1 | //===- CFG.cpp - Classes for representing and building CFGs ---------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the CFG and CFGBuilder classes for representing and |
10 | // building Control-Flow Graphs (CFGs) from ASTs. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "clang/Analysis/CFG.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/Attr.h" |
17 | #include "clang/AST/Decl.h" |
18 | #include "clang/AST/DeclBase.h" |
19 | #include "clang/AST/DeclCXX.h" |
20 | #include "clang/AST/DeclGroup.h" |
21 | #include "clang/AST/Expr.h" |
22 | #include "clang/AST/ExprCXX.h" |
23 | #include "clang/AST/OperationKinds.h" |
24 | #include "clang/AST/PrettyPrinter.h" |
25 | #include "clang/AST/Stmt.h" |
26 | #include "clang/AST/StmtCXX.h" |
27 | #include "clang/AST/StmtObjC.h" |
28 | #include "clang/AST/StmtVisitor.h" |
29 | #include "clang/AST/Type.h" |
30 | #include "clang/Analysis/ConstructionContext.h" |
31 | #include "clang/Analysis/Support/BumpVector.h" |
32 | #include "clang/Basic/Builtins.h" |
33 | #include "clang/Basic/ExceptionSpecificationType.h" |
34 | #include "clang/Basic/JsonSupport.h" |
35 | #include "clang/Basic/LLVM.h" |
36 | #include "clang/Basic/LangOptions.h" |
37 | #include "clang/Basic/SourceLocation.h" |
38 | #include "clang/Basic/Specifiers.h" |
39 | #include "llvm/ADT/APFloat.h" |
40 | #include "llvm/ADT/APInt.h" |
41 | #include "llvm/ADT/APSInt.h" |
42 | #include "llvm/ADT/ArrayRef.h" |
43 | #include "llvm/ADT/DenseMap.h" |
44 | #include "llvm/ADT/STLExtras.h" |
45 | #include "llvm/ADT/SetVector.h" |
46 | #include "llvm/ADT/SmallPtrSet.h" |
47 | #include "llvm/ADT/SmallVector.h" |
48 | #include "llvm/Support/Allocator.h" |
49 | #include "llvm/Support/Compiler.h" |
50 | #include "llvm/Support/DOTGraphTraits.h" |
51 | #include "llvm/Support/ErrorHandling.h" |
52 | #include "llvm/Support/Format.h" |
53 | #include "llvm/Support/GraphWriter.h" |
54 | #include "llvm/Support/SaveAndRestore.h" |
55 | #include "llvm/Support/raw_ostream.h" |
56 | #include <cassert> |
57 | #include <memory> |
58 | #include <optional> |
59 | #include <string> |
60 | #include <tuple> |
61 | #include <utility> |
62 | #include <vector> |
63 | |
64 | using namespace clang; |
65 | |
66 | static SourceLocation GetEndLoc(Decl *D) { |
67 | if (VarDecl *VD = dyn_cast<VarDecl>(Val: D)) |
68 | if (Expr *Ex = VD->getInit()) |
69 | return Ex->getSourceRange().getEnd(); |
70 | return D->getLocation(); |
71 | } |
72 | |
73 | /// Returns true on constant values based around a single IntegerLiteral, |
74 | /// CharacterLiteral, or FloatingLiteral. Allow for use of parentheses, integer |
75 | /// casts, and negative signs. |
76 | |
77 | static bool IsLiteralConstantExpr(const Expr *E) { |
78 | // Allow parentheses |
79 | E = E->IgnoreParens(); |
80 | |
81 | // Allow conversions to different integer kind, and integer to floating point |
82 | // (to account for float comparing with int). |
83 | if (const auto *CE = dyn_cast<CastExpr>(Val: E)) { |
84 | if (CE->getCastKind() != CK_IntegralCast && |
85 | CE->getCastKind() != CK_IntegralToFloating) |
86 | return false; |
87 | E = CE->getSubExpr(); |
88 | } |
89 | |
90 | // Allow negative numbers. |
91 | if (const auto *UO = dyn_cast<UnaryOperator>(Val: E)) { |
92 | if (UO->getOpcode() != UO_Minus) |
93 | return false; |
94 | E = UO->getSubExpr(); |
95 | } |
96 | return isa<IntegerLiteral, CharacterLiteral, FloatingLiteral>(Val: E); |
97 | } |
98 | |
99 | /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral |
100 | /// FloatingLiteral, CharacterLiteral or EnumConstantDecl from the given Expr. |
101 | /// If it fails, returns nullptr. |
102 | static const Expr *tryTransformToLiteralConstant(const Expr *E) { |
103 | E = E->IgnoreParens(); |
104 | if (IsLiteralConstantExpr(E)) |
105 | return E; |
106 | if (auto *DR = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenImpCasts())) |
107 | return isa<EnumConstantDecl>(Val: DR->getDecl()) ? DR : nullptr; |
108 | return nullptr; |
109 | } |
110 | |
111 | /// Tries to interpret a binary operator into `Expr Op NumExpr` form, if |
112 | /// NumExpr is an integer literal or an enum constant. |
113 | /// |
114 | /// If this fails, at least one of the returned DeclRefExpr or Expr will be |
115 | /// null. |
116 | static std::tuple<const Expr *, BinaryOperatorKind, const Expr *> |
117 | tryNormalizeBinaryOperator(const BinaryOperator *B) { |
118 | BinaryOperatorKind Op = B->getOpcode(); |
119 | |
120 | const Expr *MaybeDecl = B->getLHS(); |
121 | const Expr *Constant = tryTransformToLiteralConstant(E: B->getRHS()); |
122 | // Expr looked like `0 == Foo` instead of `Foo == 0` |
123 | if (Constant == nullptr) { |
124 | // Flip the operator |
125 | if (Op == BO_GT) |
126 | Op = BO_LT; |
127 | else if (Op == BO_GE) |
128 | Op = BO_LE; |
129 | else if (Op == BO_LT) |
130 | Op = BO_GT; |
131 | else if (Op == BO_LE) |
132 | Op = BO_GE; |
133 | |
134 | MaybeDecl = B->getRHS(); |
135 | Constant = tryTransformToLiteralConstant(E: B->getLHS()); |
136 | } |
137 | |
138 | return std::make_tuple(args&: MaybeDecl, args&: Op, args&: Constant); |
139 | } |
140 | |
141 | /// For an expression `x == Foo && x == Bar`, this determines whether the |
142 | /// `Foo` and `Bar` are either of the same enumeration type, or both integer |
143 | /// literals. |
144 | /// |
145 | /// It's an error to pass this arguments that are not either IntegerLiterals |
146 | /// or DeclRefExprs (that have decls of type EnumConstantDecl) |
147 | static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) { |
148 | // User intent isn't clear if they're mixing int literals with enum |
149 | // constants. |
150 | if (isa<DeclRefExpr>(Val: E1) != isa<DeclRefExpr>(Val: E2)) |
151 | return false; |
152 | |
153 | // Integer literal comparisons, regardless of literal type, are acceptable. |
154 | if (!isa<DeclRefExpr>(Val: E1)) |
155 | return true; |
156 | |
157 | // IntegerLiterals are handled above and only EnumConstantDecls are expected |
158 | // beyond this point |
159 | assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2)); |
160 | auto *Decl1 = cast<DeclRefExpr>(Val: E1)->getDecl(); |
161 | auto *Decl2 = cast<DeclRefExpr>(Val: E2)->getDecl(); |
162 | |
163 | assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2)); |
164 | const DeclContext *DC1 = Decl1->getDeclContext(); |
165 | const DeclContext *DC2 = Decl2->getDeclContext(); |
166 | |
167 | assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2)); |
168 | return DC1 == DC2; |
169 | } |
170 | |
171 | namespace { |
172 | |
173 | class CFGBuilder; |
174 | |
175 | /// The CFG builder uses a recursive algorithm to build the CFG. When |
176 | /// we process an expression, sometimes we know that we must add the |
177 | /// subexpressions as block-level expressions. For example: |
178 | /// |
179 | /// exp1 || exp2 |
180 | /// |
181 | /// When processing the '||' expression, we know that exp1 and exp2 |
182 | /// need to be added as block-level expressions, even though they |
183 | /// might not normally need to be. AddStmtChoice records this |
184 | /// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then |
185 | /// the builder has an option not to add a subexpression as a |
186 | /// block-level expression. |
187 | class AddStmtChoice { |
188 | public: |
189 | enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 }; |
190 | |
191 | AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {} |
192 | |
193 | bool alwaysAdd(CFGBuilder &builder, |
194 | const Stmt *stmt) const; |
195 | |
196 | /// Return a copy of this object, except with the 'always-add' bit |
197 | /// set as specified. |
198 | AddStmtChoice withAlwaysAdd(bool alwaysAdd) const { |
199 | return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd); |
200 | } |
201 | |
202 | private: |
203 | Kind kind; |
204 | }; |
205 | |
206 | /// LocalScope - Node in tree of local scopes created for C++ implicit |
207 | /// destructor calls generation. It contains list of automatic variables |
208 | /// declared in the scope and link to position in previous scope this scope |
209 | /// began in. |
210 | /// |
211 | /// The process of creating local scopes is as follows: |
212 | /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null), |
213 | /// - Before processing statements in scope (e.g. CompoundStmt) create |
214 | /// LocalScope object using CFGBuilder::ScopePos as link to previous scope |
215 | /// and set CFGBuilder::ScopePos to the end of new scope, |
216 | /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points |
217 | /// at this VarDecl, |
218 | /// - For every normal (without jump) end of scope add to CFGBlock destructors |
219 | /// for objects in the current scope, |
220 | /// - For every jump add to CFGBlock destructors for objects |
221 | /// between CFGBuilder::ScopePos and local scope position saved for jump |
222 | /// target. Thanks to C++ restrictions on goto jumps we can be sure that |
223 | /// jump target position will be on the path to root from CFGBuilder::ScopePos |
224 | /// (adding any variable that doesn't need constructor to be called to |
225 | /// LocalScope can break this assumption), |
226 | /// |
227 | class LocalScope { |
228 | public: |
229 | using AutomaticVarsTy = BumpVector<VarDecl *>; |
230 | |
231 | /// const_iterator - Iterates local scope backwards and jumps to previous |
232 | /// scope on reaching the beginning of currently iterated scope. |
233 | class const_iterator { |
234 | const LocalScope* Scope = nullptr; |
235 | |
236 | /// VarIter is guaranteed to be greater then 0 for every valid iterator. |
237 | /// Invalid iterator (with null Scope) has VarIter equal to 0. |
238 | unsigned VarIter = 0; |
239 | |
240 | public: |
241 | /// Create invalid iterator. Dereferencing invalid iterator is not allowed. |
242 | /// Incrementing invalid iterator is allowed and will result in invalid |
243 | /// iterator. |
244 | const_iterator() = default; |
245 | |
246 | /// Create valid iterator. In case when S.Prev is an invalid iterator and |
247 | /// I is equal to 0, this will create invalid iterator. |
248 | const_iterator(const LocalScope& S, unsigned I) |
249 | : Scope(&S), VarIter(I) { |
250 | // Iterator to "end" of scope is not allowed. Handle it by going up |
251 | // in scopes tree possibly up to invalid iterator in the root. |
252 | if (VarIter == 0 && Scope) |
253 | *this = Scope->Prev; |
254 | } |
255 | |
256 | VarDecl *const* operator->() const { |
257 | assert(Scope && "Dereferencing invalid iterator is not allowed" ); |
258 | assert(VarIter != 0 && "Iterator has invalid value of VarIter member" ); |
259 | return &Scope->Vars[VarIter - 1]; |
260 | } |
261 | |
262 | const VarDecl *getFirstVarInScope() const { |
263 | assert(Scope && "Dereferencing invalid iterator is not allowed" ); |
264 | assert(VarIter != 0 && "Iterator has invalid value of VarIter member" ); |
265 | return Scope->Vars[0]; |
266 | } |
267 | |
268 | VarDecl *operator*() const { |
269 | return *this->operator->(); |
270 | } |
271 | |
272 | const_iterator &operator++() { |
273 | if (!Scope) |
274 | return *this; |
275 | |
276 | assert(VarIter != 0 && "Iterator has invalid value of VarIter member" ); |
277 | --VarIter; |
278 | if (VarIter == 0) |
279 | *this = Scope->Prev; |
280 | return *this; |
281 | } |
282 | const_iterator operator++(int) { |
283 | const_iterator P = *this; |
284 | ++*this; |
285 | return P; |
286 | } |
287 | |
288 | bool operator==(const const_iterator &rhs) const { |
289 | return Scope == rhs.Scope && VarIter == rhs.VarIter; |
290 | } |
291 | bool operator!=(const const_iterator &rhs) const { |
292 | return !(*this == rhs); |
293 | } |
294 | |
295 | explicit operator bool() const { |
296 | return *this != const_iterator(); |
297 | } |
298 | |
299 | int distance(const_iterator L); |
300 | const_iterator shared_parent(const_iterator L); |
301 | bool pointsToFirstDeclaredVar() { return VarIter == 1; } |
302 | bool inSameLocalScope(const_iterator rhs) { return Scope == rhs.Scope; } |
303 | }; |
304 | |
305 | private: |
306 | BumpVectorContext ctx; |
307 | |
308 | /// Automatic variables in order of declaration. |
309 | AutomaticVarsTy Vars; |
310 | |
311 | /// Iterator to variable in previous scope that was declared just before |
312 | /// begin of this scope. |
313 | const_iterator Prev; |
314 | |
315 | public: |
316 | /// Constructs empty scope linked to previous scope in specified place. |
317 | LocalScope(BumpVectorContext ctx, const_iterator P) |
318 | : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {} |
319 | |
320 | /// Begin of scope in direction of CFG building (backwards). |
321 | const_iterator begin() const { return const_iterator(*this, Vars.size()); } |
322 | |
323 | void addVar(VarDecl *VD) { |
324 | Vars.push_back(Elt: VD, C&: ctx); |
325 | } |
326 | }; |
327 | |
328 | } // namespace |
329 | |
330 | /// distance - Calculates distance from this to L. L must be reachable from this |
331 | /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t. |
332 | /// number of scopes between this and L. |
333 | int LocalScope::const_iterator::distance(LocalScope::const_iterator L) { |
334 | int D = 0; |
335 | const_iterator F = *this; |
336 | while (F.Scope != L.Scope) { |
337 | assert(F != const_iterator() && |
338 | "L iterator is not reachable from F iterator." ); |
339 | D += F.VarIter; |
340 | F = F.Scope->Prev; |
341 | } |
342 | D += F.VarIter - L.VarIter; |
343 | return D; |
344 | } |
345 | |
346 | /// Calculates the closest parent of this iterator |
347 | /// that is in a scope reachable through the parents of L. |
348 | /// I.e. when using 'goto' from this to L, the lifetime of all variables |
349 | /// between this and shared_parent(L) end. |
350 | LocalScope::const_iterator |
351 | LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) { |
352 | // one of iterators is not valid (we are not in scope), so common |
353 | // parent is const_iterator() (i.e. sentinel). |
354 | if ((*this == const_iterator()) || (L == const_iterator())) { |
355 | return const_iterator(); |
356 | } |
357 | |
358 | const_iterator F = *this; |
359 | if (F.inSameLocalScope(rhs: L)) { |
360 | // Iterators are in the same scope, get common subset of variables. |
361 | F.VarIter = std::min(a: F.VarIter, b: L.VarIter); |
362 | return F; |
363 | } |
364 | |
365 | llvm::SmallDenseMap<const LocalScope *, unsigned, 4> ScopesOfL; |
366 | while (true) { |
367 | ScopesOfL.try_emplace(Key: L.Scope, Args&: L.VarIter); |
368 | if (L == const_iterator()) |
369 | break; |
370 | L = L.Scope->Prev; |
371 | } |
372 | |
373 | while (true) { |
374 | if (auto LIt = ScopesOfL.find(Val: F.Scope); LIt != ScopesOfL.end()) { |
375 | // Get common subset of variables in given scope |
376 | F.VarIter = std::min(a: F.VarIter, b: LIt->getSecond()); |
377 | return F; |
378 | } |
379 | assert(F != const_iterator() && |
380 | "L iterator is not reachable from F iterator." ); |
381 | F = F.Scope->Prev; |
382 | } |
383 | } |
384 | |
385 | namespace { |
386 | |
387 | /// Structure for specifying position in CFG during its build process. It |
388 | /// consists of CFGBlock that specifies position in CFG and |
389 | /// LocalScope::const_iterator that specifies position in LocalScope graph. |
390 | struct BlockScopePosPair { |
391 | CFGBlock *block = nullptr; |
392 | LocalScope::const_iterator scopePosition; |
393 | |
394 | BlockScopePosPair() = default; |
395 | BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos) |
396 | : block(b), scopePosition(scopePos) {} |
397 | }; |
398 | |
399 | /// TryResult - a class representing a variant over the values |
400 | /// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool, |
401 | /// and is used by the CFGBuilder to decide if a branch condition |
402 | /// can be decided up front during CFG construction. |
403 | class TryResult { |
404 | int X = -1; |
405 | |
406 | public: |
407 | TryResult() = default; |
408 | TryResult(bool b) : X(b ? 1 : 0) {} |
409 | |
410 | bool isTrue() const { return X == 1; } |
411 | bool isFalse() const { return X == 0; } |
412 | bool isKnown() const { return X >= 0; } |
413 | |
414 | void negate() { |
415 | assert(isKnown()); |
416 | X ^= 0x1; |
417 | } |
418 | }; |
419 | |
420 | } // namespace |
421 | |
422 | static TryResult bothKnownTrue(TryResult R1, TryResult R2) { |
423 | if (!R1.isKnown() || !R2.isKnown()) |
424 | return TryResult(); |
425 | return TryResult(R1.isTrue() && R2.isTrue()); |
426 | } |
427 | |
428 | namespace { |
429 | |
430 | class reverse_children { |
431 | llvm::SmallVector<Stmt *, 12> childrenBuf; |
432 | ArrayRef<Stmt *> children; |
433 | |
434 | public: |
435 | reverse_children(Stmt *S, ASTContext &Ctx); |
436 | |
437 | using iterator = ArrayRef<Stmt *>::reverse_iterator; |
438 | |
439 | iterator begin() const { return children.rbegin(); } |
440 | iterator end() const { return children.rend(); } |
441 | }; |
442 | |
443 | } // namespace |
444 | |
445 | reverse_children::reverse_children(Stmt *S, ASTContext &Ctx) { |
446 | if (CallExpr *CE = dyn_cast<CallExpr>(Val: S)) { |
447 | children = CE->getRawSubExprs(); |
448 | return; |
449 | } |
450 | |
451 | switch (S->getStmtClass()) { |
452 | // Note: Fill in this switch with more cases we want to optimize. |
453 | case Stmt::InitListExprClass: { |
454 | InitListExpr *IE = cast<InitListExpr>(Val: S); |
455 | children = llvm::ArrayRef(reinterpret_cast<Stmt **>(IE->getInits()), |
456 | IE->getNumInits()); |
457 | return; |
458 | } |
459 | |
460 | case Stmt::AttributedStmtClass: { |
461 | // For an attributed stmt, the "children()" returns only the NullStmt |
462 | // (;) but semantically the "children" are supposed to be the |
463 | // expressions _within_ i.e. the two square brackets i.e. [[ HERE ]] |
464 | // so we add the subexpressions first, _then_ add the "children" |
465 | auto *AS = cast<AttributedStmt>(Val: S); |
466 | for (const auto *Attr : AS->getAttrs()) { |
467 | if (const auto *AssumeAttr = dyn_cast<CXXAssumeAttr>(Val: Attr)) { |
468 | Expr *AssumeExpr = AssumeAttr->getAssumption(); |
469 | if (!AssumeExpr->HasSideEffects(Ctx)) { |
470 | childrenBuf.push_back(Elt: AssumeExpr); |
471 | } |
472 | } |
473 | } |
474 | |
475 | // Visit the actual children AST nodes. |
476 | // For CXXAssumeAttrs, this is always a NullStmt. |
477 | llvm::append_range(C&: childrenBuf, R: AS->children()); |
478 | children = childrenBuf; |
479 | return; |
480 | } |
481 | default: |
482 | break; |
483 | } |
484 | |
485 | // Default case for all other statements. |
486 | llvm::append_range(C&: childrenBuf, R: S->children()); |
487 | |
488 | // This needs to be done *after* childrenBuf has been populated. |
489 | children = childrenBuf; |
490 | } |
491 | |
492 | namespace { |
493 | |
494 | /// CFGBuilder - This class implements CFG construction from an AST. |
495 | /// The builder is stateful: an instance of the builder should be used to only |
496 | /// construct a single CFG. |
497 | /// |
498 | /// Example usage: |
499 | /// |
500 | /// CFGBuilder builder; |
501 | /// std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1); |
502 | /// |
503 | /// CFG construction is done via a recursive walk of an AST. We actually parse |
504 | /// the AST in reverse order so that the successor of a basic block is |
505 | /// constructed prior to its predecessor. This allows us to nicely capture |
506 | /// implicit fall-throughs without extra basic blocks. |
507 | class CFGBuilder { |
508 | using JumpTarget = BlockScopePosPair; |
509 | using JumpSource = BlockScopePosPair; |
510 | |
511 | ASTContext *Context; |
512 | std::unique_ptr<CFG> cfg; |
513 | |
514 | // Current block. |
515 | CFGBlock *Block = nullptr; |
516 | |
517 | // Block after the current block. |
518 | CFGBlock *Succ = nullptr; |
519 | |
520 | JumpTarget ContinueJumpTarget; |
521 | JumpTarget BreakJumpTarget; |
522 | JumpTarget SEHLeaveJumpTarget; |
523 | CFGBlock *SwitchTerminatedBlock = nullptr; |
524 | CFGBlock *DefaultCaseBlock = nullptr; |
525 | |
526 | // This can point to either a C++ try, an Objective-C @try, or an SEH __try. |
527 | // try and @try can be mixed and generally work the same. |
528 | // The frontend forbids mixing SEH __try with either try or @try. |
529 | // So having one for all three is enough. |
530 | CFGBlock *TryTerminatedBlock = nullptr; |
531 | |
532 | // Current position in local scope. |
533 | LocalScope::const_iterator ScopePos; |
534 | |
535 | // LabelMap records the mapping from Label expressions to their jump targets. |
536 | using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>; |
537 | LabelMapTy LabelMap; |
538 | |
539 | // A list of blocks that end with a "goto" that must be backpatched to their |
540 | // resolved targets upon completion of CFG construction. |
541 | using BackpatchBlocksTy = std::vector<JumpSource>; |
542 | BackpatchBlocksTy BackpatchBlocks; |
543 | |
544 | // A list of labels whose address has been taken (for indirect gotos). |
545 | using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>; |
546 | LabelSetTy AddressTakenLabels; |
547 | |
548 | // Information about the currently visited C++ object construction site. |
549 | // This is set in the construction trigger and read when the constructor |
550 | // or a function that returns an object by value is being visited. |
551 | llvm::DenseMap<Expr *, const ConstructionContextLayer *> |
552 | ConstructionContextMap; |
553 | |
554 | bool badCFG = false; |
555 | const CFG::BuildOptions &BuildOpts; |
556 | |
557 | // State to track for building switch statements. |
558 | bool switchExclusivelyCovered = false; |
559 | Expr::EvalResult *switchCond = nullptr; |
560 | |
561 | CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr; |
562 | const Stmt *lastLookup = nullptr; |
563 | |
564 | // Caches boolean evaluations of expressions to avoid multiple re-evaluations |
565 | // during construction of branches for chained logical operators. |
566 | using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>; |
567 | CachedBoolEvalsTy CachedBoolEvals; |
568 | |
569 | public: |
570 | explicit CFGBuilder(ASTContext *astContext, |
571 | const CFG::BuildOptions &buildOpts) |
572 | : Context(astContext), cfg(new CFG()), BuildOpts(buildOpts) {} |
573 | |
574 | // buildCFG - Used by external clients to construct the CFG. |
575 | std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement); |
576 | |
577 | bool alwaysAdd(const Stmt *stmt); |
578 | |
579 | private: |
580 | // Visitors to walk an AST and construct the CFG. |
581 | CFGBlock *VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc); |
582 | CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc); |
583 | CFGBlock *VisitAttributedStmt(AttributedStmt *A, AddStmtChoice asc); |
584 | CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc); |
585 | CFGBlock *VisitBreakStmt(BreakStmt *B); |
586 | CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc); |
587 | CFGBlock *VisitCaseStmt(CaseStmt *C); |
588 | CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc); |
589 | CFGBlock *VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed); |
590 | CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C, |
591 | AddStmtChoice asc); |
592 | CFGBlock *VisitContinueStmt(ContinueStmt *C); |
593 | CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E, |
594 | AddStmtChoice asc); |
595 | CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S); |
596 | CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc); |
597 | CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc); |
598 | CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc); |
599 | CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S); |
600 | CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E, |
601 | AddStmtChoice asc); |
602 | CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C, |
603 | AddStmtChoice asc); |
604 | CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T); |
605 | CFGBlock *VisitCXXTryStmt(CXXTryStmt *S); |
606 | CFGBlock *VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc); |
607 | CFGBlock *VisitDeclStmt(DeclStmt *DS); |
608 | CFGBlock *VisitDeclSubExpr(DeclStmt *DS); |
609 | CFGBlock *VisitDefaultStmt(DefaultStmt *D); |
610 | CFGBlock *VisitDoStmt(DoStmt *D); |
611 | CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, |
612 | AddStmtChoice asc, bool ExternallyDestructed); |
613 | CFGBlock *VisitForStmt(ForStmt *F); |
614 | CFGBlock *VisitGotoStmt(GotoStmt *G); |
615 | CFGBlock *VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc); |
616 | CFGBlock *VisitIfStmt(IfStmt *I); |
617 | CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc); |
618 | CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc); |
619 | CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I); |
620 | CFGBlock *VisitLabelStmt(LabelStmt *L); |
621 | CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc); |
622 | CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc); |
623 | CFGBlock *VisitLogicalOperator(BinaryOperator *B); |
624 | std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B, |
625 | Stmt *Term, |
626 | CFGBlock *TrueBlock, |
627 | CFGBlock *FalseBlock); |
628 | CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE, |
629 | AddStmtChoice asc); |
630 | CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc); |
631 | CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S); |
632 | CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S); |
633 | CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S); |
634 | CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S); |
635 | CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S); |
636 | CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S); |
637 | CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc); |
638 | CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E); |
639 | CFGBlock *VisitReturnStmt(Stmt *S); |
640 | CFGBlock *VisitCoroutineSuspendExpr(CoroutineSuspendExpr *S, |
641 | AddStmtChoice asc); |
642 | CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S); |
643 | CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S); |
644 | CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S); |
645 | CFGBlock *VisitSEHTryStmt(SEHTryStmt *S); |
646 | CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc); |
647 | CFGBlock *VisitSwitchStmt(SwitchStmt *S); |
648 | CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E, |
649 | AddStmtChoice asc); |
650 | CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc); |
651 | CFGBlock *VisitWhileStmt(WhileStmt *W); |
652 | CFGBlock *VisitArrayInitLoopExpr(ArrayInitLoopExpr *A, AddStmtChoice asc); |
653 | |
654 | CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd, |
655 | bool ExternallyDestructed = false); |
656 | CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc); |
657 | CFGBlock *VisitChildren(Stmt *S); |
658 | CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc); |
659 | CFGBlock *VisitOMPExecutableDirective(OMPExecutableDirective *D, |
660 | AddStmtChoice asc); |
661 | |
662 | void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD, |
663 | const Stmt *S) { |
664 | if (ScopePos && (VD == ScopePos.getFirstVarInScope())) |
665 | appendScopeBegin(B, VD, S); |
666 | } |
667 | |
668 | /// When creating the CFG for temporary destructors, we want to mirror the |
669 | /// branch structure of the corresponding constructor calls. |
670 | /// Thus, while visiting a statement for temporary destructors, we keep a |
671 | /// context to keep track of the following information: |
672 | /// - whether a subexpression is executed unconditionally |
673 | /// - if a subexpression is executed conditionally, the first |
674 | /// CXXBindTemporaryExpr we encounter in that subexpression (which |
675 | /// corresponds to the last temporary destructor we have to call for this |
676 | /// subexpression) and the CFG block at that point (which will become the |
677 | /// successor block when inserting the decision point). |
678 | /// |
679 | /// That way, we can build the branch structure for temporary destructors as |
680 | /// follows: |
681 | /// 1. If a subexpression is executed unconditionally, we add the temporary |
682 | /// destructor calls to the current block. |
683 | /// 2. If a subexpression is executed conditionally, when we encounter a |
684 | /// CXXBindTemporaryExpr: |
685 | /// a) If it is the first temporary destructor call in the subexpression, |
686 | /// we remember the CXXBindTemporaryExpr and the current block in the |
687 | /// TempDtorContext; we start a new block, and insert the temporary |
688 | /// destructor call. |
689 | /// b) Otherwise, add the temporary destructor call to the current block. |
690 | /// 3. When we finished visiting a conditionally executed subexpression, |
691 | /// and we found at least one temporary constructor during the visitation |
692 | /// (2.a has executed), we insert a decision block that uses the |
693 | /// CXXBindTemporaryExpr as terminator, and branches to the current block |
694 | /// if the CXXBindTemporaryExpr was marked executed, and otherwise |
695 | /// branches to the stored successor. |
696 | struct TempDtorContext { |
697 | TempDtorContext() = default; |
698 | TempDtorContext(TryResult KnownExecuted) |
699 | : IsConditional(true), KnownExecuted(KnownExecuted) {} |
700 | |
701 | /// Returns whether we need to start a new branch for a temporary destructor |
702 | /// call. This is the case when the temporary destructor is |
703 | /// conditionally executed, and it is the first one we encounter while |
704 | /// visiting a subexpression - other temporary destructors at the same level |
705 | /// will be added to the same block and are executed under the same |
706 | /// condition. |
707 | bool needsTempDtorBranch() const { |
708 | return IsConditional && !TerminatorExpr; |
709 | } |
710 | |
711 | /// Remember the successor S of a temporary destructor decision branch for |
712 | /// the corresponding CXXBindTemporaryExpr E. |
713 | void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) { |
714 | Succ = S; |
715 | TerminatorExpr = E; |
716 | } |
717 | |
718 | const bool IsConditional = false; |
719 | const TryResult KnownExecuted = true; |
720 | CFGBlock *Succ = nullptr; |
721 | CXXBindTemporaryExpr *TerminatorExpr = nullptr; |
722 | }; |
723 | |
724 | // Visitors to walk an AST and generate destructors of temporaries in |
725 | // full expression. |
726 | CFGBlock *VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed, |
727 | TempDtorContext &Context); |
728 | CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E, bool ExternallyDestructed, |
729 | TempDtorContext &Context); |
730 | CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E, |
731 | bool ExternallyDestructed, |
732 | TempDtorContext &Context); |
733 | CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors( |
734 | CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context); |
735 | CFGBlock *VisitConditionalOperatorForTemporaryDtors( |
736 | AbstractConditionalOperator *E, bool ExternallyDestructed, |
737 | TempDtorContext &Context); |
738 | void InsertTempDtorDecisionBlock(const TempDtorContext &Context, |
739 | CFGBlock *FalseSucc = nullptr); |
740 | |
741 | // NYS == Not Yet Supported |
742 | CFGBlock *NYS() { |
743 | badCFG = true; |
744 | return Block; |
745 | } |
746 | |
747 | // Remember to apply the construction context based on the current \p Layer |
748 | // when constructing the CFG element for \p CE. |
749 | void consumeConstructionContext(const ConstructionContextLayer *Layer, |
750 | Expr *E); |
751 | |
752 | // Scan \p Child statement to find constructors in it, while keeping in mind |
753 | // that its parent statement is providing a partial construction context |
754 | // described by \p Layer. If a constructor is found, it would be assigned |
