| 1 | //===--- Context.cpp - Context for the constexpr VM -------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "Context.h" |
| 10 | #include "ByteCodeEmitter.h" |
| 11 | #include "Compiler.h" |
| 12 | #include "EvalEmitter.h" |
| 13 | #include "Interp.h" |
| 14 | #include "InterpFrame.h" |
| 15 | #include "InterpStack.h" |
| 16 | #include "PrimType.h" |
| 17 | #include "Program.h" |
| 18 | #include "clang/AST/Expr.h" |
| 19 | #include "clang/Basic/TargetInfo.h" |
| 20 | |
| 21 | using namespace clang; |
| 22 | using namespace clang::interp; |
| 23 | |
| 24 | Context::Context(ASTContext &Ctx) : Ctx(Ctx), P(new Program(*this)) { |
| 25 | this->ShortWidth = Ctx.getTargetInfo().getShortWidth(); |
| 26 | this->IntWidth = Ctx.getTargetInfo().getIntWidth(); |
| 27 | this->LongWidth = Ctx.getTargetInfo().getLongWidth(); |
| 28 | this->LongLongWidth = Ctx.getTargetInfo().getLongLongWidth(); |
| 29 | assert(Ctx.getTargetInfo().getCharWidth() == 8 && |
| 30 | "We're assuming 8 bit chars" ); |
| 31 | } |
| 32 | |
| 33 | Context::~Context() {} |
| 34 | |
| 35 | bool Context::isPotentialConstantExpr(State &Parent, const FunctionDecl *FD) { |
| 36 | assert(Stk.empty()); |
| 37 | |
| 38 | // Get a function handle. |
| 39 | const Function *Func = getOrCreateFunction(FuncDecl: FD); |
| 40 | if (!Func) |
| 41 | return false; |
| 42 | |
| 43 | // Compile the function. |
| 44 | Compiler<ByteCodeEmitter>(*this, *P).compileFunc( |
| 45 | FuncDecl: FD, Func: const_cast<Function *>(Func)); |
| 46 | |
| 47 | ++EvalID; |
| 48 | // And run it. |
| 49 | if (!Run(Parent, Func)) |
| 50 | return false; |
| 51 | |
| 52 | return Func->isValid(); |
| 53 | } |
| 54 | |
| 55 | bool Context::evaluateAsRValue(State &Parent, const Expr *E, APValue &Result) { |
| 56 | ++EvalID; |
| 57 | bool Recursing = !Stk.empty(); |
| 58 | size_t StackSizeBefore = Stk.size(); |
| 59 | Compiler<EvalEmitter> C(*this, *P, Parent, Stk); |
| 60 | |
| 61 | auto Res = C.interpretExpr(E, /*ConvertResultToRValue=*/E->isGLValue()); |
| 62 | |
| 63 | if (Res.isInvalid()) { |
| 64 | C.cleanup(); |
| 65 | Stk.clearTo(NewSize: StackSizeBefore); |
| 66 | return false; |
| 67 | } |
| 68 | |
| 69 | if (!Recursing) { |
| 70 | assert(Stk.empty()); |
| 71 | C.cleanup(); |
| 72 | #ifndef NDEBUG |
| 73 | // Make sure we don't rely on some value being still alive in |
| 74 | // InterpStack memory. |
| 75 | Stk.clearTo(StackSizeBefore); |
| 76 | #endif |
| 77 | } |
| 78 | |
| 79 | Result = Res.toAPValue(); |
| 80 | |
| 81 | return true; |
| 82 | } |
| 83 | |
| 84 | bool Context::evaluate(State &Parent, const Expr *E, APValue &Result, |
| 85 | ConstantExprKind Kind) { |
| 86 | ++EvalID; |
| 87 | bool Recursing = !Stk.empty(); |
| 88 | size_t StackSizeBefore = Stk.size(); |
| 89 | Compiler<EvalEmitter> C(*this, *P, Parent, Stk); |
| 90 | |
| 91 | auto Res = C.interpretExpr(E, /*ConvertResultToRValue=*/false, |
| 92 | /*DestroyToplevelScope=*/true); |
| 93 | if (Res.isInvalid()) { |
| 94 | C.cleanup(); |
| 95 | Stk.clearTo(NewSize: StackSizeBefore); |
| 96 | return false; |
| 97 | } |
| 98 | |
| 99 | if (!Recursing) { |
| 100 | assert(Stk.empty()); |
| 101 | C.cleanup(); |
