1 | //===--- Interp.h - Interpreter for the constexpr VM ------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Definition of the interpreter state and entry point. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_CLANG_AST_INTERP_INTERP_H |
14 | #define LLVM_CLANG_AST_INTERP_INTERP_H |
15 | |
16 | #include "../ExprConstShared.h" |
17 | #include "BitcastBuffer.h" |
18 | #include "Boolean.h" |
19 | #include "DynamicAllocator.h" |
20 | #include "FixedPoint.h" |
21 | #include "Floating.h" |
22 | #include "Function.h" |
23 | #include "InterpBuiltinBitCast.h" |
24 | #include "InterpFrame.h" |
25 | #include "InterpStack.h" |
26 | #include "InterpState.h" |
27 | #include "MemberPointer.h" |
28 | #include "Opcode.h" |
29 | #include "PrimType.h" |
30 | #include "Program.h" |
31 | #include "State.h" |
32 | #include "clang/AST/ASTContext.h" |
33 | #include "clang/AST/Expr.h" |
34 | #include "llvm/ADT/APFloat.h" |
35 | #include "llvm/ADT/APSInt.h" |
36 | #include <type_traits> |
37 | |
38 | namespace clang { |
39 | namespace interp { |
40 | |
41 | using APSInt = llvm::APSInt; |
42 | using FixedPointSemantics = llvm::FixedPointSemantics; |
43 | |
44 | /// Checks if the variable has externally defined storage. |
45 | bool CheckExtern(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
46 | |
47 | /// Checks if the array is offsetable. |
48 | bool CheckArray(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
49 | |
50 | /// Checks if a pointer is live and accessible. |
51 | bool CheckLive(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
52 | AccessKinds AK); |
53 | |
54 | /// Checks if a pointer is a dummy pointer. |
55 | bool CheckDummy(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
56 | AccessKinds AK); |
57 | |
58 | /// Checks if a pointer is null. |
59 | bool CheckNull(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
60 | CheckSubobjectKind CSK); |
61 | |
62 | /// Checks if a pointer is in range. |
63 | bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
64 | AccessKinds AK); |
65 | |
66 | /// Checks if a field from which a pointer is going to be derived is valid. |
67 | bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
68 | CheckSubobjectKind CSK); |
69 | |
70 | /// Checks if Ptr is a one-past-the-end pointer. |
71 | bool CheckSubobject(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
72 | CheckSubobjectKind CSK); |
73 | |
74 | /// Checks if the dowcast using the given offset is possible with the given |
75 | /// pointer. |
76 | bool CheckDowncast(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
77 | uint32_t Offset); |
78 | |
79 | /// Checks if a pointer points to const storage. |
80 | bool CheckConst(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
81 | |
82 | /// Checks if the Descriptor is of a constexpr or const global variable. |
83 | bool CheckConstant(InterpState &S, CodePtr OpPC, const Descriptor *Desc); |
84 | |
85 | /// Checks if a pointer points to a mutable field. |
86 | bool CheckMutable(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
87 | |
88 | /// Checks if a value can be loaded from a block. |
89 | bool CheckLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
90 | AccessKinds AK = AK_Read); |
91 | bool CheckFinalLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
92 | |
93 | bool CheckInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
94 | AccessKinds AK); |
95 | /// Check if a global variable is initialized. |
96 | bool CheckGlobalInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
97 | |
98 | /// Checks if a value can be stored in a block. |
99 | bool CheckStore(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
100 | |
101 | /// Checks if a method can be invoked on an object. |
102 | bool CheckInvoke(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
103 | |
104 | /// Checks if a value can be initialized. |
105 | bool CheckInit(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
106 | |
107 | /// Checks if a method can be called. |
108 | bool CheckCallable(InterpState &S, CodePtr OpPC, const Function *F); |
109 | |
110 | /// Checks if calling the currently active function would exceed |
111 | /// the allowed call depth. |
112 | bool CheckCallDepth(InterpState &S, CodePtr OpPC); |
113 | |
114 | /// Checks the 'this' pointer. |
115 | bool CheckThis(InterpState &S, CodePtr OpPC, const Pointer &This); |
116 | |
117 | /// Checks if all the arguments annotated as 'nonnull' are in fact not null. |
118 | bool CheckNonNullArgs(InterpState &S, CodePtr OpPC, const Function *F, |
119 | const CallExpr *CE, unsigned ArgSize); |
120 | |
121 | /// Checks if dynamic memory allocation is available in the current |
122 | /// language mode. |
123 | bool CheckDynamicMemoryAllocation(InterpState &S, CodePtr OpPC); |
124 | |
125 | /// Diagnose mismatched new[]/delete or new/delete[] pairs. |
126 | bool CheckNewDeleteForms(InterpState &S, CodePtr OpPC, |
127 | DynamicAllocator::Form AllocForm, |
128 | DynamicAllocator::Form DeleteForm, const Descriptor *D, |
129 | const Expr *NewExpr); |
130 | |
131 | /// Check the source of the pointer passed to delete/delete[] has actually |
132 | /// been heap allocated by us. |
133 | bool CheckDeleteSource(InterpState &S, CodePtr OpPC, const Expr *Source, |
134 | const Pointer &Ptr); |
135 | |
136 | bool CheckActive(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
137 | AccessKinds AK); |
138 | |
139 | /// Sets the given integral value to the pointer, which is of |
140 | /// a std::{weak,partial,strong}_ordering type. |
141 | bool SetThreeWayComparisonField(InterpState &S, CodePtr OpPC, |
142 | const Pointer &Ptr, const APSInt &IntValue); |
143 | |
144 | /// Copy the contents of Src into Dest. |
145 | bool DoMemcpy(InterpState &S, CodePtr OpPC, const Pointer &Src, Pointer &Dest); |
146 | |
147 | bool CallVar(InterpState &S, CodePtr OpPC, const Function *Func, |
148 | uint32_t VarArgSize); |
149 | bool Call(InterpState &S, CodePtr OpPC, const Function *Func, |
150 | uint32_t VarArgSize); |
151 | bool CallVirt(InterpState &S, CodePtr OpPC, const Function *Func, |
152 | uint32_t VarArgSize); |
153 | bool CallBI(InterpState &S, CodePtr OpPC, const CallExpr *CE, |
154 | uint32_t BuiltinID); |
155 | bool CallPtr(InterpState &S, CodePtr OpPC, uint32_t ArgSize, |
156 | const CallExpr *CE); |
157 | bool CheckLiteralType(InterpState &S, CodePtr OpPC, const Type *T); |
158 | bool InvalidShuffleVectorIndex(InterpState &S, CodePtr OpPC, uint32_t Index); |
159 | bool CheckBitCast(InterpState &S, CodePtr OpPC, bool HasIndeterminateBits, |
160 | bool TargetIsUCharOrByte); |
161 | bool CheckBCPResult(InterpState &S, const Pointer &Ptr); |
162 | bool CheckDestructor(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
163 | |
164 | template <typename T> |
165 | static bool handleOverflow(InterpState &S, CodePtr OpPC, const T &SrcValue) { |
166 | const Expr *E = S.Current->getExpr(PC: OpPC); |
167 | S.CCEDiag(E, DiagId: diag::note_constexpr_overflow) << SrcValue << E->getType(); |
168 | return S.noteUndefinedBehavior(); |
169 | } |
170 | bool handleFixedPointOverflow(InterpState &S, CodePtr OpPC, |
171 | const FixedPoint &FP); |
172 | |
173 | bool isConstexprUnknown(const Pointer &P); |
174 | |
175 | inline bool CheckArraySize(InterpState &S, CodePtr OpPC, uint64_t NumElems); |
176 | |
177 | enum class ShiftDir { Left, Right }; |
178 | |
179 | /// Checks if the shift operation is legal. |
180 | template <ShiftDir Dir, typename LT, typename RT> |
181 | bool CheckShift(InterpState &S, CodePtr OpPC, const LT &LHS, const RT &RHS, |
182 | unsigned Bits) { |
183 | if (RHS.isNegative()) { |
184 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
185 | S.CCEDiag(SI: Loc, DiagId: diag::note_constexpr_negative_shift) << RHS.toAPSInt(); |
186 | if (!S.noteUndefinedBehavior()) |
187 | return false; |
188 | } |
189 | |
190 | // C++11 [expr.shift]p1: Shift width must be less than the bit width of |
191 | // the shifted type. |
192 | if (Bits > 1 && RHS >= Bits) { |
193 | const Expr *E = S.Current->getExpr(PC: OpPC); |
194 | const APSInt Val = RHS.toAPSInt(); |
195 | QualType Ty = E->getType(); |
196 | S.CCEDiag(E, DiagId: diag::note_constexpr_large_shift) << Val << Ty << Bits; |
197 | if (!S.noteUndefinedBehavior()) |
198 | return false; |
199 | } |
200 | |
201 | if constexpr (Dir == ShiftDir::Left) { |
202 | if (LHS.isSigned() && !S.getLangOpts().CPlusPlus20) { |
203 | // C++11 [expr.shift]p2: A signed left shift must have a non-negative |
204 | // operand, and must not overflow the corresponding unsigned type. |
205 | if (LHS.isNegative()) { |
206 | const Expr *E = S.Current->getExpr(PC: OpPC); |
207 | S.CCEDiag(E, DiagId: diag::note_constexpr_lshift_of_negative) << LHS.toAPSInt(); |
208 | if (!S.noteUndefinedBehavior()) |
209 | return false; |
210 | } else if (LHS.toUnsigned().countLeadingZeros() < |
211 | static_cast<unsigned>(RHS)) { |
212 | const Expr *E = S.Current->getExpr(PC: OpPC); |
213 | S.CCEDiag(E, DiagId: diag::note_constexpr_lshift_discards); |
214 | if (!S.noteUndefinedBehavior()) |
215 | return false; |
216 | } |
217 | } |
218 | } |
219 | |
220 | // C++2a [expr.shift]p2: [P0907R4]: |
221 | // E1 << E2 is the unique value congruent to |
222 | // E1 x 2^E2 module 2^N. |
223 | return true; |
224 | } |
225 | |
226 | /// Checks if Div/Rem operation on LHS and RHS is valid. |
227 | template <typename T> |
228 | bool CheckDivRem(InterpState &S, CodePtr OpPC, const T &LHS, const T &RHS) { |
229 | if (RHS.isZero()) { |
230 | const auto *Op = cast<BinaryOperator>(Val: S.Current->getExpr(PC: OpPC)); |
231 | if constexpr (std::is_same_v<T, Floating>) { |
232 | S.CCEDiag(E: Op, DiagId: diag::note_expr_divide_by_zero) |
233 | << Op->getRHS()->getSourceRange(); |
234 | return true; |
235 | } |
236 | |
237 | S.FFDiag(E: Op, DiagId: diag::note_expr_divide_by_zero) |
238 | << Op->getRHS()->getSourceRange(); |
239 | return false; |
240 | } |
241 | |
242 | if constexpr (!std::is_same_v<T, FixedPoint>) { |
243 | if (LHS.isSigned() && LHS.isMin() && RHS.isNegative() && RHS.isMinusOne()) { |
244 | APSInt LHSInt = LHS.toAPSInt(); |
245 | SmallString<32> Trunc; |
246 | (-LHSInt.extend(width: LHSInt.getBitWidth() + 1)).toString(Str&: Trunc, Radix: 10); |
247 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
248 | const Expr *E = S.Current->getExpr(PC: OpPC); |
249 | S.CCEDiag(SI: Loc, DiagId: diag::note_constexpr_overflow) << Trunc << E->getType(); |
250 | return false; |
251 | } |
252 | } |
253 | return true; |
254 | } |
255 | |
256 | template <typename SizeT> |
257 | bool CheckArraySize(InterpState &S, CodePtr OpPC, SizeT *NumElements, |
258 | unsigned ElemSize, bool IsNoThrow) { |
259 | // FIXME: Both the SizeT::from() as well as the |
260 | // NumElements.toAPSInt() in this function are rather expensive. |
261 | |
262 | // Can't be too many elements if the bitwidth of NumElements is lower than |
263 | // that of Descriptor::MaxArrayElemBytes. |
264 | if ((NumElements->bitWidth() - NumElements->isSigned()) < |
265 | (sizeof(Descriptor::MaxArrayElemBytes) * 8)) |
266 | return true; |
267 | |
268 | // FIXME: GH63562 |
269 | // APValue stores array extents as unsigned, |
270 | // so anything that is greater that unsigned would overflow when |
271 | // constructing the array, we catch this here. |
272 | SizeT MaxElements = SizeT::from(Descriptor::MaxArrayElemBytes / ElemSize); |
273 | assert(MaxElements.isPositive()); |
274 | if (NumElements->toAPSInt().getActiveBits() > |
275 | ConstantArrayType::getMaxSizeBits(Context: S.getASTContext()) || |
276 | *NumElements > MaxElements) { |
277 | if (!IsNoThrow) { |
278 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
279 | |
280 | if (NumElements->isSigned() && NumElements->isNegative()) { |
281 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_new_negative) |
282 | << NumElements->toDiagnosticString(S.getASTContext()); |
283 | } else { |
284 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_new_too_large) |
285 | << NumElements->toDiagnosticString(S.getASTContext()); |
286 | } |
287 | } |
288 | return false; |
289 | } |
290 | return true; |
291 | } |
292 | |
293 | /// Checks if the result of a floating-point operation is valid |
294 | /// in the current context. |
295 | bool CheckFloatResult(InterpState &S, CodePtr OpPC, const Floating &Result, |
296 | APFloat::opStatus Status, FPOptions FPO); |
297 | |
298 | /// Checks why the given DeclRefExpr is invalid. |
299 | bool CheckDeclRef(InterpState &S, CodePtr OpPC, const DeclRefExpr *DR); |
300 | |
301 | /// Interpreter entry point. |
302 | bool Interpret(InterpState &S); |
303 | |
304 | /// Interpret a builtin function. |
305 | bool InterpretBuiltin(InterpState &S, CodePtr OpPC, const CallExpr *Call, |
306 | uint32_t BuiltinID); |
307 | |
308 | /// Interpret an offsetof operation. |
309 | bool InterpretOffsetOf(InterpState &S, CodePtr OpPC, const OffsetOfExpr *E, |
310 | ArrayRef<int64_t> ArrayIndices, int64_t &Result); |
311 | |
312 | inline bool Invalid(InterpState &S, CodePtr OpPC); |
313 | |
314 | enum class ArithOp { Add, Sub }; |
315 | |
316 | //===----------------------------------------------------------------------===// |
317 | // Returning values |
318 | //===----------------------------------------------------------------------===// |
319 | |
320 | void cleanupAfterFunctionCall(InterpState &S, CodePtr OpPC, |
321 | const Function *Func); |
322 | |
323 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
324 | bool Ret(InterpState &S, CodePtr &PC) { |
325 | const T &Ret = S.Stk.pop<T>(); |
326 | |
327 | assert(S.Current); |
328 | assert(S.Current->getFrameOffset() == S.Stk.size() && "Invalid frame" ); |
329 | if (!S.checkingPotentialConstantExpression() || S.Current->Caller) |
330 | cleanupAfterFunctionCall(S, OpPC: PC, Func: S.Current->getFunction()); |
331 | |
332 | if (InterpFrame *Caller = S.Current->Caller) { |
333 | PC = S.Current->getRetPC(); |
334 | InterpFrame::free(F: S.Current); |
335 | S.Current = Caller; |
336 | S.Stk.push<T>(Ret); |
337 | } else { |
338 | InterpFrame::free(F: S.Current); |
339 | S.Current = nullptr; |
340 | // The topmost frame should come from an EvalEmitter, |
341 | // which has its own implementation of the Ret<> instruction. |
342 | } |
343 | return true; |
344 | } |
345 | |
346 | inline bool RetVoid(InterpState &S, CodePtr &PC) { |
347 | assert(S.Current->getFrameOffset() == S.Stk.size() && "Invalid frame" ); |
348 | |
349 | if (!S.checkingPotentialConstantExpression() || S.Current->Caller) |
350 | cleanupAfterFunctionCall(S, OpPC: PC, Func: S.Current->getFunction()); |
351 | |
352 | if (InterpFrame *Caller = S.Current->Caller) { |
353 | PC = S.Current->getRetPC(); |
354 | InterpFrame::free(F: S.Current); |
355 | S.Current = Caller; |
356 | } else { |
357 | InterpFrame::free(F: S.Current); |
358 | S.Current = nullptr; |
359 | } |
360 | return true; |
361 | } |
362 | |
363 | //===----------------------------------------------------------------------===// |
364 | // Add, Sub, Mul |
365 | //===----------------------------------------------------------------------===// |
366 | |
367 | template <typename T, bool (*OpFW)(T, T, unsigned, T *), |
368 | template <typename U> class OpAP> |
369 | bool AddSubMulHelper(InterpState &S, CodePtr OpPC, unsigned Bits, const T &LHS, |
370 | const T &RHS) { |
371 | // Fast path - add the numbers with fixed width. |
372 | T Result; |
373 | if constexpr (needsAlloc<T>()) |
374 | Result = S.allocAP<T>(LHS.bitWidth()); |
375 | |
376 | if (!OpFW(LHS, RHS, Bits, &Result)) { |
377 | S.Stk.push<T>(Result); |
378 | return true; |
379 | } |
380 | // If for some reason evaluation continues, use the truncated results. |
381 | S.Stk.push<T>(Result); |
382 | |
383 | // Short-circuit fixed-points here since the error handling is easier. |
384 | if constexpr (std::is_same_v<T, FixedPoint>) |
385 | return handleFixedPointOverflow(S, OpPC, Result); |
386 | |
387 | // Slow path - compute the result using another bit of precision. |
388 | APSInt Value = OpAP<APSInt>()(LHS.toAPSInt(Bits), RHS.toAPSInt(Bits)); |
389 | |
390 | // Report undefined behaviour, stopping if required. |
391 | if (S.checkingForUndefinedBehavior()) { |
392 | const Expr *E = S.Current->getExpr(PC: OpPC); |
393 | QualType Type = E->getType(); |
394 | SmallString<32> Trunc; |
395 | Value.trunc(width: Result.bitWidth()) |
396 | .toString(Trunc, 10, Result.isSigned(), /*formatAsCLiteral=*/false, |
397 | /*UpperCase=*/true, /*InsertSeparators=*/true); |
398 | S.report(Loc: E->getExprLoc(), DiagId: diag::warn_integer_constant_overflow) |
399 | << Trunc << Type << E->getSourceRange(); |
400 | } |
401 | |
402 | if (!handleOverflow(S, OpPC, SrcValue: Value)) { |
403 | S.Stk.pop<T>(); |
404 | return false; |
405 | } |
406 | return true; |
407 | } |
408 | |
409 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
410 | bool Add(InterpState &S, CodePtr OpPC) { |
411 | const T &RHS = S.Stk.pop<T>(); |
412 | const T &LHS = S.Stk.pop<T>(); |
413 | const unsigned Bits = RHS.bitWidth() + 1; |
414 | |
415 | return AddSubMulHelper<T, T::add, std::plus>(S, OpPC, Bits, LHS, RHS); |
416 | } |
417 | |
418 | static inline llvm::RoundingMode getRoundingMode(FPOptions FPO) { |
419 | auto RM = FPO.getRoundingMode(); |
420 | if (RM == llvm::RoundingMode::Dynamic) |
421 | return llvm::RoundingMode::NearestTiesToEven; |
