| 1 | //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Implements C++ name mangling according to the Itanium C++ ABI, |
| 10 | // which is used in GCC 3.2 and newer (and many compilers that are |
| 11 | // ABI-compatible with GCC): |
| 12 | // |
| 13 | // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "clang/AST/ASTContext.h" |
| 18 | #include "clang/AST/Attr.h" |
| 19 | #include "clang/AST/Decl.h" |
| 20 | #include "clang/AST/DeclCXX.h" |
| 21 | #include "clang/AST/DeclObjC.h" |
| 22 | #include "clang/AST/DeclOpenMP.h" |
| 23 | #include "clang/AST/DeclTemplate.h" |
| 24 | #include "clang/AST/Expr.h" |
| 25 | #include "clang/AST/ExprCXX.h" |
| 26 | #include "clang/AST/ExprConcepts.h" |
| 27 | #include "clang/AST/ExprObjC.h" |
| 28 | #include "clang/AST/Mangle.h" |
| 29 | #include "clang/AST/TypeLoc.h" |
| 30 | #include "clang/Basic/ABI.h" |
| 31 | #include "clang/Basic/Module.h" |
| 32 | #include "clang/Basic/TargetInfo.h" |
| 33 | #include "clang/Basic/Thunk.h" |
| 34 | #include "llvm/ADT/StringExtras.h" |
| 35 | #include "llvm/Support/ErrorHandling.h" |
| 36 | #include "llvm/Support/raw_ostream.h" |
| 37 | #include "llvm/TargetParser/RISCVTargetParser.h" |
| 38 | #include <optional> |
| 39 | |
| 40 | using namespace clang; |
| 41 | |
| 42 | namespace { |
| 43 | |
| 44 | static bool isLocalContainerContext(const DeclContext *DC) { |
| 45 | return isa<FunctionDecl>(Val: DC) || isa<ObjCMethodDecl>(Val: DC) || isa<BlockDecl>(Val: DC); |
| 46 | } |
| 47 | |
| 48 | static const FunctionDecl *getStructor(const FunctionDecl *fn) { |
| 49 | if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) |
| 50 | return ftd->getTemplatedDecl(); |
| 51 | |
| 52 | return fn; |
| 53 | } |
| 54 | |
| 55 | static const NamedDecl *getStructor(const NamedDecl *decl) { |
| 56 | const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(Val: decl); |
| 57 | return (fn ? getStructor(fn) : decl); |
| 58 | } |
| 59 | |
| 60 | static bool isLambda(const NamedDecl *ND) { |
| 61 | const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: ND); |
| 62 | if (!Record) |
| 63 | return false; |
| 64 | |
| 65 | return Record->isLambda(); |
| 66 | } |
| 67 | |
| 68 | static const unsigned UnknownArity = ~0U; |
| 69 | |
| 70 | class ItaniumMangleContextImpl : public ItaniumMangleContext { |
| 71 | typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy; |
| 72 | llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; |
| 73 | llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; |
| 74 | const DiscriminatorOverrideTy DiscriminatorOverride = nullptr; |
| 75 | NamespaceDecl *StdNamespace = nullptr; |
| 76 | |
| 77 | bool NeedsUniqueInternalLinkageNames = false; |
| 78 | |
| 79 | public: |
| 80 | explicit ItaniumMangleContextImpl( |
| 81 | ASTContext &Context, DiagnosticsEngine &Diags, |
| 82 | DiscriminatorOverrideTy DiscriminatorOverride, bool IsAux = false) |
| 83 | : ItaniumMangleContext(Context, Diags, IsAux), |
| 84 | DiscriminatorOverride(DiscriminatorOverride) {} |
| 85 | |
| 86 | /// @name Mangler Entry Points |
| 87 | /// @{ |
| 88 | |
| 89 | bool shouldMangleCXXName(const NamedDecl *D) override; |
| 90 | bool shouldMangleStringLiteral(const StringLiteral *) override { |
| 91 | return false; |
| 92 | } |
| 93 | |
| 94 | bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override; |
| 95 | void needsUniqueInternalLinkageNames() override { |
| 96 | NeedsUniqueInternalLinkageNames = true; |
| 97 | } |
| 98 | |
| 99 | void mangleCXXName(GlobalDecl GD, raw_ostream &) override; |
| 100 | void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, bool, |
| 101 | raw_ostream &) override; |
| 102 | void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, |
| 103 | const ThunkInfo &Thunk, bool, raw_ostream &) override; |
| 104 | void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, |
| 105 | raw_ostream &) override; |
| 106 | void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override; |
| 107 | void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override; |
| 108 | void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, |
| 109 | const CXXRecordDecl *Type, raw_ostream &) override; |
| 110 | void mangleCXXRTTI(QualType T, raw_ostream &) override; |
| 111 | void mangleCXXRTTIName(QualType T, raw_ostream &, |
| 112 | bool NormalizeIntegers) override; |
| 113 | void mangleCanonicalTypeName(QualType T, raw_ostream &, |
| 114 | bool NormalizeIntegers) override; |
| 115 | |
| 116 | void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override; |
| 117 | void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override; |
| 118 | void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override; |
| 119 | void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; |
| 120 | void mangleDynamicAtExitDestructor(const VarDecl *D, |
| 121 | raw_ostream &Out) override; |
| 122 | void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override; |
| 123 | void mangleSEHFilterExpression(GlobalDecl EnclosingDecl, |
| 124 | raw_ostream &Out) override; |
| 125 | void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl, |
| 126 | raw_ostream &Out) override; |
| 127 | void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override; |
| 128 | void mangleItaniumThreadLocalWrapper(const VarDecl *D, |
| 129 | raw_ostream &) override; |
| 130 | |
| 131 | void mangleStringLiteral(const StringLiteral *, raw_ostream &) override; |
| 132 | |
| 133 | void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override; |
| 134 | |
| 135 | void mangleModuleInitializer(const Module *Module, raw_ostream &) override; |
| 136 | |
| 137 | bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { |
| 138 | // Lambda closure types are already numbered. |
| 139 | if (isLambda(ND)) |
| 140 | return false; |
| 141 | |
| 142 | // Anonymous tags are already numbered. |
| 143 | if (const TagDecl *Tag = dyn_cast<TagDecl>(Val: ND)) { |
| 144 | if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl()) |
| 145 | return false; |
| 146 | } |
| 147 | |
| 148 | // Use the canonical number for externally visible decls. |
| 149 | if (ND->isExternallyVisible()) { |
| 150 | unsigned discriminator = getASTContext().getManglingNumber(ND, ForAuxTarget: isAux()); |
| 151 | if (discriminator == 1) |
| 152 | return false; |
| 153 | disc = discriminator - 2; |
| 154 | return true; |
| 155 | } |
| 156 | |
| 157 | // Make up a reasonable number for internal decls. |
| 158 | unsigned &discriminator = Uniquifier[ND]; |
| 159 | if (!discriminator) { |
| 160 | const DeclContext *DC = getEffectiveDeclContext(D: ND); |
| 161 | discriminator = ++Discriminator[std::make_pair(x&: DC, y: ND->getIdentifier())]; |
| 162 | } |
| 163 | if (discriminator == 1) |
| 164 | return false; |
| 165 | disc = discriminator-2; |
| 166 | return true; |
| 167 | } |
| 168 | |
| 169 | std::string getLambdaString(const CXXRecordDecl *Lambda) override { |
| 170 | // This function matches the one in MicrosoftMangle, which returns |
| 171 | // the string that is used in lambda mangled names. |
| 172 | assert(Lambda->isLambda() && "RD must be a lambda!" ); |
| 173 | std::string Name("<lambda" ); |
| 174 | Decl *LambdaContextDecl = Lambda->getLambdaContextDecl(); |
| 175 | unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber(); |
| 176 | unsigned LambdaId; |
| 177 | const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(Val: LambdaContextDecl); |
| 178 | const FunctionDecl *Func = |
| 179 | Parm ? dyn_cast<FunctionDecl>(Val: Parm->getDeclContext()) : nullptr; |
| 180 | |
| 181 | if (Func) { |
| 182 | unsigned DefaultArgNo = |
| 183 | Func->getNumParams() - Parm->getFunctionScopeIndex(); |
| 184 | Name += llvm::utostr(X: DefaultArgNo); |
| 185 | Name += "_" ; |
| 186 | } |
| 187 | |
| 188 | if (LambdaManglingNumber) |
| 189 | LambdaId = LambdaManglingNumber; |
| 190 | else |
| 191 | LambdaId = getAnonymousStructIdForDebugInfo(D: Lambda); |
| 192 | |
| 193 | Name += llvm::utostr(X: LambdaId); |
| 194 | Name += '>'; |
| 195 | return Name; |
| 196 | } |
| 197 | |
| 198 | DiscriminatorOverrideTy getDiscriminatorOverride() const override { |
| 199 | return DiscriminatorOverride; |
| 200 | } |
| 201 | |
| 202 | NamespaceDecl *getStdNamespace(); |
| 203 | |
| 204 | const DeclContext *getEffectiveDeclContext(const Decl *D); |
| 205 | const DeclContext *getEffectiveParentContext(const DeclContext *DC) { |
| 206 | return getEffectiveDeclContext(D: cast<Decl>(Val: DC)); |
| 207 | } |
| 208 | |
| 209 | bool isInternalLinkageDecl(const NamedDecl *ND); |
| 210 | |
| 211 | /// @} |
| 212 | }; |
| 213 | |
| 214 | /// Manage the mangling of a single name. |
| 215 | class CXXNameMangler { |
| 216 | ItaniumMangleContextImpl &Context; |
| 217 | raw_ostream &Out; |
| 218 | /// Normalize integer types for cross-language CFI support with other |
| 219 | /// languages that can't represent and encode C/C++ integer types. |
| 220 | bool NormalizeIntegers = false; |
| 221 | |
| 222 | bool NullOut = false; |
| 223 | /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated. |
| 224 | /// This mode is used when mangler creates another mangler recursively to |
| 225 | /// calculate ABI tags for the function return value or the variable type. |
| 226 | /// Also it is required to avoid infinite recursion in some cases. |
| 227 | bool DisableDerivedAbiTags = false; |
| 228 | |
| 229 | /// The "structor" is the top-level declaration being mangled, if |
| 230 | /// that's not a template specialization; otherwise it's the pattern |
| 231 | /// for that specialization. |
| 232 | const NamedDecl *Structor; |
| 233 | unsigned StructorType = 0; |
| 234 | |
| 235 | // An offset to add to all template parameter depths while mangling. Used |
| 236 | // when mangling a template parameter list to see if it matches a template |
| 237 | // template parameter exactly. |
| 238 | unsigned TemplateDepthOffset = 0; |
| 239 | |
| 240 | /// The next substitution sequence number. |
| 241 | unsigned SeqID = 0; |
| 242 | |
| 243 | class FunctionTypeDepthState { |
| 244 | unsigned Bits = 0; |
| 245 | |
| 246 | enum { InResultTypeMask = 1 }; |
| 247 | |
| 248 | public: |
| 249 | FunctionTypeDepthState() = default; |
| 250 | |
| 251 | /// The number of function types we're inside. |
| 252 | unsigned getDepth() const { |
| 253 | return Bits >> 1; |
| 254 | } |
| 255 | |
| 256 | /// True if we're in the return type of the innermost function type. |
| 257 | bool isInResultType() const { |
| 258 | return Bits & InResultTypeMask; |
| 259 | } |
| 260 | |
| 261 | FunctionTypeDepthState push() { |
| 262 | FunctionTypeDepthState tmp = *this; |
| 263 | Bits = (Bits & ~InResultTypeMask) + 2; |
| 264 | return tmp; |
| 265 | } |
| 266 | |
| 267 | void enterResultType() { |
| 268 | Bits |= InResultTypeMask; |
| 269 | } |
| 270 | |
| 271 | void leaveResultType() { |
| 272 | Bits &= ~InResultTypeMask; |
| 273 | } |
| 274 | |
| 275 | void pop(FunctionTypeDepthState saved) { |
| 276 | assert(getDepth() == saved.getDepth() + 1); |
| 277 | Bits = saved.Bits; |
| 278 | } |
| 279 | |
| 280 | } FunctionTypeDepth; |
| 281 | |
| 282 | // abi_tag is a gcc attribute, taking one or more strings called "tags". |
| 283 | // The goal is to annotate against which version of a library an object was |
| 284 | // built and to be able to provide backwards compatibility ("dual abi"). |
| 285 | // For more information see docs/ItaniumMangleAbiTags.rst. |
| 286 | typedef SmallVector<StringRef, 4> AbiTagList; |
| 287 | |
| 288 | // State to gather all implicit and explicit tags used in a mangled name. |
| 289 | // Must always have an instance of this while emitting any name to keep |
| 290 | // track. |
| 291 | class AbiTagState final { |
| 292 | public: |
| 293 | explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) { |
| 294 | Parent = LinkHead; |
| 295 | LinkHead = this; |
| 296 | } |
| 297 | |
| 298 | // No copy, no move. |
| 299 | AbiTagState(const AbiTagState &) = delete; |
| 300 | AbiTagState &operator=(const AbiTagState &) = delete; |
| 301 | |
| 302 | ~AbiTagState() { pop(); } |
| 303 | |
| 304 | void write(raw_ostream &Out, const NamedDecl *ND, |
| 305 | const AbiTagList *AdditionalAbiTags) { |
| 306 | ND = cast<NamedDecl>(Val: ND->getCanonicalDecl()); |
| 307 | if (!isa<FunctionDecl>(Val: ND) && !isa<VarDecl>(Val: ND)) { |
| 308 | assert( |
| 309 | !AdditionalAbiTags && |
| 310 | "only function and variables need a list of additional abi tags" ); |
| 311 | if (const auto *NS = dyn_cast<NamespaceDecl>(Val: ND)) { |
| 312 | if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) |
| 313 | llvm::append_range(C&: UsedAbiTags, R: AbiTag->tags()); |
| 314 | // Don't emit abi tags for namespaces. |
| 315 | return; |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | AbiTagList TagList; |
| 320 | if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) { |
| 321 | llvm::append_range(C&: UsedAbiTags, R: AbiTag->tags()); |
| 322 | llvm::append_range(C&: TagList, R: AbiTag->tags()); |
| 323 | } |
| 324 | |
| 325 | if (AdditionalAbiTags) { |
| 326 | llvm::append_range(C&: UsedAbiTags, R: *AdditionalAbiTags); |
| 327 | llvm::append_range(C&: TagList, R: *AdditionalAbiTags); |
| 328 | } |
| 329 | |
| 330 | llvm::sort(C&: TagList); |
| 331 | TagList.erase(CS: llvm::unique(R&: TagList), CE: TagList.end()); |
| 332 | |
| 333 | writeSortedUniqueAbiTags(Out, AbiTags: TagList); |
| 334 | } |
| 335 | |
| 336 | const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; } |
| 337 | void setUsedAbiTags(const AbiTagList &AbiTags) { |
| 338 | UsedAbiTags = AbiTags; |
| 339 | } |
| 340 | |
| 341 | const AbiTagList &getEmittedAbiTags() const { |
| 342 | return EmittedAbiTags; |
| 343 | } |
| 344 | |
| 345 | const AbiTagList &getSortedUniqueUsedAbiTags() { |
| 346 | llvm::sort(C&: UsedAbiTags); |
| 347 | UsedAbiTags.erase(CS: llvm::unique(R&: UsedAbiTags), CE: UsedAbiTags.end()); |
| 348 | return UsedAbiTags; |
| 349 | } |
| 350 | |
| 351 | private: |
| 352 | //! All abi tags used implicitly or explicitly. |
| 353 | AbiTagList UsedAbiTags; |
| 354 | //! All explicit abi tags (i.e. not from namespace). |
| 355 | AbiTagList EmittedAbiTags; |
| 356 | |
| 357 | AbiTagState *&LinkHead; |
| 358 | AbiTagState *Parent = nullptr; |
| 359 | |
| 360 | void pop() { |
| 361 | assert(LinkHead == this && |
| 362 | "abi tag link head must point to us on destruction" ); |
| 363 | if (Parent) { |
| 364 | Parent->UsedAbiTags.insert(I: Parent->UsedAbiTags.end(), |
| 365 | From: UsedAbiTags.begin(), To: UsedAbiTags.end()); |
| 366 | Parent->EmittedAbiTags.insert(I: Parent->EmittedAbiTags.end(), |
| 367 | From: EmittedAbiTags.begin(), |
| 368 | To: EmittedAbiTags.end()); |
| 369 | } |
| 370 | LinkHead = Parent; |
| 371 | } |
| 372 | |
| 373 | void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) { |
| 374 | for (const auto &Tag : AbiTags) { |
| 375 | EmittedAbiTags.push_back(Elt: Tag); |
| 376 | Out << "B" ; |
| 377 | Out << Tag.size(); |
| 378 | Out << Tag; |
| 379 | } |
| 380 | } |
| 381 | }; |
| 382 | |
| 383 | AbiTagState *AbiTags = nullptr; |
| 384 | AbiTagState AbiTagsRoot; |
| 385 | |
| 386 | llvm::DenseMap<uintptr_t, unsigned> Substitutions; |
| 387 | llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions; |
| 388 | |
| 389 | ASTContext &getASTContext() const { return Context.getASTContext(); } |
| 390 | |
| 391 | bool isCompatibleWith(LangOptions::ClangABI Ver) { |
| 392 | return Context.getASTContext().getLangOpts().getClangABICompat() <= Ver; |
| 393 | } |
| 394 | |
| 395 | bool isStd(const NamespaceDecl *NS); |
| 396 | bool isStdNamespace(const DeclContext *DC); |
| 397 | |
| 398 | const RecordDecl *GetLocalClassDecl(const Decl *D); |
| 399 | bool isSpecializedAs(QualType S, llvm::StringRef Name, QualType A); |
| 400 | bool isStdCharSpecialization(const ClassTemplateSpecializationDecl *SD, |
| 401 | llvm::StringRef Name, bool HasAllocator); |
| 402 | |
| 403 | public: |
| 404 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
| 405 | const NamedDecl *D = nullptr, bool NullOut_ = false) |
| 406 | : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(decl: D)), |
| 407 | AbiTagsRoot(AbiTags) { |
| 408 | // These can't be mangled without a ctor type or dtor type. |
| 409 | assert(!D || (!isa<CXXDestructorDecl>(D) && |
| 410 | !isa<CXXConstructorDecl>(D))); |
| 411 | } |
| 412 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
| 413 | const CXXConstructorDecl *D, CXXCtorType Type) |
| 414 | : Context(C), Out(Out_), Structor(getStructor(fn: D)), StructorType(Type), |
| 415 | AbiTagsRoot(AbiTags) {} |
| 416 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
| 417 | const CXXDestructorDecl *D, CXXDtorType Type) |
| 418 | : Context(C), Out(Out_), Structor(getStructor(fn: D)), StructorType(Type), |
| 419 | AbiTagsRoot(AbiTags) {} |
| 420 | |
| 421 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, |
| 422 | bool NormalizeIntegers_) |
| 423 | : Context(C), Out(Out_), NormalizeIntegers(NormalizeIntegers_), |
| 424 | NullOut(false), Structor(nullptr), AbiTagsRoot(AbiTags) {} |
| 425 | CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_) |
| 426 | : Context(Outer.Context), Out(Out_), Structor(Outer.Structor), |
| 427 | StructorType(Outer.StructorType), SeqID(Outer.SeqID), |
| 428 | FunctionTypeDepth(Outer.FunctionTypeDepth), AbiTagsRoot(AbiTags), |
| 429 | Substitutions(Outer.Substitutions), |
| 430 | ModuleSubstitutions(Outer.ModuleSubstitutions) {} |
| 431 | |
| 432 | CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_) |
| 433 | : CXXNameMangler(Outer, (raw_ostream &)Out_) { |
| 434 | NullOut = true; |
| 435 | } |
| 436 | |
| 437 | struct WithTemplateDepthOffset { unsigned Offset; }; |
| 438 | CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out, |
| 439 | WithTemplateDepthOffset Offset) |
| 440 | : CXXNameMangler(C, Out) { |
| 441 | TemplateDepthOffset = Offset.Offset; |
| 442 | } |
| 443 | |
| 444 | raw_ostream &getStream() { return Out; } |
| 445 | |
| 446 | void disableDerivedAbiTags() { DisableDerivedAbiTags = true; } |
| 447 | static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD); |
| 448 | |
| 449 | void mangle(GlobalDecl GD); |
| 450 | void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); |
| 451 | void mangleNumber(const llvm::APSInt &I); |
| 452 | void mangleNumber(int64_t Number); |
| 453 | void mangleFloat(const llvm::APFloat &F); |
| 454 | void mangleFunctionEncoding(GlobalDecl GD); |
| 455 | void mangleSeqID(unsigned SeqID); |
| 456 | void mangleName(GlobalDecl GD); |
| 457 | void mangleType(QualType T); |
| 458 | void mangleCXXRecordDecl(const CXXRecordDecl *Record, |
| 459 | bool SuppressSubstitution = false); |
| 460 | void mangleLambdaSig(const CXXRecordDecl *Lambda); |
| 461 | void mangleModuleNamePrefix(StringRef Name, bool IsPartition = false); |
| 462 | void mangleVendorQualifier(StringRef Name); |
| 463 | void mangleVendorType(StringRef Name); |
| 464 | |
| 465 | private: |
| 466 | |
| 467 | bool mangleSubstitution(const NamedDecl *ND); |
| 468 | bool mangleSubstitution(NestedNameSpecifier *NNS); |
| 469 | bool mangleSubstitution(QualType T); |
| 470 | bool mangleSubstitution(TemplateName Template); |
| 471 | bool mangleSubstitution(uintptr_t Ptr); |
| 472 | |
| 473 | void mangleExistingSubstitution(TemplateName name); |
| 474 | |
| 475 | bool mangleStandardSubstitution(const NamedDecl *ND); |
| 476 | |
| 477 | void addSubstitution(const NamedDecl *ND) { |
| 478 | ND = cast<NamedDecl>(Val: ND->getCanonicalDecl()); |
| 479 | |
| 480 | addSubstitution(Ptr: reinterpret_cast<uintptr_t>(ND)); |
| 481 | } |
| 482 | void addSubstitution(NestedNameSpecifier *NNS) { |
| 483 | NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS); |
| 484 | |
| 485 | addSubstitution(Ptr: reinterpret_cast<uintptr_t>(NNS)); |
| 486 | } |
| 487 | void addSubstitution(QualType T); |
| 488 | void addSubstitution(TemplateName Template); |
| 489 | void addSubstitution(uintptr_t Ptr); |
| 490 | // Destructive copy substitutions from other mangler. |
| 491 | void extendSubstitutions(CXXNameMangler* Other); |
| 492 | |
| 493 | void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, |
| 494 | bool recursive = false); |
| 495 | void mangleUnresolvedName(NestedNameSpecifier *qualifier, |
| 496 | DeclarationName name, |
| 497 | const TemplateArgumentLoc *TemplateArgs, |
| 498 | unsigned NumTemplateArgs, |
| 499 | unsigned KnownArity = UnknownArity); |
| 500 | |
| 501 | void mangleFunctionEncodingBareType(const FunctionDecl *FD); |
| 502 | |
| 503 | void mangleNameWithAbiTags(GlobalDecl GD, |
| 504 | const AbiTagList *AdditionalAbiTags); |
| 505 | void mangleModuleName(const NamedDecl *ND); |
| 506 | void mangleTemplateName(const TemplateDecl *TD, |
| 507 | ArrayRef<TemplateArgument> Args); |
| 508 | void mangleUnqualifiedName(GlobalDecl GD, const DeclContext *DC, |
| 509 | const AbiTagList *AdditionalAbiTags) { |
| 510 | mangleUnqualifiedName(GD, Name: cast<NamedDecl>(Val: GD.getDecl())->getDeclName(), DC, |
| 511 | KnownArity: UnknownArity, AdditionalAbiTags); |
| 512 | } |
| 513 | void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name, |
| 514 | const DeclContext *DC, unsigned KnownArity, |
| 515 | const AbiTagList *AdditionalAbiTags); |
| 516 | void mangleUnscopedName(GlobalDecl GD, const DeclContext *DC, |
| 517 | const AbiTagList *AdditionalAbiTags); |
| 518 | void mangleUnscopedTemplateName(GlobalDecl GD, const DeclContext *DC, |
| 519 | const AbiTagList *AdditionalAbiTags); |
| 520 | void mangleSourceName(const IdentifierInfo *II); |
| 521 | void mangleRegCallName(const IdentifierInfo *II); |
| 522 | void mangleDeviceStubName(const IdentifierInfo *II); |
| 523 | void mangleOCLDeviceStubName(const IdentifierInfo *II); |
| 524 | void mangleSourceNameWithAbiTags( |
| 525 | const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr); |
| 526 | void mangleLocalName(GlobalDecl GD, |
| 527 | const AbiTagList *AdditionalAbiTags); |
| 528 | void mangleBlockForPrefix(const BlockDecl *Block); |
| 529 | void mangleUnqualifiedBlock(const BlockDecl *Block); |
| 530 | void mangleTemplateParamDecl(const NamedDecl *Decl); |
| 531 | void mangleTemplateParameterList(const TemplateParameterList *Params); |
| 532 | void mangleTypeConstraint(const ConceptDecl *Concept, |
| 533 | ArrayRef<TemplateArgument> Arguments); |
| 534 | void mangleTypeConstraint(const TypeConstraint *Constraint); |
| 535 | void mangleRequiresClause(const Expr *RequiresClause); |
| 536 | void mangleLambda(const CXXRecordDecl *Lambda); |
| 537 | void mangleNestedName(GlobalDecl GD, const DeclContext *DC, |
| 538 | const AbiTagList *AdditionalAbiTags, |
| 539 | bool NoFunction=false); |
| 540 | void mangleNestedName(const TemplateDecl *TD, |
| 541 | ArrayRef<TemplateArgument> Args); |
| 542 | void mangleNestedNameWithClosurePrefix(GlobalDecl GD, |
| 543 | const NamedDecl *PrefixND, |
| 544 | const AbiTagList *AdditionalAbiTags); |
| 545 | void manglePrefix(NestedNameSpecifier *qualifier); |
| 546 | void manglePrefix(const DeclContext *DC, bool NoFunction=false); |
| 547 | void manglePrefix(QualType type); |
| 548 | void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false); |
| 549 | void mangleTemplatePrefix(TemplateName Template); |
| 550 | const NamedDecl *getClosurePrefix(const Decl *ND); |
| 551 | void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false); |
| 552 | bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType, |
| 553 | StringRef Prefix = "" ); |
| 554 | void mangleOperatorName(DeclarationName Name, unsigned Arity); |
| 555 | void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); |
| 556 | void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr); |
| 557 | void mangleRefQualifier(RefQualifierKind RefQualifier); |
| 558 | |
| 559 | void mangleObjCMethodName(const ObjCMethodDecl *MD); |
| 560 | |
| 561 | // Declare manglers for every type class. |
| 562 | #define ABSTRACT_TYPE(CLASS, PARENT) |
| 563 | #define NON_CANONICAL_TYPE(CLASS, PARENT) |
| 564 | #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); |
| 565 | #include "clang/AST/TypeNodes.inc" |
| 566 | |
| 567 | void mangleType(const TagType*); |
| 568 | void mangleType(TemplateName); |
| 569 | static StringRef getCallingConvQualifierName(CallingConv CC); |
| 570 | void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info); |
| 571 | void mangleExtFunctionInfo(const FunctionType *T); |
| 572 | void mangleSMEAttrs(unsigned SMEAttrs); |
| 573 | void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType, |
| 574 | const FunctionDecl *FD = nullptr); |
| 575 | void mangleNeonVectorType(const VectorType *T); |
| 576 | void mangleNeonVectorType(const DependentVectorType *T); |
| 577 | void mangleAArch64NeonVectorType(const VectorType *T); |
| 578 | void mangleAArch64NeonVectorType(const DependentVectorType *T); |
| 579 | void mangleAArch64FixedSveVectorType(const VectorType *T); |
| 580 | void mangleAArch64FixedSveVectorType(const DependentVectorType *T); |
| 581 | void mangleRISCVFixedRVVVectorType(const VectorType *T); |
| 582 | void mangleRISCVFixedRVVVectorType(const DependentVectorType *T); |
| 583 | |
| 584 | void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); |
| 585 | void mangleFloatLiteral(QualType T, const llvm::APFloat &V); |
| 586 | void mangleFixedPointLiteral(); |
| 587 | void mangleNullPointer(QualType T); |
| 588 | |
| 589 | void mangleMemberExprBase(const Expr *base, bool isArrow); |
| 590 | void mangleMemberExpr(const Expr *base, bool isArrow, |
| 591 | NestedNameSpecifier *qualifier, |
| 592 | NamedDecl *firstQualifierLookup, |
| 593 | DeclarationName name, |
| 594 | const TemplateArgumentLoc *TemplateArgs, |
| 595 | unsigned NumTemplateArgs, |
| 596 | unsigned knownArity); |
| 597 | void mangleCastExpression(const Expr *E, StringRef CastEncoding); |
| 598 | void mangleInitListElements(const InitListExpr *InitList); |
| 599 | void mangleRequirement(SourceLocation RequiresExprLoc, |
| 600 | const concepts::Requirement *Req); |
| 601 | void mangleExpression(const Expr *E, unsigned Arity = UnknownArity, |
| 602 | bool AsTemplateArg = false); |
| 603 | void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom); |
| 604 | void mangleCXXDtorType(CXXDtorType T); |
| 605 | |
| 606 | struct TemplateArgManglingInfo; |
| 607 | void mangleTemplateArgs(TemplateName TN, |
| 608 | const TemplateArgumentLoc *TemplateArgs, |
| 609 | unsigned NumTemplateArgs); |
| 610 | void mangleTemplateArgs(TemplateName TN, ArrayRef<TemplateArgument> Args); |
| 611 | void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL); |
| 612 | void mangleTemplateArg(TemplateArgManglingInfo &Info, unsigned Index, |
| 613 | TemplateArgument A); |
| 614 | void mangleTemplateArg(TemplateArgument A, bool NeedExactType); |
| 615 | void mangleTemplateArgExpr(const Expr *E); |
| 616 | void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel, |
| 617 | bool NeedExactType = false); |
| 618 | |
| 619 | void mangleTemplateParameter(unsigned Depth, unsigned Index); |
| 620 | |
| 621 | void mangleFunctionParam(const ParmVarDecl *parm); |
| 622 | |
| 623 | void writeAbiTags(const NamedDecl *ND, |
| 624 | const AbiTagList *AdditionalAbiTags); |
| 625 | |
| 626 | // Returns sorted unique list of ABI tags. |
| 627 | AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD); |
| 628 | // Returns sorted unique list of ABI tags. |
| 629 | AbiTagList makeVariableTypeTags(const VarDecl *VD); |
| 630 | }; |
| 631 | |
| 632 | } |
| 633 | |
| 634 | NamespaceDecl *ItaniumMangleContextImpl::getStdNamespace() { |
| 635 | if (!StdNamespace) { |
| 636 | StdNamespace = NamespaceDecl::Create( |
| 637 | C&: getASTContext(), DC: getASTContext().getTranslationUnitDecl(), |
| 638 | /*Inline=*/false, StartLoc: SourceLocation(), IdLoc: SourceLocation(), |
| 639 | Id: &getASTContext().Idents.get(Name: "std" ), |
| 640 | /*PrevDecl=*/nullptr, /*Nested=*/false); |
| 641 | StdNamespace->setImplicit(); |
| 642 | } |
| 643 | return StdNamespace; |
| 644 | } |
| 645 | |
| 646 | /// Retrieve the declaration context that should be used when mangling the given |
| 647 | /// declaration. |
| 648 | const DeclContext * |
| 649 | ItaniumMangleContextImpl::getEffectiveDeclContext(const Decl *D) { |
| 650 | // The ABI assumes that lambda closure types that occur within |
| 651 | // default arguments live in the context of the function. However, due to |
| 652 | // the way in which Clang parses and creates function declarations, this is |
| 653 | // not the case: the lambda closure type ends up living in the context |
| 654 | // where the function itself resides, because the function declaration itself |
| 655 | // had not yet been created. Fix the context here. |
| 656 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
| 657 | if (RD->isLambda()) |
| 658 | if (ParmVarDecl *ContextParam = |
| 659 | dyn_cast_or_null<ParmVarDecl>(Val: RD->getLambdaContextDecl())) |
| 660 | return ContextParam->getDeclContext(); |
| 661 | } |
| 662 | |
| 663 | // Perform the same check for block literals. |
| 664 | if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: D)) { |
| 665 | if (ParmVarDecl *ContextParam = |
| 666 | dyn_cast_or_null<ParmVarDecl>(Val: BD->getBlockManglingContextDecl())) |
| 667 | return ContextParam->getDeclContext(); |
| 668 | } |
| 669 | |
| 670 | // On ARM and AArch64, the va_list tag is always mangled as if in the std |
| 671 | // namespace. We do not represent va_list as actually being in the std |
| 672 | // namespace in C because this would result in incorrect debug info in C, |
| 673 | // among other things. It is important for both languages to have the same |
| 674 | // mangling in order for -fsanitize=cfi-icall to work. |
| 675 | if (D == getASTContext().getVaListTagDecl()) { |
| 676 | const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); |
| 677 | if (T.isARM() || T.isThumb() || T.isAArch64()) |
| 678 | return getStdNamespace(); |
| 679 | } |
| 680 | |
| 681 | const DeclContext *DC = D->getDeclContext(); |
| 682 | if (isa<CapturedDecl>(Val: DC) || isa<OMPDeclareReductionDecl>(Val: DC) || |
| 683 | isa<OMPDeclareMapperDecl>(Val: DC)) { |
| 684 | return getEffectiveDeclContext(D: cast<Decl>(Val: DC)); |
| 685 | } |
| 686 | |
| 687 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) |
| 688 | if (VD->isExternC()) |
| 689 | return getASTContext().getTranslationUnitDecl(); |
| 690 | |
| 691 | if (const auto *FD = getASTContext().getLangOpts().getClangABICompat() > |
| 692 | LangOptions::ClangABI::Ver19 |
| 693 | ? D->getAsFunction() |
| 694 | : dyn_cast<FunctionDecl>(Val: D)) { |
| 695 | if (FD->isExternC()) |
| 696 | return getASTContext().getTranslationUnitDecl(); |
| 697 | // Member-like constrained friends are mangled as if they were members of |
| 698 | // the enclosing class. |
| 699 | if (FD->isMemberLikeConstrainedFriend() && |
| 700 | getASTContext().getLangOpts().getClangABICompat() > |
| 701 | LangOptions::ClangABI::Ver17) |
| 702 | return D->getLexicalDeclContext()->getRedeclContext(); |
| 703 | } |
| 704 | |
| 705 | return DC->getRedeclContext(); |
| 706 | } |
| 707 | |
| 708 | bool ItaniumMangleContextImpl::isInternalLinkageDecl(const NamedDecl *ND) { |
| 709 | if (ND && ND->getFormalLinkage() == Linkage::Internal && |
| 710 | !ND->isExternallyVisible() && |
| 711 | getEffectiveDeclContext(D: ND)->isFileContext() && |
| 712 | !ND->isInAnonymousNamespace()) |
| 713 | return true; |
| 714 | return false; |
| 715 | } |
| 716 | |
| 717 | // Check if this Function Decl needs a unique internal linkage name. |
| 718 | bool ItaniumMangleContextImpl::isUniqueInternalLinkageDecl( |
| 719 | const NamedDecl *ND) { |
| 720 | if (!NeedsUniqueInternalLinkageNames || !ND) |
| 721 | return false; |
| 722 | |
| 723 | const auto *FD = dyn_cast<FunctionDecl>(Val: ND); |
| 724 | if (!FD) |
| 725 | return false; |
| 726 | |
| 727 | // For C functions without prototypes, return false as their |
| 728 | // names should not be mangled. |
| 729 | if (!FD->getType()->getAs<FunctionProtoType>()) |
| 730 | return false; |
| 731 | |
| 732 | if (isInternalLinkageDecl(ND)) |
| 733 | return true; |
| 734 | |
| 735 | return false; |
| 736 | } |
| 737 | |
| 738 | bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { |
| 739 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 740 | LanguageLinkage L = FD->getLanguageLinkage(); |
| 741 | // Overloadable functions need mangling. |
| 742 | if (FD->hasAttr<OverloadableAttr>()) |
| 743 | return true; |
| 744 | |
| 745 | // "main" is not mangled. |
| 746 | if (FD->isMain()) |
| 747 | return false; |
| 748 | |
| 749 | // The Windows ABI expects that we would never mangle "typical" |
| 750 | // user-defined entry points regardless of visibility or freestanding-ness. |
| 751 | // |
| 752 | // N.B. This is distinct from asking about "main". "main" has a lot of |
| 753 | // special rules associated with it in the standard while these |
| 754 | // user-defined entry points are outside of the purview of the standard. |
| 755 | // For example, there can be only one definition for "main" in a standards |
| 756 | // compliant program; however nothing forbids the existence of wmain and |
| 757 | // WinMain in the same translation unit. |
| 758 | if (FD->isMSVCRTEntryPoint()) |
| 759 | return false; |
| 760 | |
| 761 | // C++ functions and those whose names are not a simple identifier need |
| 762 | // mangling. |
| 763 | if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) |
| 764 | return true; |
| 765 | |
| 766 | // C functions are not mangled. |
| 767 | if (L == CLanguageLinkage) |
| 768 | return false; |
| 769 | } |
| 770 | |
| 771 | // Otherwise, no mangling is done outside C++ mode. |
| 772 | if (!getASTContext().getLangOpts().CPlusPlus) |
| 773 | return false; |
| 774 | |
| 775 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
| 776 | // Decompositions are mangled. |
| 777 | if (isa<DecompositionDecl>(Val: VD)) |
| 778 | return true; |
| 779 | |
| 780 | // C variables are not mangled. |
| 781 | if (VD->isExternC()) |
| 782 | return false; |
| 783 | |
| 784 | // Variables at global scope are not mangled unless they have internal |
| 785 | // linkage or are specializations or are attached to a named module. |
| 786 | const DeclContext *DC = getEffectiveDeclContext(D); |
| 787 | // Check for extern variable declared locally. |
| 788 | if (DC->isFunctionOrMethod() && D->hasLinkage()) |
| 789 | while (!DC->isFileContext()) |
| 790 | DC = getEffectiveParentContext(DC); |
| 791 | if (DC->isTranslationUnit() && D->getFormalLinkage() != Linkage::Internal && |
| 792 | !CXXNameMangler::shouldHaveAbiTags(C&: *this, VD) && |
| 793 | !isa<VarTemplateSpecializationDecl>(Val: VD) && |
| 794 | !VD->getOwningModuleForLinkage()) |
| 795 | return false; |
| 796 | } |
| 797 | |
| 798 | return true; |
| 799 | } |
| 800 | |
| 801 | void CXXNameMangler::writeAbiTags(const NamedDecl *ND, |
| 802 | const AbiTagList *AdditionalAbiTags) { |
| 803 | assert(AbiTags && "require AbiTagState" ); |
| 804 | AbiTags->write(Out, ND, AdditionalAbiTags: DisableDerivedAbiTags ? nullptr : AdditionalAbiTags); |
| 805 | } |
| 806 | |
| 807 | void CXXNameMangler::mangleSourceNameWithAbiTags( |
| 808 | const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) { |
| 809 | mangleSourceName(II: ND->getIdentifier()); |
| 810 | writeAbiTags(ND, AdditionalAbiTags); |
| 811 | } |
| 812 | |
| 813 | void CXXNameMangler::mangle(GlobalDecl GD) { |
| 814 | // <mangled-name> ::= _Z <encoding> |
| 815 | // ::= <data name> |
| 816 | // ::= <special-name> |
| 817 | Out << "_Z" ; |
| 818 | if (isa<FunctionDecl>(Val: GD.getDecl())) |
| 819 | mangleFunctionEncoding(GD); |
| 820 | else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl, |
| 821 | BindingDecl>(Val: GD.getDecl())) |
| 822 | mangleName(GD); |
| 823 | else if (const IndirectFieldDecl *IFD = |
| 824 | dyn_cast<IndirectFieldDecl>(Val: GD.getDecl())) |
| 825 | mangleName(GD: IFD->getAnonField()); |
| 826 | else |
| 827 | llvm_unreachable("unexpected kind of global decl" ); |
| 828 | } |
| 829 | |
| 830 | void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) { |
| 831 | const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl()); |
| 832 | // <encoding> ::= <function name> <bare-function-type> |
| 833 | |
| 834 | // Don't mangle in the type if this isn't a decl we should typically mangle. |
| 835 | if (!Context.shouldMangleDeclName(D: FD)) { |
| 836 | mangleName(GD); |
| 837 | return; |
| 838 | } |
| 839 | |
| 840 | AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD); |
| 841 | if (ReturnTypeAbiTags.empty()) { |
| 842 | // There are no tags for return type, the simplest case. Enter the function |
| 843 | // parameter scope before mangling the name, because a template using |
| 844 | // constrained `auto` can have references to its parameters within its |
| 845 | // template argument list: |
| 846 | // |
| 847 | // template<typename T> void f(T x, C<decltype(x)> auto) |
| 848 | // ... is mangled as ... |
| 849 | // template<typename T, C<decltype(param 1)> U> void f(T, U) |
| 850 | FunctionTypeDepthState Saved = FunctionTypeDepth.push(); |
| 851 | mangleName(GD); |
| 852 | FunctionTypeDepth.pop(saved: Saved); |
| 853 | mangleFunctionEncodingBareType(FD); |
| 854 | return; |
| 855 | } |
| 856 | |
| 857 | // Mangle function name and encoding to temporary buffer. |
| 858 | // We have to output name and encoding to the same mangler to get the same |
| 859 | // substitution as it will be in final mangling. |
| 860 | SmallString<256> FunctionEncodingBuf; |
| 861 | llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf); |
| 862 | CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream); |
| 863 | // Output name of the function. |
| 864 | FunctionEncodingMangler.disableDerivedAbiTags(); |
| 865 | |
| 866 | FunctionTypeDepthState Saved = FunctionTypeDepth.push(); |
| 867 | FunctionEncodingMangler.mangleNameWithAbiTags(GD: FD, AdditionalAbiTags: nullptr); |
| 868 | FunctionTypeDepth.pop(saved: Saved); |
| 869 | |
| 870 | // Remember length of the function name in the buffer. |
| 871 | size_t EncodingPositionStart = FunctionEncodingStream.str().size(); |
| 872 | FunctionEncodingMangler.mangleFunctionEncodingBareType(FD); |
| 873 | |
| 874 | // Get tags from return type that are not present in function name or |
| 875 | // encoding. |
| 876 | const AbiTagList &UsedAbiTags = |
| 877 | FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
| 878 | AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size()); |
| 879 | AdditionalAbiTags.erase( |
| 880 | CS: std::set_difference(first1: ReturnTypeAbiTags.begin(), last1: ReturnTypeAbiTags.end(), |
| 881 | first2: UsedAbiTags.begin(), last2: UsedAbiTags.end(), |
| 882 | result: AdditionalAbiTags.begin()), |
| 883 | CE: AdditionalAbiTags.end()); |
| 884 | |
| 885 | // Output name with implicit tags and function encoding from temporary buffer. |
| 886 | Saved = FunctionTypeDepth.push(); |
| 887 | mangleNameWithAbiTags(GD: FD, AdditionalAbiTags: &AdditionalAbiTags); |
| 888 | FunctionTypeDepth.pop(saved: Saved); |
| 889 | Out << FunctionEncodingStream.str().substr(Start: EncodingPositionStart); |
| 890 | |
| 891 | // Function encoding could create new substitutions so we have to add |
| 892 | // temp mangled substitutions to main mangler. |
| 893 | extendSubstitutions(Other: &FunctionEncodingMangler); |
| 894 | } |
| 895 | |
| 896 | void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) { |
| 897 | if (FD->hasAttr<EnableIfAttr>()) { |
| 898 | FunctionTypeDepthState Saved = FunctionTypeDepth.push(); |
| 899 | Out << "Ua9enable_ifI" ; |
| 900 | for (AttrVec::const_iterator I = FD->getAttrs().begin(), |
| 901 | E = FD->getAttrs().end(); |
| 902 | I != E; ++I) { |
| 903 | EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(Val: *I); |
| 904 | if (!EIA) |
| 905 | continue; |
