| 1 | //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This contains code dealing with C++ code generation of virtual tables. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "CGCXXABI.h" |
| 14 | #include "CGDebugInfo.h" |
| 15 | #include "CodeGenFunction.h" |
| 16 | #include "CodeGenModule.h" |
| 17 | #include "clang/AST/Attr.h" |
| 18 | #include "clang/AST/CXXInheritance.h" |
| 19 | #include "clang/AST/RecordLayout.h" |
| 20 | #include "clang/Basic/CodeGenOptions.h" |
| 21 | #include "clang/CodeGen/CGFunctionInfo.h" |
| 22 | #include "clang/CodeGen/ConstantInitBuilder.h" |
| 23 | #include "llvm/IR/IntrinsicInst.h" |
| 24 | #include "llvm/Transforms/Utils/Cloning.h" |
| 25 | #include <algorithm> |
| 26 | #include <cstdio> |
| 27 | #include <utility> |
| 28 | |
| 29 | using namespace clang; |
| 30 | using namespace CodeGen; |
| 31 | |
| 32 | CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) |
| 33 | : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} |
| 34 | |
| 35 | llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, |
| 36 | GlobalDecl GD) { |
| 37 | return GetOrCreateLLVMFunction(MangledName: Name, Ty: FnTy, D: GD, /*ForVTable=*/true, |
| 38 | /*DontDefer=*/true, /*IsThunk=*/true); |
| 39 | } |
| 40 | |
| 41 | static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, |
| 42 | llvm::Function *ThunkFn, bool ForVTable, |
| 43 | GlobalDecl GD) { |
| 44 | CGM.setFunctionLinkage(GD, F: ThunkFn); |
| 45 | CGM.getCXXABI().setThunkLinkage(Thunk: ThunkFn, ForVTable, GD, |
| 46 | ReturnAdjustment: !Thunk.Return.isEmpty()); |
| 47 | |
| 48 | // Set the right visibility. |
| 49 | CGM.setGVProperties(GV: ThunkFn, GD); |
| 50 | |
| 51 | if (!CGM.getCXXABI().exportThunk()) { |
| 52 | ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); |
| 53 | ThunkFn->setDSOLocal(true); |
| 54 | } |
| 55 | |
| 56 | if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) |
| 57 | ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(Name: ThunkFn->getName())); |
| 58 | } |
| 59 | |
| 60 | #ifndef NDEBUG |
| 61 | static bool similar(const ABIArgInfo &infoL, CanQualType typeL, |
| 62 | const ABIArgInfo &infoR, CanQualType typeR) { |
| 63 | return (infoL.getKind() == infoR.getKind() && |
| 64 | (typeL == typeR || |
| 65 | (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || |
| 66 | (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); |
| 67 | } |
| 68 | #endif |
| 69 | |
| 70 | static RValue PerformReturnAdjustment(CodeGenFunction &CGF, |
| 71 | QualType ResultType, RValue RV, |
| 72 | const ThunkInfo &Thunk) { |
| 73 | // Emit the return adjustment. |
| 74 | bool NullCheckValue = !ResultType->isReferenceType(); |
| 75 | |
| 76 | llvm::BasicBlock *AdjustNull = nullptr; |
| 77 | llvm::BasicBlock *AdjustNotNull = nullptr; |
| 78 | llvm::BasicBlock *AdjustEnd = nullptr; |
| 79 | |
| 80 | llvm::Value *ReturnValue = RV.getScalarVal(); |
| 81 | |
| 82 | if (NullCheckValue) { |
| 83 | AdjustNull = CGF.createBasicBlock(name: "adjust.null" ); |
| 84 | AdjustNotNull = CGF.createBasicBlock(name: "adjust.notnull" ); |
| 85 | AdjustEnd = CGF.createBasicBlock(name: "adjust.end" ); |
| 86 | |
| 87 | llvm::Value *IsNull = CGF.Builder.CreateIsNull(Arg: ReturnValue); |
| 88 | CGF.Builder.CreateCondBr(Cond: IsNull, True: AdjustNull, False: AdjustNotNull); |
| 89 | CGF.EmitBlock(BB: AdjustNotNull); |
| 90 | } |
| 91 | |
| 92 | auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); |
| 93 | auto ClassAlign = CGF.CGM.getClassPointerAlignment(CD: ClassDecl); |
| 94 | ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment( |
| 95 | CGF, |
| 96 | Ret: Address(ReturnValue, CGF.ConvertTypeForMem(T: ResultType->getPointeeType()), |
| 97 | ClassAlign), |
| 98 | UnadjustedClass: ClassDecl, RA: Thunk.Return); |
| 99 | |
| 100 | if (NullCheckValue) { |
| 101 | CGF.Builder.CreateBr(Dest: AdjustEnd); |
| 102 | CGF.EmitBlock(BB: AdjustNull); |
| 103 | CGF.Builder.CreateBr(Dest: AdjustEnd); |
| 104 | CGF.EmitBlock(BB: AdjustEnd); |
| 105 | |
| 106 | llvm::PHINode *PHI = CGF.Builder.CreatePHI(Ty: ReturnValue->getType(), NumReservedValues: 2); |
| 107 | PHI->addIncoming(V: ReturnValue, BB: AdjustNotNull); |
| 108 | PHI->addIncoming(V: llvm::Constant::getNullValue(Ty: ReturnValue->getType()), |
| 109 | BB: AdjustNull); |
| 110 | ReturnValue = PHI; |
| 111 | } |
| 112 | |
| 113 | return RValue::get(V: ReturnValue); |
| 114 | } |
| 115 | |
| 116 | /// This function clones a function's DISubprogram node and enters it into |
| 117 | /// a value map with the intent that the map can be utilized by the cloner |
| 118 | /// to short-circuit Metadata node mapping. |
| 119 | /// Furthermore, the function resolves any DILocalVariable nodes referenced |
| 120 | /// by dbg.value intrinsics so they can be properly mapped during cloning. |
| 121 | static void resolveTopLevelMetadata(llvm::Function *Fn, |
| 122 | llvm::ValueToValueMapTy &VMap) { |
| 123 | // Clone the DISubprogram node and put it into the Value map. |
| 124 | auto *DIS = Fn->getSubprogram(); |
| 125 | if (!DIS) |
| 126 | return; |
| 127 | auto *NewDIS = llvm::MDNode::replaceWithDistinct(N: DIS->clone()); |
| 128 | VMap.MD()[DIS].reset(MD: NewDIS); |
| 129 | |
| 130 | // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes |
| 131 | // they are referencing. |
| 132 | for (auto &BB : *Fn) { |
| 133 | for (auto &I : BB) { |
| 134 | for (llvm::DbgVariableRecord &DVR : |
| 135 | llvm::filterDbgVars(R: I.getDbgRecordRange())) { |
| 136 | auto *DILocal = DVR.getVariable(); |
| 137 | if (!DILocal->isResolved()) |
| 138 | DILocal->resolve(); |
| 139 | } |
| 140 | if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(Val: &I)) { |
| 141 | auto *DILocal = DII->getVariable(); |
| 142 | if (!DILocal->isResolved()) |
| 143 | DILocal->resolve(); |
| 144 | } |
| 145 | } |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | // This function does roughly the same thing as GenerateThunk, but in a |
| 150 | // very different way, so that va_start and va_end work correctly. |
| 151 | // FIXME: This function assumes "this" is the first non-sret LLVM argument of |
| 152 | // a function, and that there is an alloca built in the entry block |
| 153 | // for all accesses to "this". |
| 154 | // FIXME: This function assumes there is only one "ret" statement per function. |
| 155 | // FIXME: Cloning isn't correct in the presence of indirect goto! |
| 156 | // FIXME: This implementation of thunks bloats codesize by duplicating the |
| 157 | // function definition. There are alternatives: |
| 158 | // 1. Add some sort of stub support to LLVM for cases where we can |
| 159 | // do a this adjustment, then a sibcall. |
| 160 | // 2. We could transform the definition to take a va_list instead of an |
| 161 | // actual variable argument list, then have the thunks (including a |
| 162 | // no-op thunk for the regular definition) call va_start/va_end. |
| 163 | // There's a bit of per-call overhead for this solution, but it's |
| 164 | // better for codesize if the definition is long. |
| 165 | llvm::Function * |
| 166 | CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, |
| 167 | const CGFunctionInfo &FnInfo, |
| 168 | GlobalDecl GD, const ThunkInfo &Thunk) { |
| 169 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
| 170 | const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); |
| 171 | QualType ResultType = FPT->getReturnType(); |
| 172 | |
| 173 | // Get the original function |
| 174 | assert(FnInfo.isVariadic()); |
| 175 | llvm::Type *Ty = CGM.getTypes().GetFunctionType(Info: FnInfo); |
| 176 | llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); |
| 177 | llvm::Function *BaseFn = cast<llvm::Function>(Val: Callee); |
| 178 | |
| 179 | // Cloning can't work if we don't have a definition. The Microsoft ABI may |
| 180 | // require thunks when a definition is not available. Emit an error in these |
| 181 | // cases. |
| 182 | if (!MD->isDefined()) { |
| 183 | CGM.ErrorUnsupported(D: MD, Type: "return-adjusting thunk with variadic arguments" ); |
| 184 | return Fn; |
| 185 | } |
| 186 | assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method" ); |
| 187 | |
| 188 | // Clone to thunk. |
| 189 | llvm::ValueToValueMapTy VMap; |
| 190 | |
| 191 | // We are cloning a function while some Metadata nodes are still unresolved. |
