlign: Align.getAsAlign(),
5209 DL: *TD) < Align.getAsAlign()) {
5210 NeedCopy = true;
5211 } else if (I->hasLValue()) {
5212 auto LV = I->getKnownLValue();
5213 auto AS = LV.getAddressSpace();
5214
5215 bool isByValOrRef =
5216 ArgInfo.isIndirectAliased() || ArgInfo.getIndirectByVal();
5217
5218 if (!isByValOrRef ||
5219 (LV.getAlignment() < getContext().getTypeAlignInChars(T: I->Ty))) {
5220 NeedCopy = true;
5221 }
5222 if (!getLangOpts().OpenCL) {
5223 if ((isByValOrRef &&
5224 (AS != LangAS::Default &&
5225 AS != CGM.getASTAllocaAddressSpace()))) {
5226 NeedCopy = true;
5227 }
5228 }
5229 // For OpenCL even if RV is located in default or alloca address space
5230 // we don't want to perform address space cast for it.
5231 else if ((isByValOrRef &&
5232 Addr.getType()->getAddressSpace() != IRFuncTy->
5233 getParamType(i: FirstIRArg)->getPointerAddressSpace())) {
5234 NeedCopy = true;
5235 }
5236 }
5237
5238 if (!NeedCopy) {
5239 // Skip the extra memcpy call.
5240 llvm::Value *V = getAsNaturalPointerTo(Addr, PointeeType: I->Ty);
5241 auto *T = llvm::PointerType::get(
5242 C&: CGM.getLLVMContext(), AddressSpace: CGM.getDataLayout().getAllocaAddrSpace());
5243
5244 llvm::Value *Val = getTargetHooks().performAddrSpaceCast(
5245 CGF&: *this, V, SrcAddr: LangAS::Default, DestAddr: CGM.getASTAllocaAddressSpace(), DestTy: T,
5246 IsNonNull: true);
5247 if (ArgHasMaybeUndefAttr)
5248 Val = Builder.CreateFreeze(V: Val);
5249 IRCallArgs[FirstIRArg] = Val;
5250 break;
5251 }
5252 }
5253
5254 // For non-aggregate args and aggregate args meeting conditions above
5255 // we need to create an aligned temporary, and copy to it.
5256 RawAddress AI = CreateMemTempWithoutCast(
5257 T: I->Ty, Align: ArgInfo.getIndirectAlign(), Name: "byval-temp");
5258 llvm::Value *Val = getAsNaturalPointerTo(Addr: AI, PointeeType: I->Ty);
5259 if (ArgHasMaybeUndefAttr)
5260 Val = Builder.CreateFreeze(V: Val);
5261 IRCallArgs[FirstIRArg] = Val;
5262
5263 // Emit lifetime markers for the temporary alloca.
5264 llvm::TypeSize ByvalTempElementSize =
5265 CGM.getDataLayout().getTypeAllocSize(Ty: AI.getElementType());
5266 llvm::Value *LifetimeSize =
5267 EmitLifetimeStart(Size: ByvalTempElementSize, Addr: AI.getPointer());
5268
5269 // Add cleanup code to emit the end lifetime marker after the call.
5270 if (LifetimeSize) // In case we disabled lifetime markers.
5271 CallLifetimeEndAfterCall.emplace_back(Args&: AI, Args&: LifetimeSize);
5272
5273 // Generate the copy.
5274 I->copyInto(CGF&: *this, Addr: AI);
5275 break;
5276 }
5277
5278 case ABIArgInfo::Ignore:
5279 assert(NumIRArgs == 0);
5280 break;
5281
5282 case ABIArgInfo::Extend:
5283 case ABIArgInfo::Direct: {
5284 if (!isa<llvm::StructType>(Val: ArgInfo.getCoerceToType()) &&
5285 ArgInfo.getCoerceToType() == ConvertType(T: info_it->type) &&
5286 ArgInfo.getDirectOffset() == 0) {
5287 assert(NumIRArgs == 1);
5288 llvm::Value *V;
5289 if (!I->isAggregate())
5290 V = I->getKnownRValue().getScalarVal();
5291 else
5292 V = Builder.CreateLoad(
5293 Addr: I->hasLValue() ? I->getKnownLValue().getAddress()
5294 : I->getKnownRValue().getAggregateAddress());
5295
5296 // Implement swifterror by copying into a new swifterror argument.
5297 // We'll write back in the normal path out of the call.