| 906 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
| 907 | // Prior to Clang 12, we hardcoded the X/E around enable-if's argument, |
| 908 | // even though <template-arg> should not include an X/E around |
| 909 | // <expr-primary>. |
| 910 | Out << 'X'; |
| 911 | mangleExpression(E: EIA->getCond()); |
| 912 | Out << 'E'; |
| 913 | } else { |
| 914 | mangleTemplateArgExpr(E: EIA->getCond()); |
| 915 | } |
| 916 | } |
| 917 | Out << 'E'; |
| 918 | FunctionTypeDepth.pop(saved: Saved); |
| 919 | } |
| 920 | |
| 921 | // When mangling an inheriting constructor, the bare function type used is |
| 922 | // that of the inherited constructor. |
| 923 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: FD)) |
| 924 | if (auto Inherited = CD->getInheritedConstructor()) |
| 925 | FD = Inherited.getConstructor(); |
| 926 | |
| 927 | // Whether the mangling of a function type includes the return type depends on |
| 928 | // the context and the nature of the function. The rules for deciding whether |
| 929 | // the return type is included are: |
| 930 | // |
| 931 | // 1. Template functions (names or types) have return types encoded, with |
| 932 | // the exceptions listed below. |
| 933 | // 2. Function types not appearing as part of a function name mangling, |
| 934 | // e.g. parameters, pointer types, etc., have return type encoded, with the |
| 935 | // exceptions listed below. |
| 936 | // 3. Non-template function names do not have return types encoded. |
| 937 | // |
| 938 | // The exceptions mentioned in (1) and (2) above, for which the return type is |
| 939 | // never included, are |
| 940 | // 1. Constructors. |
| 941 | // 2. Destructors. |
| 942 | // 3. Conversion operator functions, e.g. operator int. |
| 943 | bool MangleReturnType = false; |
| 944 | if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { |
| 945 | if (!(isa<CXXConstructorDecl>(Val: FD) || isa<CXXDestructorDecl>(Val: FD) || |
| 946 | isa<CXXConversionDecl>(Val: FD))) |
| 947 | MangleReturnType = true; |
| 948 | |
| 949 | // Mangle the type of the primary template. |
| 950 | FD = PrimaryTemplate->getTemplatedDecl(); |
| 951 | } |
| 952 | |
| 953 | mangleBareFunctionType(T: FD->getType()->castAs<FunctionProtoType>(), |
| 954 | MangleReturnType, FD); |
| 955 | } |
| 956 | |
| 957 | /// Return whether a given namespace is the 'std' namespace. |
| 958 | bool CXXNameMangler::isStd(const NamespaceDecl *NS) { |
| 959 | if (!Context.getEffectiveParentContext(DC: NS)->isTranslationUnit()) |
| 960 | return false; |
| 961 | |
| 962 | const IdentifierInfo *II = NS->getFirstDecl()->getIdentifier(); |
| 963 | return II && II->isStr(Str: "std" ); |
| 964 | } |
| 965 | |
| 966 | // isStdNamespace - Return whether a given decl context is a toplevel 'std' |
| 967 | // namespace. |
| 968 | bool CXXNameMangler::isStdNamespace(const DeclContext *DC) { |
| 969 | if (!DC->isNamespace()) |
| 970 | return false; |
| 971 | |
| 972 | return isStd(NS: cast<NamespaceDecl>(Val: DC)); |
| 973 | } |
| 974 | |
| 975 | static const GlobalDecl |
| 976 | isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) { |
| 977 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
| 978 | // Check if we have a function template. |
| 979 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
| 980 | if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { |
| 981 | TemplateArgs = FD->getTemplateSpecializationArgs(); |
| 982 | return GD.getWithDecl(D: TD); |
| 983 | } |
| 984 | } |
| 985 | |
| 986 | // Check if we have a class template. |
| 987 | if (const ClassTemplateSpecializationDecl *Spec = |
| 988 | dyn_cast<ClassTemplateSpecializationDecl>(Val: ND)) { |
| 989 | TemplateArgs = &Spec->getTemplateArgs(); |
| 990 | return GD.getWithDecl(D: Spec->getSpecializedTemplate()); |
| 991 | } |
| 992 | |
| 993 | // Check if we have a variable template. |
| 994 | if (const VarTemplateSpecializationDecl *Spec = |
| 995 | dyn_cast<VarTemplateSpecializationDecl>(Val: ND)) { |
| 996 | TemplateArgs = &Spec->getTemplateArgs(); |
| 997 | return GD.getWithDecl(D: Spec->getSpecializedTemplate()); |
| 998 | } |
| 999 | |
| 1000 | return GlobalDecl(); |
| 1001 | } |
| 1002 | |
| 1003 | static TemplateName asTemplateName(GlobalDecl GD) { |
| 1004 | const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(Val: GD.getDecl()); |
| 1005 | return TemplateName(const_cast<TemplateDecl*>(TD)); |
| 1006 | } |
| 1007 | |
| 1008 | void CXXNameMangler::mangleName(GlobalDecl GD) { |
| 1009 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
| 1010 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: ND)) { |
| 1011 | // Variables should have implicit tags from its type. |
| 1012 | AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD); |
| 1013 | if (VariableTypeAbiTags.empty()) { |
| 1014 | // Simple case no variable type tags. |
| 1015 | mangleNameWithAbiTags(GD: VD, AdditionalAbiTags: nullptr); |
| 1016 | return; |
| 1017 | } |
| 1018 | |
| 1019 | // Mangle variable name to null stream to collect tags. |
| 1020 | llvm::raw_null_ostream NullOutStream; |
| 1021 | CXXNameMangler VariableNameMangler(*this, NullOutStream); |
| 1022 | VariableNameMangler.disableDerivedAbiTags(); |
| 1023 | VariableNameMangler.mangleNameWithAbiTags(GD: VD, AdditionalAbiTags: nullptr); |
| 1024 | |
| 1025 | // Get tags from variable type that are not present in its name. |
| 1026 | const AbiTagList &UsedAbiTags = |
| 1027 | VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
| 1028 | AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size()); |
| 1029 | AdditionalAbiTags.erase( |
| 1030 | CS: std::set_difference(first1: VariableTypeAbiTags.begin(), |
| 1031 | last1: VariableTypeAbiTags.end(), first2: UsedAbiTags.begin(), |
| 1032 | last2: UsedAbiTags.end(), result: AdditionalAbiTags.begin()), |
| 1033 | CE: AdditionalAbiTags.end()); |
| 1034 | |
| 1035 | // Output name with implicit tags. |
| 1036 | mangleNameWithAbiTags(GD: VD, AdditionalAbiTags: &AdditionalAbiTags); |
| 1037 | } else { |
| 1038 | mangleNameWithAbiTags(GD, AdditionalAbiTags: nullptr); |
| 1039 | } |
| 1040 | } |
| 1041 | |
| 1042 | const RecordDecl *CXXNameMangler::GetLocalClassDecl(const Decl *D) { |
| 1043 | const DeclContext *DC = Context.getEffectiveDeclContext(D); |
| 1044 | while (!DC->isNamespace() && !DC->isTranslationUnit()) { |
| 1045 | if (isLocalContainerContext(DC)) |
| 1046 | return dyn_cast<RecordDecl>(Val: D); |
| 1047 | D = cast<Decl>(Val: DC); |
| 1048 | DC = Context.getEffectiveDeclContext(D); |
| 1049 | } |
| 1050 | return nullptr; |
| 1051 | } |
| 1052 | |
| 1053 | void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD, |
| 1054 | const AbiTagList *AdditionalAbiTags) { |
| 1055 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
| 1056 | // <name> ::= [<module-name>] <nested-name> |
| 1057 | // ::= [<module-name>] <unscoped-name> |
| 1058 | // ::= [<module-name>] <unscoped-template-name> <template-args> |
| 1059 | // ::= <local-name> |
| 1060 | // |
| 1061 | const DeclContext *DC = Context.getEffectiveDeclContext(D: ND); |
| 1062 | bool IsLambda = isLambda(ND); |
| 1063 | |
| 1064 | // If this is an extern variable declared locally, the relevant DeclContext |
| 1065 | // is that of the containing namespace, or the translation unit. |
| 1066 | // FIXME: This is a hack; extern variables declared locally should have |
| 1067 | // a proper semantic declaration context! |
| 1068 | if (isLocalContainerContext(DC) && ND->hasLinkage() && !IsLambda) |
| 1069 | while (!DC->isNamespace() && !DC->isTranslationUnit()) |
| 1070 | DC = Context.getEffectiveParentContext(DC); |
| 1071 | else if (GetLocalClassDecl(D: ND) && |
| 1072 | (!IsLambda || isCompatibleWith(Ver: LangOptions::ClangABI::Ver18))) { |
| 1073 | mangleLocalName(GD, AdditionalAbiTags); |
| 1074 | return; |
| 1075 | } |
| 1076 | |
| 1077 | assert(!isa<LinkageSpecDecl>(DC) && "context cannot be LinkageSpecDecl" ); |
| 1078 | |
| 1079 | // Closures can require a nested-name mangling even if they're semantically |
| 1080 | // in the global namespace. |
| 1081 | if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { |
| 1082 | mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags); |
| 1083 | return; |
| 1084 | } |
| 1085 | |
| 1086 | if (isLocalContainerContext(DC)) { |
| 1087 | mangleLocalName(GD, AdditionalAbiTags); |
| 1088 | return; |
| 1089 | } |
| 1090 | |
| 1091 | if (DC->isTranslationUnit() || isStdNamespace(DC)) { |
| 1092 | // Check if we have a template. |
| 1093 | const TemplateArgumentList *TemplateArgs = nullptr; |
| 1094 | if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { |
| 1095 | mangleUnscopedTemplateName(GD: TD, DC, AdditionalAbiTags); |
| 1096 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
| 1097 | return; |
| 1098 | } |
| 1099 | |
| 1100 | mangleUnscopedName(GD, DC, AdditionalAbiTags); |
| 1101 | return; |
| 1102 | } |
| 1103 | |
| 1104 | mangleNestedName(GD, DC, AdditionalAbiTags); |
| 1105 | } |
| 1106 | |
| 1107 | void CXXNameMangler::mangleModuleName(const NamedDecl *ND) { |
| 1108 | if (ND->isExternallyVisible()) |
| 1109 | if (Module *M = ND->getOwningModuleForLinkage()) |
| 1110 | mangleModuleNamePrefix(Name: M->getPrimaryModuleInterfaceName()); |
| 1111 | } |
| 1112 | |
| 1113 | // <module-name> ::= <module-subname> |
| 1114 | // ::= <module-name> <module-subname> |
| 1115 | // ::= <substitution> |
| 1116 | // <module-subname> ::= W <source-name> |
| 1117 | // ::= W P <source-name> |
| 1118 | void CXXNameMangler::mangleModuleNamePrefix(StringRef Name, bool IsPartition) { |
| 1119 | // <substitution> ::= S <seq-id> _ |
| 1120 | auto It = ModuleSubstitutions.find(Val: Name); |
| 1121 | if (It != ModuleSubstitutions.end()) { |
| 1122 | Out << 'S'; |
| 1123 | mangleSeqID(SeqID: It->second); |
| 1124 | return; |
| 1125 | } |
| 1126 | |
| 1127 | // FIXME: Preserve hierarchy in module names rather than flattening |
| 1128 | // them to strings; use Module*s as substitution keys. |
| 1129 | auto Parts = Name.rsplit(Separator: '.'); |
| 1130 | if (Parts.second.empty()) |
| 1131 | Parts.second = Parts.first; |
| 1132 | else { |
| 1133 | mangleModuleNamePrefix(Name: Parts.first, IsPartition); |
| 1134 | IsPartition = false; |
| 1135 | } |
| 1136 | |
| 1137 | Out << 'W'; |
| 1138 | if (IsPartition) |
| 1139 | Out << 'P'; |
| 1140 | Out << Parts.second.size() << Parts.second; |
| 1141 | ModuleSubstitutions.insert(KV: {Name, SeqID++}); |
| 1142 | } |
| 1143 | |
| 1144 | void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD, |
| 1145 | ArrayRef<TemplateArgument> Args) { |
| 1146 | const DeclContext *DC = Context.getEffectiveDeclContext(D: TD); |
| 1147 | |
| 1148 | if (DC->isTranslationUnit() || isStdNamespace(DC)) { |
| 1149 | mangleUnscopedTemplateName(GD: TD, DC, AdditionalAbiTags: nullptr); |
| 1150 | mangleTemplateArgs(TN: asTemplateName(GD: TD), Args); |
| 1151 | } else { |
| 1152 | mangleNestedName(TD, Args); |
| 1153 | } |
| 1154 | } |
| 1155 | |
| 1156 | void CXXNameMangler::mangleUnscopedName(GlobalDecl GD, const DeclContext *DC, |
| 1157 | const AbiTagList *AdditionalAbiTags) { |
| 1158 | // <unscoped-name> ::= <unqualified-name> |
| 1159 | // ::= St <unqualified-name> # ::std:: |
| 1160 | |
| 1161 | assert(!isa<LinkageSpecDecl>(DC) && "unskipped LinkageSpecDecl" ); |
| 1162 | if (isStdNamespace(DC)) { |
| 1163 | if (getASTContext().getTargetInfo().getTriple().isOSSolaris()) { |
| 1164 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
| 1165 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(Val: ND)) { |
| 1166 | // Issue #33114: Need non-standard mangling of std::tm etc. for |
| 1167 | // Solaris ABI compatibility. |
| 1168 | // |
| 1169 | // <substitution> ::= tm # ::std::tm, same for the others |
| 1170 | if (const IdentifierInfo *II = RD->getIdentifier()) { |
| 1171 | StringRef type = II->getName(); |
| 1172 | if (llvm::is_contained(Set: {"div_t" , "ldiv_t" , "lconv" , "tm" }, Element: type)) { |
| 1173 | Out << type.size() << type; |
| 1174 | return; |
| 1175 | } |
| 1176 | } |
| 1177 | } |
| 1178 | } |
| 1179 | Out << "St" ; |
| 1180 | } |
| 1181 | |
| 1182 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags); |
| 1183 | } |
| 1184 | |
| 1185 | void CXXNameMangler::mangleUnscopedTemplateName( |
| 1186 | GlobalDecl GD, const DeclContext *DC, const AbiTagList *AdditionalAbiTags) { |
| 1187 | const TemplateDecl *ND = cast<TemplateDecl>(Val: GD.getDecl()); |
| 1188 | // <unscoped-template-name> ::= <unscoped-name> |
| 1189 | // ::= <substitution> |
| 1190 | if (mangleSubstitution(ND)) |
| 1191 | return; |
| 1192 | |
| 1193 | // <template-template-param> ::= <template-param> |
| 1194 | if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: ND)) { |
| 1195 | assert(!AdditionalAbiTags && |
| 1196 | "template template param cannot have abi tags" ); |
| 1197 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
| 1198 | } else if (isa<BuiltinTemplateDecl>(Val: ND) || isa<ConceptDecl>(Val: ND)) { |
| 1199 | mangleUnscopedName(GD, DC, AdditionalAbiTags); |
| 1200 | } else { |
| 1201 | mangleUnscopedName(GD: GD.getWithDecl(D: ND->getTemplatedDecl()), DC, |
| 1202 | AdditionalAbiTags); |
| 1203 | } |
| 1204 | |
| 1205 | addSubstitution(ND); |
| 1206 | } |
| 1207 | |
| 1208 | void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { |
| 1209 | // ABI: |
| 1210 | // Floating-point literals are encoded using a fixed-length |
| 1211 | // lowercase hexadecimal string corresponding to the internal |
| 1212 | // representation (IEEE on Itanium), high-order bytes first, |
| 1213 | // without leading zeroes. For example: "Lf bf800000 E" is -1.0f |
| 1214 | // on Itanium. |
| 1215 | // The 'without leading zeroes' thing seems to be an editorial |
| 1216 | // mistake; see the discussion on cxx-abi-dev beginning on |
| 1217 | // 2012-01-16. |
| 1218 | |
| 1219 | // Our requirements here are just barely weird enough to justify |
| 1220 | // using a custom algorithm instead of post-processing APInt::toString(). |
| 1221 | |
| 1222 | llvm::APInt valueBits = f.bitcastToAPInt(); |
| 1223 | unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; |
| 1224 | assert(numCharacters != 0); |
| 1225 | |
| 1226 | // Allocate a buffer of the right number of characters. |
| 1227 | SmallVector<char, 20> buffer(numCharacters); |
| 1228 | |
| 1229 | // Fill the buffer left-to-right. |
| 1230 | for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { |
| 1231 | // The bit-index of the next hex digit. |
| 1232 | unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); |
| 1233 | |
| 1234 | // Project out 4 bits starting at 'digitIndex'. |
| 1235 | uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64]; |
| 1236 | hexDigit >>= (digitBitIndex % 64); |
| 1237 | hexDigit &= 0xF; |
| 1238 | |
| 1239 | // Map that over to a lowercase hex digit. |
| 1240 | static const char charForHex[16] = { |
| 1241 | '0', '1', '2', '3', '4', '5', '6', '7', |
| 1242 | '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' |
| 1243 | }; |
| 1244 | buffer[stringIndex] = charForHex[hexDigit]; |
| 1245 | } |
| 1246 | |
| 1247 | Out.write(Ptr: buffer.data(), Size: numCharacters); |
| 1248 | } |
| 1249 | |
| 1250 | void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) { |
| 1251 | Out << 'L'; |
| 1252 | mangleType(T); |
| 1253 | mangleFloat(f: V); |
| 1254 | Out << 'E'; |
| 1255 | } |
| 1256 | |
| 1257 | void CXXNameMangler::mangleFixedPointLiteral() { |
| 1258 | DiagnosticsEngine &Diags = Context.getDiags(); |
| 1259 | unsigned DiagID = Diags.getCustomDiagID( |
| 1260 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle fixed point literals yet" ); |
| 1261 | Diags.Report(DiagID); |
| 1262 | } |
| 1263 | |
| 1264 | void CXXNameMangler::mangleNullPointer(QualType T) { |
| 1265 | // <expr-primary> ::= L <type> 0 E |
| 1266 | Out << 'L'; |
| 1267 | mangleType(T); |
| 1268 | Out << "0E" ; |
| 1269 | } |
| 1270 | |
| 1271 | void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { |
| 1272 | if (Value.isSigned() && Value.isNegative()) { |
| 1273 | Out << 'n'; |
| 1274 | Value.abs().print(OS&: Out, /*signed*/ isSigned: false); |
| 1275 | } else { |
| 1276 | Value.print(OS&: Out, /*signed*/ isSigned: false); |
| 1277 | } |
| 1278 | } |
| 1279 | |
| 1280 | void CXXNameMangler::mangleNumber(int64_t Number) { |
| 1281 | // <number> ::= [n] <non-negative decimal integer> |
| 1282 | if (Number < 0) { |
| 1283 | Out << 'n'; |
| 1284 | Number = -Number; |
| 1285 | } |
| 1286 | |
| 1287 | Out << Number; |
| 1288 | } |
| 1289 | |
| 1290 | void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { |
| 1291 | // <call-offset> ::= h <nv-offset> _ |
| 1292 | // ::= v <v-offset> _ |
| 1293 | // <nv-offset> ::= <offset number> # non-virtual base override |
| 1294 | // <v-offset> ::= <offset number> _ <virtual offset number> |
| 1295 | // # virtual base override, with vcall offset |
| 1296 | if (!Virtual) { |
| 1297 | Out << 'h'; |
| 1298 | mangleNumber(Number: NonVirtual); |
| 1299 | Out << '_'; |
| 1300 | return; |
| 1301 | } |
| 1302 | |
| 1303 | Out << 'v'; |
| 1304 | mangleNumber(Number: NonVirtual); |
| 1305 | Out << '_'; |
| 1306 | mangleNumber(Number: Virtual); |
| 1307 | Out << '_'; |
| 1308 | } |
| 1309 | |
| 1310 | void CXXNameMangler::manglePrefix(QualType type) { |
| 1311 | if (const auto *TST = type->getAs<TemplateSpecializationType>()) { |
| 1312 | if (!mangleSubstitution(T: QualType(TST, 0))) { |
| 1313 | mangleTemplatePrefix(Template: TST->getTemplateName()); |
| 1314 | |
| 1315 | // FIXME: GCC does not appear to mangle the template arguments when |
| 1316 | // the template in question is a dependent template name. Should we |
| 1317 | // emulate that badness? |
| 1318 | mangleTemplateArgs(TN: TST->getTemplateName(), Args: TST->template_arguments()); |
| 1319 | addSubstitution(T: QualType(TST, 0)); |
| 1320 | } |
| 1321 | } else if (const auto *DTST = |
| 1322 | type->getAs<DependentTemplateSpecializationType>()) { |
| 1323 | if (!mangleSubstitution(T: QualType(DTST, 0))) { |
| 1324 | TemplateName Template = getASTContext().getDependentTemplateName( |
| 1325 | Name: DTST->getDependentTemplateName()); |
| 1326 | mangleTemplatePrefix(Template); |
| 1327 | |
| 1328 | // FIXME: GCC does not appear to mangle the template arguments when |
| 1329 | // the template in question is a dependent template name. Should we |
| 1330 | // emulate that badness? |
| 1331 | mangleTemplateArgs(TN: Template, Args: DTST->template_arguments()); |
| 1332 | addSubstitution(T: QualType(DTST, 0)); |
| 1333 | } |
| 1334 | } else { |
| 1335 | // We use the QualType mangle type variant here because it handles |
| 1336 | // substitutions. |
| 1337 | mangleType(T: type); |
| 1338 | } |
| 1339 | } |
| 1340 | |
| 1341 | /// Mangle everything prior to the base-unresolved-name in an unresolved-name. |
| 1342 | /// |
| 1343 | /// \param recursive - true if this is being called recursively, |
| 1344 | /// i.e. if there is more prefix "to the right". |
| 1345 | void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, |
| 1346 | bool recursive) { |
| 1347 | |
| 1348 | // x, ::x |
| 1349 | // <unresolved-name> ::= [gs] <base-unresolved-name> |
| 1350 | |
| 1351 | // T::x / decltype(p)::x |
| 1352 | // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> |
| 1353 | |
| 1354 | // T::N::x /decltype(p)::N::x |
| 1355 | // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E |
| 1356 | // <base-unresolved-name> |
| 1357 | |
| 1358 | // A::x, N::y, A<T>::z; "gs" means leading "::" |
| 1359 | // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E |
| 1360 | // <base-unresolved-name> |
| 1361 | |
| 1362 | switch (qualifier->getKind()) { |
| 1363 | case NestedNameSpecifier::Global: |
| 1364 | Out << "gs" ; |
| 1365 | |
| 1366 | // We want an 'sr' unless this is the entire NNS. |
| 1367 | if (recursive) |
| 1368 | Out << "sr" ; |
| 1369 | |
| 1370 | // We never want an 'E' here. |
| 1371 | return; |
| 1372 | |
| 1373 | case NestedNameSpecifier::Super: |
| 1374 | llvm_unreachable("Can't mangle __super specifier" ); |
| 1375 | |
| 1376 | case NestedNameSpecifier::Namespace: |
| 1377 | if (qualifier->getPrefix()) |
| 1378 | mangleUnresolvedPrefix(qualifier: qualifier->getPrefix(), |
| 1379 | /*recursive*/ true); |
| 1380 | else |
| 1381 | Out << "sr" ; |
| 1382 | mangleSourceNameWithAbiTags(ND: qualifier->getAsNamespace()); |
| 1383 | break; |
| 1384 | case NestedNameSpecifier::NamespaceAlias: |
| 1385 | if (qualifier->getPrefix()) |
| 1386 | mangleUnresolvedPrefix(qualifier: qualifier->getPrefix(), |
| 1387 | /*recursive*/ true); |
| 1388 | else |
| 1389 | Out << "sr" ; |
| 1390 | mangleSourceNameWithAbiTags(ND: qualifier->getAsNamespaceAlias()); |
| 1391 | break; |
| 1392 | |
| 1393 | case NestedNameSpecifier::TypeSpec: { |
| 1394 | const Type *type = qualifier->getAsType(); |
| 1395 | |
| 1396 | // We only want to use an unresolved-type encoding if this is one of: |
| 1397 | // - a decltype |
| 1398 | // - a template type parameter |
| 1399 | // - a template template parameter with arguments |
| 1400 | // In all of these cases, we should have no prefix. |
| 1401 | if (NestedNameSpecifier *Prefix = qualifier->getPrefix()) { |
| 1402 | mangleUnresolvedPrefix(qualifier: Prefix, |
| 1403 | /*recursive=*/true); |
| 1404 | } else { |
| 1405 | // Otherwise, all the cases want this. |
| 1406 | Out << "sr" ; |
| 1407 | } |
| 1408 | |
| 1409 | if (mangleUnresolvedTypeOrSimpleId(DestroyedType: QualType(type, 0), Prefix: recursive ? "N" : "" )) |
| 1410 | return; |
| 1411 | |
| 1412 | break; |
| 1413 | } |
| 1414 | |
| 1415 | case NestedNameSpecifier::Identifier: |
| 1416 | // Member expressions can have these without prefixes. |
| 1417 | if (qualifier->getPrefix()) |
| 1418 | mangleUnresolvedPrefix(qualifier: qualifier->getPrefix(), |
| 1419 | /*recursive*/ true); |
| 1420 | else |
| 1421 | Out << "sr" ; |
| 1422 | |
| 1423 | mangleSourceName(II: qualifier->getAsIdentifier()); |
| 1424 | // An Identifier has no type information, so we can't emit abi tags for it. |
| 1425 | break; |
| 1426 | } |
| 1427 | |
| 1428 | // If this was the innermost part of the NNS, and we fell out to |
| 1429 | // here, append an 'E'. |
| 1430 | if (!recursive) |
| 1431 | Out << 'E'; |
| 1432 | } |
| 1433 | |
| 1434 | /// Mangle an unresolved-name, which is generally used for names which |
| 1435 | /// weren't resolved to specific entities. |
| 1436 | void CXXNameMangler::mangleUnresolvedName( |
| 1437 | NestedNameSpecifier *qualifier, DeclarationName name, |
| 1438 | const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, |
| 1439 | unsigned knownArity) { |
| 1440 | if (qualifier) mangleUnresolvedPrefix(qualifier); |
| 1441 | switch (name.getNameKind()) { |
| 1442 | // <base-unresolved-name> ::= <simple-id> |
| 1443 | case DeclarationName::Identifier: |
| 1444 | mangleSourceName(II: name.getAsIdentifierInfo()); |
| 1445 | break; |
| 1446 | // <base-unresolved-name> ::= dn <destructor-name> |
| 1447 | case DeclarationName::CXXDestructorName: |
| 1448 | Out << "dn" ; |
| 1449 | mangleUnresolvedTypeOrSimpleId(DestroyedType: name.getCXXNameType()); |
| 1450 | break; |
| 1451 | // <base-unresolved-name> ::= on <operator-name> |
| 1452 | case DeclarationName::CXXConversionFunctionName: |
| 1453 | case DeclarationName::CXXLiteralOperatorName: |
| 1454 | case DeclarationName::CXXOperatorName: |
| 1455 | Out << "on" ; |
| 1456 | mangleOperatorName(Name: name, Arity: knownArity); |
| 1457 | break; |
| 1458 | case DeclarationName::CXXConstructorName: |
| 1459 | llvm_unreachable("Can't mangle a constructor name!" ); |
| 1460 | case DeclarationName::CXXUsingDirective: |
| 1461 | llvm_unreachable("Can't mangle a using directive name!" ); |
| 1462 | case DeclarationName::CXXDeductionGuideName: |
| 1463 | llvm_unreachable("Can't mangle a deduction guide name!" ); |
| 1464 | case DeclarationName::ObjCMultiArgSelector: |
| 1465 | case DeclarationName::ObjCOneArgSelector: |
| 1466 | case DeclarationName::ObjCZeroArgSelector: |
| 1467 | llvm_unreachable("Can't mangle Objective-C selector names here!" ); |
| 1468 | } |
| 1469 | |
| 1470 | // The <simple-id> and on <operator-name> productions end in an optional |
| 1471 | // <template-args>. |
| 1472 | if (TemplateArgs) |
| 1473 | mangleTemplateArgs(TN: TemplateName(), TemplateArgs, NumTemplateArgs); |
| 1474 | } |
| 1475 | |
| 1476 | void CXXNameMangler::mangleUnqualifiedName( |
| 1477 | GlobalDecl GD, DeclarationName Name, const DeclContext *DC, |
| 1478 | unsigned KnownArity, const AbiTagList *AdditionalAbiTags) { |
| 1479 | const NamedDecl *ND = cast_or_null<NamedDecl>(Val: GD.getDecl()); |
| 1480 | // <unqualified-name> ::= [<module-name>] [F] <operator-name> |
| 1481 | // ::= <ctor-dtor-name> |
| 1482 | // ::= [<module-name>] [F] <source-name> |
| 1483 | // ::= [<module-name>] DC <source-name>* E |
| 1484 | |
| 1485 | if (ND && DC && DC->isFileContext()) |
| 1486 | mangleModuleName(ND); |
| 1487 | |
| 1488 | // A member-like constrained friend is mangled with a leading 'F'. |
| 1489 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
| 1490 | auto *FD = dyn_cast<FunctionDecl>(Val: ND); |
| 1491 | auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: ND); |
| 1492 | if ((FD && FD->isMemberLikeConstrainedFriend()) || |
| 1493 | (FTD && FTD->getTemplatedDecl()->isMemberLikeConstrainedFriend())) { |
| 1494 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) |
| 1495 | Out << 'F'; |
| 1496 | } |
| 1497 | |
| 1498 | unsigned Arity = KnownArity; |
| 1499 | switch (Name.getNameKind()) { |
| 1500 | case DeclarationName::Identifier: { |
| 1501 | const IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| 1502 | |
| 1503 | // We mangle decomposition declarations as the names of their bindings. |
| 1504 | if (auto *DD = dyn_cast<DecompositionDecl>(Val: ND)) { |
| 1505 | // FIXME: Non-standard mangling for decomposition declarations: |
| 1506 | // |
| 1507 | // <unqualified-name> ::= DC <source-name>* E |
| 1508 | // |
| 1509 | // Proposed on cxx-abi-dev on 2016-08-12 |
| 1510 | Out << "DC" ; |
| 1511 | for (auto *BD : DD->bindings()) |
| 1512 | mangleSourceName(II: BD->getDeclName().getAsIdentifierInfo()); |
| 1513 | Out << 'E'; |
| 1514 | writeAbiTags(ND, AdditionalAbiTags); |
| 1515 | break; |
| 1516 | } |
| 1517 | |
| 1518 | if (auto *GD = dyn_cast<MSGuidDecl>(Val: ND)) { |
| 1519 | // We follow MSVC in mangling GUID declarations as if they were variables |
| 1520 | // with a particular reserved name. Continue the pretense here. |
| 1521 | SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab" )> GUID; |
| 1522 | llvm::raw_svector_ostream GUIDOS(GUID); |
| 1523 | Context.mangleMSGuidDecl(GD, GUIDOS); |
| 1524 | Out << GUID.size() << GUID; |
| 1525 | break; |
| 1526 | } |
| 1527 | |
| 1528 | if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(Val: ND)) { |
| 1529 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. |
| 1530 | Out << "TA" ; |
| 1531 | mangleValueInTemplateArg(T: TPO->getType().getUnqualifiedType(), |
| 1532 | V: TPO->getValue(), /*TopLevel=*/true); |
| 1533 | break; |
| 1534 | } |
| 1535 | |
| 1536 | if (II) { |
| 1537 | // Match GCC's naming convention for internal linkage symbols, for |
| 1538 | // symbols that are not actually visible outside of this TU. GCC |
| 1539 | // distinguishes between internal and external linkage symbols in |
| 1540 | // its mangling, to support cases like this that were valid C++ prior |
| 1541 | // to DR426: |
| 1542 | // |
| 1543 | // void test() { extern void foo(); } |
| 1544 | // static void foo(); |
| 1545 | // |
| 1546 | // Don't bother with the L marker for names in anonymous namespaces; the |
| 1547 | // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better |
| 1548 | // matches GCC anyway, because GCC does not treat anonymous namespaces as |
| 1549 | // implying internal linkage. |
| 1550 | if (Context.isInternalLinkageDecl(ND)) |
| 1551 | Out << 'L'; |
| 1552 | |
| 1553 | bool IsRegCall = FD && |
| 1554 | FD->getType()->castAs<FunctionType>()->getCallConv() == |
| 1555 | clang::CC_X86RegCall; |
| 1556 | bool IsDeviceStub = |
| 1557 | FD && FD->hasAttr<CUDAGlobalAttr>() && |
| 1558 | GD.getKernelReferenceKind() == KernelReferenceKind::Stub; |
| 1559 | bool IsOCLDeviceStub = |
| 1560 | FD && |
| 1561 | DeviceKernelAttr::isOpenCLSpelling(A: FD->getAttr<DeviceKernelAttr>()) && |
| 1562 | GD.getKernelReferenceKind() == KernelReferenceKind::Stub; |
| 1563 | if (IsDeviceStub) |
| 1564 | mangleDeviceStubName(II); |
| 1565 | else if (IsOCLDeviceStub) |
| 1566 | mangleOCLDeviceStubName(II); |
| 1567 | else if (IsRegCall) |
| 1568 | mangleRegCallName(II); |
| 1569 | else |
| 1570 | mangleSourceName(II); |
| 1571 | |
| 1572 | writeAbiTags(ND, AdditionalAbiTags); |
| 1573 | break; |
| 1574 | } |
| 1575 | |
| 1576 | // Otherwise, an anonymous entity. We must have a declaration. |
| 1577 | assert(ND && "mangling empty name without declaration" ); |
| 1578 | |
| 1579 | if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: ND)) { |
| 1580 | if (NS->isAnonymousNamespace()) { |
| 1581 | // This is how gcc mangles these names. |
| 1582 | Out << "12_GLOBAL__N_1" ; |
| 1583 | break; |
| 1584 | } |
| 1585 | } |
| 1586 | |
| 1587 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: ND)) { |
| 1588 | // We must have an anonymous union or struct declaration. |
| 1589 | const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl(); |
| 1590 | |
| 1591 | // Itanium C++ ABI 5.1.2: |
| 1592 | // |
| 1593 | // For the purposes of mangling, the name of an anonymous union is |
| 1594 | // considered to be the name of the first named data member found by a |
| 1595 | // pre-order, depth-first, declaration-order walk of the data members of |
| 1596 | // the anonymous union. If there is no such data member (i.e., if all of |
| 1597 | // the data members in the union are unnamed), then there is no way for |
| 1598 | // a program to refer to the anonymous union, and there is therefore no |
| 1599 | // need to mangle its name. |
| 1600 | assert(RD->isAnonymousStructOrUnion() |
| 1601 | && "Expected anonymous struct or union!" ); |
| 1602 | const FieldDecl *FD = RD->findFirstNamedDataMember(); |
| 1603 | |
| 1604 | // It's actually possible for various reasons for us to get here |
| 1605 | // with an empty anonymous struct / union. Fortunately, it |
| 1606 | // doesn't really matter what name we generate. |
| 1607 | if (!FD) break; |
| 1608 | assert(FD->getIdentifier() && "Data member name isn't an identifier!" ); |
| 1609 | |
| 1610 | mangleSourceName(II: FD->getIdentifier()); |
| 1611 | // Not emitting abi tags: internal name anyway. |
| 1612 | break; |
| 1613 | } |
| 1614 | |
| 1615 | // Class extensions have no name as a category, and it's possible |
| 1616 | // for them to be the semantic parent of certain declarations |
| 1617 | // (primarily, tag decls defined within declarations). Such |
| 1618 | // declarations will always have internal linkage, so the name |
| 1619 | // doesn't really matter, but we shouldn't crash on them. For |
| 1620 | // safety, just handle all ObjC containers here. |
| 1621 | if (isa<ObjCContainerDecl>(Val: ND)) |
| 1622 | break; |
| 1623 | |
| 1624 | // We must have an anonymous struct. |
| 1625 | const TagDecl *TD = cast<TagDecl>(Val: ND); |
| 1626 | if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { |
| 1627 | assert(TD->getDeclContext() == D->getDeclContext() && |
| 1628 | "Typedef should not be in another decl context!" ); |
| 1629 | assert(D->getDeclName().getAsIdentifierInfo() && |
| 1630 | "Typedef was not named!" ); |
| 1631 | mangleSourceName(II: D->getDeclName().getAsIdentifierInfo()); |
| 1632 | assert(!AdditionalAbiTags && "Type cannot have additional abi tags" ); |
| 1633 | // Explicit abi tags are still possible; take from underlying type, not |
| 1634 | // from typedef. |
| 1635 | writeAbiTags(ND: TD, AdditionalAbiTags: nullptr); |
| 1636 | break; |
| 1637 | } |
| 1638 | |
| 1639 | // <unnamed-type-name> ::= <closure-type-name> |
| 1640 | // |
| 1641 | // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ |
| 1642 | // <lambda-sig> ::= <template-param-decl>* <parameter-type>+ |
| 1643 | // # Parameter types or 'v' for 'void'. |
| 1644 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: TD)) { |
| 1645 | UnsignedOrNone DeviceNumber = |
| 1646 | Context.getDiscriminatorOverride()(Context.getASTContext(), Record); |
| 1647 | |
| 1648 | // If we have a device-number via the discriminator, use that to mangle |
| 1649 | // the lambda, otherwise use the typical lambda-mangling-number. In either |
| 1650 | // case, a '0' should be mangled as a normal unnamed class instead of as a |
| 1651 | // lambda. |
| 1652 | if (Record->isLambda() && |
| 1653 | ((DeviceNumber && *DeviceNumber > 0) || |
| 1654 | (!DeviceNumber && Record->getLambdaManglingNumber() > 0))) { |
| 1655 | assert(!AdditionalAbiTags && |
| 1656 | "Lambda type cannot have additional abi tags" ); |
| 1657 | mangleLambda(Lambda: Record); |
| 1658 | break; |
| 1659 | } |
| 1660 | } |
| 1661 | |
| 1662 | if (TD->isExternallyVisible()) { |
| 1663 | unsigned UnnamedMangle = |
| 1664 | getASTContext().getManglingNumber(ND: TD, ForAuxTarget: Context.isAux()); |
| 1665 | Out << "Ut" ; |
| 1666 | if (UnnamedMangle > 1) |
| 1667 | Out << UnnamedMangle - 2; |
| 1668 | Out << '_'; |
| 1669 | writeAbiTags(ND: TD, AdditionalAbiTags); |
| 1670 | break; |
| 1671 | } |
| 1672 | |
| 1673 | // Get a unique id for the anonymous struct. If it is not a real output |
| 1674 | // ID doesn't matter so use fake one. |
| 1675 | unsigned AnonStructId = |
| 1676 | NullOut ? 0 |
| 1677 | : Context.getAnonymousStructId(D: TD, FD: dyn_cast<FunctionDecl>(Val: DC)); |
| 1678 | |
| 1679 | // Mangle it as a source name in the form |
| 1680 | // [n] $_<id> |
| 1681 | // where n is the length of the string. |
| 1682 | SmallString<8> Str; |
| 1683 | Str += "$_" ; |
| 1684 | Str += llvm::utostr(X: AnonStructId); |
| 1685 | |
| 1686 | Out << Str.size(); |
| 1687 | Out << Str; |
| 1688 | break; |
| 1689 | } |
| 1690 | |
| 1691 | case DeclarationName::ObjCZeroArgSelector: |
| 1692 | case DeclarationName::ObjCOneArgSelector: |
| 1693 | case DeclarationName::ObjCMultiArgSelector: |
| 1694 | llvm_unreachable("Can't mangle Objective-C selector names here!" ); |
| 1695 | |
| 1696 | case DeclarationName::CXXConstructorName: { |
| 1697 | const CXXRecordDecl *InheritedFrom = nullptr; |
| 1698 | TemplateName InheritedTemplateName; |
| 1699 | const TemplateArgumentList *InheritedTemplateArgs = nullptr; |
| 1700 | if (auto Inherited = |
| 1701 | cast<CXXConstructorDecl>(Val: ND)->getInheritedConstructor()) { |
| 1702 | InheritedFrom = Inherited.getConstructor()->getParent(); |
| 1703 | InheritedTemplateName = |
| 1704 | TemplateName(Inherited.getConstructor()->getPrimaryTemplate()); |
| 1705 | InheritedTemplateArgs = |
| 1706 | Inherited.getConstructor()->getTemplateSpecializationArgs(); |
| 1707 | } |
| 1708 | |
| 1709 | if (ND == Structor) |
| 1710 | // If the named decl is the C++ constructor we're mangling, use the type |
| 1711 | // we were given. |
| 1712 | mangleCXXCtorType(T: static_cast<CXXCtorType>(StructorType), InheritedFrom); |
| 1713 | else |
| 1714 | // Otherwise, use the complete constructor name. This is relevant if a |
| 1715 | // class with a constructor is declared within a constructor. |
| 1716 | mangleCXXCtorType(T: Ctor_Complete, InheritedFrom); |
| 1717 | |
| 1718 | // FIXME: The template arguments are part of the enclosing prefix or |
| 1719 | // nested-name, but it's more convenient to mangle them here. |
| 1720 | if (InheritedTemplateArgs) |
| 1721 | mangleTemplateArgs(TN: InheritedTemplateName, AL: *InheritedTemplateArgs); |
| 1722 | |
| 1723 | writeAbiTags(ND, AdditionalAbiTags); |
| 1724 | break; |
| 1725 | } |
| 1726 | |
| 1727 | case DeclarationName::CXXDestructorName: |
| 1728 | if (ND == Structor) |
| 1729 | // If the named decl is the C++ destructor we're mangling, use the type we |
| 1730 | // were given. |
| 1731 | mangleCXXDtorType(T: static_cast<CXXDtorType>(StructorType)); |
| 1732 | else |
| 1733 | // Otherwise, use the complete destructor name. This is relevant if a |
| 1734 | // class with a destructor is declared within a destructor. |
| 1735 | mangleCXXDtorType(T: Dtor_Complete); |
| 1736 | assert(ND); |
| 1737 | writeAbiTags(ND, AdditionalAbiTags); |
| 1738 | break; |
| 1739 | |
| 1740 | case DeclarationName::CXXOperatorName: |
| 1741 | if (ND && Arity == UnknownArity) { |
| 1742 | Arity = cast<FunctionDecl>(Val: ND)->getNumParams(); |
| 1743 | |
| 1744 | // If we have a member function, we need to include the 'this' pointer. |
| 1745 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: ND)) |
| 1746 | if (MD->isImplicitObjectMemberFunction()) |
| 1747 | Arity++; |
| 1748 | } |
| 1749 | [[fallthrough]]; |
| 1750 | case DeclarationName::CXXConversionFunctionName: |
| 1751 | case DeclarationName::CXXLiteralOperatorName: |
| 1752 | mangleOperatorName(Name, Arity); |
| 1753 | writeAbiTags(ND, AdditionalAbiTags); |
| 1754 | break; |
| 1755 | |
| 1756 | case DeclarationName::CXXDeductionGuideName: |
| 1757 | llvm_unreachable("Can't mangle a deduction guide name!" ); |
| 1758 | |
| 1759 | case DeclarationName::CXXUsingDirective: |
| 1760 | llvm_unreachable("Can't mangle a using directive name!" ); |
| 1761 | } |
| 1762 | } |
| 1763 | |
| 1764 | void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) { |
| 1765 | // <source-name> ::= <positive length number> __regcall3__ <identifier> |
| 1766 | // <number> ::= [n] <non-negative decimal integer> |
| 1767 | // <identifier> ::= <unqualified source code identifier> |
| 1768 | if (getASTContext().getLangOpts().RegCall4) |
| 1769 | Out << II->getLength() + sizeof("__regcall4__" ) - 1 << "__regcall4__" |
| 1770 | << II->getName(); |
| 1771 | else |
| 1772 | Out << II->getLength() + sizeof("__regcall3__" ) - 1 << "__regcall3__" |
| 1773 | << II->getName(); |
| 1774 | } |
| 1775 | |
| 1776 | void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) { |
| 1777 | // <source-name> ::= <positive length number> __device_stub__ <identifier> |
| 1778 | // <number> ::= [n] <non-negative decimal integer> |
| 1779 | // <identifier> ::= <unqualified source code identifier> |
| 1780 | Out << II->getLength() + sizeof("__device_stub__" ) - 1 << "__device_stub__" |
| 1781 | << II->getName(); |
| 1782 | } |
| 1783 | |
| 1784 | void CXXNameMangler::mangleOCLDeviceStubName(const IdentifierInfo *II) { |
| 1785 | // <source-name> ::= <positive length number> __clang_ocl_kern_imp_ |
| 1786 | // <identifier> <number> ::= [n] <non-negative decimal integer> <identifier> |
| 1787 | // ::= <unqualified source code identifier> |
| 1788 | StringRef OCLDeviceStubNamePrefix = "__clang_ocl_kern_imp_" ; |
| 1789 | Out << II->getLength() + OCLDeviceStubNamePrefix.size() |
| 1790 | << OCLDeviceStubNamePrefix << II->getName(); |
| 1791 | } |
| 1792 | |
| 1793 | void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { |
| 1794 | // <source-name> ::= <positive length number> <identifier> |
| 1795 | // <number> ::= [n] <non-negative decimal integer> |
| 1796 | // <identifier> ::= <unqualified source code identifier> |
| 1797 | Out << II->getLength() << II->getName(); |
| 1798 | } |
| 1799 | |
| 1800 | void CXXNameMangler::mangleNestedName(GlobalDecl GD, |
| 1801 | const DeclContext *DC, |
| 1802 | const AbiTagList *AdditionalAbiTags, |
| 1803 | bool NoFunction) { |
| 1804 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
| 1805 | // <nested-name> |
| 1806 | // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E |
| 1807 | // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> |
| 1808 | // <template-args> E |
| 1809 | |
| 1810 | Out << 'N'; |
| 1811 | if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: ND)) { |
| 1812 | Qualifiers MethodQuals = Method->getMethodQualifiers(); |