422 | return RM; |
423 | } |
424 | |
425 | inline bool Addf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
426 | const Floating &RHS = S.Stk.pop<Floating>(); |
427 | const Floating &LHS = S.Stk.pop<Floating>(); |
428 | |
429 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
430 | Floating Result = S.allocFloat(Sem: LHS.getSemantics()); |
431 | auto Status = Floating::add(A: LHS, B: RHS, RM: getRoundingMode(FPO), R: &Result); |
432 | S.Stk.push<Floating>(Args&: Result); |
433 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
434 | } |
435 | |
436 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
437 | bool Sub(InterpState &S, CodePtr OpPC) { |
438 | const T &RHS = S.Stk.pop<T>(); |
439 | const T &LHS = S.Stk.pop<T>(); |
440 | const unsigned Bits = RHS.bitWidth() + 1; |
441 | |
442 | return AddSubMulHelper<T, T::sub, std::minus>(S, OpPC, Bits, LHS, RHS); |
443 | } |
444 | |
445 | inline bool Subf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
446 | const Floating &RHS = S.Stk.pop<Floating>(); |
447 | const Floating &LHS = S.Stk.pop<Floating>(); |
448 | |
449 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
450 | Floating Result = S.allocFloat(Sem: LHS.getSemantics()); |
451 | auto Status = Floating::sub(A: LHS, B: RHS, RM: getRoundingMode(FPO), R: &Result); |
452 | S.Stk.push<Floating>(Args&: Result); |
453 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
454 | } |
455 | |
456 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
457 | bool Mul(InterpState &S, CodePtr OpPC) { |
458 | const T &RHS = S.Stk.pop<T>(); |
459 | const T &LHS = S.Stk.pop<T>(); |
460 | const unsigned Bits = RHS.bitWidth() * 2; |
461 | |
462 | return AddSubMulHelper<T, T::mul, std::multiplies>(S, OpPC, Bits, LHS, RHS); |
463 | } |
464 | |
465 | inline bool Mulf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
466 | const Floating &RHS = S.Stk.pop<Floating>(); |
467 | const Floating &LHS = S.Stk.pop<Floating>(); |
468 | |
469 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
470 | Floating Result = S.allocFloat(Sem: LHS.getSemantics()); |
471 | |
472 | auto Status = Floating::mul(A: LHS, B: RHS, RM: getRoundingMode(FPO), R: &Result); |
473 | |
474 | S.Stk.push<Floating>(Args&: Result); |
475 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
476 | } |
477 | |
478 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
479 | inline bool Mulc(InterpState &S, CodePtr OpPC) { |
480 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
481 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
482 | const Pointer &Result = S.Stk.peek<Pointer>(); |
483 | |
484 | if constexpr (std::is_same_v<T, Floating>) { |
485 | APFloat A = LHS.atIndex(Idx: 0).deref<Floating>().getAPFloat(); |
486 | APFloat B = LHS.atIndex(Idx: 1).deref<Floating>().getAPFloat(); |
487 | APFloat C = RHS.atIndex(Idx: 0).deref<Floating>().getAPFloat(); |
488 | APFloat D = RHS.atIndex(Idx: 1).deref<Floating>().getAPFloat(); |
489 | |
490 | APFloat ResR(A.getSemantics()); |
491 | APFloat ResI(A.getSemantics()); |
492 | HandleComplexComplexMul(A, B, C, D, ResR, ResI); |
493 | |
494 | // Copy into the result. |
495 | Floating RA = S.allocFloat(Sem: A.getSemantics()); |
496 | RA.copy(F: ResR); |
497 | Result.atIndex(Idx: 0).deref<Floating>() = RA; // Floating(ResR); |
498 | Result.atIndex(Idx: 0).initialize(); |
499 | |
500 | Floating RI = S.allocFloat(Sem: A.getSemantics()); |
501 | RI.copy(F: ResI); |
502 | Result.atIndex(Idx: 1).deref<Floating>() = RI; // Floating(ResI); |
503 | Result.atIndex(Idx: 1).initialize(); |
504 | Result.initialize(); |
505 | } else { |
506 | // Integer element type. |
507 | const T &LHSR = LHS.atIndex(Idx: 0).deref<T>(); |
508 | const T &LHSI = LHS.atIndex(Idx: 1).deref<T>(); |
509 | const T &RHSR = RHS.atIndex(Idx: 0).deref<T>(); |
510 | const T &RHSI = RHS.atIndex(Idx: 1).deref<T>(); |
511 | unsigned Bits = LHSR.bitWidth(); |
512 | |
513 | // real(Result) = (real(LHS) * real(RHS)) - (imag(LHS) * imag(RHS)) |
514 | T A; |
515 | if (T::mul(LHSR, RHSR, Bits, &A)) |
516 | return false; |
517 | T B; |
518 | if (T::mul(LHSI, RHSI, Bits, &B)) |
519 | return false; |
520 | if (T::sub(A, B, Bits, &Result.atIndex(Idx: 0).deref<T>())) |
521 | return false; |
522 | Result.atIndex(Idx: 0).initialize(); |
523 | |
524 | // imag(Result) = (real(LHS) * imag(RHS)) + (imag(LHS) * real(RHS)) |
525 | if (T::mul(LHSR, RHSI, Bits, &A)) |
526 | return false; |
527 | if (T::mul(LHSI, RHSR, Bits, &B)) |
528 | return false; |
529 | if (T::add(A, B, Bits, &Result.atIndex(Idx: 1).deref<T>())) |
530 | return false; |
531 | Result.atIndex(Idx: 1).initialize(); |
532 | Result.initialize(); |
533 | } |
534 | |
535 | return true; |
536 | } |
537 | |
538 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
539 | inline bool Divc(InterpState &S, CodePtr OpPC) { |
540 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
541 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
542 | const Pointer &Result = S.Stk.peek<Pointer>(); |
543 | |
544 | if constexpr (std::is_same_v<T, Floating>) { |
545 | APFloat A = LHS.atIndex(Idx: 0).deref<Floating>().getAPFloat(); |
546 | APFloat B = LHS.atIndex(Idx: 1).deref<Floating>().getAPFloat(); |
547 | APFloat C = RHS.atIndex(Idx: 0).deref<Floating>().getAPFloat(); |
548 | APFloat D = RHS.atIndex(Idx: 1).deref<Floating>().getAPFloat(); |
549 | |
550 | APFloat ResR(A.getSemantics()); |
551 | APFloat ResI(A.getSemantics()); |
552 | HandleComplexComplexDiv(A, B, C, D, ResR, ResI); |
553 | |
554 | // Copy into the result. |
555 | Floating RA = S.allocFloat(Sem: A.getSemantics()); |
556 | RA.copy(F: ResR); |
557 | Result.atIndex(Idx: 0).deref<Floating>() = RA; // Floating(ResR); |
558 | Result.atIndex(Idx: 0).initialize(); |
559 | |
560 | Floating RI = S.allocFloat(Sem: A.getSemantics()); |
561 | RI.copy(F: ResI); |
562 | Result.atIndex(Idx: 1).deref<Floating>() = RI; // Floating(ResI); |
563 | Result.atIndex(Idx: 1).initialize(); |
564 | |
565 | Result.initialize(); |
566 | } else { |
567 | // Integer element type. |
568 | const T &LHSR = LHS.atIndex(Idx: 0).deref<T>(); |
569 | const T &LHSI = LHS.atIndex(Idx: 1).deref<T>(); |
570 | const T &RHSR = RHS.atIndex(Idx: 0).deref<T>(); |
571 | const T &RHSI = RHS.atIndex(Idx: 1).deref<T>(); |
572 | unsigned Bits = LHSR.bitWidth(); |
573 | const T Zero = T::from(0, Bits); |
574 | |
575 | if (Compare(RHSR, Zero) == ComparisonCategoryResult::Equal && |
576 | Compare(RHSI, Zero) == ComparisonCategoryResult::Equal) { |
577 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
578 | S.FFDiag(SI: E, DiagId: diag::note_expr_divide_by_zero); |
579 | return false; |
580 | } |
581 | |
582 | // Den = real(RHS)² + imag(RHS)² |
583 | T A, B; |
584 | if (T::mul(RHSR, RHSR, Bits, &A) || T::mul(RHSI, RHSI, Bits, &B)) { |
585 | // Ignore overflow here, because that's what the current interpeter does. |
586 | } |
587 | T Den; |
588 | if (T::add(A, B, Bits, &Den)) |
589 | return false; |
590 | |
591 | if (Compare(Den, Zero) == ComparisonCategoryResult::Equal) { |
592 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
593 | S.FFDiag(SI: E, DiagId: diag::note_expr_divide_by_zero); |
594 | return false; |
595 | } |
596 | |
597 | // real(Result) = ((real(LHS) * real(RHS)) + (imag(LHS) * imag(RHS))) / Den |
598 | T &ResultR = Result.atIndex(Idx: 0).deref<T>(); |
599 | T &ResultI = Result.atIndex(Idx: 1).deref<T>(); |
600 | |
601 | if (T::mul(LHSR, RHSR, Bits, &A) || T::mul(LHSI, RHSI, Bits, &B)) |
602 | return false; |
603 | if (T::add(A, B, Bits, &ResultR)) |
604 | return false; |
605 | if (T::div(ResultR, Den, Bits, &ResultR)) |
606 | return false; |
607 | Result.atIndex(Idx: 0).initialize(); |
608 | |
609 | // imag(Result) = ((imag(LHS) * real(RHS)) - (real(LHS) * imag(RHS))) / Den |
610 | if (T::mul(LHSI, RHSR, Bits, &A) || T::mul(LHSR, RHSI, Bits, &B)) |
611 | return false; |
612 | if (T::sub(A, B, Bits, &ResultI)) |
613 | return false; |
614 | if (T::div(ResultI, Den, Bits, &ResultI)) |
615 | return false; |
616 | Result.atIndex(Idx: 1).initialize(); |
617 | Result.initialize(); |
618 | } |
619 | |
620 | return true; |
621 | } |
622 | |
623 | /// 1) Pops the RHS from the stack. |
624 | /// 2) Pops the LHS from the stack. |
625 | /// 3) Pushes 'LHS & RHS' on the stack |
626 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
627 | bool BitAnd(InterpState &S, CodePtr OpPC) { |
628 | const T &RHS = S.Stk.pop<T>(); |
629 | const T &LHS = S.Stk.pop<T>(); |
630 | unsigned Bits = RHS.bitWidth(); |
631 | |
632 | T Result; |
633 | if constexpr (needsAlloc<T>()) |
634 | Result = S.allocAP<T>(Bits); |
635 | |
636 | if (!T::bitAnd(LHS, RHS, Bits, &Result)) { |
637 | S.Stk.push<T>(Result); |
638 | return true; |
639 | } |
640 | return false; |
641 | } |
642 | |
643 | /// 1) Pops the RHS from the stack. |
644 | /// 2) Pops the LHS from the stack. |
645 | /// 3) Pushes 'LHS | RHS' on the stack |
646 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
647 | bool BitOr(InterpState &S, CodePtr OpPC) { |
648 | const T &RHS = S.Stk.pop<T>(); |
649 | const T &LHS = S.Stk.pop<T>(); |
650 | unsigned Bits = RHS.bitWidth(); |
651 | |
652 | T Result; |
653 | if constexpr (needsAlloc<T>()) |
654 | Result = S.allocAP<T>(Bits); |
655 | |
656 | if (!T::bitOr(LHS, RHS, Bits, &Result)) { |
657 | S.Stk.push<T>(Result); |
658 | return true; |
659 | } |
660 | return false; |
661 | } |
662 | |
663 | /// 1) Pops the RHS from the stack. |
664 | /// 2) Pops the LHS from the stack. |
665 | /// 3) Pushes 'LHS ^ RHS' on the stack |
666 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
667 | bool BitXor(InterpState &S, CodePtr OpPC) { |
668 | const T &RHS = S.Stk.pop<T>(); |
669 | const T &LHS = S.Stk.pop<T>(); |
670 | |
671 | unsigned Bits = RHS.bitWidth(); |
672 | |
673 | T Result; |
674 | if constexpr (needsAlloc<T>()) |
675 | Result = S.allocAP<T>(Bits); |
676 | |
677 | if (!T::bitXor(LHS, RHS, Bits, &Result)) { |
678 | S.Stk.push<T>(Result); |
679 | return true; |
680 | } |
681 | return false; |
682 | } |
683 | |
684 | /// 1) Pops the RHS from the stack. |
685 | /// 2) Pops the LHS from the stack. |
686 | /// 3) Pushes 'LHS % RHS' on the stack (the remainder of dividing LHS by RHS). |
687 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
688 | bool Rem(InterpState &S, CodePtr OpPC) { |
689 | const T &RHS = S.Stk.pop<T>(); |
690 | const T &LHS = S.Stk.pop<T>(); |
691 | const unsigned Bits = RHS.bitWidth() * 2; |
692 | |
693 | if (!CheckDivRem(S, OpPC, LHS, RHS)) |
694 | return false; |
695 | |
696 | T Result; |
697 | if constexpr (needsAlloc<T>()) |
698 | Result = S.allocAP<T>(LHS.bitWidth()); |
699 | |
700 | if (!T::rem(LHS, RHS, Bits, &Result)) { |
701 | S.Stk.push<T>(Result); |
702 | return true; |
703 | } |
704 | return false; |
705 | } |
706 | |
707 | /// 1) Pops the RHS from the stack. |
708 | /// 2) Pops the LHS from the stack. |
709 | /// 3) Pushes 'LHS / RHS' on the stack |
710 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
711 | bool Div(InterpState &S, CodePtr OpPC) { |
712 | const T &RHS = S.Stk.pop<T>(); |
713 | const T &LHS = S.Stk.pop<T>(); |
714 | const unsigned Bits = RHS.bitWidth() * 2; |
715 | |
716 | if (!CheckDivRem(S, OpPC, LHS, RHS)) |
717 | return false; |
718 | |
719 | T Result; |
720 | if constexpr (needsAlloc<T>()) |
721 | Result = S.allocAP<T>(LHS.bitWidth()); |
722 | |
723 | if (!T::div(LHS, RHS, Bits, &Result)) { |
724 | S.Stk.push<T>(Result); |
725 | return true; |
726 | } |
727 | |
728 | if constexpr (std::is_same_v<T, FixedPoint>) { |
729 | if (handleFixedPointOverflow(S, OpPC, Result)) { |
730 | S.Stk.push<T>(Result); |
731 | return true; |
732 | } |
733 | } |
734 | return false; |
735 | } |
736 | |
737 | inline bool Divf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
738 | const Floating &RHS = S.Stk.pop<Floating>(); |
739 | const Floating &LHS = S.Stk.pop<Floating>(); |
740 | |
741 | if (!CheckDivRem(S, OpPC, LHS, RHS)) |
742 | return false; |
743 | |
744 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
745 | |
746 | Floating Result = S.allocFloat(Sem: LHS.getSemantics()); |
747 | auto Status = Floating::div(A: LHS, B: RHS, RM: getRoundingMode(FPO), R: &Result); |
748 | |
749 | S.Stk.push<Floating>(Args&: Result); |
750 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
751 | } |
752 | |
753 | //===----------------------------------------------------------------------===// |
754 | // Inv |
755 | //===----------------------------------------------------------------------===// |
756 | |
757 | inline bool Inv(InterpState &S, CodePtr OpPC) { |
758 | const auto &Val = S.Stk.pop<Boolean>(); |
759 | S.Stk.push<Boolean>(Args: !Val); |
760 | return true; |
761 | } |
762 | |
763 | //===----------------------------------------------------------------------===// |
764 | // Neg |
765 | //===----------------------------------------------------------------------===// |
766 | |
767 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
768 | bool Neg(InterpState &S, CodePtr OpPC) { |
769 | const T &Value = S.Stk.pop<T>(); |
770 | |
771 | if constexpr (std::is_same_v<T, Floating>) { |
772 | T Result = S.allocFloat(Sem: Value.getSemantics()); |
773 | |
774 | if (!T::neg(Value, &Result)) { |
775 | S.Stk.push<T>(Result); |
776 | return true; |
777 | } |
778 | return false; |
779 | } else { |
780 | T Result; |
781 | if constexpr (needsAlloc<T>()) |
782 | Result = S.allocAP<T>(Value.bitWidth()); |
783 | |
784 | if (!T::neg(Value, &Result)) { |
785 | S.Stk.push<T>(Result); |
786 | return true; |
787 | } |
788 | |
789 | assert(isIntegralType(Name) && |
790 | "don't expect other types to fail at constexpr negation" ); |
791 | S.Stk.push<T>(Result); |
792 | |
793 | APSInt NegatedValue = -Value.toAPSInt(Value.bitWidth() + 1); |
794 | if (S.checkingForUndefinedBehavior()) { |
795 | const Expr *E = S.Current->getExpr(PC: OpPC); |
796 | QualType Type = E->getType(); |
797 | SmallString<32> Trunc; |
798 | NegatedValue.trunc(width: Result.bitWidth()) |
799 | .toString(Trunc, 10, Result.isSigned(), /*formatAsCLiteral=*/false, |
800 | /*UpperCase=*/true, /*InsertSeparators=*/true); |
801 | S.report(Loc: E->getExprLoc(), DiagId: diag::warn_integer_constant_overflow) |
802 | << Trunc << Type << E->getSourceRange(); |
803 | return true; |
804 | } |
805 | |
806 | return handleOverflow(S, OpPC, SrcValue: NegatedValue); |
807 | } |
808 | } |
809 | |
810 | enum class PushVal : bool { |
811 | No, |
812 | Yes, |
813 | }; |
814 | enum class IncDecOp { |
815 | Inc, |
816 | Dec, |
817 | }; |
818 | |
819 | template <typename T, IncDecOp Op, PushVal DoPush> |
820 | bool IncDecHelper(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
821 | bool CanOverflow) { |
822 | assert(!Ptr.isDummy()); |
823 | |
824 | if (!S.inConstantContext()) { |
825 | if (isConstexprUnknown(P: Ptr)) |
826 | return false; |
827 | } |
828 | |
829 | if constexpr (std::is_same_v<T, Boolean>) { |
830 | if (!S.getLangOpts().CPlusPlus14) |
831 | return Invalid(S, OpPC); |
832 | } |
833 | |
834 | const T &Value = Ptr.deref<T>(); |
835 | T Result; |
836 | if constexpr (needsAlloc<T>()) |
837 | Result = S.allocAP<T>(Value.bitWidth()); |
838 | |
839 | if constexpr (DoPush == PushVal::Yes) |
840 | S.Stk.push<T>(Value); |
841 | |
842 | if constexpr (Op == IncDecOp::Inc) { |
843 | if (!T::increment(Value, &Result) || !CanOverflow) { |
844 | Ptr.deref<T>() = Result; |
845 | return true; |
846 | } |
847 | } else { |
848 | if (!T::decrement(Value, &Result) || !CanOverflow) { |
849 | Ptr.deref<T>() = Result; |
850 | return true; |
851 | } |
852 | } |
853 | assert(CanOverflow); |
854 | |
855 | // Something went wrong with the previous operation. Compute the |
856 | // result with another bit of precision. |
857 | unsigned Bits = Value.bitWidth() + 1; |
858 | APSInt APResult; |
859 | if constexpr (Op == IncDecOp::Inc) |
860 | APResult = ++Value.toAPSInt(Bits); |
861 | else |
862 | APResult = --Value.toAPSInt(Bits); |
863 | |
864 | // Report undefined behaviour, stopping if required. |
865 | if (S.checkingForUndefinedBehavior()) { |
866 | const Expr *E = S.Current->getExpr(PC: OpPC); |
867 | QualType Type = E->getType(); |
868 | SmallString<32> Trunc; |
869 | APResult.trunc(width: Result.bitWidth()) |
870 | .toString(Trunc, 10, Result.isSigned(), /*formatAsCLiteral=*/false, |
871 | /*UpperCase=*/true, /*InsertSeparators=*/true); |
872 | S.report(Loc: E->getExprLoc(), DiagId: diag::warn_integer_constant_overflow) |
873 | << Trunc << Type << E->getSourceRange(); |
874 | return true; |
875 | } |
876 | return handleOverflow(S, OpPC, SrcValue: APResult); |
877 | } |
878 | |
879 | /// 1) Pops a pointer from the stack |
880 | /// 2) Load the value from the pointer |
881 | /// 3) Writes the value increased by one back to the pointer |
882 | /// 4) Pushes the original (pre-inc) value on the stack. |
883 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
884 | bool Inc(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
885 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
886 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Increment)) |
887 | return false; |
888 | |
889 | return IncDecHelper<T, IncDecOp::Inc, PushVal::Yes>(S, OpPC, Ptr, |
890 | CanOverflow); |
891 | } |
892 | |
893 | /// 1) Pops a pointer from the stack |
894 | /// 2) Load the value from the pointer |
