1 | //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the common interface used by the various execution engine |
10 | // subclasses. |
11 | // |
12 | // FIXME: This file needs to be updated to support scalable vectors |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "llvm/ExecutionEngine/ExecutionEngine.h" |
17 | #include "llvm/ADT/STLExtras.h" |
18 | #include "llvm/ADT/SmallString.h" |
19 | #include "llvm/ADT/Statistic.h" |
20 | #include "llvm/ExecutionEngine/GenericValue.h" |
21 | #include "llvm/ExecutionEngine/JITEventListener.h" |
22 | #include "llvm/ExecutionEngine/ObjectCache.h" |
23 | #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" |
24 | #include "llvm/IR/Constants.h" |
25 | #include "llvm/IR/DataLayout.h" |
26 | #include "llvm/IR/DerivedTypes.h" |
27 | #include "llvm/IR/Mangler.h" |
28 | #include "llvm/IR/Module.h" |
29 | #include "llvm/IR/Operator.h" |
30 | #include "llvm/IR/ValueHandle.h" |
31 | #include "llvm/MC/TargetRegistry.h" |
32 | #include "llvm/Object/Archive.h" |
33 | #include "llvm/Object/ObjectFile.h" |
34 | #include "llvm/Support/Debug.h" |
35 | #include "llvm/Support/DynamicLibrary.h" |
36 | #include "llvm/Support/ErrorHandling.h" |
37 | #include "llvm/Support/raw_ostream.h" |
38 | #include "llvm/Target/TargetMachine.h" |
39 | #include "llvm/TargetParser/Host.h" |
40 | #include <cmath> |
41 | #include <cstring> |
42 | #include <mutex> |
43 | using namespace llvm; |
44 | |
45 | #define DEBUG_TYPE "jit" |
46 | |
47 | STATISTIC(NumInitBytes, "Number of bytes of global vars initialized" ); |
48 | STATISTIC(NumGlobals , "Number of global vars initialized" ); |
49 | |
50 | ExecutionEngine *(*ExecutionEngine::MCJITCtor)( |
51 | std::unique_ptr<Module> M, std::string *ErrorStr, |
52 | std::shared_ptr<MCJITMemoryManager> MemMgr, |
53 | std::shared_ptr<LegacyJITSymbolResolver> Resolver, |
54 | std::unique_ptr<TargetMachine> TM) = nullptr; |
55 | |
56 | ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, |
57 | std::string *ErrorStr) =nullptr; |
58 | |
59 | void JITEventListener::anchor() {} |
60 | |
61 | void ObjectCache::anchor() {} |
62 | |
63 | void ExecutionEngine::Init(std::unique_ptr<Module> M) { |
64 | CompilingLazily = false; |
65 | GVCompilationDisabled = false; |
66 | SymbolSearchingDisabled = false; |
67 | |
68 | // IR module verification is enabled by default in debug builds, and disabled |
69 | // by default in release builds. |
70 | #ifndef NDEBUG |
71 | VerifyModules = true; |
72 | #else |
73 | VerifyModules = false; |
74 | #endif |
75 | |
76 | assert(M && "Module is null?" ); |
77 | Modules.push_back(Elt: std::move(M)); |
78 | } |
79 | |
80 | ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) |
81 | : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { |
82 | Init(M: std::move(M)); |
83 | } |
84 | |
85 | ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) |
86 | : DL(std::move(DL)), LazyFunctionCreator(nullptr) { |
87 | Init(M: std::move(M)); |
88 | } |
89 | |
90 | ExecutionEngine::~ExecutionEngine() { |
91 | clearAllGlobalMappings(); |
92 | } |
93 | |
94 | namespace { |
95 | /// Helper class which uses a value handler to automatically deletes the |
96 | /// memory block when the GlobalVariable is destroyed. |
97 | class GVMemoryBlock final : public CallbackVH { |
98 | GVMemoryBlock(const GlobalVariable *GV) |
99 | : CallbackVH(const_cast<GlobalVariable*>(GV)) {} |
100 | |
101 | public: |
102 | /// Returns the address the GlobalVariable should be written into. The |
103 | /// GVMemoryBlock object prefixes that. |
104 | static char *Create(const GlobalVariable *GV, const DataLayout& TD) { |
105 | Type *ElTy = GV->getValueType(); |
106 | size_t GVSize = (size_t)TD.getTypeAllocSize(Ty: ElTy); |
107 | void *RawMemory = ::operator new( |
108 | alignTo(Size: sizeof(GVMemoryBlock), A: TD.getPreferredAlign(GV)) + GVSize); |
109 | new(RawMemory) GVMemoryBlock(GV); |
110 | return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); |
111 | } |
112 | |
113 | void deleted() override { |
114 | // We allocated with operator new and with some extra memory hanging off the |
115 | // end, so don't just delete this. I'm not sure if this is actually |
116 | // required. |
117 | this->~GVMemoryBlock(); |
118 | ::operator delete(this); |
119 | } |
120 | }; |
121 | } // anonymous namespace |
122 | |
123 | char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { |
124 | return GVMemoryBlock::Create(GV, TD: getDataLayout()); |
125 | } |
126 | |
127 | void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { |
128 | llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile." ); |
129 | } |
130 | |
131 | void |
132 | ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { |
133 | llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile." ); |
134 | } |
135 | |
136 | void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { |
137 | llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive." ); |
138 | } |
139 | |
140 | bool ExecutionEngine::removeModule(Module *M) { |
141 | for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { |
142 | Module *Found = I->get(); |
143 | if (Found == M) { |
144 | I->release(); |
145 | Modules.erase(CI: I); |
146 | clearGlobalMappingsFromModule(M); |
147 | return true; |
148 | } |
149 | } |
150 | return false; |
151 | } |
152 | |
153 | Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) { |
154 | for (const auto &M : Modules) { |
155 | Function *F = M->getFunction(Name: FnName); |
156 | if (F && !F->isDeclaration()) |
157 | return F; |
158 | } |
159 | return nullptr; |
160 | } |
161 | |
162 | GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) { |
163 | for (const auto &M : Modules) { |
164 | GlobalVariable *GV = M->getGlobalVariable(Name, AllowInternal); |
165 | if (GV && !GV->isDeclaration()) |
166 | return GV; |
167 | } |
168 | return nullptr; |
169 | } |
170 | |
171 | uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { |
172 | GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Key: Name); |
173 | uint64_t OldVal; |
174 | |
175 | // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the |
176 | // GlobalAddressMap. |
177 | if (I == GlobalAddressMap.end()) |
178 | OldVal = 0; |
179 | else { |
180 | GlobalAddressReverseMap.erase(x: I->second); |
181 | OldVal = I->second; |
182 | GlobalAddressMap.erase(I); |
183 | } |
184 | |
185 | return OldVal; |
186 | } |
187 | |
188 | std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { |
189 | assert(GV->hasName() && "Global must have name." ); |
190 | |
191 | std::lock_guard<sys::Mutex> locked(lock); |
