1 | //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This provides C++ code generation targeting the Microsoft Visual C++ ABI. |
10 | // The class in this file generates structures that follow the Microsoft |
11 | // Visual C++ ABI, which is actually not very well documented at all outside |
12 | // of Microsoft. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "ABIInfo.h" |
17 | #include "CGCXXABI.h" |
18 | #include "CGCleanup.h" |
19 | #include "CGDebugInfo.h" |
20 | #include "CGVTables.h" |
21 | #include "CodeGenModule.h" |
22 | #include "CodeGenTypes.h" |
23 | #include "TargetInfo.h" |
24 | #include "clang/AST/Attr.h" |
25 | #include "clang/AST/CXXInheritance.h" |
26 | #include "clang/AST/Decl.h" |
27 | #include "clang/AST/DeclCXX.h" |
28 | #include "clang/AST/StmtCXX.h" |
29 | #include "clang/AST/VTableBuilder.h" |
30 | #include "clang/CodeGen/ConstantInitBuilder.h" |
31 | #include "llvm/ADT/StringExtras.h" |
32 | #include "llvm/ADT/StringSet.h" |
33 | #include "llvm/IR/Intrinsics.h" |
34 | |
35 | using namespace clang; |
36 | using namespace CodeGen; |
37 | |
38 | namespace { |
39 | |
40 | /// Holds all the vbtable globals for a given class. |
41 | struct VBTableGlobals { |
42 | const VPtrInfoVector *VBTables; |
43 | SmallVector<llvm::GlobalVariable *, 2> Globals; |
44 | }; |
45 | |
46 | class MicrosoftCXXABI : public CGCXXABI { |
47 | public: |
48 | MicrosoftCXXABI(CodeGenModule &CGM) |
49 | : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), |
50 | ClassHierarchyDescriptorType(nullptr), |
51 | CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), |
52 | ThrowInfoType(nullptr) { |
53 | assert(!(CGM.getLangOpts().isExplicitDefaultVisibilityExportMapping() || |
54 | CGM.getLangOpts().isAllDefaultVisibilityExportMapping()) && |
55 | "visibility export mapping option unimplemented in this ABI" ); |
56 | } |
57 | |
58 | bool HasThisReturn(GlobalDecl GD) const override; |
59 | bool hasMostDerivedReturn(GlobalDecl GD) const override; |
60 | |
61 | bool classifyReturnType(CGFunctionInfo &FI) const override; |
62 | |
63 | RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; |
64 | |
65 | bool isSRetParameterAfterThis() const override { return true; } |
66 | |
67 | bool isThisCompleteObject(GlobalDecl GD) const override { |
68 | // The Microsoft ABI doesn't use separate complete-object vs. |
69 | // base-object variants of constructors, but it does of destructors. |
70 | if (isa<CXXDestructorDecl>(Val: GD.getDecl())) { |
71 | switch (GD.getDtorType()) { |
72 | case Dtor_Complete: |
73 | case Dtor_Deleting: |
74 | return true; |
75 | |
76 | case Dtor_Base: |
77 | return false; |
78 | |
79 | case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?" ); |
80 | } |
81 | llvm_unreachable("bad dtor kind" ); |
82 | } |
83 | |
84 | // No other kinds. |
85 | return false; |
86 | } |
87 | |
88 | size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, |
89 | FunctionArgList &Args) const override { |
90 | assert(Args.size() >= 2 && |
91 | "expected the arglist to have at least two args!" ); |
92 | // The 'most_derived' parameter goes second if the ctor is variadic and |
93 | // has v-bases. |
94 | if (CD->getParent()->getNumVBases() > 0 && |
95 | CD->getType()->castAs<FunctionProtoType>()->isVariadic()) |
96 | return 2; |
97 | return 1; |
98 | } |
99 | |
100 | std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override { |
101 | std::vector<CharUnits> VBPtrOffsets; |
102 | const ASTContext &Context = getContext(); |
103 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
104 | |
105 | const VBTableGlobals &VBGlobals = enumerateVBTables(RD); |
106 | for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) { |
107 | const ASTRecordLayout &SubobjectLayout = |
108 | Context.getASTRecordLayout(D: VBT->IntroducingObject); |
109 | CharUnits Offs = VBT->NonVirtualOffset; |
110 | Offs += SubobjectLayout.getVBPtrOffset(); |
111 | if (VBT->getVBaseWithVPtr()) |
112 | Offs += Layout.getVBaseClassOffset(VBase: VBT->getVBaseWithVPtr()); |
113 | VBPtrOffsets.push_back(x: Offs); |
114 | } |
115 | llvm::array_pod_sort(Start: VBPtrOffsets.begin(), End: VBPtrOffsets.end()); |
116 | return VBPtrOffsets; |
117 | } |
118 | |
119 | StringRef GetPureVirtualCallName() override { return "_purecall" ; } |
120 | StringRef GetDeletedVirtualCallName() override { return "_purecall" ; } |
121 | |
122 | void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, |
123 | Address Ptr, QualType ElementType, |
124 | const CXXDestructorDecl *Dtor) override; |
125 | |
126 | void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; |
127 | void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; |
128 | |
129 | void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; |
130 | |
131 | llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, |
132 | const VPtrInfo &Info); |
133 | |
134 | llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; |
135 | CatchTypeInfo |
136 | getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; |
137 | |
138 | /// MSVC needs an extra flag to indicate a catchall. |
139 | CatchTypeInfo getCatchAllTypeInfo() override { |
140 | // For -EHa catch(...) must handle HW exception |
141 | // Adjective = HT_IsStdDotDot (0x40), only catch C++ exceptions |
142 | if (getContext().getLangOpts().EHAsynch) |
143 | return CatchTypeInfo{.RTTI: nullptr, .Flags: 0}; |
144 | else |
145 | return CatchTypeInfo{.RTTI: nullptr, .Flags: 0x40}; |
146 | } |
147 | |
148 | bool shouldTypeidBeNullChecked(QualType SrcRecordTy) override; |
149 | void EmitBadTypeidCall(CodeGenFunction &CGF) override; |
150 | llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, |
151 | Address ThisPtr, |
152 | llvm::Type *StdTypeInfoPtrTy) override; |
153 | |
154 | bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, |
155 | QualType SrcRecordTy) override; |
156 | |
157 | bool shouldEmitExactDynamicCast(QualType DestRecordTy) override { |
158 | // TODO: Add support for exact dynamic_casts. |
159 | return false; |
160 | } |
161 | llvm::Value *emitExactDynamicCast(CodeGenFunction &CGF, Address Value, |
162 | QualType SrcRecordTy, QualType DestTy, |
163 | QualType DestRecordTy, |
164 | llvm::BasicBlock *CastSuccess, |
165 | llvm::BasicBlock *CastFail) override { |
166 | llvm_unreachable("unsupported" ); |
167 | } |
168 | |
169 | llvm::Value *emitDynamicCastCall(CodeGenFunction &CGF, Address Value, |
170 | QualType SrcRecordTy, QualType DestTy, |
171 | QualType DestRecordTy, |
172 | llvm::BasicBlock *CastEnd) override; |
173 | |
174 | llvm::Value *emitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, |
175 | QualType SrcRecordTy) override; |
176 | |
177 | bool EmitBadCastCall(CodeGenFunction &CGF) override; |
178 | bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { |
179 | return false; |
180 | } |
181 | |
182 | llvm::Value * |
183 | GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, |
184 | const CXXRecordDecl *ClassDecl, |
185 | const CXXRecordDecl *BaseClassDecl) override; |
186 | |
187 | llvm::BasicBlock * |
188 | EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, |
189 | const CXXRecordDecl *RD) override; |
190 | |
191 | llvm::BasicBlock * |
192 | EmitDtorCompleteObjectHandler(CodeGenFunction &CGF); |
193 | |
194 | void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, |
195 | const CXXRecordDecl *RD) override; |
196 | |
197 | void EmitCXXConstructors(const CXXConstructorDecl *D) override; |
198 | |
199 | // Background on MSVC destructors |
200 | // ============================== |
201 | // |
202 | // Both Itanium and MSVC ABIs have destructor variants. The variant names |
203 | // roughly correspond in the following way: |
204 | // Itanium Microsoft |
205 | // Base -> no name, just ~Class |
206 | // Complete -> vbase destructor |
207 | // Deleting -> scalar deleting destructor |
208 | // vector deleting destructor |
209 | // |
210 | // The base and complete destructors are the same as in Itanium, although the |
211 | // complete destructor does not accept a VTT parameter when there are virtual |
212 | // bases. A separate mechanism involving vtordisps is used to ensure that |
213 | // virtual methods of destroyed subobjects are not called. |
214 | // |
215 | // The deleting destructors accept an i32 bitfield as a second parameter. Bit |
216 | // 1 indicates if the memory should be deleted. Bit 2 indicates if the this |
217 | // pointer points to an array. The scalar deleting destructor assumes that |
218 | // bit 2 is zero, and therefore does not contain a loop. |
219 | // |
220 | // For virtual destructors, only one entry is reserved in the vftable, and it |
221 | // always points to the vector deleting destructor. The vector deleting |
222 | // destructor is the most general, so it can be used to destroy objects in |
223 | // place, delete single heap objects, or delete arrays. |
224 | // |
225 | // A TU defining a non-inline destructor is only guaranteed to emit a base |
226 | // destructor, and all of the other variants are emitted on an as-needed basis |
227 | // in COMDATs. Because a non-base destructor can be emitted in a TU that |
228 | // lacks a definition for the destructor, non-base destructors must always |
229 | // delegate to or alias the base destructor. |
230 | |
231 | AddedStructorArgCounts |
232 | buildStructorSignature(GlobalDecl GD, |
233 | SmallVectorImpl<CanQualType> &ArgTys) override; |
234 | |
235 | /// Non-base dtors should be emitted as delegating thunks in this ABI. |
236 | bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, |
237 | CXXDtorType DT) const override { |
238 | return DT != Dtor_Base; |
239 | } |
240 | |
241 | void setCXXDestructorDLLStorage(llvm::GlobalValue *GV, |
242 | const CXXDestructorDecl *Dtor, |
243 | CXXDtorType DT) const override; |
244 | |
245 | llvm::GlobalValue::LinkageTypes |
246 | getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor, |
247 | CXXDtorType DT) const override; |
248 | |
249 | void EmitCXXDestructors(const CXXDestructorDecl *D) override; |
250 | |
251 | const CXXRecordDecl *getThisArgumentTypeForMethod(GlobalDecl GD) override { |
252 | auto *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
253 | |
254 | if (MD->isVirtual()) { |
255 | GlobalDecl LookupGD = GD; |
256 | if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
257 | // Complete dtors take a pointer to the complete object, |
258 | // thus don't need adjustment. |
259 | if (GD.getDtorType() == Dtor_Complete) |
260 | return MD->getParent(); |
261 | |
262 | // There's only Dtor_Deleting in vftable but it shares the this |
263 | // adjustment with the base one, so look up the deleting one instead. |
264 | LookupGD = GlobalDecl(DD, Dtor_Deleting); |
265 | } |
266 | MethodVFTableLocation ML = |
267 | CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD: LookupGD); |
268 | |
269 | // The vbases might be ordered differently in the final overrider object |
270 | // and the complete object, so the "this" argument may sometimes point to |
271 | // memory that has no particular type (e.g. past the complete object). |
272 | // In this case, we just use a generic pointer type. |
273 | // FIXME: might want to have a more precise type in the non-virtual |
274 | // multiple inheritance case. |
275 | if (ML.VBase || !ML.VFPtrOffset.isZero()) |
276 | return nullptr; |
277 | } |
278 | return MD->getParent(); |
279 | } |
280 | |
281 | Address |
282 | adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, |
283 | Address This, |
284 | bool VirtualCall) override; |
285 | |
286 | void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, |
287 | FunctionArgList &Params) override; |
288 | |
289 | void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; |
290 | |
291 | AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF, |
292 | const CXXConstructorDecl *D, |
293 | CXXCtorType Type, |
294 | bool ForVirtualBase, |
295 | bool Delegating) override; |
296 | |
297 | llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF, |
298 | const CXXDestructorDecl *DD, |
299 | CXXDtorType Type, |
300 | bool ForVirtualBase, |
301 | bool Delegating) override; |
302 | |
303 | void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, |
304 | CXXDtorType Type, bool ForVirtualBase, |
305 | bool Delegating, Address This, |
306 | QualType ThisTy) override; |
307 | |
308 | void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, |
309 | llvm::GlobalVariable *VTable); |
310 | |
311 | void emitVTableDefinitions(CodeGenVTables &CGVT, |
312 | const CXXRecordDecl *RD) override; |
313 | |
314 | bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, |
315 | CodeGenFunction::VPtr Vptr) override; |
316 | |
317 | /// Don't initialize vptrs if dynamic class |
318 | /// is marked with the 'novtable' attribute. |
319 | bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { |
320 | return !VTableClass->hasAttr<MSNoVTableAttr>(); |
321 | } |
322 | |
323 | llvm::Constant * |
324 | getVTableAddressPoint(BaseSubobject Base, |
325 | const CXXRecordDecl *VTableClass) override; |
326 | |
327 | llvm::Value *getVTableAddressPointInStructor( |
328 | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, |
329 | BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; |
330 | |
331 | llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, |
332 | CharUnits VPtrOffset) override; |
333 | |
334 | CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, |
335 | Address This, llvm::Type *Ty, |
336 | SourceLocation Loc) override; |
337 | |
338 | llvm::Value * |
339 | EmitVirtualDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, |
340 | CXXDtorType DtorType, Address This, |
341 | DeleteOrMemberCallExpr E, |
342 | llvm::CallBase **CallOrInvoke) override; |
343 | |
344 | void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, |
345 | CallArgList &CallArgs) override { |
346 | assert(GD.getDtorType() == Dtor_Deleting && |
347 | "Only deleting destructor thunks are available in this ABI" ); |
348 | CallArgs.add(rvalue: RValue::get(V: getStructorImplicitParamValue(CGF)), |
349 | type: getContext().IntTy); |
350 | } |
351 | |
352 | void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; |
353 | |
354 | llvm::GlobalVariable * |
355 | getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, |
356 | llvm::GlobalVariable::LinkageTypes Linkage); |
357 | |
358 | llvm::GlobalVariable * |
359 | getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, |
360 | const CXXRecordDecl *DstRD) { |
361 | SmallString<256> OutName; |
362 | llvm::raw_svector_ostream Out(OutName); |
363 | getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); |
364 | StringRef MangledName = OutName.str(); |
365 | |
366 | if (auto *VDispMap = CGM.getModule().getNamedGlobal(Name: MangledName)) |
367 | return VDispMap; |
368 | |
369 | MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); |
370 | unsigned NumEntries = 1 + SrcRD->getNumVBases(); |
371 | SmallVector<llvm::Constant *, 4> Map(NumEntries, |
372 | llvm::PoisonValue::get(T: CGM.IntTy)); |
373 | Map[0] = llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0); |
374 | bool AnyDifferent = false; |
375 | for (const auto &I : SrcRD->vbases()) { |
376 | const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); |
377 | if (!DstRD->isVirtuallyDerivedFrom(Base: VBase)) |
378 | continue; |
379 | |
380 | unsigned SrcVBIndex = VTContext.getVBTableIndex(Derived: SrcRD, VBase); |
381 | unsigned DstVBIndex = VTContext.getVBTableIndex(Derived: DstRD, VBase); |
382 | Map[SrcVBIndex] = llvm::ConstantInt::get(Ty: CGM.IntTy, V: DstVBIndex * 4); |
383 | AnyDifferent |= SrcVBIndex != DstVBIndex; |
384 | } |
385 | // This map would be useless, don't use it. |
386 | if (!AnyDifferent) |
387 | return nullptr; |
388 | |
389 | llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(ElementType: CGM.IntTy, NumElements: Map.size()); |
390 | llvm::Constant *Init = llvm::ConstantArray::get(T: VDispMapTy, V: Map); |
391 | llvm::GlobalValue::LinkageTypes Linkage = |
392 | SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() |
393 | ? llvm::GlobalValue::LinkOnceODRLinkage |
394 | : llvm::GlobalValue::InternalLinkage; |
395 | auto *VDispMap = new llvm::GlobalVariable( |
396 | CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage, |
397 | /*Initializer=*/Init, MangledName); |
398 | return VDispMap; |
399 | } |
400 | |
401 | void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, |
402 | llvm::GlobalVariable *GV) const; |
403 | |
404 | void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, |
405 | GlobalDecl GD, bool ReturnAdjustment) override { |
406 | GVALinkage Linkage = |
407 | getContext().GetGVALinkageForFunction(FD: cast<FunctionDecl>(Val: GD.getDecl())); |
408 | |
409 | if (Linkage == GVA_Internal) |
410 | Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); |
411 | else if (ReturnAdjustment) |
412 | Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); |
413 | else |
414 | Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); |
415 | } |
416 | |
417 | bool exportThunk() override { return false; } |
418 | |
419 | llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, |
420 | const CXXRecordDecl * /*UnadjustedClass*/, |
421 | const ThunkInfo &TI) override; |
422 | |
423 | llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, |
424 | const CXXRecordDecl * /*UnadjustedClass*/, |
425 | const ReturnAdjustment &RA) override; |
426 | |
427 | void EmitThreadLocalInitFuncs( |
428 | CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, |
429 | ArrayRef<llvm::Function *> CXXThreadLocalInits, |
430 | ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; |
431 | |
432 | bool usesThreadWrapperFunction(const VarDecl *VD) const override { |
433 | return getContext().getLangOpts().isCompatibleWithMSVC( |
434 | MajorVersion: LangOptions::MSVC2019_5) && |
435 | CGM.getCodeGenOpts().TlsGuards && |
436 | (!isEmittedWithConstantInitializer(VD) || mayNeedDestruction(VD)); |
437 | } |
438 | LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, |
439 | QualType LValType) override; |
440 | |
441 | void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, |
442 | llvm::GlobalVariable *DeclPtr, |
443 | bool PerformInit) override; |
444 | void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
445 | llvm::FunctionCallee Dtor, |
446 | llvm::Constant *Addr) override; |
447 | |
448 | // ==== Notes on array cookies ========= |
449 | // |
450 | // MSVC seems to only use cookies when the class has a destructor; a |
451 | // two-argument usual array deallocation function isn't sufficient. |
452 | // |
453 | // For example, this code prints "100" and "1": |
454 | // struct A { |
455 | // char x; |
456 | // void *operator new[](size_t sz) { |
457 | // printf("%u\n", sz); |
458 | // return malloc(sz); |
459 | // } |
460 | // void operator delete[](void *p, size_t sz) { |
461 | // printf("%u\n", sz); |
462 | // free(p); |
463 | // } |
464 | // }; |
465 | // int main() { |
466 | // A *p = new A[100]; |
467 | // delete[] p; |
468 | // } |
469 | // Whereas it prints "104" and "104" if you give A a destructor. |
470 | |
471 | bool requiresArrayCookie(const CXXDeleteExpr *expr, |
472 | QualType elementType) override; |
473 | bool requiresArrayCookie(const CXXNewExpr *expr) override; |
474 | CharUnits getArrayCookieSizeImpl(QualType type) override; |
475 | Address InitializeArrayCookie(CodeGenFunction &CGF, |
476 | Address NewPtr, |
477 | llvm::Value *NumElements, |
478 | const CXXNewExpr *expr, |
479 | QualType ElementType) override; |
480 | llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, |
481 | Address allocPtr, |
482 | CharUnits cookieSize) override; |
483 | |
484 | friend struct MSRTTIBuilder; |
485 | |
486 | bool isImageRelative() const { |
487 | return CGM.getTarget().getPointerWidth(AddrSpace: LangAS::Default) == 64; |
488 | } |
489 | |
490 | // 5 routines for constructing the llvm types for MS RTTI structs. |
491 | llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { |
492 | llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor" ); |
493 | TDTypeName += llvm::utostr(X: TypeInfoString.size()); |
494 | llvm::StructType *&TypeDescriptorType = |
495 | TypeDescriptorTypeMap[TypeInfoString.size()]; |
496 | if (TypeDescriptorType) |
497 | return TypeDescriptorType; |
498 | llvm::Type *FieldTypes[] = { |
499 | CGM.Int8PtrPtrTy, |
500 | CGM.Int8PtrTy, |
501 | llvm::ArrayType::get(ElementType: CGM.Int8Ty, NumElements: TypeInfoString.size() + 1)}; |
502 | TypeDescriptorType = |
503 | llvm::StructType::create(Context&: CGM.getLLVMContext(), Elements: FieldTypes, Name: TDTypeName); |
504 | return TypeDescriptorType; |
505 | } |
506 | |
507 | llvm::Type *getImageRelativeType(llvm::Type *PtrType) { |
508 | if (!isImageRelative()) |
509 | return PtrType; |
510 | return CGM.IntTy; |
511 | } |
512 | |
513 | llvm::StructType *getBaseClassDescriptorType() { |
514 | if (BaseClassDescriptorType) |
515 | return BaseClassDescriptorType; |
516 | llvm::Type *FieldTypes[] = { |
517 | getImageRelativeType(PtrType: CGM.Int8PtrTy), |
518 | CGM.IntTy, |
519 | CGM.IntTy, |
520 | CGM.IntTy, |
521 | CGM.IntTy, |
522 | CGM.IntTy, |
523 | getImageRelativeType(PtrType: CGM.UnqualPtrTy), |
524 | }; |
525 | BaseClassDescriptorType = llvm::StructType::create( |
526 | Context&: CGM.getLLVMContext(), Elements: FieldTypes, Name: "rtti.BaseClassDescriptor" ); |
527 | return BaseClassDescriptorType; |
528 | } |
529 | |
530 | llvm::StructType *getClassHierarchyDescriptorType() { |
531 | if (ClassHierarchyDescriptorType) |
532 | return ClassHierarchyDescriptorType; |
533 | // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. |
534 | llvm::Type *FieldTypes[] = {CGM.IntTy, CGM.IntTy, CGM.IntTy, |
535 | getImageRelativeType(PtrType: CGM.UnqualPtrTy)}; |
536 | ClassHierarchyDescriptorType = |
537 | llvm::StructType::create(Elements: FieldTypes, Name: "rtti.ClassHierarchyDescriptor" ); |
538 | return ClassHierarchyDescriptorType; |
539 | } |
540 | |
541 | llvm::StructType *getCompleteObjectLocatorType() { |
542 | if (CompleteObjectLocatorType) |
543 | return CompleteObjectLocatorType; |
544 | llvm::Type *FieldTypes[] = { |
545 | CGM.IntTy, |
546 | CGM.IntTy, |
547 | CGM.IntTy, |
548 | getImageRelativeType(PtrType: CGM.Int8PtrTy), |
549 | getImageRelativeType(PtrType: CGM.UnqualPtrTy), |
550 | getImageRelativeType(PtrType: CGM.VoidTy), |
551 | }; |
552 | llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); |
553 | if (!isImageRelative()) |
554 | FieldTypesRef = FieldTypesRef.drop_back(); |
555 | CompleteObjectLocatorType = |
556 | llvm::StructType::create(Elements: FieldTypesRef, Name: "rtti.CompleteObjectLocator" ); |
557 | return CompleteObjectLocatorType; |
558 | } |
559 | |
560 | llvm::GlobalVariable *getImageBase() { |
561 | StringRef Name = "__ImageBase" ; |
562 | if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) |
563 | return GV; |
564 | |
565 | auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, |
566 | /*isConstant=*/true, |
567 | llvm::GlobalValue::ExternalLinkage, |
568 | /*Initializer=*/nullptr, Name); |
569 | CGM.setDSOLocal(GV); |
570 | return GV; |
571 | } |
572 | |
573 | llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { |
574 | if (!isImageRelative()) |
575 | return PtrVal; |
576 | |
577 | if (PtrVal->isNullValue()) |
578 | return llvm::Constant::getNullValue(Ty: CGM.IntTy); |
579 | |
580 | llvm::Constant *ImageBaseAsInt = |
581 | llvm::ConstantExpr::getPtrToInt(C: getImageBase(), Ty: CGM.IntPtrTy); |
582 | llvm::Constant *PtrValAsInt = |
583 | llvm::ConstantExpr::getPtrToInt(C: PtrVal, Ty: CGM.IntPtrTy); |
584 | llvm::Constant *Diff = |
585 | llvm::ConstantExpr::getSub(C1: PtrValAsInt, C2: ImageBaseAsInt, |
586 | /*HasNUW=*/true, /*HasNSW=*/true); |
587 | return llvm::ConstantExpr::getTrunc(C: Diff, Ty: CGM.IntTy); |
588 | } |
589 | |
590 | private: |
591 | MicrosoftMangleContext &getMangleContext() { |
592 | return cast<MicrosoftMangleContext>(Val&: CodeGen::CGCXXABI::getMangleContext()); |
593 | } |
594 | |
595 | llvm::Constant *getZeroInt() { |
596 | return llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0); |
597 | } |
598 | |
599 | llvm::Constant *getAllOnesInt() { |
600 | return llvm::Constant::getAllOnesValue(Ty: CGM.IntTy); |
601 | } |
602 | |
603 | CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override; |
604 | |
605 | void |
606 | GetNullMemberPointerFields(const MemberPointerType *MPT, |
607 | llvm::SmallVectorImpl<llvm::Constant *> &fields); |
608 | |
609 | /// Shared code for virtual base adjustment. Returns the offset from |
610 | /// the vbptr to the virtual base. Optionally returns the address of the |
611 | /// vbptr itself. |
612 | llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, |
613 | Address Base, |
614 | llvm::Value *VBPtrOffset, |
615 | llvm::Value *VBTableOffset, |
616 | llvm::Value **VBPtr = nullptr); |
617 | |
618 | llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, |
