1//===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides X86 specific target descriptions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86MCTargetDesc.h"
14#include "TargetInfo/X86TargetInfo.h"
15#include "X86ATTInstPrinter.h"
16#include "X86BaseInfo.h"
17#include "X86IntelInstPrinter.h"
18#include "X86MCAsmInfo.h"
19#include "X86TargetStreamer.h"
20#include "llvm-c/Visibility.h"
21#include "llvm/ADT/APInt.h"
22#include "llvm/DebugInfo/CodeView/CodeView.h"
23#include "llvm/MC/MCDwarf.h"
24#include "llvm/MC/MCInstrAnalysis.h"
25#include "llvm/MC/MCInstrInfo.h"
26#include "llvm/MC/MCRegisterInfo.h"
27#include "llvm/MC/MCStreamer.h"
28#include "llvm/MC/MCSubtargetInfo.h"
29#include "llvm/MC/TargetRegistry.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/TargetParser/Host.h"
32#include "llvm/TargetParser/Triple.h"
33
34using namespace llvm;
35
36#define GET_REGINFO_MC_DESC
37#include "X86GenRegisterInfo.inc"
38
39#define GET_INSTRINFO_MC_DESC
40#define GET_INSTRINFO_MC_HELPERS
41#define ENABLE_INSTR_PREDICATE_VERIFIER
42#include "X86GenInstrInfo.inc"
43
44#define GET_SUBTARGETINFO_MC_DESC
45#include "X86GenSubtargetInfo.inc"
46
47std::string X86_MC::ParseX86Triple(const Triple &TT) {
48 std::string FS;
49 // SSE2 should default to enabled in 64-bit mode, but can be turned off
50 // explicitly.
51 if (TT.isX86_64())
52 FS = "+64bit-mode,-32bit-mode,-16bit-mode,+sse2";
53 else if (TT.getEnvironment() != Triple::CODE16)
54 FS = "-64bit-mode,+32bit-mode,-16bit-mode";
55 else
56 FS = "-64bit-mode,-32bit-mode,+16bit-mode";
57
58 if (TT.isX32())
59 FS += ",+x32";
60
61 return FS;
62}
63
64unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
65 if (TT.isX86_64())
66 return DWARFFlavour::X86_64;
67
68 if (TT.isOSDarwin())
69 return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
70 if (TT.isOSCygMing())
71 // Unsupported by now, just quick fallback
72 return DWARFFlavour::X86_32_Generic;
73 return DWARFFlavour::X86_32_Generic;
74}
75
76bool X86_MC::hasLockPrefix(const MCInst &MI) {
77 return MI.getFlags() & X86::IP_HAS_LOCK;
78}
79
80static bool isMemOperand(const MCInst &MI, unsigned Op, unsigned RegClassID) {
81 const MCOperand &Base = MI.getOperand(i: Op + X86::AddrBaseReg);
82 const MCOperand &Index = MI.getOperand(i: Op + X86::AddrIndexReg);
83 const MCRegisterClass &RC = X86MCRegisterClasses[RegClassID];
84
85 return (Base.isReg() && Base.getReg() && RC.contains(Reg: Base.getReg())) ||
86 (Index.isReg() && Index.getReg() && RC.contains(Reg: Index.getReg()));
87}
88
89bool X86_MC::is16BitMemOperand(const MCInst &MI, unsigned Op,
90 const MCSubtargetInfo &STI) {
91 const MCOperand &Base = MI.getOperand(i: Op + X86::AddrBaseReg);
92 const MCOperand &Index = MI.getOperand(i: Op + X86::AddrIndexReg);
93
94 if (STI.hasFeature(Feature: X86::Is16Bit) && Base.isReg() && !Base.getReg() &&
95 Index.isReg() && !Index.getReg())
96 return true;
97 return isMemOperand(MI, Op, RegClassID: X86::GR16RegClassID);
98}
99
100bool X86_MC::is32BitMemOperand(const MCInst &MI, unsigned Op) {
101 const MCOperand &Base = MI.getOperand(i: Op + X86::AddrBaseReg);
102 const MCOperand &Index = MI.getOperand(i: Op + X86::AddrIndexReg);
103 if (Base.isReg() && Base.getReg() == X86::EIP) {
104 assert(Index.isReg() && !Index.getReg() && "Invalid eip-based address");
105 return true;
106 }
107 if (Index.isReg() && Index.getReg() == X86::EIZ)
108 return true;
109 return isMemOperand(MI, Op, RegClassID: X86::GR32RegClassID);
110}
111
112#ifndef NDEBUG
113bool X86_MC::is64BitMemOperand(const MCInst &MI, unsigned Op) {
114 return isMemOperand(MI, Op, X86::GR64RegClassID);
115}
116#endif
117
118bool X86_MC::needsAddressSizeOverride(const MCInst &MI,
119 const MCSubtargetInfo &STI,
120 int MemoryOperand, uint64_t TSFlags) {
121 uint64_t AdSize = TSFlags & X86II::AdSizeMask;
122 bool Is16BitMode = STI.hasFeature(Feature: X86::Is16Bit);
123 bool Is32BitMode = STI.hasFeature(Feature: X86::Is32Bit);
124 bool Is64BitMode = STI.hasFeature(Feature: X86::Is64Bit);
125 if ((Is16BitMode && AdSize == X86II::AdSize32) ||
126 (Is32BitMode && AdSize == X86II::AdSize16) ||
127 (Is64BitMode && AdSize == X86II::AdSize32))
128 return true;
129 uint64_t Form = TSFlags & X86II::FormMask;
130 switch (Form) {
131 default:
132 break;
133 case X86II::RawFrmDstSrc: {
134 MCRegister siReg = MI.getOperand(i: 1).getReg();
135 assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
136 (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
137 (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
138 "SI and DI register sizes do not match");
139 return (!Is32BitMode && siReg == X86::ESI) ||
140 (Is32BitMode && siReg == X86::SI);
141 }
142 case X86II::RawFrmSrc: {
143 MCRegister siReg = MI.getOperand(i: 0).getReg();
144 return (!Is32BitMode && siReg == X86::ESI) ||
145 (Is32BitMode && siReg == X86::SI);
146 }
147 case X86II::RawFrmDst: {
148 MCRegister siReg = MI.getOperand(i: 0).getReg();
149 return (!Is32BitMode && siReg == X86::EDI) ||
150 (Is32BitMode && siReg == X86::DI);
151 }
152 }
153
154 // Determine where the memory operand starts, if present.
