| 1 | //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This is the LLVM vectorization plan. It represents a candidate for |
| 11 | /// vectorization, allowing to plan and optimize how to vectorize a given loop |
| 12 | /// before generating LLVM-IR. |
| 13 | /// The vectorizer uses vectorization plans to estimate the costs of potential |
| 14 | /// candidates and if profitable to execute the desired plan, generating vector |
| 15 | /// LLVM-IR code. |
| 16 | /// |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | #include "VPlan.h" |
| 20 | #include "LoopVectorizationPlanner.h" |
| 21 | #include "VPlanCFG.h" |
| 22 | #include "VPlanDominatorTree.h" |
| 23 | #include "VPlanHelpers.h" |
| 24 | #include "VPlanPatternMatch.h" |
| 25 | #include "VPlanTransforms.h" |
| 26 | #include "VPlanUtils.h" |
| 27 | #include "llvm/ADT/PostOrderIterator.h" |
| 28 | #include "llvm/ADT/STLExtras.h" |
| 29 | #include "llvm/ADT/SmallVector.h" |
| 30 | #include "llvm/ADT/StringExtras.h" |
| 31 | #include "llvm/ADT/Twine.h" |
| 32 | #include "llvm/Analysis/DomTreeUpdater.h" |
| 33 | #include "llvm/Analysis/LoopInfo.h" |
| 34 | #include "llvm/IR/BasicBlock.h" |
| 35 | #include "llvm/IR/CFG.h" |
| 36 | #include "llvm/IR/IRBuilder.h" |
| 37 | #include "llvm/IR/Instruction.h" |
| 38 | #include "llvm/IR/Instructions.h" |
| 39 | #include "llvm/IR/Type.h" |
| 40 | #include "llvm/IR/Value.h" |
| 41 | #include "llvm/Support/Casting.h" |
| 42 | #include "llvm/Support/CommandLine.h" |
| 43 | #include "llvm/Support/Debug.h" |
| 44 | #include "llvm/Support/GraphWriter.h" |
| 45 | #include "llvm/Support/raw_ostream.h" |
| 46 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 47 | #include "llvm/Transforms/Utils/LoopVersioning.h" |
| 48 | #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" |
| 49 | #include <cassert> |
| 50 | #include <string> |
| 51 | |
| 52 | using namespace llvm; |
| 53 | using namespace llvm::VPlanPatternMatch; |
| 54 | |
| 55 | namespace llvm { |
| 56 | extern cl::opt<bool> ProfcheckDisableMetadataFixes; |
| 57 | } // namespace llvm |
| 58 | |
| 59 | /// @{ |
| 60 | /// Metadata attribute names |
| 61 | const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all" ; |
| 62 | const char LLVMLoopVectorizeFollowupVectorized[] = |
| 63 | "llvm.loop.vectorize.followup_vectorized" ; |
| 64 | const char LLVMLoopVectorizeFollowupEpilogue[] = |
| 65 | "llvm.loop.vectorize.followup_epilogue" ; |
| 66 | /// @} |
| 67 | |
| 68 | extern cl::opt<unsigned> ForceTargetInstructionCost; |
| 69 | |
| 70 | static cl::opt<bool> PrintVPlansInDotFormat( |
| 71 | "vplan-print-in-dot-format" , cl::Hidden, |
| 72 | cl::desc("Use dot format instead of plain text when dumping VPlans" )); |
| 73 | |
| 74 | #define DEBUG_TYPE "loop-vectorize" |
| 75 | |
| 76 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 77 | raw_ostream &llvm::operator<<(raw_ostream &OS, const VPRecipeBase &R) { |
| 78 | const VPBasicBlock *Parent = R.getParent(); |
| 79 | VPSlotTracker SlotTracker(Parent ? Parent->getPlan() : nullptr); |
| 80 | R.print(OS, "" , SlotTracker); |
| 81 | return OS; |
| 82 | } |
| 83 | #endif |
| 84 | |
| 85 | Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, |
| 86 | const ElementCount &VF) const { |
| 87 | switch (LaneKind) { |
| 88 | case VPLane::Kind::ScalableLast: |
| 89 | // Lane = RuntimeVF - VF.getKnownMinValue() + Lane |
| 90 | return Builder.CreateSub(LHS: getRuntimeVF(B&: Builder, Ty: Builder.getInt32Ty(), VF), |
| 91 | RHS: Builder.getInt32(C: VF.getKnownMinValue() - Lane)); |
| 92 | case VPLane::Kind::First: |
| 93 | return Builder.getInt32(C: Lane); |
| 94 | } |
| 95 | llvm_unreachable("Unknown lane kind" ); |
| 96 | } |
| 97 | |
| 98 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 99 | void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { |
| 100 | if (const VPRecipeBase *R = getDefiningRecipe()) |
| 101 | R->print(OS, "" , SlotTracker); |
| 102 | else |
| 103 | printAsOperand(OS, SlotTracker); |
| 104 | } |
| 105 | |
| 106 | void VPValue::dump() const { |
| 107 | const VPRecipeBase *Instr = getDefiningRecipe(); |
| 108 | VPSlotTracker SlotTracker( |
| 109 | (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); |
| 110 | print(dbgs(), SlotTracker); |
| 111 | dbgs() << "\n" ; |
| 112 | } |
| 113 | |
| 114 | void VPRecipeBase::dump() const { |
| 115 | VPSlotTracker SlotTracker(getParent() ? getParent()->getPlan() : nullptr); |
| 116 | print(dbgs(), "" , SlotTracker); |
| 117 | dbgs() << "\n" ; |
| 118 | } |
| 119 | #endif |
| 120 | |
| 121 | #if !defined(NDEBUG) |
| 122 | bool VPRecipeValue::isDefinedBy(const VPDef *D) const { return Def == D; } |
| 123 | #endif |
| 124 | |
| 125 | VPRecipeBase *VPValue::getDefiningRecipe() { |
| 126 | auto *DefValue = dyn_cast<VPRecipeValue>(Val: this); |
| 127 | return DefValue ? DefValue->Def : nullptr; |
| 128 | } |
| 129 | |
| 130 | const VPRecipeBase *VPValue::getDefiningRecipe() const { |
| 131 | auto *DefValue = dyn_cast<VPRecipeValue>(Val: this); |
| 132 | return DefValue ? DefValue->Def : nullptr; |
| 133 | } |
| 134 | |
| 135 | Value *VPValue::getLiveInIRValue() const { |
| 136 | return cast<VPIRValue>(Val: this)->getValue(); |
| 137 | } |
| 138 | |
| 139 | Type *VPIRValue::getType() const { return getUnderlyingValue()->getType(); } |
| 140 | |
| 141 | VPRecipeValue::VPRecipeValue(VPRecipeBase *Def, Value *UV) |
| 142 | : VPValue(VPVRecipeValueSC, UV), Def(Def) { |
| 143 | assert(Def && "VPRecipeValue requires a defining recipe" ); |
| 144 | Def->addDefinedValue(V: this); |
| 145 | } |
| 146 | |
| 147 | VPRecipeValue::~VPRecipeValue() { |
| 148 | assert(Users.empty() && |
| 149 | "trying to delete a VPRecipeValue with remaining users" ); |
| 150 | Def->removeDefinedValue(V: this); |
| 151 | } |
| 152 | |
| 153 | // Get the top-most entry block of \p Start. This is the entry block of the |
| 154 | // containing VPlan. This function is templated to support both const and non-const blocks |
| 155 | template <typename T> static T *getPlanEntry(T *Start) { |
| 156 | T *Next = Start; |
| 157 | T *Current = Start; |
| 158 | while ((Next = Next->getParent())) |
| 159 | Current = Next; |
| 160 | |
| 161 | SmallSetVector<T *, 8> WorkList; |
| 162 | WorkList.insert(Current); |
| 163 | |
| 164 | for (unsigned i = 0; i < WorkList.size(); i++) { |
| 165 | T *Current = WorkList[i]; |
| 166 | if (!Current->hasPredecessors()) |
| 167 | return Current; |
| 168 | auto &Predecessors = Current->getPredecessors(); |
| 169 | WorkList.insert_range(Predecessors); |
| 170 | } |
| 171 | |
| 172 | llvm_unreachable("VPlan without any entry node without predecessors" ); |
| 173 | } |
| 174 | |
| 175 | VPlan *VPBlockBase::getPlan() { return getPlanEntry(Start: this)->Plan; } |
| 176 | |
| 177 | const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(Start: this)->Plan; } |
| 178 | |
| 179 | /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. |
| 180 | const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { |
| 181 | const VPBlockBase *Block = this; |
| 182 | while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
| 183 | Block = Region->getEntry(); |
| 184 | return cast<VPBasicBlock>(Val: Block); |
| 185 | } |
| 186 | |
| 187 | VPBasicBlock *VPBlockBase::getEntryBasicBlock() { |
| 188 | VPBlockBase *Block = this; |
| 189 | while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
| 190 | Block = Region->getEntry(); |
| 191 | return cast<VPBasicBlock>(Val: Block); |
| 192 | } |
| 193 | |
| 194 | void VPBlockBase::setPlan(VPlan *ParentPlan) { |
| 195 | assert(ParentPlan->getEntry() == this && "Can only set plan on its entry." ); |
| 196 | Plan = ParentPlan; |
| 197 | } |
| 198 | |
| 199 | /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. |
| 200 | const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { |
| 201 | const VPBlockBase *Block = this; |
| 202 | while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
| 203 | Block = Region->getExiting(); |
| 204 | return cast<VPBasicBlock>(Val: Block); |
| 205 | } |
| 206 | |
| 207 | VPBasicBlock *VPBlockBase::getExitingBasicBlock() { |
| 208 | VPBlockBase *Block = this; |
| 209 | while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
| 210 | Block = Region->getExiting(); |
| 211 | return cast<VPBasicBlock>(Val: Block); |
| 212 | } |
| 213 | |
| 214 | VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { |
| 215 | if (!Successors.empty() || !Parent) |
| 216 | return this; |
| 217 | assert(Parent->getExiting() == this && |
| 218 | "Block w/o successors not the exiting block of its parent." ); |
| 219 | return Parent->getEnclosingBlockWithSuccessors(); |
| 220 | } |
| 221 | |
| 222 | VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { |
| 223 | if (!Predecessors.empty() || !Parent) |
| 224 | return this; |
| 225 | assert(Parent->getEntry() == this && |
| 226 | "Block w/o predecessors not the entry of its parent." ); |
| 227 | return Parent->getEnclosingBlockWithPredecessors(); |
| 228 | } |
| 229 | |
| 230 | VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { |
| 231 | iterator It = begin(); |
| 232 | while (It != end() && It->isPhi()) |
| 233 | It++; |
| 234 | return It; |
| 235 | } |
| 236 | |
| 237 | VPTransformState::VPTransformState(const TargetTransformInfo *TTI, |
| 238 | ElementCount VF, LoopInfo *LI, |
| 239 | DominatorTree *DT, AssumptionCache *AC, |
| 240 | IRBuilderBase &Builder, VPlan *Plan, |
| 241 | Loop *CurrentParentLoop, Type *CanonicalIVTy) |
| 242 | : TTI(TTI), VF(VF), CFG(DT), LI(LI), AC(AC), Builder(Builder), Plan(Plan), |
| 243 | CurrentParentLoop(CurrentParentLoop), TypeAnalysis(*Plan), VPDT(*Plan) {} |
| 244 | |
| 245 | Value *VPTransformState::get(const VPValue *Def, const VPLane &Lane) { |
| 246 | if (isa<VPIRValue, VPSymbolicValue>(Val: Def)) |
| 247 | return Def->getUnderlyingValue(); |
| 248 | |
