| 1 | //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This provides C++ code generation targeting the Microsoft Visual C++ ABI. |
| 10 | // The class in this file generates structures that follow the Microsoft |
| 11 | // Visual C++ ABI, which is actually not very well documented at all outside |
| 12 | // of Microsoft. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "ABIInfo.h" |
| 17 | #include "CGCXXABI.h" |
| 18 | #include "CGCleanup.h" |
| 19 | #include "CGDebugInfo.h" |
| 20 | #include "CGVTables.h" |
| 21 | #include "CodeGenModule.h" |
| 22 | #include "CodeGenTypes.h" |
| 23 | #include "TargetInfo.h" |
| 24 | #include "clang/AST/Attr.h" |
| 25 | #include "clang/AST/CXXInheritance.h" |
| 26 | #include "clang/AST/Decl.h" |
| 27 | #include "clang/AST/DeclCXX.h" |
| 28 | #include "clang/AST/StmtCXX.h" |
| 29 | #include "clang/AST/VTableBuilder.h" |
| 30 | #include "clang/CodeGen/ConstantInitBuilder.h" |
| 31 | #include "llvm/ADT/StringExtras.h" |
| 32 | #include "llvm/ADT/StringSet.h" |
| 33 | #include "llvm/IR/Intrinsics.h" |
| 34 | |
| 35 | using namespace clang; |
| 36 | using namespace CodeGen; |
| 37 | |
| 38 | namespace { |
| 39 | |
| 40 | /// Holds all the vbtable globals for a given class. |
| 41 | struct VBTableGlobals { |
| 42 | const VPtrInfoVector *VBTables; |
| 43 | SmallVector<llvm::GlobalVariable *, 2> Globals; |
| 44 | }; |
| 45 | |
| 46 | class MicrosoftCXXABI : public CGCXXABI { |
| 47 | public: |
| 48 | MicrosoftCXXABI(CodeGenModule &CGM) |
| 49 | : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), |
| 50 | ClassHierarchyDescriptorType(nullptr), |
| 51 | CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), |
| 52 | ThrowInfoType(nullptr) { |
| 53 | assert(!(CGM.getLangOpts().isExplicitDefaultVisibilityExportMapping() || |
| 54 | CGM.getLangOpts().isAllDefaultVisibilityExportMapping()) && |
| 55 | "visibility export mapping option unimplemented in this ABI" ); |
| 56 | } |
| 57 | |
| 58 | bool HasThisReturn(GlobalDecl GD) const override; |
| 59 | bool hasMostDerivedReturn(GlobalDecl GD) const override; |
| 60 | |
| 61 | bool classifyReturnType(CGFunctionInfo &FI) const override; |
| 62 | |
| 63 | RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; |
| 64 | |
| 65 | bool isSRetParameterAfterThis() const override { return true; } |
| 66 | |
| 67 | bool isThisCompleteObject(GlobalDecl GD) const override { |
| 68 | // The Microsoft ABI doesn't use separate complete-object vs. |
| 69 | // base-object variants of constructors, but it does of destructors. |
| 70 | if (isa<CXXDestructorDecl>(Val: GD.getDecl())) { |
| 71 | switch (GD.getDtorType()) { |
| 72 | case Dtor_Complete: |
| 73 | case Dtor_Deleting: |
| 74 | return true; |
| 75 | |
| 76 | case Dtor_Base: |
| 77 | return false; |
| 78 | |
| 79 | case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?" ); |
| 80 | } |
| 81 | llvm_unreachable("bad dtor kind" ); |
| 82 | } |
| 83 | |
| 84 | // No other kinds. |
| 85 | return false; |
| 86 | } |
| 87 | |
| 88 | size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, |
| 89 | FunctionArgList &Args) const override { |
| 90 | assert(Args.size() >= 2 && |
| 91 | "expected the arglist to have at least two args!" ); |
| 92 | // The 'most_derived' parameter goes second if the ctor is variadic and |
| 93 | // has v-bases. |
| 94 | if (CD->getParent()->getNumVBases() > 0 && |
| 95 | CD->getType()->castAs<FunctionProtoType>()->isVariadic()) |
| 96 | return 2; |
| 97 | return 1; |
| 98 | } |
| 99 | |
| 100 | std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override { |
| 101 | std::vector<CharUnits> VBPtrOffsets; |
| 102 | const ASTContext &Context = getContext(); |
| 103 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
| 104 | |
| 105 | const VBTableGlobals &VBGlobals = enumerateVBTables(RD); |
| 106 | for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) { |
| 107 | const ASTRecordLayout &SubobjectLayout = |
| 108 | Context.getASTRecordLayout(D: VBT->IntroducingObject); |
| 109 | CharUnits Offs = VBT->NonVirtualOffset; |
| 110 | Offs += SubobjectLayout.getVBPtrOffset(); |
| 111 | if (VBT->getVBaseWithVPtr()) |
| 112 | Offs += Layout.getVBaseClassOffset(VBase: VBT->getVBaseWithVPtr()); |
| 113 | VBPtrOffsets.push_back(x: Offs); |
| 114 | } |
| 115 | llvm::array_pod_sort(Start: VBPtrOffsets.begin(), End: VBPtrOffsets.end()); |
| 116 | return VBPtrOffsets; |
| 117 | } |
| 118 | |
| 119 | StringRef GetPureVirtualCallName() override { return "_purecall" ; } |
| 120 | StringRef GetDeletedVirtualCallName() override { return "_purecall" ; } |
| 121 | |
| 122 | void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, |
| 123 | Address Ptr, QualType ElementType, |
| 124 | const CXXDestructorDecl *Dtor) override; |
| 125 | |
| 126 | void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; |
| 127 | void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; |
| 128 | |
| 129 | void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; |
| 130 | |
| 131 | llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, |
| 132 | const VPtrInfo &Info); |
| 133 | |
| 134 | llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; |
| 135 | CatchTypeInfo |
| 136 | getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; |
| 137 | |
| 138 | /// MSVC needs an extra flag to indicate a catchall. |
| 139 | CatchTypeInfo getCatchAllTypeInfo() override { |
| 140 | // For -EHa catch(...) must handle HW exception |
| 141 | // Adjective = HT_IsStdDotDot (0x40), only catch C++ exceptions |
| 142 | if (getContext().getLangOpts().EHAsynch) |
| 143 | return CatchTypeInfo{.RTTI: nullptr, .Flags: 0}; |
| 144 | else |
| 145 | return CatchTypeInfo{.RTTI: nullptr, .Flags: 0x40}; |
| 146 | } |
| 147 | |
| 148 | bool shouldTypeidBeNullChecked(QualType SrcRecordTy) override; |
| 149 | void EmitBadTypeidCall(CodeGenFunction &CGF) override; |
| 150 | llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, |
| 151 | Address ThisPtr, |
| 152 | llvm::Type *StdTypeInfoPtrTy) override; |
| 153 | |
| 154 | bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, |
| 155 | QualType SrcRecordTy) override; |
| 156 | |
| 157 | bool shouldEmitExactDynamicCast(QualType DestRecordTy) override { |
| 158 | // TODO: Add support for exact dynamic_casts. |
| 159 | return false; |
| 160 | } |
| 161 | llvm::Value *emitExactDynamicCast(CodeGenFunction &CGF, Address Value, |
| 162 | QualType SrcRecordTy, QualType DestTy, |
| 163 | QualType DestRecordTy, |
| 164 | llvm::BasicBlock *CastSuccess, |
| 165 | llvm::BasicBlock *CastFail) override { |
| 166 | llvm_unreachable("unsupported" ); |
| 167 | } |
| 168 | |
| 169 | llvm::Value *emitDynamicCastCall(CodeGenFunction &CGF, Address Value, |
| 170 | QualType SrcRecordTy, QualType DestTy, |
| 171 | QualType DestRecordTy, |
| 172 | llvm::BasicBlock *CastEnd) override; |
| 173 | |
| 174 | llvm::Value *emitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, |
| 175 | QualType SrcRecordTy) override; |
| 176 | |
| 177 | bool EmitBadCastCall(CodeGenFunction &CGF) override; |
| 178 | bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { |
| 179 | return false; |
| 180 | } |
| 181 | |
| 182 | llvm::Value * |
| 183 | GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, |
| 184 | const CXXRecordDecl *ClassDecl, |
| 185 | const CXXRecordDecl *BaseClassDecl) override; |
| 186 | |
| 187 | llvm::BasicBlock * |
| 188 | EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, |
| 189 | const CXXRecordDecl *RD) override; |
| 190 | |
| 191 | llvm::BasicBlock * |
| 192 | EmitDtorCompleteObjectHandler(CodeGenFunction &CGF); |
| 193 | |
| 194 | void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, |
| 195 | const CXXRecordDecl *RD) override; |
| 196 | |
| 197 | void EmitCXXConstructors(const CXXConstructorDecl *D) override; |
| 198 | |
| 199 | // Background on MSVC destructors |
| 200 | // ============================== |
| 201 | // |
| 202 | // Both Itanium and MSVC ABIs have destructor variants. The variant names |
| 203 | // roughly correspond in the following way: |
| 204 | // Itanium Microsoft |
| 205 | // Base -> no name, just ~Class |
| 206 | // Complete -> vbase destructor |
| 207 | // Deleting -> scalar deleting destructor |
| 208 | // vector deleting destructor |
| 209 | // |
| 210 | // The base and complete destructors are the same as in Itanium, although the |
| 211 | // complete destructor does not accept a VTT parameter when there are virtual |
| 212 | // bases. A separate mechanism involving vtordisps is used to ensure that |
| 213 | // virtual methods of destroyed subobjects are not called. |
| 214 | // |
| 215 | // The deleting destructors accept an i32 bitfield as a second parameter. Bit |
| 216 | // 1 indicates if the memory should be deleted. Bit 2 indicates if the this |
| 217 | // pointer points to an array. The scalar deleting destructor assumes that |
| 218 | // bit 2 is zero, and therefore does not contain a loop. |
| 219 | // |
| 220 | // For virtual destructors, only one entry is reserved in the vftable, and it |
| 221 | // always points to the vector deleting destructor. The vector deleting |
| 222 | // destructor is the most general, so it can be used to destroy objects in |
| 223 | // place, delete single heap objects, or delete arrays. |
| 224 | // |
| 225 | // A TU defining a non-inline destructor is only guaranteed to emit a base |
| 226 | // destructor, and all of the other variants are emitted on an as-needed basis |
| 227 | // in COMDATs. Because a non-base destructor can be emitted in a TU that |
| 228 | // lacks a definition for the destructor, non-base destructors must always |
| 229 | // delegate to or alias the base destructor. |
| 230 | |
| 231 | AddedStructorArgCounts |
| 232 | buildStructorSignature(GlobalDecl GD, |
| 233 | SmallVectorImpl<CanQualType> &ArgTys) override; |
| 234 | |
| 235 | /// Non-base dtors should be emitted as delegating thunks in this ABI. |
| 236 | bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, |
| 237 | CXXDtorType DT) const override { |
| 238 | return DT != Dtor_Base; |
| 239 | } |
| 240 | |
| 241 | void setCXXDestructorDLLStorage(llvm::GlobalValue *GV, |
| 242 | const CXXDestructorDecl *Dtor, |
| 243 | CXXDtorType DT) const override; |
| 244 | |
| 245 | llvm::GlobalValue::LinkageTypes |
| 246 | getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor, |
| 247 | CXXDtorType DT) const override; |
| 248 | |
| 249 | void EmitCXXDestructors(const CXXDestructorDecl *D) override; |
| 250 | |
| 251 | const CXXRecordDecl *getThisArgumentTypeForMethod(GlobalDecl GD) override { |
| 252 | auto *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
| 253 | |
| 254 | if (MD->isVirtual()) { |
| 255 | GlobalDecl LookupGD = GD; |
| 256 | if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
| 257 | // Complete dtors take a pointer to the complete object, |
| 258 | // thus don't need adjustment. |
| 259 | if (GD.getDtorType() == Dtor_Complete) |
| 260 | return MD->getParent(); |
| 261 | |
| 262 | // There's only Dtor_Deleting in vftable but it shares the this |
| 263 | // adjustment with the base one, so look up the deleting one instead. |
| 264 | LookupGD = GlobalDecl(DD, Dtor_Deleting); |
| 265 | } |
| 266 | MethodVFTableLocation ML = |
| 267 | CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD: LookupGD); |
| 268 | |
| 269 | // The vbases might be ordered differently in the final overrider object |
| 270 | // and the complete object, so the "this" argument may sometimes point to |
| 271 | // memory that has no particular type (e.g. past the complete object). |
| 272 | // In this case, we just use a generic pointer type. |
| 273 | // FIXME: might want to have a more precise type in the non-virtual |
| 274 | // multiple inheritance case. |
| 275 | if (ML.VBase || !ML.VFPtrOffset.isZero()) |
| 276 | return nullptr; |
| 277 | } |
| 278 | return MD->getParent(); |
| 279 | } |
| 280 | |
| 281 | Address |
| 282 | adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, |
| 283 | Address This, |
| 284 | bool VirtualCall) override; |
| 285 | |
| 286 | void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, |
| 287 | FunctionArgList &Params) override; |
| 288 | |
| 289 | void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; |
| 290 | |
| 291 | AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF, |
| 292 | const CXXConstructorDecl *D, |
| 293 | CXXCtorType Type, |
| 294 | bool ForVirtualBase, |
| 295 | bool Delegating) override; |
| 296 | |
| 297 | llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF, |
| 298 | const CXXDestructorDecl *DD, |
| 299 | CXXDtorType Type, |
| 300 | bool ForVirtualBase, |
| 301 | bool Delegating) override; |
| 302 | |
| 303 | void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, |
| 304 | CXXDtorType Type, bool ForVirtualBase, |
| 305 | bool Delegating, Address This, |
| 306 | QualType ThisTy) override; |
| 307 | |
| 308 | void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, |
| 309 | llvm::GlobalVariable *VTable); |
| 310 | |
| 311 | void emitVTableDefinitions(CodeGenVTables &CGVT, |
| 312 | const CXXRecordDecl *RD) override; |
| 313 | |
| 314 | bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, |
| 315 | CodeGenFunction::VPtr Vptr) override; |
| 316 | |
| 317 | /// Don't initialize vptrs if dynamic class |
| 318 | /// is marked with the 'novtable' attribute. |
| 319 | bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { |
| 320 | return !VTableClass->hasAttr<MSNoVTableAttr>(); |
| 321 | } |
| 322 | |
| 323 | llvm::Constant * |
| 324 | getVTableAddressPoint(BaseSubobject Base, |
| 325 | const CXXRecordDecl *VTableClass) override; |
| 326 | |
| 327 | llvm::Value *getVTableAddressPointInStructor( |
| 328 | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, |
| 329 | BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; |
| 330 | |
| 331 | llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, |
| 332 | CharUnits VPtrOffset) override; |
| 333 | |
| 334 | CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, |
| 335 | Address This, llvm::Type *Ty, |
| 336 | SourceLocation Loc) override; |
| 337 | |
| 338 | llvm::Value * |
| 339 | EmitVirtualDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, |
| 340 | CXXDtorType DtorType, Address This, |
| 341 | DeleteOrMemberCallExpr E, |
| 342 | llvm::CallBase **CallOrInvoke) override; |
| 343 | |
| 344 | void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, |
| 345 | CallArgList &CallArgs) override { |
| 346 | assert(GD.getDtorType() == Dtor_Deleting && |
| 347 | "Only deleting destructor thunks are available in this ABI" ); |
| 348 | CallArgs.add(rvalue: RValue::get(V: getStructorImplicitParamValue(CGF)), |
| 349 | type: getContext().IntTy); |
| 350 | } |
| 351 | |
| 352 | void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; |
| 353 | |
| 354 | llvm::GlobalVariable * |
| 355 | getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, |
| 356 | llvm::GlobalVariable::LinkageTypes Linkage); |
| 357 | |
| 358 | llvm::GlobalVariable * |
| 359 | getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, |
| 360 | const CXXRecordDecl *DstRD) { |
| 361 | SmallString<256> OutName; |
| 362 | llvm::raw_svector_ostream Out(OutName); |
| 363 | getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); |
| 364 | StringRef MangledName = OutName.str(); |
| 365 | |
| 366 | if (auto *VDispMap = CGM.getModule().getNamedGlobal(Name: MangledName)) |
| 367 | return VDispMap; |
| 368 | |
| 369 | MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); |
| 370 | unsigned NumEntries = 1 + SrcRD->getNumVBases(); |
| 371 | SmallVector<llvm::Constant *, 4> Map(NumEntries, |
| 372 | llvm::PoisonValue::get(T: CGM.IntTy)); |
| 373 | Map[0] = llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0); |
| 374 | bool AnyDifferent = false; |
| 375 | for (const auto &I : SrcRD->vbases()) { |
| 376 | const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); |
| 377 | if (!DstRD->isVirtuallyDerivedFrom(Base: VBase)) |
| 378 | continue; |
| 379 | |
| 380 | unsigned SrcVBIndex = VTContext.getVBTableIndex(Derived: SrcRD, VBase); |
| 381 | unsigned DstVBIndex = VTContext.getVBTableIndex(Derived: DstRD, VBase); |
| 382 | Map[SrcVBIndex] = llvm::ConstantInt::get(Ty: CGM.IntTy, V: DstVBIndex * 4); |
| 383 | AnyDifferent |= SrcVBIndex != DstVBIndex; |
| 384 | } |
| 385 | // This map would be useless, don't use it. |
| 386 | if (!AnyDifferent) |
| 387 | return nullptr; |
| 388 | |
| 389 | llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(ElementType: CGM.IntTy, NumElements: Map.size()); |
| 390 | llvm::Constant *Init = llvm::ConstantArray::get(T: VDispMapTy, V: Map); |
| 391 | llvm::GlobalValue::LinkageTypes Linkage = |
| 392 | SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() |
| 393 | ? llvm::GlobalValue::LinkOnceODRLinkage |
| 394 | : llvm::GlobalValue::InternalLinkage; |
| 395 | auto *VDispMap = new llvm::GlobalVariable( |
| 396 | CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage, |
| 397 | /*Initializer=*/Init, MangledName); |
| 398 | return VDispMap; |
| 399 | } |
| 400 | |
| 401 | void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, |
| 402 | llvm::GlobalVariable *GV) const; |
| 403 | |
| 404 | void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, |
| 405 | GlobalDecl GD, bool ReturnAdjustment) override { |
| 406 | GVALinkage Linkage = |
| 407 | getContext().GetGVALinkageForFunction(FD: cast<FunctionDecl>(Val: GD.getDecl())); |
| 408 | |
| 409 | if (Linkage == GVA_Internal) |
| 410 | Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); |
| 411 | else if (ReturnAdjustment) |
| 412 | Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); |
| 413 | else |
| 414 | Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); |
| 415 | } |
| 416 | |
| 417 | bool exportThunk() override { return false; } |
| 418 | |
| 419 | llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, |
| 420 | const CXXRecordDecl * /*UnadjustedClass*/, |
| 421 | const ThunkInfo &TI) override; |
| 422 | |
| 423 | llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, |
| 424 | const CXXRecordDecl * /*UnadjustedClass*/, |
| 425 | const ReturnAdjustment &RA) override; |
| 426 | |
| 427 | void EmitThreadLocalInitFuncs( |
| 428 | CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, |
| 429 | ArrayRef<llvm::Function *> CXXThreadLocalInits, |
| 430 | ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; |
| 431 | |
| 432 | bool usesThreadWrapperFunction(const VarDecl *VD) const override { |
| 433 | return getContext().getLangOpts().isCompatibleWithMSVC( |
| 434 | MajorVersion: LangOptions::MSVC2019_5) && |
| 435 | CGM.getCodeGenOpts().TlsGuards && |
| 436 | (!isEmittedWithConstantInitializer(VD) || mayNeedDestruction(VD)); |
| 437 | } |
| 438 | LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, |
| 439 | QualType LValType) override; |
| 440 | |
| 441 | void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, |
| 442 | llvm::GlobalVariable *DeclPtr, |
| 443 | bool PerformInit) override; |
| 444 | void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
| 445 | llvm::FunctionCallee Dtor, |
| 446 | llvm::Constant *Addr) override; |
| 447 | |
| 448 | // ==== Notes on array cookies ========= |
| 449 | // |
| 450 | // MSVC seems to only use cookies when the class has a destructor; a |
| 451 | // two-argument usual array deallocation function isn't sufficient. |
| 452 | // |
| 453 | // For example, this code prints "100" and "1": |
| 454 | // struct A { |
| 455 | // char x; |
| 456 | // void *operator new[](size_t sz) { |
| 457 | // printf("%u\n", sz); |
| 458 | // return malloc(sz); |
| 459 | // } |
| 460 | // void operator delete[](void *p, size_t sz) { |
| 461 | // printf("%u\n", sz); |
| 462 | // free(p); |
| 463 | // } |
| 464 | // }; |
| 465 | // int main() { |
| 466 | // A *p = new A[100]; |
| 467 | // delete[] p; |
| 468 | // } |
| 469 | // Whereas it prints "104" and "104" if you give A a destructor. |
| 470 | |
| 471 | bool requiresArrayCookie(const CXXDeleteExpr *expr, |
| 472 | QualType elementType) override; |
| 473 | bool requiresArrayCookie(const CXXNewExpr *expr) override; |
| 474 | CharUnits getArrayCookieSizeImpl(QualType type) override; |
| 475 | Address InitializeArrayCookie(CodeGenFunction &CGF, |
| 476 | Address NewPtr, |
| 477 | llvm::Value *NumElements, |
| 478 | const CXXNewExpr *expr, |
| 479 | QualType ElementType) override; |
| 480 | llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, |
| 481 | Address allocPtr, |
| 482 | CharUnits cookieSize) override; |
| 483 | |
| 484 | friend struct MSRTTIBuilder; |
| 485 | |
| 486 | bool isImageRelative() const { |
| 487 | return CGM.getTarget().getPointerWidth(AddrSpace: LangAS::Default) == 64; |
| 488 | } |
| 489 | |
| 490 | // 5 routines for constructing the llvm types for MS RTTI structs. |
| 491 | llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { |
| 492 | llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor" ); |
| 493 | TDTypeName += llvm::utostr(X: TypeInfoString.size()); |
| 494 | llvm::StructType *&TypeDescriptorType = |
| 495 | TypeDescriptorTypeMap[TypeInfoString.size()]; |
| 496 | if (TypeDescriptorType) |
| 497 | return TypeDescriptorType; |
| 498 | llvm::Type *FieldTypes[] = { |
| 499 | CGM.Int8PtrPtrTy, |
| 500 | CGM.Int8PtrTy, |
| 501 | llvm::ArrayType::get(ElementType: CGM.Int8Ty, NumElements: TypeInfoString.size() + 1)}; |
| 502 | TypeDescriptorType = |
| 503 | llvm::StructType::create(Context&: CGM.getLLVMContext(), Elements: FieldTypes, Name: TDTypeName); |
| 504 | return TypeDescriptorType; |
| 505 | } |
| 506 | |
| 507 | llvm::Type *getImageRelativeType(llvm::Type *PtrType) { |
| 508 | if (!isImageRelative()) |
| 509 | return PtrType; |
| 510 | return CGM.IntTy; |
| 511 | } |
| 512 | |
| 513 | llvm::StructType *getBaseClassDescriptorType() { |
| 514 | if (BaseClassDescriptorType) |
| 515 | return BaseClassDescriptorType; |
| 516 | llvm::Type *FieldTypes[] = { |
| 517 | getImageRelativeType(PtrType: CGM.Int8PtrTy), |
| 518 | CGM.IntTy, |
| 519 | CGM.IntTy, |
| 520 | CGM.IntTy, |
| 521 | CGM.IntTy, |
| 522 | CGM.IntTy, |
| 523 | getImageRelativeType(PtrType: CGM.UnqualPtrTy), |
| 524 | }; |
| 525 | BaseClassDescriptorType = llvm::StructType::create( |
| 526 | Context&: CGM.getLLVMContext(), Elements: FieldTypes, Name: "rtti.BaseClassDescriptor" ); |
| 527 | return BaseClassDescriptorType; |
| 528 | } |
| 529 | |
| 530 | llvm::StructType *getClassHierarchyDescriptorType() { |
| 531 | if (ClassHierarchyDescriptorType) |
| 532 | return ClassHierarchyDescriptorType; |
| 533 | // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. |
| 534 | llvm::Type *FieldTypes[] = {CGM.IntTy, CGM.IntTy, CGM.IntTy, |
| 535 | getImageRelativeType(PtrType: CGM.UnqualPtrTy)}; |
| 536 | ClassHierarchyDescriptorType = |
| 537 | llvm::StructType::create(Elements: FieldTypes, Name: "rtti.ClassHierarchyDescriptor" ); |
| 538 | return ClassHierarchyDescriptorType; |
| 539 | } |
| 540 | |
| 541 | llvm::StructType *getCompleteObjectLocatorType() { |
| 542 | if (CompleteObjectLocatorType) |
| 543 | return CompleteObjectLocatorType; |
| 544 | llvm::Type *FieldTypes[] = { |
| 545 | CGM.IntTy, |
| 546 | CGM.IntTy, |
| 547 | CGM.IntTy, |
| 548 | getImageRelativeType(PtrType: CGM.Int8PtrTy), |
| 549 | getImageRelativeType(PtrType: CGM.UnqualPtrTy), |
| 550 | getImageRelativeType(PtrType: CGM.VoidTy), |
| 551 | }; |
| 552 | llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); |
| 553 | if (!isImageRelative()) |
| 554 | FieldTypesRef = FieldTypesRef.drop_back(); |
| 555 | CompleteObjectLocatorType = |
| 556 | llvm::StructType::create(Elements: FieldTypesRef, Name: "rtti.CompleteObjectLocator" ); |
| 557 | return CompleteObjectLocatorType; |
| 558 | } |
| 559 | |
| 560 | llvm::GlobalVariable *getImageBase() { |
| 561 | StringRef Name = "__ImageBase" ; |
| 562 | if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) |
| 563 | return GV; |
| 564 | |
| 565 | auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, |
| 566 | /*isConstant=*/true, |
| 567 | llvm::GlobalValue::ExternalLinkage, |
| 568 | /*Initializer=*/nullptr, Name); |
| 569 | CGM.setDSOLocal(GV); |
| 570 | return GV; |
| 571 | } |
| 572 | |
| 573 | llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { |
| 574 | if (!isImageRelative()) |
| 575 | return PtrVal; |
| 576 | |
| 577 | if (PtrVal->isNullValue()) |
| 578 | return llvm::Constant::getNullValue(Ty: CGM.IntTy); |
| 579 | |
| 580 | llvm::Constant *ImageBaseAsInt = |
| 581 | llvm::ConstantExpr::getPtrToInt(C: getImageBase(), Ty: CGM.IntPtrTy); |
| 582 | llvm::Constant *PtrValAsInt = |
| 583 | llvm::ConstantExpr::getPtrToInt(C: PtrVal, Ty: CGM.IntPtrTy); |
| 584 | llvm::Constant *Diff = |
| 585 | llvm::ConstantExpr::getSub(C1: PtrValAsInt, C2: ImageBaseAsInt, |
| 586 | /*HasNUW=*/true, /*HasNSW=*/true); |
| 587 | return llvm::ConstantExpr::getTrunc(C: Diff, Ty: CGM.IntTy); |
| 588 | } |
| 589 | |
| 590 | private: |
| 591 | MicrosoftMangleContext &getMangleContext() { |
| 592 | return cast<MicrosoftMangleContext>(Val&: CodeGen::CGCXXABI::getMangleContext()); |
| 593 | } |
| 594 | |
| 595 | llvm::Constant *getZeroInt() { |
| 596 | return llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0); |
| 597 | } |
| 598 | |
| 599 | llvm::Constant *getAllOnesInt() { |
| 600 | return llvm::Constant::getAllOnesValue(Ty: CGM.IntTy); |
| 601 | } |
| 602 | |
| 603 | CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override; |
| 604 | |
| 605 | void |
| 606 | GetNullMemberPointerFields(const MemberPointerType *MPT, |
| 607 | llvm::SmallVectorImpl<llvm::Constant *> &fields); |
| 608 | |
| 609 | /// Shared code for virtual base adjustment. Returns the offset from |
| 610 | /// the vbptr to the virtual base. Optionally returns the address of the |
| 611 | /// vbptr itself. |
| 612 | llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, |
| 613 | Address Base, |
| 614 | llvm::Value *VBPtrOffset, |
| 615 | llvm::Value *VBTableOffset, |
| 616 | llvm::Value **VBPtr = nullptr); |
| 617 | |
| 618 | llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, |
| 619 | Address Base, |
| 620 | int32_t VBPtrOffset, |
| 621 | int32_t VBTableOffset, |
| 622 | llvm::Value **VBPtr = nullptr) { |
| 623 | assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s" ); |
| 624 | llvm::Value *VBPOffset = llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBPtrOffset), |
| 625 | *VBTOffset = llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBTableOffset); |
| 626 | return GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset: VBPOffset, VBTableOffset: VBTOffset, VBPtr); |
| 627 | } |
| 628 | |
| 629 | std::tuple<Address, llvm::Value *, const CXXRecordDecl *> |
| 630 | performBaseAdjustment(CodeGenFunction &CGF, Address Value, |
| 631 | QualType SrcRecordTy); |
| 632 | |
