| 1 | //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the C++ related Decl classes. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/AST/DeclCXX.h" |
| 14 | #include "clang/AST/ASTContext.h" |
| 15 | #include "clang/AST/ASTLambda.h" |
| 16 | #include "clang/AST/ASTMutationListener.h" |
| 17 | #include "clang/AST/ASTUnresolvedSet.h" |
| 18 | #include "clang/AST/Attr.h" |
| 19 | #include "clang/AST/CXXInheritance.h" |
| 20 | #include "clang/AST/DeclBase.h" |
| 21 | #include "clang/AST/DeclTemplate.h" |
| 22 | #include "clang/AST/DeclarationName.h" |
| 23 | #include "clang/AST/Expr.h" |
| 24 | #include "clang/AST/ExprCXX.h" |
| 25 | #include "clang/AST/LambdaCapture.h" |
| 26 | #include "clang/AST/NestedNameSpecifier.h" |
| 27 | #include "clang/AST/ODRHash.h" |
| 28 | #include "clang/AST/Type.h" |
| 29 | #include "clang/AST/TypeLoc.h" |
| 30 | #include "clang/AST/UnresolvedSet.h" |
| 31 | #include "clang/Basic/Diagnostic.h" |
| 32 | #include "clang/Basic/DiagnosticAST.h" |
| 33 | #include "clang/Basic/IdentifierTable.h" |
| 34 | #include "clang/Basic/LLVM.h" |
| 35 | #include "clang/Basic/LangOptions.h" |
| 36 | #include "clang/Basic/OperatorKinds.h" |
| 37 | #include "clang/Basic/SourceLocation.h" |
| 38 | #include "clang/Basic/Specifiers.h" |
| 39 | #include "clang/Basic/TargetInfo.h" |
| 40 | #include "llvm/ADT/SmallPtrSet.h" |
| 41 | #include "llvm/ADT/SmallVector.h" |
| 42 | #include "llvm/ADT/iterator_range.h" |
| 43 | #include "llvm/Support/Casting.h" |
| 44 | #include "llvm/Support/ErrorHandling.h" |
| 45 | #include "llvm/Support/Format.h" |
| 46 | #include "llvm/Support/raw_ostream.h" |
| 47 | #include <algorithm> |
| 48 | #include <cassert> |
| 49 | #include <cstddef> |
| 50 | #include <cstdint> |
| 51 | |
| 52 | using namespace clang; |
| 53 | |
| 54 | //===----------------------------------------------------------------------===// |
| 55 | // Decl Allocation/Deallocation Method Implementations |
| 56 | //===----------------------------------------------------------------------===// |
| 57 | |
| 58 | void AccessSpecDecl::anchor() {} |
| 59 | |
| 60 | AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, |
| 61 | GlobalDeclID ID) { |
| 62 | return new (C, ID) AccessSpecDecl(EmptyShell()); |
| 63 | } |
| 64 | |
| 65 | void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const { |
| 66 | ExternalASTSource *Source = C.getExternalSource(); |
| 67 | assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set" ); |
| 68 | assert(Source && "getFromExternalSource with no external source" ); |
| 69 | |
| 70 | for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I) |
| 71 | I.setDecl( |
| 72 | cast<NamedDecl>(Val: Source->GetExternalDecl(ID: GlobalDeclID(I.getDeclID())))); |
| 73 | Impl.Decls.setLazy(false); |
| 74 | } |
| 75 | |
| 76 | CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) |
| 77 | : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0), |
| 78 | Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), |
| 79 | Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true), |
| 80 | HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false), |
| 81 | HasPrivateFields(false), HasProtectedFields(false), |
| 82 | HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false), |
| 83 | HasOnlyCMembers(true), HasInitMethod(false), HasInClassInitializer(false), |
| 84 | HasUninitializedReferenceMember(false), HasUninitializedFields(false), |
| 85 | HasInheritedConstructor(false), HasInheritedDefaultConstructor(false), |
| 86 | HasInheritedAssignment(false), |
| 87 | NeedOverloadResolutionForCopyConstructor(false), |
| 88 | NeedOverloadResolutionForMoveConstructor(false), |
| 89 | NeedOverloadResolutionForCopyAssignment(false), |
| 90 | NeedOverloadResolutionForMoveAssignment(false), |
| 91 | NeedOverloadResolutionForDestructor(false), |
| 92 | DefaultedCopyConstructorIsDeleted(false), |
| 93 | DefaultedMoveConstructorIsDeleted(false), |
| 94 | DefaultedCopyAssignmentIsDeleted(false), |
| 95 | DefaultedMoveAssignmentIsDeleted(false), |
| 96 | DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All), |
| 97 | HasTrivialSpecialMembersForCall(SMF_All), |
| 98 | DeclaredNonTrivialSpecialMembers(0), |
| 99 | DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true), |
| 100 | HasConstexprNonCopyMoveConstructor(false), |
| 101 | HasDefaultedDefaultConstructor(false), |
| 102 | DefaultedDefaultConstructorIsConstexpr(true), |
| 103 | HasConstexprDefaultConstructor(false), |
| 104 | DefaultedDestructorIsConstexpr(true), |
| 105 | HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true), |
| 106 | UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0), |
| 107 | ImplicitCopyConstructorCanHaveConstParamForVBase(true), |
| 108 | ImplicitCopyConstructorCanHaveConstParamForNonVBase(true), |
| 109 | ImplicitCopyAssignmentHasConstParam(true), |
| 110 | HasDeclaredCopyConstructorWithConstParam(false), |
| 111 | HasDeclaredCopyAssignmentWithConstParam(false), |
| 112 | IsAnyDestructorNoReturn(false), IsHLSLIntangible(false), IsLambda(false), |
| 113 | IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false), |
| 114 | HasODRHash(false), Definition(D) {} |
| 115 | |
| 116 | CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const { |
| 117 | return Bases.get(Source: Definition->getASTContext().getExternalSource()); |
| 118 | } |
| 119 | |
| 120 | CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const { |
| 121 | return VBases.get(Source: Definition->getASTContext().getExternalSource()); |
| 122 | } |
| 123 | |
| 124 | CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, |
| 125 | DeclContext *DC, SourceLocation StartLoc, |
| 126 | SourceLocation IdLoc, IdentifierInfo *Id, |
| 127 | CXXRecordDecl *PrevDecl) |
| 128 | : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl), |
| 129 | DefinitionData(PrevDecl ? PrevDecl->DefinitionData |
| 130 | : nullptr) {} |
| 131 | |
| 132 | CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, |
| 133 | DeclContext *DC, SourceLocation StartLoc, |
| 134 | SourceLocation IdLoc, IdentifierInfo *Id, |
| 135 | CXXRecordDecl *PrevDecl, |
| 136 | bool DelayTypeCreation) { |
| 137 | auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id, |
| 138 | PrevDecl); |
| 139 | R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); |
| 140 | |
| 141 | // FIXME: DelayTypeCreation seems like such a hack |
| 142 | if (!DelayTypeCreation) |
| 143 | C.getTypeDeclType(Decl: R, PrevDecl); |
| 144 | return R; |
| 145 | } |
| 146 | |
| 147 | CXXRecordDecl * |
| 148 | CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC, |
| 149 | TypeSourceInfo *Info, SourceLocation Loc, |
| 150 | unsigned DependencyKind, bool IsGeneric, |
| 151 | LambdaCaptureDefault CaptureDefault) { |
| 152 | auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TagTypeKind::Class, C, DC, Loc, |
| 153 | Loc, nullptr, nullptr); |
| 154 | R->setBeingDefined(true); |
| 155 | R->DefinitionData = new (C) struct LambdaDefinitionData( |
| 156 | R, Info, DependencyKind, IsGeneric, CaptureDefault); |
| 157 | R->setMayHaveOutOfDateDef(false); |
| 158 | R->setImplicit(true); |
| 159 | |
| 160 | C.getTypeDeclType(Decl: R, /*PrevDecl=*/nullptr); |
| 161 | return R; |
| 162 | } |
| 163 | |
| 164 | CXXRecordDecl *CXXRecordDecl::CreateDeserialized(const ASTContext &C, |
| 165 | GlobalDeclID ID) { |
| 166 | auto *R = new (C, ID) |
| 167 | CXXRecordDecl(CXXRecord, TagTypeKind::Struct, C, nullptr, |
| 168 | SourceLocation(), SourceLocation(), nullptr, nullptr); |
| 169 | R->setMayHaveOutOfDateDef(false); |
| 170 | return R; |
| 171 | } |
| 172 | |
| 173 | /// Determine whether a class has a repeated base class. This is intended for |
| 174 | /// use when determining if a class is standard-layout, so makes no attempt to |
| 175 | /// handle virtual bases. |
| 176 | static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) { |
| 177 | llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes; |
| 178 | SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD}; |
| 179 | while (!WorkList.empty()) { |
| 180 | const CXXRecordDecl *RD = WorkList.pop_back_val(); |
| 181 | if (RD->getTypeForDecl()->isDependentType()) |
| 182 | continue; |
| 183 | for (const CXXBaseSpecifier &BaseSpec : RD->bases()) { |
| 184 | if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) { |
| 185 | if (!SeenBaseTypes.insert(Ptr: B).second) |
| 186 | return true; |
| 187 | WorkList.push_back(Elt: B); |
| 188 | } |
| 189 | } |
| 190 | } |
| 191 | return false; |
| 192 | } |
| 193 | |
| 194 | void |
| 195 | CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, |
| 196 | unsigned NumBases) { |
| 197 | ASTContext &C = getASTContext(); |
| 198 | |
| 199 | if (!data().Bases.isOffset() && data().NumBases > 0) |
| 200 | C.Deallocate(Ptr: data().getBases()); |
| 201 | |
| 202 | if (NumBases) { |
| 203 | if (!C.getLangOpts().CPlusPlus17) { |
| 204 | // C++ [dcl.init.aggr]p1: |
| 205 | // An aggregate is [...] a class with [...] no base classes [...]. |
| 206 | data().Aggregate = false; |
| 207 | } |
| 208 | |
| 209 | // C++ [class]p4: |
| 210 | // A POD-struct is an aggregate class... |
| 211 | data().PlainOldData = false; |
| 212 | } |
| 213 | |
| 214 | // The set of seen virtual base types. |
| 215 | llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; |
| 216 | |
| 217 | // The virtual bases of this class. |
| 218 | SmallVector<const CXXBaseSpecifier *, 8> VBases; |
| 219 | |
| 220 | data().Bases = new(C) CXXBaseSpecifier [NumBases]; |
| 221 | data().NumBases = NumBases; |
| 222 | for (unsigned i = 0; i < NumBases; ++i) { |
| 223 | data().getBases()[i] = *Bases[i]; |
| 224 | // Keep track of inherited vbases for this base class. |
| 225 | const CXXBaseSpecifier *Base = Bases[i]; |
| 226 | QualType BaseType = Base->getType(); |
| 227 | // Skip dependent types; we can't do any checking on them now. |
| 228 | if (BaseType->isDependentType()) |
| 229 | continue; |
| 230 | auto *BaseClassDecl = |
| 231 | cast<CXXRecordDecl>(Val: BaseType->castAs<RecordType>()->getDecl()); |
| 232 | |
| 233 | // C++2a [class]p7: |
| 234 | // A standard-layout class is a class that: |
| 235 | // [...] |
| 236 | // -- has all non-static data members and bit-fields in the class and |
| 237 | // its base classes first declared in the same class |
| 238 | if (BaseClassDecl->data().HasBasesWithFields || |
| 239 | !BaseClassDecl->field_empty()) { |
| 240 | if (data().HasBasesWithFields) |
| 241 | // Two bases have members or bit-fields: not standard-layout. |
| 242 | data().IsStandardLayout = false; |
| 243 | data().HasBasesWithFields = true; |
| 244 | } |
| 245 | |
| 246 | // C++11 [class]p7: |
| 247 | // A standard-layout class is a class that: |
| 248 | // -- [...] has [...] at most one base class with non-static data |
| 249 | // members |
| 250 | if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers || |
| 251 | BaseClassDecl->hasDirectFields()) { |
| 252 | if (data().HasBasesWithNonStaticDataMembers) |
| 253 | data().IsCXX11StandardLayout = false; |
| 254 | data().HasBasesWithNonStaticDataMembers = true; |
| 255 | } |
| 256 | |
| 257 | if (!BaseClassDecl->isEmpty()) { |
| 258 | // C++14 [meta.unary.prop]p4: |
| 259 | // T is a class type [...] with [...] no base class B for which |
| 260 | // is_empty<B>::value is false. |
| 261 | data().Empty = false; |
| 262 | } |
| 263 | |
| 264 | // C++1z [dcl.init.agg]p1: |
| 265 | // An aggregate is a class with [...] no private or protected base classes |
| 266 | if (Base->getAccessSpecifier() != AS_public) { |
| 267 | data().Aggregate = false; |
| 268 | |
| 269 | // C++20 [temp.param]p7: |
| 270 | // A structural type is [...] a literal class type with [...] all base |
| 271 | // classes [...] public |
| 272 | data().StructuralIfLiteral = false; |
| 273 | } |
| 274 | |
| 275 | // C++ [class.virtual]p1: |
| 276 | // A class that declares or inherits a virtual function is called a |
| 277 | // polymorphic class. |
| 278 | if (BaseClassDecl->isPolymorphic()) { |
| 279 | data().Polymorphic = true; |
| 280 | |
| 281 | // An aggregate is a class with [...] no virtual functions. |
| 282 | data().Aggregate = false; |
| 283 | } |
| 284 | |
| 285 | // C++0x [class]p7: |
| 286 | // A standard-layout class is a class that: [...] |
| 287 | // -- has no non-standard-layout base classes |
| 288 | if (!BaseClassDecl->isStandardLayout()) |
| 289 | data().IsStandardLayout = false; |
| 290 | if (!BaseClassDecl->isCXX11StandardLayout()) |
| 291 | data().IsCXX11StandardLayout = false; |
| 292 | |
| 293 | // Record if this base is the first non-literal field or base. |
| 294 | if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(Ctx: C)) |
| 295 | data().HasNonLiteralTypeFieldsOrBases = true; |
| 296 | |
| 297 | // Now go through all virtual bases of this base and add them. |
| 298 | for (const auto &VBase : BaseClassDecl->vbases()) { |
| 299 | // Add this base if it's not already in the list. |
| 300 | if (SeenVBaseTypes.insert(Ptr: C.getCanonicalType(T: VBase.getType())).second) { |
| 301 | VBases.push_back(Elt: &VBase); |
| 302 | |
| 303 | // C++11 [class.copy]p8: |
| 304 | // The implicitly-declared copy constructor for a class X will have |
| 305 | // the form 'X::X(const X&)' if each [...] virtual base class B of X |
| 306 | // has a copy constructor whose first parameter is of type |
| 307 | // 'const B&' or 'const volatile B&' [...] |
| 308 | if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl()) |
| 309 | if (!VBaseDecl->hasCopyConstructorWithConstParam()) |
| 310 | data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; |
| 311 | |
| 312 | // C++1z [dcl.init.agg]p1: |
| 313 | // An aggregate is a class with [...] no virtual base classes |
| 314 | data().Aggregate = false; |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | if (Base->isVirtual()) { |
| 319 | // Add this base if it's not already in the list. |
| 320 | if (SeenVBaseTypes.insert(Ptr: C.getCanonicalType(T: BaseType)).second) |
| 321 | VBases.push_back(Elt: Base); |
| 322 | |
| 323 | // C++14 [meta.unary.prop] is_empty: |
| 324 | // T is a class type, but not a union type, with ... no virtual base |
| 325 | // classes |
| 326 | data().Empty = false; |
| 327 | |
| 328 | // C++1z [dcl.init.agg]p1: |
| 329 | // An aggregate is a class with [...] no virtual base classes |
| 330 | data().Aggregate = false; |
| 331 | |
| 332 | // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: |
| 333 | // A [default constructor, copy/move constructor, or copy/move assignment |
| 334 | // operator for a class X] is trivial [...] if: |
| 335 | // -- class X has [...] no virtual base classes |
| 336 | data().HasTrivialSpecialMembers &= SMF_Destructor; |
| 337 | data().HasTrivialSpecialMembersForCall &= SMF_Destructor; |
| 338 | |
| 339 | // C++0x [class]p7: |
| 340 | // A standard-layout class is a class that: [...] |
| 341 | // -- has [...] no virtual base classes |
| 342 | data().IsStandardLayout = false; |
| 343 | data().IsCXX11StandardLayout = false; |
| 344 | |
| 345 | // C++20 [dcl.constexpr]p3: |
| 346 | // In the definition of a constexpr function [...] |
| 347 | // -- if the function is a constructor or destructor, |
| 348 | // its class shall not have any virtual base classes |
| 349 | data().DefaultedDefaultConstructorIsConstexpr = false; |
| 350 | data().DefaultedDestructorIsConstexpr = false; |
| 351 | |
| 352 | // C++1z [class.copy]p8: |
| 353 | // The implicitly-declared copy constructor for a class X will have |
| 354 | // the form 'X::X(const X&)' if each potentially constructed subobject |
| 355 | // has a copy constructor whose first parameter is of type |
| 356 | // 'const B&' or 'const volatile B&' [...] |
| 357 | if (!BaseClassDecl->hasCopyConstructorWithConstParam()) |
| 358 | data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; |
| 359 | } else { |
| 360 | // C++ [class.ctor]p5: |
| 361 | // A default constructor is trivial [...] if: |
| 362 | // -- all the direct base classes of its class have trivial default |
| 363 | // constructors. |
| 364 | if (!BaseClassDecl->hasTrivialDefaultConstructor()) |
| 365 | data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; |
| 366 | |
| 367 | // C++0x [class.copy]p13: |
| 368 | // A copy/move constructor for class X is trivial if [...] |
| 369 | // [...] |
| 370 | // -- the constructor selected to copy/move each direct base class |
| 371 | // subobject is trivial, and |
| 372 | if (!BaseClassDecl->hasTrivialCopyConstructor()) |
| 373 | data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; |
| 374 | |
| 375 | if (!BaseClassDecl->hasTrivialCopyConstructorForCall()) |
| 376 | data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; |
| 377 | |
| 378 | // If the base class doesn't have a simple move constructor, we'll eagerly |
| 379 | // declare it and perform overload resolution to determine which function |
| 380 | // it actually calls. If it does have a simple move constructor, this |
| 381 | // check is correct. |
| 382 | if (!BaseClassDecl->hasTrivialMoveConstructor()) |
| 383 | data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; |
| 384 | |
| 385 | if (!BaseClassDecl->hasTrivialMoveConstructorForCall()) |
| 386 | data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; |
| 387 | |
| 388 | // C++0x [class.copy]p27: |
| 389 | // A copy/move assignment operator for class X is trivial if [...] |
| 390 | // [...] |
| 391 | // -- the assignment operator selected to copy/move each direct base |
| 392 | // class subobject is trivial, and |
| 393 | if (!BaseClassDecl->hasTrivialCopyAssignment()) |
| 394 | data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; |
| 395 | // If the base class doesn't have a simple move assignment, we'll eagerly |
| 396 | // declare it and perform overload resolution to determine which function |
| 397 | // it actually calls. If it does have a simple move assignment, this |
| 398 | // check is correct. |
| 399 | if (!BaseClassDecl->hasTrivialMoveAssignment()) |
| 400 | data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; |
| 401 | |
| 402 | // C++11 [class.ctor]p6: |
| 403 | // If that user-written default constructor would satisfy the |
| 404 | // requirements of a constexpr constructor/function(C++23), the |
| 405 | // implicitly-defined default constructor is constexpr. |
| 406 | if (!BaseClassDecl->hasConstexprDefaultConstructor()) |
| 407 | data().DefaultedDefaultConstructorIsConstexpr = |
| 408 | C.getLangOpts().CPlusPlus23; |
| 409 | |
| 410 | // C++1z [class.copy]p8: |
| 411 | // The implicitly-declared copy constructor for a class X will have |
| 412 | // the form 'X::X(const X&)' if each potentially constructed subobject |
| 413 | // has a copy constructor whose first parameter is of type |
| 414 | // 'const B&' or 'const volatile B&' [...] |
| 415 | if (!BaseClassDecl->hasCopyConstructorWithConstParam()) |
| 416 | data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; |
| 417 | } |
| 418 | |
| 419 | // C++ [class.ctor]p3: |
| 420 | // A destructor is trivial if all the direct base classes of its class |
| 421 | // have trivial destructors. |
| 422 | if (!BaseClassDecl->hasTrivialDestructor()) |
| 423 | data().HasTrivialSpecialMembers &= ~SMF_Destructor; |
| 424 | |
| 425 | if (!BaseClassDecl->hasTrivialDestructorForCall()) |
| 426 | data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; |
| 427 | |
| 428 | if (!BaseClassDecl->hasIrrelevantDestructor()) |
| 429 | data().HasIrrelevantDestructor = false; |
| 430 | |
| 431 | if (BaseClassDecl->isAnyDestructorNoReturn()) |
| 432 | data().IsAnyDestructorNoReturn = true; |
| 433 | |
| 434 | if (BaseClassDecl->isHLSLIntangible()) |
| 435 | data().IsHLSLIntangible = true; |
| 436 | |
| 437 | // C++11 [class.copy]p18: |
| 438 | // The implicitly-declared copy assignment operator for a class X will |
| 439 | // have the form 'X& X::operator=(const X&)' if each direct base class B |
| 440 | // of X has a copy assignment operator whose parameter is of type 'const |
| 441 | // B&', 'const volatile B&', or 'B' [...] |
| 442 | if (!BaseClassDecl->hasCopyAssignmentWithConstParam()) |
| 443 | data().ImplicitCopyAssignmentHasConstParam = false; |
| 444 | |
| 445 | // A class has an Objective-C object member if... or any of its bases |
| 446 | // has an Objective-C object member. |
| 447 | if (BaseClassDecl->hasObjectMember()) |
| 448 | setHasObjectMember(true); |
| 449 | |
| 450 | if (BaseClassDecl->hasVolatileMember()) |
| 451 | setHasVolatileMember(true); |
| 452 | |
| 453 | if (BaseClassDecl->getArgPassingRestrictions() == |
| 454 | RecordArgPassingKind::CanNeverPassInRegs) |
| 455 | setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs); |
| 456 | |
| 457 | // Keep track of the presence of mutable fields. |
| 458 | if (BaseClassDecl->hasMutableFields()) |
| 459 | data().HasMutableFields = true; |
| 460 | |
| 461 | if (BaseClassDecl->hasUninitializedExplicitInitFields() && |
| 462 | BaseClassDecl->isAggregate()) |
| 463 | setHasUninitializedExplicitInitFields(true); |
| 464 | |
| 465 | if (BaseClassDecl->hasUninitializedReferenceMember()) |
| 466 | data().HasUninitializedReferenceMember = true; |
| 467 | |
| 468 | if (!BaseClassDecl->allowConstDefaultInit()) |