895 | /// 3) Writes the value increased by one back to the pointer |
896 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
897 | bool IncPop(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
898 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
899 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Increment)) |
900 | return false; |
901 | |
902 | return IncDecHelper<T, IncDecOp::Inc, PushVal::No>(S, OpPC, Ptr, CanOverflow); |
903 | } |
904 | |
905 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
906 | bool PreInc(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
907 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
908 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Increment)) |
909 | return false; |
910 | |
911 | return IncDecHelper<T, IncDecOp::Inc, PushVal::No>(S, OpPC, Ptr, CanOverflow); |
912 | } |
913 | |
914 | /// 1) Pops a pointer from the stack |
915 | /// 2) Load the value from the pointer |
916 | /// 3) Writes the value decreased by one back to the pointer |
917 | /// 4) Pushes the original (pre-dec) value on the stack. |
918 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
919 | bool Dec(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
920 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
921 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Decrement)) |
922 | return false; |
923 | |
924 | return IncDecHelper<T, IncDecOp::Dec, PushVal::Yes>(S, OpPC, Ptr, |
925 | CanOverflow); |
926 | } |
927 | |
928 | /// 1) Pops a pointer from the stack |
929 | /// 2) Load the value from the pointer |
930 | /// 3) Writes the value decreased by one back to the pointer |
931 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
932 | bool DecPop(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
933 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
934 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Decrement)) |
935 | return false; |
936 | |
937 | return IncDecHelper<T, IncDecOp::Dec, PushVal::No>(S, OpPC, Ptr, CanOverflow); |
938 | } |
939 | |
940 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
941 | bool PreDec(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
942 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
943 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Decrement)) |
944 | return false; |
945 | return IncDecHelper<T, IncDecOp::Dec, PushVal::No>(S, OpPC, Ptr, CanOverflow); |
946 | } |
947 | |
948 | template <IncDecOp Op, PushVal DoPush> |
949 | bool IncDecFloatHelper(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
950 | uint32_t FPOI) { |
951 | Floating Value = Ptr.deref<Floating>(); |
952 | Floating Result = S.allocFloat(Sem: Value.getSemantics()); |
953 | |
954 | if constexpr (DoPush == PushVal::Yes) |
955 | S.Stk.push<Floating>(Args&: Value); |
956 | |
957 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
958 | llvm::APFloat::opStatus Status; |
959 | if constexpr (Op == IncDecOp::Inc) |
960 | Status = Floating::increment(A: Value, RM: getRoundingMode(FPO), R: &Result); |
961 | else |
962 | Status = Floating::decrement(A: Value, RM: getRoundingMode(FPO), R: &Result); |
963 | |
964 | Ptr.deref<Floating>() = Result; |
965 | |
966 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
967 | } |
968 | |
969 | inline bool Incf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
970 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
971 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Increment)) |
972 | return false; |
973 | |
974 | return IncDecFloatHelper<IncDecOp::Inc, PushVal::Yes>(S, OpPC, Ptr, FPOI); |
975 | } |
976 | |
977 | inline bool IncfPop(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
978 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
979 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Increment)) |
980 | return false; |
981 | |
982 | return IncDecFloatHelper<IncDecOp::Inc, PushVal::No>(S, OpPC, Ptr, FPOI); |
983 | } |
984 | |
985 | inline bool Decf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
986 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
987 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Decrement)) |
988 | return false; |
989 | |
990 | return IncDecFloatHelper<IncDecOp::Dec, PushVal::Yes>(S, OpPC, Ptr, FPOI); |
991 | } |
992 | |
993 | inline bool DecfPop(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
994 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
995 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Decrement)) |
996 | return false; |
997 | |
998 | return IncDecFloatHelper<IncDecOp::Dec, PushVal::No>(S, OpPC, Ptr, FPOI); |
999 | } |
1000 | |
1001 | /// 1) Pops the value from the stack. |
1002 | /// 2) Pushes the bitwise complemented value on the stack (~V). |
1003 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1004 | bool Comp(InterpState &S, CodePtr OpPC) { |
1005 | const T &Val = S.Stk.pop<T>(); |
1006 | |
1007 | T Result; |
1008 | if constexpr (needsAlloc<T>()) |
1009 | Result = S.allocAP<T>(Val.bitWidth()); |
1010 | |
1011 | if (!T::comp(Val, &Result)) { |
1012 | S.Stk.push<T>(Result); |
1013 | return true; |
1014 | } |
1015 | return false; |
1016 | } |
1017 | |
1018 | //===----------------------------------------------------------------------===// |
1019 | // EQ, NE, GT, GE, LT, LE |
1020 | //===----------------------------------------------------------------------===// |
1021 | |
1022 | using CompareFn = llvm::function_ref<bool(ComparisonCategoryResult)>; |
1023 | |
1024 | template <typename T> |
1025 | bool CmpHelper(InterpState &S, CodePtr OpPC, CompareFn Fn) { |
1026 | assert((!std::is_same_v<T, MemberPointer>) && |
1027 | "Non-equality comparisons on member pointer types should already be " |
1028 | "rejected in Sema." ); |
1029 | using BoolT = PrimConv<PT_Bool>::T; |
1030 | const T &RHS = S.Stk.pop<T>(); |
1031 | const T &LHS = S.Stk.pop<T>(); |
1032 | S.Stk.push<BoolT>(BoolT::from(Fn(LHS.compare(RHS)))); |
1033 | return true; |
1034 | } |
1035 | |
1036 | template <typename T> |
1037 | bool CmpHelperEQ(InterpState &S, CodePtr OpPC, CompareFn Fn) { |
1038 | return CmpHelper<T>(S, OpPC, Fn); |
1039 | } |
1040 | |
1041 | template <> |
1042 | inline bool CmpHelper<Pointer>(InterpState &S, CodePtr OpPC, CompareFn Fn) { |
1043 | using BoolT = PrimConv<PT_Bool>::T; |
1044 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
1045 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
1046 | |
1047 | // Function pointers cannot be compared in an ordered way. |
1048 | if (LHS.isFunctionPointer() || RHS.isFunctionPointer() || |
1049 | LHS.isTypeidPointer() || RHS.isTypeidPointer()) { |
1050 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1051 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_comparison_unspecified) |
1052 | << LHS.toDiagnosticString(Ctx: S.getASTContext()) |
1053 | << RHS.toDiagnosticString(Ctx: S.getASTContext()); |
1054 | return false; |
1055 | } |
1056 | |
1057 | if (!Pointer::hasSameBase(A: LHS, B: RHS)) { |
1058 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1059 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_comparison_unspecified) |
1060 | << LHS.toDiagnosticString(Ctx: S.getASTContext()) |
1061 | << RHS.toDiagnosticString(Ctx: S.getASTContext()); |
1062 | return false; |
1063 | } |
1064 | |
1065 | // Diagnose comparisons between fields with different access specifiers. |
1066 | if (std::optional<std::pair<Pointer, Pointer>> Split = |
1067 | Pointer::computeSplitPoint(A: LHS, B: RHS)) { |
1068 | const FieldDecl *LF = Split->first.getField(); |
1069 | const FieldDecl *RF = Split->second.getField(); |
1070 | if (LF && RF && !LF->getParent()->isUnion() && |
1071 | LF->getAccess() != RF->getAccess()) { |
1072 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), |
1073 | DiagId: diag::note_constexpr_pointer_comparison_differing_access) |
1074 | << LF << LF->getAccess() << RF << RF->getAccess() << LF->getParent(); |
1075 | } |
1076 | } |
1077 | |
1078 | unsigned VL = LHS.getByteOffset(); |
1079 | unsigned VR = RHS.getByteOffset(); |
1080 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(Compare(X: VL, Y: VR)))); |
1081 | return true; |
1082 | } |
1083 | |
1084 | static inline bool IsOpaqueConstantCall(const CallExpr *E) { |
1085 | unsigned Builtin = E->getBuiltinCallee(); |
1086 | return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || |
1087 | Builtin == Builtin::BI__builtin___NSStringMakeConstantString || |
1088 | Builtin == Builtin::BI__builtin_ptrauth_sign_constant || |
1089 | Builtin == Builtin::BI__builtin_function_start); |
1090 | } |
1091 | |
1092 | bool arePotentiallyOverlappingStringLiterals(const Pointer &LHS, |
1093 | const Pointer &RHS); |
1094 | |
1095 | template <> |
1096 | inline bool CmpHelperEQ<Pointer>(InterpState &S, CodePtr OpPC, CompareFn Fn) { |
1097 | using BoolT = PrimConv<PT_Bool>::T; |
1098 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
1099 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
1100 | |
1101 | if (LHS.isZero() && RHS.isZero()) { |
1102 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(ComparisonCategoryResult::Equal))); |
1103 | return true; |
1104 | } |
1105 | |
1106 | // Reject comparisons to weak pointers. |
1107 | for (const auto &P : {LHS, RHS}) { |
1108 | if (P.isZero()) |
1109 | continue; |
1110 | if (P.isWeak()) { |
1111 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1112 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_weak_comparison) |
1113 | << P.toDiagnosticString(Ctx: S.getASTContext()); |
1114 | return false; |
1115 | } |
1116 | } |
1117 | |
1118 | if (!S.inConstantContext()) { |
1119 | if (isConstexprUnknown(P: LHS) || isConstexprUnknown(P: RHS)) |
1120 | return false; |
1121 | } |
1122 | |
1123 | if (LHS.isFunctionPointer() && RHS.isFunctionPointer()) { |
1124 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(Compare(X: LHS.getIntegerRepresentation(), |
1125 | Y: RHS.getIntegerRepresentation())))); |
1126 | return true; |
1127 | } |
1128 | |
1129 | // FIXME: The source check here isn't entirely correct. |
1130 | if (LHS.pointsToStringLiteral() && RHS.pointsToStringLiteral() && |
1131 | LHS.getFieldDesc()->asExpr() != RHS.getFieldDesc()->asExpr()) { |
1132 | if (arePotentiallyOverlappingStringLiterals(LHS, RHS)) { |
1133 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1134 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_literal_comparison) |
1135 | << LHS.toDiagnosticString(Ctx: S.getASTContext()) |
1136 | << RHS.toDiagnosticString(Ctx: S.getASTContext()); |
1137 | return false; |
1138 | } |
1139 | } |
1140 | |
1141 | if (Pointer::hasSameBase(A: LHS, B: RHS)) { |
1142 | if (LHS.inUnion() && RHS.inUnion()) { |
1143 | // If the pointers point into a union, things are a little more |
1144 | // complicated since the offset we save in interp::Pointer can't be used |
1145 | // to compare the pointers directly. |
1146 | size_t A = LHS.computeOffsetForComparison(); |
1147 | size_t B = RHS.computeOffsetForComparison(); |
1148 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(Compare(X: A, Y: B)))); |
1149 | return true; |
1150 | } |
1151 | |
1152 | unsigned VL = LHS.getByteOffset(); |
1153 | unsigned VR = RHS.getByteOffset(); |
1154 | // In our Pointer class, a pointer to an array and a pointer to the first |
1155 | // element in the same array are NOT equal. They have the same Base value, |
1156 | // but a different Offset. This is a pretty rare case, so we fix this here |
1157 | // by comparing pointers to the first elements. |
1158 | if (!LHS.isZero() && LHS.isArrayRoot()) |
1159 | VL = LHS.atIndex(Idx: 0).getByteOffset(); |
1160 | if (!RHS.isZero() && RHS.isArrayRoot()) |
1161 | VR = RHS.atIndex(Idx: 0).getByteOffset(); |
1162 | |
1163 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(Compare(X: VL, Y: VR)))); |
1164 | return true; |
1165 | } |
1166 | // Otherwise we need to do a bunch of extra checks before returning Unordered. |
1167 | if (LHS.isOnePastEnd() && !RHS.isOnePastEnd() && !RHS.isZero() && |
1168 | RHS.getOffset() == 0) { |
1169 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1170 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_comparison_past_end) |
1171 | << LHS.toDiagnosticString(Ctx: S.getASTContext()); |
1172 | return false; |
1173 | } else if (RHS.isOnePastEnd() && !LHS.isOnePastEnd() && !LHS.isZero() && |
1174 | LHS.getOffset() == 0) { |
1175 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1176 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_comparison_past_end) |
1177 | << RHS.toDiagnosticString(Ctx: S.getASTContext()); |
1178 | return false; |
1179 | } |
1180 | |
1181 | bool BothNonNull = !LHS.isZero() && !RHS.isZero(); |
1182 | // Reject comparisons to literals. |
1183 | for (const auto &P : {LHS, RHS}) { |
1184 | if (P.isZero()) |
1185 | continue; |
1186 | if (BothNonNull && P.pointsToLiteral()) { |
1187 | const Expr *E = P.getDeclDesc()->asExpr(); |
1188 | if (isa<StringLiteral>(Val: E)) { |
1189 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1190 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_literal_comparison); |
1191 | return false; |
1192 | } else if (const auto *CE = dyn_cast<CallExpr>(Val: E); |
1193 | CE && IsOpaqueConstantCall(E: CE)) { |
1194 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1195 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_opaque_call_comparison) |
1196 | << P.toDiagnosticString(Ctx: S.getASTContext()); |
1197 | return false; |
1198 | } |
1199 | } else if (BothNonNull && P.isIntegralPointer()) { |
1200 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1201 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_constant_comparison) |
1202 | << LHS.toDiagnosticString(Ctx: S.getASTContext()) |
1203 | << RHS.toDiagnosticString(Ctx: S.getASTContext()); |
1204 | return false; |
1205 | } |
1206 | } |
1207 | |
1208 | if (LHS.isUnknownSizeArray() && RHS.isUnknownSizeArray()) { |
1209 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1210 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_comparison_zero_sized) |
1211 | << LHS.toDiagnosticString(Ctx: S.getASTContext()) |
1212 | << RHS.toDiagnosticString(Ctx: S.getASTContext()); |
1213 | return false; |
1214 | } |
1215 | |
1216 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(ComparisonCategoryResult::Unordered))); |
1217 | return true; |
1218 | } |
1219 | |
1220 | template <> |
1221 | inline bool CmpHelperEQ<MemberPointer>(InterpState &S, CodePtr OpPC, |
1222 | CompareFn Fn) { |
1223 | const auto &RHS = S.Stk.pop<MemberPointer>(); |
1224 | const auto &LHS = S.Stk.pop<MemberPointer>(); |
1225 | |
1226 | // If either operand is a pointer to a weak function, the comparison is not |
1227 | // constant. |
1228 | for (const auto &MP : {LHS, RHS}) { |
1229 | if (MP.isWeak()) { |
1230 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1231 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_mem_pointer_weak_comparison) |
1232 | << MP.getMemberFunction(); |
1233 | return false; |
1234 | } |
1235 | } |
1236 | |
1237 | // C++11 [expr.eq]p2: |
1238 | // If both operands are null, they compare equal. Otherwise if only one is |
1239 | // null, they compare unequal. |
1240 | if (LHS.isZero() && RHS.isZero()) { |
1241 | S.Stk.push<Boolean>(Args: Fn(ComparisonCategoryResult::Equal)); |
1242 | return true; |
1243 | } |
1244 | if (LHS.isZero() || RHS.isZero()) { |
1245 | S.Stk.push<Boolean>(Args: Fn(ComparisonCategoryResult::Unordered)); |
1246 | return true; |
1247 | } |
1248 | |
1249 | // We cannot compare against virtual declarations at compile time. |
1250 | for (const auto &MP : {LHS, RHS}) { |
1251 | if (const CXXMethodDecl *MD = MP.getMemberFunction(); |
1252 | MD && MD->isVirtual()) { |
1253 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1254 | S.CCEDiag(SI: Loc, DiagId: diag::note_constexpr_compare_virtual_mem_ptr) << MD; |
1255 | } |
1256 | } |
1257 | |
1258 | S.Stk.push<Boolean>(Args: Boolean::from(Value: Fn(LHS.compare(RHS)))); |
1259 | return true; |
1260 | } |
1261 | |
1262 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1263 | bool EQ(InterpState &S, CodePtr OpPC) { |
1264 | return CmpHelperEQ<T>(S, OpPC, [](ComparisonCategoryResult R) { |
1265 | return R == ComparisonCategoryResult::Equal; |
1266 | }); |
1267 | } |
1268 | |
1269 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1270 | bool CMP3(InterpState &S, CodePtr OpPC, const ComparisonCategoryInfo *CmpInfo) { |
1271 | const T &RHS = S.Stk.pop<T>(); |
1272 | const T &LHS = S.Stk.pop<T>(); |
1273 | const Pointer &P = S.Stk.peek<Pointer>(); |
1274 | |
1275 | ComparisonCategoryResult CmpResult = LHS.compare(RHS); |
1276 | if constexpr (std::is_same_v<T, Pointer>) { |
1277 | if (CmpResult == ComparisonCategoryResult::Unordered) { |
1278 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
1279 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_comparison_unspecified) |
1280 | << LHS.toDiagnosticString(S.getASTContext()) |
1281 | << RHS.toDiagnosticString(S.getASTContext()); |
1282 | return false; |
1283 | } |
1284 | } |
1285 | |
1286 | assert(CmpInfo); |
1287 | const auto *CmpValueInfo = |
1288 | CmpInfo->getValueInfo(ValueKind: CmpInfo->makeWeakResult(Res: CmpResult)); |
1289 | assert(CmpValueInfo); |
1290 | assert(CmpValueInfo->hasValidIntValue()); |
1291 | return SetThreeWayComparisonField(S, OpPC, Ptr: P, IntValue: CmpValueInfo->getIntValue()); |
