1//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/Attr.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/CharUnits.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclOpenMP.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/GlobalDecl.h"
25#include "clang/AST/Mangle.h"
26#include "clang/AST/VTableBuilder.h"
27#include "clang/Basic/ABI.h"
28#include "clang/Basic/DiagnosticOptions.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/Support/CRC.h"
34#include "llvm/Support/MD5.h"
35#include "llvm/Support/StringSaver.h"
36#include "llvm/Support/xxhash.h"
37#include <functional>
38#include <optional>
39
40using namespace clang;
41
42namespace {
43
44// Get GlobalDecl of DeclContext of local entities.
45static GlobalDecl getGlobalDeclAsDeclContext(const DeclContext *DC) {
46 GlobalDecl GD;
47 if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: DC))
48 GD = GlobalDecl(CD, Ctor_Complete);
49 else if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: DC))
50 GD = GlobalDecl(DD, Dtor_Complete);
51 else
52 GD = GlobalDecl(cast<FunctionDecl>(Val: DC));
53 return GD;
54}
55
56struct msvc_hashing_ostream : public llvm::raw_svector_ostream {
57 raw_ostream &OS;
58 llvm::SmallString<64> Buffer;
59
60 msvc_hashing_ostream(raw_ostream &OS)
61 : llvm::raw_svector_ostream(Buffer), OS(OS) {}
62 ~msvc_hashing_ostream() override {
63 StringRef MangledName = str();
64 bool StartsWithEscape = MangledName.starts_with(Prefix: "\01");
65 if (StartsWithEscape)
66 MangledName = MangledName.drop_front(N: 1);
67 if (MangledName.size() < 4096) {
68 OS << str();
69 return;
70 }
71
72 llvm::MD5 Hasher;
73 llvm::MD5::MD5Result Hash;
74 Hasher.update(Str: MangledName);
75 Hasher.final(Result&: Hash);
76
77 SmallString<32> HexString;
78 llvm::MD5::stringifyResult(Result&: Hash, Str&: HexString);
79
80 if (StartsWithEscape)
81 OS << '\01';
82 OS << "??@" << HexString << '@';
83 }
84};
85
86static const DeclContext *
87getLambdaDefaultArgumentDeclContext(const Decl *D) {
88 if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: D))
89 if (RD->isLambda())
90 if (const auto *Parm =
91 dyn_cast_or_null<ParmVarDecl>(Val: RD->getLambdaContextDecl()))
92 return Parm->getDeclContext();
93 return nullptr;
94}
95
96/// Retrieve the declaration context that should be used when mangling
97/// the given declaration.
98static const DeclContext *getEffectiveDeclContext(const Decl *D) {
99 // The ABI assumes that lambda closure types that occur within
100 // default arguments live in the context of the function. However, due to
101 // the way in which Clang parses and creates function declarations, this is
102 // not the case: the lambda closure type ends up living in the context
103 // where the function itself resides, because the function declaration itself
104 // had not yet been created. Fix the context here.
105 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D))
106 return LDADC;
107
108 // Perform the same check for block literals.
109 if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: D)) {
110 if (ParmVarDecl *ContextParam =
111 dyn_cast_or_null<ParmVarDecl>(Val: BD->getBlockManglingContextDecl()))
112 return ContextParam->getDeclContext();
113 }
114
115 const DeclContext *DC = D->getDeclContext();
116 if (isa<CapturedDecl>(Val: DC) || isa<OMPDeclareReductionDecl>(Val: DC) ||
117 isa<OMPDeclareMapperDecl>(Val: DC)) {
118 return getEffectiveDeclContext(D: cast<Decl>(Val: DC));
119 }
120
121 return DC->getRedeclContext();
122}
123
124static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
125 return getEffectiveDeclContext(D: cast<Decl>(Val: DC));
126}
127
128static const FunctionDecl *getStructor(const NamedDecl *ND) {
129 if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: ND))
130 return FTD->getTemplatedDecl()->getCanonicalDecl();
131
132 const auto *FD = cast<FunctionDecl>(Val: ND);
133 if (const auto *FTD = FD->getPrimaryTemplate())
134 return FTD->getTemplatedDecl()->getCanonicalDecl();
135
136 return FD->getCanonicalDecl();
137}
138
139/// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
140/// Microsoft Visual C++ ABI.
141class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
142 typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
143 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
144 llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
145 llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
146 llvm::DenseMap<GlobalDecl, unsigned> SEHFilterIds;
147 llvm::DenseMap<GlobalDecl, unsigned> SEHFinallyIds;
148 SmallString<16> AnonymousNamespaceHash;
149
150public:
151 MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags,
152 bool IsAux = false);
153 bool shouldMangleCXXName(const NamedDecl *D) override;
154 bool shouldMangleStringLiteral(const StringLiteral *SL) override;
155 void mangleCXXName(GlobalDecl GD, raw_ostream &Out) override;
156 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
157 const MethodVFTableLocation &ML,
158 raw_ostream &Out) override;
159 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
160 bool ElideOverrideInfo, raw_ostream &) override;
161 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
162 const ThunkInfo &Thunk, bool ElideOverrideInfo,
163 raw_ostream &) override;
164 void mangleCXXVFTable(const CXXRecordDecl *Derived,
165 ArrayRef<const CXXRecordDecl *> BasePath,
166 raw_ostream &Out) override;
167 void mangleCXXVBTable(const CXXRecordDecl *Derived,
168 ArrayRef<const CXXRecordDecl *> BasePath,
169 raw_ostream &Out) override;
170
171 void mangleCXXVTable(const CXXRecordDecl *, raw_ostream &) override;
172 void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
173 const CXXRecordDecl *DstRD,
174 raw_ostream &Out) override;
175 void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
176 bool IsUnaligned, uint32_t NumEntries,
177 raw_ostream &Out) override;
178 void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
179 raw_ostream &Out) override;
180 void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
181 CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
182 int32_t VBPtrOffset, uint32_t VBIndex,
183 raw_ostream &Out) override;
184 void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
185 void mangleCXXRTTIName(QualType T, raw_ostream &Out,
186 bool NormalizeIntegers) override;
187 void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
188 uint32_t NVOffset, int32_t VBPtrOffset,
189 uint32_t VBTableOffset, uint32_t Flags,
190 raw_ostream &Out) override;
191 void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
192 raw_ostream &Out) override;
193 void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
194 raw_ostream &Out) override;
195 void
196 mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
197 ArrayRef<const CXXRecordDecl *> BasePath,
198 raw_ostream &Out) override;
199 void mangleCanonicalTypeName(QualType T, raw_ostream &,
200 bool NormalizeIntegers) override;
201 void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
202 raw_ostream &) override;
203 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
204 void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
205 raw_ostream &Out) override;
206 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
207 void mangleDynamicAtExitDestructor(const VarDecl *D,
208 raw_ostream &Out) override;
209 void mangleSEHFilterExpression(GlobalDecl EnclosingDecl,
210 raw_ostream &Out) override;
211 void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl,
212 raw_ostream &Out) override;
213 void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
214 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
215 const DeclContext *DC = getEffectiveDeclContext(D: ND);
216 if (!DC->isFunctionOrMethod())
217 return false;
218
219 // Lambda closure types are already numbered, give out a phony number so
220 // that they demangle nicely.
221 if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) {
222 if (RD->isLambda()) {
223 disc = 1;
224 return true;
225 }
226 }
227
228 // Use the canonical number for externally visible decls.
229 if (ND->isExternallyVisible()) {
230 disc = getASTContext().getManglingNumber(ND, ForAuxTarget: isAux());
231 return true;
232 }
233
234 // Anonymous tags are already numbered.
235 if (const TagDecl *Tag = dyn_cast<TagDecl>(Val: ND)) {
236 if (!Tag->hasNameForLinkage() &&
237 !getASTContext().getDeclaratorForUnnamedTagDecl(TD: Tag) &&
238 !getASTContext().getTypedefNameForUnnamedTagDecl(TD: Tag))
239 return false;
240 }
241
242 // Make up a reasonable number for internal decls.
243 unsigned &discriminator = Uniquifier[ND];
244 if (!discriminator)
245 discriminator = ++Discriminator[std::make_pair(x&: DC, y: ND->getIdentifier())];
246 disc = discriminator + 1;
247 return true;
248 }
249
250 std::string getLambdaString(const CXXRecordDecl *Lambda) override {
251 assert(Lambda->isLambda() && "RD must be a lambda!");
252 std::string Name("<lambda_");
253
254 Decl *LambdaContextDecl = Lambda->getLambdaContextDecl();
255 unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber();
256 unsigned LambdaId;
257 const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(Val: LambdaContextDecl);
258 const FunctionDecl *Func =
259 Parm ? dyn_cast<FunctionDecl>(Val: Parm->getDeclContext()) : nullptr;
260
261 if (Func) {
262 unsigned DefaultArgNo =
263 Func->getNumParams() - Parm->getFunctionScopeIndex();
264 Name += llvm::utostr(X: DefaultArgNo);
265 Name += "_";
266 }
267
268 if (LambdaManglingNumber)
269 LambdaId = LambdaManglingNumber;
270 else
271 LambdaId = getLambdaIdForDebugInfo(RD: Lambda);
272
273 Name += llvm::utostr(X: LambdaId);
274 Name += ">";
275 return Name;
276 }
277
278 unsigned getLambdaId(const CXXRecordDecl *RD) {
279 assert(RD->isLambda() && "RD must be a lambda!");
280 assert(!RD->isExternallyVisible() && "RD must not be visible!");
281 assert(RD->getLambdaManglingNumber() == 0 &&
282 "RD must not have a mangling number!");
283 std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
284 Result = LambdaIds.insert(KV: std::make_pair(x&: RD, y: LambdaIds.size()));
285 return Result.first->second;
286 }
287
288 unsigned getLambdaIdForDebugInfo(const CXXRecordDecl *RD) {
289 assert(RD->isLambda() && "RD must be a lambda!");
290 assert(!RD->isExternallyVisible() && "RD must not be visible!");
291 assert(RD->getLambdaManglingNumber() == 0 &&
292 "RD must not have a mangling number!");
293 // The lambda should exist, but return 0 in case it doesn't.
294 return LambdaIds.lookup(Val: RD);
295 }
296
297 /// Return a character sequence that is (somewhat) unique to the TU suitable
298 /// for mangling anonymous namespaces.
299 StringRef getAnonymousNamespaceHash() const {
300 return AnonymousNamespaceHash;
301 }
302
303private:
304 void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out);
305};
306
307/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
308/// Microsoft Visual C++ ABI.
309class MicrosoftCXXNameMangler {
310 MicrosoftMangleContextImpl &Context;
311 raw_ostream &Out;
312
313 /// The "structor" is the top-level declaration being mangled, if
314 /// that's not a template specialization; otherwise it's the pattern
315 /// for that specialization.
316 const NamedDecl *Structor;
317 unsigned StructorType;
318
319 typedef llvm::SmallVector<std::string, 10> BackRefVec;
320 BackRefVec NameBackReferences;
321
322 typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap;
323 ArgBackRefMap FunArgBackReferences;
324 ArgBackRefMap TemplateArgBackReferences;
325
326 typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap;
327 TemplateArgStringMap TemplateArgStrings;
328 llvm::BumpPtrAllocator TemplateArgStringStorageAlloc;
329 llvm::StringSaver TemplateArgStringStorage;
330
331 typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet;
332 PassObjectSizeArgsSet PassObjectSizeArgs;
333
334 ASTContext &getASTContext() const { return Context.getASTContext(); }
335
336 const bool PointersAre64Bit;
337
338 DiagnosticBuilder Error(SourceLocation, StringRef, StringRef);
339 DiagnosticBuilder Error(SourceLocation, StringRef);
340 DiagnosticBuilder Error(StringRef);
341
342public:
343 enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
344 enum class TplArgKind { ClassNTTP, StructuralValue };
345
346 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
347 : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
348 TemplateArgStringStorage(TemplateArgStringStorageAlloc),
349 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(
350 AddrSpace: LangAS::Default) == 64) {}
351
352 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
353 const CXXConstructorDecl *D, CXXCtorType Type)
354 : Context(C), Out(Out_), Structor(getStructor(ND: D)), StructorType(Type),
355 TemplateArgStringStorage(TemplateArgStringStorageAlloc),
356 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(
357 AddrSpace: LangAS::Default) == 64) {}
358
359 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
360 const CXXDestructorDecl *D, CXXDtorType Type)
361 : Context(C), Out(Out_), Structor(getStructor(ND: D)), StructorType(Type),
362 TemplateArgStringStorage(TemplateArgStringStorageAlloc),
363 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(
364 AddrSpace: LangAS::Default) == 64) {}
365
366 raw_ostream &getStream() const { return Out; }
367
368 void mangle(GlobalDecl GD, StringRef Prefix = "?");
369 void mangleName(GlobalDecl GD);
370 void mangleFunctionEncoding(GlobalDecl GD, bool ShouldMangle);
371 void mangleVariableEncoding(const VarDecl *VD);
372 void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD,
373 const NonTypeTemplateParmDecl *PD,
374 QualType TemplateArgType,
375 StringRef Prefix = "$");
376 void mangleMemberDataPointerInClassNTTP(const CXXRecordDecl *,
377 const ValueDecl *);
378 void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
379 const CXXMethodDecl *MD,
380 const NonTypeTemplateParmDecl *PD,
381 QualType TemplateArgType,
382 StringRef Prefix = "$");
383 void mangleFunctionPointer(const FunctionDecl *FD,
384 const NonTypeTemplateParmDecl *PD,
385 QualType TemplateArgType);
386 void mangleVarDecl(const VarDecl *VD, const NonTypeTemplateParmDecl *PD,
387 QualType TemplateArgType);
388 void mangleMemberFunctionPointerInClassNTTP(const CXXRecordDecl *RD,
389 const CXXMethodDecl *MD);
390 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
391 const MethodVFTableLocation &ML);
392 void mangleNumber(int64_t Number);
393 void mangleNumber(llvm::APSInt Number);
394 void mangleFloat(llvm::APFloat Number);
395 void mangleBits(llvm::APInt Number);
396 void mangleTagTypeKind(TagTypeKind TK);
397 void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName,
398 ArrayRef<StringRef> NestedNames = {});
399 void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range);
400 void mangleType(QualType T, SourceRange Range,
401 QualifierMangleMode QMM = QMM_Mangle);
402 void mangleFunctionType(const FunctionType *T,
403 const FunctionDecl *D = nullptr,
404 bool ForceThisQuals = false,
405 bool MangleExceptionSpec = true);
406 void mangleSourceName(StringRef Name);
407 void mangleNestedName(GlobalDecl GD);
408
409 void mangleAutoReturnType(QualType T, QualifierMangleMode QMM);
410
411private:
412 bool isStructorDecl(const NamedDecl *ND) const {
413 return ND == Structor || getStructor(ND) == Structor;
414 }
415
416 bool is64BitPointer(Qualifiers Quals) const {
417 LangAS AddrSpace = Quals.getAddressSpace();
418 return AddrSpace == LangAS::ptr64 ||
419 (PointersAre64Bit && !(AddrSpace == LangAS::ptr32_sptr ||
420 AddrSpace == LangAS::ptr32_uptr));
421 }
422
423 void mangleUnqualifiedName(GlobalDecl GD) {
424 mangleUnqualifiedName(GD, Name: cast<NamedDecl>(Val: GD.getDecl())->getDeclName());
425 }
426 void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name);
427 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
428 void mangleCXXDtorType(CXXDtorType T);
429 void mangleQualifiers(Qualifiers Quals, bool IsMember);
430 void mangleRefQualifier(RefQualifierKind RefQualifier);
431 void manglePointerCVQualifiers(Qualifiers Quals);
432 void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
433 void manglePointerAuthQualifier(Qualifiers Quals);
434
435 void mangleUnscopedTemplateName(GlobalDecl GD);
436 void
437 mangleTemplateInstantiationName(GlobalDecl GD,
438 const TemplateArgumentList &TemplateArgs);
439 void mangleObjCMethodName(const ObjCMethodDecl *MD);
440
441 void mangleFunctionArgumentType(QualType T, SourceRange Range);
442 void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA);
443
444 bool isArtificialTagType(QualType T) const;
445
446 // Declare manglers for every type class.
447#define ABSTRACT_TYPE(CLASS, PARENT)
448#define NON_CANONICAL_TYPE(CLASS, PARENT)
449#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
450 Qualifiers Quals, \
451 SourceRange Range);
452#include "clang/AST/TypeNodes.inc"
453#undef ABSTRACT_TYPE
454#undef NON_CANONICAL_TYPE
455#undef TYPE
456
457 void mangleType(const TagDecl *TD);
458 void mangleDecayedArrayType(const ArrayType *T);
459 void mangleArrayType(const ArrayType *T);
460 void mangleFunctionClass(const FunctionDecl *FD);
461 void mangleCallingConvention(CallingConv CC, SourceRange Range);
462 void mangleCallingConvention(const FunctionType *T, SourceRange Range);
463 void mangleIntegerLiteral(const llvm::APSInt &Number,
464 const NonTypeTemplateParmDecl *PD = nullptr,
465 QualType TemplateArgType = QualType());
466 void mangleExpression(const Expr *E, const NonTypeTemplateParmDecl *PD);
467 void mangleThrowSpecification(const FunctionProtoType *T);
468
469 void mangleTemplateArgs(const TemplateDecl *TD,
470 const TemplateArgumentList &TemplateArgs);
471 void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
472 const NamedDecl *Parm);
473 void mangleTemplateArgValue(QualType T, const APValue &V, TplArgKind,
474 bool WithScalarType = false);
475
476 void mangleObjCProtocol(const ObjCProtocolDecl *PD);
477 void mangleObjCLifetime(const QualType T, Qualifiers Quals,
478 SourceRange Range);
479 void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals,
480 SourceRange Range);
481
482 void mangleAutoReturnType(const MemberPointerType *T, Qualifiers Quals);
483 void mangleAutoReturnType(const PointerType *T, Qualifiers Quals);
484 void mangleAutoReturnType(const LValueReferenceType *T, Qualifiers Quals);
485 void mangleAutoReturnType(const RValueReferenceType *T, Qualifiers Quals);
486};
487}
488
489MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context,
490 DiagnosticsEngine &Diags,
491 bool IsAux)
492 : MicrosoftMangleContext(Context, Diags, IsAux) {
493 // To mangle anonymous namespaces, hash the path to the main source file. The
494 // path should be whatever (probably relative) path was passed on the command
495 // line. The goal is for the compiler to produce the same output regardless of
496 // working directory, so use the uncanonicalized relative path.
497 //
498 // It's important to make the mangled names unique because, when CodeView
499 // debug info is in use, the debugger uses mangled type names to distinguish
500 // between otherwise identically named types in anonymous namespaces.
501 //
502 // These symbols are always internal, so there is no need for the hash to
503 // match what MSVC produces. For the same reason, clang is free to change the
504 // hash at any time without breaking compatibility with old versions of clang.
505 // The generated names are intended to look similar to what MSVC generates,
506 // which are something like "?A0x01234567@".
507 SourceManager &SM = Context.getSourceManager();
508 if (OptionalFileEntryRef FE = SM.getFileEntryRefForID(FID: SM.getMainFileID())) {
509 // Truncate the hash so we get 8 characters of hexadecimal.
510 uint32_t TruncatedHash = uint32_t(xxh3_64bits(data: FE->getName()));
511 AnonymousNamespaceHash = llvm::utohexstr(X: TruncatedHash);
512 } else {
513 // If we don't have a path to the main file, we'll just use 0.
514 AnonymousNamespaceHash = "0";
515 }
516}
517
518bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
519 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) {
520 LanguageLinkage L = FD->getLanguageLinkage();
521 // Overloadable functions need mangling.
522 if (FD->hasAttr<OverloadableAttr>())
523 return true;
524
525 // The ABI expects that we would never mangle "typical" user-defined entry
526 // points regardless of visibility or freestanding-ness.
527 //
528 // N.B. This is distinct from asking about "main". "main" has a lot of
529 // special rules associated with it in the standard while these
530 // user-defined entry points are outside of the purview of the standard.
531 // For example, there can be only one definition for "main" in a standards
532 // compliant program; however nothing forbids the existence of wmain and
533 // WinMain in the same translation unit.
534 if (FD->isMSVCRTEntryPoint())
535 return false;
536
537 // C++ functions and those whose names are not a simple identifier need
538 // mangling.
539 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
540 return true;
541
542 // C functions are not mangled.
543 if (L == CLanguageLinkage)
544 return false;
545 }
546
547 // Otherwise, no mangling is done outside C++ mode.
548 if (!getASTContext().getLangOpts().CPlusPlus)
549 return false;
550
551 const VarDecl *VD = dyn_cast<VarDecl>(Val: D);
552 if (VD && !isa<DecompositionDecl>(Val: D)) {
553 // C variables are not mangled.
554 if (VD->isExternC())
555 return false;
556
557 // Variables at global scope with internal linkage are not mangled.
558 const DeclContext *DC = getEffectiveDeclContext(D);
559 // Check for extern variable declared locally.
560 if (DC->isFunctionOrMethod() && D->hasLinkage())
561 while (!DC->isNamespace() && !DC->isTranslationUnit())
562 DC = getEffectiveParentContext(DC);
563
564 if (DC->isTranslationUnit() && D->getFormalLinkage() == Linkage::Internal &&
565 !isa<VarTemplateSpecializationDecl>(Val: D) && D->getIdentifier() != nullptr)
566 return false;
567 }
568
569 return true;
570}
571
572bool
573MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
574 return true;
575}
576
577DiagnosticBuilder MicrosoftCXXNameMangler::Error(SourceLocation loc,
578 StringRef thing1,
579 StringRef thing2) {
580 DiagnosticsEngine &Diags = Context.getDiags();
581 unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error,
582 FormatString: "cannot mangle this %0 %1 yet");
583 return Diags.Report(Loc: loc, DiagID) << thing1 << thing2;
584}
585
586DiagnosticBuilder MicrosoftCXXNameMangler::Error(SourceLocation loc,
587 StringRef thingy) {
588 DiagnosticsEngine &Diags = Context.getDiags();
589 unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error,
590 FormatString: "cannot mangle this %0 yet");
591 return Diags.Report(Loc: loc, DiagID) << thingy;
592}
593
594DiagnosticBuilder MicrosoftCXXNameMangler::Error(StringRef thingy) {
595 DiagnosticsEngine &Diags = Context.getDiags();
596 // extra placeholders are ignored quietly when not used
597 unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error,
598 FormatString: "cannot mangle this %0 yet");
599 return Diags.Report(DiagID) << thingy;
600}
601
602void MicrosoftCXXNameMangler::mangle(GlobalDecl GD, StringRef Prefix) {
603 const NamedDecl *D = cast<NamedDecl>(Val: GD.getDecl());
604 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
605 // Therefore it's really important that we don't decorate the
606 // name with leading underscores or leading/trailing at signs. So, by
607 // default, we emit an asm marker at the start so we get the name right.
