| 1 | //===------- Interp.cpp - Interpreter for the constexpr VM ------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "Interp.h" |
| 10 | #include "Compiler.h" |
| 11 | #include "Function.h" |
| 12 | #include "InterpFrame.h" |
| 13 | #include "InterpShared.h" |
| 14 | #include "InterpStack.h" |
| 15 | #include "Opcode.h" |
| 16 | #include "PrimType.h" |
| 17 | #include "Program.h" |
| 18 | #include "State.h" |
| 19 | #include "clang/AST/ASTContext.h" |
| 20 | #include "clang/AST/CXXInheritance.h" |
| 21 | #include "clang/AST/DeclObjC.h" |
| 22 | #include "clang/AST/Expr.h" |
| 23 | #include "clang/AST/ExprCXX.h" |
| 24 | #include "clang/Basic/DiagnosticSema.h" |
| 25 | #include "clang/Basic/TargetInfo.h" |
| 26 | #include "llvm/ADT/StringExtras.h" |
| 27 | |
| 28 | using namespace clang; |
| 29 | using namespace clang::interp; |
| 30 | |
| 31 | static bool RetValue(InterpState &S, CodePtr &Pt) { |
| 32 | llvm::report_fatal_error(reason: "Interpreter cannot return values" ); |
| 33 | } |
| 34 | |
| 35 | //===----------------------------------------------------------------------===// |
| 36 | // Jmp, Jt, Jf |
| 37 | //===----------------------------------------------------------------------===// |
| 38 | |
| 39 | static bool Jmp(InterpState &S, CodePtr &PC, int32_t Offset) { |
| 40 | PC += Offset; |
| 41 | return true; |
| 42 | } |
| 43 | |
| 44 | static bool Jt(InterpState &S, CodePtr &PC, int32_t Offset) { |
| 45 | if (S.Stk.pop<bool>()) { |
| 46 | PC += Offset; |
| 47 | } |
| 48 | return true; |
| 49 | } |
| 50 | |
| 51 | static bool Jf(InterpState &S, CodePtr &PC, int32_t Offset) { |
| 52 | if (!S.Stk.pop<bool>()) { |
| 53 | PC += Offset; |
| 54 | } |
| 55 | return true; |
| 56 | } |
| 57 | |
| 58 | // https://github.com/llvm/llvm-project/issues/102513 |
| 59 | #if defined(_MSC_VER) && !defined(__clang__) && !defined(NDEBUG) |
| 60 | #pragma optimize("", off) |
| 61 | #endif |
| 62 | // FIXME: We have the large switch over all opcodes here again, and in |
| 63 | // Interpret(). |
| 64 | static bool BCP(InterpState &S, CodePtr &RealPC, int32_t Offset, PrimType PT) { |
| 65 | [[maybe_unused]] CodePtr PCBefore = RealPC; |
| 66 | size_t StackSizeBefore = S.Stk.size(); |
| 67 | |
| 68 | auto SpeculativeInterp = [&S, RealPC]() -> bool { |
| 69 | const InterpFrame *StartFrame = S.Current; |
| 70 | CodePtr PC = RealPC; |
| 71 | |
| 72 | for (;;) { |
| 73 | auto Op = PC.read<Opcode>(); |
| 74 | if (Op == OP_EndSpeculation) |
| 75 | return true; |
| 76 | CodePtr OpPC = PC; |
| 77 | |
| 78 | switch (Op) { |
| 79 | #define GET_INTERP |
| 80 | #include "Opcodes.inc" |
| 81 | #undef GET_INTERP |
| 82 | } |
| 83 | } |
| 84 | llvm_unreachable("We didn't see an EndSpeculation op?" ); |
| 85 | }; |
| 86 | |
| 87 | if (SpeculativeInterp()) { |
| 88 | if (PT == PT_Ptr) { |
| 89 | const auto &Ptr = S.Stk.pop<Pointer>(); |
| 90 | assert(S.Stk.size() == StackSizeBefore); |
| 91 | S.Stk.push<Integral<32, true>>( |
| 92 | Args: Integral<32, true>::from(Value: CheckBCPResult(S, Ptr))); |
| 93 | } else { |
| 94 | // Pop the result from the stack and return success. |
| 95 | TYPE_SWITCH(PT, S.Stk.pop<T>();); |
| 96 | assert(S.Stk.size() == StackSizeBefore); |
| 97 | S.Stk.push<Integral<32, true>>(Args: Integral<32, true>::from(Value: 1)); |
| 98 | } |
| 99 | } else { |
| 100 | if (!S.inConstantContext()) |
| 101 | return Invalid(S, OpPC: RealPC); |
| 102 | |
| 103 | S.Stk.clearTo(NewSize: StackSizeBefore); |
| 104 | S.Stk.push<Integral<32, true>>(Args: Integral<32, true>::from(Value: 0)); |
| 105 | } |
| 106 | |
| 107 | // RealPC should not have been modified. |
| 108 | assert(*RealPC == *PCBefore); |
| 109 | |
| 110 | // Jump to end label. This is a little tricker than just RealPC += Offset |
| 111 | // because our usual jump instructions don't have any arguments, to the offset |
| 112 | // we get is a little too much and we need to subtract the size of the |
| 113 | // bool and PrimType arguments again. |
| 114 | int32_t ParamSize = align(Size: sizeof(PrimType)); |
| 115 | assert(Offset >= ParamSize); |
| 116 | RealPC += Offset - ParamSize; |
| 117 | |
| 118 | [[maybe_unused]] CodePtr PCCopy = RealPC; |
| 119 | assert(PCCopy.read<Opcode>() == OP_EndSpeculation); |
| 120 | |
| 121 | return true; |
| 122 | } |
| 123 | // https://github.com/llvm/llvm-project/issues/102513 |
| 124 | #if defined(_MSC_VER) && !defined(__clang__) && !defined(NDEBUG) |
| 125 | #pragma optimize("", on) |
| 126 | #endif |
| 127 | |
| 128 | static void diagnoseMissingInitializer(InterpState &S, CodePtr OpPC, |
| 129 | const ValueDecl *VD) { |
| 130 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 131 | S.FFDiag(SI: E, DiagId: diag::note_constexpr_var_init_unknown, ExtraNotes: 1) << VD; |
| 132 | S.Note(Loc: VD->getLocation(), DiagId: diag::note_declared_at) << VD->getSourceRange(); |
| 133 | } |
| 134 | |
| 135 | static void diagnoseNonConstVariable(InterpState &S, CodePtr OpPC, |
| 136 | const ValueDecl *VD); |
| 137 | static bool diagnoseUnknownDecl(InterpState &S, CodePtr OpPC, |
| 138 | const ValueDecl *D) { |
| 139 | // This function tries pretty hard to produce a good diagnostic. Just skip |
| 140 | // tha if nobody will see it anyway. |
| 141 | if (!S.diagnosing()) |
| 142 | return false; |
| 143 | |
| 144 | if (isa<ParmVarDecl>(Val: D)) { |
| 145 | if (D->getType()->isReferenceType()) |
| 146 | return false; |
| 147 | |
| 148 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 149 | if (S.getLangOpts().CPlusPlus11) { |
| 150 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_function_param_value_unknown) << D; |
| 151 | S.Note(Loc: D->getLocation(), DiagId: diag::note_declared_at) << D->getSourceRange(); |
| 152 | } else { |
| 153 | S.FFDiag(SI: Loc); |
| 154 | } |
| 155 | return false; |
| 156 | } |
| 157 | |
| 158 | if (!D->getType().isConstQualified()) { |
| 159 | diagnoseNonConstVariable(S, OpPC, VD: D); |
| 160 | } else if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
| 161 | if (!VD->getAnyInitializer()) { |
| 162 | diagnoseMissingInitializer(S, OpPC, VD); |
| 163 | } else { |
| 164 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 165 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_var_init_non_constant, ExtraNotes: 1) << VD; |
| 166 | S.Note(Loc: VD->getLocation(), DiagId: diag::note_declared_at); |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | return false; |
| 171 | } |
| 172 | |
| 173 | static void diagnoseNonConstVariable(InterpState &S, CodePtr OpPC, |
| 174 | const ValueDecl *VD) { |
| 175 | if (!S.diagnosing()) |
| 176 | return; |
| 177 | |
| 178 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 179 | if (!S.getLangOpts().CPlusPlus) { |
| 180 | S.FFDiag(SI: Loc); |
| 181 | return; |
| 182 | } |
| 183 | |
| 184 | if (const auto *VarD = dyn_cast<VarDecl>(Val: VD); |
| 185 | VarD && VarD->getType().isConstQualified() && |
| 186 | !VarD->getAnyInitializer()) { |
| 187 | diagnoseMissingInitializer(S, OpPC, VD); |
| 188 | return; |
| 189 | } |
| 190 | |
| 191 | // Rather random, but this is to match the diagnostic output of the current |
| 192 | // interpreter. |
| 193 | if (isa<ObjCIvarDecl>(Val: VD)) |
| 194 | return; |
| 195 | |
| 196 | if (VD->getType()->isIntegralOrEnumerationType()) { |
| 197 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_ltor_non_const_int, ExtraNotes: 1) << VD; |
| 198 | S.Note(Loc: VD->getLocation(), DiagId: diag::note_declared_at); |
| 199 | return; |
| 200 | } |
| 201 | |
| 202 | S.FFDiag(SI: Loc, |
| 203 | DiagId: S.getLangOpts().CPlusPlus11 ? diag::note_constexpr_ltor_non_constexpr |
| 204 | : diag::note_constexpr_ltor_non_integral, |
| 205 | ExtraNotes: 1) |
| 206 | << VD << VD->getType(); |
| 207 | S.Note(Loc: VD->getLocation(), DiagId: diag::note_declared_at); |
| 208 | } |
| 209 | |
| 210 | static bool CheckTemporary(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 211 | AccessKinds AK) { |
| 212 | if (auto ID = Ptr.getDeclID()) { |
| 213 | if (!Ptr.isStaticTemporary()) |
| 214 | return true; |
| 215 | |
| 216 | const auto *MTE = dyn_cast_if_present<MaterializeTemporaryExpr>( |
| 217 | Val: Ptr.getDeclDesc()->asExpr()); |
| 218 | if (!MTE) |
| 219 | return true; |
| 220 | |
| 221 | // FIXME(perf): Since we do this check on every Load from a static |
| 222 | // temporary, it might make sense to cache the value of the |
| 223 | // isUsableInConstantExpressions call. |
| 224 | if (!MTE->isUsableInConstantExpressions(Context: S.getASTContext()) && |
| 225 | Ptr.block()->getEvalID() != S.Ctx.getEvalID()) { |
| 226 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 227 | S.FFDiag(SI: E, DiagId: diag::note_constexpr_access_static_temporary, ExtraNotes: 1) << AK; |
| 228 | S.Note(Loc: Ptr.getDeclLoc(), DiagId: diag::note_constexpr_temporary_here); |
| 229 | return false; |
| 230 | } |
| 231 | } |
| 232 | return true; |
| 233 | } |
| 234 | |
| 235 | static bool CheckGlobal(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| 236 | if (auto ID = Ptr.getDeclID()) { |
| 237 | if (!Ptr.isStatic()) |
| 238 | return true; |
| 239 | |
| 240 | if (S.P.getCurrentDecl() == ID) |
| 241 | return true; |
| 242 | |
| 243 | S.FFDiag(Loc: S.Current->getLocation(PC: OpPC), DiagId: diag::note_constexpr_modify_global); |
| 244 | return false; |
| 245 | } |
| 246 | return true; |
| 247 | } |
| 248 | |
| 249 | namespace clang { |
| 250 | namespace interp { |
| 251 | static void popArg(InterpState &S, const Expr *Arg) { |
| 252 | PrimType Ty = S.getContext().classify(E: Arg).value_or(u: PT_Ptr); |
| 253 | TYPE_SWITCH(Ty, S.Stk.discard<T>()); |
| 254 | } |
| 255 | |
| 256 | void cleanupAfterFunctionCall(InterpState &S, CodePtr OpPC, |
| 257 | const Function *Func) { |
| 258 | assert(S.Current); |
| 259 | assert(Func); |
| 260 | |
| 261 | if (S.Current->Caller && Func->isVariadic()) { |
| 262 | // CallExpr we're look for is at the return PC of the current function, i.e. |
| 263 | // in the caller. |
| 264 | // This code path should be executed very rarely. |
| 265 | unsigned NumVarArgs; |
| 266 | const Expr *const *Args = nullptr; |
| 267 | unsigned NumArgs = 0; |
| 268 | const Expr *CallSite = S.Current->Caller->getExpr(PC: S.Current->getRetPC()); |
| 269 | if (const auto *CE = dyn_cast<CallExpr>(Val: CallSite)) { |
| 270 | Args = CE->getArgs(); |
| 271 | NumArgs = CE->getNumArgs(); |
| 272 | } else if (const auto *CE = dyn_cast<CXXConstructExpr>(Val: CallSite)) { |
| 273 | Args = CE->getArgs(); |
| 274 | NumArgs = CE->getNumArgs(); |
| 275 | } else |
| 276 | assert(false && "Can't get arguments from that expression type" ); |
| 277 | |
| 278 | assert(NumArgs >= Func->getNumWrittenParams()); |
| 279 | NumVarArgs = NumArgs - (Func->getNumWrittenParams() + |
| 280 | isa<CXXOperatorCallExpr>(Val: CallSite)); |
| 281 | for (unsigned I = 0; I != NumVarArgs; ++I) { |
| 282 | const Expr *A = Args[NumArgs - 1 - I]; |
| 283 | popArg(S, Arg: A); |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | // And in any case, remove the fixed parameters (the non-variadic ones) |