| 1813 | // We do not consider restrict a distinguishing attribute for overloading |
| 1814 | // purposes so we must not mangle it. |
| 1815 | if (Method->isExplicitObjectMemberFunction()) |
| 1816 | Out << 'H'; |
| 1817 | MethodQuals.removeRestrict(); |
| 1818 | mangleQualifiers(Quals: MethodQuals); |
| 1819 | mangleRefQualifier(RefQualifier: Method->getRefQualifier()); |
| 1820 | } |
| 1821 | |
| 1822 | // Check if we have a template. |
| 1823 | const TemplateArgumentList *TemplateArgs = nullptr; |
| 1824 | if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { |
| 1825 | mangleTemplatePrefix(GD: TD, NoFunction); |
| 1826 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
| 1827 | } else { |
| 1828 | manglePrefix(DC, NoFunction); |
| 1829 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags); |
| 1830 | } |
| 1831 | |
| 1832 | Out << 'E'; |
| 1833 | } |
| 1834 | void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, |
| 1835 | ArrayRef<TemplateArgument> Args) { |
| 1836 | // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E |
| 1837 | |
| 1838 | Out << 'N'; |
| 1839 | |
| 1840 | mangleTemplatePrefix(GD: TD); |
| 1841 | mangleTemplateArgs(TN: asTemplateName(GD: TD), Args); |
| 1842 | |
| 1843 | Out << 'E'; |
| 1844 | } |
| 1845 | |
| 1846 | void CXXNameMangler::mangleNestedNameWithClosurePrefix( |
| 1847 | GlobalDecl GD, const NamedDecl *PrefixND, |
| 1848 | const AbiTagList *AdditionalAbiTags) { |
| 1849 | // A <closure-prefix> represents a variable or field, not a regular |
| 1850 | // DeclContext, so needs special handling. In this case we're mangling a |
| 1851 | // limited form of <nested-name>: |
| 1852 | // |
| 1853 | // <nested-name> ::= N <closure-prefix> <closure-type-name> E |
| 1854 | |
| 1855 | Out << 'N'; |
| 1856 | |
| 1857 | mangleClosurePrefix(ND: PrefixND); |
| 1858 | mangleUnqualifiedName(GD, DC: nullptr, AdditionalAbiTags); |
| 1859 | |
| 1860 | Out << 'E'; |
| 1861 | } |
| 1862 | |
| 1863 | static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) { |
| 1864 | GlobalDecl GD; |
| 1865 | // The Itanium spec says: |
| 1866 | // For entities in constructors and destructors, the mangling of the |
| 1867 | // complete object constructor or destructor is used as the base function |
| 1868 | // name, i.e. the C1 or D1 version. |
| 1869 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: DC)) |
| 1870 | GD = GlobalDecl(CD, Ctor_Complete); |
| 1871 | else if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: DC)) |
| 1872 | GD = GlobalDecl(DD, Dtor_Complete); |
| 1873 | else |
| 1874 | GD = GlobalDecl(cast<FunctionDecl>(Val: DC)); |
| 1875 | return GD; |
| 1876 | } |
| 1877 | |
| 1878 | void CXXNameMangler::mangleLocalName(GlobalDecl GD, |
| 1879 | const AbiTagList *AdditionalAbiTags) { |
| 1880 | const Decl *D = GD.getDecl(); |
| 1881 | // <local-name> := Z <function encoding> E <entity name> [<discriminator>] |
| 1882 | // := Z <function encoding> E s [<discriminator>] |
| 1883 | // <local-name> := Z <function encoding> E d [ <parameter number> ] |
| 1884 | // _ <entity name> |
| 1885 | // <discriminator> := _ <non-negative number> |
| 1886 | assert(isa<NamedDecl>(D) || isa<BlockDecl>(D)); |
| 1887 | const RecordDecl *RD = GetLocalClassDecl(D); |
| 1888 | const DeclContext *DC = Context.getEffectiveDeclContext(D: RD ? RD : D); |
| 1889 | |
| 1890 | Out << 'Z'; |
| 1891 | |
| 1892 | { |
| 1893 | AbiTagState LocalAbiTags(AbiTags); |
| 1894 | |
| 1895 | if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Val: DC)) |
| 1896 | mangleObjCMethodName(MD); |
| 1897 | else if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: DC)) |
| 1898 | mangleBlockForPrefix(Block: BD); |
| 1899 | else |
| 1900 | mangleFunctionEncoding(GD: getParentOfLocalEntity(DC)); |
| 1901 | |
| 1902 | // Implicit ABI tags (from namespace) are not available in the following |
| 1903 | // entity; reset to actually emitted tags, which are available. |
| 1904 | LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags()); |
| 1905 | } |
| 1906 | |
| 1907 | Out << 'E'; |
| 1908 | |
| 1909 | // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to |
| 1910 | // be a bug that is fixed in trunk. |
| 1911 | |
| 1912 | if (RD) { |
| 1913 | // The parameter number is omitted for the last parameter, 0 for the |
| 1914 | // second-to-last parameter, 1 for the third-to-last parameter, etc. The |
| 1915 | // <entity name> will of course contain a <closure-type-name>: Its |
| 1916 | // numbering will be local to the particular argument in which it appears |
| 1917 | // -- other default arguments do not affect its encoding. |
| 1918 | const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD); |
| 1919 | if (CXXRD && CXXRD->isLambda()) { |
| 1920 | if (const ParmVarDecl *Parm |
| 1921 | = dyn_cast_or_null<ParmVarDecl>(Val: CXXRD->getLambdaContextDecl())) { |
| 1922 | if (const FunctionDecl *Func |
| 1923 | = dyn_cast<FunctionDecl>(Val: Parm->getDeclContext())) { |
| 1924 | Out << 'd'; |
| 1925 | unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); |
| 1926 | if (Num > 1) |
| 1927 | mangleNumber(Number: Num - 2); |
| 1928 | Out << '_'; |
| 1929 | } |
| 1930 | } |
| 1931 | } |
| 1932 | |
| 1933 | // Mangle the name relative to the closest enclosing function. |
| 1934 | // equality ok because RD derived from ND above |
| 1935 | if (D == RD) { |
| 1936 | mangleUnqualifiedName(GD: RD, DC, AdditionalAbiTags); |
| 1937 | } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: D)) { |
| 1938 | if (const NamedDecl *PrefixND = getClosurePrefix(ND: BD)) |
| 1939 | mangleClosurePrefix(ND: PrefixND, NoFunction: true /*NoFunction*/); |
| 1940 | else |
| 1941 | manglePrefix(DC: Context.getEffectiveDeclContext(D: BD), NoFunction: true /*NoFunction*/); |
| 1942 | assert(!AdditionalAbiTags && "Block cannot have additional abi tags" ); |
| 1943 | mangleUnqualifiedBlock(Block: BD); |
| 1944 | } else { |
| 1945 | const NamedDecl *ND = cast<NamedDecl>(Val: D); |
| 1946 | mangleNestedName(GD, DC: Context.getEffectiveDeclContext(D: ND), |
| 1947 | AdditionalAbiTags, NoFunction: true /*NoFunction*/); |
| 1948 | } |
| 1949 | } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: D)) { |
| 1950 | // Mangle a block in a default parameter; see above explanation for |
| 1951 | // lambdas. |
| 1952 | if (const ParmVarDecl *Parm |
| 1953 | = dyn_cast_or_null<ParmVarDecl>(Val: BD->getBlockManglingContextDecl())) { |
| 1954 | if (const FunctionDecl *Func |
| 1955 | = dyn_cast<FunctionDecl>(Val: Parm->getDeclContext())) { |
| 1956 | Out << 'd'; |
| 1957 | unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); |
| 1958 | if (Num > 1) |
| 1959 | mangleNumber(Number: Num - 2); |
| 1960 | Out << '_'; |
| 1961 | } |
| 1962 | } |
| 1963 | |
| 1964 | assert(!AdditionalAbiTags && "Block cannot have additional abi tags" ); |
| 1965 | mangleUnqualifiedBlock(Block: BD); |
| 1966 | } else { |
| 1967 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags); |
| 1968 | } |
| 1969 | |
| 1970 | if (const NamedDecl *ND = dyn_cast<NamedDecl>(Val: RD ? RD : D)) { |
| 1971 | unsigned disc; |
| 1972 | if (Context.getNextDiscriminator(ND, disc)) { |
| 1973 | if (disc < 10) |
| 1974 | Out << '_' << disc; |
| 1975 | else |
| 1976 | Out << "__" << disc << '_'; |
| 1977 | } |
| 1978 | } |
| 1979 | } |
| 1980 | |
| 1981 | void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) { |
| 1982 | if (GetLocalClassDecl(D: Block)) { |
| 1983 | mangleLocalName(GD: Block, /* AdditionalAbiTags */ nullptr); |
| 1984 | return; |
| 1985 | } |
| 1986 | const DeclContext *DC = Context.getEffectiveDeclContext(D: Block); |
| 1987 | if (isLocalContainerContext(DC)) { |
| 1988 | mangleLocalName(GD: Block, /* AdditionalAbiTags */ nullptr); |
| 1989 | return; |
| 1990 | } |
| 1991 | if (const NamedDecl *PrefixND = getClosurePrefix(ND: Block)) |
| 1992 | mangleClosurePrefix(ND: PrefixND); |
| 1993 | else |
| 1994 | manglePrefix(DC); |
| 1995 | mangleUnqualifiedBlock(Block); |
| 1996 | } |
| 1997 | |
| 1998 | void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) { |
| 1999 | // When trying to be ABI-compatibility with clang 12 and before, mangle a |
| 2000 | // <data-member-prefix> now, with no substitutions and no <template-args>. |
| 2001 | if (Decl *Context = Block->getBlockManglingContextDecl()) { |
| 2002 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver12) && |
| 2003 | (isa<VarDecl>(Val: Context) || isa<FieldDecl>(Val: Context)) && |
| 2004 | Context->getDeclContext()->isRecord()) { |
| 2005 | const auto *ND = cast<NamedDecl>(Val: Context); |
| 2006 | if (ND->getIdentifier()) { |
| 2007 | mangleSourceNameWithAbiTags(ND); |
| 2008 | Out << 'M'; |
| 2009 | } |
| 2010 | } |
| 2011 | } |
| 2012 | |
| 2013 | // If we have a block mangling number, use it. |
| 2014 | unsigned Number = Block->getBlockManglingNumber(); |
| 2015 | // Otherwise, just make up a number. It doesn't matter what it is because |
| 2016 | // the symbol in question isn't externally visible. |
| 2017 | if (!Number) |
| 2018 | Number = Context.getBlockId(BD: Block, Local: false); |
| 2019 | else { |
| 2020 | // Stored mangling numbers are 1-based. |
| 2021 | --Number; |
| 2022 | } |
| 2023 | Out << "Ub" ; |
| 2024 | if (Number > 0) |
| 2025 | Out << Number - 1; |
| 2026 | Out << '_'; |
| 2027 | } |
| 2028 | |
| 2029 | // <template-param-decl> |
| 2030 | // ::= Ty # template type parameter |
| 2031 | // ::= Tk <concept name> [<template-args>] # constrained type parameter |
| 2032 | // ::= Tn <type> # template non-type parameter |
| 2033 | // ::= Tt <template-param-decl>* E [Q <requires-clause expr>] |
| 2034 | // # template template parameter |
| 2035 | // ::= Tp <template-param-decl> # template parameter pack |
| 2036 | void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) { |
| 2037 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
| 2038 | if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Val: Decl)) { |
| 2039 | if (Ty->isParameterPack()) |
| 2040 | Out << "Tp" ; |
| 2041 | const TypeConstraint *Constraint = Ty->getTypeConstraint(); |
| 2042 | if (Constraint && !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
| 2043 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
| 2044 | Out << "Tk" ; |
| 2045 | mangleTypeConstraint(Constraint); |
| 2046 | } else { |
| 2047 | Out << "Ty" ; |
| 2048 | } |
| 2049 | } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Val: Decl)) { |
| 2050 | if (Tn->isExpandedParameterPack()) { |
| 2051 | for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) { |
| 2052 | Out << "Tn" ; |
| 2053 | mangleType(T: Tn->getExpansionType(I)); |
| 2054 | } |
| 2055 | } else { |
| 2056 | QualType T = Tn->getType(); |
| 2057 | if (Tn->isParameterPack()) { |
| 2058 | Out << "Tp" ; |
| 2059 | if (auto *PackExpansion = T->getAs<PackExpansionType>()) |
| 2060 | T = PackExpansion->getPattern(); |
| 2061 | } |
| 2062 | Out << "Tn" ; |
| 2063 | mangleType(T); |
| 2064 | } |
| 2065 | } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Val: Decl)) { |
| 2066 | if (Tt->isExpandedParameterPack()) { |
| 2067 | for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N; |
| 2068 | ++I) |
| 2069 | mangleTemplateParameterList(Params: Tt->getExpansionTemplateParameters(I)); |
| 2070 | } else { |
| 2071 | if (Tt->isParameterPack()) |
| 2072 | Out << "Tp" ; |
| 2073 | mangleTemplateParameterList(Params: Tt->getTemplateParameters()); |
| 2074 | } |
| 2075 | } |
| 2076 | } |
| 2077 | |
| 2078 | void CXXNameMangler::mangleTemplateParameterList( |
| 2079 | const TemplateParameterList *Params) { |
| 2080 | Out << "Tt" ; |
| 2081 | for (auto *Param : *Params) |
| 2082 | mangleTemplateParamDecl(Decl: Param); |
| 2083 | mangleRequiresClause(RequiresClause: Params->getRequiresClause()); |
| 2084 | Out << "E" ; |
| 2085 | } |
| 2086 | |
| 2087 | void CXXNameMangler::mangleTypeConstraint( |
| 2088 | const ConceptDecl *Concept, ArrayRef<TemplateArgument> Arguments) { |
| 2089 | const DeclContext *DC = Context.getEffectiveDeclContext(D: Concept); |
| 2090 | if (!Arguments.empty()) |
| 2091 | mangleTemplateName(TD: Concept, Args: Arguments); |
| 2092 | else if (DC->isTranslationUnit() || isStdNamespace(DC)) |
| 2093 | mangleUnscopedName(GD: Concept, DC, AdditionalAbiTags: nullptr); |
| 2094 | else |
| 2095 | mangleNestedName(GD: Concept, DC, AdditionalAbiTags: nullptr); |
| 2096 | } |
| 2097 | |
| 2098 | void CXXNameMangler::mangleTypeConstraint(const TypeConstraint *Constraint) { |
| 2099 | llvm::SmallVector<TemplateArgument, 8> Args; |
| 2100 | if (Constraint->getTemplateArgsAsWritten()) { |
| 2101 | for (const TemplateArgumentLoc &ArgLoc : |
| 2102 | Constraint->getTemplateArgsAsWritten()->arguments()) |
| 2103 | Args.push_back(Elt: ArgLoc.getArgument()); |
| 2104 | } |
| 2105 | return mangleTypeConstraint(Concept: Constraint->getNamedConcept(), Arguments: Args); |
| 2106 | } |
| 2107 | |
| 2108 | void CXXNameMangler::mangleRequiresClause(const Expr *RequiresClause) { |
| 2109 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
| 2110 | if (RequiresClause && !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
| 2111 | Out << 'Q'; |
| 2112 | mangleExpression(E: RequiresClause); |
| 2113 | } |
| 2114 | } |
| 2115 | |
| 2116 | void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { |
| 2117 | // When trying to be ABI-compatibility with clang 12 and before, mangle a |
| 2118 | // <data-member-prefix> now, with no substitutions. |
| 2119 | if (Decl *Context = Lambda->getLambdaContextDecl()) { |
| 2120 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver12) && |
| 2121 | (isa<VarDecl>(Val: Context) || isa<FieldDecl>(Val: Context)) && |
| 2122 | !isa<ParmVarDecl>(Val: Context)) { |
| 2123 | if (const IdentifierInfo *Name |
| 2124 | = cast<NamedDecl>(Val: Context)->getIdentifier()) { |
| 2125 | mangleSourceName(II: Name); |
| 2126 | const TemplateArgumentList *TemplateArgs = nullptr; |
| 2127 | if (GlobalDecl TD = isTemplate(GD: cast<NamedDecl>(Val: Context), TemplateArgs)) |
| 2128 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
| 2129 | Out << 'M'; |
| 2130 | } |
| 2131 | } |
| 2132 | } |
| 2133 | |
| 2134 | Out << "Ul" ; |
| 2135 | mangleLambdaSig(Lambda); |
| 2136 | Out << "E" ; |
| 2137 | |
| 2138 | // The number is omitted for the first closure type with a given |
| 2139 | // <lambda-sig> in a given context; it is n-2 for the nth closure type |
| 2140 | // (in lexical order) with that same <lambda-sig> and context. |
| 2141 | // |
| 2142 | // The AST keeps track of the number for us. |
| 2143 | // |
| 2144 | // In CUDA/HIP, to ensure the consistent lamba numbering between the device- |
| 2145 | // and host-side compilations, an extra device mangle context may be created |
| 2146 | // if the host-side CXX ABI has different numbering for lambda. In such case, |
| 2147 | // if the mangle context is that device-side one, use the device-side lambda |
| 2148 | // mangling number for this lambda. |
| 2149 | UnsignedOrNone DeviceNumber = |
| 2150 | Context.getDiscriminatorOverride()(Context.getASTContext(), Lambda); |
| 2151 | unsigned Number = |
| 2152 | DeviceNumber ? *DeviceNumber : Lambda->getLambdaManglingNumber(); |
| 2153 | |
| 2154 | assert(Number > 0 && "Lambda should be mangled as an unnamed class" ); |
| 2155 | if (Number > 1) |
| 2156 | mangleNumber(Number: Number - 2); |
| 2157 | Out << '_'; |
| 2158 | } |
| 2159 | |
| 2160 | void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) { |
| 2161 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/31. |
| 2162 | for (auto *D : Lambda->getLambdaExplicitTemplateParameters()) |
| 2163 | mangleTemplateParamDecl(Decl: D); |
| 2164 | |
| 2165 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
| 2166 | if (auto *TPL = Lambda->getGenericLambdaTemplateParameterList()) |
| 2167 | mangleRequiresClause(RequiresClause: TPL->getRequiresClause()); |
| 2168 | |
| 2169 | auto *Proto = |
| 2170 | Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>(); |
| 2171 | mangleBareFunctionType(T: Proto, /*MangleReturnType=*/false, |
| 2172 | FD: Lambda->getLambdaStaticInvoker()); |
| 2173 | } |
| 2174 | |
| 2175 | void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { |
| 2176 | switch (qualifier->getKind()) { |
| 2177 | case NestedNameSpecifier::Global: |
| 2178 | // nothing |
| 2179 | return; |
| 2180 | |
| 2181 | case NestedNameSpecifier::Super: |
| 2182 | llvm_unreachable("Can't mangle __super specifier" ); |
| 2183 | |
| 2184 | case NestedNameSpecifier::Namespace: |
| 2185 | mangleName(GD: qualifier->getAsNamespace()); |
| 2186 | return; |
| 2187 | |
| 2188 | case NestedNameSpecifier::NamespaceAlias: |
| 2189 | mangleName(GD: qualifier->getAsNamespaceAlias()->getNamespace()); |
| 2190 | return; |
| 2191 | |
| 2192 | case NestedNameSpecifier::TypeSpec: |
| 2193 | if (NestedNameSpecifier *Prefix = qualifier->getPrefix()) { |
| 2194 | const auto *DTST = |
| 2195 | cast<DependentTemplateSpecializationType>(Val: qualifier->getAsType()); |
| 2196 | QualType NewT = getASTContext().getDependentTemplateSpecializationType( |
| 2197 | Keyword: DTST->getKeyword(), |
| 2198 | Name: {Prefix, DTST->getDependentTemplateName().getName(), |
| 2199 | /*HasTemplateKeyword=*/true}, |
| 2200 | Args: DTST->template_arguments(), /*IsCanonical=*/true); |
| 2201 | manglePrefix(type: NewT); |
| 2202 | return; |
| 2203 | } |
| 2204 | manglePrefix(type: QualType(qualifier->getAsType(), 0)); |
| 2205 | return; |
| 2206 | |
| 2207 | case NestedNameSpecifier::Identifier: |
| 2208 | // Clang 14 and before did not consider this substitutable. |
| 2209 | bool Clang14Compat = isCompatibleWith(Ver: LangOptions::ClangABI::Ver14); |
| 2210 | if (!Clang14Compat && mangleSubstitution(NNS: qualifier)) |
| 2211 | return; |
| 2212 | |
| 2213 | // Member expressions can have these without prefixes, but that |
| 2214 | // should end up in mangleUnresolvedPrefix instead. |
| 2215 | assert(qualifier->getPrefix()); |
| 2216 | manglePrefix(qualifier: qualifier->getPrefix()); |
| 2217 | |
| 2218 | mangleSourceName(II: qualifier->getAsIdentifier()); |
| 2219 | |
| 2220 | if (!Clang14Compat) |
| 2221 | addSubstitution(NNS: qualifier); |
| 2222 | return; |
| 2223 | } |
| 2224 | |
| 2225 | llvm_unreachable("unexpected nested name specifier" ); |
| 2226 | } |
| 2227 | |
| 2228 | void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { |
| 2229 | // <prefix> ::= <prefix> <unqualified-name> |
| 2230 | // ::= <template-prefix> <template-args> |
| 2231 | // ::= <closure-prefix> |
| 2232 | // ::= <template-param> |
| 2233 | // ::= # empty |
| 2234 | // ::= <substitution> |
| 2235 | |
| 2236 | assert(!isa<LinkageSpecDecl>(DC) && "prefix cannot be LinkageSpecDecl" ); |
| 2237 | |
| 2238 | if (DC->isTranslationUnit()) |
| 2239 | return; |
| 2240 | |
| 2241 | if (NoFunction && isLocalContainerContext(DC)) |
| 2242 | return; |
| 2243 | |
| 2244 | const NamedDecl *ND = cast<NamedDecl>(Val: DC); |
| 2245 | if (mangleSubstitution(ND)) |
| 2246 | return; |
| 2247 | |
| 2248 | // Check if we have a template-prefix or a closure-prefix. |
| 2249 | const TemplateArgumentList *TemplateArgs = nullptr; |
| 2250 | if (GlobalDecl TD = isTemplate(GD: ND, TemplateArgs)) { |
| 2251 | mangleTemplatePrefix(GD: TD); |
| 2252 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
| 2253 | } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { |
| 2254 | mangleClosurePrefix(ND: PrefixND, NoFunction); |
| 2255 | mangleUnqualifiedName(GD: ND, DC: nullptr, AdditionalAbiTags: nullptr); |
| 2256 | } else { |
| 2257 | const DeclContext *DC = Context.getEffectiveDeclContext(D: ND); |
| 2258 | manglePrefix(DC, NoFunction); |
| 2259 | mangleUnqualifiedName(GD: ND, DC, AdditionalAbiTags: nullptr); |
| 2260 | } |
| 2261 | |
| 2262 | addSubstitution(ND); |
| 2263 | } |
| 2264 | |
| 2265 | void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { |
| 2266 | // <template-prefix> ::= <prefix> <template unqualified-name> |
| 2267 | // ::= <template-param> |
| 2268 | // ::= <substitution> |
| 2269 | if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
| 2270 | return mangleTemplatePrefix(GD: TD); |
| 2271 | |
| 2272 | DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); |
| 2273 | assert(Dependent && "unexpected template name kind" ); |
| 2274 | |
| 2275 | // Clang 11 and before mangled the substitution for a dependent template name |
| 2276 | // after already having emitted (a substitution for) the prefix. |
| 2277 | bool Clang11Compat = isCompatibleWith(Ver: LangOptions::ClangABI::Ver11); |
| 2278 | if (!Clang11Compat && mangleSubstitution(Template)) |
| 2279 | return; |
| 2280 | |
| 2281 | if (NestedNameSpecifier *Qualifier = Dependent->getQualifier()) |
| 2282 | manglePrefix(qualifier: Qualifier); |
| 2283 | |
| 2284 | if (Clang11Compat && mangleSubstitution(Template)) |
| 2285 | return; |
| 2286 | |
| 2287 | if (IdentifierOrOverloadedOperator Name = Dependent->getName(); |
| 2288 | const IdentifierInfo *Id = Name.getIdentifier()) |
| 2289 | mangleSourceName(II: Id); |
| 2290 | else |
| 2291 | mangleOperatorName(OO: Name.getOperator(), Arity: UnknownArity); |
| 2292 | |
| 2293 | addSubstitution(Template); |
| 2294 | } |
| 2295 | |
| 2296 | void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD, |
| 2297 | bool NoFunction) { |
| 2298 | const TemplateDecl *ND = cast<TemplateDecl>(Val: GD.getDecl()); |
| 2299 | // <template-prefix> ::= <prefix> <template unqualified-name> |
| 2300 | // ::= <template-param> |
| 2301 | // ::= <substitution> |
| 2302 | // <template-template-param> ::= <template-param> |
| 2303 | // <substitution> |
| 2304 | |
| 2305 | if (mangleSubstitution(ND)) |
| 2306 | return; |
| 2307 | |
| 2308 | // <template-template-param> ::= <template-param> |
| 2309 | if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: ND)) { |
| 2310 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
| 2311 | } else { |
| 2312 | const DeclContext *DC = Context.getEffectiveDeclContext(D: ND); |
| 2313 | manglePrefix(DC, NoFunction); |
| 2314 | if (isa<BuiltinTemplateDecl>(Val: ND) || isa<ConceptDecl>(Val: ND)) |
| 2315 | mangleUnqualifiedName(GD, DC, AdditionalAbiTags: nullptr); |
| 2316 | else |
| 2317 | mangleUnqualifiedName(GD: GD.getWithDecl(D: ND->getTemplatedDecl()), DC, |
| 2318 | AdditionalAbiTags: nullptr); |
| 2319 | } |
| 2320 | |
| 2321 | addSubstitution(ND); |
| 2322 | } |
| 2323 | |
| 2324 | const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) { |
| 2325 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver12)) |
| 2326 | return nullptr; |
| 2327 | |
| 2328 | const NamedDecl *Context = nullptr; |
| 2329 | if (auto *Block = dyn_cast<BlockDecl>(Val: ND)) { |
| 2330 | Context = dyn_cast_or_null<NamedDecl>(Val: Block->getBlockManglingContextDecl()); |
| 2331 | } else if (auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) { |
| 2332 | if (RD->isLambda()) |
| 2333 | Context = dyn_cast_or_null<NamedDecl>(Val: RD->getLambdaContextDecl()); |
| 2334 | } |
| 2335 | if (!Context) |
| 2336 | return nullptr; |
| 2337 | |
| 2338 | // Only lambdas within the initializer of a non-local variable or non-static |
| 2339 | // data member get a <closure-prefix>. |
| 2340 | if ((isa<VarDecl>(Val: Context) && cast<VarDecl>(Val: Context)->hasGlobalStorage()) || |
| 2341 | isa<FieldDecl>(Val: Context)) |
| 2342 | return Context; |
| 2343 | |
| 2344 | return nullptr; |
| 2345 | } |
| 2346 | |
| 2347 | void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) { |
| 2348 | // <closure-prefix> ::= [ <prefix> ] <unqualified-name> M |
| 2349 | // ::= <template-prefix> <template-args> M |
| 2350 | if (mangleSubstitution(ND)) |
| 2351 | return; |
| 2352 | |
| 2353 | const TemplateArgumentList *TemplateArgs = nullptr; |
| 2354 | if (GlobalDecl TD = isTemplate(GD: ND, TemplateArgs)) { |
| 2355 | mangleTemplatePrefix(GD: TD, NoFunction); |
| 2356 | mangleTemplateArgs(TN: asTemplateName(GD: TD), AL: *TemplateArgs); |
| 2357 | } else { |
| 2358 | const auto *DC = Context.getEffectiveDeclContext(D: ND); |
| 2359 | manglePrefix(DC, NoFunction); |
| 2360 | mangleUnqualifiedName(GD: ND, DC, AdditionalAbiTags: nullptr); |
| 2361 | } |
| 2362 | |
| 2363 | Out << 'M'; |
| 2364 | |
| 2365 | addSubstitution(ND); |
| 2366 | } |
| 2367 | |
| 2368 | /// Mangles a template name under the production <type>. Required for |
| 2369 | /// template template arguments. |
| 2370 | /// <type> ::= <class-enum-type> |
| 2371 | /// ::= <template-param> |
| 2372 | /// ::= <substitution> |
| 2373 | void CXXNameMangler::mangleType(TemplateName TN) { |
| 2374 | if (mangleSubstitution(Template: TN)) |
| 2375 | return; |
| 2376 | |
| 2377 | TemplateDecl *TD = nullptr; |
| 2378 | |
| 2379 | switch (TN.getKind()) { |
| 2380 | case TemplateName::QualifiedTemplate: |
| 2381 | case TemplateName::UsingTemplate: |
| 2382 | case TemplateName::Template: |
| 2383 | TD = TN.getAsTemplateDecl(); |
| 2384 | goto HaveDecl; |
| 2385 | |
| 2386 | HaveDecl: |
| 2387 | if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: TD)) |
| 2388 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
| 2389 | else |
| 2390 | mangleName(GD: TD); |
| 2391 | break; |
| 2392 | |
| 2393 | case TemplateName::OverloadedTemplate: |
| 2394 | case TemplateName::AssumedTemplate: |
| 2395 | llvm_unreachable("can't mangle an overloaded template name as a <type>" ); |
| 2396 | |
| 2397 | case TemplateName::DependentTemplate: { |
| 2398 | const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); |
| 2399 | const IdentifierInfo *II = Dependent->getName().getIdentifier(); |
| 2400 | assert(II); |
| 2401 | |
| 2402 | // <class-enum-type> ::= <name> |
| 2403 | // <name> ::= <nested-name> |
| 2404 | mangleUnresolvedPrefix(qualifier: Dependent->getQualifier()); |
| 2405 | mangleSourceName(II); |
| 2406 | break; |
| 2407 | } |
| 2408 | |
| 2409 | case TemplateName::SubstTemplateTemplateParm: { |
| 2410 | // Substituted template parameters are mangled as the substituted |
| 2411 | // template. This will check for the substitution twice, which is |
| 2412 | // fine, but we have to return early so that we don't try to *add* |
| 2413 | // the substitution twice. |
| 2414 | SubstTemplateTemplateParmStorage *subst |
| 2415 | = TN.getAsSubstTemplateTemplateParm(); |
| 2416 | mangleType(TN: subst->getReplacement()); |
| 2417 | return; |
| 2418 | } |
| 2419 | |
| 2420 | case TemplateName::SubstTemplateTemplateParmPack: { |
| 2421 | // FIXME: not clear how to mangle this! |
| 2422 | // template <template <class> class T...> class A { |
| 2423 | // template <template <class> class U...> void foo(B<T,U> x...); |
| 2424 | // }; |
| 2425 | Out << "_SUBSTPACK_" ; |
| 2426 | break; |
| 2427 | } |
| 2428 | case TemplateName::DeducedTemplate: |
| 2429 | llvm_unreachable("Unexpected DeducedTemplate" ); |
| 2430 | } |
| 2431 | |
| 2432 | addSubstitution(Template: TN); |
| 2433 | } |
| 2434 | |
| 2435 | bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty, |
| 2436 | StringRef Prefix) { |
| 2437 | // Only certain other types are valid as prefixes; enumerate them. |
| 2438 | switch (Ty->getTypeClass()) { |
| 2439 | case Type::Builtin: |
| 2440 | case Type::Complex: |
| 2441 | case Type::Adjusted: |
| 2442 | case Type::Decayed: |
| 2443 | case Type::ArrayParameter: |
| 2444 | case Type::Pointer: |
| 2445 | case Type::BlockPointer: |
| 2446 | case Type::LValueReference: |
| 2447 | case Type::RValueReference: |
| 2448 | case Type::MemberPointer: |
| 2449 | case Type::ConstantArray: |
| 2450 | case Type::IncompleteArray: |
| 2451 | case Type::VariableArray: |
| 2452 | case Type::DependentSizedArray: |
| 2453 | case Type::DependentAddressSpace: |
| 2454 | case Type::DependentVector: |
| 2455 | case Type::DependentSizedExtVector: |
| 2456 | case Type::Vector: |
| 2457 | case Type::ExtVector: |
| 2458 | case Type::ConstantMatrix: |
| 2459 | case Type::DependentSizedMatrix: |
| 2460 | case Type::FunctionProto: |
| 2461 | case Type::FunctionNoProto: |
| 2462 | case Type::Paren: |
| 2463 | case Type::Attributed: |
| 2464 | case Type::BTFTagAttributed: |
| 2465 | case Type::HLSLAttributedResource: |
| 2466 | case Type::HLSLInlineSpirv: |
| 2467 | case Type::Auto: |
| 2468 | case Type::DeducedTemplateSpecialization: |
| 2469 | case Type::PackExpansion: |
| 2470 | case Type::ObjCObject: |
| 2471 | case Type::ObjCInterface: |
| 2472 | case Type::ObjCObjectPointer: |
| 2473 | case Type::ObjCTypeParam: |
| 2474 | case Type::Atomic: |
| 2475 | case Type::Pipe: |
| 2476 | case Type::MacroQualified: |
| 2477 | case Type::BitInt: |
| 2478 | case Type::DependentBitInt: |
| 2479 | case Type::CountAttributed: |
| 2480 | llvm_unreachable("type is illegal as a nested name specifier" ); |
| 2481 | |
| 2482 | case Type::SubstTemplateTypeParmPack: |
| 2483 | // FIXME: not clear how to mangle this! |
| 2484 | // template <class T...> class A { |
| 2485 | // template <class U...> void foo(decltype(T::foo(U())) x...); |
| 2486 | // }; |
| 2487 | Out << "_SUBSTPACK_" ; |
| 2488 | break; |
| 2489 | |
| 2490 | // <unresolved-type> ::= <template-param> |
| 2491 | // ::= <decltype> |
| 2492 | // ::= <template-template-param> <template-args> |
| 2493 | // (this last is not official yet) |
| 2494 | case Type::TypeOfExpr: |
| 2495 | case Type::TypeOf: |
| 2496 | case Type::Decltype: |
| 2497 | case Type::PackIndexing: |
| 2498 | case Type::TemplateTypeParm: |
| 2499 | case Type::UnaryTransform: |
| 2500 | unresolvedType: |
| 2501 | // Some callers want a prefix before the mangled type. |
| 2502 | Out << Prefix; |
| 2503 | |
| 2504 | // This seems to do everything we want. It's not really |
| 2505 | // sanctioned for a substituted template parameter, though. |
| 2506 | mangleType(T: Ty); |
| 2507 | |
| 2508 | // We never want to print 'E' directly after an unresolved-type, |
| 2509 | // so we return directly. |
| 2510 | return true; |
| 2511 | |
| 2512 | case Type::SubstTemplateTypeParm: { |
| 2513 | auto *ST = cast<SubstTemplateTypeParmType>(Val&: Ty); |
| 2514 | // If this was replaced from a type alias, this is not substituted |
| 2515 | // from an outer template parameter, so it's not an unresolved-type. |
| 2516 | if (auto *TD = dyn_cast<TemplateDecl>(Val: ST->getAssociatedDecl()); |
| 2517 | TD && TD->isTypeAlias()) |
| 2518 | return mangleUnresolvedTypeOrSimpleId(Ty: ST->getReplacementType(), Prefix); |
| 2519 | goto unresolvedType; |
| 2520 | } |
| 2521 | |
| 2522 | case Type::Typedef: |
| 2523 | mangleSourceNameWithAbiTags(ND: cast<TypedefType>(Val&: Ty)->getDecl()); |
| 2524 | break; |
| 2525 | |
| 2526 | case Type::UnresolvedUsing: |
| 2527 | mangleSourceNameWithAbiTags( |
| 2528 | ND: cast<UnresolvedUsingType>(Val&: Ty)->getDecl()); |
| 2529 | break; |
| 2530 | |
| 2531 | case Type::Enum: |
| 2532 | case Type::Record: |
| 2533 | mangleSourceNameWithAbiTags(ND: cast<TagType>(Val&: Ty)->getDecl()); |
| 2534 | break; |
| 2535 | |
| 2536 | case Type::TemplateSpecialization: { |
| 2537 | const TemplateSpecializationType *TST = |
| 2538 | cast<TemplateSpecializationType>(Val&: Ty); |
| 2539 | TemplateName TN = TST->getTemplateName(); |
| 2540 | switch (TN.getKind()) { |
| 2541 | case TemplateName::Template: |
| 2542 | case TemplateName::QualifiedTemplate: { |
| 2543 | TemplateDecl *TD = TN.getAsTemplateDecl(); |
| 2544 | |
| 2545 | // If the base is a template template parameter, this is an |
| 2546 | // unresolved type. |
| 2547 | assert(TD && "no template for template specialization type" ); |
| 2548 | if (isa<TemplateTemplateParmDecl>(Val: TD)) |
| 2549 | goto unresolvedType; |
| 2550 | |
| 2551 | mangleSourceNameWithAbiTags(ND: TD); |
| 2552 | break; |
| 2553 | } |
| 2554 | |
| 2555 | case TemplateName::OverloadedTemplate: |
| 2556 | case TemplateName::AssumedTemplate: |
| 2557 | case TemplateName::DependentTemplate: |
| 2558 | case TemplateName::DeducedTemplate: |
| 2559 | llvm_unreachable("invalid base for a template specialization type" ); |
| 2560 | |
| 2561 | case TemplateName::SubstTemplateTemplateParm: { |
| 2562 | SubstTemplateTemplateParmStorage *subst = |
| 2563 | TN.getAsSubstTemplateTemplateParm(); |
| 2564 | mangleExistingSubstitution(name: subst->getReplacement()); |
| 2565 | break; |
| 2566 | } |
| 2567 | |
| 2568 | case TemplateName::SubstTemplateTemplateParmPack: { |
| 2569 | // FIXME: not clear how to mangle this! |
| 2570 | // template <template <class U> class T...> class A { |
| 2571 | // template <class U...> void foo(decltype(T<U>::foo) x...); |
| 2572 | // }; |
| 2573 | Out << "_SUBSTPACK_" ; |
| 2574 | break; |
| 2575 | } |
| 2576 | case TemplateName::UsingTemplate: { |
| 2577 | TemplateDecl *TD = TN.getAsTemplateDecl(); |
| 2578 | assert(TD && !isa<TemplateTemplateParmDecl>(TD)); |
| 2579 | mangleSourceNameWithAbiTags(ND: TD); |
| 2580 | break; |
| 2581 | } |
| 2582 | } |
| 2583 | |
| 2584 | // Note: we don't pass in the template name here. We are mangling the |
| 2585 | // original source-level template arguments, so we shouldn't consider |
| 2586 | // conversions to the corresponding template parameter. |
| 2587 | // FIXME: Other compilers mangle partially-resolved template arguments in |
| 2588 | // unresolved-qualifier-levels. |
| 2589 | mangleTemplateArgs(TN: TemplateName(), Args: TST->template_arguments()); |
| 2590 | break; |
| 2591 | } |
| 2592 | |
| 2593 | case Type::InjectedClassName: |
| 2594 | mangleSourceNameWithAbiTags( |
| 2595 | ND: cast<InjectedClassNameType>(Val&: Ty)->getDecl()); |
| 2596 | break; |
| 2597 | |
| 2598 | case Type::DependentName: |
| 2599 | mangleSourceName(II: cast<DependentNameType>(Val&: Ty)->getIdentifier()); |
| 2600 | break; |
| 2601 | |
| 2602 | case Type::DependentTemplateSpecialization: { |
| 2603 | const DependentTemplateSpecializationType *DTST = |
| 2604 | cast<DependentTemplateSpecializationType>(Val&: Ty); |
| 2605 | TemplateName Template = getASTContext().getDependentTemplateName( |
| 2606 | Name: DTST->getDependentTemplateName()); |
| 2607 | const DependentTemplateStorage &S = DTST->getDependentTemplateName(); |
| 2608 | mangleSourceName(II: S.getName().getIdentifier()); |
| 2609 | mangleTemplateArgs(TN: Template, Args: DTST->template_arguments()); |
| 2610 | break; |
| 2611 | } |
| 2612 | |
| 2613 | case Type::Using: |
| 2614 | return mangleUnresolvedTypeOrSimpleId(Ty: cast<UsingType>(Val&: Ty)->desugar(), |
| 2615 | Prefix); |
| 2616 | case Type::Elaborated: |
| 2617 | return mangleUnresolvedTypeOrSimpleId( |
| 2618 | Ty: cast<ElaboratedType>(Val&: Ty)->getNamedType(), Prefix); |
| 2619 | } |
| 2620 | |
| 2621 | return false; |
| 2622 | } |
| 2623 | |
| 2624 | void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) { |
| 2625 | switch (Name.getNameKind()) { |
| 2626 | case DeclarationName::CXXConstructorName: |
| 2627 | case DeclarationName::CXXDestructorName: |
| 2628 | case DeclarationName::CXXDeductionGuideName: |
| 2629 | case DeclarationName::CXXUsingDirective: |
| 2630 | case DeclarationName::Identifier: |
| 2631 | case DeclarationName::ObjCMultiArgSelector: |
| 2632 | case DeclarationName::ObjCOneArgSelector: |
| 2633 | case DeclarationName::ObjCZeroArgSelector: |
| 2634 | llvm_unreachable("Not an operator name" ); |
| 2635 | |
| 2636 | case DeclarationName::CXXConversionFunctionName: |
| 2637 | // <operator-name> ::= cv <type> # (cast) |
| 2638 | Out << "cv" ; |
| 2639 | mangleType(T: Name.getCXXNameType()); |
| 2640 | break; |
| 2641 | |
| 2642 | case DeclarationName::CXXLiteralOperatorName: |
| 2643 | Out << "li" ; |
| 2644 | mangleSourceName(II: Name.getCXXLiteralIdentifier()); |
| 2645 | return; |
| 2646 | |
| 2647 | case DeclarationName::CXXOperatorName: |
| 2648 | mangleOperatorName(OO: Name.getCXXOverloadedOperator(), Arity); |
| 2649 | break; |
| 2650 | } |
| 2651 | } |
| 2652 | |
| 2653 | void |
| 2654 | CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { |
| 2655 | switch (OO) { |
| 2656 | // <operator-name> ::= nw # new |
| 2657 | case OO_New: Out << "nw" ; break; |
| 2658 | // ::= na # new[] |
| 2659 | case OO_Array_New: Out << "na" ; break; |
| 2660 | // ::= dl # delete |
| 2661 | case OO_Delete: Out << "dl" ; break; |
| 2662 | // ::= da # delete[] |
| 2663 | case OO_Array_Delete: Out << "da" ; break; |
| 2664 | // ::= ps # + (unary) |
| 2665 | // ::= pl # + (binary or unknown) |
| 2666 | case OO_Plus: |
| 2667 | Out << (Arity == 1? "ps" : "pl" ); break; |
| 2668 | // ::= ng # - (unary) |
| 2669 | // ::= mi # - (binary or unknown) |
| 2670 | case OO_Minus: |
| 2671 | Out << (Arity == 1? "ng" : "mi" ); break; |
| 2672 | // ::= ad # & (unary) |
| 2673 | // ::= an # & (binary or unknown) |
| 2674 | case OO_Amp: |
| 2675 | Out << (Arity == 1? "ad" : "an" ); break; |
| 2676 | // ::= de # * (unary) |
| 2677 | // ::= ml # * (binary or unknown) |
| 2678 | case OO_Star: |
| 2679 | // Use binary when unknown. |
| 2680 | Out << (Arity == 1? "de" : "ml" ); break; |
| 2681 | // ::= co # ~ |
| 2682 | case OO_Tilde: Out << "co" ; break; |
| 2683 | // ::= dv # / |
| 2684 | case OO_Slash: Out << "dv" ; break; |
| 2685 | // ::= rm # % |
| 2686 | case OO_Percent: Out << "rm" ; break; |
| 2687 | // ::= or # | |
| 2688 | case OO_Pipe: Out << "or" ; break; |
| 2689 | // ::= eo # ^ |
| 2690 | case OO_Caret: Out << "eo" ; break; |
| 2691 | // ::= aS # = |
| 2692 | case OO_Equal: Out << "aS" ; break; |
| 2693 | // ::= pL # += |
| 2694 | case OO_PlusEqual: Out << "pL" ; break; |
| 2695 | // ::= mI # -= |
| 2696 | case OO_MinusEqual: Out << "mI" ; break; |
| 2697 | // ::= mL # *= |
| 2698 | case OO_StarEqual: Out << "mL" ; break; |
| 2699 | // ::= dV # /= |
| 2700 | case OO_SlashEqual: Out << "dV" ; break; |
| 2701 | // ::= rM # %= |
| 2702 | case OO_PercentEqual: Out << "rM" ; break; |
| 2703 | // ::= aN # &= |
| 2704 | case OO_AmpEqual: Out << "aN" ; break; |
| 2705 | // ::= oR # |= |
| 2706 | case OO_PipeEqual: Out << "oR" ; break; |
| 2707 | // ::= eO # ^= |
| 2708 | case OO_CaretEqual: Out << "eO" ; break; |
| 2709 | // ::= ls # << |
| 2710 | case OO_LessLess: Out << "ls" ; break; |
| 2711 | // ::= rs # >> |
| 2712 | case OO_GreaterGreater: Out << "rs" ; break; |
| 2713 | // ::= lS # <<= |
| 2714 | case OO_LessLessEqual: Out << "lS" ; break; |
| 2715 | // ::= rS # >>= |
| 2716 | case OO_GreaterGreaterEqual: Out << "rS" ; break; |
| 2717 | // ::= eq # == |
| 2718 | case OO_EqualEqual: Out << "eq" ; break; |
| 2719 | // ::= ne # != |
| 2720 | case OO_ExclaimEqual: Out << "ne" ; break; |
| 2721 | // ::= lt # < |
| 2722 | case OO_Less: Out << "lt" ; break; |
| 2723 | // ::= gt # > |
| 2724 | case OO_Greater: Out << "gt" ; break; |
| 2725 | // ::= le # <= |
| 2726 | case OO_LessEqual: Out << "le" ; break; |
| 2727 | // ::= ge # >= |
| 2728 | case OO_GreaterEqual: Out << "ge" ; break; |
| 2729 | // ::= nt # ! |
| 2730 | case OO_Exclaim: Out << "nt" ; break; |
| 2731 | // ::= aa # && |
| 2732 | case OO_AmpAmp: Out << "aa" ; break; |
| 2733 | // ::= oo # || |
| 2734 | case OO_PipePipe: Out << "oo" ; break; |
| 2735 | // ::= pp # ++ |
| 2736 | case OO_PlusPlus: Out << "pp" ; break; |
| 2737 | // ::= mm # -- |
| 2738 | case OO_MinusMinus: Out << "mm" ; break; |
| 2739 | // ::= cm # , |
| 2740 | case OO_Comma: Out << "cm" ; break; |
| 2741 | // ::= pm # ->* |
| 2742 | case OO_ArrowStar: Out << "pm" ; break; |
| 2743 | // ::= pt # -> |
| 2744 | case OO_Arrow: Out << "pt" ; break; |
| 2745 | // ::= cl # () |
| 2746 | case OO_Call: Out << "cl" ; break; |
| 2747 | // ::= ix # [] |
| 2748 | case OO_Subscript: Out << "ix" ; break; |
| 2749 | |
| 2750 | // ::= qu # ? |
| 2751 | // The conditional operator can't be overloaded, but we still handle it when |
| 2752 | // mangling expressions. |
| 2753 | case OO_Conditional: Out << "qu" ; break; |
| 2754 | // Proposal on cxx-abi-dev, 2015-10-21. |
| 2755 | // ::= aw # co_await |
| 2756 | case OO_Coawait: Out << "aw" ; break; |
| 2757 | // Proposed in cxx-abi github issue 43. |
| 2758 | // ::= ss # <=> |