619 | Address Base, |
620 | int32_t VBPtrOffset, |
621 | int32_t VBTableOffset, |
622 | llvm::Value **VBPtr = nullptr) { |
623 | assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s" ); |
624 | llvm::Value *VBPOffset = llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBPtrOffset), |
625 | *VBTOffset = llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBTableOffset); |
626 | return GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset: VBPOffset, VBTableOffset: VBTOffset, VBPtr); |
627 | } |
628 | |
629 | std::tuple<Address, llvm::Value *, const CXXRecordDecl *> |
630 | performBaseAdjustment(CodeGenFunction &CGF, Address Value, |
631 | QualType SrcRecordTy); |
632 | |
633 | /// Performs a full virtual base adjustment. Used to dereference |
634 | /// pointers to members of virtual bases. |
635 | llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, |
636 | const CXXRecordDecl *RD, Address Base, |
637 | llvm::Value *VirtualBaseAdjustmentOffset, |
638 | llvm::Value *VBPtrOffset /* optional */); |
639 | |
640 | /// Emits a full member pointer with the fields common to data and |
641 | /// function member pointers. |
642 | llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, |
643 | bool IsMemberFunction, |
644 | const CXXRecordDecl *RD, |
645 | CharUnits NonVirtualBaseAdjustment, |
646 | unsigned VBTableIndex); |
647 | |
648 | bool MemberPointerConstantIsNull(const MemberPointerType *MPT, |
649 | llvm::Constant *MP); |
650 | |
651 | /// - Initialize all vbptrs of 'this' with RD as the complete type. |
652 | void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); |
653 | |
654 | /// Caching wrapper around VBTableBuilder::enumerateVBTables(). |
655 | const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); |
656 | |
657 | /// Generate a thunk for calling a virtual member function MD. |
658 | llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, |
659 | const MethodVFTableLocation &ML); |
660 | |
661 | llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD, |
662 | CharUnits offset); |
663 | |
664 | public: |
665 | llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; |
666 | |
667 | bool isZeroInitializable(const MemberPointerType *MPT) override; |
668 | |
669 | bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { |
670 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
671 | return RD->hasAttr<MSInheritanceAttr>(); |
672 | } |
673 | |
674 | llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; |
675 | |
676 | llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, |
677 | CharUnits offset) override; |
678 | llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; |
679 | llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; |
680 | |
681 | llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, |
682 | llvm::Value *L, |
683 | llvm::Value *R, |
684 | const MemberPointerType *MPT, |
685 | bool Inequality) override; |
686 | |
687 | llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, |
688 | llvm::Value *MemPtr, |
689 | const MemberPointerType *MPT) override; |
690 | |
691 | llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, |
692 | Address Base, llvm::Value *MemPtr, |
693 | const MemberPointerType *MPT, |
694 | bool IsInBounds) override; |
695 | |
696 | llvm::Value *EmitNonNullMemberPointerConversion( |
697 | const MemberPointerType *SrcTy, const MemberPointerType *DstTy, |
698 | CastKind CK, CastExpr::path_const_iterator PathBegin, |
699 | CastExpr::path_const_iterator PathEnd, llvm::Value *Src, |
700 | CGBuilderTy &Builder); |
701 | |
702 | llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, |
703 | const CastExpr *E, |
704 | llvm::Value *Src) override; |
705 | |
706 | llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, |
707 | llvm::Constant *Src) override; |
708 | |
709 | llvm::Constant *EmitMemberPointerConversion( |
710 | const MemberPointerType *SrcTy, const MemberPointerType *DstTy, |
711 | CastKind CK, CastExpr::path_const_iterator PathBegin, |
712 | CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); |
713 | |
714 | CGCallee |
715 | EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, |
716 | Address This, llvm::Value *&ThisPtrForCall, |
717 | llvm::Value *MemPtr, |
718 | const MemberPointerType *MPT) override; |
719 | |
720 | void emitCXXStructor(GlobalDecl GD) override; |
721 | |
722 | llvm::StructType *getCatchableTypeType() { |
723 | if (CatchableTypeType) |
724 | return CatchableTypeType; |
725 | llvm::Type *FieldTypes[] = { |
726 | CGM.IntTy, // Flags |
727 | getImageRelativeType(PtrType: CGM.Int8PtrTy), // TypeDescriptor |
728 | CGM.IntTy, // NonVirtualAdjustment |
729 | CGM.IntTy, // OffsetToVBPtr |
730 | CGM.IntTy, // VBTableIndex |
731 | CGM.IntTy, // Size |
732 | getImageRelativeType(PtrType: CGM.Int8PtrTy) // CopyCtor |
733 | }; |
734 | CatchableTypeType = llvm::StructType::create( |
735 | Context&: CGM.getLLVMContext(), Elements: FieldTypes, Name: "eh.CatchableType" ); |
736 | return CatchableTypeType; |
737 | } |
738 | |
739 | llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { |
740 | llvm::StructType *&CatchableTypeArrayType = |
741 | CatchableTypeArrayTypeMap[NumEntries]; |
742 | if (CatchableTypeArrayType) |
743 | return CatchableTypeArrayType; |
744 | |
745 | llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray." ); |
746 | CTATypeName += llvm::utostr(X: NumEntries); |
747 | llvm::Type *CTType = getImageRelativeType(PtrType: CGM.UnqualPtrTy); |
748 | llvm::Type *FieldTypes[] = { |
749 | CGM.IntTy, // NumEntries |
750 | llvm::ArrayType::get(ElementType: CTType, NumElements: NumEntries) // CatchableTypes |
751 | }; |
752 | CatchableTypeArrayType = |
753 | llvm::StructType::create(Context&: CGM.getLLVMContext(), Elements: FieldTypes, Name: CTATypeName); |
754 | return CatchableTypeArrayType; |
755 | } |
756 | |
757 | llvm::StructType *getThrowInfoType() { |
758 | if (ThrowInfoType) |
759 | return ThrowInfoType; |
760 | llvm::Type *FieldTypes[] = { |
761 | CGM.IntTy, // Flags |
762 | getImageRelativeType(PtrType: CGM.Int8PtrTy), // CleanupFn |
763 | getImageRelativeType(PtrType: CGM.Int8PtrTy), // ForwardCompat |
764 | getImageRelativeType(PtrType: CGM.Int8PtrTy) // CatchableTypeArray |
765 | }; |
766 | ThrowInfoType = llvm::StructType::create(Context&: CGM.getLLVMContext(), Elements: FieldTypes, |
767 | Name: "eh.ThrowInfo" ); |
768 | return ThrowInfoType; |
769 | } |
770 | |
771 | llvm::FunctionCallee getThrowFn() { |
772 | // _CxxThrowException is passed an exception object and a ThrowInfo object |
773 | // which describes the exception. |
774 | llvm::Type *Args[] = {CGM.Int8PtrTy, CGM.UnqualPtrTy}; |
775 | llvm::FunctionType *FTy = |
776 | llvm::FunctionType::get(Result: CGM.VoidTy, Params: Args, /*isVarArg=*/false); |
777 | llvm::FunctionCallee Throw = |
778 | CGM.CreateRuntimeFunction(Ty: FTy, Name: "_CxxThrowException" ); |
779 | // _CxxThrowException is stdcall on 32-bit x86 platforms. |
780 | if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { |
781 | if (auto *Fn = dyn_cast<llvm::Function>(Val: Throw.getCallee())) |
782 | Fn->setCallingConv(llvm::CallingConv::X86_StdCall); |
783 | } |
784 | return Throw; |
785 | } |
786 | |
787 | llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, |
788 | CXXCtorType CT); |
789 | |
790 | llvm::Constant *getCatchableType(QualType T, |
791 | uint32_t NVOffset = 0, |
792 | int32_t VBPtrOffset = -1, |
793 | uint32_t VBIndex = 0); |
794 | |
795 | llvm::GlobalVariable *getCatchableTypeArray(QualType T); |
796 | |
797 | llvm::GlobalVariable *getThrowInfo(QualType T) override; |
798 | |
799 | std::pair<llvm::Value *, const CXXRecordDecl *> |
800 | LoadVTablePtr(CodeGenFunction &CGF, Address This, |
801 | const CXXRecordDecl *RD) override; |
802 | |
803 | bool |
804 | isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override; |
805 | |
806 | private: |
807 | typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; |
808 | typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; |
809 | typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; |
810 | /// All the vftables that have been referenced. |
811 | VFTablesMapTy VFTablesMap; |
812 | VTablesMapTy VTablesMap; |
813 | |
814 | /// This set holds the record decls we've deferred vtable emission for. |
815 | llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; |
816 | |
817 | |
818 | /// All the vbtables which have been referenced. |
819 | llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; |
820 | |
821 | /// Info on the global variable used to guard initialization of static locals. |
822 | /// The BitIndex field is only used for externally invisible declarations. |
823 | struct GuardInfo { |
824 | GuardInfo() = default; |
825 | llvm::GlobalVariable *Guard = nullptr; |
826 | unsigned BitIndex = 0; |
827 | }; |
828 | |
829 | /// Map from DeclContext to the current guard variable. We assume that the |
830 | /// AST is visited in source code order. |
831 | llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; |
832 | llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap; |
833 | llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap; |
834 | |
835 | llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; |
836 | llvm::StructType *BaseClassDescriptorType; |
837 | llvm::StructType *ClassHierarchyDescriptorType; |
838 | llvm::StructType *CompleteObjectLocatorType; |
839 | |
840 | llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays; |
841 | |
842 | llvm::StructType *CatchableTypeType; |
843 | llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap; |
844 | llvm::StructType *ThrowInfoType; |
845 | }; |
846 | |
847 | } |
848 | |
849 | CGCXXABI::RecordArgABI |
850 | MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { |
851 | // Use the default C calling convention rules for things that can be passed in |
852 | // registers, i.e. non-trivially copyable records or records marked with |
853 | // [[trivial_abi]]. |
854 | if (RD->canPassInRegisters()) |
855 | return RAA_Default; |
856 | |
857 | switch (CGM.getTarget().getTriple().getArch()) { |
858 | default: |
859 | // FIXME: Implement for other architectures. |
860 | return RAA_Indirect; |
861 | |
862 | case llvm::Triple::thumb: |
863 | // Pass things indirectly for now because it is simple. |
864 | // FIXME: This is incompatible with MSVC for arguments with a dtor and no |
865 | // copy ctor. |
866 | return RAA_Indirect; |
867 | |
868 | case llvm::Triple::x86: { |
869 | // If the argument has *required* alignment greater than four bytes, pass |
870 | // it indirectly. Prior to MSVC version 19.14, passing overaligned |
871 | // arguments was not supported and resulted in a compiler error. In 19.14 |
872 | // and later versions, such arguments are now passed indirectly. |
873 | TypeInfo Info = getContext().getTypeInfo(T: RD->getTypeForDecl()); |
874 | if (Info.isAlignRequired() && Info.Align > 4) |
875 | return RAA_Indirect; |
876 | |
877 | // If C++ prohibits us from making a copy, construct the arguments directly |
878 | // into argument memory. |
879 | return RAA_DirectInMemory; |
880 | } |
881 | |
882 | case llvm::Triple::x86_64: |
883 | case llvm::Triple::aarch64: |
884 | return RAA_Indirect; |
885 | } |
886 | |
887 | llvm_unreachable("invalid enum" ); |
888 | } |
889 | |
890 | void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, |
891 | const CXXDeleteExpr *DE, |
892 | Address Ptr, |
893 | QualType ElementType, |
894 | const CXXDestructorDecl *Dtor) { |
895 | // FIXME: Provide a source location here even though there's no |
896 | // CXXMemberCallExpr for dtor call. |
897 | bool UseGlobalDelete = DE->isGlobalDelete(); |
898 | CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; |
899 | llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, This: Ptr, E: DE, |
900 | /*CallOrInvoke=*/nullptr); |
901 | if (UseGlobalDelete) |
902 | CGF.EmitDeleteCall(DeleteFD: DE->getOperatorDelete(), Ptr: MDThis, DeleteTy: ElementType); |
903 | } |
904 | |
905 | void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { |
906 | llvm::Value *Args[] = {llvm::ConstantPointerNull::get(T: CGM.Int8PtrTy), |
907 | llvm::ConstantPointerNull::get(T: CGM.UnqualPtrTy)}; |
908 | llvm::FunctionCallee Fn = getThrowFn(); |
909 | if (isNoReturn) |
910 | CGF.EmitNoreturnRuntimeCallOrInvoke(callee: Fn, args: Args); |
911 | else |
912 | CGF.EmitRuntimeCallOrInvoke(callee: Fn, args: Args); |
913 | } |
914 | |
915 | void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, |
916 | const CXXCatchStmt *S) { |
917 | // In the MS ABI, the runtime handles the copy, and the catch handler is |
918 | // responsible for destruction. |
919 | VarDecl *CatchParam = S->getExceptionDecl(); |
920 | llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); |
921 | llvm::CatchPadInst *CPI = |
922 | cast<llvm::CatchPadInst>(Val: CatchPadBB->getFirstNonPHIIt()); |
923 | CGF.CurrentFuncletPad = CPI; |
924 | |
925 | // If this is a catch-all or the catch parameter is unnamed, we don't need to |
926 | // emit an alloca to the object. |
927 | if (!CatchParam || !CatchParam->getDeclName()) { |
928 | CGF.EHStack.pushCleanup<CatchRetScope>(Kind: NormalCleanup, A: CPI); |
929 | return; |
930 | } |
931 | |
932 | CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(var: *CatchParam); |
933 | CPI->setArgOperand(i: 2, v: var.getObjectAddress(CGF).emitRawPointer(CGF)); |
934 | CGF.EHStack.pushCleanup<CatchRetScope>(Kind: NormalCleanup, A: CPI); |
935 | CGF.EmitAutoVarCleanups(emission: var); |
936 | } |
937 | |
938 | /// We need to perform a generic polymorphic operation (like a typeid |
939 | /// or a cast), which requires an object with a vfptr. Adjust the |
940 | /// address to point to an object with a vfptr. |
941 | std::tuple<Address, llvm::Value *, const CXXRecordDecl *> |
942 | MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, |
943 | QualType SrcRecordTy) { |
944 | Value = Value.withElementType(ElemTy: CGF.Int8Ty); |
945 | const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); |
946 | const ASTContext &Context = getContext(); |
947 | |
948 | // If the class itself has a vfptr, great. This check implicitly |
949 | // covers non-virtual base subobjects: a class with its own virtual |
950 | // functions would be a candidate to be a primary base. |
951 | if (Context.getASTRecordLayout(D: SrcDecl).hasExtendableVFPtr()) |
952 | return std::make_tuple(args&: Value, args: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: 0), |
953 | args&: SrcDecl); |
954 | |
955 | // Okay, one of the vbases must have a vfptr, or else this isn't |
956 | // actually a polymorphic class. |
957 | const CXXRecordDecl *PolymorphicBase = nullptr; |
958 | for (auto &Base : SrcDecl->vbases()) { |
959 | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
960 | if (Context.getASTRecordLayout(D: BaseDecl).hasExtendableVFPtr()) { |
961 | PolymorphicBase = BaseDecl; |
962 | break; |
963 | } |
964 | } |
965 | assert(PolymorphicBase && "polymorphic class has no apparent vfptr?" ); |
966 | |
967 | llvm::Value *Offset = |
968 | GetVirtualBaseClassOffset(CGF, This: Value, ClassDecl: SrcDecl, BaseClassDecl: PolymorphicBase); |
969 | llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP( |
970 | Ty: Value.getElementType(), Ptr: Value.emitRawPointer(CGF), IdxList: Offset); |
971 | CharUnits VBaseAlign = |
972 | CGF.CGM.getVBaseAlignment(DerivedAlign: Value.getAlignment(), Derived: SrcDecl, VBase: PolymorphicBase); |
973 | return std::make_tuple(args: Address(Ptr, CGF.Int8Ty, VBaseAlign), args&: Offset, |
974 | args&: PolymorphicBase); |
975 | } |
976 | |
977 | bool MicrosoftCXXABI::shouldTypeidBeNullChecked(QualType SrcRecordTy) { |
978 | const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); |
979 | return !getContext().getASTRecordLayout(D: SrcDecl).hasExtendableVFPtr(); |
980 | } |
981 | |
982 | static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF, |
983 | llvm::Value *Argument) { |
984 | llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; |
985 | llvm::FunctionType *FTy = |
986 | llvm::FunctionType::get(Result: CGF.Int8PtrTy, Params: ArgTypes, isVarArg: false); |
987 | llvm::Value *Args[] = {Argument}; |
988 | llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(Ty: FTy, Name: "__RTtypeid" ); |
989 | return CGF.EmitRuntimeCallOrInvoke(callee: Fn, args: Args); |
990 | } |
991 | |
992 | void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { |
993 | llvm::CallBase *Call = |
994 | emitRTtypeidCall(CGF, Argument: llvm::Constant::getNullValue(Ty: CGM.VoidPtrTy)); |
995 | Call->setDoesNotReturn(); |
996 | CGF.Builder.CreateUnreachable(); |
997 | } |
998 | |
999 | llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, |
1000 | QualType SrcRecordTy, |
1001 | Address ThisPtr, |
1002 | llvm::Type *StdTypeInfoPtrTy) { |
1003 | std::tie(args&: ThisPtr, args: std::ignore, args: std::ignore) = |
1004 | performBaseAdjustment(CGF, Value: ThisPtr, SrcRecordTy); |
1005 | llvm::CallBase *Typeid = emitRTtypeidCall(CGF, Argument: ThisPtr.emitRawPointer(CGF)); |
1006 | return CGF.Builder.CreateBitCast(V: Typeid, DestTy: StdTypeInfoPtrTy); |
1007 | } |
1008 | |
1009 | bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, |
1010 | QualType SrcRecordTy) { |
1011 | const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); |
1012 | return SrcIsPtr && |
1013 | !getContext().getASTRecordLayout(D: SrcDecl).hasExtendableVFPtr(); |
1014 | } |
1015 | |
1016 | llvm::Value *MicrosoftCXXABI::emitDynamicCastCall( |
1017 | CodeGenFunction &CGF, Address This, QualType SrcRecordTy, QualType DestTy, |
1018 | QualType DestRecordTy, llvm::BasicBlock *CastEnd) { |
1019 | llvm::Value *SrcRTTI = |
1020 | CGF.CGM.GetAddrOfRTTIDescriptor(Ty: SrcRecordTy.getUnqualifiedType()); |
1021 | llvm::Value *DestRTTI = |
1022 | CGF.CGM.GetAddrOfRTTIDescriptor(Ty: DestRecordTy.getUnqualifiedType()); |
1023 | |
1024 | llvm::Value *Offset; |
1025 | std::tie(args&: This, args&: Offset, args: std::ignore) = |
1026 | performBaseAdjustment(CGF, Value: This, SrcRecordTy); |
1027 | llvm::Value *ThisPtr = This.emitRawPointer(CGF); |
1028 | Offset = CGF.Builder.CreateTrunc(V: Offset, DestTy: CGF.Int32Ty); |
1029 | |
1030 | // PVOID __RTDynamicCast( |
1031 | // PVOID inptr, |
1032 | // LONG VfDelta, |
1033 | // PVOID SrcType, |
1034 | // PVOID TargetType, |
1035 | // BOOL isReference) |
1036 | llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, |
1037 | CGF.Int8PtrTy, CGF.Int32Ty}; |
1038 | llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( |
1039 | Ty: llvm::FunctionType::get(Result: CGF.Int8PtrTy, Params: ArgTypes, isVarArg: false), |
1040 | Name: "__RTDynamicCast" ); |
1041 | llvm::Value *Args[] = { |
1042 | ThisPtr, Offset, SrcRTTI, DestRTTI, |
1043 | llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: DestTy->isReferenceType())}; |
1044 | return CGF.EmitRuntimeCallOrInvoke(callee: Function, args: Args); |
1045 | } |
1046 | |
1047 | llvm::Value *MicrosoftCXXABI::emitDynamicCastToVoid(CodeGenFunction &CGF, |
1048 | Address Value, |
1049 | QualType SrcRecordTy) { |
1050 | std::tie(args&: Value, args: std::ignore, args: std::ignore) = |
1051 | performBaseAdjustment(CGF, Value, SrcRecordTy); |
1052 | |
1053 | // PVOID __RTCastToVoid( |
1054 | // PVOID inptr) |
1055 | llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; |
1056 | llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( |
1057 | Ty: llvm::FunctionType::get(Result: CGF.Int8PtrTy, Params: ArgTypes, isVarArg: false), |
1058 | Name: "__RTCastToVoid" ); |
1059 | llvm::Value *Args[] = {Value.emitRawPointer(CGF)}; |
1060 | return CGF.EmitRuntimeCall(callee: Function, args: Args); |
1061 | } |
1062 | |
1063 | bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { |
1064 | return false; |
1065 | } |
1066 | |
1067 | llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( |
1068 | CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, |
1069 | const CXXRecordDecl *BaseClassDecl) { |
1070 | const ASTContext &Context = getContext(); |
1071 | int64_t VBPtrChars = |
1072 | Context.getASTRecordLayout(D: ClassDecl).getVBPtrOffset().getQuantity(); |
1073 | llvm::Value *VBPtrOffset = llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, V: VBPtrChars); |
1074 | CharUnits IntSize = Context.getTypeSizeInChars(T: Context.IntTy); |
1075 | CharUnits VBTableChars = |
1076 | IntSize * |
1077 | CGM.getMicrosoftVTableContext().getVBTableIndex(Derived: ClassDecl, VBase: BaseClassDecl); |
1078 | llvm::Value *VBTableOffset = |
1079 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBTableChars.getQuantity()); |
1080 | |
1081 | llvm::Value *VBPtrToNewBase = |
1082 | GetVBaseOffsetFromVBPtr(CGF, Base: This, VBPtrOffset, VBTableOffset); |
1083 | VBPtrToNewBase = |
1084 | CGF.Builder.CreateSExtOrBitCast(V: VBPtrToNewBase, DestTy: CGM.PtrDiffTy); |
1085 | return CGF.Builder.CreateNSWAdd(LHS: VBPtrOffset, RHS: VBPtrToNewBase); |
1086 | } |
1087 | |
1088 | bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { |
1089 | return isa<CXXConstructorDecl>(Val: GD.getDecl()); |
1090 | } |
1091 | |
1092 | static bool isDeletingDtor(GlobalDecl GD) { |
1093 | return isa<CXXDestructorDecl>(Val: GD.getDecl()) && |
1094 | GD.getDtorType() == Dtor_Deleting; |
1095 | } |
1096 | |
1097 | bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { |
1098 | return isDeletingDtor(GD); |
1099 | } |
1100 | |
1101 | static bool isTrivialForMSVC(const CXXRecordDecl *RD, QualType Ty, |
1102 | CodeGenModule &CGM) { |
1103 | // On AArch64, HVAs that can be passed in registers can also be returned |
1104 | // in registers. (Note this is using the MSVC definition of an HVA; see |
1105 | // isPermittedToBeHomogeneousAggregate().) |
1106 | const Type *Base = nullptr; |
1107 | uint64_t NumElts = 0; |
1108 | if (CGM.getTarget().getTriple().isAArch64() && |
1109 | CGM.getABIInfo().isHomogeneousAggregate(Ty, Base, Members&: NumElts) && |
1110 | isa<VectorType>(Val: Base)) { |
1111 | return true; |
1112 | } |
1113 | |
1114 | // We use the C++14 definition of an aggregate, so we also |
1115 | // check for: |
1116 | // No private or protected non static data members. |
1117 | // No base classes |
1118 | // No virtual functions |
1119 | // Additionally, we need to ensure that there is a trivial copy assignment |
1120 | // operator, a trivial destructor, no user-provided constructors and no |
1121 | // deleted copy assignment operator. |
1122 | |
1123 | // We need to cover two cases when checking for a deleted copy assignment |
1124 | // operator. |
1125 | // |
1126 | // struct S { int& r; }; |
1127 | // The above will have an implicit copy assignment operator that is deleted |
1128 | // and there will not be a `CXXMethodDecl` for the copy assignment operator. |
1129 | // This is handled by the `needsImplicitCopyAssignment()` check below. |
1130 | // |
1131 | // struct S { S& operator=(const S&) = delete; int i; }; |
1132 | // The above will not have an implicit copy assignment operator that is |
1133 | // deleted but there is a deleted `CXXMethodDecl` for the declared copy |
1134 | // assignment operator. This is handled by the `isDeleted()` check below. |
1135 | |
1136 | if (RD->hasProtectedFields() || RD->hasPrivateFields()) |
1137 | return false; |
1138 | if (RD->getNumBases() > 0) |
1139 | return false; |
1140 | if (RD->isPolymorphic()) |
1141 | return false; |
1142 | if (RD->hasNonTrivialCopyAssignment()) |
1143 | return false; |
1144 | if (RD->needsImplicitCopyAssignment() && !RD->hasSimpleCopyAssignment()) |
1145 | return false; |
1146 | for (const Decl *D : RD->decls()) { |
1147 | if (auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: D)) { |
1148 | if (Ctor->isUserProvided()) |
1149 | return false; |
1150 | } else if (auto *Template = dyn_cast<FunctionTemplateDecl>(Val: D)) { |
1151 | if (isa<CXXConstructorDecl>(Val: Template->getTemplatedDecl())) |
1152 | return false; |
1153 | } else if (auto *MethodDecl = dyn_cast<CXXMethodDecl>(Val: D)) { |
1154 | if (MethodDecl->isCopyAssignmentOperator() && MethodDecl->isDeleted()) |
1155 | return false; |
1156 | } |
1157 | } |
1158 | if (RD->hasNonTrivialDestructor()) |
1159 | return false; |
1160 | return true; |
1161 | } |
1162 | |
1163 | bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { |
1164 | const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); |
1165 | if (!RD) |
1166 | return false; |
1167 | |
1168 | bool isTrivialForABI = RD->canPassInRegisters() && |
1169 | isTrivialForMSVC(RD, Ty: FI.getReturnType(), CGM); |
1170 | |
1171 | // MSVC always returns structs indirectly from C++ instance methods. |
1172 | bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod(); |
1173 | |
1174 | if (isIndirectReturn) { |
1175 | CharUnits Align = CGM.getContext().getTypeAlignInChars(T: FI.getReturnType()); |
1176 | FI.getReturnInfo() = ABIArgInfo::getIndirect( |
1177 | Alignment: Align, /*AddrSpace=*/CGM.getDataLayout().getAllocaAddrSpace(), |
