1 | //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Methods common to all machine instructions. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/CodeGen/MachineInstr.h" |
14 | #include "llvm/ADT/ArrayRef.h" |
15 | #include "llvm/ADT/Hashing.h" |
16 | #include "llvm/ADT/STLExtras.h" |
17 | #include "llvm/ADT/SmallBitVector.h" |
18 | #include "llvm/ADT/SmallVector.h" |
19 | #include "llvm/Analysis/AliasAnalysis.h" |
20 | #include "llvm/Analysis/MemoryLocation.h" |
21 | #include "llvm/CodeGen/MachineBasicBlock.h" |
22 | #include "llvm/CodeGen/MachineFrameInfo.h" |
23 | #include "llvm/CodeGen/MachineFunction.h" |
24 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
25 | #include "llvm/CodeGen/MachineInstrBundle.h" |
26 | #include "llvm/CodeGen/MachineMemOperand.h" |
27 | #include "llvm/CodeGen/MachineModuleInfo.h" |
28 | #include "llvm/CodeGen/MachineOperand.h" |
29 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
30 | #include "llvm/CodeGen/PseudoSourceValue.h" |
31 | #include "llvm/CodeGen/Register.h" |
32 | #include "llvm/CodeGen/StackMaps.h" |
33 | #include "llvm/CodeGen/TargetInstrInfo.h" |
34 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
35 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
36 | #include "llvm/CodeGenTypes/LowLevelType.h" |
37 | #include "llvm/IR/Constants.h" |
38 | #include "llvm/IR/DebugInfoMetadata.h" |
39 | #include "llvm/IR/DebugLoc.h" |
40 | #include "llvm/IR/Function.h" |
41 | #include "llvm/IR/InlineAsm.h" |
42 | #include "llvm/IR/Instructions.h" |
43 | #include "llvm/IR/LLVMContext.h" |
44 | #include "llvm/IR/Metadata.h" |
45 | #include "llvm/IR/Module.h" |
46 | #include "llvm/IR/ModuleSlotTracker.h" |
47 | #include "llvm/IR/Operator.h" |
48 | #include "llvm/MC/MCInstrDesc.h" |
49 | #include "llvm/MC/MCRegisterInfo.h" |
50 | #include "llvm/Support/Casting.h" |
51 | #include "llvm/Support/Compiler.h" |
52 | #include "llvm/Support/Debug.h" |
53 | #include "llvm/Support/ErrorHandling.h" |
54 | #include "llvm/Support/FormattedStream.h" |
55 | #include "llvm/Support/raw_ostream.h" |
56 | #include "llvm/Target/TargetMachine.h" |
57 | #include <algorithm> |
58 | #include <cassert> |
59 | #include <cstdint> |
60 | #include <cstring> |
61 | #include <utility> |
62 | |
63 | using namespace llvm; |
64 | |
65 | static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { |
66 | if (const MachineBasicBlock *MBB = MI.getParent()) |
67 | if (const MachineFunction *MF = MBB->getParent()) |
68 | return MF; |
69 | return nullptr; |
70 | } |
71 | |
72 | // Try to crawl up to the machine function and get TRI and IntrinsicInfo from |
73 | // it. |
74 | static void tryToGetTargetInfo(const MachineInstr &MI, |
75 | const TargetRegisterInfo *&TRI, |
76 | const MachineRegisterInfo *&MRI, |
77 | const TargetIntrinsicInfo *&IntrinsicInfo, |
78 | const TargetInstrInfo *&TII) { |
79 | |
80 | if (const MachineFunction *MF = getMFIfAvailable(MI)) { |
81 | TRI = MF->getSubtarget().getRegisterInfo(); |
82 | MRI = &MF->getRegInfo(); |
83 | IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); |
84 | TII = MF->getSubtarget().getInstrInfo(); |
85 | } |
86 | } |
87 | |
88 | void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { |
89 | for (MCPhysReg ImpDef : MCID->implicit_defs()) |
90 | addOperand(MF, Op: MachineOperand::CreateReg(Reg: ImpDef, isDef: true, isImp: true)); |
91 | for (MCPhysReg ImpUse : MCID->implicit_uses()) |
92 | addOperand(MF, Op: MachineOperand::CreateReg(Reg: ImpUse, isDef: false, isImp: true)); |
93 | } |
94 | |
95 | /// MachineInstr ctor - This constructor creates a MachineInstr and adds the |
96 | /// implicit operands. It reserves space for the number of operands specified by |
97 | /// the MCInstrDesc. |
98 | MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, |
99 | DebugLoc DL, bool NoImp) |
100 | : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0), |
101 | DbgLoc(std::move(DL)), DebugInstrNum(0), Opcode(TID.Opcode) { |
102 | assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor" ); |
103 | |
104 | // Reserve space for the expected number of operands. |
105 | if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() + |
106 | MCID->implicit_uses().size()) { |
107 | CapOperands = OperandCapacity::get(N: NumOps); |
108 | Operands = MF.allocateOperandArray(Cap: CapOperands); |
109 | } |
110 | |
111 | if (!NoImp) |
112 | addImplicitDefUseOperands(MF); |
113 | } |
114 | |
115 | /// MachineInstr ctor - Copies MachineInstr arg exactly. |
116 | /// Does not copy the number from debug instruction numbering, to preserve |
117 | /// uniqueness. |
118 | MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) |
119 | : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0), |
120 | Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0), |
121 | Opcode(MI.getOpcode()) { |
122 | assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor" ); |
123 | |
124 | CapOperands = OperandCapacity::get(N: MI.getNumOperands()); |
125 | Operands = MF.allocateOperandArray(Cap: CapOperands); |
126 | |
127 | // Copy operands. |
128 | for (const MachineOperand &MO : MI.operands()) |
129 | addOperand(MF, Op: MO); |
130 | |
131 | // Replicate ties between the operands, which addOperand was not |
132 | // able to do reliably. |
133 | for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { |
134 | MachineOperand &NewMO = getOperand(i); |
135 | const MachineOperand &OrigMO = MI.getOperand(i); |
136 | NewMO.TiedTo = OrigMO.TiedTo; |
137 | } |
138 | |
139 | // Copy all the sensible flags. |
140 | setFlags(MI.Flags); |
141 | } |
142 | |
143 | void MachineInstr::setDesc(const MCInstrDesc &TID) { |
144 | if (getParent()) |
145 | getMF()->handleChangeDesc(MI&: *this, TID); |
146 | MCID = &TID; |
147 | Opcode = TID.Opcode; |
148 | } |
149 | |
150 | void MachineInstr::moveBefore(MachineInstr *MovePos) { |
151 | MovePos->getParent()->splice(Where: MovePos, Other: getParent(), From: getIterator()); |
152 | } |
153 | |
154 | /// getRegInfo - If this instruction is embedded into a MachineFunction, |
155 | /// return the MachineRegisterInfo object for the current function, otherwise |
156 | /// return null. |
157 | MachineRegisterInfo *MachineInstr::getRegInfo() { |
158 | if (MachineBasicBlock *MBB = getParent()) |
159 | return &MBB->getParent()->getRegInfo(); |
160 | return nullptr; |
161 | } |
162 | |
163 | const MachineRegisterInfo *MachineInstr::getRegInfo() const { |
164 | if (const MachineBasicBlock *MBB = getParent()) |
165 | return &MBB->getParent()->getRegInfo(); |
166 | return nullptr; |
167 | } |
168 | |
169 | void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) { |
170 | for (MachineOperand &MO : operands()) |
171 | if (MO.isReg()) |
172 | MRI.removeRegOperandFromUseList(MO: &MO); |
173 | } |
174 | |
175 | void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) { |
176 | for (MachineOperand &MO : operands()) |
177 | if (MO.isReg()) |
178 | MRI.addRegOperandToUseList(MO: &MO); |
179 | } |
180 | |
181 | void MachineInstr::addOperand(const MachineOperand &Op) { |
182 | MachineBasicBlock *MBB = getParent(); |
183 | assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs" ); |
184 | MachineFunction *MF = MBB->getParent(); |
185 | assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs" ); |
186 | addOperand(MF&: *MF, Op); |
187 | } |
188 | |
189 | /// Move NumOps MachineOperands from Src to Dst, with support for overlapping |
190 | /// ranges. If MRI is non-null also update use-def chains. |
191 | static void moveOperands(MachineOperand *Dst, MachineOperand *Src, |
192 | unsigned NumOps, MachineRegisterInfo *MRI) { |
193 | if (MRI) |
194 | return MRI->moveOperands(Dst, Src, NumOps); |
195 | // MachineOperand is a trivially copyable type so we can just use memmove. |
196 | assert(Dst && Src && "Unknown operands" ); |
197 | std::memmove(dest: Dst, src: Src, n: NumOps * sizeof(MachineOperand)); |
198 | } |
199 | |
200 | /// addOperand - Add the specified operand to the instruction. If it is an |
201 | /// implicit operand, it is added to the end of the operand list. If it is |
202 | /// an explicit operand it is added at the end of the explicit operand list |
203 | /// (before the first implicit operand). |
204 | void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { |
205 | assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) && |
206 | "Cannot add more operands." ); |
207 | assert(MCID && "Cannot add operands before providing an instr descriptor" ); |
208 | |
209 | // Check if we're adding one of our existing operands. |
210 | if (&Op >= Operands && &Op < Operands + NumOperands) { |
211 | // This is unusual: MI->addOperand(MI->getOperand(i)). |
212 | // If adding Op requires reallocating or moving existing operands around, |
213 | // the Op reference could go stale. Support it by copying Op. |
214 | MachineOperand CopyOp(Op); |
215 | return addOperand(MF, Op: CopyOp); |
216 | } |
217 | |
218 | // Find the insert location for the new operand. Implicit registers go at |
219 | // the end, everything else goes before the implicit regs. |
220 | // |
221 | // FIXME: Allow mixed explicit and implicit operands on inline asm. |
222 | // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as |
223 | // implicit-defs, but they must not be moved around. See the FIXME in |
224 | // InstrEmitter.cpp. |
225 | unsigned OpNo = getNumOperands(); |
226 | bool isImpReg = Op.isReg() && Op.isImplicit(); |
227 | if (!isImpReg && !isInlineAsm()) { |
228 | while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { |
229 | --OpNo; |
230 | assert(!Operands[OpNo].isTied() && "Cannot move tied operands" ); |
231 | } |
232 | } |
233 | |
234 | // OpNo now points as the desired insertion point. Unless this is a variadic |
235 | // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). |
236 | // RegMask operands go between the explicit and implicit operands. |
237 | MachineRegisterInfo *MRI = getRegInfo(); |
238 | |
239 | // Determine if the Operands array needs to be reallocated. |
240 | // Save the old capacity and operand array. |
241 | OperandCapacity OldCap = CapOperands; |
242 | MachineOperand *OldOperands = Operands; |
243 | if (!OldOperands || OldCap.getSize() == getNumOperands()) { |
244 | CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(N: 1); |
245 | Operands = MF.allocateOperandArray(Cap: CapOperands); |
246 | // Move the operands before the insertion point. |
247 | if (OpNo) |
248 | moveOperands(Dst: Operands, Src: OldOperands, NumOps: OpNo, MRI); |
249 | } |
250 | |
251 | // Move the operands following the insertion point. |
252 | if (OpNo != NumOperands) |
253 | moveOperands(Dst: Operands + OpNo + 1, Src: OldOperands + OpNo, NumOps: NumOperands - OpNo, |
254 | MRI); |
255 | ++NumOperands; |
256 | |
257 | // Deallocate the old operand array. |
258 | if (OldOperands != Operands && OldOperands) |
259 | MF.deallocateOperandArray(Cap: OldCap, Array: OldOperands); |
260 | |
261 | // Copy Op into place. It still needs to be inserted into the MRI use lists. |
262 | MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); |
263 | NewMO->ParentMI = this; |
264 | |
265 | // When adding a register operand, tell MRI about it. |
266 | if (NewMO->isReg()) { |
267 | // Ensure isOnRegUseList() returns false, regardless of Op's status. |
268 | NewMO->Contents.Reg.Prev = nullptr; |
269 | // Ignore existing ties. This is not a property that can be copied. |
270 | NewMO->TiedTo = 0; |
271 | // Add the new operand to MRI, but only for instructions in an MBB. |
272 | if (MRI) |
273 | MRI->addRegOperandToUseList(MO: NewMO); |
274 | // The MCID operand information isn't accurate until we start adding |
275 | // explicit operands. The implicit operands are added first, then the |
276 | // explicits are inserted before them. |
277 | if (!isImpReg) { |
278 | // Tie uses to defs as indicated in MCInstrDesc. |
279 | if (NewMO->isUse()) { |
280 | int DefIdx = MCID->getOperandConstraint(OpNum: OpNo, Constraint: MCOI::TIED_TO); |
281 | if (DefIdx != -1) |
282 | tieOperands(DefIdx, UseIdx: OpNo); |
283 | } |
284 | // If the register operand is flagged as early, mark the operand as such. |
285 | if (MCID->getOperandConstraint(OpNum: OpNo, Constraint: MCOI::EARLY_CLOBBER) != -1) |
286 | NewMO->setIsEarlyClobber(true); |
287 | } |
288 | // Ensure debug instructions set debug flag on register uses. |
289 | if (NewMO->isUse() && isDebugInstr()) |
290 | NewMO->setIsDebug(); |
291 | } |
292 | } |
293 | |
294 | void MachineInstr::removeOperand(unsigned OpNo) { |
295 | assert(OpNo < getNumOperands() && "Invalid operand number" ); |
296 | untieRegOperand(OpIdx: OpNo); |
297 | |
298 | #ifndef NDEBUG |
299 | // Moving tied operands would break the ties. |
300 | for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) |
301 | if (Operands[i].isReg()) |
302 | assert(!Operands[i].isTied() && "Cannot move tied operands" ); |
303 | #endif |
304 | |
305 | MachineRegisterInfo *MRI = getRegInfo(); |
306 | if (MRI && Operands[OpNo].isReg()) |
307 | MRI->removeRegOperandFromUseList(MO: Operands + OpNo); |
308 | |
309 | // Don't call the MachineOperand destructor. A lot of this code depends on |
310 | // MachineOperand having a trivial destructor anyway, and adding a call here |