| 192 | // Ensure that the value mapper does not encounter any of them. |
| 193 | resolveTopLevelMetadata(Fn: BaseFn, VMap); |
| 194 | llvm::Function *NewFn = llvm::CloneFunction(F: BaseFn, VMap); |
| 195 | Fn->replaceAllUsesWith(V: NewFn); |
| 196 | NewFn->takeName(V: Fn); |
| 197 | Fn->eraseFromParent(); |
| 198 | Fn = NewFn; |
| 199 | |
| 200 | // "Initialize" CGF (minimally). |
| 201 | CurFn = Fn; |
| 202 | |
| 203 | // Get the "this" value |
| 204 | llvm::Function::arg_iterator AI = Fn->arg_begin(); |
| 205 | if (CGM.ReturnTypeUsesSRet(FI: FnInfo)) |
| 206 | ++AI; |
| 207 | |
| 208 | // Find the first store of "this", which will be to the alloca associated |
| 209 | // with "this". |
| 210 | Address ThisPtr = makeNaturalAddressForPointer( |
| 211 | Ptr: &*AI, T: MD->getFunctionObjectParameterType(), |
| 212 | Alignment: CGM.getClassPointerAlignment(CD: MD->getParent())); |
| 213 | llvm::BasicBlock *EntryBB = &Fn->front(); |
| 214 | llvm::BasicBlock::iterator ThisStore = |
| 215 | llvm::find_if(Range&: *EntryBB, P: [&](llvm::Instruction &I) { |
| 216 | return isa<llvm::StoreInst>(Val: I) && I.getOperand(i: 0) == &*AI; |
| 217 | }); |
| 218 | assert(ThisStore != EntryBB->end() && |
| 219 | "Store of this should be in entry block?" ); |
| 220 | // Adjust "this", if necessary. |
| 221 | Builder.SetInsertPoint(&*ThisStore); |
| 222 | |
| 223 | const CXXRecordDecl *ThisValueClass = Thunk.ThisType->getPointeeCXXRecordDecl(); |
| 224 | llvm::Value *AdjustedThisPtr = CGM.getCXXABI().performThisAdjustment( |
| 225 | CGF&: *this, This: ThisPtr, UnadjustedClass: ThisValueClass, TI: Thunk); |
| 226 | AdjustedThisPtr = Builder.CreateBitCast(V: AdjustedThisPtr, |
| 227 | DestTy: ThisStore->getOperand(i: 0)->getType()); |
| 228 | ThisStore->setOperand(i: 0, Val: AdjustedThisPtr); |
| 229 | |
| 230 | if (!Thunk.Return.isEmpty()) { |
| 231 | // Fix up the returned value, if necessary. |
| 232 | for (llvm::BasicBlock &BB : *Fn) { |
| 233 | llvm::Instruction *T = BB.getTerminator(); |
| 234 | if (isa<llvm::ReturnInst>(Val: T)) { |
| 235 | RValue RV = RValue::get(V: T->getOperand(i: 0)); |
| 236 | T->eraseFromParent(); |
| 237 | Builder.SetInsertPoint(&BB); |
| 238 | RV = PerformReturnAdjustment(CGF&: *this, ResultType, RV, Thunk); |
| 239 | Builder.CreateRet(V: RV.getScalarVal()); |
| 240 | break; |
| 241 | } |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | return Fn; |
| 246 | } |
| 247 | |
| 248 | void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, |
| 249 | const CGFunctionInfo &FnInfo, |
| 250 | bool IsUnprototyped) { |
| 251 | assert(!CurGD.getDecl() && "CurGD was already set!" ); |
| 252 | CurGD = GD; |
| 253 | CurFuncIsThunk = true; |
| 254 | |
| 255 | // Build FunctionArgs. |
| 256 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
| 257 | QualType ThisType = MD->getThisType(); |
| 258 | QualType ResultType; |
| 259 | if (IsUnprototyped) |
| 260 | ResultType = CGM.getContext().VoidTy; |
| 261 | else if (CGM.getCXXABI().HasThisReturn(GD)) |
| 262 | ResultType = ThisType; |
| 263 | else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) |
| 264 | ResultType = CGM.getContext().VoidPtrTy; |
| 265 | else |
| 266 | ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType(); |
| 267 | FunctionArgList FunctionArgs; |
| 268 | |
| 269 | // Create the implicit 'this' parameter declaration. |
| 270 | CGM.getCXXABI().buildThisParam(CGF&: *this, Params&: FunctionArgs); |
| 271 | |
| 272 | // Add the rest of the parameters, if we have a prototype to work with. |
| 273 | if (!IsUnprototyped) { |
| 274 | FunctionArgs.append(in_start: MD->param_begin(), in_end: MD->param_end()); |
| 275 | |
| 276 | if (isa<CXXDestructorDecl>(Val: MD)) |
| 277 | CGM.getCXXABI().addImplicitStructorParams(CGF&: *this, ResTy&: ResultType, |
| 278 | Params&: FunctionArgs); |
| 279 | } |
| 280 | |
| 281 | // Start defining the function. |
| 282 | auto NL = ApplyDebugLocation::CreateEmpty(CGF&: *this); |
| 283 | StartFunction(GD: GlobalDecl(), RetTy: ResultType, Fn, FnInfo, Args: FunctionArgs, |
| 284 | Loc: MD->getLocation()); |
| 285 | // Create a scope with an artificial location for the body of this function. |
| 286 | auto AL = ApplyDebugLocation::CreateArtificial(CGF&: *this); |
| 287 | |
| 288 | // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. |
| 289 | CGM.getCXXABI().EmitInstanceFunctionProlog(CGF&: *this); |
| 290 | CXXThisValue = CXXABIThisValue; |
| 291 | CurCodeDecl = MD; |
| 292 | CurFuncDecl = MD; |
| 293 | } |
| 294 | |
| 295 | void CodeGenFunction::FinishThunk() { |
| 296 | // Clear these to restore the invariants expected by |
| 297 | // StartFunction/FinishFunction. |
| 298 | CurCodeDecl = nullptr; |
| 299 | CurFuncDecl = nullptr; |
| 300 | |
| 301 | FinishFunction(); |
| 302 | } |
| 303 | |
| 304 | void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, |
| 305 | const ThunkInfo *Thunk, |
| 306 | bool IsUnprototyped) { |
| 307 | assert(isa<CXXMethodDecl>(CurGD.getDecl()) && |
| 308 | "Please use a new CGF for this thunk" ); |
| 309 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: CurGD.getDecl()); |
| 310 | |
| 311 | // Adjust the 'this' pointer if necessary |
| 312 | const CXXRecordDecl *ThisValueClass = |
| 313 | MD->getThisType()->getPointeeCXXRecordDecl(); |
| 314 | if (Thunk) |
| 315 | ThisValueClass = Thunk->ThisType->getPointeeCXXRecordDecl(); |
| 316 | |
| 317 | llvm::Value *AdjustedThisPtr = |
| 318 | Thunk ? CGM.getCXXABI().performThisAdjustment(CGF&: *this, This: LoadCXXThisAddress(), |
| 319 | UnadjustedClass: ThisValueClass, TI: *Thunk) |
| 320 | : LoadCXXThis(); |
| 321 | |
| 322 | // If perfect forwarding is required a variadic method, a method using |
| 323 | // inalloca, or an unprototyped thunk, use musttail. Emit an error if this |
| 324 | // thunk requires a return adjustment, since that is impossible with musttail. |
| 325 | if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) { |
| 326 | if (Thunk && !Thunk->Return.isEmpty()) { |
| 327 | if (IsUnprototyped) |
| 328 | CGM.ErrorUnsupported( |
| 329 | D: MD, Type: "return-adjusting thunk with incomplete parameter type" ); |
| 330 | else if (CurFnInfo->isVariadic()) |
| 331 | llvm_unreachable("shouldn't try to emit musttail return-adjusting " |
| 332 | "thunks for variadic functions" ); |
| 333 | else |
| 334 | CGM.ErrorUnsupported( |
| 335 | D: MD, Type: "non-trivial argument copy for return-adjusting thunk" ); |
| 336 | } |
| 337 | EmitMustTailThunk(GD: CurGD, AdjustedThisPtr, Callee); |
| 338 | return; |
| 339 | } |
| 340 | |
| 341 | // Start building CallArgs. |
| 342 | CallArgList CallArgs; |
| 343 | QualType ThisType = MD->getThisType(); |
| 344 | CallArgs.add(rvalue: RValue::get(V: AdjustedThisPtr), type: ThisType); |
| 345 | |
| 346 | if (isa<CXXDestructorDecl>(Val: MD)) |
| 347 | CGM.getCXXABI().adjustCallArgsForDestructorThunk(CGF&: *this, GD: CurGD, CallArgs); |
| 348 | |
| 349 | #ifndef NDEBUG |
| 350 | unsigned PrefixArgs = CallArgs.size() - 1; |
| 351 | #endif |
| 352 | // Add the rest of the arguments. |
| 353 | for (const ParmVarDecl *PD : MD->parameters()) |
| 354 | EmitDelegateCallArg(args&: CallArgs, param: PD, loc: SourceLocation()); |
| 355 | |
| 356 | const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); |
| 357 | |
| 358 | #ifndef NDEBUG |
| 359 | const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( |
| 360 | CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs); |
| 361 | assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && |
| 362 | CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && |
| 363 | CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); |
| 364 | assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types |
| 365 | similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), |
| 366 | CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); |
| 367 | assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); |
| 368 | for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) |
| 369 | assert(similar(CallFnInfo.arg_begin()[i].info, |
| 370 | CallFnInfo.arg_begin()[i].type, |
| 371 | CurFnInfo->arg_begin()[i].info, |
| 372 | CurFnInfo->arg_begin()[i].type)); |
| 373 | #endif |
| 374 | |
| 375 | // Determine whether we have a return value slot to use. |