| 102 | #ifndef NDEBUG |
| 103 | // Make sure we don't rely on some value being still alive in |
| 104 | // InterpStack memory. |
| 105 | Stk.clearTo(StackSizeBefore); |
| 106 | #endif |
| 107 | } |
| 108 | |
| 109 | Result = Res.toAPValue(); |
| 110 | return true; |
| 111 | } |
| 112 | |
| 113 | bool Context::evaluateAsInitializer(State &Parent, const VarDecl *VD, |
| 114 | APValue &Result) { |
| 115 | ++EvalID; |
| 116 | bool Recursing = !Stk.empty(); |
| 117 | size_t StackSizeBefore = Stk.size(); |
| 118 | Compiler<EvalEmitter> C(*this, *P, Parent, Stk); |
| 119 | |
| 120 | bool CheckGlobalInitialized = |
| 121 | shouldBeGloballyIndexed(VD) && |
| 122 | (VD->getType()->isRecordType() || VD->getType()->isArrayType()); |
| 123 | auto Res = C.interpretDecl(VD, CheckFullyInitialized: CheckGlobalInitialized); |
| 124 | if (Res.isInvalid()) { |
| 125 | C.cleanup(); |
| 126 | Stk.clearTo(NewSize: StackSizeBefore); |
| 127 | |
| 128 | return false; |
| 129 | } |
| 130 | |
| 131 | if (!Recursing) { |
| 132 | assert(Stk.empty()); |
| 133 | C.cleanup(); |
| 134 | #ifndef NDEBUG |
| 135 | // Make sure we don't rely on some value being still alive in |
| 136 | // InterpStack memory. |
| 137 | Stk.clearTo(StackSizeBefore); |
| 138 | #endif |
| 139 | } |
| 140 | |
| 141 | Result = Res.toAPValue(); |
| 142 | return true; |
| 143 | } |
| 144 | |
| 145 | template <typename ResultT> |
| 146 | bool Context::evaluateStringRepr(State &Parent, const Expr *SizeExpr, |
| 147 | const Expr *PtrExpr, ResultT &Result) { |
| 148 | assert(Stk.empty()); |
| 149 | Compiler<EvalEmitter> C(*this, *P, Parent, Stk); |
| 150 | |
| 151 | // Evaluate size value. |
| 152 | APValue SizeValue; |
| 153 | if (!evaluateAsRValue(Parent, E: SizeExpr, Result&: SizeValue)) |
| 154 | return false; |
| 155 | |
| 156 | if (!SizeValue.isInt()) |
| 157 | return false; |
| 158 | uint64_t Size = SizeValue.getInt().getZExtValue(); |
| 159 | |
| 160 | auto PtrRes = C.interpretAsPointer(E: PtrExpr, PtrCB: [&](const Pointer &Ptr) { |
| 161 | if (Size == 0) { |
| 162 | if constexpr (std::is_same_v<ResultT, APValue>) |
| 163 | Result = APValue(APValue::UninitArray{}, 0, 0); |
| 164 | return true; |
| 165 | } |
| 166 | |
| 167 | if (!Ptr.isLive() || !Ptr.getFieldDesc()->isPrimitiveArray()) |
| 168 | return false; |
| 169 | |
| 170 | // Must be char. |
| 171 | if (Ptr.getFieldDesc()->getElemSize() != 1 /*bytes*/) |
| 172 | return false; |
| 173 | |
| 174 | if (Size > Ptr.getNumElems()) { |
| 175 | Parent.FFDiag(E: SizeExpr, DiagId: diag::note_constexpr_access_past_end) << AK_Read; |
| 176 | Size = Ptr.getNumElems(); |
| 177 | } |
| 178 | |
| 179 | if constexpr (std::is_same_v<ResultT, APValue>) { |
| 180 | QualType CharTy = PtrExpr->getType()->getPointeeType(); |
| 181 | Result = APValue(APValue::UninitArray{}, Size, Size); |
| 182 | for (uint64_t I = 0; I != Size; ++I) { |
| 183 | if (std::optional<APValue> ElemVal = |
| 184 | Ptr.atIndex(Idx: I).toRValue(Ctx: *this, ResultType: CharTy)) |
| 185 | Result.getArrayInitializedElt(I) = *ElemVal; |
| 186 | else |
| 187 | return false; |
| 188 | } |
| 189 | } else { |