| 249 | if (hasScalarValue(Def, Lane)) |
| 250 | return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)]; |
| 251 | |
| 252 | if (!Lane.isFirstLane() && vputils::isSingleScalar(VPV: Def) && |
| 253 | hasScalarValue(Def, Lane: VPLane::getFirstLane())) { |
| 254 | return Data.VPV2Scalars[Def][0]; |
| 255 | } |
| 256 | |
| 257 | // Look through BuildVector to avoid redundant extracts. |
| 258 | // TODO: Remove once replicate regions are unrolled explicitly. |
| 259 | if (Lane.getKind() == VPLane::Kind::First && match(V: Def, P: m_BuildVector())) { |
| 260 | auto *BuildVector = cast<VPInstruction>(Val: Def); |
| 261 | return get(Def: BuildVector->getOperand(N: Lane.getKnownLane()), IsScalar: true); |
| 262 | } |
| 263 | |
| 264 | assert(hasVectorValue(Def)); |
| 265 | auto *VecPart = Data.VPV2Vector[Def]; |
| 266 | if (!VecPart->getType()->isVectorTy()) { |
| 267 | assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar" ); |
| 268 | return VecPart; |
| 269 | } |
| 270 | // TODO: Cache created scalar values. |
| 271 | Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF); |
| 272 | auto * = Builder.CreateExtractElement(Vec: VecPart, Idx: LaneV); |
| 273 | // set(Def, Extract, Instance); |
| 274 | return Extract; |
| 275 | } |
| 276 | |
| 277 | Value *VPTransformState::get(const VPValue *Def, bool NeedsScalar) { |
| 278 | if (NeedsScalar) { |
| 279 | assert((VF.isScalar() || isa<VPIRValue, VPSymbolicValue>(Def) || |
| 280 | hasVectorValue(Def) || !vputils::onlyFirstLaneUsed(Def) || |
| 281 | (hasScalarValue(Def, VPLane(0)) && |
| 282 | Data.VPV2Scalars[Def].size() == 1)) && |
| 283 | "Trying to access a single scalar per part but has multiple scalars " |
| 284 | "per part." ); |
| 285 | return get(Def, Lane: VPLane(0)); |
| 286 | } |
| 287 | |
| 288 | // If Values have been set for this Def return the one relevant for \p Part. |
| 289 | if (hasVectorValue(Def)) |
| 290 | return Data.VPV2Vector[Def]; |
| 291 | |
| 292 | auto GetBroadcastInstrs = [this](Value *V) { |
| 293 | if (VF.isScalar()) |
| 294 | return V; |
| 295 | // Broadcast the scalar into all locations in the vector. |
| 296 | Value *Shuf = Builder.CreateVectorSplat(EC: VF, V, Name: "broadcast" ); |
| 297 | return Shuf; |
| 298 | }; |
| 299 | |
| 300 | if (!hasScalarValue(Def, Lane: {0})) { |
| 301 | Value *IRV = Def->getLiveInIRValue(); |
| 302 | Value *B = GetBroadcastInstrs(IRV); |
| 303 | set(Def, V: B); |
| 304 | return B; |
| 305 | } |
| 306 | |
| 307 | Value *ScalarValue = get(Def, Lane: VPLane(0)); |
| 308 | // If we aren't vectorizing, we can just copy the scalar map values over |
| 309 | // to the vector map. |
| 310 | if (VF.isScalar()) { |
| 311 | set(Def, V: ScalarValue); |
| 312 | return ScalarValue; |
| 313 | } |
| 314 | |
| 315 | bool IsSingleScalar = vputils::isSingleScalar(VPV: Def); |
| 316 | VPLane LastLane(IsSingleScalar ? 0 : VF.getFixedValue() - 1); |
| 317 | |
| 318 | // We need to construct the vector value for a single-scalar value by |
| 319 | // broadcasting the scalar to all lanes. |
| 320 | // TODO: Replace by introducing Broadcast VPInstructions. |
| 321 | assert(IsSingleScalar && "must be a single-scalar at this point" ); |
| 322 | // Set the insert point after the last scalarized instruction or after the |
| 323 | // last PHI, if LastInst is a PHI. This ensures the insertelement sequence |
| 324 | // will directly follow the scalar definitions. |
| 325 | auto OldIP = Builder.saveIP(); |
| 326 | auto *LastInst = cast<Instruction>(Val: get(Def, Lane: LastLane)); |
| 327 | auto NewIP = isa<PHINode>(Val: LastInst) |
| 328 | ? LastInst->getParent()->getFirstNonPHIIt() |
| 329 | : std::next(x: BasicBlock::iterator(LastInst)); |
| 330 | Builder.SetInsertPoint(&*NewIP); |
| 331 | Value *VectorValue = GetBroadcastInstrs(ScalarValue); |
| 332 | set(Def, V: VectorValue); |
| 333 | Builder.restoreIP(IP: OldIP); |
| 334 | return VectorValue; |
| 335 | } |
| 336 | |
| 337 | void VPTransformState::setDebugLocFrom(DebugLoc DL) { |
| 338 | const DILocation *DIL = DL; |
| 339 | // When a FSDiscriminator is enabled, we don't need to add the multiply |
| 340 | // factors to the discriminators. |
| 341 | if (DIL && |
| 342 | Builder.GetInsertBlock() |
| 343 | ->getParent() |
| 344 | ->shouldEmitDebugInfoForProfiling() && |
| 345 | !EnableFSDiscriminator) { |
| 346 | // FIXME: For scalable vectors, assume vscale=1. |
| 347 | unsigned UF = Plan->getUF(); |
| 348 | auto NewDIL = |
| 349 | DIL->cloneByMultiplyingDuplicationFactor(DF: UF * VF.getKnownMinValue()); |
| 350 | if (NewDIL) |
| 351 | Builder.SetCurrentDebugLocation(*NewDIL); |
| 352 | else |
| 353 | LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " |
| 354 | << DIL->getFilename() << " Line: " << DIL->getLine()); |
| 355 | } else |
| 356 | Builder.SetCurrentDebugLocation(DL); |
| 357 | } |
| 358 | |
| 359 | Value *VPTransformState::packScalarIntoVectorizedValue(const VPValue *Def, |
| 360 | Value *WideValue, |
| 361 | const VPLane &Lane) { |
| 362 | Value *ScalarInst = get(Def, Lane); |
| 363 | Value *LaneExpr = Lane.getAsRuntimeExpr(Builder, VF); |
| 364 | if (auto *StructTy = dyn_cast<StructType>(Val: WideValue->getType())) { |
| 365 | // We must handle each element of a vectorized struct type. |
| 366 | for (unsigned I = 0, E = StructTy->getNumElements(); I != E; I++) { |
| 367 | Value *ScalarValue = Builder.CreateExtractValue(Agg: ScalarInst, Idxs: I); |
| 368 | Value *VectorValue = Builder.CreateExtractValue(Agg: WideValue, Idxs: I); |
| 369 | VectorValue = |
| 370 | Builder.CreateInsertElement(Vec: VectorValue, NewElt: ScalarValue, Idx: LaneExpr); |
| 371 | WideValue = Builder.CreateInsertValue(Agg: WideValue, Val: VectorValue, Idxs: I); |
| 372 | } |
| 373 | } else { |
| 374 | WideValue = Builder.CreateInsertElement(Vec: WideValue, NewElt: ScalarInst, Idx: LaneExpr); |
| 375 | } |
| 376 | return WideValue; |
| 377 | } |
| 378 | |
| 379 | BasicBlock *VPBasicBlock::createEmptyBasicBlock(VPTransformState &State) { |
| 380 | auto &CFG = State.CFG; |
| 381 | // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. |
| 382 | // Pred stands for Predessor. Prev stands for Previous - last visited/created. |
| 383 | BasicBlock *PrevBB = CFG.PrevBB; |
| 384 | BasicBlock *NewBB = BasicBlock::Create(Context&: PrevBB->getContext(), Name: getName(), |
| 385 | Parent: PrevBB->getParent(), InsertBefore: CFG.ExitBB); |
| 386 | LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); |
| 387 | |
| 388 | return NewBB; |
| 389 | } |
| 390 | |
| 391 | void VPBasicBlock::connectToPredecessors(VPTransformState &State) { |
| 392 | auto &CFG = State.CFG; |
| 393 | BasicBlock *NewBB = CFG.VPBB2IRBB[this]; |
| 394 | |
| 395 | // Register NewBB in its loop. In innermost loops its the same for all |
| 396 | // BB's. |
| 397 | Loop *ParentLoop = State.CurrentParentLoop; |
| 398 | // If this block has a sole successor that is an exit block or is an exit |
| 399 | // block itself then it needs adding to the same parent loop as the exit |
| 400 | // block. |
| 401 | VPBlockBase *SuccOrExitVPB = getSingleSuccessor(); |
| 402 | SuccOrExitVPB = SuccOrExitVPB ? SuccOrExitVPB : this; |
| 403 | if (State.Plan->isExitBlock(VPBB: SuccOrExitVPB)) { |
| 404 | ParentLoop = State.LI->getLoopFor( |
| 405 | BB: cast<VPIRBasicBlock>(Val: SuccOrExitVPB)->getIRBasicBlock()); |
| 406 | } |
| 407 | |
| 408 | if (ParentLoop && !State.LI->getLoopFor(BB: NewBB)) |
| 409 | ParentLoop->addBasicBlockToLoop(NewBB, LI&: *State.LI); |
| 410 | |
| 411 | SmallVector<VPBlockBase *> Preds; |
| 412 | if (VPBlockUtils::isHeader(VPB: this, VPDT: State.VPDT)) { |
| 413 | // There's no block for the latch yet, connect to the preheader only. |
| 414 | Preds = {getPredecessors()[0]}; |
| 415 | } else { |
| 416 | Preds = to_vector(Range&: getPredecessors()); |
| 417 | } |
| 418 | |
| 419 | // Hook up the new basic block to its predecessors. |
| 420 | for (VPBlockBase *PredVPBlock : Preds) { |
| 421 | VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); |
| 422 | auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); |
| 423 | assert(CFG.VPBB2IRBB.contains(PredVPBB) && |
| 424 | "Predecessor basic-block not found building successor." ); |
| 425 | BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; |
| 426 | auto *PredBBTerminator = PredBB->getTerminator(); |
| 427 | LLVM_DEBUG(dbgs() << "LV: draw edge from " << PredBB->getName() << '\n'); |
| 428 | |
| 429 | auto *TermBr = dyn_cast<BranchInst>(Val: PredBBTerminator); |
| 430 | if (isa<UnreachableInst>(Val: PredBBTerminator)) { |
| 431 | assert(PredVPSuccessors.size() == 1 && |
| 432 | "Predecessor ending w/o branch must have single successor." ); |
| 433 | DebugLoc DL = PredBBTerminator->getDebugLoc(); |
| 434 | PredBBTerminator->eraseFromParent(); |
| 435 | auto *Br = BranchInst::Create(IfTrue: NewBB, InsertBefore: PredBB); |
| 436 | Br->setDebugLoc(DL); |
| 437 | } else if (TermBr && !TermBr->isConditional()) { |
| 438 | TermBr->setSuccessor(idx: 0, NewSucc: NewBB); |
| 439 | } else { |
| 440 | // Set each forward successor here when it is created, excluding |
| 441 | // backedges. A backward successor is set when the branch is created. |
| 442 | // Branches to VPIRBasicBlocks must have the same successors in VPlan as |
| 443 | // in the original IR, except when the predecessor is the entry block. |
| 444 | // This enables including SCEV and memory runtime check blocks in VPlan. |
| 445 | // TODO: Remove exception by modeling the terminator of entry block using |
| 446 | // BranchOnCond. |
| 447 | unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; |
| 448 | assert((TermBr && (!TermBr->getSuccessor(idx) || |
| 449 | (isa<VPIRBasicBlock>(this) && |
| 450 | (TermBr->getSuccessor(idx) == NewBB || |
| 451 | PredVPBlock == getPlan()->getEntry())))) && |
| 452 | "Trying to reset an existing successor block." ); |