| 2759 | case OO_Spaceship: Out << "ss" ; break; |
| 2760 | |
| 2761 | case OO_None: |
| 2762 | case NUM_OVERLOADED_OPERATORS: |
| 2763 | llvm_unreachable("Not an overloaded operator" ); |
| 2764 | } |
| 2765 | } |
| 2766 | |
| 2767 | void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) { |
| 2768 | // Vendor qualifiers come first and if they are order-insensitive they must |
| 2769 | // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5. |
| 2770 | |
| 2771 | // <type> ::= U <addrspace-expr> |
| 2772 | if (DAST) { |
| 2773 | Out << "U2ASI" ; |
| 2774 | mangleExpression(E: DAST->getAddrSpaceExpr()); |
| 2775 | Out << "E" ; |
| 2776 | } |
| 2777 | |
| 2778 | // Address space qualifiers start with an ordinary letter. |
| 2779 | if (Quals.hasAddressSpace()) { |
| 2780 | // Address space extension: |
| 2781 | // |
| 2782 | // <type> ::= U <target-addrspace> |
| 2783 | // <type> ::= U <OpenCL-addrspace> |
| 2784 | // <type> ::= U <CUDA-addrspace> |
| 2785 | |
| 2786 | SmallString<64> ASString; |
| 2787 | LangAS AS = Quals.getAddressSpace(); |
| 2788 | |
| 2789 | if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { |
| 2790 | // <target-addrspace> ::= "AS" <address-space-number> |
| 2791 | unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); |
| 2792 | if (TargetAS != 0 || |
| 2793 | Context.getASTContext().getTargetAddressSpace(AS: LangAS::Default) != 0) |
| 2794 | ASString = "AS" + llvm::utostr(X: TargetAS); |
| 2795 | } else { |
| 2796 | switch (AS) { |
| 2797 | default: llvm_unreachable("Not a language specific address space" ); |
| 2798 | // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | |
| 2799 | // "private"| "generic" | "device" | |
| 2800 | // "host" ] |
| 2801 | case LangAS::opencl_global: |
| 2802 | ASString = "CLglobal" ; |
| 2803 | break; |
| 2804 | case LangAS::opencl_global_device: |
| 2805 | ASString = "CLdevice" ; |
| 2806 | break; |
| 2807 | case LangAS::opencl_global_host: |
| 2808 | ASString = "CLhost" ; |
| 2809 | break; |
| 2810 | case LangAS::opencl_local: |
| 2811 | ASString = "CLlocal" ; |
| 2812 | break; |
| 2813 | case LangAS::opencl_constant: |
| 2814 | ASString = "CLconstant" ; |
| 2815 | break; |
| 2816 | case LangAS::opencl_private: |
| 2817 | ASString = "CLprivate" ; |
| 2818 | break; |
| 2819 | case LangAS::opencl_generic: |
| 2820 | ASString = "CLgeneric" ; |
| 2821 | break; |
| 2822 | // <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" | |
| 2823 | // "device" | "host" ] |
| 2824 | case LangAS::sycl_global: |
| 2825 | ASString = "SYglobal" ; |
| 2826 | break; |
| 2827 | case LangAS::sycl_global_device: |
| 2828 | ASString = "SYdevice" ; |
| 2829 | break; |
| 2830 | case LangAS::sycl_global_host: |
| 2831 | ASString = "SYhost" ; |
| 2832 | break; |
| 2833 | case LangAS::sycl_local: |
| 2834 | ASString = "SYlocal" ; |
| 2835 | break; |
| 2836 | case LangAS::sycl_private: |
| 2837 | ASString = "SYprivate" ; |
| 2838 | break; |
| 2839 | // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] |
| 2840 | case LangAS::cuda_device: |
| 2841 | ASString = "CUdevice" ; |
| 2842 | break; |
| 2843 | case LangAS::cuda_constant: |
| 2844 | ASString = "CUconstant" ; |
| 2845 | break; |
| 2846 | case LangAS::cuda_shared: |
| 2847 | ASString = "CUshared" ; |
| 2848 | break; |
| 2849 | // <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ] |
| 2850 | case LangAS::ptr32_sptr: |
| 2851 | ASString = "ptr32_sptr" ; |
| 2852 | break; |
| 2853 | case LangAS::ptr32_uptr: |
| 2854 | // For z/OS, there are no special mangling rules applied to the ptr32 |
| 2855 | // qualifier. Ex: void foo(int * __ptr32 p) -> _Z3f2Pi. The mangling for |
| 2856 | // "p" is treated the same as a regular integer pointer. |
| 2857 | if (!getASTContext().getTargetInfo().getTriple().isOSzOS()) |
| 2858 | ASString = "ptr32_uptr" ; |
| 2859 | break; |
| 2860 | case LangAS::ptr64: |
| 2861 | ASString = "ptr64" ; |
| 2862 | break; |
| 2863 | } |
| 2864 | } |
| 2865 | if (!ASString.empty()) |
| 2866 | mangleVendorQualifier(Name: ASString); |
| 2867 | } |
| 2868 | |
| 2869 | // The ARC ownership qualifiers start with underscores. |
| 2870 | // Objective-C ARC Extension: |
| 2871 | // |
| 2872 | // <type> ::= U "__strong" |
| 2873 | // <type> ::= U "__weak" |
| 2874 | // <type> ::= U "__autoreleasing" |
| 2875 | // |
| 2876 | // Note: we emit __weak first to preserve the order as |
| 2877 | // required by the Itanium ABI. |
| 2878 | if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak) |
| 2879 | mangleVendorQualifier(Name: "__weak" ); |
| 2880 | |
| 2881 | // __unaligned (from -fms-extensions) |
| 2882 | if (Quals.hasUnaligned()) |
| 2883 | mangleVendorQualifier(Name: "__unaligned" ); |
| 2884 | |
| 2885 | // __ptrauth. Note that this is parameterized. |
| 2886 | if (PointerAuthQualifier PtrAuth = Quals.getPointerAuth()) { |
| 2887 | mangleVendorQualifier(Name: "__ptrauth" ); |
| 2888 | // For now, since we only allow non-dependent arguments, we can just |
| 2889 | // inline the mangling of those arguments as literals. We treat the |
| 2890 | // key and extra-discriminator arguments as 'unsigned int' and the |
| 2891 | // address-discriminated argument as 'bool'. |
| 2892 | Out << "I" |
| 2893 | "Lj" |
| 2894 | << PtrAuth.getKey() |
| 2895 | << "E" |
| 2896 | "Lb" |
| 2897 | << unsigned(PtrAuth.isAddressDiscriminated()) |
| 2898 | << "E" |
| 2899 | "Lj" |
| 2900 | << PtrAuth.getExtraDiscriminator() |
| 2901 | << "E" |
| 2902 | "E" ; |
| 2903 | } |
| 2904 | |
| 2905 | // Remaining ARC ownership qualifiers. |
| 2906 | switch (Quals.getObjCLifetime()) { |
| 2907 | case Qualifiers::OCL_None: |
| 2908 | break; |
| 2909 | |
| 2910 | case Qualifiers::OCL_Weak: |
| 2911 | // Do nothing as we already handled this case above. |
| 2912 | break; |
| 2913 | |
| 2914 | case Qualifiers::OCL_Strong: |
| 2915 | mangleVendorQualifier(Name: "__strong" ); |
| 2916 | break; |
| 2917 | |
| 2918 | case Qualifiers::OCL_Autoreleasing: |
| 2919 | mangleVendorQualifier(Name: "__autoreleasing" ); |
| 2920 | break; |
| 2921 | |
| 2922 | case Qualifiers::OCL_ExplicitNone: |
| 2923 | // The __unsafe_unretained qualifier is *not* mangled, so that |
| 2924 | // __unsafe_unretained types in ARC produce the same manglings as the |
| 2925 | // equivalent (but, naturally, unqualified) types in non-ARC, providing |
| 2926 | // better ABI compatibility. |
| 2927 | // |
| 2928 | // It's safe to do this because unqualified 'id' won't show up |
| 2929 | // in any type signatures that need to be mangled. |
| 2930 | break; |
| 2931 | } |
| 2932 | |
| 2933 | // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const |
| 2934 | if (Quals.hasRestrict()) |
| 2935 | Out << 'r'; |
| 2936 | if (Quals.hasVolatile()) |
| 2937 | Out << 'V'; |
| 2938 | if (Quals.hasConst()) |
| 2939 | Out << 'K'; |
| 2940 | } |
| 2941 | |
| 2942 | void CXXNameMangler::mangleVendorQualifier(StringRef name) { |
| 2943 | Out << 'U' << name.size() << name; |
| 2944 | } |
| 2945 | |
| 2946 | void CXXNameMangler::mangleVendorType(StringRef name) { |
| 2947 | Out << 'u' << name.size() << name; |
| 2948 | } |
| 2949 | |
| 2950 | void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { |
| 2951 | // <ref-qualifier> ::= R # lvalue reference |
| 2952 | // ::= O # rvalue-reference |
| 2953 | switch (RefQualifier) { |
| 2954 | case RQ_None: |
| 2955 | break; |
| 2956 | |
| 2957 | case RQ_LValue: |
| 2958 | Out << 'R'; |
| 2959 | break; |
| 2960 | |
| 2961 | case RQ_RValue: |
| 2962 | Out << 'O'; |
| 2963 | break; |
| 2964 | } |
| 2965 | } |
| 2966 | |
| 2967 | void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { |
| 2968 | Context.mangleObjCMethodNameAsSourceName(MD, Out); |
| 2969 | } |
| 2970 | |
| 2971 | static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty, |
| 2972 | ASTContext &Ctx) { |
| 2973 | if (Quals) |
| 2974 | return true; |
| 2975 | if (Ty->isSpecificBuiltinType(K: BuiltinType::ObjCSel)) |
| 2976 | return true; |
| 2977 | if (Ty->isOpenCLSpecificType()) |
| 2978 | return true; |
| 2979 | // From Clang 18.0 we correctly treat SVE types as substitution candidates. |
| 2980 | if (Ty->isSVESizelessBuiltinType() && |
| 2981 | Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver17) |
| 2982 | return true; |
| 2983 | if (Ty->isBuiltinType()) |
| 2984 | return false; |
| 2985 | // Through to Clang 6.0, we accidentally treated undeduced auto types as |
| 2986 | // substitution candidates. |
| 2987 | if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 && |
| 2988 | isa<AutoType>(Val: Ty)) |
| 2989 | return false; |
| 2990 | // A placeholder type for class template deduction is substitutable with |
| 2991 | // its corresponding template name; this is handled specially when mangling |
| 2992 | // the type. |
| 2993 | if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>()) |
| 2994 | if (DeducedTST->getDeducedType().isNull()) |
| 2995 | return false; |
| 2996 | return true; |
| 2997 | } |
| 2998 | |
| 2999 | void CXXNameMangler::mangleType(QualType T) { |
| 3000 | // If our type is instantiation-dependent but not dependent, we mangle |
| 3001 | // it as it was written in the source, removing any top-level sugar. |
| 3002 | // Otherwise, use the canonical type. |
| 3003 | // |
| 3004 | // FIXME: This is an approximation of the instantiation-dependent name |
| 3005 | // mangling rules, since we should really be using the type as written and |
| 3006 | // augmented via semantic analysis (i.e., with implicit conversions and |
| 3007 | // default template arguments) for any instantiation-dependent type. |
| 3008 | // Unfortunately, that requires several changes to our AST: |
| 3009 | // - Instantiation-dependent TemplateSpecializationTypes will need to be |
| 3010 | // uniqued, so that we can handle substitutions properly |
| 3011 | // - Default template arguments will need to be represented in the |
| 3012 | // TemplateSpecializationType, since they need to be mangled even though |
| 3013 | // they aren't written. |
| 3014 | // - Conversions on non-type template arguments need to be expressed, since |
| 3015 | // they can affect the mangling of sizeof/alignof. |
| 3016 | // |
| 3017 | // FIXME: This is wrong when mapping to the canonical type for a dependent |
| 3018 | // type discards instantiation-dependent portions of the type, such as for: |
| 3019 | // |
| 3020 | // template<typename T, int N> void f(T (&)[sizeof(N)]); |
| 3021 | // template<typename T> void f(T() throw(typename T::type)); (pre-C++17) |
| 3022 | // |
| 3023 | // It's also wrong in the opposite direction when instantiation-dependent, |
| 3024 | // canonically-equivalent types differ in some irrelevant portion of inner |
| 3025 | // type sugar. In such cases, we fail to form correct substitutions, eg: |
| 3026 | // |
| 3027 | // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*)); |
| 3028 | // |
| 3029 | // We should instead canonicalize the non-instantiation-dependent parts, |
| 3030 | // regardless of whether the type as a whole is dependent or instantiation |
| 3031 | // dependent. |
| 3032 | if (!T->isInstantiationDependentType() || T->isDependentType()) |
| 3033 | T = T.getCanonicalType(); |
| 3034 | else { |
| 3035 | // Desugar any types that are purely sugar. |
| 3036 | do { |
| 3037 | // Don't desugar through template specialization types that aren't |
| 3038 | // type aliases. We need to mangle the template arguments as written. |
| 3039 | if (const TemplateSpecializationType *TST |
| 3040 | = dyn_cast<TemplateSpecializationType>(Val&: T)) |
| 3041 | if (!TST->isTypeAlias()) |
| 3042 | break; |
| 3043 | |
| 3044 | // FIXME: We presumably shouldn't strip off ElaboratedTypes with |
| 3045 | // instantation-dependent qualifiers. See |
| 3046 | // https://github.com/itanium-cxx-abi/cxx-abi/issues/114. |
| 3047 | |
| 3048 | QualType Desugared |
| 3049 | = T.getSingleStepDesugaredType(Context: Context.getASTContext()); |
| 3050 | if (Desugared == T) |
| 3051 | break; |
| 3052 | |
| 3053 | T = Desugared; |
| 3054 | } while (true); |
| 3055 | } |
| 3056 | SplitQualType split = T.split(); |
| 3057 | Qualifiers quals = split.Quals; |
| 3058 | const Type *ty = split.Ty; |
| 3059 | |
| 3060 | bool isSubstitutable = |
| 3061 | isTypeSubstitutable(Quals: quals, Ty: ty, Ctx&: Context.getASTContext()); |
| 3062 | if (isSubstitutable && mangleSubstitution(T)) |
| 3063 | return; |
| 3064 | |
| 3065 | // If we're mangling a qualified array type, push the qualifiers to |
| 3066 | // the element type. |
| 3067 | if (quals && isa<ArrayType>(Val: T)) { |
| 3068 | ty = Context.getASTContext().getAsArrayType(T); |
| 3069 | quals = Qualifiers(); |
| 3070 | |
| 3071 | // Note that we don't update T: we want to add the |
| 3072 | // substitution at the original type. |
| 3073 | } |
| 3074 | |
| 3075 | if (quals || ty->isDependentAddressSpaceType()) { |
| 3076 | if (const DependentAddressSpaceType *DAST = |
| 3077 | dyn_cast<DependentAddressSpaceType>(Val: ty)) { |
| 3078 | SplitQualType splitDAST = DAST->getPointeeType().split(); |
| 3079 | mangleQualifiers(Quals: splitDAST.Quals, DAST); |
| 3080 | mangleType(T: QualType(splitDAST.Ty, 0)); |
| 3081 | } else { |
| 3082 | mangleQualifiers(Quals: quals); |
| 3083 | |
| 3084 | // Recurse: even if the qualified type isn't yet substitutable, |
| 3085 | // the unqualified type might be. |
| 3086 | mangleType(T: QualType(ty, 0)); |
| 3087 | } |
| 3088 | } else { |
| 3089 | switch (ty->getTypeClass()) { |
| 3090 | #define ABSTRACT_TYPE(CLASS, PARENT) |
| 3091 | #define NON_CANONICAL_TYPE(CLASS, PARENT) \ |
| 3092 | case Type::CLASS: \ |
| 3093 | llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ |
| 3094 | return; |
| 3095 | #define TYPE(CLASS, PARENT) \ |
| 3096 | case Type::CLASS: \ |
| 3097 | mangleType(static_cast<const CLASS##Type*>(ty)); \ |
| 3098 | break; |
| 3099 | #include "clang/AST/TypeNodes.inc" |
| 3100 | } |
| 3101 | } |
| 3102 | |
| 3103 | // Add the substitution. |
| 3104 | if (isSubstitutable) |
| 3105 | addSubstitution(T); |
| 3106 | } |
| 3107 | |
| 3108 | void CXXNameMangler::mangleCXXRecordDecl(const CXXRecordDecl *Record, |
| 3109 | bool SuppressSubstitution) { |
| 3110 | if (mangleSubstitution(ND: Record)) |
| 3111 | return; |
| 3112 | mangleName(GD: Record); |
| 3113 | if (SuppressSubstitution) |
| 3114 | return; |
| 3115 | addSubstitution(ND: Record); |
| 3116 | } |
| 3117 | |
| 3118 | void CXXNameMangler::mangleType(const BuiltinType *T) { |
| 3119 | // <type> ::= <builtin-type> |
| 3120 | // <builtin-type> ::= v # void |
| 3121 | // ::= w # wchar_t |
| 3122 | // ::= b # bool |
| 3123 | // ::= c # char |
| 3124 | // ::= a # signed char |
| 3125 | // ::= h # unsigned char |
| 3126 | // ::= s # short |
| 3127 | // ::= t # unsigned short |
| 3128 | // ::= i # int |
| 3129 | // ::= j # unsigned int |
| 3130 | // ::= l # long |
| 3131 | // ::= m # unsigned long |
| 3132 | // ::= x # long long, __int64 |
| 3133 | // ::= y # unsigned long long, __int64 |
| 3134 | // ::= n # __int128 |
| 3135 | // ::= o # unsigned __int128 |
| 3136 | // ::= f # float |
| 3137 | // ::= d # double |
| 3138 | // ::= e # long double, __float80 |
| 3139 | // ::= g # __float128 |
| 3140 | // ::= g # __ibm128 |
| 3141 | // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) |
| 3142 | // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) |
| 3143 | // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) |
| 3144 | // ::= Dh # IEEE 754r half-precision floating point (16 bits) |
| 3145 | // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits); |
| 3146 | // ::= Di # char32_t |
| 3147 | // ::= Ds # char16_t |
| 3148 | // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) |
| 3149 | // ::= [DS] DA # N1169 fixed-point [_Sat] T _Accum |
| 3150 | // ::= [DS] DR # N1169 fixed-point [_Sat] T _Fract |
| 3151 | // ::= u <source-name> # vendor extended type |
| 3152 | // |
| 3153 | // <fixed-point-size> |
| 3154 | // ::= s # short |
| 3155 | // ::= t # unsigned short |
| 3156 | // ::= i # plain |
| 3157 | // ::= j # unsigned |
| 3158 | // ::= l # long |
| 3159 | // ::= m # unsigned long |
| 3160 | std::string type_name; |
| 3161 | // Normalize integer types as vendor extended types: |
| 3162 | // u<length>i<type size> |
| 3163 | // u<length>u<type size> |
| 3164 | if (NormalizeIntegers && T->isInteger()) { |
| 3165 | if (T->isSignedInteger()) { |
| 3166 | switch (getASTContext().getTypeSize(T)) { |
| 3167 | case 8: |
| 3168 | // Pick a representative for each integer size in the substitution |
| 3169 | // dictionary. (Its actual defined size is not relevant.) |
| 3170 | if (mangleSubstitution(Ptr: BuiltinType::SChar)) |
| 3171 | break; |
| 3172 | Out << "u2i8" ; |
| 3173 | addSubstitution(Ptr: BuiltinType::SChar); |
| 3174 | break; |
| 3175 | case 16: |
| 3176 | if (mangleSubstitution(Ptr: BuiltinType::Short)) |
| 3177 | break; |
| 3178 | Out << "u3i16" ; |
| 3179 | addSubstitution(Ptr: BuiltinType::Short); |
| 3180 | break; |
| 3181 | case 32: |
| 3182 | if (mangleSubstitution(Ptr: BuiltinType::Int)) |
| 3183 | break; |
| 3184 | Out << "u3i32" ; |
| 3185 | addSubstitution(Ptr: BuiltinType::Int); |
| 3186 | break; |
| 3187 | case 64: |
| 3188 | if (mangleSubstitution(Ptr: BuiltinType::Long)) |
| 3189 | break; |
| 3190 | Out << "u3i64" ; |
| 3191 | addSubstitution(Ptr: BuiltinType::Long); |
| 3192 | break; |
| 3193 | case 128: |
| 3194 | if (mangleSubstitution(Ptr: BuiltinType::Int128)) |
| 3195 | break; |
| 3196 | Out << "u4i128" ; |
| 3197 | addSubstitution(Ptr: BuiltinType::Int128); |
| 3198 | break; |
| 3199 | default: |
| 3200 | llvm_unreachable("Unknown integer size for normalization" ); |
| 3201 | } |
| 3202 | } else { |
| 3203 | switch (getASTContext().getTypeSize(T)) { |
| 3204 | case 8: |
| 3205 | if (mangleSubstitution(Ptr: BuiltinType::UChar)) |
| 3206 | break; |
| 3207 | Out << "u2u8" ; |
| 3208 | addSubstitution(Ptr: BuiltinType::UChar); |
| 3209 | break; |
| 3210 | case 16: |
| 3211 | if (mangleSubstitution(Ptr: BuiltinType::UShort)) |
| 3212 | break; |
| 3213 | Out << "u3u16" ; |
| 3214 | addSubstitution(Ptr: BuiltinType::UShort); |
| 3215 | break; |
| 3216 | case 32: |
| 3217 | if (mangleSubstitution(Ptr: BuiltinType::UInt)) |
| 3218 | break; |
| 3219 | Out << "u3u32" ; |
| 3220 | addSubstitution(Ptr: BuiltinType::UInt); |
| 3221 | break; |
| 3222 | case 64: |
| 3223 | if (mangleSubstitution(Ptr: BuiltinType::ULong)) |
| 3224 | break; |
| 3225 | Out << "u3u64" ; |
| 3226 | addSubstitution(Ptr: BuiltinType::ULong); |
| 3227 | break; |
| 3228 | case 128: |
| 3229 | if (mangleSubstitution(Ptr: BuiltinType::UInt128)) |
| 3230 | break; |
| 3231 | Out << "u4u128" ; |
| 3232 | addSubstitution(Ptr: BuiltinType::UInt128); |
| 3233 | break; |
| 3234 | default: |
| 3235 | llvm_unreachable("Unknown integer size for normalization" ); |
| 3236 | } |
| 3237 | } |
| 3238 | return; |
| 3239 | } |
| 3240 | switch (T->getKind()) { |
| 3241 | case BuiltinType::Void: |
| 3242 | Out << 'v'; |
| 3243 | break; |
| 3244 | case BuiltinType::Bool: |
| 3245 | Out << 'b'; |
| 3246 | break; |
| 3247 | case BuiltinType::Char_U: |
| 3248 | case BuiltinType::Char_S: |
| 3249 | Out << 'c'; |
| 3250 | break; |
| 3251 | case BuiltinType::UChar: |
| 3252 | Out << 'h'; |
| 3253 | break; |
| 3254 | case BuiltinType::UShort: |
| 3255 | Out << 't'; |
| 3256 | break; |
| 3257 | case BuiltinType::UInt: |
| 3258 | Out << 'j'; |
| 3259 | break; |
| 3260 | case BuiltinType::ULong: |
| 3261 | Out << 'm'; |
| 3262 | break; |
| 3263 | case BuiltinType::ULongLong: |
| 3264 | Out << 'y'; |
| 3265 | break; |
| 3266 | case BuiltinType::UInt128: |
| 3267 | Out << 'o'; |
| 3268 | break; |
| 3269 | case BuiltinType::SChar: |
| 3270 | Out << 'a'; |
| 3271 | break; |
| 3272 | case BuiltinType::WChar_S: |
| 3273 | case BuiltinType::WChar_U: |
| 3274 | Out << 'w'; |
| 3275 | break; |
| 3276 | case BuiltinType::Char8: |
| 3277 | Out << "Du" ; |
| 3278 | break; |
| 3279 | case BuiltinType::Char16: |
| 3280 | Out << "Ds" ; |
| 3281 | break; |
| 3282 | case BuiltinType::Char32: |
| 3283 | Out << "Di" ; |
| 3284 | break; |
| 3285 | case BuiltinType::Short: |
| 3286 | Out << 's'; |
| 3287 | break; |
| 3288 | case BuiltinType::Int: |
| 3289 | Out << 'i'; |
| 3290 | break; |
| 3291 | case BuiltinType::Long: |
| 3292 | Out << 'l'; |
| 3293 | break; |
| 3294 | case BuiltinType::LongLong: |
| 3295 | Out << 'x'; |
| 3296 | break; |
| 3297 | case BuiltinType::Int128: |
| 3298 | Out << 'n'; |
| 3299 | break; |
| 3300 | case BuiltinType::Float16: |
| 3301 | Out << "DF16_" ; |
| 3302 | break; |
| 3303 | case BuiltinType::ShortAccum: |
| 3304 | Out << "DAs" ; |
| 3305 | break; |
| 3306 | case BuiltinType::Accum: |
| 3307 | Out << "DAi" ; |
| 3308 | break; |
| 3309 | case BuiltinType::LongAccum: |
| 3310 | Out << "DAl" ; |
| 3311 | break; |
| 3312 | case BuiltinType::UShortAccum: |
| 3313 | Out << "DAt" ; |
| 3314 | break; |
| 3315 | case BuiltinType::UAccum: |
| 3316 | Out << "DAj" ; |
| 3317 | break; |
| 3318 | case BuiltinType::ULongAccum: |
| 3319 | Out << "DAm" ; |
| 3320 | break; |
| 3321 | case BuiltinType::ShortFract: |
| 3322 | Out << "DRs" ; |
| 3323 | break; |
| 3324 | case BuiltinType::Fract: |
| 3325 | Out << "DRi" ; |
| 3326 | break; |
| 3327 | case BuiltinType::LongFract: |
| 3328 | Out << "DRl" ; |
| 3329 | break; |
| 3330 | case BuiltinType::UShortFract: |
| 3331 | Out << "DRt" ; |
| 3332 | break; |
| 3333 | case BuiltinType::UFract: |
| 3334 | Out << "DRj" ; |
| 3335 | break; |
| 3336 | case BuiltinType::ULongFract: |
| 3337 | Out << "DRm" ; |
| 3338 | break; |
| 3339 | case BuiltinType::SatShortAccum: |
| 3340 | Out << "DSDAs" ; |
| 3341 | break; |
| 3342 | case BuiltinType::SatAccum: |
| 3343 | Out << "DSDAi" ; |
| 3344 | break; |
| 3345 | case BuiltinType::SatLongAccum: |
| 3346 | Out << "DSDAl" ; |
| 3347 | break; |
| 3348 | case BuiltinType::SatUShortAccum: |
| 3349 | Out << "DSDAt" ; |
| 3350 | break; |
| 3351 | case BuiltinType::SatUAccum: |
| 3352 | Out << "DSDAj" ; |
| 3353 | break; |
| 3354 | case BuiltinType::SatULongAccum: |
| 3355 | Out << "DSDAm" ; |
| 3356 | break; |
| 3357 | case BuiltinType::SatShortFract: |
| 3358 | Out << "DSDRs" ; |
| 3359 | break; |
| 3360 | case BuiltinType::SatFract: |
| 3361 | Out << "DSDRi" ; |
| 3362 | break; |
| 3363 | case BuiltinType::SatLongFract: |
| 3364 | Out << "DSDRl" ; |
| 3365 | break; |
| 3366 | case BuiltinType::SatUShortFract: |
| 3367 | Out << "DSDRt" ; |
| 3368 | break; |
| 3369 | case BuiltinType::SatUFract: |
| 3370 | Out << "DSDRj" ; |
| 3371 | break; |
| 3372 | case BuiltinType::SatULongFract: |
| 3373 | Out << "DSDRm" ; |
| 3374 | break; |
| 3375 | case BuiltinType::Half: |
| 3376 | Out << "Dh" ; |
| 3377 | break; |
| 3378 | case BuiltinType::Float: |
| 3379 | Out << 'f'; |
| 3380 | break; |
| 3381 | case BuiltinType::Double: |
| 3382 | Out << 'd'; |
| 3383 | break; |
| 3384 | case BuiltinType::LongDouble: { |
| 3385 | const TargetInfo *TI = |
| 3386 | getASTContext().getLangOpts().OpenMP && |
| 3387 | getASTContext().getLangOpts().OpenMPIsTargetDevice |
| 3388 | ? getASTContext().getAuxTargetInfo() |
| 3389 | : &getASTContext().getTargetInfo(); |
| 3390 | Out << TI->getLongDoubleMangling(); |
| 3391 | break; |
| 3392 | } |
| 3393 | case BuiltinType::Float128: { |
| 3394 | const TargetInfo *TI = |
| 3395 | getASTContext().getLangOpts().OpenMP && |
| 3396 | getASTContext().getLangOpts().OpenMPIsTargetDevice |
| 3397 | ? getASTContext().getAuxTargetInfo() |
| 3398 | : &getASTContext().getTargetInfo(); |
| 3399 | Out << TI->getFloat128Mangling(); |
| 3400 | break; |
| 3401 | } |
| 3402 | case BuiltinType::BFloat16: { |
| 3403 | const TargetInfo *TI = |
| 3404 | ((getASTContext().getLangOpts().OpenMP && |
| 3405 | getASTContext().getLangOpts().OpenMPIsTargetDevice) || |
| 3406 | getASTContext().getLangOpts().SYCLIsDevice) |
| 3407 | ? getASTContext().getAuxTargetInfo() |
| 3408 | : &getASTContext().getTargetInfo(); |
| 3409 | Out << TI->getBFloat16Mangling(); |
| 3410 | break; |
| 3411 | } |
| 3412 | case BuiltinType::Ibm128: { |
| 3413 | const TargetInfo *TI = &getASTContext().getTargetInfo(); |
| 3414 | Out << TI->getIbm128Mangling(); |
| 3415 | break; |
| 3416 | } |
| 3417 | case BuiltinType::NullPtr: |
| 3418 | Out << "Dn" ; |
| 3419 | break; |
| 3420 | |
| 3421 | #define BUILTIN_TYPE(Id, SingletonId) |
| 3422 | #define PLACEHOLDER_TYPE(Id, SingletonId) \ |
| 3423 | case BuiltinType::Id: |
| 3424 | #include "clang/AST/BuiltinTypes.def" |
| 3425 | case BuiltinType::Dependent: |
| 3426 | if (!NullOut) |
| 3427 | llvm_unreachable("mangling a placeholder type" ); |
| 3428 | break; |
| 3429 | case BuiltinType::ObjCId: |
| 3430 | Out << "11objc_object" ; |
| 3431 | break; |
| 3432 | case BuiltinType::ObjCClass: |
| 3433 | Out << "10objc_class" ; |
| 3434 | break; |
| 3435 | case BuiltinType::ObjCSel: |
| 3436 | Out << "13objc_selector" ; |
| 3437 | break; |
| 3438 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| 3439 | case BuiltinType::Id: \ |
| 3440 | type_name = "ocl_" #ImgType "_" #Suffix; \ |
| 3441 | Out << type_name.size() << type_name; \ |
| 3442 | break; |
| 3443 | #include "clang/Basic/OpenCLImageTypes.def" |
| 3444 | case BuiltinType::OCLSampler: |
| 3445 | Out << "11ocl_sampler" ; |
| 3446 | break; |
| 3447 | case BuiltinType::OCLEvent: |
| 3448 | Out << "9ocl_event" ; |
| 3449 | break; |
| 3450 | case BuiltinType::OCLClkEvent: |
| 3451 | Out << "12ocl_clkevent" ; |
| 3452 | break; |
| 3453 | case BuiltinType::OCLQueue: |
| 3454 | Out << "9ocl_queue" ; |
| 3455 | break; |
| 3456 | case BuiltinType::OCLReserveID: |
| 3457 | Out << "13ocl_reserveid" ; |
| 3458 | break; |
| 3459 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| 3460 | case BuiltinType::Id: \ |
| 3461 | type_name = "ocl_" #ExtType; \ |
| 3462 | Out << type_name.size() << type_name; \ |
| 3463 | break; |
| 3464 | #include "clang/Basic/OpenCLExtensionTypes.def" |
| 3465 | // The SVE types are effectively target-specific. The mangling scheme |
| 3466 | // is defined in the appendices to the Procedure Call Standard for the |
| 3467 | // Arm Architecture. |
| 3468 | #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId) \ |
| 3469 | case BuiltinType::Id: \ |
| 3470 | if (T->getKind() == BuiltinType::SveBFloat16 && \ |
| 3471 | isCompatibleWith(LangOptions::ClangABI::Ver17)) { \ |
| 3472 | /* Prior to Clang 18.0 we used this incorrect mangled name */ \ |
| 3473 | mangleVendorType("__SVBFloat16_t"); \ |
| 3474 | } else { \ |
| 3475 | type_name = #MangledName; \ |
| 3476 | Out << (type_name == #Name ? "u" : "") << type_name.size() << type_name; \ |
| 3477 | } \ |
| 3478 | break; |
| 3479 | #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId) \ |
| 3480 | case BuiltinType::Id: \ |
| 3481 | type_name = #MangledName; \ |
| 3482 | Out << (type_name == #Name ? "u" : "") << type_name.size() << type_name; \ |
| 3483 | break; |
| 3484 | #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingletonId) \ |
| 3485 | case BuiltinType::Id: \ |
| 3486 | type_name = #MangledName; \ |
| 3487 | Out << (type_name == #Name ? "u" : "") << type_name.size() << type_name; \ |
| 3488 | break; |
| 3489 | #define SVE_SCALAR_TYPE(Name, MangledName, Id, SingletonId, Bits) \ |
| 3490 | case BuiltinType::Id: \ |
| 3491 | type_name = #MangledName; \ |
| 3492 | Out << (type_name == #Name ? "u" : "") << type_name.size() << type_name; \ |
| 3493 | break; |
| 3494 | #include "clang/Basic/AArch64ACLETypes.def" |
| 3495 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
| 3496 | case BuiltinType::Id: \ |
| 3497 | mangleVendorType(#Name); \ |
| 3498 | break; |
| 3499 | #include "clang/Basic/PPCTypes.def" |
| 3500 | // TODO: Check the mangling scheme for RISC-V V. |
| 3501 | #define RVV_TYPE(Name, Id, SingletonId) \ |
| 3502 | case BuiltinType::Id: \ |
| 3503 | mangleVendorType(Name); \ |
| 3504 | break; |
| 3505 | #include "clang/Basic/RISCVVTypes.def" |
| 3506 | #define WASM_REF_TYPE(InternalName, MangledName, Id, SingletonId, AS) \ |
| 3507 | case BuiltinType::Id: \ |
| 3508 | mangleVendorType(MangledName); \ |
| 3509 | break; |
| 3510 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
| 3511 | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) \ |
| 3512 | case BuiltinType::Id: \ |
| 3513 | mangleVendorType(Name); \ |
| 3514 | break; |
| 3515 | #include "clang/Basic/AMDGPUTypes.def" |
| 3516 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) \ |
| 3517 | case BuiltinType::Id: \ |
| 3518 | mangleVendorType(#Name); \ |
| 3519 | break; |
| 3520 | #include "clang/Basic/HLSLIntangibleTypes.def" |
| 3521 | } |
| 3522 | } |
| 3523 | |
| 3524 | StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) { |
| 3525 | switch (CC) { |
| 3526 | case CC_C: |
| 3527 | return "" ; |
| 3528 | |
| 3529 | case CC_X86VectorCall: |
| 3530 | case CC_X86Pascal: |
| 3531 | case CC_X86RegCall: |
| 3532 | case CC_AAPCS: |
| 3533 | case CC_AAPCS_VFP: |
| 3534 | case CC_AArch64VectorCall: |
| 3535 | case CC_AArch64SVEPCS: |
| 3536 | case CC_IntelOclBicc: |
| 3537 | case CC_SpirFunction: |
| 3538 | case CC_DeviceKernel: |
| 3539 | case CC_PreserveMost: |
| 3540 | case CC_PreserveAll: |
| 3541 | case CC_M68kRTD: |
| 3542 | case CC_PreserveNone: |
| 3543 | case CC_RISCVVectorCall: |
| 3544 | #define CC_VLS_CASE(ABI_VLEN) case CC_RISCVVLSCall_##ABI_VLEN: |
| 3545 | CC_VLS_CASE(32) |
| 3546 | CC_VLS_CASE(64) |
| 3547 | CC_VLS_CASE(128) |
| 3548 | CC_VLS_CASE(256) |
| 3549 | CC_VLS_CASE(512) |
| 3550 | CC_VLS_CASE(1024) |
| 3551 | CC_VLS_CASE(2048) |
| 3552 | CC_VLS_CASE(4096) |
| 3553 | CC_VLS_CASE(8192) |
| 3554 | CC_VLS_CASE(16384) |
| 3555 | CC_VLS_CASE(32768) |
| 3556 | CC_VLS_CASE(65536) |
| 3557 | #undef CC_VLS_CASE |
| 3558 | // FIXME: we should be mangling all of the above. |
| 3559 | return "" ; |
| 3560 | |
| 3561 | case CC_X86ThisCall: |
| 3562 | // FIXME: To match mingw GCC, thiscall should only be mangled in when it is |
| 3563 | // used explicitly. At this point, we don't have that much information in |
| 3564 | // the AST, since clang tends to bake the convention into the canonical |
| 3565 | // function type. thiscall only rarely used explicitly, so don't mangle it |
| 3566 | // for now. |
| 3567 | return "" ; |
| 3568 | |
| 3569 | case CC_X86StdCall: |
| 3570 | return "stdcall" ; |
| 3571 | case CC_X86FastCall: |
| 3572 | return "fastcall" ; |
| 3573 | case CC_X86_64SysV: |
| 3574 | return "sysv_abi" ; |
| 3575 | case CC_Win64: |
| 3576 | return "ms_abi" ; |
| 3577 | case CC_Swift: |
| 3578 | return "swiftcall" ; |
| 3579 | case CC_SwiftAsync: |
| 3580 | return "swiftasynccall" ; |
| 3581 | } |
| 3582 | llvm_unreachable("bad calling convention" ); |
| 3583 | } |
| 3584 | |
| 3585 | void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) { |
| 3586 | // Fast path. |
| 3587 | if (T->getExtInfo() == FunctionType::ExtInfo()) |
| 3588 | return; |
| 3589 | |
| 3590 | // Vendor-specific qualifiers are emitted in reverse alphabetical order. |
| 3591 | // This will get more complicated in the future if we mangle other |
| 3592 | // things here; but for now, since we mangle ns_returns_retained as |
| 3593 | // a qualifier on the result type, we can get away with this: |
| 3594 | StringRef CCQualifier = getCallingConvQualifierName(CC: T->getExtInfo().getCC()); |
| 3595 | if (!CCQualifier.empty()) |
| 3596 | mangleVendorQualifier(name: CCQualifier); |
| 3597 | |
| 3598 | // FIXME: regparm |
| 3599 | // FIXME: noreturn |
| 3600 | } |
| 3601 | |
| 3602 | enum class AAPCSBitmaskSME : unsigned { |
| 3603 | ArmStreamingBit = 1 << 0, |
| 3604 | ArmStreamingCompatibleBit = 1 << 1, |
| 3605 | ArmAgnosticSMEZAStateBit = 1 << 2, |
| 3606 | ZA_Shift = 3, |
| 3607 | ZT0_Shift = 6, |
| 3608 | NoState = 0b000, |
| 3609 | ArmIn = 0b001, |
| 3610 | ArmOut = 0b010, |
| 3611 | ArmInOut = 0b011, |
| 3612 | ArmPreserves = 0b100, |
| 3613 | LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ArmPreserves << ZT0_Shift) |
| 3614 | }; |
| 3615 | |
| 3616 | static AAPCSBitmaskSME encodeAAPCSZAState(unsigned SMEAttrs) { |
| 3617 | switch (SMEAttrs) { |
| 3618 | case FunctionType::ARM_None: |
| 3619 | return AAPCSBitmaskSME::NoState; |
| 3620 | case FunctionType::ARM_In: |
| 3621 | return AAPCSBitmaskSME::ArmIn; |
| 3622 | case FunctionType::ARM_Out: |
| 3623 | return AAPCSBitmaskSME::ArmOut; |
| 3624 | case FunctionType::ARM_InOut: |
| 3625 | return AAPCSBitmaskSME::ArmInOut; |
| 3626 | case FunctionType::ARM_Preserves: |
| 3627 | return AAPCSBitmaskSME::ArmPreserves; |
| 3628 | default: |
| 3629 | llvm_unreachable("Unrecognised SME attribute" ); |
| 3630 | } |
| 3631 | } |
| 3632 | |
| 3633 | // The mangling scheme for function types which have SME attributes is |
| 3634 | // implemented as a "pseudo" template: |
| 3635 | // |
| 3636 | // '__SME_ATTRS<<normal_function_type>, <sme_state>>' |
| 3637 | // |
| 3638 | // Combining the function type with a bitmask representing the streaming and ZA |
| 3639 | // properties of the function's interface. |
| 3640 | // |
| 3641 | // Mangling of SME keywords is described in more detail in the AArch64 ACLE: |
| 3642 | // https://github.com/ARM-software/acle/blob/main/main/acle.md#c-mangling-of-sme-keywords |
| 3643 | // |
| 3644 | void CXXNameMangler::mangleSMEAttrs(unsigned SMEAttrs) { |
| 3645 | if (!SMEAttrs) |
| 3646 | return; |
| 3647 | |
| 3648 | AAPCSBitmaskSME Bitmask = AAPCSBitmaskSME(0); |
| 3649 | if (SMEAttrs & FunctionType::SME_PStateSMEnabledMask) |
| 3650 | Bitmask |= AAPCSBitmaskSME::ArmStreamingBit; |
| 3651 | else if (SMEAttrs & FunctionType::SME_PStateSMCompatibleMask) |
| 3652 | Bitmask |= AAPCSBitmaskSME::ArmStreamingCompatibleBit; |
| 3653 | |
| 3654 | if (SMEAttrs & FunctionType::SME_AgnosticZAStateMask) |
| 3655 | Bitmask |= AAPCSBitmaskSME::ArmAgnosticSMEZAStateBit; |
| 3656 | else { |
| 3657 | Bitmask |= encodeAAPCSZAState(SMEAttrs: FunctionType::getArmZAState(AttrBits: SMEAttrs)) |
| 3658 | << AAPCSBitmaskSME::ZA_Shift; |
| 3659 | |
| 3660 | Bitmask |= encodeAAPCSZAState(SMEAttrs: FunctionType::getArmZT0State(AttrBits: SMEAttrs)) |
| 3661 | << AAPCSBitmaskSME::ZT0_Shift; |
| 3662 | } |
| 3663 | |
| 3664 | Out << "Lj" << static_cast<unsigned>(Bitmask) << "EE" ; |
| 3665 | } |
| 3666 | |
| 3667 | void |
| 3668 | CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) { |
| 3669 | // Vendor-specific qualifiers are emitted in reverse alphabetical order. |
| 3670 | |
| 3671 | // Note that these are *not* substitution candidates. Demanglers might |
| 3672 | // have trouble with this if the parameter type is fully substituted. |
| 3673 | |
| 3674 | switch (PI.getABI()) { |
| 3675 | case ParameterABI::Ordinary: |
| 3676 | break; |
| 3677 | |
| 3678 | // HLSL parameter mangling. |
| 3679 | case ParameterABI::HLSLOut: |
| 3680 | case ParameterABI::HLSLInOut: |
| 3681 | mangleVendorQualifier(name: getParameterABISpelling(kind: PI.getABI())); |
| 3682 | break; |
| 3683 | |
| 3684 | // All of these start with "swift", so they come before "ns_consumed". |
| 3685 | case ParameterABI::SwiftContext: |
| 3686 | case ParameterABI::SwiftAsyncContext: |
| 3687 | case ParameterABI::SwiftErrorResult: |
| 3688 | case ParameterABI::SwiftIndirectResult: |
| 3689 | mangleVendorQualifier(name: getParameterABISpelling(kind: PI.getABI())); |
| 3690 | break; |
| 3691 | } |
| 3692 | |
| 3693 | if (PI.isConsumed()) |
| 3694 | mangleVendorQualifier(name: "ns_consumed" ); |
| 3695 | |
| 3696 | if (PI.isNoEscape()) |
| 3697 | mangleVendorQualifier(name: "noescape" ); |
| 3698 | } |
| 3699 | |
| 3700 | // <type> ::= <function-type> |
| 3701 | // <function-type> ::= [<CV-qualifiers>] F [Y] |
| 3702 | // <bare-function-type> [<ref-qualifier>] E |
| 3703 | void CXXNameMangler::mangleType(const FunctionProtoType *T) { |
| 3704 | unsigned SMEAttrs = T->getAArch64SMEAttributes(); |
| 3705 | |
| 3706 | if (SMEAttrs) |
| 3707 | Out << "11__SME_ATTRSI" ; |
| 3708 | |
| 3709 | mangleExtFunctionInfo(T); |
| 3710 | |
| 3711 | // Mangle CV-qualifiers, if present. These are 'this' qualifiers, |
| 3712 | // e.g. "const" in "int (A::*)() const". |
| 3713 | mangleQualifiers(Quals: T->getMethodQuals()); |
| 3714 | |
| 3715 | // Mangle instantiation-dependent exception-specification, if present, |
| 3716 | // per cxx-abi-dev proposal on 2016-10-11. |
| 3717 | if (T->hasInstantiationDependentExceptionSpec()) { |
| 3718 | if (isComputedNoexcept(ESpecType: T->getExceptionSpecType())) { |
| 3719 | Out << "DO" ; |
| 3720 | mangleExpression(E: T->getNoexceptExpr()); |
| 3721 | Out << "E" ; |
| 3722 | } else { |
| 3723 | assert(T->getExceptionSpecType() == EST_Dynamic); |
| 3724 | Out << "Dw" ; |
| 3725 | for (auto ExceptTy : T->exceptions()) |
| 3726 | mangleType(T: ExceptTy); |
| 3727 | Out << "E" ; |
| 3728 | } |
| 3729 | } else if (T->isNothrow()) { |
| 3730 | Out << "Do" ; |
| 3731 | } |
| 3732 | |
| 3733 | Out << 'F'; |
| 3734 | |
| 3735 | // FIXME: We don't have enough information in the AST to produce the 'Y' |
| 3736 | // encoding for extern "C" function types. |
| 3737 | mangleBareFunctionType(T, /*MangleReturnType=*/true); |
| 3738 | |
| 3739 | // Mangle the ref-qualifier, if present. |
| 3740 | mangleRefQualifier(RefQualifier: T->getRefQualifier()); |
| 3741 | |
| 3742 | Out << 'E'; |
| 3743 | |
| 3744 | mangleSMEAttrs(SMEAttrs); |
| 3745 | } |
| 3746 | |
| 3747 | void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { |
| 3748 | // Function types without prototypes can arise when mangling a function type |
| 3749 | // within an overloadable function in C. We mangle these as the absence of any |
| 3750 | // parameter types (not even an empty parameter list). |
| 3751 | Out << 'F'; |
| 3752 | |
| 3753 | FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
| 3754 | |
| 3755 | FunctionTypeDepth.enterResultType(); |
| 3756 | mangleType(T: T->getReturnType()); |
| 3757 | FunctionTypeDepth.leaveResultType(); |
| 3758 | |
| 3759 | FunctionTypeDepth.pop(saved); |
| 3760 | Out << 'E'; |
| 3761 | } |
| 3762 | |
| 3763 | void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto, |
| 3764 | bool MangleReturnType, |
| 3765 | const FunctionDecl *FD) { |
| 3766 | // Record that we're in a function type. See mangleFunctionParam |
| 3767 | // for details on what we're trying to achieve here. |
| 3768 | FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
| 3769 | |
| 3770 | // <bare-function-type> ::= <signature type>+ |
| 3771 | if (MangleReturnType) { |
| 3772 | FunctionTypeDepth.enterResultType(); |
| 3773 | |
| 3774 | // Mangle ns_returns_retained as an order-sensitive qualifier here. |
| 3775 | if (Proto->getExtInfo().getProducesResult() && FD == nullptr) |
| 3776 | mangleVendorQualifier(name: "ns_returns_retained" ); |
| 3777 | |
| 3778 | // Mangle the return type without any direct ARC ownership qualifiers. |
| 3779 | QualType ReturnTy = Proto->getReturnType(); |
| 3780 | if (ReturnTy.getObjCLifetime()) { |
| 3781 | auto SplitReturnTy = ReturnTy.split(); |
| 3782 | SplitReturnTy.Quals.removeObjCLifetime(); |
| 3783 | ReturnTy = getASTContext().getQualifiedType(split: SplitReturnTy); |
| 3784 | } |
| 3785 | mangleType(T: ReturnTy); |
| 3786 | |
| 3787 | FunctionTypeDepth.leaveResultType(); |
| 3788 | } |
| 3789 | |
| 3790 | if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { |
| 3791 | // <builtin-type> ::= v # void |
| 3792 | Out << 'v'; |
| 3793 | } else { |
| 3794 | assert(!FD || FD->getNumParams() == Proto->getNumParams()); |
| 3795 | for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { |
| 3796 | // Mangle extended parameter info as order-sensitive qualifiers here. |
| 3797 | if (Proto->hasExtParameterInfos() && FD == nullptr) { |
| 3798 | mangleExtParameterInfo(PI: Proto->getExtParameterInfo(I)); |
| 3799 | } |
| 3800 | |
| 3801 | // Mangle the type. |
| 3802 | QualType ParamTy = Proto->getParamType(i: I); |
| 3803 | mangleType(T: Context.getASTContext().getSignatureParameterType(T: ParamTy)); |
| 3804 | |
