1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGCleanup.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CGOpenMPRuntime.h"
18#include "CGRecordLayout.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "ConstantEmitter.h"
22#include "TargetInfo.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/Attr.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/Expr.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/Basic/CodeGenOptions.h"
30#include "clang/Basic/TargetInfo.h"
31#include "llvm/ADT/APFixedPoint.h"
32#include "llvm/IR/CFG.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/FixedPointBuilder.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GetElementPtrTypeIterator.h"
39#include "llvm/IR/GlobalVariable.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/IntrinsicsPowerPC.h"
42#include "llvm/IR/MatrixBuilder.h"
43#include "llvm/IR/Module.h"
44#include "llvm/Support/TypeSize.h"
45#include <cstdarg>
46#include <optional>
47
48using namespace clang;
49using namespace CodeGen;
50using llvm::Value;
51
52//===----------------------------------------------------------------------===//
53// Scalar Expression Emitter
54//===----------------------------------------------------------------------===//
55
56namespace llvm {
57extern cl::opt<bool> EnableSingleByteCoverage;
58} // namespace llvm
59
60namespace {
61
62/// Determine whether the given binary operation may overflow.
63/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
64/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
65/// the returned overflow check is precise. The returned value is 'true' for
66/// all other opcodes, to be conservative.
67bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
68 BinaryOperator::Opcode Opcode, bool Signed,
69 llvm::APInt &Result) {
70 // Assume overflow is possible, unless we can prove otherwise.
71 bool Overflow = true;
72 const auto &LHSAP = LHS->getValue();
73 const auto &RHSAP = RHS->getValue();
74 if (Opcode == BO_Add) {
75 Result = Signed ? LHSAP.sadd_ov(RHS: RHSAP, Overflow)
76 : LHSAP.uadd_ov(RHS: RHSAP, Overflow);
77 } else if (Opcode == BO_Sub) {
78 Result = Signed ? LHSAP.ssub_ov(RHS: RHSAP, Overflow)
79 : LHSAP.usub_ov(RHS: RHSAP, Overflow);
80 } else if (Opcode == BO_Mul) {
81 Result = Signed ? LHSAP.smul_ov(RHS: RHSAP, Overflow)
82 : LHSAP.umul_ov(RHS: RHSAP, Overflow);
83 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
84 if (Signed && !RHS->isZero())
85 Result = LHSAP.sdiv_ov(RHS: RHSAP, Overflow);
86 else
87 return false;
88 }
89 return Overflow;
90}
91
92struct BinOpInfo {
93 Value *LHS;
94 Value *RHS;
95 QualType Ty; // Computation Type.
96 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
97 FPOptions FPFeatures;
98 const Expr *E; // Entire expr, for error unsupported. May not be binop.
99
100 /// Check if the binop can result in integer overflow.
101 bool mayHaveIntegerOverflow() const {
102 // Without constant input, we can't rule out overflow.
103 auto *LHSCI = dyn_cast<llvm::ConstantInt>(Val: LHS);
104 auto *RHSCI = dyn_cast<llvm::ConstantInt>(Val: RHS);
105 if (!LHSCI || !RHSCI)
106 return true;
107
108 llvm::APInt Result;
109 return ::mayHaveIntegerOverflow(
110 LHS: LHSCI, RHS: RHSCI, Opcode, Signed: Ty->hasSignedIntegerRepresentation(), Result);
111 }
112
113 /// Check if the binop computes a division or a remainder.
114 bool isDivremOp() const {
115 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
116 Opcode == BO_RemAssign;
117 }
118
119 /// Check if the binop can result in an integer division by zero.
120 bool mayHaveIntegerDivisionByZero() const {
121 if (isDivremOp())
122 if (auto *CI = dyn_cast<llvm::ConstantInt>(Val: RHS))
123 return CI->isZero();
124 return true;
125 }
126
127 /// Check if the binop can result in a float division by zero.
128 bool mayHaveFloatDivisionByZero() const {
129 if (isDivremOp())
130 if (auto *CFP = dyn_cast<llvm::ConstantFP>(Val: RHS))
131 return CFP->isZero();
132 return true;
133 }
134
135 /// Check if at least one operand is a fixed point type. In such cases, this
136 /// operation did not follow usual arithmetic conversion and both operands
137 /// might not be of the same type.
138 bool isFixedPointOp() const {
139 // We cannot simply check the result type since comparison operations return
140 // an int.
141 if (const auto *BinOp = dyn_cast<BinaryOperator>(Val: E)) {
142 QualType LHSType = BinOp->getLHS()->getType();
143 QualType RHSType = BinOp->getRHS()->getType();
144 return LHSType->isFixedPointType() || RHSType->isFixedPointType();
145 }
146 if (const auto *UnOp = dyn_cast<UnaryOperator>(Val: E))
147 return UnOp->getSubExpr()->getType()->isFixedPointType();
148 return false;
149 }
150
151 /// Check if the RHS has a signed integer representation.
152 bool rhsHasSignedIntegerRepresentation() const {
153 if (const auto *BinOp = dyn_cast<BinaryOperator>(Val: E)) {
154 QualType RHSType = BinOp->getRHS()->getType();
155 return RHSType->hasSignedIntegerRepresentation();
156 }
157 return false;
158 }
159};
160
161static bool MustVisitNullValue(const Expr *E) {
162 // If a null pointer expression's type is the C++0x nullptr_t, then
163 // it's not necessarily a simple constant and it must be evaluated
164 // for its potential side effects.
165 return E->getType()->isNullPtrType();
166}
167
168/// If \p E is a widened promoted integer, get its base (unpromoted) type.
169static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
170 const Expr *E) {
171 const Expr *Base = E->IgnoreImpCasts();
172 if (E == Base)
173 return std::nullopt;
174
175 QualType BaseTy = Base->getType();
176 if (!Ctx.isPromotableIntegerType(T: BaseTy) ||
177 Ctx.getTypeSize(T: BaseTy) >= Ctx.getTypeSize(T: E->getType()))
178 return std::nullopt;
179
180 return BaseTy;
181}
182
183/// Check if \p E is a widened promoted integer.
184static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
185 return getUnwidenedIntegerType(Ctx, E).has_value();
186}
187
188/// Check if we can skip the overflow check for \p Op.
189static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
190 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
191 "Expected a unary or binary operator");
192
193 // If the binop has constant inputs and we can prove there is no overflow,
194 // we can elide the overflow check.
195 if (!Op.mayHaveIntegerOverflow())
196 return true;
197
198 // If a unary op has a widened operand, the op cannot overflow.
199 if (const auto *UO = dyn_cast<UnaryOperator>(Val: Op.E))
200 return !UO->canOverflow();
201
202 // We usually don't need overflow checks for binops with widened operands.
203 // Multiplication with promoted unsigned operands is a special case.
204 const auto *BO = cast<BinaryOperator>(Val: Op.E);
205 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, E: BO->getLHS());
206 if (!OptionalLHSTy)
207 return false;
208
209 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, E: BO->getRHS());
210 if (!OptionalRHSTy)
211 return false;
212
213 QualType LHSTy = *OptionalLHSTy;
214 QualType RHSTy = *OptionalRHSTy;
215
216 // This is the simple case: binops without unsigned multiplication, and with
217 // widened operands. No overflow check is needed here.
218 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
219 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
220 return true;
221
222 // For unsigned multiplication the overflow check can be elided if either one
223 // of the unpromoted types are less than half the size of the promoted type.
224 unsigned PromotedSize = Ctx.getTypeSize(T: Op.E->getType());
225 return (2 * Ctx.getTypeSize(T: LHSTy)) < PromotedSize ||
226 (2 * Ctx.getTypeSize(T: RHSTy)) < PromotedSize;
227}
228
229class ScalarExprEmitter
230 : public StmtVisitor<ScalarExprEmitter, Value*> {
231 CodeGenFunction &CGF;
232 CGBuilderTy &Builder;
233 bool IgnoreResultAssign;
234 llvm::LLVMContext &VMContext;
235public:
236
237 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
238 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
239 VMContext(cgf.getLLVMContext()) {
240 }
241
242 //===--------------------------------------------------------------------===//
243 // Utilities
244 //===--------------------------------------------------------------------===//
245
246 bool TestAndClearIgnoreResultAssign() {
247 bool I = IgnoreResultAssign;
248 IgnoreResultAssign = false;
249 return I;
250 }
251
252 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
253 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
254 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
255 return CGF.EmitCheckedLValue(E, TCK);
256 }
257
258 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
259 const BinOpInfo &Info);
260
261 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
262 return CGF.EmitLoadOfLValue(V: LV, Loc).getScalarVal();
263 }
264
265 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
266 const AlignValueAttr *AVAttr = nullptr;
267 if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) {
268 const ValueDecl *VD = DRE->getDecl();
269
270 if (VD->getType()->isReferenceType()) {
271 if (const auto *TTy =
272 VD->getType().getNonReferenceType()->getAs<TypedefType>())
273 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
274 } else {
275 // Assumptions for function parameters are emitted at the start of the
276 // function, so there is no need to repeat that here,
277 // unless the alignment-assumption sanitizer is enabled,
278 // then we prefer the assumption over alignment attribute
279 // on IR function param.
280 if (isa<ParmVarDecl>(Val: VD) && !CGF.SanOpts.has(K: SanitizerKind::Alignment))
281 return;
282
283 AVAttr = VD->getAttr<AlignValueAttr>();
284 }
285 }
286
287 if (!AVAttr)
288 if (const auto *TTy = E->getType()->getAs<TypedefType>())
289 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
290
291 if (!AVAttr)
292 return;
293
294 Value *AlignmentValue = CGF.EmitScalarExpr(E: AVAttr->getAlignment());
295 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Val: AlignmentValue);
296 CGF.emitAlignmentAssumption(PtrValue: V, E, AssumptionLoc: AVAttr->getLocation(), Alignment: AlignmentCI);
297 }
298
299 /// EmitLoadOfLValue - Given an expression with complex type that represents a
300 /// value l-value, this method emits the address of the l-value, then loads
301 /// and returns the result.
302 Value *EmitLoadOfLValue(const Expr *E) {
303 Value *V = EmitLoadOfLValue(LV: EmitCheckedLValue(E, TCK: CodeGenFunction::TCK_Load),
304 Loc: E->getExprLoc());
305
306 EmitLValueAlignmentAssumption(E, V);
307 return V;
308 }
309
310 /// EmitConversionToBool - Convert the specified expression value to a
311 /// boolean (i1) truth value. This is equivalent to "Val != 0".
312 Value *EmitConversionToBool(Value *Src, QualType DstTy);
313
314 /// Emit a check that a conversion from a floating-point type does not
315 /// overflow.
316 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
317 Value *Src, QualType SrcType, QualType DstType,
318 llvm::Type *DstTy, SourceLocation Loc);
319
320 /// Known implicit conversion check kinds.
321 /// This is used for bitfield conversion checks as well.
322 /// Keep in sync with the enum of the same name in ubsan_handlers.h
323 enum ImplicitConversionCheckKind : unsigned char {
324 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
325 ICCK_UnsignedIntegerTruncation = 1,
326 ICCK_SignedIntegerTruncation = 2,
327 ICCK_IntegerSignChange = 3,
328 ICCK_SignedIntegerTruncationOrSignChange = 4,
329 };
330
331 /// Emit a check that an [implicit] truncation of an integer does not
332 /// discard any bits. It is not UB, so we use the value after truncation.
333 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
334 QualType DstType, SourceLocation Loc);
335
336 /// Emit a check that an [implicit] conversion of an integer does not change
337 /// the sign of the value. It is not UB, so we use the value after conversion.
338 /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
339 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
340 QualType DstType, SourceLocation Loc);
341
342 /// Emit a conversion from the specified type to the specified destination
343 /// type, both of which are LLVM scalar types.
344 struct ScalarConversionOpts {
345 bool TreatBooleanAsSigned;
346 bool EmitImplicitIntegerTruncationChecks;
347 bool EmitImplicitIntegerSignChangeChecks;
348
349 ScalarConversionOpts()
350 : TreatBooleanAsSigned(false),
351 EmitImplicitIntegerTruncationChecks(false),
352 EmitImplicitIntegerSignChangeChecks(false) {}
353
354 ScalarConversionOpts(clang::SanitizerSet SanOpts)
355 : TreatBooleanAsSigned(false),
356 EmitImplicitIntegerTruncationChecks(
357 SanOpts.hasOneOf(K: SanitizerKind::ImplicitIntegerTruncation)),
358 EmitImplicitIntegerSignChangeChecks(
359 SanOpts.has(K: SanitizerKind::ImplicitIntegerSignChange)) {}
360 };
361 Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
362 llvm::Type *SrcTy, llvm::Type *DstTy,
363 ScalarConversionOpts Opts);
364 Value *
365 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
366 SourceLocation Loc,
367 ScalarConversionOpts Opts = ScalarConversionOpts());
368
369 /// Convert between either a fixed point and other fixed point or fixed point
370 /// and an integer.
371 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
372 SourceLocation Loc);
373
374 /// Emit a conversion from the specified complex type to the specified
375 /// destination type, where the destination type is an LLVM scalar type.
376 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
377 QualType SrcTy, QualType DstTy,
378 SourceLocation Loc);
379
380 /// EmitNullValue - Emit a value that corresponds to null for the given type.
381 Value *EmitNullValue(QualType Ty);
382
383 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
384 Value *EmitFloatToBoolConversion(Value *V) {
385 // Compare against 0.0 for fp scalars.
386 llvm::Value *Zero = llvm::Constant::getNullValue(Ty: V->getType());
387 return Builder.CreateFCmpUNE(LHS: V, RHS: Zero, Name: "tobool");
388 }
389
390 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
391 Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
392 Value *Zero = CGF.CGM.getNullPointer(T: cast<llvm::PointerType>(Val: V->getType()), QT);
393
394 return Builder.CreateICmpNE(LHS: V, RHS: Zero, Name: "tobool");
395 }
396
397 Value *EmitIntToBoolConversion(Value *V) {
398 // Because of the type rules of C, we often end up computing a
399 // logical value, then zero extending it to int, then wanting it
400 // as a logical value again. Optimize this common case.
401 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Val: V)) {
402 if (ZI->getOperand(i_nocapture: 0)->getType() == Builder.getInt1Ty()) {
403 Value *Result = ZI->getOperand(i_nocapture: 0);
404 // If there aren't any more uses, zap the instruction to save space.
405 // Note that there can be more uses, for example if this
406 // is the result of an assignment.
407 if (ZI->use_empty())
408 ZI->eraseFromParent();
409 return Result;
410 }
411 }
412
413 return Builder.CreateIsNotNull(Arg: V, Name: "tobool");
414 }
415
416 //===--------------------------------------------------------------------===//
417 // Visitor Methods
418 //===--------------------------------------------------------------------===//
419
420 Value *Visit(Expr *E) {
421 ApplyDebugLocation DL(CGF, E);
422 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(S: E);
423 }
424
425 Value *VisitStmt(Stmt *S) {
426 S->dump(OS&: llvm::errs(), Context: CGF.getContext());
427 llvm_unreachable("Stmt can't have complex result type!");
428 }
429 Value *VisitExpr(Expr *S);
430
431 Value *VisitConstantExpr(ConstantExpr *E) {
432 // A constant expression of type 'void' generates no code and produces no
433 // value.
434 if (E->getType()->isVoidType())
435 return nullptr;
436
437 if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(CE: E)) {
438 if (E->isGLValue())
439 return CGF.EmitLoadOfScalar(
440 Addr: Address(Result, CGF.convertTypeForLoadStore(ASTTy: E->getType()),
441 CGF.getContext().getTypeAlignInChars(T: E->getType())),
442 /*Volatile*/ false, Ty: E->getType(), Loc: E->getExprLoc());
443 return Result;
444 }
445 return Visit(E: E->getSubExpr());
446 }
447 Value *VisitParenExpr(ParenExpr *PE) {
448 return Visit(E: PE->getSubExpr());
449 }
450 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
451 return Visit(E: E->getReplacement());
452 }
453 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
454 return Visit(E: GE->getResultExpr());
455 }
456 Value *VisitCoawaitExpr(CoawaitExpr *S) {
457 return CGF.EmitCoawaitExpr(E: *S).getScalarVal();
458 }
459 Value *VisitCoyieldExpr(CoyieldExpr *S) {
460 return CGF.EmitCoyieldExpr(E: *S).getScalarVal();
461 }
462 Value *VisitUnaryCoawait(const UnaryOperator *E) {
463 return Visit(E: E->getSubExpr());
464 }
465
466 // Leaves.
467 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
468 return Builder.getInt(AI: E->getValue());
469 }
470 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
471 return Builder.getInt(AI: E->getValue());
472 }
473 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
474 return llvm::ConstantFP::get(Context&: VMContext, V: E->getValue());
475 }
476 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
477 return llvm::ConstantInt::get(Ty: ConvertType(T: E->getType()), V: E->getValue());
478 }
479 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
480 return llvm::ConstantInt::get(Ty: ConvertType(T: E->getType()), V: E->getValue());
481 }
482 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
483 return llvm::ConstantInt::get(Ty: ConvertType(T: E->getType()), V: E->getValue());
484 }
485 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
486 if (E->getType()->isVoidType())
487 return nullptr;
488
489 return EmitNullValue(Ty: E->getType());
490 }
491 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
492 return EmitNullValue(Ty: E->getType());
493 }
494 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
495 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
496 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
497 llvm::Value *V = CGF.GetAddrOfLabel(L: E->getLabel());
498 return Builder.CreateBitCast(V, DestTy: ConvertType(T: E->getType()));
499 }
500
501 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
502 return llvm::ConstantInt::get(Ty: ConvertType(T: E->getType()),V: E->getPackLength());
503 }
504
505 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
506 return CGF.EmitPseudoObjectRValue(e: E).getScalarVal();
507 }
508
509 Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E);
510 Value *VisitEmbedExpr(EmbedExpr *E);
511
512 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
513 if (E->isGLValue())
514 return EmitLoadOfLValue(LV: CGF.getOrCreateOpaqueLValueMapping(e: E),
515 Loc: E->getExprLoc());
516
517 // Otherwise, assume the mapping is the scalar directly.
518 return CGF.getOrCreateOpaqueRValueMapping(e: E).getScalarVal();
519 }
520
521 // l-values.
522 Value *VisitDeclRefExpr(DeclRefExpr *E) {
523 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(refExpr: E))
524 return CGF.emitScalarConstant(Constant, E);
525 return EmitLoadOfLValue(E);
526 }
527
528 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
529 return CGF.EmitObjCSelectorExpr(E);
530 }
531 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
532 return CGF.EmitObjCProtocolExpr(E);
533 }
534 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
535 return EmitLoadOfLValue(E);
536 }
537 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
538 if (E->getMethodDecl() &&
539 E->getMethodDecl()->getReturnType()->isReferenceType())
540 return EmitLoadOfLValue(E);
541 return CGF.EmitObjCMessageExpr(E).getScalarVal();
542 }
543
544 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
545 LValue LV = CGF.EmitObjCIsaExpr(E);
546 Value *V = CGF.EmitLoadOfLValue(V: LV, Loc: E->getExprLoc()).getScalarVal();
547 return V;
548 }
549
550 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
551 VersionTuple Version = E->getVersion();
552
553 // If we're checking for a platform older than our minimum deployment
554 // target, we can fold the check away.
555 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
556 return llvm::ConstantInt::get(Ty: Builder.getInt1Ty(), V: 1);
557
558 return CGF.EmitBuiltinAvailable(Version);
559 }
560
561 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
562 Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
563 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
564 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
565 Value *VisitMemberExpr(MemberExpr *E);
566 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
567 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
568 // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
569 // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
570 // literals aren't l-values in C++. We do so simply because that's the
571 // cleanest way to handle compound literals in C++.
572 // See the discussion here: https://reviews.llvm.org/D64464
573 return EmitLoadOfLValue(E);
574 }
575
576 Value *VisitInitListExpr(InitListExpr *E);
577
578 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
579 assert(CGF.getArrayInitIndex() &&
580 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
581 return CGF.getArrayInitIndex();
582 }
583
584 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
585 return EmitNullValue(Ty: E->getType());
586 }
587 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
588 CGF.CGM.EmitExplicitCastExprType(E, CGF: &CGF);
589 return VisitCastExpr(E);
590 }
591 Value *VisitCastExpr(CastExpr *E);
592
593 Value *VisitCallExpr(const CallExpr *E) {
594 if (E->getCallReturnType(Ctx: CGF.getContext())->isReferenceType())
595 return EmitLoadOfLValue(E);
596
597 Value *V = CGF.EmitCallExpr(E).getScalarVal();
598
599 EmitLValueAlignmentAssumption(E, V);
600 return V;
601 }
602
603 Value *VisitStmtExpr(const StmtExpr *E);
604
605 // Unary Operators.
606 Value *VisitUnaryPostDec(const UnaryOperator *E) {
607 LValue LV = EmitLValue(E: E->getSubExpr());
608 return EmitScalarPrePostIncDec(E, LV, isInc: false, isPre: false);
609 }
610 Value *VisitUnaryPostInc(const UnaryOperator *E) {
611 LValue LV = EmitLValue(E: E->getSubExpr());
612 return EmitScalarPrePostIncDec(E, LV, isInc: true, isPre: false);
613 }
614 Value *VisitUnaryPreDec(const UnaryOperator *E) {
615 LValue LV = EmitLValue(E: E->getSubExpr());
616 return EmitScalarPrePostIncDec(E, LV, isInc: false, isPre: true);
617 }
618 Value *VisitUnaryPreInc(const UnaryOperator *E) {
619 LValue LV = EmitLValue(E: E->getSubExpr());
620 return EmitScalarPrePostIncDec(E, LV, isInc: true, isPre: true);
621 }
622
623 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
624 llvm::Value *InVal,
625 bool IsInc);
626
627 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
628 bool isInc, bool isPre);
629
630
631 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
632 if (isa<MemberPointerType>(Val: E->getType())) // never sugared
633 return CGF.CGM.getMemberPointerConstant(e: E);
634
635 return EmitLValue(E: E->getSubExpr()).getPointer(CGF);
636 }
637 Value *VisitUnaryDeref(const UnaryOperator *E) {
638 if (E->getType()->isVoidType())
639 return Visit(E: E->getSubExpr()); // the actual value should be unused
640 return EmitLoadOfLValue(E);
641 }
642
643 Value *VisitUnaryPlus(const UnaryOperator *E,
644 QualType PromotionType = QualType());
645 Value *VisitPlus(const UnaryOperator *E, QualType PromotionType);
646 Value *VisitUnaryMinus(const UnaryOperator *E,
647 QualType PromotionType = QualType());
648 Value *VisitMinus(const UnaryOperator *E, QualType PromotionType);
649
650 Value *VisitUnaryNot (const UnaryOperator *E);
651 Value *VisitUnaryLNot (const UnaryOperator *E);
652 Value *VisitUnaryReal(const UnaryOperator *E,
653 QualType PromotionType = QualType());
654 Value *VisitReal(const UnaryOperator *E, QualType PromotionType);
655 Value *VisitUnaryImag(const UnaryOperator *E,
656 QualType PromotionType = QualType());
657 Value *VisitImag(const UnaryOperator *E, QualType PromotionType);
658 Value *VisitUnaryExtension(const UnaryOperator *E) {
659 return Visit(E: E->getSubExpr());
660 }
661
662 // C++
663 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
664 return EmitLoadOfLValue(E);
665 }
666 Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
667 auto &Ctx = CGF.getContext();
668 APValue Evaluated =
669 SLE->EvaluateInContext(Ctx, DefaultExpr: CGF.CurSourceLocExprScope.getDefaultExpr());
670 return ConstantEmitter(CGF).emitAbstract(loc: SLE->getLocation(), value: Evaluated,
671 T: SLE->getType());
672 }
673
674 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
675 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
676 return Visit(E: DAE->getExpr());
677 }
678 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
679 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
680 return Visit(E: DIE->getExpr());
681 }
682 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
683 return CGF.LoadCXXThis();
684 }
685
686 Value *VisitExprWithCleanups(ExprWithCleanups *E);
687 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
688 return CGF.EmitCXXNewExpr(E);
689 }
690 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
691 CGF.EmitCXXDeleteExpr(E);
692 return nullptr;
693 }
694
695 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
696 return llvm::ConstantInt::get(Ty: ConvertType(T: E->getType()), V: E->getValue());
697 }
698
699 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
700 return Builder.getInt1(V: E->isSatisfied());
701 }
702
703 Value *VisitRequiresExpr(const RequiresExpr *E) {
704 return Builder.getInt1(V: E->isSatisfied());
705 }
706
707 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
708 return llvm::ConstantInt::get(Ty: Builder.getInt32Ty(), V: E->getValue());
709 }
710
711 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
712 return llvm::ConstantInt::get(Ty: Builder.getInt1Ty(), V: E->getValue());
713 }
714
715 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
716 // C++ [expr.pseudo]p1:
717 // The result shall only be used as the operand for the function call
718 // operator (), and the result of such a call has type void. The only
719 // effect is the evaluation of the postfix-expression before the dot or
720 // arrow.
721 CGF.EmitScalarExpr(E: E->getBase());
722 return nullptr;
723 }
724
725 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
726 return EmitNullValue(Ty: E->getType());
727 }
728
729 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
730 CGF.EmitCXXThrowExpr(E);
731 return nullptr;
732 }
733
734 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
735 return Builder.getInt1(V: E->getValue());
736 }
737
738 // Binary Operators.
739 Value *EmitMul(const BinOpInfo &Ops) {
740 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
741 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
742 case LangOptions::SOB_Defined:
743 if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow))
744 return Builder.CreateMul(LHS: Ops.LHS, RHS: Ops.RHS, Name: "mul");
745 [[fallthrough]];
746 case LangOptions::SOB_Undefined:
747 if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow))
748 return Builder.CreateNSWMul(LHS: Ops.LHS, RHS: Ops.RHS, Name: "mul");
749 [[fallthrough]];
750 case LangOptions::SOB_Trapping:
751 if (CanElideOverflowCheck(Ctx: CGF.getContext(), Op: Ops))
752 return Builder.CreateNSWMul(LHS: Ops.LHS, RHS: Ops.RHS, Name: "mul");
753 return EmitOverflowCheckedBinOp(Ops);
754 }
755 }
756
757 if (Ops.Ty->isConstantMatrixType()) {
758 llvm::MatrixBuilder MB(Builder);
759 // We need to check the types of the operands of the operator to get the
760 // correct matrix dimensions.
761 auto *BO = cast<BinaryOperator>(Val: Ops.E);
762 auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
763 Val: BO->getLHS()->getType().getCanonicalType());
764 auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
765 Val: BO->getRHS()->getType().getCanonicalType());
766 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
767 if (LHSMatTy && RHSMatTy)
768 return MB.CreateMatrixMultiply(LHS: Ops.LHS, RHS: Ops.RHS, LHSRows: LHSMatTy->getNumRows(),
769 LHSColumns: LHSMatTy->getNumColumns(),
770 RHSColumns: RHSMatTy->getNumColumns());
771 return MB.CreateScalarMultiply(LHS: Ops.LHS, RHS: Ops.RHS);
772 }
773
774 if (Ops.Ty->isUnsignedIntegerType() &&
775 CGF.SanOpts.has(K: SanitizerKind::UnsignedIntegerOverflow) &&
776 !CanElideOverflowCheck(Ctx: CGF.getContext(), Op: Ops))
777 return EmitOverflowCheckedBinOp(Ops);
778
779 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
780 // Preserve the old values
781 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
782 return Builder.CreateFMul(L: Ops.LHS, R: Ops.RHS, Name: "mul");
783 }
784 if (Ops.isFixedPointOp())
785 return EmitFixedPointBinOp(Ops);
786 return Builder.CreateMul(LHS: Ops.LHS, RHS: Ops.RHS, Name: "mul");
787 }
788 /// Create a binary op that checks for overflow.
789 /// Currently only supports +, - and *.
790 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
791
792 // Check for undefined division and modulus behaviors.
793 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
794 llvm::Value *Zero,bool isDiv);
795 // Common helper for getting how wide LHS of shift is.
796 static Value *GetMaximumShiftAmount(Value *LHS, Value *RHS, bool RHSIsSigned);
797
798 // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
799 // non powers of two.
800 Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
801
802 Value *EmitDiv(const BinOpInfo &Ops);
803 Value *EmitRem(const BinOpInfo &Ops);
804 Value *EmitAdd(const BinOpInfo &Ops);
805 Value *EmitSub(const BinOpInfo &Ops);
806 Value *EmitShl(const BinOpInfo &Ops);
807 Value *EmitShr(const BinOpInfo &Ops);
808 Value *EmitAnd(const BinOpInfo &Ops) {
809 return Builder.CreateAnd(LHS: Ops.LHS, RHS: Ops.RHS, Name: "and");
810 }
811 Value *EmitXor(const BinOpInfo &Ops) {
812 return Builder.CreateXor(LHS: Ops.LHS, RHS: Ops.RHS, Name: "xor");
813 }
814 Value *EmitOr (const BinOpInfo &Ops) {
815 return Builder.CreateOr(LHS: Ops.LHS, RHS: Ops.RHS, Name: "or");
816 }
817
818 // Helper functions for fixed point binary operations.
819 Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
820
821 BinOpInfo EmitBinOps(const BinaryOperator *E,
822 QualType PromotionTy = QualType());
823
824 Value *EmitPromotedValue(Value *result, QualType PromotionType);
825 Value *EmitUnPromotedValue(Value *result, QualType ExprType);
826 Value *EmitPromoted(const Expr *E, QualType PromotionType);
827
828 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
829 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
830 Value *&Result);
831
832 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
833 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
834
835 QualType getPromotionType(QualType Ty) {
836 const auto &Ctx = CGF.getContext();
837 if (auto *CT = Ty->getAs<ComplexType>()) {
838 QualType ElementType = CT->getElementType();
839 if (ElementType.UseExcessPrecision(Ctx))
840 return Ctx.getComplexType(T: Ctx.FloatTy);
841 }
842
843 if (Ty.UseExcessPrecision(Ctx)) {
844 if (auto *VT = Ty->getAs<VectorType>()) {
845 unsigned NumElements = VT->getNumElements();
846 return Ctx.getVectorType(VectorType: Ctx.FloatTy, NumElts: NumElements, VecKind: VT->getVectorKind());
847 }
848 return Ctx.FloatTy;
849 }
850
851 return QualType();
852 }
853
854 // Binary operators and binary compound assignment operators.
855#define HANDLEBINOP(OP) \
856 Value *VisitBin##OP(const BinaryOperator *E) { \
857 QualType promotionTy = getPromotionType(E->getType()); \
858 auto result = Emit##OP(EmitBinOps(E, promotionTy)); \
859 if (result && !promotionTy.isNull()) \
860 result = EmitUnPromotedValue(result, E->getType()); \
861 return result; \
862 } \
863 Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) { \
864 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP); \
865 }
866 HANDLEBINOP(Mul)
867 HANDLEBINOP(Div)
868 HANDLEBINOP(Rem)
869 HANDLEBINOP(Add)
870 HANDLEBINOP(Sub)
871 HANDLEBINOP(Shl)
872 HANDLEBINOP(Shr)
873 HANDLEBINOP(And)
874 HANDLEBINOP(Xor)
875 HANDLEBINOP(Or)
876#undef HANDLEBINOP
877
878 // Comparisons.
879 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
880 llvm::CmpInst::Predicate SICmpOpc,
881 llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
882#define VISITCOMP(CODE, UI, SI, FP, SIG) \
883 Value *VisitBin##CODE(const BinaryOperator *E) { \
884 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
885 llvm::FCmpInst::FP, SIG); }
886 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
887 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
888 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
889 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
890 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
891 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
892#undef VISITCOMP
893
894 Value *VisitBinAssign (const BinaryOperator *E);
895
896 Value *VisitBinLAnd (const BinaryOperator *E);
897 Value *VisitBinLOr (const BinaryOperator *E);
898 Value *VisitBinComma (const BinaryOperator *E);
899
900 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
901 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
902
903 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
904 return Visit(E: E->getSemanticForm());
905 }
906
907 // Other Operators.
908 Value *VisitBlockExpr(const BlockExpr *BE);
909 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
910 Value *VisitChooseExpr(ChooseExpr *CE);
911 Value *VisitVAArgExpr(VAArgExpr *VE);
912 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
913 return CGF.EmitObjCStringLiteral(E);
914 }
915 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
916 return CGF.EmitObjCBoxedExpr(E);
917 }
918 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
919 return CGF.EmitObjCArrayLiteral(E);
920 }
921 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
922 return CGF.EmitObjCDictionaryLiteral(E);
923 }
924 Value *VisitAsTypeExpr(AsTypeExpr *CE);
925 Value *VisitAtomicExpr(AtomicExpr *AE);
926 Value *VisitPackIndexingExpr(PackIndexingExpr *E) {
927 return Visit(E: E->getSelectedExpr());
928 }
929};
930} // end anonymous namespace.