608 // Callers can override this with a custom prefix.
609
610 // <mangled-name> ::= ? <name> <type-encoding>
611 Out << Prefix;
612 mangleName(GD);
613 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D))
614 mangleFunctionEncoding(GD, ShouldMangle: Context.shouldMangleDeclName(D: FD));
615 else if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D))
616 mangleVariableEncoding(VD);
617 else if (isa<MSGuidDecl>(Val: D))
618 // MSVC appears to mangle GUIDs as if they were variables of type
619 // 'const struct __s_GUID'.
620 Out << "3U__s_GUID@@B";
621 else if (isa<TemplateParamObjectDecl>(Val: D)) {
622 // Template parameter objects don't get a <type-encoding>; their type is
623 // specified as part of their value.
624 } else
625 llvm_unreachable("Tried to mangle unexpected NamedDecl!");
626}
627
628void MicrosoftCXXNameMangler::mangleFunctionEncoding(GlobalDecl GD,
629 bool ShouldMangle) {
630 const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl());
631 // <type-encoding> ::= <function-class> <function-type>
632
633 // Since MSVC operates on the type as written and not the canonical type, it
634 // actually matters which decl we have here. MSVC appears to choose the
635 // first, since it is most likely to be the declaration in a header file.
636 FD = FD->getFirstDecl();
637
638 // We should never ever see a FunctionNoProtoType at this point.
639 // We don't even know how to mangle their types anyway :).
640 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
641
642 // extern "C" functions can hold entities that must be mangled.
643 // As it stands, these functions still need to get expressed in the full
644 // external name. They have their class and type omitted, replaced with '9'.
645 if (ShouldMangle) {
646 // We would like to mangle all extern "C" functions using this additional
647 // component but this would break compatibility with MSVC's behavior.
648 // Instead, do this when we know that compatibility isn't important (in
649 // other words, when it is an overloaded extern "C" function).
650 if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
651 Out << "$$J0";
652
653 mangleFunctionClass(FD);
654
655 mangleFunctionType(T: FT, D: FD, ForceThisQuals: false, MangleExceptionSpec: false);
656 } else {
657 Out << '9';
658 }
659}
660
661void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
662 // <type-encoding> ::= <storage-class> <variable-type>
663 // <storage-class> ::= 0 # private static member
664 // ::= 1 # protected static member
665 // ::= 2 # public static member
666 // ::= 3 # global
667 // ::= 4 # static local
668
669 // The first character in the encoding (after the name) is the storage class.
670 if (VD->isStaticDataMember()) {
671 // If it's a static member, it also encodes the access level.
672 switch (VD->getAccess()) {
673 default:
674 case AS_private: Out << '0'; break;
675 case AS_protected: Out << '1'; break;
676 case AS_public: Out << '2'; break;
677 }
678 }
679 else if (!VD->isStaticLocal())
680 Out << '3';
681 else
682 Out << '4';
683 // Now mangle the type.
684 // <variable-type> ::= <type> <cvr-qualifiers>
685 // ::= <type> <pointee-cvr-qualifiers> # pointers, references
686 // Pointers and references are odd. The type of 'int * const foo;' gets
687 // mangled as 'QAHA' instead of 'PAHB', for example.
688 SourceRange SR = VD->getSourceRange();
689 QualType Ty = VD->getType();
690 if (Ty->isPointerType() || Ty->isReferenceType() ||
691 Ty->isMemberPointerType()) {
692 mangleType(T: Ty, Range: SR, QMM: QMM_Drop);
693 manglePointerExtQualifiers(
694 Quals: Ty.getDesugaredType(Context: getASTContext()).getLocalQualifiers(), PointeeType: QualType());
695 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
696 mangleQualifiers(Quals: MPT->getPointeeType().getQualifiers(), IsMember: true);
697 // Member pointers are suffixed with a back reference to the member
698 // pointer's class name.
699 mangleName(GD: MPT->getMostRecentCXXRecordDecl());
700 } else
701 mangleQualifiers(Quals: Ty->getPointeeType().getQualifiers(), IsMember: false);
702 } else if (const ArrayType *AT = getASTContext().getAsArrayType(T: Ty)) {
703 // Global arrays are funny, too.
704 mangleDecayedArrayType(T: AT);
705 if (AT->getElementType()->isArrayType())
706 Out << 'A';
707 else
708 mangleQualifiers(Quals: Ty.getQualifiers(), IsMember: false);
709 } else {
710 mangleType(T: Ty, Range: SR, QMM: QMM_Drop);
711 mangleQualifiers(Quals: Ty.getQualifiers(), IsMember: false);
712 }
713}
714
715void MicrosoftCXXNameMangler::mangleMemberDataPointer(
716 const CXXRecordDecl *RD, const ValueDecl *VD,
717 const NonTypeTemplateParmDecl *PD, QualType TemplateArgType,
718 StringRef Prefix) {
719 // <member-data-pointer> ::= <integer-literal>
720 // ::= $F <number> <number>
721 // ::= $G <number> <number> <number>
722 //
723 // <auto-nttp> ::= $ M <type> <integer-literal>
724 // <auto-nttp> ::= $ M <type> F <name> <number>
725 // <auto-nttp> ::= $ M <type> G <name> <number> <number>
726
727 int64_t FieldOffset;
728 int64_t VBTableOffset;
729 MSInheritanceModel IM = RD->getMSInheritanceModel();
730 if (VD) {
731 FieldOffset = getASTContext().getFieldOffset(FD: VD);
732 assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
733 "cannot take address of bitfield");
734 FieldOffset /= getASTContext().getCharWidth();
735
736 VBTableOffset = 0;
737
738 if (IM == MSInheritanceModel::Virtual)
739 FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
740 } else {
741 FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
742
743 VBTableOffset = -1;
744 }
745
746 char Code = '\0';
747 switch (IM) {
748 case MSInheritanceModel::Single: Code = '0'; break;
749 case MSInheritanceModel::Multiple: Code = '0'; break;
750 case MSInheritanceModel::Virtual: Code = 'F'; break;
751 case MSInheritanceModel::Unspecified: Code = 'G'; break;
752 }
753
754 Out << Prefix;
755
756 if (VD &&
757 getASTContext().getLangOpts().isCompatibleWithMSVC(
758 MajorVersion: LangOptions::MSVC2019) &&
759 PD && PD->getType()->getTypeClass() == Type::Auto &&
760 !TemplateArgType.isNull()) {
761 Out << "M";
762 mangleType(T: TemplateArgType, Range: SourceRange(), QMM: QMM_Drop);
763 }
764
765 Out << Code;
766
767 mangleNumber(Number: FieldOffset);
768
769 // The C++ standard doesn't allow base-to-derived member pointer conversions
770 // in template parameter contexts, so the vbptr offset of data member pointers
771 // is always zero.
772 if (inheritanceModelHasVBPtrOffsetField(Inheritance: IM))
773 mangleNumber(Number: 0);
774 if (inheritanceModelHasVBTableOffsetField(Inheritance: IM))
775 mangleNumber(Number: VBTableOffset);
776}
777
778void MicrosoftCXXNameMangler::mangleMemberDataPointerInClassNTTP(
779 const CXXRecordDecl *RD, const ValueDecl *VD) {
780 MSInheritanceModel IM = RD->getMSInheritanceModel();
781 // <nttp-class-member-data-pointer> ::= <member-data-pointer>
782 // ::= N
783 // ::= 8 <postfix> @ <unqualified-name> @
784
785 if (IM != MSInheritanceModel::Single && IM != MSInheritanceModel::Multiple)
786 return mangleMemberDataPointer(RD, VD, PD: nullptr, TemplateArgType: QualType(), Prefix: "");
787
788 if (!VD) {
789 Out << 'N';
790 return;
791 }
792
793 Out << '8';
794 mangleNestedName(GD: VD);
795 Out << '@';
796 mangleUnqualifiedName(GD: VD);
797 Out << '@';
798}
799
800void MicrosoftCXXNameMangler::mangleMemberFunctionPointer(
801 const CXXRecordDecl *RD, const CXXMethodDecl *MD,
802 const NonTypeTemplateParmDecl *PD, QualType TemplateArgType,
803 StringRef Prefix) {
804 // <member-function-pointer> ::= $1? <name>
805 // ::= $H? <name> <number>
806 // ::= $I? <name> <number> <number>
807 // ::= $J? <name> <number> <number> <number>
808 //
809 // <auto-nttp> ::= $ M <type> 1? <name>
810 // <auto-nttp> ::= $ M <type> H? <name> <number>
811 // <auto-nttp> ::= $ M <type> I? <name> <number> <number>
812 // <auto-nttp> ::= $ M <type> J? <name> <number> <number> <number>
813
814 MSInheritanceModel IM = RD->getMSInheritanceModel();
815
816 char Code = '\0';
817 switch (IM) {
818 case MSInheritanceModel::Single: Code = '1'; break;
819 case MSInheritanceModel::Multiple: Code = 'H'; break;
820 case MSInheritanceModel::Virtual: Code = 'I'; break;
821 case MSInheritanceModel::Unspecified: Code = 'J'; break;
822 }
823
824 // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr
825 // thunk.
826 uint64_t NVOffset = 0;
827 uint64_t VBTableOffset = 0;
828 uint64_t VBPtrOffset = 0;
829 if (MD) {
830 Out << Prefix;
831
832 if (getASTContext().getLangOpts().isCompatibleWithMSVC(
833 MajorVersion: LangOptions::MSVC2019) &&
834 PD && PD->getType()->getTypeClass() == Type::Auto &&
835 !TemplateArgType.isNull()) {
836 Out << "M";
837 mangleType(T: TemplateArgType, Range: SourceRange(), QMM: QMM_Drop);
838 }
839
840 Out << Code << '?';
841 if (MD->isVirtual()) {
842 MicrosoftVTableContext *VTContext =
843 cast<MicrosoftVTableContext>(Val: getASTContext().getVTableContext());
844 MethodVFTableLocation ML =
845 VTContext->getMethodVFTableLocation(GD: GlobalDecl(MD));
846 mangleVirtualMemPtrThunk(MD, ML);
847 NVOffset = ML.VFPtrOffset.getQuantity();
848 VBTableOffset = ML.VBTableIndex * 4;
849 if (ML.VBase) {
850 const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(D: RD);
851 VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
852 }
853 } else {
854 mangleName(GD: MD);
855 mangleFunctionEncoding(GD: MD, /*ShouldMangle=*/true);
856 }
857
858 if (VBTableOffset == 0 && IM == MSInheritanceModel::Virtual)
859 NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
860 } else {
861 // Null single inheritance member functions are encoded as a simple nullptr.
862 if (IM == MSInheritanceModel::Single) {
863 Out << Prefix << "0A@";
864 return;
865 }
866 if (IM == MSInheritanceModel::Unspecified)
867 VBTableOffset = -1;
868 Out << Prefix << Code;
869 }
870
871 if (inheritanceModelHasNVOffsetField(/*IsMemberFunction=*/true, Inheritance: IM))
872 mangleNumber(Number: static_cast<uint32_t>(NVOffset));
873 if (inheritanceModelHasVBPtrOffsetField(Inheritance: IM))
874 mangleNumber(Number: VBPtrOffset);
875 if (inheritanceModelHasVBTableOffsetField(Inheritance: IM))
876 mangleNumber(Number: VBTableOffset);
877}
878
879void MicrosoftCXXNameMangler::mangleFunctionPointer(
880 const FunctionDecl *FD, const NonTypeTemplateParmDecl *PD,
881 QualType TemplateArgType) {
882 // <func-ptr> ::= $1? <mangled-name>
883 // <func-ptr> ::= <auto-nttp>
884 //
885 // <auto-nttp> ::= $ M <type> 1? <mangled-name>
886 Out << '$';
887
888 if (getASTContext().getLangOpts().isCompatibleWithMSVC(
889 MajorVersion: LangOptions::MSVC2019) &&
890 PD && PD->getType()->getTypeClass() == Type::Auto &&
891 !TemplateArgType.isNull()) {
892 Out << "M";
893 mangleType(T: TemplateArgType, Range: SourceRange(), QMM: QMM_Drop);
894 }
895
896 Out << "1?";
897 mangleName(GD: FD);
898 mangleFunctionEncoding(GD: FD, /*ShouldMangle=*/true);
899}
900
901void MicrosoftCXXNameMangler::mangleVarDecl(const VarDecl *VD,
902 const NonTypeTemplateParmDecl *PD,
903 QualType TemplateArgType) {
904 // <var-ptr> ::= $1? <mangled-name>
905 // <var-ptr> ::= <auto-nttp>
906 //
907 // <auto-nttp> ::= $ M <type> 1? <mangled-name>
908 Out << '$';
909
910 if (getASTContext().getLangOpts().isCompatibleWithMSVC(
911 MajorVersion: LangOptions::MSVC2019) &&
912 PD && PD->getType()->getTypeClass() == Type::Auto &&
913 !TemplateArgType.isNull()) {
914 Out << "M";
915 mangleType(T: TemplateArgType, Range: SourceRange(), QMM: QMM_Drop);
916 }
917
918 Out << "1?";
919 mangleName(GD: VD);
920 mangleVariableEncoding(VD);
921}
922
923void MicrosoftCXXNameMangler::mangleMemberFunctionPointerInClassNTTP(
924 const CXXRecordDecl *RD, const CXXMethodDecl *MD) {
925 // <nttp-class-member-function-pointer> ::= <member-function-pointer>
926 // ::= N
927 // ::= E? <virtual-mem-ptr-thunk>
928 // ::= E? <mangled-name> <type-encoding>
929
930 if (!MD) {
931 if (RD->getMSInheritanceModel() != MSInheritanceModel::Single)
932 return mangleMemberFunctionPointer(RD, MD, PD: nullptr, TemplateArgType: QualType(), Prefix: "");
933
934 Out << 'N';
935 return;
936 }
937
938 Out << "E?";
939 if (MD->isVirtual()) {
940 MicrosoftVTableContext *VTContext =
941 cast<MicrosoftVTableContext>(Val: getASTContext().getVTableContext());
942 MethodVFTableLocation ML =
943 VTContext->getMethodVFTableLocation(GD: GlobalDecl(MD));
944 mangleVirtualMemPtrThunk(MD, ML);
945 } else {
946 mangleName(GD: MD);
947 mangleFunctionEncoding(GD: MD, /*ShouldMangle=*/true);
948 }
949}
950
951void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
952 const CXXMethodDecl *MD, const MethodVFTableLocation &ML) {
953 // Get the vftable offset.
954 CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
955 BitSize: getASTContext().getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default));
956 uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
957
958 Out << "?_9";
959 mangleName(GD: MD->getParent());
960 Out << "$B";
961 mangleNumber(Number: OffsetInVFTable);
962 Out << 'A';
963 mangleCallingConvention(T: MD->getType()->castAs<FunctionProtoType>(),
964 Range: MD->getSourceRange());
965}
966
967void MicrosoftCXXNameMangler::mangleName(GlobalDecl GD) {
968 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
969
970 // Always start with the unqualified name.
971 mangleUnqualifiedName(GD);
972
973 mangleNestedName(GD);
974
975 // Terminate the whole name with an '@'.
976 Out << '@';
977}
978
979void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
980 mangleNumber(Number: llvm::APSInt(llvm::APInt(64, Number), /*IsUnsigned*/false));
981}
982
983void MicrosoftCXXNameMangler::mangleNumber(llvm::APSInt Number) {
984 // MSVC never mangles any integer wider than 64 bits. In general it appears
985 // to convert every integer to signed 64 bit before mangling (including
986 // unsigned 64 bit values). Do the same, but preserve bits beyond the bottom
987 // 64.
988 unsigned Width = std::max(a: Number.getBitWidth(), b: 64U);
989 llvm::APInt Value = Number.extend(width: Width);
990
991 // <non-negative integer> ::= A@ # when Number == 0
992 // ::= <decimal digit> # when 1 <= Number <= 10
993 // ::= <hex digit>+ @ # when Number >= 10
994 //
995 // <number> ::= [?] <non-negative integer>
996
997 if (Value.isNegative()) {
998 Value = -Value;
999 Out << '?';
1000 }
1001 mangleBits(Number: Value);
1002}
1003
1004void MicrosoftCXXNameMangler::mangleFloat(llvm::APFloat Number) {
1005 using llvm::APFloat;
1006
1007 switch (APFloat::SemanticsToEnum(Sem: Number.getSemantics())) {
1008 case APFloat::S_IEEEsingle: Out << 'A'; break;
1009 case APFloat::S_IEEEdouble: Out << 'B'; break;
1010
1011 // The following are all Clang extensions. We try to pick manglings that are
1012 // unlikely to conflict with MSVC's scheme.
1013 case APFloat::S_IEEEhalf: Out << 'V'; break;
1014 case APFloat::S_BFloat: Out << 'W'; break;
1015 case APFloat::S_x87DoubleExtended: Out << 'X'; break;
1016 case APFloat::S_IEEEquad: Out << 'Y'; break;
1017 case APFloat::S_PPCDoubleDouble: Out << 'Z'; break;
1018 case APFloat::S_PPCDoubleDoubleLegacy:
1019 case APFloat::S_Float8E5M2:
1020 case APFloat::S_Float8E4M3:
1021 case APFloat::S_Float8E4M3FN:
1022 case APFloat::S_Float8E5M2FNUZ:
1023 case APFloat::S_Float8E4M3FNUZ:
1024 case APFloat::S_Float8E4M3B11FNUZ:
1025 case APFloat::S_Float8E3M4:
1026 case APFloat::S_FloatTF32:
1027 case APFloat::S_Float8E8M0FNU:
1028 case APFloat::S_Float6E3M2FN:
1029 case APFloat::S_Float6E2M3FN:
1030 case APFloat::S_Float4E2M1FN:
1031 llvm_unreachable("Tried to mangle unexpected APFloat semantics");
1032 }
1033
1034 mangleBits(Number: Number.bitcastToAPInt());
1035}
1036
1037void MicrosoftCXXNameMangler::mangleBits(llvm::APInt Value) {
1038 if (Value == 0)
1039 Out << "A@";
1040 else if (Value.uge(RHS: 1) && Value.ule(RHS: 10))
1041 Out << (Value - 1);
1042 else {
1043 // Numbers that are not encoded as decimal digits are represented as nibbles
1044 // in the range of ASCII characters 'A' to 'P'.
1045 // The number 0x123450 would be encoded as 'BCDEFA'
1046 llvm::SmallString<32> EncodedNumberBuffer;
1047 for (; Value != 0; Value.lshrInPlace(ShiftAmt: 4))
1048 EncodedNumberBuffer.push_back(Elt: 'A' + (Value & 0xf).getZExtValue());
1049 std::reverse(first: EncodedNumberBuffer.begin(), last: EncodedNumberBuffer.end());
1050 Out.write(Ptr: EncodedNumberBuffer.data(), Size: EncodedNumberBuffer.size());
1051 Out << '@';
1052 }
1053}
1054
1055static GlobalDecl isTemplate(GlobalDecl GD,
1056 const TemplateArgumentList *&TemplateArgs) {
1057 const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl());
1058 // Check if we have a function template.
1059 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: ND)) {
1060 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
1061 TemplateArgs = FD->getTemplateSpecializationArgs();
1062 return GD.getWithDecl(D: TD);
1063 }
1064 }
1065
1066 // Check if we have a class template.
1067 if (const ClassTemplateSpecializationDecl *Spec =
1068 dyn_cast<ClassTemplateSpecializationDecl>(Val: ND)) {
1069 TemplateArgs = &Spec->getTemplateArgs();
1070 return GD.getWithDecl(D: Spec->getSpecializedTemplate());
1071 }
1072
1073 // Check if we have a variable template.
1074 if (const VarTemplateSpecializationDecl *Spec =
1075 dyn_cast<VarTemplateSpecializationDecl>(Val: ND)) {
1076 TemplateArgs = &Spec->getTemplateArgs();
1077 return GD.getWithDecl(D: Spec->getSpecializedTemplate());
1078 }
1079
1080 return GlobalDecl();
1081}
1082
1083void MicrosoftCXXNameMangler::mangleUnqualifiedName(GlobalDecl GD,
1084 DeclarationName Name) {
1085 const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl());
1086 // <unqualified-name> ::= <operator-name>
1087 // ::= <ctor-dtor-name>
1088 // ::= <source-name>
1089 // ::= <template-name>
1090
1091 // Check if we have a template.
1092 const TemplateArgumentList *TemplateArgs = nullptr;
1093 if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1094 // Function templates aren't considered for name back referencing. This
1095 // makes sense since function templates aren't likely to occur multiple
1096 // times in a symbol.
1097 if (isa<FunctionTemplateDecl>(Val: TD.getDecl())) {
1098 mangleTemplateInstantiationName(GD: TD, TemplateArgs: *TemplateArgs);
1099 Out << '@';
1100 return;
1101 }
1102
1103 // Here comes the tricky thing: if we need to mangle something like
1104 // void foo(A::X<Y>, B::X<Y>),
1105 // the X<Y> part is aliased. However, if you need to mangle
1106 // void foo(A::X<A::Y>, A::X<B::Y>),
1107 // the A::X<> part is not aliased.
1108 // That is, from the mangler's perspective we have a structure like this:
1109 // namespace[s] -> type[ -> template-parameters]
1110 // but from the Clang perspective we have
1111 // type [ -> template-parameters]
1112 // \-> namespace[s]
1113 // What we do is we create a new mangler, mangle the same type (without
1114 // a namespace suffix) to a string using the extra mangler and then use
1115 // the mangled type name as a key to check the mangling of different types
1116 // for aliasing.