| 633 | /// Performs a full virtual base adjustment. Used to dereference |
| 634 | /// pointers to members of virtual bases. |
| 635 | llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, |
| 636 | const CXXRecordDecl *RD, Address Base, |
| 637 | llvm::Value *VirtualBaseAdjustmentOffset, |
| 638 | llvm::Value *VBPtrOffset /* optional */); |
| 639 | |
| 640 | /// Emits a full member pointer with the fields common to data and |
| 641 | /// function member pointers. |
| 642 | llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, |
| 643 | bool IsMemberFunction, |
| 644 | const CXXRecordDecl *RD, |
| 645 | CharUnits NonVirtualBaseAdjustment, |
| 646 | unsigned VBTableIndex); |
| 647 | |
| 648 | bool MemberPointerConstantIsNull(const MemberPointerType *MPT, |
| 649 | llvm::Constant *MP); |
| 650 | |
| 651 | /// - Initialize all vbptrs of 'this' with RD as the complete type. |
| 652 | void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); |
| 653 | |
| 654 | /// Caching wrapper around VBTableBuilder::enumerateVBTables(). |
| 655 | const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); |
| 656 | |
| 657 | /// Generate a thunk for calling a virtual member function MD. |
| 658 | llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, |
| 659 | const MethodVFTableLocation &ML); |
| 660 | |
| 661 | llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD, |
| 662 | CharUnits offset); |
| 663 | |
| 664 | public: |
| 665 | llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; |
| 666 | |
| 667 | bool isZeroInitializable(const MemberPointerType *MPT) override; |
| 668 | |
| 669 | bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { |
| 670 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
| 671 | return RD->hasAttr<MSInheritanceAttr>(); |
| 672 | } |
| 673 | |
| 674 | llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; |
| 675 | |
| 676 | llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, |
| 677 | CharUnits offset) override; |
| 678 | llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; |
| 679 | llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; |
| 680 | |
| 681 | llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, |
| 682 | llvm::Value *L, |
| 683 | llvm::Value *R, |
| 684 | const MemberPointerType *MPT, |
| 685 | bool Inequality) override; |
| 686 | |
| 687 | llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, |
| 688 | llvm::Value *MemPtr, |
| 689 | const MemberPointerType *MPT) override; |
| 690 | |
| 691 | llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, |
| 692 | Address Base, llvm::Value *MemPtr, |
| 693 | const MemberPointerType *MPT, |
| 694 | bool IsInBounds) override; |
| 695 | |
| 696 | llvm::Value *EmitNonNullMemberPointerConversion( |
| 697 | const MemberPointerType *SrcTy, const MemberPointerType *DstTy, |
| 698 | CastKind CK, CastExpr::path_const_iterator PathBegin, |
| 699 | CastExpr::path_const_iterator PathEnd, llvm::Value *Src, |
| 700 | CGBuilderTy &Builder); |
| 701 | |
| 702 | llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, |
| 703 | const CastExpr *E, |
| 704 | llvm::Value *Src) override; |
| 705 | |
| 706 | llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, |
| 707 | llvm::Constant *Src) override; |
| 708 | |
| 709 | llvm::Constant *EmitMemberPointerConversion( |
| 710 | const MemberPointerType *SrcTy, const MemberPointerType *DstTy, |
| 711 | CastKind CK, CastExpr::path_const_iterator PathBegin, |
| 712 | CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); |
| 713 | |
| 714 | CGCallee |
| 715 | EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, |
| 716 | Address This, llvm::Value *&ThisPtrForCall, |
| 717 | llvm::Value *MemPtr, |
| 718 | const MemberPointerType *MPT) override; |
| 719 | |
| 720 | void emitCXXStructor(GlobalDecl GD) override; |
| 721 | |
| 722 | llvm::StructType *getCatchableTypeType() { |
| 723 | if (CatchableTypeType) |
| 724 | return CatchableTypeType; |
| 725 | llvm::Type *FieldTypes[] = { |
| 726 | CGM.IntTy, // Flags |
| 727 | getImageRelativeType(PtrType: CGM.Int8PtrTy), // TypeDescriptor |
| 728 | CGM.IntTy, // NonVirtualAdjustment |
| 729 | CGM.IntTy, // OffsetToVBPtr |
| 730 | CGM.IntTy, // VBTableIndex |
| 731 | CGM.IntTy, // Size |
| 732 | getImageRelativeType(PtrType: CGM.Int8PtrTy) // CopyCtor |
| 733 | }; |
| 734 | CatchableTypeType = llvm::StructType::create( |
| 735 | Context&: CGM.getLLVMContext(), Elements: FieldTypes, Name: "eh.CatchableType" ); |
| 736 | return CatchableTypeType; |
| 737 | } |
| 738 | |
| 739 | llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { |
| 740 | llvm::StructType *&CatchableTypeArrayType = |
| 741 | CatchableTypeArrayTypeMap[NumEntries]; |
| 742 | if (CatchableTypeArrayType) |
| 743 | return CatchableTypeArrayType; |
| 744 | |
| 745 | llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray." ); |
| 746 | CTATypeName += llvm::utostr(X: NumEntries); |
| 747 | llvm::Type *CTType = getImageRelativeType(PtrType: CGM.UnqualPtrTy); |
| 748 | llvm::Type *FieldTypes[] = { |
| 749 | CGM.IntTy, // NumEntries |
| 750 | llvm::ArrayType::get(ElementType: CTType, NumElements: NumEntries) // CatchableTypes |
| 751 | }; |
| 752 | CatchableTypeArrayType = |
| 753 | llvm::StructType::create(Context&: CGM.getLLVMContext(), Elements: FieldTypes, Name: CTATypeName); |
| 754 | return CatchableTypeArrayType; |
| 755 | } |
| 756 | |
| 757 | llvm::StructType *getThrowInfoType() { |
| 758 | if (ThrowInfoType) |
| 759 | return ThrowInfoType; |
| 760 | llvm::Type *FieldTypes[] = { |
| 761 | CGM.IntTy, // Flags |
| 762 | getImageRelativeType(PtrType: CGM.Int8PtrTy), // CleanupFn |
| 763 | getImageRelativeType(PtrType: CGM.Int8PtrTy), // ForwardCompat |
| 764 | getImageRelativeType(PtrType: CGM.Int8PtrTy) // CatchableTypeArray |
| 765 | }; |
| 766 | ThrowInfoType = llvm::StructType::create(Context&: CGM.getLLVMContext(), Elements: FieldTypes, |
| 767 | Name: "eh.ThrowInfo" ); |
| 768 | return ThrowInfoType; |
| 769 | } |
| 770 | |
| 771 | llvm::FunctionCallee getThrowFn() { |
| 772 | // _CxxThrowException is passed an exception object and a ThrowInfo object |
| 773 | // which describes the exception. |
| 774 | llvm::Type *Args[] = {CGM.Int8PtrTy, CGM.UnqualPtrTy}; |
| 775 | llvm::FunctionType *FTy = |
| 776 | llvm::FunctionType::get(Result: CGM.VoidTy, Params: Args, /*isVarArg=*/false); |
| 777 | llvm::FunctionCallee Throw = |
| 778 | CGM.CreateRuntimeFunction(Ty: FTy, Name: "_CxxThrowException" ); |
| 779 | // _CxxThrowException is stdcall on 32-bit x86 platforms. |
| 780 | if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { |
| 781 | if (auto *Fn = dyn_cast<llvm::Function>(Val: Throw.getCallee())) |
| 782 | Fn->setCallingConv(llvm::CallingConv::X86_StdCall); |
| 783 | } |
| 784 | return Throw; |
| 785 | } |
| 786 | |
| 787 | llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, |
| 788 | CXXCtorType CT); |
| 789 | |
| 790 | llvm::Constant *getCatchableType(QualType T, |
| 791 | uint32_t NVOffset = 0, |
| 792 | int32_t VBPtrOffset = -1, |
| 793 | uint32_t VBIndex = 0); |
| 794 | |
| 795 | llvm::GlobalVariable *getCatchableTypeArray(QualType T); |
| 796 | |
| 797 | llvm::GlobalVariable *getThrowInfo(QualType T) override; |
| 798 | |
| 799 | std::pair<llvm::Value *, const CXXRecordDecl *> |
| 800 | LoadVTablePtr(CodeGenFunction &CGF, Address This, |
| 801 | const CXXRecordDecl *RD) override; |
| 802 | |
| 803 | bool |
| 804 | isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override; |
| 805 | |
| 806 | private: |
| 807 | typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; |
| 808 | typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; |
| 809 | typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; |
| 810 | /// All the vftables that have been referenced. |
| 811 | VFTablesMapTy VFTablesMap; |
| 812 | VTablesMapTy VTablesMap; |
| 813 | |
| 814 | /// This set holds the record decls we've deferred vtable emission for. |
| 815 | llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; |
| 816 | |
| 817 | |
| 818 | /// All the vbtables which have been referenced. |
| 819 | llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; |
| 820 | |
| 821 | /// Info on the global variable used to guard initialization of static locals. |
| 822 | /// The BitIndex field is only used for externally invisible declarations. |
| 823 | struct GuardInfo { |
| 824 | GuardInfo() = default; |
| 825 | llvm::GlobalVariable *Guard = nullptr; |
| 826 | unsigned BitIndex = 0; |
| 827 | }; |
| 828 | |
| 829 | /// Map from DeclContext to the current guard variable. We assume that the |
| 830 | /// AST is visited in source code order. |
| 831 | llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; |
| 832 | llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap; |
| 833 | llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap; |
| 834 | |
| 835 | llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; |
| 836 | llvm::StructType *BaseClassDescriptorType; |
| 837 | llvm::StructType *ClassHierarchyDescriptorType; |
| 838 | llvm::StructType *CompleteObjectLocatorType; |
| 839 | |
| 840 | llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays; |
| 841 | |
| 842 | llvm::StructType *CatchableTypeType; |
| 843 | llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap; |
| 844 | llvm::StructType *ThrowInfoType; |
| 845 | }; |
| 846 | |
| 847 | } |
| 848 | |
| 849 | CGCXXABI::RecordArgABI |
| 850 | MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { |
| 851 | // Use the default C calling convention rules for things that can be passed in |
| 852 | // registers, i.e. non-trivially copyable records or records marked with |
| 853 | // [[trivial_abi]]. |
| 854 | if (RD->canPassInRegisters()) |
| 855 | return RAA_Default; |
| 856 | |
| 857 | switch (CGM.getTarget().getTriple().getArch()) { |
| 858 | default: |
| 859 | // FIXME: Implement for other architectures. |
| 860 | return RAA_Indirect; |
| 861 | |
| 862 | case llvm::Triple::thumb: |
| 863 | // Pass things indirectly for now because it is simple. |
| 864 | // FIXME: This is incompatible with MSVC for arguments with a dtor and no |
| 865 | // copy ctor. |
| 866 | return RAA_Indirect; |
| 867 | |
| 868 | case llvm::Triple::x86: { |
| 869 | // If the argument has *required* alignment greater than four bytes, pass |
| 870 | // it indirectly. Prior to MSVC version 19.14, passing overaligned |
| 871 | // arguments was not supported and resulted in a compiler error. In 19.14 |
| 872 | // and later versions, such arguments are now passed indirectly. |
| 873 | TypeInfo Info = getContext().getTypeInfo(T: RD->getTypeForDecl()); |
| 874 | if (Info.isAlignRequired() && Info.Align > 4) |
| 875 | return RAA_Indirect; |
| 876 | |
| 877 | // If C++ prohibits us from making a copy, construct the arguments directly |
| 878 | // into argument memory. |
| 879 | return RAA_DirectInMemory; |
| 880 | } |
| 881 | |
| 882 | case llvm::Triple::x86_64: |
| 883 | case llvm::Triple::aarch64: |
| 884 | return RAA_Indirect; |
| 885 | } |
| 886 | |
| 887 | llvm_unreachable("invalid enum" ); |
| 888 | } |
| 889 | |
| 890 | void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, |
| 891 | const CXXDeleteExpr *DE, |
| 892 | Address Ptr, |
| 893 | QualType ElementType, |
| 894 | const CXXDestructorDecl *Dtor) { |
| 895 | // FIXME: Provide a source location here even though there's no |
| 896 | // CXXMemberCallExpr for dtor call. |
| 897 | bool UseGlobalDelete = DE->isGlobalDelete(); |
| 898 | CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; |
| 899 | llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, This: Ptr, E: DE, |
| 900 | /*CallOrInvoke=*/nullptr); |
| 901 | if (UseGlobalDelete) |
| 902 | CGF.EmitDeleteCall(DeleteFD: DE->getOperatorDelete(), Ptr: MDThis, DeleteTy: ElementType); |
| 903 | } |
| 904 | |
| 905 | void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { |
| 906 | llvm::Value *Args[] = {llvm::ConstantPointerNull::get(T: CGM.Int8PtrTy), |
| 907 | llvm::ConstantPointerNull::get(T: CGM.UnqualPtrTy)}; |
| 908 | llvm::FunctionCallee Fn = getThrowFn(); |
| 909 | if (isNoReturn) |
| 910 | CGF.EmitNoreturnRuntimeCallOrInvoke(callee: Fn, args: Args); |
| 911 | else |
| 912 | CGF.EmitRuntimeCallOrInvoke(callee: Fn, args: Args); |
| 913 | } |
| 914 | |
| 915 | void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, |
| 916 | const CXXCatchStmt *S) { |
| 917 | // In the MS ABI, the runtime handles the copy, and the catch handler is |
| 918 | // responsible for destruction. |
| 919 | VarDecl *CatchParam = S->getExceptionDecl(); |
| 920 | llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); |
| 921 | llvm::CatchPadInst *CPI = |
| 922 | cast<llvm::CatchPadInst>(Val: CatchPadBB->getFirstNonPHIIt()); |
| 923 | CGF.CurrentFuncletPad = CPI; |
| 924 | |
| 925 | // If this is a catch-all or the catch parameter is unnamed, we don't need to |
| 926 | // emit an alloca to the object. |
| 927 | if (!CatchParam || !CatchParam->getDeclName()) { |
| 928 | CGF.EHStack.pushCleanup<CatchRetScope>(Kind: NormalCleanup, A: CPI); |
| 929 | return; |
| 930 | } |
| 931 | |
| 932 | CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(var: *CatchParam); |
| 933 | CPI->setArgOperand(i: 2, v: var.getObjectAddress(CGF).emitRawPointer(CGF)); |
| 934 | CGF.EHStack.pushCleanup<CatchRetScope>(Kind: NormalCleanup, A: CPI); |
| 935 | CGF.EmitAutoVarCleanups(emission: var); |
| 936 | } |
| 937 | |
| 938 | /// We need to perform a generic polymorphic operation (like a typeid |
| 939 | /// or a cast), which requires an object with a vfptr. Adjust the |
| 940 | /// address to point to an object with a vfptr. |
| 941 | std::tuple<Address, llvm::Value *, const CXXRecordDecl *> |
| 942 | MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, |
| 943 | QualType SrcRecordTy) { |
| 944 | Value = Value.withElementType(ElemTy: CGF.Int8Ty); |
| 945 | const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); |
| 946 | const ASTContext &Context = getContext(); |
| 947 | |
| 948 | // If the class itself has a vfptr, great. This check implicitly |
| 949 | // covers non-virtual base subobjects: a class with its own virtual |
| 950 | // functions would be a candidate to be a primary base. |
| 951 | if (Context.getASTRecordLayout(D: SrcDecl).hasExtendableVFPtr()) |
| 952 | return std::make_tuple(args&: Value, args: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: 0), |
| 953 | args&: SrcDecl); |
| 954 | |
| 955 | // Okay, one of the vbases must have a vfptr, or else this isn't |
| 956 | // actually a polymorphic class. |
| 957 | const CXXRecordDecl *PolymorphicBase = nullptr; |
| 958 | for (auto &Base : SrcDecl->vbases()) { |
| 959 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
| 960 | if (Context.getASTRecordLayout(D: BaseDecl).hasExtendableVFPtr()) { |
| 961 | PolymorphicBase = BaseDecl; |
| 962 | break; |
| 963 | } |
| 964 | } |
| 965 | assert(PolymorphicBase && "polymorphic class has no apparent vfptr?" ); |
| 966 | |
| 967 | llvm::Value *Offset = |
| 968 | GetVirtualBaseClassOffset(CGF, This: Value, ClassDecl: SrcDecl, BaseClassDecl: PolymorphicBase); |
| 969 | llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP( |
| 970 | Ty: Value.getElementType(), Ptr: Value.emitRawPointer(CGF), IdxList: Offset); |
| 971 | CharUnits VBaseAlign = |
| 972 | CGF.CGM.getVBaseAlignment(DerivedAlign: Value.getAlignment(), Derived: SrcDecl, VBase: PolymorphicBase); |
| 973 | return std::make_tuple(args: Address(Ptr, CGF.Int8Ty, VBaseAlign), args&: Offset, |
| 974 | args&: PolymorphicBase); |
| 975 | } |
| 976 | |
| 977 | bool MicrosoftCXXABI::shouldTypeidBeNullChecked(QualType SrcRecordTy) { |
| 978 | const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); |
| 979 | return !getContext().getASTRecordLayout(D: SrcDecl).hasExtendableVFPtr(); |
| 980 | } |
| 981 | |
| 982 | static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF, |
| 983 | llvm::Value *Argument) { |
| 984 | llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; |
| 985 | llvm::FunctionType *FTy = |
| 986 | llvm::FunctionType::get(Result: CGF.Int8PtrTy, Params: ArgTypes, isVarArg: false); |
| 987 | llvm::Value *Args[] = {Argument}; |
| 988 | llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(Ty: FTy, Name: "__RTtypeid" ); |
| 989 | return CGF.EmitRuntimeCallOrInvoke(callee: Fn, args: Args); |
| 990 | } |
| 991 | |
| 992 | void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { |
| 993 | llvm::CallBase *Call = |
| 994 | emitRTtypeidCall(CGF, Argument: llvm::Constant::getNullValue(Ty: CGM.VoidPtrTy)); |
| 995 | Call->setDoesNotReturn(); |
| 996 | CGF.Builder.CreateUnreachable(); |
| 997 | } |
| 998 | |
| 999 | llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, |
| 1000 | QualType SrcRecordTy, |
| 1001 | Address ThisPtr, |
| 1002 | llvm::Type *StdTypeInfoPtrTy) { |
| 1003 | std::tie(args&: ThisPtr, args: std::ignore, args: std::ignore) = |
| 1004 | performBaseAdjustment(CGF, Value: ThisPtr, SrcRecordTy); |
| 1005 | llvm::CallBase *Typeid = emitRTtypeidCall(CGF, Argument: ThisPtr.emitRawPointer(CGF)); |
| 1006 | return CGF.Builder.CreateBitCast(V: Typeid, DestTy: StdTypeInfoPtrTy); |
| 1007 | } |
| 1008 | |
| 1009 | bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, |
| 1010 | QualType SrcRecordTy) { |
| 1011 | const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); |
| 1012 | return SrcIsPtr && |
| 1013 | !getContext().getASTRecordLayout(D: SrcDecl).hasExtendableVFPtr(); |
| 1014 | } |
| 1015 | |
| 1016 | llvm::Value *MicrosoftCXXABI::emitDynamicCastCall( |
| 1017 | CodeGenFunction &CGF, Address This, QualType SrcRecordTy, QualType DestTy, |
| 1018 | QualType DestRecordTy, llvm::BasicBlock *CastEnd) { |
| 1019 | llvm::Value *SrcRTTI = |
| 1020 | CGF.CGM.GetAddrOfRTTIDescriptor(Ty: SrcRecordTy.getUnqualifiedType()); |
| 1021 | llvm::Value *DestRTTI = |
| 1022 | CGF.CGM.GetAddrOfRTTIDescriptor(Ty: DestRecordTy.getUnqualifiedType()); |
| 1023 | |
| 1024 | llvm::Value *Offset; |
| 1025 | std::tie(args&: This, args&: Offset, args: std::ignore) = |
| 1026 | performBaseAdjustment(CGF, Value: This, SrcRecordTy); |
| 1027 | llvm::Value *ThisPtr = This.emitRawPointer(CGF); |
| 1028 | Offset = CGF.Builder.CreateTrunc(V: Offset, DestTy: CGF.Int32Ty); |
| 1029 | |
| 1030 | // PVOID __RTDynamicCast( |
| 1031 | // PVOID inptr, |
| 1032 | // LONG VfDelta, |
| 1033 | // PVOID SrcType, |
| 1034 | // PVOID TargetType, |
| 1035 | // BOOL isReference) |
| 1036 | llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, |
| 1037 | CGF.Int8PtrTy, CGF.Int32Ty}; |
| 1038 | llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( |
| 1039 | Ty: llvm::FunctionType::get(Result: CGF.Int8PtrTy, Params: ArgTypes, isVarArg: false), |
| 1040 | Name: "__RTDynamicCast" ); |
| 1041 | llvm::Value *Args[] = { |
| 1042 | ThisPtr, Offset, SrcRTTI, DestRTTI, |
| 1043 | llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: DestTy->isReferenceType())}; |
| 1044 | return CGF.EmitRuntimeCallOrInvoke(callee: Function, args: Args); |
| 1045 | } |
| 1046 | |
| 1047 | llvm::Value *MicrosoftCXXABI::emitDynamicCastToVoid(CodeGenFunction &CGF, |
| 1048 | Address Value, |
| 1049 | QualType SrcRecordTy) { |
| 1050 | std::tie(args&: Value, args: std::ignore, args: std::ignore) = |
| 1051 | performBaseAdjustment(CGF, Value, SrcRecordTy); |
| 1052 | |
| 1053 | // PVOID __RTCastToVoid( |
| 1054 | // PVOID inptr) |
| 1055 | llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; |
| 1056 | llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( |
| 1057 | Ty: llvm::FunctionType::get(Result: CGF.Int8PtrTy, Params: ArgTypes, isVarArg: false), |
| 1058 | Name: "__RTCastToVoid" ); |
| 1059 | llvm::Value *Args[] = {Value.emitRawPointer(CGF)}; |
| 1060 | return CGF.EmitRuntimeCall(callee: Function, args: Args); |
| 1061 | } |
| 1062 | |
| 1063 | bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { |
| 1064 | return false; |
| 1065 | } |
| 1066 | |
| 1067 | llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( |
| 1068 | CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, |
| 1069 | const CXXRecordDecl *BaseClassDecl) { |
| 1070 | const ASTContext &Context = getContext(); |
| 1071 | int64_t VBPtrChars = |
| 1072 | Context.getASTRecordLayout(D: ClassDecl).getVBPtrOffset().getQuantity(); |
| 1073 | llvm::Value *VBPtrOffset = llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, V: VBPtrChars); |
| 1074 | CharUnits IntSize = Context.getTypeSizeInChars(T: Context.IntTy); |
| 1075 | CharUnits VBTableChars = |
| 1076 | IntSize * |
| 1077 | CGM.getMicrosoftVTableContext().getVBTableIndex(Derived: ClassDecl, VBase: BaseClassDecl); |
| 1078 | llvm::Value *VBTableOffset = |
| 1079 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBTableChars.getQuantity()); |
| 1080 | |
| 1081 | llvm::Value *VBPtrToNewBase = |
| 1082 | GetVBaseOffsetFromVBPtr(CGF, Base: This, VBPtrOffset, VBTableOffset); |
| 1083 | VBPtrToNewBase = |
| 1084 | CGF.Builder.CreateSExtOrBitCast(V: VBPtrToNewBase, DestTy: CGM.PtrDiffTy); |
| 1085 | return CGF.Builder.CreateNSWAdd(LHS: VBPtrOffset, RHS: VBPtrToNewBase); |
| 1086 | } |
| 1087 | |
| 1088 | bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { |
| 1089 | return isa<CXXConstructorDecl>(Val: GD.getDecl()); |
| 1090 | } |
| 1091 | |
| 1092 | static bool isDeletingDtor(GlobalDecl GD) { |
| 1093 | return isa<CXXDestructorDecl>(Val: GD.getDecl()) && |
| 1094 | GD.getDtorType() == Dtor_Deleting; |
| 1095 | } |
| 1096 | |
| 1097 | bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { |
| 1098 | return isDeletingDtor(GD); |
| 1099 | } |
| 1100 | |
| 1101 | static bool isTrivialForMSVC(const CXXRecordDecl *RD, QualType Ty, |
| 1102 | CodeGenModule &CGM) { |
| 1103 | // On AArch64, HVAs that can be passed in registers can also be returned |
| 1104 | // in registers. (Note this is using the MSVC definition of an HVA; see |
| 1105 | // isPermittedToBeHomogeneousAggregate().) |
| 1106 | const Type *Base = nullptr; |
| 1107 | uint64_t NumElts = 0; |
| 1108 | if (CGM.getTarget().getTriple().isAArch64() && |
| 1109 | CGM.getABIInfo().isHomogeneousAggregate(Ty, Base, Members&: NumElts) && |
| 1110 | isa<VectorType>(Val: Base)) { |
| 1111 | return true; |
| 1112 | } |
| 1113 | |
| 1114 | // We use the C++14 definition of an aggregate, so we also |
| 1115 | // check for: |
| 1116 | // No private or protected non static data members. |
| 1117 | // No base classes |
| 1118 | // No virtual functions |
| 1119 | // Additionally, we need to ensure that there is a trivial copy assignment |
| 1120 | // operator, a trivial destructor, no user-provided constructors and no |
| 1121 | // deleted copy assignment operator. |
| 1122 | |
| 1123 | // We need to cover two cases when checking for a deleted copy assignment |
| 1124 | // operator. |
| 1125 | // |
| 1126 | // struct S { int& r; }; |
| 1127 | // The above will have an implicit copy assignment operator that is deleted |
| 1128 | // and there will not be a `CXXMethodDecl` for the copy assignment operator. |
| 1129 | // This is handled by the `needsImplicitCopyAssignment()` check below. |
| 1130 | // |
| 1131 | // struct S { S& operator=(const S&) = delete; int i; }; |
| 1132 | // The above will not have an implicit copy assignment operator that is |
| 1133 | // deleted but there is a deleted `CXXMethodDecl` for the declared copy |
| 1134 | // assignment operator. This is handled by the `isDeleted()` check below. |
| 1135 | |
| 1136 | if (RD->hasProtectedFields() || RD->hasPrivateFields()) |
| 1137 | return false; |
| 1138 | if (RD->getNumBases() > 0) |
| 1139 | return false; |
| 1140 | if (RD->isPolymorphic()) |
| 1141 | return false; |
| 1142 | if (RD->hasNonTrivialCopyAssignment()) |
| 1143 | return false; |
| 1144 | if (RD->needsImplicitCopyAssignment() && !RD->hasSimpleCopyAssignment()) |
| 1145 | return false; |
| 1146 | for (const Decl *D : RD->decls()) { |
| 1147 | if (auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: D)) { |
| 1148 | if (Ctor->isUserProvided()) |
| 1149 | return false; |
| 1150 | } else if (auto *Template = dyn_cast<FunctionTemplateDecl>(Val: D)) { |
| 1151 | if (isa<CXXConstructorDecl>(Val: Template->getTemplatedDecl())) |
| 1152 | return false; |
| 1153 | } else if (auto *MethodDecl = dyn_cast<CXXMethodDecl>(Val: D)) { |
| 1154 | if (MethodDecl->isCopyAssignmentOperator() && MethodDecl->isDeleted()) |
| 1155 | return false; |
| 1156 | } |
| 1157 | } |
| 1158 | if (RD->hasNonTrivialDestructor()) |
| 1159 | return false; |
| 1160 | return true; |
| 1161 | } |
| 1162 | |
| 1163 | bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { |
| 1164 | const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); |
| 1165 | if (!RD) |
| 1166 | return false; |
| 1167 | |
| 1168 | bool isTrivialForABI = RD->canPassInRegisters() && |
| 1169 | isTrivialForMSVC(RD, Ty: FI.getReturnType(), CGM); |
| 1170 | |
| 1171 | // MSVC always returns structs indirectly from C++ instance methods. |
| 1172 | bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod(); |
| 1173 | |
| 1174 | if (isIndirectReturn) { |
| 1175 | CharUnits Align = CGM.getContext().getTypeAlignInChars(T: FI.getReturnType()); |
| 1176 | FI.getReturnInfo() = ABIArgInfo::getIndirect( |
| 1177 | Alignment: Align, /*AddrSpace=*/CGM.getDataLayout().getAllocaAddrSpace(), |
| 1178 | /*ByVal=*/false); |
| 1179 | |
| 1180 | // MSVC always passes `this` before the `sret` parameter. |
| 1181 | FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod()); |
| 1182 | |
| 1183 | // On AArch64, use the `inreg` attribute if the object is considered to not |
| 1184 | // be trivially copyable, or if this is an instance method struct return. |
| 1185 | FI.getReturnInfo().setInReg(CGM.getTarget().getTriple().isAArch64()); |
| 1186 | |
| 1187 | return true; |
| 1188 | } |
| 1189 | |
| 1190 | // Otherwise, use the C ABI rules. |
| 1191 | return false; |
| 1192 | } |
| 1193 | |
| 1194 | llvm::BasicBlock * |
| 1195 | MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, |
| 1196 | const CXXRecordDecl *RD) { |
| 1197 | llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); |
| 1198 | assert(IsMostDerivedClass && |
| 1199 | "ctor for a class with virtual bases must have an implicit parameter" ); |
| 1200 | llvm::Value *IsCompleteObject = |
| 1201 | CGF.Builder.CreateIsNotNull(Arg: IsMostDerivedClass, Name: "is_complete_object" ); |
| 1202 | |
| 1203 | llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock(name: "ctor.init_vbases" ); |
| 1204 | llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock(name: "ctor.skip_vbases" ); |
| 1205 | CGF.Builder.CreateCondBr(Cond: IsCompleteObject, |
| 1206 | True: CallVbaseCtorsBB, False: SkipVbaseCtorsBB); |
| 1207 | |
| 1208 | CGF.EmitBlock(BB: CallVbaseCtorsBB); |
| 1209 | |
| 1210 | // Fill in the vbtable pointers here. |
| 1211 | EmitVBPtrStores(CGF, RD); |
| 1212 | |
| 1213 | // CGF will put the base ctor calls in this basic block for us later. |
