| 1 | //===--- Interp.h - Interpreter for the constexpr VM ------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Definition of the interpreter state and entry point. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_CLANG_AST_INTERP_INTERP_H |
| 14 | #define LLVM_CLANG_AST_INTERP_INTERP_H |
| 15 | |
| 16 | #include "../ExprConstShared.h" |
| 17 | #include "BitcastBuffer.h" |
| 18 | #include "Boolean.h" |
| 19 | #include "DynamicAllocator.h" |
| 20 | #include "FixedPoint.h" |
| 21 | #include "Floating.h" |
| 22 | #include "Function.h" |
| 23 | #include "InterpBuiltinBitCast.h" |
| 24 | #include "InterpFrame.h" |
| 25 | #include "InterpStack.h" |
| 26 | #include "InterpState.h" |
| 27 | #include "MemberPointer.h" |
| 28 | #include "Opcode.h" |
| 29 | #include "PrimType.h" |
| 30 | #include "Program.h" |
| 31 | #include "State.h" |
| 32 | #include "clang/AST/ASTContext.h" |
| 33 | #include "clang/AST/Expr.h" |
| 34 | #include "llvm/ADT/APFloat.h" |
| 35 | #include "llvm/ADT/APSInt.h" |
| 36 | #include <type_traits> |
| 37 | |
| 38 | namespace clang { |
| 39 | namespace interp { |
| 40 | |
| 41 | using APSInt = llvm::APSInt; |
| 42 | using FixedPointSemantics = llvm::FixedPointSemantics; |
| 43 | |
| 44 | /// Checks if the variable has externally defined storage. |
| 45 | bool CheckExtern(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
| 46 | |
| 47 | /// Checks if the array is offsetable. |
| 48 | bool CheckArray(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
| 49 | |
| 50 | /// Checks if a pointer is live and accessible. |
| 51 | bool CheckLive(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 52 | AccessKinds AK); |
| 53 | |
| 54 | /// Checks if a pointer is a dummy pointer. |
| 55 | bool CheckDummy(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 56 | AccessKinds AK); |
| 57 | |
| 58 | /// Checks if a pointer is null. |
| 59 | bool CheckNull(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 60 | CheckSubobjectKind CSK); |
| 61 | |
| 62 | /// Checks if a pointer is in range. |
| 63 | bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 64 | AccessKinds AK); |
| 65 | |
| 66 | /// Checks if a field from which a pointer is going to be derived is valid. |
| 67 | bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 68 | CheckSubobjectKind CSK); |
| 69 | |
| 70 | /// Checks if Ptr is a one-past-the-end pointer. |
| 71 | bool CheckSubobject(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 72 | CheckSubobjectKind CSK); |
| 73 | |
| 74 | /// Checks if the dowcast using the given offset is possible with the given |
| 75 | /// pointer. |
| 76 | bool CheckDowncast(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 77 | uint32_t Offset); |
| 78 | |
| 79 | /// Checks if a pointer points to const storage. |
| 80 | bool CheckConst(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
| 81 | |
| 82 | /// Checks if the Descriptor is of a constexpr or const global variable. |
| 83 | bool CheckConstant(InterpState &S, CodePtr OpPC, const Descriptor *Desc); |
| 84 | |
| 85 | /// Checks if a pointer points to a mutable field. |
| 86 | bool CheckMutable(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
| 87 | |
| 88 | /// Checks if a value can be loaded from a block. |
| 89 | bool CheckLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 90 | AccessKinds AK = AK_Read); |
| 91 | bool CheckFinalLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
| 92 | |
| 93 | bool CheckInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 94 | AccessKinds AK); |
| 95 | /// Check if a global variable is initialized. |
| 96 | bool CheckGlobalInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
| 97 | |
| 98 | /// Checks if a value can be stored in a block. |
| 99 | bool CheckStore(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
| 100 | |
| 101 | /// Checks if a method can be invoked on an object. |
| 102 | bool CheckInvoke(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
| 103 | |
| 104 | /// Checks if a value can be initialized. |
| 105 | bool CheckInit(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
| 106 | |
| 107 | /// Checks if a method can be called. |
| 108 | bool CheckCallable(InterpState &S, CodePtr OpPC, const Function *F); |
| 109 | |
| 110 | /// Checks if calling the currently active function would exceed |
| 111 | /// the allowed call depth. |
| 112 | bool CheckCallDepth(InterpState &S, CodePtr OpPC); |
| 113 | |
| 114 | /// Checks the 'this' pointer. |
| 115 | bool CheckThis(InterpState &S, CodePtr OpPC, const Pointer &This); |
| 116 | |
| 117 | /// Checks if all the arguments annotated as 'nonnull' are in fact not null. |
| 118 | bool CheckNonNullArgs(InterpState &S, CodePtr OpPC, const Function *F, |
| 119 | const CallExpr *CE, unsigned ArgSize); |
| 120 | |
| 121 | /// Checks if dynamic memory allocation is available in the current |
| 122 | /// language mode. |
| 123 | bool CheckDynamicMemoryAllocation(InterpState &S, CodePtr OpPC); |
| 124 | |
| 125 | /// Diagnose mismatched new[]/delete or new/delete[] pairs. |
| 126 | bool CheckNewDeleteForms(InterpState &S, CodePtr OpPC, |
| 127 | DynamicAllocator::Form AllocForm, |
| 128 | DynamicAllocator::Form DeleteForm, const Descriptor *D, |
| 129 | const Expr *NewExpr); |
| 130 | |
| 131 | /// Check the source of the pointer passed to delete/delete[] has actually |
| 132 | /// been heap allocated by us. |
| 133 | bool CheckDeleteSource(InterpState &S, CodePtr OpPC, const Expr *Source, |
| 134 | const Pointer &Ptr); |
| 135 | |
| 136 | bool CheckActive(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 137 | AccessKinds AK); |
| 138 | |
| 139 | /// Sets the given integral value to the pointer, which is of |
| 140 | /// a std::{weak,partial,strong}_ordering type. |
| 141 | bool SetThreeWayComparisonField(InterpState &S, CodePtr OpPC, |
| 142 | const Pointer &Ptr, const APSInt &IntValue); |
| 143 | |
| 144 | /// Copy the contents of Src into Dest. |
| 145 | bool DoMemcpy(InterpState &S, CodePtr OpPC, const Pointer &Src, Pointer &Dest); |
| 146 | |
| 147 | bool CallVar(InterpState &S, CodePtr OpPC, const Function *Func, |
| 148 | uint32_t VarArgSize); |
| 149 | bool Call(InterpState &S, CodePtr OpPC, const Function *Func, |
| 150 | uint32_t VarArgSize); |
| 151 | bool CallVirt(InterpState &S, CodePtr OpPC, const Function *Func, |
| 152 | uint32_t VarArgSize); |
| 153 | bool CallBI(InterpState &S, CodePtr OpPC, const CallExpr *CE, |
| 154 | uint32_t BuiltinID); |
| 155 | bool CallPtr(InterpState &S, CodePtr OpPC, uint32_t ArgSize, |
| 156 | const CallExpr *CE); |
| 157 | bool CheckLiteralType(InterpState &S, CodePtr OpPC, const Type *T); |
| 158 | bool InvalidShuffleVectorIndex(InterpState &S, CodePtr OpPC, uint32_t Index); |
| 159 | bool CheckBitCast(InterpState &S, CodePtr OpPC, bool HasIndeterminateBits, |
| 160 | bool TargetIsUCharOrByte); |
| 161 | bool CheckBCPResult(InterpState &S, const Pointer &Ptr); |
| 162 | bool CheckDestructor(InterpState &S, CodePtr OpPC, const Pointer &Ptr); |
| 163 | |
| 164 | template <typename T> |
| 165 | static bool handleOverflow(InterpState &S, CodePtr OpPC, const T &SrcValue) { |
| 166 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 167 | S.CCEDiag(E, DiagId: diag::note_constexpr_overflow) << SrcValue << E->getType(); |
| 168 | return S.noteUndefinedBehavior(); |
| 169 | } |
| 170 | bool handleFixedPointOverflow(InterpState &S, CodePtr OpPC, |
| 171 | const FixedPoint &FP); |
| 172 | |
| 173 | bool isConstexprUnknown(const Pointer &P); |
| 174 | |
| 175 | inline bool CheckArraySize(InterpState &S, CodePtr OpPC, uint64_t NumElems); |
| 176 | |
| 177 | enum class ShiftDir { Left, Right }; |
| 178 | |
| 179 | /// Checks if the shift operation is legal. |
| 180 | template <ShiftDir Dir, typename LT, typename RT> |
| 181 | bool CheckShift(InterpState &S, CodePtr OpPC, const LT &LHS, const RT &RHS, |
| 182 | unsigned Bits) { |
| 183 | if (RHS.isNegative()) { |
| 184 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 185 | S.CCEDiag(SI: Loc, DiagId: diag::note_constexpr_negative_shift) << RHS.toAPSInt(); |
| 186 | if (!S.noteUndefinedBehavior()) |
| 187 | return false; |
| 188 | } |
| 189 | |
| 190 | // C++11 [expr.shift]p1: Shift width must be less than the bit width of |
| 191 | // the shifted type. |
| 192 | if (Bits > 1 && RHS >= Bits) { |
| 193 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 194 | const APSInt Val = RHS.toAPSInt(); |
| 195 | QualType Ty = E->getType(); |
| 196 | S.CCEDiag(E, DiagId: diag::note_constexpr_large_shift) << Val << Ty << Bits; |
| 197 | if (!S.noteUndefinedBehavior()) |
| 198 | return false; |
| 199 | } |
| 200 | |
| 201 | if constexpr (Dir == ShiftDir::Left) { |
| 202 | if (LHS.isSigned() && !S.getLangOpts().CPlusPlus20) { |
| 203 | // C++11 [expr.shift]p2: A signed left shift must have a non-negative |
| 204 | // operand, and must not overflow the corresponding unsigned type. |
| 205 | if (LHS.isNegative()) { |
| 206 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 207 | S.CCEDiag(E, DiagId: diag::note_constexpr_lshift_of_negative) << LHS.toAPSInt(); |
| 208 | if (!S.noteUndefinedBehavior()) |
| 209 | return false; |
| 210 | } else if (LHS.toUnsigned().countLeadingZeros() < |
| 211 | static_cast<unsigned>(RHS)) { |
| 212 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 213 | S.CCEDiag(E, DiagId: diag::note_constexpr_lshift_discards); |
| 214 | if (!S.noteUndefinedBehavior()) |
| 215 | return false; |
| 216 | } |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | // C++2a [expr.shift]p2: [P0907R4]: |
| 221 | // E1 << E2 is the unique value congruent to |
| 222 | // E1 x 2^E2 module 2^N. |
| 223 | return true; |
| 224 | } |
| 225 | |
| 226 | /// Checks if Div/Rem operation on LHS and RHS is valid. |
| 227 | template <typename T> |
| 228 | bool CheckDivRem(InterpState &S, CodePtr OpPC, const T &LHS, const T &RHS) { |
| 229 | if (RHS.isZero()) { |
| 230 | const auto *Op = cast<BinaryOperator>(Val: S.Current->getExpr(PC: OpPC)); |
| 231 | if constexpr (std::is_same_v<T, Floating>) { |
| 232 | S.CCEDiag(E: Op, DiagId: diag::note_expr_divide_by_zero) |
| 233 | << Op->getRHS()->getSourceRange(); |
| 234 | return true; |
| 235 | } |
| 236 | |
| 237 | S.FFDiag(E: Op, DiagId: diag::note_expr_divide_by_zero) |
| 238 | << Op->getRHS()->getSourceRange(); |
| 239 | return false; |
| 240 | } |
| 241 | |
| 242 | if constexpr (!std::is_same_v<T, FixedPoint>) { |
| 243 | if (LHS.isSigned() && LHS.isMin() && RHS.isNegative() && RHS.isMinusOne()) { |
| 244 | APSInt LHSInt = LHS.toAPSInt(); |
| 245 | SmallString<32> Trunc; |
| 246 | (-LHSInt.extend(width: LHSInt.getBitWidth() + 1)).toString(Str&: Trunc, Radix: 10); |
| 247 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 248 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 249 | S.CCEDiag(SI: Loc, DiagId: diag::note_constexpr_overflow) << Trunc << E->getType(); |
| 250 | return false; |
| 251 | } |
| 252 | } |
| 253 | return true; |
| 254 | } |
| 255 | |
| 256 | template <typename SizeT> |
| 257 | bool CheckArraySize(InterpState &S, CodePtr OpPC, SizeT *NumElements, |
| 258 | unsigned ElemSize, bool IsNoThrow) { |
| 259 | // FIXME: Both the SizeT::from() as well as the |
| 260 | // NumElements.toAPSInt() in this function are rather expensive. |
| 261 | |
| 262 | // Can't be too many elements if the bitwidth of NumElements is lower than |
| 263 | // that of Descriptor::MaxArrayElemBytes. |
| 264 | if ((NumElements->bitWidth() - NumElements->isSigned()) < |
| 265 | (sizeof(Descriptor::MaxArrayElemBytes) * 8)) |
| 266 | return true; |
| 267 | |
| 268 | // FIXME: GH63562 |
| 269 | // APValue stores array extents as unsigned, |
| 270 | // so anything that is greater that unsigned would overflow when |
| 271 | // constructing the array, we catch this here. |
| 272 | SizeT MaxElements = SizeT::from(Descriptor::MaxArrayElemBytes / ElemSize); |
| 273 | assert(MaxElements.isPositive()); |
| 274 | if (NumElements->toAPSInt().getActiveBits() > |
| 275 | ConstantArrayType::getMaxSizeBits(Context: S.getASTContext()) || |
| 276 | *NumElements > MaxElements) { |
| 277 | if (!IsNoThrow) { |
| 278 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 279 | |
| 280 | if (NumElements->isSigned() && NumElements->isNegative()) { |
| 281 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_new_negative) |
| 282 | << NumElements->toDiagnosticString(S.getASTContext()); |
| 283 | } else { |
| 284 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_new_too_large) |
| 285 | << NumElements->toDiagnosticString(S.getASTContext()); |
| 286 | } |
| 287 | } |
| 288 | return false; |
| 289 | } |
| 290 | return true; |
| 291 | } |
| 292 | |
| 293 | /// Checks if the result of a floating-point operation is valid |
| 294 | /// in the current context. |
| 295 | bool CheckFloatResult(InterpState &S, CodePtr OpPC, const Floating &Result, |
| 296 | APFloat::opStatus Status, FPOptions FPO); |
| 297 | |
| 298 | /// Checks why the given DeclRefExpr is invalid. |
| 299 | bool CheckDeclRef(InterpState &S, CodePtr OpPC, const DeclRefExpr *DR); |
| 300 | |
| 301 | /// Interpreter entry point. |
| 302 | bool Interpret(InterpState &S); |
| 303 | |
| 304 | /// Interpret a builtin function. |
| 305 | bool InterpretBuiltin(InterpState &S, CodePtr OpPC, const CallExpr *Call, |
| 306 | uint32_t BuiltinID); |
| 307 | |
| 308 | /// Interpret an offsetof operation. |
| 309 | bool InterpretOffsetOf(InterpState &S, CodePtr OpPC, const OffsetOfExpr *E, |
| 310 | ArrayRef<int64_t> ArrayIndices, int64_t &Result); |
| 311 | |
| 312 | inline bool Invalid(InterpState &S, CodePtr OpPC); |
| 313 | |
| 314 | enum class ArithOp { Add, Sub }; |
| 315 | |
| 316 | //===----------------------------------------------------------------------===// |
| 317 | // Returning values |
| 318 | //===----------------------------------------------------------------------===// |
| 319 | |
| 320 | void cleanupAfterFunctionCall(InterpState &S, CodePtr OpPC, |
| 321 | const Function *Func); |
| 322 | |
| 323 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 324 | bool Ret(InterpState &S, CodePtr &PC) { |
| 325 | const T &Ret = S.Stk.pop<T>(); |
| 326 | |
| 327 | assert(S.Current); |
| 328 | assert(S.Current->getFrameOffset() == S.Stk.size() && "Invalid frame" ); |
| 329 | if (!S.checkingPotentialConstantExpression() || S.Current->Caller) |
| 330 | cleanupAfterFunctionCall(S, OpPC: PC, Func: S.Current->getFunction()); |
| 331 | |
| 332 | if (InterpFrame *Caller = S.Current->Caller) { |
| 333 | PC = S.Current->getRetPC(); |
| 334 | InterpFrame::free(F: S.Current); |
| 335 | S.Current = Caller; |
| 336 | S.Stk.push<T>(Ret); |
| 337 | } else { |
| 338 | InterpFrame::free(F: S.Current); |
| 339 | S.Current = nullptr; |
| 340 | // The topmost frame should come from an EvalEmitter, |
| 341 | // which has its own implementation of the Ret<> instruction. |
| 342 | } |
| 343 | return true; |
| 344 | } |
| 345 | |
| 346 | inline bool RetVoid(InterpState &S, CodePtr &PC) { |
| 347 | assert(S.Current->getFrameOffset() == S.Stk.size() && "Invalid frame" ); |
| 348 | |
| 349 | if (!S.checkingPotentialConstantExpression() || S.Current->Caller) |
| 350 | cleanupAfterFunctionCall(S, OpPC: PC, Func: S.Current->getFunction()); |
| 351 | |
| 352 | if (InterpFrame *Caller = S.Current->Caller) { |
| 353 | PC = S.Current->getRetPC(); |
| 354 | InterpFrame::free(F: S.Current); |
| 355 | S.Current = Caller; |
| 356 | } else { |
| 357 | InterpFrame::free(F: S.Current); |
| 358 | S.Current = nullptr; |
| 359 | } |
| 360 | return true; |
| 361 | } |
| 362 | |
| 363 | //===----------------------------------------------------------------------===// |
| 364 | // Add, Sub, Mul |
| 365 | //===----------------------------------------------------------------------===// |
| 366 | |
| 367 | template <typename T, bool (*OpFW)(T, T, unsigned, T *), |
| 368 | template <typename U> class OpAP> |
| 369 | bool AddSubMulHelper(InterpState &S, CodePtr OpPC, unsigned Bits, const T &LHS, |
| 370 | const T &RHS) { |
| 371 | // Fast path - add the numbers with fixed width. |
| 372 | T Result; |
| 373 | if constexpr (needsAlloc<T>()) |
| 374 | Result = S.allocAP<T>(LHS.bitWidth()); |
| 375 | |
| 376 | if (!OpFW(LHS, RHS, Bits, &Result)) { |
| 377 | S.Stk.push<T>(Result); |
| 378 | return true; |
| 379 | } |
| 380 | // If for some reason evaluation continues, use the truncated results. |
| 381 | S.Stk.push<T>(Result); |
| 382 | |
| 383 | // Short-circuit fixed-points here since the error handling is easier. |
| 384 | if constexpr (std::is_same_v<T, FixedPoint>) |
| 385 | return handleFixedPointOverflow(S, OpPC, Result); |
| 386 | |
| 387 | // Slow path - compute the result using another bit of precision. |
| 388 | APSInt Value = OpAP<APSInt>()(LHS.toAPSInt(Bits), RHS.toAPSInt(Bits)); |
| 389 | |
| 390 | // Report undefined behaviour, stopping if required. |
| 391 | if (S.checkingForUndefinedBehavior()) { |
| 392 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 393 | QualType Type = E->getType(); |
| 394 | SmallString<32> Trunc; |
| 395 | Value.trunc(width: Result.bitWidth()) |
| 396 | .toString(Trunc, 10, Result.isSigned(), /*formatAsCLiteral=*/false, |
| 397 | /*UpperCase=*/true, /*InsertSeparators=*/true); |
| 398 | S.report(Loc: E->getExprLoc(), DiagId: diag::warn_integer_constant_overflow) |
| 399 | << Trunc << Type << E->getSourceRange(); |
| 400 | } |
| 401 | |
| 402 | if (!handleOverflow(S, OpPC, SrcValue: Value)) { |
| 403 | S.Stk.pop<T>(); |
| 404 | return false; |
| 405 | } |
| 406 | return true; |
| 407 | } |
| 408 | |
| 409 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 410 | bool Add(InterpState &S, CodePtr OpPC) { |
| 411 | const T &RHS = S.Stk.pop<T>(); |
| 412 | const T &LHS = S.Stk.pop<T>(); |
| 413 | const unsigned Bits = RHS.bitWidth() + 1; |
| 414 | |
| 415 | return AddSubMulHelper<T, T::add, std::plus>(S, OpPC, Bits, LHS, RHS); |
| 416 | } |
| 417 | |
| 418 | static inline llvm::RoundingMode getRoundingMode(FPOptions FPO) { |
| 419 | auto RM = FPO.getRoundingMode(); |
| 420 | if (RM == llvm::RoundingMode::Dynamic) |
| 421 | return llvm::RoundingMode::NearestTiesToEven; |
| 422 | return RM; |
| 423 | } |