1117
1118 // It's important to key cache reads off ND, not TD -- the same TD can
1119 // be used with different TemplateArgs, but ND uniquely identifies
1120 // TD / TemplateArg pairs.
1121 ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(Val: ND);
1122 if (Found == TemplateArgBackReferences.end()) {
1123
1124 TemplateArgStringMap::iterator Found = TemplateArgStrings.find(Val: ND);
1125 if (Found == TemplateArgStrings.end()) {
1126 // Mangle full template name into temporary buffer.
1127 llvm::SmallString<64> TemplateMangling;
1128 llvm::raw_svector_ostream Stream(TemplateMangling);
1129 MicrosoftCXXNameMangler Extra(Context, Stream);
1130 Extra.mangleTemplateInstantiationName(GD: TD, TemplateArgs: *TemplateArgs);
1131
1132 // Use the string backref vector to possibly get a back reference.
1133 mangleSourceName(Name: TemplateMangling);
1134
1135 // Memoize back reference for this type if one exist, else memoize
1136 // the mangling itself.
1137 BackRefVec::iterator StringFound =
1138 llvm::find(Range&: NameBackReferences, Val: TemplateMangling);
1139 if (StringFound != NameBackReferences.end()) {
1140 TemplateArgBackReferences[ND] =
1141 StringFound - NameBackReferences.begin();
1142 } else {
1143 TemplateArgStrings[ND] =
1144 TemplateArgStringStorage.save(S: TemplateMangling.str());
1145 }
1146 } else {
1147 Out << Found->second << '@'; // Outputs a StringRef.
1148 }
1149 } else {
1150 Out << Found->second; // Outputs a back reference (an int).
1151 }
1152 return;
1153 }
1154
1155 switch (Name.getNameKind()) {
1156 case DeclarationName::Identifier: {
1157 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1158 bool IsDeviceStub =
1159 ND &&
1160 ((isa<FunctionDecl>(Val: ND) && ND->hasAttr<CUDAGlobalAttr>()) ||
1161 (isa<FunctionTemplateDecl>(Val: ND) &&
1162 cast<FunctionTemplateDecl>(Val: ND)
1163 ->getTemplatedDecl()
1164 ->hasAttr<CUDAGlobalAttr>())) &&
1165 GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
1166 bool IsOCLDeviceStub =
1167 ND && isa<FunctionDecl>(Val: ND) &&
1168 DeviceKernelAttr::isOpenCLSpelling(
1169 A: ND->getAttr<DeviceKernelAttr>()) &&
1170 GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
1171 if (IsDeviceStub)
1172 mangleSourceName(
1173 Name: (llvm::Twine("__device_stub__") + II->getName()).str());
1174 else if (IsOCLDeviceStub)
1175 mangleSourceName(
1176 Name: (llvm::Twine("__clang_ocl_kern_imp_") + II->getName()).str());
1177 else
1178 mangleSourceName(Name: II->getName());
1179 break;
1180 }
1181
1182 // Otherwise, an anonymous entity. We must have a declaration.
1183 assert(ND && "mangling empty name without declaration");
1184
1185 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: ND)) {
1186 if (NS->isAnonymousNamespace()) {
1187 Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@';
1188 break;
1189 }
1190 }
1191
1192 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(Val: ND)) {
1193 // Decomposition declarations are considered anonymous, and get
1194 // numbered with a $S prefix.
1195 llvm::SmallString<64> Name("$S");
1196 // Get a unique id for the anonymous struct.
1197 Name += llvm::utostr(X: Context.getAnonymousStructId(D: DD) + 1);
1198 mangleSourceName(Name);
1199 break;
1200 }
1201
1202 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: ND)) {
1203 // We must have an anonymous union or struct declaration.
1204 const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
1205 assert(RD && "expected variable decl to have a record type");
1206 // Anonymous types with no tag or typedef get the name of their
1207 // declarator mangled in. If they have no declarator, number them with
1208 // a $S prefix.
1209 llvm::SmallString<64> Name("$S");
1210 // Get a unique id for the anonymous struct.
1211 Name += llvm::utostr(X: Context.getAnonymousStructId(D: RD) + 1);
1212 mangleSourceName(Name: Name.str());
1213 break;
1214 }
1215
1216 if (const MSGuidDecl *GD = dyn_cast<MSGuidDecl>(Val: ND)) {
1217 // Mangle a GUID object as if it were a variable with the corresponding
1218 // mangled name.
1219 SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1220 llvm::raw_svector_ostream GUIDOS(GUID);
1221 Context.mangleMSGuidDecl(GD, GUIDOS);
1222 mangleSourceName(Name: GUID);
1223 break;
1224 }
1225
1226 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(Val: ND)) {
1227 Out << "?__N";
1228 mangleTemplateArgValue(T: TPO->getType().getUnqualifiedType(),
1229 V: TPO->getValue(), TplArgKind::ClassNTTP);
1230 break;
1231 }
1232
1233 // We must have an anonymous struct.
1234 const TagDecl *TD = cast<TagDecl>(Val: ND);
1235 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1236 assert(TD->getDeclContext() == D->getDeclContext() &&
1237 "Typedef should not be in another decl context!");
1238 assert(D->getDeclName().getAsIdentifierInfo() &&
1239 "Typedef was not named!");
1240 mangleSourceName(Name: D->getDeclName().getAsIdentifierInfo()->getName());
1241 break;
1242 }
1243
1244 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: TD)) {
1245 if (Record->isLambda()) {
1246 llvm::SmallString<10> Name("<lambda_");
1247
1248 Decl *LambdaContextDecl = Record->getLambdaContextDecl();
1249 unsigned LambdaManglingNumber = Record->getLambdaManglingNumber();
1250 unsigned LambdaId;
1251 const ParmVarDecl *Parm =
1252 dyn_cast_or_null<ParmVarDecl>(Val: LambdaContextDecl);
1253 const FunctionDecl *Func =
1254 Parm ? dyn_cast<FunctionDecl>(Val: Parm->getDeclContext()) : nullptr;
1255
1256 if (Func) {
1257 unsigned DefaultArgNo =
1258 Func->getNumParams() - Parm->getFunctionScopeIndex();
1259 Name += llvm::utostr(X: DefaultArgNo);
1260 Name += "_";
1261 }
1262
1263 if (LambdaManglingNumber)
1264 LambdaId = LambdaManglingNumber;
1265 else
1266 LambdaId = Context.getLambdaId(RD: Record);
1267
1268 Name += llvm::utostr(X: LambdaId);
1269 Name += ">";
1270
1271 mangleSourceName(Name);
1272
1273 // If the context is a variable or a class member and not a parameter,
1274 // it is encoded in a qualified name.
1275 if (LambdaManglingNumber && LambdaContextDecl) {
1276 if ((isa<VarDecl>(Val: LambdaContextDecl) ||
1277 isa<FieldDecl>(Val: LambdaContextDecl)) &&
1278 !isa<ParmVarDecl>(Val: LambdaContextDecl)) {
1279 mangleUnqualifiedName(GD: cast<NamedDecl>(Val: LambdaContextDecl));
1280 }
1281 }
1282 break;
1283 }
1284 }
1285
1286 llvm::SmallString<64> Name;
1287 if (DeclaratorDecl *DD =
1288 Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
1289 // Anonymous types without a name for linkage purposes have their
1290 // declarator mangled in if they have one.
1291 Name += "<unnamed-type-";
1292 Name += DD->getName();
1293 } else if (TypedefNameDecl *TND =
1294 Context.getASTContext().getTypedefNameForUnnamedTagDecl(
1295 TD)) {
1296 // Anonymous types without a name for linkage purposes have their
1297 // associate typedef mangled in if they have one.
1298 Name += "<unnamed-type-";
1299 Name += TND->getName();
1300 } else if (isa<EnumDecl>(Val: TD) &&
1301 cast<EnumDecl>(Val: TD)->enumerator_begin() !=
1302 cast<EnumDecl>(Val: TD)->enumerator_end()) {
1303 // Anonymous non-empty enums mangle in the first enumerator.
1304 auto *ED = cast<EnumDecl>(Val: TD);
1305 Name += "<unnamed-enum-";
1306 Name += ED->enumerator_begin()->getName();
1307 } else {
1308 // Otherwise, number the types using a $S prefix.
1309 Name += "<unnamed-type-$S";
1310 Name += llvm::utostr(X: Context.getAnonymousStructId(D: TD) + 1);
1311 }
1312 Name += ">";
1313 mangleSourceName(Name: Name.str());
1314 break;
1315 }
1316
1317 case DeclarationName::ObjCZeroArgSelector:
1318 case DeclarationName::ObjCOneArgSelector:
1319 case DeclarationName::ObjCMultiArgSelector: {
1320 // This is reachable only when constructing an outlined SEH finally
1321 // block. Nothing depends on this mangling and it's used only with
1322 // functinos with internal linkage.
1323 llvm::SmallString<64> Name;
1324 mangleSourceName(Name: Name.str());
1325 break;
1326 }
1327
1328 case DeclarationName::CXXConstructorName:
1329 if (isStructorDecl(ND)) {
1330 if (StructorType == Ctor_CopyingClosure) {
1331 Out << "?_O";
1332 return;
1333 }
1334 if (StructorType == Ctor_DefaultClosure) {
1335 Out << "?_F";
1336 return;
1337 }
1338 }
1339 Out << "?0";
1340 return;
1341
1342 case DeclarationName::CXXDestructorName:
1343 if (isStructorDecl(ND))
1344 // If the named decl is the C++ destructor we're mangling,
1345 // use the type we were given.
1346 mangleCXXDtorType(T: static_cast<CXXDtorType>(StructorType));
1347 else
1348 // Otherwise, use the base destructor name. This is relevant if a
1349 // class with a destructor is declared within a destructor.
1350 mangleCXXDtorType(T: Dtor_Base);
1351 break;
1352
1353 case DeclarationName::CXXConversionFunctionName:
1354 // <operator-name> ::= ?B # (cast)
1355 // The target type is encoded as the return type.
1356 Out << "?B";
1357 break;
1358
1359 case DeclarationName::CXXOperatorName:
1360 mangleOperatorName(OO: Name.getCXXOverloadedOperator(), Loc: ND->getLocation());
1361 break;
1362
1363 case DeclarationName::CXXLiteralOperatorName: {
1364 Out << "?__K";
1365 mangleSourceName(Name: Name.getCXXLiteralIdentifier()->getName());
1366 break;
1367 }
1368
1369 case DeclarationName::CXXDeductionGuideName:
1370 llvm_unreachable("Can't mangle a deduction guide name!");
1371
1372 case DeclarationName::CXXUsingDirective:
1373 llvm_unreachable("Can't mangle a using directive name!");
1374 }
1375}
1376
1377// <postfix> ::= <unqualified-name> [<postfix>]
1378// ::= <substitution> [<postfix>]
1379void MicrosoftCXXNameMangler::mangleNestedName(GlobalDecl GD) {
1380 const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl());
1381
1382 if (const auto *ID = dyn_cast<IndirectFieldDecl>(Val: ND))
1383 for (unsigned I = 1, IE = ID->getChainingSize(); I < IE; ++I)
1384 mangleSourceName(Name: "<unnamed-tag>");
1385
1386 const DeclContext *DC = getEffectiveDeclContext(D: ND);
1387 while (!DC->isTranslationUnit()) {
1388 if (isa<TagDecl>(Val: ND) || isa<VarDecl>(Val: ND)) {
1389 unsigned Disc;
1390 if (Context.getNextDiscriminator(ND, disc&: Disc)) {
1391 Out << '?';
1392 mangleNumber(Number: Disc);
1393 Out << '?';
1394 }
1395 }
1396
1397 if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: DC)) {
1398 auto Discriminate =
1399 [](StringRef Name, const unsigned Discriminator,
1400 const unsigned ParameterDiscriminator) -> std::string {
1401 std::string Buffer;
1402 llvm::raw_string_ostream Stream(Buffer);
1403 Stream << Name;
1404 if (Discriminator)
1405 Stream << '_' << Discriminator;
1406 if (ParameterDiscriminator)
1407 Stream << '_' << ParameterDiscriminator;
1408 return Buffer;
1409 };
1410
1411 unsigned Discriminator = BD->getBlockManglingNumber();
1412 if (!Discriminator)
1413 Discriminator = Context.getBlockId(BD, /*Local=*/false);
1414
1415 // Mangle the parameter position as a discriminator to deal with unnamed
1416 // parameters. Rather than mangling the unqualified parameter name,
1417 // always use the position to give a uniform mangling.
1418 unsigned ParameterDiscriminator = 0;
1419 if (const auto *MC = BD->getBlockManglingContextDecl())
1420 if (const auto *P = dyn_cast<ParmVarDecl>(Val: MC))
1421 if (const auto *F = dyn_cast<FunctionDecl>(Val: P->getDeclContext()))
1422 ParameterDiscriminator =
1423 F->getNumParams() - P->getFunctionScopeIndex();
1424
1425 DC = getEffectiveDeclContext(D: BD);
1426
1427 Out << '?';
1428 mangleSourceName(Name: Discriminate("_block_invoke", Discriminator,
1429 ParameterDiscriminator));
1430 // If we have a block mangling context, encode that now. This allows us
1431 // to discriminate between named static data initializers in the same
1432 // scope. This is handled differently from parameters, which use
1433 // positions to discriminate between multiple instances.
1434 if (const auto *MC = BD->getBlockManglingContextDecl())
1435 if (!isa<ParmVarDecl>(Val: MC))
1436 if (const auto *ND = dyn_cast<NamedDecl>(Val: MC))
1437 mangleUnqualifiedName(GD: ND);
1438 // MS ABI and Itanium manglings are in inverted scopes. In the case of a
1439 // RecordDecl, mangle the entire scope hierarchy at this point rather than
1440 // just the unqualified name to get the ordering correct.
1441 if (const auto *RD = dyn_cast<RecordDecl>(Val: DC))
1442 mangleName(GD: RD);
1443 else
1444 Out << '@';
1445 // void __cdecl
1446 Out << "YAX";
1447 // struct __block_literal *
1448 Out << 'P';
1449 // __ptr64
1450 if (PointersAre64Bit)
1451 Out << 'E';
1452 Out << 'A';
1453 mangleArtificialTagType(TK: TagTypeKind::Struct,
1454 UnqualifiedName: Discriminate("__block_literal", Discriminator,
1455 ParameterDiscriminator));
1456 Out << "@Z";
1457
1458 // If the effective context was a Record, we have fully mangled the
1459 // qualified name and do not need to continue.
1460 if (isa<RecordDecl>(Val: DC))
1461 break;
1462 continue;
1463 } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Val: DC)) {
1464 mangleObjCMethodName(MD: Method);
1465 } else if (isa<NamedDecl>(Val: DC)) {
1466 ND = cast<NamedDecl>(Val: DC);
1467 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: ND)) {
1468 mangle(GD: getGlobalDeclAsDeclContext(DC: FD), Prefix: "?");
1469 break;
1470 } else {
1471 mangleUnqualifiedName(GD: ND);
1472 // Lambdas in default arguments conceptually belong to the function the
1473 // parameter corresponds to.
1474 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D: ND)) {
1475 DC = LDADC;
1476 continue;
1477 }
1478 }
1479 }
1480 DC = DC->getParent();
1481 }
1482}
1483
1484void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
1485 // Microsoft uses the names on the case labels for these dtor variants. Clang
1486 // uses the Itanium terminology internally. Everything in this ABI delegates
1487 // towards the base dtor.
1488 switch (T) {
1489 // <operator-name> ::= ?1 # destructor
1490 case Dtor_Base: Out << "?1"; return;
1491 // <operator-name> ::= ?_D # vbase destructor
1492 case Dtor_Complete: Out << "?_D"; return;
1493 // <operator-name> ::= ?_G # scalar deleting destructor
1494 case Dtor_Deleting: Out << "?_G"; return;
1495 // <operator-name> ::= ?_E # vector deleting destructor
1496 // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need
1497 // it.
1498 case Dtor_Comdat:
1499 llvm_unreachable("not expecting a COMDAT");
1500 }
1501 llvm_unreachable("Unsupported dtor type?");
1502}
1503
1504void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
1505 SourceLocation Loc) {
1506 switch (OO) {
1507 // ?0 # constructor
1508 // ?1 # destructor
1509 // <operator-name> ::= ?2 # new
1510 case OO_New: Out << "?2"; break;
1511 // <operator-name> ::= ?3 # delete
1512 case OO_Delete: Out << "?3"; break;
1513 // <operator-name> ::= ?4 # =
1514 case OO_Equal: Out << "?4"; break;
1515 // <operator-name> ::= ?5 # >>
1516 case OO_GreaterGreater: Out << "?5"; break;
1517 // <operator-name> ::= ?6 # <<
1518 case OO_LessLess: Out << "?6"; break;
1519 // <operator-name> ::= ?7 # !
1520 case OO_Exclaim: Out << "?7"; break;
1521 // <operator-name> ::= ?8 # ==
1522 case OO_EqualEqual: Out << "?8"; break;
1523 // <operator-name> ::= ?9 # !=
1524 case OO_ExclaimEqual: Out << "?9"; break;
1525 // <operator-name> ::= ?A # []
1526 case OO_Subscript: Out << "?A"; break;
1527 // ?B # conversion
1528 // <operator-name> ::= ?C # ->
1529 case OO_Arrow: Out << "?C"; break;
1530 // <operator-name> ::= ?D # *
1531 case OO_Star: Out << "?D"; break;
1532 // <operator-name> ::= ?E # ++
1533 case OO_PlusPlus: Out << "?E"; break;
1534 // <operator-name> ::= ?F # --
1535 case OO_MinusMinus: Out << "?F"; break;
1536 // <operator-name> ::= ?G # -
1537 case OO_Minus: Out << "?G"; break;
1538 // <operator-name> ::= ?H # +
1539 case OO_Plus: Out << "?H"; break;
1540 // <operator-name> ::= ?I # &
1541 case OO_Amp: Out << "?I"; break;
1542 // <operator-name> ::= ?J # ->*
1543 case OO_ArrowStar: Out << "?J"; break;
1544 // <operator-name> ::= ?K # /
1545 case OO_Slash: Out << "?K"; break;
1546 // <operator-name> ::= ?L # %
1547 case OO_Percent: Out << "?L"; break;
1548 // <operator-name> ::= ?M # <
1549 case OO_Less: Out << "?M"; break;
1550 // <operator-name> ::= ?N # <=
1551 case OO_LessEqual: Out << "?N"; break;
1552 // <operator-name> ::= ?O # >
1553 case OO_Greater: Out << "?O"; break;
1554 // <operator-name> ::= ?P # >=
1555 case OO_GreaterEqual: Out << "?P"; break;
1556 // <operator-name> ::= ?Q # ,
1557 case OO_Comma: Out << "?Q"; break;
1558 // <operator-name> ::= ?R # ()
1559 case OO_Call: Out << "?R"; break;
1560 // <operator-name> ::= ?S # ~
1561 case OO_Tilde: Out << "?S"; break;
1562 // <operator-name> ::= ?T # ^
1563 case OO_Caret: Out << "?T"; break;
1564 // <operator-name> ::= ?U # |
1565 case OO_Pipe: Out << "?U"; break;
1566 // <operator-name> ::= ?V # &&
1567 case OO_AmpAmp: Out << "?V"; break;
1568 // <operator-name> ::= ?W # ||
1569 case OO_PipePipe: Out << "?W"; break;
1570 // <operator-name> ::= ?X # *=
1571 case OO_StarEqual: Out << "?X"; break;
1572 // <operator-name> ::= ?Y # +=
1573 case OO_PlusEqual: Out << "?Y"; break;
1574 // <operator-name> ::= ?Z # -=
1575 case OO_MinusEqual: Out << "?Z"; break;
1576 // <operator-name> ::= ?_0 # /=
1577 case OO_SlashEqual: Out << "?_0"; break;
1578 // <operator-name> ::= ?_1 # %=
1579 case OO_PercentEqual: Out << "?_1"; break;
1580 // <operator-name> ::= ?_2 # >>=
1581 case OO_GreaterGreaterEqual: Out << "?_2"; break;
1582 // <operator-name> ::= ?_3 # <<=
1583 case OO_LessLessEqual: Out << "?_3"; break;
1584 // <operator-name> ::= ?_4 # &=
1585 case OO_AmpEqual: Out << "?_4"; break;
1586 // <operator-name> ::= ?_5 # |=
1587 case OO_PipeEqual: Out << "?_5"; break;
1588 // <operator-name> ::= ?_6 # ^=
1589 case OO_CaretEqual: Out << "?_6"; break;
1590 // ?_7 # vftable
1591 // ?_8 # vbtable
1592 // ?_9 # vcall
1593 // ?_A # typeof
1594 // ?_B # local static guard
1595 // ?_C # string
1596 // ?_D # vbase destructor
1597 // ?_E # vector deleting destructor
1598 // ?_F # default constructor closure
1599 // ?_G # scalar deleting destructor
1600 // ?_H # vector constructor iterator
1601 // ?_I # vector destructor iterator
1602 // ?_J # vector vbase constructor iterator
1603 // ?_K # virtual displacement map
1604 // ?_L # eh vector constructor iterator
1605 // ?_M # eh vector destructor iterator
1606 // ?_N # eh vector vbase constructor iterator
1607 // ?_O # copy constructor closure
1608 // ?_P<name> # udt returning <name>
1609 // ?_Q # <unknown>
1610 // ?_R0 # RTTI Type Descriptor
1611 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
1612 // ?_R2 # RTTI Base Class Array
1613 // ?_R3 # RTTI Class Hierarchy Descriptor
1614 // ?_R4 # RTTI Complete Object Locator
1615 // ?_S # local vftable
1616 // ?_T # local vftable constructor closure
1617 // <operator-name> ::= ?_U # new[]
1618 case OO_Array_New: Out << "?_U"; break;
1619 // <operator-name> ::= ?_V # delete[]
1620 case OO_Array_Delete: Out << "?_V"; break;
1621 // <operator-name> ::= ?__L # co_await
1622 case OO_Coawait: Out << "?__L"; break;
1623 // <operator-name> ::= ?__M # <=>
1624 case OO_Spaceship: Out << "?__M"; break;
1625
1626 case OO_Conditional: {
1627 Error(loc: Loc, thingy: "conditional operator");
1628 break;
1629 }
1630
1631 case OO_None:
1632 case NUM_OVERLOADED_OPERATORS:
1633 llvm_unreachable("Not an overloaded operator");
1634 }
1635}
1636
1637void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
1638 // <source name> ::= <identifier> @
1639 BackRefVec::iterator Found = llvm::find(Range&: NameBackReferences, Val: Name);
1640 if (Found == NameBackReferences.end()) {
1641 if (NameBackReferences.size() < 10)
1642 NameBackReferences.push_back(Elt: std::string(Name));
1643 Out << Name << '@';
1644 } else {
1645 Out << (Found - NameBackReferences.begin());
1646 }
1647}
1648
1649void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1650 Context.mangleObjCMethodNameAsSourceName(MD, Out);
1651}
1652
1653void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1654 GlobalDecl GD, const TemplateArgumentList &TemplateArgs) {
1655 // <template-name> ::= <unscoped-template-name> <template-args>
1656 // ::= <substitution>
1657 // Always start with the unqualified name.