| 376 | QualType ResultType = CGM.getCXXABI().HasThisReturn(GD: CurGD) |
| 377 | ? ThisType |
| 378 | : CGM.getCXXABI().hasMostDerivedReturn(GD: CurGD) |
| 379 | ? CGM.getContext().VoidPtrTy |
| 380 | : FPT->getReturnType(); |
| 381 | ReturnValueSlot Slot; |
| 382 | if (!ResultType->isVoidType() && |
| 383 | (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect || |
| 384 | hasAggregateEvaluationKind(T: ResultType))) |
| 385 | Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(), |
| 386 | /*IsUnused=*/false, /*IsExternallyDestructed=*/true); |
| 387 | |
| 388 | // Now emit our call. |
| 389 | llvm::CallBase *CallOrInvoke; |
| 390 | RValue RV = EmitCall(CallInfo: *CurFnInfo, Callee: CGCallee::forDirect(functionPtr: Callee, abstractInfo: CurGD), ReturnValue: Slot, |
| 391 | Args: CallArgs, CallOrInvoke: &CallOrInvoke); |
| 392 | |
| 393 | // Consider return adjustment if we have ThunkInfo. |
| 394 | if (Thunk && !Thunk->Return.isEmpty()) |
| 395 | RV = PerformReturnAdjustment(CGF&: *this, ResultType, RV, Thunk: *Thunk); |
| 396 | else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(Val: CallOrInvoke)) |
| 397 | Call->setTailCallKind(llvm::CallInst::TCK_Tail); |
| 398 | |
| 399 | // Emit return. |
| 400 | if (!ResultType->isVoidType() && Slot.isNull()) |
| 401 | CGM.getCXXABI().EmitReturnFromThunk(CGF&: *this, RV, ResultType); |
| 402 | |
| 403 | // Disable the final ARC autorelease. |
| 404 | AutoreleaseResult = false; |
| 405 | |
| 406 | FinishThunk(); |
| 407 | } |
| 408 | |
| 409 | void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD, |
| 410 | llvm::Value *AdjustedThisPtr, |
| 411 | llvm::FunctionCallee Callee) { |
| 412 | // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery |
| 413 | // to translate AST arguments into LLVM IR arguments. For thunks, we know |
| 414 | // that the caller prototype more or less matches the callee prototype with |
| 415 | // the exception of 'this'. |
| 416 | SmallVector<llvm::Value *, 8> Args(llvm::make_pointer_range(Range: CurFn->args())); |
| 417 | |
| 418 | // Set the adjusted 'this' pointer. |
| 419 | const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; |
| 420 | if (ThisAI.isDirect()) { |
| 421 | const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); |
| 422 | int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; |
| 423 | llvm::Type *ThisType = Args[ThisArgNo]->getType(); |
| 424 | if (ThisType != AdjustedThisPtr->getType()) |
| 425 | AdjustedThisPtr = Builder.CreateBitCast(V: AdjustedThisPtr, DestTy: ThisType); |
| 426 | Args[ThisArgNo] = AdjustedThisPtr; |
| 427 | } else { |
| 428 | assert(ThisAI.isInAlloca() && "this is passed directly or inalloca" ); |
| 429 | Address ThisAddr = GetAddrOfLocalVar(VD: CXXABIThisDecl); |
| 430 | llvm::Type *ThisType = ThisAddr.getElementType(); |
| 431 | if (ThisType != AdjustedThisPtr->getType()) |
| 432 | AdjustedThisPtr = Builder.CreateBitCast(V: AdjustedThisPtr, DestTy: ThisType); |
| 433 | Builder.CreateStore(Val: AdjustedThisPtr, Addr: ThisAddr); |
| 434 | } |
| 435 | |
| 436 | // Emit the musttail call manually. Even if the prologue pushed cleanups, we |
| 437 | // don't actually want to run them. |
| 438 | llvm::CallInst *Call = Builder.CreateCall(Callee, Args); |
| 439 | Call->setTailCallKind(llvm::CallInst::TCK_MustTail); |
| 440 | |
| 441 | // Apply the standard set of call attributes. |
| 442 | unsigned CallingConv; |
| 443 | llvm::AttributeList Attrs; |
| 444 | CGM.ConstructAttributeList(Name: Callee.getCallee()->getName(), Info: *CurFnInfo, CalleeInfo: GD, |
| 445 | Attrs, CallingConv, /*AttrOnCallSite=*/true, |
| 446 | /*IsThunk=*/false); |
| 447 | Call->setAttributes(Attrs); |
| 448 | Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); |
| 449 | |
| 450 | if (Call->getType()->isVoidTy()) |
| 451 | Builder.CreateRetVoid(); |
| 452 | else |
| 453 | Builder.CreateRet(V: Call); |
| 454 | |
| 455 | // Finish the function to maintain CodeGenFunction invariants. |
| 456 | // FIXME: Don't emit unreachable code. |
| 457 | EmitBlock(BB: createBasicBlock()); |
| 458 | |
| 459 | FinishThunk(); |
| 460 | } |
| 461 | |
| 462 | void CodeGenFunction::generateThunk(llvm::Function *Fn, |
| 463 | const CGFunctionInfo &FnInfo, GlobalDecl GD, |
| 464 | const ThunkInfo &Thunk, |
| 465 | bool IsUnprototyped) { |
| 466 | StartThunk(Fn, GD, FnInfo, IsUnprototyped); |
| 467 | // Create a scope with an artificial location for the body of this function. |
| 468 | auto AL = ApplyDebugLocation::CreateArtificial(CGF&: *this); |
| 469 | |
| 470 | // Get our callee. Use a placeholder type if this method is unprototyped so |
| 471 | // that CodeGenModule doesn't try to set attributes. |
| 472 | llvm::Type *Ty; |
| 473 | if (IsUnprototyped) |
| 474 | Ty = llvm::StructType::get(Context&: getLLVMContext()); |
| 475 | else |
| 476 | Ty = CGM.getTypes().GetFunctionType(Info: FnInfo); |
| 477 | |
| 478 | llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); |
| 479 | |
| 480 | // Make the call and return the result. |
| 481 | EmitCallAndReturnForThunk(Callee: llvm::FunctionCallee(Fn->getFunctionType(), Callee), |
| 482 | Thunk: &Thunk, IsUnprototyped); |
| 483 | } |
| 484 | |
| 485 | static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, |
| 486 | bool IsUnprototyped, bool ForVTable) { |
| 487 | // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to |
| 488 | // provide thunks for us. |
| 489 | if (CGM.getTarget().getCXXABI().isMicrosoft()) |
| 490 | return true; |
| 491 | |
| 492 | // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide |
| 493 | // definitions of the main method. Therefore, emitting thunks with the vtable |
| 494 | // is purely an optimization. Emit the thunk if optimizations are enabled and |
| 495 | // all of the parameter types are complete. |
| 496 | if (ForVTable) |
| 497 | return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; |
| 498 | |
| 499 | // Always emit thunks along with the method definition. |
| 500 | return true; |
| 501 | } |
| 502 | |
| 503 | llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, |
| 504 | const ThunkInfo &TI, |
| 505 | bool ForVTable) { |
| 506 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
| 507 | |
| 508 | // First, get a declaration. Compute the mangled name. Don't worry about |
| 509 | // getting the function prototype right, since we may only need this |
| 510 | // declaration to fill in a vtable slot. |
| 511 | SmallString<256> Name; |
| 512 | MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); |
| 513 | llvm::raw_svector_ostream Out(Name); |
| 514 | |
| 515 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
| 516 | MCtx.mangleCXXDtorThunk(DD, Type: GD.getDtorType(), Thunk: TI, |
| 517 | /* elideOverrideInfo */ ElideOverrideInfo: false, Out); |
| 518 | } else |
| 519 | MCtx.mangleThunk(MD, Thunk: TI, /* elideOverrideInfo */ ElideOverrideInfo: false, Out); |
| 520 | |
| 521 | if (CGM.getContext().useAbbreviatedThunkName(VirtualMethodDecl: GD, MangledName: Name.str())) { |
| 522 | Name = "" ; |
| 523 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) |
| 524 | MCtx.mangleCXXDtorThunk(DD, Type: GD.getDtorType(), Thunk: TI, |
| 525 | /* elideOverrideInfo */ ElideOverrideInfo: true, Out); |
| 526 | else |
| 527 | MCtx.mangleThunk(MD, Thunk: TI, /* elideOverrideInfo */ ElideOverrideInfo: true, Out); |
| 528 | } |
| 529 | |
| 530 | llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); |
| 531 | llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, FnTy: ThunkVTableTy, GD); |
| 532 | |
| 533 | // If we don't need to emit a definition, return this declaration as is. |
| 534 | bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( |
| 535 | FT: MD->getType()->castAs<FunctionType>()); |
| 536 | if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) |
| 537 | return Thunk; |
| 538 | |
| 539 | // Arrange a function prototype appropriate for a function definition. In some |
| 540 | // cases in the MS ABI, we may need to build an unprototyped musttail thunk. |
| 541 | const CGFunctionInfo &FnInfo = |
| 542 | IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) |
| 543 | : CGM.getTypes().arrangeGlobalDeclaration(GD); |
| 544 | llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(Info: FnInfo); |
| 545 | |