155 if (MemoryOperand < 0)
156 return false;
157
158 if (STI.hasFeature(Feature: X86::Is64Bit)) {
159 assert(!is16BitMemOperand(MI, MemoryOperand, STI));
160 return is32BitMemOperand(MI, Op: MemoryOperand);
161 }
162 if (STI.hasFeature(Feature: X86::Is32Bit)) {
163 assert(!is64BitMemOperand(MI, MemoryOperand));
164 return is16BitMemOperand(MI, Op: MemoryOperand, STI);
165 }
166 assert(STI.hasFeature(X86::Is16Bit));
167 assert(!is64BitMemOperand(MI, MemoryOperand));
168 return !is16BitMemOperand(MI, Op: MemoryOperand, STI);
169}
170
171void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) {
172 // FIXME: TableGen these.
173 for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
174 unsigned SEH = MRI->getEncodingValue(Reg);
175 MRI->mapLLVMRegToSEHReg(LLVMReg: Reg, SEHReg: SEH);
176 }
177
178 // Mapping from CodeView to MC register id.
179 static const struct {
180 codeview::RegisterId CVReg;
181 MCPhysReg Reg;
182 } RegMap[] = {
183 {.CVReg: codeview::RegisterId::AL, .Reg: X86::AL},
184 {.CVReg: codeview::RegisterId::CL, .Reg: X86::CL},
185 {.CVReg: codeview::RegisterId::DL, .Reg: X86::DL},
186 {.CVReg: codeview::RegisterId::BL, .Reg: X86::BL},
187 {.CVReg: codeview::RegisterId::AH, .Reg: X86::AH},
188 {.CVReg: codeview::RegisterId::CH, .Reg: X86::CH},
189 {.CVReg: codeview::RegisterId::DH, .Reg: X86::DH},
190 {.CVReg: codeview::RegisterId::BH, .Reg: X86::BH},
191 {.CVReg: codeview::RegisterId::AX, .Reg: X86::AX},
192 {.CVReg: codeview::RegisterId::CX, .Reg: X86::CX},
193 {.CVReg: codeview::RegisterId::DX, .Reg: X86::DX},
194 {.CVReg: codeview::RegisterId::BX, .Reg: X86::BX},
195 {.CVReg: codeview::RegisterId::SP, .Reg: X86::SP},
196 {.CVReg: codeview::RegisterId::BP, .Reg: X86::BP},
197 {.CVReg: codeview::RegisterId::SI, .Reg: X86::SI},
198 {.CVReg: codeview::RegisterId::DI, .Reg: X86::DI},
199 {.CVReg: codeview::RegisterId::EAX, .Reg: X86::EAX},
200 {.CVReg: codeview::RegisterId::ECX, .Reg: X86::ECX},
201 {.CVReg: codeview::RegisterId::EDX, .Reg: X86::EDX},
202 {.CVReg: codeview::RegisterId::EBX, .Reg: X86::EBX},
203 {.CVReg: codeview::RegisterId::ESP, .Reg: X86::ESP},
204 {.CVReg: codeview::RegisterId::EBP, .Reg: X86::EBP},
205 {.CVReg: codeview::RegisterId::ESI, .Reg: X86::ESI},
206 {.CVReg: codeview::RegisterId::EDI, .Reg: X86::EDI},
207
208 {.CVReg: codeview::RegisterId::EFLAGS, .Reg: X86::EFLAGS},
209
210 {.CVReg: codeview::RegisterId::ST0, .Reg: X86::ST0},
211 {.CVReg: codeview::RegisterId::ST1, .Reg: X86::ST1},
212 {.CVReg: codeview::RegisterId::ST2, .Reg: X86::ST2},
213 {.CVReg: codeview::RegisterId::ST3, .Reg: X86::ST3},
214 {.CVReg: codeview::RegisterId::ST4, .Reg: X86::ST4},
215 {.CVReg: codeview::RegisterId::ST5, .Reg: X86::ST5},
216 {.CVReg: codeview::RegisterId::ST6, .Reg: X86::ST6},
217 {.CVReg: codeview::RegisterId::ST7, .Reg: X86::ST7},
218
219 {.CVReg: codeview::RegisterId::ST0, .Reg: X86::FP0},
220 {.CVReg: codeview::RegisterId::ST1, .Reg: X86::FP1},
221 {.CVReg: codeview::RegisterId::ST2, .Reg: X86::FP2},
222 {.CVReg: codeview::RegisterId::ST3, .Reg: X86::FP3},
223 {.CVReg: codeview::RegisterId::ST4, .Reg: X86::FP4},
224 {.CVReg: codeview::RegisterId::ST5, .Reg: X86::FP5},
225 {.CVReg: codeview::RegisterId::ST6, .Reg: X86::FP6},
226 {.CVReg: codeview::RegisterId::ST7, .Reg: X86::FP7},
227
228 {.CVReg: codeview::RegisterId::MM0, .Reg: X86::MM0},
229 {.CVReg: codeview::RegisterId::MM1, .Reg: X86::MM1},
230 {.CVReg: codeview::RegisterId::MM2, .Reg: X86::MM2},
231 {.CVReg: codeview::RegisterId::MM3, .Reg: X86::MM3},
232 {.CVReg: codeview::RegisterId::MM4, .Reg: X86::MM4},
233 {.CVReg: codeview::RegisterId::MM5, .Reg: X86::MM5},
234 {.CVReg: codeview::RegisterId::MM6, .Reg: X86::MM6},
235 {.CVReg: codeview::RegisterId::MM7, .Reg: X86::MM7},
236
237 {.CVReg: codeview::RegisterId::XMM0, .Reg: X86::XMM0},
238 {.CVReg: codeview::RegisterId::XMM1, .Reg: X86::XMM1},
239 {.CVReg: codeview::RegisterId::XMM2, .Reg: X86::XMM2},
240 {.CVReg: codeview::RegisterId::XMM3, .Reg: X86::XMM3},
241 {.CVReg: codeview::RegisterId::XMM4, .Reg: X86::XMM4},
242 {.CVReg: codeview::RegisterId::XMM5, .Reg: X86::XMM5},
243 {.CVReg: codeview::RegisterId::XMM6, .Reg: X86::XMM6},
244 {.CVReg: codeview::RegisterId::XMM7, .Reg: X86::XMM7},
245
246 {.CVReg: codeview::RegisterId::XMM8, .Reg: X86::XMM8},
247 {.CVReg: codeview::RegisterId::XMM9, .Reg: X86::XMM9},
248 {.CVReg: codeview::RegisterId::XMM10, .Reg: X86::XMM10},
249 {.CVReg: codeview::RegisterId::XMM11, .Reg: X86::XMM11},
250 {.CVReg: codeview::RegisterId::XMM12, .Reg: X86::XMM12},
251 {.CVReg: codeview::RegisterId::XMM13, .Reg: X86::XMM13},
252 {.CVReg: codeview::RegisterId::XMM14, .Reg: X86::XMM14},
253 {.CVReg: codeview::RegisterId::XMM15, .Reg: X86::XMM15},
