| 1 | //===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file implements a set of utility VPlan to VPlan transformations. |
| 11 | /// |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "VPlanTransforms.h" |
| 15 | #include "VPRecipeBuilder.h" |
| 16 | #include "VPlan.h" |
| 17 | #include "VPlanAnalysis.h" |
| 18 | #include "VPlanCFG.h" |
| 19 | #include "VPlanDominatorTree.h" |
| 20 | #include "VPlanHelpers.h" |
| 21 | #include "VPlanPatternMatch.h" |
| 22 | #include "VPlanUtils.h" |
| 23 | #include "VPlanVerifier.h" |
| 24 | #include "llvm/ADT/APInt.h" |
| 25 | #include "llvm/ADT/PostOrderIterator.h" |
| 26 | #include "llvm/ADT/STLExtras.h" |
| 27 | #include "llvm/ADT/SetOperations.h" |
| 28 | #include "llvm/ADT/SetVector.h" |
| 29 | #include "llvm/ADT/SmallPtrSet.h" |
| 30 | #include "llvm/ADT/TypeSwitch.h" |
| 31 | #include "llvm/Analysis/IVDescriptors.h" |
| 32 | #include "llvm/Analysis/InstSimplifyFolder.h" |
| 33 | #include "llvm/Analysis/LoopInfo.h" |
| 34 | #include "llvm/Analysis/MemoryLocation.h" |
| 35 | #include "llvm/Analysis/ScalarEvolutionPatternMatch.h" |
| 36 | #include "llvm/Analysis/ScopedNoAliasAA.h" |
| 37 | #include "llvm/Analysis/VectorUtils.h" |
| 38 | #include "llvm/IR/Intrinsics.h" |
| 39 | #include "llvm/IR/MDBuilder.h" |
| 40 | #include "llvm/IR/Metadata.h" |
| 41 | #include "llvm/Support/Casting.h" |
| 42 | #include "llvm/Support/TypeSize.h" |
| 43 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| 44 | |
| 45 | using namespace llvm; |
| 46 | using namespace VPlanPatternMatch; |
| 47 | using namespace SCEVPatternMatch; |
| 48 | |
| 49 | bool VPlanTransforms::tryToConvertVPInstructionsToVPRecipes( |
| 50 | VPlan &Plan, const TargetLibraryInfo &TLI) { |
| 51 | |
| 52 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( |
| 53 | Plan.getVectorLoopRegion()); |
| 54 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Range: RPOT)) { |
| 55 | // Skip blocks outside region |
| 56 | if (!VPBB->getParent()) |
| 57 | break; |
| 58 | VPRecipeBase *Term = VPBB->getTerminator(); |
| 59 | auto EndIter = Term ? Term->getIterator() : VPBB->end(); |
| 60 | // Introduce each ingredient into VPlan. |
| 61 | for (VPRecipeBase &Ingredient : |
| 62 | make_early_inc_range(Range: make_range(x: VPBB->begin(), y: EndIter))) { |
| 63 | |
| 64 | VPValue *VPV = Ingredient.getVPSingleValue(); |
| 65 | if (!VPV->getUnderlyingValue()) |
| 66 | continue; |
| 67 | |
| 68 | Instruction *Inst = cast<Instruction>(Val: VPV->getUnderlyingValue()); |
| 69 | |
| 70 | VPRecipeBase *NewRecipe = nullptr; |
| 71 | if (auto *PhiR = dyn_cast<VPPhi>(Val: &Ingredient)) { |
| 72 | auto *Phi = cast<PHINode>(Val: PhiR->getUnderlyingValue()); |
| 73 | NewRecipe = new VPWidenPHIRecipe(Phi, nullptr, PhiR->getDebugLoc()); |
| 74 | for (VPValue *Op : PhiR->operands()) |
| 75 | NewRecipe->addOperand(Operand: Op); |
| 76 | } else if (auto *VPI = dyn_cast<VPInstruction>(Val: &Ingredient)) { |
| 77 | assert(!isa<PHINode>(Inst) && "phis should be handled above" ); |
| 78 | // Create VPWidenMemoryRecipe for loads and stores. |
| 79 | if (LoadInst *Load = dyn_cast<LoadInst>(Val: Inst)) { |
| 80 | NewRecipe = new VPWidenLoadRecipe( |
| 81 | *Load, Ingredient.getOperand(N: 0), nullptr /*Mask*/, |
| 82 | false /*Consecutive*/, false /*Reverse*/, *VPI, |
| 83 | Ingredient.getDebugLoc()); |
| 84 | } else if (StoreInst *Store = dyn_cast<StoreInst>(Val: Inst)) { |
| 85 | NewRecipe = new VPWidenStoreRecipe( |
| 86 | *Store, Ingredient.getOperand(N: 1), Ingredient.getOperand(N: 0), |
| 87 | nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/, *VPI, |
| 88 | Ingredient.getDebugLoc()); |
| 89 | } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: Inst)) { |
| 90 | NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands(), *VPI, |
| 91 | Ingredient.getDebugLoc()); |
| 92 | } else if (CallInst *CI = dyn_cast<CallInst>(Val: Inst)) { |
| 93 | Intrinsic::ID VectorID = getVectorIntrinsicIDForCall(CI, TLI: &TLI); |
| 94 | if (VectorID == Intrinsic::not_intrinsic) |
| 95 | return false; |
| 96 | NewRecipe = new VPWidenIntrinsicRecipe( |
| 97 | *CI, getVectorIntrinsicIDForCall(CI, TLI: &TLI), |
| 98 | drop_end(RangeOrContainer: Ingredient.operands()), CI->getType(), VPIRFlags(*CI), |
| 99 | *VPI, CI->getDebugLoc()); |
| 100 | } else if (auto *CI = dyn_cast<CastInst>(Val: Inst)) { |
| 101 | NewRecipe = new VPWidenCastRecipe( |
| 102 | CI->getOpcode(), Ingredient.getOperand(N: 0), CI->getType(), CI, |
| 103 | VPIRFlags(*CI), VPIRMetadata(*CI)); |
| 104 | } else { |
| 105 | NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands(), *VPI, |
| 106 | *VPI, Ingredient.getDebugLoc()); |
| 107 | } |
| 108 | } else { |
| 109 | assert(isa<VPWidenIntOrFpInductionRecipe>(&Ingredient) && |
| 110 | "inductions must be created earlier" ); |
| 111 | continue; |
| 112 | } |
| 113 | |
| 114 | NewRecipe->insertBefore(InsertPos: &Ingredient); |
| 115 | if (NewRecipe->getNumDefinedValues() == 1) |
| 116 | VPV->replaceAllUsesWith(New: NewRecipe->getVPSingleValue()); |
| 117 | else |
| 118 | assert(NewRecipe->getNumDefinedValues() == 0 && |
| 119 | "Only recpies with zero or one defined values expected" ); |
| 120 | Ingredient.eraseFromParent(); |
| 121 | } |
| 122 | } |
| 123 | return true; |
| 124 | } |
| 125 | |
| 126 | /// Helper for extra no-alias checks via known-safe recipe and SCEV. |
| 127 | class SinkStoreInfo { |
| 128 | const SmallPtrSetImpl<VPRecipeBase *> &ExcludeRecipes; |
| 129 | VPReplicateRecipe &GroupLeader; |
| 130 | PredicatedScalarEvolution &PSE; |
| 131 | const Loop &L; |
| 132 | VPTypeAnalysis &TypeInfo; |
| 133 | |
| 134 | // Return true if \p A and \p B are known to not alias for all VFs in the |
| 135 | // plan, checked via the distance between the accesses |
| 136 | bool isNoAliasViaDistance(VPReplicateRecipe *A, VPReplicateRecipe *B) const { |
| 137 | if (A->getOpcode() != Instruction::Store || |
| 138 | B->getOpcode() != Instruction::Store) |
| 139 | return false; |
| 140 | |
| 141 | VPValue *AddrA = A->getOperand(N: 1); |
| 142 | const SCEV *SCEVA = vputils::getSCEVExprForVPValue(V: AddrA, PSE, L: &L); |
| 143 | VPValue *AddrB = B->getOperand(N: 1); |
| 144 | const SCEV *SCEVB = vputils::getSCEVExprForVPValue(V: AddrB, PSE, L: &L); |
| 145 | if (isa<SCEVCouldNotCompute>(Val: SCEVA) || isa<SCEVCouldNotCompute>(Val: SCEVB)) |
| 146 | return false; |
| 147 | |
| 148 | const APInt *Distance; |
| 149 | ScalarEvolution &SE = *PSE.getSE(); |
| 150 | if (!match(S: SE.getMinusSCEV(LHS: SCEVA, RHS: SCEVB), P: m_scev_APInt(C&: Distance))) |
| 151 | return false; |
| 152 | |
| 153 | const DataLayout &DL = SE.getDataLayout(); |
| 154 | Type *TyA = TypeInfo.inferScalarType(V: A->getOperand(N: 0)); |
| 155 | uint64_t SizeA = DL.getTypeStoreSize(Ty: TyA); |
| 156 | Type *TyB = TypeInfo.inferScalarType(V: B->getOperand(N: 0)); |
| 157 | uint64_t SizeB = DL.getTypeStoreSize(Ty: TyB); |
| 158 | |
| 159 | // Use the maximum store size to ensure no overlap from either direction. |
| 160 | // Currently only handles fixed sizes, as it is only used for |
| 161 | // replicating VPReplicateRecipes. |
| 162 | uint64_t MaxStoreSize = std::max(a: SizeA, b: SizeB); |
| 163 | |
| 164 | auto VFs = B->getParent()->getPlan()->vectorFactors(); |
| 165 | ElementCount MaxVF = *max_element(Range&: VFs, C: ElementCount::isKnownLT); |
| 166 | if (MaxVF.isScalable()) |
| 167 | return false; |
| 168 | return Distance->abs().uge( |
| 169 | RHS: MaxVF.multiplyCoefficientBy(RHS: MaxStoreSize).getFixedValue()); |
| 170 | } |
| 171 | |
| 172 | public: |
| 173 | SinkStoreInfo(const SmallPtrSetImpl<VPRecipeBase *> &ExcludeRecipes, |
| 174 | VPReplicateRecipe &GroupLeader, PredicatedScalarEvolution &PSE, |
| 175 | const Loop &L, VPTypeAnalysis &TypeInfo) |
| 176 | : ExcludeRecipes(ExcludeRecipes), GroupLeader(GroupLeader), PSE(PSE), |
| 177 | L(L), TypeInfo(TypeInfo) {} |
| 178 | |
| 179 | /// Return true if \p R should be skipped during alias checking, either |
| 180 | /// because it's in the exclude set or because no-alias can be proven via |
| 181 | /// SCEV. |
| 182 | bool shouldSkip(VPRecipeBase &R) const { |
| 183 | auto *Store = dyn_cast<VPReplicateRecipe>(Val: &R); |
| 184 | return ExcludeRecipes.contains(Ptr: &R) || |
| 185 | (Store && isNoAliasViaDistance(A: Store, B: &GroupLeader)); |
| 186 | } |
| 187 | }; |
| 188 | |
| 189 | /// Check if a memory operation doesn't alias with memory operations in blocks |
| 190 | /// between \p FirstBB and \p LastBB using scoped noalias metadata. If |
| 191 | /// \p SinkInfo is std::nullopt, only recipes that may write to memory are |
| 192 | /// checked (for load hoisting). Otherwise recipes that both read and write |
| 193 | /// memory are checked, and SCEV is used to prove no-alias between the group |
| 194 | /// leader and other replicate recipes (for store sinking). |
| 195 | static bool |
| 196 | canHoistOrSinkWithNoAliasCheck(const MemoryLocation &MemLoc, |
| 197 | VPBasicBlock *FirstBB, VPBasicBlock *LastBB, |
| 198 | std::optional<SinkStoreInfo> SinkInfo = {}) { |
| 199 | bool CheckReads = SinkInfo.has_value(); |
| 200 | if (!MemLoc.AATags.Scope) |
| 201 | return false; |
| 202 | |
| 203 | const AAMDNodes &MemAA = MemLoc.AATags; |
| 204 | |
| 205 | for (VPBlockBase *Block = FirstBB; Block; |
| 206 | Block = Block->getSingleSuccessor()) { |
| 207 | assert(Block->getNumSuccessors() <= 1 && |
| 208 | "Expected at most one successor in block chain" ); |
| 209 | auto *VPBB = cast<VPBasicBlock>(Val: Block); |
| 210 | for (VPRecipeBase &R : *VPBB) { |
| 211 | if (SinkInfo && SinkInfo->shouldSkip(R)) |
| 212 | continue; |
| 213 | |
| 214 | // Skip recipes that don't need checking. |
| 215 | if (!R.mayWriteToMemory() && !(CheckReads && R.mayReadFromMemory())) |
| 216 | continue; |
| 217 | |
| 218 | auto Loc = vputils::getMemoryLocation(R); |
| 219 | if (!Loc) |
| 220 | // Conservatively assume aliasing for memory operations without |
| 221 | // location. |
| 222 | return false; |
| 223 | |
| 224 | // For reads, check if they don't alias in the reverse direction and |
| 225 | // skip if so. |
| 226 | if (CheckReads && R.mayReadFromMemory() && |
| 227 | !ScopedNoAliasAAResult::mayAliasInScopes(Scopes: Loc->AATags.Scope, |
| 228 | NoAlias: MemAA.NoAlias)) |
| 229 | continue; |
| 230 | |
| 231 | // Check if the memory operations may alias in the forward direction. |
| 232 | if (ScopedNoAliasAAResult::mayAliasInScopes(Scopes: MemAA.Scope, |
| 233 | NoAlias: Loc->AATags.NoAlias)) |
| 234 | return false; |
| 235 | } |
| 236 | |
| 237 | if (Block == LastBB) |
| 238 | break; |
| 239 | } |
| 240 | return true; |
| 241 | } |
| 242 | |
| 243 | /// Return true if we do not know how to (mechanically) hoist or sink \p R out |
| 244 | /// of a loop region. |
| 245 | static bool cannotHoistOrSinkRecipe(const VPRecipeBase &R) { |
| 246 | // Assumes don't alias anything or throw; as long as they're guaranteed to |
| 247 | // execute, they're safe to hoist. |
| 248 | if (match(V: &R, P: m_Intrinsic<Intrinsic::assume>())) |
| 249 | return false; |
| 250 | |
| 251 | // TODO: Relax checks in the future, e.g. we could also hoist reads, if their |
| 252 | // memory location is not modified in the vector loop. |
| 253 | if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi()) |
| 254 | return true; |
| 255 | |
| 256 | // Allocas cannot be hoisted. |
| 257 | auto *RepR = dyn_cast<VPReplicateRecipe>(Val: &R); |
| 258 | return RepR && RepR->getOpcode() == Instruction::Alloca; |
| 259 | } |
| 260 | |
| 261 | static bool sinkScalarOperands(VPlan &Plan) { |
| 262 | auto Iter = vp_depth_first_deep(G: Plan.getEntry()); |
| 263 | bool ScalarVFOnly = Plan.hasScalarVFOnly(); |
| 264 | bool Changed = false; |
| 265 | |
| 266 | SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList; |
| 267 | auto InsertIfValidSinkCandidate = [ScalarVFOnly, &WorkList]( |
| 268 | VPBasicBlock *SinkTo, VPValue *Op) { |
| 269 | auto *Candidate = |
| 270 | dyn_cast_or_null<VPSingleDefRecipe>(Val: Op->getDefiningRecipe()); |
| 271 | if (!Candidate) |
| 272 | return; |
| 273 | |
| 274 | // We only know how to sink VPReplicateRecipes and VPScalarIVStepsRecipes |
| 275 | // for now. |
| 276 | if (!isa<VPReplicateRecipe, VPScalarIVStepsRecipe>(Val: Candidate)) |
| 277 | return; |
| 278 | |
| 279 | if (Candidate->getParent() == SinkTo || cannotHoistOrSinkRecipe(R: *Candidate)) |
| 280 | return; |
| 281 | |
| 282 | if (auto *RepR = dyn_cast<VPReplicateRecipe>(Val: Candidate)) |
| 283 | if (!ScalarVFOnly && RepR->isSingleScalar()) |
| 284 | return; |
| 285 | |
| 286 | WorkList.insert(X: {SinkTo, Candidate}); |
| 287 | }; |
| 288 | |
| 289 | // First, collect the operands of all recipes in replicate blocks as seeds for |
| 290 | // sinking. |
| 291 | for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Range: Iter)) { |
| 292 | VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock(); |
| 293 | if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2) |
| 294 | continue; |
| 295 | VPBasicBlock *VPBB = cast<VPBasicBlock>(Val: EntryVPBB->getSuccessors().front()); |
| 296 | if (VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock()) |
| 297 | continue; |
| 298 | for (auto &Recipe : *VPBB) |
| 299 | for (VPValue *Op : Recipe.operands()) |
| 300 | InsertIfValidSinkCandidate(VPBB, Op); |
| 301 | } |
| 302 | |
| 303 | // Try to sink each replicate or scalar IV steps recipe in the worklist. |
| 304 | for (unsigned I = 0; I != WorkList.size(); ++I) { |
| 305 | VPBasicBlock *SinkTo; |
| 306 | VPSingleDefRecipe *SinkCandidate; |
| 307 | std::tie(args&: SinkTo, args&: SinkCandidate) = WorkList[I]; |
| 308 | |
| 309 | // All recipe users of SinkCandidate must be in the same block SinkTo or all |
| 310 | // users outside of SinkTo must only use the first lane of SinkCandidate. In |
| 311 | // the latter case, we need to duplicate SinkCandidate. |
| 312 | auto UsersOutsideSinkTo = |
| 313 | make_filter_range(Range: SinkCandidate->users(), Pred: [SinkTo](VPUser *U) { |
| 314 | return cast<VPRecipeBase>(Val: U)->getParent() != SinkTo; |
| 315 | }); |
| 316 | if (any_of(Range&: UsersOutsideSinkTo, P: [SinkCandidate](VPUser *U) { |
| 317 | return !U->usesFirstLaneOnly(Op: SinkCandidate); |
| 318 | })) |
| 319 | continue; |
| 320 | bool NeedsDuplicating = !UsersOutsideSinkTo.empty(); |
| 321 | |
| 322 | if (NeedsDuplicating) { |
| 323 | if (ScalarVFOnly) |
| 324 | continue; |
| 325 | VPSingleDefRecipe *Clone; |
| 326 | if (auto *SinkCandidateRepR = |
| 327 | dyn_cast<VPReplicateRecipe>(Val: SinkCandidate)) { |
| 328 | // TODO: Handle converting to uniform recipes as separate transform, |
| 329 | // then cloning should be sufficient here. |
| 330 | Instruction *I = SinkCandidate->getUnderlyingInstr(); |
| 331 | Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true, |
| 332 | nullptr /*Mask*/, *SinkCandidateRepR, |
| 333 | *SinkCandidateRepR); |
| 334 | // TODO: add ".cloned" suffix to name of Clone's VPValue. |
| 335 | } else { |
| 336 | Clone = SinkCandidate->clone(); |
| 337 | } |
| 338 | |
| 339 | Clone->insertBefore(InsertPos: SinkCandidate); |
| 340 | SinkCandidate->replaceUsesWithIf(New: Clone, ShouldReplace: [SinkTo](VPUser &U, unsigned) { |
| 341 | return cast<VPRecipeBase>(Val: &U)->getParent() != SinkTo; |
| 342 | }); |
| 343 | } |
| 344 | SinkCandidate->moveBefore(BB&: *SinkTo, I: SinkTo->getFirstNonPhi()); |
| 345 | for (VPValue *Op : SinkCandidate->operands()) |
| 346 | InsertIfValidSinkCandidate(SinkTo, Op); |
| 347 | Changed = true; |
| 348 | } |
| 349 | return Changed; |
| 350 | } |
| 351 | |
| 352 | /// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return |
| 353 | /// the mask. |
| 354 | static VPValue *getPredicatedMask(VPRegionBlock *R) { |
| 355 | auto *EntryBB = dyn_cast<VPBasicBlock>(Val: R->getEntry()); |
| 356 | if (!EntryBB || EntryBB->size() != 1 || |
| 357 | !isa<VPBranchOnMaskRecipe>(Val: EntryBB->begin())) |
| 358 | return nullptr; |
| 359 | |
| 360 | return cast<VPBranchOnMaskRecipe>(Val: &*EntryBB->begin())->getOperand(N: 0); |
| 361 | } |
| 362 | |
| 363 | /// If \p R is a triangle region, return the 'then' block of the triangle. |
| 364 | static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) { |
| 365 | auto *EntryBB = cast<VPBasicBlock>(Val: R->getEntry()); |
| 366 | if (EntryBB->getNumSuccessors() != 2) |
| 367 | return nullptr; |
| 368 | |
| 369 | auto *Succ0 = dyn_cast<VPBasicBlock>(Val: EntryBB->getSuccessors()[0]); |
| 370 | auto *Succ1 = dyn_cast<VPBasicBlock>(Val: EntryBB->getSuccessors()[1]); |
| 371 | if (!Succ0 || !Succ1) |
| 372 | return nullptr; |
| 373 | |
| 374 | if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1) |
| 375 | return nullptr; |
| 376 | if (Succ0->getSingleSuccessor() == Succ1) |
| 377 | return Succ0; |
| 378 | if (Succ1->getSingleSuccessor() == Succ0) |
| 379 | return Succ1; |
| 380 | return nullptr; |
| 381 | } |
| 382 | |
| 383 | // Merge replicate regions in their successor region, if a replicate region |
| 384 | // is connected to a successor replicate region with the same predicate by a |
| 385 | // single, empty VPBasicBlock. |
| 386 | static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) { |
| 387 | SmallPtrSet<VPRegionBlock *, 4> TransformedRegions; |
| 388 | |
| 389 | // Collect replicate regions followed by an empty block, followed by another |
| 390 | // replicate region with matching masks to process front. This is to avoid |
| 391 | // iterator invalidation issues while merging regions. |
| 392 | SmallVector<VPRegionBlock *, 8> WorkList; |
| 393 | for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>( |
| 394 | Range: vp_depth_first_deep(G: Plan.getEntry()))) { |
| 395 | if (!Region1->isReplicator()) |
| 396 | continue; |
| 397 | auto *MiddleBasicBlock = |
| 398 | dyn_cast_or_null<VPBasicBlock>(Val: Region1->getSingleSuccessor()); |
| 399 | if (!MiddleBasicBlock || !MiddleBasicBlock->empty()) |
| 400 | continue; |
| 401 | |
| 402 | auto *Region2 = |
| 403 | dyn_cast_or_null<VPRegionBlock>(Val: MiddleBasicBlock->getSingleSuccessor()); |
| 404 | if (!Region2 || !Region2->isReplicator()) |
| 405 | continue; |
| 406 | |
| 407 | VPValue *Mask1 = getPredicatedMask(R: Region1); |
| 408 | VPValue *Mask2 = getPredicatedMask(R: Region2); |
| 409 | if (!Mask1 || Mask1 != Mask2) |
| 410 | continue; |
| 411 | |
| 412 | assert(Mask1 && Mask2 && "both region must have conditions" ); |
| 413 | WorkList.push_back(Elt: Region1); |
| 414 | } |
| 415 | |
| 416 | // Move recipes from Region1 to its successor region, if both are triangles. |
| 417 | for (VPRegionBlock *Region1 : WorkList) { |
| 418 | if (TransformedRegions.contains(Ptr: Region1)) |
| 419 | continue; |
| 420 | auto *MiddleBasicBlock = cast<VPBasicBlock>(Val: Region1->getSingleSuccessor()); |
| 421 | auto *Region2 = cast<VPRegionBlock>(Val: MiddleBasicBlock->getSingleSuccessor()); |
| 422 | |
| 423 | VPBasicBlock *Then1 = getPredicatedThenBlock(R: Region1); |
| 424 | VPBasicBlock *Then2 = getPredicatedThenBlock(R: Region2); |
| 425 | if (!Then1 || !Then2) |
| 426 | continue; |
| 427 | |
| 428 | // Note: No fusion-preventing memory dependencies are expected in either |
| 429 | // region. Such dependencies should be rejected during earlier dependence |
| 430 | // checks, which guarantee accesses can be re-ordered for vectorization. |
| 431 | // |
| 432 | // Move recipes to the successor region. |
| 433 | for (VPRecipeBase &ToMove : make_early_inc_range(Range: reverse(C&: *Then1))) |
| 434 | ToMove.moveBefore(BB&: *Then2, I: Then2->getFirstNonPhi()); |
| 435 | |
| 436 | auto *Merge1 = cast<VPBasicBlock>(Val: Then1->getSingleSuccessor()); |
| 437 | auto *Merge2 = cast<VPBasicBlock>(Val: Then2->getSingleSuccessor()); |
| 438 | |
| 439 | // Move VPPredInstPHIRecipes from the merge block to the successor region's |
| 440 | // merge block. Update all users inside the successor region to use the |
| 441 | // original values. |
| 442 | for (VPRecipeBase &Phi1ToMove : make_early_inc_range(Range: reverse(C&: *Merge1))) { |
| 443 | VPValue *PredInst1 = |
| 444 | cast<VPPredInstPHIRecipe>(Val: &Phi1ToMove)->getOperand(N: 0); |
| 445 | VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue(); |
| 446 | Phi1ToMoveV->replaceUsesWithIf(New: PredInst1, ShouldReplace: [Then2](VPUser &U, unsigned) { |
| 447 | return cast<VPRecipeBase>(Val: &U)->getParent() == Then2; |
| 448 | }); |
| 449 | |
| 450 | // Remove phi recipes that are unused after merging the regions. |
| 451 | if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) { |
| 452 | Phi1ToMove.eraseFromParent(); |
| 453 | continue; |
| 454 | } |
| 455 | Phi1ToMove.moveBefore(BB&: *Merge2, I: Merge2->begin()); |
| 456 | } |
| 457 | |
| 458 | // Remove the dead recipes in Region1's entry block. |
| 459 | for (VPRecipeBase &R : |
| 460 | make_early_inc_range(Range: reverse(C&: *Region1->getEntryBasicBlock()))) |
| 461 | R.eraseFromParent(); |
| 462 | |
| 463 | // Finally, remove the first region. |
| 464 | for (VPBlockBase *Pred : make_early_inc_range(Range&: Region1->getPredecessors())) { |
| 465 | VPBlockUtils::disconnectBlocks(From: Pred, To: Region1); |
| 466 | VPBlockUtils::connectBlocks(From: Pred, To: MiddleBasicBlock); |
| 467 | } |
| 468 | VPBlockUtils::disconnectBlocks(From: Region1, To: MiddleBasicBlock); |
| 469 | TransformedRegions.insert(Ptr: Region1); |
| 470 | } |
| 471 | |
| 472 | return !TransformedRegions.empty(); |
| 473 | } |
| 474 | |
| 475 | static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe, |
| 476 | VPlan &Plan) { |
| 477 | Instruction *Instr = PredRecipe->getUnderlyingInstr(); |
| 478 | // Build the triangular if-then region. |
| 479 | std::string RegionName = (Twine("pred." ) + Instr->getOpcodeName()).str(); |
| 480 | assert(Instr->getParent() && "Predicated instruction not in any basic block" ); |
| 481 | auto *BlockInMask = PredRecipe->getMask(); |
| 482 | auto *MaskDef = BlockInMask->getDefiningRecipe(); |
| 483 | auto *BOMRecipe = new VPBranchOnMaskRecipe( |
| 484 | BlockInMask, MaskDef ? MaskDef->getDebugLoc() : DebugLoc::getUnknown()); |
| 485 | auto *Entry = |
| 486 | Plan.createVPBasicBlock(Name: Twine(RegionName) + ".entry" , Recipe: BOMRecipe); |
| 487 | |
| 488 | // Replace predicated replicate recipe with a replicate recipe without a |
| 489 | // mask but in the replicate region. |
| 490 | auto *RecipeWithoutMask = new VPReplicateRecipe( |
| 491 | PredRecipe->getUnderlyingInstr(), drop_end(RangeOrContainer: PredRecipe->operands()), |
| 492 | PredRecipe->isSingleScalar(), nullptr /*Mask*/, *PredRecipe, *PredRecipe, |
| 493 | PredRecipe->getDebugLoc()); |
| 494 | auto *Pred = |
| 495 | Plan.createVPBasicBlock(Name: Twine(RegionName) + ".if" , Recipe: RecipeWithoutMask); |
| 496 | |
| 497 | VPPredInstPHIRecipe *PHIRecipe = nullptr; |
| 498 | if (PredRecipe->getNumUsers() != 0) { |
| 499 | PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask, |
| 500 | RecipeWithoutMask->getDebugLoc()); |
| 501 | PredRecipe->replaceAllUsesWith(New: PHIRecipe); |
| 502 | PHIRecipe->setOperand(I: 0, New: RecipeWithoutMask); |
| 503 | } |
| 504 | PredRecipe->eraseFromParent(); |
| 505 | auto *Exiting = |
| 506 | Plan.createVPBasicBlock(Name: Twine(RegionName) + ".continue" , Recipe: PHIRecipe); |
| 507 | VPRegionBlock *Region = |
| 508 | Plan.createReplicateRegion(Entry, Exiting, Name: RegionName); |
| 509 | |
| 510 | // Note: first set Entry as region entry and then connect successors starting |
| 511 | // from it in order, to propagate the "parent" of each VPBasicBlock. |
| 512 | VPBlockUtils::insertTwoBlocksAfter(IfTrue: Pred, IfFalse: Exiting, BlockPtr: Entry); |
| 513 | VPBlockUtils::connectBlocks(From: Pred, To: Exiting); |
| 514 | |
| 515 | return Region; |
| 516 | } |
| 517 | |
| 518 | static void addReplicateRegions(VPlan &Plan) { |
| 519 | SmallVector<VPReplicateRecipe *> WorkList; |
| 520 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 521 | Range: vp_depth_first_deep(G: Plan.getEntry()))) { |
| 522 | for (VPRecipeBase &R : *VPBB) |
| 523 | if (auto *RepR = dyn_cast<VPReplicateRecipe>(Val: &R)) { |
| 524 | if (RepR->isPredicated()) |
| 525 | WorkList.push_back(Elt: RepR); |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | unsigned BBNum = 0; |
| 530 | for (VPReplicateRecipe *RepR : WorkList) { |
| 531 | VPBasicBlock *CurrentBlock = RepR->getParent(); |
| 532 | VPBasicBlock *SplitBlock = CurrentBlock->splitAt(SplitAt: RepR->getIterator()); |
| 533 | |
| 534 | BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent(); |
| 535 | SplitBlock->setName( |
| 536 | OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : "" ); |
| 537 | // Record predicated instructions for above packing optimizations. |
| 538 | VPRegionBlock *Region = createReplicateRegion(PredRecipe: RepR, Plan); |
| 539 | Region->setParent(CurrentBlock->getParent()); |
| 540 | VPBlockUtils::insertOnEdge(From: CurrentBlock, To: SplitBlock, BlockPtr: Region); |
| 541 | |
| 542 | VPRegionBlock *ParentRegion = Region->getParent(); |
| 543 | if (ParentRegion && ParentRegion->getExiting() == CurrentBlock) |
| 544 | ParentRegion->setExiting(SplitBlock); |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | /// Remove redundant VPBasicBlocks by merging them into their predecessor if |
| 549 | /// the predecessor has a single successor. |
| 550 | static bool mergeBlocksIntoPredecessors(VPlan &Plan) { |
| 551 | SmallVector<VPBasicBlock *> WorkList; |
| 552 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 553 | Range: vp_depth_first_deep(G: Plan.getEntry()))) { |
| 554 | // Don't fold the blocks in the skeleton of the Plan into their single |
| 555 | // predecessors for now. |
| 556 | // TODO: Remove restriction once more of the skeleton is modeled in VPlan. |
| 557 | if (!VPBB->getParent()) |
| 558 | continue; |
| 559 | auto *PredVPBB = |
| 560 | dyn_cast_or_null<VPBasicBlock>(Val: VPBB->getSinglePredecessor()); |
| 561 | if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 || |
| 562 | isa<VPIRBasicBlock>(Val: PredVPBB)) |
| 563 | continue; |
| 564 | WorkList.push_back(Elt: VPBB); |
| 565 | } |
| 566 | |
| 567 | for (VPBasicBlock *VPBB : WorkList) { |
| 568 | VPBasicBlock *PredVPBB = cast<VPBasicBlock>(Val: VPBB->getSinglePredecessor()); |
| 569 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) |
| 570 | R.moveBefore(BB&: *PredVPBB, I: PredVPBB->end()); |
| 571 | VPBlockUtils::disconnectBlocks(From: PredVPBB, To: VPBB); |
| 572 | auto *ParentRegion = VPBB->getParent(); |
| 573 | if (ParentRegion && ParentRegion->getExiting() == VPBB) |
| 574 | ParentRegion->setExiting(PredVPBB); |
| 575 | for (auto *Succ : to_vector(Range: VPBB->successors())) { |
| 576 | VPBlockUtils::disconnectBlocks(From: VPBB, To: Succ); |
| 577 | VPBlockUtils::connectBlocks(From: PredVPBB, To: Succ); |
| 578 | } |
| 579 | // VPBB is now dead and will be cleaned up when the plan gets destroyed. |
| 580 | } |
| 581 | return !WorkList.empty(); |
| 582 | } |
| 583 | |
| 584 | void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) { |
| 585 | // Convert masked VPReplicateRecipes to if-then region blocks. |
| 586 | addReplicateRegions(Plan); |
| 587 | |
| 588 | bool ShouldSimplify = true; |
| 589 | while (ShouldSimplify) { |
| 590 | ShouldSimplify = sinkScalarOperands(Plan); |
| 591 | ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan); |
| 592 | ShouldSimplify |= mergeBlocksIntoPredecessors(Plan); |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | /// Remove redundant casts of inductions. |
| 597 | /// |
| 598 | /// Such redundant casts are casts of induction variables that can be ignored, |
| 599 | /// because we already proved that the casted phi is equal to the uncasted phi |
| 600 | /// in the vectorized loop. There is no need to vectorize the cast - the same |
| 601 | /// value can be used for both the phi and casts in the vector loop. |
| 602 | static void removeRedundantInductionCasts(VPlan &Plan) { |
| 603 | for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { |
| 604 | auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: &Phi); |
| 605 | if (!IV || IV->getTruncInst()) |
| 606 | continue; |
| 607 | |
| 608 | // A sequence of IR Casts has potentially been recorded for IV, which |
| 609 | // *must be bypassed* when the IV is vectorized, because the vectorized IV |
| 610 | // will produce the desired casted value. This sequence forms a def-use |
| 611 | // chain and is provided in reverse order, ending with the cast that uses |
| 612 | // the IV phi. Search for the recipe of the last cast in the chain and |
| 613 | // replace it with the original IV. Note that only the final cast is |
| 614 | // expected to have users outside the cast-chain and the dead casts left |
| 615 | // over will be cleaned up later. |
| 616 | ArrayRef<Instruction *> Casts = IV->getInductionDescriptor().getCastInsts(); |
| 617 | VPValue *FindMyCast = IV; |
| 618 | for (Instruction *IRCast : reverse(C&: Casts)) { |
| 619 | VPSingleDefRecipe *FoundUserCast = nullptr; |
| 620 | for (auto *U : FindMyCast->users()) { |
| 621 | auto *UserCast = dyn_cast<VPSingleDefRecipe>(Val: U); |
| 622 | if (UserCast && UserCast->getUnderlyingValue() == IRCast) { |
| 623 | FoundUserCast = UserCast; |
| 624 | break; |
| 625 | } |
| 626 | } |
| 627 | FindMyCast = FoundUserCast; |
| 628 | } |
| 629 | FindMyCast->replaceAllUsesWith(New: IV); |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | /// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV |
| 634 | /// recipe, if it exists. |
| 635 | static void removeRedundantCanonicalIVs(VPlan &Plan) { |
| 636 | VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); |
| 637 | VPCanonicalIVPHIRecipe *CanonicalIV = LoopRegion->getCanonicalIV(); |
| 638 | VPWidenCanonicalIVRecipe *WidenNewIV = nullptr; |
| 639 | for (VPUser *U : CanonicalIV->users()) { |
| 640 | WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(Val: U); |
| 641 | if (WidenNewIV) |
| 642 | break; |
| 643 | } |
| 644 | |
| 645 | if (!WidenNewIV) |
| 646 | return; |
| 647 | |
| 648 | VPBasicBlock * = LoopRegion->getEntryBasicBlock(); |
| 649 | for (VPRecipeBase &Phi : HeaderVPBB->phis()) { |
| 650 | auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: &Phi); |
| 651 | |
| 652 | if (!WidenOriginalIV || !WidenOriginalIV->isCanonical()) |
| 653 | continue; |
| 654 | |
| 655 | // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides |
| 656 | // everything WidenNewIV's users need. That is, WidenOriginalIV will |
| 657 | // generate a vector phi or all users of WidenNewIV demand the first lane |
| 658 | // only. |
| 659 | if (!vputils::onlyScalarValuesUsed(Def: WidenOriginalIV) || |
| 660 | vputils::onlyFirstLaneUsed(Def: WidenNewIV)) { |
| 661 | // We are replacing a wide canonical iv with a suitable wide induction. |
| 662 | // This is used to compute header mask, hence all lanes will be used and |
| 663 | // we need to drop wrap flags only applying to lanes guranteed to execute |
| 664 | // in the original scalar loop. |
| 665 | WidenOriginalIV->dropPoisonGeneratingFlags(); |
| 666 | WidenNewIV->replaceAllUsesWith(New: WidenOriginalIV); |
| 667 | WidenNewIV->eraseFromParent(); |
| 668 | return; |
| 669 | } |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | /// Returns true if \p R is dead and can be removed. |
| 674 | static bool isDeadRecipe(VPRecipeBase &R) { |
| 675 | // Do remove conditional assume instructions as their conditions may be |
| 676 | // flattened. |
| 677 | auto *RepR = dyn_cast<VPReplicateRecipe>(Val: &R); |
| 678 | bool IsConditionalAssume = RepR && RepR->isPredicated() && |
| 679 | match(V: RepR, P: m_Intrinsic<Intrinsic::assume>()); |
| 680 | if (IsConditionalAssume) |
| 681 | return true; |
| 682 | |
| 683 | if (R.mayHaveSideEffects()) |
| 684 | return false; |
| 685 | |
| 686 | // Recipe is dead if no user keeps the recipe alive. |
| 687 | return all_of(Range: R.definedValues(), |
| 688 | P: [](VPValue *V) { return V->getNumUsers() == 0; }); |
| 689 | } |
| 690 | |
| 691 | void VPlanTransforms::removeDeadRecipes(VPlan &Plan) { |
| 692 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 693 | Range: vp_post_order_deep(G: Plan.getEntry()))) { |
| 694 | // The recipes in the block are processed in reverse order, to catch chains |
| 695 | // of dead recipes. |
| 696 | for (VPRecipeBase &R : make_early_inc_range(Range: reverse(C&: *VPBB))) { |
| 697 | if (isDeadRecipe(R)) { |
| 698 | R.eraseFromParent(); |
| 699 | continue; |
| 700 | } |
| 701 | |
| 702 | // Check if R is a dead VPPhi <-> update cycle and remove it. |
| 703 | auto *PhiR = dyn_cast<VPPhi>(Val: &R); |
| 704 | if (!PhiR || PhiR->getNumOperands() != 2) |
| 705 | continue; |
| 706 | VPUser *PhiUser = PhiR->getSingleUser(); |
| 707 | if (!PhiUser) |
| 708 | continue; |
| 709 | VPValue *Incoming = PhiR->getOperand(N: 1); |
| 710 | if (PhiUser != Incoming->getDefiningRecipe() || |
| 711 | Incoming->getNumUsers() != 1) |
| 712 | continue; |
| 713 | PhiR->replaceAllUsesWith(New: PhiR->getOperand(N: 0)); |
| 714 | PhiR->eraseFromParent(); |
| 715 | Incoming->getDefiningRecipe()->eraseFromParent(); |
| 716 | } |
| 717 | } |
| 718 | } |
| 719 | |
| 720 | static VPScalarIVStepsRecipe * |
| 721 | createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind, |
| 722 | Instruction::BinaryOps InductionOpcode, |
| 723 | FPMathOperator *FPBinOp, Instruction *TruncI, |
| 724 | VPIRValue *StartV, VPValue *Step, DebugLoc DL, |
| 725 | VPBuilder &Builder) { |
| 726 | VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); |
| 727 | VPBasicBlock * = LoopRegion->getEntryBasicBlock(); |
| 728 | VPCanonicalIVPHIRecipe *CanonicalIV = LoopRegion->getCanonicalIV(); |
| 729 | VPSingleDefRecipe *BaseIV = Builder.createDerivedIV( |
| 730 | Kind, FPBinOp, Start: StartV, Current: CanonicalIV, Step, Name: "offset.idx" ); |
| 731 | |
| 732 | // Truncate base induction if needed. |
| 733 | VPTypeAnalysis TypeInfo(Plan); |
| 734 | Type *ResultTy = TypeInfo.inferScalarType(V: BaseIV); |
| 735 | if (TruncI) { |
| 736 | Type *TruncTy = TruncI->getType(); |
| 737 | assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() && |
| 738 | "Not truncating." ); |
| 739 | assert(ResultTy->isIntegerTy() && "Truncation requires an integer type" ); |
| 740 | BaseIV = Builder.createScalarCast(Opcode: Instruction::Trunc, Op: BaseIV, ResultTy: TruncTy, DL); |
| 741 | ResultTy = TruncTy; |
| 742 | } |
| 743 | |
| 744 | // Truncate step if needed. |
| 745 | Type *StepTy = TypeInfo.inferScalarType(V: Step); |
| 746 | if (ResultTy != StepTy) { |
| 747 | assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() && |
| 748 | "Not truncating." ); |
| 749 | assert(StepTy->isIntegerTy() && "Truncation requires an integer type" ); |
| 750 | auto * = |
| 751 | cast<VPBasicBlock>(Val: HeaderVPBB->getSingleHierarchicalPredecessor()); |
| 752 | VPBuilder::InsertPointGuard Guard(Builder); |
| 753 | Builder.setInsertPoint(VecPreheader); |
| 754 | Step = Builder.createScalarCast(Opcode: Instruction::Trunc, Op: Step, ResultTy, DL); |
| 755 | } |
| 756 | return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, IV: BaseIV, Step, |
| 757 | VF: &Plan.getVF(), DL); |
| 758 | } |
| 759 | |
| 760 | static SmallVector<VPUser *> collectUsersRecursively(VPValue *V) { |
| 761 | SetVector<VPUser *> Users(llvm::from_range, V->users()); |
| 762 | for (unsigned I = 0; I != Users.size(); ++I) { |
| 763 | VPRecipeBase *Cur = cast<VPRecipeBase>(Val: Users[I]); |
| 764 | if (isa<VPHeaderPHIRecipe>(Val: Cur)) |
| 765 | continue; |
| 766 | for (VPValue *V : Cur->definedValues()) |
| 767 | Users.insert_range(R: V->users()); |
| 768 | } |
| 769 | return Users.takeVector(); |