1178 | /*ByVal=*/false); |
1179 | |
1180 | // MSVC always passes `this` before the `sret` parameter. |
1181 | FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod()); |
1182 | |
1183 | // On AArch64, use the `inreg` attribute if the object is considered to not |
1184 | // be trivially copyable, or if this is an instance method struct return. |
1185 | FI.getReturnInfo().setInReg(CGM.getTarget().getTriple().isAArch64()); |
1186 | |
1187 | return true; |
1188 | } |
1189 | |
1190 | // Otherwise, use the C ABI rules. |
1191 | return false; |
1192 | } |
1193 | |
1194 | llvm::BasicBlock * |
1195 | MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, |
1196 | const CXXRecordDecl *RD) { |
1197 | llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); |
1198 | assert(IsMostDerivedClass && |
1199 | "ctor for a class with virtual bases must have an implicit parameter" ); |
1200 | llvm::Value *IsCompleteObject = |
1201 | CGF.Builder.CreateIsNotNull(Arg: IsMostDerivedClass, Name: "is_complete_object" ); |
1202 | |
1203 | llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock(name: "ctor.init_vbases" ); |
1204 | llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock(name: "ctor.skip_vbases" ); |
1205 | CGF.Builder.CreateCondBr(Cond: IsCompleteObject, |
1206 | True: CallVbaseCtorsBB, False: SkipVbaseCtorsBB); |
1207 | |
1208 | CGF.EmitBlock(BB: CallVbaseCtorsBB); |
1209 | |
1210 | // Fill in the vbtable pointers here. |
1211 | EmitVBPtrStores(CGF, RD); |
1212 | |
1213 | // CGF will put the base ctor calls in this basic block for us later. |
1214 | |
1215 | return SkipVbaseCtorsBB; |
1216 | } |
1217 | |
1218 | llvm::BasicBlock * |
1219 | MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) { |
1220 | llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); |
1221 | assert(IsMostDerivedClass && |
1222 | "ctor for a class with virtual bases must have an implicit parameter" ); |
1223 | llvm::Value *IsCompleteObject = |
1224 | CGF.Builder.CreateIsNotNull(Arg: IsMostDerivedClass, Name: "is_complete_object" ); |
1225 | |
1226 | llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock(name: "Dtor.dtor_vbases" ); |
1227 | llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock(name: "Dtor.skip_vbases" ); |
1228 | CGF.Builder.CreateCondBr(Cond: IsCompleteObject, |
1229 | True: CallVbaseDtorsBB, False: SkipVbaseDtorsBB); |
1230 | |
1231 | CGF.EmitBlock(BB: CallVbaseDtorsBB); |
1232 | // CGF will put the base dtor calls in this basic block for us later. |
1233 | |
1234 | return SkipVbaseDtorsBB; |
1235 | } |
1236 | |
1237 | void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( |
1238 | CodeGenFunction &CGF, const CXXRecordDecl *RD) { |
1239 | // In most cases, an override for a vbase virtual method can adjust |
1240 | // the "this" parameter by applying a constant offset. |
1241 | // However, this is not enough while a constructor or a destructor of some |
1242 | // class X is being executed if all the following conditions are met: |
1243 | // - X has virtual bases, (1) |
1244 | // - X overrides a virtual method M of a vbase Y, (2) |
1245 | // - X itself is a vbase of the most derived class. |
1246 | // |
1247 | // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X |
1248 | // which holds the extra amount of "this" adjustment we must do when we use |
1249 | // the X vftables (i.e. during X ctor or dtor). |
1250 | // Outside the ctors and dtors, the values of vtorDisps are zero. |
1251 | |
1252 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D: RD); |
1253 | typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; |
1254 | const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); |
1255 | CGBuilderTy &Builder = CGF.Builder; |
1256 | |
1257 | llvm::Value *Int8This = nullptr; // Initialize lazily. |
1258 | |
1259 | for (const CXXBaseSpecifier &S : RD->vbases()) { |
1260 | const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl(); |
1261 | auto I = VBaseMap.find(Val: VBase); |
1262 | assert(I != VBaseMap.end()); |
1263 | if (!I->second.hasVtorDisp()) |
1264 | continue; |
1265 | |
1266 | llvm::Value *VBaseOffset = |
1267 | GetVirtualBaseClassOffset(CGF, This: getThisAddress(CGF), ClassDecl: RD, BaseClassDecl: VBase); |
1268 | uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity(); |
1269 | |
1270 | // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). |
1271 | llvm::Value *VtorDispValue = Builder.CreateSub( |
1272 | LHS: VBaseOffset, RHS: llvm::ConstantInt::get(Ty: CGM.PtrDiffTy, V: ConstantVBaseOffset), |
1273 | Name: "vtordisp.value" ); |
1274 | VtorDispValue = Builder.CreateTruncOrBitCast(V: VtorDispValue, DestTy: CGF.Int32Ty); |
1275 | |
1276 | if (!Int8This) |
1277 | Int8This = getThisValue(CGF); |
1278 | |
1279 | llvm::Value *VtorDispPtr = |
1280 | Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: Int8This, IdxList: VBaseOffset); |
1281 | // vtorDisp is always the 32-bits before the vbase in the class layout. |
1282 | VtorDispPtr = Builder.CreateConstGEP1_32(Ty: CGF.Int8Ty, Ptr: VtorDispPtr, Idx0: -4); |
1283 | |
1284 | Builder.CreateAlignedStore(Val: VtorDispValue, Addr: VtorDispPtr, |
1285 | Align: CharUnits::fromQuantity(Quantity: 4)); |
1286 | } |
1287 | } |
1288 | |
1289 | static bool hasDefaultCXXMethodCC(ASTContext &Context, |
1290 | const CXXMethodDecl *MD) { |
1291 | CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( |
1292 | /*IsVariadic=*/false, /*IsCXXMethod=*/true); |
1293 | CallingConv ActualCallingConv = |
1294 | MD->getType()->castAs<FunctionProtoType>()->getCallConv(); |
1295 | return ExpectedCallingConv == ActualCallingConv; |
1296 | } |
1297 | |
1298 | void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { |
1299 | // There's only one constructor type in this ABI. |
1300 | CGM.EmitGlobal(D: GlobalDecl(D, Ctor_Complete)); |
1301 | |
1302 | // Exported default constructors either have a simple call-site where they use |
1303 | // the typical calling convention and have a single 'this' pointer for an |
1304 | // argument -or- they get a wrapper function which appropriately thunks to the |
1305 | // real default constructor. This thunk is the default constructor closure. |
1306 | if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor() && |
1307 | D->isDefined()) { |
1308 | if (!hasDefaultCXXMethodCC(Context&: getContext(), MD: D) || D->getNumParams() != 0) { |
1309 | llvm::Function *Fn = getAddrOfCXXCtorClosure(CD: D, CT: Ctor_DefaultClosure); |
1310 | Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); |
1311 | CGM.setGVProperties(GV: Fn, D); |
1312 | } |
1313 | } |
1314 | } |
1315 | |
1316 | void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, |
1317 | const CXXRecordDecl *RD) { |
1318 | Address This = getThisAddress(CGF); |
1319 | This = This.withElementType(ElemTy: CGM.Int8Ty); |
1320 | const ASTContext &Context = getContext(); |
1321 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(D: RD); |
1322 | |
1323 | const VBTableGlobals &VBGlobals = enumerateVBTables(RD); |
1324 | for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { |
1325 | const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I]; |
1326 | llvm::GlobalVariable *GV = VBGlobals.Globals[I]; |
1327 | const ASTRecordLayout &SubobjectLayout = |
1328 | Context.getASTRecordLayout(D: VBT->IntroducingObject); |
1329 | CharUnits Offs = VBT->NonVirtualOffset; |
1330 | Offs += SubobjectLayout.getVBPtrOffset(); |
1331 | if (VBT->getVBaseWithVPtr()) |
1332 | Offs += Layout.getVBaseClassOffset(VBase: VBT->getVBaseWithVPtr()); |
1333 | Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(Addr: This, Offset: Offs); |
1334 | llvm::Value *GVPtr = |
1335 | CGF.Builder.CreateConstInBoundsGEP2_32(Ty: GV->getValueType(), Ptr: GV, Idx0: 0, Idx1: 0); |
1336 | VBPtr = VBPtr.withElementType(ElemTy: GVPtr->getType()); |
1337 | CGF.Builder.CreateStore(Val: GVPtr, Addr: VBPtr); |
1338 | } |
1339 | } |
1340 | |
1341 | CGCXXABI::AddedStructorArgCounts |
1342 | MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD, |
1343 | SmallVectorImpl<CanQualType> &ArgTys) { |
1344 | AddedStructorArgCounts Added; |
1345 | // TODO: 'for base' flag |
1346 | if (isa<CXXDestructorDecl>(Val: GD.getDecl()) && |
1347 | GD.getDtorType() == Dtor_Deleting) { |
1348 | // The scalar deleting destructor takes an implicit int parameter. |
1349 | ArgTys.push_back(Elt: getContext().IntTy); |
1350 | ++Added.Suffix; |
1351 | } |
1352 | auto *CD = dyn_cast<CXXConstructorDecl>(Val: GD.getDecl()); |
1353 | if (!CD) |
1354 | return Added; |
1355 | |
1356 | // All parameters are already in place except is_most_derived, which goes |
1357 | // after 'this' if it's variadic and last if it's not. |
1358 | |
1359 | const CXXRecordDecl *Class = CD->getParent(); |
1360 | const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>(); |
1361 | if (Class->getNumVBases()) { |
1362 | if (FPT->isVariadic()) { |
1363 | ArgTys.insert(I: ArgTys.begin() + 1, Elt: getContext().IntTy); |
1364 | ++Added.Prefix; |
1365 | } else { |
1366 | ArgTys.push_back(Elt: getContext().IntTy); |
1367 | ++Added.Suffix; |
1368 | } |
1369 | } |
1370 | |
1371 | return Added; |
1372 | } |
1373 | |
1374 | void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV, |
1375 | const CXXDestructorDecl *Dtor, |
1376 | CXXDtorType DT) const { |
1377 | // Deleting destructor variants are never imported or exported. Give them the |
1378 | // default storage class. |
1379 | if (DT == Dtor_Deleting) { |
1380 | GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); |
1381 | } else { |
1382 | const NamedDecl *ND = Dtor; |
1383 | CGM.setDLLImportDLLExport(GV, D: ND); |
1384 | } |
1385 | } |
1386 | |
1387 | llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage( |
1388 | GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { |
1389 | // Internal things are always internal, regardless of attributes. After this, |
1390 | // we know the thunk is externally visible. |
1391 | if (Linkage == GVA_Internal) |
1392 | return llvm::GlobalValue::InternalLinkage; |
1393 | |
1394 | switch (DT) { |
1395 | case Dtor_Base: |
1396 | // The base destructor most closely tracks the user-declared constructor, so |
1397 | // we delegate back to the normal declarator case. |
1398 | return CGM.getLLVMLinkageForDeclarator(D: Dtor, Linkage); |
1399 | case Dtor_Complete: |
1400 | // The complete destructor is like an inline function, but it may be |
1401 | // imported and therefore must be exported as well. This requires changing |
1402 | // the linkage if a DLL attribute is present. |
1403 | if (Dtor->hasAttr<DLLExportAttr>()) |
1404 | return llvm::GlobalValue::WeakODRLinkage; |
1405 | if (Dtor->hasAttr<DLLImportAttr>()) |
1406 | return llvm::GlobalValue::AvailableExternallyLinkage; |
1407 | return llvm::GlobalValue::LinkOnceODRLinkage; |
1408 | case Dtor_Deleting: |
1409 | // Deleting destructors are like inline functions. They have vague linkage |
1410 | // and are emitted everywhere they are used. They are internal if the class |
1411 | // is internal. |
1412 | return llvm::GlobalValue::LinkOnceODRLinkage; |
1413 | case Dtor_Comdat: |
1414 | llvm_unreachable("MS C++ ABI does not support comdat dtors" ); |
1415 | } |
1416 | llvm_unreachable("invalid dtor type" ); |
1417 | } |
1418 | |
1419 | void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { |
1420 | // The TU defining a dtor is only guaranteed to emit a base destructor. All |
1421 | // other destructor variants are delegating thunks. |
1422 | CGM.EmitGlobal(D: GlobalDecl(D, Dtor_Base)); |
1423 | |
1424 | // If the class is dllexported, emit the complete (vbase) destructor wherever |
1425 | // the base dtor is emitted. |
1426 | // FIXME: To match MSVC, this should only be done when the class is exported |
1427 | // with -fdllexport-inlines enabled. |
1428 | if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>()) |
1429 | CGM.EmitGlobal(D: GlobalDecl(D, Dtor_Complete)); |
1430 | } |
1431 | |
1432 | CharUnits |
1433 | MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { |
1434 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
1435 | |
1436 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
1437 | // Complete destructors take a pointer to the complete object as a |
1438 | // parameter, thus don't need this adjustment. |
1439 | if (GD.getDtorType() == Dtor_Complete) |
1440 | return CharUnits(); |
1441 | |
1442 | // There's no Dtor_Base in vftable but it shares the this adjustment with |
1443 | // the deleting one, so look it up instead. |
1444 | GD = GlobalDecl(DD, Dtor_Deleting); |
1445 | } |
1446 | |
1447 | MethodVFTableLocation ML = |
1448 | CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); |
1449 | CharUnits Adjustment = ML.VFPtrOffset; |
1450 | |
1451 | // Normal virtual instance methods need to adjust from the vfptr that first |
1452 | // defined the virtual method to the virtual base subobject, but destructors |
1453 | // do not. The vector deleting destructor thunk applies this adjustment for |
1454 | // us if necessary. |
1455 | if (isa<CXXDestructorDecl>(Val: MD)) |
1456 | Adjustment = CharUnits::Zero(); |
1457 | |
1458 | if (ML.VBase) { |
1459 | const ASTRecordLayout &DerivedLayout = |
1460 | getContext().getASTRecordLayout(D: MD->getParent()); |
1461 | Adjustment += DerivedLayout.getVBaseClassOffset(VBase: ML.VBase); |
1462 | } |
1463 | |
1464 | return Adjustment; |
1465 | } |
1466 | |
1467 | Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( |
1468 | CodeGenFunction &CGF, GlobalDecl GD, Address This, |
1469 | bool VirtualCall) { |
1470 | if (!VirtualCall) { |
1471 | // If the call of a virtual function is not virtual, we just have to |
1472 | // compensate for the adjustment the virtual function does in its prologue. |
1473 | CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); |
1474 | if (Adjustment.isZero()) |
1475 | return This; |
1476 | |
1477 | This = This.withElementType(ElemTy: CGF.Int8Ty); |
1478 | assert(Adjustment.isPositive()); |
1479 | return CGF.Builder.CreateConstByteGEP(Addr: This, Offset: Adjustment); |
1480 | } |
1481 | |
1482 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: GD.getDecl()); |
1483 | |
1484 | GlobalDecl LookupGD = GD; |
1485 | if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: MD)) { |
1486 | // Complete dtors take a pointer to the complete object, |
1487 | // thus don't need adjustment. |
1488 | if (GD.getDtorType() == Dtor_Complete) |
1489 | return This; |
1490 | |
1491 | // There's only Dtor_Deleting in vftable but it shares the this adjustment |
1492 | // with the base one, so look up the deleting one instead. |
1493 | LookupGD = GlobalDecl(DD, Dtor_Deleting); |
1494 | } |
1495 | MethodVFTableLocation ML = |
1496 | CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD: LookupGD); |
1497 | |
1498 | CharUnits StaticOffset = ML.VFPtrOffset; |
1499 | |
1500 | // Base destructors expect 'this' to point to the beginning of the base |
1501 | // subobject, not the first vfptr that happens to contain the virtual dtor. |
1502 | // However, we still need to apply the virtual base adjustment. |
1503 | if (isa<CXXDestructorDecl>(Val: MD) && GD.getDtorType() == Dtor_Base) |
1504 | StaticOffset = CharUnits::Zero(); |
1505 | |
1506 | Address Result = This; |
1507 | if (ML.VBase) { |
1508 | Result = Result.withElementType(ElemTy: CGF.Int8Ty); |
1509 | |
1510 | const CXXRecordDecl *Derived = MD->getParent(); |
1511 | const CXXRecordDecl *VBase = ML.VBase; |
1512 | llvm::Value *VBaseOffset = |
1513 | GetVirtualBaseClassOffset(CGF, This: Result, ClassDecl: Derived, BaseClassDecl: VBase); |
1514 | llvm::Value *VBasePtr = CGF.Builder.CreateInBoundsGEP( |
1515 | Ty: Result.getElementType(), Ptr: Result.emitRawPointer(CGF), IdxList: VBaseOffset); |
1516 | CharUnits VBaseAlign = |
1517 | CGF.CGM.getVBaseAlignment(DerivedAlign: Result.getAlignment(), Derived, VBase); |
1518 | Result = Address(VBasePtr, CGF.Int8Ty, VBaseAlign); |
1519 | } |
1520 | if (!StaticOffset.isZero()) { |
1521 | assert(StaticOffset.isPositive()); |
1522 | Result = Result.withElementType(ElemTy: CGF.Int8Ty); |
1523 | if (ML.VBase) { |
1524 | // Non-virtual adjustment might result in a pointer outside the allocated |
1525 | // object, e.g. if the final overrider class is laid out after the virtual |
1526 | // base that declares a method in the most derived class. |
1527 | // FIXME: Update the code that emits this adjustment in thunks prologues. |
1528 | Result = CGF.Builder.CreateConstByteGEP(Addr: Result, Offset: StaticOffset); |
1529 | } else { |
1530 | Result = CGF.Builder.CreateConstInBoundsByteGEP(Addr: Result, Offset: StaticOffset); |
1531 | } |
1532 | } |
1533 | return Result; |
1534 | } |
1535 | |
1536 | void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, |
1537 | QualType &ResTy, |
1538 | FunctionArgList &Params) { |
1539 | ASTContext &Context = getContext(); |
1540 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: CGF.CurGD.getDecl()); |
1541 | assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); |
1542 | if (isa<CXXConstructorDecl>(Val: MD) && MD->getParent()->getNumVBases()) { |
1543 | auto *IsMostDerived = ImplicitParamDecl::Create( |
1544 | C&: Context, /*DC=*/nullptr, IdLoc: CGF.CurGD.getDecl()->getLocation(), |
1545 | Id: &Context.Idents.get(Name: "is_most_derived" ), T: Context.IntTy, |
1546 | ParamKind: ImplicitParamKind::Other); |
1547 | // The 'most_derived' parameter goes second if the ctor is variadic and last |
1548 | // if it's not. Dtors can't be variadic. |
1549 | const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); |
1550 | if (FPT->isVariadic()) |
1551 | Params.insert(I: Params.begin() + 1, Elt: IsMostDerived); |
1552 | else |
1553 | Params.push_back(Elt: IsMostDerived); |
1554 | getStructorImplicitParamDecl(CGF) = IsMostDerived; |
1555 | } else if (isDeletingDtor(GD: CGF.CurGD)) { |
1556 | auto *ShouldDelete = ImplicitParamDecl::Create( |
1557 | C&: Context, /*DC=*/nullptr, IdLoc: CGF.CurGD.getDecl()->getLocation(), |
1558 | Id: &Context.Idents.get(Name: "should_call_delete" ), T: Context.IntTy, |
1559 | ParamKind: ImplicitParamKind::Other); |
1560 | Params.push_back(Elt: ShouldDelete); |
1561 | getStructorImplicitParamDecl(CGF) = ShouldDelete; |
1562 | } |
1563 | } |
1564 | |
1565 | void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { |
1566 | // Naked functions have no prolog. |
1567 | if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) |
1568 | return; |
1569 | |
1570 | // Overridden virtual methods of non-primary bases need to adjust the incoming |
1571 | // 'this' pointer in the prologue. In this hierarchy, C::b will subtract |
1572 | // sizeof(void*) to adjust from B* to C*: |
1573 | // struct A { virtual void a(); }; |
1574 | // struct B { virtual void b(); }; |
1575 | // struct C : A, B { virtual void b(); }; |
1576 | // |
1577 | // Leave the value stored in the 'this' alloca unadjusted, so that the |
1578 | // debugger sees the unadjusted value. Microsoft debuggers require this, and |
1579 | // will apply the ThisAdjustment in the method type information. |
1580 | // FIXME: Do something better for DWARF debuggers, which won't expect this, |
1581 | // without making our codegen depend on debug info settings. |
1582 | llvm::Value *This = loadIncomingCXXThis(CGF); |
1583 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: CGF.CurGD.getDecl()); |
1584 | if (!CGF.CurFuncIsThunk && MD->isVirtual()) { |
1585 | CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD: CGF.CurGD); |
1586 | if (!Adjustment.isZero()) { |
1587 | assert(Adjustment.isPositive()); |
1588 | This = CGF.Builder.CreateConstInBoundsGEP1_32(Ty: CGF.Int8Ty, Ptr: This, |
1589 | Idx0: -Adjustment.getQuantity()); |
1590 | } |
1591 | } |
1592 | setCXXABIThisValue(CGF, ThisPtr: This); |
1593 | |
1594 | // If this is a function that the ABI specifies returns 'this', initialize |
1595 | // the return slot to 'this' at the start of the function. |
1596 | // |
1597 | // Unlike the setting of return types, this is done within the ABI |
1598 | // implementation instead of by clients of CGCXXABI because: |
1599 | // 1) getThisValue is currently protected |
1600 | // 2) in theory, an ABI could implement 'this' returns some other way; |
1601 | // HasThisReturn only specifies a contract, not the implementation |
1602 | if (HasThisReturn(GD: CGF.CurGD) || hasMostDerivedReturn(GD: CGF.CurGD)) |
1603 | CGF.Builder.CreateStore(Val: getThisValue(CGF), Addr: CGF.ReturnValue); |
1604 | |
1605 | if (isa<CXXConstructorDecl>(Val: MD) && MD->getParent()->getNumVBases()) { |
1606 | assert(getStructorImplicitParamDecl(CGF) && |
1607 | "no implicit parameter for a constructor with virtual bases?" ); |
1608 | getStructorImplicitParamValue(CGF) |
1609 | = CGF.Builder.CreateLoad( |
1610 | Addr: CGF.GetAddrOfLocalVar(VD: getStructorImplicitParamDecl(CGF)), |
1611 | Name: "is_most_derived" ); |
1612 | } |
1613 | |
1614 | if (isDeletingDtor(GD: CGF.CurGD)) { |
1615 | assert(getStructorImplicitParamDecl(CGF) && |
1616 | "no implicit parameter for a deleting destructor?" ); |
1617 | getStructorImplicitParamValue(CGF) |
1618 | = CGF.Builder.CreateLoad( |
1619 | Addr: CGF.GetAddrOfLocalVar(VD: getStructorImplicitParamDecl(CGF)), |
1620 | Name: "should_call_delete" ); |
1621 | } |
1622 | } |
1623 | |
1624 | CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs( |
1625 | CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, |
1626 | bool ForVirtualBase, bool Delegating) { |
1627 | assert(Type == Ctor_Complete || Type == Ctor_Base); |
1628 | |
1629 | // Check if we need a 'most_derived' parameter. |
1630 | if (!D->getParent()->getNumVBases()) |
1631 | return AddedStructorArgs{}; |
1632 | |
1633 | // Add the 'most_derived' argument second if we are variadic or last if not. |
1634 | const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); |
1635 | llvm::Value *MostDerivedArg; |
1636 | if (Delegating) { |
1637 | MostDerivedArg = getStructorImplicitParamValue(CGF); |
1638 | } else { |
1639 | MostDerivedArg = llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: Type == Ctor_Complete); |
1640 | } |
1641 | if (FPT->isVariadic()) { |
1642 | return AddedStructorArgs::prefix(Args: {{.Value: MostDerivedArg, .Type: getContext().IntTy}}); |
1643 | } |
1644 | return AddedStructorArgs::suffix(Args: {{.Value: MostDerivedArg, .Type: getContext().IntTy}}); |
1645 | } |
1646 | |
1647 | llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam( |
1648 | CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, |
1649 | bool ForVirtualBase, bool Delegating) { |
1650 | return nullptr; |
1651 | } |
1652 | |
1653 | void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, |
1654 | const CXXDestructorDecl *DD, |
1655 | CXXDtorType Type, bool ForVirtualBase, |
1656 | bool Delegating, Address This, |
1657 | QualType ThisTy) { |
1658 | // Use the base destructor variant in place of the complete destructor variant |
1659 | // if the class has no virtual bases. This effectively implements some of the |
1660 | // -mconstructor-aliases optimization, but as part of the MS C++ ABI. |
1661 | if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0) |
1662 | Type = Dtor_Base; |
1663 | |
1664 | GlobalDecl GD(DD, Type); |
1665 | CGCallee Callee = CGCallee::forDirect(functionPtr: CGM.getAddrOfCXXStructor(GD), abstractInfo: GD); |
1666 | |
1667 | if (DD->isVirtual()) { |
1668 | assert(Type != CXXDtorType::Dtor_Deleting && |
1669 | "The deleting destructor should only be called via a virtual call" ); |
1670 | This = adjustThisArgumentForVirtualFunctionCall(CGF, GD: GlobalDecl(DD, Type), |
1671 | This, VirtualCall: false); |
1672 | } |
1673 | |
1674 | llvm::BasicBlock *BaseDtorEndBB = nullptr; |
1675 | if (ForVirtualBase && isa<CXXConstructorDecl>(Val: CGF.CurCodeDecl)) { |
1676 | BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF); |
1677 | } |
1678 | |
1679 | llvm::Value *Implicit = |
1680 | getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase, |
1681 | Delegating); // = nullptr |
1682 | CGF.EmitCXXDestructorCall(Dtor: GD, Callee, This: CGF.getAsNaturalPointerTo(Addr: This, PointeeType: ThisTy), |
1683 | ThisTy, |
1684 | /*ImplicitParam=*/Implicit, |
1685 | /*ImplicitParamTy=*/QualType(), /*E=*/nullptr); |
1686 | if (BaseDtorEndBB) { |
1687 | // Complete object handler should continue to be the remaining |
1688 | CGF.Builder.CreateBr(Dest: BaseDtorEndBB); |
1689 | CGF.EmitBlock(BB: BaseDtorEndBB); |
1690 | } |
1691 | } |
1692 | |
1693 | void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info, |
1694 | const CXXRecordDecl *RD, |
1695 | llvm::GlobalVariable *VTable) { |
1696 | // Emit type metadata on vtables with LTO or IR instrumentation. |
1697 | // In IR instrumentation, the type metadata could be used to find out vtable |
1698 | // definitions (for type profiling) among all global variables. |
1699 | if (!CGM.getCodeGenOpts().LTOUnit && |
1700 | !CGM.getCodeGenOpts().hasProfileIRInstr()) |
1701 | return; |