254
255 {.CVReg: codeview::RegisterId::SIL, .Reg: X86::SIL},
256 {.CVReg: codeview::RegisterId::DIL, .Reg: X86::DIL},
257 {.CVReg: codeview::RegisterId::BPL, .Reg: X86::BPL},
258 {.CVReg: codeview::RegisterId::SPL, .Reg: X86::SPL},
259 {.CVReg: codeview::RegisterId::RAX, .Reg: X86::RAX},
260 {.CVReg: codeview::RegisterId::RBX, .Reg: X86::RBX},
261 {.CVReg: codeview::RegisterId::RCX, .Reg: X86::RCX},
262 {.CVReg: codeview::RegisterId::RDX, .Reg: X86::RDX},
263 {.CVReg: codeview::RegisterId::RSI, .Reg: X86::RSI},
264 {.CVReg: codeview::RegisterId::RDI, .Reg: X86::RDI},
265 {.CVReg: codeview::RegisterId::RBP, .Reg: X86::RBP},
266 {.CVReg: codeview::RegisterId::RSP, .Reg: X86::RSP},
267 {.CVReg: codeview::RegisterId::R8, .Reg: X86::R8},
268 {.CVReg: codeview::RegisterId::R9, .Reg: X86::R9},
269 {.CVReg: codeview::RegisterId::R10, .Reg: X86::R10},
270 {.CVReg: codeview::RegisterId::R11, .Reg: X86::R11},
271 {.CVReg: codeview::RegisterId::R12, .Reg: X86::R12},
272 {.CVReg: codeview::RegisterId::R13, .Reg: X86::R13},
273 {.CVReg: codeview::RegisterId::R14, .Reg: X86::R14},
274 {.CVReg: codeview::RegisterId::R15, .Reg: X86::R15},
275 {.CVReg: codeview::RegisterId::R8B, .Reg: X86::R8B},
276 {.CVReg: codeview::RegisterId::R9B, .Reg: X86::R9B},
277 {.CVReg: codeview::RegisterId::R10B, .Reg: X86::R10B},
278 {.CVReg: codeview::RegisterId::R11B, .Reg: X86::R11B},
279 {.CVReg: codeview::RegisterId::R12B, .Reg: X86::R12B},
280 {.CVReg: codeview::RegisterId::R13B, .Reg: X86::R13B},
281 {.CVReg: codeview::RegisterId::R14B, .Reg: X86::R14B},
282 {.CVReg: codeview::RegisterId::R15B, .Reg: X86::R15B},
283 {.CVReg: codeview::RegisterId::R8W, .Reg: X86::R8W},
284 {.CVReg: codeview::RegisterId::R9W, .Reg: X86::R9W},
285 {.CVReg: codeview::RegisterId::R10W, .Reg: X86::R10W},
286 {.CVReg: codeview::RegisterId::R11W, .Reg: X86::R11W},
287 {.CVReg: codeview::RegisterId::R12W, .Reg: X86::R12W},
288 {.CVReg: codeview::RegisterId::R13W, .Reg: X86::R13W},
289 {.CVReg: codeview::RegisterId::R14W, .Reg: X86::R14W},
290 {.CVReg: codeview::RegisterId::R15W, .Reg: X86::R15W},
291 {.CVReg: codeview::RegisterId::R8D, .Reg: X86::R8D},
292 {.CVReg: codeview::RegisterId::R9D, .Reg: X86::R9D},
293 {.CVReg: codeview::RegisterId::R10D, .Reg: X86::R10D},
294 {.CVReg: codeview::RegisterId::R11D, .Reg: X86::R11D},
295 {.CVReg: codeview::RegisterId::R12D, .Reg: X86::R12D},
296 {.CVReg: codeview::RegisterId::R13D, .Reg: X86::R13D},
297 {.CVReg: codeview::RegisterId::R14D, .Reg: X86::R14D},
298 {.CVReg: codeview::RegisterId::R15D, .Reg: X86::R15D},
299 {.CVReg: codeview::RegisterId::AMD64_YMM0, .Reg: X86::YMM0},
300 {.CVReg: codeview::RegisterId::AMD64_YMM1, .Reg: X86::YMM1},
301 {.CVReg: codeview::RegisterId::AMD64_YMM2, .Reg: X86::YMM2},
302 {.CVReg: codeview::RegisterId::AMD64_YMM3, .Reg: X86::YMM3},
303 {.CVReg: codeview::RegisterId::AMD64_YMM4, .Reg: X86::YMM4},
304 {.CVReg: codeview::RegisterId::AMD64_YMM5, .Reg: X86::YMM5},
305 {.CVReg: codeview::RegisterId::AMD64_YMM6, .Reg: X86::YMM6},
306 {.CVReg: codeview::RegisterId::AMD64_YMM7, .Reg: X86::YMM7},
307 {.CVReg: codeview::RegisterId::AMD64_YMM8, .Reg: X86::YMM8},
308 {.CVReg: codeview::RegisterId::AMD64_YMM9, .Reg: X86::YMM9},
309 {.CVReg: codeview::RegisterId::AMD64_YMM10, .Reg: X86::YMM10},
310 {.CVReg: codeview::RegisterId::AMD64_YMM11, .Reg: X86::YMM11},
311 {.CVReg: codeview::RegisterId::AMD64_YMM12, .Reg: X86::YMM12},
312 {.CVReg: codeview::RegisterId::AMD64_YMM13, .Reg: X86::YMM13},
313 {.CVReg: codeview::RegisterId::AMD64_YMM14, .Reg: X86::YMM14},
314 {.CVReg: codeview::RegisterId::AMD64_YMM15, .Reg: X86::YMM15},
315 {.CVReg: codeview::RegisterId::AMD64_YMM16, .Reg: X86::YMM16},
316 {.CVReg: codeview::RegisterId::AMD64_YMM17, .Reg: X86::YMM17},
317 {.CVReg: codeview::RegisterId::AMD64_YMM18, .Reg: X86::YMM18},
318 {.CVReg: codeview::RegisterId::AMD64_YMM19, .Reg: X86::YMM19},
319 {.CVReg: codeview::RegisterId::AMD64_YMM20, .Reg: X86::YMM20},
320 {.CVReg: codeview::RegisterId::AMD64_YMM21, .Reg: X86::YMM21},
321 {.CVReg: codeview::RegisterId::AMD64_YMM22, .Reg: X86::YMM22},
322 {.CVReg: codeview::RegisterId::AMD64_YMM23, .Reg: X86::YMM23},
323 {.CVReg: codeview::RegisterId::AMD64_YMM24, .Reg: X86::YMM24},
324 {.CVReg: codeview::RegisterId::AMD64_YMM25, .Reg: X86::YMM25},
325 {.CVReg: codeview::RegisterId::AMD64_YMM26, .Reg: X86::YMM26},
326 {.CVReg: codeview::RegisterId::AMD64_YMM27, .Reg: X86::YMM27},
327 {.CVReg: codeview::RegisterId::AMD64_YMM28, .Reg: X86::YMM28},
328 {.CVReg: codeview::RegisterId::AMD64_YMM29, .Reg: X86::YMM29},
329 {.CVReg: codeview::RegisterId::AMD64_YMM30, .Reg: X86::YMM30},
330 {.CVReg: codeview::RegisterId::AMD64_YMM31, .Reg: X86::YMM31},