192 | SmallString<128> FullName; |
193 | |
194 | const DataLayout &DL = |
195 | GV->getDataLayout().isDefault() |
196 | ? getDataLayout() |
197 | : GV->getDataLayout(); |
198 | |
199 | Mangler::getNameWithPrefix(OutName&: FullName, GVName: GV->getName(), DL); |
200 | return std::string(FullName); |
201 | } |
202 | |
203 | void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { |
204 | std::lock_guard<sys::Mutex> locked(lock); |
205 | addGlobalMapping(Name: getMangledName(GV), Addr: (uint64_t) Addr); |
206 | } |
207 | |
208 | void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { |
209 | std::lock_guard<sys::Mutex> locked(lock); |
210 | |
211 | assert(!Name.empty() && "Empty GlobalMapping symbol name!" ); |
212 | |
213 | LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n" ;); |
214 | uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; |
215 | assert((!CurVal || !Addr) && "GlobalMapping already established!" ); |
216 | CurVal = Addr; |
217 | |
218 | // If we are using the reverse mapping, add it too. |
219 | if (!EEState.getGlobalAddressReverseMap().empty()) { |
220 | std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; |
221 | assert((!V.empty() || !Name.empty()) && |
222 | "GlobalMapping already established!" ); |
223 | V = std::string(Name); |
224 | } |
225 | } |
226 | |
227 | void ExecutionEngine::clearAllGlobalMappings() { |
228 | std::lock_guard<sys::Mutex> locked(lock); |
229 | |
230 | EEState.getGlobalAddressMap().clear(); |
231 | EEState.getGlobalAddressReverseMap().clear(); |
232 | } |
233 | |
234 | void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { |
235 | std::lock_guard<sys::Mutex> locked(lock); |
236 | |
237 | for (GlobalObject &GO : M->global_objects()) |
238 | EEState.RemoveMapping(Name: getMangledName(GV: &GO)); |
239 | } |
240 | |
241 | uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, |
242 | void *Addr) { |
243 | std::lock_guard<sys::Mutex> locked(lock); |
244 | return updateGlobalMapping(Name: getMangledName(GV), Addr: (uint64_t) Addr); |
245 | } |
246 | |
247 | uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { |
248 | std::lock_guard<sys::Mutex> locked(lock); |
249 | |
250 | ExecutionEngineState::GlobalAddressMapTy &Map = |
251 | EEState.getGlobalAddressMap(); |
252 | |
253 | // Deleting from the mapping? |
254 | if (!Addr) |
255 | return EEState.RemoveMapping(Name); |
256 | |
257 | uint64_t &CurVal = Map[Name]; |
258 | uint64_t OldVal = CurVal; |
259 | |
260 | if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) |
261 | EEState.getGlobalAddressReverseMap().erase(x: CurVal); |
262 | CurVal = Addr; |
263 | |
264 | // If we are using the reverse mapping, add it too. |
265 | if (!EEState.getGlobalAddressReverseMap().empty()) { |
266 | std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; |
267 | assert((!V.empty() || !Name.empty()) && |
268 | "GlobalMapping already established!" ); |
269 | V = std::string(Name); |
270 | } |
271 | return OldVal; |
272 | } |
273 | |
274 | uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { |
275 | std::lock_guard<sys::Mutex> locked(lock); |
276 | uint64_t Address = 0; |
277 | ExecutionEngineState::GlobalAddressMapTy::iterator I = |
278 | EEState.getGlobalAddressMap().find(Key: S); |
279 | if (I != EEState.getGlobalAddressMap().end()) |
280 | Address = I->second; |
281 | return Address; |
282 | } |
283 | |
284 | |
285 | void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { |
286 | std::lock_guard<sys::Mutex> locked(lock); |
287 | if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) |
288 | return Address; |
289 | return nullptr; |
290 | } |
291 | |
292 | void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { |
293 | std::lock_guard<sys::Mutex> locked(lock); |
294 | return getPointerToGlobalIfAvailable(S: getMangledName(GV)); |
295 | } |
296 | |
297 | const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { |
298 | std::lock_guard<sys::Mutex> locked(lock); |
299 | |
300 | // If we haven't computed the reverse mapping yet, do so first. |
301 | if (EEState.getGlobalAddressReverseMap().empty()) { |
302 | for (ExecutionEngineState::GlobalAddressMapTy::iterator |
303 | I = EEState.getGlobalAddressMap().begin(), |
304 | E = EEState.getGlobalAddressMap().end(); I != E; ++I) { |
305 | StringRef Name = I->first(); |
306 | uint64_t Addr = I->second; |
307 | EEState.getGlobalAddressReverseMap().insert( |
308 | x: std::make_pair(x&: Addr, y: std::string(Name))); |
309 | } |
310 | } |
311 | |
312 | std::map<uint64_t, std::string>::iterator I = |
313 | EEState.getGlobalAddressReverseMap().find(x: (uint64_t) Addr); |
314 | |
315 | if (I != EEState.getGlobalAddressReverseMap().end()) { |
316 | StringRef Name = I->second; |
317 | for (const auto &M : Modules) |
318 | if (GlobalValue *GV = M->getNamedValue(Name)) |
319 | return GV; |
320 | } |
321 | return nullptr; |
322 | } |
323 | |
324 | namespace { |
325 | class ArgvArray { |
326 | std::unique_ptr<char[]> Array; |
327 | std::vector<std::unique_ptr<char[]>> Values; |
328 | public: |
329 | /// Turn a vector of strings into a nice argv style array of pointers to null |
330 | /// terminated strings. |
331 | void *reset(LLVMContext &C, ExecutionEngine *EE, |
332 | const std::vector<std::string> &InputArgv); |
333 | }; |
334 | } // anonymous namespace |
335 | void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, |
336 | const std::vector<std::string> &InputArgv) { |
337 | Values.clear(); // Free the old contents. |
338 | Values.reserve(n: InputArgv.size()); |
339 | unsigned PtrSize = EE->getDataLayout().getPointerSize(); |
340 | Array = std::make_unique<char[]>(num: (InputArgv.size()+1)*PtrSize); |
341 | |
342 | LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n" ); |
343 | Type *SBytePtr = PointerType::getUnqual(C); |
344 | |
345 | for (unsigned i = 0; i != InputArgv.size(); ++i) { |
346 | unsigned Size = InputArgv[i].size()+1; |
347 | auto Dest = std::make_unique<char[]>(num: Size); |
348 | LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get() |
349 | << "\n" ); |
350 | |
351 | std::copy(first: InputArgv[i].begin(), last: InputArgv[i].end(), result: Dest.get()); |
352 | Dest[Size-1] = 0; |
353 | |
354 | // Endian safe: Array[i] = (PointerTy)Dest; |
355 | EE->StoreValueToMemory(Val: PTOGV(P: Dest.get()), |
356 | Ptr: (GenericValue*)(&Array[i*PtrSize]), Ty: SBytePtr); |
357 | Values.push_back(x: std::move(Dest)); |
358 | } |
359 | |
360 | // Null terminate it |
361 | EE->StoreValueToMemory(Val: PTOGV(P: nullptr), |
362 | Ptr: (GenericValue*)(&Array[InputArgv.size()*PtrSize]), |