755 | // the context based on the layer. If an additional construction context layer |
756 | // is found, the function recurses into that. |
757 | void findConstructionContexts(const ConstructionContextLayer *Layer, |
758 | Stmt *Child); |
759 | |
760 | // Scan all arguments of a call expression for a construction context. |
761 | // These sorts of call expressions don't have a common superclass, |
762 | // hence strict duck-typing. |
763 | template <typename CallLikeExpr, |
764 | typename = std::enable_if_t< |
765 | std::is_base_of_v<CallExpr, CallLikeExpr> || |
766 | std::is_base_of_v<CXXConstructExpr, CallLikeExpr> || |
767 | std::is_base_of_v<ObjCMessageExpr, CallLikeExpr>>> |
768 | void findConstructionContextsForArguments(CallLikeExpr *E) { |
769 | for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { |
770 | Expr *Arg = E->getArg(i); |
771 | if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue()) |
772 | findConstructionContexts( |
773 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), |
774 | Item: ConstructionContextItem(E, i)), |
775 | Child: Arg); |
776 | } |
777 | } |
778 | |
779 | // Unset the construction context after consuming it. This is done immediately |
780 | // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so |
781 | // there's no need to do this manually in every Visit... function. |
782 | void cleanupConstructionContext(Expr *E); |
783 | |
784 | void autoCreateBlock() { if (!Block) Block = createBlock(); } |
785 | |
786 | CFGBlock *createBlock(bool add_successor = true); |
787 | CFGBlock *createNoReturnBlock(); |
788 | |
789 | CFGBlock *addStmt(Stmt *S) { |
790 | return Visit(S, asc: AddStmtChoice::AlwaysAdd); |
791 | } |
792 | |
793 | CFGBlock *addInitializer(CXXCtorInitializer *I); |
794 | void addLoopExit(const Stmt *LoopStmt); |
795 | void addAutomaticObjHandling(LocalScope::const_iterator B, |
796 | LocalScope::const_iterator E, Stmt *S); |
797 | void addAutomaticObjDestruction(LocalScope::const_iterator B, |
798 | LocalScope::const_iterator E, Stmt *S); |
799 | void addScopeExitHandling(LocalScope::const_iterator B, |
800 | LocalScope::const_iterator E, Stmt *S); |
801 | void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD); |
802 | void addScopeChangesHandling(LocalScope::const_iterator SrcPos, |
803 | LocalScope::const_iterator DstPos, |
804 | Stmt *S); |
805 | CFGBlock *createScopeChangesHandlingBlock(LocalScope::const_iterator SrcPos, |
806 | CFGBlock *SrcBlk, |
807 | LocalScope::const_iterator DstPost, |
808 | CFGBlock *DstBlk); |
809 | |
810 | // Local scopes creation. |
811 | LocalScope* createOrReuseLocalScope(LocalScope* Scope); |
812 | |
813 | void addLocalScopeForStmt(Stmt *S); |
814 | LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, |
815 | LocalScope* Scope = nullptr); |
816 | LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr); |
817 | |
818 | void addLocalScopeAndDtors(Stmt *S); |
819 | |
820 | const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) { |
821 | if (!BuildOpts.AddRichCXXConstructors) |
822 | return nullptr; |
823 | |
824 | const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(Val: E); |
825 | if (!Layer) |
826 | return nullptr; |
827 | |
828 | cleanupConstructionContext(E); |
829 | return ConstructionContext::createFromLayers(C&: cfg->getBumpVectorContext(), |
830 | TopLayer: Layer); |
831 | } |
832 | |
833 | // Interface to CFGBlock - adding CFGElements. |
834 | |
835 | void appendStmt(CFGBlock *B, const Stmt *S) { |
836 | if (alwaysAdd(stmt: S) && cachedEntry) |
837 | cachedEntry->second = B; |
838 | |
839 | // All block-level expressions should have already been IgnoreParens()ed. |
840 | assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S); |
841 | B->appendStmt(statement: const_cast<Stmt*>(S), C&: cfg->getBumpVectorContext()); |
842 | } |
843 | |
844 | void appendConstructor(CXXConstructExpr *CE) { |
845 | CXXConstructorDecl *C = CE->getConstructor(); |
846 | if (C && C->isNoReturn()) |
847 | Block = createNoReturnBlock(); |
848 | else |
849 | autoCreateBlock(); |
850 | |
851 | if (const ConstructionContext *CC = |
852 | retrieveAndCleanupConstructionContext(E: CE)) { |
853 | Block->appendConstructor(CE, CC, C&: cfg->getBumpVectorContext()); |
854 | return; |
855 | } |
856 | |
857 | // No valid construction context found. Fall back to statement. |
858 | Block->appendStmt(statement: CE, C&: cfg->getBumpVectorContext()); |
859 | } |
860 | |
861 | void appendCall(CFGBlock *B, CallExpr *CE) { |
862 | if (alwaysAdd(stmt: CE) && cachedEntry) |
863 | cachedEntry->second = B; |
864 | |
865 | if (const ConstructionContext *CC = |
866 | retrieveAndCleanupConstructionContext(E: CE)) { |
867 | B->appendCXXRecordTypedCall(E: CE, CC, C&: cfg->getBumpVectorContext()); |
868 | return; |
869 | } |
870 | |
871 | // No valid construction context found. Fall back to statement. |
872 | B->appendStmt(statement: CE, C&: cfg->getBumpVectorContext()); |
873 | } |
874 | |
875 | void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) { |
876 | B->appendInitializer(initializer: I, C&: cfg->getBumpVectorContext()); |
877 | } |
878 | |
879 | void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) { |
880 | B->appendNewAllocator(NE, C&: cfg->getBumpVectorContext()); |
881 | } |
882 | |
883 | void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) { |
884 | B->appendBaseDtor(BS, C&: cfg->getBumpVectorContext()); |
885 | } |
886 | |
887 | void appendMemberDtor(CFGBlock *B, FieldDecl *FD) { |
888 | B->appendMemberDtor(FD, C&: cfg->getBumpVectorContext()); |
889 | } |
890 | |
891 | void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) { |
892 | if (alwaysAdd(stmt: ME) && cachedEntry) |
893 | cachedEntry->second = B; |
894 | |
895 | if (const ConstructionContext *CC = |
896 | retrieveAndCleanupConstructionContext(E: ME)) { |
897 | B->appendCXXRecordTypedCall(E: ME, CC, C&: cfg->getBumpVectorContext()); |
898 | return; |
899 | } |
900 | |
901 | B->appendStmt(statement: ME, C&: cfg->getBumpVectorContext()); |
902 | } |
903 | |
904 | void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) { |
905 | B->appendTemporaryDtor(E, C&: cfg->getBumpVectorContext()); |
906 | } |
907 | |
908 | void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) { |
909 | B->appendAutomaticObjDtor(VD, S, C&: cfg->getBumpVectorContext()); |
910 | } |
911 | |
912 | void appendCleanupFunction(CFGBlock *B, VarDecl *VD) { |
913 | B->appendCleanupFunction(VD, C&: cfg->getBumpVectorContext()); |
914 | } |
915 | |
916 | void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) { |
917 | B->appendLifetimeEnds(VD, S, C&: cfg->getBumpVectorContext()); |
918 | } |
919 | |
920 | void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) { |
921 | B->appendLoopExit(LoopStmt, C&: cfg->getBumpVectorContext()); |
922 | } |
923 | |
924 | void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) { |
925 | B->appendDeleteDtor(RD, DE, C&: cfg->getBumpVectorContext()); |
926 | } |
927 | |
928 | void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) { |
929 | B->addSuccessor(Succ: CFGBlock::AdjacentBlock(S, IsReachable), |
930 | C&: cfg->getBumpVectorContext()); |
931 | } |
932 | |
933 | /// Add a reachable successor to a block, with the alternate variant that is |
934 | /// unreachable. |
935 | void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) { |
936 | B->addSuccessor(Succ: CFGBlock::AdjacentBlock(ReachableBlock, AltBlock), |
937 | C&: cfg->getBumpVectorContext()); |
938 | } |
939 | |
940 | void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) { |
941 | if (BuildOpts.AddScopes) |
942 | B->appendScopeBegin(VD, S, C&: cfg->getBumpVectorContext()); |
943 | } |
944 | |
945 | void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) { |
946 | if (BuildOpts.AddScopes) |
947 | B->appendScopeEnd(VD, S, C&: cfg->getBumpVectorContext()); |
948 | } |
949 | |
950 | /// Find a relational comparison with an expression evaluating to a |
951 | /// boolean and a constant other than 0 and 1. |
952 | /// e.g. if ((x < y) == 10) |
953 | TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) { |
954 | const Expr *LHSExpr = B->getLHS()->IgnoreParens(); |
955 | const Expr *RHSExpr = B->getRHS()->IgnoreParens(); |
956 | |
957 | const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(Val: LHSExpr); |
958 | const Expr *BoolExpr = RHSExpr; |
959 | bool IntFirst = true; |
960 | if (!IntLiteral) { |
961 | IntLiteral = dyn_cast<IntegerLiteral>(Val: RHSExpr); |
962 | BoolExpr = LHSExpr; |
963 | IntFirst = false; |
964 | } |
965 | |
966 | if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue()) |
967 | return TryResult(); |
968 | |
969 | llvm::APInt IntValue = IntLiteral->getValue(); |
970 | if ((IntValue == 1) || (IntValue == 0)) |
971 | return TryResult(); |
972 | |
973 | bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() || |
974 | !IntValue.isNegative(); |
975 | |
976 | BinaryOperatorKind Bok = B->getOpcode(); |
977 | if (Bok == BO_GT || Bok == BO_GE) { |
978 | // Always true for 10 > bool and bool > -1 |
979 | // Always false for -1 > bool and bool > 10 |
980 | return TryResult(IntFirst == IntLarger); |
981 | } else { |
982 | // Always true for -1 < bool and bool < 10 |
983 | // Always false for 10 < bool and bool < -1 |
984 | return TryResult(IntFirst != IntLarger); |
985 | } |
986 | } |
987 | |
988 | /// Find an incorrect equality comparison. Either with an expression |
989 | /// evaluating to a boolean and a constant other than 0 and 1. |
990 | /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to |
991 | /// true/false e.q. (x & 8) == 4. |
992 | TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) { |
993 | const Expr *LHSExpr = B->getLHS()->IgnoreParens(); |
994 | const Expr *RHSExpr = B->getRHS()->IgnoreParens(); |
995 | |
996 | std::optional<llvm::APInt> IntLiteral1 = |
997 | getIntegerLiteralSubexpressionValue(E: LHSExpr); |
998 | const Expr *BoolExpr = RHSExpr; |
999 | |
1000 | if (!IntLiteral1) { |
1001 | IntLiteral1 = getIntegerLiteralSubexpressionValue(E: RHSExpr); |
1002 | BoolExpr = LHSExpr; |
1003 | } |
1004 | |
1005 | if (!IntLiteral1) |
1006 | return TryResult(); |
1007 | |
1008 | const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(Val: BoolExpr); |
1009 | if (BitOp && (BitOp->getOpcode() == BO_And || |
1010 | BitOp->getOpcode() == BO_Or)) { |
1011 | const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens(); |
1012 | const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens(); |
1013 | |
1014 | std::optional<llvm::APInt> IntLiteral2 = |
1015 | getIntegerLiteralSubexpressionValue(E: LHSExpr2); |
1016 | |
1017 | if (!IntLiteral2) |
1018 | IntLiteral2 = getIntegerLiteralSubexpressionValue(E: RHSExpr2); |
1019 | |
1020 | if (!IntLiteral2) |
1021 | return TryResult(); |
1022 | |
1023 | if ((BitOp->getOpcode() == BO_And && |
1024 | (*IntLiteral2 & *IntLiteral1) != *IntLiteral1) || |
1025 | (BitOp->getOpcode() == BO_Or && |
1026 | (*IntLiteral2 | *IntLiteral1) != *IntLiteral1)) { |
1027 | if (BuildOpts.Observer) |
1028 | BuildOpts.Observer->compareBitwiseEquality(B, |
1029 | isAlwaysTrue: B->getOpcode() != BO_EQ); |
1030 | return TryResult(B->getOpcode() != BO_EQ); |
1031 | } |
1032 | } else if (BoolExpr->isKnownToHaveBooleanValue()) { |
1033 | if ((*IntLiteral1 == 1) || (*IntLiteral1 == 0)) { |
1034 | return TryResult(); |
1035 | } |
1036 | return TryResult(B->getOpcode() != BO_EQ); |
1037 | } |
1038 | |
1039 | return TryResult(); |
1040 | } |
1041 | |
1042 | // Helper function to get an APInt from an expression. Supports expressions |
1043 | // which are an IntegerLiteral or a UnaryOperator and returns the value with |
1044 | // all operations performed on it. |
1045 | // FIXME: it would be good to unify this function with |
1046 | // IsIntegerLiteralConstantExpr at some point given the similarity between the |
1047 | // functions. |
1048 | std::optional<llvm::APInt> |
1049 | getIntegerLiteralSubexpressionValue(const Expr *E) { |
1050 | |
1051 | // If unary. |
1052 | if (const auto *UnOp = dyn_cast<UnaryOperator>(Val: E->IgnoreParens())) { |
1053 | // Get the sub expression of the unary expression and get the Integer |
1054 | // Literal. |
1055 | const Expr *SubExpr = UnOp->getSubExpr()->IgnoreParens(); |
1056 | |
1057 | if (const auto *IntLiteral = dyn_cast<IntegerLiteral>(Val: SubExpr)) { |
1058 | |
1059 | llvm::APInt Value = IntLiteral->getValue(); |
1060 | |
1061 | // Perform the operation manually. |
1062 | switch (UnOp->getOpcode()) { |
1063 | case UO_Plus: |
1064 | return Value; |
1065 | case UO_Minus: |
1066 | return -Value; |
1067 | case UO_Not: |
1068 | return ~Value; |
1069 | case UO_LNot: |
1070 | return llvm::APInt(Context->getTypeSize(T: Context->IntTy), !Value); |
1071 | default: |
1072 | assert(false && "Unexpected unary operator!" ); |
1073 | return std::nullopt; |
1074 | } |
1075 | } |
1076 | } else if (const auto *IntLiteral = |
1077 | dyn_cast<IntegerLiteral>(Val: E->IgnoreParens())) |
1078 | return IntLiteral->getValue(); |
1079 | |
1080 | return std::nullopt; |
1081 | } |
1082 | |
1083 | template <typename APFloatOrInt> |
1084 | TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation, |
1085 | const APFloatOrInt &Value1, |
1086 | const APFloatOrInt &Value2) { |
1087 | switch (Relation) { |
1088 | default: |
1089 | return TryResult(); |
1090 | case BO_EQ: |
1091 | return TryResult(Value1 == Value2); |
1092 | case BO_NE: |
1093 | return TryResult(Value1 != Value2); |
1094 | case BO_LT: |
1095 | return TryResult(Value1 < Value2); |
1096 | case BO_LE: |
1097 | return TryResult(Value1 <= Value2); |
1098 | case BO_GT: |
1099 | return TryResult(Value1 > Value2); |
1100 | case BO_GE: |
1101 | return TryResult(Value1 >= Value2); |
1102 | } |
1103 | } |
1104 | |
1105 | /// There are two checks handled by this function: |
1106 | /// 1. Find a law-of-excluded-middle or law-of-noncontradiction expression |
1107 | /// e.g. if (x || !x), if (x && !x) |
1108 | /// 2. Find a pair of comparison expressions with or without parentheses |
1109 | /// with a shared variable and constants and a logical operator between them |
1110 | /// that always evaluates to either true or false. |
1111 | /// e.g. if (x != 3 || x != 4) |
1112 | TryResult checkIncorrectLogicOperator(const BinaryOperator *B) { |
1113 | assert(B->isLogicalOp()); |
1114 | const Expr *LHSExpr = B->getLHS()->IgnoreParens(); |
1115 | const Expr *RHSExpr = B->getRHS()->IgnoreParens(); |
1116 | |
1117 | auto CheckLogicalOpWithNegatedVariable = [this, B](const Expr *E1, |
1118 | const Expr *E2) { |
1119 | if (const auto *Negate = dyn_cast<UnaryOperator>(Val: E1)) { |
1120 | if (Negate->getOpcode() == UO_LNot && |
1121 | Expr::isSameComparisonOperand(E1: Negate->getSubExpr(), E2)) { |
1122 | bool AlwaysTrue = B->getOpcode() == BO_LOr; |
1123 | if (BuildOpts.Observer) |
1124 | BuildOpts.Observer->logicAlwaysTrue(B, isAlwaysTrue: AlwaysTrue); |
1125 | return TryResult(AlwaysTrue); |
1126 | } |
1127 | } |
1128 | return TryResult(); |
1129 | }; |
1130 | |
1131 | TryResult Result = CheckLogicalOpWithNegatedVariable(LHSExpr, RHSExpr); |
1132 | if (Result.isKnown()) |
1133 | return Result; |
1134 | Result = CheckLogicalOpWithNegatedVariable(RHSExpr, LHSExpr); |
1135 | if (Result.isKnown()) |
1136 | return Result; |
1137 | |
1138 | const auto *LHS = dyn_cast<BinaryOperator>(Val: LHSExpr); |
1139 | const auto *RHS = dyn_cast<BinaryOperator>(Val: RHSExpr); |
1140 | if (!LHS || !RHS) |
1141 | return {}; |
1142 | |
1143 | if (!LHS->isComparisonOp() || !RHS->isComparisonOp()) |
1144 | return {}; |
1145 | |
1146 | const Expr *DeclExpr1; |
1147 | const Expr *NumExpr1; |
1148 | BinaryOperatorKind BO1; |
1149 | std::tie(args&: DeclExpr1, args&: BO1, args&: NumExpr1) = tryNormalizeBinaryOperator(B: LHS); |
1150 | |
1151 | if (!DeclExpr1 || !NumExpr1) |
1152 | return {}; |
1153 | |
1154 | const Expr *DeclExpr2; |
1155 | const Expr *NumExpr2; |
1156 | BinaryOperatorKind BO2; |
1157 | std::tie(args&: DeclExpr2, args&: BO2, args&: NumExpr2) = tryNormalizeBinaryOperator(B: RHS); |
1158 | |
1159 | if (!DeclExpr2 || !NumExpr2) |
1160 | return {}; |
1161 | |
1162 | // Check that it is the same variable on both sides. |
1163 | if (!Expr::isSameComparisonOperand(E1: DeclExpr1, E2: DeclExpr2)) |
1164 | return {}; |
1165 | |
1166 | // Make sure the user's intent is clear (e.g. they're comparing against two |
1167 | // int literals, or two things from the same enum) |
1168 | if (!areExprTypesCompatible(E1: NumExpr1, E2: NumExpr2)) |
1169 | return {}; |
1170 | |
1171 | // Check that the two expressions are of the same type. |
1172 | Expr::EvalResult L1Result, L2Result; |
1173 | if (!NumExpr1->EvaluateAsRValue(Result&: L1Result, Ctx: *Context) || |
1174 | !NumExpr2->EvaluateAsRValue(Result&: L2Result, Ctx: *Context)) |
1175 | return {}; |
1176 | |
1177 | // Check whether expression is always true/false by evaluating the |
1178 | // following |
1179 | // * variable x is less than the smallest literal. |
1180 | // * variable x is equal to the smallest literal. |
1181 | // * Variable x is between smallest and largest literal. |
1182 | // * Variable x is equal to the largest literal. |
1183 | // * Variable x is greater than largest literal. |
1184 | // This isn't technically correct, as it doesn't take into account the |
1185 | // possibility that the variable could be NaN. However, this is a very rare |
1186 | // case. |
1187 | auto AnalyzeConditions = [&](const auto &Values, |
1188 | const BinaryOperatorKind *BO1, |
1189 | const BinaryOperatorKind *BO2) -> TryResult { |
1190 | bool AlwaysTrue = true, AlwaysFalse = true; |
1191 | // Track value of both subexpressions. If either side is always |
1192 | // true/false, another warning should have already been emitted. |
1193 | bool LHSAlwaysTrue = true, LHSAlwaysFalse = true; |
1194 | bool RHSAlwaysTrue = true, RHSAlwaysFalse = true; |
1195 | |
1196 | for (const auto &Value : Values) { |
1197 | TryResult Res1 = |
1198 | analyzeLogicOperatorCondition(*BO1, Value, Values[1] /* L1 */); |
1199 | TryResult Res2 = |
1200 | analyzeLogicOperatorCondition(*BO2, Value, Values[3] /* L2 */); |
1201 | |
1202 | if (!Res1.isKnown() || !Res2.isKnown()) |
1203 | return {}; |
1204 | |
1205 | const bool IsAnd = B->getOpcode() == BO_LAnd; |
1206 | const bool Combine = IsAnd ? (Res1.isTrue() && Res2.isTrue()) |
1207 | : (Res1.isTrue() || Res2.isTrue()); |
1208 | |
1209 | AlwaysTrue &= Combine; |
1210 | AlwaysFalse &= !Combine; |
1211 | |
1212 | LHSAlwaysTrue &= Res1.isTrue(); |
1213 | LHSAlwaysFalse &= Res1.isFalse(); |
1214 | RHSAlwaysTrue &= Res2.isTrue(); |
1215 | RHSAlwaysFalse &= Res2.isFalse(); |
1216 | } |
1217 | |
1218 | if (AlwaysTrue || AlwaysFalse) { |
1219 | if (!LHSAlwaysTrue && !LHSAlwaysFalse && !RHSAlwaysTrue && |
1220 | !RHSAlwaysFalse && BuildOpts.Observer) { |
1221 | BuildOpts.Observer->compareAlwaysTrue(B, isAlwaysTrue: AlwaysTrue); |
1222 | } |
1223 | return TryResult(AlwaysTrue); |
1224 | } |
1225 | return {}; |
1226 | }; |
1227 | |
1228 | // Handle integer comparison. |
1229 | if (L1Result.Val.getKind() == APValue::Int && |
1230 | L2Result.Val.getKind() == APValue::Int) { |
1231 | llvm::APSInt L1 = L1Result.Val.getInt(); |
1232 | llvm::APSInt L2 = L2Result.Val.getInt(); |
1233 | |
1234 | // Can't compare signed with unsigned or with different bit width. |
1235 | if (L1.isSigned() != L2.isSigned() || |
1236 | L1.getBitWidth() != L2.getBitWidth()) |
1237 | return {}; |
1238 | |
1239 | // Values that will be used to determine if result of logical |
1240 | // operator is always true/false |
1241 | const llvm::APSInt Values[] = { |
1242 | // Value less than both Value1 and Value2 |
1243 | llvm::APSInt::getMinValue(numBits: L1.getBitWidth(), Unsigned: L1.isUnsigned()), |
1244 | // L1 |
1245 | L1, |
1246 | // Value between Value1 and Value2 |
1247 | ((L1 < L2) ? L1 : L2) + |
1248 | llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1), L1.isUnsigned()), |
1249 | // L2 |
1250 | L2, |
1251 | // Value greater than both Value1 and Value2 |
1252 | llvm::APSInt::getMaxValue(numBits: L1.getBitWidth(), Unsigned: L1.isUnsigned()), |
1253 | }; |
1254 | |
1255 | return AnalyzeConditions(Values, &BO1, &BO2); |
1256 | } |
1257 | |
1258 | // Handle float comparison. |
1259 | if (L1Result.Val.getKind() == APValue::Float && |
1260 | L2Result.Val.getKind() == APValue::Float) { |
1261 | llvm::APFloat L1 = L1Result.Val.getFloat(); |
1262 | llvm::APFloat L2 = L2Result.Val.getFloat(); |
1263 | // Note that L1 and L2 do not necessarily have the same type. For example |
1264 | // `x != 0 || x != 1.0`, if `x` is a float16, the two literals `0` and |
1265 | // `1.0` are float16 and double respectively. In this case, we should do |
1266 | // a conversion before comparing L1 and L2. Their types must be |
1267 | // compatible since they are comparing with the same DRE. |
1268 | int Order = Context->getFloatingTypeSemanticOrder(LHS: NumExpr1->getType(), |
1269 | RHS: NumExpr2->getType()); |
1270 | bool Ignored = false; |
1271 | |
1272 | if (Order > 0) { |
1273 | // type rank L1 > L2: |
1274 | if (llvm::APFloat::opOK != |
1275 | L2.convert(ToSemantics: L1.getSemantics(), RM: llvm::APFloat::rmNearestTiesToEven, |
1276 | losesInfo: &Ignored)) |
1277 | return {}; |
1278 | } else if (Order < 0) |
1279 | // type rank L1 < L2: |
1280 | if (llvm::APFloat::opOK != |
1281 | L1.convert(ToSemantics: L2.getSemantics(), RM: llvm::APFloat::rmNearestTiesToEven, |
1282 | losesInfo: &Ignored)) |
1283 | return {}; |
1284 | |
1285 | llvm::APFloat MidValue = L1; |
1286 | MidValue.add(RHS: L2, RM: llvm::APFloat::rmNearestTiesToEven); |
1287 | MidValue.divide(RHS: llvm::APFloat(MidValue.getSemantics(), "2.0" ), |
1288 | RM: llvm::APFloat::rmNearestTiesToEven); |
1289 | |
1290 | const llvm::APFloat Values[] = { |
1291 | llvm::APFloat::getSmallest(Sem: L1.getSemantics(), Negative: true), L1, MidValue, L2, |
1292 | llvm::APFloat::getLargest(Sem: L2.getSemantics(), Negative: false), |
1293 | }; |
1294 | |
1295 | return AnalyzeConditions(Values, &BO1, &BO2); |
1296 | } |
1297 | |
1298 | return {}; |
1299 | } |
1300 | |
1301 | /// A bitwise-or with a non-zero constant always evaluates to true. |
1302 | TryResult checkIncorrectBitwiseOrOperator(const BinaryOperator *B) { |
1303 | const Expr *LHSConstant = |
1304 | tryTransformToLiteralConstant(E: B->getLHS()->IgnoreParenImpCasts()); |
1305 | const Expr *RHSConstant = |
1306 | tryTransformToLiteralConstant(E: B->getRHS()->IgnoreParenImpCasts()); |
1307 | |
1308 | if ((LHSConstant && RHSConstant) || (!LHSConstant && !RHSConstant)) |
1309 | return {}; |
1310 | |
1311 | const Expr *Constant = LHSConstant ? LHSConstant : RHSConstant; |
1312 | |
1313 | Expr::EvalResult Result; |
1314 | if (!Constant->EvaluateAsInt(Result, Ctx: *Context)) |
1315 | return {}; |
1316 | |
1317 | if (Result.Val.getInt() == 0) |
1318 | return {}; |
1319 | |
1320 | if (BuildOpts.Observer) |
1321 | BuildOpts.Observer->compareBitwiseOr(B); |
1322 | |
1323 | return TryResult(true); |
1324 | } |
1325 | |
1326 | /// Try and evaluate an expression to an integer constant. |
1327 | bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) { |
1328 | if (!BuildOpts.PruneTriviallyFalseEdges) |
1329 | return false; |
1330 | return !S->isTypeDependent() && |
1331 | !S->isValueDependent() && |
1332 | S->EvaluateAsRValue(Result&: outResult, Ctx: *Context); |
1333 | } |
1334 | |
1335 | /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1 |
1336 | /// if we can evaluate to a known value, otherwise return -1. |
1337 | TryResult tryEvaluateBool(Expr *S) { |
1338 | if (!BuildOpts.PruneTriviallyFalseEdges || |
1339 | S->isTypeDependent() || S->isValueDependent()) |
1340 | return {}; |
1341 | |
1342 | if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: S)) { |
1343 | if (Bop->isLogicalOp() || Bop->isEqualityOp()) { |
1344 | // Check the cache first. |
1345 | CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(Val: S); |
1346 | if (I != CachedBoolEvals.end()) |
1347 | return I->second; // already in map; |
1348 | |
1349 | // Retrieve result at first, or the map might be updated. |
1350 | TryResult Result = evaluateAsBooleanConditionNoCache(E: S); |
1351 | CachedBoolEvals[S] = Result; // update or insert |
1352 | return Result; |
1353 | } |
1354 | else { |
1355 | switch (Bop->getOpcode()) { |
1356 | default: break; |
1357 | // For 'x & 0' and 'x * 0', we can determine that |
1358 | // the value is always false. |
1359 | case BO_Mul: |
1360 | case BO_And: { |
1361 | // If either operand is zero, we know the value |
1362 | // must be false. |
1363 | Expr::EvalResult LHSResult; |
1364 | if (Bop->getLHS()->EvaluateAsInt(Result&: LHSResult, Ctx: *Context)) { |
1365 | llvm::APSInt IntVal = LHSResult.Val.getInt(); |
1366 | if (!IntVal.getBoolValue()) { |
1367 | return TryResult(false); |
1368 | } |
1369 | } |
1370 | Expr::EvalResult RHSResult; |
1371 | if (Bop->getRHS()->EvaluateAsInt(Result&: RHSResult, Ctx: *Context)) { |
1372 | llvm::APSInt IntVal = RHSResult.Val.getInt(); |
1373 | if (!IntVal.getBoolValue()) { |
1374 | return TryResult(false); |
1375 | } |
1376 | } |
1377 | } |
1378 | break; |
1379 | } |
1380 | } |
1381 | } |
1382 | |
1383 | return evaluateAsBooleanConditionNoCache(E: S); |
1384 | } |
1385 | |
1386 | /// Evaluate as boolean \param E without using the cache. |
1387 | TryResult evaluateAsBooleanConditionNoCache(Expr *E) { |
1388 | if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: E)) { |
1389 | if (Bop->isLogicalOp()) { |
1390 | TryResult LHS = tryEvaluateBool(S: Bop->getLHS()); |
1391 | if (LHS.isKnown()) { |
1392 | // We were able to evaluate the LHS, see if we can get away with not |
1393 | // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 |
1394 | if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr)) |
1395 | return LHS.isTrue(); |
1396 | |
1397 | TryResult RHS = tryEvaluateBool(S: Bop->getRHS()); |
1398 | if (RHS.isKnown()) { |
1399 | if (Bop->getOpcode() == BO_LOr) |
1400 | return LHS.isTrue() || RHS.isTrue(); |
1401 | else |
1402 | return LHS.isTrue() && RHS.isTrue(); |
1403 | } |
1404 | } else { |
1405 | TryResult RHS = tryEvaluateBool(S: Bop->getRHS()); |
1406 | if (RHS.isKnown()) { |
1407 | // We can't evaluate the LHS; however, sometimes the result |
1408 | // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. |
1409 | if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr)) |
1410 | return RHS.isTrue(); |
1411 | } else { |
1412 | TryResult BopRes = checkIncorrectLogicOperator(B: Bop); |
1413 | if (BopRes.isKnown()) |
1414 | return BopRes.isTrue(); |
1415 | } |
1416 | } |
1417 | |
1418 | return {}; |
1419 | } else if (Bop->isEqualityOp()) { |
1420 | TryResult BopRes = checkIncorrectEqualityOperator(B: Bop); |
1421 | if (BopRes.isKnown()) |
1422 | return BopRes.isTrue(); |
1423 | } else if (Bop->isRelationalOp()) { |
1424 | TryResult BopRes = checkIncorrectRelationalOperator(B: Bop); |
1425 | if (BopRes.isKnown()) |
1426 | return BopRes.isTrue(); |
1427 | } else if (Bop->getOpcode() == BO_Or) { |
1428 | TryResult BopRes = checkIncorrectBitwiseOrOperator(B: Bop); |
1429 | if (BopRes.isKnown()) |
1430 | return BopRes.isTrue(); |
1431 | } |
1432 | } |
1433 | |
1434 | bool Result; |
1435 | if (E->EvaluateAsBooleanCondition(Result, Ctx: *Context)) |
1436 | return Result; |
1437 | |
1438 | return {}; |
1439 | } |
1440 | |
1441 | bool hasTrivialDestructor(const VarDecl *VD) const; |
1442 | bool needsAutomaticDestruction(const VarDecl *VD) const; |
1443 | }; |
1444 | |
1445 | } // namespace |
1446 | |
1447 | Expr * |
1448 | clang::(const ArrayInitLoopExpr *AILE) { |
1449 | if (!AILE) |
1450 | return nullptr; |
1451 | |
1452 | Expr *AILEInit = AILE->getSubExpr(); |
1453 | while (const auto *E = dyn_cast<ArrayInitLoopExpr>(Val: AILEInit)) |
1454 | AILEInit = E->getSubExpr(); |
1455 | |
1456 | return AILEInit; |
1457 | } |
1458 | |
1459 | inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder, |
1460 | const Stmt *stmt) const { |
1461 | return builder.alwaysAdd(stmt) || kind == AlwaysAdd; |
1462 | } |
1463 | |
1464 | bool CFGBuilder::alwaysAdd(const Stmt *stmt) { |
1465 | bool shouldAdd = BuildOpts.alwaysAdd(stmt); |
1466 | |
1467 | if (!BuildOpts.forcedBlkExprs) |
1468 | return shouldAdd; |
1469 | |
1470 | if (lastLookup == stmt) { |
1471 | if (cachedEntry) { |
1472 | assert(cachedEntry->first == stmt); |
1473 | return true; |
1474 | } |
1475 | return shouldAdd; |
1476 | } |
1477 | |
1478 | lastLookup = stmt; |
1479 | |
1480 | // Perform the lookup! |
1481 | CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs; |
1482 | |
1483 | if (!fb) { |
1484 | // No need to update 'cachedEntry', since it will always be null. |
1485 | assert(!cachedEntry); |
1486 | return shouldAdd; |
1487 | } |
1488 | |
1489 | CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(Val: stmt); |
1490 | if (itr == fb->end()) { |
1491 | cachedEntry = nullptr; |
1492 | return shouldAdd; |
1493 | } |
1494 | |
1495 | cachedEntry = &*itr; |
1496 | return true; |
1497 | } |
1498 | |
1499 | // FIXME: Add support for dependent-sized array types in C++? |
1500 | // Does it even make sense to build a CFG for an uninstantiated template? |
1501 | static const VariableArrayType *FindVA(const Type *t) { |
1502 | while (const ArrayType *vt = dyn_cast<ArrayType>(Val: t)) { |
1503 | if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(Val: vt)) |
1504 | if (vat->getSizeExpr()) |
1505 | return vat; |
1506 | |
1507 | t = vt->getElementType().getTypePtr(); |
1508 | } |
1509 | |
1510 | return nullptr; |
1511 | } |
1512 | |
1513 | void CFGBuilder::consumeConstructionContext( |
1514 | const ConstructionContextLayer *Layer, Expr *E) { |
1515 | assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) || |
1516 | isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!" ); |
1517 | if (const ConstructionContextLayer *PreviouslyStoredLayer = |
1518 | ConstructionContextMap.lookup(Val: E)) { |
1519 | (void)PreviouslyStoredLayer; |
1520 | // We might have visited this child when we were finding construction |
1521 | // contexts within its parents. |
1522 | assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) && |
1523 | "Already within a different construction context!" ); |
1524 | } else { |
1525 | ConstructionContextMap[E] = Layer; |
1526 | } |
1527 | } |
1528 | |
1529 | void CFGBuilder::findConstructionContexts( |
1530 | const ConstructionContextLayer *Layer, Stmt *Child) { |
1531 | if (!BuildOpts.AddRichCXXConstructors) |
1532 | return; |
1533 | |
1534 | if (!Child) |
1535 | return; |
1536 | |
1537 | auto = [this, Layer](const ConstructionContextItem &Item) { |
1538 | return ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item, |
1539 | Parent: Layer); |
1540 | }; |
1541 | |
1542 | switch(Child->getStmtClass()) { |
1543 | case Stmt::CXXConstructExprClass: |
1544 | case Stmt::CXXTemporaryObjectExprClass: { |
1545 | // Support pre-C++17 copy elision AST. |
1546 | auto *CE = cast<CXXConstructExpr>(Val: Child); |
1547 | if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) { |
1548 | findConstructionContexts(Layer: withExtraLayer(CE), Child: CE->getArg(Arg: 0)); |
1549 | } |
1550 | |
1551 | consumeConstructionContext(Layer, E: CE); |
1552 | break; |
1553 | } |
1554 | // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr. |
1555 | // FIXME: An isa<> would look much better but this whole switch is a |
1556 | // workaround for an internal compiler error in MSVC 2015 (see r326021). |
1557 | case Stmt::CallExprClass: |
1558 | case Stmt::CXXMemberCallExprClass: |
1559 | case Stmt::CXXOperatorCallExprClass: |
1560 | case Stmt::UserDefinedLiteralClass: |
1561 | case Stmt::ObjCMessageExprClass: { |
1562 | auto *E = cast<Expr>(Val: Child); |
1563 | if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E)) |
1564 | consumeConstructionContext(Layer, E); |
1565 | break; |
1566 | } |