331 {.CVReg: codeview::RegisterId::AMD64_ZMM0, .Reg: X86::ZMM0},
332 {.CVReg: codeview::RegisterId::AMD64_ZMM1, .Reg: X86::ZMM1},
333 {.CVReg: codeview::RegisterId::AMD64_ZMM2, .Reg: X86::ZMM2},
334 {.CVReg: codeview::RegisterId::AMD64_ZMM3, .Reg: X86::ZMM3},
335 {.CVReg: codeview::RegisterId::AMD64_ZMM4, .Reg: X86::ZMM4},
336 {.CVReg: codeview::RegisterId::AMD64_ZMM5, .Reg: X86::ZMM5},
337 {.CVReg: codeview::RegisterId::AMD64_ZMM6, .Reg: X86::ZMM6},
338 {.CVReg: codeview::RegisterId::AMD64_ZMM7, .Reg: X86::ZMM7},
339 {.CVReg: codeview::RegisterId::AMD64_ZMM8, .Reg: X86::ZMM8},
340 {.CVReg: codeview::RegisterId::AMD64_ZMM9, .Reg: X86::ZMM9},
341 {.CVReg: codeview::RegisterId::AMD64_ZMM10, .Reg: X86::ZMM10},
342 {.CVReg: codeview::RegisterId::AMD64_ZMM11, .Reg: X86::ZMM11},
343 {.CVReg: codeview::RegisterId::AMD64_ZMM12, .Reg: X86::ZMM12},
344 {.CVReg: codeview::RegisterId::AMD64_ZMM13, .Reg: X86::ZMM13},
345 {.CVReg: codeview::RegisterId::AMD64_ZMM14, .Reg: X86::ZMM14},
346 {.CVReg: codeview::RegisterId::AMD64_ZMM15, .Reg: X86::ZMM15},
347 {.CVReg: codeview::RegisterId::AMD64_ZMM16, .Reg: X86::ZMM16},
348 {.CVReg: codeview::RegisterId::AMD64_ZMM17, .Reg: X86::ZMM17},
349 {.CVReg: codeview::RegisterId::AMD64_ZMM18, .Reg: X86::ZMM18},
350 {.CVReg: codeview::RegisterId::AMD64_ZMM19, .Reg: X86::ZMM19},
351 {.CVReg: codeview::RegisterId::AMD64_ZMM20, .Reg: X86::ZMM20},
352 {.CVReg: codeview::RegisterId::AMD64_ZMM21, .Reg: X86::ZMM21},
353 {.CVReg: codeview::RegisterId::AMD64_ZMM22, .Reg: X86::ZMM22},
354 {.CVReg: codeview::RegisterId::AMD64_ZMM23, .Reg: X86::ZMM23},
355 {.CVReg: codeview::RegisterId::AMD64_ZMM24, .Reg: X86::ZMM24},
356 {.CVReg: codeview::RegisterId::AMD64_ZMM25, .Reg: X86::ZMM25},
357 {.CVReg: codeview::RegisterId::AMD64_ZMM26, .Reg: X86::ZMM26},
358 {.CVReg: codeview::RegisterId::AMD64_ZMM27, .Reg: X86::ZMM27},
359 {.CVReg: codeview::RegisterId::AMD64_ZMM28, .Reg: X86::ZMM28},
360 {.CVReg: codeview::RegisterId::AMD64_ZMM29, .Reg: X86::ZMM29},
361 {.CVReg: codeview::RegisterId::AMD64_ZMM30, .Reg: X86::ZMM30},
362 {.CVReg: codeview::RegisterId::AMD64_ZMM31, .Reg: X86::ZMM31},
363 {.CVReg: codeview::RegisterId::AMD64_K0, .Reg: X86::K0},
364 {.CVReg: codeview::RegisterId::AMD64_K1, .Reg: X86::K1},
365 {.CVReg: codeview::RegisterId::AMD64_K2, .Reg: X86::K2},
366 {.CVReg: codeview::RegisterId::AMD64_K3, .Reg: X86::K3},
367 {.CVReg: codeview::RegisterId::AMD64_K4, .Reg: X86::K4},
368 {.CVReg: codeview::RegisterId::AMD64_K5, .Reg: X86::K5},
369 {.CVReg: codeview::RegisterId::AMD64_K6, .Reg: X86::K6},
370 {.CVReg: codeview::RegisterId::AMD64_K7, .Reg: X86::K7},
371 {.CVReg: codeview::RegisterId::AMD64_XMM16, .Reg: X86::XMM16},
372 {.CVReg: codeview::RegisterId::AMD64_XMM17, .Reg: X86::XMM17},
373 {.CVReg: codeview::RegisterId::AMD64_XMM18, .Reg: X86::XMM18},
374 {.CVReg: codeview::RegisterId::AMD64_XMM19, .Reg: X86::XMM19},
375 {.CVReg: codeview::RegisterId::AMD64_XMM20, .Reg: X86::XMM20},
376 {.CVReg: codeview::RegisterId::AMD64_XMM21, .Reg: X86::XMM21},
377 {.CVReg: codeview::RegisterId::AMD64_XMM22, .Reg: X86::XMM22},
378 {.CVReg: codeview::RegisterId::AMD64_XMM23, .Reg: X86::XMM23},
379 {.CVReg: codeview::RegisterId::AMD64_XMM24, .Reg: X86::XMM24},
380 {.CVReg: codeview::RegisterId::AMD64_XMM25, .Reg: X86::XMM25},
381 {.CVReg: codeview::RegisterId::AMD64_XMM26, .Reg: X86::XMM26},
382 {.CVReg: codeview::RegisterId::AMD64_XMM27, .Reg: X86::XMM27},
383 {.CVReg: codeview::RegisterId::AMD64_XMM28, .Reg: X86::XMM28},
384 {.CVReg: codeview::RegisterId::AMD64_XMM29, .Reg: X86::XMM29},
385 {.CVReg: codeview::RegisterId::AMD64_XMM30, .Reg: X86::XMM30},
386 {.CVReg: codeview::RegisterId::AMD64_XMM31, .Reg: X86::XMM31},
387
388 };
389 for (const auto &I : RegMap)
390 MRI->mapLLVMRegToCVReg(LLVMReg: I.Reg, CVReg: static_cast<int>(I.CVReg));
391}
392
393MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT,
394 StringRef CPU, StringRef FS) {
395 std::string ArchFS = X86_MC::ParseX86Triple(TT);
396 assert(!ArchFS.empty() && "Failed to parse X86 triple");
397 if (!FS.empty())
398 ArchFS = (Twine(ArchFS) + "," + FS).str();
399
400 if (CPU.empty())
401 CPU = "generic";
402
403 return createX86MCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, FS: ArchFS);
404}
405
406static MCInstrInfo *createX86MCInstrInfo() {
407 MCInstrInfo *X = new MCInstrInfo();
408 InitX86MCInstrInfo(II: X);
409 return X;
410}
411
412static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) {
413 unsigned RA = TT.isX86_64() ? X86::RIP // Should have dwarf #16.
414 : X86::EIP; // Should have dwarf #8.
415
416 MCRegisterInfo *X = new MCRegisterInfo();
417 InitX86MCRegisterInfo(RI: X, RA, DwarfFlavour: X86_MC::getDwarfRegFlavour(TT, isEH: false),