363 | Ty: SBytePtr); |
364 | return Array.get(); |
365 | } |
366 | |
367 | void ExecutionEngine::runStaticConstructorsDestructors(Module &module, |
368 | bool isDtors) { |
369 | StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors" ); |
370 | GlobalVariable *GV = module.getNamedGlobal(Name); |
371 | |
372 | // If this global has internal linkage, or if it has a use, then it must be |
373 | // an old-style (llvmgcc3) static ctor with __main linked in and in use. If |
374 | // this is the case, don't execute any of the global ctors, __main will do |
375 | // it. |
376 | if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; |
377 | |
378 | // Should be an array of '{ i32, void ()* }' structs. The first value is |
379 | // the init priority, which we ignore. |
380 | ConstantArray *InitList = dyn_cast<ConstantArray>(Val: GV->getInitializer()); |
381 | if (!InitList) |
382 | return; |
383 | for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { |
384 | ConstantStruct *CS = dyn_cast<ConstantStruct>(Val: InitList->getOperand(i_nocapture: i)); |
385 | if (!CS) continue; |
386 | |
387 | Constant *FP = CS->getOperand(i_nocapture: 1); |
388 | if (FP->isNullValue()) |
389 | continue; // Found a sentinel value, ignore. |
390 | |
391 | // Strip off constant expression casts. |
392 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: FP)) |
393 | if (CE->isCast()) |
394 | FP = CE->getOperand(i_nocapture: 0); |
395 | |
396 | // Execute the ctor/dtor function! |
397 | if (Function *F = dyn_cast<Function>(Val: FP)) |
398 | runFunction(F, ArgValues: std::nullopt); |
399 | |
400 | // FIXME: It is marginally lame that we just do nothing here if we see an |
401 | // entry we don't recognize. It might not be unreasonable for the verifier |
402 | // to not even allow this and just assert here. |
403 | } |
404 | } |
405 | |
406 | void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { |
407 | // Execute global ctors/dtors for each module in the program. |
408 | for (std::unique_ptr<Module> &M : Modules) |
409 | runStaticConstructorsDestructors(module&: *M, isDtors); |
410 | } |
411 | |
412 | #ifndef NDEBUG |
413 | /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. |
414 | static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { |
415 | unsigned PtrSize = EE->getDataLayout().getPointerSize(); |
416 | for (unsigned i = 0; i < PtrSize; ++i) |
417 | if (*(i + (uint8_t*)Loc)) |
418 | return false; |
419 | return true; |
420 | } |
421 | #endif |
422 | |
423 | int ExecutionEngine::runFunctionAsMain(Function *Fn, |
424 | const std::vector<std::string> &argv, |
425 | const char * const * envp) { |
426 | std::vector<GenericValue> GVArgs; |
427 | GenericValue GVArgc; |
428 | GVArgc.IntVal = APInt(32, argv.size()); |
429 | |
430 | // Check main() type |
431 | unsigned NumArgs = Fn->getFunctionType()->getNumParams(); |
432 | FunctionType *FTy = Fn->getFunctionType(); |
433 | Type *PPInt8Ty = PointerType::get(C&: Fn->getContext(), AddressSpace: 0); |
434 | |
435 | // Check the argument types. |
436 | if (NumArgs > 3) |
437 | report_fatal_error(reason: "Invalid number of arguments of main() supplied" ); |
438 | if (NumArgs >= 3 && FTy->getParamType(i: 2) != PPInt8Ty) |
439 | report_fatal_error(reason: "Invalid type for third argument of main() supplied" ); |
440 | if (NumArgs >= 2 && FTy->getParamType(i: 1) != PPInt8Ty) |
441 | report_fatal_error(reason: "Invalid type for second argument of main() supplied" ); |
442 | if (NumArgs >= 1 && !FTy->getParamType(i: 0)->isIntegerTy(Bitwidth: 32)) |
443 | report_fatal_error(reason: "Invalid type for first argument of main() supplied" ); |
444 | if (!FTy->getReturnType()->isIntegerTy() && |
445 | !FTy->getReturnType()->isVoidTy()) |
446 | report_fatal_error(reason: "Invalid return type of main() supplied" ); |
447 | |
448 | ArgvArray CArgv; |
449 | ArgvArray CEnv; |
450 | if (NumArgs) { |
451 | GVArgs.push_back(x: GVArgc); // Arg #0 = argc. |
452 | if (NumArgs > 1) { |
453 | // Arg #1 = argv. |
454 | GVArgs.push_back(x: PTOGV(P: CArgv.reset(C&: Fn->getContext(), EE: this, InputArgv: argv))); |
455 | assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && |
456 | "argv[0] was null after CreateArgv" ); |
457 | if (NumArgs > 2) { |
458 | std::vector<std::string> EnvVars; |
459 | for (unsigned i = 0; envp[i]; ++i) |
460 | EnvVars.emplace_back(args: envp[i]); |
461 | // Arg #2 = envp. |
462 | GVArgs.push_back(x: PTOGV(P: CEnv.reset(C&: Fn->getContext(), EE: this, InputArgv: EnvVars))); |
463 | } |
464 | } |
465 | } |
466 | |
467 | return runFunction(F: Fn, ArgValues: GVArgs).IntVal.getZExtValue(); |
468 | } |
469 | |
470 | EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} |
471 | |
472 | EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) |
473 | : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), |
474 | OptLevel(CodeGenOptLevel::Default), MemMgr(nullptr), Resolver(nullptr) { |
475 | // IR module verification is enabled by default in debug builds, and disabled |
476 | // by default in release builds. |
477 | #ifndef NDEBUG |
478 | VerifyModules = true; |
479 | #else |
480 | VerifyModules = false; |
481 | #endif |
482 | } |
483 | |
484 | EngineBuilder::~EngineBuilder() = default; |
485 | |
486 | EngineBuilder &EngineBuilder::setMCJITMemoryManager( |
487 | std::unique_ptr<RTDyldMemoryManager> mcjmm) { |
488 | auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); |
489 | MemMgr = SharedMM; |
490 | Resolver = SharedMM; |
491 | return *this; |
492 | } |
493 | |
494 | EngineBuilder& |
495 | EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { |
496 | MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); |
497 | return *this; |
498 | } |
499 | |
500 | EngineBuilder & |
501 | EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) { |
502 | Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR)); |
503 | return *this; |
504 | } |
505 | |
506 | ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { |
507 | std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. |
508 | |
509 | // Make sure we can resolve symbols in the program as well. The zero arg |
510 | // to the function tells DynamicLibrary to load the program, not a library. |
511 | if (sys::DynamicLibrary::LoadLibraryPermanently(Filename: nullptr, ErrMsg: ErrorStr)) |
512 | return nullptr; |
513 | |
514 | // If the user specified a memory manager but didn't specify which engine to |
515 | // create, we assume they only want the JIT, and we fail if they only want |
516 | // the interpreter. |
517 | if (MemMgr) { |