| 424 | |
| 425 | inline bool Addf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
| 426 | const Floating &RHS = S.Stk.pop<Floating>(); |
| 427 | const Floating &LHS = S.Stk.pop<Floating>(); |
| 428 | |
| 429 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
| 430 | Floating Result = S.allocFloat(Sem: LHS.getSemantics()); |
| 431 | auto Status = Floating::add(A: LHS, B: RHS, RM: getRoundingMode(FPO), R: &Result); |
| 432 | S.Stk.push<Floating>(Args&: Result); |
| 433 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
| 434 | } |
| 435 | |
| 436 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 437 | bool Sub(InterpState &S, CodePtr OpPC) { |
| 438 | const T &RHS = S.Stk.pop<T>(); |
| 439 | const T &LHS = S.Stk.pop<T>(); |
| 440 | const unsigned Bits = RHS.bitWidth() + 1; |
| 441 | |
| 442 | return AddSubMulHelper<T, T::sub, std::minus>(S, OpPC, Bits, LHS, RHS); |
| 443 | } |
| 444 | |
| 445 | inline bool Subf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
| 446 | const Floating &RHS = S.Stk.pop<Floating>(); |
| 447 | const Floating &LHS = S.Stk.pop<Floating>(); |
| 448 | |
| 449 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
| 450 | Floating Result = S.allocFloat(Sem: LHS.getSemantics()); |
| 451 | auto Status = Floating::sub(A: LHS, B: RHS, RM: getRoundingMode(FPO), R: &Result); |
| 452 | S.Stk.push<Floating>(Args&: Result); |
| 453 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
| 454 | } |
| 455 | |
| 456 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 457 | bool Mul(InterpState &S, CodePtr OpPC) { |
| 458 | const T &RHS = S.Stk.pop<T>(); |
| 459 | const T &LHS = S.Stk.pop<T>(); |
| 460 | const unsigned Bits = RHS.bitWidth() * 2; |
| 461 | |
| 462 | return AddSubMulHelper<T, T::mul, std::multiplies>(S, OpPC, Bits, LHS, RHS); |
| 463 | } |
| 464 | |
| 465 | inline bool Mulf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
| 466 | const Floating &RHS = S.Stk.pop<Floating>(); |
| 467 | const Floating &LHS = S.Stk.pop<Floating>(); |
| 468 | |
| 469 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
| 470 | Floating Result = S.allocFloat(Sem: LHS.getSemantics()); |
| 471 | |
| 472 | auto Status = Floating::mul(A: LHS, B: RHS, RM: getRoundingMode(FPO), R: &Result); |
| 473 | |
| 474 | S.Stk.push<Floating>(Args&: Result); |
| 475 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
| 476 | } |
| 477 | |
| 478 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 479 | inline bool Mulc(InterpState &S, CodePtr OpPC) { |
| 480 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 481 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 482 | const Pointer &Result = S.Stk.peek<Pointer>(); |
| 483 | |
| 484 | if constexpr (std::is_same_v<T, Floating>) { |
| 485 | APFloat A = LHS.atIndex(Idx: 0).deref<Floating>().getAPFloat(); |
| 486 | APFloat B = LHS.atIndex(Idx: 1).deref<Floating>().getAPFloat(); |
| 487 | APFloat C = RHS.atIndex(Idx: 0).deref<Floating>().getAPFloat(); |
| 488 | APFloat D = RHS.atIndex(Idx: 1).deref<Floating>().getAPFloat(); |
| 489 | |
| 490 | APFloat ResR(A.getSemantics()); |
| 491 | APFloat ResI(A.getSemantics()); |
| 492 | HandleComplexComplexMul(A, B, C, D, ResR, ResI); |
| 493 | |
| 494 | // Copy into the result. |
| 495 | Floating RA = S.allocFloat(Sem: A.getSemantics()); |
| 496 | RA.copy(F: ResR); |
| 497 | Result.atIndex(Idx: 0).deref<Floating>() = RA; // Floating(ResR); |
| 498 | Result.atIndex(Idx: 0).initialize(); |
| 499 | |
| 500 | Floating RI = S.allocFloat(Sem: A.getSemantics()); |
| 501 | RI.copy(F: ResI); |
| 502 | Result.atIndex(Idx: 1).deref<Floating>() = RI; // Floating(ResI); |
| 503 | Result.atIndex(Idx: 1).initialize(); |
| 504 | Result.initialize(); |
| 505 | } else { |
| 506 | // Integer element type. |
| 507 | const T &LHSR = LHS.atIndex(Idx: 0).deref<T>(); |
| 508 | const T &LHSI = LHS.atIndex(Idx: 1).deref<T>(); |
| 509 | const T &RHSR = RHS.atIndex(Idx: 0).deref<T>(); |
| 510 | const T &RHSI = RHS.atIndex(Idx: 1).deref<T>(); |
| 511 | unsigned Bits = LHSR.bitWidth(); |
| 512 | |
| 513 | // real(Result) = (real(LHS) * real(RHS)) - (imag(LHS) * imag(RHS)) |
| 514 | T A; |
| 515 | if (T::mul(LHSR, RHSR, Bits, &A)) |
| 516 | return false; |
| 517 | T B; |
| 518 | if (T::mul(LHSI, RHSI, Bits, &B)) |
| 519 | return false; |
| 520 | if (T::sub(A, B, Bits, &Result.atIndex(Idx: 0).deref<T>())) |
| 521 | return false; |
| 522 | Result.atIndex(Idx: 0).initialize(); |
| 523 | |
| 524 | // imag(Result) = (real(LHS) * imag(RHS)) + (imag(LHS) * real(RHS)) |
| 525 | if (T::mul(LHSR, RHSI, Bits, &A)) |
| 526 | return false; |
| 527 | if (T::mul(LHSI, RHSR, Bits, &B)) |
| 528 | return false; |
| 529 | if (T::add(A, B, Bits, &Result.atIndex(Idx: 1).deref<T>())) |
| 530 | return false; |
| 531 | Result.atIndex(Idx: 1).initialize(); |
| 532 | Result.initialize(); |
| 533 | } |
| 534 | |
| 535 | return true; |
| 536 | } |
| 537 | |
| 538 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 539 | inline bool Divc(InterpState &S, CodePtr OpPC) { |
| 540 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 541 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 542 | const Pointer &Result = S.Stk.peek<Pointer>(); |
| 543 | |
| 544 | if constexpr (std::is_same_v<T, Floating>) { |
| 545 | APFloat A = LHS.atIndex(Idx: 0).deref<Floating>().getAPFloat(); |
| 546 | APFloat B = LHS.atIndex(Idx: 1).deref<Floating>().getAPFloat(); |
| 547 | APFloat C = RHS.atIndex(Idx: 0).deref<Floating>().getAPFloat(); |
| 548 | APFloat D = RHS.atIndex(Idx: 1).deref<Floating>().getAPFloat(); |
| 549 | |
| 550 | APFloat ResR(A.getSemantics()); |
| 551 | APFloat ResI(A.getSemantics()); |
| 552 | HandleComplexComplexDiv(A, B, C, D, ResR, ResI); |
| 553 | |
| 554 | // Copy into the result. |
| 555 | Floating RA = S.allocFloat(Sem: A.getSemantics()); |
| 556 | RA.copy(F: ResR); |
| 557 | Result.atIndex(Idx: 0).deref<Floating>() = RA; // Floating(ResR); |
| 558 | Result.atIndex(Idx: 0).initialize(); |
| 559 | |
| 560 | Floating RI = S.allocFloat(Sem: A.getSemantics()); |
| 561 | RI.copy(F: ResI); |
| 562 | Result.atIndex(Idx: 1).deref<Floating>() = RI; // Floating(ResI); |
| 563 | Result.atIndex(Idx: 1).initialize(); |
| 564 | |
| 565 | Result.initialize(); |
| 566 | } else { |
| 567 | // Integer element type. |
| 568 | const T &LHSR = LHS.atIndex(Idx: 0).deref<T>(); |
| 569 | const T &LHSI = LHS.atIndex(Idx: 1).deref<T>(); |
| 570 | const T &RHSR = RHS.atIndex(Idx: 0).deref<T>(); |
| 571 | const T &RHSI = RHS.atIndex(Idx: 1).deref<T>(); |
| 572 | unsigned Bits = LHSR.bitWidth(); |
| 573 | const T Zero = T::from(0, Bits); |
| 574 | |
| 575 | if (Compare(RHSR, Zero) == ComparisonCategoryResult::Equal && |
| 576 | Compare(RHSI, Zero) == ComparisonCategoryResult::Equal) { |
| 577 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 578 | S.FFDiag(SI: E, DiagId: diag::note_expr_divide_by_zero); |
| 579 | return false; |
| 580 | } |
| 581 | |
| 582 | // Den = real(RHS)² + imag(RHS)² |
| 583 | T A, B; |
| 584 | if (T::mul(RHSR, RHSR, Bits, &A) || T::mul(RHSI, RHSI, Bits, &B)) { |
| 585 | // Ignore overflow here, because that's what the current interpeter does. |
| 586 | } |
| 587 | T Den; |
| 588 | if (T::add(A, B, Bits, &Den)) |
| 589 | return false; |
| 590 | |
| 591 | if (Compare(Den, Zero) == ComparisonCategoryResult::Equal) { |
| 592 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 593 | S.FFDiag(SI: E, DiagId: diag::note_expr_divide_by_zero); |
| 594 | return false; |
| 595 | } |
| 596 | |
| 597 | // real(Result) = ((real(LHS) * real(RHS)) + (imag(LHS) * imag(RHS))) / Den |
| 598 | T &ResultR = Result.atIndex(Idx: 0).deref<T>(); |
| 599 | T &ResultI = Result.atIndex(Idx: 1).deref<T>(); |
| 600 | |
| 601 | if (T::mul(LHSR, RHSR, Bits, &A) || T::mul(LHSI, RHSI, Bits, &B)) |
| 602 | return false; |
| 603 | if (T::add(A, B, Bits, &ResultR)) |
| 604 | return false; |
| 605 | if (T::div(ResultR, Den, Bits, &ResultR)) |
| 606 | return false; |
| 607 | Result.atIndex(Idx: 0).initialize(); |
| 608 | |
| 609 | // imag(Result) = ((imag(LHS) * real(RHS)) - (real(LHS) * imag(RHS))) / Den |
| 610 | if (T::mul(LHSI, RHSR, Bits, &A) || T::mul(LHSR, RHSI, Bits, &B)) |
| 611 | return false; |
| 612 | if (T::sub(A, B, Bits, &ResultI)) |
| 613 | return false; |
| 614 | if (T::div(ResultI, Den, Bits, &ResultI)) |
| 615 | return false; |
| 616 | Result.atIndex(Idx: 1).initialize(); |
| 617 | Result.initialize(); |
| 618 | } |
| 619 | |
| 620 | return true; |
| 621 | } |
| 622 | |
| 623 | /// 1) Pops the RHS from the stack. |
| 624 | /// 2) Pops the LHS from the stack. |
| 625 | /// 3) Pushes 'LHS & RHS' on the stack |
| 626 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 627 | bool BitAnd(InterpState &S, CodePtr OpPC) { |
| 628 | const T &RHS = S.Stk.pop<T>(); |
| 629 | const T &LHS = S.Stk.pop<T>(); |
| 630 | unsigned Bits = RHS.bitWidth(); |
| 631 | |
| 632 | T Result; |
| 633 | if constexpr (needsAlloc<T>()) |
| 634 | Result = S.allocAP<T>(Bits); |
| 635 | |
| 636 | if (!T::bitAnd(LHS, RHS, Bits, &Result)) { |
| 637 | S.Stk.push<T>(Result); |
| 638 | return true; |
| 639 | } |
| 640 | return false; |
| 641 | } |
| 642 | |
| 643 | /// 1) Pops the RHS from the stack. |
| 644 | /// 2) Pops the LHS from the stack. |
| 645 | /// 3) Pushes 'LHS | RHS' on the stack |
| 646 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 647 | bool BitOr(InterpState &S, CodePtr OpPC) { |
| 648 | const T &RHS = S.Stk.pop<T>(); |
| 649 | const T &LHS = S.Stk.pop<T>(); |
| 650 | unsigned Bits = RHS.bitWidth(); |
| 651 | |
| 652 | T Result; |
| 653 | if constexpr (needsAlloc<T>()) |
| 654 | Result = S.allocAP<T>(Bits); |
| 655 | |
| 656 | if (!T::bitOr(LHS, RHS, Bits, &Result)) { |
| 657 | S.Stk.push<T>(Result); |
| 658 | return true; |
| 659 | } |
| 660 | return false; |
| 661 | } |
| 662 | |
| 663 | /// 1) Pops the RHS from the stack. |
| 664 | /// 2) Pops the LHS from the stack. |
| 665 | /// 3) Pushes 'LHS ^ RHS' on the stack |
| 666 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 667 | bool BitXor(InterpState &S, CodePtr OpPC) { |
| 668 | const T &RHS = S.Stk.pop<T>(); |
| 669 | const T &LHS = S.Stk.pop<T>(); |
| 670 | |
| 671 | unsigned Bits = RHS.bitWidth(); |
| 672 | |
| 673 | T Result; |
| 674 | if constexpr (needsAlloc<T>()) |
| 675 | Result = S.allocAP<T>(Bits); |
| 676 | |
| 677 | if (!T::bitXor(LHS, RHS, Bits, &Result)) { |
| 678 | S.Stk.push<T>(Result); |
| 679 | return true; |
| 680 | } |
| 681 | return false; |
| 682 | } |
| 683 | |
| 684 | /// 1) Pops the RHS from the stack. |
| 685 | /// 2) Pops the LHS from the stack. |
| 686 | /// 3) Pushes 'LHS % RHS' on the stack (the remainder of dividing LHS by RHS). |
| 687 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 688 | bool Rem(InterpState &S, CodePtr OpPC) { |
| 689 | const T &RHS = S.Stk.pop<T>(); |
| 690 | const T &LHS = S.Stk.pop<T>(); |
| 691 | const unsigned Bits = RHS.bitWidth() * 2; |
| 692 | |
| 693 | if (!CheckDivRem(S, OpPC, LHS, RHS)) |
| 694 | return false; |
| 695 | |
| 696 | T Result; |
| 697 | if constexpr (needsAlloc<T>()) |
| 698 | Result = S.allocAP<T>(LHS.bitWidth()); |
| 699 | |
| 700 | if (!T::rem(LHS, RHS, Bits, &Result)) { |
| 701 | S.Stk.push<T>(Result); |
| 702 | return true; |
| 703 | } |
| 704 | return false; |
| 705 | } |
| 706 | |
| 707 | /// 1) Pops the RHS from the stack. |
| 708 | /// 2) Pops the LHS from the stack. |
| 709 | /// 3) Pushes 'LHS / RHS' on the stack |
| 710 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 711 | bool Div(InterpState &S, CodePtr OpPC) { |
| 712 | const T &RHS = S.Stk.pop<T>(); |
| 713 | const T &LHS = S.Stk.pop<T>(); |
| 714 | const unsigned Bits = RHS.bitWidth() * 2; |
| 715 | |
| 716 | if (!CheckDivRem(S, OpPC, LHS, RHS)) |
| 717 | return false; |
| 718 | |
| 719 | T Result; |
| 720 | if constexpr (needsAlloc<T>()) |
| 721 | Result = S.allocAP<T>(LHS.bitWidth()); |
| 722 | |
| 723 | if (!T::div(LHS, RHS, Bits, &Result)) { |
| 724 | S.Stk.push<T>(Result); |
| 725 | return true; |
| 726 | } |
| 727 | |
| 728 | if constexpr (std::is_same_v<T, FixedPoint>) { |
| 729 | if (handleFixedPointOverflow(S, OpPC, Result)) { |
| 730 | S.Stk.push<T>(Result); |
| 731 | return true; |
| 732 | } |
| 733 | } |
| 734 | return false; |
| 735 | } |
| 736 | |
| 737 | inline bool Divf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
| 738 | const Floating &RHS = S.Stk.pop<Floating>(); |
| 739 | const Floating &LHS = S.Stk.pop<Floating>(); |
| 740 | |
| 741 | if (!CheckDivRem(S, OpPC, LHS, RHS)) |
| 742 | return false; |
| 743 | |
| 744 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
| 745 | |
| 746 | Floating Result = S.allocFloat(Sem: LHS.getSemantics()); |
| 747 | auto Status = Floating::div(A: LHS, B: RHS, RM: getRoundingMode(FPO), R: &Result); |
| 748 | |
| 749 | S.Stk.push<Floating>(Args&: Result); |
| 750 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
| 751 | } |
| 752 | |
| 753 | //===----------------------------------------------------------------------===// |
| 754 | // Inv |
| 755 | //===----------------------------------------------------------------------===// |
| 756 | |
| 757 | inline bool Inv(InterpState &S, CodePtr OpPC) { |
| 758 | const auto &Val = S.Stk.pop<Boolean>(); |
| 759 | S.Stk.push<Boolean>(Args: !Val); |
| 760 | return true; |
| 761 | } |
| 762 | |
| 763 | //===----------------------------------------------------------------------===// |
| 764 | // Neg |
| 765 | //===----------------------------------------------------------------------===// |
| 766 | |
| 767 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 768 | bool Neg(InterpState &S, CodePtr OpPC) { |
| 769 | const T &Value = S.Stk.pop<T>(); |
| 770 | |
| 771 | if constexpr (std::is_same_v<T, Floating>) { |
| 772 | T Result = S.allocFloat(Sem: Value.getSemantics()); |
| 773 | |
| 774 | if (!T::neg(Value, &Result)) { |
| 775 | S.Stk.push<T>(Result); |
| 776 | return true; |
| 777 | } |
| 778 | return false; |
| 779 | } else { |
| 780 | T Result; |
| 781 | if constexpr (needsAlloc<T>()) |
| 782 | Result = S.allocAP<T>(Value.bitWidth()); |
| 783 | |
| 784 | if (!T::neg(Value, &Result)) { |
| 785 | S.Stk.push<T>(Result); |
| 786 | return true; |
| 787 | } |
| 788 | |
| 789 | assert(isIntegralType(Name) && |
| 790 | "don't expect other types to fail at constexpr negation" ); |
| 791 | S.Stk.push<T>(Result); |
| 792 | |
| 793 | APSInt NegatedValue = -Value.toAPSInt(Value.bitWidth() + 1); |
| 794 | if (S.checkingForUndefinedBehavior()) { |
| 795 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 796 | QualType Type = E->getType(); |
| 797 | SmallString<32> Trunc; |
| 798 | NegatedValue.trunc(width: Result.bitWidth()) |
| 799 | .toString(Trunc, 10, Result.isSigned(), /*formatAsCLiteral=*/false, |
| 800 | /*UpperCase=*/true, /*InsertSeparators=*/true); |
| 801 | S.report(Loc: E->getExprLoc(), DiagId: diag::warn_integer_constant_overflow) |
| 802 | << Trunc << Type << E->getSourceRange(); |
| 803 | return true; |
| 804 | } |
| 805 | |
| 806 | return handleOverflow(S, OpPC, SrcValue: NegatedValue); |
| 807 | } |
| 808 | } |
| 809 | |
| 810 | enum class PushVal : bool { |
| 811 | No, |
| 812 | Yes, |
| 813 | }; |
| 814 | enum class IncDecOp { |
| 815 | Inc, |
| 816 | Dec, |
| 817 | }; |
| 818 | |
| 819 | template <typename T, IncDecOp Op, PushVal DoPush> |
| 820 | bool IncDecHelper(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 821 | bool CanOverflow) { |
| 822 | assert(!Ptr.isDummy()); |
| 823 | |
| 824 | if (!S.inConstantContext()) { |
| 825 | if (isConstexprUnknown(P: Ptr)) |
| 826 | return false; |
| 827 | } |
| 828 | |
| 829 | if constexpr (std::is_same_v<T, Boolean>) { |
| 830 | if (!S.getLangOpts().CPlusPlus14) |
| 831 | return Invalid(S, OpPC); |
| 832 | } |
| 833 | |
| 834 | const T &Value = Ptr.deref<T>(); |
| 835 | T Result; |
| 836 | if constexpr (needsAlloc<T>()) |
| 837 | Result = S.allocAP<T>(Value.bitWidth()); |
| 838 | |
| 839 | if constexpr (DoPush == PushVal::Yes) |
| 840 | S.Stk.push<T>(Value); |
| 841 | |
| 842 | if constexpr (Op == IncDecOp::Inc) { |
| 843 | if (!T::increment(Value, &Result) || !CanOverflow) { |
| 844 | Ptr.deref<T>() = Result; |
| 845 | return true; |
| 846 | } |
| 847 | } else { |
| 848 | if (!T::decrement(Value, &Result) || !CanOverflow) { |
| 849 | Ptr.deref<T>() = Result; |
| 850 | return true; |
| 851 | } |
| 852 | } |
| 853 | assert(CanOverflow); |
| 854 | |
| 855 | // Something went wrong with the previous operation. Compute the |
| 856 | // result with another bit of precision. |
| 857 | unsigned Bits = Value.bitWidth() + 1; |
| 858 | APSInt APResult; |
| 859 | if constexpr (Op == IncDecOp::Inc) |
| 860 | APResult = ++Value.toAPSInt(Bits); |
| 861 | else |
| 862 | APResult = --Value.toAPSInt(Bits); |
| 863 | |
| 864 | // Report undefined behaviour, stopping if required. |
| 865 | if (S.checkingForUndefinedBehavior()) { |
| 866 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 867 | QualType Type = E->getType(); |
| 868 | SmallString<32> Trunc; |
| 869 | APResult.trunc(width: Result.bitWidth()) |
| 870 | .toString(Trunc, 10, Result.isSigned(), /*formatAsCLiteral=*/false, |
| 871 | /*UpperCase=*/true, /*InsertSeparators=*/true); |
| 872 | S.report(Loc: E->getExprLoc(), DiagId: diag::warn_integer_constant_overflow) |
| 873 | << Trunc << Type << E->getSourceRange(); |
| 874 | return true; |
| 875 | } |
| 876 | return handleOverflow(S, OpPC, SrcValue: APResult); |
| 877 | } |
| 878 | |
| 879 | /// 1) Pops a pointer from the stack |
| 880 | /// 2) Load the value from the pointer |
| 881 | /// 3) Writes the value increased by one back to the pointer |
| 882 | /// 4) Pushes the original (pre-inc) value on the stack. |
| 883 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 884 | bool Inc(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
| 885 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 886 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Increment)) |
| 887 | return false; |
| 888 | |
| 889 | return IncDecHelper<T, IncDecOp::Inc, PushVal::Yes>(S, OpPC, Ptr, |
| 890 | CanOverflow); |
| 891 | } |
| 892 | |
| 893 | /// 1) Pops a pointer from the stack |
| 894 | /// 2) Load the value from the pointer |