| 288 | // at the end. |
| 289 | for (PrimType Ty : Func->args_reverse()) |
| 290 | TYPE_SWITCH(Ty, S.Stk.discard<T>()); |
| 291 | } |
| 292 | |
| 293 | bool isConstexprUnknown(const Pointer &P) { |
| 294 | if (!P.isBlockPointer()) |
| 295 | return false; |
| 296 | |
| 297 | if (P.isDummy()) |
| 298 | return isa_and_nonnull<ParmVarDecl>(Val: P.getDeclDesc()->asValueDecl()); |
| 299 | |
| 300 | return P.getDeclDesc()->IsConstexprUnknown; |
| 301 | } |
| 302 | |
| 303 | bool CheckBCPResult(InterpState &S, const Pointer &Ptr) { |
| 304 | if (Ptr.isDummy()) |
| 305 | return false; |
| 306 | if (Ptr.isZero()) |
| 307 | return true; |
| 308 | if (Ptr.isFunctionPointer()) |
| 309 | return false; |
| 310 | if (Ptr.isIntegralPointer()) |
| 311 | return true; |
| 312 | if (Ptr.isTypeidPointer()) |
| 313 | return true; |
| 314 | |
| 315 | if (Ptr.getType()->isAnyComplexType()) |
| 316 | return true; |
| 317 | |
| 318 | if (const Expr *Base = Ptr.getDeclDesc()->asExpr()) |
| 319 | return isa<StringLiteral>(Val: Base) && Ptr.getIndex() == 0; |
| 320 | return false; |
| 321 | } |
| 322 | |
| 323 | bool CheckActive(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 324 | AccessKinds AK) { |
| 325 | if (Ptr.isActive()) |
| 326 | return true; |
| 327 | |
| 328 | assert(Ptr.inUnion()); |
| 329 | assert(Ptr.isField() && Ptr.getField()); |
| 330 | |
| 331 | Pointer U = Ptr.getBase(); |
| 332 | Pointer C = Ptr; |
| 333 | while (!U.isRoot() && !U.isActive()) { |
| 334 | // A little arbitrary, but this is what the current interpreter does. |
| 335 | // See the AnonymousUnion test in test/AST/ByteCode/unions.cpp. |
| 336 | // GCC's output is more similar to what we would get without |
| 337 | // this condition. |
| 338 | if (U.getRecord() && U.getRecord()->isAnonymousUnion()) |
| 339 | break; |
| 340 | |
| 341 | C = U; |
| 342 | U = U.getBase(); |
| 343 | } |
| 344 | assert(C.isField()); |
| 345 | |
| 346 | // Consider: |
| 347 | // union U { |
| 348 | // struct { |
| 349 | // int x; |
| 350 | // int y; |
| 351 | // } a; |
| 352 | // } |
| 353 | // |
| 354 | // When activating x, we will also activate a. If we now try to read |
| 355 | // from y, we will get to CheckActive, because y is not active. In that |
| 356 | // case, our U will be a (not a union). We return here and let later code |
| 357 | // handle this. |
| 358 | if (!U.getFieldDesc()->isUnion()) |
| 359 | return true; |
| 360 | |
| 361 | // Get the inactive field descriptor. |
| 362 | assert(!C.isActive()); |
| 363 | const FieldDecl *InactiveField = C.getField(); |
| 364 | assert(InactiveField); |
| 365 | |
| 366 | // Find the active field of the union. |
| 367 | const Record *R = U.getRecord(); |
| 368 | assert(R && R->isUnion() && "Not a union" ); |
| 369 | |
| 370 | const FieldDecl *ActiveField = nullptr; |
| 371 | for (const Record::Field &F : R->fields()) { |
| 372 | const Pointer &Field = U.atField(Off: F.Offset); |
| 373 | if (Field.isActive()) { |
| 374 | ActiveField = Field.getField(); |
| 375 | break; |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 380 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_access_inactive_union_member) |
| 381 | << AK << InactiveField << !ActiveField << ActiveField; |
| 382 | return false; |
| 383 | } |
| 384 | |
| 385 | bool CheckExtern(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| 386 | if (!Ptr.isExtern()) |
| 387 | return true; |
| 388 | |
| 389 | if (Ptr.isInitialized() || |
| 390 | (Ptr.getDeclDesc()->asVarDecl() == S.EvaluatingDecl)) |
| 391 | return true; |
| 392 | |
| 393 | if (S.checkingPotentialConstantExpression() && S.getLangOpts().CPlusPlus && |
| 394 | Ptr.isConst()) |
| 395 | return false; |
| 396 | |
| 397 | const auto *VD = Ptr.getDeclDesc()->asValueDecl(); |
| 398 | diagnoseNonConstVariable(S, OpPC, VD); |
| 399 | return false; |
| 400 | } |
| 401 | |
| 402 | bool CheckArray(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| 403 | if (!Ptr.isUnknownSizeArray()) |
| 404 | return true; |
| 405 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 406 | S.FFDiag(SI: E, DiagId: diag::note_constexpr_unsized_array_indexed); |
| 407 | return false; |
| 408 | } |
| 409 | |
| 410 | bool CheckLive(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 411 | AccessKinds AK) { |
| 412 | if (Ptr.isZero()) { |
| 413 | const auto &Src = S.Current->getSource(PC: OpPC); |
| 414 | |
| 415 | if (Ptr.isField()) |
| 416 | S.FFDiag(SI: Src, DiagId: diag::note_constexpr_null_subobject) << CSK_Field; |
| 417 | else |
| 418 | S.FFDiag(SI: Src, DiagId: diag::note_constexpr_access_null) << AK; |
| 419 | |
| 420 | return false; |
| 421 | } |
| 422 | |
| 423 | if (!Ptr.isLive()) { |
| 424 | const auto &Src = S.Current->getSource(PC: OpPC); |
| 425 | |
| 426 | if (Ptr.isDynamic()) { |
| 427 | S.FFDiag(SI: Src, DiagId: diag::note_constexpr_access_deleted_object) << AK; |
| 428 | } else if (!S.checkingPotentialConstantExpression()) { |
| 429 | bool IsTemp = Ptr.isTemporary(); |
| 430 | S.FFDiag(SI: Src, DiagId: diag::note_constexpr_lifetime_ended, ExtraNotes: 1) << AK << !IsTemp; |
| 431 | |
| 432 | if (IsTemp) |
| 433 | S.Note(Loc: Ptr.getDeclLoc(), DiagId: diag::note_constexpr_temporary_here); |
| 434 | else |
| 435 | S.Note(Loc: Ptr.getDeclLoc(), DiagId: diag::note_declared_at); |
| 436 | } |
| 437 | |
| 438 | return false; |
| 439 | } |
| 440 | |
| 441 | return true; |
| 442 | } |
| 443 | |
| 444 | bool CheckConstant(InterpState &S, CodePtr OpPC, const Descriptor *Desc) { |
| 445 | assert(Desc); |
| 446 | |
| 447 | const auto *D = Desc->asVarDecl(); |
| 448 | if (!D || !D->hasGlobalStorage()) |
| 449 | return true; |
| 450 | |
| 451 | if (D == S.EvaluatingDecl) |
| 452 | return true; |
| 453 | |
| 454 | if (D->isConstexpr()) |
| 455 | return true; |
| 456 | |
| 457 | // If we're evaluating the initializer for a constexpr variable in C23, we may |
| 458 | // only read other contexpr variables. Abort here since this one isn't |
| 459 | // constexpr. |
| 460 | if (const auto *VD = dyn_cast_if_present<VarDecl>(Val: S.EvaluatingDecl); |
| 461 | VD && VD->isConstexpr() && S.getLangOpts().C23) |
| 462 | return Invalid(S, OpPC); |
| 463 | |
| 464 | QualType T = D->getType(); |
| 465 | bool IsConstant = T.isConstant(Ctx: S.getASTContext()); |
| 466 | if (T->isIntegralOrEnumerationType()) { |
| 467 | if (!IsConstant) { |
| 468 | diagnoseNonConstVariable(S, OpPC, VD: D); |
| 469 | return false; |
| 470 | } |
| 471 | return true; |
| 472 | } |
| 473 | |
| 474 | if (IsConstant) { |
| 475 | if (S.getLangOpts().CPlusPlus) { |
| 476 | S.CCEDiag(Loc: S.Current->getLocation(PC: OpPC), |
| 477 | DiagId: S.getLangOpts().CPlusPlus11 |
| 478 | ? diag::note_constexpr_ltor_non_constexpr |
| 479 | : diag::note_constexpr_ltor_non_integral, |
| 480 | ExtraNotes: 1) |
| 481 | << D << T; |
| 482 | S.Note(Loc: D->getLocation(), DiagId: diag::note_declared_at); |
| 483 | } else { |
| 484 | S.CCEDiag(Loc: S.Current->getLocation(PC: OpPC)); |
| 485 | } |
| 486 | return true; |
| 487 | } |
| 488 | |
| 489 | if (T->isPointerOrReferenceType()) { |
| 490 | if (!T->getPointeeType().isConstant(Ctx: S.getASTContext()) || |
| 491 | !S.getLangOpts().CPlusPlus11) { |
| 492 | diagnoseNonConstVariable(S, OpPC, VD: D); |
| 493 | return false; |
| 494 | } |
| 495 | return true; |
| 496 | } |
| 497 | |
| 498 | diagnoseNonConstVariable(S, OpPC, VD: D); |
| 499 | return false; |
| 500 | } |
| 501 | |
| 502 | static bool CheckConstant(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| 503 | if (!Ptr.isStatic() || !Ptr.isBlockPointer()) |
| 504 | return true; |
| 505 | if (!Ptr.getDeclID()) |
| 506 | return true; |
| 507 | return CheckConstant(S, OpPC, Desc: Ptr.getDeclDesc()); |
| 508 | } |
| 509 | |
| 510 | bool CheckNull(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 511 | CheckSubobjectKind CSK) { |
| 512 | if (!Ptr.isZero()) |
| 513 | return true; |
| 514 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 515 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_null_subobject) |
| 516 | << CSK << S.Current->getRange(PC: OpPC); |
| 517 | |
| 518 | return false; |
| 519 | } |
| 520 | |
| 521 | bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 522 | AccessKinds AK) { |
| 523 | if (!Ptr.isOnePastEnd()) |
| 524 | return true; |
| 525 | if (S.getLangOpts().CPlusPlus) { |
| 526 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 527 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_access_past_end) |
| 528 | << AK << S.Current->getRange(PC: OpPC); |
| 529 | } |
| 530 | return false; |
| 531 | } |
| 532 | |
| 533 | bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 534 | CheckSubobjectKind CSK) { |
| 535 | if (!Ptr.isElementPastEnd()) |
| 536 | return true; |
| 537 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 538 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_past_end_subobject) |
| 539 | << CSK << S.Current->getRange(PC: OpPC); |
| 540 | return false; |
| 541 | } |
| 542 | |
| 543 | bool CheckSubobject(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 544 | CheckSubobjectKind CSK) { |
| 545 | if (!Ptr.isOnePastEnd()) |
| 546 | return true; |
| 547 | |
| 548 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 549 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_past_end_subobject) |
| 550 | << CSK << S.Current->getRange(PC: OpPC); |
| 551 | return false; |
| 552 | } |
| 553 | |
| 554 | bool CheckDowncast(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 555 | uint32_t Offset) { |
| 556 | uint32_t MinOffset = Ptr.getDeclDesc()->getMetadataSize(); |
| 557 | uint32_t PtrOffset = Ptr.getByteOffset(); |
| 558 | |
| 559 | // We subtract Offset from PtrOffset. The result must be at least |
| 560 | // MinOffset. |
| 561 | if (Offset < PtrOffset && (PtrOffset - Offset) >= MinOffset) |
| 562 | return true; |
| 563 | |
| 564 | const auto *E = cast<CastExpr>(Val: S.Current->getExpr(PC: OpPC)); |
| 565 | QualType TargetQT = E->getType()->getPointeeType(); |
| 566 | QualType MostDerivedQT = Ptr.getDeclPtr().getType(); |
| 567 | |
| 568 | S.CCEDiag(E, DiagId: diag::note_constexpr_invalid_downcast) |
| 569 | << MostDerivedQT << TargetQT; |
| 570 | |
| 571 | return false; |
| 572 | } |
| 573 | |
| 574 | bool CheckConst(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| 575 | assert(Ptr.isLive() && "Pointer is not live" ); |
| 576 | if (!Ptr.isConst() || Ptr.isMutable()) |
| 577 | return true; |
| 578 | |
| 579 | // The This pointer is writable in constructors and destructors, |
| 580 | // even if isConst() returns true. |
| 581 | // TODO(perf): We could be hitting this code path quite a lot in complex |
| 582 | // constructors. Is there a better way to do this? |
| 583 | if (S.Current->getFunction()) { |
| 584 | for (const InterpFrame *Frame = S.Current; Frame; Frame = Frame->Caller) { |
| 585 | if (const Function *Func = Frame->getFunction(); |
| 586 | Func && (Func->isConstructor() || Func->isDestructor()) && |