311 | // wouldn't make it 'destructor-correct'. |
312 | |
313 | if (unsigned N = NumOperands - 1 - OpNo) |
314 | moveOperands(Dst: Operands + OpNo, Src: Operands + OpNo + 1, NumOps: N, MRI); |
315 | --NumOperands; |
316 | } |
317 | |
318 | void MachineInstr::setExtraInfo(MachineFunction &MF, |
319 | ArrayRef<MachineMemOperand *> MMOs, |
320 | MCSymbol *PreInstrSymbol, |
321 | MCSymbol *PostInstrSymbol, |
322 | MDNode *HeapAllocMarker, MDNode *PCSections, |
323 | uint32_t CFIType, MDNode *MMRAs) { |
324 | bool HasPreInstrSymbol = PreInstrSymbol != nullptr; |
325 | bool HasPostInstrSymbol = PostInstrSymbol != nullptr; |
326 | bool HasHeapAllocMarker = HeapAllocMarker != nullptr; |
327 | bool HasPCSections = PCSections != nullptr; |
328 | bool HasCFIType = CFIType != 0; |
329 | bool HasMMRAs = MMRAs != nullptr; |
330 | int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + |
331 | HasHeapAllocMarker + HasPCSections + HasCFIType + HasMMRAs; |
332 | |
333 | // Drop all extra info if there is none. |
334 | if (NumPointers <= 0) { |
335 | Info.clear(); |
336 | return; |
337 | } |
338 | |
339 | // If more than one pointer, then store out of line. Store heap alloc markers |
340 | // out of line because PointerSumType cannot hold more than 4 tag types with |
341 | // 32-bit pointers. |
342 | // FIXME: Maybe we should make the symbols in the extra info mutable? |
343 | else if (NumPointers > 1 || HasMMRAs || HasHeapAllocMarker || HasPCSections || |
344 | HasCFIType) { |
345 | Info.set<EIIK_OutOfLine>( |
346 | MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol, |
347 | HeapAllocMarker, PCSections, CFIType, MMRAs)); |
348 | return; |
349 | } |
350 | |
351 | // Otherwise store the single pointer inline. |
352 | if (HasPreInstrSymbol) |
353 | Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); |
354 | else if (HasPostInstrSymbol) |
355 | Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); |
356 | else |
357 | Info.set<EIIK_MMO>(MMOs[0]); |
358 | } |
359 | |
360 | void MachineInstr::dropMemRefs(MachineFunction &MF) { |
361 | if (memoperands_empty()) |
362 | return; |
363 | |
364 | setExtraInfo(MF, MMOs: {}, PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(), |
365 | HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: getCFIType(), |
366 | MMRAs: getMMRAMetadata()); |
367 | } |
368 | |
369 | void MachineInstr::setMemRefs(MachineFunction &MF, |
370 | ArrayRef<MachineMemOperand *> MMOs) { |
371 | if (MMOs.empty()) { |
372 | dropMemRefs(MF); |
373 | return; |
374 | } |
375 | |
376 | setExtraInfo(MF, MMOs, PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(), |
377 | HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: getCFIType(), |
378 | MMRAs: getMMRAMetadata()); |
379 | } |
380 | |
381 | void MachineInstr::addMemOperand(MachineFunction &MF, |
382 | MachineMemOperand *MO) { |
383 | SmallVector<MachineMemOperand *, 2> MMOs; |
384 | MMOs.append(in_start: memoperands_begin(), in_end: memoperands_end()); |
385 | MMOs.push_back(Elt: MO); |
386 | setMemRefs(MF, MMOs); |
387 | } |
388 | |
389 | void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { |
390 | if (this == &MI) |
391 | // Nothing to do for a self-clone! |
392 | return; |
393 | |
394 | assert(&MF == MI.getMF() && |
395 | "Invalid machine functions when cloning memory refrences!" ); |
396 | // See if we can just steal the extra info already allocated for the |
397 | // instruction. We can do this whenever the pre- and post-instruction symbols |
398 | // are the same (including null). |
399 | if (getPreInstrSymbol() == MI.getPreInstrSymbol() && |
400 | getPostInstrSymbol() == MI.getPostInstrSymbol() && |
401 | getHeapAllocMarker() == MI.getHeapAllocMarker() && |
402 | getPCSections() == MI.getPCSections() && getMMRAMetadata() && |
403 | MI.getMMRAMetadata()) { |
404 | Info = MI.Info; |
405 | return; |
406 | } |
407 | |
408 | // Otherwise, fall back on a copy-based clone. |
409 | setMemRefs(MF, MMOs: MI.memoperands()); |
410 | } |
411 | |
412 | /// Check to see if the MMOs pointed to by the two MemRefs arrays are |
413 | /// identical. |
414 | static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, |
415 | ArrayRef<MachineMemOperand *> RHS) { |
416 | if (LHS.size() != RHS.size()) |
417 | return false; |
418 | |
419 | auto LHSPointees = make_pointee_range(Range&: LHS); |
420 | auto RHSPointees = make_pointee_range(Range&: RHS); |
421 | return std::equal(first1: LHSPointees.begin(), last1: LHSPointees.end(), |
422 | first2: RHSPointees.begin()); |
423 | } |
424 | |
425 | void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, |
426 | ArrayRef<const MachineInstr *> MIs) { |
427 | // Try handling easy numbers of MIs with simpler mechanisms. |
428 | if (MIs.empty()) { |
429 | dropMemRefs(MF); |
430 | return; |
431 | } |
432 | if (MIs.size() == 1) { |
433 | cloneMemRefs(MF, MI: *MIs[0]); |
434 | return; |
435 | } |
436 | // Because an empty memoperands list provides *no* information and must be |
437 | // handled conservatively (assuming the instruction can do anything), the only |
438 | // way to merge with it is to drop all other memoperands. |
439 | if (MIs[0]->memoperands_empty()) { |
440 | dropMemRefs(MF); |
441 | return; |
442 | } |
443 | |
444 | // Handle the general case. |
445 | SmallVector<MachineMemOperand *, 2> MergedMMOs; |
446 | // Start with the first instruction. |
447 | assert(&MF == MIs[0]->getMF() && |
448 | "Invalid machine functions when cloning memory references!" ); |
449 | MergedMMOs.append(in_start: MIs[0]->memoperands_begin(), in_end: MIs[0]->memoperands_end()); |
450 | // Now walk all the other instructions and accumulate any different MMOs. |
451 | for (const MachineInstr &MI : make_pointee_range(Range: MIs.slice(N: 1))) { |
452 | assert(&MF == MI.getMF() && |
453 | "Invalid machine functions when cloning memory references!" ); |
454 | |
455 | // Skip MIs with identical operands to the first. This is a somewhat |
456 | // arbitrary hack but will catch common cases without being quadratic. |
457 | // TODO: We could fully implement merge semantics here if needed. |
458 | if (hasIdenticalMMOs(LHS: MIs[0]->memoperands(), RHS: MI.memoperands())) |
459 | continue; |
460 | |
461 | // Because an empty memoperands list provides *no* information and must be |
462 | // handled conservatively (assuming the instruction can do anything), the |
463 | // only way to merge with it is to drop all other memoperands. |
464 | if (MI.memoperands_empty()) { |
465 | dropMemRefs(MF); |
466 | return; |
467 | } |
468 | |
469 | // Otherwise accumulate these into our temporary buffer of the merged state. |
470 | MergedMMOs.append(in_start: MI.memoperands_begin(), in_end: MI.memoperands_end()); |
471 | } |
472 | |
473 | setMemRefs(MF, MMOs: MergedMMOs); |
474 | } |
475 | |
476 | void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { |
477 | // Do nothing if old and new symbols are the same. |
478 | if (Symbol == getPreInstrSymbol()) |
479 | return; |
480 | |
481 | // If there was only one symbol and we're removing it, just clear info. |
482 | if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { |
483 | Info.clear(); |
484 | return; |
485 | } |
486 | |
487 | setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: Symbol, PostInstrSymbol: getPostInstrSymbol(), |
488 | HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: getCFIType(), |
489 | MMRAs: getMMRAMetadata()); |
490 | } |
491 | |
492 | void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { |
493 | // Do nothing if old and new symbols are the same. |
494 | if (Symbol == getPostInstrSymbol()) |
495 | return; |
496 | |
497 | // If there was only one symbol and we're removing it, just clear info. |
498 | if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { |
499 | Info.clear(); |
500 | return; |
501 | } |
502 | |
503 | setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: Symbol, |
504 | HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: getCFIType(), |
505 | MMRAs: getMMRAMetadata()); |
506 | } |
507 | |
508 | void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { |
509 | // Do nothing if old and new symbols are the same. |
510 | if (Marker == getHeapAllocMarker()) |
511 | return; |
512 | |
513 | setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(), |
514 | HeapAllocMarker: Marker, PCSections: getPCSections(), CFIType: getCFIType(), MMRAs: getMMRAMetadata()); |
515 | } |
516 | |
517 | void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) { |
518 | // Do nothing if old and new symbols are the same. |
519 | if (PCSections == getPCSections()) |
520 | return; |
521 | |
522 | setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(), |
523 | HeapAllocMarker: getHeapAllocMarker(), PCSections, CFIType: getCFIType(), |
524 | MMRAs: getMMRAMetadata()); |
525 | } |
526 | |
527 | void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) { |
528 | // Do nothing if old and new types are the same. |
529 | if (Type == getCFIType()) |
530 | return; |
531 | |
532 | setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(), |
533 | HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: Type, MMRAs: getMMRAMetadata()); |
534 | } |
535 | |
536 | void MachineInstr::setMMRAMetadata(MachineFunction &MF, MDNode *MMRAs) { |
537 | // Do nothing if old and new symbols are the same. |
538 | if (MMRAs == getMMRAMetadata()) |
539 | return; |
540 | |
541 | setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(), |
542 | HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: getCFIType(), MMRAs); |
543 | } |
544 | |
545 | void MachineInstr::cloneInstrSymbols(MachineFunction &MF, |
546 | const MachineInstr &MI) { |
547 | if (this == &MI) |
548 | // Nothing to do for a self-clone! |
549 | return; |
550 | |
551 | assert(&MF == MI.getMF() && |
552 | "Invalid machine functions when cloning instruction symbols!" ); |
553 | |
554 | setPreInstrSymbol(MF, Symbol: MI.getPreInstrSymbol()); |
555 | setPostInstrSymbol(MF, Symbol: MI.getPostInstrSymbol()); |
556 | setHeapAllocMarker(MF, Marker: MI.getHeapAllocMarker()); |
557 | setPCSections(MF, PCSections: MI.getPCSections()); |
558 | setMMRAMetadata(MF, MMRAs: MI.getMMRAMetadata()); |
559 | } |
560 | |
561 | uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { |
562 | // For now, the just return the union of the flags. If the flags get more |
563 | // complicated over time, we might need more logic here. |
564 | return getFlags() | Other.getFlags(); |
565 | } |
566 | |
567 | uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { |
568 | uint32_t MIFlags = 0; |
569 | // Copy the wrapping flags. |
570 | if (const OverflowingBinaryOperator *OB = |
571 | dyn_cast<OverflowingBinaryOperator>(Val: &I)) { |
572 | if (OB->hasNoSignedWrap()) |
573 | MIFlags |= MachineInstr::MIFlag::NoSWrap; |
574 | if (OB->hasNoUnsignedWrap()) |
575 | MIFlags |= MachineInstr::MIFlag::NoUWrap; |
576 | } else if (const TruncInst *TI = dyn_cast<TruncInst>(Val: &I)) { |
577 | if (TI->hasNoSignedWrap()) |
578 | MIFlags |= MachineInstr::MIFlag::NoSWrap; |
579 | if (TI->hasNoUnsignedWrap()) |
580 | MIFlags |= MachineInstr::MIFlag::NoUWrap; |
581 | } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: &I)) { |
582 | if (GEP->hasNoUnsignedSignedWrap()) |
583 | MIFlags |= MachineInstr::MIFlag::NoUSWrap; |
584 | if (GEP->hasNoUnsignedWrap()) |
585 | MIFlags |= MachineInstr::MIFlag::NoUWrap; |
586 | } |
587 | |
588 | // Copy the nonneg flag. |
589 | if (const PossiblyNonNegInst *PNI = dyn_cast<PossiblyNonNegInst>(Val: &I)) { |
590 | if (PNI->hasNonNeg()) |
591 | MIFlags |= MachineInstr::MIFlag::NonNeg; |
592 | // Copy the disjoint flag. |
593 | } else if (const PossiblyDisjointInst *PD = |
594 | dyn_cast<PossiblyDisjointInst>(Val: &I)) { |
595 | if (PD->isDisjoint()) |
596 | MIFlags |= MachineInstr::MIFlag::Disjoint; |
597 | } |
598 | |
599 | // Copy the exact flag. |
600 | if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(Val: &I)) |
601 | if (PE->isExact()) |
602 | MIFlags |= MachineInstr::MIFlag::IsExact; |
603 | |
604 | // Copy the fast-math flags. |
605 | if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(Val: &I)) { |
606 | const FastMathFlags Flags = FP->getFastMathFlags(); |
607 | if (Flags.noNaNs()) |
608 | MIFlags |= MachineInstr::MIFlag::FmNoNans; |
609 | if (Flags.noInfs()) |
610 | MIFlags |= MachineInstr::MIFlag::FmNoInfs; |
611 | if (Flags.noSignedZeros()) |
612 | MIFlags |= MachineInstr::MIFlag::FmNsz; |
613 | if (Flags.allowReciprocal()) |
614 | MIFlags |= MachineInstr::MIFlag::FmArcp; |
615 | if (Flags.allowContract()) |
616 | MIFlags |= MachineInstr::MIFlag::FmContract; |
617 | if (Flags.approxFunc()) |
618 | MIFlags |= MachineInstr::MIFlag::FmAfn; |
619 | if (Flags.allowReassoc()) |
620 | MIFlags |= MachineInstr::MIFlag::FmReassoc; |
621 | } |
622 | |
623 | if (I.getMetadata(KindID: LLVMContext::MD_unpredictable)) |
624 | MIFlags |= MachineInstr::MIFlag::Unpredictable; |
625 | |
626 | return MIFlags; |
627 | } |
628 | |
629 | void MachineInstr::copyIRFlags(const Instruction &I) { |
630 | Flags = copyFlagsFromInstruction(I); |
631 | } |
632 | |
633 | bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { |
634 | assert(!isBundledWithPred() && "Must be called on bundle header" ); |