| 770 | } |
| 771 | |
| 772 | /// Scalarize a VPWidenPointerInductionRecipe by replacing it with a PtrAdd |
| 773 | /// (IndStart, ScalarIVSteps (0, Step)). This is used when the recipe only |
| 774 | /// generates scalar values. |
| 775 | static VPValue * |
| 776 | scalarizeVPWidenPointerInduction(VPWidenPointerInductionRecipe *PtrIV, |
| 777 | VPlan &Plan, VPBuilder &Builder) { |
| 778 | const InductionDescriptor &ID = PtrIV->getInductionDescriptor(); |
| 779 | VPIRValue *StartV = Plan.getConstantInt(Ty: ID.getStep()->getType(), Val: 0); |
| 780 | VPValue *StepV = PtrIV->getOperand(N: 1); |
| 781 | VPScalarIVStepsRecipe *Steps = createScalarIVSteps( |
| 782 | Plan, Kind: InductionDescriptor::IK_IntInduction, InductionOpcode: Instruction::Add, FPBinOp: nullptr, |
| 783 | TruncI: nullptr, StartV, Step: StepV, DL: PtrIV->getDebugLoc(), Builder); |
| 784 | |
| 785 | return Builder.createPtrAdd(Ptr: PtrIV->getStartValue(), Offset: Steps, |
| 786 | DL: PtrIV->getDebugLoc(), Name: "next.gep" ); |
| 787 | } |
| 788 | |
| 789 | /// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd |
| 790 | /// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as |
| 791 | /// VPWidenPointerInductionRecipe will generate vectors only. If some users |
| 792 | /// require vectors while other require scalars, the scalar uses need to extract |
| 793 | /// the scalars from the generated vectors (Note that this is different to how |
| 794 | /// int/fp inductions are handled). Legalize extract-from-ends using uniform |
| 795 | /// VPReplicateRecipe of wide inductions to use regular VPReplicateRecipe, so |
| 796 | /// the correct end value is available. Also optimize |
| 797 | /// VPWidenIntOrFpInductionRecipe, if any of its users needs scalar values, by |
| 798 | /// providing them scalar steps built on the canonical scalar IV and update the |
| 799 | /// original IV's users. This is an optional optimization to reduce the needs of |
| 800 | /// vector extracts. |
| 801 | static void legalizeAndOptimizeInductions(VPlan &Plan) { |
| 802 | VPBasicBlock * = Plan.getVectorLoopRegion()->getEntryBasicBlock(); |
| 803 | bool HasOnlyVectorVFs = !Plan.hasScalarVFOnly(); |
| 804 | VPBuilder Builder(HeaderVPBB, HeaderVPBB->getFirstNonPhi()); |
| 805 | for (VPRecipeBase &Phi : HeaderVPBB->phis()) { |
| 806 | auto *PhiR = dyn_cast<VPWidenInductionRecipe>(Val: &Phi); |
| 807 | if (!PhiR) |
| 808 | continue; |
| 809 | |
| 810 | // Try to narrow wide and replicating recipes to uniform recipes, based on |
| 811 | // VPlan analysis. |
| 812 | // TODO: Apply to all recipes in the future, to replace legacy uniformity |
| 813 | // analysis. |
| 814 | auto Users = collectUsersRecursively(V: PhiR); |
| 815 | for (VPUser *U : reverse(C&: Users)) { |
| 816 | auto *Def = dyn_cast<VPRecipeWithIRFlags>(Val: U); |
| 817 | auto *RepR = dyn_cast<VPReplicateRecipe>(Val: U); |
| 818 | // Skip recipes that shouldn't be narrowed. |
| 819 | if (!Def || !isa<VPReplicateRecipe, VPWidenRecipe>(Val: Def) || |
| 820 | Def->getNumUsers() == 0 || !Def->getUnderlyingValue() || |
| 821 | (RepR && (RepR->isSingleScalar() || RepR->isPredicated()))) |
| 822 | continue; |
| 823 | |
| 824 | // Skip recipes that may have other lanes than their first used. |
| 825 | if (!vputils::isSingleScalar(VPV: Def) && !vputils::onlyFirstLaneUsed(Def)) |
| 826 | continue; |
| 827 | |
| 828 | auto *Clone = new VPReplicateRecipe(Def->getUnderlyingInstr(), |
| 829 | Def->operands(), /*IsUniform*/ true, |
| 830 | /*Mask*/ nullptr, /*Flags*/ *Def); |
| 831 | Clone->insertAfter(InsertPos: Def); |
| 832 | Def->replaceAllUsesWith(New: Clone); |
| 833 | } |
| 834 | |
| 835 | // Replace wide pointer inductions which have only their scalars used by |
| 836 | // PtrAdd(IndStart, ScalarIVSteps (0, Step)). |
| 837 | if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(Val: &Phi)) { |
| 838 | if (!Plan.hasScalarVFOnly() && |
| 839 | !PtrIV->onlyScalarsGenerated(IsScalable: Plan.hasScalableVF())) |
| 840 | continue; |
| 841 | |
| 842 | VPValue *PtrAdd = scalarizeVPWidenPointerInduction(PtrIV, Plan, Builder); |
| 843 | PtrIV->replaceAllUsesWith(New: PtrAdd); |
| 844 | continue; |
| 845 | } |
| 846 | |
| 847 | // Replace widened induction with scalar steps for users that only use |
| 848 | // scalars. |
| 849 | auto *WideIV = cast<VPWidenIntOrFpInductionRecipe>(Val: &Phi); |
| 850 | if (HasOnlyVectorVFs && none_of(Range: WideIV->users(), P: [WideIV](VPUser *U) { |
| 851 | return U->usesScalars(Op: WideIV); |
| 852 | })) |
| 853 | continue; |
| 854 | |
| 855 | const InductionDescriptor &ID = WideIV->getInductionDescriptor(); |
| 856 | VPScalarIVStepsRecipe *Steps = createScalarIVSteps( |
| 857 | Plan, Kind: ID.getKind(), InductionOpcode: ID.getInductionOpcode(), |
| 858 | FPBinOp: dyn_cast_or_null<FPMathOperator>(Val: ID.getInductionBinOp()), |
| 859 | TruncI: WideIV->getTruncInst(), StartV: WideIV->getStartValue(), Step: WideIV->getStepValue(), |
| 860 | DL: WideIV->getDebugLoc(), Builder); |
| 861 | |
| 862 | // Update scalar users of IV to use Step instead. |
| 863 | if (!HasOnlyVectorVFs) { |
| 864 | assert(!Plan.hasScalableVF() && |
| 865 | "plans containing a scalar VF cannot also include scalable VFs" ); |
| 866 | WideIV->replaceAllUsesWith(New: Steps); |
| 867 | } else { |
| 868 | bool HasScalableVF = Plan.hasScalableVF(); |
| 869 | WideIV->replaceUsesWithIf(New: Steps, |
| 870 | ShouldReplace: [WideIV, HasScalableVF](VPUser &U, unsigned) { |
| 871 | if (HasScalableVF) |
| 872 | return U.usesFirstLaneOnly(Op: WideIV); |
| 873 | return U.usesScalars(Op: WideIV); |
| 874 | }); |
| 875 | } |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | /// Check if \p VPV is an untruncated wide induction, either before or after the |
| 880 | /// increment. If so return the header IV (before the increment), otherwise |
| 881 | /// return null. |
| 882 | static VPWidenInductionRecipe * |
| 883 | getOptimizableIVOf(VPValue *VPV, PredicatedScalarEvolution &PSE) { |
| 884 | auto *WideIV = dyn_cast<VPWidenInductionRecipe>(Val: VPV); |
| 885 | if (WideIV) { |
| 886 | // VPV itself is a wide induction, separately compute the end value for exit |
| 887 | // users if it is not a truncated IV. |
| 888 | auto *IntOrFpIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: WideIV); |
| 889 | return (IntOrFpIV && IntOrFpIV->getTruncInst()) ? nullptr : WideIV; |
| 890 | } |
| 891 | |
| 892 | // Check if VPV is an optimizable induction increment. |
| 893 | VPRecipeBase *Def = VPV->getDefiningRecipe(); |
| 894 | if (!Def || Def->getNumOperands() != 2) |
| 895 | return nullptr; |
| 896 | WideIV = dyn_cast<VPWidenInductionRecipe>(Val: Def->getOperand(N: 0)); |
| 897 | if (!WideIV) |
| 898 | WideIV = dyn_cast<VPWidenInductionRecipe>(Val: Def->getOperand(N: 1)); |
| 899 | if (!WideIV) |
| 900 | return nullptr; |
| 901 | |
| 902 | auto IsWideIVInc = [&]() { |
| 903 | auto &ID = WideIV->getInductionDescriptor(); |
| 904 | |
| 905 | // Check if VPV increments the induction by the induction step. |
| 906 | VPValue *IVStep = WideIV->getStepValue(); |
| 907 | switch (ID.getInductionOpcode()) { |
| 908 | case Instruction::Add: |
| 909 | return match(V: VPV, P: m_c_Add(Op0: m_Specific(VPV: WideIV), Op1: m_Specific(VPV: IVStep))); |
| 910 | case Instruction::FAdd: |
| 911 | return match(V: VPV, P: m_c_FAdd(Op0: m_Specific(VPV: WideIV), Op1: m_Specific(VPV: IVStep))); |
| 912 | case Instruction::FSub: |
| 913 | return match(V: VPV, P: m_Binary<Instruction::FSub>(Op0: m_Specific(VPV: WideIV), |
| 914 | Op1: m_Specific(VPV: IVStep))); |
| 915 | case Instruction::Sub: { |
| 916 | // IVStep will be the negated step of the subtraction. Check if Step == -1 |
| 917 | // * IVStep. |
| 918 | VPValue *Step; |
| 919 | if (!match(V: VPV, P: m_Sub(Op0: m_VPValue(), Op1: m_VPValue(V&: Step)))) |
| 920 | return false; |
| 921 | const SCEV *IVStepSCEV = vputils::getSCEVExprForVPValue(V: IVStep, PSE); |
| 922 | const SCEV *StepSCEV = vputils::getSCEVExprForVPValue(V: Step, PSE); |
| 923 | ScalarEvolution &SE = *PSE.getSE(); |
| 924 | return !isa<SCEVCouldNotCompute>(Val: IVStepSCEV) && |
| 925 | !isa<SCEVCouldNotCompute>(Val: StepSCEV) && |
| 926 | IVStepSCEV == SE.getNegativeSCEV(V: StepSCEV); |
| 927 | } |
| 928 | default: |
| 929 | return ID.getKind() == InductionDescriptor::IK_PtrInduction && |
| 930 | match(V: VPV, P: m_GetElementPtr(Op0: m_Specific(VPV: WideIV), |
| 931 | Op1: m_Specific(VPV: WideIV->getStepValue()))); |
| 932 | } |
| 933 | llvm_unreachable("should have been covered by switch above" ); |
| 934 | }; |
| 935 | return IsWideIVInc() ? WideIV : nullptr; |
| 936 | } |
| 937 | |
| 938 | /// Attempts to optimize the induction variable exit values for users in the |
| 939 | /// early exit block. |
| 940 | static VPValue *optimizeEarlyExitInductionUser(VPlan &Plan, |
| 941 | VPTypeAnalysis &TypeInfo, |
| 942 | VPBlockBase *PredVPBB, |
| 943 | VPValue *Op, |
| 944 | PredicatedScalarEvolution &PSE) { |
| 945 | VPValue *Incoming, *Mask; |
| 946 | if (!match(V: Op, P: m_ExtractLane(Op0: m_FirstActiveLane(Op0: m_VPValue(V&: Mask)), |
| 947 | Op1: m_VPValue(V&: Incoming)))) |
| 948 | return nullptr; |
| 949 | |
| 950 | auto *WideIV = getOptimizableIVOf(VPV: Incoming, PSE); |
| 951 | if (!WideIV) |
| 952 | return nullptr; |
| 953 | |
| 954 | auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: WideIV); |
| 955 | if (WideIntOrFp && WideIntOrFp->getTruncInst()) |
| 956 | return nullptr; |
| 957 | |
| 958 | // Calculate the final index. |
| 959 | VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); |
| 960 | auto *CanonicalIV = LoopRegion->getCanonicalIV(); |
| 961 | Type *CanonicalIVType = LoopRegion->getCanonicalIVType(); |
| 962 | VPBuilder B(cast<VPBasicBlock>(Val: PredVPBB)); |
| 963 | |
| 964 | DebugLoc DL = cast<VPInstruction>(Val: Op)->getDebugLoc(); |
| 965 | VPValue *FirstActiveLane = |
| 966 | B.createNaryOp(Opcode: VPInstruction::FirstActiveLane, Operands: Mask, DL); |
| 967 | Type *FirstActiveLaneType = TypeInfo.inferScalarType(V: FirstActiveLane); |
| 968 | FirstActiveLane = B.createScalarZExtOrTrunc(Op: FirstActiveLane, ResultTy: CanonicalIVType, |
| 969 | SrcTy: FirstActiveLaneType, DL); |
| 970 | VPValue *EndValue = B.createAdd(LHS: CanonicalIV, RHS: FirstActiveLane, DL); |
| 971 | |
| 972 | // `getOptimizableIVOf()` always returns the pre-incremented IV, so if it |
| 973 | // changed it means the exit is using the incremented value, so we need to |
| 974 | // add the step. |
| 975 | if (Incoming != WideIV) { |
| 976 | VPValue *One = Plan.getConstantInt(Ty: CanonicalIVType, Val: 1); |
| 977 | EndValue = B.createAdd(LHS: EndValue, RHS: One, DL); |
| 978 | } |
| 979 | |
| 980 | if (!WideIntOrFp || !WideIntOrFp->isCanonical()) { |
| 981 | const InductionDescriptor &ID = WideIV->getInductionDescriptor(); |
| 982 | VPIRValue *Start = WideIV->getStartValue(); |
| 983 | VPValue *Step = WideIV->getStepValue(); |
| 984 | EndValue = B.createDerivedIV( |
| 985 | Kind: ID.getKind(), FPBinOp: dyn_cast_or_null<FPMathOperator>(Val: ID.getInductionBinOp()), |
| 986 | Start, Current: EndValue, Step); |
| 987 | } |
| 988 | |
| 989 | return EndValue; |
| 990 | } |
| 991 | |
| 992 | /// Attempts to optimize the induction variable exit values for users in the |
| 993 | /// exit block coming from the latch in the original scalar loop. |
| 994 | static VPValue *optimizeLatchExitInductionUser( |
| 995 | VPlan &Plan, VPTypeAnalysis &TypeInfo, VPBlockBase *PredVPBB, VPValue *Op, |
| 996 | DenseMap<VPValue *, VPValue *> &EndValues, PredicatedScalarEvolution &PSE) { |
| 997 | VPValue *Incoming; |
| 998 | if (!match(V: Op, P: m_ExtractLastLaneOfLastPart(Op0: m_VPValue(V&: Incoming)))) |
| 999 | return nullptr; |
| 1000 | |
| 1001 | auto *WideIV = getOptimizableIVOf(VPV: Incoming, PSE); |
| 1002 | if (!WideIV) |
| 1003 | return nullptr; |
| 1004 | |
| 1005 | VPValue *EndValue = EndValues.lookup(Val: WideIV); |
| 1006 | assert(EndValue && "end value must have been pre-computed" ); |
| 1007 | |
| 1008 | // `getOptimizableIVOf()` always returns the pre-incremented IV, so if it |
| 1009 | // changed it means the exit is using the incremented value, so we don't |
| 1010 | // need to subtract the step. |
| 1011 | if (Incoming != WideIV) |
| 1012 | return EndValue; |
| 1013 | |
| 1014 | // Otherwise, subtract the step from the EndValue. |
| 1015 | VPBuilder B(cast<VPBasicBlock>(Val: PredVPBB)->getTerminator()); |
| 1016 | VPValue *Step = WideIV->getStepValue(); |
| 1017 | Type *ScalarTy = TypeInfo.inferScalarType(V: WideIV); |
| 1018 | if (ScalarTy->isIntegerTy()) |
| 1019 | return B.createSub(LHS: EndValue, RHS: Step, DL: DebugLoc::getUnknown(), Name: "ind.escape" ); |
| 1020 | if (ScalarTy->isPointerTy()) { |
| 1021 | Type *StepTy = TypeInfo.inferScalarType(V: Step); |
| 1022 | auto *Zero = Plan.getConstantInt(Ty: StepTy, Val: 0); |
| 1023 | return B.createPtrAdd(Ptr: EndValue, Offset: B.createSub(LHS: Zero, RHS: Step), |
| 1024 | DL: DebugLoc::getUnknown(), Name: "ind.escape" ); |
| 1025 | } |
| 1026 | if (ScalarTy->isFloatingPointTy()) { |
| 1027 | const auto &ID = WideIV->getInductionDescriptor(); |
| 1028 | return B.createNaryOp( |
| 1029 | Opcode: ID.getInductionBinOp()->getOpcode() == Instruction::FAdd |
| 1030 | ? Instruction::FSub |
| 1031 | : Instruction::FAdd, |
| 1032 | Operands: {EndValue, Step}, Flags: {ID.getInductionBinOp()->getFastMathFlags()}); |
| 1033 | } |
| 1034 | llvm_unreachable("all possible induction types must be handled" ); |
| 1035 | return nullptr; |
| 1036 | } |
| 1037 | |
| 1038 | void VPlanTransforms::optimizeInductionExitUsers( |
| 1039 | VPlan &Plan, DenseMap<VPValue *, VPValue *> &EndValues, |
| 1040 | PredicatedScalarEvolution &PSE) { |
| 1041 | VPBlockBase *MiddleVPBB = Plan.getMiddleBlock(); |
| 1042 | VPTypeAnalysis TypeInfo(Plan); |
| 1043 | for (VPIRBasicBlock *ExitVPBB : Plan.getExitBlocks()) { |
| 1044 | for (VPRecipeBase &R : ExitVPBB->phis()) { |
| 1045 | auto *ExitIRI = cast<VPIRPhi>(Val: &R); |
| 1046 | |
| 1047 | for (auto [Idx, PredVPBB] : enumerate(First&: ExitVPBB->getPredecessors())) { |
| 1048 | VPValue *Escape = nullptr; |
| 1049 | if (PredVPBB == MiddleVPBB) |
| 1050 | Escape = optimizeLatchExitInductionUser(Plan, TypeInfo, PredVPBB, |
| 1051 | Op: ExitIRI->getOperand(N: Idx), |
| 1052 | EndValues, PSE); |
| 1053 | else |
| 1054 | Escape = optimizeEarlyExitInductionUser( |
| 1055 | Plan, TypeInfo, PredVPBB, Op: ExitIRI->getOperand(N: Idx), PSE); |
| 1056 | if (Escape) |
| 1057 | ExitIRI->setOperand(I: Idx, New: Escape); |
| 1058 | } |
| 1059 | } |
| 1060 | } |
| 1061 | } |
| 1062 | |
| 1063 | /// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing |
| 1064 | /// them with already existing recipes expanding the same SCEV expression. |
| 1065 | static void removeRedundantExpandSCEVRecipes(VPlan &Plan) { |
| 1066 | DenseMap<const SCEV *, VPValue *> SCEV2VPV; |
| 1067 | |
| 1068 | for (VPRecipeBase &R : |
| 1069 | make_early_inc_range(Range&: *Plan.getEntry()->getEntryBasicBlock())) { |
| 1070 | auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(Val: &R); |
| 1071 | if (!ExpR) |
| 1072 | continue; |
| 1073 | |
| 1074 | const auto &[V, Inserted] = SCEV2VPV.try_emplace(Key: ExpR->getSCEV(), Args&: ExpR); |
| 1075 | if (Inserted) |
| 1076 | continue; |
| 1077 | ExpR->replaceAllUsesWith(New: V->second); |
| 1078 | ExpR->eraseFromParent(); |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | static void recursivelyDeleteDeadRecipes(VPValue *V) { |
| 1083 | SmallVector<VPValue *> WorkList; |
| 1084 | SmallPtrSet<VPValue *, 8> Seen; |
| 1085 | WorkList.push_back(Elt: V); |
| 1086 | |
| 1087 | while (!WorkList.empty()) { |
| 1088 | VPValue *Cur = WorkList.pop_back_val(); |
| 1089 | if (!Seen.insert(Ptr: Cur).second) |
| 1090 | continue; |
| 1091 | VPRecipeBase *R = Cur->getDefiningRecipe(); |
| 1092 | if (!R) |
| 1093 | continue; |
| 1094 | if (!isDeadRecipe(R&: *R)) |
| 1095 | continue; |
| 1096 | append_range(C&: WorkList, R: R->operands()); |
| 1097 | R->eraseFromParent(); |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | /// Get any instruction opcode or intrinsic ID data embedded in recipe \p R. |
| 1102 | /// Returns an optional pair, where the first element indicates whether it is |
| 1103 | /// an intrinsic ID. |
| 1104 | static std::optional<std::pair<bool, unsigned>> |
| 1105 | getOpcodeOrIntrinsicID(const VPSingleDefRecipe *R) { |
| 1106 | return TypeSwitch<const VPSingleDefRecipe *, |
| 1107 | std::optional<std::pair<bool, unsigned>>>(R) |
| 1108 | .Case<VPInstruction, VPWidenRecipe, VPWidenCastRecipe, VPWidenGEPRecipe, |
| 1109 | VPReplicateRecipe>( |
| 1110 | caseFn: [](auto *I) { return std::make_pair(false, I->getOpcode()); }) |
| 1111 | .Case(caseFn: [](const VPWidenIntrinsicRecipe *I) { |
| 1112 | return std::make_pair(x: true, y: I->getVectorIntrinsicID()); |
| 1113 | }) |
| 1114 | .Case<VPVectorPointerRecipe, VPPredInstPHIRecipe>(caseFn: [](auto *I) { |
| 1115 | // For recipes that do not directly map to LLVM IR instructions, |
| 1116 | // assign opcodes after the last VPInstruction opcode (which is also |
| 1117 | // after the last IR Instruction opcode), based on the VPRecipeID. |
| 1118 | return std::make_pair(false, |
| 1119 | VPInstruction::OpsEnd + 1 + I->getVPRecipeID()); |
| 1120 | }) |
| 1121 | .Default(defaultFn: [](auto *) { return std::nullopt; }); |
| 1122 | } |
| 1123 | |
| 1124 | /// Try to fold \p R using InstSimplifyFolder. Will succeed and return a |
| 1125 | /// non-nullptr VPValue for a handled opcode or intrinsic ID if corresponding \p |
| 1126 | /// Operands are foldable live-ins. |
| 1127 | static VPIRValue *tryToFoldLiveIns(VPSingleDefRecipe &R, |
| 1128 | ArrayRef<VPValue *> Operands, |
| 1129 | const DataLayout &DL, |
| 1130 | VPTypeAnalysis &TypeInfo) { |
| 1131 | auto OpcodeOrIID = getOpcodeOrIntrinsicID(R: &R); |
| 1132 | if (!OpcodeOrIID) |
| 1133 | return nullptr; |
| 1134 | |
| 1135 | SmallVector<Value *, 4> Ops; |
| 1136 | for (VPValue *Op : Operands) { |
| 1137 | if (!match(V: Op, P: m_LiveIn())) |
| 1138 | return nullptr; |
| 1139 | Value *V = Op->getUnderlyingValue(); |
| 1140 | if (!V) |
| 1141 | return nullptr; |
| 1142 | Ops.push_back(Elt: V); |
| 1143 | } |
| 1144 | |
| 1145 | auto FoldToIRValue = [&]() -> Value * { |
| 1146 | InstSimplifyFolder Folder(DL); |
| 1147 | if (OpcodeOrIID->first) { |
| 1148 | if (R.getNumOperands() != 2) |
| 1149 | return nullptr; |
| 1150 | unsigned ID = OpcodeOrIID->second; |
| 1151 | return Folder.FoldBinaryIntrinsic(ID, LHS: Ops[0], RHS: Ops[1], |
| 1152 | Ty: TypeInfo.inferScalarType(V: &R)); |
| 1153 | } |
| 1154 | unsigned Opcode = OpcodeOrIID->second; |
| 1155 | if (Instruction::isBinaryOp(Opcode)) |
| 1156 | return Folder.FoldBinOp(Opc: static_cast<Instruction::BinaryOps>(Opcode), |
| 1157 | LHS: Ops[0], RHS: Ops[1]); |
| 1158 | if (Instruction::isCast(Opcode)) |
| 1159 | return Folder.FoldCast(Op: static_cast<Instruction::CastOps>(Opcode), V: Ops[0], |
| 1160 | DestTy: TypeInfo.inferScalarType(V: R.getVPSingleValue())); |
| 1161 | switch (Opcode) { |
| 1162 | case VPInstruction::LogicalAnd: |
| 1163 | return Folder.FoldSelect(C: Ops[0], True: Ops[1], |
| 1164 | False: ConstantInt::getNullValue(Ty: Ops[1]->getType())); |
| 1165 | case VPInstruction::Not: |
| 1166 | return Folder.FoldBinOp(Opc: Instruction::BinaryOps::Xor, LHS: Ops[0], |
| 1167 | RHS: Constant::getAllOnesValue(Ty: Ops[0]->getType())); |
| 1168 | case Instruction::Select: |
| 1169 | return Folder.FoldSelect(C: Ops[0], True: Ops[1], False: Ops[2]); |
| 1170 | case Instruction::ICmp: |
| 1171 | case Instruction::FCmp: |
| 1172 | return Folder.FoldCmp(P: cast<VPRecipeWithIRFlags>(Val&: R).getPredicate(), LHS: Ops[0], |
| 1173 | RHS: Ops[1]); |
| 1174 | case Instruction::GetElementPtr: { |
| 1175 | auto &RFlags = cast<VPRecipeWithIRFlags>(Val&: R); |
| 1176 | auto *GEP = cast<GetElementPtrInst>(Val: RFlags.getUnderlyingInstr()); |
| 1177 | return Folder.FoldGEP(Ty: GEP->getSourceElementType(), Ptr: Ops[0], |
| 1178 | IdxList: drop_begin(RangeOrContainer&: Ops), NW: RFlags.getGEPNoWrapFlags()); |
| 1179 | } |
| 1180 | case VPInstruction::PtrAdd: |
| 1181 | case VPInstruction::WidePtrAdd: |
| 1182 | return Folder.FoldGEP(Ty: IntegerType::getInt8Ty(C&: TypeInfo.getContext()), |
| 1183 | Ptr: Ops[0], IdxList: Ops[1], |
| 1184 | NW: cast<VPRecipeWithIRFlags>(Val&: R).getGEPNoWrapFlags()); |
| 1185 | // An extract of a live-in is an extract of a broadcast, so return the |
| 1186 | // broadcasted element. |
| 1187 | case Instruction::ExtractElement: |
| 1188 | assert(!Ops[0]->getType()->isVectorTy() && "Live-ins should be scalar" ); |
| 1189 | return Ops[0]; |
| 1190 | } |
| 1191 | return nullptr; |
| 1192 | }; |
| 1193 | |
| 1194 | if (Value *V = FoldToIRValue()) |
| 1195 | return R.getParent()->getPlan()->getOrAddLiveIn(V); |
| 1196 | return nullptr; |
| 1197 | } |
| 1198 | |
| 1199 | /// Try to simplify VPSingleDefRecipe \p Def. |
| 1200 | static void simplifyRecipe(VPSingleDefRecipe *Def, VPTypeAnalysis &TypeInfo) { |
| 1201 | VPlan *Plan = Def->getParent()->getPlan(); |
| 1202 | |
| 1203 | // Simplification of live-in IR values for SingleDef recipes using |
| 1204 | // InstSimplifyFolder. |
| 1205 | const DataLayout &DL = |
| 1206 | Plan->getScalarHeader()->getIRBasicBlock()->getDataLayout(); |
| 1207 | if (VPValue *V = tryToFoldLiveIns(R&: *Def, Operands: Def->operands(), DL, TypeInfo)) |
| 1208 | return Def->replaceAllUsesWith(New: V); |
| 1209 | |
| 1210 | // Fold PredPHI LiveIn -> LiveIn. |
| 1211 | if (auto *PredPHI = dyn_cast<VPPredInstPHIRecipe>(Val: Def)) { |
| 1212 | VPValue *Op = PredPHI->getOperand(N: 0); |
| 1213 | if (isa<VPIRValue>(Val: Op)) |
| 1214 | PredPHI->replaceAllUsesWith(New: Op); |
| 1215 | } |
| 1216 | |
| 1217 | VPBuilder Builder(Def); |
| 1218 | VPValue *A; |
| 1219 | if (match(R: Def, P: m_Trunc(Op0: m_ZExtOrSExt(Op0: m_VPValue(V&: A))))) { |
| 1220 | Type *TruncTy = TypeInfo.inferScalarType(V: Def); |
| 1221 | Type *ATy = TypeInfo.inferScalarType(V: A); |
| 1222 | if (TruncTy == ATy) { |
| 1223 | Def->replaceAllUsesWith(New: A); |
| 1224 | } else { |
| 1225 | // Don't replace a scalarizing recipe with a widened cast. |
| 1226 | if (isa<VPReplicateRecipe>(Val: Def)) |
| 1227 | return; |
| 1228 | if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) { |
| 1229 | |
| 1230 | unsigned ExtOpcode = match(V: Def->getOperand(N: 0), P: m_SExt(Op0: m_VPValue())) |
| 1231 | ? Instruction::SExt |
| 1232 | : Instruction::ZExt; |
| 1233 | auto *Ext = Builder.createWidenCast(Opcode: Instruction::CastOps(ExtOpcode), Op: A, |
| 1234 | ResultTy: TruncTy); |
| 1235 | if (auto *UnderlyingExt = Def->getOperand(N: 0)->getUnderlyingValue()) { |
| 1236 | // UnderlyingExt has distinct return type, used to retain legacy cost. |
| 1237 | Ext->setUnderlyingValue(UnderlyingExt); |
| 1238 | } |
| 1239 | Def->replaceAllUsesWith(New: Ext); |
| 1240 | } else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) { |
| 1241 | auto *Trunc = Builder.createWidenCast(Opcode: Instruction::Trunc, Op: A, ResultTy: TruncTy); |
| 1242 | Def->replaceAllUsesWith(New: Trunc); |
| 1243 | } |
| 1244 | } |
| 1245 | #ifndef NDEBUG |
| 1246 | // Verify that the cached type info is for both A and its users is still |
| 1247 | // accurate by comparing it to freshly computed types. |
| 1248 | VPTypeAnalysis TypeInfo2(*Plan); |
| 1249 | assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A)); |
| 1250 | for (VPUser *U : A->users()) { |
| 1251 | auto *R = cast<VPRecipeBase>(U); |
| 1252 | for (VPValue *VPV : R->definedValues()) |
| 1253 | assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV)); |
| 1254 | } |
| 1255 | #endif |
| 1256 | } |
| 1257 | |
| 1258 | // Simplify (X && Y) || (X && !Y) -> X. |
| 1259 | // TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X |
| 1260 | // && (Y || Z) and (X || !X) into true. This requires queuing newly created |
| 1261 | // recipes to be visited during simplification. |
| 1262 | VPValue *X, *Y, *Z; |
| 1263 | if (match(R: Def, |
| 1264 | P: m_c_BinaryOr(Op0: m_LogicalAnd(Op0: m_VPValue(V&: X), Op1: m_VPValue(V&: Y)), |
| 1265 | Op1: m_LogicalAnd(Op0: m_Deferred(V: X), Op1: m_Not(Op0: m_Deferred(V: Y)))))) { |
| 1266 | Def->replaceAllUsesWith(New: X); |
| 1267 | Def->eraseFromParent(); |
| 1268 | return; |
| 1269 | } |
| 1270 | |
| 1271 | // x | 1 -> 1 |
| 1272 | if (match(R: Def, P: m_c_BinaryOr(Op0: m_VPValue(V&: X), Op1: m_AllOnes()))) |
| 1273 | return Def->replaceAllUsesWith(New: Def->getOperand(N: Def->getOperand(N: 0) == X)); |
| 1274 | |
| 1275 | // x | 0 -> x |
| 1276 | if (match(R: Def, P: m_c_BinaryOr(Op0: m_VPValue(V&: X), Op1: m_ZeroInt()))) |
| 1277 | return Def->replaceAllUsesWith(New: X); |
| 1278 | |
| 1279 | // x | !x -> AllOnes |
| 1280 | if (match(R: Def, P: m_c_BinaryOr(Op0: m_VPValue(V&: X), Op1: m_Not(Op0: m_Deferred(V: X))))) { |
| 1281 | return Def->replaceAllUsesWith(New: Plan->getOrAddLiveIn( |
| 1282 | V: ConstantInt::getAllOnesValue(Ty: TypeInfo.inferScalarType(V: Def)))); |
| 1283 | } |
| 1284 | |
| 1285 | // x & 0 -> 0 |
| 1286 | if (match(R: Def, P: m_c_BinaryAnd(Op0: m_VPValue(V&: X), Op1: m_ZeroInt()))) |
| 1287 | return Def->replaceAllUsesWith(New: Def->getOperand(N: Def->getOperand(N: 0) == X)); |
| 1288 | |
| 1289 | // x && false -> false |
| 1290 | if (match(R: Def, P: m_LogicalAnd(Op0: m_VPValue(V&: X), Op1: m_False()))) |
| 1291 | return Def->replaceAllUsesWith(New: Def->getOperand(N: 1)); |
| 1292 | |
| 1293 | // (x && y) || (x && z) -> x && (y || z) |
| 1294 | if (match(R: Def, P: m_c_BinaryOr(Op0: m_LogicalAnd(Op0: m_VPValue(V&: X), Op1: m_VPValue(V&: Y)), |
| 1295 | Op1: m_LogicalAnd(Op0: m_Deferred(V: X), Op1: m_VPValue(V&: Z)))) && |
| 1296 | // Simplify only if one of the operands has one use to avoid creating an |
| 1297 | // extra recipe. |
| 1298 | (!Def->getOperand(N: 0)->hasMoreThanOneUniqueUser() || |
| 1299 | !Def->getOperand(N: 1)->hasMoreThanOneUniqueUser())) |
| 1300 | return Def->replaceAllUsesWith( |
| 1301 | New: Builder.createLogicalAnd(LHS: X, RHS: Builder.createOr(LHS: Y, RHS: Z))); |
| 1302 | |
| 1303 | // x && !x -> 0 |
| 1304 | if (match(R: Def, P: m_LogicalAnd(Op0: m_VPValue(V&: X), Op1: m_Not(Op0: m_Deferred(V: X))))) |
| 1305 | return Def->replaceAllUsesWith(New: Plan->getFalse()); |
| 1306 | |
| 1307 | if (match(R: Def, P: m_Select(Op0: m_VPValue(), Op1: m_VPValue(V&: X), Op2: m_Deferred(V: X)))) |
| 1308 | return Def->replaceAllUsesWith(New: X); |
| 1309 | |
| 1310 | // select c, false, true -> not c |
| 1311 | VPValue *C; |
| 1312 | if (match(R: Def, P: m_Select(Op0: m_VPValue(V&: C), Op1: m_False(), Op2: m_True()))) |
| 1313 | return Def->replaceAllUsesWith(New: Builder.createNot(Operand: C)); |
| 1314 | |
| 1315 | // select !c, x, y -> select c, y, x |
| 1316 | if (match(R: Def, P: m_Select(Op0: m_Not(Op0: m_VPValue(V&: C)), Op1: m_VPValue(V&: X), Op2: m_VPValue(V&: Y)))) { |
| 1317 | Def->setOperand(I: 0, New: C); |
| 1318 | Def->setOperand(I: 1, New: Y); |
| 1319 | Def->setOperand(I: 2, New: X); |
| 1320 | return; |
| 1321 | } |
| 1322 | |
| 1323 | // Reassociate (x && y) && z -> x && (y && z) if x has multiple users. With |
| 1324 | // tail folding it is likely that x is a header mask and can be simplified |
| 1325 | // further. |
| 1326 | if (match(R: Def, P: m_LogicalAnd(Op0: m_LogicalAnd(Op0: m_VPValue(V&: X), Op1: m_VPValue(V&: Y)), |
| 1327 | Op1: m_VPValue(V&: Z))) && |
| 1328 | X->hasMoreThanOneUniqueUser()) |
| 1329 | return Def->replaceAllUsesWith( |
| 1330 | New: Builder.createLogicalAnd(LHS: X, RHS: Builder.createLogicalAnd(LHS: Y, RHS: Z))); |
| 1331 | |
| 1332 | if (match(R: Def, P: m_c_Add(Op0: m_VPValue(V&: A), Op1: m_ZeroInt()))) |
| 1333 | return Def->replaceAllUsesWith(New: A); |
| 1334 | |
| 1335 | if (match(R: Def, P: m_c_Mul(Op0: m_VPValue(V&: A), Op1: m_One()))) |
| 1336 | return Def->replaceAllUsesWith(New: A); |
| 1337 | |
| 1338 | if (match(R: Def, P: m_c_Mul(Op0: m_VPValue(V&: A), Op1: m_ZeroInt()))) |
| 1339 | return Def->replaceAllUsesWith( |
| 1340 | New: Def->getOperand(N: 0) == A ? Def->getOperand(N: 1) : Def->getOperand(N: 0)); |
| 1341 | |
| 1342 | const APInt *APC; |
| 1343 | if (match(R: Def, P: m_c_Mul(Op0: m_VPValue(V&: A), Op1: m_APInt(C&: APC))) && APC->isPowerOf2()) |
| 1344 | return Def->replaceAllUsesWith(New: Builder.createNaryOp( |
| 1345 | Opcode: Instruction::Shl, |
| 1346 | Operands: {A, Plan->getConstantInt(BitWidth: APC->getBitWidth(), Val: APC->exactLogBase2())}, |
| 1347 | Flags: *cast<VPRecipeWithIRFlags>(Val: Def), DL: Def->getDebugLoc())); |
| 1348 | |
| 1349 | // Don't convert udiv to lshr inside a replicate region, as VPInstructions are |
| 1350 | // not allowed in them. |
| 1351 | const VPRegionBlock *ParentRegion = Def->getParent()->getParent(); |
| 1352 | bool IsInReplicateRegion = ParentRegion && ParentRegion->isReplicator(); |
| 1353 | if (!IsInReplicateRegion && match(R: Def, P: m_UDiv(Op0: m_VPValue(V&: A), Op1: m_APInt(C&: APC))) && |
| 1354 | APC->isPowerOf2()) |
| 1355 | return Def->replaceAllUsesWith(New: Builder.createNaryOp( |
| 1356 | Opcode: Instruction::LShr, |
| 1357 | Operands: {A, Plan->getConstantInt(BitWidth: APC->getBitWidth(), Val: APC->exactLogBase2())}, |
| 1358 | Flags: *cast<VPRecipeWithIRFlags>(Val: Def), DL: Def->getDebugLoc())); |
| 1359 | |
| 1360 | if (match(R: Def, P: m_Not(Op0: m_VPValue(V&: A)))) { |
| 1361 | if (match(V: A, P: m_Not(Op0: m_VPValue(V&: A)))) |
| 1362 | return Def->replaceAllUsesWith(New: A); |
| 1363 | |
| 1364 | // Try to fold Not into compares by adjusting the predicate in-place. |
| 1365 | CmpPredicate Pred; |
| 1366 | if (match(V: A, P: m_Cmp(Pred, Op0: m_VPValue(), Op1: m_VPValue()))) { |
| 1367 | auto *Cmp = cast<VPRecipeWithIRFlags>(Val: A); |
| 1368 | if (all_of(Range: Cmp->users(), |
| 1369 | P: match_fn(P: m_CombineOr( |
| 1370 | L: m_Not(Op0: m_Specific(VPV: Cmp)), |
| 1371 | R: m_Select(Op0: m_Specific(VPV: Cmp), Op1: m_VPValue(), Op2: m_VPValue()))))) { |
| 1372 | Cmp->setPredicate(CmpInst::getInversePredicate(pred: Pred)); |
| 1373 | for (VPUser *U : to_vector(Range: Cmp->users())) { |
| 1374 | auto *R = cast<VPSingleDefRecipe>(Val: U); |
| 1375 | if (match(R, P: m_Select(Op0: m_Specific(VPV: Cmp), Op1: m_VPValue(V&: X), Op2: m_VPValue(V&: Y)))) { |
| 1376 | // select (cmp pred), x, y -> select (cmp inv_pred), y, x |
| 1377 | R->setOperand(I: 1, New: Y); |
| 1378 | R->setOperand(I: 2, New: X); |
| 1379 | } else { |
| 1380 | // not (cmp pred) -> cmp inv_pred |
| 1381 | assert(match(R, m_Not(m_Specific(Cmp))) && "Unexpected user" ); |
| 1382 | R->replaceAllUsesWith(New: Cmp); |
| 1383 | } |
| 1384 | } |
| 1385 | // If Cmp doesn't have a debug location, use the one from the negation, |
| 1386 | // to preserve the location. |
| 1387 | if (!Cmp->getDebugLoc() && Def->getDebugLoc()) |
| 1388 | Cmp->setDebugLoc(Def->getDebugLoc()); |
| 1389 | } |
| 1390 | } |
| 1391 | } |
| 1392 | |
| 1393 | // Fold any-of (fcmp uno %A, %A), (fcmp uno %B, %B), ... -> |
| 1394 | // any-of (fcmp uno %A, %B), ... |
| 1395 | if (match(R: Def, P: m_AnyOf())) { |
| 1396 | SmallVector<VPValue *, 4> NewOps; |
| 1397 | VPRecipeBase *UnpairedCmp = nullptr; |
| 1398 | for (VPValue *Op : Def->operands()) { |
| 1399 | VPValue *X; |
| 1400 | if (Op->getNumUsers() > 1 || |
| 1401 | !match(V: Op, P: m_SpecificCmp(MatchPred: CmpInst::FCMP_UNO, Op0: m_VPValue(V&: X), |
| 1402 | Op1: m_Deferred(V: X)))) { |
| 1403 | NewOps.push_back(Elt: Op); |
| 1404 | } else if (!UnpairedCmp) { |
| 1405 | UnpairedCmp = Op->getDefiningRecipe(); |
| 1406 | } else { |
| 1407 | NewOps.push_back(Elt: Builder.createFCmp(Pred: CmpInst::FCMP_UNO, |
| 1408 | A: UnpairedCmp->getOperand(N: 0), B: X)); |
| 1409 | UnpairedCmp = nullptr; |
| 1410 | } |
| 1411 | } |
| 1412 | |
| 1413 | if (UnpairedCmp) |
| 1414 | NewOps.push_back(Elt: UnpairedCmp->getVPSingleValue()); |
| 1415 | |
| 1416 | if (NewOps.size() < Def->getNumOperands()) { |
| 1417 | VPValue *NewAnyOf = Builder.createNaryOp(Opcode: VPInstruction::AnyOf, Operands: NewOps); |
| 1418 | return Def->replaceAllUsesWith(New: NewAnyOf); |
| 1419 | } |
| 1420 | } |
| 1421 | |
| 1422 | // Fold (fcmp uno %X, %X) or (fcmp uno %Y, %Y) -> fcmp uno %X, %Y |
| 1423 | // This is useful for fmax/fmin without fast-math flags, where we need to |
| 1424 | // check if any operand is NaN. |
| 1425 | if (match(R: Def, P: m_BinaryOr(Op0: m_SpecificCmp(MatchPred: CmpInst::FCMP_UNO, Op0: m_VPValue(V&: X), |
| 1426 | Op1: m_Deferred(V: X)), |
| 1427 | Op1: m_SpecificCmp(MatchPred: CmpInst::FCMP_UNO, Op0: m_VPValue(V&: Y), |
| 1428 | Op1: m_Deferred(V: Y))))) { |
| 1429 | VPValue *NewCmp = Builder.createFCmp(Pred: CmpInst::FCMP_UNO, A: X, B: Y); |
| 1430 | return Def->replaceAllUsesWith(New: NewCmp); |
| 1431 | } |
| 1432 | |
| 1433 | // Remove redundant DerviedIVs, that is 0 + A * 1 -> A and 0 + 0 * x -> 0. |
| 1434 | if ((match(R: Def, P: m_DerivedIV(Op0: m_ZeroInt(), Op1: m_VPValue(V&: A), Op2: m_One())) || |
| 1435 | match(R: Def, P: m_DerivedIV(Op0: m_ZeroInt(), Op1: m_ZeroInt(), Op2: m_VPValue()))) && |
| 1436 | TypeInfo.inferScalarType(V: Def->getOperand(N: 1)) == |
| 1437 | TypeInfo.inferScalarType(V: Def)) |
| 1438 | return Def->replaceAllUsesWith(New: Def->getOperand(N: 1)); |
| 1439 | |
| 1440 | if (match(R: Def, P: m_VPInstruction<VPInstruction::WideIVStep>(Ops: m_VPValue(V&: X), |
| 1441 | Ops: m_One()))) { |
| 1442 | Type *WideStepTy = TypeInfo.inferScalarType(V: Def); |
| 1443 | if (TypeInfo.inferScalarType(V: X) != WideStepTy) |
| 1444 | X = Builder.createWidenCast(Opcode: Instruction::Trunc, Op: X, ResultTy: WideStepTy); |
| 1445 | Def->replaceAllUsesWith(New: X); |
| 1446 | return; |
| 1447 | } |
| 1448 | |
| 1449 | // For i1 vp.merges produced by AnyOf reductions: |
| 1450 | // vp.merge true, (or x, y), x, evl -> vp.merge y, true, x, evl |
| 1451 | if (match(R: Def, P: m_Intrinsic<Intrinsic::vp_merge>(Op0: m_True(), Op1: m_VPValue(V&: A), |
| 1452 | Op2: m_VPValue(V&: X), Op3: m_VPValue())) && |
| 1453 | match(V: A, P: m_c_BinaryOr(Op0: m_Specific(VPV: X), Op1: m_VPValue(V&: Y))) && |
| 1454 | TypeInfo.inferScalarType(V: Def)->isIntegerTy(Bitwidth: 1)) { |
| 1455 | Def->setOperand(I: 1, New: Def->getOperand(N: 0)); |
| 1456 | Def->setOperand(I: 0, New: Y); |
| 1457 | return; |
| 1458 | } |
| 1459 | |
| 1460 | if (auto *Phi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(Val: Def)) { |
| 1461 | if (Phi->getOperand(N: 0) == Phi->getOperand(N: 1)) |
| 1462 | Phi->replaceAllUsesWith(New: Phi->getOperand(N: 0)); |
| 1463 | return; |
| 1464 | } |
| 1465 | |
| 1466 | // Look through ExtractLastLane. |
| 1467 | if (match(R: Def, P: m_ExtractLastLane(Op0: m_VPValue(V&: A)))) { |
| 1468 | if (match(V: A, P: m_BuildVector())) { |
| 1469 | auto *BuildVector = cast<VPInstruction>(Val: A); |
| 1470 | Def->replaceAllUsesWith( |
| 1471 | New: BuildVector->getOperand(N: BuildVector->getNumOperands() - 1)); |
| 1472 | return; |
| 1473 | } |
| 1474 | if (Plan->hasScalarVFOnly()) |
| 1475 | return Def->replaceAllUsesWith(New: A); |
| 1476 | } |
| 1477 | |
| 1478 | // Look through ExtractPenultimateElement (BuildVector ....). |
| 1479 | if (match(R: Def, P: m_ExtractPenultimateElement(Op0: m_BuildVector()))) { |
| 1480 | auto *BuildVector = cast<VPInstruction>(Val: Def->getOperand(N: 0)); |
| 1481 | Def->replaceAllUsesWith( |
| 1482 | New: BuildVector->getOperand(N: BuildVector->getNumOperands() - 2)); |
| 1483 | return; |
| 1484 | } |
| 1485 | |
| 1486 | uint64_t Idx; |
| 1487 | if (match(R: Def, P: m_ExtractElement(Op0: m_BuildVector(), Op1: m_ConstantInt(C&: Idx)))) { |