| 1214 | |
| 1215 | return SkipVbaseCtorsBB; |
| 1216 | } |
| 1217 | |
| 1218 | llvm::BasicBlock * |
| 1219 | MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) { |
| 1220 | llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); |
| 1221 | assert(IsMostDerivedClass && |
| 1222 | "ctor for a class with virtual bases must have an implicit parameter" ); |
| 1223 | llvm::Value *IsCompleteObject = |
| 1224 | CGF.Builder.CreateIsNotNull(Arg: IsMostDerivedClass, Name: "is_complete_object" ); |
| 1225 | |
| 1226 | llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock(name: "Dtor.dtor_vbases" ); |
| 1227 | llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock(name: "Dtor.skip_vbases" ); |
| 1228 | CGF.Builder.CreateCondBr(Cond: IsCompleteObject, |
| 1229 | True: CallVbaseDtorsBB, False: SkipVbaseDtorsBB); |
| 1230 | |
| 1231 | CGF.EmitBlock(BB: CallVbaseDtorsBB); |
| 1232 | // CGF will put the base dtor calls in this basic block for us later. |
| 1233 | |
| 1234 | return SkipVbaseDtorsBB; |
| 1235 | } |
| 1236 | |
| 1237 | void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( |
| 1238 | CodeGenFunction &CGF, const CXXRecordDecl *RD) { |
| 1239 | // In most cases, an override for a vbase virtual method can adjust |
| 1240 | // the "this" parameter by applying a constant offset. |
| 1241 | // However, this is not enough while a constructor or a destructor of some |
| 1242 | // class X is being executed if all the following conditions are met: |
| 1243 | // - X has virtual bases, (1) |
| 1244 | // - X overrides a virtual method M of a vbase Y, (2) |
| 1245 | // - X itself is a vbase of the most derived class. |
| 1246 | // |
| 1247 | // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X |
| 1248 | // which holds the extra amount of "this" adjustment we must do when we use |
| 1249 | // the X vftables (i.e. during X ctor or dtor). |
| 1250 | // Outside the ctors and dtors, the values of vtorDisps are zero. |
| 1251 | |
| 1252 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D: RD); |
| 1253 | typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; |
| 1254 | const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); |
| 1255 | CGBuilderTy &Builder = CGF.Builder; |
| 1256 | |
| 1257 | llvm::Value *Int8This = nullptr; // Initialize lazily. |
| 1258 | |
| 1259 | for (const CXXBaseSpecifier &S : RD->vbases()) { |
| 1260 | const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl(); |
| 1261 | auto I = VBaseMap.find(Val: VBase); |
| 1262 | assert(I != VBaseMap.end()); |
| 1263 | if (!I->second.hasVtorDisp()) |
| 1264 | continue; |
| 1265 | |
| 1266 | llvm::Value *VBaseOffset = |
| 1267 | GetVirtualBaseClassOffset(CGF, This: getThisAddress(CGF), ClassDecl: RD, BaseClassDecl: VBase); |
| 1268 | uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity(); |
| 1269 | |
| 1270 | // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). |
| 1271 | llvm::Value *VtorDispValue = Builder.CreateSub( |
| 1272 | LHS: VBaseOffset, RHS: llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, V: ConstantVBaseOffset), |
| 1273 | Name: "vtordisp.value" ); |
| 1274 | VtorDispValue = Builder.CreateTruncOrBitCast(V: VtorDispValue, DestTy: CGF.Int32Ty); |
| 1275 | |
| 1276 | if (!Int8This) |
| 1277 | Int8This = getThisValue(CGF); |
| 1278 | |
| 1279 | llvm::Value *VtorDispPtr = |
| 1280 | Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: Int8This, IdxList: VBaseOffset); |
| 1281 | // vtorDisp is always the 32-bits before the vbase in the class layout. |
| 1282 | VtorDispPtr = Builder.CreateConstGEP1_32(Ty: CGF.Int8Ty, Ptr: VtorDispPtr, Idx0: -4); |
| 1283 | |
| 1284 | Builder.CreateAlignedStore(Val: VtorDispValue, Addr: VtorDispPtr, |
| 1285 | Align: CharUnits::fromQuantity(Quantity: 4)); |
| 1286 | } |
| 1287 | } |
| 1288 | |
| 1289 | static bool hasDefaultCXXMethodCC(ASTContext &Context, |
| 1290 | const CXXMethodDecl *MD) { |
| 1291 | CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( |
| 1292 | /*IsVariadic=*/false, /*IsCXXMethod=*/true); |
| 1293 | CallingConv ActualCallingConv = |
| 1294 | MD->getType()->castAs<FunctionProtoType>()->getCallConv(); |
| 1295 | return ExpectedCallingConv == ActualCallingConv; |
| 1296 | } |
| 1297 | |
| 1298 | void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { |
| 1299 | // There's only one constructor type in this ABI. |
| 1300 | CGM.EmitGlobal(D: GlobalDecl(D, Ctor_Complete)); |
| 1301 | |
| 1302 | // Exported default constructors either have a simple call-site where they use |
| 1303 | // the typical calling convention and have a single 'this' pointer for an |
| 1304 | // argument -or- they get a wrapper function which appropriately thunks to the |
| 1305 | // real default constructor. This thunk is the default constructor closure. |
| 1306 | if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor() && |
| 1307 | D->isDefined()) { |
| 1308 | if (!hasDefaultCXXMethodCC(Context&: getContext(), MD: D) || D->getNumParams() != 0) { |
| 1309 | llvm::Function *Fn = getAddrOfCXXCtorClosure(CD: D, CT: Ctor_DefaultClosure); |
| 1310 | Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); |
| 1311 | CGM.setGVProperties(GV: Fn, D); |
| 1312 | } |
| 1313 | } |
| 1314 | } |
| 1315 | |
| 1316 | void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, |
| 1317 | const CXXRecordDecl *RD) { |
| 1318 | Address This = getThisAddress(CGF); |
| 1319 | This = This.withElementType(ElemTy: CGM.Int8Ty); |
| 1320 | const ASTContext &Context = getContext(); |
| 1321 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
| 1322 | |
| 1323 | const VBTableGlobals &VBGlobals = enumerateVBTables(RD); |
| 1324 | for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { |
| 1325 | const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I]; |
| 1326 | llvm::GlobalVariable *GV = VBGlobals.Globals[I]; |
| 1327 | const ASTRecordLayout &SubobjectLayout = |
| 1328 | Context.getASTRecordLayout(D: VBT->IntroducingObject); |
| 1329 | CharUnits Offs = VBT->NonVirtualOffset; |
| 1330 | Offs += SubobjectLayout.getVBPtrOffset(); |
| 1331 | if (VBT->getVBaseWithVPtr()) |
| 1332 | Offs += Layout.getVBaseClassOffset(VBase: VBT->getVBaseWithVPtr()); |
| 1333 | Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(Addr: This, Offset: Offs); |
| 1334 | llvm::Value *GVPtr = |
| 1335 | CGF.Builder.CreateConstInBoundsGEP2_32(Ty: GV->getValueType(), Ptr: GV, Idx0: 0, Idx1: 0); |
| 1336 | VBPtr = VBPtr.withElementType(ElemTy: GVPtr->getType()); |
| 1337 | CGF.Builder.CreateStore(Val: GVPtr, Addr: VBPtr); |
| 1338 | } |
| 1339 | } |
| 1340 | |
| 1341 | CGCXXABI::AddedStructorArgCounts |
| 1342 | MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD, |
| 1343 | SmallVectorImpl<CanQualType> &ArgTys) { |
| 1344 | AddedStructorArgCounts Added; |
| 1345 | // TODO: 'for base' flag |
| 1346 | if (isa<CXXDestructorDecl>(Val: GD.getDecl()) && |
| 1347 | GD.getDtorType() == Dtor_Deleting) { |
| 1348 | // The scalar deleting destructor takes an implicit int parameter. |
| 1349 | ArgTys.push_back(Elt: getContext().IntTy); |
| 1350 | ++Added.Suffix; |
| 1351 | } |
| 1352 | auto *CD = dyn_cast<CXXConstructorDecl>(Val: GD.getDecl()); |
| 1353 | if (!CD) |
| 1354 | return Added; |
| 1355 | |
| 1356 | // All parameters are already in place except is_most_derived, which goes |
| 1357 | // after 'this' if it's variadic and last if it's not. |
| 1358 | |
| 1359 | const CXXRecordDecl *Class = CD->getParent(); |
| 1360 | const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>(); |
| 1361 | if (Class->getNumVBases()) { |
| 1362 | if (FPT->isVariadic()) { |
| 1363 | ArgTys.insert(I: ArgTys.begin() + 1, Elt: getContext().IntTy); |
| 1364 | ++Added.Prefix; |
| 1365 | } else { |
| 1366 | ArgTys.push_back(Elt: getContext().IntTy); |
| 1367 | ++Added.Suffix; |
| 1368 | } |
| 1369 | } |
| 1370 | |
| 1371 | return Added; |
| 1372 | } |
| 1373 | |
| 1374 | void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV, |
| 1375 | const CXXDestructorDecl *Dtor, |
| 1376 | CXXDtorType DT) const { |
| 1377 | // Deleting destructor variants are never imported or exported. Give them the |
| 1378 | // default storage class. |
| 1379 | if (DT == Dtor_Deleting) { |
| 1380 | GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); |
| 1381 | } else { |
| 1382 | const NamedDecl *ND = Dtor; |
| 1383 | CGM.setDLLImportDLLExport(GV, D: ND); |
| 1384 | } |
| 1385 | } |
| 1386 | |
| 1387 | llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage( |
| 1388 | GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { |
| 1389 | // Internal things are always internal, regardless of attributes. After this, |
| 1390 | // we know the thunk is externally visible. |
| 1391 | if (Linkage == GVA_Internal) |
| 1392 | return llvm::GlobalValue::InternalLinkage; |
| 1393 | |
| 1394 | switch (DT) { |
| 1395 | case Dtor_Base: |
| 1396 | // The base destructor most closely tracks the user-declared constructor, so |
| 1397 | // we delegate back to the normal declarator case. |
| 1398 | return CGM.getLLVMLinkageForDeclarator(D: Dtor, Linkage); |
| 1399 | case Dtor_Complete: |
| 1400 | // The complete destructor is like an inline function, but it may be |
| 1401 | // imported and therefore must be exported as well. This requires changing |
| 1402 | // the linkage if a DLL attribute is present. |
| 1403 | if (Dtor->hasAttr<DLLExportAttr>()) |
| 1404 | return llvm::GlobalValue::WeakODRLinkage; |
| 1405 | if (Dtor->hasAttr<DLLImportAttr>()) |
| 1406 | return llvm::GlobalValue::AvailableExternallyLinkage; |
| 1407 | return llvm::GlobalValue::LinkOnceODRLinkage; |
| 1408 | case Dtor_Deleting: |
| 1409 | // Deleting destructors are like inline functions. They have vague linkage |
| 1410 | // and are emitted everywhere they are used. They are internal if the class |
| 1411 | // is internal. |
| 1412 | return llvm::GlobalValue::LinkOnceODRLinkage; |
| 1413 | case Dtor_Comdat: |
| 1414 | llvm_unreachable("MS C++ ABI does not support comdat dtors" ); |
| 1415 | } |
| 1416 | llvm_unreachable("invalid dtor type" ); |
| 1417 | } |
| 1418 | |
| 1419 | void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { |
| 1420 | // The TU defining a dtor is only guaranteed to emit a base destructor. All |
| 1421 | // other destructor variants are delegating thunks. |
| 1422 | CGM.EmitGlobal(D: GlobalDecl(D, Dtor_Base)); |
| 1423 | |
| 1424 | // If the class is dllexported, emit the complete (vbase) destructor wherever |
| 1425 | // the base dtor is emitted. |
| 1426 | // FIXME: To match MSVC, this should only be done when the class is exported |
| 1427 | // with -fdllexport-inlines enabled. |
| 1428 | if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>()) |
| 1429 | CGM.EmitGlobal(D: GlobalDecl(D, Dtor_Complete)); |
| 1430 | } |
| 1431 | |
| 1432 | CharUnits |
| 1433 | MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { |
| 1434 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
| 1435 | |
| 1436 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
| 1437 | // Complete destructors take a pointer to the complete object as a |
| 1438 | // parameter, thus don't need this adjustment. |
| 1439 | if (GD.getDtorType() == Dtor_Complete) |
| 1440 | return CharUnits(); |
| 1441 | |
| 1442 | // There's no Dtor_Base in vftable but it shares the this adjustment with |
| 1443 | // the deleting one, so look it up instead. |
| 1444 | GD = GlobalDecl(DD, Dtor_Deleting); |
| 1445 | } |
| 1446 | |
| 1447 | MethodVFTableLocation ML = |
| 1448 | CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); |
| 1449 | CharUnits Adjustment = ML.VFPtrOffset; |
| 1450 | |
| 1451 | // Normal virtual instance methods need to adjust from the vfptr that first |
| 1452 | // defined the virtual method to the virtual base subobject, but destructors |
| 1453 | // do not. The vector deleting destructor thunk applies this adjustment for |
| 1454 | // us if necessary. |
| 1455 | if (isa<CXXDestructorDecl>(Val: MD)) |
| 1456 | Adjustment = CharUnits::Zero(); |
| 1457 | |
| 1458 | if (ML.VBase) { |
| 1459 | const ASTRecordLayout &DerivedLayout = |
| 1460 | getContext().getASTRecordLayout(D: MD->getParent()); |
| 1461 | Adjustment += DerivedLayout.getVBaseClassOffset(VBase: ML.VBase); |
| 1462 | } |
| 1463 | |
| 1464 | return Adjustment; |
| 1465 | } |
| 1466 | |
| 1467 | Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( |
| 1468 | CodeGenFunction &CGF, GlobalDecl GD, Address This, |
| 1469 | bool VirtualCall) { |
| 1470 | if (!VirtualCall) { |
| 1471 | // If the call of a virtual function is not virtual, we just have to |
| 1472 | // compensate for the adjustment the virtual function does in its prologue. |
| 1473 | CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); |
| 1474 | if (Adjustment.isZero()) |
| 1475 | return This; |
| 1476 | |
| 1477 | This = This.withElementType(ElemTy: CGF.Int8Ty); |
| 1478 | assert(Adjustment.isPositive()); |
| 1479 | return CGF.Builder.CreateConstByteGEP(Addr: This, Offset: Adjustment); |
| 1480 | } |
| 1481 | |
| 1482 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
| 1483 | |
| 1484 | GlobalDecl LookupGD = GD; |
| 1485 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
| 1486 | // Complete dtors take a pointer to the complete object, |
| 1487 | // thus don't need adjustment. |
| 1488 | if (GD.getDtorType() == Dtor_Complete) |
| 1489 | return This; |
| 1490 | |
| 1491 | // There's only Dtor_Deleting in vftable but it shares the this adjustment |
| 1492 | // with the base one, so look up the deleting one instead. |
| 1493 | LookupGD = GlobalDecl(DD, Dtor_Deleting); |
| 1494 | } |
| 1495 | MethodVFTableLocation ML = |
| 1496 | CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD: LookupGD); |
| 1497 | |
| 1498 | CharUnits StaticOffset = ML.VFPtrOffset; |
| 1499 | |
| 1500 | // Base destructors expect 'this' to point to the beginning of the base |
| 1501 | // subobject, not the first vfptr that happens to contain the virtual dtor. |
| 1502 | // However, we still need to apply the virtual base adjustment. |
| 1503 | if (isa<CXXDestructorDecl>(Val: MD) && GD.getDtorType() == Dtor_Base) |
| 1504 | StaticOffset = CharUnits::Zero(); |
| 1505 | |
| 1506 | Address Result = This; |
| 1507 | if (ML.VBase) { |
| 1508 | Result = Result.withElementType(ElemTy: CGF.Int8Ty); |
| 1509 | |
| 1510 | const CXXRecordDecl *Derived = MD->getParent(); |
| 1511 | const CXXRecordDecl *VBase = ML.VBase; |
| 1512 | llvm::Value *VBaseOffset = |
| 1513 | GetVirtualBaseClassOffset(CGF, This: Result, ClassDecl: Derived, BaseClassDecl: VBase); |
| 1514 | llvm::Value *VBasePtr = CGF.Builder.CreateInBoundsGEP( |
| 1515 | Ty: Result.getElementType(), Ptr: Result.emitRawPointer(CGF), IdxList: VBaseOffset); |
| 1516 | CharUnits VBaseAlign = |
| 1517 | CGF.CGM.getVBaseAlignment(DerivedAlign: Result.getAlignment(), Derived, VBase); |
| 1518 | Result = Address(VBasePtr, CGF.Int8Ty, VBaseAlign); |
| 1519 | } |
| 1520 | if (!StaticOffset.isZero()) { |
| 1521 | assert(StaticOffset.isPositive()); |
| 1522 | Result = Result.withElementType(ElemTy: CGF.Int8Ty); |
| 1523 | if (ML.VBase) { |
| 1524 | // Non-virtual adjustment might result in a pointer outside the allocated |
| 1525 | // object, e.g. if the final overrider class is laid out after the virtual |
| 1526 | // base that declares a method in the most derived class. |
| 1527 | // FIXME: Update the code that emits this adjustment in thunks prologues. |
| 1528 | Result = CGF.Builder.CreateConstByteGEP(Addr: Result, Offset: StaticOffset); |
| 1529 | } else { |
| 1530 | Result = CGF.Builder.CreateConstInBoundsByteGEP(Addr: Result, Offset: StaticOffset); |
| 1531 | } |
| 1532 | } |
| 1533 | return Result; |
| 1534 | } |
| 1535 | |
| 1536 | void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, |
| 1537 | QualType &ResTy, |
| 1538 | FunctionArgList &Params) { |
| 1539 | ASTContext &Context = getContext(); |
| 1540 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: CGF.CurGD.getDecl()); |
| 1541 | assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); |
| 1542 | if (isa<CXXConstructorDecl>(Val: MD) && MD->getParent()->getNumVBases()) { |
| 1543 | auto *IsMostDerived = ImplicitParamDecl::Create( |
| 1544 | C&: Context, /*DC=*/nullptr, IdLoc: CGF.CurGD.getDecl()->getLocation(), |
| 1545 | Id: &Context.Idents.get(Name: "is_most_derived" ), T: Context.IntTy, |
| 1546 | ParamKind: ImplicitParamKind::Other); |
| 1547 | // The 'most_derived' parameter goes second if the ctor is variadic and last |
| 1548 | // if it's not. Dtors can't be variadic. |
| 1549 | const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); |
| 1550 | if (FPT->isVariadic()) |
| 1551 | Params.insert(I: Params.begin() + 1, Elt: IsMostDerived); |
| 1552 | else |
| 1553 | Params.push_back(Elt: IsMostDerived); |
| 1554 | getStructorImplicitParamDecl(CGF) = IsMostDerived; |
| 1555 | } else if (isDeletingDtor(GD: CGF.CurGD)) { |
| 1556 | auto *ShouldDelete = ImplicitParamDecl::Create( |
| 1557 | C&: Context, /*DC=*/nullptr, IdLoc: CGF.CurGD.getDecl()->getLocation(), |
| 1558 | Id: &Context.Idents.get(Name: "should_call_delete" ), T: Context.IntTy, |
| 1559 | ParamKind: ImplicitParamKind::Other); |
| 1560 | Params.push_back(Elt: ShouldDelete); |
| 1561 | getStructorImplicitParamDecl(CGF) = ShouldDelete; |
| 1562 | } |
| 1563 | } |
| 1564 | |
| 1565 | void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { |
| 1566 | // Naked functions have no prolog. |
| 1567 | if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) |
| 1568 | return; |
| 1569 | |
| 1570 | // Overridden virtual methods of non-primary bases need to adjust the incoming |
| 1571 | // 'this' pointer in the prologue. In this hierarchy, C::b will subtract |
| 1572 | // sizeof(void*) to adjust from B* to C*: |
| 1573 | // struct A { virtual void a(); }; |
| 1574 | // struct B { virtual void b(); }; |
| 1575 | // struct C : A, B { virtual void b(); }; |
| 1576 | // |
| 1577 | // Leave the value stored in the 'this' alloca unadjusted, so that the |
| 1578 | // debugger sees the unadjusted value. Microsoft debuggers require this, and |
| 1579 | // will apply the ThisAdjustment in the method type information. |
| 1580 | // FIXME: Do something better for DWARF debuggers, which won't expect this, |
| 1581 | // without making our codegen depend on debug info settings. |
| 1582 | llvm::Value *This = loadIncomingCXXThis(CGF); |
| 1583 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: CGF.CurGD.getDecl()); |
| 1584 | if (!CGF.CurFuncIsThunk && MD->isVirtual()) { |
| 1585 | CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD: CGF.CurGD); |
| 1586 | if (!Adjustment.isZero()) { |
| 1587 | assert(Adjustment.isPositive()); |
| 1588 | This = CGF.Builder.CreateConstInBoundsGEP1_32(Ty: CGF.Int8Ty, Ptr: This, |
| 1589 | Idx0: -Adjustment.getQuantity()); |
| 1590 | } |
| 1591 | } |
| 1592 | setCXXABIThisValue(CGF, ThisPtr: This); |
| 1593 | |
| 1594 | // If this is a function that the ABI specifies returns 'this', initialize |
| 1595 | // the return slot to 'this' at the start of the function. |
| 1596 | // |
| 1597 | // Unlike the setting of return types, this is done within the ABI |
| 1598 | // implementation instead of by clients of CGCXXABI because: |
| 1599 | // 1) getThisValue is currently protected |
| 1600 | // 2) in theory, an ABI could implement 'this' returns some other way; |
| 1601 | // HasThisReturn only specifies a contract, not the implementation |
| 1602 | if (HasThisReturn(GD: CGF.CurGD) || hasMostDerivedReturn(GD: CGF.CurGD)) |
| 1603 | CGF.Builder.CreateStore(Val: getThisValue(CGF), Addr: CGF.ReturnValue); |
| 1604 | |
| 1605 | if (isa<CXXConstructorDecl>(Val: MD) && MD->getParent()->getNumVBases()) { |
| 1606 | assert(getStructorImplicitParamDecl(CGF) && |
| 1607 | "no implicit parameter for a constructor with virtual bases?" ); |
| 1608 | getStructorImplicitParamValue(CGF) |
| 1609 | = CGF.Builder.CreateLoad( |
| 1610 | Addr: CGF.GetAddrOfLocalVar(VD: getStructorImplicitParamDecl(CGF)), |
| 1611 | Name: "is_most_derived" ); |
| 1612 | } |
| 1613 | |
| 1614 | if (isDeletingDtor(GD: CGF.CurGD)) { |
| 1615 | assert(getStructorImplicitParamDecl(CGF) && |
| 1616 | "no implicit parameter for a deleting destructor?" ); |
| 1617 | getStructorImplicitParamValue(CGF) |
| 1618 | = CGF.Builder.CreateLoad( |
| 1619 | Addr: CGF.GetAddrOfLocalVar(VD: getStructorImplicitParamDecl(CGF)), |
| 1620 | Name: "should_call_delete" ); |
| 1621 | } |
| 1622 | } |
| 1623 | |
| 1624 | CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs( |
| 1625 | CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, |
| 1626 | bool ForVirtualBase, bool Delegating) { |
| 1627 | assert(Type == Ctor_Complete || Type == Ctor_Base); |
| 1628 | |
| 1629 | // Check if we need a 'most_derived' parameter. |
| 1630 | if (!D->getParent()->getNumVBases()) |
| 1631 | return AddedStructorArgs{}; |
| 1632 | |
| 1633 | // Add the 'most_derived' argument second if we are variadic or last if not. |
| 1634 | const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); |
| 1635 | llvm::Value *MostDerivedArg; |
| 1636 | if (Delegating) { |
| 1637 | MostDerivedArg = getStructorImplicitParamValue(CGF); |
| 1638 | } else { |
| 1639 | MostDerivedArg = llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: Type == Ctor_Complete); |
| 1640 | } |
| 1641 | if (FPT->isVariadic()) { |
| 1642 | return AddedStructorArgs::prefix(Args: {{.Value: MostDerivedArg, .Type: getContext().IntTy}}); |
| 1643 | } |
| 1644 | return AddedStructorArgs::suffix(Args: {{.Value: MostDerivedArg, .Type: getContext().IntTy}}); |
| 1645 | } |
| 1646 | |
| 1647 | llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam( |
| 1648 | CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, |
| 1649 | bool ForVirtualBase, bool Delegating) { |
| 1650 | return nullptr; |
| 1651 | } |
| 1652 | |
| 1653 | void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, |
| 1654 | const CXXDestructorDecl *DD, |
| 1655 | CXXDtorType Type, bool ForVirtualBase, |
| 1656 | bool Delegating, Address This, |
| 1657 | QualType ThisTy) { |
| 1658 | // Use the base destructor variant in place of the complete destructor variant |
| 1659 | // if the class has no virtual bases. This effectively implements some of the |
| 1660 | // -mconstructor-aliases optimization, but as part of the MS C++ ABI. |
| 1661 | if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0) |
| 1662 | Type = Dtor_Base; |
| 1663 | |
| 1664 | GlobalDecl GD(DD, Type); |
| 1665 | CGCallee Callee = CGCallee::forDirect(functionPtr: CGM.getAddrOfCXXStructor(GD), abstractInfo: GD); |
| 1666 | |
| 1667 | if (DD->isVirtual()) { |
| 1668 | assert(Type != CXXDtorType::Dtor_Deleting && |
| 1669 | "The deleting destructor should only be called via a virtual call" ); |
| 1670 | This = adjustThisArgumentForVirtualFunctionCall(CGF, GD: GlobalDecl(DD, Type), |
| 1671 | This, VirtualCall: false); |
| 1672 | } |
| 1673 | |
| 1674 | llvm::BasicBlock *BaseDtorEndBB = nullptr; |
| 1675 | if (ForVirtualBase && isa<CXXConstructorDecl>(Val: CGF.CurCodeDecl)) { |
| 1676 | BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF); |
| 1677 | } |
| 1678 | |
| 1679 | llvm::Value *Implicit = |
| 1680 | getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase, |
| 1681 | Delegating); // = nullptr |
| 1682 | CGF.EmitCXXDestructorCall(Dtor: GD, Callee, This: CGF.getAsNaturalPointerTo(Addr: This, PointeeType: ThisTy), |
| 1683 | ThisTy, |
| 1684 | /*ImplicitParam=*/Implicit, |
| 1685 | /*ImplicitParamTy=*/QualType(), /*E=*/nullptr); |
| 1686 | if (BaseDtorEndBB) { |
| 1687 | // Complete object handler should continue to be the remaining |
| 1688 | CGF.Builder.CreateBr(Dest: BaseDtorEndBB); |
| 1689 | CGF.EmitBlock(BB: BaseDtorEndBB); |
| 1690 | } |
| 1691 | } |
| 1692 | |
| 1693 | void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info, |
| 1694 | const CXXRecordDecl *RD, |
| 1695 | llvm::GlobalVariable *VTable) { |
| 1696 | // Emit type metadata on vtables with LTO or IR instrumentation. |
| 1697 | // In IR instrumentation, the type metadata could be used to find out vtable |
| 1698 | // definitions (for type profiling) among all global variables. |
| 1699 | if (!CGM.getCodeGenOpts().LTOUnit && |
| 1700 | !CGM.getCodeGenOpts().hasProfileIRInstr()) |
| 1701 | return; |
| 1702 | |
| 1703 | // TODO: Should VirtualFunctionElimination also be supported here? |
| 1704 | // See similar handling in CodeGenModule::EmitVTableTypeMetadata. |
| 1705 | if (CGM.getCodeGenOpts().WholeProgramVTables) { |
| 1706 | llvm::DenseSet<const CXXRecordDecl *> Visited; |
| 1707 | llvm::GlobalObject::VCallVisibility TypeVis = |
| 1708 | CGM.GetVCallVisibilityLevel(RD, Visited); |
| 1709 | if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) |
| 1710 | VTable->setVCallVisibilityMetadata(TypeVis); |
| 1711 | } |
| 1712 | |
| 1713 | // The location of the first virtual function pointer in the virtual table, |
| 1714 | // aka the "address point" on Itanium. This is at offset 0 if RTTI is |
| 1715 | // disabled, or sizeof(void*) if RTTI is enabled. |
| 1716 | CharUnits AddressPoint = |
| 1717 | getContext().getLangOpts().RTTIData |
| 1718 | ? getContext().toCharUnitsFromBits( |
| 1719 | BitSize: getContext().getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default)) |
| 1720 | : CharUnits::Zero(); |
| 1721 | |
| 1722 | if (Info.PathToIntroducingObject.empty()) { |
| 1723 | CGM.AddVTableTypeMetadata(VTable, Offset: AddressPoint, RD); |
| 1724 | return; |
| 1725 | } |
| 1726 | |
| 1727 | // Add a bitset entry for the least derived base belonging to this vftable. |
| 1728 | CGM.AddVTableTypeMetadata(VTable, Offset: AddressPoint, |
| 1729 | RD: Info.PathToIntroducingObject.back()); |
| 1730 | |
| 1731 | // Add a bitset entry for each derived class that is laid out at the same |
| 1732 | // offset as the least derived base. |
| 1733 | for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) { |
| 1734 | const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1]; |
| 1735 | const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I]; |
| 1736 | |
| 1737 | const ASTRecordLayout &Layout = |
| 1738 | getContext().getASTRecordLayout(D: DerivedRD); |
| 1739 | CharUnits Offset; |
| 1740 | auto VBI = Layout.getVBaseOffsetsMap().find(Val: BaseRD); |
| 1741 | if (VBI == Layout.getVBaseOffsetsMap().end()) |
| 1742 | Offset = Layout.getBaseClassOffset(Base: BaseRD); |
| 1743 | else |
| 1744 | Offset = VBI->second.VBaseOffset; |
| 1745 | if (!Offset.isZero()) |
| 1746 | return; |
| 1747 | CGM.AddVTableTypeMetadata(VTable, Offset: AddressPoint, RD: DerivedRD); |
| 1748 | } |
| 1749 | |
| 1750 | // Finally do the same for the most derived class. |
| 1751 | if (Info.FullOffsetInMDC.isZero()) |
| 1752 | CGM.AddVTableTypeMetadata(VTable, Offset: AddressPoint, RD); |
| 1753 | } |
| 1754 | |