1292 | } |
1293 | |
1294 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1295 | bool NE(InterpState &S, CodePtr OpPC) { |
1296 | return CmpHelperEQ<T>(S, OpPC, [](ComparisonCategoryResult R) { |
1297 | return R != ComparisonCategoryResult::Equal; |
1298 | }); |
1299 | } |
1300 | |
1301 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1302 | bool LT(InterpState &S, CodePtr OpPC) { |
1303 | return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) { |
1304 | return R == ComparisonCategoryResult::Less; |
1305 | }); |
1306 | } |
1307 | |
1308 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1309 | bool LE(InterpState &S, CodePtr OpPC) { |
1310 | return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) { |
1311 | return R == ComparisonCategoryResult::Less || |
1312 | R == ComparisonCategoryResult::Equal; |
1313 | }); |
1314 | } |
1315 | |
1316 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1317 | bool GT(InterpState &S, CodePtr OpPC) { |
1318 | return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) { |
1319 | return R == ComparisonCategoryResult::Greater; |
1320 | }); |
1321 | } |
1322 | |
1323 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1324 | bool GE(InterpState &S, CodePtr OpPC) { |
1325 | return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) { |
1326 | return R == ComparisonCategoryResult::Greater || |
1327 | R == ComparisonCategoryResult::Equal; |
1328 | }); |
1329 | } |
1330 | |
1331 | //===----------------------------------------------------------------------===// |
1332 | // Dup, Pop, Test |
1333 | //===----------------------------------------------------------------------===// |
1334 | |
1335 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1336 | bool Dup(InterpState &S, CodePtr OpPC) { |
1337 | S.Stk.push<T>(S.Stk.peek<T>()); |
1338 | return true; |
1339 | } |
1340 | |
1341 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1342 | bool Pop(InterpState &S, CodePtr OpPC) { |
1343 | S.Stk.pop<T>(); |
1344 | return true; |
1345 | } |
1346 | |
1347 | /// [Value1, Value2] -> [Value2, Value1] |
1348 | template <PrimType TopName, PrimType BottomName> |
1349 | bool Flip(InterpState &S, CodePtr OpPC) { |
1350 | using TopT = typename PrimConv<TopName>::T; |
1351 | using BottomT = typename PrimConv<BottomName>::T; |
1352 | |
1353 | const auto &Top = S.Stk.pop<TopT>(); |
1354 | const auto &Bottom = S.Stk.pop<BottomT>(); |
1355 | |
1356 | S.Stk.push<TopT>(Top); |
1357 | S.Stk.push<BottomT>(Bottom); |
1358 | |
1359 | return true; |
1360 | } |
1361 | |
1362 | //===----------------------------------------------------------------------===// |
1363 | // Const |
1364 | //===----------------------------------------------------------------------===// |
1365 | |
1366 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1367 | bool Const(InterpState &S, CodePtr OpPC, const T &Arg) { |
1368 | if constexpr (needsAlloc<T>()) { |
1369 | T Result = S.allocAP<T>(Arg.bitWidth()); |
1370 | Result.copy(Arg.toAPSInt()); |
1371 | S.Stk.push<T>(Result); |
1372 | return true; |
1373 | } |
1374 | S.Stk.push<T>(Arg); |
1375 | return true; |
1376 | } |
1377 | |
1378 | inline bool ConstFloat(InterpState &S, CodePtr OpPC, const Floating &F) { |
1379 | Floating Result = S.allocFloat(Sem: F.getSemantics()); |
1380 | Result.copy(F: F.getAPFloat()); |
1381 | S.Stk.push<Floating>(Args&: Result); |
1382 | return true; |
1383 | } |
1384 | |
1385 | //===----------------------------------------------------------------------===// |
1386 | // Get/Set Local/Param/Global/This |
1387 | //===----------------------------------------------------------------------===// |
1388 | |
1389 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1390 | bool GetLocal(InterpState &S, CodePtr OpPC, uint32_t I) { |
1391 | const Pointer &Ptr = S.Current->getLocalPointer(Offset: I); |
1392 | if (!CheckLoad(S, OpPC, Ptr)) |
1393 | return false; |
1394 | S.Stk.push<T>(Ptr.deref<T>()); |
1395 | return true; |
1396 | } |
1397 | |
1398 | bool EndLifetime(InterpState &S, CodePtr OpPC); |
1399 | bool EndLifetimePop(InterpState &S, CodePtr OpPC); |
1400 | bool StartLifetime(InterpState &S, CodePtr OpPC); |
1401 | |
1402 | /// 1) Pops the value from the stack. |
1403 | /// 2) Writes the value to the local variable with the |
1404 | /// given offset. |
1405 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1406 | bool SetLocal(InterpState &S, CodePtr OpPC, uint32_t I) { |
1407 | S.Current->setLocal<T>(I, S.Stk.pop<T>()); |
1408 | return true; |
1409 | } |
1410 | |
1411 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1412 | bool GetParam(InterpState &S, CodePtr OpPC, uint32_t I) { |
1413 | if (S.checkingPotentialConstantExpression()) { |
1414 | return false; |
1415 | } |
1416 | S.Stk.push<T>(S.Current->getParam<T>(I)); |
1417 | return true; |
1418 | } |
1419 | |
1420 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1421 | bool SetParam(InterpState &S, CodePtr OpPC, uint32_t I) { |
1422 | S.Current->setParam<T>(I, S.Stk.pop<T>()); |
1423 | return true; |
1424 | } |
1425 | |
1426 | /// 1) Peeks a pointer on the stack |
1427 | /// 2) Pushes the value of the pointer's field on the stack |
1428 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1429 | bool GetField(InterpState &S, CodePtr OpPC, uint32_t I) { |
1430 | const Pointer &Obj = S.Stk.peek<Pointer>(); |
1431 | if (!CheckNull(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
1432 | return false; |
1433 | if (!CheckRange(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
1434 | return false; |
1435 | const Pointer &Field = Obj.atField(Off: I); |
1436 | if (!CheckLoad(S, OpPC, Ptr: Field)) |
1437 | return false; |
1438 | S.Stk.push<T>(Field.deref<T>()); |
1439 | return true; |
1440 | } |
1441 | |
1442 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1443 | bool SetField(InterpState &S, CodePtr OpPC, uint32_t I) { |
1444 | const T &Value = S.Stk.pop<T>(); |
1445 | const Pointer &Obj = S.Stk.peek<Pointer>(); |
1446 | if (!CheckNull(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
1447 | return false; |
1448 | if (!CheckRange(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
1449 | return false; |
1450 | const Pointer &Field = Obj.atField(Off: I); |
1451 | if (!CheckStore(S, OpPC, Ptr: Field)) |
1452 | return false; |
1453 | Field.initialize(); |
1454 | Field.deref<T>() = Value; |
1455 | return true; |
1456 | } |
1457 | |
1458 | /// 1) Pops a pointer from the stack |
1459 | /// 2) Pushes the value of the pointer's field on the stack |
1460 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1461 | bool GetFieldPop(InterpState &S, CodePtr OpPC, uint32_t I) { |
1462 | const Pointer &Obj = S.Stk.pop<Pointer>(); |
1463 | if (!CheckNull(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
1464 | return false; |
1465 | if (!CheckRange(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
1466 | return false; |
1467 | const Pointer &Field = Obj.atField(Off: I); |
1468 | if (!CheckLoad(S, OpPC, Ptr: Field)) |
1469 | return false; |
1470 | S.Stk.push<T>(Field.deref<T>()); |
1471 | return true; |
1472 | } |
1473 | |
1474 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1475 | bool GetThisField(InterpState &S, CodePtr OpPC, uint32_t I) { |
1476 | if (S.checkingPotentialConstantExpression()) |
1477 | return false; |
1478 | const Pointer &This = S.Current->getThis(); |
1479 | if (!CheckThis(S, OpPC, This)) |
1480 | return false; |
1481 | const Pointer &Field = This.atField(Off: I); |
1482 | if (!CheckLoad(S, OpPC, Ptr: Field)) |
1483 | return false; |
1484 | S.Stk.push<T>(Field.deref<T>()); |
1485 | return true; |
1486 | } |
1487 | |
1488 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1489 | bool SetThisField(InterpState &S, CodePtr OpPC, uint32_t I) { |
1490 | if (S.checkingPotentialConstantExpression()) |
1491 | return false; |
1492 | const T &Value = S.Stk.pop<T>(); |
1493 | const Pointer &This = S.Current->getThis(); |
1494 | if (!CheckThis(S, OpPC, This)) |
1495 | return false; |
1496 | const Pointer &Field = This.atField(Off: I); |
1497 | if (!CheckStore(S, OpPC, Ptr: Field)) |
1498 | return false; |
1499 | Field.deref<T>() = Value; |
1500 | return true; |
1501 | } |
1502 | |
1503 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1504 | bool GetGlobal(InterpState &S, CodePtr OpPC, uint32_t I) { |
1505 | const Pointer &Ptr = S.P.getPtrGlobal(Idx: I); |
1506 | if (!CheckConstant(S, OpPC, Desc: Ptr.getFieldDesc())) |
1507 | return false; |
1508 | if (Ptr.isExtern()) |
1509 | return false; |
1510 | |
1511 | // If a global variable is uninitialized, that means the initializer we've |
1512 | // compiled for it wasn't a constant expression. Diagnose that. |
1513 | if (!CheckGlobalInitialized(S, OpPC, Ptr)) |
1514 | return false; |
1515 | |
1516 | S.Stk.push<T>(Ptr.deref<T>()); |
1517 | return true; |
1518 | } |
1519 | |
1520 | /// Same as GetGlobal, but without the checks. |
1521 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1522 | bool GetGlobalUnchecked(InterpState &S, CodePtr OpPC, uint32_t I) { |
1523 | const Pointer &Ptr = S.P.getPtrGlobal(Idx: I); |
1524 | if (!CheckInitialized(S, OpPC, Ptr, AK: AK_Read)) |
1525 | return false; |
1526 | S.Stk.push<T>(Ptr.deref<T>()); |
1527 | return true; |
1528 | } |
1529 | |
1530 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1531 | bool SetGlobal(InterpState &S, CodePtr OpPC, uint32_t I) { |
1532 | // TODO: emit warning. |
1533 | return false; |
1534 | } |
1535 | |
1536 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1537 | bool InitGlobal(InterpState &S, CodePtr OpPC, uint32_t I) { |
1538 | const Pointer &P = S.P.getGlobal(Idx: I); |
1539 | |
1540 | P.deref<T>() = S.Stk.pop<T>(); |
1541 | |
1542 | if constexpr (std::is_same_v<T, Floating>) { |
1543 | auto &Val = P.deref<Floating>(); |
1544 | if (!Val.singleWord()) { |
1545 | uint64_t *NewMemory = new (S.P) uint64_t[Val.numWords()]; |
1546 | Val.take(NewMemory); |
1547 | } |
1548 | |
1549 | } else if constexpr (needsAlloc<T>()) { |
1550 | auto &Val = P.deref<T>(); |
1551 | if (!Val.singleWord()) { |
1552 | uint64_t *NewMemory = new (S.P) uint64_t[Val.numWords()]; |
1553 | Val.take(NewMemory); |
1554 | } |
1555 | } |
1556 | |
1557 | P.initialize(); |
1558 | return true; |
1559 | } |
1560 | |
1561 | /// 1) Converts the value on top of the stack to an APValue |
1562 | /// 2) Sets that APValue on \Temp |
1563 | /// 3) Initializes global with index \I with that |
1564 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1565 | bool InitGlobalTemp(InterpState &S, CodePtr OpPC, uint32_t I, |
1566 | const LifetimeExtendedTemporaryDecl *Temp) { |
1567 | const Pointer &Ptr = S.P.getGlobal(Idx: I); |
1568 | |
1569 | const T Value = S.Stk.peek<T>(); |
1570 | APValue APV = Value.toAPValue(S.getASTContext()); |
1571 | APValue *Cached = Temp->getOrCreateValue(MayCreate: true); |
1572 | *Cached = APV; |
1573 | |
1574 | assert(Ptr.getDeclDesc()->asExpr()); |
1575 | |
1576 | S.SeenGlobalTemporaries.push_back( |
1577 | Elt: std::make_pair(x: Ptr.getDeclDesc()->asExpr(), y&: Temp)); |
1578 | |
1579 | Ptr.deref<T>() = S.Stk.pop<T>(); |
1580 | Ptr.initialize(); |
1581 | return true; |
1582 | } |
1583 | |
1584 | /// 1) Converts the value on top of the stack to an APValue |
1585 | /// 2) Sets that APValue on \Temp |
1586 | /// 3) Initialized global with index \I with that |
1587 | inline bool InitGlobalTempComp(InterpState &S, CodePtr OpPC, |
1588 | const LifetimeExtendedTemporaryDecl *Temp) { |
1589 | assert(Temp); |
1590 | const Pointer &P = S.Stk.peek<Pointer>(); |
1591 | APValue *Cached = Temp->getOrCreateValue(MayCreate: true); |
1592 | |
1593 | S.SeenGlobalTemporaries.push_back( |
1594 | Elt: std::make_pair(x: P.getDeclDesc()->asExpr(), y&: Temp)); |
1595 | |
1596 | if (std::optional<APValue> APV = |
1597 | P.toRValue(Ctx: S.getASTContext(), ResultType: Temp->getTemporaryExpr()->getType())) { |
1598 | *Cached = *APV; |
1599 | return true; |
1600 | } |
1601 | |
1602 | return false; |
1603 | } |
1604 | |
1605 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1606 | bool InitThisField(InterpState &S, CodePtr OpPC, uint32_t I) { |
1607 | if (S.checkingPotentialConstantExpression() && S.Current->getDepth() == 0) |
1608 | return false; |
1609 | const Pointer &This = S.Current->getThis(); |
1610 | if (!CheckThis(S, OpPC, This)) |
1611 | return false; |
1612 | const Pointer &Field = This.atField(Off: I); |
1613 | Field.deref<T>() = S.Stk.pop<T>(); |
1614 | Field.activate(); |
1615 | Field.initialize(); |
1616 | return true; |
1617 | } |
1618 | |
1619 | // FIXME: The Field pointer here is too much IMO and we could instead just |
1620 | // pass an Offset + BitWidth pair. |
1621 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1622 | bool InitThisBitField(InterpState &S, CodePtr OpPC, const Record::Field *F, |
1623 | uint32_t FieldOffset) { |
1624 | assert(F->isBitField()); |
1625 | if (S.checkingPotentialConstantExpression() && S.Current->getDepth() == 0) |
1626 | return false; |
1627 | const Pointer &This = S.Current->getThis(); |
1628 | if (!CheckThis(S, OpPC, This)) |
1629 | return false; |
1630 | const Pointer &Field = This.atField(Off: FieldOffset); |
1631 | const auto &Value = S.Stk.pop<T>(); |
1632 | Field.deref<T>() = Value.truncate(F->Decl->getBitWidthValue()); |
1633 | Field.initialize(); |
1634 | return true; |
1635 | } |
1636 | |
1637 | /// 1) Pops the value from the stack |
1638 | /// 2) Peeks a pointer from the stack |
1639 | /// 3) Pushes the value to field I of the pointer on the stack |
1640 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1641 | bool InitField(InterpState &S, CodePtr OpPC, uint32_t I) { |
1642 | const T &Value = S.Stk.pop<T>(); |
1643 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
1644 | if (!CheckRange(S, OpPC, Ptr, CSK: CSK_Field)) |
1645 | return false; |
1646 | const Pointer &Field = Ptr.atField(Off: I); |
1647 | Field.deref<T>() = Value; |
1648 | Field.activate(); |
1649 | Field.initialize(); |
1650 | return true; |
1651 | } |
1652 | |
1653 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1654 | bool InitBitField(InterpState &S, CodePtr OpPC, const Record::Field *F) { |
1655 | assert(F->isBitField()); |
1656 | const T &Value = S.Stk.pop<T>(); |
1657 | const Pointer &Field = S.Stk.peek<Pointer>().atField(Off: F->Offset); |
1658 | |
1659 | if constexpr (needsAlloc<T>()) { |
1660 | T Result = S.allocAP<T>(Value.bitWidth()); |
1661 | if (T::isSigned()) |
1662 | Result.copy(Value.toAPSInt() |
1663 | .trunc(F->Decl->getBitWidthValue()) |
1664 | .sextOrTrunc(Value.bitWidth())); |
1665 | else |
1666 | Result.copy(Value.toAPSInt() |
1667 | .trunc(F->Decl->getBitWidthValue()) |
1668 | .zextOrTrunc(Value.bitWidth())); |
1669 | |
1670 | Field.deref<T>() = Result; |
1671 | } else { |
1672 | Field.deref<T>() = Value.truncate(F->Decl->getBitWidthValue()); |
1673 | } |
1674 | Field.activate(); |
1675 | Field.initialize(); |
1676 | return true; |
1677 | } |
1678 | |
1679 | //===----------------------------------------------------------------------===// |
1680 | // GetPtr Local/Param/Global/Field/This |
1681 | //===----------------------------------------------------------------------===// |
1682 | |
1683 | inline bool GetPtrLocal(InterpState &S, CodePtr OpPC, uint32_t I) { |
1684 | S.Stk.push<Pointer>(Args: S.Current->getLocalPointer(Offset: I)); |
1685 | return true; |
1686 | } |
1687 | |
1688 | inline bool GetPtrParam(InterpState &S, CodePtr OpPC, uint32_t I) { |
1689 | if (S.checkingPotentialConstantExpression()) { |
1690 | return false; |
1691 | } |
1692 | S.Stk.push<Pointer>(Args: S.Current->getParamPointer(Offset: I)); |
1693 | return true; |
1694 | } |
1695 | |
1696 | inline bool GetPtrGlobal(InterpState &S, CodePtr OpPC, uint32_t I) { |
1697 | S.Stk.push<Pointer>(Args: S.P.getPtrGlobal(Idx: I)); |
1698 | return true; |
1699 | } |
1700 | |
1701 | /// 1) Peeks a Pointer |
1702 | /// 2) Pushes Pointer.atField(Off) on the stack |
1703 | bool GetPtrField(InterpState &S, CodePtr OpPC, uint32_t Off); |
1704 | bool GetPtrFieldPop(InterpState &S, CodePtr OpPC, uint32_t Off); |
1705 | |
1706 | inline bool GetPtrThisField(InterpState &S, CodePtr OpPC, uint32_t Off) { |
1707 | if (S.checkingPotentialConstantExpression() && S.Current->getDepth() == 0) |
1708 | return false; |
1709 | const Pointer &This = S.Current->getThis(); |
1710 | if (!CheckThis(S, OpPC, This)) |
1711 | return false; |
1712 | S.Stk.push<Pointer>(Args: This.atField(Off)); |
1713 | return true; |
1714 | } |
1715 | |
1716 | inline bool GetPtrActiveField(InterpState &S, CodePtr OpPC, uint32_t Off) { |
1717 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1718 | if (!CheckNull(S, OpPC, Ptr, CSK: CSK_Field)) |
1719 | return false; |
1720 | if (!CheckRange(S, OpPC, Ptr, CSK: CSK_Field)) |
1721 | return false; |
1722 | Pointer Field = Ptr.atField(Off); |
1723 | Ptr.deactivate(); |
1724 | Field.activate(); |
1725 | S.Stk.push<Pointer>(Args: std::move(Field)); |
1726 | return true; |
1727 | } |
1728 | |
1729 | inline bool GetPtrActiveThisField(InterpState &S, CodePtr OpPC, uint32_t Off) { |
1730 | if (S.checkingPotentialConstantExpression()) |
1731 | return false; |
1732 | const Pointer &This = S.Current->getThis(); |
1733 | if (!CheckThis(S, OpPC, This)) |
1734 | return false; |
1735 | Pointer Field = This.atField(Off); |