| 3805 | if (FD) { |
| 3806 | if (auto *Attr = FD->getParamDecl(i: I)->getAttr<PassObjectSizeAttr>()) { |
| 3807 | // Attr can only take 1 character, so we can hardcode the length |
| 3808 | // below. |
| 3809 | assert(Attr->getType() <= 9 && Attr->getType() >= 0); |
| 3810 | if (Attr->isDynamic()) |
| 3811 | Out << "U25pass_dynamic_object_size" << Attr->getType(); |
| 3812 | else |
| 3813 | Out << "U17pass_object_size" << Attr->getType(); |
| 3814 | } |
| 3815 | } |
| 3816 | } |
| 3817 | |
| 3818 | // <builtin-type> ::= z # ellipsis |
| 3819 | if (Proto->isVariadic()) |
| 3820 | Out << 'z'; |
| 3821 | } |
| 3822 | |
| 3823 | if (FD) { |
| 3824 | FunctionTypeDepth.enterResultType(); |
| 3825 | mangleRequiresClause(RequiresClause: FD->getTrailingRequiresClause().ConstraintExpr); |
| 3826 | } |
| 3827 | |
| 3828 | FunctionTypeDepth.pop(saved); |
| 3829 | } |
| 3830 | |
| 3831 | // <type> ::= <class-enum-type> |
| 3832 | // <class-enum-type> ::= <name> |
| 3833 | void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { |
| 3834 | mangleName(GD: T->getDecl()); |
| 3835 | } |
| 3836 | |
| 3837 | // <type> ::= <class-enum-type> |
| 3838 | // <class-enum-type> ::= <name> |
| 3839 | void CXXNameMangler::mangleType(const EnumType *T) { |
| 3840 | mangleType(static_cast<const TagType*>(T)); |
| 3841 | } |
| 3842 | void CXXNameMangler::mangleType(const RecordType *T) { |
| 3843 | mangleType(static_cast<const TagType*>(T)); |
| 3844 | } |
| 3845 | void CXXNameMangler::mangleType(const TagType *T) { |
| 3846 | mangleName(GD: T->getDecl()); |
| 3847 | } |
| 3848 | |
| 3849 | // <type> ::= <array-type> |
| 3850 | // <array-type> ::= A <positive dimension number> _ <element type> |
| 3851 | // ::= A [<dimension expression>] _ <element type> |
| 3852 | void CXXNameMangler::mangleType(const ConstantArrayType *T) { |
| 3853 | Out << 'A' << T->getSize() << '_'; |
| 3854 | mangleType(T: T->getElementType()); |
| 3855 | } |
| 3856 | void CXXNameMangler::mangleType(const VariableArrayType *T) { |
| 3857 | Out << 'A'; |
| 3858 | // decayed vla types (size 0) will just be skipped. |
| 3859 | if (T->getSizeExpr()) |
| 3860 | mangleExpression(E: T->getSizeExpr()); |
| 3861 | Out << '_'; |
| 3862 | mangleType(T: T->getElementType()); |
| 3863 | } |
| 3864 | void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { |
| 3865 | Out << 'A'; |
| 3866 | // A DependentSizedArrayType might not have size expression as below |
| 3867 | // |
| 3868 | // template<int ...N> int arr[] = {N...}; |
| 3869 | if (T->getSizeExpr()) |
| 3870 | mangleExpression(E: T->getSizeExpr()); |
| 3871 | Out << '_'; |
| 3872 | mangleType(T: T->getElementType()); |
| 3873 | } |
| 3874 | void CXXNameMangler::mangleType(const IncompleteArrayType *T) { |
| 3875 | Out << "A_" ; |
| 3876 | mangleType(T: T->getElementType()); |
| 3877 | } |
| 3878 | |
| 3879 | // <type> ::= <pointer-to-member-type> |
| 3880 | // <pointer-to-member-type> ::= M <class type> <member type> |
| 3881 | void CXXNameMangler::mangleType(const MemberPointerType *T) { |
| 3882 | Out << 'M'; |
| 3883 | if (auto *RD = T->getMostRecentCXXRecordDecl()) { |
| 3884 | mangleCXXRecordDecl(Record: RD); |
| 3885 | } else { |
| 3886 | NestedNameSpecifier *NNS = T->getQualifier(); |
| 3887 | if (auto *II = NNS->getAsIdentifier()) |
| 3888 | mangleType(T: getASTContext().getDependentNameType( |
| 3889 | Keyword: ElaboratedTypeKeyword::None, NNS: NNS->getPrefix(), Name: II)); |
| 3890 | else |
| 3891 | manglePrefix(qualifier: NNS); |
| 3892 | } |
| 3893 | QualType PointeeType = T->getPointeeType(); |
| 3894 | if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Val&: PointeeType)) { |
| 3895 | mangleType(T: FPT); |
| 3896 | |
| 3897 | // Itanium C++ ABI 5.1.8: |
| 3898 | // |
| 3899 | // The type of a non-static member function is considered to be different, |
| 3900 | // for the purposes of substitution, from the type of a namespace-scope or |
| 3901 | // static member function whose type appears similar. The types of two |
| 3902 | // non-static member functions are considered to be different, for the |
| 3903 | // purposes of substitution, if the functions are members of different |
| 3904 | // classes. In other words, for the purposes of substitution, the class of |
| 3905 | // which the function is a member is considered part of the type of |
| 3906 | // function. |
| 3907 | |
| 3908 | // Given that we already substitute member function pointers as a |
| 3909 | // whole, the net effect of this rule is just to unconditionally |
| 3910 | // suppress substitution on the function type in a member pointer. |
| 3911 | // We increment the SeqID here to emulate adding an entry to the |
| 3912 | // substitution table. |
| 3913 | ++SeqID; |
| 3914 | } else |
| 3915 | mangleType(T: PointeeType); |
| 3916 | } |
| 3917 | |
| 3918 | // <type> ::= <template-param> |
| 3919 | void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { |
| 3920 | mangleTemplateParameter(Depth: T->getDepth(), Index: T->getIndex()); |
| 3921 | } |
| 3922 | |
| 3923 | // <type> ::= <template-param> |
| 3924 | void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { |
| 3925 | // FIXME: not clear how to mangle this! |
| 3926 | // template <class T...> class A { |
| 3927 | // template <class U...> void foo(T(*)(U) x...); |
| 3928 | // }; |
| 3929 | Out << "_SUBSTPACK_" ; |
| 3930 | } |
| 3931 | |
| 3932 | // <type> ::= P <type> # pointer-to |
| 3933 | void CXXNameMangler::mangleType(const PointerType *T) { |
| 3934 | Out << 'P'; |
| 3935 | mangleType(T: T->getPointeeType()); |
| 3936 | } |
| 3937 | void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { |
| 3938 | Out << 'P'; |
| 3939 | mangleType(T: T->getPointeeType()); |
| 3940 | } |
| 3941 | |
| 3942 | // <type> ::= R <type> # reference-to |
| 3943 | void CXXNameMangler::mangleType(const LValueReferenceType *T) { |
| 3944 | Out << 'R'; |
| 3945 | mangleType(T: T->getPointeeType()); |
| 3946 | } |
| 3947 | |
| 3948 | // <type> ::= O <type> # rvalue reference-to (C++0x) |
| 3949 | void CXXNameMangler::mangleType(const RValueReferenceType *T) { |
| 3950 | Out << 'O'; |
| 3951 | mangleType(T: T->getPointeeType()); |
| 3952 | } |
| 3953 | |
| 3954 | // <type> ::= C <type> # complex pair (C 2000) |
| 3955 | void CXXNameMangler::mangleType(const ComplexType *T) { |
| 3956 | Out << 'C'; |
| 3957 | mangleType(T: T->getElementType()); |
| 3958 | } |
| 3959 | |
| 3960 | // ARM's ABI for Neon vector types specifies that they should be mangled as |
| 3961 | // if they are structs (to match ARM's initial implementation). The |
| 3962 | // vector type must be one of the special types predefined by ARM. |
| 3963 | void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { |
| 3964 | QualType EltType = T->getElementType(); |
| 3965 | assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType" ); |
| 3966 | const char *EltName = nullptr; |
| 3967 | if (T->getVectorKind() == VectorKind::NeonPoly) { |
| 3968 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
| 3969 | case BuiltinType::SChar: |
| 3970 | case BuiltinType::UChar: |
| 3971 | EltName = "poly8_t" ; |
| 3972 | break; |
| 3973 | case BuiltinType::Short: |
| 3974 | case BuiltinType::UShort: |
| 3975 | EltName = "poly16_t" ; |
| 3976 | break; |
| 3977 | case BuiltinType::LongLong: |
| 3978 | case BuiltinType::ULongLong: |
| 3979 | EltName = "poly64_t" ; |
| 3980 | break; |
| 3981 | default: llvm_unreachable("unexpected Neon polynomial vector element type" ); |
| 3982 | } |
| 3983 | } else { |
| 3984 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
| 3985 | case BuiltinType::SChar: EltName = "int8_t" ; break; |
| 3986 | case BuiltinType::UChar: EltName = "uint8_t" ; break; |
| 3987 | case BuiltinType::Short: EltName = "int16_t" ; break; |
| 3988 | case BuiltinType::UShort: EltName = "uint16_t" ; break; |
| 3989 | case BuiltinType::Int: EltName = "int32_t" ; break; |
| 3990 | case BuiltinType::UInt: EltName = "uint32_t" ; break; |
| 3991 | case BuiltinType::LongLong: EltName = "int64_t" ; break; |
| 3992 | case BuiltinType::ULongLong: EltName = "uint64_t" ; break; |
| 3993 | case BuiltinType::Double: EltName = "float64_t" ; break; |
| 3994 | case BuiltinType::Float: EltName = "float32_t" ; break; |
| 3995 | case BuiltinType::Half: EltName = "float16_t" ; break; |
| 3996 | case BuiltinType::BFloat16: EltName = "bfloat16_t" ; break; |
| 3997 | case BuiltinType::MFloat8: |
| 3998 | EltName = "mfloat8_t" ; |
| 3999 | break; |
| 4000 | default: |
| 4001 | llvm_unreachable("unexpected Neon vector element type" ); |
| 4002 | } |
| 4003 | } |
| 4004 | const char *BaseName = nullptr; |
| 4005 | unsigned BitSize = (T->getNumElements() * |
| 4006 | getASTContext().getTypeSize(T: EltType)); |
| 4007 | if (BitSize == 64) |
| 4008 | BaseName = "__simd64_" ; |
| 4009 | else { |
| 4010 | assert(BitSize == 128 && "Neon vector type not 64 or 128 bits" ); |
| 4011 | BaseName = "__simd128_" ; |
| 4012 | } |
| 4013 | Out << strlen(s: BaseName) + strlen(s: EltName); |
| 4014 | Out << BaseName << EltName; |
| 4015 | } |
| 4016 | |
| 4017 | void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) { |
| 4018 | DiagnosticsEngine &Diags = Context.getDiags(); |
| 4019 | unsigned DiagID = Diags.getCustomDiagID( |
| 4020 | L: DiagnosticsEngine::Error, |
| 4021 | FormatString: "cannot mangle this dependent neon vector type yet" ); |
| 4022 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
| 4023 | } |
| 4024 | |
| 4025 | static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) { |
| 4026 | switch (EltType->getKind()) { |
| 4027 | case BuiltinType::SChar: |
| 4028 | return "Int8" ; |
| 4029 | case BuiltinType::Short: |
| 4030 | return "Int16" ; |
| 4031 | case BuiltinType::Int: |
| 4032 | return "Int32" ; |
| 4033 | case BuiltinType::Long: |
| 4034 | case BuiltinType::LongLong: |
| 4035 | return "Int64" ; |
| 4036 | case BuiltinType::UChar: |
| 4037 | return "Uint8" ; |
| 4038 | case BuiltinType::UShort: |
| 4039 | return "Uint16" ; |
| 4040 | case BuiltinType::UInt: |
| 4041 | return "Uint32" ; |
| 4042 | case BuiltinType::ULong: |
| 4043 | case BuiltinType::ULongLong: |
| 4044 | return "Uint64" ; |
| 4045 | case BuiltinType::Half: |
| 4046 | return "Float16" ; |
| 4047 | case BuiltinType::Float: |
| 4048 | return "Float32" ; |
| 4049 | case BuiltinType::Double: |
| 4050 | return "Float64" ; |
| 4051 | case BuiltinType::BFloat16: |
| 4052 | return "Bfloat16" ; |
| 4053 | case BuiltinType::MFloat8: |
| 4054 | return "Mfloat8" ; |
| 4055 | default: |
| 4056 | llvm_unreachable("Unexpected vector element base type" ); |
| 4057 | } |
| 4058 | } |
| 4059 | |
| 4060 | // AArch64's ABI for Neon vector types specifies that they should be mangled as |
| 4061 | // the equivalent internal name. The vector type must be one of the special |
| 4062 | // types predefined by ARM. |
| 4063 | void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) { |
| 4064 | QualType EltType = T->getElementType(); |
| 4065 | assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType" ); |
| 4066 | unsigned BitSize = |
| 4067 | (T->getNumElements() * getASTContext().getTypeSize(T: EltType)); |
| 4068 | (void)BitSize; // Silence warning. |
| 4069 | |
| 4070 | assert((BitSize == 64 || BitSize == 128) && |
| 4071 | "Neon vector type not 64 or 128 bits" ); |
| 4072 | |
| 4073 | StringRef EltName; |
| 4074 | if (T->getVectorKind() == VectorKind::NeonPoly) { |
| 4075 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
| 4076 | case BuiltinType::UChar: |
| 4077 | EltName = "Poly8" ; |
| 4078 | break; |
| 4079 | case BuiltinType::UShort: |
| 4080 | EltName = "Poly16" ; |
| 4081 | break; |
| 4082 | case BuiltinType::ULong: |
| 4083 | case BuiltinType::ULongLong: |
| 4084 | EltName = "Poly64" ; |
| 4085 | break; |
| 4086 | default: |
| 4087 | llvm_unreachable("unexpected Neon polynomial vector element type" ); |
| 4088 | } |
| 4089 | } else |
| 4090 | EltName = mangleAArch64VectorBase(EltType: cast<BuiltinType>(Val&: EltType)); |
| 4091 | |
| 4092 | std::string TypeName = |
| 4093 | ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t" ).str(); |
| 4094 | Out << TypeName.length() << TypeName; |
| 4095 | } |
| 4096 | void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) { |
| 4097 | DiagnosticsEngine &Diags = Context.getDiags(); |
| 4098 | unsigned DiagID = Diags.getCustomDiagID( |
| 4099 | L: DiagnosticsEngine::Error, |
| 4100 | FormatString: "cannot mangle this dependent neon vector type yet" ); |
| 4101 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
| 4102 | } |
| 4103 | |
| 4104 | // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types |
| 4105 | // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64 |
| 4106 | // type as the sizeless variants. |
| 4107 | // |
| 4108 | // The mangling scheme for VLS types is implemented as a "pseudo" template: |
| 4109 | // |
| 4110 | // '__SVE_VLS<<type>, <vector length>>' |
| 4111 | // |
| 4112 | // Combining the existing SVE type and a specific vector length (in bits). |
| 4113 | // For example: |
| 4114 | // |
| 4115 | // typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512))); |
| 4116 | // |
| 4117 | // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as: |
| 4118 | // |
| 4119 | // "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE" |
| 4120 | // |
| 4121 | // i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE |
| 4122 | // |
| 4123 | // The latest ACLE specification (00bet5) does not contain details of this |
| 4124 | // mangling scheme, it will be specified in the next revision. The mangling |
| 4125 | // scheme is otherwise defined in the appendices to the Procedure Call Standard |
| 4126 | // for the Arm Architecture, see |
| 4127 | // https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#appendix-c-mangling |
| 4128 | void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) { |
| 4129 | assert((T->getVectorKind() == VectorKind::SveFixedLengthData || |
| 4130 | T->getVectorKind() == VectorKind::SveFixedLengthPredicate) && |
| 4131 | "expected fixed-length SVE vector!" ); |
| 4132 | |
| 4133 | QualType EltType = T->getElementType(); |
| 4134 | assert(EltType->isBuiltinType() && |
| 4135 | "expected builtin type for fixed-length SVE vector!" ); |
| 4136 | |
| 4137 | StringRef TypeName; |
| 4138 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
| 4139 | case BuiltinType::SChar: |
| 4140 | TypeName = "__SVInt8_t" ; |
| 4141 | break; |
| 4142 | case BuiltinType::UChar: { |
| 4143 | if (T->getVectorKind() == VectorKind::SveFixedLengthData) |
| 4144 | TypeName = "__SVUint8_t" ; |
| 4145 | else |
| 4146 | TypeName = "__SVBool_t" ; |
| 4147 | break; |
| 4148 | } |
| 4149 | case BuiltinType::Short: |
| 4150 | TypeName = "__SVInt16_t" ; |
| 4151 | break; |
| 4152 | case BuiltinType::UShort: |
| 4153 | TypeName = "__SVUint16_t" ; |
| 4154 | break; |
| 4155 | case BuiltinType::Int: |
| 4156 | TypeName = "__SVInt32_t" ; |
| 4157 | break; |
| 4158 | case BuiltinType::UInt: |
| 4159 | TypeName = "__SVUint32_t" ; |
| 4160 | break; |
| 4161 | case BuiltinType::Long: |
| 4162 | TypeName = "__SVInt64_t" ; |
| 4163 | break; |
| 4164 | case BuiltinType::ULong: |
| 4165 | TypeName = "__SVUint64_t" ; |
| 4166 | break; |
| 4167 | case BuiltinType::Half: |
| 4168 | TypeName = "__SVFloat16_t" ; |
| 4169 | break; |
| 4170 | case BuiltinType::Float: |
| 4171 | TypeName = "__SVFloat32_t" ; |
| 4172 | break; |
| 4173 | case BuiltinType::Double: |
| 4174 | TypeName = "__SVFloat64_t" ; |
| 4175 | break; |
| 4176 | case BuiltinType::BFloat16: |
| 4177 | TypeName = "__SVBfloat16_t" ; |
| 4178 | break; |
| 4179 | default: |
| 4180 | llvm_unreachable("unexpected element type for fixed-length SVE vector!" ); |
| 4181 | } |
| 4182 | |
| 4183 | unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width; |
| 4184 | |
| 4185 | if (T->getVectorKind() == VectorKind::SveFixedLengthPredicate) |
| 4186 | VecSizeInBits *= 8; |
| 4187 | |
| 4188 | Out << "9__SVE_VLSI" ; |
| 4189 | mangleVendorType(name: TypeName); |
| 4190 | Out << "Lj" << VecSizeInBits << "EE" ; |
| 4191 | } |
| 4192 | |
| 4193 | void CXXNameMangler::mangleAArch64FixedSveVectorType( |
| 4194 | const DependentVectorType *T) { |
| 4195 | DiagnosticsEngine &Diags = Context.getDiags(); |
| 4196 | unsigned DiagID = Diags.getCustomDiagID( |
| 4197 | L: DiagnosticsEngine::Error, |
| 4198 | FormatString: "cannot mangle this dependent fixed-length SVE vector type yet" ); |
| 4199 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
| 4200 | } |
| 4201 | |
| 4202 | void CXXNameMangler::mangleRISCVFixedRVVVectorType(const VectorType *T) { |
| 4203 | assert((T->getVectorKind() == VectorKind::RVVFixedLengthData || |
| 4204 | T->getVectorKind() == VectorKind::RVVFixedLengthMask || |
| 4205 | T->getVectorKind() == VectorKind::RVVFixedLengthMask_1 || |
| 4206 | T->getVectorKind() == VectorKind::RVVFixedLengthMask_2 || |
| 4207 | T->getVectorKind() == VectorKind::RVVFixedLengthMask_4) && |
| 4208 | "expected fixed-length RVV vector!" ); |
| 4209 | |
| 4210 | QualType EltType = T->getElementType(); |
| 4211 | assert(EltType->isBuiltinType() && |
| 4212 | "expected builtin type for fixed-length RVV vector!" ); |
| 4213 | |
| 4214 | SmallString<20> TypeNameStr; |
| 4215 | llvm::raw_svector_ostream TypeNameOS(TypeNameStr); |
| 4216 | TypeNameOS << "__rvv_" ; |
| 4217 | switch (cast<BuiltinType>(Val&: EltType)->getKind()) { |
| 4218 | case BuiltinType::SChar: |
| 4219 | TypeNameOS << "int8" ; |
| 4220 | break; |
| 4221 | case BuiltinType::UChar: |
| 4222 | if (T->getVectorKind() == VectorKind::RVVFixedLengthData) |
| 4223 | TypeNameOS << "uint8" ; |
| 4224 | else |
| 4225 | TypeNameOS << "bool" ; |
| 4226 | break; |
| 4227 | case BuiltinType::Short: |
| 4228 | TypeNameOS << "int16" ; |
| 4229 | break; |
| 4230 | case BuiltinType::UShort: |
| 4231 | TypeNameOS << "uint16" ; |
| 4232 | break; |
| 4233 | case BuiltinType::Int: |
| 4234 | TypeNameOS << "int32" ; |
| 4235 | break; |
| 4236 | case BuiltinType::UInt: |
| 4237 | TypeNameOS << "uint32" ; |
| 4238 | break; |
| 4239 | case BuiltinType::Long: |
| 4240 | TypeNameOS << "int64" ; |
| 4241 | break; |
| 4242 | case BuiltinType::ULong: |
| 4243 | TypeNameOS << "uint64" ; |
| 4244 | break; |
| 4245 | case BuiltinType::Float16: |
| 4246 | TypeNameOS << "float16" ; |
| 4247 | break; |
| 4248 | case BuiltinType::Float: |
| 4249 | TypeNameOS << "float32" ; |
| 4250 | break; |
| 4251 | case BuiltinType::Double: |
| 4252 | TypeNameOS << "float64" ; |
| 4253 | break; |
| 4254 | default: |
| 4255 | llvm_unreachable("unexpected element type for fixed-length RVV vector!" ); |
| 4256 | } |
| 4257 | |
| 4258 | unsigned VecSizeInBits; |
| 4259 | switch (T->getVectorKind()) { |
| 4260 | case VectorKind::RVVFixedLengthMask_1: |
| 4261 | VecSizeInBits = 1; |
| 4262 | break; |
| 4263 | case VectorKind::RVVFixedLengthMask_2: |
| 4264 | VecSizeInBits = 2; |
| 4265 | break; |
| 4266 | case VectorKind::RVVFixedLengthMask_4: |
| 4267 | VecSizeInBits = 4; |
| 4268 | break; |
| 4269 | default: |
| 4270 | VecSizeInBits = getASTContext().getTypeInfo(T).Width; |
| 4271 | break; |
| 4272 | } |
| 4273 | |
| 4274 | // Apend the LMUL suffix. |
| 4275 | auto VScale = getASTContext().getTargetInfo().getVScaleRange( |
| 4276 | LangOpts: getASTContext().getLangOpts(), |
| 4277 | Mode: TargetInfo::ArmStreamingKind::NotStreaming); |
| 4278 | unsigned VLen = VScale->first * llvm::RISCV::RVVBitsPerBlock; |
| 4279 | |
| 4280 | if (T->getVectorKind() == VectorKind::RVVFixedLengthData) { |
| 4281 | TypeNameOS << 'm'; |
| 4282 | if (VecSizeInBits >= VLen) |
| 4283 | TypeNameOS << (VecSizeInBits / VLen); |
| 4284 | else |
| 4285 | TypeNameOS << 'f' << (VLen / VecSizeInBits); |
| 4286 | } else { |
| 4287 | TypeNameOS << (VLen / VecSizeInBits); |
| 4288 | } |
| 4289 | TypeNameOS << "_t" ; |
| 4290 | |
| 4291 | Out << "9__RVV_VLSI" ; |
| 4292 | mangleVendorType(name: TypeNameStr); |
| 4293 | Out << "Lj" << VecSizeInBits << "EE" ; |
| 4294 | } |
| 4295 | |
| 4296 | void CXXNameMangler::mangleRISCVFixedRVVVectorType( |
| 4297 | const DependentVectorType *T) { |
| 4298 | DiagnosticsEngine &Diags = Context.getDiags(); |
| 4299 | unsigned DiagID = Diags.getCustomDiagID( |
| 4300 | L: DiagnosticsEngine::Error, |
| 4301 | FormatString: "cannot mangle this dependent fixed-length RVV vector type yet" ); |
| 4302 | Diags.Report(Loc: T->getAttributeLoc(), DiagID); |
| 4303 | } |
| 4304 | |
| 4305 | // GNU extension: vector types |
| 4306 | // <type> ::= <vector-type> |
| 4307 | // <vector-type> ::= Dv <positive dimension number> _ |
| 4308 | // <extended element type> |
| 4309 | // ::= Dv [<dimension expression>] _ <element type> |
| 4310 | // <extended element type> ::= <element type> |
| 4311 | // ::= p # AltiVec vector pixel |
| 4312 | // ::= b # Altivec vector bool |
| 4313 | void CXXNameMangler::mangleType(const VectorType *T) { |
| 4314 | if ((T->getVectorKind() == VectorKind::Neon || |
| 4315 | T->getVectorKind() == VectorKind::NeonPoly)) { |
| 4316 | llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); |
| 4317 | llvm::Triple::ArchType Arch = |
| 4318 | getASTContext().getTargetInfo().getTriple().getArch(); |
| 4319 | if ((Arch == llvm::Triple::aarch64 || |
| 4320 | Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin()) |
| 4321 | mangleAArch64NeonVectorType(T); |
| 4322 | else |
| 4323 | mangleNeonVectorType(T); |
| 4324 | return; |
| 4325 | } else if (T->getVectorKind() == VectorKind::SveFixedLengthData || |
| 4326 | T->getVectorKind() == VectorKind::SveFixedLengthPredicate) { |
| 4327 | mangleAArch64FixedSveVectorType(T); |
| 4328 | return; |
| 4329 | } else if (T->getVectorKind() == VectorKind::RVVFixedLengthData || |
| 4330 | T->getVectorKind() == VectorKind::RVVFixedLengthMask || |
| 4331 | T->getVectorKind() == VectorKind::RVVFixedLengthMask_1 || |
| 4332 | T->getVectorKind() == VectorKind::RVVFixedLengthMask_2 || |
| 4333 | T->getVectorKind() == VectorKind::RVVFixedLengthMask_4) { |
| 4334 | mangleRISCVFixedRVVVectorType(T); |
| 4335 | return; |
| 4336 | } |
| 4337 | Out << "Dv" << T->getNumElements() << '_'; |
| 4338 | if (T->getVectorKind() == VectorKind::AltiVecPixel) |
| 4339 | Out << 'p'; |
| 4340 | else if (T->getVectorKind() == VectorKind::AltiVecBool) |
| 4341 | Out << 'b'; |
| 4342 | else |
| 4343 | mangleType(T: T->getElementType()); |
| 4344 | } |
| 4345 | |
| 4346 | void CXXNameMangler::mangleType(const DependentVectorType *T) { |
| 4347 | if ((T->getVectorKind() == VectorKind::Neon || |
| 4348 | T->getVectorKind() == VectorKind::NeonPoly)) { |
| 4349 | llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); |
| 4350 | llvm::Triple::ArchType Arch = |
| 4351 | getASTContext().getTargetInfo().getTriple().getArch(); |
| 4352 | if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) && |
| 4353 | !Target.isOSDarwin()) |
| 4354 | mangleAArch64NeonVectorType(T); |
| 4355 | else |
| 4356 | mangleNeonVectorType(T); |
| 4357 | return; |
| 4358 | } else if (T->getVectorKind() == VectorKind::SveFixedLengthData || |
| 4359 | T->getVectorKind() == VectorKind::SveFixedLengthPredicate) { |
| 4360 | mangleAArch64FixedSveVectorType(T); |
| 4361 | return; |
| 4362 | } else if (T->getVectorKind() == VectorKind::RVVFixedLengthData) { |
| 4363 | mangleRISCVFixedRVVVectorType(T); |
| 4364 | return; |
| 4365 | } |
| 4366 | |
| 4367 | Out << "Dv" ; |
| 4368 | mangleExpression(E: T->getSizeExpr()); |
| 4369 | Out << '_'; |
| 4370 | if (T->getVectorKind() == VectorKind::AltiVecPixel) |
| 4371 | Out << 'p'; |
| 4372 | else if (T->getVectorKind() == VectorKind::AltiVecBool) |
| 4373 | Out << 'b'; |
| 4374 | else |
| 4375 | mangleType(T: T->getElementType()); |
| 4376 | } |
| 4377 | |
| 4378 | void CXXNameMangler::mangleType(const ExtVectorType *T) { |
| 4379 | mangleType(T: static_cast<const VectorType*>(T)); |
| 4380 | } |
| 4381 | void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { |
| 4382 | Out << "Dv" ; |
| 4383 | mangleExpression(E: T->getSizeExpr()); |
| 4384 | Out << '_'; |
| 4385 | mangleType(T: T->getElementType()); |
| 4386 | } |
| 4387 | |
| 4388 | void CXXNameMangler::mangleType(const ConstantMatrixType *T) { |
| 4389 | // Mangle matrix types as a vendor extended type: |
| 4390 | // u<Len>matrix_typeI<Rows><Columns><element type>E |
| 4391 | |
| 4392 | mangleVendorType(name: "matrix_type" ); |
| 4393 | |
| 4394 | Out << "I" ; |
| 4395 | auto &ASTCtx = getASTContext(); |
| 4396 | unsigned BitWidth = ASTCtx.getTypeSize(T: ASTCtx.getSizeType()); |
| 4397 | llvm::APSInt Rows(BitWidth); |
| 4398 | Rows = T->getNumRows(); |
| 4399 | mangleIntegerLiteral(T: ASTCtx.getSizeType(), Value: Rows); |
| 4400 | llvm::APSInt Columns(BitWidth); |
| 4401 | Columns = T->getNumColumns(); |
| 4402 | mangleIntegerLiteral(T: ASTCtx.getSizeType(), Value: Columns); |
| 4403 | mangleType(T: T->getElementType()); |
| 4404 | Out << "E" ; |
| 4405 | } |
| 4406 | |
| 4407 | void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) { |
| 4408 | // Mangle matrix types as a vendor extended type: |
| 4409 | // u<Len>matrix_typeI<row expr><column expr><element type>E |
| 4410 | mangleVendorType(name: "matrix_type" ); |
| 4411 | |
| 4412 | Out << "I" ; |
| 4413 | mangleTemplateArgExpr(E: T->getRowExpr()); |
| 4414 | mangleTemplateArgExpr(E: T->getColumnExpr()); |
| 4415 | mangleType(T: T->getElementType()); |
| 4416 | Out << "E" ; |
| 4417 | } |
| 4418 | |
| 4419 | void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) { |
| 4420 | SplitQualType split = T->getPointeeType().split(); |
| 4421 | mangleQualifiers(Quals: split.Quals, DAST: T); |
| 4422 | mangleType(T: QualType(split.Ty, 0)); |
| 4423 | } |
| 4424 | |
| 4425 | void CXXNameMangler::mangleType(const PackExpansionType *T) { |
| 4426 | // <type> ::= Dp <type> # pack expansion (C++0x) |
| 4427 | Out << "Dp" ; |
| 4428 | mangleType(T: T->getPattern()); |
| 4429 | } |
| 4430 | |
| 4431 | void CXXNameMangler::mangleType(const PackIndexingType *T) { |
| 4432 | if (!T->hasSelectedType()) |
| 4433 | mangleType(T: T->getPattern()); |
| 4434 | else |
| 4435 | mangleType(T: T->getSelectedType()); |
| 4436 | } |
| 4437 | |
| 4438 | void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { |
| 4439 | mangleSourceName(II: T->getDecl()->getIdentifier()); |
| 4440 | } |
| 4441 | |
| 4442 | void CXXNameMangler::mangleType(const ObjCObjectType *T) { |
| 4443 | // Treat __kindof as a vendor extended type qualifier. |
| 4444 | if (T->isKindOfType()) |
| 4445 | Out << "U8__kindof" ; |
| 4446 | |
| 4447 | if (!T->qual_empty()) { |
| 4448 | // Mangle protocol qualifiers. |
| 4449 | SmallString<64> QualStr; |
| 4450 | llvm::raw_svector_ostream QualOS(QualStr); |
| 4451 | QualOS << "objcproto" ; |
| 4452 | for (const auto *I : T->quals()) { |
| 4453 | StringRef name = I->getName(); |
| 4454 | QualOS << name.size() << name; |
| 4455 | } |
| 4456 | mangleVendorQualifier(name: QualStr); |
| 4457 | } |
| 4458 | |
| 4459 | mangleType(T: T->getBaseType()); |
| 4460 | |
| 4461 | if (T->isSpecialized()) { |
| 4462 | // Mangle type arguments as I <type>+ E |
| 4463 | Out << 'I'; |
| 4464 | for (auto typeArg : T->getTypeArgs()) |
| 4465 | mangleType(T: typeArg); |
| 4466 | Out << 'E'; |
| 4467 | } |
| 4468 | } |
| 4469 | |
| 4470 | void CXXNameMangler::mangleType(const BlockPointerType *T) { |
| 4471 | Out << "U13block_pointer" ; |
| 4472 | mangleType(T: T->getPointeeType()); |
| 4473 | } |
| 4474 | |
| 4475 | void CXXNameMangler::mangleType(const InjectedClassNameType *T) { |
| 4476 | // Mangle injected class name types as if the user had written the |
| 4477 | // specialization out fully. It may not actually be possible to see |
| 4478 | // this mangling, though. |
| 4479 | mangleType(T: T->getInjectedSpecializationType()); |
| 4480 | } |
| 4481 | |
| 4482 | void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { |
| 4483 | if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { |
| 4484 | mangleTemplateName(TD, Args: T->template_arguments()); |
| 4485 | } else { |
| 4486 | if (mangleSubstitution(T: QualType(T, 0))) |
| 4487 | return; |
| 4488 | |
| 4489 | mangleTemplatePrefix(Template: T->getTemplateName()); |
| 4490 | |
| 4491 | // FIXME: GCC does not appear to mangle the template arguments when |
| 4492 | // the template in question is a dependent template name. Should we |
| 4493 | // emulate that badness? |
| 4494 | mangleTemplateArgs(TN: T->getTemplateName(), Args: T->template_arguments()); |
| 4495 | addSubstitution(T: QualType(T, 0)); |
| 4496 | } |
| 4497 | } |
| 4498 | |
| 4499 | void CXXNameMangler::mangleType(const DependentNameType *T) { |
| 4500 | // Proposal by cxx-abi-dev, 2014-03-26 |
| 4501 | // <class-enum-type> ::= <name> # non-dependent or dependent type name or |
| 4502 | // # dependent elaborated type specifier using |
| 4503 | // # 'typename' |
| 4504 | // ::= Ts <name> # dependent elaborated type specifier using |
| 4505 | // # 'struct' or 'class' |
| 4506 | // ::= Tu <name> # dependent elaborated type specifier using |
| 4507 | // # 'union' |
| 4508 | // ::= Te <name> # dependent elaborated type specifier using |
| 4509 | // # 'enum' |
| 4510 | switch (T->getKeyword()) { |
| 4511 | case ElaboratedTypeKeyword::None: |
| 4512 | case ElaboratedTypeKeyword::Typename: |
| 4513 | break; |
| 4514 | case ElaboratedTypeKeyword::Struct: |
| 4515 | case ElaboratedTypeKeyword::Class: |
| 4516 | case ElaboratedTypeKeyword::Interface: |
| 4517 | Out << "Ts" ; |
| 4518 | break; |
| 4519 | case ElaboratedTypeKeyword::Union: |
| 4520 | Out << "Tu" ; |
| 4521 | break; |
| 4522 | case ElaboratedTypeKeyword::Enum: |
| 4523 | Out << "Te" ; |
| 4524 | break; |
| 4525 | } |
| 4526 | // Typename types are always nested |
| 4527 | Out << 'N'; |
| 4528 | manglePrefix(qualifier: T->getQualifier()); |
| 4529 | mangleSourceName(II: T->getIdentifier()); |
| 4530 | Out << 'E'; |
| 4531 | } |
| 4532 | |
| 4533 | void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { |
| 4534 | // Dependently-scoped template types are nested if they have a prefix. |
| 4535 | Out << 'N'; |
| 4536 | |
| 4537 | TemplateName Prefix = |
| 4538 | getASTContext().getDependentTemplateName(Name: T->getDependentTemplateName()); |
| 4539 | mangleTemplatePrefix(Template: Prefix); |
| 4540 | |
| 4541 | // FIXME: GCC does not appear to mangle the template arguments when |
| 4542 | // the template in question is a dependent template name. Should we |
| 4543 | // emulate that badness? |
| 4544 | mangleTemplateArgs(TN: Prefix, Args: T->template_arguments()); |
| 4545 | Out << 'E'; |
| 4546 | } |
| 4547 | |
| 4548 | void CXXNameMangler::mangleType(const TypeOfType *T) { |
| 4549 | // FIXME: this is pretty unsatisfactory, but there isn't an obvious |
| 4550 | // "extension with parameters" mangling. |
| 4551 | Out << "u6typeof" ; |
| 4552 | } |
| 4553 | |
| 4554 | void CXXNameMangler::mangleType(const TypeOfExprType *T) { |
| 4555 | // FIXME: this is pretty unsatisfactory, but there isn't an obvious |
| 4556 | // "extension with parameters" mangling. |
| 4557 | Out << "u6typeof" ; |
| 4558 | } |
| 4559 | |
| 4560 | void CXXNameMangler::mangleType(const DecltypeType *T) { |
| 4561 | Expr *E = T->getUnderlyingExpr(); |
| 4562 | |
| 4563 | // type ::= Dt <expression> E # decltype of an id-expression |
| 4564 | // # or class member access |
| 4565 | // ::= DT <expression> E # decltype of an expression |
| 4566 | |
| 4567 | // This purports to be an exhaustive list of id-expressions and |
| 4568 | // class member accesses. Note that we do not ignore parentheses; |
| 4569 | // parentheses change the semantics of decltype for these |
| 4570 | // expressions (and cause the mangler to use the other form). |
| 4571 | if (isa<DeclRefExpr>(Val: E) || |
| 4572 | isa<MemberExpr>(Val: E) || |
| 4573 | isa<UnresolvedLookupExpr>(Val: E) || |
| 4574 | isa<DependentScopeDeclRefExpr>(Val: E) || |
| 4575 | isa<CXXDependentScopeMemberExpr>(Val: E) || |
| 4576 | isa<UnresolvedMemberExpr>(Val: E)) |
| 4577 | Out << "Dt" ; |
| 4578 | else |
| 4579 | Out << "DT" ; |
| 4580 | mangleExpression(E); |
| 4581 | Out << 'E'; |
| 4582 | } |
| 4583 | |
| 4584 | void CXXNameMangler::mangleType(const UnaryTransformType *T) { |
| 4585 | // If this is dependent, we need to record that. If not, we simply |
| 4586 | // mangle it as the underlying type since they are equivalent. |
| 4587 | if (T->isDependentType()) { |
| 4588 | StringRef BuiltinName; |
| 4589 | switch (T->getUTTKind()) { |
| 4590 | #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \ |
| 4591 | case UnaryTransformType::Enum: \ |
| 4592 | BuiltinName = "__" #Trait; \ |
| 4593 | break; |
| 4594 | #include "clang/Basic/TransformTypeTraits.def" |
| 4595 | } |
| 4596 | mangleVendorType(name: BuiltinName); |
| 4597 | } |
| 4598 | |
| 4599 | Out << "I" ; |
| 4600 | mangleType(T: T->getBaseType()); |
| 4601 | Out << "E" ; |
| 4602 | } |
| 4603 | |
| 4604 | void CXXNameMangler::mangleType(const AutoType *T) { |
| 4605 | assert(T->getDeducedType().isNull() && |
| 4606 | "Deduced AutoType shouldn't be handled here!" ); |
| 4607 | assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType && |
| 4608 | "shouldn't need to mangle __auto_type!" ); |
| 4609 | // <builtin-type> ::= Da # auto |
| 4610 | // ::= Dc # decltype(auto) |
| 4611 | // ::= Dk # constrained auto |
| 4612 | // ::= DK # constrained decltype(auto) |
| 4613 | if (T->isConstrained() && !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
| 4614 | Out << (T->isDecltypeAuto() ? "DK" : "Dk" ); |
| 4615 | mangleTypeConstraint(Concept: T->getTypeConstraintConcept(), |
| 4616 | Arguments: T->getTypeConstraintArguments()); |
| 4617 | } else { |
| 4618 | Out << (T->isDecltypeAuto() ? "Dc" : "Da" ); |
| 4619 | } |
| 4620 | } |
| 4621 | |
| 4622 | void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) { |
| 4623 | QualType Deduced = T->getDeducedType(); |
| 4624 | if (!Deduced.isNull()) |
| 4625 | return mangleType(T: Deduced); |
| 4626 | |
| 4627 | TemplateName TN = T->getTemplateName(); |
| 4628 | assert(TN.getAsTemplateDecl() && |
| 4629 | "shouldn't form deduced TST unless we know we have a template" ); |
| 4630 | mangleType(TN); |
| 4631 | } |
| 4632 | |
| 4633 | void CXXNameMangler::mangleType(const AtomicType *T) { |
| 4634 | // <type> ::= U <source-name> <type> # vendor extended type qualifier |
| 4635 | // (Until there's a standardized mangling...) |
| 4636 | Out << "U7_Atomic" ; |
| 4637 | mangleType(T: T->getValueType()); |
| 4638 | } |
| 4639 | |
| 4640 | void CXXNameMangler::mangleType(const PipeType *T) { |
| 4641 | // Pipe type mangling rules are described in SPIR 2.0 specification |
| 4642 | // A.1 Data types and A.3 Summary of changes |
| 4643 | // <type> ::= 8ocl_pipe |
| 4644 | Out << "8ocl_pipe" ; |
| 4645 | } |
| 4646 | |
| 4647 | void CXXNameMangler::mangleType(const BitIntType *T) { |
| 4648 | // 5.1.5.2 Builtin types |
| 4649 | // <type> ::= DB <number | instantiation-dependent expression> _ |
| 4650 | // ::= DU <number | instantiation-dependent expression> _ |
| 4651 | Out << "D" << (T->isUnsigned() ? "U" : "B" ) << T->getNumBits() << "_" ; |
| 4652 | } |
| 4653 | |
| 4654 | void CXXNameMangler::mangleType(const DependentBitIntType *T) { |
| 4655 | // 5.1.5.2 Builtin types |
| 4656 | // <type> ::= DB <number | instantiation-dependent expression> _ |
| 4657 | // ::= DU <number | instantiation-dependent expression> _ |
| 4658 | Out << "D" << (T->isUnsigned() ? "U" : "B" ); |
| 4659 | mangleExpression(E: T->getNumBitsExpr()); |
| 4660 | Out << "_" ; |
| 4661 | } |
| 4662 | |
| 4663 | void CXXNameMangler::mangleType(const ArrayParameterType *T) { |
| 4664 | mangleType(T: cast<ConstantArrayType>(Val: T)); |
| 4665 | } |
| 4666 | |
| 4667 | void CXXNameMangler::mangleType(const HLSLAttributedResourceType *T) { |
| 4668 | llvm::SmallString<64> Str("_Res" ); |
| 4669 | const HLSLAttributedResourceType::Attributes &Attrs = T->getAttrs(); |
| 4670 | // map resource class to HLSL virtual register letter |
| 4671 | switch (Attrs.ResourceClass) { |
| 4672 | case llvm::dxil::ResourceClass::UAV: |
| 4673 | Str += "_u" ; |
| 4674 | break; |
| 4675 | case llvm::dxil::ResourceClass::SRV: |
| 4676 | Str += "_t" ; |
| 4677 | break; |
| 4678 | case llvm::dxil::ResourceClass::CBuffer: |
| 4679 | Str += "_b" ; |
| 4680 | break; |
| 4681 | case llvm::dxil::ResourceClass::Sampler: |
| 4682 | Str += "_s" ; |
| 4683 | break; |
| 4684 | } |
| 4685 | if (Attrs.IsROV) |
| 4686 | Str += "_ROV" ; |
| 4687 | if (Attrs.RawBuffer) |
| 4688 | Str += "_Raw" ; |
| 4689 | if (T->hasContainedType()) |
| 4690 | Str += "_CT" ; |
| 4691 | mangleVendorQualifier(name: Str); |
| 4692 | |
| 4693 | if (T->hasContainedType()) { |
| 4694 | mangleType(T: T->getContainedType()); |
| 4695 | } |
| 4696 | mangleType(T: T->getWrappedType()); |
| 4697 | } |
| 4698 | |
| 4699 | void CXXNameMangler::mangleType(const HLSLInlineSpirvType *T) { |
| 4700 | SmallString<20> TypeNameStr; |
| 4701 | llvm::raw_svector_ostream TypeNameOS(TypeNameStr); |
| 4702 | |
| 4703 | TypeNameOS << "spirv_type" ; |
| 4704 | |
| 4705 | TypeNameOS << "_" << T->getOpcode(); |
| 4706 | TypeNameOS << "_" << T->getSize(); |
| 4707 | TypeNameOS << "_" << T->getAlignment(); |
| 4708 | |
| 4709 | mangleVendorType(name: TypeNameStr); |
| 4710 | |
| 4711 | for (auto &Operand : T->getOperands()) { |
| 4712 | using SpirvOperandKind = SpirvOperand::SpirvOperandKind; |
| 4713 | |
| 4714 | switch (Operand.getKind()) { |
| 4715 | case SpirvOperandKind::ConstantId: |
| 4716 | mangleVendorQualifier(name: "_Const" ); |
| 4717 | mangleIntegerLiteral(T: Operand.getResultType(), |
| 4718 | Value: llvm::APSInt(Operand.getValue())); |
| 4719 | break; |
| 4720 | case SpirvOperandKind::Literal: |
| 4721 | mangleVendorQualifier(name: "_Lit" ); |
| 4722 | mangleIntegerLiteral(T: Context.getASTContext().IntTy, |
| 4723 | Value: llvm::APSInt(Operand.getValue())); |
| 4724 | break; |
| 4725 | case SpirvOperandKind::TypeId: |
| 4726 | mangleVendorQualifier(name: "_Type" ); |
| 4727 | mangleType(T: Operand.getResultType()); |
| 4728 | break; |
| 4729 | default: |
| 4730 | llvm_unreachable("Invalid SpirvOperand kind" ); |
| 4731 | break; |
| 4732 | } |
| 4733 | TypeNameOS << Operand.getKind(); |
| 4734 | } |
| 4735 | } |
| 4736 | |
| 4737 | void CXXNameMangler::mangleIntegerLiteral(QualType T, |
| 4738 | const llvm::APSInt &Value) { |
| 4739 | // <expr-primary> ::= L <type> <value number> E # integer literal |
| 4740 | Out << 'L'; |
| 4741 | |
| 4742 | mangleType(T); |
| 4743 | if (T->isBooleanType()) { |
| 4744 | // Boolean values are encoded as 0/1. |
| 4745 | Out << (Value.getBoolValue() ? '1' : '0'); |
| 4746 | } else { |
| 4747 | mangleNumber(Value); |
| 4748 | } |
| 4749 | Out << 'E'; |
| 4750 | } |
| 4751 | |
| 4752 | void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) { |
| 4753 | // Ignore member expressions involving anonymous unions. |
| 4754 | while (const auto *RT = Base->getType()->getAs<RecordType>()) { |
| 4755 | if (!RT->getDecl()->isAnonymousStructOrUnion()) |
| 4756 | break; |
| 4757 | const auto *ME = dyn_cast<MemberExpr>(Val: Base); |
| 4758 | if (!ME) |
| 4759 | break; |
| 4760 | Base = ME->getBase(); |
| 4761 | IsArrow = ME->isArrow(); |
| 4762 | } |
| 4763 | |
| 4764 | if (Base->isImplicitCXXThis()) { |
| 4765 | // Note: GCC mangles member expressions to the implicit 'this' as |
| 4766 | // *this., whereas we represent them as this->. The Itanium C++ ABI |
| 4767 | // does not specify anything here, so we follow GCC. |
| 4768 | Out << "dtdefpT" ; |
| 4769 | } else { |
| 4770 | Out << (IsArrow ? "pt" : "dt" ); |
| 4771 | mangleExpression(E: Base); |
| 4772 | } |
| 4773 | } |
| 4774 | |
| 4775 | /// Mangles a member expression. |
| 4776 | void CXXNameMangler::mangleMemberExpr(const Expr *base, |
| 4777 | bool isArrow, |
| 4778 | NestedNameSpecifier *qualifier, |
| 4779 | NamedDecl *firstQualifierLookup, |