931
932//===----------------------------------------------------------------------===//
933// Utilities
934//===----------------------------------------------------------------------===//
935
936/// EmitConversionToBool - Convert the specified expression value to a
937/// boolean (i1) truth value. This is equivalent to "Val != 0".
938Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
939 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
940
941 if (SrcType->isRealFloatingType())
942 return EmitFloatToBoolConversion(V: Src);
943
944 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(Val&: SrcType))
945 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr: Src, MPT);
946
947 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
948 "Unknown scalar type to convert");
949
950 if (isa<llvm::IntegerType>(Val: Src->getType()))
951 return EmitIntToBoolConversion(V: Src);
952
953 assert(isa<llvm::PointerType>(Src->getType()));
954 return EmitPointerToBoolConversion(V: Src, QT: SrcType);
955}
956
957void ScalarExprEmitter::EmitFloatConversionCheck(
958 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
959 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
960 assert(SrcType->isFloatingType() && "not a conversion from floating point");
961 if (!isa<llvm::IntegerType>(Val: DstTy))
962 return;
963
964 CodeGenFunction::SanitizerScope SanScope(&CGF);
965 using llvm::APFloat;
966 using llvm::APSInt;
967
968 llvm::Value *Check = nullptr;
969 const llvm::fltSemantics &SrcSema =
970 CGF.getContext().getFloatTypeSemantics(T: OrigSrcType);
971
972 // Floating-point to integer. This has undefined behavior if the source is
973 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
974 // to an integer).
975 unsigned Width = CGF.getContext().getIntWidth(T: DstType);
976 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
977
978 APSInt Min = APSInt::getMinValue(numBits: Width, Unsigned);
979 APFloat MinSrc(SrcSema, APFloat::uninitialized);
980 if (MinSrc.convertFromAPInt(Input: Min, IsSigned: !Unsigned, RM: APFloat::rmTowardZero) &
981 APFloat::opOverflow)
982 // Don't need an overflow check for lower bound. Just check for
983 // -Inf/NaN.
984 MinSrc = APFloat::getInf(Sem: SrcSema, Negative: true);
985 else
986 // Find the largest value which is too small to represent (before
987 // truncation toward zero).
988 MinSrc.subtract(RHS: APFloat(SrcSema, 1), RM: APFloat::rmTowardNegative);
989
990 APSInt Max = APSInt::getMaxValue(numBits: Width, Unsigned);
991 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
992 if (MaxSrc.convertFromAPInt(Input: Max, IsSigned: !Unsigned, RM: APFloat::rmTowardZero) &
993 APFloat::opOverflow)
994 // Don't need an overflow check for upper bound. Just check for
995 // +Inf/NaN.
996 MaxSrc = APFloat::getInf(Sem: SrcSema, Negative: false);
997 else
998 // Find the smallest value which is too large to represent (before
999 // truncation toward zero).
1000 MaxSrc.add(RHS: APFloat(SrcSema, 1), RM: APFloat::rmTowardPositive);
1001
1002 // If we're converting from __half, convert the range to float to match
1003 // the type of src.
1004 if (OrigSrcType->isHalfType()) {
1005 const llvm::fltSemantics &Sema =
1006 CGF.getContext().getFloatTypeSemantics(T: SrcType);
1007 bool IsInexact;
1008 MinSrc.convert(ToSemantics: Sema, RM: APFloat::rmTowardZero, losesInfo: &IsInexact);
1009 MaxSrc.convert(ToSemantics: Sema, RM: APFloat::rmTowardZero, losesInfo: &IsInexact);
1010 }
1011
1012 llvm::Value *GE =
1013 Builder.CreateFCmpOGT(LHS: Src, RHS: llvm::ConstantFP::get(Context&: VMContext, V: MinSrc));
1014 llvm::Value *LE =
1015 Builder.CreateFCmpOLT(LHS: Src, RHS: llvm::ConstantFP::get(Context&: VMContext, V: MaxSrc));
1016 Check = Builder.CreateAnd(LHS: GE, RHS: LE);
1017
1018 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
1019 CGF.EmitCheckTypeDescriptor(T: OrigSrcType),
1020 CGF.EmitCheckTypeDescriptor(T: DstType)};
1021 CGF.EmitCheck(Checked: std::make_pair(x&: Check, y: SanitizerKind::FloatCastOverflow),
1022 Check: SanitizerHandler::FloatCastOverflow, StaticArgs, DynamicArgs: OrigSrc);
1023}
1024
1025// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1026// Returns 'i1 false' when the truncation Src -> Dst was lossy.
1027static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1028 std::pair<llvm::Value *, SanitizerMask>>
1029EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1030 QualType DstType, CGBuilderTy &Builder) {
1031 llvm::Type *SrcTy = Src->getType();
1032 llvm::Type *DstTy = Dst->getType();
1033 (void)DstTy; // Only used in assert()
1034
1035 // This should be truncation of integral types.
1036 assert(Src != Dst);
1037 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
1038 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1039 "non-integer llvm type");
1040
1041 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1042 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1043
1044 // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1045 // Else, it is a signed truncation.
1046 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1047 SanitizerMask Mask;
1048 if (!SrcSigned && !DstSigned) {
1049 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1050 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1051 } else {
1052 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1053 Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1054 }
1055
1056 llvm::Value *Check = nullptr;
1057 // 1. Extend the truncated value back to the same width as the Src.
1058 Check = Builder.CreateIntCast(V: Dst, DestTy: SrcTy, isSigned: DstSigned, Name: "anyext");
1059 // 2. Equality-compare with the original source value
1060 Check = Builder.CreateICmpEQ(LHS: Check, RHS: Src, Name: "truncheck");
1061 // If the comparison result is 'i1 false', then the truncation was lossy.
1062 return std::make_pair(x&: Kind, y: std::make_pair(x&: Check, y&: Mask));
1063}
1064
1065static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1066 QualType SrcType, QualType DstType) {
1067 return SrcType->isIntegerType() && DstType->isIntegerType();
1068}
1069
1070void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1071 Value *Dst, QualType DstType,
1072 SourceLocation Loc) {
1073 if (!CGF.SanOpts.hasOneOf(K: SanitizerKind::ImplicitIntegerTruncation))
1074 return;
1075
1076 // We only care about int->int conversions here.
1077 // We ignore conversions to/from pointer and/or bool.
1078 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1079 DstType))
1080 return;
1081
1082 unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1083 unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1084 // This must be truncation. Else we do not care.
1085 if (SrcBits <= DstBits)
1086 return;
1087
1088 assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1089
1090 // If the integer sign change sanitizer is enabled,
1091 // and we are truncating from larger unsigned type to smaller signed type,
1092 // let that next sanitizer deal with it.
1093 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1094 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1095 if (CGF.SanOpts.has(K: SanitizerKind::ImplicitIntegerSignChange) &&
1096 (!SrcSigned && DstSigned))
1097 return;
1098
1099 CodeGenFunction::SanitizerScope SanScope(&CGF);
1100
1101 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1102 std::pair<llvm::Value *, SanitizerMask>>
1103 Check =
1104 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1105 // If the comparison result is 'i1 false', then the truncation was lossy.
1106
1107 // Do we care about this type of truncation?
1108 if (!CGF.SanOpts.has(K: Check.second.second))
1109 return;
1110
1111 llvm::Constant *StaticArgs[] = {
1112 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(T: SrcType),
1113 CGF.EmitCheckTypeDescriptor(T: DstType),
1114 llvm::ConstantInt::get(Ty: Builder.getInt8Ty(), V: Check.first),
1115 llvm::ConstantInt::get(Ty: Builder.getInt32Ty(), V: 0)};
1116
1117 CGF.EmitCheck(Checked: Check.second, Check: SanitizerHandler::ImplicitConversion, StaticArgs,
1118 DynamicArgs: {Src, Dst});
1119}
1120
1121static llvm::Value *EmitIsNegativeTestHelper(Value *V, QualType VType,
1122 const char *Name,
1123 CGBuilderTy &Builder) {
1124 bool VSigned = VType->isSignedIntegerOrEnumerationType();
1125 llvm::Type *VTy = V->getType();
1126 if (!VSigned) {
1127 // If the value is unsigned, then it is never negative.
1128 return llvm::ConstantInt::getFalse(Context&: VTy->getContext());
1129 }
1130 llvm::Constant *Zero = llvm::ConstantInt::get(Ty: VTy, V: 0);
1131 return Builder.CreateICmp(P: llvm::ICmpInst::ICMP_SLT, LHS: V, RHS: Zero,
1132 Name: llvm::Twine(Name) + "." + V->getName() +
1133 ".negativitycheck");
1134}
1135
1136// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1137// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1138static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1139 std::pair<llvm::Value *, SanitizerMask>>
1140EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1141 QualType DstType, CGBuilderTy &Builder) {
1142 llvm::Type *SrcTy = Src->getType();
1143 llvm::Type *DstTy = Dst->getType();
1144
1145 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1146 "non-integer llvm type");
1147
1148 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1149 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1150 (void)SrcSigned; // Only used in assert()
1151 (void)DstSigned; // Only used in assert()
1152 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1153 unsigned DstBits = DstTy->getScalarSizeInBits();
1154 (void)SrcBits; // Only used in assert()
1155 (void)DstBits; // Only used in assert()
1156
1157 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1158 "either the widths should be different, or the signednesses.");
1159
1160 // 1. Was the old Value negative?
1161 llvm::Value *SrcIsNegative =
1162 EmitIsNegativeTestHelper(V: Src, VType: SrcType, Name: "src", Builder);
1163 // 2. Is the new Value negative?
1164 llvm::Value *DstIsNegative =
1165 EmitIsNegativeTestHelper(V: Dst, VType: DstType, Name: "dst", Builder);
1166 // 3. Now, was the 'negativity status' preserved during the conversion?
1167 // NOTE: conversion from negative to zero is considered to change the sign.
1168 // (We want to get 'false' when the conversion changed the sign)
1169 // So we should just equality-compare the negativity statuses.
1170 llvm::Value *Check = nullptr;
1171 Check = Builder.CreateICmpEQ(LHS: SrcIsNegative, RHS: DstIsNegative, Name: "signchangecheck");
1172 // If the comparison result is 'false', then the conversion changed the sign.
1173 return std::make_pair(
1174 x: ScalarExprEmitter::ICCK_IntegerSignChange,
1175 y: std::make_pair(x&: Check, y: SanitizerKind::ImplicitIntegerSignChange));
1176}
1177
1178void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1179 Value *Dst, QualType DstType,
1180 SourceLocation Loc) {
1181 if (!CGF.SanOpts.has(K: SanitizerKind::ImplicitIntegerSignChange))
1182 return;
1183
1184 llvm::Type *SrcTy = Src->getType();
1185 llvm::Type *DstTy = Dst->getType();
1186
1187 // We only care about int->int conversions here.
1188 // We ignore conversions to/from pointer and/or bool.
1189 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1190 DstType))
1191 return;
1192
1193 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1194 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1195 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1196 unsigned DstBits = DstTy->getScalarSizeInBits();
1197
1198 // Now, we do not need to emit the check in *all* of the cases.
1199 // We can avoid emitting it in some obvious cases where it would have been
1200 // dropped by the opt passes (instcombine) always anyways.
1201 // If it's a cast between effectively the same type, no check.
1202 // NOTE: this is *not* equivalent to checking the canonical types.
1203 if (SrcSigned == DstSigned && SrcBits == DstBits)
1204 return;
1205 // At least one of the values needs to have signed type.
1206 // If both are unsigned, then obviously, neither of them can be negative.
1207 if (!SrcSigned && !DstSigned)
1208 return;
1209 // If the conversion is to *larger* *signed* type, then no check is needed.
1210 // Because either sign-extension happens (so the sign will remain),
1211 // or zero-extension will happen (the sign bit will be zero.)
1212 if ((DstBits > SrcBits) && DstSigned)
1213 return;
1214 if (CGF.SanOpts.has(K: SanitizerKind::ImplicitSignedIntegerTruncation) &&
1215 (SrcBits > DstBits) && SrcSigned) {
1216 // If the signed integer truncation sanitizer is enabled,
1217 // and this is a truncation from signed type, then no check is needed.
1218 // Because here sign change check is interchangeable with truncation check.
1219 return;
1220 }
1221 // That's it. We can't rule out any more cases with the data we have.
1222
1223 CodeGenFunction::SanitizerScope SanScope(&CGF);
1224
1225 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1226 std::pair<llvm::Value *, SanitizerMask>>
1227 Check;
1228
1229 // Each of these checks needs to return 'false' when an issue was detected.
1230 ImplicitConversionCheckKind CheckKind;
1231 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1232 // So we can 'and' all the checks together, and still get 'false',
1233 // if at least one of the checks detected an issue.
1234
1235 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1236 CheckKind = Check.first;
1237 Checks.emplace_back(Args&: Check.second);
1238
1239 if (CGF.SanOpts.has(K: SanitizerKind::ImplicitSignedIntegerTruncation) &&
1240 (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1241 // If the signed integer truncation sanitizer was enabled,
1242 // and we are truncating from larger unsigned type to smaller signed type,
1243 // let's handle the case we skipped in that check.
1244 Check =
1245 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1246 CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1247 Checks.emplace_back(Args&: Check.second);
1248 // If the comparison result is 'i1 false', then the truncation was lossy.
1249 }
1250
1251 llvm::Constant *StaticArgs[] = {
1252 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(T: SrcType),
1253 CGF.EmitCheckTypeDescriptor(T: DstType),
1254 llvm::ConstantInt::get(Ty: Builder.getInt8Ty(), V: CheckKind),
1255 llvm::ConstantInt::get(Ty: Builder.getInt32Ty(), V: 0)};
1256 // EmitCheck() will 'and' all the checks together.
1257 CGF.EmitCheck(Checked: Checks, Check: SanitizerHandler::ImplicitConversion, StaticArgs,
1258 DynamicArgs: {Src, Dst});
1259}
1260
1261// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1262// Returns 'i1 false' when the truncation Src -> Dst was lossy.
1263static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1264 std::pair<llvm::Value *, SanitizerMask>>
1265EmitBitfieldTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1266 QualType DstType, CGBuilderTy &Builder) {
1267 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1268 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1269
1270 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1271 if (!SrcSigned && !DstSigned)
1272 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1273 else
1274 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1275
1276 llvm::Value *Check = nullptr;
1277 // 1. Extend the truncated value back to the same width as the Src.
1278 Check = Builder.CreateIntCast(V: Dst, DestTy: Src->getType(), isSigned: DstSigned, Name: "bf.anyext");
1279 // 2. Equality-compare with the original source value
1280 Check = Builder.CreateICmpEQ(LHS: Check, RHS: Src, Name: "bf.truncheck");
1281 // If the comparison result is 'i1 false', then the truncation was lossy.
1282
1283 return std::make_pair(
1284 x&: Kind, y: std::make_pair(x&: Check, y: SanitizerKind::ImplicitBitfieldConversion));
1285}
1286
1287// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1288// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1289static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1290 std::pair<llvm::Value *, SanitizerMask>>
1291EmitBitfieldSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1292 QualType DstType, CGBuilderTy &Builder) {
1293 // 1. Was the old Value negative?
1294 llvm::Value *SrcIsNegative =
1295 EmitIsNegativeTestHelper(V: Src, VType: SrcType, Name: "bf.src", Builder);
1296 // 2. Is the new Value negative?
1297 llvm::Value *DstIsNegative =
1298 EmitIsNegativeTestHelper(V: Dst, VType: DstType, Name: "bf.dst", Builder);
1299 // 3. Now, was the 'negativity status' preserved during the conversion?
1300 // NOTE: conversion from negative to zero is considered to change the sign.
1301 // (We want to get 'false' when the conversion changed the sign)
1302 // So we should just equality-compare the negativity statuses.
1303 llvm::Value *Check = nullptr;
1304 Check =
1305 Builder.CreateICmpEQ(LHS: SrcIsNegative, RHS: DstIsNegative, Name: "bf.signchangecheck");
1306 // If the comparison result is 'false', then the conversion changed the sign.
1307 return std::make_pair(
1308 x: ScalarExprEmitter::ICCK_IntegerSignChange,
1309 y: std::make_pair(x&: Check, y: SanitizerKind::ImplicitBitfieldConversion));
1310}
1311
1312void CodeGenFunction::EmitBitfieldConversionCheck(Value *Src, QualType SrcType,
1313 Value *Dst, QualType DstType,
1314 const CGBitFieldInfo &Info,
1315 SourceLocation Loc) {
1316
1317 if (!SanOpts.has(K: SanitizerKind::ImplicitBitfieldConversion))
1318 return;
1319
1320 // We only care about int->int conversions here.
1321 // We ignore conversions to/from pointer and/or bool.
1322 if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1323 DstType))
1324 return;
1325
1326 if (DstType->isBooleanType() || SrcType->isBooleanType())
1327 return;
1328
1329 // This should be truncation of integral types.
1330 assert(isa<llvm::IntegerType>(Src->getType()) &&
1331 isa<llvm::IntegerType>(Dst->getType()) && "non-integer llvm type");
1332
1333 // TODO: Calculate src width to avoid emitting code
1334 // for unecessary cases.
1335 unsigned SrcBits = ConvertType(T: SrcType)->getScalarSizeInBits();
1336 unsigned DstBits = Info.Size;
1337
1338 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1339 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1340
1341 CodeGenFunction::SanitizerScope SanScope(this);
1342
1343 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1344 std::pair<llvm::Value *, SanitizerMask>>
1345 Check;
1346
1347 // Truncation
1348 bool EmitTruncation = DstBits < SrcBits;
1349 // If Dst is signed and Src unsigned, we want to be more specific
1350 // about the CheckKind we emit, in this case we want to emit
1351 // ICCK_SignedIntegerTruncationOrSignChange.
1352 bool EmitTruncationFromUnsignedToSigned =
1353 EmitTruncation && DstSigned && !SrcSigned;
1354 // Sign change
1355 bool SameTypeSameSize = SrcSigned == DstSigned && SrcBits == DstBits;
1356 bool BothUnsigned = !SrcSigned && !DstSigned;
1357 bool LargerSigned = (DstBits > SrcBits) && DstSigned;
1358 // We can avoid emitting sign change checks in some obvious cases
1359 // 1. If Src and Dst have the same signedness and size
1360 // 2. If both are unsigned sign check is unecessary!
1361 // 3. If Dst is signed and bigger than Src, either
1362 // sign-extension or zero-extension will make sure
1363 // the sign remains.
1364 bool EmitSignChange = !SameTypeSameSize && !BothUnsigned && !LargerSigned;
1365
1366 if (EmitTruncation)
1367 Check =
1368 EmitBitfieldTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1369 else if (EmitSignChange) {
1370 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1371 "either the widths should be different, or the signednesses.");
1372 Check =
1373 EmitBitfieldSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1374 } else
1375 return;
1376
1377 ScalarExprEmitter::ImplicitConversionCheckKind CheckKind = Check.first;
1378 if (EmitTruncationFromUnsignedToSigned)
1379 CheckKind = ScalarExprEmitter::ICCK_SignedIntegerTruncationOrSignChange;
1380
1381 llvm::Constant *StaticArgs[] = {
1382 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(T: SrcType),
1383 EmitCheckTypeDescriptor(T: DstType),
1384 llvm::ConstantInt::get(Ty: Builder.getInt8Ty(), V: CheckKind),
1385 llvm::ConstantInt::get(Ty: Builder.getInt32Ty(), V: Info.Size)};
1386
1387 EmitCheck(Checked: Check.second, Check: SanitizerHandler::ImplicitConversion, StaticArgs,
1388 DynamicArgs: {Src, Dst});
1389}
1390
1391Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1392 QualType DstType, llvm::Type *SrcTy,
1393 llvm::Type *DstTy,
1394 ScalarConversionOpts Opts) {
1395 // The Element types determine the type of cast to perform.
1396 llvm::Type *SrcElementTy;
1397 llvm::Type *DstElementTy;
1398 QualType SrcElementType;
1399 QualType DstElementType;
1400 if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1401 SrcElementTy = cast<llvm::VectorType>(Val: SrcTy)->getElementType();
1402 DstElementTy = cast<llvm::VectorType>(Val: DstTy)->getElementType();
1403 SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1404 DstElementType = DstType->castAs<MatrixType>()->getElementType();
1405 } else {
1406 assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1407 "cannot cast between matrix and non-matrix types");
1408 SrcElementTy = SrcTy;
1409 DstElementTy = DstTy;
1410 SrcElementType = SrcType;
1411 DstElementType = DstType;
1412 }
1413
1414 if (isa<llvm::IntegerType>(Val: SrcElementTy)) {
1415 bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1416 if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1417 InputSigned = true;
1418 }
1419
1420 if (isa<llvm::IntegerType>(Val: DstElementTy))
1421 return Builder.CreateIntCast(V: Src, DestTy: DstTy, isSigned: InputSigned, Name: "conv");
1422 if (InputSigned)
1423 return Builder.CreateSIToFP(V: Src, DestTy: DstTy, Name: "conv");
1424 return Builder.CreateUIToFP(V: Src, DestTy: DstTy, Name: "conv");
1425 }
1426
1427 if (isa<llvm::IntegerType>(Val: DstElementTy)) {
1428 assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1429 bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType();
1430
1431 // If we can't recognize overflow as undefined behavior, assume that
1432 // overflow saturates. This protects against normal optimizations if we are
1433 // compiling with non-standard FP semantics.
1434 if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) {
1435 llvm::Intrinsic::ID IID =
1436 IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat;
1437 return Builder.CreateCall(Callee: CGF.CGM.getIntrinsic(IID, Tys: {DstTy, SrcTy}), Args: Src);
1438 }
1439
1440 if (IsSigned)
1441 return Builder.CreateFPToSI(V: Src, DestTy: DstTy, Name: "conv");
1442 return Builder.CreateFPToUI(V: Src, DestTy: DstTy, Name: "conv");
1443 }
1444
1445 if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1446 return Builder.CreateFPTrunc(V: Src, DestTy: DstTy, Name: "conv");
1447 return Builder.CreateFPExt(V: Src, DestTy: DstTy, Name: "conv");
1448}
1449
1450/// Emit a conversion from the specified type to the specified destination type,
1451/// both of which are LLVM scalar types.
1452Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1453 QualType DstType,
1454 SourceLocation Loc,
1455 ScalarConversionOpts Opts) {
1456 // All conversions involving fixed point types should be handled by the
1457 // EmitFixedPoint family functions. This is done to prevent bloating up this
1458 // function more, and although fixed point numbers are represented by
1459 // integers, we do not want to follow any logic that assumes they should be
1460 // treated as integers.
1461 // TODO(leonardchan): When necessary, add another if statement checking for
1462 // conversions to fixed point types from other types.
1463 if (SrcType->isFixedPointType()) {
1464 if (DstType->isBooleanType())
1465 // It is important that we check this before checking if the dest type is
1466 // an integer because booleans are technically integer types.
1467 // We do not need to check the padding bit on unsigned types if unsigned
1468 // padding is enabled because overflow into this bit is undefined
1469 // behavior.
1470 return Builder.CreateIsNotNull(Arg: Src, Name: "tobool");
1471 if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1472 DstType->isRealFloatingType())
1473 return EmitFixedPointConversion(Src, SrcTy: SrcType, DstTy: DstType, Loc);
1474
1475 llvm_unreachable(
1476 "Unhandled scalar conversion from a fixed point type to another type.");
1477 } else if (DstType->isFixedPointType()) {
1478 if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1479 // This also includes converting booleans and enums to fixed point types.
1480 return EmitFixedPointConversion(Src, SrcTy: SrcType, DstTy: DstType, Loc);
1481
1482 llvm_unreachable(
1483 "Unhandled scalar conversion to a fixed point type from another type.");
1484 }
1485
1486 QualType NoncanonicalSrcType = SrcType;
1487 QualType NoncanonicalDstType = DstType;
1488
1489 SrcType = CGF.getContext().getCanonicalType(T: SrcType);
1490 DstType = CGF.getContext().getCanonicalType(T: DstType);
1491 if (SrcType == DstType) return Src;
1492
1493 if (DstType->isVoidType()) return nullptr;
1494
1495 llvm::Value *OrigSrc = Src;
1496 QualType OrigSrcType = SrcType;
1497 llvm::Type *SrcTy = Src->getType();
1498
1499 // Handle conversions to bool first, they are special: comparisons against 0.
1500 if (DstType->isBooleanType())
1501 return EmitConversionToBool(Src, SrcType);
1502
1503 llvm::Type *DstTy = ConvertType(T: DstType);
1504
1505 // Cast from half through float if half isn't a native type.
1506 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1507 // Cast to FP using the intrinsic if the half type itself isn't supported.
1508 if (DstTy->isFloatingPointTy()) {
1509 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1510 return Builder.CreateCall(
1511 Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::convert_from_fp16, Tys: DstTy),
1512 Args: Src);
1513 } else {
1514 // Cast to other types through float, using either the intrinsic or FPExt,
1515 // depending on whether the half type itself is supported
1516 // (as opposed to operations on half, available with NativeHalfType).
1517 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1518 Src = Builder.CreateCall(
1519 Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::convert_from_fp16,
1520 Tys: CGF.CGM.FloatTy),
1521 Args: Src);
1522 } else {
1523 Src = Builder.CreateFPExt(V: Src, DestTy: CGF.CGM.FloatTy, Name: "conv");
1524 }
1525 SrcType = CGF.getContext().FloatTy;
1526 SrcTy = CGF.FloatTy;
1527 }
1528 }
1529
1530 // Ignore conversions like int -> uint.
1531 if (SrcTy == DstTy) {
1532 if (Opts.EmitImplicitIntegerSignChangeChecks)
1533 EmitIntegerSignChangeCheck(Src, SrcType: NoncanonicalSrcType, Dst: Src,
1534 DstType: NoncanonicalDstType, Loc);
1535
1536 return Src;
1537 }
1538
1539 // Handle pointer conversions next: pointers can only be converted to/from
1540 // other pointers and integers. Check for pointer types in terms of LLVM, as
1541 // some native types (like Obj-C id) may map to a pointer type.
1542 if (auto DstPT = dyn_cast<llvm::PointerType>(Val: DstTy)) {
1543 // The source value may be an integer, or a pointer.
1544 if (isa<llvm::PointerType>(Val: SrcTy))
1545 return Src;
1546
1547 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1548 // First, convert to the correct width so that we control the kind of
1549 // extension.
1550 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1551 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1552 llvm::Value* IntResult =
1553 Builder.CreateIntCast(V: Src, DestTy: MiddleTy, isSigned: InputSigned, Name: "conv");
1554 // Then, cast to pointer.
1555 return Builder.CreateIntToPtr(V: IntResult, DestTy: DstTy, Name: "conv");
1556 }
1557
1558 if (isa<llvm::PointerType>(Val: SrcTy)) {
1559 // Must be an ptr to int cast.
1560 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1561 return Builder.CreatePtrToInt(V: Src, DestTy: DstTy, Name: "conv");
1562 }
1563
1564 // A scalar can be splatted to an extended vector of the same element type
1565 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1566 // Sema should add casts to make sure that the source expression's type is
1567 // the same as the vector's element type (sans qualifiers)
1568 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1569 SrcType.getTypePtr() &&
1570 "Splatted expr doesn't match with vector element type?");
1571
1572 // Splat the element across to all elements
1573 unsigned NumElements = cast<llvm::FixedVectorType>(Val: DstTy)->getNumElements();
1574 return Builder.CreateVectorSplat(NumElts: NumElements, V: Src, Name: "splat");
1575 }
1576
1577 if (SrcType->isMatrixType() && DstType->isMatrixType())
1578 return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1579
1580 if (isa<llvm::VectorType>(Val: SrcTy) || isa<llvm::VectorType>(Val: DstTy)) {
1581 // Allow bitcast from vector to integer/fp of the same size.
1582 llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits();
1583 llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits();
1584 if (SrcSize == DstSize)
1585 return Builder.CreateBitCast(V: Src, DestTy: DstTy, Name: "conv");
1586
1587 // Conversions between vectors of different sizes are not allowed except
1588 // when vectors of half are involved. Operations on storage-only half
1589 // vectors require promoting half vector operands to float vectors and
1590 // truncating the result, which is either an int or float vector, to a
1591 // short or half vector.
1592
1593 // Source and destination are both expected to be vectors.
1594 llvm::Type *SrcElementTy = cast<llvm::VectorType>(Val: SrcTy)->getElementType();
1595 llvm::Type *DstElementTy = cast<llvm::VectorType>(Val: DstTy)->getElementType();
1596 (void)DstElementTy;
1597
1598 assert(((SrcElementTy->isIntegerTy() &&
1599 DstElementTy->isIntegerTy()) ||
1600 (SrcElementTy->isFloatingPointTy() &&
1601 DstElementTy->isFloatingPointTy())) &&
1602 "unexpected conversion between a floating-point vector and an "
1603 "integer vector");
1604
1605 // Truncate an i32 vector to an i16 vector.
1606 if (SrcElementTy->isIntegerTy())
1607 return Builder.CreateIntCast(V: Src, DestTy: DstTy, isSigned: false, Name: "conv");
1608
1609 // Truncate a float vector to a half vector.
1610 if (SrcSize > DstSize)
1611 return Builder.CreateFPTrunc(V: Src, DestTy: DstTy, Name: "conv");
1612
1613 // Promote a half vector to a float vector.
1614 return Builder.CreateFPExt(V: Src, DestTy: DstTy, Name: "conv");
1615 }
1616
1617 // Finally, we have the arithmetic types: real int/float.
1618 Value *Res = nullptr;
1619 llvm::Type *ResTy = DstTy;
1620
1621 // An overflowing conversion has undefined behavior if either the source type
1622 // or the destination type is a floating-point type. However, we consider the
1623 // range of representable values for all floating-point types to be
1624 // [-inf,+inf], so no overflow can ever happen when the destination type is a
1625 // floating-point type.
1626 if (CGF.SanOpts.has(K: SanitizerKind::FloatCastOverflow) &&
1627 OrigSrcType->isFloatingType())
1628 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1629 Loc);
1630
1631 // Cast to half through float if half isn't a native type.
1632 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1633 // Make sure we cast in a single step if from another FP type.
1634 if (SrcTy->isFloatingPointTy()) {
1635 // Use the intrinsic if the half type itself isn't supported
1636 // (as opposed to operations on half, available with NativeHalfType).
1637 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1638 return Builder.CreateCall(
1639 Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::convert_to_fp16, Tys: SrcTy), Args: Src);
1640 // If the half type is supported, just use an fptrunc.
1641 return Builder.CreateFPTrunc(V: Src, DestTy: DstTy);
1642 }
1643 DstTy = CGF.FloatTy;
1644 }
1645
1646 Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1647
1648 if (DstTy != ResTy) {
1649 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1650 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1651 Res = Builder.CreateCall(
1652 Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::convert_to_fp16, Tys: CGF.CGM.FloatTy),
1653 Args: Res);
1654 } else {
1655 Res = Builder.CreateFPTrunc(V: Res, DestTy: ResTy, Name: "conv");
1656 }
1657 }
1658
1659 if (Opts.EmitImplicitIntegerTruncationChecks)
1660 EmitIntegerTruncationCheck(Src, SrcType: NoncanonicalSrcType, Dst: Res,
1661 DstType: NoncanonicalDstType, Loc);
1662
1663 if (Opts.EmitImplicitIntegerSignChangeChecks)
1664 EmitIntegerSignChangeCheck(Src, SrcType: NoncanonicalSrcType, Dst: Res,
1665 DstType: NoncanonicalDstType, Loc);
1666
1667 return Res;
1668}
1669
1670Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1671 QualType DstTy,
1672 SourceLocation Loc) {
1673 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1674 llvm::Value *Result;
1675 if (SrcTy->isRealFloatingType())
1676 Result = FPBuilder.CreateFloatingToFixed(Src,
1677 DstSema: CGF.getContext().getFixedPointSemantics(Ty: DstTy));
1678 else if (DstTy->isRealFloatingType())
1679 Result = FPBuilder.CreateFixedToFloating(Src,
1680 SrcSema: CGF.getContext().getFixedPointSemantics(Ty: SrcTy),
1681 DstTy: ConvertType(T: DstTy));
1682 else {
1683 auto SrcFPSema = CGF.getContext().getFixedPointSemantics(Ty: SrcTy);
1684 auto DstFPSema = CGF.getContext().getFixedPointSemantics(Ty: DstTy);
1685
1686 if (DstTy->isIntegerType())
1687 Result = FPBuilder.CreateFixedToInteger(Src, SrcSema: SrcFPSema,
1688 DstWidth: DstFPSema.getWidth(),
1689 DstIsSigned: DstFPSema.isSigned());
1690 else if (SrcTy->isIntegerType())
1691 Result = FPBuilder.CreateIntegerToFixed(Src, SrcIsSigned: SrcFPSema.isSigned(),
1692 DstSema: DstFPSema);
1693 else
1694 Result = FPBuilder.CreateFixedToFixed(Src, SrcSema: SrcFPSema, DstSema: DstFPSema);
1695 }
1696 return Result;
1697}
1698
1699/// Emit a conversion from the specified complex type to the specified
1700/// destination type, where the destination type is an LLVM scalar type.