| 453 | TermBr->setSuccessor(idx, NewSucc: NewBB); |
| 454 | } |
| 455 | CFG.DTU.applyUpdates(Updates: {{DominatorTree::Insert, PredBB, NewBB}}); |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | void VPIRBasicBlock::execute(VPTransformState *State) { |
| 460 | assert(getHierarchicalSuccessors().size() <= 2 && |
| 461 | "VPIRBasicBlock can have at most two successors at the moment!" ); |
| 462 | // Move completely disconnected blocks to their final position. |
| 463 | if (IRBB->hasNPredecessors(N: 0) && succ_begin(BB: IRBB) == succ_end(BB: IRBB)) |
| 464 | IRBB->moveAfter(MovePos: State->CFG.PrevBB); |
| 465 | State->Builder.SetInsertPoint(IRBB->getTerminator()); |
| 466 | State->CFG.PrevBB = IRBB; |
| 467 | State->CFG.VPBB2IRBB[this] = IRBB; |
| 468 | executeRecipes(State, BB: IRBB); |
| 469 | // Create a branch instruction to terminate IRBB if one was not created yet |
| 470 | // and is needed. |
| 471 | if (getSingleSuccessor() && isa<UnreachableInst>(Val: IRBB->getTerminator())) { |
| 472 | auto *Br = State->Builder.CreateBr(Dest: IRBB); |
| 473 | Br->setOperand(i_nocapture: 0, Val_nocapture: nullptr); |
| 474 | IRBB->getTerminator()->eraseFromParent(); |
| 475 | } else { |
| 476 | assert( |
| 477 | (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) && |
| 478 | "other blocks must be terminated by a branch" ); |
| 479 | } |
| 480 | |
| 481 | connectToPredecessors(State&: *State); |
| 482 | } |
| 483 | |
| 484 | VPIRBasicBlock *VPIRBasicBlock::clone() { |
| 485 | auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB); |
| 486 | for (VPRecipeBase &R : Recipes) |
| 487 | NewBlock->appendRecipe(Recipe: R.clone()); |
| 488 | return NewBlock; |
| 489 | } |
| 490 | |
| 491 | void VPBasicBlock::execute(VPTransformState *State) { |
| 492 | bool Replica = bool(State->Lane); |
| 493 | BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. |
| 494 | |
| 495 | if (VPBlockUtils::isHeader(VPB: this, VPDT: State->VPDT)) { |
| 496 | // Create and register the new vector loop. |
| 497 | Loop *PrevParentLoop = State->CurrentParentLoop; |
| 498 | State->CurrentParentLoop = State->LI->AllocateLoop(); |
| 499 | |
| 500 | // Insert the new loop into the loop nest and register the new basic blocks |
| 501 | // before calling any utilities such as SCEV that require valid LoopInfo. |
| 502 | if (PrevParentLoop) |
| 503 | PrevParentLoop->addChildLoop(NewChild: State->CurrentParentLoop); |
| 504 | else |
| 505 | State->LI->addTopLevelLoop(New: State->CurrentParentLoop); |
| 506 | } |
| 507 | |
| 508 | auto IsReplicateRegion = [](VPBlockBase *BB) { |
| 509 | auto *R = dyn_cast_or_null<VPRegionBlock>(Val: BB); |
| 510 | assert((!R || R->isReplicator()) && |
| 511 | "only replicate region blocks should remain" ); |
| 512 | return R; |
| 513 | }; |
| 514 | // 1. Create an IR basic block. |
| 515 | if ((Replica && this == getParent()->getEntry()) || |
| 516 | IsReplicateRegion(getSingleHierarchicalPredecessor())) { |
| 517 | // Reuse the previous basic block if the current VPBB is either |
| 518 | // * the entry to a replicate region, or |
| 519 | // * the exit of a replicate region. |
| 520 | State->CFG.VPBB2IRBB[this] = NewBB; |
| 521 | } else { |
| 522 | NewBB = createEmptyBasicBlock(State&: *State); |
| 523 | |
| 524 | State->Builder.SetInsertPoint(NewBB); |
| 525 | // Temporarily terminate with unreachable until CFG is rewired. |
| 526 | UnreachableInst *Terminator = State->Builder.CreateUnreachable(); |
| 527 | State->Builder.SetInsertPoint(Terminator); |
| 528 | |
| 529 | State->CFG.PrevBB = NewBB; |
| 530 | State->CFG.VPBB2IRBB[this] = NewBB; |
| 531 | connectToPredecessors(State&: *State); |
| 532 | } |
| 533 | |
| 534 | // 2. Fill the IR basic block with IR instructions. |
| 535 | executeRecipes(State, BB: NewBB); |
| 536 | |
| 537 | // If this block is a latch, update CurrentParentLoop. |
| 538 | if (VPBlockUtils::isLatch(VPB: this, VPDT: State->VPDT)) |
| 539 | State->CurrentParentLoop = State->CurrentParentLoop->getParentLoop(); |
| 540 | } |
| 541 | |
| 542 | VPBasicBlock *VPBasicBlock::clone() { |
| 543 | auto *NewBlock = getPlan()->createVPBasicBlock(Name: getName()); |
| 544 | for (VPRecipeBase &R : *this) |
| 545 | NewBlock->appendRecipe(Recipe: R.clone()); |
| 546 | return NewBlock; |
| 547 | } |
| 548 | |
| 549 | void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { |
| 550 | LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB: " << getName() |
| 551 | << " in BB: " << BB->getName() << '\n'); |
| 552 | |
| 553 | State->CFG.PrevVPBB = this; |
| 554 | |
| 555 | for (VPRecipeBase &Recipe : Recipes) { |
| 556 | State->setDebugLocFrom(Recipe.getDebugLoc()); |
| 557 | Recipe.execute(State&: *State); |
| 558 | } |
| 559 | |
| 560 | LLVM_DEBUG(dbgs() << "LV: filled BB: " << *BB); |
| 561 | } |
| 562 | |
| 563 | VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { |
| 564 | assert((SplitAt == end() || SplitAt->getParent() == this) && |
| 565 | "can only split at a position in the same block" ); |
| 566 | |
| 567 | // Create new empty block after the block to split. |
| 568 | auto *SplitBlock = getPlan()->createVPBasicBlock(Name: getName() + ".split" ); |
| 569 | VPBlockUtils::insertBlockAfter(NewBlock: SplitBlock, BlockPtr: this); |
| 570 | |
| 571 | // Finally, move the recipes starting at SplitAt to new block. |
| 572 | for (VPRecipeBase &ToMove : |
| 573 | make_early_inc_range(Range: make_range(x: SplitAt, y: this->end()))) |
| 574 | ToMove.moveBefore(BB&: *SplitBlock, I: SplitBlock->end()); |
| 575 | |
| 576 | return SplitBlock; |
| 577 | } |
| 578 | |
| 579 | /// Return the enclosing loop region for region \p P. The templated version is |
| 580 | /// used to support both const and non-const block arguments. |
| 581 | template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) { |
| 582 | if (P && P->isReplicator()) { |
| 583 | P = P->getParent(); |
| 584 | // Multiple loop regions can be nested, but replicate regions can only be |
| 585 | // nested inside a loop region or must be outside any other region. |
| 586 | assert((!P || !P->isReplicator()) && "unexpected nested replicate regions" ); |
| 587 | } |
| 588 | return P; |
| 589 | } |
| 590 | |
| 591 | VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { |
| 592 | return getEnclosingLoopRegionForRegion(P: getParent()); |
| 593 | } |
| 594 | |
| 595 | const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const { |
| 596 | return getEnclosingLoopRegionForRegion(P: getParent()); |
| 597 | } |
| 598 | |
| 599 | static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { |
| 600 | if (VPBB->empty()) { |
| 601 | assert( |
| 602 | VPBB->getNumSuccessors() < 2 && |
| 603 | "block with multiple successors doesn't have a recipe as terminator" ); |
| 604 | return false; |
| 605 | } |
| 606 | |
| 607 | const VPRecipeBase *R = &VPBB->back(); |
| 608 | [[maybe_unused]] bool IsSwitch = |
| 609 | isa<VPInstruction>(Val: R) && |
| 610 | cast<VPInstruction>(Val: R)->getOpcode() == Instruction::Switch; |
| 611 | [[maybe_unused]] bool IsBranchOnTwoConds = match(V: R, P: m_BranchOnTwoConds()); |
| 612 | [[maybe_unused]] bool IsCondBranch = |
| 613 | isa<VPBranchOnMaskRecipe>(Val: R) || |
| 614 | match(V: R, P: m_CombineOr(L: m_BranchOnCond(), R: m_BranchOnCount())); |
| 615 | if (VPBB->getNumSuccessors() == 2 || |
| 616 | (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { |
| 617 | assert((IsCondBranch || IsSwitch || IsBranchOnTwoConds) && |
| 618 | "block with multiple successors not terminated by " |
| 619 | "conditional branch nor switch recipe" ); |
| 620 | |
| 621 | return true; |
| 622 | } |
| 623 | |
| 624 | if (VPBB->getNumSuccessors() > 2) { |
| 625 | assert((IsSwitch || IsBranchOnTwoConds) && |
| 626 | "block with more than 2 successors not terminated by a switch or " |
| 627 | "branch-on-two-conds recipe" ); |
| 628 | return true; |
| 629 | } |
| 630 | |
| 631 | assert( |
| 632 | !IsCondBranch && !IsBranchOnTwoConds && |
| 633 | "block with 0 or 1 successors terminated by conditional branch recipe" ); |
| 634 | return false; |
| 635 | } |
| 636 | |
| 637 | VPRecipeBase *VPBasicBlock::getTerminator() { |
| 638 | if (hasConditionalTerminator(VPBB: this)) |
| 639 | return &back(); |
| 640 | return nullptr; |
| 641 | } |
| 642 | |
| 643 | const VPRecipeBase *VPBasicBlock::getTerminator() const { |
| 644 | if (hasConditionalTerminator(VPBB: this)) |
| 645 | return &back(); |
| 646 | return nullptr; |
| 647 | } |
| 648 | |
| 649 | bool VPBasicBlock::isExiting() const { |
| 650 | return getParent() && getParent()->getExitingBasicBlock() == this; |
| 651 | } |
| 652 | |
| 653 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 654 | void VPBlockBase::print(raw_ostream &O) const { |
| 655 | VPSlotTracker SlotTracker(getPlan()); |
| 656 | print(O, "" , SlotTracker); |
| 657 | } |
| 658 | |
| 659 | void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { |
| 660 | if (getSuccessors().empty()) { |
| 661 | O << Indent << "No successors\n" ; |
| 662 | } else { |
| 663 | O << Indent << "Successor(s): " ; |
| 664 | ListSeparator LS; |
| 665 | for (auto *Succ : getSuccessors()) |
| 666 | O << LS << Succ->getName(); |
| 667 | O << '\n'; |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, |
| 672 | VPSlotTracker &SlotTracker) const { |
| 673 | O << Indent << getName() << ":\n" ; |
| 674 | |
| 675 | auto RecipeIndent = Indent + " " ; |
| 676 | for (const VPRecipeBase &Recipe : *this) { |
| 677 | Recipe.print(O, RecipeIndent, SlotTracker); |
| 678 | O << '\n'; |
| 679 | } |
| 680 | |
| 681 | printSuccessors(O, Indent); |
| 682 | } |
| 683 | #endif |
| 684 | |
| 685 | static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); |
| 686 | |
| 687 | // Clone the CFG for all nodes reachable from \p Entry, this includes cloning |
| 688 | // the blocks and their recipes. Operands of cloned recipes will NOT be updated. |