| 587 | Ptr.block() == Frame->getThis().block()) { |
| 588 | return true; |
| 589 | } |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | if (!Ptr.isBlockPointer()) |
| 594 | return false; |
| 595 | |
| 596 | const QualType Ty = Ptr.getType(); |
| 597 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 598 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_modify_const_type) << Ty; |
| 599 | return false; |
| 600 | } |
| 601 | |
| 602 | bool CheckMutable(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| 603 | assert(Ptr.isLive() && "Pointer is not live" ); |
| 604 | if (!Ptr.isMutable()) |
| 605 | return true; |
| 606 | |
| 607 | // In C++14 onwards, it is permitted to read a mutable member whose |
| 608 | // lifetime began within the evaluation. |
| 609 | if (S.getLangOpts().CPlusPlus14 && |
| 610 | Ptr.block()->getEvalID() == S.Ctx.getEvalID()) { |
| 611 | // FIXME: This check is necessary because (of the way) we revisit |
| 612 | // variables in Compiler.cpp:visitDeclRef. Revisiting a so far |
| 613 | // unknown variable will get the same EvalID and we end up allowing |
| 614 | // reads from mutable members of it. |
| 615 | if (!S.inConstantContext() && isConstexprUnknown(P: Ptr)) |
| 616 | return false; |
| 617 | return true; |
| 618 | } |
| 619 | |
| 620 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 621 | const FieldDecl *Field = Ptr.getField(); |
| 622 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_access_mutable, ExtraNotes: 1) << AK_Read << Field; |
| 623 | S.Note(Loc: Field->getLocation(), DiagId: diag::note_declared_at); |
| 624 | return false; |
| 625 | } |
| 626 | |
| 627 | static bool CheckVolatile(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 628 | AccessKinds AK) { |
| 629 | assert(Ptr.isLive()); |
| 630 | |
| 631 | if (!Ptr.isVolatile()) |
| 632 | return true; |
| 633 | |
| 634 | if (!S.getLangOpts().CPlusPlus) |
| 635 | return Invalid(S, OpPC); |
| 636 | |
| 637 | // The reason why Ptr is volatile might be further up the hierarchy. |
| 638 | // Find that pointer. |
| 639 | Pointer P = Ptr; |
| 640 | while (!P.isRoot()) { |
| 641 | if (P.getType().isVolatileQualified()) |
| 642 | break; |
| 643 | P = P.getBase(); |
| 644 | } |
| 645 | |
| 646 | const NamedDecl *ND = nullptr; |
| 647 | int DiagKind; |
| 648 | SourceLocation Loc; |
| 649 | if (const auto *F = P.getField()) { |
| 650 | DiagKind = 2; |
| 651 | Loc = F->getLocation(); |
| 652 | ND = F; |
| 653 | } else if (auto *VD = P.getFieldDesc()->asValueDecl()) { |
| 654 | DiagKind = 1; |
| 655 | Loc = VD->getLocation(); |
| 656 | ND = VD; |
| 657 | } else { |
| 658 | DiagKind = 0; |
| 659 | if (const auto *E = P.getFieldDesc()->asExpr()) |
| 660 | Loc = E->getExprLoc(); |
| 661 | } |
| 662 | |
| 663 | S.FFDiag(Loc: S.Current->getLocation(PC: OpPC), |
| 664 | DiagId: diag::note_constexpr_access_volatile_obj, ExtraNotes: 1) |
| 665 | << AK << DiagKind << ND; |
| 666 | S.Note(Loc, DiagId: diag::note_constexpr_volatile_here) << DiagKind; |
| 667 | return false; |
| 668 | } |
| 669 | |
| 670 | bool CheckInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 671 | AccessKinds AK) { |
| 672 | assert(Ptr.isLive()); |
| 673 | |
| 674 | if (Ptr.isInitialized()) |
| 675 | return true; |
| 676 | |
| 677 | if (const auto *VD = Ptr.getDeclDesc()->asVarDecl(); |
| 678 | VD && (VD->isConstexpr() || VD->hasGlobalStorage())) { |
| 679 | |
| 680 | if (VD == S.EvaluatingDecl && |
| 681 | !(S.getLangOpts().CPlusPlus23 && VD->getType()->isReferenceType())) { |
| 682 | if (!S.getLangOpts().CPlusPlus14 && |
| 683 | !VD->getType().isConstant(Ctx: S.getASTContext())) { |
| 684 | // Diagnose as non-const read. |
| 685 | diagnoseNonConstVariable(S, OpPC, VD); |
| 686 | } else { |
| 687 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 688 | // Diagnose as "read of object outside its lifetime". |
| 689 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_access_uninit) |
| 690 | << AK << /*IsIndeterminate=*/false; |
| 691 | } |
| 692 | return false; |
| 693 | } |
| 694 | |
| 695 | if (VD->getAnyInitializer()) { |
| 696 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 697 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_var_init_non_constant, ExtraNotes: 1) << VD; |
| 698 | S.Note(Loc: VD->getLocation(), DiagId: diag::note_declared_at); |
| 699 | } else { |
| 700 | diagnoseMissingInitializer(S, OpPC, VD); |
| 701 | } |
| 702 | return false; |
| 703 | } |
| 704 | |
| 705 | if (!S.checkingPotentialConstantExpression()) { |
| 706 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_access_uninit) |
| 707 | << AK << /*uninitialized=*/true << S.Current->getRange(PC: OpPC); |
| 708 | } |
| 709 | return false; |
| 710 | } |
| 711 | |
| 712 | static bool CheckLifetime(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 713 | AccessKinds AK) { |
| 714 | if (Ptr.getLifetime() == Lifetime::Started) |
| 715 | return true; |
| 716 | |
| 717 | if (!S.checkingPotentialConstantExpression()) { |
| 718 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_access_uninit) |
| 719 | << AK << /*uninitialized=*/false << S.Current->getRange(PC: OpPC); |
| 720 | } |
| 721 | return false; |
| 722 | } |
| 723 | |
| 724 | bool CheckGlobalInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| 725 | if (Ptr.isInitialized()) |
| 726 | return true; |
| 727 | |
| 728 | assert(S.getLangOpts().CPlusPlus); |
| 729 | const auto *VD = cast<VarDecl>(Val: Ptr.getDeclDesc()->asValueDecl()); |
| 730 | if ((!VD->hasConstantInitialization() && |
| 731 | VD->mightBeUsableInConstantExpressions(C: S.getASTContext())) || |
| 732 | (S.getLangOpts().OpenCL && !S.getLangOpts().CPlusPlus11 && |
| 733 | !VD->hasICEInitializer(Context: S.getASTContext()))) { |
| 734 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 735 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_var_init_non_constant, ExtraNotes: 1) << VD; |
| 736 | S.Note(Loc: VD->getLocation(), DiagId: diag::note_declared_at); |
| 737 | } |
| 738 | return false; |
| 739 | } |
| 740 | |
| 741 | static bool CheckWeak(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| 742 | if (!Ptr.isWeak()) |
| 743 | return true; |
| 744 | |
| 745 | const auto *VD = Ptr.getDeclDesc()->asVarDecl(); |
| 746 | assert(VD); |
| 747 | S.FFDiag(Loc: S.Current->getLocation(PC: OpPC), DiagId: diag::note_constexpr_var_init_weak) |
| 748 | << VD; |
| 749 | S.Note(Loc: VD->getLocation(), DiagId: diag::note_declared_at); |
| 750 | |
| 751 | return false; |
| 752 | } |
| 753 | |
| 754 | bool CheckLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 755 | AccessKinds AK) { |
| 756 | if (!CheckLive(S, OpPC, Ptr, AK)) |
| 757 | return false; |
| 758 | if (!CheckExtern(S, OpPC, Ptr)) |
| 759 | return false; |
| 760 | if (!CheckConstant(S, OpPC, Ptr)) |
| 761 | return false; |
| 762 | if (!CheckDummy(S, OpPC, Ptr, AK)) |
| 763 | return false; |
| 764 | if (!CheckRange(S, OpPC, Ptr, AK)) |
| 765 | return false; |
| 766 | if (!CheckActive(S, OpPC, Ptr, AK)) |
| 767 | return false; |
| 768 | if (!CheckLifetime(S, OpPC, Ptr, AK)) |
| 769 | return false; |
| 770 | if (!CheckInitialized(S, OpPC, Ptr, AK)) |
| 771 | return false; |
| 772 | if (!CheckTemporary(S, OpPC, Ptr, AK)) |
| 773 | return false; |
| 774 | if (!CheckWeak(S, OpPC, Ptr)) |
| 775 | return false; |
| 776 | if (!CheckMutable(S, OpPC, Ptr)) |
| 777 | return false; |
| 778 | if (!CheckVolatile(S, OpPC, Ptr, AK)) |
| 779 | return false; |
| 780 | return true; |
| 781 | } |
| 782 | |
| 783 | /// This is not used by any of the opcodes directly. It's used by |
| 784 | /// EvalEmitter to do the final lvalue-to-rvalue conversion. |
| 785 | bool CheckFinalLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| 786 | if (!CheckLive(S, OpPC, Ptr, AK: AK_Read)) |
| 787 | return false; |
| 788 | if (!CheckConstant(S, OpPC, Ptr)) |
| 789 | return false; |
| 790 | |
| 791 | if (!CheckDummy(S, OpPC, Ptr, AK: AK_Read)) |
| 792 | return false; |
| 793 | if (!CheckExtern(S, OpPC, Ptr)) |
| 794 | return false; |
| 795 | if (!CheckRange(S, OpPC, Ptr, AK: AK_Read)) |
| 796 | return false; |
| 797 | if (!CheckActive(S, OpPC, Ptr, AK: AK_Read)) |
| 798 | return false; |
| 799 | if (!CheckLifetime(S, OpPC, Ptr, AK: AK_Read)) |
| 800 | return false; |
| 801 | if (!CheckInitialized(S, OpPC, Ptr, AK: AK_Read)) |
| 802 | return false; |
| 803 | if (!CheckTemporary(S, OpPC, Ptr, AK: AK_Read)) |
| 804 | return false; |
| 805 | if (!CheckWeak(S, OpPC, Ptr)) |
| 806 | return false; |
| 807 | if (!CheckMutable(S, OpPC, Ptr)) |
| 808 | return false; |
| 809 | return true; |
| 810 | } |
| 811 | |
| 812 | bool CheckStore(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| 813 | if (!CheckLive(S, OpPC, Ptr, AK: AK_Assign)) |
| 814 | return false; |
| 815 | if (!CheckDummy(S, OpPC, Ptr, AK: AK_Assign)) |
| 816 | return false; |
| 817 | if (!CheckLifetime(S, OpPC, Ptr, AK: AK_Assign)) |
| 818 | return false; |
| 819 | if (!CheckExtern(S, OpPC, Ptr)) |
| 820 | return false; |
| 821 | if (!CheckRange(S, OpPC, Ptr, AK: AK_Assign)) |
| 822 | return false; |
| 823 | if (!CheckGlobal(S, OpPC, Ptr)) |
| 824 | return false; |
| 825 | if (!CheckConst(S, OpPC, Ptr)) |
| 826 | return false; |
| 827 | if (!S.inConstantContext() && isConstexprUnknown(P: Ptr)) |
| 828 | return false; |
| 829 | return true; |
| 830 | } |
| 831 | |
| 832 | bool CheckInvoke(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| 833 | if (!CheckLive(S, OpPC, Ptr, AK: AK_MemberCall)) |
| 834 | return false; |
| 835 | if (!Ptr.isDummy()) { |
| 836 | if (!CheckExtern(S, OpPC, Ptr)) |
| 837 | return false; |
| 838 | if (!CheckRange(S, OpPC, Ptr, AK: AK_MemberCall)) |
| 839 | return false; |
| 840 | } |
| 841 | return true; |
| 842 | } |
| 843 | |
| 844 | bool CheckInit(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| 845 | if (!CheckLive(S, OpPC, Ptr, AK: AK_Assign)) |
| 846 | return false; |
| 847 | if (!CheckRange(S, OpPC, Ptr, AK: AK_Assign)) |
| 848 | return false; |
| 849 | return true; |
| 850 | } |
| 851 | |
| 852 | bool CheckCallable(InterpState &S, CodePtr OpPC, const Function *F) { |
| 853 | |
| 854 | if (F->isVirtual() && !S.getLangOpts().CPlusPlus20) { |
| 855 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
| 856 | S.CCEDiag(Loc, DiagId: diag::note_constexpr_virtual_call); |
| 857 | return false; |
| 858 | } |
| 859 | |
| 860 | if (S.checkingPotentialConstantExpression() && S.Current->getDepth() != 0) |
| 861 | return false; |
| 862 | |
| 863 | if (F->isValid() && F->hasBody() && F->isConstexpr()) |
| 864 | return true; |
| 865 | |
| 866 | // Implicitly constexpr. |
| 867 | if (F->isLambdaStaticInvoker()) |
| 868 | return true; |
| 869 | |
| 870 | // Bail out if the function declaration itself is invalid. We will |
| 871 | // have produced a relevant diagnostic while parsing it, so just |
| 872 | // note the problematic sub-expression. |
| 873 | if (F->getDecl()->isInvalidDecl()) |
| 874 | return Invalid(S, OpPC); |
| 875 | |