5298 if (CallInfo.getExtParameterInfo(argIndex: ArgNo).getABI()
5299 == ParameterABI::SwiftErrorResult) {
5300 assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
5301
5302 QualType pointeeTy = I->Ty->getPointeeType();
5303 swiftErrorArg = makeNaturalAddressForPointer(
5304 Ptr: V, T: pointeeTy, Alignment: getContext().getTypeAlignInChars(T: pointeeTy));
5305
5306 swiftErrorTemp =
5307 CreateMemTemp(T: pointeeTy, Align: getPointerAlign(), Name: "swifterror.temp");
5308 V = swiftErrorTemp.getPointer();
5309 cast<llvm::AllocaInst>(Val: V)->setSwiftError(true);
5310
5311 llvm::Value *errorValue = Builder.CreateLoad(Addr: swiftErrorArg);
5312 Builder.CreateStore(Val: errorValue, Addr: swiftErrorTemp);
5313 }
5314
5315 // We might have to widen integers, but we should never truncate.
5316 if (ArgInfo.getCoerceToType() != V->getType() &&
5317 V->getType()->isIntegerTy())
5318 V = Builder.CreateZExt(V, DestTy: ArgInfo.getCoerceToType());
5319
5320 // If the argument doesn't match, perform a bitcast to coerce it. This
5321 // can happen due to trivial type mismatches.
5322 if (FirstIRArg < IRFuncTy->getNumParams() &&
5323 V->getType() != IRFuncTy->getParamType(i: FirstIRArg))
5324 V = Builder.CreateBitCast(V, DestTy: IRFuncTy->getParamType(i: FirstIRArg));
5325
5326 if (ArgHasMaybeUndefAttr)
5327 V = Builder.CreateFreeze(V);
5328 IRCallArgs[FirstIRArg] = V;
5329 break;
5330 }
5331
5332 llvm::StructType *STy =
5333 dyn_cast<llvm::StructType>(Val: ArgInfo.getCoerceToType());
5334 if (STy && ArgInfo.isDirect() && !ArgInfo.getCanBeFlattened()) {
5335 llvm::Type *SrcTy = ConvertTypeForMem(T: I->Ty);
5336 [[maybe_unused]] llvm::TypeSize SrcTypeSize =
5337 CGM.getDataLayout().getTypeAllocSize(Ty: SrcTy);
5338 [[maybe_unused]] llvm::TypeSize DstTypeSize =
5339 CGM.getDataLayout().getTypeAllocSize(Ty: STy);
5340 if (STy->containsHomogeneousScalableVectorTypes()) {
5341 assert(SrcTypeSize == DstTypeSize &&
5342 "Only allow non-fractional movement of structure with "
5343 "homogeneous scalable vector type");
5344
5345 IRCallArgs[FirstIRArg] = I->getKnownRValue().getScalarVal();
5346 break;
5347 }
5348 }
5349
5350 // FIXME: Avoid the conversion through memory if possible.
5351 Address Src = Address::invalid();
5352 if (!I->isAggregate()) {
5353 Src = CreateMemTemp(T: I->Ty, Name: "coerce");
5354 I->copyInto(CGF&: *this, Addr: Src);
5355 } else {
5356 Src = I->hasLValue() ? I->getKnownLValue().getAddress()
5357 : I->getKnownRValue().getAggregateAddress();
5358 }
5359
5360 // If the value is offset in memory, apply the offset now.
5361 Src = emitAddressAtOffset(CGF&: *this, addr: Src, info: ArgInfo);
5362
5363 // Fast-isel and the optimizer generally like scalar values better than
5364 // FCAs, so we flatten them if this is safe to do for this argument.
5365 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
5366 llvm::Type *SrcTy = Src.getElementType();
5367 llvm::TypeSize SrcTypeSize =
5368 CGM.getDataLayout().getTypeAllocSize(Ty: SrcTy);
5369 llvm::TypeSize DstTypeSize = CGM.getDataLayout().getTypeAllocSize(Ty: STy);
5370 if (SrcTypeSize.isScalable()) {
5371 assert(STy->containsHomogeneousScalableVectorTypes() &&
5372 "ABI only supports structure with homogeneous scalable vector "
5373 "type");
5374 assert(SrcTypeSize == DstTypeSize &&
5375 "Only allow non-fractional movement of structure with "
5376 "homogeneous scalable vector type");
5377 assert(NumIRArgs == STy->getNumElements());
5378
5379 llvm::Value *StoredStructValue =
5380 Builder.CreateLoad(Addr: Src, Name: Src.getName() + ".tuple");
5381 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5382 llvm::Value *Extract = Builder.CreateExtractValue(
5383 Agg: StoredStructValue, Idxs: i, Name: Src.getName() + ".extract" + Twine(i));
5384 IRCallArgs[FirstIRArg + i] = Extract;
5385 }
5386 } else {
5387 uint64_t SrcSize = SrcTypeSize.getFixedValue();
5388 uint64_t DstSize = DstTypeSize.getFixedValue();
5389
5390 // If the source type is smaller than the destination type of the
5391 // coerce-to logic, copy the source value into a temp alloca the size
5392 // of the destination type to allow loading all of it. The bits past
5393 // the source value are left undef.