1658
1659 // Templates have their own context for back references.
1660 ArgBackRefMap OuterFunArgsContext;
1661 ArgBackRefMap OuterTemplateArgsContext;
1662 BackRefVec OuterTemplateContext;
1663 PassObjectSizeArgsSet OuterPassObjectSizeArgs;
1664 NameBackReferences.swap(RHS&: OuterTemplateContext);
1665 FunArgBackReferences.swap(RHS&: OuterFunArgsContext);
1666 TemplateArgBackReferences.swap(RHS&: OuterTemplateArgsContext);
1667 PassObjectSizeArgs.swap(x&: OuterPassObjectSizeArgs);
1668
1669 mangleUnscopedTemplateName(GD);
1670 mangleTemplateArgs(TD: cast<TemplateDecl>(Val: GD.getDecl()), TemplateArgs);
1671
1672 // Restore the previous back reference contexts.
1673 NameBackReferences.swap(RHS&: OuterTemplateContext);
1674 FunArgBackReferences.swap(RHS&: OuterFunArgsContext);
1675 TemplateArgBackReferences.swap(RHS&: OuterTemplateArgsContext);
1676 PassObjectSizeArgs.swap(x&: OuterPassObjectSizeArgs);
1677}
1678
1679void MicrosoftCXXNameMangler::mangleUnscopedTemplateName(GlobalDecl GD) {
1680 // <unscoped-template-name> ::= ?$ <unqualified-name>
1681 Out << "?$";
1682 mangleUnqualifiedName(GD);
1683}
1684
1685void MicrosoftCXXNameMangler::mangleIntegerLiteral(
1686 const llvm::APSInt &Value, const NonTypeTemplateParmDecl *PD,
1687 QualType TemplateArgType) {
1688 // <integer-literal> ::= $0 <number>
1689 // <integer-literal> ::= <auto-nttp>
1690 //
1691 // <auto-nttp> ::= $ M <type> 0 <number>
1692 Out << "$";
1693
1694 // Since MSVC 2019, add 'M[<type>]' after '$' for auto template parameter when
1695 // argument is integer.
1696 if (getASTContext().getLangOpts().isCompatibleWithMSVC(
1697 MajorVersion: LangOptions::MSVC2019) &&
1698 PD && PD->getType()->getTypeClass() == Type::Auto &&
1699 !TemplateArgType.isNull()) {
1700 Out << "M";
1701 mangleType(T: TemplateArgType, Range: SourceRange(), QMM: QMM_Drop);
1702 }
1703
1704 Out << "0";
1705
1706 mangleNumber(Number: Value);
1707}
1708
1709void MicrosoftCXXNameMangler::mangleExpression(
1710 const Expr *E, const NonTypeTemplateParmDecl *PD) {
1711 // See if this is a constant expression.
1712 if (std::optional<llvm::APSInt> Value =
1713 E->getIntegerConstantExpr(Ctx: Context.getASTContext())) {
1714 mangleIntegerLiteral(Value: *Value, PD, TemplateArgType: E->getType());
1715 return;
1716 }
1717
1718 // As bad as this diagnostic is, it's better than crashing.
1719 Error(loc: E->getExprLoc(), thing1: "expression type: ", thing2: E->getStmtClassName())
1720 << E->getSourceRange();
1721}
1722
1723void MicrosoftCXXNameMangler::mangleTemplateArgs(
1724 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1725 // <template-args> ::= <template-arg>+
1726 const TemplateParameterList *TPL = TD->getTemplateParameters();
1727 assert(TPL->size() == TemplateArgs.size() &&
1728 "size mismatch between args and parms!");
1729
1730 for (size_t i = 0; i < TemplateArgs.size(); ++i) {
1731 const TemplateArgument &TA = TemplateArgs[i];
1732
1733 // Separate consecutive packs by $$Z.
1734 if (i > 0 && TA.getKind() == TemplateArgument::Pack &&
1735 TemplateArgs[i - 1].getKind() == TemplateArgument::Pack)
1736 Out << "$$Z";
1737
1738 mangleTemplateArg(TD, TA, Parm: TPL->getParam(Idx: i));
1739 }
1740}
1741
1742/// If value V (with type T) represents a decayed pointer to the first element
1743/// of an array, return that array.
1744static ValueDecl *getAsArrayToPointerDecayedDecl(QualType T, const APValue &V) {
1745 // Must be a pointer...
1746 if (!T->isPointerType() || !V.isLValue() || !V.hasLValuePath() ||
1747 !V.getLValueBase())
1748 return nullptr;
1749 // ... to element 0 of an array.
1750 QualType BaseT = V.getLValueBase().getType();
1751 if (!BaseT->isArrayType() || V.getLValuePath().size() != 1 ||
1752 V.getLValuePath()[0].getAsArrayIndex() != 0)
1753 return nullptr;
1754 return const_cast<ValueDecl *>(
1755 V.getLValueBase().dyn_cast<const ValueDecl *>());
1756}
1757
1758void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1759 const TemplateArgument &TA,
1760 const NamedDecl *Parm) {
1761 // <template-arg> ::= <type>
1762 // ::= <integer-literal>
1763 // ::= <member-data-pointer>
1764 // ::= <member-function-pointer>
1765 // ::= $ <constant-value>
1766 // ::= $ <auto-nttp-constant-value>
1767 // ::= <template-args>
1768 //
1769 // <auto-nttp-constant-value> ::= M <type> <constant-value>
1770 //
1771 // <constant-value> ::= 0 <number> # integer
1772 // ::= 1 <mangled-name> # address of D
1773 // ::= 2 <type> <typed-constant-value>* @ # struct
1774 // ::= 3 <type> <constant-value>* @ # array
1775 // ::= 4 ??? # string
1776 // ::= 5 <constant-value> @ # address of subobject
1777 // ::= 6 <constant-value> <unqualified-name> @ # a.b
1778 // ::= 7 <type> [<unqualified-name> <constant-value>] @
1779 // # union, with or without an active member
1780 // # pointer to member, symbolically
1781 // ::= 8 <class> <unqualified-name> @
1782 // ::= A <type> <non-negative integer> # float
1783 // ::= B <type> <non-negative integer> # double
1784 // # pointer to member, by component value
1785 // ::= F <number> <number>
1786 // ::= G <number> <number> <number>
1787 // ::= H <mangled-name> <number>
1788 // ::= I <mangled-name> <number> <number>
1789 // ::= J <mangled-name> <number> <number> <number>
1790 //
1791 // <typed-constant-value> ::= [<type>] <constant-value>
1792 //
1793 // The <type> appears to be included in a <typed-constant-value> only in the
1794 // '0', '1', '8', 'A', 'B', and 'E' cases.
1795
1796 switch (TA.getKind()) {
1797 case TemplateArgument::Null:
1798 llvm_unreachable("Can't mangle null template arguments!");
1799 case TemplateArgument::TemplateExpansion:
1800 llvm_unreachable("Can't mangle template expansion arguments!");
1801 case TemplateArgument::Type: {
1802 QualType T = TA.getAsType();
1803 mangleType(T, Range: SourceRange(), QMM: QMM_Escape);
1804 break;
1805 }
1806 case TemplateArgument::Declaration: {
1807 const NamedDecl *ND = TA.getAsDecl();
1808 if (isa<FieldDecl>(Val: ND) || isa<IndirectFieldDecl>(Val: ND)) {
1809 mangleMemberDataPointer(RD: cast<CXXRecordDecl>(Val: ND->getDeclContext())
1810 ->getMostRecentNonInjectedDecl(),
1811 VD: cast<ValueDecl>(Val: ND),
1812 PD: cast<NonTypeTemplateParmDecl>(Val: Parm),
1813 TemplateArgType: TA.getParamTypeForDecl());
1814 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: ND)) {
1815 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD);
1816 if (MD && MD->isInstance()) {
1817 mangleMemberFunctionPointer(
1818 RD: MD->getParent()->getMostRecentNonInjectedDecl(), MD,
1819 PD: cast<NonTypeTemplateParmDecl>(Val: Parm), TemplateArgType: TA.getParamTypeForDecl());
1820 } else {
1821 mangleFunctionPointer(FD, PD: cast<NonTypeTemplateParmDecl>(Val: Parm),
1822 TemplateArgType: TA.getParamTypeForDecl());
1823 }
1824 } else if (TA.getParamTypeForDecl()->isRecordType()) {
1825 Out << "$";
1826 auto *TPO = cast<TemplateParamObjectDecl>(Val: ND);
1827 mangleTemplateArgValue(T: TPO->getType().getUnqualifiedType(),
1828 V: TPO->getValue(), TplArgKind::ClassNTTP);
1829 } else if (const VarDecl *VD = dyn_cast<VarDecl>(Val: ND)) {
1830 mangleVarDecl(VD, PD: cast<NonTypeTemplateParmDecl>(Val: Parm),
1831 TemplateArgType: TA.getParamTypeForDecl());
1832 } else {
1833 mangle(GD: ND, Prefix: "$1?");
1834 }
1835 break;
1836 }
1837 case TemplateArgument::Integral: {
1838 QualType T = TA.getIntegralType();
1839 mangleIntegerLiteral(Value: TA.getAsIntegral(),
1840 PD: cast<NonTypeTemplateParmDecl>(Val: Parm), TemplateArgType: T);
1841 break;
1842 }
1843 case TemplateArgument::NullPtr: {
1844 QualType T = TA.getNullPtrType();
1845 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1846 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1847 if (MPT->isMemberFunctionPointerType() &&
1848 !isa<FunctionTemplateDecl>(Val: TD)) {
1849 mangleMemberFunctionPointer(RD, MD: nullptr, PD: nullptr, TemplateArgType: QualType());
1850 return;
1851 }
1852 if (MPT->isMemberDataPointer()) {
1853 if (!isa<FunctionTemplateDecl>(Val: TD)) {
1854 mangleMemberDataPointer(RD, VD: nullptr, PD: nullptr, TemplateArgType: QualType());
1855 return;
1856 }
1857 // nullptr data pointers are always represented with a single field
1858 // which is initialized with either 0 or -1. Why -1? Well, we need to
1859 // distinguish the case where the data member is at offset zero in the
1860 // record.
1861 // However, we are free to use 0 *if* we would use multiple fields for
1862 // non-nullptr member pointers.
1863 if (!RD->nullFieldOffsetIsZero()) {
1864 mangleIntegerLiteral(Value: llvm::APSInt::get(X: -1),
1865 PD: cast<NonTypeTemplateParmDecl>(Val: Parm), TemplateArgType: T);
1866 return;
1867 }
1868 }
1869 }
1870 mangleIntegerLiteral(Value: llvm::APSInt::getUnsigned(X: 0),
1871 PD: cast<NonTypeTemplateParmDecl>(Val: Parm), TemplateArgType: T);
1872 break;
1873 }
1874 case TemplateArgument::StructuralValue:
1875 if (ValueDecl *D = getAsArrayToPointerDecayedDecl(
1876 T: TA.getStructuralValueType(), V: TA.getAsStructuralValue())) {
1877 // Mangle the result of array-to-pointer decay as if it were a reference
1878 // to the original declaration, to match MSVC's behavior. This can result
1879 // in mangling collisions in some cases!
1880 return mangleTemplateArg(
1881 TD, TA: TemplateArgument(D, TA.getStructuralValueType()), Parm);
1882 }
1883 Out << "$";
1884 if (cast<NonTypeTemplateParmDecl>(Val: Parm)
1885 ->getType()
1886 ->getContainedDeducedType()) {
1887 Out << "M";
1888 mangleType(T: TA.getNonTypeTemplateArgumentType(), Range: SourceRange(), QMM: QMM_Drop);
1889 }
1890 mangleTemplateArgValue(T: TA.getStructuralValueType(),
1891 V: TA.getAsStructuralValue(),
1892 TplArgKind::StructuralValue,
1893 /*WithScalarType=*/false);
1894 break;
1895 case TemplateArgument::Expression:
1896 mangleExpression(E: TA.getAsExpr(), PD: cast<NonTypeTemplateParmDecl>(Val: Parm));
1897 break;
1898 case TemplateArgument::Pack: {
1899 ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1900 if (TemplateArgs.empty()) {
1901 if (isa<TemplateTypeParmDecl>(Val: Parm) ||
1902 isa<TemplateTemplateParmDecl>(Val: Parm))
1903 // MSVC 2015 changed the mangling for empty expanded template packs,
1904 // use the old mangling for link compatibility for old versions.
1905 Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
1906 MajorVersion: LangOptions::MSVC2015)
1907 ? "$$V"
1908 : "$$$V");
1909 else if (isa<NonTypeTemplateParmDecl>(Val: Parm))
1910 Out << "$S";
1911 else
1912 llvm_unreachable("unexpected template parameter decl!");
1913 } else {
1914 for (const TemplateArgument &PA : TemplateArgs)
1915 mangleTemplateArg(TD, TA: PA, Parm);
1916 }
1917 break;
1918 }
1919 case TemplateArgument::Template: {
1920 const NamedDecl *ND =
1921 TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
1922 if (const auto *TD = dyn_cast<TagDecl>(Val: ND)) {
1923 mangleType(TD);
1924 } else if (isa<TypeAliasDecl>(Val: ND)) {
1925 Out << "$$Y";
1926 mangleName(GD: ND);
1927 } else {
1928 llvm_unreachable("unexpected template template NamedDecl!");
1929 }
1930 break;
1931 }
1932 }
1933}
1934
1935void MicrosoftCXXNameMangler::mangleTemplateArgValue(QualType T,
1936 const APValue &V,
1937 TplArgKind TAK,
1938 bool WithScalarType) {
1939 switch (V.getKind()) {
1940 case APValue::None:
1941 case APValue::Indeterminate:
1942 // FIXME: MSVC doesn't allow this, so we can't be sure how it should be
1943 // mangled.
1944 if (WithScalarType)
1945 mangleType(T, Range: SourceRange(), QMM: QMM_Escape);
1946 Out << '@';
1947 return;
1948
1949 case APValue::Int:
1950 if (WithScalarType)
1951 mangleType(T, Range: SourceRange(), QMM: QMM_Escape);
1952 Out << '0';
1953 mangleNumber(Number: V.getInt());
1954 return;
1955
1956 case APValue::Float:
1957 if (WithScalarType)
1958 mangleType(T, Range: SourceRange(), QMM: QMM_Escape);
1959 mangleFloat(Number: V.getFloat());
1960 return;
1961
1962 case APValue::LValue: {
1963 if (WithScalarType)
1964 mangleType(T, Range: SourceRange(), QMM: QMM_Escape);
1965
1966 APValue::LValueBase Base = V.getLValueBase();
1967
1968 // this might not cover every case but did cover issue 97756
1969 // see test CodeGen/ms_mangler_templatearg_opte
1970 if (V.isLValueOnePastTheEnd()) {
1971 Out << "5E";
1972 auto *VD = Base.dyn_cast<const ValueDecl *>();
1973 if (VD)
1974 mangle(GD: VD);
1975 Out << "@";
1976 return;
1977 }
1978
1979 if (!V.hasLValuePath() || V.getLValuePath().empty()) {
1980 // Taking the address of a complete object has a special-case mangling.
1981 if (Base.isNull()) {
1982 // MSVC emits 0A@ for null pointers. Generalize this for arbitrary
1983 // integers cast to pointers.
1984 // FIXME: This mangles 0 cast to a pointer the same as a null pointer,
1985 // even in cases where the two are different values.
1986 Out << "0";
1987 mangleNumber(Number: V.getLValueOffset().getQuantity());
1988 } else if (!V.hasLValuePath()) {
1989 // FIXME: This can only happen as an extension. Invent a mangling.
1990 Error(thingy: "template argument (extension not comaptible with ms mangler)");
1991 return;
1992 } else if (auto *VD = Base.dyn_cast<const ValueDecl*>()) {
1993 Out << "E";
1994 mangle(GD: VD);
1995 } else {
1996 Error(thingy: "template argument (undeclared base)");
1997 return;
1998 }
1999 } else {
2000 if (TAK == TplArgKind::ClassNTTP && T->isPointerType())
2001 Out << "5";
2002
2003 SmallVector<char, 2> EntryTypes;
2004 SmallVector<std::function<void()>, 2> EntryManglers;
2005 QualType ET = Base.getType();
2006 for (APValue::LValuePathEntry E : V.getLValuePath()) {
2007 if (auto *AT = ET->getAsArrayTypeUnsafe()) {
2008 EntryTypes.push_back(Elt: 'C');
2009 EntryManglers.push_back(Elt: [this, I = E.getAsArrayIndex()] {
2010 Out << '0';
2011 mangleNumber(Number: I);
2012 Out << '@';
2013 });
2014 ET = AT->getElementType();
2015 continue;
2016 }
2017
2018 const Decl *D = E.getAsBaseOrMember().getPointer();
2019 if (auto *FD = dyn_cast<FieldDecl>(Val: D)) {
2020 ET = FD->getType();
2021 if (const auto *RD = ET->getAsRecordDecl())
2022 if (RD->isAnonymousStructOrUnion())
2023 continue;
2024 } else {
2025 ET = getASTContext().getRecordType(Decl: cast<CXXRecordDecl>(Val: D));
2026 // Bug in MSVC: fully qualified name of base class should be used for
2027 // mangling to prevent collisions e.g. on base classes with same names
2028 // in different namespaces.
2029 }
2030
2031 EntryTypes.push_back(Elt: '6');
2032 EntryManglers.push_back(Elt: [this, D] {
2033 mangleUnqualifiedName(GD: cast<NamedDecl>(Val: D));
2034 Out << '@';
2035 });
2036 }
2037
2038 for (auto I = EntryTypes.rbegin(), E = EntryTypes.rend(); I != E; ++I)
2039 Out << *I;
2040
2041 auto *VD = Base.dyn_cast<const ValueDecl*>();
2042 if (!VD) {
2043 Error(thingy: "template argument (null value decl)");
2044 return;
2045 }
2046 Out << (TAK == TplArgKind::ClassNTTP ? 'E' : '1');
2047 mangle(GD: VD);
2048
2049 for (const std::function<void()> &Mangler : EntryManglers)
2050 Mangler();
2051 if (TAK == TplArgKind::ClassNTTP && T->isPointerType())
2052 Out << '@';
2053 }
2054
2055 return;
2056 }
2057
2058 case APValue::MemberPointer: {
2059 if (WithScalarType)
2060 mangleType(T, Range: SourceRange(), QMM: QMM_Escape);
2061
2062 const CXXRecordDecl *RD =
2063 T->castAs<MemberPointerType>()->getMostRecentCXXRecordDecl();
2064 const ValueDecl *D = V.getMemberPointerDecl();
2065 if (TAK == TplArgKind::ClassNTTP) {
2066 if (T->isMemberDataPointerType())
2067 mangleMemberDataPointerInClassNTTP(RD, VD: D);
2068 else
2069 mangleMemberFunctionPointerInClassNTTP(RD,
2070 MD: cast_or_null<CXXMethodDecl>(Val: D));
2071 } else {
2072 if (T->isMemberDataPointerType())
2073 mangleMemberDataPointer(RD, VD: D, PD: nullptr, TemplateArgType: QualType(), Prefix: "");
2074 else
2075 mangleMemberFunctionPointer(RD, MD: cast_or_null<CXXMethodDecl>(Val: D), PD: nullptr,
2076 TemplateArgType: QualType(), Prefix: "");
2077 }
2078 return;
2079 }
2080
2081 case APValue::Struct: {
2082 Out << '2';
2083 mangleType(T, Range: SourceRange(), QMM: QMM_Escape);
2084 const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
2085 assert(RD && "unexpected type for record value");
2086
2087 unsigned BaseIndex = 0;
2088 for (const CXXBaseSpecifier &B : RD->bases())
2089 mangleTemplateArgValue(T: B.getType(), V: V.getStructBase(i: BaseIndex++), TAK);
2090 for (const FieldDecl *FD : RD->fields())
2091 if (!FD->isUnnamedBitField())
2092 mangleTemplateArgValue(T: FD->getType(),
2093 V: V.getStructField(i: FD->getFieldIndex()), TAK,
2094 /*WithScalarType*/ true);
2095 Out << '@';
2096 return;
2097 }
2098
2099 case APValue::Union:
2100 Out << '7';
2101 mangleType(T, Range: SourceRange(), QMM: QMM_Escape);
2102 if (const FieldDecl *FD = V.getUnionField()) {
2103 mangleUnqualifiedName(GD: FD);
2104 mangleTemplateArgValue(T: FD->getType(), V: V.getUnionValue(), TAK);
2105 }
2106 Out << '@';
2107 return;
2108
2109 case APValue::ComplexInt:
2110 // We mangle complex types as structs, so mangle the value as a struct too.