| 546 | // If the type of the underlying GlobalValue is wrong, we'll have to replace |
| 547 | // it. It should be a declaration. |
| 548 | llvm::Function *ThunkFn = cast<llvm::Function>(Val: Thunk->stripPointerCasts()); |
| 549 | if (ThunkFn->getFunctionType() != ThunkFnTy) { |
| 550 | llvm::GlobalValue *OldThunkFn = ThunkFn; |
| 551 | |
| 552 | assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration" ); |
| 553 | |
| 554 | // Remove the name from the old thunk function and get a new thunk. |
| 555 | OldThunkFn->setName(StringRef()); |
| 556 | ThunkFn = llvm::Function::Create(Ty: ThunkFnTy, Linkage: llvm::Function::ExternalLinkage, |
| 557 | N: Name.str(), M: &CGM.getModule()); |
| 558 | CGM.SetLLVMFunctionAttributes(GD: MD, Info: FnInfo, F: ThunkFn, /*IsThunk=*/false); |
| 559 | |
| 560 | if (!OldThunkFn->use_empty()) { |
| 561 | OldThunkFn->replaceAllUsesWith(V: ThunkFn); |
| 562 | } |
| 563 | |
| 564 | // Remove the old thunk. |
| 565 | OldThunkFn->eraseFromParent(); |
| 566 | } |
| 567 | |
| 568 | bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); |
| 569 | bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; |
| 570 | |
| 571 | if (!ThunkFn->isDeclaration()) { |
| 572 | if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { |
| 573 | // There is already a thunk emitted for this function, do nothing. |
| 574 | return ThunkFn; |
| 575 | } |
| 576 | |
| 577 | setThunkProperties(CGM, Thunk: TI, ThunkFn, ForVTable, GD); |
| 578 | return ThunkFn; |
| 579 | } |
| 580 | |
| 581 | // If this will be unprototyped, add the "thunk" attribute so that LLVM knows |
| 582 | // that the return type is meaningless. These thunks can be used to call |
| 583 | // functions with differing return types, and the caller is required to cast |
| 584 | // the prototype appropriately to extract the correct value. |
| 585 | if (IsUnprototyped) |
| 586 | ThunkFn->addFnAttr(Kind: "thunk" ); |
| 587 | |
| 588 | CGM.SetLLVMFunctionAttributesForDefinition(D: GD.getDecl(), F: ThunkFn); |
| 589 | |
| 590 | // Thunks for variadic methods are special because in general variadic |
| 591 | // arguments cannot be perfectly forwarded. In the general case, clang |
| 592 | // implements such thunks by cloning the original function body. However, for |
| 593 | // thunks with no return adjustment on targets that support musttail, we can |
| 594 | // use musttail to perfectly forward the variadic arguments. |
| 595 | bool ShouldCloneVarArgs = false; |
| 596 | if (!IsUnprototyped && ThunkFn->isVarArg()) { |
| 597 | ShouldCloneVarArgs = true; |
| 598 | if (TI.Return.isEmpty()) { |
| 599 | switch (CGM.getTriple().getArch()) { |
| 600 | case llvm::Triple::x86_64: |
| 601 | case llvm::Triple::x86: |
| 602 | case llvm::Triple::aarch64: |
| 603 | ShouldCloneVarArgs = false; |
| 604 | break; |
| 605 | default: |
| 606 | break; |
| 607 | } |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | if (ShouldCloneVarArgs) { |
| 612 | if (UseAvailableExternallyLinkage) |
| 613 | return ThunkFn; |
| 614 | ThunkFn = |
| 615 | CodeGenFunction(CGM).GenerateVarArgsThunk(Fn: ThunkFn, FnInfo, GD, Thunk: TI); |
| 616 | } else { |
| 617 | // Normal thunk body generation. |
| 618 | CodeGenFunction(CGM).generateThunk(Fn: ThunkFn, FnInfo, GD, Thunk: TI, IsUnprototyped); |
| 619 | } |
| 620 | |
| 621 | setThunkProperties(CGM, Thunk: TI, ThunkFn, ForVTable, GD); |
| 622 | return ThunkFn; |
| 623 | } |
| 624 | |
| 625 | void CodeGenVTables::EmitThunks(GlobalDecl GD) { |
| 626 | const CXXMethodDecl *MD = |
| 627 | cast<CXXMethodDecl>(Val: GD.getDecl())->getCanonicalDecl(); |
| 628 | |
| 629 | // We don't need to generate thunks for the base destructor. |
| 630 | if (isa<CXXDestructorDecl>(Val: MD) && GD.getDtorType() == Dtor_Base) |
| 631 | return; |
| 632 | |
| 633 | const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = |
| 634 | VTContext->getThunkInfo(GD); |
| 635 | |
| 636 | if (!ThunkInfoVector) |
| 637 | return; |
| 638 | |
| 639 | for (const ThunkInfo& Thunk : *ThunkInfoVector) |
| 640 | maybeEmitThunk(GD, TI: Thunk, /*ForVTable=*/false); |
| 641 | } |
| 642 | |
| 643 | void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder, |
| 644 | llvm::Constant *component, |
| 645 | unsigned vtableAddressPoint, |
| 646 | bool vtableHasLocalLinkage, |
| 647 | bool isCompleteDtor) const { |
| 648 | // No need to get the offset of a nullptr. |
| 649 | if (component->isNullValue()) |
| 650 | return builder.add(value: llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 0)); |
| 651 | |
| 652 | auto *globalVal = |
| 653 | cast<llvm::GlobalValue>(Val: component->stripPointerCastsAndAliases()); |
| 654 | llvm::Module &module = CGM.getModule(); |
| 655 | |
| 656 | // We don't want to copy the linkage of the vtable exactly because we still |
| 657 | // want the stub/proxy to be emitted for properly calculating the offset. |
| 658 | // Examples where there would be no symbol emitted are available_externally |
| 659 | // and private linkages. |
| 660 | // |
| 661 | // `internal` linkage results in STB_LOCAL Elf binding while still manifesting a |
| 662 | // local symbol. |
| 663 | // |
| 664 | // `linkonce_odr` linkage results in a STB_DEFAULT Elf binding but also allows for |
| 665 | // the rtti_proxy to be transparently replaced with a GOTPCREL reloc by a |
| 666 | // target that supports this replacement. |
| 667 | auto stubLinkage = vtableHasLocalLinkage |
| 668 | ? llvm::GlobalValue::InternalLinkage |
| 669 | : llvm::GlobalValue::LinkOnceODRLinkage; |
| 670 | |
| 671 | llvm::Constant *target; |
| 672 | if (auto *func = dyn_cast<llvm::Function>(Val: globalVal)) { |
| 673 | target = llvm::DSOLocalEquivalent::get(GV: func); |
| 674 | } else { |
| 675 | llvm::SmallString<16> rttiProxyName(globalVal->getName()); |
| 676 | rttiProxyName.append(RHS: ".rtti_proxy" ); |
| 677 | |
| 678 | // The RTTI component may not always be emitted in the same linkage unit as |
| 679 | // the vtable. As a general case, we can make a dso_local proxy to the RTTI |
| 680 | // that points to the actual RTTI struct somewhere. This will result in a |
| 681 | // GOTPCREL relocation when taking the relative offset to the proxy. |
| 682 | llvm::GlobalVariable *proxy = module.getNamedGlobal(Name: rttiProxyName); |
| 683 | if (!proxy) { |
| 684 | proxy = new llvm::GlobalVariable(module, globalVal->getType(), |
| 685 | /*isConstant=*/true, stubLinkage, |
| 686 | globalVal, rttiProxyName); |
| 687 | proxy->setDSOLocal(true); |
| 688 | proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| 689 | if (!proxy->hasLocalLinkage()) { |
| 690 | proxy->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| 691 | proxy->setComdat(module.getOrInsertComdat(Name: rttiProxyName)); |
| 692 | } |
| 693 | // Do not instrument the rtti proxies with hwasan to avoid a duplicate |
| 694 | // symbol error. Aliases generated by hwasan will retain the same namebut |
| 695 | // the addresses they are set to may have different tags from different |
| 696 | // compilation units. We don't run into this without hwasan because the |
| 697 | // proxies are in comdat groups, but those aren't propagated to the alias. |
| 698 | RemoveHwasanMetadata(GV: proxy); |
| 699 | } |
| 700 | target = proxy; |
| 701 | } |
| 702 | |
| 703 | builder.addRelativeOffsetToPosition(type: CGM.Int32Ty, target, |
| 704 | /*position=*/vtableAddressPoint); |
| 705 | } |
| 706 | |
| 707 | static bool UseRelativeLayout(const CodeGenModule &CGM) { |
| 708 | return CGM.getTarget().getCXXABI().isItaniumFamily() && |
| 709 | CGM.getItaniumVTableContext().isRelativeLayout(); |
| 710 | } |
| 711 | |
| 712 | bool CodeGenVTables::useRelativeLayout() const { |
| 713 | return UseRelativeLayout(CGM); |
| 714 | } |
| 715 | |
| 716 | llvm::Type *CodeGenModule::getVTableComponentType() const { |
| 717 | if (UseRelativeLayout(CGM: *this)) |
| 718 | return Int32Ty; |
| 719 | return GlobalsInt8PtrTy; |
| 720 | } |
| 721 | |
| 722 | llvm::Type *CodeGenVTables::getVTableComponentType() const { |
| 723 | return CGM.getVTableComponentType(); |
| 724 | } |
| 725 | |
| 726 | static void AddPointerLayoutOffset(const CodeGenModule &CGM, |
| 727 | ConstantArrayBuilder &builder, |
| 728 | CharUnits offset) { |
| 729 | builder.add(value: llvm::ConstantExpr::getIntToPtr( |
