1//===- HexagonOptAddrMode.cpp ---------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This implements a Hexagon-specific pass to optimize addressing mode for
9// load/store instructions.
10//===----------------------------------------------------------------------===//
11
12#include "Hexagon.h"
13#include "HexagonInstrInfo.h"
14#include "HexagonSubtarget.h"
15#include "MCTargetDesc/HexagonBaseInfo.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/MachineDominanceFrontier.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineOperand.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/RDFGraph.h"
29#include "llvm/CodeGen/RDFLiveness.h"
30#include "llvm/CodeGen/RDFRegisters.h"
31#include "llvm/CodeGen/TargetSubtargetInfo.h"
32#include "llvm/InitializePasses.h"
33#include "llvm/MC/MCInstrDesc.h"
34#include "llvm/Pass.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/raw_ostream.h"
39#include <cassert>
40#include <cstdint>
41
42#define DEBUG_TYPE "opt-addr-mode"
43
44using namespace llvm;
45using namespace rdf;
46
47static cl::opt<int> CodeGrowthLimit("hexagon-amode-growth-limit",
48 cl::Hidden, cl::init(Val: 0), cl::desc("Code growth limit for address mode "
49 "optimization"));
50
51extern cl::opt<unsigned> RDFFuncBlockLimit;
52
53namespace {
54
55class HexagonOptAddrMode : public MachineFunctionPass {
56public:
57 static char ID;
58
59 HexagonOptAddrMode() : MachineFunctionPass(ID) {}
60
61 StringRef getPassName() const override {
62 return "Optimize addressing mode of load/store";
63 }
64
65 void getAnalysisUsage(AnalysisUsage &AU) const override {
66 MachineFunctionPass::getAnalysisUsage(AU);
67 AU.addRequired<MachineDominatorTreeWrapperPass>();
68 AU.addRequired<MachineDominanceFrontierWrapperPass>();
69 AU.setPreservesAll();
70 }
71
72 bool runOnMachineFunction(MachineFunction &MF) override;
73
74private:
75 using MISetType = DenseSet<MachineInstr *>;
76 using InstrEvalMap = DenseMap<MachineInstr *, bool>;
77 DenseSet<MachineInstr *> ProcessedAddiInsts;
78
79 MachineRegisterInfo *MRI = nullptr;
80 const TargetRegisterInfo *TRI = nullptr;
81 const HexagonInstrInfo *HII = nullptr;
82 const HexagonRegisterInfo *HRI = nullptr;
83 MachineDominatorTree *MDT = nullptr;
84 DataFlowGraph *DFG = nullptr;
85 DataFlowGraph::DefStackMap DefM;
86 Liveness *LV = nullptr;
87 MISetType Deleted;
88
89 bool processBlock(NodeAddr<BlockNode *> BA);
90 bool xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI,
91 NodeAddr<UseNode *> UseN, unsigned UseMOnum);
92 bool processAddBases(NodeAddr<StmtNode *> AddSN, MachineInstr *AddMI);
93 bool usedInLoadStore(NodeAddr<StmtNode *> CurrentInstSN, int64_t NewOffset);
94 bool findFirstReachedInst(
95 MachineInstr *AddMI,
96 std::vector<std::pair<NodeAddr<StmtNode *>, NodeAddr<UseNode *>>>
97 &AddiList,
98 NodeAddr<StmtNode *> &UseSN);
99 bool updateAddBases(MachineInstr *CurrentMI, MachineInstr *FirstReachedMI,
100 int64_t NewOffset);
101 bool processAddUses(NodeAddr<StmtNode *> AddSN, MachineInstr *AddMI,
102 const NodeList &UNodeList);
103 bool updateAddUses(MachineInstr *AddMI, MachineInstr *UseMI);
104 bool analyzeUses(unsigned DefR, const NodeList &UNodeList,
105 InstrEvalMap &InstrEvalResult, short &SizeInc);
106 bool hasRepForm(MachineInstr &MI, unsigned TfrDefR);
107 bool canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN, MachineInstr &MI,
108 const NodeList &UNodeList);
109 bool isSafeToExtLR(NodeAddr<StmtNode *> SN, MachineInstr *MI,
110 Register LRExtReg, const NodeList &UNodeList);
111 void getAllRealUses(NodeAddr<StmtNode *> SN, NodeList &UNodeList);
112 bool allValidCandidates(NodeAddr<StmtNode *> SA, NodeList &UNodeList);
113 short getBaseWithLongOffset(const MachineInstr &MI) const;
114 bool changeStore(MachineInstr *OldMI, MachineOperand ImmOp,
115 unsigned ImmOpNum);
116 bool changeLoad(MachineInstr *OldMI, MachineOperand ImmOp, unsigned ImmOpNum);
117 bool changeAddAsl(NodeAddr<UseNode *> AddAslUN, MachineInstr *AddAslMI,
118 const MachineOperand &ImmOp, unsigned ImmOpNum);
119 bool isValidOffset(MachineInstr *MI, int Offset);
120 unsigned getBaseOpPosition(MachineInstr *MI);
121 unsigned getOffsetOpPosition(MachineInstr *MI);
122};
123
124} // end anonymous namespace
125
126char HexagonOptAddrMode::ID = 0;
127
128INITIALIZE_PASS_BEGIN(HexagonOptAddrMode, "amode-opt",
129 "Optimize addressing mode", false, false)
130INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
131INITIALIZE_PASS_DEPENDENCY(MachineDominanceFrontierWrapperPass)
132INITIALIZE_PASS_END(HexagonOptAddrMode, "amode-opt", "Optimize addressing mode",
133 false, false)
134
135bool HexagonOptAddrMode::hasRepForm(MachineInstr &MI, unsigned TfrDefR) {
136 const MCInstrDesc &MID = MI.getDesc();
137
138 if ((!MID.mayStore() && !MID.mayLoad()) || HII->isPredicated(MI))
139 return false;
140
141 if (MID.mayStore()) {
142 MachineOperand StOp = MI.getOperand(i: MI.getNumOperands() - 1);
143 if (StOp.isReg() && StOp.getReg() == TfrDefR)
144 return false;
145 }
146
147 if (HII->getAddrMode(MI) == HexagonII::BaseRegOffset)
148 // Transform to Absolute plus register offset.
149 return (HII->changeAddrMode_rr_ur(MI) >= 0);
150 else if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset)
151 // Transform to absolute addressing mode.
152 return (HII->changeAddrMode_io_abs(MI) >= 0);
153
154 return false;
155}
156
157// Check if addasl instruction can be removed. This is possible only
158// if it's feeding to only load/store instructions with base + register
159// offset as these instruction can be transformed to use 'absolute plus
160// shifted register offset'.