2111 Out << '2';
2112 mangleType(T, Range: SourceRange(), QMM: QMM_Escape);
2113 Out << '0';
2114 mangleNumber(Number: V.getComplexIntReal());
2115 Out << '0';
2116 mangleNumber(Number: V.getComplexIntImag());
2117 Out << '@';
2118 return;
2119
2120 case APValue::ComplexFloat:
2121 Out << '2';
2122 mangleType(T, Range: SourceRange(), QMM: QMM_Escape);
2123 mangleFloat(Number: V.getComplexFloatReal());
2124 mangleFloat(Number: V.getComplexFloatImag());
2125 Out << '@';
2126 return;
2127
2128 case APValue::Array: {
2129 Out << '3';
2130 QualType ElemT = getASTContext().getAsArrayType(T)->getElementType();
2131 mangleType(T: ElemT, Range: SourceRange(), QMM: QMM_Escape);
2132 for (unsigned I = 0, N = V.getArraySize(); I != N; ++I) {
2133 const APValue &ElemV = I < V.getArrayInitializedElts()
2134 ? V.getArrayInitializedElt(I)
2135 : V.getArrayFiller();
2136 mangleTemplateArgValue(T: ElemT, V: ElemV, TAK);
2137 Out << '@';
2138 }
2139 Out << '@';
2140 return;
2141 }
2142
2143 case APValue::Vector: {
2144 // __m128 is mangled as a struct containing an array. We follow this
2145 // approach for all vector types.
2146 Out << '2';
2147 mangleType(T, Range: SourceRange(), QMM: QMM_Escape);
2148 Out << '3';
2149 QualType ElemT = T->castAs<VectorType>()->getElementType();
2150 mangleType(T: ElemT, Range: SourceRange(), QMM: QMM_Escape);
2151 for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) {
2152 const APValue &ElemV = V.getVectorElt(I);
2153 mangleTemplateArgValue(T: ElemT, V: ElemV, TAK);
2154 Out << '@';
2155 }
2156 Out << "@@";
2157 return;
2158 }
2159
2160 case APValue::AddrLabelDiff: {
2161 Error(thingy: "template argument (value type: address label diff)");
2162 return;
2163 }
2164
2165 case APValue::FixedPoint: {
2166 Error(thingy: "template argument (value type: fixed point)");
2167 return;
2168 }
2169 }
2170}
2171
2172void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) {
2173 llvm::SmallString<64> TemplateMangling;
2174 llvm::raw_svector_ostream Stream(TemplateMangling);
2175 MicrosoftCXXNameMangler Extra(Context, Stream);
2176
2177 Stream << "?$";
2178 Extra.mangleSourceName(Name: "Protocol");
2179 Extra.mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: PD->getName());
2180
2181 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__ObjC"});
2182}
2183
2184void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type,
2185 Qualifiers Quals,
2186 SourceRange Range) {
2187 llvm::SmallString<64> TemplateMangling;
2188 llvm::raw_svector_ostream Stream(TemplateMangling);
2189 MicrosoftCXXNameMangler Extra(Context, Stream);
2190
2191 Stream << "?$";
2192 switch (Quals.getObjCLifetime()) {
2193 case Qualifiers::OCL_None:
2194 case Qualifiers::OCL_ExplicitNone:
2195 break;
2196 case Qualifiers::OCL_Autoreleasing:
2197 Extra.mangleSourceName(Name: "Autoreleasing");
2198 break;
2199 case Qualifiers::OCL_Strong:
2200 Extra.mangleSourceName(Name: "Strong");
2201 break;
2202 case Qualifiers::OCL_Weak:
2203 Extra.mangleSourceName(Name: "Weak");
2204 break;
2205 }
2206 Extra.manglePointerCVQualifiers(Quals);
2207 Extra.manglePointerExtQualifiers(Quals, PointeeType: Type);
2208 Extra.mangleType(T: Type, Range);
2209
2210 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__ObjC"});
2211}
2212
2213void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T,
2214 Qualifiers Quals,
2215 SourceRange Range) {
2216 llvm::SmallString<64> TemplateMangling;
2217 llvm::raw_svector_ostream Stream(TemplateMangling);
2218 MicrosoftCXXNameMangler Extra(Context, Stream);
2219
2220 Stream << "?$";
2221 Extra.mangleSourceName(Name: "KindOf");
2222 Extra.mangleType(T: QualType(T, 0)
2223 .stripObjCKindOfType(ctx: getASTContext())
2224 ->castAs<ObjCObjectType>(),
2225 Quals, Range);
2226
2227 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__ObjC"});
2228}
2229
2230void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
2231 bool IsMember) {
2232 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
2233 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
2234 // 'I' means __restrict (32/64-bit).
2235 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
2236 // keyword!
2237 // <base-cvr-qualifiers> ::= A # near
2238 // ::= B # near const
2239 // ::= C # near volatile
2240 // ::= D # near const volatile
2241 // ::= E # far (16-bit)
2242 // ::= F # far const (16-bit)
2243 // ::= G # far volatile (16-bit)
2244 // ::= H # far const volatile (16-bit)
2245 // ::= I # huge (16-bit)
2246 // ::= J # huge const (16-bit)
2247 // ::= K # huge volatile (16-bit)
2248 // ::= L # huge const volatile (16-bit)
2249 // ::= M <basis> # based
2250 // ::= N <basis> # based const
2251 // ::= O <basis> # based volatile
2252 // ::= P <basis> # based const volatile
2253 // ::= Q # near member
2254 // ::= R # near const member
2255 // ::= S # near volatile member
2256 // ::= T # near const volatile member
2257 // ::= U # far member (16-bit)
2258 // ::= V # far const member (16-bit)
2259 // ::= W # far volatile member (16-bit)
2260 // ::= X # far const volatile member (16-bit)
2261 // ::= Y # huge member (16-bit)
2262 // ::= Z # huge const member (16-bit)
2263 // ::= 0 # huge volatile member (16-bit)
2264 // ::= 1 # huge const volatile member (16-bit)
2265 // ::= 2 <basis> # based member
2266 // ::= 3 <basis> # based const member
2267 // ::= 4 <basis> # based volatile member
2268 // ::= 5 <basis> # based const volatile member
2269 // ::= 6 # near function (pointers only)
2270 // ::= 7 # far function (pointers only)
2271 // ::= 8 # near method (pointers only)
2272 // ::= 9 # far method (pointers only)
2273 // ::= _A <basis> # based function (pointers only)
2274 // ::= _B <basis> # based function (far?) (pointers only)
2275 // ::= _C <basis> # based method (pointers only)
2276 // ::= _D <basis> # based method (far?) (pointers only)
2277 // ::= _E # block (Clang)
2278 // <basis> ::= 0 # __based(void)
2279 // ::= 1 # __based(segment)?
2280 // ::= 2 <name> # __based(name)
2281 // ::= 3 # ?
2282 // ::= 4 # ?
2283 // ::= 5 # not really based
2284 bool HasConst = Quals.hasConst(),
2285 HasVolatile = Quals.hasVolatile();
2286
2287 if (!IsMember) {
2288 if (HasConst && HasVolatile) {
2289 Out << 'D';
2290 } else if (HasVolatile) {
2291 Out << 'C';
2292 } else if (HasConst) {
2293 Out << 'B';
2294 } else {
2295 Out << 'A';
2296 }
2297 } else {
2298 if (HasConst && HasVolatile) {
2299 Out << 'T';
2300 } else if (HasVolatile) {
2301 Out << 'S';
2302 } else if (HasConst) {
2303 Out << 'R';
2304 } else {
2305 Out << 'Q';
2306 }
2307 }
2308
2309 // FIXME: For now, just drop all extension qualifiers on the floor.
2310}
2311
2312void
2313MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2314 // <ref-qualifier> ::= G # lvalue reference
2315 // ::= H # rvalue-reference
2316 switch (RefQualifier) {
2317 case RQ_None:
2318 break;
2319
2320 case RQ_LValue:
2321 Out << 'G';
2322 break;
2323
2324 case RQ_RValue:
2325 Out << 'H';
2326 break;
2327 }
2328}
2329
2330void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
2331 QualType PointeeType) {
2332 // Check if this is a default 64-bit pointer or has __ptr64 qualifier.
2333 bool is64Bit = PointeeType.isNull() ? PointersAre64Bit :
2334 is64BitPointer(Quals: PointeeType.getQualifiers());
2335 if (is64Bit && (PointeeType.isNull() || !PointeeType->isFunctionType()))
2336 Out << 'E';
2337
2338 if (Quals.hasRestrict())
2339 Out << 'I';
2340
2341 if (Quals.hasUnaligned() ||
2342 (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned()))
2343 Out << 'F';
2344}
2345
2346void MicrosoftCXXNameMangler::manglePointerAuthQualifier(Qualifiers Quals) {
2347 PointerAuthQualifier PointerAuth = Quals.getPointerAuth();
2348 if (!PointerAuth)
2349 return;
2350
2351 Out << "__ptrauth";
2352 mangleNumber(Number: PointerAuth.getKey());
2353 mangleNumber(Number: PointerAuth.isAddressDiscriminated());
2354 mangleNumber(Number: PointerAuth.getExtraDiscriminator());
2355}
2356
2357void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
2358 // <pointer-cv-qualifiers> ::= P # no qualifiers
2359 // ::= Q # const
2360 // ::= R # volatile
2361 // ::= S # const volatile
2362 bool HasConst = Quals.hasConst(),
2363 HasVolatile = Quals.hasVolatile();
2364
2365 if (HasConst && HasVolatile) {
2366 Out << 'S';
2367 } else if (HasVolatile) {
2368 Out << 'R';
2369 } else if (HasConst) {
2370 Out << 'Q';
2371 } else {
2372 Out << 'P';
2373 }
2374}
2375
2376void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T,
2377 SourceRange Range) {
2378 // MSVC will backreference two canonically equivalent types that have slightly
2379 // different manglings when mangled alone.
2380
2381 // Decayed types do not match up with non-decayed versions of the same type.
2382 //
2383 // e.g.
2384 // void (*x)(void) will not form a backreference with void x(void)
2385 void *TypePtr;
2386 if (const auto *DT = T->getAs<DecayedType>()) {
2387 QualType OriginalType = DT->getOriginalType();
2388 // All decayed ArrayTypes should be treated identically; as-if they were
2389 // a decayed IncompleteArrayType.
2390 if (const auto *AT = getASTContext().getAsArrayType(T: OriginalType))
2391 OriginalType = getASTContext().getIncompleteArrayType(
2392 EltTy: AT->getElementType(), ASM: AT->getSizeModifier(),
2393 IndexTypeQuals: AT->getIndexTypeCVRQualifiers());
2394
2395 TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
2396 // If the original parameter was textually written as an array,
2397 // instead treat the decayed parameter like it's const.
2398 //
2399 // e.g.
2400 // int [] -> int * const
2401 if (OriginalType->isArrayType())
2402 T = T.withConst();
2403 } else {
2404 TypePtr = T.getCanonicalType().getAsOpaquePtr();
2405 }
2406
2407 ArgBackRefMap::iterator Found = FunArgBackReferences.find(Val: TypePtr);
2408
2409 if (Found == FunArgBackReferences.end()) {
2410 size_t OutSizeBefore = Out.tell();
2411
2412 mangleType(T, Range, QMM: QMM_Drop);
2413
2414 // See if it's worth creating a back reference.
2415 // Only types longer than 1 character are considered
2416 // and only 10 back references slots are available:
2417 bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
2418 if (LongerThanOneChar && FunArgBackReferences.size() < 10) {
2419 size_t Size = FunArgBackReferences.size();
2420 FunArgBackReferences[TypePtr] = Size;
2421 }
2422 } else {
2423 Out << Found->second;
2424 }
2425}
2426
2427void MicrosoftCXXNameMangler::manglePassObjectSizeArg(
2428 const PassObjectSizeAttr *POSA) {
2429 int Type = POSA->getType();
2430 bool Dynamic = POSA->isDynamic();
2431
2432 auto Iter = PassObjectSizeArgs.insert(x: {Type, Dynamic}).first;
2433 auto *TypePtr = (const void *)&*Iter;
2434 ArgBackRefMap::iterator Found = FunArgBackReferences.find(Val: TypePtr);
2435
2436 if (Found == FunArgBackReferences.end()) {
2437 std::string Name =
2438 Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size";
2439 mangleArtificialTagType(TK: TagTypeKind::Enum, UnqualifiedName: Name + llvm::utostr(X: Type),
2440 NestedNames: {"__clang"});
2441
2442 if (FunArgBackReferences.size() < 10) {
2443 size_t Size = FunArgBackReferences.size();
2444 FunArgBackReferences[TypePtr] = Size;
2445 }
2446 } else {
2447 Out << Found->second;
2448 }
2449}
2450
2451void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T,
2452 Qualifiers Quals,
2453 SourceRange Range) {
2454 // Address space is mangled as an unqualified templated type in the __clang
2455 // namespace. The demangled version of this is:
2456 // In the case of a language specific address space:
2457 // __clang::struct _AS[language_addr_space]<Type>
2458 // where:
2459 // <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace>
2460 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2461 // "private"| "generic" | "device" | "host" ]
2462 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2463 // Note that the above were chosen to match the Itanium mangling for this.
2464 //
2465 // In the case of a non-language specific address space:
2466 // __clang::struct _AS<TargetAS, Type>
2467 assert(Quals.hasAddressSpace() && "Not valid without address space");
2468 llvm::SmallString<32> ASMangling;
2469 llvm::raw_svector_ostream Stream(ASMangling);
2470 MicrosoftCXXNameMangler Extra(Context, Stream);
2471 Stream << "?$";
2472
2473 LangAS AS = Quals.getAddressSpace();
2474 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2475 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2476 Extra.mangleSourceName(Name: "_AS");
2477 Extra.mangleIntegerLiteral(Value: llvm::APSInt::getUnsigned(X: TargetAS));
2478 } else {
2479 switch (AS) {
2480 default:
2481 llvm_unreachable("Not a language specific address space");
2482 case LangAS::opencl_global:
2483 Extra.mangleSourceName(Name: "_ASCLglobal");
2484 break;
2485 case LangAS::opencl_global_device:
2486 Extra.mangleSourceName(Name: "_ASCLdevice");
2487 break;
2488 case LangAS::opencl_global_host:
2489 Extra.mangleSourceName(Name: "_ASCLhost");
2490 break;
2491 case LangAS::opencl_local:
2492 Extra.mangleSourceName(Name: "_ASCLlocal");
2493 break;
2494 case LangAS::opencl_constant:
2495 Extra.mangleSourceName(Name: "_ASCLconstant");
2496 break;
2497 case LangAS::opencl_private:
2498 Extra.mangleSourceName(Name: "_ASCLprivate");
2499 break;
2500 case LangAS::opencl_generic:
2501 Extra.mangleSourceName(Name: "_ASCLgeneric");
2502 break;
2503 case LangAS::cuda_device:
2504 Extra.mangleSourceName(Name: "_ASCUdevice");
2505 break;
2506 case LangAS::cuda_constant:
2507 Extra.mangleSourceName(Name: "_ASCUconstant");
2508 break;
2509 case LangAS::cuda_shared:
2510 Extra.mangleSourceName(Name: "_ASCUshared");
2511 break;
2512 case LangAS::ptr32_sptr:
2513 case LangAS::ptr32_uptr:
2514 case LangAS::ptr64:
2515 llvm_unreachable("don't mangle ptr address spaces with _AS");
2516 }
2517 }
2518
2519 Extra.mangleType(T, Range, QMM: QMM_Escape);
2520 mangleQualifiers(Quals: Qualifiers(), IsMember: false);
2521 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: ASMangling, NestedNames: {"__clang"});
2522}
2523
2524void MicrosoftCXXNameMangler::mangleAutoReturnType(QualType T,
2525 QualifierMangleMode QMM) {
2526 assert(getASTContext().getLangOpts().isCompatibleWithMSVC(
2527 LangOptions::MSVC2019) &&
2528 "Cannot mangle MSVC 2017 auto return types!");
2529
2530 if (isa<AutoType>(Val: T)) {
2531 const auto *AT = T->getContainedAutoType();
2532 Qualifiers Quals = T.getLocalQualifiers();
2533
2534 if (QMM == QMM_Result)
2535 Out << '?';
2536 if (QMM != QMM_Drop)
2537 mangleQualifiers(Quals, IsMember: false);
2538 Out << (AT->isDecltypeAuto() ? "_T" : "_P");
2539 return;
2540 }
2541
2542 T = T.getDesugaredType(Context: getASTContext());
2543 Qualifiers Quals = T.getLocalQualifiers();
2544
2545 switch (QMM) {
2546 case QMM_Drop:
2547 case QMM_Result:
2548 break;
2549 case QMM_Mangle:
2550 mangleQualifiers(Quals, IsMember: false);
2551 break;
2552 default:
2553 llvm_unreachable("QMM_Escape unexpected");
2554 }
2555
2556 const Type *ty = T.getTypePtr();
2557 switch (ty->getTypeClass()) {
2558 case Type::MemberPointer:
2559 mangleAutoReturnType(T: cast<MemberPointerType>(Val: ty), Quals);
2560 break;
2561 case Type::Pointer:
2562 mangleAutoReturnType(T: cast<PointerType>(Val: ty), Quals);
2563 break;
2564 case Type::LValueReference:
2565 mangleAutoReturnType(T: cast<LValueReferenceType>(Val: ty), Quals);
2566 break;
2567 case Type::RValueReference:
2568 mangleAutoReturnType(T: cast<RValueReferenceType>(Val: ty), Quals);
2569 break;
2570 default:
2571 llvm_unreachable("Invalid type expected");
2572 }
2573}
2574
2575void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
2576 QualifierMangleMode QMM) {
2577 // Don't use the canonical types. MSVC includes things like 'const' on
2578 // pointer arguments to function pointers that canonicalization strips away.
2579 T = T.getDesugaredType(Context: getASTContext());
2580 Qualifiers Quals = T.getLocalQualifiers();
2581
2582 if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
2583 // If there were any Quals, getAsArrayType() pushed them onto the array
2584 // element type.
2585 if (QMM == QMM_Mangle)
2586 Out << 'A';
2587 else if (QMM == QMM_Escape || QMM == QMM_Result)
2588 Out << "$$B";
2589 mangleArrayType(T: AT);
2590 return;
2591 }
2592
2593 bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
2594 T->isReferenceType() || T->isBlockPointerType();
2595
2596 switch (QMM) {
2597 case QMM_Drop:
2598 if (Quals.hasObjCLifetime())
2599 Quals = Quals.withoutObjCLifetime();
2600 break;
2601 case QMM_Mangle:
2602 if (const FunctionType *FT = dyn_cast<FunctionType>(Val&: T)) {
2603 Out << '6';
2604 mangleFunctionType(T: FT);
2605 return;
2606 }
2607 mangleQualifiers(Quals, IsMember: false);
2608 break;
2609 case QMM_Escape:
2610 if (!IsPointer && Quals) {
2611 Out << "$$C";
2612 mangleQualifiers(Quals, IsMember: false);
2613 }
2614 break;
2615 case QMM_Result:
2616 // Presence of __unaligned qualifier shouldn't affect mangling here.