| 469 | data().HasUninitializedFields = true; |
| 470 | |
| 471 | addedClassSubobject(Base: BaseClassDecl); |
| 472 | } |
| 473 | |
| 474 | // C++2a [class]p7: |
| 475 | // A class S is a standard-layout class if it: |
| 476 | // -- has at most one base class subobject of any given type |
| 477 | // |
| 478 | // Note that we only need to check this for classes with more than one base |
| 479 | // class. If there's only one base class, and it's standard layout, then |
| 480 | // we know there are no repeated base classes. |
| 481 | if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(StartRD: this)) |
| 482 | data().IsStandardLayout = false; |
| 483 | |
| 484 | if (VBases.empty()) { |
| 485 | data().IsParsingBaseSpecifiers = false; |
| 486 | return; |
| 487 | } |
| 488 | |
| 489 | // Create base specifier for any direct or indirect virtual bases. |
| 490 | data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; |
| 491 | data().NumVBases = VBases.size(); |
| 492 | for (int I = 0, E = VBases.size(); I != E; ++I) { |
| 493 | QualType Type = VBases[I]->getType(); |
| 494 | if (!Type->isDependentType()) |
| 495 | addedClassSubobject(Base: Type->getAsCXXRecordDecl()); |
| 496 | data().getVBases()[I] = *VBases[I]; |
| 497 | } |
| 498 | |
| 499 | data().IsParsingBaseSpecifiers = false; |
| 500 | } |
| 501 | |
| 502 | unsigned CXXRecordDecl::getODRHash() const { |
| 503 | assert(hasDefinition() && "ODRHash only for records with definitions" ); |
| 504 | |
| 505 | // Previously calculated hash is stored in DefinitionData. |
| 506 | if (DefinitionData->HasODRHash) |
| 507 | return DefinitionData->ODRHash; |
| 508 | |
| 509 | // Only calculate hash on first call of getODRHash per record. |
| 510 | ODRHash Hash; |
| 511 | Hash.AddCXXRecordDecl(Record: getDefinition()); |
| 512 | DefinitionData->HasODRHash = true; |
| 513 | DefinitionData->ODRHash = Hash.CalculateHash(); |
| 514 | |
| 515 | return DefinitionData->ODRHash; |
| 516 | } |
| 517 | |
| 518 | void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) { |
| 519 | // C++11 [class.copy]p11: |
| 520 | // A defaulted copy/move constructor for a class X is defined as |
| 521 | // deleted if X has: |
| 522 | // -- a direct or virtual base class B that cannot be copied/moved [...] |
| 523 | // -- a non-static data member of class type M (or array thereof) |
| 524 | // that cannot be copied or moved [...] |
| 525 | if (!Subobj->hasSimpleCopyConstructor()) |
| 526 | data().NeedOverloadResolutionForCopyConstructor = true; |
| 527 | if (!Subobj->hasSimpleMoveConstructor()) |
| 528 | data().NeedOverloadResolutionForMoveConstructor = true; |
| 529 | |
| 530 | // C++11 [class.copy]p23: |
| 531 | // A defaulted copy/move assignment operator for a class X is defined as |
| 532 | // deleted if X has: |
| 533 | // -- a direct or virtual base class B that cannot be copied/moved [...] |
| 534 | // -- a non-static data member of class type M (or array thereof) |
| 535 | // that cannot be copied or moved [...] |
| 536 | if (!Subobj->hasSimpleCopyAssignment()) |
| 537 | data().NeedOverloadResolutionForCopyAssignment = true; |
| 538 | if (!Subobj->hasSimpleMoveAssignment()) |
| 539 | data().NeedOverloadResolutionForMoveAssignment = true; |
| 540 | |
| 541 | // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5: |
| 542 | // A defaulted [ctor or dtor] for a class X is defined as |
| 543 | // deleted if X has: |
| 544 | // -- any direct or virtual base class [...] has a type with a destructor |
| 545 | // that is deleted or inaccessible from the defaulted [ctor or dtor]. |
| 546 | // -- any non-static data member has a type with a destructor |
| 547 | // that is deleted or inaccessible from the defaulted [ctor or dtor]. |
| 548 | if (!Subobj->hasSimpleDestructor()) { |
| 549 | data().NeedOverloadResolutionForCopyConstructor = true; |
| 550 | data().NeedOverloadResolutionForMoveConstructor = true; |
| 551 | data().NeedOverloadResolutionForDestructor = true; |
| 552 | } |
| 553 | |
| 554 | // C++20 [dcl.constexpr]p5: |
| 555 | // The definition of a constexpr destructor whose function-body is not |
| 556 | // = delete shall additionally satisfy the following requirement: |
| 557 | // -- for every subobject of class type or (possibly multi-dimensional) |
| 558 | // array thereof, that class type shall have a constexpr destructor |
| 559 | if (!Subobj->hasConstexprDestructor()) |
| 560 | data().DefaultedDestructorIsConstexpr = |
| 561 | getASTContext().getLangOpts().CPlusPlus23; |
| 562 | |
| 563 | // C++20 [temp.param]p7: |
| 564 | // A structural type is [...] a literal class type [for which] the types |
| 565 | // of all base classes and non-static data members are structural types or |
| 566 | // (possibly multi-dimensional) array thereof |
| 567 | if (!Subobj->data().StructuralIfLiteral) |
| 568 | data().StructuralIfLiteral = false; |
| 569 | } |
| 570 | |
| 571 | const CXXRecordDecl *CXXRecordDecl::getStandardLayoutBaseWithFields() const { |
| 572 | assert( |
| 573 | isStandardLayout() && |
| 574 | "getStandardLayoutBaseWithFields called on a non-standard-layout type" ); |
| 575 | #ifdef EXPENSIVE_CHECKS |
| 576 | { |
| 577 | unsigned NumberOfBasesWithFields = 0; |
| 578 | if (!field_empty()) |
| 579 | ++NumberOfBasesWithFields; |
| 580 | llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; |
| 581 | forallBases([&](const CXXRecordDecl *Base) -> bool { |
| 582 | if (!Base->field_empty()) |
| 583 | ++NumberOfBasesWithFields; |
| 584 | assert( |
| 585 | UniqueBases.insert(Base->getCanonicalDecl()).second && |
| 586 | "Standard layout struct has multiple base classes of the same type" ); |
| 587 | return true; |
| 588 | }); |
| 589 | assert(NumberOfBasesWithFields <= 1 && |
| 590 | "Standard layout struct has fields declared in more than one class" ); |
| 591 | } |
| 592 | #endif |
| 593 | if (!field_empty()) |
| 594 | return this; |
| 595 | const CXXRecordDecl *Result = this; |
| 596 | forallBases(BaseMatches: [&](const CXXRecordDecl *Base) -> bool { |
| 597 | if (!Base->field_empty()) { |
| 598 | // This is the base where the fields are declared; return early |
| 599 | Result = Base; |
| 600 | return false; |
| 601 | } |
| 602 | return true; |
| 603 | }); |
| 604 | return Result; |
| 605 | } |
| 606 | |
| 607 | bool CXXRecordDecl::hasConstexprDestructor() const { |
| 608 | auto *Dtor = getDestructor(); |
| 609 | return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr(); |
| 610 | } |
| 611 | |
| 612 | bool CXXRecordDecl::hasAnyDependentBases() const { |
| 613 | if (!isDependentContext()) |
| 614 | return false; |
| 615 | |
| 616 | return !forallBases(BaseMatches: [](const CXXRecordDecl *) { return true; }); |
| 617 | } |
| 618 | |
| 619 | bool CXXRecordDecl::isTriviallyCopyable() const { |
| 620 | // C++0x [class]p5: |
| 621 | // A trivially copyable class is a class that: |
| 622 | // -- has no non-trivial copy constructors, |
| 623 | if (hasNonTrivialCopyConstructor()) return false; |
| 624 | // -- has no non-trivial move constructors, |
| 625 | if (hasNonTrivialMoveConstructor()) return false; |
| 626 | // -- has no non-trivial copy assignment operators, |
| 627 | if (hasNonTrivialCopyAssignment()) return false; |
| 628 | // -- has no non-trivial move assignment operators, and |
| 629 | if (hasNonTrivialMoveAssignment()) return false; |
| 630 | // -- has a trivial destructor. |
| 631 | if (!hasTrivialDestructor()) return false; |
| 632 | |
| 633 | return true; |
| 634 | } |
| 635 | |
| 636 | bool CXXRecordDecl::isTriviallyCopyConstructible() const { |
| 637 | |
| 638 | // A trivially copy constructible class is a class that: |
| 639 | // -- has no non-trivial copy constructors, |
| 640 | if (hasNonTrivialCopyConstructor()) |
| 641 | return false; |
| 642 | // -- has a trivial destructor. |
| 643 | if (!hasTrivialDestructor()) |
| 644 | return false; |
| 645 | |
| 646 | return true; |
| 647 | } |
| 648 | |
| 649 | void CXXRecordDecl::markedVirtualFunctionPure() { |
| 650 | // C++ [class.abstract]p2: |
| 651 | // A class is abstract if it has at least one pure virtual function. |
| 652 | data().Abstract = true; |
| 653 | } |
| 654 | |
| 655 | bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType( |
| 656 | ASTContext &Ctx, const CXXRecordDecl *XFirst) { |
| 657 | if (!getNumBases()) |
| 658 | return false; |
| 659 | |
| 660 | llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases; |
| 661 | llvm::SmallPtrSet<const CXXRecordDecl*, 8> M; |
| 662 | SmallVector<const CXXRecordDecl*, 8> WorkList; |
| 663 | |
| 664 | // Visit a type that we have determined is an element of M(S). |
| 665 | auto Visit = [&](const CXXRecordDecl *RD) -> bool { |
| 666 | RD = RD->getCanonicalDecl(); |
| 667 | |
| 668 | // C++2a [class]p8: |
| 669 | // A class S is a standard-layout class if it [...] has no element of the |
| 670 | // set M(S) of types as a base class. |
| 671 | // |
| 672 | // If we find a subobject of an empty type, it might also be a base class, |
| 673 | // so we'll need to walk the base classes to check. |
| 674 | if (!RD->data().HasBasesWithFields) { |
| 675 | // Walk the bases the first time, stopping if we find the type. Build a |
| 676 | // set of them so we don't need to walk them again. |
| 677 | if (Bases.empty()) { |
| 678 | bool RDIsBase = !forallBases(BaseMatches: [&](const CXXRecordDecl *Base) -> bool { |
| 679 | Base = Base->getCanonicalDecl(); |
| 680 | if (RD == Base) |
| 681 | return false; |
| 682 | Bases.insert(Ptr: Base); |
| 683 | return true; |
| 684 | }); |
| 685 | if (RDIsBase) |
| 686 | return true; |
| 687 | } else { |
| 688 | if (Bases.count(Ptr: RD)) |
| 689 | return true; |
| 690 | } |
| 691 | } |
| 692 | |
| 693 | if (M.insert(Ptr: RD).second) |
| 694 | WorkList.push_back(Elt: RD); |
| 695 | return false; |
| 696 | }; |
| 697 | |
| 698 | if (Visit(XFirst)) |
| 699 | return true; |
| 700 | |
| 701 | while (!WorkList.empty()) { |
| 702 | const CXXRecordDecl *X = WorkList.pop_back_val(); |
| 703 | |
| 704 | // FIXME: We don't check the bases of X. That matches the standard, but |
| 705 | // that sure looks like a wording bug. |
| 706 | |
| 707 | // -- If X is a non-union class type with a non-static data member |
| 708 | // [recurse to each field] that is either of zero size or is the |
| 709 | // first non-static data member of X |
| 710 | // -- If X is a union type, [recurse to union members] |
| 711 | bool IsFirstField = true; |
| 712 | for (auto *FD : X->fields()) { |
| 713 | // FIXME: Should we really care about the type of the first non-static |
| 714 | // data member of a non-union if there are preceding unnamed bit-fields? |
| 715 | if (FD->isUnnamedBitField()) |
| 716 | continue; |
| 717 | |
| 718 | if (!IsFirstField && !FD->isZeroSize(Ctx)) |
| 719 | continue; |
| 720 | |
| 721 | if (FD->isInvalidDecl()) |
| 722 | continue; |
| 723 | |
| 724 | // -- If X is n array type, [visit the element type] |
| 725 | QualType T = Ctx.getBaseElementType(QT: FD->getType()); |
| 726 | if (auto *RD = T->getAsCXXRecordDecl()) |
| 727 | if (Visit(RD)) |
| 728 | return true; |
| 729 | |
| 730 | if (!X->isUnion()) |
| 731 | IsFirstField = false; |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | return false; |
| 736 | } |
| 737 | |
| 738 | bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const { |
| 739 | assert(isLambda() && "not a lambda" ); |
| 740 | |
| 741 | // C++2a [expr.prim.lambda.capture]p11: |
| 742 | // The closure type associated with a lambda-expression has no default |
| 743 | // constructor if the lambda-expression has a lambda-capture and a |
| 744 | // defaulted default constructor otherwise. It has a deleted copy |
| 745 | // assignment operator if the lambda-expression has a lambda-capture and |
| 746 | // defaulted copy and move assignment operators otherwise. |
| 747 | // |
| 748 | // C++17 [expr.prim.lambda]p21: |
| 749 | // The closure type associated with a lambda-expression has no default |
| 750 | // constructor and a deleted copy assignment operator. |
| 751 | if (!isCapturelessLambda()) |
| 752 | return false; |
| 753 | return getASTContext().getLangOpts().CPlusPlus20; |
| 754 | } |
| 755 | |
| 756 | void CXXRecordDecl::addedMember(Decl *D) { |
| 757 | if (!D->isImplicit() && !isa<FieldDecl>(Val: D) && !isa<IndirectFieldDecl>(Val: D) && |
| 758 | (!isa<TagDecl>(Val: D) || |
| 759 | cast<TagDecl>(Val: D)->getTagKind() == TagTypeKind::Class || |
| 760 | cast<TagDecl>(Val: D)->getTagKind() == TagTypeKind::Interface)) |
| 761 | data().HasOnlyCMembers = false; |
| 762 | |
| 763 | // Ignore friends and invalid declarations. |
| 764 | if (D->getFriendObjectKind() || D->isInvalidDecl()) |
| 765 | return; |
| 766 | |
| 767 | auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: D); |
| 768 | if (FunTmpl) |
| 769 | D = FunTmpl->getTemplatedDecl(); |
| 770 | |
| 771 | // FIXME: Pass NamedDecl* to addedMember? |
| 772 | Decl *DUnderlying = D; |
| 773 | if (auto *ND = dyn_cast<NamedDecl>(Val: DUnderlying)) { |
| 774 | DUnderlying = ND->getUnderlyingDecl(); |
| 775 | if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(Val: DUnderlying)) |
| 776 | DUnderlying = UnderlyingFunTmpl->getTemplatedDecl(); |
| 777 | } |
| 778 | |
| 779 | if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: D)) { |
| 780 | if (Method->isVirtual()) { |
| 781 | // C++ [dcl.init.aggr]p1: |
| 782 | // An aggregate is an array or a class with [...] no virtual functions. |
| 783 | data().Aggregate = false; |
| 784 | |
| 785 | // C++ [class]p4: |
| 786 | // A POD-struct is an aggregate class... |
| 787 | data().PlainOldData = false; |
| 788 | |
| 789 | // C++14 [meta.unary.prop]p4: |
| 790 | // T is a class type [...] with [...] no virtual member functions... |
| 791 | data().Empty = false; |
| 792 | |
| 793 | // C++ [class.virtual]p1: |
| 794 | // A class that declares or inherits a virtual function is called a |
| 795 | // polymorphic class. |
| 796 | data().Polymorphic = true; |
| 797 | |
| 798 | // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: |
| 799 | // A [default constructor, copy/move constructor, or copy/move |
| 800 | // assignment operator for a class X] is trivial [...] if: |
| 801 | // -- class X has no virtual functions [...] |
| 802 | data().HasTrivialSpecialMembers &= SMF_Destructor; |
| 803 | data().HasTrivialSpecialMembersForCall &= SMF_Destructor; |
| 804 | |
| 805 | // C++0x [class]p7: |
| 806 | // A standard-layout class is a class that: [...] |
| 807 | // -- has no virtual functions |
| 808 | data().IsStandardLayout = false; |
| 809 | data().IsCXX11StandardLayout = false; |
| 810 | } |
| 811 | } |
| 812 | |
| 813 | // Notify the listener if an implicit member was added after the definition |
| 814 | // was completed. |
| 815 | if (!isBeingDefined() && D->isImplicit()) |
| 816 | if (ASTMutationListener *L = getASTMutationListener()) |
| 817 | L->AddedCXXImplicitMember(RD: data().Definition, D); |
| 818 | |
| 819 | // The kind of special member this declaration is, if any. |
| 820 | unsigned SMKind = 0; |
| 821 | |
| 822 | // Handle constructors. |
| 823 | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: D)) { |
| 824 | if (Constructor->isInheritingConstructor()) { |
| 825 | // Ignore constructor shadow declarations. They are lazily created and |
| 826 | // so shouldn't affect any properties of the class. |
| 827 | } else { |
| 828 | if (!Constructor->isImplicit()) { |
| 829 | // Note that we have a user-declared constructor. |
| 830 | data().UserDeclaredConstructor = true; |
| 831 | |
| 832 | const TargetInfo &TI = getASTContext().getTargetInfo(); |
| 833 | if ((!Constructor->isDeleted() && !Constructor->isDefaulted()) || |
| 834 | !TI.areDefaultedSMFStillPOD(getLangOpts())) { |
| 835 | // C++ [class]p4: |
| 836 | // A POD-struct is an aggregate class [...] |
| 837 | // Since the POD bit is meant to be C++03 POD-ness, clear it even if |
| 838 | // the type is technically an aggregate in C++0x since it wouldn't be |
| 839 | // in 03. |
| 840 | data().PlainOldData = false; |
| 841 | } |
| 842 | } |
| 843 | |
| 844 | if (Constructor->isDefaultConstructor()) { |
| 845 | SMKind |= SMF_DefaultConstructor; |
| 846 | |
| 847 | if (Constructor->isUserProvided()) |
| 848 | data().UserProvidedDefaultConstructor = true; |
| 849 | if (Constructor->isConstexpr()) |
| 850 | data().HasConstexprDefaultConstructor = true; |
| 851 | if (Constructor->isDefaulted()) |
| 852 | data().HasDefaultedDefaultConstructor = true; |
| 853 | } |
| 854 | |
| 855 | if (!FunTmpl) { |
| 856 | unsigned Quals; |
| 857 | if (Constructor->isCopyConstructor(TypeQuals&: Quals)) { |
| 858 | SMKind |= SMF_CopyConstructor; |
| 859 | |
| 860 | if (Quals & Qualifiers::Const) |
| 861 | data().HasDeclaredCopyConstructorWithConstParam = true; |
| 862 | } else if (Constructor->isMoveConstructor()) |
| 863 | SMKind |= SMF_MoveConstructor; |
| 864 | } |
| 865 | |
| 866 | // C++11 [dcl.init.aggr]p1: DR1518 |
| 867 | // An aggregate is an array or a class with no user-provided [or] |
| 868 | // explicit [...] constructors |
| 869 | // C++20 [dcl.init.aggr]p1: |
| 870 | // An aggregate is an array or a class with no user-declared [...] |
| 871 | // constructors |
| 872 | if (getASTContext().getLangOpts().CPlusPlus20 |
| 873 | ? !Constructor->isImplicit() |
| 874 | : (Constructor->isUserProvided() || Constructor->isExplicit())) |
| 875 | data().Aggregate = false; |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | // Handle constructors, including those inherited from base classes. |
| 880 | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: DUnderlying)) { |
| 881 | // Record if we see any constexpr constructors which are neither copy |
| 882 | // nor move constructors. |
| 883 | // C++1z [basic.types]p10: |
| 884 | // [...] has at least one constexpr constructor or constructor template |
| 885 | // (possibly inherited from a base class) that is not a copy or move |
| 886 | // constructor [...] |
| 887 | if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) |
| 888 | data().HasConstexprNonCopyMoveConstructor = true; |
| 889 | if (!isa<CXXConstructorDecl>(Val: D) && Constructor->isDefaultConstructor()) |
| 890 | data().HasInheritedDefaultConstructor = true; |
| 891 | } |
| 892 | |
| 893 | // Handle member functions. |
| 894 | if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: D)) { |
| 895 | if (isa<CXXDestructorDecl>(Val: D)) |
| 896 | SMKind |= SMF_Destructor; |
| 897 | |
| 898 | if (Method->isCopyAssignmentOperator()) { |
| 899 | SMKind |= SMF_CopyAssignment; |
| 900 | |
| 901 | const auto *ParamTy = |
| 902 | Method->getNonObjectParameter(I: 0)->getType()->getAs<ReferenceType>(); |
| 903 | if (!ParamTy || ParamTy->getPointeeType().isConstQualified()) |
| 904 | data().HasDeclaredCopyAssignmentWithConstParam = true; |
| 905 | } |
| 906 | |
| 907 | if (Method->isMoveAssignmentOperator()) |
| 908 | SMKind |= SMF_MoveAssignment; |
| 909 | |
| 910 | // Keep the list of conversion functions up-to-date. |
| 911 | if (auto *Conversion = dyn_cast<CXXConversionDecl>(Val: D)) { |
| 912 | // FIXME: We use the 'unsafe' accessor for the access specifier here, |
| 913 | // because Sema may not have set it yet. That's really just a misdesign |
| 914 | // in Sema. However, LLDB *will* have set the access specifier correctly, |
| 915 | // and adds declarations after the class is technically completed, |
| 916 | // so completeDefinition()'s overriding of the access specifiers doesn't |
| 917 | // work. |
| 918 | AccessSpecifier AS = Conversion->getAccessUnsafe(); |
| 919 | |
| 920 | if (Conversion->getPrimaryTemplate()) { |
| 921 | // We don't record specializations. |
| 922 | } else { |
| 923 | ASTContext &Ctx = getASTContext(); |
| 924 | ASTUnresolvedSet &Conversions = data().Conversions.get(C&: Ctx); |
| 925 | NamedDecl *Primary = |
| 926 | FunTmpl ? cast<NamedDecl>(Val: FunTmpl) : cast<NamedDecl>(Val: Conversion); |
| 927 | if (Primary->getPreviousDecl()) |
| 928 | Conversions.replace(Old: cast<NamedDecl>(Val: Primary->getPreviousDecl()), |
| 929 | New: Primary, AS); |
| 930 | else |
| 931 | Conversions.addDecl(C&: Ctx, D: Primary, AS); |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | if (SMKind) { |
| 936 | // If this is the first declaration of a special member, we no longer have |
| 937 | // an implicit trivial special member. |
| 938 | data().HasTrivialSpecialMembers &= |
| 939 | data().DeclaredSpecialMembers | ~SMKind; |
| 940 | data().HasTrivialSpecialMembersForCall &= |
| 941 | data().DeclaredSpecialMembers | ~SMKind; |
| 942 | |
| 943 | // Note when we have declared a declared special member, and suppress the |
| 944 | // implicit declaration of this special member. |
| 945 | data().DeclaredSpecialMembers |= SMKind; |
| 946 | if (!Method->isImplicit()) { |
| 947 | data().UserDeclaredSpecialMembers |= SMKind; |
| 948 | |
| 949 | const TargetInfo &TI = getASTContext().getTargetInfo(); |
| 950 | if ((!Method->isDeleted() && !Method->isDefaulted() && |
| 951 | SMKind != SMF_MoveAssignment) || |
| 952 | !TI.areDefaultedSMFStillPOD(getLangOpts())) { |
| 953 | // C++03 [class]p4: |
| 954 | // A POD-struct is an aggregate class that has [...] no user-defined |
| 955 | // copy assignment operator and no user-defined destructor. |
| 956 | // |