1702 | |
1703 | // TODO: Should VirtualFunctionElimination also be supported here? |
1704 | // See similar handling in CodeGenModule::EmitVTableTypeMetadata. |
1705 | if (CGM.getCodeGenOpts().WholeProgramVTables) { |
1706 | llvm::DenseSet<const CXXRecordDecl *> Visited; |
1707 | llvm::GlobalObject::VCallVisibility TypeVis = |
1708 | CGM.GetVCallVisibilityLevel(RD, Visited); |
1709 | if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) |
1710 | VTable->setVCallVisibilityMetadata(TypeVis); |
1711 | } |
1712 | |
1713 | // The location of the first virtual function pointer in the virtual table, |
1714 | // aka the "address point" on Itanium. This is at offset 0 if RTTI is |
1715 | // disabled, or sizeof(void*) if RTTI is enabled. |
1716 | CharUnits AddressPoint = |
1717 | getContext().getLangOpts().RTTIData |
1718 | ? getContext().toCharUnitsFromBits( |
1719 | BitSize: getContext().getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default)) |
1720 | : CharUnits::Zero(); |
1721 | |
1722 | if (Info.PathToIntroducingObject.empty()) { |
1723 | CGM.AddVTableTypeMetadata(VTable, Offset: AddressPoint, RD); |
1724 | return; |
1725 | } |
1726 | |
1727 | // Add a bitset entry for the least derived base belonging to this vftable. |
1728 | CGM.AddVTableTypeMetadata(VTable, Offset: AddressPoint, |
1729 | RD: Info.PathToIntroducingObject.back()); |
1730 | |
1731 | // Add a bitset entry for each derived class that is laid out at the same |
1732 | // offset as the least derived base. |
1733 | for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) { |
1734 | const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1]; |
1735 | const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I]; |
1736 | |
1737 | const ASTRecordLayout &Layout = |
1738 | getContext().getASTRecordLayout(D: DerivedRD); |
1739 | CharUnits Offset; |
1740 | auto VBI = Layout.getVBaseOffsetsMap().find(Val: BaseRD); |
1741 | if (VBI == Layout.getVBaseOffsetsMap().end()) |
1742 | Offset = Layout.getBaseClassOffset(Base: BaseRD); |
1743 | else |
1744 | Offset = VBI->second.VBaseOffset; |
1745 | if (!Offset.isZero()) |
1746 | return; |
1747 | CGM.AddVTableTypeMetadata(VTable, Offset: AddressPoint, RD: DerivedRD); |
1748 | } |
1749 | |
1750 | // Finally do the same for the most derived class. |
1751 | if (Info.FullOffsetInMDC.isZero()) |
1752 | CGM.AddVTableTypeMetadata(VTable, Offset: AddressPoint, RD); |
1753 | } |
1754 | |
1755 | void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, |
1756 | const CXXRecordDecl *RD) { |
1757 | MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); |
1758 | const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); |
1759 | |
1760 | for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) { |
1761 | llvm::GlobalVariable *VTable = getAddrOfVTable(RD, VPtrOffset: Info->FullOffsetInMDC); |
1762 | if (VTable->hasInitializer()) |
1763 | continue; |
1764 | |
1765 | const VTableLayout &VTLayout = |
1766 | VFTContext.getVFTableLayout(RD, VFPtrOffset: Info->FullOffsetInMDC); |
1767 | |
1768 | llvm::Constant *RTTI = nullptr; |
1769 | if (any_of(Range: VTLayout.vtable_components(), |
1770 | P: [](const VTableComponent &VTC) { return VTC.isRTTIKind(); })) |
1771 | RTTI = getMSCompleteObjectLocator(RD, Info: *Info); |
1772 | |
1773 | ConstantInitBuilder builder(CGM); |
1774 | auto components = builder.beginStruct(); |
1775 | CGVT.createVTableInitializer(builder&: components, layout: VTLayout, rtti: RTTI, |
1776 | vtableHasLocalLinkage: VTable->hasLocalLinkage()); |
1777 | components.finishAndSetAsInitializer(global: VTable); |
1778 | |
1779 | emitVTableTypeMetadata(Info: *Info, RD, VTable); |
1780 | } |
1781 | } |
1782 | |
1783 | bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( |
1784 | CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { |
1785 | return Vptr.NearestVBase != nullptr; |
1786 | } |
1787 | |
1788 | llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( |
1789 | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, |
1790 | const CXXRecordDecl *NearestVBase) { |
1791 | llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); |
1792 | if (!VTableAddressPoint) { |
1793 | assert(Base.getBase()->getNumVBases() && |
1794 | !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); |
1795 | } |
1796 | return VTableAddressPoint; |
1797 | } |
1798 | |
1799 | static void mangleVFTableName(MicrosoftMangleContext &MangleContext, |
1800 | const CXXRecordDecl *RD, const VPtrInfo &VFPtr, |
1801 | SmallString<256> &Name) { |
1802 | llvm::raw_svector_ostream Out(Name); |
1803 | MangleContext.mangleCXXVFTable(Derived: RD, BasePath: VFPtr.MangledPath, Out); |
1804 | } |
1805 | |
1806 | llvm::Constant * |
1807 | MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, |
1808 | const CXXRecordDecl *VTableClass) { |
1809 | (void)getAddrOfVTable(RD: VTableClass, VPtrOffset: Base.getBaseOffset()); |
1810 | VFTableIdTy ID(VTableClass, Base.getBaseOffset()); |
1811 | return VFTablesMap[ID]; |
1812 | } |
1813 | |
1814 | llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, |
1815 | CharUnits VPtrOffset) { |
1816 | // getAddrOfVTable may return 0 if asked to get an address of a vtable which |
1817 | // shouldn't be used in the given record type. We want to cache this result in |
1818 | // VFTablesMap, thus a simple zero check is not sufficient. |
1819 | |
1820 | VFTableIdTy ID(RD, VPtrOffset); |
1821 | auto [I, Inserted] = VTablesMap.try_emplace(Key: ID); |
1822 | if (!Inserted) |
1823 | return I->second; |
1824 | |
1825 | llvm::GlobalVariable *&VTable = I->second; |
1826 | |
1827 | MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); |
1828 | const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); |
1829 | |
1830 | if (DeferredVFTables.insert(Ptr: RD).second) { |
1831 | // We haven't processed this record type before. |
1832 | // Queue up this vtable for possible deferred emission. |
1833 | CGM.addDeferredVTable(RD); |
1834 | |
1835 | #ifndef NDEBUG |
1836 | // Create all the vftables at once in order to make sure each vftable has |
1837 | // a unique mangled name. |
1838 | llvm::StringSet<> ObservedMangledNames; |
1839 | for (const auto &VFPtr : VFPtrs) { |
1840 | SmallString<256> Name; |
1841 | mangleVFTableName(getMangleContext(), RD, *VFPtr, Name); |
1842 | if (!ObservedMangledNames.insert(Name.str()).second) |
1843 | llvm_unreachable("Already saw this mangling before?" ); |
1844 | } |
1845 | #endif |
1846 | } |
1847 | |
1848 | const std::unique_ptr<VPtrInfo> *VFPtrI = |
1849 | llvm::find_if(Range: VFPtrs, P: [&](const std::unique_ptr<VPtrInfo> &VPI) { |
1850 | return VPI->FullOffsetInMDC == VPtrOffset; |
1851 | }); |
1852 | if (VFPtrI == VFPtrs.end()) { |
1853 | VFTablesMap[ID] = nullptr; |
1854 | return nullptr; |
1855 | } |
1856 | const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI; |
1857 | |
1858 | SmallString<256> VFTableName; |
1859 | mangleVFTableName(MangleContext&: getMangleContext(), RD, VFPtr: *VFPtr, Name&: VFTableName); |
1860 | |
1861 | // Classes marked __declspec(dllimport) need vftables generated on the |
1862 | // import-side in order to support features like constexpr. No other |
1863 | // translation unit relies on the emission of the local vftable, translation |
1864 | // units are expected to generate them as needed. |
1865 | // |
1866 | // Because of this unique behavior, we maintain this logic here instead of |
1867 | // getVTableLinkage. |
1868 | llvm::GlobalValue::LinkageTypes VFTableLinkage = |
1869 | RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage |
1870 | : CGM.getVTableLinkage(RD); |
1871 | bool VFTableComesFromAnotherTU = |
1872 | llvm::GlobalValue::isAvailableExternallyLinkage(Linkage: VFTableLinkage) || |
1873 | llvm::GlobalValue::isExternalLinkage(Linkage: VFTableLinkage); |
1874 | bool VTableAliasIsRequred = |
1875 | !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; |
1876 | |
1877 | if (llvm::GlobalValue *VFTable = |
1878 | CGM.getModule().getNamedGlobal(Name: VFTableName)) { |
1879 | VFTablesMap[ID] = VFTable; |
1880 | VTable = VTableAliasIsRequred |
1881 | ? cast<llvm::GlobalVariable>( |
1882 | Val: cast<llvm::GlobalAlias>(Val: VFTable)->getAliaseeObject()) |
1883 | : cast<llvm::GlobalVariable>(Val: VFTable); |
1884 | return VTable; |
1885 | } |
1886 | |
1887 | const VTableLayout &VTLayout = |
1888 | VTContext.getVFTableLayout(RD, VFPtrOffset: VFPtr->FullOffsetInMDC); |
1889 | llvm::GlobalValue::LinkageTypes VTableLinkage = |
1890 | VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; |
1891 | |
1892 | StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); |
1893 | |
1894 | llvm::Type *VTableType = CGM.getVTables().getVTableType(layout: VTLayout); |
1895 | |
1896 | // Create a backing variable for the contents of VTable. The VTable may |
1897 | // or may not include space for a pointer to RTTI data. |
1898 | llvm::GlobalValue *VFTable; |
1899 | VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, |
1900 | /*isConstant=*/true, VTableLinkage, |
1901 | /*Initializer=*/nullptr, VTableName); |
1902 | VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
1903 | |
1904 | llvm::Comdat *C = nullptr; |
1905 | if (!VFTableComesFromAnotherTU && |
1906 | llvm::GlobalValue::isWeakForLinker(Linkage: VFTableLinkage)) |
1907 | C = CGM.getModule().getOrInsertComdat(Name: VFTableName.str()); |
1908 | |
1909 | // Only insert a pointer into the VFTable for RTTI data if we are not |
1910 | // importing it. We never reference the RTTI data directly so there is no |
1911 | // need to make room for it. |
1912 | if (VTableAliasIsRequred) { |
1913 | llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 0), |
1914 | llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 0), |
1915 | llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 1)}; |
1916 | // Create a GEP which points just after the first entry in the VFTable, |
1917 | // this should be the location of the first virtual method. |
1918 | llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( |
1919 | Ty: VTable->getValueType(), C: VTable, IdxList: GEPIndices); |
1920 | if (llvm::GlobalValue::isWeakForLinker(Linkage: VFTableLinkage)) { |
1921 | VFTableLinkage = llvm::GlobalValue::ExternalLinkage; |
1922 | if (C) |
1923 | C->setSelectionKind(llvm::Comdat::Largest); |
1924 | } |
1925 | VFTable = llvm::GlobalAlias::create(Ty: CGM.Int8PtrTy, |
1926 | /*AddressSpace=*/0, Linkage: VFTableLinkage, |
1927 | Name: VFTableName.str(), Aliasee: VTableGEP, |
1928 | Parent: &CGM.getModule()); |
1929 | VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
1930 | } else { |
1931 | // We don't need a GlobalAlias to be a symbol for the VTable if we won't |
1932 | // be referencing any RTTI data. |
1933 | // The GlobalVariable will end up being an appropriate definition of the |
1934 | // VFTable. |
1935 | VFTable = VTable; |
1936 | } |
1937 | if (C) |
1938 | VTable->setComdat(C); |
1939 | |
1940 | if (RD->hasAttr<DLLExportAttr>()) |
1941 | VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); |
1942 | |
1943 | VFTablesMap[ID] = VFTable; |
1944 | return VTable; |
1945 | } |
1946 | |
1947 | CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, |
1948 | GlobalDecl GD, |
1949 | Address This, |
1950 | llvm::Type *Ty, |
1951 | SourceLocation Loc) { |
1952 | CGBuilderTy &Builder = CGF.Builder; |
1953 | |
1954 | Ty = CGF.UnqualPtrTy; |
1955 | Address VPtr = |
1956 | adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, VirtualCall: true); |
1957 | |
1958 | auto *MethodDecl = cast<CXXMethodDecl>(Val: GD.getDecl()); |
1959 | llvm::Value *VTable = |
1960 | CGF.GetVTablePtr(This: VPtr, VTableTy: CGF.UnqualPtrTy, VTableClass: MethodDecl->getParent()); |
1961 | |
1962 | MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); |
1963 | MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD); |
1964 | |
1965 | // Compute the identity of the most derived class whose virtual table is |
1966 | // located at the MethodVFTableLocation ML. |
1967 | auto getObjectWithVPtr = [&] { |
1968 | return llvm::find_if(Range: VFTContext.getVFPtrOffsets( |
1969 | RD: ML.VBase ? ML.VBase : MethodDecl->getParent()), |
1970 | P: [&](const std::unique_ptr<VPtrInfo> &Info) { |
1971 | return Info->FullOffsetInMDC == ML.VFPtrOffset; |
1972 | }) |
1973 | ->get() |
1974 | ->ObjectWithVPtr; |
1975 | }; |
1976 | |
1977 | llvm::Value *VFunc; |
1978 | if (CGF.ShouldEmitVTableTypeCheckedLoad(RD: MethodDecl->getParent())) { |
1979 | VFunc = CGF.EmitVTableTypeCheckedLoad( |
1980 | RD: getObjectWithVPtr(), VTable, VTableTy: Ty, |
1981 | VTableByteOffset: ML.Index * |
1982 | CGM.getContext().getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default) / |
1983 | 8); |
1984 | } else { |
1985 | if (CGM.getCodeGenOpts().PrepareForLTO) |
1986 | CGF.EmitTypeMetadataCodeForVCall(RD: getObjectWithVPtr(), VTable, Loc); |
1987 | |
1988 | llvm::Value *VFuncPtr = |
1989 | Builder.CreateConstInBoundsGEP1_64(Ty, Ptr: VTable, Idx0: ML.Index, Name: "vfn" ); |
1990 | VFunc = Builder.CreateAlignedLoad(Ty, Addr: VFuncPtr, Align: CGF.getPointerAlign()); |
1991 | } |
1992 | |
1993 | CGCallee Callee(GD, VFunc); |
1994 | return Callee; |
1995 | } |
1996 | |
1997 | llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( |
1998 | CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, |
1999 | Address This, DeleteOrMemberCallExpr E, llvm::CallBase **CallOrInvoke) { |
2000 | auto *CE = dyn_cast<const CXXMemberCallExpr *>(Val&: E); |
2001 | auto *D = dyn_cast<const CXXDeleteExpr *>(Val&: E); |
2002 | assert((CE != nullptr) ^ (D != nullptr)); |
2003 | assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); |
2004 | assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); |
2005 | |
2006 | // We have only one destructor in the vftable but can get both behaviors |
2007 | // by passing an implicit int parameter. |
2008 | GlobalDecl GD(Dtor, Dtor_Deleting); |
2009 | const CGFunctionInfo *FInfo = |
2010 | &CGM.getTypes().arrangeCXXStructorDeclaration(GD); |
2011 | llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(Info: *FInfo); |
2012 | CGCallee Callee = CGCallee::forVirtual(CE, MD: GD, Addr: This, FTy: Ty); |
2013 | |
2014 | ASTContext &Context = getContext(); |
2015 | llvm::Value *ImplicitParam = llvm::ConstantInt::get( |
2016 | Ty: llvm::IntegerType::getInt32Ty(C&: CGF.getLLVMContext()), |
2017 | V: DtorType == Dtor_Deleting); |
2018 | |
2019 | QualType ThisTy; |
2020 | if (CE) { |
2021 | ThisTy = CE->getObjectType(); |
2022 | } else { |
2023 | ThisTy = D->getDestroyedType(); |
2024 | } |
2025 | |
2026 | This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, VirtualCall: true); |
2027 | RValue RV = |
2028 | CGF.EmitCXXDestructorCall(Dtor: GD, Callee, This: This.emitRawPointer(CGF), ThisTy, |
2029 | ImplicitParam, ImplicitParamTy: Context.IntTy, E: CE, CallOrInvoke); |
2030 | return RV.getScalarVal(); |
2031 | } |
2032 | |
2033 | const VBTableGlobals & |
2034 | MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { |
2035 | // At this layer, we can key the cache off of a single class, which is much |
2036 | // easier than caching each vbtable individually. |
2037 | auto [Entry, Added] = VBTablesMap.try_emplace(Key: RD); |
2038 | VBTableGlobals &VBGlobals = Entry->second; |
2039 | if (!Added) |
2040 | return VBGlobals; |
2041 | |
2042 | MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); |
2043 | VBGlobals.VBTables = &Context.enumerateVBTables(RD); |
2044 | |
2045 | // Cache the globals for all vbtables so we don't have to recompute the |
2046 | // mangled names. |
2047 | llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); |
2048 | for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), |
2049 | E = VBGlobals.VBTables->end(); |
2050 | I != E; ++I) { |
2051 | VBGlobals.Globals.push_back(Elt: getAddrOfVBTable(VBT: **I, RD, Linkage)); |
2052 | } |
2053 | |
2054 | return VBGlobals; |
2055 | } |
2056 | |
2057 | llvm::Function * |
2058 | MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, |
2059 | const MethodVFTableLocation &ML) { |
2060 | assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) && |
2061 | "can't form pointers to ctors or virtual dtors" ); |
2062 | |
2063 | // Calculate the mangled name. |
2064 | SmallString<256> ThunkName; |
2065 | llvm::raw_svector_ostream Out(ThunkName); |
2066 | getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out); |
2067 | |
2068 | // If the thunk has been generated previously, just return it. |
2069 | if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(Name: ThunkName)) |
2070 | return cast<llvm::Function>(Val: GV); |
2071 | |
2072 | // Create the llvm::Function. |
2073 | const CGFunctionInfo &FnInfo = |
2074 | CGM.getTypes().arrangeUnprototypedMustTailThunk(MD); |
2075 | llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(Info: FnInfo); |
2076 | llvm::Function *ThunkFn = |
2077 | llvm::Function::Create(Ty: ThunkTy, Linkage: llvm::Function::ExternalLinkage, |
2078 | N: ThunkName.str(), M: &CGM.getModule()); |
2079 | assert(ThunkFn->getName() == ThunkName && "name was uniqued!" ); |
2080 | |
2081 | ThunkFn->setLinkage(MD->isExternallyVisible() |
2082 | ? llvm::GlobalValue::LinkOnceODRLinkage |
2083 | : llvm::GlobalValue::InternalLinkage); |
2084 | if (MD->isExternallyVisible()) |
2085 | ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(Name: ThunkFn->getName())); |
2086 | |
2087 | CGM.SetLLVMFunctionAttributes(GD: MD, Info: FnInfo, F: ThunkFn, /*IsThunk=*/false); |
2088 | CGM.SetLLVMFunctionAttributesForDefinition(D: MD, F: ThunkFn); |
2089 | |
2090 | // Add the "thunk" attribute so that LLVM knows that the return type is |
2091 | // meaningless. These thunks can be used to call functions with differing |
2092 | // return types, and the caller is required to cast the prototype |
2093 | // appropriately to extract the correct value. |
2094 | ThunkFn->addFnAttr(Kind: "thunk" ); |
2095 | |
2096 | // These thunks can be compared, so they are not unnamed. |
2097 | ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); |
2098 | |
2099 | // Start codegen. |
2100 | CodeGenFunction CGF(CGM); |
2101 | CGF.CurGD = GlobalDecl(MD); |
2102 | CGF.CurFuncIsThunk = true; |
2103 | |
2104 | // Build FunctionArgs, but only include the implicit 'this' parameter |
2105 | // declaration. |
2106 | FunctionArgList FunctionArgs; |
2107 | buildThisParam(CGF, Params&: FunctionArgs); |
2108 | |
2109 | // Start defining the function. |
2110 | CGF.StartFunction(GD: GlobalDecl(), RetTy: FnInfo.getReturnType(), Fn: ThunkFn, FnInfo, |
2111 | Args: FunctionArgs, Loc: MD->getLocation(), StartLoc: SourceLocation()); |
2112 | |
2113 | ApplyDebugLocation AL(CGF, MD->getLocation()); |
2114 | setCXXABIThisValue(CGF, ThisPtr: loadIncomingCXXThis(CGF)); |
2115 | |
2116 | // Load the vfptr and then callee from the vftable. The callee should have |
2117 | // adjusted 'this' so that the vfptr is at offset zero. |
2118 | llvm::Type *ThunkPtrTy = CGF.UnqualPtrTy; |
2119 | llvm::Value *VTable = |
2120 | CGF.GetVTablePtr(This: getThisAddress(CGF), VTableTy: CGF.UnqualPtrTy, VTableClass: MD->getParent()); |
2121 | |
2122 | llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64( |
2123 | Ty: ThunkPtrTy, Ptr: VTable, Idx0: ML.Index, Name: "vfn" ); |
2124 | llvm::Value *Callee = |
2125 | CGF.Builder.CreateAlignedLoad(Ty: ThunkPtrTy, Addr: VFuncPtr, Align: CGF.getPointerAlign()); |
2126 | |
2127 | CGF.EmitMustTailThunk(GD: MD, AdjustedThisPtr: getThisValue(CGF), Callee: {ThunkTy, Callee}); |
2128 | |
2129 | return ThunkFn; |
2130 | } |
2131 | |
2132 | void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { |
2133 | const VBTableGlobals &VBGlobals = enumerateVBTables(RD); |
2134 | for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { |
2135 | const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I]; |
2136 | llvm::GlobalVariable *GV = VBGlobals.Globals[I]; |
2137 | if (GV->isDeclaration()) |
2138 | emitVBTableDefinition(VBT: *VBT, RD, GV); |
2139 | } |
2140 | } |
2141 | |
2142 | llvm::GlobalVariable * |
2143 | MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, |
2144 | llvm::GlobalVariable::LinkageTypes Linkage) { |
2145 | SmallString<256> OutName; |
2146 | llvm::raw_svector_ostream Out(OutName); |
2147 | getMangleContext().mangleCXXVBTable(Derived: RD, BasePath: VBT.MangledPath, Out); |
2148 | StringRef Name = OutName.str(); |
2149 | |
2150 | llvm::ArrayType *VBTableType = |
2151 | llvm::ArrayType::get(ElementType: CGM.IntTy, NumElements: 1 + VBT.ObjectWithVPtr->getNumVBases()); |
2152 | |
2153 | assert(!CGM.getModule().getNamedGlobal(Name) && |
2154 | "vbtable with this name already exists: mangling bug?" ); |
2155 | CharUnits Alignment = |
2156 | CGM.getContext().getTypeAlignInChars(T: CGM.getContext().IntTy); |
2157 | llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( |
2158 | Name, Ty: VBTableType, Linkage, Alignment: Alignment.getAsAlign()); |
2159 | GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
2160 | |
2161 | if (RD->hasAttr<DLLImportAttr>()) |
2162 | GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); |
2163 | else if (RD->hasAttr<DLLExportAttr>()) |
2164 | GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); |
2165 | |
2166 | if (!GV->hasExternalLinkage()) |
2167 | emitVBTableDefinition(VBT, RD, GV); |
2168 | |
2169 | return GV; |
2170 | } |
2171 | |
2172 | void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, |
2173 | const CXXRecordDecl *RD, |
2174 | llvm::GlobalVariable *GV) const { |
2175 | const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr; |
2176 | |
2177 | assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() && |
2178 | "should only emit vbtables for classes with vbtables" ); |
2179 | |
2180 | const ASTRecordLayout &BaseLayout = |
2181 | getContext().getASTRecordLayout(D: VBT.IntroducingObject); |
2182 | const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(D: RD); |
2183 | |
2184 | SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(), |
2185 | nullptr); |
2186 | |
2187 | // The offset from ObjectWithVPtr's vbptr to itself always leads. |
2188 | CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); |
2189 | Offsets[0] = llvm::ConstantInt::get(Ty: CGM.IntTy, V: -VBPtrOffset.getQuantity()); |
2190 | |
2191 | MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); |
2192 | for (const auto &I : ObjectWithVPtr->vbases()) { |
2193 | const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); |
2194 | CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); |
2195 | assert(!Offset.isNegative()); |
2196 | |
2197 | // Make it relative to the subobject vbptr. |
2198 | CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; |
2199 | if (VBT.getVBaseWithVPtr()) |
2200 | CompleteVBPtrOffset += |
2201 | DerivedLayout.getVBaseClassOffset(VBase: VBT.getVBaseWithVPtr()); |
2202 | Offset -= CompleteVBPtrOffset; |
2203 | |
2204 | unsigned VBIndex = Context.getVBTableIndex(Derived: ObjectWithVPtr, VBase); |
2205 | assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?" ); |
2206 | Offsets[VBIndex] = llvm::ConstantInt::get(Ty: CGM.IntTy, V: Offset.getQuantity()); |
2207 | } |
2208 | |
2209 | assert(Offsets.size() == |
2210 | cast<llvm::ArrayType>(GV->getValueType())->getNumElements()); |
2211 | llvm::ArrayType *VBTableType = |
2212 | llvm::ArrayType::get(ElementType: CGM.IntTy, NumElements: Offsets.size()); |
2213 | llvm::Constant *Init = llvm::ConstantArray::get(T: VBTableType, V: Offsets); |
2214 | GV->setInitializer(Init); |
2215 | |
2216 | if (RD->hasAttr<DLLImportAttr>()) |
2217 | GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage); |
2218 | } |
2219 | |
2220 | llvm::Value *MicrosoftCXXABI::performThisAdjustment( |
2221 | CodeGenFunction &CGF, Address This, |
2222 | const CXXRecordDecl * /*UnadjustedClass*/, const ThunkInfo &TI) { |
2223 | const ThisAdjustment &TA = TI.This; |
2224 | if (TA.isEmpty()) |
2225 | return This.emitRawPointer(CGF); |
2226 | |
2227 | This = This.withElementType(ElemTy: CGF.Int8Ty); |
2228 | |
2229 | llvm::Value *V; |
2230 | if (TA.Virtual.isEmpty()) { |
2231 | V = This.emitRawPointer(CGF); |
2232 | } else { |
2233 | assert(TA.Virtual.Microsoft.VtordispOffset < 0); |
2234 | // Adjust the this argument based on the vtordisp value. |
2235 | Address VtorDispPtr = |
2236 | CGF.Builder.CreateConstInBoundsByteGEP(Addr: This, |
2237 | Offset: CharUnits::fromQuantity(Quantity: TA.Virtual.Microsoft.VtordispOffset)); |
2238 | VtorDispPtr = VtorDispPtr.withElementType(ElemTy: CGF.Int32Ty); |
2239 | llvm::Value *VtorDisp = CGF.Builder.CreateLoad(Addr: VtorDispPtr, Name: "vtordisp" ); |
2240 | V = CGF.Builder.CreateGEP(Ty: This.getElementType(), Ptr: This.emitRawPointer(CGF), |
2241 | IdxList: CGF.Builder.CreateNeg(V: VtorDisp)); |
2242 | |
2243 | // Unfortunately, having applied the vtordisp means that we no |
2244 | // longer really have a known alignment for the vbptr step. |
2245 | // We'll assume the vbptr is pointer-aligned. |