161// ex:
162// Rs = ##foo
163// Rx = addasl(Rs, Rt, #2)
164// Rd = memw(Rx + #28)
165// Above three instructions can be replaced with Rd = memw(Rt<<#2 + ##foo+28)
166
167bool HexagonOptAddrMode::canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN,
168 MachineInstr &MI,
169 const NodeList &UNodeList) {
170 // check offset size in addasl. if 'offset > 3' return false
171 const MachineOperand &OffsetOp = MI.getOperand(i: 3);
172 if (!OffsetOp.isImm() || OffsetOp.getImm() > 3)
173 return false;
174
175 Register OffsetReg = MI.getOperand(i: 2).getReg();
176 RegisterRef OffsetRR;
177 NodeId OffsetRegRD = 0;
178 for (NodeAddr<UseNode *> UA : AddAslSN.Addr->members_if(P: DFG->IsUse, G: *DFG)) {
179 RegisterRef RR = UA.Addr->getRegRef(G: *DFG);
180 if (OffsetReg == RR.asMCReg()) {
181 OffsetRR = RR;
182 OffsetRegRD = UA.Addr->getReachingDef();
183 }
184 }
185
186 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
187 NodeAddr<UseNode *> UA = *I;
188 NodeAddr<InstrNode *> IA = UA.Addr->getOwner(G: *DFG);
189 if (UA.Addr->getFlags() & NodeAttrs::PhiRef)
190 return false;
191 NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(RefRR: OffsetRR, IA);
192 if ((DFG->IsDef(BA: AA) && AA.Id != OffsetRegRD) ||
193 AA.Addr->getReachingDef() != OffsetRegRD)
194 return false;
195
196 MachineInstr &UseMI = *NodeAddr<StmtNode *>(IA).Addr->getCode();
197 NodeAddr<DefNode *> OffsetRegDN = DFG->addr<DefNode *>(N: OffsetRegRD);
198 // Reaching Def to an offset register can't be a phi.
199 if ((OffsetRegDN.Addr->getFlags() & NodeAttrs::PhiRef) &&
200 MI.getParent() != UseMI.getParent())
201 return false;
202
203 const MCInstrDesc &UseMID = UseMI.getDesc();
204 if ((!UseMID.mayLoad() && !UseMID.mayStore()) ||
205 HII->getAddrMode(MI: UseMI) != HexagonII::BaseImmOffset ||
206 getBaseWithLongOffset(MI: UseMI) < 0)
207 return false;
208
209 // Addasl output can't be a store value.
210 if (UseMID.mayStore() && UseMI.getOperand(i: 2).isReg() &&
211 UseMI.getOperand(i: 2).getReg() == MI.getOperand(i: 0).getReg())
212 return false;
213
214 for (auto &Mo : UseMI.operands())
215 // Is it a frame index?
216 if (Mo.isFI())
217 return false;
218 // Is the OffsetReg definition actually reaches UseMI?
219 if (!UseMI.getParent()->isLiveIn(Reg: OffsetReg) &&
220 MI.getParent() != UseMI.getParent()) {
221 LLVM_DEBUG(dbgs() << " The offset reg " << printReg(OffsetReg, TRI)
222 << " is NOT live in to MBB "
223 << UseMI.getParent()->getName() << "\n");
224 return false;
225 }
226 }
227 return true;
228}
229
230bool HexagonOptAddrMode::allValidCandidates(NodeAddr<StmtNode *> SA,
231 NodeList &UNodeList) {
232 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
233 NodeAddr<UseNode *> UN = *I;
234 RegisterRef UR = UN.Addr->getRegRef(G: *DFG);
235 NodeSet Visited, Defs;
236 const auto &P = LV->getAllReachingDefsRec(RefRR: UR, RefA: UN, Visited, Defs);
237 if (!P.second) {
238 LLVM_DEBUG({
239 dbgs() << "*** Unable to collect all reaching defs for use ***\n"
240 << PrintNode<UseNode*>(UN, *DFG) << '\n'
241 << "The program's complexity may exceed the limits.\n";
242 });
243 return false;
244 }
245 const auto &ReachingDefs = P.first;
246 if (ReachingDefs.size() > 1) {
247 LLVM_DEBUG({
248 dbgs() << "*** Multiple Reaching Defs found!!! ***\n";
249 for (auto DI : ReachingDefs) {
250 NodeAddr<UseNode *> DA = DFG->addr<UseNode *>(DI);
251 NodeAddr<StmtNode *> TempIA = DA.Addr->getOwner(*DFG);
252 dbgs() << "\t\t[Reaching Def]: "
253 << Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n";
254 }
255 });
256 return false;
257 }
258 }
259 return true;
260}
261
262void HexagonOptAddrMode::getAllRealUses(NodeAddr<StmtNode *> SA,
263 NodeList &UNodeList) {
264 for (NodeAddr<DefNode *> DA : SA.Addr->members_if(P: DFG->IsDef, G: *DFG)) {
265 LLVM_DEBUG(dbgs() << "\t\t[DefNode]: "
266 << Print<NodeAddr<DefNode *>>(DA, *DFG) << "\n");
267 RegisterRef DR = DA.Addr->getRegRef(G: *DFG);
268
269 auto UseSet = LV->getAllReachedUses(RefRR: DR, DefA: DA);
270
271 for (auto UI : UseSet) {
272 NodeAddr<UseNode *> UA = DFG->addr<UseNode *>(N: UI);
273 LLVM_DEBUG({
274 NodeAddr<StmtNode *> TempIA = UA.Addr->getOwner(*DFG);
275 dbgs() << "\t\t\t[Reached Use]: "
276 << Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n";
277 });
278
279 if (UA.Addr->getFlags() & NodeAttrs::PhiRef) {
280 NodeAddr<PhiNode *> PA = UA.Addr->getOwner(G: *DFG);
281 NodeId id = PA.Id;
282 const Liveness::RefMap &phiUse = LV->getRealUses(P: id);
283 LLVM_DEBUG(dbgs() << "\t\t\t\tphi real Uses"
284 << Print<Liveness::RefMap>(phiUse, *DFG) << "\n");
285 if (!phiUse.empty()) {
286 for (auto I : phiUse) {
287 if (!DFG->getPRI().alias(RA: RegisterRef(I.first), RB: DR))
288 continue;
289 auto phiUseSet = I.second;
290 for (auto phiUI : phiUseSet) {
291 NodeAddr<UseNode *> phiUA = DFG->addr<UseNode *>(N: phiUI.first);
292 UNodeList.push_back(Elt: phiUA);
293 }
294 }
295 }
296 } else
297 UNodeList.push_back(Elt: UA);
298 }
299 }
300}
301
302bool HexagonOptAddrMode::isSafeToExtLR(NodeAddr<StmtNode *> SN,
303 MachineInstr *MI, Register LRExtReg,
304 const NodeList &UNodeList) {
305 RegisterRef LRExtRR;
306 NodeId LRExtRegRD = 0;
307 // Iterate through all the UseNodes in SN and find the reaching def
308 // for the LRExtReg.