| 1755 | void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, |
| 1756 | const CXXRecordDecl *RD) { |
| 1757 | MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); |
| 1758 | const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); |
| 1759 | |
| 1760 | for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) { |
| 1761 | llvm::GlobalVariable *VTable = getAddrOfVTable(RD, VPtrOffset: Info->FullOffsetInMDC); |
| 1762 | if (VTable->hasInitializer()) |
| 1763 | continue; |
| 1764 | |
| 1765 | const VTableLayout &VTLayout = |
| 1766 | VFTContext.getVFTableLayout(RD, VFPtrOffset: Info->FullOffsetInMDC); |
| 1767 | |
| 1768 | llvm::Constant *RTTI = nullptr; |
| 1769 | if (any_of(Range: VTLayout.vtable_components(), |
| 1770 | P: [](const VTableComponent &VTC) { return VTC.isRTTIKind(); })) |
| 1771 | RTTI = getMSCompleteObjectLocator(RD, Info: *Info); |
| 1772 | |
| 1773 | ConstantInitBuilder builder(CGM); |
| 1774 | auto components = builder.beginStruct(); |
| 1775 | CGVT.createVTableInitializer(builder&: components, layout: VTLayout, rtti: RTTI, |
| 1776 | vtableHasLocalLinkage: VTable->hasLocalLinkage()); |
| 1777 | components.finishAndSetAsInitializer(global: VTable); |
| 1778 | |
| 1779 | emitVTableTypeMetadata(Info: *Info, RD, VTable); |
| 1780 | } |
| 1781 | } |
| 1782 | |
| 1783 | bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( |
| 1784 | CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { |
| 1785 | return Vptr.NearestVBase != nullptr; |
| 1786 | } |
| 1787 | |
| 1788 | llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( |
| 1789 | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, |
| 1790 | const CXXRecordDecl *NearestVBase) { |
| 1791 | llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); |
| 1792 | if (!VTableAddressPoint) { |
| 1793 | assert(Base.getBase()->getNumVBases() && |
| 1794 | !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); |
| 1795 | } |
| 1796 | return VTableAddressPoint; |
| 1797 | } |
| 1798 | |
| 1799 | static void mangleVFTableName(MicrosoftMangleContext &MangleContext, |
| 1800 | const CXXRecordDecl *RD, const VPtrInfo &VFPtr, |
| 1801 | SmallString<256> &Name) { |
| 1802 | llvm::raw_svector_ostream Out(Name); |
| 1803 | MangleContext.mangleCXXVFTable(Derived: RD, BasePath: VFPtr.MangledPath, Out); |
| 1804 | } |
| 1805 | |
| 1806 | llvm::Constant * |
| 1807 | MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, |
| 1808 | const CXXRecordDecl *VTableClass) { |
| 1809 | (void)getAddrOfVTable(RD: VTableClass, VPtrOffset: Base.getBaseOffset()); |
| 1810 | VFTableIdTy ID(VTableClass, Base.getBaseOffset()); |
| 1811 | return VFTablesMap[ID]; |
| 1812 | } |
| 1813 | |
| 1814 | llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, |
| 1815 | CharUnits VPtrOffset) { |
| 1816 | // getAddrOfVTable may return 0 if asked to get an address of a vtable which |
| 1817 | // shouldn't be used in the given record type. We want to cache this result in |
| 1818 | // VFTablesMap, thus a simple zero check is not sufficient. |
| 1819 | |
| 1820 | VFTableIdTy ID(RD, VPtrOffset); |
| 1821 | auto [I, Inserted] = VTablesMap.try_emplace(Key: ID); |
| 1822 | if (!Inserted) |
| 1823 | return I->second; |
| 1824 | |
| 1825 | llvm::GlobalVariable *&VTable = I->second; |
| 1826 | |
| 1827 | MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); |
| 1828 | const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); |
| 1829 | |
| 1830 | if (DeferredVFTables.insert(Ptr: RD).second) { |
| 1831 | // We haven't processed this record type before. |
| 1832 | // Queue up this vtable for possible deferred emission. |
| 1833 | CGM.addDeferredVTable(RD); |
| 1834 | |
| 1835 | #ifndef NDEBUG |
| 1836 | // Create all the vftables at once in order to make sure each vftable has |
| 1837 | // a unique mangled name. |
| 1838 | llvm::StringSet<> ObservedMangledNames; |
| 1839 | for (const auto &VFPtr : VFPtrs) { |
| 1840 | SmallString<256> Name; |
| 1841 | mangleVFTableName(getMangleContext(), RD, *VFPtr, Name); |
| 1842 | if (!ObservedMangledNames.insert(Name.str()).second) |
| 1843 | llvm_unreachable("Already saw this mangling before?" ); |
| 1844 | } |
| 1845 | #endif |
| 1846 | } |
| 1847 | |
| 1848 | const std::unique_ptr<VPtrInfo> *VFPtrI = |
| 1849 | llvm::find_if(Range: VFPtrs, P: [&](const std::unique_ptr<VPtrInfo> &VPI) { |
| 1850 | return VPI->FullOffsetInMDC == VPtrOffset; |
| 1851 | }); |
| 1852 | if (VFPtrI == VFPtrs.end()) { |
| 1853 | VFTablesMap[ID] = nullptr; |
| 1854 | return nullptr; |
| 1855 | } |
| 1856 | const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI; |
| 1857 | |
| 1858 | SmallString<256> VFTableName; |
| 1859 | mangleVFTableName(MangleContext&: getMangleContext(), RD, VFPtr: *VFPtr, Name&: VFTableName); |
| 1860 | |
| 1861 | // Classes marked __declspec(dllimport) need vftables generated on the |
| 1862 | // import-side in order to support features like constexpr. No other |
| 1863 | // translation unit relies on the emission of the local vftable, translation |
| 1864 | // units are expected to generate them as needed. |
| 1865 | // |
| 1866 | // Because of this unique behavior, we maintain this logic here instead of |
| 1867 | // getVTableLinkage. |
| 1868 | llvm::GlobalValue::LinkageTypes VFTableLinkage = |
| 1869 | RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage |
| 1870 | : CGM.getVTableLinkage(RD); |
| 1871 | bool VFTableComesFromAnotherTU = |
| 1872 | llvm::GlobalValue::isAvailableExternallyLinkage(Linkage: VFTableLinkage) || |
| 1873 | llvm::GlobalValue::isExternalLinkage(Linkage: VFTableLinkage); |
| 1874 | bool VTableAliasIsRequred = |
| 1875 | !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; |
| 1876 | |
| 1877 | if (llvm::GlobalValue *VFTable = |
| 1878 | CGM.getModule().getNamedGlobal(Name: VFTableName)) { |
| 1879 | VFTablesMap[ID] = VFTable; |
| 1880 | VTable = VTableAliasIsRequred |
| 1881 | ? cast<llvm::GlobalVariable>( |
| 1882 | Val: cast<llvm::GlobalAlias>(Val: VFTable)->getAliaseeObject()) |
| 1883 | : cast<llvm::GlobalVariable>(Val: VFTable); |
| 1884 | return VTable; |
| 1885 | } |
| 1886 | |
| 1887 | const VTableLayout &VTLayout = |
| 1888 | VTContext.getVFTableLayout(RD, VFPtrOffset: VFPtr->FullOffsetInMDC); |
| 1889 | llvm::GlobalValue::LinkageTypes VTableLinkage = |
| 1890 | VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; |
| 1891 | |
| 1892 | StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); |
| 1893 | |
| 1894 | llvm::Type *VTableType = CGM.getVTables().getVTableType(layout: VTLayout); |
| 1895 | |
| 1896 | // Create a backing variable for the contents of VTable. The VTable may |
| 1897 | // or may not include space for a pointer to RTTI data. |
| 1898 | llvm::GlobalValue *VFTable; |
| 1899 | VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, |
| 1900 | /*isConstant=*/true, VTableLinkage, |
| 1901 | /*Initializer=*/nullptr, VTableName); |
| 1902 | VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| 1903 | |
| 1904 | llvm::Comdat *C = nullptr; |
| 1905 | if (!VFTableComesFromAnotherTU && |
| 1906 | llvm::GlobalValue::isWeakForLinker(Linkage: VFTableLinkage)) |
| 1907 | C = CGM.getModule().getOrInsertComdat(Name: VFTableName.str()); |
| 1908 | |
| 1909 | // Only insert a pointer into the VFTable for RTTI data if we are not |
| 1910 | // importing it. We never reference the RTTI data directly so there is no |
| 1911 | // need to make room for it. |
| 1912 | if (VTableAliasIsRequred) { |
| 1913 | llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 0), |
| 1914 | llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 0), |
| 1915 | llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 1)}; |
| 1916 | // Create a GEP which points just after the first entry in the VFTable, |
| 1917 | // this should be the location of the first virtual method. |
| 1918 | llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( |
| 1919 | Ty: VTable->getValueType(), C: VTable, IdxList: GEPIndices); |
| 1920 | if (llvm::GlobalValue::isWeakForLinker(Linkage: VFTableLinkage)) { |
| 1921 | VFTableLinkage = llvm::GlobalValue::ExternalLinkage; |
| 1922 | if (C) |
| 1923 | C->setSelectionKind(llvm::Comdat::Largest); |
| 1924 | } |
| 1925 | VFTable = llvm::GlobalAlias::create(Ty: CGM.Int8PtrTy, |
| 1926 | /*AddressSpace=*/0, Linkage: VFTableLinkage, |
| 1927 | Name: VFTableName.str(), Aliasee: VTableGEP, |
| 1928 | Parent: &CGM.getModule()); |
| 1929 | VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| 1930 | } else { |
| 1931 | // We don't need a GlobalAlias to be a symbol for the VTable if we won't |
| 1932 | // be referencing any RTTI data. |
| 1933 | // The GlobalVariable will end up being an appropriate definition of the |
| 1934 | // VFTable. |
| 1935 | VFTable = VTable; |
| 1936 | } |
| 1937 | if (C) |
| 1938 | VTable->setComdat(C); |
| 1939 | |
| 1940 | if (RD->hasAttr<DLLExportAttr>()) |
| 1941 | VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); |
| 1942 | |
| 1943 | VFTablesMap[ID] = VFTable; |
| 1944 | return VTable; |
| 1945 | } |
| 1946 | |
| 1947 | CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, |
| 1948 | GlobalDecl GD, |
| 1949 | Address This, |
| 1950 | llvm::Type *Ty, |
| 1951 | SourceLocation Loc) { |
| 1952 | CGBuilderTy &Builder = CGF.Builder; |
| 1953 | |
| 1954 | Ty = CGF.UnqualPtrTy; |
| 1955 | Address VPtr = |
| 1956 | adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, VirtualCall: true); |
| 1957 | |
| 1958 | auto *MethodDecl = cast<CXXMethodDecl>(Val: GD.getDecl()); |
| 1959 | llvm::Value *VTable = |
| 1960 | CGF.GetVTablePtr(This: VPtr, VTableTy: CGF.UnqualPtrTy, VTableClass: MethodDecl->getParent()); |
| 1961 | |
| 1962 | MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); |
| 1963 | MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD); |
| 1964 | |
| 1965 | // Compute the identity of the most derived class whose virtual table is |
| 1966 | // located at the MethodVFTableLocation ML. |
| 1967 | auto getObjectWithVPtr = [&] { |
| 1968 | return llvm::find_if(Range: VFTContext.getVFPtrOffsets( |
| 1969 | RD: ML.VBase ? ML.VBase : MethodDecl->getParent()), |
| 1970 | P: [&](const std::unique_ptr<VPtrInfo> &Info) { |
| 1971 | return Info->FullOffsetInMDC == ML.VFPtrOffset; |
| 1972 | }) |
| 1973 | ->get() |
| 1974 | ->ObjectWithVPtr; |
| 1975 | }; |
| 1976 | |
| 1977 | llvm::Value *VFunc; |
| 1978 | if (CGF.ShouldEmitVTableTypeCheckedLoad(RD: MethodDecl->getParent())) { |
| 1979 | VFunc = CGF.EmitVTableTypeCheckedLoad( |
| 1980 | RD: getObjectWithVPtr(), VTable, VTableTy: Ty, |
| 1981 | VTableByteOffset: ML.Index * |
| 1982 | CGM.getContext().getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default) / |
| 1983 | 8); |
| 1984 | } else { |
| 1985 | if (CGM.getCodeGenOpts().PrepareForLTO) |
| 1986 | CGF.EmitTypeMetadataCodeForVCall(RD: getObjectWithVPtr(), VTable, Loc); |
| 1987 | |
| 1988 | llvm::Value *VFuncPtr = |
| 1989 | Builder.CreateConstInBoundsGEP1_64(Ty, Ptr: VTable, Idx0: ML.Index, Name: "vfn" ); |
| 1990 | VFunc = Builder.CreateAlignedLoad(Ty, Addr: VFuncPtr, Align: CGF.getPointerAlign()); |
| 1991 | } |
| 1992 | |
| 1993 | CGCallee Callee(GD, VFunc); |
| 1994 | return Callee; |
| 1995 | } |
| 1996 | |
| 1997 | llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( |
| 1998 | CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, |
| 1999 | Address This, DeleteOrMemberCallExpr E, llvm::CallBase **CallOrInvoke) { |
| 2000 | auto *CE = dyn_cast<const CXXMemberCallExpr *>(Val&: E); |
| 2001 | auto *D = dyn_cast<const CXXDeleteExpr *>(Val&: E); |
| 2002 | assert((CE != nullptr) ^ (D != nullptr)); |
| 2003 | assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); |
| 2004 | assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); |
| 2005 | |
| 2006 | // We have only one destructor in the vftable but can get both behaviors |
| 2007 | // by passing an implicit int parameter. |
| 2008 | GlobalDecl GD(Dtor, Dtor_Deleting); |
| 2009 | const CGFunctionInfo *FInfo = |
| 2010 | &CGM.getTypes().arrangeCXXStructorDeclaration(GD); |
| 2011 | llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(Info: *FInfo); |
| 2012 | CGCallee Callee = CGCallee::forVirtual(CE, MD: GD, Addr: This, FTy: Ty); |
| 2013 | |
| 2014 | ASTContext &Context = getContext(); |
| 2015 | llvm::Value *ImplicitParam = llvm::ConstantInt::get( |
| 2016 | Ty: llvm::IntegerType::getInt32Ty(C&: CGF.getLLVMContext()), |
| 2017 | V: DtorType == Dtor_Deleting); |
| 2018 | |
| 2019 | QualType ThisTy; |
| 2020 | if (CE) { |
| 2021 | ThisTy = CE->getObjectType(); |
| 2022 | } else { |
| 2023 | ThisTy = D->getDestroyedType(); |
| 2024 | } |
| 2025 | |
| 2026 | This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, VirtualCall: true); |
| 2027 | RValue RV = |
| 2028 | CGF.EmitCXXDestructorCall(Dtor: GD, Callee, This: This.emitRawPointer(CGF), ThisTy, |
| 2029 | ImplicitParam, ImplicitParamTy: Context.IntTy, E: CE, CallOrInvoke); |
| 2030 | return RV.getScalarVal(); |
| 2031 | } |
| 2032 | |
| 2033 | const VBTableGlobals & |
| 2034 | MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { |
| 2035 | // At this layer, we can key the cache off of a single class, which is much |
| 2036 | // easier than caching each vbtable individually. |
| 2037 | auto [Entry, Added] = VBTablesMap.try_emplace(Key: RD); |
| 2038 | VBTableGlobals &VBGlobals = Entry->second; |
| 2039 | if (!Added) |
| 2040 | return VBGlobals; |
| 2041 | |
| 2042 | MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); |
| 2043 | VBGlobals.VBTables = &Context.enumerateVBTables(RD); |
| 2044 | |
| 2045 | // Cache the globals for all vbtables so we don't have to recompute the |
| 2046 | // mangled names. |
| 2047 | llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); |
| 2048 | for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), |
| 2049 | E = VBGlobals.VBTables->end(); |
| 2050 | I != E; ++I) { |
| 2051 | VBGlobals.Globals.push_back(Elt: getAddrOfVBTable(VBT: **I, RD, Linkage)); |
| 2052 | } |
| 2053 | |
| 2054 | return VBGlobals; |
| 2055 | } |
| 2056 | |
| 2057 | llvm::Function * |
| 2058 | MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, |
| 2059 | const MethodVFTableLocation &ML) { |
| 2060 | assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) && |
| 2061 | "can't form pointers to ctors or virtual dtors" ); |
| 2062 | |
| 2063 | // Calculate the mangled name. |
| 2064 | SmallString<256> ThunkName; |
| 2065 | llvm::raw_svector_ostream Out(ThunkName); |
| 2066 | getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out); |
| 2067 | |
| 2068 | // If the thunk has been generated previously, just return it. |
| 2069 | if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(Name: ThunkName)) |
| 2070 | return cast<llvm::Function>(Val: GV); |
| 2071 | |
| 2072 | // Create the llvm::Function. |
| 2073 | const CGFunctionInfo &FnInfo = |
| 2074 | CGM.getTypes().arrangeUnprototypedMustTailThunk(MD); |
| 2075 | llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(Info: FnInfo); |
| 2076 | llvm::Function *ThunkFn = |
| 2077 | llvm::Function::Create(Ty: ThunkTy, Linkage: llvm::Function::ExternalLinkage, |
| 2078 | N: ThunkName.str(), M: &CGM.getModule()); |
| 2079 | assert(ThunkFn->getName() == ThunkName && "name was uniqued!" ); |
| 2080 | |
| 2081 | ThunkFn->setLinkage(MD->isExternallyVisible() |
| 2082 | ? llvm::GlobalValue::LinkOnceODRLinkage |
| 2083 | : llvm::GlobalValue::InternalLinkage); |
| 2084 | if (MD->isExternallyVisible()) |
| 2085 | ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(Name: ThunkFn->getName())); |
| 2086 | |
| 2087 | CGM.SetLLVMFunctionAttributes(GD: MD, Info: FnInfo, F: ThunkFn, /*IsThunk=*/false); |
| 2088 | CGM.SetLLVMFunctionAttributesForDefinition(D: MD, F: ThunkFn); |
| 2089 | |
| 2090 | // Add the "thunk" attribute so that LLVM knows that the return type is |
| 2091 | // meaningless. These thunks can be used to call functions with differing |
| 2092 | // return types, and the caller is required to cast the prototype |
| 2093 | // appropriately to extract the correct value. |
| 2094 | ThunkFn->addFnAttr(Kind: "thunk" ); |
| 2095 | |
| 2096 | // These thunks can be compared, so they are not unnamed. |
| 2097 | ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); |
| 2098 | |
| 2099 | // Start codegen. |
| 2100 | CodeGenFunction CGF(CGM); |
| 2101 | CGF.CurGD = GlobalDecl(MD); |
| 2102 | CGF.CurFuncIsThunk = true; |
| 2103 | |
| 2104 | // Build FunctionArgs, but only include the implicit 'this' parameter |
| 2105 | // declaration. |
| 2106 | FunctionArgList FunctionArgs; |
| 2107 | buildThisParam(CGF, Params&: FunctionArgs); |
| 2108 | |
| 2109 | // Start defining the function. |
| 2110 | CGF.StartFunction(GD: GlobalDecl(), RetTy: FnInfo.getReturnType(), Fn: ThunkFn, FnInfo, |
| 2111 | Args: FunctionArgs, Loc: MD->getLocation(), StartLoc: SourceLocation()); |
| 2112 | |
| 2113 | ApplyDebugLocation AL(CGF, MD->getLocation()); |
| 2114 | setCXXABIThisValue(CGF, ThisPtr: loadIncomingCXXThis(CGF)); |
| 2115 | |
| 2116 | // Load the vfptr and then callee from the vftable. The callee should have |
| 2117 | // adjusted 'this' so that the vfptr is at offset zero. |
| 2118 | llvm::Type *ThunkPtrTy = CGF.UnqualPtrTy; |
| 2119 | llvm::Value *VTable = |
| 2120 | CGF.GetVTablePtr(This: getThisAddress(CGF), VTableTy: CGF.UnqualPtrTy, VTableClass: MD->getParent()); |
| 2121 | |
| 2122 | llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64( |
| 2123 | Ty: ThunkPtrTy, Ptr: VTable, Idx0: ML.Index, Name: "vfn" ); |
| 2124 | llvm::Value *Callee = |
| 2125 | CGF.Builder.CreateAlignedLoad(Ty: ThunkPtrTy, Addr: VFuncPtr, Align: CGF.getPointerAlign()); |
| 2126 | |
| 2127 | CGF.EmitMustTailThunk(GD: MD, AdjustedThisPtr: getThisValue(CGF), Callee: {ThunkTy, Callee}); |
| 2128 | |
| 2129 | return ThunkFn; |
| 2130 | } |
| 2131 | |
| 2132 | void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { |
| 2133 | const VBTableGlobals &VBGlobals = enumerateVBTables(RD); |
| 2134 | for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { |
| 2135 | const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I]; |
| 2136 | llvm::GlobalVariable *GV = VBGlobals.Globals[I]; |
| 2137 | if (GV->isDeclaration()) |
| 2138 | emitVBTableDefinition(VBT: *VBT, RD, GV); |
| 2139 | } |
| 2140 | } |
| 2141 | |
| 2142 | llvm::GlobalVariable * |
| 2143 | MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, |
| 2144 | llvm::GlobalVariable::LinkageTypes Linkage) { |
| 2145 | SmallString<256> OutName; |
| 2146 | llvm::raw_svector_ostream Out(OutName); |
| 2147 | getMangleContext().mangleCXXVBTable(Derived: RD, BasePath: VBT.MangledPath, Out); |
| 2148 | StringRef Name = OutName.str(); |
| 2149 | |
| 2150 | llvm::ArrayType *VBTableType = |
| 2151 | llvm::ArrayType::get(ElementType: CGM.IntTy, NumElements: 1 + VBT.ObjectWithVPtr->getNumVBases()); |
| 2152 | |
| 2153 | assert(!CGM.getModule().getNamedGlobal(Name) && |
| 2154 | "vbtable with this name already exists: mangling bug?" ); |
| 2155 | CharUnits Alignment = |
| 2156 | CGM.getContext().getTypeAlignInChars(T: CGM.getContext().IntTy); |
| 2157 | llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( |
| 2158 | Name, Ty: VBTableType, Linkage, Alignment: Alignment.getAsAlign()); |
| 2159 | GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| 2160 | |
| 2161 | if (RD->hasAttr<DLLImportAttr>()) |
| 2162 | GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); |
| 2163 | else if (RD->hasAttr<DLLExportAttr>()) |
| 2164 | GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); |
| 2165 | |
| 2166 | if (!GV->hasExternalLinkage()) |
| 2167 | emitVBTableDefinition(VBT, RD, GV); |
| 2168 | |
| 2169 | return GV; |
| 2170 | } |
| 2171 | |
| 2172 | void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, |
| 2173 | const CXXRecordDecl *RD, |
| 2174 | llvm::GlobalVariable *GV) const { |
| 2175 | const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr; |
| 2176 | |
| 2177 | assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() && |
| 2178 | "should only emit vbtables for classes with vbtables" ); |
| 2179 | |
| 2180 | const ASTRecordLayout &BaseLayout = |
| 2181 | getContext().getASTRecordLayout(D: VBT.IntroducingObject); |
| 2182 | const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(D: RD); |
| 2183 | |
| 2184 | SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(), |
| 2185 | nullptr); |
| 2186 | |
| 2187 | // The offset from ObjectWithVPtr's vbptr to itself always leads. |
| 2188 | CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); |
| 2189 | Offsets[0] = llvm::ConstantInt::get(Ty: CGM.IntTy, V: -VBPtrOffset.getQuantity()); |
| 2190 | |
| 2191 | MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); |
| 2192 | for (const auto &I : ObjectWithVPtr->vbases()) { |
| 2193 | const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); |
| 2194 | CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); |
| 2195 | assert(!Offset.isNegative()); |
| 2196 | |
| 2197 | // Make it relative to the subobject vbptr. |
| 2198 | CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; |
| 2199 | if (VBT.getVBaseWithVPtr()) |
| 2200 | CompleteVBPtrOffset += |
| 2201 | DerivedLayout.getVBaseClassOffset(VBase: VBT.getVBaseWithVPtr()); |
| 2202 | Offset -= CompleteVBPtrOffset; |
| 2203 | |
| 2204 | unsigned VBIndex = Context.getVBTableIndex(Derived: ObjectWithVPtr, VBase); |
| 2205 | assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?" ); |
| 2206 | Offsets[VBIndex] = llvm::ConstantInt::get(Ty: CGM.IntTy, V: Offset.getQuantity()); |
| 2207 | } |
| 2208 | |
| 2209 | assert(Offsets.size() == |
| 2210 | cast<llvm::ArrayType>(GV->getValueType())->getNumElements()); |
| 2211 | llvm::ArrayType *VBTableType = |
| 2212 | llvm::ArrayType::get(ElementType: CGM.IntTy, NumElements: Offsets.size()); |
| 2213 | llvm::Constant *Init = llvm::ConstantArray::get(T: VBTableType, V: Offsets); |
| 2214 | GV->setInitializer(Init); |
| 2215 | |
| 2216 | if (RD->hasAttr<DLLImportAttr>()) |
| 2217 | GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage); |
| 2218 | } |
| 2219 | |
| 2220 | llvm::Value *MicrosoftCXXABI::performThisAdjustment( |
| 2221 | CodeGenFunction &CGF, Address This, |
| 2222 | const CXXRecordDecl * /*UnadjustedClass*/, const ThunkInfo &TI) { |
| 2223 | const ThisAdjustment &TA = TI.This; |
| 2224 | if (TA.isEmpty()) |
| 2225 | return This.emitRawPointer(CGF); |
| 2226 | |
| 2227 | This = This.withElementType(ElemTy: CGF.Int8Ty); |
| 2228 | |
| 2229 | llvm::Value *V; |
| 2230 | if (TA.Virtual.isEmpty()) { |
| 2231 | V = This.emitRawPointer(CGF); |
| 2232 | } else { |
| 2233 | assert(TA.Virtual.Microsoft.VtordispOffset < 0); |
| 2234 | // Adjust the this argument based on the vtordisp value. |
| 2235 | Address VtorDispPtr = |
| 2236 | CGF.Builder.CreateConstInBoundsByteGEP(Addr: This, |
| 2237 | Offset: CharUnits::fromQuantity(Quantity: TA.Virtual.Microsoft.VtordispOffset)); |
| 2238 | VtorDispPtr = VtorDispPtr.withElementType(ElemTy: CGF.Int32Ty); |
| 2239 | llvm::Value *VtorDisp = CGF.Builder.CreateLoad(Addr: VtorDispPtr, Name: "vtordisp" ); |
| 2240 | V = CGF.Builder.CreateGEP(Ty: This.getElementType(), Ptr: This.emitRawPointer(CGF), |
| 2241 | IdxList: CGF.Builder.CreateNeg(V: VtorDisp)); |
| 2242 | |
| 2243 | // Unfortunately, having applied the vtordisp means that we no |
| 2244 | // longer really have a known alignment for the vbptr step. |
| 2245 | // We'll assume the vbptr is pointer-aligned. |
| 2246 | |
| 2247 | if (TA.Virtual.Microsoft.VBPtrOffset) { |
| 2248 | // If the final overrider is defined in a virtual base other than the one |
| 2249 | // that holds the vfptr, we have to use a vtordispex thunk which looks up |
| 2250 | // the vbtable of the derived class. |
| 2251 | assert(TA.Virtual.Microsoft.VBPtrOffset > 0); |
| 2252 | assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); |
| 2253 | llvm::Value *VBPtr; |
| 2254 | llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr( |
| 2255 | CGF, Base: Address(V, CGF.Int8Ty, CGF.getPointerAlign()), |
| 2256 | VBPtrOffset: -TA.Virtual.Microsoft.VBPtrOffset, |
| 2257 | VBTableOffset: TA.Virtual.Microsoft.VBOffsetOffset, VBPtr: &VBPtr); |
| 2258 | V = CGF.Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: VBPtr, IdxList: VBaseOffset); |
| 2259 | } |
| 2260 | } |
| 2261 | |
| 2262 | if (TA.NonVirtual) { |
| 2263 | // Non-virtual adjustment might result in a pointer outside the allocated |
| 2264 | // object, e.g. if the final overrider class is laid out after the virtual |
| 2265 | // base that declares a method in the most derived class. |
| 2266 | V = CGF.Builder.CreateConstGEP1_32(Ty: CGF.Int8Ty, Ptr: V, Idx0: TA.NonVirtual); |
| 2267 | } |
| 2268 | |
| 2269 | // Don't need to bitcast back, the call CodeGen will handle this. |
| 2270 | return V; |
| 2271 | } |
| 2272 | |
| 2273 | llvm::Value *MicrosoftCXXABI::performReturnAdjustment( |
| 2274 | CodeGenFunction &CGF, Address Ret, |
| 2275 | const CXXRecordDecl * /*UnadjustedClass*/, const ReturnAdjustment &RA) { |
| 2276 | |
| 2277 | if (RA.isEmpty()) |
| 2278 | return Ret.emitRawPointer(CGF); |
| 2279 | |
| 2280 | Ret = Ret.withElementType(ElemTy: CGF.Int8Ty); |
| 2281 | |
| 2282 | llvm::Value *V = Ret.emitRawPointer(CGF); |
| 2283 | if (RA.Virtual.Microsoft.VBIndex) { |
| 2284 | assert(RA.Virtual.Microsoft.VBIndex > 0); |
| 2285 | int32_t IntSize = CGF.getIntSize().getQuantity(); |
| 2286 | llvm::Value *VBPtr; |
| 2287 | llvm::Value *VBaseOffset = |
| 2288 | GetVBaseOffsetFromVBPtr(CGF, Base: Ret, VBPtrOffset: RA.Virtual.Microsoft.VBPtrOffset, |
| 2289 | VBTableOffset: IntSize * RA.Virtual.Microsoft.VBIndex, VBPtr: &VBPtr); |
| 2290 | V = CGF.Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: VBPtr, IdxList: VBaseOffset); |
| 2291 | } |
| 2292 | |
| 2293 | if (RA.NonVirtual) |
| 2294 | V = CGF.Builder.CreateConstInBoundsGEP1_32(Ty: CGF.Int8Ty, Ptr: V, Idx0: RA.NonVirtual); |
| 2295 | |
| 2296 | return V; |
| 2297 | } |
| 2298 | |
| 2299 | bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, |
| 2300 | QualType elementType) { |
| 2301 | // Microsoft seems to completely ignore the possibility of a |
| 2302 | // two-argument usual deallocation function. |
| 2303 | return elementType.isDestructedType(); |
| 2304 | } |
| 2305 | |
| 2306 | bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { |
| 2307 | // Microsoft seems to completely ignore the possibility of a |
| 2308 | // two-argument usual deallocation function. |
| 2309 | return expr->getAllocatedType().isDestructedType(); |
| 2310 | } |
| 2311 | |
| 2312 | CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { |
| 2313 | // The array cookie is always a size_t; we then pad that out to the |
| 2314 | // alignment of the element type. |
| 2315 | ASTContext &Ctx = getContext(); |
| 2316 | return std::max(a: Ctx.getTypeSizeInChars(T: Ctx.getSizeType()), |
| 2317 | b: Ctx.getTypeAlignInChars(T: type)); |