635 | for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { |
636 | if (MII->getDesc().getFlags() & Mask) { |
637 | if (Type == AnyInBundle) |
638 | return true; |
639 | } else { |
640 | if (Type == AllInBundle && !MII->isBundle()) |
641 | return false; |
642 | } |
643 | // This was the last instruction in the bundle. |
644 | if (!MII->isBundledWithSucc()) |
645 | return Type == AllInBundle; |
646 | } |
647 | } |
648 | |
649 | bool MachineInstr::isIdenticalTo(const MachineInstr &Other, |
650 | MICheckType Check) const { |
651 | // If opcodes or number of operands are not the same then the two |
652 | // instructions are obviously not identical. |
653 | if (Other.getOpcode() != getOpcode() || |
654 | Other.getNumOperands() != getNumOperands()) |
655 | return false; |
656 | |
657 | if (isBundle()) { |
658 | // We have passed the test above that both instructions have the same |
659 | // opcode, so we know that both instructions are bundles here. Let's compare |
660 | // MIs inside the bundle. |
661 | assert(Other.isBundle() && "Expected that both instructions are bundles." ); |
662 | MachineBasicBlock::const_instr_iterator I1 = getIterator(); |
663 | MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); |
664 | // Loop until we analysed the last intruction inside at least one of the |
665 | // bundles. |
666 | while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { |
667 | ++I1; |
668 | ++I2; |
669 | if (!I1->isIdenticalTo(Other: *I2, Check)) |
670 | return false; |
671 | } |
672 | // If we've reached the end of just one of the two bundles, but not both, |
673 | // the instructions are not identical. |
674 | if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) |
675 | return false; |
676 | } |
677 | |
678 | // Check operands to make sure they match. |
679 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
680 | const MachineOperand &MO = getOperand(i); |
681 | const MachineOperand &OMO = Other.getOperand(i); |
682 | if (!MO.isReg()) { |
683 | if (!MO.isIdenticalTo(Other: OMO)) |
684 | return false; |
685 | continue; |
686 | } |
687 | |
688 | // Clients may or may not want to ignore defs when testing for equality. |
689 | // For example, machine CSE pass only cares about finding common |
690 | // subexpressions, so it's safe to ignore virtual register defs. |
691 | if (MO.isDef()) { |
692 | if (Check == IgnoreDefs) |
693 | continue; |
694 | else if (Check == IgnoreVRegDefs) { |
695 | if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual()) |
696 | if (!MO.isIdenticalTo(Other: OMO)) |
697 | return false; |
698 | } else { |
699 | if (!MO.isIdenticalTo(Other: OMO)) |
700 | return false; |
701 | if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) |
702 | return false; |
703 | } |
704 | } else { |
705 | if (!MO.isIdenticalTo(Other: OMO)) |
706 | return false; |
707 | if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) |
708 | return false; |
709 | } |
710 | } |
711 | // If DebugLoc does not match then two debug instructions are not identical. |
712 | if (isDebugInstr()) |
713 | if (getDebugLoc() && Other.getDebugLoc() && |
714 | getDebugLoc() != Other.getDebugLoc()) |
715 | return false; |
716 | // If pre- or post-instruction symbols do not match then the two instructions |
717 | // are not identical. |
718 | if (getPreInstrSymbol() != Other.getPreInstrSymbol() || |
719 | getPostInstrSymbol() != Other.getPostInstrSymbol()) |
720 | return false; |
721 | // Call instructions with different CFI types are not identical. |
722 | if (isCall() && getCFIType() != Other.getCFIType()) |
723 | return false; |
724 | |
725 | return true; |
726 | } |
727 | |
728 | bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const { |
729 | if (!isDebugValueLike() || !Other.isDebugValueLike()) |
730 | return false; |
731 | if (getDebugLoc() != Other.getDebugLoc()) |
732 | return false; |
733 | if (getDebugVariable() != Other.getDebugVariable()) |
734 | return false; |
735 | if (getNumDebugOperands() != Other.getNumDebugOperands()) |
736 | return false; |
737 | for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx) |
738 | if (!getDebugOperand(Index: OpIdx).isIdenticalTo(Other: Other.getDebugOperand(Index: OpIdx))) |
739 | return false; |
740 | if (!DIExpression::isEqualExpression( |
741 | FirstExpr: getDebugExpression(), FirstIndirect: isIndirectDebugValue(), |
742 | SecondExpr: Other.getDebugExpression(), SecondIndirect: Other.isIndirectDebugValue())) |
743 | return false; |
744 | return true; |
745 | } |
746 | |
747 | const MachineFunction *MachineInstr::getMF() const { |
748 | return getParent()->getParent(); |
749 | } |
750 | |
751 | MachineInstr *MachineInstr::removeFromParent() { |
752 | assert(getParent() && "Not embedded in a basic block!" ); |
753 | return getParent()->remove(I: this); |
754 | } |
755 | |
756 | MachineInstr *MachineInstr::removeFromBundle() { |
757 | assert(getParent() && "Not embedded in a basic block!" ); |
758 | return getParent()->remove_instr(I: this); |
759 | } |
760 | |
761 | void MachineInstr::eraseFromParent() { |
762 | assert(getParent() && "Not embedded in a basic block!" ); |
763 | getParent()->erase(I: this); |
764 | } |
765 | |
766 | void MachineInstr::eraseFromBundle() { |
767 | assert(getParent() && "Not embedded in a basic block!" ); |
768 | getParent()->erase_instr(I: this); |
769 | } |
770 | |
771 | bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { |
772 | if (!isCall(Type)) |
773 | return false; |
774 | switch (getOpcode()) { |
775 | case TargetOpcode::PATCHPOINT: |
776 | case TargetOpcode::STACKMAP: |
777 | case TargetOpcode::STATEPOINT: |
778 | case TargetOpcode::FENTRY_CALL: |
779 | return false; |
780 | } |
781 | return true; |
782 | } |
783 | |
784 | bool MachineInstr::shouldUpdateCallSiteInfo() const { |
785 | if (isBundle()) |
786 | return isCandidateForCallSiteEntry(Type: MachineInstr::AnyInBundle); |
787 | return isCandidateForCallSiteEntry(); |
788 | } |
789 | |
790 | unsigned MachineInstr::getNumExplicitOperands() const { |
791 | unsigned NumOperands = MCID->getNumOperands(); |
792 | if (!MCID->isVariadic()) |
793 | return NumOperands; |
794 | |
795 | for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { |
796 | const MachineOperand &MO = getOperand(i: I); |
797 | // The operands must always be in the following order: |
798 | // - explicit reg defs, |
799 | // - other explicit operands (reg uses, immediates, etc.), |
800 | // - implicit reg defs |
801 | // - implicit reg uses |
802 | if (MO.isReg() && MO.isImplicit()) |
803 | break; |
804 | ++NumOperands; |
805 | } |
806 | return NumOperands; |
807 | } |
808 | |
809 | unsigned MachineInstr::getNumExplicitDefs() const { |
810 | unsigned NumDefs = MCID->getNumDefs(); |
811 | if (!MCID->isVariadic()) |
812 | return NumDefs; |
813 | |
814 | for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { |
815 | const MachineOperand &MO = getOperand(i: I); |
816 | if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) |
817 | break; |
818 | ++NumDefs; |
819 | } |
820 | return NumDefs; |
821 | } |
822 | |
823 | void MachineInstr::bundleWithPred() { |
824 | assert(!isBundledWithPred() && "MI is already bundled with its predecessor" ); |
825 | setFlag(BundledPred); |
826 | MachineBasicBlock::instr_iterator Pred = getIterator(); |
827 | --Pred; |
828 | assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags" ); |
829 | Pred->setFlag(BundledSucc); |
830 | } |
831 | |
832 | void MachineInstr::bundleWithSucc() { |
833 | assert(!isBundledWithSucc() && "MI is already bundled with its successor" ); |
834 | setFlag(BundledSucc); |
835 | MachineBasicBlock::instr_iterator Succ = getIterator(); |
836 | ++Succ; |
837 | assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags" ); |
838 | Succ->setFlag(BundledPred); |
839 | } |
840 | |
841 | void MachineInstr::unbundleFromPred() { |
842 | assert(isBundledWithPred() && "MI isn't bundled with its predecessor" ); |
843 | clearFlag(Flag: BundledPred); |
844 | MachineBasicBlock::instr_iterator Pred = getIterator(); |
845 | --Pred; |
846 | assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags" ); |
847 | Pred->clearFlag(Flag: BundledSucc); |
848 | } |
849 | |
850 | void MachineInstr::unbundleFromSucc() { |
851 | assert(isBundledWithSucc() && "MI isn't bundled with its successor" ); |
852 | clearFlag(Flag: BundledSucc); |
853 | MachineBasicBlock::instr_iterator Succ = getIterator(); |
854 | ++Succ; |
855 | assert(Succ->isBundledWithPred() && "Inconsistent bundle flags" ); |
856 | Succ->clearFlag(Flag: BundledPred); |
857 | } |
858 | |
859 | bool MachineInstr::isStackAligningInlineAsm() const { |
860 | if (isInlineAsm()) { |
861 | unsigned = getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm(); |
862 | if (ExtraInfo & InlineAsm::Extra_IsAlignStack) |
863 | return true; |
864 | } |
865 | return false; |
866 | } |
867 | |
868 | InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { |
869 | assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!" ); |
870 | unsigned = getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm(); |
871 | return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); |
872 | } |
873 | |
874 | int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, |
875 | unsigned *GroupNo) const { |
876 | assert(isInlineAsm() && "Expected an inline asm instruction" ); |
877 | assert(OpIdx < getNumOperands() && "OpIdx out of range" ); |
878 | |
879 | // Ignore queries about the initial operands. |
880 | if (OpIdx < InlineAsm::MIOp_FirstOperand) |
881 | return -1; |
882 | |
883 | unsigned Group = 0; |
884 | unsigned NumOps; |
885 | for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; |
886 | i += NumOps) { |
887 | const MachineOperand &FlagMO = getOperand(i); |
888 | // If we reach the implicit register operands, stop looking. |
889 | if (!FlagMO.isImm()) |
890 | return -1; |
891 | const InlineAsm::Flag F(FlagMO.getImm()); |
892 | NumOps = 1 + F.getNumOperandRegisters(); |
893 | if (i + NumOps > OpIdx) { |
894 | if (GroupNo) |
895 | *GroupNo = Group; |
896 | return i; |
897 | } |
898 | ++Group; |
899 | } |
900 | return -1; |
901 | } |
902 | |
903 | const DILabel *MachineInstr::getDebugLabel() const { |
904 | assert(isDebugLabel() && "not a DBG_LABEL" ); |
905 | return cast<DILabel>(Val: getOperand(i: 0).getMetadata()); |
906 | } |
907 | |
908 | const MachineOperand &MachineInstr::getDebugVariableOp() const { |
909 | assert((isDebugValueLike()) && "not a DBG_VALUE*" ); |
910 | unsigned VariableOp = isNonListDebugValue() ? 2 : 0; |
911 | return getOperand(i: VariableOp); |
912 | } |
913 | |
914 | MachineOperand &MachineInstr::getDebugVariableOp() { |
915 | assert((isDebugValueLike()) && "not a DBG_VALUE*" ); |
916 | unsigned VariableOp = isNonListDebugValue() ? 2 : 0; |
917 | return getOperand(i: VariableOp); |
918 | } |
919 | |
920 | const DILocalVariable *MachineInstr::getDebugVariable() const { |
921 | return cast<DILocalVariable>(Val: getDebugVariableOp().getMetadata()); |
922 | } |
923 | |
924 | const MachineOperand &MachineInstr::getDebugExpressionOp() const { |
925 | assert((isDebugValueLike()) && "not a DBG_VALUE*" ); |
926 | unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; |
927 | return getOperand(i: ExpressionOp); |
928 | } |
929 | |
930 | MachineOperand &MachineInstr::getDebugExpressionOp() { |
931 | assert((isDebugValueLike()) && "not a DBG_VALUE*" ); |
932 | unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; |
933 | return getOperand(i: ExpressionOp); |
934 | } |
935 | |
936 | const DIExpression *MachineInstr::getDebugExpression() const { |
937 | return cast<DIExpression>(Val: getDebugExpressionOp().getMetadata()); |
938 | } |
939 | |
940 | bool MachineInstr::isDebugEntryValue() const { |
941 | return isDebugValue() && getDebugExpression()->isEntryValue(); |
942 | } |
943 | |
944 | const TargetRegisterClass* |
945 | MachineInstr::getRegClassConstraint(unsigned OpIdx, |
946 | const TargetInstrInfo *TII, |
947 | const TargetRegisterInfo *TRI) const { |
948 | assert(getParent() && "Can't have an MBB reference here!" ); |
949 | assert(getMF() && "Can't have an MF reference here!" ); |
950 | const MachineFunction &MF = *getMF(); |
951 | |
952 | // Most opcodes have fixed constraints in their MCInstrDesc. |
953 | if (!isInlineAsm()) |
954 | return TII->getRegClass(MCID: getDesc(), OpNum: OpIdx, TRI, MF); |
955 | |
956 | if (!getOperand(i: OpIdx).isReg()) |
957 | return nullptr; |
958 | |
959 | // For tied uses on inline asm, get the constraint from the def. |
960 | unsigned DefIdx; |
961 | if (getOperand(i: OpIdx).isUse() && isRegTiedToDefOperand(UseOpIdx: OpIdx, DefOpIdx: &DefIdx)) |
962 | OpIdx = DefIdx; |
963 | |
964 | // Inline asm stores register class constraints in the flag word. |
965 | int FlagIdx = findInlineAsmFlagIdx(OpIdx); |
966 | if (FlagIdx < 0) |
967 | return nullptr; |
968 | |
969 | const InlineAsm::Flag F(getOperand(i: FlagIdx).getImm()); |
970 | unsigned RCID; |
971 | if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) && |
972 | F.hasRegClassConstraint(RC&: RCID)) |
973 | return TRI->getRegClass(i: RCID); |
974 | |
975 | // Assume that all registers in a memory operand are pointers. |
976 | if (F.isMemKind()) |