309 for (NodeAddr<UseNode *> UA : SN.Addr->members_if(P: DFG->IsUse, G: *DFG)) {
310 RegisterRef RR = UA.Addr->getRegRef(G: *DFG);
311 if (LRExtReg == RR.asMCReg()) {
312 LRExtRR = RR;
313 LRExtRegRD = UA.Addr->getReachingDef();
314 }
315 }
316
317 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
318 NodeAddr<UseNode *> UA = *I;
319 NodeAddr<InstrNode *> IA = UA.Addr->getOwner(G: *DFG);
320 // The reaching def of LRExtRR at load/store node should be same as the
321 // one reaching at the SN.
322 if (UA.Addr->getFlags() & NodeAttrs::PhiRef)
323 return false;
324 NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(RefRR: LRExtRR, IA);
325 if ((DFG->IsDef(BA: AA) && AA.Id != LRExtRegRD) ||
326 AA.Addr->getReachingDef() != LRExtRegRD) {
327 LLVM_DEBUG(
328 dbgs() << "isSafeToExtLR: Returning false; another reaching def\n");
329 return false;
330 }
331
332 // If the register is undefined (for example if it's a reserved register),
333 // it may still be possible to extend the range, but it's safer to be
334 // conservative and just punt.
335 if (LRExtRegRD == 0)
336 return false;
337
338 MachineInstr *UseMI = NodeAddr<StmtNode *>(IA).Addr->getCode();
339 NodeAddr<DefNode *> LRExtRegDN = DFG->addr<DefNode *>(N: LRExtRegRD);
340 // Reaching Def to LRExtReg can't be a phi.
341 if ((LRExtRegDN.Addr->getFlags() & NodeAttrs::PhiRef) &&
342 MI->getParent() != UseMI->getParent())
343 return false;
344 // Is the OffsetReg definition actually reaches UseMI?
345 if (!UseMI->getParent()->isLiveIn(Reg: LRExtReg) &&
346 MI->getParent() != UseMI->getParent()) {
347 LLVM_DEBUG(dbgs() << " The LRExtReg reg " << printReg(LRExtReg, TRI)
348 << " is NOT live in to MBB "
349 << UseMI->getParent()->getName() << "\n");
350 return false;
351 }
352 }
353 return true;
354}
355
356bool HexagonOptAddrMode::isValidOffset(MachineInstr *MI, int Offset) {
357 if (HII->isHVXVec(MI: *MI)) {
358 // only HVX vgather instructions handled
359 // TODO: extend the pass to other vector load/store operations
360 switch (MI->getOpcode()) {
361 case Hexagon::V6_vgathermh_pseudo:
362 case Hexagon::V6_vgathermw_pseudo:
363 case Hexagon::V6_vgathermhw_pseudo:
364 case Hexagon::V6_vgathermhq_pseudo:
365 case Hexagon::V6_vgathermwq_pseudo:
366 case Hexagon::V6_vgathermhwq_pseudo:
367 return HII->isValidOffset(Opcode: MI->getOpcode(), Offset, TRI: HRI, Extend: false);
368 default:
369 if (HII->getAddrMode(MI: *MI) == HexagonII::BaseImmOffset) {
370 // The immediates are mentioned in multiples of vector counts
371 unsigned AlignMask = HII->getMemAccessSize(MI: *MI) - 1;
372 if ((AlignMask & Offset) == 0)
373 return HII->isValidOffset(Opcode: MI->getOpcode(), Offset, TRI: HRI, Extend: false);
374 }
375 return false;
376 }
377 }
378
379 if (HII->getAddrMode(MI: *MI) != HexagonII::BaseImmOffset)
380 return false;
381
382 unsigned AlignMask = 0;
383 switch (HII->getMemAccessSize(MI: *MI)) {
384 case HexagonII::MemAccessSize::DoubleWordAccess:
385 AlignMask = 0x7;
386 break;
387 case HexagonII::MemAccessSize::WordAccess:
388 AlignMask = 0x3;
389 break;
390 case HexagonII::MemAccessSize::HalfWordAccess:
391 AlignMask = 0x1;
392 break;
393 case HexagonII::MemAccessSize::ByteAccess:
394 AlignMask = 0x0;
395 break;
396 default:
397 return false;
398 }
399
400 if ((AlignMask & Offset) != 0)
401 return false;
402 return HII->isValidOffset(Opcode: MI->getOpcode(), Offset, TRI: HRI, Extend: false);
403}
404
405unsigned HexagonOptAddrMode::getBaseOpPosition(MachineInstr *MI) {
406 const MCInstrDesc &MID = MI->getDesc();
407 switch (MI->getOpcode()) {
408 // vgather pseudos are mayLoad and mayStore
409 // hence need to explicitly specify Base and
410 // Offset operand positions
411 case Hexagon::V6_vgathermh_pseudo:
412 case Hexagon::V6_vgathermw_pseudo:
413 case Hexagon::V6_vgathermhw_pseudo:
414 case Hexagon::V6_vgathermhq_pseudo:
415 case Hexagon::V6_vgathermwq_pseudo:
416 case Hexagon::V6_vgathermhwq_pseudo:
417 return 0;
418 default:
419 return MID.mayLoad() ? 1 : 0;
420 }
421}
422
423unsigned HexagonOptAddrMode::getOffsetOpPosition(MachineInstr *MI) {
424 assert(
425 (HII->getAddrMode(*MI) == HexagonII::BaseImmOffset) &&
426 "Looking for an offset in non-BaseImmOffset addressing mode instruction");
427
428 const MCInstrDesc &MID = MI->getDesc();
429 switch (MI->getOpcode()) {
430 // vgather pseudos are mayLoad and mayStore
431 // hence need to explicitly specify Base and
432 // Offset operand positions
433 case Hexagon::V6_vgathermh_pseudo:
434 case Hexagon::V6_vgathermw_pseudo:
435 case Hexagon::V6_vgathermhw_pseudo:
436 case Hexagon::V6_vgathermhq_pseudo:
437 case Hexagon::V6_vgathermwq_pseudo:
438 case Hexagon::V6_vgathermhwq_pseudo:
439 return 1;
440 default:
441 return MID.mayLoad() ? 2 : 1;
442 }
443}
444
445bool HexagonOptAddrMode::usedInLoadStore(NodeAddr<StmtNode *> CurrentInstSN,
446 int64_t NewOffset) {
447 NodeList LoadStoreUseList;
448
449 getAllRealUses(SA: CurrentInstSN, UNodeList&: LoadStoreUseList);
450 bool FoundLoadStoreUse = false;
451 for (NodeAddr<UseNode *> UN : LoadStoreUseList) {
452 NodeAddr<StmtNode *> SN = UN.Addr->getOwner(G: *DFG);
453 MachineInstr *LoadStoreMI = SN.Addr->getCode();
454 const MCInstrDesc &MID = LoadStoreMI->getDesc();
455 if ((MID.mayLoad() || MID.mayStore()) &&
456 isValidOffset(MI: LoadStoreMI, Offset: NewOffset)) {
457 FoundLoadStoreUse = true;
458 break;
459 }
460 }
461 return FoundLoadStoreUse;
462}
463
464bool HexagonOptAddrMode::findFirstReachedInst(
465 MachineInstr *AddMI,
466 std::vector<std::pair<NodeAddr<StmtNode *>, NodeAddr<UseNode *>>> &AddiList,
467 NodeAddr<StmtNode *> &UseSN) {
468 // Find the very first Addi instruction in the current basic block among the
469 // AddiList This is the Addi that should be preserved so that we do not need
470 // to handle the complexity of moving instructions
471 //
472 // TODO: find Addi instructions across basic blocks
473 //
474 // TODO: Try to remove this and add a solution that optimizes the number of
475 // Addi instructions that can be modified.