| 730 | C: llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, V: offset.getQuantity()), |
| 731 | Ty: CGM.GlobalsInt8PtrTy)); |
| 732 | } |
| 733 | |
| 734 | static void AddRelativeLayoutOffset(const CodeGenModule &CGM, |
| 735 | ConstantArrayBuilder &builder, |
| 736 | CharUnits offset) { |
| 737 | builder.add(value: llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: offset.getQuantity())); |
| 738 | } |
| 739 | |
| 740 | void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder, |
| 741 | const VTableLayout &layout, |
| 742 | unsigned componentIndex, |
| 743 | llvm::Constant *rtti, |
| 744 | unsigned &nextVTableThunkIndex, |
| 745 | unsigned vtableAddressPoint, |
| 746 | bool vtableHasLocalLinkage) { |
| 747 | auto &component = layout.vtable_components()[componentIndex]; |
| 748 | |
| 749 | auto addOffsetConstant = |
| 750 | useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset; |
| 751 | |
| 752 | switch (component.getKind()) { |
| 753 | case VTableComponent::CK_VCallOffset: |
| 754 | return addOffsetConstant(CGM, builder, component.getVCallOffset()); |
| 755 | |
| 756 | case VTableComponent::CK_VBaseOffset: |
| 757 | return addOffsetConstant(CGM, builder, component.getVBaseOffset()); |
| 758 | |
| 759 | case VTableComponent::CK_OffsetToTop: |
| 760 | return addOffsetConstant(CGM, builder, component.getOffsetToTop()); |
| 761 | |
| 762 | case VTableComponent::CK_RTTI: |
| 763 | if (useRelativeLayout()) |
| 764 | return addRelativeComponent(builder, component: rtti, vtableAddressPoint, |
| 765 | vtableHasLocalLinkage, |
| 766 | /*isCompleteDtor=*/false); |
| 767 | else |
| 768 | return builder.add(value: rtti); |
| 769 | |
| 770 | case VTableComponent::CK_FunctionPointer: |
| 771 | case VTableComponent::CK_CompleteDtorPointer: |
| 772 | case VTableComponent::CK_DeletingDtorPointer: { |
| 773 | GlobalDecl GD = component.getGlobalDecl(); |
| 774 | |
| 775 | const bool IsThunk = |
| 776 | nextVTableThunkIndex < layout.vtable_thunks().size() && |
| 777 | layout.vtable_thunks()[nextVTableThunkIndex].first == componentIndex; |
| 778 | |
| 779 | if (CGM.getLangOpts().CUDA) { |
| 780 | // Emit NULL for methods we can't codegen on this |
| 781 | // side. Otherwise we'd end up with vtable with unresolved |
| 782 | // references. |
| 783 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
| 784 | // OK on device side: functions w/ __device__ attribute |
| 785 | // OK on host side: anything except __device__-only functions. |
| 786 | bool CanEmitMethod = |
| 787 | CGM.getLangOpts().CUDAIsDevice |
| 788 | ? MD->hasAttr<CUDADeviceAttr>() |
| 789 | : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); |
| 790 | if (!CanEmitMethod) { |
| 791 | if (IsThunk) |
| 792 | nextVTableThunkIndex++; |
| 793 | return builder.add( |
| 794 | value: llvm::ConstantExpr::getNullValue(Ty: CGM.GlobalsInt8PtrTy)); |
| 795 | } |
| 796 | // Method is acceptable, continue processing as usual. |
| 797 | } |
| 798 | |
| 799 | auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * { |
| 800 | // FIXME(PR43094): When merging comdat groups, lld can select a local |
| 801 | // symbol as the signature symbol even though it cannot be accessed |
| 802 | // outside that symbol's TU. The relative vtables ABI would make |
| 803 | // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and |
| 804 | // depending on link order, the comdat groups could resolve to the one |
| 805 | // with the local symbol. As a temporary solution, fill these components |
| 806 | // with zero. We shouldn't be calling these in the first place anyway. |
| 807 | if (useRelativeLayout()) |
| 808 | return llvm::ConstantPointerNull::get(T: CGM.GlobalsInt8PtrTy); |
| 809 | |
| 810 | // For NVPTX devices in OpenMP emit special functon as null pointers, |
| 811 | // otherwise linking ends up with unresolved references. |
| 812 | if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsTargetDevice && |
| 813 | CGM.getTriple().isNVPTX()) |
| 814 | return llvm::ConstantPointerNull::get(T: CGM.GlobalsInt8PtrTy); |
| 815 | llvm::FunctionType *fnTy = |
| 816 | llvm::FunctionType::get(Result: CGM.VoidTy, /*isVarArg=*/false); |
| 817 | llvm::Constant *fn = cast<llvm::Constant>( |
| 818 | Val: CGM.CreateRuntimeFunction(Ty: fnTy, Name: name).getCallee()); |
| 819 | if (auto f = dyn_cast<llvm::Function>(Val: fn)) |
| 820 | f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| 821 | return fn; |
| 822 | }; |
| 823 | |
| 824 | llvm::Constant *fnPtr; |
| 825 | |
| 826 | // Pure virtual member functions. |
| 827 | if (cast<CXXMethodDecl>(Val: GD.getDecl())->isPureVirtual()) { |
| 828 | if (!PureVirtualFn) |
| 829 | PureVirtualFn = |
| 830 | getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); |
| 831 | fnPtr = PureVirtualFn; |
| 832 | |
| 833 | // Deleted virtual member functions. |
| 834 | } else if (cast<CXXMethodDecl>(Val: GD.getDecl())->isDeleted()) { |
| 835 | if (!DeletedVirtualFn) |
| 836 | DeletedVirtualFn = |
| 837 | getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); |
| 838 | fnPtr = DeletedVirtualFn; |
| 839 | |
| 840 | // Thunks. |
| 841 | } else if (IsThunk) { |
| 842 | auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; |
| 843 | |
| 844 | nextVTableThunkIndex++; |
| 845 | fnPtr = maybeEmitThunk(GD, TI: thunkInfo, /*ForVTable=*/true); |
| 846 | if (CGM.getCodeGenOpts().PointerAuth.CXXVirtualFunctionPointers) { |
| 847 | assert(thunkInfo.Method && "Method not set" ); |
| 848 | GD = GD.getWithDecl(D: thunkInfo.Method); |
| 849 | } |
| 850 | |
| 851 | // Otherwise we can use the method definition directly. |
| 852 | } else { |
| 853 | llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); |
| 854 | fnPtr = CGM.GetAddrOfFunction(GD, Ty: fnTy, /*ForVTable=*/true); |
| 855 | if (CGM.getCodeGenOpts().PointerAuth.CXXVirtualFunctionPointers) |
| 856 | GD = getItaniumVTableContext().findOriginalMethod(GD); |
| 857 | } |
| 858 | |
| 859 | if (useRelativeLayout()) { |
| 860 | return addRelativeComponent( |
| 861 | builder, component: fnPtr, vtableAddressPoint, vtableHasLocalLinkage, |
| 862 | isCompleteDtor: component.getKind() == VTableComponent::CK_CompleteDtorPointer); |
| 863 | } else { |
| 864 | // TODO: this icky and only exists due to functions being in the generic |
| 865 | // address space, rather than the global one, even though they are |
| 866 | // globals; fixing said issue might be intrusive, and will be done |
| 867 | // later. |
| 868 | unsigned FnAS = fnPtr->getType()->getPointerAddressSpace(); |
| 869 | unsigned GVAS = CGM.GlobalsInt8PtrTy->getPointerAddressSpace(); |
| 870 | |
| 871 | if (FnAS != GVAS) |
| 872 | fnPtr = |
| 873 | llvm::ConstantExpr::getAddrSpaceCast(C: fnPtr, Ty: CGM.GlobalsInt8PtrTy); |
| 874 | if (const auto &Schema = |
| 875 | CGM.getCodeGenOpts().PointerAuth.CXXVirtualFunctionPointers) |
| 876 | return builder.addSignedPointer(Pointer: fnPtr, Schema, CalleeDecl: GD, CalleeType: QualType()); |
| 877 | return builder.add(value: fnPtr); |
| 878 | } |
| 879 | } |
| 880 | |
| 881 | case VTableComponent::CK_UnusedFunctionPointer: |
| 882 | if (useRelativeLayout()) |
| 883 | return builder.add(value: llvm::ConstantExpr::getNullValue(Ty: CGM.Int32Ty)); |
| 884 | else |
| 885 | return builder.addNullPointer(ptrTy: CGM.GlobalsInt8PtrTy); |
| 886 | } |
| 887 | |
| 888 | llvm_unreachable("Unexpected vtable component kind" ); |
| 889 | } |
| 890 | |
| 891 | llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { |
| 892 | SmallVector<llvm::Type *, 4> tys; |
| 893 | llvm::Type *componentType = getVTableComponentType(); |
| 894 | for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) |
| 895 | tys.push_back(Elt: llvm::ArrayType::get(ElementType: componentType, NumElements: layout.getVTableSize(i))); |
| 896 | |
| 897 | return llvm::StructType::get(Context&: CGM.getLLVMContext(), Elements: tys); |
| 898 | } |
| 899 | |
| 900 | void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, |
| 901 | const VTableLayout &layout, |
| 902 | llvm::Constant *rtti, |
| 903 | bool vtableHasLocalLinkage) { |
| 904 | llvm::Type *componentType = getVTableComponentType(); |
| 905 | |
| 906 | const auto &addressPoints = layout.getAddressPointIndices(); |
| 907 | unsigned nextVTableThunkIndex = 0; |
| 908 | for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables(); |