| 876 | // Diagnose failed assertions specially. |
| 877 | if (S.Current->getLocation(PC: OpPC).isMacroID() && |
| 878 | F->getDecl()->getIdentifier()) { |
| 879 | // FIXME: Instead of checking for an implementation-defined function, |
| 880 | // check and evaluate the assert() macro. |
| 881 | StringRef Name = F->getDecl()->getName(); |
| 882 | bool AssertFailed = |
| 883 | Name == "__assert_rtn" || Name == "__assert_fail" || Name == "_wassert" ; |
| 884 | if (AssertFailed) { |
| 885 | S.FFDiag(Loc: S.Current->getLocation(PC: OpPC), |
| 886 | DiagId: diag::note_constexpr_assert_failed); |
| 887 | return false; |
| 888 | } |
| 889 | } |
| 890 | |
| 891 | if (S.getLangOpts().CPlusPlus11) { |
| 892 | const FunctionDecl *DiagDecl = F->getDecl(); |
| 893 | |
| 894 | // Invalid decls have been diagnosed before. |
| 895 | if (DiagDecl->isInvalidDecl()) |
| 896 | return false; |
| 897 | |
| 898 | // If this function is not constexpr because it is an inherited |
| 899 | // non-constexpr constructor, diagnose that directly. |
| 900 | const auto *CD = dyn_cast<CXXConstructorDecl>(Val: DiagDecl); |
| 901 | if (CD && CD->isInheritingConstructor()) { |
| 902 | const auto *Inherited = CD->getInheritedConstructor().getConstructor(); |
| 903 | if (!Inherited->isConstexpr()) |
| 904 | DiagDecl = CD = Inherited; |
| 905 | } |
| 906 | |
| 907 | // Silently reject constructors of invalid classes. The invalid class |
| 908 | // has been rejected elsewhere before. |
| 909 | if (CD && CD->getParent()->isInvalidDecl()) |
| 910 | return false; |
| 911 | |
| 912 | // FIXME: If DiagDecl is an implicitly-declared special member function |
| 913 | // or an inheriting constructor, we should be much more explicit about why |
| 914 | // it's not constexpr. |
| 915 | if (CD && CD->isInheritingConstructor()) { |
| 916 | S.FFDiag(Loc: S.Current->getLocation(PC: OpPC), |
| 917 | DiagId: diag::note_constexpr_invalid_inhctor, ExtraNotes: 1) |
| 918 | << CD->getInheritedConstructor().getConstructor()->getParent(); |
| 919 | S.Note(Loc: DiagDecl->getLocation(), DiagId: diag::note_declared_at); |
| 920 | } else { |
| 921 | // Don't emit anything if the function isn't defined and we're checking |
| 922 | // for a constant expression. It might be defined at the point we're |
| 923 | // actually calling it. |
| 924 | bool IsExtern = DiagDecl->getStorageClass() == SC_Extern; |
| 925 | bool IsDefined = F->isDefined(); |
| 926 | if (!IsDefined && !IsExtern && DiagDecl->isConstexpr() && |
| 927 | S.checkingPotentialConstantExpression()) |
| 928 | return false; |
| 929 | |
| 930 | // If the declaration is defined, declared 'constexpr' _and_ has a body, |
| 931 | // the below diagnostic doesn't add anything useful. |
| 932 | if (DiagDecl->isDefined() && DiagDecl->isConstexpr() && |
| 933 | DiagDecl->hasBody()) |
| 934 | return false; |
| 935 | |
| 936 | S.FFDiag(Loc: S.Current->getLocation(PC: OpPC), |
| 937 | DiagId: diag::note_constexpr_invalid_function, ExtraNotes: 1) |
| 938 | << DiagDecl->isConstexpr() << (bool)CD << DiagDecl; |
| 939 | |
| 940 | if (DiagDecl->getDefinition()) |
| 941 | S.Note(Loc: DiagDecl->getDefinition()->getLocation(), |
| 942 | DiagId: diag::note_declared_at); |
| 943 | else |
| 944 | S.Note(Loc: DiagDecl->getLocation(), DiagId: diag::note_declared_at); |
| 945 | } |
| 946 | } else { |
| 947 | S.FFDiag(Loc: S.Current->getLocation(PC: OpPC), |
| 948 | DiagId: diag::note_invalid_subexpr_in_const_expr); |
| 949 | } |
| 950 | |
| 951 | return false; |
| 952 | } |
| 953 | |
| 954 | bool CheckCallDepth(InterpState &S, CodePtr OpPC) { |
| 955 | if ((S.Current->getDepth() + 1) > S.getLangOpts().ConstexprCallDepth) { |
| 956 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 957 | DiagId: diag::note_constexpr_depth_limit_exceeded) |
| 958 | << S.getLangOpts().ConstexprCallDepth; |
| 959 | return false; |
| 960 | } |
| 961 | |
| 962 | return true; |
| 963 | } |
| 964 | |
| 965 | bool CheckThis(InterpState &S, CodePtr OpPC, const Pointer &This) { |
| 966 | if (!This.isZero()) |
| 967 | return true; |
| 968 | |
| 969 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 970 | if (S.getLangOpts().CPlusPlus11) { |
| 971 | bool IsImplicit = false; |
| 972 | if (const auto *TE = dyn_cast<CXXThisExpr>(Val: E)) |
| 973 | IsImplicit = TE->isImplicit(); |
| 974 | S.FFDiag(E, DiagId: diag::note_constexpr_this) << IsImplicit; |
| 975 | } else { |
| 976 | S.FFDiag(E); |
| 977 | } |
| 978 | |
| 979 | return false; |
| 980 | } |
| 981 | |
| 982 | bool CheckFloatResult(InterpState &S, CodePtr OpPC, const Floating &Result, |
| 983 | APFloat::opStatus Status, FPOptions FPO) { |
| 984 | // [expr.pre]p4: |
| 985 | // If during the evaluation of an expression, the result is not |
| 986 | // mathematically defined [...], the behavior is undefined. |
| 987 | // FIXME: C++ rules require us to not conform to IEEE 754 here. |
| 988 | if (Result.isNan()) { |
| 989 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 990 | S.CCEDiag(SI: E, DiagId: diag::note_constexpr_float_arithmetic) |
| 991 | << /*NaN=*/true << S.Current->getRange(PC: OpPC); |
| 992 | return S.noteUndefinedBehavior(); |
| 993 | } |
| 994 | |
| 995 | // In a constant context, assume that any dynamic rounding mode or FP |
| 996 | // exception state matches the default floating-point environment. |
| 997 | if (S.inConstantContext()) |
| 998 | return true; |
| 999 | |
| 1000 | if ((Status & APFloat::opInexact) && |
| 1001 | FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) { |
| 1002 | // Inexact result means that it depends on rounding mode. If the requested |
| 1003 | // mode is dynamic, the evaluation cannot be made in compile time. |
| 1004 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 1005 | S.FFDiag(SI: E, DiagId: diag::note_constexpr_dynamic_rounding); |
| 1006 | return false; |
| 1007 | } |
| 1008 | |
| 1009 | if ((Status != APFloat::opOK) && |
| 1010 | (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic || |
| 1011 | FPO.getExceptionMode() != LangOptions::FPE_Ignore || |
| 1012 | FPO.getAllowFEnvAccess())) { |
| 1013 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 1014 | S.FFDiag(SI: E, DiagId: diag::note_constexpr_float_arithmetic_strict); |
| 1015 | return false; |
| 1016 | } |
| 1017 | |
| 1018 | if ((Status & APFloat::opStatus::opInvalidOp) && |
| 1019 | FPO.getExceptionMode() != LangOptions::FPE_Ignore) { |
| 1020 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 1021 | // There is no usefully definable result. |
| 1022 | S.FFDiag(SI: E); |
| 1023 | return false; |
| 1024 | } |
| 1025 | |
| 1026 | return true; |
| 1027 | } |
| 1028 | |
| 1029 | bool CheckDynamicMemoryAllocation(InterpState &S, CodePtr OpPC) { |
| 1030 | if (S.getLangOpts().CPlusPlus20) |
| 1031 | return true; |
| 1032 | |
| 1033 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 1034 | S.CCEDiag(SI: E, DiagId: diag::note_constexpr_new); |
| 1035 | return true; |
| 1036 | } |
| 1037 | |
| 1038 | bool CheckNewDeleteForms(InterpState &S, CodePtr OpPC, |
| 1039 | DynamicAllocator::Form AllocForm, |
| 1040 | DynamicAllocator::Form DeleteForm, const Descriptor *D, |
| 1041 | const Expr *NewExpr) { |
| 1042 | if (AllocForm == DeleteForm) |
| 1043 | return true; |
| 1044 | |
| 1045 | QualType TypeToDiagnose = D->getDataType(Ctx: S.getASTContext()); |
| 1046 | |
| 1047 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 1048 | S.FFDiag(SI: E, DiagId: diag::note_constexpr_new_delete_mismatch) |
| 1049 | << static_cast<int>(DeleteForm) << static_cast<int>(AllocForm) |
| 1050 | << TypeToDiagnose; |
| 1051 | S.Note(Loc: NewExpr->getExprLoc(), DiagId: diag::note_constexpr_dynamic_alloc_here) |
| 1052 | << NewExpr->getSourceRange(); |
| 1053 | return false; |
| 1054 | } |
| 1055 | |
| 1056 | bool CheckDeleteSource(InterpState &S, CodePtr OpPC, const Expr *Source, |
| 1057 | const Pointer &Ptr) { |
| 1058 | // Regular new type(...) call. |
| 1059 | if (isa_and_nonnull<CXXNewExpr>(Val: Source)) |
| 1060 | return true; |
| 1061 | // operator new. |
| 1062 | if (const auto *CE = dyn_cast_if_present<CallExpr>(Val: Source); |
| 1063 | CE && CE->getBuiltinCallee() == Builtin::BI__builtin_operator_new) |
| 1064 | return true; |
| 1065 | // std::allocator.allocate() call |
| 1066 | if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(Val: Source); |
| 1067 | MCE && MCE->getMethodDecl()->getIdentifier()->isStr(Str: "allocate" )) |
| 1068 | return true; |
| 1069 | |
| 1070 | // Whatever this is, we didn't heap allocate it. |
| 1071 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1072 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_delete_not_heap_alloc) |
| 1073 | << Ptr.toDiagnosticString(Ctx: S.getASTContext()); |
| 1074 | |
| 1075 | if (Ptr.isTemporary()) |
| 1076 | S.Note(Loc: Ptr.getDeclLoc(), DiagId: diag::note_constexpr_temporary_here); |
| 1077 | else |
| 1078 | S.Note(Loc: Ptr.getDeclLoc(), DiagId: diag::note_declared_at); |
| 1079 | return false; |
| 1080 | } |
| 1081 | |
| 1082 | /// We aleady know the given DeclRefExpr is invalid for some reason, |
| 1083 | /// now figure out why and print appropriate diagnostics. |
| 1084 | bool CheckDeclRef(InterpState &S, CodePtr OpPC, const DeclRefExpr *DR) { |
| 1085 | const ValueDecl *D = DR->getDecl(); |
| 1086 | return diagnoseUnknownDecl(S, OpPC, D); |
| 1087 | } |
| 1088 | |
| 1089 | bool CheckDummy(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 1090 | AccessKinds AK) { |
| 1091 | if (!Ptr.isDummy()) |
| 1092 | return true; |
| 1093 | |
| 1094 | const Descriptor *Desc = Ptr.getDeclDesc(); |
| 1095 | const ValueDecl *D = Desc->asValueDecl(); |
| 1096 | if (!D) |
| 1097 | return false; |
| 1098 | |
| 1099 | if (AK == AK_Read || AK == AK_Increment || AK == AK_Decrement) |
| 1100 | return diagnoseUnknownDecl(S, OpPC, D); |
| 1101 | |
| 1102 | if (AK == AK_Destroy || S.getLangOpts().CPlusPlus14) { |
| 1103 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 1104 | S.FFDiag(SI: E, DiagId: diag::note_constexpr_modify_global); |
| 1105 | } |
| 1106 | return false; |
| 1107 | } |
| 1108 | |
| 1109 | bool CheckNonNullArgs(InterpState &S, CodePtr OpPC, const Function *F, |
| 1110 | const CallExpr *CE, unsigned ArgSize) { |
| 1111 | auto Args = ArrayRef(CE->getArgs(), CE->getNumArgs()); |
| 1112 | auto NonNullArgs = collectNonNullArgs(F: F->getDecl(), Args); |
| 1113 | unsigned Offset = 0; |
| 1114 | unsigned Index = 0; |
| 1115 | for (const Expr *Arg : Args) { |
| 1116 | if (NonNullArgs[Index] && Arg->getType()->isPointerType()) { |
| 1117 | const Pointer &ArgPtr = S.Stk.peek<Pointer>(Offset: ArgSize - Offset); |
| 1118 | if (ArgPtr.isZero()) { |
| 1119 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
| 1120 | S.CCEDiag(Loc, DiagId: diag::note_non_null_attribute_failed); |
| 1121 | return false; |
| 1122 | } |
| 1123 | } |
| 1124 | |
| 1125 | Offset += align(Size: primSize(Type: S.Ctx.classify(E: Arg).value_or(u: PT_Ptr))); |
| 1126 | ++Index; |
| 1127 | } |
| 1128 | return true; |