| 957 | // Since the POD bit is meant to be C++03 POD-ness, and in C++03, |
| 958 | // aggregates could not have any constructors, clear it even for an |
| 959 | // explicitly defaulted or deleted constructor. |
| 960 | // type is technically an aggregate in C++0x since it wouldn't be in |
| 961 | // 03. |
| 962 | // |
| 963 | // Also, a user-declared move assignment operator makes a class |
| 964 | // non-POD. This is an extension in C++03. |
| 965 | data().PlainOldData = false; |
| 966 | } |
| 967 | } |
| 968 | // When instantiating a class, we delay updating the destructor and |
| 969 | // triviality properties of the class until selecting a destructor and |
| 970 | // computing the eligibility of its special member functions. This is |
| 971 | // because there might be function constraints that we need to evaluate |
| 972 | // and compare later in the instantiation. |
| 973 | if (!Method->isIneligibleOrNotSelected()) { |
| 974 | addedEligibleSpecialMemberFunction(MD: Method, SMKind); |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | return; |
| 979 | } |
| 980 | |
| 981 | // Handle non-static data members. |
| 982 | if (const auto *Field = dyn_cast<FieldDecl>(Val: D)) { |
| 983 | ASTContext &Context = getASTContext(); |
| 984 | |
| 985 | // C++2a [class]p7: |
| 986 | // A standard-layout class is a class that: |
| 987 | // [...] |
| 988 | // -- has all non-static data members and bit-fields in the class and |
| 989 | // its base classes first declared in the same class |
| 990 | if (data().HasBasesWithFields) |
| 991 | data().IsStandardLayout = false; |
| 992 | |
| 993 | // C++ [class.bit]p2: |
| 994 | // A declaration for a bit-field that omits the identifier declares an |
| 995 | // unnamed bit-field. Unnamed bit-fields are not members and cannot be |
| 996 | // initialized. |
| 997 | if (Field->isUnnamedBitField()) { |
| 998 | // C++ [meta.unary.prop]p4: [LWG2358] |
| 999 | // T is a class type [...] with [...] no unnamed bit-fields of non-zero |
| 1000 | // length |
| 1001 | if (data().Empty && !Field->isZeroLengthBitField() && |
| 1002 | Context.getLangOpts().getClangABICompat() > |
| 1003 | LangOptions::ClangABI::Ver6) |
| 1004 | data().Empty = false; |
| 1005 | return; |
| 1006 | } |
| 1007 | |
| 1008 | // C++11 [class]p7: |
| 1009 | // A standard-layout class is a class that: |
| 1010 | // -- either has no non-static data members in the most derived class |
| 1011 | // [...] or has no base classes with non-static data members |
| 1012 | if (data().HasBasesWithNonStaticDataMembers) |
| 1013 | data().IsCXX11StandardLayout = false; |
| 1014 | |
| 1015 | // C++ [dcl.init.aggr]p1: |
| 1016 | // An aggregate is an array or a class (clause 9) with [...] no |
| 1017 | // private or protected non-static data members (clause 11). |
| 1018 | // |
| 1019 | // A POD must be an aggregate. |
| 1020 | if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { |
| 1021 | data().Aggregate = false; |
| 1022 | data().PlainOldData = false; |
| 1023 | |
| 1024 | // C++20 [temp.param]p7: |
| 1025 | // A structural type is [...] a literal class type [for which] all |
| 1026 | // non-static data members are public |
| 1027 | data().StructuralIfLiteral = false; |
| 1028 | } |
| 1029 | |
| 1030 | // Track whether this is the first field. We use this when checking |
| 1031 | // whether the class is standard-layout below. |
| 1032 | bool IsFirstField = !data().HasPrivateFields && |
| 1033 | !data().HasProtectedFields && !data().HasPublicFields; |
| 1034 | |
| 1035 | // C++0x [class]p7: |
| 1036 | // A standard-layout class is a class that: |
| 1037 | // [...] |
| 1038 | // -- has the same access control for all non-static data members, |
| 1039 | switch (D->getAccess()) { |
| 1040 | case AS_private: data().HasPrivateFields = true; break; |
| 1041 | case AS_protected: data().HasProtectedFields = true; break; |
| 1042 | case AS_public: data().HasPublicFields = true; break; |
| 1043 | case AS_none: llvm_unreachable("Invalid access specifier" ); |
| 1044 | }; |
| 1045 | if ((data().HasPrivateFields + data().HasProtectedFields + |
| 1046 | data().HasPublicFields) > 1) { |
| 1047 | data().IsStandardLayout = false; |
| 1048 | data().IsCXX11StandardLayout = false; |
| 1049 | } |
| 1050 | |
| 1051 | // Keep track of the presence of mutable fields. |
| 1052 | if (Field->isMutable()) { |
| 1053 | data().HasMutableFields = true; |
| 1054 | |
| 1055 | // C++20 [temp.param]p7: |
| 1056 | // A structural type is [...] a literal class type [for which] all |
| 1057 | // non-static data members are public |
| 1058 | data().StructuralIfLiteral = false; |
| 1059 | } |
| 1060 | |
| 1061 | // C++11 [class.union]p8, DR1460: |
| 1062 | // If X is a union, a non-static data member of X that is not an anonymous |
| 1063 | // union is a variant member of X. |
| 1064 | if (isUnion() && !Field->isAnonymousStructOrUnion()) |
| 1065 | data().HasVariantMembers = true; |
| 1066 | |
| 1067 | if (isUnion() && IsFirstField) |
| 1068 | data().HasUninitializedFields = true; |
| 1069 | |
| 1070 | // C++0x [class]p9: |
| 1071 | // A POD struct is a class that is both a trivial class and a |
| 1072 | // standard-layout class, and has no non-static data members of type |
| 1073 | // non-POD struct, non-POD union (or array of such types). |
| 1074 | // |
| 1075 | // Automatic Reference Counting: the presence of a member of Objective-C pointer type |
| 1076 | // that does not explicitly have no lifetime makes the class a non-POD. |
| 1077 | QualType T = Context.getBaseElementType(QT: Field->getType()); |
| 1078 | if (T->isObjCRetainableType() || T.isObjCGCStrong()) { |
| 1079 | if (T.hasNonTrivialObjCLifetime()) { |
| 1080 | // Objective-C Automatic Reference Counting: |
| 1081 | // If a class has a non-static data member of Objective-C pointer |
| 1082 | // type (or array thereof), it is a non-POD type and its |
| 1083 | // default constructor (if any), copy constructor, move constructor, |
| 1084 | // copy assignment operator, move assignment operator, and destructor are |
| 1085 | // non-trivial. |
| 1086 | setHasObjectMember(true); |
| 1087 | struct DefinitionData &Data = data(); |
| 1088 | Data.PlainOldData = false; |
| 1089 | Data.HasTrivialSpecialMembers = 0; |
| 1090 | |
| 1091 | // __strong or __weak fields do not make special functions non-trivial |
| 1092 | // for the purpose of calls. |
| 1093 | Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime(); |
| 1094 | if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak) |
| 1095 | data().HasTrivialSpecialMembersForCall = 0; |
| 1096 | |
| 1097 | // Structs with __weak fields should never be passed directly. |
| 1098 | if (LT == Qualifiers::OCL_Weak) |
| 1099 | setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs); |
| 1100 | |
| 1101 | Data.HasIrrelevantDestructor = false; |
| 1102 | |
| 1103 | if (isUnion()) { |
| 1104 | data().DefaultedCopyConstructorIsDeleted = true; |
| 1105 | data().DefaultedMoveConstructorIsDeleted = true; |
| 1106 | data().DefaultedCopyAssignmentIsDeleted = true; |
| 1107 | data().DefaultedMoveAssignmentIsDeleted = true; |
| 1108 | data().DefaultedDestructorIsDeleted = true; |
| 1109 | data().NeedOverloadResolutionForCopyConstructor = true; |
| 1110 | data().NeedOverloadResolutionForMoveConstructor = true; |
| 1111 | data().NeedOverloadResolutionForCopyAssignment = true; |
| 1112 | data().NeedOverloadResolutionForMoveAssignment = true; |
| 1113 | data().NeedOverloadResolutionForDestructor = true; |
| 1114 | } |
| 1115 | } else if (!Context.getLangOpts().ObjCAutoRefCount) { |
| 1116 | setHasObjectMember(true); |
| 1117 | } |
| 1118 | } else if (!T.isCXX98PODType(Context)) |
| 1119 | data().PlainOldData = false; |
| 1120 | |
| 1121 | // If a class has an address-discriminated signed pointer member, it is a |
| 1122 | // non-POD type and its copy constructor, move constructor, copy assignment |
| 1123 | // operator, move assignment operator are non-trivial. |
| 1124 | if (PointerAuthQualifier Q = T.getPointerAuth()) { |
| 1125 | if (Q.isAddressDiscriminated()) { |
| 1126 | struct DefinitionData &Data = data(); |
| 1127 | Data.PlainOldData = false; |
| 1128 | Data.HasTrivialSpecialMembers &= |
| 1129 | ~(SMF_CopyConstructor | SMF_MoveConstructor | SMF_CopyAssignment | |
| 1130 | SMF_MoveAssignment); |
| 1131 | setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs); |
| 1132 | |
| 1133 | // Copy/move constructors/assignment operators of a union are deleted by |
| 1134 | // default if it has an address-discriminated ptrauth field. |
| 1135 | if (isUnion()) { |
| 1136 | data().DefaultedCopyConstructorIsDeleted = true; |
| 1137 | data().DefaultedMoveConstructorIsDeleted = true; |
| 1138 | data().DefaultedCopyAssignmentIsDeleted = true; |
| 1139 | data().DefaultedMoveAssignmentIsDeleted = true; |
| 1140 | data().NeedOverloadResolutionForCopyConstructor = true; |
| 1141 | data().NeedOverloadResolutionForMoveConstructor = true; |
| 1142 | data().NeedOverloadResolutionForCopyAssignment = true; |
| 1143 | data().NeedOverloadResolutionForMoveAssignment = true; |
| 1144 | } |
| 1145 | } |
| 1146 | } |
| 1147 | |
| 1148 | if (Field->hasAttr<ExplicitInitAttr>()) |
| 1149 | setHasUninitializedExplicitInitFields(true); |
| 1150 | |
| 1151 | if (T->isReferenceType()) { |
| 1152 | if (!Field->hasInClassInitializer()) |
| 1153 | data().HasUninitializedReferenceMember = true; |
| 1154 | |
| 1155 | // C++0x [class]p7: |
| 1156 | // A standard-layout class is a class that: |
| 1157 | // -- has no non-static data members of type [...] reference, |
| 1158 | data().IsStandardLayout = false; |
| 1159 | data().IsCXX11StandardLayout = false; |
| 1160 | |
| 1161 | // C++1z [class.copy.ctor]p10: |
| 1162 | // A defaulted copy constructor for a class X is defined as deleted if X has: |
| 1163 | // -- a non-static data member of rvalue reference type |
| 1164 | if (T->isRValueReferenceType()) |
| 1165 | data().DefaultedCopyConstructorIsDeleted = true; |
| 1166 | } |
| 1167 | |
| 1168 | if (isUnion() && !Field->isMutable()) { |
| 1169 | if (Field->hasInClassInitializer()) |
| 1170 | data().HasUninitializedFields = false; |
| 1171 | } else if (!Field->hasInClassInitializer() && !Field->isMutable()) { |
| 1172 | if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) { |
| 1173 | if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit()) |
| 1174 | data().HasUninitializedFields = true; |
| 1175 | } else { |
| 1176 | data().HasUninitializedFields = true; |
| 1177 | } |
| 1178 | } |
| 1179 | |
| 1180 | // Record if this field is the first non-literal or volatile field or base. |
| 1181 | if (!T->isLiteralType(Ctx: Context) || T.isVolatileQualified()) |
| 1182 | data().HasNonLiteralTypeFieldsOrBases = true; |
| 1183 | |
| 1184 | if (Field->hasInClassInitializer() || |
| 1185 | (Field->isAnonymousStructOrUnion() && |
| 1186 | Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { |
| 1187 | data().HasInClassInitializer = true; |
| 1188 | |
| 1189 | // C++11 [class]p5: |
| 1190 | // A default constructor is trivial if [...] no non-static data member |
| 1191 | // of its class has a brace-or-equal-initializer. |
| 1192 | data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; |
| 1193 | |
| 1194 | // C++11 [dcl.init.aggr]p1: |
| 1195 | // An aggregate is a [...] class with [...] no |
| 1196 | // brace-or-equal-initializers for non-static data members. |
| 1197 | // |
| 1198 | // This rule was removed in C++14. |
| 1199 | if (!getASTContext().getLangOpts().CPlusPlus14) |
| 1200 | data().Aggregate = false; |
| 1201 | |
| 1202 | // C++11 [class]p10: |
| 1203 | // A POD struct is [...] a trivial class. |
| 1204 | data().PlainOldData = false; |
| 1205 | } |
| 1206 | |
| 1207 | // C++11 [class.copy]p23: |
| 1208 | // A defaulted copy/move assignment operator for a class X is defined |
| 1209 | // as deleted if X has: |
| 1210 | // -- a non-static data member of reference type |
| 1211 | if (T->isReferenceType()) { |
| 1212 | data().DefaultedCopyAssignmentIsDeleted = true; |
| 1213 | data().DefaultedMoveAssignmentIsDeleted = true; |
| 1214 | } |
| 1215 | |
| 1216 | // Bitfields of length 0 are also zero-sized, but we already bailed out for |
| 1217 | // those because they are always unnamed. |
| 1218 | bool IsZeroSize = Field->isZeroSize(Ctx: Context); |
| 1219 | |
| 1220 | if (const auto *RecordTy = T->getAs<RecordType>()) { |
| 1221 | auto *FieldRec = cast<CXXRecordDecl>(Val: RecordTy->getDecl()); |
| 1222 | if (FieldRec->getDefinition()) { |
| 1223 | addedClassSubobject(Subobj: FieldRec); |
| 1224 | |
| 1225 | // We may need to perform overload resolution to determine whether a |
| 1226 | // field can be moved if it's const or volatile qualified. |
| 1227 | if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) { |
| 1228 | // We need to care about 'const' for the copy constructor because an |
| 1229 | // implicit copy constructor might be declared with a non-const |
| 1230 | // parameter. |
| 1231 | data().NeedOverloadResolutionForCopyConstructor = true; |
| 1232 | data().NeedOverloadResolutionForMoveConstructor = true; |
| 1233 | data().NeedOverloadResolutionForCopyAssignment = true; |
| 1234 | data().NeedOverloadResolutionForMoveAssignment = true; |
| 1235 | } |
| 1236 | |
| 1237 | // C++11 [class.ctor]p5, C++11 [class.copy]p11: |
| 1238 | // A defaulted [special member] for a class X is defined as |
| 1239 | // deleted if: |
| 1240 | // -- X is a union-like class that has a variant member with a |
| 1241 | // non-trivial [corresponding special member] |
| 1242 | if (isUnion()) { |
| 1243 | if (FieldRec->hasNonTrivialCopyConstructor()) |
| 1244 | data().DefaultedCopyConstructorIsDeleted = true; |
| 1245 | if (FieldRec->hasNonTrivialMoveConstructor()) |
| 1246 | data().DefaultedMoveConstructorIsDeleted = true; |
| 1247 | if (FieldRec->hasNonTrivialCopyAssignment()) |
| 1248 | data().DefaultedCopyAssignmentIsDeleted = true; |
| 1249 | if (FieldRec->hasNonTrivialMoveAssignment()) |
| 1250 | data().DefaultedMoveAssignmentIsDeleted = true; |
| 1251 | if (FieldRec->hasNonTrivialDestructor()) { |
| 1252 | data().DefaultedDestructorIsDeleted = true; |
| 1253 | // C++20 [dcl.constexpr]p5: |
| 1254 | // The definition of a constexpr destructor whose function-body is |
| 1255 | // not = delete shall additionally satisfy... |
| 1256 | data().DefaultedDestructorIsConstexpr = true; |
| 1257 | } |
| 1258 | } |
| 1259 | |
| 1260 | // For an anonymous union member, our overload resolution will perform |
| 1261 | // overload resolution for its members. |
| 1262 | if (Field->isAnonymousStructOrUnion()) { |
| 1263 | data().NeedOverloadResolutionForCopyConstructor |= |
| 1264 | FieldRec->data().NeedOverloadResolutionForCopyConstructor; |
| 1265 | data().NeedOverloadResolutionForMoveConstructor |= |
| 1266 | FieldRec->data().NeedOverloadResolutionForMoveConstructor; |
| 1267 | data().NeedOverloadResolutionForCopyAssignment |= |
| 1268 | FieldRec->data().NeedOverloadResolutionForCopyAssignment; |
| 1269 | data().NeedOverloadResolutionForMoveAssignment |= |
| 1270 | FieldRec->data().NeedOverloadResolutionForMoveAssignment; |
| 1271 | data().NeedOverloadResolutionForDestructor |= |
| 1272 | FieldRec->data().NeedOverloadResolutionForDestructor; |
| 1273 | } |
| 1274 | |
| 1275 | // C++0x [class.ctor]p5: |
| 1276 | // A default constructor is trivial [...] if: |
| 1277 | // -- for all the non-static data members of its class that are of |
| 1278 | // class type (or array thereof), each such class has a trivial |
| 1279 | // default constructor. |
| 1280 | if (!FieldRec->hasTrivialDefaultConstructor()) |
| 1281 | data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; |
| 1282 | |
| 1283 | // C++0x [class.copy]p13: |
| 1284 | // A copy/move constructor for class X is trivial if [...] |
| 1285 | // [...] |
| 1286 | // -- for each non-static data member of X that is of class type (or |
| 1287 | // an array thereof), the constructor selected to copy/move that |
| 1288 | // member is trivial; |
| 1289 | if (!FieldRec->hasTrivialCopyConstructor()) |
| 1290 | data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; |
| 1291 | |
| 1292 | if (!FieldRec->hasTrivialCopyConstructorForCall()) |
| 1293 | data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; |
| 1294 | |
| 1295 | // If the field doesn't have a simple move constructor, we'll eagerly |
| 1296 | // declare the move constructor for this class and we'll decide whether |
| 1297 | // it's trivial then. |
| 1298 | if (!FieldRec->hasTrivialMoveConstructor()) |
| 1299 | data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; |
| 1300 | |
| 1301 | if (!FieldRec->hasTrivialMoveConstructorForCall()) |
| 1302 | data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; |
| 1303 | |
| 1304 | // C++0x [class.copy]p27: |
| 1305 | // A copy/move assignment operator for class X is trivial if [...] |
| 1306 | // [...] |
| 1307 | // -- for each non-static data member of X that is of class type (or |
| 1308 | // an array thereof), the assignment operator selected to |
| 1309 | // copy/move that member is trivial; |
| 1310 | if (!FieldRec->hasTrivialCopyAssignment()) |
| 1311 | data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; |
| 1312 | // If the field doesn't have a simple move assignment, we'll eagerly |
| 1313 | // declare the move assignment for this class and we'll decide whether |
| 1314 | // it's trivial then. |
| 1315 | if (!FieldRec->hasTrivialMoveAssignment()) |
| 1316 | data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; |
| 1317 | |
| 1318 | if (!FieldRec->hasTrivialDestructor()) |
| 1319 | data().HasTrivialSpecialMembers &= ~SMF_Destructor; |
| 1320 | if (!FieldRec->hasTrivialDestructorForCall()) |
| 1321 | data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; |
| 1322 | if (!FieldRec->hasIrrelevantDestructor()) |
| 1323 | data().HasIrrelevantDestructor = false; |
| 1324 | if (FieldRec->isAnyDestructorNoReturn()) |
| 1325 | data().IsAnyDestructorNoReturn = true; |
| 1326 | if (FieldRec->hasObjectMember()) |
| 1327 | setHasObjectMember(true); |
| 1328 | if (FieldRec->hasVolatileMember()) |
| 1329 | setHasVolatileMember(true); |
| 1330 | if (FieldRec->getArgPassingRestrictions() == |
| 1331 | RecordArgPassingKind::CanNeverPassInRegs) |
| 1332 | setArgPassingRestrictions(RecordArgPassingKind::CanNeverPassInRegs); |
| 1333 | |
| 1334 | // C++0x [class]p7: |
| 1335 | // A standard-layout class is a class that: |
| 1336 | // -- has no non-static data members of type non-standard-layout |
| 1337 | // class (or array of such types) [...] |
| 1338 | if (!FieldRec->isStandardLayout()) |
| 1339 | data().IsStandardLayout = false; |
| 1340 | if (!FieldRec->isCXX11StandardLayout()) |
| 1341 | data().IsCXX11StandardLayout = false; |
| 1342 | |
| 1343 | // C++2a [class]p7: |
| 1344 | // A standard-layout class is a class that: |
| 1345 | // [...] |
| 1346 | // -- has no element of the set M(S) of types as a base class. |
| 1347 | if (data().IsStandardLayout && |
| 1348 | (isUnion() || IsFirstField || IsZeroSize) && |
| 1349 | hasSubobjectAtOffsetZeroOfEmptyBaseType(Ctx&: Context, XFirst: FieldRec)) |
| 1350 | data().IsStandardLayout = false; |
| 1351 | |
| 1352 | // C++11 [class]p7: |
| 1353 | // A standard-layout class is a class that: |
| 1354 | // -- has no base classes of the same type as the first non-static |
| 1355 | // data member |
| 1356 | if (data().IsCXX11StandardLayout && IsFirstField) { |
| 1357 | // FIXME: We should check all base classes here, not just direct |
| 1358 | // base classes. |
| 1359 | for (const auto &BI : bases()) { |
| 1360 | if (Context.hasSameUnqualifiedType(T1: BI.getType(), T2: T)) { |
| 1361 | data().IsCXX11StandardLayout = false; |
| 1362 | break; |
| 1363 | } |
| 1364 | } |
| 1365 | } |
| 1366 | |
| 1367 | // Keep track of the presence of mutable fields. |
| 1368 | if (FieldRec->hasMutableFields()) |
| 1369 | data().HasMutableFields = true; |
| 1370 | |
| 1371 | if (Field->isMutable()) { |
| 1372 | // Our copy constructor/assignment might call something other than |
| 1373 | // the subobject's copy constructor/assignment if it's mutable and of |
| 1374 | // class type. |
| 1375 | data().NeedOverloadResolutionForCopyConstructor = true; |
| 1376 | data().NeedOverloadResolutionForCopyAssignment = true; |
| 1377 | } |
| 1378 | |
| 1379 | // C++11 [class.copy]p13: |
| 1380 | // If the implicitly-defined constructor would satisfy the |
| 1381 | // requirements of a constexpr constructor, the implicitly-defined |
| 1382 | // constructor is constexpr. |
| 1383 | // C++11 [dcl.constexpr]p4: |
| 1384 | // -- every constructor involved in initializing non-static data |
| 1385 | // members [...] shall be a constexpr constructor |
| 1386 | if (!Field->hasInClassInitializer() && |
| 1387 | !FieldRec->hasConstexprDefaultConstructor() && !isUnion()) |
| 1388 | // The standard requires any in-class initializer to be a constant |
| 1389 | // expression. We consider this to be a defect. |
| 1390 | data().DefaultedDefaultConstructorIsConstexpr = |
| 1391 | Context.getLangOpts().CPlusPlus23; |
| 1392 | |
| 1393 | // C++11 [class.copy]p8: |
| 1394 | // The implicitly-declared copy constructor for a class X will have |
| 1395 | // the form 'X::X(const X&)' if each potentially constructed subobject |