418 EHFlavour: X86_MC::getDwarfRegFlavour(TT, isEH: true), PC: RA);
419 X86_MC::initLLVMToSEHAndCVRegMapping(MRI: X);
420 return X;
421}
422
423static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI,
424 const Triple &TheTriple,
425 const MCTargetOptions &Options) {
426 bool is64Bit = TheTriple.isX86_64();
427
428 MCAsmInfo *MAI;
429 if (TheTriple.isOSBinFormatMachO()) {
430 if (is64Bit)
431 MAI = new X86_64MCAsmInfoDarwin(TheTriple);
432 else
433 MAI = new X86MCAsmInfoDarwin(TheTriple);
434 } else if (TheTriple.isOSBinFormatELF()) {
435 // Force the use of an ELF container.
436 MAI = new X86ELFMCAsmInfo(TheTriple);
437 } else if (TheTriple.isWindowsMSVCEnvironment() ||
438 TheTriple.isWindowsCoreCLREnvironment() || TheTriple.isUEFI()) {
439 if (Options.getAssemblyLanguage().equals_insensitive(RHS: "masm"))
440 MAI = new X86MCAsmInfoMicrosoftMASM(TheTriple);
441 else
442 MAI = new X86MCAsmInfoMicrosoft(TheTriple);
443 } else if (TheTriple.isOSCygMing() ||
444 TheTriple.isWindowsItaniumEnvironment()) {
445 MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
446 } else {
447 // The default is ELF.
448 MAI = new X86ELFMCAsmInfo(TheTriple);
449 }
450
451 // Initialize initial frame state.
452 // Calculate amount of bytes used for return address storing
453 int stackGrowth = is64Bit ? -8 : -4;
454
455 // Initial state of the frame pointer is esp+stackGrowth.
456 unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
457 MCCFIInstruction Inst = MCCFIInstruction::cfiDefCfa(
458 L: nullptr, Register: MRI.getDwarfRegNum(Reg: StackPtr, isEH: true), Offset: -stackGrowth);
459 MAI->addInitialFrameState(Inst);
460
461 // Add return address to move list
462 unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
463 MCCFIInstruction Inst2 = MCCFIInstruction::createOffset(
464 L: nullptr, Register: MRI.getDwarfRegNum(Reg: InstPtr, isEH: true), Offset: stackGrowth);
465 MAI->addInitialFrameState(Inst: Inst2);
466
467 return MAI;
468}
469
470static MCInstPrinter *createX86MCInstPrinter(const Triple &T,
471 unsigned SyntaxVariant,
472 const MCAsmInfo &MAI,
473 const MCInstrInfo &MII,
474 const MCRegisterInfo &MRI) {
475 if (SyntaxVariant == 0)
476 return new X86ATTInstPrinter(MAI, MII, MRI);
477 if (SyntaxVariant == 1)
478 return new X86IntelInstPrinter(MAI, MII, MRI);
479 return nullptr;
480}
481
482static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple,
483 MCContext &Ctx) {
484 // Default to the stock relocation info.
485 return llvm::createMCRelocationInfo(TT: TheTriple, Ctx);
486}
487
488namespace llvm {
489namespace X86_MC {
490
491class X86MCInstrAnalysis : public MCInstrAnalysis {
492 X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete;
493 X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete;
494 ~X86MCInstrAnalysis() override = default;
495
496public:
497 X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {}
498
499#define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS
500#include "X86GenSubtargetInfo.inc"
501
502 bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst,
503 APInt &Mask) const override;
504 std::vector<std::pair<uint64_t, uint64_t>>
505 findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
506 const MCSubtargetInfo &STI) const override;
507
508 bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
509 uint64_t &Target) const override;
510 std::optional<uint64_t>
511 evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI,
512 uint64_t Addr, uint64_t Size) const override;
513 std::optional<uint64_t>
514 getMemoryOperandRelocationOffset(const MCInst &Inst,
515 uint64_t Size) const override;
516};
517
518#define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS
519#include "X86GenSubtargetInfo.inc"
520
521bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI,
522 const MCInst &Inst,
523 APInt &Mask) const {
524 const MCInstrDesc &Desc = Info->get(Opcode: Inst.getOpcode());
525 unsigned NumDefs = Desc.getNumDefs();
526 unsigned NumImplicitDefs = Desc.implicit_defs().size();
527 assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
528 "Unexpected number of bits in the mask!");
529
530 bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX;
531 bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX;
532 bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP;
533
534 const MCRegisterClass &GR32RC = MRI.getRegClass(i: X86::GR32RegClassID);
535 const MCRegisterClass &VR128XRC = MRI.getRegClass(i: X86::VR128XRegClassID);
536 const MCRegisterClass &VR256XRC = MRI.getRegClass(i: X86::VR256XRegClassID);
537
538 auto ClearsSuperReg = [=](MCRegister RegID) {
539 // On X86-64, a general purpose integer register is viewed as a 64-bit
540 // register internal to the processor.
