| 1 | //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the code for emitting atomic operations. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "CGCall.h" |
| 14 | #include "CGRecordLayout.h" |
| 15 | #include "CodeGenFunction.h" |
| 16 | #include "CodeGenModule.h" |
| 17 | #include "TargetInfo.h" |
| 18 | #include "clang/AST/ASTContext.h" |
| 19 | #include "clang/CodeGen/CGFunctionInfo.h" |
| 20 | #include "clang/Frontend/FrontendDiagnostic.h" |
| 21 | #include "llvm/ADT/DenseMap.h" |
| 22 | #include "llvm/IR/DataLayout.h" |
| 23 | #include "llvm/IR/Intrinsics.h" |
| 24 | |
| 25 | using namespace clang; |
| 26 | using namespace CodeGen; |
| 27 | |
| 28 | namespace { |
| 29 | class AtomicInfo { |
| 30 | CodeGenFunction &CGF; |
| 31 | QualType AtomicTy; |
| 32 | QualType ValueTy; |
| 33 | uint64_t AtomicSizeInBits; |
| 34 | uint64_t ValueSizeInBits; |
| 35 | CharUnits AtomicAlign; |
| 36 | CharUnits ValueAlign; |
| 37 | TypeEvaluationKind EvaluationKind; |
| 38 | bool UseLibcall; |
| 39 | LValue LVal; |
| 40 | CGBitFieldInfo BFI; |
| 41 | public: |
| 42 | AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) |
| 43 | : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0), |
| 44 | EvaluationKind(TEK_Scalar), UseLibcall(true) { |
| 45 | assert(!lvalue.isGlobalReg()); |
| 46 | ASTContext &C = CGF.getContext(); |
| 47 | if (lvalue.isSimple()) { |
| 48 | AtomicTy = lvalue.getType(); |
| 49 | if (auto *ATy = AtomicTy->getAs<AtomicType>()) |
| 50 | ValueTy = ATy->getValueType(); |
| 51 | else |
| 52 | ValueTy = AtomicTy; |
| 53 | EvaluationKind = CGF.getEvaluationKind(T: ValueTy); |
| 54 | |
| 55 | uint64_t ValueAlignInBits; |
| 56 | uint64_t AtomicAlignInBits; |
| 57 | TypeInfo ValueTI = C.getTypeInfo(T: ValueTy); |
| 58 | ValueSizeInBits = ValueTI.Width; |
| 59 | ValueAlignInBits = ValueTI.Align; |
| 60 | |
| 61 | TypeInfo AtomicTI = C.getTypeInfo(T: AtomicTy); |
| 62 | AtomicSizeInBits = AtomicTI.Width; |
| 63 | AtomicAlignInBits = AtomicTI.Align; |
| 64 | |
| 65 | assert(ValueSizeInBits <= AtomicSizeInBits); |
| 66 | assert(ValueAlignInBits <= AtomicAlignInBits); |
| 67 | |
| 68 | AtomicAlign = C.toCharUnitsFromBits(BitSize: AtomicAlignInBits); |
| 69 | ValueAlign = C.toCharUnitsFromBits(BitSize: ValueAlignInBits); |
| 70 | if (lvalue.getAlignment().isZero()) |
| 71 | lvalue.setAlignment(AtomicAlign); |
| 72 | |
| 73 | LVal = lvalue; |
| 74 | } else if (lvalue.isBitField()) { |
| 75 | ValueTy = lvalue.getType(); |
| 76 | ValueSizeInBits = C.getTypeSize(T: ValueTy); |
| 77 | auto &OrigBFI = lvalue.getBitFieldInfo(); |
| 78 | auto Offset = OrigBFI.Offset % C.toBits(CharSize: lvalue.getAlignment()); |
| 79 | AtomicSizeInBits = C.toBits( |
| 80 | CharSize: C.toCharUnitsFromBits(BitSize: Offset + OrigBFI.Size + C.getCharWidth() - 1) |
| 81 | .alignTo(Align: lvalue.getAlignment())); |
| 82 | llvm::Value *BitFieldPtr = lvalue.getRawBitFieldPointer(CGF); |
| 83 | auto OffsetInChars = |
| 84 | (C.toCharUnitsFromBits(BitSize: OrigBFI.Offset) / lvalue.getAlignment()) * |
| 85 | lvalue.getAlignment(); |
| 86 | llvm::Value *StoragePtr = CGF.Builder.CreateConstGEP1_64( |
| 87 | Ty: CGF.Int8Ty, Ptr: BitFieldPtr, Idx0: OffsetInChars.getQuantity()); |
| 88 | StoragePtr = CGF.Builder.CreateAddrSpaceCast( |
| 89 | V: StoragePtr, DestTy: CGF.UnqualPtrTy, Name: "atomic_bitfield_base" ); |
| 90 | BFI = OrigBFI; |
| 91 | BFI.Offset = Offset; |
| 92 | BFI.StorageSize = AtomicSizeInBits; |
| 93 | BFI.StorageOffset += OffsetInChars; |
| 94 | llvm::Type *StorageTy = CGF.Builder.getIntNTy(N: AtomicSizeInBits); |
| 95 | LVal = LValue::MakeBitfield( |
| 96 | Addr: Address(StoragePtr, StorageTy, lvalue.getAlignment()), Info: BFI, |
| 97 | type: lvalue.getType(), BaseInfo: lvalue.getBaseInfo(), TBAAInfo: lvalue.getTBAAInfo()); |
| 98 | AtomicTy = C.getIntTypeForBitwidth(DestWidth: AtomicSizeInBits, Signed: OrigBFI.IsSigned); |
| 99 | if (AtomicTy.isNull()) { |
| 100 | llvm::APInt Size( |
| 101 | /*numBits=*/32, |
| 102 | C.toCharUnitsFromBits(BitSize: AtomicSizeInBits).getQuantity()); |
| 103 | AtomicTy = C.getConstantArrayType(EltTy: C.CharTy, ArySize: Size, SizeExpr: nullptr, |
| 104 | ASM: ArraySizeModifier::Normal, |
| 105 | /*IndexTypeQuals=*/0); |
| 106 | } |
| 107 | AtomicAlign = ValueAlign = lvalue.getAlignment(); |
| 108 | } else if (lvalue.isVectorElt()) { |
| 109 | ValueTy = lvalue.getType()->castAs<VectorType>()->getElementType(); |
| 110 | ValueSizeInBits = C.getTypeSize(T: ValueTy); |
| 111 | AtomicTy = lvalue.getType(); |
| 112 | AtomicSizeInBits = C.getTypeSize(T: AtomicTy); |
| 113 | AtomicAlign = ValueAlign = lvalue.getAlignment(); |
| 114 | LVal = lvalue; |
| 115 | } else { |
| 116 | assert(lvalue.isExtVectorElt()); |
| 117 | ValueTy = lvalue.getType(); |
| 118 | ValueSizeInBits = C.getTypeSize(T: ValueTy); |
| 119 | AtomicTy = ValueTy = CGF.getContext().getExtVectorType( |
| 120 | VectorType: lvalue.getType(), NumElts: cast<llvm::FixedVectorType>( |
| 121 | Val: lvalue.getExtVectorAddress().getElementType()) |
| 122 | ->getNumElements()); |
| 123 | AtomicSizeInBits = C.getTypeSize(T: AtomicTy); |
| 124 | AtomicAlign = ValueAlign = lvalue.getAlignment(); |
| 125 | LVal = lvalue; |
| 126 | } |
| 127 | UseLibcall = !C.getTargetInfo().hasBuiltinAtomic( |
| 128 | AtomicSizeInBits, AlignmentInBits: C.toBits(CharSize: lvalue.getAlignment())); |
| 129 | } |
| 130 | |
| 131 | QualType getAtomicType() const { return AtomicTy; } |
| 132 | QualType getValueType() const { return ValueTy; } |
| 133 | CharUnits getAtomicAlignment() const { return AtomicAlign; } |
| 134 | uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; } |
| 135 | uint64_t getValueSizeInBits() const { return ValueSizeInBits; } |
| 136 | TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; } |
| 137 | bool shouldUseLibcall() const { return UseLibcall; } |
| 138 | const LValue &getAtomicLValue() const { return LVal; } |
| 139 | llvm::Value *getAtomicPointer() const { |
| 140 | if (LVal.isSimple()) |
| 141 | return LVal.emitRawPointer(CGF); |
| 142 | else if (LVal.isBitField()) |
| 143 | return LVal.getRawBitFieldPointer(CGF); |
| 144 | else if (LVal.isVectorElt()) |
| 145 | return LVal.getRawVectorPointer(CGF); |
| 146 | assert(LVal.isExtVectorElt()); |
| 147 | return LVal.getRawExtVectorPointer(CGF); |
| 148 | } |
| 149 | Address getAtomicAddress() const { |
| 150 | llvm::Type *ElTy; |
| 151 | if (LVal.isSimple()) |
| 152 | ElTy = LVal.getAddress().getElementType(); |
| 153 | else if (LVal.isBitField()) |
| 154 | ElTy = LVal.getBitFieldAddress().getElementType(); |
| 155 | else if (LVal.isVectorElt()) |
| 156 | ElTy = LVal.getVectorAddress().getElementType(); |
| 157 | else |
| 158 | ElTy = LVal.getExtVectorAddress().getElementType(); |
| 159 | return Address(getAtomicPointer(), ElTy, getAtomicAlignment()); |
| 160 | } |
| 161 | |
| 162 | Address getAtomicAddressAsAtomicIntPointer() const { |
| 163 | return castToAtomicIntPointer(Addr: getAtomicAddress()); |
| 164 | } |
| 165 | |
| 166 | /// Is the atomic size larger than the underlying value type? |
| 167 | /// |
| 168 | /// Note that the absence of padding does not mean that atomic |
| 169 | /// objects are completely interchangeable with non-atomic |
| 170 | /// objects: we might have promoted the alignment of a type |
| 171 | /// without making it bigger. |
| 172 | bool hasPadding() const { |
| 173 | return (ValueSizeInBits != AtomicSizeInBits); |
| 174 | } |
| 175 | |
| 176 | bool emitMemSetZeroIfNecessary() const; |
| 177 | |
| 178 | llvm::Value *getAtomicSizeValue() const { |
| 179 | CharUnits size = CGF.getContext().toCharUnitsFromBits(BitSize: AtomicSizeInBits); |
| 180 | return CGF.CGM.getSize(numChars: size); |
| 181 | } |
| 182 | |
| 183 | /// Cast the given pointer to an integer pointer suitable for atomic |
| 184 | /// operations if the source. |
| 185 | Address castToAtomicIntPointer(Address Addr) const; |
| 186 | |
| 187 | /// If Addr is compatible with the iN that will be used for an atomic |
| 188 | /// operation, bitcast it. Otherwise, create a temporary that is suitable |
| 189 | /// and copy the value across. |
| 190 | Address convertToAtomicIntPointer(Address Addr) const; |
| 191 | |
| 192 | /// Turn an atomic-layout object into an r-value. |
| 193 | RValue convertAtomicTempToRValue(Address addr, AggValueSlot resultSlot, |
| 194 | SourceLocation loc, bool AsValue) const; |
| 195 | |
| 196 | llvm::Value *getScalarRValValueOrNull(RValue RVal) const; |
| 197 | |
| 198 | /// Converts an rvalue to integer value if needed. |
| 199 | llvm::Value *convertRValueToInt(RValue RVal, bool CmpXchg = false) const; |
| 200 | |
| 201 | RValue ConvertToValueOrAtomic(llvm::Value *IntVal, AggValueSlot ResultSlot, |
| 202 | SourceLocation Loc, bool AsValue, |
| 203 | bool CmpXchg = false) const; |
| 204 | |
| 205 | /// Copy an atomic r-value into atomic-layout memory. |
| 206 | void emitCopyIntoMemory(RValue rvalue) const; |
| 207 | |
| 208 | /// Project an l-value down to the value field. |
| 209 | LValue projectValue() const { |
| 210 | assert(LVal.isSimple()); |
| 211 | Address addr = getAtomicAddress(); |
| 212 | if (hasPadding()) |
| 213 | addr = CGF.Builder.CreateStructGEP(Addr: addr, Index: 0); |
| 214 | |
| 215 | return LValue::MakeAddr(Addr: addr, type: getValueType(), Context&: CGF.getContext(), |
| 216 | BaseInfo: LVal.getBaseInfo(), TBAAInfo: LVal.getTBAAInfo()); |
| 217 | } |
| 218 | |
| 219 | /// Emits atomic load. |
| 220 | /// \returns Loaded value. |
| 221 | RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, |
| 222 | bool AsValue, llvm::AtomicOrdering AO, |
| 223 | bool IsVolatile); |
| 224 | |
| 225 | /// Emits atomic compare-and-exchange sequence. |
| 226 | /// \param Expected Expected value. |
| 227 | /// \param Desired Desired value. |
| 228 | /// \param Success Atomic ordering for success operation. |
| 229 | /// \param Failure Atomic ordering for failed operation. |
| 230 | /// \param IsWeak true if atomic operation is weak, false otherwise. |
| 231 | /// \returns Pair of values: previous value from storage (value type) and |
| 232 | /// boolean flag (i1 type) with true if success and false otherwise. |
| 233 | std::pair<RValue, llvm::Value *> |
| 234 | EmitAtomicCompareExchange(RValue Expected, RValue Desired, |
| 235 | llvm::AtomicOrdering Success = |
| 236 | llvm::AtomicOrdering::SequentiallyConsistent, |
| 237 | llvm::AtomicOrdering Failure = |
| 238 | llvm::AtomicOrdering::SequentiallyConsistent, |
| 239 | bool IsWeak = false); |
| 240 | |
| 241 | /// Emits atomic update. |
| 242 | /// \param AO Atomic ordering. |
| 243 | /// \param UpdateOp Update operation for the current lvalue. |
| 244 | void EmitAtomicUpdate(llvm::AtomicOrdering AO, |
| 245 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
| 246 | bool IsVolatile); |
| 247 | /// Emits atomic update. |
| 248 | /// \param AO Atomic ordering. |
| 249 | void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, |
| 250 | bool IsVolatile); |
| 251 | |
| 252 | /// Materialize an atomic r-value in atomic-layout memory. |
| 253 | Address materializeRValue(RValue rvalue) const; |
| 254 | |
| 255 | /// Creates temp alloca for intermediate operations on atomic value. |
| 256 | Address CreateTempAlloca() const; |
| 257 | private: |
| 258 | bool requiresMemSetZero(llvm::Type *type) const; |
| 259 | |
| 260 | |
| 261 | /// Emits atomic load as a libcall. |
| 262 | void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, |
| 263 | llvm::AtomicOrdering AO, bool IsVolatile); |
| 264 | /// Emits atomic load as LLVM instruction. |
| 265 | llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile, |
| 266 | bool CmpXchg = false); |
| 267 | /// Emits atomic compare-and-exchange op as a libcall. |
| 268 | llvm::Value *EmitAtomicCompareExchangeLibcall( |
| 269 | llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr, |
| 270 | llvm::AtomicOrdering Success = |
| 271 | llvm::AtomicOrdering::SequentiallyConsistent, |
| 272 | llvm::AtomicOrdering Failure = |
| 273 | llvm::AtomicOrdering::SequentiallyConsistent); |
| 274 | /// Emits atomic compare-and-exchange op as LLVM instruction. |
| 275 | std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp( |
| 276 | llvm::Value *ExpectedVal, llvm::Value *DesiredVal, |
| 277 | llvm::AtomicOrdering Success = |
| 278 | llvm::AtomicOrdering::SequentiallyConsistent, |
| 279 | llvm::AtomicOrdering Failure = |
| 280 | llvm::AtomicOrdering::SequentiallyConsistent, |
| 281 | bool IsWeak = false); |
| 282 | /// Emit atomic update as libcalls. |
| 283 | void |
| 284 | EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, |
| 285 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
| 286 | bool IsVolatile); |
| 287 | /// Emit atomic update as LLVM instructions. |
| 288 | void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, |
| 289 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
| 290 | bool IsVolatile); |
| 291 | /// Emit atomic update as libcalls. |
| 292 | void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal, |
| 293 | bool IsVolatile); |
| 294 | /// Emit atomic update as LLVM instructions. |