476 // This change requires choosing the Addi with the median offset value, but
477 // would also require moving that instruction above the others. Since this
478 // pass runs after register allocation, there might be multiple cases that
479 // need to be handled if we move instructions around
480 MachineBasicBlock *CurrentMBB = AddMI->getParent();
481 for (auto &InstIter : *CurrentMBB) {
482 // If the instruction is an Addi and is in the AddiList
483 if (InstIter.getOpcode() == Hexagon::A2_addi) {
484 auto Iter = llvm::find_if(Range&: AddiList, P: [&InstIter](const auto &SUPair) {
485 return SUPair.first.Addr->getCode() == &InstIter;
486 });
487 if (Iter != AddiList.end()) {
488 UseSN = Iter->first;
489 return true;
490 }
491 }
492 }
493 return false;
494}
495
496// This function tries to modify the immediate value in Hexagon::Addi
497// instructions, so that the immediates could then be moved into a load/store
498// instruction with offset and the add removed completely when we call
499// processAddUses
500//
501// For Example, If we have the below sequence of instructions:
502//
503// r1 = add(r2,#1024)
504// ...
505// r3 = add(r2,#1152)
506// ...
507// r4 = add(r2,#1280)
508//
509// Where the register r2 has the same reaching definition, They get modified to
510// the below sequence:
511//
512// r1 = add(r2,#1024)
513// ...
514// r3 = add(r1,#128)
515// ...
516// r4 = add(r1,#256)
517//
518// The below change helps the processAddUses method to later move the
519// immediates #128 and #256 into a load/store instruction that can take an
520// offset, like the Vd = mem(Rt+#s4)
521bool HexagonOptAddrMode::processAddBases(NodeAddr<StmtNode *> AddSN,
522 MachineInstr *AddMI) {
523
524 bool Changed = false;
525
526 LLVM_DEBUG(dbgs() << "\n\t\t[Processing Addi]: " << *AddMI << "\n");
527
528 auto Processed =
529 [](const MachineInstr *MI,
530 const DenseSet<MachineInstr *> &ProcessedAddiInsts) -> bool {
531 // If we've already processed this Addi, just return
532 if (ProcessedAddiInsts.contains(V: MI)) {
533 LLVM_DEBUG(dbgs() << "\t\t\tAddi already found in ProcessedAddiInsts: "
534 << *MI << "\n\t\t\tSkipping...");
535 return true;
536 }
537 return false;
538 };
539
540 if (Processed(AddMI, ProcessedAddiInsts))
541 return Changed;
542 ProcessedAddiInsts.insert(V: AddMI);
543
544 // Get the base register that would be shared by other Addi Instructions
545 Register BaseReg = AddMI->getOperand(i: 1).getReg();
546
547 // Store a list of all Addi instructions that share the above common base
548 // register
549 std::vector<std::pair<NodeAddr<StmtNode *>, NodeAddr<UseNode *>>> AddiList;
550
551 NodeId UAReachingDefID;
552 // Find the UseNode that contains the base register and it's reachingDef
553 for (NodeAddr<UseNode *> UA : AddSN.Addr->members_if(P: DFG->IsUse, G: *DFG)) {
554 RegisterRef URR = UA.Addr->getRegRef(G: *DFG);
555 if (BaseReg != URR.asMCReg())
556 continue;
557
558 UAReachingDefID = UA.Addr->getReachingDef();
559 NodeAddr<DefNode *> UADef = DFG->addr<DefNode *>(N: UAReachingDefID);
560 if (!UAReachingDefID || UADef.Addr->getFlags() & NodeAttrs::PhiRef) {
561 LLVM_DEBUG(dbgs() << "\t\t\t Could not find reachingDef. Skipping...\n");
562 return false;
563 }
564 }
565
566 NodeAddr<DefNode *> UAReachingDef = DFG->addr<DefNode *>(N: UAReachingDefID);
567 NodeAddr<StmtNode *> ReachingDefStmt = UAReachingDef.Addr->getOwner(G: *DFG);
568
569 // If the reaching definition is a predicated instruction, this might not be
570 // the only definition of our base register, so return immediately.
571 MachineInstr *ReachingDefInstr = ReachingDefStmt.Addr->getCode();
572 if (HII->isPredicated(MI: *ReachingDefInstr))
573 return false;
574
575 NodeList AddiUseList;
576
577 // Find all Addi instructions that share the same base register and add them
578 // to the AddiList
579 getAllRealUses(SA: ReachingDefStmt, UNodeList&: AddiUseList);
580 for (NodeAddr<UseNode *> UN : AddiUseList) {
581 NodeAddr<StmtNode *> SN = UN.Addr->getOwner(G: *DFG);
582 MachineInstr *MI = SN.Addr->getCode();
583
584 // Only add instructions if it's an Addi and it's not already processed.