977 | return TRI->getPointerRegClass(MF); |
978 | |
979 | return nullptr; |
980 | } |
981 | |
982 | const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( |
983 | Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, |
984 | const TargetRegisterInfo *TRI, bool ExploreBundle) const { |
985 | // Check every operands inside the bundle if we have |
986 | // been asked to. |
987 | if (ExploreBundle) |
988 | for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; |
989 | ++OpndIt) |
990 | CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( |
991 | OpIdx: OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); |
992 | else |
993 | // Otherwise, just check the current operands. |
994 | for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) |
995 | CurRC = getRegClassConstraintEffectForVRegImpl(OpIdx: i, Reg, CurRC, TII, TRI); |
996 | return CurRC; |
997 | } |
998 | |
999 | const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( |
1000 | unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, |
1001 | const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { |
1002 | assert(CurRC && "Invalid initial register class" ); |
1003 | // Check if Reg is constrained by some of its use/def from MI. |
1004 | const MachineOperand &MO = getOperand(i: OpIdx); |
1005 | if (!MO.isReg() || MO.getReg() != Reg) |
1006 | return CurRC; |
1007 | // If yes, accumulate the constraints through the operand. |
1008 | return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); |
1009 | } |
1010 | |
1011 | const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( |
1012 | unsigned OpIdx, const TargetRegisterClass *CurRC, |
1013 | const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { |
1014 | const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); |
1015 | const MachineOperand &MO = getOperand(i: OpIdx); |
1016 | assert(MO.isReg() && |
1017 | "Cannot get register constraints for non-register operand" ); |
1018 | assert(CurRC && "Invalid initial register class" ); |
1019 | if (unsigned SubIdx = MO.getSubReg()) { |
1020 | if (OpRC) |
1021 | CurRC = TRI->getMatchingSuperRegClass(A: CurRC, B: OpRC, Idx: SubIdx); |
1022 | else |
1023 | CurRC = TRI->getSubClassWithSubReg(RC: CurRC, Idx: SubIdx); |
1024 | } else if (OpRC) |
1025 | CurRC = TRI->getCommonSubClass(A: CurRC, B: OpRC); |
1026 | return CurRC; |
1027 | } |
1028 | |
1029 | /// Return the number of instructions inside the MI bundle, not counting the |
1030 | /// header instruction. |
1031 | unsigned MachineInstr::getBundleSize() const { |
1032 | MachineBasicBlock::const_instr_iterator I = getIterator(); |
1033 | unsigned Size = 0; |
1034 | while (I->isBundledWithSucc()) { |
1035 | ++Size; |
1036 | ++I; |
1037 | } |
1038 | return Size; |
1039 | } |
1040 | |
1041 | /// Returns true if the MachineInstr has an implicit-use operand of exactly |
1042 | /// the given register (not considering sub/super-registers). |
1043 | bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { |
1044 | for (const MachineOperand &MO : operands()) { |
1045 | if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) |
1046 | return true; |
1047 | } |
1048 | return false; |
1049 | } |
1050 | |
1051 | /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of |
1052 | /// the specific register or -1 if it is not found. It further tightens |
1053 | /// the search criteria to a use that kills the register if isKill is true. |
1054 | int MachineInstr::findRegisterUseOperandIdx(Register Reg, |
1055 | const TargetRegisterInfo *TRI, |
1056 | bool isKill) const { |
1057 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
1058 | const MachineOperand &MO = getOperand(i); |
1059 | if (!MO.isReg() || !MO.isUse()) |
1060 | continue; |
1061 | Register MOReg = MO.getReg(); |
1062 | if (!MOReg) |
1063 | continue; |
1064 | if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(RegA: MOReg, RegB: Reg))) |
1065 | if (!isKill || MO.isKill()) |
1066 | return i; |
1067 | } |
1068 | return -1; |
1069 | } |
1070 | |
1071 | /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) |
1072 | /// indicating if this instruction reads or writes Reg. This also considers |
1073 | /// partial defines. |
1074 | std::pair<bool,bool> |
1075 | MachineInstr::readsWritesVirtualRegister(Register Reg, |
1076 | SmallVectorImpl<unsigned> *Ops) const { |
1077 | bool PartDef = false; // Partial redefine. |
1078 | bool FullDef = false; // Full define. |
1079 | bool Use = false; |
1080 | |
1081 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
1082 | const MachineOperand &MO = getOperand(i); |
1083 | if (!MO.isReg() || MO.getReg() != Reg) |
1084 | continue; |
1085 | if (Ops) |
1086 | Ops->push_back(Elt: i); |
1087 | if (MO.isUse()) |
1088 | Use |= !MO.isUndef(); |
1089 | else if (MO.getSubReg() && !MO.isUndef()) |
1090 | // A partial def undef doesn't count as reading the register. |
1091 | PartDef = true; |
1092 | else |
1093 | FullDef = true; |
1094 | } |
1095 | // A partial redefine uses Reg unless there is also a full define. |
1096 | return std::make_pair(x: Use || (PartDef && !FullDef), y: PartDef || FullDef); |
1097 | } |
1098 | |
1099 | /// findRegisterDefOperandIdx() - Returns the operand index that is a def of |
1100 | /// the specified register or -1 if it is not found. If isDead is true, defs |
1101 | /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it |
1102 | /// also checks if there is a def of a super-register. |
1103 | int MachineInstr::findRegisterDefOperandIdx(Register Reg, |
1104 | const TargetRegisterInfo *TRI, |
1105 | bool isDead, bool Overlap) const { |
1106 | bool isPhys = Reg.isPhysical(); |
1107 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
1108 | const MachineOperand &MO = getOperand(i); |
1109 | // Accept regmask operands when Overlap is set. |
1110 | // Ignore them when looking for a specific def operand (Overlap == false). |
1111 | if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(PhysReg: Reg)) |
1112 | return i; |
1113 | if (!MO.isReg() || !MO.isDef()) |
1114 | continue; |
1115 | Register MOReg = MO.getReg(); |
1116 | bool Found = (MOReg == Reg); |
1117 | if (!Found && TRI && isPhys && MOReg.isPhysical()) { |
1118 | if (Overlap) |
1119 | Found = TRI->regsOverlap(RegA: MOReg, RegB: Reg); |
1120 | else |
1121 | Found = TRI->isSubRegister(RegA: MOReg, RegB: Reg); |
1122 | } |
1123 | if (Found && (!isDead || MO.isDead())) |
1124 | return i; |
1125 | } |
1126 | return -1; |
1127 | } |
1128 | |
1129 | /// findFirstPredOperandIdx() - Find the index of the first operand in the |
1130 | /// operand list that is used to represent the predicate. It returns -1 if |
1131 | /// none is found. |
1132 | int MachineInstr::findFirstPredOperandIdx() const { |
1133 | // Don't call MCID.findFirstPredOperandIdx() because this variant |
1134 | // is sometimes called on an instruction that's not yet complete, and |
1135 | // so the number of operands is less than the MCID indicates. In |
1136 | // particular, the PTX target does this. |
1137 | const MCInstrDesc &MCID = getDesc(); |
1138 | if (MCID.isPredicable()) { |
1139 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
1140 | if (MCID.operands()[i].isPredicate()) |
1141 | return i; |
1142 | } |
1143 | |
1144 | return -1; |
1145 | } |
1146 | |
1147 | // MachineOperand::TiedTo is 4 bits wide. |
1148 | const unsigned TiedMax = 15; |
1149 | |
1150 | /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. |
1151 | /// |
1152 | /// Use and def operands can be tied together, indicated by a non-zero TiedTo |
1153 | /// field. TiedTo can have these values: |
1154 | /// |
1155 | /// 0: Operand is not tied to anything. |
1156 | /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). |
1157 | /// TiedMax: Tied to an operand >= TiedMax-1. |
1158 | /// |
1159 | /// The tied def must be one of the first TiedMax operands on a normal |
1160 | /// instruction. INLINEASM instructions allow more tied defs. |
1161 | /// |
1162 | void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { |
1163 | MachineOperand &DefMO = getOperand(i: DefIdx); |
1164 | MachineOperand &UseMO = getOperand(i: UseIdx); |
1165 | assert(DefMO.isDef() && "DefIdx must be a def operand" ); |
1166 | assert(UseMO.isUse() && "UseIdx must be a use operand" ); |
1167 | assert(!DefMO.isTied() && "Def is already tied to another use" ); |
1168 | assert(!UseMO.isTied() && "Use is already tied to another def" ); |
1169 | |
1170 | if (DefIdx < TiedMax) |
1171 | UseMO.TiedTo = DefIdx + 1; |
1172 | else { |
1173 | // Inline asm can use the group descriptors to find tied operands, |
1174 | // statepoint tied operands are trivial to match (1-1 reg def with reg use), |
1175 | // but on normal instruction, the tied def must be within the first TiedMax |
1176 | // operands. |
1177 | assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && |
1178 | "DefIdx out of range" ); |
1179 | UseMO.TiedTo = TiedMax; |
1180 | } |
1181 | |
1182 | // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). |
1183 | DefMO.TiedTo = std::min(a: UseIdx + 1, b: TiedMax); |
1184 | } |
1185 | |
1186 | /// Given the index of a tied register operand, find the operand it is tied to. |
1187 | /// Defs are tied to uses and vice versa. Returns the index of the tied operand |
1188 | /// which must exist. |
1189 | unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { |
1190 | const MachineOperand &MO = getOperand(i: OpIdx); |
1191 | assert(MO.isTied() && "Operand isn't tied" ); |
1192 | |
1193 | // Normally TiedTo is in range. |
1194 | if (MO.TiedTo < TiedMax) |
1195 | return MO.TiedTo - 1; |
1196 | |
1197 | // Uses on normal instructions can be out of range. |
1198 | if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { |
1199 | // Normal tied defs must be in the 0..TiedMax-1 range. |
1200 | if (MO.isUse()) |
1201 | return TiedMax - 1; |
1202 | // MO is a def. Search for the tied use. |
1203 | for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { |
1204 | const MachineOperand &UseMO = getOperand(i); |
1205 | if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) |
1206 | return i; |
1207 | } |
1208 | llvm_unreachable("Can't find tied use" ); |
1209 | } |
1210 | |
1211 | if (getOpcode() == TargetOpcode::STATEPOINT) { |
1212 | // In STATEPOINT defs correspond 1-1 to GC pointer operands passed |
1213 | // on registers. |
1214 | StatepointOpers SO(this); |
1215 | unsigned CurUseIdx = SO.getFirstGCPtrIdx(); |
1216 | assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied" ); |
1217 | unsigned NumDefs = getNumDefs(); |
1218 | for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { |
1219 | while (!getOperand(i: CurUseIdx).isReg()) |
1220 | CurUseIdx = StackMaps::getNextMetaArgIdx(MI: this, CurIdx: CurUseIdx); |
1221 | if (OpIdx == CurDefIdx) |
1222 | return CurUseIdx; |
1223 | if (OpIdx == CurUseIdx) |
1224 | return CurDefIdx; |
1225 | CurUseIdx = StackMaps::getNextMetaArgIdx(MI: this, CurIdx: CurUseIdx); |
1226 | } |
1227 | llvm_unreachable("Can't find tied use" ); |
1228 | } |
1229 | |
1230 | // Now deal with inline asm by parsing the operand group descriptor flags. |
1231 | // Find the beginning of each operand group. |
1232 | SmallVector<unsigned, 8> GroupIdx; |
1233 | unsigned OpIdxGroup = ~0u; |
1234 | unsigned NumOps; |
1235 | for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; |
1236 | i += NumOps) { |
1237 | const MachineOperand &FlagMO = getOperand(i); |
1238 | assert(FlagMO.isImm() && "Invalid tied operand on inline asm" ); |
1239 | unsigned CurGroup = GroupIdx.size(); |
1240 | GroupIdx.push_back(Elt: i); |
1241 | const InlineAsm::Flag F(FlagMO.getImm()); |
1242 | NumOps = 1 + F.getNumOperandRegisters(); |
1243 | // OpIdx belongs to this operand group. |
1244 | if (OpIdx > i && OpIdx < i + NumOps) |
1245 | OpIdxGroup = CurGroup; |
1246 | unsigned TiedGroup; |
1247 | if (!F.isUseOperandTiedToDef(Idx&: TiedGroup)) |
1248 | continue; |
1249 | // Operands in this group are tied to operands in TiedGroup which must be |
1250 | // earlier. Find the number of operands between the two groups. |
1251 | unsigned Delta = i - GroupIdx[TiedGroup]; |
1252 | |
1253 | // OpIdx is a use tied to TiedGroup. |
1254 | if (OpIdxGroup == CurGroup) |
1255 | return OpIdx - Delta; |
1256 | |
1257 | // OpIdx is a def tied to this use group. |
1258 | if (OpIdxGroup == TiedGroup) |
1259 | return OpIdx + Delta; |
1260 | } |
1261 | llvm_unreachable("Invalid tied operand on inline asm" ); |
1262 | } |
1263 | |
1264 | /// clearKillInfo - Clears kill flags on all operands. |
1265 | /// |
1266 | void MachineInstr::clearKillInfo() { |
1267 | for (MachineOperand &MO : operands()) { |
1268 | if (MO.isReg() && MO.isUse()) |
1269 | MO.setIsKill(false); |
1270 | } |
1271 | } |
1272 | |
1273 | void MachineInstr::substituteRegister(Register FromReg, Register ToReg, |
1274 | unsigned SubIdx, |
1275 | const TargetRegisterInfo &RegInfo) { |
1276 | if (ToReg.isPhysical()) { |
1277 | if (SubIdx) |
1278 | ToReg = RegInfo.getSubReg(Reg: ToReg, Idx: SubIdx); |
1279 | for (MachineOperand &MO : operands()) { |
1280 | if (!MO.isReg() || MO.getReg() != FromReg) |
1281 | continue; |
1282 | MO.substPhysReg(Reg: ToReg, RegInfo); |
1283 | } |
1284 | } else { |
1285 | for (MachineOperand &MO : operands()) { |