541 // An update to the lower 32 bits of a 64 bit integer register is
542 // architecturally defined to zero extend the upper 32 bits.
543 if (GR32RC.contains(Reg: RegID))
544 return true;
545
546 // Early exit if this instruction has no vex/evex/xop prefix.
547 if (!HasEVEX && !HasVEX && !HasXOP)
548 return false;
549
550 // All VEX and EVEX encoded instructions are defined to zero the high bits
551 // of the destination register up to VLMAX (i.e. the maximum vector register
552 // width pertaining to the instruction).
553 // We assume the same behavior for XOP instructions too.
554 return VR128XRC.contains(Reg: RegID) || VR256XRC.contains(Reg: RegID);
555 };
556
557 Mask.clearAllBits();
558 for (unsigned I = 0, E = NumDefs; I < E; ++I) {
559 const MCOperand &Op = Inst.getOperand(i: I);
560 if (ClearsSuperReg(Op.getReg()))
561 Mask.setBit(I);
562 }
563
564 for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) {
565 const MCPhysReg Reg = Desc.implicit_defs()[I];
566 if (ClearsSuperReg(Reg))
567 Mask.setBit(NumDefs + I);
568 }
569
570 return Mask.getBoolValue();
571}
572
573static std::vector<std::pair<uint64_t, uint64_t>>
574findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
575 // Do a lightweight parsing of PLT entries.
576 std::vector<std::pair<uint64_t, uint64_t>> Result;
577 for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
578 // Recognize a jmp.
579 if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) {
580 // The jmp instruction at the beginning of each PLT entry jumps to the
581 // address of the base of the .got.plt section plus the immediate.
582 // Set the 1 << 32 bit to let ELFObjectFileBase::getPltEntries convert the
583 // offset to an address. Imm may be a negative int32_t if the GOT entry is
584 // in .got.
585 uint32_t Imm = support::endian::read32le(P: PltContents.data() + Byte + 2);
586 Result.emplace_back(args: PltSectionVA + Byte, args: Imm | (uint64_t(1) << 32));
587 Byte += 6;
588 } else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
589 // The jmp instruction at the beginning of each PLT entry jumps to the
590 // immediate.
591 uint32_t Imm = support::endian::read32le(P: PltContents.data() + Byte + 2);
592 Result.push_back(x: std::make_pair(x: PltSectionVA + Byte, y&: Imm));
593 Byte += 6;
594 } else
595 Byte++;
596 }
597 return Result;
598}
599
600static std::vector<std::pair<uint64_t, uint64_t>>
601findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
602 // Do a lightweight parsing of PLT entries.
603 std::vector<std::pair<uint64_t, uint64_t>> Result;
604 for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
605 // Recognize a jmp.
606 if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
607 // The jmp instruction at the beginning of each PLT entry jumps to the
608 // address of the next instruction plus the immediate.
609 uint32_t Imm = support::endian::read32le(P: PltContents.data() + Byte + 2);
610 Result.push_back(
611 x: std::make_pair(x: PltSectionVA + Byte, y: PltSectionVA + Byte + 6 + Imm));
612 Byte += 6;
613 } else
614 Byte++;
615 }
616 return Result;
617}
618
619std::vector<std::pair<uint64_t, uint64_t>>
620X86MCInstrAnalysis::findPltEntries(uint64_t PltSectionVA,
621 ArrayRef<uint8_t> PltContents,
622 const MCSubtargetInfo &STI) const {
623 const Triple &TargetTriple = STI.getTargetTriple();
624 switch (TargetTriple.getArch()) {
625 case Triple::x86:
626 return findX86PltEntries(PltSectionVA, PltContents);
627 case Triple::x86_64:
628 return findX86_64PltEntries(PltSectionVA, PltContents);
629 default:
630 return {};
631 }
632}
633
634bool X86MCInstrAnalysis::evaluateBranch(const MCInst &Inst, uint64_t Addr,
635 uint64_t Size, uint64_t &Target) const {
636 if (Inst.getNumOperands() == 0 ||
637 Info->get(Opcode: Inst.getOpcode()).operands()[0].OperandType !=
638 MCOI::OPERAND_PCREL)
639 return false;
640 Target = Addr + Size + Inst.getOperand(i: 0).getImm();
641 return true;
642}
643
644std::optional<uint64_t> X86MCInstrAnalysis::evaluateMemoryOperandAddress(
645 const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr,
646 uint64_t Size) const {
647 const MCInstrDesc &MCID = Info->get(Opcode: Inst.getOpcode());
648 int MemOpStart = X86II::getMemoryOperandNo(TSFlags: MCID.TSFlags);
649 if (MemOpStart == -1)
650 return std::nullopt;
651 MemOpStart += X86II::getOperandBias(Desc: MCID);
652
653 const MCOperand &SegReg = Inst.getOperand(i: MemOpStart + X86::AddrSegmentReg);
654 const MCOperand &BaseReg = Inst.getOperand(i: MemOpStart + X86::AddrBaseReg);
655 const MCOperand &IndexReg = Inst.getOperand(i: MemOpStart + X86::AddrIndexReg);
656 const MCOperand &ScaleAmt = Inst.getOperand(i: MemOpStart + X86::AddrScaleAmt);
657 const MCOperand &Disp = Inst.getOperand(i: MemOpStart + X86::AddrDisp);
658 if (SegReg.getReg() || IndexReg.getReg() || ScaleAmt.getImm() != 1 ||
659 !Disp.isImm())
660 return std::nullopt;
661
662 // RIP-relative addressing.