| 689 | // Remapping of operands must be done separately. Returns a pair with the new |
| 690 | // entry and exiting blocks of the cloned region. If \p Entry isn't part of a |
| 691 | // region, return nullptr for the exiting block. |
| 692 | static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { |
| 693 | DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; |
| 694 | VPBlockBase *Exiting = nullptr; |
| 695 | bool InRegion = Entry->getParent(); |
| 696 | // First, clone blocks reachable from Entry. |
| 697 | for (VPBlockBase *BB : vp_depth_first_shallow(G: Entry)) { |
| 698 | VPBlockBase *NewBB = BB->clone(); |
| 699 | Old2NewVPBlocks[BB] = NewBB; |
| 700 | if (InRegion && BB->getNumSuccessors() == 0) { |
| 701 | assert(!Exiting && "Multiple exiting blocks?" ); |
| 702 | Exiting = BB; |
| 703 | } |
| 704 | } |
| 705 | assert((!InRegion || Exiting) && "regions must have a single exiting block" ); |
| 706 | |
| 707 | // Second, update the predecessors & successors of the cloned blocks. |
| 708 | for (VPBlockBase *BB : vp_depth_first_shallow(G: Entry)) { |
| 709 | VPBlockBase *NewBB = Old2NewVPBlocks[BB]; |
| 710 | SmallVector<VPBlockBase *> NewPreds; |
| 711 | for (VPBlockBase *Pred : BB->getPredecessors()) { |
| 712 | NewPreds.push_back(Elt: Old2NewVPBlocks[Pred]); |
| 713 | } |
| 714 | NewBB->setPredecessors(NewPreds); |
| 715 | SmallVector<VPBlockBase *> NewSuccs; |
| 716 | for (VPBlockBase *Succ : BB->successors()) { |
| 717 | NewSuccs.push_back(Elt: Old2NewVPBlocks[Succ]); |
| 718 | } |
| 719 | NewBB->setSuccessors(NewSuccs); |
| 720 | } |
| 721 | |
| 722 | #if !defined(NDEBUG) |
| 723 | // Verify that the order of predecessors and successors matches in the cloned |
| 724 | // version. |
| 725 | for (const auto &[OldBB, NewBB] : |
| 726 | zip(vp_depth_first_shallow(Entry), |
| 727 | vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { |
| 728 | for (const auto &[OldPred, NewPred] : |
| 729 | zip(OldBB->getPredecessors(), NewBB->getPredecessors())) |
| 730 | assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors" ); |
| 731 | |
| 732 | for (const auto &[OldSucc, NewSucc] : |
| 733 | zip(OldBB->successors(), NewBB->successors())) |
| 734 | assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors" ); |
| 735 | } |
| 736 | #endif |
| 737 | |
| 738 | return std::make_pair(x&: Old2NewVPBlocks[Entry], |
| 739 | y: Exiting ? Old2NewVPBlocks[Exiting] : nullptr); |
| 740 | } |
| 741 | |
| 742 | VPRegionBlock *VPRegionBlock::clone() { |
| 743 | const auto &[NewEntry, NewExiting] = cloneFrom(Entry: getEntry()); |
| 744 | VPlan &Plan = *getPlan(); |
| 745 | VPRegionBlock *NewRegion = |
| 746 | isReplicator() |
| 747 | ? Plan.createReplicateRegion(Entry: NewEntry, Exiting: NewExiting, Name: getName()) |
| 748 | : Plan.createLoopRegion(Name: getName(), Entry: NewEntry, Exiting: NewExiting); |
| 749 | |
| 750 | for (VPBlockBase *Block : vp_depth_first_shallow(G: NewEntry)) |
| 751 | Block->setParent(NewRegion); |
| 752 | return NewRegion; |
| 753 | } |
| 754 | |
| 755 | void VPRegionBlock::execute(VPTransformState *State) { |
| 756 | assert(isReplicator() && |
| 757 | "Loop regions should have been lowered to plain CFG" ); |
| 758 | assert(!State->Lane && "Replicating a Region with non-null instance." ); |
| 759 | assert(!State->VF.isScalable() && "VF is assumed to be non scalable." ); |
| 760 | |
| 761 | ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT( |
| 762 | Entry); |
| 763 | State->Lane = VPLane(0); |
| 764 | for (unsigned Lane = 0, VF = State->VF.getFixedValue(); Lane < VF; ++Lane) { |
| 765 | State->Lane = VPLane(Lane, VPLane::Kind::First); |
| 766 | // Visit the VPBlocks connected to \p this, starting from it. |
| 767 | for (VPBlockBase *Block : RPOT) { |
| 768 | LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); |
| 769 | Block->execute(State); |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | // Exit replicating mode. |
| 774 | State->Lane.reset(); |
| 775 | } |
| 776 | |
| 777 | InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { |
| 778 | InstructionCost Cost = 0; |
| 779 | for (VPRecipeBase &R : Recipes) |
| 780 | Cost += R.cost(VF, Ctx); |
| 781 | return Cost; |
| 782 | } |
| 783 | |
| 784 | const VPBasicBlock *VPBasicBlock::getCFGPredecessor(unsigned Idx) const { |
| 785 | const VPBlockBase *Pred = nullptr; |
| 786 | if (hasPredecessors()) { |
| 787 | Pred = getPredecessors()[Idx]; |
| 788 | } else { |
| 789 | auto *Region = getParent(); |
| 790 | assert(Region && !Region->isReplicator() && Region->getEntry() == this && |
| 791 | "must be in the entry block of a non-replicate region" ); |
| 792 | assert(Idx < 2 && Region->getNumPredecessors() == 1 && |
| 793 | "loop region has a single predecessor (preheader), its entry block " |
| 794 | "has 2 incoming blocks" ); |
| 795 | |
| 796 | // Idx == 0 selects the predecessor of the region, Idx == 1 selects the |
| 797 | // region itself whose exiting block feeds the phi across the backedge. |
| 798 | Pred = Idx == 0 ? Region->getSinglePredecessor() : Region; |
| 799 | } |
| 800 | return Pred->getExitingBasicBlock(); |
| 801 | } |
| 802 | |
| 803 | InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { |
| 804 | if (!isReplicator()) { |
| 805 | InstructionCost Cost = 0; |
| 806 | for (VPBlockBase *Block : vp_depth_first_shallow(G: getEntry())) |
| 807 | Cost += Block->cost(VF, Ctx); |
| 808 | InstructionCost BackedgeCost = |
| 809 | ForceTargetInstructionCost.getNumOccurrences() |
| 810 | ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences()) |
| 811 | : Ctx.TTI.getCFInstrCost(Opcode: Instruction::Br, CostKind: Ctx.CostKind); |
| 812 | LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF |
| 813 | << ": vector loop backedge\n" ); |
| 814 | Cost += BackedgeCost; |
| 815 | return Cost; |
| 816 | } |
| 817 | |
| 818 | // Compute the cost of a replicate region. Replicating isn't supported for |
| 819 | // scalable vectors, return an invalid cost for them. |
| 820 | // TODO: Discard scalable VPlans with replicate recipes earlier after |
| 821 | // construction. |
| 822 | if (VF.isScalable()) |
| 823 | return InstructionCost::getInvalid(); |
| 824 | |
| 825 | // Compute and return the cost of the conditionally executed recipes. |
| 826 | assert(VF.isVector() && "Can only compute vector cost at the moment." ); |
| 827 | VPBasicBlock *Then = cast<VPBasicBlock>(Val: getEntry()->getSuccessors()[0]); |
| 828 | return Then->cost(VF, Ctx); |
| 829 | } |
| 830 | |
| 831 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 832 | void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, |
| 833 | VPSlotTracker &SlotTracker) const { |
| 834 | O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> " ) << getName() << ": {" ; |
| 835 | auto NewIndent = Indent + " " ; |
| 836 | for (auto *BlockBase : vp_depth_first_shallow(Entry)) { |
| 837 | O << '\n'; |
| 838 | BlockBase->print(O, NewIndent, SlotTracker); |
| 839 | } |
| 840 | O << Indent << "}\n" ; |
| 841 | |
| 842 | printSuccessors(O, Indent); |
| 843 | } |
| 844 | #endif |
| 845 | |
| 846 | void VPRegionBlock::dissolveToCFGLoop() { |
| 847 | auto * = cast<VPBasicBlock>(Val: getEntry()); |
| 848 | if (auto *CanIV = dyn_cast<VPCanonicalIVPHIRecipe>(Val: &Header->front())) { |
| 849 | assert(this == getPlan()->getVectorLoopRegion() && |
| 850 | "Canonical IV must be in the entry of the top-level loop region" ); |
| 851 | auto *ScalarR = VPBuilder(CanIV).createScalarPhi( |
| 852 | IncomingValues: {CanIV->getStartValue(), CanIV->getBackedgeValue()}, |
| 853 | DL: CanIV->getDebugLoc(), Name: "index" ); |
| 854 | CanIV->replaceAllUsesWith(New: ScalarR); |
| 855 | CanIV->eraseFromParent(); |
| 856 | } |
| 857 | |
| 858 | VPBlockBase * = getSinglePredecessor(); |
| 859 | auto *ExitingLatch = cast<VPBasicBlock>(Val: getExiting()); |
| 860 | |
| 861 | VPBlockUtils::disconnectBlocks(From: Preheader, To: this); |
| 862 | |
| 863 | for (VPBlockBase *VPB : vp_depth_first_shallow(G: Entry)) |
| 864 | VPB->setParent(getParent()); |
| 865 | |
| 866 | VPBlockUtils::connectBlocks(From: Preheader, To: Header); |
| 867 | VPBlockUtils::transferSuccessors(Old: this, New: ExitingLatch); |
| 868 | VPBlockUtils::connectBlocks(From: ExitingLatch, To: Header); |
| 869 | } |
| 870 | |
| 871 | VPlan::VPlan(Loop *L) { |
| 872 | setEntry(createVPIRBasicBlock(IRBB: L->getLoopPreheader())); |
| 873 | ScalarHeader = createVPIRBasicBlock(IRBB: L->getHeader()); |
| 874 | |
| 875 | SmallVector<BasicBlock *> IRExitBlocks; |
| 876 | L->getUniqueExitBlocks(ExitBlocks&: IRExitBlocks); |
| 877 | for (BasicBlock *EB : IRExitBlocks) |
| 878 | ExitBlocks.push_back(Elt: createVPIRBasicBlock(IRBB: EB)); |
| 879 | } |
| 880 | |
| 881 | VPlan::~VPlan() { |
| 882 | VPSymbolicValue DummyValue; |
| 883 | |
| 884 | for (auto *VPB : CreatedBlocks) { |
| 885 | if (auto *VPBB = dyn_cast<VPBasicBlock>(Val: VPB)) { |
| 886 | // Replace all operands of recipes and all VPValues defined in VPBB with |
| 887 | // DummyValue so the block can be deleted. |
| 888 | for (VPRecipeBase &R : *VPBB) { |
| 889 | for (auto *Def : R.definedValues()) |
| 890 | Def->replaceAllUsesWith(New: &DummyValue); |
| 891 | |
| 892 | for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) |
| 893 | R.setOperand(I, New: &DummyValue); |
| 894 | } |
| 895 | } |
| 896 | delete VPB; |
| 897 | } |
| 898 | for (VPValue *VPV : getLiveIns()) |
| 899 | delete VPV; |
| 900 | delete BackedgeTakenCount; |
| 901 | } |
| 902 | |
| 903 | VPIRBasicBlock *VPlan::getExitBlock(BasicBlock *IRBB) const { |
| 904 | auto Iter = find_if(Range: getExitBlocks(), P: [IRBB](const VPIRBasicBlock *VPIRBB) { |
| 905 | return VPIRBB->getIRBasicBlock() == IRBB; |
| 906 | }); |
| 907 | assert(Iter != getExitBlocks().end() && "no exit block found" ); |
| 908 | return *Iter; |