1701Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1702 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1703 SourceLocation Loc) {
1704 // Get the source element type.
1705 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1706
1707 // Handle conversions to bool first, they are special: comparisons against 0.
1708 if (DstTy->isBooleanType()) {
1709 // Complex != 0 -> (Real != 0) | (Imag != 0)
1710 Src.first = EmitScalarConversion(Src: Src.first, SrcType: SrcTy, DstType: DstTy, Loc);
1711 Src.second = EmitScalarConversion(Src: Src.second, SrcType: SrcTy, DstType: DstTy, Loc);
1712 return Builder.CreateOr(LHS: Src.first, RHS: Src.second, Name: "tobool");
1713 }
1714
1715 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1716 // the imaginary part of the complex value is discarded and the value of the
1717 // real part is converted according to the conversion rules for the
1718 // corresponding real type.
1719 return EmitScalarConversion(Src: Src.first, SrcType: SrcTy, DstType: DstTy, Loc);
1720}
1721
1722Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1723 return CGF.EmitFromMemory(Value: CGF.CGM.EmitNullConstant(T: Ty), Ty);
1724}
1725
1726/// Emit a sanitization check for the given "binary" operation (which
1727/// might actually be a unary increment which has been lowered to a binary
1728/// operation). The check passes if all values in \p Checks (which are \c i1),
1729/// are \c true.
1730void ScalarExprEmitter::EmitBinOpCheck(
1731 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1732 assert(CGF.IsSanitizerScope);
1733 SanitizerHandler Check;
1734 SmallVector<llvm::Constant *, 4> StaticData;
1735 SmallVector<llvm::Value *, 2> DynamicData;
1736
1737 BinaryOperatorKind Opcode = Info.Opcode;
1738 if (BinaryOperator::isCompoundAssignmentOp(Opc: Opcode))
1739 Opcode = BinaryOperator::getOpForCompoundAssignment(Opc: Opcode);
1740
1741 StaticData.push_back(Elt: CGF.EmitCheckSourceLocation(Loc: Info.E->getExprLoc()));
1742 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: Info.E);
1743 if (UO && UO->getOpcode() == UO_Minus) {
1744 Check = SanitizerHandler::NegateOverflow;
1745 StaticData.push_back(Elt: CGF.EmitCheckTypeDescriptor(T: UO->getType()));
1746 DynamicData.push_back(Elt: Info.RHS);
1747 } else {
1748 if (BinaryOperator::isShiftOp(Opc: Opcode)) {
1749 // Shift LHS negative or too large, or RHS out of bounds.
1750 Check = SanitizerHandler::ShiftOutOfBounds;
1751 const BinaryOperator *BO = cast<BinaryOperator>(Val: Info.E);
1752 StaticData.push_back(
1753 Elt: CGF.EmitCheckTypeDescriptor(T: BO->getLHS()->getType()));
1754 StaticData.push_back(
1755 Elt: CGF.EmitCheckTypeDescriptor(T: BO->getRHS()->getType()));
1756 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1757 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1758 Check = SanitizerHandler::DivremOverflow;
1759 StaticData.push_back(Elt: CGF.EmitCheckTypeDescriptor(T: Info.Ty));
1760 } else {
1761 // Arithmetic overflow (+, -, *).
1762 switch (Opcode) {
1763 case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1764 case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1765 case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1766 default: llvm_unreachable("unexpected opcode for bin op check");
1767 }
1768 StaticData.push_back(Elt: CGF.EmitCheckTypeDescriptor(T: Info.Ty));
1769 }
1770 DynamicData.push_back(Elt: Info.LHS);
1771 DynamicData.push_back(Elt: Info.RHS);
1772 }
1773
1774 CGF.EmitCheck(Checked: Checks, Check, StaticArgs: StaticData, DynamicArgs: DynamicData);
1775}
1776
1777//===----------------------------------------------------------------------===//
1778// Visitor Methods
1779//===----------------------------------------------------------------------===//
1780
1781Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1782 CGF.ErrorUnsupported(S: E, Type: "scalar expression");
1783 if (E->getType()->isVoidType())
1784 return nullptr;
1785 return llvm::UndefValue::get(T: CGF.ConvertType(T: E->getType()));
1786}
1787
1788Value *
1789ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) {
1790 ASTContext &Context = CGF.getContext();
1791 unsigned AddrSpace =
1792 Context.getTargetAddressSpace(AS: CGF.CGM.GetGlobalConstantAddressSpace());
1793 llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr(
1794 Str: E->ComputeName(Context), Name: "__usn_str", AddressSpace: AddrSpace);
1795
1796 llvm::Type *ExprTy = ConvertType(T: E->getType());
1797 return Builder.CreatePointerBitCastOrAddrSpaceCast(V: GlobalConstStr, DestTy: ExprTy,
1798 Name: "usn_addr_cast");
1799}
1800
1801Value *ScalarExprEmitter::VisitEmbedExpr(EmbedExpr *E) {
1802 assert(E->getDataElementCount() == 1);
1803 auto It = E->begin();
1804 return Builder.getInt(AI: (*It)->getValue());
1805}
1806
1807Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1808 // Vector Mask Case
1809 if (E->getNumSubExprs() == 2) {
1810 Value *LHS = CGF.EmitScalarExpr(E: E->getExpr(Index: 0));
1811 Value *RHS = CGF.EmitScalarExpr(E: E->getExpr(Index: 1));
1812 Value *Mask;
1813
1814 auto *LTy = cast<llvm::FixedVectorType>(Val: LHS->getType());
1815 unsigned LHSElts = LTy->getNumElements();
1816
1817 Mask = RHS;
1818
1819 auto *MTy = cast<llvm::FixedVectorType>(Val: Mask->getType());
1820
1821 // Mask off the high bits of each shuffle index.
1822 Value *MaskBits =
1823 llvm::ConstantInt::get(Ty: MTy, V: llvm::NextPowerOf2(A: LHSElts - 1) - 1);
1824 Mask = Builder.CreateAnd(LHS: Mask, RHS: MaskBits, Name: "mask");
1825
1826 // newv = undef
1827 // mask = mask & maskbits
1828 // for each elt
1829 // n = extract mask i
1830 // x = extract val n
1831 // newv = insert newv, x, i
1832 auto *RTy = llvm::FixedVectorType::get(ElementType: LTy->getElementType(),
1833 NumElts: MTy->getNumElements());
1834 Value* NewV = llvm::PoisonValue::get(T: RTy);
1835 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1836 Value *IIndx = llvm::ConstantInt::get(Ty: CGF.SizeTy, V: i);
1837 Value *Indx = Builder.CreateExtractElement(Vec: Mask, Idx: IIndx, Name: "shuf_idx");
1838
1839 Value *VExt = Builder.CreateExtractElement(Vec: LHS, Idx: Indx, Name: "shuf_elt");
1840 NewV = Builder.CreateInsertElement(Vec: NewV, NewElt: VExt, Idx: IIndx, Name: "shuf_ins");
1841 }
1842 return NewV;
1843 }
1844
1845 Value* V1 = CGF.EmitScalarExpr(E: E->getExpr(Index: 0));
1846 Value* V2 = CGF.EmitScalarExpr(E: E->getExpr(Index: 1));
1847
1848 SmallVector<int, 32> Indices;
1849 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1850 llvm::APSInt Idx = E->getShuffleMaskIdx(Ctx: CGF.getContext(), N: i-2);
1851 // Check for -1 and output it as undef in the IR.
1852 if (Idx.isSigned() && Idx.isAllOnes())
1853 Indices.push_back(Elt: -1);
1854 else
1855 Indices.push_back(Elt: Idx.getZExtValue());
1856 }
1857
1858 return Builder.CreateShuffleVector(V1, V2, Mask: Indices, Name: "shuffle");
1859}
1860
1861Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1862 QualType SrcType = E->getSrcExpr()->getType(),
1863 DstType = E->getType();
1864
1865 Value *Src = CGF.EmitScalarExpr(E: E->getSrcExpr());
1866
1867 SrcType = CGF.getContext().getCanonicalType(T: SrcType);
1868 DstType = CGF.getContext().getCanonicalType(T: DstType);
1869 if (SrcType == DstType) return Src;
1870
1871 assert(SrcType->isVectorType() &&
1872 "ConvertVector source type must be a vector");
1873 assert(DstType->isVectorType() &&
1874 "ConvertVector destination type must be a vector");
1875
1876 llvm::Type *SrcTy = Src->getType();
1877 llvm::Type *DstTy = ConvertType(T: DstType);
1878
1879 // Ignore conversions like int -> uint.
1880 if (SrcTy == DstTy)
1881 return Src;
1882
1883 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1884 DstEltType = DstType->castAs<VectorType>()->getElementType();
1885
1886 assert(SrcTy->isVectorTy() &&
1887 "ConvertVector source IR type must be a vector");
1888 assert(DstTy->isVectorTy() &&
1889 "ConvertVector destination IR type must be a vector");
1890
1891 llvm::Type *SrcEltTy = cast<llvm::VectorType>(Val: SrcTy)->getElementType(),
1892 *DstEltTy = cast<llvm::VectorType>(Val: DstTy)->getElementType();
1893
1894 if (DstEltType->isBooleanType()) {
1895 assert((SrcEltTy->isFloatingPointTy() ||
1896 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1897
1898 llvm::Value *Zero = llvm::Constant::getNullValue(Ty: SrcTy);
1899 if (SrcEltTy->isFloatingPointTy()) {
1900 return Builder.CreateFCmpUNE(LHS: Src, RHS: Zero, Name: "tobool");
1901 } else {
1902 return Builder.CreateICmpNE(LHS: Src, RHS: Zero, Name: "tobool");
1903 }
1904 }
1905
1906 // We have the arithmetic types: real int/float.
1907 Value *Res = nullptr;
1908
1909 if (isa<llvm::IntegerType>(Val: SrcEltTy)) {
1910 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1911 if (isa<llvm::IntegerType>(Val: DstEltTy))
1912 Res = Builder.CreateIntCast(V: Src, DestTy: DstTy, isSigned: InputSigned, Name: "conv");
1913 else if (InputSigned)
1914 Res = Builder.CreateSIToFP(V: Src, DestTy: DstTy, Name: "conv");
1915 else
1916 Res = Builder.CreateUIToFP(V: Src, DestTy: DstTy, Name: "conv");
1917 } else if (isa<llvm::IntegerType>(Val: DstEltTy)) {
1918 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1919 if (DstEltType->isSignedIntegerOrEnumerationType())
1920 Res = Builder.CreateFPToSI(V: Src, DestTy: DstTy, Name: "conv");
1921 else
1922 Res = Builder.CreateFPToUI(V: Src, DestTy: DstTy, Name: "conv");
1923 } else {
1924 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1925 "Unknown real conversion");
1926 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1927 Res = Builder.CreateFPTrunc(V: Src, DestTy: DstTy, Name: "conv");
1928 else
1929 Res = Builder.CreateFPExt(V: Src, DestTy: DstTy, Name: "conv");
1930 }
1931
1932 return Res;
1933}
1934
1935Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1936 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(ME: E)) {
1937 CGF.EmitIgnoredExpr(E: E->getBase());
1938 return CGF.emitScalarConstant(Constant, E);
1939 } else {
1940 Expr::EvalResult Result;
1941 if (E->EvaluateAsInt(Result, Ctx: CGF.getContext(), AllowSideEffects: Expr::SE_AllowSideEffects)) {
1942 llvm::APSInt Value = Result.Val.getInt();
1943 CGF.EmitIgnoredExpr(E: E->getBase());
1944 return Builder.getInt(AI: Value);
1945 }
1946 }
1947
1948 llvm::Value *Result = EmitLoadOfLValue(E);
1949
1950 // If -fdebug-info-for-profiling is specified, emit a pseudo variable and its
1951 // debug info for the pointer, even if there is no variable associated with
1952 // the pointer's expression.
1953 if (CGF.CGM.getCodeGenOpts().DebugInfoForProfiling && CGF.getDebugInfo()) {
1954 if (llvm::LoadInst *Load = dyn_cast<llvm::LoadInst>(Val: Result)) {
1955 if (llvm::GetElementPtrInst *GEP =
1956 dyn_cast<llvm::GetElementPtrInst>(Val: Load->getPointerOperand())) {
1957 if (llvm::Instruction *Pointer =
1958 dyn_cast<llvm::Instruction>(Val: GEP->getPointerOperand())) {
1959 QualType Ty = E->getBase()->getType();
1960 if (!E->isArrow())
1961 Ty = CGF.getContext().getPointerType(T: Ty);
1962 CGF.getDebugInfo()->EmitPseudoVariable(Builder, Value: Pointer, Ty);
1963 }
1964 }
1965 }
1966 }
1967 return Result;
1968}
1969
1970Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1971 TestAndClearIgnoreResultAssign();
1972
1973 // Emit subscript expressions in rvalue context's. For most cases, this just
1974 // loads the lvalue formed by the subscript expr. However, we have to be
1975 // careful, because the base of a vector subscript is occasionally an rvalue,
1976 // so we can't get it as an lvalue.
1977 if (!E->getBase()->getType()->isVectorType() &&
1978 !E->getBase()->getType()->isSveVLSBuiltinType())
1979 return EmitLoadOfLValue(E);
1980
1981 // Handle the vector case. The base must be a vector, the index must be an
1982 // integer value.
1983 Value *Base = Visit(E: E->getBase());
1984 Value *Idx = Visit(E: E->getIdx());
1985 QualType IdxTy = E->getIdx()->getType();
1986
1987 if (CGF.SanOpts.has(K: SanitizerKind::ArrayBounds))
1988 CGF.EmitBoundsCheck(E, Base: E->getBase(), Index: Idx, IndexType: IdxTy, /*Accessed*/true);
1989
1990 return Builder.CreateExtractElement(Vec: Base, Idx, Name: "vecext");
1991}
1992
1993Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1994 TestAndClearIgnoreResultAssign();
1995
1996 // Handle the vector case. The base must be a vector, the index must be an
1997 // integer value.
1998 Value *RowIdx = Visit(E: E->getRowIdx());
1999 Value *ColumnIdx = Visit(E: E->getColumnIdx());
2000
2001 const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>();
2002 unsigned NumRows = MatrixTy->getNumRows();
2003 llvm::MatrixBuilder MB(Builder);
2004 Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows);
2005 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0)
2006 MB.CreateIndexAssumption(Idx, NumElements: MatrixTy->getNumElementsFlattened());
2007
2008 Value *Matrix = Visit(E: E->getBase());
2009
2010 // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
2011 return Builder.CreateExtractElement(Vec: Matrix, Idx, Name: "matrixext");
2012}
2013
2014static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
2015 unsigned Off) {
2016 int MV = SVI->getMaskValue(Elt: Idx);
2017 if (MV == -1)
2018 return -1;
2019 return Off + MV;
2020}
2021
2022static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
2023 assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
2024 "Index operand too large for shufflevector mask!");
2025 return C->getZExtValue();
2026}
2027
2028Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
2029 bool Ignore = TestAndClearIgnoreResultAssign();
2030 (void)Ignore;
2031 assert (Ignore == false && "init list ignored");
2032 unsigned NumInitElements = E->getNumInits();
2033
2034 if (E->hadArrayRangeDesignator())
2035 CGF.ErrorUnsupported(S: E, Type: "GNU array range designator extension");
2036
2037 llvm::VectorType *VType =
2038 dyn_cast<llvm::VectorType>(Val: ConvertType(T: E->getType()));
2039
2040 if (!VType) {
2041 if (NumInitElements == 0) {
2042 // C++11 value-initialization for the scalar.
2043 return EmitNullValue(Ty: E->getType());
2044 }
2045 // We have a scalar in braces. Just use the first element.
2046 return Visit(E: E->getInit(Init: 0));
2047 }
2048
2049 if (isa<llvm::ScalableVectorType>(Val: VType)) {
2050 if (NumInitElements == 0) {
2051 // C++11 value-initialization for the vector.
2052 return EmitNullValue(Ty: E->getType());
2053 }
2054
2055 if (NumInitElements == 1) {
2056 Expr *InitVector = E->getInit(Init: 0);
2057
2058 // Initialize from another scalable vector of the same type.
2059 if (InitVector->getType() == E->getType())
2060 return Visit(E: InitVector);
2061 }
2062
2063 llvm_unreachable("Unexpected initialization of a scalable vector!");
2064 }
2065
2066 unsigned ResElts = cast<llvm::FixedVectorType>(Val: VType)->getNumElements();
2067
2068 // Loop over initializers collecting the Value for each, and remembering
2069 // whether the source was swizzle (ExtVectorElementExpr). This will allow
2070 // us to fold the shuffle for the swizzle into the shuffle for the vector
2071 // initializer, since LLVM optimizers generally do not want to touch
2072 // shuffles.
2073 unsigned CurIdx = 0;
2074 bool VIsPoisonShuffle = false;
2075 llvm::Value *V = llvm::PoisonValue::get(T: VType);
2076 for (unsigned i = 0; i != NumInitElements; ++i) {
2077 Expr *IE = E->getInit(Init: i);
2078 Value *Init = Visit(E: IE);
2079 SmallVector<int, 16> Args;
2080
2081 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Val: Init->getType());
2082
2083 // Handle scalar elements. If the scalar initializer is actually one
2084 // element of a different vector of the same width, use shuffle instead of
2085 // extract+insert.
2086 if (!VVT) {
2087 if (isa<ExtVectorElementExpr>(Val: IE)) {
2088 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Val: Init);
2089
2090 if (cast<llvm::FixedVectorType>(Val: EI->getVectorOperandType())
2091 ->getNumElements() == ResElts) {
2092 llvm::ConstantInt *C = cast<llvm::ConstantInt>(Val: EI->getIndexOperand());
2093 Value *LHS = nullptr, *RHS = nullptr;
2094 if (CurIdx == 0) {
2095 // insert into poison -> shuffle (src, poison)
2096 // shufflemask must use an i32
2097 Args.push_back(Elt: getAsInt32(C, I32Ty: CGF.Int32Ty));
2098 Args.resize(N: ResElts, NV: -1);
2099
2100 LHS = EI->getVectorOperand();
2101 RHS = V;
2102 VIsPoisonShuffle = true;
2103 } else if (VIsPoisonShuffle) {
2104 // insert into poison shuffle && size match -> shuffle (v, src)
2105 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(Val: V);
2106 for (unsigned j = 0; j != CurIdx; ++j)
2107 Args.push_back(Elt: getMaskElt(SVI: SVV, Idx: j, Off: 0));
2108 Args.push_back(Elt: ResElts + C->getZExtValue());
2109 Args.resize(N: ResElts, NV: -1);
2110
2111 LHS = cast<llvm::ShuffleVectorInst>(Val: V)->getOperand(i_nocapture: 0);
2112 RHS = EI->getVectorOperand();
2113 VIsPoisonShuffle = false;
2114 }
2115 if (!Args.empty()) {
2116 V = Builder.CreateShuffleVector(V1: LHS, V2: RHS, Mask: Args);
2117 ++CurIdx;
2118 continue;
2119 }
2120 }
2121 }
2122 V = Builder.CreateInsertElement(Vec: V, NewElt: Init, Idx: Builder.getInt32(C: CurIdx),
2123 Name: "vecinit");
2124 VIsPoisonShuffle = false;
2125 ++CurIdx;
2126 continue;
2127 }
2128
2129 unsigned InitElts = cast<llvm::FixedVectorType>(Val: VVT)->getNumElements();
2130
2131 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
2132 // input is the same width as the vector being constructed, generate an
2133 // optimized shuffle of the swizzle input into the result.
2134 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
2135 if (isa<ExtVectorElementExpr>(Val: IE)) {
2136 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Val: Init);
2137 Value *SVOp = SVI->getOperand(i_nocapture: 0);
2138 auto *OpTy = cast<llvm::FixedVectorType>(Val: SVOp->getType());
2139
2140 if (OpTy->getNumElements() == ResElts) {
2141 for (unsigned j = 0; j != CurIdx; ++j) {
2142 // If the current vector initializer is a shuffle with poison, merge
2143 // this shuffle directly into it.
2144 if (VIsPoisonShuffle) {
2145 Args.push_back(Elt: getMaskElt(SVI: cast<llvm::ShuffleVectorInst>(Val: V), Idx: j, Off: 0));
2146 } else {
2147 Args.push_back(Elt: j);
2148 }
2149 }
2150 for (unsigned j = 0, je = InitElts; j != je; ++j)
2151 Args.push_back(Elt: getMaskElt(SVI, Idx: j, Off: Offset));
2152 Args.resize(N: ResElts, NV: -1);
2153
2154 if (VIsPoisonShuffle)
2155 V = cast<llvm::ShuffleVectorInst>(Val: V)->getOperand(i_nocapture: 0);
2156
2157 Init = SVOp;
2158 }
2159 }
2160
2161 // Extend init to result vector length, and then shuffle its contribution
2162 // to the vector initializer into V.
2163 if (Args.empty()) {
2164 for (unsigned j = 0; j != InitElts; ++j)
2165 Args.push_back(Elt: j);
2166 Args.resize(N: ResElts, NV: -1);
2167 Init = Builder.CreateShuffleVector(V: Init, Mask: Args, Name: "vext");
2168
2169 Args.clear();
2170 for (unsigned j = 0; j != CurIdx; ++j)
2171 Args.push_back(Elt: j);
2172 for (unsigned j = 0; j != InitElts; ++j)
2173 Args.push_back(Elt: j + Offset);
2174 Args.resize(N: ResElts, NV: -1);
2175 }
2176
2177 // If V is poison, make sure it ends up on the RHS of the shuffle to aid
2178 // merging subsequent shuffles into this one.
2179 if (CurIdx == 0)
2180 std::swap(a&: V, b&: Init);
2181 V = Builder.CreateShuffleVector(V1: V, V2: Init, Mask: Args, Name: "vecinit");
2182 VIsPoisonShuffle = isa<llvm::PoisonValue>(Val: Init);
2183 CurIdx += InitElts;
2184 }
2185
2186 // FIXME: evaluate codegen vs. shuffling against constant null vector.
2187 // Emit remaining default initializers.
2188 llvm::Type *EltTy = VType->getElementType();
2189
2190 // Emit remaining default initializers
2191 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
2192 Value *Idx = Builder.getInt32(C: CurIdx);
2193 llvm::Value *Init = llvm::Constant::getNullValue(Ty: EltTy);
2194 V = Builder.CreateInsertElement(Vec: V, NewElt: Init, Idx, Name: "vecinit");
2195 }
2196 return V;
2197}
2198
2199bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
2200 const Expr *E = CE->getSubExpr();
2201
2202 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
2203 return false;
2204
2205 if (isa<CXXThisExpr>(Val: E->IgnoreParens())) {
2206 // We always assume that 'this' is never null.
2207 return false;
2208 }
2209
2210 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: CE)) {
2211 // And that glvalue casts are never null.
2212 if (ICE->isGLValue())
2213 return false;
2214 }
2215
2216 return true;
2217}
2218
2219// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
2220// have to handle a more broad range of conversions than explicit casts, as they
2221// handle things like function to ptr-to-function decay etc.
2222Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2223 Expr *E = CE->getSubExpr();
2224 QualType DestTy = CE->getType();
2225 CastKind Kind = CE->getCastKind();
2226 CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE);
2227
2228 // These cases are generally not written to ignore the result of
2229 // evaluating their sub-expressions, so we clear this now.
2230 bool Ignored = TestAndClearIgnoreResultAssign();
2231
2232 // Since almost all cast kinds apply to scalars, this switch doesn't have
2233 // a default case, so the compiler will warn on a missing case. The cases
2234 // are in the same order as in the CastKind enum.
2235 switch (Kind) {
2236 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2237 case CK_BuiltinFnToFnPtr:
2238 llvm_unreachable("builtin functions are handled elsewhere");
2239
2240 case CK_LValueBitCast:
2241 case CK_ObjCObjectLValueCast: {
2242 Address Addr = EmitLValue(E).getAddress();
2243 Addr = Addr.withElementType(ElemTy: CGF.ConvertTypeForMem(T: DestTy));
2244 LValue LV = CGF.MakeAddrLValue(Addr, T: DestTy);
2245 return EmitLoadOfLValue(LV, Loc: CE->getExprLoc());
2246 }
2247
2248 case CK_LValueToRValueBitCast: {
2249 LValue SourceLVal = CGF.EmitLValue(E);
2250 Address Addr =
2251 SourceLVal.getAddress().withElementType(ElemTy: CGF.ConvertTypeForMem(T: DestTy));
2252 LValue DestLV = CGF.MakeAddrLValue(Addr, T: DestTy);
2253 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2254 return EmitLoadOfLValue(LV: DestLV, Loc: CE->getExprLoc());
2255 }
2256
2257 case CK_CPointerToObjCPointerCast:
2258 case CK_BlockPointerToObjCPointerCast:
2259 case CK_AnyPointerToBlockPointerCast:
2260 case CK_BitCast: {
2261 Value *Src = Visit(E: const_cast<Expr*>(E));
2262 llvm::Type *SrcTy = Src->getType();
2263 llvm::Type *DstTy = ConvertType(T: DestTy);
2264 assert(
2265 (!SrcTy->isPtrOrPtrVectorTy() || !DstTy->isPtrOrPtrVectorTy() ||
2266 SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace()) &&
2267 "Address-space cast must be used to convert address spaces");
2268
2269 if (CGF.SanOpts.has(K: SanitizerKind::CFIUnrelatedCast)) {
2270 if (auto *PT = DestTy->getAs<PointerType>()) {
2271 CGF.EmitVTablePtrCheckForCast(
2272 T: PT->getPointeeType(),
2273 Derived: Address(Src,
2274 CGF.ConvertTypeForMem(
2275 T: E->getType()->castAs<PointerType>()->getPointeeType()),
2276 CGF.getPointerAlign()),
2277 /*MayBeNull=*/true, TCK: CodeGenFunction::CFITCK_UnrelatedCast,
2278 Loc: CE->getBeginLoc());
2279 }
2280 }
2281
2282 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2283 const QualType SrcType = E->getType();
2284
2285 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2286 // Casting to pointer that could carry dynamic information (provided by
2287 // invariant.group) requires launder.
2288 Src = Builder.CreateLaunderInvariantGroup(Ptr: Src);
2289 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2290 // Casting to pointer that does not carry dynamic information (provided
2291 // by invariant.group) requires stripping it. Note that we don't do it
2292 // if the source could not be dynamic type and destination could be
2293 // dynamic because dynamic information is already laundered. It is
2294 // because launder(strip(src)) == launder(src), so there is no need to
2295 // add extra strip before launder.
2296 Src = Builder.CreateStripInvariantGroup(Ptr: Src);
2297 }
2298 }
2299
2300 // Update heapallocsite metadata when there is an explicit pointer cast.
2301 if (auto *CI = dyn_cast<llvm::CallBase>(Val: Src)) {
2302 if (CI->getMetadata(Kind: "heapallocsite") && isa<ExplicitCastExpr>(Val: CE) &&
2303 !isa<CastExpr>(Val: E)) {
2304 QualType PointeeType = DestTy->getPointeeType();
2305 if (!PointeeType.isNull())
2306 CGF.getDebugInfo()->addHeapAllocSiteMetadata(CallSite: CI, AllocatedTy: PointeeType,
2307 Loc: CE->getExprLoc());
2308 }
2309 }
2310
2311 // If Src is a fixed vector and Dst is a scalable vector, and both have the
2312 // same element type, use the llvm.vector.insert intrinsic to perform the
2313 // bitcast.
2314 if (auto *FixedSrcTy = dyn_cast<llvm::FixedVectorType>(Val: SrcTy)) {
2315 if (auto *ScalableDstTy = dyn_cast<llvm::ScalableVectorType>(Val: DstTy)) {
2316 // If we are casting a fixed i8 vector to a scalable i1 predicate
2317 // vector, use a vector insert and bitcast the result.
2318 if (ScalableDstTy->getElementType()->isIntegerTy(Bitwidth: 1) &&
2319 ScalableDstTy->getElementCount().isKnownMultipleOf(RHS: 8) &&
2320 FixedSrcTy->getElementType()->isIntegerTy(Bitwidth: 8)) {
2321 ScalableDstTy = llvm::ScalableVectorType::get(
2322 ElementType: FixedSrcTy->getElementType(),
2323 MinNumElts: ScalableDstTy->getElementCount().getKnownMinValue() / 8);
2324 }
2325 if (FixedSrcTy->getElementType() == ScalableDstTy->getElementType()) {
2326 llvm::Value *UndefVec = llvm::UndefValue::get(T: ScalableDstTy);
2327 llvm::Value *Zero = llvm::Constant::getNullValue(Ty: CGF.CGM.Int64Ty);
2328 llvm::Value *Result = Builder.CreateInsertVector(
2329 DstType: ScalableDstTy, SrcVec: UndefVec, SubVec: Src, Idx: Zero, Name: "cast.scalable");
2330 if (Result->getType() != DstTy)
2331 Result = Builder.CreateBitCast(V: Result, DestTy: DstTy);
2332 return Result;
2333 }
2334 }
2335 }
2336
2337 // If Src is a scalable vector and Dst is a fixed vector, and both have the
2338 // same element type, use the llvm.vector.extract intrinsic to perform the
2339 // bitcast.
2340 if (auto *ScalableSrcTy = dyn_cast<llvm::ScalableVectorType>(Val: SrcTy)) {
2341 if (auto *FixedDstTy = dyn_cast<llvm::FixedVectorType>(Val: DstTy)) {
2342 // If we are casting a scalable i1 predicate vector to a fixed i8
2343 // vector, bitcast the source and use a vector extract.
2344 if (ScalableSrcTy->getElementType()->isIntegerTy(Bitwidth: 1) &&
2345 ScalableSrcTy->getElementCount().isKnownMultipleOf(RHS: 8) &&
2346 FixedDstTy->getElementType()->isIntegerTy(Bitwidth: 8)) {
2347 ScalableSrcTy = llvm::ScalableVectorType::get(
2348 ElementType: FixedDstTy->getElementType(),
2349 MinNumElts: ScalableSrcTy->getElementCount().getKnownMinValue() / 8);
2350 Src = Builder.CreateBitCast(V: Src, DestTy: ScalableSrcTy);
2351 }
2352 if (ScalableSrcTy->getElementType() == FixedDstTy->getElementType()) {
2353 llvm::Value *Zero = llvm::Constant::getNullValue(Ty: CGF.CGM.Int64Ty);
2354 return Builder.CreateExtractVector(DstType: DstTy, SrcVec: Src, Idx: Zero, Name: "cast.fixed");
2355 }
2356 }
2357 }
2358
2359 // Perform VLAT <-> VLST bitcast through memory.
2360 // TODO: since the llvm.vector.{insert,extract} intrinsics
2361 // require the element types of the vectors to be the same, we
2362 // need to keep this around for bitcasts between VLAT <-> VLST where
2363 // the element types of the vectors are not the same, until we figure
2364 // out a better way of doing these casts.
2365 if ((isa<llvm::FixedVectorType>(Val: SrcTy) &&
2366 isa<llvm::ScalableVectorType>(Val: DstTy)) ||
2367 (isa<llvm::ScalableVectorType>(Val: SrcTy) &&
2368 isa<llvm::FixedVectorType>(Val: DstTy))) {
2369 Address Addr = CGF.CreateDefaultAlignTempAlloca(Ty: SrcTy, Name: "saved-value");
2370 LValue LV = CGF.MakeAddrLValue(Addr, T: E->getType());
2371 CGF.EmitStoreOfScalar(value: Src, lvalue: LV);
2372 Addr = Addr.withElementType(ElemTy: CGF.ConvertTypeForMem(T: DestTy));
2373 LValue DestLV = CGF.MakeAddrLValue(Addr, T: DestTy);
2374 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2375 return EmitLoadOfLValue(LV: DestLV, Loc: CE->getExprLoc());
2376 }
2377
2378 llvm::Value *Result = Builder.CreateBitCast(V: Src, DestTy: DstTy);
2379 return CGF.authPointerToPointerCast(ResultPtr: Result, SourceType: E->getType(), DestType: DestTy);
2380 }
2381 case CK_AddressSpaceConversion: {
2382 Expr::EvalResult Result;
2383 if (E->EvaluateAsRValue(Result, Ctx: CGF.getContext()) &&
2384 Result.Val.isNullPointer()) {
2385 // If E has side effect, it is emitted even if its final result is a
2386 // null pointer. In that case, a DCE pass should be able to
2387 // eliminate the useless instructions emitted during translating E.