5394 if (SrcSize < DstSize) {
5395 Address TempAlloca = CreateTempAlloca(Ty: STy, align: Src.getAlignment(),
5396 Name: Src.getName() + ".coerce");
5397 Builder.CreateMemCpy(Dest: TempAlloca, Src, Size: SrcSize);
5398 Src = TempAlloca;
5399 } else {
5400 Src = Src.withElementType(ElemTy: STy);
5401 }
5402
5403 assert(NumIRArgs == STy->getNumElements());
5404 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5405 Address EltPtr = Builder.CreateStructGEP(Addr: Src, Index: i);
5406 llvm::Value *LI = Builder.CreateLoad(Addr: EltPtr);
5407 if (ArgHasMaybeUndefAttr)
5408 LI = Builder.CreateFreeze(V: LI);
5409 IRCallArgs[FirstIRArg + i] = LI;
5410 }
5411 }
5412 } else {
5413 // In the simple case, just pass the coerced loaded value.
5414 assert(NumIRArgs == 1);
5415 llvm::Value *Load =
5416 CreateCoercedLoad(Src, Ty: ArgInfo.getCoerceToType(), CGF&: *this);
5417
5418 if (CallInfo.isCmseNSCall()) {
5419 // For certain parameter types, clear padding bits, as they may reveal
5420 // sensitive information.
5421 // Small struct/union types are passed as integer arrays.
5422 auto *ATy = dyn_cast<llvm::ArrayType>(Val: Load->getType());
5423 if (ATy != nullptr && isa<RecordType>(Val: I->Ty.getCanonicalType()))
5424 Load = EmitCMSEClearRecord(Src: Load, ATy, QTy: I->Ty);
5425 }
5426
5427 if (ArgHasMaybeUndefAttr)
5428 Load = Builder.CreateFreeze(V: Load);
5429 IRCallArgs[FirstIRArg] = Load;
5430 }
5431
5432 break;
5433 }
5434
5435 case ABIArgInfo::CoerceAndExpand: {
5436 auto coercionType = ArgInfo.getCoerceAndExpandType();
5437 auto layout = CGM.getDataLayout().getStructLayout(Ty: coercionType);
5438
5439 llvm::Value *tempSize = nullptr;
5440 Address addr = Address::invalid();
5441 RawAddress AllocaAddr = RawAddress::invalid();
5442 if (I->isAggregate()) {
5443 addr = I->hasLValue() ? I->getKnownLValue().getAddress()
5444 : I->getKnownRValue().getAggregateAddress();
5445
5446 } else {
5447 RValue RV = I->getKnownRValue();
5448 assert(RV.isScalar()); // complex should always just be direct
5449
5450 llvm::Type *scalarType = RV.getScalarVal()->getType();
5451 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(Ty: scalarType);
5452 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(Ty: scalarType);
5453
5454 // Materialize to a temporary.
5455 addr = CreateTempAlloca(
5456 Ty: RV.getScalarVal()->getType(),
5457 align: CharUnits::fromQuantity(Quantity: std::max(a: layout->getAlignment(), b: scalarAlign)),
5458 Name: "tmp",
5459 /*ArraySize=*/nullptr, Alloca: &AllocaAddr);
5460 tempSize = EmitLifetimeStart(Size: scalarSize, Addr: AllocaAddr.getPointer());
5461
5462 Builder.CreateStore(Val: RV.getScalarVal(), Addr: addr);
5463 }
5464
5465 addr = addr.withElementType(ElemTy: coercionType);
5466
5467 unsigned IRArgPos = FirstIRArg;
5468 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5469 llvm::Type *eltType = coercionType->getElementType(N: i);
5470 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5471 Address eltAddr = Builder.CreateStructGEP(Addr: addr, Index: i);
5472 llvm::Value *elt = Builder.CreateLoad(Addr: eltAddr);
5473 if (ArgHasMaybeUndefAttr)
5474 elt = Builder.CreateFreeze(V: elt);
5475 IRCallArgs[IRArgPos++] = elt;
5476 }
5477 assert(IRArgPos == FirstIRArg + NumIRArgs);
5478
5479 if (tempSize) {
5480 EmitLifetimeEnd(Size: tempSize, Addr: AllocaAddr.getPointer());
5481 }
5482
5483 break;
5484 }
5485
5486 case ABIArgInfo::Expand: {
5487 unsigned IRArgPos = FirstIRArg;
5488 ExpandTypeToArgs(Ty: I->Ty, Arg: *I, IRFuncTy, IRCallArgs, IRCallArgPos&: IRArgPos);
5489 assert(IRArgPos == FirstIRArg + NumIRArgs);
5490 break;
5491 }
5492 }
5493 }
5494
5495 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(CGF&: *this);
5496 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5497
5498 // If we're using inalloca, set up that argument.