518 | if (WhichEngine & EngineKind::JIT) |
519 | WhichEngine = EngineKind::JIT; |
520 | else { |
521 | if (ErrorStr) |
522 | *ErrorStr = "Cannot create an interpreter with a memory manager." ; |
523 | return nullptr; |
524 | } |
525 | } |
526 | |
527 | // Unless the interpreter was explicitly selected or the JIT is not linked, |
528 | // try making a JIT. |
529 | if ((WhichEngine & EngineKind::JIT) && TheTM) { |
530 | if (!TM->getTarget().hasJIT()) { |
531 | errs() << "WARNING: This target JIT is not designed for the host" |
532 | << " you are running. If bad things happen, please choose" |
533 | << " a different -march switch.\n" ; |
534 | } |
535 | |
536 | ExecutionEngine *EE = nullptr; |
537 | if (ExecutionEngine::MCJITCtor) |
538 | EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), |
539 | std::move(Resolver), std::move(TheTM)); |
540 | |
541 | if (EE) { |
542 | EE->setVerifyModules(VerifyModules); |
543 | return EE; |
544 | } |
545 | } |
546 | |
547 | // If we can't make a JIT and we didn't request one specifically, try making |
548 | // an interpreter instead. |
549 | if (WhichEngine & EngineKind::Interpreter) { |
550 | if (ExecutionEngine::InterpCtor) |
551 | return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); |
552 | if (ErrorStr) |
553 | *ErrorStr = "Interpreter has not been linked in." ; |
554 | return nullptr; |
555 | } |
556 | |
557 | if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { |
558 | if (ErrorStr) |
559 | *ErrorStr = "JIT has not been linked in." ; |
560 | } |
561 | |
562 | return nullptr; |
563 | } |
564 | |
565 | void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { |
566 | if (Function *F = const_cast<Function*>(dyn_cast<Function>(Val: GV))) |
567 | return getPointerToFunction(F); |
568 | |
569 | std::lock_guard<sys::Mutex> locked(lock); |
570 | if (void* P = getPointerToGlobalIfAvailable(GV)) |
571 | return P; |
572 | |
573 | // Global variable might have been added since interpreter started. |
574 | if (GlobalVariable *GVar = |
575 | const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(Val: GV))) |
576 | emitGlobalVariable(GV: GVar); |
577 | else |
578 | llvm_unreachable("Global hasn't had an address allocated yet!" ); |
579 | |
580 | return getPointerToGlobalIfAvailable(GV); |
581 | } |
582 | |
583 | /// Converts a Constant* into a GenericValue, including handling of |
584 | /// ConstantExpr values. |
585 | GenericValue ExecutionEngine::getConstantValue(const Constant *C) { |
586 | // If its undefined, return the garbage. |
587 | if (isa<UndefValue>(Val: C)) { |
588 | GenericValue Result; |
589 | switch (C->getType()->getTypeID()) { |
590 | default: |
591 | break; |
592 | case Type::IntegerTyID: |
593 | case Type::X86_FP80TyID: |
594 | case Type::FP128TyID: |
595 | case Type::PPC_FP128TyID: |
596 | // Although the value is undefined, we still have to construct an APInt |
597 | // with the correct bit width. |
598 | Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); |
599 | break; |
600 | case Type::StructTyID: { |
601 | // if the whole struct is 'undef' just reserve memory for the value. |
602 | if(StructType *STy = dyn_cast<StructType>(Val: C->getType())) { |
603 | unsigned int elemNum = STy->getNumElements(); |
604 | Result.AggregateVal.resize(new_size: elemNum); |
605 | for (unsigned int i = 0; i < elemNum; ++i) { |
606 | Type *ElemTy = STy->getElementType(N: i); |
607 | if (ElemTy->isIntegerTy()) |
608 | Result.AggregateVal[i].IntVal = |
609 | APInt(ElemTy->getPrimitiveSizeInBits(), 0); |
610 | else if (ElemTy->isAggregateType()) { |
611 | const Constant *ElemUndef = UndefValue::get(T: ElemTy); |
612 | Result.AggregateVal[i] = getConstantValue(C: ElemUndef); |
613 | } |
614 | } |
615 | } |
616 | } |
617 | break; |
618 | case Type::ScalableVectorTyID: |
619 | report_fatal_error( |
620 | reason: "Scalable vector support not yet implemented in ExecutionEngine" ); |
621 | case Type::ArrayTyID: { |
622 | auto *ArrTy = cast<ArrayType>(Val: C->getType()); |
623 | Type *ElemTy = ArrTy->getElementType(); |
624 | unsigned int elemNum = ArrTy->getNumElements(); |
625 | Result.AggregateVal.resize(new_size: elemNum); |
626 | if (ElemTy->isIntegerTy()) |
627 | for (unsigned int i = 0; i < elemNum; ++i) |
628 | Result.AggregateVal[i].IntVal = |
629 | APInt(ElemTy->getPrimitiveSizeInBits(), 0); |
630 | break; |
631 | } |
632 | case Type::FixedVectorTyID: { |
633 | // if the whole vector is 'undef' just reserve memory for the value. |
634 | auto *VTy = cast<FixedVectorType>(Val: C->getType()); |
635 | Type *ElemTy = VTy->getElementType(); |
636 | unsigned int elemNum = VTy->getNumElements(); |
637 | Result.AggregateVal.resize(new_size: elemNum); |
638 | if (ElemTy->isIntegerTy()) |
639 | for (unsigned int i = 0; i < elemNum; ++i) |
640 | Result.AggregateVal[i].IntVal = |
641 | APInt(ElemTy->getPrimitiveSizeInBits(), 0); |
642 | break; |
643 | } |
644 | } |
645 | return Result; |
646 | } |
647 | |
648 | // Otherwise, if the value is a ConstantExpr... |
649 | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: C)) { |
650 | Constant *Op0 = CE->getOperand(i_nocapture: 0); |
651 | switch (CE->getOpcode()) { |
652 | case Instruction::GetElementPtr: { |
653 | // Compute the index |
654 | GenericValue Result = getConstantValue(C: Op0); |
655 | APInt Offset(DL.getPointerSizeInBits(), 0); |
656 | cast<GEPOperator>(Val: CE)->accumulateConstantOffset(DL, Offset); |
657 | |
658 | char* tmp = (char*) Result.PointerVal; |
659 | Result = PTOGV(P: tmp + Offset.getSExtValue()); |
660 | return Result; |
661 | } |
662 | case Instruction::Trunc: { |
663 | GenericValue GV = getConstantValue(C: Op0); |
664 | uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth(); |
665 | GV.IntVal = GV.IntVal.trunc(width: BitWidth); |
666 | return GV; |
667 | } |
668 | case Instruction::ZExt: { |
669 | GenericValue GV = getConstantValue(C: Op0); |
670 | uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth(); |
671 | GV.IntVal = GV.IntVal.zext(width: BitWidth); |
672 | return GV; |
673 | } |
674 | case Instruction::SExt: { |
675 | GenericValue GV = getConstantValue(C: Op0); |
676 | uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth(); |
677 | GV.IntVal = GV.IntVal.sext(width: BitWidth); |
678 | return GV; |
679 | } |
680 | case Instruction::FPTrunc: { |
681 | // FIXME long double |
682 | GenericValue GV = getConstantValue(C: Op0); |
683 | GV.FloatVal = float(GV.DoubleVal); |
684 | return GV; |
685 | } |
686 | case Instruction::FPExt:{ |
687 | // FIXME long double |
688 | GenericValue GV = getConstantValue(C: Op0); |