585 if (MI->getOpcode() == Hexagon::A2_addi &&
586 !(MI != AddMI && Processed(MI, ProcessedAddiInsts))) {
587 AddiList.push_back(x: {SN, UN});
588
589 // This ensures that we process each instruction only once
590 ProcessedAddiInsts.insert(V: MI);
591 }
592 }
593
594 // If there's only one Addi instruction, nothing to do here
595 if (AddiList.size() <= 1)
596 return Changed;
597
598 NodeAddr<StmtNode *> FirstReachedUseSN;
599 // Find the first reached use of Addi instruction from the list
600 if (!findFirstReachedInst(AddMI, AddiList, UseSN&: FirstReachedUseSN))
601 return Changed;
602
603 // If we reach this point we know that the StmtNode FirstReachedUseSN is for
604 // an Addi instruction. So, we're guaranteed to have just one DefNode, and
605 // hence we can access the front() directly without checks
606 NodeAddr<DefNode *> FirstReachedUseDN =
607 FirstReachedUseSN.Addr->members_if(P: DFG->IsDef, G: *DFG).front();
608
609 MachineInstr *FirstReachedMI = FirstReachedUseSN.Addr->getCode();
610 const MachineOperand FirstReachedMIImmOp = FirstReachedMI->getOperand(i: 2);
611 if (!FirstReachedMIImmOp.isImm())
612 return false;
613
614 for (auto &I : AddiList) {
615 NodeAddr<StmtNode *> CurrentInstSN = I.first;
616 NodeAddr<UseNode *> CurrentInstUN = I.second;
617
618 MachineInstr *CurrentMI = CurrentInstSN.Addr->getCode();
619 MachineOperand &CurrentMIImmOp = CurrentMI->getOperand(i: 2);
620
621 int64_t NewOffset;
622
623 // Even though we know it's an Addi instruction, the second operand could be
624 // a global value and not an immediate
625 if (!CurrentMIImmOp.isImm())
626 continue;
627
628 NewOffset = CurrentMIImmOp.getImm() - FirstReachedMIImmOp.getImm();
629
630 // This is the first occurring Addi, so skip modifying this
631 if (CurrentMI == FirstReachedMI) {
632 continue;
633 }
634
635 if (CurrentMI->getParent() != FirstReachedMI->getParent())
636 continue;
637
638 // Modify the Addi instruction only if it could be used to modify a
639 // future load/store instruction and get removed
640 //
641 // This check is needed because, if we modify the current Addi instruction
642 // we create RAW dependence between the FirstReached Addi and the current
643 // one, which could result in extra packets. So we only do this change if
644 // we know the current Addi would get removed later
645 if (!usedInLoadStore(CurrentInstSN, NewOffset)) {
646 return false;
647 }
648
649 // Verify whether the First Addi's definition register is still live when
650 // we reach the current Addi
651 RegisterRef FirstReachedDefRR = FirstReachedUseDN.Addr->getRegRef(G: *DFG);
652 NodeAddr<InstrNode *> CurrentAddiIN = CurrentInstUN.Addr->getOwner(G: *DFG);
653 NodeAddr<RefNode *> NearestAA =
654 LV->getNearestAliasedRef(RefRR: FirstReachedDefRR, IA: CurrentAddiIN);
655 if ((DFG->IsDef(BA: NearestAA) && NearestAA.Id != FirstReachedUseDN.Id) ||
656 (!DFG->IsDef(BA: NearestAA) &&
657 NearestAA.Addr->getReachingDef() != FirstReachedUseDN.Id)) {
658 // Found another definition of FirstReachedDef
659 LLVM_DEBUG(dbgs() << "\t\t\tCould not modify below Addi since the first "
660 "defined Addi register was redefined\n");
661 continue;
662 }
663
664 MachineOperand CurrentMIBaseOp = CurrentMI->getOperand(i: 1);
665 if (CurrentMIBaseOp.getReg() != FirstReachedMI->getOperand(i: 1).getReg()) {
666 continue;
667 }
668
669 // If we reached this point, then we can modify MI to use the result of
670 // FirstReachedMI
671 Changed |= updateAddBases(CurrentMI, FirstReachedMI, NewOffset);
672
673 // Update the reachingDef of the Current AddI use after change
674 CurrentInstUN.Addr->linkToDef(Self: CurrentInstUN.Id, DA: FirstReachedUseDN);
675 }
676
677 return Changed;
678}
679
680bool HexagonOptAddrMode::updateAddBases(MachineInstr *CurrentMI,
681 MachineInstr *FirstReachedMI,
682 int64_t NewOffset) {
683 LLVM_DEBUG(dbgs() << "[About to modify the Addi]: " << *CurrentMI << "\n");
684 const MachineOperand FirstReachedDef = FirstReachedMI->getOperand(i: 0);
685 Register FirstDefRegister = FirstReachedDef.getReg();
686
687 MachineOperand &CurrentMIBaseOp = CurrentMI->getOperand(i: 1);
688 MachineOperand &CurrentMIImmOp = CurrentMI->getOperand(i: 2);
689
690 CurrentMIBaseOp.setReg(FirstDefRegister);
691 CurrentMIBaseOp.setIsUndef(FirstReachedDef.isUndef());
692 CurrentMIBaseOp.setImplicit(FirstReachedDef.isImplicit());
693 CurrentMIImmOp.setImm(NewOffset);
694 ProcessedAddiInsts.insert(V: CurrentMI);
695 MRI->clearKillFlags(Reg: FirstDefRegister);
696 return true;
697}
698
699bool HexagonOptAddrMode::processAddUses(NodeAddr<StmtNode *> AddSN,
700 MachineInstr *AddMI,
701 const NodeList &UNodeList) {
702
703 Register AddDefR = AddMI->getOperand(i: 0).getReg();
704 Register BaseReg = AddMI->getOperand(i: 1).getReg();
705 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
706 NodeAddr<UseNode *> UN = *I;
707 NodeAddr<StmtNode *> SN = UN.Addr->getOwner(G: *DFG);
708 MachineInstr *MI = SN.Addr->getCode();
709 const MCInstrDesc &MID = MI->getDesc();
710 if ((!MID.mayLoad() && !MID.mayStore()) ||
711 HII->getAddrMode(MI: *MI) != HexagonII::BaseImmOffset)
712 return false;
713
714 MachineOperand BaseOp = MI->getOperand(i: getBaseOpPosition(MI));
715
716 if (!BaseOp.isReg() || BaseOp.getReg() != AddDefR)
717 return false;
718
719 MachineOperand OffsetOp = MI->getOperand(i: getOffsetOpPosition(MI));
720 if (!OffsetOp.isImm())
721 return false;
722
723 int64_t newOffset = OffsetOp.getImm() + AddMI->getOperand(i: 2).getImm();
724 if (!isValidOffset(MI, Offset: newOffset))
725 return false;
726
727 // Since we'll be extending the live range of Rt in the following example,
728 // make sure that is safe. another definition of Rt doesn't exist between 'add'
729 // and load/store instruction.
730 //
731 // Ex: Rx= add(Rt,#10)
732 // memw(Rx+#0) = Rs
733 // will be replaced with => memw(Rt+#10) = Rs
734 if (!isSafeToExtLR(SN: AddSN, MI: AddMI, LRExtReg: BaseReg, UNodeList))
735 return false;
736 }
737
738 NodeId LRExtRegRD = 0;
739 // Iterate through all the UseNodes in SN and find the reaching def
740 // for the LRExtReg.
741 for (NodeAddr<UseNode *> UA : AddSN.Addr->members_if(P: DFG->IsUse, G: *DFG)) {
742 RegisterRef RR = UA.Addr->getRegRef(G: *DFG);
743 if (BaseReg == RR.asMCReg())
744 LRExtRegRD = UA.Addr->getReachingDef();
745 }
746
747 // Update all the uses of 'add' with the appropriate base and offset
748 // values.
749 bool Changed = false;
750 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
751 NodeAddr<UseNode *> UseN = *I;
752 assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) &&
753 "Found a PhiRef node as a real reached use!!");
754
755 NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(G: *DFG);
756 MachineInstr *UseMI = OwnerN.Addr->getCode();
757 LLVM_DEBUG(dbgs() << "\t\t[MI <BB#" << UseMI->getParent()->getNumber()
758 << ">]: " << *UseMI << "\n");
759 Changed |= updateAddUses(AddMI, UseMI);
760
761 // Set the reachingDef for UseNode under consideration
762 // after updating the Add use. This local change is
763 // to avoid rebuilding of the RDF graph after update.