| 295 | void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal, |
| 296 | bool IsVolatile); |
| 297 | }; |
| 298 | } |
| 299 | |
| 300 | Address AtomicInfo::CreateTempAlloca() const { |
| 301 | Address TempAlloca = CGF.CreateMemTemp( |
| 302 | T: (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy |
| 303 | : AtomicTy, |
| 304 | Align: getAtomicAlignment(), |
| 305 | Name: "atomic-temp" ); |
| 306 | // Cast to pointer to value type for bitfields. |
| 307 | if (LVal.isBitField()) |
| 308 | return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
| 309 | Addr: TempAlloca, Ty: getAtomicAddress().getType(), |
| 310 | ElementTy: getAtomicAddress().getElementType()); |
| 311 | return TempAlloca; |
| 312 | } |
| 313 | |
| 314 | static RValue emitAtomicLibcall(CodeGenFunction &CGF, |
| 315 | StringRef fnName, |
| 316 | QualType resultType, |
| 317 | CallArgList &args) { |
| 318 | const CGFunctionInfo &fnInfo = |
| 319 | CGF.CGM.getTypes().arrangeBuiltinFunctionCall(resultType, args); |
| 320 | llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(Info: fnInfo); |
| 321 | llvm::AttrBuilder fnAttrB(CGF.getLLVMContext()); |
| 322 | fnAttrB.addAttribute(Val: llvm::Attribute::NoUnwind); |
| 323 | fnAttrB.addAttribute(Val: llvm::Attribute::WillReturn); |
| 324 | llvm::AttributeList fnAttrs = llvm::AttributeList::get( |
| 325 | C&: CGF.getLLVMContext(), Index: llvm::AttributeList::FunctionIndex, B: fnAttrB); |
| 326 | |
| 327 | llvm::FunctionCallee fn = |
| 328 | CGF.CGM.CreateRuntimeFunction(Ty: fnTy, Name: fnName, ExtraAttrs: fnAttrs); |
| 329 | auto callee = CGCallee::forDirect(functionPtr: fn); |
| 330 | return CGF.EmitCall(CallInfo: fnInfo, Callee: callee, ReturnValue: ReturnValueSlot(), Args: args); |
| 331 | } |
| 332 | |
| 333 | /// Does a store of the given IR type modify the full expected width? |
| 334 | static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type, |
| 335 | uint64_t expectedSize) { |
| 336 | return (CGM.getDataLayout().getTypeStoreSize(Ty: type) * 8 == expectedSize); |
| 337 | } |
| 338 | |
| 339 | /// Does the atomic type require memsetting to zero before initialization? |
| 340 | /// |
| 341 | /// The IR type is provided as a way of making certain queries faster. |
| 342 | bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const { |
| 343 | // If the atomic type has size padding, we definitely need a memset. |
| 344 | if (hasPadding()) return true; |
| 345 | |
| 346 | // Otherwise, do some simple heuristics to try to avoid it: |
| 347 | switch (getEvaluationKind()) { |
| 348 | // For scalars and complexes, check whether the store size of the |
| 349 | // type uses the full size. |
| 350 | case TEK_Scalar: |
| 351 | return !isFullSizeType(CGM&: CGF.CGM, type, expectedSize: AtomicSizeInBits); |
| 352 | case TEK_Complex: |
| 353 | return !isFullSizeType(CGM&: CGF.CGM, type: type->getStructElementType(N: 0), |
| 354 | expectedSize: AtomicSizeInBits / 2); |
| 355 | |
| 356 | // Padding in structs has an undefined bit pattern. User beware. |
| 357 | case TEK_Aggregate: |
| 358 | return false; |
| 359 | } |
| 360 | llvm_unreachable("bad evaluation kind" ); |
| 361 | } |
| 362 | |
| 363 | bool AtomicInfo::emitMemSetZeroIfNecessary() const { |
| 364 | assert(LVal.isSimple()); |
| 365 | Address addr = LVal.getAddress(); |
| 366 | if (!requiresMemSetZero(type: addr.getElementType())) |
| 367 | return false; |
| 368 | |
| 369 | CGF.Builder.CreateMemSet( |
| 370 | Ptr: addr.emitRawPointer(CGF), Val: llvm::ConstantInt::get(Ty: CGF.Int8Ty, V: 0), |
| 371 | Size: CGF.getContext().toCharUnitsFromBits(BitSize: AtomicSizeInBits).getQuantity(), |
| 372 | Align: LVal.getAlignment().getAsAlign()); |
| 373 | return true; |
| 374 | } |
| 375 | |
| 376 | static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak, |
| 377 | Address Dest, Address Ptr, |
| 378 | Address Val1, Address Val2, |
| 379 | uint64_t Size, |
| 380 | llvm::AtomicOrdering SuccessOrder, |
| 381 | llvm::AtomicOrdering FailureOrder, |
| 382 | llvm::SyncScope::ID Scope) { |
| 383 | // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment. |
| 384 | llvm::Value *Expected = CGF.Builder.CreateLoad(Addr: Val1); |
| 385 | llvm::Value *Desired = CGF.Builder.CreateLoad(Addr: Val2); |
| 386 | |
| 387 | llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg( |
| 388 | Addr: Ptr, Cmp: Expected, New: Desired, SuccessOrdering: SuccessOrder, FailureOrdering: FailureOrder, SSID: Scope); |
| 389 | Pair->setVolatile(E->isVolatile()); |
| 390 | Pair->setWeak(IsWeak); |
| 391 | CGF.getTargetHooks().setTargetAtomicMetadata(CGF, AtomicInst&: *Pair, Expr: E); |
| 392 | |
| 393 | // Cmp holds the result of the compare-exchange operation: true on success, |
| 394 | // false on failure. |
| 395 | llvm::Value *Old = CGF.Builder.CreateExtractValue(Agg: Pair, Idxs: 0); |
| 396 | llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Agg: Pair, Idxs: 1); |
| 397 | |
| 398 | // This basic block is used to hold the store instruction if the operation |
| 399 | // failed. |
| 400 | llvm::BasicBlock *StoreExpectedBB = |
| 401 | CGF.createBasicBlock(name: "cmpxchg.store_expected" , parent: CGF.CurFn); |
| 402 | |
| 403 | // This basic block is the exit point of the operation, we should end up |
| 404 | // here regardless of whether or not the operation succeeded. |
| 405 | llvm::BasicBlock *ContinueBB = |
| 406 | CGF.createBasicBlock(name: "cmpxchg.continue" , parent: CGF.CurFn); |
| 407 | |
| 408 | // Update Expected if Expected isn't equal to Old, otherwise branch to the |
| 409 | // exit point. |
| 410 | CGF.Builder.CreateCondBr(Cond: Cmp, True: ContinueBB, False: StoreExpectedBB); |
| 411 | |
| 412 | CGF.Builder.SetInsertPoint(StoreExpectedBB); |
| 413 | // Update the memory at Expected with Old's value. |
| 414 | auto *I = CGF.Builder.CreateStore(Val: Old, Addr: Val1); |
| 415 | CGF.addInstToCurrentSourceAtom(KeyInstruction: I, Backup: Old); |
| 416 | |
| 417 | // Finally, branch to the exit point. |
| 418 | CGF.Builder.CreateBr(Dest: ContinueBB); |
| 419 | |
| 420 | CGF.Builder.SetInsertPoint(ContinueBB); |
| 421 | // Update the memory at Dest with Cmp's value. |
| 422 | CGF.EmitStoreOfScalar(value: Cmp, lvalue: CGF.MakeAddrLValue(Addr: Dest, T: E->getType())); |
| 423 | } |
| 424 | |
| 425 | /// Given an ordering required on success, emit all possible cmpxchg |
| 426 | /// instructions to cope with the provided (but possibly only dynamically known) |
| 427 | /// FailureOrder. |
| 428 | static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E, |
| 429 | bool IsWeak, Address Dest, Address Ptr, |
| 430 | Address Val1, Address Val2, |
| 431 | llvm::Value *FailureOrderVal, |
| 432 | uint64_t Size, |
| 433 | llvm::AtomicOrdering SuccessOrder, |
| 434 | llvm::SyncScope::ID Scope) { |
| 435 | llvm::AtomicOrdering FailureOrder; |
| 436 | if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(Val: FailureOrderVal)) { |
| 437 | auto FOS = FO->getSExtValue(); |
| 438 | if (!llvm::isValidAtomicOrderingCABI(I: FOS)) |
| 439 | FailureOrder = llvm::AtomicOrdering::Monotonic; |
| 440 | else |
| 441 | switch ((llvm::AtomicOrderingCABI)FOS) { |
| 442 | case llvm::AtomicOrderingCABI::relaxed: |
| 443 | // 31.7.2.18: "The failure argument shall not be memory_order_release |
| 444 | // nor memory_order_acq_rel". Fallback to monotonic. |
| 445 | case llvm::AtomicOrderingCABI::release: |
| 446 | case llvm::AtomicOrderingCABI::acq_rel: |
| 447 | FailureOrder = llvm::AtomicOrdering::Monotonic; |
| 448 | break; |
| 449 | case llvm::AtomicOrderingCABI::consume: |
| 450 | case llvm::AtomicOrderingCABI::acquire: |
| 451 | FailureOrder = llvm::AtomicOrdering::Acquire; |
| 452 | break; |
| 453 | case llvm::AtomicOrderingCABI::seq_cst: |
| 454 | FailureOrder = llvm::AtomicOrdering::SequentiallyConsistent; |
| 455 | break; |
| 456 | } |
| 457 | // Prior to c++17, "the failure argument shall be no stronger than the |
| 458 | // success argument". This condition has been lifted and the only |
| 459 | // precondition is 31.7.2.18. Effectively treat this as a DR and skip |
| 460 | // language version checks. |
| 461 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, |
| 462 | FailureOrder, Scope); |
| 463 | return; |
| 464 | } |
| 465 | |
| 466 | // Create all the relevant BB's |
| 467 | auto *MonotonicBB = CGF.createBasicBlock(name: "monotonic_fail" , parent: CGF.CurFn); |
| 468 | auto *AcquireBB = CGF.createBasicBlock(name: "acquire_fail" , parent: CGF.CurFn); |
| 469 | auto *SeqCstBB = CGF.createBasicBlock(name: "seqcst_fail" , parent: CGF.CurFn); |
| 470 | auto *ContBB = CGF.createBasicBlock(name: "atomic.continue" , parent: CGF.CurFn); |
| 471 | |
| 472 | // MonotonicBB is arbitrarily chosen as the default case; in practice, this |
| 473 | // doesn't matter unless someone is crazy enough to use something that |
| 474 | // doesn't fold to a constant for the ordering. |
| 475 | llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(V: FailureOrderVal, Dest: MonotonicBB); |
| 476 | // Implemented as acquire, since it's the closest in LLVM. |
| 477 | SI->addCase(OnVal: CGF.Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::consume), |
| 478 | Dest: AcquireBB); |
| 479 | SI->addCase(OnVal: CGF.Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::acquire), |
| 480 | Dest: AcquireBB); |
| 481 | SI->addCase(OnVal: CGF.Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::seq_cst), |
| 482 | Dest: SeqCstBB); |
| 483 | |
| 484 | // Emit all the different atomics |
| 485 | CGF.Builder.SetInsertPoint(MonotonicBB); |
| 486 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, |
| 487 | Size, SuccessOrder, FailureOrder: llvm::AtomicOrdering::Monotonic, Scope); |
| 488 | CGF.Builder.CreateBr(Dest: ContBB); |
| 489 | |
| 490 | CGF.Builder.SetInsertPoint(AcquireBB); |
| 491 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, |
| 492 | FailureOrder: llvm::AtomicOrdering::Acquire, Scope); |
| 493 | CGF.Builder.CreateBr(Dest: ContBB); |
| 494 | |
| 495 | CGF.Builder.SetInsertPoint(SeqCstBB); |
| 496 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, |
| 497 | FailureOrder: llvm::AtomicOrdering::SequentiallyConsistent, Scope); |
| 498 | CGF.Builder.CreateBr(Dest: ContBB); |
| 499 | |
| 500 | CGF.Builder.SetInsertPoint(ContBB); |
| 501 | } |
| 502 | |
| 503 | /// Duplicate the atomic min/max operation in conventional IR for the builtin |
| 504 | /// variants that return the new rather than the original value. |
| 505 | static llvm::Value *EmitPostAtomicMinMax(CGBuilderTy &Builder, |
| 506 | AtomicExpr::AtomicOp Op, |
| 507 | bool IsSigned, |
| 508 | llvm::Value *OldVal, |
| 509 | llvm::Value *RHS) { |
| 510 | llvm::CmpInst::Predicate Pred; |
| 511 | switch (Op) { |
| 512 | default: |
| 513 | llvm_unreachable("Unexpected min/max operation" ); |
| 514 | case AtomicExpr::AO__atomic_max_fetch: |
| 515 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
| 516 | Pred = IsSigned ? llvm::CmpInst::ICMP_SGT : llvm::CmpInst::ICMP_UGT; |
| 517 | break; |
| 518 | case AtomicExpr::AO__atomic_min_fetch: |
| 519 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
| 520 | Pred = IsSigned ? llvm::CmpInst::ICMP_SLT : llvm::CmpInst::ICMP_ULT; |
| 521 | break; |
| 522 | } |
| 523 | llvm::Value *Cmp = Builder.CreateICmp(P: Pred, LHS: OldVal, RHS, Name: "tst" ); |
| 524 | return Builder.CreateSelect(C: Cmp, True: OldVal, False: RHS, Name: "newval" ); |
| 525 | } |
| 526 | |
| 527 | static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, Address Dest, |
| 528 | Address Ptr, Address Val1, Address Val2, |
| 529 | llvm::Value *IsWeak, llvm::Value *FailureOrder, |
| 530 | uint64_t Size, llvm::AtomicOrdering Order, |
| 531 | llvm::SyncScope::ID Scope) { |
| 532 | llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; |
| 533 | bool PostOpMinMax = false; |
| 534 | unsigned PostOp = 0; |
| 535 | |
| 536 | switch (E->getOp()) { |
| 537 | case AtomicExpr::AO__c11_atomic_init: |
| 538 | case AtomicExpr::AO__opencl_atomic_init: |
| 539 | llvm_unreachable("Already handled!" ); |
| 540 | |
| 541 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
| 542 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
| 543 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
| 544 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeak: false, Dest, Ptr, Val1, Val2, |
| 545 | FailureOrderVal: FailureOrder, Size, SuccessOrder: Order, Scope); |
| 546 | return; |
| 547 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
| 548 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
| 549 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
| 550 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeak: true, Dest, Ptr, Val1, Val2, |
| 551 | FailureOrderVal: FailureOrder, Size, SuccessOrder: Order, Scope); |
| 552 | return; |
| 553 | case AtomicExpr::AO__atomic_compare_exchange: |
| 554 | case AtomicExpr::AO__atomic_compare_exchange_n: |
| 555 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
| 556 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: { |
| 557 | if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(Val: IsWeak)) { |