| 895 | /// 3) Writes the value increased by one back to the pointer |
| 896 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 897 | bool IncPop(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
| 898 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 899 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Increment)) |
| 900 | return false; |
| 901 | |
| 902 | return IncDecHelper<T, IncDecOp::Inc, PushVal::No>(S, OpPC, Ptr, CanOverflow); |
| 903 | } |
| 904 | |
| 905 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 906 | bool PreInc(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
| 907 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
| 908 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Increment)) |
| 909 | return false; |
| 910 | |
| 911 | return IncDecHelper<T, IncDecOp::Inc, PushVal::No>(S, OpPC, Ptr, CanOverflow); |
| 912 | } |
| 913 | |
| 914 | /// 1) Pops a pointer from the stack |
| 915 | /// 2) Load the value from the pointer |
| 916 | /// 3) Writes the value decreased by one back to the pointer |
| 917 | /// 4) Pushes the original (pre-dec) value on the stack. |
| 918 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 919 | bool Dec(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
| 920 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 921 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Decrement)) |
| 922 | return false; |
| 923 | |
| 924 | return IncDecHelper<T, IncDecOp::Dec, PushVal::Yes>(S, OpPC, Ptr, |
| 925 | CanOverflow); |
| 926 | } |
| 927 | |
| 928 | /// 1) Pops a pointer from the stack |
| 929 | /// 2) Load the value from the pointer |
| 930 | /// 3) Writes the value decreased by one back to the pointer |
| 931 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 932 | bool DecPop(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
| 933 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 934 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Decrement)) |
| 935 | return false; |
| 936 | |
| 937 | return IncDecHelper<T, IncDecOp::Dec, PushVal::No>(S, OpPC, Ptr, CanOverflow); |
| 938 | } |
| 939 | |
| 940 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 941 | bool PreDec(InterpState &S, CodePtr OpPC, bool CanOverflow) { |
| 942 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
| 943 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Decrement)) |
| 944 | return false; |
| 945 | return IncDecHelper<T, IncDecOp::Dec, PushVal::No>(S, OpPC, Ptr, CanOverflow); |
| 946 | } |
| 947 | |
| 948 | template <IncDecOp Op, PushVal DoPush> |
| 949 | bool IncDecFloatHelper(InterpState &S, CodePtr OpPC, const Pointer &Ptr, |
| 950 | uint32_t FPOI) { |
| 951 | Floating Value = Ptr.deref<Floating>(); |
| 952 | Floating Result = S.allocFloat(Sem: Value.getSemantics()); |
| 953 | |
| 954 | if constexpr (DoPush == PushVal::Yes) |
| 955 | S.Stk.push<Floating>(Args&: Value); |
| 956 | |
| 957 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
| 958 | llvm::APFloat::opStatus Status; |
| 959 | if constexpr (Op == IncDecOp::Inc) |
| 960 | Status = Floating::increment(A: Value, RM: getRoundingMode(FPO), R: &Result); |
| 961 | else |
| 962 | Status = Floating::decrement(A: Value, RM: getRoundingMode(FPO), R: &Result); |
| 963 | |
| 964 | Ptr.deref<Floating>() = Result; |
| 965 | |
| 966 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
| 967 | } |
| 968 | |
| 969 | inline bool Incf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
| 970 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 971 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Increment)) |
| 972 | return false; |
| 973 | |
| 974 | return IncDecFloatHelper<IncDecOp::Inc, PushVal::Yes>(S, OpPC, Ptr, FPOI); |
| 975 | } |
| 976 | |
| 977 | inline bool IncfPop(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
| 978 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 979 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Increment)) |
| 980 | return false; |
| 981 | |
| 982 | return IncDecFloatHelper<IncDecOp::Inc, PushVal::No>(S, OpPC, Ptr, FPOI); |
| 983 | } |
| 984 | |
| 985 | inline bool Decf(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
| 986 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 987 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Decrement)) |
| 988 | return false; |
| 989 | |
| 990 | return IncDecFloatHelper<IncDecOp::Dec, PushVal::Yes>(S, OpPC, Ptr, FPOI); |
| 991 | } |
| 992 | |
| 993 | inline bool DecfPop(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
| 994 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 995 | if (!CheckLoad(S, OpPC, Ptr, AK: AK_Decrement)) |
| 996 | return false; |
| 997 | |
| 998 | return IncDecFloatHelper<IncDecOp::Dec, PushVal::No>(S, OpPC, Ptr, FPOI); |
| 999 | } |
| 1000 | |
| 1001 | /// 1) Pops the value from the stack. |
| 1002 | /// 2) Pushes the bitwise complemented value on the stack (~V). |
| 1003 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1004 | bool Comp(InterpState &S, CodePtr OpPC) { |
| 1005 | const T &Val = S.Stk.pop<T>(); |
| 1006 | |
| 1007 | T Result; |
| 1008 | if constexpr (needsAlloc<T>()) |
| 1009 | Result = S.allocAP<T>(Val.bitWidth()); |
| 1010 | |
| 1011 | if (!T::comp(Val, &Result)) { |
| 1012 | S.Stk.push<T>(Result); |
| 1013 | return true; |
| 1014 | } |
| 1015 | return false; |
| 1016 | } |
| 1017 | |
| 1018 | //===----------------------------------------------------------------------===// |
| 1019 | // EQ, NE, GT, GE, LT, LE |
| 1020 | //===----------------------------------------------------------------------===// |
| 1021 | |
| 1022 | using CompareFn = llvm::function_ref<bool(ComparisonCategoryResult)>; |
| 1023 | |
| 1024 | template <typename T> |
| 1025 | bool CmpHelper(InterpState &S, CodePtr OpPC, CompareFn Fn) { |
| 1026 | assert((!std::is_same_v<T, MemberPointer>) && |
| 1027 | "Non-equality comparisons on member pointer types should already be " |
| 1028 | "rejected in Sema." ); |
| 1029 | using BoolT = PrimConv<PT_Bool>::T; |
| 1030 | const T &RHS = S.Stk.pop<T>(); |
| 1031 | const T &LHS = S.Stk.pop<T>(); |
| 1032 | S.Stk.push<BoolT>(BoolT::from(Fn(LHS.compare(RHS)))); |
| 1033 | return true; |
| 1034 | } |
| 1035 | |
| 1036 | template <typename T> |
| 1037 | bool CmpHelperEQ(InterpState &S, CodePtr OpPC, CompareFn Fn) { |
| 1038 | return CmpHelper<T>(S, OpPC, Fn); |
| 1039 | } |
| 1040 | |
| 1041 | template <> |
| 1042 | inline bool CmpHelper<Pointer>(InterpState &S, CodePtr OpPC, CompareFn Fn) { |
| 1043 | using BoolT = PrimConv<PT_Bool>::T; |
| 1044 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 1045 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 1046 | |
| 1047 | // Function pointers cannot be compared in an ordered way. |
| 1048 | if (LHS.isFunctionPointer() || RHS.isFunctionPointer() || |
| 1049 | LHS.isTypeidPointer() || RHS.isTypeidPointer()) { |
| 1050 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1051 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_comparison_unspecified) |
| 1052 | << LHS.toDiagnosticString(Ctx: S.getASTContext()) |
| 1053 | << RHS.toDiagnosticString(Ctx: S.getASTContext()); |
| 1054 | return false; |
| 1055 | } |
| 1056 | |
| 1057 | if (!Pointer::hasSameBase(A: LHS, B: RHS)) { |
| 1058 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1059 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_comparison_unspecified) |
| 1060 | << LHS.toDiagnosticString(Ctx: S.getASTContext()) |
| 1061 | << RHS.toDiagnosticString(Ctx: S.getASTContext()); |
| 1062 | return false; |
| 1063 | } |
| 1064 | |
| 1065 | // Diagnose comparisons between fields with different access specifiers. |
| 1066 | if (std::optional<std::pair<Pointer, Pointer>> Split = |
| 1067 | Pointer::computeSplitPoint(A: LHS, B: RHS)) { |
| 1068 | const FieldDecl *LF = Split->first.getField(); |
| 1069 | const FieldDecl *RF = Split->second.getField(); |
| 1070 | if (LF && RF && !LF->getParent()->isUnion() && |
| 1071 | LF->getAccess() != RF->getAccess()) { |
| 1072 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), |
| 1073 | DiagId: diag::note_constexpr_pointer_comparison_differing_access) |
| 1074 | << LF << LF->getAccess() << RF << RF->getAccess() << LF->getParent(); |
| 1075 | } |
| 1076 | } |
| 1077 | |
| 1078 | unsigned VL = LHS.getByteOffset(); |
| 1079 | unsigned VR = RHS.getByteOffset(); |
| 1080 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(Compare(X: VL, Y: VR)))); |
| 1081 | return true; |
| 1082 | } |
| 1083 | |
| 1084 | static inline bool IsOpaqueConstantCall(const CallExpr *E) { |
| 1085 | unsigned Builtin = E->getBuiltinCallee(); |
| 1086 | return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || |
| 1087 | Builtin == Builtin::BI__builtin___NSStringMakeConstantString || |
| 1088 | Builtin == Builtin::BI__builtin_ptrauth_sign_constant || |
| 1089 | Builtin == Builtin::BI__builtin_function_start); |
| 1090 | } |
| 1091 | |
| 1092 | bool arePotentiallyOverlappingStringLiterals(const Pointer &LHS, |
| 1093 | const Pointer &RHS); |
| 1094 | |
| 1095 | template <> |
| 1096 | inline bool CmpHelperEQ<Pointer>(InterpState &S, CodePtr OpPC, CompareFn Fn) { |
| 1097 | using BoolT = PrimConv<PT_Bool>::T; |
| 1098 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 1099 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 1100 | |
| 1101 | if (LHS.isZero() && RHS.isZero()) { |
| 1102 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(ComparisonCategoryResult::Equal))); |
| 1103 | return true; |
| 1104 | } |
| 1105 | |
| 1106 | // Reject comparisons to weak pointers. |
| 1107 | for (const auto &P : {LHS, RHS}) { |
| 1108 | if (P.isZero()) |
| 1109 | continue; |
| 1110 | if (P.isWeak()) { |
| 1111 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1112 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_weak_comparison) |
| 1113 | << P.toDiagnosticString(Ctx: S.getASTContext()); |
| 1114 | return false; |
| 1115 | } |
| 1116 | } |
| 1117 | |
| 1118 | if (!S.inConstantContext()) { |
| 1119 | if (isConstexprUnknown(P: LHS) || isConstexprUnknown(P: RHS)) |
| 1120 | return false; |
| 1121 | } |
| 1122 | |
| 1123 | if (LHS.isFunctionPointer() && RHS.isFunctionPointer()) { |
| 1124 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(Compare(X: LHS.getIntegerRepresentation(), |
| 1125 | Y: RHS.getIntegerRepresentation())))); |
| 1126 | return true; |
| 1127 | } |
| 1128 | |
| 1129 | // FIXME: The source check here isn't entirely correct. |
| 1130 | if (LHS.pointsToStringLiteral() && RHS.pointsToStringLiteral() && |
| 1131 | LHS.getFieldDesc()->asExpr() != RHS.getFieldDesc()->asExpr()) { |
| 1132 | if (arePotentiallyOverlappingStringLiterals(LHS, RHS)) { |
| 1133 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1134 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_literal_comparison) |
| 1135 | << LHS.toDiagnosticString(Ctx: S.getASTContext()) |
| 1136 | << RHS.toDiagnosticString(Ctx: S.getASTContext()); |
| 1137 | return false; |
| 1138 | } |
| 1139 | } |
| 1140 | |
| 1141 | if (Pointer::hasSameBase(A: LHS, B: RHS)) { |
| 1142 | if (LHS.inUnion() && RHS.inUnion()) { |
| 1143 | // If the pointers point into a union, things are a little more |
| 1144 | // complicated since the offset we save in interp::Pointer can't be used |
| 1145 | // to compare the pointers directly. |
| 1146 | size_t A = LHS.computeOffsetForComparison(); |
| 1147 | size_t B = RHS.computeOffsetForComparison(); |
| 1148 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(Compare(X: A, Y: B)))); |
| 1149 | return true; |
| 1150 | } |
| 1151 | |
| 1152 | unsigned VL = LHS.getByteOffset(); |
| 1153 | unsigned VR = RHS.getByteOffset(); |
| 1154 | // In our Pointer class, a pointer to an array and a pointer to the first |
| 1155 | // element in the same array are NOT equal. They have the same Base value, |
| 1156 | // but a different Offset. This is a pretty rare case, so we fix this here |
| 1157 | // by comparing pointers to the first elements. |
| 1158 | if (!LHS.isZero() && LHS.isArrayRoot()) |
| 1159 | VL = LHS.atIndex(Idx: 0).getByteOffset(); |
| 1160 | if (!RHS.isZero() && RHS.isArrayRoot()) |
| 1161 | VR = RHS.atIndex(Idx: 0).getByteOffset(); |
| 1162 | |
| 1163 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(Compare(X: VL, Y: VR)))); |
| 1164 | return true; |
| 1165 | } |
| 1166 | // Otherwise we need to do a bunch of extra checks before returning Unordered. |
| 1167 | if (LHS.isOnePastEnd() && !RHS.isOnePastEnd() && !RHS.isZero() && |
| 1168 | RHS.getOffset() == 0) { |
| 1169 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1170 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_comparison_past_end) |
| 1171 | << LHS.toDiagnosticString(Ctx: S.getASTContext()); |
| 1172 | return false; |
| 1173 | } else if (RHS.isOnePastEnd() && !LHS.isOnePastEnd() && !LHS.isZero() && |
| 1174 | LHS.getOffset() == 0) { |
| 1175 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1176 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_comparison_past_end) |
| 1177 | << RHS.toDiagnosticString(Ctx: S.getASTContext()); |
| 1178 | return false; |
| 1179 | } |
| 1180 | |
| 1181 | bool BothNonNull = !LHS.isZero() && !RHS.isZero(); |
| 1182 | // Reject comparisons to literals. |
| 1183 | for (const auto &P : {LHS, RHS}) { |
| 1184 | if (P.isZero()) |
| 1185 | continue; |
| 1186 | if (BothNonNull && P.pointsToLiteral()) { |
| 1187 | const Expr *E = P.getDeclDesc()->asExpr(); |
| 1188 | if (isa<StringLiteral>(Val: E)) { |
| 1189 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1190 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_literal_comparison); |
| 1191 | return false; |
| 1192 | } else if (const auto *CE = dyn_cast<CallExpr>(Val: E); |
| 1193 | CE && IsOpaqueConstantCall(E: CE)) { |
| 1194 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1195 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_opaque_call_comparison) |
| 1196 | << P.toDiagnosticString(Ctx: S.getASTContext()); |
| 1197 | return false; |
| 1198 | } |
| 1199 | } else if (BothNonNull && P.isIntegralPointer()) { |
| 1200 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1201 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_constant_comparison) |
| 1202 | << LHS.toDiagnosticString(Ctx: S.getASTContext()) |
| 1203 | << RHS.toDiagnosticString(Ctx: S.getASTContext()); |
| 1204 | return false; |
| 1205 | } |
| 1206 | } |
| 1207 | |
| 1208 | if (LHS.isUnknownSizeArray() && RHS.isUnknownSizeArray()) { |
| 1209 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1210 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_comparison_zero_sized) |
| 1211 | << LHS.toDiagnosticString(Ctx: S.getASTContext()) |
| 1212 | << RHS.toDiagnosticString(Ctx: S.getASTContext()); |
| 1213 | return false; |
| 1214 | } |
| 1215 | |
| 1216 | S.Stk.push<BoolT>(Args: BoolT::from(Value: Fn(ComparisonCategoryResult::Unordered))); |
| 1217 | return true; |
| 1218 | } |
| 1219 | |
| 1220 | template <> |
| 1221 | inline bool CmpHelperEQ<MemberPointer>(InterpState &S, CodePtr OpPC, |
| 1222 | CompareFn Fn) { |
| 1223 | const auto &RHS = S.Stk.pop<MemberPointer>(); |
| 1224 | const auto &LHS = S.Stk.pop<MemberPointer>(); |
| 1225 | |
| 1226 | // If either operand is a pointer to a weak function, the comparison is not |
| 1227 | // constant. |
| 1228 | for (const auto &MP : {LHS, RHS}) { |
| 1229 | if (MP.isWeak()) { |
| 1230 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1231 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_mem_pointer_weak_comparison) |
| 1232 | << MP.getMemberFunction(); |
| 1233 | return false; |
| 1234 | } |
| 1235 | } |
| 1236 | |
| 1237 | // C++11 [expr.eq]p2: |
| 1238 | // If both operands are null, they compare equal. Otherwise if only one is |
| 1239 | // null, they compare unequal. |
| 1240 | if (LHS.isZero() && RHS.isZero()) { |
| 1241 | S.Stk.push<Boolean>(Args: Fn(ComparisonCategoryResult::Equal)); |
| 1242 | return true; |
| 1243 | } |
| 1244 | if (LHS.isZero() || RHS.isZero()) { |
| 1245 | S.Stk.push<Boolean>(Args: Fn(ComparisonCategoryResult::Unordered)); |
| 1246 | return true; |
| 1247 | } |
| 1248 | |
| 1249 | // We cannot compare against virtual declarations at compile time. |
| 1250 | for (const auto &MP : {LHS, RHS}) { |
| 1251 | if (const CXXMethodDecl *MD = MP.getMemberFunction(); |
| 1252 | MD && MD->isVirtual()) { |
| 1253 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1254 | S.CCEDiag(SI: Loc, DiagId: diag::note_constexpr_compare_virtual_mem_ptr) << MD; |
| 1255 | } |
| 1256 | } |
| 1257 | |
| 1258 | S.Stk.push<Boolean>(Args: Boolean::from(Value: Fn(LHS.compare(RHS)))); |
| 1259 | return true; |
| 1260 | } |
| 1261 | |
| 1262 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1263 | bool EQ(InterpState &S, CodePtr OpPC) { |
| 1264 | return CmpHelperEQ<T>(S, OpPC, [](ComparisonCategoryResult R) { |
| 1265 | return R == ComparisonCategoryResult::Equal; |
| 1266 | }); |
| 1267 | } |
| 1268 | |
| 1269 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1270 | bool CMP3(InterpState &S, CodePtr OpPC, const ComparisonCategoryInfo *CmpInfo) { |
| 1271 | const T &RHS = S.Stk.pop<T>(); |
| 1272 | const T &LHS = S.Stk.pop<T>(); |
| 1273 | const Pointer &P = S.Stk.peek<Pointer>(); |
| 1274 | |
| 1275 | ComparisonCategoryResult CmpResult = LHS.compare(RHS); |
| 1276 | if constexpr (std::is_same_v<T, Pointer>) { |
| 1277 | if (CmpResult == ComparisonCategoryResult::Unordered) { |
| 1278 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 1279 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_pointer_comparison_unspecified) |
| 1280 | << LHS.toDiagnosticString(S.getASTContext()) |
| 1281 | << RHS.toDiagnosticString(S.getASTContext()); |
| 1282 | return false; |
| 1283 | } |
| 1284 | } |
| 1285 | |
| 1286 | assert(CmpInfo); |
| 1287 | const auto *CmpValueInfo = |
| 1288 | CmpInfo->getValueInfo(ValueKind: CmpInfo->makeWeakResult(Res: CmpResult)); |
| 1289 | assert(CmpValueInfo); |
| 1290 | assert(CmpValueInfo->hasValidIntValue()); |
| 1291 | return SetThreeWayComparisonField(S, OpPC, Ptr: P, IntValue: CmpValueInfo->getIntValue()); |
| 1292 | } |
| 1293 | |
| 1294 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1295 | bool NE(InterpState &S, CodePtr OpPC) { |