663 if (BaseReg.getReg() == X86::RIP)
664 return Addr + Size + Disp.getImm();
665
666 return std::nullopt;
667}
668
669std::optional<uint64_t>
670X86MCInstrAnalysis::getMemoryOperandRelocationOffset(const MCInst &Inst,
671 uint64_t Size) const {
672 if (Inst.getOpcode() != X86::LEA64r)
673 return std::nullopt;
674 const MCInstrDesc &MCID = Info->get(Opcode: Inst.getOpcode());
675 int MemOpStart = X86II::getMemoryOperandNo(TSFlags: MCID.TSFlags);
676 if (MemOpStart == -1)
677 return std::nullopt;
678 MemOpStart += X86II::getOperandBias(Desc: MCID);
679 const MCOperand &SegReg = Inst.getOperand(i: MemOpStart + X86::AddrSegmentReg);
680 const MCOperand &BaseReg = Inst.getOperand(i: MemOpStart + X86::AddrBaseReg);
681 const MCOperand &IndexReg = Inst.getOperand(i: MemOpStart + X86::AddrIndexReg);
682 const MCOperand &ScaleAmt = Inst.getOperand(i: MemOpStart + X86::AddrScaleAmt);
683 const MCOperand &Disp = Inst.getOperand(i: MemOpStart + X86::AddrDisp);
684 // Must be a simple rip-relative address.
685 if (BaseReg.getReg() != X86::RIP || SegReg.getReg() || IndexReg.getReg() ||
686 ScaleAmt.getImm() != 1 || !Disp.isImm())
687 return std::nullopt;
688 // rip-relative ModR/M immediate is 32 bits.
689 assert(Size > 4 && "invalid instruction size for rip-relative lea");
690 return Size - 4;
691}
692
693} // end of namespace X86_MC
694
695} // end of namespace llvm
696
697static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
698 return new X86_MC::X86MCInstrAnalysis(Info);
699}
700
701// Force static initialization.
702extern "C" LLVM_C_ABI void LLVMInitializeX86TargetMC() {
703 for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) {
704 // Register the MC asm info.
705 RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo);
706
707 // Register the MC instruction info.
708 TargetRegistry::RegisterMCInstrInfo(T&: *T, Fn: createX86MCInstrInfo);
709
710 // Register the MC register info.
711 TargetRegistry::RegisterMCRegInfo(T&: *T, Fn: createX86MCRegisterInfo);
712
713 // Register the MC subtarget info.
714 TargetRegistry::RegisterMCSubtargetInfo(T&: *T,
715 Fn: X86_MC::createX86MCSubtargetInfo);
716
717 // Register the MC instruction analyzer.
718 TargetRegistry::RegisterMCInstrAnalysis(T&: *T, Fn: createX86MCInstrAnalysis);
719
720 // Register the code emitter.
721 TargetRegistry::RegisterMCCodeEmitter(T&: *T, Fn: createX86MCCodeEmitter);
722
723 // Register the obj target streamer.
724 TargetRegistry::RegisterObjectTargetStreamer(T&: *T,
725 Fn: createX86ObjectTargetStreamer);
726
727 // Register the asm target streamer.
728 TargetRegistry::RegisterAsmTargetStreamer(T&: *T, Fn: createX86AsmTargetStreamer);
729
730 // Register the null streamer.
731 TargetRegistry::RegisterNullTargetStreamer(T&: *T, Fn: createX86NullTargetStreamer);
732
733 TargetRegistry::RegisterCOFFStreamer(T&: *T, Fn: createX86WinCOFFStreamer);
734 TargetRegistry::RegisterELFStreamer(T&: *T, Fn: createX86ELFStreamer);
735
736 // Register the MCInstPrinter.
737 TargetRegistry::RegisterMCInstPrinter(T&: *T, Fn: createX86MCInstPrinter);
738
739 // Register the MC relocation info.
740 TargetRegistry::RegisterMCRelocationInfo(T&: *T, Fn: createX86MCRelocationInfo);
741 }
742
743 // Register the asm backend.
744 TargetRegistry::RegisterMCAsmBackend(T&: getTheX86_32Target(),
745 Fn: createX86_32AsmBackend);
746 TargetRegistry::RegisterMCAsmBackend(T&: getTheX86_64Target(),
747 Fn: createX86_64AsmBackend);
748}
749
750MCRegister llvm::getX86SubSuperRegister(MCRegister Reg, unsigned Size,
751 bool High) {
752#define DEFAULT_NOREG \
753 default: \
754 return X86::NoRegister;
755#define SUB_SUPER(R1, R2, R3, R4, R) \
756 case X86::R1: \
757 case X86::R2: \
758 case X86::R3: \
759 case X86::R4: \
760 return X86::R;
761#define A_SUB_SUPER(R) \
762 case X86::AH: \
763 SUB_SUPER(AL, AX, EAX, RAX, R)
764#define D_SUB_SUPER(R) \
765 case X86::DH: \
766 SUB_SUPER(DL, DX, EDX, RDX, R)
767#define C_SUB_SUPER(R) \
768 case X86::CH: \
769 SUB_SUPER(CL, CX, ECX, RCX, R)
