| 1 | //===-- VPlanConstruction.cpp - Transforms for initial VPlan construction -===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file implements transforms for initial VPlan construction. |
| 11 | /// |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "LoopVectorizationPlanner.h" |
| 15 | #include "VPlan.h" |
| 16 | #include "VPlanAnalysis.h" |
| 17 | #include "VPlanCFG.h" |
| 18 | #include "VPlanDominatorTree.h" |
| 19 | #include "VPlanHelpers.h" |
| 20 | #include "VPlanPatternMatch.h" |
| 21 | #include "VPlanTransforms.h" |
| 22 | #include "VPlanUtils.h" |
| 23 | #include "llvm/Analysis/LoopInfo.h" |
| 24 | #include "llvm/Analysis/LoopIterator.h" |
| 25 | #include "llvm/Analysis/ScalarEvolution.h" |
| 26 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 27 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 28 | #include "llvm/IR/InstrTypes.h" |
| 29 | #include "llvm/IR/MDBuilder.h" |
| 30 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 31 | #include "llvm/Transforms/Utils/LoopVersioning.h" |
| 32 | |
| 33 | #define DEBUG_TYPE "vplan" |
| 34 | |
| 35 | using namespace llvm; |
| 36 | using namespace VPlanPatternMatch; |
| 37 | |
| 38 | namespace { |
| 39 | // Class that is used to build the plain CFG for the incoming IR. |
| 40 | class PlainCFGBuilder { |
| 41 | // The outermost loop of the input loop nest considered for vectorization. |
| 42 | Loop *TheLoop; |
| 43 | |
| 44 | // Loop Info analysis. |
| 45 | LoopInfo *LI; |
| 46 | |
| 47 | // Loop versioning for alias metadata. |
| 48 | LoopVersioning *LVer; |
| 49 | |
| 50 | // Vectorization plan that we are working on. |
| 51 | std::unique_ptr<VPlan> Plan; |
| 52 | |
| 53 | // Builder of the VPlan instruction-level representation. |
| 54 | VPBuilder VPIRBuilder; |
| 55 | |
| 56 | // NOTE: The following maps are intentionally destroyed after the plain CFG |
| 57 | // construction because subsequent VPlan-to-VPlan transformation may |
| 58 | // invalidate them. |
| 59 | // Map incoming BasicBlocks to their newly-created VPBasicBlocks. |
| 60 | DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB; |
| 61 | // Map incoming Value definitions to their newly-created VPValues. |
| 62 | DenseMap<Value *, VPValue *> IRDef2VPValue; |
| 63 | |
| 64 | // Hold phi node's that need to be fixed once the plain CFG has been built. |
| 65 | SmallVector<PHINode *, 8> PhisToFix; |
| 66 | |
| 67 | // Utility functions. |
| 68 | void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB); |
| 69 | void fixHeaderPhis(); |
| 70 | VPBasicBlock *getOrCreateVPBB(BasicBlock *BB); |
| 71 | #ifndef NDEBUG |
| 72 | bool isExternalDef(Value *Val); |
| 73 | #endif |
| 74 | VPValue *getOrCreateVPOperand(Value *IRVal); |
| 75 | void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB); |
| 76 | |
| 77 | public: |
| 78 | PlainCFGBuilder(Loop *Lp, LoopInfo *LI, LoopVersioning *LVer) |
| 79 | : TheLoop(Lp), LI(LI), LVer(LVer), Plan(std::make_unique<VPlan>(args&: Lp)) {} |
| 80 | |
| 81 | /// Build plain CFG for TheLoop and connect it to Plan's entry. |
| 82 | std::unique_ptr<VPlan> buildPlainCFG(); |
| 83 | }; |
| 84 | } // anonymous namespace |
| 85 | |
| 86 | // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB |
| 87 | // must have no predecessors. |
| 88 | void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) { |
| 89 | // Collect VPBB predecessors. |
| 90 | SmallVector<VPBlockBase *, 2> VPBBPreds; |
| 91 | for (BasicBlock *Pred : predecessors(BB)) |
| 92 | VPBBPreds.push_back(Elt: getOrCreateVPBB(BB: Pred)); |
| 93 | VPBB->setPredecessors(VPBBPreds); |
| 94 | } |
| 95 | |
| 96 | static bool (BasicBlock *BB, Loop *L) { |
| 97 | return L && BB == L->getHeader(); |
| 98 | } |
| 99 | |
| 100 | // Add operands to VPInstructions representing phi nodes from the input IR. |
| 101 | void PlainCFGBuilder::() { |
| 102 | for (auto *Phi : PhisToFix) { |
| 103 | assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode." ); |
| 104 | VPValue *VPVal = IRDef2VPValue[Phi]; |
| 105 | assert(isa<VPPhi>(VPVal) && "Expected VPPhi for phi node." ); |
| 106 | auto *PhiR = cast<VPPhi>(Val: VPVal); |
| 107 | assert(PhiR->getNumOperands() == 0 && "Expected VPPhi with no operands." ); |
| 108 | assert(isHeaderBB(Phi->getParent(), LI->getLoopFor(Phi->getParent())) && |
| 109 | "Expected Phi in header block." ); |
| 110 | assert(Phi->getNumOperands() == 2 && |
| 111 | "header phi must have exactly 2 operands" ); |
| 112 | for (BasicBlock *Pred : predecessors(BB: Phi->getParent())) |
| 113 | PhiR->addOperand( |
| 114 | Operand: getOrCreateVPOperand(IRVal: Phi->getIncomingValueForBlock(BB: Pred))); |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an |
| 119 | // existing one if it was already created. |
| 120 | VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) { |
| 121 | if (auto *VPBB = BB2VPBB.lookup(Val: BB)) { |
| 122 | // Retrieve existing VPBB. |
| 123 | return VPBB; |
| 124 | } |
| 125 | |
| 126 | // Create new VPBB. |
| 127 | StringRef Name = BB->getName(); |
| 128 | LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << Name << "\n" ); |
| 129 | VPBasicBlock *VPBB = Plan->createVPBasicBlock(Name); |
| 130 | BB2VPBB[BB] = VPBB; |
| 131 | return VPBB; |
| 132 | } |
| 133 | |
| 134 | #ifndef NDEBUG |
| 135 | // Return true if \p Val is considered an external definition. An external |
| 136 | // definition is either: |
| 137 | // 1. A Value that is not an Instruction. This will be refined in the future. |
| 138 | // 2. An Instruction that is outside of the IR region represented in VPlan, |
| 139 | // i.e., is not part of the loop nest. |
| 140 | bool PlainCFGBuilder::isExternalDef(Value *Val) { |
| 141 | // All the Values that are not Instructions are considered external |
| 142 | // definitions for now. |
| 143 | Instruction *Inst = dyn_cast<Instruction>(Val); |
| 144 | if (!Inst) |
| 145 | return true; |
| 146 | |
| 147 | // Check whether Instruction definition is in loop body. |
| 148 | return !TheLoop->contains(Inst); |
| 149 | } |
| 150 | #endif |
| 151 | |
| 152 | // Create a new VPValue or retrieve an existing one for the Instruction's |
| 153 | // operand \p IRVal. This function must only be used to create/retrieve VPValues |
| 154 | // for *Instruction's operands* and not to create regular VPInstruction's. For |
| 155 | // the latter, please, look at 'createVPInstructionsForVPBB'. |
| 156 | VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) { |
| 157 | auto VPValIt = IRDef2VPValue.find(Val: IRVal); |
| 158 | if (VPValIt != IRDef2VPValue.end()) |
| 159 | // Operand has an associated VPInstruction or VPValue that was previously |
| 160 | // created. |
| 161 | return VPValIt->second; |
| 162 | |
| 163 | // Operand doesn't have a previously created VPInstruction/VPValue. This |
| 164 | // means that operand is: |
| 165 | // A) a definition external to VPlan, |
| 166 | // B) any other Value without specific representation in VPlan. |
| 167 | // For now, we use VPValue to represent A and B and classify both as external |
| 168 | // definitions. We may introduce specific VPValue subclasses for them in the |
| 169 | // future. |
| 170 | assert(isExternalDef(IRVal) && "Expected external definition as operand." ); |
| 171 | |
| 172 | // A and B: Create VPValue and add it to the pool of external definitions and |
| 173 | // to the Value->VPValue map. |
| 174 | VPValue *NewVPVal = Plan->getOrAddLiveIn(V: IRVal); |
| 175 | IRDef2VPValue[IRVal] = NewVPVal; |
| 176 | return NewVPVal; |
| 177 | } |
| 178 | |
| 179 | // Create new VPInstructions in a VPBasicBlock, given its BasicBlock |
| 180 | // counterpart. This function must be invoked in RPO so that the operands of a |
| 181 | // VPInstruction in \p BB have been visited before (except for Phi nodes). |
| 182 | void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB, |
| 183 | BasicBlock *BB) { |
| 184 | VPIRBuilder.setInsertPoint(VPBB); |
| 185 | // TODO: Model and preserve debug intrinsics in VPlan. |
| 186 | for (Instruction &InstRef : BB->instructionsWithoutDebug(SkipPseudoOp: false)) { |
| 187 | Instruction *Inst = &InstRef; |
| 188 | |
| 189 | // There shouldn't be any VPValue for Inst at this point. Otherwise, we |
| 190 | // visited Inst when we shouldn't, breaking the RPO traversal order. |
| 191 | assert(!IRDef2VPValue.count(Inst) && |
| 192 | "Instruction shouldn't have been visited." ); |
| 193 | |
| 194 | if (auto *Br = dyn_cast<BranchInst>(Val: Inst)) { |
| 195 | // Conditional branch instruction are represented using BranchOnCond |
| 196 | // recipes. |
| 197 | if (Br->isConditional()) { |
| 198 | VPValue *Cond = getOrCreateVPOperand(IRVal: Br->getCondition()); |
| 199 | VPIRBuilder.createNaryOp(Opcode: VPInstruction::BranchOnCond, Operands: {Cond}, Inst, Flags: {}, |
| 200 | MD: VPIRMetadata(*Inst), DL: Inst->getDebugLoc()); |
| 201 | } |
| 202 | |
| 203 | // Skip the rest of the Instruction processing for Branch instructions. |
| 204 | continue; |
| 205 | } |
| 206 | |
| 207 | if (auto *SI = dyn_cast<SwitchInst>(Val: Inst)) { |
| 208 | // Don't emit recipes for unconditional switch instructions. |
| 209 | if (SI->getNumCases() == 0) |
| 210 | continue; |
| 211 | SmallVector<VPValue *> Ops = {getOrCreateVPOperand(IRVal: SI->getCondition())}; |
| 212 | for (auto Case : SI->cases()) |
| 213 | Ops.push_back(Elt: getOrCreateVPOperand(IRVal: Case.getCaseValue())); |
| 214 | VPIRBuilder.createNaryOp(Opcode: Instruction::Switch, Operands: Ops, Inst, Flags: {}, |
| 215 | MD: VPIRMetadata(*Inst), DL: Inst->getDebugLoc()); |
| 216 | continue; |
| 217 | } |
| 218 | |
| 219 | VPSingleDefRecipe *NewR; |
| 220 | if (auto *Phi = dyn_cast<PHINode>(Val: Inst)) { |