2246 | |
2247 | if (TA.Virtual.Microsoft.VBPtrOffset) { |
2248 | // If the final overrider is defined in a virtual base other than the one |
2249 | // that holds the vfptr, we have to use a vtordispex thunk which looks up |
2250 | // the vbtable of the derived class. |
2251 | assert(TA.Virtual.Microsoft.VBPtrOffset > 0); |
2252 | assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); |
2253 | llvm::Value *VBPtr; |
2254 | llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr( |
2255 | CGF, Base: Address(V, CGF.Int8Ty, CGF.getPointerAlign()), |
2256 | VBPtrOffset: -TA.Virtual.Microsoft.VBPtrOffset, |
2257 | VBTableOffset: TA.Virtual.Microsoft.VBOffsetOffset, VBPtr: &VBPtr); |
2258 | V = CGF.Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: VBPtr, IdxList: VBaseOffset); |
2259 | } |
2260 | } |
2261 | |
2262 | if (TA.NonVirtual) { |
2263 | // Non-virtual adjustment might result in a pointer outside the allocated |
2264 | // object, e.g. if the final overrider class is laid out after the virtual |
2265 | // base that declares a method in the most derived class. |
2266 | V = CGF.Builder.CreateConstGEP1_32(Ty: CGF.Int8Ty, Ptr: V, Idx0: TA.NonVirtual); |
2267 | } |
2268 | |
2269 | // Don't need to bitcast back, the call CodeGen will handle this. |
2270 | return V; |
2271 | } |
2272 | |
2273 | llvm::Value *MicrosoftCXXABI::performReturnAdjustment( |
2274 | CodeGenFunction &CGF, Address Ret, |
2275 | const CXXRecordDecl * /*UnadjustedClass*/, const ReturnAdjustment &RA) { |
2276 | |
2277 | if (RA.isEmpty()) |
2278 | return Ret.emitRawPointer(CGF); |
2279 | |
2280 | Ret = Ret.withElementType(ElemTy: CGF.Int8Ty); |
2281 | |
2282 | llvm::Value *V = Ret.emitRawPointer(CGF); |
2283 | if (RA.Virtual.Microsoft.VBIndex) { |
2284 | assert(RA.Virtual.Microsoft.VBIndex > 0); |
2285 | int32_t IntSize = CGF.getIntSize().getQuantity(); |
2286 | llvm::Value *VBPtr; |
2287 | llvm::Value *VBaseOffset = |
2288 | GetVBaseOffsetFromVBPtr(CGF, Base: Ret, VBPtrOffset: RA.Virtual.Microsoft.VBPtrOffset, |
2289 | VBTableOffset: IntSize * RA.Virtual.Microsoft.VBIndex, VBPtr: &VBPtr); |
2290 | V = CGF.Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: VBPtr, IdxList: VBaseOffset); |
2291 | } |
2292 | |
2293 | if (RA.NonVirtual) |
2294 | V = CGF.Builder.CreateConstInBoundsGEP1_32(Ty: CGF.Int8Ty, Ptr: V, Idx0: RA.NonVirtual); |
2295 | |
2296 | return V; |
2297 | } |
2298 | |
2299 | bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, |
2300 | QualType elementType) { |
2301 | // Microsoft seems to completely ignore the possibility of a |
2302 | // two-argument usual deallocation function. |
2303 | return elementType.isDestructedType(); |
2304 | } |
2305 | |
2306 | bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { |
2307 | // Microsoft seems to completely ignore the possibility of a |
2308 | // two-argument usual deallocation function. |
2309 | return expr->getAllocatedType().isDestructedType(); |
2310 | } |
2311 | |
2312 | CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { |
2313 | // The array cookie is always a size_t; we then pad that out to the |
2314 | // alignment of the element type. |
2315 | ASTContext &Ctx = getContext(); |
2316 | return std::max(a: Ctx.getTypeSizeInChars(T: Ctx.getSizeType()), |
2317 | b: Ctx.getTypeAlignInChars(T: type)); |
2318 | } |
2319 | |
2320 | llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, |
2321 | Address allocPtr, |
2322 | CharUnits cookieSize) { |
2323 | Address numElementsPtr = allocPtr.withElementType(ElemTy: CGF.SizeTy); |
2324 | return CGF.Builder.CreateLoad(Addr: numElementsPtr); |
2325 | } |
2326 | |
2327 | Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, |
2328 | Address newPtr, |
2329 | llvm::Value *numElements, |
2330 | const CXXNewExpr *expr, |
2331 | QualType elementType) { |
2332 | assert(requiresArrayCookie(expr)); |
2333 | |
2334 | // The size of the cookie. |
2335 | CharUnits cookieSize = getArrayCookieSizeImpl(type: elementType); |
2336 | |
2337 | // Compute an offset to the cookie. |
2338 | Address cookiePtr = newPtr; |
2339 | |
2340 | // Write the number of elements into the appropriate slot. |
2341 | Address numElementsPtr = cookiePtr.withElementType(ElemTy: CGF.SizeTy); |
2342 | CGF.Builder.CreateStore(Val: numElements, Addr: numElementsPtr); |
2343 | |
2344 | // Finally, compute a pointer to the actual data buffer by skipping |
2345 | // over the cookie completely. |
2346 | return CGF.Builder.CreateConstInBoundsByteGEP(Addr: newPtr, Offset: cookieSize); |
2347 | } |
2348 | |
2349 | static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, |
2350 | llvm::FunctionCallee Dtor, |
2351 | llvm::Constant *Addr) { |
2352 | // Create a function which calls the destructor. |
2353 | llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); |
2354 | |
2355 | // extern "C" int __tlregdtor(void (*f)(void)); |
2356 | llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( |
2357 | Result: CGF.IntTy, Params: DtorStub->getType(), /*isVarArg=*/false); |
2358 | |
2359 | llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction( |
2360 | Ty: TLRegDtorTy, Name: "__tlregdtor" , ExtraAttrs: llvm::AttributeList(), /*Local=*/true); |
2361 | if (llvm::Function *TLRegDtorFn = |
2362 | dyn_cast<llvm::Function>(Val: TLRegDtor.getCallee())) |
2363 | TLRegDtorFn->setDoesNotThrow(); |
2364 | |
2365 | CGF.EmitNounwindRuntimeCall(callee: TLRegDtor, args: DtorStub); |
2366 | } |
2367 | |
2368 | void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
2369 | llvm::FunctionCallee Dtor, |
2370 | llvm::Constant *Addr) { |
2371 | if (D.isNoDestroy(CGM.getContext())) |
2372 | return; |
2373 | |
2374 | if (D.getTLSKind()) |
2375 | return emitGlobalDtorWithTLRegDtor(CGF, VD: D, Dtor, Addr); |
2376 | |
2377 | // HLSL doesn't support atexit. |
2378 | if (CGM.getLangOpts().HLSL) |
2379 | return CGM.AddCXXDtorEntry(DtorFn: Dtor, Object: Addr); |
2380 | |
2381 | // The default behavior is to use atexit. |
2382 | CGF.registerGlobalDtorWithAtExit(D, fn: Dtor, addr: Addr); |
2383 | } |
2384 | |
2385 | void MicrosoftCXXABI::EmitThreadLocalInitFuncs( |
2386 | CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, |
2387 | ArrayRef<llvm::Function *> CXXThreadLocalInits, |
2388 | ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { |
2389 | if (CXXThreadLocalInits.empty()) |
2390 | return; |
2391 | |
2392 | CGM.AppendLinkerOptions(Opts: CGM.getTarget().getTriple().getArch() == |
2393 | llvm::Triple::x86 |
2394 | ? "/include:___dyn_tls_init@12" |
2395 | : "/include:__dyn_tls_init" ); |
2396 | |
2397 | // This will create a GV in the .CRT$XDU section. It will point to our |
2398 | // initialization function. The CRT will call all of these function |
2399 | // pointers at start-up time and, eventually, at thread-creation time. |
2400 | auto AddToXDU = [&CGM](llvm::Function *InitFunc) { |
2401 | llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( |
2402 | CGM.getModule(), InitFunc->getType(), /*isConstant=*/true, |
2403 | llvm::GlobalVariable::InternalLinkage, InitFunc, |
2404 | Twine(InitFunc->getName(), "$initializer$" )); |
2405 | InitFuncPtr->setSection(".CRT$XDU" ); |
2406 | // This variable has discardable linkage, we have to add it to @llvm.used to |
2407 | // ensure it won't get discarded. |
2408 | CGM.addUsedGlobal(GV: InitFuncPtr); |
2409 | return InitFuncPtr; |
2410 | }; |
2411 | |
2412 | std::vector<llvm::Function *> NonComdatInits; |
2413 | for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { |
2414 | llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>( |
2415 | Val: CGM.GetGlobalValue(Ref: CGM.getMangledName(GD: CXXThreadLocalInitVars[I]))); |
2416 | llvm::Function *F = CXXThreadLocalInits[I]; |
2417 | |
2418 | // If the GV is already in a comdat group, then we have to join it. |
2419 | if (llvm::Comdat *C = GV->getComdat()) |
2420 | AddToXDU(F)->setComdat(C); |
2421 | else |
2422 | NonComdatInits.push_back(x: F); |
2423 | } |
2424 | |
2425 | if (!NonComdatInits.empty()) { |
2426 | llvm::FunctionType *FTy = |
2427 | llvm::FunctionType::get(Result: CGM.VoidTy, /*isVarArg=*/false); |
2428 | llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction( |
2429 | ty: FTy, name: "__tls_init" , FI: CGM.getTypes().arrangeNullaryFunction(), |
2430 | Loc: SourceLocation(), /*TLS=*/true); |
2431 | CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(Fn: InitFunc, CXXThreadLocals: NonComdatInits); |
2432 | |
2433 | AddToXDU(InitFunc); |
2434 | } |
2435 | } |
2436 | |
2437 | static llvm::GlobalValue *getTlsGuardVar(CodeGenModule &CGM) { |
2438 | // __tls_guard comes from the MSVC runtime and reflects |
2439 | // whether TLS has been initialized for a particular thread. |
2440 | // It is set from within __dyn_tls_init by the runtime. |
2441 | // Every library and executable has its own variable. |
2442 | llvm::Type *VTy = llvm::Type::getInt8Ty(C&: CGM.getLLVMContext()); |
2443 | llvm::Constant *TlsGuardConstant = |
2444 | CGM.CreateRuntimeVariable(Ty: VTy, Name: "__tls_guard" ); |
2445 | llvm::GlobalValue *TlsGuard = cast<llvm::GlobalValue>(Val: TlsGuardConstant); |
2446 | |
2447 | TlsGuard->setThreadLocal(true); |
2448 | |
2449 | return TlsGuard; |
2450 | } |
2451 | |
2452 | static llvm::FunctionCallee getDynTlsOnDemandInitFn(CodeGenModule &CGM) { |
2453 | // __dyn_tls_on_demand_init comes from the MSVC runtime and triggers |
2454 | // dynamic TLS initialization by calling __dyn_tls_init internally. |
2455 | llvm::FunctionType *FTy = |
2456 | llvm::FunctionType::get(Result: llvm::Type::getVoidTy(C&: CGM.getLLVMContext()), Params: {}, |
2457 | /*isVarArg=*/false); |
2458 | return CGM.CreateRuntimeFunction( |
2459 | Ty: FTy, Name: "__dyn_tls_on_demand_init" , |
2460 | ExtraAttrs: llvm::AttributeList::get(C&: CGM.getLLVMContext(), |
2461 | Index: llvm::AttributeList::FunctionIndex, |
2462 | Kinds: llvm::Attribute::NoUnwind), |
2463 | /*Local=*/true); |
2464 | } |
2465 | |
2466 | static void emitTlsGuardCheck(CodeGenFunction &CGF, llvm::GlobalValue *TlsGuard, |
2467 | llvm::BasicBlock *DynInitBB, |
2468 | llvm::BasicBlock *ContinueBB) { |
2469 | llvm::LoadInst *TlsGuardValue = |
2470 | CGF.Builder.CreateLoad(Addr: Address(TlsGuard, CGF.Int8Ty, CharUnits::One())); |
2471 | llvm::Value *CmpResult = |
2472 | CGF.Builder.CreateICmpEQ(LHS: TlsGuardValue, RHS: CGF.Builder.getInt8(C: 0)); |
2473 | CGF.Builder.CreateCondBr(Cond: CmpResult, True: DynInitBB, False: ContinueBB); |
2474 | } |
2475 | |
2476 | static void emitDynamicTlsInitializationCall(CodeGenFunction &CGF, |
2477 | llvm::GlobalValue *TlsGuard, |
2478 | llvm::BasicBlock *ContinueBB) { |
2479 | llvm::FunctionCallee Initializer = getDynTlsOnDemandInitFn(CGM&: CGF.CGM); |
2480 | llvm::Function *InitializerFunction = |
2481 | cast<llvm::Function>(Val: Initializer.getCallee()); |
2482 | llvm::CallInst *CallVal = CGF.Builder.CreateCall(Callee: InitializerFunction); |
2483 | CallVal->setCallingConv(InitializerFunction->getCallingConv()); |
2484 | |
2485 | CGF.Builder.CreateBr(Dest: ContinueBB); |
2486 | } |
2487 | |
2488 | static void emitDynamicTlsInitialization(CodeGenFunction &CGF) { |
2489 | llvm::BasicBlock *DynInitBB = |
2490 | CGF.createBasicBlock(name: "dyntls.dyn_init" , parent: CGF.CurFn); |
2491 | llvm::BasicBlock *ContinueBB = |
2492 | CGF.createBasicBlock(name: "dyntls.continue" , parent: CGF.CurFn); |
2493 | |
2494 | llvm::GlobalValue *TlsGuard = getTlsGuardVar(CGM&: CGF.CGM); |
2495 | |
2496 | emitTlsGuardCheck(CGF, TlsGuard, DynInitBB, ContinueBB); |
2497 | CGF.Builder.SetInsertPoint(DynInitBB); |
2498 | emitDynamicTlsInitializationCall(CGF, TlsGuard, ContinueBB); |
2499 | CGF.Builder.SetInsertPoint(ContinueBB); |
2500 | } |
2501 | |
2502 | LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, |
2503 | const VarDecl *VD, |
2504 | QualType LValType) { |
2505 | // Dynamic TLS initialization works by checking the state of a |
2506 | // guard variable (__tls_guard) to see whether TLS initialization |
2507 | // for a thread has happend yet. |
2508 | // If not, the initialization is triggered on-demand |
2509 | // by calling __dyn_tls_on_demand_init. |
2510 | emitDynamicTlsInitialization(CGF); |
2511 | |
2512 | // Emit the variable just like any regular global variable. |
2513 | |
2514 | llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(D: VD); |
2515 | llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(T: VD->getType()); |
2516 | |
2517 | CharUnits Alignment = CGF.getContext().getDeclAlign(D: VD); |
2518 | Address Addr(V, RealVarTy, Alignment); |
2519 | |
2520 | LValue LV = VD->getType()->isReferenceType() |
2521 | ? CGF.EmitLoadOfReferenceLValue(RefAddr: Addr, RefTy: VD->getType(), |
2522 | Source: AlignmentSource::Decl) |
2523 | : CGF.MakeAddrLValue(Addr, T: LValType, Source: AlignmentSource::Decl); |
2524 | return LV; |
2525 | } |
2526 | |
2527 | static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { |
2528 | StringRef VarName("_Init_thread_epoch" ); |
2529 | CharUnits Align = CGM.getIntAlign(); |
2530 | if (auto *GV = CGM.getModule().getNamedGlobal(Name: VarName)) |
2531 | return ConstantAddress(GV, GV->getValueType(), Align); |
2532 | auto *GV = new llvm::GlobalVariable( |
2533 | CGM.getModule(), CGM.IntTy, |
2534 | /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage, |
2535 | /*Initializer=*/nullptr, VarName, |
2536 | /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); |
2537 | GV->setAlignment(Align.getAsAlign()); |
2538 | return ConstantAddress(GV, GV->getValueType(), Align); |
2539 | } |
2540 | |
2541 | static llvm::FunctionCallee (CodeGenModule &CGM) { |
2542 | llvm::FunctionType *FTy = |
2543 | llvm::FunctionType::get(Result: llvm::Type::getVoidTy(C&: CGM.getLLVMContext()), |
2544 | Params: CGM.UnqualPtrTy, /*isVarArg=*/false); |
2545 | return CGM.CreateRuntimeFunction( |
2546 | Ty: FTy, Name: "_Init_thread_header" , |
2547 | ExtraAttrs: llvm::AttributeList::get(C&: CGM.getLLVMContext(), |
2548 | Index: llvm::AttributeList::FunctionIndex, |
2549 | Kinds: llvm::Attribute::NoUnwind), |
2550 | /*Local=*/true); |
2551 | } |
2552 | |
2553 | static llvm::FunctionCallee (CodeGenModule &CGM) { |
2554 | llvm::FunctionType *FTy = |
2555 | llvm::FunctionType::get(Result: llvm::Type::getVoidTy(C&: CGM.getLLVMContext()), |
2556 | Params: CGM.UnqualPtrTy, /*isVarArg=*/false); |
2557 | return CGM.CreateRuntimeFunction( |
2558 | Ty: FTy, Name: "_Init_thread_footer" , |
2559 | ExtraAttrs: llvm::AttributeList::get(C&: CGM.getLLVMContext(), |
2560 | Index: llvm::AttributeList::FunctionIndex, |
2561 | Kinds: llvm::Attribute::NoUnwind), |
2562 | /*Local=*/true); |
2563 | } |
2564 | |
2565 | static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) { |
2566 | llvm::FunctionType *FTy = |
2567 | llvm::FunctionType::get(Result: llvm::Type::getVoidTy(C&: CGM.getLLVMContext()), |
2568 | Params: CGM.UnqualPtrTy, /*isVarArg=*/false); |
2569 | return CGM.CreateRuntimeFunction( |
2570 | Ty: FTy, Name: "_Init_thread_abort" , |
2571 | ExtraAttrs: llvm::AttributeList::get(C&: CGM.getLLVMContext(), |
2572 | Index: llvm::AttributeList::FunctionIndex, |
2573 | Kinds: llvm::Attribute::NoUnwind), |
2574 | /*Local=*/true); |
2575 | } |
2576 | |
2577 | namespace { |
2578 | struct ResetGuardBit final : EHScopeStack::Cleanup { |
2579 | Address Guard; |
2580 | unsigned GuardNum; |
2581 | ResetGuardBit(Address Guard, unsigned GuardNum) |
2582 | : Guard(Guard), GuardNum(GuardNum) {} |
2583 | |
2584 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
2585 | // Reset the bit in the mask so that the static variable may be |
2586 | // reinitialized. |
2587 | CGBuilderTy &Builder = CGF.Builder; |
2588 | llvm::LoadInst *LI = Builder.CreateLoad(Addr: Guard); |
2589 | llvm::ConstantInt *Mask = |
2590 | llvm::ConstantInt::get(Ty: CGF.IntTy, V: ~(1ULL << GuardNum)); |
2591 | Builder.CreateStore(Val: Builder.CreateAnd(LHS: LI, RHS: Mask), Addr: Guard); |
2592 | } |
2593 | }; |
2594 | |
2595 | struct CallInitThreadAbort final : EHScopeStack::Cleanup { |
2596 | llvm::Value *Guard; |
2597 | CallInitThreadAbort(RawAddress Guard) : Guard(Guard.getPointer()) {} |
2598 | |
2599 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
2600 | // Calling _Init_thread_abort will reset the guard's state. |
2601 | CGF.EmitNounwindRuntimeCall(callee: getInitThreadAbortFn(CGM&: CGF.CGM), args: Guard); |
2602 | } |
2603 | }; |
2604 | } |
2605 | |
2606 | void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, |
2607 | llvm::GlobalVariable *GV, |
2608 | bool PerformInit) { |
2609 | // MSVC only uses guards for static locals. |
2610 | if (!D.isStaticLocal()) { |
2611 | assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); |
2612 | // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. |
2613 | llvm::Function *F = CGF.CurFn; |
2614 | F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); |
2615 | F->setComdat(CGM.getModule().getOrInsertComdat(Name: F->getName())); |
2616 | CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); |
2617 | return; |
2618 | } |
2619 | |
2620 | bool ThreadlocalStatic = D.getTLSKind(); |
2621 | bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; |
2622 | |
2623 | // Thread-safe static variables which aren't thread-specific have a |
2624 | // per-variable guard. |
2625 | bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; |
2626 | |
2627 | CGBuilderTy &Builder = CGF.Builder; |
2628 | llvm::IntegerType *GuardTy = CGF.Int32Ty; |
2629 | llvm::ConstantInt *Zero = llvm::ConstantInt::get(Ty: GuardTy, V: 0); |
2630 | CharUnits GuardAlign = CharUnits::fromQuantity(Quantity: 4); |
2631 | |
2632 | // Get the guard variable for this function if we have one already. |
2633 | GuardInfo *GI = nullptr; |
2634 | if (ThreadlocalStatic) |
2635 | GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; |
2636 | else if (!ThreadsafeStatic) |
2637 | GI = &GuardVariableMap[D.getDeclContext()]; |
2638 | |
2639 | llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; |
2640 | unsigned GuardNum; |
2641 | if (D.isExternallyVisible()) { |
2642 | // Externally visible variables have to be numbered in Sema to properly |
2643 | // handle unreachable VarDecls. |
2644 | GuardNum = getContext().getStaticLocalNumber(VD: &D); |
2645 | assert(GuardNum > 0); |
2646 | GuardNum--; |
2647 | } else if (HasPerVariableGuard) { |
2648 | GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; |
2649 | } else { |
2650 | // Non-externally visible variables are numbered here in CodeGen. |
2651 | GuardNum = GI->BitIndex++; |
2652 | } |
2653 | |
2654 | if (!HasPerVariableGuard && GuardNum >= 32) { |
2655 | if (D.isExternallyVisible()) |
2656 | ErrorUnsupportedABI(CGF, S: "more than 32 guarded initializations" ); |
2657 | GuardNum %= 32; |
2658 | GuardVar = nullptr; |
2659 | } |
2660 | |
2661 | if (!GuardVar) { |
2662 | // Mangle the name for the guard. |
2663 | SmallString<256> GuardName; |
2664 | { |
2665 | llvm::raw_svector_ostream Out(GuardName); |
2666 | if (HasPerVariableGuard) |
2667 | getMangleContext().mangleThreadSafeStaticGuardVariable(VD: &D, GuardNum, |
2668 | Out); |
2669 | else |
2670 | getMangleContext().mangleStaticGuardVariable(D: &D, Out); |
2671 | } |
2672 | |
2673 | // Create the guard variable with a zero-initializer. Just absorb linkage, |
2674 | // visibility and dll storage class from the guarded variable. |
2675 | GuardVar = |
2676 | new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, |
2677 | GV->getLinkage(), Zero, GuardName.str()); |
2678 | GuardVar->setVisibility(GV->getVisibility()); |
2679 | GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); |
2680 | GuardVar->setAlignment(GuardAlign.getAsAlign()); |
2681 | if (GuardVar->isWeakForLinker()) |
2682 | GuardVar->setComdat( |
2683 | CGM.getModule().getOrInsertComdat(Name: GuardVar->getName())); |
2684 | if (D.getTLSKind()) |
2685 | CGM.setTLSMode(GV: GuardVar, D); |
2686 | if (GI && !HasPerVariableGuard) |
2687 | GI->Guard = GuardVar; |
2688 | } |
2689 | |
2690 | ConstantAddress GuardAddr(GuardVar, GuardTy, GuardAlign); |
2691 | |
2692 | assert(GuardVar->getLinkage() == GV->getLinkage() && |
2693 | "static local from the same function had different linkage" ); |
2694 | |
2695 | if (!HasPerVariableGuard) { |
2696 | // Pseudo code for the test: |
2697 | // if (!(GuardVar & MyGuardBit)) { |
2698 | // GuardVar |= MyGuardBit; |
2699 | // ... initialize the object ...; |
2700 | // } |
2701 | |
2702 | // Test our bit from the guard variable. |
2703 | llvm::ConstantInt *Bit = llvm::ConstantInt::get(Ty: GuardTy, V: 1ULL << GuardNum); |
2704 | llvm::LoadInst *LI = Builder.CreateLoad(Addr: GuardAddr); |
2705 | llvm::Value *NeedsInit = |
2706 | Builder.CreateICmpEQ(LHS: Builder.CreateAnd(LHS: LI, RHS: Bit), RHS: Zero); |
2707 | llvm::BasicBlock *InitBlock = CGF.createBasicBlock(name: "init" ); |
2708 | llvm::BasicBlock *EndBlock = CGF.createBasicBlock(name: "init.end" ); |
2709 | CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, NoInitBlock: EndBlock, |
2710 | Kind: CodeGenFunction::GuardKind::VariableGuard, D: &D); |
2711 | |
2712 | // Set our bit in the guard variable and emit the initializer and add a global |
2713 | // destructor if appropriate. |
2714 | CGF.EmitBlock(BB: InitBlock); |
2715 | Builder.CreateStore(Val: Builder.CreateOr(LHS: LI, RHS: Bit), Addr: GuardAddr); |
2716 | CGF.EHStack.pushCleanup<ResetGuardBit>(Kind: EHCleanup, A: GuardAddr, A: GuardNum); |
2717 | CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); |
2718 | CGF.PopCleanupBlock(); |
2719 | Builder.CreateBr(Dest: EndBlock); |
2720 | |
2721 | // Continue. |
2722 | CGF.EmitBlock(BB: EndBlock); |
2723 | } else { |
2724 | // Pseudo code for the test: |
2725 | // if (TSS > _Init_thread_epoch) { |
2726 | // _Init_thread_header(&TSS); |
2727 | // if (TSS == -1) { |
2728 | // ... initialize the object ...; |
2729 | // _Init_thread_footer(&TSS); |
2730 | // } |
2731 | // } |
2732 | // |
2733 | // The algorithm is almost identical to what can be found in the appendix |
2734 | // found in N2325. |
2735 | |
2736 | // This BasicBLock determines whether or not we have any work to do. |
2737 | llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(Addr: GuardAddr); |
2738 | FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); |
2739 | llvm::LoadInst *InitThreadEpoch = |
2740 | Builder.CreateLoad(Addr: getInitThreadEpochPtr(CGM)); |
2741 | llvm::Value *IsUninitialized = |
2742 | Builder.CreateICmpSGT(LHS: FirstGuardLoad, RHS: InitThreadEpoch); |
2743 | llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock(name: "init.attempt" ); |
2744 | llvm::BasicBlock *EndBlock = CGF.createBasicBlock(name: "init.end" ); |
2745 | CGF.EmitCXXGuardedInitBranch(NeedsInit: IsUninitialized, InitBlock: AttemptInitBlock, NoInitBlock: EndBlock, |
2746 | Kind: CodeGenFunction::GuardKind::VariableGuard, D: &D); |
2747 | |
2748 | // This BasicBlock attempts to determine whether or not this thread is |
2749 | // responsible for doing the initialization. |
2750 | CGF.EmitBlock(BB: AttemptInitBlock); |
2751 | CGF.EmitNounwindRuntimeCall(callee: getInitThreadHeaderFn(CGM), |
2752 | args: GuardAddr.getPointer()); |
2753 | llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(Addr: GuardAddr); |
2754 | SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); |
2755 | llvm::Value *ShouldDoInit = |
2756 | Builder.CreateICmpEQ(LHS: SecondGuardLoad, RHS: getAllOnesInt()); |
2757 | llvm::BasicBlock *InitBlock = CGF.createBasicBlock(name: "init" ); |
2758 | Builder.CreateCondBr(Cond: ShouldDoInit, True: InitBlock, False: EndBlock); |
2759 | |
2760 | // Ok, we ended up getting selected as the initializing thread. |
2761 | CGF.EmitBlock(BB: InitBlock); |
2762 | CGF.EHStack.pushCleanup<CallInitThreadAbort>(Kind: EHCleanup, A: GuardAddr); |
2763 | CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); |
2764 | CGF.PopCleanupBlock(); |
2765 | CGF.EmitNounwindRuntimeCall(callee: getInitThreadFooterFn(CGM), |
2766 | args: GuardAddr.getPointer()); |
2767 | Builder.CreateBr(Dest: EndBlock); |
2768 | |
2769 | CGF.EmitBlock(BB: EndBlock); |
2770 | } |
2771 | } |
2772 | |
2773 | bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { |
2774 | // Null-ness for function memptrs only depends on the first field, which is |
2775 | // the function pointer. The rest don't matter, so we can zero initialize. |
2776 | if (MPT->isMemberFunctionPointer()) |
2777 | return true; |
2778 | |
2779 | // The virtual base adjustment field is always -1 for null, so if we have one |
2780 | // we can't zero initialize. The field offset is sometimes also -1 if 0 is a |
2781 | // valid field offset. |
2782 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
2783 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
2784 | return (!inheritanceModelHasVBTableOffsetField(Inheritance) && |
2785 | RD->nullFieldOffsetIsZero()); |
2786 | } |
2787 | |
2788 | llvm::Type * |
2789 | MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { |
2790 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
2791 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
2792 | llvm::SmallVector<llvm::Type *, 4> fields; |
2793 | if (MPT->isMemberFunctionPointer()) |
2794 | fields.push_back(Elt: CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk |
2795 | else |
2796 | fields.push_back(Elt: CGM.IntTy); // FieldOffset |
2797 | |
2798 | if (inheritanceModelHasNVOffsetField(IsMemberFunction: MPT->isMemberFunctionPointer(), |
2799 | Inheritance)) |
2800 | fields.push_back(Elt: CGM.IntTy); |
2801 | if (inheritanceModelHasVBPtrOffsetField(Inheritance)) |
2802 | fields.push_back(Elt: CGM.IntTy); |
2803 | if (inheritanceModelHasVBTableOffsetField(Inheritance)) |
2804 | fields.push_back(Elt: CGM.IntTy); // VirtualBaseAdjustmentOffset |
2805 | |
2806 | if (fields.size() == 1) |
2807 | return fields[0]; |
2808 | return llvm::StructType::get(Context&: CGM.getLLVMContext(), Elements: fields); |
2809 | } |
2810 | |
2811 | void MicrosoftCXXABI:: |
2812 | GetNullMemberPointerFields(const MemberPointerType *MPT, |
2813 | llvm::SmallVectorImpl<llvm::Constant *> &fields) { |
2814 | assert(fields.empty()); |
2815 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
2816 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
2817 | if (MPT->isMemberFunctionPointer()) { |
2818 | // FunctionPointerOrVirtualThunk |
2819 | fields.push_back(Elt: llvm::Constant::getNullValue(Ty: CGM.VoidPtrTy)); |
2820 | } else { |
2821 | if (RD->nullFieldOffsetIsZero()) |
2822 | fields.push_back(Elt: getZeroInt()); // FieldOffset |
2823 | else |
2824 | fields.push_back(Elt: getAllOnesInt()); // FieldOffset |
2825 | } |
2826 | |
2827 | if (inheritanceModelHasNVOffsetField(IsMemberFunction: MPT->isMemberFunctionPointer(), |
2828 | Inheritance)) |
2829 | fields.push_back(Elt: getZeroInt()); |
2830 | if (inheritanceModelHasVBPtrOffsetField(Inheritance)) |
2831 | fields.push_back(Elt: getZeroInt()); |
2832 | if (inheritanceModelHasVBTableOffsetField(Inheritance)) |
2833 | fields.push_back(Elt: getAllOnesInt()); |
2834 | } |
2835 | |
2836 | llvm::Constant * |
2837 | MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { |
2838 | llvm::SmallVector<llvm::Constant *, 4> fields; |
2839 | GetNullMemberPointerFields(MPT, fields); |
2840 | if (fields.size() == 1) |
2841 | return fields[0]; |
2842 | llvm::Constant *Res = llvm::ConstantStruct::getAnon(V: fields); |
2843 | assert(Res->getType() == ConvertMemberPointerType(MPT)); |
2844 | return Res; |
2845 | } |
2846 | |
2847 | llvm::Constant * |
2848 | MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, |
2849 | bool IsMemberFunction, |
2850 | const CXXRecordDecl *RD, |
2851 | CharUnits NonVirtualBaseAdjustment, |
2852 | unsigned VBTableIndex) { |
2853 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
2854 | |
2855 | // Single inheritance class member pointer are represented as scalars instead |
2856 | // of aggregates. |
2857 | if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance)) |
2858 | return FirstField; |
2859 | |
2860 | llvm::SmallVector<llvm::Constant *, 4> fields; |
2861 | fields.push_back(Elt: FirstField); |
2862 | |
2863 | if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance)) |
2864 | fields.push_back(Elt: llvm::ConstantInt::get( |
2865 | Ty: CGM.IntTy, V: NonVirtualBaseAdjustment.getQuantity())); |
2866 | |
2867 | if (inheritanceModelHasVBPtrOffsetField(Inheritance)) { |
2868 | CharUnits Offs = CharUnits::Zero(); |
2869 | if (VBTableIndex) |
2870 | Offs = getContext().getASTRecordLayout(D: RD).getVBPtrOffset(); |
2871 | fields.push_back(Elt: llvm::ConstantInt::get(Ty: CGM.IntTy, V: Offs.getQuantity())); |
2872 | } |
2873 | |
2874 | // The rest of the fields are adjusted by conversions to a more derived class. |
2875 | if (inheritanceModelHasVBTableOffsetField(Inheritance)) |
2876 | fields.push_back(Elt: llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBTableIndex)); |
2877 | |
2878 | return llvm::ConstantStruct::getAnon(V: fields); |
2879 | } |
2880 | |
2881 | llvm::Constant * |
2882 | MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, |
2883 | CharUnits offset) { |
2884 | return EmitMemberDataPointer(RD: MPT->getMostRecentCXXRecordDecl(), offset); |
2885 | } |
2886 | |
2887 | llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD, |
2888 | CharUnits offset) { |
2889 | if (RD->getMSInheritanceModel() == |
2890 | MSInheritanceModel::Virtual) |
2891 | offset -= getContext().getOffsetOfBaseWithVBPtr(RD); |
2892 | llvm::Constant *FirstField = |
2893 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: offset.getQuantity()); |
2894 | return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, |
2895 | NonVirtualBaseAdjustment: CharUnits::Zero(), /*VBTableIndex=*/0); |
2896 | } |
2897 | |
2898 | llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, |
2899 | QualType MPType) { |
2900 | const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>(); |
2901 | const ValueDecl *MPD = MP.getMemberPointerDecl(); |
2902 | if (!MPD) |
2903 | return EmitNullMemberPointer(MPT: DstTy); |
2904 | |
2905 | ASTContext &Ctx = getContext(); |
2906 | ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath(); |
2907 | |
2908 | llvm::Constant *C; |
2909 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: MPD)) { |
2910 | C = EmitMemberFunctionPointer(MD); |
2911 | } else { |
2912 | // For a pointer to data member, start off with the offset of the field in |
2913 | // the class in which it was declared, and convert from there if necessary. |
2914 | // For indirect field decls, get the outermost anonymous field and use the |
2915 | // parent class. |
2916 | CharUnits FieldOffset = Ctx.toCharUnitsFromBits(BitSize: Ctx.getFieldOffset(FD: MPD)); |
2917 | const FieldDecl *FD = dyn_cast<FieldDecl>(Val: MPD); |
2918 | if (!FD) |
2919 | FD = cast<FieldDecl>(Val: *cast<IndirectFieldDecl>(Val: MPD)->chain_begin()); |
2920 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: FD->getParent()); |
2921 | RD = RD->getMostRecentNonInjectedDecl(); |
2922 | C = EmitMemberDataPointer(RD, offset: FieldOffset); |
2923 | } |
2924 | |
2925 | if (!MemberPointerPath.empty()) { |
2926 | const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(Val: MPD->getDeclContext()); |
2927 | const MemberPointerType *SrcTy = |
2928 | Ctx.getMemberPointerType(T: DstTy->getPointeeType(), /*Qualifier=*/nullptr, |
2929 | Cls: SrcRD) |
2930 | ->castAs<MemberPointerType>(); |
2931 | |
2932 | bool DerivedMember = MP.isMemberPointerToDerivedMember(); |
2933 | SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath; |
2934 | const CXXRecordDecl *PrevRD = SrcRD; |
2935 | for (const CXXRecordDecl *PathElem : MemberPointerPath) { |
2936 | const CXXRecordDecl *Base = nullptr; |
2937 | const CXXRecordDecl *Derived = nullptr; |
2938 | if (DerivedMember) { |
2939 | Base = PathElem; |
2940 | Derived = PrevRD; |
2941 | } else { |
2942 | Base = PrevRD; |
2943 | Derived = PathElem; |
2944 | } |
2945 | for (const CXXBaseSpecifier &BS : Derived->bases()) |
2946 | if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == |
2947 | Base->getCanonicalDecl()) |
2948 | DerivedToBasePath.push_back(Elt: &BS); |
2949 | PrevRD = PathElem; |
2950 | } |
2951 | assert(DerivedToBasePath.size() == MemberPointerPath.size()); |
2952 | |
2953 | CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer |
2954 | : CK_BaseToDerivedMemberPointer; |
2955 | C = EmitMemberPointerConversion(SrcTy, DstTy, CK, PathBegin: DerivedToBasePath.begin(), |
2956 | PathEnd: DerivedToBasePath.end(), Src: C); |
2957 | } |
2958 | return C; |
2959 | } |
2960 | |
2961 | llvm::Constant * |
2962 | MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { |
2963 | assert(MD->isInstance() && "Member function must not be static!" ); |
2964 | |
2965 | CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); |
2966 | const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl(); |
2967 | CodeGenTypes &Types = CGM.getTypes(); |
2968 | |
2969 | unsigned VBTableIndex = 0; |
2970 | llvm::Constant *FirstField; |
2971 | const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); |
2972 | if (!MD->isVirtual()) { |
2973 | llvm::Type *Ty; |
2974 | // Check whether the function has a computable LLVM signature. |
2975 | if (Types.isFuncTypeConvertible(FT: FPT)) { |
2976 | // The function has a computable LLVM signature; use the correct type. |
2977 | Ty = Types.GetFunctionType(Info: Types.arrangeCXXMethodDeclaration(MD)); |
2978 | } else { |
2979 | // Use an arbitrary non-function type to tell GetAddrOfFunction that the |
2980 | // function type is incomplete. |
2981 | Ty = CGM.PtrDiffTy; |
2982 | } |
2983 | FirstField = CGM.GetAddrOfFunction(GD: MD, Ty); |
2984 | } else { |
2985 | auto &VTableContext = CGM.getMicrosoftVTableContext(); |
2986 | MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(GD: MD); |
2987 | FirstField = EmitVirtualMemPtrThunk(MD, ML); |
2988 | // Include the vfptr adjustment if the method is in a non-primary vftable. |
2989 | NonVirtualBaseAdjustment += ML.VFPtrOffset; |
2990 | if (ML.VBase) |
2991 | VBTableIndex = VTableContext.getVBTableIndex(Derived: RD, VBase: ML.VBase) * 4; |
2992 | } |
2993 | |
2994 | if (VBTableIndex == 0 && |
2995 | RD->getMSInheritanceModel() == |
2996 | MSInheritanceModel::Virtual) |
2997 | NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); |
2998 | |
2999 | // The rest of the fields are common with data member pointers. |
3000 | return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, |
3001 | NonVirtualBaseAdjustment, VBTableIndex); |
3002 | } |
3003 | |
3004 | /// Member pointers are the same if they're either bitwise identical *or* both |
3005 | /// null. Null-ness for function members is determined by the first field, |
3006 | /// while for data member pointers we must compare all fields. |
3007 | llvm::Value * |
3008 | MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, |
3009 | llvm::Value *L, |
3010 | llvm::Value *R, |
3011 | const MemberPointerType *MPT, |
3012 | bool Inequality) { |
3013 | CGBuilderTy &Builder = CGF.Builder; |
3014 | |
3015 | // Handle != comparisons by switching the sense of all boolean operations. |
3016 | llvm::ICmpInst::Predicate Eq; |
3017 | llvm::Instruction::BinaryOps And, Or; |
3018 | if (Inequality) { |
3019 | Eq = llvm::ICmpInst::ICMP_NE; |
3020 | And = llvm::Instruction::Or; |
3021 | Or = llvm::Instruction::And; |
3022 | } else { |
3023 | Eq = llvm::ICmpInst::ICMP_EQ; |
3024 | And = llvm::Instruction::And; |
3025 | Or = llvm::Instruction::Or; |
3026 | } |
3027 | |
3028 | // If this is a single field member pointer (single inheritance), this is a |
3029 | // single icmp. |
3030 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
3031 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
3032 | if (inheritanceModelHasOnlyOneField(IsMemberFunction: MPT->isMemberFunctionPointer(), |
3033 | Inheritance)) |
3034 | return Builder.CreateICmp(P: Eq, LHS: L, RHS: R); |
3035 | |
3036 | // Compare the first field. |
3037 | llvm::Value *L0 = Builder.CreateExtractValue(Agg: L, Idxs: 0, Name: "lhs.0" ); |
3038 | llvm::Value *R0 = Builder.CreateExtractValue(Agg: R, Idxs: 0, Name: "rhs.0" ); |
3039 | llvm::Value *Cmp0 = Builder.CreateICmp(P: Eq, LHS: L0, RHS: R0, Name: "memptr.cmp.first" ); |
3040 | |
3041 | // Compare everything other than the first field. |
3042 | llvm::Value *Res = nullptr; |
3043 | llvm::StructType *LType = cast<llvm::StructType>(Val: L->getType()); |
3044 | for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { |
3045 | llvm::Value *LF = Builder.CreateExtractValue(Agg: L, Idxs: I); |
3046 | llvm::Value *RF = Builder.CreateExtractValue(Agg: R, Idxs: I); |
3047 | llvm::Value *Cmp = Builder.CreateICmp(P: Eq, LHS: LF, RHS: RF, Name: "memptr.cmp.rest" ); |
3048 | if (Res) |
3049 | Res = Builder.CreateBinOp(Opc: And, LHS: Res, RHS: Cmp); |
3050 | else |
3051 | Res = Cmp; |
3052 | } |
3053 | |
3054 | // Check if the first field is 0 if this is a function pointer. |
3055 | if (MPT->isMemberFunctionPointer()) { |
3056 | // (l1 == r1 && ...) || l0 == 0 |
3057 | llvm::Value *Zero = llvm::Constant::getNullValue(Ty: L0->getType()); |
3058 | llvm::Value *IsZero = Builder.CreateICmp(P: Eq, LHS: L0, RHS: Zero, Name: "memptr.cmp.iszero" ); |
3059 | Res = Builder.CreateBinOp(Opc: Or, LHS: Res, RHS: IsZero); |
3060 | } |
3061 | |
3062 | // Combine the comparison of the first field, which must always be true for |
3063 | // this comparison to succeeed. |
3064 | return Builder.CreateBinOp(Opc: And, LHS: Res, RHS: Cmp0, Name: "memptr.cmp" ); |
3065 | } |
3066 | |
3067 | llvm::Value * |
3068 | MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, |
3069 | llvm::Value *MemPtr, |
3070 | const MemberPointerType *MPT) { |
3071 | CGBuilderTy &Builder = CGF.Builder; |
3072 | llvm::SmallVector<llvm::Constant *, 4> fields; |
3073 | // We only need one field for member functions. |
3074 | if (MPT->isMemberFunctionPointer()) |
3075 | fields.push_back(Elt: llvm::Constant::getNullValue(Ty: CGM.VoidPtrTy)); |
3076 | else |
3077 | GetNullMemberPointerFields(MPT, fields); |
3078 | assert(!fields.empty()); |
3079 | llvm::Value *FirstField = MemPtr; |
3080 | if (MemPtr->getType()->isStructTy()) |
3081 | FirstField = Builder.CreateExtractValue(Agg: MemPtr, Idxs: 0); |
3082 | llvm::Value *Res = Builder.CreateICmpNE(LHS: FirstField, RHS: fields[0], Name: "memptr.cmp0" ); |
3083 | |
3084 | // For function member pointers, we only need to test the function pointer |
3085 | // field. The other fields if any can be garbage. |
3086 | if (MPT->isMemberFunctionPointer()) |
3087 | return Res; |
3088 | |
3089 | // Otherwise, emit a series of compares and combine the results. |
3090 | for (int I = 1, E = fields.size(); I < E; ++I) { |
3091 | llvm::Value *Field = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I); |
3092 | llvm::Value *Next = Builder.CreateICmpNE(LHS: Field, RHS: fields[I], Name: "memptr.cmp" ); |
3093 | Res = Builder.CreateOr(LHS: Res, RHS: Next, Name: "memptr.tobool" ); |
3094 | } |
3095 | return Res; |
3096 | } |
3097 | |
3098 | bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, |
3099 | llvm::Constant *Val) { |
3100 | // Function pointers are null if the pointer in the first field is null. |
3101 | if (MPT->isMemberFunctionPointer()) { |
3102 | llvm::Constant *FirstField = Val->getType()->isStructTy() ? |
3103 | Val->getAggregateElement(Elt: 0U) : Val; |
3104 | return FirstField->isNullValue(); |
3105 | } |
3106 | |
3107 | // If it's not a function pointer and it's zero initializable, we can easily |
3108 | // check zero. |
3109 | if (isZeroInitializable(MPT) && Val->isNullValue()) |
3110 | return true; |
3111 | |
3112 | // Otherwise, break down all the fields for comparison. Hopefully these |
3113 | // little Constants are reused, while a big null struct might not be. |
3114 | llvm::SmallVector<llvm::Constant *, 4> Fields; |
3115 | GetNullMemberPointerFields(MPT, fields&: Fields); |
3116 | if (Fields.size() == 1) { |
3117 | assert(Val->getType()->isIntegerTy()); |
3118 | return Val == Fields[0]; |
3119 | } |
3120 | |
3121 | unsigned I, E; |
3122 | for (I = 0, E = Fields.size(); I != E; ++I) { |
3123 | if (Val->getAggregateElement(Elt: I) != Fields[I]) |
3124 | break; |
3125 | } |
3126 | return I == E; |
3127 | } |
3128 | |
3129 | llvm::Value * |
3130 | MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, |
3131 | Address This, |
3132 | llvm::Value *VBPtrOffset, |
3133 | llvm::Value *VBTableOffset, |
3134 | llvm::Value **VBPtrOut) { |
3135 | CGBuilderTy &Builder = CGF.Builder; |
3136 | // Load the vbtable pointer from the vbptr in the instance. |
3137 | llvm::Value *VBPtr = Builder.CreateInBoundsGEP( |
3138 | Ty: CGM.Int8Ty, Ptr: This.emitRawPointer(CGF), IdxList: VBPtrOffset, Name: "vbptr" ); |
3139 | if (VBPtrOut) |
3140 | *VBPtrOut = VBPtr; |
3141 | |
3142 | CharUnits VBPtrAlign; |
3143 | if (auto CI = dyn_cast<llvm::ConstantInt>(Val: VBPtrOffset)) { |
3144 | VBPtrAlign = This.getAlignment().alignmentAtOffset( |
3145 | offset: CharUnits::fromQuantity(Quantity: CI->getSExtValue())); |
3146 | } else { |
3147 | VBPtrAlign = CGF.getPointerAlign(); |
3148 | } |
3149 | |
3150 | llvm::Value *VBTable = |
3151 | Builder.CreateAlignedLoad(Ty: CGM.UnqualPtrTy, Addr: VBPtr, Align: VBPtrAlign, Name: "vbtable" ); |
3152 | |
3153 | // Translate from byte offset to table index. It improves analyzability. |
3154 | llvm::Value *VBTableIndex = Builder.CreateAShr( |
3155 | LHS: VBTableOffset, RHS: llvm::ConstantInt::get(Ty: VBTableOffset->getType(), V: 2), |
3156 | Name: "vbtindex" , /*isExact=*/true); |
3157 | |
3158 | // Load an i32 offset from the vb-table. |
3159 | llvm::Value *VBaseOffs = |
3160 | Builder.CreateInBoundsGEP(Ty: CGM.Int32Ty, Ptr: VBTable, IdxList: VBTableIndex); |
3161 | return Builder.CreateAlignedLoad(Ty: CGM.Int32Ty, Addr: VBaseOffs, |
3162 | Align: CharUnits::fromQuantity(Quantity: 4), Name: "vbase_offs" ); |
3163 | } |
3164 | |
3165 | // Returns an adjusted base cast to i8*, since we do more address arithmetic on |
3166 | // it. |
3167 | llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( |
3168 | CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, |
3169 | Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { |
3170 | CGBuilderTy &Builder = CGF.Builder; |
3171 | Base = Base.withElementType(ElemTy: CGM.Int8Ty); |
3172 | llvm::BasicBlock *OriginalBB = nullptr; |
3173 | llvm::BasicBlock *SkipAdjustBB = nullptr; |
3174 | llvm::BasicBlock *VBaseAdjustBB = nullptr; |
3175 | |
3176 | // In the unspecified inheritance model, there might not be a vbtable at all, |
3177 | // in which case we need to skip the virtual base lookup. If there is a |
3178 | // vbtable, the first entry is a no-op entry that gives back the original |
3179 | // base, so look for a virtual base adjustment offset of zero. |
3180 | if (VBPtrOffset) { |
3181 | OriginalBB = Builder.GetInsertBlock(); |
3182 | VBaseAdjustBB = CGF.createBasicBlock(name: "memptr.vadjust" ); |
3183 | SkipAdjustBB = CGF.createBasicBlock(name: "memptr.skip_vadjust" ); |
3184 | llvm::Value *IsVirtual = |
3185 | Builder.CreateICmpNE(LHS: VBTableOffset, RHS: getZeroInt(), |
3186 | Name: "memptr.is_vbase" ); |
3187 | Builder.CreateCondBr(Cond: IsVirtual, True: VBaseAdjustBB, False: SkipAdjustBB); |
3188 | CGF.EmitBlock(BB: VBaseAdjustBB); |
3189 | } |
3190 | |
3191 | // If we weren't given a dynamic vbptr offset, RD should be complete and we'll |
3192 | // know the vbptr offset. |
3193 | if (!VBPtrOffset) { |
3194 | CharUnits offs = CharUnits::Zero(); |
3195 | if (!RD->hasDefinition()) { |
3196 | DiagnosticsEngine &Diags = CGF.CGM.getDiags(); |
3197 | unsigned DiagID = Diags.getCustomDiagID( |
3198 | L: DiagnosticsEngine::Error, |
3199 | FormatString: "member pointer representation requires a " |
3200 | "complete class type for %0 to perform this expression" ); |
3201 | Diags.Report(Loc: E->getExprLoc(), DiagID) << RD << E->getSourceRange(); |
3202 | } else if (RD->getNumVBases()) |
3203 | offs = getContext().getASTRecordLayout(D: RD).getVBPtrOffset(); |
3204 | VBPtrOffset = llvm::ConstantInt::get(Ty: CGM.IntTy, V: offs.getQuantity()); |
3205 | } |
3206 | llvm::Value *VBPtr = nullptr; |
3207 | llvm::Value *VBaseOffs = |
3208 | GetVBaseOffsetFromVBPtr(CGF, This: Base, VBPtrOffset, VBTableOffset, VBPtrOut: &VBPtr); |
3209 | llvm::Value *AdjustedBase = |
3210 | Builder.CreateInBoundsGEP(Ty: CGM.Int8Ty, Ptr: VBPtr, IdxList: VBaseOffs); |
3211 | |
3212 | // Merge control flow with the case where we didn't have to adjust. |
3213 | if (VBaseAdjustBB) { |
3214 | Builder.CreateBr(Dest: SkipAdjustBB); |
3215 | CGF.EmitBlock(BB: SkipAdjustBB); |
3216 | llvm::PHINode *Phi = Builder.CreatePHI(Ty: CGM.Int8PtrTy, NumReservedValues: 2, Name: "memptr.base" ); |
3217 | Phi->addIncoming(V: Base.emitRawPointer(CGF), BB: OriginalBB); |
3218 | Phi->addIncoming(V: AdjustedBase, BB: VBaseAdjustBB); |
3219 | return Phi; |
3220 | } |
3221 | return AdjustedBase; |
3222 | } |
3223 | |
3224 | llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( |
3225 | CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, |
3226 | const MemberPointerType *MPT, bool IsInBounds) { |
3227 | assert(MPT->isMemberDataPointer()); |
3228 | CGBuilderTy &Builder = CGF.Builder; |
3229 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
3230 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
3231 | |
3232 | // Extract the fields we need, regardless of model. We'll apply them if we |
3233 | // have them. |
3234 | llvm::Value *FieldOffset = MemPtr; |
3235 | llvm::Value *VirtualBaseAdjustmentOffset = nullptr; |
3236 | llvm::Value *VBPtrOffset = nullptr; |
3237 | if (MemPtr->getType()->isStructTy()) { |
3238 | // We need to extract values. |
3239 | unsigned I = 0; |
3240 | FieldOffset = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
3241 | if (inheritanceModelHasVBPtrOffsetField(Inheritance)) |
3242 | VBPtrOffset = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
3243 | if (inheritanceModelHasVBTableOffsetField(Inheritance)) |
3244 | VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
3245 | } |
3246 | |
3247 | llvm::Value *Addr; |
3248 | if (VirtualBaseAdjustmentOffset) { |
3249 | Addr = AdjustVirtualBase(CGF, E, RD, Base, VBTableOffset: VirtualBaseAdjustmentOffset, |
3250 | VBPtrOffset); |
3251 | } else { |
3252 | Addr = Base.emitRawPointer(CGF); |
3253 | } |
3254 | |
3255 | // Apply the offset. |
3256 | return Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: Addr, IdxList: FieldOffset, Name: "memptr.offset" , |
3257 | NW: IsInBounds ? llvm::GEPNoWrapFlags::inBounds() |
3258 | : llvm::GEPNoWrapFlags::none()); |
3259 | } |
3260 | |
3261 | llvm::Value * |
3262 | MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, |
3263 | const CastExpr *E, |
3264 | llvm::Value *Src) { |
3265 | assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || |
3266 | E->getCastKind() == CK_BaseToDerivedMemberPointer || |
3267 | E->getCastKind() == CK_ReinterpretMemberPointer); |
3268 | |
3269 | // Use constant emission if we can. |
3270 | if (isa<llvm::Constant>(Val: Src)) |
3271 | return EmitMemberPointerConversion(E, Src: cast<llvm::Constant>(Val: Src)); |
3272 | |
3273 | // We may be adding or dropping fields from the member pointer, so we need |
3274 | // both types and the inheritance models of both records. |
3275 | const MemberPointerType *SrcTy = |
3276 | E->getSubExpr()->getType()->castAs<MemberPointerType>(); |
3277 | const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); |
3278 | bool IsFunc = SrcTy->isMemberFunctionPointer(); |
3279 | |
3280 | // If the classes use the same null representation, reinterpret_cast is a nop. |
3281 | bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; |
3282 | if (IsReinterpret && IsFunc) |
3283 | return Src; |
3284 | |
3285 | CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); |
3286 | CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); |
3287 | if (IsReinterpret && |
3288 | SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) |
3289 | return Src; |
3290 | |
3291 | CGBuilderTy &Builder = CGF.Builder; |
3292 | |
3293 | // Branch past the conversion if Src is null. |
3294 | llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, MemPtr: Src, MPT: SrcTy); |
3295 | llvm::Constant *DstNull = EmitNullMemberPointer(MPT: DstTy); |
3296 | |
3297 | // C++ 5.2.10p9: The null member pointer value is converted to the null member |
3298 | // pointer value of the destination type. |
3299 | if (IsReinterpret) { |
3300 | // For reinterpret casts, sema ensures that src and dst are both functions |
3301 | // or data and have the same size, which means the LLVM types should match. |
3302 | assert(Src->getType() == DstNull->getType()); |
3303 | return Builder.CreateSelect(C: IsNotNull, True: Src, False: DstNull); |
3304 | } |
3305 | |
3306 | llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); |
3307 | llvm::BasicBlock *ConvertBB = CGF.createBasicBlock(name: "memptr.convert" ); |
3308 | llvm::BasicBlock *ContinueBB = CGF.createBasicBlock(name: "memptr.converted" ); |
3309 | Builder.CreateCondBr(Cond: IsNotNull, True: ConvertBB, False: ContinueBB); |
3310 | CGF.EmitBlock(BB: ConvertBB); |
3311 | |
3312 | llvm::Value *Dst = EmitNonNullMemberPointerConversion( |
3313 | SrcTy, DstTy, CK: E->getCastKind(), PathBegin: E->path_begin(), PathEnd: E->path_end(), Src, |
3314 | Builder); |
3315 | |
3316 | Builder.CreateBr(Dest: ContinueBB); |
3317 | |
3318 | // In the continuation, choose between DstNull and Dst. |
3319 | CGF.EmitBlock(BB: ContinueBB); |
3320 | llvm::PHINode *Phi = Builder.CreatePHI(Ty: DstNull->getType(), NumReservedValues: 2, Name: "memptr.converted" ); |
3321 | Phi->addIncoming(V: DstNull, BB: OriginalBB); |
3322 | Phi->addIncoming(V: Dst, BB: ConvertBB); |
3323 | return Phi; |
3324 | } |
3325 | |
3326 | llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( |
3327 | const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, |