| 558 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeak: IsWeakC->getZExtValue(), Dest, Ptr, |
| 559 | Val1, Val2, FailureOrderVal: FailureOrder, Size, SuccessOrder: Order, Scope); |
| 560 | } else { |
| 561 | // Create all the relevant BB's |
| 562 | llvm::BasicBlock *StrongBB = |
| 563 | CGF.createBasicBlock(name: "cmpxchg.strong" , parent: CGF.CurFn); |
| 564 | llvm::BasicBlock *WeakBB = CGF.createBasicBlock(name: "cmxchg.weak" , parent: CGF.CurFn); |
| 565 | llvm::BasicBlock *ContBB = |
| 566 | CGF.createBasicBlock(name: "cmpxchg.continue" , parent: CGF.CurFn); |
| 567 | |
| 568 | llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(V: IsWeak, Dest: WeakBB); |
| 569 | SI->addCase(OnVal: CGF.Builder.getInt1(V: false), Dest: StrongBB); |
| 570 | |
| 571 | CGF.Builder.SetInsertPoint(StrongBB); |
| 572 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeak: false, Dest, Ptr, Val1, Val2, |
| 573 | FailureOrderVal: FailureOrder, Size, SuccessOrder: Order, Scope); |
| 574 | CGF.Builder.CreateBr(Dest: ContBB); |
| 575 | |
| 576 | CGF.Builder.SetInsertPoint(WeakBB); |
| 577 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeak: true, Dest, Ptr, Val1, Val2, |
| 578 | FailureOrderVal: FailureOrder, Size, SuccessOrder: Order, Scope); |
| 579 | CGF.Builder.CreateBr(Dest: ContBB); |
| 580 | |
| 581 | CGF.Builder.SetInsertPoint(ContBB); |
| 582 | } |
| 583 | return; |
| 584 | } |
| 585 | case AtomicExpr::AO__c11_atomic_load: |
| 586 | case AtomicExpr::AO__opencl_atomic_load: |
| 587 | case AtomicExpr::AO__hip_atomic_load: |
| 588 | case AtomicExpr::AO__atomic_load_n: |
| 589 | case AtomicExpr::AO__atomic_load: |
| 590 | case AtomicExpr::AO__scoped_atomic_load_n: |
| 591 | case AtomicExpr::AO__scoped_atomic_load: { |
| 592 | llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr: Ptr); |
| 593 | Load->setAtomic(Ordering: Order, SSID: Scope); |
| 594 | Load->setVolatile(E->isVolatile()); |
| 595 | CGF.maybeAttachRangeForLoad(Load, Ty: E->getValueType(), Loc: E->getExprLoc()); |
| 596 | auto *I = CGF.Builder.CreateStore(Val: Load, Addr: Dest); |
| 597 | CGF.addInstToCurrentSourceAtom(KeyInstruction: I, Backup: Load); |
| 598 | return; |
| 599 | } |
| 600 | |
| 601 | case AtomicExpr::AO__c11_atomic_store: |
| 602 | case AtomicExpr::AO__opencl_atomic_store: |
| 603 | case AtomicExpr::AO__hip_atomic_store: |
| 604 | case AtomicExpr::AO__atomic_store: |
| 605 | case AtomicExpr::AO__atomic_store_n: |
| 606 | case AtomicExpr::AO__scoped_atomic_store: |
| 607 | case AtomicExpr::AO__scoped_atomic_store_n: { |
| 608 | llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Addr: Val1); |
| 609 | llvm::StoreInst *Store = CGF.Builder.CreateStore(Val: LoadVal1, Addr: Ptr); |
| 610 | Store->setAtomic(Ordering: Order, SSID: Scope); |
| 611 | Store->setVolatile(E->isVolatile()); |
| 612 | CGF.addInstToCurrentSourceAtom(KeyInstruction: Store, Backup: LoadVal1); |
| 613 | return; |
| 614 | } |
| 615 | |
| 616 | case AtomicExpr::AO__c11_atomic_exchange: |
| 617 | case AtomicExpr::AO__hip_atomic_exchange: |
| 618 | case AtomicExpr::AO__opencl_atomic_exchange: |
| 619 | case AtomicExpr::AO__atomic_exchange_n: |
| 620 | case AtomicExpr::AO__atomic_exchange: |
| 621 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
| 622 | case AtomicExpr::AO__scoped_atomic_exchange: |
| 623 | Op = llvm::AtomicRMWInst::Xchg; |
| 624 | break; |
| 625 | |
| 626 | case AtomicExpr::AO__atomic_add_fetch: |
| 627 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
| 628 | PostOp = E->getValueType()->isFloatingType() ? llvm::Instruction::FAdd |
| 629 | : llvm::Instruction::Add; |
| 630 | [[fallthrough]]; |
| 631 | case AtomicExpr::AO__c11_atomic_fetch_add: |
| 632 | case AtomicExpr::AO__hip_atomic_fetch_add: |
| 633 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
| 634 | case AtomicExpr::AO__atomic_fetch_add: |
| 635 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
| 636 | Op = E->getValueType()->isFloatingType() ? llvm::AtomicRMWInst::FAdd |
| 637 | : llvm::AtomicRMWInst::Add; |
| 638 | break; |
| 639 | |
| 640 | case AtomicExpr::AO__atomic_sub_fetch: |
| 641 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
| 642 | PostOp = E->getValueType()->isFloatingType() ? llvm::Instruction::FSub |
| 643 | : llvm::Instruction::Sub; |
| 644 | [[fallthrough]]; |
| 645 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
| 646 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
| 647 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
| 648 | case AtomicExpr::AO__atomic_fetch_sub: |
| 649 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
| 650 | Op = E->getValueType()->isFloatingType() ? llvm::AtomicRMWInst::FSub |
| 651 | : llvm::AtomicRMWInst::Sub; |
| 652 | break; |
| 653 | |
| 654 | case AtomicExpr::AO__atomic_min_fetch: |
| 655 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
| 656 | PostOpMinMax = true; |
| 657 | [[fallthrough]]; |
| 658 | case AtomicExpr::AO__c11_atomic_fetch_min: |
| 659 | case AtomicExpr::AO__hip_atomic_fetch_min: |
| 660 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
| 661 | case AtomicExpr::AO__atomic_fetch_min: |
| 662 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
| 663 | Op = E->getValueType()->isFloatingType() |
| 664 | ? llvm::AtomicRMWInst::FMin |
| 665 | : (E->getValueType()->isSignedIntegerType() |
| 666 | ? llvm::AtomicRMWInst::Min |
| 667 | : llvm::AtomicRMWInst::UMin); |
| 668 | break; |
| 669 | |
| 670 | case AtomicExpr::AO__atomic_max_fetch: |
| 671 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
| 672 | PostOpMinMax = true; |
| 673 | [[fallthrough]]; |
| 674 | case AtomicExpr::AO__c11_atomic_fetch_max: |
| 675 | case AtomicExpr::AO__hip_atomic_fetch_max: |
| 676 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
| 677 | case AtomicExpr::AO__atomic_fetch_max: |
| 678 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
| 679 | Op = E->getValueType()->isFloatingType() |
| 680 | ? llvm::AtomicRMWInst::FMax |
| 681 | : (E->getValueType()->isSignedIntegerType() |
| 682 | ? llvm::AtomicRMWInst::Max |
| 683 | : llvm::AtomicRMWInst::UMax); |
| 684 | break; |
| 685 | |
| 686 | case AtomicExpr::AO__atomic_and_fetch: |
| 687 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
| 688 | PostOp = llvm::Instruction::And; |
| 689 | [[fallthrough]]; |
| 690 | case AtomicExpr::AO__c11_atomic_fetch_and: |
| 691 | case AtomicExpr::AO__hip_atomic_fetch_and: |
| 692 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
| 693 | case AtomicExpr::AO__atomic_fetch_and: |
| 694 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
| 695 | Op = llvm::AtomicRMWInst::And; |
| 696 | break; |
| 697 | |
| 698 | case AtomicExpr::AO__atomic_or_fetch: |
| 699 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
| 700 | PostOp = llvm::Instruction::Or; |
| 701 | [[fallthrough]]; |
| 702 | case AtomicExpr::AO__c11_atomic_fetch_or: |
| 703 | case AtomicExpr::AO__hip_atomic_fetch_or: |
| 704 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
| 705 | case AtomicExpr::AO__atomic_fetch_or: |
| 706 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
| 707 | Op = llvm::AtomicRMWInst::Or; |
| 708 | break; |
| 709 | |
| 710 | case AtomicExpr::AO__atomic_xor_fetch: |
| 711 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
| 712 | PostOp = llvm::Instruction::Xor; |
| 713 | [[fallthrough]]; |
| 714 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
| 715 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
| 716 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
| 717 | case AtomicExpr::AO__atomic_fetch_xor: |
| 718 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
| 719 | Op = llvm::AtomicRMWInst::Xor; |
| 720 | break; |
| 721 | |
| 722 | case AtomicExpr::AO__atomic_nand_fetch: |
| 723 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
| 724 | PostOp = llvm::Instruction::And; // the NOT is special cased below |
| 725 | [[fallthrough]]; |
| 726 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
| 727 | case AtomicExpr::AO__atomic_fetch_nand: |
| 728 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
| 729 | Op = llvm::AtomicRMWInst::Nand; |
| 730 | break; |
| 731 | |
| 732 | case AtomicExpr::AO__atomic_test_and_set: { |
| 733 | llvm::AtomicRMWInst *RMWI = |
| 734 | CGF.emitAtomicRMWInst(Op: llvm::AtomicRMWInst::Xchg, Addr: Ptr, |
| 735 | Val: CGF.Builder.getInt8(C: 1), Order, SSID: Scope, AE: E); |
| 736 | RMWI->setVolatile(E->isVolatile()); |
| 737 | llvm::Value *Result = CGF.Builder.CreateIsNotNull(Arg: RMWI, Name: "tobool" ); |
| 738 | auto *I = CGF.Builder.CreateStore(Val: Result, Addr: Dest); |
| 739 | CGF.addInstToCurrentSourceAtom(KeyInstruction: I, Backup: Result); |
| 740 | return; |
| 741 | } |
| 742 | |
| 743 | case AtomicExpr::AO__atomic_clear: { |
| 744 | llvm::StoreInst *Store = |
| 745 | CGF.Builder.CreateStore(Val: CGF.Builder.getInt8(C: 0), Addr: Ptr); |
| 746 | Store->setAtomic(Ordering: Order, SSID: Scope); |
| 747 | Store->setVolatile(E->isVolatile()); |
| 748 | CGF.addInstToCurrentSourceAtom(KeyInstruction: Store, Backup: nullptr); |
| 749 | return; |
| 750 | } |
| 751 | } |
| 752 | |
| 753 | llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Addr: Val1); |
| 754 | llvm::AtomicRMWInst *RMWI = |
| 755 | CGF.emitAtomicRMWInst(Op, Addr: Ptr, Val: LoadVal1, Order, SSID: Scope, AE: E); |
| 756 | RMWI->setVolatile(E->isVolatile()); |
| 757 | |
| 758 | // For __atomic_*_fetch operations, perform the operation again to |
| 759 | // determine the value which was written. |
| 760 | llvm::Value *Result = RMWI; |
| 761 | if (PostOpMinMax) |
| 762 | Result = EmitPostAtomicMinMax(Builder&: CGF.Builder, Op: E->getOp(), |
| 763 | IsSigned: E->getValueType()->isSignedIntegerType(), |
| 764 | OldVal: RMWI, RHS: LoadVal1); |
| 765 | else if (PostOp) |
| 766 | Result = CGF.Builder.CreateBinOp(Opc: (llvm::Instruction::BinaryOps)PostOp, LHS: RMWI, |
| 767 | RHS: LoadVal1); |
| 768 | if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch || |
| 769 | E->getOp() == AtomicExpr::AO__scoped_atomic_nand_fetch) |
| 770 | Result = CGF.Builder.CreateNot(V: Result); |
| 771 | auto *I = CGF.Builder.CreateStore(Val: Result, Addr: Dest); |
| 772 | CGF.addInstToCurrentSourceAtom(KeyInstruction: I, Backup: Result); |
| 773 | } |
| 774 | |
| 775 | // This function emits any expression (scalar, complex, or aggregate) |
| 776 | // into a temporary alloca. |
| 777 | static Address |
| 778 | EmitValToTemp(CodeGenFunction &CGF, Expr *E) { |
| 779 | Address DeclPtr = CGF.CreateMemTemp(T: E->getType(), Name: ".atomictmp" ); |
| 780 | CGF.EmitAnyExprToMem(E, Location: DeclPtr, Quals: E->getType().getQualifiers(), |
| 781 | /*Init*/ IsInitializer: true); |
| 782 | return DeclPtr; |
| 783 | } |
| 784 | |
| 785 | static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *Expr, Address Dest, |
| 786 | Address Ptr, Address Val1, Address Val2, |
| 787 | llvm::Value *IsWeak, llvm::Value *FailureOrder, |
| 788 | uint64_t Size, llvm::AtomicOrdering Order, |
| 789 | llvm::Value *Scope) { |
| 790 | auto ScopeModel = Expr->getScopeModel(); |
| 791 | |
| 792 | // LLVM atomic instructions always have sync scope. If clang atomic |
| 793 | // expression has no scope operand, use default LLVM sync scope. |
| 794 | if (!ScopeModel) { |
| 795 | llvm::SyncScope::ID SS; |
| 796 | if (CGF.getLangOpts().OpenCL) |
| 797 | // OpenCL approach is: "The functions that do not have memory_scope |
| 798 | // argument have the same semantics as the corresponding functions with |
| 799 | // the memory_scope argument set to memory_scope_device." See ref.: |
| 800 | // https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_C.html#atomic-functions |
| 801 | SS = CGF.getTargetHooks().getLLVMSyncScopeID(LangOpts: CGF.getLangOpts(), |
| 802 | Scope: SyncScope::OpenCLDevice, |
| 803 | Ordering: Order, Ctx&: CGF.getLLVMContext()); |
| 804 | else |
| 805 | SS = llvm::SyncScope::System; |
| 806 | EmitAtomicOp(CGF, E: Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, |
| 807 | Order, Scope: SS); |
| 808 | return; |
| 809 | } |
| 810 | |
| 811 | // Handle constant scope. |
| 812 | if (auto SC = dyn_cast<llvm::ConstantInt>(Val: Scope)) { |
| 813 | auto SCID = CGF.getTargetHooks().getLLVMSyncScopeID( |
| 814 | LangOpts: CGF.CGM.getLangOpts(), Scope: ScopeModel->map(S: SC->getZExtValue()), |
| 815 | Ordering: Order, Ctx&: CGF.CGM.getLLVMContext()); |
| 816 | EmitAtomicOp(CGF, E: Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, |
| 817 | Order, Scope: SCID); |
| 818 | return; |
| 819 | } |
| 820 | |
| 821 | // Handle non-constant scope. |
| 822 | auto &Builder = CGF.Builder; |
| 823 | auto Scopes = ScopeModel->getRuntimeValues(); |
| 824 | llvm::DenseMap<unsigned, llvm::BasicBlock *> BB; |
| 825 | for (auto S : Scopes) |
| 826 | BB[S] = CGF.createBasicBlock(name: getAsString(S: ScopeModel->map(S)), parent: CGF.CurFn); |
| 827 | |
| 828 | llvm::BasicBlock *ContBB = |
| 829 | CGF.createBasicBlock(name: "atomic.scope.continue" , parent: CGF.CurFn); |
| 830 | |
| 831 | auto *SC = Builder.CreateIntCast(V: Scope, DestTy: Builder.getInt32Ty(), isSigned: false); |