2388 if (Result.HasSideEffects)
2389 Visit(E);
2390 return CGF.CGM.getNullPointer(T: cast<llvm::PointerType>(
2391 Val: ConvertType(T: DestTy)), QT: DestTy);
2392 }
2393 // Since target may map different address spaces in AST to the same address
2394 // space, an address space conversion may end up as a bitcast.
2395 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2396 CGF, V: Visit(E), SrcAddr: E->getType()->getPointeeType().getAddressSpace(),
2397 DestAddr: DestTy->getPointeeType().getAddressSpace(), DestTy: ConvertType(T: DestTy));
2398 }
2399 case CK_AtomicToNonAtomic:
2400 case CK_NonAtomicToAtomic:
2401 case CK_UserDefinedConversion:
2402 return Visit(E: const_cast<Expr*>(E));
2403
2404 case CK_NoOp: {
2405 return CE->changesVolatileQualification() ? EmitLoadOfLValue(E: CE)
2406 : Visit(E: const_cast<Expr *>(E));
2407 }
2408
2409 case CK_BaseToDerived: {
2410 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2411 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2412
2413 Address Base = CGF.EmitPointerWithAlignment(Addr: E);
2414 Address Derived =
2415 CGF.GetAddressOfDerivedClass(Value: Base, Derived: DerivedClassDecl,
2416 PathBegin: CE->path_begin(), PathEnd: CE->path_end(),
2417 NullCheckValue: CGF.ShouldNullCheckClassCastValue(CE));
2418
2419 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2420 // performed and the object is not of the derived type.
2421 if (CGF.sanitizePerformTypeCheck())
2422 CGF.EmitTypeCheck(TCK: CodeGenFunction::TCK_DowncastPointer, Loc: CE->getExprLoc(),
2423 Addr: Derived, Type: DestTy->getPointeeType());
2424
2425 if (CGF.SanOpts.has(K: SanitizerKind::CFIDerivedCast))
2426 CGF.EmitVTablePtrCheckForCast(T: DestTy->getPointeeType(), Derived,
2427 /*MayBeNull=*/true,
2428 TCK: CodeGenFunction::CFITCK_DerivedCast,
2429 Loc: CE->getBeginLoc());
2430
2431 return CGF.getAsNaturalPointerTo(Addr: Derived, PointeeType: CE->getType()->getPointeeType());
2432 }
2433 case CK_UncheckedDerivedToBase:
2434 case CK_DerivedToBase: {
2435 // The EmitPointerWithAlignment path does this fine; just discard
2436 // the alignment.
2437 return CGF.getAsNaturalPointerTo(Addr: CGF.EmitPointerWithAlignment(Addr: CE),
2438 PointeeType: CE->getType()->getPointeeType());
2439 }
2440
2441 case CK_Dynamic: {
2442 Address V = CGF.EmitPointerWithAlignment(Addr: E);
2443 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(Val: CE);
2444 return CGF.EmitDynamicCast(V, DCE);
2445 }
2446
2447 case CK_ArrayToPointerDecay:
2448 return CGF.getAsNaturalPointerTo(Addr: CGF.EmitArrayToPointerDecay(Array: E),
2449 PointeeType: CE->getType()->getPointeeType());
2450 case CK_FunctionToPointerDecay:
2451 return EmitLValue(E).getPointer(CGF);
2452
2453 case CK_NullToPointer:
2454 if (MustVisitNullValue(E))
2455 CGF.EmitIgnoredExpr(E);
2456
2457 return CGF.CGM.getNullPointer(T: cast<llvm::PointerType>(Val: ConvertType(T: DestTy)),
2458 QT: DestTy);
2459
2460 case CK_NullToMemberPointer: {
2461 if (MustVisitNullValue(E))
2462 CGF.EmitIgnoredExpr(E);
2463
2464 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2465 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2466 }
2467
2468 case CK_ReinterpretMemberPointer:
2469 case CK_BaseToDerivedMemberPointer:
2470 case CK_DerivedToBaseMemberPointer: {
2471 Value *Src = Visit(E);
2472
2473 // Note that the AST doesn't distinguish between checked and
2474 // unchecked member pointer conversions, so we always have to
2475 // implement checked conversions here. This is inefficient when
2476 // actual control flow may be required in order to perform the
2477 // check, which it is for data member pointers (but not member
2478 // function pointers on Itanium and ARM).
2479 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, E: CE, Src);
2480 }
2481
2482 case CK_ARCProduceObject:
2483 return CGF.EmitARCRetainScalarExpr(expr: E);
2484 case CK_ARCConsumeObject:
2485 return CGF.EmitObjCConsumeObject(T: E->getType(), Ptr: Visit(E));
2486 case CK_ARCReclaimReturnedObject:
2487 return CGF.EmitARCReclaimReturnedObject(e: E, /*allowUnsafe*/ allowUnsafeClaim: Ignored);
2488 case CK_ARCExtendBlockObject:
2489 return CGF.EmitARCExtendBlockObject(expr: E);
2490
2491 case CK_CopyAndAutoreleaseBlockObject:
2492 return CGF.EmitBlockCopyAndAutorelease(Block: Visit(E), Ty: E->getType());
2493
2494 case CK_FloatingRealToComplex:
2495 case CK_FloatingComplexCast:
2496 case CK_IntegralRealToComplex:
2497 case CK_IntegralComplexCast:
2498 case CK_IntegralComplexToFloatingComplex:
2499 case CK_FloatingComplexToIntegralComplex:
2500 case CK_ConstructorConversion:
2501 case CK_ToUnion:
2502 case CK_HLSLArrayRValue:
2503 llvm_unreachable("scalar cast to non-scalar value");
2504
2505 case CK_LValueToRValue:
2506 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2507 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2508 return Visit(E: const_cast<Expr*>(E));
2509
2510 case CK_IntegralToPointer: {
2511 Value *Src = Visit(E: const_cast<Expr*>(E));
2512
2513 // First, convert to the correct width so that we control the kind of
2514 // extension.
2515 auto DestLLVMTy = ConvertType(T: DestTy);
2516 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2517 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2518 llvm::Value* IntResult =
2519 Builder.CreateIntCast(V: Src, DestTy: MiddleTy, isSigned: InputSigned, Name: "conv");
2520
2521 auto *IntToPtr = Builder.CreateIntToPtr(V: IntResult, DestTy: DestLLVMTy);
2522
2523 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2524 // Going from integer to pointer that could be dynamic requires reloading
2525 // dynamic information from invariant.group.
2526 if (DestTy.mayBeDynamicClass())
2527 IntToPtr = Builder.CreateLaunderInvariantGroup(Ptr: IntToPtr);
2528 }
2529
2530 IntToPtr = CGF.authPointerToPointerCast(ResultPtr: IntToPtr, SourceType: E->getType(), DestType: DestTy);
2531 return IntToPtr;
2532 }
2533 case CK_PointerToIntegral: {
2534 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2535 auto *PtrExpr = Visit(E);
2536
2537 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2538 const QualType SrcType = E->getType();
2539
2540 // Casting to integer requires stripping dynamic information as it does
2541 // not carries it.
2542 if (SrcType.mayBeDynamicClass())
2543 PtrExpr = Builder.CreateStripInvariantGroup(Ptr: PtrExpr);
2544 }
2545
2546 PtrExpr = CGF.authPointerToPointerCast(ResultPtr: PtrExpr, SourceType: E->getType(), DestType: DestTy);
2547 return Builder.CreatePtrToInt(V: PtrExpr, DestTy: ConvertType(T: DestTy));
2548 }
2549 case CK_ToVoid: {
2550 CGF.EmitIgnoredExpr(E);
2551 return nullptr;
2552 }
2553 case CK_MatrixCast: {
2554 return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy,
2555 Loc: CE->getExprLoc());
2556 }
2557 case CK_VectorSplat: {
2558 llvm::Type *DstTy = ConvertType(T: DestTy);
2559 Value *Elt = Visit(E: const_cast<Expr *>(E));
2560 // Splat the element across to all elements
2561 llvm::ElementCount NumElements =
2562 cast<llvm::VectorType>(Val: DstTy)->getElementCount();
2563 return Builder.CreateVectorSplat(EC: NumElements, V: Elt, Name: "splat");
2564 }
2565
2566 case CK_FixedPointCast:
2567 return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy,
2568 Loc: CE->getExprLoc());
2569
2570 case CK_FixedPointToBoolean:
2571 assert(E->getType()->isFixedPointType() &&
2572 "Expected src type to be fixed point type");
2573 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2574 return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy,
2575 Loc: CE->getExprLoc());
2576
2577 case CK_FixedPointToIntegral:
2578 assert(E->getType()->isFixedPointType() &&
2579 "Expected src type to be fixed point type");
2580 assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2581 return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy,
2582 Loc: CE->getExprLoc());
2583
2584 case CK_IntegralToFixedPoint:
2585 assert(E->getType()->isIntegerType() &&
2586 "Expected src type to be an integer");
2587 assert(DestTy->isFixedPointType() &&
2588 "Expected dest type to be fixed point type");
2589 return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy,
2590 Loc: CE->getExprLoc());
2591
2592 case CK_IntegralCast: {
2593 if (E->getType()->isExtVectorType() && DestTy->isExtVectorType()) {
2594 QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2595 return Builder.CreateIntCast(V: Visit(E), DestTy: ConvertType(T: DestTy),
2596 isSigned: SrcElTy->isSignedIntegerOrEnumerationType(),
2597 Name: "conv");
2598 }
2599 ScalarConversionOpts Opts;
2600 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: CE)) {
2601 if (!ICE->isPartOfExplicitCast())
2602 Opts = ScalarConversionOpts(CGF.SanOpts);
2603 }
2604 return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy,
2605 Loc: CE->getExprLoc(), Opts);
2606 }
2607 case CK_IntegralToFloating: {
2608 if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2609 // TODO: Support constrained FP intrinsics.
2610 QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2611 if (SrcElTy->isSignedIntegerOrEnumerationType())
2612 return Builder.CreateSIToFP(V: Visit(E), DestTy: ConvertType(T: DestTy), Name: "conv");
2613 return Builder.CreateUIToFP(V: Visit(E), DestTy: ConvertType(T: DestTy), Name: "conv");
2614 }
2615 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2616 return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy,
2617 Loc: CE->getExprLoc());
2618 }
2619 case CK_FloatingToIntegral: {
2620 if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2621 // TODO: Support constrained FP intrinsics.
2622 QualType DstElTy = DestTy->castAs<VectorType>()->getElementType();
2623 if (DstElTy->isSignedIntegerOrEnumerationType())
2624 return Builder.CreateFPToSI(V: Visit(E), DestTy: ConvertType(T: DestTy), Name: "conv");
2625 return Builder.CreateFPToUI(V: Visit(E), DestTy: ConvertType(T: DestTy), Name: "conv");
2626 }
2627 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2628 return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy,
2629 Loc: CE->getExprLoc());
2630 }
2631 case CK_FloatingCast: {
2632 if (E->getType()->isVectorType() && DestTy->isVectorType()) {
2633 // TODO: Support constrained FP intrinsics.
2634 QualType SrcElTy = E->getType()->castAs<VectorType>()->getElementType();
2635 QualType DstElTy = DestTy->castAs<VectorType>()->getElementType();
2636 if (DstElTy->castAs<BuiltinType>()->getKind() <
2637 SrcElTy->castAs<BuiltinType>()->getKind())
2638 return Builder.CreateFPTrunc(V: Visit(E), DestTy: ConvertType(T: DestTy), Name: "conv");
2639 return Builder.CreateFPExt(V: Visit(E), DestTy: ConvertType(T: DestTy), Name: "conv");
2640 }
2641 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2642 return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy,
2643 Loc: CE->getExprLoc());
2644 }
2645 case CK_FixedPointToFloating:
2646 case CK_FloatingToFixedPoint: {
2647 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2648 return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy,
2649 Loc: CE->getExprLoc());
2650 }
2651 case CK_BooleanToSignedIntegral: {
2652 ScalarConversionOpts Opts;
2653 Opts.TreatBooleanAsSigned = true;
2654 return EmitScalarConversion(Src: Visit(E), SrcType: E->getType(), DstType: DestTy,
2655 Loc: CE->getExprLoc(), Opts);
2656 }
2657 case CK_IntegralToBoolean:
2658 return EmitIntToBoolConversion(V: Visit(E));
2659 case CK_PointerToBoolean:
2660 return EmitPointerToBoolConversion(V: Visit(E), QT: E->getType());
2661 case CK_FloatingToBoolean: {
2662 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2663 return EmitFloatToBoolConversion(V: Visit(E));
2664 }
2665 case CK_MemberPointerToBoolean: {
2666 llvm::Value *MemPtr = Visit(E);
2667 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2668 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2669 }
2670
2671 case CK_FloatingComplexToReal:
2672 case CK_IntegralComplexToReal:
2673 return CGF.EmitComplexExpr(E, IgnoreReal: false, IgnoreImag: true).first;
2674
2675 case CK_FloatingComplexToBoolean:
2676 case CK_IntegralComplexToBoolean: {
2677 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2678
2679 // TODO: kill this function off, inline appropriate case here
2680 return EmitComplexToScalarConversion(Src: V, SrcTy: E->getType(), DstTy: DestTy,
2681 Loc: CE->getExprLoc());
2682 }
2683
2684 case CK_ZeroToOCLOpaqueType: {
2685 assert((DestTy->isEventT() || DestTy->isQueueT() ||
2686 DestTy->isOCLIntelSubgroupAVCType()) &&
2687 "CK_ZeroToOCLEvent cast on non-event type");
2688 return llvm::Constant::getNullValue(Ty: ConvertType(T: DestTy));
2689 }
2690
2691 case CK_IntToOCLSampler:
2692 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2693
2694 case CK_HLSLVectorTruncation: {
2695 assert(DestTy->isVectorType() && "Expected dest type to be vector type");
2696 Value *Vec = Visit(E: const_cast<Expr *>(E));
2697 SmallVector<int, 16> Mask;
2698 unsigned NumElts = DestTy->castAs<VectorType>()->getNumElements();
2699 for (unsigned I = 0; I != NumElts; ++I)
2700 Mask.push_back(Elt: I);
2701
2702 return Builder.CreateShuffleVector(V: Vec, Mask, Name: "trunc");
2703 }
2704
2705 } // end of switch
2706
2707 llvm_unreachable("unknown scalar cast");
2708}
2709
2710Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2711 CodeGenFunction::StmtExprEvaluation eval(CGF);
2712 Address RetAlloca = CGF.EmitCompoundStmt(S: *E->getSubStmt(),
2713 GetLast: !E->getType()->isVoidType());
2714 if (!RetAlloca.isValid())
2715 return nullptr;
2716 return CGF.EmitLoadOfScalar(lvalue: CGF.MakeAddrLValue(Addr: RetAlloca, T: E->getType()),
2717 Loc: E->getExprLoc());
2718}
2719
2720Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2721 CodeGenFunction::RunCleanupsScope Scope(CGF);
2722 Value *V = Visit(E: E->getSubExpr());
2723 // Defend against dominance problems caused by jumps out of expression
2724 // evaluation through the shared cleanup block.
2725 Scope.ForceCleanup(ValuesToReload: {&V});
2726 return V;
2727}
2728
2729//===----------------------------------------------------------------------===//
2730// Unary Operators
2731//===----------------------------------------------------------------------===//
2732
2733static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2734 llvm::Value *InVal, bool IsInc,
2735 FPOptions FPFeatures) {
2736 BinOpInfo BinOp;
2737 BinOp.LHS = InVal;
2738 BinOp.RHS = llvm::ConstantInt::get(Ty: InVal->getType(), V: 1, IsSigned: false);
2739 BinOp.Ty = E->getType();
2740 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2741 BinOp.FPFeatures = FPFeatures;
2742 BinOp.E = E;
2743 return BinOp;
2744}
2745
2746llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2747 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2748 llvm::Value *Amount =
2749 llvm::ConstantInt::get(Ty: InVal->getType(), V: IsInc ? 1 : -1, IsSigned: true);
2750 StringRef Name = IsInc ? "inc" : "dec";
2751 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2752 case LangOptions::SOB_Defined:
2753 if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow))
2754 return Builder.CreateAdd(LHS: InVal, RHS: Amount, Name);
2755 [[fallthrough]];
2756 case LangOptions::SOB_Undefined:
2757 if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow))
2758 return Builder.CreateNSWAdd(LHS: InVal, RHS: Amount, Name);
2759 [[fallthrough]];
2760 case LangOptions::SOB_Trapping:
2761 if (!E->canOverflow())
2762 return Builder.CreateNSWAdd(LHS: InVal, RHS: Amount, Name);
2763 return EmitOverflowCheckedBinOp(Ops: createBinOpInfoFromIncDec(
2764 E, InVal, IsInc, FPFeatures: E->getFPFeaturesInEffect(LO: CGF.getLangOpts())));
2765 }
2766 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2767}
2768
2769namespace {
2770/// Handles check and update for lastprivate conditional variables.
2771class OMPLastprivateConditionalUpdateRAII {
2772private:
2773 CodeGenFunction &CGF;
2774 const UnaryOperator *E;
2775
2776public:
2777 OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2778 const UnaryOperator *E)
2779 : CGF(CGF), E(E) {}
2780 ~OMPLastprivateConditionalUpdateRAII() {
2781 if (CGF.getLangOpts().OpenMP)
2782 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2783 CGF, LHS: E->getSubExpr());
2784 }
2785};
2786} // namespace
2787
2788llvm::Value *
2789ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2790 bool isInc, bool isPre) {
2791 OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2792 QualType type = E->getSubExpr()->getType();
2793 llvm::PHINode *atomicPHI = nullptr;
2794 llvm::Value *value;
2795 llvm::Value *input;
2796 llvm::Value *Previous = nullptr;
2797 QualType SrcType = E->getType();
2798
2799 int amount = (isInc ? 1 : -1);
2800 bool isSubtraction = !isInc;
2801
2802 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2803 type = atomicTy->getValueType();
2804 if (isInc && type->isBooleanType()) {
2805 llvm::Value *True = CGF.EmitToMemory(Value: Builder.getTrue(), Ty: type);
2806 if (isPre) {
2807 Builder.CreateStore(Val: True, Addr: LV.getAddress(), IsVolatile: LV.isVolatileQualified())
2808 ->setAtomic(Ordering: llvm::AtomicOrdering::SequentiallyConsistent);
2809 return Builder.getTrue();
2810 }
2811 // For atomic bool increment, we just store true and return it for
2812 // preincrement, do an atomic swap with true for postincrement
2813 return Builder.CreateAtomicRMW(
2814 Op: llvm::AtomicRMWInst::Xchg, Addr: LV.getAddress(), Val: True,
2815 Ordering: llvm::AtomicOrdering::SequentiallyConsistent);
2816 }
2817 // Special case for atomic increment / decrement on integers, emit
2818 // atomicrmw instructions. We skip this if we want to be doing overflow
2819 // checking, and fall into the slow path with the atomic cmpxchg loop.
2820 if (!type->isBooleanType() && type->isIntegerType() &&
2821 !(type->isUnsignedIntegerType() &&
2822 CGF.SanOpts.has(K: SanitizerKind::UnsignedIntegerOverflow)) &&
2823 CGF.getLangOpts().getSignedOverflowBehavior() !=
2824 LangOptions::SOB_Trapping) {
2825 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2826 llvm::AtomicRMWInst::Sub;
2827 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2828 llvm::Instruction::Sub;
2829 llvm::Value *amt = CGF.EmitToMemory(
2830 Value: llvm::ConstantInt::get(Ty: ConvertType(T: type), V: 1, IsSigned: true), Ty: type);
2831 llvm::Value *old =
2832 Builder.CreateAtomicRMW(Op: aop, Addr: LV.getAddress(), Val: amt,
2833 Ordering: llvm::AtomicOrdering::SequentiallyConsistent);
2834 return isPre ? Builder.CreateBinOp(Opc: op, LHS: old, RHS: amt) : old;
2835 }
2836 // Special case for atomic increment/decrement on floats.
2837 // Bail out non-power-of-2-sized floating point types (e.g., x86_fp80).
2838 if (type->isFloatingType()) {
2839 llvm::Type *Ty = ConvertType(T: type);
2840 if (llvm::has_single_bit(Value: Ty->getScalarSizeInBits())) {
2841 llvm::AtomicRMWInst::BinOp aop =
2842 isInc ? llvm::AtomicRMWInst::FAdd : llvm::AtomicRMWInst::FSub;
2843 llvm::Instruction::BinaryOps op =
2844 isInc ? llvm::Instruction::FAdd : llvm::Instruction::FSub;
2845 llvm::Value *amt = llvm::ConstantFP::get(Ty, V: 1.0);
2846 llvm::AtomicRMWInst *old = Builder.CreateAtomicRMW(
2847 Op: aop, Addr: LV.getAddress(), Val: amt,
2848 Ordering: llvm::AtomicOrdering::SequentiallyConsistent);
2849
2850 return isPre ? Builder.CreateBinOp(Opc: op, LHS: old, RHS: amt) : old;
2851 }
2852 }
2853 value = EmitLoadOfLValue(LV, Loc: E->getExprLoc());
2854 input = value;
2855 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2856 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2857 llvm::BasicBlock *opBB = CGF.createBasicBlock(name: "atomic_op", parent: CGF.CurFn);
2858 value = CGF.EmitToMemory(Value: value, Ty: type);
2859 Builder.CreateBr(Dest: opBB);
2860 Builder.SetInsertPoint(opBB);
2861 atomicPHI = Builder.CreatePHI(Ty: value->getType(), NumReservedValues: 2);
2862 atomicPHI->addIncoming(V: value, BB: startBB);
2863 value = atomicPHI;
2864 } else {
2865 value = EmitLoadOfLValue(LV, Loc: E->getExprLoc());
2866 input = value;
2867 }
2868
2869 // Special case of integer increment that we have to check first: bool++.
2870 // Due to promotion rules, we get:
2871 // bool++ -> bool = bool + 1
2872 // -> bool = (int)bool + 1
2873 // -> bool = ((int)bool + 1 != 0)
2874 // An interesting aspect of this is that increment is always true.
2875 // Decrement does not have this property.
2876 if (isInc && type->isBooleanType()) {
2877 value = Builder.getTrue();
2878
2879 // Most common case by far: integer increment.
2880 } else if (type->isIntegerType()) {
2881 QualType promotedType;
2882 bool canPerformLossyDemotionCheck = false;
2883 if (CGF.getContext().isPromotableIntegerType(T: type)) {
2884 promotedType = CGF.getContext().getPromotedIntegerType(PromotableType: type);
2885 assert(promotedType != type && "Shouldn't promote to the same type.");
2886 canPerformLossyDemotionCheck = true;
2887 canPerformLossyDemotionCheck &=
2888 CGF.getContext().getCanonicalType(T: type) !=
2889 CGF.getContext().getCanonicalType(T: promotedType);
2890 canPerformLossyDemotionCheck &=
2891 PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2892 SrcType: type, DstType: promotedType);
2893 assert((!canPerformLossyDemotionCheck ||
2894 type->isSignedIntegerOrEnumerationType() ||
2895 promotedType->isSignedIntegerOrEnumerationType() ||
2896 ConvertType(type)->getScalarSizeInBits() ==
2897 ConvertType(promotedType)->getScalarSizeInBits()) &&
2898 "The following check expects that if we do promotion to different "
2899 "underlying canonical type, at least one of the types (either "
2900 "base or promoted) will be signed, or the bitwidths will match.");
2901 }
2902 if (CGF.SanOpts.hasOneOf(
2903 K: SanitizerKind::ImplicitIntegerArithmeticValueChange |
2904 SanitizerKind::ImplicitBitfieldConversion) &&
2905 canPerformLossyDemotionCheck) {
2906 // While `x += 1` (for `x` with width less than int) is modeled as
2907 // promotion+arithmetics+demotion, and we can catch lossy demotion with
2908 // ease; inc/dec with width less than int can't overflow because of
2909 // promotion rules, so we omit promotion+demotion, which means that we can
2910 // not catch lossy "demotion". Because we still want to catch these cases
2911 // when the sanitizer is enabled, we perform the promotion, then perform
2912 // the increment/decrement in the wider type, and finally
2913 // perform the demotion. This will catch lossy demotions.
2914
2915 // We have a special case for bitfields defined using all the bits of the
2916 // type. In this case we need to do the same trick as for the integer
2917 // sanitizer checks, i.e., promotion -> increment/decrement -> demotion.
2918
2919 value = EmitScalarConversion(Src: value, SrcType: type, DstType: promotedType, Loc: E->getExprLoc());
2920 Value *amt = llvm::ConstantInt::get(Ty: value->getType(), V: amount, IsSigned: true);
2921 value = Builder.CreateAdd(LHS: value, RHS: amt, Name: isInc ? "inc" : "dec");
2922 // Do pass non-default ScalarConversionOpts so that sanitizer check is
2923 // emitted if LV is not a bitfield, otherwise the bitfield sanitizer
2924 // checks will take care of the conversion.
2925 ScalarConversionOpts Opts;
2926 if (!LV.isBitField())
2927 Opts = ScalarConversionOpts(CGF.SanOpts);
2928 else if (CGF.SanOpts.has(K: SanitizerKind::ImplicitBitfieldConversion)) {
2929 Previous = value;
2930 SrcType = promotedType;
2931 }
2932
2933 value = EmitScalarConversion(Src: value, SrcType: promotedType, DstType: type, Loc: E->getExprLoc(),
2934 Opts);
2935
2936 // Note that signed integer inc/dec with width less than int can't
2937 // overflow because of promotion rules; we're just eliding a few steps
2938 // here.
2939 } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2940 value = EmitIncDecConsiderOverflowBehavior(E, InVal: value, IsInc: isInc);
2941 } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2942 CGF.SanOpts.has(K: SanitizerKind::UnsignedIntegerOverflow)) {
2943 value = EmitOverflowCheckedBinOp(Ops: createBinOpInfoFromIncDec(
2944 E, InVal: value, IsInc: isInc, FPFeatures: E->getFPFeaturesInEffect(LO: CGF.getLangOpts())));
2945 } else {
2946 llvm::Value *amt = llvm::ConstantInt::get(Ty: value->getType(), V: amount, IsSigned: true);
2947 value = Builder.CreateAdd(LHS: value, RHS: amt, Name: isInc ? "inc" : "dec");
2948 }
2949
2950 // Next most common: pointer increment.
2951 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2952 QualType type = ptr->getPointeeType();
2953
2954 // VLA types don't have constant size.
2955 if (const VariableArrayType *vla
2956 = CGF.getContext().getAsVariableArrayType(T: type)) {
2957 llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2958 if (!isInc) numElts = Builder.CreateNSWNeg(V: numElts, Name: "vla.negsize");
2959 llvm::Type *elemTy = CGF.ConvertTypeForMem(T: vla->getElementType());
2960 if (CGF.getLangOpts().isSignedOverflowDefined())
2961 value = Builder.CreateGEP(Ty: elemTy, Ptr: value, IdxList: numElts, Name: "vla.inc");
2962 else
2963 value = CGF.EmitCheckedInBoundsGEP(
2964 ElemTy: elemTy, Ptr: value, IdxList: numElts, /*SignedIndices=*/false, IsSubtraction: isSubtraction,
2965 Loc: E->getExprLoc(), Name: "vla.inc");
2966
2967 // Arithmetic on function pointers (!) is just +-1.
2968 } else if (type->isFunctionType()) {
2969 llvm::Value *amt = Builder.getInt32(C: amount);
2970
2971 if (CGF.getLangOpts().isSignedOverflowDefined())
2972 value = Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: value, IdxList: amt, Name: "incdec.funcptr");
2973 else
2974 value =
2975 CGF.EmitCheckedInBoundsGEP(ElemTy: CGF.Int8Ty, Ptr: value, IdxList: amt,
2976 /*SignedIndices=*/false, IsSubtraction: isSubtraction,
2977 Loc: E->getExprLoc(), Name: "incdec.funcptr");
2978
2979 // For everything else, we can just do a simple increment.
2980 } else {
2981 llvm::Value *amt = Builder.getInt32(C: amount);
2982 llvm::Type *elemTy = CGF.ConvertTypeForMem(T: type);
2983 if (CGF.getLangOpts().isSignedOverflowDefined())
2984 value = Builder.CreateGEP(Ty: elemTy, Ptr: value, IdxList: amt, Name: "incdec.ptr");
2985 else
2986 value = CGF.EmitCheckedInBoundsGEP(
2987 ElemTy: elemTy, Ptr: value, IdxList: amt, /*SignedIndices=*/false, IsSubtraction: isSubtraction,
2988 Loc: E->getExprLoc(), Name: "incdec.ptr");
2989 }
2990
2991 // Vector increment/decrement.
2992 } else if (type->isVectorType()) {
2993 if (type->hasIntegerRepresentation()) {
2994 llvm::Value *amt = llvm::ConstantInt::get(Ty: value->getType(), V: amount);
2995
2996 value = Builder.CreateAdd(LHS: value, RHS: amt, Name: isInc ? "inc" : "dec");
2997 } else {
2998 value = Builder.CreateFAdd(
2999 L: value,
3000 R: llvm::ConstantFP::get(Ty: value->getType(), V: amount),
3001 Name: isInc ? "inc" : "dec");
3002 }
3003
3004 // Floating point.
3005 } else if (type->isRealFloatingType()) {
3006 // Add the inc/dec to the real part.
3007 llvm::Value *amt;
3008 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
3009
3010 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
3011 // Another special case: half FP increment should be done via float
3012 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
3013 value = Builder.CreateCall(
3014 Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::convert_from_fp16,
3015 Tys: CGF.CGM.FloatTy),
3016 Args: input, Name: "incdec.conv");
3017 } else {
3018 value = Builder.CreateFPExt(V: input, DestTy: CGF.CGM.FloatTy, Name: "incdec.conv");
3019 }
3020 }
3021
3022 if (value->getType()->isFloatTy())
3023 amt = llvm::ConstantFP::get(Context&: VMContext,
3024 V: llvm::APFloat(static_cast<float>(amount)));
3025 else if (value->getType()->isDoubleTy())
3026 amt = llvm::ConstantFP::get(Context&: VMContext,
3027 V: llvm::APFloat(static_cast<double>(amount)));
3028 else {
3029 // Remaining types are Half, Bfloat16, LongDouble, __ibm128 or __float128.
3030 // Convert from float.
3031 llvm::APFloat F(static_cast<float>(amount));
3032 bool ignored;
3033 const llvm::fltSemantics *FS;
3034 // Don't use getFloatTypeSemantics because Half isn't
3035 // necessarily represented using the "half" LLVM type.
3036 if (value->getType()->isFP128Ty())
3037 FS = &CGF.getTarget().getFloat128Format();
3038 else if (value->getType()->isHalfTy())
3039 FS = &CGF.getTarget().getHalfFormat();
3040 else if (value->getType()->isBFloatTy())
3041 FS = &CGF.getTarget().getBFloat16Format();
3042 else if (value->getType()->isPPC_FP128Ty())
3043 FS = &CGF.getTarget().getIbm128Format();
3044 else
3045 FS = &CGF.getTarget().getLongDoubleFormat();
3046 F.convert(ToSemantics: *FS, RM: llvm::APFloat::rmTowardZero, losesInfo: &ignored);
3047 amt = llvm::ConstantFP::get(Context&: VMContext, V: F);
3048 }
3049 value = Builder.CreateFAdd(L: value, R: amt, Name: isInc ? "inc" : "dec");
3050
3051 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
3052 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
3053 value = Builder.CreateCall(
3054 Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::convert_to_fp16,
3055 Tys: CGF.CGM.FloatTy),
3056 Args: value, Name: "incdec.conv");
3057 } else {
3058 value = Builder.CreateFPTrunc(V: value, DestTy: input->getType(), Name: "incdec.conv");
3059 }
3060 }
3061
3062 // Fixed-point types.
3063 } else if (type->isFixedPointType()) {
3064 // Fixed-point types are tricky. In some cases, it isn't possible to
3065 // represent a 1 or a -1 in the type at all. Piggyback off of
3066 // EmitFixedPointBinOp to avoid having to reimplement saturation.