1286 | if (!MO.isReg() || MO.getReg() != FromReg) |
1287 | continue; |
1288 | MO.substVirtReg(Reg: ToReg, SubIdx, RegInfo); |
1289 | } |
1290 | } |
1291 | } |
1292 | |
1293 | /// isSafeToMove - Return true if it is safe to move this instruction. If |
1294 | /// SawStore is set to true, it means that there is a store (or call) between |
1295 | /// the instruction's location and its intended destination. |
1296 | bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { |
1297 | // Ignore stuff that we obviously can't move. |
1298 | // |
1299 | // Treat volatile loads as stores. This is not strictly necessary for |
1300 | // volatiles, but it is required for atomic loads. It is not allowed to move |
1301 | // a load across an atomic load with Ordering > Monotonic. |
1302 | if (mayStore() || isCall() || isPHI() || |
1303 | (mayLoad() && hasOrderedMemoryRef())) { |
1304 | SawStore = true; |
1305 | return false; |
1306 | } |
1307 | |
1308 | if (isPosition() || isDebugInstr() || isTerminator() || |
1309 | mayRaiseFPException() || hasUnmodeledSideEffects() || |
1310 | isJumpTableDebugInfo()) |
1311 | return false; |
1312 | |
1313 | // See if this instruction does a load. If so, we have to guarantee that the |
1314 | // loaded value doesn't change between the load and the its intended |
1315 | // destination. The check for isInvariantLoad gives the target the chance to |
1316 | // classify the load as always returning a constant, e.g. a constant pool |
1317 | // load. |
1318 | if (mayLoad() && !isDereferenceableInvariantLoad()) |
1319 | // Otherwise, this is a real load. If there is a store between the load and |
1320 | // end of block, we can't move it. |
1321 | return !SawStore; |
1322 | |
1323 | return true; |
1324 | } |
1325 | |
1326 | static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, |
1327 | bool UseTBAA, const MachineMemOperand *MMOa, |
1328 | const MachineMemOperand *MMOb) { |
1329 | // The following interface to AA is fashioned after DAGCombiner::isAlias and |
1330 | // operates with MachineMemOperand offset with some important assumptions: |
1331 | // - LLVM fundamentally assumes flat address spaces. |
1332 | // - MachineOperand offset can *only* result from legalization and cannot |
1333 | // affect queries other than the trivial case of overlap checking. |
1334 | // - These offsets never wrap and never step outside of allocated objects. |
1335 | // - There should never be any negative offsets here. |
1336 | // |
1337 | // FIXME: Modify API to hide this math from "user" |
1338 | // Even before we go to AA we can reason locally about some memory objects. It |
1339 | // can save compile time, and possibly catch some corner cases not currently |
1340 | // covered. |
1341 | |
1342 | int64_t OffsetA = MMOa->getOffset(); |
1343 | int64_t OffsetB = MMOb->getOffset(); |
1344 | int64_t MinOffset = std::min(a: OffsetA, b: OffsetB); |
1345 | |
1346 | LocationSize WidthA = MMOa->getSize(); |
1347 | LocationSize WidthB = MMOb->getSize(); |
1348 | bool KnownWidthA = WidthA.hasValue(); |
1349 | bool KnownWidthB = WidthB.hasValue(); |
1350 | bool BothMMONonScalable = !WidthA.isScalable() && !WidthB.isScalable(); |
1351 | |
1352 | const Value *ValA = MMOa->getValue(); |
1353 | const Value *ValB = MMOb->getValue(); |
1354 | bool SameVal = (ValA && ValB && (ValA == ValB)); |
1355 | if (!SameVal) { |
1356 | const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); |
1357 | const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); |
1358 | if (PSVa && ValB && !PSVa->mayAlias(&MFI)) |
1359 | return false; |
1360 | if (PSVb && ValA && !PSVb->mayAlias(&MFI)) |
1361 | return false; |
1362 | if (PSVa && PSVb && (PSVa == PSVb)) |
1363 | SameVal = true; |
1364 | } |
1365 | |
1366 | if (SameVal && BothMMONonScalable) { |
1367 | if (!KnownWidthA || !KnownWidthB) |
1368 | return true; |
1369 | int64_t MaxOffset = std::max(a: OffsetA, b: OffsetB); |
1370 | int64_t LowWidth = (MinOffset == OffsetA) |
1371 | ? WidthA.getValue().getKnownMinValue() |
1372 | : WidthB.getValue().getKnownMinValue(); |
1373 | return (MinOffset + LowWidth > MaxOffset); |
1374 | } |
1375 | |
1376 | if (!AA) |
1377 | return true; |
1378 | |
1379 | if (!ValA || !ValB) |
1380 | return true; |
1381 | |
1382 | assert((OffsetA >= 0) && "Negative MachineMemOperand offset" ); |
1383 | assert((OffsetB >= 0) && "Negative MachineMemOperand offset" ); |
1384 | |
1385 | // If Scalable Location Size has non-zero offset, Width + Offset does not work |
1386 | // at the moment |
1387 | if ((WidthA.isScalable() && OffsetA > 0) || |
1388 | (WidthB.isScalable() && OffsetB > 0)) |
1389 | return true; |
1390 | |
1391 | int64_t OverlapA = |
1392 | KnownWidthA ? WidthA.getValue().getKnownMinValue() + OffsetA - MinOffset |
1393 | : MemoryLocation::UnknownSize; |
1394 | int64_t OverlapB = |
1395 | KnownWidthB ? WidthB.getValue().getKnownMinValue() + OffsetB - MinOffset |
1396 | : MemoryLocation::UnknownSize; |
1397 | |
1398 | LocationSize LocA = (WidthA.isScalable() || !KnownWidthA) |
1399 | ? WidthA |
1400 | : LocationSize::precise(Value: OverlapA); |
1401 | LocationSize LocB = (WidthB.isScalable() || !KnownWidthB) |
1402 | ? WidthB |
1403 | : LocationSize::precise(Value: OverlapB); |
1404 | |
1405 | return !AA->isNoAlias( |
1406 | LocA: MemoryLocation(ValA, LocA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), |
1407 | LocB: MemoryLocation(ValB, LocB, UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); |
1408 | } |
1409 | |
1410 | bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, |
1411 | bool UseTBAA) const { |
1412 | const MachineFunction *MF = getMF(); |
1413 | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
1414 | const MachineFrameInfo &MFI = MF->getFrameInfo(); |
1415 | |
1416 | // Exclude call instruction which may alter the memory but can not be handled |
1417 | // by this function. |
1418 | if (isCall() || Other.isCall()) |
1419 | return true; |
1420 | |
1421 | // If neither instruction stores to memory, they can't alias in any |
1422 | // meaningful way, even if they read from the same address. |
1423 | if (!mayStore() && !Other.mayStore()) |
1424 | return false; |
1425 | |
1426 | // Both instructions must be memory operations to be able to alias. |
1427 | if (!mayLoadOrStore() || !Other.mayLoadOrStore()) |
1428 | return false; |
1429 | |
1430 | // Let the target decide if memory accesses cannot possibly overlap. |
1431 | if (TII->areMemAccessesTriviallyDisjoint(MIa: *this, MIb: Other)) |
1432 | return false; |
1433 | |
1434 | // Memory operations without memory operands may access anything. Be |
1435 | // conservative and assume `MayAlias`. |
1436 | if (memoperands_empty() || Other.memoperands_empty()) |
1437 | return true; |
1438 | |
1439 | // Skip if there are too many memory operands. |
1440 | auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); |
1441 | if (NumChecks > TII->getMemOperandAACheckLimit()) |
1442 | return true; |
1443 | |
1444 | // Check each pair of memory operands from both instructions, which can't |
1445 | // alias only if all pairs won't alias. |
1446 | for (auto *MMOa : memoperands()) |
1447 | for (auto *MMOb : Other.memoperands()) |
1448 | if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) |
1449 | return true; |
1450 | |
1451 | return false; |
1452 | } |
1453 | |
1454 | /// hasOrderedMemoryRef - Return true if this instruction may have an ordered |
1455 | /// or volatile memory reference, or if the information describing the memory |
1456 | /// reference is not available. Return false if it is known to have no ordered |
1457 | /// memory references. |
1458 | bool MachineInstr::hasOrderedMemoryRef() const { |
1459 | // An instruction known never to access memory won't have a volatile access. |
1460 | if (!mayStore() && |
1461 | !mayLoad() && |
1462 | !isCall() && |
1463 | !hasUnmodeledSideEffects()) |
1464 | return false; |
1465 | |
1466 | // Otherwise, if the instruction has no memory reference information, |
1467 | // conservatively assume it wasn't preserved. |
1468 | if (memoperands_empty()) |
1469 | return true; |
1470 | |
1471 | // Check if any of our memory operands are ordered. |
1472 | return llvm::any_of(Range: memoperands(), P: [](const MachineMemOperand *MMO) { |
1473 | return !MMO->isUnordered(); |
1474 | }); |
1475 | } |
1476 | |
1477 | /// isDereferenceableInvariantLoad - Return true if this instruction will never |
1478 | /// trap and is loading from a location whose value is invariant across a run of |
1479 | /// this function. |
1480 | bool MachineInstr::isDereferenceableInvariantLoad() const { |
1481 | // If the instruction doesn't load at all, it isn't an invariant load. |
1482 | if (!mayLoad()) |
1483 | return false; |
1484 | |
1485 | // If the instruction has lost its memoperands, conservatively assume that |
1486 | // it may not be an invariant load. |
1487 | if (memoperands_empty()) |
1488 | return false; |
1489 | |
1490 | const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); |
1491 | |
1492 | for (MachineMemOperand *MMO : memoperands()) { |
1493 | if (!MMO->isUnordered()) |
1494 | // If the memory operand has ordering side effects, we can't move the |
1495 | // instruction. Such an instruction is technically an invariant load, |
1496 | // but the caller code would need updated to expect that. |
1497 | return false; |
1498 | if (MMO->isStore()) return false; |
1499 | if (MMO->isInvariant() && MMO->isDereferenceable()) |
1500 | continue; |
1501 | |
1502 | // A load from a constant PseudoSourceValue is invariant. |
1503 | if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { |
1504 | if (PSV->isConstant(&MFI)) |
1505 | continue; |
1506 | } |
1507 | |
1508 | // Otherwise assume conservatively. |
1509 | return false; |
1510 | } |
1511 | |
1512 | // Everything checks out. |
1513 | return true; |
1514 | } |
1515 | |
1516 | /// isConstantValuePHI - If the specified instruction is a PHI that always |
1517 | /// merges together the same virtual register, return the register, otherwise |
1518 | /// return 0. |
1519 | unsigned MachineInstr::isConstantValuePHI() const { |
1520 | if (!isPHI()) |
1521 | return 0; |
1522 | assert(getNumOperands() >= 3 && |
1523 | "It's illegal to have a PHI without source operands" ); |
1524 | |
1525 | Register Reg = getOperand(i: 1).getReg(); |
1526 | for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) |
1527 | if (getOperand(i).getReg() != Reg) |
1528 | return 0; |
1529 | return Reg; |
1530 | } |
1531 | |
1532 | bool MachineInstr::hasUnmodeledSideEffects() const { |
1533 | if (hasProperty(MCFlag: MCID::UnmodeledSideEffects)) |
1534 | return true; |
1535 | if (isInlineAsm()) { |
1536 | unsigned = getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm(); |
1537 | if (ExtraInfo & InlineAsm::Extra_HasSideEffects) |
1538 | return true; |
1539 | } |
1540 | |
1541 | return false; |
1542 | } |
1543 | |
1544 | bool MachineInstr::isLoadFoldBarrier() const { |
1545 | return mayStore() || isCall() || |
1546 | (hasUnmodeledSideEffects() && !isPseudoProbe()); |
1547 | } |
1548 | |
1549 | /// allDefsAreDead - Return true if all the defs of this instruction are dead. |
1550 | /// |
1551 | bool MachineInstr::allDefsAreDead() const { |
1552 | for (const MachineOperand &MO : operands()) { |
1553 | if (!MO.isReg() || MO.isUse()) |
1554 | continue; |
1555 | if (!MO.isDead()) |
1556 | return false; |
1557 | } |
1558 | return true; |
1559 | } |
1560 | |
1561 | bool MachineInstr::allImplicitDefsAreDead() const { |
1562 | for (const MachineOperand &MO : implicit_operands()) { |
1563 | if (!MO.isReg() || MO.isUse()) |
1564 | continue; |
1565 | if (!MO.isDead()) |
1566 | return false; |
1567 | } |
1568 | return true; |
1569 | } |
1570 | |
1571 | /// copyImplicitOps - Copy implicit register operands from specified |
1572 | /// instruction to this instruction. |
1573 | void MachineInstr::copyImplicitOps(MachineFunction &MF, |
1574 | const MachineInstr &MI) { |
1575 | for (const MachineOperand &MO : |
1576 | llvm::drop_begin(RangeOrContainer: MI.operands(), N: MI.getDesc().getNumOperands())) |
1577 | if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) |
1578 | addOperand(MF, Op: MO); |
1579 | } |
1580 | |
1581 | bool MachineInstr::hasComplexRegisterTies() const { |
1582 | const MCInstrDesc &MCID = getDesc(); |
1583 | if (MCID.Opcode == TargetOpcode::STATEPOINT) |
1584 | return true; |
1585 | for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { |
1586 | const auto &Operand = getOperand(i: I); |
1587 | if (!Operand.isReg() || Operand.isDef()) |
1588 | // Ignore the defined registers as MCID marks only the uses as tied. |
1589 | continue; |
1590 | int ExpectedTiedIdx = MCID.getOperandConstraint(OpNum: I, Constraint: MCOI::TIED_TO); |
1591 | int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(OpIdx: I)) : -1; |
1592 | if (ExpectedTiedIdx != TiedIdx) |
1593 | return true; |
1594 | } |
1595 | return false; |
1596 | } |
1597 | |
1598 | LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, |
1599 | const MachineRegisterInfo &MRI) const { |
1600 | const MachineOperand &Op = getOperand(i: OpIdx); |
1601 | if (!Op.isReg()) |
1602 | return LLT{}; |
1603 | |
1604 | if (isVariadic() || OpIdx >= getNumExplicitOperands()) |