| 909 | } |
| 910 | |
| 911 | bool VPlan::isExitBlock(VPBlockBase *VPBB) { |
| 912 | return is_contained(Range&: ExitBlocks, Element: VPBB); |
| 913 | } |
| 914 | |
| 915 | /// To make RUN_VPLAN_PASS print final VPlan. |
| 916 | static void printFinalVPlan(VPlan &) {} |
| 917 | |
| 918 | /// Generate the code inside the preheader and body of the vectorized loop. |
| 919 | /// Assumes a single pre-header basic-block was created for this. Introduce |
| 920 | /// additional basic-blocks as needed, and fill them all. |
| 921 | void VPlan::execute(VPTransformState *State) { |
| 922 | // Initialize CFG state. |
| 923 | State->CFG.PrevVPBB = nullptr; |
| 924 | State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); |
| 925 | |
| 926 | // Update VPDominatorTree since VPBasicBlock may be removed after State was |
| 927 | // constructed. |
| 928 | State->VPDT.recalculate(Func&: *this); |
| 929 | |
| 930 | // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. |
| 931 | BasicBlock * = State->CFG.PrevBB; |
| 932 | cast<BranchInst>(Val: VectorPreHeader->getTerminator())->setSuccessor(idx: 0, NewSucc: nullptr); |
| 933 | State->CFG.DTU.applyUpdates( |
| 934 | Updates: {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); |
| 935 | |
| 936 | LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF |
| 937 | << ", UF=" << getUF() << '\n'); |
| 938 | setName("Final VPlan" ); |
| 939 | // TODO: RUN_VPLAN_PASS/VPlanTransforms::runPass should automatically dump |
| 940 | // VPlans after some specific stages when "-debug" is specified, but that |
| 941 | // hasn't been implemented yet. For now, just do both: |
| 942 | LLVM_DEBUG(dump()); |
| 943 | RUN_VPLAN_PASS(printFinalVPlan, *this); |
| 944 | |
| 945 | BasicBlock *ScalarPh = State->CFG.ExitBB; |
| 946 | VPBasicBlock *ScalarPhVPBB = getScalarPreheader(); |
| 947 | if (ScalarPhVPBB->hasPredecessors()) { |
| 948 | // Disconnect scalar preheader and scalar header, as the dominator tree edge |
| 949 | // will be updated as part of VPlan execution. This allows keeping the DTU |
| 950 | // logic generic during VPlan execution. |
| 951 | State->CFG.DTU.applyUpdates( |
| 952 | Updates: {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}}); |
| 953 | } |
| 954 | ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT( |
| 955 | Entry); |
| 956 | // Generate code for the VPlan, in parts of the vector skeleton, loop body and |
| 957 | // successor blocks including the middle, exit and scalar preheader blocks. |
| 958 | for (VPBlockBase *Block : RPOT) |
| 959 | Block->execute(State); |
| 960 | |
| 961 | // If the original loop is unreachable, delete it and all its blocks. |
| 962 | if (!ScalarPhVPBB->hasPredecessors()) { |
| 963 | // DeleteDeadBlocks will remove single-entry phis. Remove them from the exit |
| 964 | // VPIRBBs in VPlan as well, otherwise we would retain references to deleted |
| 965 | // IR instructions. |
| 966 | for (VPIRBasicBlock *EB : getExitBlocks()) { |
| 967 | for (VPRecipeBase &R : make_early_inc_range(Range: EB->phis())) { |
| 968 | if (R.getNumOperands() == 1) |
| 969 | R.eraseFromParent(); |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | Loop *OrigLoop = |
| 974 | State->LI->getLoopFor(BB: getScalarHeader()->getIRBasicBlock()); |
| 975 | auto Blocks = OrigLoop->getBlocksVector(); |
| 976 | Blocks.push_back(x: cast<VPIRBasicBlock>(Val: ScalarPhVPBB)->getIRBasicBlock()); |
| 977 | for (auto *BB : Blocks) |
| 978 | State->LI->removeBlock(BB); |
| 979 | DeleteDeadBlocks(BBs: Blocks, DTU: &State->CFG.DTU); |
| 980 | State->LI->erase(L: OrigLoop); |
| 981 | } |
| 982 | |
| 983 | State->CFG.DTU.flush(); |
| 984 | |
| 985 | VPBasicBlock * = vputils::getFirstLoopHeader(Plan&: *this, VPDT&: State->VPDT); |
| 986 | if (!Header) |
| 987 | return; |
| 988 | |
| 989 | auto *LatchVPBB = cast<VPBasicBlock>(Val: Header->getPredecessors()[1]); |
| 990 | BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; |
| 991 | |
| 992 | // Fix the latch value of canonical, reduction and first-order recurrences |
| 993 | // phis in the vector loop. |
| 994 | for (VPRecipeBase &R : Header->phis()) { |
| 995 | // Skip phi-like recipes that generate their backedege values themselves. |
| 996 | if (isa<VPWidenPHIRecipe>(Val: &R)) |
| 997 | continue; |
| 998 | |
| 999 | auto *PhiR = cast<VPSingleDefRecipe>(Val: &R); |
| 1000 | // VPInstructions currently model scalar Phis only. |
| 1001 | bool NeedsScalar = isa<VPInstruction>(Val: PhiR) || |
| 1002 | (isa<VPReductionPHIRecipe>(Val: PhiR) && |
| 1003 | cast<VPReductionPHIRecipe>(Val: PhiR)->isInLoop()); |
| 1004 | |
| 1005 | Value *Phi = State->get(Def: PhiR, NeedsScalar); |
| 1006 | // VPHeaderPHIRecipe supports getBackedgeValue() but VPInstruction does |
| 1007 | // not. |
| 1008 | Value *Val = State->get(Def: PhiR->getOperand(N: 1), NeedsScalar); |
| 1009 | cast<PHINode>(Val: Phi)->addIncoming(V: Val, BB: VectorLatchBB); |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { |
| 1014 | // For now only return the cost of the vector loop region, ignoring any other |
| 1015 | // blocks, like the preheader or middle blocks, expect for checking them for |
| 1016 | // recipes with invalid costs. |
| 1017 | InstructionCost Cost = getVectorLoopRegion()->cost(VF, Ctx); |
| 1018 | |
| 1019 | // If the cost of the loop region is invalid or any recipe in the skeleton |
| 1020 | // outside loop regions are invalid return an invalid cost. |
| 1021 | if (!Cost.isValid() || any_of(Range: VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 1022 | Range: vp_depth_first_shallow(G: getEntry())), |
| 1023 | P: [&VF, &Ctx](VPBasicBlock *VPBB) { |
| 1024 | return !VPBB->cost(VF, Ctx).isValid(); |
| 1025 | })) |
| 1026 | return InstructionCost::getInvalid(); |
| 1027 | |
| 1028 | return Cost; |
| 1029 | } |
| 1030 | |
| 1031 | VPRegionBlock *VPlan::getVectorLoopRegion() { |
| 1032 | // TODO: Cache if possible. |
| 1033 | for (VPBlockBase *B : vp_depth_first_shallow(G: getEntry())) |
| 1034 | if (auto *R = dyn_cast<VPRegionBlock>(Val: B)) |
| 1035 | return R->isReplicator() ? nullptr : R; |
| 1036 | return nullptr; |
| 1037 | } |
| 1038 | |
| 1039 | const VPRegionBlock *VPlan::getVectorLoopRegion() const { |
| 1040 | for (const VPBlockBase *B : vp_depth_first_shallow(G: getEntry())) |
| 1041 | if (auto *R = dyn_cast<VPRegionBlock>(Val: B)) |
| 1042 | return R->isReplicator() ? nullptr : R; |
| 1043 | return nullptr; |
| 1044 | } |
| 1045 | |
| 1046 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1047 | void VPlan::printLiveIns(raw_ostream &O) const { |
| 1048 | VPSlotTracker SlotTracker(this); |
| 1049 | |
| 1050 | if (VF.getNumUsers() > 0) { |
| 1051 | O << "\nLive-in " ; |
| 1052 | VF.printAsOperand(O, SlotTracker); |
| 1053 | O << " = VF" ; |
| 1054 | } |
| 1055 | |
| 1056 | if (VFxUF.getNumUsers() > 0) { |
| 1057 | O << "\nLive-in " ; |
| 1058 | VFxUF.printAsOperand(O, SlotTracker); |
| 1059 | O << " = VF * UF" ; |
| 1060 | } |
| 1061 | |
| 1062 | if (VectorTripCount.getNumUsers() > 0) { |
| 1063 | O << "\nLive-in " ; |
| 1064 | VectorTripCount.printAsOperand(O, SlotTracker); |
| 1065 | O << " = vector-trip-count" ; |
| 1066 | } |
| 1067 | |
| 1068 | if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { |
| 1069 | O << "\nLive-in " ; |
| 1070 | BackedgeTakenCount->printAsOperand(O, SlotTracker); |
| 1071 | O << " = backedge-taken count" ; |
| 1072 | } |
| 1073 | |
| 1074 | O << "\n" ; |
| 1075 | if (TripCount) { |
| 1076 | if (isa<VPIRValue>(TripCount)) |
| 1077 | O << "Live-in " ; |
| 1078 | TripCount->printAsOperand(O, SlotTracker); |
| 1079 | O << " = original trip-count" ; |
| 1080 | O << "\n" ; |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | LLVM_DUMP_METHOD |
| 1085 | void VPlan::print(raw_ostream &O) const { |
| 1086 | VPSlotTracker SlotTracker(this); |
| 1087 | |
| 1088 | O << "VPlan '" << getName() << "' {" ; |
| 1089 | |
| 1090 | printLiveIns(O); |
| 1091 | |
| 1092 | ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<const VPBlockBase *>> |
| 1093 | RPOT(getEntry()); |
| 1094 | for (const VPBlockBase *Block : RPOT) { |
| 1095 | O << '\n'; |
| 1096 | Block->print(O, "" , SlotTracker); |
| 1097 | } |
| 1098 | |
| 1099 | O << "}\n" ; |
| 1100 | } |
| 1101 | |
| 1102 | std::string VPlan::getName() const { |
| 1103 | std::string Out; |
| 1104 | raw_string_ostream RSO(Out); |
| 1105 | RSO << Name << " for " ; |
| 1106 | if (!VFs.empty()) { |
| 1107 | RSO << "VF={" << VFs[0]; |
| 1108 | for (ElementCount VF : drop_begin(VFs)) |
| 1109 | RSO << "," << VF; |
| 1110 | RSO << "}," ; |
| 1111 | } |
| 1112 | |
| 1113 | if (UFs.empty()) { |
| 1114 | RSO << "UF>=1" ; |
| 1115 | } else { |
| 1116 | RSO << "UF={" << UFs[0]; |
| 1117 | for (unsigned UF : drop_begin(UFs)) |
| 1118 | RSO << "," << UF; |
| 1119 | RSO << "}" ; |
| 1120 | } |
| 1121 | |
| 1122 | return Out; |
| 1123 | } |
| 1124 | |
| 1125 | LLVM_DUMP_METHOD |
| 1126 | void VPlan::printDOT(raw_ostream &O) const { |
| 1127 | VPlanPrinter Printer(O, *this); |
| 1128 | Printer.dump(); |
| 1129 | } |
| 1130 | |
| 1131 | LLVM_DUMP_METHOD |
| 1132 | void VPlan::dump() const { print(dbgs()); } |
| 1133 | #endif |
| 1134 | |
| 1135 | static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, |
| 1136 | DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { |
| 1137 | // Update the operands of all cloned recipes starting at NewEntry. This |
| 1138 | // traverses all reachable blocks. This is done in two steps, to handle cycles |
| 1139 | // in PHI recipes. |
| 1140 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> |
| 1141 | OldDeepRPOT(Entry); |
| 1142 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> |
| 1143 | NewDeepRPOT(NewEntry); |
| 1144 | // First, collect all mappings from old to new VPValues defined by cloned |
| 1145 | // recipes. |
| 1146 | for (const auto &[OldBB, NewBB] : |