689 | GV.DoubleVal = double(GV.FloatVal); |
690 | return GV; |
691 | } |
692 | case Instruction::UIToFP: { |
693 | GenericValue GV = getConstantValue(C: Op0); |
694 | if (CE->getType()->isFloatTy()) |
695 | GV.FloatVal = float(GV.IntVal.roundToDouble()); |
696 | else if (CE->getType()->isDoubleTy()) |
697 | GV.DoubleVal = GV.IntVal.roundToDouble(); |
698 | else if (CE->getType()->isX86_FP80Ty()) { |
699 | APFloat apf = APFloat::getZero(Sem: APFloat::x87DoubleExtended()); |
700 | (void)apf.convertFromAPInt(Input: GV.IntVal, |
701 | IsSigned: false, |
702 | RM: APFloat::rmNearestTiesToEven); |
703 | GV.IntVal = apf.bitcastToAPInt(); |
704 | } |
705 | return GV; |
706 | } |
707 | case Instruction::SIToFP: { |
708 | GenericValue GV = getConstantValue(C: Op0); |
709 | if (CE->getType()->isFloatTy()) |
710 | GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); |
711 | else if (CE->getType()->isDoubleTy()) |
712 | GV.DoubleVal = GV.IntVal.signedRoundToDouble(); |
713 | else if (CE->getType()->isX86_FP80Ty()) { |
714 | APFloat apf = APFloat::getZero(Sem: APFloat::x87DoubleExtended()); |
715 | (void)apf.convertFromAPInt(Input: GV.IntVal, |
716 | IsSigned: true, |
717 | RM: APFloat::rmNearestTiesToEven); |
718 | GV.IntVal = apf.bitcastToAPInt(); |
719 | } |
720 | return GV; |
721 | } |
722 | case Instruction::FPToUI: // double->APInt conversion handles sign |
723 | case Instruction::FPToSI: { |
724 | GenericValue GV = getConstantValue(C: Op0); |
725 | uint32_t BitWidth = cast<IntegerType>(Val: CE->getType())->getBitWidth(); |
726 | if (Op0->getType()->isFloatTy()) |
727 | GV.IntVal = APIntOps::RoundFloatToAPInt(Float: GV.FloatVal, width: BitWidth); |
728 | else if (Op0->getType()->isDoubleTy()) |
729 | GV.IntVal = APIntOps::RoundDoubleToAPInt(Double: GV.DoubleVal, width: BitWidth); |
730 | else if (Op0->getType()->isX86_FP80Ty()) { |
731 | APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal); |
732 | uint64_t v; |
733 | bool ignored; |
734 | (void)apf.convertToInteger(Input: MutableArrayRef(v), Width: BitWidth, |
735 | IsSigned: CE->getOpcode()==Instruction::FPToSI, |
736 | RM: APFloat::rmTowardZero, IsExact: &ignored); |
737 | GV.IntVal = v; // endian? |
738 | } |
739 | return GV; |
740 | } |
741 | case Instruction::PtrToInt: { |
742 | GenericValue GV = getConstantValue(C: Op0); |
743 | uint32_t PtrWidth = DL.getTypeSizeInBits(Ty: Op0->getType()); |
744 | assert(PtrWidth <= 64 && "Bad pointer width" ); |
745 | GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); |
746 | uint32_t IntWidth = DL.getTypeSizeInBits(Ty: CE->getType()); |
747 | GV.IntVal = GV.IntVal.zextOrTrunc(width: IntWidth); |
748 | return GV; |
749 | } |
750 | case Instruction::IntToPtr: { |
751 | GenericValue GV = getConstantValue(C: Op0); |
752 | uint32_t PtrWidth = DL.getTypeSizeInBits(Ty: CE->getType()); |
753 | GV.IntVal = GV.IntVal.zextOrTrunc(width: PtrWidth); |
754 | assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width" ); |
755 | GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); |
756 | return GV; |
757 | } |
758 | case Instruction::BitCast: { |
759 | GenericValue GV = getConstantValue(C: Op0); |
760 | Type* DestTy = CE->getType(); |
761 | switch (Op0->getType()->getTypeID()) { |
762 | default: llvm_unreachable("Invalid bitcast operand" ); |
763 | case Type::IntegerTyID: |
764 | assert(DestTy->isFloatingPointTy() && "invalid bitcast" ); |
765 | if (DestTy->isFloatTy()) |
766 | GV.FloatVal = GV.IntVal.bitsToFloat(); |
767 | else if (DestTy->isDoubleTy()) |
768 | GV.DoubleVal = GV.IntVal.bitsToDouble(); |
769 | break; |
770 | case Type::FloatTyID: |
771 | assert(DestTy->isIntegerTy(32) && "Invalid bitcast" ); |
772 | GV.IntVal = APInt::floatToBits(V: GV.FloatVal); |
773 | break; |
774 | case Type::DoubleTyID: |
775 | assert(DestTy->isIntegerTy(64) && "Invalid bitcast" ); |
776 | GV.IntVal = APInt::doubleToBits(V: GV.DoubleVal); |
777 | break; |
778 | case Type::PointerTyID: |
779 | assert(DestTy->isPointerTy() && "Invalid bitcast" ); |
780 | break; // getConstantValue(Op0) above already converted it |
781 | } |
782 | return GV; |
783 | } |
784 | case Instruction::Add: |
785 | case Instruction::FAdd: |
786 | case Instruction::Sub: |
787 | case Instruction::FSub: |
788 | case Instruction::Mul: |
789 | case Instruction::FMul: |
790 | case Instruction::UDiv: |
791 | case Instruction::SDiv: |
792 | case Instruction::URem: |
793 | case Instruction::SRem: |
794 | case Instruction::And: |
795 | case Instruction::Or: |
796 | case Instruction::Xor: { |
797 | GenericValue LHS = getConstantValue(C: Op0); |
798 | GenericValue RHS = getConstantValue(C: CE->getOperand(i_nocapture: 1)); |
799 | GenericValue GV; |
800 | switch (CE->getOperand(i_nocapture: 0)->getType()->getTypeID()) { |
801 | default: llvm_unreachable("Bad add type!" ); |
802 | case Type::IntegerTyID: |
803 | switch (CE->getOpcode()) { |
804 | default: llvm_unreachable("Invalid integer opcode" ); |
805 | case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; |
806 | case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; |
807 | case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; |
808 | case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS: RHS.IntVal); break; |
809 | case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS: RHS.IntVal); break; |
810 | case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS: RHS.IntVal); break; |
811 | case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS: RHS.IntVal); break; |
812 | case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; |
813 | case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; |
814 | case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; |
815 | } |
816 | break; |
817 | case Type::FloatTyID: |
818 | switch (CE->getOpcode()) { |
819 | default: llvm_unreachable("Invalid float opcode" ); |
820 | case Instruction::FAdd: |
821 | GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; |
822 | case Instruction::FSub: |
823 | GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; |
824 | case Instruction::FMul: |
825 | GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; |
826 | case Instruction::FDiv: |
827 | GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; |
828 | case Instruction::FRem: |
829 | GV.FloatVal = std::fmod(x: LHS.FloatVal,y: RHS.FloatVal); break; |
830 | } |
831 | break; |
832 | case Type::DoubleTyID: |
833 | switch (CE->getOpcode()) { |
834 | default: llvm_unreachable("Invalid double opcode" ); |
835 | case Instruction::FAdd: |
836 | GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; |