| 4780 | DeclarationName member, |
| 4781 | const TemplateArgumentLoc *TemplateArgs, |
| 4782 | unsigned NumTemplateArgs, |
| 4783 | unsigned arity) { |
| 4784 | // <expression> ::= dt <expression> <unresolved-name> |
| 4785 | // ::= pt <expression> <unresolved-name> |
| 4786 | if (base) |
| 4787 | mangleMemberExprBase(Base: base, IsArrow: isArrow); |
| 4788 | mangleUnresolvedName(qualifier, name: member, TemplateArgs, NumTemplateArgs, knownArity: arity); |
| 4789 | } |
| 4790 | |
| 4791 | /// Look at the callee of the given call expression and determine if |
| 4792 | /// it's a parenthesized id-expression which would have triggered ADL |
| 4793 | /// otherwise. |
| 4794 | static bool isParenthesizedADLCallee(const CallExpr *call) { |
| 4795 | const Expr *callee = call->getCallee(); |
| 4796 | const Expr *fn = callee->IgnoreParens(); |
| 4797 | |
| 4798 | // Must be parenthesized. IgnoreParens() skips __extension__ nodes, |
| 4799 | // too, but for those to appear in the callee, it would have to be |
| 4800 | // parenthesized. |
| 4801 | if (callee == fn) return false; |
| 4802 | |
| 4803 | // Must be an unresolved lookup. |
| 4804 | const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(Val: fn); |
| 4805 | if (!lookup) return false; |
| 4806 | |
| 4807 | assert(!lookup->requiresADL()); |
| 4808 | |
| 4809 | // Must be an unqualified lookup. |
| 4810 | if (lookup->getQualifier()) return false; |
| 4811 | |
| 4812 | // Must not have found a class member. Note that if one is a class |
| 4813 | // member, they're all class members. |
| 4814 | if (lookup->getNumDecls() > 0 && |
| 4815 | (*lookup->decls_begin())->isCXXClassMember()) |
| 4816 | return false; |
| 4817 | |
| 4818 | // Otherwise, ADL would have been triggered. |
| 4819 | return true; |
| 4820 | } |
| 4821 | |
| 4822 | void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) { |
| 4823 | const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(Val: E); |
| 4824 | Out << CastEncoding; |
| 4825 | mangleType(T: ECE->getType()); |
| 4826 | mangleExpression(E: ECE->getSubExpr()); |
| 4827 | } |
| 4828 | |
| 4829 | void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) { |
| 4830 | if (auto *Syntactic = InitList->getSyntacticForm()) |
| 4831 | InitList = Syntactic; |
| 4832 | for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) |
| 4833 | mangleExpression(E: InitList->getInit(Init: i)); |
| 4834 | } |
| 4835 | |
| 4836 | void CXXNameMangler::mangleRequirement(SourceLocation RequiresExprLoc, |
| 4837 | const concepts::Requirement *Req) { |
| 4838 | using concepts::Requirement; |
| 4839 | |
| 4840 | // TODO: We can't mangle the result of a failed substitution. It's not clear |
| 4841 | // whether we should be mangling the original form prior to any substitution |
| 4842 | // instead. See https://lists.isocpp.org/core/2023/04/14118.php |
| 4843 | auto HandleSubstitutionFailure = |
| 4844 | [&](SourceLocation Loc) { |
| 4845 | DiagnosticsEngine &Diags = Context.getDiags(); |
| 4846 | unsigned DiagID = Diags.getCustomDiagID( |
| 4847 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle this requires-expression " |
| 4848 | "containing a substitution failure" ); |
| 4849 | Diags.Report(Loc, DiagID); |
| 4850 | Out << 'F'; |
| 4851 | }; |
| 4852 | |
| 4853 | switch (Req->getKind()) { |
| 4854 | case Requirement::RK_Type: { |
| 4855 | const auto *TR = cast<concepts::TypeRequirement>(Val: Req); |
| 4856 | if (TR->isSubstitutionFailure()) |
| 4857 | return HandleSubstitutionFailure( |
| 4858 | TR->getSubstitutionDiagnostic()->DiagLoc); |
| 4859 | |
| 4860 | Out << 'T'; |
| 4861 | mangleType(T: TR->getType()->getType()); |
| 4862 | break; |
| 4863 | } |
| 4864 | |
| 4865 | case Requirement::RK_Simple: |
| 4866 | case Requirement::RK_Compound: { |
| 4867 | const auto *ER = cast<concepts::ExprRequirement>(Val: Req); |
| 4868 | if (ER->isExprSubstitutionFailure()) |
| 4869 | return HandleSubstitutionFailure( |
| 4870 | ER->getExprSubstitutionDiagnostic()->DiagLoc); |
| 4871 | |
| 4872 | Out << 'X'; |
| 4873 | mangleExpression(E: ER->getExpr()); |
| 4874 | |
| 4875 | if (ER->hasNoexceptRequirement()) |
| 4876 | Out << 'N'; |
| 4877 | |
| 4878 | if (!ER->getReturnTypeRequirement().isEmpty()) { |
| 4879 | if (ER->getReturnTypeRequirement().isSubstitutionFailure()) |
| 4880 | return HandleSubstitutionFailure(ER->getReturnTypeRequirement() |
| 4881 | .getSubstitutionDiagnostic() |
| 4882 | ->DiagLoc); |
| 4883 | |
| 4884 | Out << 'R'; |
| 4885 | mangleTypeConstraint(Constraint: ER->getReturnTypeRequirement().getTypeConstraint()); |
| 4886 | } |
| 4887 | break; |
| 4888 | } |
| 4889 | |
| 4890 | case Requirement::RK_Nested: |
| 4891 | const auto *NR = cast<concepts::NestedRequirement>(Val: Req); |
| 4892 | if (NR->hasInvalidConstraint()) { |
| 4893 | // FIXME: NestedRequirement should track the location of its requires |
| 4894 | // keyword. |
| 4895 | return HandleSubstitutionFailure(RequiresExprLoc); |
| 4896 | } |
| 4897 | |
| 4898 | Out << 'Q'; |
| 4899 | mangleExpression(E: NR->getConstraintExpr()); |
| 4900 | break; |
| 4901 | } |
| 4902 | } |
| 4903 | |
| 4904 | void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity, |
| 4905 | bool AsTemplateArg) { |
| 4906 | // <expression> ::= <unary operator-name> <expression> |
| 4907 | // ::= <binary operator-name> <expression> <expression> |
| 4908 | // ::= <trinary operator-name> <expression> <expression> <expression> |
| 4909 | // ::= cv <type> expression # conversion with one argument |
| 4910 | // ::= cv <type> _ <expression>* E # conversion with a different number of arguments |
| 4911 | // ::= dc <type> <expression> # dynamic_cast<type> (expression) |
| 4912 | // ::= sc <type> <expression> # static_cast<type> (expression) |
| 4913 | // ::= cc <type> <expression> # const_cast<type> (expression) |
| 4914 | // ::= rc <type> <expression> # reinterpret_cast<type> (expression) |
| 4915 | // ::= st <type> # sizeof (a type) |
| 4916 | // ::= at <type> # alignof (a type) |
| 4917 | // ::= <template-param> |
| 4918 | // ::= <function-param> |
| 4919 | // ::= fpT # 'this' expression (part of <function-param>) |
| 4920 | // ::= sr <type> <unqualified-name> # dependent name |
| 4921 | // ::= sr <type> <unqualified-name> <template-args> # dependent template-id |
| 4922 | // ::= ds <expression> <expression> # expr.*expr |
| 4923 | // ::= sZ <template-param> # size of a parameter pack |
| 4924 | // ::= sZ <function-param> # size of a function parameter pack |
| 4925 | // ::= u <source-name> <template-arg>* E # vendor extended expression |
| 4926 | // ::= <expr-primary> |
| 4927 | // <expr-primary> ::= L <type> <value number> E # integer literal |
| 4928 | // ::= L <type> <value float> E # floating literal |
| 4929 | // ::= L <type> <string type> E # string literal |
| 4930 | // ::= L <nullptr type> E # nullptr literal "LDnE" |
| 4931 | // ::= L <pointer type> 0 E # null pointer template argument |
| 4932 | // ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C99); not used by clang |
| 4933 | // ::= L <mangled-name> E # external name |
| 4934 | QualType ImplicitlyConvertedToType; |
| 4935 | |
| 4936 | // A top-level expression that's not <expr-primary> needs to be wrapped in |
| 4937 | // X...E in a template arg. |
| 4938 | bool IsPrimaryExpr = true; |
| 4939 | auto NotPrimaryExpr = [&] { |
| 4940 | if (AsTemplateArg && IsPrimaryExpr) |
| 4941 | Out << 'X'; |
| 4942 | IsPrimaryExpr = false; |
| 4943 | }; |
| 4944 | |
| 4945 | auto MangleDeclRefExpr = [&](const NamedDecl *D) { |
| 4946 | switch (D->getKind()) { |
| 4947 | default: |
| 4948 | // <expr-primary> ::= L <mangled-name> E # external name |
| 4949 | Out << 'L'; |
| 4950 | mangle(GD: D); |
| 4951 | Out << 'E'; |
| 4952 | break; |
| 4953 | |
| 4954 | case Decl::ParmVar: |
| 4955 | NotPrimaryExpr(); |
| 4956 | mangleFunctionParam(parm: cast<ParmVarDecl>(Val: D)); |
| 4957 | break; |
| 4958 | |
| 4959 | case Decl::EnumConstant: { |
| 4960 | // <expr-primary> |
| 4961 | const EnumConstantDecl *ED = cast<EnumConstantDecl>(Val: D); |
| 4962 | mangleIntegerLiteral(T: ED->getType(), Value: ED->getInitVal()); |
| 4963 | break; |
| 4964 | } |
| 4965 | |
| 4966 | case Decl::NonTypeTemplateParm: |
| 4967 | NotPrimaryExpr(); |
| 4968 | const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(Val: D); |
| 4969 | mangleTemplateParameter(Depth: PD->getDepth(), Index: PD->getIndex()); |
| 4970 | break; |
| 4971 | } |
| 4972 | }; |
| 4973 | |
| 4974 | // 'goto recurse' is used when handling a simple "unwrapping" node which |
| 4975 | // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need |
| 4976 | // to be preserved. |
| 4977 | recurse: |
| 4978 | switch (E->getStmtClass()) { |
| 4979 | case Expr::NoStmtClass: |
| 4980 | #define ABSTRACT_STMT(Type) |
| 4981 | #define EXPR(Type, Base) |
| 4982 | #define STMT(Type, Base) \ |
| 4983 | case Expr::Type##Class: |
| 4984 | #include "clang/AST/StmtNodes.inc" |
| 4985 | // fallthrough |
| 4986 | |
| 4987 | // These all can only appear in local or variable-initialization |
| 4988 | // contexts and so should never appear in a mangling. |
| 4989 | case Expr::AddrLabelExprClass: |
| 4990 | case Expr::DesignatedInitUpdateExprClass: |
| 4991 | case Expr::ImplicitValueInitExprClass: |
| 4992 | case Expr::ArrayInitLoopExprClass: |
| 4993 | case Expr::ArrayInitIndexExprClass: |
| 4994 | case Expr::NoInitExprClass: |
| 4995 | case Expr::ParenListExprClass: |
| 4996 | case Expr::MSPropertyRefExprClass: |
| 4997 | case Expr::MSPropertySubscriptExprClass: |
| 4998 | case Expr::RecoveryExprClass: |
| 4999 | case Expr::ArraySectionExprClass: |
| 5000 | case Expr::OMPArrayShapingExprClass: |
| 5001 | case Expr::OMPIteratorExprClass: |
| 5002 | case Expr::CXXInheritedCtorInitExprClass: |
| 5003 | case Expr::CXXParenListInitExprClass: |
| 5004 | case Expr::PackIndexingExprClass: |
| 5005 | llvm_unreachable("unexpected statement kind" ); |
| 5006 | |
| 5007 | case Expr::ConstantExprClass: |
| 5008 | E = cast<ConstantExpr>(Val: E)->getSubExpr(); |
| 5009 | goto recurse; |
| 5010 | |
| 5011 | // FIXME: invent manglings for all these. |
| 5012 | case Expr::BlockExprClass: |
| 5013 | case Expr::ChooseExprClass: |
| 5014 | case Expr::CompoundLiteralExprClass: |
| 5015 | case Expr::ExtVectorElementExprClass: |
| 5016 | case Expr::GenericSelectionExprClass: |
| 5017 | case Expr::ObjCEncodeExprClass: |
| 5018 | case Expr::ObjCIsaExprClass: |
| 5019 | case Expr::ObjCIvarRefExprClass: |
| 5020 | case Expr::ObjCMessageExprClass: |
| 5021 | case Expr::ObjCPropertyRefExprClass: |
| 5022 | case Expr::ObjCProtocolExprClass: |
| 5023 | case Expr::ObjCSelectorExprClass: |
| 5024 | case Expr::ObjCStringLiteralClass: |
| 5025 | case Expr::ObjCBoxedExprClass: |
| 5026 | case Expr::ObjCArrayLiteralClass: |
| 5027 | case Expr::ObjCDictionaryLiteralClass: |
| 5028 | case Expr::ObjCSubscriptRefExprClass: |
| 5029 | case Expr::ObjCIndirectCopyRestoreExprClass: |
| 5030 | case Expr::ObjCAvailabilityCheckExprClass: |
| 5031 | case Expr::OffsetOfExprClass: |
| 5032 | case Expr::PredefinedExprClass: |
| 5033 | case Expr::ShuffleVectorExprClass: |
| 5034 | case Expr::ConvertVectorExprClass: |
| 5035 | case Expr::StmtExprClass: |
| 5036 | case Expr::ArrayTypeTraitExprClass: |
| 5037 | case Expr::ExpressionTraitExprClass: |
| 5038 | case Expr::VAArgExprClass: |
| 5039 | case Expr::CUDAKernelCallExprClass: |
| 5040 | case Expr::AsTypeExprClass: |
| 5041 | case Expr::PseudoObjectExprClass: |
| 5042 | case Expr::AtomicExprClass: |
| 5043 | case Expr::SourceLocExprClass: |
| 5044 | case Expr::EmbedExprClass: |
| 5045 | case Expr::BuiltinBitCastExprClass: { |
| 5046 | NotPrimaryExpr(); |
| 5047 | if (!NullOut) { |
| 5048 | // As bad as this diagnostic is, it's better than crashing. |
| 5049 | DiagnosticsEngine &Diags = Context.getDiags(); |
| 5050 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
| 5051 | FormatString: "cannot yet mangle expression type %0" ); |
| 5052 | Diags.Report(Loc: E->getExprLoc(), DiagID) |
| 5053 | << E->getStmtClassName() << E->getSourceRange(); |
| 5054 | return; |
| 5055 | } |
| 5056 | break; |
| 5057 | } |
| 5058 | |
| 5059 | case Expr::CXXUuidofExprClass: { |
| 5060 | NotPrimaryExpr(); |
| 5061 | const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(Val: E); |
| 5062 | // As of clang 12, uuidof uses the vendor extended expression |
| 5063 | // mangling. Previously, it used a special-cased nonstandard extension. |
| 5064 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
| 5065 | Out << "u8__uuidof" ; |
| 5066 | if (UE->isTypeOperand()) |
| 5067 | mangleType(T: UE->getTypeOperand(Context&: Context.getASTContext())); |
| 5068 | else |
| 5069 | mangleTemplateArgExpr(E: UE->getExprOperand()); |
| 5070 | Out << 'E'; |
| 5071 | } else { |
| 5072 | if (UE->isTypeOperand()) { |
| 5073 | QualType UuidT = UE->getTypeOperand(Context&: Context.getASTContext()); |
| 5074 | Out << "u8__uuidoft" ; |
| 5075 | mangleType(T: UuidT); |
| 5076 | } else { |
| 5077 | Expr *UuidExp = UE->getExprOperand(); |
| 5078 | Out << "u8__uuidofz" ; |
| 5079 | mangleExpression(E: UuidExp); |
| 5080 | } |
| 5081 | } |
| 5082 | break; |
| 5083 | } |
| 5084 | |
| 5085 | // Even gcc-4.5 doesn't mangle this. |
| 5086 | case Expr::BinaryConditionalOperatorClass: { |
| 5087 | NotPrimaryExpr(); |
| 5088 | DiagnosticsEngine &Diags = Context.getDiags(); |
| 5089 | unsigned DiagID = |
| 5090 | Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
| 5091 | FormatString: "?: operator with omitted middle operand cannot be mangled" ); |
| 5092 | Diags.Report(Loc: E->getExprLoc(), DiagID) |
| 5093 | << E->getStmtClassName() << E->getSourceRange(); |
| 5094 | return; |
| 5095 | } |
| 5096 | |
| 5097 | // These are used for internal purposes and cannot be meaningfully mangled. |
| 5098 | case Expr::OpaqueValueExprClass: |
| 5099 | llvm_unreachable("cannot mangle opaque value; mangling wrong thing?" ); |
| 5100 | |
| 5101 | case Expr::InitListExprClass: { |
| 5102 | NotPrimaryExpr(); |
| 5103 | Out << "il" ; |
| 5104 | mangleInitListElements(InitList: cast<InitListExpr>(Val: E)); |
| 5105 | Out << "E" ; |
| 5106 | break; |
| 5107 | } |
| 5108 | |
| 5109 | case Expr::DesignatedInitExprClass: { |
| 5110 | NotPrimaryExpr(); |
| 5111 | auto *DIE = cast<DesignatedInitExpr>(Val: E); |
| 5112 | for (const auto &Designator : DIE->designators()) { |
| 5113 | if (Designator.isFieldDesignator()) { |
| 5114 | Out << "di" ; |
| 5115 | mangleSourceName(II: Designator.getFieldName()); |
| 5116 | } else if (Designator.isArrayDesignator()) { |
| 5117 | Out << "dx" ; |
| 5118 | mangleExpression(E: DIE->getArrayIndex(D: Designator)); |
| 5119 | } else { |
| 5120 | assert(Designator.isArrayRangeDesignator() && |
| 5121 | "unknown designator kind" ); |
| 5122 | Out << "dX" ; |
| 5123 | mangleExpression(E: DIE->getArrayRangeStart(D: Designator)); |
| 5124 | mangleExpression(E: DIE->getArrayRangeEnd(D: Designator)); |
| 5125 | } |
| 5126 | } |
| 5127 | mangleExpression(E: DIE->getInit()); |
| 5128 | break; |
| 5129 | } |
| 5130 | |
| 5131 | case Expr::CXXDefaultArgExprClass: |
| 5132 | E = cast<CXXDefaultArgExpr>(Val: E)->getExpr(); |
| 5133 | goto recurse; |
| 5134 | |
| 5135 | case Expr::CXXDefaultInitExprClass: |
| 5136 | E = cast<CXXDefaultInitExpr>(Val: E)->getExpr(); |
| 5137 | goto recurse; |
| 5138 | |
| 5139 | case Expr::CXXStdInitializerListExprClass: |
| 5140 | E = cast<CXXStdInitializerListExpr>(Val: E)->getSubExpr(); |
| 5141 | goto recurse; |
| 5142 | |
| 5143 | case Expr::SubstNonTypeTemplateParmExprClass: { |
| 5144 | // Mangle a substituted parameter the same way we mangle the template |
| 5145 | // argument. |
| 5146 | auto *SNTTPE = cast<SubstNonTypeTemplateParmExpr>(Val: E); |
| 5147 | if (auto *CE = dyn_cast<ConstantExpr>(Val: SNTTPE->getReplacement())) { |
| 5148 | // Pull out the constant value and mangle it as a template argument. |
| 5149 | QualType ParamType = SNTTPE->getParameterType(Ctx: Context.getASTContext()); |
| 5150 | assert(CE->hasAPValueResult() && "expected the NTTP to have an APValue" ); |
| 5151 | mangleValueInTemplateArg(T: ParamType, V: CE->getAPValueResult(), TopLevel: false, |
| 5152 | /*NeedExactType=*/true); |
| 5153 | break; |
| 5154 | } |
| 5155 | // The remaining cases all happen to be substituted with expressions that |
| 5156 | // mangle the same as a corresponding template argument anyway. |
| 5157 | E = cast<SubstNonTypeTemplateParmExpr>(Val: E)->getReplacement(); |
| 5158 | goto recurse; |
| 5159 | } |
| 5160 | |
| 5161 | case Expr::UserDefinedLiteralClass: |
| 5162 | // We follow g++'s approach of mangling a UDL as a call to the literal |
| 5163 | // operator. |
| 5164 | case Expr::CXXMemberCallExprClass: // fallthrough |
| 5165 | case Expr::CallExprClass: { |
| 5166 | NotPrimaryExpr(); |
| 5167 | const CallExpr *CE = cast<CallExpr>(Val: E); |
| 5168 | |
| 5169 | // <expression> ::= cp <simple-id> <expression>* E |
| 5170 | // We use this mangling only when the call would use ADL except |
| 5171 | // for being parenthesized. Per discussion with David |
| 5172 | // Vandervoorde, 2011.04.25. |
| 5173 | if (isParenthesizedADLCallee(call: CE)) { |
| 5174 | Out << "cp" ; |
| 5175 | // The callee here is a parenthesized UnresolvedLookupExpr with |
| 5176 | // no qualifier and should always get mangled as a <simple-id> |
| 5177 | // anyway. |
| 5178 | |
| 5179 | // <expression> ::= cl <expression>* E |
| 5180 | } else { |
| 5181 | Out << "cl" ; |
| 5182 | } |
| 5183 | |
| 5184 | unsigned CallArity = CE->getNumArgs(); |
| 5185 | for (const Expr *Arg : CE->arguments()) |
| 5186 | if (isa<PackExpansionExpr>(Val: Arg)) |
| 5187 | CallArity = UnknownArity; |
| 5188 | |
| 5189 | mangleExpression(E: CE->getCallee(), Arity: CallArity); |
| 5190 | for (const Expr *Arg : CE->arguments()) |
| 5191 | mangleExpression(E: Arg); |
| 5192 | Out << 'E'; |
| 5193 | break; |
| 5194 | } |
| 5195 | |
| 5196 | case Expr::CXXNewExprClass: { |
| 5197 | NotPrimaryExpr(); |
| 5198 | const CXXNewExpr *New = cast<CXXNewExpr>(Val: E); |
| 5199 | if (New->isGlobalNew()) Out << "gs" ; |
| 5200 | Out << (New->isArray() ? "na" : "nw" ); |
| 5201 | for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), |
| 5202 | E = New->placement_arg_end(); I != E; ++I) |
| 5203 | mangleExpression(E: *I); |
| 5204 | Out << '_'; |
| 5205 | mangleType(T: New->getAllocatedType()); |
| 5206 | if (New->hasInitializer()) { |
| 5207 | if (New->getInitializationStyle() == CXXNewInitializationStyle::Braces) |
| 5208 | Out << "il" ; |
| 5209 | else |
| 5210 | Out << "pi" ; |
| 5211 | const Expr *Init = New->getInitializer(); |
| 5212 | if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Val: Init)) { |
| 5213 | // Directly inline the initializers. |
| 5214 | for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), |
| 5215 | E = CCE->arg_end(); |
| 5216 | I != E; ++I) |
| 5217 | mangleExpression(E: *I); |
| 5218 | } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Val: Init)) { |
| 5219 | for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i) |
| 5220 | mangleExpression(E: PLE->getExpr(Init: i)); |
| 5221 | } else if (New->getInitializationStyle() == |
| 5222 | CXXNewInitializationStyle::Braces && |
| 5223 | isa<InitListExpr>(Val: Init)) { |
| 5224 | // Only take InitListExprs apart for list-initialization. |
| 5225 | mangleInitListElements(InitList: cast<InitListExpr>(Val: Init)); |
| 5226 | } else |
| 5227 | mangleExpression(E: Init); |
| 5228 | } |
| 5229 | Out << 'E'; |
| 5230 | break; |
| 5231 | } |
| 5232 | |
| 5233 | case Expr::CXXPseudoDestructorExprClass: { |
| 5234 | NotPrimaryExpr(); |
| 5235 | const auto *PDE = cast<CXXPseudoDestructorExpr>(Val: E); |
| 5236 | if (const Expr *Base = PDE->getBase()) |
| 5237 | mangleMemberExprBase(Base, IsArrow: PDE->isArrow()); |
| 5238 | NestedNameSpecifier *Qualifier = PDE->getQualifier(); |
| 5239 | if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) { |
| 5240 | if (Qualifier) { |
| 5241 | mangleUnresolvedPrefix(qualifier: Qualifier, |
| 5242 | /*recursive=*/true); |
| 5243 | mangleUnresolvedTypeOrSimpleId(Ty: ScopeInfo->getType()); |
| 5244 | Out << 'E'; |
| 5245 | } else { |
| 5246 | Out << "sr" ; |
| 5247 | if (!mangleUnresolvedTypeOrSimpleId(Ty: ScopeInfo->getType())) |
| 5248 | Out << 'E'; |
| 5249 | } |
| 5250 | } else if (Qualifier) { |
| 5251 | mangleUnresolvedPrefix(qualifier: Qualifier); |
| 5252 | } |
| 5253 | // <base-unresolved-name> ::= dn <destructor-name> |
| 5254 | Out << "dn" ; |
| 5255 | QualType DestroyedType = PDE->getDestroyedType(); |
| 5256 | mangleUnresolvedTypeOrSimpleId(Ty: DestroyedType); |
| 5257 | break; |
| 5258 | } |
| 5259 | |
| 5260 | case Expr::MemberExprClass: { |
| 5261 | NotPrimaryExpr(); |
| 5262 | const MemberExpr *ME = cast<MemberExpr>(Val: E); |
| 5263 | mangleMemberExpr(base: ME->getBase(), isArrow: ME->isArrow(), |
| 5264 | qualifier: ME->getQualifier(), firstQualifierLookup: nullptr, |
| 5265 | member: ME->getMemberDecl()->getDeclName(), |
| 5266 | TemplateArgs: ME->getTemplateArgs(), NumTemplateArgs: ME->getNumTemplateArgs(), |
| 5267 | arity: Arity); |
| 5268 | break; |
| 5269 | } |
| 5270 | |
| 5271 | case Expr::UnresolvedMemberExprClass: { |
| 5272 | NotPrimaryExpr(); |
| 5273 | const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(Val: E); |
| 5274 | mangleMemberExpr(base: ME->isImplicitAccess() ? nullptr : ME->getBase(), |
| 5275 | isArrow: ME->isArrow(), qualifier: ME->getQualifier(), firstQualifierLookup: nullptr, |
| 5276 | member: ME->getMemberName(), |
| 5277 | TemplateArgs: ME->getTemplateArgs(), NumTemplateArgs: ME->getNumTemplateArgs(), |
| 5278 | arity: Arity); |
| 5279 | break; |
| 5280 | } |
| 5281 | |
| 5282 | case Expr::CXXDependentScopeMemberExprClass: { |
| 5283 | NotPrimaryExpr(); |
| 5284 | const CXXDependentScopeMemberExpr *ME |
| 5285 | = cast<CXXDependentScopeMemberExpr>(Val: E); |
| 5286 | mangleMemberExpr(base: ME->isImplicitAccess() ? nullptr : ME->getBase(), |
| 5287 | isArrow: ME->isArrow(), qualifier: ME->getQualifier(), |
| 5288 | firstQualifierLookup: ME->getFirstQualifierFoundInScope(), |
| 5289 | member: ME->getMember(), |
| 5290 | TemplateArgs: ME->getTemplateArgs(), NumTemplateArgs: ME->getNumTemplateArgs(), |
| 5291 | arity: Arity); |
| 5292 | break; |
| 5293 | } |
| 5294 | |
| 5295 | case Expr::UnresolvedLookupExprClass: { |
| 5296 | NotPrimaryExpr(); |
| 5297 | const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(Val: E); |
| 5298 | mangleUnresolvedName(qualifier: ULE->getQualifier(), name: ULE->getName(), |
| 5299 | TemplateArgs: ULE->getTemplateArgs(), NumTemplateArgs: ULE->getNumTemplateArgs(), |
| 5300 | knownArity: Arity); |
| 5301 | break; |
| 5302 | } |
| 5303 | |
| 5304 | case Expr::CXXUnresolvedConstructExprClass: { |
| 5305 | NotPrimaryExpr(); |
| 5306 | const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(Val: E); |
| 5307 | unsigned N = CE->getNumArgs(); |
| 5308 | |
| 5309 | if (CE->isListInitialization()) { |
| 5310 | assert(N == 1 && "unexpected form for list initialization" ); |
| 5311 | auto *IL = cast<InitListExpr>(Val: CE->getArg(I: 0)); |
| 5312 | Out << "tl" ; |
| 5313 | mangleType(T: CE->getType()); |
| 5314 | mangleInitListElements(InitList: IL); |
| 5315 | Out << "E" ; |
| 5316 | break; |
| 5317 | } |
| 5318 | |
| 5319 | Out << "cv" ; |
| 5320 | mangleType(T: CE->getType()); |
| 5321 | if (N != 1) Out << '_'; |
| 5322 | for (unsigned I = 0; I != N; ++I) mangleExpression(E: CE->getArg(I)); |
| 5323 | if (N != 1) Out << 'E'; |
| 5324 | break; |
| 5325 | } |
| 5326 | |
| 5327 | case Expr::CXXConstructExprClass: { |
| 5328 | // An implicit cast is silent, thus may contain <expr-primary>. |
| 5329 | const auto *CE = cast<CXXConstructExpr>(Val: E); |
| 5330 | if (!CE->isListInitialization() || CE->isStdInitListInitialization()) { |
| 5331 | assert( |
| 5332 | CE->getNumArgs() >= 1 && |
| 5333 | (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) && |
| 5334 | "implicit CXXConstructExpr must have one argument" ); |
| 5335 | E = cast<CXXConstructExpr>(Val: E)->getArg(Arg: 0); |
| 5336 | goto recurse; |
| 5337 | } |
| 5338 | NotPrimaryExpr(); |
| 5339 | Out << "il" ; |
| 5340 | for (auto *E : CE->arguments()) |
| 5341 | mangleExpression(E); |
| 5342 | Out << "E" ; |
| 5343 | break; |
| 5344 | } |
| 5345 | |
| 5346 | case Expr::CXXTemporaryObjectExprClass: { |
| 5347 | NotPrimaryExpr(); |
| 5348 | const auto *CE = cast<CXXTemporaryObjectExpr>(Val: E); |
| 5349 | unsigned N = CE->getNumArgs(); |
| 5350 | bool List = CE->isListInitialization(); |
| 5351 | |
| 5352 | if (List) |
| 5353 | Out << "tl" ; |
| 5354 | else |
| 5355 | Out << "cv" ; |
| 5356 | mangleType(T: CE->getType()); |
| 5357 | if (!List && N != 1) |
| 5358 | Out << '_'; |
| 5359 | if (CE->isStdInitListInitialization()) { |
| 5360 | // We implicitly created a std::initializer_list<T> for the first argument |
| 5361 | // of a constructor of type U in an expression of the form U{a, b, c}. |
| 5362 | // Strip all the semantic gunk off the initializer list. |
| 5363 | auto *SILE = |
| 5364 | cast<CXXStdInitializerListExpr>(Val: CE->getArg(Arg: 0)->IgnoreImplicit()); |
| 5365 | auto *ILE = cast<InitListExpr>(Val: SILE->getSubExpr()->IgnoreImplicit()); |
| 5366 | mangleInitListElements(InitList: ILE); |
| 5367 | } else { |
| 5368 | for (auto *E : CE->arguments()) |
| 5369 | mangleExpression(E); |
| 5370 | } |
| 5371 | if (List || N != 1) |
| 5372 | Out << 'E'; |
| 5373 | break; |
| 5374 | } |
| 5375 | |
| 5376 | case Expr::CXXScalarValueInitExprClass: |
| 5377 | NotPrimaryExpr(); |
| 5378 | Out << "cv" ; |
| 5379 | mangleType(T: E->getType()); |
| 5380 | Out << "_E" ; |
| 5381 | break; |
| 5382 | |
| 5383 | case Expr::CXXNoexceptExprClass: |
| 5384 | NotPrimaryExpr(); |
| 5385 | Out << "nx" ; |
| 5386 | mangleExpression(E: cast<CXXNoexceptExpr>(Val: E)->getOperand()); |
| 5387 | break; |
| 5388 | |
| 5389 | case Expr::UnaryExprOrTypeTraitExprClass: { |
| 5390 | // Non-instantiation-dependent traits are an <expr-primary> integer literal. |
| 5391 | const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(Val: E); |
| 5392 | |
| 5393 | if (!SAE->isInstantiationDependent()) { |
| 5394 | // Itanium C++ ABI: |
| 5395 | // If the operand of a sizeof or alignof operator is not |
| 5396 | // instantiation-dependent it is encoded as an integer literal |
| 5397 | // reflecting the result of the operator. |
| 5398 | // |
| 5399 | // If the result of the operator is implicitly converted to a known |
| 5400 | // integer type, that type is used for the literal; otherwise, the type |
| 5401 | // of std::size_t or std::ptrdiff_t is used. |
| 5402 | // |
| 5403 | // FIXME: We still include the operand in the profile in this case. This |
| 5404 | // can lead to mangling collisions between function templates that we |
| 5405 | // consider to be different. |
| 5406 | QualType T = (ImplicitlyConvertedToType.isNull() || |
| 5407 | !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() |
| 5408 | : ImplicitlyConvertedToType; |
| 5409 | llvm::APSInt V = SAE->EvaluateKnownConstInt(Ctx: Context.getASTContext()); |
| 5410 | mangleIntegerLiteral(T, Value: V); |
| 5411 | break; |
| 5412 | } |
| 5413 | |
| 5414 | NotPrimaryExpr(); // But otherwise, they are not. |
| 5415 | |
| 5416 | auto MangleAlignofSizeofArg = [&] { |
| 5417 | if (SAE->isArgumentType()) { |
| 5418 | Out << 't'; |
| 5419 | mangleType(T: SAE->getArgumentType()); |
| 5420 | } else { |
| 5421 | Out << 'z'; |
| 5422 | mangleExpression(E: SAE->getArgumentExpr()); |
| 5423 | } |
| 5424 | }; |
| 5425 | |
| 5426 | auto MangleExtensionBuiltin = [&](const UnaryExprOrTypeTraitExpr *E, |
| 5427 | StringRef Name = {}) { |
| 5428 | if (Name.empty()) |
| 5429 | Name = getTraitSpelling(T: E->getKind()); |
| 5430 | mangleVendorType(name: Name); |
| 5431 | if (SAE->isArgumentType()) |
| 5432 | mangleType(T: SAE->getArgumentType()); |
| 5433 | else |
| 5434 | mangleTemplateArgExpr(E: SAE->getArgumentExpr()); |
| 5435 | Out << 'E'; |
| 5436 | }; |
| 5437 | |
| 5438 | switch (SAE->getKind()) { |
| 5439 | case UETT_SizeOf: |
| 5440 | Out << 's'; |
| 5441 | MangleAlignofSizeofArg(); |
| 5442 | break; |
| 5443 | case UETT_PreferredAlignOf: |
| 5444 | // As of clang 12, we mangle __alignof__ differently than alignof. (They |
| 5445 | // have acted differently since Clang 8, but were previously mangled the |
| 5446 | // same.) |
| 5447 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
| 5448 | MangleExtensionBuiltin(SAE, "__alignof__" ); |
| 5449 | break; |
| 5450 | } |
| 5451 | [[fallthrough]]; |
| 5452 | case UETT_AlignOf: |
| 5453 | Out << 'a'; |
| 5454 | MangleAlignofSizeofArg(); |
| 5455 | break; |
| 5456 | |
| 5457 | case UETT_CountOf: |
| 5458 | case UETT_VectorElements: |
| 5459 | case UETT_OpenMPRequiredSimdAlign: |
| 5460 | case UETT_VecStep: |
| 5461 | case UETT_PtrAuthTypeDiscriminator: |
| 5462 | case UETT_DataSizeOf: { |
| 5463 | DiagnosticsEngine &Diags = Context.getDiags(); |
| 5464 | unsigned DiagID = Diags.getCustomDiagID( |
| 5465 | L: DiagnosticsEngine::Error, FormatString: "cannot yet mangle %0 expression" ); |
| 5466 | Diags.Report(Loc: E->getExprLoc(), DiagID) << getTraitSpelling(T: SAE->getKind()); |
| 5467 | return; |
| 5468 | } |
| 5469 | } |
| 5470 | break; |
| 5471 | } |
| 5472 | |
| 5473 | case Expr::TypeTraitExprClass: { |
| 5474 | // <expression> ::= u <source-name> <template-arg>* E # vendor extension |
| 5475 | const TypeTraitExpr *TTE = cast<TypeTraitExpr>(Val: E); |
| 5476 | NotPrimaryExpr(); |
| 5477 | llvm::StringRef Spelling = getTraitSpelling(T: TTE->getTrait()); |
| 5478 | mangleVendorType(name: Spelling); |
| 5479 | for (TypeSourceInfo *TSI : TTE->getArgs()) { |
| 5480 | mangleType(T: TSI->getType()); |
| 5481 | } |
| 5482 | Out << 'E'; |
| 5483 | break; |
| 5484 | } |
| 5485 | |
| 5486 | case Expr::CXXThrowExprClass: { |
| 5487 | NotPrimaryExpr(); |
| 5488 | const CXXThrowExpr *TE = cast<CXXThrowExpr>(Val: E); |
| 5489 | // <expression> ::= tw <expression> # throw expression |
| 5490 | // ::= tr # rethrow |
| 5491 | if (TE->getSubExpr()) { |
| 5492 | Out << "tw" ; |
| 5493 | mangleExpression(E: TE->getSubExpr()); |
| 5494 | } else { |
| 5495 | Out << "tr" ; |
| 5496 | } |
| 5497 | break; |
| 5498 | } |
| 5499 | |
| 5500 | case Expr::CXXTypeidExprClass: { |
| 5501 | NotPrimaryExpr(); |
| 5502 | const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(Val: E); |
| 5503 | // <expression> ::= ti <type> # typeid (type) |
| 5504 | // ::= te <expression> # typeid (expression) |
| 5505 | if (TIE->isTypeOperand()) { |
| 5506 | Out << "ti" ; |
| 5507 | mangleType(T: TIE->getTypeOperand(Context: Context.getASTContext())); |
| 5508 | } else { |
| 5509 | Out << "te" ; |
| 5510 | mangleExpression(E: TIE->getExprOperand()); |
| 5511 | } |
| 5512 | break; |
| 5513 | } |
| 5514 | |
| 5515 | case Expr::CXXDeleteExprClass: { |
| 5516 | NotPrimaryExpr(); |
| 5517 | const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(Val: E); |
| 5518 | // <expression> ::= [gs] dl <expression> # [::] delete expr |
| 5519 | // ::= [gs] da <expression> # [::] delete [] expr |
| 5520 | if (DE->isGlobalDelete()) Out << "gs" ; |
| 5521 | Out << (DE->isArrayForm() ? "da" : "dl" ); |
| 5522 | mangleExpression(E: DE->getArgument()); |
| 5523 | break; |
| 5524 | } |
| 5525 | |
| 5526 | case Expr::UnaryOperatorClass: { |
| 5527 | NotPrimaryExpr(); |
| 5528 | const UnaryOperator *UO = cast<UnaryOperator>(Val: E); |
| 5529 | mangleOperatorName(OO: UnaryOperator::getOverloadedOperator(Opc: UO->getOpcode()), |
| 5530 | /*Arity=*/1); |
| 5531 | mangleExpression(E: UO->getSubExpr()); |
| 5532 | break; |
| 5533 | } |
| 5534 | |
| 5535 | case Expr::ArraySubscriptExprClass: { |
| 5536 | NotPrimaryExpr(); |
| 5537 | const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(Val: E); |
| 5538 | |
| 5539 | // Array subscript is treated as a syntactically weird form of |
| 5540 | // binary operator. |
| 5541 | Out << "ix" ; |
| 5542 | mangleExpression(E: AE->getLHS()); |
| 5543 | mangleExpression(E: AE->getRHS()); |
| 5544 | break; |
| 5545 | } |
| 5546 | |
| 5547 | case Expr::MatrixSubscriptExprClass: { |
| 5548 | NotPrimaryExpr(); |
| 5549 | const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(Val: E); |
| 5550 | Out << "ixix" ; |
| 5551 | mangleExpression(E: ME->getBase()); |
| 5552 | mangleExpression(E: ME->getRowIdx()); |
| 5553 | mangleExpression(E: ME->getColumnIdx()); |
| 5554 | break; |
| 5555 | } |
| 5556 | |
| 5557 | case Expr::CompoundAssignOperatorClass: // fallthrough |
| 5558 | case Expr::BinaryOperatorClass: { |
| 5559 | NotPrimaryExpr(); |
| 5560 | const BinaryOperator *BO = cast<BinaryOperator>(Val: E); |
| 5561 | if (BO->getOpcode() == BO_PtrMemD) |
| 5562 | Out << "ds" ; |
| 5563 | else |
| 5564 | mangleOperatorName(OO: BinaryOperator::getOverloadedOperator(Opc: BO->getOpcode()), |
| 5565 | /*Arity=*/2); |
| 5566 | mangleExpression(E: BO->getLHS()); |
| 5567 | mangleExpression(E: BO->getRHS()); |
| 5568 | break; |
| 5569 | } |
| 5570 | |
| 5571 | case Expr::CXXRewrittenBinaryOperatorClass: { |
| 5572 | NotPrimaryExpr(); |
| 5573 | // The mangled form represents the original syntax. |
| 5574 | CXXRewrittenBinaryOperator::DecomposedForm Decomposed = |
| 5575 | cast<CXXRewrittenBinaryOperator>(Val: E)->getDecomposedForm(); |
| 5576 | mangleOperatorName(OO: BinaryOperator::getOverloadedOperator(Opc: Decomposed.Opcode), |
| 5577 | /*Arity=*/2); |
| 5578 | mangleExpression(E: Decomposed.LHS); |
| 5579 | mangleExpression(E: Decomposed.RHS); |
| 5580 | break; |
| 5581 | } |
| 5582 | |
| 5583 | case Expr::ConditionalOperatorClass: { |
| 5584 | NotPrimaryExpr(); |
| 5585 | const ConditionalOperator *CO = cast<ConditionalOperator>(Val: E); |
| 5586 | mangleOperatorName(OO: OO_Conditional, /*Arity=*/3); |
| 5587 | mangleExpression(E: CO->getCond()); |
| 5588 | mangleExpression(E: CO->getLHS(), Arity); |
| 5589 | mangleExpression(E: CO->getRHS(), Arity); |
| 5590 | break; |
| 5591 | } |
| 5592 | |
| 5593 | case Expr::ImplicitCastExprClass: { |
| 5594 | ImplicitlyConvertedToType = E->getType(); |
| 5595 | E = cast<ImplicitCastExpr>(Val: E)->getSubExpr(); |
| 5596 | goto recurse; |
| 5597 | } |
| 5598 | |
| 5599 | case Expr::ObjCBridgedCastExprClass: { |
| 5600 | NotPrimaryExpr(); |
| 5601 | // Mangle ownership casts as a vendor extended operator __bridge, |
| 5602 | // __bridge_transfer, or __bridge_retain. |
| 5603 | StringRef Kind = cast<ObjCBridgedCastExpr>(Val: E)->getBridgeKindName(); |
| 5604 | Out << "v1U" << Kind.size() << Kind; |
| 5605 | mangleCastExpression(E, CastEncoding: "cv" ); |
| 5606 | break; |
| 5607 | } |
| 5608 | |
| 5609 | case Expr::CStyleCastExprClass: |
| 5610 | NotPrimaryExpr(); |
| 5611 | mangleCastExpression(E, CastEncoding: "cv" ); |
| 5612 | break; |
| 5613 | |
| 5614 | case Expr::CXXFunctionalCastExprClass: { |
| 5615 | NotPrimaryExpr(); |
| 5616 | auto *Sub = cast<ExplicitCastExpr>(Val: E)->getSubExpr()->IgnoreImplicit(); |
| 5617 | // FIXME: Add isImplicit to CXXConstructExpr. |
| 5618 | if (auto *CCE = dyn_cast<CXXConstructExpr>(Val: Sub)) |
| 5619 | if (CCE->getParenOrBraceRange().isInvalid()) |
| 5620 | Sub = CCE->getArg(Arg: 0)->IgnoreImplicit(); |
| 5621 | if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Val: Sub)) |
| 5622 | Sub = StdInitList->getSubExpr()->IgnoreImplicit(); |
| 5623 | if (auto *IL = dyn_cast<InitListExpr>(Val: Sub)) { |
| 5624 | Out << "tl" ; |
| 5625 | mangleType(T: E->getType()); |
| 5626 | mangleInitListElements(InitList: IL); |
| 5627 | Out << "E" ; |
| 5628 | } else { |
| 5629 | mangleCastExpression(E, CastEncoding: "cv" ); |
| 5630 | } |
| 5631 | break; |
| 5632 | } |
| 5633 | |
| 5634 | case Expr::CXXStaticCastExprClass: |
| 5635 | NotPrimaryExpr(); |
| 5636 | mangleCastExpression(E, CastEncoding: "sc" ); |
| 5637 | break; |
| 5638 | case Expr::CXXDynamicCastExprClass: |
| 5639 | NotPrimaryExpr(); |
| 5640 | mangleCastExpression(E, CastEncoding: "dc" ); |
| 5641 | break; |
| 5642 | case Expr::CXXReinterpretCastExprClass: |
| 5643 | NotPrimaryExpr(); |
| 5644 | mangleCastExpression(E, CastEncoding: "rc" ); |
| 5645 | break; |
| 5646 | case Expr::CXXConstCastExprClass: |
| 5647 | NotPrimaryExpr(); |
| 5648 | mangleCastExpression(E, CastEncoding: "cc" ); |
| 5649 | break; |
| 5650 | case Expr::CXXAddrspaceCastExprClass: |
| 5651 | NotPrimaryExpr(); |
| 5652 | mangleCastExpression(E, CastEncoding: "ac" ); |
| 5653 | break; |
| 5654 | |
| 5655 | case Expr::CXXOperatorCallExprClass: { |
| 5656 | NotPrimaryExpr(); |
| 5657 | const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(Val: E); |
| 5658 | unsigned NumArgs = CE->getNumArgs(); |
| 5659 | // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax |
| 5660 | // (the enclosing MemberExpr covers the syntactic portion). |
| 5661 | if (CE->getOperator() != OO_Arrow) |
| 5662 | mangleOperatorName(OO: CE->getOperator(), /*Arity=*/NumArgs); |
| 5663 | // Mangle the arguments. |
| 5664 | for (unsigned i = 0; i != NumArgs; ++i) |
| 5665 | mangleExpression(E: CE->getArg(Arg: i)); |
| 5666 | break; |
| 5667 | } |
| 5668 | |
| 5669 | case Expr::ParenExprClass: |
| 5670 | E = cast<ParenExpr>(Val: E)->getSubExpr(); |
| 5671 | goto recurse; |
| 5672 | |
| 5673 | case Expr::ConceptSpecializationExprClass: { |
| 5674 | auto *CSE = cast<ConceptSpecializationExpr>(Val: E); |
| 5675 | if (isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
| 5676 | // Clang 17 and before mangled concept-ids as if they resolved to an |
| 5677 | // entity, meaning that references to enclosing template arguments don't |
| 5678 | // work. |
| 5679 | Out << "L_Z" ; |
| 5680 | mangleTemplateName(TD: CSE->getNamedConcept(), Args: CSE->getTemplateArguments()); |
| 5681 | Out << 'E'; |
| 5682 | break; |
| 5683 | } |
| 5684 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
| 5685 | NotPrimaryExpr(); |
| 5686 | mangleUnresolvedName( |
| 5687 | qualifier: CSE->getNestedNameSpecifierLoc().getNestedNameSpecifier(), |
| 5688 | name: CSE->getConceptNameInfo().getName(), |
| 5689 | TemplateArgs: CSE->getTemplateArgsAsWritten()->getTemplateArgs(), |
| 5690 | NumTemplateArgs: CSE->getTemplateArgsAsWritten()->getNumTemplateArgs()); |
| 5691 | break; |
| 5692 | } |
| 5693 | |
| 5694 | case Expr::RequiresExprClass: { |
| 5695 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24. |
| 5696 | auto *RE = cast<RequiresExpr>(Val: E); |
| 5697 | // This is a primary-expression in the C++ grammar, but does not have an |
| 5698 | // <expr-primary> mangling (starting with 'L'). |
| 5699 | NotPrimaryExpr(); |
| 5700 | if (RE->getLParenLoc().isValid()) { |
| 5701 | Out << "rQ" ; |
| 5702 | FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
| 5703 | if (RE->getLocalParameters().empty()) { |
| 5704 | Out << 'v'; |
| 5705 | } else { |
| 5706 | for (ParmVarDecl *Param : RE->getLocalParameters()) { |
| 5707 | mangleType(T: Context.getASTContext().getSignatureParameterType( |
| 5708 | T: Param->getType())); |
| 5709 | } |
| 5710 | } |
| 5711 | Out << '_'; |
| 5712 | |
| 5713 | // The rest of the mangling is in the immediate scope of the parameters. |
| 5714 | FunctionTypeDepth.enterResultType(); |
| 5715 | for (const concepts::Requirement *Req : RE->getRequirements()) |
| 5716 | mangleRequirement(RequiresExprLoc: RE->getExprLoc(), Req); |
| 5717 | FunctionTypeDepth.pop(saved); |
| 5718 | Out << 'E'; |
| 5719 | } else { |
| 5720 | Out << "rq" ; |
| 5721 | for (const concepts::Requirement *Req : RE->getRequirements()) |
| 5722 | mangleRequirement(RequiresExprLoc: RE->getExprLoc(), Req); |
| 5723 | Out << 'E'; |
| 5724 | } |
| 5725 | break; |
| 5726 | } |
| 5727 | |
| 5728 | case Expr::DeclRefExprClass: |
| 5729 | // MangleDeclRefExpr helper handles primary-vs-nonprimary |
| 5730 | MangleDeclRefExpr(cast<DeclRefExpr>(Val: E)->getDecl()); |
| 5731 | break; |
| 5732 | |
| 5733 | case Expr::SubstNonTypeTemplateParmPackExprClass: |