5499 if (ArgMemory.isValid()) {
5500 llvm::Value *Arg = ArgMemory.getPointer();
5501 assert(IRFunctionArgs.hasInallocaArg());
5502 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5503 }
5504
5505 // 2. Prepare the function pointer.
5506
5507 // If the callee is a bitcast of a non-variadic function to have a
5508 // variadic function pointer type, check to see if we can remove the
5509 // bitcast. This comes up with unprototyped functions.
5510 //
5511 // This makes the IR nicer, but more importantly it ensures that we
5512 // can inline the function at -O0 if it is marked always_inline.
5513 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5514 llvm::Value *Ptr) -> llvm::Function * {
5515 if (!CalleeFT->isVarArg())
5516 return nullptr;
5517
5518 // Get underlying value if it's a bitcast
5519 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Val: Ptr)) {
5520 if (CE->getOpcode() == llvm::Instruction::BitCast)
5521 Ptr = CE->getOperand(i_nocapture: 0);
5522 }
5523
5524 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Val: Ptr);
5525 if (!OrigFn)
5526 return nullptr;
5527
5528 llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5529
5530 // If the original type is variadic, or if any of the component types
5531 // disagree, we cannot remove the cast.
5532 if (OrigFT->isVarArg() ||
5533 OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5534 OrigFT->getReturnType() != CalleeFT->getReturnType())
5535 return nullptr;
5536
5537 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5538 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5539 return nullptr;
5540
5541 return OrigFn;
5542 };
5543
5544 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5545 CalleePtr = OrigFn;
5546 IRFuncTy = OrigFn->getFunctionType();
5547 }
5548
5549 // 3. Perform the actual call.
5550
5551 // Deactivate any cleanups that we're supposed to do immediately before
5552 // the call.
5553 if (!CallArgs.getCleanupsToDeactivate().empty())
5554 deactivateArgCleanupsBeforeCall(CGF&: *this, CallArgs);
5555
5556 // Assert that the arguments we computed match up. The IR verifier
5557 // will catch this, but this is a common enough source of problems
5558 // during IRGen changes that it's way better for debugging to catch
5559 // it ourselves here.
5560#ifndef NDEBUG
5561 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5562 for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5563 // Inalloca argument can have different type.
5564 if (IRFunctionArgs.hasInallocaArg() &&
5565 i == IRFunctionArgs.getInallocaArgNo())
5566 continue;
5567 if (i < IRFuncTy->getNumParams())
5568 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5569 }
5570#endif
5571
5572 // Update the largest vector width if any arguments have vector types.
5573 for (unsigned i = 0; i < IRCallArgs.size(); ++i)
5574 LargestVectorWidth = std::max(a: LargestVectorWidth,
5575 b: getMaxVectorWidth(Ty: IRCallArgs[i]->getType()));
5576
5577 // Compute the calling convention and attributes.
5578 unsigned CallingConv;
5579 llvm::AttributeList Attrs;
5580 CGM.ConstructAttributeList(Name: CalleePtr->getName(), FI: CallInfo,
5581 CalleeInfo: Callee.getAbstractInfo(), AttrList&: Attrs, CallingConv,
5582 /*AttrOnCallSite=*/true,
5583 /*IsThunk=*/false);
5584
5585 if (CallingConv == llvm::CallingConv::X86_VectorCall &&
5586 getTarget().getTriple().isWindowsArm64EC()) {
5587 CGM.Error(loc: Loc, error: "__vectorcall calling convention is not currently "
5588 "supported");
5589 }
5590
5591 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: CurFuncDecl)) {
5592 if (FD->hasAttr<StrictFPAttr>())
5593 // All calls within a strictfp function are marked strictfp
5594 Attrs = Attrs.addFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::StrictFP);
5595
5596 // If -ffast-math is enabled and the function is guarded by an
5597 // '__attribute__((optnone)) adjust the memory attribute so the BE emits the
5598 // library call instead of the intrinsic.
5599 if (FD->hasAttr<OptimizeNoneAttr>() && getLangOpts().FastMath)
5600 CGM.AdjustMemoryAttribute(Name: CalleePtr->getName(), CalleeInfo: Callee.getAbstractInfo(),
5601 Attrs);
5602 }
5603 // Add call-site nomerge attribute if exists.
5604 if (InNoMergeAttributedStmt)
5605 Attrs = Attrs.addFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::NoMerge);
5606
5607 // Add call-site noinline attribute if exists.
5608 if (InNoInlineAttributedStmt)
5609 Attrs = Attrs.addFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::NoInline);
5610
5611 // Add call-site always_inline attribute if exists.
5612 if (InAlwaysInlineAttributedStmt)
5613 Attrs =
5614 Attrs.addFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::AlwaysInline);
5615
5616 // Apply some call-site-specific attributes.