| 2318 | } |
| 2319 | |
| 2320 | llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, |
| 2321 | Address allocPtr, |
| 2322 | CharUnits cookieSize) { |
| 2323 | Address numElementsPtr = allocPtr.withElementType(ElemTy: CGF.SizeTy); |
| 2324 | return CGF.Builder.CreateLoad(Addr: numElementsPtr); |
| 2325 | } |
| 2326 | |
| 2327 | Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, |
| 2328 | Address newPtr, |
| 2329 | llvm::Value *numElements, |
| 2330 | const CXXNewExpr *expr, |
| 2331 | QualType elementType) { |
| 2332 | assert(requiresArrayCookie(expr)); |
| 2333 | |
| 2334 | // The size of the cookie. |
| 2335 | CharUnits cookieSize = getArrayCookieSizeImpl(type: elementType); |
| 2336 | |
| 2337 | // Compute an offset to the cookie. |
| 2338 | Address cookiePtr = newPtr; |
| 2339 | |
| 2340 | // Write the number of elements into the appropriate slot. |
| 2341 | Address numElementsPtr = cookiePtr.withElementType(ElemTy: CGF.SizeTy); |
| 2342 | CGF.Builder.CreateStore(Val: numElements, Addr: numElementsPtr); |
| 2343 | |
| 2344 | // Finally, compute a pointer to the actual data buffer by skipping |
| 2345 | // over the cookie completely. |
| 2346 | return CGF.Builder.CreateConstInBoundsByteGEP(Addr: newPtr, Offset: cookieSize); |
| 2347 | } |
| 2348 | |
| 2349 | static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, |
| 2350 | llvm::FunctionCallee Dtor, |
| 2351 | llvm::Constant *Addr) { |
| 2352 | // Create a function which calls the destructor. |
| 2353 | llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); |
| 2354 | |
| 2355 | // extern "C" int __tlregdtor(void (*f)(void)); |
| 2356 | llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( |
| 2357 | Result: CGF.IntTy, Params: DtorStub->getType(), /*isVarArg=*/false); |
| 2358 | |
| 2359 | llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction( |
| 2360 | Ty: TLRegDtorTy, Name: "__tlregdtor" , ExtraAttrs: llvm::AttributeList(), /*Local=*/true); |
| 2361 | if (llvm::Function *TLRegDtorFn = |
| 2362 | dyn_cast<llvm::Function>(Val: TLRegDtor.getCallee())) |
| 2363 | TLRegDtorFn->setDoesNotThrow(); |
| 2364 | |
| 2365 | CGF.EmitNounwindRuntimeCall(callee: TLRegDtor, args: DtorStub); |
| 2366 | } |
| 2367 | |
| 2368 | void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
| 2369 | llvm::FunctionCallee Dtor, |
| 2370 | llvm::Constant *Addr) { |
| 2371 | if (D.isNoDestroy(CGM.getContext())) |
| 2372 | return; |
| 2373 | |
| 2374 | if (D.getTLSKind()) |
| 2375 | return emitGlobalDtorWithTLRegDtor(CGF, VD: D, Dtor, Addr); |
| 2376 | |
| 2377 | // HLSL doesn't support atexit. |
| 2378 | if (CGM.getLangOpts().HLSL) |
| 2379 | return CGM.AddCXXDtorEntry(DtorFn: Dtor, Object: Addr); |
| 2380 | |
| 2381 | // The default behavior is to use atexit. |
| 2382 | CGF.registerGlobalDtorWithAtExit(D, fn: Dtor, addr: Addr); |
| 2383 | } |
| 2384 | |
| 2385 | void MicrosoftCXXABI::EmitThreadLocalInitFuncs( |
| 2386 | CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, |
| 2387 | ArrayRef<llvm::Function *> CXXThreadLocalInits, |
| 2388 | ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { |
| 2389 | if (CXXThreadLocalInits.empty()) |
| 2390 | return; |
| 2391 | |
| 2392 | CGM.AppendLinkerOptions(Opts: CGM.getTarget().getTriple().getArch() == |
| 2393 | llvm::Triple::x86 |
| 2394 | ? "/include:___dyn_tls_init@12" |
| 2395 | : "/include:__dyn_tls_init" ); |
| 2396 | |
| 2397 | // This will create a GV in the .CRT$XDU section. It will point to our |
| 2398 | // initialization function. The CRT will call all of these function |
| 2399 | // pointers at start-up time and, eventually, at thread-creation time. |
| 2400 | auto AddToXDU = [&CGM](llvm::Function *InitFunc) { |
| 2401 | llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( |
| 2402 | CGM.getModule(), InitFunc->getType(), /*isConstant=*/true, |
| 2403 | llvm::GlobalVariable::InternalLinkage, InitFunc, |
| 2404 | Twine(InitFunc->getName(), "$initializer$" )); |
| 2405 | InitFuncPtr->setSection(".CRT$XDU" ); |
| 2406 | // This variable has discardable linkage, we have to add it to @llvm.used to |
| 2407 | // ensure it won't get discarded. |
| 2408 | CGM.addUsedGlobal(GV: InitFuncPtr); |
| 2409 | return InitFuncPtr; |
| 2410 | }; |
| 2411 | |
| 2412 | std::vector<llvm::Function *> NonComdatInits; |
| 2413 | for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { |
| 2414 | llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>( |
| 2415 | Val: CGM.GetGlobalValue(Ref: CGM.getMangledName(GD: CXXThreadLocalInitVars[I]))); |
| 2416 | llvm::Function *F = CXXThreadLocalInits[I]; |
| 2417 | |
| 2418 | // If the GV is already in a comdat group, then we have to join it. |
| 2419 | if (llvm::Comdat *C = GV->getComdat()) |
| 2420 | AddToXDU(F)->setComdat(C); |
| 2421 | else |
| 2422 | NonComdatInits.push_back(x: F); |
| 2423 | } |
| 2424 | |
| 2425 | if (!NonComdatInits.empty()) { |
| 2426 | llvm::FunctionType *FTy = |
| 2427 | llvm::FunctionType::get(Result: CGM.VoidTy, /*isVarArg=*/false); |
| 2428 | llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction( |
| 2429 | ty: FTy, name: "__tls_init" , FI: CGM.getTypes().arrangeNullaryFunction(), |
| 2430 | Loc: SourceLocation(), /*TLS=*/true); |
| 2431 | CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(Fn: InitFunc, CXXThreadLocals: NonComdatInits); |
| 2432 | |
| 2433 | AddToXDU(InitFunc); |
| 2434 | } |
| 2435 | } |
| 2436 | |
| 2437 | static llvm::GlobalValue *getTlsGuardVar(CodeGenModule &CGM) { |
| 2438 | // __tls_guard comes from the MSVC runtime and reflects |
| 2439 | // whether TLS has been initialized for a particular thread. |
| 2440 | // It is set from within __dyn_tls_init by the runtime. |
| 2441 | // Every library and executable has its own variable. |
| 2442 | llvm::Type *VTy = llvm::Type::getInt8Ty(C&: CGM.getLLVMContext()); |
| 2443 | llvm::Constant *TlsGuardConstant = |
| 2444 | CGM.CreateRuntimeVariable(Ty: VTy, Name: "__tls_guard" ); |
| 2445 | llvm::GlobalValue *TlsGuard = cast<llvm::GlobalValue>(Val: TlsGuardConstant); |
| 2446 | |
| 2447 | TlsGuard->setThreadLocal(true); |
| 2448 | |
| 2449 | return TlsGuard; |
| 2450 | } |
| 2451 | |
| 2452 | static llvm::FunctionCallee getDynTlsOnDemandInitFn(CodeGenModule &CGM) { |
| 2453 | // __dyn_tls_on_demand_init comes from the MSVC runtime and triggers |
| 2454 | // dynamic TLS initialization by calling __dyn_tls_init internally. |
| 2455 | llvm::FunctionType *FTy = |
| 2456 | llvm::FunctionType::get(Result: llvm::Type::getVoidTy(C&: CGM.getLLVMContext()), Params: {}, |
| 2457 | /*isVarArg=*/false); |
| 2458 | return CGM.CreateRuntimeFunction( |
| 2459 | Ty: FTy, Name: "__dyn_tls_on_demand_init" , |
| 2460 | ExtraAttrs: llvm::AttributeList::get(C&: CGM.getLLVMContext(), |
| 2461 | Index: llvm::AttributeList::FunctionIndex, |
| 2462 | Kinds: llvm::Attribute::NoUnwind), |
| 2463 | /*Local=*/true); |
| 2464 | } |
| 2465 | |
| 2466 | static void emitTlsGuardCheck(CodeGenFunction &CGF, llvm::GlobalValue *TlsGuard, |
| 2467 | llvm::BasicBlock *DynInitBB, |
| 2468 | llvm::BasicBlock *ContinueBB) { |
| 2469 | llvm::LoadInst *TlsGuardValue = |
| 2470 | CGF.Builder.CreateLoad(Addr: Address(TlsGuard, CGF.Int8Ty, CharUnits::One())); |
| 2471 | llvm::Value *CmpResult = |
| 2472 | CGF.Builder.CreateICmpEQ(LHS: TlsGuardValue, RHS: CGF.Builder.getInt8(C: 0)); |
| 2473 | CGF.Builder.CreateCondBr(Cond: CmpResult, True: DynInitBB, False: ContinueBB); |
| 2474 | } |
| 2475 | |
| 2476 | static void emitDynamicTlsInitializationCall(CodeGenFunction &CGF, |
| 2477 | llvm::GlobalValue *TlsGuard, |
| 2478 | llvm::BasicBlock *ContinueBB) { |
| 2479 | llvm::FunctionCallee Initializer = getDynTlsOnDemandInitFn(CGM&: CGF.CGM); |
| 2480 | llvm::Function *InitializerFunction = |
| 2481 | cast<llvm::Function>(Val: Initializer.getCallee()); |
| 2482 | llvm::CallInst *CallVal = CGF.Builder.CreateCall(Callee: InitializerFunction); |
| 2483 | CallVal->setCallingConv(InitializerFunction->getCallingConv()); |
| 2484 | |
| 2485 | CGF.Builder.CreateBr(Dest: ContinueBB); |
| 2486 | } |
| 2487 | |
| 2488 | static void emitDynamicTlsInitialization(CodeGenFunction &CGF) { |
| 2489 | llvm::BasicBlock *DynInitBB = |
| 2490 | CGF.createBasicBlock(name: "dyntls.dyn_init" , parent: CGF.CurFn); |
| 2491 | llvm::BasicBlock *ContinueBB = |
| 2492 | CGF.createBasicBlock(name: "dyntls.continue" , parent: CGF.CurFn); |
| 2493 | |
| 2494 | llvm::GlobalValue *TlsGuard = getTlsGuardVar(CGM&: CGF.CGM); |
| 2495 | |
| 2496 | emitTlsGuardCheck(CGF, TlsGuard, DynInitBB, ContinueBB); |
| 2497 | CGF.Builder.SetInsertPoint(DynInitBB); |
| 2498 | emitDynamicTlsInitializationCall(CGF, TlsGuard, ContinueBB); |
| 2499 | CGF.Builder.SetInsertPoint(ContinueBB); |
| 2500 | } |
| 2501 | |
| 2502 | LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, |
| 2503 | const VarDecl *VD, |
| 2504 | QualType LValType) { |
| 2505 | // Dynamic TLS initialization works by checking the state of a |
| 2506 | // guard variable (__tls_guard) to see whether TLS initialization |
| 2507 | // for a thread has happend yet. |
| 2508 | // If not, the initialization is triggered on-demand |
| 2509 | // by calling __dyn_tls_on_demand_init. |
| 2510 | emitDynamicTlsInitialization(CGF); |
| 2511 | |
| 2512 | // Emit the variable just like any regular global variable. |
| 2513 | |
| 2514 | llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(D: VD); |
| 2515 | llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(T: VD->getType()); |
| 2516 | |
| 2517 | CharUnits Alignment = CGF.getContext().getDeclAlign(D: VD); |
| 2518 | Address Addr(V, RealVarTy, Alignment); |
| 2519 | |
| 2520 | LValue LV = VD->getType()->isReferenceType() |
| 2521 | ? CGF.EmitLoadOfReferenceLValue(RefAddr: Addr, RefTy: VD->getType(), |
| 2522 | Source: AlignmentSource::Decl) |
| 2523 | : CGF.MakeAddrLValue(Addr, T: LValType, Source: AlignmentSource::Decl); |
| 2524 | return LV; |
| 2525 | } |
| 2526 | |
| 2527 | static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { |
| 2528 | StringRef VarName("_Init_thread_epoch" ); |
| 2529 | CharUnits Align = CGM.getIntAlign(); |
| 2530 | if (auto *GV = CGM.getModule().getNamedGlobal(Name: VarName)) |
| 2531 | return ConstantAddress(GV, GV->getValueType(), Align); |
| 2532 | auto *GV = new llvm::GlobalVariable( |
| 2533 | CGM.getModule(), CGM.IntTy, |
| 2534 | /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage, |
| 2535 | /*Initializer=*/nullptr, VarName, |
| 2536 | /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); |
| 2537 | GV->setAlignment(Align.getAsAlign()); |
| 2538 | return ConstantAddress(GV, GV->getValueType(), Align); |
| 2539 | } |
| 2540 | |
| 2541 | static llvm::FunctionCallee (CodeGenModule &CGM) { |
| 2542 | llvm::FunctionType *FTy = |
| 2543 | llvm::FunctionType::get(Result: llvm::Type::getVoidTy(C&: CGM.getLLVMContext()), |
| 2544 | Params: CGM.UnqualPtrTy, /*isVarArg=*/false); |
| 2545 | return CGM.CreateRuntimeFunction( |
| 2546 | Ty: FTy, Name: "_Init_thread_header" , |
| 2547 | ExtraAttrs: llvm::AttributeList::get(C&: CGM.getLLVMContext(), |
| 2548 | Index: llvm::AttributeList::FunctionIndex, |
| 2549 | Kinds: llvm::Attribute::NoUnwind), |
| 2550 | /*Local=*/true); |
| 2551 | } |
| 2552 | |
| 2553 | static llvm::FunctionCallee (CodeGenModule &CGM) { |
| 2554 | llvm::FunctionType *FTy = |
| 2555 | llvm::FunctionType::get(Result: llvm::Type::getVoidTy(C&: CGM.getLLVMContext()), |
| 2556 | Params: CGM.UnqualPtrTy, /*isVarArg=*/false); |
| 2557 | return CGM.CreateRuntimeFunction( |
| 2558 | Ty: FTy, Name: "_Init_thread_footer" , |
| 2559 | ExtraAttrs: llvm::AttributeList::get(C&: CGM.getLLVMContext(), |
| 2560 | Index: llvm::AttributeList::FunctionIndex, |
| 2561 | Kinds: llvm::Attribute::NoUnwind), |
| 2562 | /*Local=*/true); |
| 2563 | } |
| 2564 | |
| 2565 | static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) { |
| 2566 | llvm::FunctionType *FTy = |
| 2567 | llvm::FunctionType::get(Result: llvm::Type::getVoidTy(C&: CGM.getLLVMContext()), |
| 2568 | Params: CGM.UnqualPtrTy, /*isVarArg=*/false); |
| 2569 | return CGM.CreateRuntimeFunction( |
| 2570 | Ty: FTy, Name: "_Init_thread_abort" , |
| 2571 | ExtraAttrs: llvm::AttributeList::get(C&: CGM.getLLVMContext(), |
| 2572 | Index: llvm::AttributeList::FunctionIndex, |
| 2573 | Kinds: llvm::Attribute::NoUnwind), |
| 2574 | /*Local=*/true); |
| 2575 | } |
| 2576 | |
| 2577 | namespace { |
| 2578 | struct ResetGuardBit final : EHScopeStack::Cleanup { |
| 2579 | Address Guard; |
| 2580 | unsigned GuardNum; |
| 2581 | ResetGuardBit(Address Guard, unsigned GuardNum) |
| 2582 | : Guard(Guard), GuardNum(GuardNum) {} |
| 2583 | |
| 2584 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
| 2585 | // Reset the bit in the mask so that the static variable may be |
| 2586 | // reinitialized. |
| 2587 | CGBuilderTy &Builder = CGF.Builder; |
| 2588 | llvm::LoadInst *LI = Builder.CreateLoad(Addr: Guard); |
| 2589 | llvm::ConstantInt *Mask = |
| 2590 | llvm::ConstantInt::get(Ty: CGF.IntTy, V: ~(1ULL << GuardNum)); |
| 2591 | Builder.CreateStore(Val: Builder.CreateAnd(LHS: LI, RHS: Mask), Addr: Guard); |
| 2592 | } |
| 2593 | }; |
| 2594 | |
| 2595 | struct CallInitThreadAbort final : EHScopeStack::Cleanup { |
| 2596 | llvm::Value *Guard; |
| 2597 | CallInitThreadAbort(RawAddress Guard) : Guard(Guard.getPointer()) {} |
| 2598 | |
| 2599 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
| 2600 | // Calling _Init_thread_abort will reset the guard's state. |
| 2601 | CGF.EmitNounwindRuntimeCall(callee: getInitThreadAbortFn(CGM&: CGF.CGM), args: Guard); |
| 2602 | } |
| 2603 | }; |
| 2604 | } |
| 2605 | |
| 2606 | void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, |
| 2607 | llvm::GlobalVariable *GV, |
| 2608 | bool PerformInit) { |
| 2609 | // MSVC only uses guards for static locals. |
| 2610 | if (!D.isStaticLocal()) { |
| 2611 | assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); |
| 2612 | // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. |
| 2613 | llvm::Function *F = CGF.CurFn; |
| 2614 | F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); |
| 2615 | F->setComdat(CGM.getModule().getOrInsertComdat(Name: F->getName())); |
| 2616 | CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); |
| 2617 | return; |
| 2618 | } |
| 2619 | |
| 2620 | bool ThreadlocalStatic = D.getTLSKind(); |
| 2621 | bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; |
| 2622 | |
| 2623 | // Thread-safe static variables which aren't thread-specific have a |
| 2624 | // per-variable guard. |
| 2625 | bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; |
| 2626 | |
| 2627 | CGBuilderTy &Builder = CGF.Builder; |
| 2628 | llvm::IntegerType *GuardTy = CGF.Int32Ty; |
| 2629 | llvm::ConstantInt *Zero = llvm::ConstantInt::get(Ty: GuardTy, V: 0); |
| 2630 | CharUnits GuardAlign = CharUnits::fromQuantity(Quantity: 4); |
| 2631 | |
| 2632 | // Get the guard variable for this function if we have one already. |
| 2633 | GuardInfo *GI = nullptr; |
| 2634 | if (ThreadlocalStatic) |
| 2635 | GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; |
| 2636 | else if (!ThreadsafeStatic) |
| 2637 | GI = &GuardVariableMap[D.getDeclContext()]; |
| 2638 | |
| 2639 | llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; |
| 2640 | unsigned GuardNum; |
| 2641 | if (D.isExternallyVisible()) { |
| 2642 | // Externally visible variables have to be numbered in Sema to properly |
| 2643 | // handle unreachable VarDecls. |
| 2644 | GuardNum = getContext().getStaticLocalNumber(VD: &D); |
| 2645 | assert(GuardNum > 0); |
| 2646 | GuardNum--; |
| 2647 | } else if (HasPerVariableGuard) { |
| 2648 | GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; |
| 2649 | } else { |
| 2650 | // Non-externally visible variables are numbered here in CodeGen. |
| 2651 | GuardNum = GI->BitIndex++; |
| 2652 | } |
| 2653 | |
| 2654 | if (!HasPerVariableGuard && GuardNum >= 32) { |
| 2655 | if (D.isExternallyVisible()) |
| 2656 | ErrorUnsupportedABI(CGF, S: "more than 32 guarded initializations" ); |
| 2657 | GuardNum %= 32; |
| 2658 | GuardVar = nullptr; |
| 2659 | } |
| 2660 | |
| 2661 | if (!GuardVar) { |
| 2662 | // Mangle the name for the guard. |
| 2663 | SmallString<256> GuardName; |
| 2664 | { |
| 2665 | llvm::raw_svector_ostream Out(GuardName); |
| 2666 | if (HasPerVariableGuard) |
| 2667 | getMangleContext().mangleThreadSafeStaticGuardVariable(VD: &D, GuardNum, |
| 2668 | Out); |
| 2669 | else |
| 2670 | getMangleContext().mangleStaticGuardVariable(D: &D, Out); |
| 2671 | } |
| 2672 | |
| 2673 | // Create the guard variable with a zero-initializer. Just absorb linkage, |
| 2674 | // visibility and dll storage class from the guarded variable. |
| 2675 | GuardVar = |
| 2676 | new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, |
| 2677 | GV->getLinkage(), Zero, GuardName.str()); |
| 2678 | GuardVar->setVisibility(GV->getVisibility()); |
| 2679 | GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); |
| 2680 | GuardVar->setAlignment(GuardAlign.getAsAlign()); |
| 2681 | if (GuardVar->isWeakForLinker()) |
| 2682 | GuardVar->setComdat( |
| 2683 | CGM.getModule().getOrInsertComdat(Name: GuardVar->getName())); |
| 2684 | if (D.getTLSKind()) |
| 2685 | CGM.setTLSMode(GV: GuardVar, D); |
| 2686 | if (GI && !HasPerVariableGuard) |
| 2687 | GI->Guard = GuardVar; |
| 2688 | } |
| 2689 | |
| 2690 | ConstantAddress GuardAddr(GuardVar, GuardTy, GuardAlign); |
| 2691 | |
| 2692 | assert(GuardVar->getLinkage() == GV->getLinkage() && |
| 2693 | "static local from the same function had different linkage" ); |
| 2694 | |
| 2695 | if (!HasPerVariableGuard) { |
| 2696 | // Pseudo code for the test: |
| 2697 | // if (!(GuardVar & MyGuardBit)) { |
| 2698 | // GuardVar |= MyGuardBit; |
| 2699 | // ... initialize the object ...; |
| 2700 | // } |
| 2701 | |
| 2702 | // Test our bit from the guard variable. |
| 2703 | llvm::ConstantInt *Bit = llvm::ConstantInt::get(Ty: GuardTy, V: 1ULL << GuardNum); |
| 2704 | llvm::LoadInst *LI = Builder.CreateLoad(Addr: GuardAddr); |
| 2705 | llvm::Value *NeedsInit = |
| 2706 | Builder.CreateICmpEQ(LHS: Builder.CreateAnd(LHS: LI, RHS: Bit), RHS: Zero); |
| 2707 | llvm::BasicBlock *InitBlock = CGF.createBasicBlock(name: "init" ); |
| 2708 | llvm::BasicBlock *EndBlock = CGF.createBasicBlock(name: "init.end" ); |
| 2709 | CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, NoInitBlock: EndBlock, |
| 2710 | Kind: CodeGenFunction::GuardKind::VariableGuard, D: &D); |
| 2711 | |
| 2712 | // Set our bit in the guard variable and emit the initializer and add a global |
| 2713 | // destructor if appropriate. |
| 2714 | CGF.EmitBlock(BB: InitBlock); |
| 2715 | Builder.CreateStore(Val: Builder.CreateOr(LHS: LI, RHS: Bit), Addr: GuardAddr); |
| 2716 | CGF.EHStack.pushCleanup<ResetGuardBit>(Kind: EHCleanup, A: GuardAddr, A: GuardNum); |
| 2717 | CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); |
| 2718 | CGF.PopCleanupBlock(); |
| 2719 | Builder.CreateBr(Dest: EndBlock); |
| 2720 | |
| 2721 | // Continue. |
| 2722 | CGF.EmitBlock(BB: EndBlock); |
| 2723 | } else { |
| 2724 | // Pseudo code for the test: |
| 2725 | // if (TSS > _Init_thread_epoch) { |
| 2726 | // _Init_thread_header(&TSS); |
| 2727 | // if (TSS == -1) { |
| 2728 | // ... initialize the object ...; |
| 2729 | // _Init_thread_footer(&TSS); |
| 2730 | // } |
| 2731 | // } |
| 2732 | // |
| 2733 | // The algorithm is almost identical to what can be found in the appendix |
| 2734 | // found in N2325. |
| 2735 | |
| 2736 | // This BasicBLock determines whether or not we have any work to do. |
| 2737 | llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(Addr: GuardAddr); |
| 2738 | FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); |
| 2739 | llvm::LoadInst *InitThreadEpoch = |
| 2740 | Builder.CreateLoad(Addr: getInitThreadEpochPtr(CGM)); |
| 2741 | llvm::Value *IsUninitialized = |
| 2742 | Builder.CreateICmpSGT(LHS: FirstGuardLoad, RHS: InitThreadEpoch); |
| 2743 | llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock(name: "init.attempt" ); |
| 2744 | llvm::BasicBlock *EndBlock = CGF.createBasicBlock(name: "init.end" ); |
| 2745 | CGF.EmitCXXGuardedInitBranch(NeedsInit: IsUninitialized, InitBlock: AttemptInitBlock, NoInitBlock: EndBlock, |
| 2746 | Kind: CodeGenFunction::GuardKind::VariableGuard, D: &D); |
| 2747 | |
| 2748 | // This BasicBlock attempts to determine whether or not this thread is |
| 2749 | // responsible for doing the initialization. |
| 2750 | CGF.EmitBlock(BB: AttemptInitBlock); |
| 2751 | CGF.EmitNounwindRuntimeCall(callee: getInitThreadHeaderFn(CGM), |
| 2752 | args: GuardAddr.getPointer()); |
| 2753 | llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(Addr: GuardAddr); |
| 2754 | SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); |
| 2755 | llvm::Value *ShouldDoInit = |
| 2756 | Builder.CreateICmpEQ(LHS: SecondGuardLoad, RHS: getAllOnesInt()); |
| 2757 | llvm::BasicBlock *InitBlock = CGF.createBasicBlock(name: "init" ); |
| 2758 | Builder.CreateCondBr(Cond: ShouldDoInit, True: InitBlock, False: EndBlock); |
| 2759 | |
| 2760 | // Ok, we ended up getting selected as the initializing thread. |
| 2761 | CGF.EmitBlock(BB: InitBlock); |
| 2762 | CGF.EHStack.pushCleanup<CallInitThreadAbort>(Kind: EHCleanup, A: GuardAddr); |
| 2763 | CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); |
| 2764 | CGF.PopCleanupBlock(); |
| 2765 | CGF.EmitNounwindRuntimeCall(callee: getInitThreadFooterFn(CGM), |
| 2766 | args: GuardAddr.getPointer()); |
| 2767 | Builder.CreateBr(Dest: EndBlock); |
| 2768 | |
| 2769 | CGF.EmitBlock(BB: EndBlock); |
| 2770 | } |
| 2771 | } |
| 2772 | |
| 2773 | bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { |
| 2774 | // Null-ness for function memptrs only depends on the first field, which is |
| 2775 | // the function pointer. The rest don't matter, so we can zero initialize. |
| 2776 | if (MPT->isMemberFunctionPointer()) |
| 2777 | return true; |
| 2778 | |
| 2779 | // The virtual base adjustment field is always -1 for null, so if we have one |
| 2780 | // we can't zero initialize. The field offset is sometimes also -1 if 0 is a |
| 2781 | // valid field offset. |
| 2782 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
| 2783 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
| 2784 | return (!inheritanceModelHasVBTableOffsetField(Inheritance) && |
| 2785 | RD->nullFieldOffsetIsZero()); |
| 2786 | } |
| 2787 | |
| 2788 | llvm::Type * |
| 2789 | MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { |
| 2790 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
| 2791 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
| 2792 | llvm::SmallVector<llvm::Type *, 4> fields; |
| 2793 | if (MPT->isMemberFunctionPointer()) |
| 2794 | fields.push_back(Elt: CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk |
| 2795 | else |
| 2796 | fields.push_back(Elt: CGM.IntTy); // FieldOffset |
| 2797 | |
| 2798 | if (inheritanceModelHasNVOffsetField(IsMemberFunction: MPT->isMemberFunctionPointer(), |
| 2799 | Inheritance)) |
| 2800 | fields.push_back(Elt: CGM.IntTy); |
| 2801 | if (inheritanceModelHasVBPtrOffsetField(Inheritance)) |
| 2802 | fields.push_back(Elt: CGM.IntTy); |
| 2803 | if (inheritanceModelHasVBTableOffsetField(Inheritance)) |
| 2804 | fields.push_back(Elt: CGM.IntTy); // VirtualBaseAdjustmentOffset |
| 2805 | |
| 2806 | if (fields.size() == 1) |
| 2807 | return fields[0]; |
| 2808 | return llvm::StructType::get(Context&: CGM.getLLVMContext(), Elements: fields); |
| 2809 | } |
| 2810 | |
| 2811 | void MicrosoftCXXABI:: |
| 2812 | GetNullMemberPointerFields(const MemberPointerType *MPT, |
| 2813 | llvm::SmallVectorImpl<llvm::Constant *> &fields) { |
| 2814 | assert(fields.empty()); |
| 2815 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
| 2816 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
| 2817 | if (MPT->isMemberFunctionPointer()) { |
| 2818 | // FunctionPointerOrVirtualThunk |
| 2819 | fields.push_back(Elt: llvm::Constant::getNullValue(Ty: CGM.VoidPtrTy)); |
| 2820 | } else { |
| 2821 | if (RD->nullFieldOffsetIsZero()) |
| 2822 | fields.push_back(Elt: getZeroInt()); // FieldOffset |
| 2823 | else |
| 2824 | fields.push_back(Elt: getAllOnesInt()); // FieldOffset |
| 2825 | } |
| 2826 | |
| 2827 | if (inheritanceModelHasNVOffsetField(IsMemberFunction: MPT->isMemberFunctionPointer(), |
| 2828 | Inheritance)) |
| 2829 | fields.push_back(Elt: getZeroInt()); |
| 2830 | if (inheritanceModelHasVBPtrOffsetField(Inheritance)) |
| 2831 | fields.push_back(Elt: getZeroInt()); |
| 2832 | if (inheritanceModelHasVBTableOffsetField(Inheritance)) |
| 2833 | fields.push_back(Elt: getAllOnesInt()); |
| 2834 | } |
| 2835 | |
| 2836 | llvm::Constant * |
| 2837 | MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { |
| 2838 | llvm::SmallVector<llvm::Constant *, 4> fields; |
| 2839 | GetNullMemberPointerFields(MPT, fields); |
| 2840 | if (fields.size() == 1) |
| 2841 | return fields[0]; |
| 2842 | llvm::Constant *Res = llvm::ConstantStruct::getAnon(V: fields); |
| 2843 | assert(Res->getType() == ConvertMemberPointerType(MPT)); |
| 2844 | return Res; |
| 2845 | } |
| 2846 | |
| 2847 | llvm::Constant * |
| 2848 | MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, |
| 2849 | bool IsMemberFunction, |
| 2850 | const CXXRecordDecl *RD, |
| 2851 | CharUnits NonVirtualBaseAdjustment, |
| 2852 | unsigned VBTableIndex) { |
| 2853 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
| 2854 | |
| 2855 | // Single inheritance class member pointer are represented as scalars instead |
| 2856 | // of aggregates. |
| 2857 | if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance)) |
| 2858 | return FirstField; |
| 2859 | |
| 2860 | llvm::SmallVector<llvm::Constant *, 4> fields; |
| 2861 | fields.push_back(Elt: FirstField); |
| 2862 | |
| 2863 | if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance)) |
| 2864 | fields.push_back(Elt: llvm::ConstantInt::get( |
| 2865 | Ty: CGM.IntTy, V: NonVirtualBaseAdjustment.getQuantity())); |
| 2866 | |
| 2867 | if (inheritanceModelHasVBPtrOffsetField(Inheritance)) { |
| 2868 | CharUnits Offs = CharUnits::Zero(); |
| 2869 | if (VBTableIndex) |
| 2870 | Offs = getContext().getASTRecordLayout(D: RD).getVBPtrOffset(); |
| 2871 | fields.push_back(Elt: llvm::ConstantInt::get(Ty: CGM.IntTy, V: Offs.getQuantity())); |
| 2872 | } |
| 2873 | |
| 2874 | // The rest of the fields are adjusted by conversions to a more derived class. |
| 2875 | if (inheritanceModelHasVBTableOffsetField(Inheritance)) |
| 2876 | fields.push_back(Elt: llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBTableIndex)); |
| 2877 | |
| 2878 | return llvm::ConstantStruct::getAnon(V: fields); |
| 2879 | } |
| 2880 | |
| 2881 | llvm::Constant * |
| 2882 | MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, |
| 2883 | CharUnits offset) { |