| 1488 | auto *BuildVector = cast<VPInstruction>(Val: Def->getOperand(N: 0)); |
| 1489 | Def->replaceAllUsesWith(New: BuildVector->getOperand(N: Idx)); |
| 1490 | return; |
| 1491 | } |
| 1492 | |
| 1493 | if (match(R: Def, P: m_BuildVector()) && all_equal(Range: Def->operands())) { |
| 1494 | Def->replaceAllUsesWith( |
| 1495 | New: Builder.createNaryOp(Opcode: VPInstruction::Broadcast, Operands: Def->getOperand(N: 0))); |
| 1496 | return; |
| 1497 | } |
| 1498 | |
| 1499 | // Look through broadcast of single-scalar when used as select conditions; in |
| 1500 | // that case the scalar condition can be used directly. |
| 1501 | if (match(R: Def, |
| 1502 | P: m_Select(Op0: m_Broadcast(Op0: m_VPValue(V&: C)), Op1: m_VPValue(), Op2: m_VPValue()))) { |
| 1503 | assert(vputils::isSingleScalar(C) && |
| 1504 | "broadcast operand must be single-scalar" ); |
| 1505 | Def->setOperand(I: 0, New: C); |
| 1506 | return; |
| 1507 | } |
| 1508 | |
| 1509 | if (auto *Phi = dyn_cast<VPPhi>(Val: Def)) { |
| 1510 | if (Phi->getNumOperands() == 1) |
| 1511 | Phi->replaceAllUsesWith(New: Phi->getOperand(N: 0)); |
| 1512 | return; |
| 1513 | } |
| 1514 | |
| 1515 | VPIRValue *IRV; |
| 1516 | if (Def->getNumOperands() == 1 && |
| 1517 | match(R: Def, P: m_ComputeReductionResult(Op0: m_VPIRValue(V&: IRV)))) |
| 1518 | return Def->replaceAllUsesWith(New: IRV); |
| 1519 | |
| 1520 | // Some simplifications can only be applied after unrolling. Perform them |
| 1521 | // below. |
| 1522 | if (!Plan->isUnrolled()) |
| 1523 | return; |
| 1524 | |
| 1525 | // After unrolling, extract-lane may be used to extract values from multiple |
| 1526 | // scalar sources. Only simplify when extracting from a single scalar source. |
| 1527 | VPValue *; |
| 1528 | if (match(R: Def, P: m_ExtractLane(Op0: m_VPValue(V&: LaneToExtract), Op1: m_VPValue(V&: A)))) { |
| 1529 | // Simplify extract-lane(%lane_num, %scalar_val) -> %scalar_val. |
| 1530 | if (vputils::isSingleScalar(VPV: A)) |
| 1531 | return Def->replaceAllUsesWith(New: A); |
| 1532 | |
| 1533 | // Simplify extract-lane with single source to extract-element. |
| 1534 | Def->replaceAllUsesWith(New: Builder.createNaryOp( |
| 1535 | Opcode: Instruction::ExtractElement, Operands: {A, LaneToExtract}, DL: Def->getDebugLoc())); |
| 1536 | return; |
| 1537 | } |
| 1538 | |
| 1539 | // Hoist an invariant increment Y of a phi X, by having X start at Y. |
| 1540 | if (match(R: Def, P: m_c_Add(Op0: m_VPValue(V&: X), Op1: m_VPValue(V&: Y))) && isa<VPIRValue>(Val: Y) && |
| 1541 | isa<VPPhi>(Val: X)) { |
| 1542 | auto *Phi = cast<VPPhi>(Val: X); |
| 1543 | if (Phi->getOperand(N: 1) != Def && match(V: Phi->getOperand(N: 0), P: m_ZeroInt()) && |
| 1544 | Phi->getSingleUser() == Def) { |
| 1545 | Phi->setOperand(I: 0, New: Y); |
| 1546 | Def->replaceAllUsesWith(New: Phi); |
| 1547 | return; |
| 1548 | } |
| 1549 | } |
| 1550 | |
| 1551 | // Simplify unrolled VectorPointer without offset, or with zero offset, to |
| 1552 | // just the pointer operand. |
| 1553 | if (auto *VPR = dyn_cast<VPVectorPointerRecipe>(Val: Def)) |
| 1554 | if (!VPR->getOffset() || match(V: VPR->getOffset(), P: m_ZeroInt())) |
| 1555 | return VPR->replaceAllUsesWith(New: VPR->getOperand(N: 0)); |
| 1556 | |
| 1557 | // VPScalarIVSteps after unrolling can be replaced by their start value, if |
| 1558 | // the start index is zero and only the first lane 0 is demanded. |
| 1559 | if (auto *Steps = dyn_cast<VPScalarIVStepsRecipe>(Val: Def)) { |
| 1560 | if (!Steps->getStartIndex() && vputils::onlyFirstLaneUsed(Def: Steps)) { |
| 1561 | Steps->replaceAllUsesWith(New: Steps->getOperand(N: 0)); |
| 1562 | return; |
| 1563 | } |
| 1564 | } |
| 1565 | // Simplify redundant ReductionStartVector recipes after unrolling. |
| 1566 | VPValue *StartV; |
| 1567 | if (match(R: Def, P: m_VPInstruction<VPInstruction::ReductionStartVector>( |
| 1568 | Ops: m_VPValue(V&: StartV), Ops: m_VPValue(), Ops: m_VPValue()))) { |
| 1569 | Def->replaceUsesWithIf(New: StartV, ShouldReplace: [](const VPUser &U, unsigned Idx) { |
| 1570 | auto *PhiR = dyn_cast<VPReductionPHIRecipe>(Val: &U); |
| 1571 | return PhiR && PhiR->isInLoop(); |
| 1572 | }); |
| 1573 | return; |
| 1574 | } |
| 1575 | |
| 1576 | if (match(R: Def, P: m_ExtractLastLane(Op0: m_Broadcast(Op0: m_VPValue(V&: A))))) { |
| 1577 | Def->replaceAllUsesWith(New: A); |
| 1578 | return; |
| 1579 | } |
| 1580 | |
| 1581 | if (match(R: Def, P: m_ExtractLastLane(Op0: m_VPValue(V&: A))) && |
| 1582 | ((isa<VPInstruction>(Val: A) && vputils::isSingleScalar(VPV: A)) || |
| 1583 | (isa<VPReplicateRecipe>(Val: A) && |
| 1584 | cast<VPReplicateRecipe>(Val: A)->isSingleScalar())) && |
| 1585 | all_of(Range: A->users(), |
| 1586 | P: [Def, A](VPUser *U) { return U->usesScalars(Op: A) || Def == U; })) { |
| 1587 | return Def->replaceAllUsesWith(New: A); |
| 1588 | } |
| 1589 | |
| 1590 | if (Plan->getUF() == 1 && match(R: Def, P: m_ExtractLastPart(Op0: m_VPValue(V&: A)))) |
| 1591 | return Def->replaceAllUsesWith(New: A); |
| 1592 | } |
| 1593 | |
| 1594 | void VPlanTransforms::simplifyRecipes(VPlan &Plan) { |
| 1595 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( |
| 1596 | Plan.getEntry()); |
| 1597 | VPTypeAnalysis TypeInfo(Plan); |
| 1598 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Range: RPOT)) { |
| 1599 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) |
| 1600 | if (auto *Def = dyn_cast<VPSingleDefRecipe>(Val: &R)) |
| 1601 | simplifyRecipe(Def, TypeInfo); |
| 1602 | } |
| 1603 | } |
| 1604 | |
| 1605 | static void narrowToSingleScalarRecipes(VPlan &Plan) { |
| 1606 | if (Plan.hasScalarVFOnly()) |
| 1607 | return; |
| 1608 | |
| 1609 | // Try to narrow wide and replicating recipes to single scalar recipes, |
| 1610 | // based on VPlan analysis. Only process blocks in the loop region for now, |
| 1611 | // without traversing into nested regions, as recipes in replicate regions |
| 1612 | // cannot be converted yet. |
| 1613 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 1614 | Range: vp_depth_first_shallow(G: Plan.getVectorLoopRegion()->getEntry()))) { |
| 1615 | for (VPRecipeBase &R : make_early_inc_range(Range: reverse(C&: *VPBB))) { |
| 1616 | if (!isa<VPWidenRecipe, VPWidenGEPRecipe, VPReplicateRecipe, |
| 1617 | VPWidenStoreRecipe>(Val: &R)) |
| 1618 | continue; |
| 1619 | auto *RepR = dyn_cast<VPReplicateRecipe>(Val: &R); |
| 1620 | if (RepR && (RepR->isSingleScalar() || RepR->isPredicated())) |
| 1621 | continue; |
| 1622 | |
| 1623 | // Convert an unmasked scatter with an uniform address into |
| 1624 | // extract-last-lane + scalar store. |
| 1625 | // TODO: Add a profitability check comparing the cost of a scatter vs. |
| 1626 | // extract + scalar store. |
| 1627 | auto *WidenStoreR = dyn_cast<VPWidenStoreRecipe>(Val: &R); |
| 1628 | if (WidenStoreR && vputils::isSingleScalar(VPV: WidenStoreR->getAddr()) && |
| 1629 | !WidenStoreR->isConsecutive()) { |
| 1630 | assert(!WidenStoreR->isReverse() && |
| 1631 | "Not consecutive memory recipes shouldn't be reversed" ); |
| 1632 | VPValue *Mask = WidenStoreR->getMask(); |
| 1633 | |
| 1634 | // Only convert the scatter to a scalar store if it is unmasked. |
| 1635 | // TODO: Support converting scatter masked by the header mask to scalar |
| 1636 | // store. |
| 1637 | if (Mask) |
| 1638 | continue; |
| 1639 | |
| 1640 | auto * = new VPInstruction(VPInstruction::ExtractLastLane, |
| 1641 | {WidenStoreR->getOperand(N: 1)}); |
| 1642 | Extract->insertBefore(InsertPos: WidenStoreR); |
| 1643 | |
| 1644 | // TODO: Sink the scalar store recipe to middle block if possible. |
| 1645 | auto *ScalarStore = new VPReplicateRecipe( |
| 1646 | &WidenStoreR->getIngredient(), {Extract, WidenStoreR->getAddr()}, |
| 1647 | true /*IsSingleScalar*/, nullptr /*Mask*/, {}, |
| 1648 | *WidenStoreR /*Metadata*/); |
| 1649 | ScalarStore->insertBefore(InsertPos: WidenStoreR); |
| 1650 | WidenStoreR->eraseFromParent(); |
| 1651 | continue; |
| 1652 | } |
| 1653 | |
| 1654 | auto *RepOrWidenR = dyn_cast<VPRecipeWithIRFlags>(Val: &R); |
| 1655 | if (RepR && isa<StoreInst>(Val: RepR->getUnderlyingInstr()) && |
| 1656 | vputils::isSingleScalar(VPV: RepR->getOperand(N: 1))) { |
| 1657 | auto *Clone = new VPReplicateRecipe( |
| 1658 | RepOrWidenR->getUnderlyingInstr(), RepOrWidenR->operands(), |
| 1659 | true /*IsSingleScalar*/, nullptr /*Mask*/, *RepR /*Flags*/, |
| 1660 | *RepR /*Metadata*/, RepR->getDebugLoc()); |
| 1661 | Clone->insertBefore(InsertPos: RepOrWidenR); |
| 1662 | VPBuilder Builder(Clone); |
| 1663 | VPValue * = Clone->getOperand(N: 0); |
| 1664 | if (vputils::isUniformAcrossVFsAndUFs(V: RepR->getOperand(N: 1))) |
| 1665 | ExtractOp = |
| 1666 | Builder.createNaryOp(Opcode: VPInstruction::ExtractLastPart, Operands: ExtractOp); |
| 1667 | ExtractOp = |
| 1668 | Builder.createNaryOp(Opcode: VPInstruction::ExtractLastLane, Operands: ExtractOp); |
| 1669 | Clone->setOperand(I: 0, New: ExtractOp); |
| 1670 | RepR->eraseFromParent(); |
| 1671 | continue; |
| 1672 | } |
| 1673 | |
| 1674 | // Skip recipes that aren't single scalars. |
| 1675 | if (!RepOrWidenR || !vputils::isSingleScalar(VPV: RepOrWidenR)) |
| 1676 | continue; |
| 1677 | |
| 1678 | // Skip recipes for which conversion to single-scalar does introduce |
| 1679 | // additional broadcasts. No extra broadcasts are needed, if either only |
| 1680 | // the scalars of the recipe are used, or at least one of the operands |
| 1681 | // would require a broadcast. In the latter case, the single-scalar may |
| 1682 | // need to be broadcasted, but another broadcast is removed. |
| 1683 | if (!all_of(Range: RepOrWidenR->users(), |
| 1684 | P: [RepOrWidenR](const VPUser *U) { |
| 1685 | if (auto *VPI = dyn_cast<VPInstruction>(Val: U)) { |
| 1686 | unsigned Opcode = VPI->getOpcode(); |
| 1687 | if (Opcode == VPInstruction::ExtractLastLane || |
| 1688 | Opcode == VPInstruction::ExtractLastPart || |
| 1689 | Opcode == VPInstruction::ExtractPenultimateElement) |
| 1690 | return true; |
| 1691 | } |
| 1692 | |
| 1693 | return U->usesScalars(Op: RepOrWidenR); |
| 1694 | }) && |
| 1695 | none_of(Range: RepOrWidenR->operands(), P: [RepOrWidenR](VPValue *Op) { |
| 1696 | if (Op->getSingleUser() != RepOrWidenR) |
| 1697 | return false; |
| 1698 | // Non-constant live-ins require broadcasts, while constants do not |
| 1699 | // need explicit broadcasts. |
| 1700 | auto *IRV = dyn_cast<VPIRValue>(Val: Op); |
| 1701 | bool LiveInNeedsBroadcast = IRV && !isa<Constant>(Val: IRV->getValue()); |
| 1702 | auto *OpR = dyn_cast<VPReplicateRecipe>(Val: Op); |
| 1703 | return LiveInNeedsBroadcast || (OpR && OpR->isSingleScalar()); |
| 1704 | })) |
| 1705 | continue; |
| 1706 | |
| 1707 | auto *Clone = new VPReplicateRecipe( |
| 1708 | RepOrWidenR->getUnderlyingInstr(), RepOrWidenR->operands(), |
| 1709 | true /*IsSingleScalar*/, nullptr, *RepOrWidenR); |
| 1710 | Clone->insertBefore(InsertPos: RepOrWidenR); |
| 1711 | RepOrWidenR->replaceAllUsesWith(New: Clone); |
| 1712 | if (isDeadRecipe(R&: *RepOrWidenR)) |
| 1713 | RepOrWidenR->eraseFromParent(); |
| 1714 | } |
| 1715 | } |
| 1716 | } |
| 1717 | |
| 1718 | /// Try to see if all of \p Blend's masks share a common value logically and'ed |
| 1719 | /// and remove it from the masks. |
| 1720 | static void removeCommonBlendMask(VPBlendRecipe *Blend) { |
| 1721 | if (Blend->isNormalized()) |
| 1722 | return; |
| 1723 | VPValue *CommonEdgeMask; |
| 1724 | if (!match(V: Blend->getMask(Idx: 0), |
| 1725 | P: m_LogicalAnd(Op0: m_VPValue(V&: CommonEdgeMask), Op1: m_VPValue()))) |
| 1726 | return; |
| 1727 | for (unsigned I = 0; I < Blend->getNumIncomingValues(); I++) |
| 1728 | if (!match(V: Blend->getMask(Idx: I), |
| 1729 | P: m_LogicalAnd(Op0: m_Specific(VPV: CommonEdgeMask), Op1: m_VPValue()))) |
| 1730 | return; |
| 1731 | for (unsigned I = 0; I < Blend->getNumIncomingValues(); I++) |
| 1732 | Blend->setMask(Idx: I, V: Blend->getMask(Idx: I)->getDefiningRecipe()->getOperand(N: 1)); |
| 1733 | } |
| 1734 | |
| 1735 | /// Normalize and simplify VPBlendRecipes. Should be run after simplifyRecipes |
| 1736 | /// to make sure the masks are simplified. |
| 1737 | static void simplifyBlends(VPlan &Plan) { |
| 1738 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 1739 | Range: vp_depth_first_shallow(G: Plan.getVectorLoopRegion()->getEntry()))) { |
| 1740 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) { |
| 1741 | auto *Blend = dyn_cast<VPBlendRecipe>(Val: &R); |
| 1742 | if (!Blend) |
| 1743 | continue; |
| 1744 | |
| 1745 | removeCommonBlendMask(Blend); |
| 1746 | |
| 1747 | // Try to remove redundant blend recipes. |
| 1748 | SmallPtrSet<VPValue *, 4> UniqueValues; |
| 1749 | if (Blend->isNormalized() || !match(V: Blend->getMask(Idx: 0), P: m_False())) |
| 1750 | UniqueValues.insert(Ptr: Blend->getIncomingValue(Idx: 0)); |
| 1751 | for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I) |
| 1752 | if (!match(V: Blend->getMask(Idx: I), P: m_False())) |
| 1753 | UniqueValues.insert(Ptr: Blend->getIncomingValue(Idx: I)); |
| 1754 | |
| 1755 | if (UniqueValues.size() == 1) { |
| 1756 | Blend->replaceAllUsesWith(New: *UniqueValues.begin()); |
| 1757 | Blend->eraseFromParent(); |
| 1758 | continue; |
| 1759 | } |
| 1760 | |
| 1761 | if (Blend->isNormalized()) |
| 1762 | continue; |
| 1763 | |
| 1764 | // Normalize the blend so its first incoming value is used as the initial |
| 1765 | // value with the others blended into it. |
| 1766 | |
| 1767 | unsigned StartIndex = 0; |
| 1768 | for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { |
| 1769 | // If a value's mask is used only by the blend then is can be deadcoded. |
| 1770 | // TODO: Find the most expensive mask that can be deadcoded, or a mask |
| 1771 | // that's used by multiple blends where it can be removed from them all. |
| 1772 | VPValue *Mask = Blend->getMask(Idx: I); |
| 1773 | if (Mask->getNumUsers() == 1 && !match(V: Mask, P: m_False())) { |
| 1774 | StartIndex = I; |
| 1775 | break; |
| 1776 | } |
| 1777 | } |
| 1778 | |
| 1779 | SmallVector<VPValue *, 4> OperandsWithMask; |
| 1780 | OperandsWithMask.push_back(Elt: Blend->getIncomingValue(Idx: StartIndex)); |
| 1781 | |
| 1782 | for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { |
| 1783 | if (I == StartIndex) |
| 1784 | continue; |
| 1785 | OperandsWithMask.push_back(Elt: Blend->getIncomingValue(Idx: I)); |
| 1786 | OperandsWithMask.push_back(Elt: Blend->getMask(Idx: I)); |
| 1787 | } |
| 1788 | |
| 1789 | auto *NewBlend = |
| 1790 | new VPBlendRecipe(cast_or_null<PHINode>(Val: Blend->getUnderlyingValue()), |
| 1791 | OperandsWithMask, Blend->getDebugLoc()); |
| 1792 | NewBlend->insertBefore(InsertPos: &R); |
| 1793 | |
| 1794 | VPValue *DeadMask = Blend->getMask(Idx: StartIndex); |
| 1795 | Blend->replaceAllUsesWith(New: NewBlend); |
| 1796 | Blend->eraseFromParent(); |
| 1797 | recursivelyDeleteDeadRecipes(V: DeadMask); |
| 1798 | |
| 1799 | /// Simplify BLEND %a, %b, Not(%mask) -> BLEND %b, %a, %mask. |
| 1800 | VPValue *NewMask; |
| 1801 | if (NewBlend->getNumOperands() == 3 && |
| 1802 | match(V: NewBlend->getMask(Idx: 1), P: m_Not(Op0: m_VPValue(V&: NewMask)))) { |
| 1803 | VPValue *Inc0 = NewBlend->getOperand(N: 0); |
| 1804 | VPValue *Inc1 = NewBlend->getOperand(N: 1); |
| 1805 | VPValue *OldMask = NewBlend->getOperand(N: 2); |
| 1806 | NewBlend->setOperand(I: 0, New: Inc1); |
| 1807 | NewBlend->setOperand(I: 1, New: Inc0); |
| 1808 | NewBlend->setOperand(I: 2, New: NewMask); |
| 1809 | if (OldMask->getNumUsers() == 0) |
| 1810 | cast<VPInstruction>(Val: OldMask)->eraseFromParent(); |
| 1811 | } |
| 1812 | } |
| 1813 | } |
| 1814 | } |
| 1815 | |
| 1816 | /// Optimize the width of vector induction variables in \p Plan based on a known |
| 1817 | /// constant Trip Count, \p BestVF and \p BestUF. |
| 1818 | static bool optimizeVectorInductionWidthForTCAndVFUF(VPlan &Plan, |
| 1819 | ElementCount BestVF, |
| 1820 | unsigned BestUF) { |
| 1821 | // Only proceed if we have not completely removed the vector region. |
| 1822 | if (!Plan.getVectorLoopRegion()) |
| 1823 | return false; |
| 1824 | |
| 1825 | const APInt *TC; |
| 1826 | if (!BestVF.isFixed() || !match(V: Plan.getTripCount(), P: m_APInt(C&: TC))) |
| 1827 | return false; |
| 1828 | |
| 1829 | // Calculate the minimum power-of-2 bit width that can fit the known TC, VF |
| 1830 | // and UF. Returns at least 8. |
| 1831 | auto ComputeBitWidth = [](APInt TC, uint64_t Align) { |
| 1832 | APInt AlignedTC = |
| 1833 | Align * APIntOps::RoundingUDiv(A: TC, B: APInt(TC.getBitWidth(), Align), |
| 1834 | RM: APInt::Rounding::UP); |
| 1835 | APInt MaxVal = AlignedTC - 1; |
| 1836 | return std::max<unsigned>(a: PowerOf2Ceil(A: MaxVal.getActiveBits()), b: 8); |
| 1837 | }; |
| 1838 | unsigned NewBitWidth = |
| 1839 | ComputeBitWidth(*TC, BestVF.getKnownMinValue() * BestUF); |
| 1840 | |
| 1841 | LLVMContext &Ctx = Plan.getContext(); |
| 1842 | auto *NewIVTy = IntegerType::get(C&: Ctx, NumBits: NewBitWidth); |
| 1843 | |
| 1844 | bool MadeChange = false; |
| 1845 | |
| 1846 | VPBasicBlock * = Plan.getVectorLoopRegion()->getEntryBasicBlock(); |
| 1847 | for (VPRecipeBase &Phi : HeaderVPBB->phis()) { |
| 1848 | auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: &Phi); |
| 1849 | |
| 1850 | // Currently only handle canonical IVs as it is trivial to replace the start |
| 1851 | // and stop values, and we currently only perform the optimization when the |
| 1852 | // IV has a single use. |
| 1853 | if (!WideIV || !WideIV->isCanonical() || |
| 1854 | WideIV->hasMoreThanOneUniqueUser() || |
| 1855 | NewIVTy == WideIV->getScalarType()) |
| 1856 | continue; |
| 1857 | |
| 1858 | // Currently only handle cases where the single user is a header-mask |
| 1859 | // comparison with the backedge-taken-count. |
| 1860 | VPUser *SingleUser = WideIV->getSingleUser(); |
| 1861 | if (!SingleUser || |
| 1862 | !match(U: SingleUser, P: m_ICmp(Op0: m_Specific(VPV: WideIV), |
| 1863 | Op1: m_Broadcast(Op0: m_Specific( |
| 1864 | VPV: Plan.getOrCreateBackedgeTakenCount()))))) |
| 1865 | continue; |
| 1866 | |
| 1867 | // Update IV operands and comparison bound to use new narrower type. |
| 1868 | auto *NewStart = Plan.getConstantInt(Ty: NewIVTy, Val: 0); |
| 1869 | WideIV->setStartValue(NewStart); |
| 1870 | auto *NewStep = Plan.getConstantInt(Ty: NewIVTy, Val: 1); |
| 1871 | WideIV->setStepValue(NewStep); |
| 1872 | |
| 1873 | auto *NewBTC = new VPWidenCastRecipe( |
| 1874 | Instruction::Trunc, Plan.getOrCreateBackedgeTakenCount(), NewIVTy, |
| 1875 | nullptr, VPIRFlags::getDefaultFlags(Opcode: Instruction::Trunc)); |
| 1876 | Plan.getVectorPreheader()->appendRecipe(Recipe: NewBTC); |
| 1877 | auto *Cmp = cast<VPInstruction>(Val: WideIV->getSingleUser()); |
| 1878 | Cmp->setOperand(I: 1, New: NewBTC); |
| 1879 | |
| 1880 | MadeChange = true; |
| 1881 | } |
| 1882 | |
| 1883 | return MadeChange; |
| 1884 | } |
| 1885 | |
| 1886 | /// Return true if \p Cond is known to be true for given \p BestVF and \p |
| 1887 | /// BestUF. |
| 1888 | static bool isConditionTrueViaVFAndUF(VPValue *Cond, VPlan &Plan, |
| 1889 | ElementCount BestVF, unsigned BestUF, |
| 1890 | PredicatedScalarEvolution &PSE) { |
| 1891 | if (match(V: Cond, P: m_BinaryOr(Op0: m_VPValue(), Op1: m_VPValue()))) |
| 1892 | return any_of(Range: Cond->getDefiningRecipe()->operands(), P: [&Plan, BestVF, BestUF, |
| 1893 | &PSE](VPValue *C) { |
| 1894 | return isConditionTrueViaVFAndUF(Cond: C, Plan, BestVF, BestUF, PSE); |
| 1895 | }); |
| 1896 | |
| 1897 | auto *CanIV = Plan.getVectorLoopRegion()->getCanonicalIV(); |
| 1898 | if (!match(V: Cond, P: m_SpecificICmp(MatchPred: CmpInst::ICMP_EQ, |
| 1899 | Op0: m_Specific(VPV: CanIV->getBackedgeValue()), |
| 1900 | Op1: m_Specific(VPV: &Plan.getVectorTripCount())))) |
| 1901 | return false; |
| 1902 | |
| 1903 | // The compare checks CanIV + VFxUF == vector trip count. The vector trip |
| 1904 | // count is not conveniently available as SCEV so far, so we compare directly |
| 1905 | // against the original trip count. This is stricter than necessary, as we |
| 1906 | // will only return true if the trip count == vector trip count. |
| 1907 | const SCEV *VectorTripCount = |
| 1908 | vputils::getSCEVExprForVPValue(V: &Plan.getVectorTripCount(), PSE); |
| 1909 | if (isa<SCEVCouldNotCompute>(Val: VectorTripCount)) |
| 1910 | VectorTripCount = vputils::getSCEVExprForVPValue(V: Plan.getTripCount(), PSE); |
| 1911 | assert(!isa<SCEVCouldNotCompute>(VectorTripCount) && |
| 1912 | "Trip count SCEV must be computable" ); |
| 1913 | ScalarEvolution &SE = *PSE.getSE(); |
| 1914 | ElementCount NumElements = BestVF.multiplyCoefficientBy(RHS: BestUF); |
| 1915 | const SCEV *C = SE.getElementCount(Ty: VectorTripCount->getType(), EC: NumElements); |
| 1916 | return SE.isKnownPredicate(Pred: CmpInst::ICMP_EQ, LHS: VectorTripCount, RHS: C); |
| 1917 | } |
| 1918 | |
| 1919 | /// Try to replace multiple active lane masks used for control flow with |
| 1920 | /// a single, wide active lane mask instruction followed by multiple |
| 1921 | /// extract subvector intrinsics. This applies to the active lane mask |
| 1922 | /// instructions both in the loop and in the preheader. |
| 1923 | /// Incoming values of all ActiveLaneMaskPHIs are updated to use the |
| 1924 | /// new extracts from the first active lane mask, which has it's last |
| 1925 | /// operand (multiplier) set to UF. |
| 1926 | static bool tryToReplaceALMWithWideALM(VPlan &Plan, ElementCount VF, |
| 1927 | unsigned UF) { |
| 1928 | if (!EnableWideActiveLaneMask || !VF.isVector() || UF == 1) |
| 1929 | return false; |
| 1930 | |
| 1931 | VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion(); |
| 1932 | VPBasicBlock *ExitingVPBB = VectorRegion->getExitingBasicBlock(); |
| 1933 | auto *Term = &ExitingVPBB->back(); |
| 1934 | |
| 1935 | using namespace llvm::VPlanPatternMatch; |
| 1936 | if (!match(V: Term, P: m_BranchOnCond(Op0: m_Not(Op0: m_ActiveLaneMask( |
| 1937 | Op0: m_VPValue(), Op1: m_VPValue(), Op2: m_VPValue()))))) |
| 1938 | return false; |
| 1939 | |
| 1940 | auto * = cast<VPBasicBlock>(Val: VectorRegion->getEntry()); |
| 1941 | LLVMContext &Ctx = Plan.getContext(); |
| 1942 | |
| 1943 | auto = [&](VPInstruction *ALM, |
| 1944 | SmallVectorImpl<VPValue *> &) { |
| 1945 | DebugLoc DL = ALM->getDebugLoc(); |
| 1946 | for (unsigned Part = 0; Part < UF; ++Part) { |
| 1947 | SmallVector<VPValue *> Ops; |
| 1948 | Ops.append(IL: {ALM, Plan.getOrAddLiveIn( |
| 1949 | V: ConstantInt::get(Ty: IntegerType::getInt64Ty(C&: Ctx), |
| 1950 | V: VF.getKnownMinValue() * Part))}); |
| 1951 | auto *Ext = |
| 1952 | new VPWidenIntrinsicRecipe(Intrinsic::vector_extract, Ops, |
| 1953 | IntegerType::getInt1Ty(C&: Ctx), {}, {}, DL); |
| 1954 | Extracts[Part] = Ext; |
| 1955 | Ext->insertAfter(InsertPos: ALM); |
| 1956 | } |
| 1957 | }; |
| 1958 | |
| 1959 | // Create a list of each active lane mask phi, ordered by unroll part. |
| 1960 | SmallVector<VPActiveLaneMaskPHIRecipe *> Phis(UF, nullptr); |
| 1961 | for (VPRecipeBase &R : Header->phis()) { |
| 1962 | auto *Phi = dyn_cast<VPActiveLaneMaskPHIRecipe>(Val: &R); |
| 1963 | if (!Phi) |
| 1964 | continue; |
| 1965 | VPValue *Index = nullptr; |
| 1966 | match(V: Phi->getBackedgeValue(), |
| 1967 | P: m_ActiveLaneMask(Op0: m_VPValue(V&: Index), Op1: m_VPValue(), Op2: m_VPValue())); |
| 1968 | assert(Index && "Expected index from ActiveLaneMask instruction" ); |
| 1969 | |
| 1970 | uint64_t Part; |
| 1971 | if (match(V: Index, |
| 1972 | P: m_VPInstruction<VPInstruction::CanonicalIVIncrementForPart>( |
| 1973 | Ops: m_VPValue(), Ops: m_ConstantInt(C&: Part)))) |
| 1974 | Phis[Part] = Phi; |
| 1975 | else |
| 1976 | // Anything other than a CanonicalIVIncrementForPart is part 0 |
| 1977 | Phis[0] = Phi; |
| 1978 | } |
| 1979 | |
| 1980 | assert(all_of(Phis, [](VPActiveLaneMaskPHIRecipe *Phi) { return Phi; }) && |
| 1981 | "Expected one VPActiveLaneMaskPHIRecipe for each unroll part" ); |
| 1982 | |
| 1983 | auto *EntryALM = cast<VPInstruction>(Val: Phis[0]->getStartValue()); |
| 1984 | auto *LoopALM = cast<VPInstruction>(Val: Phis[0]->getBackedgeValue()); |
| 1985 | |
| 1986 | assert((EntryALM->getOpcode() == VPInstruction::ActiveLaneMask && |
| 1987 | LoopALM->getOpcode() == VPInstruction::ActiveLaneMask) && |
| 1988 | "Expected incoming values of Phi to be ActiveLaneMasks" ); |
| 1989 | |
| 1990 | // When using wide lane masks, the return type of the get.active.lane.mask |
| 1991 | // intrinsic is VF x UF (last operand). |
| 1992 | VPValue *ALMMultiplier = Plan.getConstantInt(BitWidth: 64, Val: UF); |
| 1993 | EntryALM->setOperand(I: 2, New: ALMMultiplier); |
| 1994 | LoopALM->setOperand(I: 2, New: ALMMultiplier); |
| 1995 | |
| 1996 | // Create UF x extract vectors and insert into preheader. |
| 1997 | SmallVector<VPValue *> (UF); |
| 1998 | ExtractFromALM(EntryALM, EntryExtracts); |
| 1999 | |
| 2000 | // Create UF x extract vectors and insert before the loop compare & branch, |
| 2001 | // updating the compare to use the first extract. |
| 2002 | SmallVector<VPValue *> (UF); |
| 2003 | ExtractFromALM(LoopALM, LoopExtracts); |
| 2004 | VPInstruction *Not = cast<VPInstruction>(Val: Term->getOperand(N: 0)); |
| 2005 | Not->setOperand(I: 0, New: LoopExtracts[0]); |
| 2006 | |
| 2007 | // Update the incoming values of active lane mask phis. |
| 2008 | for (unsigned Part = 0; Part < UF; ++Part) { |
| 2009 | Phis[Part]->setStartValue(EntryExtracts[Part]); |
| 2010 | Phis[Part]->setBackedgeValue(LoopExtracts[Part]); |
| 2011 | } |
| 2012 | |
| 2013 | return true; |
| 2014 | } |
| 2015 | |
| 2016 | /// Try to simplify the branch condition of \p Plan. This may restrict the |
| 2017 | /// resulting plan to \p BestVF and \p BestUF. |
| 2018 | static bool simplifyBranchConditionForVFAndUF(VPlan &Plan, ElementCount BestVF, |
| 2019 | unsigned BestUF, |
| 2020 | PredicatedScalarEvolution &PSE) { |
| 2021 | VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion(); |
| 2022 | VPBasicBlock *ExitingVPBB = VectorRegion->getExitingBasicBlock(); |
| 2023 | auto *Term = &ExitingVPBB->back(); |
| 2024 | VPValue *Cond; |
| 2025 | if (match(V: Term, P: m_BranchOnCount()) || |
| 2026 | match(V: Term, P: m_BranchOnCond(Op0: m_Not(Op0: m_ActiveLaneMask( |
| 2027 | Op0: m_VPValue(), Op1: m_VPValue(), Op2: m_VPValue()))))) { |
| 2028 | // Try to simplify the branch condition if VectorTC <= VF * UF when the |
| 2029 | // latch terminator is BranchOnCount or BranchOnCond(Not(ActiveLaneMask)). |
| 2030 | const SCEV *VectorTripCount = |
| 2031 | vputils::getSCEVExprForVPValue(V: &Plan.getVectorTripCount(), PSE); |
| 2032 | if (isa<SCEVCouldNotCompute>(Val: VectorTripCount)) |
| 2033 | VectorTripCount = |
| 2034 | vputils::getSCEVExprForVPValue(V: Plan.getTripCount(), PSE); |
| 2035 | assert(!isa<SCEVCouldNotCompute>(VectorTripCount) && |
| 2036 | "Trip count SCEV must be computable" ); |
| 2037 | ScalarEvolution &SE = *PSE.getSE(); |
| 2038 | ElementCount NumElements = BestVF.multiplyCoefficientBy(RHS: BestUF); |
| 2039 | const SCEV *C = SE.getElementCount(Ty: VectorTripCount->getType(), EC: NumElements); |
| 2040 | if (!SE.isKnownPredicate(Pred: CmpInst::ICMP_ULE, LHS: VectorTripCount, RHS: C)) |
| 2041 | return false; |
| 2042 | } else if (match(V: Term, P: m_BranchOnCond(Op0: m_VPValue(V&: Cond))) || |
| 2043 | match(V: Term, P: m_BranchOnTwoConds(Op0: m_VPValue(), Op1: m_VPValue(V&: Cond)))) { |
| 2044 | // For BranchOnCond, check if we can prove the condition to be true using VF |
| 2045 | // and UF. |
| 2046 | if (!isConditionTrueViaVFAndUF(Cond, Plan, BestVF, BestUF, PSE)) |
| 2047 | return false; |
| 2048 | } else { |
| 2049 | return false; |
| 2050 | } |
| 2051 | |
| 2052 | // The vector loop region only executes once. If possible, completely remove |
| 2053 | // the region, otherwise replace the terminator controlling the latch with |
| 2054 | // (BranchOnCond true). |
| 2055 | // TODO: VPWidenIntOrFpInductionRecipe is only partially supported; add |
| 2056 | // support for other non-canonical widen induction recipes (e.g., |
| 2057 | // VPWidenPointerInductionRecipe). |
| 2058 | // TODO: fold branch-on-constant after dissolving region. |
| 2059 | auto * = cast<VPBasicBlock>(Val: VectorRegion->getEntry()); |
| 2060 | if (all_of(Range: Header->phis(), P: [](VPRecipeBase &Phi) { |
| 2061 | if (auto *R = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: &Phi)) |
| 2062 | return R->isCanonical(); |
| 2063 | return isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe, |
| 2064 | VPFirstOrderRecurrencePHIRecipe, VPPhi>(Val: &Phi); |
| 2065 | })) { |
| 2066 | for (VPRecipeBase & : make_early_inc_range(Range: Header->phis())) { |
| 2067 | if (auto *R = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: &HeaderR)) { |
| 2068 | VPBuilder Builder(Plan.getVectorPreheader()); |
| 2069 | VPValue *StepV = Builder.createNaryOp(Opcode: VPInstruction::StepVector, Operands: {}, |
| 2070 | ResultTy: R->getScalarType()); |
| 2071 | HeaderR.getVPSingleValue()->replaceAllUsesWith(New: StepV); |
| 2072 | HeaderR.eraseFromParent(); |
| 2073 | continue; |
| 2074 | } |
| 2075 | auto *Phi = cast<VPPhiAccessors>(Val: &HeaderR); |
| 2076 | HeaderR.getVPSingleValue()->replaceAllUsesWith(New: Phi->getIncomingValue(Idx: 0)); |
| 2077 | HeaderR.eraseFromParent(); |
| 2078 | } |
| 2079 | |
| 2080 | VPBlockBase * = VectorRegion->getSinglePredecessor(); |
| 2081 | SmallVector<VPBlockBase *> Exits = to_vector(Range&: VectorRegion->getSuccessors()); |
| 2082 | VPBlockUtils::disconnectBlocks(From: Preheader, To: VectorRegion); |
| 2083 | for (VPBlockBase *Exit : Exits) |
| 2084 | VPBlockUtils::disconnectBlocks(From: VectorRegion, To: Exit); |
| 2085 | |
| 2086 | for (VPBlockBase *B : vp_depth_first_shallow(G: VectorRegion->getEntry())) |
| 2087 | B->setParent(nullptr); |
| 2088 | |
| 2089 | VPBlockUtils::connectBlocks(From: Preheader, To: Header); |
| 2090 | |
| 2091 | for (VPBlockBase *Exit : Exits) |
| 2092 | VPBlockUtils::connectBlocks(From: ExitingVPBB, To: Exit); |
| 2093 | |
| 2094 | // Replace terminating branch-on-two-conds with branch-on-cond to early |
| 2095 | // exit. |
| 2096 | if (Exits.size() != 1) { |
| 2097 | assert(match(Term, m_BranchOnTwoConds()) && Exits.size() == 2 && |
| 2098 | "BranchOnTwoConds needs 2 remaining exits" ); |
| 2099 | VPBuilder(Term).createNaryOp(Opcode: VPInstruction::BranchOnCond, |
| 2100 | Operands: Term->getOperand(N: 0)); |
| 2101 | } |
| 2102 | VPlanTransforms::simplifyRecipes(Plan); |
| 2103 | } else { |
| 2104 | // The vector region contains header phis for which we cannot remove the |
| 2105 | // loop region yet. |
| 2106 | |
| 2107 | // For BranchOnTwoConds, set the latch exit condition to true directly. |
| 2108 | if (match(V: Term, P: m_BranchOnTwoConds())) { |
| 2109 | Term->setOperand(I: 1, New: Plan.getTrue()); |
| 2110 | return true; |
| 2111 | } |
| 2112 | |
| 2113 | auto *BOC = new VPInstruction(VPInstruction::BranchOnCond, {Plan.getTrue()}, |
| 2114 | {}, {}, Term->getDebugLoc()); |
| 2115 | ExitingVPBB->appendRecipe(Recipe: BOC); |
| 2116 | } |
| 2117 | |
| 2118 | Term->eraseFromParent(); |
| 2119 | |
| 2120 | return true; |
| 2121 | } |
| 2122 | |
| 2123 | /// From the definition of llvm.experimental.get.vector.length, |
| 2124 | /// VPInstruction::ExplicitVectorLength(%AVL) = %AVL when %AVL <= VF. |
| 2125 | static bool simplifyKnownEVL(VPlan &Plan, ElementCount VF, |
| 2126 | PredicatedScalarEvolution &PSE) { |
| 2127 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 2128 | Range: vp_depth_first_deep(G: Plan.getEntry()))) { |
| 2129 | for (VPRecipeBase &R : *VPBB) { |
| 2130 | VPValue *AVL; |
| 2131 | if (!match(V: &R, P: m_EVL(Op0: m_VPValue(V&: AVL)))) |
| 2132 | continue; |
| 2133 | |
| 2134 | const SCEV *AVLSCEV = vputils::getSCEVExprForVPValue(V: AVL, PSE); |
| 2135 | if (isa<SCEVCouldNotCompute>(Val: AVLSCEV)) |
| 2136 | continue; |
| 2137 | ScalarEvolution &SE = *PSE.getSE(); |
| 2138 | const SCEV *VFSCEV = SE.getElementCount(Ty: AVLSCEV->getType(), EC: VF); |
| 2139 | if (!SE.isKnownPredicate(Pred: CmpInst::ICMP_ULE, LHS: AVLSCEV, RHS: VFSCEV)) |
| 2140 | continue; |
| 2141 | |
| 2142 | VPValue *Trunc = VPBuilder(&R).createScalarZExtOrTrunc( |
| 2143 | Op: AVL, ResultTy: Type::getInt32Ty(C&: Plan.getContext()), SrcTy: AVLSCEV->getType(), |
| 2144 | DL: R.getDebugLoc()); |
| 2145 | R.getVPSingleValue()->replaceAllUsesWith(New: Trunc); |
| 2146 | return true; |
| 2147 | } |
| 2148 | } |
| 2149 | return false; |
| 2150 | } |
| 2151 | |
| 2152 | void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, |
| 2153 | unsigned BestUF, |
| 2154 | PredicatedScalarEvolution &PSE) { |
| 2155 | assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan" ); |
| 2156 | assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan" ); |
| 2157 | |
| 2158 | bool MadeChange = tryToReplaceALMWithWideALM(Plan, VF: BestVF, UF: BestUF); |
| 2159 | MadeChange |= simplifyBranchConditionForVFAndUF(Plan, BestVF, BestUF, PSE); |
| 2160 | MadeChange |= optimizeVectorInductionWidthForTCAndVFUF(Plan, BestVF, BestUF); |
| 2161 | MadeChange |= simplifyKnownEVL(Plan, VF: BestVF, PSE); |
| 2162 | |
| 2163 | if (MadeChange) { |
| 2164 | Plan.setVF(BestVF); |
| 2165 | assert(Plan.getUF() == BestUF && "BestUF must match the Plan's UF" ); |
| 2166 | } |
| 2167 | } |
| 2168 | |
| 2169 | /// Sink users of \p FOR after the recipe defining the previous value \p |
| 2170 | /// Previous of the recurrence. \returns true if all users of \p FOR could be |
| 2171 | /// re-arranged as needed or false if it is not possible. |
| 2172 | static bool |
| 2173 | sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR, |
| 2174 | VPRecipeBase *Previous, |
| 2175 | VPDominatorTree &VPDT) { |
| 2176 | // Collect recipes that need sinking. |
| 2177 | SmallVector<VPRecipeBase *> WorkList; |
| 2178 | SmallPtrSet<VPRecipeBase *, 8> Seen; |
| 2179 | Seen.insert(Ptr: Previous); |
| 2180 | auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) { |
| 2181 | // The previous value must not depend on the users of the recurrence phi. In |
| 2182 | // that case, FOR is not a fixed order recurrence. |
| 2183 | if (SinkCandidate == Previous) |
| 2184 | return false; |
| 2185 | |
| 2186 | if (isa<VPHeaderPHIRecipe>(Val: SinkCandidate) || |
| 2187 | !Seen.insert(Ptr: SinkCandidate).second || |
| 2188 | VPDT.properlyDominates(A: Previous, B: SinkCandidate)) |
| 2189 | return true; |
| 2190 | |
| 2191 | if (cannotHoistOrSinkRecipe(R: *SinkCandidate)) |
| 2192 | return false; |
| 2193 | |
| 2194 | WorkList.push_back(Elt: SinkCandidate); |
| 2195 | return true; |
| 2196 | }; |
| 2197 | |
| 2198 | // Recursively sink users of FOR after Previous. |
| 2199 | WorkList.push_back(Elt: FOR); |
| 2200 | for (unsigned I = 0; I != WorkList.size(); ++I) { |
| 2201 | VPRecipeBase *Current = WorkList[I]; |
| 2202 | assert(Current->getNumDefinedValues() == 1 && |
| 2203 | "only recipes with a single defined value expected" ); |
| 2204 | |
| 2205 | for (VPUser *User : Current->getVPSingleValue()->users()) { |
| 2206 | if (!TryToPushSinkCandidate(cast<VPRecipeBase>(Val: User))) |
| 2207 | return false; |
| 2208 | } |
| 2209 | } |
| 2210 | |
| 2211 | // Keep recipes to sink ordered by dominance so earlier instructions are |
| 2212 | // processed first. |
| 2213 | sort(C&: WorkList, Comp: [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { |
| 2214 | return VPDT.properlyDominates(A, B); |
| 2215 | }); |
| 2216 | |
| 2217 | for (VPRecipeBase *SinkCandidate : WorkList) { |
| 2218 | if (SinkCandidate == FOR) |
| 2219 | continue; |
| 2220 | |