| 1129 | } |
| 1130 | |
| 1131 | static bool runRecordDestructor(InterpState &S, CodePtr OpPC, |
| 1132 | const Pointer &BasePtr, |
| 1133 | const Descriptor *Desc) { |
| 1134 | assert(Desc->isRecord()); |
| 1135 | const Record *R = Desc->ElemRecord; |
| 1136 | assert(R); |
| 1137 | |
| 1138 | if (Pointer::pointToSameBlock(A: BasePtr, B: S.Current->getThis()) && |
| 1139 | S.Current->getFunction()->isDestructor()) { |
| 1140 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1141 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_double_destroy); |
| 1142 | return false; |
| 1143 | } |
| 1144 | |
| 1145 | // Destructor of this record. |
| 1146 | if (const CXXDestructorDecl *Dtor = R->getDestructor(); |
| 1147 | Dtor && !Dtor->isTrivial()) { |
| 1148 | const Function *DtorFunc = S.getContext().getOrCreateFunction(FuncDecl: Dtor); |
| 1149 | if (!DtorFunc) |
| 1150 | return false; |
| 1151 | |
| 1152 | S.Stk.push<Pointer>(Args: BasePtr); |
| 1153 | if (!Call(S, OpPC, Func: DtorFunc, VarArgSize: 0)) |
| 1154 | return false; |
| 1155 | } |
| 1156 | return true; |
| 1157 | } |
| 1158 | |
| 1159 | static bool RunDestructors(InterpState &S, CodePtr OpPC, const Block *B) { |
| 1160 | assert(B); |
| 1161 | const Descriptor *Desc = B->getDescriptor(); |
| 1162 | |
| 1163 | if (Desc->isPrimitive() || Desc->isPrimitiveArray()) |
| 1164 | return true; |
| 1165 | |
| 1166 | assert(Desc->isRecord() || Desc->isCompositeArray()); |
| 1167 | |
| 1168 | if (Desc->isCompositeArray()) { |
| 1169 | unsigned N = Desc->getNumElems(); |
| 1170 | if (N == 0) |
| 1171 | return true; |
| 1172 | const Descriptor *ElemDesc = Desc->ElemDesc; |
| 1173 | assert(ElemDesc->isRecord()); |
| 1174 | |
| 1175 | Pointer RP(const_cast<Block *>(B)); |
| 1176 | for (int I = static_cast<int>(N) - 1; I >= 0; --I) { |
| 1177 | if (!runRecordDestructor(S, OpPC, BasePtr: RP.atIndex(Idx: I).narrow(), Desc: ElemDesc)) |
| 1178 | return false; |
| 1179 | } |
| 1180 | return true; |
| 1181 | } |
| 1182 | |
| 1183 | assert(Desc->isRecord()); |
| 1184 | return runRecordDestructor(S, OpPC, BasePtr: Pointer(const_cast<Block *>(B)), Desc); |
| 1185 | } |
| 1186 | |
| 1187 | static bool hasVirtualDestructor(QualType T) { |
| 1188 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| 1189 | if (const CXXDestructorDecl *DD = RD->getDestructor()) |
| 1190 | return DD->isVirtual(); |
| 1191 | return false; |
| 1192 | } |
| 1193 | |
| 1194 | bool Free(InterpState &S, CodePtr OpPC, bool DeleteIsArrayForm, |
| 1195 | bool IsGlobalDelete) { |
| 1196 | if (!CheckDynamicMemoryAllocation(S, OpPC)) |
| 1197 | return false; |
| 1198 | |
| 1199 | const Expr *Source = nullptr; |
| 1200 | const Block *BlockToDelete = nullptr; |
| 1201 | { |
| 1202 | // Extra scope for this so the block doesn't have this pointer |
| 1203 | // pointing to it when we destroy it. |
| 1204 | Pointer Ptr = S.Stk.pop<Pointer>(); |
| 1205 | |
| 1206 | // Deleteing nullptr is always fine. |
| 1207 | if (Ptr.isZero()) |
| 1208 | return true; |
| 1209 | |
| 1210 | // Remove base casts. |
| 1211 | QualType InitialType = Ptr.getType(); |
| 1212 | while (Ptr.isBaseClass()) |
| 1213 | Ptr = Ptr.getBase(); |
| 1214 | |
| 1215 | // For the non-array case, the types must match if the static type |
| 1216 | // does not have a virtual destructor. |
| 1217 | if (!DeleteIsArrayForm && Ptr.getType() != InitialType && |
| 1218 | !hasVirtualDestructor(T: InitialType)) { |
| 1219 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 1220 | DiagId: diag::note_constexpr_delete_base_nonvirt_dtor) |
| 1221 | << InitialType << Ptr.getType(); |
| 1222 | return false; |
| 1223 | } |
| 1224 | |
| 1225 | if (!Ptr.isRoot() || Ptr.isOnePastEnd() || |
| 1226 | (Ptr.isArrayElement() && Ptr.getIndex() != 0)) { |
| 1227 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1228 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_delete_subobject) |
| 1229 | << Ptr.toDiagnosticString(Ctx: S.getASTContext()) << Ptr.isOnePastEnd(); |
| 1230 | return false; |
| 1231 | } |
| 1232 | |
| 1233 | Source = Ptr.getDeclDesc()->asExpr(); |
| 1234 | BlockToDelete = Ptr.block(); |
| 1235 | |
| 1236 | if (!CheckDeleteSource(S, OpPC, Source, Ptr)) |
| 1237 | return false; |
| 1238 | |
| 1239 | // For a class type with a virtual destructor, the selected operator delete |
| 1240 | // is the one looked up when building the destructor. |
| 1241 | if (!DeleteIsArrayForm && !IsGlobalDelete) { |
| 1242 | QualType AllocType = Ptr.getType(); |
| 1243 | auto getVirtualOperatorDelete = [](QualType T) -> const FunctionDecl * { |
| 1244 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| 1245 | if (const CXXDestructorDecl *DD = RD->getDestructor()) |
| 1246 | return DD->isVirtual() ? DD->getOperatorDelete() : nullptr; |
| 1247 | return nullptr; |
| 1248 | }; |
| 1249 | |
| 1250 | if (const FunctionDecl *VirtualDelete = |
| 1251 | getVirtualOperatorDelete(AllocType); |
| 1252 | VirtualDelete && |
| 1253 | !VirtualDelete |
| 1254 | ->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) { |
| 1255 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 1256 | DiagId: diag::note_constexpr_new_non_replaceable) |
| 1257 | << isa<CXXMethodDecl>(Val: VirtualDelete) << VirtualDelete; |
| 1258 | return false; |
| 1259 | } |
| 1260 | } |
| 1261 | } |
| 1262 | assert(Source); |
| 1263 | assert(BlockToDelete); |
| 1264 | |
| 1265 | // Invoke destructors before deallocating the memory. |
| 1266 | if (!RunDestructors(S, OpPC, B: BlockToDelete)) |
| 1267 | return false; |
| 1268 | |
| 1269 | DynamicAllocator &Allocator = S.getAllocator(); |
| 1270 | const Descriptor *BlockDesc = BlockToDelete->getDescriptor(); |
| 1271 | std::optional<DynamicAllocator::Form> AllocForm = |
| 1272 | Allocator.getAllocationForm(Source); |
| 1273 | |
| 1274 | if (!Allocator.deallocate(Source, BlockToDelete, S)) { |
| 1275 | // Nothing has been deallocated, this must be a double-delete. |
| 1276 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1277 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_double_delete); |
| 1278 | return false; |
| 1279 | } |
| 1280 | |
| 1281 | assert(AllocForm); |
| 1282 | DynamicAllocator::Form DeleteForm = DeleteIsArrayForm |
| 1283 | ? DynamicAllocator::Form::Array |
| 1284 | : DynamicAllocator::Form::NonArray; |
| 1285 | return CheckNewDeleteForms(S, OpPC, AllocForm: *AllocForm, DeleteForm, D: BlockDesc, |
| 1286 | NewExpr: Source); |
| 1287 | } |
| 1288 | |
| 1289 | void diagnoseEnumValue(InterpState &S, CodePtr OpPC, const EnumDecl *ED, |
| 1290 | const APSInt &Value) { |
| 1291 | if (S.EvaluatingDecl && !S.EvaluatingDecl->isConstexpr()) |
| 1292 | return; |
| 1293 | |
| 1294 | llvm::APInt Min; |
| 1295 | llvm::APInt Max; |
| 1296 | ED->getValueRange(Max, Min); |
| 1297 | --Max; |
| 1298 | |
| 1299 | if (ED->getNumNegativeBits() && |
| 1300 | (Max.slt(RHS: Value.getSExtValue()) || Min.sgt(RHS: Value.getSExtValue()))) { |
| 1301 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
| 1302 | S.CCEDiag(Loc, DiagId: diag::note_constexpr_unscoped_enum_out_of_range) |
| 1303 | << llvm::toString(I: Value, Radix: 10) << Min.getSExtValue() << Max.getSExtValue() |
| 1304 | << ED; |
| 1305 | } else if (!ED->getNumNegativeBits() && Max.ult(RHS: Value.getZExtValue())) { |
| 1306 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
| 1307 | S.CCEDiag(Loc, DiagId: diag::note_constexpr_unscoped_enum_out_of_range) |
| 1308 | << llvm::toString(I: Value, Radix: 10) << Min.getZExtValue() << Max.getZExtValue() |
| 1309 | << ED; |
| 1310 | } |
| 1311 | } |
| 1312 | |
| 1313 | bool CheckLiteralType(InterpState &S, CodePtr OpPC, const Type *T) { |
| 1314 | assert(T); |
| 1315 | assert(!S.getLangOpts().CPlusPlus23); |
| 1316 | |
| 1317 | // C++1y: A constant initializer for an object o [...] may also invoke |
| 1318 | // constexpr constructors for o and its subobjects even if those objects |
| 1319 | // are of non-literal class types. |
| 1320 | // |
| 1321 | // C++11 missed this detail for aggregates, so classes like this: |
| 1322 | // struct foo_t { union { int i; volatile int j; } u; }; |
| 1323 | // are not (obviously) initializable like so: |
| 1324 | // __attribute__((__require_constant_initialization__)) |
| 1325 | // static const foo_t x = {{0}}; |
| 1326 | // because "i" is a subobject with non-literal initialization (due to the |
| 1327 | // volatile member of the union). See: |
| 1328 | // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677 |
| 1329 | // Therefore, we use the C++1y behavior. |
| 1330 | |
| 1331 | if (S.Current->getFunction() && S.Current->getFunction()->isConstructor() && |
| 1332 | S.Current->getThis().getDeclDesc()->asDecl() == S.EvaluatingDecl) { |
| 1333 | return true; |
| 1334 | } |
| 1335 | |
| 1336 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 1337 | if (S.getLangOpts().CPlusPlus11) |
| 1338 | S.FFDiag(E, DiagId: diag::note_constexpr_nonliteral) << E->getType(); |
| 1339 | else |
| 1340 | S.FFDiag(E, DiagId: diag::note_invalid_subexpr_in_const_expr); |
| 1341 | return false; |
| 1342 | } |
| 1343 | |
| 1344 | static bool getField(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 1345 | uint32_t Off) { |
| 1346 | if (S.getLangOpts().CPlusPlus && S.inConstantContext() && |
| 1347 | !CheckNull(S, OpPC, Ptr, CSK: CSK_Field)) |
| 1348 | return false; |
| 1349 | |
| 1350 | if (!CheckRange(S, OpPC, Ptr, CSK: CSK_Field)) |
| 1351 | return false; |
| 1352 | if (!CheckArray(S, OpPC, Ptr)) |
| 1353 | return false; |
| 1354 | if (!CheckSubobject(S, OpPC, Ptr, CSK: CSK_Field)) |
| 1355 | return false; |
| 1356 | |
| 1357 | if (Ptr.isIntegralPointer()) { |
| 1358 | S.Stk.push<Pointer>(Args: Ptr.asIntPointer().atOffset(ASTCtx: S.getASTContext(), Offset: Off)); |
| 1359 | return true; |
| 1360 | } |
| 1361 | |
| 1362 | if (!Ptr.isBlockPointer()) { |
| 1363 | // FIXME: The only time we (seem to) get here is when trying to access a |
| 1364 | // field of a typeid pointer. In that case, we're supposed to diagnose e.g. |
| 1365 | // `typeid(int).name`, but we currently diagnose `&typeid(int)`. |
| 1366 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 1367 | DiagId: diag::note_constexpr_access_unreadable_object) |
| 1368 | << AK_Read << Ptr.toDiagnosticString(Ctx: S.getASTContext()); |
| 1369 | return false; |
| 1370 | } |
| 1371 | |
| 1372 | if ((Ptr.getByteOffset() + Off) >= Ptr.block()->getSize()) |
| 1373 | return false; |
| 1374 | |
| 1375 | S.Stk.push<Pointer>(Args: Ptr.atField(Off)); |
| 1376 | return true; |
| 1377 | } |
| 1378 | |
| 1379 | bool GetPtrField(InterpState &S, CodePtr OpPC, uint32_t Off) { |
| 1380 | const auto &Ptr = S.Stk.peek<Pointer>(); |
| 1381 | return getField(S, OpPC, Ptr, Off); |
| 1382 | } |
| 1383 | |
| 1384 | bool GetPtrFieldPop(InterpState &S, CodePtr OpPC, uint32_t Off) { |
| 1385 | const auto &Ptr = S.Stk.pop<Pointer>(); |
| 1386 | return getField(S, OpPC, Ptr, Off); |
| 1387 | } |
| 1388 | |