| 832 | // If unsupported sync scope is encountered at run time, assume a fallback |
| 833 | // sync scope value. |
| 834 | auto FallBack = ScopeModel->getFallBackValue(); |
| 835 | llvm::SwitchInst *SI = Builder.CreateSwitch(V: SC, Dest: BB[FallBack]); |
| 836 | for (auto S : Scopes) { |
| 837 | auto *B = BB[S]; |
| 838 | if (S != FallBack) |
| 839 | SI->addCase(OnVal: Builder.getInt32(C: S), Dest: B); |
| 840 | |
| 841 | Builder.SetInsertPoint(B); |
| 842 | EmitAtomicOp(CGF, E: Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, |
| 843 | Order, |
| 844 | Scope: CGF.getTargetHooks().getLLVMSyncScopeID(LangOpts: CGF.CGM.getLangOpts(), |
| 845 | Scope: ScopeModel->map(S), |
| 846 | Ordering: Order, |
| 847 | Ctx&: CGF.getLLVMContext())); |
| 848 | Builder.CreateBr(Dest: ContBB); |
| 849 | } |
| 850 | |
| 851 | Builder.SetInsertPoint(ContBB); |
| 852 | } |
| 853 | |
| 854 | RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) { |
| 855 | ApplyAtomGroup Grp(getDebugInfo()); |
| 856 | |
| 857 | QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); |
| 858 | QualType MemTy = AtomicTy; |
| 859 | if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) |
| 860 | MemTy = AT->getValueType(); |
| 861 | llvm::Value *IsWeak = nullptr, *OrderFail = nullptr; |
| 862 | |
| 863 | Address Val1 = Address::invalid(); |
| 864 | Address Val2 = Address::invalid(); |
| 865 | Address Dest = Address::invalid(); |
| 866 | Address Ptr = EmitPointerWithAlignment(Addr: E->getPtr()); |
| 867 | |
| 868 | if (E->getOp() == AtomicExpr::AO__c11_atomic_init || |
| 869 | E->getOp() == AtomicExpr::AO__opencl_atomic_init) { |
| 870 | LValue lvalue = MakeAddrLValue(Addr: Ptr, T: AtomicTy); |
| 871 | EmitAtomicInit(E: E->getVal1(), lvalue); |
| 872 | return RValue::get(V: nullptr); |
| 873 | } |
| 874 | |
| 875 | auto TInfo = getContext().getTypeInfoInChars(T: AtomicTy); |
| 876 | uint64_t Size = TInfo.Width.getQuantity(); |
| 877 | unsigned MaxInlineWidthInBits = getTarget().getMaxAtomicInlineWidth(); |
| 878 | |
| 879 | CharUnits MaxInlineWidth = |
| 880 | getContext().toCharUnitsFromBits(BitSize: MaxInlineWidthInBits); |
| 881 | DiagnosticsEngine &Diags = CGM.getDiags(); |
| 882 | bool Misaligned = (Ptr.getAlignment() % TInfo.Width) != 0; |
| 883 | bool Oversized = getContext().toBits(CharSize: TInfo.Width) > MaxInlineWidthInBits; |
| 884 | if (Misaligned) { |
| 885 | Diags.Report(Loc: E->getBeginLoc(), DiagID: diag::warn_atomic_op_misaligned) |
| 886 | << (int)TInfo.Width.getQuantity() |
| 887 | << (int)Ptr.getAlignment().getQuantity(); |
| 888 | } |
| 889 | if (Oversized) { |
| 890 | Diags.Report(Loc: E->getBeginLoc(), DiagID: diag::warn_atomic_op_oversized) |
| 891 | << (int)TInfo.Width.getQuantity() << (int)MaxInlineWidth.getQuantity(); |
| 892 | } |
| 893 | |
| 894 | llvm::Value *Order = EmitScalarExpr(E: E->getOrder()); |
| 895 | llvm::Value *Scope = |
| 896 | E->getScopeModel() ? EmitScalarExpr(E: E->getScope()) : nullptr; |
| 897 | bool ShouldCastToIntPtrTy = true; |
| 898 | |
| 899 | switch (E->getOp()) { |
| 900 | case AtomicExpr::AO__c11_atomic_init: |
| 901 | case AtomicExpr::AO__opencl_atomic_init: |
| 902 | llvm_unreachable("Already handled above with EmitAtomicInit!" ); |
| 903 | |
| 904 | case AtomicExpr::AO__atomic_load_n: |
| 905 | case AtomicExpr::AO__scoped_atomic_load_n: |
| 906 | case AtomicExpr::AO__c11_atomic_load: |
| 907 | case AtomicExpr::AO__opencl_atomic_load: |
| 908 | case AtomicExpr::AO__hip_atomic_load: |
| 909 | case AtomicExpr::AO__atomic_test_and_set: |
| 910 | case AtomicExpr::AO__atomic_clear: |
| 911 | break; |
| 912 | |
| 913 | case AtomicExpr::AO__atomic_load: |
| 914 | case AtomicExpr::AO__scoped_atomic_load: |
| 915 | Dest = EmitPointerWithAlignment(Addr: E->getVal1()); |
| 916 | break; |
| 917 | |
| 918 | case AtomicExpr::AO__atomic_store: |
| 919 | case AtomicExpr::AO__scoped_atomic_store: |
| 920 | Val1 = EmitPointerWithAlignment(Addr: E->getVal1()); |
| 921 | break; |
| 922 | |
| 923 | case AtomicExpr::AO__atomic_exchange: |
| 924 | case AtomicExpr::AO__scoped_atomic_exchange: |
| 925 | Val1 = EmitPointerWithAlignment(Addr: E->getVal1()); |
| 926 | Dest = EmitPointerWithAlignment(Addr: E->getVal2()); |
| 927 | break; |
| 928 | |
| 929 | case AtomicExpr::AO__atomic_compare_exchange: |
| 930 | case AtomicExpr::AO__atomic_compare_exchange_n: |
| 931 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
| 932 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
| 933 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
| 934 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
| 935 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
| 936 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
| 937 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
| 938 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: |
| 939 | Val1 = EmitPointerWithAlignment(Addr: E->getVal1()); |
| 940 | if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange || |
| 941 | E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange) |
| 942 | Val2 = EmitPointerWithAlignment(Addr: E->getVal2()); |
| 943 | else |
| 944 | Val2 = EmitValToTemp(CGF&: *this, E: E->getVal2()); |
| 945 | OrderFail = EmitScalarExpr(E: E->getOrderFail()); |
| 946 | if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange_n || |
| 947 | E->getOp() == AtomicExpr::AO__atomic_compare_exchange || |
| 948 | E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange_n || |
| 949 | E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange) |
| 950 | IsWeak = EmitScalarExpr(E: E->getWeak()); |
| 951 | break; |
| 952 | |
| 953 | case AtomicExpr::AO__c11_atomic_fetch_add: |
| 954 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
| 955 | case AtomicExpr::AO__hip_atomic_fetch_add: |
| 956 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
| 957 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
| 958 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
| 959 | if (MemTy->isPointerType()) { |
| 960 | // For pointer arithmetic, we're required to do a bit of math: |
| 961 | // adding 1 to an int* is not the same as adding 1 to a uintptr_t. |
| 962 | // ... but only for the C11 builtins. The GNU builtins expect the |
| 963 | // user to multiply by sizeof(T). |
| 964 | QualType Val1Ty = E->getVal1()->getType(); |
| 965 | llvm::Value *Val1Scalar = EmitScalarExpr(E: E->getVal1()); |
| 966 | CharUnits PointeeIncAmt = |
| 967 | getContext().getTypeSizeInChars(T: MemTy->getPointeeType()); |
| 968 | Val1Scalar = Builder.CreateMul(LHS: Val1Scalar, RHS: CGM.getSize(numChars: PointeeIncAmt)); |
| 969 | auto Temp = CreateMemTemp(T: Val1Ty, Name: ".atomictmp" ); |
| 970 | Val1 = Temp; |
| 971 | EmitStoreOfScalar(value: Val1Scalar, lvalue: MakeAddrLValue(Addr: Temp, T: Val1Ty)); |
| 972 | break; |
| 973 | } |
| 974 | [[fallthrough]]; |
| 975 | case AtomicExpr::AO__atomic_fetch_add: |
| 976 | case AtomicExpr::AO__atomic_fetch_max: |
| 977 | case AtomicExpr::AO__atomic_fetch_min: |
| 978 | case AtomicExpr::AO__atomic_fetch_sub: |
| 979 | case AtomicExpr::AO__atomic_add_fetch: |
| 980 | case AtomicExpr::AO__atomic_max_fetch: |
| 981 | case AtomicExpr::AO__atomic_min_fetch: |
| 982 | case AtomicExpr::AO__atomic_sub_fetch: |
| 983 | case AtomicExpr::AO__c11_atomic_fetch_max: |
| 984 | case AtomicExpr::AO__c11_atomic_fetch_min: |
| 985 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
| 986 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
| 987 | case AtomicExpr::AO__hip_atomic_fetch_max: |
| 988 | case AtomicExpr::AO__hip_atomic_fetch_min: |
| 989 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
| 990 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
| 991 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
| 992 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
| 993 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
| 994 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
| 995 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
| 996 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
| 997 | ShouldCastToIntPtrTy = !MemTy->isFloatingType(); |
| 998 | [[fallthrough]]; |
| 999 | |
| 1000 | case AtomicExpr::AO__atomic_fetch_and: |
| 1001 | case AtomicExpr::AO__atomic_fetch_nand: |
| 1002 | case AtomicExpr::AO__atomic_fetch_or: |
| 1003 | case AtomicExpr::AO__atomic_fetch_xor: |
| 1004 | case AtomicExpr::AO__atomic_and_fetch: |
| 1005 | case AtomicExpr::AO__atomic_nand_fetch: |
| 1006 | case AtomicExpr::AO__atomic_or_fetch: |
| 1007 | case AtomicExpr::AO__atomic_xor_fetch: |
| 1008 | case AtomicExpr::AO__atomic_store_n: |
| 1009 | case AtomicExpr::AO__atomic_exchange_n: |
| 1010 | case AtomicExpr::AO__c11_atomic_fetch_and: |
| 1011 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
| 1012 | case AtomicExpr::AO__c11_atomic_fetch_or: |
| 1013 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
| 1014 | case AtomicExpr::AO__c11_atomic_store: |
| 1015 | case AtomicExpr::AO__c11_atomic_exchange: |
| 1016 | case AtomicExpr::AO__hip_atomic_fetch_and: |
| 1017 | case AtomicExpr::AO__hip_atomic_fetch_or: |
| 1018 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
| 1019 | case AtomicExpr::AO__hip_atomic_store: |
| 1020 | case AtomicExpr::AO__hip_atomic_exchange: |
| 1021 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
| 1022 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
| 1023 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
| 1024 | case AtomicExpr::AO__opencl_atomic_store: |
| 1025 | case AtomicExpr::AO__opencl_atomic_exchange: |
| 1026 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
| 1027 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
| 1028 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
| 1029 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
| 1030 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
| 1031 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
| 1032 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
| 1033 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
| 1034 | case AtomicExpr::AO__scoped_atomic_store_n: |
| 1035 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
| 1036 | Val1 = EmitValToTemp(CGF&: *this, E: E->getVal1()); |
| 1037 | break; |
| 1038 | } |
| 1039 | |
| 1040 | QualType RValTy = E->getType().getUnqualifiedType(); |
| 1041 | |
| 1042 | // The inlined atomics only function on iN types, where N is a power of 2. We |
| 1043 | // need to make sure (via temporaries if necessary) that all incoming values |
| 1044 | // are compatible. |
| 1045 | LValue AtomicVal = MakeAddrLValue(Addr: Ptr, T: AtomicTy); |
| 1046 | AtomicInfo Atomics(*this, AtomicVal); |
| 1047 | |
| 1048 | if (ShouldCastToIntPtrTy) { |
| 1049 | Ptr = Atomics.castToAtomicIntPointer(Addr: Ptr); |
| 1050 | if (Val1.isValid()) |
| 1051 | Val1 = Atomics.convertToAtomicIntPointer(Addr: Val1); |
| 1052 | if (Val2.isValid()) |
| 1053 | Val2 = Atomics.convertToAtomicIntPointer(Addr: Val2); |
| 1054 | } |
| 1055 | if (Dest.isValid()) { |
| 1056 | if (ShouldCastToIntPtrTy) |
| 1057 | Dest = Atomics.castToAtomicIntPointer(Addr: Dest); |
| 1058 | } else if (E->isCmpXChg()) |
| 1059 | Dest = CreateMemTemp(T: RValTy, Name: "cmpxchg.bool" ); |
| 1060 | else if (!RValTy->isVoidType()) { |
| 1061 | Dest = Atomics.CreateTempAlloca(); |
| 1062 | if (ShouldCastToIntPtrTy) |
| 1063 | Dest = Atomics.castToAtomicIntPointer(Addr: Dest); |
| 1064 | } |
| 1065 | |
| 1066 | bool PowerOf2Size = (Size & (Size - 1)) == 0; |
| 1067 | bool UseLibcall = !PowerOf2Size || (Size > 16); |
| 1068 | |
| 1069 | // For atomics larger than 16 bytes, emit a libcall from the frontend. This |
| 1070 | // avoids the overhead of dealing with excessively-large value types in IR. |
| 1071 | // Non-power-of-2 values also lower to libcall here, as they are not currently |
| 1072 | // permitted in IR instructions (although that constraint could be relaxed in |
| 1073 | // the future). For other cases where a libcall is required on a given |
| 1074 | // platform, we let the backend handle it (this includes handling for all of |
| 1075 | // the size-optimized libcall variants, which are only valid up to 16 bytes.) |
| 1076 | // |
| 1077 | // See: https://llvm.org/docs/Atomics.html#libcalls-atomic |
| 1078 | if (UseLibcall) { |
| 1079 | CallArgList Args; |
| 1080 | // For non-optimized library calls, the size is the first parameter. |
| 1081 | Args.add(rvalue: RValue::get(V: llvm::ConstantInt::get(Ty: SizeTy, V: Size)), |
| 1082 | type: getContext().getSizeType()); |
| 1083 | |
| 1084 | // The atomic address is the second parameter. |
| 1085 | // The OpenCL atomic library functions only accept pointer arguments to |
| 1086 | // generic address space. |
| 1087 | auto CastToGenericAddrSpace = [&](llvm::Value *V, QualType PT) { |
| 1088 | if (!E->isOpenCL()) |
| 1089 | return V; |
| 1090 | auto AS = PT->castAs<PointerType>()->getPointeeType().getAddressSpace(); |
| 1091 | if (AS == LangAS::opencl_generic) |
| 1092 | return V; |
| 1093 | auto DestAS = getContext().getTargetAddressSpace(AS: LangAS::opencl_generic); |