5617 // TODO: work this into building the attribute set.
5618
5619 // Apply always_inline to all calls within flatten functions.
5620 // FIXME: should this really take priority over __try, below?
5621 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5622 !InNoInlineAttributedStmt &&
5623 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5624 Attrs =
5625 Attrs.addFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::AlwaysInline);
5626 }
5627
5628 // Disable inlining inside SEH __try blocks.
5629 if (isSEHTryScope()) {
5630 Attrs = Attrs.addFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::NoInline);
5631 }
5632
5633 // Decide whether to use a call or an invoke.
5634 bool CannotThrow;
5635 if (currentFunctionUsesSEHTry()) {
5636 // SEH cares about asynchronous exceptions, so everything can "throw."
5637 CannotThrow = false;
5638 } else if (isCleanupPadScope() &&
5639 EHPersonality::get(CGF&: *this).isMSVCXXPersonality()) {
5640 // The MSVC++ personality will implicitly terminate the program if an
5641 // exception is thrown during a cleanup outside of a try/catch.
5642 // We don't need to model anything in IR to get this behavior.
5643 CannotThrow = true;
5644 } else {
5645 // Otherwise, nounwind call sites will never throw.
5646 CannotThrow = Attrs.hasFnAttr(Kind: llvm::Attribute::NoUnwind);
5647
5648 if (auto *FPtr = dyn_cast<llvm::Function>(Val: CalleePtr))
5649 if (FPtr->hasFnAttribute(Kind: llvm::Attribute::NoUnwind))
5650 CannotThrow = true;
5651 }
5652
5653 // If we made a temporary, be sure to clean up after ourselves. Note that we
5654 // can't depend on being inside of an ExprWithCleanups, so we need to manually
5655 // pop this cleanup later on. Being eager about this is OK, since this
5656 // temporary is 'invisible' outside of the callee.
5657 if (UnusedReturnSizePtr)
5658 pushFullExprCleanup<CallLifetimeEnd>(kind: NormalEHLifetimeMarker, A: SRetAlloca,
5659 A: UnusedReturnSizePtr);
5660
5661 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5662
5663 SmallVector<llvm::OperandBundleDef, 1> BundleList =
5664 getBundlesForFunclet(Callee: CalleePtr);
5665
5666 if (SanOpts.has(K: SanitizerKind::KCFI) &&
5667 !isa_and_nonnull<FunctionDecl>(Val: TargetDecl))
5668 EmitKCFIOperandBundle(Callee: ConcreteCallee, Bundles&: BundleList);
5669
5670 // Add the pointer-authentication bundle.
5671 EmitPointerAuthOperandBundle(Info: ConcreteCallee.getPointerAuthInfo(), Bundles&: BundleList);
5672
5673 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: CurFuncDecl))
5674 if (FD->hasAttr<StrictFPAttr>())
5675 // All calls within a strictfp function are marked strictfp
5676 Attrs = Attrs.addFnAttribute(C&: getLLVMContext(), Kind: llvm::Attribute::StrictFP);
5677
5678 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5679 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5680
5681 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5682 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5683
5684 // Emit the actual call/invoke instruction.
5685 llvm::CallBase *CI;
5686 if (!InvokeDest) {
5687 CI = Builder.CreateCall(FTy: IRFuncTy, Callee: CalleePtr, Args: IRCallArgs, OpBundles: BundleList);
5688 } else {
5689 llvm::BasicBlock *Cont = createBasicBlock(name: "invoke.cont");
5690 CI = Builder.CreateInvoke(Ty: IRFuncTy, Callee: CalleePtr, NormalDest: Cont, UnwindDest: InvokeDest, Args: IRCallArgs,
5691 OpBundles: BundleList);
5692 EmitBlock(BB: Cont);
5693 }
5694 if (CI->getCalledFunction() && CI->getCalledFunction()->hasName() &&
5695 CI->getCalledFunction()->getName().starts_with(Prefix: "_Z4sqrt")) {
5696 SetSqrtFPAccuracy(CI);
5697 }
5698 if (callOrInvoke)
5699 *callOrInvoke = CI;
5700
5701 // If this is within a function that has the guard(nocf) attribute and is an
5702 // indirect call, add the "guard_nocf" attribute to this call to indicate that
5703 // Control Flow Guard checks should not be added, even if the call is inlined.
5704 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(Val: CurFuncDecl)) {
5705 if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5706 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5707 Attrs = Attrs.addFnAttribute(C&: getLLVMContext(), Kind: "guard_nocf");
5708 }
5709 }
5710
5711 // Apply the attributes and calling convention.
5712 CI->setAttributes(Attrs);
5713 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5714
5715 // Apply various metadata.