| 190 | assert((std::is_same_v<ResultT, std::string>)); |
| 191 | if (Size < Result.max_size()) |
| 192 | Result.resize(Size); |
| 193 | Result.assign(reinterpret_cast<const char *>(Ptr.getRawAddress()), Size); |
| 194 | } |
| 195 | |
| 196 | return true; |
| 197 | }); |
| 198 | |
| 199 | if (PtrRes.isInvalid()) { |
| 200 | C.cleanup(); |
| 201 | Stk.clear(); |
| 202 | return false; |
| 203 | } |
| 204 | |
| 205 | return true; |
| 206 | } |
| 207 | |
| 208 | bool Context::evaluateCharRange(State &Parent, const Expr *SizeExpr, |
| 209 | const Expr *PtrExpr, APValue &Result) { |
| 210 | assert(SizeExpr); |
| 211 | assert(PtrExpr); |
| 212 | |
| 213 | return evaluateStringRepr(Parent, SizeExpr, PtrExpr, Result); |
| 214 | } |
| 215 | |
| 216 | bool Context::evaluateCharRange(State &Parent, const Expr *SizeExpr, |
| 217 | const Expr *PtrExpr, std::string &Result) { |
| 218 | assert(SizeExpr); |
| 219 | assert(PtrExpr); |
| 220 | |
| 221 | return evaluateStringRepr(Parent, SizeExpr, PtrExpr, Result); |
| 222 | } |
| 223 | |
| 224 | const LangOptions &Context::getLangOpts() const { return Ctx.getLangOpts(); } |
| 225 | |
| 226 | static PrimType integralTypeToPrimTypeS(unsigned BitWidth) { |
| 227 | switch (BitWidth) { |
| 228 | case 64: |
| 229 | return PT_Sint64; |
| 230 | case 32: |
| 231 | return PT_Sint32; |
| 232 | case 16: |
| 233 | return PT_Sint16; |
| 234 | case 8: |
| 235 | return PT_Sint8; |
| 236 | default: |
| 237 | return PT_IntAPS; |
| 238 | } |
| 239 | llvm_unreachable("Unhandled BitWidth" ); |
| 240 | } |
| 241 | |
| 242 | static PrimType integralTypeToPrimTypeU(unsigned BitWidth) { |
| 243 | switch (BitWidth) { |
| 244 | case 64: |
| 245 | return PT_Uint64; |
| 246 | case 32: |
| 247 | return PT_Uint32; |
| 248 | case 16: |
| 249 | return PT_Uint16; |
| 250 | case 8: |
| 251 | return PT_Uint8; |
| 252 | default: |
| 253 | return PT_IntAP; |
| 254 | } |
| 255 | llvm_unreachable("Unhandled BitWidth" ); |
| 256 | } |
| 257 | |
| 258 | std::optional<PrimType> Context::classify(QualType T) const { |
| 259 | |
| 260 | if (const auto *BT = dyn_cast<BuiltinType>(Val: T.getCanonicalType())) { |
| 261 | auto Kind = BT->getKind(); |
| 262 | if (Kind == BuiltinType::Bool) |
| 263 | return PT_Bool; |
| 264 | if (Kind == BuiltinType::NullPtr) |
| 265 | return PT_Ptr; |
| 266 | if (Kind == BuiltinType::BoundMember) |
| 267 | return PT_MemberPtr; |
| 268 | |
| 269 | // Just trying to avoid the ASTContext::getIntWidth call below. |
| 270 | if (Kind == BuiltinType::Short) |
| 271 | return integralTypeToPrimTypeS(BitWidth: this->ShortWidth); |
| 272 | if (Kind == BuiltinType::UShort) |
| 273 | return integralTypeToPrimTypeU(BitWidth: this->ShortWidth); |
| 274 | |
| 275 | if (Kind == BuiltinType::Int) |
| 276 | return integralTypeToPrimTypeS(BitWidth: this->IntWidth); |
| 277 | if (Kind == BuiltinType::UInt) |
| 278 | return integralTypeToPrimTypeU(BitWidth: this->IntWidth); |
| 279 | if (Kind == BuiltinType::Long) |
| 280 | return integralTypeToPrimTypeS(BitWidth: this->LongWidth); |
| 281 | if (Kind == BuiltinType::ULong) |
| 282 | return integralTypeToPrimTypeU(BitWidth: this->LongWidth); |
| 283 | if (Kind == BuiltinType::LongLong) |