1567 | case Stmt::ExprWithCleanupsClass: { |
1568 | auto *Cleanups = cast<ExprWithCleanups>(Val: Child); |
1569 | findConstructionContexts(Layer, Child: Cleanups->getSubExpr()); |
1570 | break; |
1571 | } |
1572 | case Stmt::CXXFunctionalCastExprClass: { |
1573 | auto *Cast = cast<CXXFunctionalCastExpr>(Val: Child); |
1574 | findConstructionContexts(Layer, Child: Cast->getSubExpr()); |
1575 | break; |
1576 | } |
1577 | case Stmt::ImplicitCastExprClass: { |
1578 | auto *Cast = cast<ImplicitCastExpr>(Val: Child); |
1579 | // Should we support other implicit cast kinds? |
1580 | switch (Cast->getCastKind()) { |
1581 | case CK_NoOp: |
1582 | case CK_ConstructorConversion: |
1583 | findConstructionContexts(Layer, Child: Cast->getSubExpr()); |
1584 | break; |
1585 | default: |
1586 | break; |
1587 | } |
1588 | break; |
1589 | } |
1590 | case Stmt::CXXBindTemporaryExprClass: { |
1591 | auto *BTE = cast<CXXBindTemporaryExpr>(Val: Child); |
1592 | findConstructionContexts(Layer: withExtraLayer(BTE), Child: BTE->getSubExpr()); |
1593 | break; |
1594 | } |
1595 | case Stmt::MaterializeTemporaryExprClass: { |
1596 | // Normally we don't want to search in MaterializeTemporaryExpr because |
1597 | // it indicates the beginning of a temporary object construction context, |
1598 | // so it shouldn't be found in the middle. However, if it is the beginning |
1599 | // of an elidable copy or move construction context, we need to include it. |
1600 | if (Layer->getItem().getKind() == |
1601 | ConstructionContextItem::ElidableConstructorKind) { |
1602 | auto *MTE = cast<MaterializeTemporaryExpr>(Val: Child); |
1603 | findConstructionContexts(Layer: withExtraLayer(MTE), Child: MTE->getSubExpr()); |
1604 | } |
1605 | break; |
1606 | } |
1607 | case Stmt::ConditionalOperatorClass: { |
1608 | auto *CO = cast<ConditionalOperator>(Val: Child); |
1609 | if (Layer->getItem().getKind() != |
1610 | ConstructionContextItem::MaterializationKind) { |
1611 | // If the object returned by the conditional operator is not going to be a |
1612 | // temporary object that needs to be immediately materialized, then |
1613 | // it must be C++17 with its mandatory copy elision. Do not yet promise |
1614 | // to support this case. |
1615 | assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() || |
1616 | Context->getLangOpts().CPlusPlus17); |
1617 | break; |
1618 | } |
1619 | findConstructionContexts(Layer, Child: CO->getLHS()); |
1620 | findConstructionContexts(Layer, Child: CO->getRHS()); |
1621 | break; |
1622 | } |
1623 | case Stmt::InitListExprClass: { |
1624 | auto *ILE = cast<InitListExpr>(Val: Child); |
1625 | if (ILE->isTransparent()) { |
1626 | findConstructionContexts(Layer, Child: ILE->getInit(Init: 0)); |
1627 | break; |
1628 | } |
1629 | // TODO: Handle other cases. For now, fail to find construction contexts. |
1630 | break; |
1631 | } |
1632 | case Stmt::ParenExprClass: { |
1633 | // If expression is placed into parenthesis we should propagate the parent |
1634 | // construction context to subexpressions. |
1635 | auto *PE = cast<ParenExpr>(Val: Child); |
1636 | findConstructionContexts(Layer, Child: PE->getSubExpr()); |
1637 | break; |
1638 | } |
1639 | default: |
1640 | break; |
1641 | } |
1642 | } |
1643 | |
1644 | void CFGBuilder::cleanupConstructionContext(Expr *E) { |
1645 | assert(BuildOpts.AddRichCXXConstructors && |
1646 | "We should not be managing construction contexts!" ); |
1647 | assert(ConstructionContextMap.count(E) && |
1648 | "Cannot exit construction context without the context!" ); |
1649 | ConstructionContextMap.erase(Val: E); |
1650 | } |
1651 | |
1652 | /// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an |
1653 | /// arbitrary statement. Examples include a single expression or a function |
1654 | /// body (compound statement). The ownership of the returned CFG is |
1655 | /// transferred to the caller. If CFG construction fails, this method returns |
1656 | /// NULL. |
1657 | std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) { |
1658 | assert(cfg.get()); |
1659 | if (!Statement) |
1660 | return nullptr; |
1661 | |
1662 | // Create an empty block that will serve as the exit block for the CFG. Since |
1663 | // this is the first block added to the CFG, it will be implicitly registered |
1664 | // as the exit block. |
1665 | Succ = createBlock(); |
1666 | assert(Succ == &cfg->getExit()); |
1667 | Block = nullptr; // the EXIT block is empty. Create all other blocks lazily. |
1668 | |
1669 | if (BuildOpts.AddImplicitDtors) |
1670 | if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(Val: D)) |
1671 | addImplicitDtorsForDestructor(DD); |
1672 | |
1673 | // Visit the statements and create the CFG. |
1674 | CFGBlock *B = addStmt(S: Statement); |
1675 | |
1676 | if (badCFG) |
1677 | return nullptr; |
1678 | |
1679 | // For C++ constructor add initializers to CFG. Constructors of virtual bases |
1680 | // are ignored unless the object is of the most derived class. |
1681 | // class VBase { VBase() = default; VBase(int) {} }; |
1682 | // class A : virtual public VBase { A() : VBase(0) {} }; |
1683 | // class B : public A {}; |
1684 | // B b; // Constructor calls in order: VBase(), A(), B(). |
1685 | // // VBase(0) is ignored because A isn't the most derived class. |
1686 | // This may result in the virtual base(s) being already initialized at this |
1687 | // point, in which case we should jump right onto non-virtual bases and |
1688 | // fields. To handle this, make a CFG branch. We only need to add one such |
1689 | // branch per constructor, since the Standard states that all virtual bases |
1690 | // shall be initialized before non-virtual bases and direct data members. |
1691 | if (const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(Val: D)) { |
1692 | CFGBlock *VBaseSucc = nullptr; |
1693 | for (auto *I : llvm::reverse(C: CD->inits())) { |
1694 | if (BuildOpts.AddVirtualBaseBranches && !VBaseSucc && |
1695 | I->isBaseInitializer() && I->isBaseVirtual()) { |
1696 | // We've reached the first virtual base init while iterating in reverse |
1697 | // order. Make a new block for virtual base initializers so that we |
1698 | // could skip them. |
1699 | VBaseSucc = Succ = B ? B : &cfg->getExit(); |
1700 | Block = createBlock(); |
1701 | } |
1702 | B = addInitializer(I); |
1703 | if (badCFG) |
1704 | return nullptr; |
1705 | } |
1706 | if (VBaseSucc) { |
1707 | // Make a branch block for potentially skipping virtual base initializers. |
1708 | Succ = VBaseSucc; |
1709 | B = createBlock(); |
1710 | B->setTerminator( |
1711 | CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch)); |
1712 | addSuccessor(B, S: Block, IsReachable: true); |
1713 | } |
1714 | } |
1715 | |
1716 | if (B) |
1717 | Succ = B; |
1718 | |
1719 | // Backpatch the gotos whose label -> block mappings we didn't know when we |
1720 | // encountered them. |
1721 | for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(), |
1722 | E = BackpatchBlocks.end(); I != E; ++I ) { |
1723 | |
1724 | CFGBlock *B = I->block; |
1725 | if (auto *G = dyn_cast<GotoStmt>(Val: B->getTerminator())) { |
1726 | LabelMapTy::iterator LI = LabelMap.find(Val: G->getLabel()); |
1727 | // If there is no target for the goto, then we are looking at an |
1728 | // incomplete AST. Handle this by not registering a successor. |
1729 | if (LI == LabelMap.end()) |
1730 | continue; |
1731 | JumpTarget JT = LI->second; |
1732 | |
1733 | CFGBlock *SuccBlk = createScopeChangesHandlingBlock( |
1734 | SrcPos: I->scopePosition, SrcBlk: B, DstPost: JT.scopePosition, DstBlk: JT.block); |
1735 | addSuccessor(B, S: SuccBlk); |
1736 | } else if (auto *G = dyn_cast<GCCAsmStmt>(Val: B->getTerminator())) { |
1737 | CFGBlock *Successor = (I+1)->block; |
1738 | for (auto *L : G->labels()) { |
1739 | LabelMapTy::iterator LI = LabelMap.find(Val: L->getLabel()); |
1740 | // If there is no target for the goto, then we are looking at an |
1741 | // incomplete AST. Handle this by not registering a successor. |
1742 | if (LI == LabelMap.end()) |
1743 | continue; |
1744 | JumpTarget JT = LI->second; |
1745 | // Successor has been added, so skip it. |
1746 | if (JT.block == Successor) |
1747 | continue; |
1748 | addSuccessor(B, S: JT.block); |
1749 | } |
1750 | I++; |
1751 | } |
1752 | } |
1753 | |
1754 | // Add successors to the Indirect Goto Dispatch block (if we have one). |
1755 | if (CFGBlock *B = cfg->getIndirectGotoBlock()) |
1756 | for (LabelDecl *LD : AddressTakenLabels) { |
1757 | // Lookup the target block. |
1758 | LabelMapTy::iterator LI = LabelMap.find(Val: LD); |
1759 | |
1760 | // If there is no target block that contains label, then we are looking |
1761 | // at an incomplete AST. Handle this by not registering a successor. |
1762 | if (LI == LabelMap.end()) continue; |
1763 | |
1764 | addSuccessor(B, S: LI->second.block); |
1765 | } |
1766 | |
1767 | // Create an empty entry block that has no predecessors. |
1768 | cfg->setEntry(createBlock()); |
1769 | |
1770 | if (BuildOpts.AddRichCXXConstructors) |
1771 | assert(ConstructionContextMap.empty() && |
1772 | "Not all construction contexts were cleaned up!" ); |
1773 | |
1774 | return std::move(cfg); |
1775 | } |
1776 | |
1777 | /// createBlock - Used to lazily create blocks that are connected |
1778 | /// to the current (global) successor. |
1779 | CFGBlock *CFGBuilder::createBlock(bool add_successor) { |
1780 | CFGBlock *B = cfg->createBlock(); |
1781 | if (add_successor && Succ) |
1782 | addSuccessor(B, S: Succ); |
1783 | return B; |
1784 | } |
1785 | |
1786 | /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the |
1787 | /// CFG. It is *not* connected to the current (global) successor, and instead |
1788 | /// directly tied to the exit block in order to be reachable. |
1789 | CFGBlock *CFGBuilder::createNoReturnBlock() { |
1790 | CFGBlock *B = createBlock(add_successor: false); |
1791 | B->setHasNoReturnElement(); |
1792 | addSuccessor(B, ReachableBlock: &cfg->getExit(), AltBlock: Succ); |
1793 | return B; |
1794 | } |
1795 | |
1796 | /// addInitializer - Add C++ base or member initializer element to CFG. |
1797 | CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) { |
1798 | if (!BuildOpts.AddInitializers) |
1799 | return Block; |
1800 | |
1801 | bool HasTemporaries = false; |
1802 | |
1803 | // Destructors of temporaries in initialization expression should be called |
1804 | // after initialization finishes. |
1805 | Expr *Init = I->getInit(); |
1806 | if (Init) { |
1807 | HasTemporaries = isa<ExprWithCleanups>(Val: Init); |
1808 | |
1809 | if (BuildOpts.AddTemporaryDtors && HasTemporaries) { |
1810 | // Generate destructors for temporaries in initialization expression. |
1811 | TempDtorContext Context; |
1812 | VisitForTemporaryDtors(E: cast<ExprWithCleanups>(Val: Init)->getSubExpr(), |
1813 | /*ExternallyDestructed=*/false, Context); |
1814 | } |
1815 | } |
1816 | |
1817 | autoCreateBlock(); |
1818 | appendInitializer(B: Block, I); |
1819 | |
1820 | if (Init) { |
1821 | // If the initializer is an ArrayInitLoopExpr, we want to extract the |
1822 | // initializer, that's used for each element. |
1823 | auto *AILEInit = extractElementInitializerFromNestedAILE( |
1824 | AILE: dyn_cast<ArrayInitLoopExpr>(Val: Init)); |
1825 | |
1826 | findConstructionContexts( |
1827 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item: I), |
1828 | Child: AILEInit ? AILEInit : Init); |
1829 | |
1830 | if (HasTemporaries) { |
1831 | // For expression with temporaries go directly to subexpression to omit |
1832 | // generating destructors for the second time. |
1833 | return Visit(S: cast<ExprWithCleanups>(Val: Init)->getSubExpr()); |
1834 | } |
1835 | if (BuildOpts.AddCXXDefaultInitExprInCtors) { |
1836 | if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Val: Init)) { |
1837 | // In general, appending the expression wrapped by a CXXDefaultInitExpr |
1838 | // may cause the same Expr to appear more than once in the CFG. Doing it |
1839 | // here is safe because there's only one initializer per field. |
1840 | autoCreateBlock(); |
1841 | appendStmt(B: Block, S: Default); |
1842 | if (Stmt *Child = Default->getExpr()) |
1843 | if (CFGBlock *R = Visit(S: Child)) |
1844 | Block = R; |
1845 | return Block; |
1846 | } |
1847 | } |
1848 | return Visit(S: Init); |
1849 | } |
1850 | |
1851 | return Block; |
1852 | } |
1853 | |
1854 | /// Retrieve the type of the temporary object whose lifetime was |
1855 | /// extended by a local reference with the given initializer. |
1856 | static QualType getReferenceInitTemporaryType(const Expr *Init, |
1857 | bool *FoundMTE = nullptr) { |
1858 | while (true) { |
1859 | // Skip parentheses. |
1860 | Init = Init->IgnoreParens(); |
1861 | |
1862 | // Skip through cleanups. |
1863 | if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Val: Init)) { |
1864 | Init = EWC->getSubExpr(); |
1865 | continue; |
1866 | } |
1867 | |
1868 | // Skip through the temporary-materialization expression. |
1869 | if (const MaterializeTemporaryExpr *MTE |
1870 | = dyn_cast<MaterializeTemporaryExpr>(Val: Init)) { |
1871 | Init = MTE->getSubExpr(); |
1872 | if (FoundMTE) |
1873 | *FoundMTE = true; |
1874 | continue; |
1875 | } |
1876 | |
1877 | // Skip sub-object accesses into rvalues. |
1878 | const Expr *SkippedInit = Init->skipRValueSubobjectAdjustments(); |
1879 | if (SkippedInit != Init) { |
1880 | Init = SkippedInit; |
1881 | continue; |
1882 | } |
1883 | |
1884 | break; |
1885 | } |
1886 | |
1887 | return Init->getType(); |
1888 | } |
1889 | |
1890 | // TODO: Support adding LoopExit element to the CFG in case where the loop is |
1891 | // ended by ReturnStmt, GotoStmt or ThrowExpr. |
1892 | void CFGBuilder::addLoopExit(const Stmt *LoopStmt){ |
1893 | if(!BuildOpts.AddLoopExit) |
1894 | return; |
1895 | autoCreateBlock(); |
1896 | appendLoopExit(B: Block, LoopStmt); |
1897 | } |
1898 | |
1899 | /// Adds the CFG elements for leaving the scope of automatic objects in |
1900 | /// range [B, E). This include following: |
1901 | /// * AutomaticObjectDtor for variables with non-trivial destructor |
1902 | /// * LifetimeEnds for all variables |
1903 | /// * ScopeEnd for each scope left |
1904 | void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B, |
1905 | LocalScope::const_iterator E, |
1906 | Stmt *S) { |
1907 | if (!BuildOpts.AddScopes && !BuildOpts.AddImplicitDtors && |
1908 | !BuildOpts.AddLifetime) |
1909 | return; |
1910 | |
1911 | if (B == E) |
1912 | return; |
1913 | |
1914 | // Not leaving the scope, only need to handle destruction and lifetime |
1915 | if (B.inSameLocalScope(rhs: E)) { |
1916 | addAutomaticObjDestruction(B, E, S); |
1917 | return; |
1918 | } |
1919 | |
1920 | // Extract information about all local scopes that are left |
1921 | SmallVector<LocalScope::const_iterator, 10> LocalScopeEndMarkers; |
1922 | LocalScopeEndMarkers.push_back(Elt: B); |
1923 | for (LocalScope::const_iterator I = B; I != E; ++I) { |
1924 | if (!I.inSameLocalScope(rhs: LocalScopeEndMarkers.back())) |
1925 | LocalScopeEndMarkers.push_back(Elt: I); |
1926 | } |
1927 | LocalScopeEndMarkers.push_back(Elt: E); |
1928 | |
1929 | // We need to leave the scope in reverse order, so we reverse the end |
1930 | // markers |
1931 | std::reverse(first: LocalScopeEndMarkers.begin(), last: LocalScopeEndMarkers.end()); |
1932 | auto Pairwise = |
1933 | llvm::zip(t&: LocalScopeEndMarkers, u: llvm::drop_begin(RangeOrContainer&: LocalScopeEndMarkers)); |
1934 | for (auto [E, B] : Pairwise) { |
1935 | if (!B.inSameLocalScope(rhs: E)) |
1936 | addScopeExitHandling(B, E, S); |
1937 | addAutomaticObjDestruction(B, E, S); |
1938 | } |
1939 | } |
1940 | |
1941 | /// Add CFG elements corresponding to call destructor and end of lifetime |
1942 | /// of all automatic variables with non-trivial destructor in range [B, E). |
1943 | /// This include AutomaticObjectDtor and LifetimeEnds elements. |
1944 | void CFGBuilder::addAutomaticObjDestruction(LocalScope::const_iterator B, |
1945 | LocalScope::const_iterator E, |
1946 | Stmt *S) { |
1947 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime) |
1948 | return; |
1949 | |
1950 | if (B == E) |
1951 | return; |
1952 | |
1953 | SmallVector<VarDecl *, 10> DeclsNeedDestruction; |
1954 | DeclsNeedDestruction.reserve(N: B.distance(L: E)); |
1955 | |
1956 | for (VarDecl* D : llvm::make_range(x: B, y: E)) |
1957 | if (needsAutomaticDestruction(VD: D)) |
1958 | DeclsNeedDestruction.push_back(Elt: D); |
1959 | |
1960 | for (VarDecl *VD : llvm::reverse(C&: DeclsNeedDestruction)) { |
1961 | if (BuildOpts.AddImplicitDtors) { |
1962 | // If this destructor is marked as a no-return destructor, we need to |
1963 | // create a new block for the destructor which does not have as a |
1964 | // successor anything built thus far: control won't flow out of this |
1965 | // block. |
1966 | QualType Ty = VD->getType(); |
1967 | if (Ty->isReferenceType()) |
1968 | Ty = getReferenceInitTemporaryType(Init: VD->getInit()); |
1969 | Ty = Context->getBaseElementType(QT: Ty); |
1970 | |
1971 | const CXXRecordDecl *CRD = Ty->getAsCXXRecordDecl(); |
1972 | if (CRD && CRD->isAnyDestructorNoReturn()) |
1973 | Block = createNoReturnBlock(); |
1974 | } |
1975 | |
1976 | autoCreateBlock(); |
1977 | |
1978 | // Add LifetimeEnd after automatic obj with non-trivial destructors, |
1979 | // as they end their lifetime when the destructor returns. For trivial |
1980 | // objects, we end lifetime with scope end. |
1981 | if (BuildOpts.AddLifetime) |
1982 | appendLifetimeEnds(B: Block, VD, S); |
1983 | if (BuildOpts.AddImplicitDtors && !hasTrivialDestructor(VD)) |
1984 | appendAutomaticObjDtor(B: Block, VD, S); |
1985 | if (VD->hasAttr<CleanupAttr>()) |
1986 | appendCleanupFunction(B: Block, VD); |
1987 | } |
1988 | } |
1989 | |
1990 | /// Add CFG elements corresponding to leaving a scope. |
1991 | /// Assumes that range [B, E) corresponds to single scope. |
1992 | /// This add following elements: |
1993 | /// * LifetimeEnds for all variables with non-trivial destructor |
1994 | /// * ScopeEnd for each scope left |
1995 | void CFGBuilder::addScopeExitHandling(LocalScope::const_iterator B, |
1996 | LocalScope::const_iterator E, Stmt *S) { |
1997 | assert(!B.inSameLocalScope(E)); |
1998 | if (!BuildOpts.AddLifetime && !BuildOpts.AddScopes) |
1999 | return; |
2000 | |
2001 | if (BuildOpts.AddScopes) { |
2002 | autoCreateBlock(); |
2003 | appendScopeEnd(B: Block, VD: B.getFirstVarInScope(), S); |
2004 | } |
2005 | |
2006 | if (!BuildOpts.AddLifetime) |
2007 | return; |
2008 | |
2009 | // We need to perform the scope leaving in reverse order |
2010 | SmallVector<VarDecl *, 10> DeclsTrivial; |
2011 | DeclsTrivial.reserve(N: B.distance(L: E)); |
2012 | |
2013 | // Objects with trivial destructor ends their lifetime when their storage |
2014 | // is destroyed, for automatic variables, this happens when the end of the |
2015 | // scope is added. |
2016 | for (VarDecl* D : llvm::make_range(x: B, y: E)) |
2017 | if (!needsAutomaticDestruction(VD: D)) |
2018 | DeclsTrivial.push_back(Elt: D); |
2019 | |
2020 | if (DeclsTrivial.empty()) |
2021 | return; |
2022 | |
2023 | autoCreateBlock(); |
2024 | for (VarDecl *VD : llvm::reverse(C&: DeclsTrivial)) |
2025 | appendLifetimeEnds(B: Block, VD, S); |
2026 | } |
2027 | |
2028 | /// addScopeChangesHandling - appends information about destruction, lifetime |
2029 | /// and cfgScopeEnd for variables in the scope that was left by the jump, and |
2030 | /// appends cfgScopeBegin for all scopes that where entered. |
2031 | /// We insert the cfgScopeBegin at the end of the jump node, as depending on |
2032 | /// the sourceBlock, each goto, may enter different amount of scopes. |
2033 | void CFGBuilder::addScopeChangesHandling(LocalScope::const_iterator SrcPos, |
2034 | LocalScope::const_iterator DstPos, |
2035 | Stmt *S) { |
2036 | assert(Block && "Source block should be always crated" ); |
2037 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && |
2038 | !BuildOpts.AddScopes) { |
2039 | return; |
2040 | } |
2041 | |
2042 | if (SrcPos == DstPos) |
2043 | return; |
2044 | |
2045 | // Get common scope, the jump leaves all scopes [SrcPos, BasePos), and |
2046 | // enter all scopes between [DstPos, BasePos) |
2047 | LocalScope::const_iterator BasePos = SrcPos.shared_parent(L: DstPos); |
2048 | |
2049 | // Append scope begins for scopes entered by goto |
2050 | if (BuildOpts.AddScopes && !DstPos.inSameLocalScope(rhs: BasePos)) { |
2051 | for (LocalScope::const_iterator I = DstPos; I != BasePos; ++I) |
2052 | if (I.pointsToFirstDeclaredVar()) |
2053 | appendScopeBegin(B: Block, VD: *I, S); |
2054 | } |
2055 | |
2056 | // Append scopeEnds, destructor and lifetime with the terminator for |
2057 | // block left by goto. |
2058 | addAutomaticObjHandling(B: SrcPos, E: BasePos, S); |
2059 | } |
2060 | |
2061 | /// createScopeChangesHandlingBlock - Creates a block with cfgElements |
2062 | /// corresponding to changing the scope from the source scope of the GotoStmt, |
2063 | /// to destination scope. Add destructor, lifetime and cfgScopeEnd |
2064 | /// CFGElements to newly created CFGBlock, that will have the CFG terminator |
2065 | /// transferred. |
2066 | CFGBlock *CFGBuilder::createScopeChangesHandlingBlock( |
2067 | LocalScope::const_iterator SrcPos, CFGBlock *SrcBlk, |
2068 | LocalScope::const_iterator DstPos, CFGBlock *DstBlk) { |
2069 | if (SrcPos == DstPos) |
2070 | return DstBlk; |
2071 | |
2072 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && |
2073 | (!BuildOpts.AddScopes || SrcPos.inSameLocalScope(rhs: DstPos))) |
2074 | return DstBlk; |
2075 | |
2076 | // We will update CFBBuilder when creating new block, restore the |
2077 | // previous state at exit. |
2078 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
2079 | |
2080 | // Create a new block, and transfer terminator |
2081 | Block = createBlock(add_successor: false); |
2082 | Block->setTerminator(SrcBlk->getTerminator()); |
2083 | SrcBlk->setTerminator(CFGTerminator()); |
2084 | addSuccessor(B: Block, S: DstBlk); |
2085 | |
2086 | // Fill the created Block with the required elements. |
2087 | addScopeChangesHandling(SrcPos, DstPos, S: Block->getTerminatorStmt()); |
2088 | |
2089 | assert(Block && "There should be at least one scope changing Block" ); |
2090 | return Block; |
2091 | } |
2092 | |
2093 | /// addImplicitDtorsForDestructor - Add implicit destructors generated for |
2094 | /// base and member objects in destructor. |
2095 | void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) { |
2096 | assert(BuildOpts.AddImplicitDtors && |
2097 | "Can be called only when dtors should be added" ); |
2098 | const CXXRecordDecl *RD = DD->getParent(); |
2099 | |
2100 | // At the end destroy virtual base objects. |
2101 | for (const auto &VI : RD->vbases()) { |
2102 | // TODO: Add a VirtualBaseBranch to see if the most derived class |
2103 | // (which is different from the current class) is responsible for |
2104 | // destroying them. |
2105 | const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl(); |
2106 | if (CD && !CD->hasTrivialDestructor()) { |
2107 | autoCreateBlock(); |
2108 | appendBaseDtor(B: Block, BS: &VI); |
2109 | } |
2110 | } |
2111 | |
2112 | // Before virtual bases destroy direct base objects. |
2113 | for (const auto &BI : RD->bases()) { |
2114 | if (!BI.isVirtual()) { |
2115 | const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl(); |
2116 | if (CD && !CD->hasTrivialDestructor()) { |
2117 | autoCreateBlock(); |
2118 | appendBaseDtor(B: Block, BS: &BI); |
2119 | } |
2120 | } |
2121 | } |
2122 | |
2123 | // First destroy member objects. |
2124 | if (RD->isUnion()) |
2125 | return; |
2126 | for (auto *FI : RD->fields()) { |
2127 | // Check for constant size array. Set type to array element type. |
2128 | QualType QT = FI->getType(); |
2129 | // It may be a multidimensional array. |
2130 | while (const ConstantArrayType *AT = Context->getAsConstantArrayType(T: QT)) { |
2131 | if (AT->isZeroSize()) |
2132 | break; |
2133 | QT = AT->getElementType(); |
2134 | } |
2135 | |
2136 | if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl()) |
2137 | if (!CD->hasTrivialDestructor()) { |
2138 | autoCreateBlock(); |
2139 | appendMemberDtor(B: Block, FD: FI); |
2140 | } |
2141 | } |
2142 | } |
2143 | |
2144 | /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either |
2145 | /// way return valid LocalScope object. |
2146 | LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) { |
2147 | if (Scope) |
2148 | return Scope; |
2149 | llvm::BumpPtrAllocator &alloc = cfg->getAllocator(); |
2150 | return new (alloc) LocalScope(BumpVectorContext(alloc), ScopePos); |
2151 | } |
2152 | |
2153 | /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement |
2154 | /// that should create implicit scope (e.g. if/else substatements). |
2155 | void CFGBuilder::addLocalScopeForStmt(Stmt *S) { |
2156 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && |
2157 | !BuildOpts.AddScopes) |
2158 | return; |
2159 | |
2160 | LocalScope *Scope = nullptr; |
2161 | |
2162 | // For compound statement we will be creating explicit scope. |
2163 | if (CompoundStmt *CS = dyn_cast<CompoundStmt>(Val: S)) { |
2164 | for (auto *BI : CS->body()) { |
2165 | Stmt *SI = BI->stripLabelLikeStatements(); |
2166 | if (DeclStmt *DS = dyn_cast<DeclStmt>(Val: SI)) |
2167 | Scope = addLocalScopeForDeclStmt(DS, Scope); |
2168 | } |
2169 | return; |
2170 | } |
2171 | |
2172 | // For any other statement scope will be implicit and as such will be |
2173 | // interesting only for DeclStmt. |
2174 | if (DeclStmt *DS = dyn_cast<DeclStmt>(Val: S->stripLabelLikeStatements())) |
2175 | addLocalScopeForDeclStmt(DS); |
2176 | } |
2177 | |
2178 | /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will |
2179 | /// reuse Scope if not NULL. |
2180 | LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS, |
2181 | LocalScope* Scope) { |
2182 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && |
2183 | !BuildOpts.AddScopes) |
2184 | return Scope; |
2185 | |
2186 | for (auto *DI : DS->decls()) |
2187 | if (VarDecl *VD = dyn_cast<VarDecl>(Val: DI)) |
2188 | Scope = addLocalScopeForVarDecl(VD, Scope); |
2189 | return Scope; |
2190 | } |
2191 | |
2192 | bool CFGBuilder::needsAutomaticDestruction(const VarDecl *VD) const { |
2193 | return !hasTrivialDestructor(VD) || VD->hasAttr<CleanupAttr>(); |
2194 | } |
2195 | |
2196 | bool CFGBuilder::hasTrivialDestructor(const VarDecl *VD) const { |
2197 | // Check for const references bound to temporary. Set type to pointee. |
2198 | QualType QT = VD->getType(); |
2199 | if (QT->isReferenceType()) { |
2200 | // Attempt to determine whether this declaration lifetime-extends a |
2201 | // temporary. |
2202 | // |
2203 | // FIXME: This is incorrect. Non-reference declarations can lifetime-extend |
2204 | // temporaries, and a single declaration can extend multiple temporaries. |
2205 | // We should look at the storage duration on each nested |
2206 | // MaterializeTemporaryExpr instead. |
2207 | |
2208 | const Expr *Init = VD->getInit(); |
2209 | if (!Init) { |
2210 | // Probably an exception catch-by-reference variable. |
2211 | // FIXME: It doesn't really mean that the object has a trivial destructor. |
2212 | // Also are there other cases? |
2213 | return true; |
2214 | } |
2215 | |
2216 | // Lifetime-extending a temporary? |
2217 | bool FoundMTE = false; |
2218 | QT = getReferenceInitTemporaryType(Init, FoundMTE: &FoundMTE); |
2219 | if (!FoundMTE) |
2220 | return true; |
2221 | } |
2222 | |
2223 | // Check for constant size array. Set type to array element type. |
2224 | while (const ConstantArrayType *AT = Context->getAsConstantArrayType(T: QT)) { |
2225 | if (AT->isZeroSize()) |
2226 | return true; |
2227 | QT = AT->getElementType(); |
2228 | } |
2229 | |
2230 | // Check if type is a C++ class with non-trivial destructor. |
2231 | if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl()) |
2232 | return !CD->hasDefinition() || CD->hasTrivialDestructor(); |
2233 | return true; |
2234 | } |
2235 | |
2236 | /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will |
2237 | /// create add scope for automatic objects and temporary objects bound to |
2238 | /// const reference. Will reuse Scope if not NULL. |
2239 | LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD, |
2240 | LocalScope* Scope) { |
2241 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && |
2242 | !BuildOpts.AddScopes) |
2243 | return Scope; |
2244 | |
2245 | // Check if variable is local. |
2246 | if (!VD->hasLocalStorage()) |
2247 | return Scope; |
2248 | |
2249 | if (!BuildOpts.AddLifetime && !BuildOpts.AddScopes && |
2250 | !needsAutomaticDestruction(VD)) { |
2251 | assert(BuildOpts.AddImplicitDtors); |
2252 | return Scope; |
2253 | } |
2254 | |
2255 | // Add the variable to scope |
2256 | Scope = createOrReuseLocalScope(Scope); |
2257 | Scope->addVar(VD); |
2258 | ScopePos = Scope->begin(); |
2259 | return Scope; |
2260 | } |
2261 | |
2262 | /// addLocalScopeAndDtors - For given statement add local scope for it and |
2263 | /// add destructors that will cleanup the scope. Will reuse Scope if not NULL. |
2264 | void CFGBuilder::addLocalScopeAndDtors(Stmt *S) { |
2265 | LocalScope::const_iterator scopeBeginPos = ScopePos; |
2266 | addLocalScopeForStmt(S); |
2267 | addAutomaticObjHandling(B: ScopePos, E: scopeBeginPos, S); |
2268 | } |
2269 | |
2270 | /// Visit - Walk the subtree of a statement and add extra |
2271 | /// blocks for ternary operators, &&, and ||. We also process "," and |
2272 | /// DeclStmts (which may contain nested control-flow). |
2273 | CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc, |
2274 | bool ExternallyDestructed) { |
2275 | if (!S) { |
2276 | badCFG = true; |
2277 | return nullptr; |
2278 | } |
2279 | |
2280 | if (Expr *E = dyn_cast<Expr>(Val: S)) |
2281 | S = E->IgnoreParens(); |
2282 | |
2283 | if (Context->getLangOpts().OpenMP) |
2284 | if (auto *D = dyn_cast<OMPExecutableDirective>(Val: S)) |
2285 | return VisitOMPExecutableDirective(D, asc); |
2286 | |
2287 | switch (S->getStmtClass()) { |
2288 | default: |
2289 | return VisitStmt(S, asc); |
2290 | |
2291 | case Stmt::ImplicitValueInitExprClass: |
2292 | if (BuildOpts.OmitImplicitValueInitializers) |
2293 | return Block; |
2294 | return VisitStmt(S, asc); |
2295 | |
2296 | case Stmt::InitListExprClass: |
2297 | return VisitInitListExpr(ILE: cast<InitListExpr>(Val: S), asc); |
2298 | |
2299 | case Stmt::AttributedStmtClass: |
2300 | return VisitAttributedStmt(A: cast<AttributedStmt>(Val: S), asc); |
2301 | |
2302 | case Stmt::AddrLabelExprClass: |
2303 | return VisitAddrLabelExpr(A: cast<AddrLabelExpr>(Val: S), asc); |
2304 | |
2305 | case Stmt::BinaryConditionalOperatorClass: |
2306 | return VisitConditionalOperator(C: cast<BinaryConditionalOperator>(Val: S), asc); |
2307 | |
2308 | case Stmt::BinaryOperatorClass: |
2309 | return VisitBinaryOperator(B: cast<BinaryOperator>(Val: S), asc); |
2310 | |
2311 | case Stmt::BlockExprClass: |
2312 | return VisitBlockExpr(E: cast<BlockExpr>(Val: S), asc); |
2313 | |
2314 | case Stmt::BreakStmtClass: |
2315 | return VisitBreakStmt(B: cast<BreakStmt>(Val: S)); |
2316 | |
2317 | case Stmt::CallExprClass: |
2318 | case Stmt::CXXOperatorCallExprClass: |
2319 | case Stmt::CXXMemberCallExprClass: |
2320 | case Stmt::UserDefinedLiteralClass: |
2321 | return VisitCallExpr(C: cast<CallExpr>(Val: S), asc); |
2322 | |
2323 | case Stmt::CaseStmtClass: |
2324 | return VisitCaseStmt(C: cast<CaseStmt>(Val: S)); |
2325 | |
2326 | case Stmt::ChooseExprClass: |
2327 | return VisitChooseExpr(C: cast<ChooseExpr>(Val: S), asc); |
2328 | |
2329 | case Stmt::CompoundStmtClass: |
2330 | return VisitCompoundStmt(C: cast<CompoundStmt>(Val: S), ExternallyDestructed); |
2331 | |
2332 | case Stmt::ConditionalOperatorClass: |