| 1389 | static bool checkConstructor(InterpState &S, CodePtr OpPC, const Function *Func, |
| 1390 | const Pointer &ThisPtr) { |
| 1391 | assert(Func->isConstructor()); |
| 1392 | |
| 1393 | if (Func->getParentDecl()->isInvalidDecl()) |
| 1394 | return false; |
| 1395 | |
| 1396 | const Descriptor *D = ThisPtr.getFieldDesc(); |
| 1397 | // FIXME: I think this case is not 100% correct. E.g. a pointer into a |
| 1398 | // subobject of a composite array. |
| 1399 | if (!D->ElemRecord) |
| 1400 | return true; |
| 1401 | |
| 1402 | if (D->ElemRecord->getNumVirtualBases() == 0) |
| 1403 | return true; |
| 1404 | |
| 1405 | S.FFDiag(Loc: S.Current->getLocation(PC: OpPC), DiagId: diag::note_constexpr_virtual_base) |
| 1406 | << Func->getParentDecl(); |
| 1407 | return false; |
| 1408 | } |
| 1409 | |
| 1410 | bool CheckDestructor(InterpState &S, CodePtr OpPC, const Pointer &Ptr) { |
| 1411 | if (!CheckLive(S, OpPC, Ptr, AK: AK_Destroy)) |
| 1412 | return false; |
| 1413 | if (!CheckTemporary(S, OpPC, Ptr, AK: AK_Destroy)) |
| 1414 | return false; |
| 1415 | if (!CheckRange(S, OpPC, Ptr, AK: AK_Destroy)) |
| 1416 | return false; |
| 1417 | |
| 1418 | // Can't call a dtor on a global variable. |
| 1419 | if (Ptr.block()->isStatic()) { |
| 1420 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 1421 | S.FFDiag(SI: E, DiagId: diag::note_constexpr_modify_global); |
| 1422 | return false; |
| 1423 | } |
| 1424 | return CheckActive(S, OpPC, Ptr, AK: AK_Destroy); |
| 1425 | } |
| 1426 | |
| 1427 | static void compileFunction(InterpState &S, const Function *Func) { |
| 1428 | Compiler<ByteCodeEmitter>(S.getContext(), S.P) |
| 1429 | .compileFunc(FuncDecl: Func->getDecl()->getMostRecentDecl(), |
| 1430 | Func: const_cast<Function *>(Func)); |
| 1431 | } |
| 1432 | |
| 1433 | bool CallVar(InterpState &S, CodePtr OpPC, const Function *Func, |
| 1434 | uint32_t VarArgSize) { |
| 1435 | if (Func->hasThisPointer()) { |
| 1436 | size_t ArgSize = Func->getArgSize() + VarArgSize; |
| 1437 | size_t ThisOffset = ArgSize - (Func->hasRVO() ? primSize(Type: PT_Ptr) : 0); |
| 1438 | const Pointer &ThisPtr = S.Stk.peek<Pointer>(Offset: ThisOffset); |
| 1439 | |
| 1440 | // If the current function is a lambda static invoker and |
| 1441 | // the function we're about to call is a lambda call operator, |
| 1442 | // skip the CheckInvoke, since the ThisPtr is a null pointer |
| 1443 | // anyway. |
| 1444 | if (!(S.Current->getFunction() && |
| 1445 | S.Current->getFunction()->isLambdaStaticInvoker() && |
| 1446 | Func->isLambdaCallOperator())) { |
| 1447 | if (!CheckInvoke(S, OpPC, Ptr: ThisPtr)) |
| 1448 | return false; |
| 1449 | } |
| 1450 | |
| 1451 | if (S.checkingPotentialConstantExpression()) |
| 1452 | return false; |
| 1453 | } |
| 1454 | |
| 1455 | if (!Func->isFullyCompiled()) |
| 1456 | compileFunction(S, Func); |
| 1457 | |
| 1458 | if (!CheckCallable(S, OpPC, F: Func)) |
| 1459 | return false; |
| 1460 | |
| 1461 | if (!CheckCallDepth(S, OpPC)) |
| 1462 | return false; |
| 1463 | |
| 1464 | auto NewFrame = std::make_unique<InterpFrame>(args&: S, args&: Func, args&: OpPC, args&: VarArgSize); |
| 1465 | InterpFrame *FrameBefore = S.Current; |
| 1466 | S.Current = NewFrame.get(); |
| 1467 | |
| 1468 | // Note that we cannot assert(CallResult.hasValue()) here since |
| 1469 | // Ret() above only sets the APValue if the curent frame doesn't |
| 1470 | // have a caller set. |
| 1471 | if (Interpret(S)) { |
| 1472 | NewFrame.release(); // Frame was delete'd already. |
| 1473 | assert(S.Current == FrameBefore); |
| 1474 | return true; |
| 1475 | } |
| 1476 | |
| 1477 | // Interpreting the function failed somehow. Reset to |
| 1478 | // previous state. |
| 1479 | S.Current = FrameBefore; |
| 1480 | return false; |
| 1481 | } |
| 1482 | bool Call(InterpState &S, CodePtr OpPC, const Function *Func, |
| 1483 | uint32_t VarArgSize) { |
| 1484 | assert(Func); |
| 1485 | auto cleanup = [&]() -> bool { |
| 1486 | cleanupAfterFunctionCall(S, OpPC, Func); |
| 1487 | return false; |
| 1488 | }; |
| 1489 | |
| 1490 | if (Func->hasThisPointer()) { |
| 1491 | size_t ArgSize = Func->getArgSize() + VarArgSize; |
| 1492 | size_t ThisOffset = ArgSize - (Func->hasRVO() ? primSize(Type: PT_Ptr) : 0); |
| 1493 | |
| 1494 | const Pointer &ThisPtr = S.Stk.peek<Pointer>(Offset: ThisOffset); |
| 1495 | |
| 1496 | // C++23 [expr.const]p5.6 |
| 1497 | // an invocation of a virtual function ([class.virtual]) for an object whose |
| 1498 | // dynamic type is constexpr-unknown; |
| 1499 | if (ThisPtr.isDummy() && Func->isVirtual()) |
| 1500 | return false; |
| 1501 | |
| 1502 | // If the current function is a lambda static invoker and |
| 1503 | // the function we're about to call is a lambda call operator, |
| 1504 | // skip the CheckInvoke, since the ThisPtr is a null pointer |
| 1505 | // anyway. |
| 1506 | if (S.Current->getFunction() && |
| 1507 | S.Current->getFunction()->isLambdaStaticInvoker() && |
| 1508 | Func->isLambdaCallOperator()) { |
| 1509 | assert(ThisPtr.isZero()); |
| 1510 | } else { |
| 1511 | if (!CheckInvoke(S, OpPC, Ptr: ThisPtr)) |
| 1512 | return cleanup(); |
| 1513 | if (!Func->isConstructor() && !Func->isDestructor() && |
| 1514 | !Func->isCopyOrMoveOperator() && |
| 1515 | !CheckActive(S, OpPC, Ptr: ThisPtr, AK: AK_MemberCall)) |
| 1516 | return false; |
| 1517 | } |
| 1518 | |
| 1519 | if (Func->isConstructor() && !checkConstructor(S, OpPC, Func, ThisPtr)) |
| 1520 | return false; |
| 1521 | if (Func->isDestructor() && !CheckDestructor(S, OpPC, Ptr: ThisPtr)) |
| 1522 | return false; |
| 1523 | } |
| 1524 | |
| 1525 | if (!Func->isFullyCompiled()) |
| 1526 | compileFunction(S, Func); |
| 1527 | |
| 1528 | if (!CheckCallable(S, OpPC, F: Func)) |
| 1529 | return cleanup(); |
| 1530 | |
| 1531 | // FIXME: The isConstructor() check here is not always right. The current |
| 1532 | // constant evaluator is somewhat inconsistent in when it allows a function |
| 1533 | // call when checking for a constant expression. |
| 1534 | if (Func->hasThisPointer() && S.checkingPotentialConstantExpression() && |
| 1535 | !Func->isConstructor()) |
| 1536 | return cleanup(); |
| 1537 | |
| 1538 | if (!CheckCallDepth(S, OpPC)) |
| 1539 | return cleanup(); |
| 1540 | |
| 1541 | auto NewFrame = std::make_unique<InterpFrame>(args&: S, args&: Func, args&: OpPC, args&: VarArgSize); |
| 1542 | InterpFrame *FrameBefore = S.Current; |
| 1543 | S.Current = NewFrame.get(); |
| 1544 | |
| 1545 | InterpStateCCOverride CCOverride(S, Func->isImmediate()); |
| 1546 | // Note that we cannot assert(CallResult.hasValue()) here since |
| 1547 | // Ret() above only sets the APValue if the curent frame doesn't |
| 1548 | // have a caller set. |
| 1549 | if (Interpret(S)) { |
| 1550 | NewFrame.release(); // Frame was delete'd already. |
| 1551 | assert(S.Current == FrameBefore); |
| 1552 | return true; |
| 1553 | } |
| 1554 | |
| 1555 | // Interpreting the function failed somehow. Reset to |
| 1556 | // previous state. |
| 1557 | S.Current = FrameBefore; |
| 1558 | return false; |
| 1559 | } |
| 1560 | |
| 1561 | bool CallVirt(InterpState &S, CodePtr OpPC, const Function *Func, |
| 1562 | uint32_t VarArgSize) { |
| 1563 | assert(Func->hasThisPointer()); |
| 1564 | assert(Func->isVirtual()); |
| 1565 | size_t ArgSize = Func->getArgSize() + VarArgSize; |
| 1566 | size_t ThisOffset = ArgSize - (Func->hasRVO() ? primSize(Type: PT_Ptr) : 0); |
| 1567 | Pointer &ThisPtr = S.Stk.peek<Pointer>(Offset: ThisOffset); |
| 1568 | const FunctionDecl *Callee = Func->getDecl(); |
| 1569 | |
| 1570 | if (!Func->isFullyCompiled()) |
| 1571 | compileFunction(S, Func); |
| 1572 | |
| 1573 | // C++2a [class.abstract]p6: |
| 1574 | // the effect of making a virtual call to a pure virtual function [...] is |
| 1575 | // undefined |
| 1576 | if (Callee->isPureVirtual()) { |
| 1577 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_pure_virtual_call, |
| 1578 | ExtraNotes: 1) |
| 1579 | << Callee; |
| 1580 | S.Note(Loc: Callee->getLocation(), DiagId: diag::note_declared_at); |
| 1581 | return false; |
| 1582 | } |
| 1583 | |
| 1584 | const CXXRecordDecl *DynamicDecl = nullptr; |
| 1585 | { |
| 1586 | Pointer TypePtr = ThisPtr; |
| 1587 | while (TypePtr.isBaseClass()) |
| 1588 | TypePtr = TypePtr.getBase(); |
| 1589 | |
| 1590 | QualType DynamicType = TypePtr.getType(); |
| 1591 | if (DynamicType->isPointerType() || DynamicType->isReferenceType()) |
| 1592 | DynamicDecl = DynamicType->getPointeeCXXRecordDecl(); |
| 1593 | else |
| 1594 | DynamicDecl = DynamicType->getAsCXXRecordDecl(); |
| 1595 | } |
| 1596 | assert(DynamicDecl); |
| 1597 | |
| 1598 | const auto *StaticDecl = cast<CXXRecordDecl>(Val: Func->getParentDecl()); |
| 1599 | const auto *InitialFunction = cast<CXXMethodDecl>(Val: Callee); |
| 1600 | const CXXMethodDecl *Overrider = S.getContext().getOverridingFunction( |
| 1601 | DynamicDecl, StaticDecl, InitialFunction); |
| 1602 | |
| 1603 | if (Overrider != InitialFunction) { |
| 1604 | // DR1872: An instantiated virtual constexpr function can't be called in a |
| 1605 | // constant expression (prior to C++20). We can still constant-fold such a |
| 1606 | // call. |
| 1607 | if (!S.getLangOpts().CPlusPlus20 && Overrider->isVirtual()) { |
| 1608 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 1609 | S.CCEDiag(E, DiagId: diag::note_constexpr_virtual_call) << E->getSourceRange(); |
| 1610 | } |
| 1611 | |
| 1612 | Func = S.getContext().getOrCreateFunction(FuncDecl: Overrider); |
| 1613 | |
| 1614 | const CXXRecordDecl *ThisFieldDecl = |
| 1615 | ThisPtr.getFieldDesc()->getType()->getAsCXXRecordDecl(); |
| 1616 | if (Func->getParentDecl()->isDerivedFrom(Base: ThisFieldDecl)) { |
| 1617 | // If the function we call is further DOWN the hierarchy than the |
| 1618 | // FieldDesc of our pointer, just go up the hierarchy of this field |
| 1619 | // the furthest we can go. |
| 1620 | while (ThisPtr.isBaseClass()) |
| 1621 | ThisPtr = ThisPtr.getBase(); |
| 1622 | } |
| 1623 | } |
| 1624 | |
| 1625 | if (!Call(S, OpPC, Func, VarArgSize)) |
| 1626 | return false; |
| 1627 | |
| 1628 | // Covariant return types. The return type of Overrider is a pointer |
| 1629 | // or reference to a class type. |
| 1630 | if (Overrider != InitialFunction && |
| 1631 | Overrider->getReturnType()->isPointerOrReferenceType() && |
| 1632 | InitialFunction->getReturnType()->isPointerOrReferenceType()) { |
| 1633 | QualType OverriderPointeeType = |
| 1634 | Overrider->getReturnType()->getPointeeType(); |
| 1635 | QualType InitialPointeeType = |
| 1636 | InitialFunction->getReturnType()->getPointeeType(); |
| 1637 | // We've called Overrider above, but calling code expects us to return what |
| 1638 | // InitialFunction returned. According to the rules for covariant return |
| 1639 | // types, what InitialFunction returns needs to be a base class of what |
| 1640 | // Overrider returns. So, we need to do an upcast here. |
| 1641 | unsigned Offset = S.getContext().collectBaseOffset( |