1736 | This.deactivate(); |
1737 | Field.activate(); |
1738 | S.Stk.push<Pointer>(Args: std::move(Field)); |
1739 | return true; |
1740 | } |
1741 | |
1742 | inline bool GetPtrDerivedPop(InterpState &S, CodePtr OpPC, uint32_t Off, |
1743 | bool NullOK, const Type *TargetType) { |
1744 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1745 | if (!NullOK && !CheckNull(S, OpPC, Ptr, CSK: CSK_Derived)) |
1746 | return false; |
1747 | |
1748 | if (!Ptr.isBlockPointer()) { |
1749 | // FIXME: We don't have the necessary information in integral pointers. |
1750 | // The Descriptor only has a record, but that does of course not include |
1751 | // the potential derived classes of said record. |
1752 | S.Stk.push<Pointer>(Args: Ptr); |
1753 | return true; |
1754 | } |
1755 | |
1756 | if (!CheckSubobject(S, OpPC, Ptr, CSK: CSK_Derived)) |
1757 | return false; |
1758 | if (!CheckDowncast(S, OpPC, Ptr, Offset: Off)) |
1759 | return false; |
1760 | |
1761 | const Record *TargetRecord = Ptr.atFieldSub(Off).getRecord(); |
1762 | assert(TargetRecord); |
1763 | |
1764 | if (TargetRecord->getDecl() |
1765 | ->getTypeForDecl() |
1766 | ->getAsCXXRecordDecl() |
1767 | ->getCanonicalDecl() != |
1768 | TargetType->getAsCXXRecordDecl()->getCanonicalDecl()) { |
1769 | QualType MostDerivedType = Ptr.getDeclDesc()->getType(); |
1770 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_invalid_downcast) |
1771 | << MostDerivedType << QualType(TargetType, 0); |
1772 | return false; |
1773 | } |
1774 | |
1775 | S.Stk.push<Pointer>(Args: Ptr.atFieldSub(Off)); |
1776 | return true; |
1777 | } |
1778 | |
1779 | inline bool GetPtrBase(InterpState &S, CodePtr OpPC, uint32_t Off) { |
1780 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
1781 | if (!CheckNull(S, OpPC, Ptr, CSK: CSK_Base)) |
1782 | return false; |
1783 | |
1784 | if (!Ptr.isBlockPointer()) { |
1785 | S.Stk.push<Pointer>(Args: Ptr.asIntPointer().baseCast(ASTCtx: S.getASTContext(), BaseOffset: Off)); |
1786 | return true; |
1787 | } |
1788 | |
1789 | if (!CheckSubobject(S, OpPC, Ptr, CSK: CSK_Base)) |
1790 | return false; |
1791 | const Pointer &Result = Ptr.atField(Off); |
1792 | if (Result.isPastEnd() || !Result.isBaseClass()) |
1793 | return false; |
1794 | S.Stk.push<Pointer>(Args: Result); |
1795 | return true; |
1796 | } |
1797 | |
1798 | inline bool GetPtrBasePop(InterpState &S, CodePtr OpPC, uint32_t Off, |
1799 | bool NullOK) { |
1800 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1801 | |
1802 | if (!NullOK && !CheckNull(S, OpPC, Ptr, CSK: CSK_Base)) |
1803 | return false; |
1804 | |
1805 | if (!Ptr.isBlockPointer()) { |
1806 | S.Stk.push<Pointer>(Args: Ptr.asIntPointer().baseCast(ASTCtx: S.getASTContext(), BaseOffset: Off)); |
1807 | return true; |
1808 | } |
1809 | |
1810 | if (!CheckSubobject(S, OpPC, Ptr, CSK: CSK_Base)) |
1811 | return false; |
1812 | const Pointer &Result = Ptr.atField(Off); |
1813 | if (Result.isPastEnd() || !Result.isBaseClass()) |
1814 | return false; |
1815 | S.Stk.push<Pointer>(Args: Result); |
1816 | return true; |
1817 | } |
1818 | |
1819 | inline bool GetMemberPtrBasePop(InterpState &S, CodePtr OpPC, int32_t Off) { |
1820 | const auto &Ptr = S.Stk.pop<MemberPointer>(); |
1821 | S.Stk.push<MemberPointer>(Args: Ptr.atInstanceBase(Offset: Off)); |
1822 | return true; |
1823 | } |
1824 | |
1825 | inline bool GetPtrThisBase(InterpState &S, CodePtr OpPC, uint32_t Off) { |
1826 | if (S.checkingPotentialConstantExpression()) |
1827 | return false; |
1828 | const Pointer &This = S.Current->getThis(); |
1829 | if (!CheckThis(S, OpPC, This)) |
1830 | return false; |
1831 | S.Stk.push<Pointer>(Args: This.atField(Off)); |
1832 | return true; |
1833 | } |
1834 | |
1835 | inline bool FinishInitPop(InterpState &S, CodePtr OpPC) { |
1836 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1837 | if (Ptr.canBeInitialized()) { |
1838 | Ptr.initialize(); |
1839 | Ptr.activate(); |
1840 | } |
1841 | return true; |
1842 | } |
1843 | |
1844 | inline bool FinishInit(InterpState &S, CodePtr OpPC) { |
1845 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
1846 | if (Ptr.canBeInitialized()) { |
1847 | Ptr.initialize(); |
1848 | Ptr.activate(); |
1849 | } |
1850 | return true; |
1851 | } |
1852 | |
1853 | bool FinishInitGlobal(InterpState &S, CodePtr OpPC); |
1854 | |
1855 | inline bool Dump(InterpState &S, CodePtr OpPC) { |
1856 | S.Stk.dump(); |
1857 | return true; |
1858 | } |
1859 | |
1860 | inline bool VirtBaseHelper(InterpState &S, CodePtr OpPC, const RecordDecl *Decl, |
1861 | const Pointer &Ptr) { |
1862 | Pointer Base = Ptr; |
1863 | while (Base.isBaseClass()) |
1864 | Base = Base.getBase(); |
1865 | |
1866 | const Record::Base *VirtBase = Base.getRecord()->getVirtualBase(RD: Decl); |
1867 | S.Stk.push<Pointer>(Args: Base.atField(Off: VirtBase->Offset)); |
1868 | return true; |
1869 | } |
1870 | |
1871 | inline bool GetPtrVirtBasePop(InterpState &S, CodePtr OpPC, |
1872 | const RecordDecl *D) { |
1873 | assert(D); |
1874 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1875 | if (!CheckNull(S, OpPC, Ptr, CSK: CSK_Base)) |
1876 | return false; |
1877 | return VirtBaseHelper(S, OpPC, Decl: D, Ptr); |
1878 | } |
1879 | |
1880 | inline bool GetPtrThisVirtBase(InterpState &S, CodePtr OpPC, |
1881 | const RecordDecl *D) { |
1882 | assert(D); |
1883 | if (S.checkingPotentialConstantExpression()) |
1884 | return false; |
1885 | const Pointer &This = S.Current->getThis(); |
1886 | if (!CheckThis(S, OpPC, This)) |
1887 | return false; |
1888 | return VirtBaseHelper(S, OpPC, Decl: D, Ptr: S.Current->getThis()); |
1889 | } |
1890 | |
1891 | //===----------------------------------------------------------------------===// |
1892 | // Load, Store, Init |
1893 | //===----------------------------------------------------------------------===// |
1894 | |
1895 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1896 | bool Load(InterpState &S, CodePtr OpPC) { |
1897 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
1898 | if (!CheckLoad(S, OpPC, Ptr)) |
1899 | return false; |
1900 | if (!Ptr.isBlockPointer()) |
1901 | return false; |
1902 | S.Stk.push<T>(Ptr.deref<T>()); |
1903 | return true; |
1904 | } |
1905 | |
1906 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1907 | bool LoadPop(InterpState &S, CodePtr OpPC) { |
1908 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1909 | if (!CheckLoad(S, OpPC, Ptr)) |
1910 | return false; |
1911 | if (!Ptr.isBlockPointer()) |
1912 | return false; |
1913 | S.Stk.push<T>(Ptr.deref<T>()); |
1914 | return true; |
1915 | } |
1916 | |
1917 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1918 | bool Store(InterpState &S, CodePtr OpPC) { |
1919 | const T &Value = S.Stk.pop<T>(); |
1920 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
1921 | if (!CheckStore(S, OpPC, Ptr)) |
1922 | return false; |
1923 | if (Ptr.canBeInitialized()) { |
1924 | Ptr.initialize(); |
1925 | Ptr.activate(); |
1926 | } |
1927 | Ptr.deref<T>() = Value; |
1928 | return true; |
1929 | } |
1930 | |
1931 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1932 | bool StorePop(InterpState &S, CodePtr OpPC) { |
1933 | const T &Value = S.Stk.pop<T>(); |
1934 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1935 | if (!CheckStore(S, OpPC, Ptr)) |
1936 | return false; |
1937 | if (Ptr.canBeInitialized()) { |
1938 | Ptr.initialize(); |
1939 | Ptr.activate(); |
1940 | } |
1941 | Ptr.deref<T>() = Value; |
1942 | return true; |
1943 | } |
1944 | |
1945 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1946 | bool StoreBitField(InterpState &S, CodePtr OpPC) { |
1947 | const T &Value = S.Stk.pop<T>(); |
1948 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
1949 | if (!CheckStore(S, OpPC, Ptr)) |
1950 | return false; |
1951 | if (Ptr.canBeInitialized()) |
1952 | Ptr.initialize(); |
1953 | if (const auto *FD = Ptr.getField()) |
1954 | Ptr.deref<T>() = Value.truncate(FD->getBitWidthValue()); |
1955 | else |
1956 | Ptr.deref<T>() = Value; |
1957 | return true; |
1958 | } |
1959 | |
1960 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1961 | bool StoreBitFieldPop(InterpState &S, CodePtr OpPC) { |
1962 | const T &Value = S.Stk.pop<T>(); |
1963 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1964 | if (!CheckStore(S, OpPC, Ptr)) |
1965 | return false; |
1966 | if (Ptr.canBeInitialized()) |
1967 | Ptr.initialize(); |
1968 | if (const auto *FD = Ptr.getField()) |
1969 | Ptr.deref<T>() = Value.truncate(FD->getBitWidthValue()); |
1970 | else |
1971 | Ptr.deref<T>() = Value; |
1972 | return true; |
1973 | } |
1974 | |
1975 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1976 | bool Init(InterpState &S, CodePtr OpPC) { |
1977 | const T &Value = S.Stk.pop<T>(); |
1978 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
1979 | if (!CheckInit(S, OpPC, Ptr)) |
1980 | return false; |
1981 | Ptr.activate(); |
1982 | Ptr.initialize(); |
1983 | new (&Ptr.deref<T>()) T(Value); |
1984 | return true; |
1985 | } |
1986 | |
1987 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
1988 | bool InitPop(InterpState &S, CodePtr OpPC) { |
1989 | const T &Value = S.Stk.pop<T>(); |
1990 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
1991 | if (!CheckInit(S, OpPC, Ptr)) |
1992 | return false; |
1993 | Ptr.activate(); |
1994 | Ptr.initialize(); |
1995 | new (&Ptr.deref<T>()) T(Value); |
1996 | return true; |
1997 | } |
1998 | |
1999 | /// 1) Pops the value from the stack |
2000 | /// 2) Peeks a pointer and gets its index \Idx |
2001 | /// 3) Sets the value on the pointer, leaving the pointer on the stack. |
2002 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2003 | bool InitElem(InterpState &S, CodePtr OpPC, uint32_t Idx) { |
2004 | const T &Value = S.Stk.pop<T>(); |
2005 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
2006 | |
2007 | if (Ptr.isUnknownSizeArray()) |
2008 | return false; |
2009 | |
2010 | // In the unlikely event that we're initializing the first item of |
2011 | // a non-array, skip the atIndex(). |
2012 | if (Idx == 0 && !Ptr.getFieldDesc()->isArray()) { |
2013 | Ptr.initialize(); |
2014 | new (&Ptr.deref<T>()) T(Value); |
2015 | return true; |
2016 | } |
2017 | |
2018 | const Pointer &ElemPtr = Ptr.atIndex(Idx); |
2019 | if (!CheckInit(S, OpPC, Ptr: ElemPtr)) |
2020 | return false; |
2021 | ElemPtr.initialize(); |
2022 | new (&ElemPtr.deref<T>()) T(Value); |
2023 | return true; |
2024 | } |
2025 | |
2026 | /// The same as InitElem, but pops the pointer as well. |
2027 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2028 | bool InitElemPop(InterpState &S, CodePtr OpPC, uint32_t Idx) { |
2029 | const T &Value = S.Stk.pop<T>(); |
2030 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2031 | if (Ptr.isUnknownSizeArray()) |
2032 | return false; |
2033 | |
2034 | // In the unlikely event that we're initializing the first item of |
2035 | // a non-array, skip the atIndex(). |
2036 | if (Idx == 0 && !Ptr.getFieldDesc()->isArray()) { |
2037 | Ptr.initialize(); |
2038 | new (&Ptr.deref<T>()) T(Value); |
2039 | return true; |
2040 | } |
2041 | |
2042 | const Pointer &ElemPtr = Ptr.atIndex(Idx); |
2043 | if (!CheckInit(S, OpPC, Ptr: ElemPtr)) |
2044 | return false; |
2045 | ElemPtr.initialize(); |
2046 | new (&ElemPtr.deref<T>()) T(Value); |
2047 | return true; |
2048 | } |
2049 | |
2050 | inline bool Memcpy(InterpState &S, CodePtr OpPC) { |
2051 | const Pointer &Src = S.Stk.pop<Pointer>(); |
2052 | Pointer &Dest = S.Stk.peek<Pointer>(); |
2053 | |
2054 | if (!CheckLoad(S, OpPC, Ptr: Src)) |
2055 | return false; |
2056 | |
2057 | return DoMemcpy(S, OpPC, Src, Dest); |
2058 | } |
2059 | |
2060 | inline bool ToMemberPtr(InterpState &S, CodePtr OpPC) { |
2061 | const auto &Member = S.Stk.pop<MemberPointer>(); |
2062 | const auto &Base = S.Stk.pop<Pointer>(); |
2063 | |
2064 | S.Stk.push<MemberPointer>(Args: Member.takeInstance(Instance: Base)); |
2065 | return true; |
2066 | } |
2067 | |
2068 | inline bool CastMemberPtrPtr(InterpState &S, CodePtr OpPC) { |
2069 | const auto &MP = S.Stk.pop<MemberPointer>(); |
2070 | |
2071 | if (std::optional<Pointer> Ptr = MP.toPointer(Ctx: S.Ctx)) { |
2072 | S.Stk.push<Pointer>(Args&: *Ptr); |
2073 | return true; |
2074 | } |
2075 | return Invalid(S, OpPC); |
2076 | } |
2077 | |
2078 | //===----------------------------------------------------------------------===// |
2079 | // AddOffset, SubOffset |
2080 | //===----------------------------------------------------------------------===// |
2081 | |
2082 | template <class T, ArithOp Op> |
2083 | bool OffsetHelper(InterpState &S, CodePtr OpPC, const T &Offset, |
2084 | const Pointer &Ptr, bool IsPointerArith = false) { |
2085 | // A zero offset does not change the pointer. |
2086 | if (Offset.isZero()) { |
2087 | S.Stk.push<Pointer>(Args: Ptr); |
2088 | return true; |
2089 | } |
2090 | |
2091 | if (IsPointerArith && !CheckNull(S, OpPC, Ptr, CSK: CSK_ArrayIndex)) { |
2092 | // The CheckNull will have emitted a note already, but we only |
2093 | // abort in C++, since this is fine in C. |
2094 | if (S.getLangOpts().CPlusPlus) |
2095 | return false; |
2096 | } |
2097 | |
2098 | // Arrays of unknown bounds cannot have pointers into them. |
2099 | if (!CheckArray(S, OpPC, Ptr)) |
2100 | return false; |
2101 | |
2102 | // This is much simpler for integral pointers, so handle them first. |
2103 | if (Ptr.isIntegralPointer()) { |
2104 | uint64_t V = Ptr.getIntegerRepresentation(); |
2105 | uint64_t O = static_cast<uint64_t>(Offset) * Ptr.elemSize(); |
2106 | if constexpr (Op == ArithOp::Add) |
2107 | S.Stk.push<Pointer>(Args: V + O, Args: Ptr.asIntPointer().Desc); |
2108 | else |
2109 | S.Stk.push<Pointer>(Args: V - O, Args: Ptr.asIntPointer().Desc); |
2110 | return true; |
2111 | } else if (Ptr.isFunctionPointer()) { |
2112 | uint64_t O = static_cast<uint64_t>(Offset); |
2113 | uint64_t N; |
2114 | if constexpr (Op == ArithOp::Add) |
2115 | N = Ptr.getByteOffset() + O; |
2116 | else |
2117 | N = Ptr.getByteOffset() - O; |
2118 | |
2119 | if (N > 1) |
2120 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_array_index) |
2121 | << N << /*non-array*/ true << 0; |
2122 | S.Stk.push<Pointer>(Args: Ptr.asFunctionPointer().getFunction(), Args&: N); |
2123 | return true; |
2124 | } |
2125 | |
2126 | assert(Ptr.isBlockPointer()); |
2127 | |
2128 | uint64_t MaxIndex = static_cast<uint64_t>(Ptr.getNumElems()); |
2129 | uint64_t Index; |
2130 | if (Ptr.isOnePastEnd()) |
2131 | Index = MaxIndex; |
2132 | else |
2133 | Index = Ptr.getIndex(); |
2134 | |
2135 | bool Invalid = false; |
2136 | // Helper to report an invalid offset, computed as APSInt. |
2137 | auto DiagInvalidOffset = [&]() -> void { |
2138 | const unsigned Bits = Offset.bitWidth(); |
2139 | APSInt APOffset(Offset.toAPSInt().extend(Bits + 2), /*IsUnsigend=*/false); |
2140 | APSInt APIndex(APInt(Bits + 2, Index, /*IsSigned=*/true), |
2141 | /*IsUnsigned=*/false); |
2142 | APSInt NewIndex = |
2143 | (Op == ArithOp::Add) ? (APIndex + APOffset) : (APIndex - APOffset); |
2144 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_array_index) |
2145 | << NewIndex << /*array*/ static_cast<int>(!Ptr.inArray()) << MaxIndex; |
2146 | Invalid = true; |
2147 | }; |
2148 | |
2149 | if (Ptr.isBlockPointer()) { |
2150 | uint64_t IOffset = static_cast<uint64_t>(Offset); |
2151 | uint64_t MaxOffset = MaxIndex - Index; |
2152 | |
2153 | if constexpr (Op == ArithOp::Add) { |
2154 | // If the new offset would be negative, bail out. |
2155 | if (Offset.isNegative() && (Offset.isMin() || -IOffset > Index)) |
2156 | DiagInvalidOffset(); |
2157 | |
2158 | // If the new offset would be out of bounds, bail out. |
2159 | if (Offset.isPositive() && IOffset > MaxOffset) |
2160 | DiagInvalidOffset(); |
2161 | } else { |
2162 | // If the new offset would be negative, bail out. |
2163 | if (Offset.isPositive() && Index < IOffset) |
2164 | DiagInvalidOffset(); |
2165 | |
2166 | // If the new offset would be out of bounds, bail out. |
2167 | if (Offset.isNegative() && (Offset.isMin() || -IOffset > MaxOffset)) |
2168 | DiagInvalidOffset(); |
2169 | } |
2170 | } |
2171 | |
2172 | if (Invalid && S.getLangOpts().CPlusPlus) |
2173 | return false; |
2174 | |
2175 | // Offset is valid - compute it on unsigned. |
2176 | int64_t WideIndex = static_cast<int64_t>(Index); |
2177 | int64_t WideOffset = static_cast<int64_t>(Offset); |
2178 | int64_t Result; |
2179 | if constexpr (Op == ArithOp::Add) |
2180 | Result = WideIndex + WideOffset; |
2181 | else |
2182 | Result = WideIndex - WideOffset; |
2183 | |
2184 | // When the pointer is one-past-end, going back to index 0 is the only |
2185 | // useful thing we can do. Any other index has been diagnosed before and |
2186 | // we don't get here. |
2187 | if (Result == 0 && Ptr.isOnePastEnd()) { |
2188 | if (Ptr.getFieldDesc()->isArray()) |
2189 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: 0)); |
2190 | else |
2191 | S.Stk.push<Pointer>(Args: Ptr.asBlockPointer().Pointee, |
2192 | Args: Ptr.asBlockPointer().Base); |
2193 | return true; |
2194 | } |
2195 | |
2196 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: static_cast<uint64_t>(Result))); |
2197 | return true; |
2198 | } |
2199 | |
2200 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2201 | bool AddOffset(InterpState &S, CodePtr OpPC) { |
2202 | const T &Offset = S.Stk.pop<T>(); |