837 | case Instruction::FSub: |
838 | GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; |
839 | case Instruction::FMul: |
840 | GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; |
841 | case Instruction::FDiv: |
842 | GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; |
843 | case Instruction::FRem: |
844 | GV.DoubleVal = std::fmod(x: LHS.DoubleVal,y: RHS.DoubleVal); break; |
845 | } |
846 | break; |
847 | case Type::X86_FP80TyID: |
848 | case Type::PPC_FP128TyID: |
849 | case Type::FP128TyID: { |
850 | const fltSemantics &Sem = CE->getOperand(i_nocapture: 0)->getType()->getFltSemantics(); |
851 | APFloat apfLHS = APFloat(Sem, LHS.IntVal); |
852 | switch (CE->getOpcode()) { |
853 | default: llvm_unreachable("Invalid long double opcode" ); |
854 | case Instruction::FAdd: |
855 | apfLHS.add(RHS: APFloat(Sem, RHS.IntVal), RM: APFloat::rmNearestTiesToEven); |
856 | GV.IntVal = apfLHS.bitcastToAPInt(); |
857 | break; |
858 | case Instruction::FSub: |
859 | apfLHS.subtract(RHS: APFloat(Sem, RHS.IntVal), |
860 | RM: APFloat::rmNearestTiesToEven); |
861 | GV.IntVal = apfLHS.bitcastToAPInt(); |
862 | break; |
863 | case Instruction::FMul: |
864 | apfLHS.multiply(RHS: APFloat(Sem, RHS.IntVal), |
865 | RM: APFloat::rmNearestTiesToEven); |
866 | GV.IntVal = apfLHS.bitcastToAPInt(); |
867 | break; |
868 | case Instruction::FDiv: |
869 | apfLHS.divide(RHS: APFloat(Sem, RHS.IntVal), |
870 | RM: APFloat::rmNearestTiesToEven); |
871 | GV.IntVal = apfLHS.bitcastToAPInt(); |
872 | break; |
873 | case Instruction::FRem: |
874 | apfLHS.mod(RHS: APFloat(Sem, RHS.IntVal)); |
875 | GV.IntVal = apfLHS.bitcastToAPInt(); |
876 | break; |
877 | } |
878 | } |
879 | break; |
880 | } |
881 | return GV; |
882 | } |
883 | default: |
884 | break; |
885 | } |
886 | |
887 | SmallString<256> Msg; |
888 | raw_svector_ostream OS(Msg); |
889 | OS << "ConstantExpr not handled: " << *CE; |
890 | report_fatal_error(reason: OS.str()); |
891 | } |
892 | |
893 | if (auto *TETy = dyn_cast<TargetExtType>(Val: C->getType())) { |
894 | assert(TETy->hasProperty(TargetExtType::HasZeroInit) && C->isNullValue() && |
895 | "TargetExtType only supports null constant value" ); |
896 | C = Constant::getNullValue(Ty: TETy->getLayoutType()); |
897 | } |
898 | |
899 | // Otherwise, we have a simple constant. |
900 | GenericValue Result; |
901 | switch (C->getType()->getTypeID()) { |
902 | case Type::FloatTyID: |
903 | Result.FloatVal = cast<ConstantFP>(Val: C)->getValueAPF().convertToFloat(); |
904 | break; |
905 | case Type::DoubleTyID: |
906 | Result.DoubleVal = cast<ConstantFP>(Val: C)->getValueAPF().convertToDouble(); |
907 | break; |
908 | case Type::X86_FP80TyID: |
909 | case Type::FP128TyID: |
910 | case Type::PPC_FP128TyID: |
911 | Result.IntVal = cast <ConstantFP>(Val: C)->getValueAPF().bitcastToAPInt(); |
912 | break; |
913 | case Type::IntegerTyID: |
914 | Result.IntVal = cast<ConstantInt>(Val: C)->getValue(); |
915 | break; |
916 | case Type::PointerTyID: |
917 | while (auto *A = dyn_cast<GlobalAlias>(Val: C)) { |
918 | C = A->getAliasee(); |
919 | } |
920 | if (isa<ConstantPointerNull>(Val: C)) |
921 | Result.PointerVal = nullptr; |
922 | else if (const Function *F = dyn_cast<Function>(Val: C)) |
923 | Result = PTOGV(P: getPointerToFunctionOrStub(F: const_cast<Function*>(F))); |
924 | else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: C)) |
925 | Result = PTOGV(P: getOrEmitGlobalVariable(GV: const_cast<GlobalVariable*>(GV))); |
926 | else |
927 | llvm_unreachable("Unknown constant pointer type!" ); |
928 | break; |
929 | case Type::ScalableVectorTyID: |
930 | report_fatal_error( |
931 | reason: "Scalable vector support not yet implemented in ExecutionEngine" ); |
932 | case Type::FixedVectorTyID: { |
933 | unsigned elemNum; |
934 | Type* ElemTy; |
935 | const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(Val: C); |
936 | const ConstantVector *CV = dyn_cast<ConstantVector>(Val: C); |
937 | const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(Val: C); |
938 | |
939 | if (CDV) { |
940 | elemNum = CDV->getNumElements(); |
941 | ElemTy = CDV->getElementType(); |
942 | } else if (CV || CAZ) { |
943 | auto *VTy = cast<FixedVectorType>(Val: C->getType()); |
944 | elemNum = VTy->getNumElements(); |
945 | ElemTy = VTy->getElementType(); |
946 | } else { |
947 | llvm_unreachable("Unknown constant vector type!" ); |
948 | } |
949 | |
950 | Result.AggregateVal.resize(new_size: elemNum); |
951 | // Check if vector holds floats. |
952 | if(ElemTy->isFloatTy()) { |
953 | if (CAZ) { |
954 | GenericValue floatZero; |
955 | floatZero.FloatVal = 0.f; |
956 | std::fill(first: Result.AggregateVal.begin(), last: Result.AggregateVal.end(), |
957 | value: floatZero); |
958 | break; |
959 | } |
960 | if(CV) { |
961 | for (unsigned i = 0; i < elemNum; ++i) |
962 | if (!isa<UndefValue>(Val: CV->getOperand(i_nocapture: i))) |
963 | Result.AggregateVal[i].FloatVal = cast<ConstantFP>( |
964 | Val: CV->getOperand(i_nocapture: i))->getValueAPF().convertToFloat(); |
965 | break; |
966 | } |
967 | if(CDV) |
968 | for (unsigned i = 0; i < elemNum; ++i) |
969 | Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); |
970 | |
971 | break; |
972 | } |
973 | // Check if vector holds doubles. |
974 | if (ElemTy->isDoubleTy()) { |
975 | if (CAZ) { |
976 | GenericValue doubleZero; |
977 | doubleZero.DoubleVal = 0.0; |
978 | std::fill(first: Result.AggregateVal.begin(), last: Result.AggregateVal.end(), |
979 | value: doubleZero); |
980 | break; |
981 | } |
982 | if(CV) { |
983 | for (unsigned i = 0; i < elemNum; ++i) |
984 | if (!isa<UndefValue>(Val: CV->getOperand(i_nocapture: i))) |
985 | Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( |
986 | Val: CV->getOperand(i_nocapture: i))->getValueAPF().convertToDouble(); |
987 | break; |
988 | } |
989 | if(CDV) |
990 | for (unsigned i = 0; i < elemNum; ++i) |
991 | Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); |
992 | |
993 | break; |
994 | } |
995 | // Check if vector holds integers. |
996 | if (ElemTy->isIntegerTy()) { |
997 | if (CAZ) { |
998 | GenericValue intZero; |
999 | intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); |
1000 | std::fill(first: Result.AggregateVal.begin(), last: Result.AggregateVal.end(), |
1001 | value: intZero); |
1002 | break; |
1003 | } |
1004 | if(CV) { |
1005 | for (unsigned i = 0; i < elemNum; ++i) |
1006 | if (!isa<UndefValue>(Val: CV->getOperand(i_nocapture: i))) |
1007 | Result.AggregateVal[i].IntVal = cast<ConstantInt>( |
1008 | Val: CV->getOperand(i_nocapture: i))->getValue(); |