3328 | CastExpr::path_const_iterator PathBegin, |
3329 | CastExpr::path_const_iterator PathEnd, llvm::Value *Src, |
3330 | CGBuilderTy &Builder) { |
3331 | const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); |
3332 | const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); |
3333 | MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel(); |
3334 | MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel(); |
3335 | bool IsFunc = SrcTy->isMemberFunctionPointer(); |
3336 | bool IsConstant = isa<llvm::Constant>(Val: Src); |
3337 | |
3338 | // Decompose src. |
3339 | llvm::Value *FirstField = Src; |
3340 | llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); |
3341 | llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); |
3342 | llvm::Value *VBPtrOffset = getZeroInt(); |
3343 | if (!inheritanceModelHasOnlyOneField(IsMemberFunction: IsFunc, Inheritance: SrcInheritance)) { |
3344 | // We need to extract values. |
3345 | unsigned I = 0; |
3346 | FirstField = Builder.CreateExtractValue(Agg: Src, Idxs: I++); |
3347 | if (inheritanceModelHasNVOffsetField(IsMemberFunction: IsFunc, Inheritance: SrcInheritance)) |
3348 | NonVirtualBaseAdjustment = Builder.CreateExtractValue(Agg: Src, Idxs: I++); |
3349 | if (inheritanceModelHasVBPtrOffsetField(Inheritance: SrcInheritance)) |
3350 | VBPtrOffset = Builder.CreateExtractValue(Agg: Src, Idxs: I++); |
3351 | if (inheritanceModelHasVBTableOffsetField(Inheritance: SrcInheritance)) |
3352 | VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Agg: Src, Idxs: I++); |
3353 | } |
3354 | |
3355 | bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); |
3356 | const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; |
3357 | const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); |
3358 | |
3359 | // For data pointers, we adjust the field offset directly. For functions, we |
3360 | // have a separate field. |
3361 | llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; |
3362 | |
3363 | // The virtual inheritance model has a quirk: the virtual base table is always |
3364 | // referenced when dereferencing a member pointer even if the member pointer |
3365 | // is non-virtual. This is accounted for by adjusting the non-virtual offset |
3366 | // to point backwards to the top of the MDC from the first VBase. Undo this |
3367 | // adjustment to normalize the member pointer. |
3368 | llvm::Value *SrcVBIndexEqZero = |
3369 | Builder.CreateICmpEQ(LHS: VirtualBaseAdjustmentOffset, RHS: getZeroInt()); |
3370 | if (SrcInheritance == MSInheritanceModel::Virtual) { |
3371 | if (int64_t SrcOffsetToFirstVBase = |
3372 | getContext().getOffsetOfBaseWithVBPtr(RD: SrcRD).getQuantity()) { |
3373 | llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( |
3374 | C: SrcVBIndexEqZero, |
3375 | True: llvm::ConstantInt::get(Ty: CGM.IntTy, V: SrcOffsetToFirstVBase), |
3376 | False: getZeroInt()); |
3377 | NVAdjustField = Builder.CreateNSWAdd(LHS: NVAdjustField, RHS: UndoSrcAdjustment); |
3378 | } |
3379 | } |
3380 | |
3381 | // A non-zero vbindex implies that we are dealing with a source member in a |
3382 | // floating virtual base in addition to some non-virtual offset. If the |
3383 | // vbindex is zero, we are dealing with a source that exists in a non-virtual, |
3384 | // fixed, base. The difference between these two cases is that the vbindex + |
3385 | // nvoffset *always* point to the member regardless of what context they are |
3386 | // evaluated in so long as the vbindex is adjusted. A member inside a fixed |
3387 | // base requires explicit nv adjustment. |
3388 | llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( |
3389 | Ty: CGM.IntTy, |
3390 | V: CGM.computeNonVirtualBaseClassOffset(DerivedClass, Start: PathBegin, End: PathEnd) |
3391 | .getQuantity()); |
3392 | |
3393 | llvm::Value *NVDisp; |
3394 | if (IsDerivedToBase) |
3395 | NVDisp = Builder.CreateNSWSub(LHS: NVAdjustField, RHS: BaseClassOffset, Name: "adj" ); |
3396 | else |
3397 | NVDisp = Builder.CreateNSWAdd(LHS: NVAdjustField, RHS: BaseClassOffset, Name: "adj" ); |
3398 | |
3399 | NVAdjustField = Builder.CreateSelect(C: SrcVBIndexEqZero, True: NVDisp, False: getZeroInt()); |
3400 | |
3401 | // Update the vbindex to an appropriate value in the destination because |
3402 | // SrcRD's vbtable might not be a strict prefix of the one in DstRD. |
3403 | llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; |
3404 | if (inheritanceModelHasVBTableOffsetField(Inheritance: DstInheritance) && |
3405 | inheritanceModelHasVBTableOffsetField(Inheritance: SrcInheritance)) { |
3406 | if (llvm::GlobalVariable *VDispMap = |
3407 | getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { |
3408 | llvm::Value *VBIndex = Builder.CreateExactUDiv( |
3409 | LHS: VirtualBaseAdjustmentOffset, RHS: llvm::ConstantInt::get(Ty: CGM.IntTy, V: 4)); |
3410 | if (IsConstant) { |
3411 | llvm::Constant *Mapping = VDispMap->getInitializer(); |
3412 | VirtualBaseAdjustmentOffset = |
3413 | Mapping->getAggregateElement(Elt: cast<llvm::Constant>(Val: VBIndex)); |
3414 | } else { |
3415 | llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; |
3416 | VirtualBaseAdjustmentOffset = Builder.CreateAlignedLoad( |
3417 | Ty: CGM.IntTy, Addr: Builder.CreateInBoundsGEP(Ty: VDispMap->getValueType(), |
3418 | Ptr: VDispMap, IdxList: Idxs), |
3419 | Align: CharUnits::fromQuantity(Quantity: 4)); |
3420 | } |
3421 | |
3422 | DstVBIndexEqZero = |
3423 | Builder.CreateICmpEQ(LHS: VirtualBaseAdjustmentOffset, RHS: getZeroInt()); |
3424 | } |
3425 | } |
3426 | |
3427 | // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize |
3428 | // it to the offset of the vbptr. |
3429 | if (inheritanceModelHasVBPtrOffsetField(Inheritance: DstInheritance)) { |
3430 | llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( |
3431 | Ty: CGM.IntTy, |
3432 | V: getContext().getASTRecordLayout(D: DstRD).getVBPtrOffset().getQuantity()); |
3433 | VBPtrOffset = |
3434 | Builder.CreateSelect(C: DstVBIndexEqZero, True: getZeroInt(), False: DstVBPtrOffset); |
3435 | } |
3436 | |
3437 | // Likewise, apply a similar adjustment so that dereferencing the member |
3438 | // pointer correctly accounts for the distance between the start of the first |
3439 | // virtual base and the top of the MDC. |
3440 | if (DstInheritance == MSInheritanceModel::Virtual) { |
3441 | if (int64_t DstOffsetToFirstVBase = |
3442 | getContext().getOffsetOfBaseWithVBPtr(RD: DstRD).getQuantity()) { |
3443 | llvm::Value *DoDstAdjustment = Builder.CreateSelect( |
3444 | C: DstVBIndexEqZero, |
3445 | True: llvm::ConstantInt::get(Ty: CGM.IntTy, V: DstOffsetToFirstVBase), |
3446 | False: getZeroInt()); |
3447 | NVAdjustField = Builder.CreateNSWSub(LHS: NVAdjustField, RHS: DoDstAdjustment); |
3448 | } |
3449 | } |
3450 | |
3451 | // Recompose dst from the null struct and the adjusted fields from src. |
3452 | llvm::Value *Dst; |
3453 | if (inheritanceModelHasOnlyOneField(IsMemberFunction: IsFunc, Inheritance: DstInheritance)) { |
3454 | Dst = FirstField; |
3455 | } else { |
3456 | Dst = llvm::PoisonValue::get(T: ConvertMemberPointerType(MPT: DstTy)); |
3457 | unsigned Idx = 0; |
3458 | Dst = Builder.CreateInsertValue(Agg: Dst, Val: FirstField, Idxs: Idx++); |
3459 | if (inheritanceModelHasNVOffsetField(IsMemberFunction: IsFunc, Inheritance: DstInheritance)) |
3460 | Dst = Builder.CreateInsertValue(Agg: Dst, Val: NonVirtualBaseAdjustment, Idxs: Idx++); |
3461 | if (inheritanceModelHasVBPtrOffsetField(Inheritance: DstInheritance)) |
3462 | Dst = Builder.CreateInsertValue(Agg: Dst, Val: VBPtrOffset, Idxs: Idx++); |
3463 | if (inheritanceModelHasVBTableOffsetField(Inheritance: DstInheritance)) |
3464 | Dst = Builder.CreateInsertValue(Agg: Dst, Val: VirtualBaseAdjustmentOffset, Idxs: Idx++); |
3465 | } |
3466 | return Dst; |
3467 | } |
3468 | |
3469 | llvm::Constant * |
3470 | MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, |
3471 | llvm::Constant *Src) { |
3472 | const MemberPointerType *SrcTy = |
3473 | E->getSubExpr()->getType()->castAs<MemberPointerType>(); |
3474 | const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); |
3475 | |
3476 | CastKind CK = E->getCastKind(); |
3477 | |
3478 | return EmitMemberPointerConversion(SrcTy, DstTy, CK, PathBegin: E->path_begin(), |
3479 | PathEnd: E->path_end(), Src); |
3480 | } |
3481 | |
3482 | llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( |
3483 | const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, |
3484 | CastExpr::path_const_iterator PathBegin, |
3485 | CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { |
3486 | assert(CK == CK_DerivedToBaseMemberPointer || |
3487 | CK == CK_BaseToDerivedMemberPointer || |
3488 | CK == CK_ReinterpretMemberPointer); |
3489 | // If src is null, emit a new null for dst. We can't return src because dst |
3490 | // might have a new representation. |
3491 | if (MemberPointerConstantIsNull(MPT: SrcTy, Val: Src)) |
3492 | return EmitNullMemberPointer(MPT: DstTy); |
3493 | |
3494 | // We don't need to do anything for reinterpret_casts of non-null member |
3495 | // pointers. We should only get here when the two type representations have |
3496 | // the same size. |
3497 | if (CK == CK_ReinterpretMemberPointer) |
3498 | return Src; |
3499 | |
3500 | CGBuilderTy Builder(CGM, CGM.getLLVMContext()); |
3501 | auto *Dst = cast<llvm::Constant>(Val: EmitNonNullMemberPointerConversion( |
3502 | SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); |
3503 | |
3504 | return Dst; |
3505 | } |
3506 | |
3507 | CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( |
3508 | CodeGenFunction &CGF, const Expr *E, Address This, |
3509 | llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, |
3510 | const MemberPointerType *MPT) { |
3511 | assert(MPT->isMemberFunctionPointer()); |
3512 | const FunctionProtoType *FPT = |
3513 | MPT->getPointeeType()->castAs<FunctionProtoType>(); |
3514 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
3515 | CGBuilderTy &Builder = CGF.Builder; |
3516 | |
3517 | MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); |
3518 | |
3519 | // Extract the fields we need, regardless of model. We'll apply them if we |
3520 | // have them. |
3521 | llvm::Value *FunctionPointer = MemPtr; |
3522 | llvm::Value *NonVirtualBaseAdjustment = nullptr; |
3523 | llvm::Value *VirtualBaseAdjustmentOffset = nullptr; |
3524 | llvm::Value *VBPtrOffset = nullptr; |
3525 | if (MemPtr->getType()->isStructTy()) { |
3526 | // We need to extract values. |
3527 | unsigned I = 0; |
3528 | FunctionPointer = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
3529 | if (inheritanceModelHasNVOffsetField(IsMemberFunction: MPT, Inheritance)) |
3530 | NonVirtualBaseAdjustment = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
3531 | if (inheritanceModelHasVBPtrOffsetField(Inheritance)) |
3532 | VBPtrOffset = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
3533 | if (inheritanceModelHasVBTableOffsetField(Inheritance)) |
3534 | VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Agg: MemPtr, Idxs: I++); |
3535 | } |
3536 | |
3537 | if (VirtualBaseAdjustmentOffset) { |
3538 | ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, Base: This, |
3539 | VBTableOffset: VirtualBaseAdjustmentOffset, VBPtrOffset); |
3540 | } else { |
3541 | ThisPtrForCall = This.emitRawPointer(CGF); |
3542 | } |
3543 | |
3544 | if (NonVirtualBaseAdjustment) |
3545 | ThisPtrForCall = Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: ThisPtrForCall, |
3546 | IdxList: NonVirtualBaseAdjustment); |
3547 | |
3548 | CGCallee Callee(FPT, FunctionPointer); |
3549 | return Callee; |
3550 | } |
3551 | |
3552 | CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { |
3553 | return new MicrosoftCXXABI(CGM); |
3554 | } |
3555 | |
3556 | // MS RTTI Overview: |
3557 | // The run time type information emitted by cl.exe contains 5 distinct types of |
3558 | // structures. Many of them reference each other. |
3559 | // |
3560 | // TypeInfo: Static classes that are returned by typeid. |
3561 | // |
3562 | // CompleteObjectLocator: Referenced by vftables. They contain information |
3563 | // required for dynamic casting, including OffsetFromTop. They also contain |
3564 | // a reference to the TypeInfo for the type and a reference to the |
3565 | // CompleteHierarchyDescriptor for the type. |
3566 | // |
3567 | // ClassHierarchyDescriptor: Contains information about a class hierarchy. |
3568 | // Used during dynamic_cast to walk a class hierarchy. References a base |
3569 | // class array and the size of said array. |
3570 | // |
3571 | // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is |
3572 | // somewhat of a misnomer because the most derived class is also in the list |
3573 | // as well as multiple copies of virtual bases (if they occur multiple times |
3574 | // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for |
3575 | // every path in the hierarchy, in pre-order depth first order. Note, we do |
3576 | // not declare a specific llvm type for BaseClassArray, it's merely an array |
3577 | // of BaseClassDescriptor pointers. |
3578 | // |
3579 | // BaseClassDescriptor: Contains information about a class in a class hierarchy. |
3580 | // BaseClassDescriptor is also somewhat of a misnomer for the same reason that |
3581 | // BaseClassArray is. It contains information about a class within a |
3582 | // hierarchy such as: is this base is ambiguous and what is its offset in the |
3583 | // vbtable. The names of the BaseClassDescriptors have all of their fields |
3584 | // mangled into them so they can be aggressively deduplicated by the linker. |
3585 | |
3586 | static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { |
3587 | StringRef MangledName("??_7type_info@@6B@" ); |
3588 | if (auto VTable = CGM.getModule().getNamedGlobal(Name: MangledName)) |
3589 | return VTable; |
3590 | return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, |
3591 | /*isConstant=*/true, |
3592 | llvm::GlobalVariable::ExternalLinkage, |
3593 | /*Initializer=*/nullptr, MangledName); |
3594 | } |
3595 | |
3596 | namespace { |
3597 | |
3598 | /// A Helper struct that stores information about a class in a class |
3599 | /// hierarchy. The information stored in these structs struct is used during |
3600 | /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. |
3601 | // During RTTI creation, MSRTTIClasses are stored in a contiguous array with |
3602 | // implicit depth first pre-order tree connectivity. getFirstChild and |
3603 | // getNextSibling allow us to walk the tree efficiently. |
3604 | struct MSRTTIClass { |
3605 | enum { |
3606 | IsPrivateOnPath = 1 | 8, |
3607 | IsAmbiguous = 2, |
3608 | IsPrivate = 4, |
3609 | IsVirtual = 16, |
3610 | HasHierarchyDescriptor = 64 |
3611 | }; |
3612 | MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} |
3613 | uint32_t initialize(const MSRTTIClass *Parent, |
3614 | const CXXBaseSpecifier *Specifier); |
3615 | |
3616 | MSRTTIClass *getFirstChild() { return this + 1; } |
3617 | static MSRTTIClass *getNextChild(MSRTTIClass *Child) { |
3618 | return Child + 1 + Child->NumBases; |
3619 | } |
3620 | |
3621 | const CXXRecordDecl *RD, *VirtualRoot; |
3622 | uint32_t Flags, NumBases, OffsetInVBase; |
3623 | }; |
3624 | |
3625 | /// Recursively initialize the base class array. |
3626 | uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, |
3627 | const CXXBaseSpecifier *Specifier) { |
3628 | Flags = HasHierarchyDescriptor; |
3629 | if (!Parent) { |
3630 | VirtualRoot = nullptr; |
3631 | OffsetInVBase = 0; |
3632 | } else { |
3633 | if (Specifier->getAccessSpecifier() != AS_public) |
3634 | Flags |= IsPrivate | IsPrivateOnPath; |
3635 | if (Specifier->isVirtual()) { |
3636 | Flags |= IsVirtual; |
3637 | VirtualRoot = RD; |
3638 | OffsetInVBase = 0; |
3639 | } else { |
3640 | if (Parent->Flags & IsPrivateOnPath) |
3641 | Flags |= IsPrivateOnPath; |
3642 | VirtualRoot = Parent->VirtualRoot; |
3643 | OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() |
3644 | .getASTRecordLayout(D: Parent->RD).getBaseClassOffset(Base: RD).getQuantity(); |
3645 | } |
3646 | } |
3647 | NumBases = 0; |
3648 | MSRTTIClass *Child = getFirstChild(); |
3649 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
3650 | NumBases += Child->initialize(Parent: this, Specifier: &Base) + 1; |
3651 | Child = getNextChild(Child); |
3652 | } |
3653 | return NumBases; |
3654 | } |
3655 | |
3656 | static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { |
3657 | switch (Ty->getLinkage()) { |
3658 | case Linkage::Invalid: |
3659 | llvm_unreachable("Linkage hasn't been computed!" ); |
3660 | |
3661 | case Linkage::None: |
3662 | case Linkage::Internal: |
3663 | case Linkage::UniqueExternal: |
3664 | return llvm::GlobalValue::InternalLinkage; |
3665 | |
3666 | case Linkage::VisibleNone: |
3667 | case Linkage::Module: |
3668 | case Linkage::External: |
3669 | return llvm::GlobalValue::LinkOnceODRLinkage; |
3670 | } |
3671 | llvm_unreachable("Invalid linkage!" ); |
3672 | } |
3673 | |
3674 | /// An ephemeral helper class for building MS RTTI types. It caches some |
3675 | /// calls to the module and information about the most derived class in a |
3676 | /// hierarchy. |
3677 | struct MSRTTIBuilder { |
3678 | enum { |
3679 | HasBranchingHierarchy = 1, |
3680 | HasVirtualBranchingHierarchy = 2, |
3681 | HasAmbiguousBases = 4 |
3682 | }; |
3683 | |
3684 | MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) |
3685 | : CGM(ABI.CGM), Context(CGM.getContext()), |
3686 | VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), |
3687 | Linkage(getLinkageForRTTI(Ty: CGM.getContext().getTagDeclType(Decl: RD))), |
3688 | ABI(ABI) {} |
3689 | |
3690 | llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); |
3691 | llvm::GlobalVariable * |
3692 | getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); |
3693 | llvm::GlobalVariable *getClassHierarchyDescriptor(); |
3694 | llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info); |
3695 | |
3696 | CodeGenModule &CGM; |
3697 | ASTContext &Context; |
3698 | llvm::LLVMContext &VMContext; |
3699 | llvm::Module &Module; |
3700 | const CXXRecordDecl *RD; |
3701 | llvm::GlobalVariable::LinkageTypes Linkage; |
3702 | MicrosoftCXXABI &ABI; |
3703 | }; |
3704 | |
3705 | } // namespace |
3706 | |
3707 | /// Recursively serializes a class hierarchy in pre-order depth first |
3708 | /// order. |
3709 | static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, |
3710 | const CXXRecordDecl *RD) { |
3711 | Classes.push_back(Elt: MSRTTIClass(RD)); |
3712 | for (const CXXBaseSpecifier &Base : RD->bases()) |
3713 | serializeClassHierarchy(Classes, RD: Base.getType()->getAsCXXRecordDecl()); |
3714 | } |
3715 | |
3716 | /// Find ambiguity among base classes. |
3717 | static void |
3718 | detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { |
3719 | llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; |
3720 | llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; |
3721 | llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; |
3722 | for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { |
3723 | if ((Class->Flags & MSRTTIClass::IsVirtual) && |
3724 | !VirtualBases.insert(Ptr: Class->RD).second) { |
3725 | Class = MSRTTIClass::getNextChild(Child: Class); |
3726 | continue; |
3727 | } |
3728 | if (!UniqueBases.insert(Ptr: Class->RD).second) |
3729 | AmbiguousBases.insert(Ptr: Class->RD); |
3730 | Class++; |
3731 | } |
3732 | if (AmbiguousBases.empty()) |
3733 | return; |
3734 | for (MSRTTIClass &Class : Classes) |
3735 | if (AmbiguousBases.count(Ptr: Class.RD)) |
3736 | Class.Flags |= MSRTTIClass::IsAmbiguous; |
3737 | } |
3738 | |
3739 | llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { |
3740 | SmallString<256> MangledName; |
3741 | { |
3742 | llvm::raw_svector_ostream Out(MangledName); |
3743 | ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(Derived: RD, Out); |
3744 | } |
3745 | |
3746 | // Check to see if we've already declared this ClassHierarchyDescriptor. |
3747 | if (auto CHD = Module.getNamedGlobal(Name: MangledName)) |
3748 | return CHD; |
3749 | |
3750 | // Serialize the class hierarchy and initialize the CHD Fields. |
3751 | SmallVector<MSRTTIClass, 8> Classes; |
3752 | serializeClassHierarchy(Classes, RD); |
3753 | Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); |
3754 | detectAmbiguousBases(Classes); |
3755 | int Flags = 0; |
3756 | for (const MSRTTIClass &Class : Classes) { |
3757 | if (Class.RD->getNumBases() > 1) |
3758 | Flags |= HasBranchingHierarchy; |
3759 | // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We |
3760 | // believe the field isn't actually used. |
3761 | if (Class.Flags & MSRTTIClass::IsAmbiguous) |
3762 | Flags |= HasAmbiguousBases; |
3763 | } |
3764 | if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) |
3765 | Flags |= HasVirtualBranchingHierarchy; |
3766 | // These gep indices are used to get the address of the first element of the |
3767 | // base class array. |
3768 | llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0), |
3769 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0)}; |
3770 | |
3771 | // Forward-declare the class hierarchy descriptor |
3772 | auto Type = ABI.getClassHierarchyDescriptorType(); |
3773 | auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, |
3774 | /*Initializer=*/nullptr, |
3775 | MangledName); |
3776 | if (CHD->isWeakForLinker()) |
3777 | CHD->setComdat(CGM.getModule().getOrInsertComdat(Name: CHD->getName())); |
3778 | |
3779 | auto *Bases = getBaseClassArray(Classes); |
3780 | |
3781 | // Initialize the base class ClassHierarchyDescriptor. |
3782 | llvm::Constant *Fields[] = { |
3783 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: 0), // reserved by the runtime |
3784 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Flags), |
3785 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Classes.size()), |
3786 | ABI.getImageRelativeConstant(PtrVal: llvm::ConstantExpr::getInBoundsGetElementPtr( |
3787 | Ty: Bases->getValueType(), C: Bases, |
3788 | IdxList: llvm::ArrayRef<llvm::Value *>(GEPIndices))), |
3789 | }; |
3790 | CHD->setInitializer(llvm::ConstantStruct::get(T: Type, V: Fields)); |
3791 | return CHD; |
3792 | } |
3793 | |
3794 | llvm::GlobalVariable * |
3795 | MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { |
3796 | SmallString<256> MangledName; |
3797 | { |
3798 | llvm::raw_svector_ostream Out(MangledName); |
3799 | ABI.getMangleContext().mangleCXXRTTIBaseClassArray(Derived: RD, Out); |
3800 | } |
3801 | |
3802 | // Forward-declare the base class array. |
3803 | // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit |
3804 | // mode) bytes of padding. We provide a pointer sized amount of padding by |
3805 | // adding +1 to Classes.size(). The sections have pointer alignment and are |
3806 | // marked pick-any so it shouldn't matter. |
3807 | llvm::Type *PtrType = ABI.getImageRelativeType(PtrType: CGM.UnqualPtrTy); |
3808 | auto *ArrType = llvm::ArrayType::get(ElementType: PtrType, NumElements: Classes.size() + 1); |
3809 | auto *BCA = |
3810 | new llvm::GlobalVariable(Module, ArrType, |
3811 | /*isConstant=*/true, Linkage, |
3812 | /*Initializer=*/nullptr, MangledName); |
3813 | if (BCA->isWeakForLinker()) |
3814 | BCA->setComdat(CGM.getModule().getOrInsertComdat(Name: BCA->getName())); |
3815 | |
3816 | // Initialize the BaseClassArray. |
3817 | SmallVector<llvm::Constant *, 8> BaseClassArrayData; |
3818 | for (MSRTTIClass &Class : Classes) |
3819 | BaseClassArrayData.push_back( |
3820 | Elt: ABI.getImageRelativeConstant(PtrVal: getBaseClassDescriptor(Classes: Class))); |
3821 | BaseClassArrayData.push_back(Elt: llvm::Constant::getNullValue(Ty: PtrType)); |
3822 | BCA->setInitializer(llvm::ConstantArray::get(T: ArrType, V: BaseClassArrayData)); |
3823 | return BCA; |
3824 | } |
3825 | |
3826 | llvm::GlobalVariable * |
3827 | MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { |
3828 | // Compute the fields for the BaseClassDescriptor. They are computed up front |
3829 | // because they are mangled into the name of the object. |
3830 | uint32_t OffsetInVBTable = 0; |
3831 | int32_t VBPtrOffset = -1; |
3832 | if (Class.VirtualRoot) { |
3833 | auto &VTableContext = CGM.getMicrosoftVTableContext(); |
3834 | OffsetInVBTable = VTableContext.getVBTableIndex(Derived: RD, VBase: Class.VirtualRoot) * 4; |
3835 | VBPtrOffset = Context.getASTRecordLayout(D: RD).getVBPtrOffset().getQuantity(); |
3836 | } |
3837 | |
3838 | SmallString<256> MangledName; |
3839 | { |
3840 | llvm::raw_svector_ostream Out(MangledName); |
3841 | ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( |
3842 | Derived: Class.RD, NVOffset: Class.OffsetInVBase, VBPtrOffset, VBTableOffset: OffsetInVBTable, |
3843 | Flags: Class.Flags, Out); |
3844 | } |
3845 | |
3846 | // Check to see if we've already declared this object. |