2203 | Pointer Ptr = S.Stk.pop<Pointer>(); |
2204 | if (Ptr.isBlockPointer()) |
2205 | Ptr = Ptr.expand(); |
2206 | return OffsetHelper<T, ArithOp::Add>(S, OpPC, Offset, Ptr, |
2207 | /*IsPointerArith=*/true); |
2208 | } |
2209 | |
2210 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2211 | bool SubOffset(InterpState &S, CodePtr OpPC) { |
2212 | const T &Offset = S.Stk.pop<T>(); |
2213 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2214 | return OffsetHelper<T, ArithOp::Sub>(S, OpPC, Offset, Ptr, |
2215 | /*IsPointerArith=*/true); |
2216 | } |
2217 | |
2218 | template <ArithOp Op> |
2219 | static inline bool IncDecPtrHelper(InterpState &S, CodePtr OpPC, |
2220 | const Pointer &Ptr) { |
2221 | if (Ptr.isDummy()) |
2222 | return false; |
2223 | |
2224 | using OneT = Integral<8, false>; |
2225 | |
2226 | const Pointer &P = Ptr.deref<Pointer>(); |
2227 | if (!CheckNull(S, OpPC, Ptr: P, CSK: CSK_ArrayIndex)) |
2228 | return false; |
2229 | |
2230 | // Get the current value on the stack. |
2231 | S.Stk.push<Pointer>(Args: P); |
2232 | |
2233 | // Now the current Ptr again and a constant 1. |
2234 | OneT One = OneT::from(Value: 1); |
2235 | if (!OffsetHelper<OneT, Op>(S, OpPC, One, P, /*IsPointerArith=*/true)) |
2236 | return false; |
2237 | |
2238 | // Store the new value. |
2239 | Ptr.deref<Pointer>() = S.Stk.pop<Pointer>(); |
2240 | return true; |
2241 | } |
2242 | |
2243 | static inline bool IncPtr(InterpState &S, CodePtr OpPC) { |
2244 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2245 | |
2246 | if (!CheckInitialized(S, OpPC, Ptr, AK: AK_Increment)) |
2247 | return false; |
2248 | |
2249 | return IncDecPtrHelper<ArithOp::Add>(S, OpPC, Ptr); |
2250 | } |
2251 | |
2252 | static inline bool DecPtr(InterpState &S, CodePtr OpPC) { |
2253 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2254 | |
2255 | if (!CheckInitialized(S, OpPC, Ptr, AK: AK_Decrement)) |
2256 | return false; |
2257 | |
2258 | return IncDecPtrHelper<ArithOp::Sub>(S, OpPC, Ptr); |
2259 | } |
2260 | |
2261 | /// 1) Pops a Pointer from the stack. |
2262 | /// 2) Pops another Pointer from the stack. |
2263 | /// 3) Pushes the difference of the indices of the two pointers on the stack. |
2264 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2265 | inline bool SubPtr(InterpState &S, CodePtr OpPC) { |
2266 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
2267 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
2268 | |
2269 | if (!Pointer::hasSameBase(A: LHS, B: RHS) && S.getLangOpts().CPlusPlus) { |
2270 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
2271 | DiagId: diag::note_constexpr_pointer_arith_unspecified) |
2272 | << LHS.toDiagnosticString(Ctx: S.getASTContext()) |
2273 | << RHS.toDiagnosticString(Ctx: S.getASTContext()); |
2274 | return false; |
2275 | } |
2276 | |
2277 | if (LHS == RHS) { |
2278 | S.Stk.push<T>(); |
2279 | return true; |
2280 | } |
2281 | |
2282 | for (const Pointer &P : {LHS, RHS}) { |
2283 | if (P.isZeroSizeArray()) { |
2284 | QualType PtrT = P.getType(); |
2285 | while (auto *AT = dyn_cast<ArrayType>(Val&: PtrT)) |
2286 | PtrT = AT->getElementType(); |
2287 | |
2288 | QualType ArrayTy = S.getASTContext().getConstantArrayType( |
2289 | EltTy: PtrT, ArySize: APInt::getZero(numBits: 1), SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
2290 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
2291 | DiagId: diag::note_constexpr_pointer_subtraction_zero_size) |
2292 | << ArrayTy; |
2293 | |
2294 | return false; |
2295 | } |
2296 | } |
2297 | |
2298 | int64_t A64 = |
2299 | LHS.isBlockPointer() |
2300 | ? (LHS.isElementPastEnd() ? LHS.getNumElems() : LHS.getIndex()) |
2301 | : LHS.getIntegerRepresentation(); |
2302 | |
2303 | int64_t B64 = |
2304 | RHS.isBlockPointer() |
2305 | ? (RHS.isElementPastEnd() ? RHS.getNumElems() : RHS.getIndex()) |
2306 | : RHS.getIntegerRepresentation(); |
2307 | |
2308 | int64_t R64 = A64 - B64; |
2309 | if (static_cast<int64_t>(T::from(R64)) != R64) |
2310 | return handleOverflow(S, OpPC, SrcValue: R64); |
2311 | |
2312 | S.Stk.push<T>(T::from(R64)); |
2313 | return true; |
2314 | } |
2315 | |
2316 | //===----------------------------------------------------------------------===// |
2317 | // Destroy |
2318 | //===----------------------------------------------------------------------===// |
2319 | |
2320 | inline bool Destroy(InterpState &S, CodePtr OpPC, uint32_t I) { |
2321 | assert(S.Current->getFunction()); |
2322 | |
2323 | // FIXME: We iterate the scope once here and then again in the destroy() call |
2324 | // below. |
2325 | for (auto &Local : S.Current->getFunction()->getScope(Idx: I).locals_reverse()) { |
2326 | const Pointer &Ptr = S.Current->getLocalPointer(Offset: Local.Offset); |
2327 | |
2328 | if (Ptr.getLifetime() == Lifetime::Ended) { |
2329 | auto *D = cast<NamedDecl>(Val: Ptr.getFieldDesc()->asDecl()); |
2330 | S.FFDiag(Loc: D->getLocation(), DiagId: diag::note_constexpr_destroy_out_of_lifetime) |
2331 | << D->getNameAsString(); |
2332 | return false; |
2333 | } |
2334 | } |
2335 | |
2336 | S.Current->destroy(Idx: I); |
2337 | return true; |
2338 | } |
2339 | |
2340 | inline bool InitScope(InterpState &S, CodePtr OpPC, uint32_t I) { |
2341 | S.Current->initScope(Idx: I); |
2342 | return true; |
2343 | } |
2344 | |
2345 | //===----------------------------------------------------------------------===// |
2346 | // Cast, CastFP |
2347 | //===----------------------------------------------------------------------===// |
2348 | |
2349 | template <PrimType TIn, PrimType TOut> bool Cast(InterpState &S, CodePtr OpPC) { |
2350 | using T = typename PrimConv<TIn>::T; |
2351 | using U = typename PrimConv<TOut>::T; |
2352 | S.Stk.push<U>(U::from(S.Stk.pop<T>())); |
2353 | return true; |
2354 | } |
2355 | |
2356 | /// 1) Pops a Floating from the stack. |
2357 | /// 2) Pushes a new floating on the stack that uses the given semantics. |
2358 | inline bool CastFP(InterpState &S, CodePtr OpPC, const llvm::fltSemantics *Sem, |
2359 | llvm::RoundingMode RM) { |
2360 | Floating F = S.Stk.pop<Floating>(); |
2361 | Floating Result = S.allocFloat(Sem: *Sem); |
2362 | F.toSemantics(Sem, RM, Result: &Result); |
2363 | S.Stk.push<Floating>(Args&: Result); |
2364 | return true; |
2365 | } |
2366 | |
2367 | inline bool CastFixedPoint(InterpState &S, CodePtr OpPC, uint32_t FPS) { |
2368 | FixedPointSemantics TargetSemantics = |
2369 | FixedPointSemantics::getFromOpaqueInt(FPS); |
2370 | const auto &Source = S.Stk.pop<FixedPoint>(); |
2371 | |
2372 | bool Overflow; |
2373 | FixedPoint Result = Source.toSemantics(Sem: TargetSemantics, Overflow: &Overflow); |
2374 | |
2375 | if (Overflow && !handleFixedPointOverflow(S, OpPC, FP: Result)) |
2376 | return false; |
2377 | |
2378 | S.Stk.push<FixedPoint>(Args&: Result); |
2379 | return true; |
2380 | } |
2381 | |
2382 | /// Like Cast(), but we cast to an arbitrary-bitwidth integral, so we need |
2383 | /// to know what bitwidth the result should be. |
2384 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2385 | bool CastAP(InterpState &S, CodePtr OpPC, uint32_t BitWidth) { |
2386 | auto Result = S.allocAP<IntegralAP<false>>(BitWidth); |
2387 | // Copy data. |
2388 | { |
2389 | APInt Source = S.Stk.pop<T>().toAPSInt().extOrTrunc(BitWidth); |
2390 | Result.copy(V: Source); |
2391 | } |
2392 | S.Stk.push<IntegralAP<false>>(Args&: Result); |
2393 | return true; |
2394 | } |
2395 | |
2396 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2397 | bool CastAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth) { |
2398 | auto Result = S.allocAP<IntegralAP<true>>(BitWidth); |
2399 | // Copy data. |
2400 | { |
2401 | APInt Source = S.Stk.pop<T>().toAPSInt().extOrTrunc(BitWidth); |
2402 | Result.copy(V: Source); |
2403 | } |
2404 | S.Stk.push<IntegralAP<true>>(Args&: Result); |
2405 | return true; |
2406 | } |
2407 | |
2408 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2409 | bool CastIntegralFloating(InterpState &S, CodePtr OpPC, |
2410 | const llvm::fltSemantics *Sem, uint32_t FPOI) { |
2411 | const T &From = S.Stk.pop<T>(); |
2412 | APSInt FromAP = From.toAPSInt(); |
2413 | |
2414 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
2415 | Floating Result = S.allocFloat(Sem: *Sem); |
2416 | auto Status = |
2417 | Floating::fromIntegral(Val: FromAP, Sem: *Sem, RM: getRoundingMode(FPO), Result: &Result); |
2418 | S.Stk.push<Floating>(Args&: Result); |
2419 | |
2420 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
2421 | } |
2422 | |
2423 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2424 | bool CastFloatingIntegral(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
2425 | const Floating &F = S.Stk.pop<Floating>(); |
2426 | |
2427 | if constexpr (std::is_same_v<T, Boolean>) { |
2428 | S.Stk.push<T>(T(F.isNonZero())); |
2429 | return true; |
2430 | } else { |
2431 | APSInt Result(std::max(8u, T::bitWidth()), |
2432 | /*IsUnsigned=*/!T::isSigned()); |
2433 | auto Status = F.convertToInteger(Result); |
2434 | |
2435 | // Float-to-Integral overflow check. |
2436 | if ((Status & APFloat::opStatus::opInvalidOp)) { |
2437 | const Expr *E = S.Current->getExpr(PC: OpPC); |
2438 | QualType Type = E->getType(); |
2439 | |
2440 | S.CCEDiag(E, DiagId: diag::note_constexpr_overflow) << F.getAPFloat() << Type; |
2441 | if (S.noteUndefinedBehavior()) { |
2442 | S.Stk.push<T>(T(Result)); |
2443 | return true; |
2444 | } |
2445 | return false; |
2446 | } |
2447 | |
2448 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
2449 | S.Stk.push<T>(T(Result)); |
2450 | return CheckFloatResult(S, OpPC, Result: F, Status, FPO); |
2451 | } |
2452 | } |
2453 | |
2454 | static inline bool CastFloatingIntegralAP(InterpState &S, CodePtr OpPC, |
2455 | uint32_t BitWidth, uint32_t FPOI) { |
2456 | const Floating &F = S.Stk.pop<Floating>(); |
2457 | |
2458 | APSInt Result(BitWidth, /*IsUnsigned=*/true); |
2459 | auto Status = F.convertToInteger(Result); |
2460 | |
2461 | // Float-to-Integral overflow check. |
2462 | if ((Status & APFloat::opStatus::opInvalidOp) && F.isFinite()) |
2463 | return handleOverflow(S, OpPC, SrcValue: F.getAPFloat()); |
2464 | |
2465 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
2466 | |
2467 | auto ResultAP = S.allocAP<IntegralAP<false>>(BitWidth); |
2468 | ResultAP.copy(V: Result); |
2469 | |
2470 | S.Stk.push<IntegralAP<false>>(Args&: ResultAP); |
2471 | |
2472 | return CheckFloatResult(S, OpPC, Result: F, Status, FPO); |
2473 | } |
2474 | |
2475 | static inline bool CastFloatingIntegralAPS(InterpState &S, CodePtr OpPC, |
2476 | uint32_t BitWidth, uint32_t FPOI) { |
2477 | const Floating &F = S.Stk.pop<Floating>(); |
2478 | |
2479 | APSInt Result(BitWidth, /*IsUnsigned=*/false); |
2480 | auto Status = F.convertToInteger(Result); |
2481 | |
2482 | // Float-to-Integral overflow check. |
2483 | if ((Status & APFloat::opStatus::opInvalidOp) && F.isFinite()) |
2484 | return handleOverflow(S, OpPC, SrcValue: F.getAPFloat()); |
2485 | |
2486 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
2487 | |
2488 | auto ResultAP = S.allocAP<IntegralAP<true>>(BitWidth); |
2489 | ResultAP.copy(V: Result); |
2490 | |
2491 | S.Stk.push<IntegralAP<true>>(Args&: ResultAP); |
2492 | |
2493 | return CheckFloatResult(S, OpPC, Result: F, Status, FPO); |
2494 | } |
2495 | |
2496 | bool CheckPointerToIntegralCast(InterpState &S, CodePtr OpPC, |
2497 | const Pointer &Ptr, unsigned BitWidth); |
2498 | bool CastPointerIntegralAP(InterpState &S, CodePtr OpPC, uint32_t BitWidth); |
2499 | bool CastPointerIntegralAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth); |
2500 | |
2501 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2502 | bool CastPointerIntegral(InterpState &S, CodePtr OpPC) { |
2503 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2504 | |
2505 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_invalid_cast) |
2506 | << diag::ConstexprInvalidCastKind::ThisConversionOrReinterpret |
2507 | << S.getLangOpts().CPlusPlus << S.Current->getRange(PC: OpPC); |
2508 | |
2509 | if (!CheckPointerToIntegralCast(S, OpPC, Ptr, T::bitWidth())) |
2510 | return Invalid(S, OpPC); |
2511 | |
2512 | S.Stk.push<T>(T::from(Ptr.getIntegerRepresentation())); |
2513 | return true; |
2514 | } |
2515 | |
2516 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2517 | static inline bool CastIntegralFixedPoint(InterpState &S, CodePtr OpPC, |
2518 | uint32_t FPS) { |
2519 | const T &Int = S.Stk.pop<T>(); |
2520 | |
2521 | FixedPointSemantics Sem = FixedPointSemantics::getFromOpaqueInt(FPS); |
2522 | |
2523 | bool Overflow; |
2524 | FixedPoint Result = FixedPoint::from(Int.toAPSInt(), Sem, &Overflow); |
2525 | |
2526 | if (Overflow && !handleFixedPointOverflow(S, OpPC, FP: Result)) |
2527 | return false; |
2528 | |
2529 | S.Stk.push<FixedPoint>(Args&: Result); |
2530 | return true; |
2531 | } |
2532 | |
2533 | static inline bool CastFloatingFixedPoint(InterpState &S, CodePtr OpPC, |
2534 | uint32_t FPS) { |
2535 | const auto &Float = S.Stk.pop<Floating>(); |
2536 | |
2537 | FixedPointSemantics Sem = FixedPointSemantics::getFromOpaqueInt(FPS); |
2538 | |
2539 | bool Overflow; |
2540 | FixedPoint Result = FixedPoint::from(I: Float.getAPFloat(), Sem, Overflow: &Overflow); |
2541 | |
2542 | if (Overflow && !handleFixedPointOverflow(S, OpPC, FP: Result)) |
2543 | return false; |
2544 | |
2545 | S.Stk.push<FixedPoint>(Args&: Result); |
2546 | return true; |
2547 | } |
2548 | |
2549 | static inline bool CastFixedPointFloating(InterpState &S, CodePtr OpPC, |
2550 | const llvm::fltSemantics *Sem) { |
2551 | const auto &Fixed = S.Stk.pop<FixedPoint>(); |
2552 | Floating Result = S.allocFloat(Sem: *Sem); |
2553 | Result.copy(F: Fixed.toFloat(Sem)); |
2554 | S.Stk.push<Floating>(Args&: Result); |
2555 | return true; |
2556 | } |
2557 | |
2558 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2559 | static inline bool CastFixedPointIntegral(InterpState &S, CodePtr OpPC) { |
2560 | const auto &Fixed = S.Stk.pop<FixedPoint>(); |
2561 | |
2562 | bool Overflow; |
2563 | APSInt Int = Fixed.toInt(BitWidth: T::bitWidth(), Signed: T::isSigned(), Overflow: &Overflow); |
2564 | |
2565 | if (Overflow && !handleOverflow(S, OpPC, SrcValue: Int)) |
2566 | return false; |
2567 | |
2568 | S.Stk.push<T>(Int); |
2569 | return true; |
2570 | } |
2571 | |
2572 | static inline bool PtrPtrCast(InterpState &S, CodePtr OpPC, bool SrcIsVoidPtr) { |
2573 | const auto &Ptr = S.Stk.peek<Pointer>(); |
2574 | |
2575 | if (SrcIsVoidPtr && S.getLangOpts().CPlusPlus) { |
2576 | bool HasValidResult = !Ptr.isZero(); |
2577 | |
2578 | if (HasValidResult) { |
2579 | if (S.getStdAllocatorCaller(Name: "allocate" )) |
2580 | return true; |
2581 | |
2582 | const auto &E = cast<CastExpr>(Val: S.Current->getExpr(PC: OpPC)); |
2583 | if (S.getLangOpts().CPlusPlus26 && |
2584 | S.getASTContext().hasSimilarType(T1: Ptr.getType(), |
2585 | T2: E->getType()->getPointeeType())) |
2586 | return true; |
2587 | |
2588 | S.CCEDiag(E, DiagId: diag::note_constexpr_invalid_void_star_cast) |
2589 | << E->getSubExpr()->getType() << S.getLangOpts().CPlusPlus26 |
2590 | << Ptr.getType().getCanonicalType() << E->getType()->getPointeeType(); |
2591 | } else if (!S.getLangOpts().CPlusPlus26) { |
2592 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
2593 | S.CCEDiag(SI: E, DiagId: diag::note_constexpr_invalid_cast) |
2594 | << diag::ConstexprInvalidCastKind::CastFrom << "'void *'" |
2595 | << S.Current->getRange(PC: OpPC); |
2596 | } |
2597 | } else { |
2598 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
2599 | S.CCEDiag(SI: E, DiagId: diag::note_constexpr_invalid_cast) |
2600 | << diag::ConstexprInvalidCastKind::ThisConversionOrReinterpret |
2601 | << S.getLangOpts().CPlusPlus << S.Current->getRange(PC: OpPC); |
2602 | } |
2603 | |
2604 | return true; |
2605 | } |
2606 | |
2607 | //===----------------------------------------------------------------------===// |
2608 | // Zero, Nullptr |
2609 | //===----------------------------------------------------------------------===// |
2610 | |
2611 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2612 | bool Zero(InterpState &S, CodePtr OpPC) { |
2613 | S.Stk.push<T>(T::zero()); |
2614 | return true; |
2615 | } |
2616 | |
2617 | static inline bool ZeroIntAP(InterpState &S, CodePtr OpPC, uint32_t BitWidth) { |
2618 | auto Result = S.allocAP<IntegralAP<false>>(BitWidth); |
2619 | if (!Result.singleWord()) |
2620 | std::memset(s: Result.Memory, c: 0, n: Result.numWords() * sizeof(uint64_t)); |
2621 | S.Stk.push<IntegralAP<false>>(Args&: Result); |
2622 | return true; |
2623 | } |
2624 | |
2625 | static inline bool ZeroIntAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth) { |
2626 | auto Result = S.allocAP<IntegralAP<true>>(BitWidth); |
2627 | if (!Result.singleWord()) |
2628 | std::memset(s: Result.Memory, c: 0, n: Result.numWords() * sizeof(uint64_t)); |
2629 | S.Stk.push<IntegralAP<true>>(Args&: Result); |
2630 | return true; |
2631 | } |
2632 | |
2633 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2634 | inline bool Null(InterpState &S, CodePtr OpPC, uint64_t Value, |
2635 | const Descriptor *Desc) { |
2636 | // FIXME(perf): This is a somewhat often-used function and the value of a |
2637 | // null pointer is almost always 0. |
2638 | S.Stk.push<T>(Value, Desc); |
2639 | return true; |
2640 | } |
2641 | |