2617 Quals.removeUnaligned();
2618 if (Quals.hasObjCLifetime())
2619 Quals = Quals.withoutObjCLifetime();
2620 if ((!IsPointer && Quals) || isa<TagType>(Val: T) || isArtificialTagType(T)) {
2621 Out << '?';
2622 mangleQualifiers(Quals, IsMember: false);
2623 }
2624 break;
2625 }
2626
2627 const Type *ty = T.getTypePtr();
2628
2629 switch (ty->getTypeClass()) {
2630#define ABSTRACT_TYPE(CLASS, PARENT)
2631#define NON_CANONICAL_TYPE(CLASS, PARENT) \
2632 case Type::CLASS: \
2633 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2634 return;
2635#define TYPE(CLASS, PARENT) \
2636 case Type::CLASS: \
2637 mangleType(cast<CLASS##Type>(ty), Quals, Range); \
2638 break;
2639#include "clang/AST/TypeNodes.inc"
2640#undef ABSTRACT_TYPE
2641#undef NON_CANONICAL_TYPE
2642#undef TYPE
2643 }
2644}
2645
2646void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
2647 SourceRange Range) {
2648 // <type> ::= <builtin-type>
2649 // <builtin-type> ::= X # void
2650 // ::= C # signed char
2651 // ::= D # char
2652 // ::= E # unsigned char
2653 // ::= F # short
2654 // ::= G # unsigned short (or wchar_t if it's not a builtin)
2655 // ::= H # int
2656 // ::= I # unsigned int
2657 // ::= J # long
2658 // ::= K # unsigned long
2659 // L # <none>
2660 // ::= M # float
2661 // ::= N # double
2662 // ::= O # long double (__float80 is mangled differently)
2663 // ::= _J # long long, __int64
2664 // ::= _K # unsigned long long, __int64
2665 // ::= _L # __int128
2666 // ::= _M # unsigned __int128
2667 // ::= _N # bool
2668 // _O # <array in parameter>
2669 // ::= _Q # char8_t
2670 // ::= _S # char16_t
2671 // ::= _T # __float80 (Intel)
2672 // ::= _U # char32_t
2673 // ::= _W # wchar_t
2674 // ::= _Z # __float80 (Digital Mars)
2675 switch (T->getKind()) {
2676 case BuiltinType::Void:
2677 Out << 'X';
2678 break;
2679 case BuiltinType::SChar:
2680 Out << 'C';
2681 break;
2682 case BuiltinType::Char_U:
2683 case BuiltinType::Char_S:
2684 Out << 'D';
2685 break;
2686 case BuiltinType::UChar:
2687 Out << 'E';
2688 break;
2689 case BuiltinType::Short:
2690 Out << 'F';
2691 break;
2692 case BuiltinType::UShort:
2693 Out << 'G';
2694 break;
2695 case BuiltinType::Int:
2696 Out << 'H';
2697 break;
2698 case BuiltinType::UInt:
2699 Out << 'I';
2700 break;
2701 case BuiltinType::Long:
2702 Out << 'J';
2703 break;
2704 case BuiltinType::ULong:
2705 Out << 'K';
2706 break;
2707 case BuiltinType::Float:
2708 Out << 'M';
2709 break;
2710 case BuiltinType::Double:
2711 Out << 'N';
2712 break;
2713 // TODO: Determine size and mangle accordingly
2714 case BuiltinType::LongDouble:
2715 Out << 'O';
2716 break;
2717 case BuiltinType::LongLong:
2718 Out << "_J";
2719 break;
2720 case BuiltinType::ULongLong:
2721 Out << "_K";
2722 break;
2723 case BuiltinType::Int128:
2724 Out << "_L";
2725 break;
2726 case BuiltinType::UInt128:
2727 Out << "_M";
2728 break;
2729 case BuiltinType::Bool:
2730 Out << "_N";
2731 break;
2732 case BuiltinType::Char8:
2733 Out << "_Q";
2734 break;
2735 case BuiltinType::Char16:
2736 Out << "_S";
2737 break;
2738 case BuiltinType::Char32:
2739 Out << "_U";
2740 break;
2741 case BuiltinType::WChar_S:
2742 case BuiltinType::WChar_U:
2743 Out << "_W";
2744 break;
2745
2746#define BUILTIN_TYPE(Id, SingletonId)
2747#define PLACEHOLDER_TYPE(Id, SingletonId) \
2748 case BuiltinType::Id:
2749#include "clang/AST/BuiltinTypes.def"
2750 case BuiltinType::Dependent:
2751 llvm_unreachable("placeholder types shouldn't get to name mangling");
2752
2753 case BuiltinType::ObjCId:
2754 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "objc_object");
2755 break;
2756 case BuiltinType::ObjCClass:
2757 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "objc_class");
2758 break;
2759 case BuiltinType::ObjCSel:
2760 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "objc_selector");
2761 break;
2762
2763#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2764 case BuiltinType::Id: \
2765 Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \
2766 break;
2767#include "clang/Basic/OpenCLImageTypes.def"
2768 case BuiltinType::OCLSampler:
2769 Out << "PA";
2770 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "ocl_sampler");
2771 break;
2772 case BuiltinType::OCLEvent:
2773 Out << "PA";
2774 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "ocl_event");
2775 break;
2776 case BuiltinType::OCLClkEvent:
2777 Out << "PA";
2778 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "ocl_clkevent");
2779 break;
2780 case BuiltinType::OCLQueue:
2781 Out << "PA";
2782 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "ocl_queue");
2783 break;
2784 case BuiltinType::OCLReserveID:
2785 Out << "PA";
2786 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "ocl_reserveid");
2787 break;
2788#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2789 case BuiltinType::Id: \
2790 mangleArtificialTagType(TagTypeKind::Struct, "ocl_" #ExtType); \
2791 break;
2792#include "clang/Basic/OpenCLExtensionTypes.def"
2793
2794 case BuiltinType::NullPtr:
2795 Out << "$$T";
2796 break;
2797
2798 case BuiltinType::Float16:
2799 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "_Float16", NestedNames: {"__clang"});
2800 break;
2801
2802 case BuiltinType::Half:
2803 if (!getASTContext().getLangOpts().HLSL)
2804 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "_Half", NestedNames: {"__clang"});
2805 else if (getASTContext().getLangOpts().NativeHalfType)
2806 Out << "$f16@";
2807 else
2808 Out << "$halff@";
2809 break;
2810
2811 case BuiltinType::BFloat16:
2812 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "__bf16", NestedNames: {"__clang"});
2813 break;
2814
2815 case BuiltinType::MFloat8:
2816 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "__mfp8", NestedNames: {"__clang"});
2817 break;
2818
2819#define WASM_REF_TYPE(InternalName, MangledName, Id, SingletonId, AS) \
2820 case BuiltinType::Id: \
2821 mangleArtificialTagType(TagTypeKind::Struct, MangledName); \
2822 mangleArtificialTagType(TagTypeKind::Struct, MangledName, {"__clang"}); \
2823 break;
2824
2825#include "clang/Basic/WebAssemblyReferenceTypes.def"
2826
2827#define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) \
2828 case BuiltinType::Id: \
2829 mangleArtificialTagType(TagTypeKind::Struct, #Name); \
2830 break;
2831#include "clang/Basic/HLSLIntangibleTypes.def"
2832
2833#define SVE_TYPE(Name, Id, SingletonId) \
2834 case BuiltinType::Id: \
2835 mangleArtificialTagType(TagTypeKind::Struct, #Name, {"__clang"}); \
2836 break;
2837#define SVE_SCALAR_TYPE(Name, MangledName, Id, SingletonId, Bits)
2838#include "clang/Basic/AArch64ACLETypes.def"
2839
2840 // Issue an error for any type not explicitly handled.
2841 default:
2842 Error(loc: Range.getBegin(), thing1: "built-in type: ",
2843 thing2: T->getName(Policy: Context.getASTContext().getPrintingPolicy()))
2844 << Range;
2845 break;
2846 }
2847}
2848
2849// <type> ::= <function-type>
2850void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
2851 SourceRange) {
2852 // Structors only appear in decls, so at this point we know it's not a
2853 // structor type.
2854 // FIXME: This may not be lambda-friendly.
2855 if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) {
2856 Out << "$$A8@@";
2857 mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
2858 } else {
2859 Out << "$$A6";
2860 mangleFunctionType(T);
2861 }
2862}
2863void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
2864 Qualifiers, SourceRange) {
2865 Out << "$$A6";
2866 mangleFunctionType(T);
2867}
2868
2869void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
2870 const FunctionDecl *D,
2871 bool ForceThisQuals,
2872 bool MangleExceptionSpec) {
2873 // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
2874 // <return-type> <argument-list> <throw-spec>
2875 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(Val: T);
2876
2877 SourceRange Range;
2878 if (D) Range = D->getSourceRange();
2879
2880 bool IsInLambda = false;
2881 bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
2882 CallingConv CC = T->getCallConv();
2883 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Val: D)) {
2884 if (MD->getParent()->isLambda())
2885 IsInLambda = true;
2886 if (MD->isImplicitObjectMemberFunction())
2887 HasThisQuals = true;
2888 if (isa<CXXDestructorDecl>(Val: MD)) {
2889 IsStructor = true;
2890 } else if (isa<CXXConstructorDecl>(Val: MD)) {
2891 IsStructor = true;
2892 IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
2893 StructorType == Ctor_DefaultClosure) &&
2894 isStructorDecl(ND: MD);
2895 if (IsCtorClosure)
2896 CC = getASTContext().getDefaultCallingConvention(
2897 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
2898 }
2899 }
2900
2901 // If this is a C++ instance method, mangle the CVR qualifiers for the
2902 // this pointer.
2903 if (HasThisQuals) {
2904 Qualifiers Quals = Proto->getMethodQuals();
2905 manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
2906 mangleRefQualifier(RefQualifier: Proto->getRefQualifier());
2907 mangleQualifiers(Quals, /*IsMember=*/false);
2908 }
2909
2910 mangleCallingConvention(CC, Range);
2911
2912 // <return-type> ::= <type>
2913 // ::= @ # structors (they have no declared return type)
2914 if (IsStructor) {
2915 if (isa<CXXDestructorDecl>(Val: D) && isStructorDecl(ND: D)) {
2916 // The scalar deleting destructor takes an extra int argument which is not
2917 // reflected in the AST.
2918 if (StructorType == Dtor_Deleting) {
2919 Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
2920 return;
2921 }
2922 // The vbase destructor returns void which is not reflected in the AST.
2923 if (StructorType == Dtor_Complete) {
2924 Out << "XXZ";
2925 return;
2926 }
2927 }
2928 if (IsCtorClosure) {
2929 // Default constructor closure and copy constructor closure both return
2930 // void.
2931 Out << 'X';
2932
2933 if (StructorType == Ctor_DefaultClosure) {
2934 // Default constructor closure always has no arguments.
2935 Out << 'X';
2936 } else if (StructorType == Ctor_CopyingClosure) {
2937 // Copy constructor closure always takes an unqualified reference.
2938 mangleFunctionArgumentType(T: getASTContext().getLValueReferenceType(
2939 T: Proto->getParamType(i: 0)
2940 ->castAs<LValueReferenceType>()
2941 ->getPointeeType(),
2942 /*SpelledAsLValue=*/true),
2943 Range);
2944 Out << '@';
2945 } else {
2946 llvm_unreachable("unexpected constructor closure!");
2947 }
2948 Out << 'Z';
2949 return;
2950 }
2951 Out << '@';
2952 } else if (IsInLambda && isa_and_nonnull<CXXConversionDecl>(Val: D)) {
2953 // The only lambda conversion operators are to function pointers, which
2954 // can differ by their calling convention and are typically deduced. So
2955 // we make sure that this type gets mangled properly.
2956 mangleType(T: T->getReturnType(), Range, QMM: QMM_Result);
2957 } else {
2958 QualType ResultType = T->getReturnType();
2959 if (IsInLambda && isa<CXXConversionDecl>(Val: D)) {
2960 // The only lambda conversion operators are to function pointers, which
2961 // can differ by their calling convention and are typically deduced. So
2962 // we make sure that this type gets mangled properly.
2963 mangleType(T: ResultType, Range, QMM: QMM_Result);
2964 } else if (IsInLambda) {
2965 if (const auto *AT = ResultType->getContainedAutoType()) {
2966 assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
2967 "shouldn't need to mangle __auto_type!");
2968 Out << '?';
2969 mangleQualifiers(Quals: ResultType.getLocalQualifiers(), /*IsMember=*/false);
2970 Out << '?';
2971 mangleSourceName(Name: AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
2972 Out << '@';
2973 } else {
2974 Out << '@';
2975 }
2976 } else if (const auto *AT = ResultType->getContainedAutoType()) {
2977 assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
2978 "shouldn't need to mangle __auto_type!");
2979
2980 // If we have any pointer types with the clang address space extension
2981 // then defer to the custom clang mangling to keep backwards
2982 // compatibility. See `mangleType(const PointerType *T, Qualifiers Quals,
2983 // SourceRange Range)` for details.
2984 auto UseClangMangling = [](QualType ResultType) {
2985 QualType T = ResultType;
2986 while (isa<PointerType>(Val: T.getTypePtr())) {
2987 T = T->getPointeeType();
2988 if (T.getQualifiers().hasAddressSpace())
2989 return true;
2990 }
2991 return false;
2992 };
2993
2994 if (getASTContext().getLangOpts().isCompatibleWithMSVC(
2995 MajorVersion: LangOptions::MSVC2019) &&
2996 !UseClangMangling(ResultType)) {
2997 if (D && !D->getPrimaryTemplate()) {
2998 Out << '@';
2999 } else {
3000 if (D && D->getPrimaryTemplate()) {
3001 const FunctionProtoType *FPT = D->getPrimaryTemplate()
3002 ->getTemplatedDecl()
3003 ->getFirstDecl()
3004 ->getType()
3005 ->castAs<FunctionProtoType>();
3006 ResultType = FPT->getReturnType();
3007 }
3008 mangleAutoReturnType(T: ResultType, QMM: QMM_Result);
3009 }
3010 } else {
3011 Out << '?';
3012 mangleQualifiers(Quals: ResultType.getLocalQualifiers(), /*IsMember=*/false);
3013 Out << '?';
3014 mangleSourceName(Name: AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
3015 Out << '@';
3016 }
3017 } else {
3018 if (ResultType->isVoidType())
3019 ResultType = ResultType.getUnqualifiedType();
3020 mangleType(T: ResultType, Range, QMM: QMM_Result);
3021 }
3022 }
3023
3024 // <argument-list> ::= X # void
3025 // ::= <type>+ @
3026 // ::= <type>* Z # varargs
3027 if (!Proto) {
3028 // Function types without prototypes can arise when mangling a function type
3029 // within an overloadable function in C. We mangle these as the absence of
3030 // any parameter types (not even an empty parameter list).
3031 Out << '@';
3032 } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
3033 Out << 'X';
3034 } else {
3035 // Happens for function pointer type arguments for example.
3036 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
3037 // Explicit object parameters are prefixed by "_V".
3038 if (I == 0 && D && D->getParamDecl(i: I)->isExplicitObjectParameter())
3039 Out << "_V";
3040
3041 mangleFunctionArgumentType(T: Proto->getParamType(i: I), Range);
3042 // Mangle each pass_object_size parameter as if it's a parameter of enum
3043 // type passed directly after the parameter with the pass_object_size
3044 // attribute. The aforementioned enum's name is __pass_object_size, and we
3045 // pretend it resides in a top-level namespace called __clang.
3046 //
3047 // FIXME: Is there a defined extension notation for the MS ABI, or is it
3048 // necessary to just cross our fingers and hope this type+namespace
3049 // combination doesn't conflict with anything?
3050 if (D)
3051 if (const auto *P = D->getParamDecl(i: I)->getAttr<PassObjectSizeAttr>())
3052 manglePassObjectSizeArg(POSA: P);
3053 }
3054 // <builtin-type> ::= Z # ellipsis
3055 if (Proto->isVariadic())
3056 Out << 'Z';
3057 else
3058 Out << '@';
3059 }
3060
3061 if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 &&
3062 getASTContext().getLangOpts().isCompatibleWithMSVC(
3063 MajorVersion: LangOptions::MSVC2017_5))
3064 mangleThrowSpecification(T: Proto);
3065 else
3066 Out << 'Z';
3067}
3068
3069void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
3070 // <function-class> ::= <member-function> E? # E designates a 64-bit 'this'
3071 // # pointer. in 64-bit mode *all*
3072 // # 'this' pointers are 64-bit.
3073 // ::= <global-function>
3074 // <member-function> ::= A # private: near
3075 // ::= B # private: far
3076 // ::= C # private: static near
3077 // ::= D # private: static far
3078 // ::= E # private: virtual near
3079 // ::= F # private: virtual far
3080 // ::= I # protected: near
3081 // ::= J # protected: far
3082 // ::= K # protected: static near
3083 // ::= L # protected: static far
3084 // ::= M # protected: virtual near
3085 // ::= N # protected: virtual far
3086 // ::= Q # public: near
3087 // ::= R # public: far
3088 // ::= S # public: static near
3089 // ::= T # public: static far
3090 // ::= U # public: virtual near
3091 // ::= V # public: virtual far
3092 // <global-function> ::= Y # global near
3093 // ::= Z # global far
3094 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) {
3095 bool IsVirtual = MD->isVirtual();
3096 // When mangling vbase destructor variants, ignore whether or not the
3097 // underlying destructor was defined to be virtual.
3098 if (isa<CXXDestructorDecl>(Val: MD) && isStructorDecl(ND: MD) &&
3099 StructorType == Dtor_Complete) {
3100 IsVirtual = false;
3101 }
3102 switch (MD->getAccess()) {
3103 case AS_none:
3104 llvm_unreachable("Unsupported access specifier");
3105 case AS_private:
3106 if (!MD->isImplicitObjectMemberFunction())
3107 Out << 'C';
3108 else if (IsVirtual)
3109 Out << 'E';
3110 else
3111 Out << 'A';
3112 break;
3113 case AS_protected:
3114 if (!MD->isImplicitObjectMemberFunction())
3115 Out << 'K';
3116 else if (IsVirtual)
3117 Out << 'M';
3118 else
3119 Out << 'I';
3120 break;
3121 case AS_public:
3122 if (!MD->isImplicitObjectMemberFunction())
3123 Out << 'S';
3124 else if (IsVirtual)
3125 Out << 'U';
3126 else
3127 Out << 'Q';
3128 }
3129 } else {
3130 Out << 'Y';
3131 }
3132}
3133void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC,
3134 SourceRange Range) {
3135 // <calling-convention> ::= A # __cdecl
3136 // ::= B # __export __cdecl
3137 // ::= C # __pascal
3138 // ::= D # __export __pascal
3139 // ::= E # __thiscall
3140 // ::= F # __export __thiscall
3141 // ::= G # __stdcall
3142 // ::= H # __export __stdcall
3143 // ::= I # __fastcall
3144 // ::= J # __export __fastcall
3145 // ::= Q # __vectorcall
3146 // ::= S # __attribute__((__swiftcall__)) // Clang-only
3147 // ::= W # __attribute__((__swiftasynccall__))
3148 // ::= U # __attribute__((__preserve_most__))
3149 // ::= V # __attribute__((__preserve_none__)) //
3150 // Clang-only
3151 // // Clang-only
3152 // ::= w # __regcall
3153 // ::= x # __regcall4
3154 // The 'export' calling conventions are from a bygone era
3155 // (*cough*Win16*cough*) when functions were declared for export with
3156 // that keyword. (It didn't actually export them, it just made them so
3157 // that they could be in a DLL and somebody from another module could call
3158 // them.)
3159
3160 switch (CC) {
3161 default:
3162 break;
3163 case CC_Win64:
3164 case CC_X86_64SysV:
3165 case CC_C:
3166 Out << 'A';
3167 return;
3168 case CC_X86Pascal:
3169 Out << 'C';
3170 return;
3171 case CC_X86ThisCall:
3172 Out << 'E';
3173 return;
3174 case CC_X86StdCall:
3175 Out << 'G';
3176 return;
3177 case CC_X86FastCall:
3178 Out << 'I';
3179 return;
3180 case CC_X86VectorCall:
3181 Out << 'Q';
3182 return;
3183 case CC_Swift:
3184 Out << 'S';
3185 return;
3186 case CC_SwiftAsync:
3187 Out << 'W';
3188 return;
3189 case CC_PreserveMost:
3190 Out << 'U';
3191 return;
3192 case CC_PreserveNone:
3193 Out << 'V';
3194 return;
3195 case CC_X86RegCall:
3196 if (getASTContext().getLangOpts().RegCall4)
3197 Out << "x";
3198 else
3199 Out << "w";
3200 return;
3201 }
3202
3203 Error(loc: Range.getBegin(), thingy: "calling convention") << Range;
3204}
3205void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T,
3206 SourceRange Range) {
3207 mangleCallingConvention(CC: T->getCallConv(), Range);
3208}
3209
3210void MicrosoftCXXNameMangler::mangleThrowSpecification(
3211 const FunctionProtoType *FT) {
3212 // <throw-spec> ::= Z # (default)
3213 // ::= _E # noexcept
3214 if (FT->canThrow())
3215 Out << 'Z';
3216 else
3217 Out << "_E";
3218}
3219
3220void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
3221 Qualifiers, SourceRange Range) {
3222 // Probably should be mangled as a template instantiation; need to see what
3223 // VC does first.
3224 Error(loc: Range.getBegin(), thingy: "unresolved dependent type") << Range;
3225}
3226
3227// <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
3228// <union-type> ::= T <name>
3229// <struct-type> ::= U <name>
3230// <class-type> ::= V <name>
3231// <enum-type> ::= W4 <name>
3232void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) {
3233 switch (TTK) {
3234 case TagTypeKind::Union:
3235 Out << 'T';
3236 break;
3237 case TagTypeKind::Struct:
3238 case TagTypeKind::Interface:
3239 Out << 'U';
3240 break;
3241 case TagTypeKind::Class:
3242 Out << 'V';
3243 break;
3244 case TagTypeKind::Enum:
3245 Out << "W4";
3246 break;
3247 }
3248}
3249void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
3250 SourceRange) {
3251 mangleType(TD: cast<TagType>(Val: T)->getDecl());
3252}
3253void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
3254 SourceRange) {
3255 mangleType(TD: cast<TagType>(Val: T)->getDecl());
3256}
3257void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
3258 mangleTagTypeKind(TTK: TD->getTagKind());
3259 mangleName(GD: TD);
3260}
3261
3262// If you add a call to this, consider updating isArtificialTagType() too.
3263void MicrosoftCXXNameMangler::mangleArtificialTagType(
3264 TagTypeKind TK, StringRef UnqualifiedName,
3265 ArrayRef<StringRef> NestedNames) {
3266 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
3267 mangleTagTypeKind(TTK: TK);
3268
3269 // Always start with the unqualified name.
3270 mangleSourceName(Name: UnqualifiedName);
3271
3272 for (StringRef N : llvm::reverse(C&: NestedNames))
3273 mangleSourceName(Name: N);
3274
3275 // Terminate the whole name with an '@'.
3276 Out << '@';
3277}
3278
3279// <type> ::= <array-type>
3280// <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
3281// [Y <dimension-count> <dimension>+]
3282// <element-type> # as global, E is never required
3283// It's supposed to be the other way around, but for some strange reason, it
3284// isn't. Today this behavior is retained for the sole purpose of backwards
3285// compatibility.
3286void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
3287 // This isn't a recursive mangling, so now we have to do it all in this
3288 // one call.
3289 manglePointerCVQualifiers(Quals: T->getElementType().getQualifiers());
3290 mangleType(T: T->getElementType(), Range: SourceRange());
3291}
3292void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
3293 SourceRange) {
3294 llvm_unreachable("Should have been special cased");
3295}
3296void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
3297 SourceRange) {
3298 llvm_unreachable("Should have been special cased");
3299}
3300void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
3301 Qualifiers, SourceRange) {
3302 llvm_unreachable("Should have been special cased");
3303}
3304void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
3305 Qualifiers, SourceRange) {
3306 llvm_unreachable("Should have been special cased");
3307}
3308void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
3309 QualType ElementTy(T, 0);
3310 SmallVector<llvm::APInt, 3> Dimensions;
3311 for (;;) {
3312 if (ElementTy->isConstantArrayType()) {
3313 const ConstantArrayType *CAT =
3314 getASTContext().getAsConstantArrayType(T: ElementTy);
3315 Dimensions.push_back(Elt: CAT->getSize());
3316 ElementTy = CAT->getElementType();
3317 } else if (ElementTy->isIncompleteArrayType()) {
3318 const IncompleteArrayType *IAT =
3319 getASTContext().getAsIncompleteArrayType(T: ElementTy);
3320 Dimensions.push_back(Elt: llvm::APInt(32, 0));
3321 ElementTy = IAT->getElementType();
3322 } else if (ElementTy->isVariableArrayType()) {
3323 const VariableArrayType *VAT =
3324 getASTContext().getAsVariableArrayType(T: ElementTy);
3325 Dimensions.push_back(Elt: llvm::APInt(32, 0));
3326 ElementTy = VAT->getElementType();
3327 } else if (ElementTy->isDependentSizedArrayType()) {
3328 // The dependent expression has to be folded into a constant (TODO).