1605 | return MRI.getType(Reg: Op.getReg()); |
1606 | |
1607 | auto &OpInfo = getDesc().operands()[OpIdx]; |
1608 | if (!OpInfo.isGenericType()) |
1609 | return MRI.getType(Reg: Op.getReg()); |
1610 | |
1611 | if (PrintedTypes[OpInfo.getGenericTypeIndex()]) |
1612 | return LLT{}; |
1613 | |
1614 | LLT TypeToPrint = MRI.getType(Reg: Op.getReg()); |
1615 | // Don't mark the type index printed if it wasn't actually printed: maybe |
1616 | // another operand with the same type index has an actual type attached: |
1617 | if (TypeToPrint.isValid()) |
1618 | PrintedTypes.set(OpInfo.getGenericTypeIndex()); |
1619 | return TypeToPrint; |
1620 | } |
1621 | |
1622 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1623 | LLVM_DUMP_METHOD void MachineInstr::dump() const { |
1624 | dbgs() << " " ; |
1625 | print(dbgs()); |
1626 | } |
1627 | |
1628 | LLVM_DUMP_METHOD void MachineInstr::dumprImpl( |
1629 | const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, |
1630 | SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { |
1631 | if (Depth >= MaxDepth) |
1632 | return; |
1633 | if (!AlreadySeenInstrs.insert(this).second) |
1634 | return; |
1635 | // PadToColumn always inserts at least one space. |
1636 | // Don't mess up the alignment if we don't want any space. |
1637 | if (Depth) |
1638 | fdbgs().PadToColumn(Depth * 2); |
1639 | print(fdbgs()); |
1640 | for (const MachineOperand &MO : operands()) { |
1641 | if (!MO.isReg() || MO.isDef()) |
1642 | continue; |
1643 | Register Reg = MO.getReg(); |
1644 | if (Reg.isPhysical()) |
1645 | continue; |
1646 | const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); |
1647 | if (NewMI == nullptr) |
1648 | continue; |
1649 | NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); |
1650 | } |
1651 | } |
1652 | |
1653 | LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, |
1654 | unsigned MaxDepth) const { |
1655 | SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; |
1656 | dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); |
1657 | } |
1658 | #endif |
1659 | |
1660 | void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, |
1661 | bool SkipDebugLoc, bool AddNewLine, |
1662 | const TargetInstrInfo *TII) const { |
1663 | const Module *M = nullptr; |
1664 | const Function *F = nullptr; |
1665 | if (const MachineFunction *MF = getMFIfAvailable(MI: *this)) { |
1666 | F = &MF->getFunction(); |
1667 | M = F->getParent(); |
1668 | if (!TII) |
1669 | TII = MF->getSubtarget().getInstrInfo(); |
1670 | } |
1671 | |
1672 | ModuleSlotTracker MST(M); |
1673 | if (F) |
1674 | MST.incorporateFunction(F: *F); |
1675 | print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); |
1676 | } |
1677 | |
1678 | void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, |
1679 | bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, |
1680 | bool AddNewLine, const TargetInstrInfo *TII) const { |
1681 | // We can be a bit tidier if we know the MachineFunction. |
1682 | const TargetRegisterInfo *TRI = nullptr; |
1683 | const MachineRegisterInfo *MRI = nullptr; |
1684 | const TargetIntrinsicInfo *IntrinsicInfo = nullptr; |
1685 | tryToGetTargetInfo(MI: *this, TRI, MRI, IntrinsicInfo, TII); |
1686 | |
1687 | if (isCFIInstruction()) |
1688 | assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction" ); |
1689 | |
1690 | SmallBitVector PrintedTypes(8); |
1691 | bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); |
1692 | auto getTiedOperandIdx = [&](unsigned OpIdx) { |
1693 | if (!ShouldPrintRegisterTies) |
1694 | return 0U; |
1695 | const MachineOperand &MO = getOperand(i: OpIdx); |
1696 | if (MO.isReg() && MO.isTied() && !MO.isDef()) |
1697 | return findTiedOperandIdx(OpIdx); |
1698 | return 0U; |
1699 | }; |
1700 | unsigned StartOp = 0; |
1701 | unsigned e = getNumOperands(); |
1702 | |
1703 | // Print explicitly defined operands on the left of an assignment syntax. |
1704 | while (StartOp < e) { |
1705 | const MachineOperand &MO = getOperand(i: StartOp); |
1706 | if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) |
1707 | break; |
1708 | |
1709 | if (StartOp != 0) |
1710 | OS << ", " ; |
1711 | |
1712 | LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx: StartOp, PrintedTypes, MRI: *MRI) : LLT{}; |
1713 | unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); |
1714 | MO.print(os&: OS, MST, TypeToPrint, OpIdx: StartOp, /*PrintDef=*/false, IsStandalone, |
1715 | ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); |
1716 | ++StartOp; |
1717 | } |
1718 | |
1719 | if (StartOp != 0) |
1720 | OS << " = " ; |
1721 | |
1722 | if (getFlag(Flag: MachineInstr::FrameSetup)) |
1723 | OS << "frame-setup " ; |
1724 | if (getFlag(Flag: MachineInstr::FrameDestroy)) |
1725 | OS << "frame-destroy " ; |
1726 | if (getFlag(Flag: MachineInstr::FmNoNans)) |
1727 | OS << "nnan " ; |
1728 | if (getFlag(Flag: MachineInstr::FmNoInfs)) |
1729 | OS << "ninf " ; |
1730 | if (getFlag(Flag: MachineInstr::FmNsz)) |
1731 | OS << "nsz " ; |
1732 | if (getFlag(Flag: MachineInstr::FmArcp)) |
1733 | OS << "arcp " ; |
1734 | if (getFlag(Flag: MachineInstr::FmContract)) |
1735 | OS << "contract " ; |
1736 | if (getFlag(Flag: MachineInstr::FmAfn)) |
1737 | OS << "afn " ; |
1738 | if (getFlag(Flag: MachineInstr::FmReassoc)) |
1739 | OS << "reassoc " ; |
1740 | if (getFlag(Flag: MachineInstr::NoUWrap)) |
1741 | OS << "nuw " ; |
1742 | if (getFlag(Flag: MachineInstr::NoSWrap)) |
1743 | OS << "nsw " ; |
1744 | if (getFlag(Flag: MachineInstr::IsExact)) |
1745 | OS << "exact " ; |
1746 | if (getFlag(Flag: MachineInstr::NoFPExcept)) |
1747 | OS << "nofpexcept " ; |
1748 | if (getFlag(Flag: MachineInstr::NoMerge)) |
1749 | OS << "nomerge " ; |
1750 | if (getFlag(Flag: MachineInstr::NonNeg)) |
1751 | OS << "nneg " ; |
1752 | if (getFlag(Flag: MachineInstr::Disjoint)) |
1753 | OS << "disjoint " ; |
1754 | |
1755 | // Print the opcode name. |
1756 | if (TII) |
1757 | OS << TII->getName(Opcode: getOpcode()); |
1758 | else |
1759 | OS << "UNKNOWN" ; |
1760 | |
1761 | if (SkipOpers) |
1762 | return; |
1763 | |
1764 | // Print the rest of the operands. |
1765 | bool FirstOp = true; |
1766 | unsigned AsmDescOp = ~0u; |
1767 | unsigned AsmOpCount = 0; |
1768 | |
1769 | if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { |
1770 | // Print asm string. |
1771 | OS << " " ; |
1772 | const unsigned OpIdx = InlineAsm::MIOp_AsmString; |
1773 | LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, MRI: *MRI) : LLT{}; |
1774 | unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); |
1775 | getOperand(i: OpIdx).print(os&: OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, |
1776 | ShouldPrintRegisterTies, TiedOperandIdx, TRI, |
1777 | IntrinsicInfo); |
1778 | |
1779 | // Print HasSideEffects, MayLoad, MayStore, IsAlignStack |
1780 | unsigned = getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm(); |
1781 | if (ExtraInfo & InlineAsm::Extra_HasSideEffects) |
1782 | OS << " [sideeffect]" ; |
1783 | if (ExtraInfo & InlineAsm::Extra_MayLoad) |
1784 | OS << " [mayload]" ; |
1785 | if (ExtraInfo & InlineAsm::Extra_MayStore) |
1786 | OS << " [maystore]" ; |
1787 | if (ExtraInfo & InlineAsm::Extra_IsConvergent) |
1788 | OS << " [isconvergent]" ; |
1789 | if (ExtraInfo & InlineAsm::Extra_IsAlignStack) |
1790 | OS << " [alignstack]" ; |
1791 | if (getInlineAsmDialect() == InlineAsm::AD_ATT) |
1792 | OS << " [attdialect]" ; |
1793 | if (getInlineAsmDialect() == InlineAsm::AD_Intel) |
1794 | OS << " [inteldialect]" ; |
1795 | |
1796 | StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; |
1797 | FirstOp = false; |
1798 | } |
1799 | |
1800 | for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { |
1801 | const MachineOperand &MO = getOperand(i); |
1802 | |
1803 | if (FirstOp) FirstOp = false; else OS << "," ; |
1804 | OS << " " ; |
1805 | |
1806 | if (isDebugValueLike() && MO.isMetadata()) { |
1807 | // Pretty print DBG_VALUE* instructions. |
1808 | auto *DIV = dyn_cast<DILocalVariable>(Val: MO.getMetadata()); |
1809 | if (DIV && !DIV->getName().empty()) |
1810 | OS << "!\"" << DIV->getName() << '\"'; |
1811 | else { |
1812 | LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx: i, PrintedTypes, MRI: *MRI) : LLT{}; |
1813 | unsigned TiedOperandIdx = getTiedOperandIdx(i); |
1814 | MO.print(os&: OS, MST, TypeToPrint, OpIdx: i, /*PrintDef=*/true, IsStandalone, |
1815 | ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); |
1816 | } |
1817 | } else if (isDebugLabel() && MO.isMetadata()) { |
1818 | // Pretty print DBG_LABEL instructions. |
1819 | auto *DIL = dyn_cast<DILabel>(Val: MO.getMetadata()); |
1820 | if (DIL && !DIL->getName().empty()) |
1821 | OS << "\"" << DIL->getName() << '\"'; |
1822 | else { |
1823 | LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx: i, PrintedTypes, MRI: *MRI) : LLT{}; |
1824 | unsigned TiedOperandIdx = getTiedOperandIdx(i); |
1825 | MO.print(os&: OS, MST, TypeToPrint, OpIdx: i, /*PrintDef=*/true, IsStandalone, |
1826 | ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); |
1827 | } |
1828 | } else if (i == AsmDescOp && MO.isImm()) { |
1829 | // Pretty print the inline asm operand descriptor. |
1830 | OS << '$' << AsmOpCount++; |
1831 | unsigned Flag = MO.getImm(); |
1832 | const InlineAsm::Flag F(Flag); |
1833 | OS << ":[" ; |
1834 | OS << F.getKindName(); |
1835 | |
1836 | unsigned RCID; |
1837 | if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RC&: RCID)) { |
1838 | if (TRI) { |
1839 | OS << ':' << TRI->getRegClassName(Class: TRI->getRegClass(i: RCID)); |
1840 | } else |
1841 | OS << ":RC" << RCID; |
1842 | } |
1843 | |
1844 | if (F.isMemKind()) { |
1845 | const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID(); |
1846 | OS << ":" << InlineAsm::getMemConstraintName(C: MCID); |
1847 | } |
1848 | |
1849 | unsigned TiedTo; |
1850 | if (F.isUseOperandTiedToDef(Idx&: TiedTo)) |
1851 | OS << " tiedto:$" << TiedTo; |
1852 | |
1853 | if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || |
1854 | F.isRegUseKind()) && |
1855 | F.getRegMayBeFolded()) { |
1856 | OS << " foldable" ; |
1857 | } |
1858 | |
1859 | OS << ']'; |
1860 | |
1861 | // Compute the index of the next operand descriptor. |
1862 | AsmDescOp += 1 + F.getNumOperandRegisters(); |
1863 | } else { |
1864 | LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx: i, PrintedTypes, MRI: *MRI) : LLT{}; |
1865 | unsigned TiedOperandIdx = getTiedOperandIdx(i); |
1866 | if (MO.isImm() && isOperandSubregIdx(OpIdx: i)) |
1867 | MachineOperand::printSubRegIdx(OS, Index: MO.getImm(), TRI); |
1868 | else |
1869 | MO.print(os&: OS, MST, TypeToPrint, OpIdx: i, /*PrintDef=*/true, IsStandalone, |
1870 | ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); |
1871 | } |
1872 | } |
1873 | |
1874 | // Print any optional symbols attached to this instruction as-if they were |
1875 | // operands. |
1876 | if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { |
1877 | if (!FirstOp) { |
1878 | FirstOp = false; |
1879 | OS << ','; |
1880 | } |
1881 | OS << " pre-instr-symbol " ; |
1882 | MachineOperand::printSymbol(OS, Sym&: *PreInstrSymbol); |
1883 | } |
1884 | if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { |
1885 | if (!FirstOp) { |
1886 | FirstOp = false; |
1887 | OS << ','; |
1888 | } |
1889 | OS << " post-instr-symbol " ; |
1890 | MachineOperand::printSymbol(OS, Sym&: *PostInstrSymbol); |
1891 | } |
1892 | if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { |
1893 | if (!FirstOp) { |
1894 | FirstOp = false; |
1895 | OS << ','; |
1896 | } |
1897 | OS << " heap-alloc-marker " ; |
1898 | HeapAllocMarker->printAsOperand(OS, MST); |
1899 | } |
1900 | if (MDNode *PCSections = getPCSections()) { |
1901 | if (!FirstOp) { |
1902 | FirstOp = false; |
1903 | OS << ','; |
1904 | } |
1905 | OS << " pcsections " ; |
1906 | PCSections->printAsOperand(OS, MST); |
1907 | } |
1908 | if (MDNode *MMRA = getMMRAMetadata()) { |
1909 | if (!FirstOp) { |
1910 | FirstOp = false; |
1911 | OS << ','; |
1912 | } |
1913 | OS << " mmra " ; |
1914 | MMRA->printAsOperand(OS, MST); |
1915 | } |
1916 | if (uint32_t CFIType = getCFIType()) { |
1917 | if (!FirstOp) |
1918 | OS << ','; |
1919 | OS << " cfi-type " << CFIType; |
1920 | } |
1921 | |
1922 | if (DebugInstrNum) { |
1923 | if (!FirstOp) |
1924 | OS << "," ; |
1925 | OS << " debug-instr-number " << DebugInstrNum; |
1926 | } |
1927 | |
1928 | if (!SkipDebugLoc) { |
1929 | if (const DebugLoc &DL = getDebugLoc()) { |
1930 | if (!FirstOp) |
1931 | OS << ','; |
1932 | OS << " debug-location " ; |
1933 | DL->printAsOperand(OS, MST); |
1934 | } |
1935 | } |
1936 | |
1937 | if (!memoperands_empty()) { |
1938 | SmallVector<StringRef, 0> SSNs; |
1939 | const LLVMContext *Context = nullptr; |
1940 | std::unique_ptr<LLVMContext> CtxPtr; |
1941 | const MachineFrameInfo *MFI = nullptr; |
1942 | if (const MachineFunction *MF = getMFIfAvailable(MI: *this)) { |
1943 | MFI = &MF->getFrameInfo(); |
1944 | Context = &MF->getFunction().getContext(); |
1945 | } else { |
1946 | CtxPtr = std::make_unique<LLVMContext>(); |
1947 | Context = CtxPtr.get(); |
1948 | } |
1949 | |
1950 | OS << " :: " ; |
1951 | bool NeedComma = false; |
1952 | for (const MachineMemOperand *Op : memoperands()) { |
1953 | if (NeedComma) |