5716
5717 if (!CI->getType()->isVoidTy())
5718 CI->setName("call");
5719
5720 if (CGM.shouldEmitConvergenceTokens() && CI->isConvergent())
5721 CI = addControlledConvergenceToken(Input: CI);
5722
5723 // Update largest vector width from the return type.
5724 LargestVectorWidth =
5725 std::max(a: LargestVectorWidth, b: getMaxVectorWidth(Ty: CI->getType()));
5726
5727 // Insert instrumentation or attach profile metadata at indirect call sites.
5728 // For more details, see the comment before the definition of
5729 // IPVK_IndirectCallTarget in InstrProfData.inc.
5730 if (!CI->getCalledFunction())
5731 PGO.valueProfile(Builder, ValueKind: llvm::IPVK_IndirectCallTarget,
5732 ValueSite: CI, ValuePtr: CalleePtr);
5733
5734 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5735 // optimizer it can aggressively ignore unwind edges.
5736 if (CGM.getLangOpts().ObjCAutoRefCount)
5737 AddObjCARCExceptionMetadata(Inst: CI);
5738
5739 // Set tail call kind if necessary.
5740 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(Val: CI)) {
5741 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5742 Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5743 else if (IsMustTail) {
5744 if (getTarget().getTriple().isPPC()) {
5745 if (getTarget().getTriple().isOSAIX())
5746 CGM.getDiags().Report(Loc, DiagID: diag::err_aix_musttail_unsupported);
5747 else if (!getTarget().hasFeature(Feature: "pcrelative-memops")) {
5748 if (getTarget().hasFeature(Feature: "longcall"))
5749 CGM.getDiags().Report(Loc, DiagID: diag::err_ppc_impossible_musttail) << 0;
5750 else if (Call->isIndirectCall())
5751 CGM.getDiags().Report(Loc, DiagID: diag::err_ppc_impossible_musttail) << 1;
5752 else if (isa_and_nonnull<FunctionDecl>(Val: TargetDecl)) {
5753 if (!cast<FunctionDecl>(Val: TargetDecl)->isDefined())
5754 // The undefined callee may be a forward declaration. Without
5755 // knowning all symbols in the module, we won't know the symbol is
5756 // defined or not. Collect all these symbols for later diagnosing.
5757 CGM.addUndefinedGlobalForTailCall(
5758 Global: {cast<FunctionDecl>(Val: TargetDecl), Loc});
5759 else {
5760 llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(
5761 GD: GlobalDecl(cast<FunctionDecl>(Val: TargetDecl)));
5762 if (llvm::GlobalValue::isWeakForLinker(Linkage) ||
5763 llvm::GlobalValue::isDiscardableIfUnused(Linkage))
5764 CGM.getDiags().Report(Loc, DiagID: diag::err_ppc_impossible_musttail)
5765 << 2;
5766 }
5767 }
5768 }
5769 }
5770 Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5771 }
5772 }
5773
5774 // Add metadata for calls to MSAllocator functions
5775 if (getDebugInfo() && TargetDecl &&
5776 TargetDecl->hasAttr<MSAllocatorAttr>())
5777 getDebugInfo()->addHeapAllocSiteMetadata(CallSite: CI, AllocatedTy: RetTy->getPointeeType(), Loc);
5778
5779 // Add metadata if calling an __attribute__((error(""))) or warning fn.
5780 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
5781 llvm::ConstantInt *Line =
5782 llvm::ConstantInt::get(Ty: Int64Ty, V: Loc.getRawEncoding());
5783 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(C: Line);
5784 llvm::MDTuple *MDT = llvm::MDNode::get(Context&: getLLVMContext(), MDs: {MD});
5785 CI->setMetadata(Kind: "srcloc", Node: MDT);
5786 }
5787
5788 // 4. Finish the call.
5789
5790 // If the call doesn't return, finish the basic block and clear the
5791 // insertion point; this allows the rest of IRGen to discard
5792 // unreachable code.
5793 if (CI->doesNotReturn()) {
5794 if (UnusedReturnSizePtr)
5795 PopCleanupBlock();
5796
5797 // Strip away the noreturn attribute to better diagnose unreachable UB.
5798 if (SanOpts.has(K: SanitizerKind::Unreachable)) {
5799 // Also remove from function since CallBase::hasFnAttr additionally checks
5800 // attributes of the called function.
5801 if (auto *F = CI->getCalledFunction())
5802 F->removeFnAttr(Kind: llvm::Attribute::NoReturn);
5803 CI->removeFnAttr(Kind: llvm::Attribute::NoReturn);
5804
5805 // Avoid incompatibility with ASan which relies on the `noreturn`
5806 // attribute to insert handler calls.