3067 BinOpInfo Info;
3068 Info.E = E;
3069 Info.Ty = E->getType();
3070 Info.Opcode = isInc ? BO_Add : BO_Sub;
3071 Info.LHS = value;
3072 Info.RHS = llvm::ConstantInt::get(Ty: value->getType(), V: 1, IsSigned: false);
3073 // If the type is signed, it's better to represent this as +(-1) or -(-1),
3074 // since -1 is guaranteed to be representable.
3075 if (type->isSignedFixedPointType()) {
3076 Info.Opcode = isInc ? BO_Sub : BO_Add;
3077 Info.RHS = Builder.CreateNeg(V: Info.RHS);
3078 }
3079 // Now, convert from our invented integer literal to the type of the unary
3080 // op. This will upscale and saturate if necessary. This value can become
3081 // undef in some cases.
3082 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3083 auto DstSema = CGF.getContext().getFixedPointSemantics(Ty: Info.Ty);
3084 Info.RHS = FPBuilder.CreateIntegerToFixed(Src: Info.RHS, SrcIsSigned: true, DstSema);
3085 value = EmitFixedPointBinOp(Ops: Info);
3086
3087 // Objective-C pointer types.
3088 } else {
3089 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
3090
3091 CharUnits size = CGF.getContext().getTypeSizeInChars(T: OPT->getObjectType());
3092 if (!isInc) size = -size;
3093 llvm::Value *sizeValue =
3094 llvm::ConstantInt::get(Ty: CGF.SizeTy, V: size.getQuantity());
3095
3096 if (CGF.getLangOpts().isSignedOverflowDefined())
3097 value = Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: value, IdxList: sizeValue, Name: "incdec.objptr");
3098 else
3099 value = CGF.EmitCheckedInBoundsGEP(
3100 ElemTy: CGF.Int8Ty, Ptr: value, IdxList: sizeValue, /*SignedIndices=*/false, IsSubtraction: isSubtraction,
3101 Loc: E->getExprLoc(), Name: "incdec.objptr");
3102 value = Builder.CreateBitCast(V: value, DestTy: input->getType());
3103 }
3104
3105 if (atomicPHI) {
3106 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3107 llvm::BasicBlock *contBB = CGF.createBasicBlock(name: "atomic_cont", parent: CGF.CurFn);
3108 auto Pair = CGF.EmitAtomicCompareExchange(
3109 Obj: LV, Expected: RValue::get(V: atomicPHI), Desired: RValue::get(V: value), Loc: E->getExprLoc());
3110 llvm::Value *old = CGF.EmitToMemory(Value: Pair.first.getScalarVal(), Ty: type);
3111 llvm::Value *success = Pair.second;
3112 atomicPHI->addIncoming(V: old, BB: curBlock);
3113 Builder.CreateCondBr(Cond: success, True: contBB, False: atomicPHI->getParent());
3114 Builder.SetInsertPoint(contBB);
3115 return isPre ? value : input;
3116 }
3117
3118 // Store the updated result through the lvalue.
3119 if (LV.isBitField()) {
3120 Value *Src = Previous ? Previous : value;
3121 CGF.EmitStoreThroughBitfieldLValue(Src: RValue::get(V: value), Dst: LV, Result: &value);
3122 CGF.EmitBitfieldConversionCheck(Src, SrcType, Dst: value, DstType: E->getType(),
3123 Info: LV.getBitFieldInfo(), Loc: E->getExprLoc());
3124 } else
3125 CGF.EmitStoreThroughLValue(Src: RValue::get(V: value), Dst: LV);
3126
3127 // If this is a postinc, return the value read from memory, otherwise use the
3128 // updated value.
3129 return isPre ? value : input;
3130}
3131
3132
3133Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
3134 QualType PromotionType) {
3135 QualType promotionTy = PromotionType.isNull()
3136 ? getPromotionType(Ty: E->getSubExpr()->getType())
3137 : PromotionType;
3138 Value *result = VisitPlus(E, PromotionType: promotionTy);
3139 if (result && !promotionTy.isNull())
3140 result = EmitUnPromotedValue(result, ExprType: E->getType());
3141 return result;
3142}
3143
3144Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E,
3145 QualType PromotionType) {
3146 // This differs from gcc, though, most likely due to a bug in gcc.
3147 TestAndClearIgnoreResultAssign();
3148 if (!PromotionType.isNull())
3149 return CGF.EmitPromotedScalarExpr(E: E->getSubExpr(), PromotionType);
3150 return Visit(E: E->getSubExpr());
3151}
3152
3153Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
3154 QualType PromotionType) {
3155 QualType promotionTy = PromotionType.isNull()
3156 ? getPromotionType(Ty: E->getSubExpr()->getType())
3157 : PromotionType;
3158 Value *result = VisitMinus(E, PromotionType: promotionTy);
3159 if (result && !promotionTy.isNull())
3160 result = EmitUnPromotedValue(result, ExprType: E->getType());
3161 return result;
3162}
3163
3164Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E,
3165 QualType PromotionType) {
3166 TestAndClearIgnoreResultAssign();
3167 Value *Op;
3168 if (!PromotionType.isNull())
3169 Op = CGF.EmitPromotedScalarExpr(E: E->getSubExpr(), PromotionType);
3170 else
3171 Op = Visit(E: E->getSubExpr());
3172
3173 // Generate a unary FNeg for FP ops.
3174 if (Op->getType()->isFPOrFPVectorTy())
3175 return Builder.CreateFNeg(V: Op, Name: "fneg");
3176
3177 // Emit unary minus with EmitSub so we handle overflow cases etc.
3178 BinOpInfo BinOp;
3179 BinOp.RHS = Op;
3180 BinOp.LHS = llvm::Constant::getNullValue(Ty: BinOp.RHS->getType());
3181 BinOp.Ty = E->getType();
3182 BinOp.Opcode = BO_Sub;
3183 BinOp.FPFeatures = E->getFPFeaturesInEffect(LO: CGF.getLangOpts());
3184 BinOp.E = E;
3185 return EmitSub(Ops: BinOp);
3186}
3187
3188Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
3189 TestAndClearIgnoreResultAssign();
3190 Value *Op = Visit(E: E->getSubExpr());
3191 return Builder.CreateNot(V: Op, Name: "not");
3192}
3193
3194Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
3195 // Perform vector logical not on comparison with zero vector.
3196 if (E->getType()->isVectorType() &&
3197 E->getType()->castAs<VectorType>()->getVectorKind() ==
3198 VectorKind::Generic) {
3199 Value *Oper = Visit(E: E->getSubExpr());
3200 Value *Zero = llvm::Constant::getNullValue(Ty: Oper->getType());
3201 Value *Result;
3202 if (Oper->getType()->isFPOrFPVectorTy()) {
3203 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
3204 CGF, E->getFPFeaturesInEffect(LO: CGF.getLangOpts()));
3205 Result = Builder.CreateFCmp(P: llvm::CmpInst::FCMP_OEQ, LHS: Oper, RHS: Zero, Name: "cmp");
3206 } else
3207 Result = Builder.CreateICmp(P: llvm::CmpInst::ICMP_EQ, LHS: Oper, RHS: Zero, Name: "cmp");
3208 return Builder.CreateSExt(V: Result, DestTy: ConvertType(T: E->getType()), Name: "sext");
3209 }
3210
3211 // Compare operand to zero.
3212 Value *BoolVal = CGF.EvaluateExprAsBool(E: E->getSubExpr());
3213
3214 // Invert value.
3215 // TODO: Could dynamically modify easy computations here. For example, if
3216 // the operand is an icmp ne, turn into icmp eq.
3217 BoolVal = Builder.CreateNot(V: BoolVal, Name: "lnot");
3218
3219 // ZExt result to the expr type.
3220 return Builder.CreateZExt(V: BoolVal, DestTy: ConvertType(T: E->getType()), Name: "lnot.ext");
3221}
3222
3223Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
3224 // Try folding the offsetof to a constant.
3225 Expr::EvalResult EVResult;
3226 if (E->EvaluateAsInt(Result&: EVResult, Ctx: CGF.getContext())) {
3227 llvm::APSInt Value = EVResult.Val.getInt();
3228 return Builder.getInt(AI: Value);
3229 }
3230
3231 // Loop over the components of the offsetof to compute the value.
3232 unsigned n = E->getNumComponents();
3233 llvm::Type* ResultType = ConvertType(T: E->getType());
3234 llvm::Value* Result = llvm::Constant::getNullValue(Ty: ResultType);
3235 QualType CurrentType = E->getTypeSourceInfo()->getType();
3236 for (unsigned i = 0; i != n; ++i) {
3237 OffsetOfNode ON = E->getComponent(Idx: i);
3238 llvm::Value *Offset = nullptr;
3239 switch (ON.getKind()) {
3240 case OffsetOfNode::Array: {
3241 // Compute the index
3242 Expr *IdxExpr = E->getIndexExpr(Idx: ON.getArrayExprIndex());
3243 llvm::Value* Idx = CGF.EmitScalarExpr(E: IdxExpr);
3244 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
3245 Idx = Builder.CreateIntCast(V: Idx, DestTy: ResultType, isSigned: IdxSigned, Name: "conv");
3246
3247 // Save the element type
3248 CurrentType =
3249 CGF.getContext().getAsArrayType(T: CurrentType)->getElementType();
3250
3251 // Compute the element size
3252 llvm::Value* ElemSize = llvm::ConstantInt::get(Ty: ResultType,
3253 V: CGF.getContext().getTypeSizeInChars(T: CurrentType).getQuantity());
3254
3255 // Multiply out to compute the result
3256 Offset = Builder.CreateMul(LHS: Idx, RHS: ElemSize);
3257 break;
3258 }
3259
3260 case OffsetOfNode::Field: {
3261 FieldDecl *MemberDecl = ON.getField();
3262 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3263 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(D: RD);
3264
3265 // Compute the index of the field in its parent.
3266 unsigned i = 0;
3267 // FIXME: It would be nice if we didn't have to loop here!
3268 for (RecordDecl::field_iterator Field = RD->field_begin(),
3269 FieldEnd = RD->field_end();
3270 Field != FieldEnd; ++Field, ++i) {
3271 if (*Field == MemberDecl)
3272 break;
3273 }
3274 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
3275
3276 // Compute the offset to the field
3277 int64_t OffsetInt = RL.getFieldOffset(FieldNo: i) /
3278 CGF.getContext().getCharWidth();
3279 Offset = llvm::ConstantInt::get(Ty: ResultType, V: OffsetInt);
3280
3281 // Save the element type.
3282 CurrentType = MemberDecl->getType();
3283 break;
3284 }
3285
3286 case OffsetOfNode::Identifier:
3287 llvm_unreachable("dependent __builtin_offsetof");
3288
3289 case OffsetOfNode::Base: {
3290 if (ON.getBase()->isVirtual()) {
3291 CGF.ErrorUnsupported(S: E, Type: "virtual base in offsetof");
3292 continue;
3293 }
3294
3295 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
3296 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(D: RD);
3297
3298 // Save the element type.
3299 CurrentType = ON.getBase()->getType();
3300
3301 // Compute the offset to the base.
3302 auto *BaseRT = CurrentType->castAs<RecordType>();
3303 auto *BaseRD = cast<CXXRecordDecl>(Val: BaseRT->getDecl());
3304 CharUnits OffsetInt = RL.getBaseClassOffset(Base: BaseRD);
3305 Offset = llvm::ConstantInt::get(Ty: ResultType, V: OffsetInt.getQuantity());
3306 break;
3307 }
3308 }
3309 Result = Builder.CreateAdd(LHS: Result, RHS: Offset);
3310 }
3311 return Result;
3312}
3313
3314/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
3315/// argument of the sizeof expression as an integer.
3316Value *
3317ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
3318 const UnaryExprOrTypeTraitExpr *E) {
3319 QualType TypeToSize = E->getTypeOfArgument();
3320 if (auto Kind = E->getKind();
3321 Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
3322 if (const VariableArrayType *VAT =
3323 CGF.getContext().getAsVariableArrayType(T: TypeToSize)) {
3324 if (E->isArgumentType()) {
3325 // sizeof(type) - make sure to emit the VLA size.
3326 CGF.EmitVariablyModifiedType(Ty: TypeToSize);
3327 } else {
3328 // C99 6.5.3.4p2: If the argument is an expression of type
3329 // VLA, it is evaluated.
3330 CGF.EmitIgnoredExpr(E: E->getArgumentExpr());
3331 }
3332
3333 auto VlaSize = CGF.getVLASize(vla: VAT);
3334 llvm::Value *size = VlaSize.NumElts;
3335
3336 // Scale the number of non-VLA elements by the non-VLA element size.
3337 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(T: VlaSize.Type);
3338 if (!eltSize.isOne())
3339 size = CGF.Builder.CreateNUWMul(LHS: CGF.CGM.getSize(numChars: eltSize), RHS: size);
3340
3341 return size;
3342 }
3343 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
3344 auto Alignment =
3345 CGF.getContext()
3346 .toCharUnitsFromBits(BitSize: CGF.getContext().getOpenMPDefaultSimdAlign(
3347 T: E->getTypeOfArgument()->getPointeeType()))
3348 .getQuantity();
3349 return llvm::ConstantInt::get(Ty: CGF.SizeTy, V: Alignment);
3350 } else if (E->getKind() == UETT_VectorElements) {
3351 auto *VecTy = cast<llvm::VectorType>(Val: ConvertType(T: E->getTypeOfArgument()));
3352 return Builder.CreateElementCount(DstType: CGF.SizeTy, EC: VecTy->getElementCount());
3353 }
3354
3355 // If this isn't sizeof(vla), the result must be constant; use the constant
3356 // folding logic so we don't have to duplicate it here.
3357 return Builder.getInt(AI: E->EvaluateKnownConstInt(Ctx: CGF.getContext()));
3358}
3359
3360Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E,
3361 QualType PromotionType) {
3362 QualType promotionTy = PromotionType.isNull()
3363 ? getPromotionType(Ty: E->getSubExpr()->getType())
3364 : PromotionType;
3365 Value *result = VisitReal(E, PromotionType: promotionTy);
3366 if (result && !promotionTy.isNull())
3367 result = EmitUnPromotedValue(result, ExprType: E->getType());
3368 return result;
3369}
3370
3371Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E,
3372 QualType PromotionType) {
3373 Expr *Op = E->getSubExpr();
3374 if (Op->getType()->isAnyComplexType()) {
3375 // If it's an l-value, load through the appropriate subobject l-value.
3376 // Note that we have to ask E because Op might be an l-value that
3377 // this won't work for, e.g. an Obj-C property.
3378 if (E->isGLValue()) {
3379 if (!PromotionType.isNull()) {
3380 CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3381 E: Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true);
3382 if (result.first)
3383 result.first = CGF.EmitPromotedValue(result, PromotionType).first;
3384 return result.first;
3385 } else {
3386 return CGF.EmitLoadOfLValue(V: CGF.EmitLValue(E), Loc: E->getExprLoc())
3387 .getScalarVal();
3388 }
3389 }
3390 // Otherwise, calculate and project.
3391 return CGF.EmitComplexExpr(E: Op, IgnoreReal: false, IgnoreImag: true).first;
3392 }
3393
3394 if (!PromotionType.isNull())
3395 return CGF.EmitPromotedScalarExpr(E: Op, PromotionType);
3396 return Visit(E: Op);
3397}
3398
3399Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E,
3400 QualType PromotionType) {
3401 QualType promotionTy = PromotionType.isNull()
3402 ? getPromotionType(Ty: E->getSubExpr()->getType())
3403 : PromotionType;
3404 Value *result = VisitImag(E, PromotionType: promotionTy);
3405 if (result && !promotionTy.isNull())
3406 result = EmitUnPromotedValue(result, ExprType: E->getType());
3407 return result;
3408}
3409
3410Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E,
3411 QualType PromotionType) {
3412 Expr *Op = E->getSubExpr();
3413 if (Op->getType()->isAnyComplexType()) {
3414 // If it's an l-value, load through the appropriate subobject l-value.
3415 // Note that we have to ask E because Op might be an l-value that
3416 // this won't work for, e.g. an Obj-C property.
3417 if (Op->isGLValue()) {
3418 if (!PromotionType.isNull()) {
3419 CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr(
3420 E: Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign);
3421 if (result.second)
3422 result.second = CGF.EmitPromotedValue(result, PromotionType).second;
3423 return result.second;
3424 } else {
3425 return CGF.EmitLoadOfLValue(V: CGF.EmitLValue(E), Loc: E->getExprLoc())
3426 .getScalarVal();
3427 }
3428 }
3429 // Otherwise, calculate and project.
3430 return CGF.EmitComplexExpr(E: Op, IgnoreReal: true, IgnoreImag: false).second;
3431 }
3432
3433 // __imag on a scalar returns zero. Emit the subexpr to ensure side
3434 // effects are evaluated, but not the actual value.
3435 if (Op->isGLValue())
3436 CGF.EmitLValue(E: Op);
3437 else if (!PromotionType.isNull())
3438 CGF.EmitPromotedScalarExpr(E: Op, PromotionType);
3439 else
3440 CGF.EmitScalarExpr(E: Op, IgnoreResultAssign: true);
3441 if (!PromotionType.isNull())
3442 return llvm::Constant::getNullValue(Ty: ConvertType(T: PromotionType));
3443 return llvm::Constant::getNullValue(Ty: ConvertType(T: E->getType()));
3444}
3445
3446//===----------------------------------------------------------------------===//
3447// Binary Operators
3448//===----------------------------------------------------------------------===//
3449
3450Value *ScalarExprEmitter::EmitPromotedValue(Value *result,
3451 QualType PromotionType) {
3452 return CGF.Builder.CreateFPExt(V: result, DestTy: ConvertType(T: PromotionType), Name: "ext");
3453}
3454
3455Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result,
3456 QualType ExprType) {
3457 return CGF.Builder.CreateFPTrunc(V: result, DestTy: ConvertType(T: ExprType), Name: "unpromotion");
3458}
3459
3460Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) {
3461 E = E->IgnoreParens();
3462 if (auto BO = dyn_cast<BinaryOperator>(Val: E)) {
3463 switch (BO->getOpcode()) {
3464#define HANDLE_BINOP(OP) \
3465 case BO_##OP: \
3466 return Emit##OP(EmitBinOps(BO, PromotionType));
3467 HANDLE_BINOP(Add)
3468 HANDLE_BINOP(Sub)
3469 HANDLE_BINOP(Mul)
3470 HANDLE_BINOP(Div)
3471#undef HANDLE_BINOP
3472 default:
3473 break;
3474 }
3475 } else if (auto UO = dyn_cast<UnaryOperator>(Val: E)) {
3476 switch (UO->getOpcode()) {
3477 case UO_Imag:
3478 return VisitImag(E: UO, PromotionType);
3479 case UO_Real:
3480 return VisitReal(E: UO, PromotionType);
3481 case UO_Minus:
3482 return VisitMinus(E: UO, PromotionType);
3483 case UO_Plus:
3484 return VisitPlus(E: UO, PromotionType);
3485 default:
3486 break;
3487 }
3488 }
3489 auto result = Visit(E: const_cast<Expr *>(E));
3490 if (result) {
3491 if (!PromotionType.isNull())
3492 return EmitPromotedValue(result, PromotionType);
3493 else
3494 return EmitUnPromotedValue(result, ExprType: E->getType());
3495 }
3496 return result;
3497}
3498
3499BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E,
3500 QualType PromotionType) {
3501 TestAndClearIgnoreResultAssign();
3502 BinOpInfo Result;
3503 Result.LHS = CGF.EmitPromotedScalarExpr(E: E->getLHS(), PromotionType);
3504 Result.RHS = CGF.EmitPromotedScalarExpr(E: E->getRHS(), PromotionType);
3505 if (!PromotionType.isNull())
3506 Result.Ty = PromotionType;
3507 else
3508 Result.Ty = E->getType();
3509 Result.Opcode = E->getOpcode();
3510 Result.FPFeatures = E->getFPFeaturesInEffect(LO: CGF.getLangOpts());
3511 Result.E = E;
3512 return Result;
3513}
3514
3515LValue ScalarExprEmitter::EmitCompoundAssignLValue(
3516 const CompoundAssignOperator *E,
3517 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
3518 Value *&Result) {
3519 QualType LHSTy = E->getLHS()->getType();
3520 BinOpInfo OpInfo;
3521
3522 if (E->getComputationResultType()->isAnyComplexType())
3523 return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3524
3525 // Emit the RHS first. __block variables need to have the rhs evaluated
3526 // first, plus this should improve codegen a little.
3527
3528 QualType PromotionTypeCR;
3529 PromotionTypeCR = getPromotionType(Ty: E->getComputationResultType());
3530 if (PromotionTypeCR.isNull())
3531 PromotionTypeCR = E->getComputationResultType();
3532 QualType PromotionTypeLHS = getPromotionType(Ty: E->getComputationLHSType());
3533 QualType PromotionTypeRHS = getPromotionType(Ty: E->getRHS()->getType());
3534 if (!PromotionTypeRHS.isNull())
3535 OpInfo.RHS = CGF.EmitPromotedScalarExpr(E: E->getRHS(), PromotionType: PromotionTypeRHS);
3536 else
3537 OpInfo.RHS = Visit(E: E->getRHS());
3538 OpInfo.Ty = PromotionTypeCR;
3539 OpInfo.Opcode = E->getOpcode();
3540 OpInfo.FPFeatures = E->getFPFeaturesInEffect(LO: CGF.getLangOpts());
3541 OpInfo.E = E;
3542 // Load/convert the LHS.
3543 LValue LHSLV = EmitCheckedLValue(E: E->getLHS(), TCK: CodeGenFunction::TCK_Store);
3544
3545 llvm::PHINode *atomicPHI = nullptr;
3546 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3547 QualType type = atomicTy->getValueType();
3548 if (!type->isBooleanType() && type->isIntegerType() &&
3549 !(type->isUnsignedIntegerType() &&
3550 CGF.SanOpts.has(K: SanitizerKind::UnsignedIntegerOverflow)) &&
3551 CGF.getLangOpts().getSignedOverflowBehavior() !=
3552 LangOptions::SOB_Trapping) {
3553 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3554 llvm::Instruction::BinaryOps Op;
3555 switch (OpInfo.Opcode) {
3556 // We don't have atomicrmw operands for *, %, /, <<, >>
3557 case BO_MulAssign: case BO_DivAssign:
3558 case BO_RemAssign:
3559 case BO_ShlAssign:
3560 case BO_ShrAssign:
3561 break;
3562 case BO_AddAssign:
3563 AtomicOp = llvm::AtomicRMWInst::Add;
3564 Op = llvm::Instruction::Add;
3565 break;
3566 case BO_SubAssign:
3567 AtomicOp = llvm::AtomicRMWInst::Sub;
3568 Op = llvm::Instruction::Sub;
3569 break;
3570 case BO_AndAssign:
3571 AtomicOp = llvm::AtomicRMWInst::And;
3572 Op = llvm::Instruction::And;
3573 break;
3574 case BO_XorAssign:
3575 AtomicOp = llvm::AtomicRMWInst::Xor;
3576 Op = llvm::Instruction::Xor;
3577 break;
3578 case BO_OrAssign:
3579 AtomicOp = llvm::AtomicRMWInst::Or;
3580 Op = llvm::Instruction::Or;
3581 break;
3582 default:
3583 llvm_unreachable("Invalid compound assignment type");
3584 }
3585 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3586 llvm::Value *Amt = CGF.EmitToMemory(
3587 Value: EmitScalarConversion(Src: OpInfo.RHS, SrcType: E->getRHS()->getType(), DstType: LHSTy,
3588 Loc: E->getExprLoc()),
3589 Ty: LHSTy);
3590 Value *OldVal = Builder.CreateAtomicRMW(
3591 Op: AtomicOp, Addr: LHSLV.getAddress(), Val: Amt,
3592 Ordering: llvm::AtomicOrdering::SequentiallyConsistent);
3593
3594 // Since operation is atomic, the result type is guaranteed to be the
3595 // same as the input in LLVM terms.
3596 Result = Builder.CreateBinOp(Opc: Op, LHS: OldVal, RHS: Amt);
3597 return LHSLV;
3598 }
3599 }
3600 // FIXME: For floating point types, we should be saving and restoring the
3601 // floating point environment in the loop.
3602 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3603 llvm::BasicBlock *opBB = CGF.createBasicBlock(name: "atomic_op", parent: CGF.CurFn);
3604 OpInfo.LHS = EmitLoadOfLValue(LV: LHSLV, Loc: E->getExprLoc());
3605 OpInfo.LHS = CGF.EmitToMemory(Value: OpInfo.LHS, Ty: type);
3606 Builder.CreateBr(Dest: opBB);
3607 Builder.SetInsertPoint(opBB);
3608 atomicPHI = Builder.CreatePHI(Ty: OpInfo.LHS->getType(), NumReservedValues: 2);
3609 atomicPHI->addIncoming(V: OpInfo.LHS, BB: startBB);
3610 OpInfo.LHS = atomicPHI;
3611 }
3612 else
3613 OpInfo.LHS = EmitLoadOfLValue(LV: LHSLV, Loc: E->getExprLoc());
3614
3615 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3616 SourceLocation Loc = E->getExprLoc();
3617 if (!PromotionTypeLHS.isNull())
3618 OpInfo.LHS = EmitScalarConversion(Src: OpInfo.LHS, SrcType: LHSTy, DstType: PromotionTypeLHS,
3619 Loc: E->getExprLoc());
3620 else
3621 OpInfo.LHS = EmitScalarConversion(Src: OpInfo.LHS, SrcType: LHSTy,
3622 DstType: E->getComputationLHSType(), Loc);
3623
3624 // Expand the binary operator.
3625 Result = (this->*Func)(OpInfo);
3626
3627 // Convert the result back to the LHS type,
3628 // potentially with Implicit Conversion sanitizer check.
3629 // If LHSLV is a bitfield, use default ScalarConversionOpts
3630 // to avoid emit any implicit integer checks.
3631 Value *Previous = nullptr;
3632 if (LHSLV.isBitField()) {
3633 Previous = Result;
3634 Result = EmitScalarConversion(Src: Result, SrcType: PromotionTypeCR, DstType: LHSTy, Loc);
3635 } else
3636 Result = EmitScalarConversion(Src: Result, SrcType: PromotionTypeCR, DstType: LHSTy, Loc,
3637 Opts: ScalarConversionOpts(CGF.SanOpts));
3638
3639 if (atomicPHI) {
3640 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3641 llvm::BasicBlock *contBB = CGF.createBasicBlock(name: "atomic_cont", parent: CGF.CurFn);
3642 auto Pair = CGF.EmitAtomicCompareExchange(
3643 Obj: LHSLV, Expected: RValue::get(V: atomicPHI), Desired: RValue::get(V: Result), Loc: E->getExprLoc());
3644 llvm::Value *old = CGF.EmitToMemory(Value: Pair.first.getScalarVal(), Ty: LHSTy);
3645 llvm::Value *success = Pair.second;
3646 atomicPHI->addIncoming(V: old, BB: curBlock);
3647 Builder.CreateCondBr(Cond: success, True: contBB, False: atomicPHI->getParent());
3648 Builder.SetInsertPoint(contBB);
3649 return LHSLV;
3650 }
3651
3652 // Store the result value into the LHS lvalue. Bit-fields are handled
3653 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3654 // 'An assignment expression has the value of the left operand after the
3655 // assignment...'.
3656 if (LHSLV.isBitField()) {
3657 Value *Src = Previous ? Previous : Result;
3658 QualType SrcType = E->getRHS()->getType();
3659 QualType DstType = E->getLHS()->getType();
3660 CGF.EmitStoreThroughBitfieldLValue(Src: RValue::get(V: Result), Dst: LHSLV, Result: &Result);
3661 CGF.EmitBitfieldConversionCheck(Src, SrcType, Dst: Result, DstType,
3662 Info: LHSLV.getBitFieldInfo(), Loc: E->getExprLoc());
3663 } else
3664 CGF.EmitStoreThroughLValue(Src: RValue::get(V: Result), Dst: LHSLV);
3665
3666 if (CGF.getLangOpts().OpenMP)
3667 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3668 LHS: E->getLHS());
3669 return LHSLV;
3670}
3671
3672Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3673 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3674 bool Ignore = TestAndClearIgnoreResultAssign();
3675 Value *RHS = nullptr;
3676 LValue LHS = EmitCompoundAssignLValue(E, Func, Result&: RHS);
3677
3678 // If the result is clearly ignored, return now.
3679 if (Ignore)
3680 return nullptr;
3681
3682 // The result of an assignment in C is the assigned r-value.
3683 if (!CGF.getLangOpts().CPlusPlus)
3684 return RHS;
3685
3686 // If the lvalue is non-volatile, return the computed value of the assignment.
3687 if (!LHS.isVolatileQualified())
3688 return RHS;
3689
3690 // Otherwise, reload the value.
3691 return EmitLoadOfLValue(LV: LHS, Loc: E->getExprLoc());
3692}
3693
3694void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3695 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3696 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3697
3698 if (CGF.SanOpts.has(K: SanitizerKind::IntegerDivideByZero)) {
3699 Checks.push_back(Elt: std::make_pair(x: Builder.CreateICmpNE(LHS: Ops.RHS, RHS: Zero),
3700 y: SanitizerKind::IntegerDivideByZero));
3701 }
3702
3703 const auto *BO = cast<BinaryOperator>(Val: Ops.E);
3704 if (CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow) &&
3705 Ops.Ty->hasSignedIntegerRepresentation() &&
3706 !IsWidenedIntegerOp(Ctx: CGF.getContext(), E: BO->getLHS()) &&
3707 Ops.mayHaveIntegerOverflow()) {
3708 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Val: Zero->getType());
3709
3710 llvm::Value *IntMin =
3711 Builder.getInt(AI: llvm::APInt::getSignedMinValue(numBits: Ty->getBitWidth()));
3712 llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3713
3714 llvm::Value *LHSCmp = Builder.CreateICmpNE(LHS: Ops.LHS, RHS: IntMin);
3715 llvm::Value *RHSCmp = Builder.CreateICmpNE(LHS: Ops.RHS, RHS: NegOne);
3716 llvm::Value *NotOverflow = Builder.CreateOr(LHS: LHSCmp, RHS: RHSCmp, Name: "or");
3717 Checks.push_back(
3718 Elt: std::make_pair(x&: NotOverflow, y: SanitizerKind::SignedIntegerOverflow));
3719 }
3720
3721 if (Checks.size() > 0)
3722 EmitBinOpCheck(Checks, Info: Ops);
3723}
3724
3725Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3726 {
3727 CodeGenFunction::SanitizerScope SanScope(&CGF);
3728 if ((CGF.SanOpts.has(K: SanitizerKind::IntegerDivideByZero) ||
3729 CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow)) &&
3730 Ops.Ty->isIntegerType() &&
3731 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3732 llvm::Value *Zero = llvm::Constant::getNullValue(Ty: ConvertType(T: Ops.Ty));
3733 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, isDiv: true);
3734 } else if (CGF.SanOpts.has(K: SanitizerKind::FloatDivideByZero) &&
3735 Ops.Ty->isRealFloatingType() &&
3736 Ops.mayHaveFloatDivisionByZero()) {
3737 llvm::Value *Zero = llvm::Constant::getNullValue(Ty: ConvertType(T: Ops.Ty));
3738 llvm::Value *NonZero = Builder.CreateFCmpUNE(LHS: Ops.RHS, RHS: Zero);
3739 EmitBinOpCheck(Checks: std::make_pair(x&: NonZero, y: SanitizerKind::FloatDivideByZero),
3740 Info: Ops);
3741 }
3742 }
3743
3744 if (Ops.Ty->isConstantMatrixType()) {
3745 llvm::MatrixBuilder MB(Builder);
3746 // We need to check the types of the operands of the operator to get the
3747 // correct matrix dimensions.
3748 auto *BO = cast<BinaryOperator>(Val: Ops.E);
3749 (void)BO;
3750 assert(
3751 isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3752 "first operand must be a matrix");
3753 assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3754 "second operand must be an arithmetic type");
3755 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3756 return MB.CreateScalarDiv(LHS: Ops.LHS, RHS: Ops.RHS,
3757 IsUnsigned: Ops.Ty->hasUnsignedIntegerRepresentation());
3758 }
3759
3760 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3761 llvm::Value *Val;
3762 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3763 Val = Builder.CreateFDiv(L: Ops.LHS, R: Ops.RHS, Name: "div");
3764 CGF.SetDivFPAccuracy(Val);
3765 return Val;
3766 }
3767 else if (Ops.isFixedPointOp())
3768 return EmitFixedPointBinOp(Ops);
3769 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3770 return Builder.CreateUDiv(LHS: Ops.LHS, RHS: Ops.RHS, Name: "div");
3771 else
3772 return Builder.CreateSDiv(LHS: Ops.LHS, RHS: Ops.RHS, Name: "div");
3773}
3774
3775Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3776 // Rem in C can't be a floating point type: C99 6.5.5p2.