| 1396 | // of a class type M (or array thereof) has a copy constructor whose |
| 1397 | // first parameter is of type 'const M&' or 'const volatile M&'. |
| 1398 | if (!FieldRec->hasCopyConstructorWithConstParam()) |
| 1399 | data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; |
| 1400 | |
| 1401 | // C++11 [class.copy]p18: |
| 1402 | // The implicitly-declared copy assignment oeprator for a class X will |
| 1403 | // have the form 'X& X::operator=(const X&)' if [...] for all the |
| 1404 | // non-static data members of X that are of a class type M (or array |
| 1405 | // thereof), each such class type has a copy assignment operator whose |
| 1406 | // parameter is of type 'const M&', 'const volatile M&' or 'M'. |
| 1407 | if (!FieldRec->hasCopyAssignmentWithConstParam()) |
| 1408 | data().ImplicitCopyAssignmentHasConstParam = false; |
| 1409 | |
| 1410 | if (FieldRec->hasUninitializedExplicitInitFields() && |
| 1411 | FieldRec->isAggregate()) |
| 1412 | setHasUninitializedExplicitInitFields(true); |
| 1413 | |
| 1414 | if (FieldRec->hasUninitializedReferenceMember() && |
| 1415 | !Field->hasInClassInitializer()) |
| 1416 | data().HasUninitializedReferenceMember = true; |
| 1417 | |
| 1418 | // C++11 [class.union]p8, DR1460: |
| 1419 | // a non-static data member of an anonymous union that is a member of |
| 1420 | // X is also a variant member of X. |
| 1421 | if (FieldRec->hasVariantMembers() && |
| 1422 | Field->isAnonymousStructOrUnion()) |
| 1423 | data().HasVariantMembers = true; |
| 1424 | } |
| 1425 | } else { |
| 1426 | // Base element type of field is a non-class type. |
| 1427 | if (!T->isLiteralType(Ctx: Context) || |
| 1428 | (!Field->hasInClassInitializer() && !isUnion() && |
| 1429 | !Context.getLangOpts().CPlusPlus20)) |
| 1430 | data().DefaultedDefaultConstructorIsConstexpr = false; |
| 1431 | |
| 1432 | // C++11 [class.copy]p23: |
| 1433 | // A defaulted copy/move assignment operator for a class X is defined |
| 1434 | // as deleted if X has: |
| 1435 | // -- a non-static data member of const non-class type (or array |
| 1436 | // thereof) |
| 1437 | if (T.isConstQualified()) { |
| 1438 | data().DefaultedCopyAssignmentIsDeleted = true; |
| 1439 | data().DefaultedMoveAssignmentIsDeleted = true; |
| 1440 | } |
| 1441 | |
| 1442 | // C++20 [temp.param]p7: |
| 1443 | // A structural type is [...] a literal class type [for which] the |
| 1444 | // types of all non-static data members are structural types or |
| 1445 | // (possibly multidimensional) array thereof |
| 1446 | // We deal with class types elsewhere. |
| 1447 | if (!T->isStructuralType()) |
| 1448 | data().StructuralIfLiteral = false; |
| 1449 | } |
| 1450 | |
| 1451 | // C++14 [meta.unary.prop]p4: |
| 1452 | // T is a class type [...] with [...] no non-static data members other |
| 1453 | // than subobjects of zero size |
| 1454 | if (data().Empty && !IsZeroSize) |
| 1455 | data().Empty = false; |
| 1456 | |
| 1457 | if (getLangOpts().HLSL) { |
| 1458 | const Type *Ty = Field->getType()->getUnqualifiedDesugaredType(); |
| 1459 | while (isa<ConstantArrayType>(Val: Ty)) |
| 1460 | Ty = Ty->getArrayElementTypeNoTypeQual(); |
| 1461 | |
| 1462 | Ty = Ty->getUnqualifiedDesugaredType(); |
| 1463 | if (const RecordType *RT = dyn_cast<RecordType>(Val: Ty)) |
| 1464 | data().IsHLSLIntangible |= RT->getAsCXXRecordDecl()->isHLSLIntangible(); |
| 1465 | else |
| 1466 | data().IsHLSLIntangible |= (Ty->isHLSLAttributedResourceType() || |
| 1467 | Ty->isHLSLBuiltinIntangibleType()); |
| 1468 | } |
| 1469 | } |
| 1470 | |
| 1471 | // Handle using declarations of conversion functions. |
| 1472 | if (auto *Shadow = dyn_cast<UsingShadowDecl>(Val: D)) { |
| 1473 | if (Shadow->getDeclName().getNameKind() |
| 1474 | == DeclarationName::CXXConversionFunctionName) { |
| 1475 | ASTContext &Ctx = getASTContext(); |
| 1476 | data().Conversions.get(C&: Ctx).addDecl(C&: Ctx, D: Shadow, AS: Shadow->getAccess()); |
| 1477 | } |
| 1478 | } |
| 1479 | |
| 1480 | if (const auto *Using = dyn_cast<UsingDecl>(Val: D)) { |
| 1481 | if (Using->getDeclName().getNameKind() == |
| 1482 | DeclarationName::CXXConstructorName) { |
| 1483 | data().HasInheritedConstructor = true; |
| 1484 | // C++1z [dcl.init.aggr]p1: |
| 1485 | // An aggregate is [...] a class [...] with no inherited constructors |
| 1486 | data().Aggregate = false; |
| 1487 | } |
| 1488 | |
| 1489 | if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal) |
| 1490 | data().HasInheritedAssignment = true; |
| 1491 | } |
| 1492 | |
| 1493 | // HLSL: All user-defined data types are aggregates and use aggregate |
| 1494 | // initialization, meanwhile most, but not all built-in types behave like |
| 1495 | // aggregates. Resource types, and some other HLSL types that wrap handles |
| 1496 | // don't behave like aggregates. We can identify these as different because we |
| 1497 | // implicitly define "special" member functions, which aren't spellable in |
| 1498 | // HLSL. This all _needs_ to change in the future. There are two |
| 1499 | // relevant HLSL feature proposals that will depend on this changing: |
| 1500 | // * 0005-strict-initializer-lists.md |
| 1501 | // * https://github.com/microsoft/hlsl-specs/pull/325 |
| 1502 | if (getLangOpts().HLSL) |
| 1503 | data().Aggregate = data().UserDeclaredSpecialMembers == 0; |
| 1504 | } |
| 1505 | |
| 1506 | bool CXXRecordDecl::isLiteral() const { |
| 1507 | const LangOptions &LangOpts = getLangOpts(); |
| 1508 | if (!(LangOpts.CPlusPlus20 ? hasConstexprDestructor() |
| 1509 | : hasTrivialDestructor())) |
| 1510 | return false; |
| 1511 | |
| 1512 | if (hasNonLiteralTypeFieldsOrBases()) { |
| 1513 | // CWG2598 |
| 1514 | // is an aggregate union type that has either no variant |
| 1515 | // members or at least one variant member of non-volatile literal type, |
| 1516 | if (!isUnion()) |
| 1517 | return false; |
| 1518 | bool HasAtLeastOneLiteralMember = |
| 1519 | fields().empty() || any_of(Range: fields(), P: [this](const FieldDecl *D) { |
| 1520 | return !D->getType().isVolatileQualified() && |
| 1521 | D->getType()->isLiteralType(Ctx: getASTContext()); |
| 1522 | }); |
| 1523 | if (!HasAtLeastOneLiteralMember) |
| 1524 | return false; |
| 1525 | } |
| 1526 | |
| 1527 | return isAggregate() || (isLambda() && LangOpts.CPlusPlus17) || |
| 1528 | hasConstexprNonCopyMoveConstructor() || hasTrivialDefaultConstructor(); |
| 1529 | } |
| 1530 | |
| 1531 | void CXXRecordDecl::addedSelectedDestructor(CXXDestructorDecl *DD) { |
| 1532 | DD->setIneligibleOrNotSelected(false); |
| 1533 | addedEligibleSpecialMemberFunction(MD: DD, SMKind: SMF_Destructor); |
| 1534 | } |
| 1535 | |
| 1536 | void CXXRecordDecl::addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD, |
| 1537 | unsigned SMKind) { |
| 1538 | // FIXME: We shouldn't change DeclaredNonTrivialSpecialMembers if `MD` is |
| 1539 | // a function template, but this needs CWG attention before we break ABI. |
| 1540 | // See https://github.com/llvm/llvm-project/issues/59206 |
| 1541 | |
| 1542 | if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
| 1543 | if (DD->isUserProvided()) |
| 1544 | data().HasIrrelevantDestructor = false; |
| 1545 | // If the destructor is explicitly defaulted and not trivial or not public |
| 1546 | // or if the destructor is deleted, we clear HasIrrelevantDestructor in |
| 1547 | // finishedDefaultedOrDeletedMember. |
| 1548 | |
| 1549 | // C++11 [class.dtor]p5: |
| 1550 | // A destructor is trivial if [...] the destructor is not virtual. |
| 1551 | if (DD->isVirtual()) { |
| 1552 | data().HasTrivialSpecialMembers &= ~SMF_Destructor; |
| 1553 | data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; |
| 1554 | } |
| 1555 | |
| 1556 | if (DD->isNoReturn()) |
| 1557 | data().IsAnyDestructorNoReturn = true; |
| 1558 | } |
| 1559 | if (!MD->isImplicit() && !MD->isUserProvided()) { |
| 1560 | // This method is user-declared but not user-provided. We can't work |
| 1561 | // out whether it's trivial yet (not until we get to the end of the |
| 1562 | // class). We'll handle this method in |
| 1563 | // finishedDefaultedOrDeletedMember. |
| 1564 | } else if (MD->isTrivial()) { |
| 1565 | data().HasTrivialSpecialMembers |= SMKind; |
| 1566 | data().HasTrivialSpecialMembersForCall |= SMKind; |
| 1567 | } else if (MD->isTrivialForCall()) { |
| 1568 | data().HasTrivialSpecialMembersForCall |= SMKind; |
| 1569 | data().DeclaredNonTrivialSpecialMembers |= SMKind; |
| 1570 | } else { |
| 1571 | data().DeclaredNonTrivialSpecialMembers |= SMKind; |
| 1572 | // If this is a user-provided function, do not set |
| 1573 | // DeclaredNonTrivialSpecialMembersForCall here since we don't know |
| 1574 | // yet whether the method would be considered non-trivial for the |
| 1575 | // purpose of calls (attribute "trivial_abi" can be dropped from the |
| 1576 | // class later, which can change the special method's triviality). |
| 1577 | if (!MD->isUserProvided()) |
| 1578 | data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; |
| 1579 | } |
| 1580 | } |
| 1581 | |
| 1582 | void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) { |
| 1583 | assert(!D->isImplicit() && !D->isUserProvided()); |
| 1584 | |
| 1585 | // The kind of special member this declaration is, if any. |
| 1586 | unsigned SMKind = 0; |
| 1587 | |
| 1588 | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: D)) { |
| 1589 | if (Constructor->isDefaultConstructor()) { |
| 1590 | SMKind |= SMF_DefaultConstructor; |
| 1591 | if (Constructor->isConstexpr()) |
| 1592 | data().HasConstexprDefaultConstructor = true; |
| 1593 | } |
| 1594 | if (Constructor->isCopyConstructor()) |
| 1595 | SMKind |= SMF_CopyConstructor; |
| 1596 | else if (Constructor->isMoveConstructor()) |
| 1597 | SMKind |= SMF_MoveConstructor; |
| 1598 | else if (Constructor->isConstexpr()) |
| 1599 | // We may now know that the constructor is constexpr. |
| 1600 | data().HasConstexprNonCopyMoveConstructor = true; |
| 1601 | } else if (isa<CXXDestructorDecl>(Val: D)) { |
| 1602 | SMKind |= SMF_Destructor; |
| 1603 | if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted()) |
| 1604 | data().HasIrrelevantDestructor = false; |
| 1605 | } else if (D->isCopyAssignmentOperator()) |
| 1606 | SMKind |= SMF_CopyAssignment; |
| 1607 | else if (D->isMoveAssignmentOperator()) |
| 1608 | SMKind |= SMF_MoveAssignment; |
| 1609 | |
| 1610 | // Update which trivial / non-trivial special members we have. |
| 1611 | // addedMember will have skipped this step for this member. |
| 1612 | if (!D->isIneligibleOrNotSelected()) { |
| 1613 | if (D->isTrivial()) |
| 1614 | data().HasTrivialSpecialMembers |= SMKind; |
| 1615 | else |
| 1616 | data().DeclaredNonTrivialSpecialMembers |= SMKind; |
| 1617 | } |
| 1618 | } |
| 1619 | |
| 1620 | void CXXRecordDecl::LambdaDefinitionData::AddCaptureList(ASTContext &Ctx, |
| 1621 | Capture *CaptureList) { |
| 1622 | Captures.push_back(NewVal: CaptureList); |
| 1623 | if (Captures.size() == 2) { |
| 1624 | // The TinyPtrVector member now needs destruction. |
| 1625 | Ctx.addDestruction(Ptr: &Captures); |
| 1626 | } |
| 1627 | } |
| 1628 | |
| 1629 | void CXXRecordDecl::setCaptures(ASTContext &Context, |
| 1630 | ArrayRef<LambdaCapture> Captures) { |
| 1631 | CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData(); |
| 1632 | |
| 1633 | // Copy captures. |
| 1634 | Data.NumCaptures = Captures.size(); |
| 1635 | Data.NumExplicitCaptures = 0; |
| 1636 | auto *ToCapture = (LambdaCapture *)Context.Allocate(Size: sizeof(LambdaCapture) * |
| 1637 | Captures.size()); |
| 1638 | Data.AddCaptureList(Ctx&: Context, CaptureList: ToCapture); |
| 1639 | for (const LambdaCapture &C : Captures) { |
| 1640 | if (C.isExplicit()) |
| 1641 | ++Data.NumExplicitCaptures; |
| 1642 | |
| 1643 | new (ToCapture) LambdaCapture(C); |
| 1644 | ToCapture++; |
| 1645 | } |
| 1646 | |
| 1647 | if (!lambdaIsDefaultConstructibleAndAssignable()) |
| 1648 | Data.DefaultedCopyAssignmentIsDeleted = true; |
| 1649 | } |
| 1650 | |
| 1651 | void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) { |
| 1652 | unsigned SMKind = 0; |
| 1653 | |
| 1654 | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: D)) { |
| 1655 | if (Constructor->isCopyConstructor()) |
| 1656 | SMKind = SMF_CopyConstructor; |
| 1657 | else if (Constructor->isMoveConstructor()) |
| 1658 | SMKind = SMF_MoveConstructor; |
| 1659 | } else if (isa<CXXDestructorDecl>(Val: D)) |
| 1660 | SMKind = SMF_Destructor; |
| 1661 | |
| 1662 | if (D->isTrivialForCall()) |
| 1663 | data().HasTrivialSpecialMembersForCall |= SMKind; |
| 1664 | else |
| 1665 | data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; |
| 1666 | } |
| 1667 | |
| 1668 | bool CXXRecordDecl::isCLike() const { |
| 1669 | if (getTagKind() == TagTypeKind::Class || |
| 1670 | getTagKind() == TagTypeKind::Interface || |
| 1671 | !TemplateOrInstantiation.isNull()) |
| 1672 | return false; |
| 1673 | if (!hasDefinition()) |
| 1674 | return true; |
| 1675 | |
| 1676 | return isPOD() && data().HasOnlyCMembers; |
| 1677 | } |
| 1678 | |
| 1679 | bool CXXRecordDecl::isGenericLambda() const { |
| 1680 | if (!isLambda()) return false; |
| 1681 | return getLambdaData().IsGenericLambda; |
| 1682 | } |
| 1683 | |
| 1684 | #ifndef NDEBUG |
| 1685 | static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) { |
| 1686 | return llvm::all_of(R, [&](NamedDecl *D) { |
| 1687 | return D->isInvalidDecl() || declaresSameEntity(D, R.front()); |
| 1688 | }); |
| 1689 | } |
| 1690 | #endif |
| 1691 | |
| 1692 | static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) { |
| 1693 | if (!RD.isLambda()) return nullptr; |
| 1694 | DeclarationName Name = |
| 1695 | RD.getASTContext().DeclarationNames.getCXXOperatorName(Op: OO_Call); |
| 1696 | |
| 1697 | DeclContext::lookup_result Calls = RD.lookup(Name); |
| 1698 | |
| 1699 | // This can happen while building the lambda. |
| 1700 | if (Calls.empty()) |
| 1701 | return nullptr; |
| 1702 | |
| 1703 | assert(allLookupResultsAreTheSame(Calls) && |
| 1704 | "More than one lambda call operator!" ); |
| 1705 | |
| 1706 | // FIXME: If we have multiple call operators, we might be in a situation |
| 1707 | // where we merged this lambda with one from another module; in that |
| 1708 | // case, return our method (instead of that of the other lambda). |
| 1709 | // |
| 1710 | // This avoids situations where, given two modules A and B, if we |
| 1711 | // try to instantiate A's call operator in a function in B, anything |
| 1712 | // in the call operator that relies on local decls in the surrounding |
| 1713 | // function will crash because it tries to find A's decls, but we only |
| 1714 | // instantiated B's: |
| 1715 | // |
| 1716 | // template <typename> |
| 1717 | // void f() { |
| 1718 | // using T = int; // We only instantiate B's version of this. |
| 1719 | // auto L = [](T) { }; // But A's call operator would want A's here. |
| 1720 | // } |
| 1721 | // |
| 1722 | // Walk the call operator’s redecl chain to find the one that belongs |
| 1723 | // to this module. |
| 1724 | // |
| 1725 | // TODO: We need to fix this properly (see |
| 1726 | // https://github.com/llvm/llvm-project/issues/90154). |
| 1727 | Module *M = RD.getOwningModule(); |
| 1728 | for (Decl *D : Calls.front()->redecls()) { |
| 1729 | auto *MD = cast<NamedDecl>(Val: D); |
| 1730 | if (MD->getOwningModule() == M) |
| 1731 | return MD; |
| 1732 | } |
| 1733 | |
| 1734 | llvm_unreachable("Couldn't find our call operator!" ); |
| 1735 | } |
| 1736 | |
| 1737 | FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const { |
| 1738 | NamedDecl *CallOp = getLambdaCallOperatorHelper(RD: *this); |
| 1739 | return dyn_cast_or_null<FunctionTemplateDecl>(Val: CallOp); |
| 1740 | } |
| 1741 | |
| 1742 | CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const { |
| 1743 | NamedDecl *CallOp = getLambdaCallOperatorHelper(RD: *this); |
| 1744 | |
| 1745 | if (CallOp == nullptr) |
| 1746 | return nullptr; |
| 1747 | |
| 1748 | if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(Val: CallOp)) |
| 1749 | return cast<CXXMethodDecl>(Val: CallOpTmpl->getTemplatedDecl()); |
| 1750 | |
| 1751 | return cast<CXXMethodDecl>(Val: CallOp); |
| 1752 | } |
| 1753 | |
| 1754 | CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const { |
| 1755 | CXXMethodDecl *CallOp = getLambdaCallOperator(); |
| 1756 | assert(CallOp && "null call operator" ); |
| 1757 | CallingConv CC = CallOp->getType()->castAs<FunctionType>()->getCallConv(); |
| 1758 | return getLambdaStaticInvoker(CC); |
| 1759 | } |
| 1760 | |
| 1761 | static DeclContext::lookup_result |
| 1762 | getLambdaStaticInvokers(const CXXRecordDecl &RD) { |
| 1763 | assert(RD.isLambda() && "Must be a lambda" ); |
| 1764 | DeclarationName Name = |
| 1765 | &RD.getASTContext().Idents.get(Name: getLambdaStaticInvokerName()); |
| 1766 | return RD.lookup(Name); |
| 1767 | } |
| 1768 | |
| 1769 | static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) { |
| 1770 | if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(Val: ND)) |
| 1771 | return cast<CXXMethodDecl>(Val: InvokerTemplate->getTemplatedDecl()); |
| 1772 | return cast<CXXMethodDecl>(Val: ND); |
| 1773 | } |
| 1774 | |
| 1775 | CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const { |
| 1776 | if (!isLambda()) |
| 1777 | return nullptr; |
| 1778 | DeclContext::lookup_result Invoker = getLambdaStaticInvokers(RD: *this); |
| 1779 | |
| 1780 | for (NamedDecl *ND : Invoker) { |
| 1781 | const auto *FTy = |
| 1782 | cast<ValueDecl>(Val: ND->getAsFunction())->getType()->castAs<FunctionType>(); |
| 1783 | if (FTy->getCallConv() == CC) |
| 1784 | return getInvokerAsMethod(ND); |
| 1785 | } |
| 1786 | |
| 1787 | return nullptr; |
| 1788 | } |
| 1789 | |
| 1790 | void CXXRecordDecl::getCaptureFields( |
| 1791 | llvm::DenseMap<const ValueDecl *, FieldDecl *> &Captures, |
| 1792 | FieldDecl *&ThisCapture) const { |
| 1793 | Captures.clear(); |
| 1794 | ThisCapture = nullptr; |
| 1795 | |
| 1796 | LambdaDefinitionData &Lambda = getLambdaData(); |
| 1797 | for (const LambdaCapture *List : Lambda.Captures) { |
| 1798 | RecordDecl::field_iterator Field = field_begin(); |
| 1799 | for (const LambdaCapture *C = List, *CEnd = C + Lambda.NumCaptures; |
| 1800 | C != CEnd; ++C, ++Field) { |
| 1801 | if (C->capturesThis()) |
| 1802 | ThisCapture = *Field; |
| 1803 | else if (C->capturesVariable()) |
| 1804 | Captures[C->getCapturedVar()] = *Field; |
| 1805 | } |
| 1806 | assert(Field == field_end()); |
| 1807 | } |
| 1808 | } |
| 1809 | |
| 1810 | TemplateParameterList * |
| 1811 | CXXRecordDecl::getGenericLambdaTemplateParameterList() const { |
| 1812 | if (!isGenericLambda()) return nullptr; |
| 1813 | CXXMethodDecl *CallOp = getLambdaCallOperator(); |
| 1814 | if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate()) |
| 1815 | return Tmpl->getTemplateParameters(); |
| 1816 | return nullptr; |
| 1817 | } |
| 1818 | |
| 1819 | ArrayRef<NamedDecl *> |
| 1820 | CXXRecordDecl::getLambdaExplicitTemplateParameters() const { |
| 1821 | TemplateParameterList *List = getGenericLambdaTemplateParameterList(); |
| 1822 | if (!List) |
| 1823 | return {}; |
| 1824 | |
| 1825 | assert(std::is_partitioned(List->begin(), List->end(), |
| 1826 | [](const NamedDecl *D) { return !D->isImplicit(); }) |
| 1827 | && "Explicit template params should be ordered before implicit ones" ); |
| 1828 | |
| 1829 | const auto ExplicitEnd = llvm::partition_point( |
| 1830 | Range&: *List, P: [](const NamedDecl *D) { return !D->isImplicit(); }); |
| 1831 | return ArrayRef(List->begin(), ExplicitEnd); |
| 1832 | } |
| 1833 | |
| 1834 | Decl *CXXRecordDecl::getLambdaContextDecl() const { |
| 1835 | assert(isLambda() && "Not a lambda closure type!" ); |
| 1836 | ExternalASTSource *Source = getParentASTContext().getExternalSource(); |
| 1837 | return getLambdaData().ContextDecl.get(Source); |
| 1838 | } |
| 1839 | |
| 1840 | void CXXRecordDecl::setLambdaNumbering(LambdaNumbering Numbering) { |
| 1841 | assert(isLambda() && "Not a lambda closure type!" ); |
| 1842 | getLambdaData().ManglingNumber = Numbering.ManglingNumber; |
| 1843 | if (Numbering.DeviceManglingNumber) |
| 1844 | getASTContext().DeviceLambdaManglingNumbers[this] = |
| 1845 | Numbering.DeviceManglingNumber; |
| 1846 | getLambdaData().IndexInContext = Numbering.IndexInContext; |
| 1847 | getLambdaData().ContextDecl = Numbering.ContextDecl; |
| 1848 | getLambdaData().HasKnownInternalLinkage = Numbering.HasKnownInternalLinkage; |
| 1849 | } |
| 1850 | |
| 1851 | unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const { |
| 1852 | assert(isLambda() && "Not a lambda closure type!" ); |
| 1853 | return getASTContext().DeviceLambdaManglingNumbers.lookup(Val: this); |
| 1854 | } |
| 1855 | |
| 1856 | static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { |
| 1857 | QualType T = |
| 1858 | cast<CXXConversionDecl>(Val: Conv->getUnderlyingDecl()->getAsFunction()) |
| 1859 | ->getConversionType(); |
| 1860 | return Context.getCanonicalType(T); |
| 1861 | } |
| 1862 | |
| 1863 | /// Collect the visible conversions of a base class. |
| 1864 | /// |
| 1865 | /// \param Record a base class of the class we're considering |