2333 | return VisitConditionalOperator(C: cast<ConditionalOperator>(Val: S), asc); |
2334 | |
2335 | case Stmt::ContinueStmtClass: |
2336 | return VisitContinueStmt(C: cast<ContinueStmt>(Val: S)); |
2337 | |
2338 | case Stmt::CXXCatchStmtClass: |
2339 | return VisitCXXCatchStmt(S: cast<CXXCatchStmt>(Val: S)); |
2340 | |
2341 | case Stmt::ExprWithCleanupsClass: |
2342 | return VisitExprWithCleanups(E: cast<ExprWithCleanups>(Val: S), |
2343 | asc, ExternallyDestructed); |
2344 | |
2345 | case Stmt::CXXDefaultArgExprClass: |
2346 | case Stmt::CXXDefaultInitExprClass: |
2347 | // FIXME: The expression inside a CXXDefaultArgExpr is owned by the |
2348 | // called function's declaration, not by the caller. If we simply add |
2349 | // this expression to the CFG, we could end up with the same Expr |
2350 | // appearing multiple times (PR13385). |
2351 | // |
2352 | // It's likewise possible for multiple CXXDefaultInitExprs for the same |
2353 | // expression to be used in the same function (through aggregate |
2354 | // initialization). |
2355 | return VisitStmt(S, asc); |
2356 | |
2357 | case Stmt::CXXBindTemporaryExprClass: |
2358 | return VisitCXXBindTemporaryExpr(E: cast<CXXBindTemporaryExpr>(Val: S), asc); |
2359 | |
2360 | case Stmt::CXXConstructExprClass: |
2361 | return VisitCXXConstructExpr(C: cast<CXXConstructExpr>(Val: S), asc); |
2362 | |
2363 | case Stmt::CXXNewExprClass: |
2364 | return VisitCXXNewExpr(DE: cast<CXXNewExpr>(Val: S), asc); |
2365 | |
2366 | case Stmt::CXXDeleteExprClass: |
2367 | return VisitCXXDeleteExpr(DE: cast<CXXDeleteExpr>(Val: S), asc); |
2368 | |
2369 | case Stmt::CXXFunctionalCastExprClass: |
2370 | return VisitCXXFunctionalCastExpr(E: cast<CXXFunctionalCastExpr>(Val: S), asc); |
2371 | |
2372 | case Stmt::CXXTemporaryObjectExprClass: |
2373 | return VisitCXXTemporaryObjectExpr(C: cast<CXXTemporaryObjectExpr>(Val: S), asc); |
2374 | |
2375 | case Stmt::CXXThrowExprClass: |
2376 | return VisitCXXThrowExpr(T: cast<CXXThrowExpr>(Val: S)); |
2377 | |
2378 | case Stmt::CXXTryStmtClass: |
2379 | return VisitCXXTryStmt(S: cast<CXXTryStmt>(Val: S)); |
2380 | |
2381 | case Stmt::CXXTypeidExprClass: |
2382 | return VisitCXXTypeidExpr(S: cast<CXXTypeidExpr>(Val: S), asc); |
2383 | |
2384 | case Stmt::CXXForRangeStmtClass: |
2385 | return VisitCXXForRangeStmt(S: cast<CXXForRangeStmt>(Val: S)); |
2386 | |
2387 | case Stmt::DeclStmtClass: |
2388 | return VisitDeclStmt(DS: cast<DeclStmt>(Val: S)); |
2389 | |
2390 | case Stmt::DefaultStmtClass: |
2391 | return VisitDefaultStmt(D: cast<DefaultStmt>(Val: S)); |
2392 | |
2393 | case Stmt::DoStmtClass: |
2394 | return VisitDoStmt(D: cast<DoStmt>(Val: S)); |
2395 | |
2396 | case Stmt::ForStmtClass: |
2397 | return VisitForStmt(F: cast<ForStmt>(Val: S)); |
2398 | |
2399 | case Stmt::GotoStmtClass: |
2400 | return VisitGotoStmt(G: cast<GotoStmt>(Val: S)); |
2401 | |
2402 | case Stmt::GCCAsmStmtClass: |
2403 | return VisitGCCAsmStmt(G: cast<GCCAsmStmt>(Val: S), asc); |
2404 | |
2405 | case Stmt::IfStmtClass: |
2406 | return VisitIfStmt(I: cast<IfStmt>(Val: S)); |
2407 | |
2408 | case Stmt::ImplicitCastExprClass: |
2409 | return VisitImplicitCastExpr(E: cast<ImplicitCastExpr>(Val: S), asc); |
2410 | |
2411 | case Stmt::ConstantExprClass: |
2412 | return VisitConstantExpr(E: cast<ConstantExpr>(Val: S), asc); |
2413 | |
2414 | case Stmt::IndirectGotoStmtClass: |
2415 | return VisitIndirectGotoStmt(I: cast<IndirectGotoStmt>(Val: S)); |
2416 | |
2417 | case Stmt::LabelStmtClass: |
2418 | return VisitLabelStmt(L: cast<LabelStmt>(Val: S)); |
2419 | |
2420 | case Stmt::LambdaExprClass: |
2421 | return VisitLambdaExpr(E: cast<LambdaExpr>(Val: S), asc); |
2422 | |
2423 | case Stmt::MaterializeTemporaryExprClass: |
2424 | return VisitMaterializeTemporaryExpr(MTE: cast<MaterializeTemporaryExpr>(Val: S), |
2425 | asc); |
2426 | |
2427 | case Stmt::MemberExprClass: |
2428 | return VisitMemberExpr(M: cast<MemberExpr>(Val: S), asc); |
2429 | |
2430 | case Stmt::NullStmtClass: |
2431 | return Block; |
2432 | |
2433 | case Stmt::ObjCAtCatchStmtClass: |
2434 | return VisitObjCAtCatchStmt(S: cast<ObjCAtCatchStmt>(Val: S)); |
2435 | |
2436 | case Stmt::ObjCAutoreleasePoolStmtClass: |
2437 | return VisitObjCAutoreleasePoolStmt(S: cast<ObjCAutoreleasePoolStmt>(Val: S)); |
2438 | |
2439 | case Stmt::ObjCAtSynchronizedStmtClass: |
2440 | return VisitObjCAtSynchronizedStmt(S: cast<ObjCAtSynchronizedStmt>(Val: S)); |
2441 | |
2442 | case Stmt::ObjCAtThrowStmtClass: |
2443 | return VisitObjCAtThrowStmt(S: cast<ObjCAtThrowStmt>(Val: S)); |
2444 | |
2445 | case Stmt::ObjCAtTryStmtClass: |
2446 | return VisitObjCAtTryStmt(S: cast<ObjCAtTryStmt>(Val: S)); |
2447 | |
2448 | case Stmt::ObjCForCollectionStmtClass: |
2449 | return VisitObjCForCollectionStmt(S: cast<ObjCForCollectionStmt>(Val: S)); |
2450 | |
2451 | case Stmt::ObjCMessageExprClass: |
2452 | return VisitObjCMessageExpr(E: cast<ObjCMessageExpr>(Val: S), asc); |
2453 | |
2454 | case Stmt::OpaqueValueExprClass: |
2455 | return Block; |
2456 | |
2457 | case Stmt::PseudoObjectExprClass: |
2458 | return VisitPseudoObjectExpr(E: cast<PseudoObjectExpr>(Val: S)); |
2459 | |
2460 | case Stmt::ReturnStmtClass: |
2461 | case Stmt::CoreturnStmtClass: |
2462 | return VisitReturnStmt(S); |
2463 | |
2464 | case Stmt::CoyieldExprClass: |
2465 | case Stmt::CoawaitExprClass: |
2466 | return VisitCoroutineSuspendExpr(S: cast<CoroutineSuspendExpr>(Val: S), asc); |
2467 | |
2468 | case Stmt::SEHExceptStmtClass: |
2469 | return VisitSEHExceptStmt(S: cast<SEHExceptStmt>(Val: S)); |
2470 | |
2471 | case Stmt::SEHFinallyStmtClass: |
2472 | return VisitSEHFinallyStmt(S: cast<SEHFinallyStmt>(Val: S)); |
2473 | |
2474 | case Stmt::SEHLeaveStmtClass: |
2475 | return VisitSEHLeaveStmt(S: cast<SEHLeaveStmt>(Val: S)); |
2476 | |
2477 | case Stmt::SEHTryStmtClass: |
2478 | return VisitSEHTryStmt(S: cast<SEHTryStmt>(Val: S)); |
2479 | |
2480 | case Stmt::UnaryExprOrTypeTraitExprClass: |
2481 | return VisitUnaryExprOrTypeTraitExpr(E: cast<UnaryExprOrTypeTraitExpr>(Val: S), |
2482 | asc); |
2483 | |
2484 | case Stmt::StmtExprClass: |
2485 | return VisitStmtExpr(S: cast<StmtExpr>(Val: S), asc); |
2486 | |
2487 | case Stmt::SwitchStmtClass: |
2488 | return VisitSwitchStmt(S: cast<SwitchStmt>(Val: S)); |
2489 | |
2490 | case Stmt::UnaryOperatorClass: |
2491 | return VisitUnaryOperator(U: cast<UnaryOperator>(Val: S), asc); |
2492 | |
2493 | case Stmt::WhileStmtClass: |
2494 | return VisitWhileStmt(W: cast<WhileStmt>(Val: S)); |
2495 | |
2496 | case Stmt::ArrayInitLoopExprClass: |
2497 | return VisitArrayInitLoopExpr(A: cast<ArrayInitLoopExpr>(Val: S), asc); |
2498 | } |
2499 | } |
2500 | |
2501 | CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) { |
2502 | if (asc.alwaysAdd(builder&: *this, stmt: S)) { |
2503 | autoCreateBlock(); |
2504 | appendStmt(B: Block, S); |
2505 | } |
2506 | |
2507 | return VisitChildren(S); |
2508 | } |
2509 | |
2510 | /// VisitChildren - Visit the children of a Stmt. |
2511 | CFGBlock *CFGBuilder::VisitChildren(Stmt *S) { |
2512 | CFGBlock *B = Block; |
2513 | |
2514 | // Visit the children in their reverse order so that they appear in |
2515 | // left-to-right (natural) order in the CFG. |
2516 | reverse_children RChildren(S, *Context); |
2517 | for (Stmt *Child : RChildren) { |
2518 | if (Child) |
2519 | if (CFGBlock *R = Visit(S: Child)) |
2520 | B = R; |
2521 | } |
2522 | return B; |
2523 | } |
2524 | |
2525 | CFGBlock *CFGBuilder::VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc) { |
2526 | if (asc.alwaysAdd(builder&: *this, stmt: ILE)) { |
2527 | autoCreateBlock(); |
2528 | appendStmt(B: Block, S: ILE); |
2529 | } |
2530 | CFGBlock *B = Block; |
2531 | |
2532 | reverse_children RChildren(ILE, *Context); |
2533 | for (Stmt *Child : RChildren) { |
2534 | if (!Child) |
2535 | continue; |
2536 | if (CFGBlock *R = Visit(S: Child)) |
2537 | B = R; |
2538 | if (BuildOpts.AddCXXDefaultInitExprInAggregates) { |
2539 | if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Val: Child)) |
2540 | if (Stmt *Child = DIE->getExpr()) |
2541 | if (CFGBlock *R = Visit(S: Child)) |
2542 | B = R; |
2543 | } |
2544 | } |
2545 | return B; |
2546 | } |
2547 | |
2548 | CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A, |
2549 | AddStmtChoice asc) { |
2550 | AddressTakenLabels.insert(X: A->getLabel()); |
2551 | |
2552 | if (asc.alwaysAdd(builder&: *this, stmt: A)) { |
2553 | autoCreateBlock(); |
2554 | appendStmt(B: Block, S: A); |
2555 | } |
2556 | |
2557 | return Block; |
2558 | } |
2559 | |
2560 | static bool isFallthroughStatement(const AttributedStmt *A) { |
2561 | bool isFallthrough = hasSpecificAttr<FallThroughAttr>(container: A->getAttrs()); |
2562 | assert((!isFallthrough || isa<NullStmt>(A->getSubStmt())) && |
2563 | "expected fallthrough not to have children" ); |
2564 | return isFallthrough; |
2565 | } |
2566 | |
2567 | static bool isCXXAssumeAttr(const AttributedStmt *A) { |
2568 | bool hasAssumeAttr = hasSpecificAttr<CXXAssumeAttr>(container: A->getAttrs()); |
2569 | |
2570 | assert((!hasAssumeAttr || isa<NullStmt>(A->getSubStmt())) && |
2571 | "expected [[assume]] not to have children" ); |
2572 | return hasAssumeAttr; |
2573 | } |
2574 | |
2575 | CFGBlock *CFGBuilder::VisitAttributedStmt(AttributedStmt *A, |
2576 | AddStmtChoice asc) { |
2577 | // AttributedStmts for [[likely]] can have arbitrary statements as children, |
2578 | // and the current visitation order here would add the AttributedStmts |
2579 | // for [[likely]] after the child nodes, which is undesirable: For example, |
2580 | // if the child contains an unconditional return, the [[likely]] would be |
2581 | // considered unreachable. |
2582 | // So only add the AttributedStmt for FallThrough, which has CFG effects and |
2583 | // also no children, and omit the others. None of the other current StmtAttrs |
2584 | // have semantic meaning for the CFG. |
2585 | bool isInterestingAttribute = isFallthroughStatement(A) || isCXXAssumeAttr(A); |
2586 | if (isInterestingAttribute && asc.alwaysAdd(builder&: *this, stmt: A)) { |
2587 | autoCreateBlock(); |
2588 | appendStmt(B: Block, S: A); |
2589 | } |
2590 | |
2591 | return VisitChildren(S: A); |
2592 | } |
2593 | |
2594 | CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc) { |
2595 | if (asc.alwaysAdd(builder&: *this, stmt: U)) { |
2596 | autoCreateBlock(); |
2597 | appendStmt(B: Block, S: U); |
2598 | } |
2599 | |
2600 | if (U->getOpcode() == UO_LNot) |
2601 | tryEvaluateBool(S: U->getSubExpr()->IgnoreParens()); |
2602 | |
2603 | return Visit(S: U->getSubExpr(), asc: AddStmtChoice()); |
2604 | } |
2605 | |
2606 | CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) { |
2607 | CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); |
2608 | appendStmt(B: ConfluenceBlock, S: B); |
2609 | |
2610 | if (badCFG) |
2611 | return nullptr; |
2612 | |
2613 | return VisitLogicalOperator(B, Term: nullptr, TrueBlock: ConfluenceBlock, |
2614 | FalseBlock: ConfluenceBlock).first; |
2615 | } |
2616 | |
2617 | std::pair<CFGBlock*, CFGBlock*> |
2618 | CFGBuilder::VisitLogicalOperator(BinaryOperator *B, |
2619 | Stmt *Term, |
2620 | CFGBlock *TrueBlock, |
2621 | CFGBlock *FalseBlock) { |
2622 | // Introspect the RHS. If it is a nested logical operation, we recursively |
2623 | // build the CFG using this function. Otherwise, resort to default |
2624 | // CFG construction behavior. |
2625 | Expr *RHS = B->getRHS()->IgnoreParens(); |
2626 | CFGBlock *RHSBlock, *ExitBlock; |
2627 | |
2628 | do { |
2629 | if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(Val: RHS)) |
2630 | if (B_RHS->isLogicalOp()) { |
2631 | std::tie(args&: RHSBlock, args&: ExitBlock) = |
2632 | VisitLogicalOperator(B: B_RHS, Term, TrueBlock, FalseBlock); |
2633 | break; |
2634 | } |
2635 | |
2636 | // The RHS is not a nested logical operation. Don't push the terminator |
2637 | // down further, but instead visit RHS and construct the respective |
2638 | // pieces of the CFG, and link up the RHSBlock with the terminator |
2639 | // we have been provided. |
2640 | ExitBlock = RHSBlock = createBlock(add_successor: false); |
2641 | |
2642 | // Even though KnownVal is only used in the else branch of the next |
2643 | // conditional, tryEvaluateBool performs additional checking on the |
2644 | // Expr, so it should be called unconditionally. |
2645 | TryResult KnownVal = tryEvaluateBool(S: RHS); |
2646 | if (!KnownVal.isKnown()) |
2647 | KnownVal = tryEvaluateBool(S: B); |
2648 | |
2649 | if (!Term) { |
2650 | assert(TrueBlock == FalseBlock); |
2651 | addSuccessor(B: RHSBlock, S: TrueBlock); |
2652 | } |
2653 | else { |
2654 | RHSBlock->setTerminator(Term); |
2655 | addSuccessor(B: RHSBlock, S: TrueBlock, IsReachable: !KnownVal.isFalse()); |
2656 | addSuccessor(B: RHSBlock, S: FalseBlock, IsReachable: !KnownVal.isTrue()); |
2657 | } |
2658 | |
2659 | Block = RHSBlock; |
2660 | RHSBlock = addStmt(S: RHS); |
2661 | } |
2662 | while (false); |
2663 | |
2664 | if (badCFG) |
2665 | return std::make_pair(x: nullptr, y: nullptr); |
2666 | |
2667 | // Generate the blocks for evaluating the LHS. |
2668 | Expr *LHS = B->getLHS()->IgnoreParens(); |
2669 | |
2670 | if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(Val: LHS)) |
2671 | if (B_LHS->isLogicalOp()) { |
2672 | if (B->getOpcode() == BO_LOr) |
2673 | FalseBlock = RHSBlock; |
2674 | else |
2675 | TrueBlock = RHSBlock; |
2676 | |
2677 | // For the LHS, treat 'B' as the terminator that we want to sink |
2678 | // into the nested branch. The RHS always gets the top-most |
2679 | // terminator. |
2680 | return VisitLogicalOperator(B: B_LHS, Term: B, TrueBlock, FalseBlock); |
2681 | } |
2682 | |
2683 | // Create the block evaluating the LHS. |
2684 | // This contains the '&&' or '||' as the terminator. |
2685 | CFGBlock *LHSBlock = createBlock(add_successor: false); |
2686 | LHSBlock->setTerminator(B); |
2687 | |
2688 | Block = LHSBlock; |
2689 | CFGBlock *EntryLHSBlock = addStmt(S: LHS); |
2690 | |
2691 | if (badCFG) |
2692 | return std::make_pair(x: nullptr, y: nullptr); |
2693 | |
2694 | // See if this is a known constant. |
2695 | TryResult KnownVal = tryEvaluateBool(S: LHS); |
2696 | |
2697 | // Now link the LHSBlock with RHSBlock. |
2698 | if (B->getOpcode() == BO_LOr) { |
2699 | addSuccessor(B: LHSBlock, S: TrueBlock, IsReachable: !KnownVal.isFalse()); |
2700 | addSuccessor(B: LHSBlock, S: RHSBlock, IsReachable: !KnownVal.isTrue()); |
2701 | } else { |
2702 | assert(B->getOpcode() == BO_LAnd); |
2703 | addSuccessor(B: LHSBlock, S: RHSBlock, IsReachable: !KnownVal.isFalse()); |
2704 | addSuccessor(B: LHSBlock, S: FalseBlock, IsReachable: !KnownVal.isTrue()); |
2705 | } |
2706 | |
2707 | return std::make_pair(x&: EntryLHSBlock, y&: ExitBlock); |
2708 | } |
2709 | |
2710 | CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B, |
2711 | AddStmtChoice asc) { |
2712 | // && or || |
2713 | if (B->isLogicalOp()) |
2714 | return VisitLogicalOperator(B); |
2715 | |
2716 | if (B->getOpcode() == BO_Comma) { // , |
2717 | autoCreateBlock(); |
2718 | appendStmt(B: Block, S: B); |
2719 | addStmt(S: B->getRHS()); |
2720 | return addStmt(S: B->getLHS()); |
2721 | } |
2722 | |
2723 | if (B->isAssignmentOp()) { |
2724 | if (asc.alwaysAdd(builder&: *this, stmt: B)) { |
2725 | autoCreateBlock(); |
2726 | appendStmt(B: Block, S: B); |
2727 | } |
2728 | Visit(S: B->getLHS()); |
2729 | return Visit(S: B->getRHS()); |
2730 | } |
2731 | |
2732 | if (asc.alwaysAdd(builder&: *this, stmt: B)) { |
2733 | autoCreateBlock(); |
2734 | appendStmt(B: Block, S: B); |
2735 | } |
2736 | |
2737 | if (B->isEqualityOp() || B->isRelationalOp()) |
2738 | tryEvaluateBool(S: B); |
2739 | |
2740 | CFGBlock *RBlock = Visit(S: B->getRHS()); |
2741 | CFGBlock *LBlock = Visit(S: B->getLHS()); |
2742 | // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr |
2743 | // containing a DoStmt, and the LHS doesn't create a new block, then we should |
2744 | // return RBlock. Otherwise we'll incorrectly return NULL. |
2745 | return (LBlock ? LBlock : RBlock); |
2746 | } |
2747 | |
2748 | CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) { |
2749 | if (asc.alwaysAdd(builder&: *this, stmt: E)) { |
2750 | autoCreateBlock(); |
2751 | appendStmt(B: Block, S: E); |
2752 | } |
2753 | return Block; |
2754 | } |
2755 | |
2756 | CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) { |
2757 | // "break" is a control-flow statement. Thus we stop processing the current |
2758 | // block. |
2759 | if (badCFG) |
2760 | return nullptr; |
2761 | |
2762 | // Now create a new block that ends with the break statement. |
2763 | Block = createBlock(add_successor: false); |
2764 | Block->setTerminator(B); |
2765 | |
2766 | // If there is no target for the break, then we are looking at an incomplete |
2767 | // AST. This means that the CFG cannot be constructed. |
2768 | if (BreakJumpTarget.block) { |
2769 | addAutomaticObjHandling(B: ScopePos, E: BreakJumpTarget.scopePosition, S: B); |
2770 | addSuccessor(B: Block, S: BreakJumpTarget.block); |
2771 | } else |
2772 | badCFG = true; |
2773 | |
2774 | return Block; |
2775 | } |
2776 | |
2777 | static bool CanThrow(Expr *E, ASTContext &Ctx) { |
2778 | QualType Ty = E->getType(); |
2779 | if (Ty->isFunctionPointerType() || Ty->isBlockPointerType()) |
2780 | Ty = Ty->getPointeeType(); |
2781 | |
2782 | const FunctionType *FT = Ty->getAs<FunctionType>(); |
2783 | if (FT) { |
2784 | if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(Val: FT)) |
2785 | if (!isUnresolvedExceptionSpec(ESpecType: Proto->getExceptionSpecType()) && |
2786 | Proto->isNothrow()) |
2787 | return false; |
2788 | } |
2789 | return true; |
2790 | } |
2791 | |
2792 | static bool isBuiltinAssumeWithSideEffects(const ASTContext &Ctx, |
2793 | const CallExpr *CE) { |
2794 | unsigned BuiltinID = CE->getBuiltinCallee(); |
2795 | if (BuiltinID != Builtin::BI__assume && |
2796 | BuiltinID != Builtin::BI__builtin_assume) |
2797 | return false; |
2798 | |
2799 | return CE->getArg(Arg: 0)->HasSideEffects(Ctx); |
2800 | } |
2801 | |
2802 | CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) { |
2803 | // Compute the callee type. |
2804 | QualType calleeType = C->getCallee()->getType(); |
2805 | if (calleeType == Context->BoundMemberTy) { |
2806 | QualType boundType = Expr::findBoundMemberType(expr: C->getCallee()); |
2807 | |
2808 | // We should only get a null bound type if processing a dependent |
2809 | // CFG. Recover by assuming nothing. |
2810 | if (!boundType.isNull()) calleeType = boundType; |
2811 | } |
2812 | |
2813 | // If this is a call to a no-return function, this stops the block here. |
2814 | bool NoReturn = getFunctionExtInfo(t: *calleeType).getNoReturn(); |
2815 | |
2816 | bool AddEHEdge = false; |
2817 | |
2818 | // Languages without exceptions are assumed to not throw. |
2819 | if (Context->getLangOpts().Exceptions) { |
2820 | if (BuildOpts.AddEHEdges) |
2821 | AddEHEdge = true; |
2822 | } |
2823 | |
2824 | // If this is a call to a builtin function, it might not actually evaluate |
2825 | // its arguments. Don't add them to the CFG if this is the case. |
2826 | bool OmitArguments = false; |
2827 | |
2828 | if (FunctionDecl *FD = C->getDirectCallee()) { |
2829 | // TODO: Support construction contexts for variadic function arguments. |
2830 | // These are a bit problematic and not very useful because passing |
2831 | // C++ objects as C-style variadic arguments doesn't work in general |
2832 | // (see [expr.call]). |
2833 | if (!FD->isVariadic()) |
2834 | findConstructionContextsForArguments(E: C); |
2835 | |
2836 | if (FD->isNoReturn() || C->isBuiltinAssumeFalse(Ctx: *Context)) |
2837 | NoReturn = true; |
2838 | if (FD->hasAttr<NoThrowAttr>()) |
2839 | AddEHEdge = false; |
2840 | if (isBuiltinAssumeWithSideEffects(Ctx: FD->getASTContext(), CE: C) || |
2841 | FD->getBuiltinID() == Builtin::BI__builtin_object_size || |
2842 | FD->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size) |
2843 | OmitArguments = true; |
2844 | } |
2845 | |
2846 | if (!CanThrow(E: C->getCallee(), Ctx&: *Context)) |
2847 | AddEHEdge = false; |
2848 | |
2849 | if (OmitArguments) { |
2850 | assert(!NoReturn && "noreturn calls with unevaluated args not implemented" ); |
2851 | assert(!AddEHEdge && "EH calls with unevaluated args not implemented" ); |
2852 | autoCreateBlock(); |
2853 | appendStmt(B: Block, S: C); |
2854 | return Visit(S: C->getCallee()); |
2855 | } |
2856 | |
2857 | if (!NoReturn && !AddEHEdge) { |
2858 | autoCreateBlock(); |
2859 | appendCall(B: Block, CE: C); |
2860 | |
2861 | return VisitChildren(S: C); |
2862 | } |
2863 | |
2864 | if (Block) { |
2865 | Succ = Block; |
2866 | if (badCFG) |
2867 | return nullptr; |
2868 | } |
2869 | |
2870 | if (NoReturn) |
2871 | Block = createNoReturnBlock(); |
2872 | else |
2873 | Block = createBlock(); |
2874 | |
2875 | appendCall(B: Block, CE: C); |
2876 | |
2877 | if (AddEHEdge) { |
2878 | // Add exceptional edges. |
2879 | if (TryTerminatedBlock) |
2880 | addSuccessor(B: Block, S: TryTerminatedBlock); |
2881 | else |
2882 | addSuccessor(B: Block, S: &cfg->getExit()); |
2883 | } |
2884 | |
2885 | return VisitChildren(S: C); |
2886 | } |
2887 | |
2888 | CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C, |
2889 | AddStmtChoice asc) { |
2890 | CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); |
2891 | appendStmt(B: ConfluenceBlock, S: C); |
2892 | if (badCFG) |
2893 | return nullptr; |
2894 | |
2895 | AddStmtChoice alwaysAdd = asc.withAlwaysAdd(alwaysAdd: true); |
2896 | Succ = ConfluenceBlock; |
2897 | Block = nullptr; |
2898 | CFGBlock *LHSBlock = Visit(S: C->getLHS(), asc: alwaysAdd); |
2899 | if (badCFG) |
2900 | return nullptr; |
2901 | |
2902 | Succ = ConfluenceBlock; |
2903 | Block = nullptr; |
2904 | CFGBlock *RHSBlock = Visit(S: C->getRHS(), asc: alwaysAdd); |
2905 | if (badCFG) |
2906 | return nullptr; |
2907 | |
2908 | Block = createBlock(add_successor: false); |
2909 | // See if this is a known constant. |
2910 | const TryResult& KnownVal = tryEvaluateBool(S: C->getCond()); |
2911 | addSuccessor(B: Block, S: KnownVal.isFalse() ? nullptr : LHSBlock); |
2912 | addSuccessor(B: Block, S: KnownVal.isTrue() ? nullptr : RHSBlock); |
2913 | Block->setTerminator(C); |
2914 | return addStmt(S: C->getCond()); |
2915 | } |
2916 | |
2917 | CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C, |
2918 | bool ExternallyDestructed) { |
2919 | LocalScope::const_iterator scopeBeginPos = ScopePos; |
2920 | addLocalScopeForStmt(S: C); |
2921 | |
2922 | if (!C->body_empty() && !isa<ReturnStmt>(Val: *C->body_rbegin())) { |
2923 | // If the body ends with a ReturnStmt, the dtors will be added in |
2924 | // VisitReturnStmt. |
2925 | addAutomaticObjHandling(B: ScopePos, E: scopeBeginPos, S: C); |
2926 | } |
2927 | |
2928 | CFGBlock *LastBlock = Block; |
2929 | |
2930 | for (Stmt *S : llvm::reverse(C: C->body())) { |
2931 | // If we hit a segment of code just containing ';' (NullStmts), we can |
2932 | // get a null block back. In such cases, just use the LastBlock |
2933 | CFGBlock *newBlock = Visit(S, asc: AddStmtChoice::AlwaysAdd, |
2934 | ExternallyDestructed); |
2935 | |
2936 | if (newBlock) |
2937 | LastBlock = newBlock; |
2938 | |
2939 | if (badCFG) |
2940 | return nullptr; |
2941 | |
2942 | ExternallyDestructed = false; |
2943 | } |
2944 | |
2945 | return LastBlock; |
2946 | } |
2947 | |
2948 | CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C, |
2949 | AddStmtChoice asc) { |
2950 | const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(Val: C); |
2951 | const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr); |
2952 | |
2953 | // Create the confluence block that will "merge" the results of the ternary |
2954 | // expression. |
2955 | CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); |
2956 | appendStmt(B: ConfluenceBlock, S: C); |
2957 | if (badCFG) |
2958 | return nullptr; |
2959 | |
2960 | AddStmtChoice alwaysAdd = asc.withAlwaysAdd(alwaysAdd: true); |
2961 | |
2962 | // Create a block for the LHS expression if there is an LHS expression. A |
2963 | // GCC extension allows LHS to be NULL, causing the condition to be the |
2964 | // value that is returned instead. |
2965 | // e.g: x ?: y is shorthand for: x ? x : y; |
2966 | Succ = ConfluenceBlock; |
2967 | Block = nullptr; |
2968 | CFGBlock *LHSBlock = nullptr; |
2969 | const Expr *trueExpr = C->getTrueExpr(); |
2970 | if (trueExpr != opaqueValue) { |
2971 | LHSBlock = Visit(S: C->getTrueExpr(), asc: alwaysAdd); |
2972 | if (badCFG) |
2973 | return nullptr; |
2974 | Block = nullptr; |
2975 | } |
2976 | else |
2977 | LHSBlock = ConfluenceBlock; |
2978 | |
2979 | // Create the block for the RHS expression. |
2980 | Succ = ConfluenceBlock; |
2981 | CFGBlock *RHSBlock = Visit(S: C->getFalseExpr(), asc: alwaysAdd); |
2982 | if (badCFG) |
2983 | return nullptr; |
2984 | |
2985 | // If the condition is a logical '&&' or '||', build a more accurate CFG. |
2986 | if (BinaryOperator *Cond = |
2987 | dyn_cast<BinaryOperator>(Val: C->getCond()->IgnoreParens())) |
2988 | if (Cond->isLogicalOp()) |
2989 | return VisitLogicalOperator(B: Cond, Term: C, TrueBlock: LHSBlock, FalseBlock: RHSBlock).first; |
2990 | |
2991 | // Create the block that will contain the condition. |
2992 | Block = createBlock(add_successor: false); |
2993 | |
2994 | // See if this is a known constant. |
2995 | const TryResult& KnownVal = tryEvaluateBool(S: C->getCond()); |
2996 | addSuccessor(B: Block, S: LHSBlock, IsReachable: !KnownVal.isFalse()); |
2997 | addSuccessor(B: Block, S: RHSBlock, IsReachable: !KnownVal.isTrue()); |
2998 | Block->setTerminator(C); |
2999 | Expr *condExpr = C->getCond(); |
3000 | |
3001 | if (opaqueValue) { |
3002 | // Run the condition expression if it's not trivially expressed in |
3003 | // terms of the opaque value (or if there is no opaque value). |
3004 | if (condExpr != opaqueValue) |
3005 | addStmt(S: condExpr); |
3006 | |
3007 | // Before that, run the common subexpression if there was one. |
3008 | // At least one of this or the above will be run. |
3009 | return addStmt(S: BCO->getCommon()); |
3010 | } |
3011 | |
3012 | return addStmt(S: condExpr); |
3013 | } |
3014 | |
3015 | CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) { |
3016 | // Check if the Decl is for an __label__. If so, elide it from the |
3017 | // CFG entirely. |
3018 | if (isa<LabelDecl>(Val: *DS->decl_begin())) |
3019 | return Block; |
3020 | |
3021 | // This case also handles static_asserts. |
3022 | if (DS->isSingleDecl()) |
3023 | return VisitDeclSubExpr(DS); |
3024 | |
3025 | CFGBlock *B = nullptr; |
3026 | |
3027 | // Build an individual DeclStmt for each decl. |
3028 | for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(), |
3029 | E = DS->decl_rend(); |
3030 | I != E; ++I) { |
3031 | |
3032 | // Allocate the DeclStmt using the BumpPtrAllocator. It will get |
3033 | // automatically freed with the CFG. |
3034 | DeclGroupRef DG(*I); |
3035 | Decl *D = *I; |
3036 | DeclStmt *DSNew = new (Context) DeclStmt(DG, D->getLocation(), GetEndLoc(D)); |
3037 | cfg->addSyntheticDeclStmt(Synthetic: DSNew, Source: DS); |
3038 | |
3039 | // Append the fake DeclStmt to block. |
3040 | B = VisitDeclSubExpr(DS: DSNew); |
3041 | } |
3042 | |
3043 | return B; |
3044 | } |
3045 | |
3046 | /// VisitDeclSubExpr - Utility method to add block-level expressions for |
3047 | /// DeclStmts and initializers in them. |
3048 | CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) { |
3049 | assert(DS->isSingleDecl() && "Can handle single declarations only." ); |
3050 | |
3051 | if (const auto *TND = dyn_cast<TypedefNameDecl>(Val: DS->getSingleDecl())) { |
3052 | // If we encounter a VLA, process its size expressions. |
3053 | const Type *T = TND->getUnderlyingType().getTypePtr(); |
3054 | if (!T->isVariablyModifiedType()) |
3055 | return Block; |
3056 | |
3057 | autoCreateBlock(); |
3058 | appendStmt(B: Block, S: DS); |
3059 | |
3060 | CFGBlock *LastBlock = Block; |
3061 | for (const VariableArrayType *VA = FindVA(t: T); VA != nullptr; |
3062 | VA = FindVA(t: VA->getElementType().getTypePtr())) { |
3063 | if (CFGBlock *NewBlock = addStmt(S: VA->getSizeExpr())) |
3064 | LastBlock = NewBlock; |
3065 | } |
3066 | return LastBlock; |
3067 | } |
3068 | |
3069 | VarDecl *VD = dyn_cast<VarDecl>(Val: DS->getSingleDecl()); |
3070 | |
3071 | if (!VD) { |
3072 | // Of everything that can be declared in a DeclStmt, only VarDecls and the |
3073 | // exceptions above impact runtime semantics. |
3074 | return Block; |
3075 | } |
3076 | |
3077 | bool HasTemporaries = false; |
3078 | |
3079 | // Guard static initializers under a branch. |
3080 | CFGBlock *blockAfterStaticInit = nullptr; |
3081 | |
3082 | if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) { |
3083 | // For static variables, we need to create a branch to track |
3084 | // whether or not they are initialized. |
3085 | if (Block) { |
3086 | Succ = Block; |
3087 | Block = nullptr; |
3088 | if (badCFG) |
3089 | return nullptr; |
3090 | } |
3091 | blockAfterStaticInit = Succ; |
3092 | } |
3093 | |
3094 | // Destructors of temporaries in initialization expression should be called |
3095 | // after initialization finishes. |
3096 | Expr *Init = VD->getInit(); |
3097 | if (Init) { |
3098 | HasTemporaries = isa<ExprWithCleanups>(Val: Init); |
3099 | |
3100 | if (BuildOpts.AddTemporaryDtors && HasTemporaries) { |
3101 | // Generate destructors for temporaries in initialization expression. |
3102 | TempDtorContext Context; |
3103 | VisitForTemporaryDtors(E: cast<ExprWithCleanups>(Val: Init)->getSubExpr(), |
3104 | /*ExternallyDestructed=*/true, Context); |
3105 | } |
3106 | } |
3107 | |
3108 | // If we bind to a tuple-like type, we iterate over the HoldingVars, and |
3109 | // create a DeclStmt for each of them. |
3110 | if (const auto *DD = dyn_cast<DecompositionDecl>(Val: VD)) { |
3111 | for (auto *BD : llvm::reverse(C: DD->bindings())) { |
3112 | if (auto *VD = BD->getHoldingVar()) { |
3113 | DeclGroupRef DG(VD); |
3114 | DeclStmt *DSNew = |
3115 | new (Context) DeclStmt(DG, VD->getLocation(), GetEndLoc(D: VD)); |
3116 | cfg->addSyntheticDeclStmt(Synthetic: DSNew, Source: DS); |
3117 | Block = VisitDeclSubExpr(DS: DSNew); |
3118 | } |
3119 | } |
3120 | } |
3121 | |
3122 | autoCreateBlock(); |
3123 | appendStmt(B: Block, S: DS); |
3124 | |
3125 | // If the initializer is an ArrayInitLoopExpr, we want to extract the |
3126 | // initializer, that's used for each element. |
3127 | const auto *AILE = dyn_cast_or_null<ArrayInitLoopExpr>(Val: Init); |
3128 | |
3129 | findConstructionContexts( |
3130 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item: DS), |
3131 | Child: AILE ? AILE->getSubExpr() : Init); |
3132 | |
3133 | // Keep track of the last non-null block, as 'Block' can be nulled out |
3134 | // if the initializer expression is something like a 'while' in a |
3135 | // statement-expression. |
3136 | CFGBlock *LastBlock = Block; |
3137 | |
3138 | if (Init) { |
3139 | if (HasTemporaries) { |
3140 | // For expression with temporaries go directly to subexpression to omit |
3141 | // generating destructors for the second time. |
3142 | ExprWithCleanups *EC = cast<ExprWithCleanups>(Val: Init); |
3143 | if (CFGBlock *newBlock = Visit(S: EC->getSubExpr())) |
3144 | LastBlock = newBlock; |
3145 | } |
3146 | else { |
3147 | if (CFGBlock *newBlock = Visit(S: Init)) |
3148 | LastBlock = newBlock; |
3149 | } |
3150 | } |
3151 | |
3152 | // If the type of VD is a VLA, then we must process its size expressions. |
3153 | // FIXME: This does not find the VLA if it is embedded in other types, |
3154 | // like here: `int (*p_vla)[x];` |
3155 | for (const VariableArrayType* VA = FindVA(t: VD->getType().getTypePtr()); |
3156 | VA != nullptr; VA = FindVA(t: VA->getElementType().getTypePtr())) { |