| 1094 | auto *DestType = llvm::PointerType::get(C&: getLLVMContext(), AddressSpace: DestAS); |
| 1095 | |
| 1096 | return getTargetHooks().performAddrSpaceCast(CGF&: *this, V, SrcAddr: AS, DestTy: DestType, |
| 1097 | IsNonNull: false); |
| 1098 | }; |
| 1099 | |
| 1100 | Args.add(rvalue: RValue::get(V: CastToGenericAddrSpace(Ptr.emitRawPointer(CGF&: *this), |
| 1101 | E->getPtr()->getType())), |
| 1102 | type: getContext().VoidPtrTy); |
| 1103 | |
| 1104 | // The next 1-3 parameters are op-dependent. |
| 1105 | std::string LibCallName; |
| 1106 | QualType RetTy; |
| 1107 | bool HaveRetTy = false; |
| 1108 | switch (E->getOp()) { |
| 1109 | case AtomicExpr::AO__c11_atomic_init: |
| 1110 | case AtomicExpr::AO__opencl_atomic_init: |
| 1111 | llvm_unreachable("Already handled!" ); |
| 1112 | |
| 1113 | // There is only one libcall for compare an exchange, because there is no |
| 1114 | // optimisation benefit possible from a libcall version of a weak compare |
| 1115 | // and exchange. |
| 1116 | // bool __atomic_compare_exchange(size_t size, void *mem, void *expected, |
| 1117 | // void *desired, int success, int failure) |
| 1118 | case AtomicExpr::AO__atomic_compare_exchange: |
| 1119 | case AtomicExpr::AO__atomic_compare_exchange_n: |
| 1120 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
| 1121 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
| 1122 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
| 1123 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
| 1124 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
| 1125 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
| 1126 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
| 1127 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: |
| 1128 | LibCallName = "__atomic_compare_exchange" ; |
| 1129 | RetTy = getContext().BoolTy; |
| 1130 | HaveRetTy = true; |
| 1131 | Args.add(rvalue: RValue::get(V: CastToGenericAddrSpace(Val1.emitRawPointer(CGF&: *this), |
| 1132 | E->getVal1()->getType())), |
| 1133 | type: getContext().VoidPtrTy); |
| 1134 | Args.add(rvalue: RValue::get(V: CastToGenericAddrSpace(Val2.emitRawPointer(CGF&: *this), |
| 1135 | E->getVal2()->getType())), |
| 1136 | type: getContext().VoidPtrTy); |
| 1137 | Args.add(rvalue: RValue::get(V: Order), type: getContext().IntTy); |
| 1138 | Order = OrderFail; |
| 1139 | break; |
| 1140 | // void __atomic_exchange(size_t size, void *mem, void *val, void *return, |
| 1141 | // int order) |
| 1142 | case AtomicExpr::AO__atomic_exchange: |
| 1143 | case AtomicExpr::AO__atomic_exchange_n: |
| 1144 | case AtomicExpr::AO__c11_atomic_exchange: |
| 1145 | case AtomicExpr::AO__hip_atomic_exchange: |
| 1146 | case AtomicExpr::AO__opencl_atomic_exchange: |
| 1147 | case AtomicExpr::AO__scoped_atomic_exchange: |
| 1148 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
| 1149 | LibCallName = "__atomic_exchange" ; |
| 1150 | Args.add(rvalue: RValue::get(V: CastToGenericAddrSpace(Val1.emitRawPointer(CGF&: *this), |
| 1151 | E->getVal1()->getType())), |
| 1152 | type: getContext().VoidPtrTy); |
| 1153 | break; |
| 1154 | // void __atomic_store(size_t size, void *mem, void *val, int order) |
| 1155 | case AtomicExpr::AO__atomic_store: |
| 1156 | case AtomicExpr::AO__atomic_store_n: |
| 1157 | case AtomicExpr::AO__c11_atomic_store: |
| 1158 | case AtomicExpr::AO__hip_atomic_store: |
| 1159 | case AtomicExpr::AO__opencl_atomic_store: |
| 1160 | case AtomicExpr::AO__scoped_atomic_store: |
| 1161 | case AtomicExpr::AO__scoped_atomic_store_n: |
| 1162 | LibCallName = "__atomic_store" ; |
| 1163 | RetTy = getContext().VoidTy; |
| 1164 | HaveRetTy = true; |
| 1165 | Args.add(rvalue: RValue::get(V: CastToGenericAddrSpace(Val1.emitRawPointer(CGF&: *this), |
| 1166 | E->getVal1()->getType())), |
| 1167 | type: getContext().VoidPtrTy); |
| 1168 | break; |
| 1169 | // void __atomic_load(size_t size, void *mem, void *return, int order) |
| 1170 | case AtomicExpr::AO__atomic_load: |
| 1171 | case AtomicExpr::AO__atomic_load_n: |
| 1172 | case AtomicExpr::AO__c11_atomic_load: |
| 1173 | case AtomicExpr::AO__hip_atomic_load: |
| 1174 | case AtomicExpr::AO__opencl_atomic_load: |
| 1175 | case AtomicExpr::AO__scoped_atomic_load: |
| 1176 | case AtomicExpr::AO__scoped_atomic_load_n: |
| 1177 | LibCallName = "__atomic_load" ; |
| 1178 | break; |
| 1179 | case AtomicExpr::AO__atomic_add_fetch: |
| 1180 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
| 1181 | case AtomicExpr::AO__atomic_fetch_add: |
| 1182 | case AtomicExpr::AO__c11_atomic_fetch_add: |
| 1183 | case AtomicExpr::AO__hip_atomic_fetch_add: |
| 1184 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
| 1185 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
| 1186 | case AtomicExpr::AO__atomic_and_fetch: |
| 1187 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
| 1188 | case AtomicExpr::AO__atomic_fetch_and: |
| 1189 | case AtomicExpr::AO__c11_atomic_fetch_and: |
| 1190 | case AtomicExpr::AO__hip_atomic_fetch_and: |
| 1191 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
| 1192 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
| 1193 | case AtomicExpr::AO__atomic_or_fetch: |
| 1194 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
| 1195 | case AtomicExpr::AO__atomic_fetch_or: |
| 1196 | case AtomicExpr::AO__c11_atomic_fetch_or: |
| 1197 | case AtomicExpr::AO__hip_atomic_fetch_or: |
| 1198 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
| 1199 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
| 1200 | case AtomicExpr::AO__atomic_sub_fetch: |
| 1201 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
| 1202 | case AtomicExpr::AO__atomic_fetch_sub: |
| 1203 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
| 1204 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
| 1205 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
| 1206 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
| 1207 | case AtomicExpr::AO__atomic_xor_fetch: |
| 1208 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
| 1209 | case AtomicExpr::AO__atomic_fetch_xor: |
| 1210 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
| 1211 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
| 1212 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
| 1213 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
| 1214 | case AtomicExpr::AO__atomic_nand_fetch: |
| 1215 | case AtomicExpr::AO__atomic_fetch_nand: |
| 1216 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
| 1217 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
| 1218 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
| 1219 | case AtomicExpr::AO__atomic_min_fetch: |
| 1220 | case AtomicExpr::AO__atomic_fetch_min: |
| 1221 | case AtomicExpr::AO__c11_atomic_fetch_min: |
| 1222 | case AtomicExpr::AO__hip_atomic_fetch_min: |
| 1223 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
| 1224 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
| 1225 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
| 1226 | case AtomicExpr::AO__atomic_max_fetch: |
| 1227 | case AtomicExpr::AO__atomic_fetch_max: |
| 1228 | case AtomicExpr::AO__c11_atomic_fetch_max: |
| 1229 | case AtomicExpr::AO__hip_atomic_fetch_max: |
| 1230 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
| 1231 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
| 1232 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
| 1233 | case AtomicExpr::AO__atomic_test_and_set: |
| 1234 | case AtomicExpr::AO__atomic_clear: |
| 1235 | llvm_unreachable("Integral atomic operations always become atomicrmw!" ); |
| 1236 | } |
| 1237 | |
| 1238 | if (E->isOpenCL()) { |
| 1239 | LibCallName = |
| 1240 | std::string("__opencl" ) + StringRef(LibCallName).drop_front(N: 1).str(); |
| 1241 | } |
| 1242 | // By default, assume we return a value of the atomic type. |
| 1243 | if (!HaveRetTy) { |
| 1244 | // Value is returned through parameter before the order. |
| 1245 | RetTy = getContext().VoidTy; |
| 1246 | Args.add(rvalue: RValue::get( |
| 1247 | V: CastToGenericAddrSpace(Dest.emitRawPointer(CGF&: *this), RetTy)), |
| 1248 | type: getContext().VoidPtrTy); |
| 1249 | } |
| 1250 | // Order is always the last parameter. |
| 1251 | Args.add(rvalue: RValue::get(V: Order), |
| 1252 | type: getContext().IntTy); |
| 1253 | if (E->isOpenCL()) |
| 1254 | Args.add(rvalue: RValue::get(V: Scope), type: getContext().IntTy); |
| 1255 | |
| 1256 | RValue Res = emitAtomicLibcall(CGF&: *this, fnName: LibCallName, resultType: RetTy, args&: Args); |
| 1257 | // The value is returned directly from the libcall. |
| 1258 | if (E->isCmpXChg()) |
| 1259 | return Res; |
| 1260 | |
| 1261 | if (RValTy->isVoidType()) |
| 1262 | return RValue::get(V: nullptr); |
| 1263 | |
| 1264 | return convertTempToRValue(addr: Dest.withElementType(ElemTy: ConvertTypeForMem(T: RValTy)), |
| 1265 | type: RValTy, Loc: E->getExprLoc()); |
| 1266 | } |
| 1267 | |
| 1268 | bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || |
| 1269 | E->getOp() == AtomicExpr::AO__opencl_atomic_store || |
| 1270 | E->getOp() == AtomicExpr::AO__hip_atomic_store || |
| 1271 | E->getOp() == AtomicExpr::AO__atomic_store || |
| 1272 | E->getOp() == AtomicExpr::AO__atomic_store_n || |
| 1273 | E->getOp() == AtomicExpr::AO__scoped_atomic_store || |
| 1274 | E->getOp() == AtomicExpr::AO__scoped_atomic_store_n || |
| 1275 | E->getOp() == AtomicExpr::AO__atomic_clear; |
| 1276 | bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || |
| 1277 | E->getOp() == AtomicExpr::AO__opencl_atomic_load || |
| 1278 | E->getOp() == AtomicExpr::AO__hip_atomic_load || |
| 1279 | E->getOp() == AtomicExpr::AO__atomic_load || |
| 1280 | E->getOp() == AtomicExpr::AO__atomic_load_n || |
| 1281 | E->getOp() == AtomicExpr::AO__scoped_atomic_load || |
| 1282 | E->getOp() == AtomicExpr::AO__scoped_atomic_load_n; |
| 1283 | |
| 1284 | if (isa<llvm::ConstantInt>(Val: Order)) { |
| 1285 | auto ord = cast<llvm::ConstantInt>(Val: Order)->getZExtValue(); |
| 1286 | // We should not ever get to a case where the ordering isn't a valid C ABI |
| 1287 | // value, but it's hard to enforce that in general. |
| 1288 | if (llvm::isValidAtomicOrderingCABI(I: ord)) |
| 1289 | switch ((llvm::AtomicOrderingCABI)ord) { |
| 1290 | case llvm::AtomicOrderingCABI::relaxed: |
| 1291 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
| 1292 | Order: llvm::AtomicOrdering::Monotonic, Scope); |
| 1293 | break; |
| 1294 | case llvm::AtomicOrderingCABI::consume: |
| 1295 | case llvm::AtomicOrderingCABI::acquire: |
| 1296 | if (IsStore) |
| 1297 | break; // Avoid crashing on code with undefined behavior |
| 1298 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
| 1299 | Order: llvm::AtomicOrdering::Acquire, Scope); |
| 1300 | break; |
| 1301 | case llvm::AtomicOrderingCABI::release: |
| 1302 | if (IsLoad) |
| 1303 | break; // Avoid crashing on code with undefined behavior |
| 1304 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
| 1305 | Order: llvm::AtomicOrdering::Release, Scope); |
| 1306 | break; |
| 1307 | case llvm::AtomicOrderingCABI::acq_rel: |
| 1308 | if (IsLoad || IsStore) |
| 1309 | break; // Avoid crashing on code with undefined behavior |
| 1310 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
| 1311 | Order: llvm::AtomicOrdering::AcquireRelease, Scope); |
| 1312 | break; |
| 1313 | case llvm::AtomicOrderingCABI::seq_cst: |
| 1314 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
| 1315 | Order: llvm::AtomicOrdering::SequentiallyConsistent, Scope); |
| 1316 | break; |
| 1317 | } |
| 1318 | if (RValTy->isVoidType()) |
| 1319 | return RValue::get(V: nullptr); |
| 1320 | |
| 1321 | return convertTempToRValue(addr: Dest.withElementType(ElemTy: ConvertTypeForMem(T: RValTy)), |
| 1322 | type: RValTy, Loc: E->getExprLoc()); |
| 1323 | } |
| 1324 | |
| 1325 | // Long case, when Order isn't obviously constant. |
| 1326 | |
| 1327 | // Create all the relevant BB's |
| 1328 | llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr, |
| 1329 | *ReleaseBB = nullptr, *AcqRelBB = nullptr, |
| 1330 | *SeqCstBB = nullptr; |
| 1331 | MonotonicBB = createBasicBlock(name: "monotonic" , parent: CurFn); |
| 1332 | if (!IsStore) |
| 1333 | AcquireBB = createBasicBlock(name: "acquire" , parent: CurFn); |
| 1334 | if (!IsLoad) |
| 1335 | ReleaseBB = createBasicBlock(name: "release" , parent: CurFn); |
| 1336 | if (!IsLoad && !IsStore) |
| 1337 | AcqRelBB = createBasicBlock(name: "acqrel" , parent: CurFn); |
| 1338 | SeqCstBB = createBasicBlock(name: "seqcst" , parent: CurFn); |
| 1339 | llvm::BasicBlock *ContBB = createBasicBlock(name: "atomic.continue" , parent: CurFn); |
| 1340 | |
| 1341 | // Create the switch for the split |
| 1342 | // MonotonicBB is arbitrarily chosen as the default case; in practice, this |
| 1343 | // doesn't matter unless someone is crazy enough to use something that |
| 1344 | // doesn't fold to a constant for the ordering. |
| 1345 | Order = Builder.CreateIntCast(V: Order, DestTy: Builder.getInt32Ty(), isSigned: false); |
| 1346 | llvm::SwitchInst *SI = Builder.CreateSwitch(V: Order, Dest: MonotonicBB); |