| 1866 | /// \param InVirtual whether this base class is a virtual base (or a base |
| 1867 | /// of a virtual base) |
| 1868 | /// \param Access the access along the inheritance path to this base |
| 1869 | /// \param ParentHiddenTypes the conversions provided by the inheritors |
| 1870 | /// of this base |
| 1871 | /// \param Output the set to which to add conversions from non-virtual bases |
| 1872 | /// \param VOutput the set to which to add conversions from virtual bases |
| 1873 | /// \param HiddenVBaseCs the set of conversions which were hidden in a |
| 1874 | /// virtual base along some inheritance path |
| 1875 | static void CollectVisibleConversions( |
| 1876 | ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual, |
| 1877 | AccessSpecifier Access, |
| 1878 | const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, |
| 1879 | ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput, |
| 1880 | llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) { |
| 1881 | // The set of types which have conversions in this class or its |
| 1882 | // subclasses. As an optimization, we don't copy the derived set |
| 1883 | // unless it might change. |
| 1884 | const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; |
| 1885 | llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; |
| 1886 | |
| 1887 | // Collect the direct conversions and figure out which conversions |
| 1888 | // will be hidden in the subclasses. |
| 1889 | CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); |
| 1890 | CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); |
| 1891 | if (ConvI != ConvE) { |
| 1892 | HiddenTypesBuffer = ParentHiddenTypes; |
| 1893 | HiddenTypes = &HiddenTypesBuffer; |
| 1894 | |
| 1895 | for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) { |
| 1896 | CanQualType ConvType(GetConversionType(Context, Conv: I.getDecl())); |
| 1897 | bool Hidden = ParentHiddenTypes.count(Ptr: ConvType); |
| 1898 | if (!Hidden) |
| 1899 | HiddenTypesBuffer.insert(Ptr: ConvType); |
| 1900 | |
| 1901 | // If this conversion is hidden and we're in a virtual base, |
| 1902 | // remember that it's hidden along some inheritance path. |
| 1903 | if (Hidden && InVirtual) |
| 1904 | HiddenVBaseCs.insert(Ptr: cast<NamedDecl>(Val: I.getDecl()->getCanonicalDecl())); |
| 1905 | |
| 1906 | // If this conversion isn't hidden, add it to the appropriate output. |
| 1907 | else if (!Hidden) { |
| 1908 | AccessSpecifier IAccess |
| 1909 | = CXXRecordDecl::MergeAccess(PathAccess: Access, DeclAccess: I.getAccess()); |
| 1910 | |
| 1911 | if (InVirtual) |
| 1912 | VOutput.addDecl(D: I.getDecl(), AS: IAccess); |
| 1913 | else |
| 1914 | Output.addDecl(C&: Context, D: I.getDecl(), AS: IAccess); |
| 1915 | } |
| 1916 | } |
| 1917 | } |
| 1918 | |
| 1919 | // Collect information recursively from any base classes. |
| 1920 | for (const auto &I : Record->bases()) { |
| 1921 | const auto *RT = I.getType()->getAs<RecordType>(); |
| 1922 | if (!RT) continue; |
| 1923 | |
| 1924 | AccessSpecifier BaseAccess |
| 1925 | = CXXRecordDecl::MergeAccess(PathAccess: Access, DeclAccess: I.getAccessSpecifier()); |
| 1926 | bool BaseInVirtual = InVirtual || I.isVirtual(); |
| 1927 | |
| 1928 | auto *Base = cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 1929 | CollectVisibleConversions(Context, Record: Base, InVirtual: BaseInVirtual, Access: BaseAccess, |
| 1930 | ParentHiddenTypes: *HiddenTypes, Output, VOutput, HiddenVBaseCs); |
| 1931 | } |
| 1932 | } |
| 1933 | |
| 1934 | /// Collect the visible conversions of a class. |
| 1935 | /// |
| 1936 | /// This would be extremely straightforward if it weren't for virtual |
| 1937 | /// bases. It might be worth special-casing that, really. |
| 1938 | static void CollectVisibleConversions(ASTContext &Context, |
| 1939 | const CXXRecordDecl *Record, |
| 1940 | ASTUnresolvedSet &Output) { |
| 1941 | // The collection of all conversions in virtual bases that we've |
| 1942 | // found. These will be added to the output as long as they don't |
| 1943 | // appear in the hidden-conversions set. |
| 1944 | UnresolvedSet<8> VBaseCs; |
| 1945 | |
| 1946 | // The set of conversions in virtual bases that we've determined to |
| 1947 | // be hidden. |
| 1948 | llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; |
| 1949 | |
| 1950 | // The set of types hidden by classes derived from this one. |
| 1951 | llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; |
| 1952 | |
| 1953 | // Go ahead and collect the direct conversions and add them to the |
| 1954 | // hidden-types set. |
| 1955 | CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); |
| 1956 | CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); |
| 1957 | Output.append(C&: Context, I: ConvI, E: ConvE); |
| 1958 | for (; ConvI != ConvE; ++ConvI) |
| 1959 | HiddenTypes.insert(Ptr: GetConversionType(Context, Conv: ConvI.getDecl())); |
| 1960 | |
| 1961 | // Recursively collect conversions from base classes. |
| 1962 | for (const auto &I : Record->bases()) { |
| 1963 | const auto *RT = I.getType()->getAs<RecordType>(); |
| 1964 | if (!RT) continue; |
| 1965 | |
| 1966 | CollectVisibleConversions(Context, Record: cast<CXXRecordDecl>(Val: RT->getDecl()), |
| 1967 | InVirtual: I.isVirtual(), Access: I.getAccessSpecifier(), |
| 1968 | ParentHiddenTypes: HiddenTypes, Output, VOutput&: VBaseCs, HiddenVBaseCs); |
| 1969 | } |
| 1970 | |
| 1971 | // Add any unhidden conversions provided by virtual bases. |
| 1972 | for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); |
| 1973 | I != E; ++I) { |
| 1974 | if (!HiddenVBaseCs.count(Ptr: cast<NamedDecl>(Val: I.getDecl()->getCanonicalDecl()))) |
| 1975 | Output.addDecl(C&: Context, D: I.getDecl(), AS: I.getAccess()); |
| 1976 | } |
| 1977 | } |
| 1978 | |
| 1979 | /// getVisibleConversionFunctions - get all conversion functions visible |
| 1980 | /// in current class; including conversion function templates. |
| 1981 | llvm::iterator_range<CXXRecordDecl::conversion_iterator> |
| 1982 | CXXRecordDecl::getVisibleConversionFunctions() const { |
| 1983 | ASTContext &Ctx = getASTContext(); |
| 1984 | |
| 1985 | ASTUnresolvedSet *Set; |
| 1986 | if (bases_begin() == bases_end()) { |
| 1987 | // If root class, all conversions are visible. |
| 1988 | Set = &data().Conversions.get(C&: Ctx); |
| 1989 | } else { |
| 1990 | Set = &data().VisibleConversions.get(C&: Ctx); |
| 1991 | // If visible conversion list is not evaluated, evaluate it. |
| 1992 | if (!data().ComputedVisibleConversions) { |
| 1993 | CollectVisibleConversions(Context&: Ctx, Record: this, Output&: *Set); |
| 1994 | data().ComputedVisibleConversions = true; |
| 1995 | } |
| 1996 | } |
| 1997 | return llvm::make_range(x: Set->begin(), y: Set->end()); |
| 1998 | } |
| 1999 | |
| 2000 | void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { |
| 2001 | // This operation is O(N) but extremely rare. Sema only uses it to |
| 2002 | // remove UsingShadowDecls in a class that were followed by a direct |
| 2003 | // declaration, e.g.: |
| 2004 | // class A : B { |
| 2005 | // using B::operator int; |
| 2006 | // operator int(); |
| 2007 | // }; |
| 2008 | // This is uncommon by itself and even more uncommon in conjunction |
| 2009 | // with sufficiently large numbers of directly-declared conversions |
| 2010 | // that asymptotic behavior matters. |
| 2011 | |
| 2012 | ASTUnresolvedSet &Convs = data().Conversions.get(C&: getASTContext()); |
| 2013 | for (unsigned I = 0, E = Convs.size(); I != E; ++I) { |
| 2014 | if (Convs[I].getDecl() == ConvDecl) { |
| 2015 | Convs.erase(I); |
| 2016 | assert(!llvm::is_contained(Convs, ConvDecl) && |
| 2017 | "conversion was found multiple times in unresolved set" ); |
| 2018 | return; |
| 2019 | } |
| 2020 | } |
| 2021 | |
| 2022 | llvm_unreachable("conversion not found in set!" ); |
| 2023 | } |
| 2024 | |
| 2025 | CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { |
| 2026 | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) |
| 2027 | return cast<CXXRecordDecl>(Val: MSInfo->getInstantiatedFrom()); |
| 2028 | |
| 2029 | return nullptr; |
| 2030 | } |
| 2031 | |
| 2032 | MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { |
| 2033 | return dyn_cast_if_present<MemberSpecializationInfo *>( |
| 2034 | Val: TemplateOrInstantiation); |
| 2035 | } |
| 2036 | |
| 2037 | void |
| 2038 | CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, |
| 2039 | TemplateSpecializationKind TSK) { |
| 2040 | assert(TemplateOrInstantiation.isNull() && |
| 2041 | "Previous template or instantiation?" ); |
| 2042 | assert(!isa<ClassTemplatePartialSpecializationDecl>(this)); |
| 2043 | TemplateOrInstantiation |
| 2044 | = new (getASTContext()) MemberSpecializationInfo(RD, TSK); |
| 2045 | } |
| 2046 | |
| 2047 | ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const { |
| 2048 | return dyn_cast_if_present<ClassTemplateDecl *>(Val: TemplateOrInstantiation); |
| 2049 | } |
| 2050 | |
| 2051 | void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) { |
| 2052 | TemplateOrInstantiation = Template; |
| 2053 | } |
| 2054 | |
| 2055 | TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ |
| 2056 | if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: this)) |
| 2057 | return Spec->getSpecializationKind(); |
| 2058 | |
| 2059 | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) |
| 2060 | return MSInfo->getTemplateSpecializationKind(); |
| 2061 | |
| 2062 | return TSK_Undeclared; |
| 2063 | } |
| 2064 | |
| 2065 | void |
| 2066 | CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { |
| 2067 | if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: this)) { |
| 2068 | Spec->setSpecializationKind(TSK); |
| 2069 | return; |
| 2070 | } |
| 2071 | |
| 2072 | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { |
| 2073 | MSInfo->setTemplateSpecializationKind(TSK); |
| 2074 | return; |
| 2075 | } |
| 2076 | |
| 2077 | llvm_unreachable("Not a class template or member class specialization" ); |
| 2078 | } |
| 2079 | |
| 2080 | const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const { |
| 2081 | auto GetDefinitionOrSelf = |
| 2082 | [](const CXXRecordDecl *D) -> const CXXRecordDecl * { |
| 2083 | if (auto *Def = D->getDefinition()) |
| 2084 | return Def; |
| 2085 | return D; |
| 2086 | }; |
| 2087 | |
| 2088 | // If it's a class template specialization, find the template or partial |
| 2089 | // specialization from which it was instantiated. |
| 2090 | if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(Val: this)) { |
| 2091 | auto From = TD->getInstantiatedFrom(); |
| 2092 | if (auto *CTD = dyn_cast_if_present<ClassTemplateDecl *>(Val&: From)) { |
| 2093 | while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) { |
| 2094 | if (NewCTD->isMemberSpecialization()) |
| 2095 | break; |
| 2096 | CTD = NewCTD; |
| 2097 | } |
| 2098 | return GetDefinitionOrSelf(CTD->getTemplatedDecl()); |
| 2099 | } |
| 2100 | if (auto *CTPSD = |
| 2101 | dyn_cast_if_present<ClassTemplatePartialSpecializationDecl *>( |
| 2102 | Val&: From)) { |
| 2103 | while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) { |
| 2104 | if (NewCTPSD->isMemberSpecialization()) |
| 2105 | break; |
| 2106 | CTPSD = NewCTPSD; |
| 2107 | } |
| 2108 | return GetDefinitionOrSelf(CTPSD); |
| 2109 | } |
| 2110 | } |
| 2111 | |
| 2112 | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { |
| 2113 | if (isTemplateInstantiation(Kind: MSInfo->getTemplateSpecializationKind())) { |
| 2114 | const CXXRecordDecl *RD = this; |
| 2115 | while (auto *NewRD = RD->getInstantiatedFromMemberClass()) |
| 2116 | RD = NewRD; |
| 2117 | return GetDefinitionOrSelf(RD); |
| 2118 | } |
| 2119 | } |
| 2120 | |
| 2121 | assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) && |
| 2122 | "couldn't find pattern for class template instantiation" ); |
| 2123 | return nullptr; |
| 2124 | } |
| 2125 | |
| 2126 | CXXDestructorDecl *CXXRecordDecl::getDestructor() const { |
| 2127 | ASTContext &Context = getASTContext(); |
| 2128 | QualType ClassType = Context.getTypeDeclType(Decl: this); |
| 2129 | |
| 2130 | DeclarationName Name |
| 2131 | = Context.DeclarationNames.getCXXDestructorName( |
| 2132 | Ty: Context.getCanonicalType(T: ClassType)); |
| 2133 | |
| 2134 | DeclContext::lookup_result R = lookup(Name); |
| 2135 | |
| 2136 | // If a destructor was marked as not selected, we skip it. We don't always |
| 2137 | // have a selected destructor: dependent types, unnamed structs. |
| 2138 | for (auto *Decl : R) { |
| 2139 | auto* DD = dyn_cast<CXXDestructorDecl>(Val: Decl); |
| 2140 | if (DD && !DD->isIneligibleOrNotSelected()) |
| 2141 | return DD; |
| 2142 | } |
| 2143 | return nullptr; |
| 2144 | } |
| 2145 | |
| 2146 | bool CXXRecordDecl::hasDeletedDestructor() const { |
| 2147 | if (const CXXDestructorDecl *D = getDestructor()) |
| 2148 | return D->isDeleted(); |
| 2149 | return false; |
| 2150 | } |
| 2151 | |
| 2152 | static bool isDeclContextInNamespace(const DeclContext *DC) { |
| 2153 | while (!DC->isTranslationUnit()) { |
| 2154 | if (DC->isNamespace()) |
| 2155 | return true; |
| 2156 | DC = DC->getParent(); |
| 2157 | } |
| 2158 | return false; |
| 2159 | } |
| 2160 | |
| 2161 | bool CXXRecordDecl::isInterfaceLike() const { |
| 2162 | assert(hasDefinition() && "checking for interface-like without a definition" ); |
| 2163 | // All __interfaces are inheritently interface-like. |
| 2164 | if (isInterface()) |
| 2165 | return true; |
| 2166 | |
| 2167 | // Interface-like types cannot have a user declared constructor, destructor, |
| 2168 | // friends, VBases, conversion functions, or fields. Additionally, lambdas |
| 2169 | // cannot be interface types. |
| 2170 | if (isLambda() || hasUserDeclaredConstructor() || |
| 2171 | hasUserDeclaredDestructor() || !field_empty() || hasFriends() || |
| 2172 | getNumVBases() > 0 || conversion_end() - conversion_begin() > 0) |
| 2173 | return false; |
| 2174 | |
| 2175 | // No interface-like type can have a method with a definition. |
| 2176 | for (const auto *const Method : methods()) |
| 2177 | if (Method->isDefined() && !Method->isImplicit()) |
| 2178 | return false; |
| 2179 | |
| 2180 | // Check "Special" types. |
| 2181 | const auto *Uuid = getAttr<UuidAttr>(); |
| 2182 | // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an |
| 2183 | // extern C++ block directly in the TU. These are only valid if in one |
| 2184 | // of these two situations. |
| 2185 | if (Uuid && isStruct() && !getDeclContext()->isExternCContext() && |
| 2186 | !isDeclContextInNamespace(DC: getDeclContext()) && |
| 2187 | ((getName() == "IUnknown" && |
| 2188 | Uuid->getGuid() == "00000000-0000-0000-C000-000000000046" ) || |
| 2189 | (getName() == "IDispatch" && |
| 2190 | Uuid->getGuid() == "00020400-0000-0000-C000-000000000046" ))) { |
| 2191 | if (getNumBases() > 0) |
| 2192 | return false; |
| 2193 | return true; |
| 2194 | } |
| 2195 | |
| 2196 | // FIXME: Any access specifiers is supposed to make this no longer interface |
| 2197 | // like. |
| 2198 | |
| 2199 | // If this isn't a 'special' type, it must have a single interface-like base. |
| 2200 | if (getNumBases() != 1) |
| 2201 | return false; |
| 2202 | |
| 2203 | const auto BaseSpec = *bases_begin(); |
| 2204 | if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public) |
| 2205 | return false; |
| 2206 | const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl(); |
| 2207 | if (Base->isInterface() || !Base->isInterfaceLike()) |
| 2208 | return false; |
| 2209 | return true; |
| 2210 | } |
| 2211 | |
| 2212 | void CXXRecordDecl::completeDefinition() { |
| 2213 | completeDefinition(FinalOverriders: nullptr); |
| 2214 | } |
| 2215 | |
| 2216 | static bool hasPureVirtualFinalOverrider( |
| 2217 | const CXXRecordDecl &RD, const CXXFinalOverriderMap *FinalOverriders) { |
| 2218 | if (!FinalOverriders) { |
| 2219 | CXXFinalOverriderMap MyFinalOverriders; |
| 2220 | RD.getFinalOverriders(FinaOverriders&: MyFinalOverriders); |
| 2221 | return hasPureVirtualFinalOverrider(RD, FinalOverriders: &MyFinalOverriders); |
| 2222 | } |
| 2223 | |
| 2224 | for (const CXXFinalOverriderMap::value_type & |
| 2225 | OverridingMethodsEntry : *FinalOverriders) { |
| 2226 | for (const auto &[_, SubobjOverrides] : OverridingMethodsEntry.second) { |
| 2227 | assert(SubobjOverrides.size() > 0 && |
| 2228 | "All virtual functions have overriding virtual functions" ); |
| 2229 | |
| 2230 | if (SubobjOverrides.front().Method->isPureVirtual()) |
| 2231 | return true; |
| 2232 | } |
| 2233 | } |
| 2234 | return false; |
| 2235 | } |
| 2236 | |
| 2237 | void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { |
| 2238 | RecordDecl::completeDefinition(); |
| 2239 | |
| 2240 | // If the class may be abstract (but hasn't been marked as such), check for |
| 2241 | // any pure final overriders. |
| 2242 | // |
| 2243 | // C++ [class.abstract]p4: |
| 2244 | // A class is abstract if it contains or inherits at least one |
| 2245 | // pure virtual function for which the final overrider is pure |
| 2246 | // virtual. |
| 2247 | if (mayBeAbstract() && hasPureVirtualFinalOverrider(RD: *this, FinalOverriders)) |
| 2248 | markAbstract(); |
| 2249 | |
| 2250 | // Set access bits correctly on the directly-declared conversions. |
| 2251 | for (conversion_iterator I = conversion_begin(), E = conversion_end(); |
| 2252 | I != E; ++I) |
| 2253 | I.setAccess((*I)->getAccess()); |
| 2254 | |
| 2255 | ASTContext &Context = getASTContext(); |
| 2256 | |
| 2257 | if (isAggregate() && hasUserDeclaredConstructor() && |
| 2258 | !Context.getLangOpts().CPlusPlus20) { |
| 2259 | // Diagnose any aggregate behavior changes in C++20 |
| 2260 | for (const FieldDecl *FD : fields()) { |
| 2261 | if (const auto *AT = FD->getAttr<ExplicitInitAttr>()) |
| 2262 | Context.getDiagnostics().Report( |
| 2263 | Loc: AT->getLocation(), |
| 2264 | DiagID: diag::warn_cxx20_compat_requires_explicit_init_non_aggregate) |
| 2265 | << AT << FD << Context.getRecordType(Decl: this); |
| 2266 | } |
| 2267 | } |
| 2268 | |
| 2269 | if (!isAggregate() && hasUninitializedExplicitInitFields()) { |
| 2270 | // Diagnose any fields that required explicit initialization in a |
| 2271 | // non-aggregate type. (Note that the fields may not be directly in this |
| 2272 | // type, but in a subobject. In such cases we don't emit diagnoses here.) |
| 2273 | for (const FieldDecl *FD : fields()) { |
| 2274 | if (const auto *AT = FD->getAttr<ExplicitInitAttr>()) |
| 2275 | Context.getDiagnostics().Report(Loc: AT->getLocation(), |
| 2276 | DiagID: diag::warn_attribute_needs_aggregate) |
| 2277 | << AT << Context.getRecordType(Decl: this); |
| 2278 | } |
| 2279 | setHasUninitializedExplicitInitFields(false); |
| 2280 | } |
| 2281 | } |
| 2282 | |
| 2283 | bool CXXRecordDecl::mayBeAbstract() const { |
| 2284 | if (data().Abstract || isInvalidDecl() || !data().Polymorphic || |
| 2285 | isDependentContext()) |
| 2286 | return false; |
| 2287 | |
| 2288 | for (const auto &B : bases()) { |
| 2289 | const auto *BaseDecl = |
| 2290 | cast<CXXRecordDecl>(Val: B.getType()->castAs<RecordType>()->getDecl()); |
| 2291 | if (BaseDecl->isAbstract()) |
| 2292 | return true; |
| 2293 | } |
| 2294 | |
| 2295 | return false; |
| 2296 | } |
| 2297 | |
| 2298 | bool CXXRecordDecl::isEffectivelyFinal() const { |
| 2299 | auto *Def = getDefinition(); |
| 2300 | if (!Def) |
| 2301 | return false; |
| 2302 | if (Def->hasAttr<FinalAttr>()) |
| 2303 | return true; |
| 2304 | if (const auto *Dtor = Def->getDestructor()) |
| 2305 | if (Dtor->hasAttr<FinalAttr>()) |
| 2306 | return true; |
| 2307 | return false; |
| 2308 | } |
| 2309 | |
| 2310 | void CXXDeductionGuideDecl::anchor() {} |
| 2311 | |
| 2312 | bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const { |
| 2313 | if ((getKind() != Other.getKind() || |
| 2314 | getKind() == ExplicitSpecKind::Unresolved)) { |
| 2315 | if (getKind() == ExplicitSpecKind::Unresolved && |
| 2316 | Other.getKind() == ExplicitSpecKind::Unresolved) { |
| 2317 | ODRHash SelfHash, OtherHash; |
| 2318 | SelfHash.AddStmt(S: getExpr()); |
| 2319 | OtherHash.AddStmt(S: Other.getExpr()); |
| 2320 | return SelfHash.CalculateHash() == OtherHash.CalculateHash(); |
| 2321 | } else |
| 2322 | return false; |
| 2323 | } |
| 2324 | return true; |
| 2325 | } |
| 2326 | |
| 2327 | ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) { |
| 2328 | switch (Function->getDeclKind()) { |
| 2329 | case Decl::Kind::CXXConstructor: |
| 2330 | return cast<CXXConstructorDecl>(Val: Function)->getExplicitSpecifier(); |
| 2331 | case Decl::Kind::CXXConversion: |
| 2332 | return cast<CXXConversionDecl>(Val: Function)->getExplicitSpecifier(); |
| 2333 | case Decl::Kind::CXXDeductionGuide: |
| 2334 | return cast<CXXDeductionGuideDecl>(Val: Function)->getExplicitSpecifier(); |
| 2335 | default: |
| 2336 | return {}; |
| 2337 | } |
| 2338 | } |
| 2339 | |
| 2340 | CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create( |
| 2341 | ASTContext &C, DeclContext *DC, SourceLocation StartLoc, |
| 2342 | ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T, |
| 2343 | TypeSourceInfo *TInfo, SourceLocation EndLocation, CXXConstructorDecl *Ctor, |