| 221 | // Phi node's operands may not have been visited at this point. We create |
| 222 | // an empty VPInstruction that we will fix once the whole plain CFG has |
| 223 | // been built. |
| 224 | NewR = VPIRBuilder.createScalarPhi(IncomingValues: {}, DL: Phi->getDebugLoc(), Name: "vec.phi" ); |
| 225 | NewR->setUnderlyingValue(Phi); |
| 226 | if (isHeaderBB(BB: Phi->getParent(), L: LI->getLoopFor(BB: Phi->getParent()))) { |
| 227 | // Header phis need to be fixed after the VPBB for the latch has been |
| 228 | // created. |
| 229 | PhisToFix.push_back(Elt: Phi); |
| 230 | } else { |
| 231 | // Add operands for VPPhi in the order matching its predecessors in |
| 232 | // VPlan. |
| 233 | DenseMap<const VPBasicBlock *, VPValue *> VPPredToIncomingValue; |
| 234 | for (unsigned I = 0; I != Phi->getNumOperands(); ++I) { |
| 235 | VPPredToIncomingValue[BB2VPBB[Phi->getIncomingBlock(i: I)]] = |
| 236 | getOrCreateVPOperand(IRVal: Phi->getIncomingValue(i: I)); |
| 237 | } |
| 238 | for (VPBlockBase *Pred : VPBB->getPredecessors()) |
| 239 | NewR->addOperand( |
| 240 | Operand: VPPredToIncomingValue.lookup(Val: Pred->getExitingBasicBlock())); |
| 241 | } |
| 242 | } else { |
| 243 | // Build VPIRMetadata from the instruction and add loop versioning |
| 244 | // metadata for loads and stores. |
| 245 | VPIRMetadata MD(*Inst); |
| 246 | if (isa<LoadInst, StoreInst>(Val: Inst) && LVer) { |
| 247 | const auto &[AliasScopeMD, NoAliasMD] = |
| 248 | LVer->getNoAliasMetadataFor(OrigInst: Inst); |
| 249 | if (AliasScopeMD) |
| 250 | MD.setMetadata(Kind: LLVMContext::MD_alias_scope, Node: AliasScopeMD); |
| 251 | if (NoAliasMD) |
| 252 | MD.setMetadata(Kind: LLVMContext::MD_noalias, Node: NoAliasMD); |
| 253 | } |
| 254 | |
| 255 | // Translate LLVM-IR operands into VPValue operands and set them in the |
| 256 | // new VPInstruction. |
| 257 | SmallVector<VPValue *, 4> VPOperands; |
| 258 | for (Value *Op : Inst->operands()) |
| 259 | VPOperands.push_back(Elt: getOrCreateVPOperand(IRVal: Op)); |
| 260 | |
| 261 | if (auto *CI = dyn_cast<CastInst>(Val: Inst)) { |
| 262 | NewR = VPIRBuilder.createScalarCast(Opcode: CI->getOpcode(), Op: VPOperands[0], |
| 263 | ResultTy: CI->getType(), DL: CI->getDebugLoc(), |
| 264 | Flags: VPIRFlags(*CI), Metadata: MD); |
| 265 | NewR->setUnderlyingValue(CI); |
| 266 | } else { |
| 267 | // Build VPInstruction for any arbitrary Instruction without specific |
| 268 | // representation in VPlan. |
| 269 | NewR = |
| 270 | VPIRBuilder.createNaryOp(Opcode: Inst->getOpcode(), Operands: VPOperands, Inst, |
| 271 | Flags: VPIRFlags(*Inst), MD, DL: Inst->getDebugLoc()); |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | IRDef2VPValue[Inst] = NewR; |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | // Main interface to build the plain CFG. |
| 280 | std::unique_ptr<VPlan> PlainCFGBuilder::buildPlainCFG() { |
| 281 | VPIRBasicBlock *Entry = cast<VPIRBasicBlock>(Val: Plan->getEntry()); |
| 282 | BB2VPBB[Entry->getIRBasicBlock()] = Entry; |
| 283 | for (VPIRBasicBlock *ExitVPBB : Plan->getExitBlocks()) |
| 284 | BB2VPBB[ExitVPBB->getIRBasicBlock()] = ExitVPBB; |
| 285 | |
| 286 | // 1. Scan the body of the loop in a topological order to visit each basic |
| 287 | // block after having visited its predecessor basic blocks. Create a VPBB for |
| 288 | // each BB and link it to its successor and predecessor VPBBs. Note that |
| 289 | // predecessors must be set in the same order as they are in the incomming IR. |
| 290 | // Otherwise, there might be problems with existing phi nodes and algorithm |
| 291 | // based on predecessors traversal. |
| 292 | |
| 293 | // Loop PH needs to be explicitly visited since it's not taken into account by |
| 294 | // LoopBlocksDFS. |
| 295 | BasicBlock * = TheLoop->getLoopPreheader(); |
| 296 | assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) && |
| 297 | "Unexpected loop preheader" ); |
| 298 | for (auto &I : *ThePreheaderBB) { |
| 299 | if (I.getType()->isVoidTy()) |
| 300 | continue; |
| 301 | IRDef2VPValue[&I] = Plan->getOrAddLiveIn(V: &I); |
| 302 | } |
| 303 | |
| 304 | LoopBlocksRPO RPO(TheLoop); |
| 305 | RPO.perform(LI); |
| 306 | |
| 307 | for (BasicBlock *BB : RPO) { |
| 308 | // Create or retrieve the VPBasicBlock for this BB. |
| 309 | VPBasicBlock *VPBB = getOrCreateVPBB(BB); |
| 310 | // Set VPBB predecessors in the same order as they are in the incoming BB. |
| 311 | setVPBBPredsFromBB(VPBB, BB); |
| 312 | |
| 313 | // Create VPInstructions for BB. |
| 314 | createVPInstructionsForVPBB(VPBB, BB); |
| 315 | |
| 316 | // Set VPBB successors. We create empty VPBBs for successors if they don't |
| 317 | // exist already. Recipes will be created when the successor is visited |
| 318 | // during the RPO traversal. |
| 319 | if (auto *SI = dyn_cast<SwitchInst>(Val: BB->getTerminator())) { |
| 320 | SmallVector<VPBlockBase *> Succs = { |
| 321 | getOrCreateVPBB(BB: SI->getDefaultDest())}; |
| 322 | for (auto Case : SI->cases()) |
| 323 | Succs.push_back(Elt: getOrCreateVPBB(BB: Case.getCaseSuccessor())); |
| 324 | VPBB->setSuccessors(Succs); |
| 325 | continue; |
| 326 | } |
| 327 | auto *BI = cast<BranchInst>(Val: BB->getTerminator()); |
| 328 | unsigned NumSuccs = succ_size(BB); |
| 329 | if (NumSuccs == 1) { |
| 330 | VPBB->setOneSuccessor(getOrCreateVPBB(BB: BB->getSingleSuccessor())); |
| 331 | continue; |
| 332 | } |
| 333 | assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() && |
| 334 | "block must have conditional branch with 2 successors" ); |
| 335 | |
| 336 | BasicBlock *IRSucc0 = BI->getSuccessor(i: 0); |
| 337 | BasicBlock *IRSucc1 = BI->getSuccessor(i: 1); |
| 338 | VPBasicBlock *Successor0 = getOrCreateVPBB(BB: IRSucc0); |
| 339 | VPBasicBlock *Successor1 = getOrCreateVPBB(BB: IRSucc1); |
| 340 | VPBB->setTwoSuccessors(IfTrue: Successor0, IfFalse: Successor1); |
| 341 | } |
| 342 | |
| 343 | for (auto *EB : Plan->getExitBlocks()) |
| 344 | setVPBBPredsFromBB(VPBB: EB, BB: EB->getIRBasicBlock()); |
| 345 | |
| 346 | // 2. The whole CFG has been built at this point so all the input Values must |
| 347 | // have a VPlan counterpart. Fix VPlan header phi by adding their |
| 348 | // corresponding VPlan operands. |
| 349 | fixHeaderPhis(); |
| 350 | |
| 351 | Plan->getEntry()->setOneSuccessor(getOrCreateVPBB(BB: TheLoop->getHeader())); |
| 352 | Plan->getEntry()->setPlan(&*Plan); |
| 353 | |
| 354 | // Fix VPlan loop-closed-ssa exit phi's by adding incoming operands to the |
| 355 | // VPIRInstructions wrapping them. |
| 356 | // // Note that the operand order corresponds to IR predecessor order, and may |
| 357 | // need adjusting when VPlan predecessors are added, if an exit block has |
| 358 | // multiple predecessor. |
| 359 | for (auto *EB : Plan->getExitBlocks()) { |
| 360 | for (VPRecipeBase &R : EB->phis()) { |
| 361 | auto *PhiR = cast<VPIRPhi>(Val: &R); |
| 362 | PHINode &Phi = PhiR->getIRPhi(); |
| 363 | assert(PhiR->getNumOperands() == 0 && |
| 364 | "no phi operands should be added yet" ); |
| 365 | for (BasicBlock *Pred : predecessors(BB: EB->getIRBasicBlock())) |
| 366 | PhiR->addOperand( |
| 367 | Operand: getOrCreateVPOperand(IRVal: Phi.getIncomingValueForBlock(BB: Pred))); |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | LLVM_DEBUG(Plan->setName("Plain CFG\n" ); dbgs() << *Plan); |
| 372 | return std::move(Plan); |
| 373 | } |
| 374 | |
| 375 | /// Checks if \p HeaderVPB is a loop header block in the plain CFG; that is, it |
| 376 | /// has exactly 2 predecessors (preheader and latch), where the block |
| 377 | /// dominates the latch and the preheader dominates the block. If it is a |
| 378 | /// header block return true and canonicalize the predecessors of the header |
| 379 | /// (making sure the preheader appears first and the latch second) and the |
| 380 | /// successors of the latch (making sure the loop exit comes first). Otherwise |
| 381 | /// return false. |
| 382 | static bool canonicalHeaderAndLatch(VPBlockBase *, |
| 383 | const VPDominatorTree &VPDT) { |
| 384 | ArrayRef<VPBlockBase *> Preds = HeaderVPB->getPredecessors(); |
| 385 | if (Preds.size() != 2) |
| 386 | return false; |
| 387 | |
| 388 | auto * = Preds[0]; |
| 389 | auto *LatchVPBB = Preds[1]; |
| 390 | if (!VPDT.dominates(A: PreheaderVPBB, B: HeaderVPB) || |
| 391 | !VPDT.dominates(A: HeaderVPB, B: LatchVPBB)) { |
| 392 | std::swap(a&: PreheaderVPBB, b&: LatchVPBB); |
| 393 | |
| 394 | if (!VPDT.dominates(A: PreheaderVPBB, B: HeaderVPB) || |
| 395 | !VPDT.dominates(A: HeaderVPB, B: LatchVPBB)) |
| 396 | return false; |
| 397 | |
| 398 | // Canonicalize predecessors of header so that preheader is first and |
| 399 | // latch second. |
| 400 | HeaderVPB->swapPredecessors(); |
| 401 | for (VPRecipeBase &R : cast<VPBasicBlock>(Val: HeaderVPB)->phis()) |
| 402 | R.swapOperands(); |
| 403 | } |
| 404 | |
| 405 | // The two successors of conditional branch match the condition, with the |
| 406 | // first successor corresponding to true and the second to false. We |
| 407 | // canonicalize the successors of the latch when introducing the region, such |
| 408 | // that the latch exits the region when its condition is true; invert the |
| 409 | // original condition if the original CFG branches to the header on true. |
| 410 | // Note that the exit edge is not yet connected for top-level loops. |
| 411 | if (LatchVPBB->getSingleSuccessor() || |
| 412 | LatchVPBB->getSuccessors()[0] != HeaderVPB) |
| 413 | return true; |
| 414 | |
| 415 | assert(LatchVPBB->getNumSuccessors() == 2 && "Must have 2 successors" ); |
| 416 | auto *Term = cast<VPBasicBlock>(Val: LatchVPBB)->getTerminator(); |