| 2221 | SinkCandidate->moveAfter(MovePos: Previous); |
| 2222 | Previous = SinkCandidate; |
| 2223 | } |
| 2224 | return true; |
| 2225 | } |
| 2226 | |
| 2227 | /// Try to hoist \p Previous and its operands before all users of \p FOR. |
| 2228 | static bool hoistPreviousBeforeFORUsers(VPFirstOrderRecurrencePHIRecipe *FOR, |
| 2229 | VPRecipeBase *Previous, |
| 2230 | VPDominatorTree &VPDT) { |
| 2231 | if (cannotHoistOrSinkRecipe(R: *Previous)) |
| 2232 | return false; |
| 2233 | |
| 2234 | // Collect recipes that need hoisting. |
| 2235 | SmallVector<VPRecipeBase *> HoistCandidates; |
| 2236 | SmallPtrSet<VPRecipeBase *, 8> Visited; |
| 2237 | VPRecipeBase *HoistPoint = nullptr; |
| 2238 | // Find the closest hoist point by looking at all users of FOR and selecting |
| 2239 | // the recipe dominating all other users. |
| 2240 | for (VPUser *U : FOR->users()) { |
| 2241 | auto *R = cast<VPRecipeBase>(Val: U); |
| 2242 | if (!HoistPoint || VPDT.properlyDominates(A: R, B: HoistPoint)) |
| 2243 | HoistPoint = R; |
| 2244 | } |
| 2245 | assert(all_of(FOR->users(), |
| 2246 | [&VPDT, HoistPoint](VPUser *U) { |
| 2247 | auto *R = cast<VPRecipeBase>(U); |
| 2248 | return HoistPoint == R || |
| 2249 | VPDT.properlyDominates(HoistPoint, R); |
| 2250 | }) && |
| 2251 | "HoistPoint must dominate all users of FOR" ); |
| 2252 | |
| 2253 | auto NeedsHoisting = [HoistPoint, &VPDT, |
| 2254 | &Visited](VPValue *HoistCandidateV) -> VPRecipeBase * { |
| 2255 | VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe(); |
| 2256 | if (!HoistCandidate) |
| 2257 | return nullptr; |
| 2258 | VPRegionBlock *EnclosingLoopRegion = |
| 2259 | HoistCandidate->getParent()->getEnclosingLoopRegion(); |
| 2260 | assert((!HoistCandidate->getRegion() || |
| 2261 | HoistCandidate->getRegion() == EnclosingLoopRegion) && |
| 2262 | "CFG in VPlan should still be flat, without replicate regions" ); |
| 2263 | // Hoist candidate was already visited, no need to hoist. |
| 2264 | if (!Visited.insert(Ptr: HoistCandidate).second) |
| 2265 | return nullptr; |
| 2266 | |
| 2267 | // Candidate is outside loop region or a header phi, dominates FOR users w/o |
| 2268 | // hoisting. |
| 2269 | if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(Val: HoistCandidate)) |
| 2270 | return nullptr; |
| 2271 | |
| 2272 | // If we reached a recipe that dominates HoistPoint, we don't need to |
| 2273 | // hoist the recipe. |
| 2274 | if (VPDT.properlyDominates(A: HoistCandidate, B: HoistPoint)) |
| 2275 | return nullptr; |
| 2276 | return HoistCandidate; |
| 2277 | }; |
| 2278 | |
| 2279 | if (!NeedsHoisting(Previous->getVPSingleValue())) |
| 2280 | return true; |
| 2281 | |
| 2282 | // Recursively try to hoist Previous and its operands before all users of FOR. |
| 2283 | HoistCandidates.push_back(Elt: Previous); |
| 2284 | |
| 2285 | for (unsigned I = 0; I != HoistCandidates.size(); ++I) { |
| 2286 | VPRecipeBase *Current = HoistCandidates[I]; |
| 2287 | assert(Current->getNumDefinedValues() == 1 && |
| 2288 | "only recipes with a single defined value expected" ); |
| 2289 | if (cannotHoistOrSinkRecipe(R: *Current)) |
| 2290 | return false; |
| 2291 | |
| 2292 | for (VPValue *Op : Current->operands()) { |
| 2293 | // If we reach FOR, it means the original Previous depends on some other |
| 2294 | // recurrence that in turn depends on FOR. If that is the case, we would |
| 2295 | // also need to hoist recipes involving the other FOR, which may break |
| 2296 | // dependencies. |
| 2297 | if (Op == FOR) |
| 2298 | return false; |
| 2299 | |
| 2300 | if (auto *R = NeedsHoisting(Op)) { |
| 2301 | // Bail out if the recipe defines multiple values. |
| 2302 | // TODO: Hoisting such recipes requires additional handling. |
| 2303 | if (R->getNumDefinedValues() != 1) |
| 2304 | return false; |
| 2305 | HoistCandidates.push_back(Elt: R); |
| 2306 | } |
| 2307 | } |
| 2308 | } |
| 2309 | |
| 2310 | // Order recipes to hoist by dominance so earlier instructions are processed |
| 2311 | // first. |
| 2312 | sort(C&: HoistCandidates, Comp: [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { |
| 2313 | return VPDT.properlyDominates(A, B); |
| 2314 | }); |
| 2315 | |
| 2316 | for (VPRecipeBase *HoistCandidate : HoistCandidates) { |
| 2317 | HoistCandidate->moveBefore(BB&: *HoistPoint->getParent(), |
| 2318 | I: HoistPoint->getIterator()); |
| 2319 | } |
| 2320 | |
| 2321 | return true; |
| 2322 | } |
| 2323 | |
| 2324 | bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan, |
| 2325 | VPBuilder &LoopBuilder) { |
| 2326 | VPDominatorTree VPDT(Plan); |
| 2327 | |
| 2328 | SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis; |
| 2329 | for (VPRecipeBase &R : |
| 2330 | Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis()) |
| 2331 | if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(Val: &R)) |
| 2332 | RecurrencePhis.push_back(Elt: FOR); |
| 2333 | |
| 2334 | for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) { |
| 2335 | SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis; |
| 2336 | VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe(); |
| 2337 | // Fixed-order recurrences do not contain cycles, so this loop is guaranteed |
| 2338 | // to terminate. |
| 2339 | while (auto *PrevPhi = |
| 2340 | dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Val: Previous)) { |
| 2341 | assert(PrevPhi->getParent() == FOR->getParent()); |
| 2342 | assert(SeenPhis.insert(PrevPhi).second); |
| 2343 | Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe(); |
| 2344 | } |
| 2345 | |
| 2346 | if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT) && |
| 2347 | !hoistPreviousBeforeFORUsers(FOR, Previous, VPDT)) |
| 2348 | return false; |
| 2349 | |
| 2350 | // Introduce a recipe to combine the incoming and previous values of a |
| 2351 | // fixed-order recurrence. |
| 2352 | VPBasicBlock *InsertBlock = Previous->getParent(); |
| 2353 | if (isa<VPHeaderPHIRecipe>(Val: Previous)) |
| 2354 | LoopBuilder.setInsertPoint(TheBB: InsertBlock, IP: InsertBlock->getFirstNonPhi()); |
| 2355 | else |
| 2356 | LoopBuilder.setInsertPoint(TheBB: InsertBlock, |
| 2357 | IP: std::next(x: Previous->getIterator())); |
| 2358 | |
| 2359 | auto *RecurSplice = |
| 2360 | LoopBuilder.createNaryOp(Opcode: VPInstruction::FirstOrderRecurrenceSplice, |
| 2361 | Operands: {FOR, FOR->getBackedgeValue()}); |
| 2362 | |
| 2363 | FOR->replaceAllUsesWith(New: RecurSplice); |
| 2364 | // Set the first operand of RecurSplice to FOR again, after replacing |
| 2365 | // all users. |
| 2366 | RecurSplice->setOperand(I: 0, New: FOR); |
| 2367 | |
| 2368 | // Check for users extracting at the penultimate active lane of the FOR. |
| 2369 | // If only a single lane is active in the current iteration, we need to |
| 2370 | // select the last element from the previous iteration (from the FOR phi |
| 2371 | // directly). |
| 2372 | for (VPUser *U : RecurSplice->users()) { |
| 2373 | if (!match(U, P: m_ExtractLane(Op0: m_LastActiveLane(Op0: m_VPValue()), |
| 2374 | Op1: m_Specific(VPV: RecurSplice)))) |
| 2375 | continue; |
| 2376 | |
| 2377 | VPBuilder B(cast<VPInstruction>(Val: U)); |
| 2378 | VPValue *LastActiveLane = cast<VPInstruction>(Val: U)->getOperand(N: 0); |
| 2379 | Type *I64Ty = Type::getInt64Ty(C&: Plan.getContext()); |
| 2380 | VPValue *Zero = Plan.getOrAddLiveIn(V: ConstantInt::get(Ty: I64Ty, V: 0)); |
| 2381 | VPValue *One = Plan.getOrAddLiveIn(V: ConstantInt::get(Ty: I64Ty, V: 1)); |
| 2382 | VPValue *PenultimateIndex = B.createSub(LHS: LastActiveLane, RHS: One); |
| 2383 | VPValue *PenultimateLastIter = |
| 2384 | B.createNaryOp(Opcode: VPInstruction::ExtractLane, |
| 2385 | Operands: {PenultimateIndex, FOR->getBackedgeValue()}); |
| 2386 | VPValue *LastPrevIter = |
| 2387 | B.createNaryOp(Opcode: VPInstruction::ExtractLastLane, Operands: FOR); |
| 2388 | |
| 2389 | VPValue *Cmp = B.createICmp(Pred: CmpInst::ICMP_EQ, A: LastActiveLane, B: Zero); |
| 2390 | VPValue *Sel = B.createSelect(Cond: Cmp, TrueVal: LastPrevIter, FalseVal: PenultimateLastIter); |
| 2391 | cast<VPInstruction>(Val: U)->replaceAllUsesWith(New: Sel); |
| 2392 | } |
| 2393 | } |
| 2394 | return true; |
| 2395 | } |
| 2396 | |
| 2397 | void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) { |
| 2398 | for (VPRecipeBase &R : |
| 2399 | Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { |
| 2400 | auto *PhiR = dyn_cast<VPReductionPHIRecipe>(Val: &R); |
| 2401 | if (!PhiR) |
| 2402 | continue; |
| 2403 | RecurKind RK = PhiR->getRecurrenceKind(); |
| 2404 | if (RK != RecurKind::Add && RK != RecurKind::Mul && RK != RecurKind::Sub && |
| 2405 | RK != RecurKind::AddChainWithSubs) |
| 2406 | continue; |
| 2407 | |
| 2408 | for (VPUser *U : collectUsersRecursively(V: PhiR)) |
| 2409 | if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(Val: U)) { |
| 2410 | RecWithFlags->dropPoisonGeneratingFlags(); |
| 2411 | } |
| 2412 | } |
| 2413 | } |
| 2414 | |
| 2415 | namespace { |
| 2416 | struct VPCSEDenseMapInfo : public DenseMapInfo<VPSingleDefRecipe *> { |
| 2417 | static bool isSentinel(const VPSingleDefRecipe *Def) { |
| 2418 | return Def == getEmptyKey() || Def == getTombstoneKey(); |
| 2419 | } |
| 2420 | |
| 2421 | /// If recipe \p R will lower to a GEP with a non-i8 source element type, |
| 2422 | /// return that source element type. |
| 2423 | static Type *getGEPSourceElementType(const VPSingleDefRecipe *R) { |
| 2424 | // All VPInstructions that lower to GEPs must have the i8 source element |
| 2425 | // type (as they are PtrAdds), so we omit it. |
| 2426 | return TypeSwitch<const VPSingleDefRecipe *, Type *>(R) |
| 2427 | .Case(caseFn: [](const VPReplicateRecipe *I) -> Type * { |
| 2428 | if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: I->getUnderlyingValue())) |
| 2429 | return GEP->getSourceElementType(); |
| 2430 | return nullptr; |
| 2431 | }) |
| 2432 | .Case<VPVectorPointerRecipe, VPWidenGEPRecipe>( |
| 2433 | caseFn: [](auto *I) { return I->getSourceElementType(); }) |
| 2434 | .Default(defaultFn: [](auto *) { return nullptr; }); |
| 2435 | } |
| 2436 | |
| 2437 | /// Returns true if recipe \p Def can be safely handed for CSE. |
| 2438 | static bool canHandle(const VPSingleDefRecipe *Def) { |
| 2439 | // We can extend the list of handled recipes in the future, |
| 2440 | // provided we account for the data embedded in them while checking for |
| 2441 | // equality or hashing. |
| 2442 | auto C = getOpcodeOrIntrinsicID(R: Def); |
| 2443 | |
| 2444 | // The issue with (Insert|Extract)Value is that the index of the |
| 2445 | // insert/extract is not a proper operand in LLVM IR, and hence also not in |
| 2446 | // VPlan. |
| 2447 | if (!C || (!C->first && (C->second == Instruction::InsertValue || |
| 2448 | C->second == Instruction::ExtractValue))) |
| 2449 | return false; |
| 2450 | |
| 2451 | // During CSE, we can only handle recipes that don't read from memory: if |
| 2452 | // they read from memory, there could be an intervening write to memory |
| 2453 | // before the next instance is CSE'd, leading to an incorrect result. |
| 2454 | return !Def->mayReadFromMemory(); |
| 2455 | } |
| 2456 | |
| 2457 | /// Hash the underlying data of \p Def. |
| 2458 | static unsigned getHashValue(const VPSingleDefRecipe *Def) { |
| 2459 | const VPlan *Plan = Def->getParent()->getPlan(); |
| 2460 | VPTypeAnalysis TypeInfo(*Plan); |
| 2461 | hash_code Result = hash_combine( |
| 2462 | args: Def->getVPRecipeID(), args: getOpcodeOrIntrinsicID(R: Def), |
| 2463 | args: getGEPSourceElementType(R: Def), args: TypeInfo.inferScalarType(V: Def), |
| 2464 | args: vputils::isSingleScalar(VPV: Def), args: hash_combine_range(R: Def->operands())); |
| 2465 | if (auto *RFlags = dyn_cast<VPRecipeWithIRFlags>(Val: Def)) |
| 2466 | if (RFlags->hasPredicate()) |
| 2467 | return hash_combine(args: Result, args: RFlags->getPredicate()); |
| 2468 | return Result; |
| 2469 | } |
| 2470 | |
| 2471 | /// Check equality of underlying data of \p L and \p R. |
| 2472 | static bool isEqual(const VPSingleDefRecipe *L, const VPSingleDefRecipe *R) { |
| 2473 | if (isSentinel(Def: L) || isSentinel(Def: R)) |
| 2474 | return L == R; |
| 2475 | if (L->getVPRecipeID() != R->getVPRecipeID() || |
| 2476 | getOpcodeOrIntrinsicID(R: L) != getOpcodeOrIntrinsicID(R) || |
| 2477 | getGEPSourceElementType(R: L) != getGEPSourceElementType(R) || |
| 2478 | vputils::isSingleScalar(VPV: L) != vputils::isSingleScalar(VPV: R) || |
| 2479 | !equal(LRange: L->operands(), RRange: R->operands())) |
| 2480 | return false; |
| 2481 | assert(getOpcodeOrIntrinsicID(L) && getOpcodeOrIntrinsicID(R) && |
| 2482 | "must have valid opcode info for both recipes" ); |
| 2483 | if (auto *LFlags = dyn_cast<VPRecipeWithIRFlags>(Val: L)) |
| 2484 | if (LFlags->hasPredicate() && |
| 2485 | LFlags->getPredicate() != |
| 2486 | cast<VPRecipeWithIRFlags>(Val: R)->getPredicate()) |
| 2487 | return false; |
| 2488 | // Recipes in replicate regions implicitly depend on predicate. If either |
| 2489 | // recipe is in a replicate region, only consider them equal if both have |
| 2490 | // the same parent. |
| 2491 | const VPRegionBlock *RegionL = L->getRegion(); |
| 2492 | const VPRegionBlock *RegionR = R->getRegion(); |
| 2493 | if (((RegionL && RegionL->isReplicator()) || |
| 2494 | (RegionR && RegionR->isReplicator())) && |
| 2495 | L->getParent() != R->getParent()) |
| 2496 | return false; |
| 2497 | const VPlan *Plan = L->getParent()->getPlan(); |
| 2498 | VPTypeAnalysis TypeInfo(*Plan); |
| 2499 | return TypeInfo.inferScalarType(V: L) == TypeInfo.inferScalarType(V: R); |
| 2500 | } |
| 2501 | }; |
| 2502 | } // end anonymous namespace |
| 2503 | |
| 2504 | /// Perform a common-subexpression-elimination of VPSingleDefRecipes on the \p |
| 2505 | /// Plan. |
| 2506 | void VPlanTransforms::cse(VPlan &Plan) { |
| 2507 | VPDominatorTree VPDT(Plan); |
| 2508 | DenseMap<VPSingleDefRecipe *, VPSingleDefRecipe *, VPCSEDenseMapInfo> CSEMap; |
| 2509 | |
| 2510 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 2511 | Range: vp_depth_first_deep(G: Plan.getEntry()))) { |
| 2512 | for (VPRecipeBase &R : *VPBB) { |
| 2513 | auto *Def = dyn_cast<VPSingleDefRecipe>(Val: &R); |
| 2514 | if (!Def || !VPCSEDenseMapInfo::canHandle(Def)) |
| 2515 | continue; |
| 2516 | if (VPSingleDefRecipe *V = CSEMap.lookup(Val: Def)) { |
| 2517 | // V must dominate Def for a valid replacement. |
| 2518 | if (!VPDT.dominates(A: V->getParent(), B: VPBB)) |
| 2519 | continue; |
| 2520 | // Only keep flags present on both V and Def. |
| 2521 | if (auto *RFlags = dyn_cast<VPRecipeWithIRFlags>(Val: V)) |
| 2522 | RFlags->intersectFlags(Other: *cast<VPRecipeWithIRFlags>(Val: Def)); |
| 2523 | Def->replaceAllUsesWith(New: V); |
| 2524 | continue; |
| 2525 | } |
| 2526 | CSEMap[Def] = Def; |
| 2527 | } |
| 2528 | } |
| 2529 | } |
| 2530 | |
| 2531 | /// Move loop-invariant recipes out of the vector loop region in \p Plan. |
| 2532 | static void licm(VPlan &Plan) { |
| 2533 | VPBasicBlock * = Plan.getVectorPreheader(); |
| 2534 | |
| 2535 | // Hoist any loop invariant recipes from the vector loop region to the |
| 2536 | // preheader. Preform a shallow traversal of the vector loop region, to |
| 2537 | // exclude recipes in replicate regions. Since the top-level blocks in the |
| 2538 | // vector loop region are guaranteed to execute if the vector pre-header is, |
| 2539 | // we don't need to check speculation safety. |
| 2540 | VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); |
| 2541 | assert(Preheader->getSingleSuccessor() == LoopRegion && |
| 2542 | "Expected vector prehader's successor to be the vector loop region" ); |
| 2543 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 2544 | Range: vp_depth_first_shallow(G: LoopRegion->getEntry()))) { |
| 2545 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) { |
| 2546 | if (cannotHoistOrSinkRecipe(R)) |
| 2547 | continue; |
| 2548 | if (any_of(Range: R.operands(), P: [](VPValue *Op) { |
| 2549 | return !Op->isDefinedOutsideLoopRegions(); |
| 2550 | })) |
| 2551 | continue; |
| 2552 | R.moveBefore(BB&: *Preheader, I: Preheader->end()); |
| 2553 | } |
| 2554 | } |
| 2555 | |
| 2556 | #ifndef NDEBUG |
| 2557 | VPDominatorTree VPDT(Plan); |
| 2558 | #endif |
| 2559 | // Sink recipes with no users inside the vector loop region if all users are |
| 2560 | // in the same exit block of the region. |
| 2561 | // TODO: Extend to sink recipes from inner loops. |
| 2562 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 2563 | Range: vp_post_order_shallow(G: LoopRegion->getEntry()))) { |
| 2564 | for (VPRecipeBase &R : make_early_inc_range(Range: reverse(C&: *VPBB))) { |
| 2565 | if (cannotHoistOrSinkRecipe(R)) |
| 2566 | continue; |
| 2567 | |
| 2568 | // TODO: Support sinking VPReplicateRecipe after ensuring replicateByVF |
| 2569 | // handles sunk recipes correctly. |
| 2570 | if (isa<VPReplicateRecipe>(Val: &R)) |
| 2571 | continue; |
| 2572 | |
| 2573 | // TODO: Use R.definedValues() instead of casting to VPSingleDefRecipe to |
| 2574 | // support recipes with multiple defined values (e.g., interleaved loads). |
| 2575 | auto *Def = cast<VPSingleDefRecipe>(Val: &R); |
| 2576 | // Skip recipes without users as we cannot determine a sink block. |
| 2577 | // TODO: Clone sinkable recipes without users to all exit blocks to reduce |
| 2578 | // their execution frequency. |
| 2579 | if (Def->getNumUsers() == 0) |
| 2580 | continue; |
| 2581 | |
| 2582 | VPBasicBlock *SinkBB = nullptr; |
| 2583 | // Cannot sink the recipe if any user |
| 2584 | // * is defined in any loop region, or |
| 2585 | // * is a phi, or |
| 2586 | // * multiple users in different blocks. |
| 2587 | if (any_of(Range: Def->users(), P: [&SinkBB](VPUser *U) { |
| 2588 | auto *UserR = cast<VPRecipeBase>(Val: U); |
| 2589 | VPBasicBlock *Parent = UserR->getParent(); |
| 2590 | // TODO: If the user is a PHI node, we should check the block of |
| 2591 | // incoming value. Support PHI node users if needed. |
| 2592 | if (UserR->isPhi() || Parent->getEnclosingLoopRegion()) |
| 2593 | return true; |
| 2594 | // TODO: Support sinking when users are in multiple blocks. |
| 2595 | if (SinkBB && SinkBB != Parent) |
| 2596 | return true; |
| 2597 | SinkBB = Parent; |
| 2598 | return false; |
| 2599 | })) |
| 2600 | continue; |
| 2601 | |
| 2602 | // Only sink to dedicated exit blocks of the loop region. |
| 2603 | if (SinkBB->getSinglePredecessor() != LoopRegion) |
| 2604 | continue; |
| 2605 | |
| 2606 | // TODO: This will need to be a check instead of a assert after |
| 2607 | // conditional branches in vectorized loops are supported. |
| 2608 | assert(VPDT.properlyDominates(VPBB, SinkBB) && |
| 2609 | "Defining block must dominate sink block" ); |
| 2610 | // TODO: Clone the recipe if users are on multiple exit paths, instead of |
| 2611 | // just moving. |
| 2612 | Def->moveBefore(BB&: *SinkBB, I: SinkBB->getFirstNonPhi()); |
| 2613 | } |
| 2614 | } |
| 2615 | } |
| 2616 | |
| 2617 | void VPlanTransforms::truncateToMinimalBitwidths( |
| 2618 | VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs) { |
| 2619 | if (Plan.hasScalarVFOnly()) |
| 2620 | return; |
| 2621 | // Keep track of created truncates, so they can be re-used. Note that we |
| 2622 | // cannot use RAUW after creating a new truncate, as this would could make |
| 2623 | // other uses have different types for their operands, making them invalidly |
| 2624 | // typed. |
| 2625 | DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs; |
| 2626 | VPTypeAnalysis TypeInfo(Plan); |
| 2627 | VPBasicBlock *PH = Plan.getVectorPreheader(); |
| 2628 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 2629 | Range: vp_depth_first_deep(G: Plan.getVectorLoopRegion()))) { |
| 2630 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) { |
| 2631 | if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe, |
| 2632 | VPWidenLoadRecipe, VPWidenIntrinsicRecipe>(Val: &R)) |
| 2633 | continue; |
| 2634 | |
| 2635 | VPValue *ResultVPV = R.getVPSingleValue(); |
| 2636 | auto *UI = cast_or_null<Instruction>(Val: ResultVPV->getUnderlyingValue()); |
| 2637 | unsigned NewResSizeInBits = MinBWs.lookup(Key: UI); |
| 2638 | if (!NewResSizeInBits) |
| 2639 | continue; |
| 2640 | |
| 2641 | // If the value wasn't vectorized, we must maintain the original scalar |
| 2642 | // type. Skip those here, after incrementing NumProcessedRecipes. Also |
| 2643 | // skip casts which do not need to be handled explicitly here, as |
| 2644 | // redundant casts will be removed during recipe simplification. |
| 2645 | if (isa<VPReplicateRecipe, VPWidenCastRecipe>(Val: &R)) |
| 2646 | continue; |
| 2647 | |
| 2648 | Type *OldResTy = TypeInfo.inferScalarType(V: ResultVPV); |
| 2649 | unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits(); |
| 2650 | assert(OldResTy->isIntegerTy() && "only integer types supported" ); |
| 2651 | (void)OldResSizeInBits; |
| 2652 | |
| 2653 | auto *NewResTy = IntegerType::get(C&: Plan.getContext(), NumBits: NewResSizeInBits); |
| 2654 | |
| 2655 | // Any wrapping introduced by shrinking this operation shouldn't be |
| 2656 | // considered undefined behavior. So, we can't unconditionally copy |
| 2657 | // arithmetic wrapping flags to VPW. |
| 2658 | if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(Val: &R)) |
| 2659 | VPW->dropPoisonGeneratingFlags(); |
| 2660 | |
| 2661 | if (OldResSizeInBits != NewResSizeInBits && |
| 2662 | !match(V: &R, P: m_ICmp(Op0: m_VPValue(), Op1: m_VPValue()))) { |
| 2663 | // Extend result to original width. |
| 2664 | auto *Ext = new VPWidenCastRecipe( |
| 2665 | Instruction::ZExt, ResultVPV, OldResTy, nullptr, |
| 2666 | VPIRFlags::getDefaultFlags(Opcode: Instruction::ZExt)); |
| 2667 | Ext->insertAfter(InsertPos: &R); |
| 2668 | ResultVPV->replaceAllUsesWith(New: Ext); |
| 2669 | Ext->setOperand(I: 0, New: ResultVPV); |
| 2670 | assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?" ); |
| 2671 | } else { |
| 2672 | assert(match(&R, m_ICmp(m_VPValue(), m_VPValue())) && |
| 2673 | "Only ICmps should not need extending the result." ); |
| 2674 | } |
| 2675 | |
| 2676 | assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed" ); |
| 2677 | if (isa<VPWidenLoadRecipe, VPWidenIntrinsicRecipe>(Val: &R)) |
| 2678 | continue; |
| 2679 | |
| 2680 | // Shrink operands by introducing truncates as needed. |
| 2681 | unsigned StartIdx = |
| 2682 | match(V: &R, P: m_Select(Op0: m_VPValue(), Op1: m_VPValue(), Op2: m_VPValue())) ? 1 : 0; |
| 2683 | for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) { |
| 2684 | auto *Op = R.getOperand(N: Idx); |
| 2685 | unsigned OpSizeInBits = |
| 2686 | TypeInfo.inferScalarType(V: Op)->getScalarSizeInBits(); |
| 2687 | if (OpSizeInBits == NewResSizeInBits) |
| 2688 | continue; |
| 2689 | assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate" ); |
| 2690 | auto [ProcessedIter, IterIsEmpty] = ProcessedTruncs.try_emplace(Key: Op); |
| 2691 | if (!IterIsEmpty) { |
| 2692 | R.setOperand(I: Idx, New: ProcessedIter->second); |
| 2693 | continue; |
| 2694 | } |
| 2695 | |
| 2696 | VPBuilder Builder; |
| 2697 | if (isa<VPIRValue>(Val: Op)) |
| 2698 | Builder.setInsertPoint(PH); |
| 2699 | else |
| 2700 | Builder.setInsertPoint(&R); |
| 2701 | VPWidenCastRecipe *NewOp = |
| 2702 | Builder.createWidenCast(Opcode: Instruction::Trunc, Op, ResultTy: NewResTy); |
| 2703 | ProcessedIter->second = NewOp; |
| 2704 | R.setOperand(I: Idx, New: NewOp); |
| 2705 | } |
| 2706 | |
| 2707 | } |
| 2708 | } |
| 2709 | } |
| 2710 | |
| 2711 | void VPlanTransforms::removeBranchOnConst(VPlan &Plan) { |
| 2712 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 2713 | Range: vp_depth_first_shallow(G: Plan.getEntry()))) { |
| 2714 | VPValue *Cond; |
| 2715 | // Skip blocks that are not terminated by BranchOnCond. |
| 2716 | if (VPBB->empty() || !match(V: &VPBB->back(), P: m_BranchOnCond(Op0: m_VPValue(V&: Cond)))) |
| 2717 | continue; |
| 2718 | |
| 2719 | assert(VPBB->getNumSuccessors() == 2 && |
| 2720 | "Two successors expected for BranchOnCond" ); |
| 2721 | unsigned RemovedIdx; |
| 2722 | if (match(V: Cond, P: m_True())) |
| 2723 | RemovedIdx = 1; |
| 2724 | else if (match(V: Cond, P: m_False())) |
| 2725 | RemovedIdx = 0; |
| 2726 | else |
| 2727 | continue; |
| 2728 | |
| 2729 | VPBasicBlock *RemovedSucc = |
| 2730 | cast<VPBasicBlock>(Val: VPBB->getSuccessors()[RemovedIdx]); |
| 2731 | assert(count(RemovedSucc->getPredecessors(), VPBB) == 1 && |
| 2732 | "There must be a single edge between VPBB and its successor" ); |
| 2733 | // Values coming from VPBB into phi recipes of RemoveSucc are removed from |
| 2734 | // these recipes. |
| 2735 | for (VPRecipeBase &R : RemovedSucc->phis()) |
| 2736 | cast<VPPhiAccessors>(Val: &R)->removeIncomingValueFor(IncomingBlock: VPBB); |
| 2737 | |
| 2738 | // Disconnect blocks and remove the terminator. RemovedSucc will be deleted |
| 2739 | // automatically on VPlan destruction if it becomes unreachable. |
| 2740 | VPBlockUtils::disconnectBlocks(From: VPBB, To: RemovedSucc); |
| 2741 | VPBB->back().eraseFromParent(); |
| 2742 | } |
| 2743 | } |
| 2744 | |
| 2745 | void VPlanTransforms::optimize(VPlan &Plan) { |
| 2746 | RUN_VPLAN_PASS(removeRedundantCanonicalIVs, Plan); |
| 2747 | RUN_VPLAN_PASS(removeRedundantInductionCasts, Plan); |
| 2748 | |
| 2749 | RUN_VPLAN_PASS(simplifyRecipes, Plan); |
| 2750 | RUN_VPLAN_PASS(removeDeadRecipes, Plan); |
| 2751 | RUN_VPLAN_PASS(simplifyBlends, Plan); |
| 2752 | RUN_VPLAN_PASS(legalizeAndOptimizeInductions, Plan); |
| 2753 | RUN_VPLAN_PASS(narrowToSingleScalarRecipes, Plan); |
| 2754 | RUN_VPLAN_PASS(removeRedundantExpandSCEVRecipes, Plan); |
| 2755 | RUN_VPLAN_PASS(simplifyRecipes, Plan); |
| 2756 | RUN_VPLAN_PASS(removeBranchOnConst, Plan); |
| 2757 | RUN_VPLAN_PASS(removeDeadRecipes, Plan); |
| 2758 | |
| 2759 | RUN_VPLAN_PASS(createAndOptimizeReplicateRegions, Plan); |
| 2760 | RUN_VPLAN_PASS(hoistInvariantLoads, Plan); |
| 2761 | RUN_VPLAN_PASS(mergeBlocksIntoPredecessors, Plan); |
| 2762 | RUN_VPLAN_PASS(licm, Plan); |
| 2763 | } |
| 2764 | |
| 2765 | // Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace |
| 2766 | // the loop terminator with a branch-on-cond recipe with the negated |
| 2767 | // active-lane-mask as operand. Note that this turns the loop into an |
| 2768 | // uncountable one. Only the existing terminator is replaced, all other existing |
| 2769 | // recipes/users remain unchanged, except for poison-generating flags being |
| 2770 | // dropped from the canonical IV increment. Return the created |
| 2771 | // VPActiveLaneMaskPHIRecipe. |
| 2772 | // |
| 2773 | // The function uses the following definitions: |
| 2774 | // |
| 2775 | // %TripCount = DataWithControlFlowWithoutRuntimeCheck ? |
| 2776 | // calculate-trip-count-minus-VF (original TC) : original TC |
| 2777 | // %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ? |
| 2778 | // CanonicalIVPhi : CanonicalIVIncrement |
| 2779 | // %StartV is the canonical induction start value. |
| 2780 | // |
| 2781 | // The function adds the following recipes: |
| 2782 | // |
| 2783 | // vector.ph: |
| 2784 | // %TripCount = calculate-trip-count-minus-VF (original TC) |
| 2785 | // [if DataWithControlFlowWithoutRuntimeCheck] |
| 2786 | // %EntryInc = canonical-iv-increment-for-part %StartV |
| 2787 | // %EntryALM = active-lane-mask %EntryInc, %TripCount |
| 2788 | // |
| 2789 | // vector.body: |
| 2790 | // ... |
| 2791 | // %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ] |
| 2792 | // ... |
| 2793 | // %InLoopInc = canonical-iv-increment-for-part %IncrementValue |
| 2794 | // %ALM = active-lane-mask %InLoopInc, TripCount |
| 2795 | // %Negated = Not %ALM |
| 2796 | // branch-on-cond %Negated |
| 2797 | // |
| 2798 | static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch( |
| 2799 | VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) { |
| 2800 | VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); |
| 2801 | VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); |
| 2802 | auto *CanonicalIVPHI = TopRegion->getCanonicalIV(); |
| 2803 | VPValue *StartV = CanonicalIVPHI->getStartValue(); |
| 2804 | |
| 2805 | auto *CanonicalIVIncrement = |
| 2806 | cast<VPInstruction>(Val: CanonicalIVPHI->getBackedgeValue()); |
| 2807 | // TODO: Check if dropping the flags is needed if |
| 2808 | // !DataAndControlFlowWithoutRuntimeCheck. |
| 2809 | CanonicalIVIncrement->dropPoisonGeneratingFlags(); |
| 2810 | DebugLoc DL = CanonicalIVIncrement->getDebugLoc(); |
| 2811 | // We can't use StartV directly in the ActiveLaneMask VPInstruction, since |
| 2812 | // we have to take unrolling into account. Each part needs to start at |
| 2813 | // Part * VF |
| 2814 | auto * = Plan.getVectorPreheader(); |
| 2815 | VPBuilder Builder(VecPreheader); |
| 2816 | |
| 2817 | // Create the ActiveLaneMask instruction using the correct start values. |
| 2818 | VPValue *TC = Plan.getTripCount(); |
| 2819 | |
| 2820 | VPValue *TripCount, *IncrementValue; |
| 2821 | if (!DataAndControlFlowWithoutRuntimeCheck) { |
| 2822 | // When the loop is guarded by a runtime overflow check for the loop |
| 2823 | // induction variable increment by VF, we can increment the value before |
| 2824 | // the get.active.lane mask and use the unmodified tripcount. |
| 2825 | IncrementValue = CanonicalIVIncrement; |
| 2826 | TripCount = TC; |
| 2827 | } else { |
| 2828 | // When avoiding a runtime check, the active.lane.mask inside the loop |
| 2829 | // uses a modified trip count and the induction variable increment is |
| 2830 | // done after the active.lane.mask intrinsic is called. |
| 2831 | IncrementValue = CanonicalIVPHI; |
| 2832 | TripCount = Builder.createNaryOp(Opcode: VPInstruction::CalculateTripCountMinusVF, |
| 2833 | Operands: {TC}, DL); |
| 2834 | } |
| 2835 | auto *EntryIncrement = Builder.createOverflowingOp( |
| 2836 | Opcode: VPInstruction::CanonicalIVIncrementForPart, Operands: {StartV}, WrapFlags: {false, false}, DL, |
| 2837 | Name: "index.part.next" ); |
| 2838 | |
| 2839 | // Create the active lane mask instruction in the VPlan preheader. |
| 2840 | VPValue *ALMMultiplier = |
| 2841 | Plan.getConstantInt(Ty: TopRegion->getCanonicalIVType(), Val: 1); |
| 2842 | auto *EntryALM = Builder.createNaryOp(Opcode: VPInstruction::ActiveLaneMask, |
| 2843 | Operands: {EntryIncrement, TC, ALMMultiplier}, DL, |
| 2844 | Name: "active.lane.mask.entry" ); |
| 2845 | |
| 2846 | // Now create the ActiveLaneMaskPhi recipe in the main loop using the |
| 2847 | // preheader ActiveLaneMask instruction. |
| 2848 | auto *LaneMaskPhi = |
| 2849 | new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc::getUnknown()); |
| 2850 | LaneMaskPhi->insertAfter(InsertPos: CanonicalIVPHI); |
| 2851 | |
| 2852 | // Create the active lane mask for the next iteration of the loop before the |
| 2853 | // original terminator. |
| 2854 | VPRecipeBase *OriginalTerminator = EB->getTerminator(); |
| 2855 | Builder.setInsertPoint(OriginalTerminator); |
| 2856 | auto *InLoopIncrement = |
| 2857 | Builder.createOverflowingOp(Opcode: VPInstruction::CanonicalIVIncrementForPart, |
| 2858 | Operands: {IncrementValue}, WrapFlags: {false, false}, DL); |
| 2859 | auto *ALM = Builder.createNaryOp(Opcode: VPInstruction::ActiveLaneMask, |
| 2860 | Operands: {InLoopIncrement, TripCount, ALMMultiplier}, |
| 2861 | DL, Name: "active.lane.mask.next" ); |
| 2862 | LaneMaskPhi->addOperand(Operand: ALM); |
| 2863 | |
| 2864 | // Replace the original terminator with BranchOnCond. We have to invert the |
| 2865 | // mask here because a true condition means jumping to the exit block. |
| 2866 | auto *NotMask = Builder.createNot(Operand: ALM, DL); |
| 2867 | Builder.createNaryOp(Opcode: VPInstruction::BranchOnCond, Operands: {NotMask}, DL); |
| 2868 | OriginalTerminator->eraseFromParent(); |
| 2869 | return LaneMaskPhi; |
| 2870 | } |
| 2871 | |
| 2872 | /// Collect the header mask with the pattern: |
| 2873 | /// (ICMP_ULE, WideCanonicalIV, backedge-taken-count) |
| 2874 | /// TODO: Introduce explicit recipe for header-mask instead of searching |
| 2875 | /// for the header-mask pattern manually. |
| 2876 | static VPSingleDefRecipe *(VPlan &Plan) { |
| 2877 | VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); |
| 2878 | SmallVector<VPValue *> WideCanonicalIVs; |
| 2879 | auto *FoundWidenCanonicalIVUser = find_if( |
| 2880 | Range: LoopRegion->getCanonicalIV()->users(), P: IsaPred<VPWidenCanonicalIVRecipe>); |
| 2881 | assert(count_if(LoopRegion->getCanonicalIV()->users(), |
| 2882 | IsaPred<VPWidenCanonicalIVRecipe>) <= 1 && |
| 2883 | "Must have at most one VPWideCanonicalIVRecipe" ); |
| 2884 | if (FoundWidenCanonicalIVUser != |
| 2885 | LoopRegion->getCanonicalIV()->users().end()) { |
| 2886 | auto *WideCanonicalIV = |
| 2887 | cast<VPWidenCanonicalIVRecipe>(Val: *FoundWidenCanonicalIVUser); |
| 2888 | WideCanonicalIVs.push_back(Elt: WideCanonicalIV); |
| 2889 | } |
| 2890 | |
| 2891 | // Also include VPWidenIntOrFpInductionRecipes that represent a widened |
| 2892 | // version of the canonical induction. |
| 2893 | VPBasicBlock * = LoopRegion->getEntryBasicBlock(); |
| 2894 | for (VPRecipeBase &Phi : HeaderVPBB->phis()) { |
| 2895 | auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: &Phi); |
| 2896 | if (WidenOriginalIV && WidenOriginalIV->isCanonical()) |
| 2897 | WideCanonicalIVs.push_back(Elt: WidenOriginalIV); |
| 2898 | } |
| 2899 | |
| 2900 | // Walk users of wide canonical IVs and find the single compare of the form |
| 2901 | // (ICMP_ULE, WideCanonicalIV, backedge-taken-count). |
| 2902 | VPSingleDefRecipe * = nullptr; |
| 2903 | for (auto *Wide : WideCanonicalIVs) { |
| 2904 | for (VPUser *U : Wide->users()) { |
| 2905 | auto *VPI = dyn_cast<VPInstruction>(Val: U); |
| 2906 | if (!VPI || !vputils::isHeaderMask(V: VPI, Plan)) |
| 2907 | continue; |
| 2908 | |
| 2909 | assert(VPI->getOperand(0) == Wide && |
| 2910 | "WidenCanonicalIV must be the first operand of the compare" ); |
| 2911 | assert(!HeaderMask && "Multiple header masks found?" ); |
| 2912 | HeaderMask = VPI; |
| 2913 | } |
| 2914 | } |
| 2915 | return HeaderMask; |
| 2916 | } |
| 2917 | |
| 2918 | void VPlanTransforms::addActiveLaneMask( |
| 2919 | VPlan &Plan, bool UseActiveLaneMaskForControlFlow, |
| 2920 | bool DataAndControlFlowWithoutRuntimeCheck) { |
| 2921 | assert((!DataAndControlFlowWithoutRuntimeCheck || |
| 2922 | UseActiveLaneMaskForControlFlow) && |
| 2923 | "DataAndControlFlowWithoutRuntimeCheck implies " |
| 2924 | "UseActiveLaneMaskForControlFlow" ); |
| 2925 | |
| 2926 | VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); |
| 2927 | auto *FoundWidenCanonicalIVUser = find_if( |
| 2928 | Range: LoopRegion->getCanonicalIV()->users(), P: IsaPred<VPWidenCanonicalIVRecipe>); |
| 2929 | assert(FoundWidenCanonicalIVUser && |
| 2930 | "Must have widened canonical IV when tail folding!" ); |
| 2931 | VPSingleDefRecipe * = findHeaderMask(Plan); |
| 2932 | auto *WideCanonicalIV = |
| 2933 | cast<VPWidenCanonicalIVRecipe>(Val: *FoundWidenCanonicalIVUser); |
| 2934 | VPSingleDefRecipe *LaneMask; |
| 2935 | if (UseActiveLaneMaskForControlFlow) { |
| 2936 | LaneMask = addVPLaneMaskPhiAndUpdateExitBranch( |
| 2937 | Plan, DataAndControlFlowWithoutRuntimeCheck); |
| 2938 | } else { |
| 2939 | VPBuilder B = VPBuilder::getToInsertAfter(R: WideCanonicalIV); |
| 2940 | VPValue *ALMMultiplier = Plan.getOrAddLiveIn( |
| 2941 | V: ConstantInt::get(Ty: LoopRegion->getCanonicalIVType(), V: 1)); |
| 2942 | LaneMask = |
| 2943 | B.createNaryOp(Opcode: VPInstruction::ActiveLaneMask, |