| 2344 | DeductionCandidate Kind, const AssociatedConstraint &TrailingRequiresClause, |
| 2345 | const CXXDeductionGuideDecl *GeneratedFrom, |
| 2346 | SourceDeductionGuideKind SourceKind) { |
| 2347 | return new (C, DC) CXXDeductionGuideDecl( |
| 2348 | C, DC, StartLoc, ES, NameInfo, T, TInfo, EndLocation, Ctor, Kind, |
| 2349 | TrailingRequiresClause, GeneratedFrom, SourceKind); |
| 2350 | } |
| 2351 | |
| 2352 | CXXDeductionGuideDecl * |
| 2353 | CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
| 2354 | return new (C, ID) CXXDeductionGuideDecl( |
| 2355 | C, /*DC=*/nullptr, SourceLocation(), ExplicitSpecifier(), |
| 2356 | DeclarationNameInfo(), QualType(), /*TInfo=*/nullptr, SourceLocation(), |
| 2357 | /*Ctor=*/nullptr, DeductionCandidate::Normal, |
| 2358 | /*TrailingRequiresClause=*/{}, |
| 2359 | /*GeneratedFrom=*/nullptr, SourceDeductionGuideKind::None); |
| 2360 | } |
| 2361 | |
| 2362 | RequiresExprBodyDecl *RequiresExprBodyDecl::Create( |
| 2363 | ASTContext &C, DeclContext *DC, SourceLocation StartLoc) { |
| 2364 | return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc); |
| 2365 | } |
| 2366 | |
| 2367 | RequiresExprBodyDecl * |
| 2368 | RequiresExprBodyDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
| 2369 | return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation()); |
| 2370 | } |
| 2371 | |
| 2372 | void CXXMethodDecl::anchor() {} |
| 2373 | |
| 2374 | bool CXXMethodDecl::isStatic() const { |
| 2375 | const CXXMethodDecl *MD = getCanonicalDecl(); |
| 2376 | |
| 2377 | if (MD->getStorageClass() == SC_Static) |
| 2378 | return true; |
| 2379 | |
| 2380 | OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator(); |
| 2381 | return isStaticOverloadedOperator(OOK); |
| 2382 | } |
| 2383 | |
| 2384 | static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD, |
| 2385 | const CXXMethodDecl *BaseMD) { |
| 2386 | for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) { |
| 2387 | if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl()) |
| 2388 | return true; |
| 2389 | if (recursivelyOverrides(DerivedMD: MD, BaseMD)) |
| 2390 | return true; |
| 2391 | } |
| 2392 | return false; |
| 2393 | } |
| 2394 | |
| 2395 | CXXMethodDecl * |
| 2396 | CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD, |
| 2397 | bool MayBeBase) { |
| 2398 | if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl()) |
| 2399 | return this; |
| 2400 | |
| 2401 | // Lookup doesn't work for destructors, so handle them separately. |
| 2402 | if (isa<CXXDestructorDecl>(Val: this)) { |
| 2403 | CXXMethodDecl *MD = RD->getDestructor(); |
| 2404 | if (MD) { |
| 2405 | if (recursivelyOverrides(DerivedMD: MD, BaseMD: this)) |
| 2406 | return MD; |
| 2407 | if (MayBeBase && recursivelyOverrides(DerivedMD: this, BaseMD: MD)) |
| 2408 | return MD; |
| 2409 | } |
| 2410 | return nullptr; |
| 2411 | } |
| 2412 | |
| 2413 | for (auto *ND : RD->lookup(Name: getDeclName())) { |
| 2414 | auto *MD = dyn_cast<CXXMethodDecl>(Val: ND); |
| 2415 | if (!MD) |
| 2416 | continue; |
| 2417 | if (recursivelyOverrides(DerivedMD: MD, BaseMD: this)) |
| 2418 | return MD; |
| 2419 | if (MayBeBase && recursivelyOverrides(DerivedMD: this, BaseMD: MD)) |
| 2420 | return MD; |
| 2421 | } |
| 2422 | |
| 2423 | return nullptr; |
| 2424 | } |
| 2425 | |
| 2426 | CXXMethodDecl * |
| 2427 | CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD, |
| 2428 | bool MayBeBase) { |
| 2429 | if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase)) |
| 2430 | return MD; |
| 2431 | |
| 2432 | llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders; |
| 2433 | auto AddFinalOverrider = [&](CXXMethodDecl *D) { |
| 2434 | // If this function is overridden by a candidate final overrider, it is not |
| 2435 | // a final overrider. |
| 2436 | for (CXXMethodDecl *OtherD : FinalOverriders) { |
| 2437 | if (declaresSameEntity(D1: D, D2: OtherD) || recursivelyOverrides(DerivedMD: OtherD, BaseMD: D)) |
| 2438 | return; |
| 2439 | } |
| 2440 | |
| 2441 | // Other candidate final overriders might be overridden by this function. |
| 2442 | llvm::erase_if(C&: FinalOverriders, P: [&](CXXMethodDecl *OtherD) { |
| 2443 | return recursivelyOverrides(DerivedMD: D, BaseMD: OtherD); |
| 2444 | }); |
| 2445 | |
| 2446 | FinalOverriders.push_back(Elt: D); |
| 2447 | }; |
| 2448 | |
| 2449 | for (const auto &I : RD->bases()) { |
| 2450 | const RecordType *RT = I.getType()->getAs<RecordType>(); |
| 2451 | if (!RT) |
| 2452 | continue; |
| 2453 | const auto *Base = cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 2454 | if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(RD: Base)) |
| 2455 | AddFinalOverrider(D); |
| 2456 | } |
| 2457 | |
| 2458 | return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr; |
| 2459 | } |
| 2460 | |
| 2461 | CXXMethodDecl * |
| 2462 | CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, |
| 2463 | const DeclarationNameInfo &NameInfo, QualType T, |
| 2464 | TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, |
| 2465 | bool isInline, ConstexprSpecKind ConstexprKind, |
| 2466 | SourceLocation EndLocation, |
| 2467 | const AssociatedConstraint &TrailingRequiresClause) { |
| 2468 | return new (C, RD) CXXMethodDecl( |
| 2469 | CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin, |
| 2470 | isInline, ConstexprKind, EndLocation, TrailingRequiresClause); |
| 2471 | } |
| 2472 | |
| 2473 | CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, |
| 2474 | GlobalDeclID ID) { |
| 2475 | return new (C, ID) |
| 2476 | CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(), |
| 2477 | DeclarationNameInfo(), QualType(), nullptr, SC_None, false, |
| 2478 | false, ConstexprSpecKind::Unspecified, SourceLocation(), |
| 2479 | /*TrailingRequiresClause=*/{}); |
| 2480 | } |
| 2481 | |
| 2482 | CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base, |
| 2483 | bool IsAppleKext) { |
| 2484 | assert(isVirtual() && "this method is expected to be virtual" ); |
| 2485 | |
| 2486 | // When building with -fapple-kext, all calls must go through the vtable since |
| 2487 | // the kernel linker can do runtime patching of vtables. |
| 2488 | if (IsAppleKext) |
| 2489 | return nullptr; |
| 2490 | |
| 2491 | // If the member function is marked 'final', we know that it can't be |
| 2492 | // overridden and can therefore devirtualize it unless it's pure virtual. |
| 2493 | if (hasAttr<FinalAttr>()) |
| 2494 | return isPureVirtual() ? nullptr : this; |
| 2495 | |
| 2496 | // If Base is unknown, we cannot devirtualize. |
| 2497 | if (!Base) |
| 2498 | return nullptr; |
| 2499 | |
| 2500 | // If the base expression (after skipping derived-to-base conversions) is a |
| 2501 | // class prvalue, then we can devirtualize. |
| 2502 | Base = Base->getBestDynamicClassTypeExpr(); |
| 2503 | if (Base->isPRValue() && Base->getType()->isRecordType()) |
| 2504 | return this; |
| 2505 | |
| 2506 | // If we don't even know what we would call, we can't devirtualize. |
| 2507 | const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); |
| 2508 | if (!BestDynamicDecl) |
| 2509 | return nullptr; |
| 2510 | |
| 2511 | // There may be a method corresponding to MD in a derived class. |
| 2512 | CXXMethodDecl *DevirtualizedMethod = |
| 2513 | getCorrespondingMethodInClass(RD: BestDynamicDecl); |
| 2514 | |
| 2515 | // If there final overrider in the dynamic type is ambiguous, we can't |
| 2516 | // devirtualize this call. |
| 2517 | if (!DevirtualizedMethod) |
| 2518 | return nullptr; |
| 2519 | |
| 2520 | // If that method is pure virtual, we can't devirtualize. If this code is |
| 2521 | // reached, the result would be UB, not a direct call to the derived class |
| 2522 | // function, and we can't assume the derived class function is defined. |
| 2523 | if (DevirtualizedMethod->isPureVirtual()) |
| 2524 | return nullptr; |
| 2525 | |
| 2526 | // If that method is marked final, we can devirtualize it. |
| 2527 | if (DevirtualizedMethod->hasAttr<FinalAttr>()) |
| 2528 | return DevirtualizedMethod; |
| 2529 | |
| 2530 | // Similarly, if the class itself or its destructor is marked 'final', |
| 2531 | // the class can't be derived from and we can therefore devirtualize the |
| 2532 | // member function call. |
| 2533 | if (BestDynamicDecl->isEffectivelyFinal()) |
| 2534 | return DevirtualizedMethod; |
| 2535 | |
| 2536 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: Base)) { |
| 2537 | if (const auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl())) |
| 2538 | if (VD->getType()->isRecordType()) |
| 2539 | // This is a record decl. We know the type and can devirtualize it. |
| 2540 | return DevirtualizedMethod; |
| 2541 | |
| 2542 | return nullptr; |
| 2543 | } |
| 2544 | |
| 2545 | // We can devirtualize calls on an object accessed by a class member access |
| 2546 | // expression, since by C++11 [basic.life]p6 we know that it can't refer to |
| 2547 | // a derived class object constructed in the same location. |
| 2548 | if (const auto *ME = dyn_cast<MemberExpr>(Val: Base)) { |
| 2549 | const ValueDecl *VD = ME->getMemberDecl(); |
| 2550 | return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr; |
| 2551 | } |
| 2552 | |
| 2553 | // Likewise for calls on an object accessed by a (non-reference) pointer to |
| 2554 | // member access. |
| 2555 | if (auto *BO = dyn_cast<BinaryOperator>(Val: Base)) { |
| 2556 | if (BO->isPtrMemOp()) { |
| 2557 | auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>(); |
| 2558 | if (MPT->getPointeeType()->isRecordType()) |
| 2559 | return DevirtualizedMethod; |
| 2560 | } |
| 2561 | } |
| 2562 | |
| 2563 | // We can't devirtualize the call. |
| 2564 | return nullptr; |
| 2565 | } |
| 2566 | |
| 2567 | bool CXXMethodDecl::isUsualDeallocationFunction( |
| 2568 | SmallVectorImpl<const FunctionDecl *> &PreventedBy) const { |
| 2569 | assert(PreventedBy.empty() && "PreventedBy is expected to be empty" ); |
| 2570 | if (!getDeclName().isAnyOperatorDelete()) |
| 2571 | return false; |
| 2572 | |
| 2573 | if (isTypeAwareOperatorNewOrDelete()) { |
| 2574 | // A variadic type aware allocation function is not a usual deallocation |
| 2575 | // function |
| 2576 | if (isVariadic()) |
| 2577 | return false; |
| 2578 | |
| 2579 | // Type aware deallocation functions are only usual if they only accept the |
| 2580 | // mandatory arguments |
| 2581 | if (getNumParams() != FunctionDecl::RequiredTypeAwareDeleteParameterCount) |
| 2582 | return false; |
| 2583 | |
| 2584 | FunctionTemplateDecl *PrimaryTemplate = getPrimaryTemplate(); |
| 2585 | if (!PrimaryTemplate) |
| 2586 | return true; |
| 2587 | |
| 2588 | // A template instance is is only a usual deallocation function if it has a |
| 2589 | // type-identity parameter, the type-identity parameter is a dependent type |
| 2590 | // (i.e. the type-identity parameter is of type std::type_identity<U> where |
| 2591 | // U shall be a dependent type), and the type-identity parameter is the only |
| 2592 | // dependent parameter, and there are no template packs in the parameter |
| 2593 | // list. |
| 2594 | FunctionDecl *SpecializedDecl = PrimaryTemplate->getTemplatedDecl(); |
| 2595 | if (!SpecializedDecl->getParamDecl(i: 0)->getType()->isDependentType()) |
| 2596 | return false; |
| 2597 | for (unsigned Idx = 1; Idx < getNumParams(); ++Idx) { |
| 2598 | if (SpecializedDecl->getParamDecl(i: Idx)->getType()->isDependentType()) |
| 2599 | return false; |
| 2600 | } |
| 2601 | return true; |
| 2602 | } |
| 2603 | |
| 2604 | // C++ [basic.stc.dynamic.deallocation]p2: |
| 2605 | // A template instance is never a usual deallocation function, |
| 2606 | // regardless of its signature. |
| 2607 | // Post-P2719 adoption: |
| 2608 | // A template instance is is only a usual deallocation function if it has a |
| 2609 | // type-identity parameter |
| 2610 | if (getPrimaryTemplate()) |
| 2611 | return false; |
| 2612 | |
| 2613 | // C++ [basic.stc.dynamic.deallocation]p2: |
| 2614 | // If a class T has a member deallocation function named operator delete |
| 2615 | // with exactly one parameter, then that function is a usual (non-placement) |
| 2616 | // deallocation function. [...] |
| 2617 | if (getNumParams() == 1) |
| 2618 | return true; |
| 2619 | unsigned UsualParams = 1; |
| 2620 | |
| 2621 | // C++ P0722: |
| 2622 | // A destroying operator delete is a usual deallocation function if |
| 2623 | // removing the std::destroying_delete_t parameter and changing the |
| 2624 | // first parameter type from T* to void* results in the signature of |
| 2625 | // a usual deallocation function. |
| 2626 | if (isDestroyingOperatorDelete()) |
| 2627 | ++UsualParams; |
| 2628 | |
| 2629 | // C++ <=14 [basic.stc.dynamic.deallocation]p2: |
| 2630 | // [...] If class T does not declare such an operator delete but does |
| 2631 | // declare a member deallocation function named operator delete with |
| 2632 | // exactly two parameters, the second of which has type std::size_t (18.1), |
| 2633 | // then this function is a usual deallocation function. |
| 2634 | // |
| 2635 | // C++17 says a usual deallocation function is one with the signature |
| 2636 | // (void* [, size_t] [, std::align_val_t] [, ...]) |
| 2637 | // and all such functions are usual deallocation functions. It's not clear |
| 2638 | // that allowing varargs functions was intentional. |
| 2639 | ASTContext &Context = getASTContext(); |
| 2640 | if (UsualParams < getNumParams() && |
| 2641 | Context.hasSameUnqualifiedType(T1: getParamDecl(i: UsualParams)->getType(), |
| 2642 | T2: Context.getSizeType())) |
| 2643 | ++UsualParams; |
| 2644 | |
| 2645 | if (UsualParams < getNumParams() && |
| 2646 | getParamDecl(i: UsualParams)->getType()->isAlignValT()) |
| 2647 | ++UsualParams; |
| 2648 | |
| 2649 | if (UsualParams != getNumParams()) |
| 2650 | return false; |
| 2651 | |
| 2652 | // In C++17 onwards, all potential usual deallocation functions are actual |
| 2653 | // usual deallocation functions. Honor this behavior when post-C++14 |
| 2654 | // deallocation functions are offered as extensions too. |
| 2655 | // FIXME(EricWF): Destroying Delete should be a language option. How do we |
| 2656 | // handle when destroying delete is used prior to C++17? |
| 2657 | if (Context.getLangOpts().CPlusPlus17 || |
| 2658 | Context.getLangOpts().AlignedAllocation || |
| 2659 | isDestroyingOperatorDelete()) |
| 2660 | return true; |
| 2661 | |
| 2662 | // This function is a usual deallocation function if there are no |
| 2663 | // single-parameter deallocation functions of the same kind. |
| 2664 | DeclContext::lookup_result R = getDeclContext()->lookup(Name: getDeclName()); |
| 2665 | bool Result = true; |
| 2666 | for (const auto *D : R) { |
| 2667 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 2668 | if (FD->getNumParams() == 1) { |
| 2669 | PreventedBy.push_back(Elt: FD); |
| 2670 | Result = false; |
| 2671 | } |
| 2672 | } |
| 2673 | } |
| 2674 | return Result; |
| 2675 | } |
| 2676 | |
| 2677 | bool CXXMethodDecl::isExplicitObjectMemberFunction() const { |
| 2678 | // C++2b [dcl.fct]p6: |
| 2679 | // An explicit object member function is a non-static member |
| 2680 | // function with an explicit object parameter |
| 2681 | return !isStatic() && hasCXXExplicitFunctionObjectParameter(); |
| 2682 | } |
| 2683 | |
| 2684 | bool CXXMethodDecl::isImplicitObjectMemberFunction() const { |
| 2685 | return !isStatic() && !hasCXXExplicitFunctionObjectParameter(); |
| 2686 | } |
| 2687 | |
| 2688 | bool CXXMethodDecl::isCopyAssignmentOperator() const { |
| 2689 | // C++0x [class.copy]p17: |
| 2690 | // A user-declared copy assignment operator X::operator= is a non-static |
| 2691 | // non-template member function of class X with exactly one parameter of |
| 2692 | // type X, X&, const X&, volatile X& or const volatile X&. |
| 2693 | if (/*operator=*/getOverloadedOperator() != OO_Equal || |
| 2694 | /*non-static*/ isStatic() || |
| 2695 | |
| 2696 | /*non-template*/ getPrimaryTemplate() || getDescribedFunctionTemplate() || |
| 2697 | getNumExplicitParams() != 1) |
| 2698 | return false; |
| 2699 | |
| 2700 | QualType ParamType = getNonObjectParameter(I: 0)->getType(); |
| 2701 | if (const auto *Ref = ParamType->getAs<LValueReferenceType>()) |
| 2702 | ParamType = Ref->getPointeeType(); |
| 2703 | |
| 2704 | ASTContext &Context = getASTContext(); |
| 2705 | QualType ClassType |
| 2706 | = Context.getCanonicalType(T: Context.getTypeDeclType(Decl: getParent())); |
| 2707 | return Context.hasSameUnqualifiedType(T1: ClassType, T2: ParamType); |
| 2708 | } |
| 2709 | |
| 2710 | bool CXXMethodDecl::isMoveAssignmentOperator() const { |
| 2711 | // C++0x [class.copy]p19: |
| 2712 | // A user-declared move assignment operator X::operator= is a non-static |
| 2713 | // non-template member function of class X with exactly one parameter of type |
| 2714 | // X&&, const X&&, volatile X&&, or const volatile X&&. |
| 2715 | if (getOverloadedOperator() != OO_Equal || isStatic() || |
| 2716 | getPrimaryTemplate() || getDescribedFunctionTemplate() || |
| 2717 | getNumExplicitParams() != 1) |
| 2718 | return false; |
| 2719 | |
| 2720 | QualType ParamType = getNonObjectParameter(I: 0)->getType(); |
| 2721 | if (!ParamType->isRValueReferenceType()) |
| 2722 | return false; |
| 2723 | ParamType = ParamType->getPointeeType(); |
| 2724 | |
| 2725 | ASTContext &Context = getASTContext(); |
| 2726 | QualType ClassType |
| 2727 | = Context.getCanonicalType(T: Context.getTypeDeclType(Decl: getParent())); |
| 2728 | return Context.hasSameUnqualifiedType(T1: ClassType, T2: ParamType); |
| 2729 | } |
| 2730 | |
| 2731 | void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { |
| 2732 | assert(MD->isCanonicalDecl() && "Method is not canonical!" ); |
| 2733 | assert(MD->isVirtual() && "Method is not virtual!" ); |
| 2734 | |
| 2735 | getASTContext().addOverriddenMethod(Method: this, Overridden: MD); |
| 2736 | } |
| 2737 | |
| 2738 | CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { |
| 2739 | if (isa<CXXConstructorDecl>(Val: this)) return nullptr; |
| 2740 | return getASTContext().overridden_methods_begin(Method: this); |
| 2741 | } |
| 2742 | |
| 2743 | CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { |
| 2744 | if (isa<CXXConstructorDecl>(Val: this)) return nullptr; |
| 2745 | return getASTContext().overridden_methods_end(Method: this); |
| 2746 | } |
| 2747 | |
| 2748 | unsigned CXXMethodDecl::size_overridden_methods() const { |
| 2749 | if (isa<CXXConstructorDecl>(Val: this)) return 0; |
| 2750 | return getASTContext().overridden_methods_size(Method: this); |
| 2751 | } |
| 2752 | |
| 2753 | CXXMethodDecl::overridden_method_range |
| 2754 | CXXMethodDecl::overridden_methods() const { |
| 2755 | if (isa<CXXConstructorDecl>(Val: this)) |
| 2756 | return overridden_method_range(nullptr, nullptr); |
| 2757 | return getASTContext().overridden_methods(Method: this); |
| 2758 | } |
| 2759 | |
| 2760 | static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT, |
| 2761 | const CXXRecordDecl *Decl) { |
| 2762 | QualType ClassTy = C.getTypeDeclType(Decl); |
| 2763 | return C.getQualifiedType(T: ClassTy, Qs: FPT->getMethodQuals()); |
| 2764 | } |
| 2765 | |
| 2766 | QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT, |
| 2767 | const CXXRecordDecl *Decl) { |
| 2768 | ASTContext &C = Decl->getASTContext(); |
| 2769 | QualType ObjectTy = ::getThisObjectType(C, FPT, Decl); |
| 2770 | |
| 2771 | // Unlike 'const' and 'volatile', a '__restrict' qualifier must be |
| 2772 | // attached to the pointer type, not the pointee. |
| 2773 | bool Restrict = FPT->getMethodQuals().hasRestrict(); |
| 2774 | if (Restrict) |
| 2775 | ObjectTy.removeLocalRestrict(); |
| 2776 | |
| 2777 | ObjectTy = C.getLangOpts().HLSL ? C.getLValueReferenceType(T: ObjectTy) |
| 2778 | : C.getPointerType(T: ObjectTy); |
| 2779 | |
| 2780 | if (Restrict) |
| 2781 | ObjectTy.addRestrict(); |
| 2782 | return ObjectTy; |
| 2783 | } |
| 2784 | |
| 2785 | QualType CXXMethodDecl::getThisType() const { |
| 2786 | // C++ 9.3.2p1: The type of this in a member function of a class X is X*. |
| 2787 | // If the member function is declared const, the type of this is const X*, |
| 2788 | // if the member function is declared volatile, the type of this is |
| 2789 | // volatile X*, and if the member function is declared const volatile, |
| 2790 | // the type of this is const volatile X*. |
| 2791 | assert(isInstance() && "No 'this' for static methods!" ); |
| 2792 | return CXXMethodDecl::getThisType(FPT: getType()->castAs<FunctionProtoType>(), |
| 2793 | Decl: getParent()); |
| 2794 | } |
| 2795 | |
| 2796 | QualType CXXMethodDecl::getFunctionObjectParameterReferenceType() const { |
| 2797 | if (isExplicitObjectMemberFunction()) |
| 2798 | return parameters()[0]->getType(); |
| 2799 | |
| 2800 | ASTContext &C = getParentASTContext(); |
| 2801 | const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>(); |
| 2802 | QualType Type = ::getThisObjectType(C, FPT, Decl: getParent()); |
| 2803 | RefQualifierKind RK = FPT->getRefQualifier(); |
| 2804 | if (RK == RefQualifierKind::RQ_RValue) |
| 2805 | return C.getRValueReferenceType(T: Type); |
| 2806 | return C.getLValueReferenceType(T: Type); |
| 2807 | } |
| 2808 | |