| 417 | assert(cast<VPInstruction>(Term)->getOpcode() == |
| 418 | VPInstruction::BranchOnCond && |
| 419 | "terminator must be a BranchOnCond" ); |
| 420 | auto *Not = new VPInstruction(VPInstruction::Not, {Term->getOperand(N: 0)}); |
| 421 | Not->insertBefore(InsertPos: Term); |
| 422 | Term->setOperand(I: 0, New: Not); |
| 423 | LatchVPBB->swapSuccessors(); |
| 424 | |
| 425 | return true; |
| 426 | } |
| 427 | |
| 428 | /// Create a new VPRegionBlock for the loop starting at \p HeaderVPB. |
| 429 | static void createLoopRegion(VPlan &Plan, VPBlockBase *) { |
| 430 | auto * = HeaderVPB->getPredecessors()[0]; |
| 431 | auto *LatchVPBB = HeaderVPB->getPredecessors()[1]; |
| 432 | |
| 433 | VPBlockUtils::disconnectBlocks(From: PreheaderVPBB, To: HeaderVPB); |
| 434 | VPBlockUtils::disconnectBlocks(From: LatchVPBB, To: HeaderVPB); |
| 435 | |
| 436 | // Create an empty region first and insert it between PreheaderVPBB and |
| 437 | // the exit blocks, taking care to preserve the original predecessor & |
| 438 | // successor order of blocks. Set region entry and exiting after both |
| 439 | // HeaderVPB and LatchVPBB have been disconnected from their |
| 440 | // predecessors/successors. |
| 441 | auto *R = Plan.createLoopRegion(); |
| 442 | |
| 443 | // Transfer latch's successors to the region. |
| 444 | VPBlockUtils::transferSuccessors(Old: LatchVPBB, New: R); |
| 445 | |
| 446 | VPBlockUtils::connectBlocks(From: PreheaderVPBB, To: R); |
| 447 | R->setEntry(HeaderVPB); |
| 448 | R->setExiting(LatchVPBB); |
| 449 | |
| 450 | // All VPBB's reachable shallowly from HeaderVPB belong to the current region. |
| 451 | for (VPBlockBase *VPBB : vp_depth_first_shallow(G: HeaderVPB)) |
| 452 | VPBB->setParent(R); |
| 453 | } |
| 454 | |
| 455 | // Add the necessary canonical IV and branch recipes required to control the |
| 456 | // loop. |
| 457 | static void addCanonicalIVRecipes(VPlan &Plan, VPBasicBlock *, |
| 458 | VPBasicBlock *LatchVPBB, Type *IdxTy, |
| 459 | DebugLoc DL) { |
| 460 | Value *StartIdx = ConstantInt::get(Ty: IdxTy, V: 0); |
| 461 | auto *StartV = Plan.getOrAddLiveIn(V: StartIdx); |
| 462 | |
| 463 | // Add a VPCanonicalIVPHIRecipe starting at 0 to the header. |
| 464 | auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); |
| 465 | HeaderVPBB->insert(Recipe: CanonicalIVPHI, InsertPt: HeaderVPBB->begin()); |
| 466 | |
| 467 | // We are about to replace the branch to exit the region. Remove the original |
| 468 | // BranchOnCond, if there is any. |
| 469 | DebugLoc LatchDL = DL; |
| 470 | if (!LatchVPBB->empty() && match(V: &LatchVPBB->back(), P: m_BranchOnCond())) { |
| 471 | LatchDL = LatchVPBB->getTerminator()->getDebugLoc(); |
| 472 | LatchVPBB->getTerminator()->eraseFromParent(); |
| 473 | } |
| 474 | |
| 475 | VPBuilder Builder(LatchVPBB); |
| 476 | // Add a VPInstruction to increment the scalar canonical IV by VF * UF. |
| 477 | // Initially the induction increment is guaranteed to not wrap, but that may |
| 478 | // change later, e.g. when tail-folding, when the flags need to be dropped. |
| 479 | auto *CanonicalIVIncrement = Builder.createAdd( |
| 480 | LHS: CanonicalIVPHI, RHS: &Plan.getVFxUF(), DL, Name: "index.next" , WrapFlags: {true, false}); |
| 481 | CanonicalIVPHI->addOperand(Operand: CanonicalIVIncrement); |
| 482 | |
| 483 | // Add the BranchOnCount VPInstruction to the latch. |
| 484 | Builder.createNaryOp(Opcode: VPInstruction::BranchOnCount, |
| 485 | Operands: {CanonicalIVIncrement, &Plan.getVectorTripCount()}, |
| 486 | DL: LatchDL); |
| 487 | } |
| 488 | |
| 489 | /// Creates extracts for values in \p Plan defined in a loop region and used |
| 490 | /// outside a loop region. |
| 491 | static void (VPlan &Plan, VPBasicBlock *MiddleVPBB) { |
| 492 | VPBuilder B(MiddleVPBB, MiddleVPBB->getFirstNonPhi()); |
| 493 | for (VPBasicBlock *EB : Plan.getExitBlocks()) { |
| 494 | if (EB->getSinglePredecessor() != MiddleVPBB) |
| 495 | continue; |
| 496 | |
| 497 | for (VPRecipeBase &R : EB->phis()) { |
| 498 | auto *ExitIRI = cast<VPIRPhi>(Val: &R); |
| 499 | for (unsigned Idx = 0; Idx != ExitIRI->getNumIncoming(); ++Idx) { |
| 500 | VPRecipeBase *Inc = ExitIRI->getIncomingValue(Idx)->getDefiningRecipe(); |
| 501 | if (!Inc) |
| 502 | continue; |
| 503 | assert(ExitIRI->getNumOperands() == 1 && |
| 504 | ExitIRI->getParent()->getSinglePredecessor() == MiddleVPBB && |
| 505 | "exit values from early exits must be fixed when branch to " |
| 506 | "early-exit is added" ); |
| 507 | ExitIRI->extractLastLaneOfLastPartOfFirstOperand(Builder&: B); |
| 508 | } |
| 509 | } |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | static void addInitialSkeleton(VPlan &Plan, Type *InductionTy, DebugLoc IVDL, |
| 514 | PredicatedScalarEvolution &PSE, Loop *TheLoop) { |
| 515 | VPDominatorTree VPDT(Plan); |
| 516 | |
| 517 | auto * = cast<VPBasicBlock>(Val: Plan.getEntry()->getSingleSuccessor()); |
| 518 | canonicalHeaderAndLatch(HeaderVPB: HeaderVPBB, VPDT); |
| 519 | auto *LatchVPBB = cast<VPBasicBlock>(Val: HeaderVPBB->getPredecessors()[1]); |
| 520 | |
| 521 | VPBasicBlock * = Plan.createVPBasicBlock(Name: "vector.ph" ); |
| 522 | VPBlockUtils::insertBlockAfter(NewBlock: VecPreheader, BlockPtr: Plan.getEntry()); |
| 523 | |
| 524 | VPBasicBlock *MiddleVPBB = Plan.createVPBasicBlock(Name: "middle.block" ); |
| 525 | // The canonical LatchVPBB has the header block as last successor. If it has |
| 526 | // another successor, this successor is an exit block - insert middle block on |
| 527 | // its edge. Otherwise, add middle block as another successor retaining header |
| 528 | // as last. |
| 529 | if (LatchVPBB->getNumSuccessors() == 2) { |
| 530 | VPBlockBase *LatchExitVPB = LatchVPBB->getSuccessors()[0]; |
| 531 | VPBlockUtils::insertOnEdge(From: LatchVPBB, To: LatchExitVPB, BlockPtr: MiddleVPBB); |
| 532 | } else { |
| 533 | VPBlockUtils::connectBlocks(From: LatchVPBB, To: MiddleVPBB); |
| 534 | LatchVPBB->swapSuccessors(); |
| 535 | } |
| 536 | |
| 537 | addCanonicalIVRecipes(Plan, HeaderVPBB, LatchVPBB, IdxTy: InductionTy, DL: IVDL); |
| 538 | |
| 539 | // Create SCEV and VPValue for the trip count. |
| 540 | // We use the symbolic max backedge-taken-count, which works also when |
| 541 | // vectorizing loops with uncountable early exits. |
| 542 | const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount(); |
| 543 | assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) && |
| 544 | "Invalid backedge-taken count" ); |
| 545 | ScalarEvolution &SE = *PSE.getSE(); |
| 546 | const SCEV *TripCount = SE.getTripCountFromExitCount(ExitCount: BackedgeTakenCountSCEV, |
| 547 | EvalTy: InductionTy, L: TheLoop); |
| 548 | Plan.setTripCount(vputils::getOrCreateVPValueForSCEVExpr(Plan, Expr: TripCount)); |
| 549 | |
| 550 | VPBasicBlock *ScalarPH = Plan.createVPBasicBlock(Name: "scalar.ph" ); |
| 551 | VPBlockUtils::connectBlocks(From: ScalarPH, To: Plan.getScalarHeader()); |
| 552 | |
| 553 | // The connection order corresponds to the operands of the conditional branch, |
| 554 | // with the middle block already connected to the exit block. |
| 555 | VPBlockUtils::connectBlocks(From: MiddleVPBB, To: ScalarPH); |
| 556 | // Also connect the entry block to the scalar preheader. |
| 557 | // TODO: Also introduce a branch recipe together with the minimum trip count |
| 558 | // check. |
| 559 | VPBlockUtils::connectBlocks(From: Plan.getEntry(), To: ScalarPH); |
| 560 | Plan.getEntry()->swapSuccessors(); |
| 561 | |
| 562 | createExtractsForLiveOuts(Plan, MiddleVPBB); |
| 563 | |
| 564 | VPBuilder ScalarPHBuilder(ScalarPH); |
| 565 | for (const auto &[PhiR, ScalarPhiR] : zip_equal( |
| 566 | t: drop_begin(RangeOrContainer: HeaderVPBB->phis()), u: Plan.getScalarHeader()->phis())) { |
| 567 | auto *VectorPhiR = cast<VPPhi>(Val: &PhiR); |
| 568 | auto *ResumePhiR = ScalarPHBuilder.createScalarPhi( |
| 569 | IncomingValues: {VectorPhiR, VectorPhiR->getOperand(N: 0)}, DL: VectorPhiR->getDebugLoc()); |
| 570 | cast<VPIRPhi>(Val: &ScalarPhiR)->addOperand(Operand: ResumePhiR); |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | /// Check \p Plan's live-in and replace them with constants, if they can be |
| 575 | /// simplified via SCEV. |
| 576 | static void simplifyLiveInsWithSCEV(VPlan &Plan, |
| 577 | PredicatedScalarEvolution &PSE) { |
| 578 | auto GetSimplifiedLiveInViaSCEV = [&](VPValue *VPV) -> VPValue * { |
| 579 | const SCEV *Expr = vputils::getSCEVExprForVPValue(V: VPV, PSE); |
| 580 | if (auto *C = dyn_cast<SCEVConstant>(Val: Expr)) |
| 581 | return Plan.getOrAddLiveIn(V: C->getValue()); |
| 582 | return nullptr; |
| 583 | }; |
| 584 | |
| 585 | for (VPValue *LiveIn : to_vector(Range: Plan.getLiveIns())) { |
| 586 | if (VPValue *SimplifiedLiveIn = GetSimplifiedLiveInViaSCEV(LiveIn)) |
| 587 | LiveIn->replaceAllUsesWith(New: SimplifiedLiveIn); |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | /// To make RUN_VPLAN_PASS print initial VPlan. |
| 592 | static void printAfterInitialConstruction(VPlan &) {} |
| 593 | |
| 594 | std::unique_ptr<VPlan> |
| 595 | VPlanTransforms::buildVPlan0(Loop *TheLoop, LoopInfo &LI, Type *InductionTy, |
| 596 | DebugLoc IVDL, PredicatedScalarEvolution &PSE, |
| 597 | LoopVersioning *LVer) { |
| 598 | PlainCFGBuilder Builder(TheLoop, &LI, LVer); |
| 599 | std::unique_ptr<VPlan> VPlan0 = Builder.buildPlainCFG(); |
| 600 | addInitialSkeleton(Plan&: *VPlan0, InductionTy, IVDL, PSE, TheLoop); |
| 601 | simplifyLiveInsWithSCEV(Plan&: *VPlan0, PSE); |
| 602 | |
| 603 | RUN_VPLAN_PASS_NO_VERIFY(printAfterInitialConstruction, *VPlan0); |
| 604 | return VPlan0; |
| 605 | } |
| 606 | |
| 607 | /// Creates a VPWidenIntOrFpInductionRecipe or VPWidenPointerInductionRecipe |