2642 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2643 | inline bool IsNonNull(InterpState &S, CodePtr OpPC) { |
2644 | const auto &P = S.Stk.pop<T>(); |
2645 | if (P.isWeak()) |
2646 | return false; |
2647 | S.Stk.push<Boolean>(Boolean::from(!P.isZero())); |
2648 | return true; |
2649 | } |
2650 | |
2651 | //===----------------------------------------------------------------------===// |
2652 | // This, ImplicitThis |
2653 | //===----------------------------------------------------------------------===// |
2654 | |
2655 | inline bool This(InterpState &S, CodePtr OpPC) { |
2656 | // Cannot read 'this' in this mode. |
2657 | if (S.checkingPotentialConstantExpression()) { |
2658 | return false; |
2659 | } |
2660 | |
2661 | const Pointer &This = S.Current->getThis(); |
2662 | if (!CheckThis(S, OpPC, This)) |
2663 | return false; |
2664 | |
2665 | // Ensure the This pointer has been cast to the correct base. |
2666 | if (!This.isDummy()) { |
2667 | assert(isa<CXXMethodDecl>(S.Current->getFunction()->getDecl())); |
2668 | if (!This.isTypeidPointer()) { |
2669 | [[maybe_unused]] const Record *R = This.getRecord(); |
2670 | if (!R) |
2671 | R = This.narrow().getRecord(); |
2672 | assert(R); |
2673 | assert(R->getDecl() == |
2674 | cast<CXXMethodDecl>(S.Current->getFunction()->getDecl()) |
2675 | ->getParent()); |
2676 | } |
2677 | } |
2678 | |
2679 | S.Stk.push<Pointer>(Args: This); |
2680 | return true; |
2681 | } |
2682 | |
2683 | inline bool RVOPtr(InterpState &S, CodePtr OpPC) { |
2684 | assert(S.Current->getFunction()->hasRVO()); |
2685 | if (S.checkingPotentialConstantExpression()) |
2686 | return false; |
2687 | S.Stk.push<Pointer>(Args: S.Current->getRVOPtr()); |
2688 | return true; |
2689 | } |
2690 | |
2691 | //===----------------------------------------------------------------------===// |
2692 | // Shr, Shl |
2693 | //===----------------------------------------------------------------------===// |
2694 | |
2695 | template <class LT, class RT, ShiftDir Dir> |
2696 | inline bool DoShift(InterpState &S, CodePtr OpPC, LT &LHS, RT &RHS, |
2697 | LT *Result) { |
2698 | static_assert(!needsAlloc<LT>()); |
2699 | const unsigned Bits = LHS.bitWidth(); |
2700 | |
2701 | // OpenCL 6.3j: shift values are effectively % word size of LHS. |
2702 | if (S.getLangOpts().OpenCL) |
2703 | RT::bitAnd(RHS, RT::from(LHS.bitWidth() - 1, RHS.bitWidth()), |
2704 | RHS.bitWidth(), &RHS); |
2705 | |
2706 | if (RHS.isNegative()) { |
2707 | // During constant-folding, a negative shift is an opposite shift. Such a |
2708 | // shift is not a constant expression. |
2709 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
2710 | S.CCEDiag(SI: Loc, DiagId: diag::note_constexpr_negative_shift) << RHS.toAPSInt(); |
2711 | if (!S.noteUndefinedBehavior()) |
2712 | return false; |
2713 | RHS = -RHS; |
2714 | return DoShift<LT, RT, |
2715 | Dir == ShiftDir::Left ? ShiftDir::Right : ShiftDir::Left>( |
2716 | S, OpPC, LHS, RHS, Result); |
2717 | } |
2718 | |
2719 | if (!CheckShift<Dir>(S, OpPC, LHS, RHS, Bits)) |
2720 | return false; |
2721 | |
2722 | // Limit the shift amount to Bits - 1. If this happened, |
2723 | // it has already been diagnosed by CheckShift() above, |
2724 | // but we still need to handle it. |
2725 | // Note that we have to be extra careful here since we're doing the shift in |
2726 | // any case, but we need to adjust the shift amount or the way we do the shift |
2727 | // for the potential error cases. |
2728 | typename LT::AsUnsigned R; |
2729 | unsigned MaxShiftAmount = LHS.bitWidth() - 1; |
2730 | if constexpr (Dir == ShiftDir::Left) { |
2731 | if (Compare(RHS, RT::from(MaxShiftAmount, RHS.bitWidth())) == |
2732 | ComparisonCategoryResult::Greater) { |
2733 | if (LHS.isNegative()) |
2734 | R = LT::AsUnsigned::zero(LHS.bitWidth()); |
2735 | else { |
2736 | RHS = RT::from(LHS.countLeadingZeros(), RHS.bitWidth()); |
2737 | LT::AsUnsigned::shiftLeft(LT::AsUnsigned::from(LHS), |
2738 | LT::AsUnsigned::from(RHS, Bits), Bits, &R); |
2739 | } |
2740 | } else if (LHS.isNegative()) { |
2741 | if (LHS.isMin()) { |
2742 | R = LT::AsUnsigned::zero(LHS.bitWidth()); |
2743 | } else { |
2744 | // If the LHS is negative, perform the cast and invert the result. |
2745 | typename LT::AsUnsigned LHSU = LT::AsUnsigned::from(-LHS); |
2746 | LT::AsUnsigned::shiftLeft(LHSU, LT::AsUnsigned::from(RHS, Bits), Bits, |
2747 | &R); |
2748 | R = -R; |
2749 | } |
2750 | } else { |
2751 | // The good case, a simple left shift. |
2752 | LT::AsUnsigned::shiftLeft(LT::AsUnsigned::from(LHS), |
2753 | LT::AsUnsigned::from(RHS, Bits), Bits, &R); |
2754 | } |
2755 | S.Stk.push<LT>(LT::from(R)); |
2756 | return true; |
2757 | } |
2758 | |
2759 | // Right shift. |
2760 | if (Compare(RHS, RT::from(MaxShiftAmount, RHS.bitWidth())) == |
2761 | ComparisonCategoryResult::Greater) { |
2762 | R = LT::AsUnsigned::from(-1); |
2763 | } else { |
2764 | // Do the shift on potentially signed LT, then convert to unsigned type. |
2765 | LT A; |
2766 | LT::shiftRight(LHS, LT::from(RHS, Bits), Bits, &A); |
2767 | R = LT::AsUnsigned::from(A); |
2768 | } |
2769 | |
2770 | S.Stk.push<LT>(LT::from(R)); |
2771 | return true; |
2772 | } |
2773 | |
2774 | /// A version of DoShift that works on IntegralAP. |
2775 | template <class LT, class RT, ShiftDir Dir> |
2776 | inline bool DoShiftAP(InterpState &S, CodePtr OpPC, const APSInt &LHS, |
2777 | APSInt RHS, LT *Result) { |
2778 | const unsigned Bits = LHS.getBitWidth(); |
2779 | |
2780 | // OpenCL 6.3j: shift values are effectively % word size of LHS. |
2781 | if (S.getLangOpts().OpenCL) |
2782 | RHS &= |
2783 | APSInt(llvm::APInt(RHS.getBitWidth(), static_cast<uint64_t>(Bits - 1)), |
2784 | RHS.isUnsigned()); |
2785 | |
2786 | if (RHS.isNegative()) { |
2787 | // During constant-folding, a negative shift is an opposite shift. Such a |
2788 | // shift is not a constant expression. |
2789 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
2790 | S.CCEDiag(SI: Loc, DiagId: diag::note_constexpr_negative_shift) << RHS; //.toAPSInt(); |
2791 | if (!S.noteUndefinedBehavior()) |
2792 | return false; |
2793 | return DoShiftAP<LT, RT, |
2794 | Dir == ShiftDir::Left ? ShiftDir::Right : ShiftDir::Left>( |
2795 | S, OpPC, LHS, -RHS, Result); |
2796 | } |
2797 | |
2798 | if (!CheckShift<Dir>(S, OpPC, static_cast<LT>(LHS), static_cast<RT>(RHS), |
2799 | Bits)) |
2800 | return false; |
2801 | |
2802 | unsigned SA = (unsigned)RHS.getLimitedValue(Limit: Bits - 1); |
2803 | if constexpr (Dir == ShiftDir::Left) { |
2804 | if constexpr (needsAlloc<LT>()) |
2805 | Result->copy(LHS << SA); |
2806 | else |
2807 | *Result = LT(LHS << SA); |
2808 | } else { |
2809 | if constexpr (needsAlloc<LT>()) |
2810 | Result->copy(LHS >> SA); |
2811 | else |
2812 | *Result = LT(LHS >> SA); |
2813 | } |
2814 | |
2815 | S.Stk.push<LT>(*Result); |
2816 | return true; |
2817 | } |
2818 | |
2819 | template <PrimType NameL, PrimType NameR> |
2820 | inline bool Shr(InterpState &S, CodePtr OpPC) { |
2821 | using LT = typename PrimConv<NameL>::T; |
2822 | using RT = typename PrimConv<NameR>::T; |
2823 | auto RHS = S.Stk.pop<RT>(); |
2824 | auto LHS = S.Stk.pop<LT>(); |
2825 | |
2826 | if constexpr (needsAlloc<LT>() || needsAlloc<RT>()) { |
2827 | LT Result; |
2828 | if constexpr (needsAlloc<LT>()) |
2829 | Result = S.allocAP<LT>(LHS.bitWidth()); |
2830 | return DoShiftAP<LT, RT, ShiftDir::Right>(S, OpPC, LHS.toAPSInt(), |
2831 | RHS.toAPSInt(), &Result); |
2832 | } else { |
2833 | LT Result; |
2834 | return DoShift<LT, RT, ShiftDir::Right>(S, OpPC, LHS, RHS, &Result); |
2835 | } |
2836 | } |
2837 | |
2838 | template <PrimType NameL, PrimType NameR> |
2839 | inline bool Shl(InterpState &S, CodePtr OpPC) { |
2840 | using LT = typename PrimConv<NameL>::T; |
2841 | using RT = typename PrimConv<NameR>::T; |
2842 | auto RHS = S.Stk.pop<RT>(); |
2843 | auto LHS = S.Stk.pop<LT>(); |
2844 | |
2845 | if constexpr (needsAlloc<LT>() || needsAlloc<RT>()) { |
2846 | LT Result; |
2847 | if constexpr (needsAlloc<LT>()) |
2848 | Result = S.allocAP<LT>(LHS.bitWidth()); |
2849 | return DoShiftAP<LT, RT, ShiftDir::Left>(S, OpPC, LHS.toAPSInt(), |
2850 | RHS.toAPSInt(), &Result); |
2851 | } else { |
2852 | LT Result; |
2853 | return DoShift<LT, RT, ShiftDir::Left>(S, OpPC, LHS, RHS, &Result); |
2854 | } |
2855 | } |
2856 | |
2857 | static inline bool ShiftFixedPoint(InterpState &S, CodePtr OpPC, bool Left) { |
2858 | const auto &RHS = S.Stk.pop<FixedPoint>(); |
2859 | const auto &LHS = S.Stk.pop<FixedPoint>(); |
2860 | llvm::FixedPointSemantics LHSSema = LHS.getSemantics(); |
2861 | |
2862 | unsigned ShiftBitWidth = |
2863 | LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding() - 1; |
2864 | |
2865 | // Embedded-C 4.1.6.2.2: |
2866 | // The right operand must be nonnegative and less than the total number |
2867 | // of (nonpadding) bits of the fixed-point operand ... |
2868 | if (RHS.isNegative()) { |
2869 | S.CCEDiag(Loc: S.Current->getLocation(PC: OpPC), DiagId: diag::note_constexpr_negative_shift) |
2870 | << RHS.toAPSInt(); |
2871 | } else if (static_cast<unsigned>(RHS.toAPSInt().getLimitedValue( |
2872 | Limit: ShiftBitWidth)) != RHS.toAPSInt()) { |
2873 | const Expr *E = S.Current->getExpr(PC: OpPC); |
2874 | S.CCEDiag(E, DiagId: diag::note_constexpr_large_shift) |
2875 | << RHS.toAPSInt() << E->getType() << ShiftBitWidth; |
2876 | } |
2877 | |
2878 | FixedPoint Result; |
2879 | if (Left) { |
2880 | if (FixedPoint::shiftLeft(A: LHS, B: RHS, OpBits: ShiftBitWidth, R: &Result) && |
2881 | !handleFixedPointOverflow(S, OpPC, FP: Result)) |
2882 | return false; |
2883 | } else { |
2884 | if (FixedPoint::shiftRight(A: LHS, B: RHS, OpBits: ShiftBitWidth, R: &Result) && |
2885 | !handleFixedPointOverflow(S, OpPC, FP: Result)) |
2886 | return false; |
2887 | } |
2888 | |
2889 | S.Stk.push<FixedPoint>(Args&: Result); |
2890 | return true; |
2891 | } |
2892 | |
2893 | //===----------------------------------------------------------------------===// |
2894 | // NoRet |
2895 | //===----------------------------------------------------------------------===// |
2896 | |
2897 | inline bool NoRet(InterpState &S, CodePtr OpPC) { |
2898 | SourceLocation EndLoc = S.Current->getCallee()->getEndLoc(); |
2899 | S.FFDiag(Loc: EndLoc, DiagId: diag::note_constexpr_no_return); |
2900 | return false; |
2901 | } |
2902 | |
2903 | //===----------------------------------------------------------------------===// |
2904 | // NarrowPtr, ExpandPtr |
2905 | //===----------------------------------------------------------------------===// |
2906 | |
2907 | inline bool NarrowPtr(InterpState &S, CodePtr OpPC) { |
2908 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2909 | S.Stk.push<Pointer>(Args: Ptr.narrow()); |
2910 | return true; |
2911 | } |
2912 | |
2913 | inline bool ExpandPtr(InterpState &S, CodePtr OpPC) { |
2914 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2915 | if (Ptr.isBlockPointer()) |
2916 | S.Stk.push<Pointer>(Args: Ptr.expand()); |
2917 | else |
2918 | S.Stk.push<Pointer>(Args: Ptr); |
2919 | return true; |
2920 | } |
2921 | |
2922 | // 1) Pops an integral value from the stack |
2923 | // 2) Peeks a pointer |
2924 | // 3) Pushes a new pointer that's a narrowed array |
2925 | // element of the peeked pointer with the value |
2926 | // from 1) added as offset. |
2927 | // |
2928 | // This leaves the original pointer on the stack and pushes a new one |
2929 | // with the offset applied and narrowed. |
2930 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2931 | inline bool ArrayElemPtr(InterpState &S, CodePtr OpPC) { |
2932 | const T &Offset = S.Stk.pop<T>(); |
2933 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
2934 | |
2935 | if (!Ptr.isZero() && !Offset.isZero()) { |
2936 | if (!CheckArray(S, OpPC, Ptr)) |
2937 | return false; |
2938 | } |
2939 | |
2940 | if (Offset.isZero()) { |
2941 | if (Ptr.getFieldDesc()->isArray() && Ptr.getIndex() == 0) { |
2942 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: 0)); |
2943 | } else { |
2944 | S.Stk.push<Pointer>(Args: Ptr); |
2945 | } |
2946 | } else { |
2947 | if (!OffsetHelper<T, ArithOp::Add>(S, OpPC, Offset, Ptr)) |
2948 | return false; |
2949 | } |
2950 | |
2951 | return NarrowPtr(S, OpPC); |
2952 | } |
2953 | |
2954 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2955 | inline bool ArrayElemPtrPop(InterpState &S, CodePtr OpPC) { |
2956 | const T &Offset = S.Stk.pop<T>(); |
2957 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2958 | |
2959 | if (!Ptr.isZero() && !Offset.isZero()) { |
2960 | if (!CheckArray(S, OpPC, Ptr)) |
2961 | return false; |
2962 | } |
2963 | |
2964 | if (Offset.isZero()) { |
2965 | if (Ptr.getFieldDesc()->isArray() && Ptr.getIndex() == 0) { |
2966 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: 0)); |
2967 | } else { |
2968 | S.Stk.push<Pointer>(Args: Ptr); |
2969 | } |
2970 | } else { |
2971 | if (!OffsetHelper<T, ArithOp::Add>(S, OpPC, Offset, Ptr)) |
2972 | return false; |
2973 | } |
2974 | |
2975 | return NarrowPtr(S, OpPC); |
2976 | } |
2977 | |
2978 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2979 | inline bool ArrayElem(InterpState &S, CodePtr OpPC, uint32_t Index) { |
2980 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
2981 | |
2982 | if (!CheckLoad(S, OpPC, Ptr)) |
2983 | return false; |
2984 | |
2985 | assert(Ptr.atIndex(Index).getFieldDesc()->getPrimType() == Name); |
2986 | S.Stk.push<T>(Ptr.atIndex(Idx: Index).deref<T>()); |
2987 | return true; |
2988 | } |
2989 | |
2990 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
2991 | inline bool ArrayElemPop(InterpState &S, CodePtr OpPC, uint32_t Index) { |
2992 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
2993 | |
2994 | if (!CheckLoad(S, OpPC, Ptr)) |
2995 | return false; |
2996 | |
2997 | assert(Ptr.atIndex(Index).getFieldDesc()->getPrimType() == Name); |
2998 | S.Stk.push<T>(Ptr.atIndex(Idx: Index).deref<T>()); |
2999 | return true; |
3000 | } |
3001 | |
3002 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
3003 | inline bool CopyArray(InterpState &S, CodePtr OpPC, uint32_t SrcIndex, |
3004 | uint32_t DestIndex, uint32_t Size) { |
3005 | const auto &SrcPtr = S.Stk.pop<Pointer>(); |
3006 | const auto &DestPtr = S.Stk.peek<Pointer>(); |
3007 | |
3008 | for (uint32_t I = 0; I != Size; ++I) { |
3009 | const Pointer &SP = SrcPtr.atIndex(Idx: SrcIndex + I); |
3010 | |
3011 | if (!CheckLoad(S, OpPC, Ptr: SP)) |
3012 | return false; |
3013 | |
3014 | const Pointer &DP = DestPtr.atIndex(Idx: DestIndex + I); |
3015 | DP.deref<T>() = SP.deref<T>(); |
3016 | DP.initialize(); |
3017 | } |
3018 | return true; |
3019 | } |
3020 | |
3021 | /// Just takes a pointer and checks if it's an incomplete |
3022 | /// array type. |
3023 | inline bool ArrayDecay(InterpState &S, CodePtr OpPC) { |
3024 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
3025 | |
3026 | if (Ptr.isZero()) { |
3027 | S.Stk.push<Pointer>(Args: Ptr); |
3028 | return true; |
3029 | } |
3030 | |
3031 | if (!CheckRange(S, OpPC, Ptr, CSK: CSK_ArrayToPointer)) |
3032 | return false; |
3033 | |
3034 | if (Ptr.isRoot() || !Ptr.isUnknownSizeArray()) { |
3035 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: 0)); |
3036 | return true; |
3037 | } |
3038 | |
3039 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
3040 | S.FFDiag(SI: E, DiagId: diag::note_constexpr_unsupported_unsized_array); |
3041 | |
3042 | return false; |
3043 | } |
3044 | |
3045 | inline bool GetFnPtr(InterpState &S, CodePtr OpPC, const Function *Func) { |
3046 | assert(Func); |
3047 | S.Stk.push<Pointer>(Args&: Func); |
3048 | return true; |
3049 | } |
3050 | |
3051 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
3052 | inline bool GetIntPtr(InterpState &S, CodePtr OpPC, const Descriptor *Desc) { |
3053 | const T &IntVal = S.Stk.pop<T>(); |
3054 | |
3055 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_invalid_cast) |
3056 | << diag::ConstexprInvalidCastKind::ThisConversionOrReinterpret |
3057 | << S.getLangOpts().CPlusPlus; |
3058 | |
3059 | S.Stk.push<Pointer>(Args: static_cast<uint64_t>(IntVal), Args&: Desc); |
3060 | return true; |
3061 | } |
3062 | |
3063 | inline bool GetMemberPtr(InterpState &S, CodePtr OpPC, const ValueDecl *D) { |
3064 | S.Stk.push<MemberPointer>(Args&: D); |
3065 | return true; |
3066 | } |
3067 | |
3068 | inline bool GetMemberPtrBase(InterpState &S, CodePtr OpPC) { |
3069 | const auto &MP = S.Stk.pop<MemberPointer>(); |
3070 | |
3071 | S.Stk.push<Pointer>(Args: MP.getBase()); |
3072 | return true; |
3073 | } |
3074 | |
3075 | inline bool GetMemberPtrDecl(InterpState &S, CodePtr OpPC) { |
3076 | const auto &MP = S.Stk.pop<MemberPointer>(); |
3077 | |
3078 | const auto *FD = cast<FunctionDecl>(Val: MP.getDecl()); |
3079 | const auto *Func = S.getContext().getOrCreateFunction(FuncDecl: FD); |
3080 | |
3081 | S.Stk.push<Pointer>(Args&: Func); |
3082 | return true; |
3083 | } |
3084 | |
3085 | /// Just emit a diagnostic. The expression that caused emission of this |
3086 | /// op is not valid in a constant context. |
3087 | inline bool Invalid(InterpState &S, CodePtr OpPC) { |
3088 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
3089 | S.FFDiag(Loc, DiagId: diag::note_invalid_subexpr_in_const_expr) |
3090 | << S.Current->getRange(PC: OpPC); |
3091 | return false; |
3092 | } |
3093 | |