3329 const DependentSizedArrayType *DSAT =
3330 getASTContext().getAsDependentSizedArrayType(T: ElementTy);
3331 Error(loc: DSAT->getSizeExpr()->getExprLoc(), thingy: "dependent-length")
3332 << DSAT->getSizeExpr()->getSourceRange();
3333 return;
3334 } else {
3335 break;
3336 }
3337 }
3338 Out << 'Y';
3339 // <dimension-count> ::= <number> # number of extra dimensions
3340 mangleNumber(Number: Dimensions.size());
3341 for (const llvm::APInt &Dimension : Dimensions)
3342 mangleNumber(Number: Dimension.getLimitedValue());
3343 mangleType(T: ElementTy, Range: SourceRange(), QMM: QMM_Escape);
3344}
3345
3346void MicrosoftCXXNameMangler::mangleType(const ArrayParameterType *T,
3347 Qualifiers, SourceRange) {
3348 mangleArrayType(T: cast<ConstantArrayType>(Val: T));
3349}
3350
3351// <type> ::= <pointer-to-member-type>
3352// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
3353// <class name> <type>
3354void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
3355 Qualifiers Quals, SourceRange Range) {
3356 QualType PointeeType = T->getPointeeType();
3357 manglePointerCVQualifiers(Quals);
3358 manglePointerExtQualifiers(Quals, PointeeType);
3359 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
3360 Out << '8';
3361 mangleName(GD: T->getMostRecentCXXRecordDecl());
3362 mangleFunctionType(T: FPT, D: nullptr, ForceThisQuals: true);
3363 } else {
3364 mangleQualifiers(Quals: PointeeType.getQualifiers(), IsMember: true);
3365 mangleName(GD: T->getMostRecentCXXRecordDecl());
3366 mangleType(T: PointeeType, Range, QMM: QMM_Drop);
3367 }
3368}
3369
3370void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
3371 Qualifiers, SourceRange Range) {
3372 Out << '?';
3373
3374 llvm::SmallString<64> Name;
3375 Name += "<TTPT_";
3376 Name += llvm::utostr(X: T->getDepth());
3377 Name += "_";
3378 Name += llvm::utostr(X: T->getIndex());
3379 Name += ">";
3380 mangleSourceName(Name);
3381}
3382
3383void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
3384 Qualifiers, SourceRange Range) {
3385 Error(loc: Range.getBegin(), thingy: "substituted parameter pack") << Range;
3386}
3387
3388// <type> ::= <pointer-type>
3389// <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
3390// # the E is required for 64-bit non-static pointers
3391void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
3392 SourceRange Range) {
3393 QualType PointeeType = T->getPointeeType();
3394 manglePointerCVQualifiers(Quals);
3395 manglePointerExtQualifiers(Quals, PointeeType);
3396 manglePointerAuthQualifier(Quals);
3397
3398 // For pointer size address spaces, go down the same type mangling path as
3399 // non address space types.
3400 LangAS AddrSpace = PointeeType.getQualifiers().getAddressSpace();
3401 if (isPtrSizeAddressSpace(AS: AddrSpace) || AddrSpace == LangAS::Default)
3402 mangleType(T: PointeeType, Range);
3403 else
3404 mangleAddressSpaceType(T: PointeeType, Quals: PointeeType.getQualifiers(), Range);
3405}
3406
3407void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
3408 Qualifiers Quals, SourceRange Range) {
3409 QualType PointeeType = T->getPointeeType();
3410 switch (Quals.getObjCLifetime()) {
3411 case Qualifiers::OCL_None:
3412 case Qualifiers::OCL_ExplicitNone:
3413 break;
3414 case Qualifiers::OCL_Autoreleasing:
3415 case Qualifiers::OCL_Strong:
3416 case Qualifiers::OCL_Weak:
3417 return mangleObjCLifetime(Type: PointeeType, Quals, Range);
3418 }
3419 manglePointerCVQualifiers(Quals);
3420 manglePointerExtQualifiers(Quals, PointeeType);
3421 mangleType(T: PointeeType, Range);
3422}
3423
3424// <type> ::= <reference-type>
3425// <reference-type> ::= A E? <cvr-qualifiers> <type>
3426// # the E is required for 64-bit non-static lvalue references
3427void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
3428 Qualifiers Quals, SourceRange Range) {
3429 QualType PointeeType = T->getPointeeType();
3430 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
3431 Out << 'A';
3432 manglePointerExtQualifiers(Quals, PointeeType);
3433 mangleType(T: PointeeType, Range);
3434}
3435
3436// <type> ::= <r-value-reference-type>
3437// <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
3438// # the E is required for 64-bit non-static rvalue references
3439void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
3440 Qualifiers Quals, SourceRange Range) {
3441 QualType PointeeType = T->getPointeeType();
3442 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
3443 Out << "$$Q";
3444 manglePointerExtQualifiers(Quals, PointeeType);
3445 mangleType(T: PointeeType, Range);
3446}
3447
3448void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
3449 SourceRange Range) {
3450 QualType ElementType = T->getElementType();
3451
3452 llvm::SmallString<64> TemplateMangling;
3453 llvm::raw_svector_ostream Stream(TemplateMangling);
3454 MicrosoftCXXNameMangler Extra(Context, Stream);
3455 Stream << "?$";
3456 Extra.mangleSourceName(Name: "_Complex");
3457 Extra.mangleType(T: ElementType, Range, QMM: QMM_Escape);
3458
3459 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__clang"});
3460}
3461
3462// Returns true for types that mangleArtificialTagType() gets called for with
3463// TagTypeKind Union, Struct, Class and where compatibility with MSVC's
3464// mangling matters.
3465// (It doesn't matter for Objective-C types and the like that cl.exe doesn't
3466// support.)
3467bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const {
3468 const Type *ty = T.getTypePtr();
3469 switch (ty->getTypeClass()) {
3470 default:
3471 return false;
3472
3473 case Type::Vector: {
3474 // For ABI compatibility only __m64, __m128(id), and __m256(id) matter,
3475 // but since mangleType(VectorType*) always calls mangleArtificialTagType()
3476 // just always return true (the other vector types are clang-only).
3477 return true;
3478 }
3479 }
3480}
3481
3482void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
3483 SourceRange Range) {
3484 QualType EltTy = T->getElementType();
3485 const BuiltinType *ET = EltTy->getAs<BuiltinType>();
3486 const BitIntType *BitIntTy = EltTy->getAs<BitIntType>();
3487 assert((ET || BitIntTy) &&
3488 "vectors with non-builtin/_BitInt elements are unsupported");
3489 uint64_t Width = getASTContext().getTypeSize(T);
3490 // Pattern match exactly the typedefs in our intrinsic headers. Anything that
3491 // doesn't match the Intel types uses a custom mangling below.
3492 size_t OutSizeBefore = Out.tell();
3493 if (!isa<ExtVectorType>(Val: T)) {
3494 if (getASTContext().getTargetInfo().getTriple().isX86() && ET) {
3495 if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
3496 mangleArtificialTagType(TK: TagTypeKind::Union, UnqualifiedName: "__m64");
3497 } else if (Width >= 128) {
3498 if (ET->getKind() == BuiltinType::Float)
3499 mangleArtificialTagType(TK: TagTypeKind::Union,
3500 UnqualifiedName: "__m" + llvm::utostr(X: Width));
3501 else if (ET->getKind() == BuiltinType::LongLong)
3502 mangleArtificialTagType(TK: TagTypeKind::Union,
3503 UnqualifiedName: "__m" + llvm::utostr(X: Width) + 'i');
3504 else if (ET->getKind() == BuiltinType::Double)
3505 mangleArtificialTagType(TK: TagTypeKind::Struct,
3506 UnqualifiedName: "__m" + llvm::utostr(X: Width) + 'd');
3507 }
3508 }
3509 }
3510
3511 bool IsBuiltin = Out.tell() != OutSizeBefore;
3512 if (!IsBuiltin) {
3513 // The MS ABI doesn't have a special mangling for vector types, so we define
3514 // our own mangling to handle uses of __vector_size__ on user-specified
3515 // types, and for extensions like __v4sf.
3516
3517 llvm::SmallString<64> TemplateMangling;
3518 llvm::raw_svector_ostream Stream(TemplateMangling);
3519 MicrosoftCXXNameMangler Extra(Context, Stream);
3520 Stream << "?$";
3521 Extra.mangleSourceName(Name: "__vector");
3522 Extra.mangleType(T: QualType(ET ? static_cast<const Type *>(ET) : BitIntTy, 0),
3523 Range, QMM: QMM_Escape);
3524 Extra.mangleIntegerLiteral(Value: llvm::APSInt::getUnsigned(X: T->getNumElements()));
3525
3526 mangleArtificialTagType(TK: TagTypeKind::Union, UnqualifiedName: TemplateMangling, NestedNames: {"__clang"});
3527 }
3528}
3529
3530void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
3531 Qualifiers Quals, SourceRange Range) {
3532 mangleType(T: static_cast<const VectorType *>(T), Quals, Range);
3533}
3534
3535void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T,
3536 Qualifiers, SourceRange Range) {
3537 Error(loc: Range.getBegin(), thingy: "dependent-sized vector type") << Range;
3538}
3539
3540void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
3541 Qualifiers, SourceRange Range) {
3542 Error(loc: Range.getBegin(), thingy: "dependent-sized extended vector type") << Range;
3543}
3544
3545void MicrosoftCXXNameMangler::mangleType(const ConstantMatrixType *T,
3546 Qualifiers quals, SourceRange Range) {
3547 QualType EltTy = T->getElementType();
3548
3549 llvm::SmallString<64> TemplateMangling;
3550 llvm::raw_svector_ostream Stream(TemplateMangling);
3551 MicrosoftCXXNameMangler Extra(Context, Stream);
3552
3553 Stream << "?$";
3554
3555 Extra.mangleSourceName(Name: "__matrix");
3556 Extra.mangleType(T: EltTy, Range, QMM: QMM_Escape);
3557
3558 Extra.mangleIntegerLiteral(Value: llvm::APSInt::getUnsigned(X: T->getNumRows()));
3559 Extra.mangleIntegerLiteral(Value: llvm::APSInt::getUnsigned(X: T->getNumColumns()));
3560
3561 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__clang"});
3562}
3563
3564void MicrosoftCXXNameMangler::mangleType(const DependentSizedMatrixType *T,
3565 Qualifiers quals, SourceRange Range) {
3566 Error(loc: Range.getBegin(), thingy: "dependent-sized matrix type") << Range;
3567}
3568
3569void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T,
3570 Qualifiers, SourceRange Range) {
3571 Error(loc: Range.getBegin(), thingy: "dependent address space type") << Range;
3572}
3573
3574void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
3575 SourceRange) {
3576 // ObjC interfaces have structs underlying them.
3577 mangleTagTypeKind(TTK: TagTypeKind::Struct);
3578 mangleName(GD: T->getDecl());
3579}
3580
3581void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
3582 Qualifiers Quals, SourceRange Range) {
3583 if (T->isKindOfType())
3584 return mangleObjCKindOfType(T, Quals, Range);
3585
3586 if (T->qual_empty() && !T->isSpecialized())
3587 return mangleType(T: T->getBaseType(), Range, QMM: QMM_Drop);
3588
3589 ArgBackRefMap OuterFunArgsContext;
3590 ArgBackRefMap OuterTemplateArgsContext;
3591 BackRefVec OuterTemplateContext;
3592
3593 FunArgBackReferences.swap(RHS&: OuterFunArgsContext);
3594 TemplateArgBackReferences.swap(RHS&: OuterTemplateArgsContext);
3595 NameBackReferences.swap(RHS&: OuterTemplateContext);
3596
3597 mangleTagTypeKind(TTK: TagTypeKind::Struct);
3598
3599 Out << "?$";
3600 if (T->isObjCId())
3601 mangleSourceName(Name: "objc_object");
3602 else if (T->isObjCClass())
3603 mangleSourceName(Name: "objc_class");
3604 else
3605 mangleSourceName(Name: T->getInterface()->getName());
3606
3607 for (const auto &Q : T->quals())
3608 mangleObjCProtocol(PD: Q);
3609
3610 if (T->isSpecialized())
3611 for (const auto &TA : T->getTypeArgs())
3612 mangleType(T: TA, Range, QMM: QMM_Drop);
3613
3614 Out << '@';
3615
3616 Out << '@';
3617
3618 FunArgBackReferences.swap(RHS&: OuterFunArgsContext);
3619 TemplateArgBackReferences.swap(RHS&: OuterTemplateArgsContext);
3620 NameBackReferences.swap(RHS&: OuterTemplateContext);
3621}
3622
3623void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
3624 Qualifiers Quals, SourceRange Range) {
3625 QualType PointeeType = T->getPointeeType();
3626 manglePointerCVQualifiers(Quals);
3627 manglePointerExtQualifiers(Quals, PointeeType);
3628
3629 Out << "_E";
3630
3631 mangleFunctionType(T: PointeeType->castAs<FunctionProtoType>());
3632}
3633
3634void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
3635 Qualifiers, SourceRange) {
3636 llvm_unreachable("Cannot mangle injected class name type.");
3637}
3638
3639void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
3640 Qualifiers, SourceRange Range) {
3641 Error(loc: Range.getBegin(), thingy: "template specialization type") << Range;
3642}
3643
3644void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
3645 SourceRange Range) {
3646 Error(loc: Range.getBegin(), thingy: "dependent name type") << Range;
3647}
3648
3649void MicrosoftCXXNameMangler::mangleType(
3650 const DependentTemplateSpecializationType *T, Qualifiers,
3651 SourceRange Range) {
3652 Error(loc: Range.getBegin(), thingy: "dependent template specialization type") << Range;
3653}
3654
3655void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
3656 SourceRange Range) {
3657 Error(loc: Range.getBegin(), thingy: "pack expansion") << Range;
3658}
3659
3660void MicrosoftCXXNameMangler::mangleType(const PackIndexingType *T,
3661 Qualifiers Quals, SourceRange Range) {
3662 manglePointerCVQualifiers(Quals);
3663 mangleType(T: T->getSelectedType(), Range);
3664}
3665
3666void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
3667 SourceRange Range) {
3668 Error(loc: Range.getBegin(), thingy: "typeof(type)") << Range;
3669}
3670
3671void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
3672 SourceRange Range) {
3673 Error(loc: Range.getBegin(), thingy: "typeof(expression)") << Range;
3674}
3675
3676void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
3677 SourceRange Range) {
3678 Error(loc: Range.getBegin(), thingy: "decltype()") << Range;
3679}
3680
3681void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
3682 Qualifiers, SourceRange Range) {
3683 Error(loc: Range.getBegin(), thingy: "unary transform type") << Range;
3684}
3685
3686void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
3687 SourceRange Range) {
3688 assert(T->getDeducedType().isNull() && "expecting a dependent type!");
3689
3690 Error(loc: Range.getBegin(), thingy: "'auto' type") << Range;
3691}
3692
3693void MicrosoftCXXNameMangler::mangleType(
3694 const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) {
3695 assert(T->getDeducedType().isNull() && "expecting a dependent type!");
3696
3697 Error(loc: Range.getBegin(), thingy: "deduced class template specialization type")
3698 << Range;
3699}
3700
3701void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
3702 SourceRange Range) {
3703 QualType ValueType = T->getValueType();
3704
3705 llvm::SmallString<64> TemplateMangling;
3706 llvm::raw_svector_ostream Stream(TemplateMangling);
3707 MicrosoftCXXNameMangler Extra(Context, Stream);
3708 Stream << "?$";
3709 Extra.mangleSourceName(Name: "_Atomic");
3710 Extra.mangleType(T: ValueType, Range, QMM: QMM_Escape);
3711
3712 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__clang"});
3713}
3714
3715void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers,
3716 SourceRange Range) {
3717 QualType ElementType = T->getElementType();
3718
3719 llvm::SmallString<64> TemplateMangling;
3720 llvm::raw_svector_ostream Stream(TemplateMangling);
3721 MicrosoftCXXNameMangler Extra(Context, Stream);
3722 Stream << "?$";
3723 Extra.mangleSourceName(Name: "ocl_pipe");
3724 Extra.mangleType(T: ElementType, Range, QMM: QMM_Escape);
3725 Extra.mangleIntegerLiteral(Value: llvm::APSInt::get(X: T->isReadOnly()));
3726
3727 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__clang"});
3728}
3729
3730void MicrosoftMangleContextImpl::mangleCXXName(GlobalDecl GD,
3731 raw_ostream &Out) {
3732 const NamedDecl *D = cast<NamedDecl>(Val: GD.getDecl());
3733 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3734 getASTContext().getSourceManager(),
3735 "Mangling declaration");
3736
3737 msvc_hashing_ostream MHO(Out);
3738
3739 if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: D)) {
3740 auto Type = GD.getCtorType();
3741 MicrosoftCXXNameMangler mangler(*this, MHO, CD, Type);
3742 return mangler.mangle(GD);
3743 }
3744
3745 if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: D)) {
3746 auto Type = GD.getDtorType();
3747 MicrosoftCXXNameMangler mangler(*this, MHO, DD, Type);
3748 return mangler.mangle(GD);
3749 }
3750
3751 MicrosoftCXXNameMangler Mangler(*this, MHO);
3752 return Mangler.mangle(GD);
3753}
3754
3755void MicrosoftCXXNameMangler::mangleType(const BitIntType *T, Qualifiers,
3756 SourceRange Range) {
3757 llvm::SmallString<64> TemplateMangling;
3758 llvm::raw_svector_ostream Stream(TemplateMangling);
3759 MicrosoftCXXNameMangler Extra(Context, Stream);
3760 Stream << "?$";
3761 if (T->isUnsigned())
3762 Extra.mangleSourceName(Name: "_UBitInt");
3763 else
3764 Extra.mangleSourceName(Name: "_BitInt");
3765 Extra.mangleIntegerLiteral(Value: llvm::APSInt::getUnsigned(X: T->getNumBits()));
3766
3767 mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__clang"});
3768}
3769
3770void MicrosoftCXXNameMangler::mangleType(const DependentBitIntType *T,
3771 Qualifiers, SourceRange Range) {
3772 Error(loc: Range.getBegin(), thingy: "DependentBitInt type") << Range;
3773}
3774
3775void MicrosoftCXXNameMangler::mangleType(const HLSLAttributedResourceType *T,
3776 Qualifiers, SourceRange Range) {
3777 llvm_unreachable("HLSL uses Itanium name mangling");
3778}
3779
3780void MicrosoftCXXNameMangler::mangleType(const HLSLInlineSpirvType *T,
3781 Qualifiers, SourceRange Range) {
3782 llvm_unreachable("HLSL uses Itanium name mangling");
3783}
3784
3785// <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
3786// <virtual-adjustment>
3787// <no-adjustment> ::= A # private near
3788// ::= B # private far
3789// ::= I # protected near
3790// ::= J # protected far
3791// ::= Q # public near
3792// ::= R # public far
3793// <static-adjustment> ::= G <static-offset> # private near
3794// ::= H <static-offset> # private far
3795// ::= O <static-offset> # protected near
3796// ::= P <static-offset> # protected far
3797// ::= W <static-offset> # public near
3798// ::= X <static-offset> # public far
3799// <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
3800// ::= $1 <virtual-shift> <static-offset> # private far
3801// ::= $2 <virtual-shift> <static-offset> # protected near
3802// ::= $3 <virtual-shift> <static-offset> # protected far
3803// ::= $4 <virtual-shift> <static-offset> # public near
3804// ::= $5 <virtual-shift> <static-offset> # public far
3805// <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift>
3806// <vtordisp-shift> ::= <offset-to-vtordisp>
3807// <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset>
3808// <offset-to-vtordisp>
3809static void mangleThunkThisAdjustment(AccessSpecifier AS,
3810 const ThisAdjustment &Adjustment,
3811 MicrosoftCXXNameMangler &Mangler,
3812 raw_ostream &Out) {
3813 if (!Adjustment.Virtual.isEmpty()) {
3814 Out << '$';
3815 char AccessSpec;
3816 switch (AS) {
3817 case AS_none:
3818 llvm_unreachable("Unsupported access specifier");
3819 case AS_private:
3820 AccessSpec = '0';
3821 break;
3822 case AS_protected:
3823 AccessSpec = '2';
3824 break;
3825 case AS_public:
3826 AccessSpec = '4';
3827 }
3828 if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
3829 Out << 'R' << AccessSpec;
3830 Mangler.mangleNumber(
3831 Number: static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
3832 Mangler.mangleNumber(
3833 Number: static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
3834 Mangler.mangleNumber(
3835 Number: static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
3836 Mangler.mangleNumber(Number: static_cast<uint32_t>(Adjustment.NonVirtual));
3837 } else {
3838 Out << AccessSpec;
3839 Mangler.mangleNumber(
3840 Number: static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
3841 Mangler.mangleNumber(Number: -static_cast<uint32_t>(Adjustment.NonVirtual));
3842 }
3843 } else if (Adjustment.NonVirtual != 0) {
3844 switch (AS) {
3845 case AS_none:
3846 llvm_unreachable("Unsupported access specifier");
3847 case AS_private:
3848 Out << 'G';
3849 break;
3850 case AS_protected:
3851 Out << 'O';
3852 break;
3853 case AS_public:
3854 Out << 'W';
3855 }
3856 Mangler.mangleNumber(Number: -static_cast<uint32_t>(Adjustment.NonVirtual));
3857 } else {
3858 switch (AS) {
3859 case AS_none:
3860 llvm_unreachable("Unsupported access specifier");
3861 case AS_private:
3862 Out << 'A';
3863 break;
3864 case AS_protected:
3865 Out << 'I';
3866 break;
3867 case AS_public:
3868 Out << 'Q';
3869 }
3870 }
3871}
3872
3873void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(
3874 const CXXMethodDecl *MD, const MethodVFTableLocation &ML,
3875 raw_ostream &Out) {
3876 msvc_hashing_ostream MHO(Out);
3877 MicrosoftCXXNameMangler Mangler(*this, MHO);
3878 Mangler.getStream() << '?';
3879 Mangler.mangleVirtualMemPtrThunk(MD, ML);
3880}
3881
3882void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3883 const ThunkInfo &Thunk,
3884 bool /*ElideOverrideInfo*/,
3885 raw_ostream &Out) {
3886 msvc_hashing_ostream MHO(Out);
3887 MicrosoftCXXNameMangler Mangler(*this, MHO);
3888 Mangler.getStream() << '?';
3889 Mangler.mangleName(GD: MD);
3890
3891 // Usually the thunk uses the access specifier of the new method, but if this
3892 // is a covariant return thunk, then MSVC always uses the public access
3893 // specifier, and we do the same.