| 608 | /// for \p Phi based on \p IndDesc. |
| 609 | static VPHeaderPHIRecipe * |
| 610 | createWidenInductionRecipe(PHINode *Phi, VPPhi *PhiR, VPIRValue *Start, |
| 611 | const InductionDescriptor &IndDesc, VPlan &Plan, |
| 612 | PredicatedScalarEvolution &PSE, Loop &OrigLoop, |
| 613 | DebugLoc DL) { |
| 614 | [[maybe_unused]] ScalarEvolution &SE = *PSE.getSE(); |
| 615 | assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && |
| 616 | "step must be loop invariant" ); |
| 617 | assert((Plan.getLiveIn(IndDesc.getStartValue()) == Start || |
| 618 | (SE.isSCEVable(IndDesc.getStartValue()->getType()) && |
| 619 | SE.getSCEV(IndDesc.getStartValue()) == |
| 620 | vputils::getSCEVExprForVPValue(Start, PSE))) && |
| 621 | "Start VPValue must match IndDesc's start value" ); |
| 622 | |
| 623 | VPValue *Step = |
| 624 | vputils::getOrCreateVPValueForSCEVExpr(Plan, Expr: IndDesc.getStep()); |
| 625 | |
| 626 | if (IndDesc.getKind() == InductionDescriptor::IK_PtrInduction) |
| 627 | return new VPWidenPointerInductionRecipe(Phi, Start, Step, &Plan.getVFxUF(), |
| 628 | IndDesc, DL); |
| 629 | |
| 630 | assert((IndDesc.getKind() == InductionDescriptor::IK_IntInduction || |
| 631 | IndDesc.getKind() == InductionDescriptor::IK_FpInduction) && |
| 632 | "must have an integer or float induction at this point" ); |
| 633 | |
| 634 | // Update wide induction increments to use the same step as the corresponding |
| 635 | // wide induction. This enables detecting induction increments directly in |
| 636 | // VPlan and removes redundant splats. |
| 637 | using namespace llvm::VPlanPatternMatch; |
| 638 | if (match(V: PhiR->getOperand(N: 1), P: m_Add(Op0: m_Specific(VPV: PhiR), Op1: m_VPValue()))) |
| 639 | PhiR->getOperand(N: 1)->getDefiningRecipe()->setOperand(I: 1, New: Step); |
| 640 | |
| 641 | // It is always safe to copy over the NoWrap and FastMath flags. In |
| 642 | // particular, when folding tail by masking, the masked-off lanes are never |
| 643 | // used, so it is safe. |
| 644 | VPIRFlags Flags = vputils::getFlagsFromIndDesc(ID: IndDesc); |
| 645 | |
| 646 | return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.getVF(), |
| 647 | IndDesc, Flags, DL); |
| 648 | } |
| 649 | |
| 650 | void VPlanTransforms::( |
| 651 | VPlan &Plan, PredicatedScalarEvolution &PSE, Loop &OrigLoop, |
| 652 | const MapVector<PHINode *, InductionDescriptor> &Inductions, |
| 653 | const MapVector<PHINode *, RecurrenceDescriptor> &Reductions, |
| 654 | const SmallPtrSetImpl<const PHINode *> &FixedOrderRecurrences, |
| 655 | const SmallPtrSetImpl<PHINode *> &InLoopReductions, bool AllowReordering) { |
| 656 | // Retrieve the header manually from the intial plain-CFG VPlan. |
| 657 | VPBasicBlock * = cast<VPBasicBlock>( |
| 658 | Val: Plan.getEntry()->getSuccessors()[1]->getSingleSuccessor()); |
| 659 | assert(VPDominatorTree(Plan).dominates(HeaderVPBB, |
| 660 | HeaderVPBB->getPredecessors()[1]) && |
| 661 | "header must dominate its latch" ); |
| 662 | |
| 663 | auto = [&](VPPhi *PhiR) -> VPHeaderPHIRecipe * { |
| 664 | // TODO: Gradually replace uses of underlying instruction by analyses on |
| 665 | // VPlan. |
| 666 | auto *Phi = cast<PHINode>(Val: PhiR->getUnderlyingInstr()); |
| 667 | assert(PhiR->getNumOperands() == 2 && |
| 668 | "Must have 2 operands for header phis" ); |
| 669 | |
| 670 | // Extract common values once. |
| 671 | VPIRValue *Start = cast<VPIRValue>(Val: PhiR->getOperand(N: 0)); |
| 672 | VPValue *BackedgeValue = PhiR->getOperand(N: 1); |
| 673 | |
| 674 | if (FixedOrderRecurrences.contains(Ptr: Phi)) { |
| 675 | // TODO: Currently fixed-order recurrences are modeled as chains of |
| 676 | // first-order recurrences. If there are no users of the intermediate |
| 677 | // recurrences in the chain, the fixed order recurrence should be |
| 678 | // modeled directly, enabling more efficient codegen. |
| 679 | return new VPFirstOrderRecurrencePHIRecipe(Phi, *Start, *BackedgeValue); |
| 680 | } |
| 681 | |
| 682 | auto InductionIt = Inductions.find(Key: Phi); |
| 683 | if (InductionIt != Inductions.end()) |
| 684 | return createWidenInductionRecipe(Phi, PhiR, Start, IndDesc: InductionIt->second, |
| 685 | Plan, PSE, OrigLoop, |
| 686 | DL: PhiR->getDebugLoc()); |
| 687 | |
| 688 | assert(Reductions.contains(Phi) && "only reductions are expected now" ); |
| 689 | const RecurrenceDescriptor &RdxDesc = Reductions.lookup(Key: Phi); |
| 690 | assert(RdxDesc.getRecurrenceStartValue() == |
| 691 | Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()) && |
| 692 | "incoming value must match start value" ); |
| 693 | // Will be updated later to >1 if reduction is partial. |
| 694 | unsigned ScaleFactor = 1; |
| 695 | bool UseOrderedReductions = !AllowReordering && RdxDesc.isOrdered(); |
| 696 | return new VPReductionPHIRecipe( |
| 697 | Phi, RdxDesc.getRecurrenceKind(), *Start, *BackedgeValue, |
| 698 | getReductionStyle(InLoop: InLoopReductions.contains(Ptr: Phi), Ordered: UseOrderedReductions, |
| 699 | ScaleFactor), |
| 700 | RdxDesc.hasUsesOutsideReductionChain()); |
| 701 | }; |
| 702 | |
| 703 | for (VPRecipeBase &R : make_early_inc_range(Range: HeaderVPBB->phis())) { |
| 704 | if (isa<VPCanonicalIVPHIRecipe>(Val: &R)) |
| 705 | continue; |
| 706 | auto *PhiR = cast<VPPhi>(Val: &R); |
| 707 | VPHeaderPHIRecipe * = CreateHeaderPhiRecipe(PhiR); |
| 708 | HeaderPhiR->insertBefore(InsertPos: PhiR); |
| 709 | PhiR->replaceAllUsesWith(New: HeaderPhiR); |
| 710 | PhiR->eraseFromParent(); |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | void VPlanTransforms::createInLoopReductionRecipes( |
| 715 | VPlan &Plan, const DenseMap<VPBasicBlock *, VPValue *> &BlockMaskCache, |
| 716 | const DenseSet<BasicBlock *> &BlocksNeedingPredication, |
| 717 | ElementCount MinVF) { |
| 718 | VPTypeAnalysis TypeInfo(Plan); |
| 719 | VPBasicBlock * = Plan.getVectorLoopRegion()->getEntryBasicBlock(); |
| 720 | SmallVector<VPRecipeBase *> ToDelete; |
| 721 | |
| 722 | for (VPRecipeBase &R : Header->phis()) { |
| 723 | auto *PhiR = dyn_cast<VPReductionPHIRecipe>(Val: &R); |
| 724 | if (!PhiR || !PhiR->isInLoop() || (MinVF.isScalar() && !PhiR->isOrdered())) |
| 725 | continue; |
| 726 | |
| 727 | RecurKind Kind = PhiR->getRecurrenceKind(); |
| 728 | assert(!RecurrenceDescriptor::isFindLastRecurrenceKind(Kind) && |
| 729 | !RecurrenceDescriptor::isAnyOfRecurrenceKind(Kind) && |
| 730 | !RecurrenceDescriptor::isFindIVRecurrenceKind(Kind) && |
| 731 | "AnyOf and Find reductions are not allowed for in-loop reductions" ); |
| 732 | |
| 733 | bool IsFPRecurrence = |
| 734 | RecurrenceDescriptor::isFloatingPointRecurrenceKind(Kind); |
| 735 | FastMathFlags FMFs = |
| 736 | IsFPRecurrence ? FastMathFlags::getFast() : FastMathFlags(); |
| 737 | |
| 738 | // Collect the chain of "link" recipes for the reduction starting at PhiR. |
| 739 | SetVector<VPSingleDefRecipe *> Worklist; |
| 740 | Worklist.insert(X: PhiR); |
| 741 | for (unsigned I = 0; I != Worklist.size(); ++I) { |
| 742 | VPSingleDefRecipe *Cur = Worklist[I]; |
| 743 | for (VPUser *U : Cur->users()) { |
| 744 | auto *UserRecipe = cast<VPSingleDefRecipe>(Val: U); |
| 745 | if (!UserRecipe->getParent()->getEnclosingLoopRegion()) { |
| 746 | assert((UserRecipe->getParent() == Plan.getMiddleBlock() || |
| 747 | UserRecipe->getParent() == Plan.getScalarPreheader()) && |
| 748 | "U must be either in the loop region, the middle block or the " |
| 749 | "scalar preheader." ); |
| 750 | continue; |
| 751 | } |
| 752 | |
| 753 | // Stores using instructions will be sunk later. |
| 754 | if (match(R: UserRecipe, P: m_VPInstruction<Instruction::Store>())) |
| 755 | continue; |
| 756 | Worklist.insert(X: UserRecipe); |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | // Visit operation "Links" along the reduction chain top-down starting from |
| 761 | // the phi until LoopExitValue. We keep track of the previous item |
| 762 | // (PreviousLink) to tell which of the two operands of a Link will remain |
| 763 | // scalar and which will be reduced. For minmax by select(cmp), Link will be |
| 764 | // the select instructions. Blend recipes of in-loop reduction phi's will |
| 765 | // get folded to their non-phi operand, as the reduction recipe handles the |
| 766 | // condition directly. |
| 767 | VPSingleDefRecipe *PreviousLink = PhiR; // Aka Worklist[0]. |
| 768 | for (VPSingleDefRecipe *CurrentLink : drop_begin(RangeOrContainer&: Worklist)) { |
| 769 | if (auto *Blend = dyn_cast<VPBlendRecipe>(Val: CurrentLink)) { |
| 770 | assert(Blend->getNumIncomingValues() == 2 && |
| 771 | "Blend must have 2 incoming values" ); |
| 772 | unsigned PhiRIdx = Blend->getIncomingValue(Idx: 0) == PhiR ? 0 : 1; |
| 773 | assert(Blend->getIncomingValue(PhiRIdx) == PhiR && |
| 774 | "PhiR must be an operand of the blend" ); |
| 775 | Blend->replaceAllUsesWith(New: Blend->getIncomingValue(Idx: 1 - PhiRIdx)); |
| 776 | continue; |
| 777 | } |
| 778 | |
| 779 | if (IsFPRecurrence) { |
| 780 | FastMathFlags CurFMF = |
| 781 | cast<VPRecipeWithIRFlags>(Val: CurrentLink)->getFastMathFlags(); |
| 782 | if (match(R: CurrentLink, P: m_Select(Op0: m_VPValue(), Op1: m_VPValue(), Op2: m_VPValue()))) |
| 783 | CurFMF |= cast<VPRecipeWithIRFlags>(Val: CurrentLink->getOperand(N: 0)) |
| 784 | ->getFastMathFlags(); |
| 785 | FMFs &= CurFMF; |
| 786 | } |
| 787 | |
| 788 | Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr(); |
| 789 | |
| 790 | // Recognize a call to the llvm.fmuladd intrinsic. |
| 791 | bool IsFMulAdd = Kind == RecurKind::FMulAdd; |
| 792 | VPValue *VecOp; |
| 793 | VPBasicBlock *LinkVPBB = CurrentLink->getParent(); |
| 794 | if (IsFMulAdd) { |