| 284 | return integralTypeToPrimTypeS(BitWidth: this->LongLongWidth); |
| 285 | if (Kind == BuiltinType::ULongLong) |
| 286 | return integralTypeToPrimTypeU(BitWidth: this->LongLongWidth); |
| 287 | |
| 288 | if (Kind == BuiltinType::SChar || Kind == BuiltinType::Char_S) |
| 289 | return integralTypeToPrimTypeS(BitWidth: 8); |
| 290 | if (Kind == BuiltinType::UChar || Kind == BuiltinType::Char_U || |
| 291 | Kind == BuiltinType::Char8) |
| 292 | return integralTypeToPrimTypeU(BitWidth: 8); |
| 293 | |
| 294 | if (BT->isSignedInteger()) |
| 295 | return integralTypeToPrimTypeS(BitWidth: Ctx.getIntWidth(T)); |
| 296 | if (BT->isUnsignedInteger()) |
| 297 | return integralTypeToPrimTypeU(BitWidth: Ctx.getIntWidth(T)); |
| 298 | |
| 299 | if (BT->isFloatingPoint()) |
| 300 | return PT_Float; |
| 301 | } |
| 302 | |
| 303 | if (T->isPointerOrReferenceType()) |
| 304 | return PT_Ptr; |
| 305 | |
| 306 | if (T->isMemberPointerType()) |
| 307 | return PT_MemberPtr; |
| 308 | |
| 309 | if (const auto *BT = T->getAs<BitIntType>()) { |
| 310 | if (BT->isSigned()) |
| 311 | return integralTypeToPrimTypeS(BitWidth: BT->getNumBits()); |
| 312 | return integralTypeToPrimTypeU(BitWidth: BT->getNumBits()); |
| 313 | } |
| 314 | |
| 315 | if (const auto *ET = T->getAs<EnumType>()) { |
| 316 | const auto *D = ET->getDecl(); |
| 317 | if (!D->isComplete()) |
| 318 | return std::nullopt; |
| 319 | return classify(T: D->getIntegerType()); |
| 320 | } |
| 321 | |
| 322 | if (const auto *AT = T->getAs<AtomicType>()) |
| 323 | return classify(T: AT->getValueType()); |
| 324 | |
| 325 | if (const auto *DT = dyn_cast<DecltypeType>(Val&: T)) |
| 326 | return classify(T: DT->getUnderlyingType()); |
| 327 | |
| 328 | if (T->isObjCObjectPointerType() || T->isBlockPointerType()) |
| 329 | return PT_Ptr; |
| 330 | |
| 331 | if (T->isFixedPointType()) |
| 332 | return PT_FixedPoint; |
| 333 | |
| 334 | // Vector and complex types get here. |
| 335 | return std::nullopt; |
| 336 | } |
| 337 | |
| 338 | unsigned Context::getCharBit() const { |
| 339 | return Ctx.getTargetInfo().getCharWidth(); |
| 340 | } |
| 341 | |
| 342 | /// Simple wrapper around getFloatTypeSemantics() to make code a |
| 343 | /// little shorter. |
| 344 | const llvm::fltSemantics &Context::getFloatSemantics(QualType T) const { |
| 345 | return Ctx.getFloatTypeSemantics(T); |
| 346 | } |
| 347 | |
| 348 | bool Context::Run(State &Parent, const Function *Func) { |
| 349 | |
| 350 | { |
| 351 | InterpState State(Parent, *P, Stk, *this, Func); |
| 352 | if (Interpret(S&: State)) { |
| 353 | assert(Stk.empty()); |
| 354 | return true; |
| 355 | } |
| 356 | // State gets destroyed here, so the Stk.clear() below doesn't accidentally |
| 357 | // remove values the State's destructor might access. |
| 358 | } |
| 359 | |
| 360 | Stk.clear(); |
| 361 | return false; |
| 362 | } |
| 363 | |
| 364 | // TODO: Virtual bases? |
| 365 | const CXXMethodDecl * |
| 366 | Context::getOverridingFunction(const CXXRecordDecl *DynamicDecl, |
| 367 | const CXXRecordDecl *StaticDecl, |
| 368 | const CXXMethodDecl *InitialFunction) const { |
| 369 | assert(DynamicDecl); |