3157 | if (CFGBlock *newBlock = addStmt(S: VA->getSizeExpr())) |
3158 | LastBlock = newBlock; |
3159 | } |
3160 | |
3161 | maybeAddScopeBeginForVarDecl(B: Block, VD, S: DS); |
3162 | |
3163 | // Remove variable from local scope. |
3164 | if (ScopePos && VD == *ScopePos) |
3165 | ++ScopePos; |
3166 | |
3167 | CFGBlock *B = LastBlock; |
3168 | if (blockAfterStaticInit) { |
3169 | Succ = B; |
3170 | Block = createBlock(add_successor: false); |
3171 | Block->setTerminator(DS); |
3172 | addSuccessor(B: Block, S: blockAfterStaticInit); |
3173 | addSuccessor(B: Block, S: B); |
3174 | B = Block; |
3175 | } |
3176 | |
3177 | return B; |
3178 | } |
3179 | |
3180 | CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) { |
3181 | // We may see an if statement in the middle of a basic block, or it may be the |
3182 | // first statement we are processing. In either case, we create a new basic |
3183 | // block. First, we create the blocks for the then...else statements, and |
3184 | // then we create the block containing the if statement. If we were in the |
3185 | // middle of a block, we stop processing that block. That block is then the |
3186 | // implicit successor for the "then" and "else" clauses. |
3187 | |
3188 | // Save local scope position because in case of condition variable ScopePos |
3189 | // won't be restored when traversing AST. |
3190 | SaveAndRestore save_scope_pos(ScopePos); |
3191 | |
3192 | // Create local scope for C++17 if init-stmt if one exists. |
3193 | if (Stmt *Init = I->getInit()) |
3194 | addLocalScopeForStmt(S: Init); |
3195 | |
3196 | // Create local scope for possible condition variable. |
3197 | // Store scope position. Add implicit destructor. |
3198 | if (VarDecl *VD = I->getConditionVariable()) |
3199 | addLocalScopeForVarDecl(VD); |
3200 | |
3201 | addAutomaticObjHandling(B: ScopePos, E: save_scope_pos.get(), S: I); |
3202 | |
3203 | // The block we were processing is now finished. Make it the successor |
3204 | // block. |
3205 | if (Block) { |
3206 | Succ = Block; |
3207 | if (badCFG) |
3208 | return nullptr; |
3209 | } |
3210 | |
3211 | // Process the false branch. |
3212 | CFGBlock *ElseBlock = Succ; |
3213 | |
3214 | if (Stmt *Else = I->getElse()) { |
3215 | SaveAndRestore sv(Succ); |
3216 | |
3217 | // NULL out Block so that the recursive call to Visit will |
3218 | // create a new basic block. |
3219 | Block = nullptr; |
3220 | |
3221 | // If branch is not a compound statement create implicit scope |
3222 | // and add destructors. |
3223 | if (!isa<CompoundStmt>(Val: Else)) |
3224 | addLocalScopeAndDtors(S: Else); |
3225 | |
3226 | ElseBlock = addStmt(S: Else); |
3227 | |
3228 | if (!ElseBlock) // Can occur when the Else body has all NullStmts. |
3229 | ElseBlock = sv.get(); |
3230 | else if (Block) { |
3231 | if (badCFG) |
3232 | return nullptr; |
3233 | } |
3234 | } |
3235 | |
3236 | // Process the true branch. |
3237 | CFGBlock *ThenBlock; |
3238 | { |
3239 | Stmt *Then = I->getThen(); |
3240 | assert(Then); |
3241 | SaveAndRestore sv(Succ); |
3242 | Block = nullptr; |
3243 | |
3244 | // If branch is not a compound statement create implicit scope |
3245 | // and add destructors. |
3246 | if (!isa<CompoundStmt>(Val: Then)) |
3247 | addLocalScopeAndDtors(S: Then); |
3248 | |
3249 | ThenBlock = addStmt(S: Then); |
3250 | |
3251 | if (!ThenBlock) { |
3252 | // We can reach here if the "then" body has all NullStmts. |
3253 | // Create an empty block so we can distinguish between true and false |
3254 | // branches in path-sensitive analyses. |
3255 | ThenBlock = createBlock(add_successor: false); |
3256 | addSuccessor(B: ThenBlock, S: sv.get()); |
3257 | } else if (Block) { |
3258 | if (badCFG) |
3259 | return nullptr; |
3260 | } |
3261 | } |
3262 | |
3263 | // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by |
3264 | // having these handle the actual control-flow jump. Note that |
3265 | // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)" |
3266 | // we resort to the old control-flow behavior. This special handling |
3267 | // removes infeasible paths from the control-flow graph by having the |
3268 | // control-flow transfer of '&&' or '||' go directly into the then/else |
3269 | // blocks directly. |
3270 | BinaryOperator *Cond = |
3271 | (I->isConsteval() || I->getConditionVariable()) |
3272 | ? nullptr |
3273 | : dyn_cast<BinaryOperator>(Val: I->getCond()->IgnoreParens()); |
3274 | CFGBlock *LastBlock; |
3275 | if (Cond && Cond->isLogicalOp()) |
3276 | LastBlock = VisitLogicalOperator(B: Cond, Term: I, TrueBlock: ThenBlock, FalseBlock: ElseBlock).first; |
3277 | else { |
3278 | // Now create a new block containing the if statement. |
3279 | Block = createBlock(add_successor: false); |
3280 | |
3281 | // Set the terminator of the new block to the If statement. |
3282 | Block->setTerminator(I); |
3283 | |
3284 | // See if this is a known constant. |
3285 | TryResult KnownVal; |
3286 | if (!I->isConsteval()) |
3287 | KnownVal = tryEvaluateBool(S: I->getCond()); |
3288 | |
3289 | // Add the successors. If we know that specific branches are |
3290 | // unreachable, inform addSuccessor() of that knowledge. |
3291 | addSuccessor(B: Block, S: ThenBlock, /* IsReachable = */ !KnownVal.isFalse()); |
3292 | addSuccessor(B: Block, S: ElseBlock, /* IsReachable = */ !KnownVal.isTrue()); |
3293 | |
3294 | if (I->isConsteval()) |
3295 | return Block; |
3296 | |
3297 | // Add the condition as the last statement in the new block. This may |
3298 | // create new blocks as the condition may contain control-flow. Any newly |
3299 | // created blocks will be pointed to be "Block". |
3300 | LastBlock = addStmt(S: I->getCond()); |
3301 | |
3302 | // If the IfStmt contains a condition variable, add it and its |
3303 | // initializer to the CFG. |
3304 | if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) { |
3305 | autoCreateBlock(); |
3306 | LastBlock = addStmt(S: const_cast<DeclStmt *>(DS)); |
3307 | } |
3308 | } |
3309 | |
3310 | // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG. |
3311 | if (Stmt *Init = I->getInit()) { |
3312 | autoCreateBlock(); |
3313 | LastBlock = addStmt(S: Init); |
3314 | } |
3315 | |
3316 | return LastBlock; |
3317 | } |
3318 | |
3319 | CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) { |
3320 | // If we were in the middle of a block we stop processing that block. |
3321 | // |
3322 | // NOTE: If a "return" or "co_return" appears in the middle of a block, this |
3323 | // means that the code afterwards is DEAD (unreachable). We still keep |
3324 | // a basic block for that code; a simple "mark-and-sweep" from the entry |
3325 | // block will be able to report such dead blocks. |
3326 | assert(isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)); |
3327 | |
3328 | // Create the new block. |
3329 | Block = createBlock(add_successor: false); |
3330 | |
3331 | addAutomaticObjHandling(B: ScopePos, E: LocalScope::const_iterator(), S); |
3332 | |
3333 | if (auto *R = dyn_cast<ReturnStmt>(Val: S)) |
3334 | findConstructionContexts( |
3335 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item: R), |
3336 | Child: R->getRetValue()); |
3337 | |
3338 | // If the one of the destructors does not return, we already have the Exit |
3339 | // block as a successor. |
3340 | if (!Block->hasNoReturnElement()) |
3341 | addSuccessor(B: Block, S: &cfg->getExit()); |
3342 | |
3343 | // Add the return statement to the block. |
3344 | appendStmt(B: Block, S); |
3345 | |
3346 | // Visit children |
3347 | if (ReturnStmt *RS = dyn_cast<ReturnStmt>(Val: S)) { |
3348 | if (Expr *O = RS->getRetValue()) |
3349 | return Visit(S: O, asc: AddStmtChoice::AlwaysAdd, /*ExternallyDestructed=*/true); |
3350 | return Block; |
3351 | } |
3352 | |
3353 | CoreturnStmt *CRS = cast<CoreturnStmt>(Val: S); |
3354 | auto *B = Block; |
3355 | if (CFGBlock *R = Visit(S: CRS->getPromiseCall())) |
3356 | B = R; |
3357 | |
3358 | if (Expr *RV = CRS->getOperand()) |
3359 | if (RV->getType()->isVoidType() && !isa<InitListExpr>(Val: RV)) |
3360 | // A non-initlist void expression. |
3361 | if (CFGBlock *R = Visit(S: RV)) |
3362 | B = R; |
3363 | |
3364 | return B; |
3365 | } |
3366 | |
3367 | CFGBlock *CFGBuilder::VisitCoroutineSuspendExpr(CoroutineSuspendExpr *E, |
3368 | AddStmtChoice asc) { |
3369 | // We're modelling the pre-coro-xform CFG. Thus just evalate the various |
3370 | // active components of the co_await or co_yield. Note we do not model the |
3371 | // edge from the builtin_suspend to the exit node. |
3372 | if (asc.alwaysAdd(builder&: *this, stmt: E)) { |
3373 | autoCreateBlock(); |
3374 | appendStmt(B: Block, S: E); |
3375 | } |
3376 | CFGBlock *B = Block; |
3377 | if (auto *R = Visit(S: E->getResumeExpr())) |
3378 | B = R; |
3379 | if (auto *R = Visit(S: E->getSuspendExpr())) |
3380 | B = R; |
3381 | if (auto *R = Visit(S: E->getReadyExpr())) |
3382 | B = R; |
3383 | if (auto *R = Visit(S: E->getCommonExpr())) |
3384 | B = R; |
3385 | return B; |
3386 | } |
3387 | |
3388 | CFGBlock *CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt *ES) { |
3389 | // SEHExceptStmt are treated like labels, so they are the first statement in a |
3390 | // block. |
3391 | |
3392 | // Save local scope position because in case of exception variable ScopePos |
3393 | // won't be restored when traversing AST. |
3394 | SaveAndRestore save_scope_pos(ScopePos); |
3395 | |
3396 | addStmt(S: ES->getBlock()); |
3397 | CFGBlock *SEHExceptBlock = Block; |
3398 | if (!SEHExceptBlock) |
3399 | SEHExceptBlock = createBlock(); |
3400 | |
3401 | appendStmt(B: SEHExceptBlock, S: ES); |
3402 | |
3403 | // Also add the SEHExceptBlock as a label, like with regular labels. |
3404 | SEHExceptBlock->setLabel(ES); |
3405 | |
3406 | // Bail out if the CFG is bad. |
3407 | if (badCFG) |
3408 | return nullptr; |
3409 | |
3410 | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
3411 | Block = nullptr; |
3412 | |
3413 | return SEHExceptBlock; |
3414 | } |
3415 | |
3416 | CFGBlock *CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt *FS) { |
3417 | return VisitCompoundStmt(C: FS->getBlock(), /*ExternallyDestructed=*/false); |
3418 | } |
3419 | |
3420 | CFGBlock *CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt *LS) { |
3421 | // "__leave" is a control-flow statement. Thus we stop processing the current |
3422 | // block. |
3423 | if (badCFG) |
3424 | return nullptr; |
3425 | |
3426 | // Now create a new block that ends with the __leave statement. |
3427 | Block = createBlock(add_successor: false); |
3428 | Block->setTerminator(LS); |
3429 | |
3430 | // If there is no target for the __leave, then we are looking at an incomplete |
3431 | // AST. This means that the CFG cannot be constructed. |
3432 | if (SEHLeaveJumpTarget.block) { |
3433 | addAutomaticObjHandling(B: ScopePos, E: SEHLeaveJumpTarget.scopePosition, S: LS); |
3434 | addSuccessor(B: Block, S: SEHLeaveJumpTarget.block); |
3435 | } else |
3436 | badCFG = true; |
3437 | |
3438 | return Block; |
3439 | } |
3440 | |
3441 | CFGBlock *CFGBuilder::VisitSEHTryStmt(SEHTryStmt *Terminator) { |
3442 | // "__try"/"__except"/"__finally" is a control-flow statement. Thus we stop |
3443 | // processing the current block. |
3444 | CFGBlock *SEHTrySuccessor = nullptr; |
3445 | |
3446 | if (Block) { |
3447 | if (badCFG) |
3448 | return nullptr; |
3449 | SEHTrySuccessor = Block; |
3450 | } else SEHTrySuccessor = Succ; |
3451 | |
3452 | // FIXME: Implement __finally support. |
3453 | if (Terminator->getFinallyHandler()) |
3454 | return NYS(); |
3455 | |
3456 | CFGBlock *PrevSEHTryTerminatedBlock = TryTerminatedBlock; |
3457 | |
3458 | // Create a new block that will contain the __try statement. |
3459 | CFGBlock *NewTryTerminatedBlock = createBlock(add_successor: false); |
3460 | |
3461 | // Add the terminator in the __try block. |
3462 | NewTryTerminatedBlock->setTerminator(Terminator); |
3463 | |
3464 | if (SEHExceptStmt *Except = Terminator->getExceptHandler()) { |
3465 | // The code after the try is the implicit successor if there's an __except. |
3466 | Succ = SEHTrySuccessor; |
3467 | Block = nullptr; |
3468 | CFGBlock *ExceptBlock = VisitSEHExceptStmt(ES: Except); |
3469 | if (!ExceptBlock) |
3470 | return nullptr; |
3471 | // Add this block to the list of successors for the block with the try |
3472 | // statement. |
3473 | addSuccessor(B: NewTryTerminatedBlock, S: ExceptBlock); |
3474 | } |
3475 | if (PrevSEHTryTerminatedBlock) |
3476 | addSuccessor(B: NewTryTerminatedBlock, S: PrevSEHTryTerminatedBlock); |
3477 | else |
3478 | addSuccessor(B: NewTryTerminatedBlock, S: &cfg->getExit()); |
3479 | |
3480 | // The code after the try is the implicit successor. |
3481 | Succ = SEHTrySuccessor; |
3482 | |
3483 | // Save the current "__try" context. |
3484 | SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock); |
3485 | cfg->addTryDispatchBlock(block: TryTerminatedBlock); |
3486 | |
3487 | // Save the current value for the __leave target. |
3488 | // All __leaves should go to the code following the __try |
3489 | // (FIXME: or if the __try has a __finally, to the __finally.) |
3490 | SaveAndRestore save_break(SEHLeaveJumpTarget); |
3491 | SEHLeaveJumpTarget = JumpTarget(SEHTrySuccessor, ScopePos); |
3492 | |
3493 | assert(Terminator->getTryBlock() && "__try must contain a non-NULL body" ); |
3494 | Block = nullptr; |
3495 | return addStmt(S: Terminator->getTryBlock()); |
3496 | } |
3497 | |
3498 | CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) { |
3499 | // Get the block of the labeled statement. Add it to our map. |
3500 | addStmt(S: L->getSubStmt()); |
3501 | CFGBlock *LabelBlock = Block; |
3502 | |
3503 | if (!LabelBlock) // This can happen when the body is empty, i.e. |
3504 | LabelBlock = createBlock(); // scopes that only contains NullStmts. |
3505 | |
3506 | assert(!LabelMap.contains(L->getDecl()) && "label already in map" ); |
3507 | LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos); |
3508 | |
3509 | // Labels partition blocks, so this is the end of the basic block we were |
3510 | // processing (L is the block's label). Because this is label (and we have |
3511 | // already processed the substatement) there is no extra control-flow to worry |
3512 | // about. |
3513 | LabelBlock->setLabel(L); |
3514 | if (badCFG) |
3515 | return nullptr; |
3516 | |
3517 | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
3518 | Block = nullptr; |
3519 | |
3520 | // This block is now the implicit successor of other blocks. |
3521 | Succ = LabelBlock; |
3522 | |
3523 | return LabelBlock; |
3524 | } |
3525 | |
3526 | CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) { |
3527 | CFGBlock *LastBlock = VisitNoRecurse(E, asc); |
3528 | for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) { |
3529 | if (Expr *CopyExpr = CI.getCopyExpr()) { |
3530 | CFGBlock *Tmp = Visit(S: CopyExpr); |
3531 | if (Tmp) |
3532 | LastBlock = Tmp; |
3533 | } |
3534 | } |
3535 | return LastBlock; |
3536 | } |
3537 | |
3538 | CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) { |
3539 | CFGBlock *LastBlock = VisitNoRecurse(E, asc); |
3540 | |
3541 | unsigned Idx = 0; |
3542 | for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(), |
3543 | et = E->capture_init_end(); |
3544 | it != et; ++it, ++Idx) { |
3545 | if (Expr *Init = *it) { |
3546 | // If the initializer is an ArrayInitLoopExpr, we want to extract the |
3547 | // initializer, that's used for each element. |
3548 | auto *AILEInit = extractElementInitializerFromNestedAILE( |
3549 | AILE: dyn_cast<ArrayInitLoopExpr>(Val: Init)); |
3550 | |
3551 | findConstructionContexts(Layer: ConstructionContextLayer::create( |
3552 | C&: cfg->getBumpVectorContext(), Item: {E, Idx}), |
3553 | Child: AILEInit ? AILEInit : Init); |
3554 | |
3555 | CFGBlock *Tmp = Visit(S: Init); |
3556 | if (Tmp) |
3557 | LastBlock = Tmp; |
3558 | } |
3559 | } |
3560 | return LastBlock; |
3561 | } |
3562 | |
3563 | CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) { |
3564 | // Goto is a control-flow statement. Thus we stop processing the current |
3565 | // block and create a new one. |
3566 | |
3567 | Block = createBlock(add_successor: false); |
3568 | Block->setTerminator(G); |
3569 | |
3570 | // If we already know the mapping to the label block add the successor now. |
3571 | LabelMapTy::iterator I = LabelMap.find(Val: G->getLabel()); |
3572 | |
3573 | if (I == LabelMap.end()) |
3574 | // We will need to backpatch this block later. |
3575 | BackpatchBlocks.push_back(x: JumpSource(Block, ScopePos)); |
3576 | else { |
3577 | JumpTarget JT = I->second; |
3578 | addSuccessor(B: Block, S: JT.block); |
3579 | addScopeChangesHandling(SrcPos: ScopePos, DstPos: JT.scopePosition, S: G); |
3580 | } |
3581 | |
3582 | return Block; |
3583 | } |
3584 | |
3585 | CFGBlock *CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc) { |
3586 | // Goto is a control-flow statement. Thus we stop processing the current |
3587 | // block and create a new one. |
3588 | |
3589 | if (!G->isAsmGoto()) |
3590 | return VisitStmt(S: G, asc); |
3591 | |
3592 | if (Block) { |
3593 | Succ = Block; |
3594 | if (badCFG) |
3595 | return nullptr; |
3596 | } |
3597 | Block = createBlock(); |
3598 | Block->setTerminator(G); |
3599 | // We will backpatch this block later for all the labels. |
3600 | BackpatchBlocks.push_back(x: JumpSource(Block, ScopePos)); |
3601 | // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is |
3602 | // used to avoid adding "Succ" again. |
3603 | BackpatchBlocks.push_back(x: JumpSource(Succ, ScopePos)); |
3604 | return VisitChildren(S: G); |
3605 | } |
3606 | |
3607 | CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) { |
3608 | CFGBlock *LoopSuccessor = nullptr; |
3609 | |
3610 | // Save local scope position because in case of condition variable ScopePos |
3611 | // won't be restored when traversing AST. |
3612 | SaveAndRestore save_scope_pos(ScopePos); |
3613 | |
3614 | // Create local scope for init statement and possible condition variable. |
3615 | // Add destructor for init statement and condition variable. |
3616 | // Store scope position for continue statement. |
3617 | if (Stmt *Init = F->getInit()) |
3618 | addLocalScopeForStmt(S: Init); |
3619 | LocalScope::const_iterator LoopBeginScopePos = ScopePos; |
3620 | |
3621 | if (VarDecl *VD = F->getConditionVariable()) |
3622 | addLocalScopeForVarDecl(VD); |
3623 | LocalScope::const_iterator ContinueScopePos = ScopePos; |
3624 | |
3625 | addAutomaticObjHandling(B: ScopePos, E: save_scope_pos.get(), S: F); |
3626 | |
3627 | addLoopExit(LoopStmt: F); |
3628 | |
3629 | // "for" is a control-flow statement. Thus we stop processing the current |
3630 | // block. |
3631 | if (Block) { |
3632 | if (badCFG) |
3633 | return nullptr; |
3634 | LoopSuccessor = Block; |
3635 | } else |
3636 | LoopSuccessor = Succ; |
3637 | |
3638 | // Save the current value for the break targets. |
3639 | // All breaks should go to the code following the loop. |
3640 | SaveAndRestore save_break(BreakJumpTarget); |
3641 | BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); |
3642 | |
3643 | CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr; |
3644 | |
3645 | // Now create the loop body. |
3646 | { |
3647 | assert(F->getBody()); |
3648 | |
3649 | // Save the current values for Block, Succ, continue and break targets. |
3650 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
3651 | SaveAndRestore save_continue(ContinueJumpTarget); |
3652 | |
3653 | // Create an empty block to represent the transition block for looping back |
3654 | // to the head of the loop. If we have increment code, it will |
3655 | // go in this block as well. |
3656 | Block = Succ = TransitionBlock = createBlock(add_successor: false); |
3657 | TransitionBlock->setLoopTarget(F); |
3658 | |
3659 | |
3660 | // Loop iteration (after increment) should end with destructor of Condition |
3661 | // variable (if any). |
3662 | addAutomaticObjHandling(B: ScopePos, E: LoopBeginScopePos, S: F); |
3663 | |
3664 | if (Stmt *I = F->getInc()) { |
3665 | // Generate increment code in its own basic block. This is the target of |
3666 | // continue statements. |
3667 | Succ = addStmt(S: I); |
3668 | } |
3669 | |
3670 | // Finish up the increment (or empty) block if it hasn't been already. |
3671 | if (Block) { |
3672 | assert(Block == Succ); |
3673 | if (badCFG) |
3674 | return nullptr; |
3675 | Block = nullptr; |
3676 | } |
3677 | |
3678 | // The starting block for the loop increment is the block that should |
3679 | // represent the 'loop target' for looping back to the start of the loop. |
3680 | ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos); |
3681 | ContinueJumpTarget.block->setLoopTarget(F); |
3682 | |
3683 | |
3684 | // If body is not a compound statement create implicit scope |
3685 | // and add destructors. |
3686 | if (!isa<CompoundStmt>(Val: F->getBody())) |
3687 | addLocalScopeAndDtors(S: F->getBody()); |
3688 | |
3689 | // Now populate the body block, and in the process create new blocks as we |
3690 | // walk the body of the loop. |
3691 | BodyBlock = addStmt(S: F->getBody()); |
3692 | |
3693 | if (!BodyBlock) { |
3694 | // In the case of "for (...;...;...);" we can have a null BodyBlock. |
3695 | // Use the continue jump target as the proxy for the body. |
3696 | BodyBlock = ContinueJumpTarget.block; |
3697 | } |
3698 | else if (badCFG) |
3699 | return nullptr; |
3700 | } |
3701 | |
3702 | // Because of short-circuit evaluation, the condition of the loop can span |
3703 | // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that |
3704 | // evaluate the condition. |
3705 | CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr; |
3706 | |
3707 | do { |
3708 | Expr *C = F->getCond(); |
3709 | SaveAndRestore save_scope_pos(ScopePos); |
3710 | |
3711 | // Specially handle logical operators, which have a slightly |
3712 | // more optimal CFG representation. |
3713 | if (BinaryOperator *Cond = |
3714 | dyn_cast_or_null<BinaryOperator>(Val: C ? C->IgnoreParens() : nullptr)) |
3715 | if (Cond->isLogicalOp()) { |
3716 | std::tie(args&: EntryConditionBlock, args&: ExitConditionBlock) = |
3717 | VisitLogicalOperator(B: Cond, Term: F, TrueBlock: BodyBlock, FalseBlock: LoopSuccessor); |
3718 | break; |
3719 | } |
3720 | |
3721 | // The default case when not handling logical operators. |
3722 | EntryConditionBlock = ExitConditionBlock = createBlock(add_successor: false); |
3723 | ExitConditionBlock->setTerminator(F); |
3724 | |
3725 | // See if this is a known constant. |
3726 | TryResult KnownVal(true); |
3727 | |
3728 | if (C) { |
3729 | // Now add the actual condition to the condition block. |
3730 | // Because the condition itself may contain control-flow, new blocks may |
3731 | // be created. Thus we update "Succ" after adding the condition. |
3732 | Block = ExitConditionBlock; |
3733 | EntryConditionBlock = addStmt(S: C); |
3734 | |
3735 | // If this block contains a condition variable, add both the condition |
3736 | // variable and initializer to the CFG. |
3737 | if (VarDecl *VD = F->getConditionVariable()) { |
3738 | if (Expr *Init = VD->getInit()) { |
3739 | autoCreateBlock(); |
3740 | const DeclStmt *DS = F->getConditionVariableDeclStmt(); |
3741 | assert(DS->isSingleDecl()); |
3742 | findConstructionContexts( |
3743 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item: DS), |
3744 | Child: Init); |
3745 | appendStmt(B: Block, S: DS); |
3746 | EntryConditionBlock = addStmt(S: Init); |
3747 | assert(Block == EntryConditionBlock); |
3748 | maybeAddScopeBeginForVarDecl(B: EntryConditionBlock, VD, S: C); |
3749 | } |
3750 | } |
3751 | |
3752 | if (Block && badCFG) |
3753 | return nullptr; |
3754 | |
3755 | KnownVal = tryEvaluateBool(S: C); |
3756 | } |
3757 | |
3758 | // Add the loop body entry as a successor to the condition. |
3759 | addSuccessor(B: ExitConditionBlock, S: KnownVal.isFalse() ? nullptr : BodyBlock); |
3760 | // Link up the condition block with the code that follows the loop. (the |
3761 | // false branch). |
3762 | addSuccessor(B: ExitConditionBlock, |
3763 | S: KnownVal.isTrue() ? nullptr : LoopSuccessor); |
3764 | } while (false); |
3765 | |
3766 | // Link up the loop-back block to the entry condition block. |
3767 | addSuccessor(B: TransitionBlock, S: EntryConditionBlock); |
3768 | |
3769 | // The condition block is the implicit successor for any code above the loop. |
3770 | Succ = EntryConditionBlock; |
3771 | |
3772 | // If the loop contains initialization, create a new block for those |
3773 | // statements. This block can also contain statements that precede the loop. |
3774 | if (Stmt *I = F->getInit()) { |
3775 | SaveAndRestore save_scope_pos(ScopePos); |
3776 | ScopePos = LoopBeginScopePos; |
3777 | Block = createBlock(); |
3778 | return addStmt(S: I); |
3779 | } |
3780 | |
3781 | // There is no loop initialization. We are thus basically a while loop. |
3782 | // NULL out Block to force lazy block construction. |
3783 | Block = nullptr; |
3784 | Succ = EntryConditionBlock; |
3785 | return EntryConditionBlock; |
3786 | } |
3787 | |
3788 | CFGBlock * |
3789 | CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE, |
3790 | AddStmtChoice asc) { |
3791 | findConstructionContexts( |
3792 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item: MTE), |
3793 | Child: MTE->getSubExpr()); |
3794 | |
3795 | return VisitStmt(S: MTE, asc); |
3796 | } |
3797 | |
3798 | CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) { |
3799 | if (asc.alwaysAdd(builder&: *this, stmt: M)) { |
3800 | autoCreateBlock(); |
3801 | appendStmt(B: Block, S: M); |
3802 | } |
3803 | return Visit(S: M->getBase()); |
3804 | } |
3805 | |
3806 | CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) { |
3807 | // Objective-C fast enumeration 'for' statements: |
3808 | // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC |
3809 | // |
3810 | // for ( Type newVariable in collection_expression ) { statements } |
3811 | // |
3812 | // becomes: |
3813 | // |
3814 | // prologue: |
3815 | // 1. collection_expression |
3816 | // T. jump to loop_entry |
3817 | // loop_entry: |
3818 | // 1. side-effects of element expression |
3819 | // 1. ObjCForCollectionStmt [performs binding to newVariable] |
3820 | // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil] |
3821 | // TB: |
3822 | // statements |
3823 | // T. jump to loop_entry |
3824 | // FB: |
3825 | // what comes after |
3826 | // |
3827 | // and |
3828 | // |
3829 | // Type existingItem; |
3830 | // for ( existingItem in expression ) { statements } |
3831 | // |
3832 | // becomes: |
3833 | // |
3834 | // the same with newVariable replaced with existingItem; the binding works |
3835 | // the same except that for one ObjCForCollectionStmt::getElement() returns |
3836 | // a DeclStmt and the other returns a DeclRefExpr. |
3837 | |
3838 | CFGBlock *LoopSuccessor = nullptr; |
3839 | |
3840 | if (Block) { |
3841 | if (badCFG) |
3842 | return nullptr; |
3843 | LoopSuccessor = Block; |
3844 | Block = nullptr; |
3845 | } else |
3846 | LoopSuccessor = Succ; |
3847 | |
3848 | // Build the condition blocks. |
3849 | CFGBlock *ExitConditionBlock = createBlock(add_successor: false); |
3850 | |
3851 | // Set the terminator for the "exit" condition block. |
3852 | ExitConditionBlock->setTerminator(S); |
3853 | |
3854 | // The last statement in the block should be the ObjCForCollectionStmt, which |
3855 | // performs the actual binding to 'element' and determines if there are any |
3856 | // more items in the collection. |
3857 | appendStmt(B: ExitConditionBlock, S); |
3858 | Block = ExitConditionBlock; |
3859 | |
3860 | // Walk the 'element' expression to see if there are any side-effects. We |
3861 | // generate new blocks as necessary. We DON'T add the statement by default to |
3862 | // the CFG unless it contains control-flow. |
3863 | CFGBlock *EntryConditionBlock = Visit(S: S->getElement(), |
3864 | asc: AddStmtChoice::NotAlwaysAdd); |
3865 | if (Block) { |
3866 | if (badCFG) |
3867 | return nullptr; |
3868 | Block = nullptr; |
3869 | } |
3870 | |
3871 | // The condition block is the implicit successor for the loop body as well as |
3872 | // any code above the loop. |
3873 | Succ = EntryConditionBlock; |
3874 | |
3875 | // Now create the true branch. |
3876 | { |
3877 | // Save the current values for Succ, continue and break targets. |
3878 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
3879 | SaveAndRestore save_continue(ContinueJumpTarget), |
3880 | save_break(BreakJumpTarget); |
3881 | |
3882 | // Add an intermediate block between the BodyBlock and the |
3883 | // EntryConditionBlock to represent the "loop back" transition, for looping |
3884 | // back to the head of the loop. |
3885 | CFGBlock *LoopBackBlock = nullptr; |
3886 | Succ = LoopBackBlock = createBlock(); |
3887 | LoopBackBlock->setLoopTarget(S); |
3888 | |
3889 | BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); |
3890 | ContinueJumpTarget = JumpTarget(Succ, ScopePos); |
3891 | |
3892 | CFGBlock *BodyBlock = addStmt(S: S->getBody()); |
3893 | |
3894 | if (!BodyBlock) |
3895 | BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;" |
3896 | else if (Block) { |
3897 | if (badCFG) |
3898 | return nullptr; |
3899 | } |
3900 | |
3901 | // This new body block is a successor to our "exit" condition block. |
3902 | addSuccessor(B: ExitConditionBlock, S: BodyBlock); |
3903 | } |
3904 | |
3905 | // Link up the condition block with the code that follows the loop. |
3906 | // (the false branch). |
3907 | addSuccessor(B: ExitConditionBlock, S: LoopSuccessor); |
3908 | |
3909 | // Now create a prologue block to contain the collection expression. |
3910 | Block = createBlock(); |
3911 | return addStmt(S: S->getCollection()); |
3912 | } |
3913 | |
3914 | CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) { |
3915 | // Inline the body. |
3916 | return addStmt(S: S->getSubStmt()); |
3917 | // TODO: consider adding cleanups for the end of @autoreleasepool scope. |
3918 | } |
3919 | |
3920 | CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) { |
3921 | // FIXME: Add locking 'primitives' to CFG for @synchronized. |
3922 | |
3923 | // Inline the body. |
3924 | CFGBlock *SyncBlock = addStmt(S: S->getSynchBody()); |
3925 | |
3926 | // The sync body starts its own basic block. This makes it a little easier |
3927 | // for diagnostic clients. |
3928 | if (SyncBlock) { |
3929 | if (badCFG) |
3930 | return nullptr; |
3931 | |
3932 | Block = nullptr; |
3933 | Succ = SyncBlock; |
3934 | } |
3935 | |
3936 | // Add the @synchronized to the CFG. |
3937 | autoCreateBlock(); |
3938 | appendStmt(B: Block, S); |
3939 | |
3940 | // Inline the sync expression. |
3941 | return addStmt(S: S->getSynchExpr()); |
3942 | } |
3943 | |
3944 | CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) { |
3945 | autoCreateBlock(); |
3946 | |
3947 | // Add the PseudoObject as the last thing. |
3948 | appendStmt(B: Block, S: E); |
3949 | |
3950 | CFGBlock *lastBlock = Block; |
3951 | |
3952 | // Before that, evaluate all of the semantics in order. In |
3953 | // CFG-land, that means appending them in reverse order. |
3954 | for (unsigned i = E->getNumSemanticExprs(); i != 0; ) { |
3955 | Expr *Semantic = E->getSemanticExpr(index: --i); |
3956 | |
3957 | // If the semantic is an opaque value, we're being asked to bind |
3958 | // it to its source expression. |
3959 | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: Semantic)) |
3960 | Semantic = OVE->getSourceExpr(); |
3961 | |
3962 | if (CFGBlock *B = Visit(S: Semantic)) |
3963 | lastBlock = B; |
3964 | } |
3965 | |
3966 | return lastBlock; |
3967 | } |
3968 | |
3969 | CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) { |
3970 | CFGBlock *LoopSuccessor = nullptr; |
3971 | |
3972 | // Save local scope position because in case of condition variable ScopePos |