| 795 | assert(RecurrenceDescriptor::isFMulAddIntrinsic(CurrentLinkI) && |
| 796 | "Expected current VPInstruction to be a call to the " |
| 797 | "llvm.fmuladd intrinsic" ); |
| 798 | assert(CurrentLink->getOperand(2) == PreviousLink && |
| 799 | "expected a call where the previous link is the added operand" ); |
| 800 | |
| 801 | // If the instruction is a call to the llvm.fmuladd intrinsic then we |
| 802 | // need to create an fmul recipe (multiplying the first two operands of |
| 803 | // the fmuladd together) to use as the vector operand for the fadd |
| 804 | // reduction. |
| 805 | auto *FMulRecipe = new VPInstruction( |
| 806 | Instruction::FMul, |
| 807 | {CurrentLink->getOperand(N: 0), CurrentLink->getOperand(N: 1)}, |
| 808 | CurrentLinkI->getFastMathFlags()); |
| 809 | LinkVPBB->insert(Recipe: FMulRecipe, InsertPt: CurrentLink->getIterator()); |
| 810 | VecOp = FMulRecipe; |
| 811 | } else if (Kind == RecurKind::AddChainWithSubs && |
| 812 | match(R: CurrentLink, P: m_Sub(Op0: m_VPValue(), Op1: m_VPValue()))) { |
| 813 | Type *PhiTy = TypeInfo.inferScalarType(V: PhiR); |
| 814 | auto *Zero = Plan.getConstantInt(Ty: PhiTy, Val: 0); |
| 815 | VPBuilder Builder(LinkVPBB, CurrentLink->getIterator()); |
| 816 | auto *Sub = Builder.createSub(LHS: Zero, RHS: CurrentLink->getOperand(N: 1), |
| 817 | DL: CurrentLinkI->getDebugLoc()); |
| 818 | Sub->setUnderlyingValue(CurrentLinkI); |
| 819 | VecOp = Sub; |
| 820 | } else { |
| 821 | // Index of the first operand which holds a non-mask vector operand. |
| 822 | unsigned IndexOfFirstOperand = 0; |
| 823 | if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { |
| 824 | if (match(R: CurrentLink, P: m_Cmp(Op0: m_VPValue(), Op1: m_VPValue()))) |
| 825 | continue; |
| 826 | assert(match(CurrentLink, |
| 827 | m_Select(m_VPValue(), m_VPValue(), m_VPValue())) && |
| 828 | "must be a select recipe" ); |
| 829 | IndexOfFirstOperand = 1; |
| 830 | } |
| 831 | // Note that for non-commutable operands (cmp-selects), the semantics of |
| 832 | // the cmp-select are captured in the recurrence kind. |
| 833 | unsigned VecOpId = |
| 834 | CurrentLink->getOperand(N: IndexOfFirstOperand) == PreviousLink |
| 835 | ? IndexOfFirstOperand + 1 |
| 836 | : IndexOfFirstOperand; |
| 837 | VecOp = CurrentLink->getOperand(N: VecOpId); |
| 838 | assert(VecOp != PreviousLink && |
| 839 | CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 - |
| 840 | (VecOpId - IndexOfFirstOperand)) == |
| 841 | PreviousLink && |
| 842 | "PreviousLink must be the operand other than VecOp" ); |
| 843 | } |
| 844 | |
| 845 | // Get block mask from BlockMaskCache if the block needs predication. |
| 846 | VPValue *CondOp = nullptr; |
| 847 | if (BlocksNeedingPredication.contains(V: CurrentLinkI->getParent())) |
| 848 | CondOp = BlockMaskCache.lookup(Val: LinkVPBB); |
| 849 | |
| 850 | assert(PhiR->getVFScaleFactor() == 1 && |
| 851 | "inloop reductions must be unscaled" ); |
| 852 | auto *RedRecipe = new VPReductionRecipe( |
| 853 | Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp, |
| 854 | getReductionStyle(/*IsInLoop=*/InLoop: true, Ordered: PhiR->isOrdered(), ScaleFactor: 1), |
| 855 | CurrentLinkI->getDebugLoc()); |
| 856 | // Append the recipe to the end of the VPBasicBlock because we need to |
| 857 | // ensure that it comes after all of it's inputs, including CondOp. |
| 858 | // Delete CurrentLink as it will be invalid if its operand is replaced |
| 859 | // with a reduction defined at the bottom of the block in the next link. |
| 860 | if (LinkVPBB->getNumSuccessors() == 0) |
| 861 | RedRecipe->insertBefore(InsertPos: &*std::prev(x: std::prev(x: LinkVPBB->end()))); |
| 862 | else |
| 863 | LinkVPBB->appendRecipe(Recipe: RedRecipe); |
| 864 | |
| 865 | CurrentLink->replaceAllUsesWith(New: RedRecipe); |
| 866 | ToDelete.push_back(Elt: CurrentLink); |
| 867 | PreviousLink = RedRecipe; |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | for (VPRecipeBase *R : ToDelete) |
| 872 | R->eraseFromParent(); |
| 873 | } |
| 874 | |
| 875 | void VPlanTransforms::handleEarlyExits(VPlan &Plan, |
| 876 | bool HasUncountableEarlyExit) { |
| 877 | auto *MiddleVPBB = cast<VPBasicBlock>( |
| 878 | Val: Plan.getScalarHeader()->getSinglePredecessor()->getPredecessors()[0]); |
| 879 | auto *LatchVPBB = cast<VPBasicBlock>(Val: MiddleVPBB->getSinglePredecessor()); |
| 880 | VPBlockBase * = cast<VPBasicBlock>(Val: LatchVPBB->getSuccessors()[1]); |
| 881 | |
| 882 | // Disconnect all early exits from the loop leaving it with a single exit from |
| 883 | // the latch. Early exits that are countable are left for a scalar epilog. The |
| 884 | // condition of uncountable early exits (currently at most one is supported) |
| 885 | // is fused into the latch exit, and used to branch from middle block to the |
| 886 | // early exit destination. |
| 887 | [[maybe_unused]] bool HandledUncountableEarlyExit = false; |
| 888 | for (VPIRBasicBlock *EB : Plan.getExitBlocks()) { |
| 889 | for (VPBlockBase *Pred : to_vector(Range&: EB->getPredecessors())) { |
| 890 | if (Pred == MiddleVPBB) |
| 891 | continue; |
| 892 | if (HasUncountableEarlyExit) { |
| 893 | assert(!HandledUncountableEarlyExit && |
| 894 | "can handle exactly one uncountable early exit" ); |
| 895 | handleUncountableEarlyExit(EarlyExitingVPBB: cast<VPBasicBlock>(Val: Pred), EarlyExitVPBB: EB, Plan, |
| 896 | HeaderVPBB: cast<VPBasicBlock>(Val: HeaderVPB), LatchVPBB); |
| 897 | HandledUncountableEarlyExit = true; |
| 898 | } else { |
| 899 | for (VPRecipeBase &R : EB->phis()) |
| 900 | cast<VPIRPhi>(Val: &R)->removeIncomingValueFor(IncomingBlock: Pred); |
| 901 | } |
| 902 | cast<VPBasicBlock>(Val: Pred)->getTerminator()->eraseFromParent(); |
| 903 | VPBlockUtils::disconnectBlocks(From: Pred, To: EB); |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | assert((!HasUncountableEarlyExit || HandledUncountableEarlyExit) && |
| 908 | "missed an uncountable exit that must be handled" ); |
| 909 | } |
| 910 | |
| 911 | void VPlanTransforms::addMiddleCheck(VPlan &Plan, |
| 912 | bool RequiresScalarEpilogueCheck, |
| 913 | bool TailFolded) { |
| 914 | auto *MiddleVPBB = cast<VPBasicBlock>( |
| 915 | Val: Plan.getScalarHeader()->getSinglePredecessor()->getPredecessors()[0]); |
| 916 | // If MiddleVPBB has a single successor then the original loop does not exit |
| 917 | // via the latch and the single successor must be the scalar preheader. |
| 918 | // There's no need to add a runtime check to MiddleVPBB. |
| 919 | if (MiddleVPBB->getNumSuccessors() == 1) { |
| 920 | assert(MiddleVPBB->getSingleSuccessor() == Plan.getScalarPreheader() && |
| 921 | "must have ScalarPH as single successor" ); |
| 922 | return; |
| 923 | } |
| 924 | |
| 925 | assert(MiddleVPBB->getNumSuccessors() == 2 && "must have 2 successors" ); |
| 926 | |
| 927 | // Add a check in the middle block to see if we have completed all of the |
| 928 | // iterations in the first vector loop. |
| 929 | // |
| 930 | // Three cases: |
| 931 | // 1) If we require a scalar epilogue, the scalar ph must execute. Set the |
| 932 | // condition to false. |
| 933 | // 2) If (N - N%VF) == N, then we *don't* need to run the |
| 934 | // remainder. Thus if tail is to be folded, we know we don't need to run |
| 935 | // the remainder and we can set the condition to true. |
| 936 | // 3) Otherwise, construct a runtime check. |
| 937 | |
| 938 | // We use the same DebugLoc as the scalar loop latch terminator instead of |
| 939 | // the corresponding compare because they may have ended up with different |
| 940 | // line numbers and we want to avoid awkward line stepping while debugging. |
| 941 | // E.g., if the compare has got a line number inside the loop. |
| 942 | auto *LatchVPBB = cast<VPBasicBlock>(Val: MiddleVPBB->getSinglePredecessor()); |
| 943 | DebugLoc LatchDL = LatchVPBB->getTerminator()->getDebugLoc(); |
| 944 | VPBuilder Builder(MiddleVPBB); |
| 945 | VPValue *Cmp; |
| 946 | if (!RequiresScalarEpilogueCheck) |
| 947 | Cmp = Plan.getFalse(); |
| 948 | else if (TailFolded) |
| 949 | Cmp = Plan.getTrue(); |
| 950 | else |
| 951 | Cmp = Builder.createICmp(Pred: CmpInst::ICMP_EQ, A: Plan.getTripCount(), |
| 952 | B: &Plan.getVectorTripCount(), DL: LatchDL, Name: "cmp.n" ); |
| 953 | Builder.createNaryOp(Opcode: VPInstruction::BranchOnCond, Operands: {Cmp}, DL: LatchDL); |
| 954 | } |
| 955 | |
| 956 | void VPlanTransforms::createLoopRegions(VPlan &Plan) { |
| 957 | VPDominatorTree VPDT(Plan); |
| 958 | for (VPBlockBase * : vp_post_order_shallow(G: Plan.getEntry())) |
| 959 | if (canonicalHeaderAndLatch(HeaderVPB, VPDT)) |
| 960 | createLoopRegion(Plan, HeaderVPB); |
| 961 | |
| 962 | VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); |
| 963 | TopRegion->setName("vector loop" ); |
| 964 | TopRegion->getEntryBasicBlock()->setName("vector.body" ); |
| 965 | } |
| 966 | |
| 967 | /// Insert \p CheckBlockVPBB on the edge leading to the vector preheader, |
| 968 | /// connecting it to both vector and scalar preheaders. Updates scalar |
| 969 | /// preheader phis to account for the new predecessor. |
| 970 | static void insertCheckBlockBeforeVectorLoop(VPlan &Plan, |
| 971 | VPBasicBlock *CheckBlockVPBB) { |
| 972 | VPBlockBase *VectorPH = Plan.getVectorPreheader(); |
| 973 | auto *ScalarPH = cast<VPBasicBlock>(Val: Plan.getScalarPreheader()); |
| 974 | VPBlockBase *PreVectorPH = VectorPH->getSinglePredecessor(); |
| 975 | VPBlockUtils::insertOnEdge(From: PreVectorPH, To: VectorPH, BlockPtr: CheckBlockVPBB); |
| 976 | VPBlockUtils::connectBlocks(From: CheckBlockVPBB, To: ScalarPH); |
| 977 | CheckBlockVPBB->swapSuccessors(); |
| 978 | unsigned NumPreds = ScalarPH->getNumPredecessors(); |