5807 if (SanOpts.hasOneOf(K: SanitizerKind::Address |
5808 SanitizerKind::KernelAddress)) {
5809 SanitizerScope SanScope(this);
5810 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5811 Builder.SetInsertPoint(CI);
5812 auto *FnType = llvm::FunctionType::get(Result: CGM.VoidTy, /*isVarArg=*/false);
5813 llvm::FunctionCallee Fn =
5814 CGM.CreateRuntimeFunction(Ty: FnType, Name: "__asan_handle_no_return");
5815 EmitNounwindRuntimeCall(callee: Fn);
5816 }
5817 }
5818
5819 EmitUnreachable(Loc);
5820 Builder.ClearInsertionPoint();
5821
5822 // FIXME: For now, emit a dummy basic block because expr emitters in
5823 // generally are not ready to handle emitting expressions at unreachable
5824 // points.
5825 EnsureInsertPoint();
5826
5827 // Return a reasonable RValue.
5828 return GetUndefRValue(Ty: RetTy);
5829 }
5830
5831 // If this is a musttail call, return immediately. We do not branch to the
5832 // epilogue in this case.
5833 if (IsMustTail) {
5834 for (auto it = EHStack.find(sp: CurrentCleanupScopeDepth); it != EHStack.end();
5835 ++it) {
5836 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(Val: &*it);
5837 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5838 CGM.ErrorUnsupported(S: MustTailCall, Type: "tail call skipping over cleanups");
5839 }
5840 if (CI->getType()->isVoidTy())
5841 Builder.CreateRetVoid();
5842 else
5843 Builder.CreateRet(V: CI);
5844 Builder.ClearInsertionPoint();
5845 EnsureInsertPoint();
5846 return GetUndefRValue(Ty: RetTy);
5847 }
5848
5849 // Perform the swifterror writeback.
5850 if (swiftErrorTemp.isValid()) {
5851 llvm::Value *errorResult = Builder.CreateLoad(Addr: swiftErrorTemp);
5852 Builder.CreateStore(Val: errorResult, Addr: swiftErrorArg);
5853 }
5854
5855 // Emit any call-associated writebacks immediately. Arguably this
5856 // should happen after any return-value munging.
5857 if (CallArgs.hasWritebacks())
5858 emitWritebacks(CGF&: *this, args: CallArgs);
5859
5860 // The stack cleanup for inalloca arguments has to run out of the normal
5861 // lexical order, so deactivate it and run it manually here.
5862 CallArgs.freeArgumentMemory(CGF&: *this);
5863
5864 // Extract the return value.
5865 RValue Ret;
5866
5867 // If the current function is a virtual function pointer thunk, avoid copying
5868 // the return value of the musttail call to a temporary.
5869 if (IsVirtualFunctionPointerThunk) {
5870 Ret = RValue::get(V: CI);
5871 } else {
5872 Ret = [&] {
5873 switch (RetAI.getKind()) {
5874 case ABIArgInfo::CoerceAndExpand: {
5875 auto coercionType = RetAI.getCoerceAndExpandType();
5876
5877 Address addr = SRetPtr.withElementType(ElemTy: coercionType);
5878
5879 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5880 bool requiresExtract = isa<llvm::StructType>(Val: CI->getType());
5881
5882 unsigned unpaddedIndex = 0;
5883 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5884 llvm::Type *eltType = coercionType->getElementType(N: i);
5885 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
5886 continue;
5887 Address eltAddr = Builder.CreateStructGEP(Addr: addr, Index: i);
5888 llvm::Value *elt = CI;
5889 if (requiresExtract)
5890 elt = Builder.CreateExtractValue(Agg: elt, Idxs: unpaddedIndex++);
5891 else
5892 assert(unpaddedIndex == 0);
5893 Builder.CreateStore(Val: elt, Addr: eltAddr);
5894 }
5895 [[fallthrough]];
5896 }
5897
5898 case ABIArgInfo::InAlloca:
5899 case ABIArgInfo::Indirect: {
5900 RValue ret = convertTempToRValue(addr: SRetPtr, type: RetTy, Loc: SourceLocation());
5901 if (UnusedReturnSizePtr)
5902 PopCleanupBlock();
5903 return ret;
5904 }
5905
5906 case ABIArgInfo::Ignore:
5907 // If we are ignoring an argument that had a result, make sure to
5908 // construct the appropriate return value for our caller.
5909 return GetUndefRValue(Ty: RetTy);
5910
5911 case ABIArgInfo::Extend:
5912 case ABIArgInfo::Direct: {
5913 llvm::Type *RetIRTy = ConvertType(T: RetTy);
5914 if (RetAI.getCoerceToType() == RetIRTy &&
5915 RetAI.getDirectOffset() == 0) {
5916 switch (getEvaluationKind(T: RetTy)) {
5917 case TEK_Complex: {
5918 llvm::Value *Real = Builder.CreateExtractValue(Agg: CI, Idxs: 0);
5919 llvm::Value *Imag = Builder.CreateExtractValue(Agg: CI, Idxs: 1);
5920 return RValue::getComplex(C: std::make_pair(x&: Real, y&: Imag));
5921 }
5922 case TEK_Aggregate:
5923 break;
5924 case TEK_Scalar: {
5925 // If the argument doesn't match, perform a bitcast to coerce it.