3973 | // won't be restored when traversing AST. |
3974 | SaveAndRestore save_scope_pos(ScopePos); |
3975 | |
3976 | // Create local scope for possible condition variable. |
3977 | // Store scope position for continue statement. |
3978 | LocalScope::const_iterator LoopBeginScopePos = ScopePos; |
3979 | if (VarDecl *VD = W->getConditionVariable()) { |
3980 | addLocalScopeForVarDecl(VD); |
3981 | addAutomaticObjHandling(B: ScopePos, E: LoopBeginScopePos, S: W); |
3982 | } |
3983 | addLoopExit(LoopStmt: W); |
3984 | |
3985 | // "while" is a control-flow statement. Thus we stop processing the current |
3986 | // block. |
3987 | if (Block) { |
3988 | if (badCFG) |
3989 | return nullptr; |
3990 | LoopSuccessor = Block; |
3991 | Block = nullptr; |
3992 | } else { |
3993 | LoopSuccessor = Succ; |
3994 | } |
3995 | |
3996 | CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr; |
3997 | |
3998 | // Process the loop body. |
3999 | { |
4000 | assert(W->getBody()); |
4001 | |
4002 | // Save the current values for Block, Succ, continue and break targets. |
4003 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
4004 | SaveAndRestore save_continue(ContinueJumpTarget), |
4005 | save_break(BreakJumpTarget); |
4006 | |
4007 | // Create an empty block to represent the transition block for looping back |
4008 | // to the head of the loop. |
4009 | Succ = TransitionBlock = createBlock(add_successor: false); |
4010 | TransitionBlock->setLoopTarget(W); |
4011 | ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos); |
4012 | |
4013 | // All breaks should go to the code following the loop. |
4014 | BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); |
4015 | |
4016 | // Loop body should end with destructor of Condition variable (if any). |
4017 | addAutomaticObjHandling(B: ScopePos, E: LoopBeginScopePos, S: W); |
4018 | |
4019 | // If body is not a compound statement create implicit scope |
4020 | // and add destructors. |
4021 | if (!isa<CompoundStmt>(Val: W->getBody())) |
4022 | addLocalScopeAndDtors(S: W->getBody()); |
4023 | |
4024 | // Create the body. The returned block is the entry to the loop body. |
4025 | BodyBlock = addStmt(S: W->getBody()); |
4026 | |
4027 | if (!BodyBlock) |
4028 | BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;" |
4029 | else if (Block && badCFG) |
4030 | return nullptr; |
4031 | } |
4032 | |
4033 | // Because of short-circuit evaluation, the condition of the loop can span |
4034 | // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that |
4035 | // evaluate the condition. |
4036 | CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr; |
4037 | |
4038 | do { |
4039 | Expr *C = W->getCond(); |
4040 | |
4041 | // Specially handle logical operators, which have a slightly |
4042 | // more optimal CFG representation. |
4043 | if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(Val: C->IgnoreParens())) |
4044 | if (Cond->isLogicalOp()) { |
4045 | std::tie(args&: EntryConditionBlock, args&: ExitConditionBlock) = |
4046 | VisitLogicalOperator(B: Cond, Term: W, TrueBlock: BodyBlock, FalseBlock: LoopSuccessor); |
4047 | break; |
4048 | } |
4049 | |
4050 | // The default case when not handling logical operators. |
4051 | ExitConditionBlock = createBlock(add_successor: false); |
4052 | ExitConditionBlock->setTerminator(W); |
4053 | |
4054 | // Now add the actual condition to the condition block. |
4055 | // Because the condition itself may contain control-flow, new blocks may |
4056 | // be created. Thus we update "Succ" after adding the condition. |
4057 | Block = ExitConditionBlock; |
4058 | Block = EntryConditionBlock = addStmt(S: C); |
4059 | |
4060 | // If this block contains a condition variable, add both the condition |
4061 | // variable and initializer to the CFG. |
4062 | if (VarDecl *VD = W->getConditionVariable()) { |
4063 | if (Expr *Init = VD->getInit()) { |
4064 | autoCreateBlock(); |
4065 | const DeclStmt *DS = W->getConditionVariableDeclStmt(); |
4066 | assert(DS->isSingleDecl()); |
4067 | findConstructionContexts( |
4068 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), |
4069 | Item: const_cast<DeclStmt *>(DS)), |
4070 | Child: Init); |
4071 | appendStmt(B: Block, S: DS); |
4072 | EntryConditionBlock = addStmt(S: Init); |
4073 | assert(Block == EntryConditionBlock); |
4074 | maybeAddScopeBeginForVarDecl(B: EntryConditionBlock, VD, S: C); |
4075 | } |
4076 | } |
4077 | |
4078 | if (Block && badCFG) |
4079 | return nullptr; |
4080 | |
4081 | // See if this is a known constant. |
4082 | const TryResult& KnownVal = tryEvaluateBool(S: C); |
4083 | |
4084 | // Add the loop body entry as a successor to the condition. |
4085 | addSuccessor(B: ExitConditionBlock, S: KnownVal.isFalse() ? nullptr : BodyBlock); |
4086 | // Link up the condition block with the code that follows the loop. (the |
4087 | // false branch). |
4088 | addSuccessor(B: ExitConditionBlock, |
4089 | S: KnownVal.isTrue() ? nullptr : LoopSuccessor); |
4090 | } while(false); |
4091 | |
4092 | // Link up the loop-back block to the entry condition block. |
4093 | addSuccessor(B: TransitionBlock, S: EntryConditionBlock); |
4094 | |
4095 | // There can be no more statements in the condition block since we loop back |
4096 | // to this block. NULL out Block to force lazy creation of another block. |
4097 | Block = nullptr; |
4098 | |
4099 | // Return the condition block, which is the dominating block for the loop. |
4100 | Succ = EntryConditionBlock; |
4101 | return EntryConditionBlock; |
4102 | } |
4103 | |
4104 | CFGBlock *CFGBuilder::VisitArrayInitLoopExpr(ArrayInitLoopExpr *A, |
4105 | AddStmtChoice asc) { |
4106 | if (asc.alwaysAdd(builder&: *this, stmt: A)) { |
4107 | autoCreateBlock(); |
4108 | appendStmt(B: Block, S: A); |
4109 | } |
4110 | |
4111 | CFGBlock *B = Block; |
4112 | |
4113 | if (CFGBlock *R = Visit(S: A->getSubExpr())) |
4114 | B = R; |
4115 | |
4116 | auto *OVE = dyn_cast<OpaqueValueExpr>(Val: A->getCommonExpr()); |
4117 | assert(OVE && "ArrayInitLoopExpr->getCommonExpr() should be wrapped in an " |
4118 | "OpaqueValueExpr!" ); |
4119 | if (CFGBlock *R = Visit(S: OVE->getSourceExpr())) |
4120 | B = R; |
4121 | |
4122 | return B; |
4123 | } |
4124 | |
4125 | CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *CS) { |
4126 | // ObjCAtCatchStmt are treated like labels, so they are the first statement |
4127 | // in a block. |
4128 | |
4129 | // Save local scope position because in case of exception variable ScopePos |
4130 | // won't be restored when traversing AST. |
4131 | SaveAndRestore save_scope_pos(ScopePos); |
4132 | |
4133 | if (CS->getCatchBody()) |
4134 | addStmt(S: CS->getCatchBody()); |
4135 | |
4136 | CFGBlock *CatchBlock = Block; |
4137 | if (!CatchBlock) |
4138 | CatchBlock = createBlock(); |
4139 | |
4140 | appendStmt(B: CatchBlock, S: CS); |
4141 | |
4142 | // Also add the ObjCAtCatchStmt as a label, like with regular labels. |
4143 | CatchBlock->setLabel(CS); |
4144 | |
4145 | // Bail out if the CFG is bad. |
4146 | if (badCFG) |
4147 | return nullptr; |
4148 | |
4149 | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
4150 | Block = nullptr; |
4151 | |
4152 | return CatchBlock; |
4153 | } |
4154 | |
4155 | CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) { |
4156 | // If we were in the middle of a block we stop processing that block. |
4157 | if (badCFG) |
4158 | return nullptr; |
4159 | |
4160 | // Create the new block. |
4161 | Block = createBlock(add_successor: false); |
4162 | |
4163 | if (TryTerminatedBlock) |
4164 | // The current try statement is the only successor. |
4165 | addSuccessor(B: Block, S: TryTerminatedBlock); |
4166 | else |
4167 | // otherwise the Exit block is the only successor. |
4168 | addSuccessor(B: Block, S: &cfg->getExit()); |
4169 | |
4170 | // Add the statement to the block. This may create new blocks if S contains |
4171 | // control-flow (short-circuit operations). |
4172 | return VisitStmt(S, asc: AddStmtChoice::AlwaysAdd); |
4173 | } |
4174 | |
4175 | CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *Terminator) { |
4176 | // "@try"/"@catch" is a control-flow statement. Thus we stop processing the |
4177 | // current block. |
4178 | CFGBlock *TrySuccessor = nullptr; |
4179 | |
4180 | if (Block) { |
4181 | if (badCFG) |
4182 | return nullptr; |
4183 | TrySuccessor = Block; |
4184 | } else |
4185 | TrySuccessor = Succ; |
4186 | |
4187 | // FIXME: Implement @finally support. |
4188 | if (Terminator->getFinallyStmt()) |
4189 | return NYS(); |
4190 | |
4191 | CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock; |
4192 | |
4193 | // Create a new block that will contain the try statement. |
4194 | CFGBlock *NewTryTerminatedBlock = createBlock(add_successor: false); |
4195 | // Add the terminator in the try block. |
4196 | NewTryTerminatedBlock->setTerminator(Terminator); |
4197 | |
4198 | bool HasCatchAll = false; |
4199 | for (ObjCAtCatchStmt *CS : Terminator->catch_stmts()) { |
4200 | // The code after the try is the implicit successor. |
4201 | Succ = TrySuccessor; |
4202 | if (CS->hasEllipsis()) { |
4203 | HasCatchAll = true; |
4204 | } |
4205 | Block = nullptr; |
4206 | CFGBlock *CatchBlock = VisitObjCAtCatchStmt(CS); |
4207 | if (!CatchBlock) |
4208 | return nullptr; |
4209 | // Add this block to the list of successors for the block with the try |
4210 | // statement. |
4211 | addSuccessor(B: NewTryTerminatedBlock, S: CatchBlock); |
4212 | } |
4213 | |
4214 | // FIXME: This needs updating when @finally support is added. |
4215 | if (!HasCatchAll) { |
4216 | if (PrevTryTerminatedBlock) |
4217 | addSuccessor(B: NewTryTerminatedBlock, S: PrevTryTerminatedBlock); |
4218 | else |
4219 | addSuccessor(B: NewTryTerminatedBlock, S: &cfg->getExit()); |
4220 | } |
4221 | |
4222 | // The code after the try is the implicit successor. |
4223 | Succ = TrySuccessor; |
4224 | |
4225 | // Save the current "try" context. |
4226 | SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock); |
4227 | cfg->addTryDispatchBlock(block: TryTerminatedBlock); |
4228 | |
4229 | assert(Terminator->getTryBody() && "try must contain a non-NULL body" ); |
4230 | Block = nullptr; |
4231 | return addStmt(S: Terminator->getTryBody()); |
4232 | } |
4233 | |
4234 | CFGBlock *CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr *ME, |
4235 | AddStmtChoice asc) { |
4236 | findConstructionContextsForArguments(E: ME); |
4237 | |
4238 | autoCreateBlock(); |
4239 | appendObjCMessage(B: Block, ME); |
4240 | |
4241 | return VisitChildren(S: ME); |
4242 | } |
4243 | |
4244 | CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) { |
4245 | // If we were in the middle of a block we stop processing that block. |
4246 | if (badCFG) |
4247 | return nullptr; |
4248 | |
4249 | // Create the new block. |
4250 | Block = createBlock(add_successor: false); |
4251 | |
4252 | if (TryTerminatedBlock) |
4253 | // The current try statement is the only successor. |
4254 | addSuccessor(B: Block, S: TryTerminatedBlock); |
4255 | else |
4256 | // otherwise the Exit block is the only successor. |
4257 | addSuccessor(B: Block, S: &cfg->getExit()); |
4258 | |
4259 | // Add the statement to the block. This may create new blocks if S contains |
4260 | // control-flow (short-circuit operations). |
4261 | return VisitStmt(S: T, asc: AddStmtChoice::AlwaysAdd); |
4262 | } |
4263 | |
4264 | CFGBlock *CFGBuilder::VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc) { |
4265 | if (asc.alwaysAdd(builder&: *this, stmt: S)) { |
4266 | autoCreateBlock(); |
4267 | appendStmt(B: Block, S); |
4268 | } |
4269 | |
4270 | // C++ [expr.typeid]p3: |
4271 | // When typeid is applied to an expression other than an glvalue of a |
4272 | // polymorphic class type [...] [the] expression is an unevaluated |
4273 | // operand. [...] |
4274 | // We add only potentially evaluated statements to the block to avoid |
4275 | // CFG generation for unevaluated operands. |
4276 | if (!S->isTypeDependent() && S->isPotentiallyEvaluated()) |
4277 | return VisitChildren(S); |
4278 | |
4279 | // Return block without CFG for unevaluated operands. |
4280 | return Block; |
4281 | } |
4282 | |
4283 | CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) { |
4284 | CFGBlock *LoopSuccessor = nullptr; |
4285 | |
4286 | addLoopExit(LoopStmt: D); |
4287 | |
4288 | // "do...while" is a control-flow statement. Thus we stop processing the |
4289 | // current block. |
4290 | if (Block) { |
4291 | if (badCFG) |
4292 | return nullptr; |
4293 | LoopSuccessor = Block; |
4294 | } else |
4295 | LoopSuccessor = Succ; |
4296 | |
4297 | // Because of short-circuit evaluation, the condition of the loop can span |
4298 | // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that |
4299 | // evaluate the condition. |
4300 | CFGBlock *ExitConditionBlock = createBlock(add_successor: false); |
4301 | CFGBlock *EntryConditionBlock = ExitConditionBlock; |
4302 | |
4303 | // Set the terminator for the "exit" condition block. |
4304 | ExitConditionBlock->setTerminator(D); |
4305 | |
4306 | // Now add the actual condition to the condition block. Because the condition |
4307 | // itself may contain control-flow, new blocks may be created. |
4308 | if (Stmt *C = D->getCond()) { |
4309 | Block = ExitConditionBlock; |
4310 | EntryConditionBlock = addStmt(S: C); |
4311 | if (Block) { |
4312 | if (badCFG) |
4313 | return nullptr; |
4314 | } |
4315 | } |
4316 | |
4317 | // The condition block is the implicit successor for the loop body. |
4318 | Succ = EntryConditionBlock; |
4319 | |
4320 | // See if this is a known constant. |
4321 | const TryResult &KnownVal = tryEvaluateBool(S: D->getCond()); |
4322 | |
4323 | // Process the loop body. |
4324 | CFGBlock *BodyBlock = nullptr; |
4325 | { |
4326 | assert(D->getBody()); |
4327 | |
4328 | // Save the current values for Block, Succ, and continue and break targets |
4329 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
4330 | SaveAndRestore save_continue(ContinueJumpTarget), |
4331 | save_break(BreakJumpTarget); |
4332 | |
4333 | // All continues within this loop should go to the condition block |
4334 | ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos); |
4335 | |
4336 | // All breaks should go to the code following the loop. |
4337 | BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); |
4338 | |
4339 | // NULL out Block to force lazy instantiation of blocks for the body. |
4340 | Block = nullptr; |
4341 | |
4342 | // If body is not a compound statement create implicit scope |
4343 | // and add destructors. |
4344 | if (!isa<CompoundStmt>(Val: D->getBody())) |
4345 | addLocalScopeAndDtors(S: D->getBody()); |
4346 | |
4347 | // Create the body. The returned block is the entry to the loop body. |
4348 | BodyBlock = addStmt(S: D->getBody()); |
4349 | |
4350 | if (!BodyBlock) |
4351 | BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)" |
4352 | else if (Block) { |
4353 | if (badCFG) |
4354 | return nullptr; |
4355 | } |
4356 | |
4357 | // Add an intermediate block between the BodyBlock and the |
4358 | // ExitConditionBlock to represent the "loop back" transition. Create an |
4359 | // empty block to represent the transition block for looping back to the |
4360 | // head of the loop. |
4361 | // FIXME: Can we do this more efficiently without adding another block? |
4362 | Block = nullptr; |
4363 | Succ = BodyBlock; |
4364 | CFGBlock *LoopBackBlock = createBlock(); |
4365 | LoopBackBlock->setLoopTarget(D); |
4366 | |
4367 | if (!KnownVal.isFalse()) |
4368 | // Add the loop body entry as a successor to the condition. |
4369 | addSuccessor(B: ExitConditionBlock, S: LoopBackBlock); |
4370 | else |
4371 | addSuccessor(B: ExitConditionBlock, S: nullptr); |
4372 | } |
4373 | |
4374 | // Link up the condition block with the code that follows the loop. |
4375 | // (the false branch). |
4376 | addSuccessor(B: ExitConditionBlock, S: KnownVal.isTrue() ? nullptr : LoopSuccessor); |
4377 | |
4378 | // There can be no more statements in the body block(s) since we loop back to |
4379 | // the body. NULL out Block to force lazy creation of another block. |
4380 | Block = nullptr; |
4381 | |
4382 | // Return the loop body, which is the dominating block for the loop. |
4383 | Succ = BodyBlock; |
4384 | return BodyBlock; |
4385 | } |
4386 | |
4387 | CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) { |
4388 | // "continue" is a control-flow statement. Thus we stop processing the |
4389 | // current block. |
4390 | if (badCFG) |
4391 | return nullptr; |
4392 | |
4393 | // Now create a new block that ends with the continue statement. |
4394 | Block = createBlock(add_successor: false); |
4395 | Block->setTerminator(C); |
4396 | |
4397 | // If there is no target for the continue, then we are looking at an |
4398 | // incomplete AST. This means the CFG cannot be constructed. |
4399 | if (ContinueJumpTarget.block) { |
4400 | addAutomaticObjHandling(B: ScopePos, E: ContinueJumpTarget.scopePosition, S: C); |
4401 | addSuccessor(B: Block, S: ContinueJumpTarget.block); |
4402 | } else |
4403 | badCFG = true; |
4404 | |
4405 | return Block; |
4406 | } |
4407 | |
4408 | CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E, |
4409 | AddStmtChoice asc) { |
4410 | if (asc.alwaysAdd(builder&: *this, stmt: E)) { |
4411 | autoCreateBlock(); |
4412 | appendStmt(B: Block, S: E); |
4413 | } |
4414 | |
4415 | // VLA types have expressions that must be evaluated. |
4416 | // Evaluation is done only for `sizeof`. |
4417 | |
4418 | if (E->getKind() != UETT_SizeOf) |
4419 | return Block; |
4420 | |
4421 | CFGBlock *lastBlock = Block; |
4422 | |
4423 | if (E->isArgumentType()) { |
4424 | for (const VariableArrayType *VA =FindVA(t: E->getArgumentType().getTypePtr()); |
4425 | VA != nullptr; VA = FindVA(t: VA->getElementType().getTypePtr())) |
4426 | lastBlock = addStmt(S: VA->getSizeExpr()); |
4427 | } |
4428 | return lastBlock; |
4429 | } |
4430 | |
4431 | /// VisitStmtExpr - Utility method to handle (nested) statement |
4432 | /// expressions (a GCC extension). |
4433 | CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) { |
4434 | if (asc.alwaysAdd(builder&: *this, stmt: SE)) { |
4435 | autoCreateBlock(); |
4436 | appendStmt(B: Block, S: SE); |
4437 | } |
4438 | return VisitCompoundStmt(C: SE->getSubStmt(), /*ExternallyDestructed=*/true); |
4439 | } |
4440 | |
4441 | CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) { |
4442 | // "switch" is a control-flow statement. Thus we stop processing the current |
4443 | // block. |
4444 | CFGBlock *SwitchSuccessor = nullptr; |
4445 | |
4446 | // Save local scope position because in case of condition variable ScopePos |
4447 | // won't be restored when traversing AST. |
4448 | SaveAndRestore save_scope_pos(ScopePos); |
4449 | |
4450 | // Create local scope for C++17 switch init-stmt if one exists. |
4451 | if (Stmt *Init = Terminator->getInit()) |
4452 | addLocalScopeForStmt(S: Init); |
4453 | |
4454 | // Create local scope for possible condition variable. |
4455 | // Store scope position. Add implicit destructor. |
4456 | if (VarDecl *VD = Terminator->getConditionVariable()) |
4457 | addLocalScopeForVarDecl(VD); |
4458 | |
4459 | addAutomaticObjHandling(B: ScopePos, E: save_scope_pos.get(), S: Terminator); |
4460 | |
4461 | if (Block) { |
4462 | if (badCFG) |
4463 | return nullptr; |
4464 | SwitchSuccessor = Block; |
4465 | } else SwitchSuccessor = Succ; |
4466 | |
4467 | // Save the current "switch" context. |
4468 | SaveAndRestore save_switch(SwitchTerminatedBlock), |
4469 | save_default(DefaultCaseBlock); |
4470 | SaveAndRestore save_break(BreakJumpTarget); |
4471 | |
4472 | // Set the "default" case to be the block after the switch statement. If the |
4473 | // switch statement contains a "default:", this value will be overwritten with |
4474 | // the block for that code. |
4475 | DefaultCaseBlock = SwitchSuccessor; |
4476 | |
4477 | // Create a new block that will contain the switch statement. |
4478 | SwitchTerminatedBlock = createBlock(add_successor: false); |
4479 | |
4480 | // Now process the switch body. The code after the switch is the implicit |
4481 | // successor. |
4482 | Succ = SwitchSuccessor; |
4483 | BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos); |
4484 | |
4485 | // When visiting the body, the case statements should automatically get linked |
4486 | // up to the switch. We also don't keep a pointer to the body, since all |
4487 | // control-flow from the switch goes to case/default statements. |
4488 | assert(Terminator->getBody() && "switch must contain a non-NULL body" ); |
4489 | Block = nullptr; |
4490 | |
4491 | // For pruning unreachable case statements, save the current state |
4492 | // for tracking the condition value. |
4493 | SaveAndRestore save_switchExclusivelyCovered(switchExclusivelyCovered, false); |
4494 | |
4495 | // Determine if the switch condition can be explicitly evaluated. |
4496 | assert(Terminator->getCond() && "switch condition must be non-NULL" ); |
4497 | Expr::EvalResult result; |
4498 | bool b = tryEvaluate(S: Terminator->getCond(), outResult&: result); |
4499 | SaveAndRestore save_switchCond(switchCond, b ? &result : nullptr); |
4500 | |
4501 | // If body is not a compound statement create implicit scope |
4502 | // and add destructors. |
4503 | if (!isa<CompoundStmt>(Val: Terminator->getBody())) |
4504 | addLocalScopeAndDtors(S: Terminator->getBody()); |
4505 | |
4506 | addStmt(S: Terminator->getBody()); |
4507 | if (Block) { |
4508 | if (badCFG) |
4509 | return nullptr; |
4510 | } |
4511 | |
4512 | // If we have no "default:" case, the default transition is to the code |
4513 | // following the switch body. Moreover, take into account if all the |
4514 | // cases of a switch are covered (e.g., switching on an enum value). |
4515 | // |
4516 | // Note: We add a successor to a switch that is considered covered yet has no |
4517 | // case statements if the enumeration has no enumerators. |
4518 | bool SwitchAlwaysHasSuccessor = false; |
4519 | SwitchAlwaysHasSuccessor |= switchExclusivelyCovered; |
4520 | SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() && |
4521 | Terminator->getSwitchCaseList(); |
4522 | addSuccessor(B: SwitchTerminatedBlock, S: DefaultCaseBlock, |
4523 | IsReachable: !SwitchAlwaysHasSuccessor); |
4524 | |
4525 | // Add the terminator and condition in the switch block. |
4526 | SwitchTerminatedBlock->setTerminator(Terminator); |
4527 | Block = SwitchTerminatedBlock; |
4528 | CFGBlock *LastBlock = addStmt(S: Terminator->getCond()); |
4529 | |
4530 | // If the SwitchStmt contains a condition variable, add both the |
4531 | // SwitchStmt and the condition variable initialization to the CFG. |
4532 | if (VarDecl *VD = Terminator->getConditionVariable()) { |
4533 | if (Expr *Init = VD->getInit()) { |
4534 | autoCreateBlock(); |
4535 | appendStmt(B: Block, S: Terminator->getConditionVariableDeclStmt()); |
4536 | LastBlock = addStmt(S: Init); |
4537 | maybeAddScopeBeginForVarDecl(B: LastBlock, VD, S: Init); |
4538 | } |
4539 | } |
4540 | |
4541 | // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG. |
4542 | if (Stmt *Init = Terminator->getInit()) { |
4543 | autoCreateBlock(); |
4544 | LastBlock = addStmt(S: Init); |
4545 | } |
4546 | |
4547 | return LastBlock; |
4548 | } |
4549 | |
4550 | static bool shouldAddCase(bool &switchExclusivelyCovered, |
4551 | const Expr::EvalResult *switchCond, |
4552 | const CaseStmt *CS, |
4553 | ASTContext &Ctx) { |
4554 | if (!switchCond) |
4555 | return true; |
4556 | |
4557 | bool addCase = false; |
4558 | |
4559 | if (!switchExclusivelyCovered) { |
4560 | if (switchCond->Val.isInt()) { |
4561 | // Evaluate the LHS of the case value. |
4562 | const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx); |
4563 | const llvm::APSInt &condInt = switchCond->Val.getInt(); |
4564 | |
4565 | if (condInt == lhsInt) { |
4566 | addCase = true; |
4567 | switchExclusivelyCovered = true; |
4568 | } |
4569 | else if (condInt > lhsInt) { |
4570 | if (const Expr *RHS = CS->getRHS()) { |
4571 | // Evaluate the RHS of the case value. |
4572 | const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx); |
4573 | if (V2 >= condInt) { |
4574 | addCase = true; |
4575 | switchExclusivelyCovered = true; |
4576 | } |
4577 | } |
4578 | } |
4579 | } |
4580 | else |
4581 | addCase = true; |
4582 | } |
4583 | return addCase; |
4584 | } |
4585 | |
4586 | CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) { |
4587 | // CaseStmts are essentially labels, so they are the first statement in a |
4588 | // block. |
4589 | CFGBlock *TopBlock = nullptr, *LastBlock = nullptr; |
4590 | |
4591 | if (Stmt *Sub = CS->getSubStmt()) { |
4592 | // For deeply nested chains of CaseStmts, instead of doing a recursion |
4593 | // (which can blow out the stack), manually unroll and create blocks |
4594 | // along the way. |
4595 | while (isa<CaseStmt>(Val: Sub)) { |
4596 | CFGBlock *currentBlock = createBlock(add_successor: false); |
4597 | currentBlock->setLabel(CS); |
4598 | |
4599 | if (TopBlock) |
4600 | addSuccessor(B: LastBlock, S: currentBlock); |
4601 | else |
4602 | TopBlock = currentBlock; |
4603 | |
4604 | addSuccessor(B: SwitchTerminatedBlock, |
4605 | S: shouldAddCase(switchExclusivelyCovered, switchCond, |
4606 | CS, Ctx&: *Context) |
4607 | ? currentBlock : nullptr); |
4608 | |
4609 | LastBlock = currentBlock; |
4610 | CS = cast<CaseStmt>(Val: Sub); |
4611 | Sub = CS->getSubStmt(); |
4612 | } |
4613 | |
4614 | addStmt(S: Sub); |
4615 | } |
4616 | |
4617 | CFGBlock *CaseBlock = Block; |
4618 | if (!CaseBlock) |
4619 | CaseBlock = createBlock(); |
4620 | |
4621 | // Cases statements partition blocks, so this is the top of the basic block we |
4622 | // were processing (the "case XXX:" is the label). |
4623 | CaseBlock->setLabel(CS); |
4624 | |
4625 | if (badCFG) |
4626 | return nullptr; |
4627 | |
4628 | // Add this block to the list of successors for the block with the switch |
4629 | // statement. |
4630 | assert(SwitchTerminatedBlock); |
4631 | addSuccessor(B: SwitchTerminatedBlock, S: CaseBlock, |
4632 | IsReachable: shouldAddCase(switchExclusivelyCovered, switchCond, |
4633 | CS, Ctx&: *Context)); |
4634 | |
4635 | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
4636 | Block = nullptr; |
4637 | |
4638 | if (TopBlock) { |
4639 | addSuccessor(B: LastBlock, S: CaseBlock); |
4640 | Succ = TopBlock; |
4641 | } else { |
4642 | // This block is now the implicit successor of other blocks. |
4643 | Succ = CaseBlock; |
4644 | } |
4645 | |
4646 | return Succ; |
4647 | } |
4648 | |
4649 | CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) { |
4650 | if (Terminator->getSubStmt()) |
4651 | addStmt(S: Terminator->getSubStmt()); |
4652 | |
4653 | DefaultCaseBlock = Block; |
4654 | |
4655 | if (!DefaultCaseBlock) |
4656 | DefaultCaseBlock = createBlock(); |
4657 | |
4658 | // Default statements partition blocks, so this is the top of the basic block |
4659 | // we were processing (the "default:" is the label). |
4660 | DefaultCaseBlock->setLabel(Terminator); |
4661 | |
4662 | if (badCFG) |
4663 | return nullptr; |
4664 | |
4665 | // Unlike case statements, we don't add the default block to the successors |
4666 | // for the switch statement immediately. This is done when we finish |
4667 | // processing the switch statement. This allows for the default case |
4668 | // (including a fall-through to the code after the switch statement) to always |
4669 | // be the last successor of a switch-terminated block. |
4670 | |
4671 | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
4672 | Block = nullptr; |
4673 | |
4674 | // This block is now the implicit successor of other blocks. |
4675 | Succ = DefaultCaseBlock; |
4676 | |
4677 | return DefaultCaseBlock; |
4678 | } |
4679 | |
4680 | CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) { |
4681 | // "try"/"catch" is a control-flow statement. Thus we stop processing the |
4682 | // current block. |
4683 | CFGBlock *TrySuccessor = nullptr; |
4684 | |
4685 | if (Block) { |
4686 | if (badCFG) |
4687 | return nullptr; |
4688 | TrySuccessor = Block; |
4689 | } else |
4690 | TrySuccessor = Succ; |
4691 | |
4692 | CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock; |
4693 | |
4694 | // Create a new block that will contain the try statement. |
4695 | CFGBlock *NewTryTerminatedBlock = createBlock(add_successor: false); |
4696 | // Add the terminator in the try block. |
4697 | NewTryTerminatedBlock->setTerminator(Terminator); |
4698 | |
4699 | bool HasCatchAll = false; |
4700 | for (unsigned I = 0, E = Terminator->getNumHandlers(); I != E; ++I) { |
4701 | // The code after the try is the implicit successor. |
4702 | Succ = TrySuccessor; |
4703 | CXXCatchStmt *CS = Terminator->getHandler(i: I); |
4704 | if (CS->getExceptionDecl() == nullptr) { |
4705 | HasCatchAll = true; |
4706 | } |
4707 | Block = nullptr; |
4708 | CFGBlock *CatchBlock = VisitCXXCatchStmt(S: CS); |
4709 | if (!CatchBlock) |
4710 | return nullptr; |
4711 | // Add this block to the list of successors for the block with the try |
4712 | // statement. |
4713 | addSuccessor(B: NewTryTerminatedBlock, S: CatchBlock); |
4714 | } |
4715 | if (!HasCatchAll) { |
4716 | if (PrevTryTerminatedBlock) |
4717 | addSuccessor(B: NewTryTerminatedBlock, S: PrevTryTerminatedBlock); |
4718 | else |
4719 | addSuccessor(B: NewTryTerminatedBlock, S: &cfg->getExit()); |
4720 | } |
4721 | |
4722 | // The code after the try is the implicit successor. |
4723 | Succ = TrySuccessor; |
4724 | |
4725 | // Save the current "try" context. |
4726 | SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock); |
4727 | cfg->addTryDispatchBlock(block: TryTerminatedBlock); |
4728 | |
4729 | assert(Terminator->getTryBlock() && "try must contain a non-NULL body" ); |
4730 | Block = nullptr; |
4731 | return addStmt(S: Terminator->getTryBlock()); |
4732 | } |
4733 | |
4734 | CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) { |
4735 | // CXXCatchStmt are treated like labels, so they are the first statement in a |
4736 | // block. |
4737 | |
4738 | // Save local scope position because in case of exception variable ScopePos |
4739 | // won't be restored when traversing AST. |
4740 | SaveAndRestore save_scope_pos(ScopePos); |
4741 | |
4742 | // Create local scope for possible exception variable. |
4743 | // Store scope position. Add implicit destructor. |
4744 | if (VarDecl *VD = CS->getExceptionDecl()) { |
4745 | LocalScope::const_iterator BeginScopePos = ScopePos; |
4746 | addLocalScopeForVarDecl(VD); |
4747 | addAutomaticObjHandling(B: ScopePos, E: BeginScopePos, S: CS); |
4748 | } |
4749 | |
4750 | if (CS->getHandlerBlock()) |
4751 | addStmt(S: CS->getHandlerBlock()); |
4752 | |
4753 | CFGBlock *CatchBlock = Block; |
4754 | if (!CatchBlock) |
4755 | CatchBlock = createBlock(); |
4756 | |
4757 | // CXXCatchStmt is more than just a label. They have semantic meaning |
4758 | // as well, as they implicitly "initialize" the catch variable. Add |
4759 | // it to the CFG as a CFGElement so that the control-flow of these |
4760 | // semantics gets captured. |
4761 | appendStmt(B: CatchBlock, S: CS); |
4762 | |
4763 | // Also add the CXXCatchStmt as a label, to mirror handling of regular |
4764 | // labels. |
4765 | CatchBlock->setLabel(CS); |
4766 | |
4767 | // Bail out if the CFG is bad. |
4768 | if (badCFG) |
4769 | return nullptr; |
4770 | |
4771 | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
4772 | Block = nullptr; |
4773 | |
4774 | return CatchBlock; |
4775 | } |
4776 | |
4777 | CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) { |
4778 | // C++0x for-range statements are specified as [stmt.ranged]: |
4779 | // |
4780 | // { |
4781 | // auto && __range = range-init; |
4782 | // for ( auto __begin = begin-expr, |
4783 | // __end = end-expr; |
4784 | // __begin != __end; |
4785 | // ++__begin ) { |