| 1642 | BaseDecl: InitialPointeeType->getAsRecordDecl(), |
| 1643 | DerivedDecl: OverriderPointeeType->getAsRecordDecl()); |
| 1644 | return GetPtrBasePop(S, OpPC, Off: Offset, /*IsNullOK=*/NullOK: true); |
| 1645 | } |
| 1646 | |
| 1647 | return true; |
| 1648 | } |
| 1649 | |
| 1650 | bool CallBI(InterpState &S, CodePtr OpPC, const CallExpr *CE, |
| 1651 | uint32_t BuiltinID) { |
| 1652 | // A little arbitrary, but the current interpreter allows evaluation |
| 1653 | // of builtin functions in this mode, with some exceptions. |
| 1654 | if (BuiltinID == Builtin::BI__builtin_operator_new && |
| 1655 | S.checkingPotentialConstantExpression()) |
| 1656 | return false; |
| 1657 | |
| 1658 | return InterpretBuiltin(S, OpPC, Call: CE, BuiltinID); |
| 1659 | } |
| 1660 | |
| 1661 | bool CallPtr(InterpState &S, CodePtr OpPC, uint32_t ArgSize, |
| 1662 | const CallExpr *CE) { |
| 1663 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1664 | |
| 1665 | if (Ptr.isZero()) { |
| 1666 | const auto *E = cast<CallExpr>(Val: S.Current->getExpr(PC: OpPC)); |
| 1667 | S.FFDiag(E, DiagId: diag::note_constexpr_null_callee) |
| 1668 | << const_cast<Expr *>(E->getCallee()) << E->getSourceRange(); |
| 1669 | return false; |
| 1670 | } |
| 1671 | |
| 1672 | if (!Ptr.isFunctionPointer()) |
| 1673 | return Invalid(S, OpPC); |
| 1674 | |
| 1675 | const FunctionPointer &FuncPtr = Ptr.asFunctionPointer(); |
| 1676 | const Function *F = FuncPtr.getFunction(); |
| 1677 | assert(F); |
| 1678 | // Don't allow calling block pointers. |
| 1679 | if (!F->getDecl()) |
| 1680 | return Invalid(S, OpPC); |
| 1681 | |
| 1682 | // This happens when the call expression has been cast to |
| 1683 | // something else, but we don't support that. |
| 1684 | if (S.Ctx.classify(T: F->getDecl()->getReturnType()) != |
| 1685 | S.Ctx.classify(T: CE->getCallReturnType(Ctx: S.getASTContext()))) |
| 1686 | return false; |
| 1687 | |
| 1688 | // Check argument nullability state. |
| 1689 | if (F->hasNonNullAttr()) { |
| 1690 | if (!CheckNonNullArgs(S, OpPC, F, CE, ArgSize)) |
| 1691 | return false; |
| 1692 | } |
| 1693 | |
| 1694 | assert(ArgSize >= F->getWrittenArgSize()); |
| 1695 | uint32_t VarArgSize = ArgSize - F->getWrittenArgSize(); |
| 1696 | |
| 1697 | // We need to do this explicitly here since we don't have the necessary |
| 1698 | // information to do it automatically. |
| 1699 | if (F->isThisPointerExplicit()) |
| 1700 | VarArgSize -= align(Size: primSize(Type: PT_Ptr)); |
| 1701 | |
| 1702 | if (F->isVirtual()) |
| 1703 | return CallVirt(S, OpPC, Func: F, VarArgSize); |
| 1704 | |
| 1705 | return Call(S, OpPC, Func: F, VarArgSize); |
| 1706 | } |
| 1707 | |
| 1708 | static void startLifetimeRecurse(const Pointer &Ptr) { |
| 1709 | if (const Record *R = Ptr.getRecord()) { |
| 1710 | Ptr.startLifetime(); |
| 1711 | for (const Record::Field &Fi : R->fields()) |
| 1712 | startLifetimeRecurse(Ptr: Ptr.atField(Off: Fi.Offset)); |
| 1713 | return; |
| 1714 | } |
| 1715 | |
| 1716 | if (const Descriptor *FieldDesc = Ptr.getFieldDesc(); |
| 1717 | FieldDesc->isCompositeArray()) { |
| 1718 | assert(Ptr.getLifetime() == Lifetime::Started); |
| 1719 | for (unsigned I = 0; I != FieldDesc->getNumElems(); ++I) |
| 1720 | startLifetimeRecurse(Ptr: Ptr.atIndex(Idx: I).narrow()); |
| 1721 | return; |
| 1722 | } |
| 1723 | |
| 1724 | Ptr.startLifetime(); |
| 1725 | } |
| 1726 | |
| 1727 | bool StartLifetime(InterpState &S, CodePtr OpPC) { |
| 1728 | const auto &Ptr = S.Stk.peek<Pointer>(); |
| 1729 | if (!CheckDummy(S, OpPC, Ptr, AK: AK_Destroy)) |
| 1730 | return false; |
| 1731 | startLifetimeRecurse(Ptr: Ptr.narrow()); |
| 1732 | return true; |
| 1733 | } |
| 1734 | |
| 1735 | // FIXME: It might be better to the recursing as part of the generated code for |
| 1736 | // a destructor? |
| 1737 | static void endLifetimeRecurse(const Pointer &Ptr) { |
| 1738 | if (const Record *R = Ptr.getRecord()) { |
| 1739 | Ptr.endLifetime(); |
| 1740 | for (const Record::Field &Fi : R->fields()) |
| 1741 | endLifetimeRecurse(Ptr: Ptr.atField(Off: Fi.Offset)); |
| 1742 | return; |
| 1743 | } |
| 1744 | |
| 1745 | if (const Descriptor *FieldDesc = Ptr.getFieldDesc(); |
| 1746 | FieldDesc->isCompositeArray()) { |
| 1747 | // No endLifetime() for array roots. |
| 1748 | assert(Ptr.getLifetime() == Lifetime::Started); |
| 1749 | for (unsigned I = 0; I != FieldDesc->getNumElems(); ++I) |
| 1750 | endLifetimeRecurse(Ptr: Ptr.atIndex(Idx: I).narrow()); |
| 1751 | return; |
| 1752 | } |
| 1753 | |
| 1754 | Ptr.endLifetime(); |
| 1755 | } |
| 1756 | |
| 1757 | /// Ends the lifetime of the peek'd pointer. |
| 1758 | bool EndLifetime(InterpState &S, CodePtr OpPC) { |
| 1759 | const auto &Ptr = S.Stk.peek<Pointer>(); |
| 1760 | if (!CheckDummy(S, OpPC, Ptr, AK: AK_Destroy)) |
| 1761 | return false; |
| 1762 | endLifetimeRecurse(Ptr: Ptr.narrow()); |
| 1763 | return true; |
| 1764 | } |
| 1765 | |
| 1766 | /// Ends the lifetime of the pop'd pointer. |
| 1767 | bool EndLifetimePop(InterpState &S, CodePtr OpPC) { |
| 1768 | const auto &Ptr = S.Stk.pop<Pointer>(); |
| 1769 | if (!CheckDummy(S, OpPC, Ptr, AK: AK_Destroy)) |
| 1770 | return false; |
| 1771 | endLifetimeRecurse(Ptr: Ptr.narrow()); |
| 1772 | return true; |
| 1773 | } |
| 1774 | |
| 1775 | bool CheckNewTypeMismatch(InterpState &S, CodePtr OpPC, const Expr *E, |
| 1776 | std::optional<uint64_t> ArraySize) { |
| 1777 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
| 1778 | |
| 1779 | // Similar to CheckStore(), but with the additional CheckTemporary() call and |
| 1780 | // the AccessKinds are different. |
| 1781 | if (!CheckTemporary(S, OpPC, Ptr, AK: AK_Construct)) |
| 1782 | return false; |
| 1783 | if (!CheckLive(S, OpPC, Ptr, AK: AK_Construct)) |
| 1784 | return false; |
| 1785 | if (!CheckDummy(S, OpPC, Ptr, AK: AK_Construct)) |
| 1786 | return false; |
| 1787 | |
| 1788 | // CheckLifetime for this and all base pointers. |
| 1789 | for (Pointer P = Ptr;;) { |
| 1790 | if (!CheckLifetime(S, OpPC, Ptr: P, AK: AK_Construct)) |
| 1791 | return false; |
| 1792 | |
| 1793 | if (P.isRoot()) |
| 1794 | break; |
| 1795 | P = P.getBase(); |
| 1796 | } |
| 1797 | if (!CheckExtern(S, OpPC, Ptr)) |
| 1798 | return false; |
| 1799 | if (!CheckRange(S, OpPC, Ptr, AK: AK_Construct)) |
| 1800 | return false; |
| 1801 | if (!CheckGlobal(S, OpPC, Ptr)) |
| 1802 | return false; |
| 1803 | if (!CheckConst(S, OpPC, Ptr)) |
| 1804 | return false; |
| 1805 | if (!S.inConstantContext() && isConstexprUnknown(P: Ptr)) |
| 1806 | return false; |
| 1807 | |
| 1808 | if (!InvalidNewDeleteExpr(S, OpPC, E)) |
| 1809 | return false; |
| 1810 | |
| 1811 | const auto *NewExpr = cast<CXXNewExpr>(Val: E); |
| 1812 | QualType StorageType = Ptr.getFieldDesc()->getDataType(Ctx: S.getASTContext()); |
| 1813 | const ASTContext &ASTCtx = S.getASTContext(); |
| 1814 | QualType AllocType; |
| 1815 | if (ArraySize) { |
| 1816 | AllocType = ASTCtx.getConstantArrayType( |
| 1817 | EltTy: NewExpr->getAllocatedType(), |
| 1818 | ArySize: APInt(64, static_cast<uint64_t>(*ArraySize), false), SizeExpr: nullptr, |
| 1819 | ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 1820 | } else { |
| 1821 | AllocType = NewExpr->getAllocatedType(); |
| 1822 | } |
| 1823 | |
| 1824 | unsigned StorageSize = 1; |
| 1825 | unsigned AllocSize = 1; |
| 1826 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val&: AllocType)) |
| 1827 | AllocSize = CAT->getZExtSize(); |
| 1828 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val&: StorageType)) |
| 1829 | StorageSize = CAT->getZExtSize(); |
| 1830 | |
| 1831 | if (AllocSize > StorageSize || |
| 1832 | !ASTCtx.hasSimilarType(T1: ASTCtx.getBaseElementType(QT: AllocType), |
| 1833 | T2: ASTCtx.getBaseElementType(QT: StorageType))) { |
| 1834 | S.FFDiag(Loc: S.Current->getLocation(PC: OpPC), |
| 1835 | DiagId: diag::note_constexpr_placement_new_wrong_type) |
| 1836 | << StorageType << AllocType; |
| 1837 | return false; |
| 1838 | } |
| 1839 | |
| 1840 | // Can't activate fields in a union, unless the direct base is the union. |
| 1841 | if (Ptr.inUnion() && !Ptr.isActive() && !Ptr.getBase().getRecord()->isUnion()) |
| 1842 | return CheckActive(S, OpPC, Ptr, AK: AK_Construct); |
| 1843 | |
| 1844 | return true; |
| 1845 | } |
| 1846 | |
| 1847 | bool InvalidNewDeleteExpr(InterpState &S, CodePtr OpPC, const Expr *E) { |
| 1848 | assert(E); |
| 1849 | |
| 1850 | if (const auto *NewExpr = dyn_cast<CXXNewExpr>(Val: E)) { |
| 1851 | const FunctionDecl *OperatorNew = NewExpr->getOperatorNew(); |
| 1852 | |
| 1853 | if (NewExpr->getNumPlacementArgs() > 0) { |
| 1854 | // This is allowed pre-C++26, but only an std function. |
| 1855 | if (S.getLangOpts().CPlusPlus26 || S.Current->isStdFunction()) |
| 1856 | return true; |
| 1857 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_new_placement) |
| 1858 | << /*C++26 feature*/ 1 << E->getSourceRange(); |
| 1859 | } else if ( |
| 1860 | !OperatorNew |
| 1861 | ->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) { |
| 1862 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 1863 | DiagId: diag::note_constexpr_new_non_replaceable) |
| 1864 | << isa<CXXMethodDecl>(Val: OperatorNew) << OperatorNew; |
| 1865 | return false; |
| 1866 | } else if (!S.getLangOpts().CPlusPlus26 && |
| 1867 | NewExpr->getNumPlacementArgs() == 1 && |
| 1868 | !OperatorNew->isReservedGlobalPlacementOperator()) { |
| 1869 | if (!S.getLangOpts().CPlusPlus26) { |
| 1870 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_new_placement) |
| 1871 | << /*Unsupported*/ 0 << E->getSourceRange(); |
| 1872 | return false; |
| 1873 | } |
| 1874 | return true; |
| 1875 | } |
| 1876 | } else { |
| 1877 | const auto *DeleteExpr = cast<CXXDeleteExpr>(Val: E); |
| 1878 | const FunctionDecl *OperatorDelete = DeleteExpr->getOperatorDelete(); |
| 1879 | if (!OperatorDelete |
| 1880 | ->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) { |
| 1881 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 1882 | DiagId: diag::note_constexpr_new_non_replaceable) |
| 1883 | << isa<CXXMethodDecl>(Val: OperatorDelete) << OperatorDelete; |
| 1884 | return false; |
| 1885 | } |
| 1886 | } |
| 1887 | |
| 1888 | return false; |
| 1889 | } |
| 1890 | |
| 1891 | bool handleFixedPointOverflow(InterpState &S, CodePtr OpPC, |
| 1892 | const FixedPoint &FP) { |
| 1893 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 1894 | if (S.checkingForUndefinedBehavior()) { |
| 1895 | S.getASTContext().getDiagnostics().Report( |
| 1896 | Loc: E->getExprLoc(), DiagID: diag::warn_fixedpoint_constant_overflow) |
| 1897 | << FP.toDiagnosticString(Ctx: S.getASTContext()) << E->getType(); |
| 1898 | } |
| 1899 | S.CCEDiag(E, DiagId: diag::note_constexpr_overflow) |
| 1900 | << FP.toDiagnosticString(Ctx: S.getASTContext()) << E->getType(); |
| 1901 | return S.noteUndefinedBehavior(); |
| 1902 | } |
| 1903 | |
| 1904 | bool InvalidShuffleVectorIndex(InterpState &S, CodePtr OpPC, uint32_t Index) { |