| 1296 | return CmpHelperEQ<T>(S, OpPC, [](ComparisonCategoryResult R) { |
| 1297 | return R != ComparisonCategoryResult::Equal; |
| 1298 | }); |
| 1299 | } |
| 1300 | |
| 1301 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1302 | bool LT(InterpState &S, CodePtr OpPC) { |
| 1303 | return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) { |
| 1304 | return R == ComparisonCategoryResult::Less; |
| 1305 | }); |
| 1306 | } |
| 1307 | |
| 1308 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1309 | bool LE(InterpState &S, CodePtr OpPC) { |
| 1310 | return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) { |
| 1311 | return R == ComparisonCategoryResult::Less || |
| 1312 | R == ComparisonCategoryResult::Equal; |
| 1313 | }); |
| 1314 | } |
| 1315 | |
| 1316 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1317 | bool GT(InterpState &S, CodePtr OpPC) { |
| 1318 | return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) { |
| 1319 | return R == ComparisonCategoryResult::Greater; |
| 1320 | }); |
| 1321 | } |
| 1322 | |
| 1323 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1324 | bool GE(InterpState &S, CodePtr OpPC) { |
| 1325 | return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) { |
| 1326 | return R == ComparisonCategoryResult::Greater || |
| 1327 | R == ComparisonCategoryResult::Equal; |
| 1328 | }); |
| 1329 | } |
| 1330 | |
| 1331 | //===----------------------------------------------------------------------===// |
| 1332 | // Dup, Pop, Test |
| 1333 | //===----------------------------------------------------------------------===// |
| 1334 | |
| 1335 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1336 | bool Dup(InterpState &S, CodePtr OpPC) { |
| 1337 | S.Stk.push<T>(S.Stk.peek<T>()); |
| 1338 | return true; |
| 1339 | } |
| 1340 | |
| 1341 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1342 | bool Pop(InterpState &S, CodePtr OpPC) { |
| 1343 | S.Stk.pop<T>(); |
| 1344 | return true; |
| 1345 | } |
| 1346 | |
| 1347 | /// [Value1, Value2] -> [Value2, Value1] |
| 1348 | template <PrimType TopName, PrimType BottomName> |
| 1349 | bool Flip(InterpState &S, CodePtr OpPC) { |
| 1350 | using TopT = typename PrimConv<TopName>::T; |
| 1351 | using BottomT = typename PrimConv<BottomName>::T; |
| 1352 | |
| 1353 | const auto &Top = S.Stk.pop<TopT>(); |
| 1354 | const auto &Bottom = S.Stk.pop<BottomT>(); |
| 1355 | |
| 1356 | S.Stk.push<TopT>(Top); |
| 1357 | S.Stk.push<BottomT>(Bottom); |
| 1358 | |
| 1359 | return true; |
| 1360 | } |
| 1361 | |
| 1362 | //===----------------------------------------------------------------------===// |
| 1363 | // Const |
| 1364 | //===----------------------------------------------------------------------===// |
| 1365 | |
| 1366 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1367 | bool Const(InterpState &S, CodePtr OpPC, const T &Arg) { |
| 1368 | if constexpr (needsAlloc<T>()) { |
| 1369 | T Result = S.allocAP<T>(Arg.bitWidth()); |
| 1370 | Result.copy(Arg.toAPSInt()); |
| 1371 | S.Stk.push<T>(Result); |
| 1372 | return true; |
| 1373 | } |
| 1374 | S.Stk.push<T>(Arg); |
| 1375 | return true; |
| 1376 | } |
| 1377 | |
| 1378 | inline bool ConstFloat(InterpState &S, CodePtr OpPC, const Floating &F) { |
| 1379 | Floating Result = S.allocFloat(Sem: F.getSemantics()); |
| 1380 | Result.copy(F: F.getAPFloat()); |
| 1381 | S.Stk.push<Floating>(Args&: Result); |
| 1382 | return true; |
| 1383 | } |
| 1384 | |
| 1385 | //===----------------------------------------------------------------------===// |
| 1386 | // Get/Set Local/Param/Global/This |
| 1387 | //===----------------------------------------------------------------------===// |
| 1388 | |
| 1389 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1390 | bool GetLocal(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1391 | const Pointer &Ptr = S.Current->getLocalPointer(Offset: I); |
| 1392 | if (!CheckLoad(S, OpPC, Ptr)) |
| 1393 | return false; |
| 1394 | S.Stk.push<T>(Ptr.deref<T>()); |
| 1395 | return true; |
| 1396 | } |
| 1397 | |
| 1398 | bool EndLifetime(InterpState &S, CodePtr OpPC); |
| 1399 | bool EndLifetimePop(InterpState &S, CodePtr OpPC); |
| 1400 | bool StartLifetime(InterpState &S, CodePtr OpPC); |
| 1401 | |
| 1402 | /// 1) Pops the value from the stack. |
| 1403 | /// 2) Writes the value to the local variable with the |
| 1404 | /// given offset. |
| 1405 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1406 | bool SetLocal(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1407 | S.Current->setLocal<T>(I, S.Stk.pop<T>()); |
| 1408 | return true; |
| 1409 | } |
| 1410 | |
| 1411 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1412 | bool GetParam(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1413 | if (S.checkingPotentialConstantExpression()) { |
| 1414 | return false; |
| 1415 | } |
| 1416 | S.Stk.push<T>(S.Current->getParam<T>(I)); |
| 1417 | return true; |
| 1418 | } |
| 1419 | |
| 1420 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1421 | bool SetParam(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1422 | S.Current->setParam<T>(I, S.Stk.pop<T>()); |
| 1423 | return true; |
| 1424 | } |
| 1425 | |
| 1426 | /// 1) Peeks a pointer on the stack |
| 1427 | /// 2) Pushes the value of the pointer's field on the stack |
| 1428 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1429 | bool GetField(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1430 | const Pointer &Obj = S.Stk.peek<Pointer>(); |
| 1431 | if (!CheckNull(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
| 1432 | return false; |
| 1433 | if (!CheckRange(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
| 1434 | return false; |
| 1435 | const Pointer &Field = Obj.atField(Off: I); |
| 1436 | if (!CheckLoad(S, OpPC, Ptr: Field)) |
| 1437 | return false; |
| 1438 | S.Stk.push<T>(Field.deref<T>()); |
| 1439 | return true; |
| 1440 | } |
| 1441 | |
| 1442 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1443 | bool SetField(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1444 | const T &Value = S.Stk.pop<T>(); |
| 1445 | const Pointer &Obj = S.Stk.peek<Pointer>(); |
| 1446 | if (!CheckNull(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
| 1447 | return false; |
| 1448 | if (!CheckRange(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
| 1449 | return false; |
| 1450 | const Pointer &Field = Obj.atField(Off: I); |
| 1451 | if (!CheckStore(S, OpPC, Ptr: Field)) |
| 1452 | return false; |
| 1453 | Field.initialize(); |
| 1454 | Field.deref<T>() = Value; |
| 1455 | return true; |
| 1456 | } |
| 1457 | |
| 1458 | /// 1) Pops a pointer from the stack |
| 1459 | /// 2) Pushes the value of the pointer's field on the stack |
| 1460 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1461 | bool GetFieldPop(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1462 | const Pointer &Obj = S.Stk.pop<Pointer>(); |
| 1463 | if (!CheckNull(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
| 1464 | return false; |
| 1465 | if (!CheckRange(S, OpPC, Ptr: Obj, CSK: CSK_Field)) |
| 1466 | return false; |
| 1467 | const Pointer &Field = Obj.atField(Off: I); |
| 1468 | if (!CheckLoad(S, OpPC, Ptr: Field)) |
| 1469 | return false; |
| 1470 | S.Stk.push<T>(Field.deref<T>()); |
| 1471 | return true; |
| 1472 | } |
| 1473 | |
| 1474 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1475 | bool GetThisField(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1476 | if (S.checkingPotentialConstantExpression()) |
| 1477 | return false; |
| 1478 | const Pointer &This = S.Current->getThis(); |
| 1479 | if (!CheckThis(S, OpPC, This)) |
| 1480 | return false; |
| 1481 | const Pointer &Field = This.atField(Off: I); |
| 1482 | if (!CheckLoad(S, OpPC, Ptr: Field)) |
| 1483 | return false; |
| 1484 | S.Stk.push<T>(Field.deref<T>()); |
| 1485 | return true; |
| 1486 | } |
| 1487 | |
| 1488 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1489 | bool SetThisField(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1490 | if (S.checkingPotentialConstantExpression()) |
| 1491 | return false; |
| 1492 | const T &Value = S.Stk.pop<T>(); |
| 1493 | const Pointer &This = S.Current->getThis(); |
| 1494 | if (!CheckThis(S, OpPC, This)) |
| 1495 | return false; |
| 1496 | const Pointer &Field = This.atField(Off: I); |
| 1497 | if (!CheckStore(S, OpPC, Ptr: Field)) |
| 1498 | return false; |
| 1499 | Field.deref<T>() = Value; |
| 1500 | return true; |
| 1501 | } |
| 1502 | |
| 1503 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1504 | bool GetGlobal(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1505 | const Pointer &Ptr = S.P.getPtrGlobal(Idx: I); |
| 1506 | if (!CheckConstant(S, OpPC, Desc: Ptr.getFieldDesc())) |
| 1507 | return false; |
| 1508 | if (Ptr.isExtern()) |
| 1509 | return false; |
| 1510 | |
| 1511 | // If a global variable is uninitialized, that means the initializer we've |
| 1512 | // compiled for it wasn't a constant expression. Diagnose that. |
| 1513 | if (!CheckGlobalInitialized(S, OpPC, Ptr)) |
| 1514 | return false; |
| 1515 | |
| 1516 | S.Stk.push<T>(Ptr.deref<T>()); |
| 1517 | return true; |
| 1518 | } |
| 1519 | |
| 1520 | /// Same as GetGlobal, but without the checks. |
| 1521 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1522 | bool GetGlobalUnchecked(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1523 | const Pointer &Ptr = S.P.getPtrGlobal(Idx: I); |
| 1524 | if (!CheckInitialized(S, OpPC, Ptr, AK: AK_Read)) |
| 1525 | return false; |
| 1526 | S.Stk.push<T>(Ptr.deref<T>()); |
| 1527 | return true; |
| 1528 | } |
| 1529 | |
| 1530 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1531 | bool SetGlobal(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1532 | // TODO: emit warning. |
| 1533 | return false; |
| 1534 | } |
| 1535 | |
| 1536 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1537 | bool InitGlobal(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1538 | const Pointer &P = S.P.getGlobal(Idx: I); |
| 1539 | |
| 1540 | P.deref<T>() = S.Stk.pop<T>(); |
| 1541 | |
| 1542 | if constexpr (std::is_same_v<T, Floating>) { |
| 1543 | auto &Val = P.deref<Floating>(); |
| 1544 | if (!Val.singleWord()) { |
| 1545 | uint64_t *NewMemory = new (S.P) uint64_t[Val.numWords()]; |
| 1546 | Val.take(NewMemory); |
| 1547 | } |
| 1548 | |
| 1549 | } else if constexpr (needsAlloc<T>()) { |
| 1550 | auto &Val = P.deref<T>(); |
| 1551 | if (!Val.singleWord()) { |
| 1552 | uint64_t *NewMemory = new (S.P) uint64_t[Val.numWords()]; |
| 1553 | Val.take(NewMemory); |
| 1554 | } |
| 1555 | } |
| 1556 | |
| 1557 | P.initialize(); |
| 1558 | return true; |
| 1559 | } |
| 1560 | |
| 1561 | /// 1) Converts the value on top of the stack to an APValue |
| 1562 | /// 2) Sets that APValue on \Temp |
| 1563 | /// 3) Initializes global with index \I with that |
| 1564 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1565 | bool InitGlobalTemp(InterpState &S, CodePtr OpPC, uint32_t I, |
| 1566 | const LifetimeExtendedTemporaryDecl *Temp) { |
| 1567 | const Pointer &Ptr = S.P.getGlobal(Idx: I); |
| 1568 | |
| 1569 | const T Value = S.Stk.peek<T>(); |
| 1570 | APValue APV = Value.toAPValue(S.getASTContext()); |
| 1571 | APValue *Cached = Temp->getOrCreateValue(MayCreate: true); |
| 1572 | *Cached = APV; |
| 1573 | |
| 1574 | assert(Ptr.getDeclDesc()->asExpr()); |
| 1575 | |
| 1576 | S.SeenGlobalTemporaries.push_back( |
| 1577 | Elt: std::make_pair(x: Ptr.getDeclDesc()->asExpr(), y&: Temp)); |
| 1578 | |
| 1579 | Ptr.deref<T>() = S.Stk.pop<T>(); |
| 1580 | Ptr.initialize(); |
| 1581 | return true; |
| 1582 | } |
| 1583 | |
| 1584 | /// 1) Converts the value on top of the stack to an APValue |
| 1585 | /// 2) Sets that APValue on \Temp |
| 1586 | /// 3) Initialized global with index \I with that |
| 1587 | inline bool InitGlobalTempComp(InterpState &S, CodePtr OpPC, |
| 1588 | const LifetimeExtendedTemporaryDecl *Temp) { |
| 1589 | assert(Temp); |
| 1590 | const Pointer &P = S.Stk.peek<Pointer>(); |
| 1591 | APValue *Cached = Temp->getOrCreateValue(MayCreate: true); |
| 1592 | |
| 1593 | S.SeenGlobalTemporaries.push_back( |
| 1594 | Elt: std::make_pair(x: P.getDeclDesc()->asExpr(), y&: Temp)); |
| 1595 | |
| 1596 | if (std::optional<APValue> APV = |
| 1597 | P.toRValue(Ctx: S.getASTContext(), ResultType: Temp->getTemporaryExpr()->getType())) { |
| 1598 | *Cached = *APV; |
| 1599 | return true; |
| 1600 | } |
| 1601 | |
| 1602 | return false; |
| 1603 | } |
| 1604 | |
| 1605 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1606 | bool InitThisField(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1607 | if (S.checkingPotentialConstantExpression() && S.Current->getDepth() == 0) |
| 1608 | return false; |
| 1609 | const Pointer &This = S.Current->getThis(); |
| 1610 | if (!CheckThis(S, OpPC, This)) |
| 1611 | return false; |
| 1612 | const Pointer &Field = This.atField(Off: I); |
| 1613 | Field.deref<T>() = S.Stk.pop<T>(); |
| 1614 | Field.activate(); |
| 1615 | Field.initialize(); |
| 1616 | return true; |
| 1617 | } |
| 1618 | |
| 1619 | // FIXME: The Field pointer here is too much IMO and we could instead just |
| 1620 | // pass an Offset + BitWidth pair. |
| 1621 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1622 | bool InitThisBitField(InterpState &S, CodePtr OpPC, const Record::Field *F, |
| 1623 | uint32_t FieldOffset) { |
| 1624 | assert(F->isBitField()); |
| 1625 | if (S.checkingPotentialConstantExpression() && S.Current->getDepth() == 0) |
| 1626 | return false; |
| 1627 | const Pointer &This = S.Current->getThis(); |
| 1628 | if (!CheckThis(S, OpPC, This)) |
| 1629 | return false; |
| 1630 | const Pointer &Field = This.atField(Off: FieldOffset); |
| 1631 | const auto &Value = S.Stk.pop<T>(); |
| 1632 | Field.deref<T>() = Value.truncate(F->Decl->getBitWidthValue()); |
| 1633 | Field.initialize(); |
| 1634 | return true; |
| 1635 | } |
| 1636 | |
| 1637 | /// 1) Pops the value from the stack |
| 1638 | /// 2) Peeks a pointer from the stack |
| 1639 | /// 3) Pushes the value to field I of the pointer on the stack |
| 1640 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1641 | bool InitField(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1642 | const T &Value = S.Stk.pop<T>(); |
| 1643 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
| 1644 | if (!CheckRange(S, OpPC, Ptr, CSK: CSK_Field)) |
| 1645 | return false; |
| 1646 | const Pointer &Field = Ptr.atField(Off: I); |
| 1647 | Field.deref<T>() = Value; |
| 1648 | Field.activate(); |
| 1649 | Field.initialize(); |
| 1650 | return true; |
| 1651 | } |
| 1652 | |
| 1653 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1654 | bool InitBitField(InterpState &S, CodePtr OpPC, const Record::Field *F) { |
| 1655 | assert(F->isBitField()); |
| 1656 | const T &Value = S.Stk.pop<T>(); |
| 1657 | const Pointer &Field = S.Stk.peek<Pointer>().atField(Off: F->Offset); |
| 1658 | |
| 1659 | if constexpr (needsAlloc<T>()) { |
| 1660 | T Result = S.allocAP<T>(Value.bitWidth()); |
| 1661 | if (T::isSigned()) |
| 1662 | Result.copy(Value.toAPSInt() |
| 1663 | .trunc(F->Decl->getBitWidthValue()) |
| 1664 | .sextOrTrunc(Value.bitWidth())); |
| 1665 | else |
| 1666 | Result.copy(Value.toAPSInt() |
| 1667 | .trunc(F->Decl->getBitWidthValue()) |
| 1668 | .zextOrTrunc(Value.bitWidth())); |
| 1669 | |
| 1670 | Field.deref<T>() = Result; |
| 1671 | } else { |
| 1672 | Field.deref<T>() = Value.truncate(F->Decl->getBitWidthValue()); |
| 1673 | } |
| 1674 | Field.activate(); |
| 1675 | Field.initialize(); |
| 1676 | return true; |
| 1677 | } |
| 1678 | |
| 1679 | //===----------------------------------------------------------------------===// |
| 1680 | // GetPtr Local/Param/Global/Field/This |
| 1681 | //===----------------------------------------------------------------------===// |
| 1682 | |
| 1683 | inline bool GetPtrLocal(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1684 | S.Stk.push<Pointer>(Args: S.Current->getLocalPointer(Offset: I)); |
| 1685 | return true; |
| 1686 | } |
| 1687 | |
| 1688 | inline bool GetPtrParam(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1689 | if (S.checkingPotentialConstantExpression()) { |
| 1690 | return false; |
| 1691 | } |
| 1692 | S.Stk.push<Pointer>(Args: S.Current->getParamPointer(Offset: I)); |
| 1693 | return true; |
| 1694 | } |
| 1695 | |
| 1696 | inline bool GetPtrGlobal(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 1697 | S.Stk.push<Pointer>(Args: S.P.getPtrGlobal(Idx: I)); |
| 1698 | return true; |
| 1699 | } |
| 1700 | |
| 1701 | /// 1) Peeks a Pointer |
| 1702 | /// 2) Pushes Pointer.atField(Off) on the stack |
| 1703 | bool GetPtrField(InterpState &S, CodePtr OpPC, uint32_t Off); |
| 1704 | bool GetPtrFieldPop(InterpState &S, CodePtr OpPC, uint32_t Off); |
| 1705 | |
| 1706 | inline bool GetPtrThisField(InterpState &S, CodePtr OpPC, uint32_t Off) { |
| 1707 | if (S.checkingPotentialConstantExpression() && S.Current->getDepth() == 0) |
| 1708 | return false; |
| 1709 | const Pointer &This = S.Current->getThis(); |
| 1710 | if (!CheckThis(S, OpPC, This)) |
| 1711 | return false; |
| 1712 | S.Stk.push<Pointer>(Args: This.atField(Off)); |
| 1713 | return true; |
| 1714 | } |
| 1715 | |
| 1716 | inline bool GetPtrActiveField(InterpState &S, CodePtr OpPC, uint32_t Off) { |
| 1717 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1718 | if (!CheckNull(S, OpPC, Ptr, CSK: CSK_Field)) |
| 1719 | return false; |
| 1720 | if (!CheckRange(S, OpPC, Ptr, CSK: CSK_Field)) |
| 1721 | return false; |
| 1722 | Pointer Field = Ptr.atField(Off); |
| 1723 | Ptr.deactivate(); |
| 1724 | Field.activate(); |
| 1725 | S.Stk.push<Pointer>(Args: std::move(Field)); |
| 1726 | return true; |
| 1727 | } |
| 1728 | |
| 1729 | inline bool GetPtrActiveThisField(InterpState &S, CodePtr OpPC, uint32_t Off) { |
| 1730 | if (S.checkingPotentialConstantExpression()) |
| 1731 | return false; |
| 1732 | const Pointer &This = S.Current->getThis(); |
| 1733 | if (!CheckThis(S, OpPC, This)) |
| 1734 | return false; |
| 1735 | Pointer Field = This.atField(Off); |
| 1736 | This.deactivate(); |
| 1737 | Field.activate(); |
| 1738 | S.Stk.push<Pointer>(Args: std::move(Field)); |