| 1347 | |
| 1348 | // Emit all the different atomics |
| 1349 | Builder.SetInsertPoint(MonotonicBB); |
| 1350 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
| 1351 | Order: llvm::AtomicOrdering::Monotonic, Scope); |
| 1352 | Builder.CreateBr(Dest: ContBB); |
| 1353 | if (!IsStore) { |
| 1354 | Builder.SetInsertPoint(AcquireBB); |
| 1355 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
| 1356 | Order: llvm::AtomicOrdering::Acquire, Scope); |
| 1357 | Builder.CreateBr(Dest: ContBB); |
| 1358 | SI->addCase(OnVal: Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::consume), |
| 1359 | Dest: AcquireBB); |
| 1360 | SI->addCase(OnVal: Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::acquire), |
| 1361 | Dest: AcquireBB); |
| 1362 | } |
| 1363 | if (!IsLoad) { |
| 1364 | Builder.SetInsertPoint(ReleaseBB); |
| 1365 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
| 1366 | Order: llvm::AtomicOrdering::Release, Scope); |
| 1367 | Builder.CreateBr(Dest: ContBB); |
| 1368 | SI->addCase(OnVal: Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::release), |
| 1369 | Dest: ReleaseBB); |
| 1370 | } |
| 1371 | if (!IsLoad && !IsStore) { |
| 1372 | Builder.SetInsertPoint(AcqRelBB); |
| 1373 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
| 1374 | Order: llvm::AtomicOrdering::AcquireRelease, Scope); |
| 1375 | Builder.CreateBr(Dest: ContBB); |
| 1376 | SI->addCase(OnVal: Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::acq_rel), |
| 1377 | Dest: AcqRelBB); |
| 1378 | } |
| 1379 | Builder.SetInsertPoint(SeqCstBB); |
| 1380 | EmitAtomicOp(CGF&: *this, Expr: E, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder: OrderFail, Size, |
| 1381 | Order: llvm::AtomicOrdering::SequentiallyConsistent, Scope); |
| 1382 | Builder.CreateBr(Dest: ContBB); |
| 1383 | SI->addCase(OnVal: Builder.getInt32(C: (int)llvm::AtomicOrderingCABI::seq_cst), |
| 1384 | Dest: SeqCstBB); |
| 1385 | |
| 1386 | // Cleanup and return |
| 1387 | Builder.SetInsertPoint(ContBB); |
| 1388 | if (RValTy->isVoidType()) |
| 1389 | return RValue::get(V: nullptr); |
| 1390 | |
| 1391 | assert(Atomics.getValueSizeInBits() <= Atomics.getAtomicSizeInBits()); |
| 1392 | return convertTempToRValue(addr: Dest.withElementType(ElemTy: ConvertTypeForMem(T: RValTy)), |
| 1393 | type: RValTy, Loc: E->getExprLoc()); |
| 1394 | } |
| 1395 | |
| 1396 | Address AtomicInfo::castToAtomicIntPointer(Address addr) const { |
| 1397 | llvm::IntegerType *ty = |
| 1398 | llvm::IntegerType::get(C&: CGF.getLLVMContext(), NumBits: AtomicSizeInBits); |
| 1399 | return addr.withElementType(ElemTy: ty); |
| 1400 | } |
| 1401 | |
| 1402 | Address AtomicInfo::convertToAtomicIntPointer(Address Addr) const { |
| 1403 | llvm::Type *Ty = Addr.getElementType(); |
| 1404 | uint64_t SourceSizeInBits = CGF.CGM.getDataLayout().getTypeSizeInBits(Ty); |
| 1405 | if (SourceSizeInBits != AtomicSizeInBits) { |
| 1406 | Address Tmp = CreateTempAlloca(); |
| 1407 | CGF.Builder.CreateMemCpy(Dest: Tmp, Src: Addr, |
| 1408 | Size: std::min(a: AtomicSizeInBits, b: SourceSizeInBits) / 8); |
| 1409 | Addr = Tmp; |
| 1410 | } |
| 1411 | |
| 1412 | return castToAtomicIntPointer(addr: Addr); |
| 1413 | } |
| 1414 | |
| 1415 | RValue AtomicInfo::convertAtomicTempToRValue(Address addr, |
| 1416 | AggValueSlot resultSlot, |
| 1417 | SourceLocation loc, |
| 1418 | bool asValue) const { |
| 1419 | if (LVal.isSimple()) { |
| 1420 | if (EvaluationKind == TEK_Aggregate) |
| 1421 | return resultSlot.asRValue(); |
| 1422 | |
| 1423 | // Drill into the padding structure if we have one. |
| 1424 | if (hasPadding()) |
| 1425 | addr = CGF.Builder.CreateStructGEP(Addr: addr, Index: 0); |
| 1426 | |
| 1427 | // Otherwise, just convert the temporary to an r-value using the |
| 1428 | // normal conversion routine. |
| 1429 | return CGF.convertTempToRValue(addr, type: getValueType(), Loc: loc); |
| 1430 | } |
| 1431 | if (!asValue) |
| 1432 | // Get RValue from temp memory as atomic for non-simple lvalues |
| 1433 | return RValue::get(V: CGF.Builder.CreateLoad(Addr: addr)); |
| 1434 | if (LVal.isBitField()) |
| 1435 | return CGF.EmitLoadOfBitfieldLValue( |
| 1436 | LV: LValue::MakeBitfield(Addr: addr, Info: LVal.getBitFieldInfo(), type: LVal.getType(), |
| 1437 | BaseInfo: LVal.getBaseInfo(), TBAAInfo: TBAAAccessInfo()), Loc: loc); |
| 1438 | if (LVal.isVectorElt()) |
| 1439 | return CGF.EmitLoadOfLValue( |
| 1440 | V: LValue::MakeVectorElt(vecAddress: addr, Idx: LVal.getVectorIdx(), type: LVal.getType(), |
| 1441 | BaseInfo: LVal.getBaseInfo(), TBAAInfo: TBAAAccessInfo()), Loc: loc); |
| 1442 | assert(LVal.isExtVectorElt()); |
| 1443 | return CGF.EmitLoadOfExtVectorElementLValue(V: LValue::MakeExtVectorElt( |
| 1444 | Addr: addr, Elts: LVal.getExtVectorElts(), type: LVal.getType(), |
| 1445 | BaseInfo: LVal.getBaseInfo(), TBAAInfo: TBAAAccessInfo())); |
| 1446 | } |
| 1447 | |
| 1448 | /// Return true if \param ValTy is a type that should be casted to integer |
| 1449 | /// around the atomic memory operation. If \param CmpXchg is true, then the |
| 1450 | /// cast of a floating point type is made as that instruction can not have |
| 1451 | /// floating point operands. TODO: Allow compare-and-exchange and FP - see |
| 1452 | /// comment in AtomicExpandPass.cpp. |
| 1453 | static bool shouldCastToInt(llvm::Type *ValTy, bool CmpXchg) { |
| 1454 | if (ValTy->isFloatingPointTy()) |
| 1455 | return ValTy->isX86_FP80Ty() || CmpXchg; |
| 1456 | return !ValTy->isIntegerTy() && !ValTy->isPointerTy(); |
| 1457 | } |
| 1458 | |
| 1459 | RValue AtomicInfo::ConvertToValueOrAtomic(llvm::Value *Val, |
| 1460 | AggValueSlot ResultSlot, |
| 1461 | SourceLocation Loc, bool AsValue, |
| 1462 | bool CmpXchg) const { |
| 1463 | // Try not to in some easy cases. |
| 1464 | assert((Val->getType()->isIntegerTy() || Val->getType()->isPointerTy() || |
| 1465 | Val->getType()->isIEEELikeFPTy()) && |
| 1466 | "Expected integer, pointer or floating point value when converting " |
| 1467 | "result." ); |
| 1468 | if (getEvaluationKind() == TEK_Scalar && |
| 1469 | (((!LVal.isBitField() || |
| 1470 | LVal.getBitFieldInfo().Size == ValueSizeInBits) && |
| 1471 | !hasPadding()) || |
| 1472 | !AsValue)) { |
| 1473 | auto *ValTy = AsValue |
| 1474 | ? CGF.ConvertTypeForMem(T: ValueTy) |
| 1475 | : getAtomicAddress().getElementType(); |
| 1476 | if (!shouldCastToInt(ValTy, CmpXchg)) { |
| 1477 | assert((!ValTy->isIntegerTy() || Val->getType() == ValTy) && |
| 1478 | "Different integer types." ); |
| 1479 | return RValue::get(V: CGF.EmitFromMemory(Value: Val, Ty: ValueTy)); |
| 1480 | } |
| 1481 | if (llvm::CastInst::isBitCastable(SrcTy: Val->getType(), DestTy: ValTy)) |
| 1482 | return RValue::get(V: CGF.Builder.CreateBitCast(V: Val, DestTy: ValTy)); |
| 1483 | } |
| 1484 | |
| 1485 | // Create a temporary. This needs to be big enough to hold the |
| 1486 | // atomic integer. |
| 1487 | Address Temp = Address::invalid(); |
| 1488 | bool TempIsVolatile = false; |
| 1489 | if (AsValue && getEvaluationKind() == TEK_Aggregate) { |
| 1490 | assert(!ResultSlot.isIgnored()); |
| 1491 | Temp = ResultSlot.getAddress(); |
| 1492 | TempIsVolatile = ResultSlot.isVolatile(); |
| 1493 | } else { |
| 1494 | Temp = CreateTempAlloca(); |
| 1495 | } |
| 1496 | |
| 1497 | // Slam the integer into the temporary. |
| 1498 | Address CastTemp = castToAtomicIntPointer(addr: Temp); |
| 1499 | CGF.Builder.CreateStore(Val, Addr: CastTemp)->setVolatile(TempIsVolatile); |
| 1500 | |
| 1501 | return convertAtomicTempToRValue(addr: Temp, resultSlot: ResultSlot, loc: Loc, asValue: AsValue); |
| 1502 | } |
| 1503 | |
| 1504 | void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, |
| 1505 | llvm::AtomicOrdering AO, bool) { |
| 1506 | // void __atomic_load(size_t size, void *mem, void *return, int order); |
| 1507 | CallArgList Args; |
| 1508 | Args.add(rvalue: RValue::get(V: getAtomicSizeValue()), type: CGF.getContext().getSizeType()); |
| 1509 | Args.add(rvalue: RValue::get(V: getAtomicPointer()), type: CGF.getContext().VoidPtrTy); |
| 1510 | Args.add(rvalue: RValue::get(V: AddForLoaded), type: CGF.getContext().VoidPtrTy); |
| 1511 | Args.add( |
| 1512 | rvalue: RValue::get(V: llvm::ConstantInt::get(Ty: CGF.IntTy, V: (int)llvm::toCABI(AO))), |
| 1513 | type: CGF.getContext().IntTy); |
| 1514 | emitAtomicLibcall(CGF, fnName: "__atomic_load" , resultType: CGF.getContext().VoidTy, args&: Args); |
| 1515 | } |
| 1516 | |
| 1517 | llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO, |
| 1518 | bool IsVolatile, bool CmpXchg) { |
| 1519 | // Okay, we're doing this natively. |
| 1520 | Address Addr = getAtomicAddress(); |
| 1521 | if (shouldCastToInt(ValTy: Addr.getElementType(), CmpXchg)) |
| 1522 | Addr = castToAtomicIntPointer(addr: Addr); |
| 1523 | llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, Name: "atomic-load" ); |
| 1524 | Load->setAtomic(Ordering: AO); |
| 1525 | |
| 1526 | // Other decoration. |
| 1527 | if (IsVolatile) |
| 1528 | Load->setVolatile(true); |
| 1529 | CGF.CGM.DecorateInstructionWithTBAA(Inst: Load, TBAAInfo: LVal.getTBAAInfo()); |
| 1530 | return Load; |
| 1531 | } |
| 1532 | |
| 1533 | /// An LValue is a candidate for having its loads and stores be made atomic if |
| 1534 | /// we are operating under /volatile:ms *and* the LValue itself is volatile and |
| 1535 | /// performing such an operation can be performed without a libcall. |
| 1536 | bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) { |
| 1537 | if (!CGM.getLangOpts().MSVolatile) return false; |
| 1538 | AtomicInfo AI(*this, LV); |
| 1539 | bool IsVolatile = LV.isVolatile() || hasVolatileMember(T: LV.getType()); |
| 1540 | // An atomic is inline if we don't need to use a libcall. |
| 1541 | bool AtomicIsInline = !AI.shouldUseLibcall(); |
| 1542 | // MSVC doesn't seem to do this for types wider than a pointer. |
| 1543 | if (getContext().getTypeSize(T: LV.getType()) > |
| 1544 | getContext().getTypeSize(T: getContext().getIntPtrType())) |
| 1545 | return false; |
| 1546 | return IsVolatile && AtomicIsInline; |
| 1547 | } |
| 1548 | |
| 1549 | RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL, |
| 1550 | AggValueSlot Slot) { |
| 1551 | llvm::AtomicOrdering AO; |
| 1552 | bool IsVolatile = LV.isVolatileQualified(); |
| 1553 | if (LV.getType()->isAtomicType()) { |
| 1554 | AO = llvm::AtomicOrdering::SequentiallyConsistent; |
| 1555 | } else { |
| 1556 | AO = llvm::AtomicOrdering::Acquire; |
| 1557 | IsVolatile = true; |
| 1558 | } |
| 1559 | return EmitAtomicLoad(lvalue: LV, loc: SL, AO, IsVolatile, slot: Slot); |
| 1560 | } |
| 1561 | |
| 1562 | RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, |
| 1563 | bool AsValue, llvm::AtomicOrdering AO, |
| 1564 | bool IsVolatile) { |
| 1565 | // Check whether we should use a library call. |
| 1566 | if (shouldUseLibcall()) { |
| 1567 | Address TempAddr = Address::invalid(); |
| 1568 | if (LVal.isSimple() && !ResultSlot.isIgnored()) { |
| 1569 | assert(getEvaluationKind() == TEK_Aggregate); |
| 1570 | TempAddr = ResultSlot.getAddress(); |
| 1571 | } else |
| 1572 | TempAddr = CreateTempAlloca(); |
| 1573 | |
| 1574 | EmitAtomicLoadLibcall(AddForLoaded: TempAddr.emitRawPointer(CGF), AO, IsVolatile); |
| 1575 | |
| 1576 | // Okay, turn that back into the original value or whole atomic (for |
| 1577 | // non-simple lvalues) type. |
| 1578 | return convertAtomicTempToRValue(addr: TempAddr, resultSlot: ResultSlot, loc: Loc, asValue: AsValue); |
| 1579 | } |
| 1580 | |
| 1581 | // Okay, we're doing this natively. |
| 1582 | auto *Load = EmitAtomicLoadOp(AO, IsVolatile); |
| 1583 | |
| 1584 | // If we're ignoring an aggregate return, don't do anything. |
| 1585 | if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored()) |
| 1586 | return RValue::getAggregate(addr: Address::invalid(), isVolatile: false); |
| 1587 | |
| 1588 | // Okay, turn that back into the original value or atomic (for non-simple |
| 1589 | // lvalues) type. |
| 1590 | return ConvertToValueOrAtomic(Val: Load, ResultSlot, Loc, AsValue); |
| 1591 | } |
| 1592 | |
| 1593 | /// Emit a load from an l-value of atomic type. Note that the r-value |
| 1594 | /// we produce is an r-value of the atomic *value* type. |
| 1595 | RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc, |
| 1596 | llvm::AtomicOrdering AO, bool IsVolatile, |
| 1597 | AggValueSlot resultSlot) { |
| 1598 | AtomicInfo Atomics(*this, src); |
| 1599 | return Atomics.EmitAtomicLoad(ResultSlot: resultSlot, Loc: loc, /*AsValue=*/true, AO, |
| 1600 | IsVolatile); |
| 1601 | } |
| 1602 | |
| 1603 | /// Copy an r-value into memory as part of storing to an atomic type. |
| 1604 | /// This needs to create a bit-pattern suitable for atomic operations. |
| 1605 | void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const { |
| 1606 | assert(LVal.isSimple()); |
| 1607 | // If we have an r-value, the rvalue should be of the atomic type, |
| 1608 | // which means that the caller is responsible for having zeroed |
| 1609 | // any padding. Just do an aggregate copy of that type. |