5926 // This can happen due to trivial type mismatches.
5927 llvm::Value *V = CI;
5928 if (V->getType() != RetIRTy)
5929 V = Builder.CreateBitCast(V, DestTy: RetIRTy);
5930 return RValue::get(V);
5931 }
5932 }
5933 }
5934
5935 // If coercing a fixed vector from a scalable vector for ABI
5936 // compatibility, and the types match, use the llvm.vector.extract
5937 // intrinsic to perform the conversion.
5938 if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(Val: RetIRTy)) {
5939 llvm::Value *V = CI;
5940 if (auto *ScalableSrcTy =
5941 dyn_cast<llvm::ScalableVectorType>(Val: V->getType())) {
5942 if (FixedDstTy->getElementType() ==
5943 ScalableSrcTy->getElementType()) {
5944 llvm::Value *Zero = llvm::Constant::getNullValue(Ty: CGM.Int64Ty);
5945 V = Builder.CreateExtractVector(DstType: FixedDstTy, SrcVec: V, Idx: Zero,
5946 Name: "cast.fixed");
5947 return RValue::get(V);
5948 }
5949 }
5950 }
5951
5952 Address DestPtr = ReturnValue.getValue();
5953 bool DestIsVolatile = ReturnValue.isVolatile();
5954 uint64_t DestSize =
5955 getContext().getTypeInfoDataSizeInChars(T: RetTy).Width.getQuantity();
5956
5957 if (!DestPtr.isValid()) {
5958 DestPtr = CreateMemTemp(T: RetTy, Name: "coerce");
5959 DestIsVolatile = false;
5960 DestSize = getContext().getTypeSizeInChars(T: RetTy).getQuantity();
5961 }
5962
5963 // An empty record can overlap other data (if declared with
5964 // no_unique_address); omit the store for such types - as there is no
5965 // actual data to store.
5966 if (!isEmptyRecord(Context&: getContext(), T: RetTy, AllowArrays: true)) {
5967 // If the value is offset in memory, apply the offset now.
5968 Address StorePtr = emitAddressAtOffset(CGF&: *this, addr: DestPtr, info: RetAI);
5969 CreateCoercedStore(
5970 Src: CI, Dst: StorePtr,
5971 DstSize: llvm::TypeSize::getFixed(ExactSize: DestSize - RetAI.getDirectOffset()),
5972 DstIsVolatile: DestIsVolatile);
5973 }
5974
5975 return convertTempToRValue(addr: DestPtr, type: RetTy, Loc: SourceLocation());
5976 }
5977
5978 case ABIArgInfo::Expand:
5979 case ABIArgInfo::IndirectAliased:
5980 llvm_unreachable("Invalid ABI kind for return argument");
5981 }
5982
5983 llvm_unreachable("Unhandled ABIArgInfo::Kind");
5984 }();
5985 }
5986
5987 // Emit the assume_aligned check on the return value.
5988 if (Ret.isScalar() && TargetDecl) {
5989 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5990 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5991 }
5992
5993 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5994 // we can't use the full cleanup mechanism.
5995 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5996 LifetimeEnd.Emit(CGF&: *this, /*Flags=*/flags: {});
5997
5998 if (!ReturnValue.isExternallyDestructed() &&
5999 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
6000 pushDestroy(dtorKind: QualType::DK_nontrivial_c_struct, addr: Ret.getAggregateAddress(),
6001 type: RetTy);
6002
6003 return Ret;
6004}
6005
6006CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
6007 if (isVirtual()) {
6008 const CallExpr *CE = getVirtualCallExpr();
6009 return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
6010 CGF, GD: getVirtualMethodDecl(), This: getThisAddress(), Ty: getVirtualFunctionType(),
6011 Loc: CE ? CE->getBeginLoc() : SourceLocation());
6012 }
6013
6014 return *this;
6015}
6016
6017/* VarArg handling */
6018
6019RValue CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr,
6020 AggValueSlot Slot) {
6021 VAListAddr = VE->isMicrosoftABI() ? EmitMSVAListRef(E: VE->getSubExpr())
6022 : EmitVAListRef(E: VE->getSubExpr());
6023 QualType Ty = VE->getType();
6024 if (VE->isMicrosoftABI())
6025 return CGM.getTypes().getABIInfo().EmitMSVAArg(CGF&: *this, VAListAddr, Ty, Slot);
6026 return CGM.getTypes().getABIInfo().EmitVAArg(CGF&: *this, VAListAddr, Ty, Slot);
6027}
6028