| 1739 | return true; |
| 1740 | } |
| 1741 | |
| 1742 | inline bool GetPtrDerivedPop(InterpState &S, CodePtr OpPC, uint32_t Off, |
| 1743 | bool NullOK, const Type *TargetType) { |
| 1744 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1745 | if (!NullOK && !CheckNull(S, OpPC, Ptr, CSK: CSK_Derived)) |
| 1746 | return false; |
| 1747 | |
| 1748 | if (!Ptr.isBlockPointer()) { |
| 1749 | // FIXME: We don't have the necessary information in integral pointers. |
| 1750 | // The Descriptor only has a record, but that does of course not include |
| 1751 | // the potential derived classes of said record. |
| 1752 | S.Stk.push<Pointer>(Args: Ptr); |
| 1753 | return true; |
| 1754 | } |
| 1755 | |
| 1756 | if (!CheckSubobject(S, OpPC, Ptr, CSK: CSK_Derived)) |
| 1757 | return false; |
| 1758 | if (!CheckDowncast(S, OpPC, Ptr, Offset: Off)) |
| 1759 | return false; |
| 1760 | |
| 1761 | const Record *TargetRecord = Ptr.atFieldSub(Off).getRecord(); |
| 1762 | assert(TargetRecord); |
| 1763 | |
| 1764 | if (TargetRecord->getDecl() |
| 1765 | ->getTypeForDecl() |
| 1766 | ->getAsCXXRecordDecl() |
| 1767 | ->getCanonicalDecl() != |
| 1768 | TargetType->getAsCXXRecordDecl()->getCanonicalDecl()) { |
| 1769 | QualType MostDerivedType = Ptr.getDeclDesc()->getType(); |
| 1770 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_invalid_downcast) |
| 1771 | << MostDerivedType << QualType(TargetType, 0); |
| 1772 | return false; |
| 1773 | } |
| 1774 | |
| 1775 | S.Stk.push<Pointer>(Args: Ptr.atFieldSub(Off)); |
| 1776 | return true; |
| 1777 | } |
| 1778 | |
| 1779 | inline bool GetPtrBase(InterpState &S, CodePtr OpPC, uint32_t Off) { |
| 1780 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
| 1781 | if (!CheckNull(S, OpPC, Ptr, CSK: CSK_Base)) |
| 1782 | return false; |
| 1783 | |
| 1784 | if (!Ptr.isBlockPointer()) { |
| 1785 | S.Stk.push<Pointer>(Args: Ptr.asIntPointer().baseCast(ASTCtx: S.getASTContext(), BaseOffset: Off)); |
| 1786 | return true; |
| 1787 | } |
| 1788 | |
| 1789 | if (!CheckSubobject(S, OpPC, Ptr, CSK: CSK_Base)) |
| 1790 | return false; |
| 1791 | const Pointer &Result = Ptr.atField(Off); |
| 1792 | if (Result.isPastEnd() || !Result.isBaseClass()) |
| 1793 | return false; |
| 1794 | S.Stk.push<Pointer>(Args: Result); |
| 1795 | return true; |
| 1796 | } |
| 1797 | |
| 1798 | inline bool GetPtrBasePop(InterpState &S, CodePtr OpPC, uint32_t Off, |
| 1799 | bool NullOK) { |
| 1800 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1801 | |
| 1802 | if (!NullOK && !CheckNull(S, OpPC, Ptr, CSK: CSK_Base)) |
| 1803 | return false; |
| 1804 | |
| 1805 | if (!Ptr.isBlockPointer()) { |
| 1806 | S.Stk.push<Pointer>(Args: Ptr.asIntPointer().baseCast(ASTCtx: S.getASTContext(), BaseOffset: Off)); |
| 1807 | return true; |
| 1808 | } |
| 1809 | |
| 1810 | if (!CheckSubobject(S, OpPC, Ptr, CSK: CSK_Base)) |
| 1811 | return false; |
| 1812 | const Pointer &Result = Ptr.atField(Off); |
| 1813 | if (Result.isPastEnd() || !Result.isBaseClass()) |
| 1814 | return false; |
| 1815 | S.Stk.push<Pointer>(Args: Result); |
| 1816 | return true; |
| 1817 | } |
| 1818 | |
| 1819 | inline bool GetMemberPtrBasePop(InterpState &S, CodePtr OpPC, int32_t Off) { |
| 1820 | const auto &Ptr = S.Stk.pop<MemberPointer>(); |
| 1821 | S.Stk.push<MemberPointer>(Args: Ptr.atInstanceBase(Offset: Off)); |
| 1822 | return true; |
| 1823 | } |
| 1824 | |
| 1825 | inline bool GetPtrThisBase(InterpState &S, CodePtr OpPC, uint32_t Off) { |
| 1826 | if (S.checkingPotentialConstantExpression()) |
| 1827 | return false; |
| 1828 | const Pointer &This = S.Current->getThis(); |
| 1829 | if (!CheckThis(S, OpPC, This)) |
| 1830 | return false; |
| 1831 | S.Stk.push<Pointer>(Args: This.atField(Off)); |
| 1832 | return true; |
| 1833 | } |
| 1834 | |
| 1835 | inline bool FinishInitPop(InterpState &S, CodePtr OpPC) { |
| 1836 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1837 | if (Ptr.canBeInitialized()) { |
| 1838 | Ptr.initialize(); |
| 1839 | Ptr.activate(); |
| 1840 | } |
| 1841 | return true; |
| 1842 | } |
| 1843 | |
| 1844 | inline bool FinishInit(InterpState &S, CodePtr OpPC) { |
| 1845 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
| 1846 | if (Ptr.canBeInitialized()) { |
| 1847 | Ptr.initialize(); |
| 1848 | Ptr.activate(); |
| 1849 | } |
| 1850 | return true; |
| 1851 | } |
| 1852 | |
| 1853 | bool FinishInitGlobal(InterpState &S, CodePtr OpPC); |
| 1854 | |
| 1855 | inline bool Dump(InterpState &S, CodePtr OpPC) { |
| 1856 | S.Stk.dump(); |
| 1857 | return true; |
| 1858 | } |
| 1859 | |
| 1860 | inline bool VirtBaseHelper(InterpState &S, CodePtr OpPC, const RecordDecl *Decl, |
| 1861 | const Pointer &Ptr) { |
| 1862 | Pointer Base = Ptr; |
| 1863 | while (Base.isBaseClass()) |
| 1864 | Base = Base.getBase(); |
| 1865 | |
| 1866 | const Record::Base *VirtBase = Base.getRecord()->getVirtualBase(RD: Decl); |
| 1867 | S.Stk.push<Pointer>(Args: Base.atField(Off: VirtBase->Offset)); |
| 1868 | return true; |
| 1869 | } |
| 1870 | |
| 1871 | inline bool GetPtrVirtBasePop(InterpState &S, CodePtr OpPC, |
| 1872 | const RecordDecl *D) { |
| 1873 | assert(D); |
| 1874 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1875 | if (!CheckNull(S, OpPC, Ptr, CSK: CSK_Base)) |
| 1876 | return false; |
| 1877 | return VirtBaseHelper(S, OpPC, Decl: D, Ptr); |
| 1878 | } |
| 1879 | |
| 1880 | inline bool GetPtrThisVirtBase(InterpState &S, CodePtr OpPC, |
| 1881 | const RecordDecl *D) { |
| 1882 | assert(D); |
| 1883 | if (S.checkingPotentialConstantExpression()) |
| 1884 | return false; |
| 1885 | const Pointer &This = S.Current->getThis(); |
| 1886 | if (!CheckThis(S, OpPC, This)) |
| 1887 | return false; |
| 1888 | return VirtBaseHelper(S, OpPC, Decl: D, Ptr: S.Current->getThis()); |
| 1889 | } |
| 1890 | |
| 1891 | //===----------------------------------------------------------------------===// |
| 1892 | // Load, Store, Init |
| 1893 | //===----------------------------------------------------------------------===// |
| 1894 | |
| 1895 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1896 | bool Load(InterpState &S, CodePtr OpPC) { |
| 1897 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
| 1898 | if (!CheckLoad(S, OpPC, Ptr)) |
| 1899 | return false; |
| 1900 | if (!Ptr.isBlockPointer()) |
| 1901 | return false; |
| 1902 | S.Stk.push<T>(Ptr.deref<T>()); |
| 1903 | return true; |
| 1904 | } |
| 1905 | |
| 1906 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1907 | bool LoadPop(InterpState &S, CodePtr OpPC) { |
| 1908 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1909 | if (!CheckLoad(S, OpPC, Ptr)) |
| 1910 | return false; |
| 1911 | if (!Ptr.isBlockPointer()) |
| 1912 | return false; |
| 1913 | S.Stk.push<T>(Ptr.deref<T>()); |
| 1914 | return true; |
| 1915 | } |
| 1916 | |
| 1917 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1918 | bool Store(InterpState &S, CodePtr OpPC) { |
| 1919 | const T &Value = S.Stk.pop<T>(); |
| 1920 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
| 1921 | if (!CheckStore(S, OpPC, Ptr)) |
| 1922 | return false; |
| 1923 | if (Ptr.canBeInitialized()) { |
| 1924 | Ptr.initialize(); |
| 1925 | Ptr.activate(); |
| 1926 | } |
| 1927 | Ptr.deref<T>() = Value; |
| 1928 | return true; |
| 1929 | } |
| 1930 | |
| 1931 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1932 | bool StorePop(InterpState &S, CodePtr OpPC) { |
| 1933 | const T &Value = S.Stk.pop<T>(); |
| 1934 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1935 | if (!CheckStore(S, OpPC, Ptr)) |
| 1936 | return false; |
| 1937 | if (Ptr.canBeInitialized()) { |
| 1938 | Ptr.initialize(); |
| 1939 | Ptr.activate(); |
| 1940 | } |
| 1941 | Ptr.deref<T>() = Value; |
| 1942 | return true; |
| 1943 | } |
| 1944 | |
| 1945 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1946 | bool StoreBitField(InterpState &S, CodePtr OpPC) { |
| 1947 | const T &Value = S.Stk.pop<T>(); |
| 1948 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
| 1949 | if (!CheckStore(S, OpPC, Ptr)) |
| 1950 | return false; |
| 1951 | if (Ptr.canBeInitialized()) |
| 1952 | Ptr.initialize(); |
| 1953 | if (const auto *FD = Ptr.getField()) |
| 1954 | Ptr.deref<T>() = Value.truncate(FD->getBitWidthValue()); |
| 1955 | else |
| 1956 | Ptr.deref<T>() = Value; |
| 1957 | return true; |
| 1958 | } |
| 1959 | |
| 1960 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1961 | bool StoreBitFieldPop(InterpState &S, CodePtr OpPC) { |
| 1962 | const T &Value = S.Stk.pop<T>(); |
| 1963 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1964 | if (!CheckStore(S, OpPC, Ptr)) |
| 1965 | return false; |
| 1966 | if (Ptr.canBeInitialized()) |
| 1967 | Ptr.initialize(); |
| 1968 | if (const auto *FD = Ptr.getField()) |
| 1969 | Ptr.deref<T>() = Value.truncate(FD->getBitWidthValue()); |
| 1970 | else |
| 1971 | Ptr.deref<T>() = Value; |
| 1972 | return true; |
| 1973 | } |
| 1974 | |
| 1975 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1976 | bool Init(InterpState &S, CodePtr OpPC) { |
| 1977 | const T &Value = S.Stk.pop<T>(); |
| 1978 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
| 1979 | if (!CheckInit(S, OpPC, Ptr)) |
| 1980 | return false; |
| 1981 | Ptr.activate(); |
| 1982 | Ptr.initialize(); |
| 1983 | new (&Ptr.deref<T>()) T(Value); |
| 1984 | return true; |
| 1985 | } |
| 1986 | |
| 1987 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 1988 | bool InitPop(InterpState &S, CodePtr OpPC) { |
| 1989 | const T &Value = S.Stk.pop<T>(); |
| 1990 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 1991 | if (!CheckInit(S, OpPC, Ptr)) |
| 1992 | return false; |
| 1993 | Ptr.activate(); |
| 1994 | Ptr.initialize(); |
| 1995 | new (&Ptr.deref<T>()) T(Value); |
| 1996 | return true; |
| 1997 | } |
| 1998 | |
| 1999 | /// 1) Pops the value from the stack |
| 2000 | /// 2) Peeks a pointer and gets its index \Idx |
| 2001 | /// 3) Sets the value on the pointer, leaving the pointer on the stack. |
| 2002 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2003 | bool InitElem(InterpState &S, CodePtr OpPC, uint32_t Idx) { |
| 2004 | const T &Value = S.Stk.pop<T>(); |
| 2005 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
| 2006 | |
| 2007 | if (Ptr.isUnknownSizeArray()) |
| 2008 | return false; |
| 2009 | |
| 2010 | // In the unlikely event that we're initializing the first item of |
| 2011 | // a non-array, skip the atIndex(). |
| 2012 | if (Idx == 0 && !Ptr.getFieldDesc()->isArray()) { |
| 2013 | Ptr.initialize(); |
| 2014 | new (&Ptr.deref<T>()) T(Value); |
| 2015 | return true; |
| 2016 | } |
| 2017 | |
| 2018 | const Pointer &ElemPtr = Ptr.atIndex(Idx); |
| 2019 | if (!CheckInit(S, OpPC, Ptr: ElemPtr)) |
| 2020 | return false; |
| 2021 | ElemPtr.initialize(); |
| 2022 | new (&ElemPtr.deref<T>()) T(Value); |
| 2023 | return true; |
| 2024 | } |
| 2025 | |
| 2026 | /// The same as InitElem, but pops the pointer as well. |
| 2027 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2028 | bool InitElemPop(InterpState &S, CodePtr OpPC, uint32_t Idx) { |
| 2029 | const T &Value = S.Stk.pop<T>(); |
| 2030 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 2031 | if (Ptr.isUnknownSizeArray()) |
| 2032 | return false; |
| 2033 | |
| 2034 | // In the unlikely event that we're initializing the first item of |
| 2035 | // a non-array, skip the atIndex(). |
| 2036 | if (Idx == 0 && !Ptr.getFieldDesc()->isArray()) { |
| 2037 | Ptr.initialize(); |
| 2038 | new (&Ptr.deref<T>()) T(Value); |
| 2039 | return true; |
| 2040 | } |
| 2041 | |
| 2042 | const Pointer &ElemPtr = Ptr.atIndex(Idx); |
| 2043 | if (!CheckInit(S, OpPC, Ptr: ElemPtr)) |
| 2044 | return false; |
| 2045 | ElemPtr.initialize(); |
| 2046 | new (&ElemPtr.deref<T>()) T(Value); |
| 2047 | return true; |
| 2048 | } |
| 2049 | |
| 2050 | inline bool Memcpy(InterpState &S, CodePtr OpPC) { |
| 2051 | const Pointer &Src = S.Stk.pop<Pointer>(); |
| 2052 | Pointer &Dest = S.Stk.peek<Pointer>(); |
| 2053 | |
| 2054 | if (!CheckLoad(S, OpPC, Ptr: Src)) |
| 2055 | return false; |
| 2056 | |
| 2057 | return DoMemcpy(S, OpPC, Src, Dest); |
| 2058 | } |
| 2059 | |
| 2060 | inline bool ToMemberPtr(InterpState &S, CodePtr OpPC) { |
| 2061 | const auto &Member = S.Stk.pop<MemberPointer>(); |
| 2062 | const auto &Base = S.Stk.pop<Pointer>(); |
| 2063 | |
| 2064 | S.Stk.push<MemberPointer>(Args: Member.takeInstance(Instance: Base)); |
| 2065 | return true; |
| 2066 | } |
| 2067 | |
| 2068 | inline bool CastMemberPtrPtr(InterpState &S, CodePtr OpPC) { |
| 2069 | const auto &MP = S.Stk.pop<MemberPointer>(); |
| 2070 | |
| 2071 | if (std::optional<Pointer> Ptr = MP.toPointer(Ctx: S.Ctx)) { |
| 2072 | S.Stk.push<Pointer>(Args&: *Ptr); |
| 2073 | return true; |
| 2074 | } |
| 2075 | return Invalid(S, OpPC); |
| 2076 | } |
| 2077 | |
| 2078 | //===----------------------------------------------------------------------===// |
| 2079 | // AddOffset, SubOffset |
| 2080 | //===----------------------------------------------------------------------===// |
| 2081 | |
| 2082 | template <class T, ArithOp Op> |
| 2083 | bool OffsetHelper(InterpState &S, CodePtr OpPC, const T &Offset, |
| 2084 | const Pointer &Ptr, bool IsPointerArith = false) { |
| 2085 | // A zero offset does not change the pointer. |
| 2086 | if (Offset.isZero()) { |
| 2087 | S.Stk.push<Pointer>(Args: Ptr); |
| 2088 | return true; |
| 2089 | } |
| 2090 | |
| 2091 | if (IsPointerArith && !CheckNull(S, OpPC, Ptr, CSK: CSK_ArrayIndex)) { |
| 2092 | // The CheckNull will have emitted a note already, but we only |
| 2093 | // abort in C++, since this is fine in C. |
| 2094 | if (S.getLangOpts().CPlusPlus) |
| 2095 | return false; |
| 2096 | } |
| 2097 | |
| 2098 | // Arrays of unknown bounds cannot have pointers into them. |
| 2099 | if (!CheckArray(S, OpPC, Ptr)) |
| 2100 | return false; |
| 2101 | |
| 2102 | // This is much simpler for integral pointers, so handle them first. |
| 2103 | if (Ptr.isIntegralPointer()) { |
| 2104 | uint64_t V = Ptr.getIntegerRepresentation(); |
| 2105 | uint64_t O = static_cast<uint64_t>(Offset) * Ptr.elemSize(); |
| 2106 | if constexpr (Op == ArithOp::Add) |
| 2107 | S.Stk.push<Pointer>(Args: V + O, Args: Ptr.asIntPointer().Desc); |
| 2108 | else |
| 2109 | S.Stk.push<Pointer>(Args: V - O, Args: Ptr.asIntPointer().Desc); |
| 2110 | return true; |
| 2111 | } else if (Ptr.isFunctionPointer()) { |
| 2112 | uint64_t O = static_cast<uint64_t>(Offset); |
| 2113 | uint64_t N; |
| 2114 | if constexpr (Op == ArithOp::Add) |
| 2115 | N = Ptr.getByteOffset() + O; |
| 2116 | else |
| 2117 | N = Ptr.getByteOffset() - O; |
| 2118 | |
| 2119 | if (N > 1) |
| 2120 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_array_index) |
| 2121 | << N << /*non-array*/ true << 0; |
| 2122 | S.Stk.push<Pointer>(Args: Ptr.asFunctionPointer().getFunction(), Args&: N); |
| 2123 | return true; |
| 2124 | } |
| 2125 | |
| 2126 | assert(Ptr.isBlockPointer()); |
| 2127 | |
| 2128 | uint64_t MaxIndex = static_cast<uint64_t>(Ptr.getNumElems()); |
| 2129 | uint64_t Index; |
| 2130 | if (Ptr.isOnePastEnd()) |
| 2131 | Index = MaxIndex; |
| 2132 | else |
| 2133 | Index = Ptr.getIndex(); |
| 2134 | |
| 2135 | bool Invalid = false; |
| 2136 | // Helper to report an invalid offset, computed as APSInt. |
| 2137 | auto DiagInvalidOffset = [&]() -> void { |
| 2138 | const unsigned Bits = Offset.bitWidth(); |
| 2139 | APSInt APOffset(Offset.toAPSInt().extend(Bits + 2), /*IsUnsigend=*/false); |
| 2140 | APSInt APIndex(APInt(Bits + 2, Index, /*IsSigned=*/true), |
| 2141 | /*IsUnsigned=*/false); |
| 2142 | APSInt NewIndex = |
| 2143 | (Op == ArithOp::Add) ? (APIndex + APOffset) : (APIndex - APOffset); |
| 2144 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_array_index) |
| 2145 | << NewIndex << /*array*/ static_cast<int>(!Ptr.inArray()) << MaxIndex; |
| 2146 | Invalid = true; |
| 2147 | }; |
| 2148 | |
| 2149 | if (Ptr.isBlockPointer()) { |
| 2150 | uint64_t IOffset = static_cast<uint64_t>(Offset); |
| 2151 | uint64_t MaxOffset = MaxIndex - Index; |
| 2152 | |
| 2153 | if constexpr (Op == ArithOp::Add) { |
| 2154 | // If the new offset would be negative, bail out. |
| 2155 | if (Offset.isNegative() && (Offset.isMin() || -IOffset > Index)) |
| 2156 | DiagInvalidOffset(); |
| 2157 | |
| 2158 | // If the new offset would be out of bounds, bail out. |
| 2159 | if (Offset.isPositive() && IOffset > MaxOffset) |
| 2160 | DiagInvalidOffset(); |
| 2161 | } else { |
| 2162 | // If the new offset would be negative, bail out. |
| 2163 | if (Offset.isPositive() && Index < IOffset) |
| 2164 | DiagInvalidOffset(); |
| 2165 | |
| 2166 | // If the new offset would be out of bounds, bail out. |
| 2167 | if (Offset.isNegative() && (Offset.isMin() || -IOffset > MaxOffset)) |
| 2168 | DiagInvalidOffset(); |
| 2169 | } |
| 2170 | } |
| 2171 | |
| 2172 | if (Invalid && S.getLangOpts().CPlusPlus) |
| 2173 | return false; |
| 2174 | |
| 2175 | // Offset is valid - compute it on unsigned. |
| 2176 | int64_t WideIndex = static_cast<int64_t>(Index); |
| 2177 | int64_t WideOffset = static_cast<int64_t>(Offset); |
| 2178 | int64_t Result; |
| 2179 | if constexpr (Op == ArithOp::Add) |
| 2180 | Result = WideIndex + WideOffset; |
| 2181 | else |
| 2182 | Result = WideIndex - WideOffset; |
| 2183 | |
| 2184 | // When the pointer is one-past-end, going back to index 0 is the only |
| 2185 | // useful thing we can do. Any other index has been diagnosed before and |
| 2186 | // we don't get here. |
| 2187 | if (Result == 0 && Ptr.isOnePastEnd()) { |
| 2188 | if (Ptr.getFieldDesc()->isArray()) |
| 2189 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: 0)); |
| 2190 | else |
| 2191 | S.Stk.push<Pointer>(Args: Ptr.asBlockPointer().Pointee, |
| 2192 | Args: Ptr.asBlockPointer().Base); |
| 2193 | return true; |
| 2194 | } |
| 2195 | |
| 2196 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: static_cast<uint64_t>(Result))); |
| 2197 | return true; |
| 2198 | } |
| 2199 | |
| 2200 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2201 | bool AddOffset(InterpState &S, CodePtr OpPC) { |
| 2202 | const T &Offset = S.Stk.pop<T>(); |
| 2203 | Pointer Ptr = S.Stk.pop<Pointer>(); |
| 2204 | if (Ptr.isBlockPointer()) |