3777 if ((CGF.SanOpts.has(K: SanitizerKind::IntegerDivideByZero) ||
3778 CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow)) &&
3779 Ops.Ty->isIntegerType() &&
3780 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3781 CodeGenFunction::SanitizerScope SanScope(&CGF);
3782 llvm::Value *Zero = llvm::Constant::getNullValue(Ty: ConvertType(T: Ops.Ty));
3783 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, isDiv: false);
3784 }
3785
3786 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3787 return Builder.CreateURem(LHS: Ops.LHS, RHS: Ops.RHS, Name: "rem");
3788 else
3789 return Builder.CreateSRem(LHS: Ops.LHS, RHS: Ops.RHS, Name: "rem");
3790}
3791
3792Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3793 unsigned IID;
3794 unsigned OpID = 0;
3795 SanitizerHandler OverflowKind;
3796
3797 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3798 switch (Ops.Opcode) {
3799 case BO_Add:
3800 case BO_AddAssign:
3801 OpID = 1;
3802 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3803 llvm::Intrinsic::uadd_with_overflow;
3804 OverflowKind = SanitizerHandler::AddOverflow;
3805 break;
3806 case BO_Sub:
3807 case BO_SubAssign:
3808 OpID = 2;
3809 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3810 llvm::Intrinsic::usub_with_overflow;
3811 OverflowKind = SanitizerHandler::SubOverflow;
3812 break;
3813 case BO_Mul:
3814 case BO_MulAssign:
3815 OpID = 3;
3816 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3817 llvm::Intrinsic::umul_with_overflow;
3818 OverflowKind = SanitizerHandler::MulOverflow;
3819 break;
3820 default:
3821 llvm_unreachable("Unsupported operation for overflow detection");
3822 }
3823 OpID <<= 1;
3824 if (isSigned)
3825 OpID |= 1;
3826
3827 CodeGenFunction::SanitizerScope SanScope(&CGF);
3828 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(T: Ops.Ty);
3829
3830 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, Tys: opTy);
3831
3832 Value *resultAndOverflow = Builder.CreateCall(Callee: intrinsic, Args: {Ops.LHS, Ops.RHS});
3833 Value *result = Builder.CreateExtractValue(Agg: resultAndOverflow, Idxs: 0);
3834 Value *overflow = Builder.CreateExtractValue(Agg: resultAndOverflow, Idxs: 1);
3835
3836 // Handle overflow with llvm.trap if no custom handler has been specified.
3837 const std::string *handlerName =
3838 &CGF.getLangOpts().OverflowHandler;
3839 if (handlerName->empty()) {
3840 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3841 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3842 if (!isSigned || CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow)) {
3843 llvm::Value *NotOverflow = Builder.CreateNot(V: overflow);
3844 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3845 : SanitizerKind::UnsignedIntegerOverflow;
3846 EmitBinOpCheck(Checks: std::make_pair(x&: NotOverflow, y&: Kind), Info: Ops);
3847 } else
3848 CGF.EmitTrapCheck(Checked: Builder.CreateNot(V: overflow), CheckHandlerID: OverflowKind);
3849 return result;
3850 }
3851
3852 // Branch in case of overflow.
3853 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3854 llvm::BasicBlock *continueBB =
3855 CGF.createBasicBlock(name: "nooverflow", parent: CGF.CurFn, before: initialBB->getNextNode());
3856 llvm::BasicBlock *overflowBB = CGF.createBasicBlock(name: "overflow", parent: CGF.CurFn);
3857
3858 Builder.CreateCondBr(Cond: overflow, True: overflowBB, False: continueBB);
3859
3860 // If an overflow handler is set, then we want to call it and then use its
3861 // result, if it returns.
3862 Builder.SetInsertPoint(overflowBB);
3863
3864 // Get the overflow handler.
3865 llvm::Type *Int8Ty = CGF.Int8Ty;
3866 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3867 llvm::FunctionType *handlerTy =
3868 llvm::FunctionType::get(Result: CGF.Int64Ty, Params: argTypes, isVarArg: true);
3869 llvm::FunctionCallee handler =
3870 CGF.CGM.CreateRuntimeFunction(Ty: handlerTy, Name: *handlerName);
3871
3872 // Sign extend the args to 64-bit, so that we can use the same handler for
3873 // all types of overflow.
3874 llvm::Value *lhs = Builder.CreateSExt(V: Ops.LHS, DestTy: CGF.Int64Ty);
3875 llvm::Value *rhs = Builder.CreateSExt(V: Ops.RHS, DestTy: CGF.Int64Ty);
3876
3877 // Call the handler with the two arguments, the operation, and the size of
3878 // the result.
3879 llvm::Value *handlerArgs[] = {
3880 lhs,
3881 rhs,
3882 Builder.getInt8(C: OpID),
3883 Builder.getInt8(C: cast<llvm::IntegerType>(Val: opTy)->getBitWidth())
3884 };
3885 llvm::Value *handlerResult =
3886 CGF.EmitNounwindRuntimeCall(callee: handler, args: handlerArgs);
3887
3888 // Truncate the result back to the desired size.
3889 handlerResult = Builder.CreateTrunc(V: handlerResult, DestTy: opTy);
3890 Builder.CreateBr(Dest: continueBB);
3891
3892 Builder.SetInsertPoint(continueBB);
3893 llvm::PHINode *phi = Builder.CreatePHI(Ty: opTy, NumReservedValues: 2);
3894 phi->addIncoming(V: result, BB: initialBB);
3895 phi->addIncoming(V: handlerResult, BB: overflowBB);
3896
3897 return phi;
3898}
3899
3900/// Emit pointer + index arithmetic.
3901static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3902 const BinOpInfo &op,
3903 bool isSubtraction) {
3904 // Must have binary (not unary) expr here. Unary pointer
3905 // increment/decrement doesn't use this path.
3906 const BinaryOperator *expr = cast<BinaryOperator>(Val: op.E);
3907
3908 Value *pointer = op.LHS;
3909 Expr *pointerOperand = expr->getLHS();
3910 Value *index = op.RHS;
3911 Expr *indexOperand = expr->getRHS();
3912
3913 // In a subtraction, the LHS is always the pointer.
3914 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3915 std::swap(a&: pointer, b&: index);
3916 std::swap(a&: pointerOperand, b&: indexOperand);
3917 }
3918
3919 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3920
3921 unsigned width = cast<llvm::IntegerType>(Val: index->getType())->getBitWidth();
3922 auto &DL = CGF.CGM.getDataLayout();
3923 auto PtrTy = cast<llvm::PointerType>(Val: pointer->getType());
3924
3925 // Some versions of glibc and gcc use idioms (particularly in their malloc
3926 // routines) that add a pointer-sized integer (known to be a pointer value)
3927 // to a null pointer in order to cast the value back to an integer or as
3928 // part of a pointer alignment algorithm. This is undefined behavior, but
3929 // we'd like to be able to compile programs that use it.
3930 //
3931 // Normally, we'd generate a GEP with a null-pointer base here in response
3932 // to that code, but it's also UB to dereference a pointer created that
3933 // way. Instead (as an acknowledged hack to tolerate the idiom) we will
3934 // generate a direct cast of the integer value to a pointer.
3935 //
3936 // The idiom (p = nullptr + N) is not met if any of the following are true:
3937 //
3938 // The operation is subtraction.
3939 // The index is not pointer-sized.
3940 // The pointer type is not byte-sized.
3941 //
3942 if (BinaryOperator::isNullPointerArithmeticExtension(Ctx&: CGF.getContext(),
3943 Opc: op.Opcode,
3944 LHS: expr->getLHS(),
3945 RHS: expr->getRHS()))
3946 return CGF.Builder.CreateIntToPtr(V: index, DestTy: pointer->getType());
3947
3948 if (width != DL.getIndexTypeSizeInBits(Ty: PtrTy)) {
3949 // Zero-extend or sign-extend the pointer value according to
3950 // whether the index is signed or not.
3951 index = CGF.Builder.CreateIntCast(V: index, DestTy: DL.getIndexType(PtrTy), isSigned,
3952 Name: "idx.ext");
3953 }
3954
3955 // If this is subtraction, negate the index.
3956 if (isSubtraction)
3957 index = CGF.Builder.CreateNeg(V: index, Name: "idx.neg");
3958
3959 if (CGF.SanOpts.has(K: SanitizerKind::ArrayBounds))
3960 CGF.EmitBoundsCheck(E: op.E, Base: pointerOperand, Index: index, IndexType: indexOperand->getType(),
3961 /*Accessed*/ false);
3962
3963 const PointerType *pointerType
3964 = pointerOperand->getType()->getAs<PointerType>();
3965 if (!pointerType) {
3966 QualType objectType = pointerOperand->getType()
3967 ->castAs<ObjCObjectPointerType>()
3968 ->getPointeeType();
3969 llvm::Value *objectSize
3970 = CGF.CGM.getSize(numChars: CGF.getContext().getTypeSizeInChars(T: objectType));
3971
3972 index = CGF.Builder.CreateMul(LHS: index, RHS: objectSize);
3973
3974 Value *result =
3975 CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: pointer, IdxList: index, Name: "add.ptr");
3976 return CGF.Builder.CreateBitCast(V: result, DestTy: pointer->getType());
3977 }
3978
3979 QualType elementType = pointerType->getPointeeType();
3980 if (const VariableArrayType *vla
3981 = CGF.getContext().getAsVariableArrayType(T: elementType)) {
3982 // The element count here is the total number of non-VLA elements.
3983 llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3984
3985 // Effectively, the multiply by the VLA size is part of the GEP.
3986 // GEP indexes are signed, and scaling an index isn't permitted to
3987 // signed-overflow, so we use the same semantics for our explicit
3988 // multiply. We suppress this if overflow is not undefined behavior.
3989 llvm::Type *elemTy = CGF.ConvertTypeForMem(T: vla->getElementType());
3990 if (CGF.getLangOpts().isSignedOverflowDefined()) {
3991 index = CGF.Builder.CreateMul(LHS: index, RHS: numElements, Name: "vla.index");
3992 pointer = CGF.Builder.CreateGEP(Ty: elemTy, Ptr: pointer, IdxList: index, Name: "add.ptr");
3993 } else {
3994 index = CGF.Builder.CreateNSWMul(LHS: index, RHS: numElements, Name: "vla.index");
3995 pointer = CGF.EmitCheckedInBoundsGEP(
3996 ElemTy: elemTy, Ptr: pointer, IdxList: index, SignedIndices: isSigned, IsSubtraction: isSubtraction, Loc: op.E->getExprLoc(),
3997 Name: "add.ptr");
3998 }
3999 return pointer;
4000 }
4001
4002 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
4003 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
4004 // future proof.
4005 llvm::Type *elemTy;
4006 if (elementType->isVoidType() || elementType->isFunctionType())
4007 elemTy = CGF.Int8Ty;
4008 else
4009 elemTy = CGF.ConvertTypeForMem(T: elementType);
4010
4011 if (CGF.getLangOpts().isSignedOverflowDefined())
4012 return CGF.Builder.CreateGEP(Ty: elemTy, Ptr: pointer, IdxList: index, Name: "add.ptr");
4013
4014 return CGF.EmitCheckedInBoundsGEP(
4015 ElemTy: elemTy, Ptr: pointer, IdxList: index, SignedIndices: isSigned, IsSubtraction: isSubtraction, Loc: op.E->getExprLoc(),
4016 Name: "add.ptr");
4017}
4018
4019// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
4020// Addend. Use negMul and negAdd to negate the first operand of the Mul or
4021// the add operand respectively. This allows fmuladd to represent a*b-c, or
4022// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
4023// efficient operations.
4024static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
4025 const CodeGenFunction &CGF, CGBuilderTy &Builder,
4026 bool negMul, bool negAdd) {
4027 Value *MulOp0 = MulOp->getOperand(i: 0);
4028 Value *MulOp1 = MulOp->getOperand(i: 1);
4029 if (negMul)
4030 MulOp0 = Builder.CreateFNeg(V: MulOp0, Name: "neg");
4031 if (negAdd)
4032 Addend = Builder.CreateFNeg(V: Addend, Name: "neg");
4033
4034 Value *FMulAdd = nullptr;
4035 if (Builder.getIsFPConstrained()) {
4036 assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
4037 "Only constrained operation should be created when Builder is in FP "
4038 "constrained mode");
4039 FMulAdd = Builder.CreateConstrainedFPCall(
4040 Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::experimental_constrained_fmuladd,
4041 Tys: Addend->getType()),
4042 Args: {MulOp0, MulOp1, Addend});
4043 } else {
4044 FMulAdd = Builder.CreateCall(
4045 Callee: CGF.CGM.getIntrinsic(IID: llvm::Intrinsic::fmuladd, Tys: Addend->getType()),
4046 Args: {MulOp0, MulOp1, Addend});
4047 }
4048 MulOp->eraseFromParent();
4049
4050 return FMulAdd;
4051}
4052
4053// Check whether it would be legal to emit an fmuladd intrinsic call to
4054// represent op and if so, build the fmuladd.
4055//
4056// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
4057// Does NOT check the type of the operation - it's assumed that this function
4058// will be called from contexts where it's known that the type is contractable.
4059static Value* tryEmitFMulAdd(const BinOpInfo &op,
4060 const CodeGenFunction &CGF, CGBuilderTy &Builder,
4061 bool isSub=false) {
4062
4063 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
4064 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
4065 "Only fadd/fsub can be the root of an fmuladd.");
4066
4067 // Check whether this op is marked as fusable.
4068 if (!op.FPFeatures.allowFPContractWithinStatement())
4069 return nullptr;
4070
4071 Value *LHS = op.LHS;
4072 Value *RHS = op.RHS;
4073
4074 // Peek through fneg to look for fmul. Make sure fneg has no users, and that
4075 // it is the only use of its operand.
4076 bool NegLHS = false;
4077 if (auto *LHSUnOp = dyn_cast<llvm::UnaryOperator>(Val: LHS)) {
4078 if (LHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
4079 LHSUnOp->use_empty() && LHSUnOp->getOperand(i_nocapture: 0)->hasOneUse()) {
4080 LHS = LHSUnOp->getOperand(i_nocapture: 0);
4081 NegLHS = true;
4082 }
4083 }
4084
4085 bool NegRHS = false;
4086 if (auto *RHSUnOp = dyn_cast<llvm::UnaryOperator>(Val: RHS)) {
4087 if (RHSUnOp->getOpcode() == llvm::Instruction::FNeg &&
4088 RHSUnOp->use_empty() && RHSUnOp->getOperand(i_nocapture: 0)->hasOneUse()) {
4089 RHS = RHSUnOp->getOperand(i_nocapture: 0);
4090 NegRHS = true;
4091 }
4092 }
4093
4094 // We have a potentially fusable op. Look for a mul on one of the operands.
4095 // Also, make sure that the mul result isn't used directly. In that case,
4096 // there's no point creating a muladd operation.
4097 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(Val: LHS)) {
4098 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
4099 (LHSBinOp->use_empty() || NegLHS)) {
4100 // If we looked through fneg, erase it.
4101 if (NegLHS)
4102 cast<llvm::Instruction>(Val: op.LHS)->eraseFromParent();
4103 return buildFMulAdd(MulOp: LHSBinOp, Addend: op.RHS, CGF, Builder, negMul: NegLHS, negAdd: isSub);
4104 }
4105 }
4106 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(Val: RHS)) {
4107 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
4108 (RHSBinOp->use_empty() || NegRHS)) {
4109 // If we looked through fneg, erase it.
4110 if (NegRHS)
4111 cast<llvm::Instruction>(Val: op.RHS)->eraseFromParent();
4112 return buildFMulAdd(MulOp: RHSBinOp, Addend: op.LHS, CGF, Builder, negMul: isSub ^ NegRHS, negAdd: false);
4113 }
4114 }
4115
4116 if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(Val: LHS)) {
4117 if (LHSBinOp->getIntrinsicID() ==
4118 llvm::Intrinsic::experimental_constrained_fmul &&
4119 (LHSBinOp->use_empty() || NegLHS)) {
4120 // If we looked through fneg, erase it.
4121 if (NegLHS)
4122 cast<llvm::Instruction>(Val: op.LHS)->eraseFromParent();
4123 return buildFMulAdd(MulOp: LHSBinOp, Addend: op.RHS, CGF, Builder, negMul: NegLHS, negAdd: isSub);
4124 }
4125 }
4126 if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(Val: RHS)) {
4127 if (RHSBinOp->getIntrinsicID() ==
4128 llvm::Intrinsic::experimental_constrained_fmul &&
4129 (RHSBinOp->use_empty() || NegRHS)) {
4130 // If we looked through fneg, erase it.
4131 if (NegRHS)
4132 cast<llvm::Instruction>(Val: op.RHS)->eraseFromParent();
4133 return buildFMulAdd(MulOp: RHSBinOp, Addend: op.LHS, CGF, Builder, negMul: isSub ^ NegRHS, negAdd: false);
4134 }
4135 }
4136
4137 return nullptr;
4138}
4139
4140Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
4141 if (op.LHS->getType()->isPointerTy() ||
4142 op.RHS->getType()->isPointerTy())
4143 return emitPointerArithmetic(CGF, op, isSubtraction: CodeGenFunction::NotSubtraction);
4144
4145 if (op.Ty->isSignedIntegerOrEnumerationType()) {
4146 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4147 case LangOptions::SOB_Defined:
4148 if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow))
4149 return Builder.CreateAdd(LHS: op.LHS, RHS: op.RHS, Name: "add");
4150 [[fallthrough]];
4151 case LangOptions::SOB_Undefined:
4152 if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow))
4153 return Builder.CreateNSWAdd(LHS: op.LHS, RHS: op.RHS, Name: "add");
4154 [[fallthrough]];
4155 case LangOptions::SOB_Trapping:
4156 if (CanElideOverflowCheck(Ctx: CGF.getContext(), Op: op))
4157 return Builder.CreateNSWAdd(LHS: op.LHS, RHS: op.RHS, Name: "add");
4158 return EmitOverflowCheckedBinOp(Ops: op);
4159 }
4160 }
4161
4162 // For vector and matrix adds, try to fold into a fmuladd.
4163 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4164 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4165 // Try to form an fmuladd.
4166 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
4167 return FMulAdd;
4168 }
4169
4170 if (op.Ty->isConstantMatrixType()) {
4171 llvm::MatrixBuilder MB(Builder);
4172 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4173 return MB.CreateAdd(LHS: op.LHS, RHS: op.RHS);
4174 }
4175
4176 if (op.Ty->isUnsignedIntegerType() &&
4177 CGF.SanOpts.has(K: SanitizerKind::UnsignedIntegerOverflow) &&
4178 !CanElideOverflowCheck(Ctx: CGF.getContext(), Op: op))
4179 return EmitOverflowCheckedBinOp(Ops: op);
4180
4181 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4182 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4183 return Builder.CreateFAdd(L: op.LHS, R: op.RHS, Name: "add");
4184 }
4185
4186 if (op.isFixedPointOp())
4187 return EmitFixedPointBinOp(Ops: op);
4188
4189 return Builder.CreateAdd(LHS: op.LHS, RHS: op.RHS, Name: "add");
4190}
4191
4192/// The resulting value must be calculated with exact precision, so the operands
4193/// may not be the same type.
4194Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
4195 using llvm::APSInt;
4196 using llvm::ConstantInt;
4197
4198 // This is either a binary operation where at least one of the operands is
4199 // a fixed-point type, or a unary operation where the operand is a fixed-point
4200 // type. The result type of a binary operation is determined by
4201 // Sema::handleFixedPointConversions().
4202 QualType ResultTy = op.Ty;
4203 QualType LHSTy, RHSTy;
4204 if (const auto *BinOp = dyn_cast<BinaryOperator>(Val: op.E)) {
4205 RHSTy = BinOp->getRHS()->getType();
4206 if (const auto *CAO = dyn_cast<CompoundAssignOperator>(Val: BinOp)) {
4207 // For compound assignment, the effective type of the LHS at this point
4208 // is the computation LHS type, not the actual LHS type, and the final
4209 // result type is not the type of the expression but rather the
4210 // computation result type.
4211 LHSTy = CAO->getComputationLHSType();
4212 ResultTy = CAO->getComputationResultType();
4213 } else
4214 LHSTy = BinOp->getLHS()->getType();
4215 } else if (const auto *UnOp = dyn_cast<UnaryOperator>(Val: op.E)) {
4216 LHSTy = UnOp->getSubExpr()->getType();
4217 RHSTy = UnOp->getSubExpr()->getType();
4218 }
4219 ASTContext &Ctx = CGF.getContext();
4220 Value *LHS = op.LHS;
4221 Value *RHS = op.RHS;
4222
4223 auto LHSFixedSema = Ctx.getFixedPointSemantics(Ty: LHSTy);
4224 auto RHSFixedSema = Ctx.getFixedPointSemantics(Ty: RHSTy);
4225 auto ResultFixedSema = Ctx.getFixedPointSemantics(Ty: ResultTy);
4226 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(Other: RHSFixedSema);
4227
4228 // Perform the actual operation.
4229 Value *Result;
4230 llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
4231 switch (op.Opcode) {
4232 case BO_AddAssign:
4233 case BO_Add:
4234 Result = FPBuilder.CreateAdd(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema);
4235 break;
4236 case BO_SubAssign:
4237 case BO_Sub:
4238 Result = FPBuilder.CreateSub(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema);
4239 break;
4240 case BO_MulAssign:
4241 case BO_Mul:
4242 Result = FPBuilder.CreateMul(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema);
4243 break;
4244 case BO_DivAssign:
4245 case BO_Div:
4246 Result = FPBuilder.CreateDiv(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema);
4247 break;
4248 case BO_ShlAssign:
4249 case BO_Shl:
4250 Result = FPBuilder.CreateShl(LHS, LHSSema: LHSFixedSema, RHS);
4251 break;
4252 case BO_ShrAssign:
4253 case BO_Shr:
4254 Result = FPBuilder.CreateShr(LHS, LHSSema: LHSFixedSema, RHS);
4255 break;
4256 case BO_LT:
4257 return FPBuilder.CreateLT(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema);
4258 case BO_GT:
4259 return FPBuilder.CreateGT(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema);
4260 case BO_LE:
4261 return FPBuilder.CreateLE(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema);
4262 case BO_GE:
4263 return FPBuilder.CreateGE(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema);
4264 case BO_EQ:
4265 // For equality operations, we assume any padding bits on unsigned types are
4266 // zero'd out. They could be overwritten through non-saturating operations
4267 // that cause overflow, but this leads to undefined behavior.
4268 return FPBuilder.CreateEQ(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema);
4269 case BO_NE:
4270 return FPBuilder.CreateNE(LHS, LHSSema: LHSFixedSema, RHS, RHSSema: RHSFixedSema);
4271 case BO_Cmp:
4272 case BO_LAnd:
4273 case BO_LOr:
4274 llvm_unreachable("Found unimplemented fixed point binary operation");
4275 case BO_PtrMemD:
4276 case BO_PtrMemI:
4277 case BO_Rem:
4278 case BO_Xor:
4279 case BO_And:
4280 case BO_Or:
4281 case BO_Assign:
4282 case BO_RemAssign:
4283 case BO_AndAssign:
4284 case BO_XorAssign:
4285 case BO_OrAssign:
4286 case BO_Comma:
4287 llvm_unreachable("Found unsupported binary operation for fixed point types.");
4288 }
4289
4290 bool IsShift = BinaryOperator::isShiftOp(Opc: op.Opcode) ||
4291 BinaryOperator::isShiftAssignOp(Opc: op.Opcode);
4292 // Convert to the result type.
4293 return FPBuilder.CreateFixedToFixed(Src: Result, SrcSema: IsShift ? LHSFixedSema
4294 : CommonFixedSema,
4295 DstSema: ResultFixedSema);
4296}
4297
4298Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
4299 // The LHS is always a pointer if either side is.
4300 if (!op.LHS->getType()->isPointerTy()) {
4301 if (op.Ty->isSignedIntegerOrEnumerationType()) {
4302 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
4303 case LangOptions::SOB_Defined:
4304 if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow))
4305 return Builder.CreateSub(LHS: op.LHS, RHS: op.RHS, Name: "sub");
4306 [[fallthrough]];
4307 case LangOptions::SOB_Undefined:
4308 if (!CGF.SanOpts.has(K: SanitizerKind::SignedIntegerOverflow))
4309 return Builder.CreateNSWSub(LHS: op.LHS, RHS: op.RHS, Name: "sub");
4310 [[fallthrough]];
4311 case LangOptions::SOB_Trapping:
4312 if (CanElideOverflowCheck(Ctx: CGF.getContext(), Op: op))
4313 return Builder.CreateNSWSub(LHS: op.LHS, RHS: op.RHS, Name: "sub");
4314 return EmitOverflowCheckedBinOp(Ops: op);
4315 }
4316 }
4317
4318 // For vector and matrix subs, try to fold into a fmuladd.
4319 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4320 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4321 // Try to form an fmuladd.
4322 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, isSub: true))
4323 return FMulAdd;
4324 }
4325
4326 if (op.Ty->isConstantMatrixType()) {
4327 llvm::MatrixBuilder MB(Builder);
4328 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4329 return MB.CreateSub(LHS: op.LHS, RHS: op.RHS);
4330 }
4331
4332 if (op.Ty->isUnsignedIntegerType() &&
4333 CGF.SanOpts.has(K: SanitizerKind::UnsignedIntegerOverflow) &&
4334 !CanElideOverflowCheck(Ctx: CGF.getContext(), Op: op))
4335 return EmitOverflowCheckedBinOp(Ops: op);
4336
4337 if (op.LHS->getType()->isFPOrFPVectorTy()) {
4338 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
4339 return Builder.CreateFSub(L: op.LHS, R: op.RHS, Name: "sub");
4340 }
4341
4342 if (op.isFixedPointOp())
4343 return EmitFixedPointBinOp(op);
4344
4345 return Builder.CreateSub(LHS: op.LHS, RHS: op.RHS, Name: "sub");
4346 }
4347
4348 // If the RHS is not a pointer, then we have normal pointer
4349 // arithmetic.
4350 if (!op.RHS->getType()->isPointerTy())
4351 return emitPointerArithmetic(CGF, op, isSubtraction: CodeGenFunction::IsSubtraction);
4352
4353 // Otherwise, this is a pointer subtraction.
4354
4355 // Do the raw subtraction part.
4356 llvm::Value *LHS
4357 = Builder.CreatePtrToInt(V: op.LHS, DestTy: CGF.PtrDiffTy, Name: "sub.ptr.lhs.cast");
4358 llvm::Value *RHS
4359 = Builder.CreatePtrToInt(V: op.RHS, DestTy: CGF.PtrDiffTy, Name: "sub.ptr.rhs.cast");
4360 Value *diffInChars = Builder.CreateSub(LHS, RHS, Name: "sub.ptr.sub");
4361
4362 // Okay, figure out the element size.
4363 const BinaryOperator *expr = cast<BinaryOperator>(Val: op.E);
4364 QualType elementType = expr->getLHS()->getType()->getPointeeType();
4365
4366 llvm::Value *divisor = nullptr;
4367
4368 // For a variable-length array, this is going to be non-constant.
4369 if (const VariableArrayType *vla
4370 = CGF.getContext().getAsVariableArrayType(T: elementType)) {
4371 auto VlaSize = CGF.getVLASize(vla);
4372 elementType = VlaSize.Type;
4373 divisor = VlaSize.NumElts;
4374
4375 // Scale the number of non-VLA elements by the non-VLA element size.
4376 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(T: elementType);
4377 if (!eltSize.isOne())
4378 divisor = CGF.Builder.CreateNUWMul(LHS: CGF.CGM.getSize(numChars: eltSize), RHS: divisor);
4379
4380 // For everything elese, we can just compute it, safe in the
4381 // assumption that Sema won't let anything through that we can't
4382 // safely compute the size of.
4383 } else {
4384 CharUnits elementSize;
4385 // Handle GCC extension for pointer arithmetic on void* and
4386 // function pointer types.
4387 if (elementType->isVoidType() || elementType->isFunctionType())
4388 elementSize = CharUnits::One();
4389 else
4390 elementSize = CGF.getContext().getTypeSizeInChars(T: elementType);
4391
4392 // Don't even emit the divide for element size of 1.
4393 if (elementSize.isOne())
4394 return diffInChars;
4395
4396 divisor = CGF.CGM.getSize(numChars: elementSize);
4397 }
4398
4399 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
4400 // pointer difference in C is only defined in the case where both operands
4401 // are pointing to elements of an array.
4402 return Builder.CreateExactSDiv(LHS: diffInChars, RHS: divisor, Name: "sub.ptr.div");
4403}
4404
4405Value *ScalarExprEmitter::GetMaximumShiftAmount(Value *LHS, Value *RHS,
4406 bool RHSIsSigned) {
4407 llvm::IntegerType *Ty;
4408 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(Val: LHS->getType()))
4409 Ty = cast<llvm::IntegerType>(Val: VT->getElementType());
4410 else
4411 Ty = cast<llvm::IntegerType>(Val: LHS->getType());
4412 // For a given type of LHS the maximum shift amount is width(LHS)-1, however
4413 // it can occur that width(LHS)-1 > range(RHS). Since there is no check for
4414 // this in ConstantInt::get, this results in the value getting truncated.
4415 // Constrain the return value to be max(RHS) in this case.
4416 llvm::Type *RHSTy = RHS->getType();
4417 llvm::APInt RHSMax =
4418 RHSIsSigned ? llvm::APInt::getSignedMaxValue(numBits: RHSTy->getScalarSizeInBits())
4419 : llvm::APInt::getMaxValue(numBits: RHSTy->getScalarSizeInBits());
4420 if (RHSMax.ult(RHS: Ty->getBitWidth()))
4421 return llvm::ConstantInt::get(Ty: RHSTy, V: RHSMax);
4422 return llvm::ConstantInt::get(Ty: RHSTy, V: Ty->getBitWidth() - 1);
4423}
4424
4425Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
4426 const Twine &Name) {
4427 llvm::IntegerType *Ty;
4428 if (auto *VT = dyn_cast<llvm::VectorType>(Val: LHS->getType()))
4429 Ty = cast<llvm::IntegerType>(Val: VT->getElementType());
4430 else
4431 Ty = cast<llvm::IntegerType>(Val: LHS->getType());
4432
4433 if (llvm::isPowerOf2_64(Value: Ty->getBitWidth()))
4434 return Builder.CreateAnd(LHS: RHS, RHS: GetMaximumShiftAmount(LHS, RHS, RHSIsSigned: false), Name);
4435
4436 return Builder.CreateURem(
4437 LHS: RHS, RHS: llvm::ConstantInt::get(Ty: RHS->getType(), V: Ty->getBitWidth()), Name);
4438}
4439
4440Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
4441 // TODO: This misses out on the sanitizer check below.
4442 if (Ops.isFixedPointOp())
4443 return EmitFixedPointBinOp(op: Ops);
4444
4445 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4446 // RHS to the same size as the LHS.
4447 Value *RHS = Ops.RHS;
4448 if (Ops.LHS->getType() != RHS->getType())
4449 RHS = Builder.CreateIntCast(V: RHS, DestTy: Ops.LHS->getType(), isSigned: false, Name: "sh_prom");
4450
4451 bool SanitizeSignedBase = CGF.SanOpts.has(K: SanitizerKind::ShiftBase) &&
4452 Ops.Ty->hasSignedIntegerRepresentation() &&
4453 !CGF.getLangOpts().isSignedOverflowDefined() &&
4454 !CGF.getLangOpts().CPlusPlus20;
4455 bool SanitizeUnsignedBase =
4456 CGF.SanOpts.has(K: SanitizerKind::UnsignedShiftBase) &&
4457 Ops.Ty->hasUnsignedIntegerRepresentation();
4458 bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
4459 bool SanitizeExponent = CGF.SanOpts.has(K: SanitizerKind::ShiftExponent);
4460 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4461 if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL)
4462 RHS = ConstrainShiftValue(LHS: Ops.LHS, RHS, Name: "shl.mask");
4463 else if ((SanitizeBase || SanitizeExponent) &&
4464 isa<llvm::IntegerType>(Val: Ops.LHS->getType())) {
4465 CodeGenFunction::SanitizerScope SanScope(&CGF);
4466 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
4467 bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation();
4468 llvm::Value *WidthMinusOne =
4469 GetMaximumShiftAmount(LHS: Ops.LHS, RHS: Ops.RHS, RHSIsSigned);
4470 llvm::Value *ValidExponent = Builder.CreateICmpULE(LHS: Ops.RHS, RHS: WidthMinusOne);
4471
4472 if (SanitizeExponent) {
4473 Checks.push_back(
4474 Elt: std::make_pair(x&: ValidExponent, y: SanitizerKind::ShiftExponent));
4475 }
4476
4477 if (SanitizeBase) {
4478 // Check whether we are shifting any non-zero bits off the top of the
4479 // integer. We only emit this check if exponent is valid - otherwise
4480 // instructions below will have undefined behavior themselves.