| 5734 | NotPrimaryExpr(); |
| 5735 | // FIXME: not clear how to mangle this! |
| 5736 | // template <unsigned N...> class A { |
| 5737 | // template <class U...> void foo(U (&x)[N]...); |
| 5738 | // }; |
| 5739 | Out << "_SUBSTPACK_" ; |
| 5740 | break; |
| 5741 | |
| 5742 | case Expr::FunctionParmPackExprClass: { |
| 5743 | NotPrimaryExpr(); |
| 5744 | // FIXME: not clear how to mangle this! |
| 5745 | const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(Val: E); |
| 5746 | Out << "v110_SUBSTPACK" ; |
| 5747 | MangleDeclRefExpr(FPPE->getParameterPack()); |
| 5748 | break; |
| 5749 | } |
| 5750 | |
| 5751 | case Expr::DependentScopeDeclRefExprClass: { |
| 5752 | NotPrimaryExpr(); |
| 5753 | const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(Val: E); |
| 5754 | mangleUnresolvedName(qualifier: DRE->getQualifier(), name: DRE->getDeclName(), |
| 5755 | TemplateArgs: DRE->getTemplateArgs(), NumTemplateArgs: DRE->getNumTemplateArgs(), |
| 5756 | knownArity: Arity); |
| 5757 | break; |
| 5758 | } |
| 5759 | |
| 5760 | case Expr::CXXBindTemporaryExprClass: |
| 5761 | E = cast<CXXBindTemporaryExpr>(Val: E)->getSubExpr(); |
| 5762 | goto recurse; |
| 5763 | |
| 5764 | case Expr::ExprWithCleanupsClass: |
| 5765 | E = cast<ExprWithCleanups>(Val: E)->getSubExpr(); |
| 5766 | goto recurse; |
| 5767 | |
| 5768 | case Expr::FloatingLiteralClass: { |
| 5769 | // <expr-primary> |
| 5770 | const FloatingLiteral *FL = cast<FloatingLiteral>(Val: E); |
| 5771 | mangleFloatLiteral(T: FL->getType(), V: FL->getValue()); |
| 5772 | break; |
| 5773 | } |
| 5774 | |
| 5775 | case Expr::FixedPointLiteralClass: |
| 5776 | // Currently unimplemented -- might be <expr-primary> in future? |
| 5777 | mangleFixedPointLiteral(); |
| 5778 | break; |
| 5779 | |
| 5780 | case Expr::CharacterLiteralClass: |
| 5781 | // <expr-primary> |
| 5782 | Out << 'L'; |
| 5783 | mangleType(T: E->getType()); |
| 5784 | Out << cast<CharacterLiteral>(Val: E)->getValue(); |
| 5785 | Out << 'E'; |
| 5786 | break; |
| 5787 | |
| 5788 | // FIXME. __objc_yes/__objc_no are mangled same as true/false |
| 5789 | case Expr::ObjCBoolLiteralExprClass: |
| 5790 | // <expr-primary> |
| 5791 | Out << "Lb" ; |
| 5792 | Out << (cast<ObjCBoolLiteralExpr>(Val: E)->getValue() ? '1' : '0'); |
| 5793 | Out << 'E'; |
| 5794 | break; |
| 5795 | |
| 5796 | case Expr::CXXBoolLiteralExprClass: |
| 5797 | // <expr-primary> |
| 5798 | Out << "Lb" ; |
| 5799 | Out << (cast<CXXBoolLiteralExpr>(Val: E)->getValue() ? '1' : '0'); |
| 5800 | Out << 'E'; |
| 5801 | break; |
| 5802 | |
| 5803 | case Expr::IntegerLiteralClass: { |
| 5804 | // <expr-primary> |
| 5805 | llvm::APSInt Value(cast<IntegerLiteral>(Val: E)->getValue()); |
| 5806 | if (E->getType()->isSignedIntegerType()) |
| 5807 | Value.setIsSigned(true); |
| 5808 | mangleIntegerLiteral(T: E->getType(), Value); |
| 5809 | break; |
| 5810 | } |
| 5811 | |
| 5812 | case Expr::ImaginaryLiteralClass: { |
| 5813 | // <expr-primary> |
| 5814 | const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(Val: E); |
| 5815 | // Mangle as if a complex literal. |
| 5816 | // Proposal from David Vandevoorde, 2010.06.30. |
| 5817 | Out << 'L'; |
| 5818 | mangleType(T: E->getType()); |
| 5819 | if (const FloatingLiteral *Imag = |
| 5820 | dyn_cast<FloatingLiteral>(Val: IE->getSubExpr())) { |
| 5821 | // Mangle a floating-point zero of the appropriate type. |
| 5822 | mangleFloat(f: llvm::APFloat(Imag->getValue().getSemantics())); |
| 5823 | Out << '_'; |
| 5824 | mangleFloat(f: Imag->getValue()); |
| 5825 | } else { |
| 5826 | Out << "0_" ; |
| 5827 | llvm::APSInt Value(cast<IntegerLiteral>(Val: IE->getSubExpr())->getValue()); |
| 5828 | if (IE->getSubExpr()->getType()->isSignedIntegerType()) |
| 5829 | Value.setIsSigned(true); |
| 5830 | mangleNumber(Value); |
| 5831 | } |
| 5832 | Out << 'E'; |
| 5833 | break; |
| 5834 | } |
| 5835 | |
| 5836 | case Expr::StringLiteralClass: { |
| 5837 | // <expr-primary> |
| 5838 | // Revised proposal from David Vandervoorde, 2010.07.15. |
| 5839 | Out << 'L'; |
| 5840 | assert(isa<ConstantArrayType>(E->getType())); |
| 5841 | mangleType(T: E->getType()); |
| 5842 | Out << 'E'; |
| 5843 | break; |
| 5844 | } |
| 5845 | |
| 5846 | case Expr::GNUNullExprClass: |
| 5847 | // <expr-primary> |
| 5848 | // Mangle as if an integer literal 0. |
| 5849 | mangleIntegerLiteral(T: E->getType(), Value: llvm::APSInt(32)); |
| 5850 | break; |
| 5851 | |
| 5852 | case Expr::CXXNullPtrLiteralExprClass: { |
| 5853 | // <expr-primary> |
| 5854 | Out << "LDnE" ; |
| 5855 | break; |
| 5856 | } |
| 5857 | |
| 5858 | case Expr::LambdaExprClass: { |
| 5859 | // A lambda-expression can't appear in the signature of an |
| 5860 | // externally-visible declaration, so there's no standard mangling for |
| 5861 | // this, but mangling as a literal of the closure type seems reasonable. |
| 5862 | Out << "L" ; |
| 5863 | mangleType(T: Context.getASTContext().getRecordType(Decl: cast<LambdaExpr>(Val: E)->getLambdaClass())); |
| 5864 | Out << "E" ; |
| 5865 | break; |
| 5866 | } |
| 5867 | |
| 5868 | case Expr::PackExpansionExprClass: |
| 5869 | NotPrimaryExpr(); |
| 5870 | Out << "sp" ; |
| 5871 | mangleExpression(E: cast<PackExpansionExpr>(Val: E)->getPattern()); |
| 5872 | break; |
| 5873 | |
| 5874 | case Expr::SizeOfPackExprClass: { |
| 5875 | NotPrimaryExpr(); |
| 5876 | auto *SPE = cast<SizeOfPackExpr>(Val: E); |
| 5877 | if (SPE->isPartiallySubstituted()) { |
| 5878 | Out << "sP" ; |
| 5879 | for (const auto &A : SPE->getPartialArguments()) |
| 5880 | mangleTemplateArg(A, NeedExactType: false); |
| 5881 | Out << "E" ; |
| 5882 | break; |
| 5883 | } |
| 5884 | |
| 5885 | Out << "sZ" ; |
| 5886 | const NamedDecl *Pack = SPE->getPack(); |
| 5887 | if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Pack)) |
| 5888 | mangleTemplateParameter(Depth: TTP->getDepth(), Index: TTP->getIndex()); |
| 5889 | else if (const NonTypeTemplateParmDecl *NTTP |
| 5890 | = dyn_cast<NonTypeTemplateParmDecl>(Val: Pack)) |
| 5891 | mangleTemplateParameter(Depth: NTTP->getDepth(), Index: NTTP->getIndex()); |
| 5892 | else if (const TemplateTemplateParmDecl *TempTP |
| 5893 | = dyn_cast<TemplateTemplateParmDecl>(Val: Pack)) |
| 5894 | mangleTemplateParameter(Depth: TempTP->getDepth(), Index: TempTP->getIndex()); |
| 5895 | else |
| 5896 | mangleFunctionParam(parm: cast<ParmVarDecl>(Val: Pack)); |
| 5897 | break; |
| 5898 | } |
| 5899 | |
| 5900 | case Expr::MaterializeTemporaryExprClass: |
| 5901 | E = cast<MaterializeTemporaryExpr>(Val: E)->getSubExpr(); |
| 5902 | goto recurse; |
| 5903 | |
| 5904 | case Expr::CXXFoldExprClass: { |
| 5905 | NotPrimaryExpr(); |
| 5906 | auto *FE = cast<CXXFoldExpr>(Val: E); |
| 5907 | if (FE->isLeftFold()) |
| 5908 | Out << (FE->getInit() ? "fL" : "fl" ); |
| 5909 | else |
| 5910 | Out << (FE->getInit() ? "fR" : "fr" ); |
| 5911 | |
| 5912 | if (FE->getOperator() == BO_PtrMemD) |
| 5913 | Out << "ds" ; |
| 5914 | else |
| 5915 | mangleOperatorName( |
| 5916 | OO: BinaryOperator::getOverloadedOperator(Opc: FE->getOperator()), |
| 5917 | /*Arity=*/2); |
| 5918 | |
| 5919 | if (FE->getLHS()) |
| 5920 | mangleExpression(E: FE->getLHS()); |
| 5921 | if (FE->getRHS()) |
| 5922 | mangleExpression(E: FE->getRHS()); |
| 5923 | break; |
| 5924 | } |
| 5925 | |
| 5926 | case Expr::CXXThisExprClass: |
| 5927 | NotPrimaryExpr(); |
| 5928 | Out << "fpT" ; |
| 5929 | break; |
| 5930 | |
| 5931 | case Expr::CoawaitExprClass: |
| 5932 | // FIXME: Propose a non-vendor mangling. |
| 5933 | NotPrimaryExpr(); |
| 5934 | Out << "v18co_await" ; |
| 5935 | mangleExpression(E: cast<CoawaitExpr>(Val: E)->getOperand()); |
| 5936 | break; |
| 5937 | |
| 5938 | case Expr::DependentCoawaitExprClass: |
| 5939 | // FIXME: Propose a non-vendor mangling. |
| 5940 | NotPrimaryExpr(); |
| 5941 | Out << "v18co_await" ; |
| 5942 | mangleExpression(E: cast<DependentCoawaitExpr>(Val: E)->getOperand()); |
| 5943 | break; |
| 5944 | |
| 5945 | case Expr::CoyieldExprClass: |
| 5946 | // FIXME: Propose a non-vendor mangling. |
| 5947 | NotPrimaryExpr(); |
| 5948 | Out << "v18co_yield" ; |
| 5949 | mangleExpression(E: cast<CoawaitExpr>(Val: E)->getOperand()); |
| 5950 | break; |
| 5951 | case Expr::SYCLUniqueStableNameExprClass: { |
| 5952 | const auto *USN = cast<SYCLUniqueStableNameExpr>(Val: E); |
| 5953 | NotPrimaryExpr(); |
| 5954 | |
| 5955 | Out << "u33__builtin_sycl_unique_stable_name" ; |
| 5956 | mangleType(T: USN->getTypeSourceInfo()->getType()); |
| 5957 | |
| 5958 | Out << "E" ; |
| 5959 | break; |
| 5960 | } |
| 5961 | case Expr::HLSLOutArgExprClass: |
| 5962 | llvm_unreachable( |
| 5963 | "cannot mangle hlsl temporary value; mangling wrong thing?" ); |
| 5964 | case Expr::OpenACCAsteriskSizeExprClass: { |
| 5965 | // We shouldn't ever be able to get here, but diagnose anyway. |
| 5966 | DiagnosticsEngine &Diags = Context.getDiags(); |
| 5967 | unsigned DiagID = Diags.getCustomDiagID( |
| 5968 | L: DiagnosticsEngine::Error, |
| 5969 | FormatString: "cannot yet mangle OpenACC Asterisk Size expression" ); |
| 5970 | Diags.Report(DiagID); |
| 5971 | return; |
| 5972 | } |
| 5973 | } |
| 5974 | |
| 5975 | if (AsTemplateArg && !IsPrimaryExpr) |
| 5976 | Out << 'E'; |
| 5977 | } |
| 5978 | |
| 5979 | /// Mangle an expression which refers to a parameter variable. |
| 5980 | /// |
| 5981 | /// <expression> ::= <function-param> |
| 5982 | /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 |
| 5983 | /// <function-param> ::= fp <top-level CV-qualifiers> |
| 5984 | /// <parameter-2 non-negative number> _ # L == 0, I > 0 |
| 5985 | /// <function-param> ::= fL <L-1 non-negative number> |
| 5986 | /// p <top-level CV-qualifiers> _ # L > 0, I == 0 |
| 5987 | /// <function-param> ::= fL <L-1 non-negative number> |
| 5988 | /// p <top-level CV-qualifiers> |
| 5989 | /// <I-1 non-negative number> _ # L > 0, I > 0 |
| 5990 | /// |
| 5991 | /// L is the nesting depth of the parameter, defined as 1 if the |
| 5992 | /// parameter comes from the innermost function prototype scope |
| 5993 | /// enclosing the current context, 2 if from the next enclosing |
| 5994 | /// function prototype scope, and so on, with one special case: if |
| 5995 | /// we've processed the full parameter clause for the innermost |
| 5996 | /// function type, then L is one less. This definition conveniently |
| 5997 | /// makes it irrelevant whether a function's result type was written |
| 5998 | /// trailing or leading, but is otherwise overly complicated; the |
| 5999 | /// numbering was first designed without considering references to |
| 6000 | /// parameter in locations other than return types, and then the |
| 6001 | /// mangling had to be generalized without changing the existing |
| 6002 | /// manglings. |
| 6003 | /// |
| 6004 | /// I is the zero-based index of the parameter within its parameter |
| 6005 | /// declaration clause. Note that the original ABI document describes |
| 6006 | /// this using 1-based ordinals. |
| 6007 | void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { |
| 6008 | unsigned parmDepth = parm->getFunctionScopeDepth(); |
| 6009 | unsigned parmIndex = parm->getFunctionScopeIndex(); |
| 6010 | |
| 6011 | // Compute 'L'. |
| 6012 | // parmDepth does not include the declaring function prototype. |
| 6013 | // FunctionTypeDepth does account for that. |
| 6014 | assert(parmDepth < FunctionTypeDepth.getDepth()); |
| 6015 | unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; |
| 6016 | if (FunctionTypeDepth.isInResultType()) |
| 6017 | nestingDepth--; |
| 6018 | |
| 6019 | if (nestingDepth == 0) { |
| 6020 | Out << "fp" ; |
| 6021 | } else { |
| 6022 | Out << "fL" << (nestingDepth - 1) << 'p'; |
| 6023 | } |
| 6024 | |
| 6025 | // Top-level qualifiers. We don't have to worry about arrays here, |
| 6026 | // because parameters declared as arrays should already have been |
| 6027 | // transformed to have pointer type. FIXME: apparently these don't |
| 6028 | // get mangled if used as an rvalue of a known non-class type? |
| 6029 | assert(!parm->getType()->isArrayType() |
| 6030 | && "parameter's type is still an array type?" ); |
| 6031 | |
| 6032 | if (const DependentAddressSpaceType *DAST = |
| 6033 | dyn_cast<DependentAddressSpaceType>(Val: parm->getType())) { |
| 6034 | mangleQualifiers(Quals: DAST->getPointeeType().getQualifiers(), DAST); |
| 6035 | } else { |
| 6036 | mangleQualifiers(Quals: parm->getType().getQualifiers()); |
| 6037 | } |
| 6038 | |
| 6039 | // Parameter index. |
| 6040 | if (parmIndex != 0) { |
| 6041 | Out << (parmIndex - 1); |
| 6042 | } |
| 6043 | Out << '_'; |
| 6044 | } |
| 6045 | |
| 6046 | void CXXNameMangler::mangleCXXCtorType(CXXCtorType T, |
| 6047 | const CXXRecordDecl *InheritedFrom) { |
| 6048 | // <ctor-dtor-name> ::= C1 # complete object constructor |
| 6049 | // ::= C2 # base object constructor |
| 6050 | // ::= CI1 <type> # complete inheriting constructor |
| 6051 | // ::= CI2 <type> # base inheriting constructor |
| 6052 | // |
| 6053 | // In addition, C5 is a comdat name with C1 and C2 in it. |
| 6054 | Out << 'C'; |
| 6055 | if (InheritedFrom) |
| 6056 | Out << 'I'; |
| 6057 | switch (T) { |
| 6058 | case Ctor_Complete: |
| 6059 | Out << '1'; |
| 6060 | break; |
| 6061 | case Ctor_Base: |
| 6062 | Out << '2'; |
| 6063 | break; |
| 6064 | case Ctor_Comdat: |
| 6065 | Out << '5'; |
| 6066 | break; |
| 6067 | case Ctor_DefaultClosure: |
| 6068 | case Ctor_CopyingClosure: |
| 6069 | llvm_unreachable("closure constructors don't exist for the Itanium ABI!" ); |
| 6070 | } |
| 6071 | if (InheritedFrom) |
| 6072 | mangleName(GD: InheritedFrom); |
| 6073 | } |
| 6074 | |
| 6075 | void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { |
| 6076 | // <ctor-dtor-name> ::= D0 # deleting destructor |
| 6077 | // ::= D1 # complete object destructor |
| 6078 | // ::= D2 # base object destructor |
| 6079 | // |
| 6080 | // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it. |
| 6081 | switch (T) { |
| 6082 | case Dtor_Deleting: |
| 6083 | Out << "D0" ; |
| 6084 | break; |
| 6085 | case Dtor_Complete: |
| 6086 | Out << "D1" ; |
| 6087 | break; |
| 6088 | case Dtor_Base: |
| 6089 | Out << "D2" ; |
| 6090 | break; |
| 6091 | case Dtor_Comdat: |
| 6092 | Out << "D5" ; |
| 6093 | break; |
| 6094 | } |
| 6095 | } |
| 6096 | |
| 6097 | // Helper to provide ancillary information on a template used to mangle its |
| 6098 | // arguments. |
| 6099 | struct CXXNameMangler::TemplateArgManglingInfo { |
| 6100 | const CXXNameMangler &Mangler; |
| 6101 | TemplateDecl *ResolvedTemplate = nullptr; |
| 6102 | bool SeenPackExpansionIntoNonPack = false; |
| 6103 | const NamedDecl *UnresolvedExpandedPack = nullptr; |
| 6104 | |
| 6105 | TemplateArgManglingInfo(const CXXNameMangler &Mangler, TemplateName TN) |
| 6106 | : Mangler(Mangler) { |
| 6107 | if (TemplateDecl *TD = TN.getAsTemplateDecl()) |
| 6108 | ResolvedTemplate = TD; |
| 6109 | } |
| 6110 | |
| 6111 | /// Information about how to mangle a template argument. |
| 6112 | struct Info { |
| 6113 | /// Do we need to mangle the template argument with an exactly correct type? |
| 6114 | bool NeedExactType; |
| 6115 | /// If we need to prefix the mangling with a mangling of the template |
| 6116 | /// parameter, the corresponding parameter. |
| 6117 | const NamedDecl *TemplateParameterToMangle; |
| 6118 | }; |
| 6119 | |
| 6120 | /// Determine whether the resolved template might be overloaded on its |
| 6121 | /// template parameter list. If so, the mangling needs to include enough |
| 6122 | /// information to reconstruct the template parameter list. |
| 6123 | bool isOverloadable() { |
| 6124 | // Function templates are generally overloadable. As a special case, a |
| 6125 | // member function template of a generic lambda is not overloadable. |
| 6126 | if (auto *FTD = dyn_cast_or_null<FunctionTemplateDecl>(Val: ResolvedTemplate)) { |
| 6127 | auto *RD = dyn_cast<CXXRecordDecl>(Val: FTD->getDeclContext()); |
| 6128 | if (!RD || !RD->isGenericLambda()) |
| 6129 | return true; |
| 6130 | } |
| 6131 | |
| 6132 | // All other templates are not overloadable. Partial specializations would |
| 6133 | // be, but we never mangle them. |
| 6134 | return false; |
| 6135 | } |
| 6136 | |
| 6137 | /// Determine whether we need to prefix this <template-arg> mangling with a |
| 6138 | /// <template-param-decl>. This happens if the natural template parameter for |
| 6139 | /// the argument mangling is not the same as the actual template parameter. |
| 6140 | bool needToMangleTemplateParam(const NamedDecl *Param, |
| 6141 | const TemplateArgument &Arg) { |
| 6142 | // For a template type parameter, the natural parameter is 'typename T'. |
| 6143 | // The actual parameter might be constrained. |
| 6144 | if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Param)) |
| 6145 | return TTP->hasTypeConstraint(); |
| 6146 | |
| 6147 | if (Arg.getKind() == TemplateArgument::Pack) { |
| 6148 | // For an empty pack, the natural parameter is `typename...`. |
| 6149 | if (Arg.pack_size() == 0) |
| 6150 | return true; |
| 6151 | |
| 6152 | // For any other pack, we use the first argument to determine the natural |
| 6153 | // template parameter. |
| 6154 | return needToMangleTemplateParam(Param, Arg: *Arg.pack_begin()); |
| 6155 | } |
| 6156 | |
| 6157 | // For a non-type template parameter, the natural parameter is `T V` (for a |
| 6158 | // prvalue argument) or `T &V` (for a glvalue argument), where `T` is the |
| 6159 | // type of the argument, which we require to exactly match. If the actual |
| 6160 | // parameter has a deduced or instantiation-dependent type, it is not |
| 6161 | // equivalent to the natural parameter. |
| 6162 | if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) |
| 6163 | return NTTP->getType()->isInstantiationDependentType() || |
| 6164 | NTTP->getType()->getContainedDeducedType(); |
| 6165 | |
| 6166 | // For a template template parameter, the template-head might differ from |
| 6167 | // that of the template. |
| 6168 | auto *TTP = cast<TemplateTemplateParmDecl>(Val: Param); |
| 6169 | TemplateName ArgTemplateName = Arg.getAsTemplateOrTemplatePattern(); |
| 6170 | assert(!ArgTemplateName.getTemplateDeclAndDefaultArgs().second && |
| 6171 | "A DeducedTemplateName shouldn't escape partial ordering" ); |
| 6172 | const TemplateDecl *ArgTemplate = |
| 6173 | ArgTemplateName.getAsTemplateDecl(/*IgnoreDeduced=*/true); |
| 6174 | if (!ArgTemplate) |
| 6175 | return true; |
| 6176 | |
| 6177 | // Mangle the template parameter list of the parameter and argument to see |
| 6178 | // if they are the same. We can't use Profile for this, because it can't |
| 6179 | // model the depth difference between parameter and argument and might not |
| 6180 | // necessarily have the same definition of "identical" that we use here -- |
| 6181 | // that is, same mangling. |
| 6182 | auto MangleTemplateParamListToString = |
| 6183 | [&](SmallVectorImpl<char> &Buffer, const TemplateParameterList *Params, |
| 6184 | unsigned DepthOffset) { |
| 6185 | llvm::raw_svector_ostream Stream(Buffer); |
| 6186 | CXXNameMangler(Mangler.Context, Stream, |
| 6187 | WithTemplateDepthOffset{.Offset: DepthOffset}) |
| 6188 | .mangleTemplateParameterList(Params); |
| 6189 | }; |
| 6190 | llvm::SmallString<128> ParamTemplateHead, ArgTemplateHead; |
| 6191 | MangleTemplateParamListToString(ParamTemplateHead, |
| 6192 | TTP->getTemplateParameters(), 0); |
| 6193 | // Add the depth of the parameter's template parameter list to all |
| 6194 | // parameters appearing in the argument to make the indexes line up |
| 6195 | // properly. |
| 6196 | MangleTemplateParamListToString(ArgTemplateHead, |
| 6197 | ArgTemplate->getTemplateParameters(), |
| 6198 | TTP->getTemplateParameters()->getDepth()); |
| 6199 | return ParamTemplateHead != ArgTemplateHead; |
| 6200 | } |
| 6201 | |
| 6202 | /// Determine information about how this template argument should be mangled. |
| 6203 | /// This should be called exactly once for each parameter / argument pair, in |
| 6204 | /// order. |
| 6205 | Info getArgInfo(unsigned ParamIdx, const TemplateArgument &Arg) { |
| 6206 | // We need correct types when the template-name is unresolved or when it |
| 6207 | // names a template that is able to be overloaded. |
| 6208 | if (!ResolvedTemplate || SeenPackExpansionIntoNonPack) |
| 6209 | return {.NeedExactType: true, .TemplateParameterToMangle: nullptr}; |
| 6210 | |
| 6211 | // Move to the next parameter. |
| 6212 | const NamedDecl *Param = UnresolvedExpandedPack; |
| 6213 | if (!Param) { |
| 6214 | assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() && |
| 6215 | "no parameter for argument" ); |
| 6216 | Param = ResolvedTemplate->getTemplateParameters()->getParam(Idx: ParamIdx); |
| 6217 | |
| 6218 | // If we reach a parameter pack whose argument isn't in pack form, that |
| 6219 | // means Sema couldn't or didn't figure out which arguments belonged to |
| 6220 | // it, because it contains a pack expansion or because Sema bailed out of |
| 6221 | // computing parameter / argument correspondence before this point. Track |
| 6222 | // the pack as the corresponding parameter for all further template |
| 6223 | // arguments until we hit a pack expansion, at which point we don't know |
| 6224 | // the correspondence between parameters and arguments at all. |
| 6225 | if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) { |
| 6226 | UnresolvedExpandedPack = Param; |
| 6227 | } |
| 6228 | } |
| 6229 | |
| 6230 | // If we encounter a pack argument that is expanded into a non-pack |
| 6231 | // parameter, we can no longer track parameter / argument correspondence, |
| 6232 | // and need to use exact types from this point onwards. |
| 6233 | if (Arg.isPackExpansion() && |
| 6234 | (!Param->isParameterPack() || UnresolvedExpandedPack)) { |
| 6235 | SeenPackExpansionIntoNonPack = true; |
| 6236 | return {.NeedExactType: true, .TemplateParameterToMangle: nullptr}; |
| 6237 | } |
| 6238 | |
| 6239 | // We need exact types for arguments of a template that might be overloaded |
| 6240 | // on template parameter type. |
| 6241 | if (isOverloadable()) |
| 6242 | return {.NeedExactType: true, .TemplateParameterToMangle: needToMangleTemplateParam(Param, Arg) ? Param : nullptr}; |
| 6243 | |
| 6244 | // Otherwise, we only need a correct type if the parameter has a deduced |
| 6245 | // type. |
| 6246 | // |
| 6247 | // Note: for an expanded parameter pack, getType() returns the type prior |
| 6248 | // to expansion. We could ask for the expanded type with getExpansionType(), |
| 6249 | // but it doesn't matter because substitution and expansion don't affect |
| 6250 | // whether a deduced type appears in the type. |
| 6251 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Param); |
| 6252 | bool NeedExactType = NTTP && NTTP->getType()->getContainedDeducedType(); |
| 6253 | return {.NeedExactType: NeedExactType, .TemplateParameterToMangle: nullptr}; |
| 6254 | } |
| 6255 | |
| 6256 | /// Determine if we should mangle a requires-clause after the template |
| 6257 | /// argument list. If so, returns the expression to mangle. |
| 6258 | const Expr *getTrailingRequiresClauseToMangle() { |
| 6259 | if (!isOverloadable()) |
| 6260 | return nullptr; |
| 6261 | return ResolvedTemplate->getTemplateParameters()->getRequiresClause(); |
| 6262 | } |
| 6263 | }; |
| 6264 | |
| 6265 | void CXXNameMangler::mangleTemplateArgs(TemplateName TN, |
| 6266 | const TemplateArgumentLoc *TemplateArgs, |
| 6267 | unsigned NumTemplateArgs) { |
| 6268 | // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E |
| 6269 | Out << 'I'; |
| 6270 | TemplateArgManglingInfo Info(*this, TN); |
| 6271 | for (unsigned i = 0; i != NumTemplateArgs; ++i) { |
| 6272 | mangleTemplateArg(Info, Index: i, A: TemplateArgs[i].getArgument()); |
| 6273 | } |
| 6274 | mangleRequiresClause(RequiresClause: Info.getTrailingRequiresClauseToMangle()); |
| 6275 | Out << 'E'; |
| 6276 | } |
| 6277 | |
| 6278 | void CXXNameMangler::mangleTemplateArgs(TemplateName TN, |
| 6279 | const TemplateArgumentList &AL) { |
| 6280 | // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E |
| 6281 | Out << 'I'; |
| 6282 | TemplateArgManglingInfo Info(*this, TN); |
| 6283 | for (unsigned i = 0, e = AL.size(); i != e; ++i) { |
| 6284 | mangleTemplateArg(Info, Index: i, A: AL[i]); |
| 6285 | } |
| 6286 | mangleRequiresClause(RequiresClause: Info.getTrailingRequiresClauseToMangle()); |
| 6287 | Out << 'E'; |
| 6288 | } |
| 6289 | |
| 6290 | void CXXNameMangler::mangleTemplateArgs(TemplateName TN, |
| 6291 | ArrayRef<TemplateArgument> Args) { |
| 6292 | // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E |
| 6293 | Out << 'I'; |
| 6294 | TemplateArgManglingInfo Info(*this, TN); |
| 6295 | for (unsigned i = 0; i != Args.size(); ++i) { |
| 6296 | mangleTemplateArg(Info, Index: i, A: Args[i]); |
| 6297 | } |
| 6298 | mangleRequiresClause(RequiresClause: Info.getTrailingRequiresClauseToMangle()); |
| 6299 | Out << 'E'; |
| 6300 | } |
| 6301 | |
| 6302 | void CXXNameMangler::mangleTemplateArg(TemplateArgManglingInfo &Info, |
| 6303 | unsigned Index, TemplateArgument A) { |
| 6304 | TemplateArgManglingInfo::Info ArgInfo = Info.getArgInfo(ParamIdx: Index, Arg: A); |
| 6305 | |
| 6306 | // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
| 6307 | if (ArgInfo.TemplateParameterToMangle && |
| 6308 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver17)) { |
| 6309 | // The template parameter is mangled if the mangling would otherwise be |
| 6310 | // ambiguous. |
| 6311 | // |
| 6312 | // <template-arg> ::= <template-param-decl> <template-arg> |
| 6313 | // |
| 6314 | // Clang 17 and before did not do this. |
| 6315 | mangleTemplateParamDecl(Decl: ArgInfo.TemplateParameterToMangle); |
| 6316 | } |
| 6317 | |
| 6318 | mangleTemplateArg(A, NeedExactType: ArgInfo.NeedExactType); |
| 6319 | } |
| 6320 | |
| 6321 | void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) { |
| 6322 | // <template-arg> ::= <type> # type or template |
| 6323 | // ::= X <expression> E # expression |
| 6324 | // ::= <expr-primary> # simple expressions |
| 6325 | // ::= J <template-arg>* E # argument pack |
| 6326 | if (!A.isInstantiationDependent() || A.isDependent()) |
| 6327 | A = Context.getASTContext().getCanonicalTemplateArgument(Arg: A); |
| 6328 | |
| 6329 | switch (A.getKind()) { |
| 6330 | case TemplateArgument::Null: |
| 6331 | llvm_unreachable("Cannot mangle NULL template argument" ); |
| 6332 | |
| 6333 | case TemplateArgument::Type: |
| 6334 | mangleType(T: A.getAsType()); |
| 6335 | break; |
| 6336 | case TemplateArgument::Template: |
| 6337 | // This is mangled as <type>. |
| 6338 | mangleType(TN: A.getAsTemplate()); |
| 6339 | break; |
| 6340 | case TemplateArgument::TemplateExpansion: |
| 6341 | // <type> ::= Dp <type> # pack expansion (C++0x) |
| 6342 | Out << "Dp" ; |
| 6343 | mangleType(TN: A.getAsTemplateOrTemplatePattern()); |
| 6344 | break; |
| 6345 | case TemplateArgument::Expression: |
| 6346 | mangleTemplateArgExpr(E: A.getAsExpr()); |
| 6347 | break; |
| 6348 | case TemplateArgument::Integral: |
| 6349 | mangleIntegerLiteral(T: A.getIntegralType(), Value: A.getAsIntegral()); |
| 6350 | break; |
| 6351 | case TemplateArgument::Declaration: { |
| 6352 | // <expr-primary> ::= L <mangled-name> E # external name |
| 6353 | ValueDecl *D = A.getAsDecl(); |
| 6354 | |
| 6355 | // Template parameter objects are modeled by reproducing a source form |
| 6356 | // produced as if by aggregate initialization. |
| 6357 | if (A.getParamTypeForDecl()->isRecordType()) { |
| 6358 | auto *TPO = cast<TemplateParamObjectDecl>(Val: D); |
| 6359 | mangleValueInTemplateArg(T: TPO->getType().getUnqualifiedType(), |
| 6360 | V: TPO->getValue(), /*TopLevel=*/true, |
| 6361 | NeedExactType); |
| 6362 | break; |
| 6363 | } |
| 6364 | |
| 6365 | ASTContext &Ctx = Context.getASTContext(); |
| 6366 | APValue Value; |
| 6367 | if (D->isCXXInstanceMember()) |
| 6368 | // Simple pointer-to-member with no conversion. |
| 6369 | Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{}); |
| 6370 | else if (D->getType()->isArrayType() && |
| 6371 | Ctx.hasSimilarType(T1: Ctx.getDecayedType(T: D->getType()), |
| 6372 | T2: A.getParamTypeForDecl()) && |
| 6373 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) |
| 6374 | // Build a value corresponding to this implicit array-to-pointer decay. |
| 6375 | Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), |
| 6376 | {APValue::LValuePathEntry::ArrayIndex(Index: 0)}, |
| 6377 | /*OnePastTheEnd=*/false); |
| 6378 | else |
| 6379 | // Regular pointer or reference to a declaration. |
| 6380 | Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), |
| 6381 | ArrayRef<APValue::LValuePathEntry>(), |
| 6382 | /*OnePastTheEnd=*/false); |
| 6383 | mangleValueInTemplateArg(T: A.getParamTypeForDecl(), V: Value, /*TopLevel=*/true, |
| 6384 | NeedExactType); |
| 6385 | break; |
| 6386 | } |
| 6387 | case TemplateArgument::NullPtr: { |
| 6388 | mangleNullPointer(T: A.getNullPtrType()); |
| 6389 | break; |
| 6390 | } |
| 6391 | case TemplateArgument::StructuralValue: |
| 6392 | mangleValueInTemplateArg(T: A.getStructuralValueType(), |
| 6393 | V: A.getAsStructuralValue(), |
| 6394 | /*TopLevel=*/true, NeedExactType); |
| 6395 | break; |
| 6396 | case TemplateArgument::Pack: { |
| 6397 | // <template-arg> ::= J <template-arg>* E |
| 6398 | Out << 'J'; |
| 6399 | for (const auto &P : A.pack_elements()) |
| 6400 | mangleTemplateArg(A: P, NeedExactType); |
| 6401 | Out << 'E'; |
| 6402 | } |
| 6403 | } |
| 6404 | } |
| 6405 | |
| 6406 | void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) { |
| 6407 | if (!isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
| 6408 | mangleExpression(E, Arity: UnknownArity, /*AsTemplateArg=*/true); |
| 6409 | return; |
| 6410 | } |
| 6411 | |
| 6412 | // Prior to Clang 12, we didn't omit the X .. E around <expr-primary> |
| 6413 | // correctly in cases where the template argument was |
| 6414 | // constructed from an expression rather than an already-evaluated |
| 6415 | // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of |
| 6416 | // 'Li0E'. |
| 6417 | // |
| 6418 | // We did special-case DeclRefExpr to attempt to DTRT for that one |
| 6419 | // expression-kind, but while doing so, unfortunately handled ParmVarDecl |
| 6420 | // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of |
| 6421 | // the proper 'Xfp_E'. |
| 6422 | E = E->IgnoreParenImpCasts(); |
| 6423 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) { |
| 6424 | const ValueDecl *D = DRE->getDecl(); |
| 6425 | if (isa<VarDecl>(Val: D) || isa<FunctionDecl>(Val: D)) { |
| 6426 | Out << 'L'; |
| 6427 | mangle(GD: D); |
| 6428 | Out << 'E'; |
| 6429 | return; |
| 6430 | } |
| 6431 | } |
| 6432 | Out << 'X'; |
| 6433 | mangleExpression(E); |
| 6434 | Out << 'E'; |
| 6435 | } |
| 6436 | |
| 6437 | /// Determine whether a given value is equivalent to zero-initialization for |
| 6438 | /// the purpose of discarding a trailing portion of a 'tl' mangling. |
| 6439 | /// |
| 6440 | /// Note that this is not in general equivalent to determining whether the |
| 6441 | /// value has an all-zeroes bit pattern. |
| 6442 | static bool isZeroInitialized(QualType T, const APValue &V) { |
| 6443 | // FIXME: mangleValueInTemplateArg has quadratic time complexity in |
| 6444 | // pathological cases due to using this, but it's a little awkward |
| 6445 | // to do this in linear time in general. |
| 6446 | switch (V.getKind()) { |
| 6447 | case APValue::None: |
| 6448 | case APValue::Indeterminate: |
| 6449 | case APValue::AddrLabelDiff: |
| 6450 | return false; |
| 6451 | |
| 6452 | case APValue::Struct: { |
| 6453 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
| 6454 | assert(RD && "unexpected type for record value" ); |
| 6455 | unsigned I = 0; |
| 6456 | for (const CXXBaseSpecifier &BS : RD->bases()) { |
| 6457 | if (!isZeroInitialized(T: BS.getType(), V: V.getStructBase(i: I))) |
| 6458 | return false; |
| 6459 | ++I; |
| 6460 | } |
| 6461 | I = 0; |
| 6462 | for (const FieldDecl *FD : RD->fields()) { |
| 6463 | if (!FD->isUnnamedBitField() && |
| 6464 | !isZeroInitialized(T: FD->getType(), V: V.getStructField(i: I))) |
| 6465 | return false; |
| 6466 | ++I; |
| 6467 | } |
| 6468 | return true; |
| 6469 | } |
| 6470 | |
| 6471 | case APValue::Union: { |
| 6472 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
| 6473 | assert(RD && "unexpected type for union value" ); |
| 6474 | // Zero-initialization zeroes the first non-unnamed-bitfield field, if any. |
| 6475 | for (const FieldDecl *FD : RD->fields()) { |
| 6476 | if (!FD->isUnnamedBitField()) |
| 6477 | return V.getUnionField() && declaresSameEntity(D1: FD, D2: V.getUnionField()) && |
| 6478 | isZeroInitialized(T: FD->getType(), V: V.getUnionValue()); |
| 6479 | } |
| 6480 | // If there are no fields (other than unnamed bitfields), the value is |
| 6481 | // necessarily zero-initialized. |
| 6482 | return true; |
| 6483 | } |
| 6484 | |
| 6485 | case APValue::Array: { |
| 6486 | QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); |
| 6487 | for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I) |
| 6488 | if (!isZeroInitialized(T: ElemT, V: V.getArrayInitializedElt(I))) |
| 6489 | return false; |
| 6490 | return !V.hasArrayFiller() || isZeroInitialized(T: ElemT, V: V.getArrayFiller()); |
| 6491 | } |
| 6492 | |
| 6493 | case APValue::Vector: { |
| 6494 | const VectorType *VT = T->castAs<VectorType>(); |
| 6495 | for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) |
| 6496 | if (!isZeroInitialized(T: VT->getElementType(), V: V.getVectorElt(I))) |
| 6497 | return false; |
| 6498 | return true; |
| 6499 | } |
| 6500 | |
| 6501 | case APValue::Int: |
| 6502 | return !V.getInt(); |
| 6503 | |
| 6504 | case APValue::Float: |
| 6505 | return V.getFloat().isPosZero(); |
| 6506 | |
| 6507 | case APValue::FixedPoint: |
| 6508 | return !V.getFixedPoint().getValue(); |
| 6509 | |
| 6510 | case APValue::ComplexFloat: |
| 6511 | return V.getComplexFloatReal().isPosZero() && |
| 6512 | V.getComplexFloatImag().isPosZero(); |
| 6513 | |
| 6514 | case APValue::ComplexInt: |
| 6515 | return !V.getComplexIntReal() && !V.getComplexIntImag(); |
| 6516 | |
| 6517 | case APValue::LValue: |
| 6518 | return V.isNullPointer(); |
| 6519 | |
| 6520 | case APValue::MemberPointer: |
| 6521 | return !V.getMemberPointerDecl(); |
| 6522 | } |
| 6523 | |
| 6524 | llvm_unreachable("Unhandled APValue::ValueKind enum" ); |
| 6525 | } |
| 6526 | |
| 6527 | static QualType getLValueType(ASTContext &Ctx, const APValue &LV) { |
| 6528 | QualType T = LV.getLValueBase().getType(); |
| 6529 | for (APValue::LValuePathEntry E : LV.getLValuePath()) { |
| 6530 | if (const ArrayType *AT = Ctx.getAsArrayType(T)) |
| 6531 | T = AT->getElementType(); |
| 6532 | else if (const FieldDecl *FD = |
| 6533 | dyn_cast<FieldDecl>(Val: E.getAsBaseOrMember().getPointer())) |
| 6534 | T = FD->getType(); |
| 6535 | else |
| 6536 | T = Ctx.getRecordType( |
| 6537 | Decl: cast<CXXRecordDecl>(Val: E.getAsBaseOrMember().getPointer())); |
| 6538 | } |
| 6539 | return T; |
| 6540 | } |
| 6541 | |
| 6542 | static IdentifierInfo *getUnionInitName(SourceLocation UnionLoc, |
| 6543 | DiagnosticsEngine &Diags, |
| 6544 | const FieldDecl *FD) { |
| 6545 | // According to: |
| 6546 | // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling.anonymous |
| 6547 | // For the purposes of mangling, the name of an anonymous union is considered |
| 6548 | // to be the name of the first named data member found by a pre-order, |
| 6549 | // depth-first, declaration-order walk of the data members of the anonymous |
| 6550 | // union. |
| 6551 | |
| 6552 | if (FD->getIdentifier()) |
| 6553 | return FD->getIdentifier(); |
| 6554 | |
| 6555 | // The only cases where the identifer of a FieldDecl would be blank is if the |
| 6556 | // field represents an anonymous record type or if it is an unnamed bitfield. |
| 6557 | // There is no type to descend into in the case of a bitfield, so we can just |
| 6558 | // return nullptr in that case. |
| 6559 | if (FD->isBitField()) |
| 6560 | return nullptr; |
| 6561 | const CXXRecordDecl *RD = FD->getType()->getAsCXXRecordDecl(); |
| 6562 | |
| 6563 | // Consider only the fields in declaration order, searched depth-first. We |
| 6564 | // don't care about the active member of the union, as all we are doing is |
| 6565 | // looking for a valid name. We also don't check bases, due to guidance from |
| 6566 | // the Itanium ABI folks. |
| 6567 | for (const FieldDecl *RDField : RD->fields()) { |
| 6568 | if (IdentifierInfo *II = getUnionInitName(UnionLoc, Diags, FD: RDField)) |
| 6569 | return II; |
| 6570 | } |
| 6571 | |
| 6572 | // According to the Itanium ABI: If there is no such data member (i.e., if all |
| 6573 | // of the data members in the union are unnamed), then there is no way for a |
| 6574 | // program to refer to the anonymous union, and there is therefore no need to |
| 6575 | // mangle its name. However, we should diagnose this anyway. |
| 6576 | unsigned DiagID = Diags.getCustomDiagID( |
| 6577 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle this unnamed union NTTP yet" ); |
| 6578 | Diags.Report(Loc: UnionLoc, DiagID); |
| 6579 | |
| 6580 | return nullptr; |
| 6581 | } |
| 6582 | |
| 6583 | void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V, |
| 6584 | bool TopLevel, |
| 6585 | bool NeedExactType) { |
| 6586 | // Ignore all top-level cv-qualifiers, to match GCC. |
| 6587 | Qualifiers Quals; |
| 6588 | T = getASTContext().getUnqualifiedArrayType(T, Quals); |
| 6589 | |
| 6590 | // A top-level expression that's not a primary expression is wrapped in X...E. |
| 6591 | bool IsPrimaryExpr = true; |
| 6592 | auto NotPrimaryExpr = [&] { |
| 6593 | if (TopLevel && IsPrimaryExpr) |
| 6594 | Out << 'X'; |
| 6595 | IsPrimaryExpr = false; |
| 6596 | }; |
| 6597 | |
| 6598 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. |
| 6599 | switch (V.getKind()) { |
| 6600 | case APValue::None: |
| 6601 | case APValue::Indeterminate: |
| 6602 | Out << 'L'; |
| 6603 | mangleType(T); |
| 6604 | Out << 'E'; |
| 6605 | break; |
| 6606 | |
| 6607 | case APValue::AddrLabelDiff: |
| 6608 | llvm_unreachable("unexpected value kind in template argument" ); |
| 6609 | |
| 6610 | case APValue::Struct: { |
| 6611 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
| 6612 | assert(RD && "unexpected type for record value" ); |
| 6613 | |
| 6614 | // Drop trailing zero-initialized elements. |
| 6615 | llvm::SmallVector<const FieldDecl *, 16> Fields(RD->fields()); |
| 6616 | while ( |
| 6617 | !Fields.empty() && |
| 6618 | (Fields.back()->isUnnamedBitField() || |
| 6619 | isZeroInitialized(T: Fields.back()->getType(), |
| 6620 | V: V.getStructField(i: Fields.back()->getFieldIndex())))) { |
| 6621 | Fields.pop_back(); |
| 6622 | } |
| 6623 | ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end()); |
| 6624 | if (Fields.empty()) { |
| 6625 | while (!Bases.empty() && |
| 6626 | isZeroInitialized(T: Bases.back().getType(), |
| 6627 | V: V.getStructBase(i: Bases.size() - 1))) |
| 6628 | Bases = Bases.drop_back(); |
| 6629 | } |
| 6630 | |
| 6631 | // <expression> ::= tl <type> <braced-expression>* E |
| 6632 | NotPrimaryExpr(); |
| 6633 | Out << "tl" ; |
| 6634 | mangleType(T); |
| 6635 | for (unsigned I = 0, N = Bases.size(); I != N; ++I) |
| 6636 | mangleValueInTemplateArg(T: Bases[I].getType(), V: V.getStructBase(i: I), TopLevel: false); |
| 6637 | for (unsigned I = 0, N = Fields.size(); I != N; ++I) { |
| 6638 | if (Fields[I]->isUnnamedBitField()) |
| 6639 | continue; |
| 6640 | mangleValueInTemplateArg(T: Fields[I]->getType(), |
| 6641 | V: V.getStructField(i: Fields[I]->getFieldIndex()), |