4786 | // for-range-declaration = *__begin; |
4787 | // statement |
4788 | // } |
4789 | // } |
4790 | |
4791 | // Save local scope position before the addition of the implicit variables. |
4792 | SaveAndRestore save_scope_pos(ScopePos); |
4793 | |
4794 | // Create local scopes and destructors for range, begin and end variables. |
4795 | if (Stmt *Range = S->getRangeStmt()) |
4796 | addLocalScopeForStmt(S: Range); |
4797 | if (Stmt *Begin = S->getBeginStmt()) |
4798 | addLocalScopeForStmt(S: Begin); |
4799 | if (Stmt *End = S->getEndStmt()) |
4800 | addLocalScopeForStmt(S: End); |
4801 | addAutomaticObjHandling(B: ScopePos, E: save_scope_pos.get(), S); |
4802 | |
4803 | LocalScope::const_iterator ContinueScopePos = ScopePos; |
4804 | |
4805 | // "for" is a control-flow statement. Thus we stop processing the current |
4806 | // block. |
4807 | CFGBlock *LoopSuccessor = nullptr; |
4808 | if (Block) { |
4809 | if (badCFG) |
4810 | return nullptr; |
4811 | LoopSuccessor = Block; |
4812 | } else |
4813 | LoopSuccessor = Succ; |
4814 | |
4815 | // Save the current value for the break targets. |
4816 | // All breaks should go to the code following the loop. |
4817 | SaveAndRestore save_break(BreakJumpTarget); |
4818 | BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); |
4819 | |
4820 | // The block for the __begin != __end expression. |
4821 | CFGBlock *ConditionBlock = createBlock(add_successor: false); |
4822 | ConditionBlock->setTerminator(S); |
4823 | |
4824 | // Now add the actual condition to the condition block. |
4825 | if (Expr *C = S->getCond()) { |
4826 | Block = ConditionBlock; |
4827 | CFGBlock *BeginConditionBlock = addStmt(S: C); |
4828 | if (badCFG) |
4829 | return nullptr; |
4830 | assert(BeginConditionBlock == ConditionBlock && |
4831 | "condition block in for-range was unexpectedly complex" ); |
4832 | (void)BeginConditionBlock; |
4833 | } |
4834 | |
4835 | // The condition block is the implicit successor for the loop body as well as |
4836 | // any code above the loop. |
4837 | Succ = ConditionBlock; |
4838 | |
4839 | // See if this is a known constant. |
4840 | TryResult KnownVal(true); |
4841 | |
4842 | if (S->getCond()) |
4843 | KnownVal = tryEvaluateBool(S: S->getCond()); |
4844 | |
4845 | // Now create the loop body. |
4846 | { |
4847 | assert(S->getBody()); |
4848 | |
4849 | // Save the current values for Block, Succ, and continue targets. |
4850 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
4851 | SaveAndRestore save_continue(ContinueJumpTarget); |
4852 | |
4853 | // Generate increment code in its own basic block. This is the target of |
4854 | // continue statements. |
4855 | Block = nullptr; |
4856 | Succ = addStmt(S: S->getInc()); |
4857 | if (badCFG) |
4858 | return nullptr; |
4859 | ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos); |
4860 | |
4861 | // The starting block for the loop increment is the block that should |
4862 | // represent the 'loop target' for looping back to the start of the loop. |
4863 | ContinueJumpTarget.block->setLoopTarget(S); |
4864 | |
4865 | // Finish up the increment block and prepare to start the loop body. |
4866 | assert(Block); |
4867 | if (badCFG) |
4868 | return nullptr; |
4869 | Block = nullptr; |
4870 | |
4871 | // Add implicit scope and dtors for loop variable. |
4872 | addLocalScopeAndDtors(S: S->getLoopVarStmt()); |
4873 | |
4874 | // If body is not a compound statement create implicit scope |
4875 | // and add destructors. |
4876 | if (!isa<CompoundStmt>(Val: S->getBody())) |
4877 | addLocalScopeAndDtors(S: S->getBody()); |
4878 | |
4879 | // Populate a new block to contain the loop body and loop variable. |
4880 | addStmt(S: S->getBody()); |
4881 | |
4882 | if (badCFG) |
4883 | return nullptr; |
4884 | CFGBlock *LoopVarStmtBlock = addStmt(S: S->getLoopVarStmt()); |
4885 | if (badCFG) |
4886 | return nullptr; |
4887 | |
4888 | // This new body block is a successor to our condition block. |
4889 | addSuccessor(B: ConditionBlock, |
4890 | S: KnownVal.isFalse() ? nullptr : LoopVarStmtBlock); |
4891 | } |
4892 | |
4893 | // Link up the condition block with the code that follows the loop (the |
4894 | // false branch). |
4895 | addSuccessor(B: ConditionBlock, S: KnownVal.isTrue() ? nullptr : LoopSuccessor); |
4896 | |
4897 | // Add the initialization statements. |
4898 | Block = createBlock(); |
4899 | addStmt(S: S->getBeginStmt()); |
4900 | addStmt(S: S->getEndStmt()); |
4901 | CFGBlock *Head = addStmt(S: S->getRangeStmt()); |
4902 | if (S->getInit()) |
4903 | Head = addStmt(S: S->getInit()); |
4904 | return Head; |
4905 | } |
4906 | |
4907 | CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E, |
4908 | AddStmtChoice asc, bool ExternallyDestructed) { |
4909 | if (BuildOpts.AddTemporaryDtors) { |
4910 | // If adding implicit destructors visit the full expression for adding |
4911 | // destructors of temporaries. |
4912 | TempDtorContext Context; |
4913 | VisitForTemporaryDtors(E: E->getSubExpr(), ExternallyDestructed, Context); |
4914 | |
4915 | // Full expression has to be added as CFGStmt so it will be sequenced |
4916 | // before destructors of it's temporaries. |
4917 | asc = asc.withAlwaysAdd(alwaysAdd: true); |
4918 | } |
4919 | return Visit(S: E->getSubExpr(), asc); |
4920 | } |
4921 | |
4922 | CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E, |
4923 | AddStmtChoice asc) { |
4924 | if (asc.alwaysAdd(builder&: *this, stmt: E)) { |
4925 | autoCreateBlock(); |
4926 | appendStmt(B: Block, S: E); |
4927 | |
4928 | findConstructionContexts( |
4929 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item: E), |
4930 | Child: E->getSubExpr()); |
4931 | |
4932 | // We do not want to propagate the AlwaysAdd property. |
4933 | asc = asc.withAlwaysAdd(alwaysAdd: false); |
4934 | } |
4935 | return Visit(S: E->getSubExpr(), asc); |
4936 | } |
4937 | |
4938 | CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C, |
4939 | AddStmtChoice asc) { |
4940 | // If the constructor takes objects as arguments by value, we need to properly |
4941 | // construct these objects. Construction contexts we find here aren't for the |
4942 | // constructor C, they're for its arguments only. |
4943 | findConstructionContextsForArguments(E: C); |
4944 | appendConstructor(CE: C); |
4945 | |
4946 | return VisitChildren(S: C); |
4947 | } |
4948 | |
4949 | CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE, |
4950 | AddStmtChoice asc) { |
4951 | autoCreateBlock(); |
4952 | appendStmt(B: Block, S: NE); |
4953 | |
4954 | findConstructionContexts( |
4955 | Layer: ConstructionContextLayer::create(C&: cfg->getBumpVectorContext(), Item: NE), |
4956 | Child: const_cast<CXXConstructExpr *>(NE->getConstructExpr())); |
4957 | |
4958 | if (NE->getInitializer()) |
4959 | Block = Visit(S: NE->getInitializer()); |
4960 | |
4961 | if (BuildOpts.AddCXXNewAllocator) |
4962 | appendNewAllocator(B: Block, NE); |
4963 | |
4964 | if (NE->isArray() && *NE->getArraySize()) |
4965 | Block = Visit(S: *NE->getArraySize()); |
4966 | |
4967 | for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(), |
4968 | E = NE->placement_arg_end(); I != E; ++I) |
4969 | Block = Visit(S: *I); |
4970 | |
4971 | return Block; |
4972 | } |
4973 | |
4974 | CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE, |
4975 | AddStmtChoice asc) { |
4976 | autoCreateBlock(); |
4977 | appendStmt(B: Block, S: DE); |
4978 | QualType DTy = DE->getDestroyedType(); |
4979 | if (!DTy.isNull()) { |
4980 | DTy = DTy.getNonReferenceType(); |
4981 | CXXRecordDecl *RD = Context->getBaseElementType(QT: DTy)->getAsCXXRecordDecl(); |
4982 | if (RD) { |
4983 | if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor()) |
4984 | appendDeleteDtor(B: Block, RD, DE); |
4985 | } |
4986 | } |
4987 | |
4988 | return VisitChildren(S: DE); |
4989 | } |
4990 | |
4991 | CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E, |
4992 | AddStmtChoice asc) { |
4993 | if (asc.alwaysAdd(builder&: *this, stmt: E)) { |
4994 | autoCreateBlock(); |
4995 | appendStmt(B: Block, S: E); |
4996 | // We do not want to propagate the AlwaysAdd property. |
4997 | asc = asc.withAlwaysAdd(alwaysAdd: false); |
4998 | } |
4999 | return Visit(S: E->getSubExpr(), asc); |
5000 | } |
5001 | |
5002 | CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *E, |
5003 | AddStmtChoice asc) { |
5004 | // If the constructor takes objects as arguments by value, we need to properly |
5005 | // construct these objects. Construction contexts we find here aren't for the |
5006 | // constructor C, they're for its arguments only. |
5007 | findConstructionContextsForArguments(E); |
5008 | appendConstructor(CE: E); |
5009 | |
5010 | return VisitChildren(S: E); |
5011 | } |
5012 | |
5013 | CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E, |
5014 | AddStmtChoice asc) { |
5015 | if (asc.alwaysAdd(builder&: *this, stmt: E)) { |
5016 | autoCreateBlock(); |
5017 | appendStmt(B: Block, S: E); |
5018 | } |
5019 | |
5020 | if (E->getCastKind() == CK_IntegralToBoolean) |
5021 | tryEvaluateBool(S: E->getSubExpr()->IgnoreParens()); |
5022 | |
5023 | return Visit(S: E->getSubExpr(), asc: AddStmtChoice()); |
5024 | } |
5025 | |
5026 | CFGBlock *CFGBuilder::VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc) { |
5027 | return Visit(S: E->getSubExpr(), asc: AddStmtChoice()); |
5028 | } |
5029 | |
5030 | CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) { |
5031 | // Lazily create the indirect-goto dispatch block if there isn't one already. |
5032 | CFGBlock *IBlock = cfg->getIndirectGotoBlock(); |
5033 | |
5034 | if (!IBlock) { |
5035 | IBlock = createBlock(add_successor: false); |
5036 | cfg->setIndirectGotoBlock(IBlock); |
5037 | } |
5038 | |
5039 | // IndirectGoto is a control-flow statement. Thus we stop processing the |
5040 | // current block and create a new one. |
5041 | if (badCFG) |
5042 | return nullptr; |
5043 | |
5044 | Block = createBlock(add_successor: false); |
5045 | Block->setTerminator(I); |
5046 | addSuccessor(B: Block, S: IBlock); |
5047 | return addStmt(S: I->getTarget()); |
5048 | } |
5049 | |
5050 | CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed, |
5051 | TempDtorContext &Context) { |
5052 | assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors); |
5053 | |
5054 | tryAgain: |
5055 | if (!E) { |
5056 | badCFG = true; |
5057 | return nullptr; |
5058 | } |
5059 | switch (E->getStmtClass()) { |
5060 | default: |
5061 | return VisitChildrenForTemporaryDtors(E, ExternallyDestructed: false, Context); |
5062 | |
5063 | case Stmt::InitListExprClass: |
5064 | return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context); |
5065 | |
5066 | case Stmt::BinaryOperatorClass: |
5067 | return VisitBinaryOperatorForTemporaryDtors(E: cast<BinaryOperator>(Val: E), |
5068 | ExternallyDestructed, |
5069 | Context); |
5070 | |
5071 | case Stmt::CXXBindTemporaryExprClass: |
5072 | return VisitCXXBindTemporaryExprForTemporaryDtors( |
5073 | E: cast<CXXBindTemporaryExpr>(Val: E), ExternallyDestructed, Context); |
5074 | |
5075 | case Stmt::BinaryConditionalOperatorClass: |
5076 | case Stmt::ConditionalOperatorClass: |
5077 | return VisitConditionalOperatorForTemporaryDtors( |
5078 | E: cast<AbstractConditionalOperator>(Val: E), ExternallyDestructed, Context); |
5079 | |
5080 | case Stmt::ImplicitCastExprClass: |
5081 | // For implicit cast we want ExternallyDestructed to be passed further. |
5082 | E = cast<CastExpr>(Val: E)->getSubExpr(); |
5083 | goto tryAgain; |
5084 | |
5085 | case Stmt::CXXFunctionalCastExprClass: |
5086 | // For functional cast we want ExternallyDestructed to be passed further. |
5087 | E = cast<CXXFunctionalCastExpr>(Val: E)->getSubExpr(); |
5088 | goto tryAgain; |
5089 | |
5090 | case Stmt::ConstantExprClass: |
5091 | E = cast<ConstantExpr>(Val: E)->getSubExpr(); |
5092 | goto tryAgain; |
5093 | |
5094 | case Stmt::ParenExprClass: |
5095 | E = cast<ParenExpr>(Val: E)->getSubExpr(); |
5096 | goto tryAgain; |
5097 | |
5098 | case Stmt::MaterializeTemporaryExprClass: { |
5099 | const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(Val: E); |
5100 | ExternallyDestructed = (MTE->getStorageDuration() != SD_FullExpression); |
5101 | SmallVector<const Expr *, 2> CommaLHSs; |
5102 | SmallVector<SubobjectAdjustment, 2> Adjustments; |
5103 | // Find the expression whose lifetime needs to be extended. |
5104 | E = const_cast<Expr *>( |
5105 | cast<MaterializeTemporaryExpr>(Val: E) |
5106 | ->getSubExpr() |
5107 | ->skipRValueSubobjectAdjustments(CommaLHS&: CommaLHSs, Adjustments)); |
5108 | // Visit the skipped comma operator left-hand sides for other temporaries. |
5109 | for (const Expr *CommaLHS : CommaLHSs) { |
5110 | VisitForTemporaryDtors(E: const_cast<Expr *>(CommaLHS), |
5111 | /*ExternallyDestructed=*/false, Context); |
5112 | } |
5113 | goto tryAgain; |
5114 | } |
5115 | |
5116 | case Stmt::BlockExprClass: |
5117 | // Don't recurse into blocks; their subexpressions don't get evaluated |
5118 | // here. |
5119 | return Block; |
5120 | |
5121 | case Stmt::LambdaExprClass: { |
5122 | // For lambda expressions, only recurse into the capture initializers, |
5123 | // and not the body. |
5124 | auto *LE = cast<LambdaExpr>(Val: E); |
5125 | CFGBlock *B = Block; |
5126 | for (Expr *Init : LE->capture_inits()) { |
5127 | if (Init) { |
5128 | if (CFGBlock *R = VisitForTemporaryDtors( |
5129 | E: Init, /*ExternallyDestructed=*/true, Context)) |
5130 | B = R; |
5131 | } |
5132 | } |
5133 | return B; |
5134 | } |
5135 | |
5136 | case Stmt::StmtExprClass: |
5137 | // Don't recurse into statement expressions; any cleanups inside them |
5138 | // will be wrapped in their own ExprWithCleanups. |
5139 | return Block; |
5140 | |
5141 | case Stmt::CXXDefaultArgExprClass: |
5142 | E = cast<CXXDefaultArgExpr>(Val: E)->getExpr(); |
5143 | goto tryAgain; |
5144 | |
5145 | case Stmt::CXXDefaultInitExprClass: |
5146 | E = cast<CXXDefaultInitExpr>(Val: E)->getExpr(); |
5147 | goto tryAgain; |
5148 | } |
5149 | } |
5150 | |
5151 | CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E, |
5152 | bool ExternallyDestructed, |
5153 | TempDtorContext &Context) { |
5154 | if (isa<LambdaExpr>(Val: E)) { |
5155 | // Do not visit the children of lambdas; they have their own CFGs. |
5156 | return Block; |
5157 | } |
5158 | |
5159 | // When visiting children for destructors we want to visit them in reverse |
5160 | // order that they will appear in the CFG. Because the CFG is built |
5161 | // bottom-up, this means we visit them in their natural order, which |
5162 | // reverses them in the CFG. |
5163 | CFGBlock *B = Block; |
5164 | for (Stmt *Child : E->children()) |
5165 | if (Child) |
5166 | if (CFGBlock *R = VisitForTemporaryDtors(E: Child, ExternallyDestructed, Context)) |
5167 | B = R; |
5168 | |
5169 | return B; |
5170 | } |
5171 | |
5172 | CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors( |
5173 | BinaryOperator *E, bool ExternallyDestructed, TempDtorContext &Context) { |
5174 | if (E->isCommaOp()) { |
5175 | // For the comma operator, the LHS expression is evaluated before the RHS |
5176 | // expression, so prepend temporary destructors for the LHS first. |
5177 | CFGBlock *LHSBlock = VisitForTemporaryDtors(E: E->getLHS(), ExternallyDestructed: false, Context); |
5178 | CFGBlock *RHSBlock = VisitForTemporaryDtors(E: E->getRHS(), ExternallyDestructed, Context); |
5179 | return RHSBlock ? RHSBlock : LHSBlock; |
5180 | } |
5181 | |
5182 | if (E->isLogicalOp()) { |
5183 | VisitForTemporaryDtors(E: E->getLHS(), ExternallyDestructed: false, Context); |
5184 | TryResult RHSExecuted = tryEvaluateBool(S: E->getLHS()); |
5185 | if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr) |
5186 | RHSExecuted.negate(); |
5187 | |
5188 | // We do not know at CFG-construction time whether the right-hand-side was |
5189 | // executed, thus we add a branch node that depends on the temporary |
5190 | // constructor call. |
5191 | TempDtorContext RHSContext( |
5192 | bothKnownTrue(R1: Context.KnownExecuted, R2: RHSExecuted)); |
5193 | VisitForTemporaryDtors(E: E->getRHS(), ExternallyDestructed: false, Context&: RHSContext); |
5194 | InsertTempDtorDecisionBlock(Context: RHSContext); |
5195 | |
5196 | return Block; |
5197 | } |
5198 | |
5199 | if (E->isAssignmentOp()) { |
5200 | // For assignment operators, the RHS expression is evaluated before the LHS |
5201 | // expression, so prepend temporary destructors for the RHS first. |
5202 | CFGBlock *RHSBlock = VisitForTemporaryDtors(E: E->getRHS(), ExternallyDestructed: false, Context); |
5203 | CFGBlock *LHSBlock = VisitForTemporaryDtors(E: E->getLHS(), ExternallyDestructed: false, Context); |
5204 | return LHSBlock ? LHSBlock : RHSBlock; |
5205 | } |
5206 | |
5207 | // Any other operator is visited normally. |
5208 | return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context); |
5209 | } |
5210 | |
5211 | CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors( |
5212 | CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context) { |
5213 | // First add destructors for temporaries in subexpression. |
5214 | // Because VisitCXXBindTemporaryExpr calls setDestructed: |
5215 | CFGBlock *B = VisitForTemporaryDtors(E: E->getSubExpr(), ExternallyDestructed: true, Context); |
5216 | if (!ExternallyDestructed) { |
5217 | // If lifetime of temporary is not prolonged (by assigning to constant |
5218 | // reference) add destructor for it. |
5219 | |
5220 | const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor(); |
5221 | |
5222 | if (Dtor->getParent()->isAnyDestructorNoReturn()) { |
5223 | // If the destructor is marked as a no-return destructor, we need to |
5224 | // create a new block for the destructor which does not have as a |
5225 | // successor anything built thus far. Control won't flow out of this |
5226 | // block. |
5227 | if (B) Succ = B; |
5228 | Block = createNoReturnBlock(); |
5229 | } else if (Context.needsTempDtorBranch()) { |
5230 | // If we need to introduce a branch, we add a new block that we will hook |
5231 | // up to a decision block later. |
5232 | if (B) Succ = B; |
5233 | Block = createBlock(); |
5234 | } else { |
5235 | autoCreateBlock(); |
5236 | } |
5237 | if (Context.needsTempDtorBranch()) { |
5238 | Context.setDecisionPoint(S: Succ, E); |
5239 | } |
5240 | appendTemporaryDtor(B: Block, E); |
5241 | |
5242 | B = Block; |
5243 | } |
5244 | return B; |
5245 | } |
5246 | |
5247 | void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context, |
5248 | CFGBlock *FalseSucc) { |
5249 | if (!Context.TerminatorExpr) { |
5250 | // If no temporary was found, we do not need to insert a decision point. |
5251 | return; |
5252 | } |
5253 | assert(Context.TerminatorExpr); |
5254 | CFGBlock *Decision = createBlock(add_successor: false); |
5255 | Decision->setTerminator(CFGTerminator(Context.TerminatorExpr, |
5256 | CFGTerminator::TemporaryDtorsBranch)); |
5257 | addSuccessor(B: Decision, S: Block, IsReachable: !Context.KnownExecuted.isFalse()); |
5258 | addSuccessor(B: Decision, S: FalseSucc ? FalseSucc : Context.Succ, |
5259 | IsReachable: !Context.KnownExecuted.isTrue()); |
5260 | Block = Decision; |
5261 | } |
5262 | |
5263 | CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors( |
5264 | AbstractConditionalOperator *E, bool ExternallyDestructed, |
5265 | TempDtorContext &Context) { |
5266 | VisitForTemporaryDtors(E: E->getCond(), ExternallyDestructed: false, Context); |
5267 | CFGBlock *ConditionBlock = Block; |
5268 | CFGBlock *ConditionSucc = Succ; |
5269 | TryResult ConditionVal = tryEvaluateBool(S: E->getCond()); |
5270 | TryResult NegatedVal = ConditionVal; |
5271 | if (NegatedVal.isKnown()) NegatedVal.negate(); |
5272 | |
5273 | TempDtorContext TrueContext( |
5274 | bothKnownTrue(R1: Context.KnownExecuted, R2: ConditionVal)); |
5275 | VisitForTemporaryDtors(E: E->getTrueExpr(), ExternallyDestructed, Context&: TrueContext); |
5276 | CFGBlock *TrueBlock = Block; |
5277 | |
5278 | Block = ConditionBlock; |
5279 | Succ = ConditionSucc; |
5280 | TempDtorContext FalseContext( |
5281 | bothKnownTrue(R1: Context.KnownExecuted, R2: NegatedVal)); |
5282 | VisitForTemporaryDtors(E: E->getFalseExpr(), ExternallyDestructed, Context&: FalseContext); |
5283 | |
5284 | if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) { |
5285 | InsertTempDtorDecisionBlock(Context: FalseContext, FalseSucc: TrueBlock); |
5286 | } else if (TrueContext.TerminatorExpr) { |
5287 | Block = TrueBlock; |
5288 | InsertTempDtorDecisionBlock(Context: TrueContext); |
5289 | } else { |
5290 | InsertTempDtorDecisionBlock(Context: FalseContext); |
5291 | } |
5292 | return Block; |
5293 | } |
5294 | |
5295 | CFGBlock *CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective *D, |
5296 | AddStmtChoice asc) { |
5297 | if (asc.alwaysAdd(builder&: *this, stmt: D)) { |
5298 | autoCreateBlock(); |
5299 | appendStmt(B: Block, S: D); |
5300 | } |
5301 | |
5302 | // Iterate over all used expression in clauses. |
5303 | CFGBlock *B = Block; |
5304 | |
5305 | // Reverse the elements to process them in natural order. Iterators are not |
5306 | // bidirectional, so we need to create temp vector. |
5307 | SmallVector<Stmt *, 8> Used( |
5308 | OMPExecutableDirective::used_clauses_children(Clauses: D->clauses())); |
5309 | for (Stmt *S : llvm::reverse(C&: Used)) { |
5310 | assert(S && "Expected non-null used-in-clause child." ); |
5311 | if (CFGBlock *R = Visit(S)) |
5312 | B = R; |
5313 | } |
5314 | // Visit associated structured block if any. |
5315 | if (!D->isStandaloneDirective()) { |
5316 | Stmt *S = D->getRawStmt(); |
5317 | if (!isa<CompoundStmt>(Val: S)) |
5318 | addLocalScopeAndDtors(S); |
5319 | if (CFGBlock *R = addStmt(S)) |
5320 | B = R; |
5321 | } |
5322 | |
5323 | return B; |
5324 | } |
5325 | |
5326 | /// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has |
5327 | /// no successors or predecessors. If this is the first block created in the |
5328 | /// CFG, it is automatically set to be the Entry and Exit of the CFG. |
5329 | CFGBlock *CFG::createBlock() { |
5330 | bool first_block = begin() == end(); |
5331 | |
5332 | // Create the block. |
5333 | CFGBlock *Mem = new (getAllocator()) CFGBlock(NumBlockIDs++, BlkBVC, this); |
5334 | Blocks.push_back(Elt: Mem, C&: BlkBVC); |
5335 | |
5336 | // If this is the first block, set it as the Entry and Exit. |
5337 | if (first_block) |
5338 | Entry = Exit = &back(); |
5339 | |
5340 | // Return the block. |
5341 | return &back(); |
5342 | } |
5343 | |
5344 | /// buildCFG - Constructs a CFG from an AST. |
5345 | std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement, |
5346 | ASTContext *C, const BuildOptions &BO) { |
5347 | CFGBuilder Builder(C, BO); |
5348 | return Builder.buildCFG(D, Statement); |
5349 | } |
5350 | |
5351 | bool CFG::isLinear() const { |
5352 | // Quick path: if we only have the ENTRY block, the EXIT block, and some code |
5353 | // in between, then we have no room for control flow. |
5354 | if (size() <= 3) |
5355 | return true; |
5356 | |
5357 | // Traverse the CFG until we find a branch. |
5358 | // TODO: While this should still be very fast, |
5359 | // maybe we should cache the answer. |
5360 | llvm::SmallPtrSet<const CFGBlock *, 4> Visited; |
5361 | const CFGBlock *B = Entry; |
5362 | while (B != Exit) { |
5363 | auto IteratorAndFlag = Visited.insert(Ptr: B); |
5364 | if (!IteratorAndFlag.second) { |
5365 | // We looped back to a block that we've already visited. Not linear. |
5366 | return false; |
5367 | } |
5368 | |
5369 | // Iterate over reachable successors. |
5370 | const CFGBlock *FirstReachableB = nullptr; |
5371 | for (const CFGBlock::AdjacentBlock &AB : B->succs()) { |
5372 | if (!AB.isReachable()) |
5373 | continue; |
5374 | |
5375 | if (FirstReachableB == nullptr) { |
5376 | FirstReachableB = &*AB; |
5377 | } else { |
5378 | // We've encountered a branch. It's not a linear CFG. |
5379 | return false; |
5380 | } |
5381 | } |
5382 | |
5383 | if (!FirstReachableB) { |
5384 | // We reached a dead end. EXIT is unreachable. This is linear enough. |
5385 | return true; |
5386 | } |
5387 | |
5388 | // There's only one way to move forward. Proceed. |
5389 | B = FirstReachableB; |
5390 | } |
5391 | |
5392 | // We reached EXIT and found no branches. |
5393 | return true; |
5394 | } |
5395 | |
5396 | const CXXDestructorDecl * |
5397 | CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const { |
5398 | switch (getKind()) { |
5399 | case CFGElement::Initializer: |
5400 | case CFGElement::NewAllocator: |
5401 | case CFGElement::LoopExit: |
5402 | case CFGElement::LifetimeEnds: |
5403 | case CFGElement::Statement: |
5404 | case CFGElement::Constructor: |
5405 | case CFGElement::CXXRecordTypedCall: |
5406 | case CFGElement::ScopeBegin: |
5407 | case CFGElement::ScopeEnd: |
5408 | case CFGElement::CleanupFunction: |
5409 | llvm_unreachable("getDestructorDecl should only be used with " |
5410 | "ImplicitDtors" ); |
5411 | case CFGElement::AutomaticObjectDtor: { |
5412 | const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl(); |
5413 | QualType ty = var->getType(); |
5414 | |
5415 | // FIXME: See CFGBuilder::addLocalScopeForVarDecl. |
5416 | // |
5417 | // Lifetime-extending constructs are handled here. This works for a single |
5418 | // temporary in an initializer expression. |
5419 | if (ty->isReferenceType()) { |
5420 | if (const Expr *Init = var->getInit()) { |
5421 | ty = getReferenceInitTemporaryType(Init); |
5422 | } |
5423 | } |
5424 | |
5425 | while (const ArrayType *arrayType = astContext.getAsArrayType(T: ty)) { |
5426 | ty = arrayType->getElementType(); |
5427 | } |
5428 | |
5429 | // The situation when the type of the lifetime-extending reference |
5430 | // does not correspond to the type of the object is supposed |
5431 | // to be handled by now. In particular, 'ty' is now the unwrapped |
5432 | // record type. |
5433 | const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl(); |
5434 | assert(classDecl); |
5435 | return classDecl->getDestructor(); |
5436 | } |
5437 | case CFGElement::DeleteDtor: { |
5438 | const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr(); |
5439 | QualType DTy = DE->getDestroyedType(); |
5440 | DTy = DTy.getNonReferenceType(); |
5441 | const CXXRecordDecl *classDecl = |
5442 | astContext.getBaseElementType(QT: DTy)->getAsCXXRecordDecl(); |
5443 | return classDecl->getDestructor(); |
5444 | } |
5445 | case CFGElement::TemporaryDtor: { |
5446 | const CXXBindTemporaryExpr *bindExpr = |
5447 | castAs<CFGTemporaryDtor>().getBindTemporaryExpr(); |
5448 | const CXXTemporary *temp = bindExpr->getTemporary(); |
5449 | return temp->getDestructor(); |
5450 | } |
5451 | case CFGElement::MemberDtor: { |
5452 | const FieldDecl *field = castAs<CFGMemberDtor>().getFieldDecl(); |
5453 | QualType ty = field->getType(); |
5454 | |
5455 | while (const ArrayType *arrayType = astContext.getAsArrayType(T: ty)) { |
5456 | ty = arrayType->getElementType(); |
5457 | } |
5458 | |
5459 | const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl(); |
5460 | assert(classDecl); |
5461 | return classDecl->getDestructor(); |
5462 | } |
5463 | case CFGElement::BaseDtor: |
5464 | // Not yet supported. |
5465 | return nullptr; |
5466 | } |
5467 | llvm_unreachable("getKind() returned bogus value" ); |
5468 | } |
5469 | |
5470 | //===----------------------------------------------------------------------===// |
5471 | // CFGBlock operations. |
5472 | //===----------------------------------------------------------------------===// |
5473 | |
5474 | CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable) |
5475 | : ReachableBlock(IsReachable ? B : nullptr), |
5476 | UnreachableBlock(!IsReachable ? B : nullptr, |
5477 | B && IsReachable ? AB_Normal : AB_Unreachable) {} |
5478 | |
5479 | CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock) |
5480 | : ReachableBlock(B), |
5481 | UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock, |
5482 | B == AlternateBlock ? AB_Alternate : AB_Normal) {} |
5483 | |
5484 | void CFGBlock::addSuccessor(AdjacentBlock Succ, |
5485 | BumpVectorContext &C) { |
5486 | if (CFGBlock *B = Succ.getReachableBlock()) |
5487 | B->Preds.push_back(Elt: AdjacentBlock(this, Succ.isReachable()), C); |
5488 | |
5489 | if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock()) |
5490 | UnreachableB->Preds.push_back(Elt: AdjacentBlock(this, false), C); |
5491 | |
5492 | Succs.push_back(Elt: Succ, C); |
5493 | } |
5494 | |
5495 | bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F, |
5496 | const CFGBlock *From, const CFGBlock *To) { |
5497 | if (F.IgnoreNullPredecessors && !From) |
5498 | return true; |
5499 | |
5500 | if (To && From && F.IgnoreDefaultsWithCoveredEnums) { |
5501 | // If the 'To' has no label or is labeled but the label isn't a |
5502 | // CaseStmt then filter this edge. |
5503 | if (const SwitchStmt *S = |
5504 | dyn_cast_or_null<SwitchStmt>(Val: From->getTerminatorStmt())) { |
5505 | if (S->isAllEnumCasesCovered()) { |
5506 | const Stmt *L = To->getLabel(); |
5507 | if (!L || !isa<CaseStmt>(Val: L)) |
5508 | return true; |
5509 | } |
5510 | } |
5511 | } |
5512 | |
5513 | return false; |
5514 | } |
5515 | |
5516 | //===----------------------------------------------------------------------===// |
5517 | // CFG pretty printing |
5518 | //===----------------------------------------------------------------------===// |
5519 | |
5520 | namespace { |
5521 | |
5522 | class StmtPrinterHelper : public PrinterHelper { |
5523 | using StmtMapTy = llvm::DenseMap<const Stmt *, std::pair<unsigned, unsigned>>; |
5524 | using DeclMapTy = llvm::DenseMap<const Decl *, std::pair<unsigned, unsigned>>; |
5525 | |
5526 | StmtMapTy StmtMap; |
5527 | DeclMapTy DeclMap; |
5528 | signed currentBlock = 0; |
5529 | unsigned currStmt = 0; |
5530 | const LangOptions &LangOpts; |
5531 | |
5532 | public: |
5533 | StmtPrinterHelper(const CFG* cfg, const LangOptions &LO) |
5534 | : LangOpts(LO) { |
5535 | if (!cfg) |
5536 | return; |
5537 | for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) { |
5538 | unsigned j = 1; |
5539 | for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ; |
5540 | BI != BEnd; ++BI, ++j ) { |
5541 | if (std::optional<CFGStmt> SE = BI->getAs<CFGStmt>()) { |
5542 | const Stmt *stmt= SE->getStmt(); |
5543 | std::pair<unsigned, unsigned> P((*I)->getBlockID(), j); |
5544 | StmtMap[stmt] = P; |
5545 | |
5546 | switch (stmt->getStmtClass()) { |
5547 | case Stmt::DeclStmtClass: |
5548 | DeclMap[cast<DeclStmt>(Val: stmt)->getSingleDecl()] = P; |
5549 | break; |
5550 | case Stmt::IfStmtClass: { |
5551 | const VarDecl *var = cast<IfStmt>(Val: stmt)->getConditionVariable(); |
5552 | if (var) |
5553 | DeclMap[var] = P; |
5554 | break; |
5555 | } |
5556 | case Stmt::ForStmtClass: { |
5557 | const VarDecl *var = cast<ForStmt>(Val: stmt)->getConditionVariable(); |
5558 | if (var) |
5559 | DeclMap[var] = P; |
5560 | break; |
5561 | } |
5562 | case Stmt::WhileStmtClass: { |
5563 | const VarDecl *var = |
5564 | cast<WhileStmt>(Val: stmt)->getConditionVariable(); |
5565 | if (var) |
5566 | DeclMap[var] = P; |
5567 | break; |
5568 | } |
5569 | case Stmt::SwitchStmtClass: { |
5570 | const VarDecl *var = |
5571 | cast<SwitchStmt>(Val: stmt)->getConditionVariable(); |
5572 | if (var) |
5573 | DeclMap[var] = P; |
5574 | break; |
5575 | } |
5576 | case Stmt::CXXCatchStmtClass: { |
5577 | const VarDecl *var = |
5578 | cast<CXXCatchStmt>(Val: stmt)->getExceptionDecl(); |
5579 | if (var) |
5580 | DeclMap[var] = P; |
5581 | break; |
5582 | } |
5583 | default: |
5584 | break; |
5585 | } |
5586 | } |
5587 | } |
5588 | } |
5589 | } |
5590 | |
5591 | ~StmtPrinterHelper() override = default; |
5592 | |
5593 | const LangOptions &getLangOpts() const { return LangOpts; } |
5594 | void setBlockID(signed i) { currentBlock = i; } |
5595 | void setStmtID(unsigned i) { currStmt = i; } |