| 2809 | bool CXXMethodDecl::hasInlineBody() const { |
| 2810 | // If this function is a template instantiation, look at the template from |
| 2811 | // which it was instantiated. |
| 2812 | const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); |
| 2813 | if (!CheckFn) |
| 2814 | CheckFn = this; |
| 2815 | |
| 2816 | const FunctionDecl *fn; |
| 2817 | return CheckFn->isDefined(Definition&: fn) && !fn->isOutOfLine() && |
| 2818 | (fn->doesThisDeclarationHaveABody() || fn->willHaveBody()); |
| 2819 | } |
| 2820 | |
| 2821 | bool CXXMethodDecl::isLambdaStaticInvoker() const { |
| 2822 | const CXXRecordDecl *P = getParent(); |
| 2823 | return P->isLambda() && getDeclName().isIdentifier() && |
| 2824 | getName() == getLambdaStaticInvokerName(); |
| 2825 | } |
| 2826 | |
| 2827 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, |
| 2828 | TypeSourceInfo *TInfo, bool IsVirtual, |
| 2829 | SourceLocation L, Expr *Init, |
| 2830 | SourceLocation R, |
| 2831 | SourceLocation EllipsisLoc) |
| 2832 | : Initializee(TInfo), Init(Init), MemberOrEllipsisLocation(EllipsisLoc), |
| 2833 | LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), |
| 2834 | IsWritten(false), SourceOrder(0) {} |
| 2835 | |
| 2836 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, |
| 2837 | SourceLocation MemberLoc, |
| 2838 | SourceLocation L, Expr *Init, |
| 2839 | SourceLocation R) |
| 2840 | : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc), |
| 2841 | LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), |
| 2842 | IsWritten(false), SourceOrder(0) {} |
| 2843 | |
| 2844 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, |
| 2845 | IndirectFieldDecl *Member, |
| 2846 | SourceLocation MemberLoc, |
| 2847 | SourceLocation L, Expr *Init, |
| 2848 | SourceLocation R) |
| 2849 | : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc), |
| 2850 | LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), |
| 2851 | IsWritten(false), SourceOrder(0) {} |
| 2852 | |
| 2853 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, |
| 2854 | TypeSourceInfo *TInfo, |
| 2855 | SourceLocation L, Expr *Init, |
| 2856 | SourceLocation R) |
| 2857 | : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R), |
| 2858 | IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {} |
| 2859 | |
| 2860 | int64_t CXXCtorInitializer::getID(const ASTContext &Context) const { |
| 2861 | return Context.getAllocator() |
| 2862 | .identifyKnownAlignedObject<CXXCtorInitializer>(Ptr: this); |
| 2863 | } |
| 2864 | |
| 2865 | TypeLoc CXXCtorInitializer::getBaseClassLoc() const { |
| 2866 | if (isBaseInitializer()) |
| 2867 | return cast<TypeSourceInfo *>(Val: Initializee)->getTypeLoc(); |
| 2868 | else |
| 2869 | return {}; |
| 2870 | } |
| 2871 | |
| 2872 | const Type *CXXCtorInitializer::getBaseClass() const { |
| 2873 | if (isBaseInitializer()) |
| 2874 | return cast<TypeSourceInfo *>(Val: Initializee)->getType().getTypePtr(); |
| 2875 | else |
| 2876 | return nullptr; |
| 2877 | } |
| 2878 | |
| 2879 | SourceLocation CXXCtorInitializer::getSourceLocation() const { |
| 2880 | if (isInClassMemberInitializer()) |
| 2881 | return getAnyMember()->getLocation(); |
| 2882 | |
| 2883 | if (isAnyMemberInitializer()) |
| 2884 | return getMemberLocation(); |
| 2885 | |
| 2886 | if (const auto *TSInfo = cast<TypeSourceInfo *>(Val: Initializee)) |
| 2887 | return TSInfo->getTypeLoc().getBeginLoc(); |
| 2888 | |
| 2889 | return {}; |
| 2890 | } |
| 2891 | |
| 2892 | SourceRange CXXCtorInitializer::getSourceRange() const { |
| 2893 | if (isInClassMemberInitializer()) { |
| 2894 | FieldDecl *D = getAnyMember(); |
| 2895 | if (Expr *I = D->getInClassInitializer()) |
| 2896 | return I->getSourceRange(); |
| 2897 | return {}; |
| 2898 | } |
| 2899 | |
| 2900 | return SourceRange(getSourceLocation(), getRParenLoc()); |
| 2901 | } |
| 2902 | |
| 2903 | CXXConstructorDecl::CXXConstructorDecl( |
| 2904 | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, |
| 2905 | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, |
| 2906 | ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline, |
| 2907 | bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, |
| 2908 | InheritedConstructor Inherited, |
| 2909 | const AssociatedConstraint &TrailingRequiresClause) |
| 2910 | : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo, |
| 2911 | SC_None, UsesFPIntrin, isInline, ConstexprKind, |
| 2912 | SourceLocation(), TrailingRequiresClause) { |
| 2913 | setNumCtorInitializers(0); |
| 2914 | setInheritingConstructor(static_cast<bool>(Inherited)); |
| 2915 | setImplicit(isImplicitlyDeclared); |
| 2916 | CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0; |
| 2917 | if (Inherited) |
| 2918 | *getTrailingObjects<InheritedConstructor>() = Inherited; |
| 2919 | setExplicitSpecifier(ES); |
| 2920 | } |
| 2921 | |
| 2922 | void CXXConstructorDecl::anchor() {} |
| 2923 | |
| 2924 | CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C, |
| 2925 | GlobalDeclID ID, |
| 2926 | uint64_t AllocKind) { |
| 2927 | bool hasTrailingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit); |
| 2928 | bool isInheritingConstructor = |
| 2929 | static_cast<bool>(AllocKind & TAKInheritsConstructor); |
| 2930 | unsigned = |
| 2931 | additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( |
| 2932 | Counts: isInheritingConstructor, Counts: hasTrailingExplicit); |
| 2933 | auto *Result = new (C, ID, Extra) CXXConstructorDecl( |
| 2934 | C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, |
| 2935 | ExplicitSpecifier(), false, false, false, ConstexprSpecKind::Unspecified, |
| 2936 | InheritedConstructor(), /*TrailingRequiresClause=*/{}); |
| 2937 | Result->setInheritingConstructor(isInheritingConstructor); |
| 2938 | Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier = |
| 2939 | hasTrailingExplicit; |
| 2940 | Result->setExplicitSpecifier(ExplicitSpecifier()); |
| 2941 | return Result; |
| 2942 | } |
| 2943 | |
| 2944 | CXXConstructorDecl *CXXConstructorDecl::Create( |
| 2945 | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, |
| 2946 | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, |
| 2947 | ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline, |
| 2948 | bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, |
| 2949 | InheritedConstructor Inherited, |
| 2950 | const AssociatedConstraint &TrailingRequiresClause) { |
| 2951 | assert(NameInfo.getName().getNameKind() |
| 2952 | == DeclarationName::CXXConstructorName && |
| 2953 | "Name must refer to a constructor" ); |
| 2954 | unsigned = |
| 2955 | additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( |
| 2956 | Counts: Inherited ? 1 : 0, Counts: ES.getExpr() ? 1 : 0); |
| 2957 | return new (C, RD, Extra) CXXConstructorDecl( |
| 2958 | C, RD, StartLoc, NameInfo, T, TInfo, ES, UsesFPIntrin, isInline, |
| 2959 | isImplicitlyDeclared, ConstexprKind, Inherited, TrailingRequiresClause); |
| 2960 | } |
| 2961 | |
| 2962 | CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const { |
| 2963 | return CtorInitializers.get(Source: getASTContext().getExternalSource()); |
| 2964 | } |
| 2965 | |
| 2966 | CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const { |
| 2967 | assert(isDelegatingConstructor() && "Not a delegating constructor!" ); |
| 2968 | Expr *E = (*init_begin())->getInit()->IgnoreImplicit(); |
| 2969 | if (const auto *Construct = dyn_cast<CXXConstructExpr>(Val: E)) |
| 2970 | return Construct->getConstructor(); |
| 2971 | |
| 2972 | return nullptr; |
| 2973 | } |
| 2974 | |
| 2975 | bool CXXConstructorDecl::isDefaultConstructor() const { |
| 2976 | // C++ [class.default.ctor]p1: |
| 2977 | // A default constructor for a class X is a constructor of class X for |
| 2978 | // which each parameter that is not a function parameter pack has a default |
| 2979 | // argument (including the case of a constructor with no parameters) |
| 2980 | return getMinRequiredArguments() == 0; |
| 2981 | } |
| 2982 | |
| 2983 | bool |
| 2984 | CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { |
| 2985 | return isCopyOrMoveConstructor(TypeQuals) && |
| 2986 | getParamDecl(i: 0)->getType()->isLValueReferenceType(); |
| 2987 | } |
| 2988 | |
| 2989 | bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { |
| 2990 | return isCopyOrMoveConstructor(TypeQuals) && |
| 2991 | getParamDecl(i: 0)->getType()->isRValueReferenceType(); |
| 2992 | } |
| 2993 | |
| 2994 | /// Determine whether this is a copy or move constructor. |
| 2995 | bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { |
| 2996 | // C++ [class.copy]p2: |
| 2997 | // A non-template constructor for class X is a copy constructor |
| 2998 | // if its first parameter is of type X&, const X&, volatile X& or |
| 2999 | // const volatile X&, and either there are no other parameters |
| 3000 | // or else all other parameters have default arguments (8.3.6). |
| 3001 | // C++0x [class.copy]p3: |
| 3002 | // A non-template constructor for class X is a move constructor if its |
| 3003 | // first parameter is of type X&&, const X&&, volatile X&&, or |
| 3004 | // const volatile X&&, and either there are no other parameters or else |
| 3005 | // all other parameters have default arguments. |
| 3006 | if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr || |
| 3007 | getDescribedFunctionTemplate() != nullptr) |
| 3008 | return false; |
| 3009 | |
| 3010 | const ParmVarDecl *Param = getParamDecl(i: 0); |
| 3011 | |
| 3012 | // Do we have a reference type? |
| 3013 | const auto *ParamRefType = Param->getType()->getAs<ReferenceType>(); |
| 3014 | if (!ParamRefType) |
| 3015 | return false; |
| 3016 | |
| 3017 | // Is it a reference to our class type? |
| 3018 | ASTContext &Context = getASTContext(); |
| 3019 | |
| 3020 | CanQualType PointeeType |
| 3021 | = Context.getCanonicalType(T: ParamRefType->getPointeeType()); |
| 3022 | CanQualType ClassTy |
| 3023 | = Context.getCanonicalType(T: Context.getTagDeclType(Decl: getParent())); |
| 3024 | if (PointeeType.getUnqualifiedType() != ClassTy) |
| 3025 | return false; |
| 3026 | |
| 3027 | // FIXME: other qualifiers? |
| 3028 | |
| 3029 | // We have a copy or move constructor. |
| 3030 | TypeQuals = PointeeType.getCVRQualifiers(); |
| 3031 | return true; |
| 3032 | } |
| 3033 | |
| 3034 | bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { |
| 3035 | // C++ [class.conv.ctor]p1: |
| 3036 | // A constructor declared without the function-specifier explicit |
| 3037 | // that can be called with a single parameter specifies a |
| 3038 | // conversion from the type of its first parameter to the type of |
| 3039 | // its class. Such a constructor is called a converting |
| 3040 | // constructor. |
| 3041 | if (isExplicit() && !AllowExplicit) |
| 3042 | return false; |
| 3043 | |
| 3044 | // FIXME: This has nothing to do with the definition of converting |
| 3045 | // constructor, but is convenient for how we use this function in overload |
| 3046 | // resolution. |
| 3047 | return getNumParams() == 0 |
| 3048 | ? getType()->castAs<FunctionProtoType>()->isVariadic() |
| 3049 | : getMinRequiredArguments() <= 1; |
| 3050 | } |
| 3051 | |
| 3052 | bool CXXConstructorDecl::isSpecializationCopyingObject() const { |
| 3053 | if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr) |
| 3054 | return false; |
| 3055 | |
| 3056 | const ParmVarDecl *Param = getParamDecl(i: 0); |
| 3057 | |
| 3058 | ASTContext &Context = getASTContext(); |
| 3059 | CanQualType ParamType = Context.getCanonicalType(T: Param->getType()); |
| 3060 | |
| 3061 | // Is it the same as our class type? |
| 3062 | CanQualType ClassTy |
| 3063 | = Context.getCanonicalType(T: Context.getTagDeclType(Decl: getParent())); |
| 3064 | if (ParamType.getUnqualifiedType() != ClassTy) |
| 3065 | return false; |
| 3066 | |
| 3067 | return true; |
| 3068 | } |
| 3069 | |
| 3070 | void CXXDestructorDecl::anchor() {} |
| 3071 | |
| 3072 | CXXDestructorDecl *CXXDestructorDecl::CreateDeserialized(ASTContext &C, |
| 3073 | GlobalDeclID ID) { |
| 3074 | return new (C, ID) CXXDestructorDecl( |
| 3075 | C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, |
| 3076 | false, false, false, ConstexprSpecKind::Unspecified, |
| 3077 | /*TrailingRequiresClause=*/{}); |
| 3078 | } |
| 3079 | |
| 3080 | CXXDestructorDecl *CXXDestructorDecl::Create( |
| 3081 | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, |
| 3082 | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, |
| 3083 | bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared, |
| 3084 | ConstexprSpecKind ConstexprKind, |
| 3085 | const AssociatedConstraint &TrailingRequiresClause) { |
| 3086 | assert(NameInfo.getName().getNameKind() |
| 3087 | == DeclarationName::CXXDestructorName && |
| 3088 | "Name must refer to a destructor" ); |
| 3089 | return new (C, RD) CXXDestructorDecl( |
| 3090 | C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, |
| 3091 | isImplicitlyDeclared, ConstexprKind, TrailingRequiresClause); |
| 3092 | } |
| 3093 | |
| 3094 | void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) { |
| 3095 | auto *First = cast<CXXDestructorDecl>(Val: getFirstDecl()); |
| 3096 | if (OD && !First->OperatorDelete) { |
| 3097 | First->OperatorDelete = OD; |
| 3098 | First->OperatorDeleteThisArg = ThisArg; |
| 3099 | if (auto *L = getASTMutationListener()) |
| 3100 | L->ResolvedOperatorDelete(DD: First, Delete: OD, ThisArg); |
| 3101 | } |
| 3102 | } |
| 3103 | |
| 3104 | bool CXXDestructorDecl::isCalledByDelete(const FunctionDecl *OpDel) const { |
| 3105 | // C++20 [expr.delete]p6: If the value of the operand of the delete- |
| 3106 | // expression is not a null pointer value and the selected deallocation |
| 3107 | // function (see below) is not a destroying operator delete, the delete- |
| 3108 | // expression will invoke the destructor (if any) for the object or the |
| 3109 | // elements of the array being deleted. |
| 3110 | // |
| 3111 | // This means we should not look at the destructor for a destroying |
| 3112 | // delete operator, as that destructor is never called, unless the |
| 3113 | // destructor is virtual (see [expr.delete]p8.1) because then the |
| 3114 | // selected operator depends on the dynamic type of the pointer. |
| 3115 | const FunctionDecl *SelectedOperatorDelete = OpDel ? OpDel : OperatorDelete; |
| 3116 | if (!SelectedOperatorDelete) |
| 3117 | return true; |
| 3118 | |
| 3119 | if (!SelectedOperatorDelete->isDestroyingOperatorDelete()) |
| 3120 | return true; |
| 3121 | |
| 3122 | // We have a destroying operator delete, so it depends on the dtor. |
| 3123 | return isVirtual(); |
| 3124 | } |
| 3125 | |
| 3126 | void CXXConversionDecl::anchor() {} |
| 3127 | |
| 3128 | CXXConversionDecl *CXXConversionDecl::CreateDeserialized(ASTContext &C, |
| 3129 | GlobalDeclID ID) { |
| 3130 | return new (C, ID) CXXConversionDecl( |
| 3131 | C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, |
| 3132 | false, false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, |
| 3133 | SourceLocation(), /*TrailingRequiresClause=*/{}); |
| 3134 | } |
| 3135 | |
| 3136 | CXXConversionDecl *CXXConversionDecl::Create( |
| 3137 | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, |
| 3138 | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, |
| 3139 | bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES, |
| 3140 | ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, |
| 3141 | const AssociatedConstraint &TrailingRequiresClause) { |
| 3142 | assert(NameInfo.getName().getNameKind() |
| 3143 | == DeclarationName::CXXConversionFunctionName && |
| 3144 | "Name must refer to a conversion function" ); |
| 3145 | return new (C, RD) CXXConversionDecl( |
| 3146 | C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, ES, |
| 3147 | ConstexprKind, EndLocation, TrailingRequiresClause); |
| 3148 | } |
| 3149 | |
| 3150 | bool CXXConversionDecl::isLambdaToBlockPointerConversion() const { |
| 3151 | return isImplicit() && getParent()->isLambda() && |
| 3152 | getConversionType()->isBlockPointerType(); |
| 3153 | } |
| 3154 | |
| 3155 | LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, |
| 3156 | SourceLocation LangLoc, |
| 3157 | LinkageSpecLanguageIDs lang, bool HasBraces) |
| 3158 | : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec), |
| 3159 | ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) { |
| 3160 | setLanguage(lang); |
| 3161 | LinkageSpecDeclBits.HasBraces = HasBraces; |
| 3162 | } |
| 3163 | |
| 3164 | void LinkageSpecDecl::anchor() {} |
| 3165 | |
| 3166 | LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, DeclContext *DC, |
| 3167 | SourceLocation ExternLoc, |
| 3168 | SourceLocation LangLoc, |
| 3169 | LinkageSpecLanguageIDs Lang, |
| 3170 | bool HasBraces) { |
| 3171 | return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces); |
| 3172 | } |
| 3173 | |
| 3174 | LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, |
| 3175 | GlobalDeclID ID) { |
| 3176 | return new (C, ID) |
| 3177 | LinkageSpecDecl(nullptr, SourceLocation(), SourceLocation(), |
| 3178 | LinkageSpecLanguageIDs::C, false); |
| 3179 | } |
| 3180 | |
| 3181 | void UsingDirectiveDecl::anchor() {} |
| 3182 | |
| 3183 | UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, |
| 3184 | SourceLocation L, |
| 3185 | SourceLocation NamespaceLoc, |
| 3186 | NestedNameSpecifierLoc QualifierLoc, |
| 3187 | SourceLocation IdentLoc, |
| 3188 | NamedDecl *Used, |
| 3189 | DeclContext *CommonAncestor) { |
| 3190 | if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Val: Used)) |
| 3191 | Used = NS->getFirstDecl(); |
| 3192 | return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, |
| 3193 | IdentLoc, Used, CommonAncestor); |
| 3194 | } |
| 3195 | |
| 3196 | UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C, |
| 3197 | GlobalDeclID ID) { |
| 3198 | return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(), |
| 3199 | SourceLocation(), |
| 3200 | NestedNameSpecifierLoc(), |
| 3201 | SourceLocation(), nullptr, nullptr); |
| 3202 | } |
| 3203 | |
| 3204 | NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { |
| 3205 | if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(Val: NominatedNamespace)) |
| 3206 | return NA->getNamespace(); |
| 3207 | return cast_or_null<NamespaceDecl>(Val: NominatedNamespace); |
| 3208 | } |
| 3209 | |
| 3210 | NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline, |
| 3211 | SourceLocation StartLoc, SourceLocation IdLoc, |
| 3212 | IdentifierInfo *Id, NamespaceDecl *PrevDecl, |
| 3213 | bool Nested) |
| 3214 | : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace), |
| 3215 | redeclarable_base(C), LocStart(StartLoc) { |
| 3216 | setInline(Inline); |
| 3217 | setNested(Nested); |
| 3218 | setPreviousDecl(PrevDecl); |
| 3219 | } |
| 3220 | |
| 3221 | NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, |
| 3222 | bool Inline, SourceLocation StartLoc, |
| 3223 | SourceLocation IdLoc, IdentifierInfo *Id, |
| 3224 | NamespaceDecl *PrevDecl, bool Nested) { |
| 3225 | return new (C, DC) |
| 3226 | NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, PrevDecl, Nested); |
| 3227 | } |
| 3228 | |
| 3229 | NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, |
| 3230 | GlobalDeclID ID) { |
| 3231 | return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(), |
| 3232 | SourceLocation(), nullptr, nullptr, false); |
| 3233 | } |
| 3234 | |
| 3235 | NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() { |
| 3236 | return getNextRedeclaration(); |
| 3237 | } |
| 3238 | |
| 3239 | NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() { |
| 3240 | return getPreviousDecl(); |
| 3241 | } |
| 3242 | |
| 3243 | NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() { |
| 3244 | return getMostRecentDecl(); |
| 3245 | } |
| 3246 | |
| 3247 | void NamespaceAliasDecl::anchor() {} |
| 3248 | |
| 3249 | NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() { |
| 3250 | return getNextRedeclaration(); |
| 3251 | } |
| 3252 | |
| 3253 | NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() { |
| 3254 | return getPreviousDecl(); |
| 3255 | } |
| 3256 | |
| 3257 | NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() { |
| 3258 | return getMostRecentDecl(); |
| 3259 | } |
| 3260 | |
| 3261 | NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, |
| 3262 | SourceLocation UsingLoc, |
| 3263 | SourceLocation AliasLoc, |
| 3264 | IdentifierInfo *Alias, |
| 3265 | NestedNameSpecifierLoc QualifierLoc, |
| 3266 | SourceLocation IdentLoc, |
| 3267 | NamedDecl *Namespace) { |
| 3268 | // FIXME: Preserve the aliased namespace as written. |
| 3269 | if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Val: Namespace)) |
| 3270 | Namespace = NS->getFirstDecl(); |
| 3271 | return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias, |
| 3272 | QualifierLoc, IdentLoc, Namespace); |
| 3273 | } |
| 3274 | |
| 3275 | NamespaceAliasDecl *NamespaceAliasDecl::CreateDeserialized(ASTContext &C, |
| 3276 | GlobalDeclID ID) { |
| 3277 | return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(), |
| 3278 | SourceLocation(), nullptr, |
| 3279 | NestedNameSpecifierLoc(), |
| 3280 | SourceLocation(), nullptr); |
| 3281 | } |
| 3282 | |
| 3283 | void LifetimeExtendedTemporaryDecl::anchor() {} |