| 979 | for (VPRecipeBase &R : ScalarPH->phis()) { |
| 980 | auto *Phi = cast<VPPhi>(Val: &R); |
| 981 | assert(Phi->getNumIncoming() == NumPreds - 1 && |
| 982 | "must have incoming values for all predecessors" ); |
| 983 | Phi->addOperand(Operand: Phi->getOperand(N: NumPreds - 2)); |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | // Likelyhood of bypassing the vectorized loop due to a runtime check block, |
| 988 | // including memory overlap checks block and wrapping/unit-stride checks block. |
| 989 | static constexpr uint32_t CheckBypassWeights[] = {1, 127}; |
| 990 | |
| 991 | /// Create a BranchOnCond terminator in \p CheckBlockVPBB. Optionally adds |
| 992 | /// branch weights. |
| 993 | static void addBypassBranch(VPlan &Plan, VPBasicBlock *CheckBlockVPBB, |
| 994 | VPValue *Cond, bool AddBranchWeights) { |
| 995 | DebugLoc DL = Plan.getVectorLoopRegion()->getCanonicalIV()->getDebugLoc(); |
| 996 | auto *Term = VPBuilder(CheckBlockVPBB) |
| 997 | .createNaryOp(Opcode: VPInstruction::BranchOnCond, Operands: {Cond}, DL); |
| 998 | if (AddBranchWeights) { |
| 999 | MDBuilder MDB(Plan.getContext()); |
| 1000 | MDNode *BranchWeights = |
| 1001 | MDB.createBranchWeights(Weights: CheckBypassWeights, /*IsExpected=*/false); |
| 1002 | Term->setMetadata(Kind: LLVMContext::MD_prof, Node: BranchWeights); |
| 1003 | } |
| 1004 | } |
| 1005 | |
| 1006 | void VPlanTransforms::attachCheckBlock(VPlan &Plan, Value *Cond, |
| 1007 | BasicBlock *CheckBlock, |
| 1008 | bool AddBranchWeights) { |
| 1009 | VPValue *CondVPV = Plan.getOrAddLiveIn(V: Cond); |
| 1010 | VPBasicBlock *CheckBlockVPBB = Plan.createVPIRBasicBlock(IRBB: CheckBlock); |
| 1011 | insertCheckBlockBeforeVectorLoop(Plan, CheckBlockVPBB); |
| 1012 | addBypassBranch(Plan, CheckBlockVPBB, Cond: CondVPV, AddBranchWeights); |
| 1013 | } |
| 1014 | |
| 1015 | void VPlanTransforms::addMinimumIterationCheck( |
| 1016 | VPlan &Plan, ElementCount VF, unsigned UF, |
| 1017 | ElementCount MinProfitableTripCount, bool RequiresScalarEpilogue, |
| 1018 | bool TailFolded, bool CheckNeededWithTailFolding, Loop *OrigLoop, |
| 1019 | const uint32_t *MinItersBypassWeights, DebugLoc DL, |
| 1020 | PredicatedScalarEvolution &PSE) { |
| 1021 | // Generate code to check if the loop's trip count is less than VF * UF, or |
| 1022 | // equal to it in case a scalar epilogue is required; this implies that the |
| 1023 | // vector trip count is zero. This check also covers the case where adding one |
| 1024 | // to the backedge-taken count overflowed leading to an incorrect trip count |
| 1025 | // of zero. In this case we will also jump to the scalar loop. |
| 1026 | CmpInst::Predicate CmpPred = |
| 1027 | RequiresScalarEpilogue ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; |
| 1028 | // If tail is to be folded, vector loop takes care of all iterations. |
| 1029 | VPValue *TripCountVPV = Plan.getTripCount(); |
| 1030 | const SCEV *TripCount = vputils::getSCEVExprForVPValue(V: TripCountVPV, PSE); |
| 1031 | Type *TripCountTy = TripCount->getType(); |
| 1032 | ScalarEvolution &SE = *PSE.getSE(); |
| 1033 | auto GetMinTripCount = [&]() -> const SCEV * { |
| 1034 | // Compute max(MinProfitableTripCount, UF * VF) and return it. |
| 1035 | const SCEV *VFxUF = |
| 1036 | SE.getElementCount(Ty: TripCountTy, EC: (VF * UF), Flags: SCEV::FlagNUW); |
| 1037 | if (UF * VF.getKnownMinValue() >= |
| 1038 | MinProfitableTripCount.getKnownMinValue()) { |
| 1039 | // TODO: SCEV should be able to simplify test. |
| 1040 | return VFxUF; |
| 1041 | } |
| 1042 | const SCEV *MinProfitableTripCountSCEV = |
| 1043 | SE.getElementCount(Ty: TripCountTy, EC: MinProfitableTripCount, Flags: SCEV::FlagNUW); |
| 1044 | return SE.getUMaxExpr(LHS: MinProfitableTripCountSCEV, RHS: VFxUF); |
| 1045 | }; |
| 1046 | |
| 1047 | VPBasicBlock *EntryVPBB = Plan.getEntry(); |
| 1048 | VPBuilder Builder(EntryVPBB); |
| 1049 | VPValue *TripCountCheck = Plan.getFalse(); |
| 1050 | const SCEV *Step = GetMinTripCount(); |
| 1051 | if (TailFolded) { |
| 1052 | if (CheckNeededWithTailFolding) { |
| 1053 | // vscale is not necessarily a power-of-2, which means we cannot guarantee |
| 1054 | // an overflow to zero when updating induction variables and so an |
| 1055 | // additional overflow check is required before entering the vector loop. |
| 1056 | |
| 1057 | VPValue *StepVPV = Builder.createExpandSCEV(Expr: Step); |
| 1058 | |
| 1059 | // Get the maximum unsigned value for the type. |
| 1060 | VPValue *MaxUIntTripCount = |
| 1061 | Plan.getConstantInt(Val: cast<IntegerType>(Val: TripCountTy)->getMask()); |
| 1062 | VPValue *DistanceToMax = |
| 1063 | Builder.createSub(LHS: MaxUIntTripCount, RHS: TripCountVPV); |
| 1064 | |
| 1065 | // Don't execute the vector loop if (UMax - n) < (VF * UF). |
| 1066 | // FIXME: Should only check VF * UF, but currently checks Step=max(VF*UF, |
| 1067 | // minProfitableTripCount). |
| 1068 | TripCountCheck = |
| 1069 | Builder.createICmp(Pred: ICmpInst::ICMP_ULT, A: DistanceToMax, B: StepVPV, DL); |
| 1070 | } else { |
| 1071 | // TripCountCheck = false, folding tail implies positive vector trip |
| 1072 | // count. |
| 1073 | } |
| 1074 | } else { |
| 1075 | // TODO: Emit unconditional branch to vector preheader instead of |
| 1076 | // conditional branch with known condition. |
| 1077 | TripCount = SE.applyLoopGuards(Expr: TripCount, L: OrigLoop); |
| 1078 | // Check if the trip count is < the step. |
| 1079 | if (SE.isKnownPredicate(Pred: CmpPred, LHS: TripCount, RHS: Step)) { |
| 1080 | // TODO: Ensure step is at most the trip count when determining max VF and |
| 1081 | // UF, w/o tail folding. |
| 1082 | TripCountCheck = Plan.getTrue(); |
| 1083 | } else if (!SE.isKnownPredicate(Pred: CmpInst::getInversePredicate(pred: CmpPred), |
| 1084 | LHS: TripCount, RHS: Step)) { |
| 1085 | // Generate the minimum iteration check only if we cannot prove the |
| 1086 | // check is known to be true, or known to be false. |
| 1087 | VPValue *MinTripCountVPV = Builder.createExpandSCEV(Expr: Step); |
| 1088 | TripCountCheck = Builder.createICmp( |
| 1089 | Pred: CmpPred, A: TripCountVPV, B: MinTripCountVPV, DL, Name: "min.iters.check" ); |
| 1090 | } // else step known to be < trip count, use TripCountCheck preset to false. |
| 1091 | } |
| 1092 | VPInstruction *Term = |
| 1093 | Builder.createNaryOp(Opcode: VPInstruction::BranchOnCond, Operands: {TripCountCheck}, DL); |
| 1094 | if (MinItersBypassWeights) { |
| 1095 | MDBuilder MDB(Plan.getContext()); |
| 1096 | MDNode *BranchWeights = MDB.createBranchWeights( |
| 1097 | Weights: ArrayRef(MinItersBypassWeights, 2), /*IsExpected=*/false); |
| 1098 | Term->setMetadata(Kind: LLVMContext::MD_prof, Node: BranchWeights); |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | void VPlanTransforms::addMinimumVectorEpilogueIterationCheck( |
| 1103 | VPlan &Plan, Value *TripCount, Value *VectorTripCount, |
| 1104 | bool RequiresScalarEpilogue, ElementCount EpilogueVF, unsigned EpilogueUF, |
| 1105 | unsigned MainLoopStep, unsigned EpilogueLoopStep, ScalarEvolution &SE) { |
| 1106 | // Add the minimum iteration check for the epilogue vector loop. |
| 1107 | VPValue *TC = Plan.getOrAddLiveIn(V: TripCount); |
| 1108 | VPBuilder Builder(cast<VPBasicBlock>(Val: Plan.getEntry())); |
| 1109 | VPValue *VFxUF = Builder.createExpandSCEV(Expr: SE.getElementCount( |
| 1110 | Ty: TripCount->getType(), EC: (EpilogueVF * EpilogueUF), Flags: SCEV::FlagNUW)); |
| 1111 | VPValue *Count = Builder.createSub(LHS: TC, RHS: Plan.getOrAddLiveIn(V: VectorTripCount), |
| 1112 | DL: DebugLoc::getUnknown(), Name: "n.vec.remaining" ); |
| 1113 | |
| 1114 | // Generate code to check if the loop's trip count is less than VF * UF of |
| 1115 | // the vector epilogue loop. |
| 1116 | auto P = RequiresScalarEpilogue ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; |
| 1117 | auto *CheckMinIters = Builder.createICmp( |
| 1118 | Pred: P, A: Count, B: VFxUF, DL: DebugLoc::getUnknown(), Name: "min.epilog.iters.check" ); |
| 1119 | VPInstruction *Branch = |
| 1120 | Builder.createNaryOp(Opcode: VPInstruction::BranchOnCond, Operands: CheckMinIters); |
| 1121 | |
| 1122 | // We assume the remaining `Count` is equally distributed in |
| 1123 | // [0, MainLoopStep) |
| 1124 | // So the probability for `Count < EpilogueLoopStep` should be |
| 1125 | // min(MainLoopStep, EpilogueLoopStep) / MainLoopStep |
| 1126 | // TODO: Improve the estimate by taking the estimated trip count into |
| 1127 | // consideration. |
| 1128 | unsigned EstimatedSkipCount = std::min(a: MainLoopStep, b: EpilogueLoopStep); |
| 1129 | const uint32_t Weights[] = {EstimatedSkipCount, |
| 1130 | MainLoopStep - EstimatedSkipCount}; |
| 1131 | MDBuilder MDB(Plan.getContext()); |
| 1132 | MDNode *BranchWeights = |
| 1133 | MDB.createBranchWeights(Weights, /*IsExpected=*/false); |
| 1134 | Branch->setMetadata(Kind: LLVMContext::MD_prof, Node: BranchWeights); |
| 1135 | } |
| 1136 | |
| 1137 | /// Find and return the final select instruction of the FindIV result pattern |
| 1138 | /// for the given \p BackedgeVal: |
| 1139 | /// select(icmp ne ComputeReductionResult(ReducedIV), Sentinel), |
| 1140 | /// ComputeReductionResult(ReducedIV), Start. |
| 1141 | static VPInstruction *findFindIVSelect(VPValue *BackedgeVal) { |
| 1142 | return cast<VPInstruction>( |
| 1143 | Val: vputils::findRecipe(Start: BackedgeVal, Pred: [BackedgeVal](VPRecipeBase *R) { |
| 1144 | auto *VPI = dyn_cast<VPInstruction>(Val: R); |
| 1145 | return VPI && |
| 1146 | matchFindIVResult(VPI, ReducedIV: m_Specific(VPV: BackedgeVal), Start: m_VPValue()); |
| 1147 | })); |
| 1148 | } |
| 1149 | |
| 1150 | bool VPlanTransforms::handleMaxMinNumReductions(VPlan &Plan) { |