| 2205 | Ptr = Ptr.expand(); |
| 2206 | return OffsetHelper<T, ArithOp::Add>(S, OpPC, Offset, Ptr, |
| 2207 | /*IsPointerArith=*/true); |
| 2208 | } |
| 2209 | |
| 2210 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2211 | bool SubOffset(InterpState &S, CodePtr OpPC) { |
| 2212 | const T &Offset = S.Stk.pop<T>(); |
| 2213 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 2214 | return OffsetHelper<T, ArithOp::Sub>(S, OpPC, Offset, Ptr, |
| 2215 | /*IsPointerArith=*/true); |
| 2216 | } |
| 2217 | |
| 2218 | template <ArithOp Op> |
| 2219 | static inline bool IncDecPtrHelper(InterpState &S, CodePtr OpPC, |
| 2220 | const Pointer &Ptr) { |
| 2221 | if (Ptr.isDummy()) |
| 2222 | return false; |
| 2223 | |
| 2224 | using OneT = Integral<8, false>; |
| 2225 | |
| 2226 | const Pointer &P = Ptr.deref<Pointer>(); |
| 2227 | if (!CheckNull(S, OpPC, Ptr: P, CSK: CSK_ArrayIndex)) |
| 2228 | return false; |
| 2229 | |
| 2230 | // Get the current value on the stack. |
| 2231 | S.Stk.push<Pointer>(Args: P); |
| 2232 | |
| 2233 | // Now the current Ptr again and a constant 1. |
| 2234 | OneT One = OneT::from(Value: 1); |
| 2235 | if (!OffsetHelper<OneT, Op>(S, OpPC, One, P, /*IsPointerArith=*/true)) |
| 2236 | return false; |
| 2237 | |
| 2238 | // Store the new value. |
| 2239 | Ptr.deref<Pointer>() = S.Stk.pop<Pointer>(); |
| 2240 | return true; |
| 2241 | } |
| 2242 | |
| 2243 | static inline bool IncPtr(InterpState &S, CodePtr OpPC) { |
| 2244 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 2245 | |
| 2246 | if (!CheckInitialized(S, OpPC, Ptr, AK: AK_Increment)) |
| 2247 | return false; |
| 2248 | |
| 2249 | return IncDecPtrHelper<ArithOp::Add>(S, OpPC, Ptr); |
| 2250 | } |
| 2251 | |
| 2252 | static inline bool DecPtr(InterpState &S, CodePtr OpPC) { |
| 2253 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 2254 | |
| 2255 | if (!CheckInitialized(S, OpPC, Ptr, AK: AK_Decrement)) |
| 2256 | return false; |
| 2257 | |
| 2258 | return IncDecPtrHelper<ArithOp::Sub>(S, OpPC, Ptr); |
| 2259 | } |
| 2260 | |
| 2261 | /// 1) Pops a Pointer from the stack. |
| 2262 | /// 2) Pops another Pointer from the stack. |
| 2263 | /// 3) Pushes the difference of the indices of the two pointers on the stack. |
| 2264 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2265 | inline bool SubPtr(InterpState &S, CodePtr OpPC) { |
| 2266 | const Pointer &LHS = S.Stk.pop<Pointer>(); |
| 2267 | const Pointer &RHS = S.Stk.pop<Pointer>(); |
| 2268 | |
| 2269 | if (!Pointer::hasSameBase(A: LHS, B: RHS) && S.getLangOpts().CPlusPlus) { |
| 2270 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 2271 | DiagId: diag::note_constexpr_pointer_arith_unspecified) |
| 2272 | << LHS.toDiagnosticString(Ctx: S.getASTContext()) |
| 2273 | << RHS.toDiagnosticString(Ctx: S.getASTContext()); |
| 2274 | return false; |
| 2275 | } |
| 2276 | |
| 2277 | if (LHS == RHS) { |
| 2278 | S.Stk.push<T>(); |
| 2279 | return true; |
| 2280 | } |
| 2281 | |
| 2282 | for (const Pointer &P : {LHS, RHS}) { |
| 2283 | if (P.isZeroSizeArray()) { |
| 2284 | QualType PtrT = P.getType(); |
| 2285 | while (auto *AT = dyn_cast<ArrayType>(Val&: PtrT)) |
| 2286 | PtrT = AT->getElementType(); |
| 2287 | |
| 2288 | QualType ArrayTy = S.getASTContext().getConstantArrayType( |
| 2289 | EltTy: PtrT, ArySize: APInt::getZero(numBits: 1), SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 2290 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 2291 | DiagId: diag::note_constexpr_pointer_subtraction_zero_size) |
| 2292 | << ArrayTy; |
| 2293 | |
| 2294 | return false; |
| 2295 | } |
| 2296 | } |
| 2297 | |
| 2298 | int64_t A64 = |
| 2299 | LHS.isBlockPointer() |
| 2300 | ? (LHS.isElementPastEnd() ? LHS.getNumElems() : LHS.getIndex()) |
| 2301 | : LHS.getIntegerRepresentation(); |
| 2302 | |
| 2303 | int64_t B64 = |
| 2304 | RHS.isBlockPointer() |
| 2305 | ? (RHS.isElementPastEnd() ? RHS.getNumElems() : RHS.getIndex()) |
| 2306 | : RHS.getIntegerRepresentation(); |
| 2307 | |
| 2308 | int64_t R64 = A64 - B64; |
| 2309 | if (static_cast<int64_t>(T::from(R64)) != R64) |
| 2310 | return handleOverflow(S, OpPC, SrcValue: R64); |
| 2311 | |
| 2312 | S.Stk.push<T>(T::from(R64)); |
| 2313 | return true; |
| 2314 | } |
| 2315 | |
| 2316 | //===----------------------------------------------------------------------===// |
| 2317 | // Destroy |
| 2318 | //===----------------------------------------------------------------------===// |
| 2319 | |
| 2320 | inline bool Destroy(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 2321 | assert(S.Current->getFunction()); |
| 2322 | |
| 2323 | // FIXME: We iterate the scope once here and then again in the destroy() call |
| 2324 | // below. |
| 2325 | for (auto &Local : S.Current->getFunction()->getScope(Idx: I).locals_reverse()) { |
| 2326 | const Pointer &Ptr = S.Current->getLocalPointer(Offset: Local.Offset); |
| 2327 | |
| 2328 | if (Ptr.getLifetime() == Lifetime::Ended) { |
| 2329 | auto *D = cast<NamedDecl>(Val: Ptr.getFieldDesc()->asDecl()); |
| 2330 | S.FFDiag(Loc: D->getLocation(), DiagId: diag::note_constexpr_destroy_out_of_lifetime) |
| 2331 | << D->getNameAsString(); |
| 2332 | return false; |
| 2333 | } |
| 2334 | } |
| 2335 | |
| 2336 | S.Current->destroy(Idx: I); |
| 2337 | return true; |
| 2338 | } |
| 2339 | |
| 2340 | inline bool InitScope(InterpState &S, CodePtr OpPC, uint32_t I) { |
| 2341 | S.Current->initScope(Idx: I); |
| 2342 | return true; |
| 2343 | } |
| 2344 | |
| 2345 | //===----------------------------------------------------------------------===// |
| 2346 | // Cast, CastFP |
| 2347 | //===----------------------------------------------------------------------===// |
| 2348 | |
| 2349 | template <PrimType TIn, PrimType TOut> bool Cast(InterpState &S, CodePtr OpPC) { |
| 2350 | using T = typename PrimConv<TIn>::T; |
| 2351 | using U = typename PrimConv<TOut>::T; |
| 2352 | S.Stk.push<U>(U::from(S.Stk.pop<T>())); |
| 2353 | return true; |
| 2354 | } |
| 2355 | |
| 2356 | /// 1) Pops a Floating from the stack. |
| 2357 | /// 2) Pushes a new floating on the stack that uses the given semantics. |
| 2358 | inline bool CastFP(InterpState &S, CodePtr OpPC, const llvm::fltSemantics *Sem, |
| 2359 | llvm::RoundingMode RM) { |
| 2360 | Floating F = S.Stk.pop<Floating>(); |
| 2361 | Floating Result = S.allocFloat(Sem: *Sem); |
| 2362 | F.toSemantics(Sem, RM, Result: &Result); |
| 2363 | S.Stk.push<Floating>(Args&: Result); |
| 2364 | return true; |
| 2365 | } |
| 2366 | |
| 2367 | inline bool CastFixedPoint(InterpState &S, CodePtr OpPC, uint32_t FPS) { |
| 2368 | FixedPointSemantics TargetSemantics = |
| 2369 | FixedPointSemantics::getFromOpaqueInt(FPS); |
| 2370 | const auto &Source = S.Stk.pop<FixedPoint>(); |
| 2371 | |
| 2372 | bool Overflow; |
| 2373 | FixedPoint Result = Source.toSemantics(Sem: TargetSemantics, Overflow: &Overflow); |
| 2374 | |
| 2375 | if (Overflow && !handleFixedPointOverflow(S, OpPC, FP: Result)) |
| 2376 | return false; |
| 2377 | |
| 2378 | S.Stk.push<FixedPoint>(Args&: Result); |
| 2379 | return true; |
| 2380 | } |
| 2381 | |
| 2382 | /// Like Cast(), but we cast to an arbitrary-bitwidth integral, so we need |
| 2383 | /// to know what bitwidth the result should be. |
| 2384 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2385 | bool CastAP(InterpState &S, CodePtr OpPC, uint32_t BitWidth) { |
| 2386 | auto Result = S.allocAP<IntegralAP<false>>(BitWidth); |
| 2387 | // Copy data. |
| 2388 | { |
| 2389 | APInt Source = S.Stk.pop<T>().toAPSInt().extOrTrunc(BitWidth); |
| 2390 | Result.copy(V: Source); |
| 2391 | } |
| 2392 | S.Stk.push<IntegralAP<false>>(Args&: Result); |
| 2393 | return true; |
| 2394 | } |
| 2395 | |
| 2396 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2397 | bool CastAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth) { |
| 2398 | auto Result = S.allocAP<IntegralAP<true>>(BitWidth); |
| 2399 | // Copy data. |
| 2400 | { |
| 2401 | APInt Source = S.Stk.pop<T>().toAPSInt().extOrTrunc(BitWidth); |
| 2402 | Result.copy(V: Source); |
| 2403 | } |
| 2404 | S.Stk.push<IntegralAP<true>>(Args&: Result); |
| 2405 | return true; |
| 2406 | } |
| 2407 | |
| 2408 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2409 | bool CastIntegralFloating(InterpState &S, CodePtr OpPC, |
| 2410 | const llvm::fltSemantics *Sem, uint32_t FPOI) { |
| 2411 | const T &From = S.Stk.pop<T>(); |
| 2412 | APSInt FromAP = From.toAPSInt(); |
| 2413 | |
| 2414 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
| 2415 | Floating Result = S.allocFloat(Sem: *Sem); |
| 2416 | auto Status = |
| 2417 | Floating::fromIntegral(Val: FromAP, Sem: *Sem, RM: getRoundingMode(FPO), Result: &Result); |
| 2418 | S.Stk.push<Floating>(Args&: Result); |
| 2419 | |
| 2420 | return CheckFloatResult(S, OpPC, Result, Status, FPO); |
| 2421 | } |
| 2422 | |
| 2423 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2424 | bool CastFloatingIntegral(InterpState &S, CodePtr OpPC, uint32_t FPOI) { |
| 2425 | const Floating &F = S.Stk.pop<Floating>(); |
| 2426 | |
| 2427 | if constexpr (std::is_same_v<T, Boolean>) { |
| 2428 | S.Stk.push<T>(T(F.isNonZero())); |
| 2429 | return true; |
| 2430 | } else { |
| 2431 | APSInt Result(std::max(8u, T::bitWidth()), |
| 2432 | /*IsUnsigned=*/!T::isSigned()); |
| 2433 | auto Status = F.convertToInteger(Result); |
| 2434 | |
| 2435 | // Float-to-Integral overflow check. |
| 2436 | if ((Status & APFloat::opStatus::opInvalidOp)) { |
| 2437 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 2438 | QualType Type = E->getType(); |
| 2439 | |
| 2440 | S.CCEDiag(E, DiagId: diag::note_constexpr_overflow) << F.getAPFloat() << Type; |
| 2441 | if (S.noteUndefinedBehavior()) { |
| 2442 | S.Stk.push<T>(T(Result)); |
| 2443 | return true; |
| 2444 | } |
| 2445 | return false; |
| 2446 | } |
| 2447 | |
| 2448 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
| 2449 | S.Stk.push<T>(T(Result)); |
| 2450 | return CheckFloatResult(S, OpPC, Result: F, Status, FPO); |
| 2451 | } |
| 2452 | } |
| 2453 | |
| 2454 | static inline bool CastFloatingIntegralAP(InterpState &S, CodePtr OpPC, |
| 2455 | uint32_t BitWidth, uint32_t FPOI) { |
| 2456 | const Floating &F = S.Stk.pop<Floating>(); |
| 2457 | |
| 2458 | APSInt Result(BitWidth, /*IsUnsigned=*/true); |
| 2459 | auto Status = F.convertToInteger(Result); |
| 2460 | |
| 2461 | // Float-to-Integral overflow check. |
| 2462 | if ((Status & APFloat::opStatus::opInvalidOp) && F.isFinite()) |
| 2463 | return handleOverflow(S, OpPC, SrcValue: F.getAPFloat()); |
| 2464 | |
| 2465 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
| 2466 | |
| 2467 | auto ResultAP = S.allocAP<IntegralAP<false>>(BitWidth); |
| 2468 | ResultAP.copy(V: Result); |
| 2469 | |
| 2470 | S.Stk.push<IntegralAP<false>>(Args&: ResultAP); |
| 2471 | |
| 2472 | return CheckFloatResult(S, OpPC, Result: F, Status, FPO); |
| 2473 | } |
| 2474 | |
| 2475 | static inline bool CastFloatingIntegralAPS(InterpState &S, CodePtr OpPC, |
| 2476 | uint32_t BitWidth, uint32_t FPOI) { |
| 2477 | const Floating &F = S.Stk.pop<Floating>(); |
| 2478 | |
| 2479 | APSInt Result(BitWidth, /*IsUnsigned=*/false); |
| 2480 | auto Status = F.convertToInteger(Result); |
| 2481 | |
| 2482 | // Float-to-Integral overflow check. |
| 2483 | if ((Status & APFloat::opStatus::opInvalidOp) && F.isFinite()) |
| 2484 | return handleOverflow(S, OpPC, SrcValue: F.getAPFloat()); |
| 2485 | |
| 2486 | FPOptions FPO = FPOptions::getFromOpaqueInt(Value: FPOI); |
| 2487 | |
| 2488 | auto ResultAP = S.allocAP<IntegralAP<true>>(BitWidth); |
| 2489 | ResultAP.copy(V: Result); |
| 2490 | |
| 2491 | S.Stk.push<IntegralAP<true>>(Args&: ResultAP); |
| 2492 | |
| 2493 | return CheckFloatResult(S, OpPC, Result: F, Status, FPO); |
| 2494 | } |
| 2495 | |
| 2496 | bool CheckPointerToIntegralCast(InterpState &S, CodePtr OpPC, |
| 2497 | const Pointer &Ptr, unsigned BitWidth); |
| 2498 | bool CastPointerIntegralAP(InterpState &S, CodePtr OpPC, uint32_t BitWidth); |
| 2499 | bool CastPointerIntegralAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth); |
| 2500 | |
| 2501 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2502 | bool CastPointerIntegral(InterpState &S, CodePtr OpPC) { |
| 2503 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 2504 | |
| 2505 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_invalid_cast) |
| 2506 | << diag::ConstexprInvalidCastKind::ThisConversionOrReinterpret |
| 2507 | << S.getLangOpts().CPlusPlus << S.Current->getRange(PC: OpPC); |
| 2508 | |
| 2509 | if (!CheckPointerToIntegralCast(S, OpPC, Ptr, T::bitWidth())) |
| 2510 | return Invalid(S, OpPC); |
| 2511 | |
| 2512 | S.Stk.push<T>(T::from(Ptr.getIntegerRepresentation())); |
| 2513 | return true; |
| 2514 | } |
| 2515 | |
| 2516 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2517 | static inline bool CastIntegralFixedPoint(InterpState &S, CodePtr OpPC, |
| 2518 | uint32_t FPS) { |
| 2519 | const T &Int = S.Stk.pop<T>(); |
| 2520 | |
| 2521 | FixedPointSemantics Sem = FixedPointSemantics::getFromOpaqueInt(FPS); |
| 2522 | |
| 2523 | bool Overflow; |
| 2524 | FixedPoint Result = FixedPoint::from(Int.toAPSInt(), Sem, &Overflow); |
| 2525 | |
| 2526 | if (Overflow && !handleFixedPointOverflow(S, OpPC, FP: Result)) |
| 2527 | return false; |
| 2528 | |
| 2529 | S.Stk.push<FixedPoint>(Args&: Result); |
| 2530 | return true; |
| 2531 | } |
| 2532 | |
| 2533 | static inline bool CastFloatingFixedPoint(InterpState &S, CodePtr OpPC, |
| 2534 | uint32_t FPS) { |
| 2535 | const auto &Float = S.Stk.pop<Floating>(); |
| 2536 | |
| 2537 | FixedPointSemantics Sem = FixedPointSemantics::getFromOpaqueInt(FPS); |
| 2538 | |
| 2539 | bool Overflow; |
| 2540 | FixedPoint Result = FixedPoint::from(I: Float.getAPFloat(), Sem, Overflow: &Overflow); |
| 2541 | |
| 2542 | if (Overflow && !handleFixedPointOverflow(S, OpPC, FP: Result)) |
| 2543 | return false; |
| 2544 | |
| 2545 | S.Stk.push<FixedPoint>(Args&: Result); |
| 2546 | return true; |
| 2547 | } |
| 2548 | |
| 2549 | static inline bool CastFixedPointFloating(InterpState &S, CodePtr OpPC, |
| 2550 | const llvm::fltSemantics *Sem) { |
| 2551 | const auto &Fixed = S.Stk.pop<FixedPoint>(); |
| 2552 | Floating Result = S.allocFloat(Sem: *Sem); |
| 2553 | Result.copy(F: Fixed.toFloat(Sem)); |
| 2554 | S.Stk.push<Floating>(Args&: Result); |
| 2555 | return true; |
| 2556 | } |
| 2557 | |
| 2558 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2559 | static inline bool CastFixedPointIntegral(InterpState &S, CodePtr OpPC) { |
| 2560 | const auto &Fixed = S.Stk.pop<FixedPoint>(); |
| 2561 | |
| 2562 | bool Overflow; |
| 2563 | APSInt Int = Fixed.toInt(BitWidth: T::bitWidth(), Signed: T::isSigned(), Overflow: &Overflow); |
| 2564 | |
| 2565 | if (Overflow && !handleOverflow(S, OpPC, SrcValue: Int)) |
| 2566 | return false; |
| 2567 | |
| 2568 | S.Stk.push<T>(Int); |
| 2569 | return true; |
| 2570 | } |
| 2571 | |
| 2572 | static inline bool PtrPtrCast(InterpState &S, CodePtr OpPC, bool SrcIsVoidPtr) { |
| 2573 | const auto &Ptr = S.Stk.peek<Pointer>(); |
| 2574 | |
| 2575 | if (SrcIsVoidPtr && S.getLangOpts().CPlusPlus) { |
| 2576 | bool HasValidResult = !Ptr.isZero(); |
| 2577 | |
| 2578 | if (HasValidResult) { |
| 2579 | if (S.getStdAllocatorCaller(Name: "allocate" )) |
| 2580 | return true; |
| 2581 | |
| 2582 | const auto &E = cast<CastExpr>(Val: S.Current->getExpr(PC: OpPC)); |
| 2583 | if (S.getLangOpts().CPlusPlus26 && |
| 2584 | S.getASTContext().hasSimilarType(T1: Ptr.getType(), |
| 2585 | T2: E->getType()->getPointeeType())) |
| 2586 | return true; |
| 2587 | |
| 2588 | S.CCEDiag(E, DiagId: diag::note_constexpr_invalid_void_star_cast) |
| 2589 | << E->getSubExpr()->getType() << S.getLangOpts().CPlusPlus26 |
| 2590 | << Ptr.getType().getCanonicalType() << E->getType()->getPointeeType(); |
| 2591 | } else if (!S.getLangOpts().CPlusPlus26) { |
| 2592 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 2593 | S.CCEDiag(SI: E, DiagId: diag::note_constexpr_invalid_cast) |
| 2594 | << diag::ConstexprInvalidCastKind::CastFrom << "'void *'" |
| 2595 | << S.Current->getRange(PC: OpPC); |
| 2596 | } |
| 2597 | } else { |
| 2598 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 2599 | S.CCEDiag(SI: E, DiagId: diag::note_constexpr_invalid_cast) |
| 2600 | << diag::ConstexprInvalidCastKind::ThisConversionOrReinterpret |
| 2601 | << S.getLangOpts().CPlusPlus << S.Current->getRange(PC: OpPC); |
| 2602 | } |
| 2603 | |
| 2604 | return true; |
| 2605 | } |
| 2606 | |
| 2607 | //===----------------------------------------------------------------------===// |
| 2608 | // Zero, Nullptr |
| 2609 | //===----------------------------------------------------------------------===// |
| 2610 | |
| 2611 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2612 | bool Zero(InterpState &S, CodePtr OpPC) { |
| 2613 | S.Stk.push<T>(T::zero()); |
| 2614 | return true; |
| 2615 | } |
| 2616 | |
| 2617 | static inline bool ZeroIntAP(InterpState &S, CodePtr OpPC, uint32_t BitWidth) { |
| 2618 | auto Result = S.allocAP<IntegralAP<false>>(BitWidth); |
| 2619 | if (!Result.singleWord()) |
| 2620 | std::memset(s: Result.Memory, c: 0, n: Result.numWords() * sizeof(uint64_t)); |
| 2621 | S.Stk.push<IntegralAP<false>>(Args&: Result); |
| 2622 | return true; |
| 2623 | } |
| 2624 | |
| 2625 | static inline bool ZeroIntAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth) { |
| 2626 | auto Result = S.allocAP<IntegralAP<true>>(BitWidth); |
| 2627 | if (!Result.singleWord()) |
| 2628 | std::memset(s: Result.Memory, c: 0, n: Result.numWords() * sizeof(uint64_t)); |
| 2629 | S.Stk.push<IntegralAP<true>>(Args&: Result); |
| 2630 | return true; |
| 2631 | } |
| 2632 | |
| 2633 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2634 | inline bool Null(InterpState &S, CodePtr OpPC, uint64_t Value, |
| 2635 | const Descriptor *Desc) { |
| 2636 | // FIXME(perf): This is a somewhat often-used function and the value of a |
| 2637 | // null pointer is almost always 0. |
| 2638 | S.Stk.push<T>(Value, Desc); |
| 2639 | return true; |
| 2640 | } |
| 2641 | |
| 2642 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2643 | inline bool IsNonNull(InterpState &S, CodePtr OpPC) { |