| 2884 | return EmitMemberDataPointer(RD: MPT->getMostRecentCXXRecordDecl(), offset); |
| 2885 | } |
| 2886 | |
| 2887 | llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD, |
| 2888 | CharUnits offset) { |
| 2889 | if (RD->getMSInheritanceModel() == |
| 2890 | MSInheritanceModel::Virtual) |
| 2891 | offset -= getContext().getOffsetOfBaseWithVBPtr(RD); |
| 2892 | llvm::Constant *FirstField = |
| 2893 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: offset.getQuantity()); |
| 2894 | return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, |
| 2895 | NonVirtualBaseAdjustment: CharUnits::Zero(), /*VBTableIndex=*/0); |
| 2896 | } |
| 2897 | |
| 2898 | llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, |
| 2899 | QualType MPType) { |
| 2900 | const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>(); |
| 2901 | const ValueDecl *MPD = MP.getMemberPointerDecl(); |
| 2902 | if (!MPD) |
| 2903 | return EmitNullMemberPointer(MPT: DstTy); |
| 2904 | |
| 2905 | ASTContext &Ctx = getContext(); |
| 2906 | ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath(); |
| 2907 | |
| 2908 | llvm::Constant *C; |
| 2909 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: MPD)) { |
| 2910 | C = EmitMemberFunctionPointer(MD); |
| 2911 | } else { |
| 2912 | // For a pointer to data member, start off with the offset of the field in |
| 2913 | // the class in which it was declared, and convert from there if necessary. |
| 2914 | // For indirect field decls, get the outermost anonymous field and use the |
| 2915 | // parent class. |
| 2916 | CharUnits FieldOffset = Ctx.toCharUnitsFromBits(BitSize: Ctx.getFieldOffset(FD: MPD)); |
| 2917 | const FieldDecl *FD = dyn_cast<FieldDecl>(Val: MPD); |
| 2918 | if (!FD) |
| 2919 | FD = cast<FieldDecl>(Val: *cast<IndirectFieldDecl>(Val: MPD)->chain_begin()); |
| 2920 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: FD->getParent()); |
| 2921 | RD = RD->getMostRecentNonInjectedDecl(); |
| 2922 | C = EmitMemberDataPointer(RD, offset: FieldOffset); |
| 2923 | } |
| 2924 | |
| 2925 | if (!MemberPointerPath.empty()) { |
| 2926 | const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(Val: MPD->getDeclContext()); |
| 2927 | const MemberPointerType *SrcTy = |
| 2928 | Ctx.getMemberPointerType(T: DstTy->getPointeeType(), /*Qualifier=*/nullptr, |
| 2929 | Cls: SrcRD) |
| 2930 | ->castAs<MemberPointerType>(); |
| 2931 | |
| 2932 | bool DerivedMember = MP.isMemberPointerToDerivedMember(); |
| 2933 | SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath; |
| 2934 | const CXXRecordDecl *PrevRD = SrcRD; |
| 2935 | for (const CXXRecordDecl *PathElem : MemberPointerPath) { |
| 2936 | const CXXRecordDecl *Base = nullptr; |
| 2937 | const CXXRecordDecl *Derived = nullptr; |
| 2938 | if (DerivedMember) { |
| 2939 | Base = PathElem; |
| 2940 | Derived = PrevRD; |
| 2941 | } else { |
| 2942 | Base = PrevRD; |
| 2943 | Derived = PathElem; |
| 2944 | } |
| 2945 | for (const CXXBaseSpecifier &BS : Derived->bases()) |
| 2946 | if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == |
| 2947 | Base->getCanonicalDecl()) |
| 2948 | DerivedToBasePath.push_back(Elt: &BS); |
| 2949 | PrevRD = PathElem; |
| 2950 | } |
| 2951 | assert(DerivedToBasePath.size() == MemberPointerPath.size()); |
| 2952 | |
| 2953 | CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer |
| 2954 | : CK_BaseToDerivedMemberPointer; |
| 2955 | C = EmitMemberPointerConversion(SrcTy, DstTy, CK, PathBegin: DerivedToBasePath.begin(), |
| 2956 | PathEnd: DerivedToBasePath.end(), Src: C); |
| 2957 | } |
| 2958 | return C; |
| 2959 | } |
| 2960 | |
| 2961 | llvm::Constant * |
| 2962 | MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { |
| 2963 | assert(MD->isInstance() && "Member function must not be static!" ); |
| 2964 | |
| 2965 | CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); |
| 2966 | const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl(); |
| 2967 | CodeGenTypes &Types = CGM.getTypes(); |
| 2968 | |
| 2969 | unsigned VBTableIndex = 0; |
| 2970 | llvm::Constant *FirstField; |
| 2971 | const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); |
| 2972 | if (!MD->isVirtual()) { |
| 2973 | llvm::Type *Ty; |
| 2974 | // Check whether the function has a computable LLVM signature. |
| 2975 | if (Types.isFuncTypeConvertible(FT: FPT)) { |
| 2976 | // The function has a computable LLVM signature; use the correct type. |
| 2977 | Ty = Types.GetFunctionType(Info: Types.arrangeCXXMethodDeclaration(MD)); |
| 2978 | } else { |
| 2979 | // Use an arbitrary non-function type to tell GetAddrOfFunction that the |
| 2980 | // function type is incomplete. |
| 2981 | Ty = CGM.PtrDiffTy; |
| 2982 | } |
| 2983 | FirstField = CGM.GetAddrOfFunction(GD: MD, Ty); |
| 2984 | } else { |
| 2985 | auto &VTableContext = CGM.getMicrosoftVTableContext(); |
| 2986 | MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(GD: MD); |
| 2987 | FirstField = EmitVirtualMemPtrThunk(MD, ML); |
| 2988 | // Include the vfptr adjustment if the method is in a non-primary vftable. |
| 2989 | NonVirtualBaseAdjustment += ML.VFPtrOffset; |
| 2990 | if (ML.VBase) |
| 2991 | VBTableIndex = VTableContext.getVBTableIndex(Derived: RD, VBase: ML.VBase) * 4; |
| 2992 | } |
| 2993 | |
| 2994 | if (VBTableIndex == 0 && |
| 2995 | RD->getMSInheritanceModel() == |
| 2996 | MSInheritanceModel::Virtual) |
| 2997 | NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); |
| 2998 | |
| 2999 | // The rest of the fields are common with data member pointers. |
| 3000 | return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, |
| 3001 | NonVirtualBaseAdjustment, VBTableIndex); |
| 3002 | } |
| 3003 | |
| 3004 | /// Member pointers are the same if they're either bitwise identical *or* both |
| 3005 | /// null. Null-ness for function members is determined by the first field, |
| 3006 | /// while for data member pointers we must compare all fields. |
| 3007 | llvm::Value * |
| 3008 | MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, |
| 3009 | llvm::Value *L, |
| 3010 | llvm::Value *R, |
| 3011 | const MemberPointerType *MPT, |
| 3012 | bool Inequality) { |
| 3013 | CGBuilderTy &Builder = CGF.Builder; |
| 3014 | |
| 3015 | // Handle != comparisons by switching the sense of all boolean operations. |
| 3016 | llvm::ICmpInst::Predicate Eq; |
| 3017 | llvm::Instruction::BinaryOps And, Or; |
| 3018 | if (Inequality) { |
| 3019 | Eq = llvm::ICmpInst::ICMP_NE; |
| 3020 | And = llvm::Instruction::Or; |
| 3021 | Or = llvm::Instruction::And; |
| 3022 | } else { |
| 3023 | Eq = llvm::ICmpInst::ICMP_EQ; |
| 3024 | And = llvm::Instruction::And; |
| 3025 | Or = llvm::Instruction::Or; |
| 3026 | } |
| 3027 | |
| 3028 | // If this is a single field member pointer (single inheritance), this is a |
| 3029 | // single icmp. |
| 3030 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
| 3031 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
| 3032 | if (inheritanceModelHasOnlyOneField(IsMemberFunction: MPT->isMemberFunctionPointer(), |
| 3033 | Inheritance)) |
| 3034 | return Builder.CreateICmp(P: Eq, LHS: L, RHS: R); |
| 3035 | |
| 3036 | // Compare the first field. |
| 3037 | llvm::Value *L0 = Builder.CreateExtractValue(Agg: L, Idxs: 0, Name: "lhs.0" ); |
| 3038 | llvm::Value *R0 = Builder.CreateExtractValue(Agg: R, Idxs: 0, Name: "rhs.0" ); |
| 3039 | llvm::Value *Cmp0 = Builder.CreateICmp(P: Eq, LHS: L0, RHS: R0, Name: "memptr.cmp.first" ); |
| 3040 | |
| 3041 | // Compare everything other than the first field. |
| 3042 | llvm::Value *Res = nullptr; |
| 3043 | llvm::StructType *LType = cast<llvm::StructType>(Val: L->getType()); |
| 3044 | for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { |
| 3045 | llvm::Value *LF = Builder.CreateExtractValue(Agg: L, Idxs: I); |
| 3046 | llvm::Value *RF = Builder.CreateExtractValue(Agg: R, Idxs: I); |
| 3047 | llvm::Value *Cmp = Builder.CreateICmp(P: Eq, LHS: LF, RHS: RF, Name: "memptr.cmp.rest" ); |
| 3048 | if (Res) |
| 3049 | Res = Builder.CreateBinOp(Opc: And, LHS: Res, RHS: Cmp); |
| 3050 | else |
| 3051 | Res = Cmp; |
| 3052 | } |
| 3053 | |
| 3054 | // Check if the first field is 0 if this is a function pointer. |
| 3055 | if (MPT->isMemberFunctionPointer()) { |
| 3056 | // (l1 == r1 && ...) || l0 == 0 |
| 3057 | llvm::Value *Zero = llvm::Constant::getNullValue(Ty: L0->getType()); |
| 3058 | llvm::Value *IsZero = Builder.CreateICmp(P: Eq, LHS: L0, RHS: Zero, Name: "memptr.cmp.iszero" ); |
| 3059 | Res = Builder.CreateBinOp(Opc: Or, LHS: Res, RHS: IsZero); |
| 3060 | } |
| 3061 | |
| 3062 | // Combine the comparison of the first field, which must always be true for |
| 3063 | // this comparison to succeeed. |
| 3064 | return Builder.CreateBinOp(Opc: And, LHS: Res, RHS: Cmp0, Name: "memptr.cmp" ); |
| 3065 | } |
| 3066 | |
| 3067 | llvm::Value * |
| 3068 | MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, |
| 3069 | llvm::Value *MemPtr, |
| 3070 | const MemberPointerType *MPT) { |
| 3071 | CGBuilderTy &Builder = CGF.Builder; |
| 3072 | llvm::SmallVector<llvm::Constant *, 4> fields; |
| 3073 | // We only need one field for member functions. |
| 3074 | if (MPT->isMemberFunctionPointer()) |
| 3075 | fields.push_back(Elt: llvm::Constant::getNullValue(Ty: CGM.VoidPtrTy)); |
| 3076 | else |
| 3077 | GetNullMemberPointerFields(MPT, fields); |
| 3078 | assert(!fields.empty()); |
| 3079 | llvm::Value *FirstField = MemPtr; |
| 3080 | if (MemPtr->getType()->isStructTy()) |
| 3081 | FirstField = Builder.CreateExtractValue(Agg: MemPtr, Idxs: 0); |
| 3082 | llvm::Value *Res = Builder.CreateICmpNE(LHS: FirstField, RHS: fields[0], Name: "memptr.cmp0" ); |
| 3083 | |
| 3084 | // For function member pointers, we only need to test the function pointer |
| 3085 | // field. The other fields if any can be garbage. |
| 3086 | if (MPT->isMemberFunctionPointer()) |
| 3087 | return Res; |
| 3088 | |
| 3089 | // Otherwise, emit a series of compares and combine the results. |
| 3090 | for (int I = 1, E = fields.size(); I < E; ++I) { |
| 3091 | llvm::Value *Field = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I); |
| 3092 | llvm::Value *Next = Builder.CreateICmpNE(LHS: Field, RHS: fields[I], Name: "memptr.cmp" ); |
| 3093 | Res = Builder.CreateOr(LHS: Res, RHS: Next, Name: "memptr.tobool" ); |
| 3094 | } |
| 3095 | return Res; |
| 3096 | } |
| 3097 | |
| 3098 | bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, |
| 3099 | llvm::Constant *Val) { |
| 3100 | // Function pointers are null if the pointer in the first field is null. |
| 3101 | if (MPT->isMemberFunctionPointer()) { |
| 3102 | llvm::Constant *FirstField = Val->getType()->isStructTy() ? |
| 3103 | Val->getAggregateElement(Elt: 0U) : Val; |
| 3104 | return FirstField->isNullValue(); |
| 3105 | } |
| 3106 | |
| 3107 | // If it's not a function pointer and it's zero initializable, we can easily |
| 3108 | // check zero. |
| 3109 | if (isZeroInitializable(MPT) && Val->isNullValue()) |
| 3110 | return true; |
| 3111 | |
| 3112 | // Otherwise, break down all the fields for comparison. Hopefully these |
| 3113 | // little Constants are reused, while a big null struct might not be. |
| 3114 | llvm::SmallVector<llvm::Constant *, 4> Fields; |
| 3115 | GetNullMemberPointerFields(MPT, fields&: Fields); |
| 3116 | if (Fields.size() == 1) { |
| 3117 | assert(Val->getType()->isIntegerTy()); |
| 3118 | return Val == Fields[0]; |
| 3119 | } |
| 3120 | |
| 3121 | unsigned I, E; |
| 3122 | for (I = 0, E = Fields.size(); I != E; ++I) { |
| 3123 | if (Val->getAggregateElement(Elt: I) != Fields[I]) |
| 3124 | break; |
| 3125 | } |
| 3126 | return I == E; |
| 3127 | } |
| 3128 | |
| 3129 | llvm::Value * |
| 3130 | MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, |
| 3131 | Address This, |
| 3132 | llvm::Value *VBPtrOffset, |
| 3133 | llvm::Value *VBTableOffset, |
| 3134 | llvm::Value **VBPtrOut) { |
| 3135 | CGBuilderTy &Builder = CGF.Builder; |
| 3136 | // Load the vbtable pointer from the vbptr in the instance. |
| 3137 | llvm::Value *VBPtr = Builder.CreateInBoundsGEP( |
| 3138 | Ty: CGM.Int8Ty, Ptr: This.emitRawPointer(CGF), IdxList: VBPtrOffset, Name: "vbptr" ); |
| 3139 | if (VBPtrOut) |
| 3140 | *VBPtrOut = VBPtr; |
| 3141 | |
| 3142 | CharUnits VBPtrAlign; |
| 3143 | if (auto CI = dyn_cast<llvm::ConstantInt>(Val: VBPtrOffset)) { |
| 3144 | VBPtrAlign = This.getAlignment().alignmentAtOffset( |
| 3145 | offset: CharUnits::fromQuantity(Quantity: CI->getSExtValue())); |
| 3146 | } else { |
| 3147 | VBPtrAlign = CGF.getPointerAlign(); |
| 3148 | } |
| 3149 | |
| 3150 | llvm::Value *VBTable = |
| 3151 | Builder.CreateAlignedLoad(Ty: CGM.UnqualPtrTy, Addr: VBPtr, Align: VBPtrAlign, Name: "vbtable" ); |
| 3152 | |
| 3153 | // Translate from byte offset to table index. It improves analyzability. |
| 3154 | llvm::Value *VBTableIndex = Builder.CreateAShr( |
| 3155 | LHS: VBTableOffset, RHS: llvm::ConstantInt::get(Ty: VBTableOffset->getType(), V: 2), |
| 3156 | Name: "vbtindex" , /*isExact=*/true); |
| 3157 | |
| 3158 | // Load an i32 offset from the vb-table. |
| 3159 | llvm::Value *VBaseOffs = |
| 3160 | Builder.CreateInBoundsGEP(Ty: CGM.Int32Ty, Ptr: VBTable, IdxList: VBTableIndex); |
| 3161 | return Builder.CreateAlignedLoad(Ty: CGM.Int32Ty, Addr: VBaseOffs, |
| 3162 | Align: CharUnits::fromQuantity(Quantity: 4), Name: "vbase_offs" ); |
| 3163 | } |
| 3164 | |
| 3165 | // Returns an adjusted base cast to i8*, since we do more address arithmetic on |
| 3166 | // it. |
| 3167 | llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( |
| 3168 | CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, |
| 3169 | Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { |
| 3170 | CGBuilderTy &Builder = CGF.Builder; |
| 3171 | Base = Base.withElementType(ElemTy: CGM.Int8Ty); |
| 3172 | llvm::BasicBlock *OriginalBB = nullptr; |
| 3173 | llvm::BasicBlock *SkipAdjustBB = nullptr; |
| 3174 | llvm::BasicBlock *VBaseAdjustBB = nullptr; |
| 3175 | |
| 3176 | // In the unspecified inheritance model, there might not be a vbtable at all, |
| 3177 | // in which case we need to skip the virtual base lookup. If there is a |
| 3178 | // vbtable, the first entry is a no-op entry that gives back the original |
| 3179 | // base, so look for a virtual base adjustment offset of zero. |
| 3180 | if (VBPtrOffset) { |
| 3181 | OriginalBB = Builder.GetInsertBlock(); |
| 3182 | VBaseAdjustBB = CGF.createBasicBlock(name: "memptr.vadjust" ); |
| 3183 | SkipAdjustBB = CGF.createBasicBlock(name: "memptr.skip_vadjust" ); |
| 3184 | llvm::Value *IsVirtual = |
| 3185 | Builder.CreateICmpNE(LHS: VBTableOffset, RHS: getZeroInt(), |
| 3186 | Name: "memptr.is_vbase" ); |
| 3187 | Builder.CreateCondBr(Cond: IsVirtual, True: VBaseAdjustBB, False: SkipAdjustBB); |
| 3188 | CGF.EmitBlock(BB: VBaseAdjustBB); |
| 3189 | } |
| 3190 | |
| 3191 | // If we weren't given a dynamic vbptr offset, RD should be complete and we'll |
| 3192 | // know the vbptr offset. |
| 3193 | if (!VBPtrOffset) { |
| 3194 | CharUnits offs = CharUnits::Zero(); |
| 3195 | if (!RD->hasDefinition()) { |
| 3196 | DiagnosticsEngine &Diags = CGF.CGM.getDiags(); |
| 3197 | unsigned DiagID = Diags.getCustomDiagID( |
| 3198 | L: DiagnosticsEngine::Error, |
| 3199 | FormatString: "member pointer representation requires a " |
| 3200 | "complete class type for %0 to perform this expression" ); |
| 3201 | Diags.Report(Loc: E->getExprLoc(), DiagID) << RD << E->getSourceRange(); |
| 3202 | } else if (RD->getNumVBases()) |
| 3203 | offs = getContext().getASTRecordLayout(D: RD).getVBPtrOffset(); |
| 3204 | VBPtrOffset = llvm::ConstantInt::get(Ty: CGM.IntTy, V: offs.getQuantity()); |
| 3205 | } |
| 3206 | llvm::Value *VBPtr = nullptr; |
| 3207 | llvm::Value *VBaseOffs = |
| 3208 | GetVBaseOffsetFromVBPtr(CGF, This: Base, VBPtrOffset, VBTableOffset, VBPtrOut: &VBPtr); |
| 3209 | llvm::Value *AdjustedBase = |
| 3210 | Builder.CreateInBoundsGEP(Ty: CGM.Int8Ty, Ptr: VBPtr, IdxList: VBaseOffs); |
| 3211 | |
| 3212 | // Merge control flow with the case where we didn't have to adjust. |
| 3213 | if (VBaseAdjustBB) { |
| 3214 | Builder.CreateBr(Dest: SkipAdjustBB); |
| 3215 | CGF.EmitBlock(BB: SkipAdjustBB); |
| 3216 | llvm::PHINode *Phi = Builder.CreatePHI(Ty: CGM.Int8PtrTy, NumReservedValues: 2, Name: "memptr.base" ); |
| 3217 | Phi->addIncoming(V: Base.emitRawPointer(CGF), BB: OriginalBB); |
| 3218 | Phi->addIncoming(V: AdjustedBase, BB: VBaseAdjustBB); |
| 3219 | return Phi; |
| 3220 | } |
| 3221 | return AdjustedBase; |
| 3222 | } |
| 3223 | |
| 3224 | llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( |
| 3225 | CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, |
| 3226 | const MemberPointerType *MPT, bool IsInBounds) { |
| 3227 | assert(MPT->isMemberDataPointer()); |
| 3228 | CGBuilderTy &Builder = CGF.Builder; |
| 3229 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
| 3230 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
| 3231 | |
| 3232 | // Extract the fields we need, regardless of model. We'll apply them if we |
| 3233 | // have them. |
| 3234 | llvm::Value *FieldOffset = MemPtr; |
| 3235 | llvm::Value *VirtualBaseAdjustmentOffset = nullptr; |
| 3236 | llvm::Value *VBPtrOffset = nullptr; |
| 3237 | if (MemPtr->getType()->isStructTy()) { |
| 3238 | // We need to extract values. |
| 3239 | unsigned I = 0; |
| 3240 | FieldOffset = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
| 3241 | if (inheritanceModelHasVBPtrOffsetField(Inheritance)) |
| 3242 | VBPtrOffset = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
| 3243 | if (inheritanceModelHasVBTableOffsetField(Inheritance)) |
| 3244 | VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
| 3245 | } |
| 3246 | |
| 3247 | llvm::Value *Addr; |
| 3248 | if (VirtualBaseAdjustmentOffset) { |
| 3249 | Addr = AdjustVirtualBase(CGF, E, RD, Base, VBTableOffset: VirtualBaseAdjustmentOffset, |
| 3250 | VBPtrOffset); |
| 3251 | } else { |
| 3252 | Addr = Base.emitRawPointer(CGF); |
| 3253 | } |
| 3254 | |
| 3255 | // Apply the offset. |
| 3256 | return Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: Addr, IdxList: FieldOffset, Name: "memptr.offset" , |
| 3257 | NW: IsInBounds ? llvm::GEPNoWrapFlags::inBounds() |
| 3258 | : llvm::GEPNoWrapFlags::none()); |
| 3259 | } |
| 3260 | |
| 3261 | llvm::Value * |
| 3262 | MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, |
| 3263 | const CastExpr *E, |
| 3264 | llvm::Value *Src) { |
| 3265 | assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || |
| 3266 | E->getCastKind() == CK_BaseToDerivedMemberPointer || |
| 3267 | E->getCastKind() == CK_ReinterpretMemberPointer); |
| 3268 | |
| 3269 | // Use constant emission if we can. |
| 3270 | if (isa<llvm::Constant>(Val: Src)) |
| 3271 | return EmitMemberPointerConversion(E, Src: cast<llvm::Constant>(Val: Src)); |
| 3272 | |
| 3273 | // We may be adding or dropping fields from the member pointer, so we need |
| 3274 | // both types and the inheritance models of both records. |
| 3275 | const MemberPointerType *SrcTy = |
| 3276 | E->getSubExpr()->getType()->castAs<MemberPointerType>(); |
| 3277 | const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); |
| 3278 | bool IsFunc = SrcTy->isMemberFunctionPointer(); |
| 3279 | |
| 3280 | // If the classes use the same null representation, reinterpret_cast is a nop. |
| 3281 | bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; |
| 3282 | if (IsReinterpret && IsFunc) |
| 3283 | return Src; |
| 3284 | |
| 3285 | CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); |
| 3286 | CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); |
| 3287 | if (IsReinterpret && |
| 3288 | SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) |
| 3289 | return Src; |
| 3290 | |
| 3291 | CGBuilderTy &Builder = CGF.Builder; |
| 3292 | |
| 3293 | // Branch past the conversion if Src is null. |
| 3294 | llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, MemPtr: Src, MPT: SrcTy); |
| 3295 | llvm::Constant *DstNull = EmitNullMemberPointer(MPT: DstTy); |
| 3296 | |
| 3297 | // C++ 5.2.10p9: The null member pointer value is converted to the null member |
| 3298 | // pointer value of the destination type. |
| 3299 | if (IsReinterpret) { |
| 3300 | // For reinterpret casts, sema ensures that src and dst are both functions |
| 3301 | // or data and have the same size, which means the LLVM types should match. |
| 3302 | assert(Src->getType() == DstNull->getType()); |
| 3303 | return Builder.CreateSelect(C: IsNotNull, True: Src, False: DstNull); |
| 3304 | } |
| 3305 | |
| 3306 | llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); |
| 3307 | llvm::BasicBlock *ConvertBB = CGF.createBasicBlock(name: "memptr.convert" ); |
| 3308 | llvm::BasicBlock *ContinueBB = CGF.createBasicBlock(name: "memptr.converted" ); |
| 3309 | Builder.CreateCondBr(Cond: IsNotNull, True: ConvertBB, False: ContinueBB); |
| 3310 | CGF.EmitBlock(BB: ConvertBB); |
| 3311 | |
| 3312 | llvm::Value *Dst = EmitNonNullMemberPointerConversion( |
| 3313 | SrcTy, DstTy, CK: E->getCastKind(), PathBegin: E->path_begin(), PathEnd: E->path_end(), Src, |
| 3314 | Builder); |
| 3315 | |
| 3316 | Builder.CreateBr(Dest: ContinueBB); |
| 3317 | |
| 3318 | // In the continuation, choose between DstNull and Dst. |
| 3319 | CGF.EmitBlock(BB: ContinueBB); |
| 3320 | llvm::PHINode *Phi = Builder.CreatePHI(Ty: DstNull->getType(), NumReservedValues: 2, Name: "memptr.converted" ); |
| 3321 | Phi->addIncoming(V: DstNull, BB: OriginalBB); |
| 3322 | Phi->addIncoming(V: Dst, BB: ConvertBB); |
| 3323 | return Phi; |
| 3324 | } |
| 3325 | |
| 3326 | llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( |
| 3327 | const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, |
| 3328 | CastExpr::path_const_iterator PathBegin, |
| 3329 | CastExpr::path_const_iterator PathEnd, llvm::Value *Src, |
| 3330 | CGBuilderTy &Builder) { |
| 3331 | const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); |
| 3332 | const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); |
| 3333 | MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel(); |
| 3334 | MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel(); |
| 3335 | bool IsFunc = SrcTy->isMemberFunctionPointer(); |
| 3336 | bool IsConstant = isa<llvm::Constant>(Val: Src); |
| 3337 | |
| 3338 | // Decompose src. |
| 3339 | llvm::Value *FirstField = Src; |
| 3340 | llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); |
| 3341 | llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); |
| 3342 | llvm::Value *VBPtrOffset = getZeroInt(); |
| 3343 | if (!inheritanceModelHasOnlyOneField(IsMemberFunction: IsFunc, Inheritance: SrcInheritance)) { |
| 3344 | // We need to extract values. |
| 3345 | unsigned I = 0; |
| 3346 | FirstField = Builder.CreateExtractValue(Agg: Src, Idxs: I++); |
| 3347 | if (inheritanceModelHasNVOffsetField(IsMemberFunction: IsFunc, Inheritance: SrcInheritance)) |
| 3348 | NonVirtualBaseAdjustment = Builder.CreateExtractValue(Agg: Src, Idxs: I++); |
| 3349 | if (inheritanceModelHasVBPtrOffsetField(Inheritance: SrcInheritance)) |
| 3350 | VBPtrOffset = Builder.CreateExtractValue(Agg: Src, Idxs: I++); |
| 3351 | if (inheritanceModelHasVBTableOffsetField(Inheritance: SrcInheritance)) |
| 3352 | VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Agg: Src, Idxs: I++); |
| 3353 | } |
| 3354 | |
| 3355 | bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); |
| 3356 | const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; |
| 3357 | const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); |
| 3358 | |
| 3359 | // For data pointers, we adjust the field offset directly. For functions, we |
| 3360 | // have a separate field. |
| 3361 | llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; |
| 3362 | |
| 3363 | // The virtual inheritance model has a quirk: the virtual base table is always |
| 3364 | // referenced when dereferencing a member pointer even if the member pointer |
| 3365 | // is non-virtual. This is accounted for by adjusting the non-virtual offset |
| 3366 | // to point backwards to the top of the MDC from the first VBase. Undo this |
| 3367 | // adjustment to normalize the member pointer. |
| 3368 | llvm::Value *SrcVBIndexEqZero = |
| 3369 | Builder.CreateICmpEQ(LHS: VirtualBaseAdjustmentOffset, RHS: getZeroInt()); |
| 3370 | if (SrcInheritance == MSInheritanceModel::Virtual) { |
| 3371 | if (int64_t SrcOffsetToFirstVBase = |
| 3372 | getContext().getOffsetOfBaseWithVBPtr(RD: SrcRD).getQuantity()) { |
| 3373 | llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( |
| 3374 | C: SrcVBIndexEqZero, |
| 3375 | True: llvm::ConstantInt::get(Ty: CGM.IntTy, V: SrcOffsetToFirstVBase), |
| 3376 | False: getZeroInt()); |
| 3377 | NVAdjustField = Builder.CreateNSWAdd(LHS: NVAdjustField, RHS: UndoSrcAdjustment); |
| 3378 | } |
| 3379 | } |
| 3380 | |
| 3381 | // A non-zero vbindex implies that we are dealing with a source member in a |
| 3382 | // floating virtual base in addition to some non-virtual offset. If the |
| 3383 | // vbindex is zero, we are dealing with a source that exists in a non-virtual, |
| 3384 | // fixed, base. The difference between these two cases is that the vbindex + |
| 3385 | // nvoffset *always* point to the member regardless of what context they are |
| 3386 | // evaluated in so long as the vbindex is adjusted. A member inside a fixed |
| 3387 | // base requires explicit nv adjustment. |
| 3388 | llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( |
| 3389 | Ty: CGM.IntTy, |
| 3390 | V: CGM.computeNonVirtualBaseClassOffset(DerivedClass, Start: PathBegin, End: PathEnd) |
| 3391 | .getQuantity()); |
| 3392 | |
| 3393 | llvm::Value *NVDisp; |
| 3394 | if (IsDerivedToBase) |
| 3395 | NVDisp = Builder.CreateNSWSub(LHS: NVAdjustField, RHS: BaseClassOffset, Name: "adj" ); |
| 3396 | else |
| 3397 | NVDisp = Builder.CreateNSWAdd(LHS: NVAdjustField, RHS: BaseClassOffset, Name: "adj" ); |
| 3398 | |
| 3399 | NVAdjustField = Builder.CreateSelect(C: SrcVBIndexEqZero, True: NVDisp, False: getZeroInt()); |
| 3400 | |
| 3401 | // Update the vbindex to an appropriate value in the destination because |
| 3402 | // SrcRD's vbtable might not be a strict prefix of the one in DstRD. |
| 3403 | llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; |
| 3404 | if (inheritanceModelHasVBTableOffsetField(Inheritance: DstInheritance) && |
| 3405 | inheritanceModelHasVBTableOffsetField(Inheritance: SrcInheritance)) { |
| 3406 | if (llvm::GlobalVariable *VDispMap = |
| 3407 | getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { |
| 3408 | llvm::Value *VBIndex = Builder.CreateExactUDiv( |
| 3409 | LHS: VirtualBaseAdjustmentOffset, RHS: llvm::ConstantInt::get(Ty: CGM.IntTy, V: 4)); |
| 3410 | if (IsConstant) { |
| 3411 | llvm::Constant *Mapping = VDispMap->getInitializer(); |
| 3412 | VirtualBaseAdjustmentOffset = |
| 3413 | Mapping->getAggregateElement(Elt: cast<llvm::Constant>(Val: VBIndex)); |