770#define B_SUB_SUPER(R) \
771 case X86::BH: \
772 SUB_SUPER(BL, BX, EBX, RBX, R)
773#define SI_SUB_SUPER(R) SUB_SUPER(SIL, SI, ESI, RSI, R)
774#define DI_SUB_SUPER(R) SUB_SUPER(DIL, DI, EDI, RDI, R)
775#define BP_SUB_SUPER(R) SUB_SUPER(BPL, BP, EBP, RBP, R)
776#define SP_SUB_SUPER(R) SUB_SUPER(SPL, SP, ESP, RSP, R)
777#define NO_SUB_SUPER(NO, REG) \
778 SUB_SUPER(R##NO##B, R##NO##W, R##NO##D, R##NO, REG)
779#define NO_SUB_SUPER_B(NO) NO_SUB_SUPER(NO, R##NO##B)
780#define NO_SUB_SUPER_W(NO) NO_SUB_SUPER(NO, R##NO##W)
781#define NO_SUB_SUPER_D(NO) NO_SUB_SUPER(NO, R##NO##D)
782#define NO_SUB_SUPER_Q(NO) NO_SUB_SUPER(NO, R##NO)
783 switch (Size) {
784 default:
785 llvm_unreachable("illegal register size");
786 case 8:
787 if (High) {
788 switch (Reg.id()) {
789 DEFAULT_NOREG
790 A_SUB_SUPER(AH)
791 D_SUB_SUPER(DH)
792 C_SUB_SUPER(CH)
793 B_SUB_SUPER(BH)
794 }
795 } else {
796 switch (Reg.id()) {
797 DEFAULT_NOREG
798 A_SUB_SUPER(AL)
799 D_SUB_SUPER(DL)
800 C_SUB_SUPER(CL)
801 B_SUB_SUPER(BL)
802 SI_SUB_SUPER(SIL)
803 DI_SUB_SUPER(DIL)
804 BP_SUB_SUPER(BPL)
805 SP_SUB_SUPER(SPL)
806 NO_SUB_SUPER_B(8)
807 NO_SUB_SUPER_B(9)
808 NO_SUB_SUPER_B(10)
809 NO_SUB_SUPER_B(11)
810 NO_SUB_SUPER_B(12)
811 NO_SUB_SUPER_B(13)
812 NO_SUB_SUPER_B(14)
813 NO_SUB_SUPER_B(15)
814 NO_SUB_SUPER_B(16)
815 NO_SUB_SUPER_B(17)
816 NO_SUB_SUPER_B(18)
817 NO_SUB_SUPER_B(19)
818 NO_SUB_SUPER_B(20)
819 NO_SUB_SUPER_B(21)
820 NO_SUB_SUPER_B(22)
821 NO_SUB_SUPER_B(23)
822 NO_SUB_SUPER_B(24)
823 NO_SUB_SUPER_B(25)
824 NO_SUB_SUPER_B(26)
825 NO_SUB_SUPER_B(27)
826 NO_SUB_SUPER_B(28)
827 NO_SUB_SUPER_B(29)
828 NO_SUB_SUPER_B(30)
829 NO_SUB_SUPER_B(31)
830 }
831 }
832 case 16:
833 switch (Reg.id()) {
834 DEFAULT_NOREG
835 A_SUB_SUPER(AX)
836 D_SUB_SUPER(DX)
837 C_SUB_SUPER(CX)
838 B_SUB_SUPER(BX)
839 SI_SUB_SUPER(SI)
840 DI_SUB_SUPER(DI)
841 BP_SUB_SUPER(BP)
842 SP_SUB_SUPER(SP)
843 NO_SUB_SUPER_W(8)
844 NO_SUB_SUPER_W(9)
845 NO_SUB_SUPER_W(10)
846 NO_SUB_SUPER_W(11)
847 NO_SUB_SUPER_W(12)
848 NO_SUB_SUPER_W(13)
849 NO_SUB_SUPER_W(14)
850 NO_SUB_SUPER_W(15)
851 NO_SUB_SUPER_W(16)
852 NO_SUB_SUPER_W(17)
853 NO_SUB_SUPER_W(18)
854 NO_SUB_SUPER_W(19)
855 NO_SUB_SUPER_W(20)
856 NO_SUB_SUPER_W(21)
857 NO_SUB_SUPER_W(22)
858 NO_SUB_SUPER_W(23)
859 NO_SUB_SUPER_W(24)
860 NO_SUB_SUPER_W(25)
861 NO_SUB_SUPER_W(26)
862 NO_SUB_SUPER_W(27)
863 NO_SUB_SUPER_W(28)
864 NO_SUB_SUPER_W(29)
865 NO_SUB_SUPER_W(30)
866 NO_SUB_SUPER_W(31)
867 }
868 case 32:
869 switch (Reg.id()) {
870 DEFAULT_NOREG
871 A_SUB_SUPER(EAX)
872 D_SUB_SUPER(EDX)
873 C_SUB_SUPER(ECX)
874 B_SUB_SUPER(EBX)
875 SI_SUB_SUPER(ESI)
876 DI_SUB_SUPER(EDI)
877 BP_SUB_SUPER(EBP)
878 SP_SUB_SUPER(ESP)
879 NO_SUB_SUPER_D(8)
880 NO_SUB_SUPER_D(9)
881 NO_SUB_SUPER_D(10)
882 NO_SUB_SUPER_D(11)
883 NO_SUB_SUPER_D(12)
884 NO_SUB_SUPER_D(13)
885 NO_SUB_SUPER_D(14)
886 NO_SUB_SUPER_D(15)
887 NO_SUB_SUPER_D(16)
888 NO_SUB_SUPER_D(17)
889 NO_SUB_SUPER_D(18)
890 NO_SUB_SUPER_D(19)
891 NO_SUB_SUPER_D(20)
892 NO_SUB_SUPER_D(21)
893 NO_SUB_SUPER_D(22)
894 NO_SUB_SUPER_D(23)
895 NO_SUB_SUPER_D(24)
896 NO_SUB_SUPER_D(25)
897 NO_SUB_SUPER_D(26)
898 NO_SUB_SUPER_D(27)
899 NO_SUB_SUPER_D(28)
900 NO_SUB_SUPER_D(29)
901 NO_SUB_SUPER_D(30)
902 NO_SUB_SUPER_D(31)
903 }
904 case 64:
905 switch (Reg.id()) {
906 DEFAULT_NOREG
907 A_SUB_SUPER(RAX)
908 D_SUB_SUPER(RDX)
909 C_SUB_SUPER(RCX)
910 B_SUB_SUPER(RBX)
911 SI_SUB_SUPER(RSI)
912 DI_SUB_SUPER(RDI)
913 BP_SUB_SUPER(RBP)
914 SP_SUB_SUPER(RSP)
915 NO_SUB_SUPER_Q(8)
916 NO_SUB_SUPER_Q(9)
917 NO_SUB_SUPER_Q(10)
918 NO_SUB_SUPER_Q(11)
919 NO_SUB_SUPER_Q(12)
920 NO_SUB_SUPER_Q(13)
921 NO_SUB_SUPER_Q(14)
922 NO_SUB_SUPER_Q(15)
923 NO_SUB_SUPER_Q(16)
924 NO_SUB_SUPER_Q(17)
925 NO_SUB_SUPER_Q(18)
926 NO_SUB_SUPER_Q(19)
927 NO_SUB_SUPER_Q(20)
928 NO_SUB_SUPER_Q(21)
929 NO_SUB_SUPER_Q(22)
930 NO_SUB_SUPER_Q(23)
931 NO_SUB_SUPER_Q(24)
932 NO_SUB_SUPER_Q(25)
933 NO_SUB_SUPER_Q(26)
934 NO_SUB_SUPER_Q(27)
935 NO_SUB_SUPER_Q(28)
936 NO_SUB_SUPER_Q(29)
937 NO_SUB_SUPER_Q(30)
938 NO_SUB_SUPER_Q(31)
939 }
940 }
941}
942