| 1905 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1906 | S.FFDiag(SI: Loc, |
| 1907 | DiagId: diag::err_shufflevector_minus_one_is_undefined_behavior_constexpr) |
| 1908 | << Index; |
| 1909 | return false; |
| 1910 | } |
| 1911 | |
| 1912 | bool CheckPointerToIntegralCast(InterpState &S, CodePtr OpPC, |
| 1913 | const Pointer &Ptr, unsigned BitWidth) { |
| 1914 | if (Ptr.isDummy()) |
| 1915 | return false; |
| 1916 | if (Ptr.isFunctionPointer()) |
| 1917 | return true; |
| 1918 | |
| 1919 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 1920 | S.CCEDiag(SI: E, DiagId: diag::note_constexpr_invalid_cast) |
| 1921 | << 2 << S.getLangOpts().CPlusPlus << S.Current->getRange(PC: OpPC); |
| 1922 | |
| 1923 | if (Ptr.isBlockPointer() && !Ptr.isZero()) { |
| 1924 | // Only allow based lvalue casts if they are lossless. |
| 1925 | if (S.getASTContext().getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default) != |
| 1926 | BitWidth) |
| 1927 | return Invalid(S, OpPC); |
| 1928 | } |
| 1929 | return true; |
| 1930 | } |
| 1931 | |
| 1932 | bool CastPointerIntegralAP(InterpState &S, CodePtr OpPC, uint32_t BitWidth) { |
| 1933 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1934 | |
| 1935 | if (!CheckPointerToIntegralCast(S, OpPC, Ptr, BitWidth)) |
| 1936 | return false; |
| 1937 | |
| 1938 | auto Result = S.allocAP<IntegralAP<false>>(BitWidth); |
| 1939 | Result.copy(V: APInt(BitWidth, Ptr.getIntegerRepresentation())); |
| 1940 | |
| 1941 | S.Stk.push<IntegralAP<false>>(Args&: Result); |
| 1942 | return true; |
| 1943 | } |
| 1944 | |
| 1945 | bool CastPointerIntegralAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth) { |
| 1946 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1947 | |
| 1948 | if (!CheckPointerToIntegralCast(S, OpPC, Ptr, BitWidth)) |
| 1949 | return false; |
| 1950 | |
| 1951 | auto Result = S.allocAP<IntegralAP<true>>(BitWidth); |
| 1952 | Result.copy(V: APInt(BitWidth, Ptr.getIntegerRepresentation())); |
| 1953 | |
| 1954 | S.Stk.push<IntegralAP<true>>(Args&: Result); |
| 1955 | return true; |
| 1956 | } |
| 1957 | |
| 1958 | bool CheckBitCast(InterpState &S, CodePtr OpPC, bool HasIndeterminateBits, |
| 1959 | bool TargetIsUCharOrByte) { |
| 1960 | // This is always fine. |
| 1961 | if (!HasIndeterminateBits) |
| 1962 | return true; |
| 1963 | |
| 1964 | // Indeterminate bits can only be bitcast to unsigned char or std::byte. |
| 1965 | if (TargetIsUCharOrByte) |
| 1966 | return true; |
| 1967 | |
| 1968 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 1969 | QualType ExprType = E->getType(); |
| 1970 | S.FFDiag(E, DiagId: diag::note_constexpr_bit_cast_indet_dest) |
| 1971 | << ExprType << S.getLangOpts().CharIsSigned << E->getSourceRange(); |
| 1972 | return false; |
| 1973 | } |
| 1974 | |
| 1975 | bool GetTypeid(InterpState &S, CodePtr OpPC, const Type *TypePtr, |
| 1976 | const Type *TypeInfoType) { |
| 1977 | S.Stk.push<Pointer>(Args&: TypePtr, Args&: TypeInfoType); |
| 1978 | return true; |
| 1979 | } |
| 1980 | |
| 1981 | bool GetTypeidPtr(InterpState &S, CodePtr OpPC, const Type *TypeInfoType) { |
| 1982 | const auto &P = S.Stk.pop<Pointer>(); |
| 1983 | |
| 1984 | if (!P.isBlockPointer()) |
| 1985 | return false; |
| 1986 | |
| 1987 | // Pick the most-derived type. |
| 1988 | const Type *T = P.getDeclPtr().getType().getTypePtr(); |
| 1989 | // ... unless we're currently constructing this object. |
| 1990 | // FIXME: We have a similar check to this in more places. |
| 1991 | if (S.Current->getFunction()) { |
| 1992 | for (const InterpFrame *Frame = S.Current; Frame; Frame = Frame->Caller) { |
| 1993 | if (const Function *Func = Frame->getFunction(); |
| 1994 | Func && (Func->isConstructor() || Func->isDestructor()) && |
| 1995 | P.block() == Frame->getThis().block()) { |
| 1996 | T = Func->getParentDecl()->getTypeForDecl(); |
| 1997 | break; |
| 1998 | } |
| 1999 | } |
| 2000 | } |
| 2001 | |
| 2002 | S.Stk.push<Pointer>(Args: T->getCanonicalTypeUnqualified().getTypePtr(), |
| 2003 | Args&: TypeInfoType); |
| 2004 | return true; |
| 2005 | } |
| 2006 | |
| 2007 | bool DiagTypeid(InterpState &S, CodePtr OpPC) { |
| 2008 | const auto *E = cast<CXXTypeidExpr>(Val: S.Current->getExpr(PC: OpPC)); |
| 2009 | S.CCEDiag(E, DiagId: diag::note_constexpr_typeid_polymorphic) |
| 2010 | << E->getExprOperand()->getType() |
| 2011 | << E->getExprOperand()->getSourceRange(); |
| 2012 | return false; |
| 2013 | } |
| 2014 | |
| 2015 | bool arePotentiallyOverlappingStringLiterals(const Pointer &LHS, |
| 2016 | const Pointer &RHS) { |
| 2017 | unsigned LHSOffset = LHS.getIndex(); |
| 2018 | unsigned RHSOffset = RHS.getIndex(); |
| 2019 | unsigned LHSLength = (LHS.getNumElems() - 1) * LHS.elemSize(); |
| 2020 | unsigned RHSLength = (RHS.getNumElems() - 1) * RHS.elemSize(); |
| 2021 | |
| 2022 | StringRef LHSStr((const char *)LHS.atIndex(Idx: 0).getRawAddress(), LHSLength); |
| 2023 | StringRef RHSStr((const char *)RHS.atIndex(Idx: 0).getRawAddress(), RHSLength); |
| 2024 | int32_t IndexDiff = RHSOffset - LHSOffset; |
| 2025 | if (IndexDiff < 0) { |
| 2026 | if (static_cast<int32_t>(LHSLength) < -IndexDiff) |
| 2027 | return false; |
| 2028 | LHSStr = LHSStr.drop_front(N: -IndexDiff); |
| 2029 | } else { |
| 2030 | if (static_cast<int32_t>(RHSLength) < IndexDiff) |
| 2031 | return false; |
| 2032 | RHSStr = RHSStr.drop_front(N: IndexDiff); |
| 2033 | } |
| 2034 | |
| 2035 | unsigned ShorterCharWidth; |
| 2036 | StringRef Shorter; |
| 2037 | StringRef Longer; |
| 2038 | if (LHSLength < RHSLength) { |
| 2039 | ShorterCharWidth = LHS.elemSize(); |
| 2040 | Shorter = LHSStr; |
| 2041 | Longer = RHSStr; |
| 2042 | } else { |
| 2043 | ShorterCharWidth = RHS.elemSize(); |
| 2044 | Shorter = RHSStr; |
| 2045 | Longer = LHSStr; |
| 2046 | } |
| 2047 | |
| 2048 | // The null terminator isn't included in the string data, so check for it |
| 2049 | // manually. If the longer string doesn't have a null terminator where the |
| 2050 | // shorter string ends, they aren't potentially overlapping. |
| 2051 | for (unsigned NullByte : llvm::seq(Size: ShorterCharWidth)) { |
| 2052 | if (Shorter.size() + NullByte >= Longer.size()) |
| 2053 | break; |
| 2054 | if (Longer[Shorter.size() + NullByte]) |
| 2055 | return false; |
| 2056 | } |
| 2057 | return Shorter == Longer.take_front(N: Shorter.size()); |
| 2058 | } |
| 2059 | |
| 2060 | static void copyPrimitiveMemory(InterpState &S, const Pointer &Ptr, |
| 2061 | PrimType T) { |
| 2062 | |
| 2063 | if (T == PT_IntAPS) { |
| 2064 | auto &Val = Ptr.deref<IntegralAP<true>>(); |
| 2065 | if (!Val.singleWord()) { |
| 2066 | uint64_t *NewMemory = new (S.P) uint64_t[Val.numWords()]; |
| 2067 | Val.take(NewMemory); |
| 2068 | } |
| 2069 | } else if (T == PT_IntAP) { |
| 2070 | auto &Val = Ptr.deref<IntegralAP<false>>(); |
| 2071 | if (!Val.singleWord()) { |
| 2072 | uint64_t *NewMemory = new (S.P) uint64_t[Val.numWords()]; |
| 2073 | Val.take(NewMemory); |
| 2074 | } |
| 2075 | } else if (T == PT_Float) { |
| 2076 | auto &Val = Ptr.deref<Floating>(); |
| 2077 | if (!Val.singleWord()) { |
| 2078 | uint64_t *NewMemory = new (S.P) uint64_t[Val.numWords()]; |
| 2079 | Val.take(NewMemory); |
| 2080 | } |
| 2081 | } |
| 2082 | } |
| 2083 | |
| 2084 | template <typename T> |
| 2085 | static void copyPrimitiveMemory(InterpState &S, const Pointer &Ptr) { |
| 2086 | assert(needsAlloc<T>()); |
| 2087 | auto &Val = Ptr.deref<T>(); |
| 2088 | if (!Val.singleWord()) { |
| 2089 | uint64_t *NewMemory = new (S.P) uint64_t[Val.numWords()]; |
| 2090 | Val.take(NewMemory); |
| 2091 | } |
| 2092 | } |
| 2093 | |
| 2094 | static void finishGlobalRecurse(InterpState &S, const Pointer &Ptr) { |
| 2095 | if (const Record *R = Ptr.getRecord()) { |
| 2096 | for (const Record::Field &Fi : R->fields()) { |
| 2097 | if (Fi.Desc->isPrimitive()) { |
| 2098 | TYPE_SWITCH_ALLOC(Fi.Desc->getPrimType(), { |
| 2099 | copyPrimitiveMemory<T>(S, Ptr.atField(Fi.Offset)); |
| 2100 | }); |
| 2101 | copyPrimitiveMemory(S, Ptr: Ptr.atField(Off: Fi.Offset), T: Fi.Desc->getPrimType()); |
| 2102 | } else |
| 2103 | finishGlobalRecurse(S, Ptr: Ptr.atField(Off: Fi.Offset)); |
| 2104 | } |
| 2105 | return; |
| 2106 | } |
| 2107 | |
| 2108 | if (const Descriptor *D = Ptr.getFieldDesc(); D && D->isArray()) { |
| 2109 | unsigned NumElems = D->getNumElems(); |
| 2110 | if (NumElems == 0) |
| 2111 | return; |
| 2112 | |
| 2113 | if (D->isPrimitiveArray()) { |
| 2114 | PrimType PT = D->getPrimType(); |
| 2115 | if (!needsAlloc(T: PT)) |
| 2116 | return; |
| 2117 | assert(NumElems >= 1); |
| 2118 | const Pointer EP = Ptr.atIndex(Idx: 0); |
| 2119 | bool AllSingleWord = true; |
| 2120 | TYPE_SWITCH_ALLOC(PT, { |
| 2121 | if (!EP.deref<T>().singleWord()) { |
| 2122 | copyPrimitiveMemory<T>(S, EP); |
| 2123 | AllSingleWord = false; |
| 2124 | } |
| 2125 | }); |
| 2126 | if (AllSingleWord) |
| 2127 | return; |
| 2128 | for (unsigned I = 1; I != D->getNumElems(); ++I) { |
| 2129 | const Pointer EP = Ptr.atIndex(Idx: I); |
| 2130 | copyPrimitiveMemory(S, Ptr: EP, T: PT); |
| 2131 | } |
| 2132 | } else { |
| 2133 | assert(D->isCompositeArray()); |
| 2134 | for (unsigned I = 0; I != D->getNumElems(); ++I) { |
| 2135 | const Pointer EP = Ptr.atIndex(Idx: I).narrow(); |
| 2136 | finishGlobalRecurse(S, Ptr: EP); |
| 2137 | } |
| 2138 | } |
| 2139 | } |
| 2140 | } |
| 2141 | |
| 2142 | bool FinishInitGlobal(InterpState &S, CodePtr OpPC) { |
| 2143 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 2144 | |
| 2145 | finishGlobalRecurse(S, Ptr); |
| 2146 | if (Ptr.canBeInitialized()) { |
| 2147 | Ptr.initialize(); |
| 2148 | Ptr.activate(); |
| 2149 | } |
| 2150 | |
| 2151 | return true; |
| 2152 | } |
| 2153 | |
| 2154 | // https://github.com/llvm/llvm-project/issues/102513 |
| 2155 | #if defined(_MSC_VER) && !defined(__clang__) && !defined(NDEBUG) |
| 2156 | #pragma optimize("", off) |
| 2157 | #endif |
| 2158 | bool Interpret(InterpState &S) { |
| 2159 | // The current stack frame when we started Interpret(). |
| 2160 | // This is being used by the ops to determine wheter |
| 2161 | // to return from this function and thus terminate |
| 2162 | // interpretation. |
| 2163 | const InterpFrame *StartFrame = S.Current; |
| 2164 | assert(!S.Current->isRoot()); |
| 2165 | CodePtr PC = S.Current->getPC(); |
| 2166 | |
| 2167 | // Empty program. |
| 2168 | if (!PC) |
| 2169 | return true; |
| 2170 | |
| 2171 | for (;;) { |
| 2172 | auto Op = PC.read<Opcode>(); |
| 2173 | CodePtr OpPC = PC; |
| 2174 | |
| 2175 | switch (Op) { |
| 2176 | #define GET_INTERP |
| 2177 | #include "Opcodes.inc" |
| 2178 | #undef GET_INTERP |
| 2179 | } |
| 2180 | } |
| 2181 | } |
| 2182 | // https://github.com/llvm/llvm-project/issues/102513 |
| 2183 | #if defined(_MSC_VER) && !defined(__clang__) && !defined(NDEBUG) |
| 2184 | #pragma optimize("", on) |
| 2185 | #endif |
| 2186 | |
| 2187 | } // namespace interp |
| 2188 | } // namespace clang |
| 2189 | |