| 909 | vtableIndex != endIndex; ++vtableIndex) { |
| 910 | auto vtableElem = builder.beginArray(eltTy: componentType); |
| 911 | |
| 912 | size_t vtableStart = layout.getVTableOffset(i: vtableIndex); |
| 913 | size_t vtableEnd = vtableStart + layout.getVTableSize(i: vtableIndex); |
| 914 | for (size_t componentIndex = vtableStart; componentIndex < vtableEnd; |
| 915 | ++componentIndex) { |
| 916 | addVTableComponent(builder&: vtableElem, layout, componentIndex, rtti, |
| 917 | nextVTableThunkIndex, vtableAddressPoint: addressPoints[vtableIndex], |
| 918 | vtableHasLocalLinkage); |
| 919 | } |
| 920 | vtableElem.finishAndAddTo(parent&: builder); |
| 921 | } |
| 922 | } |
| 923 | |
| 924 | llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable( |
| 925 | const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual, |
| 926 | llvm::GlobalVariable::LinkageTypes Linkage, |
| 927 | VTableAddressPointsMapTy &AddressPoints) { |
| 928 | if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) |
| 929 | DI->completeClassData(RD: Base.getBase()); |
| 930 | |
| 931 | std::unique_ptr<VTableLayout> VTLayout( |
| 932 | getItaniumVTableContext().createConstructionVTableLayout( |
| 933 | MostDerivedClass: Base.getBase(), MostDerivedClassOffset: Base.getBaseOffset(), MostDerivedClassIsVirtual: BaseIsVirtual, LayoutClass: RD)); |
| 934 | |
| 935 | // Add the address points. |
| 936 | AddressPoints = VTLayout->getAddressPoints(); |
| 937 | |
| 938 | // Get the mangled construction vtable name. |
| 939 | SmallString<256> OutName; |
| 940 | llvm::raw_svector_ostream Out(OutName); |
| 941 | cast<ItaniumMangleContext>(Val&: CGM.getCXXABI().getMangleContext()) |
| 942 | .mangleCXXCtorVTable(RD, Offset: Base.getBaseOffset().getQuantity(), |
| 943 | Type: Base.getBase(), Out); |
| 944 | SmallString<256> Name(OutName); |
| 945 | |
| 946 | bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout(); |
| 947 | bool VTableAliasExists = |
| 948 | UsingRelativeLayout && CGM.getModule().getNamedAlias(Name); |
| 949 | if (VTableAliasExists) { |
| 950 | // We previously made the vtable hidden and changed its name. |
| 951 | Name.append(RHS: ".local" ); |
| 952 | } |
| 953 | |
| 954 | llvm::Type *VTType = getVTableType(layout: *VTLayout); |
| 955 | |
| 956 | // Construction vtable symbols are not part of the Itanium ABI, so we cannot |
| 957 | // guarantee that they actually will be available externally. Instead, when |
| 958 | // emitting an available_externally VTT, we provide references to an internal |
| 959 | // linkage construction vtable. The ABI only requires complete-object vtables |
| 960 | // to be the same for all instances of a type, not construction vtables. |
| 961 | if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) |
| 962 | Linkage = llvm::GlobalVariable::InternalLinkage; |
| 963 | |
| 964 | llvm::Align Align = CGM.getDataLayout().getABITypeAlign(Ty: VTType); |
| 965 | |
| 966 | // Create the variable that will hold the construction vtable. |
| 967 | llvm::GlobalVariable *VTable = |
| 968 | CGM.CreateOrReplaceCXXRuntimeVariable(Name, Ty: VTType, Linkage, Alignment: Align); |
| 969 | |
| 970 | // V-tables are always unnamed_addr. |
| 971 | VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| 972 | |
| 973 | llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( |
| 974 | Ty: CGM.getContext().getTagDeclType(Decl: Base.getBase())); |
| 975 | |
| 976 | // Create and set the initializer. |
| 977 | ConstantInitBuilder builder(CGM); |
| 978 | auto components = builder.beginStruct(); |
| 979 | createVTableInitializer(builder&: components, layout: *VTLayout, rtti: RTTI, |
| 980 | vtableHasLocalLinkage: VTable->hasLocalLinkage()); |
| 981 | components.finishAndSetAsInitializer(global: VTable); |
| 982 | |
| 983 | // Set properties only after the initializer has been set to ensure that the |
| 984 | // GV is treated as definition and not declaration. |
| 985 | assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration" ); |
| 986 | CGM.setGVProperties(GV: VTable, D: RD); |
| 987 | |
| 988 | CGM.EmitVTableTypeMetadata(RD, VTable, VTLayout: *VTLayout); |
| 989 | |
| 990 | if (UsingRelativeLayout) { |
| 991 | RemoveHwasanMetadata(GV: VTable); |
| 992 | if (!VTable->isDSOLocal()) |
| 993 | GenerateRelativeVTableAlias(VTable, AliasNameRef: OutName); |
| 994 | } |
| 995 | |
| 996 | return VTable; |
| 997 | } |
| 998 | |
| 999 | // Ensure this vtable is not instrumented by hwasan. That is, a global alias is |
| 1000 | // not generated for it. This is mainly used by the relative-vtables ABI where |
| 1001 | // vtables instead contain 32-bit offsets between the vtable and function |
| 1002 | // pointers. Hwasan is disabled for these vtables for now because the tag in a |
| 1003 | // vtable pointer may fail the overflow check when resolving 32-bit PLT |
| 1004 | // relocations. A future alternative for this would be finding which usages of |
| 1005 | // the vtable can continue to use the untagged hwasan value without any loss of |
| 1006 | // value in hwasan. |
| 1007 | void CodeGenVTables::RemoveHwasanMetadata(llvm::GlobalValue *GV) const { |
| 1008 | if (CGM.getLangOpts().Sanitize.has(K: SanitizerKind::HWAddress)) { |
| 1009 | llvm::GlobalValue::SanitizerMetadata Meta; |
| 1010 | if (GV->hasSanitizerMetadata()) |
| 1011 | Meta = GV->getSanitizerMetadata(); |
| 1012 | Meta.NoHWAddress = true; |
| 1013 | GV->setSanitizerMetadata(Meta); |
| 1014 | } |
| 1015 | } |
| 1016 | |
| 1017 | // If the VTable is not dso_local, then we will not be able to indicate that |
| 1018 | // the VTable does not need a relocation and move into rodata. A frequent |
| 1019 | // time this can occur is for classes that should be made public from a DSO |
| 1020 | // (like in libc++). For cases like these, we can make the vtable hidden or |
| 1021 | // internal and create a public alias with the same visibility and linkage as |
| 1022 | // the original vtable type. |
| 1023 | void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable, |
| 1024 | llvm::StringRef AliasNameRef) { |
| 1025 | assert(getItaniumVTableContext().isRelativeLayout() && |
| 1026 | "Can only use this if the relative vtable ABI is used" ); |
| 1027 | assert(!VTable->isDSOLocal() && "This should be called only if the vtable is " |
| 1028 | "not guaranteed to be dso_local" ); |
| 1029 | |
| 1030 | // If the vtable is available_externally, we shouldn't (or need to) generate |
| 1031 | // an alias for it in the first place since the vtable won't actually by |
| 1032 | // emitted in this compilation unit. |
| 1033 | if (VTable->hasAvailableExternallyLinkage()) |
| 1034 | return; |
| 1035 | |
| 1036 | // Create a new string in the event the alias is already the name of the |
| 1037 | // vtable. Using the reference directly could lead to use of an inititialized |
| 1038 | // value in the module's StringMap. |
| 1039 | llvm::SmallString<256> AliasName(AliasNameRef); |
| 1040 | VTable->setName(AliasName + ".local" ); |
| 1041 | |
| 1042 | auto Linkage = VTable->getLinkage(); |
| 1043 | assert(llvm::GlobalAlias::isValidLinkage(Linkage) && |
| 1044 | "Invalid vtable alias linkage" ); |
| 1045 | |
| 1046 | llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(Name: AliasName); |
| 1047 | if (!VTableAlias) { |
| 1048 | VTableAlias = llvm::GlobalAlias::create(Ty: VTable->getValueType(), |
| 1049 | AddressSpace: VTable->getAddressSpace(), Linkage, |
| 1050 | Name: AliasName, Parent: &CGM.getModule()); |
| 1051 | } else { |
| 1052 | assert(VTableAlias->getValueType() == VTable->getValueType()); |
| 1053 | assert(VTableAlias->getLinkage() == Linkage); |
| 1054 | } |
| 1055 | VTableAlias->setVisibility(VTable->getVisibility()); |
| 1056 | VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr()); |
| 1057 | |
| 1058 | // Both of these will now imply dso_local for the vtable. |
| 1059 | if (!VTable->hasComdat()) { |
| 1060 | VTable->setLinkage(llvm::GlobalValue::InternalLinkage); |
| 1061 | } else { |
| 1062 | // If a relocation targets an internal linkage symbol, MC will generate the |
| 1063 | // relocation against the symbol's section instead of the symbol itself |
| 1064 | // (see ELFObjectWriter::shouldRelocateWithSymbol). If an internal symbol is |
| 1065 | // in a COMDAT section group, that section might be discarded, and then the |