3894 AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public;
3895 mangleThunkThisAdjustment(AS, Adjustment: Thunk.This, Mangler, Out&: MHO);
3896
3897 if (!Thunk.Return.isEmpty())
3898 assert(Thunk.Method != nullptr &&
3899 "Thunk info should hold the overridee decl");
3900
3901 const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
3902 Mangler.mangleFunctionType(
3903 T: DeclForFPT->getType()->castAs<FunctionProtoType>(), D: MD);
3904}
3905
3906void MicrosoftMangleContextImpl::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3907 CXXDtorType Type,
3908 const ThunkInfo &Thunk,
3909 bool /*ElideOverrideInfo*/,
3910 raw_ostream &Out) {
3911 // FIXME: Actually, the dtor thunk should be emitted for vector deleting
3912 // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
3913 // mangling manually until we support both deleting dtor types.
3914 assert(Type == Dtor_Deleting);
3915 msvc_hashing_ostream MHO(Out);
3916 MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type);
3917 Mangler.getStream() << "??_E";
3918 Mangler.mangleName(GD: DD->getParent());
3919 auto &Adjustment = Thunk.This;
3920 mangleThunkThisAdjustment(AS: DD->getAccess(), Adjustment, Mangler, Out&: MHO);
3921 Mangler.mangleFunctionType(T: DD->getType()->castAs<FunctionProtoType>(), D: DD);
3922}
3923
3924void MicrosoftMangleContextImpl::mangleCXXVFTable(
3925 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3926 raw_ostream &Out) {
3927 // <mangled-name> ::= ?_7 <class-name> <storage-class>
3928 // <cvr-qualifiers> [<name>] @
3929 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3930 // is always '6' for vftables.
3931 msvc_hashing_ostream MHO(Out);
3932 MicrosoftCXXNameMangler Mangler(*this, MHO);
3933 if (Derived->hasAttr<DLLImportAttr>())
3934 Mangler.getStream() << "??_S";
3935 else
3936 Mangler.getStream() << "??_7";
3937 Mangler.mangleName(GD: Derived);
3938 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
3939 for (const CXXRecordDecl *RD : BasePath)
3940 Mangler.mangleName(GD: RD);
3941 Mangler.getStream() << '@';
3942}
3943
3944void MicrosoftMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *Derived,
3945 raw_ostream &Out) {
3946 // TODO: Determine appropriate mangling for MSABI
3947 mangleCXXVFTable(Derived, BasePath: {}, Out);
3948}
3949
3950void MicrosoftMangleContextImpl::mangleCXXVBTable(
3951 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3952 raw_ostream &Out) {
3953 // <mangled-name> ::= ?_8 <class-name> <storage-class>
3954 // <cvr-qualifiers> [<name>] @
3955 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3956 // is always '7' for vbtables.
3957 msvc_hashing_ostream MHO(Out);
3958 MicrosoftCXXNameMangler Mangler(*this, MHO);
3959 Mangler.getStream() << "??_8";
3960 Mangler.mangleName(GD: Derived);
3961 Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const.
3962 for (const CXXRecordDecl *RD : BasePath)
3963 Mangler.mangleName(GD: RD);
3964 Mangler.getStream() << '@';
3965}
3966
3967void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
3968 msvc_hashing_ostream MHO(Out);
3969 MicrosoftCXXNameMangler Mangler(*this, MHO);
3970 Mangler.getStream() << "??_R0";
3971 Mangler.mangleType(T, Range: SourceRange(), QMM: MicrosoftCXXNameMangler::QMM_Result);
3972 Mangler.getStream() << "@8";
3973}
3974
3975void MicrosoftMangleContextImpl::mangleCXXRTTIName(
3976 QualType T, raw_ostream &Out, bool NormalizeIntegers = false) {
3977 MicrosoftCXXNameMangler Mangler(*this, Out);
3978 Mangler.getStream() << '.';
3979 Mangler.mangleType(T, Range: SourceRange(), QMM: MicrosoftCXXNameMangler::QMM_Result);
3980}
3981
3982void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
3983 const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
3984 msvc_hashing_ostream MHO(Out);
3985 MicrosoftCXXNameMangler Mangler(*this, MHO);
3986 Mangler.getStream() << "??_K";
3987 Mangler.mangleName(GD: SrcRD);
3988 Mangler.getStream() << "$C";
3989 Mangler.mangleName(GD: DstRD);
3990}
3991
3992void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst,
3993 bool IsVolatile,
3994 bool IsUnaligned,
3995 uint32_t NumEntries,
3996 raw_ostream &Out) {
3997 msvc_hashing_ostream MHO(Out);
3998 MicrosoftCXXNameMangler Mangler(*this, MHO);
3999 Mangler.getStream() << "_TI";
4000 if (IsConst)
4001 Mangler.getStream() << 'C';
4002 if (IsVolatile)
4003 Mangler.getStream() << 'V';
4004 if (IsUnaligned)
4005 Mangler.getStream() << 'U';
4006 Mangler.getStream() << NumEntries;
4007 Mangler.mangleType(T, Range: SourceRange(), QMM: MicrosoftCXXNameMangler::QMM_Result);
4008}
4009
4010void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
4011 QualType T, uint32_t NumEntries, raw_ostream &Out) {
4012 msvc_hashing_ostream MHO(Out);
4013 MicrosoftCXXNameMangler Mangler(*this, MHO);
4014 Mangler.getStream() << "_CTA";
4015 Mangler.getStream() << NumEntries;
4016 Mangler.mangleType(T, Range: SourceRange(), QMM: MicrosoftCXXNameMangler::QMM_Result);
4017}
4018
4019void MicrosoftMangleContextImpl::mangleCXXCatchableType(
4020 QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
4021 uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
4022 raw_ostream &Out) {
4023 MicrosoftCXXNameMangler Mangler(*this, Out);
4024 Mangler.getStream() << "_CT";
4025
4026 llvm::SmallString<64> RTTIMangling;
4027 {
4028 llvm::raw_svector_ostream Stream(RTTIMangling);
4029 msvc_hashing_ostream MHO(Stream);
4030 mangleCXXRTTI(T, Out&: MHO);
4031 }
4032 Mangler.getStream() << RTTIMangling;
4033
4034 // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but
4035 // both older and newer versions include it.
4036 // FIXME: It is known that the Ctor is present in 2013, and in 2017.7
4037 // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4
4038 // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914?
4039 // Or 1912, 1913 already?).
4040 bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC(
4041 MajorVersion: LangOptions::MSVC2015) &&
4042 !getASTContext().getLangOpts().isCompatibleWithMSVC(
4043 MajorVersion: LangOptions::MSVC2017_7);
4044 llvm::SmallString<64> CopyCtorMangling;
4045 if (!OmitCopyCtor && CD) {
4046 llvm::raw_svector_ostream Stream(CopyCtorMangling);
4047 msvc_hashing_ostream MHO(Stream);
4048 mangleCXXName(GD: GlobalDecl(CD, CT), Out&: MHO);
4049 }
4050 Mangler.getStream() << CopyCtorMangling;
4051
4052 Mangler.getStream() << Size;
4053 if (VBPtrOffset == -1) {
4054 if (NVOffset) {
4055 Mangler.getStream() << NVOffset;
4056 }
4057 } else {
4058 Mangler.getStream() << NVOffset;
4059 Mangler.getStream() << VBPtrOffset;
4060 Mangler.getStream() << VBIndex;
4061 }
4062}
4063
4064void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
4065 const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
4066 uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
4067 msvc_hashing_ostream MHO(Out);
4068 MicrosoftCXXNameMangler Mangler(*this, MHO);
4069 Mangler.getStream() << "??_R1";
4070 Mangler.mangleNumber(Number: NVOffset);
4071 Mangler.mangleNumber(Number: VBPtrOffset);
4072 Mangler.mangleNumber(Number: VBTableOffset);
4073 Mangler.mangleNumber(Number: Flags);
4074 Mangler.mangleName(GD: Derived);
4075 Mangler.getStream() << "8";
4076}
4077
4078void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
4079 const CXXRecordDecl *Derived, raw_ostream &Out) {
4080 msvc_hashing_ostream MHO(Out);
4081 MicrosoftCXXNameMangler Mangler(*this, MHO);
4082 Mangler.getStream() << "??_R2";
4083 Mangler.mangleName(GD: Derived);
4084 Mangler.getStream() << "8";
4085}
4086
4087void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
4088 const CXXRecordDecl *Derived, raw_ostream &Out) {
4089 msvc_hashing_ostream MHO(Out);
4090 MicrosoftCXXNameMangler Mangler(*this, MHO);
4091 Mangler.getStream() << "??_R3";
4092 Mangler.mangleName(GD: Derived);
4093 Mangler.getStream() << "8";
4094}
4095
4096void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
4097 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
4098 raw_ostream &Out) {
4099 // <mangled-name> ::= ?_R4 <class-name> <storage-class>
4100 // <cvr-qualifiers> [<name>] @
4101 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
4102 // is always '6' for vftables.
4103 llvm::SmallString<64> VFTableMangling;
4104 llvm::raw_svector_ostream Stream(VFTableMangling);
4105 mangleCXXVFTable(Derived, BasePath, Out&: Stream);
4106
4107 if (VFTableMangling.starts_with(Prefix: "??@")) {
4108 assert(VFTableMangling.ends_with("@"));
4109 Out << VFTableMangling << "??_R4@";
4110 return;
4111 }
4112
4113 assert(VFTableMangling.starts_with("??_7") ||
4114 VFTableMangling.starts_with("??_S"));
4115
4116 Out << "??_R4" << VFTableMangling.str().drop_front(N: 4);
4117}
4118
4119void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
4120 GlobalDecl EnclosingDecl, raw_ostream &Out) {
4121 msvc_hashing_ostream MHO(Out);
4122 MicrosoftCXXNameMangler Mangler(*this, MHO);
4123 // The function body is in the same comdat as the function with the handler,
4124 // so the numbering here doesn't have to be the same across TUs.
4125 //
4126 // <mangled-name> ::= ?filt$ <filter-number> @0
4127 Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
4128 Mangler.mangleName(GD: EnclosingDecl);
4129}
4130
4131void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
4132 GlobalDecl EnclosingDecl, raw_ostream &Out) {
4133 msvc_hashing_ostream MHO(Out);
4134 MicrosoftCXXNameMangler Mangler(*this, MHO);
4135 // The function body is in the same comdat as the function with the handler,
4136 // so the numbering here doesn't have to be the same across TUs.
4137 //
4138 // <mangled-name> ::= ?fin$ <filter-number> @0
4139 Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
4140 Mangler.mangleName(GD: EnclosingDecl);
4141}
4142
4143void MicrosoftMangleContextImpl::mangleCanonicalTypeName(
4144 QualType T, raw_ostream &Out, bool NormalizeIntegers = false) {
4145 // This is just a made up unique string for the purposes of tbaa. undname
4146 // does *not* know how to demangle it.
4147 MicrosoftCXXNameMangler Mangler(*this, Out);
4148 Mangler.getStream() << '?';
4149 Mangler.mangleType(T: T.getCanonicalType(), Range: SourceRange());
4150}
4151
4152void MicrosoftMangleContextImpl::mangleReferenceTemporary(
4153 const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) {
4154 msvc_hashing_ostream MHO(Out);
4155 MicrosoftCXXNameMangler Mangler(*this, MHO);
4156
4157 Mangler.getStream() << "?";
4158 Mangler.mangleSourceName(Name: "$RT" + llvm::utostr(X: ManglingNumber));
4159 Mangler.mangle(GD: VD, Prefix: "");
4160}
4161
4162void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
4163 const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
4164 msvc_hashing_ostream MHO(Out);
4165 MicrosoftCXXNameMangler Mangler(*this, MHO);
4166
4167 Mangler.getStream() << "?";
4168 Mangler.mangleSourceName(Name: "$TSS" + llvm::utostr(X: GuardNum));
4169 Mangler.mangleNestedName(GD: VD);
4170 Mangler.getStream() << "@4HA";
4171}
4172
4173void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
4174 raw_ostream &Out) {
4175 // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
4176 // ::= ?__J <postfix> @5 <scope-depth>
4177 // ::= ?$S <guard-num> @ <postfix> @4IA
4178
4179 // The first mangling is what MSVC uses to guard static locals in inline
4180 // functions. It uses a different mangling in external functions to support
4181 // guarding more than 32 variables. MSVC rejects inline functions with more
4182 // than 32 static locals. We don't fully implement the second mangling
4183 // because those guards are not externally visible, and instead use LLVM's
4184 // default renaming when creating a new guard variable.
4185 msvc_hashing_ostream MHO(Out);
4186 MicrosoftCXXNameMangler Mangler(*this, MHO);
4187
4188 bool Visible = VD->isExternallyVisible();
4189 if (Visible) {
4190 Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B");
4191 } else {
4192 Mangler.getStream() << "?$S1@";
4193 }
4194 unsigned ScopeDepth = 0;
4195 if (Visible && !getNextDiscriminator(ND: VD, disc&: ScopeDepth))
4196 // If we do not have a discriminator and are emitting a guard variable for
4197 // use at global scope, then mangling the nested name will not be enough to
4198 // remove ambiguities.
4199 Mangler.mangle(GD: VD, Prefix: "");
4200 else
4201 Mangler.mangleNestedName(GD: VD);
4202 Mangler.getStream() << (Visible ? "@5" : "@4IA");
4203 if (ScopeDepth)
4204 Mangler.mangleNumber(Number: ScopeDepth);
4205}
4206
4207void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
4208 char CharCode,
4209 raw_ostream &Out) {
4210 msvc_hashing_ostream MHO(Out);
4211 MicrosoftCXXNameMangler Mangler(*this, MHO);
4212 Mangler.getStream() << "??__" << CharCode;
4213 if (D->isStaticDataMember()) {
4214 Mangler.getStream() << '?';
4215 Mangler.mangleName(GD: D);
4216 Mangler.mangleVariableEncoding(VD: D);
4217 Mangler.getStream() << "@@";
4218 } else {
4219 Mangler.mangleName(GD: D);
4220 }
4221 // This is the function class mangling. These stubs are global, non-variadic,
4222 // cdecl functions that return void and take no args.
4223 Mangler.getStream() << "YAXXZ";
4224}
4225
4226void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
4227 raw_ostream &Out) {
4228 // <initializer-name> ::= ?__E <name> YAXXZ
4229 mangleInitFiniStub(D, CharCode: 'E', Out);
4230}
4231
4232void
4233MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
4234 raw_ostream &Out) {
4235 // <destructor-name> ::= ?__F <name> YAXXZ
4236 mangleInitFiniStub(D, CharCode: 'F', Out);
4237}
4238
4239void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
4240 raw_ostream &Out) {
4241 // <char-type> ::= 0 # char, char16_t, char32_t
4242 // # (little endian char data in mangling)
4243 // ::= 1 # wchar_t (big endian char data in mangling)
4244 //
4245 // <literal-length> ::= <non-negative integer> # the length of the literal
4246 //
4247 // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including
4248 // # trailing null bytes
4249 //
4250 // <encoded-string> ::= <simple character> # uninteresting character
4251 // ::= '?$' <hex digit> <hex digit> # these two nibbles
4252 // # encode the byte for the
4253 // # character
4254 // ::= '?' [a-z] # \xe1 - \xfa
4255 // ::= '?' [A-Z] # \xc1 - \xda
4256 // ::= '?' [0-9] # [,/\:. \n\t'-]
4257 //
4258 // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
4259 // <encoded-string> '@'
4260 MicrosoftCXXNameMangler Mangler(*this, Out);
4261 Mangler.getStream() << "??_C@_";
4262
4263 // The actual string length might be different from that of the string literal
4264 // in cases like:
4265 // char foo[3] = "foobar";
4266 // char bar[42] = "foobar";
4267 // Where it is truncated or zero-padded to fit the array. This is the length
4268 // used for mangling, and any trailing null-bytes also need to be mangled.
4269 unsigned StringLength =
4270 getASTContext().getAsConstantArrayType(T: SL->getType())->getZExtSize();
4271 unsigned StringByteLength = StringLength * SL->getCharByteWidth();
4272
4273 // <char-type>: The "kind" of string literal is encoded into the mangled name.
4274 if (SL->isWide())
4275 Mangler.getStream() << '1';
4276 else
4277 Mangler.getStream() << '0';
4278
4279 // <literal-length>: The next part of the mangled name consists of the length
4280 // of the string in bytes.
4281 Mangler.mangleNumber(Number: StringByteLength);
4282
4283 auto GetLittleEndianByte = [&SL](unsigned Index) {
4284 unsigned CharByteWidth = SL->getCharByteWidth();
4285 if (Index / CharByteWidth >= SL->getLength())
4286 return static_cast<char>(0);
4287 uint32_t CodeUnit = SL->getCodeUnit(i: Index / CharByteWidth);
4288 unsigned OffsetInCodeUnit = Index % CharByteWidth;
4289 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
4290 };
4291
4292 auto GetBigEndianByte = [&SL](unsigned Index) {
4293 unsigned CharByteWidth = SL->getCharByteWidth();
4294 if (Index / CharByteWidth >= SL->getLength())
4295 return static_cast<char>(0);
4296 uint32_t CodeUnit = SL->getCodeUnit(i: Index / CharByteWidth);
4297 unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
4298 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
4299 };
4300
4301 // CRC all the bytes of the StringLiteral.
4302 llvm::JamCRC JC;
4303 for (unsigned I = 0, E = StringByteLength; I != E; ++I)
4304 JC.update(Data: GetLittleEndianByte(I));
4305
4306 // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
4307 // scheme.
4308 Mangler.mangleNumber(Number: JC.getCRC());
4309
4310 // <encoded-string>: The mangled name also contains the first 32 bytes
4311 // (including null-terminator bytes) of the encoded StringLiteral.
4312 // Each character is encoded by splitting them into bytes and then encoding
4313 // the constituent bytes.
4314 auto MangleByte = [&Mangler](char Byte) {
4315 // There are five different manglings for characters:
4316 // - [a-zA-Z0-9_$]: A one-to-one mapping.
4317 // - ?[a-z]: The range from \xe1 to \xfa.
4318 // - ?[A-Z]: The range from \xc1 to \xda.
4319 // - ?[0-9]: The set of [,/\:. \n\t'-].
4320 // - ?$XX: A fallback which maps nibbles.
4321 if (isAsciiIdentifierContinue(c: Byte, /*AllowDollar=*/true)) {
4322 Mangler.getStream() << Byte;
4323 } else if (isLetter(c: Byte & 0x7f)) {
4324 Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
4325 } else {
4326 const char SpecialChars[] = {',', '/', '\\', ':', '.',
4327 ' ', '\n', '\t', '\'', '-'};
4328 const char *Pos = llvm::find(Range: SpecialChars, Val: Byte);
4329 if (Pos != std::end(arr: SpecialChars)) {
4330 Mangler.getStream() << '?' << (Pos - std::begin(arr: SpecialChars));
4331 } else {
4332 Mangler.getStream() << "?$";
4333 Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
4334 Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
4335 }
4336 }
4337 };
4338
4339 // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead.
4340 unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U;
4341 unsigned NumBytesToMangle = std::min(a: MaxBytesToMangle, b: StringByteLength);
4342 for (unsigned I = 0; I != NumBytesToMangle; ++I) {
4343 if (SL->isWide())
4344 MangleByte(GetBigEndianByte(I));
4345 else
4346 MangleByte(GetLittleEndianByte(I));
4347 }
4348
4349 Mangler.getStream() << '@';
4350}
4351
4352void MicrosoftCXXNameMangler::mangleAutoReturnType(const MemberPointerType *T,
4353 Qualifiers Quals) {
4354 QualType PointeeType = T->getPointeeType();
4355 manglePointerCVQualifiers(Quals);
4356 manglePointerExtQualifiers(Quals, PointeeType);
4357 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
4358 Out << '8';
4359 mangleName(GD: T->getMostRecentCXXRecordDecl());
4360 mangleFunctionType(T: FPT, D: nullptr, ForceThisQuals: true);
4361 } else {
4362 mangleQualifiers(Quals: PointeeType.getQualifiers(), IsMember: true);
4363 mangleName(GD: T->getMostRecentCXXRecordDecl());
4364 mangleAutoReturnType(T: PointeeType, QMM: QMM_Drop);
4365 }
4366}
4367
4368void MicrosoftCXXNameMangler::mangleAutoReturnType(const PointerType *T,
4369 Qualifiers Quals) {
4370 QualType PointeeType = T->getPointeeType();
4371 assert(!PointeeType.getQualifiers().hasAddressSpace() &&
4372 "Unexpected address space mangling required");
4373
4374 manglePointerCVQualifiers(Quals);
4375 manglePointerExtQualifiers(Quals, PointeeType);
4376
4377 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
4378 Out << '6';
4379 mangleFunctionType(T: FPT);
4380 } else {
4381 mangleAutoReturnType(T: PointeeType, QMM: QMM_Mangle);
4382 }
4383}
4384
4385void MicrosoftCXXNameMangler::mangleAutoReturnType(const LValueReferenceType *T,
4386 Qualifiers Quals) {
4387 QualType PointeeType = T->getPointeeType();
4388 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
4389 Out << 'A';
4390 manglePointerExtQualifiers(Quals, PointeeType);
4391 mangleAutoReturnType(T: PointeeType, QMM: QMM_Mangle);
4392}
4393
4394void MicrosoftCXXNameMangler::mangleAutoReturnType(const RValueReferenceType *T,
4395 Qualifiers Quals) {
4396 QualType PointeeType = T->getPointeeType();
4397 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
4398 Out << "$$Q";
4399 manglePointerExtQualifiers(Quals, PointeeType);
4400 mangleAutoReturnType(T: PointeeType, QMM: QMM_Mangle);
4401}
4402
4403MicrosoftMangleContext *MicrosoftMangleContext::create(ASTContext &Context,
4404 DiagnosticsEngine &Diags,
4405 bool IsAux) {
4406 return new MicrosoftMangleContextImpl(Context, Diags, IsAux);
4407}
4408