| 1147 | zip(t: VPBlockUtils::blocksOnly<VPBasicBlock>(Range: OldDeepRPOT), |
| 1148 | u: VPBlockUtils::blocksOnly<VPBasicBlock>(Range: NewDeepRPOT))) { |
| 1149 | assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && |
| 1150 | "blocks must have the same number of recipes" ); |
| 1151 | for (const auto &[OldR, NewR] : zip(t&: *OldBB, u&: *NewBB)) { |
| 1152 | assert(OldR.getNumOperands() == NewR.getNumOperands() && |
| 1153 | "recipes must have the same number of operands" ); |
| 1154 | assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && |
| 1155 | "recipes must define the same number of operands" ); |
| 1156 | for (const auto &[OldV, NewV] : |
| 1157 | zip(t: OldR.definedValues(), u: NewR.definedValues())) |
| 1158 | Old2NewVPValues[OldV] = NewV; |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | // Update all operands to use cloned VPValues. |
| 1163 | for (VPBasicBlock *NewBB : |
| 1164 | VPBlockUtils::blocksOnly<VPBasicBlock>(Range: NewDeepRPOT)) { |
| 1165 | for (VPRecipeBase &NewR : *NewBB) |
| 1166 | for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { |
| 1167 | VPValue *NewOp = Old2NewVPValues.lookup(Val: NewR.getOperand(N: I)); |
| 1168 | NewR.setOperand(I, New: NewOp); |
| 1169 | } |
| 1170 | } |
| 1171 | } |
| 1172 | |
| 1173 | VPlan *VPlan::duplicate() { |
| 1174 | unsigned NumBlocksBeforeCloning = CreatedBlocks.size(); |
| 1175 | // Clone blocks. |
| 1176 | const auto &[NewEntry, __] = cloneFrom(Entry); |
| 1177 | |
| 1178 | BasicBlock * = getScalarHeader()->getIRBasicBlock(); |
| 1179 | VPIRBasicBlock * = nullptr; |
| 1180 | if (getScalarHeader()->hasPredecessors()) { |
| 1181 | NewScalarHeader = cast<VPIRBasicBlock>(Val: *find_if( |
| 1182 | Range: vp_depth_first_shallow(G: NewEntry), P: [ScalarHeaderIRBB](VPBlockBase *VPB) { |
| 1183 | auto *VPIRBB = dyn_cast<VPIRBasicBlock>(Val: VPB); |
| 1184 | return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB; |
| 1185 | })); |
| 1186 | } else { |
| 1187 | NewScalarHeader = createVPIRBasicBlock(IRBB: ScalarHeaderIRBB); |
| 1188 | } |
| 1189 | // Create VPlan, clone live-ins and remap operands in the cloned blocks. |
| 1190 | auto *NewPlan = new VPlan(cast<VPBasicBlock>(Val: NewEntry), NewScalarHeader); |
| 1191 | DenseMap<VPValue *, VPValue *> Old2NewVPValues; |
| 1192 | for (VPIRValue *OldLiveIn : getLiveIns()) |
| 1193 | Old2NewVPValues[OldLiveIn] = NewPlan->getOrAddLiveIn(V: OldLiveIn); |
| 1194 | Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; |
| 1195 | Old2NewVPValues[&VF] = &NewPlan->VF; |
| 1196 | Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; |
| 1197 | if (BackedgeTakenCount) { |
| 1198 | NewPlan->BackedgeTakenCount = new VPSymbolicValue(); |
| 1199 | Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; |
| 1200 | } |
| 1201 | if (auto *TripCountIRV = dyn_cast_or_null<VPIRValue>(Val: TripCount)) |
| 1202 | Old2NewVPValues[TripCountIRV] = NewPlan->getOrAddLiveIn(V: TripCountIRV); |
| 1203 | // else NewTripCount will be created and inserted into Old2NewVPValues when |
| 1204 | // TripCount is cloned. In any case NewPlan->TripCount is updated below. |
| 1205 | |
| 1206 | remapOperands(Entry, NewEntry, Old2NewVPValues); |
| 1207 | |
| 1208 | // Initialize remaining fields of cloned VPlan. |
| 1209 | NewPlan->VFs = VFs; |
| 1210 | NewPlan->UFs = UFs; |
| 1211 | // TODO: Adjust names. |
| 1212 | NewPlan->Name = Name; |
| 1213 | if (TripCount) { |
| 1214 | assert(Old2NewVPValues.contains(TripCount) && |
| 1215 | "TripCount must have been added to Old2NewVPValues" ); |
| 1216 | NewPlan->TripCount = Old2NewVPValues[TripCount]; |
| 1217 | } |
| 1218 | |
| 1219 | // Transfer all cloned blocks (the second half of all current blocks) from |
| 1220 | // current to new VPlan. |
| 1221 | unsigned NumBlocksAfterCloning = CreatedBlocks.size(); |
| 1222 | for (unsigned I : |
| 1223 | seq<unsigned>(Begin: NumBlocksBeforeCloning, End: NumBlocksAfterCloning)) |
| 1224 | NewPlan->CreatedBlocks.push_back(Elt: this->CreatedBlocks[I]); |
| 1225 | CreatedBlocks.truncate(N: NumBlocksBeforeCloning); |
| 1226 | |
| 1227 | // Update ExitBlocks of the new plan. |
| 1228 | for (VPBlockBase *VPB : NewPlan->CreatedBlocks) { |
| 1229 | if (VPB->getNumSuccessors() == 0 && isa<VPIRBasicBlock>(Val: VPB) && |
| 1230 | VPB != NewScalarHeader) |
| 1231 | NewPlan->ExitBlocks.push_back(Elt: cast<VPIRBasicBlock>(Val: VPB)); |
| 1232 | } |
| 1233 | |
| 1234 | return NewPlan; |
| 1235 | } |
| 1236 | |
| 1237 | VPIRBasicBlock *VPlan::createEmptyVPIRBasicBlock(BasicBlock *IRBB) { |
| 1238 | auto *VPIRBB = new VPIRBasicBlock(IRBB); |
| 1239 | CreatedBlocks.push_back(Elt: VPIRBB); |
| 1240 | return VPIRBB; |
| 1241 | } |
| 1242 | |
| 1243 | VPIRBasicBlock *VPlan::createVPIRBasicBlock(BasicBlock *IRBB) { |
| 1244 | auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB); |
| 1245 | for (Instruction &I : |
| 1246 | make_range(x: IRBB->begin(), y: IRBB->getTerminator()->getIterator())) |
| 1247 | VPIRBB->appendRecipe(Recipe: VPIRInstruction::create(I)); |
| 1248 | return VPIRBB; |
| 1249 | } |
| 1250 | |
| 1251 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1252 | |
| 1253 | Twine VPlanPrinter::getUID(const VPBlockBase *Block) { |
| 1254 | return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N" ) + |
| 1255 | Twine(getOrCreateBID(Block)); |
| 1256 | } |
| 1257 | |
| 1258 | Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { |
| 1259 | const std::string &Name = Block->getName(); |
| 1260 | if (!Name.empty()) |
| 1261 | return Name; |
| 1262 | return "VPB" + Twine(getOrCreateBID(Block)); |
| 1263 | } |
| 1264 | |
| 1265 | void VPlanPrinter::dump() { |
| 1266 | Depth = 1; |
| 1267 | bumpIndent(0); |
| 1268 | OS << "digraph VPlan {\n" ; |
| 1269 | OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan" ; |
| 1270 | if (!Plan.getName().empty()) |
| 1271 | OS << "\\n" << DOT::EscapeString(Plan.getName()); |
| 1272 | |
| 1273 | { |
| 1274 | // Print live-ins. |
| 1275 | std::string Str; |
| 1276 | raw_string_ostream SS(Str); |
| 1277 | Plan.printLiveIns(SS); |
| 1278 | SmallVector<StringRef, 0> Lines; |
| 1279 | StringRef(Str).rtrim('\n').split(Lines, "\n" ); |
| 1280 | for (auto Line : Lines) |
| 1281 | OS << DOT::EscapeString(Line.str()) << "\\n" ; |
| 1282 | } |
| 1283 | |
| 1284 | OS << "\"]\n" ; |
| 1285 | OS << "node [shape=rect, fontname=Courier, fontsize=30]\n" ; |
| 1286 | OS << "edge [fontname=Courier, fontsize=30]\n" ; |
| 1287 | OS << "compound=true\n" ; |
| 1288 | |
| 1289 | for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) |
| 1290 | dumpBlock(Block); |
| 1291 | |
| 1292 | OS << "}\n" ; |
| 1293 | } |
| 1294 | |
| 1295 | void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { |
| 1296 | if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) |
| 1297 | dumpBasicBlock(BasicBlock); |
| 1298 | else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) |
| 1299 | dumpRegion(Region); |
| 1300 | else |
| 1301 | llvm_unreachable("Unsupported kind of VPBlock." ); |
| 1302 | } |
| 1303 | |
| 1304 | void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, |
| 1305 | bool Hidden, const Twine &Label) { |
| 1306 | // Due to "dot" we print an edge between two regions as an edge between the |
| 1307 | // exiting basic block and the entry basic of the respective regions. |
| 1308 | const VPBlockBase *Tail = From->getExitingBasicBlock(); |
| 1309 | const VPBlockBase *Head = To->getEntryBasicBlock(); |
| 1310 | OS << Indent << getUID(Tail) << " -> " << getUID(Head); |
| 1311 | OS << " [ label=\"" << Label << '\"'; |
| 1312 | if (Tail != From) |
| 1313 | OS << " ltail=" << getUID(From); |
| 1314 | if (Head != To) |
| 1315 | OS << " lhead=" << getUID(To); |
| 1316 | if (Hidden) |
| 1317 | OS << "; splines=none" ; |
| 1318 | OS << "]\n" ; |
| 1319 | } |
| 1320 | |
| 1321 | void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { |
| 1322 | auto &Successors = Block->getSuccessors(); |
| 1323 | if (Successors.size() == 1) |
| 1324 | drawEdge(Block, Successors.front(), false, "" ); |
| 1325 | else if (Successors.size() == 2) { |
| 1326 | drawEdge(Block, Successors.front(), false, "T" ); |
| 1327 | drawEdge(Block, Successors.back(), false, "F" ); |
| 1328 | } else { |
| 1329 | unsigned SuccessorNumber = 0; |
| 1330 | for (auto *Successor : Successors) |
| 1331 | drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); |
| 1332 | } |
| 1333 | } |
| 1334 | |
| 1335 | void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { |
| 1336 | // Implement dot-formatted dump by performing plain-text dump into the |
| 1337 | // temporary storage followed by some post-processing. |
| 1338 | OS << Indent << getUID(BasicBlock) << " [label =\n" ; |
| 1339 | bumpIndent(1); |
| 1340 | std::string Str; |
| 1341 | raw_string_ostream SS(Str); |
| 1342 | // Use no indentation as we need to wrap the lines into quotes ourselves. |
| 1343 | BasicBlock->print(SS, "" , SlotTracker); |
| 1344 | |
| 1345 | // We need to process each line of the output separately, so split |
| 1346 | // single-string plain-text dump. |
| 1347 | SmallVector<StringRef, 0> Lines; |
| 1348 | StringRef(Str).rtrim('\n').split(Lines, "\n" ); |
| 1349 | |
| 1350 | auto EmitLine = [&](StringRef Line, StringRef Suffix) { |
| 1351 | OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; |
| 1352 | }; |
| 1353 | |
| 1354 | // Don't need the "+" after the last line. |
| 1355 | for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) |
| 1356 | EmitLine(Line, " +\n" ); |
| 1357 | EmitLine(Lines.back(), "\n" ); |
| 1358 | |
| 1359 | bumpIndent(-1); |
| 1360 | OS << Indent << "]\n" ; |
| 1361 | |
| 1362 | dumpEdges(BasicBlock); |
| 1363 | } |
| 1364 | |
| 1365 | void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { |
| 1366 | OS << Indent << "subgraph " << getUID(Region) << " {\n" ; |
| 1367 | bumpIndent(1); |