| 1066 | // relocation to that section will generate a linker error. We therefore |
| 1067 | // make COMDAT vtables hidden instead of internal: they'll still not be |
| 1068 | // public, but relocations will reference the symbol instead of the section |
| 1069 | // and COMDAT deduplication will thus work as expected. |
| 1070 | VTable->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| 1071 | } |
| 1072 | |
| 1073 | VTableAlias->setAliasee(VTable); |
| 1074 | } |
| 1075 | |
| 1076 | static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, |
| 1077 | const CXXRecordDecl *RD) { |
| 1078 | return CGM.getCodeGenOpts().OptimizationLevel > 0 && |
| 1079 | CGM.getCXXABI().canSpeculativelyEmitVTable(RD); |
| 1080 | } |
| 1081 | |
| 1082 | /// Compute the required linkage of the vtable for the given class. |
| 1083 | /// |
| 1084 | /// Note that we only call this at the end of the translation unit. |
| 1085 | llvm::GlobalVariable::LinkageTypes |
| 1086 | CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { |
| 1087 | if (!RD->isExternallyVisible()) |
| 1088 | return llvm::GlobalVariable::InternalLinkage; |
| 1089 | |
| 1090 | // In windows, the linkage of vtable is not related to modules. |
| 1091 | bool IsInNamedModule = !getTarget().getCXXABI().isMicrosoft() && |
| 1092 | RD->isInNamedModule(); |
| 1093 | // If the CXXRecordDecl is not in a module unit, we need to get |
| 1094 | // its key function. We're at the end of the translation unit, so the current |
| 1095 | // key function is fully correct. |
| 1096 | const CXXMethodDecl *keyFunction = |
| 1097 | IsInNamedModule ? nullptr : Context.getCurrentKeyFunction(RD); |
| 1098 | if (IsInNamedModule || (keyFunction && !RD->hasAttr<DLLImportAttr>())) { |
| 1099 | // If this class has a key function, use that to determine the |
| 1100 | // linkage of the vtable. |
| 1101 | const FunctionDecl *def = nullptr; |
| 1102 | if (keyFunction && keyFunction->hasBody(Definition&: def)) |
| 1103 | keyFunction = cast<CXXMethodDecl>(Val: def); |
| 1104 | |
| 1105 | bool IsExternalDefinition = |
| 1106 | IsInNamedModule ? RD->shouldEmitInExternalSource() : !def; |
| 1107 | |
| 1108 | TemplateSpecializationKind Kind = |
| 1109 | IsInNamedModule ? RD->getTemplateSpecializationKind() |
| 1110 | : keyFunction->getTemplateSpecializationKind(); |
| 1111 | |
| 1112 | switch (Kind) { |
| 1113 | case TSK_Undeclared: |
| 1114 | case TSK_ExplicitSpecialization: |
| 1115 | assert( |
| 1116 | (IsInNamedModule || def || CodeGenOpts.OptimizationLevel > 0 || |
| 1117 | CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo) && |
| 1118 | "Shouldn't query vtable linkage without the class in module units, " |
| 1119 | "key function, optimizations, or debug info" ); |
| 1120 | if (IsExternalDefinition && CodeGenOpts.OptimizationLevel > 0) |
| 1121 | return llvm::GlobalVariable::AvailableExternallyLinkage; |
| 1122 | |
| 1123 | if (keyFunction && keyFunction->isInlined()) |
| 1124 | return !Context.getLangOpts().AppleKext |
| 1125 | ? llvm::GlobalVariable::LinkOnceODRLinkage |
| 1126 | : llvm::Function::InternalLinkage; |
| 1127 | |
| 1128 | return llvm::GlobalVariable::ExternalLinkage; |
| 1129 | |
| 1130 | case TSK_ImplicitInstantiation: |
| 1131 | return !Context.getLangOpts().AppleKext ? |
| 1132 | llvm::GlobalVariable::LinkOnceODRLinkage : |
| 1133 | llvm::Function::InternalLinkage; |
| 1134 | |
| 1135 | case TSK_ExplicitInstantiationDefinition: |
| 1136 | return !Context.getLangOpts().AppleKext ? |
| 1137 | llvm::GlobalVariable::WeakODRLinkage : |
| 1138 | llvm::Function::InternalLinkage; |
| 1139 | |
| 1140 | case TSK_ExplicitInstantiationDeclaration: |
| 1141 | return IsExternalDefinition |
| 1142 | ? llvm::GlobalVariable::AvailableExternallyLinkage |
| 1143 | : llvm::GlobalVariable::ExternalLinkage; |
| 1144 | } |
| 1145 | } |
| 1146 | |
| 1147 | // -fapple-kext mode does not support weak linkage, so we must use |
| 1148 | // internal linkage. |
| 1149 | if (Context.getLangOpts().AppleKext) |
| 1150 | return llvm::Function::InternalLinkage; |
| 1151 | |
| 1152 | llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = |
| 1153 | llvm::GlobalValue::LinkOnceODRLinkage; |
| 1154 | llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = |
| 1155 | llvm::GlobalValue::WeakODRLinkage; |
| 1156 | if (RD->hasAttr<DLLExportAttr>()) { |
| 1157 | // Cannot discard exported vtables. |
| 1158 | DiscardableODRLinkage = NonDiscardableODRLinkage; |
| 1159 | } else if (RD->hasAttr<DLLImportAttr>()) { |
| 1160 | // Imported vtables are available externally. |
| 1161 | DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; |
| 1162 | NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; |
| 1163 | } |
| 1164 | |
| 1165 | switch (RD->getTemplateSpecializationKind()) { |
| 1166 | case TSK_Undeclared: |
| 1167 | case TSK_ExplicitSpecialization: |
| 1168 | case TSK_ImplicitInstantiation: |
| 1169 | return DiscardableODRLinkage; |
| 1170 | |
| 1171 | case TSK_ExplicitInstantiationDeclaration: |
| 1172 | // Explicit instantiations in MSVC do not provide vtables, so we must emit |
| 1173 | // our own. |
| 1174 | if (getTarget().getCXXABI().isMicrosoft()) |
| 1175 | return DiscardableODRLinkage; |
| 1176 | return shouldEmitAvailableExternallyVTable(CGM: *this, RD) |
| 1177 | ? llvm::GlobalVariable::AvailableExternallyLinkage |
| 1178 | : llvm::GlobalVariable::ExternalLinkage; |
| 1179 | |
| 1180 | case TSK_ExplicitInstantiationDefinition: |
| 1181 | return NonDiscardableODRLinkage; |
| 1182 | } |
| 1183 | |
| 1184 | llvm_unreachable("Invalid TemplateSpecializationKind!" ); |
| 1185 | } |
| 1186 | |
| 1187 | /// This is a callback from Sema to tell us that a particular vtable is |
| 1188 | /// required to be emitted in this translation unit. |
| 1189 | /// |
| 1190 | /// This is only called for vtables that _must_ be emitted (mainly due to key |
| 1191 | /// functions). For weak vtables, CodeGen tracks when they are needed and |
| 1192 | /// emits them as-needed. |
| 1193 | void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { |
| 1194 | VTables.GenerateClassData(RD: theClass); |
| 1195 | } |
| 1196 | |
| 1197 | void |
| 1198 | CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { |
| 1199 | if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) |
| 1200 | DI->completeClassData(RD); |
| 1201 | |
| 1202 | if (RD->getNumVBases()) |
| 1203 | CGM.getCXXABI().emitVirtualInheritanceTables(RD); |
| 1204 | |
| 1205 | CGM.getCXXABI().emitVTableDefinitions(CGVT&: *this, RD); |
| 1206 | } |
| 1207 | |
| 1208 | /// At this point in the translation unit, does it appear that can we |
| 1209 | /// rely on the vtable being defined elsewhere in the program? |
| 1210 | /// |
| 1211 | /// The response is really only definitive when called at the end of |
| 1212 | /// the translation unit. |
| 1213 | /// |
| 1214 | /// The only semantic restriction here is that the object file should |
| 1215 | /// not contain a vtable definition when that vtable is defined |
| 1216 | /// strongly elsewhere. Otherwise, we'd just like to avoid emitting |
| 1217 | /// vtables when unnecessary. |
| 1218 | bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { |
| 1219 | assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable." ); |
| 1220 | |
| 1221 | // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't |
| 1222 | // emit them even if there is an explicit template instantiation. |
| 1223 | if (CGM.getTarget().getCXXABI().isMicrosoft()) |
| 1224 | return false; |
| 1225 | |
| 1226 | // If we have an explicit instantiation declaration (and not a |
| 1227 | // definition), the vtable is defined elsewhere. |
| 1228 | TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); |
| 1229 | if (TSK == TSK_ExplicitInstantiationDeclaration) |
| 1230 | return true; |
| 1231 | |
| 1232 | // Otherwise, if the class is an instantiated template, the |
| 1233 | // vtable must be defined here. |
| 1234 | if (TSK == TSK_ImplicitInstantiation || |
| 1235 | TSK == TSK_ExplicitInstantiationDefinition) |
| 1236 | return false; |
| 1237 | |
| 1238 | // Otherwise, if the class is attached to a module, the tables are uniquely |
| 1239 | // emitted in the object for the module unit in which it is defined. |
| 1240 | if (RD->isInNamedModule()) |