| 1610 | if (rvalue.isAggregate()) { |
| 1611 | LValue Dest = CGF.MakeAddrLValue(Addr: getAtomicAddress(), T: getAtomicType()); |
| 1612 | LValue Src = CGF.MakeAddrLValue(Addr: rvalue.getAggregateAddress(), |
| 1613 | T: getAtomicType()); |
| 1614 | bool IsVolatile = rvalue.isVolatileQualified() || |
| 1615 | LVal.isVolatileQualified(); |
| 1616 | CGF.EmitAggregateCopy(Dest, Src, EltTy: getAtomicType(), |
| 1617 | MayOverlap: AggValueSlot::DoesNotOverlap, isVolatile: IsVolatile); |
| 1618 | return; |
| 1619 | } |
| 1620 | |
| 1621 | // Okay, otherwise we're copying stuff. |
| 1622 | |
| 1623 | // Zero out the buffer if necessary. |
| 1624 | emitMemSetZeroIfNecessary(); |
| 1625 | |
| 1626 | // Drill past the padding if present. |
| 1627 | LValue TempLVal = projectValue(); |
| 1628 | |
| 1629 | // Okay, store the rvalue in. |
| 1630 | if (rvalue.isScalar()) { |
| 1631 | CGF.EmitStoreOfScalar(value: rvalue.getScalarVal(), lvalue: TempLVal, /*init*/ isInit: true); |
| 1632 | } else { |
| 1633 | CGF.EmitStoreOfComplex(V: rvalue.getComplexVal(), dest: TempLVal, /*init*/ isInit: true); |
| 1634 | } |
| 1635 | } |
| 1636 | |
| 1637 | |
| 1638 | /// Materialize an r-value into memory for the purposes of storing it |
| 1639 | /// to an atomic type. |
| 1640 | Address AtomicInfo::materializeRValue(RValue rvalue) const { |
| 1641 | // Aggregate r-values are already in memory, and EmitAtomicStore |
| 1642 | // requires them to be values of the atomic type. |
| 1643 | if (rvalue.isAggregate()) |
| 1644 | return rvalue.getAggregateAddress(); |
| 1645 | |
| 1646 | // Otherwise, make a temporary and materialize into it. |
| 1647 | LValue TempLV = CGF.MakeAddrLValue(Addr: CreateTempAlloca(), T: getAtomicType()); |
| 1648 | AtomicInfo Atomics(CGF, TempLV); |
| 1649 | Atomics.emitCopyIntoMemory(rvalue); |
| 1650 | return TempLV.getAddress(); |
| 1651 | } |
| 1652 | |
| 1653 | llvm::Value *AtomicInfo::getScalarRValValueOrNull(RValue RVal) const { |
| 1654 | if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) |
| 1655 | return RVal.getScalarVal(); |
| 1656 | return nullptr; |
| 1657 | } |
| 1658 | |
| 1659 | llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal, bool CmpXchg) const { |
| 1660 | // If we've got a scalar value of the right size, try to avoid going |
| 1661 | // through memory. Floats get casted if needed by AtomicExpandPass. |
| 1662 | if (llvm::Value *Value = getScalarRValValueOrNull(RVal)) { |
| 1663 | if (!shouldCastToInt(ValTy: Value->getType(), CmpXchg)) |
| 1664 | return CGF.EmitToMemory(Value, Ty: ValueTy); |
| 1665 | else { |
| 1666 | llvm::IntegerType *InputIntTy = llvm::IntegerType::get( |
| 1667 | C&: CGF.getLLVMContext(), |
| 1668 | NumBits: LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits()); |
| 1669 | if (llvm::BitCastInst::isBitCastable(SrcTy: Value->getType(), DestTy: InputIntTy)) |
| 1670 | return CGF.Builder.CreateBitCast(V: Value, DestTy: InputIntTy); |
| 1671 | } |
| 1672 | } |
| 1673 | // Otherwise, we need to go through memory. |
| 1674 | // Put the r-value in memory. |
| 1675 | Address Addr = materializeRValue(rvalue: RVal); |
| 1676 | |
| 1677 | // Cast the temporary to the atomic int type and pull a value out. |
| 1678 | Addr = castToAtomicIntPointer(addr: Addr); |
| 1679 | return CGF.Builder.CreateLoad(Addr); |
| 1680 | } |
| 1681 | |
| 1682 | std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp( |
| 1683 | llvm::Value *ExpectedVal, llvm::Value *DesiredVal, |
| 1684 | llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) { |
| 1685 | // Do the atomic store. |
| 1686 | Address Addr = getAtomicAddressAsAtomicIntPointer(); |
| 1687 | auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr, Cmp: ExpectedVal, New: DesiredVal, |
| 1688 | SuccessOrdering: Success, FailureOrdering: Failure); |
| 1689 | // Other decoration. |
| 1690 | Inst->setVolatile(LVal.isVolatileQualified()); |
| 1691 | Inst->setWeak(IsWeak); |
| 1692 | |
| 1693 | // Okay, turn that back into the original value type. |
| 1694 | auto *PreviousVal = CGF.Builder.CreateExtractValue(Agg: Inst, /*Idxs=*/0); |
| 1695 | auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Agg: Inst, /*Idxs=*/1); |
| 1696 | return std::make_pair(x&: PreviousVal, y&: SuccessFailureVal); |
| 1697 | } |
| 1698 | |
| 1699 | llvm::Value * |
| 1700 | AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr, |
| 1701 | llvm::Value *DesiredAddr, |
| 1702 | llvm::AtomicOrdering Success, |
| 1703 | llvm::AtomicOrdering Failure) { |
| 1704 | // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, |
| 1705 | // void *desired, int success, int failure); |
| 1706 | CallArgList Args; |
| 1707 | Args.add(rvalue: RValue::get(V: getAtomicSizeValue()), type: CGF.getContext().getSizeType()); |
| 1708 | Args.add(rvalue: RValue::get(V: getAtomicPointer()), type: CGF.getContext().VoidPtrTy); |
| 1709 | Args.add(rvalue: RValue::get(V: ExpectedAddr), type: CGF.getContext().VoidPtrTy); |
| 1710 | Args.add(rvalue: RValue::get(V: DesiredAddr), type: CGF.getContext().VoidPtrTy); |
| 1711 | Args.add(rvalue: RValue::get( |
| 1712 | V: llvm::ConstantInt::get(Ty: CGF.IntTy, V: (int)llvm::toCABI(AO: Success))), |
| 1713 | type: CGF.getContext().IntTy); |
| 1714 | Args.add(rvalue: RValue::get( |
| 1715 | V: llvm::ConstantInt::get(Ty: CGF.IntTy, V: (int)llvm::toCABI(AO: Failure))), |
| 1716 | type: CGF.getContext().IntTy); |
| 1717 | auto SuccessFailureRVal = emitAtomicLibcall(CGF, fnName: "__atomic_compare_exchange" , |
| 1718 | resultType: CGF.getContext().BoolTy, args&: Args); |
| 1719 | |
| 1720 | return SuccessFailureRVal.getScalarVal(); |
| 1721 | } |
| 1722 | |
| 1723 | std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange( |
| 1724 | RValue Expected, RValue Desired, llvm::AtomicOrdering Success, |
| 1725 | llvm::AtomicOrdering Failure, bool IsWeak) { |
| 1726 | // Check whether we should use a library call. |
| 1727 | if (shouldUseLibcall()) { |
| 1728 | // Produce a source address. |
| 1729 | Address ExpectedAddr = materializeRValue(rvalue: Expected); |
| 1730 | llvm::Value *ExpectedPtr = ExpectedAddr.emitRawPointer(CGF); |
| 1731 | llvm::Value *DesiredPtr = materializeRValue(rvalue: Desired).emitRawPointer(CGF); |
| 1732 | auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr: ExpectedPtr, DesiredAddr: DesiredPtr, |
| 1733 | Success, Failure); |
| 1734 | return std::make_pair( |
| 1735 | x: convertAtomicTempToRValue(addr: ExpectedAddr, resultSlot: AggValueSlot::ignored(), |
| 1736 | loc: SourceLocation(), /*AsValue=*/asValue: false), |
| 1737 | y&: Res); |
| 1738 | } |
| 1739 | |
| 1740 | // If we've got a scalar value of the right size, try to avoid going |
| 1741 | // through memory. |
| 1742 | auto *ExpectedVal = convertRValueToInt(RVal: Expected, /*CmpXchg=*/true); |
| 1743 | auto *DesiredVal = convertRValueToInt(RVal: Desired, /*CmpXchg=*/true); |
| 1744 | auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success, |
| 1745 | Failure, IsWeak); |
| 1746 | return std::make_pair( |
| 1747 | x: ConvertToValueOrAtomic(Val: Res.first, ResultSlot: AggValueSlot::ignored(), |
| 1748 | Loc: SourceLocation(), /*AsValue=*/false, |
| 1749 | /*CmpXchg=*/true), |
| 1750 | y&: Res.second); |
| 1751 | } |
| 1752 | |
| 1753 | static void |
| 1754 | EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal, |
| 1755 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
| 1756 | Address DesiredAddr) { |
| 1757 | RValue UpRVal; |
| 1758 | LValue AtomicLVal = Atomics.getAtomicLValue(); |
| 1759 | LValue DesiredLVal; |
| 1760 | if (AtomicLVal.isSimple()) { |
| 1761 | UpRVal = OldRVal; |
| 1762 | DesiredLVal = CGF.MakeAddrLValue(Addr: DesiredAddr, T: AtomicLVal.getType()); |
| 1763 | } else { |
| 1764 | // Build new lvalue for temp address. |
| 1765 | Address Ptr = Atomics.materializeRValue(rvalue: OldRVal); |
| 1766 | LValue UpdateLVal; |
| 1767 | if (AtomicLVal.isBitField()) { |
| 1768 | UpdateLVal = |
| 1769 | LValue::MakeBitfield(Addr: Ptr, Info: AtomicLVal.getBitFieldInfo(), |
| 1770 | type: AtomicLVal.getType(), |
| 1771 | BaseInfo: AtomicLVal.getBaseInfo(), |
| 1772 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
| 1773 | DesiredLVal = |
| 1774 | LValue::MakeBitfield(Addr: DesiredAddr, Info: AtomicLVal.getBitFieldInfo(), |
| 1775 | type: AtomicLVal.getType(), BaseInfo: AtomicLVal.getBaseInfo(), |
| 1776 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
| 1777 | } else if (AtomicLVal.isVectorElt()) { |
| 1778 | UpdateLVal = LValue::MakeVectorElt(vecAddress: Ptr, Idx: AtomicLVal.getVectorIdx(), |
| 1779 | type: AtomicLVal.getType(), |
| 1780 | BaseInfo: AtomicLVal.getBaseInfo(), |
| 1781 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
| 1782 | DesiredLVal = LValue::MakeVectorElt( |
| 1783 | vecAddress: DesiredAddr, Idx: AtomicLVal.getVectorIdx(), type: AtomicLVal.getType(), |
| 1784 | BaseInfo: AtomicLVal.getBaseInfo(), TBAAInfo: AtomicLVal.getTBAAInfo()); |
| 1785 | } else { |
| 1786 | assert(AtomicLVal.isExtVectorElt()); |
| 1787 | UpdateLVal = LValue::MakeExtVectorElt(Addr: Ptr, Elts: AtomicLVal.getExtVectorElts(), |
| 1788 | type: AtomicLVal.getType(), |
| 1789 | BaseInfo: AtomicLVal.getBaseInfo(), |
| 1790 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
| 1791 | DesiredLVal = LValue::MakeExtVectorElt( |
| 1792 | Addr: DesiredAddr, Elts: AtomicLVal.getExtVectorElts(), type: AtomicLVal.getType(), |
| 1793 | BaseInfo: AtomicLVal.getBaseInfo(), TBAAInfo: AtomicLVal.getTBAAInfo()); |
| 1794 | } |
| 1795 | UpRVal = CGF.EmitLoadOfLValue(V: UpdateLVal, Loc: SourceLocation()); |
| 1796 | } |
| 1797 | // Store new value in the corresponding memory area. |
| 1798 | RValue NewRVal = UpdateOp(UpRVal); |
| 1799 | if (NewRVal.isScalar()) { |
| 1800 | CGF.EmitStoreThroughLValue(Src: NewRVal, Dst: DesiredLVal); |
| 1801 | } else { |
| 1802 | assert(NewRVal.isComplex()); |
| 1803 | CGF.EmitStoreOfComplex(V: NewRVal.getComplexVal(), dest: DesiredLVal, |
| 1804 | /*isInit=*/false); |
| 1805 | } |
| 1806 | } |
| 1807 | |
| 1808 | void AtomicInfo::EmitAtomicUpdateLibcall( |
| 1809 | llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, |
| 1810 | bool IsVolatile) { |
| 1811 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: AO); |
| 1812 | |
| 1813 | Address ExpectedAddr = CreateTempAlloca(); |
| 1814 | |
| 1815 | EmitAtomicLoadLibcall(AddForLoaded: ExpectedAddr.emitRawPointer(CGF), AO, IsVolatile); |
| 1816 | auto *ContBB = CGF.createBasicBlock(name: "atomic_cont" ); |
| 1817 | auto *ExitBB = CGF.createBasicBlock(name: "atomic_exit" ); |
| 1818 | CGF.EmitBlock(BB: ContBB); |
| 1819 | Address DesiredAddr = CreateTempAlloca(); |
| 1820 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
| 1821 | requiresMemSetZero(type: getAtomicAddress().getElementType())) { |
| 1822 | auto *OldVal = CGF.Builder.CreateLoad(Addr: ExpectedAddr); |
| 1823 | CGF.Builder.CreateStore(Val: OldVal, Addr: DesiredAddr); |
| 1824 | } |
| 1825 | auto OldRVal = convertAtomicTempToRValue(addr: ExpectedAddr, |
| 1826 | resultSlot: AggValueSlot::ignored(), |
| 1827 | loc: SourceLocation(), /*AsValue=*/asValue: false); |
| 1828 | EmitAtomicUpdateValue(CGF, Atomics&: *this, OldRVal, UpdateOp, DesiredAddr); |
| 1829 | llvm::Value *ExpectedPtr = ExpectedAddr.emitRawPointer(CGF); |
| 1830 | llvm::Value *DesiredPtr = DesiredAddr.emitRawPointer(CGF); |
| 1831 | auto *Res = |
| 1832 | EmitAtomicCompareExchangeLibcall(ExpectedAddr: ExpectedPtr, DesiredAddr: DesiredPtr, Success: AO, Failure); |
| 1833 | CGF.Builder.CreateCondBr(Cond: Res, True: ExitBB, False: ContBB); |
| 1834 | CGF.EmitBlock(BB: ExitBB, /*IsFinished=*/true); |
| 1835 | } |
| 1836 | |
| 1837 | void AtomicInfo::EmitAtomicUpdateOp( |
| 1838 | llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, |
| 1839 | bool IsVolatile) { |
| 1840 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: AO); |
| 1841 | |
| 1842 | // Do the atomic load. |
| 1843 | auto *OldVal = EmitAtomicLoadOp(AO: Failure, IsVolatile, /*CmpXchg=*/true); |
| 1844 | // For non-simple lvalues perform compare-and-swap procedure. |
| 1845 | auto *ContBB = CGF.createBasicBlock(name: "atomic_cont" ); |
| 1846 | auto *ExitBB = CGF.createBasicBlock(name: "atomic_exit" ); |
| 1847 | auto *CurBB = CGF.Builder.GetInsertBlock(); |
| 1848 | CGF.EmitBlock(BB: ContBB); |
| 1849 | llvm::PHINode *PHI = CGF.Builder.CreatePHI(Ty: OldVal->getType(), |
| 1850 | /*NumReservedValues=*/2); |
| 1851 | PHI->addIncoming(V: OldVal, BB: CurBB); |
| 1852 | Address NewAtomicAddr = CreateTempAlloca(); |
| 1853 | Address NewAtomicIntAddr = |
| 1854 | shouldCastToInt(ValTy: NewAtomicAddr.getElementType(), /*CmpXchg=*/true) |
| 1855 | ? castToAtomicIntPointer(addr: NewAtomicAddr) |
| 1856 | : NewAtomicAddr; |
| 1857 | |
| 1858 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
| 1859 | requiresMemSetZero(type: getAtomicAddress().getElementType())) { |
| 1860 | CGF.Builder.CreateStore(Val: PHI, Addr: NewAtomicIntAddr); |
| 1861 | } |
| 1862 | auto OldRVal = ConvertToValueOrAtomic(Val: PHI, ResultSlot: AggValueSlot::ignored(), |
| 1863 | Loc: SourceLocation(), /*AsValue=*/false, |