| 2944 | Operands: {WideCanonicalIV, Plan.getTripCount(), ALMMultiplier}, |
| 2945 | DL: nullptr, Name: "active.lane.mask" ); |
| 2946 | } |
| 2947 | |
| 2948 | // Walk users of WideCanonicalIV and replace the header mask of the form |
| 2949 | // (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an active-lane-mask, |
| 2950 | // removing the old one to ensure there is always only a single header mask. |
| 2951 | HeaderMask->replaceAllUsesWith(New: LaneMask); |
| 2952 | HeaderMask->eraseFromParent(); |
| 2953 | } |
| 2954 | |
| 2955 | template <typename Op0_t, typename Op1_t> struct RemoveMask_match { |
| 2956 | Op0_t In; |
| 2957 | Op1_t &Out; |
| 2958 | |
| 2959 | RemoveMask_match(const Op0_t &In, Op1_t &Out) : In(In), Out(Out) {} |
| 2960 | |
| 2961 | template <typename OpTy> bool match(OpTy *V) const { |
| 2962 | if (m_Specific(In).match(V)) { |
| 2963 | Out = nullptr; |
| 2964 | return true; |
| 2965 | } |
| 2966 | return m_LogicalAnd(m_Specific(In), m_VPValue(Out)).match(V); |
| 2967 | } |
| 2968 | }; |
| 2969 | |
| 2970 | /// Match a specific mask \p In, or a combination of it (logical-and In, Out). |
| 2971 | /// Returns the remaining part \p Out if so, or nullptr otherwise. |
| 2972 | template <typename Op0_t, typename Op1_t> |
| 2973 | static inline RemoveMask_match<Op0_t, Op1_t> m_RemoveMask(const Op0_t &In, |
| 2974 | Op1_t &Out) { |
| 2975 | return RemoveMask_match<Op0_t, Op1_t>(In, Out); |
| 2976 | } |
| 2977 | |
| 2978 | /// Try to optimize a \p CurRecipe masked by \p HeaderMask to a corresponding |
| 2979 | /// EVL-based recipe without the header mask. Returns nullptr if no EVL-based |
| 2980 | /// recipe could be created. |
| 2981 | /// \p HeaderMask Header Mask. |
| 2982 | /// \p CurRecipe Recipe to be transform. |
| 2983 | /// \p TypeInfo VPlan-based type analysis. |
| 2984 | /// \p EVL The explicit vector length parameter of vector-predication |
| 2985 | /// intrinsics. |
| 2986 | static VPRecipeBase *optimizeMaskToEVL(VPValue *, |
| 2987 | VPRecipeBase &CurRecipe, |
| 2988 | VPTypeAnalysis &TypeInfo, VPValue &EVL) { |
| 2989 | VPlan *Plan = CurRecipe.getParent()->getPlan(); |
| 2990 | DebugLoc DL = CurRecipe.getDebugLoc(); |
| 2991 | VPValue *Addr, *Mask, *EndPtr; |
| 2992 | |
| 2993 | /// Adjust any end pointers so that they point to the end of EVL lanes not VF. |
| 2994 | auto AdjustEndPtr = [&CurRecipe, &EVL](VPValue *EndPtr) { |
| 2995 | auto *EVLEndPtr = cast<VPVectorEndPointerRecipe>(Val: EndPtr)->clone(); |
| 2996 | EVLEndPtr->insertBefore(InsertPos: &CurRecipe); |
| 2997 | EVLEndPtr->setOperand(I: 1, New: &EVL); |
| 2998 | return EVLEndPtr; |
| 2999 | }; |
| 3000 | |
| 3001 | if (match(V: &CurRecipe, |
| 3002 | P: m_MaskedLoad(Addr: m_VPValue(V&: Addr), Mask: m_RemoveMask(In: HeaderMask, Out&: Mask))) && |
| 3003 | !cast<VPWidenLoadRecipe>(Val&: CurRecipe).isReverse()) |
| 3004 | return new VPWidenLoadEVLRecipe(cast<VPWidenLoadRecipe>(Val&: CurRecipe), Addr, |
| 3005 | EVL, Mask); |
| 3006 | |
| 3007 | VPValue *ReversedVal; |
| 3008 | if (match(V: &CurRecipe, P: m_Reverse(Op0: m_VPValue(V&: ReversedVal))) && |
| 3009 | match(V: ReversedVal, |
| 3010 | P: m_MaskedLoad(Addr: m_VPValue(V&: EndPtr), Mask: m_RemoveMask(In: HeaderMask, Out&: Mask))) && |
| 3011 | match(V: EndPtr, P: m_VecEndPtr(Op0: m_VPValue(V&: Addr), Op1: m_Specific(VPV: &Plan->getVF()))) && |
| 3012 | cast<VPWidenLoadRecipe>(Val: ReversedVal)->isReverse()) { |
| 3013 | auto *LoadR = new VPWidenLoadEVLRecipe( |
| 3014 | *cast<VPWidenLoadRecipe>(Val: ReversedVal), AdjustEndPtr(EndPtr), EVL, Mask); |
| 3015 | LoadR->insertBefore(InsertPos: &CurRecipe); |
| 3016 | return new VPWidenIntrinsicRecipe( |
| 3017 | Intrinsic::experimental_vp_reverse, {LoadR, Plan->getTrue(), &EVL}, |
| 3018 | TypeInfo.inferScalarType(V: LoadR), {}, {}, DL); |
| 3019 | } |
| 3020 | |
| 3021 | VPValue *StoredVal; |
| 3022 | if (match(V: &CurRecipe, P: m_MaskedStore(Addr: m_VPValue(V&: Addr), Val: m_VPValue(V&: StoredVal), |
| 3023 | Mask: m_RemoveMask(In: HeaderMask, Out&: Mask))) && |
| 3024 | !cast<VPWidenStoreRecipe>(Val&: CurRecipe).isReverse()) |
| 3025 | return new VPWidenStoreEVLRecipe(cast<VPWidenStoreRecipe>(Val&: CurRecipe), Addr, |
| 3026 | StoredVal, EVL, Mask); |
| 3027 | |
| 3028 | if (match(V: &CurRecipe, |
| 3029 | P: m_MaskedStore(Addr: m_VPValue(V&: EndPtr), Val: m_Reverse(Op0: m_VPValue(V&: ReversedVal)), |
| 3030 | Mask: m_RemoveMask(In: HeaderMask, Out&: Mask))) && |
| 3031 | match(V: EndPtr, P: m_VecEndPtr(Op0: m_VPValue(V&: Addr), Op1: m_Specific(VPV: &Plan->getVF()))) && |
| 3032 | cast<VPWidenStoreRecipe>(Val&: CurRecipe).isReverse()) { |
| 3033 | auto *NewReverse = new VPWidenIntrinsicRecipe( |
| 3034 | Intrinsic::experimental_vp_reverse, |
| 3035 | {ReversedVal, Plan->getTrue(), &EVL}, |
| 3036 | TypeInfo.inferScalarType(V: ReversedVal), {}, {}, DL); |
| 3037 | NewReverse->insertBefore(InsertPos: &CurRecipe); |
| 3038 | return new VPWidenStoreEVLRecipe(cast<VPWidenStoreRecipe>(Val&: CurRecipe), |
| 3039 | AdjustEndPtr(EndPtr), NewReverse, EVL, |
| 3040 | Mask); |
| 3041 | } |
| 3042 | |
| 3043 | if (auto *Rdx = dyn_cast<VPReductionRecipe>(Val: &CurRecipe)) |
| 3044 | if (Rdx->isConditional() && |
| 3045 | match(V: Rdx->getCondOp(), P: m_RemoveMask(In: HeaderMask, Out&: Mask))) |
| 3046 | return new VPReductionEVLRecipe(*Rdx, EVL, Mask); |
| 3047 | |
| 3048 | if (auto *Interleave = dyn_cast<VPInterleaveRecipe>(Val: &CurRecipe)) |
| 3049 | if (Interleave->getMask() && |
| 3050 | match(V: Interleave->getMask(), P: m_RemoveMask(In: HeaderMask, Out&: Mask))) |
| 3051 | return new VPInterleaveEVLRecipe(*Interleave, EVL, Mask); |
| 3052 | |
| 3053 | VPValue *LHS, *RHS; |
| 3054 | if (match(V: &CurRecipe, |
| 3055 | P: m_Select(Op0: m_Specific(VPV: HeaderMask), Op1: m_VPValue(V&: LHS), Op2: m_VPValue(V&: RHS)))) |
| 3056 | return new VPWidenIntrinsicRecipe( |
| 3057 | Intrinsic::vp_merge, {Plan->getTrue(), LHS, RHS, &EVL}, |
| 3058 | TypeInfo.inferScalarType(V: LHS), {}, {}, DL); |
| 3059 | |
| 3060 | if (match(V: &CurRecipe, P: m_Select(Op0: m_RemoveMask(In: HeaderMask, Out&: Mask), Op1: m_VPValue(V&: LHS), |
| 3061 | Op2: m_VPValue(V&: RHS)))) |
| 3062 | return new VPWidenIntrinsicRecipe( |
| 3063 | Intrinsic::vp_merge, {Mask, LHS, RHS, &EVL}, |
| 3064 | TypeInfo.inferScalarType(V: LHS), {}, {}, DL); |
| 3065 | |
| 3066 | if (match(V: &CurRecipe, P: m_LastActiveLane(Op0: m_Specific(VPV: HeaderMask)))) { |
| 3067 | Type *Ty = TypeInfo.inferScalarType(V: CurRecipe.getVPSingleValue()); |
| 3068 | VPValue *ZExt = |
| 3069 | VPBuilder(&CurRecipe).createScalarCast(Opcode: Instruction::ZExt, Op: &EVL, ResultTy: Ty, DL); |
| 3070 | return new VPInstruction( |
| 3071 | Instruction::Sub, {ZExt, Plan->getConstantInt(Ty, Val: 1)}, |
| 3072 | VPIRFlags::getDefaultFlags(Opcode: Instruction::Sub), {}, DL); |
| 3073 | } |
| 3074 | |
| 3075 | return nullptr; |
| 3076 | } |
| 3077 | |
| 3078 | /// Optimize away any EVL-based header masks to VP intrinsic based recipes. |
| 3079 | /// The transforms here need to preserve the original semantics. |
| 3080 | void VPlanTransforms::optimizeEVLMasks(VPlan &Plan) { |
| 3081 | // Find the EVL-based header mask if it exists: icmp ult step-vector, EVL |
| 3082 | VPValue * = nullptr, *EVL = nullptr; |
| 3083 | for (VPRecipeBase &R : *Plan.getVectorLoopRegion()->getEntryBasicBlock()) { |
| 3084 | if (match(V: &R, P: m_SpecificICmp(MatchPred: CmpInst::ICMP_ULT, Op0: m_StepVector(), |
| 3085 | Op1: m_VPValue(V&: EVL))) && |
| 3086 | match(V: EVL, P: m_EVL(Op0: m_VPValue()))) { |
| 3087 | HeaderMask = R.getVPSingleValue(); |
| 3088 | break; |
| 3089 | } |
| 3090 | } |
| 3091 | if (!HeaderMask) |
| 3092 | return; |
| 3093 | |
| 3094 | VPTypeAnalysis TypeInfo(Plan); |
| 3095 | SmallVector<VPRecipeBase *> OldRecipes; |
| 3096 | for (VPUser *U : collectUsersRecursively(V: HeaderMask)) { |
| 3097 | VPRecipeBase *R = cast<VPRecipeBase>(Val: U); |
| 3098 | if (auto *NewR = optimizeMaskToEVL(HeaderMask, CurRecipe&: *R, TypeInfo, EVL&: *EVL)) { |
| 3099 | NewR->insertBefore(InsertPos: R); |
| 3100 | for (auto [Old, New] : |
| 3101 | zip_equal(t: R->definedValues(), u: NewR->definedValues())) |
| 3102 | Old->replaceAllUsesWith(New); |
| 3103 | OldRecipes.push_back(Elt: R); |
| 3104 | } |
| 3105 | } |
| 3106 | // Erase old recipes at the end so we don't invalidate TypeInfo. |
| 3107 | for (VPRecipeBase *R : reverse(C&: OldRecipes)) { |
| 3108 | SmallVector<VPValue *> PossiblyDead(R->operands()); |
| 3109 | R->eraseFromParent(); |
| 3110 | for (VPValue *Op : PossiblyDead) |
| 3111 | recursivelyDeleteDeadRecipes(V: Op); |
| 3112 | } |
| 3113 | } |
| 3114 | |
| 3115 | /// After replacing the canonical IV with a EVL-based IV, fixup recipes that use |
| 3116 | /// VF to use the EVL instead to avoid incorrect updates on the penultimate |
| 3117 | /// iteration. |
| 3118 | static void fixupVFUsersForEVL(VPlan &Plan, VPValue &EVL) { |
| 3119 | VPTypeAnalysis TypeInfo(Plan); |
| 3120 | VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); |
| 3121 | VPBasicBlock * = LoopRegion->getEntryBasicBlock(); |
| 3122 | |
| 3123 | assert(all_of(Plan.getVF().users(), |
| 3124 | IsaPred<VPVectorEndPointerRecipe, VPScalarIVStepsRecipe, |
| 3125 | VPWidenIntOrFpInductionRecipe>) && |
| 3126 | "User of VF that we can't transform to EVL." ); |
| 3127 | Plan.getVF().replaceUsesWithIf(New: &EVL, ShouldReplace: [](VPUser &U, unsigned Idx) { |
| 3128 | return isa<VPWidenIntOrFpInductionRecipe, VPScalarIVStepsRecipe>(Val: U); |
| 3129 | }); |
| 3130 | |
| 3131 | assert(all_of(Plan.getVFxUF().users(), |
| 3132 | [&LoopRegion, &Plan](VPUser *U) { |
| 3133 | return match(U, |
| 3134 | m_c_Add(m_Specific(LoopRegion->getCanonicalIV()), |
| 3135 | m_Specific(&Plan.getVFxUF()))) || |
| 3136 | isa<VPWidenPointerInductionRecipe>(U); |
| 3137 | }) && |
| 3138 | "Only users of VFxUF should be VPWidenPointerInductionRecipe and the " |
| 3139 | "increment of the canonical induction." ); |
| 3140 | Plan.getVFxUF().replaceUsesWithIf(New: &EVL, ShouldReplace: [](VPUser &U, unsigned Idx) { |
| 3141 | // Only replace uses in VPWidenPointerInductionRecipe; The increment of the |
| 3142 | // canonical induction must not be updated. |
| 3143 | return isa<VPWidenPointerInductionRecipe>(Val: U); |
| 3144 | }); |
| 3145 | |
| 3146 | // Create a scalar phi to track the previous EVL if fixed-order recurrence is |
| 3147 | // contained. |
| 3148 | bool ContainsFORs = |
| 3149 | any_of(Range: Header->phis(), P: IsaPred<VPFirstOrderRecurrencePHIRecipe>); |
| 3150 | if (ContainsFORs) { |
| 3151 | // TODO: Use VPInstruction::ExplicitVectorLength to get maximum EVL. |
| 3152 | VPValue *MaxEVL = &Plan.getVF(); |
| 3153 | // Emit VPScalarCastRecipe in preheader if VF is not a 32 bits integer. |
| 3154 | VPBuilder Builder(LoopRegion->getPreheaderVPBB()); |
| 3155 | MaxEVL = Builder.createScalarZExtOrTrunc( |
| 3156 | Op: MaxEVL, ResultTy: Type::getInt32Ty(C&: Plan.getContext()), |
| 3157 | SrcTy: TypeInfo.inferScalarType(V: MaxEVL), DL: DebugLoc::getUnknown()); |
| 3158 | |
| 3159 | Builder.setInsertPoint(TheBB: Header, IP: Header->getFirstNonPhi()); |
| 3160 | VPValue *PrevEVL = Builder.createScalarPhi( |
| 3161 | IncomingValues: {MaxEVL, &EVL}, DL: DebugLoc::getUnknown(), Name: "prev.evl" ); |
| 3162 | |
| 3163 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 3164 | Range: vp_depth_first_deep(G: Plan.getVectorLoopRegion()->getEntry()))) { |
| 3165 | for (VPRecipeBase &R : *VPBB) { |
| 3166 | VPValue *V1, *V2; |
| 3167 | if (!match(V: &R, |
| 3168 | P: m_VPInstruction<VPInstruction::FirstOrderRecurrenceSplice>( |
| 3169 | Ops: m_VPValue(V&: V1), Ops: m_VPValue(V&: V2)))) |
| 3170 | continue; |
| 3171 | VPValue *Imm = Plan.getOrAddLiveIn( |
| 3172 | V: ConstantInt::getSigned(Ty: Type::getInt32Ty(C&: Plan.getContext()), V: -1)); |
| 3173 | VPWidenIntrinsicRecipe *VPSplice = new VPWidenIntrinsicRecipe( |
| 3174 | Intrinsic::experimental_vp_splice, |
| 3175 | {V1, V2, Imm, Plan.getTrue(), PrevEVL, &EVL}, |
| 3176 | TypeInfo.inferScalarType(V: R.getVPSingleValue()), {}, {}, |
| 3177 | R.getDebugLoc()); |
| 3178 | VPSplice->insertBefore(InsertPos: &R); |
| 3179 | R.getVPSingleValue()->replaceAllUsesWith(New: VPSplice); |
| 3180 | } |
| 3181 | } |
| 3182 | } |
| 3183 | |
| 3184 | VPValue * = findHeaderMask(Plan); |
| 3185 | if (!HeaderMask) |
| 3186 | return; |
| 3187 | |
| 3188 | // Replace header masks with a mask equivalent to predicating by EVL: |
| 3189 | // |
| 3190 | // icmp ule widen-canonical-iv backedge-taken-count |
| 3191 | // -> |
| 3192 | // icmp ult step-vector, EVL |
| 3193 | VPRecipeBase *EVLR = EVL.getDefiningRecipe(); |
| 3194 | VPBuilder Builder(EVLR->getParent(), std::next(x: EVLR->getIterator())); |
| 3195 | Type *EVLType = TypeInfo.inferScalarType(V: &EVL); |
| 3196 | VPValue *EVLMask = Builder.createICmp( |
| 3197 | Pred: CmpInst::ICMP_ULT, |
| 3198 | A: Builder.createNaryOp(Opcode: VPInstruction::StepVector, Operands: {}, ResultTy: EVLType), B: &EVL); |
| 3199 | HeaderMask->replaceAllUsesWith(New: EVLMask); |
| 3200 | } |
| 3201 | |
| 3202 | /// Converts a tail folded vector loop region to step by |
| 3203 | /// VPInstruction::ExplicitVectorLength elements instead of VF elements each |
| 3204 | /// iteration. |
| 3205 | /// |
| 3206 | /// - Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and |
| 3207 | /// replaces all uses except the canonical IV increment of |
| 3208 | /// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. |
| 3209 | /// VPCanonicalIVPHIRecipe is used only for loop iterations counting after |
| 3210 | /// this transformation. |
| 3211 | /// |
| 3212 | /// - The header mask is replaced with a header mask based on the EVL. |
| 3213 | /// |
| 3214 | /// - Plans with FORs have a new phi added to keep track of the EVL of the |
| 3215 | /// previous iteration, and VPFirstOrderRecurrencePHIRecipes are replaced with |
| 3216 | /// @llvm.vp.splice. |
| 3217 | /// |
| 3218 | /// The function uses the following definitions: |
| 3219 | /// %StartV is the canonical induction start value. |
| 3220 | /// |
| 3221 | /// The function adds the following recipes: |
| 3222 | /// |
| 3223 | /// vector.ph: |
| 3224 | /// ... |
| 3225 | /// |
| 3226 | /// vector.body: |
| 3227 | /// ... |
| 3228 | /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], |
| 3229 | /// [ %NextEVLIV, %vector.body ] |
| 3230 | /// %AVL = phi [ trip-count, %vector.ph ], [ %NextAVL, %vector.body ] |
| 3231 | /// %VPEVL = EXPLICIT-VECTOR-LENGTH %AVL |
| 3232 | /// ... |
| 3233 | /// %OpEVL = cast i32 %VPEVL to IVSize |
| 3234 | /// %NextEVLIV = add IVSize %OpEVL, %EVLPhi |
| 3235 | /// %NextAVL = sub IVSize nuw %AVL, %OpEVL |
| 3236 | /// ... |
| 3237 | /// |
| 3238 | /// If MaxSafeElements is provided, the function adds the following recipes: |
| 3239 | /// vector.ph: |
| 3240 | /// ... |
| 3241 | /// |
| 3242 | /// vector.body: |
| 3243 | /// ... |
| 3244 | /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], |
| 3245 | /// [ %NextEVLIV, %vector.body ] |
| 3246 | /// %AVL = phi [ trip-count, %vector.ph ], [ %NextAVL, %vector.body ] |
| 3247 | /// %cmp = cmp ult %AVL, MaxSafeElements |
| 3248 | /// %SAFE_AVL = select %cmp, %AVL, MaxSafeElements |
| 3249 | /// %VPEVL = EXPLICIT-VECTOR-LENGTH %SAFE_AVL |
| 3250 | /// ... |
| 3251 | /// %OpEVL = cast i32 %VPEVL to IVSize |
| 3252 | /// %NextEVLIV = add IVSize %OpEVL, %EVLPhi |
| 3253 | /// %NextAVL = sub IVSize nuw %AVL, %OpEVL |
| 3254 | /// ... |
| 3255 | /// |
| 3256 | void VPlanTransforms::addExplicitVectorLength( |
| 3257 | VPlan &Plan, const std::optional<unsigned> &MaxSafeElements) { |
| 3258 | if (Plan.hasScalarVFOnly()) |
| 3259 | return; |
| 3260 | VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); |
| 3261 | VPBasicBlock * = LoopRegion->getEntryBasicBlock(); |
| 3262 | |
| 3263 | auto *CanonicalIVPHI = LoopRegion->getCanonicalIV(); |
| 3264 | auto *CanIVTy = LoopRegion->getCanonicalIVType(); |
| 3265 | VPValue *StartV = CanonicalIVPHI->getStartValue(); |
| 3266 | |
| 3267 | // Create the ExplicitVectorLengthPhi recipe in the main loop. |
| 3268 | auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc::getUnknown()); |
| 3269 | EVLPhi->insertAfter(InsertPos: CanonicalIVPHI); |
| 3270 | VPBuilder Builder(Header, Header->getFirstNonPhi()); |
| 3271 | // Create the AVL (application vector length), starting from TC -> 0 in steps |
| 3272 | // of EVL. |
| 3273 | VPPhi *AVLPhi = Builder.createScalarPhi( |
| 3274 | IncomingValues: {Plan.getTripCount()}, DL: DebugLoc::getCompilerGenerated(), Name: "avl" ); |
| 3275 | VPValue *AVL = AVLPhi; |
| 3276 | |
| 3277 | if (MaxSafeElements) { |
| 3278 | // Support for MaxSafeDist for correct loop emission. |
| 3279 | VPValue *AVLSafe = Plan.getConstantInt(Ty: CanIVTy, Val: *MaxSafeElements); |
| 3280 | VPValue *Cmp = Builder.createICmp(Pred: ICmpInst::ICMP_ULT, A: AVL, B: AVLSafe); |
| 3281 | AVL = Builder.createSelect(Cond: Cmp, TrueVal: AVL, FalseVal: AVLSafe, DL: DebugLoc::getUnknown(), |
| 3282 | Name: "safe_avl" ); |
| 3283 | } |
| 3284 | auto *VPEVL = Builder.createNaryOp(Opcode: VPInstruction::ExplicitVectorLength, Operands: AVL, |
| 3285 | DL: DebugLoc::getUnknown(), Name: "evl" ); |
| 3286 | |
| 3287 | auto *CanonicalIVIncrement = |
| 3288 | cast<VPInstruction>(Val: CanonicalIVPHI->getBackedgeValue()); |
| 3289 | Builder.setInsertPoint(CanonicalIVIncrement); |
| 3290 | VPValue *OpVPEVL = VPEVL; |
| 3291 | |
| 3292 | auto *I32Ty = Type::getInt32Ty(C&: Plan.getContext()); |
| 3293 | OpVPEVL = Builder.createScalarZExtOrTrunc( |
| 3294 | Op: OpVPEVL, ResultTy: CanIVTy, SrcTy: I32Ty, DL: CanonicalIVIncrement->getDebugLoc()); |
| 3295 | |
| 3296 | auto *NextEVLIV = Builder.createAdd( |
| 3297 | LHS: OpVPEVL, RHS: EVLPhi, DL: CanonicalIVIncrement->getDebugLoc(), Name: "index.evl.next" , |
| 3298 | WrapFlags: {CanonicalIVIncrement->hasNoUnsignedWrap(), |
| 3299 | CanonicalIVIncrement->hasNoSignedWrap()}); |
| 3300 | EVLPhi->addOperand(Operand: NextEVLIV); |
| 3301 | |
| 3302 | VPValue *NextAVL = |
| 3303 | Builder.createSub(LHS: AVLPhi, RHS: OpVPEVL, DL: DebugLoc::getCompilerGenerated(), |
| 3304 | Name: "avl.next" , WrapFlags: {/*NUW=*/true, /*NSW=*/false}); |
| 3305 | AVLPhi->addOperand(Operand: NextAVL); |
| 3306 | |
| 3307 | fixupVFUsersForEVL(Plan, EVL&: *VPEVL); |
| 3308 | removeDeadRecipes(Plan); |
| 3309 | |
| 3310 | // Replace all uses of VPCanonicalIVPHIRecipe by |
| 3311 | // VPEVLBasedIVPHIRecipe except for the canonical IV increment. |
| 3312 | CanonicalIVPHI->replaceAllUsesWith(New: EVLPhi); |
| 3313 | CanonicalIVIncrement->setOperand(I: 0, New: CanonicalIVPHI); |
| 3314 | // TODO: support unroll factor > 1. |
| 3315 | Plan.setUF(1); |
| 3316 | } |
| 3317 | |
| 3318 | void VPlanTransforms::canonicalizeEVLLoops(VPlan &Plan) { |
| 3319 | // Find EVL loop entries by locating VPEVLBasedIVPHIRecipe. |
| 3320 | // There should be only one EVL PHI in the entire plan. |
| 3321 | VPEVLBasedIVPHIRecipe *EVLPhi = nullptr; |
| 3322 | |
| 3323 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 3324 | Range: vp_depth_first_shallow(G: Plan.getEntry()))) |
| 3325 | for (VPRecipeBase &R : VPBB->phis()) |
| 3326 | if (auto *PhiR = dyn_cast<VPEVLBasedIVPHIRecipe>(Val: &R)) { |
| 3327 | assert(!EVLPhi && "Found multiple EVL PHIs. Only one expected" ); |
| 3328 | EVLPhi = PhiR; |
| 3329 | } |
| 3330 | |
| 3331 | // Early return if no EVL PHI is found. |
| 3332 | if (!EVLPhi) |
| 3333 | return; |
| 3334 | |
| 3335 | VPBasicBlock * = EVLPhi->getParent(); |
| 3336 | VPValue *EVLIncrement = EVLPhi->getBackedgeValue(); |
| 3337 | |
| 3338 | // Convert EVLPhi to concrete recipe. |
| 3339 | auto *ScalarR = |
| 3340 | VPBuilder(EVLPhi).createScalarPhi(IncomingValues: {EVLPhi->getStartValue(), EVLIncrement}, |
| 3341 | DL: EVLPhi->getDebugLoc(), Name: "evl.based.iv" ); |
| 3342 | EVLPhi->replaceAllUsesWith(New: ScalarR); |
| 3343 | EVLPhi->eraseFromParent(); |
| 3344 | |
| 3345 | // Replace CanonicalIVInc with EVL-PHI increment. |
| 3346 | auto *CanonicalIV = cast<VPPhi>(Val: &*HeaderVPBB->begin()); |
| 3347 | VPValue *Backedge = CanonicalIV->getIncomingValue(Idx: 1); |
| 3348 | assert(match(Backedge, m_c_Add(m_Specific(CanonicalIV), |
| 3349 | m_Specific(&Plan.getVFxUF()))) && |
| 3350 | "Unexpected canonical iv" ); |
| 3351 | Backedge->replaceAllUsesWith(New: EVLIncrement); |
| 3352 | |
| 3353 | // Remove unused phi and increment. |
| 3354 | VPRecipeBase *CanonicalIVIncrement = Backedge->getDefiningRecipe(); |
| 3355 | CanonicalIVIncrement->eraseFromParent(); |
| 3356 | CanonicalIV->eraseFromParent(); |
| 3357 | } |
| 3358 | |
| 3359 | void VPlanTransforms::convertEVLExitCond(VPlan &Plan) { |
| 3360 | VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); |
| 3361 | // The canonical IV may not exist at this stage. |
| 3362 | if (!LoopRegion || |
| 3363 | !isa<VPCanonicalIVPHIRecipe>(Val: LoopRegion->getEntryBasicBlock()->front())) |
| 3364 | return; |
| 3365 | VPCanonicalIVPHIRecipe *CanIV = LoopRegion->getCanonicalIV(); |
| 3366 | if (std::next(x: CanIV->getIterator()) == CanIV->getParent()->end()) |
| 3367 | return; |
| 3368 | // The EVL IV is always immediately after the canonical IV. |
| 3369 | auto *EVLPhi = |
| 3370 | dyn_cast_or_null<VPEVLBasedIVPHIRecipe>(Val: std::next(x: CanIV->getIterator())); |
| 3371 | if (!EVLPhi) |
| 3372 | return; |
| 3373 | |
| 3374 | // Bail if not an EVL tail folded loop. |
| 3375 | VPValue *AVL; |
| 3376 | if (!match(V: EVLPhi->getBackedgeValue(), |
| 3377 | P: m_c_Add(Op0: m_ZExtOrSelf(Op0: m_EVL(Op0: m_VPValue(V&: AVL))), Op1: m_Specific(VPV: EVLPhi)))) |
| 3378 | return; |
| 3379 | |
| 3380 | // The AVL may be capped to a safe distance. |
| 3381 | VPValue *SafeAVL; |
| 3382 | if (match(V: AVL, P: m_Select(Op0: m_VPValue(), Op1: m_VPValue(V&: SafeAVL), Op2: m_VPValue()))) |
| 3383 | AVL = SafeAVL; |
| 3384 | |
| 3385 | VPValue *AVLNext; |
| 3386 | [[maybe_unused]] bool FoundAVLNext = |
| 3387 | match(V: AVL, P: m_VPInstruction<Instruction::PHI>( |
| 3388 | Ops: m_Specific(VPV: Plan.getTripCount()), Ops: m_VPValue(V&: AVLNext))); |
| 3389 | assert(FoundAVLNext && "Didn't find AVL backedge?" ); |
| 3390 | |
| 3391 | VPBasicBlock *Latch = LoopRegion->getExitingBasicBlock(); |
| 3392 | auto *LatchBr = cast<VPInstruction>(Val: Latch->getTerminator()); |
| 3393 | if (match(V: LatchBr, P: m_BranchOnCond(Op0: m_True()))) |
| 3394 | return; |
| 3395 | |
| 3396 | assert( |
| 3397 | match(LatchBr, |
| 3398 | m_BranchOnCond(m_SpecificCmp( |
| 3399 | CmpInst::ICMP_EQ, m_Specific(CanIV->getIncomingValue(1)), |
| 3400 | m_Specific(&Plan.getVectorTripCount())))) && |
| 3401 | "Expected BranchOnCond with ICmp comparing CanIV increment with vector " |
| 3402 | "trip count" ); |
| 3403 | |
| 3404 | Type *AVLTy = VPTypeAnalysis(Plan).inferScalarType(V: AVLNext); |
| 3405 | VPBuilder Builder(LatchBr); |
| 3406 | LatchBr->setOperand(I: 0, New: Builder.createICmp(Pred: CmpInst::ICMP_EQ, A: AVLNext, |
| 3407 | B: Plan.getConstantInt(Ty: AVLTy, Val: 0))); |
| 3408 | } |
| 3409 | |
| 3410 | void VPlanTransforms::replaceSymbolicStrides( |
| 3411 | VPlan &Plan, PredicatedScalarEvolution &PSE, |
| 3412 | const DenseMap<Value *, const SCEV *> &StridesMap) { |
| 3413 | // Replace VPValues for known constant strides guaranteed by predicate scalar |
| 3414 | // evolution. |
| 3415 | auto CanUseVersionedStride = [&Plan](VPUser &U, unsigned) { |
| 3416 | auto *R = cast<VPRecipeBase>(Val: &U); |
| 3417 | return R->getRegion() || |
| 3418 | R->getParent() == Plan.getVectorLoopRegion()->getSinglePredecessor(); |
| 3419 | }; |
| 3420 | ValueToSCEVMapTy RewriteMap; |
| 3421 | for (const SCEV *Stride : StridesMap.values()) { |
| 3422 | using namespace SCEVPatternMatch; |
| 3423 | auto *StrideV = cast<SCEVUnknown>(Val: Stride)->getValue(); |
| 3424 | const APInt *StrideConst; |
| 3425 | if (!match(S: PSE.getSCEV(V: StrideV), P: m_scev_APInt(C&: StrideConst))) |
| 3426 | // Only handle constant strides for now. |
| 3427 | continue; |
| 3428 | |
| 3429 | auto *CI = Plan.getConstantInt(Val: *StrideConst); |
| 3430 | if (VPValue *StrideVPV = Plan.getLiveIn(V: StrideV)) |
| 3431 | StrideVPV->replaceUsesWithIf(New: CI, ShouldReplace: CanUseVersionedStride); |
| 3432 | |
| 3433 | // The versioned value may not be used in the loop directly but through a |
| 3434 | // sext/zext. Add new live-ins in those cases. |
| 3435 | for (Value *U : StrideV->users()) { |
| 3436 | if (!isa<SExtInst, ZExtInst>(Val: U)) |
| 3437 | continue; |
| 3438 | VPValue *StrideVPV = Plan.getLiveIn(V: U); |
| 3439 | if (!StrideVPV) |
| 3440 | continue; |
| 3441 | unsigned BW = U->getType()->getScalarSizeInBits(); |
| 3442 | APInt C = |
| 3443 | isa<SExtInst>(Val: U) ? StrideConst->sext(width: BW) : StrideConst->zext(width: BW); |
| 3444 | VPValue *CI = Plan.getConstantInt(Val: C); |
| 3445 | StrideVPV->replaceUsesWithIf(New: CI, ShouldReplace: CanUseVersionedStride); |
| 3446 | } |
| 3447 | RewriteMap[StrideV] = PSE.getSCEV(V: StrideV); |
| 3448 | } |
| 3449 | |
| 3450 | for (VPRecipeBase &R : *Plan.getEntry()) { |
| 3451 | auto *ExpSCEV = dyn_cast<VPExpandSCEVRecipe>(Val: &R); |
| 3452 | if (!ExpSCEV) |
| 3453 | continue; |
| 3454 | const SCEV *ScevExpr = ExpSCEV->getSCEV(); |
| 3455 | auto *NewSCEV = |
| 3456 | SCEVParameterRewriter::rewrite(Scev: ScevExpr, SE&: *PSE.getSE(), Map&: RewriteMap); |
| 3457 | if (NewSCEV != ScevExpr) { |
| 3458 | VPValue *NewExp = vputils::getOrCreateVPValueForSCEVExpr(Plan, Expr: NewSCEV); |
| 3459 | ExpSCEV->replaceAllUsesWith(New: NewExp); |
| 3460 | if (Plan.getTripCount() == ExpSCEV) |
| 3461 | Plan.resetTripCount(NewTripCount: NewExp); |
| 3462 | } |
| 3463 | } |
| 3464 | } |
| 3465 | |
| 3466 | void VPlanTransforms::dropPoisonGeneratingRecipes( |
| 3467 | VPlan &Plan, |
| 3468 | const std::function<bool(BasicBlock *)> &BlockNeedsPredication) { |
| 3469 | // Collect recipes in the backward slice of `Root` that may generate a poison |
| 3470 | // value that is used after vectorization. |
| 3471 | SmallPtrSet<VPRecipeBase *, 16> Visited; |
| 3472 | auto CollectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { |
| 3473 | SmallVector<VPRecipeBase *, 16> Worklist; |
| 3474 | Worklist.push_back(Elt: Root); |
| 3475 | |
| 3476 | // Traverse the backward slice of Root through its use-def chain. |
| 3477 | while (!Worklist.empty()) { |
| 3478 | VPRecipeBase *CurRec = Worklist.pop_back_val(); |
| 3479 | |
| 3480 | if (!Visited.insert(Ptr: CurRec).second) |
| 3481 | continue; |
| 3482 | |
| 3483 | // Prune search if we find another recipe generating a widen memory |
| 3484 | // instruction. Widen memory instructions involved in address computation |
| 3485 | // will lead to gather/scatter instructions, which don't need to be |
| 3486 | // handled. |
| 3487 | if (isa<VPWidenMemoryRecipe, VPInterleaveRecipe, VPScalarIVStepsRecipe, |
| 3488 | VPHeaderPHIRecipe>(Val: CurRec)) |
| 3489 | continue; |
| 3490 | |
| 3491 | // This recipe contributes to the address computation of a widen |
| 3492 | // load/store. If the underlying instruction has poison-generating flags, |
| 3493 | // drop them directly. |
| 3494 | if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(Val: CurRec)) { |
| 3495 | VPValue *A, *B; |
| 3496 | // Dropping disjoint from an OR may yield incorrect results, as some |
| 3497 | // analysis may have converted it to an Add implicitly (e.g. SCEV used |
| 3498 | // for dependence analysis). Instead, replace it with an equivalent Add. |
| 3499 | // This is possible as all users of the disjoint OR only access lanes |
| 3500 | // where the operands are disjoint or poison otherwise. |
| 3501 | if (match(V: RecWithFlags, P: m_BinaryOr(Op0: m_VPValue(V&: A), Op1: m_VPValue(V&: B))) && |
| 3502 | RecWithFlags->isDisjoint()) { |
| 3503 | VPBuilder Builder(RecWithFlags); |
| 3504 | VPInstruction *New = |
| 3505 | Builder.createAdd(LHS: A, RHS: B, DL: RecWithFlags->getDebugLoc()); |
| 3506 | New->setUnderlyingValue(RecWithFlags->getUnderlyingValue()); |
| 3507 | RecWithFlags->replaceAllUsesWith(New); |
| 3508 | RecWithFlags->eraseFromParent(); |
| 3509 | CurRec = New; |
| 3510 | } else |
| 3511 | RecWithFlags->dropPoisonGeneratingFlags(); |
| 3512 | } else { |
| 3513 | Instruction *Instr = dyn_cast_or_null<Instruction>( |
| 3514 | Val: CurRec->getVPSingleValue()->getUnderlyingValue()); |
| 3515 | (void)Instr; |
| 3516 | assert((!Instr || !Instr->hasPoisonGeneratingFlags()) && |
| 3517 | "found instruction with poison generating flags not covered by " |
| 3518 | "VPRecipeWithIRFlags" ); |
| 3519 | } |
| 3520 | |
| 3521 | // Add new definitions to the worklist. |
| 3522 | for (VPValue *Operand : CurRec->operands()) |
| 3523 | if (VPRecipeBase *OpDef = Operand->getDefiningRecipe()) |
| 3524 | Worklist.push_back(Elt: OpDef); |
| 3525 | } |
| 3526 | }); |
| 3527 | |
| 3528 | // Traverse all the recipes in the VPlan and collect the poison-generating |
| 3529 | // recipes in the backward slice starting at the address of a VPWidenRecipe or |
| 3530 | // VPInterleaveRecipe. |
| 3531 | auto Iter = vp_depth_first_deep(G: Plan.getEntry()); |
| 3532 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Range: Iter)) { |
| 3533 | for (VPRecipeBase &Recipe : *VPBB) { |
| 3534 | if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(Val: &Recipe)) { |
| 3535 | Instruction &UnderlyingInstr = WidenRec->getIngredient(); |
| 3536 | VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe(); |
| 3537 | if (AddrDef && WidenRec->isConsecutive() && |
| 3538 | BlockNeedsPredication(UnderlyingInstr.getParent())) |
| 3539 | CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); |
| 3540 | } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(Val: &Recipe)) { |
| 3541 | VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe(); |
| 3542 | if (AddrDef) { |
| 3543 | // Check if any member of the interleave group needs predication. |
| 3544 | const InterleaveGroup<Instruction> *InterGroup = |
| 3545 | InterleaveRec->getInterleaveGroup(); |
| 3546 | bool NeedPredication = false; |
| 3547 | for (int I = 0, NumMembers = InterGroup->getNumMembers(); |
| 3548 | I < NumMembers; ++I) { |
| 3549 | Instruction *Member = InterGroup->getMember(Index: I); |
| 3550 | if (Member) |
| 3551 | NeedPredication |= BlockNeedsPredication(Member->getParent()); |
| 3552 | } |
| 3553 | |
| 3554 | if (NeedPredication) |
| 3555 | CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); |
| 3556 | } |
| 3557 | } |
| 3558 | } |
| 3559 | } |
| 3560 | } |
| 3561 | |
| 3562 | void VPlanTransforms::createInterleaveGroups( |
| 3563 | VPlan &Plan, |
| 3564 | const SmallPtrSetImpl<const InterleaveGroup<Instruction> *> |
| 3565 | &InterleaveGroups, |
| 3566 | VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed) { |
| 3567 | if (InterleaveGroups.empty()) |
| 3568 | return; |
| 3569 | |
| 3570 | // Interleave memory: for each Interleave Group we marked earlier as relevant |
| 3571 | // for this VPlan, replace the Recipes widening its memory instructions with a |
| 3572 | // single VPInterleaveRecipe at its insertion point. |
| 3573 | VPDominatorTree VPDT(Plan); |
| 3574 | for (const auto *IG : InterleaveGroups) { |
| 3575 | auto *Start = |
| 3576 | cast<VPWidenMemoryRecipe>(Val: RecipeBuilder.getRecipe(I: IG->getMember(Index: 0))); |
| 3577 | VPIRMetadata InterleaveMD(*Start); |
| 3578 | SmallVector<VPValue *, 4> StoredValues; |
| 3579 | if (auto *StoreR = dyn_cast<VPWidenStoreRecipe>(Val: Start)) |
| 3580 | StoredValues.push_back(Elt: StoreR->getStoredValue()); |
| 3581 | for (unsigned I = 1; I < IG->getFactor(); ++I) { |
| 3582 | Instruction *MemberI = IG->getMember(Index: I); |
| 3583 | if (!MemberI) |
| 3584 | continue; |
| 3585 | VPWidenMemoryRecipe *MemoryR = |
| 3586 | cast<VPWidenMemoryRecipe>(Val: RecipeBuilder.getRecipe(I: MemberI)); |
| 3587 | if (auto *StoreR = dyn_cast<VPWidenStoreRecipe>(Val: MemoryR)) |
| 3588 | StoredValues.push_back(Elt: StoreR->getStoredValue()); |
| 3589 | InterleaveMD.intersect(MD: *MemoryR); |
| 3590 | } |
| 3591 | |
| 3592 | bool NeedsMaskForGaps = |
| 3593 | (IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed) || |
| 3594 | (!StoredValues.empty() && !IG->isFull()); |
| 3595 | |
| 3596 | Instruction *IRInsertPos = IG->getInsertPos(); |
| 3597 | auto *InsertPos = |
| 3598 | cast<VPWidenMemoryRecipe>(Val: RecipeBuilder.getRecipe(I: IRInsertPos)); |
| 3599 | |
| 3600 | GEPNoWrapFlags NW = GEPNoWrapFlags::none(); |
| 3601 | if (auto *Gep = dyn_cast<GetElementPtrInst>( |
| 3602 | Val: getLoadStorePointerOperand(V: IRInsertPos)->stripPointerCasts())) |
| 3603 | NW = Gep->getNoWrapFlags().withoutNoUnsignedWrap(); |
| 3604 | |
| 3605 | // Get or create the start address for the interleave group. |
| 3606 | VPValue *Addr = Start->getAddr(); |
| 3607 | VPRecipeBase *AddrDef = Addr->getDefiningRecipe(); |
| 3608 | if (AddrDef && !VPDT.properlyDominates(A: AddrDef, B: InsertPos)) { |
| 3609 | // We cannot re-use the address of member zero because it does not |
| 3610 | // dominate the insert position. Instead, use the address of the insert |
| 3611 | // position and create a PtrAdd adjusting it to the address of member |
| 3612 | // zero. |
| 3613 | // TODO: Hoist Addr's defining recipe (and any operands as needed) to |
| 3614 | // InsertPos or sink loads above zero members to join it. |
| 3615 | assert(IG->getIndex(IRInsertPos) != 0 && |
| 3616 | "index of insert position shouldn't be zero" ); |
| 3617 | auto &DL = IRInsertPos->getDataLayout(); |
| 3618 | APInt Offset(32, |
| 3619 | DL.getTypeAllocSize(Ty: getLoadStoreType(I: IRInsertPos)) * |
| 3620 | IG->getIndex(Instr: IRInsertPos), |
| 3621 | /*IsSigned=*/true); |
| 3622 | VPValue *OffsetVPV = Plan.getConstantInt(Val: -Offset); |
| 3623 | VPBuilder B(InsertPos); |
| 3624 | Addr = B.createNoWrapPtrAdd(Ptr: InsertPos->getAddr(), Offset: OffsetVPV, GEPFlags: NW); |
| 3625 | } |
| 3626 | // If the group is reverse, adjust the index to refer to the last vector |
| 3627 | // lane instead of the first. We adjust the index from the first vector |
| 3628 | // lane, rather than directly getting the pointer for lane VF - 1, because |
| 3629 | // the pointer operand of the interleaved access is supposed to be uniform. |
| 3630 | if (IG->isReverse()) { |
| 3631 | auto *ReversePtr = new VPVectorEndPointerRecipe( |
| 3632 | Addr, &Plan.getVF(), getLoadStoreType(I: IRInsertPos), |
| 3633 | -(int64_t)IG->getFactor(), NW, InsertPos->getDebugLoc()); |
| 3634 | ReversePtr->insertBefore(InsertPos); |
| 3635 | Addr = ReversePtr; |
| 3636 | } |
| 3637 | auto *VPIG = new VPInterleaveRecipe(IG, Addr, StoredValues, |
| 3638 | InsertPos->getMask(), NeedsMaskForGaps, |
| 3639 | InterleaveMD, InsertPos->getDebugLoc()); |
| 3640 | VPIG->insertBefore(InsertPos); |
| 3641 | |
| 3642 | unsigned J = 0; |
| 3643 | for (unsigned i = 0; i < IG->getFactor(); ++i) |
| 3644 | if (Instruction *Member = IG->getMember(Index: i)) { |
| 3645 | VPRecipeBase *MemberR = RecipeBuilder.getRecipe(I: Member); |
| 3646 | if (!Member->getType()->isVoidTy()) { |
| 3647 | VPValue *OriginalV = MemberR->getVPSingleValue(); |
| 3648 | OriginalV->replaceAllUsesWith(New: VPIG->getVPValue(I: J)); |
| 3649 | J++; |
| 3650 | } |
| 3651 | MemberR->eraseFromParent(); |
| 3652 | } |
| 3653 | } |
| 3654 | } |
| 3655 | |
| 3656 | /// Expand a VPWidenIntOrFpInduction into executable recipes, for the initial |
| 3657 | /// value, phi and backedge value. In the following example: |
| 3658 | /// |
| 3659 | /// vector.ph: |
| 3660 | /// Successor(s): vector loop |
| 3661 | /// |
| 3662 | /// <x1> vector loop: { |
| 3663 | /// vector.body: |
| 3664 | /// WIDEN-INDUCTION %i = phi %start, %step, %vf |