| 1368 | OS << Indent << "fontname=Courier\n" |
| 1369 | << Indent << "label=\"" |
| 1370 | << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> " ) |
| 1371 | << DOT::EscapeString(Region->getName()) << "\"\n" ; |
| 1372 | // Dump the blocks of the region. |
| 1373 | assert(Region->getEntry() && "Region contains no inner blocks." ); |
| 1374 | for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) |
| 1375 | dumpBlock(Block); |
| 1376 | bumpIndent(-1); |
| 1377 | OS << Indent << "}\n" ; |
| 1378 | dumpEdges(Region); |
| 1379 | } |
| 1380 | |
| 1381 | #endif |
| 1382 | |
| 1383 | /// Returns true if there is a vector loop region and \p VPV is defined in a |
| 1384 | /// loop region. |
| 1385 | static bool isDefinedInsideLoopRegions(const VPValue *VPV) { |
| 1386 | const VPRecipeBase *DefR = VPV->getDefiningRecipe(); |
| 1387 | return DefR && (!DefR->getParent()->getPlan()->getVectorLoopRegion() || |
| 1388 | DefR->getParent()->getEnclosingLoopRegion()); |
| 1389 | } |
| 1390 | |
| 1391 | bool VPValue::isDefinedOutsideLoopRegions() const { |
| 1392 | return !isDefinedInsideLoopRegions(VPV: this); |
| 1393 | } |
| 1394 | void VPValue::replaceAllUsesWith(VPValue *New) { |
| 1395 | replaceUsesWithIf(New, ShouldReplace: [](VPUser &, unsigned) { return true; }); |
| 1396 | } |
| 1397 | |
| 1398 | void VPValue::replaceUsesWithIf( |
| 1399 | VPValue *New, |
| 1400 | llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { |
| 1401 | // Note that this early exit is required for correctness; the implementation |
| 1402 | // below relies on the number of users for this VPValue to decrease, which |
| 1403 | // isn't the case if this == New. |
| 1404 | if (this == New) |
| 1405 | return; |
| 1406 | |
| 1407 | for (unsigned J = 0; J < getNumUsers();) { |
| 1408 | VPUser *User = Users[J]; |
| 1409 | bool RemovedUser = false; |
| 1410 | for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { |
| 1411 | if (User->getOperand(N: I) != this || !ShouldReplace(*User, I)) |
| 1412 | continue; |
| 1413 | |
| 1414 | RemovedUser = true; |
| 1415 | User->setOperand(I, New); |
| 1416 | } |
| 1417 | // If a user got removed after updating the current user, the next user to |
| 1418 | // update will be moved to the current position, so we only need to |
| 1419 | // increment the index if the number of users did not change. |
| 1420 | if (!RemovedUser) |
| 1421 | J++; |
| 1422 | } |
| 1423 | } |
| 1424 | |
| 1425 | void VPUser::replaceUsesOfWith(VPValue *From, VPValue *To) { |
| 1426 | for (unsigned Idx = 0; Idx != getNumOperands(); ++Idx) { |
| 1427 | if (getOperand(N: Idx) == From) |
| 1428 | setOperand(I: Idx, New: To); |
| 1429 | } |
| 1430 | } |
| 1431 | |
| 1432 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1433 | void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { |
| 1434 | OS << Tracker.getOrCreateName(this); |
| 1435 | } |
| 1436 | |
| 1437 | void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { |
| 1438 | interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { |
| 1439 | Op->printAsOperand(O, SlotTracker); |
| 1440 | }); |
| 1441 | } |
| 1442 | #endif |
| 1443 | |
| 1444 | void VPSlotTracker::assignName(const VPValue *V) { |
| 1445 | assert(!VPValue2Name.contains(V) && "VPValue already has a name!" ); |
| 1446 | auto *UV = V->getUnderlyingValue(); |
| 1447 | auto *VPI = dyn_cast_or_null<VPInstruction>(Val: V); |
| 1448 | if (!UV && !(VPI && !VPI->getName().empty())) { |
| 1449 | VPValue2Name[V] = (Twine("vp<%" ) + Twine(NextSlot) + ">" ).str(); |
| 1450 | NextSlot++; |
| 1451 | return; |
| 1452 | } |
| 1453 | |
| 1454 | // Use the name of the underlying Value, wrapped in "ir<>", and versioned by |
| 1455 | // appending ".Number" to the name if there are multiple uses. |
| 1456 | std::string Name; |
| 1457 | if (UV) |
| 1458 | Name = getName(V: UV); |
| 1459 | else |
| 1460 | Name = VPI->getName(); |
| 1461 | |
| 1462 | assert(!Name.empty() && "Name cannot be empty." ); |
| 1463 | StringRef Prefix = UV ? "ir<" : "vp<%" ; |
| 1464 | std::string BaseName = (Twine(Prefix) + Name + Twine(">" )).str(); |
| 1465 | |
| 1466 | // First assign the base name for V. |
| 1467 | const auto &[A, _] = VPValue2Name.try_emplace(Key: V, Args&: BaseName); |
| 1468 | // Integer or FP constants with different types will result in the same string |
| 1469 | // due to stripping types. |
| 1470 | if (isa<VPIRValue>(Val: V) && isa<ConstantInt, ConstantFP>(Val: UV)) |
| 1471 | return; |
| 1472 | |
| 1473 | // If it is already used by C > 0 other VPValues, increase the version counter |
| 1474 | // C and use it for V. |
| 1475 | const auto &[C, UseInserted] = BaseName2Version.try_emplace(Key: BaseName, Args: 0); |
| 1476 | if (!UseInserted) { |
| 1477 | C->second++; |
| 1478 | A->second = (BaseName + Twine("." ) + Twine(C->second)).str(); |
| 1479 | } |
| 1480 | } |
| 1481 | |
| 1482 | void VPSlotTracker::assignNames(const VPlan &Plan) { |
| 1483 | if (Plan.VF.getNumUsers() > 0) |
| 1484 | assignName(V: &Plan.VF); |
| 1485 | if (Plan.VFxUF.getNumUsers() > 0) |
| 1486 | assignName(V: &Plan.VFxUF); |
| 1487 | assignName(V: &Plan.VectorTripCount); |
| 1488 | if (Plan.BackedgeTakenCount) |
| 1489 | assignName(V: Plan.BackedgeTakenCount); |
| 1490 | for (VPValue *LI : Plan.getLiveIns()) |
| 1491 | assignName(V: LI); |
| 1492 | |
| 1493 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> |
| 1494 | RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); |
| 1495 | for (const VPBasicBlock *VPBB : |
| 1496 | VPBlockUtils::blocksOnly<const VPBasicBlock>(Range: RPOT)) |
| 1497 | assignNames(VPBB); |
| 1498 | } |
| 1499 | |
| 1500 | void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { |
| 1501 | for (const VPRecipeBase &Recipe : *VPBB) |
| 1502 | for (VPValue *Def : Recipe.definedValues()) |
| 1503 | assignName(V: Def); |
| 1504 | } |
| 1505 | |
| 1506 | std::string VPSlotTracker::getName(const Value *V) { |
| 1507 | std::string Name; |
| 1508 | raw_string_ostream S(Name); |
| 1509 | if (V->hasName() || !isa<Instruction>(Val: V)) { |
| 1510 | V->printAsOperand(O&: S, PrintType: false); |
| 1511 | return Name; |
| 1512 | } |
| 1513 | |
| 1514 | if (!MST) { |
| 1515 | // Lazily create the ModuleSlotTracker when we first hit an unnamed |
| 1516 | // instruction. |
| 1517 | auto *I = cast<Instruction>(Val: V); |
| 1518 | // This check is required to support unit tests with incomplete IR. |
| 1519 | if (I->getParent()) { |
| 1520 | MST = std::make_unique<ModuleSlotTracker>(args: I->getModule()); |
| 1521 | MST->incorporateFunction(F: *I->getFunction()); |
| 1522 | } else { |
| 1523 | MST = std::make_unique<ModuleSlotTracker>(args: nullptr); |
| 1524 | } |
| 1525 | } |
| 1526 | V->printAsOperand(O&: S, PrintType: false, MST&: *MST); |
| 1527 | return Name; |
| 1528 | } |
| 1529 | |
| 1530 | std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { |
| 1531 | std::string Name = VPValue2Name.lookup(Val: V); |
| 1532 | if (!Name.empty()) |
| 1533 | return Name; |
| 1534 | |
| 1535 | // If no name was assigned, no VPlan was provided when creating the slot |
| 1536 | // tracker or it is not reachable from the provided VPlan. This can happen, |
| 1537 | // e.g. when trying to print a recipe that has not been inserted into a VPlan |
| 1538 | // in a debugger. |
| 1539 | // TODO: Update VPSlotTracker constructor to assign names to recipes & |
| 1540 | // VPValues not associated with a VPlan, instead of constructing names ad-hoc |
| 1541 | // here. |
| 1542 | const VPRecipeBase *DefR = V->getDefiningRecipe(); |
| 1543 | (void)DefR; |
| 1544 | assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && |
| 1545 | "VPValue defined by a recipe in a VPlan?" ); |
| 1546 | |
| 1547 | // Use the underlying value's name, if there is one. |
| 1548 | if (auto *UV = V->getUnderlyingValue()) { |
| 1549 | std::string Name; |
| 1550 | raw_string_ostream S(Name); |
| 1551 | UV->printAsOperand(O&: S, PrintType: false); |
| 1552 | return (Twine("ir<" ) + Name + ">" ).str(); |
| 1553 | } |
| 1554 | |
| 1555 | return "<badref>" ; |
| 1556 | } |
| 1557 | |
| 1558 | bool LoopVectorizationPlanner::getDecisionAndClampRange( |
| 1559 | const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { |
| 1560 | assert(!Range.isEmpty() && "Trying to test an empty VF range." ); |
| 1561 | bool PredicateAtRangeStart = Predicate(Range.Start); |
| 1562 | |
| 1563 | for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) |
| 1564 | if (Predicate(TmpVF) != PredicateAtRangeStart) { |
| 1565 | Range.End = TmpVF; |
| 1566 | break; |
| 1567 | } |
| 1568 | |
| 1569 | return PredicateAtRangeStart; |
| 1570 | } |
| 1571 | |
| 1572 | /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, |
| 1573 | /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range |
| 1574 | /// of VF's starting at a given VF and extending it as much as possible. Each |
| 1575 | /// vectorization decision can potentially shorten this sub-range during |
| 1576 | /// buildVPlan(). |
| 1577 | void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, |
| 1578 | ElementCount MaxVF) { |
| 1579 | auto MaxVFTimes2 = MaxVF * 2; |
| 1580 | for (ElementCount VF = MinVF; ElementCount::isKnownLT(LHS: VF, RHS: MaxVFTimes2);) { |
| 1581 | VFRange SubRange = {VF, MaxVFTimes2}; |
| 1582 | if (auto Plan = tryToBuildVPlan(Range&: SubRange)) { |
| 1583 | VPlanTransforms::optimize(Plan&: *Plan); |
| 1584 | // Update the name of the latch of the top-level vector loop region region |
| 1585 | // after optimizations which includes block folding. |
| 1586 | Plan->getVectorLoopRegion()->getExiting()->setName("vector.latch" ); |
| 1587 | VPlans.push_back(Elt: std::move(Plan)); |
| 1588 | } |
| 1589 | VF = SubRange.End; |
| 1590 | } |
| 1591 | } |
| 1592 | |
| 1593 | VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { |
| 1594 | assert(count_if(VPlans, |