3094 | inline bool Unsupported(InterpState &S, CodePtr OpPC) { |
3095 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
3096 | S.FFDiag(Loc, DiagId: diag::note_constexpr_stmt_expr_unsupported) |
3097 | << S.Current->getRange(PC: OpPC); |
3098 | return false; |
3099 | } |
3100 | |
3101 | inline bool StartSpeculation(InterpState &S, CodePtr OpPC) { |
3102 | ++S.SpeculationDepth; |
3103 | if (S.SpeculationDepth != 1) |
3104 | return true; |
3105 | |
3106 | assert(S.PrevDiags == nullptr); |
3107 | S.PrevDiags = S.getEvalStatus().Diag; |
3108 | S.getEvalStatus().Diag = nullptr; |
3109 | return true; |
3110 | } |
3111 | inline bool EndSpeculation(InterpState &S, CodePtr OpPC) { |
3112 | assert(S.SpeculationDepth != 0); |
3113 | --S.SpeculationDepth; |
3114 | if (S.SpeculationDepth == 0) { |
3115 | S.getEvalStatus().Diag = S.PrevDiags; |
3116 | S.PrevDiags = nullptr; |
3117 | } |
3118 | return true; |
3119 | } |
3120 | |
3121 | inline bool PushCC(InterpState &S, CodePtr OpPC, bool Value) { |
3122 | S.ConstantContextOverride = Value; |
3123 | return true; |
3124 | } |
3125 | inline bool PopCC(InterpState &S, CodePtr OpPC) { |
3126 | S.ConstantContextOverride = std::nullopt; |
3127 | return true; |
3128 | } |
3129 | |
3130 | /// Do nothing and just abort execution. |
3131 | inline bool Error(InterpState &S, CodePtr OpPC) { return false; } |
3132 | |
3133 | inline bool SideEffect(InterpState &S, CodePtr OpPC) { |
3134 | return S.noteSideEffect(); |
3135 | } |
3136 | |
3137 | /// Same here, but only for casts. |
3138 | inline bool InvalidCast(InterpState &S, CodePtr OpPC, CastKind Kind, |
3139 | bool Fatal) { |
3140 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
3141 | |
3142 | if (Kind == CastKind::Reinterpret) { |
3143 | S.CCEDiag(Loc, DiagId: diag::note_constexpr_invalid_cast) |
3144 | << static_cast<unsigned>(Kind) << S.Current->getRange(PC: OpPC); |
3145 | return !Fatal; |
3146 | } else if (Kind == CastKind::Volatile) { |
3147 | if (!S.checkingPotentialConstantExpression()) { |
3148 | const auto *E = cast<CastExpr>(Val: S.Current->getExpr(PC: OpPC)); |
3149 | if (S.getLangOpts().CPlusPlus) |
3150 | S.FFDiag(E, DiagId: diag::note_constexpr_access_volatile_type) |
3151 | << AK_Read << E->getSubExpr()->getType(); |
3152 | else |
3153 | S.FFDiag(E); |
3154 | } |
3155 | |
3156 | return false; |
3157 | } else if (Kind == CastKind::Dynamic) { |
3158 | assert(!S.getLangOpts().CPlusPlus20); |
3159 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_invalid_cast) |
3160 | << diag::ConstexprInvalidCastKind::Dynamic; |
3161 | return true; |
3162 | } |
3163 | |
3164 | return false; |
3165 | } |
3166 | |
3167 | inline bool InvalidDeclRef(InterpState &S, CodePtr OpPC, const DeclRefExpr *DR, |
3168 | bool InitializerFailed) { |
3169 | assert(DR); |
3170 | |
3171 | if (InitializerFailed) { |
3172 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
3173 | const auto *VD = cast<VarDecl>(Val: DR->getDecl()); |
3174 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_var_init_non_constant, ExtraNotes: 1) << VD; |
3175 | S.Note(Loc: VD->getLocation(), DiagId: diag::note_declared_at); |
3176 | return false; |
3177 | } |
3178 | |
3179 | return CheckDeclRef(S, OpPC, DR); |
3180 | } |
3181 | |
3182 | inline bool SizelessVectorElementSize(InterpState &S, CodePtr OpPC) { |
3183 | if (S.inConstantContext()) { |
3184 | const SourceRange &ArgRange = S.Current->getRange(PC: OpPC); |
3185 | const Expr *E = S.Current->getExpr(PC: OpPC); |
3186 | S.CCEDiag(E, DiagId: diag::note_constexpr_non_const_vectorelements) << ArgRange; |
3187 | } |
3188 | return false; |
3189 | } |
3190 | |
3191 | inline bool CheckPseudoDtor(InterpState &S, CodePtr OpPC) { |
3192 | if (!S.getLangOpts().CPlusPlus20) |
3193 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), |
3194 | DiagId: diag::note_constexpr_pseudo_destructor); |
3195 | return true; |
3196 | } |
3197 | |
3198 | inline bool Assume(InterpState &S, CodePtr OpPC) { |
3199 | const auto Val = S.Stk.pop<Boolean>(); |
3200 | |
3201 | if (Val) |
3202 | return true; |
3203 | |
3204 | // Else, diagnose. |
3205 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
3206 | S.CCEDiag(Loc, DiagId: diag::note_constexpr_assumption_failed); |
3207 | return false; |
3208 | } |
3209 | |
3210 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
3211 | inline bool OffsetOf(InterpState &S, CodePtr OpPC, const OffsetOfExpr *E) { |
3212 | llvm::SmallVector<int64_t> ArrayIndices; |
3213 | for (size_t I = 0; I != E->getNumExpressions(); ++I) |
3214 | ArrayIndices.emplace_back(Args: S.Stk.pop<int64_t>()); |
3215 | |
3216 | int64_t Result; |
3217 | if (!InterpretOffsetOf(S, OpPC, E, ArrayIndices, Result)) |
3218 | return false; |
3219 | |
3220 | S.Stk.push<T>(T::from(Result)); |
3221 | |
3222 | return true; |
3223 | } |
3224 | |
3225 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
3226 | inline bool CheckNonNullArg(InterpState &S, CodePtr OpPC) { |
3227 | const T &Arg = S.Stk.peek<T>(); |
3228 | if (!Arg.isZero()) |
3229 | return true; |
3230 | |
3231 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
3232 | S.CCEDiag(Loc, DiagId: diag::note_non_null_attribute_failed); |
3233 | |
3234 | return false; |
3235 | } |
3236 | |
3237 | void diagnoseEnumValue(InterpState &S, CodePtr OpPC, const EnumDecl *ED, |
3238 | const APSInt &Value); |
3239 | |
3240 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
3241 | inline bool CheckEnumValue(InterpState &S, CodePtr OpPC, const EnumDecl *ED) { |
3242 | assert(ED); |
3243 | assert(!ED->isFixed()); |
3244 | |
3245 | if (S.inConstantContext()) { |
3246 | const APSInt Val = S.Stk.peek<T>().toAPSInt(); |
3247 | diagnoseEnumValue(S, OpPC, ED, Value: Val); |
3248 | } |
3249 | return true; |
3250 | } |
3251 | |
3252 | /// OldPtr -> Integer -> NewPtr. |
3253 | template <PrimType TIn, PrimType TOut> |
3254 | inline bool DecayPtr(InterpState &S, CodePtr OpPC) { |
3255 | static_assert(isPtrType(T: TIn) && isPtrType(T: TOut)); |
3256 | using FromT = typename PrimConv<TIn>::T; |
3257 | using ToT = typename PrimConv<TOut>::T; |
3258 | |
3259 | const FromT &OldPtr = S.Stk.pop<FromT>(); |
3260 | |
3261 | if constexpr (std::is_same_v<FromT, FunctionPointer> && |
3262 | std::is_same_v<ToT, Pointer>) { |
3263 | S.Stk.push<Pointer>(OldPtr.getFunction(), OldPtr.getOffset()); |
3264 | return true; |
3265 | } else if constexpr (std::is_same_v<FromT, Pointer> && |
3266 | std::is_same_v<ToT, FunctionPointer>) { |
3267 | if (OldPtr.isFunctionPointer()) { |
3268 | S.Stk.push<FunctionPointer>(OldPtr.asFunctionPointer().getFunction(), |
3269 | OldPtr.getByteOffset()); |
3270 | return true; |
3271 | } |
3272 | } |
3273 | |
3274 | S.Stk.push<ToT>(ToT(OldPtr.getIntegerRepresentation(), nullptr)); |
3275 | return true; |
3276 | } |
3277 | |
3278 | inline bool CheckDecl(InterpState &S, CodePtr OpPC, const VarDecl *VD) { |
3279 | // An expression E is a core constant expression unless the evaluation of E |
3280 | // would evaluate one of the following: [C++23] - a control flow that passes |
3281 | // through a declaration of a variable with static or thread storage duration |
3282 | // unless that variable is usable in constant expressions. |
3283 | assert(VD->isLocalVarDecl() && |
3284 | VD->isStaticLocal()); // Checked before emitting this. |
3285 | |
3286 | if (VD == S.EvaluatingDecl) |
3287 | return true; |
3288 | |
3289 | if (!VD->isUsableInConstantExpressions(C: S.getASTContext())) { |
3290 | S.CCEDiag(Loc: VD->getLocation(), DiagId: diag::note_constexpr_static_local) |
3291 | << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD; |
3292 | return false; |
3293 | } |
3294 | return true; |
3295 | } |
3296 | |
3297 | inline bool Alloc(InterpState &S, CodePtr OpPC, const Descriptor *Desc) { |
3298 | assert(Desc); |
3299 | |
3300 | if (!CheckDynamicMemoryAllocation(S, OpPC)) |
3301 | return false; |
3302 | |
3303 | DynamicAllocator &Allocator = S.getAllocator(); |
3304 | Block *B = Allocator.allocate(D: Desc, EvalID: S.Ctx.getEvalID(), |
3305 | AllocForm: DynamicAllocator::Form::NonArray); |
3306 | assert(B); |
3307 | S.Stk.push<Pointer>(Args&: B); |
3308 | return true; |
3309 | } |
3310 | |
3311 | template <PrimType Name, class SizeT = typename PrimConv<Name>::T> |
3312 | inline bool AllocN(InterpState &S, CodePtr OpPC, PrimType T, const Expr *Source, |
3313 | bool IsNoThrow) { |
3314 | if (!CheckDynamicMemoryAllocation(S, OpPC)) |
3315 | return false; |
3316 | |
3317 | SizeT NumElements = S.Stk.pop<SizeT>(); |
3318 | if (!CheckArraySize(S, OpPC, &NumElements, primSize(Type: T), IsNoThrow)) { |
3319 | if (!IsNoThrow) |
3320 | return false; |
3321 | |
3322 | // If this failed and is nothrow, just return a null ptr. |
3323 | S.Stk.push<Pointer>(Args: 0, Args: nullptr); |
3324 | return true; |
3325 | } |
3326 | assert(NumElements.isPositive()); |
3327 | |
3328 | if (!CheckArraySize(S, OpPC, NumElems: static_cast<uint64_t>(NumElements))) |
3329 | return false; |
3330 | |
3331 | DynamicAllocator &Allocator = S.getAllocator(); |
3332 | Block *B = |
3333 | Allocator.allocate(Source, T, NumElements: static_cast<size_t>(NumElements), |
3334 | EvalID: S.Ctx.getEvalID(), AllocForm: DynamicAllocator::Form::Array); |
3335 | assert(B); |
3336 | if (NumElements.isZero()) |
3337 | S.Stk.push<Pointer>(Args&: B); |
3338 | else |
3339 | S.Stk.push<Pointer>(Args: Pointer(B).atIndex(Idx: 0)); |
3340 | return true; |
3341 | } |
3342 | |
3343 | template <PrimType Name, class SizeT = typename PrimConv<Name>::T> |
3344 | inline bool AllocCN(InterpState &S, CodePtr OpPC, const Descriptor *ElementDesc, |
3345 | bool IsNoThrow) { |
3346 | if (!CheckDynamicMemoryAllocation(S, OpPC)) |
3347 | return false; |
3348 | |
3349 | SizeT NumElements = S.Stk.pop<SizeT>(); |
3350 | if (!CheckArraySize(S, OpPC, &NumElements, ElementDesc->getSize(), |
3351 | IsNoThrow)) { |
3352 | if (!IsNoThrow) |
3353 | return false; |
3354 | |
3355 | // If this failed and is nothrow, just return a null ptr. |
3356 | S.Stk.push<Pointer>(Args: 0, Args&: ElementDesc); |
3357 | return true; |
3358 | } |
3359 | assert(NumElements.isPositive()); |
3360 | |
3361 | if (!CheckArraySize(S, OpPC, NumElems: static_cast<uint64_t>(NumElements))) |
3362 | return false; |
3363 | |
3364 | DynamicAllocator &Allocator = S.getAllocator(); |
3365 | Block *B = |
3366 | Allocator.allocate(D: ElementDesc, NumElements: static_cast<size_t>(NumElements), |
3367 | EvalID: S.Ctx.getEvalID(), AllocForm: DynamicAllocator::Form::Array); |
3368 | assert(B); |
3369 | if (NumElements.isZero()) |
3370 | S.Stk.push<Pointer>(Args&: B); |
3371 | else |
3372 | S.Stk.push<Pointer>(Args: Pointer(B).atIndex(Idx: 0)); |
3373 | |
3374 | return true; |
3375 | } |
3376 | |
3377 | bool Free(InterpState &S, CodePtr OpPC, bool DeleteIsArrayForm, |
3378 | bool IsGlobalDelete); |
3379 | |
3380 | static inline bool IsConstantContext(InterpState &S, CodePtr OpPC) { |
3381 | S.Stk.push<Boolean>(Args: Boolean::from(Value: S.inConstantContext())); |
3382 | return true; |
3383 | } |
3384 | |
3385 | static inline bool CheckAllocations(InterpState &S, CodePtr OpPC) { |
3386 | return S.maybeDiagnoseDanglingAllocations(); |
3387 | } |
3388 | |
3389 | /// Check if the initializer and storage types of a placement-new expression |
3390 | /// match. |
3391 | bool CheckNewTypeMismatch(InterpState &S, CodePtr OpPC, const Expr *E, |
3392 | std::optional<uint64_t> ArraySize = std::nullopt); |
3393 | |
3394 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
3395 | bool CheckNewTypeMismatchArray(InterpState &S, CodePtr OpPC, const Expr *E) { |
3396 | const auto &Size = S.Stk.pop<T>(); |
3397 | return CheckNewTypeMismatch(S, OpPC, E, ArraySize: static_cast<uint64_t>(Size)); |
3398 | } |
3399 | bool InvalidNewDeleteExpr(InterpState &S, CodePtr OpPC, const Expr *E); |
3400 | |
3401 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
3402 | inline bool BitCastPrim(InterpState &S, CodePtr OpPC, bool TargetIsUCharOrByte, |
3403 | uint32_t ResultBitWidth, |
3404 | const llvm::fltSemantics *Sem) { |
3405 | const Pointer &FromPtr = S.Stk.pop<Pointer>(); |
3406 | |
3407 | if (!CheckLoad(S, OpPC, Ptr: FromPtr)) |
3408 | return false; |
3409 | |
3410 | if constexpr (std::is_same_v<T, Pointer>) { |
3411 | // The only pointer type we can validly bitcast to is nullptr_t. |
3412 | S.Stk.push<Pointer>(); |
3413 | return true; |
3414 | } else { |
3415 | |
3416 | size_t BuffSize = ResultBitWidth / 8; |
3417 | llvm::SmallVector<std::byte> Buff(BuffSize); |
3418 | bool HasIndeterminateBits = false; |
3419 | |
3420 | Bits FullBitWidth(ResultBitWidth); |
3421 | Bits BitWidth = FullBitWidth; |
3422 | |
3423 | if constexpr (std::is_same_v<T, Floating>) { |
3424 | assert(Sem); |
3425 | BitWidth = Bits(llvm::APFloatBase::getSizeInBits(Sem: *Sem)); |
3426 | } |
3427 | |
3428 | if (!DoBitCast(S, OpPC, Ptr: FromPtr, Buff: Buff.data(), BitWidth, FullBitWidth, |
3429 | HasIndeterminateBits)) |
3430 | return false; |
3431 | |
3432 | if (!CheckBitCast(S, OpPC, HasIndeterminateBits, TargetIsUCharOrByte)) |
3433 | return false; |
3434 | |
3435 | if constexpr (std::is_same_v<T, Floating>) { |
3436 | assert(Sem); |
3437 | Floating Result = S.allocFloat(Sem: *Sem); |
3438 | Floating::bitcastFromMemory(Buff: Buff.data(), Sem: *Sem, Result: &Result); |
3439 | S.Stk.push<Floating>(Args&: Result); |
3440 | |
3441 | // S.Stk.push<Floating>(T::bitcastFromMemory(Buff.data(), *Sem)); |
3442 | } else if constexpr (needsAlloc<T>()) { |
3443 | T Result = S.allocAP<T>(ResultBitWidth); |
3444 | T::bitcastFromMemory(Buff.data(), ResultBitWidth, &Result); |
3445 | S.Stk.push<T>(Result); |
3446 | } else { |
3447 | assert(!Sem); |
3448 | S.Stk.push<T>(T::bitcastFromMemory(Buff.data(), ResultBitWidth)); |
3449 | } |
3450 | return true; |
3451 | } |
3452 | } |
3453 | |
3454 | inline bool BitCast(InterpState &S, CodePtr OpPC) { |
3455 | const Pointer &FromPtr = S.Stk.pop<Pointer>(); |
3456 | Pointer &ToPtr = S.Stk.peek<Pointer>(); |
3457 | |
3458 | if (!CheckLoad(S, OpPC, Ptr: FromPtr)) |
3459 | return false; |
3460 | |
3461 | if (!DoBitCastPtr(S, OpPC, FromPtr, ToPtr)) |
3462 | return false; |
3463 | |
3464 | return true; |
3465 | } |
3466 | |
3467 | /// Typeid support. |
3468 | bool GetTypeid(InterpState &S, CodePtr OpPC, const Type *TypePtr, |
3469 | const Type *TypeInfoType); |
3470 | bool GetTypeidPtr(InterpState &S, CodePtr OpPC, const Type *TypeInfoType); |
3471 | bool DiagTypeid(InterpState &S, CodePtr OpPC); |
3472 | |
3473 | inline bool CheckDestruction(InterpState &S, CodePtr OpPC) { |
3474 | const auto &Ptr = S.Stk.peek<Pointer>(); |
3475 | return CheckDestructor(S, OpPC, Ptr); |
3476 | } |
3477 | |
3478 | inline bool CheckArraySize(InterpState &S, CodePtr OpPC, uint64_t NumElems) { |
3479 | uint64_t Limit = S.getLangOpts().ConstexprStepLimit; |
3480 | if (NumElems > Limit) { |
3481 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
3482 | DiagId: diag::note_constexpr_new_exceeds_limits) |
3483 | << NumElems << Limit; |
3484 | return false; |
3485 | } |
3486 | return true; |
3487 | } |
3488 | |
3489 | //===----------------------------------------------------------------------===// |
3490 | // Read opcode arguments |
3491 | //===----------------------------------------------------------------------===// |
3492 | |
3493 | template <typename T> inline T ReadArg(InterpState &S, CodePtr &OpPC) { |
3494 | if constexpr (std::is_pointer<T>::value) { |
3495 | uint32_t ID = OpPC.read<uint32_t>(); |
3496 | return reinterpret_cast<T>(S.P.getNativePointer(Idx: ID)); |
3497 | } else { |
3498 | return OpPC.read<T>(); |
3499 | } |
3500 | } |
3501 | |
3502 | template <> inline Floating ReadArg<Floating>(InterpState &S, CodePtr &OpPC) { |
3503 | auto &Semantics = |
3504 | llvm::APFloatBase::EnumToSemantics(S: Floating::deserializeSemantics(Buff: *OpPC)); |
3505 | |
3506 | auto F = S.allocFloat(Sem: Semantics); |
3507 | Floating::deserialize(Buff: *OpPC, Result: &F); |
3508 | OpPC += align(Size: F.bytesToSerialize()); |
3509 | return F; |
3510 | } |
3511 | |
3512 | template <> |
3513 | inline IntegralAP<false> ReadArg<IntegralAP<false>>(InterpState &S, |
3514 | CodePtr &OpPC) { |
3515 | uint32_t BitWidth = IntegralAP<false>::deserializeSize(Buff: *OpPC); |
3516 | auto Result = S.allocAP<IntegralAP<false>>(BitWidth); |
3517 | assert(Result.bitWidth() == BitWidth); |
3518 | |
3519 | IntegralAP<false>::deserialize(Buff: *OpPC, Result: &Result); |
3520 | OpPC += align(Size: Result.bytesToSerialize()); |
3521 | return Result; |
3522 | } |
3523 | |
3524 | template <> |
3525 | inline IntegralAP<true> ReadArg<IntegralAP<true>>(InterpState &S, |
3526 | CodePtr &OpPC) { |
3527 | uint32_t BitWidth = IntegralAP<true>::deserializeSize(Buff: *OpPC); |
3528 | auto Result = S.allocAP<IntegralAP<true>>(BitWidth); |
3529 | assert(Result.bitWidth() == BitWidth); |
3530 | |
3531 | IntegralAP<true>::deserialize(Buff: *OpPC, Result: &Result); |
3532 | OpPC += align(Size: Result.bytesToSerialize()); |
3533 | return Result; |
3534 | } |
3535 | |
3536 | template <> |
3537 | inline FixedPoint ReadArg<FixedPoint>(InterpState &S, CodePtr &OpPC) { |
3538 | FixedPoint FP = FixedPoint::deserialize(Buff: *OpPC); |
3539 | OpPC += align(Size: FP.bytesToSerialize()); |
3540 | return FP; |
3541 | } |
3542 | |
3543 | } // namespace interp |
3544 | } // namespace clang |
3545 | |
3546 | #endif |
3547 | |