| 3284 | |
| 3285 | /// Retrieve the storage duration for the materialized temporary. |
| 3286 | StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const { |
| 3287 | const ValueDecl *ExtendingDecl = getExtendingDecl(); |
| 3288 | if (!ExtendingDecl) |
| 3289 | return SD_FullExpression; |
| 3290 | // FIXME: This is not necessarily correct for a temporary materialized |
| 3291 | // within a default initializer. |
| 3292 | if (isa<FieldDecl>(Val: ExtendingDecl)) |
| 3293 | return SD_Automatic; |
| 3294 | // FIXME: This only works because storage class specifiers are not allowed |
| 3295 | // on decomposition declarations. |
| 3296 | if (isa<BindingDecl>(Val: ExtendingDecl)) |
| 3297 | return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic |
| 3298 | : SD_Static; |
| 3299 | return cast<VarDecl>(Val: ExtendingDecl)->getStorageDuration(); |
| 3300 | } |
| 3301 | |
| 3302 | APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const { |
| 3303 | assert(getStorageDuration() == SD_Static && |
| 3304 | "don't need to cache the computed value for this temporary" ); |
| 3305 | if (MayCreate && !Value) { |
| 3306 | Value = (new (getASTContext()) APValue); |
| 3307 | getASTContext().addDestruction(Ptr: Value); |
| 3308 | } |
| 3309 | assert(Value && "may not be null" ); |
| 3310 | return Value; |
| 3311 | } |
| 3312 | |
| 3313 | void UsingShadowDecl::anchor() {} |
| 3314 | |
| 3315 | UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, |
| 3316 | SourceLocation Loc, DeclarationName Name, |
| 3317 | BaseUsingDecl *Introducer, NamedDecl *Target) |
| 3318 | : NamedDecl(K, DC, Loc, Name), redeclarable_base(C), |
| 3319 | UsingOrNextShadow(Introducer) { |
| 3320 | if (Target) { |
| 3321 | assert(!isa<UsingShadowDecl>(Target)); |
| 3322 | setTargetDecl(Target); |
| 3323 | } |
| 3324 | setImplicit(); |
| 3325 | } |
| 3326 | |
| 3327 | UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty) |
| 3328 | : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()), |
| 3329 | redeclarable_base(C) {} |
| 3330 | |
| 3331 | UsingShadowDecl *UsingShadowDecl::CreateDeserialized(ASTContext &C, |
| 3332 | GlobalDeclID ID) { |
| 3333 | return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell()); |
| 3334 | } |
| 3335 | |
| 3336 | BaseUsingDecl *UsingShadowDecl::getIntroducer() const { |
| 3337 | const UsingShadowDecl *Shadow = this; |
| 3338 | while (const auto *NextShadow = |
| 3339 | dyn_cast<UsingShadowDecl>(Val: Shadow->UsingOrNextShadow)) |
| 3340 | Shadow = NextShadow; |
| 3341 | return cast<BaseUsingDecl>(Val: Shadow->UsingOrNextShadow); |
| 3342 | } |
| 3343 | |
| 3344 | void ConstructorUsingShadowDecl::anchor() {} |
| 3345 | |
| 3346 | ConstructorUsingShadowDecl * |
| 3347 | ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC, |
| 3348 | SourceLocation Loc, UsingDecl *Using, |
| 3349 | NamedDecl *Target, bool IsVirtual) { |
| 3350 | return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target, |
| 3351 | IsVirtual); |
| 3352 | } |
| 3353 | |
| 3354 | ConstructorUsingShadowDecl * |
| 3355 | ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
| 3356 | return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell()); |
| 3357 | } |
| 3358 | |
| 3359 | CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const { |
| 3360 | return getIntroducer()->getQualifier()->getAsRecordDecl(); |
| 3361 | } |
| 3362 | |
| 3363 | void BaseUsingDecl::anchor() {} |
| 3364 | |
| 3365 | void BaseUsingDecl::addShadowDecl(UsingShadowDecl *S) { |
| 3366 | assert(!llvm::is_contained(shadows(), S) && "declaration already in set" ); |
| 3367 | assert(S->getIntroducer() == this); |
| 3368 | |
| 3369 | if (FirstUsingShadow.getPointer()) |
| 3370 | S->UsingOrNextShadow = FirstUsingShadow.getPointer(); |
| 3371 | FirstUsingShadow.setPointer(S); |
| 3372 | } |
| 3373 | |
| 3374 | void BaseUsingDecl::removeShadowDecl(UsingShadowDecl *S) { |
| 3375 | assert(llvm::is_contained(shadows(), S) && "declaration not in set" ); |
| 3376 | assert(S->getIntroducer() == this); |
| 3377 | |
| 3378 | // Remove S from the shadow decl chain. This is O(n) but hopefully rare. |
| 3379 | |
| 3380 | if (FirstUsingShadow.getPointer() == S) { |
| 3381 | FirstUsingShadow.setPointer( |
| 3382 | dyn_cast<UsingShadowDecl>(Val: S->UsingOrNextShadow)); |
| 3383 | S->UsingOrNextShadow = this; |
| 3384 | return; |
| 3385 | } |
| 3386 | |
| 3387 | UsingShadowDecl *Prev = FirstUsingShadow.getPointer(); |
| 3388 | while (Prev->UsingOrNextShadow != S) |
| 3389 | Prev = cast<UsingShadowDecl>(Val: Prev->UsingOrNextShadow); |
| 3390 | Prev->UsingOrNextShadow = S->UsingOrNextShadow; |
| 3391 | S->UsingOrNextShadow = this; |
| 3392 | } |
| 3393 | |
| 3394 | void UsingDecl::anchor() {} |
| 3395 | |
| 3396 | UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, |
| 3397 | NestedNameSpecifierLoc QualifierLoc, |
| 3398 | const DeclarationNameInfo &NameInfo, |
| 3399 | bool HasTypename) { |
| 3400 | return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename); |
| 3401 | } |
| 3402 | |
| 3403 | UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
| 3404 | return new (C, ID) UsingDecl(nullptr, SourceLocation(), |
| 3405 | NestedNameSpecifierLoc(), DeclarationNameInfo(), |
| 3406 | false); |
| 3407 | } |
| 3408 | |
| 3409 | SourceRange UsingDecl::getSourceRange() const { |
| 3410 | SourceLocation Begin = isAccessDeclaration() |
| 3411 | ? getQualifierLoc().getBeginLoc() : UsingLocation; |
| 3412 | return SourceRange(Begin, getNameInfo().getEndLoc()); |
| 3413 | } |
| 3414 | |
| 3415 | void UsingEnumDecl::anchor() {} |
| 3416 | |
| 3417 | UsingEnumDecl *UsingEnumDecl::Create(ASTContext &C, DeclContext *DC, |
| 3418 | SourceLocation UL, |
| 3419 | SourceLocation EL, |
| 3420 | SourceLocation NL, |
| 3421 | TypeSourceInfo *EnumType) { |
| 3422 | assert(isa<EnumDecl>(EnumType->getType()->getAsTagDecl())); |
| 3423 | return new (C, DC) |
| 3424 | UsingEnumDecl(DC, EnumType->getType()->getAsTagDecl()->getDeclName(), UL, EL, NL, EnumType); |
| 3425 | } |
| 3426 | |
| 3427 | UsingEnumDecl *UsingEnumDecl::CreateDeserialized(ASTContext &C, |
| 3428 | GlobalDeclID ID) { |
| 3429 | return new (C, ID) |
| 3430 | UsingEnumDecl(nullptr, DeclarationName(), SourceLocation(), |
| 3431 | SourceLocation(), SourceLocation(), nullptr); |
| 3432 | } |
| 3433 | |
| 3434 | SourceRange UsingEnumDecl::getSourceRange() const { |
| 3435 | return SourceRange(UsingLocation, EnumType->getTypeLoc().getEndLoc()); |
| 3436 | } |
| 3437 | |
| 3438 | void UsingPackDecl::anchor() {} |
| 3439 | |
| 3440 | UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC, |
| 3441 | NamedDecl *InstantiatedFrom, |
| 3442 | ArrayRef<NamedDecl *> UsingDecls) { |
| 3443 | size_t = additionalSizeToAlloc<NamedDecl *>(Counts: UsingDecls.size()); |
| 3444 | return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls); |
| 3445 | } |
| 3446 | |
| 3447 | UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID, |
| 3448 | unsigned NumExpansions) { |
| 3449 | size_t = additionalSizeToAlloc<NamedDecl *>(Counts: NumExpansions); |
| 3450 | auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, {}); |
| 3451 | Result->NumExpansions = NumExpansions; |
| 3452 | auto *Trail = Result->getTrailingObjects(); |
| 3453 | std::uninitialized_fill_n(first: Trail, n: NumExpansions, x: nullptr); |
| 3454 | return Result; |
| 3455 | } |
| 3456 | |
| 3457 | void UnresolvedUsingValueDecl::anchor() {} |
| 3458 | |
| 3459 | UnresolvedUsingValueDecl * |
| 3460 | UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, |
| 3461 | SourceLocation UsingLoc, |
| 3462 | NestedNameSpecifierLoc QualifierLoc, |
| 3463 | const DeclarationNameInfo &NameInfo, |
| 3464 | SourceLocation EllipsisLoc) { |
| 3465 | return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, |
| 3466 | QualifierLoc, NameInfo, |
| 3467 | EllipsisLoc); |
| 3468 | } |
| 3469 | |
| 3470 | UnresolvedUsingValueDecl * |
| 3471 | UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
| 3472 | return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(), |
| 3473 | SourceLocation(), |
| 3474 | NestedNameSpecifierLoc(), |
| 3475 | DeclarationNameInfo(), |
| 3476 | SourceLocation()); |
| 3477 | } |
| 3478 | |
| 3479 | SourceRange UnresolvedUsingValueDecl::getSourceRange() const { |
| 3480 | SourceLocation Begin = isAccessDeclaration() |
| 3481 | ? getQualifierLoc().getBeginLoc() : UsingLocation; |
| 3482 | return SourceRange(Begin, getNameInfo().getEndLoc()); |
| 3483 | } |
| 3484 | |
| 3485 | void UnresolvedUsingTypenameDecl::anchor() {} |
| 3486 | |
| 3487 | UnresolvedUsingTypenameDecl * |
| 3488 | UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, |
| 3489 | SourceLocation UsingLoc, |
| 3490 | SourceLocation TypenameLoc, |
| 3491 | NestedNameSpecifierLoc QualifierLoc, |
| 3492 | SourceLocation TargetNameLoc, |
| 3493 | DeclarationName TargetName, |
| 3494 | SourceLocation EllipsisLoc) { |
| 3495 | return new (C, DC) UnresolvedUsingTypenameDecl( |
| 3496 | DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc, |
| 3497 | TargetName.getAsIdentifierInfo(), EllipsisLoc); |
| 3498 | } |
| 3499 | |
| 3500 | UnresolvedUsingTypenameDecl * |
| 3501 | UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, |
| 3502 | GlobalDeclID ID) { |
| 3503 | return new (C, ID) UnresolvedUsingTypenameDecl( |
| 3504 | nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(), |
| 3505 | SourceLocation(), nullptr, SourceLocation()); |
| 3506 | } |
| 3507 | |
| 3508 | UnresolvedUsingIfExistsDecl * |
| 3509 | UnresolvedUsingIfExistsDecl::Create(ASTContext &Ctx, DeclContext *DC, |
| 3510 | SourceLocation Loc, DeclarationName Name) { |
| 3511 | return new (Ctx, DC) UnresolvedUsingIfExistsDecl(DC, Loc, Name); |
| 3512 | } |
| 3513 | |
| 3514 | UnresolvedUsingIfExistsDecl * |
| 3515 | UnresolvedUsingIfExistsDecl::CreateDeserialized(ASTContext &Ctx, |
| 3516 | GlobalDeclID ID) { |
| 3517 | return new (Ctx, ID) |
| 3518 | UnresolvedUsingIfExistsDecl(nullptr, SourceLocation(), DeclarationName()); |
| 3519 | } |
| 3520 | |
| 3521 | UnresolvedUsingIfExistsDecl::UnresolvedUsingIfExistsDecl(DeclContext *DC, |
| 3522 | SourceLocation Loc, |
| 3523 | DeclarationName Name) |
| 3524 | : NamedDecl(Decl::UnresolvedUsingIfExists, DC, Loc, Name) {} |
| 3525 | |
| 3526 | void UnresolvedUsingIfExistsDecl::anchor() {} |
| 3527 | |
| 3528 | void StaticAssertDecl::anchor() {} |
| 3529 | |
| 3530 | StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, |
| 3531 | SourceLocation StaticAssertLoc, |
| 3532 | Expr *AssertExpr, Expr *Message, |
| 3533 | SourceLocation RParenLoc, |
| 3534 | bool Failed) { |
| 3535 | return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, |
| 3536 | RParenLoc, Failed); |
| 3537 | } |
| 3538 | |
| 3539 | StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, |
| 3540 | GlobalDeclID ID) { |
| 3541 | return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr, |
| 3542 | nullptr, SourceLocation(), false); |
| 3543 | } |
| 3544 | |
| 3545 | VarDecl *ValueDecl::getPotentiallyDecomposedVarDecl() { |
| 3546 | assert((isa<VarDecl, BindingDecl>(this)) && |
| 3547 | "expected a VarDecl or a BindingDecl" ); |
| 3548 | if (auto *Var = llvm::dyn_cast<VarDecl>(Val: this)) |
| 3549 | return Var; |
| 3550 | if (auto *BD = llvm::dyn_cast<BindingDecl>(Val: this)) |
| 3551 | return llvm::dyn_cast_if_present<VarDecl>(Val: BD->getDecomposedDecl()); |
| 3552 | return nullptr; |
| 3553 | } |
| 3554 | |
| 3555 | void BindingDecl::anchor() {} |
| 3556 | |
| 3557 | BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC, |
| 3558 | SourceLocation IdLoc, IdentifierInfo *Id, |
| 3559 | QualType T) { |
| 3560 | return new (C, DC) BindingDecl(DC, IdLoc, Id, T); |
| 3561 | } |
| 3562 | |
| 3563 | BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
| 3564 | return new (C, ID) |
| 3565 | BindingDecl(nullptr, SourceLocation(), nullptr, QualType()); |
| 3566 | } |
| 3567 | |
| 3568 | VarDecl *BindingDecl::getHoldingVar() const { |
| 3569 | Expr *B = getBinding(); |
| 3570 | if (!B) |
| 3571 | return nullptr; |
| 3572 | auto *DRE = dyn_cast<DeclRefExpr>(Val: B->IgnoreImplicit()); |
| 3573 | if (!DRE) |
| 3574 | return nullptr; |
| 3575 | |
| 3576 | auto *VD = cast<VarDecl>(Val: DRE->getDecl()); |
| 3577 | assert(VD->isImplicit() && "holding var for binding decl not implicit" ); |
| 3578 | return VD; |
| 3579 | } |
| 3580 | |
| 3581 | ArrayRef<BindingDecl *> BindingDecl::getBindingPackDecls() const { |
| 3582 | assert(Binding && "expecting a pack expr" ); |
| 3583 | auto *FP = cast<FunctionParmPackExpr>(Val: Binding); |
| 3584 | ValueDecl *const *First = FP->getNumExpansions() > 0 ? FP->begin() : nullptr; |
| 3585 | assert((!First || isa<BindingDecl>(*First)) && "expecting a BindingDecl" ); |
| 3586 | return ArrayRef<BindingDecl *>(reinterpret_cast<BindingDecl *const *>(First), |
| 3587 | FP->getNumExpansions()); |
| 3588 | } |
| 3589 | |
| 3590 | void DecompositionDecl::anchor() {} |
| 3591 | |
| 3592 | DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC, |
| 3593 | SourceLocation StartLoc, |
| 3594 | SourceLocation LSquareLoc, |
| 3595 | QualType T, TypeSourceInfo *TInfo, |
| 3596 | StorageClass SC, |
| 3597 | ArrayRef<BindingDecl *> Bindings) { |
| 3598 | size_t = additionalSizeToAlloc<BindingDecl *>(Counts: Bindings.size()); |
| 3599 | return new (C, DC, Extra) |
| 3600 | DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings); |
| 3601 | } |
| 3602 | |
| 3603 | DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C, |
| 3604 | GlobalDeclID ID, |
| 3605 | unsigned NumBindings) { |
| 3606 | size_t = additionalSizeToAlloc<BindingDecl *>(Counts: NumBindings); |
| 3607 | auto *Result = new (C, ID, Extra) |
| 3608 | DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(), |
| 3609 | QualType(), nullptr, StorageClass(), {}); |
| 3610 | // Set up and clean out the bindings array. |
| 3611 | Result->NumBindings = NumBindings; |
| 3612 | auto *Trail = Result->getTrailingObjects(); |
| 3613 | std::uninitialized_fill_n(first: Trail, n: NumBindings, x: nullptr); |
| 3614 | return Result; |
| 3615 | } |
| 3616 | |
| 3617 | void DecompositionDecl::printName(llvm::raw_ostream &OS, |
| 3618 | const PrintingPolicy &Policy) const { |
| 3619 | OS << '['; |
| 3620 | bool Comma = false; |
| 3621 | for (const auto *B : bindings()) { |
| 3622 | if (Comma) |
| 3623 | OS << ", " ; |
| 3624 | B->printName(OS, Policy); |
| 3625 | Comma = true; |
| 3626 | } |
| 3627 | OS << ']'; |
| 3628 | } |
| 3629 | |
| 3630 | void MSPropertyDecl::anchor() {} |
| 3631 | |
| 3632 | MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC, |
| 3633 | SourceLocation L, DeclarationName N, |
| 3634 | QualType T, TypeSourceInfo *TInfo, |
| 3635 | SourceLocation StartL, |
| 3636 | IdentifierInfo *Getter, |
| 3637 | IdentifierInfo *Setter) { |
| 3638 | return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter); |
| 3639 | } |
| 3640 | |
| 3641 | MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C, |
| 3642 | GlobalDeclID ID) { |
| 3643 | return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(), |
| 3644 | DeclarationName(), QualType(), nullptr, |
| 3645 | SourceLocation(), nullptr, nullptr); |
| 3646 | } |
| 3647 | |
| 3648 | void MSGuidDecl::anchor() {} |
| 3649 | |
| 3650 | MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P) |
| 3651 | : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T), |
| 3652 | PartVal(P) {} |
| 3653 | |
| 3654 | MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) { |
| 3655 | DeclContext *DC = C.getTranslationUnitDecl(); |
| 3656 | return new (C, DC) MSGuidDecl(DC, T, P); |
| 3657 | } |
| 3658 | |
| 3659 | MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
| 3660 | return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts()); |
| 3661 | } |
| 3662 | |
| 3663 | void MSGuidDecl::printName(llvm::raw_ostream &OS, |
| 3664 | const PrintingPolicy &) const { |
| 3665 | OS << llvm::format(Fmt: "GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-" , |
| 3666 | Vals: PartVal.Part1, Vals: PartVal.Part2, Vals: PartVal.Part3); |
| 3667 | unsigned I = 0; |
| 3668 | for (uint8_t Byte : PartVal.Part4And5) { |
| 3669 | OS << llvm::format(Fmt: "%02" PRIx8, Vals: Byte); |
| 3670 | if (++I == 2) |
| 3671 | OS << '-'; |
| 3672 | } |
| 3673 | OS << '}'; |
| 3674 | } |
| 3675 | |
| 3676 | /// Determine if T is a valid 'struct _GUID' of the shape that we expect. |
| 3677 | static bool isValidStructGUID(ASTContext &Ctx, QualType T) { |
| 3678 | // FIXME: We only need to check this once, not once each time we compute a |
| 3679 | // GUID APValue. |
| 3680 | using MatcherRef = llvm::function_ref<bool(QualType)>; |
| 3681 | |
| 3682 | auto IsInt = [&Ctx](unsigned N) { |
| 3683 | return [&Ctx, N](QualType T) { |
| 3684 | return T->isUnsignedIntegerOrEnumerationType() && |
| 3685 | Ctx.getIntWidth(T) == N; |
| 3686 | }; |
| 3687 | }; |
| 3688 | |
| 3689 | auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) { |
| 3690 | return [&Ctx, Elem, N](QualType T) { |
| 3691 | const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T); |
| 3692 | return CAT && CAT->getSize() == N && Elem(CAT->getElementType()); |
| 3693 | }; |
| 3694 | }; |
| 3695 | |
| 3696 | auto IsStruct = [](std::initializer_list<MatcherRef> Fields) { |
| 3697 | return [Fields](QualType T) { |
| 3698 | const RecordDecl *RD = T->getAsRecordDecl(); |
| 3699 | if (!RD || RD->isUnion()) |
| 3700 | return false; |
| 3701 | RD = RD->getDefinition(); |
| 3702 | if (!RD) |
| 3703 | return false; |
| 3704 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) |
| 3705 | if (CXXRD->getNumBases()) |
| 3706 | return false; |
| 3707 | auto MatcherIt = Fields.begin(); |
| 3708 | for (const FieldDecl *FD : RD->fields()) { |
| 3709 | if (FD->isUnnamedBitField()) |
| 3710 | continue; |
| 3711 | if (FD->isBitField() || MatcherIt == Fields.end() || |
| 3712 | !(*MatcherIt)(FD->getType())) |
| 3713 | return false; |
| 3714 | ++MatcherIt; |
| 3715 | } |
| 3716 | return MatcherIt == Fields.end(); |
| 3717 | }; |
| 3718 | }; |
| 3719 | |
| 3720 | // We expect an {i32, i16, i16, [8 x i8]}. |
| 3721 | return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T); |
| 3722 | } |
| 3723 | |
| 3724 | APValue &MSGuidDecl::getAsAPValue() const { |
| 3725 | if (APVal.isAbsent() && isValidStructGUID(Ctx&: getASTContext(), T: getType())) { |
| 3726 | using llvm::APInt; |
| 3727 | using llvm::APSInt; |
| 3728 | APVal = APValue(APValue::UninitStruct(), 0, 4); |
| 3729 | APVal.getStructField(i: 0) = APValue(APSInt(APInt(32, PartVal.Part1), true)); |
| 3730 | APVal.getStructField(i: 1) = APValue(APSInt(APInt(16, PartVal.Part2), true)); |
| 3731 | APVal.getStructField(i: 2) = APValue(APSInt(APInt(16, PartVal.Part3), true)); |
| 3732 | APValue &Arr = APVal.getStructField(i: 3) = |
| 3733 | APValue(APValue::UninitArray(), 8, 8); |
| 3734 | for (unsigned I = 0; I != 8; ++I) { |
| 3735 | Arr.getArrayInitializedElt(I) = |
| 3736 | APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true)); |
| 3737 | } |
| 3738 | // Register this APValue to be destroyed if necessary. (Note that the |
| 3739 | // MSGuidDecl destructor is never run.) |
| 3740 | getASTContext().addDestruction(Ptr: &APVal); |
| 3741 | } |
| 3742 | |
| 3743 | return APVal; |
| 3744 | } |
| 3745 | |
| 3746 | void UnnamedGlobalConstantDecl::anchor() {} |
| 3747 | |
| 3748 | UnnamedGlobalConstantDecl::UnnamedGlobalConstantDecl(const ASTContext &C, |
| 3749 | DeclContext *DC, |
| 3750 | QualType Ty, |
| 3751 | const APValue &Val) |
| 3752 | : ValueDecl(Decl::UnnamedGlobalConstant, DC, SourceLocation(), |
| 3753 | DeclarationName(), Ty), |
| 3754 | Value(Val) { |
| 3755 | // Cleanup the embedded APValue if required (note that our destructor is never |
| 3756 | // run) |
| 3757 | if (Value.needsCleanup()) |
| 3758 | C.addDestruction(Ptr: &Value); |
| 3759 | } |
| 3760 | |
| 3761 | UnnamedGlobalConstantDecl * |
| 3762 | UnnamedGlobalConstantDecl::Create(const ASTContext &C, QualType T, |
| 3763 | const APValue &Value) { |
| 3764 | DeclContext *DC = C.getTranslationUnitDecl(); |
| 3765 | return new (C, DC) UnnamedGlobalConstantDecl(C, DC, T, Value); |
| 3766 | } |
| 3767 | |
| 3768 | UnnamedGlobalConstantDecl * |
| 3769 | UnnamedGlobalConstantDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) { |
| 3770 | return new (C, ID) |
| 3771 | UnnamedGlobalConstantDecl(C, nullptr, QualType(), APValue()); |
| 3772 | } |
| 3773 | |
| 3774 | void UnnamedGlobalConstantDecl::printName(llvm::raw_ostream &OS, |
| 3775 | const PrintingPolicy &) const { |
| 3776 | OS << "unnamed-global-constant" ; |
| 3777 | } |
| 3778 | |
| 3779 | static const char *getAccessName(AccessSpecifier AS) { |
| 3780 | switch (AS) { |
| 3781 | case AS_none: |
| 3782 | llvm_unreachable("Invalid access specifier!" ); |
| 3783 | case AS_public: |
| 3784 | return "public" ; |
| 3785 | case AS_private: |
| 3786 | return "private" ; |
| 3787 | case AS_protected: |
| 3788 | return "protected" ; |
| 3789 | } |
| 3790 | llvm_unreachable("Invalid access specifier!" ); |
| 3791 | } |
| 3792 | |
| 3793 | const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB, |
| 3794 | AccessSpecifier AS) { |
| 3795 | return DB << getAccessName(AS); |
| 3796 | } |
| 3797 | |