4481 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
4482 llvm::BasicBlock *Cont = CGF.createBasicBlock(name: "cont");
4483 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock(name: "check");
4484 Builder.CreateCondBr(Cond: ValidExponent, True: CheckShiftBase, False: Cont);
4485 llvm::Value *PromotedWidthMinusOne =
4486 (RHS == Ops.RHS) ? WidthMinusOne
4487 : GetMaximumShiftAmount(LHS: Ops.LHS, RHS, RHSIsSigned);
4488 CGF.EmitBlock(BB: CheckShiftBase);
4489 llvm::Value *BitsShiftedOff = Builder.CreateLShr(
4490 LHS: Ops.LHS, RHS: Builder.CreateSub(LHS: PromotedWidthMinusOne, RHS, Name: "shl.zeros",
4491 /*NUW*/ HasNUW: true, /*NSW*/ HasNSW: true),
4492 Name: "shl.check");
4493 if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
4494 // In C99, we are not permitted to shift a 1 bit into the sign bit.
4495 // Under C++11's rules, shifting a 1 bit into the sign bit is
4496 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
4497 // define signed left shifts, so we use the C99 and C++11 rules there).
4498 // Unsigned shifts can always shift into the top bit.
4499 llvm::Value *One = llvm::ConstantInt::get(Ty: BitsShiftedOff->getType(), V: 1);
4500 BitsShiftedOff = Builder.CreateLShr(LHS: BitsShiftedOff, RHS: One);
4501 }
4502 llvm::Value *Zero = llvm::ConstantInt::get(Ty: BitsShiftedOff->getType(), V: 0);
4503 llvm::Value *ValidBase = Builder.CreateICmpEQ(LHS: BitsShiftedOff, RHS: Zero);
4504 CGF.EmitBlock(BB: Cont);
4505 llvm::PHINode *BaseCheck = Builder.CreatePHI(Ty: ValidBase->getType(), NumReservedValues: 2);
4506 BaseCheck->addIncoming(V: Builder.getTrue(), BB: Orig);
4507 BaseCheck->addIncoming(V: ValidBase, BB: CheckShiftBase);
4508 Checks.push_back(Elt: std::make_pair(
4509 x&: BaseCheck, y: SanitizeSignedBase ? SanitizerKind::ShiftBase
4510 : SanitizerKind::UnsignedShiftBase));
4511 }
4512
4513 assert(!Checks.empty());
4514 EmitBinOpCheck(Checks, Info: Ops);
4515 }
4516
4517 return Builder.CreateShl(LHS: Ops.LHS, RHS, Name: "shl");
4518}
4519
4520Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
4521 // TODO: This misses out on the sanitizer check below.
4522 if (Ops.isFixedPointOp())
4523 return EmitFixedPointBinOp(op: Ops);
4524
4525 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
4526 // RHS to the same size as the LHS.
4527 Value *RHS = Ops.RHS;
4528 if (Ops.LHS->getType() != RHS->getType())
4529 RHS = Builder.CreateIntCast(V: RHS, DestTy: Ops.LHS->getType(), isSigned: false, Name: "sh_prom");
4530
4531 // OpenCL 6.3j: shift values are effectively % word size of LHS.
4532 if (CGF.getLangOpts().OpenCL || CGF.getLangOpts().HLSL)
4533 RHS = ConstrainShiftValue(LHS: Ops.LHS, RHS, Name: "shr.mask");
4534 else if (CGF.SanOpts.has(K: SanitizerKind::ShiftExponent) &&
4535 isa<llvm::IntegerType>(Val: Ops.LHS->getType())) {
4536 CodeGenFunction::SanitizerScope SanScope(&CGF);
4537 bool RHSIsSigned = Ops.rhsHasSignedIntegerRepresentation();
4538 llvm::Value *Valid = Builder.CreateICmpULE(
4539 LHS: Ops.RHS, RHS: GetMaximumShiftAmount(LHS: Ops.LHS, RHS: Ops.RHS, RHSIsSigned));
4540 EmitBinOpCheck(Checks: std::make_pair(x&: Valid, y: SanitizerKind::ShiftExponent), Info: Ops);
4541 }
4542
4543 if (Ops.Ty->hasUnsignedIntegerRepresentation())
4544 return Builder.CreateLShr(LHS: Ops.LHS, RHS, Name: "shr");
4545 return Builder.CreateAShr(LHS: Ops.LHS, RHS, Name: "shr");
4546}
4547
4548enum IntrinsicType { VCMPEQ, VCMPGT };
4549// return corresponding comparison intrinsic for given vector type
4550static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
4551 BuiltinType::Kind ElemKind) {
4552 switch (ElemKind) {
4553 default: llvm_unreachable("unexpected element type");
4554 case BuiltinType::Char_U:
4555 case BuiltinType::UChar:
4556 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4557 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
4558 case BuiltinType::Char_S:
4559 case BuiltinType::SChar:
4560 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
4561 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
4562 case BuiltinType::UShort:
4563 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4564 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
4565 case BuiltinType::Short:
4566 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
4567 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
4568 case BuiltinType::UInt:
4569 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4570 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
4571 case BuiltinType::Int:
4572 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
4573 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
4574 case BuiltinType::ULong:
4575 case BuiltinType::ULongLong:
4576 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4577 llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
4578 case BuiltinType::Long:
4579 case BuiltinType::LongLong:
4580 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
4581 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
4582 case BuiltinType::Float:
4583 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
4584 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
4585 case BuiltinType::Double:
4586 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
4587 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
4588 case BuiltinType::UInt128:
4589 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4590 : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
4591 case BuiltinType::Int128:
4592 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
4593 : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
4594 }
4595}
4596
4597Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
4598 llvm::CmpInst::Predicate UICmpOpc,
4599 llvm::CmpInst::Predicate SICmpOpc,
4600 llvm::CmpInst::Predicate FCmpOpc,
4601 bool IsSignaling) {
4602 TestAndClearIgnoreResultAssign();
4603 Value *Result;
4604 QualType LHSTy = E->getLHS()->getType();
4605 QualType RHSTy = E->getRHS()->getType();
4606 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4607 assert(E->getOpcode() == BO_EQ ||
4608 E->getOpcode() == BO_NE);
4609 Value *LHS = CGF.EmitScalarExpr(E: E->getLHS());
4610 Value *RHS = CGF.EmitScalarExpr(E: E->getRHS());
4611 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4612 CGF, L: LHS, R: RHS, MPT, Inequality: E->getOpcode() == BO_NE);
4613 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4614 BinOpInfo BOInfo = EmitBinOps(E);
4615 Value *LHS = BOInfo.LHS;
4616 Value *RHS = BOInfo.RHS;
4617
4618 // If AltiVec, the comparison results in a numeric type, so we use
4619 // intrinsics comparing vectors and giving 0 or 1 as a result
4620 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4621 // constants for mapping CR6 register bits to predicate result
4622 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4623
4624 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4625
4626 // in several cases vector arguments order will be reversed
4627 Value *FirstVecArg = LHS,
4628 *SecondVecArg = RHS;
4629
4630 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4631 BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4632
4633 switch(E->getOpcode()) {
4634 default: llvm_unreachable("is not a comparison operation");
4635 case BO_EQ:
4636 CR6 = CR6_LT;
4637 ID = GetIntrinsic(IT: VCMPEQ, ElemKind: ElementKind);
4638 break;
4639 case BO_NE:
4640 CR6 = CR6_EQ;
4641 ID = GetIntrinsic(IT: VCMPEQ, ElemKind: ElementKind);
4642 break;
4643 case BO_LT:
4644 CR6 = CR6_LT;
4645 ID = GetIntrinsic(IT: VCMPGT, ElemKind: ElementKind);
4646 std::swap(a&: FirstVecArg, b&: SecondVecArg);
4647 break;
4648 case BO_GT:
4649 CR6 = CR6_LT;
4650 ID = GetIntrinsic(IT: VCMPGT, ElemKind: ElementKind);
4651 break;
4652 case BO_LE:
4653 if (ElementKind == BuiltinType::Float) {
4654 CR6 = CR6_LT;
4655 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4656 std::swap(a&: FirstVecArg, b&: SecondVecArg);
4657 }
4658 else {
4659 CR6 = CR6_EQ;
4660 ID = GetIntrinsic(IT: VCMPGT, ElemKind: ElementKind);
4661 }
4662 break;
4663 case BO_GE:
4664 if (ElementKind == BuiltinType::Float) {
4665 CR6 = CR6_LT;
4666 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4667 }
4668 else {
4669 CR6 = CR6_EQ;
4670 ID = GetIntrinsic(IT: VCMPGT, ElemKind: ElementKind);
4671 std::swap(a&: FirstVecArg, b&: SecondVecArg);
4672 }
4673 break;
4674 }
4675
4676 Value *CR6Param = Builder.getInt32(C: CR6);
4677 llvm::Function *F = CGF.CGM.getIntrinsic(IID: ID);
4678 Result = Builder.CreateCall(Callee: F, Args: {CR6Param, FirstVecArg, SecondVecArg});
4679
4680 // The result type of intrinsic may not be same as E->getType().
4681 // If E->getType() is not BoolTy, EmitScalarConversion will do the
4682 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4683 // do nothing, if ResultTy is not i1 at the same time, it will cause
4684 // crash later.
4685 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Val: Result->getType());
4686 if (ResultTy->getBitWidth() > 1 &&
4687 E->getType() == CGF.getContext().BoolTy)
4688 Result = Builder.CreateTrunc(V: Result, DestTy: Builder.getInt1Ty());
4689 return EmitScalarConversion(Src: Result, SrcType: CGF.getContext().BoolTy, DstType: E->getType(),
4690 Loc: E->getExprLoc());
4691 }
4692
4693 if (BOInfo.isFixedPointOp()) {
4694 Result = EmitFixedPointBinOp(op: BOInfo);
4695 } else if (LHS->getType()->isFPOrFPVectorTy()) {
4696 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4697 if (!IsSignaling)
4698 Result = Builder.CreateFCmp(P: FCmpOpc, LHS, RHS, Name: "cmp");
4699 else
4700 Result = Builder.CreateFCmpS(P: FCmpOpc, LHS, RHS, Name: "cmp");
4701 } else if (LHSTy->hasSignedIntegerRepresentation()) {
4702 Result = Builder.CreateICmp(P: SICmpOpc, LHS, RHS, Name: "cmp");
4703 } else {
4704 // Unsigned integers and pointers.
4705
4706 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4707 !isa<llvm::ConstantPointerNull>(Val: LHS) &&
4708 !isa<llvm::ConstantPointerNull>(Val: RHS)) {
4709
4710 // Dynamic information is required to be stripped for comparisons,
4711 // because it could leak the dynamic information. Based on comparisons
4712 // of pointers to dynamic objects, the optimizer can replace one pointer
4713 // with another, which might be incorrect in presence of invariant
4714 // groups. Comparison with null is safe because null does not carry any
4715 // dynamic information.
4716 if (LHSTy.mayBeDynamicClass())
4717 LHS = Builder.CreateStripInvariantGroup(Ptr: LHS);
4718 if (RHSTy.mayBeDynamicClass())
4719 RHS = Builder.CreateStripInvariantGroup(Ptr: RHS);
4720 }
4721
4722 Result = Builder.CreateICmp(P: UICmpOpc, LHS, RHS, Name: "cmp");
4723 }
4724
4725 // If this is a vector comparison, sign extend the result to the appropriate
4726 // vector integer type and return it (don't convert to bool).
4727 if (LHSTy->isVectorType())
4728 return Builder.CreateSExt(V: Result, DestTy: ConvertType(T: E->getType()), Name: "sext");
4729
4730 } else {
4731 // Complex Comparison: can only be an equality comparison.
4732 CodeGenFunction::ComplexPairTy LHS, RHS;
4733 QualType CETy;
4734 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4735 LHS = CGF.EmitComplexExpr(E: E->getLHS());
4736 CETy = CTy->getElementType();
4737 } else {
4738 LHS.first = Visit(E: E->getLHS());
4739 LHS.second = llvm::Constant::getNullValue(Ty: LHS.first->getType());
4740 CETy = LHSTy;
4741 }
4742 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4743 RHS = CGF.EmitComplexExpr(E: E->getRHS());
4744 assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4745 CTy->getElementType()) &&
4746 "The element types must always match.");
4747 (void)CTy;
4748 } else {
4749 RHS.first = Visit(E: E->getRHS());
4750 RHS.second = llvm::Constant::getNullValue(Ty: RHS.first->getType());
4751 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4752 "The element types must always match.");
4753 }
4754
4755 Value *ResultR, *ResultI;
4756 if (CETy->isRealFloatingType()) {
4757 // As complex comparisons can only be equality comparisons, they
4758 // are never signaling comparisons.
4759 ResultR = Builder.CreateFCmp(P: FCmpOpc, LHS: LHS.first, RHS: RHS.first, Name: "cmp.r");
4760 ResultI = Builder.CreateFCmp(P: FCmpOpc, LHS: LHS.second, RHS: RHS.second, Name: "cmp.i");
4761 } else {
4762 // Complex comparisons can only be equality comparisons. As such, signed
4763 // and unsigned opcodes are the same.
4764 ResultR = Builder.CreateICmp(P: UICmpOpc, LHS: LHS.first, RHS: RHS.first, Name: "cmp.r");
4765 ResultI = Builder.CreateICmp(P: UICmpOpc, LHS: LHS.second, RHS: RHS.second, Name: "cmp.i");
4766 }
4767
4768 if (E->getOpcode() == BO_EQ) {
4769 Result = Builder.CreateAnd(LHS: ResultR, RHS: ResultI, Name: "and.ri");
4770 } else {
4771 assert(E->getOpcode() == BO_NE &&
4772 "Complex comparison other than == or != ?");
4773 Result = Builder.CreateOr(LHS: ResultR, RHS: ResultI, Name: "or.ri");
4774 }
4775 }
4776
4777 return EmitScalarConversion(Src: Result, SrcType: CGF.getContext().BoolTy, DstType: E->getType(),
4778 Loc: E->getExprLoc());
4779}
4780
4781llvm::Value *CodeGenFunction::EmitWithOriginalRHSBitfieldAssignment(
4782 const BinaryOperator *E, Value **Previous, QualType *SrcType) {
4783 // In case we have the integer or bitfield sanitizer checks enabled
4784 // we want to get the expression before scalar conversion.
4785 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E->getRHS())) {
4786 CastKind Kind = ICE->getCastKind();
4787 if (Kind == CK_IntegralCast || Kind == CK_LValueToRValue) {
4788 *SrcType = ICE->getSubExpr()->getType();
4789 *Previous = EmitScalarExpr(E: ICE->getSubExpr());
4790 // Pass default ScalarConversionOpts to avoid emitting
4791 // integer sanitizer checks as E refers to bitfield.
4792 return EmitScalarConversion(Src: *Previous, SrcTy: *SrcType, DstTy: ICE->getType(),
4793 Loc: ICE->getExprLoc());
4794 }
4795 }
4796 return EmitScalarExpr(E: E->getRHS());
4797}
4798
4799Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4800 bool Ignore = TestAndClearIgnoreResultAssign();
4801
4802 Value *RHS;
4803 LValue LHS;
4804
4805 switch (E->getLHS()->getType().getObjCLifetime()) {
4806 case Qualifiers::OCL_Strong:
4807 std::tie(args&: LHS, args&: RHS) = CGF.EmitARCStoreStrong(e: E, ignored: Ignore);
4808 break;
4809
4810 case Qualifiers::OCL_Autoreleasing:
4811 std::tie(args&: LHS, args&: RHS) = CGF.EmitARCStoreAutoreleasing(e: E);
4812 break;
4813
4814 case Qualifiers::OCL_ExplicitNone:
4815 std::tie(args&: LHS, args&: RHS) = CGF.EmitARCStoreUnsafeUnretained(e: E, ignored: Ignore);
4816 break;
4817
4818 case Qualifiers::OCL_Weak:
4819 RHS = Visit(E: E->getRHS());
4820 LHS = EmitCheckedLValue(E: E->getLHS(), TCK: CodeGenFunction::TCK_Store);
4821 RHS = CGF.EmitARCStoreWeak(addr: LHS.getAddress(), value: RHS, ignored: Ignore);
4822 break;
4823
4824 case Qualifiers::OCL_None:
4825 // __block variables need to have the rhs evaluated first, plus
4826 // this should improve codegen just a little.
4827 Value *Previous = nullptr;
4828 QualType SrcType = E->getRHS()->getType();
4829 // Check if LHS is a bitfield, if RHS contains an implicit cast expression
4830 // we want to extract that value and potentially (if the bitfield sanitizer
4831 // is enabled) use it to check for an implicit conversion.
4832 if (E->getLHS()->refersToBitField())
4833 RHS = CGF.EmitWithOriginalRHSBitfieldAssignment(E, Previous: &Previous, SrcType: &SrcType);
4834 else
4835 RHS = Visit(E: E->getRHS());
4836
4837 LHS = EmitCheckedLValue(E: E->getLHS(), TCK: CodeGenFunction::TCK_Store);
4838
4839 // Store the value into the LHS. Bit-fields are handled specially
4840 // because the result is altered by the store, i.e., [C99 6.5.16p1]
4841 // 'An assignment expression has the value of the left operand after
4842 // the assignment...'.
4843 if (LHS.isBitField()) {
4844 CGF.EmitStoreThroughBitfieldLValue(Src: RValue::get(V: RHS), Dst: LHS, Result: &RHS);
4845 // If the expression contained an implicit conversion, make sure
4846 // to use the value before the scalar conversion.
4847 Value *Src = Previous ? Previous : RHS;
4848 QualType DstType = E->getLHS()->getType();
4849 CGF.EmitBitfieldConversionCheck(Src, SrcType, Dst: RHS, DstType,
4850 Info: LHS.getBitFieldInfo(), Loc: E->getExprLoc());
4851 } else {
4852 CGF.EmitNullabilityCheck(LHS, RHS, Loc: E->getExprLoc());
4853 CGF.EmitStoreThroughLValue(Src: RValue::get(V: RHS), Dst: LHS);
4854 }
4855 }
4856
4857 // If the result is clearly ignored, return now.
4858 if (Ignore)
4859 return nullptr;
4860
4861 // The result of an assignment in C is the assigned r-value.
4862 if (!CGF.getLangOpts().CPlusPlus)
4863 return RHS;
4864
4865 // If the lvalue is non-volatile, return the computed value of the assignment.
4866 if (!LHS.isVolatileQualified())
4867 return RHS;
4868
4869 // Otherwise, reload the value.
4870 return EmitLoadOfLValue(LV: LHS, Loc: E->getExprLoc());
4871}
4872
4873Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4874 // Perform vector logical and on comparisons with zero vectors.
4875 if (E->getType()->isVectorType()) {
4876 CGF.incrementProfileCounter(S: E);
4877
4878 Value *LHS = Visit(E: E->getLHS());
4879 Value *RHS = Visit(E: E->getRHS());
4880 Value *Zero = llvm::ConstantAggregateZero::get(Ty: LHS->getType());
4881 if (LHS->getType()->isFPOrFPVectorTy()) {
4882 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4883 CGF, E->getFPFeaturesInEffect(LO: CGF.getLangOpts()));
4884 LHS = Builder.CreateFCmp(P: llvm::CmpInst::FCMP_UNE, LHS, RHS: Zero, Name: "cmp");
4885 RHS = Builder.CreateFCmp(P: llvm::CmpInst::FCMP_UNE, LHS: RHS, RHS: Zero, Name: "cmp");
4886 } else {
4887 LHS = Builder.CreateICmp(P: llvm::CmpInst::ICMP_NE, LHS, RHS: Zero, Name: "cmp");
4888 RHS = Builder.CreateICmp(P: llvm::CmpInst::ICMP_NE, LHS: RHS, RHS: Zero, Name: "cmp");
4889 }
4890 Value *And = Builder.CreateAnd(LHS, RHS);
4891 return Builder.CreateSExt(V: And, DestTy: ConvertType(T: E->getType()), Name: "sext");
4892 }
4893
4894 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4895 llvm::Type *ResTy = ConvertType(T: E->getType());
4896
4897 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4898 // If we have 1 && X, just emit X without inserting the control flow.
4899 bool LHSCondVal;
4900 if (CGF.ConstantFoldsToSimpleInteger(Cond: E->getLHS(), Result&: LHSCondVal)) {
4901 if (LHSCondVal) { // If we have 1 && X, just emit X.
4902 CGF.incrementProfileCounter(S: E);
4903
4904 // If the top of the logical operator nest, reset the MCDC temp to 0.
4905 if (CGF.MCDCLogOpStack.empty())
4906 CGF.maybeResetMCDCCondBitmap(E);
4907
4908 CGF.MCDCLogOpStack.push_back(Elt: E);
4909
4910 Value *RHSCond = CGF.EvaluateExprAsBool(E: E->getRHS());
4911
4912 // If we're generating for profiling or coverage, generate a branch to a
4913 // block that increments the RHS counter needed to track branch condition
4914 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4915 // "FalseBlock" after the increment is done.
4916 if (InstrumentRegions &&
4917 CodeGenFunction::isInstrumentedCondition(C: E->getRHS())) {
4918 CGF.maybeUpdateMCDCCondBitmap(E: E->getRHS(), Val: RHSCond);
4919 llvm::BasicBlock *FBlock = CGF.createBasicBlock(name: "land.end");
4920 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock(name: "land.rhscnt");
4921 Builder.CreateCondBr(Cond: RHSCond, True: RHSBlockCnt, False: FBlock);
4922 CGF.EmitBlock(BB: RHSBlockCnt);
4923 CGF.incrementProfileCounter(S: E->getRHS());
4924 CGF.EmitBranch(Block: FBlock);
4925 CGF.EmitBlock(BB: FBlock);
4926 }
4927
4928 CGF.MCDCLogOpStack.pop_back();
4929 // If the top of the logical operator nest, update the MCDC bitmap.
4930 if (CGF.MCDCLogOpStack.empty())
4931 CGF.maybeUpdateMCDCTestVectorBitmap(E);
4932
4933 // ZExt result to int or bool.
4934 return Builder.CreateZExtOrBitCast(V: RHSCond, DestTy: ResTy, Name: "land.ext");
4935 }
4936
4937 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4938 if (!CGF.ContainsLabel(S: E->getRHS()))
4939 return llvm::Constant::getNullValue(Ty: ResTy);
4940 }
4941
4942 // If the top of the logical operator nest, reset the MCDC temp to 0.
4943 if (CGF.MCDCLogOpStack.empty())
4944 CGF.maybeResetMCDCCondBitmap(E);
4945
4946 CGF.MCDCLogOpStack.push_back(Elt: E);
4947
4948 llvm::BasicBlock *ContBlock = CGF.createBasicBlock(name: "land.end");
4949 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock(name: "land.rhs");
4950
4951 CodeGenFunction::ConditionalEvaluation eval(CGF);
4952
4953 // Branch on the LHS first. If it is false, go to the failure (cont) block.
4954 CGF.EmitBranchOnBoolExpr(Cond: E->getLHS(), TrueBlock: RHSBlock, FalseBlock: ContBlock,
4955 TrueCount: CGF.getProfileCount(S: E->getRHS()));
4956
4957 // Any edges into the ContBlock are now from an (indeterminate number of)
4958 // edges from this first condition. All of these values will be false. Start
4959 // setting up the PHI node in the Cont Block for this.
4960 llvm::PHINode *PN = llvm::PHINode::Create(Ty: llvm::Type::getInt1Ty(C&: VMContext), NumReservedValues: 2,
4961 NameStr: "", InsertBefore: ContBlock);
4962 for (llvm::pred_iterator PI = pred_begin(BB: ContBlock), PE = pred_end(BB: ContBlock);
4963 PI != PE; ++PI)
4964 PN->addIncoming(V: llvm::ConstantInt::getFalse(Context&: VMContext), BB: *PI);
4965
4966 eval.begin(CGF);
4967 CGF.EmitBlock(BB: RHSBlock);
4968 CGF.incrementProfileCounter(S: E);
4969 Value *RHSCond = CGF.EvaluateExprAsBool(E: E->getRHS());
4970 eval.end(CGF);
4971
4972 // Reaquire the RHS block, as there may be subblocks inserted.
4973 RHSBlock = Builder.GetInsertBlock();
4974
4975 // If we're generating for profiling or coverage, generate a branch on the
4976 // RHS to a block that increments the RHS true counter needed to track branch
4977 // condition coverage.
4978 if (InstrumentRegions &&
4979 CodeGenFunction::isInstrumentedCondition(C: E->getRHS())) {
4980 CGF.maybeUpdateMCDCCondBitmap(E: E->getRHS(), Val: RHSCond);
4981 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock(name: "land.rhscnt");
4982 Builder.CreateCondBr(Cond: RHSCond, True: RHSBlockCnt, False: ContBlock);
4983 CGF.EmitBlock(BB: RHSBlockCnt);
4984 CGF.incrementProfileCounter(S: E->getRHS());
4985 CGF.EmitBranch(Block: ContBlock);
4986 PN->addIncoming(V: RHSCond, BB: RHSBlockCnt);
4987 }
4988
4989 // Emit an unconditional branch from this block to ContBlock.
4990 {
4991 // There is no need to emit line number for unconditional branch.
4992 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4993 CGF.EmitBlock(BB: ContBlock);
4994 }
4995 // Insert an entry into the phi node for the edge with the value of RHSCond.
4996 PN->addIncoming(V: RHSCond, BB: RHSBlock);
4997
4998 CGF.MCDCLogOpStack.pop_back();
4999 // If the top of the logical operator nest, update the MCDC bitmap.
5000 if (CGF.MCDCLogOpStack.empty())
5001 CGF.maybeUpdateMCDCTestVectorBitmap(E);
5002
5003 // Artificial location to preserve the scope information
5004 {
5005 auto NL = ApplyDebugLocation::CreateArtificial(CGF);
5006 PN->setDebugLoc(Builder.getCurrentDebugLocation());
5007 }
5008
5009 // ZExt result to int.
5010 return Builder.CreateZExtOrBitCast(V: PN, DestTy: ResTy, Name: "land.ext");
5011}
5012
5013Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
5014 // Perform vector logical or on comparisons with zero vectors.
5015 if (E->getType()->isVectorType()) {
5016 CGF.incrementProfileCounter(S: E);
5017
5018 Value *LHS = Visit(E: E->getLHS());
5019 Value *RHS = Visit(E: E->getRHS());
5020 Value *Zero = llvm::ConstantAggregateZero::get(Ty: LHS->getType());
5021 if (LHS->getType()->isFPOrFPVectorTy()) {
5022 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
5023 CGF, E->getFPFeaturesInEffect(LO: CGF.getLangOpts()));
5024 LHS = Builder.CreateFCmp(P: llvm::CmpInst::FCMP_UNE, LHS, RHS: Zero, Name: "cmp");
5025 RHS = Builder.CreateFCmp(P: llvm::CmpInst::FCMP_UNE, LHS: RHS, RHS: Zero, Name: "cmp");
5026 } else {
5027 LHS = Builder.CreateICmp(P: llvm::CmpInst::ICMP_NE, LHS, RHS: Zero, Name: "cmp");
5028 RHS = Builder.CreateICmp(P: llvm::CmpInst::ICMP_NE, LHS: RHS, RHS: Zero, Name: "cmp");
5029 }
5030 Value *Or = Builder.CreateOr(LHS, RHS);
5031 return Builder.CreateSExt(V: Or, DestTy: ConvertType(T: E->getType()), Name: "sext");
5032 }
5033
5034 bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
5035 llvm::Type *ResTy = ConvertType(T: E->getType());
5036
5037 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
5038 // If we have 0 || X, just emit X without inserting the control flow.
5039 bool LHSCondVal;
5040 if (CGF.ConstantFoldsToSimpleInteger(Cond: E->getLHS(), Result&: LHSCondVal)) {
5041 if (!LHSCondVal) { // If we have 0 || X, just emit X.
5042 CGF.incrementProfileCounter(S: E);
5043
5044 // If the top of the logical operator nest, reset the MCDC temp to 0.
5045 if (CGF.MCDCLogOpStack.empty())
5046 CGF.maybeResetMCDCCondBitmap(E);
5047
5048 CGF.MCDCLogOpStack.push_back(Elt: E);
5049
5050 Value *RHSCond = CGF.EvaluateExprAsBool(E: E->getRHS());
5051
5052 // If we're generating for profiling or coverage, generate a branch to a
5053 // block that increments the RHS counter need to track branch condition
5054 // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
5055 // "FalseBlock" after the increment is done.
5056 if (InstrumentRegions &&
5057 CodeGenFunction::isInstrumentedCondition(C: E->getRHS())) {
5058 CGF.maybeUpdateMCDCCondBitmap(E: E->getRHS(), Val: RHSCond);
5059 llvm::BasicBlock *FBlock = CGF.createBasicBlock(name: "lor.end");
5060 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock(name: "lor.rhscnt");
5061 Builder.CreateCondBr(Cond: RHSCond, True: FBlock, False: RHSBlockCnt);
5062 CGF.EmitBlock(BB: RHSBlockCnt);
5063 CGF.incrementProfileCounter(S: E->getRHS());
5064 CGF.EmitBranch(Block: FBlock);
5065 CGF.EmitBlock(BB: FBlock);
5066 }
5067
5068 CGF.MCDCLogOpStack.pop_back();
5069 // If the top of the logical operator nest, update the MCDC bitmap.
5070 if (CGF.MCDCLogOpStack.empty())
5071 CGF.maybeUpdateMCDCTestVectorBitmap(E);
5072
5073 // ZExt result to int or bool.
5074 return Builder.CreateZExtOrBitCast(V: RHSCond, DestTy: ResTy, Name: "lor.ext");
5075 }
5076
5077 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
5078 if (!CGF.ContainsLabel(S: E->getRHS()))
5079 return llvm::ConstantInt::get(Ty: ResTy, V: 1);
5080 }
5081
5082 // If the top of the logical operator nest, reset the MCDC temp to 0.
5083 if (CGF.MCDCLogOpStack.empty())
5084 CGF.maybeResetMCDCCondBitmap(E);
5085
5086 CGF.MCDCLogOpStack.push_back(Elt: E);
5087
5088 llvm::BasicBlock *ContBlock = CGF.createBasicBlock(name: "lor.end");
5089 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock(name: "lor.rhs");
5090
5091 CodeGenFunction::ConditionalEvaluation eval(CGF);
5092
5093 // Branch on the LHS first. If it is true, go to the success (cont) block.
5094 CGF.EmitBranchOnBoolExpr(Cond: E->getLHS(), TrueBlock: ContBlock, FalseBlock: RHSBlock,
5095 TrueCount: CGF.getCurrentProfileCount() -
5096 CGF.getProfileCount(S: E->getRHS()));
5097
5098 // Any edges into the ContBlock are now from an (indeterminate number of)
5099 // edges from this first condition. All of these values will be true. Start
5100 // setting up the PHI node in the Cont Block for this.
5101 llvm::PHINode *PN = llvm::PHINode::Create(Ty: llvm::Type::getInt1Ty(C&: VMContext), NumReservedValues: 2,
5102 NameStr: "", InsertBefore: ContBlock);
5103 for (llvm::pred_iterator PI = pred_begin(BB: ContBlock), PE = pred_end(BB: ContBlock);
5104 PI != PE; ++PI)
5105 PN->addIncoming(V: llvm::ConstantInt::getTrue(Context&: VMContext), BB: *PI);
5106
5107 eval.begin(CGF);
5108
5109 // Emit the RHS condition as a bool value.
5110 CGF.EmitBlock(BB: RHSBlock);
5111 CGF.incrementProfileCounter(S: E);
5112 Value *RHSCond = CGF.EvaluateExprAsBool(E: E->getRHS());
5113
5114 eval.end(CGF);
5115
5116 // Reaquire the RHS block, as there may be subblocks inserted.
5117 RHSBlock = Builder.GetInsertBlock();
5118
5119 // If we're generating for profiling or coverage, generate a branch on the
5120 // RHS to a block that increments the RHS true counter needed to track branch
5121 // condition coverage.