1009 | else { |
1010 | Result.AggregateVal[i].IntVal = |
1011 | APInt(CV->getOperand(i_nocapture: i)->getType()->getPrimitiveSizeInBits(), 0); |
1012 | } |
1013 | break; |
1014 | } |
1015 | if(CDV) |
1016 | for (unsigned i = 0; i < elemNum; ++i) |
1017 | Result.AggregateVal[i].IntVal = APInt( |
1018 | CDV->getElementType()->getPrimitiveSizeInBits(), |
1019 | CDV->getElementAsInteger(i)); |
1020 | |
1021 | break; |
1022 | } |
1023 | llvm_unreachable("Unknown constant pointer type!" ); |
1024 | } break; |
1025 | |
1026 | default: |
1027 | SmallString<256> Msg; |
1028 | raw_svector_ostream OS(Msg); |
1029 | OS << "ERROR: Constant unimplemented for type: " << *C->getType(); |
1030 | report_fatal_error(reason: OS.str()); |
1031 | } |
1032 | |
1033 | return Result; |
1034 | } |
1035 | |
1036 | void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, |
1037 | GenericValue *Ptr, Type *Ty) { |
1038 | // It is safe to treat TargetExtType as its layout type since the underlying |
1039 | // bits are only copied and are not inspected. |
1040 | if (auto *TETy = dyn_cast<TargetExtType>(Val: Ty)) |
1041 | Ty = TETy->getLayoutType(); |
1042 | |
1043 | const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); |
1044 | |
1045 | switch (Ty->getTypeID()) { |
1046 | default: |
1047 | dbgs() << "Cannot store value of type " << *Ty << "!\n" ; |
1048 | break; |
1049 | case Type::IntegerTyID: |
1050 | StoreIntToMemory(IntVal: Val.IntVal, Dst: (uint8_t*)Ptr, StoreBytes); |
1051 | break; |
1052 | case Type::FloatTyID: |
1053 | *((float*)Ptr) = Val.FloatVal; |
1054 | break; |
1055 | case Type::DoubleTyID: |
1056 | *((double*)Ptr) = Val.DoubleVal; |
1057 | break; |
1058 | case Type::X86_FP80TyID: |
1059 | memcpy(dest: Ptr, src: Val.IntVal.getRawData(), n: 10); |
1060 | break; |
1061 | case Type::PointerTyID: |
1062 | // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. |
1063 | if (StoreBytes != sizeof(PointerTy)) |
1064 | memset(s: &(Ptr->PointerVal), c: 0, n: StoreBytes); |
1065 | |
1066 | *((PointerTy*)Ptr) = Val.PointerVal; |
1067 | break; |
1068 | case Type::FixedVectorTyID: |
1069 | case Type::ScalableVectorTyID: |
1070 | for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { |
1071 | if (cast<VectorType>(Val: Ty)->getElementType()->isDoubleTy()) |
1072 | *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; |
1073 | if (cast<VectorType>(Val: Ty)->getElementType()->isFloatTy()) |
1074 | *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; |
1075 | if (cast<VectorType>(Val: Ty)->getElementType()->isIntegerTy()) { |
1076 | unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; |
1077 | StoreIntToMemory(IntVal: Val.AggregateVal[i].IntVal, |
1078 | Dst: (uint8_t*)Ptr + numOfBytes*i, StoreBytes: numOfBytes); |
1079 | } |
1080 | } |
1081 | break; |
1082 | } |
1083 | |
1084 | if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) |
1085 | // Host and target are different endian - reverse the stored bytes. |
1086 | std::reverse(first: (uint8_t*)Ptr, last: StoreBytes + (uint8_t*)Ptr); |
1087 | } |
1088 | |
1089 | /// FIXME: document |
1090 | /// |
1091 | void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, |
1092 | GenericValue *Ptr, |
1093 | Type *Ty) { |
1094 | if (auto *TETy = dyn_cast<TargetExtType>(Val: Ty)) |
1095 | Ty = TETy->getLayoutType(); |
1096 | |
1097 | const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); |
1098 | |
1099 | switch (Ty->getTypeID()) { |
1100 | case Type::IntegerTyID: |
1101 | // An APInt with all words initially zero. |
1102 | Result.IntVal = APInt(cast<IntegerType>(Val: Ty)->getBitWidth(), 0); |
1103 | LoadIntFromMemory(IntVal&: Result.IntVal, Src: (uint8_t*)Ptr, LoadBytes); |
1104 | break; |
1105 | case Type::FloatTyID: |
1106 | Result.FloatVal = *((float*)Ptr); |
1107 | break; |
1108 | case Type::DoubleTyID: |
1109 | Result.DoubleVal = *((double*)Ptr); |
1110 | break; |
1111 | case Type::PointerTyID: |
1112 | Result.PointerVal = *((PointerTy*)Ptr); |
1113 | break; |
1114 | case Type::X86_FP80TyID: { |
1115 | // This is endian dependent, but it will only work on x86 anyway. |
1116 | // FIXME: Will not trap if loading a signaling NaN. |
1117 | uint64_t y[2]; |
1118 | memcpy(dest: y, src: Ptr, n: 10); |
1119 | Result.IntVal = APInt(80, y); |
1120 | break; |
1121 | } |
1122 | case Type::ScalableVectorTyID: |
1123 | report_fatal_error( |
1124 | reason: "Scalable vector support not yet implemented in ExecutionEngine" ); |
1125 | case Type::FixedVectorTyID: { |
1126 | auto *VT = cast<FixedVectorType>(Val: Ty); |
1127 | Type *ElemT = VT->getElementType(); |
1128 | const unsigned numElems = VT->getNumElements(); |
1129 | if (ElemT->isFloatTy()) { |
1130 | Result.AggregateVal.resize(new_size: numElems); |
1131 | for (unsigned i = 0; i < numElems; ++i) |
1132 | Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); |
1133 | } |
1134 | if (ElemT->isDoubleTy()) { |
1135 | Result.AggregateVal.resize(new_size: numElems); |
1136 | for (unsigned i = 0; i < numElems; ++i) |
1137 | Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); |
1138 | } |
1139 | if (ElemT->isIntegerTy()) { |
1140 | GenericValue intZero; |
1141 | const unsigned elemBitWidth = cast<IntegerType>(Val: ElemT)->getBitWidth(); |
1142 | intZero.IntVal = APInt(elemBitWidth, 0); |
1143 | Result.AggregateVal.resize(new_size: numElems, x: intZero); |
1144 | for (unsigned i = 0; i < numElems; ++i) |
1145 | LoadIntFromMemory(IntVal&: Result.AggregateVal[i].IntVal, |
1146 | Src: (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, LoadBytes: (elemBitWidth+7)/8); |
1147 | } |
1148 | break; |
1149 | } |
1150 | default: |
1151 | SmallString<256> Msg; |
1152 | raw_svector_ostream OS(Msg); |
1153 | OS << "Cannot load value of type " << *Ty << "!" ; |
1154 | report_fatal_error(reason: OS.str()); |
1155 | } |
1156 | } |
1157 | |
1158 | void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { |
1159 | LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " " ); |
1160 | LLVM_DEBUG(Init->dump()); |
1161 | if (isa<UndefValue>(Val: Init)) |
1162 | return; |
1163 | |
1164 | if (const ConstantVector *CP = dyn_cast<ConstantVector>(Val: Init)) { |
1165 | unsigned ElementSize = |
1166 | getDataLayout().getTypeAllocSize(Ty: CP->getType()->getElementType()); |
1167 | for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) |
1168 | InitializeMemory(Init: CP->getOperand(i_nocapture: i), Addr: (char*)Addr+i*ElementSize); |
1169 | return; |
1170 | } |
1171 | |
1172 | if (isa<ConstantAggregateZero>(Val: Init)) { |
1173 | memset(s: Addr, c: 0, n: (size_t)getDataLayout().getTypeAllocSize(Ty: Init->getType())); |