764 NodeAddr<DefNode *> LRExtRegDN = DFG->addr<DefNode *>(N: LRExtRegRD);
765 UseN.Addr->linkToDef(Self: UseN.Id, DA: LRExtRegDN);
766 }
767
768 if (Changed)
769 Deleted.insert(V: AddMI);
770
771 return Changed;
772}
773
774bool HexagonOptAddrMode::updateAddUses(MachineInstr *AddMI,
775 MachineInstr *UseMI) {
776 const MachineOperand ImmOp = AddMI->getOperand(i: 2);
777 const MachineOperand AddRegOp = AddMI->getOperand(i: 1);
778 Register NewReg = AddRegOp.getReg();
779
780 MachineOperand &BaseOp = UseMI->getOperand(i: getBaseOpPosition(MI: UseMI));
781 MachineOperand &OffsetOp = UseMI->getOperand(i: getOffsetOpPosition(MI: UseMI));
782 BaseOp.setReg(NewReg);
783 BaseOp.setIsUndef(AddRegOp.isUndef());
784 BaseOp.setImplicit(AddRegOp.isImplicit());
785 OffsetOp.setImm(ImmOp.getImm() + OffsetOp.getImm());
786 MRI->clearKillFlags(Reg: NewReg);
787
788 return true;
789}
790
791bool HexagonOptAddrMode::analyzeUses(unsigned tfrDefR,
792 const NodeList &UNodeList,
793 InstrEvalMap &InstrEvalResult,
794 short &SizeInc) {
795 bool KeepTfr = false;
796 bool HasRepInstr = false;
797 InstrEvalResult.clear();
798
799 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
800 bool CanBeReplaced = false;
801 NodeAddr<UseNode *> UN = *I;
802 NodeAddr<StmtNode *> SN = UN.Addr->getOwner(G: *DFG);
803 MachineInstr &MI = *SN.Addr->getCode();
804 const MCInstrDesc &MID = MI.getDesc();
805 if ((MID.mayLoad() || MID.mayStore())) {
806 if (!hasRepForm(MI, TfrDefR: tfrDefR)) {
807 KeepTfr = true;
808 continue;
809 }
810 SizeInc++;
811 CanBeReplaced = true;
812 } else if (MI.getOpcode() == Hexagon::S2_addasl_rrri) {
813 NodeList AddaslUseList;
814
815 LLVM_DEBUG(dbgs() << "\nGetting ReachedUses for === " << MI << "\n");
816 getAllRealUses(SA: SN, UNodeList&: AddaslUseList);
817 // Process phi nodes.
818 if (allValidCandidates(SA: SN, UNodeList&: AddaslUseList) &&
819 canRemoveAddasl(AddAslSN: SN, MI, UNodeList: AddaslUseList)) {
820 SizeInc += AddaslUseList.size();
821 SizeInc -= 1; // Reduce size by 1 as addasl itself can be removed.
822 CanBeReplaced = true;
823 } else
824 SizeInc++;
825 } else
826 // Currently, only load/store and addasl are handled.
827 // Some other instructions to consider -
828 // A2_add -> A2_addi
829 // M4_mpyrr_addr -> M4_mpyrr_addi
830 KeepTfr = true;
831
832 InstrEvalResult[&MI] = CanBeReplaced;
833 HasRepInstr |= CanBeReplaced;
834 }
835
836 // Reduce total size by 2 if original tfr can be deleted.
837 if (!KeepTfr)
838 SizeInc -= 2;
839
840 return HasRepInstr;
841}
842
843bool HexagonOptAddrMode::changeLoad(MachineInstr *OldMI, MachineOperand ImmOp,
844 unsigned ImmOpNum) {
845 bool Changed = false;
846 MachineBasicBlock *BB = OldMI->getParent();
847 auto UsePos = MachineBasicBlock::iterator(OldMI);
848 MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
849 ++InsertPt;
850 unsigned OpStart;
851 unsigned OpEnd = OldMI->getNumOperands();
852 MachineInstrBuilder MIB;
853
854 if (ImmOpNum == 1) {
855 if (HII->getAddrMode(MI: *OldMI) == HexagonII::BaseRegOffset) {
856 short NewOpCode = HII->changeAddrMode_rr_ur(MI: *OldMI);
857 assert(NewOpCode >= 0 && "Invalid New opcode\n");
858 MIB = BuildMI(BB&: *BB, I: InsertPt, MIMD: OldMI->getDebugLoc(), MCID: HII->get(Opcode: NewOpCode));
859 MIB.add(MO: OldMI->getOperand(i: 0));
860 MIB.add(MO: OldMI->getOperand(i: 2));
861 MIB.add(MO: OldMI->getOperand(i: 3));
862 MIB.add(MO: ImmOp);
863 OpStart = 4;
864 Changed = true;
865 } else if (HII->getAddrMode(MI: *OldMI) == HexagonII::BaseImmOffset &&
866 OldMI->getOperand(i: 2).isImm()) {
867 short NewOpCode = HII->changeAddrMode_io_abs(MI: *OldMI);
868 assert(NewOpCode >= 0 && "Invalid New opcode\n");
869 MIB = BuildMI(BB&: *BB, I: InsertPt, MIMD: OldMI->getDebugLoc(), MCID: HII->get(Opcode: NewOpCode))
870 .add(MO: OldMI->getOperand(i: 0));
871 const GlobalValue *GV = ImmOp.getGlobal();
872 int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(i: 2).getImm();
873
874 MIB.addGlobalAddress(GV, Offset, TargetFlags: ImmOp.getTargetFlags());
875 OpStart = 3;
876 Changed = true;
877 } else
878 Changed = false;
879
880 LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
881 LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
882 } else if (ImmOpNum == 2) {
883 if (OldMI->getOperand(i: 3).isImm() && OldMI->getOperand(i: 3).getImm() == 0) {
884 short NewOpCode = HII->changeAddrMode_rr_io(MI: *OldMI);
885 assert(NewOpCode >= 0 && "Invalid New opcode\n");
886 MIB = BuildMI(BB&: *BB, I: InsertPt, MIMD: OldMI->getDebugLoc(), MCID: HII->get(Opcode: NewOpCode));
887 MIB.add(MO: OldMI->getOperand(i: 0));
888 MIB.add(MO: OldMI->getOperand(i: 1));
889 MIB.add(MO: ImmOp);
890 OpStart = 4;
891 Changed = true;
892 LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
893 LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
894 }
895 }
896
897 if (Changed)
898 for (unsigned i = OpStart; i < OpEnd; ++i)
899 MIB.add(MO: OldMI->getOperand(i));
900
901 return Changed;
902}
903
904bool HexagonOptAddrMode::changeStore(MachineInstr *OldMI, MachineOperand ImmOp,
905 unsigned ImmOpNum) {
906 bool Changed = false;
907 unsigned OpStart = 0;
908 unsigned OpEnd = OldMI->getNumOperands();
909 MachineBasicBlock *BB = OldMI->getParent();
910 auto UsePos = MachineBasicBlock::iterator(OldMI);
911 MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
912 ++InsertPt;
913 MachineInstrBuilder MIB;
914 if (ImmOpNum == 0) {
915 if (HII->getAddrMode(MI: *OldMI) == HexagonII::BaseRegOffset) {
916 short NewOpCode = HII->changeAddrMode_rr_ur(MI: *OldMI);
917 assert(NewOpCode >= 0 && "Invalid New opcode\n");
918 MIB = BuildMI(BB&: *BB, I: InsertPt, MIMD: OldMI->getDebugLoc(), MCID: HII->get(Opcode: NewOpCode));
919 MIB.add(MO: OldMI->getOperand(i: 1));
920 MIB.add(MO: OldMI->getOperand(i: 2));
921 MIB.add(MO: ImmOp);
922 MIB.add(MO: OldMI->getOperand(i: 3));
923 OpStart = 4;
924 Changed = true;
925 } else if (HII->getAddrMode(MI: *OldMI) == HexagonII::BaseImmOffset) {