| 1864 | /*CmpXchg=*/true); |
| 1865 | EmitAtomicUpdateValue(CGF, Atomics&: *this, OldRVal, UpdateOp, DesiredAddr: NewAtomicAddr); |
| 1866 | auto *DesiredVal = CGF.Builder.CreateLoad(Addr: NewAtomicIntAddr); |
| 1867 | // Try to write new value using cmpxchg operation. |
| 1868 | auto Res = EmitAtomicCompareExchangeOp(ExpectedVal: PHI, DesiredVal, Success: AO, Failure); |
| 1869 | PHI->addIncoming(V: Res.first, BB: CGF.Builder.GetInsertBlock()); |
| 1870 | CGF.Builder.CreateCondBr(Cond: Res.second, True: ExitBB, False: ContBB); |
| 1871 | CGF.EmitBlock(BB: ExitBB, /*IsFinished=*/true); |
| 1872 | } |
| 1873 | |
| 1874 | static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, |
| 1875 | RValue UpdateRVal, Address DesiredAddr) { |
| 1876 | LValue AtomicLVal = Atomics.getAtomicLValue(); |
| 1877 | LValue DesiredLVal; |
| 1878 | // Build new lvalue for temp address. |
| 1879 | if (AtomicLVal.isBitField()) { |
| 1880 | DesiredLVal = |
| 1881 | LValue::MakeBitfield(Addr: DesiredAddr, Info: AtomicLVal.getBitFieldInfo(), |
| 1882 | type: AtomicLVal.getType(), BaseInfo: AtomicLVal.getBaseInfo(), |
| 1883 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
| 1884 | } else if (AtomicLVal.isVectorElt()) { |
| 1885 | DesiredLVal = |
| 1886 | LValue::MakeVectorElt(vecAddress: DesiredAddr, Idx: AtomicLVal.getVectorIdx(), |
| 1887 | type: AtomicLVal.getType(), BaseInfo: AtomicLVal.getBaseInfo(), |
| 1888 | TBAAInfo: AtomicLVal.getTBAAInfo()); |
| 1889 | } else { |
| 1890 | assert(AtomicLVal.isExtVectorElt()); |
| 1891 | DesiredLVal = LValue::MakeExtVectorElt( |
| 1892 | Addr: DesiredAddr, Elts: AtomicLVal.getExtVectorElts(), type: AtomicLVal.getType(), |
| 1893 | BaseInfo: AtomicLVal.getBaseInfo(), TBAAInfo: AtomicLVal.getTBAAInfo()); |
| 1894 | } |
| 1895 | // Store new value in the corresponding memory area. |
| 1896 | assert(UpdateRVal.isScalar()); |
| 1897 | CGF.EmitStoreThroughLValue(Src: UpdateRVal, Dst: DesiredLVal); |
| 1898 | } |
| 1899 | |
| 1900 | void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, |
| 1901 | RValue UpdateRVal, bool IsVolatile) { |
| 1902 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: AO); |
| 1903 | |
| 1904 | Address ExpectedAddr = CreateTempAlloca(); |
| 1905 | |
| 1906 | EmitAtomicLoadLibcall(AddForLoaded: ExpectedAddr.emitRawPointer(CGF), AO, IsVolatile); |
| 1907 | auto *ContBB = CGF.createBasicBlock(name: "atomic_cont" ); |
| 1908 | auto *ExitBB = CGF.createBasicBlock(name: "atomic_exit" ); |
| 1909 | CGF.EmitBlock(BB: ContBB); |
| 1910 | Address DesiredAddr = CreateTempAlloca(); |
| 1911 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
| 1912 | requiresMemSetZero(type: getAtomicAddress().getElementType())) { |
| 1913 | auto *OldVal = CGF.Builder.CreateLoad(Addr: ExpectedAddr); |
| 1914 | CGF.Builder.CreateStore(Val: OldVal, Addr: DesiredAddr); |
| 1915 | } |
| 1916 | EmitAtomicUpdateValue(CGF, Atomics&: *this, UpdateRVal, DesiredAddr); |
| 1917 | llvm::Value *ExpectedPtr = ExpectedAddr.emitRawPointer(CGF); |
| 1918 | llvm::Value *DesiredPtr = DesiredAddr.emitRawPointer(CGF); |
| 1919 | auto *Res = |
| 1920 | EmitAtomicCompareExchangeLibcall(ExpectedAddr: ExpectedPtr, DesiredAddr: DesiredPtr, Success: AO, Failure); |
| 1921 | CGF.Builder.CreateCondBr(Cond: Res, True: ExitBB, False: ContBB); |
| 1922 | CGF.EmitBlock(BB: ExitBB, /*IsFinished=*/true); |
| 1923 | } |
| 1924 | |
| 1925 | void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal, |
| 1926 | bool IsVolatile) { |
| 1927 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering: AO); |
| 1928 | |
| 1929 | // Do the atomic load. |
| 1930 | auto *OldVal = EmitAtomicLoadOp(AO: Failure, IsVolatile, /*CmpXchg=*/true); |
| 1931 | // For non-simple lvalues perform compare-and-swap procedure. |
| 1932 | auto *ContBB = CGF.createBasicBlock(name: "atomic_cont" ); |
| 1933 | auto *ExitBB = CGF.createBasicBlock(name: "atomic_exit" ); |
| 1934 | auto *CurBB = CGF.Builder.GetInsertBlock(); |
| 1935 | CGF.EmitBlock(BB: ContBB); |
| 1936 | llvm::PHINode *PHI = CGF.Builder.CreatePHI(Ty: OldVal->getType(), |
| 1937 | /*NumReservedValues=*/2); |
| 1938 | PHI->addIncoming(V: OldVal, BB: CurBB); |
| 1939 | Address NewAtomicAddr = CreateTempAlloca(); |
| 1940 | Address NewAtomicIntAddr = castToAtomicIntPointer(addr: NewAtomicAddr); |
| 1941 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
| 1942 | requiresMemSetZero(type: getAtomicAddress().getElementType())) { |
| 1943 | CGF.Builder.CreateStore(Val: PHI, Addr: NewAtomicIntAddr); |
| 1944 | } |
| 1945 | EmitAtomicUpdateValue(CGF, Atomics&: *this, UpdateRVal, DesiredAddr: NewAtomicAddr); |
| 1946 | auto *DesiredVal = CGF.Builder.CreateLoad(Addr: NewAtomicIntAddr); |
| 1947 | // Try to write new value using cmpxchg operation. |
| 1948 | auto Res = EmitAtomicCompareExchangeOp(ExpectedVal: PHI, DesiredVal, Success: AO, Failure); |
| 1949 | PHI->addIncoming(V: Res.first, BB: CGF.Builder.GetInsertBlock()); |
| 1950 | CGF.Builder.CreateCondBr(Cond: Res.second, True: ExitBB, False: ContBB); |
| 1951 | CGF.EmitBlock(BB: ExitBB, /*IsFinished=*/true); |
| 1952 | } |
| 1953 | |
| 1954 | void AtomicInfo::EmitAtomicUpdate( |
| 1955 | llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, |
| 1956 | bool IsVolatile) { |
| 1957 | if (shouldUseLibcall()) { |
| 1958 | EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile); |
| 1959 | } else { |
| 1960 | EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile); |
| 1961 | } |
| 1962 | } |
| 1963 | |
| 1964 | void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, |
| 1965 | bool IsVolatile) { |
| 1966 | if (shouldUseLibcall()) { |
| 1967 | EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile); |
| 1968 | } else { |
| 1969 | EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile); |
| 1970 | } |
| 1971 | } |
| 1972 | |
| 1973 | void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue, |
| 1974 | bool isInit) { |
| 1975 | bool IsVolatile = lvalue.isVolatileQualified(); |
| 1976 | llvm::AtomicOrdering AO; |
| 1977 | if (lvalue.getType()->isAtomicType()) { |
| 1978 | AO = llvm::AtomicOrdering::SequentiallyConsistent; |
| 1979 | } else { |
| 1980 | AO = llvm::AtomicOrdering::Release; |
| 1981 | IsVolatile = true; |
| 1982 | } |
| 1983 | return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit); |
| 1984 | } |
| 1985 | |
| 1986 | /// Emit a store to an l-value of atomic type. |
| 1987 | /// |
| 1988 | /// Note that the r-value is expected to be an r-value *of the atomic |
| 1989 | /// type*; this means that for aggregate r-values, it should include |
| 1990 | /// storage for any padding that was necessary. |
| 1991 | void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, |
| 1992 | llvm::AtomicOrdering AO, bool IsVolatile, |
| 1993 | bool isInit) { |
| 1994 | // If this is an aggregate r-value, it should agree in type except |
| 1995 | // maybe for address-space qualification. |
| 1996 | assert(!rvalue.isAggregate() || |
| 1997 | rvalue.getAggregateAddress().getElementType() == |
| 1998 | dest.getAddress().getElementType()); |
| 1999 | |
| 2000 | AtomicInfo atomics(*this, dest); |
| 2001 | LValue LVal = atomics.getAtomicLValue(); |
| 2002 | |
| 2003 | // If this is an initialization, just put the value there normally. |
| 2004 | if (LVal.isSimple()) { |
| 2005 | if (isInit) { |
| 2006 | atomics.emitCopyIntoMemory(rvalue); |
| 2007 | return; |
| 2008 | } |
| 2009 | |
| 2010 | // Check whether we should use a library call. |
| 2011 | if (atomics.shouldUseLibcall()) { |
| 2012 | // Produce a source address. |
| 2013 | Address srcAddr = atomics.materializeRValue(rvalue); |
| 2014 | |
| 2015 | // void __atomic_store(size_t size, void *mem, void *val, int order) |
| 2016 | CallArgList args; |
| 2017 | args.add(rvalue: RValue::get(V: atomics.getAtomicSizeValue()), |
| 2018 | type: getContext().getSizeType()); |
| 2019 | args.add(rvalue: RValue::get(V: atomics.getAtomicPointer()), type: getContext().VoidPtrTy); |
| 2020 | args.add(rvalue: RValue::get(V: srcAddr.emitRawPointer(CGF&: *this)), |
| 2021 | type: getContext().VoidPtrTy); |
| 2022 | args.add( |
| 2023 | rvalue: RValue::get(V: llvm::ConstantInt::get(Ty: IntTy, V: (int)llvm::toCABI(AO))), |
| 2024 | type: getContext().IntTy); |
| 2025 | emitAtomicLibcall(CGF&: *this, fnName: "__atomic_store" , resultType: getContext().VoidTy, args); |
| 2026 | return; |
| 2027 | } |
| 2028 | |
| 2029 | // Okay, we're doing this natively. |
| 2030 | llvm::Value *ValToStore = atomics.convertRValueToInt(RVal: rvalue); |
| 2031 | |
| 2032 | // Do the atomic store. |
| 2033 | Address Addr = atomics.getAtomicAddress(); |
| 2034 | if (llvm::Value *Value = atomics.getScalarRValValueOrNull(RVal: rvalue)) |
| 2035 | if (shouldCastToInt(ValTy: Value->getType(), /*CmpXchg=*/false)) { |
| 2036 | Addr = atomics.castToAtomicIntPointer(addr: Addr); |
| 2037 | ValToStore = Builder.CreateIntCast(V: ValToStore, DestTy: Addr.getElementType(), |
| 2038 | /*isSigned=*/false); |
| 2039 | } |
| 2040 | llvm::StoreInst *store = Builder.CreateStore(Val: ValToStore, Addr); |
| 2041 | |
| 2042 | if (AO == llvm::AtomicOrdering::Acquire) |
| 2043 | AO = llvm::AtomicOrdering::Monotonic; |
| 2044 | else if (AO == llvm::AtomicOrdering::AcquireRelease) |
| 2045 | AO = llvm::AtomicOrdering::Release; |
| 2046 | // Initializations don't need to be atomic. |
| 2047 | if (!isInit) |
| 2048 | store->setAtomic(Ordering: AO); |
| 2049 | |
| 2050 | // Other decoration. |
| 2051 | if (IsVolatile) |
| 2052 | store->setVolatile(true); |
| 2053 | CGM.DecorateInstructionWithTBAA(Inst: store, TBAAInfo: dest.getTBAAInfo()); |
| 2054 | return; |
| 2055 | } |
| 2056 | |
| 2057 | // Emit simple atomic update operation. |
| 2058 | atomics.EmitAtomicUpdate(AO, UpdateRVal: rvalue, IsVolatile); |
| 2059 | } |
| 2060 | |
| 2061 | /// Emit a compare-and-exchange op for atomic type. |
| 2062 | /// |
| 2063 | std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange( |
| 2064 | LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, |
| 2065 | llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak, |
| 2066 | AggValueSlot Slot) { |
| 2067 | // If this is an aggregate r-value, it should agree in type except |
| 2068 | // maybe for address-space qualification. |
| 2069 | assert(!Expected.isAggregate() || |
| 2070 | Expected.getAggregateAddress().getElementType() == |
| 2071 | Obj.getAddress().getElementType()); |
| 2072 | assert(!Desired.isAggregate() || |
| 2073 | Desired.getAggregateAddress().getElementType() == |
| 2074 | Obj.getAddress().getElementType()); |
| 2075 | AtomicInfo Atomics(*this, Obj); |
| 2076 | |
| 2077 | return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure, |
| 2078 | IsWeak); |
| 2079 | } |
| 2080 | |
| 2081 | llvm::AtomicRMWInst * |
| 2082 | CodeGenFunction::emitAtomicRMWInst(llvm::AtomicRMWInst::BinOp Op, Address Addr, |
| 2083 | llvm::Value *Val, llvm::AtomicOrdering Order, |
| 2084 | llvm::SyncScope::ID SSID, |
| 2085 | const AtomicExpr *AE) { |
| 2086 | llvm::AtomicRMWInst *RMW = |
| 2087 | Builder.CreateAtomicRMW(Op, Addr, Val, Ordering: Order, SSID); |
| 2088 | getTargetHooks().setTargetAtomicMetadata(CGF&: *this, AtomicInst&: *RMW, Expr: AE); |
| 2089 | return RMW; |
| 2090 | } |
| 2091 | |
| 2092 | void CodeGenFunction::EmitAtomicUpdate( |
| 2093 | LValue LVal, llvm::AtomicOrdering AO, |
| 2094 | const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) { |
| 2095 | AtomicInfo Atomics(*this, LVal); |
| 2096 | Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile); |
| 2097 | } |
| 2098 | |
| 2099 | void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) { |
| 2100 | AtomicInfo atomics(*this, dest); |
| 2101 | |
| 2102 | switch (atomics.getEvaluationKind()) { |
| 2103 | case TEK_Scalar: { |
| 2104 | llvm::Value *value = EmitScalarExpr(E: init); |
| 2105 | atomics.emitCopyIntoMemory(rvalue: RValue::get(V: value)); |
| 2106 | return; |
| 2107 | } |
| 2108 | |
| 2109 | case TEK_Complex: { |
| 2110 | ComplexPairTy value = EmitComplexExpr(E: init); |
| 2111 | atomics.emitCopyIntoMemory(rvalue: RValue::getComplex(C: value)); |
| 2112 | return; |
| 2113 | } |
| 2114 | |
| 2115 | case TEK_Aggregate: { |
| 2116 | // Fix up the destination if the initializer isn't an expression |
| 2117 | // of atomic type. |
| 2118 | bool Zeroed = false; |
| 2119 | if (!init->getType()->isAtomicType()) { |
| 2120 | Zeroed = atomics.emitMemSetZeroIfNecessary(); |
| 2121 | dest = atomics.projectValue(); |
| 2122 | } |
| 2123 | |
| 2124 | // Evaluate the expression directly into the destination. |
| 2125 | AggValueSlot slot = AggValueSlot::forLValue( |
| 2126 | LV: dest, isDestructed: AggValueSlot::IsNotDestructed, |
| 2127 | needsGC: AggValueSlot::DoesNotNeedGCBarriers, isAliased: AggValueSlot::IsNotAliased, |
| 2128 | mayOverlap: AggValueSlot::DoesNotOverlap, |
| 2129 | isZeroed: Zeroed ? AggValueSlot::IsZeroed : AggValueSlot::IsNotZeroed); |
| 2130 | |
| 2131 | EmitAggExpr(E: init, AS: slot); |
| 2132 | return; |
| 2133 | } |
| 2134 | } |
| 2135 | llvm_unreachable("bad evaluation kind" ); |
| 2136 | } |
| 2137 | |