| 3414 | } else { |
| 3415 | llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; |
| 3416 | VirtualBaseAdjustmentOffset = Builder.CreateAlignedLoad( |
| 3417 | Ty: CGM.IntTy, Addr: Builder.CreateInBoundsGEP(Ty: VDispMap->getValueType(), |
| 3418 | Ptr: VDispMap, IdxList: Idxs), |
| 3419 | Align: CharUnits::fromQuantity(Quantity: 4)); |
| 3420 | } |
| 3421 | |
| 3422 | DstVBIndexEqZero = |
| 3423 | Builder.CreateICmpEQ(LHS: VirtualBaseAdjustmentOffset, RHS: getZeroInt()); |
| 3424 | } |
| 3425 | } |
| 3426 | |
| 3427 | // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize |
| 3428 | // it to the offset of the vbptr. |
| 3429 | if (inheritanceModelHasVBPtrOffsetField(Inheritance: DstInheritance)) { |
| 3430 | llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( |
| 3431 | Ty: CGM.IntTy, |
| 3432 | V: getContext().getASTRecordLayout(D: DstRD).getVBPtrOffset().getQuantity()); |
| 3433 | VBPtrOffset = |
| 3434 | Builder.CreateSelect(C: DstVBIndexEqZero, True: getZeroInt(), False: DstVBPtrOffset); |
| 3435 | } |
| 3436 | |
| 3437 | // Likewise, apply a similar adjustment so that dereferencing the member |
| 3438 | // pointer correctly accounts for the distance between the start of the first |
| 3439 | // virtual base and the top of the MDC. |
| 3440 | if (DstInheritance == MSInheritanceModel::Virtual) { |
| 3441 | if (int64_t DstOffsetToFirstVBase = |
| 3442 | getContext().getOffsetOfBaseWithVBPtr(RD: DstRD).getQuantity()) { |
| 3443 | llvm::Value *DoDstAdjustment = Builder.CreateSelect( |
| 3444 | C: DstVBIndexEqZero, |
| 3445 | True: llvm::ConstantInt::get(Ty: CGM.IntTy, V: DstOffsetToFirstVBase), |
| 3446 | False: getZeroInt()); |
| 3447 | NVAdjustField = Builder.CreateNSWSub(LHS: NVAdjustField, RHS: DoDstAdjustment); |
| 3448 | } |
| 3449 | } |
| 3450 | |
| 3451 | // Recompose dst from the null struct and the adjusted fields from src. |
| 3452 | llvm::Value *Dst; |
| 3453 | if (inheritanceModelHasOnlyOneField(IsMemberFunction: IsFunc, Inheritance: DstInheritance)) { |
| 3454 | Dst = FirstField; |
| 3455 | } else { |
| 3456 | Dst = llvm::PoisonValue::get(T: ConvertMemberPointerType(MPT: DstTy)); |
| 3457 | unsigned Idx = 0; |
| 3458 | Dst = Builder.CreateInsertValue(Agg: Dst, Val: FirstField, Idxs: Idx++); |
| 3459 | if (inheritanceModelHasNVOffsetField(IsMemberFunction: IsFunc, Inheritance: DstInheritance)) |
| 3460 | Dst = Builder.CreateInsertValue(Agg: Dst, Val: NonVirtualBaseAdjustment, Idxs: Idx++); |
| 3461 | if (inheritanceModelHasVBPtrOffsetField(Inheritance: DstInheritance)) |
| 3462 | Dst = Builder.CreateInsertValue(Agg: Dst, Val: VBPtrOffset, Idxs: Idx++); |
| 3463 | if (inheritanceModelHasVBTableOffsetField(Inheritance: DstInheritance)) |
| 3464 | Dst = Builder.CreateInsertValue(Agg: Dst, Val: VirtualBaseAdjustmentOffset, Idxs: Idx++); |
| 3465 | } |
| 3466 | return Dst; |
| 3467 | } |
| 3468 | |
| 3469 | llvm::Constant * |
| 3470 | MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, |
| 3471 | llvm::Constant *Src) { |
| 3472 | const MemberPointerType *SrcTy = |
| 3473 | E->getSubExpr()->getType()->castAs<MemberPointerType>(); |
| 3474 | const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); |
| 3475 | |
| 3476 | CastKind CK = E->getCastKind(); |
| 3477 | |
| 3478 | return EmitMemberPointerConversion(SrcTy, DstTy, CK, PathBegin: E->path_begin(), |
| 3479 | PathEnd: E->path_end(), Src); |
| 3480 | } |
| 3481 | |
| 3482 | llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( |
| 3483 | const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, |
| 3484 | CastExpr::path_const_iterator PathBegin, |
| 3485 | CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { |
| 3486 | assert(CK == CK_DerivedToBaseMemberPointer || |
| 3487 | CK == CK_BaseToDerivedMemberPointer || |
| 3488 | CK == CK_ReinterpretMemberPointer); |
| 3489 | // If src is null, emit a new null for dst. We can't return src because dst |
| 3490 | // might have a new representation. |
| 3491 | if (MemberPointerConstantIsNull(MPT: SrcTy, Val: Src)) |
| 3492 | return EmitNullMemberPointer(MPT: DstTy); |
| 3493 | |
| 3494 | // We don't need to do anything for reinterpret_casts of non-null member |
| 3495 | // pointers. We should only get here when the two type representations have |
| 3496 | // the same size. |
| 3497 | if (CK == CK_ReinterpretMemberPointer) |
| 3498 | return Src; |
| 3499 | |
| 3500 | CGBuilderTy Builder(CGM, CGM.getLLVMContext()); |
| 3501 | auto *Dst = cast<llvm::Constant>(Val: EmitNonNullMemberPointerConversion( |
| 3502 | SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); |
| 3503 | |
| 3504 | return Dst; |
| 3505 | } |
| 3506 | |
| 3507 | CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( |
| 3508 | CodeGenFunction &CGF, const Expr *E, Address This, |
| 3509 | llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, |
| 3510 | const MemberPointerType *MPT) { |
| 3511 | assert(MPT->isMemberFunctionPointer()); |
| 3512 | const FunctionProtoType *FPT = |
| 3513 | MPT->getPointeeType()->castAs<FunctionProtoType>(); |
| 3514 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
| 3515 | CGBuilderTy &Builder = CGF.Builder; |
| 3516 | |
| 3517 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
| 3518 | |
| 3519 | // Extract the fields we need, regardless of model. We'll apply them if we |
| 3520 | // have them. |
| 3521 | llvm::Value *FunctionPointer = MemPtr; |
| 3522 | llvm::Value *NonVirtualBaseAdjustment = nullptr; |
| 3523 | llvm::Value *VirtualBaseAdjustmentOffset = nullptr; |
| 3524 | llvm::Value *VBPtrOffset = nullptr; |
| 3525 | if (MemPtr->getType()->isStructTy()) { |
| 3526 | // We need to extract values. |
| 3527 | unsigned I = 0; |
| 3528 | FunctionPointer = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
| 3529 | if (inheritanceModelHasNVOffsetField(IsMemberFunction: MPT, Inheritance)) |
| 3530 | NonVirtualBaseAdjustment = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
| 3531 | if (inheritanceModelHasVBPtrOffsetField(Inheritance)) |
| 3532 | VBPtrOffset = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
| 3533 | if (inheritanceModelHasVBTableOffsetField(Inheritance)) |
| 3534 | VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
| 3535 | } |
| 3536 | |
| 3537 | if (VirtualBaseAdjustmentOffset) { |
| 3538 | ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, Base: This, |
| 3539 | VBTableOffset: VirtualBaseAdjustmentOffset, VBPtrOffset); |
| 3540 | } else { |
| 3541 | ThisPtrForCall = This.emitRawPointer(CGF); |
| 3542 | } |
| 3543 | |
| 3544 | if (NonVirtualBaseAdjustment) |
| 3545 | ThisPtrForCall = Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: ThisPtrForCall, |
| 3546 | IdxList: NonVirtualBaseAdjustment); |
| 3547 | |
| 3548 | CGCallee Callee(FPT, FunctionPointer); |
| 3549 | return Callee; |
| 3550 | } |
| 3551 | |
| 3552 | CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { |
| 3553 | return new MicrosoftCXXABI(CGM); |
| 3554 | } |
| 3555 | |
| 3556 | // MS RTTI Overview: |
| 3557 | // The run time type information emitted by cl.exe contains 5 distinct types of |
| 3558 | // structures. Many of them reference each other. |
| 3559 | // |
| 3560 | // TypeInfo: Static classes that are returned by typeid. |
| 3561 | // |
| 3562 | // CompleteObjectLocator: Referenced by vftables. They contain information |
| 3563 | // required for dynamic casting, including OffsetFromTop. They also contain |
| 3564 | // a reference to the TypeInfo for the type and a reference to the |
| 3565 | // CompleteHierarchyDescriptor for the type. |
| 3566 | // |
| 3567 | // ClassHierarchyDescriptor: Contains information about a class hierarchy. |
| 3568 | // Used during dynamic_cast to walk a class hierarchy. References a base |
| 3569 | // class array and the size of said array. |
| 3570 | // |
| 3571 | // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is |
| 3572 | // somewhat of a misnomer because the most derived class is also in the list |
| 3573 | // as well as multiple copies of virtual bases (if they occur multiple times |
| 3574 | // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for |
| 3575 | // every path in the hierarchy, in pre-order depth first order. Note, we do |
| 3576 | // not declare a specific llvm type for BaseClassArray, it's merely an array |
| 3577 | // of BaseClassDescriptor pointers. |
| 3578 | // |
| 3579 | // BaseClassDescriptor: Contains information about a class in a class hierarchy. |
| 3580 | // BaseClassDescriptor is also somewhat of a misnomer for the same reason that |
| 3581 | // BaseClassArray is. It contains information about a class within a |
| 3582 | // hierarchy such as: is this base is ambiguous and what is its offset in the |
| 3583 | // vbtable. The names of the BaseClassDescriptors have all of their fields |
| 3584 | // mangled into them so they can be aggressively deduplicated by the linker. |
| 3585 | |
| 3586 | static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { |
| 3587 | StringRef MangledName("??_7type_info@@6B@" ); |
| 3588 | if (auto VTable = CGM.getModule().getNamedGlobal(Name: MangledName)) |
| 3589 | return VTable; |
| 3590 | return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, |
| 3591 | /*isConstant=*/true, |
| 3592 | llvm::GlobalVariable::ExternalLinkage, |
| 3593 | /*Initializer=*/nullptr, MangledName); |
| 3594 | } |
| 3595 | |
| 3596 | namespace { |
| 3597 | |
| 3598 | /// A Helper struct that stores information about a class in a class |
| 3599 | /// hierarchy. The information stored in these structs struct is used during |
| 3600 | /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. |
| 3601 | // During RTTI creation, MSRTTIClasses are stored in a contiguous array with |
| 3602 | // implicit depth first pre-order tree connectivity. getFirstChild and |
| 3603 | // getNextSibling allow us to walk the tree efficiently. |
| 3604 | struct MSRTTIClass { |
| 3605 | enum { |
| 3606 | IsPrivateOnPath = 1 | 8, |
| 3607 | IsAmbiguous = 2, |
| 3608 | IsPrivate = 4, |
| 3609 | IsVirtual = 16, |
| 3610 | HasHierarchyDescriptor = 64 |
| 3611 | }; |
| 3612 | MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} |
| 3613 | uint32_t initialize(const MSRTTIClass *Parent, |
| 3614 | const CXXBaseSpecifier *Specifier); |
| 3615 | |
| 3616 | MSRTTIClass *getFirstChild() { return this + 1; } |
| 3617 | static MSRTTIClass *getNextChild(MSRTTIClass *Child) { |
| 3618 | return Child + 1 + Child->NumBases; |
| 3619 | } |
| 3620 | |
| 3621 | const CXXRecordDecl *RD, *VirtualRoot; |
| 3622 | uint32_t Flags, NumBases, OffsetInVBase; |
| 3623 | }; |
| 3624 | |
| 3625 | /// Recursively initialize the base class array. |
| 3626 | uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, |
| 3627 | const CXXBaseSpecifier *Specifier) { |
| 3628 | Flags = HasHierarchyDescriptor; |
| 3629 | if (!Parent) { |
| 3630 | VirtualRoot = nullptr; |
| 3631 | OffsetInVBase = 0; |
| 3632 | } else { |
| 3633 | if (Specifier->getAccessSpecifier() != AS_public) |
| 3634 | Flags |= IsPrivate | IsPrivateOnPath; |
| 3635 | if (Specifier->isVirtual()) { |
| 3636 | Flags |= IsVirtual; |
| 3637 | VirtualRoot = RD; |
| 3638 | OffsetInVBase = 0; |
| 3639 | } else { |
| 3640 | if (Parent->Flags & IsPrivateOnPath) |
| 3641 | Flags |= IsPrivateOnPath; |
| 3642 | VirtualRoot = Parent->VirtualRoot; |
| 3643 | OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() |
| 3644 | .getASTRecordLayout(D: Parent->RD).getBaseClassOffset(Base: RD).getQuantity(); |
| 3645 | } |
| 3646 | } |
| 3647 | NumBases = 0; |
| 3648 | MSRTTIClass *Child = getFirstChild(); |
| 3649 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
| 3650 | NumBases += Child->initialize(Parent: this, Specifier: &Base) + 1; |
| 3651 | Child = getNextChild(Child); |
| 3652 | } |
| 3653 | return NumBases; |
| 3654 | } |
| 3655 | |
| 3656 | static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { |
| 3657 | switch (Ty->getLinkage()) { |
| 3658 | case Linkage::Invalid: |
| 3659 | llvm_unreachable("Linkage hasn't been computed!" ); |
| 3660 | |
| 3661 | case Linkage::None: |
| 3662 | case Linkage::Internal: |
| 3663 | case Linkage::UniqueExternal: |
| 3664 | return llvm::GlobalValue::InternalLinkage; |
| 3665 | |
| 3666 | case Linkage::VisibleNone: |
| 3667 | case Linkage::Module: |
| 3668 | case Linkage::External: |
| 3669 | return llvm::GlobalValue::LinkOnceODRLinkage; |
| 3670 | } |
| 3671 | llvm_unreachable("Invalid linkage!" ); |
| 3672 | } |
| 3673 | |
| 3674 | /// An ephemeral helper class for building MS RTTI types. It caches some |
| 3675 | /// calls to the module and information about the most derived class in a |
| 3676 | /// hierarchy. |
| 3677 | struct MSRTTIBuilder { |
| 3678 | enum { |
| 3679 | HasBranchingHierarchy = 1, |
| 3680 | HasVirtualBranchingHierarchy = 2, |
| 3681 | HasAmbiguousBases = 4 |
| 3682 | }; |
| 3683 | |
| 3684 | MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) |
| 3685 | : CGM(ABI.CGM), Context(CGM.getContext()), |
| 3686 | VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), |
| 3687 | Linkage(getLinkageForRTTI(Ty: CGM.getContext().getTagDeclType(Decl: RD))), |
| 3688 | ABI(ABI) {} |
| 3689 | |
| 3690 | llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); |
| 3691 | llvm::GlobalVariable * |
| 3692 | getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); |
| 3693 | llvm::GlobalVariable *getClassHierarchyDescriptor(); |
| 3694 | llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info); |
| 3695 | |
| 3696 | CodeGenModule &CGM; |
| 3697 | ASTContext &Context; |
| 3698 | llvm::LLVMContext &VMContext; |
| 3699 | llvm::Module &Module; |
| 3700 | const CXXRecordDecl *RD; |
| 3701 | llvm::GlobalVariable::LinkageTypes Linkage; |
| 3702 | MicrosoftCXXABI &ABI; |
| 3703 | }; |
| 3704 | |
| 3705 | } // namespace |
| 3706 | |
| 3707 | /// Recursively serializes a class hierarchy in pre-order depth first |
| 3708 | /// order. |
| 3709 | static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, |
| 3710 | const CXXRecordDecl *RD) { |
| 3711 | Classes.push_back(Elt: MSRTTIClass(RD)); |
| 3712 | for (const CXXBaseSpecifier &Base : RD->bases()) |
| 3713 | serializeClassHierarchy(Classes, RD: Base.getType()->getAsCXXRecordDecl()); |
| 3714 | } |
| 3715 | |
| 3716 | /// Find ambiguity among base classes. |
| 3717 | static void |
| 3718 | detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { |
| 3719 | llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; |
| 3720 | llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; |
| 3721 | llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; |
| 3722 | for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { |
| 3723 | if ((Class->Flags & MSRTTIClass::IsVirtual) && |
| 3724 | !VirtualBases.insert(Ptr: Class->RD).second) { |
| 3725 | Class = MSRTTIClass::getNextChild(Child: Class); |
| 3726 | continue; |
| 3727 | } |
| 3728 | if (!UniqueBases.insert(Ptr: Class->RD).second) |
| 3729 | AmbiguousBases.insert(Ptr: Class->RD); |
| 3730 | Class++; |
| 3731 | } |
| 3732 | if (AmbiguousBases.empty()) |
| 3733 | return; |
| 3734 | for (MSRTTIClass &Class : Classes) |
| 3735 | if (AmbiguousBases.count(Ptr: Class.RD)) |
| 3736 | Class.Flags |= MSRTTIClass::IsAmbiguous; |
| 3737 | } |
| 3738 | |
| 3739 | llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { |
| 3740 | SmallString<256> MangledName; |
| 3741 | { |
| 3742 | llvm::raw_svector_ostream Out(MangledName); |
| 3743 | ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(Derived: RD, Out); |
| 3744 | } |
| 3745 | |
| 3746 | // Check to see if we've already declared this ClassHierarchyDescriptor. |
| 3747 | if (auto CHD = Module.getNamedGlobal(Name: MangledName)) |
| 3748 | return CHD; |
| 3749 | |
| 3750 | // Serialize the class hierarchy and initialize the CHD Fields. |
| 3751 | SmallVector<MSRTTIClass, 8> Classes; |
| 3752 | serializeClassHierarchy(Classes, RD); |
| 3753 | Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); |
| 3754 | detectAmbiguousBases(Classes); |
| 3755 | int Flags = 0; |
| 3756 | for (const MSRTTIClass &Class : Classes) { |
| 3757 | if (Class.RD->getNumBases() > 1) |
| 3758 | Flags |= HasBranchingHierarchy; |
| 3759 | // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We |
| 3760 | // believe the field isn't actually used. |
| 3761 | if (Class.Flags & MSRTTIClass::IsAmbiguous) |
| 3762 | Flags |= HasAmbiguousBases; |
| 3763 | } |
| 3764 | if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) |
| 3765 | Flags |= HasVirtualBranchingHierarchy; |
| 3766 | // These gep indices are used to get the address of the first element of the |
| 3767 | // base class array. |
| 3768 | llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0), |
| 3769 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0)}; |
| 3770 | |
| 3771 | // Forward-declare the class hierarchy descriptor |
| 3772 | auto Type = ABI.getClassHierarchyDescriptorType(); |
| 3773 | auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, |
| 3774 | /*Initializer=*/nullptr, |
| 3775 | MangledName); |
| 3776 | if (CHD->isWeakForLinker()) |
| 3777 | CHD->setComdat(CGM.getModule().getOrInsertComdat(Name: CHD->getName())); |
| 3778 | |
| 3779 | auto *Bases = getBaseClassArray(Classes); |
| 3780 | |
| 3781 | // Initialize the base class ClassHierarchyDescriptor. |
| 3782 | llvm::Constant *Fields[] = { |
| 3783 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0), // reserved by the runtime |
| 3784 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Flags), |
| 3785 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Classes.size()), |
| 3786 | ABI.getImageRelativeConstant(PtrVal: llvm::ConstantExpr::getInBoundsGetElementPtr( |
| 3787 | Ty: Bases->getValueType(), C: Bases, |
| 3788 | IdxList: llvm::ArrayRef<llvm::Value *>(GEPIndices))), |
| 3789 | }; |
| 3790 | CHD->setInitializer(llvm::ConstantStruct::get(T: Type, V: Fields)); |
| 3791 | return CHD; |
| 3792 | } |
| 3793 | |
| 3794 | llvm::GlobalVariable * |
| 3795 | MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { |
| 3796 | SmallString<256> MangledName; |
| 3797 | { |
| 3798 | llvm::raw_svector_ostream Out(MangledName); |
| 3799 | ABI.getMangleContext().mangleCXXRTTIBaseClassArray(Derived: RD, Out); |
| 3800 | } |
| 3801 | |
| 3802 | // Forward-declare the base class array. |
| 3803 | // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit |
| 3804 | // mode) bytes of padding. We provide a pointer sized amount of padding by |
| 3805 | // adding +1 to Classes.size(). The sections have pointer alignment and are |
| 3806 | // marked pick-any so it shouldn't matter. |
| 3807 | llvm::Type *PtrType = ABI.getImageRelativeType(PtrType: CGM.UnqualPtrTy); |
| 3808 | auto *ArrType = llvm::ArrayType::get(ElementType: PtrType, NumElements: Classes.size() + 1); |
| 3809 | auto *BCA = |
| 3810 | new llvm::GlobalVariable(Module, ArrType, |
| 3811 | /*isConstant=*/true, Linkage, |
| 3812 | /*Initializer=*/nullptr, MangledName); |
| 3813 | if (BCA->isWeakForLinker()) |
| 3814 | BCA->setComdat(CGM.getModule().getOrInsertComdat(Name: BCA->getName())); |
| 3815 | |
| 3816 | // Initialize the BaseClassArray. |
| 3817 | SmallVector<llvm::Constant *, 8> BaseClassArrayData; |
| 3818 | for (MSRTTIClass &Class : Classes) |
| 3819 | BaseClassArrayData.push_back( |
| 3820 | Elt: ABI.getImageRelativeConstant(PtrVal: getBaseClassDescriptor(Classes: Class))); |
| 3821 | BaseClassArrayData.push_back(Elt: llvm::Constant::getNullValue(Ty: PtrType)); |
| 3822 | BCA->setInitializer(llvm::ConstantArray::get(T: ArrType, V: BaseClassArrayData)); |
| 3823 | return BCA; |
| 3824 | } |
| 3825 | |
| 3826 | llvm::GlobalVariable * |
| 3827 | MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { |
| 3828 | // Compute the fields for the BaseClassDescriptor. They are computed up front |
| 3829 | // because they are mangled into the name of the object. |
| 3830 | uint32_t OffsetInVBTable = 0; |
| 3831 | int32_t VBPtrOffset = -1; |
| 3832 | if (Class.VirtualRoot) { |
| 3833 | auto &VTableContext = CGM.getMicrosoftVTableContext(); |
| 3834 | OffsetInVBTable = VTableContext.getVBTableIndex(Derived: RD, VBase: Class.VirtualRoot) * 4; |
| 3835 | VBPtrOffset = Context.getASTRecordLayout(D: RD).getVBPtrOffset().getQuantity(); |
| 3836 | } |
| 3837 | |
| 3838 | SmallString<256> MangledName; |
| 3839 | { |
| 3840 | llvm::raw_svector_ostream Out(MangledName); |
| 3841 | ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( |
| 3842 | Derived: Class.RD, NVOffset: Class.OffsetInVBase, VBPtrOffset, VBTableOffset: OffsetInVBTable, |
| 3843 | Flags: Class.Flags, Out); |
| 3844 | } |
| 3845 | |
| 3846 | // Check to see if we've already declared this object. |
| 3847 | if (auto BCD = Module.getNamedGlobal(Name: MangledName)) |
| 3848 | return BCD; |
| 3849 | |
| 3850 | // Forward-declare the base class descriptor. |
| 3851 | auto Type = ABI.getBaseClassDescriptorType(); |
| 3852 | auto BCD = |
| 3853 | new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, |
| 3854 | /*Initializer=*/nullptr, MangledName); |
| 3855 | if (BCD->isWeakForLinker()) |
| 3856 | BCD->setComdat(CGM.getModule().getOrInsertComdat(Name: BCD->getName())); |
| 3857 | |
| 3858 | // Initialize the BaseClassDescriptor. |
| 3859 | llvm::Constant *Fields[] = { |
| 3860 | ABI.getImageRelativeConstant( |
| 3861 | PtrVal: ABI.getAddrOfRTTIDescriptor(Ty: Context.getTypeDeclType(Decl: Class.RD))), |
| 3862 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Class.NumBases), |
| 3863 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Class.OffsetInVBase), |
| 3864 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBPtrOffset), |
| 3865 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: OffsetInVBTable), |
| 3866 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Class.Flags), |
| 3867 | ABI.getImageRelativeConstant( |
| 3868 | PtrVal: MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), |
| 3869 | }; |
| 3870 | BCD->setInitializer(llvm::ConstantStruct::get(T: Type, V: Fields)); |
| 3871 | return BCD; |
| 3872 | } |
| 3873 | |
| 3874 | llvm::GlobalVariable * |
| 3875 | MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) { |
| 3876 | SmallString<256> MangledName; |
| 3877 | { |
| 3878 | llvm::raw_svector_ostream Out(MangledName); |
| 3879 | ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(Derived: RD, BasePath: Info.MangledPath, Out); |
| 3880 | } |
| 3881 | |
| 3882 | // Check to see if we've already computed this complete object locator. |
| 3883 | if (auto COL = Module.getNamedGlobal(Name: MangledName)) |
| 3884 | return COL; |
| 3885 | |
| 3886 | // Compute the fields of the complete object locator. |
| 3887 | int OffsetToTop = Info.FullOffsetInMDC.getQuantity(); |
| 3888 | int VFPtrOffset = 0; |
| 3889 | // The offset includes the vtordisp if one exists. |
| 3890 | if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr()) |
| 3891 | if (Context.getASTRecordLayout(D: RD) |
| 3892 | .getVBaseOffsetsMap() |
| 3893 | .find(Val: VBase) |
| 3894 | ->second.hasVtorDisp()) |
| 3895 | VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4; |
| 3896 | |
| 3897 | // Forward-declare the complete object locator. |
| 3898 | llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); |
| 3899 | auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, |
| 3900 | /*Initializer=*/nullptr, MangledName); |
| 3901 | |
| 3902 | // Initialize the CompleteObjectLocator. |
| 3903 | llvm::Constant *Fields[] = { |
| 3904 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: ABI.isImageRelative()), |
| 3905 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: OffsetToTop), |
| 3906 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: VFPtrOffset), |
| 3907 | ABI.getImageRelativeConstant( |
| 3908 | PtrVal: CGM.GetAddrOfRTTIDescriptor(Ty: Context.getTypeDeclType(Decl: RD))), |
| 3909 | ABI.getImageRelativeConstant(PtrVal: getClassHierarchyDescriptor()), |
| 3910 | ABI.getImageRelativeConstant(PtrVal: COL), |
| 3911 | }; |
| 3912 | llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); |
| 3913 | if (!ABI.isImageRelative()) |
| 3914 | FieldsRef = FieldsRef.drop_back(); |
| 3915 | COL->setInitializer(llvm::ConstantStruct::get(T: Type, V: FieldsRef)); |
| 3916 | if (COL->isWeakForLinker()) |
| 3917 | COL->setComdat(CGM.getModule().getOrInsertComdat(Name: COL->getName())); |
| 3918 | return COL; |
| 3919 | } |
| 3920 | |
| 3921 | static QualType decomposeTypeForEH(ASTContext &Context, QualType T, |
| 3922 | bool &IsConst, bool &IsVolatile, |
| 3923 | bool &IsUnaligned) { |
| 3924 | T = Context.getExceptionObjectType(T); |
| 3925 | |
| 3926 | // C++14 [except.handle]p3: |
| 3927 | // A handler is a match for an exception object of type E if [...] |
| 3928 | // - the handler is of type cv T or const T& where T is a pointer type and |
| 3929 | // E is a pointer type that can be converted to T by [...] |
| 3930 | // - a qualification conversion |
| 3931 | IsConst = false; |
| 3932 | IsVolatile = false; |
| 3933 | IsUnaligned = false; |
| 3934 | QualType PointeeType = T->getPointeeType(); |
| 3935 | if (!PointeeType.isNull()) { |
| 3936 | IsConst = PointeeType.isConstQualified(); |
| 3937 | IsVolatile = PointeeType.isVolatileQualified(); |
| 3938 | IsUnaligned = PointeeType.getQualifiers().hasUnaligned(); |
| 3939 | } |
| 3940 | |
| 3941 | // Member pointer types like "const int A::*" are represented by having RTTI |
| 3942 | // for "int A::*" and separately storing the const qualifier. |
| 3943 | if (const auto *MPTy = T->getAs<MemberPointerType>()) |
| 3944 | T = Context.getMemberPointerType(T: PointeeType.getUnqualifiedType(), |
| 3945 | Qualifier: MPTy->getQualifier(), |
| 3946 | Cls: MPTy->getMostRecentCXXRecordDecl()); |
| 3947 | |
| 3948 | // Pointer types like "const int * const *" are represented by having RTTI |
| 3949 | // for "const int **" and separately storing the const qualifier. |
| 3950 | if (T->isPointerType()) |
| 3951 | T = Context.getPointerType(T: PointeeType.getUnqualifiedType()); |
| 3952 | |
| 3953 | return T; |
| 3954 | } |
| 3955 | |
| 3956 | CatchTypeInfo |
| 3957 | MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, |
| 3958 | QualType CatchHandlerType) { |
| 3959 | // TypeDescriptors for exceptions never have qualified pointer types, |
| 3960 | // qualifiers are stored separately in order to support qualification |
| 3961 | // conversions. |
| 3962 | bool IsConst, IsVolatile, IsUnaligned; |
| 3963 | Type = |
| 3964 | decomposeTypeForEH(Context&: getContext(), T: Type, IsConst, IsVolatile, IsUnaligned); |
| 3965 | |
| 3966 | bool IsReference = CatchHandlerType->isReferenceType(); |
| 3967 | |
| 3968 | uint32_t Flags = 0; |
| 3969 | if (IsConst) |
| 3970 | Flags |= 1; |
| 3971 | if (IsVolatile) |
| 3972 | Flags |= 2; |
| 3973 | if (IsUnaligned) |
| 3974 | Flags |= 4; |
| 3975 | if (IsReference) |
| 3976 | Flags |= 8; |
| 3977 | |