| 2644 | const auto &P = S.Stk.pop<T>(); |
| 2645 | if (P.isWeak()) |
| 2646 | return false; |
| 2647 | S.Stk.push<Boolean>(Boolean::from(!P.isZero())); |
| 2648 | return true; |
| 2649 | } |
| 2650 | |
| 2651 | //===----------------------------------------------------------------------===// |
| 2652 | // This, ImplicitThis |
| 2653 | //===----------------------------------------------------------------------===// |
| 2654 | |
| 2655 | inline bool This(InterpState &S, CodePtr OpPC) { |
| 2656 | // Cannot read 'this' in this mode. |
| 2657 | if (S.checkingPotentialConstantExpression()) { |
| 2658 | return false; |
| 2659 | } |
| 2660 | |
| 2661 | const Pointer &This = S.Current->getThis(); |
| 2662 | if (!CheckThis(S, OpPC, This)) |
| 2663 | return false; |
| 2664 | |
| 2665 | // Ensure the This pointer has been cast to the correct base. |
| 2666 | if (!This.isDummy()) { |
| 2667 | assert(isa<CXXMethodDecl>(S.Current->getFunction()->getDecl())); |
| 2668 | if (!This.isTypeidPointer()) { |
| 2669 | [[maybe_unused]] const Record *R = This.getRecord(); |
| 2670 | if (!R) |
| 2671 | R = This.narrow().getRecord(); |
| 2672 | assert(R); |
| 2673 | assert(R->getDecl() == |
| 2674 | cast<CXXMethodDecl>(S.Current->getFunction()->getDecl()) |
| 2675 | ->getParent()); |
| 2676 | } |
| 2677 | } |
| 2678 | |
| 2679 | S.Stk.push<Pointer>(Args: This); |
| 2680 | return true; |
| 2681 | } |
| 2682 | |
| 2683 | inline bool RVOPtr(InterpState &S, CodePtr OpPC) { |
| 2684 | assert(S.Current->getFunction()->hasRVO()); |
| 2685 | if (S.checkingPotentialConstantExpression()) |
| 2686 | return false; |
| 2687 | S.Stk.push<Pointer>(Args: S.Current->getRVOPtr()); |
| 2688 | return true; |
| 2689 | } |
| 2690 | |
| 2691 | //===----------------------------------------------------------------------===// |
| 2692 | // Shr, Shl |
| 2693 | //===----------------------------------------------------------------------===// |
| 2694 | |
| 2695 | template <class LT, class RT, ShiftDir Dir> |
| 2696 | inline bool DoShift(InterpState &S, CodePtr OpPC, LT &LHS, RT &RHS, |
| 2697 | LT *Result) { |
| 2698 | static_assert(!needsAlloc<LT>()); |
| 2699 | const unsigned Bits = LHS.bitWidth(); |
| 2700 | |
| 2701 | // OpenCL 6.3j: shift values are effectively % word size of LHS. |
| 2702 | if (S.getLangOpts().OpenCL) |
| 2703 | RT::bitAnd(RHS, RT::from(LHS.bitWidth() - 1, RHS.bitWidth()), |
| 2704 | RHS.bitWidth(), &RHS); |
| 2705 | |
| 2706 | if (RHS.isNegative()) { |
| 2707 | // During constant-folding, a negative shift is an opposite shift. Such a |
| 2708 | // shift is not a constant expression. |
| 2709 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 2710 | S.CCEDiag(SI: Loc, DiagId: diag::note_constexpr_negative_shift) << RHS.toAPSInt(); |
| 2711 | if (!S.noteUndefinedBehavior()) |
| 2712 | return false; |
| 2713 | RHS = -RHS; |
| 2714 | return DoShift<LT, RT, |
| 2715 | Dir == ShiftDir::Left ? ShiftDir::Right : ShiftDir::Left>( |
| 2716 | S, OpPC, LHS, RHS, Result); |
| 2717 | } |
| 2718 | |
| 2719 | if (!CheckShift<Dir>(S, OpPC, LHS, RHS, Bits)) |
| 2720 | return false; |
| 2721 | |
| 2722 | // Limit the shift amount to Bits - 1. If this happened, |
| 2723 | // it has already been diagnosed by CheckShift() above, |
| 2724 | // but we still need to handle it. |
| 2725 | // Note that we have to be extra careful here since we're doing the shift in |
| 2726 | // any case, but we need to adjust the shift amount or the way we do the shift |
| 2727 | // for the potential error cases. |
| 2728 | typename LT::AsUnsigned R; |
| 2729 | unsigned MaxShiftAmount = LHS.bitWidth() - 1; |
| 2730 | if constexpr (Dir == ShiftDir::Left) { |
| 2731 | if (Compare(RHS, RT::from(MaxShiftAmount, RHS.bitWidth())) == |
| 2732 | ComparisonCategoryResult::Greater) { |
| 2733 | if (LHS.isNegative()) |
| 2734 | R = LT::AsUnsigned::zero(LHS.bitWidth()); |
| 2735 | else { |
| 2736 | RHS = RT::from(LHS.countLeadingZeros(), RHS.bitWidth()); |
| 2737 | LT::AsUnsigned::shiftLeft(LT::AsUnsigned::from(LHS), |
| 2738 | LT::AsUnsigned::from(RHS, Bits), Bits, &R); |
| 2739 | } |
| 2740 | } else if (LHS.isNegative()) { |
| 2741 | if (LHS.isMin()) { |
| 2742 | R = LT::AsUnsigned::zero(LHS.bitWidth()); |
| 2743 | } else { |
| 2744 | // If the LHS is negative, perform the cast and invert the result. |
| 2745 | typename LT::AsUnsigned LHSU = LT::AsUnsigned::from(-LHS); |
| 2746 | LT::AsUnsigned::shiftLeft(LHSU, LT::AsUnsigned::from(RHS, Bits), Bits, |
| 2747 | &R); |
| 2748 | R = -R; |
| 2749 | } |
| 2750 | } else { |
| 2751 | // The good case, a simple left shift. |
| 2752 | LT::AsUnsigned::shiftLeft(LT::AsUnsigned::from(LHS), |
| 2753 | LT::AsUnsigned::from(RHS, Bits), Bits, &R); |
| 2754 | } |
| 2755 | S.Stk.push<LT>(LT::from(R)); |
| 2756 | return true; |
| 2757 | } |
| 2758 | |
| 2759 | // Right shift. |
| 2760 | if (Compare(RHS, RT::from(MaxShiftAmount, RHS.bitWidth())) == |
| 2761 | ComparisonCategoryResult::Greater) { |
| 2762 | R = LT::AsUnsigned::from(-1); |
| 2763 | } else { |
| 2764 | // Do the shift on potentially signed LT, then convert to unsigned type. |
| 2765 | LT A; |
| 2766 | LT::shiftRight(LHS, LT::from(RHS, Bits), Bits, &A); |
| 2767 | R = LT::AsUnsigned::from(A); |
| 2768 | } |
| 2769 | |
| 2770 | S.Stk.push<LT>(LT::from(R)); |
| 2771 | return true; |
| 2772 | } |
| 2773 | |
| 2774 | /// A version of DoShift that works on IntegralAP. |
| 2775 | template <class LT, class RT, ShiftDir Dir> |
| 2776 | inline bool DoShiftAP(InterpState &S, CodePtr OpPC, const APSInt &LHS, |
| 2777 | APSInt RHS, LT *Result) { |
| 2778 | const unsigned Bits = LHS.getBitWidth(); |
| 2779 | |
| 2780 | // OpenCL 6.3j: shift values are effectively % word size of LHS. |
| 2781 | if (S.getLangOpts().OpenCL) |
| 2782 | RHS &= |
| 2783 | APSInt(llvm::APInt(RHS.getBitWidth(), static_cast<uint64_t>(Bits - 1)), |
| 2784 | RHS.isUnsigned()); |
| 2785 | |
| 2786 | if (RHS.isNegative()) { |
| 2787 | // During constant-folding, a negative shift is an opposite shift. Such a |
| 2788 | // shift is not a constant expression. |
| 2789 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 2790 | S.CCEDiag(SI: Loc, DiagId: diag::note_constexpr_negative_shift) << RHS; //.toAPSInt(); |
| 2791 | if (!S.noteUndefinedBehavior()) |
| 2792 | return false; |
| 2793 | return DoShiftAP<LT, RT, |
| 2794 | Dir == ShiftDir::Left ? ShiftDir::Right : ShiftDir::Left>( |
| 2795 | S, OpPC, LHS, -RHS, Result); |
| 2796 | } |
| 2797 | |
| 2798 | if (!CheckShift<Dir>(S, OpPC, static_cast<LT>(LHS), static_cast<RT>(RHS), |
| 2799 | Bits)) |
| 2800 | return false; |
| 2801 | |
| 2802 | unsigned SA = (unsigned)RHS.getLimitedValue(Limit: Bits - 1); |
| 2803 | if constexpr (Dir == ShiftDir::Left) { |
| 2804 | if constexpr (needsAlloc<LT>()) |
| 2805 | Result->copy(LHS << SA); |
| 2806 | else |
| 2807 | *Result = LT(LHS << SA); |
| 2808 | } else { |
| 2809 | if constexpr (needsAlloc<LT>()) |
| 2810 | Result->copy(LHS >> SA); |
| 2811 | else |
| 2812 | *Result = LT(LHS >> SA); |
| 2813 | } |
| 2814 | |
| 2815 | S.Stk.push<LT>(*Result); |
| 2816 | return true; |
| 2817 | } |
| 2818 | |
| 2819 | template <PrimType NameL, PrimType NameR> |
| 2820 | inline bool Shr(InterpState &S, CodePtr OpPC) { |
| 2821 | using LT = typename PrimConv<NameL>::T; |
| 2822 | using RT = typename PrimConv<NameR>::T; |
| 2823 | auto RHS = S.Stk.pop<RT>(); |
| 2824 | auto LHS = S.Stk.pop<LT>(); |
| 2825 | |
| 2826 | if constexpr (needsAlloc<LT>() || needsAlloc<RT>()) { |
| 2827 | LT Result; |
| 2828 | if constexpr (needsAlloc<LT>()) |
| 2829 | Result = S.allocAP<LT>(LHS.bitWidth()); |
| 2830 | return DoShiftAP<LT, RT, ShiftDir::Right>(S, OpPC, LHS.toAPSInt(), |
| 2831 | RHS.toAPSInt(), &Result); |
| 2832 | } else { |
| 2833 | LT Result; |
| 2834 | return DoShift<LT, RT, ShiftDir::Right>(S, OpPC, LHS, RHS, &Result); |
| 2835 | } |
| 2836 | } |
| 2837 | |
| 2838 | template <PrimType NameL, PrimType NameR> |
| 2839 | inline bool Shl(InterpState &S, CodePtr OpPC) { |
| 2840 | using LT = typename PrimConv<NameL>::T; |
| 2841 | using RT = typename PrimConv<NameR>::T; |
| 2842 | auto RHS = S.Stk.pop<RT>(); |
| 2843 | auto LHS = S.Stk.pop<LT>(); |
| 2844 | |
| 2845 | if constexpr (needsAlloc<LT>() || needsAlloc<RT>()) { |
| 2846 | LT Result; |
| 2847 | if constexpr (needsAlloc<LT>()) |
| 2848 | Result = S.allocAP<LT>(LHS.bitWidth()); |
| 2849 | return DoShiftAP<LT, RT, ShiftDir::Left>(S, OpPC, LHS.toAPSInt(), |
| 2850 | RHS.toAPSInt(), &Result); |
| 2851 | } else { |
| 2852 | LT Result; |
| 2853 | return DoShift<LT, RT, ShiftDir::Left>(S, OpPC, LHS, RHS, &Result); |
| 2854 | } |
| 2855 | } |
| 2856 | |
| 2857 | static inline bool ShiftFixedPoint(InterpState &S, CodePtr OpPC, bool Left) { |
| 2858 | const auto &RHS = S.Stk.pop<FixedPoint>(); |
| 2859 | const auto &LHS = S.Stk.pop<FixedPoint>(); |
| 2860 | llvm::FixedPointSemantics LHSSema = LHS.getSemantics(); |
| 2861 | |
| 2862 | unsigned ShiftBitWidth = |
| 2863 | LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding() - 1; |
| 2864 | |
| 2865 | // Embedded-C 4.1.6.2.2: |
| 2866 | // The right operand must be nonnegative and less than the total number |
| 2867 | // of (nonpadding) bits of the fixed-point operand ... |
| 2868 | if (RHS.isNegative()) { |
| 2869 | S.CCEDiag(Loc: S.Current->getLocation(PC: OpPC), DiagId: diag::note_constexpr_negative_shift) |
| 2870 | << RHS.toAPSInt(); |
| 2871 | } else if (static_cast<unsigned>(RHS.toAPSInt().getLimitedValue( |
| 2872 | Limit: ShiftBitWidth)) != RHS.toAPSInt()) { |
| 2873 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 2874 | S.CCEDiag(E, DiagId: diag::note_constexpr_large_shift) |
| 2875 | << RHS.toAPSInt() << E->getType() << ShiftBitWidth; |
| 2876 | } |
| 2877 | |
| 2878 | FixedPoint Result; |
| 2879 | if (Left) { |
| 2880 | if (FixedPoint::shiftLeft(A: LHS, B: RHS, OpBits: ShiftBitWidth, R: &Result) && |
| 2881 | !handleFixedPointOverflow(S, OpPC, FP: Result)) |
| 2882 | return false; |
| 2883 | } else { |
| 2884 | if (FixedPoint::shiftRight(A: LHS, B: RHS, OpBits: ShiftBitWidth, R: &Result) && |
| 2885 | !handleFixedPointOverflow(S, OpPC, FP: Result)) |
| 2886 | return false; |
| 2887 | } |
| 2888 | |
| 2889 | S.Stk.push<FixedPoint>(Args&: Result); |
| 2890 | return true; |
| 2891 | } |
| 2892 | |
| 2893 | //===----------------------------------------------------------------------===// |
| 2894 | // NoRet |
| 2895 | //===----------------------------------------------------------------------===// |
| 2896 | |
| 2897 | inline bool NoRet(InterpState &S, CodePtr OpPC) { |
| 2898 | SourceLocation EndLoc = S.Current->getCallee()->getEndLoc(); |
| 2899 | S.FFDiag(Loc: EndLoc, DiagId: diag::note_constexpr_no_return); |
| 2900 | return false; |
| 2901 | } |
| 2902 | |
| 2903 | //===----------------------------------------------------------------------===// |
| 2904 | // NarrowPtr, ExpandPtr |
| 2905 | //===----------------------------------------------------------------------===// |
| 2906 | |
| 2907 | inline bool NarrowPtr(InterpState &S, CodePtr OpPC) { |
| 2908 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 2909 | S.Stk.push<Pointer>(Args: Ptr.narrow()); |
| 2910 | return true; |
| 2911 | } |
| 2912 | |
| 2913 | inline bool ExpandPtr(InterpState &S, CodePtr OpPC) { |
| 2914 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 2915 | if (Ptr.isBlockPointer()) |
| 2916 | S.Stk.push<Pointer>(Args: Ptr.expand()); |
| 2917 | else |
| 2918 | S.Stk.push<Pointer>(Args: Ptr); |
| 2919 | return true; |
| 2920 | } |
| 2921 | |
| 2922 | // 1) Pops an integral value from the stack |
| 2923 | // 2) Peeks a pointer |
| 2924 | // 3) Pushes a new pointer that's a narrowed array |
| 2925 | // element of the peeked pointer with the value |
| 2926 | // from 1) added as offset. |
| 2927 | // |
| 2928 | // This leaves the original pointer on the stack and pushes a new one |
| 2929 | // with the offset applied and narrowed. |
| 2930 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2931 | inline bool ArrayElemPtr(InterpState &S, CodePtr OpPC) { |
| 2932 | const T &Offset = S.Stk.pop<T>(); |
| 2933 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
| 2934 | |
| 2935 | if (!Ptr.isZero() && !Offset.isZero()) { |
| 2936 | if (!CheckArray(S, OpPC, Ptr)) |
| 2937 | return false; |
| 2938 | } |
| 2939 | |
| 2940 | if (Offset.isZero()) { |
| 2941 | if (Ptr.getFieldDesc()->isArray() && Ptr.getIndex() == 0) { |
| 2942 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: 0)); |
| 2943 | } else { |
| 2944 | S.Stk.push<Pointer>(Args: Ptr); |
| 2945 | } |
| 2946 | } else { |
| 2947 | if (!OffsetHelper<T, ArithOp::Add>(S, OpPC, Offset, Ptr)) |
| 2948 | return false; |
| 2949 | } |
| 2950 | |
| 2951 | return NarrowPtr(S, OpPC); |
| 2952 | } |
| 2953 | |
| 2954 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2955 | inline bool ArrayElemPtrPop(InterpState &S, CodePtr OpPC) { |
| 2956 | const T &Offset = S.Stk.pop<T>(); |
| 2957 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 2958 | |
| 2959 | if (!Ptr.isZero() && !Offset.isZero()) { |
| 2960 | if (!CheckArray(S, OpPC, Ptr)) |
| 2961 | return false; |
| 2962 | } |
| 2963 | |
| 2964 | if (Offset.isZero()) { |
| 2965 | if (Ptr.getFieldDesc()->isArray() && Ptr.getIndex() == 0) { |
| 2966 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: 0)); |
| 2967 | } else { |
| 2968 | S.Stk.push<Pointer>(Args: Ptr); |
| 2969 | } |
| 2970 | } else { |
| 2971 | if (!OffsetHelper<T, ArithOp::Add>(S, OpPC, Offset, Ptr)) |
| 2972 | return false; |
| 2973 | } |
| 2974 | |
| 2975 | return NarrowPtr(S, OpPC); |
| 2976 | } |
| 2977 | |
| 2978 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2979 | inline bool ArrayElem(InterpState &S, CodePtr OpPC, uint32_t Index) { |
| 2980 | const Pointer &Ptr = S.Stk.peek<Pointer>(); |
| 2981 | |
| 2982 | if (!CheckLoad(S, OpPC, Ptr)) |
| 2983 | return false; |
| 2984 | |
| 2985 | assert(Ptr.atIndex(Index).getFieldDesc()->getPrimType() == Name); |
| 2986 | S.Stk.push<T>(Ptr.atIndex(Idx: Index).deref<T>()); |
| 2987 | return true; |
| 2988 | } |
| 2989 | |
| 2990 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 2991 | inline bool ArrayElemPop(InterpState &S, CodePtr OpPC, uint32_t Index) { |
| 2992 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 2993 | |
| 2994 | if (!CheckLoad(S, OpPC, Ptr)) |
| 2995 | return false; |
| 2996 | |
| 2997 | assert(Ptr.atIndex(Index).getFieldDesc()->getPrimType() == Name); |
| 2998 | S.Stk.push<T>(Ptr.atIndex(Idx: Index).deref<T>()); |
| 2999 | return true; |
| 3000 | } |
| 3001 | |
| 3002 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 3003 | inline bool CopyArray(InterpState &S, CodePtr OpPC, uint32_t SrcIndex, |
| 3004 | uint32_t DestIndex, uint32_t Size) { |
| 3005 | const auto &SrcPtr = S.Stk.pop<Pointer>(); |
| 3006 | const auto &DestPtr = S.Stk.peek<Pointer>(); |
| 3007 | |
| 3008 | for (uint32_t I = 0; I != Size; ++I) { |
| 3009 | const Pointer &SP = SrcPtr.atIndex(Idx: SrcIndex + I); |
| 3010 | |
| 3011 | if (!CheckLoad(S, OpPC, Ptr: SP)) |
| 3012 | return false; |
| 3013 | |
| 3014 | const Pointer &DP = DestPtr.atIndex(Idx: DestIndex + I); |
| 3015 | DP.deref<T>() = SP.deref<T>(); |
| 3016 | DP.initialize(); |
| 3017 | } |
| 3018 | return true; |
| 3019 | } |
| 3020 | |
| 3021 | /// Just takes a pointer and checks if it's an incomplete |
| 3022 | /// array type. |
| 3023 | inline bool ArrayDecay(InterpState &S, CodePtr OpPC) { |
| 3024 | const Pointer &Ptr = S.Stk.pop<Pointer>(); |
| 3025 | |
| 3026 | if (Ptr.isZero()) { |
| 3027 | S.Stk.push<Pointer>(Args: Ptr); |
| 3028 | return true; |
| 3029 | } |
| 3030 | |
| 3031 | if (!CheckRange(S, OpPC, Ptr, CSK: CSK_ArrayToPointer)) |
| 3032 | return false; |
| 3033 | |
| 3034 | if (Ptr.isRoot() || !Ptr.isUnknownSizeArray()) { |
| 3035 | S.Stk.push<Pointer>(Args: Ptr.atIndex(Idx: 0)); |
| 3036 | return true; |
| 3037 | } |
| 3038 | |
| 3039 | const SourceInfo &E = S.Current->getSource(PC: OpPC); |
| 3040 | S.FFDiag(SI: E, DiagId: diag::note_constexpr_unsupported_unsized_array); |
| 3041 | |
| 3042 | return false; |
| 3043 | } |
| 3044 | |
| 3045 | inline bool GetFnPtr(InterpState &S, CodePtr OpPC, const Function *Func) { |
| 3046 | assert(Func); |
| 3047 | S.Stk.push<Pointer>(Args&: Func); |
| 3048 | return true; |
| 3049 | } |
| 3050 | |
| 3051 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 3052 | inline bool GetIntPtr(InterpState &S, CodePtr OpPC, const Descriptor *Desc) { |
| 3053 | const T &IntVal = S.Stk.pop<T>(); |
| 3054 | |
| 3055 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_invalid_cast) |
| 3056 | << diag::ConstexprInvalidCastKind::ThisConversionOrReinterpret |
| 3057 | << S.getLangOpts().CPlusPlus; |
| 3058 | |
| 3059 | S.Stk.push<Pointer>(Args: static_cast<uint64_t>(IntVal), Args&: Desc); |
| 3060 | return true; |
| 3061 | } |
| 3062 | |
| 3063 | inline bool GetMemberPtr(InterpState &S, CodePtr OpPC, const ValueDecl *D) { |
| 3064 | S.Stk.push<MemberPointer>(Args&: D); |
| 3065 | return true; |
| 3066 | } |
| 3067 | |
| 3068 | inline bool GetMemberPtrBase(InterpState &S, CodePtr OpPC) { |
| 3069 | const auto &MP = S.Stk.pop<MemberPointer>(); |
| 3070 | |
| 3071 | S.Stk.push<Pointer>(Args: MP.getBase()); |
| 3072 | return true; |
| 3073 | } |
| 3074 | |
| 3075 | inline bool GetMemberPtrDecl(InterpState &S, CodePtr OpPC) { |
| 3076 | const auto &MP = S.Stk.pop<MemberPointer>(); |
| 3077 | |
| 3078 | const auto *FD = cast<FunctionDecl>(Val: MP.getDecl()); |
| 3079 | const auto *Func = S.getContext().getOrCreateFunction(FuncDecl: FD); |
| 3080 | |
| 3081 | S.Stk.push<Pointer>(Args&: Func); |
| 3082 | return true; |
| 3083 | } |
| 3084 | |
| 3085 | /// Just emit a diagnostic. The expression that caused emission of this |
| 3086 | /// op is not valid in a constant context. |
| 3087 | inline bool Invalid(InterpState &S, CodePtr OpPC) { |
| 3088 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
| 3089 | S.FFDiag(Loc, DiagId: diag::note_invalid_subexpr_in_const_expr) |
| 3090 | << S.Current->getRange(PC: OpPC); |
| 3091 | return false; |
| 3092 | } |
| 3093 | |
| 3094 | inline bool Unsupported(InterpState &S, CodePtr OpPC) { |
| 3095 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