| 3665 | /// ... |
| 3666 | /// EMIT branch-on-count ... |
| 3667 | /// No successors |
| 3668 | /// } |
| 3669 | /// |
| 3670 | /// WIDEN-INDUCTION will get expanded to: |
| 3671 | /// |
| 3672 | /// vector.ph: |
| 3673 | /// ... |
| 3674 | /// vp<%induction.start> = ... |
| 3675 | /// vp<%induction.increment> = ... |
| 3676 | /// |
| 3677 | /// Successor(s): vector loop |
| 3678 | /// |
| 3679 | /// <x1> vector loop: { |
| 3680 | /// vector.body: |
| 3681 | /// ir<%i> = WIDEN-PHI vp<%induction.start>, vp<%vec.ind.next> |
| 3682 | /// ... |
| 3683 | /// vp<%vec.ind.next> = add ir<%i>, vp<%induction.increment> |
| 3684 | /// EMIT branch-on-count ... |
| 3685 | /// No successors |
| 3686 | /// } |
| 3687 | static void |
| 3688 | expandVPWidenIntOrFpInduction(VPWidenIntOrFpInductionRecipe *WidenIVR, |
| 3689 | VPTypeAnalysis &TypeInfo) { |
| 3690 | VPlan *Plan = WidenIVR->getParent()->getPlan(); |
| 3691 | VPValue *Start = WidenIVR->getStartValue(); |
| 3692 | VPValue *Step = WidenIVR->getStepValue(); |
| 3693 | VPValue *VF = WidenIVR->getVFValue(); |
| 3694 | DebugLoc DL = WidenIVR->getDebugLoc(); |
| 3695 | |
| 3696 | // The value from the original loop to which we are mapping the new induction |
| 3697 | // variable. |
| 3698 | Type *Ty = TypeInfo.inferScalarType(V: WidenIVR); |
| 3699 | |
| 3700 | const InductionDescriptor &ID = WidenIVR->getInductionDescriptor(); |
| 3701 | Instruction::BinaryOps AddOp; |
| 3702 | Instruction::BinaryOps MulOp; |
| 3703 | VPIRFlags Flags = *WidenIVR; |
| 3704 | if (ID.getKind() == InductionDescriptor::IK_IntInduction) { |
| 3705 | AddOp = Instruction::Add; |
| 3706 | MulOp = Instruction::Mul; |
| 3707 | } else { |
| 3708 | AddOp = ID.getInductionOpcode(); |
| 3709 | MulOp = Instruction::FMul; |
| 3710 | } |
| 3711 | |
| 3712 | // If the phi is truncated, truncate the start and step values. |
| 3713 | VPBuilder Builder(Plan->getVectorPreheader()); |
| 3714 | Type *StepTy = TypeInfo.inferScalarType(V: Step); |
| 3715 | if (Ty->getScalarSizeInBits() < StepTy->getScalarSizeInBits()) { |
| 3716 | assert(StepTy->isIntegerTy() && "Truncation requires an integer type" ); |
| 3717 | Step = Builder.createScalarCast(Opcode: Instruction::Trunc, Op: Step, ResultTy: Ty, DL); |
| 3718 | Start = Builder.createScalarCast(Opcode: Instruction::Trunc, Op: Start, ResultTy: Ty, DL); |
| 3719 | // Truncation doesn't preserve WrapFlags. |
| 3720 | Flags.dropPoisonGeneratingFlags(); |
| 3721 | StepTy = Ty; |
| 3722 | } |
| 3723 | |
| 3724 | // Construct the initial value of the vector IV in the vector loop preheader. |
| 3725 | Type *IVIntTy = |
| 3726 | IntegerType::get(C&: Plan->getContext(), NumBits: StepTy->getScalarSizeInBits()); |
| 3727 | VPValue *Init = Builder.createNaryOp(Opcode: VPInstruction::StepVector, Operands: {}, ResultTy: IVIntTy); |
| 3728 | if (StepTy->isFloatingPointTy()) |
| 3729 | Init = Builder.createWidenCast(Opcode: Instruction::UIToFP, Op: Init, ResultTy: StepTy); |
| 3730 | |
| 3731 | VPValue *SplatStart = Builder.createNaryOp(Opcode: VPInstruction::Broadcast, Operands: Start); |
| 3732 | VPValue *SplatStep = Builder.createNaryOp(Opcode: VPInstruction::Broadcast, Operands: Step); |
| 3733 | |
| 3734 | Init = Builder.createNaryOp(Opcode: MulOp, Operands: {Init, SplatStep}, Flags); |
| 3735 | Init = Builder.createNaryOp(Opcode: AddOp, Operands: {SplatStart, Init}, Flags, |
| 3736 | DL: DebugLoc::getUnknown(), Name: "induction" ); |
| 3737 | |
| 3738 | // Create the widened phi of the vector IV. |
| 3739 | auto *WidePHI = new VPWidenPHIRecipe(WidenIVR->getPHINode(), Init, |
| 3740 | WidenIVR->getDebugLoc(), "vec.ind" ); |
| 3741 | WidePHI->insertBefore(InsertPos: WidenIVR); |
| 3742 | |
| 3743 | // Create the backedge value for the vector IV. |
| 3744 | VPValue *Inc; |
| 3745 | VPValue *Prev; |
| 3746 | // If unrolled, use the increment and prev value from the operands. |
| 3747 | if (auto *SplatVF = WidenIVR->getSplatVFValue()) { |
| 3748 | Inc = SplatVF; |
| 3749 | Prev = WidenIVR->getLastUnrolledPartOperand(); |
| 3750 | } else { |
| 3751 | if (VPRecipeBase *R = VF->getDefiningRecipe()) |
| 3752 | Builder.setInsertPoint(TheBB: R->getParent(), IP: std::next(x: R->getIterator())); |
| 3753 | // Multiply the vectorization factor by the step using integer or |
| 3754 | // floating-point arithmetic as appropriate. |
| 3755 | if (StepTy->isFloatingPointTy()) |
| 3756 | VF = Builder.createScalarCast(Opcode: Instruction::CastOps::UIToFP, Op: VF, ResultTy: StepTy, |
| 3757 | DL); |
| 3758 | else |
| 3759 | VF = Builder.createScalarZExtOrTrunc(Op: VF, ResultTy: StepTy, |
| 3760 | SrcTy: TypeInfo.inferScalarType(V: VF), DL); |
| 3761 | |
| 3762 | Inc = Builder.createNaryOp(Opcode: MulOp, Operands: {Step, VF}, Flags); |
| 3763 | Inc = Builder.createNaryOp(Opcode: VPInstruction::Broadcast, Operands: Inc); |
| 3764 | Prev = WidePHI; |
| 3765 | } |
| 3766 | |
| 3767 | VPBasicBlock *ExitingBB = Plan->getVectorLoopRegion()->getExitingBasicBlock(); |
| 3768 | Builder.setInsertPoint(TheBB: ExitingBB, IP: ExitingBB->getTerminator()->getIterator()); |
| 3769 | auto *Next = Builder.createNaryOp(Opcode: AddOp, Operands: {Prev, Inc}, Flags, |
| 3770 | DL: WidenIVR->getDebugLoc(), Name: "vec.ind.next" ); |
| 3771 | |
| 3772 | WidePHI->addOperand(Operand: Next); |
| 3773 | |
| 3774 | WidenIVR->replaceAllUsesWith(New: WidePHI); |
| 3775 | } |
| 3776 | |
| 3777 | /// Expand a VPWidenPointerInductionRecipe into executable recipes, for the |
| 3778 | /// initial value, phi and backedge value. In the following example: |
| 3779 | /// |
| 3780 | /// <x1> vector loop: { |
| 3781 | /// vector.body: |
| 3782 | /// EMIT ir<%ptr.iv> = WIDEN-POINTER-INDUCTION %start, %step, %vf |
| 3783 | /// ... |
| 3784 | /// EMIT branch-on-count ... |
| 3785 | /// } |
| 3786 | /// |
| 3787 | /// WIDEN-POINTER-INDUCTION will get expanded to: |
| 3788 | /// |
| 3789 | /// <x1> vector loop: { |
| 3790 | /// vector.body: |
| 3791 | /// EMIT-SCALAR %pointer.phi = phi %start, %ptr.ind |
| 3792 | /// EMIT %mul = mul %stepvector, %step |
| 3793 | /// EMIT %vector.gep = wide-ptradd %pointer.phi, %mul |
| 3794 | /// ... |
| 3795 | /// EMIT %ptr.ind = ptradd %pointer.phi, %vf |
| 3796 | /// EMIT branch-on-count ... |
| 3797 | /// } |
| 3798 | static void expandVPWidenPointerInduction(VPWidenPointerInductionRecipe *R, |
| 3799 | VPTypeAnalysis &TypeInfo) { |
| 3800 | VPlan *Plan = R->getParent()->getPlan(); |
| 3801 | VPValue *Start = R->getStartValue(); |
| 3802 | VPValue *Step = R->getStepValue(); |
| 3803 | VPValue *VF = R->getVFValue(); |
| 3804 | |
| 3805 | assert(R->getInductionDescriptor().getKind() == |
| 3806 | InductionDescriptor::IK_PtrInduction && |
| 3807 | "Not a pointer induction according to InductionDescriptor!" ); |
| 3808 | assert(TypeInfo.inferScalarType(R)->isPointerTy() && "Unexpected type." ); |
| 3809 | assert(!R->onlyScalarsGenerated(Plan->hasScalableVF()) && |
| 3810 | "Recipe should have been replaced" ); |
| 3811 | |
| 3812 | VPBuilder Builder(R); |
| 3813 | DebugLoc DL = R->getDebugLoc(); |
| 3814 | |
| 3815 | // Build a scalar pointer phi. |
| 3816 | VPPhi *ScalarPtrPhi = Builder.createScalarPhi(IncomingValues: Start, DL, Name: "pointer.phi" ); |
| 3817 | |
| 3818 | // Create actual address geps that use the pointer phi as base and a |
| 3819 | // vectorized version of the step value (<step*0, ..., step*N>) as offset. |
| 3820 | Builder.setInsertPoint(TheBB: R->getParent(), IP: R->getParent()->getFirstNonPhi()); |
| 3821 | Type *StepTy = TypeInfo.inferScalarType(V: Step); |
| 3822 | VPValue *Offset = Builder.createNaryOp(Opcode: VPInstruction::StepVector, Operands: {}, ResultTy: StepTy); |
| 3823 | Offset = Builder.createOverflowingOp(Opcode: Instruction::Mul, Operands: {Offset, Step}); |
| 3824 | VPValue *PtrAdd = |
| 3825 | Builder.createWidePtrAdd(Ptr: ScalarPtrPhi, Offset, DL, Name: "vector.gep" ); |
| 3826 | R->replaceAllUsesWith(New: PtrAdd); |
| 3827 | |
| 3828 | // Create the backedge value for the scalar pointer phi. |
| 3829 | VPBasicBlock *ExitingBB = Plan->getVectorLoopRegion()->getExitingBasicBlock(); |
| 3830 | Builder.setInsertPoint(TheBB: ExitingBB, IP: ExitingBB->getTerminator()->getIterator()); |
| 3831 | VF = Builder.createScalarZExtOrTrunc(Op: VF, ResultTy: StepTy, SrcTy: TypeInfo.inferScalarType(V: VF), |
| 3832 | DL); |
| 3833 | VPValue *Inc = Builder.createOverflowingOp(Opcode: Instruction::Mul, Operands: {Step, VF}); |
| 3834 | |
| 3835 | VPValue *InductionGEP = |
| 3836 | Builder.createPtrAdd(Ptr: ScalarPtrPhi, Offset: Inc, DL, Name: "ptr.ind" ); |
| 3837 | ScalarPtrPhi->addOperand(Operand: InductionGEP); |
| 3838 | } |
| 3839 | |
| 3840 | void VPlanTransforms::dissolveLoopRegions(VPlan &Plan) { |
| 3841 | // Replace loop regions with explicity CFG. |
| 3842 | SmallVector<VPRegionBlock *> LoopRegions; |
| 3843 | for (VPRegionBlock *R : VPBlockUtils::blocksOnly<VPRegionBlock>( |
| 3844 | Range: vp_depth_first_deep(G: Plan.getEntry()))) { |
| 3845 | if (!R->isReplicator()) |
| 3846 | LoopRegions.push_back(Elt: R); |
| 3847 | } |
| 3848 | for (VPRegionBlock *R : LoopRegions) |
| 3849 | R->dissolveToCFGLoop(); |
| 3850 | } |
| 3851 | |
| 3852 | void VPlanTransforms::expandBranchOnTwoConds(VPlan &Plan) { |
| 3853 | SmallVector<VPInstruction *> WorkList; |
| 3854 | // The transform runs after dissolving loop regions, so all VPBasicBlocks |
| 3855 | // terminated with BranchOnTwoConds are reached via a shallow traversal. |
| 3856 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 3857 | Range: vp_depth_first_shallow(G: Plan.getEntry()))) { |
| 3858 | if (!VPBB->empty() && match(V: &VPBB->back(), P: m_BranchOnTwoConds())) |
| 3859 | WorkList.push_back(Elt: cast<VPInstruction>(Val: &VPBB->back())); |
| 3860 | } |
| 3861 | |
| 3862 | // Expand BranchOnTwoConds instructions into explicit CFG with two new |
| 3863 | // single-condition branches: |
| 3864 | // 1. A branch that replaces BranchOnTwoConds, jumps to the first successor if |
| 3865 | // the first condition is true, and otherwise jumps to a new interim block. |
| 3866 | // 2. A branch that ends the interim block, jumps to the second successor if |
| 3867 | // the second condition is true, and otherwise jumps to the third |
| 3868 | // successor. |
| 3869 | for (VPInstruction *Br : WorkList) { |
| 3870 | assert(Br->getNumOperands() == 2 && |
| 3871 | "BranchOnTwoConds must have exactly 2 conditions" ); |
| 3872 | DebugLoc DL = Br->getDebugLoc(); |
| 3873 | VPBasicBlock *BrOnTwoCondsBB = Br->getParent(); |
| 3874 | const auto Successors = to_vector(Range&: BrOnTwoCondsBB->getSuccessors()); |
| 3875 | assert(Successors.size() == 3 && |
| 3876 | "BranchOnTwoConds must have exactly 3 successors" ); |
| 3877 | |
| 3878 | for (VPBlockBase *Succ : Successors) |
| 3879 | VPBlockUtils::disconnectBlocks(From: BrOnTwoCondsBB, To: Succ); |
| 3880 | |
| 3881 | VPValue *Cond0 = Br->getOperand(N: 0); |
| 3882 | VPValue *Cond1 = Br->getOperand(N: 1); |
| 3883 | VPBlockBase *Succ0 = Successors[0]; |
| 3884 | VPBlockBase *Succ1 = Successors[1]; |
| 3885 | VPBlockBase *Succ2 = Successors[2]; |
| 3886 | assert(!Succ0->getParent() && !Succ1->getParent() && !Succ2->getParent() && |
| 3887 | !BrOnTwoCondsBB->getParent() && "regions must already be dissolved" ); |
| 3888 | |
| 3889 | VPBasicBlock *InterimBB = |
| 3890 | Plan.createVPBasicBlock(Name: BrOnTwoCondsBB->getName() + ".interim" ); |
| 3891 | |
| 3892 | VPBuilder(BrOnTwoCondsBB) |
| 3893 | .createNaryOp(Opcode: VPInstruction::BranchOnCond, Operands: {Cond0}, DL); |
| 3894 | VPBlockUtils::connectBlocks(From: BrOnTwoCondsBB, To: Succ0); |
| 3895 | VPBlockUtils::connectBlocks(From: BrOnTwoCondsBB, To: InterimBB); |
| 3896 | |
| 3897 | VPBuilder(InterimBB).createNaryOp(Opcode: VPInstruction::BranchOnCond, Operands: {Cond1}, DL); |
| 3898 | VPBlockUtils::connectBlocks(From: InterimBB, To: Succ1); |
| 3899 | VPBlockUtils::connectBlocks(From: InterimBB, To: Succ2); |
| 3900 | Br->eraseFromParent(); |
| 3901 | } |
| 3902 | } |
| 3903 | |
| 3904 | void VPlanTransforms::convertToConcreteRecipes(VPlan &Plan) { |
| 3905 | VPTypeAnalysis TypeInfo(Plan); |
| 3906 | SmallVector<VPRecipeBase *> ToRemove; |
| 3907 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 3908 | Range: vp_depth_first_deep(G: Plan.getEntry()))) { |
| 3909 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) { |
| 3910 | if (auto *WidenIVR = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: &R)) { |
| 3911 | expandVPWidenIntOrFpInduction(WidenIVR, TypeInfo); |
| 3912 | ToRemove.push_back(Elt: WidenIVR); |
| 3913 | continue; |
| 3914 | } |
| 3915 | |
| 3916 | if (auto *WidenIVR = dyn_cast<VPWidenPointerInductionRecipe>(Val: &R)) { |
| 3917 | // If the recipe only generates scalars, scalarize it instead of |
| 3918 | // expanding it. |
| 3919 | if (WidenIVR->onlyScalarsGenerated(IsScalable: Plan.hasScalableVF())) { |
| 3920 | VPBuilder Builder(WidenIVR); |
| 3921 | VPValue *PtrAdd = |
| 3922 | scalarizeVPWidenPointerInduction(PtrIV: WidenIVR, Plan, Builder); |
| 3923 | WidenIVR->replaceAllUsesWith(New: PtrAdd); |
| 3924 | ToRemove.push_back(Elt: WidenIVR); |
| 3925 | continue; |
| 3926 | } |
| 3927 | expandVPWidenPointerInduction(R: WidenIVR, TypeInfo); |
| 3928 | ToRemove.push_back(Elt: WidenIVR); |
| 3929 | continue; |
| 3930 | } |
| 3931 | |
| 3932 | // Expand VPBlendRecipe into VPInstruction::Select. |
| 3933 | VPBuilder Builder(&R); |
| 3934 | if (auto *Blend = dyn_cast<VPBlendRecipe>(Val: &R)) { |
| 3935 | VPValue *Select = Blend->getIncomingValue(Idx: 0); |
| 3936 | for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I) |
| 3937 | Select = Builder.createSelect(Cond: Blend->getMask(Idx: I), |
| 3938 | TrueVal: Blend->getIncomingValue(Idx: I), FalseVal: Select, |
| 3939 | DL: R.getDebugLoc(), Name: "predphi" ); |
| 3940 | Blend->replaceAllUsesWith(New: Select); |
| 3941 | ToRemove.push_back(Elt: Blend); |
| 3942 | } |
| 3943 | |
| 3944 | if (auto *Expr = dyn_cast<VPExpressionRecipe>(Val: &R)) { |
| 3945 | Expr->decompose(); |
| 3946 | ToRemove.push_back(Elt: Expr); |
| 3947 | } |
| 3948 | |
| 3949 | // Expand LastActiveLane into Not + FirstActiveLane + Sub. |
| 3950 | auto *LastActiveL = dyn_cast<VPInstruction>(Val: &R); |
| 3951 | if (LastActiveL && |
| 3952 | LastActiveL->getOpcode() == VPInstruction::LastActiveLane) { |
| 3953 | // Create Not(Mask) for all operands. |
| 3954 | SmallVector<VPValue *, 2> NotMasks; |
| 3955 | for (VPValue *Op : LastActiveL->operands()) { |
| 3956 | VPValue *NotMask = Builder.createNot(Operand: Op, DL: LastActiveL->getDebugLoc()); |
| 3957 | NotMasks.push_back(Elt: NotMask); |
| 3958 | } |
| 3959 | |
| 3960 | // Create FirstActiveLane on the inverted masks. |
| 3961 | VPValue *FirstInactiveLane = Builder.createNaryOp( |
| 3962 | Opcode: VPInstruction::FirstActiveLane, Operands: NotMasks, |
| 3963 | DL: LastActiveL->getDebugLoc(), Name: "first.inactive.lane" ); |
| 3964 | |
| 3965 | // Subtract 1 to get the last active lane. |
| 3966 | VPValue *One = Plan.getOrAddLiveIn( |
| 3967 | V: ConstantInt::get(Ty: Type::getInt64Ty(C&: Plan.getContext()), V: 1)); |
| 3968 | VPValue *LastLane = |
| 3969 | Builder.createSub(LHS: FirstInactiveLane, RHS: One, |
| 3970 | DL: LastActiveL->getDebugLoc(), Name: "last.active.lane" ); |
| 3971 | |
| 3972 | LastActiveL->replaceAllUsesWith(New: LastLane); |
| 3973 | ToRemove.push_back(Elt: LastActiveL); |
| 3974 | continue; |
| 3975 | } |
| 3976 | |
| 3977 | // Lower BranchOnCount to ICmp + BranchOnCond. |
| 3978 | VPValue *IV, *TC; |
| 3979 | if (match(V: &R, P: m_BranchOnCount(Op0: m_VPValue(V&: IV), Op1: m_VPValue(V&: TC)))) { |
| 3980 | auto *BranchOnCountInst = cast<VPInstruction>(Val: &R); |
| 3981 | DebugLoc DL = BranchOnCountInst->getDebugLoc(); |
| 3982 | VPValue *Cond = Builder.createICmp(Pred: CmpInst::ICMP_EQ, A: IV, B: TC, DL); |
| 3983 | Builder.createNaryOp(Opcode: VPInstruction::BranchOnCond, Operands: Cond, DL); |
| 3984 | ToRemove.push_back(Elt: BranchOnCountInst); |
| 3985 | continue; |
| 3986 | } |
| 3987 | |
| 3988 | VPValue *VectorStep; |
| 3989 | VPValue *ScalarStep; |
| 3990 | if (!match(V: &R, P: m_VPInstruction<VPInstruction::WideIVStep>( |
| 3991 | Ops: m_VPValue(V&: VectorStep), Ops: m_VPValue(V&: ScalarStep)))) |
| 3992 | continue; |
| 3993 | |
| 3994 | // Expand WideIVStep. |
| 3995 | auto *VPI = cast<VPInstruction>(Val: &R); |
| 3996 | Type *IVTy = TypeInfo.inferScalarType(V: VPI); |
| 3997 | if (TypeInfo.inferScalarType(V: VectorStep) != IVTy) { |
| 3998 | Instruction::CastOps CastOp = IVTy->isFloatingPointTy() |
| 3999 | ? Instruction::UIToFP |
| 4000 | : Instruction::Trunc; |
| 4001 | VectorStep = Builder.createWidenCast(Opcode: CastOp, Op: VectorStep, ResultTy: IVTy); |
| 4002 | } |
| 4003 | |
| 4004 | assert(!match(ScalarStep, m_One()) && "Expected non-unit scalar-step" ); |
| 4005 | if (TypeInfo.inferScalarType(V: ScalarStep) != IVTy) { |
| 4006 | ScalarStep = |
| 4007 | Builder.createWidenCast(Opcode: Instruction::Trunc, Op: ScalarStep, ResultTy: IVTy); |
| 4008 | } |
| 4009 | |
| 4010 | VPIRFlags Flags; |
| 4011 | unsigned MulOpc; |
| 4012 | if (IVTy->isFloatingPointTy()) { |
| 4013 | MulOpc = Instruction::FMul; |
| 4014 | Flags = VPI->getFastMathFlags(); |
| 4015 | } else { |
| 4016 | MulOpc = Instruction::Mul; |
| 4017 | Flags = VPIRFlags::getDefaultFlags(Opcode: MulOpc); |
| 4018 | } |
| 4019 | |
| 4020 | VPInstruction *Mul = Builder.createNaryOp( |
| 4021 | Opcode: MulOpc, Operands: {VectorStep, ScalarStep}, Flags, DL: R.getDebugLoc()); |
| 4022 | VectorStep = Mul; |
| 4023 | VPI->replaceAllUsesWith(New: VectorStep); |
| 4024 | ToRemove.push_back(Elt: VPI); |
| 4025 | } |
| 4026 | } |
| 4027 | |
| 4028 | for (VPRecipeBase *R : ToRemove) |
| 4029 | R->eraseFromParent(); |
| 4030 | } |
| 4031 | |
| 4032 | void VPlanTransforms::handleUncountableEarlyExit(VPBasicBlock *EarlyExitingVPBB, |
| 4033 | VPBasicBlock *EarlyExitVPBB, |
| 4034 | VPlan &Plan, |
| 4035 | VPBasicBlock *, |
| 4036 | VPBasicBlock *LatchVPBB) { |
| 4037 | auto *MiddleVPBB = cast<VPBasicBlock>(Val: LatchVPBB->getSuccessors()[0]); |
| 4038 | if (!EarlyExitVPBB->getSinglePredecessor() && |
| 4039 | EarlyExitVPBB->getPredecessors()[1] == MiddleVPBB) { |
| 4040 | assert(EarlyExitVPBB->getNumPredecessors() == 2 && |
| 4041 | EarlyExitVPBB->getPredecessors()[0] == EarlyExitingVPBB && |
| 4042 | "unsupported early exit VPBB" ); |
| 4043 | // Early exit operand should always be last phi operand. If EarlyExitVPBB |
| 4044 | // has two predecessors and EarlyExitingVPBB is the first, swap the operands |
| 4045 | // of the phis. |
| 4046 | for (VPRecipeBase &R : EarlyExitVPBB->phis()) |
| 4047 | cast<VPIRPhi>(Val: &R)->swapOperands(); |
| 4048 | } |
| 4049 | |
| 4050 | VPBuilder Builder(LatchVPBB->getTerminator()); |
| 4051 | VPBlockBase *TrueSucc = EarlyExitingVPBB->getSuccessors()[0]; |
| 4052 | assert(match(EarlyExitingVPBB->getTerminator(), m_BranchOnCond()) && |
| 4053 | "Terminator must be be BranchOnCond" ); |
| 4054 | VPValue *CondOfEarlyExitingVPBB = |
| 4055 | EarlyExitingVPBB->getTerminator()->getOperand(N: 0); |
| 4056 | auto *CondToEarlyExit = TrueSucc == EarlyExitVPBB |
| 4057 | ? CondOfEarlyExitingVPBB |
| 4058 | : Builder.createNot(Operand: CondOfEarlyExitingVPBB); |
| 4059 | |
| 4060 | // Create a BranchOnTwoConds in the latch that branches to: |
| 4061 | // [0] vector.early.exit, [1] middle block, [2] header (continue looping). |
| 4062 | VPValue *IsEarlyExitTaken = |
| 4063 | Builder.createNaryOp(Opcode: VPInstruction::AnyOf, Operands: {CondToEarlyExit}); |
| 4064 | VPBasicBlock *VectorEarlyExitVPBB = |
| 4065 | Plan.createVPBasicBlock(Name: "vector.early.exit" ); |
| 4066 | VectorEarlyExitVPBB->setParent(EarlyExitVPBB->getParent()); |
| 4067 | |
| 4068 | VPBlockUtils::connectBlocks(From: VectorEarlyExitVPBB, To: EarlyExitVPBB); |
| 4069 | |
| 4070 | // Update the exit phis in the early exit block. |
| 4071 | VPBuilder MiddleBuilder(MiddleVPBB); |
| 4072 | VPBuilder EarlyExitB(VectorEarlyExitVPBB); |
| 4073 | for (VPRecipeBase &R : EarlyExitVPBB->phis()) { |
| 4074 | auto *ExitIRI = cast<VPIRPhi>(Val: &R); |
| 4075 | // Early exit operand should always be last, i.e., 0 if EarlyExitVPBB has |
| 4076 | // a single predecessor and 1 if it has two. |
| 4077 | unsigned EarlyExitIdx = ExitIRI->getNumOperands() - 1; |
| 4078 | if (ExitIRI->getNumOperands() != 1) { |
| 4079 | // The first of two operands corresponds to the latch exit, via MiddleVPBB |
| 4080 | // predecessor. Extract its final lane. |
| 4081 | ExitIRI->extractLastLaneOfLastPartOfFirstOperand(Builder&: MiddleBuilder); |
| 4082 | } |
| 4083 | |
| 4084 | VPValue *IncomingFromEarlyExit = ExitIRI->getOperand(N: EarlyExitIdx); |
| 4085 | if (!isa<VPIRValue>(Val: IncomingFromEarlyExit)) { |
| 4086 | // Update the incoming value from the early exit. |
| 4087 | VPValue *FirstActiveLane = EarlyExitB.createNaryOp( |
| 4088 | Opcode: VPInstruction::FirstActiveLane, Operands: {CondToEarlyExit}, |
| 4089 | DL: DebugLoc::getUnknown(), Name: "first.active.lane" ); |
| 4090 | IncomingFromEarlyExit = EarlyExitB.createNaryOp( |
| 4091 | Opcode: VPInstruction::ExtractLane, Operands: {FirstActiveLane, IncomingFromEarlyExit}, |
| 4092 | DL: DebugLoc::getUnknown(), Name: "early.exit.value" ); |
| 4093 | ExitIRI->setOperand(I: EarlyExitIdx, New: IncomingFromEarlyExit); |
| 4094 | } |
| 4095 | } |
| 4096 | |
| 4097 | // Replace the conditional branch controlling the latch exit from the vector |
| 4098 | // loop with a multi-conditional branch exiting to vector early exit if the |
| 4099 | // early exit has been taken, exiting to middle block if the original |
| 4100 | // condition of the vector latch is true, otherwise continuing back to header. |
| 4101 | auto *LatchExitingBranch = cast<VPInstruction>(Val: LatchVPBB->getTerminator()); |
| 4102 | assert(LatchExitingBranch->getOpcode() == VPInstruction::BranchOnCount && |
| 4103 | "Unexpected terminator" ); |
| 4104 | auto *IsLatchExitTaken = |
| 4105 | Builder.createICmp(Pred: CmpInst::ICMP_EQ, A: LatchExitingBranch->getOperand(N: 0), |
| 4106 | B: LatchExitingBranch->getOperand(N: 1)); |
| 4107 | |
| 4108 | DebugLoc LatchDL = LatchExitingBranch->getDebugLoc(); |
| 4109 | LatchExitingBranch->eraseFromParent(); |
| 4110 | |
| 4111 | Builder.setInsertPoint(LatchVPBB); |
| 4112 | Builder.createNaryOp(Opcode: VPInstruction::BranchOnTwoConds, |
| 4113 | Operands: {IsEarlyExitTaken, IsLatchExitTaken}, DL: LatchDL); |
| 4114 | LatchVPBB->clearSuccessors(); |
| 4115 | LatchVPBB->setSuccessors({VectorEarlyExitVPBB, MiddleVPBB, HeaderVPBB}); |
| 4116 | VectorEarlyExitVPBB->setPredecessors({LatchVPBB}); |
| 4117 | } |
| 4118 | |
| 4119 | /// This function tries convert extended in-loop reductions to |
| 4120 | /// VPExpressionRecipe and clamp the \p Range if it is beneficial and |
| 4121 | /// valid. The created recipe must be decomposed to its constituent |
| 4122 | /// recipes before execution. |
| 4123 | static VPExpressionRecipe * |
| 4124 | tryToMatchAndCreateExtendedReduction(VPReductionRecipe *Red, VPCostContext &Ctx, |
| 4125 | VFRange &Range) { |
| 4126 | Type *RedTy = Ctx.Types.inferScalarType(V: Red); |
| 4127 | VPValue *VecOp = Red->getVecOp(); |
| 4128 | |
| 4129 | // Clamp the range if using extended-reduction is profitable. |
| 4130 | auto IsExtendedRedValidAndClampRange = |
| 4131 | [&](unsigned Opcode, Instruction::CastOps ExtOpc, Type *SrcTy) -> bool { |
| 4132 | return LoopVectorizationPlanner::getDecisionAndClampRange( |
| 4133 | Predicate: [&](ElementCount VF) { |
| 4134 | auto *SrcVecTy = cast<VectorType>(Val: toVectorTy(Scalar: SrcTy, EC: VF)); |
| 4135 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| 4136 | |
| 4137 | InstructionCost ExtRedCost = InstructionCost::getInvalid(); |
| 4138 | InstructionCost ExtCost = |
| 4139 | cast<VPWidenCastRecipe>(Val: VecOp)->computeCost(VF, Ctx); |
| 4140 | InstructionCost RedCost = Red->computeCost(VF, Ctx); |
| 4141 | |
| 4142 | if (Red->isPartialReduction()) { |
| 4143 | TargetTransformInfo::PartialReductionExtendKind ExtKind = |
| 4144 | TargetTransformInfo::getPartialReductionExtendKind(CastOpc: ExtOpc); |
| 4145 | // FIXME: Move partial reduction creation, costing and clamping |
| 4146 | // here from LoopVectorize.cpp. |
| 4147 | ExtRedCost = Ctx.TTI.getPartialReductionCost( |
| 4148 | Opcode, InputTypeA: SrcTy, InputTypeB: nullptr, AccumType: RedTy, VF, OpAExtend: ExtKind, |
| 4149 | OpBExtend: llvm::TargetTransformInfo::PR_None, BinOp: std::nullopt, CostKind: Ctx.CostKind, |
| 4150 | FMF: RedTy->isFloatingPointTy() |
| 4151 | ? std::optional{Red->getFastMathFlags()} |
| 4152 | : std::nullopt); |
| 4153 | } else if (!RedTy->isFloatingPointTy()) { |
| 4154 | // TTI::getExtendedReductionCost only supports integer types. |
| 4155 | ExtRedCost = Ctx.TTI.getExtendedReductionCost( |
| 4156 | Opcode, IsUnsigned: ExtOpc == Instruction::CastOps::ZExt, ResTy: RedTy, Ty: SrcVecTy, |
| 4157 | FMF: Red->getFastMathFlags(), CostKind); |
| 4158 | } |
| 4159 | return ExtRedCost.isValid() && ExtRedCost < ExtCost + RedCost; |
| 4160 | }, |
| 4161 | Range); |
| 4162 | }; |
| 4163 | |
| 4164 | VPValue *A; |
| 4165 | // Match reduce(ext)). |
| 4166 | if (isa<VPWidenCastRecipe>(Val: VecOp) && |
| 4167 | (match(V: VecOp, P: m_ZExtOrSExt(Op0: m_VPValue(V&: A))) || |
| 4168 | match(V: VecOp, P: m_FPExt(Op0: m_VPValue(V&: A)))) && |
| 4169 | IsExtendedRedValidAndClampRange( |
| 4170 | RecurrenceDescriptor::getOpcode(Kind: Red->getRecurrenceKind()), |
| 4171 | cast<VPWidenCastRecipe>(Val: VecOp)->getOpcode(), |
| 4172 | Ctx.Types.inferScalarType(V: A))) |
| 4173 | return new VPExpressionRecipe(cast<VPWidenCastRecipe>(Val: VecOp), Red); |
| 4174 | |
| 4175 | return nullptr; |
| 4176 | } |
| 4177 | |
| 4178 | /// This function tries convert extended in-loop reductions to |
| 4179 | /// VPExpressionRecipe and clamp the \p Range if it is beneficial |
| 4180 | /// and valid. The created VPExpressionRecipe must be decomposed to its |
| 4181 | /// constituent recipes before execution. Patterns of the |
| 4182 | /// VPExpressionRecipe: |
| 4183 | /// reduce.add(mul(...)), |
| 4184 | /// reduce.add(mul(ext(A), ext(B))), |
| 4185 | /// reduce.add(ext(mul(ext(A), ext(B)))). |
| 4186 | /// reduce.fadd(fmul(ext(A), ext(B))) |
| 4187 | static VPExpressionRecipe * |
| 4188 | tryToMatchAndCreateMulAccumulateReduction(VPReductionRecipe *Red, |
| 4189 | VPCostContext &Ctx, VFRange &Range) { |
| 4190 | unsigned Opcode = RecurrenceDescriptor::getOpcode(Kind: Red->getRecurrenceKind()); |
| 4191 | if (Opcode != Instruction::Add && Opcode != Instruction::Sub && |
| 4192 | Opcode != Instruction::FAdd) |
| 4193 | return nullptr; |
| 4194 | |
| 4195 | Type *RedTy = Ctx.Types.inferScalarType(V: Red); |
| 4196 | |
| 4197 | // Clamp the range if using multiply-accumulate-reduction is profitable. |
| 4198 | auto IsMulAccValidAndClampRange = |
| 4199 | [&](VPWidenRecipe *Mul, VPWidenCastRecipe *Ext0, VPWidenCastRecipe *Ext1, |
| 4200 | VPWidenCastRecipe *OuterExt) -> bool { |
| 4201 | return LoopVectorizationPlanner::getDecisionAndClampRange( |
| 4202 | Predicate: [&](ElementCount VF) { |
| 4203 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| 4204 | Type *SrcTy = |
| 4205 | Ext0 ? Ctx.Types.inferScalarType(V: Ext0->getOperand(N: 0)) : RedTy; |
| 4206 | InstructionCost MulAccCost; |
| 4207 | |
| 4208 | if (Red->isPartialReduction()) { |
| 4209 | Type *SrcTy2 = |
| 4210 | Ext1 ? Ctx.Types.inferScalarType(V: Ext1->getOperand(N: 0)) : nullptr; |
| 4211 | // FIXME: Move partial reduction creation, costing and clamping |
| 4212 | // here from LoopVectorize.cpp. |
| 4213 | MulAccCost = Ctx.TTI.getPartialReductionCost( |
| 4214 | Opcode, InputTypeA: SrcTy, InputTypeB: SrcTy2, AccumType: RedTy, VF, |
| 4215 | OpAExtend: Ext0 ? TargetTransformInfo::getPartialReductionExtendKind( |
| 4216 | CastOpc: Ext0->getOpcode()) |
| 4217 | : TargetTransformInfo::PR_None, |
| 4218 | OpBExtend: Ext1 ? TargetTransformInfo::getPartialReductionExtendKind( |
| 4219 | CastOpc: Ext1->getOpcode()) |
| 4220 | : TargetTransformInfo::PR_None, |
| 4221 | BinOp: Mul->getOpcode(), CostKind, |
| 4222 | FMF: RedTy->isFloatingPointTy() |
| 4223 | ? std::optional{Red->getFastMathFlags()} |
| 4224 | : std::nullopt); |
| 4225 | } else { |
| 4226 | // Only partial reductions support mixed or floating-point extends |
| 4227 | // at the moment. |
| 4228 | if (Ext0 && Ext1 && |
| 4229 | (Ext0->getOpcode() != Ext1->getOpcode() || |
| 4230 | Ext0->getOpcode() == Instruction::CastOps::FPExt)) |
| 4231 | return false; |
| 4232 | |
| 4233 | bool IsZExt = |
| 4234 | !Ext0 || Ext0->getOpcode() == Instruction::CastOps::ZExt; |
| 4235 | auto *SrcVecTy = cast<VectorType>(Val: toVectorTy(Scalar: SrcTy, EC: VF)); |
| 4236 | MulAccCost = Ctx.TTI.getMulAccReductionCost(IsUnsigned: IsZExt, RedOpcode: Opcode, ResTy: RedTy, |
| 4237 | Ty: SrcVecTy, CostKind); |
| 4238 | } |
| 4239 | |
| 4240 | InstructionCost MulCost = Mul->computeCost(VF, Ctx); |
| 4241 | InstructionCost RedCost = Red->computeCost(VF, Ctx); |
| 4242 | InstructionCost ExtCost = 0; |
| 4243 | if (Ext0) |
| 4244 | ExtCost += Ext0->computeCost(VF, Ctx); |
| 4245 | if (Ext1) |
| 4246 | ExtCost += Ext1->computeCost(VF, Ctx); |
| 4247 | if (OuterExt) |
| 4248 | ExtCost += OuterExt->computeCost(VF, Ctx); |
| 4249 | |
| 4250 | return MulAccCost.isValid() && |
| 4251 | MulAccCost < ExtCost + MulCost + RedCost; |
| 4252 | }, |
| 4253 | Range); |
| 4254 | }; |
| 4255 | |
| 4256 | VPValue *VecOp = Red->getVecOp(); |
| 4257 | VPRecipeBase *Sub = nullptr; |
| 4258 | VPValue *A, *B; |
| 4259 | VPValue *Tmp = nullptr; |
| 4260 | |
| 4261 | // Try to match reduce.fadd(fmul(fpext(...), fpext(...))). |
| 4262 | if (match(V: VecOp, P: m_FMul(Op0: m_FPExt(Op0: m_VPValue()), Op1: m_FPExt(Op0: m_VPValue())))) { |
| 4263 | assert(Opcode == Instruction::FAdd && |
| 4264 | "MulAccumulateReduction from an FMul must accumulate into an FAdd " |
| 4265 | "instruction" ); |
| 4266 | auto *FMul = dyn_cast<VPWidenRecipe>(Val: VecOp); |
| 4267 | if (!FMul) |
| 4268 | return nullptr; |
| 4269 | |
| 4270 | auto *RecipeA = dyn_cast<VPWidenCastRecipe>(Val: FMul->getOperand(N: 0)); |
| 4271 | auto *RecipeB = dyn_cast<VPWidenCastRecipe>(Val: FMul->getOperand(N: 1)); |
| 4272 | |
| 4273 | if (RecipeA && RecipeB && |
| 4274 | IsMulAccValidAndClampRange(FMul, RecipeA, RecipeB, nullptr)) { |
| 4275 | return new VPExpressionRecipe(RecipeA, RecipeB, FMul, Red); |
| 4276 | } |
| 4277 | } |
| 4278 | if (RedTy->isFloatingPointTy()) |
| 4279 | return nullptr; |
| 4280 | |
| 4281 | // Sub reductions could have a sub between the add reduction and vec op. |
| 4282 | if (match(V: VecOp, P: m_Sub(Op0: m_ZeroInt(), Op1: m_VPValue(V&: Tmp)))) { |
| 4283 | Sub = VecOp->getDefiningRecipe(); |
| 4284 | VecOp = Tmp; |
| 4285 | } |
| 4286 | |
| 4287 | // If ValB is a constant and can be safely extended, truncate it to the same |
| 4288 | // type as ExtA's operand, then extend it to the same type as ExtA. This |
| 4289 | // creates two uniform extends that can more easily be matched by the rest of |
| 4290 | // the bundling code. The ExtB reference, ValB and operand 1 of Mul are all |
| 4291 | // replaced with the new extend of the constant. |
| 4292 | auto ExtendAndReplaceConstantOp = [&Ctx](VPWidenCastRecipe *ExtA, |
| 4293 | VPWidenCastRecipe *&ExtB, |
| 4294 | VPValue *&ValB, VPWidenRecipe *Mul) { |
| 4295 | if (!ExtA || ExtB || !isa<VPIRValue>(Val: ValB)) |
| 4296 | return; |
| 4297 | Type *NarrowTy = Ctx.Types.inferScalarType(V: ExtA->getOperand(N: 0)); |
| 4298 | Instruction::CastOps ExtOpc = ExtA->getOpcode(); |
| 4299 | const APInt *Const; |
| 4300 | if (!match(V: ValB, P: m_APInt(C&: Const)) || |
| 4301 | !llvm::canConstantBeExtended( |
| 4302 | C: Const, NarrowType: NarrowTy, ExtKind: TTI::getPartialReductionExtendKind(CastOpc: ExtOpc))) |
| 4303 | return; |
| 4304 | // The truncate ensures that the type of each extended operand is the |
| 4305 | // same, and it's been proven that the constant can be extended from |
| 4306 | // NarrowTy safely. Necessary since ExtA's extended operand would be |
| 4307 | // e.g. an i8, while the const will likely be an i32. This will be |
| 4308 | // elided by later optimisations. |
| 4309 | VPBuilder Builder(Mul); |
| 4310 | auto *Trunc = |
| 4311 | Builder.createWidenCast(Opcode: Instruction::CastOps::Trunc, Op: ValB, ResultTy: NarrowTy); |
| 4312 | Type *WideTy = Ctx.Types.inferScalarType(V: ExtA); |
| 4313 | ValB = ExtB = Builder.createWidenCast(Opcode: ExtOpc, Op: Trunc, ResultTy: WideTy); |
| 4314 | Mul->setOperand(I: 1, New: ExtB); |
| 4315 | }; |
| 4316 | |
| 4317 | // Try to match reduce.add(mul(...)). |
| 4318 | if (match(V: VecOp, P: m_Mul(Op0: m_VPValue(V&: A), Op1: m_VPValue(V&: B)))) { |
| 4319 | auto *RecipeA = dyn_cast_if_present<VPWidenCastRecipe>(Val: A); |
| 4320 | auto *RecipeB = dyn_cast_if_present<VPWidenCastRecipe>(Val: B); |
| 4321 | auto *Mul = cast<VPWidenRecipe>(Val: VecOp); |
| 4322 | |
| 4323 | // Convert reduce.add(mul(ext, const)) to reduce.add(mul(ext, ext(const))) |
| 4324 | ExtendAndReplaceConstantOp(RecipeA, RecipeB, B, Mul); |
| 4325 | |
| 4326 | // Match reduce.add/sub(mul(ext, ext)). |
| 4327 | if (RecipeA && RecipeB && match(V: RecipeA, P: m_ZExtOrSExt(Op0: m_VPValue())) && |
| 4328 | match(V: RecipeB, P: m_ZExtOrSExt(Op0: m_VPValue())) && |
| 4329 | IsMulAccValidAndClampRange(Mul, RecipeA, RecipeB, nullptr)) { |
| 4330 | if (Sub) |
| 4331 | return new VPExpressionRecipe(RecipeA, RecipeB, Mul, |
| 4332 | cast<VPWidenRecipe>(Val: Sub), Red); |
| 4333 | return new VPExpressionRecipe(RecipeA, RecipeB, Mul, Red); |
| 4334 | } |
| 4335 | // TODO: Add an expression type for this variant with a negated mul |
| 4336 | if (!Sub && IsMulAccValidAndClampRange(Mul, nullptr, nullptr, nullptr)) |
| 4337 | return new VPExpressionRecipe(Mul, Red); |
| 4338 | } |
| 4339 | // TODO: Add an expression type for negated versions of other expression |
| 4340 | // variants. |
| 4341 | if (Sub) |
| 4342 | return nullptr; |
| 4343 | |
| 4344 | // Match reduce.add(ext(mul(A, B))). |
| 4345 | if (match(V: VecOp, P: m_ZExtOrSExt(Op0: m_Mul(Op0: m_VPValue(V&: A), Op1: m_VPValue(V&: B))))) { |
| 4346 | auto *Ext = cast<VPWidenCastRecipe>(Val: VecOp); |
| 4347 | auto *Mul = cast<VPWidenRecipe>(Val: Ext->getOperand(N: 0)); |
| 4348 | auto *Ext0 = dyn_cast_if_present<VPWidenCastRecipe>(Val: A); |
| 4349 | auto *Ext1 = dyn_cast_if_present<VPWidenCastRecipe>(Val: B); |
| 4350 | |
| 4351 | // reduce.add(ext(mul(ext, const))) |
| 4352 | // -> reduce.add(ext(mul(ext, ext(const)))) |
| 4353 | ExtendAndReplaceConstantOp(Ext0, Ext1, B, Mul); |
| 4354 | |
| 4355 | // reduce.add(ext(mul(ext(A), ext(B)))) |
| 4356 | // -> reduce.add(mul(wider_ext(A), wider_ext(B))) |
| 4357 | // The inner extends must either have the same opcode as the outer extend or |
| 4358 | // be the same, in which case the multiply can never result in a negative |
| 4359 | // value and the outer extend can be folded away by doing wider |
| 4360 | // extends for the operands of the mul. |
| 4361 | if (Ext0 && Ext1 && |
| 4362 | (Ext->getOpcode() == Ext0->getOpcode() || Ext0 == Ext1) && |
| 4363 | Ext0->getOpcode() == Ext1->getOpcode() && |
| 4364 | IsMulAccValidAndClampRange(Mul, Ext0, Ext1, Ext) && Mul->hasOneUse()) { |
| 4365 | auto *NewExt0 = new VPWidenCastRecipe( |
| 4366 | Ext0->getOpcode(), Ext0->getOperand(N: 0), Ext->getResultType(), nullptr, |
| 4367 | *Ext0, *Ext0, Ext0->getDebugLoc()); |
| 4368 | NewExt0->insertBefore(InsertPos: Ext0); |
| 4369 | |
| 4370 | VPWidenCastRecipe *NewExt1 = NewExt0; |