| 1151 | auto GetMinOrMaxCompareValue = |
| 1152 | [](VPReductionPHIRecipe *RedPhiR) -> VPValue * { |
| 1153 | auto *MinOrMaxR = |
| 1154 | dyn_cast_or_null<VPRecipeWithIRFlags>(Val: RedPhiR->getBackedgeValue()); |
| 1155 | if (!MinOrMaxR) |
| 1156 | return nullptr; |
| 1157 | |
| 1158 | // Check that MinOrMaxR is a VPWidenIntrinsicRecipe or VPReplicateRecipe |
| 1159 | // with an intrinsic that matches the reduction kind. |
| 1160 | Intrinsic::ID ExpectedIntrinsicID = |
| 1161 | getMinMaxReductionIntrinsicOp(RK: RedPhiR->getRecurrenceKind()); |
| 1162 | if (!match(V: MinOrMaxR, P: m_Intrinsic(IntrID: ExpectedIntrinsicID))) |
| 1163 | return nullptr; |
| 1164 | |
| 1165 | if (MinOrMaxR->getOperand(N: 0) == RedPhiR) |
| 1166 | return MinOrMaxR->getOperand(N: 1); |
| 1167 | |
| 1168 | assert(MinOrMaxR->getOperand(1) == RedPhiR && |
| 1169 | "Reduction phi operand expected" ); |
| 1170 | return MinOrMaxR->getOperand(N: 0); |
| 1171 | }; |
| 1172 | |
| 1173 | VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); |
| 1174 | SmallVector<std::pair<VPReductionPHIRecipe *, VPValue *>> |
| 1175 | MinOrMaxNumReductionsToHandle; |
| 1176 | bool HasUnsupportedPhi = false; |
| 1177 | for (auto &R : LoopRegion->getEntryBasicBlock()->phis()) { |
| 1178 | if (isa<VPCanonicalIVPHIRecipe, VPWidenIntOrFpInductionRecipe>(Val: &R)) |
| 1179 | continue; |
| 1180 | auto *Cur = dyn_cast<VPReductionPHIRecipe>(Val: &R); |
| 1181 | if (!Cur) { |
| 1182 | // TODO: Also support fixed-order recurrence phis. |
| 1183 | HasUnsupportedPhi = true; |
| 1184 | continue; |
| 1185 | } |
| 1186 | if (!RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind( |
| 1187 | Kind: Cur->getRecurrenceKind())) { |
| 1188 | HasUnsupportedPhi = true; |
| 1189 | continue; |
| 1190 | } |
| 1191 | |
| 1192 | VPValue *MinOrMaxOp = GetMinOrMaxCompareValue(Cur); |
| 1193 | if (!MinOrMaxOp) |
| 1194 | return false; |
| 1195 | |
| 1196 | MinOrMaxNumReductionsToHandle.emplace_back(Args&: Cur, Args&: MinOrMaxOp); |
| 1197 | } |
| 1198 | |
| 1199 | if (MinOrMaxNumReductionsToHandle.empty()) |
| 1200 | return true; |
| 1201 | |
| 1202 | // We won't be able to resume execution in the scalar tail, if there are |
| 1203 | // unsupported header phis or there is no scalar tail at all, due to |
| 1204 | // tail-folding. |
| 1205 | if (HasUnsupportedPhi || !Plan.hasScalarTail()) |
| 1206 | return false; |
| 1207 | |
| 1208 | /// Check if the vector loop of \p Plan can early exit and restart |
| 1209 | /// execution of last vector iteration in the scalar loop. This requires all |
| 1210 | /// recipes up to early exit point be side-effect free as they are |
| 1211 | /// re-executed. Currently we check that the loop is free of any recipe that |
| 1212 | /// may write to memory. Expected to operate on an early VPlan w/o nested |
| 1213 | /// regions. |
| 1214 | for (VPBlockBase *VPB : vp_depth_first_shallow( |
| 1215 | G: Plan.getVectorLoopRegion()->getEntryBasicBlock())) { |
| 1216 | auto *VPBB = cast<VPBasicBlock>(Val: VPB); |
| 1217 | for (auto &R : *VPBB) { |
| 1218 | if (R.mayWriteToMemory() && !match(V: &R, P: m_BranchOnCount())) |
| 1219 | return false; |
| 1220 | } |
| 1221 | } |
| 1222 | |
| 1223 | VPBasicBlock *LatchVPBB = LoopRegion->getExitingBasicBlock(); |
| 1224 | VPBuilder LatchBuilder(LatchVPBB->getTerminator()); |
| 1225 | VPValue *AllNaNLanes = nullptr; |
| 1226 | SmallPtrSet<VPValue *, 2> RdxResults; |
| 1227 | for (const auto &[_, MinOrMaxOp] : MinOrMaxNumReductionsToHandle) { |
| 1228 | VPValue *RedNaNLanes = |
| 1229 | LatchBuilder.createFCmp(Pred: CmpInst::FCMP_UNO, A: MinOrMaxOp, B: MinOrMaxOp); |
| 1230 | AllNaNLanes = AllNaNLanes ? LatchBuilder.createOr(LHS: AllNaNLanes, RHS: RedNaNLanes) |
| 1231 | : RedNaNLanes; |
| 1232 | } |
| 1233 | |
| 1234 | VPValue *AnyNaNLane = |
| 1235 | LatchBuilder.createNaryOp(Opcode: VPInstruction::AnyOf, Operands: {AllNaNLanes}); |
| 1236 | VPBasicBlock *MiddleVPBB = Plan.getMiddleBlock(); |
| 1237 | VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->begin()); |
| 1238 | for (const auto &[RedPhiR, _] : MinOrMaxNumReductionsToHandle) { |
| 1239 | assert(RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind( |
| 1240 | RedPhiR->getRecurrenceKind()) && |
| 1241 | "unsupported reduction" ); |
| 1242 | |
| 1243 | // If we exit early due to NaNs, compute the final reduction result based on |
| 1244 | // the reduction phi at the beginning of the last vector iteration. |
| 1245 | auto *RdxResult = vputils::findComputeReductionResult(PhiR: RedPhiR); |
| 1246 | assert(RdxResult && "must find a ComputeReductionResult" ); |
| 1247 | |
| 1248 | auto *NewSel = MiddleBuilder.createSelect(Cond: AnyNaNLane, TrueVal: RedPhiR, |
| 1249 | FalseVal: RdxResult->getOperand(N: 0)); |
| 1250 | RdxResult->setOperand(I: 0, New: NewSel); |
| 1251 | assert(!RdxResults.contains(RdxResult) && "RdxResult already used" ); |
| 1252 | RdxResults.insert(Ptr: RdxResult); |
| 1253 | } |
| 1254 | |
| 1255 | auto *LatchExitingBranch = LatchVPBB->getTerminator(); |
| 1256 | assert(match(LatchExitingBranch, m_BranchOnCount(m_VPValue(), m_VPValue())) && |
| 1257 | "Unexpected terminator" ); |
| 1258 | auto *IsLatchExitTaken = LatchBuilder.createICmp( |
| 1259 | Pred: CmpInst::ICMP_EQ, A: LatchExitingBranch->getOperand(N: 0), |
| 1260 | B: LatchExitingBranch->getOperand(N: 1)); |
| 1261 | auto *AnyExitTaken = LatchBuilder.createOr(LHS: AnyNaNLane, RHS: IsLatchExitTaken); |
| 1262 | LatchBuilder.createNaryOp(Opcode: VPInstruction::BranchOnCond, Operands: AnyExitTaken); |
| 1263 | LatchExitingBranch->eraseFromParent(); |
| 1264 | |
| 1265 | // Update resume phis for inductions in the scalar preheader. If AnyNaNLane is |
| 1266 | // true, the resume from the start of the last vector iteration via the |
| 1267 | // canonical IV, otherwise from the original value. |
| 1268 | for (auto &R : Plan.getScalarPreheader()->phis()) { |
| 1269 | auto *ResumeR = cast<VPPhi>(Val: &R); |
| 1270 | VPValue *VecV = ResumeR->getOperand(N: 0); |
| 1271 | if (RdxResults.contains(Ptr: VecV)) |
| 1272 | continue; |
| 1273 | if (auto *DerivedIV = dyn_cast<VPDerivedIVRecipe>(Val: VecV)) { |
| 1274 | if (DerivedIV->getNumUsers() == 1 && |
| 1275 | DerivedIV->getOperand(N: 1) == &Plan.getVectorTripCount()) { |
| 1276 | auto *NewSel = |
| 1277 | MiddleBuilder.createSelect(Cond: AnyNaNLane, TrueVal: LoopRegion->getCanonicalIV(), |
| 1278 | FalseVal: &Plan.getVectorTripCount()); |
| 1279 | DerivedIV->moveAfter(MovePos: &*MiddleBuilder.getInsertPoint()); |
| 1280 | DerivedIV->setOperand(I: 1, New: NewSel); |
| 1281 | continue; |
| 1282 | } |
| 1283 | } |
| 1284 | // Bail out and abandon the current, partially modified, VPlan if we |
| 1285 | // encounter resume phi that cannot be updated yet. |
| 1286 | if (VecV != &Plan.getVectorTripCount()) { |
| 1287 | LLVM_DEBUG(dbgs() << "Found resume phi we cannot update for VPlan with " |
| 1288 | "FMaxNum/FMinNum reduction.\n" ); |
| 1289 | return false; |
| 1290 | } |
| 1291 | auto *NewSel = MiddleBuilder.createSelect( |
| 1292 | Cond: AnyNaNLane, TrueVal: LoopRegion->getCanonicalIV(), FalseVal: VecV); |
| 1293 | ResumeR->setOperand(I: 0, New: NewSel); |
| 1294 | } |
| 1295 | |
| 1296 | auto *MiddleTerm = MiddleVPBB->getTerminator(); |
| 1297 | MiddleBuilder.setInsertPoint(MiddleTerm); |
| 1298 | VPValue *MiddleCond = MiddleTerm->getOperand(N: 0); |
| 1299 | VPValue *NewCond = |
| 1300 | MiddleBuilder.createAnd(LHS: MiddleCond, RHS: MiddleBuilder.createNot(Operand: AnyNaNLane)); |
| 1301 | MiddleTerm->setOperand(I: 0, New: NewCond); |
| 1302 | return true; |
| 1303 | } |
| 1304 | |
| 1305 | bool VPlanTransforms::handleFindLastReductions(VPlan &Plan) { |
| 1306 | if (Plan.hasScalarVFOnly()) |
| 1307 | return false; |
| 1308 | |
| 1309 | // We want to create the following nodes: |
| 1310 | // vector.body: |
| 1311 | // ...new WidenPHI recipe introduced to keep the mask value for the latest |
| 1312 | // iteration where any lane was active. |
| 1313 | // mask.phi = phi [ ir<false>, vector.ph ], [ vp<new.mask>, vector.body ] |
| 1314 | // ...data.phi (a VPReductionPHIRecipe for a FindLast reduction) already |
| 1315 | // exists, but needs updating to use 'new.data' for the backedge value. |
| 1316 | // data.phi = phi ir<default.val>, vp<new.data> |
| 1317 | // |
| 1318 | // ...'data' and 'compare' created by existing nodes... |
| 1319 | // |
| 1320 | // ...new recipes introduced to determine whether to update the reduction |
| 1321 | // values or keep the current one. |
| 1322 | // any.active = i1 any-of ir<compare> |
| 1323 | // new.mask = select vp<any.active>, ir<compare>, vp<mask.phi> |
| 1324 | // new.data = select vp<any.active>, ir<data>, ir<data.phi> |
| 1325 | // |
| 1326 | // middle.block: |
| 1327 | // ...extract-last-active replaces compute-reduction-result. |
| 1328 | // result = extract-last-active vp<new.data>, vp<new.mask>, ir<default.val> |
| 1329 | |
| 1330 | for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { |
| 1331 | auto *PhiR = dyn_cast<VPReductionPHIRecipe>(Val: &Phi); |
| 1332 | if (!PhiR || !RecurrenceDescriptor::isFindLastRecurrenceKind( |
| 1333 | Kind: PhiR->getRecurrenceKind())) |
| 1334 | continue; |
| 1335 | |
| 1336 | // Find the condition for the select. |
| 1337 | auto *SelectR = cast<VPSingleDefRecipe>(Val: &PhiR->getBackedgeRecipe()); |
| 1338 | VPValue *Cond = nullptr, *Op1 = nullptr, *Op2 = nullptr; |
| 1339 | if (!match(R: SelectR, |
| 1340 | P: m_Select(Op0: m_VPValue(V&: Cond), Op1: m_VPValue(V&: Op1), Op2: m_VPValue(V&: Op2)))) |
| 1341 | return false; |
| 1342 | |
| 1343 | // Add mask phi. |
| 1344 | VPBuilder Builder = VPBuilder::getToInsertAfter(R: PhiR); |