| 1595 | [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == |
| 1596 | 1 && |
| 1597 | "Multiple VPlans for VF." ); |
| 1598 | |
| 1599 | for (const VPlanPtr &Plan : VPlans) { |
| 1600 | if (Plan->hasVF(VF)) |
| 1601 | return *Plan.get(); |
| 1602 | } |
| 1603 | llvm_unreachable("No plan found!" ); |
| 1604 | } |
| 1605 | |
| 1606 | static void addRuntimeUnrollDisableMetaData(Loop *L) { |
| 1607 | SmallVector<Metadata *, 4> MDs; |
| 1608 | // Reserve first location for self reference to the LoopID metadata node. |
| 1609 | MDs.push_back(Elt: nullptr); |
| 1610 | bool IsUnrollMetadata = false; |
| 1611 | MDNode *LoopID = L->getLoopID(); |
| 1612 | if (LoopID) { |
| 1613 | // First find existing loop unrolling disable metadata. |
| 1614 | for (unsigned I = 1, IE = LoopID->getNumOperands(); I < IE; ++I) { |
| 1615 | auto *MD = dyn_cast<MDNode>(Val: LoopID->getOperand(I)); |
| 1616 | if (MD) { |
| 1617 | const auto *S = dyn_cast<MDString>(Val: MD->getOperand(I: 0)); |
| 1618 | if (!S) |
| 1619 | continue; |
| 1620 | if (S->getString().starts_with(Prefix: "llvm.loop.unroll.runtime.disable" )) |
| 1621 | continue; |
| 1622 | IsUnrollMetadata = |
| 1623 | S->getString().starts_with(Prefix: "llvm.loop.unroll.disable" ); |
| 1624 | } |
| 1625 | MDs.push_back(Elt: LoopID->getOperand(I)); |
| 1626 | } |
| 1627 | } |
| 1628 | |
| 1629 | if (!IsUnrollMetadata) { |
| 1630 | // Add runtime unroll disable metadata. |
| 1631 | LLVMContext &Context = L->getHeader()->getContext(); |
| 1632 | SmallVector<Metadata *, 1> DisableOperands; |
| 1633 | DisableOperands.push_back( |
| 1634 | Elt: MDString::get(Context, Str: "llvm.loop.unroll.runtime.disable" )); |
| 1635 | MDNode *DisableNode = MDNode::get(Context, MDs: DisableOperands); |
| 1636 | MDs.push_back(Elt: DisableNode); |
| 1637 | MDNode *NewLoopID = MDNode::get(Context, MDs); |
| 1638 | // Set operand 0 to refer to the loop id itself. |
| 1639 | NewLoopID->replaceOperandWith(I: 0, New: NewLoopID); |
| 1640 | L->setLoopID(NewLoopID); |
| 1641 | } |
| 1642 | } |
| 1643 | |
| 1644 | void LoopVectorizationPlanner::updateLoopMetadataAndProfileInfo( |
| 1645 | Loop *VectorLoop, VPBasicBlock *, const VPlan &Plan, |
| 1646 | bool VectorizingEpilogue, MDNode *OrigLoopID, |
| 1647 | std::optional<unsigned> OrigAverageTripCount, |
| 1648 | unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, |
| 1649 | bool DisableRuntimeUnroll) { |
| 1650 | // Update the metadata of the scalar loop. Skip the update when vectorizing |
| 1651 | // the epilogue loop to ensure it is updated only once. Also skip the update |
| 1652 | // when the scalar loop became unreachable. |
| 1653 | if (Plan.getScalarPreheader()->hasPredecessors() && !VectorizingEpilogue) { |
| 1654 | std::optional<MDNode *> RemainderLoopID = |
| 1655 | makeFollowupLoopID(OrigLoopID, FollowupAttrs: {LLVMLoopVectorizeFollowupAll, |
| 1656 | LLVMLoopVectorizeFollowupEpilogue}); |
| 1657 | if (RemainderLoopID) { |
| 1658 | OrigLoop->setLoopID(*RemainderLoopID); |
| 1659 | } else { |
| 1660 | if (DisableRuntimeUnroll) |
| 1661 | addRuntimeUnrollDisableMetaData(L: OrigLoop); |
| 1662 | |
| 1663 | LoopVectorizeHints Hints(OrigLoop, true, *ORE); |
| 1664 | Hints.setAlreadyVectorized(); |
| 1665 | } |
| 1666 | } |
| 1667 | |
| 1668 | if (!VectorLoop) |
| 1669 | return; |
| 1670 | |
| 1671 | if (std::optional<MDNode *> VectorizedLoopID = makeFollowupLoopID( |
| 1672 | OrigLoopID, FollowupAttrs: {LLVMLoopVectorizeFollowupAll, |
| 1673 | LLVMLoopVectorizeFollowupVectorized})) { |
| 1674 | VectorLoop->setLoopID(*VectorizedLoopID); |
| 1675 | } else { |
| 1676 | // Keep all loop hints from the original loop on the vector loop (we'll |
| 1677 | // replace the vectorizer-specific hints below). |
| 1678 | if (OrigLoopID) |
| 1679 | VectorLoop->setLoopID(OrigLoopID); |
| 1680 | |
| 1681 | if (!VectorizingEpilogue) { |
| 1682 | LoopVectorizeHints Hints(VectorLoop, true, *ORE); |
| 1683 | Hints.setAlreadyVectorized(); |
| 1684 | } |
| 1685 | } |
| 1686 | TargetTransformInfo::UnrollingPreferences UP; |
| 1687 | TTI.getUnrollingPreferences(L: VectorLoop, *PSE.getSE(), UP, ORE); |
| 1688 | if (!UP.UnrollVectorizedLoop || VectorizingEpilogue) |
| 1689 | addRuntimeUnrollDisableMetaData(L: VectorLoop); |
| 1690 | |
| 1691 | // Set/update profile weights for the vector and remainder loops as original |
| 1692 | // loop iterations are now distributed among them. Note that original loop |
| 1693 | // becomes the scalar remainder loop after vectorization. |
| 1694 | // |
| 1695 | // For cases like foldTailByMasking() and requiresScalarEpiloque() we may |
| 1696 | // end up getting slightly roughened result but that should be OK since |
| 1697 | // profile is not inherently precise anyway. Note also possible bypass of |
| 1698 | // vector code caused by legality checks is ignored, assigning all the weight |
| 1699 | // to the vector loop, optimistically. |
| 1700 | // |
| 1701 | // For scalable vectorization we can't know at compile time how many |
| 1702 | // iterations of the loop are handled in one vector iteration, so instead |
| 1703 | // use the value of vscale used for tuning. |
| 1704 | unsigned AverageVectorTripCount = 0; |
| 1705 | unsigned RemainderAverageTripCount = 0; |
| 1706 | auto EC = VectorLoop->getLoopPreheader()->getParent()->getEntryCount(); |
| 1707 | auto IsProfiled = EC && EC->getCount(); |
| 1708 | if (!OrigAverageTripCount) { |
| 1709 | if (!IsProfiled) |
| 1710 | return; |
| 1711 | auto &SE = *PSE.getSE(); |
| 1712 | AverageVectorTripCount = SE.getSmallConstantTripCount(L: VectorLoop); |
| 1713 | if (ProfcheckDisableMetadataFixes || !AverageVectorTripCount) |
| 1714 | return; |
| 1715 | if (Plan.getScalarPreheader()->hasPredecessors()) |
| 1716 | RemainderAverageTripCount = |
| 1717 | SE.getSmallConstantTripCount(L: OrigLoop) % EstimatedVFxUF; |
| 1718 | // Setting to 1 should be sufficient to generate the correct branch weights. |
| 1719 | OrigLoopInvocationWeight = 1; |
| 1720 | } else { |
| 1721 | // Calculate number of iterations in unrolled loop. |
| 1722 | AverageVectorTripCount = *OrigAverageTripCount / EstimatedVFxUF; |
| 1723 | // Calculate number of iterations for remainder loop. |
| 1724 | RemainderAverageTripCount = *OrigAverageTripCount % EstimatedVFxUF; |
| 1725 | } |
| 1726 | if (HeaderVPBB) { |
| 1727 | setLoopEstimatedTripCount(L: VectorLoop, EstimatedTripCount: AverageVectorTripCount, |
| 1728 | EstimatedLoopInvocationWeight: OrigLoopInvocationWeight); |
| 1729 | } |
| 1730 | |
| 1731 | if (Plan.getScalarPreheader()->hasPredecessors()) { |
| 1732 | setLoopEstimatedTripCount(L: OrigLoop, EstimatedTripCount: RemainderAverageTripCount, |
| 1733 | EstimatedLoopInvocationWeight: OrigLoopInvocationWeight); |
| 1734 | } |
| 1735 | } |
| 1736 | |
| 1737 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1738 | void LoopVectorizationPlanner::printPlans(raw_ostream &O) { |
| 1739 | if (VPlans.empty()) { |
| 1740 | O << "LV: No VPlans built.\n" ; |
| 1741 | return; |
| 1742 | } |
| 1743 | for (const auto &Plan : VPlans) |
| 1744 | if (PrintVPlansInDotFormat) |
| 1745 | Plan->printDOT(O); |
| 1746 | else |
| 1747 | Plan->print(O); |
| 1748 | } |
| 1749 | #endif |
| 1750 | |
| 1751 | bool llvm::canConstantBeExtended(const APInt *C, Type *NarrowType, |
| 1752 | TTI::PartialReductionExtendKind ExtKind) { |
| 1753 | APInt TruncatedVal = C->trunc(width: NarrowType->getScalarSizeInBits()); |
| 1754 | unsigned WideSize = C->getBitWidth(); |
| 1755 | APInt ExtendedVal = ExtKind == TTI::PR_SignExtend |
| 1756 | ? TruncatedVal.sext(width: WideSize) |
| 1757 | : TruncatedVal.zext(width: WideSize); |
| 1758 | return ExtendedVal == *C; |
| 1759 | } |
| 1760 | |
| 1761 | TargetTransformInfo::OperandValueInfo |
| 1762 | VPCostContext::getOperandInfo(VPValue *V) const { |
| 1763 | if (auto *IRV = dyn_cast<VPIRValue>(Val: V)) |
| 1764 | return TTI::getOperandInfo(V: IRV->getValue()); |
| 1765 | |
| 1766 | return {}; |
| 1767 | } |
| 1768 | |
| 1769 | InstructionCost VPCostContext::getScalarizationOverhead( |
| 1770 | Type *ResultTy, ArrayRef<const VPValue *> Operands, ElementCount VF, |
| 1771 | TTI::VectorInstrContext VIC, bool AlwaysIncludeReplicatingR) { |
| 1772 | if (VF.isScalar()) |
| 1773 | return 0; |
| 1774 | |
| 1775 | assert(!VF.isScalable() && |
| 1776 | "Scalarization overhead not supported for scalable vectors" ); |
| 1777 | |
| 1778 | InstructionCost ScalarizationCost = 0; |
| 1779 | // Compute the cost of scalarizing the result if needed. |
| 1780 | if (!ResultTy->isVoidTy()) { |
| 1781 | for (Type *VectorTy : |
| 1782 | to_vector(Range: getContainedTypes(Ty: toVectorizedTy(Ty: ResultTy, EC: VF)))) { |
| 1783 | ScalarizationCost += TTI.getScalarizationOverhead( |
| 1784 | Ty: cast<VectorType>(Val: VectorTy), DemandedElts: APInt::getAllOnes(numBits: VF.getFixedValue()), |
| 1785 | /*Insert=*/true, /*Extract=*/false, CostKind, |
| 1786 | /*ForPoisonSrc=*/true, VL: {}, VIC); |
| 1787 | } |
| 1788 | } |
| 1789 | // Compute the cost of scalarizing the operands, skipping ones that do not |
| 1790 | // require extraction/scalarization and do not incur any overhead. |
| 1791 | SmallPtrSet<const VPValue *, 4> UniqueOperands; |
| 1792 | SmallVector<Type *> Tys; |
| 1793 | for (auto *Op : Operands) { |
| 1794 | if (isa<VPIRValue>(Val: Op) || |
| 1795 | (!AlwaysIncludeReplicatingR && |
| 1796 | isa<VPReplicateRecipe, VPPredInstPHIRecipe>(Val: Op)) || |
| 1797 | (isa<VPReplicateRecipe>(Val: Op) && |
| 1798 | cast<VPReplicateRecipe>(Val: Op)->getOpcode() == Instruction::Load) || |
| 1799 | !UniqueOperands.insert(Ptr: Op).second) |
| 1800 | continue; |
| 1801 | Tys.push_back(Elt: toVectorizedTy(Ty: Types.inferScalarType(V: Op), EC: VF)); |
| 1802 | } |
| 1803 | return ScalarizationCost + |
| 1804 | TTI.getOperandsScalarizationOverhead(Tys, CostKind, VIC); |
| 1805 | } |
| 1806 | |