| 3978 | return CatchTypeInfo{.RTTI: getAddrOfRTTIDescriptor(Ty: Type)->stripPointerCasts(), |
| 3979 | .Flags: Flags}; |
| 3980 | } |
| 3981 | |
| 3982 | /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a |
| 3983 | /// llvm::GlobalVariable * because different type descriptors have different |
| 3984 | /// types, and need to be abstracted. They are abstracting by casting the |
| 3985 | /// address to an Int8PtrTy. |
| 3986 | llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { |
| 3987 | SmallString<256> MangledName; |
| 3988 | { |
| 3989 | llvm::raw_svector_ostream Out(MangledName); |
| 3990 | getMangleContext().mangleCXXRTTI(T: Type, Out); |
| 3991 | } |
| 3992 | |
| 3993 | // Check to see if we've already declared this TypeDescriptor. |
| 3994 | if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name: MangledName)) |
| 3995 | return GV; |
| 3996 | |
| 3997 | // Note for the future: If we would ever like to do deferred emission of |
| 3998 | // RTTI, check if emitting vtables opportunistically need any adjustment. |
| 3999 | |
| 4000 | // Compute the fields for the TypeDescriptor. |
| 4001 | SmallString<256> TypeInfoString; |
| 4002 | { |
| 4003 | llvm::raw_svector_ostream Out(TypeInfoString); |
| 4004 | getMangleContext().mangleCXXRTTIName(T: Type, Out); |
| 4005 | } |
| 4006 | |
| 4007 | // Declare and initialize the TypeDescriptor. |
| 4008 | llvm::Constant *Fields[] = { |
| 4009 | getTypeInfoVTable(CGM), // VFPtr |
| 4010 | llvm::ConstantPointerNull::get(T: CGM.Int8PtrTy), // Runtime data |
| 4011 | llvm::ConstantDataArray::getString(Context&: CGM.getLLVMContext(), Initializer: TypeInfoString)}; |
| 4012 | llvm::StructType *TypeDescriptorType = |
| 4013 | getTypeDescriptorType(TypeInfoString); |
| 4014 | auto *Var = new llvm::GlobalVariable( |
| 4015 | CGM.getModule(), TypeDescriptorType, /*isConstant=*/false, |
| 4016 | getLinkageForRTTI(Ty: Type), |
| 4017 | llvm::ConstantStruct::get(T: TypeDescriptorType, V: Fields), |
| 4018 | MangledName); |
| 4019 | if (Var->isWeakForLinker()) |
| 4020 | Var->setComdat(CGM.getModule().getOrInsertComdat(Name: Var->getName())); |
| 4021 | return Var; |
| 4022 | } |
| 4023 | |
| 4024 | /// Gets or a creates a Microsoft CompleteObjectLocator. |
| 4025 | llvm::GlobalVariable * |
| 4026 | MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, |
| 4027 | const VPtrInfo &Info) { |
| 4028 | return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); |
| 4029 | } |
| 4030 | |
| 4031 | void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) { |
| 4032 | if (auto *ctor = dyn_cast<CXXConstructorDecl>(Val: GD.getDecl())) { |
| 4033 | // There are no constructor variants, always emit the complete destructor. |
| 4034 | llvm::Function *Fn = |
| 4035 | CGM.codegenCXXStructor(GD: GD.getWithCtorType(Type: Ctor_Complete)); |
| 4036 | CGM.maybeSetTrivialComdat(D: *ctor, GO&: *Fn); |
| 4037 | return; |
| 4038 | } |
| 4039 | |
| 4040 | auto *dtor = cast<CXXDestructorDecl>(Val: GD.getDecl()); |
| 4041 | |
| 4042 | // Emit the base destructor if the base and complete (vbase) destructors are |
| 4043 | // equivalent. This effectively implements -mconstructor-aliases as part of |
| 4044 | // the ABI. |
| 4045 | if (GD.getDtorType() == Dtor_Complete && |
| 4046 | dtor->getParent()->getNumVBases() == 0) |
| 4047 | GD = GD.getWithDtorType(Type: Dtor_Base); |
| 4048 | |
| 4049 | // The base destructor is equivalent to the base destructor of its |
| 4050 | // base class if there is exactly one non-virtual base class with a |
| 4051 | // non-trivial destructor, there are no fields with a non-trivial |
| 4052 | // destructor, and the body of the destructor is trivial. |
| 4053 | if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(D: dtor)) |
| 4054 | return; |
| 4055 | |
| 4056 | llvm::Function *Fn = CGM.codegenCXXStructor(GD); |
| 4057 | if (Fn->isWeakForLinker()) |
| 4058 | Fn->setComdat(CGM.getModule().getOrInsertComdat(Name: Fn->getName())); |
| 4059 | } |
| 4060 | |
| 4061 | llvm::Function * |
| 4062 | MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, |
| 4063 | CXXCtorType CT) { |
| 4064 | assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); |
| 4065 | |
| 4066 | // Calculate the mangled name. |
| 4067 | SmallString<256> ThunkName; |
| 4068 | llvm::raw_svector_ostream Out(ThunkName); |
| 4069 | getMangleContext().mangleName(GD: GlobalDecl(CD, CT), Out); |
| 4070 | |
| 4071 | // If the thunk has been generated previously, just return it. |
| 4072 | if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(Name: ThunkName)) |
| 4073 | return cast<llvm::Function>(Val: GV); |
| 4074 | |
| 4075 | // Create the llvm::Function. |
| 4076 | const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); |
| 4077 | llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(Info: FnInfo); |
| 4078 | const CXXRecordDecl *RD = CD->getParent(); |
| 4079 | QualType RecordTy = getContext().getRecordType(Decl: RD); |
| 4080 | llvm::Function *ThunkFn = llvm::Function::Create( |
| 4081 | Ty: ThunkTy, Linkage: getLinkageForRTTI(Ty: RecordTy), N: ThunkName.str(), M: &CGM.getModule()); |
| 4082 | ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>( |
| 4083 | FnInfo.getEffectiveCallingConvention())); |
| 4084 | if (ThunkFn->isWeakForLinker()) |
| 4085 | ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(Name: ThunkFn->getName())); |
| 4086 | bool IsCopy = CT == Ctor_CopyingClosure; |
| 4087 | |
| 4088 | // Start codegen. |
| 4089 | CodeGenFunction CGF(CGM); |
| 4090 | CGF.CurGD = GlobalDecl(CD, Ctor_Complete); |
| 4091 | |
| 4092 | // Build FunctionArgs. |
| 4093 | FunctionArgList FunctionArgs; |
| 4094 | |
| 4095 | // A constructor always starts with a 'this' pointer as its first argument. |
| 4096 | buildThisParam(CGF, Params&: FunctionArgs); |
| 4097 | |
| 4098 | // Following the 'this' pointer is a reference to the source object that we |
| 4099 | // are copying from. |
| 4100 | ImplicitParamDecl SrcParam( |
| 4101 | getContext(), /*DC=*/nullptr, SourceLocation(), |
| 4102 | &getContext().Idents.get(Name: "src" ), |
| 4103 | getContext().getLValueReferenceType(T: RecordTy, |
| 4104 | /*SpelledAsLValue=*/true), |
| 4105 | ImplicitParamKind::Other); |
| 4106 | if (IsCopy) |
| 4107 | FunctionArgs.push_back(Elt: &SrcParam); |
| 4108 | |
| 4109 | // Constructors for classes which utilize virtual bases have an additional |
| 4110 | // parameter which indicates whether or not it is being delegated to by a more |
| 4111 | // derived constructor. |
| 4112 | ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr, |
| 4113 | SourceLocation(), |
| 4114 | &getContext().Idents.get(Name: "is_most_derived" ), |
| 4115 | getContext().IntTy, ImplicitParamKind::Other); |
| 4116 | // Only add the parameter to the list if the class has virtual bases. |
| 4117 | if (RD->getNumVBases() > 0) |
| 4118 | FunctionArgs.push_back(Elt: &IsMostDerived); |
| 4119 | |
| 4120 | // Start defining the function. |
| 4121 | auto NL = ApplyDebugLocation::CreateEmpty(CGF); |
| 4122 | CGF.StartFunction(GD: GlobalDecl(), RetTy: FnInfo.getReturnType(), Fn: ThunkFn, FnInfo, |
| 4123 | Args: FunctionArgs, Loc: CD->getLocation(), StartLoc: SourceLocation()); |
| 4124 | // Create a scope with an artificial location for the body of this function. |
| 4125 | auto AL = ApplyDebugLocation::CreateArtificial(CGF); |
| 4126 | setCXXABIThisValue(CGF, ThisPtr: loadIncomingCXXThis(CGF)); |
| 4127 | llvm::Value *This = getThisValue(CGF); |
| 4128 | |
| 4129 | llvm::Value *SrcVal = |
| 4130 | IsCopy ? CGF.Builder.CreateLoad(Addr: CGF.GetAddrOfLocalVar(VD: &SrcParam), Name: "src" ) |
| 4131 | : nullptr; |
| 4132 | |
| 4133 | CallArgList Args; |
| 4134 | |
| 4135 | // Push the this ptr. |
| 4136 | Args.add(rvalue: RValue::get(V: This), type: CD->getThisType()); |
| 4137 | |
| 4138 | // Push the src ptr. |
| 4139 | if (SrcVal) |
| 4140 | Args.add(rvalue: RValue::get(V: SrcVal), type: SrcParam.getType()); |
| 4141 | |
| 4142 | // Add the rest of the default arguments. |
| 4143 | SmallVector<const Stmt *, 4> ArgVec; |
| 4144 | ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(N: IsCopy ? 1 : 0); |
| 4145 | for (const ParmVarDecl *PD : params) { |
| 4146 | assert(PD->hasDefaultArg() && "ctor closure lacks default args" ); |
| 4147 | ArgVec.push_back(Elt: PD->getDefaultArg()); |
| 4148 | } |
| 4149 | |
| 4150 | CodeGenFunction::RunCleanupsScope Cleanups(CGF); |
| 4151 | |
| 4152 | const auto *FPT = CD->getType()->castAs<FunctionProtoType>(); |
| 4153 | CGF.EmitCallArgs(Args, Prototype: FPT, ArgRange: llvm::ArrayRef(ArgVec), AC: CD, ParamsToSkip: IsCopy ? 1 : 0); |
| 4154 | |
| 4155 | // Insert any ABI-specific implicit constructor arguments. |
| 4156 | AddedStructorArgCounts = |
| 4157 | addImplicitConstructorArgs(CGF, D: CD, Type: Ctor_Complete, |
| 4158 | /*ForVirtualBase=*/false, |
| 4159 | /*Delegating=*/false, Args); |
| 4160 | // Call the destructor with our arguments. |
| 4161 | llvm::Constant *CalleePtr = |
| 4162 | CGM.getAddrOfCXXStructor(GD: GlobalDecl(CD, Ctor_Complete)); |
| 4163 | CGCallee Callee = |
| 4164 | CGCallee::forDirect(functionPtr: CalleePtr, abstractInfo: GlobalDecl(CD, Ctor_Complete)); |
| 4165 | const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( |
| 4166 | Args, D: CD, CtorKind: Ctor_Complete, ExtraPrefixArgs: ExtraArgs.Prefix, ExtraSuffixArgs: ExtraArgs.Suffix); |
| 4167 | CGF.EmitCall(CallInfo: CalleeInfo, Callee, ReturnValue: ReturnValueSlot(), Args); |
| 4168 | |
| 4169 | Cleanups.ForceCleanup(); |
| 4170 | |
| 4171 | // Emit the ret instruction, remove any temporary instructions created for the |
| 4172 | // aid of CodeGen. |
| 4173 | CGF.FinishFunction(EndLoc: SourceLocation()); |
| 4174 | |
| 4175 | return ThunkFn; |
| 4176 | } |
| 4177 | |
| 4178 | llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, |
| 4179 | uint32_t NVOffset, |
| 4180 | int32_t VBPtrOffset, |
| 4181 | uint32_t VBIndex) { |
| 4182 | assert(!T->isReferenceType()); |
| 4183 | |
| 4184 | CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
| 4185 | const CXXConstructorDecl *CD = |
| 4186 | RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; |
| 4187 | CXXCtorType CT = Ctor_Complete; |
| 4188 | if (CD) |
| 4189 | if (!hasDefaultCXXMethodCC(Context&: getContext(), MD: CD) || CD->getNumParams() != 1) |
| 4190 | CT = Ctor_CopyingClosure; |
| 4191 | |
| 4192 | uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); |
| 4193 | SmallString<256> MangledName; |
| 4194 | { |
| 4195 | llvm::raw_svector_ostream Out(MangledName); |
| 4196 | getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, |
| 4197 | VBPtrOffset, VBIndex, Out); |
| 4198 | } |
| 4199 | if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name: MangledName)) |
| 4200 | return getImageRelativeConstant(PtrVal: GV); |
| 4201 | |
| 4202 | // The TypeDescriptor is used by the runtime to determine if a catch handler |
| 4203 | // is appropriate for the exception object. |
| 4204 | llvm::Constant *TD = getImageRelativeConstant(PtrVal: getAddrOfRTTIDescriptor(Type: T)); |
| 4205 | |
| 4206 | // The runtime is responsible for calling the copy constructor if the |
| 4207 | // exception is caught by value. |
| 4208 | llvm::Constant *CopyCtor; |
| 4209 | if (CD) { |
| 4210 | if (CT == Ctor_CopyingClosure) |
| 4211 | CopyCtor = getAddrOfCXXCtorClosure(CD, CT: Ctor_CopyingClosure); |
| 4212 | else |
| 4213 | CopyCtor = CGM.getAddrOfCXXStructor(GD: GlobalDecl(CD, Ctor_Complete)); |
| 4214 | } else { |
| 4215 | CopyCtor = llvm::Constant::getNullValue(Ty: CGM.Int8PtrTy); |
| 4216 | } |
| 4217 | CopyCtor = getImageRelativeConstant(PtrVal: CopyCtor); |
| 4218 | |
| 4219 | bool IsScalar = !RD; |
| 4220 | bool HasVirtualBases = false; |
| 4221 | bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. |
| 4222 | QualType PointeeType = T; |
| 4223 | if (T->isPointerType()) |
| 4224 | PointeeType = T->getPointeeType(); |
| 4225 | if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { |
| 4226 | HasVirtualBases = RD->getNumVBases() > 0; |
| 4227 | if (IdentifierInfo *II = RD->getIdentifier()) |
| 4228 | IsStdBadAlloc = II->isStr(Str: "bad_alloc" ) && RD->isInStdNamespace(); |
| 4229 | } |
| 4230 | |
| 4231 | // Encode the relevant CatchableType properties into the Flags bitfield. |
| 4232 | // FIXME: Figure out how bits 2 or 8 can get set. |
| 4233 | uint32_t Flags = 0; |
| 4234 | if (IsScalar) |
| 4235 | Flags |= 1; |
| 4236 | if (HasVirtualBases) |
| 4237 | Flags |= 4; |
| 4238 | if (IsStdBadAlloc) |
| 4239 | Flags |= 16; |
| 4240 | |
| 4241 | llvm::Constant *Fields[] = { |
| 4242 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Flags), // Flags |
| 4243 | TD, // TypeDescriptor |
| 4244 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: NVOffset), // NonVirtualAdjustment |
| 4245 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBPtrOffset), // OffsetToVBPtr |
| 4246 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBIndex), // VBTableIndex |
| 4247 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Size), // Size |
| 4248 | CopyCtor // CopyCtor |
| 4249 | }; |
| 4250 | llvm::StructType *CTType = getCatchableTypeType(); |
| 4251 | auto *GV = new llvm::GlobalVariable( |
| 4252 | CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(Ty: T), |
| 4253 | llvm::ConstantStruct::get(T: CTType, V: Fields), MangledName); |
| 4254 | GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| 4255 | GV->setSection(".xdata" ); |
| 4256 | if (GV->isWeakForLinker()) |
| 4257 | GV->setComdat(CGM.getModule().getOrInsertComdat(Name: GV->getName())); |
| 4258 | return getImageRelativeConstant(PtrVal: GV); |
| 4259 | } |
| 4260 | |
| 4261 | llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { |
| 4262 | assert(!T->isReferenceType()); |
| 4263 | |
| 4264 | // See if we've already generated a CatchableTypeArray for this type before. |
| 4265 | llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; |
| 4266 | if (CTA) |
| 4267 | return CTA; |
| 4268 | |
| 4269 | // Ensure that we don't have duplicate entries in our CatchableTypeArray by |
| 4270 | // using a SmallSetVector. Duplicates may arise due to virtual bases |
| 4271 | // occurring more than once in the hierarchy. |
| 4272 | llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes; |
| 4273 | |
| 4274 | // C++14 [except.handle]p3: |
| 4275 | // A handler is a match for an exception object of type E if [...] |
| 4276 | // - the handler is of type cv T or cv T& and T is an unambiguous public |
| 4277 | // base class of E, or |
| 4278 | // - the handler is of type cv T or const T& where T is a pointer type and |
| 4279 | // E is a pointer type that can be converted to T by [...] |
| 4280 | // - a standard pointer conversion (4.10) not involving conversions to |
| 4281 | // pointers to private or protected or ambiguous classes |
| 4282 | const CXXRecordDecl *MostDerivedClass = nullptr; |
| 4283 | bool IsPointer = T->isPointerType(); |
| 4284 | if (IsPointer) |
| 4285 | MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); |
| 4286 | else |
| 4287 | MostDerivedClass = T->getAsCXXRecordDecl(); |
| 4288 | |
| 4289 | // Collect all the unambiguous public bases of the MostDerivedClass. |
| 4290 | if (MostDerivedClass) { |
| 4291 | const ASTContext &Context = getContext(); |
| 4292 | const ASTRecordLayout &MostDerivedLayout = |
| 4293 | Context.getASTRecordLayout(D: MostDerivedClass); |
| 4294 | MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); |
| 4295 | SmallVector<MSRTTIClass, 8> Classes; |
| 4296 | serializeClassHierarchy(Classes, RD: MostDerivedClass); |
| 4297 | Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); |
| 4298 | detectAmbiguousBases(Classes); |
| 4299 | for (const MSRTTIClass &Class : Classes) { |
| 4300 | // Skip any ambiguous or private bases. |
| 4301 | if (Class.Flags & |
| 4302 | (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) |
| 4303 | continue; |
| 4304 | // Write down how to convert from a derived pointer to a base pointer. |
| 4305 | uint32_t OffsetInVBTable = 0; |
| 4306 | int32_t VBPtrOffset = -1; |
| 4307 | if (Class.VirtualRoot) { |
| 4308 | OffsetInVBTable = |
| 4309 | VTableContext.getVBTableIndex(Derived: MostDerivedClass, VBase: Class.VirtualRoot)*4; |
| 4310 | VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); |
| 4311 | } |
| 4312 | |
| 4313 | // Turn our record back into a pointer if the exception object is a |
| 4314 | // pointer. |
| 4315 | QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); |
| 4316 | if (IsPointer) |
| 4317 | RTTITy = Context.getPointerType(T: RTTITy); |
| 4318 | CatchableTypes.insert(X: getCatchableType(T: RTTITy, NVOffset: Class.OffsetInVBase, |
| 4319 | VBPtrOffset, VBIndex: OffsetInVBTable)); |
| 4320 | } |
| 4321 | } |
| 4322 | |
| 4323 | // C++14 [except.handle]p3: |
| 4324 | // A handler is a match for an exception object of type E if |
| 4325 | // - The handler is of type cv T or cv T& and E and T are the same type |
| 4326 | // (ignoring the top-level cv-qualifiers) |
| 4327 | CatchableTypes.insert(X: getCatchableType(T)); |
| 4328 | |
| 4329 | // C++14 [except.handle]p3: |
| 4330 | // A handler is a match for an exception object of type E if |
| 4331 | // - the handler is of type cv T or const T& where T is a pointer type and |
| 4332 | // E is a pointer type that can be converted to T by [...] |
| 4333 | // - a standard pointer conversion (4.10) not involving conversions to |
| 4334 | // pointers to private or protected or ambiguous classes |
| 4335 | // |
| 4336 | // C++14 [conv.ptr]p2: |
| 4337 | // A prvalue of type "pointer to cv T," where T is an object type, can be |
| 4338 | // converted to a prvalue of type "pointer to cv void". |
| 4339 | if (IsPointer && T->getPointeeType()->isObjectType()) |
| 4340 | CatchableTypes.insert(X: getCatchableType(T: getContext().VoidPtrTy)); |
| 4341 | |
| 4342 | // C++14 [except.handle]p3: |
| 4343 | // A handler is a match for an exception object of type E if [...] |
| 4344 | // - the handler is of type cv T or const T& where T is a pointer or |
| 4345 | // pointer to member type and E is std::nullptr_t. |
| 4346 | // |
| 4347 | // We cannot possibly list all possible pointer types here, making this |
| 4348 | // implementation incompatible with the standard. However, MSVC includes an |
| 4349 | // entry for pointer-to-void in this case. Let's do the same. |
| 4350 | if (T->isNullPtrType()) |
| 4351 | CatchableTypes.insert(X: getCatchableType(T: getContext().VoidPtrTy)); |
| 4352 | |
| 4353 | uint32_t NumEntries = CatchableTypes.size(); |
| 4354 | llvm::Type *CTType = getImageRelativeType(PtrType: CGM.UnqualPtrTy); |
| 4355 | llvm::ArrayType *AT = llvm::ArrayType::get(ElementType: CTType, NumElements: NumEntries); |
| 4356 | llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); |
| 4357 | llvm::Constant *Fields[] = { |
| 4358 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: NumEntries), // NumEntries |
| 4359 | llvm::ConstantArray::get( |
| 4360 | T: AT, V: llvm::ArrayRef(CatchableTypes.begin(), |
| 4361 | CatchableTypes.end())) // CatchableTypes |
| 4362 | }; |
| 4363 | SmallString<256> MangledName; |
| 4364 | { |
| 4365 | llvm::raw_svector_ostream Out(MangledName); |
| 4366 | getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); |
| 4367 | } |
| 4368 | CTA = new llvm::GlobalVariable( |
| 4369 | CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(Ty: T), |
| 4370 | llvm::ConstantStruct::get(T: CTAType, V: Fields), MangledName); |
| 4371 | CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| 4372 | CTA->setSection(".xdata" ); |
| 4373 | if (CTA->isWeakForLinker()) |
| 4374 | CTA->setComdat(CGM.getModule().getOrInsertComdat(Name: CTA->getName())); |
| 4375 | return CTA; |
| 4376 | } |
| 4377 | |
| 4378 | llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { |
| 4379 | bool IsConst, IsVolatile, IsUnaligned; |
| 4380 | T = decomposeTypeForEH(Context&: getContext(), T, IsConst, IsVolatile, IsUnaligned); |
| 4381 | |
| 4382 | // The CatchableTypeArray enumerates the various (CV-unqualified) types that |
| 4383 | // the exception object may be caught as. |
| 4384 | llvm::GlobalVariable *CTA = getCatchableTypeArray(T); |
| 4385 | // The first field in a CatchableTypeArray is the number of CatchableTypes. |
| 4386 | // This is used as a component of the mangled name which means that we need to |
| 4387 | // know what it is in order to see if we have previously generated the |
| 4388 | // ThrowInfo. |
| 4389 | uint32_t NumEntries = |
| 4390 | cast<llvm::ConstantInt>(Val: CTA->getInitializer()->getAggregateElement(Elt: 0U)) |
| 4391 | ->getLimitedValue(); |
| 4392 | |
| 4393 | SmallString<256> MangledName; |
| 4394 | { |
| 4395 | llvm::raw_svector_ostream Out(MangledName); |
| 4396 | getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned, |
| 4397 | NumEntries, Out); |
| 4398 | } |
| 4399 | |
| 4400 | // Reuse a previously generated ThrowInfo if we have generated an appropriate |
| 4401 | // one before. |
| 4402 | if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name: MangledName)) |
| 4403 | return GV; |
| 4404 | |
| 4405 | // The RTTI TypeDescriptor uses an unqualified type but catch clauses must |
| 4406 | // be at least as CV qualified. Encode this requirement into the Flags |
| 4407 | // bitfield. |
| 4408 | uint32_t Flags = 0; |
| 4409 | if (IsConst) |
| 4410 | Flags |= 1; |
| 4411 | if (IsVolatile) |
| 4412 | Flags |= 2; |
| 4413 | if (IsUnaligned) |
| 4414 | Flags |= 4; |
| 4415 | |
| 4416 | // The cleanup-function (a destructor) must be called when the exception |
| 4417 | // object's lifetime ends. |
| 4418 | llvm::Constant *CleanupFn = llvm::Constant::getNullValue(Ty: CGM.Int8PtrTy); |
| 4419 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| 4420 | if (CXXDestructorDecl *DtorD = RD->getDestructor()) |
| 4421 | if (!DtorD->isTrivial()) |
| 4422 | CleanupFn = CGM.getAddrOfCXXStructor(GD: GlobalDecl(DtorD, Dtor_Complete)); |
| 4423 | // This is unused as far as we can tell, initialize it to null. |
| 4424 | llvm::Constant *ForwardCompat = |
| 4425 | getImageRelativeConstant(PtrVal: llvm::Constant::getNullValue(Ty: CGM.Int8PtrTy)); |
| 4426 | llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(PtrVal: CTA); |
| 4427 | llvm::StructType *TIType = getThrowInfoType(); |
| 4428 | llvm::Constant *Fields[] = { |
| 4429 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Flags), // Flags |
| 4430 | getImageRelativeConstant(PtrVal: CleanupFn), // CleanupFn |
| 4431 | ForwardCompat, // ForwardCompat |
| 4432 | PointerToCatchableTypes // CatchableTypeArray |
| 4433 | }; |
| 4434 | auto *GV = new llvm::GlobalVariable( |
| 4435 | CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(Ty: T), |
| 4436 | llvm::ConstantStruct::get(T: TIType, V: Fields), MangledName.str()); |
| 4437 | GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| 4438 | GV->setSection(".xdata" ); |
| 4439 | if (GV->isWeakForLinker()) |
| 4440 | GV->setComdat(CGM.getModule().getOrInsertComdat(Name: GV->getName())); |
| 4441 | return GV; |
| 4442 | } |
| 4443 | |
| 4444 | void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { |
| 4445 | const Expr *SubExpr = E->getSubExpr(); |
| 4446 | assert(SubExpr && "SubExpr cannot be null" ); |
| 4447 | QualType ThrowType = SubExpr->getType(); |
| 4448 | // The exception object lives on the stack and it's address is passed to the |
| 4449 | // runtime function. |
| 4450 | Address AI = CGF.CreateMemTemp(T: ThrowType); |
| 4451 | CGF.EmitAnyExprToMem(E: SubExpr, Location: AI, Quals: ThrowType.getQualifiers(), |
| 4452 | /*IsInit=*/IsInitializer: true); |
| 4453 | |
| 4454 | // The so-called ThrowInfo is used to describe how the exception object may be |
| 4455 | // caught. |
| 4456 | llvm::GlobalVariable *TI = getThrowInfo(T: ThrowType); |
| 4457 | |
| 4458 | // Call into the runtime to throw the exception. |
| 4459 | llvm::Value *Args[] = {AI.emitRawPointer(CGF), TI}; |
| 4460 | CGF.EmitNoreturnRuntimeCallOrInvoke(callee: getThrowFn(), args: Args); |
| 4461 | } |
| 4462 | |
| 4463 | std::pair<llvm::Value *, const CXXRecordDecl *> |
| 4464 | MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, |
| 4465 | const CXXRecordDecl *RD) { |
| 4466 | std::tie(args&: This, args: std::ignore, args&: RD) = |
| 4467 | performBaseAdjustment(CGF, Value: This, SrcRecordTy: QualType(RD->getTypeForDecl(), 0)); |
| 4468 | return {CGF.GetVTablePtr(This, VTableTy: CGM.Int8PtrTy, VTableClass: RD), RD}; |
| 4469 | } |
| 4470 | |
| 4471 | bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate( |
| 4472 | const CXXRecordDecl *RD) const { |
| 4473 | // All aggregates are permitted to be HFA on non-ARM platforms, which mostly |
| 4474 | // affects vectorcall on x64/x86. |
| 4475 | if (!CGM.getTarget().getTriple().isAArch64()) |
| 4476 | return true; |
| 4477 | // MSVC Windows on Arm64 has its own rules for determining if a type is HFA |
| 4478 | // that are inconsistent with the AAPCS64 ABI. The following are our best |
| 4479 | // determination of those rules so far, based on observation of MSVC's |
| 4480 | // behavior. |
| 4481 | if (RD->isEmpty()) |
| 4482 | return false; |
| 4483 | if (RD->isPolymorphic()) |
| 4484 | return false; |
| 4485 | if (RD->hasNonTrivialCopyAssignment()) |
| 4486 | return false; |
| 4487 | if (RD->hasNonTrivialDestructor()) |
| 4488 | return false; |
| 4489 | if (RD->hasNonTrivialDefaultConstructor()) |
| 4490 | return false; |
| 4491 | // These two are somewhat redundant given the caller |
| 4492 | // (ABIInfo::isHomogeneousAggregate) checks the bases and fields, but that |
| 4493 | // caller doesn't consider empty bases/fields to be non-homogenous, but it |
| 4494 | // looks like Microsoft's AArch64 ABI does care about these empty types & |
| 4495 | // anything containing/derived from one is non-homogeneous. |
| 4496 | // Instead we could add another CXXABI entry point to query this property and |
| 4497 | // have ABIInfo::isHomogeneousAggregate use that property. |
| 4498 | // I don't think any other of the features listed above could be true of a |
| 4499 | // base/field while not true of the outer struct. For example, if you have a |
| 4500 | // base/field that has an non-trivial copy assignment/dtor/default ctor, then |
| 4501 | // the outer struct's corresponding operation must be non-trivial. |
| 4502 | for (const CXXBaseSpecifier &B : RD->bases()) { |
| 4503 | if (const CXXRecordDecl *FRD = B.getType()->getAsCXXRecordDecl()) { |
| 4504 | if (!isPermittedToBeHomogeneousAggregate(RD: FRD)) |
| 4505 | return false; |
| 4506 | } |
| 4507 | } |
| 4508 | // empty fields seem to be caught by the ABIInfo::isHomogeneousAggregate |
| 4509 | // checking for padding - but maybe there are ways to end up with an empty |
| 4510 | // field without padding? Not that I know of, so don't check fields here & |
| 4511 | // rely on the padding check. |
| 4512 | return true; |
| 4513 | } |
| 4514 | |