| 3096 | S.FFDiag(Loc, DiagId: diag::note_constexpr_stmt_expr_unsupported) |
| 3097 | << S.Current->getRange(PC: OpPC); |
| 3098 | return false; |
| 3099 | } |
| 3100 | |
| 3101 | inline bool StartSpeculation(InterpState &S, CodePtr OpPC) { |
| 3102 | ++S.SpeculationDepth; |
| 3103 | if (S.SpeculationDepth != 1) |
| 3104 | return true; |
| 3105 | |
| 3106 | assert(S.PrevDiags == nullptr); |
| 3107 | S.PrevDiags = S.getEvalStatus().Diag; |
| 3108 | S.getEvalStatus().Diag = nullptr; |
| 3109 | return true; |
| 3110 | } |
| 3111 | inline bool EndSpeculation(InterpState &S, CodePtr OpPC) { |
| 3112 | assert(S.SpeculationDepth != 0); |
| 3113 | --S.SpeculationDepth; |
| 3114 | if (S.SpeculationDepth == 0) { |
| 3115 | S.getEvalStatus().Diag = S.PrevDiags; |
| 3116 | S.PrevDiags = nullptr; |
| 3117 | } |
| 3118 | return true; |
| 3119 | } |
| 3120 | |
| 3121 | inline bool PushCC(InterpState &S, CodePtr OpPC, bool Value) { |
| 3122 | S.ConstantContextOverride = Value; |
| 3123 | return true; |
| 3124 | } |
| 3125 | inline bool PopCC(InterpState &S, CodePtr OpPC) { |
| 3126 | S.ConstantContextOverride = std::nullopt; |
| 3127 | return true; |
| 3128 | } |
| 3129 | |
| 3130 | /// Do nothing and just abort execution. |
| 3131 | inline bool Error(InterpState &S, CodePtr OpPC) { return false; } |
| 3132 | |
| 3133 | inline bool SideEffect(InterpState &S, CodePtr OpPC) { |
| 3134 | return S.noteSideEffect(); |
| 3135 | } |
| 3136 | |
| 3137 | /// Same here, but only for casts. |
| 3138 | inline bool InvalidCast(InterpState &S, CodePtr OpPC, CastKind Kind, |
| 3139 | bool Fatal) { |
| 3140 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
| 3141 | |
| 3142 | if (Kind == CastKind::Reinterpret) { |
| 3143 | S.CCEDiag(Loc, DiagId: diag::note_constexpr_invalid_cast) |
| 3144 | << static_cast<unsigned>(Kind) << S.Current->getRange(PC: OpPC); |
| 3145 | return !Fatal; |
| 3146 | } else if (Kind == CastKind::Volatile) { |
| 3147 | if (!S.checkingPotentialConstantExpression()) { |
| 3148 | const auto *E = cast<CastExpr>(Val: S.Current->getExpr(PC: OpPC)); |
| 3149 | if (S.getLangOpts().CPlusPlus) |
| 3150 | S.FFDiag(E, DiagId: diag::note_constexpr_access_volatile_type) |
| 3151 | << AK_Read << E->getSubExpr()->getType(); |
| 3152 | else |
| 3153 | S.FFDiag(E); |
| 3154 | } |
| 3155 | |
| 3156 | return false; |
| 3157 | } else if (Kind == CastKind::Dynamic) { |
| 3158 | assert(!S.getLangOpts().CPlusPlus20); |
| 3159 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), DiagId: diag::note_constexpr_invalid_cast) |
| 3160 | << diag::ConstexprInvalidCastKind::Dynamic; |
| 3161 | return true; |
| 3162 | } |
| 3163 | |
| 3164 | return false; |
| 3165 | } |
| 3166 | |
| 3167 | inline bool InvalidDeclRef(InterpState &S, CodePtr OpPC, const DeclRefExpr *DR, |
| 3168 | bool InitializerFailed) { |
| 3169 | assert(DR); |
| 3170 | |
| 3171 | if (InitializerFailed) { |
| 3172 | const SourceInfo &Loc = S.Current->getSource(PC: OpPC); |
| 3173 | const auto *VD = cast<VarDecl>(Val: DR->getDecl()); |
| 3174 | S.FFDiag(SI: Loc, DiagId: diag::note_constexpr_var_init_non_constant, ExtraNotes: 1) << VD; |
| 3175 | S.Note(Loc: VD->getLocation(), DiagId: diag::note_declared_at); |
| 3176 | return false; |
| 3177 | } |
| 3178 | |
| 3179 | return CheckDeclRef(S, OpPC, DR); |
| 3180 | } |
| 3181 | |
| 3182 | inline bool SizelessVectorElementSize(InterpState &S, CodePtr OpPC) { |
| 3183 | if (S.inConstantContext()) { |
| 3184 | const SourceRange &ArgRange = S.Current->getRange(PC: OpPC); |
| 3185 | const Expr *E = S.Current->getExpr(PC: OpPC); |
| 3186 | S.CCEDiag(E, DiagId: diag::note_constexpr_non_const_vectorelements) << ArgRange; |
| 3187 | } |
| 3188 | return false; |
| 3189 | } |
| 3190 | |
| 3191 | inline bool CheckPseudoDtor(InterpState &S, CodePtr OpPC) { |
| 3192 | if (!S.getLangOpts().CPlusPlus20) |
| 3193 | S.CCEDiag(SI: S.Current->getSource(PC: OpPC), |
| 3194 | DiagId: diag::note_constexpr_pseudo_destructor); |
| 3195 | return true; |
| 3196 | } |
| 3197 | |
| 3198 | inline bool Assume(InterpState &S, CodePtr OpPC) { |
| 3199 | const auto Val = S.Stk.pop<Boolean>(); |
| 3200 | |
| 3201 | if (Val) |
| 3202 | return true; |
| 3203 | |
| 3204 | // Else, diagnose. |
| 3205 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
| 3206 | S.CCEDiag(Loc, DiagId: diag::note_constexpr_assumption_failed); |
| 3207 | return false; |
| 3208 | } |
| 3209 | |
| 3210 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 3211 | inline bool OffsetOf(InterpState &S, CodePtr OpPC, const OffsetOfExpr *E) { |
| 3212 | llvm::SmallVector<int64_t> ArrayIndices; |
| 3213 | for (size_t I = 0; I != E->getNumExpressions(); ++I) |
| 3214 | ArrayIndices.emplace_back(Args: S.Stk.pop<int64_t>()); |
| 3215 | |
| 3216 | int64_t Result; |
| 3217 | if (!InterpretOffsetOf(S, OpPC, E, ArrayIndices, Result)) |
| 3218 | return false; |
| 3219 | |
| 3220 | S.Stk.push<T>(T::from(Result)); |
| 3221 | |
| 3222 | return true; |
| 3223 | } |
| 3224 | |
| 3225 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 3226 | inline bool CheckNonNullArg(InterpState &S, CodePtr OpPC) { |
| 3227 | const T &Arg = S.Stk.peek<T>(); |
| 3228 | if (!Arg.isZero()) |
| 3229 | return true; |
| 3230 | |
| 3231 | const SourceLocation &Loc = S.Current->getLocation(PC: OpPC); |
| 3232 | S.CCEDiag(Loc, DiagId: diag::note_non_null_attribute_failed); |
| 3233 | |
| 3234 | return false; |
| 3235 | } |
| 3236 | |
| 3237 | void diagnoseEnumValue(InterpState &S, CodePtr OpPC, const EnumDecl *ED, |
| 3238 | const APSInt &Value); |
| 3239 | |
| 3240 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 3241 | inline bool CheckEnumValue(InterpState &S, CodePtr OpPC, const EnumDecl *ED) { |
| 3242 | assert(ED); |
| 3243 | assert(!ED->isFixed()); |
| 3244 | |
| 3245 | if (S.inConstantContext()) { |
| 3246 | const APSInt Val = S.Stk.peek<T>().toAPSInt(); |
| 3247 | diagnoseEnumValue(S, OpPC, ED, Value: Val); |
| 3248 | } |
| 3249 | return true; |
| 3250 | } |
| 3251 | |
| 3252 | /// OldPtr -> Integer -> NewPtr. |
| 3253 | template <PrimType TIn, PrimType TOut> |
| 3254 | inline bool DecayPtr(InterpState &S, CodePtr OpPC) { |
| 3255 | static_assert(isPtrType(T: TIn) && isPtrType(T: TOut)); |
| 3256 | using FromT = typename PrimConv<TIn>::T; |
| 3257 | using ToT = typename PrimConv<TOut>::T; |
| 3258 | |
| 3259 | const FromT &OldPtr = S.Stk.pop<FromT>(); |
| 3260 | |
| 3261 | if constexpr (std::is_same_v<FromT, FunctionPointer> && |
| 3262 | std::is_same_v<ToT, Pointer>) { |
| 3263 | S.Stk.push<Pointer>(OldPtr.getFunction(), OldPtr.getOffset()); |
| 3264 | return true; |
| 3265 | } else if constexpr (std::is_same_v<FromT, Pointer> && |
| 3266 | std::is_same_v<ToT, FunctionPointer>) { |
| 3267 | if (OldPtr.isFunctionPointer()) { |
| 3268 | S.Stk.push<FunctionPointer>(OldPtr.asFunctionPointer().getFunction(), |
| 3269 | OldPtr.getByteOffset()); |
| 3270 | return true; |
| 3271 | } |
| 3272 | } |
| 3273 | |
| 3274 | S.Stk.push<ToT>(ToT(OldPtr.getIntegerRepresentation(), nullptr)); |
| 3275 | return true; |
| 3276 | } |
| 3277 | |
| 3278 | inline bool CheckDecl(InterpState &S, CodePtr OpPC, const VarDecl *VD) { |
| 3279 | // An expression E is a core constant expression unless the evaluation of E |
| 3280 | // would evaluate one of the following: [C++23] - a control flow that passes |
| 3281 | // through a declaration of a variable with static or thread storage duration |
| 3282 | // unless that variable is usable in constant expressions. |
| 3283 | assert(VD->isLocalVarDecl() && |
| 3284 | VD->isStaticLocal()); // Checked before emitting this. |
| 3285 | |
| 3286 | if (VD == S.EvaluatingDecl) |
| 3287 | return true; |
| 3288 | |
| 3289 | if (!VD->isUsableInConstantExpressions(C: S.getASTContext())) { |
| 3290 | S.CCEDiag(Loc: VD->getLocation(), DiagId: diag::note_constexpr_static_local) |
| 3291 | << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD; |
| 3292 | return false; |
| 3293 | } |
| 3294 | return true; |
| 3295 | } |
| 3296 | |
| 3297 | inline bool Alloc(InterpState &S, CodePtr OpPC, const Descriptor *Desc) { |
| 3298 | assert(Desc); |
| 3299 | |
| 3300 | if (!CheckDynamicMemoryAllocation(S, OpPC)) |
| 3301 | return false; |
| 3302 | |
| 3303 | DynamicAllocator &Allocator = S.getAllocator(); |
| 3304 | Block *B = Allocator.allocate(D: Desc, EvalID: S.Ctx.getEvalID(), |
| 3305 | AllocForm: DynamicAllocator::Form::NonArray); |
| 3306 | assert(B); |
| 3307 | S.Stk.push<Pointer>(Args&: B); |
| 3308 | return true; |
| 3309 | } |
| 3310 | |
| 3311 | template <PrimType Name, class SizeT = typename PrimConv<Name>::T> |
| 3312 | inline bool AllocN(InterpState &S, CodePtr OpPC, PrimType T, const Expr *Source, |
| 3313 | bool IsNoThrow) { |
| 3314 | if (!CheckDynamicMemoryAllocation(S, OpPC)) |
| 3315 | return false; |
| 3316 | |
| 3317 | SizeT NumElements = S.Stk.pop<SizeT>(); |
| 3318 | if (!CheckArraySize(S, OpPC, &NumElements, primSize(Type: T), IsNoThrow)) { |
| 3319 | if (!IsNoThrow) |
| 3320 | return false; |
| 3321 | |
| 3322 | // If this failed and is nothrow, just return a null ptr. |
| 3323 | S.Stk.push<Pointer>(Args: 0, Args: nullptr); |
| 3324 | return true; |
| 3325 | } |
| 3326 | assert(NumElements.isPositive()); |
| 3327 | |
| 3328 | if (!CheckArraySize(S, OpPC, NumElems: static_cast<uint64_t>(NumElements))) |
| 3329 | return false; |
| 3330 | |
| 3331 | DynamicAllocator &Allocator = S.getAllocator(); |
| 3332 | Block *B = |
| 3333 | Allocator.allocate(Source, T, NumElements: static_cast<size_t>(NumElements), |
| 3334 | EvalID: S.Ctx.getEvalID(), AllocForm: DynamicAllocator::Form::Array); |
| 3335 | assert(B); |
| 3336 | if (NumElements.isZero()) |
| 3337 | S.Stk.push<Pointer>(Args&: B); |
| 3338 | else |
| 3339 | S.Stk.push<Pointer>(Args: Pointer(B).atIndex(Idx: 0)); |
| 3340 | return true; |
| 3341 | } |
| 3342 | |
| 3343 | template <PrimType Name, class SizeT = typename PrimConv<Name>::T> |
| 3344 | inline bool AllocCN(InterpState &S, CodePtr OpPC, const Descriptor *ElementDesc, |
| 3345 | bool IsNoThrow) { |
| 3346 | if (!CheckDynamicMemoryAllocation(S, OpPC)) |
| 3347 | return false; |
| 3348 | |
| 3349 | SizeT NumElements = S.Stk.pop<SizeT>(); |
| 3350 | if (!CheckArraySize(S, OpPC, &NumElements, ElementDesc->getSize(), |
| 3351 | IsNoThrow)) { |
| 3352 | if (!IsNoThrow) |
| 3353 | return false; |
| 3354 | |
| 3355 | // If this failed and is nothrow, just return a null ptr. |
| 3356 | S.Stk.push<Pointer>(Args: 0, Args&: ElementDesc); |
| 3357 | return true; |
| 3358 | } |
| 3359 | assert(NumElements.isPositive()); |
| 3360 | |
| 3361 | if (!CheckArraySize(S, OpPC, NumElems: static_cast<uint64_t>(NumElements))) |
| 3362 | return false; |
| 3363 | |
| 3364 | DynamicAllocator &Allocator = S.getAllocator(); |
| 3365 | Block *B = |
| 3366 | Allocator.allocate(D: ElementDesc, NumElements: static_cast<size_t>(NumElements), |
| 3367 | EvalID: S.Ctx.getEvalID(), AllocForm: DynamicAllocator::Form::Array); |
| 3368 | assert(B); |
| 3369 | if (NumElements.isZero()) |
| 3370 | S.Stk.push<Pointer>(Args&: B); |
| 3371 | else |
| 3372 | S.Stk.push<Pointer>(Args: Pointer(B).atIndex(Idx: 0)); |
| 3373 | |
| 3374 | return true; |
| 3375 | } |
| 3376 | |
| 3377 | bool Free(InterpState &S, CodePtr OpPC, bool DeleteIsArrayForm, |
| 3378 | bool IsGlobalDelete); |
| 3379 | |
| 3380 | static inline bool IsConstantContext(InterpState &S, CodePtr OpPC) { |
| 3381 | S.Stk.push<Boolean>(Args: Boolean::from(Value: S.inConstantContext())); |
| 3382 | return true; |
| 3383 | } |
| 3384 | |
| 3385 | static inline bool CheckAllocations(InterpState &S, CodePtr OpPC) { |
| 3386 | return S.maybeDiagnoseDanglingAllocations(); |
| 3387 | } |
| 3388 | |
| 3389 | /// Check if the initializer and storage types of a placement-new expression |
| 3390 | /// match. |
| 3391 | bool CheckNewTypeMismatch(InterpState &S, CodePtr OpPC, const Expr *E, |
| 3392 | std::optional<uint64_t> ArraySize = std::nullopt); |
| 3393 | |
| 3394 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 3395 | bool CheckNewTypeMismatchArray(InterpState &S, CodePtr OpPC, const Expr *E) { |
| 3396 | const auto &Size = S.Stk.pop<T>(); |
| 3397 | return CheckNewTypeMismatch(S, OpPC, E, ArraySize: static_cast<uint64_t>(Size)); |
| 3398 | } |
| 3399 | bool InvalidNewDeleteExpr(InterpState &S, CodePtr OpPC, const Expr *E); |
| 3400 | |
| 3401 | template <PrimType Name, class T = typename PrimConv<Name>::T> |
| 3402 | inline bool BitCastPrim(InterpState &S, CodePtr OpPC, bool TargetIsUCharOrByte, |
| 3403 | uint32_t ResultBitWidth, |
| 3404 | const llvm::fltSemantics *Sem) { |
| 3405 | const Pointer &FromPtr = S.Stk.pop<Pointer>(); |
| 3406 | |
| 3407 | if (!CheckLoad(S, OpPC, Ptr: FromPtr)) |
| 3408 | return false; |
| 3409 | |
| 3410 | if constexpr (std::is_same_v<T, Pointer>) { |
| 3411 | // The only pointer type we can validly bitcast to is nullptr_t. |
| 3412 | S.Stk.push<Pointer>(); |
| 3413 | return true; |
| 3414 | } else { |
| 3415 | |
| 3416 | size_t BuffSize = ResultBitWidth / 8; |
| 3417 | llvm::SmallVector<std::byte> Buff(BuffSize); |
| 3418 | bool HasIndeterminateBits = false; |
| 3419 | |
| 3420 | Bits FullBitWidth(ResultBitWidth); |
| 3421 | Bits BitWidth = FullBitWidth; |
| 3422 | |
| 3423 | if constexpr (std::is_same_v<T, Floating>) { |
| 3424 | assert(Sem); |
| 3425 | BitWidth = Bits(llvm::APFloatBase::getSizeInBits(Sem: *Sem)); |
| 3426 | } |
| 3427 | |
| 3428 | if (!DoBitCast(S, OpPC, Ptr: FromPtr, Buff: Buff.data(), BitWidth, FullBitWidth, |
| 3429 | HasIndeterminateBits)) |
| 3430 | return false; |
| 3431 | |
| 3432 | if (!CheckBitCast(S, OpPC, HasIndeterminateBits, TargetIsUCharOrByte)) |
| 3433 | return false; |
| 3434 | |
| 3435 | if constexpr (std::is_same_v<T, Floating>) { |
| 3436 | assert(Sem); |
| 3437 | Floating Result = S.allocFloat(Sem: *Sem); |
| 3438 | Floating::bitcastFromMemory(Buff: Buff.data(), Sem: *Sem, Result: &Result); |
| 3439 | S.Stk.push<Floating>(Args&: Result); |
| 3440 | |
| 3441 | // S.Stk.push<Floating>(T::bitcastFromMemory(Buff.data(), *Sem)); |
| 3442 | } else if constexpr (needsAlloc<T>()) { |
| 3443 | T Result = S.allocAP<T>(ResultBitWidth); |
| 3444 | T::bitcastFromMemory(Buff.data(), ResultBitWidth, &Result); |
| 3445 | S.Stk.push<T>(Result); |
| 3446 | } else { |
| 3447 | assert(!Sem); |
| 3448 | S.Stk.push<T>(T::bitcastFromMemory(Buff.data(), ResultBitWidth)); |
| 3449 | } |
| 3450 | return true; |
| 3451 | } |
| 3452 | } |
| 3453 | |
| 3454 | inline bool BitCast(InterpState &S, CodePtr OpPC) { |
| 3455 | const Pointer &FromPtr = S.Stk.pop<Pointer>(); |
| 3456 | Pointer &ToPtr = S.Stk.peek<Pointer>(); |
| 3457 | |
| 3458 | if (!CheckLoad(S, OpPC, Ptr: FromPtr)) |
| 3459 | return false; |
| 3460 | |
| 3461 | if (!DoBitCastPtr(S, OpPC, FromPtr, ToPtr)) |
| 3462 | return false; |
| 3463 | |
| 3464 | return true; |
| 3465 | } |
| 3466 | |
| 3467 | /// Typeid support. |
| 3468 | bool GetTypeid(InterpState &S, CodePtr OpPC, const Type *TypePtr, |
| 3469 | const Type *TypeInfoType); |
| 3470 | bool GetTypeidPtr(InterpState &S, CodePtr OpPC, const Type *TypeInfoType); |
| 3471 | bool DiagTypeid(InterpState &S, CodePtr OpPC); |
| 3472 | |
| 3473 | inline bool CheckDestruction(InterpState &S, CodePtr OpPC) { |
| 3474 | const auto &Ptr = S.Stk.peek<Pointer>(); |
| 3475 | return CheckDestructor(S, OpPC, Ptr); |
| 3476 | } |
| 3477 | |
| 3478 | inline bool CheckArraySize(InterpState &S, CodePtr OpPC, uint64_t NumElems) { |
| 3479 | uint64_t Limit = S.getLangOpts().ConstexprStepLimit; |
| 3480 | if (NumElems > Limit) { |
| 3481 | S.FFDiag(SI: S.Current->getSource(PC: OpPC), |
| 3482 | DiagId: diag::note_constexpr_new_exceeds_limits) |
| 3483 | << NumElems << Limit; |
| 3484 | return false; |
| 3485 | } |
| 3486 | return true; |
| 3487 | } |
| 3488 | |
| 3489 | //===----------------------------------------------------------------------===// |
| 3490 | // Read opcode arguments |
| 3491 | //===----------------------------------------------------------------------===// |
| 3492 | |
| 3493 | template <typename T> inline T ReadArg(InterpState &S, CodePtr &OpPC) { |
| 3494 | if constexpr (std::is_pointer<T>::value) { |
| 3495 | uint32_t ID = OpPC.read<uint32_t>(); |
| 3496 | return reinterpret_cast<T>(S.P.getNativePointer(Idx: ID)); |
| 3497 | } else { |
| 3498 | return OpPC.read<T>(); |
| 3499 | } |
| 3500 | } |
| 3501 | |
| 3502 | template <> inline Floating ReadArg<Floating>(InterpState &S, CodePtr &OpPC) { |
| 3503 | auto &Semantics = |
| 3504 | llvm::APFloatBase::EnumToSemantics(S: Floating::deserializeSemantics(Buff: *OpPC)); |
| 3505 | |
| 3506 | auto F = S.allocFloat(Sem: Semantics); |
| 3507 | Floating::deserialize(Buff: *OpPC, Result: &F); |
| 3508 | OpPC += align(Size: F.bytesToSerialize()); |
| 3509 | return F; |
| 3510 | } |
| 3511 | |
| 3512 | template <> |
| 3513 | inline IntegralAP<false> ReadArg<IntegralAP<false>>(InterpState &S, |
| 3514 | CodePtr &OpPC) { |
| 3515 | uint32_t BitWidth = IntegralAP<false>::deserializeSize(Buff: *OpPC); |
| 3516 | auto Result = S.allocAP<IntegralAP<false>>(BitWidth); |
| 3517 | assert(Result.bitWidth() == BitWidth); |
| 3518 | |
| 3519 | IntegralAP<false>::deserialize(Buff: *OpPC, Result: &Result); |
| 3520 | OpPC += align(Size: Result.bytesToSerialize()); |
| 3521 | return Result; |
| 3522 | } |
| 3523 | |
| 3524 | template <> |
| 3525 | inline IntegralAP<true> ReadArg<IntegralAP<true>>(InterpState &S, |
| 3526 | CodePtr &OpPC) { |
| 3527 | uint32_t BitWidth = IntegralAP<true>::deserializeSize(Buff: *OpPC); |
| 3528 | auto Result = S.allocAP<IntegralAP<true>>(BitWidth); |
| 3529 | assert(Result.bitWidth() == BitWidth); |
| 3530 | |
| 3531 | IntegralAP<true>::deserialize(Buff: *OpPC, Result: &Result); |
| 3532 | OpPC += align(Size: Result.bytesToSerialize()); |
| 3533 | return Result; |
| 3534 | } |
| 3535 | |
| 3536 | template <> |
| 3537 | inline FixedPoint ReadArg<FixedPoint>(InterpState &S, CodePtr &OpPC) { |
| 3538 | FixedPoint FP = FixedPoint::deserialize(Buff: *OpPC); |
| 3539 | OpPC += align(Size: FP.bytesToSerialize()); |
| 3540 | return FP; |
| 3541 | } |
| 3542 | |
| 3543 | } // namespace interp |
| 3544 | } // namespace clang |
| 3545 | |
| 3546 | #endif |
| 3547 | |