| 4371 | if (Ext0 != Ext1) { |
| 4372 | NewExt1 = new VPWidenCastRecipe(Ext1->getOpcode(), Ext1->getOperand(N: 0), |
| 4373 | Ext->getResultType(), nullptr, *Ext1, |
| 4374 | *Ext1, Ext1->getDebugLoc()); |
| 4375 | NewExt1->insertBefore(InsertPos: Ext1); |
| 4376 | } |
| 4377 | Mul->setOperand(I: 0, New: NewExt0); |
| 4378 | Mul->setOperand(I: 1, New: NewExt1); |
| 4379 | Red->setOperand(I: 1, New: Mul); |
| 4380 | return new VPExpressionRecipe(NewExt0, NewExt1, Mul, Red); |
| 4381 | } |
| 4382 | } |
| 4383 | return nullptr; |
| 4384 | } |
| 4385 | |
| 4386 | /// This function tries to create abstract recipes from the reduction recipe for |
| 4387 | /// following optimizations and cost estimation. |
| 4388 | static void tryToCreateAbstractReductionRecipe(VPReductionRecipe *Red, |
| 4389 | VPCostContext &Ctx, |
| 4390 | VFRange &Range) { |
| 4391 | VPExpressionRecipe *AbstractR = nullptr; |
| 4392 | auto IP = std::next(x: Red->getIterator()); |
| 4393 | auto *VPBB = Red->getParent(); |
| 4394 | if (auto *MulAcc = tryToMatchAndCreateMulAccumulateReduction(Red, Ctx, Range)) |
| 4395 | AbstractR = MulAcc; |
| 4396 | else if (auto *ExtRed = tryToMatchAndCreateExtendedReduction(Red, Ctx, Range)) |
| 4397 | AbstractR = ExtRed; |
| 4398 | // Cannot create abstract inloop reduction recipes. |
| 4399 | if (!AbstractR) |
| 4400 | return; |
| 4401 | |
| 4402 | AbstractR->insertBefore(BB&: *VPBB, IP); |
| 4403 | Red->replaceAllUsesWith(New: AbstractR); |
| 4404 | } |
| 4405 | |
| 4406 | void VPlanTransforms::convertToAbstractRecipes(VPlan &Plan, VPCostContext &Ctx, |
| 4407 | VFRange &Range) { |
| 4408 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 4409 | Range: vp_depth_first_deep(G: Plan.getVectorLoopRegion()))) { |
| 4410 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) { |
| 4411 | if (auto *Red = dyn_cast<VPReductionRecipe>(Val: &R)) |
| 4412 | tryToCreateAbstractReductionRecipe(Red, Ctx, Range); |
| 4413 | } |
| 4414 | } |
| 4415 | } |
| 4416 | |
| 4417 | void VPlanTransforms::materializeBroadcasts(VPlan &Plan) { |
| 4418 | if (Plan.hasScalarVFOnly()) |
| 4419 | return; |
| 4420 | |
| 4421 | #ifndef NDEBUG |
| 4422 | VPDominatorTree VPDT(Plan); |
| 4423 | #endif |
| 4424 | |
| 4425 | SmallVector<VPValue *> VPValues; |
| 4426 | if (Plan.getOrCreateBackedgeTakenCount()->getNumUsers() > 0) |
| 4427 | VPValues.push_back(Elt: Plan.getOrCreateBackedgeTakenCount()); |
| 4428 | append_range(C&: VPValues, R: Plan.getLiveIns()); |
| 4429 | for (VPRecipeBase &R : *Plan.getEntry()) |
| 4430 | append_range(C&: VPValues, R: R.definedValues()); |
| 4431 | |
| 4432 | auto * = Plan.getVectorPreheader(); |
| 4433 | for (VPValue *VPV : VPValues) { |
| 4434 | if (vputils::onlyScalarValuesUsed(Def: VPV) || |
| 4435 | (isa<VPIRValue>(Val: VPV) && isa<Constant>(Val: VPV->getLiveInIRValue()))) |
| 4436 | continue; |
| 4437 | |
| 4438 | // Add explicit broadcast at the insert point that dominates all users. |
| 4439 | VPBasicBlock *HoistBlock = VectorPreheader; |
| 4440 | VPBasicBlock::iterator HoistPoint = VectorPreheader->end(); |
| 4441 | for (VPUser *User : VPV->users()) { |
| 4442 | if (User->usesScalars(Op: VPV)) |
| 4443 | continue; |
| 4444 | if (cast<VPRecipeBase>(Val: User)->getParent() == VectorPreheader) |
| 4445 | HoistPoint = HoistBlock->begin(); |
| 4446 | else |
| 4447 | assert(VPDT.dominates(VectorPreheader, |
| 4448 | cast<VPRecipeBase>(User)->getParent()) && |
| 4449 | "All users must be in the vector preheader or dominated by it" ); |
| 4450 | } |
| 4451 | |
| 4452 | VPBuilder Builder(cast<VPBasicBlock>(Val: HoistBlock), HoistPoint); |
| 4453 | auto *Broadcast = Builder.createNaryOp(Opcode: VPInstruction::Broadcast, Operands: {VPV}); |
| 4454 | VPV->replaceUsesWithIf(New: Broadcast, |
| 4455 | ShouldReplace: [VPV, Broadcast](VPUser &U, unsigned Idx) { |
| 4456 | return Broadcast != &U && !U.usesScalars(Op: VPV); |
| 4457 | }); |
| 4458 | } |
| 4459 | } |
| 4460 | |
| 4461 | void VPlanTransforms::hoistInvariantLoads(VPlan &Plan) { |
| 4462 | VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); |
| 4463 | |
| 4464 | // Collect candidate loads with invariant addresses and noalias scopes |
| 4465 | // metadata and memory-writing recipes with noalias metadata. |
| 4466 | SmallVector<std::pair<VPRecipeBase *, MemoryLocation>> CandidateLoads; |
| 4467 | SmallVector<MemoryLocation> Stores; |
| 4468 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 4469 | Range: vp_depth_first_shallow(G: LoopRegion->getEntry()))) { |
| 4470 | for (VPRecipeBase &R : *VPBB) { |
| 4471 | // Only handle single-scalar replicated loads with invariant addresses. |
| 4472 | if (auto *RepR = dyn_cast<VPReplicateRecipe>(Val: &R)) { |
| 4473 | if (RepR->isPredicated() || !RepR->isSingleScalar() || |
| 4474 | RepR->getOpcode() != Instruction::Load) |
| 4475 | continue; |
| 4476 | |
| 4477 | VPValue *Addr = RepR->getOperand(N: 0); |
| 4478 | if (Addr->isDefinedOutsideLoopRegions()) { |
| 4479 | MemoryLocation Loc = *vputils::getMemoryLocation(R: *RepR); |
| 4480 | if (!Loc.AATags.Scope) |
| 4481 | continue; |
| 4482 | CandidateLoads.push_back(Elt: {RepR, Loc}); |
| 4483 | } |
| 4484 | } |
| 4485 | if (R.mayWriteToMemory()) { |
| 4486 | auto Loc = vputils::getMemoryLocation(R); |
| 4487 | if (!Loc || !Loc->AATags.Scope || !Loc->AATags.NoAlias) |
| 4488 | return; |
| 4489 | Stores.push_back(Elt: *Loc); |
| 4490 | } |
| 4491 | } |
| 4492 | } |
| 4493 | |
| 4494 | VPBasicBlock * = Plan.getVectorPreheader(); |
| 4495 | for (auto &[LoadRecipe, LoadLoc] : CandidateLoads) { |
| 4496 | // Hoist the load to the preheader if it doesn't alias with any stores |
| 4497 | // according to the noalias metadata. Other loads should have been hoisted |
| 4498 | // by other passes |
| 4499 | const AAMDNodes &LoadAA = LoadLoc.AATags; |
| 4500 | if (all_of(Range&: Stores, P: [&](const MemoryLocation &StoreLoc) { |
| 4501 | return !ScopedNoAliasAAResult::mayAliasInScopes( |
| 4502 | Scopes: LoadAA.Scope, NoAlias: StoreLoc.AATags.NoAlias); |
| 4503 | })) { |
| 4504 | LoadRecipe->moveBefore(BB&: *Preheader, I: Preheader->getFirstNonPhi()); |
| 4505 | } |
| 4506 | } |
| 4507 | } |
| 4508 | |
| 4509 | // Collect common metadata from a group of replicate recipes by intersecting |
| 4510 | // metadata from all recipes in the group. |
| 4511 | static VPIRMetadata getCommonMetadata(ArrayRef<VPReplicateRecipe *> Recipes) { |
| 4512 | VPIRMetadata CommonMetadata = *Recipes.front(); |
| 4513 | for (VPReplicateRecipe *Recipe : drop_begin(RangeOrContainer&: Recipes)) |
| 4514 | CommonMetadata.intersect(MD: *Recipe); |
| 4515 | return CommonMetadata; |
| 4516 | } |
| 4517 | |
| 4518 | template <unsigned Opcode> |
| 4519 | static SmallVector<SmallVector<VPReplicateRecipe *, 4>> |
| 4520 | collectComplementaryPredicatedMemOps(VPlan &Plan, |
| 4521 | PredicatedScalarEvolution &PSE, |
| 4522 | const Loop *L) { |
| 4523 | static_assert(Opcode == Instruction::Load || Opcode == Instruction::Store, |
| 4524 | "Only Load and Store opcodes supported" ); |
| 4525 | constexpr bool IsLoad = (Opcode == Instruction::Load); |
| 4526 | VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); |
| 4527 | VPTypeAnalysis TypeInfo(Plan); |
| 4528 | |
| 4529 | // Group predicated operations by their address SCEV. |
| 4530 | DenseMap<const SCEV *, SmallVector<VPReplicateRecipe *>> RecipesByAddress; |
| 4531 | for (VPBlockBase *Block : vp_depth_first_shallow(G: LoopRegion->getEntry())) { |
| 4532 | auto *VPBB = cast<VPBasicBlock>(Val: Block); |
| 4533 | for (VPRecipeBase &R : *VPBB) { |
| 4534 | auto *RepR = dyn_cast<VPReplicateRecipe>(Val: &R); |
| 4535 | if (!RepR || RepR->getOpcode() != Opcode || !RepR->isPredicated()) |
| 4536 | continue; |
| 4537 | |
| 4538 | // For loads, operand 0 is address; for stores, operand 1 is address. |
| 4539 | VPValue *Addr = RepR->getOperand(N: IsLoad ? 0 : 1); |
| 4540 | const SCEV *AddrSCEV = vputils::getSCEVExprForVPValue(V: Addr, PSE, L); |
| 4541 | if (!isa<SCEVCouldNotCompute>(Val: AddrSCEV)) |
| 4542 | RecipesByAddress[AddrSCEV].push_back(Elt: RepR); |
| 4543 | } |
| 4544 | } |
| 4545 | |
| 4546 | // For each address, collect operations with the same or complementary masks. |
| 4547 | SmallVector<SmallVector<VPReplicateRecipe *, 4>> AllGroups; |
| 4548 | auto GetLoadStoreValueType = [&](VPReplicateRecipe *Recipe) { |
| 4549 | return TypeInfo.inferScalarType(V: IsLoad ? Recipe : Recipe->getOperand(N: 0)); |
| 4550 | }; |
| 4551 | for (auto &[Addr, Recipes] : RecipesByAddress) { |
| 4552 | if (Recipes.size() < 2) |
| 4553 | continue; |
| 4554 | |
| 4555 | // Collect groups with the same or complementary masks. |
| 4556 | for (VPReplicateRecipe *&RecipeI : Recipes) { |
| 4557 | if (!RecipeI) |
| 4558 | continue; |
| 4559 | |
| 4560 | VPValue *MaskI = RecipeI->getMask(); |
| 4561 | Type *TypeI = GetLoadStoreValueType(RecipeI); |
| 4562 | SmallVector<VPReplicateRecipe *, 4> Group; |
| 4563 | Group.push_back(Elt: RecipeI); |
| 4564 | RecipeI = nullptr; |
| 4565 | |
| 4566 | // Find all operations with the same or complementary masks. |
| 4567 | bool HasComplementaryMask = false; |
| 4568 | for (VPReplicateRecipe *&RecipeJ : Recipes) { |
| 4569 | if (!RecipeJ) |
| 4570 | continue; |
| 4571 | |
| 4572 | VPValue *MaskJ = RecipeJ->getMask(); |
| 4573 | Type *TypeJ = GetLoadStoreValueType(RecipeJ); |
| 4574 | if (TypeI == TypeJ) { |
| 4575 | // Check if any operation in the group has a complementary mask with |
| 4576 | // another, that is M1 == NOT(M2) or M2 == NOT(M1). |
| 4577 | HasComplementaryMask |= match(V: MaskI, P: m_Not(Op0: m_Specific(VPV: MaskJ))) || |
| 4578 | match(V: MaskJ, P: m_Not(Op0: m_Specific(VPV: MaskI))); |
| 4579 | Group.push_back(Elt: RecipeJ); |
| 4580 | RecipeJ = nullptr; |
| 4581 | } |
| 4582 | } |
| 4583 | |
| 4584 | if (HasComplementaryMask) { |
| 4585 | assert(Group.size() >= 2 && "must have at least 2 entries" ); |
| 4586 | AllGroups.push_back(Elt: std::move(Group)); |
| 4587 | } |
| 4588 | } |
| 4589 | } |
| 4590 | |
| 4591 | return AllGroups; |
| 4592 | } |
| 4593 | |
| 4594 | // Find the recipe with minimum alignment in the group. |
| 4595 | template <typename InstType> |
| 4596 | static VPReplicateRecipe * |
| 4597 | findRecipeWithMinAlign(ArrayRef<VPReplicateRecipe *> Group) { |
| 4598 | return *min_element(Group, [](VPReplicateRecipe *A, VPReplicateRecipe *B) { |
| 4599 | return cast<InstType>(A->getUnderlyingInstr())->getAlign() < |
| 4600 | cast<InstType>(B->getUnderlyingInstr())->getAlign(); |
| 4601 | }); |
| 4602 | } |
| 4603 | |
| 4604 | void VPlanTransforms::hoistPredicatedLoads(VPlan &Plan, |
| 4605 | PredicatedScalarEvolution &PSE, |
| 4606 | const Loop *L) { |
| 4607 | auto Groups = |
| 4608 | collectComplementaryPredicatedMemOps<Instruction::Load>(Plan, PSE, L); |
| 4609 | if (Groups.empty()) |
| 4610 | return; |
| 4611 | |
| 4612 | VPDominatorTree VPDT(Plan); |
| 4613 | |
| 4614 | // Process each group of loads. |
| 4615 | for (auto &Group : Groups) { |
| 4616 | // Sort loads by dominance order, with earliest (most dominating) first. |
| 4617 | sort(C&: Group, Comp: [&VPDT](VPReplicateRecipe *A, VPReplicateRecipe *B) { |
| 4618 | return VPDT.properlyDominates(A, B); |
| 4619 | }); |
| 4620 | |
| 4621 | // Try to use the earliest (most dominating) load to replace all others. |
| 4622 | VPReplicateRecipe *EarliestLoad = Group[0]; |
| 4623 | VPBasicBlock *FirstBB = EarliestLoad->getParent(); |
| 4624 | VPBasicBlock *LastBB = Group.back()->getParent(); |
| 4625 | |
| 4626 | // Check that the load doesn't alias with stores between first and last. |
| 4627 | auto LoadLoc = vputils::getMemoryLocation(R: *EarliestLoad); |
| 4628 | if (!LoadLoc || !canHoistOrSinkWithNoAliasCheck(MemLoc: *LoadLoc, FirstBB, LastBB)) |
| 4629 | continue; |
| 4630 | |
| 4631 | // Collect common metadata from all loads in the group. |
| 4632 | VPIRMetadata CommonMetadata = getCommonMetadata(Recipes: Group); |
| 4633 | |
| 4634 | // Find the load with minimum alignment to use. |
| 4635 | auto *LoadWithMinAlign = findRecipeWithMinAlign<LoadInst>(Group); |
| 4636 | |
| 4637 | // Create an unpredicated version of the earliest load with common |
| 4638 | // metadata. |
| 4639 | auto *UnpredicatedLoad = new VPReplicateRecipe( |
| 4640 | LoadWithMinAlign->getUnderlyingInstr(), {EarliestLoad->getOperand(N: 0)}, |
| 4641 | /*IsSingleScalar=*/false, /*Mask=*/nullptr, *EarliestLoad, |
| 4642 | CommonMetadata); |
| 4643 | |
| 4644 | UnpredicatedLoad->insertBefore(InsertPos: EarliestLoad); |
| 4645 | |
| 4646 | // Replace all loads in the group with the unpredicated load. |
| 4647 | for (VPReplicateRecipe *Load : Group) { |
| 4648 | Load->replaceAllUsesWith(New: UnpredicatedLoad); |
| 4649 | Load->eraseFromParent(); |
| 4650 | } |
| 4651 | } |
| 4652 | } |
| 4653 | |
| 4654 | static bool |
| 4655 | canSinkStoreWithNoAliasCheck(ArrayRef<VPReplicateRecipe *> StoresToSink, |
| 4656 | PredicatedScalarEvolution &PSE, const Loop &L, |
| 4657 | VPTypeAnalysis &TypeInfo) { |
| 4658 | auto StoreLoc = vputils::getMemoryLocation(R: *StoresToSink.front()); |
| 4659 | if (!StoreLoc || !StoreLoc->AATags.Scope) |
| 4660 | return false; |
| 4661 | |
| 4662 | // When sinking a group of stores, all members of the group alias each other. |
| 4663 | // Skip them during the alias checks. |
| 4664 | SmallPtrSet<VPRecipeBase *, 4> StoresToSinkSet(StoresToSink.begin(), |
| 4665 | StoresToSink.end()); |
| 4666 | |
| 4667 | VPBasicBlock *FirstBB = StoresToSink.front()->getParent(); |
| 4668 | VPBasicBlock *LastBB = StoresToSink.back()->getParent(); |
| 4669 | SinkStoreInfo SinkInfo(StoresToSinkSet, *StoresToSink[0], PSE, L, TypeInfo); |
| 4670 | return canHoistOrSinkWithNoAliasCheck(MemLoc: *StoreLoc, FirstBB, LastBB, SinkInfo); |
| 4671 | } |
| 4672 | |
| 4673 | void VPlanTransforms::sinkPredicatedStores(VPlan &Plan, |
| 4674 | PredicatedScalarEvolution &PSE, |
| 4675 | const Loop *L) { |
| 4676 | auto Groups = |
| 4677 | collectComplementaryPredicatedMemOps<Instruction::Store>(Plan, PSE, L); |
| 4678 | if (Groups.empty()) |
| 4679 | return; |
| 4680 | |
| 4681 | VPDominatorTree VPDT(Plan); |
| 4682 | VPTypeAnalysis TypeInfo(Plan); |
| 4683 | |
| 4684 | for (auto &Group : Groups) { |
| 4685 | sort(C&: Group, Comp: [&VPDT](VPReplicateRecipe *A, VPReplicateRecipe *B) { |
| 4686 | return VPDT.properlyDominates(A, B); |
| 4687 | }); |
| 4688 | |
| 4689 | if (!canSinkStoreWithNoAliasCheck(StoresToSink: Group, PSE, L: *L, TypeInfo)) |
| 4690 | continue; |
| 4691 | |
| 4692 | // Use the last (most dominated) store's location for the unconditional |
| 4693 | // store. |
| 4694 | VPReplicateRecipe *LastStore = Group.back(); |
| 4695 | VPBasicBlock *InsertBB = LastStore->getParent(); |
| 4696 | |
| 4697 | // Collect common alias metadata from all stores in the group. |
| 4698 | VPIRMetadata CommonMetadata = getCommonMetadata(Recipes: Group); |
| 4699 | |
| 4700 | // Build select chain for stored values. |
| 4701 | VPValue *SelectedValue = Group[0]->getOperand(N: 0); |
| 4702 | VPBuilder Builder(InsertBB, LastStore->getIterator()); |
| 4703 | |
| 4704 | for (unsigned I = 1; I < Group.size(); ++I) { |
| 4705 | VPValue *Mask = Group[I]->getMask(); |
| 4706 | VPValue *Value = Group[I]->getOperand(N: 0); |
| 4707 | SelectedValue = Builder.createSelect(Cond: Mask, TrueVal: Value, FalseVal: SelectedValue, |
| 4708 | DL: Group[I]->getDebugLoc()); |
| 4709 | } |
| 4710 | |
| 4711 | // Find the store with minimum alignment to use. |
| 4712 | auto *StoreWithMinAlign = findRecipeWithMinAlign<StoreInst>(Group); |
| 4713 | |
| 4714 | // Create unconditional store with selected value and common metadata. |
| 4715 | auto *UnpredicatedStore = |
| 4716 | new VPReplicateRecipe(StoreWithMinAlign->getUnderlyingInstr(), |
| 4717 | {SelectedValue, LastStore->getOperand(N: 1)}, |
| 4718 | /*IsSingleScalar=*/false, |
| 4719 | /*Mask=*/nullptr, *LastStore, CommonMetadata); |
| 4720 | UnpredicatedStore->insertBefore(BB&: *InsertBB, IP: LastStore->getIterator()); |
| 4721 | |
| 4722 | // Remove all predicated stores from the group. |
| 4723 | for (VPReplicateRecipe *Store : Group) |
| 4724 | Store->eraseFromParent(); |
| 4725 | } |
| 4726 | } |
| 4727 | |
| 4728 | void VPlanTransforms::materializeConstantVectorTripCount( |
| 4729 | VPlan &Plan, ElementCount BestVF, unsigned BestUF, |
| 4730 | PredicatedScalarEvolution &PSE) { |
| 4731 | assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan" ); |
| 4732 | assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan" ); |
| 4733 | |
| 4734 | VPValue *TC = Plan.getTripCount(); |
| 4735 | // Skip cases for which the trip count may be non-trivial to materialize. |
| 4736 | // I.e., when a scalar tail is absent - due to tail folding, or when a scalar |
| 4737 | // tail is required. |
| 4738 | if (!Plan.hasScalarTail() || |
| 4739 | Plan.getMiddleBlock()->getSingleSuccessor() == |
| 4740 | Plan.getScalarPreheader() || |
| 4741 | !isa<VPIRValue>(Val: TC)) |
| 4742 | return; |
| 4743 | |
| 4744 | // Materialize vector trip counts for constants early if it can simply |
| 4745 | // be computed as (Original TC / VF * UF) * VF * UF. |
| 4746 | // TODO: Compute vector trip counts for loops requiring a scalar epilogue and |
| 4747 | // tail-folded loops. |
| 4748 | ScalarEvolution &SE = *PSE.getSE(); |
| 4749 | auto *TCScev = SE.getSCEV(V: TC->getLiveInIRValue()); |
| 4750 | if (!isa<SCEVConstant>(Val: TCScev)) |
| 4751 | return; |
| 4752 | const SCEV *VFxUF = SE.getElementCount(Ty: TCScev->getType(), EC: BestVF * BestUF); |
| 4753 | auto VecTCScev = SE.getMulExpr(LHS: SE.getUDivExpr(LHS: TCScev, RHS: VFxUF), RHS: VFxUF); |
| 4754 | if (auto *ConstVecTC = dyn_cast<SCEVConstant>(Val: VecTCScev)) |
| 4755 | Plan.getVectorTripCount().setUnderlyingValue(ConstVecTC->getValue()); |
| 4756 | } |
| 4757 | |
| 4758 | void VPlanTransforms::materializeBackedgeTakenCount(VPlan &Plan, |
| 4759 | VPBasicBlock *VectorPH) { |
| 4760 | VPValue *BTC = Plan.getOrCreateBackedgeTakenCount(); |
| 4761 | if (BTC->getNumUsers() == 0) |
| 4762 | return; |
| 4763 | |
| 4764 | VPBuilder Builder(VectorPH, VectorPH->begin()); |
| 4765 | auto *TCTy = VPTypeAnalysis(Plan).inferScalarType(V: Plan.getTripCount()); |
| 4766 | auto *TCMO = |
| 4767 | Builder.createSub(LHS: Plan.getTripCount(), RHS: Plan.getConstantInt(Ty: TCTy, Val: 1), |
| 4768 | DL: DebugLoc::getCompilerGenerated(), Name: "trip.count.minus.1" ); |
| 4769 | BTC->replaceAllUsesWith(New: TCMO); |
| 4770 | } |
| 4771 | |
| 4772 | void VPlanTransforms::materializePacksAndUnpacks(VPlan &Plan) { |
| 4773 | if (Plan.hasScalarVFOnly()) |
| 4774 | return; |
| 4775 | |
| 4776 | VPTypeAnalysis TypeInfo(Plan); |
| 4777 | VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); |
| 4778 | auto VPBBsOutsideLoopRegion = VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 4779 | Range: vp_depth_first_shallow(G: Plan.getEntry())); |
| 4780 | auto VPBBsInsideLoopRegion = VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 4781 | Range: vp_depth_first_shallow(G: LoopRegion->getEntry())); |
| 4782 | // Materialize Build(Struct)Vector for all replicating VPReplicateRecipes and |
| 4783 | // VPInstructions, excluding ones in replicate regions. Those are not |
| 4784 | // materialized explicitly yet. Those vector users are still handled in |
| 4785 | // VPReplicateRegion::execute(), via shouldPack(). |
| 4786 | // TODO: materialize build vectors for replicating recipes in replicating |
| 4787 | // regions. |
| 4788 | for (VPBasicBlock *VPBB : |
| 4789 | concat<VPBasicBlock *>(Ranges&: VPBBsOutsideLoopRegion, Ranges&: VPBBsInsideLoopRegion)) { |
| 4790 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) { |
| 4791 | if (!isa<VPReplicateRecipe, VPInstruction>(Val: &R)) |
| 4792 | continue; |
| 4793 | auto *DefR = cast<VPRecipeWithIRFlags>(Val: &R); |
| 4794 | auto UsesVectorOrInsideReplicateRegion = [DefR, LoopRegion](VPUser *U) { |
| 4795 | VPRegionBlock *ParentRegion = cast<VPRecipeBase>(Val: U)->getRegion(); |
| 4796 | return !U->usesScalars(Op: DefR) || ParentRegion != LoopRegion; |
| 4797 | }; |
| 4798 | if ((isa<VPReplicateRecipe>(Val: DefR) && |
| 4799 | cast<VPReplicateRecipe>(Val: DefR)->isSingleScalar()) || |
| 4800 | (isa<VPInstruction>(Val: DefR) && |
| 4801 | (vputils::onlyFirstLaneUsed(Def: DefR) || |
| 4802 | !cast<VPInstruction>(Val: DefR)->doesGeneratePerAllLanes())) || |
| 4803 | none_of(Range: DefR->users(), P: UsesVectorOrInsideReplicateRegion)) |
| 4804 | continue; |
| 4805 | |
| 4806 | Type *ScalarTy = TypeInfo.inferScalarType(V: DefR); |
| 4807 | unsigned Opcode = ScalarTy->isStructTy() |
| 4808 | ? VPInstruction::BuildStructVector |
| 4809 | : VPInstruction::BuildVector; |
| 4810 | auto *BuildVector = new VPInstruction(Opcode, {DefR}); |
| 4811 | BuildVector->insertAfter(InsertPos: DefR); |
| 4812 | |
| 4813 | DefR->replaceUsesWithIf( |
| 4814 | New: BuildVector, ShouldReplace: [BuildVector, &UsesVectorOrInsideReplicateRegion]( |
| 4815 | VPUser &U, unsigned) { |
| 4816 | return &U != BuildVector && UsesVectorOrInsideReplicateRegion(&U); |
| 4817 | }); |
| 4818 | } |
| 4819 | } |
| 4820 | |
| 4821 | // Create explicit VPInstructions to convert vectors to scalars. The current |
| 4822 | // implementation is conservative - it may miss some cases that may or may not |
| 4823 | // be vector values. TODO: introduce Unpacks speculatively - remove them later |
| 4824 | // if they are known to operate on scalar values. |
| 4825 | for (VPBasicBlock *VPBB : VPBBsInsideLoopRegion) { |
| 4826 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) { |
| 4827 | if (isa<VPReplicateRecipe, VPInstruction, VPScalarIVStepsRecipe, |
| 4828 | VPDerivedIVRecipe, VPCanonicalIVPHIRecipe>(Val: &R)) |
| 4829 | continue; |
| 4830 | for (VPValue *Def : R.definedValues()) { |
| 4831 | // Skip recipes that are single-scalar or only have their first lane |
| 4832 | // used. |
| 4833 | // TODO: The Defs skipped here may or may not be vector values. |
| 4834 | // Introduce Unpacks, and remove them later, if they are guaranteed to |
| 4835 | // produce scalar values. |
| 4836 | if (vputils::isSingleScalar(VPV: Def) || vputils::onlyFirstLaneUsed(Def)) |
| 4837 | continue; |
| 4838 | |
| 4839 | // At the moment, we create unpacks only for scalar users outside |
| 4840 | // replicate regions. Recipes inside replicate regions still extract the |
| 4841 | // required lanes implicitly. |
| 4842 | // TODO: Remove once replicate regions are unrolled completely. |
| 4843 | auto IsCandidateUnpackUser = [Def](VPUser *U) { |
| 4844 | VPRegionBlock *ParentRegion = cast<VPRecipeBase>(Val: U)->getRegion(); |
| 4845 | return U->usesScalars(Op: Def) && |
| 4846 | (!ParentRegion || !ParentRegion->isReplicator()); |
| 4847 | }; |
| 4848 | if (none_of(Range: Def->users(), P: IsCandidateUnpackUser)) |
| 4849 | continue; |
| 4850 | |
| 4851 | auto *Unpack = new VPInstruction(VPInstruction::Unpack, {Def}); |
| 4852 | if (R.isPhi()) |
| 4853 | Unpack->insertBefore(BB&: *VPBB, IP: VPBB->getFirstNonPhi()); |
| 4854 | else |
| 4855 | Unpack->insertAfter(InsertPos: &R); |
| 4856 | Def->replaceUsesWithIf(New: Unpack, |
| 4857 | ShouldReplace: [&IsCandidateUnpackUser](VPUser &U, unsigned) { |
| 4858 | return IsCandidateUnpackUser(&U); |
| 4859 | }); |
| 4860 | } |
| 4861 | } |
| 4862 | } |
| 4863 | } |
| 4864 | |
| 4865 | void VPlanTransforms::materializeVectorTripCount(VPlan &Plan, |
| 4866 | VPBasicBlock *VectorPHVPBB, |
| 4867 | bool TailByMasking, |
| 4868 | bool RequiresScalarEpilogue) { |
| 4869 | VPSymbolicValue &VectorTC = Plan.getVectorTripCount(); |
| 4870 | // There's nothing to do if there are no users of the vector trip count or its |
| 4871 | // IR value has already been set. |
| 4872 | if (VectorTC.getNumUsers() == 0 || VectorTC.getUnderlyingValue()) |
| 4873 | return; |
| 4874 | |
| 4875 | VPValue *TC = Plan.getTripCount(); |
| 4876 | Type *TCTy = VPTypeAnalysis(Plan).inferScalarType(V: TC); |
| 4877 | VPBuilder Builder(VectorPHVPBB, VectorPHVPBB->begin()); |
| 4878 | VPValue *Step = &Plan.getVFxUF(); |
| 4879 | |
| 4880 | // If the tail is to be folded by masking, round the number of iterations N |
| 4881 | // up to a multiple of Step instead of rounding down. This is done by first |
| 4882 | // adding Step-1 and then rounding down. Note that it's ok if this addition |
| 4883 | // overflows: the vector induction variable will eventually wrap to zero given |
| 4884 | // that it starts at zero and its Step is a power of two; the loop will then |
| 4885 | // exit, with the last early-exit vector comparison also producing all-true. |
| 4886 | // For scalable vectors the VF is not guaranteed to be a power of 2, but this |
| 4887 | // is accounted for in emitIterationCountCheck that adds an overflow check. |
| 4888 | if (TailByMasking) { |
| 4889 | TC = Builder.createAdd( |
| 4890 | LHS: TC, RHS: Builder.createSub(LHS: Step, RHS: Plan.getConstantInt(Ty: TCTy, Val: 1)), |
| 4891 | DL: DebugLoc::getCompilerGenerated(), Name: "n.rnd.up" ); |
| 4892 | } |
| 4893 | |
| 4894 | // Now we need to generate the expression for the part of the loop that the |
| 4895 | // vectorized body will execute. This is equal to N - (N % Step) if scalar |
| 4896 | // iterations are not required for correctness, or N - Step, otherwise. Step |
| 4897 | // is equal to the vectorization factor (number of SIMD elements) times the |
| 4898 | // unroll factor (number of SIMD instructions). |
| 4899 | VPValue *R = |
| 4900 | Builder.createNaryOp(Opcode: Instruction::URem, Operands: {TC, Step}, |
| 4901 | DL: DebugLoc::getCompilerGenerated(), Name: "n.mod.vf" ); |
| 4902 | |
| 4903 | // There are cases where we *must* run at least one iteration in the remainder |
| 4904 | // loop. See the cost model for when this can happen. If the step evenly |
| 4905 | // divides the trip count, we set the remainder to be equal to the step. If |
| 4906 | // the step does not evenly divide the trip count, no adjustment is necessary |
| 4907 | // since there will already be scalar iterations. Note that the minimum |
| 4908 | // iterations check ensures that N >= Step. |
| 4909 | if (RequiresScalarEpilogue) { |
| 4910 | assert(!TailByMasking && |
| 4911 | "requiring scalar epilogue is not supported with fail folding" ); |
| 4912 | VPValue *IsZero = |
| 4913 | Builder.createICmp(Pred: CmpInst::ICMP_EQ, A: R, B: Plan.getConstantInt(Ty: TCTy, Val: 0)); |
| 4914 | R = Builder.createSelect(Cond: IsZero, TrueVal: Step, FalseVal: R); |
| 4915 | } |
| 4916 | |
| 4917 | VPValue *Res = |
| 4918 | Builder.createSub(LHS: TC, RHS: R, DL: DebugLoc::getCompilerGenerated(), Name: "n.vec" ); |
| 4919 | VectorTC.replaceAllUsesWith(New: Res); |
| 4920 | } |
| 4921 | |
| 4922 | void VPlanTransforms::materializeVFAndVFxUF(VPlan &Plan, VPBasicBlock *VectorPH, |
| 4923 | ElementCount VFEC) { |
| 4924 | VPBuilder Builder(VectorPH, VectorPH->begin()); |
| 4925 | Type *TCTy = VPTypeAnalysis(Plan).inferScalarType(V: Plan.getTripCount()); |
| 4926 | VPValue &VF = Plan.getVF(); |
| 4927 | VPValue &VFxUF = Plan.getVFxUF(); |
| 4928 | // Note that after the transform, Plan.getVF and Plan.getVFxUF should not be |
| 4929 | // used. |
| 4930 | // TODO: Assert that they aren't used. |
| 4931 | |
| 4932 | // If there are no users of the runtime VF, compute VFxUF by constant folding |
| 4933 | // the multiplication of VF and UF. |
| 4934 | if (VF.getNumUsers() == 0) { |
| 4935 | VPValue *RuntimeVFxUF = |
| 4936 | Builder.createElementCount(Ty: TCTy, EC: VFEC * Plan.getUF()); |
| 4937 | VFxUF.replaceAllUsesWith(New: RuntimeVFxUF); |
| 4938 | return; |
| 4939 | } |
| 4940 | |
| 4941 | // For users of the runtime VF, compute it as VF * vscale, and VFxUF as (VF * |
| 4942 | // vscale) * UF. |
| 4943 | VPValue *RuntimeVF = Builder.createElementCount(Ty: TCTy, EC: VFEC); |
| 4944 | if (!vputils::onlyScalarValuesUsed(Def: &VF)) { |
| 4945 | VPValue *BC = Builder.createNaryOp(Opcode: VPInstruction::Broadcast, Operands: RuntimeVF); |
| 4946 | VF.replaceUsesWithIf( |
| 4947 | New: BC, ShouldReplace: [&VF](VPUser &U, unsigned) { return !U.usesScalars(Op: &VF); }); |
| 4948 | } |
| 4949 | VF.replaceAllUsesWith(New: RuntimeVF); |
| 4950 | |
| 4951 | VPValue *UF = Plan.getConstantInt(Ty: TCTy, Val: Plan.getUF()); |
| 4952 | VPValue *MulByUF = Builder.createOverflowingOp( |
| 4953 | Opcode: Instruction::Mul, Operands: {RuntimeVF, UF}, WrapFlags: {true, false}); |
| 4954 | VFxUF.replaceAllUsesWith(New: MulByUF); |
| 4955 | } |
| 4956 | |
| 4957 | DenseMap<const SCEV *, Value *> |
| 4958 | VPlanTransforms::expandSCEVs(VPlan &Plan, ScalarEvolution &SE) { |
| 4959 | SCEVExpander Expander(SE, "induction" , /*PreserveLCSSA=*/false); |
| 4960 | |
| 4961 | auto *Entry = cast<VPIRBasicBlock>(Val: Plan.getEntry()); |
| 4962 | BasicBlock *EntryBB = Entry->getIRBasicBlock(); |
| 4963 | DenseMap<const SCEV *, Value *> ExpandedSCEVs; |
| 4964 | for (VPRecipeBase &R : make_early_inc_range(Range&: *Entry)) { |
| 4965 | if (isa<VPIRInstruction, VPIRPhi>(Val: &R)) |
| 4966 | continue; |
| 4967 | auto *ExpSCEV = dyn_cast<VPExpandSCEVRecipe>(Val: &R); |
| 4968 | if (!ExpSCEV) |
| 4969 | break; |
| 4970 | const SCEV *Expr = ExpSCEV->getSCEV(); |
| 4971 | Value *Res = |
| 4972 | Expander.expandCodeFor(SH: Expr, Ty: Expr->getType(), I: EntryBB->getTerminator()); |
| 4973 | ExpandedSCEVs[ExpSCEV->getSCEV()] = Res; |
| 4974 | VPValue *Exp = Plan.getOrAddLiveIn(V: Res); |
| 4975 | ExpSCEV->replaceAllUsesWith(New: Exp); |
| 4976 | if (Plan.getTripCount() == ExpSCEV) |
| 4977 | Plan.resetTripCount(NewTripCount: Exp); |
| 4978 | ExpSCEV->eraseFromParent(); |
| 4979 | } |
| 4980 | assert(none_of(*Entry, IsaPred<VPExpandSCEVRecipe>) && |
| 4981 | "VPExpandSCEVRecipes must be at the beginning of the entry block, " |
| 4982 | "before any VPIRInstructions" ); |
| 4983 | // Add IR instructions in the entry basic block but not in the VPIRBasicBlock |
| 4984 | // to the VPIRBasicBlock. |
| 4985 | auto EI = Entry->begin(); |
| 4986 | for (Instruction &I : drop_end(RangeOrContainer&: *EntryBB)) { |
| 4987 | if (EI != Entry->end() && isa<VPIRInstruction>(Val: *EI) && |
| 4988 | &cast<VPIRInstruction>(Val: &*EI)->getInstruction() == &I) { |
| 4989 | EI++; |
| 4990 | continue; |
| 4991 | } |
| 4992 | VPIRInstruction::create(I)->insertBefore(BB&: *Entry, IP: EI); |
| 4993 | } |
| 4994 | |
| 4995 | return ExpandedSCEVs; |
| 4996 | } |
| 4997 | |
| 4998 | /// Returns true if \p V is VPWidenLoadRecipe or VPInterleaveRecipe that can be |
| 4999 | /// converted to a narrower recipe. \p V is used by a wide recipe that feeds a |
| 5000 | /// store interleave group at index \p Idx, \p WideMember0 is the recipe feeding |
| 5001 | /// the same interleave group at index 0. A VPWidenLoadRecipe can be narrowed to |
| 5002 | /// an index-independent load if it feeds all wide ops at all indices (\p OpV |
| 5003 | /// must be the operand at index \p OpIdx for both the recipe at lane 0, \p |
| 5004 | /// WideMember0). A VPInterleaveRecipe can be narrowed to a wide load, if \p V |
| 5005 | /// is defined at \p Idx of a load interleave group. |
| 5006 | static bool canNarrowLoad(VPWidenRecipe *WideMember0, unsigned OpIdx, |
| 5007 | VPValue *OpV, unsigned Idx) { |
| 5008 | VPValue *Member0Op = WideMember0->getOperand(N: OpIdx); |
| 5009 | VPRecipeBase *Member0OpR = Member0Op->getDefiningRecipe(); |
| 5010 | if (!Member0OpR) |
| 5011 | return Member0Op == OpV; |
| 5012 | if (auto *W = dyn_cast<VPWidenLoadRecipe>(Val: Member0OpR)) |
| 5013 | return !W->getMask() && Member0Op == OpV; |
| 5014 | if (auto *IR = dyn_cast<VPInterleaveRecipe>(Val: Member0OpR)) |
| 5015 | return IR->getInterleaveGroup()->isFull() && IR->getVPValue(I: Idx) == OpV; |
| 5016 | return false; |
| 5017 | } |
| 5018 | |
| 5019 | /// Returns true if \p IR is a full interleave group with factor and number of |
| 5020 | /// members both equal to \p VF. The interleave group must also access the full |
| 5021 | /// vector width \p VectorRegWidth. |
| 5022 | static bool isConsecutiveInterleaveGroup(VPInterleaveRecipe *InterleaveR, |
| 5023 | ElementCount VF, |
| 5024 | VPTypeAnalysis &TypeInfo, |
| 5025 | TypeSize VectorRegWidth) { |
| 5026 | if (!InterleaveR || InterleaveR->getMask()) |
| 5027 | return false; |
| 5028 | |
| 5029 | Type *GroupElementTy = nullptr; |
| 5030 | if (InterleaveR->getStoredValues().empty()) { |
| 5031 | GroupElementTy = TypeInfo.inferScalarType(V: InterleaveR->getVPValue(I: 0)); |
| 5032 | if (!all_of(Range: InterleaveR->definedValues(), |
| 5033 | P: [&TypeInfo, GroupElementTy](VPValue *Op) { |
| 5034 | return TypeInfo.inferScalarType(V: Op) == GroupElementTy; |
| 5035 | })) |
| 5036 | return false; |
| 5037 | } else { |
| 5038 | GroupElementTy = |
| 5039 | TypeInfo.inferScalarType(V: InterleaveR->getStoredValues()[0]); |
| 5040 | if (!all_of(Range: InterleaveR->getStoredValues(), |
| 5041 | P: [&TypeInfo, GroupElementTy](VPValue *Op) { |
| 5042 | return TypeInfo.inferScalarType(V: Op) == GroupElementTy; |
| 5043 | })) |
| 5044 | return false; |
| 5045 | } |
| 5046 | |
| 5047 | unsigned VFMin = VF.getKnownMinValue(); |
| 5048 | TypeSize GroupSize = TypeSize::get( |
| 5049 | Quantity: GroupElementTy->getScalarSizeInBits() * VFMin, Scalable: VF.isScalable()); |
| 5050 | const auto *IG = InterleaveR->getInterleaveGroup(); |
| 5051 | return IG->getFactor() == VFMin && IG->getNumMembers() == VFMin && |
| 5052 | GroupSize == VectorRegWidth; |
| 5053 | } |
| 5054 | |
| 5055 | /// Returns true if \p VPValue is a narrow VPValue. |
| 5056 | static bool isAlreadyNarrow(VPValue *VPV) { |
| 5057 | if (isa<VPIRValue>(Val: VPV)) |
| 5058 | return true; |
| 5059 | auto *RepR = dyn_cast<VPReplicateRecipe>(Val: VPV); |
| 5060 | return RepR && RepR->isSingleScalar(); |
| 5061 | } |
| 5062 | |
| 5063 | // Convert a wide recipe defining a VPValue \p V feeding an interleave group to |
| 5064 | // a narrow variant. |
| 5065 | static VPValue * |
| 5066 | narrowInterleaveGroupOp(VPValue *V, SmallPtrSetImpl<VPValue *> &NarrowedOps) { |
| 5067 | auto *R = V->getDefiningRecipe(); |
| 5068 | if (!R || NarrowedOps.contains(Ptr: V)) |
| 5069 | return V; |
| 5070 | |
| 5071 | if (isAlreadyNarrow(VPV: V)) |
| 5072 | return V; |
| 5073 | |
| 5074 | if (auto *WideMember0 = dyn_cast<VPWidenRecipe>(Val: R)) { |
| 5075 | for (unsigned Idx = 0, E = WideMember0->getNumOperands(); Idx != E; ++Idx) |
| 5076 | WideMember0->setOperand( |
| 5077 | I: Idx, |
| 5078 | New: narrowInterleaveGroupOp(V: WideMember0->getOperand(N: Idx), NarrowedOps)); |
| 5079 | return V; |
| 5080 | } |
| 5081 | |
| 5082 | if (auto *LoadGroup = dyn_cast<VPInterleaveRecipe>(Val: R)) { |
| 5083 | // Narrow interleave group to wide load, as transformed VPlan will only |
| 5084 | // process one original iteration. |
| 5085 | auto *LI = cast<LoadInst>(Val: LoadGroup->getInterleaveGroup()->getInsertPos()); |
| 5086 | auto *L = new VPWidenLoadRecipe( |
| 5087 | *LI, LoadGroup->getAddr(), LoadGroup->getMask(), /*Consecutive=*/true, |
| 5088 | /*Reverse=*/false, {}, LoadGroup->getDebugLoc()); |
| 5089 | L->insertBefore(InsertPos: LoadGroup); |
| 5090 | NarrowedOps.insert(Ptr: L); |
| 5091 | return L; |
| 5092 | } |
| 5093 | |
| 5094 | if (auto *RepR = dyn_cast<VPReplicateRecipe>(Val: R)) { |
| 5095 | assert(RepR->isSingleScalar() && |
| 5096 | isa<LoadInst>(RepR->getUnderlyingInstr()) && |
| 5097 | "must be a single scalar load" ); |
| 5098 | NarrowedOps.insert(Ptr: RepR); |
| 5099 | return RepR; |
| 5100 | } |
| 5101 | |
| 5102 | auto *WideLoad = cast<VPWidenLoadRecipe>(Val: R); |
| 5103 | VPValue *PtrOp = WideLoad->getAddr(); |
| 5104 | if (auto *VecPtr = dyn_cast<VPVectorPointerRecipe>(Val: PtrOp)) |