| 6642 | TopLevel: false); |
| 6643 | } |
| 6644 | Out << 'E'; |
| 6645 | break; |
| 6646 | } |
| 6647 | |
| 6648 | case APValue::Union: { |
| 6649 | assert(T->getAsCXXRecordDecl() && "unexpected type for union value" ); |
| 6650 | const FieldDecl *FD = V.getUnionField(); |
| 6651 | |
| 6652 | if (!FD) { |
| 6653 | Out << 'L'; |
| 6654 | mangleType(T); |
| 6655 | Out << 'E'; |
| 6656 | break; |
| 6657 | } |
| 6658 | |
| 6659 | // <braced-expression> ::= di <field source-name> <braced-expression> |
| 6660 | NotPrimaryExpr(); |
| 6661 | Out << "tl" ; |
| 6662 | mangleType(T); |
| 6663 | if (!isZeroInitialized(T, V)) { |
| 6664 | Out << "di" ; |
| 6665 | IdentifierInfo *II = (getUnionInitName( |
| 6666 | UnionLoc: T->getAsCXXRecordDecl()->getLocation(), Diags&: Context.getDiags(), FD)); |
| 6667 | if (II) |
| 6668 | mangleSourceName(II); |
| 6669 | mangleValueInTemplateArg(T: FD->getType(), V: V.getUnionValue(), TopLevel: false); |
| 6670 | } |
| 6671 | Out << 'E'; |
| 6672 | break; |
| 6673 | } |
| 6674 | |
| 6675 | case APValue::Array: { |
| 6676 | QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); |
| 6677 | |
| 6678 | NotPrimaryExpr(); |
| 6679 | Out << "tl" ; |
| 6680 | mangleType(T); |
| 6681 | |
| 6682 | // Drop trailing zero-initialized elements. |
| 6683 | unsigned N = V.getArraySize(); |
| 6684 | if (!V.hasArrayFiller() || isZeroInitialized(T: ElemT, V: V.getArrayFiller())) { |
| 6685 | N = V.getArrayInitializedElts(); |
| 6686 | while (N && isZeroInitialized(T: ElemT, V: V.getArrayInitializedElt(I: N - 1))) |
| 6687 | --N; |
| 6688 | } |
| 6689 | |
| 6690 | for (unsigned I = 0; I != N; ++I) { |
| 6691 | const APValue &Elem = I < V.getArrayInitializedElts() |
| 6692 | ? V.getArrayInitializedElt(I) |
| 6693 | : V.getArrayFiller(); |
| 6694 | mangleValueInTemplateArg(T: ElemT, V: Elem, TopLevel: false); |
| 6695 | } |
| 6696 | Out << 'E'; |
| 6697 | break; |
| 6698 | } |
| 6699 | |
| 6700 | case APValue::Vector: { |
| 6701 | const VectorType *VT = T->castAs<VectorType>(); |
| 6702 | |
| 6703 | NotPrimaryExpr(); |
| 6704 | Out << "tl" ; |
| 6705 | mangleType(T); |
| 6706 | unsigned N = V.getVectorLength(); |
| 6707 | while (N && isZeroInitialized(T: VT->getElementType(), V: V.getVectorElt(I: N - 1))) |
| 6708 | --N; |
| 6709 | for (unsigned I = 0; I != N; ++I) |
| 6710 | mangleValueInTemplateArg(T: VT->getElementType(), V: V.getVectorElt(I), TopLevel: false); |
| 6711 | Out << 'E'; |
| 6712 | break; |
| 6713 | } |
| 6714 | |
| 6715 | case APValue::Int: |
| 6716 | mangleIntegerLiteral(T, Value: V.getInt()); |
| 6717 | break; |
| 6718 | |
| 6719 | case APValue::Float: |
| 6720 | mangleFloatLiteral(T, V: V.getFloat()); |
| 6721 | break; |
| 6722 | |
| 6723 | case APValue::FixedPoint: |
| 6724 | mangleFixedPointLiteral(); |
| 6725 | break; |
| 6726 | |
| 6727 | case APValue::ComplexFloat: { |
| 6728 | const ComplexType *CT = T->castAs<ComplexType>(); |
| 6729 | NotPrimaryExpr(); |
| 6730 | Out << "tl" ; |
| 6731 | mangleType(T); |
| 6732 | if (!V.getComplexFloatReal().isPosZero() || |
| 6733 | !V.getComplexFloatImag().isPosZero()) |
| 6734 | mangleFloatLiteral(T: CT->getElementType(), V: V.getComplexFloatReal()); |
| 6735 | if (!V.getComplexFloatImag().isPosZero()) |
| 6736 | mangleFloatLiteral(T: CT->getElementType(), V: V.getComplexFloatImag()); |
| 6737 | Out << 'E'; |
| 6738 | break; |
| 6739 | } |
| 6740 | |
| 6741 | case APValue::ComplexInt: { |
| 6742 | const ComplexType *CT = T->castAs<ComplexType>(); |
| 6743 | NotPrimaryExpr(); |
| 6744 | Out << "tl" ; |
| 6745 | mangleType(T); |
| 6746 | if (V.getComplexIntReal().getBoolValue() || |
| 6747 | V.getComplexIntImag().getBoolValue()) |
| 6748 | mangleIntegerLiteral(T: CT->getElementType(), Value: V.getComplexIntReal()); |
| 6749 | if (V.getComplexIntImag().getBoolValue()) |
| 6750 | mangleIntegerLiteral(T: CT->getElementType(), Value: V.getComplexIntImag()); |
| 6751 | Out << 'E'; |
| 6752 | break; |
| 6753 | } |
| 6754 | |
| 6755 | case APValue::LValue: { |
| 6756 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
| 6757 | assert((T->isPointerOrReferenceType()) && |
| 6758 | "unexpected type for LValue template arg" ); |
| 6759 | |
| 6760 | if (V.isNullPointer()) { |
| 6761 | mangleNullPointer(T); |
| 6762 | break; |
| 6763 | } |
| 6764 | |
| 6765 | APValue::LValueBase B = V.getLValueBase(); |
| 6766 | if (!B) { |
| 6767 | // Non-standard mangling for integer cast to a pointer; this can only |
| 6768 | // occur as an extension. |
| 6769 | CharUnits Offset = V.getLValueOffset(); |
| 6770 | if (Offset.isZero()) { |
| 6771 | // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as |
| 6772 | // a cast, because L <type> 0 E means something else. |
| 6773 | NotPrimaryExpr(); |
| 6774 | Out << "rc" ; |
| 6775 | mangleType(T); |
| 6776 | Out << "Li0E" ; |
| 6777 | if (TopLevel) |
| 6778 | Out << 'E'; |
| 6779 | } else { |
| 6780 | Out << "L" ; |
| 6781 | mangleType(T); |
| 6782 | Out << Offset.getQuantity() << 'E'; |
| 6783 | } |
| 6784 | break; |
| 6785 | } |
| 6786 | |
| 6787 | ASTContext &Ctx = Context.getASTContext(); |
| 6788 | |
| 6789 | enum { Base, Offset, Path } Kind; |
| 6790 | if (!V.hasLValuePath()) { |
| 6791 | // Mangle as (T*)((char*)&base + N). |
| 6792 | if (T->isReferenceType()) { |
| 6793 | NotPrimaryExpr(); |
| 6794 | Out << "decvP" ; |
| 6795 | mangleType(T: T->getPointeeType()); |
| 6796 | } else { |
| 6797 | NotPrimaryExpr(); |
| 6798 | Out << "cv" ; |
| 6799 | mangleType(T); |
| 6800 | } |
| 6801 | Out << "plcvPcad" ; |
| 6802 | Kind = Offset; |
| 6803 | } else { |
| 6804 | // Clang 11 and before mangled an array subject to array-to-pointer decay |
| 6805 | // as if it were the declaration itself. |
| 6806 | bool IsArrayToPointerDecayMangledAsDecl = false; |
| 6807 | if (TopLevel && Ctx.getLangOpts().getClangABICompat() <= |
| 6808 | LangOptions::ClangABI::Ver11) { |
| 6809 | QualType BType = B.getType(); |
| 6810 | IsArrayToPointerDecayMangledAsDecl = |
| 6811 | BType->isArrayType() && V.getLValuePath().size() == 1 && |
| 6812 | V.getLValuePath()[0].getAsArrayIndex() == 0 && |
| 6813 | Ctx.hasSimilarType(T1: T, T2: Ctx.getDecayedType(T: BType)); |
| 6814 | } |
| 6815 | |
| 6816 | if ((!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) && |
| 6817 | !IsArrayToPointerDecayMangledAsDecl) { |
| 6818 | NotPrimaryExpr(); |
| 6819 | // A final conversion to the template parameter's type is usually |
| 6820 | // folded into the 'so' mangling, but we can't do that for 'void*' |
| 6821 | // parameters without introducing collisions. |
| 6822 | if (NeedExactType && T->isVoidPointerType()) { |
| 6823 | Out << "cv" ; |
| 6824 | mangleType(T); |
| 6825 | } |
| 6826 | if (T->isPointerType()) |
| 6827 | Out << "ad" ; |
| 6828 | Out << "so" ; |
| 6829 | mangleType(T: T->isVoidPointerType() |
| 6830 | ? getLValueType(Ctx, LV: V).getUnqualifiedType() |
| 6831 | : T->getPointeeType()); |
| 6832 | Kind = Path; |
| 6833 | } else { |
| 6834 | if (NeedExactType && |
| 6835 | !Ctx.hasSameType(T1: T->getPointeeType(), T2: getLValueType(Ctx, LV: V)) && |
| 6836 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
| 6837 | NotPrimaryExpr(); |
| 6838 | Out << "cv" ; |
| 6839 | mangleType(T); |
| 6840 | } |
| 6841 | if (T->isPointerType()) { |
| 6842 | NotPrimaryExpr(); |
| 6843 | Out << "ad" ; |
| 6844 | } |
| 6845 | Kind = Base; |
| 6846 | } |
| 6847 | } |
| 6848 | |
| 6849 | QualType TypeSoFar = B.getType(); |
| 6850 | if (auto *VD = B.dyn_cast<const ValueDecl*>()) { |
| 6851 | Out << 'L'; |
| 6852 | mangle(GD: VD); |
| 6853 | Out << 'E'; |
| 6854 | } else if (auto *E = B.dyn_cast<const Expr*>()) { |
| 6855 | NotPrimaryExpr(); |
| 6856 | mangleExpression(E); |
| 6857 | } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) { |
| 6858 | NotPrimaryExpr(); |
| 6859 | Out << "ti" ; |
| 6860 | mangleType(T: QualType(TI.getType(), 0)); |
| 6861 | } else { |
| 6862 | // We should never see dynamic allocations here. |
| 6863 | llvm_unreachable("unexpected lvalue base kind in template argument" ); |
| 6864 | } |
| 6865 | |
| 6866 | switch (Kind) { |
| 6867 | case Base: |
| 6868 | break; |
| 6869 | |
| 6870 | case Offset: |
| 6871 | Out << 'L'; |
| 6872 | mangleType(T: Ctx.getPointerDiffType()); |
| 6873 | mangleNumber(Number: V.getLValueOffset().getQuantity()); |
| 6874 | Out << 'E'; |
| 6875 | break; |
| 6876 | |
| 6877 | case Path: |
| 6878 | // <expression> ::= so <referent type> <expr> [<offset number>] |
| 6879 | // <union-selector>* [p] E |
| 6880 | if (!V.getLValueOffset().isZero()) |
| 6881 | mangleNumber(Number: V.getLValueOffset().getQuantity()); |
| 6882 | |
| 6883 | // We model a past-the-end array pointer as array indexing with index N, |
| 6884 | // not with the "past the end" flag. Compensate for that. |
| 6885 | bool OnePastTheEnd = V.isLValueOnePastTheEnd(); |
| 6886 | |
| 6887 | for (APValue::LValuePathEntry E : V.getLValuePath()) { |
| 6888 | if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) { |
| 6889 | if (auto *CAT = dyn_cast<ConstantArrayType>(Val: AT)) |
| 6890 | OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex(); |
| 6891 | TypeSoFar = AT->getElementType(); |
| 6892 | } else { |
| 6893 | const Decl *D = E.getAsBaseOrMember().getPointer(); |
| 6894 | if (auto *FD = dyn_cast<FieldDecl>(Val: D)) { |
| 6895 | // <union-selector> ::= _ <number> |
| 6896 | if (FD->getParent()->isUnion()) { |
| 6897 | Out << '_'; |
| 6898 | if (FD->getFieldIndex()) |
| 6899 | Out << (FD->getFieldIndex() - 1); |
| 6900 | } |
| 6901 | TypeSoFar = FD->getType(); |
| 6902 | } else { |
| 6903 | TypeSoFar = Ctx.getRecordType(Decl: cast<CXXRecordDecl>(Val: D)); |
| 6904 | } |
| 6905 | } |
| 6906 | } |
| 6907 | |
| 6908 | if (OnePastTheEnd) |
| 6909 | Out << 'p'; |
| 6910 | Out << 'E'; |
| 6911 | break; |
| 6912 | } |
| 6913 | |
| 6914 | break; |
| 6915 | } |
| 6916 | |
| 6917 | case APValue::MemberPointer: |
| 6918 | // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. |
| 6919 | if (!V.getMemberPointerDecl()) { |
| 6920 | mangleNullPointer(T); |
| 6921 | break; |
| 6922 | } |
| 6923 | |
| 6924 | ASTContext &Ctx = Context.getASTContext(); |
| 6925 | |
| 6926 | NotPrimaryExpr(); |
| 6927 | if (!V.getMemberPointerPath().empty()) { |
| 6928 | Out << "mc" ; |
| 6929 | mangleType(T); |
| 6930 | } else if (NeedExactType && |
| 6931 | !Ctx.hasSameType( |
| 6932 | T1: T->castAs<MemberPointerType>()->getPointeeType(), |
| 6933 | T2: V.getMemberPointerDecl()->getType()) && |
| 6934 | !isCompatibleWith(Ver: LangOptions::ClangABI::Ver11)) { |
| 6935 | Out << "cv" ; |
| 6936 | mangleType(T); |
| 6937 | } |
| 6938 | Out << "adL" ; |
| 6939 | mangle(GD: V.getMemberPointerDecl()); |
| 6940 | Out << 'E'; |
| 6941 | if (!V.getMemberPointerPath().empty()) { |
| 6942 | CharUnits Offset = |
| 6943 | Context.getASTContext().getMemberPointerPathAdjustment(MP: V); |
| 6944 | if (!Offset.isZero()) |
| 6945 | mangleNumber(Number: Offset.getQuantity()); |
| 6946 | Out << 'E'; |
| 6947 | } |
| 6948 | break; |
| 6949 | } |
| 6950 | |
| 6951 | if (TopLevel && !IsPrimaryExpr) |
| 6952 | Out << 'E'; |
| 6953 | } |
| 6954 | |
| 6955 | void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) { |
| 6956 | // <template-param> ::= T_ # first template parameter |
| 6957 | // ::= T <parameter-2 non-negative number> _ |
| 6958 | // ::= TL <L-1 non-negative number> __ |
| 6959 | // ::= TL <L-1 non-negative number> _ |
| 6960 | // <parameter-2 non-negative number> _ |
| 6961 | // |
| 6962 | // The latter two manglings are from a proposal here: |
| 6963 | // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117 |
| 6964 | Out << 'T'; |
| 6965 | Depth += TemplateDepthOffset; |
| 6966 | if (Depth != 0) |
| 6967 | Out << 'L' << (Depth - 1) << '_'; |
| 6968 | if (Index != 0) |
| 6969 | Out << (Index - 1); |
| 6970 | Out << '_'; |
| 6971 | } |
| 6972 | |
| 6973 | void CXXNameMangler::mangleSeqID(unsigned SeqID) { |
| 6974 | if (SeqID == 0) { |
| 6975 | // Nothing. |
| 6976 | } else if (SeqID == 1) { |
| 6977 | Out << '0'; |
| 6978 | } else { |
| 6979 | SeqID--; |
| 6980 | |
| 6981 | // <seq-id> is encoded in base-36, using digits and upper case letters. |
| 6982 | char Buffer[7]; // log(2**32) / log(36) ~= 7 |
| 6983 | MutableArrayRef<char> BufferRef(Buffer); |
| 6984 | MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); |
| 6985 | |
| 6986 | for (; SeqID != 0; SeqID /= 36) { |
| 6987 | unsigned C = SeqID % 36; |
| 6988 | *I++ = (C < 10 ? '0' + C : 'A' + C - 10); |
| 6989 | } |
| 6990 | |
| 6991 | Out.write(Ptr: I.base(), Size: I - BufferRef.rbegin()); |
| 6992 | } |
| 6993 | Out << '_'; |
| 6994 | } |
| 6995 | |
| 6996 | void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { |
| 6997 | bool result = mangleSubstitution(Template: tname); |
| 6998 | assert(result && "no existing substitution for template name" ); |
| 6999 | (void) result; |
| 7000 | } |
| 7001 | |
| 7002 | // <substitution> ::= S <seq-id> _ |
| 7003 | // ::= S_ |
| 7004 | bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { |
| 7005 | // Try one of the standard substitutions first. |
| 7006 | if (mangleStandardSubstitution(ND)) |
| 7007 | return true; |
| 7008 | |
| 7009 | ND = cast<NamedDecl>(Val: ND->getCanonicalDecl()); |
| 7010 | return mangleSubstitution(Ptr: reinterpret_cast<uintptr_t>(ND)); |
| 7011 | } |
| 7012 | |
| 7013 | bool CXXNameMangler::mangleSubstitution(NestedNameSpecifier *NNS) { |
| 7014 | assert(NNS->getKind() == NestedNameSpecifier::Identifier && |
| 7015 | "mangleSubstitution(NestedNameSpecifier *) is only used for " |
| 7016 | "identifier nested name specifiers." ); |
| 7017 | NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS); |
| 7018 | return mangleSubstitution(Ptr: reinterpret_cast<uintptr_t>(NNS)); |
| 7019 | } |
| 7020 | |
| 7021 | /// Determine whether the given type has any qualifiers that are relevant for |
| 7022 | /// substitutions. |
| 7023 | static bool hasMangledSubstitutionQualifiers(QualType T) { |
| 7024 | Qualifiers Qs = T.getQualifiers(); |
| 7025 | return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned(); |
| 7026 | } |
| 7027 | |
| 7028 | bool CXXNameMangler::mangleSubstitution(QualType T) { |
| 7029 | if (!hasMangledSubstitutionQualifiers(T)) { |
| 7030 | if (const RecordType *RT = T->getAs<RecordType>()) |
| 7031 | return mangleSubstitution(ND: RT->getDecl()); |
| 7032 | } |
| 7033 | |
| 7034 | uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); |
| 7035 | |
| 7036 | return mangleSubstitution(Ptr: TypePtr); |
| 7037 | } |
| 7038 | |
| 7039 | bool CXXNameMangler::mangleSubstitution(TemplateName Template) { |
| 7040 | if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
| 7041 | return mangleSubstitution(ND: TD); |
| 7042 | |
| 7043 | Template = Context.getASTContext().getCanonicalTemplateName(Name: Template); |
| 7044 | return mangleSubstitution( |
| 7045 | Ptr: reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); |
| 7046 | } |
| 7047 | |
| 7048 | bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { |
| 7049 | llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Val: Ptr); |
| 7050 | if (I == Substitutions.end()) |
| 7051 | return false; |
| 7052 | |
| 7053 | unsigned SeqID = I->second; |
| 7054 | Out << 'S'; |
| 7055 | mangleSeqID(SeqID); |
| 7056 | |
| 7057 | return true; |
| 7058 | } |
| 7059 | |
| 7060 | /// Returns whether S is a template specialization of std::Name with a single |
| 7061 | /// argument of type A. |
| 7062 | bool CXXNameMangler::isSpecializedAs(QualType S, llvm::StringRef Name, |
| 7063 | QualType A) { |
| 7064 | if (S.isNull()) |
| 7065 | return false; |
| 7066 | |
| 7067 | const RecordType *RT = S->getAs<RecordType>(); |
| 7068 | if (!RT) |
| 7069 | return false; |
| 7070 | |
| 7071 | const ClassTemplateSpecializationDecl *SD = |
| 7072 | dyn_cast<ClassTemplateSpecializationDecl>(Val: RT->getDecl()); |
| 7073 | if (!SD || !SD->getIdentifier()->isStr(Str: Name)) |
| 7074 | return false; |
| 7075 | |
| 7076 | if (!isStdNamespace(DC: Context.getEffectiveDeclContext(D: SD))) |
| 7077 | return false; |
| 7078 | |
| 7079 | const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); |
| 7080 | if (TemplateArgs.size() != 1) |
| 7081 | return false; |
| 7082 | |
| 7083 | if (TemplateArgs[0].getAsType() != A) |
| 7084 | return false; |
| 7085 | |
| 7086 | if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) |
| 7087 | return false; |
| 7088 | |
| 7089 | return true; |
| 7090 | } |
| 7091 | |
| 7092 | /// Returns whether SD is a template specialization std::Name<char, |
| 7093 | /// std::char_traits<char> [, std::allocator<char>]> |
| 7094 | /// HasAllocator controls whether the 3rd template argument is needed. |
| 7095 | bool CXXNameMangler::isStdCharSpecialization( |
| 7096 | const ClassTemplateSpecializationDecl *SD, llvm::StringRef Name, |
| 7097 | bool HasAllocator) { |
| 7098 | if (!SD->getIdentifier()->isStr(Str: Name)) |
| 7099 | return false; |
| 7100 | |
| 7101 | const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); |
| 7102 | if (TemplateArgs.size() != (HasAllocator ? 3 : 2)) |
| 7103 | return false; |
| 7104 | |
| 7105 | QualType A = TemplateArgs[0].getAsType(); |
| 7106 | if (A.isNull()) |
| 7107 | return false; |
| 7108 | // Plain 'char' is named Char_S or Char_U depending on the target ABI. |
| 7109 | if (!A->isSpecificBuiltinType(K: BuiltinType::Char_S) && |
| 7110 | !A->isSpecificBuiltinType(K: BuiltinType::Char_U)) |
| 7111 | return false; |
| 7112 | |
| 7113 | if (!isSpecializedAs(S: TemplateArgs[1].getAsType(), Name: "char_traits" , A)) |
| 7114 | return false; |
| 7115 | |
| 7116 | if (HasAllocator && |
| 7117 | !isSpecializedAs(S: TemplateArgs[2].getAsType(), Name: "allocator" , A)) |
| 7118 | return false; |
| 7119 | |
| 7120 | if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) |
| 7121 | return false; |
| 7122 | |
| 7123 | return true; |
| 7124 | } |
| 7125 | |
| 7126 | bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { |
| 7127 | // <substitution> ::= St # ::std:: |
| 7128 | if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: ND)) { |
| 7129 | if (isStd(NS)) { |
| 7130 | Out << "St" ; |
| 7131 | return true; |
| 7132 | } |
| 7133 | return false; |
| 7134 | } |
| 7135 | |
| 7136 | if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(Val: ND)) { |
| 7137 | if (!isStdNamespace(DC: Context.getEffectiveDeclContext(D: TD))) |
| 7138 | return false; |
| 7139 | |
| 7140 | if (TD->getOwningModuleForLinkage()) |
| 7141 | return false; |
| 7142 | |
| 7143 | // <substitution> ::= Sa # ::std::allocator |
| 7144 | if (TD->getIdentifier()->isStr(Str: "allocator" )) { |
| 7145 | Out << "Sa" ; |
| 7146 | return true; |
| 7147 | } |
| 7148 | |
| 7149 | // <<substitution> ::= Sb # ::std::basic_string |
| 7150 | if (TD->getIdentifier()->isStr(Str: "basic_string" )) { |
| 7151 | Out << "Sb" ; |
| 7152 | return true; |
| 7153 | } |
| 7154 | return false; |
| 7155 | } |
| 7156 | |
| 7157 | if (const ClassTemplateSpecializationDecl *SD = |
| 7158 | dyn_cast<ClassTemplateSpecializationDecl>(Val: ND)) { |
| 7159 | if (!isStdNamespace(DC: Context.getEffectiveDeclContext(D: SD))) |
| 7160 | return false; |
| 7161 | |
| 7162 | if (SD->getSpecializedTemplate()->getOwningModuleForLinkage()) |
| 7163 | return false; |
| 7164 | |
| 7165 | // <substitution> ::= Ss # ::std::basic_string<char, |
| 7166 | // ::std::char_traits<char>, |
| 7167 | // ::std::allocator<char> > |
| 7168 | if (isStdCharSpecialization(SD, Name: "basic_string" , /*HasAllocator=*/true)) { |
| 7169 | Out << "Ss" ; |
| 7170 | return true; |
| 7171 | } |
| 7172 | |
| 7173 | // <substitution> ::= Si # ::std::basic_istream<char, |
| 7174 | // ::std::char_traits<char> > |
| 7175 | if (isStdCharSpecialization(SD, Name: "basic_istream" , /*HasAllocator=*/false)) { |
| 7176 | Out << "Si" ; |
| 7177 | return true; |
| 7178 | } |
| 7179 | |
| 7180 | // <substitution> ::= So # ::std::basic_ostream<char, |
| 7181 | // ::std::char_traits<char> > |
| 7182 | if (isStdCharSpecialization(SD, Name: "basic_ostream" , /*HasAllocator=*/false)) { |
| 7183 | Out << "So" ; |
| 7184 | return true; |
| 7185 | } |
| 7186 | |
| 7187 | // <substitution> ::= Sd # ::std::basic_iostream<char, |
| 7188 | // ::std::char_traits<char> > |
| 7189 | if (isStdCharSpecialization(SD, Name: "basic_iostream" , /*HasAllocator=*/false)) { |
| 7190 | Out << "Sd" ; |
| 7191 | return true; |
| 7192 | } |
| 7193 | return false; |
| 7194 | } |
| 7195 | |
| 7196 | return false; |
| 7197 | } |
| 7198 | |
| 7199 | void CXXNameMangler::addSubstitution(QualType T) { |
| 7200 | if (!hasMangledSubstitutionQualifiers(T)) { |
| 7201 | if (const RecordType *RT = T->getAs<RecordType>()) { |
| 7202 | addSubstitution(ND: RT->getDecl()); |
| 7203 | return; |
| 7204 | } |
| 7205 | } |
| 7206 | |
| 7207 | uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); |
| 7208 | addSubstitution(Ptr: TypePtr); |
| 7209 | } |
| 7210 | |
| 7211 | void CXXNameMangler::addSubstitution(TemplateName Template) { |
| 7212 | if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
| 7213 | return addSubstitution(ND: TD); |
| 7214 | |
| 7215 | Template = Context.getASTContext().getCanonicalTemplateName(Name: Template); |
| 7216 | addSubstitution(Ptr: reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); |
| 7217 | } |
| 7218 | |
| 7219 | void CXXNameMangler::addSubstitution(uintptr_t Ptr) { |
| 7220 | assert(!Substitutions.count(Ptr) && "Substitution already exists!" ); |
| 7221 | Substitutions[Ptr] = SeqID++; |
| 7222 | } |
| 7223 | |
| 7224 | void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) { |
| 7225 | assert(Other->SeqID >= SeqID && "Must be superset of substitutions!" ); |
| 7226 | if (Other->SeqID > SeqID) { |
| 7227 | Substitutions.swap(RHS&: Other->Substitutions); |
| 7228 | SeqID = Other->SeqID; |
| 7229 | } |
| 7230 | } |
| 7231 | |
| 7232 | CXXNameMangler::AbiTagList |
| 7233 | CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) { |
| 7234 | // When derived abi tags are disabled there is no need to make any list. |
| 7235 | if (DisableDerivedAbiTags) |
| 7236 | return AbiTagList(); |
| 7237 | |
| 7238 | llvm::raw_null_ostream NullOutStream; |
| 7239 | CXXNameMangler TrackReturnTypeTags(*this, NullOutStream); |
| 7240 | TrackReturnTypeTags.disableDerivedAbiTags(); |
| 7241 | |
| 7242 | const FunctionProtoType *Proto = |
| 7243 | cast<FunctionProtoType>(Val: FD->getType()->getAs<FunctionType>()); |
| 7244 | FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push(); |
| 7245 | TrackReturnTypeTags.FunctionTypeDepth.enterResultType(); |
| 7246 | TrackReturnTypeTags.mangleType(T: Proto->getReturnType()); |
| 7247 | TrackReturnTypeTags.FunctionTypeDepth.leaveResultType(); |
| 7248 | TrackReturnTypeTags.FunctionTypeDepth.pop(saved); |
| 7249 | |
| 7250 | return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
| 7251 | } |
| 7252 | |
| 7253 | CXXNameMangler::AbiTagList |
| 7254 | CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) { |
| 7255 | // When derived abi tags are disabled there is no need to make any list. |
| 7256 | if (DisableDerivedAbiTags) |
| 7257 | return AbiTagList(); |
| 7258 | |
| 7259 | llvm::raw_null_ostream NullOutStream; |
| 7260 | CXXNameMangler TrackVariableType(*this, NullOutStream); |
| 7261 | TrackVariableType.disableDerivedAbiTags(); |
| 7262 | |
| 7263 | TrackVariableType.mangleType(T: VD->getType()); |
| 7264 | |
| 7265 | return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags(); |
| 7266 | } |
| 7267 | |
| 7268 | bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C, |
| 7269 | const VarDecl *VD) { |
| 7270 | llvm::raw_null_ostream NullOutStream; |
| 7271 | CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true); |
| 7272 | TrackAbiTags.mangle(GD: VD); |
| 7273 | return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size(); |
| 7274 | } |
| 7275 | |
| 7276 | // |
| 7277 | |
| 7278 | /// Mangles the name of the declaration D and emits that name to the given |
| 7279 | /// output stream. |
| 7280 | /// |
| 7281 | /// If the declaration D requires a mangled name, this routine will emit that |
| 7282 | /// mangled name to \p os and return true. Otherwise, \p os will be unchanged |
| 7283 | /// and this routine will return false. In this case, the caller should just |
| 7284 | /// emit the identifier of the declaration (\c D->getIdentifier()) as its |
| 7285 | /// name. |
| 7286 | void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD, |
| 7287 | raw_ostream &Out) { |
| 7288 | const NamedDecl *D = cast<NamedDecl>(Val: GD.getDecl()); |
| 7289 | assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) && |
| 7290 | "Invalid mangleName() call, argument is not a variable or function!" ); |
| 7291 | |
| 7292 | PrettyStackTraceDecl CrashInfo(D, SourceLocation(), |
| 7293 | getASTContext().getSourceManager(), |
| 7294 | "Mangling declaration" ); |
| 7295 | |
| 7296 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: D)) { |
| 7297 | auto Type = GD.getCtorType(); |
| 7298 | CXXNameMangler Mangler(*this, Out, CD, Type); |
| 7299 | return Mangler.mangle(GD: GlobalDecl(CD, Type)); |
| 7300 | } |
| 7301 | |
| 7302 | if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: D)) { |
| 7303 | auto Type = GD.getDtorType(); |
| 7304 | CXXNameMangler Mangler(*this, Out, DD, Type); |
| 7305 | return Mangler.mangle(GD: GlobalDecl(DD, Type)); |
| 7306 | } |
| 7307 | |
| 7308 | CXXNameMangler Mangler(*this, Out, D); |
| 7309 | Mangler.mangle(GD); |
| 7310 | } |
| 7311 | |
| 7312 | void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D, |
| 7313 | raw_ostream &Out) { |
| 7314 | CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat); |
| 7315 | Mangler.mangle(GD: GlobalDecl(D, Ctor_Comdat)); |
| 7316 | } |
| 7317 | |
| 7318 | void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D, |
| 7319 | raw_ostream &Out) { |
| 7320 | CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat); |
| 7321 | Mangler.mangle(GD: GlobalDecl(D, Dtor_Comdat)); |
| 7322 | } |
| 7323 | |
| 7324 | /// Mangles the pointer authentication override attribute for classes |
| 7325 | /// that have explicit overrides for the vtable authentication schema. |
| 7326 | /// |
| 7327 | /// The override is mangled as a parameterized vendor extension as follows |
| 7328 | /// |
| 7329 | /// <type> ::= U "__vtptrauth" I |
| 7330 | /// <key> |
| 7331 | /// <addressDiscriminated> |
| 7332 | /// <extraDiscriminator> |
| 7333 | /// E |
| 7334 | /// |
| 7335 | /// The extra discriminator encodes the explicit value derived from the |
| 7336 | /// override schema, e.g. if the override has specified type based |
| 7337 | /// discrimination the encoded value will be the discriminator derived from the |
| 7338 | /// type name. |
| 7339 | static void mangleOverrideDiscrimination(CXXNameMangler &Mangler, |
| 7340 | ASTContext &Context, |
| 7341 | const ThunkInfo &Thunk) { |
| 7342 | auto &LangOpts = Context.getLangOpts(); |
| 7343 | const CXXRecordDecl *ThisRD = Thunk.ThisType->getPointeeCXXRecordDecl(); |
| 7344 | const CXXRecordDecl *PtrauthClassRD = |
| 7345 | Context.baseForVTableAuthentication(ThisClass: ThisRD); |
| 7346 | unsigned TypedDiscriminator = |
| 7347 | Context.getPointerAuthVTablePointerDiscriminator(RD: ThisRD); |
| 7348 | Mangler.mangleVendorQualifier(name: "__vtptrauth" ); |
| 7349 | auto &ManglerStream = Mangler.getStream(); |
| 7350 | ManglerStream << "I" ; |
| 7351 | if (const auto *ExplicitAuth = |
| 7352 | PtrauthClassRD->getAttr<VTablePointerAuthenticationAttr>()) { |
| 7353 | ManglerStream << "Lj" << ExplicitAuth->getKey(); |
| 7354 | |
| 7355 | if (ExplicitAuth->getAddressDiscrimination() == |
| 7356 | VTablePointerAuthenticationAttr::DefaultAddressDiscrimination) |
| 7357 | ManglerStream << "Lb" << LangOpts.PointerAuthVTPtrAddressDiscrimination; |
| 7358 | else |
| 7359 | ManglerStream << "Lb" |
| 7360 | << (ExplicitAuth->getAddressDiscrimination() == |
| 7361 | VTablePointerAuthenticationAttr::AddressDiscrimination); |
| 7362 | |
| 7363 | switch (ExplicitAuth->getExtraDiscrimination()) { |
| 7364 | case VTablePointerAuthenticationAttr::DefaultExtraDiscrimination: { |
| 7365 | if (LangOpts.PointerAuthVTPtrTypeDiscrimination) |
| 7366 | ManglerStream << "Lj" << TypedDiscriminator; |
| 7367 | else |
| 7368 | ManglerStream << "Lj" << 0; |
| 7369 | break; |
| 7370 | } |
| 7371 | case VTablePointerAuthenticationAttr::TypeDiscrimination: |
| 7372 | ManglerStream << "Lj" << TypedDiscriminator; |
| 7373 | break; |
| 7374 | case VTablePointerAuthenticationAttr::CustomDiscrimination: |
| 7375 | ManglerStream << "Lj" << ExplicitAuth->getCustomDiscriminationValue(); |
| 7376 | break; |
| 7377 | case VTablePointerAuthenticationAttr::NoExtraDiscrimination: |
| 7378 | ManglerStream << "Lj" << 0; |
| 7379 | break; |
| 7380 | } |
| 7381 | } else { |
| 7382 | ManglerStream << "Lj" |
| 7383 | << (unsigned)VTablePointerAuthenticationAttr::DefaultKey; |
| 7384 | ManglerStream << "Lb" << LangOpts.PointerAuthVTPtrAddressDiscrimination; |
| 7385 | if (LangOpts.PointerAuthVTPtrTypeDiscrimination) |
| 7386 | ManglerStream << "Lj" << TypedDiscriminator; |
| 7387 | else |
| 7388 | ManglerStream << "Lj" << 0; |
| 7389 | } |
| 7390 | ManglerStream << "E" ; |
| 7391 | } |
| 7392 | |
| 7393 | void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, |
| 7394 | const ThunkInfo &Thunk, |
| 7395 | bool ElideOverrideInfo, |
| 7396 | raw_ostream &Out) { |
| 7397 | // <special-name> ::= T <call-offset> <base encoding> |
| 7398 | // # base is the nominal target function of thunk |
| 7399 | // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> |
| 7400 | // # base is the nominal target function of thunk |
| 7401 | // # first call-offset is 'this' adjustment |
| 7402 | // # second call-offset is result adjustment |
| 7403 | |
| 7404 | assert(!isa<CXXDestructorDecl>(MD) && |
| 7405 | "Use mangleCXXDtor for destructor decls!" ); |
| 7406 | CXXNameMangler Mangler(*this, Out); |
| 7407 | Mangler.getStream() << "_ZT" ; |
| 7408 | if (!Thunk.Return.isEmpty()) |
| 7409 | Mangler.getStream() << 'c'; |
| 7410 | |
| 7411 | // Mangle the 'this' pointer adjustment. |
| 7412 | Mangler.mangleCallOffset(NonVirtual: Thunk.This.NonVirtual, |
| 7413 | Virtual: Thunk.This.Virtual.Itanium.VCallOffsetOffset); |
| 7414 | |
| 7415 | // Mangle the return pointer adjustment if there is one. |
| 7416 | if (!Thunk.Return.isEmpty()) |
| 7417 | Mangler.mangleCallOffset(NonVirtual: Thunk.Return.NonVirtual, |
| 7418 | Virtual: Thunk.Return.Virtual.Itanium.VBaseOffsetOffset); |
| 7419 | |
| 7420 | Mangler.mangleFunctionEncoding(GD: MD); |
| 7421 | if (!ElideOverrideInfo) |
| 7422 | mangleOverrideDiscrimination(Mangler, Context&: getASTContext(), Thunk); |
| 7423 | } |
| 7424 | |
| 7425 | void ItaniumMangleContextImpl::mangleCXXDtorThunk(const CXXDestructorDecl *DD, |
| 7426 | CXXDtorType Type, |
| 7427 | const ThunkInfo &Thunk, |
| 7428 | bool ElideOverrideInfo, |
| 7429 | raw_ostream &Out) { |
| 7430 | // <special-name> ::= T <call-offset> <base encoding> |
| 7431 | // # base is the nominal target function of thunk |
| 7432 | CXXNameMangler Mangler(*this, Out, DD, Type); |
| 7433 | Mangler.getStream() << "_ZT" ; |
| 7434 | |
| 7435 | auto &ThisAdjustment = Thunk.This; |
| 7436 | // Mangle the 'this' pointer adjustment. |
| 7437 | Mangler.mangleCallOffset(NonVirtual: ThisAdjustment.NonVirtual, |
| 7438 | Virtual: ThisAdjustment.Virtual.Itanium.VCallOffsetOffset); |
| 7439 | |
| 7440 | Mangler.mangleFunctionEncoding(GD: GlobalDecl(DD, Type)); |
| 7441 | if (!ElideOverrideInfo) |
| 7442 | mangleOverrideDiscrimination(Mangler, Context&: getASTContext(), Thunk); |
| 7443 | } |
| 7444 | |
| 7445 | /// Returns the mangled name for a guard variable for the passed in VarDecl. |
| 7446 | void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D, |
| 7447 | raw_ostream &Out) { |
| 7448 | // <special-name> ::= GV <object name> # Guard variable for one-time |
| 7449 | // # initialization |
| 7450 | CXXNameMangler Mangler(*this, Out); |
| 7451 | // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to |
| 7452 | // be a bug that is fixed in trunk. |
| 7453 | Mangler.getStream() << "_ZGV" ; |
| 7454 | Mangler.mangleName(GD: D); |
| 7455 | } |
| 7456 | |
| 7457 | void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD, |
| 7458 | raw_ostream &Out) { |
| 7459 | // These symbols are internal in the Itanium ABI, so the names don't matter. |
| 7460 | // Clang has traditionally used this symbol and allowed LLVM to adjust it to |
| 7461 | // avoid duplicate symbols. |
| 7462 | Out << "__cxx_global_var_init" ; |
| 7463 | } |
| 7464 | |
| 7465 | void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, |
| 7466 | raw_ostream &Out) { |
| 7467 | // Prefix the mangling of D with __dtor_. |
| 7468 | CXXNameMangler Mangler(*this, Out); |
| 7469 | Mangler.getStream() << "__dtor_" ; |
| 7470 | if (shouldMangleDeclName(D)) |
| 7471 | Mangler.mangle(GD: D); |
| 7472 | else |
| 7473 | Mangler.getStream() << D->getName(); |
| 7474 | } |
| 7475 | |
| 7476 | void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D, |
| 7477 | raw_ostream &Out) { |
| 7478 | // Clang generates these internal-linkage functions as part of its |
| 7479 | // implementation of the XL ABI. |
| 7480 | CXXNameMangler Mangler(*this, Out); |
| 7481 | Mangler.getStream() << "__finalize_" ; |
| 7482 | if (shouldMangleDeclName(D)) |
| 7483 | Mangler.mangle(GD: D); |
| 7484 | else |
| 7485 | Mangler.getStream() << D->getName(); |
| 7486 | } |
| 7487 | |
| 7488 | void ItaniumMangleContextImpl::mangleSEHFilterExpression( |
| 7489 | GlobalDecl EnclosingDecl, raw_ostream &Out) { |
| 7490 | CXXNameMangler Mangler(*this, Out); |
| 7491 | Mangler.getStream() << "__filt_" ; |
| 7492 | auto *EnclosingFD = cast<FunctionDecl>(Val: EnclosingDecl.getDecl()); |
| 7493 | if (shouldMangleDeclName(D: EnclosingFD)) |
| 7494 | Mangler.mangle(GD: EnclosingDecl); |
| 7495 | else |
| 7496 | Mangler.getStream() << EnclosingFD->getName(); |
| 7497 | } |
| 7498 | |
| 7499 | void ItaniumMangleContextImpl::mangleSEHFinallyBlock( |
| 7500 | GlobalDecl EnclosingDecl, raw_ostream &Out) { |
| 7501 | CXXNameMangler Mangler(*this, Out); |
| 7502 | Mangler.getStream() << "__fin_" ; |
| 7503 | auto *EnclosingFD = cast<FunctionDecl>(Val: EnclosingDecl.getDecl()); |
| 7504 | if (shouldMangleDeclName(D: EnclosingFD)) |
| 7505 | Mangler.mangle(GD: EnclosingDecl); |
| 7506 | else |
| 7507 | Mangler.getStream() << EnclosingFD->getName(); |
| 7508 | } |
| 7509 | |
| 7510 | void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D, |
| 7511 | raw_ostream &Out) { |
| 7512 | // <special-name> ::= TH <object name> |
| 7513 | CXXNameMangler Mangler(*this, Out); |
| 7514 | Mangler.getStream() << "_ZTH" ; |
| 7515 | Mangler.mangleName(GD: D); |
| 7516 | } |
| 7517 | |
| 7518 | void |
| 7519 | ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D, |
| 7520 | raw_ostream &Out) { |
| 7521 | // <special-name> ::= TW <object name> |
| 7522 | CXXNameMangler Mangler(*this, Out); |
| 7523 | Mangler.getStream() << "_ZTW" ; |
| 7524 | Mangler.mangleName(GD: D); |
| 7525 | } |
| 7526 | |
| 7527 | void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D, |
| 7528 | unsigned ManglingNumber, |
| 7529 | raw_ostream &Out) { |
| 7530 | // We match the GCC mangling here. |
| 7531 | // <special-name> ::= GR <object name> |
| 7532 | CXXNameMangler Mangler(*this, Out); |
| 7533 | Mangler.getStream() << "_ZGR" ; |
| 7534 | Mangler.mangleName(GD: D); |
| 7535 | assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!" ); |
| 7536 | Mangler.mangleSeqID(SeqID: ManglingNumber - 1); |
| 7537 | } |
| 7538 | |
| 7539 | void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD, |
| 7540 | raw_ostream &Out) { |
| 7541 | // <special-name> ::= TV <type> # virtual table |
| 7542 | CXXNameMangler Mangler(*this, Out); |
| 7543 | Mangler.getStream() << "_ZTV" ; |
| 7544 | Mangler.mangleCXXRecordDecl(Record: RD); |
| 7545 | } |
| 7546 | |
| 7547 | void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD, |
| 7548 | raw_ostream &Out) { |
| 7549 | // <special-name> ::= TT <type> # VTT structure |
| 7550 | CXXNameMangler Mangler(*this, Out); |
| 7551 | Mangler.getStream() << "_ZTT" ; |
| 7552 | Mangler.mangleCXXRecordDecl(Record: RD); |
| 7553 | } |
| 7554 | |
| 7555 | void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD, |
| 7556 | int64_t Offset, |
| 7557 | const CXXRecordDecl *Type, |
| 7558 | raw_ostream &Out) { |
| 7559 | // <special-name> ::= TC <type> <offset number> _ <base type> |
| 7560 | CXXNameMangler Mangler(*this, Out); |
| 7561 | Mangler.getStream() << "_ZTC" ; |
| 7562 | // Older versions of clang did not add the record as a substitution candidate |
| 7563 | // here. |
| 7564 | bool SuppressSubstitution = |
| 7565 | getASTContext().getLangOpts().getClangABICompat() <= |
| 7566 | LangOptions::ClangABI::Ver19; |
| 7567 | Mangler.mangleCXXRecordDecl(Record: RD, SuppressSubstitution); |
| 7568 | Mangler.getStream() << Offset; |
| 7569 | Mangler.getStream() << '_'; |
| 7570 | Mangler.mangleCXXRecordDecl(Record: Type); |
| 7571 | } |
| 7572 | |
| 7573 | void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) { |
| 7574 | // <special-name> ::= TI <type> # typeinfo structure |
| 7575 | assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers" ); |
| 7576 | CXXNameMangler Mangler(*this, Out); |
| 7577 | Mangler.getStream() << "_ZTI" ; |
| 7578 | Mangler.mangleType(T: Ty); |
| 7579 | } |
| 7580 | |
| 7581 | void ItaniumMangleContextImpl::mangleCXXRTTIName( |
| 7582 | QualType Ty, raw_ostream &Out, bool NormalizeIntegers = false) { |
| 7583 | // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) |
| 7584 | CXXNameMangler Mangler(*this, Out, NormalizeIntegers); |
| 7585 | Mangler.getStream() << "_ZTS" ; |
| 7586 | Mangler.mangleType(T: Ty); |
| 7587 | } |
| 7588 | |
| 7589 | void ItaniumMangleContextImpl::mangleCanonicalTypeName( |
| 7590 | QualType Ty, raw_ostream &Out, bool NormalizeIntegers = false) { |
| 7591 | mangleCXXRTTIName(Ty, Out, NormalizeIntegers); |
| 7592 | } |
| 7593 | |
| 7594 | void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) { |
| 7595 | llvm_unreachable("Can't mangle string literals" ); |
| 7596 | } |
| 7597 | |
| 7598 | void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda, |
| 7599 | raw_ostream &Out) { |
| 7600 | CXXNameMangler Mangler(*this, Out); |
| 7601 | Mangler.mangleLambdaSig(Lambda); |
| 7602 | } |
| 7603 | |
| 7604 | void ItaniumMangleContextImpl::mangleModuleInitializer(const Module *M, |
| 7605 | raw_ostream &Out) { |
| 7606 | // <special-name> ::= GI <module-name> # module initializer function |
| 7607 | CXXNameMangler Mangler(*this, Out); |
| 7608 | Mangler.getStream() << "_ZGI" ; |
| 7609 | Mangler.mangleModuleNamePrefix(Name: M->getPrimaryModuleInterfaceName()); |
| 7610 | if (M->isModulePartition()) { |
| 7611 | // The partition needs including, as partitions can have them too. |
| 7612 | auto Partition = M->Name.find(c: ':'); |
| 7613 | Mangler.mangleModuleNamePrefix( |
| 7614 | Name: StringRef(&M->Name[Partition + 1], M->Name.size() - Partition - 1), |
| 7615 | /*IsPartition*/ true); |
| 7616 | } |
| 7617 | } |
| 7618 | |
| 7619 | ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context, |
| 7620 | DiagnosticsEngine &Diags, |
| 7621 | bool IsAux) { |
| 7622 | return new ItaniumMangleContextImpl( |
| 7623 | Context, Diags, |
| 7624 | [](ASTContext &, const NamedDecl *) -> UnsignedOrNone { |
| 7625 | return std::nullopt; |
| 7626 | }, |
| 7627 | IsAux); |
| 7628 | } |
| 7629 | |
| 7630 | ItaniumMangleContext * |
| 7631 | ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags, |
| 7632 | DiscriminatorOverrideTy DiscriminatorOverride, |
| 7633 | bool IsAux) { |
| 7634 | return new ItaniumMangleContextImpl(Context, Diags, DiscriminatorOverride, |
| 7635 | IsAux); |
| 7636 | } |
| 7637 | |