| 370 | assert(StaticDecl); |
| 371 | assert(InitialFunction); |
| 372 | |
| 373 | const CXXRecordDecl *CurRecord = DynamicDecl; |
| 374 | const CXXMethodDecl *FoundFunction = InitialFunction; |
| 375 | for (;;) { |
| 376 | const CXXMethodDecl *Overrider = |
| 377 | FoundFunction->getCorrespondingMethodDeclaredInClass(RD: CurRecord, MayBeBase: false); |
| 378 | if (Overrider) |
| 379 | return Overrider; |
| 380 | |
| 381 | // Common case of only one base class. |
| 382 | if (CurRecord->getNumBases() == 1) { |
| 383 | CurRecord = CurRecord->bases_begin()->getType()->getAsCXXRecordDecl(); |
| 384 | continue; |
| 385 | } |
| 386 | |
| 387 | // Otherwise, go to the base class that will lead to the StaticDecl. |
| 388 | for (const CXXBaseSpecifier &Spec : CurRecord->bases()) { |
| 389 | const CXXRecordDecl *Base = Spec.getType()->getAsCXXRecordDecl(); |
| 390 | if (Base == StaticDecl || Base->isDerivedFrom(Base: StaticDecl)) { |
| 391 | CurRecord = Base; |
| 392 | break; |
| 393 | } |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | llvm_unreachable( |
| 398 | "Couldn't find an overriding function in the class hierarchy?" ); |
| 399 | return nullptr; |
| 400 | } |
| 401 | |
| 402 | const Function *Context::getOrCreateFunction(const FunctionDecl *FuncDecl) { |
| 403 | assert(FuncDecl); |
| 404 | FuncDecl = FuncDecl->getMostRecentDecl(); |
| 405 | |
| 406 | if (const Function *Func = P->getFunction(F: FuncDecl)) |
| 407 | return Func; |
| 408 | |
| 409 | // Manually created functions that haven't been assigned proper |
| 410 | // parameters yet. |
| 411 | if (!FuncDecl->param_empty() && !FuncDecl->param_begin()) |
| 412 | return nullptr; |
| 413 | |
| 414 | bool IsLambdaStaticInvoker = false; |
| 415 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FuncDecl); |
| 416 | MD && MD->isLambdaStaticInvoker()) { |
| 417 | // For a lambda static invoker, we might have to pick a specialized |
| 418 | // version if the lambda is generic. In that case, the picked function |
| 419 | // will *NOT* be a static invoker anymore. However, it will still |
| 420 | // be a non-static member function, this (usually) requiring an |
| 421 | // instance pointer. We suppress that later in this function. |
| 422 | IsLambdaStaticInvoker = true; |
| 423 | |
| 424 | const CXXRecordDecl *ClosureClass = MD->getParent(); |
| 425 | assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); |
| 426 | if (ClosureClass->isGenericLambda()) { |
| 427 | const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); |
| 428 | assert(MD->isFunctionTemplateSpecialization() && |
| 429 | "A generic lambda's static-invoker function must be a " |
| 430 | "template specialization" ); |
| 431 | const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); |
| 432 | FunctionTemplateDecl *CallOpTemplate = |
| 433 | LambdaCallOp->getDescribedFunctionTemplate(); |
| 434 | void *InsertPos = nullptr; |
| 435 | const FunctionDecl *CorrespondingCallOpSpecialization = |
| 436 | CallOpTemplate->findSpecialization(Args: TAL->asArray(), InsertPos); |
| 437 | assert(CorrespondingCallOpSpecialization); |
| 438 | FuncDecl = CorrespondingCallOpSpecialization; |