| 5105 | PtrOp = VecPtr->getOperand(N: 0); |
| 5106 | // Narrow wide load to uniform scalar load, as transformed VPlan will only |
| 5107 | // process one original iteration. |
| 5108 | auto *N = new VPReplicateRecipe(&WideLoad->getIngredient(), {PtrOp}, |
| 5109 | /*IsUniform*/ true, |
| 5110 | /*Mask*/ nullptr, {}, *WideLoad); |
| 5111 | N->insertBefore(InsertPos: WideLoad); |
| 5112 | NarrowedOps.insert(Ptr: N); |
| 5113 | return N; |
| 5114 | } |
| 5115 | |
| 5116 | void VPlanTransforms::narrowInterleaveGroups(VPlan &Plan, ElementCount VF, |
| 5117 | TypeSize VectorRegWidth) { |
| 5118 | VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion(); |
| 5119 | if (!VectorLoop || VectorLoop->getEntry()->getNumSuccessors() != 0) |
| 5120 | return; |
| 5121 | |
| 5122 | VPTypeAnalysis TypeInfo(Plan); |
| 5123 | |
| 5124 | SmallVector<VPInterleaveRecipe *> StoreGroups; |
| 5125 | for (auto &R : *VectorLoop->getEntryBasicBlock()) { |
| 5126 | if (isa<VPCanonicalIVPHIRecipe>(Val: &R)) |
| 5127 | continue; |
| 5128 | |
| 5129 | if (isa<VPDerivedIVRecipe, VPScalarIVStepsRecipe>(Val: &R) && |
| 5130 | vputils::onlyFirstLaneUsed(Def: cast<VPSingleDefRecipe>(Val: &R))) |
| 5131 | continue; |
| 5132 | |
| 5133 | // Bail out on recipes not supported at the moment: |
| 5134 | // * phi recipes other than the canonical induction |
| 5135 | // * recipes writing to memory except interleave groups |
| 5136 | // Only support plans with a canonical induction phi. |
| 5137 | if (R.isPhi()) |
| 5138 | return; |
| 5139 | |
| 5140 | auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(Val: &R); |
| 5141 | if (R.mayWriteToMemory() && !InterleaveR) |
| 5142 | return; |
| 5143 | |
| 5144 | // Do not narrow interleave groups if there are VectorPointer recipes and |
| 5145 | // the plan was unrolled. The recipe implicitly uses VF from |
| 5146 | // VPTransformState. |
| 5147 | // TODO: Remove restriction once the VF for the VectorPointer offset is |
| 5148 | // modeled explicitly as operand. |
| 5149 | if (isa<VPVectorPointerRecipe>(Val: &R) && Plan.getUF() > 1) |
| 5150 | return; |
| 5151 | |
| 5152 | // All other ops are allowed, but we reject uses that cannot be converted |
| 5153 | // when checking all allowed consumers (store interleave groups) below. |
| 5154 | if (!InterleaveR) |
| 5155 | continue; |
| 5156 | |
| 5157 | // Bail out on non-consecutive interleave groups. |
| 5158 | if (!isConsecutiveInterleaveGroup(InterleaveR, VF, TypeInfo, |
| 5159 | VectorRegWidth)) |
| 5160 | return; |
| 5161 | |
| 5162 | // Skip read interleave groups. |
| 5163 | if (InterleaveR->getStoredValues().empty()) |
| 5164 | continue; |
| 5165 | |
| 5166 | // Narrow interleave groups, if all operands are already matching narrow |
| 5167 | // ops. |
| 5168 | auto *Member0 = InterleaveR->getStoredValues()[0]; |
| 5169 | if (isAlreadyNarrow(VPV: Member0) && |
| 5170 | all_of(Range: InterleaveR->getStoredValues(), P: equal_to(Arg&: Member0))) { |
| 5171 | StoreGroups.push_back(Elt: InterleaveR); |
| 5172 | continue; |
| 5173 | } |
| 5174 | |
| 5175 | // For now, we only support full interleave groups storing load interleave |
| 5176 | // groups. |
| 5177 | if (all_of(Range: enumerate(First: InterleaveR->getStoredValues()), P: [](auto Op) { |
| 5178 | VPRecipeBase *DefR = Op.value()->getDefiningRecipe(); |
| 5179 | if (!DefR) |
| 5180 | return false; |
| 5181 | auto *IR = dyn_cast<VPInterleaveRecipe>(Val: DefR); |
| 5182 | return IR && IR->getInterleaveGroup()->isFull() && |
| 5183 | IR->getVPValue(Op.index()) == Op.value(); |
| 5184 | })) { |
| 5185 | StoreGroups.push_back(Elt: InterleaveR); |
| 5186 | continue; |
| 5187 | } |
| 5188 | |
| 5189 | // Check if all values feeding InterleaveR are matching wide recipes, which |
| 5190 | // operands that can be narrowed. |
| 5191 | auto *WideMember0 = |
| 5192 | dyn_cast_or_null<VPWidenRecipe>(Val: InterleaveR->getStoredValues()[0]); |
| 5193 | if (!WideMember0) |
| 5194 | return; |
| 5195 | for (const auto &[I, V] : enumerate(First: InterleaveR->getStoredValues())) { |
| 5196 | auto *R = dyn_cast_or_null<VPWidenRecipe>(Val: V); |
| 5197 | if (!R || R->getOpcode() != WideMember0->getOpcode() || |
| 5198 | R->getNumOperands() > 2) |
| 5199 | return; |
| 5200 | if (any_of(Range: enumerate(First: R->operands()), |
| 5201 | P: [WideMember0, Idx = I](const auto &P) { |
| 5202 | const auto &[OpIdx, OpV] = P; |
| 5203 | return !canNarrowLoad(WideMember0, OpIdx, OpV, Idx); |
| 5204 | })) |
| 5205 | return; |
| 5206 | } |
| 5207 | StoreGroups.push_back(Elt: InterleaveR); |
| 5208 | } |
| 5209 | |
| 5210 | if (StoreGroups.empty()) |
| 5211 | return; |
| 5212 | |
| 5213 | // Convert InterleaveGroup \p R to a single VPWidenLoadRecipe. |
| 5214 | SmallPtrSet<VPValue *, 4> NarrowedOps; |
| 5215 | // Narrow operation tree rooted at store groups. |
| 5216 | for (auto *StoreGroup : StoreGroups) { |
| 5217 | VPValue *Res = |
| 5218 | narrowInterleaveGroupOp(V: StoreGroup->getStoredValues()[0], NarrowedOps); |
| 5219 | auto *SI = |
| 5220 | cast<StoreInst>(Val: StoreGroup->getInterleaveGroup()->getInsertPos()); |
| 5221 | auto *S = new VPWidenStoreRecipe( |
| 5222 | *SI, StoreGroup->getAddr(), Res, nullptr, /*Consecutive=*/true, |
| 5223 | /*Reverse=*/false, {}, StoreGroup->getDebugLoc()); |
| 5224 | S->insertBefore(InsertPos: StoreGroup); |
| 5225 | StoreGroup->eraseFromParent(); |
| 5226 | } |
| 5227 | |
| 5228 | // Adjust induction to reflect that the transformed plan only processes one |
| 5229 | // original iteration. |
| 5230 | auto *CanIV = VectorLoop->getCanonicalIV(); |
| 5231 | auto *Inc = cast<VPInstruction>(Val: CanIV->getBackedgeValue()); |
| 5232 | VPBuilder PHBuilder(Plan.getVectorPreheader()); |
| 5233 | |
| 5234 | VPValue *UF = Plan.getOrAddLiveIn( |
| 5235 | V: ConstantInt::get(Ty: VectorLoop->getCanonicalIVType(), V: 1 * Plan.getUF())); |
| 5236 | if (VF.isScalable()) { |
| 5237 | VPValue *VScale = PHBuilder.createElementCount( |
| 5238 | Ty: VectorLoop->getCanonicalIVType(), EC: ElementCount::getScalable(MinVal: 1)); |
| 5239 | VPValue *VScaleUF = PHBuilder.createOverflowingOp( |
| 5240 | Opcode: Instruction::Mul, Operands: {VScale, UF}, WrapFlags: {true, false}); |
| 5241 | Inc->setOperand(I: 1, New: VScaleUF); |
| 5242 | Plan.getVF().replaceAllUsesWith(New: VScale); |
| 5243 | } else { |
| 5244 | Inc->setOperand(I: 1, New: UF); |
| 5245 | Plan.getVF().replaceAllUsesWith( |
| 5246 | New: Plan.getConstantInt(Ty: CanIV->getScalarType(), Val: 1)); |
| 5247 | } |
| 5248 | removeDeadRecipes(Plan); |
| 5249 | } |
| 5250 | |
| 5251 | /// Add branch weight metadata, if the \p Plan's middle block is terminated by a |
| 5252 | /// BranchOnCond recipe. |
| 5253 | void VPlanTransforms::addBranchWeightToMiddleTerminator( |
| 5254 | VPlan &Plan, ElementCount VF, std::optional<unsigned> VScaleForTuning) { |
| 5255 | VPBasicBlock *MiddleVPBB = Plan.getMiddleBlock(); |
| 5256 | auto *MiddleTerm = |
| 5257 | dyn_cast_or_null<VPInstruction>(Val: MiddleVPBB->getTerminator()); |
| 5258 | // Only add branch metadata if there is a (conditional) terminator. |
| 5259 | if (!MiddleTerm) |
| 5260 | return; |
| 5261 | |
| 5262 | assert(MiddleTerm->getOpcode() == VPInstruction::BranchOnCond && |
| 5263 | "must have a BranchOnCond" ); |
| 5264 | // Assume that `TripCount % VectorStep ` is equally distributed. |
| 5265 | unsigned VectorStep = Plan.getUF() * VF.getKnownMinValue(); |
| 5266 | if (VF.isScalable() && VScaleForTuning.has_value()) |
| 5267 | VectorStep *= *VScaleForTuning; |
| 5268 | assert(VectorStep > 0 && "trip count should not be zero" ); |
| 5269 | MDBuilder MDB(Plan.getContext()); |
| 5270 | MDNode *BranchWeights = |
| 5271 | MDB.createBranchWeights(Weights: {1, VectorStep - 1}, /*IsExpected=*/false); |
| 5272 | MiddleTerm->setMetadata(Kind: LLVMContext::MD_prof, Node: BranchWeights); |
| 5273 | } |
| 5274 | |
| 5275 | /// Compute and return the end value for \p WideIV, unless it is truncated. If |
| 5276 | /// the induction recipe is not canonical, creates a VPDerivedIVRecipe to |
| 5277 | /// compute the end value of the induction. |
| 5278 | static VPValue *tryToComputeEndValueForInduction(VPWidenInductionRecipe *WideIV, |
| 5279 | VPBuilder &VectorPHBuilder, |
| 5280 | VPTypeAnalysis &TypeInfo, |
| 5281 | VPValue *VectorTC) { |
| 5282 | auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: WideIV); |
| 5283 | // Truncated wide inductions resume from the last lane of their vector value |
| 5284 | // in the last vector iteration which is handled elsewhere. |
| 5285 | if (WideIntOrFp && WideIntOrFp->getTruncInst()) |
| 5286 | return nullptr; |
| 5287 | |
| 5288 | VPIRValue *Start = WideIV->getStartValue(); |
| 5289 | VPValue *Step = WideIV->getStepValue(); |
| 5290 | const InductionDescriptor &ID = WideIV->getInductionDescriptor(); |
| 5291 | VPValue *EndValue = VectorTC; |
| 5292 | if (!WideIntOrFp || !WideIntOrFp->isCanonical()) { |
| 5293 | EndValue = VectorPHBuilder.createDerivedIV( |
| 5294 | Kind: ID.getKind(), FPBinOp: dyn_cast_or_null<FPMathOperator>(Val: ID.getInductionBinOp()), |
| 5295 | Start, Current: VectorTC, Step); |
| 5296 | } |
| 5297 | |
| 5298 | // EndValue is derived from the vector trip count (which has the same type as |
| 5299 | // the widest induction) and thus may be wider than the induction here. |
| 5300 | Type *ScalarTypeOfWideIV = TypeInfo.inferScalarType(V: WideIV); |
| 5301 | if (ScalarTypeOfWideIV != TypeInfo.inferScalarType(V: EndValue)) { |
| 5302 | EndValue = VectorPHBuilder.createScalarCast(Opcode: Instruction::Trunc, Op: EndValue, |
| 5303 | ResultTy: ScalarTypeOfWideIV, |
| 5304 | DL: WideIV->getDebugLoc()); |
| 5305 | } |
| 5306 | |
| 5307 | return EndValue; |
| 5308 | } |
| 5309 | |
| 5310 | void VPlanTransforms::updateScalarResumePhis( |
| 5311 | VPlan &Plan, DenseMap<VPValue *, VPValue *> &IVEndValues) { |
| 5312 | VPTypeAnalysis TypeInfo(Plan); |
| 5313 | auto *ScalarPH = Plan.getScalarPreheader(); |
| 5314 | auto *MiddleVPBB = cast<VPBasicBlock>(Val: ScalarPH->getPredecessors()[0]); |
| 5315 | VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion(); |
| 5316 | VPBuilder VectorPHBuilder( |
| 5317 | cast<VPBasicBlock>(Val: VectorRegion->getSinglePredecessor())); |
| 5318 | VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi()); |
| 5319 | for (VPRecipeBase &PhiR : Plan.getScalarPreheader()->phis()) { |
| 5320 | auto *ResumePhiR = cast<VPPhi>(Val: &PhiR); |
| 5321 | |
| 5322 | // TODO: Extract final value from induction recipe initially, optimize to |
| 5323 | // pre-computed end value together in optimizeInductionExitUsers. |
| 5324 | auto *VectorPhiR = cast<VPHeaderPHIRecipe>(Val: ResumePhiR->getOperand(N: 0)); |
| 5325 | if (auto *WideIVR = dyn_cast<VPWidenInductionRecipe>(Val: VectorPhiR)) { |
| 5326 | if (VPValue *EndValue = tryToComputeEndValueForInduction( |
| 5327 | WideIV: WideIVR, VectorPHBuilder, TypeInfo, VectorTC: &Plan.getVectorTripCount())) { |
| 5328 | IVEndValues[WideIVR] = EndValue; |
| 5329 | ResumePhiR->setOperand(I: 0, New: EndValue); |
| 5330 | ResumePhiR->setName("bc.resume.val" ); |
| 5331 | continue; |
| 5332 | } |
| 5333 | // TODO: Also handle truncated inductions here. Computing end-values |
| 5334 | // separately should be done as VPlan-to-VPlan optimization, after |
| 5335 | // legalizing all resume values to use the last lane from the loop. |
| 5336 | assert(cast<VPWidenIntOrFpInductionRecipe>(VectorPhiR)->getTruncInst() && |
| 5337 | "should only skip truncated wide inductions" ); |
| 5338 | continue; |
| 5339 | } |
| 5340 | |
| 5341 | // The backedge value provides the value to resume coming out of a loop, |
| 5342 | // which for FORs is a vector whose last element needs to be extracted. The |
| 5343 | // start value provides the value if the loop is bypassed. |
| 5344 | bool IsFOR = isa<VPFirstOrderRecurrencePHIRecipe>(Val: VectorPhiR); |
| 5345 | auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue(); |
| 5346 | assert(VectorRegion->getSingleSuccessor() == Plan.getMiddleBlock() && |
| 5347 | "Cannot handle loops with uncountable early exits" ); |
| 5348 | if (IsFOR) { |
| 5349 | auto * = MiddleBuilder.createNaryOp( |
| 5350 | Opcode: VPInstruction::ExtractLastPart, Operands: ResumeFromVectorLoop); |
| 5351 | ResumeFromVectorLoop = MiddleBuilder.createNaryOp( |
| 5352 | Opcode: VPInstruction::ExtractLastLane, Operands: ExtractPart, DL: DebugLoc::getUnknown(), |
| 5353 | Name: "vector.recur.extract" ); |
| 5354 | } |
| 5355 | ResumePhiR->setName(IsFOR ? "scalar.recur.init" : "bc.merge.rdx" ); |
| 5356 | ResumePhiR->setOperand(I: 0, New: ResumeFromVectorLoop); |
| 5357 | } |
| 5358 | } |
| 5359 | |
| 5360 | void VPlanTransforms::addExitUsersForFirstOrderRecurrences(VPlan &Plan, |
| 5361 | VFRange &Range) { |
| 5362 | VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion(); |
| 5363 | auto *ScalarPHVPBB = Plan.getScalarPreheader(); |
| 5364 | auto *MiddleVPBB = Plan.getMiddleBlock(); |
| 5365 | VPBuilder ScalarPHBuilder(ScalarPHVPBB); |
| 5366 | VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi()); |
| 5367 | |
| 5368 | auto IsScalableOne = [](ElementCount VF) -> bool { |
| 5369 | return VF == ElementCount::getScalable(MinVal: 1); |
| 5370 | }; |
| 5371 | |
| 5372 | for (auto & : VectorRegion->getEntryBasicBlock()->phis()) { |
| 5373 | auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(Val: &HeaderPhi); |
| 5374 | if (!FOR) |
| 5375 | continue; |
| 5376 | |
| 5377 | assert(VectorRegion->getSingleSuccessor() == Plan.getMiddleBlock() && |
| 5378 | "Cannot handle loops with uncountable early exits" ); |
| 5379 | |
| 5380 | // This is the second phase of vectorizing first-order recurrences, creating |
| 5381 | // extract for users outside the loop. An overview of the transformation is |
| 5382 | // described below. Suppose we have the following loop with some use after |
| 5383 | // the loop of the last a[i-1], |
| 5384 | // |
| 5385 | // for (int i = 0; i < n; ++i) { |
| 5386 | // t = a[i - 1]; |
| 5387 | // b[i] = a[i] - t; |
| 5388 | // } |
| 5389 | // use t; |
| 5390 | // |
| 5391 | // There is a first-order recurrence on "a". For this loop, the shorthand |
| 5392 | // scalar IR looks like: |
| 5393 | // |
| 5394 | // scalar.ph: |
| 5395 | // s.init = a[-1] |
| 5396 | // br scalar.body |
| 5397 | // |
| 5398 | // scalar.body: |
| 5399 | // i = phi [0, scalar.ph], [i+1, scalar.body] |
| 5400 | // s1 = phi [s.init, scalar.ph], [s2, scalar.body] |
| 5401 | // s2 = a[i] |
| 5402 | // b[i] = s2 - s1 |
| 5403 | // br cond, scalar.body, exit.block |
| 5404 | // |
| 5405 | // exit.block: |
| 5406 | // use = lcssa.phi [s1, scalar.body] |
| 5407 | // |
| 5408 | // In this example, s1 is a recurrence because it's value depends on the |
| 5409 | // previous iteration. In the first phase of vectorization, we created a |
| 5410 | // VPFirstOrderRecurrencePHIRecipe v1 for s1. Now we create the extracts |
| 5411 | // for users in the scalar preheader and exit block. |
| 5412 | // |
| 5413 | // vector.ph: |
| 5414 | // v_init = vector(..., ..., ..., a[-1]) |
| 5415 | // br vector.body |
| 5416 | // |
| 5417 | // vector.body |
| 5418 | // i = phi [0, vector.ph], [i+4, vector.body] |
| 5419 | // v1 = phi [v_init, vector.ph], [v2, vector.body] |
| 5420 | // v2 = a[i, i+1, i+2, i+3] |
| 5421 | // b[i] = v2 - v1 |
| 5422 | // // Next, third phase will introduce v1' = splice(v1(3), v2(0, 1, 2)) |
| 5423 | // b[i, i+1, i+2, i+3] = v2 - v1 |
| 5424 | // br cond, vector.body, middle.block |
| 5425 | // |
| 5426 | // middle.block: |
| 5427 | // vector.recur.extract.for.phi = v2(2) |
| 5428 | // vector.recur.extract = v2(3) |
| 5429 | // br cond, scalar.ph, exit.block |
| 5430 | // |
| 5431 | // scalar.ph: |
| 5432 | // scalar.recur.init = phi [vector.recur.extract, middle.block], |
| 5433 | // [s.init, otherwise] |
| 5434 | // br scalar.body |
| 5435 | // |
| 5436 | // scalar.body: |
| 5437 | // i = phi [0, scalar.ph], [i+1, scalar.body] |
| 5438 | // s1 = phi [scalar.recur.init, scalar.ph], [s2, scalar.body] |
| 5439 | // s2 = a[i] |
| 5440 | // b[i] = s2 - s1 |
| 5441 | // br cond, scalar.body, exit.block |
| 5442 | // |
| 5443 | // exit.block: |
| 5444 | // lo = lcssa.phi [s1, scalar.body], |
| 5445 | // [vector.recur.extract.for.phi, middle.block] |
| 5446 | // |
| 5447 | // Now update VPIRInstructions modeling LCSSA phis in the exit block. |
| 5448 | // Extract the penultimate value of the recurrence and use it as operand for |
| 5449 | // the VPIRInstruction modeling the phi. |
| 5450 | for (VPRecipeBase &R : make_early_inc_range( |
| 5451 | Range: make_range(x: MiddleVPBB->getFirstNonPhi(), y: MiddleVPBB->end()))) { |
| 5452 | if (!match(V: &R, P: m_ExtractLastLaneOfLastPart(Op0: m_Specific(VPV: FOR)))) |
| 5453 | continue; |
| 5454 | |
| 5455 | // For VF vscale x 1, if vscale = 1, we are unable to extract the |
| 5456 | // penultimate value of the recurrence. Instead we rely on the existing |
| 5457 | // extract of the last element from the result of |
| 5458 | // VPInstruction::FirstOrderRecurrenceSplice. |
| 5459 | // TODO: Consider vscale_range info and UF. |
| 5460 | if (LoopVectorizationPlanner::getDecisionAndClampRange(Predicate: IsScalableOne, |
| 5461 | Range)) |
| 5462 | return; |
| 5463 | VPValue *PenultimateElement = MiddleBuilder.createNaryOp( |
| 5464 | Opcode: VPInstruction::ExtractPenultimateElement, Operands: FOR->getBackedgeValue(), DL: {}, |
| 5465 | Name: "vector.recur.extract.for.phi" ); |
| 5466 | cast<VPInstruction>(Val: &R)->replaceAllUsesWith(New: PenultimateElement); |
| 5467 | } |
| 5468 | } |
| 5469 | } |
| 5470 | |
| 5471 | namespace { |
| 5472 | |
| 5473 | /// A chain of recipes that form a partial reduction. Matches either |
| 5474 | /// reduction_bin_op (extend (A), accumulator), or |
| 5475 | /// reduction_bin_op (bin_op (extend (A), (extend (B))), accumulator). |
| 5476 | struct VPPartialReductionChain { |
| 5477 | /// The top-level binary operation that forms the reduction to a scalar |
| 5478 | /// after the loop body. |
| 5479 | VPWidenRecipe *ReductionBinOp; |
| 5480 | /// The extension of each of the inner binary operation's operands. |
| 5481 | VPWidenCastRecipe *ExtendA; |
| 5482 | VPWidenCastRecipe *ExtendB; |
| 5483 | /// The user of the extends that is then reduced. |
| 5484 | VPWidenRecipe *BinOp; |
| 5485 | unsigned ScaleFactor; |
| 5486 | }; |
| 5487 | |
| 5488 | // Helper to transform a partial reduction chain into a partial reduction |
| 5489 | // recipe. Returns true if transformation succeeded. Checks profitability and |
| 5490 | // clamps VF range. |
| 5491 | static bool transformToPartialReduction(const VPPartialReductionChain &Chain, |
| 5492 | VFRange &Range, VPCostContext &CostCtx, |
| 5493 | VPlan &Plan) { |
| 5494 | VPWidenRecipe *WidenRecipe = Chain.ReductionBinOp; |
| 5495 | unsigned ScaleFactor = Chain.ScaleFactor; |
| 5496 | assert(WidenRecipe->getNumOperands() == 2 && "Expected binary operation" ); |
| 5497 | |
| 5498 | VPValue *BinOp = WidenRecipe->getOperand(N: 0); |
| 5499 | VPValue *Accumulator = WidenRecipe->getOperand(N: 1); |
| 5500 | |
| 5501 | // Swap if needed to ensure Accumulator is the PHI or partial reduction. |
| 5502 | if (isa_and_present<VPReductionPHIRecipe, VPReductionRecipe>(Val: BinOp)) |
| 5503 | std::swap(a&: BinOp, b&: Accumulator); |
| 5504 | |
| 5505 | // For chained reductions, only transform if accumulator is already a PHI or |
| 5506 | // partial reduction. Otherwise, it needs to be transformed first. |
| 5507 | auto *AccumRecipe = Accumulator->getDefiningRecipe(); |
| 5508 | if (!isa_and_present<VPReductionPHIRecipe, VPReductionRecipe>(Val: AccumRecipe)) |
| 5509 | return false; |
| 5510 | |
| 5511 | // Check if the partial reduction is profitable for the VF range. |
| 5512 | Type *PhiType = CostCtx.Types.inferScalarType(V: Accumulator); |
| 5513 | |
| 5514 | // Derive extend info from the stored extends. |
| 5515 | auto GetExtInfo = [&CostCtx](VPWidenCastRecipe *Ext) |
| 5516 | -> std::pair<Type *, TargetTransformInfo::PartialReductionExtendKind> { |
| 5517 | if (!Ext) |
| 5518 | return {nullptr, TargetTransformInfo::PR_None}; |
| 5519 | Type *ExtOpType = CostCtx.Types.inferScalarType(V: Ext->getOperand(N: 0)); |
| 5520 | auto ExtKind = TargetTransformInfo::getPartialReductionExtendKind( |
| 5521 | CastOpc: static_cast<Instruction::CastOps>(Ext->getOpcode())); |
| 5522 | return {ExtOpType, ExtKind}; |
| 5523 | }; |
| 5524 | auto ExtInfoA = GetExtInfo(Chain.ExtendA); |
| 5525 | auto ExtInfoB = GetExtInfo(Chain.ExtendB); |
| 5526 | Type *ExtOpTypeA = ExtInfoA.first; |
| 5527 | Type *ExtOpTypeB = ExtInfoB.first; |
| 5528 | auto ExtKindA = ExtInfoA.second; |
| 5529 | auto ExtKindB = ExtInfoB.second; |
| 5530 | // If ExtendB is nullptr but there's a separate BinOp, the second operand |
| 5531 | // was a constant that can use the same extend kind as the first. |
| 5532 | if (!Chain.ExtendB && Chain.BinOp && Chain.BinOp != Chain.ReductionBinOp) { |
| 5533 | // Validate that the constant can be extended to the narrow type. |
| 5534 | const APInt *Const = nullptr; |
| 5535 | for (VPValue *Op : Chain.BinOp->operands()) { |
| 5536 | if (match(V: Op, P: m_APInt(C&: Const))) |
| 5537 | break; |
| 5538 | } |
| 5539 | if (!Const || !canConstantBeExtended(C: Const, NarrowType: ExtOpTypeA, ExtKind: ExtKindA)) |
| 5540 | return false; |
| 5541 | ExtOpTypeB = ExtOpTypeA; |
| 5542 | ExtKindB = ExtKindA; |
| 5543 | } |
| 5544 | |
| 5545 | // BinOpc is only set when there's a separate binary op (not when BinOp is |
| 5546 | // the reduction itself). |
| 5547 | std::optional<unsigned> BinOpc = |
| 5548 | (Chain.BinOp && Chain.BinOp != Chain.ReductionBinOp) |
| 5549 | ? std::make_optional(t: Chain.BinOp->getOpcode()) |
| 5550 | : std::nullopt; |
| 5551 | |
| 5552 | if (!LoopVectorizationPlanner::getDecisionAndClampRange( |
| 5553 | Predicate: [&](ElementCount VF) { |
| 5554 | return CostCtx.TTI |
| 5555 | .getPartialReductionCost( |
| 5556 | Opcode: WidenRecipe->getOpcode(), InputTypeA: ExtOpTypeA, InputTypeB: ExtOpTypeB, AccumType: PhiType, |
| 5557 | VF, OpAExtend: ExtKindA, OpBExtend: ExtKindB, BinOp: BinOpc, CostKind: CostCtx.CostKind, |
| 5558 | FMF: PhiType->isFloatingPointTy() |
| 5559 | ? std::optional{WidenRecipe->getFastMathFlags()} |
| 5560 | : std::nullopt) |
| 5561 | .isValid(); |
| 5562 | }, |
| 5563 | Range)) |
| 5564 | return false; |
| 5565 | |
| 5566 | VPValue *Cond = nullptr; |
| 5567 | VPValue *ExitValue = nullptr; |
| 5568 | if (auto *RdxPhi = dyn_cast<VPReductionPHIRecipe>(Val: AccumRecipe)) { |
| 5569 | assert(RdxPhi->getVFScaleFactor() == 1 && "scale factor must not be set" ); |
| 5570 | RdxPhi->setVFScaleFactor(ScaleFactor); |
| 5571 | |
| 5572 | // Update ReductionStartVector instruction scale factor. |
| 5573 | VPValue *StartValue = RdxPhi->getOperand(N: 0); |
| 5574 | auto *StartInst = cast<VPInstruction>(Val: StartValue); |
| 5575 | assert(StartInst->getOpcode() == VPInstruction::ReductionStartVector); |
| 5576 | auto *NewScaleFactor = Plan.getConstantInt(BitWidth: 32, Val: ScaleFactor); |
| 5577 | StartInst->setOperand(I: 2, New: NewScaleFactor); |
| 5578 | |
| 5579 | // Find the ComputeReductionResult that uses the WidenRecipe (the exit |
| 5580 | // value). Look through selects for predicated reductions. |
| 5581 | if (auto *RdxResult = vputils::findComputeReductionResult(PhiR: RdxPhi)) { |
| 5582 | ExitValue = RdxResult->getOperand(N: 0); |
| 5583 | match(V: ExitValue, P: m_Select(Op0: m_VPValue(V&: Cond), Op1: m_VPValue(), Op2: m_VPValue())); |
| 5584 | } |
| 5585 | } |
| 5586 | |
| 5587 | // Handle SUB by negating the operand and using ADD for the partial reduction. |
| 5588 | if (WidenRecipe->getOpcode() == Instruction::Sub) { |
| 5589 | VPBuilder Builder(WidenRecipe); |
| 5590 | Type *ElemTy = CostCtx.Types.inferScalarType(V: BinOp); |
| 5591 | auto *Zero = Plan.getConstantInt(Ty: ElemTy, Val: 0); |
| 5592 | VPIRFlags Flags = WidenRecipe->getUnderlyingInstr() |
| 5593 | ? VPIRFlags(*WidenRecipe->getUnderlyingInstr()) |
| 5594 | : VPIRFlags(); |
| 5595 | auto *NegRecipe = new VPWidenRecipe(Instruction::Sub, {Zero, BinOp}, Flags, |
| 5596 | VPIRMetadata(), DebugLoc::getUnknown()); |
| 5597 | Builder.insert(R: NegRecipe); |
| 5598 | BinOp = NegRecipe; |
| 5599 | } |
| 5600 | |
| 5601 | RecurKind RdxKind = |
| 5602 | PhiType->isFloatingPointTy() ? RecurKind::FAdd : RecurKind::Add; |
| 5603 | auto *PartialRed = new VPReductionRecipe( |
| 5604 | RdxKind, |
| 5605 | RdxKind == RecurKind::FAdd ? WidenRecipe->getFastMathFlags() |
| 5606 | : FastMathFlags(), |
| 5607 | WidenRecipe->getUnderlyingInstr(), Accumulator, BinOp, Cond, |
| 5608 | RdxUnordered{/*VFScaleFactor=*/ScaleFactor}); |
| 5609 | PartialRed->insertBefore(InsertPos: WidenRecipe); |
| 5610 | |
| 5611 | if (Cond) |
| 5612 | ExitValue->replaceAllUsesWith(New: PartialRed); |
| 5613 | WidenRecipe->replaceAllUsesWith(New: PartialRed); |
| 5614 | return true; |
| 5615 | } |
| 5616 | |
| 5617 | /// Examines reduction operations to see if the target can use a cheaper |
| 5618 | /// operation with a wider per-iteration input VF and narrower PHI VF. |
| 5619 | /// Recursively calls itself to identify chained scaled reductions. |
| 5620 | /// Returns true if this invocation added an entry to Chains, otherwise false. |
| 5621 | static bool |
| 5622 | getScaledReductions(VPSingleDefRecipe *RedPhiR, VPValue *PrevValue, |
| 5623 | SmallVectorImpl<VPPartialReductionChain> &Chains, |
| 5624 | VPTypeAnalysis &TypeInfo) { |
| 5625 | auto *UpdateR = dyn_cast<VPWidenRecipe>(Val: PrevValue); |
| 5626 | if (!UpdateR || !Instruction::isBinaryOp(Opcode: UpdateR->getOpcode())) |
| 5627 | return false; |
| 5628 | |
| 5629 | VPValue *Op = UpdateR->getOperand(N: 0); |
| 5630 | VPValue *PhiOp = UpdateR->getOperand(N: 1); |
| 5631 | if (Op == RedPhiR) |
| 5632 | std::swap(a&: Op, b&: PhiOp); |
| 5633 | |
| 5634 | // If Op is an extend, then it's still a valid partial reduction if the |
| 5635 | // extended mul fulfills the other requirements. |
| 5636 | // For example, reduce.add(ext(mul(ext(A), ext(B)))) is still a valid partial |
| 5637 | // reduction since the inner extends will be widened. We already have oneUse |
| 5638 | // checks on the inner extends so widening them is safe. |
| 5639 | std::optional<TTI::PartialReductionExtendKind> OuterExtKind; |
| 5640 | if (match(V: Op, P: m_ZExtOrSExt(Op0: m_Mul(Op0: m_VPValue(), Op1: m_VPValue()))) || |
| 5641 | match(V: Op, P: m_FPExt(Op0: m_FMul(Op0: m_VPValue(), Op1: m_VPValue())))) { |
| 5642 | auto *CastRecipe = dyn_cast<VPWidenCastRecipe>(Val: Op); |
| 5643 | if (!CastRecipe) |
| 5644 | return false; |
| 5645 | auto CastOp = static_cast<Instruction::CastOps>(CastRecipe->getOpcode()); |
| 5646 | OuterExtKind = TTI::getPartialReductionExtendKind(CastOpc: CastOp); |
| 5647 | Op = CastRecipe->getOperand(N: 0); |
| 5648 | } |
| 5649 | |
| 5650 | // Try and get a scaled reduction from the first non-phi operand. |
| 5651 | // If one is found, we use the discovered reduction instruction in |
| 5652 | // place of the accumulator for costing. |
| 5653 | if (getScaledReductions(RedPhiR, PrevValue: Op, Chains, TypeInfo)) { |
| 5654 | RedPhiR = Chains.rbegin()->ReductionBinOp; |
| 5655 | Op = UpdateR->getOperand(N: 0); |
| 5656 | PhiOp = UpdateR->getOperand(N: 1); |
| 5657 | if (Op == RedPhiR) |
| 5658 | std::swap(a&: Op, b&: PhiOp); |
| 5659 | } |
| 5660 | if (RedPhiR != PhiOp) |
| 5661 | return false; |
| 5662 | |
| 5663 | // If the update is a binary op, check both of its operands to see if |
| 5664 | // they are extends. Otherwise, see if the update comes directly from an |
| 5665 | // extend. |
| 5666 | VPWidenCastRecipe *CastRecipes[2] = {nullptr}; |
| 5667 | |
| 5668 | // Match extends and populate CastRecipes. Returns false if matching fails. |
| 5669 | auto MatchExtends = [OuterExtKind, |
| 5670 | &CastRecipes](ArrayRef<VPValue *> Operands) { |
| 5671 | assert(Operands.size() <= 2 && "expected at most 2 operands" ); |
| 5672 | |
| 5673 | for (const auto &[I, OpVal] : enumerate(First&: Operands)) { |
| 5674 | // Allow constant as second operand - validation happens in transform. |
| 5675 | const APInt *Unused; |
| 5676 | if (I > 0 && CastRecipes[0] && match(V: OpVal, P: m_APInt(C&: Unused))) |
| 5677 | continue; |
| 5678 | |
| 5679 | VPValue *ExtInput; |
| 5680 | if (!match(V: OpVal, P: m_ZExtOrSExt(Op0: m_VPValue(V&: ExtInput))) && |
| 5681 | !match(V: OpVal, P: m_FPExt(Op0: m_VPValue(V&: ExtInput)))) |
| 5682 | return false; |
| 5683 | |
| 5684 | CastRecipes[I] = dyn_cast<VPWidenCastRecipe>(Val: OpVal); |
| 5685 | if (!CastRecipes[I]) |
| 5686 | return false; |
| 5687 | |
| 5688 | // The outer extend kind must match the inner extends for folding. |
| 5689 | if (OuterExtKind) { |
| 5690 | auto CastOp = |
| 5691 | static_cast<Instruction::CastOps>(CastRecipes[I]->getOpcode()); |
| 5692 | if (*OuterExtKind != TTI::getPartialReductionExtendKind(CastOpc: CastOp)) |
| 5693 | return false; |
| 5694 | } |
| 5695 | } |
| 5696 | return CastRecipes[0] != nullptr; |
| 5697 | }; |
| 5698 | |
| 5699 | // If Op is a binary operator, check both of its operands to see if they are |
| 5700 | // extends. Otherwise, see if the update comes directly from an extend. |
| 5701 | auto *BinOp = dyn_cast<VPWidenRecipe>(Val: Op); |
| 5702 | if (BinOp && Instruction::isBinaryOp(Opcode: BinOp->getOpcode())) { |
| 5703 | if (!BinOp->hasOneUse()) |
| 5704 | return false; |
| 5705 | |
| 5706 | // Handle neg(binop(ext, ext)) pattern. |
| 5707 | VPValue *OtherOp = nullptr; |
| 5708 | if (match(V: BinOp, P: m_Sub(Op0: m_ZeroInt(), Op1: m_VPValue(V&: OtherOp)))) |
| 5709 | BinOp = dyn_cast<VPWidenRecipe>(Val: OtherOp); |
| 5710 | |
| 5711 | if (!BinOp || !Instruction::isBinaryOp(Opcode: BinOp->getOpcode()) || |
| 5712 | !MatchExtends(BinOp->operands())) |
| 5713 | return false; |
| 5714 | } else if (match(V: UpdateR, P: m_Add(Op0: m_VPValue(), Op1: m_VPValue())) || |
| 5715 | match(V: UpdateR, P: m_FAdd(Op0: m_VPValue(), Op1: m_VPValue()))) { |
| 5716 | // We already know the operands for Update are Op and PhiOp. |
| 5717 | if (!MatchExtends({Op})) |
| 5718 | return false; |
| 5719 | BinOp = UpdateR; |
| 5720 | } else { |
| 5721 | return false; |
| 5722 | } |
| 5723 | |
| 5724 | Type *PhiType = TypeInfo.inferScalarType(V: RedPhiR); |
| 5725 | TypeSize PHISize = PhiType->getPrimitiveSizeInBits(); |
| 5726 | Type *ExtOpType = TypeInfo.inferScalarType(V: CastRecipes[0]->getOperand(N: 0)); |
| 5727 | TypeSize ASize = ExtOpType->getPrimitiveSizeInBits(); |
| 5728 | if (!PHISize.hasKnownScalarFactor(RHS: ASize)) |
| 5729 | return false; |
| 5730 | |
| 5731 | Chains.push_back( |
| 5732 | Elt: {.ReductionBinOp: UpdateR, .ExtendA: CastRecipes[0], .ExtendB: CastRecipes[1], .BinOp: BinOp, |
| 5733 | .ScaleFactor: static_cast<unsigned>(PHISize.getKnownScalarFactor(RHS: ASize))}); |
| 5734 | return true; |
| 5735 | } |
| 5736 | } // namespace |
| 5737 | |
| 5738 | void VPlanTransforms::createPartialReductions(VPlan &Plan, |
| 5739 | VPCostContext &CostCtx, |
| 5740 | VFRange &Range) { |
| 5741 | // Find all possible partial reductions, grouping chains by their PHI. This |
| 5742 | // grouping allows invalidating the whole chain, if any link is not a valid |
| 5743 | // partial reduction. |
| 5744 | MapVector<VPReductionPHIRecipe *, SmallVector<VPPartialReductionChain>> |
| 5745 | ChainsByPhi; |
| 5746 | VPBasicBlock * = Plan.getVectorLoopRegion()->getEntryBasicBlock(); |
| 5747 | for (VPRecipeBase &R : HeaderVPBB->phis()) { |
| 5748 | auto *RedPhiR = dyn_cast<VPReductionPHIRecipe>(Val: &R); |
| 5749 | if (!RedPhiR) |
| 5750 | continue; |
| 5751 | |
| 5752 | // Get the backedge value from the reduction PHI and find the |
| 5753 | // ComputeReductionResult that uses it (directly or through a select for |
| 5754 | // predicated reductions). |
| 5755 | if (auto *RdxResult = vputils::findComputeReductionResult(PhiR: RedPhiR)) { |
| 5756 | VPValue *ExitValue = RdxResult->getOperand(N: 0); |
| 5757 | match(V: ExitValue, |
| 5758 | P: m_Select(Op0: m_VPValue(), Op1: m_VPValue(V&: ExitValue), Op2: m_VPValue())); |
| 5759 | getScaledReductions(RedPhiR, PrevValue: ExitValue, Chains&: ChainsByPhi[RedPhiR], |
| 5760 | TypeInfo&: CostCtx.Types); |
| 5761 | } |
| 5762 | } |
| 5763 | |
| 5764 | if (ChainsByPhi.empty()) |
| 5765 | return; |
| 5766 | |
| 5767 | // Build set of partial reduction operations for extend user validation and |
| 5768 | // a map of reduction bin ops to their scale factors for scale validation. |
| 5769 | SmallPtrSet<VPRecipeBase *, 4> PartialReductionOps; |
| 5770 | DenseMap<VPSingleDefRecipe *, unsigned> ScaledReductionMap; |
| 5771 | for (const auto &[_, Chains] : ChainsByPhi) |
| 5772 | for (const VPPartialReductionChain &Chain : Chains) { |
| 5773 | PartialReductionOps.insert(Ptr: Chain.BinOp); |
| 5774 | ScaledReductionMap[Chain.ReductionBinOp] = Chain.ScaleFactor; |
| 5775 | } |
| 5776 | |
| 5777 | // A partial reduction is invalid if any of its extends are used by |
| 5778 | // something that isn't another partial reduction. This is because the |
| 5779 | // extends are intended to be lowered along with the reduction itself. |
| 5780 | auto ExtendUsersValid = [&](VPWidenCastRecipe *Ext) { |
| 5781 | return !Ext || all_of(Range: Ext->users(), P: [&](VPUser *U) { |
| 5782 | return PartialReductionOps.contains(Ptr: cast<VPRecipeBase>(Val: U)); |
| 5783 | }); |
| 5784 | }; |
| 5785 | |
| 5786 | // Validate chains: check that extends are only used by partial reductions, |
| 5787 | // and that reduction bin ops are only used by other partial reductions with |
| 5788 | // matching scale factors, are outside the loop region or the select |
| 5789 | // introduced by tail-folding. Otherwise we would create users of scaled |
| 5790 | // reductions where the types of the other operands don't match. |
| 5791 | for (auto &[RedPhiR, Chains] : ChainsByPhi) { |
| 5792 | for (const VPPartialReductionChain &Chain : Chains) { |
| 5793 | if (!ExtendUsersValid(Chain.ExtendA) || |
| 5794 | !ExtendUsersValid(Chain.ExtendB)) { |
| 5795 | Chains.clear(); |
| 5796 | break; |
| 5797 | } |
| 5798 | auto UseIsValid = [&, RedPhiR = RedPhiR](VPUser *U) { |
| 5799 | if (auto *PhiR = dyn_cast<VPReductionPHIRecipe>(Val: U)) |
| 5800 | return PhiR == RedPhiR; |
| 5801 | auto *R = cast<VPSingleDefRecipe>(Val: U); |
| 5802 | return Chain.ScaleFactor == ScaledReductionMap.lookup_or(Val: R, Default: 0) || |
| 5803 | match(R, P: m_ComputeReductionResult( |
| 5804 | Op0: m_Specific(VPV: Chain.ReductionBinOp))) || |
| 5805 | match(R, P: m_Select(Op0: m_VPValue(), Op1: m_Specific(VPV: Chain.ReductionBinOp), |
| 5806 | Op2: m_Specific(VPV: RedPhiR))); |
| 5807 | }; |
| 5808 | if (!all_of(Range: Chain.ReductionBinOp->users(), P: UseIsValid)) { |
| 5809 | Chains.clear(); |
| 5810 | break; |
| 5811 | } |
| 5812 | |
| 5813 | // Check if the compute-reduction-result is used by a sunk store. |
| 5814 | // TODO: Also form partial reductions in those cases. |
| 5815 | if (auto *RdxResult = vputils::findComputeReductionResult(PhiR: RedPhiR)) { |
| 5816 | if (any_of(Range: RdxResult->users(), P: [](VPUser *U) { |
| 5817 | auto *RepR = dyn_cast<VPReplicateRecipe>(Val: U); |
| 5818 | return RepR && isa<StoreInst>(Val: RepR->getUnderlyingInstr()); |
| 5819 | })) { |
| 5820 | Chains.clear(); |
| 5821 | break; |
| 5822 | } |
| 5823 | } |
| 5824 | } |
| 5825 | } |
| 5826 | |
| 5827 | for (const auto &[_, Chains] : ChainsByPhi) |
| 5828 | for (const VPPartialReductionChain &Chain : Chains) |
| 5829 | transformToPartialReduction(Chain, Range, CostCtx, Plan); |
| 5830 | } |
| 5831 | |