1174 | return; |
1175 | } |
1176 | |
1177 | if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Val: Init)) { |
1178 | unsigned ElementSize = |
1179 | getDataLayout().getTypeAllocSize(Ty: CPA->getType()->getElementType()); |
1180 | for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) |
1181 | InitializeMemory(Init: CPA->getOperand(i_nocapture: i), Addr: (char*)Addr+i*ElementSize); |
1182 | return; |
1183 | } |
1184 | |
1185 | if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Val: Init)) { |
1186 | const StructLayout *SL = |
1187 | getDataLayout().getStructLayout(Ty: cast<StructType>(Val: CPS->getType())); |
1188 | for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) |
1189 | InitializeMemory(Init: CPS->getOperand(i_nocapture: i), Addr: (char*)Addr+SL->getElementOffset(Idx: i)); |
1190 | return; |
1191 | } |
1192 | |
1193 | if (const ConstantDataSequential *CDS = |
1194 | dyn_cast<ConstantDataSequential>(Val: Init)) { |
1195 | // CDS is already laid out in host memory order. |
1196 | StringRef Data = CDS->getRawDataValues(); |
1197 | memcpy(dest: Addr, src: Data.data(), n: Data.size()); |
1198 | return; |
1199 | } |
1200 | |
1201 | if (Init->getType()->isFirstClassType()) { |
1202 | GenericValue Val = getConstantValue(C: Init); |
1203 | StoreValueToMemory(Val, Ptr: (GenericValue*)Addr, Ty: Init->getType()); |
1204 | return; |
1205 | } |
1206 | |
1207 | LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n" ); |
1208 | llvm_unreachable("Unknown constant type to initialize memory with!" ); |
1209 | } |
1210 | |
1211 | /// EmitGlobals - Emit all of the global variables to memory, storing their |
1212 | /// addresses into GlobalAddress. This must make sure to copy the contents of |
1213 | /// their initializers into the memory. |
1214 | void ExecutionEngine::emitGlobals() { |
1215 | // Loop over all of the global variables in the program, allocating the memory |
1216 | // to hold them. If there is more than one module, do a prepass over globals |
1217 | // to figure out how the different modules should link together. |
1218 | std::map<std::pair<std::string, Type*>, |
1219 | const GlobalValue*> LinkedGlobalsMap; |
1220 | |
1221 | if (Modules.size() != 1) { |
1222 | for (const auto &M : Modules) { |
1223 | for (const auto &GV : M->globals()) { |
1224 | if (GV.hasLocalLinkage() || GV.isDeclaration() || |
1225 | GV.hasAppendingLinkage() || !GV.hasName()) |
1226 | continue;// Ignore external globals and globals with internal linkage. |
1227 | |
1228 | const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair( |
1229 | x: std::string(GV.getName()), y: GV.getType())]; |
1230 | |
1231 | // If this is the first time we've seen this global, it is the canonical |
1232 | // version. |
1233 | if (!GVEntry) { |
1234 | GVEntry = &GV; |
1235 | continue; |
1236 | } |
1237 | |
1238 | // If the existing global is strong, never replace it. |
1239 | if (GVEntry->hasExternalLinkage()) |
1240 | continue; |
1241 | |
1242 | // Otherwise, we know it's linkonce/weak, replace it if this is a strong |
1243 | // symbol. FIXME is this right for common? |
1244 | if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) |
1245 | GVEntry = &GV; |
1246 | } |
1247 | } |
1248 | } |
1249 | |
1250 | std::vector<const GlobalValue*> NonCanonicalGlobals; |
1251 | for (const auto &M : Modules) { |
1252 | for (const auto &GV : M->globals()) { |
1253 | // In the multi-module case, see what this global maps to. |
1254 | if (!LinkedGlobalsMap.empty()) { |
1255 | if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( |
1256 | x: std::string(GV.getName()), y: GV.getType())]) { |
1257 | // If something else is the canonical global, ignore this one. |
1258 | if (GVEntry != &GV) { |
1259 | NonCanonicalGlobals.push_back(x: &GV); |
1260 | continue; |
1261 | } |
1262 | } |
1263 | } |
1264 | |
1265 | if (!GV.isDeclaration()) { |
1266 | addGlobalMapping(GV: &GV, Addr: getMemoryForGV(GV: &GV)); |
1267 | } else { |
1268 | // External variable reference. Try to use the dynamic loader to |
1269 | // get a pointer to it. |
1270 | if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol( |
1271 | symbolName: std::string(GV.getName()))) |
1272 | addGlobalMapping(GV: &GV, Addr: SymAddr); |
1273 | else { |
1274 | report_fatal_error(reason: "Could not resolve external global address: " |
1275 | +GV.getName()); |
1276 | } |
1277 | } |
1278 | } |
1279 | |
1280 | // If there are multiple modules, map the non-canonical globals to their |
1281 | // canonical location. |
1282 | if (!NonCanonicalGlobals.empty()) { |
1283 | for (const GlobalValue *GV : NonCanonicalGlobals) { |
1284 | const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair( |
1285 | x: std::string(GV->getName()), y: GV->getType())]; |
1286 | void *Ptr = getPointerToGlobalIfAvailable(GV: CGV); |
1287 | assert(Ptr && "Canonical global wasn't codegen'd!" ); |
1288 | addGlobalMapping(GV, Addr: Ptr); |
1289 | } |
1290 | } |
1291 | |
1292 | // Now that all of the globals are set up in memory, loop through them all |
1293 | // and initialize their contents. |
1294 | for (const auto &GV : M->globals()) { |
1295 | if (!GV.isDeclaration()) { |
1296 | if (!LinkedGlobalsMap.empty()) { |
1297 | if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair( |
1298 | x: std::string(GV.getName()), y: GV.getType())]) |
1299 | if (GVEntry != &GV) // Not the canonical variable. |
1300 | continue; |
1301 | } |
1302 | emitGlobalVariable(GV: &GV); |
1303 | } |
1304 | } |
1305 | } |
1306 | } |
1307 | |
1308 | // EmitGlobalVariable - This method emits the specified global variable to the |
1309 | // address specified in GlobalAddresses, or allocates new memory if it's not |
1310 | // already in the map. |
1311 | void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) { |
1312 | void *GA = getPointerToGlobalIfAvailable(GV); |
1313 | |
1314 | if (!GA) { |
1315 | // If it's not already specified, allocate memory for the global. |
1316 | GA = getMemoryForGV(GV); |
1317 | |
1318 | // If we failed to allocate memory for this global, return. |
1319 | if (!GA) return; |
1320 | |
1321 | addGlobalMapping(GV, Addr: GA); |
1322 | } |
1323 | |
1324 | // Don't initialize if it's thread local, let the client do it. |
1325 | if (!GV->isThreadLocal()) |
1326 | InitializeMemory(Init: GV->getInitializer(), Addr: GA); |
1327 | |
1328 | Type *ElTy = GV->getValueType(); |
1329 | size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(Ty: ElTy); |
1330 | NumInitBytes += (unsigned)GVSize; |
1331 | ++NumGlobals; |
1332 | } |
1333 | |