| 1241 | return RD->shouldEmitInExternalSource(); |
| 1242 | |
| 1243 | // Otherwise, if the class doesn't have a key function (possibly |
| 1244 | // anymore), the vtable must be defined here. |
| 1245 | const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); |
| 1246 | if (!keyFunction) |
| 1247 | return false; |
| 1248 | |
| 1249 | // Otherwise, if we don't have a definition of the key function, the |
| 1250 | // vtable must be defined somewhere else. |
| 1251 | return !keyFunction->hasBody(); |
| 1252 | } |
| 1253 | |
| 1254 | /// Given that we're currently at the end of the translation unit, and |
| 1255 | /// we've emitted a reference to the vtable for this class, should |
| 1256 | /// we define that vtable? |
| 1257 | static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, |
| 1258 | const CXXRecordDecl *RD) { |
| 1259 | // If vtable is internal then it has to be done. |
| 1260 | if (!CGM.getVTables().isVTableExternal(RD)) |
| 1261 | return true; |
| 1262 | |
| 1263 | // If it's external then maybe we will need it as available_externally. |
| 1264 | return shouldEmitAvailableExternallyVTable(CGM, RD); |
| 1265 | } |
| 1266 | |
| 1267 | /// Given that at some point we emitted a reference to one or more |
| 1268 | /// vtables, and that we are now at the end of the translation unit, |
| 1269 | /// decide whether we should emit them. |
| 1270 | void CodeGenModule::EmitDeferredVTables() { |
| 1271 | #ifndef NDEBUG |
| 1272 | // Remember the size of DeferredVTables, because we're going to assume |
| 1273 | // that this entire operation doesn't modify it. |
| 1274 | size_t savedSize = DeferredVTables.size(); |
| 1275 | #endif |
| 1276 | |
| 1277 | for (const CXXRecordDecl *RD : DeferredVTables) |
| 1278 | if (shouldEmitVTableAtEndOfTranslationUnit(CGM&: *this, RD)) |
| 1279 | VTables.GenerateClassData(RD); |
| 1280 | else if (shouldOpportunisticallyEmitVTables()) |
| 1281 | OpportunisticVTables.push_back(x: RD); |
| 1282 | |
| 1283 | assert(savedSize == DeferredVTables.size() && |
| 1284 | "deferred extra vtables during vtable emission?" ); |
| 1285 | DeferredVTables.clear(); |
| 1286 | } |
| 1287 | |
| 1288 | bool CodeGenModule::AlwaysHasLTOVisibilityPublic(const CXXRecordDecl *RD) { |
| 1289 | if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>() || |
| 1290 | RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) |
| 1291 | return true; |
| 1292 | |
| 1293 | if (!getCodeGenOpts().LTOVisibilityPublicStd) |
| 1294 | return false; |
| 1295 | |
| 1296 | const DeclContext *DC = RD; |
| 1297 | while (true) { |
| 1298 | auto *D = cast<Decl>(Val: DC); |
| 1299 | DC = DC->getParent(); |
| 1300 | if (isa<TranslationUnitDecl>(Val: DC->getRedeclContext())) { |
| 1301 | if (auto *ND = dyn_cast<NamespaceDecl>(Val: D)) |
| 1302 | if (const IdentifierInfo *II = ND->getIdentifier()) |
| 1303 | if (II->isStr(Str: "std" ) || II->isStr(Str: "stdext" )) |
| 1304 | return true; |
| 1305 | break; |
| 1306 | } |
| 1307 | } |
| 1308 | |
| 1309 | return false; |
| 1310 | } |
| 1311 | |
| 1312 | bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { |
| 1313 | LinkageInfo LV = RD->getLinkageAndVisibility(); |
| 1314 | if (!isExternallyVisible(L: LV.getLinkage())) |
| 1315 | return true; |
| 1316 | |
| 1317 | if (!getTriple().isOSBinFormatCOFF() && |
| 1318 | LV.getVisibility() != HiddenVisibility) |
| 1319 | return false; |
| 1320 | |
| 1321 | return !AlwaysHasLTOVisibilityPublic(RD); |
| 1322 | } |
| 1323 | |
| 1324 | llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel( |
| 1325 | const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) { |
| 1326 | // If we have already visited this RD (which means this is a recursive call |
| 1327 | // since the initial call should have an empty Visited set), return the max |
| 1328 | // visibility. The recursive calls below compute the min between the result |
| 1329 | // of the recursive call and the current TypeVis, so returning the max here |
| 1330 | // ensures that it will have no effect on the current TypeVis. |
| 1331 | if (!Visited.insert(V: RD).second) |
| 1332 | return llvm::GlobalObject::VCallVisibilityTranslationUnit; |
| 1333 | |
| 1334 | LinkageInfo LV = RD->getLinkageAndVisibility(); |
| 1335 | llvm::GlobalObject::VCallVisibility TypeVis; |
| 1336 | if (!isExternallyVisible(L: LV.getLinkage())) |
| 1337 | TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit; |
| 1338 | else if (HasHiddenLTOVisibility(RD)) |
| 1339 | TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit; |
| 1340 | else |
| 1341 | TypeVis = llvm::GlobalObject::VCallVisibilityPublic; |
| 1342 | |
| 1343 | for (const auto &B : RD->bases()) |
| 1344 | if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) |
| 1345 | TypeVis = std::min( |
| 1346 | a: TypeVis, |
| 1347 | b: GetVCallVisibilityLevel(RD: B.getType()->getAsCXXRecordDecl(), Visited)); |
| 1348 | |
| 1349 | for (const auto &B : RD->vbases()) |
| 1350 | if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) |
| 1351 | TypeVis = std::min( |
| 1352 | a: TypeVis, |
| 1353 | b: GetVCallVisibilityLevel(RD: B.getType()->getAsCXXRecordDecl(), Visited)); |
| 1354 | |
| 1355 | return TypeVis; |
| 1356 | } |
| 1357 | |
| 1358 | void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD, |
| 1359 | llvm::GlobalVariable *VTable, |
| 1360 | const VTableLayout &VTLayout) { |
| 1361 | // Emit type metadata on vtables with LTO or IR instrumentation. |
| 1362 | // In IR instrumentation, the type metadata is used to find out vtable |
| 1363 | // definitions (for type profiling) among all global variables. |
| 1364 | if (!getCodeGenOpts().LTOUnit && !getCodeGenOpts().hasProfileIRInstr()) |
| 1365 | return; |
| 1366 | |
| 1367 | CharUnits ComponentWidth = GetTargetTypeStoreSize(Ty: getVTableComponentType()); |
| 1368 | |
| 1369 | struct AddressPoint { |
| 1370 | const CXXRecordDecl *Base; |
| 1371 | size_t Offset; |
| 1372 | std::string TypeName; |
| 1373 | bool operator<(const AddressPoint &RHS) const { |
| 1374 | int D = TypeName.compare(str: RHS.TypeName); |
| 1375 | return D < 0 || (D == 0 && Offset < RHS.Offset); |
| 1376 | } |
| 1377 | }; |
| 1378 | std::vector<AddressPoint> AddressPoints; |
| 1379 | for (auto &&AP : VTLayout.getAddressPoints()) { |
| 1380 | AddressPoint N{.Base: AP.first.getBase(), |
| 1381 | .Offset: VTLayout.getVTableOffset(i: AP.second.VTableIndex) + |
| 1382 | AP.second.AddressPointIndex, |
| 1383 | .TypeName: {}}; |
| 1384 | llvm::raw_string_ostream Stream(N.TypeName); |
| 1385 | getCXXABI().getMangleContext().mangleCanonicalTypeName( |
| 1386 | T: QualType(N.Base->getTypeForDecl(), 0), Stream); |
| 1387 | AddressPoints.push_back(x: std::move(N)); |
| 1388 | } |
| 1389 | |
| 1390 | // Sort the address points for determinism. |
| 1391 | llvm::sort(C&: AddressPoints); |
| 1392 | |
| 1393 | ArrayRef<VTableComponent> Comps = VTLayout.vtable_components(); |
| 1394 | for (auto AP : AddressPoints) { |
| 1395 | // Create type metadata for the address point. |
| 1396 | AddVTableTypeMetadata(VTable, Offset: ComponentWidth * AP.Offset, RD: AP.Base); |
| 1397 | |
| 1398 | // The class associated with each address point could also potentially be |
| 1399 | // used for indirect calls via a member function pointer, so we need to |
| 1400 | // annotate the address of each function pointer with the appropriate member |
| 1401 | // function pointer type. |
| 1402 | for (unsigned I = 0; I != Comps.size(); ++I) { |
| 1403 | if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer) |
| 1404 | continue; |
| 1405 | llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType( |
| 1406 | T: Context.getMemberPointerType(T: Comps[I].getFunctionDecl()->getType(), |
| 1407 | /*Qualifier=*/nullptr, Cls: AP.Base)); |
| 1408 | VTable->addTypeMetadata(Offset: (ComponentWidth * I).getQuantity(), TypeID: MD); |
| 1409 | } |
| 1410 | } |
| 1411 | |
| 1412 | if (getCodeGenOpts().VirtualFunctionElimination || |
| 1413 | getCodeGenOpts().WholeProgramVTables) { |
| 1414 | llvm::DenseSet<const CXXRecordDecl *> Visited; |
| 1415 | llvm::GlobalObject::VCallVisibility TypeVis = |
| 1416 | GetVCallVisibilityLevel(RD, Visited); |
| 1417 | if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) |
| 1418 | VTable->setVCallVisibilityMetadata(TypeVis); |
| 1419 | } |
| 1420 | } |
| 1421 | |