| 439 | } |
| 440 | } |
| 441 | // Set up argument indices. |
| 442 | unsigned ParamOffset = 0; |
| 443 | SmallVector<PrimType, 8> ParamTypes; |
| 444 | SmallVector<unsigned, 8> ParamOffsets; |
| 445 | llvm::DenseMap<unsigned, Function::ParamDescriptor> ParamDescriptors; |
| 446 | |
| 447 | // If the return is not a primitive, a pointer to the storage where the |
| 448 | // value is initialized in is passed as the first argument. See 'RVO' |
| 449 | // elsewhere in the code. |
| 450 | QualType Ty = FuncDecl->getReturnType(); |
| 451 | bool HasRVO = false; |
| 452 | if (!Ty->isVoidType() && !classify(T: Ty)) { |
| 453 | HasRVO = true; |
| 454 | ParamTypes.push_back(Elt: PT_Ptr); |
| 455 | ParamOffsets.push_back(Elt: ParamOffset); |
| 456 | ParamOffset += align(Size: primSize(Type: PT_Ptr)); |
| 457 | } |
| 458 | |
| 459 | // If the function decl is a member decl, the next parameter is |
| 460 | // the 'this' pointer. This parameter is pop()ed from the |
| 461 | // InterpStack when calling the function. |
| 462 | bool HasThisPointer = false; |
| 463 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FuncDecl)) { |
| 464 | if (!IsLambdaStaticInvoker) { |
| 465 | HasThisPointer = MD->isInstance(); |
| 466 | if (MD->isImplicitObjectMemberFunction()) { |
| 467 | ParamTypes.push_back(Elt: PT_Ptr); |
| 468 | ParamOffsets.push_back(Elt: ParamOffset); |
| 469 | ParamOffset += align(Size: primSize(Type: PT_Ptr)); |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | if (isLambdaCallOperator(MD)) { |
| 474 | // The parent record needs to be complete, we need to know about all |
| 475 | // the lambda captures. |
| 476 | if (!MD->getParent()->isCompleteDefinition()) |
| 477 | return nullptr; |
| 478 | llvm::DenseMap<const ValueDecl *, FieldDecl *> LC; |
| 479 | FieldDecl *LTC; |
| 480 | |
| 481 | MD->getParent()->getCaptureFields(Captures&: LC, ThisCapture&: LTC); |
| 482 | |
| 483 | if (MD->isStatic() && !LC.empty()) { |
| 484 | // Static lambdas cannot have any captures. If this one does, |
| 485 | // it has already been diagnosed and we can only ignore it. |
| 486 | return nullptr; |
| 487 | } |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | // Assign descriptors to all parameters. |
| 492 | // Composite objects are lowered to pointers. |
| 493 | for (const ParmVarDecl *PD : FuncDecl->parameters()) { |
| 494 | std::optional<PrimType> T = classify(T: PD->getType()); |
| 495 | PrimType PT = T.value_or(u: PT_Ptr); |
| 496 | Descriptor *Desc = P->createDescriptor(D: PD, T: PT); |
| 497 | ParamDescriptors.insert(KV: {ParamOffset, {PT, Desc}}); |
| 498 | ParamOffsets.push_back(Elt: ParamOffset); |
| 499 | ParamOffset += align(Size: primSize(Type: PT)); |
| 500 | ParamTypes.push_back(Elt: PT); |
| 501 | } |
| 502 | |
| 503 | // Create a handle over the emitted code. |
| 504 | assert(!P->getFunction(FuncDecl)); |
| 505 | const Function *Func = P->createFunction( |
| 506 | Def: FuncDecl, Args&: ParamOffset, Args: std::move(ParamTypes), Args: std::move(ParamDescriptors), |
| 507 | Args: std::move(ParamOffsets), Args&: HasThisPointer, Args&: HasRVO, Args&: IsLambdaStaticInvoker); |