5122 if (InstrumentRegions &&
5123 CodeGenFunction::isInstrumentedCondition(C: E->getRHS())) {
5124 CGF.maybeUpdateMCDCCondBitmap(E: E->getRHS(), Val: RHSCond);
5125 llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock(name: "lor.rhscnt");
5126 Builder.CreateCondBr(Cond: RHSCond, True: ContBlock, False: RHSBlockCnt);
5127 CGF.EmitBlock(BB: RHSBlockCnt);
5128 CGF.incrementProfileCounter(S: E->getRHS());
5129 CGF.EmitBranch(Block: ContBlock);
5130 PN->addIncoming(V: RHSCond, BB: RHSBlockCnt);
5131 }
5132
5133 // Emit an unconditional branch from this block to ContBlock. Insert an entry
5134 // into the phi node for the edge with the value of RHSCond.
5135 CGF.EmitBlock(BB: ContBlock);
5136 PN->addIncoming(V: RHSCond, BB: RHSBlock);
5137
5138 CGF.MCDCLogOpStack.pop_back();
5139 // If the top of the logical operator nest, update the MCDC bitmap.
5140 if (CGF.MCDCLogOpStack.empty())
5141 CGF.maybeUpdateMCDCTestVectorBitmap(E);
5142
5143 // ZExt result to int.
5144 return Builder.CreateZExtOrBitCast(V: PN, DestTy: ResTy, Name: "lor.ext");
5145}
5146
5147Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
5148 CGF.EmitIgnoredExpr(E: E->getLHS());
5149 CGF.EnsureInsertPoint();
5150 return Visit(E: E->getRHS());
5151}
5152
5153//===----------------------------------------------------------------------===//
5154// Other Operators
5155//===----------------------------------------------------------------------===//
5156
5157/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
5158/// expression is cheap enough and side-effect-free enough to evaluate
5159/// unconditionally instead of conditionally. This is used to convert control
5160/// flow into selects in some cases.
5161static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
5162 CodeGenFunction &CGF) {
5163 // Anything that is an integer or floating point constant is fine.
5164 return E->IgnoreParens()->isEvaluatable(Ctx: CGF.getContext());
5165
5166 // Even non-volatile automatic variables can't be evaluated unconditionally.
5167 // Referencing a thread_local may cause non-trivial initialization work to
5168 // occur. If we're inside a lambda and one of the variables is from the scope
5169 // outside the lambda, that function may have returned already. Reading its
5170 // locals is a bad idea. Also, these reads may introduce races there didn't
5171 // exist in the source-level program.
5172}
5173
5174
5175Value *ScalarExprEmitter::
5176VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
5177 TestAndClearIgnoreResultAssign();
5178
5179 // Bind the common expression if necessary.
5180 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
5181
5182 Expr *condExpr = E->getCond();
5183 Expr *lhsExpr = E->getTrueExpr();
5184 Expr *rhsExpr = E->getFalseExpr();
5185
5186 // If the condition constant folds and can be elided, try to avoid emitting
5187 // the condition and the dead arm.
5188 bool CondExprBool;
5189 if (CGF.ConstantFoldsToSimpleInteger(Cond: condExpr, Result&: CondExprBool)) {
5190 Expr *live = lhsExpr, *dead = rhsExpr;
5191 if (!CondExprBool) std::swap(a&: live, b&: dead);
5192
5193 // If the dead side doesn't have labels we need, just emit the Live part.
5194 if (!CGF.ContainsLabel(S: dead)) {
5195 if (CondExprBool) {
5196 if (llvm::EnableSingleByteCoverage) {
5197 CGF.incrementProfileCounter(S: lhsExpr);
5198 CGF.incrementProfileCounter(S: rhsExpr);
5199 }
5200 CGF.incrementProfileCounter(S: E);
5201 }
5202 Value *Result = Visit(E: live);
5203
5204 // If the live part is a throw expression, it acts like it has a void
5205 // type, so evaluating it returns a null Value*. However, a conditional
5206 // with non-void type must return a non-null Value*.
5207 if (!Result && !E->getType()->isVoidType())
5208 Result = llvm::UndefValue::get(T: CGF.ConvertType(T: E->getType()));
5209
5210 return Result;
5211 }
5212 }
5213
5214 // OpenCL: If the condition is a vector, we can treat this condition like
5215 // the select function.
5216 if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
5217 condExpr->getType()->isExtVectorType()) {
5218 CGF.incrementProfileCounter(S: E);
5219
5220 llvm::Value *CondV = CGF.EmitScalarExpr(E: condExpr);
5221 llvm::Value *LHS = Visit(E: lhsExpr);
5222 llvm::Value *RHS = Visit(E: rhsExpr);
5223
5224 llvm::Type *condType = ConvertType(T: condExpr->getType());
5225 auto *vecTy = cast<llvm::FixedVectorType>(Val: condType);
5226
5227 unsigned numElem = vecTy->getNumElements();
5228 llvm::Type *elemType = vecTy->getElementType();
5229
5230 llvm::Value *zeroVec = llvm::Constant::getNullValue(Ty: vecTy);
5231 llvm::Value *TestMSB = Builder.CreateICmpSLT(LHS: CondV, RHS: zeroVec);
5232 llvm::Value *tmp = Builder.CreateSExt(
5233 V: TestMSB, DestTy: llvm::FixedVectorType::get(ElementType: elemType, NumElts: numElem), Name: "sext");
5234 llvm::Value *tmp2 = Builder.CreateNot(V: tmp);
5235
5236 // Cast float to int to perform ANDs if necessary.
5237 llvm::Value *RHSTmp = RHS;
5238 llvm::Value *LHSTmp = LHS;
5239 bool wasCast = false;
5240 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(Val: RHS->getType());
5241 if (rhsVTy->getElementType()->isFloatingPointTy()) {
5242 RHSTmp = Builder.CreateBitCast(V: RHS, DestTy: tmp2->getType());
5243 LHSTmp = Builder.CreateBitCast(V: LHS, DestTy: tmp->getType());
5244 wasCast = true;
5245 }
5246
5247 llvm::Value *tmp3 = Builder.CreateAnd(LHS: RHSTmp, RHS: tmp2);
5248 llvm::Value *tmp4 = Builder.CreateAnd(LHS: LHSTmp, RHS: tmp);
5249 llvm::Value *tmp5 = Builder.CreateOr(LHS: tmp3, RHS: tmp4, Name: "cond");
5250 if (wasCast)
5251 tmp5 = Builder.CreateBitCast(V: tmp5, DestTy: RHS->getType());
5252
5253 return tmp5;
5254 }
5255
5256 if (condExpr->getType()->isVectorType() ||
5257 condExpr->getType()->isSveVLSBuiltinType()) {
5258 CGF.incrementProfileCounter(S: E);
5259
5260 llvm::Value *CondV = CGF.EmitScalarExpr(E: condExpr);
5261 llvm::Value *LHS = Visit(E: lhsExpr);
5262 llvm::Value *RHS = Visit(E: rhsExpr);
5263
5264 llvm::Type *CondType = ConvertType(T: condExpr->getType());
5265 auto *VecTy = cast<llvm::VectorType>(Val: CondType);
5266 llvm::Value *ZeroVec = llvm::Constant::getNullValue(Ty: VecTy);
5267
5268 CondV = Builder.CreateICmpNE(LHS: CondV, RHS: ZeroVec, Name: "vector_cond");
5269 return Builder.CreateSelect(C: CondV, True: LHS, False: RHS, Name: "vector_select");
5270 }
5271
5272 // If this is a really simple expression (like x ? 4 : 5), emit this as a
5273 // select instead of as control flow. We can only do this if it is cheap and
5274 // safe to evaluate the LHS and RHS unconditionally.
5275 if (isCheapEnoughToEvaluateUnconditionally(E: lhsExpr, CGF) &&
5276 isCheapEnoughToEvaluateUnconditionally(E: rhsExpr, CGF)) {
5277 llvm::Value *CondV = CGF.EvaluateExprAsBool(E: condExpr);
5278 llvm::Value *StepV = Builder.CreateZExtOrBitCast(V: CondV, DestTy: CGF.Int64Ty);
5279
5280 if (llvm::EnableSingleByteCoverage) {
5281 CGF.incrementProfileCounter(S: lhsExpr);
5282 CGF.incrementProfileCounter(S: rhsExpr);
5283 CGF.incrementProfileCounter(S: E);
5284 } else
5285 CGF.incrementProfileCounter(S: E, StepV);
5286
5287 llvm::Value *LHS = Visit(E: lhsExpr);
5288 llvm::Value *RHS = Visit(E: rhsExpr);
5289 if (!LHS) {
5290 // If the conditional has void type, make sure we return a null Value*.
5291 assert(!RHS && "LHS and RHS types must match");
5292 return nullptr;
5293 }
5294 return Builder.CreateSelect(C: CondV, True: LHS, False: RHS, Name: "cond");
5295 }
5296
5297 // If the top of the logical operator nest, reset the MCDC temp to 0.
5298 if (CGF.MCDCLogOpStack.empty())
5299 CGF.maybeResetMCDCCondBitmap(E: condExpr);
5300
5301 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock(name: "cond.true");
5302 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock(name: "cond.false");
5303 llvm::BasicBlock *ContBlock = CGF.createBasicBlock(name: "cond.end");
5304
5305 CodeGenFunction::ConditionalEvaluation eval(CGF);
5306 CGF.EmitBranchOnBoolExpr(Cond: condExpr, TrueBlock: LHSBlock, FalseBlock: RHSBlock,
5307 TrueCount: CGF.getProfileCount(S: lhsExpr));
5308
5309 CGF.EmitBlock(BB: LHSBlock);
5310
5311 // If the top of the logical operator nest, update the MCDC bitmap for the
5312 // ConditionalOperator prior to visiting its LHS and RHS blocks, since they
5313 // may also contain a boolean expression.
5314 if (CGF.MCDCLogOpStack.empty())
5315 CGF.maybeUpdateMCDCTestVectorBitmap(E: condExpr);
5316
5317 if (llvm::EnableSingleByteCoverage)
5318 CGF.incrementProfileCounter(S: lhsExpr);
5319 else
5320 CGF.incrementProfileCounter(S: E);
5321
5322 eval.begin(CGF);
5323 Value *LHS = Visit(E: lhsExpr);
5324 eval.end(CGF);
5325
5326 LHSBlock = Builder.GetInsertBlock();
5327 Builder.CreateBr(Dest: ContBlock);
5328
5329 CGF.EmitBlock(BB: RHSBlock);
5330
5331 // If the top of the logical operator nest, update the MCDC bitmap for the
5332 // ConditionalOperator prior to visiting its LHS and RHS blocks, since they
5333 // may also contain a boolean expression.
5334 if (CGF.MCDCLogOpStack.empty())
5335 CGF.maybeUpdateMCDCTestVectorBitmap(E: condExpr);
5336
5337 if (llvm::EnableSingleByteCoverage)
5338 CGF.incrementProfileCounter(S: rhsExpr);
5339
5340 eval.begin(CGF);
5341 Value *RHS = Visit(E: rhsExpr);
5342 eval.end(CGF);
5343
5344 RHSBlock = Builder.GetInsertBlock();
5345 CGF.EmitBlock(BB: ContBlock);
5346
5347 // If the LHS or RHS is a throw expression, it will be legitimately null.
5348 if (!LHS)
5349 return RHS;
5350 if (!RHS)
5351 return LHS;
5352
5353 // Create a PHI node for the real part.
5354 llvm::PHINode *PN = Builder.CreatePHI(Ty: LHS->getType(), NumReservedValues: 2, Name: "cond");
5355 PN->addIncoming(V: LHS, BB: LHSBlock);
5356 PN->addIncoming(V: RHS, BB: RHSBlock);
5357
5358 // When single byte coverage mode is enabled, add a counter to continuation
5359 // block.
5360 if (llvm::EnableSingleByteCoverage)
5361 CGF.incrementProfileCounter(S: E);
5362
5363 return PN;
5364}
5365
5366Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
5367 return Visit(E: E->getChosenSubExpr());
5368}
5369
5370Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
5371 QualType Ty = VE->getType();
5372
5373 if (Ty->isVariablyModifiedType())
5374 CGF.EmitVariablyModifiedType(Ty);
5375
5376 Address ArgValue = Address::invalid();
5377 RValue ArgPtr = CGF.EmitVAArg(VE, VAListAddr&: ArgValue);
5378
5379 return ArgPtr.getScalarVal();
5380}
5381
5382Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
5383 return CGF.EmitBlockLiteral(block);
5384}
5385
5386// Convert a vec3 to vec4, or vice versa.
5387static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
5388 Value *Src, unsigned NumElementsDst) {
5389 static constexpr int Mask[] = {0, 1, 2, -1};
5390 return Builder.CreateShuffleVector(V: Src, Mask: llvm::ArrayRef(Mask, NumElementsDst));
5391}
5392
5393// Create cast instructions for converting LLVM value \p Src to LLVM type \p
5394// DstTy. \p Src has the same size as \p DstTy. Both are single value types
5395// but could be scalar or vectors of different lengths, and either can be
5396// pointer.
5397// There are 4 cases:
5398// 1. non-pointer -> non-pointer : needs 1 bitcast
5399// 2. pointer -> pointer : needs 1 bitcast or addrspacecast
5400// 3. pointer -> non-pointer
5401// a) pointer -> intptr_t : needs 1 ptrtoint
5402// b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
5403// 4. non-pointer -> pointer
5404// a) intptr_t -> pointer : needs 1 inttoptr
5405// b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
5406// Note: for cases 3b and 4b two casts are required since LLVM casts do not
5407// allow casting directly between pointer types and non-integer non-pointer
5408// types.
5409static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
5410 const llvm::DataLayout &DL,
5411 Value *Src, llvm::Type *DstTy,
5412 StringRef Name = "") {
5413 auto SrcTy = Src->getType();
5414
5415 // Case 1.
5416 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
5417 return Builder.CreateBitCast(V: Src, DestTy: DstTy, Name);
5418
5419 // Case 2.
5420 if (SrcTy->isPointerTy() && DstTy->isPointerTy())
5421 return Builder.CreatePointerBitCastOrAddrSpaceCast(V: Src, DestTy: DstTy, Name);
5422
5423 // Case 3.
5424 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
5425 // Case 3b.
5426 if (!DstTy->isIntegerTy())
5427 Src = Builder.CreatePtrToInt(V: Src, DestTy: DL.getIntPtrType(SrcTy));
5428 // Cases 3a and 3b.
5429 return Builder.CreateBitOrPointerCast(V: Src, DestTy: DstTy, Name);
5430 }
5431
5432 // Case 4b.
5433 if (!SrcTy->isIntegerTy())
5434 Src = Builder.CreateBitCast(V: Src, DestTy: DL.getIntPtrType(DstTy));
5435 // Cases 4a and 4b.
5436 return Builder.CreateIntToPtr(V: Src, DestTy: DstTy, Name);
5437}
5438
5439Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
5440 Value *Src = CGF.EmitScalarExpr(E: E->getSrcExpr());
5441 llvm::Type *DstTy = ConvertType(T: E->getType());
5442
5443 llvm::Type *SrcTy = Src->getType();
5444 unsigned NumElementsSrc =
5445 isa<llvm::VectorType>(Val: SrcTy)
5446 ? cast<llvm::FixedVectorType>(Val: SrcTy)->getNumElements()
5447 : 0;
5448 unsigned NumElementsDst =
5449 isa<llvm::VectorType>(Val: DstTy)
5450 ? cast<llvm::FixedVectorType>(Val: DstTy)->getNumElements()
5451 : 0;
5452
5453 // Use bit vector expansion for ext_vector_type boolean vectors.
5454 if (E->getType()->isExtVectorBoolType())
5455 return CGF.emitBoolVecConversion(SrcVec: Src, NumElementsDst, Name: "astype");
5456
5457 // Going from vec3 to non-vec3 is a special case and requires a shuffle
5458 // vector to get a vec4, then a bitcast if the target type is different.
5459 if (NumElementsSrc == 3 && NumElementsDst != 3) {
5460 Src = ConvertVec3AndVec4(Builder, CGF, Src, NumElementsDst: 4);
5461 Src = createCastsForTypeOfSameSize(Builder, DL: CGF.CGM.getDataLayout(), Src,
5462 DstTy);
5463
5464 Src->setName("astype");
5465 return Src;
5466 }
5467
5468 // Going from non-vec3 to vec3 is a special case and requires a bitcast
5469 // to vec4 if the original type is not vec4, then a shuffle vector to
5470 // get a vec3.
5471 if (NumElementsSrc != 3 && NumElementsDst == 3) {
5472 auto *Vec4Ty = llvm::FixedVectorType::get(
5473 ElementType: cast<llvm::VectorType>(Val: DstTy)->getElementType(), NumElts: 4);
5474 Src = createCastsForTypeOfSameSize(Builder, DL: CGF.CGM.getDataLayout(), Src,
5475 DstTy: Vec4Ty);
5476
5477 Src = ConvertVec3AndVec4(Builder, CGF, Src, NumElementsDst: 3);
5478 Src->setName("astype");
5479 return Src;
5480 }
5481
5482 return createCastsForTypeOfSameSize(Builder, DL: CGF.CGM.getDataLayout(),
5483 Src, DstTy, Name: "astype");
5484}
5485
5486Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
5487 return CGF.EmitAtomicExpr(E).getScalarVal();
5488}
5489
5490//===----------------------------------------------------------------------===//
5491// Entry Point into this File
5492//===----------------------------------------------------------------------===//
5493
5494/// Emit the computation of the specified expression of scalar type, ignoring
5495/// the result.
5496Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
5497 assert(E && hasScalarEvaluationKind(E->getType()) &&
5498 "Invalid scalar expression to emit");
5499
5500 return ScalarExprEmitter(*this, IgnoreResultAssign)
5501 .Visit(E: const_cast<Expr *>(E));
5502}
5503
5504/// Emit a conversion from the specified type to the specified destination type,
5505/// both of which are LLVM scalar types.
5506Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
5507 QualType DstTy,
5508 SourceLocation Loc) {
5509 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
5510 "Invalid scalar expression to emit");
5511 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcType: SrcTy, DstType: DstTy, Loc);
5512}
5513
5514/// Emit a conversion from the specified complex type to the specified
5515/// destination type, where the destination type is an LLVM scalar type.
5516Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
5517 QualType SrcTy,
5518 QualType DstTy,
5519 SourceLocation Loc) {
5520 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
5521 "Invalid complex -> scalar conversion");
5522 return ScalarExprEmitter(*this)
5523 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
5524}
5525
5526
5527Value *
5528CodeGenFunction::EmitPromotedScalarExpr(const Expr *E,
5529 QualType PromotionType) {
5530 if (!PromotionType.isNull())
5531 return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType);
5532 else
5533 return ScalarExprEmitter(*this).Visit(E: const_cast<Expr *>(E));
5534}
5535
5536
5537llvm::Value *CodeGenFunction::
5538EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
5539 bool isInc, bool isPre) {
5540 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
5541}
5542
5543LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
5544 // object->isa or (*object).isa
5545 // Generate code as for: *(Class*)object
5546
5547 Expr *BaseExpr = E->getBase();
5548 Address Addr = Address::invalid();
5549 if (BaseExpr->isPRValue()) {
5550 llvm::Type *BaseTy =
5551 ConvertTypeForMem(T: BaseExpr->getType()->getPointeeType());
5552 Addr = Address(EmitScalarExpr(E: BaseExpr), BaseTy, getPointerAlign());
5553 } else {
5554 Addr = EmitLValue(E: BaseExpr).getAddress();
5555 }
5556
5557 // Cast the address to Class*.
5558 Addr = Addr.withElementType(ElemTy: ConvertType(T: E->getType()));
5559 return MakeAddrLValue(Addr, T: E->getType());
5560}
5561
5562
5563LValue CodeGenFunction::EmitCompoundAssignmentLValue(
5564 const CompoundAssignOperator *E) {
5565 ScalarExprEmitter Scalar(*this);
5566 Value *Result = nullptr;
5567 switch (E->getOpcode()) {
5568#define COMPOUND_OP(Op) \
5569 case BO_##Op##Assign: \
5570 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
5571 Result)
5572 COMPOUND_OP(Mul);
5573 COMPOUND_OP(Div);
5574 COMPOUND_OP(Rem);
5575 COMPOUND_OP(Add);
5576 COMPOUND_OP(Sub);
5577 COMPOUND_OP(Shl);
5578 COMPOUND_OP(Shr);
5579 COMPOUND_OP(And);
5580 COMPOUND_OP(Xor);
5581 COMPOUND_OP(Or);
5582#undef COMPOUND_OP
5583
5584 case BO_PtrMemD:
5585 case BO_PtrMemI:
5586 case BO_Mul:
5587 case BO_Div:
5588 case BO_Rem:
5589 case BO_Add:
5590 case BO_Sub:
5591 case BO_Shl:
5592 case BO_Shr:
5593 case BO_LT:
5594 case BO_GT:
5595 case BO_LE:
5596 case BO_GE:
5597 case BO_EQ:
5598 case BO_NE:
5599 case BO_Cmp:
5600 case BO_And:
5601 case BO_Xor:
5602 case BO_Or:
5603 case BO_LAnd:
5604 case BO_LOr:
5605 case BO_Assign:
5606 case BO_Comma:
5607 llvm_unreachable("Not valid compound assignment operators");
5608 }
5609
5610 llvm_unreachable("Unhandled compound assignment operator");
5611}
5612
5613struct GEPOffsetAndOverflow {
5614 // The total (signed) byte offset for the GEP.
5615 llvm::Value *TotalOffset;
5616 // The offset overflow flag - true if the total offset overflows.
5617 llvm::Value *OffsetOverflows;
5618};
5619
5620/// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
5621/// and compute the total offset it applies from it's base pointer BasePtr.
5622/// Returns offset in bytes and a boolean flag whether an overflow happened
5623/// during evaluation.
5624static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
5625 llvm::LLVMContext &VMContext,
5626 CodeGenModule &CGM,
5627 CGBuilderTy &Builder) {
5628 const auto &DL = CGM.getDataLayout();
5629
5630 // The total (signed) byte offset for the GEP.
5631 llvm::Value *TotalOffset = nullptr;
5632
5633 // Was the GEP already reduced to a constant?
5634 if (isa<llvm::Constant>(Val: GEPVal)) {
5635 // Compute the offset by casting both pointers to integers and subtracting:
5636 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
5637 Value *BasePtr_int =
5638 Builder.CreatePtrToInt(V: BasePtr, DestTy: DL.getIntPtrType(BasePtr->getType()));
5639 Value *GEPVal_int =
5640 Builder.CreatePtrToInt(V: GEPVal, DestTy: DL.getIntPtrType(GEPVal->getType()));
5641 TotalOffset = Builder.CreateSub(LHS: GEPVal_int, RHS: BasePtr_int);
5642 return {.TotalOffset: TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
5643 }
5644
5645 auto *GEP = cast<llvm::GEPOperator>(Val: GEPVal);
5646 assert(GEP->getPointerOperand() == BasePtr &&
5647 "BasePtr must be the base of the GEP.");
5648 assert(GEP->isInBounds() && "Expected inbounds GEP");
5649
5650 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
5651
5652 // Grab references to the signed add/mul overflow intrinsics for intptr_t.
5653 auto *Zero = llvm::ConstantInt::getNullValue(Ty: IntPtrTy);
5654 auto *SAddIntrinsic =
5655 CGM.getIntrinsic(IID: llvm::Intrinsic::sadd_with_overflow, Tys: IntPtrTy);
5656 auto *SMulIntrinsic =
5657 CGM.getIntrinsic(IID: llvm::Intrinsic::smul_with_overflow, Tys: IntPtrTy);
5658
5659 // The offset overflow flag - true if the total offset overflows.
5660 llvm::Value *OffsetOverflows = Builder.getFalse();
5661
5662 /// Return the result of the given binary operation.
5663 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
5664 llvm::Value *RHS) -> llvm::Value * {
5665 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
5666
5667 // If the operands are constants, return a constant result.
5668 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(Val: LHS)) {
5669 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(Val: RHS)) {
5670 llvm::APInt N;
5671 bool HasOverflow = mayHaveIntegerOverflow(LHS: LHSCI, RHS: RHSCI, Opcode,
5672 /*Signed=*/true, Result&: N);
5673 if (HasOverflow)
5674 OffsetOverflows = Builder.getTrue();
5675 return llvm::ConstantInt::get(Context&: VMContext, V: N);
5676 }
5677 }
5678
5679 // Otherwise, compute the result with checked arithmetic.
5680 auto *ResultAndOverflow = Builder.CreateCall(
5681 Callee: (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, Args: {LHS, RHS});
5682 OffsetOverflows = Builder.CreateOr(
5683 LHS: Builder.CreateExtractValue(Agg: ResultAndOverflow, Idxs: 1), RHS: OffsetOverflows);
5684 return Builder.CreateExtractValue(Agg: ResultAndOverflow, Idxs: 0);
5685 };
5686
5687 // Determine the total byte offset by looking at each GEP operand.
5688 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
5689 GTI != GTE; ++GTI) {
5690 llvm::Value *LocalOffset;
5691 auto *Index = GTI.getOperand();
5692 // Compute the local offset contributed by this indexing step:
5693 if (auto *STy = GTI.getStructTypeOrNull()) {
5694 // For struct indexing, the local offset is the byte position of the
5695 // specified field.
5696 unsigned FieldNo = cast<llvm::ConstantInt>(Val: Index)->getZExtValue();
5697 LocalOffset = llvm::ConstantInt::get(
5698 Ty: IntPtrTy, V: DL.getStructLayout(Ty: STy)->getElementOffset(Idx: FieldNo));
5699 } else {
5700 // Otherwise this is array-like indexing. The local offset is the index
5701 // multiplied by the element size.
5702 auto *ElementSize =
5703 llvm::ConstantInt::get(Ty: IntPtrTy, V: GTI.getSequentialElementStride(DL));
5704 auto *IndexS = Builder.CreateIntCast(V: Index, DestTy: IntPtrTy, /*isSigned=*/true);
5705 LocalOffset = eval(BO_Mul, ElementSize, IndexS);
5706 }
5707
5708 // If this is the first offset, set it as the total offset. Otherwise, add
5709 // the local offset into the running total.
5710 if (!TotalOffset || TotalOffset == Zero)
5711 TotalOffset = LocalOffset;
5712 else
5713 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
5714 }
5715
5716 return {.TotalOffset: TotalOffset, .OffsetOverflows: OffsetOverflows};
5717}
5718
5719Value *
5720CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr,
5721 ArrayRef<Value *> IdxList,
5722 bool SignedIndices, bool IsSubtraction,
5723 SourceLocation Loc, const Twine &Name) {
5724 llvm::Type *PtrTy = Ptr->getType();
5725 Value *GEPVal = Builder.CreateInBoundsGEP(Ty: ElemTy, Ptr, IdxList, Name);
5726
5727 // If the pointer overflow sanitizer isn't enabled, do nothing.
5728 if (!SanOpts.has(K: SanitizerKind::PointerOverflow))
5729 return GEPVal;
5730
5731 // Perform nullptr-and-offset check unless the nullptr is defined.
5732 bool PerformNullCheck = !NullPointerIsDefined(
5733 F: Builder.GetInsertBlock()->getParent(), AS: PtrTy->getPointerAddressSpace());
5734 // Check for overflows unless the GEP got constant-folded,
5735 // and only in the default address space
5736 bool PerformOverflowCheck =
5737 !isa<llvm::Constant>(Val: GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5738
5739 if (!(PerformNullCheck || PerformOverflowCheck))
5740 return GEPVal;
5741
5742 const auto &DL = CGM.getDataLayout();
5743
5744 SanitizerScope SanScope(this);
5745 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5746
5747 GEPOffsetAndOverflow EvaluatedGEP =
5748 EmitGEPOffsetInBytes(BasePtr: Ptr, GEPVal, VMContext&: getLLVMContext(), CGM, Builder);
5749
5750 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5751 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5752 "If the offset got constant-folded, we don't expect that there was an "
5753 "overflow.");
5754
5755 auto *Zero = llvm::ConstantInt::getNullValue(Ty: IntPtrTy);
5756
5757 // Common case: if the total offset is zero, and we are using C++ semantics,
5758 // where nullptr+0 is defined, don't emit a check.
5759 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5760 return GEPVal;
5761
5762 // Now that we've computed the total offset, add it to the base pointer (with
5763 // wrapping semantics).
5764 auto *IntPtr = Builder.CreatePtrToInt(V: Ptr, DestTy: IntPtrTy);
5765 auto *ComputedGEP = Builder.CreateAdd(LHS: IntPtr, RHS: EvaluatedGEP.TotalOffset);
5766
5767 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5768
5769 if (PerformNullCheck) {
5770 // In C++, if the base pointer evaluates to a null pointer value,
5771 // the only valid pointer this inbounds GEP can produce is also
5772 // a null pointer, so the offset must also evaluate to zero.
5773 // Likewise, if we have non-zero base pointer, we can not get null pointer
5774 // as a result, so the offset can not be -intptr_t(BasePtr).
5775 // In other words, both pointers are either null, or both are non-null,
5776 // or the behaviour is undefined.
5777 //
5778 // C, however, is more strict in this regard, and gives more
5779 // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5780 // So both the input to the 'gep inbounds' AND the output must not be null.
5781 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Arg: Ptr);
5782 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(Arg: ComputedGEP);
5783 auto *Valid =
5784 CGM.getLangOpts().CPlusPlus
5785 ? Builder.CreateICmpEQ(LHS: BaseIsNotNullptr, RHS: ResultIsNotNullptr)
5786 : Builder.CreateAnd(LHS: BaseIsNotNullptr, RHS: ResultIsNotNullptr);
5787 Checks.emplace_back(Args&: Valid, Args: SanitizerKind::PointerOverflow);
5788 }
5789
5790 if (PerformOverflowCheck) {
5791 // The GEP is valid if:
5792 // 1) The total offset doesn't overflow, and
5793 // 2) The sign of the difference between the computed address and the base
5794 // pointer matches the sign of the total offset.
5795 llvm::Value *ValidGEP;
5796 auto *NoOffsetOverflow = Builder.CreateNot(V: EvaluatedGEP.OffsetOverflows);
5797 if (SignedIndices) {
5798 // GEP is computed as `unsigned base + signed offset`, therefore:
5799 // * If offset was positive, then the computed pointer can not be
5800 // [unsigned] less than the base pointer, unless it overflowed.
5801 // * If offset was negative, then the computed pointer can not be
5802 // [unsigned] greater than the bas pointere, unless it overflowed.
5803 auto *PosOrZeroValid = Builder.CreateICmpUGE(LHS: ComputedGEP, RHS: IntPtr);
5804 auto *PosOrZeroOffset =
5805 Builder.CreateICmpSGE(LHS: EvaluatedGEP.TotalOffset, RHS: Zero);
5806 llvm::Value *NegValid = Builder.CreateICmpULT(LHS: ComputedGEP, RHS: IntPtr);
5807 ValidGEP =
5808 Builder.CreateSelect(C: PosOrZeroOffset, True: PosOrZeroValid, False: NegValid);
5809 } else if (!IsSubtraction) {
5810 // GEP is computed as `unsigned base + unsigned offset`, therefore the
5811 // computed pointer can not be [unsigned] less than base pointer,
5812 // unless there was an overflow.
5813 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5814 ValidGEP = Builder.CreateICmpUGE(LHS: ComputedGEP, RHS: IntPtr);
5815 } else {
5816 // GEP is computed as `unsigned base - unsigned offset`, therefore the
5817 // computed pointer can not be [unsigned] greater than base pointer,
5818 // unless there was an overflow.
5819 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5820 ValidGEP = Builder.CreateICmpULE(LHS: ComputedGEP, RHS: IntPtr);
5821 }
5822 ValidGEP = Builder.CreateAnd(LHS: ValidGEP, RHS: NoOffsetOverflow);
5823 Checks.emplace_back(Args&: ValidGEP, Args: SanitizerKind::PointerOverflow);
5824 }
5825
5826 assert(!Checks.empty() && "Should have produced some checks.");
5827
5828 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5829 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5830 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5831 EmitCheck(Checked: Checks, Check: SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5832
5833 return GEPVal;
5834}
5835
5836Address CodeGenFunction::EmitCheckedInBoundsGEP(
5837 Address Addr, ArrayRef<Value *> IdxList, llvm::Type *elementType,
5838 bool SignedIndices, bool IsSubtraction, SourceLocation Loc, CharUnits Align,
5839 const Twine &Name) {
5840 if (!SanOpts.has(K: SanitizerKind::PointerOverflow))
5841 return Builder.CreateInBoundsGEP(Addr, IdxList, ElementType: elementType, Align, Name);
5842
5843 return RawAddress(
5844 EmitCheckedInBoundsGEP(ElemTy: Addr.getElementType(), Ptr: Addr.emitRawPointer(CGF&: *this),
5845 IdxList, SignedIndices, IsSubtraction, Loc, Name),
5846 elementType, Align);
5847}
5848