5596 | |
5597 | bool handledStmt(Stmt *S, raw_ostream &OS) override { |
5598 | StmtMapTy::iterator I = StmtMap.find(Val: S); |
5599 | |
5600 | if (I == StmtMap.end()) |
5601 | return false; |
5602 | |
5603 | if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock |
5604 | && I->second.second == currStmt) { |
5605 | return false; |
5606 | } |
5607 | |
5608 | OS << "[B" << I->second.first << "." << I->second.second << "]" ; |
5609 | return true; |
5610 | } |
5611 | |
5612 | bool handleDecl(const Decl *D, raw_ostream &OS) { |
5613 | DeclMapTy::iterator I = DeclMap.find(Val: D); |
5614 | |
5615 | if (I == DeclMap.end()) |
5616 | return false; |
5617 | |
5618 | if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock |
5619 | && I->second.second == currStmt) { |
5620 | return false; |
5621 | } |
5622 | |
5623 | OS << "[B" << I->second.first << "." << I->second.second << "]" ; |
5624 | return true; |
5625 | } |
5626 | }; |
5627 | |
5628 | class CFGBlockTerminatorPrint |
5629 | : public StmtVisitor<CFGBlockTerminatorPrint,void> { |
5630 | raw_ostream &OS; |
5631 | StmtPrinterHelper* Helper; |
5632 | PrintingPolicy Policy; |
5633 | |
5634 | public: |
5635 | CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper, |
5636 | const PrintingPolicy &Policy) |
5637 | : OS(os), Helper(helper), Policy(Policy) { |
5638 | this->Policy.IncludeNewlines = false; |
5639 | } |
5640 | |
5641 | void VisitIfStmt(IfStmt *I) { |
5642 | OS << "if " ; |
5643 | if (Stmt *C = I->getCond()) |
5644 | C->printPretty(OS, Helper, Policy); |
5645 | } |
5646 | |
5647 | // Default case. |
5648 | void VisitStmt(Stmt *Terminator) { |
5649 | Terminator->printPretty(OS, Helper, Policy); |
5650 | } |
5651 | |
5652 | void VisitDeclStmt(DeclStmt *DS) { |
5653 | VarDecl *VD = cast<VarDecl>(Val: DS->getSingleDecl()); |
5654 | OS << "static init " << VD->getName(); |
5655 | } |
5656 | |
5657 | void VisitForStmt(ForStmt *F) { |
5658 | OS << "for (" ; |
5659 | if (F->getInit()) |
5660 | OS << "..." ; |
5661 | OS << "; " ; |
5662 | if (Stmt *C = F->getCond()) |
5663 | C->printPretty(OS, Helper, Policy); |
5664 | OS << "; " ; |
5665 | if (F->getInc()) |
5666 | OS << "..." ; |
5667 | OS << ")" ; |
5668 | } |
5669 | |
5670 | void VisitWhileStmt(WhileStmt *W) { |
5671 | OS << "while " ; |
5672 | if (Stmt *C = W->getCond()) |
5673 | C->printPretty(OS, Helper, Policy); |
5674 | } |
5675 | |
5676 | void VisitDoStmt(DoStmt *D) { |
5677 | OS << "do ... while " ; |
5678 | if (Stmt *C = D->getCond()) |
5679 | C->printPretty(OS, Helper, Policy); |
5680 | } |
5681 | |
5682 | void VisitSwitchStmt(SwitchStmt *Terminator) { |
5683 | OS << "switch " ; |
5684 | Terminator->getCond()->printPretty(OS, Helper, Policy); |
5685 | } |
5686 | |
5687 | void VisitCXXTryStmt(CXXTryStmt *) { OS << "try ..." ; } |
5688 | |
5689 | void VisitObjCAtTryStmt(ObjCAtTryStmt *) { OS << "@try ..." ; } |
5690 | |
5691 | void VisitSEHTryStmt(SEHTryStmt *CS) { OS << "__try ..." ; } |
5692 | |
5693 | void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) { |
5694 | if (Stmt *Cond = C->getCond()) |
5695 | Cond->printPretty(OS, Helper, Policy); |
5696 | OS << " ? ... : ..." ; |
5697 | } |
5698 | |
5699 | void VisitChooseExpr(ChooseExpr *C) { |
5700 | OS << "__builtin_choose_expr( " ; |
5701 | if (Stmt *Cond = C->getCond()) |
5702 | Cond->printPretty(OS, Helper, Policy); |
5703 | OS << " )" ; |
5704 | } |
5705 | |
5706 | void VisitIndirectGotoStmt(IndirectGotoStmt *I) { |
5707 | OS << "goto *" ; |
5708 | if (Stmt *T = I->getTarget()) |
5709 | T->printPretty(OS, Helper, Policy); |
5710 | } |
5711 | |
5712 | void VisitBinaryOperator(BinaryOperator* B) { |
5713 | if (!B->isLogicalOp()) { |
5714 | VisitExpr(E: B); |
5715 | return; |
5716 | } |
5717 | |
5718 | if (B->getLHS()) |
5719 | B->getLHS()->printPretty(OS, Helper, Policy); |
5720 | |
5721 | switch (B->getOpcode()) { |
5722 | case BO_LOr: |
5723 | OS << " || ..." ; |
5724 | return; |
5725 | case BO_LAnd: |
5726 | OS << " && ..." ; |
5727 | return; |
5728 | default: |
5729 | llvm_unreachable("Invalid logical operator." ); |
5730 | } |
5731 | } |
5732 | |
5733 | void VisitExpr(Expr *E) { |
5734 | E->printPretty(OS, Helper, Policy); |
5735 | } |
5736 | |
5737 | public: |
5738 | void print(CFGTerminator T) { |
5739 | switch (T.getKind()) { |
5740 | case CFGTerminator::StmtBranch: |
5741 | Visit(S: T.getStmt()); |
5742 | break; |
5743 | case CFGTerminator::TemporaryDtorsBranch: |
5744 | OS << "(Temp Dtor) " ; |
5745 | Visit(S: T.getStmt()); |
5746 | break; |
5747 | case CFGTerminator::VirtualBaseBranch: |
5748 | OS << "(See if most derived ctor has already initialized vbases)" ; |
5749 | break; |
5750 | } |
5751 | } |
5752 | }; |
5753 | |
5754 | } // namespace |
5755 | |
5756 | static void print_initializer(raw_ostream &OS, StmtPrinterHelper &Helper, |
5757 | const CXXCtorInitializer *I) { |
5758 | if (I->isBaseInitializer()) |
5759 | OS << I->getBaseClass()->getAsCXXRecordDecl()->getName(); |
5760 | else if (I->isDelegatingInitializer()) |
5761 | OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName(); |
5762 | else |
5763 | OS << I->getAnyMember()->getName(); |
5764 | OS << "(" ; |
5765 | if (Expr *IE = I->getInit()) |
5766 | IE->printPretty(OS, Helper: &Helper, Policy: PrintingPolicy(Helper.getLangOpts())); |
5767 | OS << ")" ; |
5768 | |
5769 | if (I->isBaseInitializer()) |
5770 | OS << " (Base initializer)" ; |
5771 | else if (I->isDelegatingInitializer()) |
5772 | OS << " (Delegating initializer)" ; |
5773 | else |
5774 | OS << " (Member initializer)" ; |
5775 | } |
5776 | |
5777 | static void print_construction_context(raw_ostream &OS, |
5778 | StmtPrinterHelper &Helper, |
5779 | const ConstructionContext *CC) { |
5780 | SmallVector<const Stmt *, 3> Stmts; |
5781 | switch (CC->getKind()) { |
5782 | case ConstructionContext::SimpleConstructorInitializerKind: { |
5783 | OS << ", " ; |
5784 | const auto *SICC = cast<SimpleConstructorInitializerConstructionContext>(Val: CC); |
5785 | print_initializer(OS, Helper, I: SICC->getCXXCtorInitializer()); |
5786 | return; |
5787 | } |
5788 | case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind: { |
5789 | OS << ", " ; |
5790 | const auto *CICC = |
5791 | cast<CXX17ElidedCopyConstructorInitializerConstructionContext>(Val: CC); |
5792 | print_initializer(OS, Helper, I: CICC->getCXXCtorInitializer()); |
5793 | Stmts.push_back(Elt: CICC->getCXXBindTemporaryExpr()); |
5794 | break; |
5795 | } |
5796 | case ConstructionContext::SimpleVariableKind: { |
5797 | const auto *SDSCC = cast<SimpleVariableConstructionContext>(Val: CC); |
5798 | Stmts.push_back(Elt: SDSCC->getDeclStmt()); |
5799 | break; |
5800 | } |
5801 | case ConstructionContext::CXX17ElidedCopyVariableKind: { |
5802 | const auto *CDSCC = cast<CXX17ElidedCopyVariableConstructionContext>(Val: CC); |
5803 | Stmts.push_back(Elt: CDSCC->getDeclStmt()); |
5804 | Stmts.push_back(Elt: CDSCC->getCXXBindTemporaryExpr()); |
5805 | break; |
5806 | } |
5807 | case ConstructionContext::NewAllocatedObjectKind: { |
5808 | const auto *NECC = cast<NewAllocatedObjectConstructionContext>(Val: CC); |
5809 | Stmts.push_back(Elt: NECC->getCXXNewExpr()); |
5810 | break; |
5811 | } |
5812 | case ConstructionContext::SimpleReturnedValueKind: { |
5813 | const auto *RSCC = cast<SimpleReturnedValueConstructionContext>(Val: CC); |
5814 | Stmts.push_back(Elt: RSCC->getReturnStmt()); |
5815 | break; |
5816 | } |
5817 | case ConstructionContext::CXX17ElidedCopyReturnedValueKind: { |
5818 | const auto *RSCC = |
5819 | cast<CXX17ElidedCopyReturnedValueConstructionContext>(Val: CC); |
5820 | Stmts.push_back(Elt: RSCC->getReturnStmt()); |
5821 | Stmts.push_back(Elt: RSCC->getCXXBindTemporaryExpr()); |
5822 | break; |
5823 | } |
5824 | case ConstructionContext::SimpleTemporaryObjectKind: { |
5825 | const auto *TOCC = cast<SimpleTemporaryObjectConstructionContext>(Val: CC); |
5826 | Stmts.push_back(Elt: TOCC->getCXXBindTemporaryExpr()); |
5827 | Stmts.push_back(Elt: TOCC->getMaterializedTemporaryExpr()); |
5828 | break; |
5829 | } |
5830 | case ConstructionContext::ElidedTemporaryObjectKind: { |
5831 | const auto *TOCC = cast<ElidedTemporaryObjectConstructionContext>(Val: CC); |
5832 | Stmts.push_back(Elt: TOCC->getCXXBindTemporaryExpr()); |
5833 | Stmts.push_back(Elt: TOCC->getMaterializedTemporaryExpr()); |
5834 | Stmts.push_back(Elt: TOCC->getConstructorAfterElision()); |
5835 | break; |
5836 | } |
5837 | case ConstructionContext::LambdaCaptureKind: { |
5838 | const auto *LCC = cast<LambdaCaptureConstructionContext>(Val: CC); |
5839 | Helper.handledStmt(S: const_cast<LambdaExpr *>(LCC->getLambdaExpr()), OS); |
5840 | OS << "+" << LCC->getIndex(); |
5841 | return; |
5842 | } |
5843 | case ConstructionContext::ArgumentKind: { |
5844 | const auto *ACC = cast<ArgumentConstructionContext>(Val: CC); |
5845 | if (const Stmt *BTE = ACC->getCXXBindTemporaryExpr()) { |
5846 | OS << ", " ; |
5847 | Helper.handledStmt(S: const_cast<Stmt *>(BTE), OS); |
5848 | } |
5849 | OS << ", " ; |
5850 | Helper.handledStmt(S: const_cast<Expr *>(ACC->getCallLikeExpr()), OS); |
5851 | OS << "+" << ACC->getIndex(); |
5852 | return; |
5853 | } |
5854 | } |
5855 | for (auto I: Stmts) |
5856 | if (I) { |
5857 | OS << ", " ; |
5858 | Helper.handledStmt(S: const_cast<Stmt *>(I), OS); |
5859 | } |
5860 | } |
5861 | |
5862 | static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper, |
5863 | const CFGElement &E, bool TerminateWithNewLine = true); |
5864 | |
5865 | void CFGElement::dumpToStream(llvm::raw_ostream &OS, |
5866 | bool TerminateWithNewLine) const { |
5867 | LangOptions LangOpts; |
5868 | StmtPrinterHelper Helper(nullptr, LangOpts); |
5869 | print_elem(OS, Helper, E: *this, TerminateWithNewLine); |
5870 | } |
5871 | |
5872 | static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper, |
5873 | const CFGElement &E, bool TerminateWithNewLine) { |
5874 | switch (E.getKind()) { |
5875 | case CFGElement::Kind::Statement: |
5876 | case CFGElement::Kind::CXXRecordTypedCall: |
5877 | case CFGElement::Kind::Constructor: { |
5878 | CFGStmt CS = E.castAs<CFGStmt>(); |
5879 | const Stmt *S = CS.getStmt(); |
5880 | assert(S != nullptr && "Expecting non-null Stmt" ); |
5881 | |
5882 | // special printing for statement-expressions. |
5883 | if (const StmtExpr *SE = dyn_cast<StmtExpr>(Val: S)) { |
5884 | const CompoundStmt *Sub = SE->getSubStmt(); |
5885 | |
5886 | auto Children = Sub->children(); |
5887 | if (Children.begin() != Children.end()) { |
5888 | OS << "({ ... ; " ; |
5889 | Helper.handledStmt(S: *SE->getSubStmt()->body_rbegin(),OS); |
5890 | OS << " })" ; |
5891 | if (TerminateWithNewLine) |
5892 | OS << '\n'; |
5893 | return; |
5894 | } |
5895 | } |
5896 | // special printing for comma expressions. |
5897 | if (const BinaryOperator* B = dyn_cast<BinaryOperator>(Val: S)) { |
5898 | if (B->getOpcode() == BO_Comma) { |
5899 | OS << "... , " ; |
5900 | Helper.handledStmt(S: B->getRHS(),OS); |
5901 | if (TerminateWithNewLine) |
5902 | OS << '\n'; |
5903 | return; |
5904 | } |
5905 | } |
5906 | S->printPretty(OS, Helper: &Helper, Policy: PrintingPolicy(Helper.getLangOpts())); |
5907 | |
5908 | if (auto VTC = E.getAs<CFGCXXRecordTypedCall>()) { |
5909 | if (isa<CXXOperatorCallExpr>(Val: S)) |
5910 | OS << " (OperatorCall)" ; |
5911 | OS << " (CXXRecordTypedCall" ; |
5912 | print_construction_context(OS, Helper, CC: VTC->getConstructionContext()); |
5913 | OS << ")" ; |
5914 | } else if (isa<CXXOperatorCallExpr>(Val: S)) { |
5915 | OS << " (OperatorCall)" ; |
5916 | } else if (isa<CXXBindTemporaryExpr>(Val: S)) { |
5917 | OS << " (BindTemporary)" ; |
5918 | } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Val: S)) { |
5919 | OS << " (CXXConstructExpr" ; |
5920 | if (std::optional<CFGConstructor> CE = E.getAs<CFGConstructor>()) { |
5921 | print_construction_context(OS, Helper, CC: CE->getConstructionContext()); |
5922 | } |
5923 | OS << ", " << CCE->getType() << ")" ; |
5924 | } else if (const CastExpr *CE = dyn_cast<CastExpr>(Val: S)) { |
5925 | OS << " (" << CE->getStmtClassName() << ", " << CE->getCastKindName() |
5926 | << ", " << CE->getType() << ")" ; |
5927 | } |
5928 | |
5929 | // Expressions need a newline. |
5930 | if (isa<Expr>(Val: S) && TerminateWithNewLine) |
5931 | OS << '\n'; |
5932 | |
5933 | return; |
5934 | } |
5935 | |
5936 | case CFGElement::Kind::Initializer: |
5937 | print_initializer(OS, Helper, I: E.castAs<CFGInitializer>().getInitializer()); |
5938 | break; |
5939 | |
5940 | case CFGElement::Kind::AutomaticObjectDtor: { |
5941 | CFGAutomaticObjDtor DE = E.castAs<CFGAutomaticObjDtor>(); |
5942 | const VarDecl *VD = DE.getVarDecl(); |
5943 | Helper.handleDecl(D: VD, OS); |
5944 | |
5945 | QualType T = VD->getType(); |
5946 | if (T->isReferenceType()) |
5947 | T = getReferenceInitTemporaryType(Init: VD->getInit(), FoundMTE: nullptr); |
5948 | |
5949 | OS << ".~" ; |
5950 | T.getUnqualifiedType().print(OS, Policy: PrintingPolicy(Helper.getLangOpts())); |
5951 | OS << "() (Implicit destructor)" ; |
5952 | break; |
5953 | } |
5954 | |
5955 | case CFGElement::Kind::CleanupFunction: |
5956 | OS << "CleanupFunction (" |
5957 | << E.castAs<CFGCleanupFunction>().getFunctionDecl()->getName() << ")" ; |
5958 | break; |
5959 | |
5960 | case CFGElement::Kind::LifetimeEnds: |
5961 | Helper.handleDecl(D: E.castAs<CFGLifetimeEnds>().getVarDecl(), OS); |
5962 | OS << " (Lifetime ends)" ; |
5963 | break; |
5964 | |
5965 | case CFGElement::Kind::LoopExit: |
5966 | OS << E.castAs<CFGLoopExit>().getLoopStmt()->getStmtClassName() |
5967 | << " (LoopExit)" ; |
5968 | break; |
5969 | |
5970 | case CFGElement::Kind::ScopeBegin: |
5971 | OS << "CFGScopeBegin(" ; |
5972 | if (const VarDecl *VD = E.castAs<CFGScopeBegin>().getVarDecl()) |
5973 | OS << VD->getQualifiedNameAsString(); |
5974 | OS << ")" ; |
5975 | break; |
5976 | |
5977 | case CFGElement::Kind::ScopeEnd: |
5978 | OS << "CFGScopeEnd(" ; |
5979 | if (const VarDecl *VD = E.castAs<CFGScopeEnd>().getVarDecl()) |
5980 | OS << VD->getQualifiedNameAsString(); |
5981 | OS << ")" ; |
5982 | break; |
5983 | |
5984 | case CFGElement::Kind::NewAllocator: |
5985 | OS << "CFGNewAllocator(" ; |
5986 | if (const CXXNewExpr *AllocExpr = E.castAs<CFGNewAllocator>().getAllocatorExpr()) |
5987 | AllocExpr->getType().print(OS, Policy: PrintingPolicy(Helper.getLangOpts())); |
5988 | OS << ")" ; |
5989 | break; |
5990 | |
5991 | case CFGElement::Kind::DeleteDtor: { |
5992 | CFGDeleteDtor DE = E.castAs<CFGDeleteDtor>(); |
5993 | const CXXRecordDecl *RD = DE.getCXXRecordDecl(); |
5994 | if (!RD) |
5995 | return; |
5996 | CXXDeleteExpr *DelExpr = |
5997 | const_cast<CXXDeleteExpr*>(DE.getDeleteExpr()); |
5998 | Helper.handledStmt(S: cast<Stmt>(Val: DelExpr->getArgument()), OS); |
5999 | OS << "->~" << RD->getName().str() << "()" ; |
6000 | OS << " (Implicit destructor)" ; |
6001 | break; |
6002 | } |
6003 | |
6004 | case CFGElement::Kind::BaseDtor: { |
6005 | const CXXBaseSpecifier *BS = E.castAs<CFGBaseDtor>().getBaseSpecifier(); |
6006 | OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()" ; |
6007 | OS << " (Base object destructor)" ; |
6008 | break; |
6009 | } |
6010 | |
6011 | case CFGElement::Kind::MemberDtor: { |
6012 | const FieldDecl *FD = E.castAs<CFGMemberDtor>().getFieldDecl(); |
6013 | const Type *T = FD->getType()->getBaseElementTypeUnsafe(); |
6014 | OS << "this->" << FD->getName(); |
6015 | OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()" ; |
6016 | OS << " (Member object destructor)" ; |
6017 | break; |
6018 | } |
6019 | |
6020 | case CFGElement::Kind::TemporaryDtor: { |
6021 | const CXXBindTemporaryExpr *BT = |
6022 | E.castAs<CFGTemporaryDtor>().getBindTemporaryExpr(); |
6023 | OS << "~" ; |
6024 | BT->getType().print(OS, Policy: PrintingPolicy(Helper.getLangOpts())); |
6025 | OS << "() (Temporary object destructor)" ; |
6026 | break; |
6027 | } |
6028 | } |
6029 | if (TerminateWithNewLine) |
6030 | OS << '\n'; |
6031 | } |
6032 | |
6033 | static void print_block(raw_ostream &OS, const CFG* cfg, |
6034 | const CFGBlock &B, |
6035 | StmtPrinterHelper &Helper, bool print_edges, |
6036 | bool ShowColors) { |
6037 | Helper.setBlockID(B.getBlockID()); |
6038 | |
6039 | // Print the header. |
6040 | if (ShowColors) |
6041 | OS.changeColor(Color: raw_ostream::YELLOW, Bold: true); |
6042 | |
6043 | OS << "\n [B" << B.getBlockID(); |
6044 | |
6045 | if (&B == &cfg->getEntry()) |
6046 | OS << " (ENTRY)]\n" ; |
6047 | else if (&B == &cfg->getExit()) |
6048 | OS << " (EXIT)]\n" ; |
6049 | else if (&B == cfg->getIndirectGotoBlock()) |
6050 | OS << " (INDIRECT GOTO DISPATCH)]\n" ; |
6051 | else if (B.hasNoReturnElement()) |
6052 | OS << " (NORETURN)]\n" ; |
6053 | else |
6054 | OS << "]\n" ; |
6055 | |
6056 | if (ShowColors) |
6057 | OS.resetColor(); |
6058 | |
6059 | // Print the label of this block. |
6060 | if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) { |
6061 | if (print_edges) |
6062 | OS << " " ; |
6063 | |
6064 | if (LabelStmt *L = dyn_cast<LabelStmt>(Val: Label)) |
6065 | OS << L->getName(); |
6066 | else if (CaseStmt *C = dyn_cast<CaseStmt>(Val: Label)) { |
6067 | OS << "case " ; |
6068 | if (const Expr *LHS = C->getLHS()) |
6069 | LHS->printPretty(OS, Helper: &Helper, Policy: PrintingPolicy(Helper.getLangOpts())); |
6070 | if (const Expr *RHS = C->getRHS()) { |
6071 | OS << " ... " ; |
6072 | RHS->printPretty(OS, Helper: &Helper, Policy: PrintingPolicy(Helper.getLangOpts())); |
6073 | } |
6074 | } else if (isa<DefaultStmt>(Val: Label)) |
6075 | OS << "default" ; |
6076 | else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Val: Label)) { |
6077 | OS << "catch (" ; |
6078 | if (const VarDecl *ED = CS->getExceptionDecl()) |
6079 | ED->print(Out&: OS, Policy: PrintingPolicy(Helper.getLangOpts()), Indentation: 0); |
6080 | else |
6081 | OS << "..." ; |
6082 | OS << ")" ; |
6083 | } else if (ObjCAtCatchStmt *CS = dyn_cast<ObjCAtCatchStmt>(Val: Label)) { |
6084 | OS << "@catch (" ; |
6085 | if (const VarDecl *PD = CS->getCatchParamDecl()) |
6086 | PD->print(Out&: OS, Policy: PrintingPolicy(Helper.getLangOpts()), Indentation: 0); |
6087 | else |
6088 | OS << "..." ; |
6089 | OS << ")" ; |
6090 | } else if (SEHExceptStmt *ES = dyn_cast<SEHExceptStmt>(Val: Label)) { |
6091 | OS << "__except (" ; |
6092 | ES->getFilterExpr()->printPretty(OS, Helper: &Helper, |
6093 | Policy: PrintingPolicy(Helper.getLangOpts()), Indentation: 0); |
6094 | OS << ")" ; |
6095 | } else |
6096 | llvm_unreachable("Invalid label statement in CFGBlock." ); |
6097 | |
6098 | OS << ":\n" ; |
6099 | } |
6100 | |
6101 | // Iterate through the statements in the block and print them. |
6102 | unsigned j = 1; |
6103 | |
6104 | for (CFGBlock::const_iterator I = B.begin(), E = B.end() ; |
6105 | I != E ; ++I, ++j ) { |
6106 | // Print the statement # in the basic block and the statement itself. |
6107 | if (print_edges) |
6108 | OS << " " ; |
6109 | |
6110 | OS << llvm::format(Fmt: "%3d" , Vals: j) << ": " ; |
6111 | |
6112 | Helper.setStmtID(j); |
6113 | |
6114 | print_elem(OS, Helper, E: *I); |
6115 | } |
6116 | |
6117 | // Print the terminator of this block. |
6118 | if (B.getTerminator().isValid()) { |
6119 | if (ShowColors) |
6120 | OS.changeColor(Color: raw_ostream::GREEN); |
6121 | |
6122 | OS << " T: " ; |
6123 | |
6124 | Helper.setBlockID(-1); |
6125 | |
6126 | PrintingPolicy PP(Helper.getLangOpts()); |
6127 | CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP); |
6128 | TPrinter.print(T: B.getTerminator()); |
6129 | OS << '\n'; |
6130 | |
6131 | if (ShowColors) |
6132 | OS.resetColor(); |
6133 | } |
6134 | |
6135 | if (print_edges) { |
6136 | // Print the predecessors of this block. |
6137 | if (!B.pred_empty()) { |
6138 | const raw_ostream::Colors Color = raw_ostream::BLUE; |
6139 | if (ShowColors) |
6140 | OS.changeColor(Color); |
6141 | OS << " Preds " ; |
6142 | if (ShowColors) |
6143 | OS.resetColor(); |
6144 | OS << '(' << B.pred_size() << "):" ; |
6145 | unsigned i = 0; |
6146 | |
6147 | if (ShowColors) |
6148 | OS.changeColor(Color); |
6149 | |
6150 | for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end(); |
6151 | I != E; ++I, ++i) { |
6152 | if (i % 10 == 8) |
6153 | OS << "\n " ; |
6154 | |
6155 | CFGBlock *B = *I; |
6156 | bool Reachable = true; |
6157 | if (!B) { |
6158 | Reachable = false; |
6159 | B = I->getPossiblyUnreachableBlock(); |
6160 | } |
6161 | |
6162 | OS << " B" << B->getBlockID(); |
6163 | if (!Reachable) |
6164 | OS << "(Unreachable)" ; |
6165 | } |
6166 | |
6167 | if (ShowColors) |
6168 | OS.resetColor(); |
6169 | |
6170 | OS << '\n'; |
6171 | } |
6172 | |
6173 | // Print the successors of this block. |
6174 | if (!B.succ_empty()) { |
6175 | const raw_ostream::Colors Color = raw_ostream::MAGENTA; |
6176 | if (ShowColors) |
6177 | OS.changeColor(Color); |
6178 | OS << " Succs " ; |
6179 | if (ShowColors) |
6180 | OS.resetColor(); |
6181 | OS << '(' << B.succ_size() << "):" ; |
6182 | unsigned i = 0; |
6183 | |
6184 | if (ShowColors) |
6185 | OS.changeColor(Color); |
6186 | |
6187 | for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end(); |
6188 | I != E; ++I, ++i) { |
6189 | if (i % 10 == 8) |
6190 | OS << "\n " ; |
6191 | |
6192 | CFGBlock *B = *I; |
6193 | |
6194 | bool Reachable = true; |
6195 | if (!B) { |
6196 | Reachable = false; |
6197 | B = I->getPossiblyUnreachableBlock(); |
6198 | } |
6199 | |
6200 | if (B) { |
6201 | OS << " B" << B->getBlockID(); |
6202 | if (!Reachable) |
6203 | OS << "(Unreachable)" ; |
6204 | } |
6205 | else { |
6206 | OS << " NULL" ; |
6207 | } |
6208 | } |
6209 | |
6210 | if (ShowColors) |
6211 | OS.resetColor(); |
6212 | OS << '\n'; |
6213 | } |
6214 | } |
6215 | } |
6216 | |
6217 | /// dump - A simple pretty printer of a CFG that outputs to stderr. |
6218 | void CFG::dump(const LangOptions &LO, bool ShowColors) const { |
6219 | print(OS&: llvm::errs(), LO, ShowColors); |
6220 | } |
6221 | |
6222 | /// print - A simple pretty printer of a CFG that outputs to an ostream. |
6223 | void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const { |
6224 | StmtPrinterHelper Helper(this, LO); |
6225 | |
6226 | // Print the entry block. |
6227 | print_block(OS, cfg: this, B: getEntry(), Helper, print_edges: true, ShowColors); |
6228 | |
6229 | // Iterate through the CFGBlocks and print them one by one. |
6230 | for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) { |
6231 | // Skip the entry block, because we already printed it. |
6232 | if (&(**I) == &getEntry() || &(**I) == &getExit()) |
6233 | continue; |
6234 | |
6235 | print_block(OS, cfg: this, B: **I, Helper, print_edges: true, ShowColors); |
6236 | } |
6237 | |
6238 | // Print the exit block. |
6239 | print_block(OS, cfg: this, B: getExit(), Helper, print_edges: true, ShowColors); |
6240 | OS << '\n'; |
6241 | OS.flush(); |
6242 | } |
6243 | |
6244 | size_t CFGBlock::getIndexInCFG() const { |
6245 | return llvm::find(Range&: *getParent(), Val: this) - getParent()->begin(); |
6246 | } |
6247 | |
6248 | /// dump - A simply pretty printer of a CFGBlock that outputs to stderr. |
6249 | void CFGBlock::dump(const CFG* cfg, const LangOptions &LO, |
6250 | bool ShowColors) const { |
6251 | print(OS&: llvm::errs(), cfg, LO, ShowColors); |
6252 | } |
6253 | |
6254 | LLVM_DUMP_METHOD void CFGBlock::dump() const { |
6255 | dump(cfg: getParent(), LO: LangOptions(), ShowColors: false); |
6256 | } |
6257 | |
6258 | /// print - A simple pretty printer of a CFGBlock that outputs to an ostream. |
6259 | /// Generally this will only be called from CFG::print. |
6260 | void CFGBlock::print(raw_ostream &OS, const CFG* cfg, |
6261 | const LangOptions &LO, bool ShowColors) const { |
6262 | StmtPrinterHelper Helper(cfg, LO); |
6263 | print_block(OS, cfg, B: *this, Helper, print_edges: true, ShowColors); |
6264 | OS << '\n'; |
6265 | } |
6266 | |
6267 | /// printTerminator - A simple pretty printer of the terminator of a CFGBlock. |
6268 | void CFGBlock::printTerminator(raw_ostream &OS, |
6269 | const LangOptions &LO) const { |
6270 | CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO)); |
6271 | TPrinter.print(T: getTerminator()); |
6272 | } |
6273 | |
6274 | /// printTerminatorJson - Pretty-prints the terminator in JSON format. |
6275 | void CFGBlock::printTerminatorJson(raw_ostream &Out, const LangOptions &LO, |
6276 | bool AddQuotes) const { |
6277 | std::string Buf; |
6278 | llvm::raw_string_ostream TempOut(Buf); |
6279 | |
6280 | printTerminator(OS&: TempOut, LO); |
6281 | |
6282 | Out << JsonFormat(RawSR: Buf, AddQuotes); |
6283 | } |
6284 | |
6285 | // Returns true if by simply looking at the block, we can be sure that it |
6286 | // results in a sink during analysis. This is useful to know when the analysis |
6287 | // was interrupted, and we try to figure out if it would sink eventually. |
6288 | // There may be many more reasons why a sink would appear during analysis |
6289 | // (eg. checkers may generate sinks arbitrarily), but here we only consider |
6290 | // sinks that would be obvious by looking at the CFG. |
6291 | static bool isImmediateSinkBlock(const CFGBlock *Blk) { |
6292 | if (Blk->hasNoReturnElement()) |
6293 | return true; |
6294 | |
6295 | // FIXME: Throw-expressions are currently generating sinks during analysis: |
6296 | // they're not supported yet, and also often used for actually terminating |
6297 | // the program. So we should treat them as sinks in this analysis as well, |
6298 | // at least for now, but once we have better support for exceptions, |
6299 | // we'd need to carefully handle the case when the throw is being |
6300 | // immediately caught. |
6301 | if (llvm::any_of(Range: *Blk, P: [](const CFGElement &Elm) { |
6302 | if (std::optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>()) |
6303 | if (isa<CXXThrowExpr>(Val: StmtElm->getStmt())) |
6304 | return true; |
6305 | return false; |
6306 | })) |
6307 | return true; |
6308 | |
6309 | return false; |
6310 | } |
6311 | |
6312 | bool CFGBlock::isInevitablySinking() const { |
6313 | const CFG &Cfg = *getParent(); |
6314 | |
6315 | const CFGBlock *StartBlk = this; |
6316 | if (isImmediateSinkBlock(Blk: StartBlk)) |
6317 | return true; |
6318 | |
6319 | llvm::SmallVector<const CFGBlock *, 32> DFSWorkList; |
6320 | llvm::SmallPtrSet<const CFGBlock *, 32> Visited; |
6321 | |
6322 | DFSWorkList.push_back(Elt: StartBlk); |
6323 | while (!DFSWorkList.empty()) { |
6324 | const CFGBlock *Blk = DFSWorkList.pop_back_val(); |
6325 | Visited.insert(Ptr: Blk); |
6326 | |
6327 | // If at least one path reaches the CFG exit, it means that control is |
6328 | // returned to the caller. For now, say that we are not sure what |
6329 | // happens next. If necessary, this can be improved to analyze |
6330 | // the parent StackFrameContext's call site in a similar manner. |
6331 | if (Blk == &Cfg.getExit()) |
6332 | return false; |
6333 | |
6334 | for (const auto &Succ : Blk->succs()) { |
6335 | if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) { |
6336 | if (!isImmediateSinkBlock(Blk: SuccBlk) && !Visited.count(Ptr: SuccBlk)) { |
6337 | // If the block has reachable child blocks that aren't no-return, |
6338 | // add them to the worklist. |
6339 | DFSWorkList.push_back(Elt: SuccBlk); |
6340 | } |
6341 | } |
6342 | } |
6343 | } |
6344 | |
6345 | // Nothing reached the exit. It can only mean one thing: there's no return. |
6346 | return true; |
6347 | } |
6348 | |
6349 | const Expr *CFGBlock::getLastCondition() const { |
6350 | // If the terminator is a temporary dtor or a virtual base, etc, we can't |
6351 | // retrieve a meaningful condition, bail out. |
6352 | if (Terminator.getKind() != CFGTerminator::StmtBranch) |
6353 | return nullptr; |
6354 | |
6355 | // Also, if this method was called on a block that doesn't have 2 successors, |
6356 | // this block doesn't have retrievable condition. |
6357 | if (succ_size() < 2) |
6358 | return nullptr; |
6359 | |
6360 | // FIXME: Is there a better condition expression we can return in this case? |
6361 | if (size() == 0) |
6362 | return nullptr; |
6363 | |
6364 | auto StmtElem = rbegin()->getAs<CFGStmt>(); |
6365 | if (!StmtElem) |
6366 | return nullptr; |
6367 | |
6368 | const Stmt *Cond = StmtElem->getStmt(); |
6369 | if (isa<ObjCForCollectionStmt>(Val: Cond) || isa<DeclStmt>(Val: Cond)) |
6370 | return nullptr; |
6371 | |
6372 | // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence |
6373 | // the cast<>. |
6374 | return cast<Expr>(Val: Cond)->IgnoreParens(); |
6375 | } |
6376 | |
6377 | Stmt *CFGBlock::getTerminatorCondition(bool StripParens) { |
6378 | Stmt *Terminator = getTerminatorStmt(); |
6379 | if (!Terminator) |
6380 | return nullptr; |
6381 | |
6382 | Expr *E = nullptr; |
6383 | |
6384 | switch (Terminator->getStmtClass()) { |
6385 | default: |
6386 | break; |
6387 | |
6388 | case Stmt::CXXForRangeStmtClass: |
6389 | E = cast<CXXForRangeStmt>(Val: Terminator)->getCond(); |
6390 | break; |
6391 | |
6392 | case Stmt::ForStmtClass: |
6393 | E = cast<ForStmt>(Val: Terminator)->getCond(); |
6394 | break; |
6395 | |
6396 | case Stmt::WhileStmtClass: |
6397 | E = cast<WhileStmt>(Val: Terminator)->getCond(); |
6398 | break; |
6399 | |
6400 | case Stmt::DoStmtClass: |
6401 | E = cast<DoStmt>(Val: Terminator)->getCond(); |
6402 | break; |
6403 | |
6404 | case Stmt::IfStmtClass: |
6405 | E = cast<IfStmt>(Val: Terminator)->getCond(); |
6406 | break; |
6407 | |
6408 | case Stmt::ChooseExprClass: |
6409 | E = cast<ChooseExpr>(Val: Terminator)->getCond(); |
6410 | break; |
6411 | |
6412 | case Stmt::IndirectGotoStmtClass: |
6413 | E = cast<IndirectGotoStmt>(Val: Terminator)->getTarget(); |
6414 | break; |
6415 | |
6416 | case Stmt::SwitchStmtClass: |
6417 | E = cast<SwitchStmt>(Val: Terminator)->getCond(); |
6418 | break; |
6419 | |
6420 | case Stmt::BinaryConditionalOperatorClass: |
6421 | E = cast<BinaryConditionalOperator>(Val: Terminator)->getCond(); |
6422 | break; |
6423 | |
6424 | case Stmt::ConditionalOperatorClass: |
6425 | E = cast<ConditionalOperator>(Val: Terminator)->getCond(); |
6426 | break; |
6427 | |
6428 | case Stmt::BinaryOperatorClass: // '&&' and '||' |
6429 | E = cast<BinaryOperator>(Val: Terminator)->getLHS(); |
6430 | break; |
6431 | |
6432 | case Stmt::ObjCForCollectionStmtClass: |
6433 | return Terminator; |
6434 | } |
6435 | |
6436 | if (!StripParens) |
6437 | return E; |
6438 | |
6439 | return E ? E->IgnoreParens() : nullptr; |
6440 | } |
6441 | |
6442 | //===----------------------------------------------------------------------===// |
6443 | // CFG Graphviz Visualization |
6444 | //===----------------------------------------------------------------------===// |
6445 | |
6446 | static StmtPrinterHelper *GraphHelper; |
6447 | |
6448 | void CFG::viewCFG(const LangOptions &LO) const { |
6449 | StmtPrinterHelper H(this, LO); |
6450 | GraphHelper = &H; |
6451 | llvm::ViewGraph(G: this,Name: "CFG" ); |
6452 | GraphHelper = nullptr; |
6453 | } |
6454 | |
6455 | namespace llvm { |
6456 | |
6457 | template<> |
6458 | struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits { |
6459 | DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} |
6460 | |
6461 | static std::string getNodeLabel(const CFGBlock *Node, const CFG *Graph) { |
6462 | std::string OutStr; |
6463 | llvm::raw_string_ostream Out(OutStr); |
6464 | print_block(OS&: Out,cfg: Graph, B: *Node, Helper&: *GraphHelper, print_edges: false, ShowColors: false); |
6465 | |
6466 | if (OutStr[0] == '\n') OutStr.erase(position: OutStr.begin()); |
6467 | |
6468 | // Process string output to make it nicer... |
6469 | for (unsigned i = 0; i != OutStr.length(); ++i) |
6470 | if (OutStr[i] == '\n') { // Left justify |
6471 | OutStr[i] = '\\'; |
6472 | OutStr.insert(p: OutStr.begin()+i+1, c: 'l'); |
6473 | } |
6474 | |
6475 | return OutStr; |
6476 | } |
6477 | }; |
6478 | |
6479 | } // namespace llvm |
6480 | |