1954 | OS << ", " ; |
1955 | Op->print(OS, MST, SSNs, Context: *Context, MFI, TII); |
1956 | NeedComma = true; |
1957 | } |
1958 | } |
1959 | |
1960 | if (SkipDebugLoc) |
1961 | return; |
1962 | |
1963 | bool HaveSemi = false; |
1964 | |
1965 | // Print debug location information. |
1966 | if (const DebugLoc &DL = getDebugLoc()) { |
1967 | if (!HaveSemi) { |
1968 | OS << ';'; |
1969 | HaveSemi = true; |
1970 | } |
1971 | OS << ' '; |
1972 | DL.print(OS); |
1973 | } |
1974 | |
1975 | // Print extra comments for DEBUG_VALUE and friends if they are well-formed. |
1976 | if ((isNonListDebugValue() && getNumOperands() >= 4) || |
1977 | (isDebugValueList() && getNumOperands() >= 2) || |
1978 | (isDebugRef() && getNumOperands() >= 3)) { |
1979 | if (getDebugVariableOp().isMetadata()) { |
1980 | if (!HaveSemi) { |
1981 | OS << ";" ; |
1982 | HaveSemi = true; |
1983 | } |
1984 | auto *DV = getDebugVariable(); |
1985 | OS << " line no:" << DV->getLine(); |
1986 | if (isIndirectDebugValue()) |
1987 | OS << " indirect" ; |
1988 | } |
1989 | } |
1990 | // TODO: DBG_LABEL |
1991 | |
1992 | if (AddNewLine) |
1993 | OS << '\n'; |
1994 | } |
1995 | |
1996 | bool MachineInstr::addRegisterKilled(Register IncomingReg, |
1997 | const TargetRegisterInfo *RegInfo, |
1998 | bool AddIfNotFound) { |
1999 | bool isPhysReg = IncomingReg.isPhysical(); |
2000 | bool hasAliases = isPhysReg && |
2001 | MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); |
2002 | bool Found = false; |
2003 | SmallVector<unsigned,4> DeadOps; |
2004 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
2005 | MachineOperand &MO = getOperand(i); |
2006 | if (!MO.isReg() || !MO.isUse() || MO.isUndef()) |
2007 | continue; |
2008 | |
2009 | // DEBUG_VALUE nodes do not contribute to code generation and should |
2010 | // always be ignored. Failure to do so may result in trying to modify |
2011 | // KILL flags on DEBUG_VALUE nodes. |
2012 | if (MO.isDebug()) |
2013 | continue; |
2014 | |
2015 | Register Reg = MO.getReg(); |
2016 | if (!Reg) |
2017 | continue; |
2018 | |
2019 | if (Reg == IncomingReg) { |
2020 | if (!Found) { |
2021 | if (MO.isKill()) |
2022 | // The register is already marked kill. |
2023 | return true; |
2024 | if (isPhysReg && isRegTiedToDefOperand(UseOpIdx: i)) |
2025 | // Two-address uses of physregs must not be marked kill. |
2026 | return true; |
2027 | MO.setIsKill(); |
2028 | Found = true; |
2029 | } |
2030 | } else if (hasAliases && MO.isKill() && Reg.isPhysical()) { |
2031 | // A super-register kill already exists. |
2032 | if (RegInfo->isSuperRegister(RegA: IncomingReg, RegB: Reg)) |
2033 | return true; |
2034 | if (RegInfo->isSubRegister(RegA: IncomingReg, RegB: Reg)) |
2035 | DeadOps.push_back(Elt: i); |
2036 | } |
2037 | } |
2038 | |
2039 | // Trim unneeded kill operands. |
2040 | while (!DeadOps.empty()) { |
2041 | unsigned OpIdx = DeadOps.back(); |
2042 | if (getOperand(i: OpIdx).isImplicit() && |
2043 | (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) |
2044 | removeOperand(OpNo: OpIdx); |
2045 | else |
2046 | getOperand(i: OpIdx).setIsKill(false); |
2047 | DeadOps.pop_back(); |
2048 | } |
2049 | |
2050 | // If not found, this means an alias of one of the operands is killed. Add a |
2051 | // new implicit operand if required. |
2052 | if (!Found && AddIfNotFound) { |
2053 | addOperand(Op: MachineOperand::CreateReg(Reg: IncomingReg, |
2054 | isDef: false /*IsDef*/, |
2055 | isImp: true /*IsImp*/, |
2056 | isKill: true /*IsKill*/)); |
2057 | return true; |
2058 | } |
2059 | return Found; |
2060 | } |
2061 | |
2062 | void MachineInstr::clearRegisterKills(Register Reg, |
2063 | const TargetRegisterInfo *RegInfo) { |
2064 | if (!Reg.isPhysical()) |
2065 | RegInfo = nullptr; |
2066 | for (MachineOperand &MO : operands()) { |
2067 | if (!MO.isReg() || !MO.isUse() || !MO.isKill()) |
2068 | continue; |
2069 | Register OpReg = MO.getReg(); |
2070 | if ((RegInfo && RegInfo->regsOverlap(RegA: Reg, RegB: OpReg)) || Reg == OpReg) |
2071 | MO.setIsKill(false); |
2072 | } |
2073 | } |
2074 | |
2075 | bool MachineInstr::addRegisterDead(Register Reg, |
2076 | const TargetRegisterInfo *RegInfo, |
2077 | bool AddIfNotFound) { |
2078 | bool isPhysReg = Reg.isPhysical(); |
2079 | bool hasAliases = isPhysReg && |
2080 | MCRegAliasIterator(Reg, RegInfo, false).isValid(); |
2081 | bool Found = false; |
2082 | SmallVector<unsigned,4> DeadOps; |
2083 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
2084 | MachineOperand &MO = getOperand(i); |
2085 | if (!MO.isReg() || !MO.isDef()) |
2086 | continue; |
2087 | Register MOReg = MO.getReg(); |
2088 | if (!MOReg) |
2089 | continue; |
2090 | |
2091 | if (MOReg == Reg) { |
2092 | MO.setIsDead(); |
2093 | Found = true; |
2094 | } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) { |
2095 | // There exists a super-register that's marked dead. |
2096 | if (RegInfo->isSuperRegister(RegA: Reg, RegB: MOReg)) |
2097 | return true; |
2098 | if (RegInfo->isSubRegister(RegA: Reg, RegB: MOReg)) |
2099 | DeadOps.push_back(Elt: i); |
2100 | } |
2101 | } |
2102 | |
2103 | // Trim unneeded dead operands. |
2104 | while (!DeadOps.empty()) { |
2105 | unsigned OpIdx = DeadOps.back(); |
2106 | if (getOperand(i: OpIdx).isImplicit() && |
2107 | (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) |
2108 | removeOperand(OpNo: OpIdx); |
2109 | else |
2110 | getOperand(i: OpIdx).setIsDead(false); |
2111 | DeadOps.pop_back(); |
2112 | } |
2113 | |
2114 | // If not found, this means an alias of one of the operands is dead. Add a |
2115 | // new implicit operand if required. |
2116 | if (Found || !AddIfNotFound) |
2117 | return Found; |
2118 | |
2119 | addOperand(Op: MachineOperand::CreateReg(Reg, |
2120 | isDef: true /*IsDef*/, |
2121 | isImp: true /*IsImp*/, |
2122 | isKill: false /*IsKill*/, |
2123 | isDead: true /*IsDead*/)); |
2124 | return true; |
2125 | } |
2126 | |
2127 | void MachineInstr::clearRegisterDeads(Register Reg) { |
2128 | for (MachineOperand &MO : operands()) { |
2129 | if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) |
2130 | continue; |
2131 | MO.setIsDead(false); |
2132 | } |
2133 | } |
2134 | |
2135 | void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { |
2136 | for (MachineOperand &MO : operands()) { |
2137 | if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) |
2138 | continue; |
2139 | MO.setIsUndef(IsUndef); |
2140 | } |
2141 | } |
2142 | |
2143 | void MachineInstr::addRegisterDefined(Register Reg, |
2144 | const TargetRegisterInfo *RegInfo) { |
2145 | if (Reg.isPhysical()) { |
2146 | MachineOperand *MO = findRegisterDefOperand(Reg, TRI: RegInfo, isDead: false, Overlap: false); |
2147 | if (MO) |
2148 | return; |
2149 | } else { |
2150 | for (const MachineOperand &MO : operands()) { |
2151 | if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && |
2152 | MO.getSubReg() == 0) |
2153 | return; |
2154 | } |
2155 | } |
2156 | addOperand(Op: MachineOperand::CreateReg(Reg, |
2157 | isDef: true /*IsDef*/, |
2158 | isImp: true /*IsImp*/)); |
2159 | } |
2160 | |
2161 | void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, |
2162 | const TargetRegisterInfo &TRI) { |
2163 | bool HasRegMask = false; |
2164 | for (MachineOperand &MO : operands()) { |
2165 | if (MO.isRegMask()) { |
2166 | HasRegMask = true; |
2167 | continue; |
2168 | } |
2169 | if (!MO.isReg() || !MO.isDef()) continue; |
2170 | Register Reg = MO.getReg(); |
2171 | if (!Reg.isPhysical()) |
2172 | continue; |
2173 | // If there are no uses, including partial uses, the def is dead. |
2174 | if (llvm::none_of(Range&: UsedRegs, |
2175 | P: [&](MCRegister Use) { return TRI.regsOverlap(RegA: Use, RegB: Reg); })) |
2176 | MO.setIsDead(); |
2177 | } |
2178 | |
2179 | // This is a call with a register mask operand. |
2180 | // Mask clobbers are always dead, so add defs for the non-dead defines. |
2181 | if (HasRegMask) |
2182 | for (const Register &UsedReg : UsedRegs) |
2183 | addRegisterDefined(Reg: UsedReg, RegInfo: &TRI); |
2184 | } |
2185 | |
2186 | unsigned |
2187 | MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { |
2188 | // Build up a buffer of hash code components. |
2189 | SmallVector<size_t, 16> HashComponents; |
2190 | HashComponents.reserve(N: MI->getNumOperands() + 1); |
2191 | HashComponents.push_back(Elt: MI->getOpcode()); |
2192 | for (const MachineOperand &MO : MI->operands()) { |
2193 | if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual()) |
2194 | continue; // Skip virtual register defs. |
2195 | |
2196 | HashComponents.push_back(Elt: hash_value(MO)); |
2197 | } |
2198 | return hash_combine_range(first: HashComponents.begin(), last: HashComponents.end()); |
2199 | } |
2200 | |
2201 | void MachineInstr::emitError(StringRef Msg) const { |
2202 | // Find the source location cookie. |
2203 | uint64_t LocCookie = 0; |
2204 | const MDNode *LocMD = nullptr; |
2205 | for (unsigned i = getNumOperands(); i != 0; --i) { |
2206 | if (getOperand(i: i-1).isMetadata() && |
2207 | (LocMD = getOperand(i: i-1).getMetadata()) && |
2208 | LocMD->getNumOperands() != 0) { |
2209 | if (const ConstantInt *CI = |
2210 | mdconst::dyn_extract<ConstantInt>(MD: LocMD->getOperand(I: 0))) { |
2211 | LocCookie = CI->getZExtValue(); |
2212 | break; |
2213 | } |
2214 | } |
2215 | } |
2216 | |
2217 | if (const MachineBasicBlock *MBB = getParent()) |
2218 | if (const MachineFunction *MF = MBB->getParent()) |
2219 | return MF->getFunction().getContext().emitError(LocCookie, ErrorStr: Msg); |
2220 | report_fatal_error(reason: Msg); |
2221 | } |
2222 | |
2223 | MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, |
2224 | const MCInstrDesc &MCID, bool IsIndirect, |
2225 | Register Reg, const MDNode *Variable, |
2226 | const MDNode *Expr) { |
2227 | assert(isa<DILocalVariable>(Variable) && "not a variable" ); |
2228 | assert(cast<DIExpression>(Expr)->isValid() && "not an expression" ); |
2229 | assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && |
2230 | "Expected inlined-at fields to agree" ); |
2231 | auto MIB = BuildMI(MF, MIMD: DL, MCID).addReg(RegNo: Reg); |
2232 | if (IsIndirect) |
2233 | MIB.addImm(Val: 0U); |
2234 | else |
2235 | MIB.addReg(RegNo: 0U); |
2236 | return MIB.addMetadata(MD: Variable).addMetadata(MD: Expr); |
2237 | } |
2238 | |
2239 | MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, |
2240 | const MCInstrDesc &MCID, bool IsIndirect, |
2241 | ArrayRef<MachineOperand> DebugOps, |
2242 | const MDNode *Variable, const MDNode *Expr) { |
2243 | assert(isa<DILocalVariable>(Variable) && "not a variable" ); |
2244 | assert(cast<DIExpression>(Expr)->isValid() && "not an expression" ); |
2245 | assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && |
2246 | "Expected inlined-at fields to agree" ); |
2247 | if (MCID.Opcode == TargetOpcode::DBG_VALUE) { |
2248 | assert(DebugOps.size() == 1 && |
2249 | "DBG_VALUE must contain exactly one debug operand" ); |
2250 | MachineOperand DebugOp = DebugOps[0]; |
2251 | if (DebugOp.isReg()) |
2252 | return BuildMI(MF, DL, MCID, IsIndirect, Reg: DebugOp.getReg(), Variable, |
2253 | Expr); |
2254 | |
2255 | auto MIB = BuildMI(MF, MIMD: DL, MCID).add(MO: DebugOp); |
2256 | if (IsIndirect) |
2257 | MIB.addImm(Val: 0U); |
2258 | else |
2259 | MIB.addReg(RegNo: 0U); |
2260 | return MIB.addMetadata(MD: Variable).addMetadata(MD: Expr); |
2261 | } |
2262 | |
2263 | auto MIB = BuildMI(MF, MIMD: DL, MCID); |
2264 | MIB.addMetadata(MD: Variable).addMetadata(MD: Expr); |
2265 | for (const MachineOperand &DebugOp : DebugOps) |
2266 | if (DebugOp.isReg()) |
2267 | MIB.addReg(RegNo: DebugOp.getReg()); |
2268 | else |
2269 | MIB.add(MO: DebugOp); |
2270 | return MIB; |
2271 | } |
2272 | |
2273 | MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, |
2274 | MachineBasicBlock::iterator I, |
2275 | const DebugLoc &DL, const MCInstrDesc &MCID, |
2276 | bool IsIndirect, Register Reg, |
2277 | const MDNode *Variable, const MDNode *Expr) { |
2278 | MachineFunction &MF = *BB.getParent(); |
2279 | MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); |
2280 | BB.insert(I, MI); |
2281 | return MachineInstrBuilder(MF, MI); |
2282 | } |
2283 | |
2284 | MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, |
2285 | MachineBasicBlock::iterator I, |
2286 | const DebugLoc &DL, const MCInstrDesc &MCID, |
2287 | bool IsIndirect, |
2288 | ArrayRef<MachineOperand> DebugOps, |
2289 | const MDNode *Variable, const MDNode *Expr) { |
2290 | MachineFunction &MF = *BB.getParent(); |
2291 | MachineInstr *MI = |
2292 | BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr); |
2293 | BB.insert(I, MI); |
2294 | return MachineInstrBuilder(MF, *MI); |
2295 | } |
2296 | |
2297 | /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. |
2298 | /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. |
2299 | static const DIExpression * |
2300 | computeExprForSpill(const MachineInstr &MI, |
2301 | SmallVectorImpl<const MachineOperand *> &SpilledOperands) { |
2302 | assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && |
2303 | "Expected inlined-at fields to agree" ); |
2304 | |
2305 | const DIExpression *Expr = MI.getDebugExpression(); |
2306 | if (MI.isIndirectDebugValue()) { |
2307 | assert(MI.getDebugOffset().getImm() == 0 && |