| 1345 | auto *MaskPHI = new VPWidenPHIRecipe(nullptr, /*Start=*/Plan.getFalse()); |
| 1346 | Builder.insert(R: MaskPHI); |
| 1347 | |
| 1348 | // Add select for mask. |
| 1349 | Builder.setInsertPoint(SelectR); |
| 1350 | |
| 1351 | if (Op1 == PhiR) { |
| 1352 | // Normalize to selecting the data operand when the condition is true by |
| 1353 | // swapping operands and negating the condition. |
| 1354 | std::swap(a&: Op1, b&: Op2); |
| 1355 | Cond = Builder.createNot(Operand: Cond); |
| 1356 | } |
| 1357 | assert(Op2 == PhiR && "data value must be selected if Cond is true" ); |
| 1358 | |
| 1359 | VPValue *AnyOf = Builder.createNaryOp(Opcode: VPInstruction::AnyOf, Operands: {Cond}); |
| 1360 | VPValue *MaskSelect = Builder.createSelect(Cond: AnyOf, TrueVal: Cond, FalseVal: MaskPHI); |
| 1361 | MaskPHI->addOperand(Operand: MaskSelect); |
| 1362 | |
| 1363 | // Replace select for data. |
| 1364 | VPValue *DataSelect = |
| 1365 | Builder.createSelect(Cond: AnyOf, TrueVal: Op1, FalseVal: Op2, DL: SelectR->getDebugLoc()); |
| 1366 | SelectR->replaceAllUsesWith(New: DataSelect); |
| 1367 | SelectR->eraseFromParent(); |
| 1368 | |
| 1369 | // Find final reduction computation and replace it with an |
| 1370 | // extract.last.active intrinsic. |
| 1371 | auto *RdxResult = |
| 1372 | vputils::findUserOf<VPInstruction::ComputeReductionResult>(V: DataSelect); |
| 1373 | // TODO: Handle tail-folding. |
| 1374 | if (!RdxResult) |
| 1375 | return false; |
| 1376 | Builder.setInsertPoint(RdxResult); |
| 1377 | auto * = |
| 1378 | Builder.createNaryOp(Opcode: VPInstruction::ExtractLastActive, |
| 1379 | Operands: {DataSelect, MaskSelect, PhiR->getStartValue()}, |
| 1380 | DL: RdxResult->getDebugLoc()); |
| 1381 | RdxResult->replaceAllUsesWith(New: ExtractLastActive); |
| 1382 | RdxResult->eraseFromParent(); |
| 1383 | } |
| 1384 | |
| 1385 | return true; |
| 1386 | } |
| 1387 | |
| 1388 | bool VPlanTransforms::handleMultiUseReductions(VPlan &Plan) { |
| 1389 | for (auto &PhiR : make_early_inc_range( |
| 1390 | Range: Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis())) { |
| 1391 | auto *MinOrMaxPhiR = dyn_cast<VPReductionPHIRecipe>(Val: &PhiR); |
| 1392 | // TODO: check for multi-uses in VPlan directly. |
| 1393 | if (!MinOrMaxPhiR || !MinOrMaxPhiR->hasUsesOutsideReductionChain()) |
| 1394 | continue; |
| 1395 | |
| 1396 | // MinOrMaxPhiR has users outside the reduction cycle in the loop. Check if |
| 1397 | // the only other user is a FindLastIV reduction. MinOrMaxPhiR must have |
| 1398 | // exactly 2 users: |
| 1399 | // 1) the min/max operation of the reduction cycle, and |
| 1400 | // 2) the compare of a FindLastIV reduction cycle. This compare must match |
| 1401 | // the min/max operation - comparing MinOrMaxPhiR with the operand of the |
| 1402 | // min/max operation, and be used only by the select of the FindLastIV |
| 1403 | // reduction cycle. |
| 1404 | RecurKind RdxKind = MinOrMaxPhiR->getRecurrenceKind(); |
| 1405 | assert( |
| 1406 | RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind) && |
| 1407 | "only min/max recurrences support users outside the reduction chain" ); |
| 1408 | |
| 1409 | auto *MinOrMaxOp = |
| 1410 | dyn_cast<VPRecipeWithIRFlags>(Val: MinOrMaxPhiR->getBackedgeValue()); |
| 1411 | if (!MinOrMaxOp) |
| 1412 | return false; |
| 1413 | |
| 1414 | // Check that MinOrMaxOp is a VPWidenIntrinsicRecipe or VPReplicateRecipe |
| 1415 | // with an intrinsic that matches the reduction kind. |
| 1416 | Intrinsic::ID ExpectedIntrinsicID = getMinMaxReductionIntrinsicOp(RK: RdxKind); |
| 1417 | if (!match(V: MinOrMaxOp, P: m_Intrinsic(IntrID: ExpectedIntrinsicID))) |
| 1418 | return false; |
| 1419 | |
| 1420 | // MinOrMaxOp must have 2 users: 1) MinOrMaxPhiR and 2) |
| 1421 | // ComputeReductionResult. |
| 1422 | assert(MinOrMaxOp->getNumUsers() == 2 && |
| 1423 | "MinOrMaxOp must have exactly 2 users" ); |
| 1424 | VPValue *MinOrMaxOpValue = MinOrMaxOp->getOperand(N: 0); |
| 1425 | if (MinOrMaxOpValue == MinOrMaxPhiR) |
| 1426 | MinOrMaxOpValue = MinOrMaxOp->getOperand(N: 1); |
| 1427 | |
| 1428 | VPValue *CmpOpA; |
| 1429 | VPValue *CmpOpB; |
| 1430 | CmpPredicate Pred; |
| 1431 | auto *Cmp = dyn_cast_or_null<VPRecipeWithIRFlags>(Val: vputils::findUserOf( |
| 1432 | V: MinOrMaxPhiR, P: m_Cmp(Pred, Op0: m_VPValue(V&: CmpOpA), Op1: m_VPValue(V&: CmpOpB)))); |
| 1433 | if (!Cmp || Cmp->getNumUsers() != 1 || |
| 1434 | (CmpOpA != MinOrMaxOpValue && CmpOpB != MinOrMaxOpValue)) |
| 1435 | return false; |
| 1436 | |
| 1437 | if (MinOrMaxOpValue != CmpOpB) |
| 1438 | Pred = CmpInst::getSwappedPredicate(pred: Pred); |
| 1439 | |
| 1440 | // MinOrMaxPhiR must have exactly 2 users: |
| 1441 | // * MinOrMaxOp, |
| 1442 | // * Cmp (that's part of a FindLastIV chain). |
| 1443 | if (MinOrMaxPhiR->getNumUsers() != 2) |
| 1444 | return false; |
| 1445 | |
| 1446 | VPInstruction *MinOrMaxResult = |
| 1447 | vputils::findUserOf<VPInstruction::ComputeReductionResult>(V: MinOrMaxOp); |
| 1448 | assert(is_contained(MinOrMaxPhiR->users(), MinOrMaxOp) && |
| 1449 | "one user must be MinOrMaxOp" ); |
| 1450 | assert(MinOrMaxResult && |
| 1451 | "MinOrMaxOp must have a ComputeReductionResult user" ); |
| 1452 | |
| 1453 | // Cmp must be used by the select of a FindLastIV chain. |
| 1454 | VPValue *Sel = dyn_cast<VPSingleDefRecipe>(Val: Cmp->getSingleUser()); |
| 1455 | VPValue *IVOp, *FindIV; |
| 1456 | if (!Sel || Sel->getNumUsers() != 2 || |
| 1457 | !match(V: Sel, |
| 1458 | P: m_Select(Op0: m_Specific(VPV: Cmp), Op1: m_VPValue(V&: IVOp), Op2: m_VPValue(V&: FindIV)))) |
| 1459 | return false; |
| 1460 | |
| 1461 | if (!isa<VPReductionPHIRecipe>(Val: FindIV)) { |
| 1462 | std::swap(a&: FindIV, b&: IVOp); |
| 1463 | Pred = CmpInst::getInversePredicate(pred: Pred); |
| 1464 | } |
| 1465 | |
| 1466 | auto *FindIVPhiR = dyn_cast<VPReductionPHIRecipe>(Val: FindIV); |
| 1467 | if (!FindIVPhiR || !RecurrenceDescriptor::isFindLastIVRecurrenceKind( |
| 1468 | Kind: FindIVPhiR->getRecurrenceKind())) |
| 1469 | return false; |
| 1470 | |
| 1471 | // TODO: Support cases where IVOp is the IV increment. |
| 1472 | if (!match(V: IVOp, P: m_TruncOrSelf(Op0: m_VPValue(V&: IVOp))) || |
| 1473 | !isa<VPWidenIntOrFpInductionRecipe>(Val: IVOp)) |
| 1474 | return false; |
| 1475 | |
| 1476 | CmpInst::Predicate RdxPredicate = [RdxKind]() { |
| 1477 | switch (RdxKind) { |
| 1478 | case RecurKind::UMin: |
| 1479 | return CmpInst::ICMP_UGE; |
| 1480 | case RecurKind::UMax: |
| 1481 | return CmpInst::ICMP_ULE; |
| 1482 | case RecurKind::SMax: |
| 1483 | return CmpInst::ICMP_SLE; |
| 1484 | case RecurKind::SMin: |
| 1485 | return CmpInst::ICMP_SGE; |
| 1486 | default: |
| 1487 | llvm_unreachable("unhandled recurrence kind" ); |
| 1488 | } |
| 1489 | }(); |
| 1490 | |
| 1491 | // TODO: Strict predicates need to find the first IV value for which the |
| 1492 | // predicate holds, not the last. |
| 1493 | if (Pred != RdxPredicate) |
| 1494 | return false; |
| 1495 | |
| 1496 | assert(!FindIVPhiR->isInLoop() && !FindIVPhiR->isOrdered() && |
| 1497 | "cannot handle inloop/ordered reductions yet" ); |
| 1498 | |
| 1499 | // The reduction using MinOrMaxPhiR needs adjusting to compute the correct |
| 1500 | // result: |
| 1501 | // 1. We need to find the last IV for which the condition based on the |
| 1502 | // min/max recurrence is true, |
| 1503 | // 2. Compare the partial min/max reduction result to its final value and, |
| 1504 | // 3. Select the lanes of the partial FindLastIV reductions which |
| 1505 | // correspond to the lanes matching the min/max reduction result. |
| 1506 | // |
| 1507 | // For example, this transforms |
| 1508 | // vp<%min.result> = compute-reduction-result ir<%min.val.next> |
| 1509 | // vp<%iv.rdx> = compute-reduction-result (smax) vp<%min.idx.next> |
| 1510 | // vp<%cmp> = icmp ne vp<%iv.rdx>, SENTINEL |
| 1511 | // vp<%find.iv.result> = select vp<%cmp>, vp<%iv.rdx>, ir<0> |
| 1512 | // |
| 1513 | // into: |
| 1514 | // |
| 1515 | // vp<min.result> = compute-reduction-result ir<%min.val.next> |
| 1516 | // vp<%final.min.cmp> = icmp eq ir<%min.val.next>, vp<min.result> |
| 1517 | // vp<%final.iv> = select vp<%final.min.cmp>, vp<%min.idx.next>, SENTINEL |
| 1518 | // vp<%iv.rdx> = compute-reduction-result (smax) vp<%final.iv> |
| 1519 | // vp<%cmp> = icmp ne vp<%iv.rdx>, SENTINEL |
| 1520 | // vp<%find.iv.result> = select vp<%cmp>, vp<%iv.rdx>, ir<0> |
| 1521 | // |
| 1522 | // Find the FindIV result pattern. |
| 1523 | auto *FindIVSelect = findFindIVSelect(BackedgeVal: FindIVPhiR->getBackedgeValue()); |
| 1524 | auto *FindIVCmp = FindIVSelect->getOperand(N: 0)->getDefiningRecipe(); |
| 1525 | auto *FindIVRdxResult = cast<VPInstruction>(Val: FindIVCmp->getOperand(N: 0)); |
| 1526 | assert(FindIVSelect->getParent() == MinOrMaxResult->getParent() && |
| 1527 | "both results must be computed in the same block" ); |
| 1528 | MinOrMaxResult->moveBefore(BB&: *FindIVRdxResult->getParent(), |
| 1529 | I: FindIVRdxResult->getIterator()); |
| 1530 | |
| 1531 | VPBuilder B(FindIVRdxResult); |
| 1532 | VPValue *MinOrMaxExiting = MinOrMaxResult->getOperand(N: 0); |
| 1533 | auto *FinalMinOrMaxCmp = |
| 1534 | B.createICmp(Pred: CmpInst::ICMP_EQ, A: MinOrMaxExiting, B: MinOrMaxResult); |
| 1535 | VPValue *Sentinel = FindIVCmp->getOperand(N: 1); |
| 1536 | VPValue *LastIVExiting = FindIVRdxResult->getOperand(N: 0); |
| 1537 | auto *FinalIVSelect = |
| 1538 | B.createSelect(Cond: FinalMinOrMaxCmp, TrueVal: LastIVExiting, FalseVal: Sentinel); |
| 1539 | FindIVRdxResult->setOperand(I: 0, New: FinalIVSelect); |
| 1540 | } |
| 1541 | return true; |
| 1542 | } |
| 1543 | |