926 short NewOpCode = HII->changeAddrMode_io_abs(MI: *OldMI);
927 assert(NewOpCode >= 0 && "Invalid New opcode\n");
928 MIB = BuildMI(BB&: *BB, I: InsertPt, MIMD: OldMI->getDebugLoc(), MCID: HII->get(Opcode: NewOpCode));
929 const GlobalValue *GV = ImmOp.getGlobal();
930 int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(i: 1).getImm();
931 MIB.addGlobalAddress(GV, Offset, TargetFlags: ImmOp.getTargetFlags());
932 MIB.add(MO: OldMI->getOperand(i: 2));
933 OpStart = 3;
934 Changed = true;
935 }
936 } else if (ImmOpNum == 1 && OldMI->getOperand(i: 2).getImm() == 0) {
937 short NewOpCode = HII->changeAddrMode_rr_io(MI: *OldMI);
938 assert(NewOpCode >= 0 && "Invalid New opcode\n");
939 MIB = BuildMI(BB&: *BB, I: InsertPt, MIMD: OldMI->getDebugLoc(), MCID: HII->get(Opcode: NewOpCode));
940 MIB.add(MO: OldMI->getOperand(i: 0));
941 MIB.add(MO: ImmOp);
942 OpStart = 3;
943 Changed = true;
944 }
945 if (Changed) {
946 LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
947 LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
948
949 for (unsigned i = OpStart; i < OpEnd; ++i)
950 MIB.add(MO: OldMI->getOperand(i));
951 }
952
953 return Changed;
954}
955
956short HexagonOptAddrMode::getBaseWithLongOffset(const MachineInstr &MI) const {
957 if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset) {
958 short TempOpCode = HII->changeAddrMode_io_rr(MI);
959 return HII->changeAddrMode_rr_ur(Opc: TempOpCode);
960 }
961 return HII->changeAddrMode_rr_ur(MI);
962}
963
964bool HexagonOptAddrMode::changeAddAsl(NodeAddr<UseNode *> AddAslUN,
965 MachineInstr *AddAslMI,
966 const MachineOperand &ImmOp,
967 unsigned ImmOpNum) {
968 NodeAddr<StmtNode *> SA = AddAslUN.Addr->getOwner(G: *DFG);
969
970 LLVM_DEBUG(dbgs() << "Processing addasl :" << *AddAslMI << "\n");
971
972 NodeList UNodeList;
973 getAllRealUses(SA, UNodeList);
974
975 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
976 NodeAddr<UseNode *> UseUN = *I;
977 assert(!(UseUN.Addr->getFlags() & NodeAttrs::PhiRef) &&
978 "Can't transform this 'AddAsl' instruction!");
979
980 NodeAddr<StmtNode *> UseIA = UseUN.Addr->getOwner(G: *DFG);
981 LLVM_DEBUG(dbgs() << "[InstrNode]: "
982 << Print<NodeAddr<InstrNode *>>(UseIA, *DFG) << "\n");
983 MachineInstr *UseMI = UseIA.Addr->getCode();
984 LLVM_DEBUG(dbgs() << "[MI <" << printMBBReference(*UseMI->getParent())
985 << ">]: " << *UseMI << "\n");
986 const MCInstrDesc &UseMID = UseMI->getDesc();
987 assert(HII->getAddrMode(*UseMI) == HexagonII::BaseImmOffset);
988
989 auto UsePos = MachineBasicBlock::iterator(UseMI);
990 MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
991 short NewOpCode = getBaseWithLongOffset(MI: *UseMI);
992 assert(NewOpCode >= 0 && "Invalid New opcode\n");
993
994 unsigned OpStart;
995 unsigned OpEnd = UseMI->getNumOperands();
996
997 MachineBasicBlock *BB = UseMI->getParent();
998 MachineInstrBuilder MIB =
999 BuildMI(BB&: *BB, I: InsertPt, MIMD: UseMI->getDebugLoc(), MCID: HII->get(Opcode: NewOpCode));
1000 // change mem(Rs + # ) -> mem(Rt << # + ##)
1001 if (UseMID.mayLoad()) {
1002 MIB.add(MO: UseMI->getOperand(i: 0));
1003 MIB.add(MO: AddAslMI->getOperand(i: 2));
1004 MIB.add(MO: AddAslMI->getOperand(i: 3));
1005 const GlobalValue *GV = ImmOp.getGlobal();
1006 MIB.addGlobalAddress(GV, Offset: UseMI->getOperand(i: 2).getImm()+ImmOp.getOffset(),
1007 TargetFlags: ImmOp.getTargetFlags());
1008 OpStart = 3;
1009 } else if (UseMID.mayStore()) {
1010 MIB.add(MO: AddAslMI->getOperand(i: 2));
1011 MIB.add(MO: AddAslMI->getOperand(i: 3));
1012 const GlobalValue *GV = ImmOp.getGlobal();
1013 MIB.addGlobalAddress(GV, Offset: UseMI->getOperand(i: 1).getImm()+ImmOp.getOffset(),
1014 TargetFlags: ImmOp.getTargetFlags());
1015 MIB.add(MO: UseMI->getOperand(i: 2));
1016 OpStart = 3;
1017 } else
1018 llvm_unreachable("Unhandled instruction");
1019
1020 for (unsigned i = OpStart; i < OpEnd; ++i)
1021 MIB.add(MO: UseMI->getOperand(i));
1022 Deleted.insert(V: UseMI);
1023 }
1024
1025 return true;
1026}
1027
1028bool HexagonOptAddrMode::xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI,
1029 NodeAddr<UseNode *> UseN,
1030 unsigned UseMOnum) {
1031 const MachineOperand ImmOp = TfrMI->getOperand(i: 1);
1032 const MCInstrDesc &MID = UseMI->getDesc();
1033 unsigned Changed = false;
1034 if (MID.mayLoad())
1035 Changed = changeLoad(OldMI: UseMI, ImmOp, ImmOpNum: UseMOnum);
1036 else if (MID.mayStore())
1037 Changed = changeStore(OldMI: UseMI, ImmOp, ImmOpNum: UseMOnum);
1038 else if (UseMI->getOpcode() == Hexagon::S2_addasl_rrri)
1039 Changed = changeAddAsl(AddAslUN: UseN, AddAslMI: UseMI, ImmOp, ImmOpNum: UseMOnum);
1040
1041 if (Changed)
1042 Deleted.insert(V: UseMI);
1043
1044 return Changed;
1045}
1046
1047bool HexagonOptAddrMode::processBlock(NodeAddr<BlockNode *> BA) {
1048 bool Changed = false;
1049
1050 for (auto IA : BA.Addr->members(G: *DFG)) {
1051 if (!DFG->IsCode<NodeAttrs::Stmt>(BA: IA))
1052 continue;
1053
1054 NodeAddr<StmtNode *> SA = IA;
1055 MachineInstr *MI = SA.Addr->getCode();
1056 if ((MI->getOpcode() != Hexagon::A2_tfrsi ||
1057 !MI->getOperand(i: 1).isGlobal()) &&
1058 (MI->getOpcode() != Hexagon::A2_addi ||
1059 !MI->getOperand(i: 2).isImm() || HII->isConstExtended(MI: *MI)))
1060 continue;
1061
1062 LLVM_DEBUG(dbgs() << "[Analyzing " << HII->getName(MI->getOpcode())
1063 << "]: " << *MI << "\n\t[InstrNode]: "
1064 << Print<NodeAddr<InstrNode *>>(IA, *DFG) << '\n');
1065
1066 if (MI->getOpcode() == Hexagon::A2_addi)
1067 Changed |= processAddBases(AddSN: SA, AddMI: MI);
1068 NodeList UNodeList;
1069 getAllRealUses(SA, UNodeList);
1070
1071 if (!allValidCandidates(SA, UNodeList))
1072 continue;
1073
1074 // Analyze all uses of 'add'. If the output of 'add' is used as an address
1075 // in the base+immediate addressing mode load/store instructions, see if
1076 // they can be updated to use the immediate value as an offset. Thus,
1077 // providing us the opportunity to eliminate 'add'.