2308 | "DBG_VALUE with nonzero offset" ); |
2309 | Expr = DIExpression::prepend(Expr, Flags: DIExpression::DerefBefore); |
2310 | } else if (MI.isDebugValueList()) { |
2311 | // We will replace the spilled register with a frame index, so |
2312 | // immediately deref all references to the spilled register. |
2313 | std::array<uint64_t, 1> Ops{._M_elems: {dwarf::DW_OP_deref}}; |
2314 | for (const MachineOperand *Op : SpilledOperands) { |
2315 | unsigned OpIdx = MI.getDebugOperandIndex(Op); |
2316 | Expr = DIExpression::appendOpsToArg(Expr, Ops, ArgNo: OpIdx); |
2317 | } |
2318 | } |
2319 | return Expr; |
2320 | } |
2321 | static const DIExpression *computeExprForSpill(const MachineInstr &MI, |
2322 | Register SpillReg) { |
2323 | assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI." ); |
2324 | SmallVector<const MachineOperand *> SpillOperands; |
2325 | for (const MachineOperand &Op : MI.getDebugOperandsForReg(Reg: SpillReg)) |
2326 | SpillOperands.push_back(Elt: &Op); |
2327 | return computeExprForSpill(MI, SpilledOperands&: SpillOperands); |
2328 | } |
2329 | |
2330 | MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, |
2331 | MachineBasicBlock::iterator I, |
2332 | const MachineInstr &Orig, |
2333 | int FrameIndex, Register SpillReg) { |
2334 | assert(!Orig.isDebugRef() && |
2335 | "DBG_INSTR_REF should not reference a virtual register." ); |
2336 | const DIExpression *Expr = computeExprForSpill(MI: Orig, SpillReg); |
2337 | MachineInstrBuilder NewMI = |
2338 | BuildMI(BB, I, MIMD: Orig.getDebugLoc(), MCID: Orig.getDesc()); |
2339 | // Non-Variadic Operands: Location, Offset, Variable, Expression |
2340 | // Variadic Operands: Variable, Expression, Locations... |
2341 | if (Orig.isNonListDebugValue()) |
2342 | NewMI.addFrameIndex(Idx: FrameIndex).addImm(Val: 0U); |
2343 | NewMI.addMetadata(MD: Orig.getDebugVariable()).addMetadata(MD: Expr); |
2344 | if (Orig.isDebugValueList()) { |
2345 | for (const MachineOperand &Op : Orig.debug_operands()) |
2346 | if (Op.isReg() && Op.getReg() == SpillReg) |
2347 | NewMI.addFrameIndex(Idx: FrameIndex); |
2348 | else |
2349 | NewMI.add(MO: MachineOperand(Op)); |
2350 | } |
2351 | return NewMI; |
2352 | } |
2353 | MachineInstr *llvm::buildDbgValueForSpill( |
2354 | MachineBasicBlock &BB, MachineBasicBlock::iterator I, |
2355 | const MachineInstr &Orig, int FrameIndex, |
2356 | SmallVectorImpl<const MachineOperand *> &SpilledOperands) { |
2357 | const DIExpression *Expr = computeExprForSpill(MI: Orig, SpilledOperands); |
2358 | MachineInstrBuilder NewMI = |
2359 | BuildMI(BB, I, MIMD: Orig.getDebugLoc(), MCID: Orig.getDesc()); |
2360 | // Non-Variadic Operands: Location, Offset, Variable, Expression |
2361 | // Variadic Operands: Variable, Expression, Locations... |
2362 | if (Orig.isNonListDebugValue()) |
2363 | NewMI.addFrameIndex(Idx: FrameIndex).addImm(Val: 0U); |
2364 | NewMI.addMetadata(MD: Orig.getDebugVariable()).addMetadata(MD: Expr); |
2365 | if (Orig.isDebugValueList()) { |
2366 | for (const MachineOperand &Op : Orig.debug_operands()) |
2367 | if (is_contained(Range&: SpilledOperands, Element: &Op)) |
2368 | NewMI.addFrameIndex(Idx: FrameIndex); |
2369 | else |
2370 | NewMI.add(MO: MachineOperand(Op)); |
2371 | } |
2372 | return NewMI; |
2373 | } |
2374 | |
2375 | void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, |
2376 | Register Reg) { |
2377 | const DIExpression *Expr = computeExprForSpill(MI: Orig, SpillReg: Reg); |
2378 | if (Orig.isNonListDebugValue()) |
2379 | Orig.getDebugOffset().ChangeToImmediate(ImmVal: 0U); |
2380 | for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) |
2381 | Op.ChangeToFrameIndex(Idx: FrameIndex); |
2382 | Orig.getDebugExpressionOp().setMetadata(Expr); |
2383 | } |
2384 | |
2385 | void MachineInstr::collectDebugValues( |
2386 | SmallVectorImpl<MachineInstr *> &DbgValues) { |
2387 | MachineInstr &MI = *this; |
2388 | if (!MI.getOperand(i: 0).isReg()) |
2389 | return; |
2390 | |
2391 | MachineBasicBlock::iterator DI = MI; ++DI; |
2392 | for (MachineBasicBlock::iterator DE = MI.getParent()->end(); |
2393 | DI != DE; ++DI) { |
2394 | if (!DI->isDebugValue()) |
2395 | return; |
2396 | if (DI->hasDebugOperandForReg(Reg: MI.getOperand(i: 0).getReg())) |
2397 | DbgValues.push_back(Elt: &*DI); |
2398 | } |
2399 | } |
2400 | |
2401 | void MachineInstr::changeDebugValuesDefReg(Register Reg) { |
2402 | // Collect matching debug values. |
2403 | SmallVector<MachineInstr *, 2> DbgValues; |
2404 | |
2405 | if (!getOperand(i: 0).isReg()) |
2406 | return; |
2407 | |
2408 | Register DefReg = getOperand(i: 0).getReg(); |
2409 | auto *MRI = getRegInfo(); |
2410 | for (auto &MO : MRI->use_operands(Reg: DefReg)) { |
2411 | auto *DI = MO.getParent(); |
2412 | if (!DI->isDebugValue()) |
2413 | continue; |
2414 | if (DI->hasDebugOperandForReg(Reg: DefReg)) { |
2415 | DbgValues.push_back(Elt: DI); |
2416 | } |
2417 | } |
2418 | |
2419 | // Propagate Reg to debug value instructions. |
2420 | for (auto *DBI : DbgValues) |
2421 | for (MachineOperand &Op : DBI->getDebugOperandsForReg(Reg: DefReg)) |
2422 | Op.setReg(Reg); |
2423 | } |
2424 | |
2425 | using MMOList = SmallVector<const MachineMemOperand *, 2>; |
2426 | |
2427 | static LocationSize getSpillSlotSize(const MMOList &Accesses, |
2428 | const MachineFrameInfo &MFI) { |
2429 | uint64_t Size = 0; |
2430 | for (const auto *A : Accesses) { |
2431 | if (MFI.isSpillSlotObjectIndex( |
2432 | ObjectIdx: cast<FixedStackPseudoSourceValue>(Val: A->getPseudoValue()) |
2433 | ->getFrameIndex())) { |
2434 | LocationSize S = A->getSize(); |
2435 | if (!S.hasValue()) |
2436 | return LocationSize::beforeOrAfterPointer(); |
2437 | Size += S.getValue(); |
2438 | } |
2439 | } |
2440 | return Size; |
2441 | } |
2442 | |
2443 | std::optional<LocationSize> |
2444 | MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { |
2445 | int FI; |
2446 | if (TII->isStoreToStackSlotPostFE(MI: *this, FrameIndex&: FI)) { |
2447 | const MachineFrameInfo &MFI = getMF()->getFrameInfo(); |
2448 | if (MFI.isSpillSlotObjectIndex(ObjectIdx: FI)) |
2449 | return (*memoperands_begin())->getSize(); |
2450 | } |
2451 | return std::nullopt; |
2452 | } |
2453 | |
2454 | std::optional<LocationSize> |
2455 | MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { |
2456 | MMOList Accesses; |
2457 | if (TII->hasStoreToStackSlot(MI: *this, Accesses)) |
2458 | return getSpillSlotSize(Accesses, MFI: getMF()->getFrameInfo()); |
2459 | return std::nullopt; |
2460 | } |
2461 | |
2462 | std::optional<LocationSize> |
2463 | MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { |
2464 | int FI; |
2465 | if (TII->isLoadFromStackSlotPostFE(MI: *this, FrameIndex&: FI)) { |
2466 | const MachineFrameInfo &MFI = getMF()->getFrameInfo(); |
2467 | if (MFI.isSpillSlotObjectIndex(ObjectIdx: FI)) |
2468 | return (*memoperands_begin())->getSize(); |
2469 | } |
2470 | return std::nullopt; |
2471 | } |
2472 | |
2473 | std::optional<LocationSize> |
2474 | MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { |
2475 | MMOList Accesses; |
2476 | if (TII->hasLoadFromStackSlot(MI: *this, Accesses)) |
2477 | return getSpillSlotSize(Accesses, MFI: getMF()->getFrameInfo()); |
2478 | return std::nullopt; |
2479 | } |
2480 | |
2481 | unsigned MachineInstr::getDebugInstrNum() { |
2482 | if (DebugInstrNum == 0) |
2483 | DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); |
2484 | return DebugInstrNum; |
2485 | } |
2486 | |
2487 | unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { |
2488 | if (DebugInstrNum == 0) |
2489 | DebugInstrNum = MF.getNewDebugInstrNum(); |
2490 | return DebugInstrNum; |
2491 | } |
2492 | |
2493 | std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const { |
2494 | return std::tuple(getRegInfo()->getType(Reg: getOperand(i: 0).getReg()), |
2495 | getRegInfo()->getType(Reg: getOperand(i: 1).getReg())); |
2496 | } |
2497 | |
2498 | std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const { |
2499 | return std::tuple(getRegInfo()->getType(Reg: getOperand(i: 0).getReg()), |
2500 | getRegInfo()->getType(Reg: getOperand(i: 1).getReg()), |
2501 | getRegInfo()->getType(Reg: getOperand(i: 2).getReg())); |
2502 | } |
2503 | |
2504 | std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const { |
2505 | return std::tuple(getRegInfo()->getType(Reg: getOperand(i: 0).getReg()), |
2506 | getRegInfo()->getType(Reg: getOperand(i: 1).getReg()), |
2507 | getRegInfo()->getType(Reg: getOperand(i: 2).getReg()), |
2508 | getRegInfo()->getType(Reg: getOperand(i: 3).getReg())); |
2509 | } |
2510 | |
2511 | std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const { |
2512 | return std::tuple(getRegInfo()->getType(Reg: getOperand(i: 0).getReg()), |
2513 | getRegInfo()->getType(Reg: getOperand(i: 1).getReg()), |
2514 | getRegInfo()->getType(Reg: getOperand(i: 2).getReg()), |
2515 | getRegInfo()->getType(Reg: getOperand(i: 3).getReg()), |
2516 | getRegInfo()->getType(Reg: getOperand(i: 4).getReg())); |
2517 | } |
2518 | |
2519 | std::tuple<Register, LLT, Register, LLT> |
2520 | MachineInstr::getFirst2RegLLTs() const { |
2521 | Register Reg0 = getOperand(i: 0).getReg(); |
2522 | Register Reg1 = getOperand(i: 1).getReg(); |
2523 | return std::tuple(Reg0, getRegInfo()->getType(Reg: Reg0), Reg1, |
2524 | getRegInfo()->getType(Reg: Reg1)); |
2525 | } |
2526 | |
2527 | std::tuple<Register, LLT, Register, LLT, Register, LLT> |
2528 | MachineInstr::getFirst3RegLLTs() const { |
2529 | Register Reg0 = getOperand(i: 0).getReg(); |
2530 | Register Reg1 = getOperand(i: 1).getReg(); |
2531 | Register Reg2 = getOperand(i: 2).getReg(); |
2532 | return std::tuple(Reg0, getRegInfo()->getType(Reg: Reg0), Reg1, |
2533 | getRegInfo()->getType(Reg: Reg1), Reg2, |
2534 | getRegInfo()->getType(Reg: Reg2)); |
2535 | } |
2536 | |
2537 | std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT> |
2538 | MachineInstr::getFirst4RegLLTs() const { |
2539 | Register Reg0 = getOperand(i: 0).getReg(); |
2540 | Register Reg1 = getOperand(i: 1).getReg(); |
2541 | Register Reg2 = getOperand(i: 2).getReg(); |
2542 | Register Reg3 = getOperand(i: 3).getReg(); |
2543 | return std::tuple( |
2544 | Reg0, getRegInfo()->getType(Reg: Reg0), Reg1, getRegInfo()->getType(Reg: Reg1), |
2545 | Reg2, getRegInfo()->getType(Reg: Reg2), Reg3, getRegInfo()->getType(Reg: Reg3)); |
2546 | } |
2547 | |
2548 | std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register, |
2549 | LLT> |
2550 | MachineInstr::getFirst5RegLLTs() const { |
2551 | Register Reg0 = getOperand(i: 0).getReg(); |
2552 | Register Reg1 = getOperand(i: 1).getReg(); |
2553 | Register Reg2 = getOperand(i: 2).getReg(); |
2554 | Register Reg3 = getOperand(i: 3).getReg(); |
2555 | Register Reg4 = getOperand(i: 4).getReg(); |
2556 | return std::tuple( |
2557 | Reg0, getRegInfo()->getType(Reg: Reg0), Reg1, getRegInfo()->getType(Reg: Reg1), |
2558 | Reg2, getRegInfo()->getType(Reg: Reg2), Reg3, getRegInfo()->getType(Reg: Reg3), |
2559 | Reg4, getRegInfo()->getType(Reg: Reg4)); |
2560 | } |
2561 | |
2562 | void MachineInstr::insert(mop_iterator InsertBefore, |
2563 | ArrayRef<MachineOperand> Ops) { |
2564 | assert(InsertBefore != nullptr && "invalid iterator" ); |
2565 | assert(InsertBefore->getParent() == this && |
2566 | "iterator points to operand of other inst" ); |
2567 | if (Ops.empty()) |
2568 | return; |
2569 | |
2570 | // Do one pass to untie operands. |
2571 | SmallDenseMap<unsigned, unsigned> TiedOpIndices; |
2572 | for (const MachineOperand &MO : operands()) { |
2573 | if (MO.isReg() && MO.isTied()) { |
2574 | unsigned OpNo = getOperandNo(I: &MO); |
2575 | unsigned TiedTo = findTiedOperandIdx(OpIdx: OpNo); |
2576 | TiedOpIndices[OpNo] = TiedTo; |
2577 | untieRegOperand(OpIdx: OpNo); |
2578 | } |
2579 | } |
2580 | |
2581 | unsigned OpIdx = getOperandNo(I: InsertBefore); |
2582 | unsigned NumOperands = getNumOperands(); |
2583 | unsigned OpsToMove = NumOperands - OpIdx; |
2584 | |
2585 | SmallVector<MachineOperand> MovingOps; |
2586 | MovingOps.reserve(N: OpsToMove); |
2587 | |
2588 | for (unsigned I = 0; I < OpsToMove; ++I) { |
2589 | MovingOps.emplace_back(Args&: getOperand(i: OpIdx)); |
2590 | removeOperand(OpNo: OpIdx); |
2591 | } |
2592 | for (const MachineOperand &MO : Ops) |
2593 | addOperand(Op: MO); |
2594 | for (const MachineOperand &OpMoved : MovingOps) |
2595 | addOperand(Op: OpMoved); |
2596 | |
2597 | // Re-tie operands. |
2598 | for (auto [Tie1, Tie2] : TiedOpIndices) { |
2599 | if (Tie1 >= OpIdx) |
2600 | Tie1 += Ops.size(); |
2601 | if (Tie2 >= OpIdx) |
2602 | Tie2 += Ops.size(); |
2603 | tieOperands(DefIdx: Tie1, UseIdx: Tie2); |
2604 | } |
2605 | } |
2606 | |
2607 | bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId) const { |
2608 | assert(OpId && "expected non-zero operand id" ); |
2609 | assert(isInlineAsm() && "should only be used on inline asm" ); |
2610 | |
2611 | if (!getOperand(i: OpId).isReg()) |
2612 | return false; |
2613 | |
2614 | const MachineOperand &MD = getOperand(i: OpId - 1); |
2615 | if (!MD.isImm()) |
2616 | return false; |
2617 | |
2618 | InlineAsm::Flag F(MD.getImm()); |
2619 | if (F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) |
2620 | return F.getRegMayBeFolded(); |
2621 | return false; |
2622 | } |
2623 | |