| 508 | return Func; |
| 509 | } |
| 510 | |
| 511 | const Function *Context::getOrCreateObjCBlock(const BlockExpr *E) { |
| 512 | const BlockDecl *BD = E->getBlockDecl(); |
| 513 | // Set up argument indices. |
| 514 | unsigned ParamOffset = 0; |
| 515 | SmallVector<PrimType, 8> ParamTypes; |
| 516 | SmallVector<unsigned, 8> ParamOffsets; |
| 517 | llvm::DenseMap<unsigned, Function::ParamDescriptor> ParamDescriptors; |
| 518 | |
| 519 | // Assign descriptors to all parameters. |
| 520 | // Composite objects are lowered to pointers. |
| 521 | for (const ParmVarDecl *PD : BD->parameters()) { |
| 522 | std::optional<PrimType> T = classify(T: PD->getType()); |
| 523 | PrimType PT = T.value_or(u: PT_Ptr); |
| 524 | Descriptor *Desc = P->createDescriptor(D: PD, T: PT); |
| 525 | ParamDescriptors.insert(KV: {ParamOffset, {PT, Desc}}); |
| 526 | ParamOffsets.push_back(Elt: ParamOffset); |
| 527 | ParamOffset += align(Size: primSize(Type: PT)); |
| 528 | ParamTypes.push_back(Elt: PT); |
| 529 | } |
| 530 | |
| 531 | if (BD->hasCaptures()) |
| 532 | return nullptr; |
| 533 | |
| 534 | // Create a handle over the emitted code. |
| 535 | Function *Func = |
| 536 | P->createFunction(Args&: E, Args&: ParamOffset, Args: std::move(ParamTypes), |
| 537 | Args: std::move(ParamDescriptors), Args: std::move(ParamOffsets), |
| 538 | /*HasThisPointer=*/Args: false, /*HasRVO=*/Args: false, |
| 539 | /*IsLambdaStaticInvoker=*/Args: false); |
| 540 | |
| 541 | assert(Func); |
| 542 | Func->setDefined(true); |
| 543 | // We don't compile the BlockDecl code at all right now. |
| 544 | Func->setIsFullyCompiled(true); |
| 545 | return Func; |
| 546 | } |
| 547 | |
| 548 | unsigned Context::collectBaseOffset(const RecordDecl *BaseDecl, |
| 549 | const RecordDecl *DerivedDecl) const { |
| 550 | assert(BaseDecl); |
| 551 | assert(DerivedDecl); |
| 552 | const auto *FinalDecl = cast<CXXRecordDecl>(Val: BaseDecl); |
| 553 | const RecordDecl *CurDecl = DerivedDecl; |
| 554 | const Record *CurRecord = P->getOrCreateRecord(RD: CurDecl); |
| 555 | assert(CurDecl && FinalDecl); |
| 556 | |
| 557 | unsigned OffsetSum = 0; |
| 558 | for (;;) { |
| 559 | assert(CurRecord->getNumBases() > 0); |
| 560 | // One level up |
| 561 | for (const Record::Base &B : CurRecord->bases()) { |
| 562 | const auto *BaseDecl = cast<CXXRecordDecl>(Val: B.Decl); |
| 563 | |
| 564 | if (BaseDecl == FinalDecl || BaseDecl->isDerivedFrom(Base: FinalDecl)) { |
| 565 | OffsetSum += B.Offset; |
| 566 | CurRecord = B.R; |
| 567 | CurDecl = BaseDecl; |
| 568 | break; |
| 569 | } |
| 570 | } |
| 571 | if (CurDecl == FinalDecl) |
| 572 | break; |
| 573 | } |
| 574 | |
| 575 | assert(OffsetSum > 0); |
| 576 | return OffsetSum; |
| 577 | } |
| 578 | |
| 579 | const Record *Context::getRecord(const RecordDecl *D) const { |
| 580 | return P->getOrCreateRecord(RD: D); |
| 581 | } |
| 582 | |
| 583 | bool Context::isUnevaluatedBuiltin(unsigned ID) { |
| 584 | return ID == Builtin::BI__builtin_classify_type || |
| 585 | ID == Builtin::BI__builtin_os_log_format_buffer_size || |
| 586 | ID == Builtin::BI__builtin_constant_p || ID == Builtin::BI__noop; |
| 587 | } |
| 588 | |