1078 // Ex: Rx= add(Rt,#12)
1079 // memw(Rx+#0) = Rs
1080 // This can be replaced with memw(Rt+#12) = Rs
1081 //
1082 // This transformation is only performed if all uses can be updated and
1083 // the offset isn't required to be constant extended.
1084 if (MI->getOpcode() == Hexagon::A2_addi) {
1085 Changed |= processAddUses(AddSN: SA, AddMI: MI, UNodeList);
1086 continue;
1087 }
1088
1089 short SizeInc = 0;
1090 Register DefR = MI->getOperand(i: 0).getReg();
1091 InstrEvalMap InstrEvalResult;
1092
1093 // Analyze all uses and calculate increase in size. Perform the optimization
1094 // only if there is no increase in size.
1095 if (!analyzeUses(tfrDefR: DefR, UNodeList, InstrEvalResult, SizeInc))
1096 continue;
1097 if (SizeInc > CodeGrowthLimit)
1098 continue;
1099
1100 bool KeepTfr = false;
1101
1102 LLVM_DEBUG(dbgs() << "\t[Total reached uses] : " << UNodeList.size()
1103 << "\n");
1104 LLVM_DEBUG(dbgs() << "\t[Processing Reached Uses] ===\n");
1105 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
1106 NodeAddr<UseNode *> UseN = *I;
1107 assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) &&
1108 "Found a PhiRef node as a real reached use!!");
1109
1110 NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(G: *DFG);
1111 MachineInstr *UseMI = OwnerN.Addr->getCode();
1112 LLVM_DEBUG(dbgs() << "\t\t[MI <" << printMBBReference(*UseMI->getParent())
1113 << ">]: " << *UseMI << "\n");
1114
1115 int UseMOnum = -1;
1116 unsigned NumOperands = UseMI->getNumOperands();
1117 for (unsigned j = 0; j < NumOperands - 1; ++j) {
1118 const MachineOperand &op = UseMI->getOperand(i: j);
1119 if (op.isReg() && op.isUse() && DefR == op.getReg())
1120 UseMOnum = j;
1121 }
1122 // It is possible that the register will not be found in any operand.
1123 // This could happen, for example, when DefR = R4, but the used
1124 // register is D2.
1125
1126 // Change UseMI if replacement is possible. If any replacement failed,
1127 // or wasn't attempted, make sure to keep the TFR.
1128 bool Xformed = false;
1129 if (UseMOnum >= 0 && InstrEvalResult[UseMI])
1130 Xformed = xformUseMI(TfrMI: MI, UseMI, UseN, UseMOnum);
1131 Changed |= Xformed;
1132 KeepTfr |= !Xformed;
1133 }
1134 if (!KeepTfr)
1135 Deleted.insert(V: MI);
1136 }
1137 return Changed;
1138}
1139
1140bool HexagonOptAddrMode::runOnMachineFunction(MachineFunction &MF) {
1141 if (skipFunction(F: MF.getFunction()))
1142 return false;
1143
1144 // Perform RDF optimizations only if number of basic blocks in the
1145 // function is less than the limit
1146 if (MF.size() > RDFFuncBlockLimit) {
1147 LLVM_DEBUG(dbgs() << "Skipping " << getPassName()
1148 << ": too many basic blocks\n");
1149 return false;
1150 }
1151
1152 bool Changed = false;
1153 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1154 MRI = &MF.getRegInfo();
1155 TRI = MF.getSubtarget().getRegisterInfo();
1156 HII = HST.getInstrInfo();
1157 HRI = HST.getRegisterInfo();
1158 const auto &MDF = getAnalysis<MachineDominanceFrontierWrapperPass>().getMDF();
1159 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
1160
1161 DataFlowGraph G(MF, *HII, *HRI, *MDT, MDF);
1162 // Need to keep dead phis because we can propagate uses of registers into
1163 // nodes dominated by those would-be phis.
1164 G.build(config: BuildOptions::KeepDeadPhis);
1165 DFG = &G;
1166
1167 Liveness L(*MRI, *DFG);
1168 L.computePhiInfo();
1169 LV = &L;
1170
1171 Deleted.clear();
1172 ProcessedAddiInsts.clear();
1173 NodeAddr<FuncNode *> FA = DFG->getFunc();
1174 LLVM_DEBUG(dbgs() << "==== [RefMap#]=====:\n "
1175 << Print<NodeAddr<FuncNode *>>(FA, *DFG) << "\n");
1176
1177 for (NodeAddr<BlockNode *> BA : FA.Addr->members(G: *DFG))
1178 Changed |= processBlock(BA);
1179
1180 for (auto *MI : Deleted)
1181 MI->eraseFromParent();
1182
1183 if (Changed) {
1184 G.build();
1185 L.computeLiveIns();
1186 L.resetLiveIns();
1187 L.resetKills();
1188 }
1189
1190 return Changed;
1191}
1192
1193//===----------------------------------------------------------------------===//
1194// Public Constructor Functions
1195//===----------------------------------------------------------------------===//
1196
1197FunctionPass *llvm::createHexagonOptAddrMode() {
1198 return new HexagonOptAddrMode();
1199}
1200