3847 | if (auto BCD = Module.getNamedGlobal(Name: MangledName)) |
3848 | return BCD; |
3849 | |
3850 | // Forward-declare the base class descriptor. |
3851 | auto Type = ABI.getBaseClassDescriptorType(); |
3852 | auto BCD = |
3853 | new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, |
3854 | /*Initializer=*/nullptr, MangledName); |
3855 | if (BCD->isWeakForLinker()) |
3856 | BCD->setComdat(CGM.getModule().getOrInsertComdat(Name: BCD->getName())); |
3857 | |
3858 | // Initialize the BaseClassDescriptor. |
3859 | llvm::Constant *Fields[] = { |
3860 | ABI.getImageRelativeConstant( |
3861 | PtrVal: ABI.getAddrOfRTTIDescriptor(Ty: Context.getTypeDeclType(Decl: Class.RD))), |
3862 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Class.NumBases), |
3863 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Class.OffsetInVBase), |
3864 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBPtrOffset), |
3865 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: OffsetInVBTable), |
3866 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Class.Flags), |
3867 | ABI.getImageRelativeConstant( |
3868 | PtrVal: MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), |
3869 | }; |
3870 | BCD->setInitializer(llvm::ConstantStruct::get(T: Type, V: Fields)); |
3871 | return BCD; |
3872 | } |
3873 | |
3874 | llvm::GlobalVariable * |
3875 | MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) { |
3876 | SmallString<256> MangledName; |
3877 | { |
3878 | llvm::raw_svector_ostream Out(MangledName); |
3879 | ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(Derived: RD, BasePath: Info.MangledPath, Out); |
3880 | } |
3881 | |
3882 | // Check to see if we've already computed this complete object locator. |
3883 | if (auto COL = Module.getNamedGlobal(Name: MangledName)) |
3884 | return COL; |
3885 | |
3886 | // Compute the fields of the complete object locator. |
3887 | int OffsetToTop = Info.FullOffsetInMDC.getQuantity(); |
3888 | int VFPtrOffset = 0; |
3889 | // The offset includes the vtordisp if one exists. |
3890 | if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr()) |
3891 | if (Context.getASTRecordLayout(D: RD) |
3892 | .getVBaseOffsetsMap() |
3893 | .find(Val: VBase) |
3894 | ->second.hasVtorDisp()) |
3895 | VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4; |
3896 | |
3897 | // Forward-declare the complete object locator. |
3898 | llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); |
3899 | auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, |
3900 | /*Initializer=*/nullptr, MangledName); |
3901 | |
3902 | // Initialize the CompleteObjectLocator. |
3903 | llvm::Constant *Fields[] = { |
3904 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: ABI.isImageRelative()), |
3905 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: OffsetToTop), |
3906 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: VFPtrOffset), |
3907 | ABI.getImageRelativeConstant( |
3908 | PtrVal: CGM.GetAddrOfRTTIDescriptor(Ty: Context.getTypeDeclType(Decl: RD))), |
3909 | ABI.getImageRelativeConstant(PtrVal: getClassHierarchyDescriptor()), |
3910 | ABI.getImageRelativeConstant(PtrVal: COL), |
3911 | }; |
3912 | llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); |
3913 | if (!ABI.isImageRelative()) |
3914 | FieldsRef = FieldsRef.drop_back(); |
3915 | COL->setInitializer(llvm::ConstantStruct::get(T: Type, V: FieldsRef)); |
3916 | if (COL->isWeakForLinker()) |
3917 | COL->setComdat(CGM.getModule().getOrInsertComdat(Name: COL->getName())); |
3918 | return COL; |
3919 | } |
3920 | |
3921 | static QualType decomposeTypeForEH(ASTContext &Context, QualType T, |
3922 | bool &IsConst, bool &IsVolatile, |
3923 | bool &IsUnaligned) { |
3924 | T = Context.getExceptionObjectType(T); |
3925 | |
3926 | // C++14 [except.handle]p3: |
3927 | // A handler is a match for an exception object of type E if [...] |
3928 | // - the handler is of type cv T or const T& where T is a pointer type and |
3929 | // E is a pointer type that can be converted to T by [...] |
3930 | // - a qualification conversion |
3931 | IsConst = false; |
3932 | IsVolatile = false; |
3933 | IsUnaligned = false; |
3934 | QualType PointeeType = T->getPointeeType(); |
3935 | if (!PointeeType.isNull()) { |
3936 | IsConst = PointeeType.isConstQualified(); |
3937 | IsVolatile = PointeeType.isVolatileQualified(); |
3938 | IsUnaligned = PointeeType.getQualifiers().hasUnaligned(); |
3939 | } |
3940 | |
3941 | // Member pointer types like "const int A::*" are represented by having RTTI |
3942 | // for "int A::*" and separately storing the const qualifier. |
3943 | if (const auto *MPTy = T->getAs<MemberPointerType>()) |
3944 | T = Context.getMemberPointerType(T: PointeeType.getUnqualifiedType(), |
3945 | Qualifier: MPTy->getQualifier(), |
3946 | Cls: MPTy->getMostRecentCXXRecordDecl()); |
3947 | |
3948 | // Pointer types like "const int * const *" are represented by having RTTI |
3949 | // for "const int **" and separately storing the const qualifier. |
3950 | if (T->isPointerType()) |
3951 | T = Context.getPointerType(T: PointeeType.getUnqualifiedType()); |
3952 | |
3953 | return T; |
3954 | } |
3955 | |
3956 | CatchTypeInfo |
3957 | MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, |
3958 | QualType CatchHandlerType) { |
3959 | // TypeDescriptors for exceptions never have qualified pointer types, |
3960 | // qualifiers are stored separately in order to support qualification |
3961 | // conversions. |
3962 | bool IsConst, IsVolatile, IsUnaligned; |
3963 | Type = |
3964 | decomposeTypeForEH(Context&: getContext(), T: Type, IsConst, IsVolatile, IsUnaligned); |
3965 | |
3966 | bool IsReference = CatchHandlerType->isReferenceType(); |
3967 | |
3968 | uint32_t Flags = 0; |
3969 | if (IsConst) |
3970 | Flags |= 1; |
3971 | if (IsVolatile) |
3972 | Flags |= 2; |
3973 | if (IsUnaligned) |
3974 | Flags |= 4; |
3975 | if (IsReference) |
3976 | Flags |= 8; |
3977 | |
3978 | return CatchTypeInfo{.RTTI: getAddrOfRTTIDescriptor(Ty: Type)->stripPointerCasts(), |
3979 | .Flags: Flags}; |
3980 | } |
3981 | |
3982 | /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a |
3983 | /// llvm::GlobalVariable * because different type descriptors have different |
3984 | /// types, and need to be abstracted. They are abstracting by casting the |
3985 | /// address to an Int8PtrTy. |
3986 | llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { |
3987 | SmallString<256> MangledName; |
3988 | { |
3989 | llvm::raw_svector_ostream Out(MangledName); |
3990 | getMangleContext().mangleCXXRTTI(T: Type, Out); |
3991 | } |
3992 | |
3993 | // Check to see if we've already declared this TypeDescriptor. |
3994 | if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name: MangledName)) |
3995 | return GV; |
3996 | |
3997 | // Note for the future: If we would ever like to do deferred emission of |
3998 | // RTTI, check if emitting vtables opportunistically need any adjustment. |
3999 | |
4000 | // Compute the fields for the TypeDescriptor. |
4001 | SmallString<256> TypeInfoString; |
4002 | { |
4003 | llvm::raw_svector_ostream Out(TypeInfoString); |
4004 | getMangleContext().mangleCXXRTTIName(T: Type, Out); |
4005 | } |
4006 | |
4007 | // Declare and initialize the TypeDescriptor. |
4008 | llvm::Constant *Fields[] = { |
4009 | getTypeInfoVTable(CGM), // VFPtr |
4010 | llvm::ConstantPointerNull::get(T: CGM.Int8PtrTy), // Runtime data |
4011 | llvm::ConstantDataArray::getString(Context&: CGM.getLLVMContext(), Initializer: TypeInfoString)}; |
4012 | llvm::StructType *TypeDescriptorType = |
4013 | getTypeDescriptorType(TypeInfoString); |
4014 | auto *Var = new llvm::GlobalVariable( |
4015 | CGM.getModule(), TypeDescriptorType, /*isConstant=*/false, |
4016 | getLinkageForRTTI(Ty: Type), |
4017 | llvm::ConstantStruct::get(T: TypeDescriptorType, V: Fields), |
4018 | MangledName); |
4019 | if (Var->isWeakForLinker()) |
4020 | Var->setComdat(CGM.getModule().getOrInsertComdat(Name: Var->getName())); |
4021 | return Var; |
4022 | } |
4023 | |
4024 | /// Gets or a creates a Microsoft CompleteObjectLocator. |
4025 | llvm::GlobalVariable * |
4026 | MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, |
4027 | const VPtrInfo &Info) { |
4028 | return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); |
4029 | } |
4030 | |
4031 | void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) { |
4032 | if (auto *ctor = dyn_cast<CXXConstructorDecl>(Val: GD.getDecl())) { |
4033 | // There are no constructor variants, always emit the complete destructor. |
4034 | llvm::Function *Fn = |
4035 | CGM.codegenCXXStructor(GD: GD.getWithCtorType(Type: Ctor_Complete)); |
4036 | CGM.maybeSetTrivialComdat(D: *ctor, GO&: *Fn); |
4037 | return; |
4038 | } |
4039 | |
4040 | auto *dtor = cast<CXXDestructorDecl>(Val: GD.getDecl()); |
4041 | |
4042 | // Emit the base destructor if the base and complete (vbase) destructors are |
4043 | // equivalent. This effectively implements -mconstructor-aliases as part of |
4044 | // the ABI. |
4045 | if (GD.getDtorType() == Dtor_Complete && |
4046 | dtor->getParent()->getNumVBases() == 0) |
4047 | GD = GD.getWithDtorType(Type: Dtor_Base); |
4048 | |
4049 | // The base destructor is equivalent to the base destructor of its |
4050 | // base class if there is exactly one non-virtual base class with a |
4051 | // non-trivial destructor, there are no fields with a non-trivial |
4052 | // destructor, and the body of the destructor is trivial. |
4053 | if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(D: dtor)) |
4054 | return; |
4055 | |
4056 | llvm::Function *Fn = CGM.codegenCXXStructor(GD); |
4057 | if (Fn->isWeakForLinker()) |
4058 | Fn->setComdat(CGM.getModule().getOrInsertComdat(Name: Fn->getName())); |
4059 | } |
4060 | |
4061 | llvm::Function * |
4062 | MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, |
4063 | CXXCtorType CT) { |
4064 | assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); |
4065 | |
4066 | // Calculate the mangled name. |
4067 | SmallString<256> ThunkName; |
4068 | llvm::raw_svector_ostream Out(ThunkName); |
4069 | getMangleContext().mangleName(GD: GlobalDecl(CD, CT), Out); |
4070 | |
4071 | // If the thunk has been generated previously, just return it. |
4072 | if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(Name: ThunkName)) |
4073 | return cast<llvm::Function>(Val: GV); |
4074 | |
4075 | // Create the llvm::Function. |
4076 | const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); |
4077 | llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(Info: FnInfo); |
4078 | const CXXRecordDecl *RD = CD->getParent(); |
4079 | QualType RecordTy = getContext().getRecordType(Decl: RD); |
4080 | llvm::Function *ThunkFn = llvm::Function::Create( |
4081 | Ty: ThunkTy, Linkage: getLinkageForRTTI(Ty: RecordTy), N: ThunkName.str(), M: &CGM.getModule()); |
4082 | ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>( |
4083 | FnInfo.getEffectiveCallingConvention())); |
4084 | if (ThunkFn->isWeakForLinker()) |
4085 | ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(Name: ThunkFn->getName())); |
4086 | bool IsCopy = CT == Ctor_CopyingClosure; |
4087 | |
4088 | // Start codegen. |
4089 | CodeGenFunction CGF(CGM); |
4090 | CGF.CurGD = GlobalDecl(CD, Ctor_Complete); |
4091 | |
4092 | // Build FunctionArgs. |
4093 | FunctionArgList FunctionArgs; |
4094 | |
4095 | // A constructor always starts with a 'this' pointer as its first argument. |
4096 | buildThisParam(CGF, Params&: FunctionArgs); |
4097 | |
4098 | // Following the 'this' pointer is a reference to the source object that we |
4099 | // are copying from. |
4100 | ImplicitParamDecl SrcParam( |
4101 | getContext(), /*DC=*/nullptr, SourceLocation(), |
4102 | &getContext().Idents.get(Name: "src" ), |
4103 | getContext().getLValueReferenceType(T: RecordTy, |
4104 | /*SpelledAsLValue=*/true), |
4105 | ImplicitParamKind::Other); |
4106 | if (IsCopy) |
4107 | FunctionArgs.push_back(Elt: &SrcParam); |
4108 | |
4109 | // Constructors for classes which utilize virtual bases have an additional |
4110 | // parameter which indicates whether or not it is being delegated to by a more |
4111 | // derived constructor. |
4112 | ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr, |
4113 | SourceLocation(), |
4114 | &getContext().Idents.get(Name: "is_most_derived" ), |
4115 | getContext().IntTy, ImplicitParamKind::Other); |
4116 | // Only add the parameter to the list if the class has virtual bases. |
4117 | if (RD->getNumVBases() > 0) |
4118 | FunctionArgs.push_back(Elt: &IsMostDerived); |
4119 | |
4120 | // Start defining the function. |
4121 | auto NL = ApplyDebugLocation::CreateEmpty(CGF); |
4122 | CGF.StartFunction(GD: GlobalDecl(), RetTy: FnInfo.getReturnType(), Fn: ThunkFn, FnInfo, |
4123 | Args: FunctionArgs, Loc: CD->getLocation(), StartLoc: SourceLocation()); |
4124 | // Create a scope with an artificial location for the body of this function. |
4125 | auto AL = ApplyDebugLocation::CreateArtificial(CGF); |
4126 | setCXXABIThisValue(CGF, ThisPtr: loadIncomingCXXThis(CGF)); |
4127 | llvm::Value *This = getThisValue(CGF); |
4128 | |
4129 | llvm::Value *SrcVal = |
4130 | IsCopy ? CGF.Builder.CreateLoad(Addr: CGF.GetAddrOfLocalVar(VD: &SrcParam), Name: "src" ) |
4131 | : nullptr; |
4132 | |
4133 | CallArgList Args; |
4134 | |
4135 | // Push the this ptr. |
4136 | Args.add(rvalue: RValue::get(V: This), type: CD->getThisType()); |
4137 | |
4138 | // Push the src ptr. |
4139 | if (SrcVal) |
4140 | Args.add(rvalue: RValue::get(V: SrcVal), type: SrcParam.getType()); |
4141 | |
4142 | // Add the rest of the default arguments. |
4143 | SmallVector<const Stmt *, 4> ArgVec; |
4144 | ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(N: IsCopy ? 1 : 0); |
4145 | for (const ParmVarDecl *PD : params) { |
4146 | assert(PD->hasDefaultArg() && "ctor closure lacks default args" ); |
4147 | ArgVec.push_back(Elt: PD->getDefaultArg()); |
4148 | } |
4149 | |
4150 | CodeGenFunction::RunCleanupsScope Cleanups(CGF); |
4151 | |
4152 | const auto *FPT = CD->getType()->castAs<FunctionProtoType>(); |
4153 | CGF.EmitCallArgs(Args, Prototype: FPT, ArgRange: llvm::ArrayRef(ArgVec), AC: CD, ParamsToSkip: IsCopy ? 1 : 0); |
4154 | |
4155 | // Insert any ABI-specific implicit constructor arguments. |
4156 | AddedStructorArgCounts = |
4157 | addImplicitConstructorArgs(CGF, D: CD, Type: Ctor_Complete, |
4158 | /*ForVirtualBase=*/false, |
4159 | /*Delegating=*/false, Args); |
4160 | // Call the destructor with our arguments. |
4161 | llvm::Constant *CalleePtr = |
4162 | CGM.getAddrOfCXXStructor(GD: GlobalDecl(CD, Ctor_Complete)); |
4163 | CGCallee Callee = |
4164 | CGCallee::forDirect(functionPtr: CalleePtr, abstractInfo: GlobalDecl(CD, Ctor_Complete)); |
4165 | const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( |
4166 | Args, D: CD, CtorKind: Ctor_Complete, ExtraPrefixArgs: ExtraArgs.Prefix, ExtraSuffixArgs: ExtraArgs.Suffix); |
4167 | CGF.EmitCall(CallInfo: CalleeInfo, Callee, ReturnValue: ReturnValueSlot(), Args); |
4168 | |
4169 | Cleanups.ForceCleanup(); |
4170 | |
4171 | // Emit the ret instruction, remove any temporary instructions created for the |
4172 | // aid of CodeGen. |
4173 | CGF.FinishFunction(EndLoc: SourceLocation()); |
4174 | |
4175 | return ThunkFn; |
4176 | } |
4177 | |
4178 | llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, |
4179 | uint32_t NVOffset, |
4180 | int32_t VBPtrOffset, |
4181 | uint32_t VBIndex) { |
4182 | assert(!T->isReferenceType()); |
4183 | |
4184 | CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
4185 | const CXXConstructorDecl *CD = |
4186 | RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; |
4187 | CXXCtorType CT = Ctor_Complete; |
4188 | if (CD) |
4189 | if (!hasDefaultCXXMethodCC(Context&: getContext(), MD: CD) || CD->getNumParams() != 1) |
4190 | CT = Ctor_CopyingClosure; |
4191 | |
4192 | uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); |
4193 | SmallString<256> MangledName; |
4194 | { |
4195 | llvm::raw_svector_ostream Out(MangledName); |
4196 | getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, |
4197 | VBPtrOffset, VBIndex, Out); |
4198 | } |
4199 | if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name: MangledName)) |
4200 | return getImageRelativeConstant(PtrVal: GV); |
4201 | |
4202 | // The TypeDescriptor is used by the runtime to determine if a catch handler |
4203 | // is appropriate for the exception object. |
4204 | llvm::Constant *TD = getImageRelativeConstant(PtrVal: getAddrOfRTTIDescriptor(Type: T)); |
4205 | |
4206 | // The runtime is responsible for calling the copy constructor if the |
4207 | // exception is caught by value. |
4208 | llvm::Constant *CopyCtor; |
4209 | if (CD) { |
4210 | if (CT == Ctor_CopyingClosure) |
4211 | CopyCtor = getAddrOfCXXCtorClosure(CD, CT: Ctor_CopyingClosure); |
4212 | else |
4213 | CopyCtor = CGM.getAddrOfCXXStructor(GD: GlobalDecl(CD, Ctor_Complete)); |
4214 | } else { |
4215 | CopyCtor = llvm::Constant::getNullValue(Ty: CGM.Int8PtrTy); |
4216 | } |
4217 | CopyCtor = getImageRelativeConstant(PtrVal: CopyCtor); |
4218 | |
4219 | bool IsScalar = !RD; |
4220 | bool HasVirtualBases = false; |
4221 | bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. |
4222 | QualType PointeeType = T; |
4223 | if (T->isPointerType()) |
4224 | PointeeType = T->getPointeeType(); |
4225 | if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { |
4226 | HasVirtualBases = RD->getNumVBases() > 0; |
4227 | if (IdentifierInfo *II = RD->getIdentifier()) |
4228 | IsStdBadAlloc = II->isStr(Str: "bad_alloc" ) && RD->isInStdNamespace(); |
4229 | } |
4230 | |
4231 | // Encode the relevant CatchableType properties into the Flags bitfield. |
4232 | // FIXME: Figure out how bits 2 or 8 can get set. |
4233 | uint32_t Flags = 0; |
4234 | if (IsScalar) |
4235 | Flags |= 1; |
4236 | if (HasVirtualBases) |
4237 | Flags |= 4; |
4238 | if (IsStdBadAlloc) |
4239 | Flags |= 16; |
4240 | |
4241 | llvm::Constant *Fields[] = { |
4242 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Flags), // Flags |
4243 | TD, // TypeDescriptor |
4244 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: NVOffset), // NonVirtualAdjustment |
4245 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBPtrOffset), // OffsetToVBPtr |
4246 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: VBIndex), // VBTableIndex |
4247 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Size), // Size |
4248 | CopyCtor // CopyCtor |
4249 | }; |
4250 | llvm::StructType *CTType = getCatchableTypeType(); |
4251 | auto *GV = new llvm::GlobalVariable( |
4252 | CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(Ty: T), |
4253 | llvm::ConstantStruct::get(T: CTType, V: Fields), MangledName); |
4254 | GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
4255 | GV->setSection(".xdata" ); |
4256 | if (GV->isWeakForLinker()) |
4257 | GV->setComdat(CGM.getModule().getOrInsertComdat(Name: GV->getName())); |
4258 | return getImageRelativeConstant(PtrVal: GV); |
4259 | } |
4260 | |
4261 | llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { |
4262 | assert(!T->isReferenceType()); |
4263 | |
4264 | // See if we've already generated a CatchableTypeArray for this type before. |
4265 | llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; |
4266 | if (CTA) |
4267 | return CTA; |
4268 | |
4269 | // Ensure that we don't have duplicate entries in our CatchableTypeArray by |
4270 | // using a SmallSetVector. Duplicates may arise due to virtual bases |
4271 | // occurring more than once in the hierarchy. |
4272 | llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes; |
4273 | |
4274 | // C++14 [except.handle]p3: |
4275 | // A handler is a match for an exception object of type E if [...] |
4276 | // - the handler is of type cv T or cv T& and T is an unambiguous public |
4277 | // base class of E, or |
4278 | // - the handler is of type cv T or const T& where T is a pointer type and |
4279 | // E is a pointer type that can be converted to T by [...] |
4280 | // - a standard pointer conversion (4.10) not involving conversions to |
4281 | // pointers to private or protected or ambiguous classes |
4282 | const CXXRecordDecl *MostDerivedClass = nullptr; |
4283 | bool IsPointer = T->isPointerType(); |
4284 | if (IsPointer) |
4285 | MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); |
4286 | else |
4287 | MostDerivedClass = T->getAsCXXRecordDecl(); |
4288 | |
4289 | // Collect all the unambiguous public bases of the MostDerivedClass. |
4290 | if (MostDerivedClass) { |
4291 | const ASTContext &Context = getContext(); |
4292 | const ASTRecordLayout &MostDerivedLayout = |
4293 | Context.getASTRecordLayout(D: MostDerivedClass); |
4294 | MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); |
4295 | SmallVector<MSRTTIClass, 8> Classes; |
4296 | serializeClassHierarchy(Classes, RD: MostDerivedClass); |
4297 | Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); |
4298 | detectAmbiguousBases(Classes); |
4299 | for (const MSRTTIClass &Class : Classes) { |
4300 | // Skip any ambiguous or private bases. |
4301 | if (Class.Flags & |
4302 | (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) |
4303 | continue; |
4304 | // Write down how to convert from a derived pointer to a base pointer. |
4305 | uint32_t OffsetInVBTable = 0; |
4306 | int32_t VBPtrOffset = -1; |
4307 | if (Class.VirtualRoot) { |
4308 | OffsetInVBTable = |
4309 | VTableContext.getVBTableIndex(Derived: MostDerivedClass, VBase: Class.VirtualRoot)*4; |
4310 | VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); |
4311 | } |
4312 | |
4313 | // Turn our record back into a pointer if the exception object is a |
4314 | // pointer. |
4315 | QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); |
4316 | if (IsPointer) |
4317 | RTTITy = Context.getPointerType(T: RTTITy); |
4318 | CatchableTypes.insert(X: getCatchableType(T: RTTITy, NVOffset: Class.OffsetInVBase, |
4319 | VBPtrOffset, VBIndex: OffsetInVBTable)); |
4320 | } |
4321 | } |
4322 | |
4323 | // C++14 [except.handle]p3: |
4324 | // A handler is a match for an exception object of type E if |
4325 | // - The handler is of type cv T or cv T& and E and T are the same type |
4326 | // (ignoring the top-level cv-qualifiers) |
4327 | CatchableTypes.insert(X: getCatchableType(T)); |
4328 | |
4329 | // C++14 [except.handle]p3: |
4330 | // A handler is a match for an exception object of type E if |
4331 | // - the handler is of type cv T or const T& where T is a pointer type and |
4332 | // E is a pointer type that can be converted to T by [...] |
4333 | // - a standard pointer conversion (4.10) not involving conversions to |
4334 | // pointers to private or protected or ambiguous classes |
4335 | // |
4336 | // C++14 [conv.ptr]p2: |
4337 | // A prvalue of type "pointer to cv T," where T is an object type, can be |
4338 | // converted to a prvalue of type "pointer to cv void". |
4339 | if (IsPointer && T->getPointeeType()->isObjectType()) |
4340 | CatchableTypes.insert(X: getCatchableType(T: getContext().VoidPtrTy)); |
4341 | |
4342 | // C++14 [except.handle]p3: |
4343 | // A handler is a match for an exception object of type E if [...] |
4344 | // - the handler is of type cv T or const T& where T is a pointer or |
4345 | // pointer to member type and E is std::nullptr_t. |
4346 | // |
4347 | // We cannot possibly list all possible pointer types here, making this |
4348 | // implementation incompatible with the standard. However, MSVC includes an |
4349 | // entry for pointer-to-void in this case. Let's do the same. |
4350 | if (T->isNullPtrType()) |
4351 | CatchableTypes.insert(X: getCatchableType(T: getContext().VoidPtrTy)); |
4352 | |
4353 | uint32_t NumEntries = CatchableTypes.size(); |
4354 | llvm::Type *CTType = getImageRelativeType(PtrType: CGM.UnqualPtrTy); |
4355 | llvm::ArrayType *AT = llvm::ArrayType::get(ElementType: CTType, NumElements: NumEntries); |
4356 | llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); |
4357 | llvm::Constant *Fields[] = { |
4358 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: NumEntries), // NumEntries |
4359 | llvm::ConstantArray::get( |
4360 | T: AT, V: llvm::ArrayRef(CatchableTypes.begin(), |
4361 | CatchableTypes.end())) // CatchableTypes |
4362 | }; |
4363 | SmallString<256> MangledName; |
4364 | { |
4365 | llvm::raw_svector_ostream Out(MangledName); |
4366 | getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); |
4367 | } |
4368 | CTA = new llvm::GlobalVariable( |
4369 | CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(Ty: T), |
4370 | llvm::ConstantStruct::get(T: CTAType, V: Fields), MangledName); |
4371 | CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
4372 | CTA->setSection(".xdata" ); |
4373 | if (CTA->isWeakForLinker()) |
4374 | CTA->setComdat(CGM.getModule().getOrInsertComdat(Name: CTA->getName())); |
4375 | return CTA; |
4376 | } |
4377 | |
4378 | llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { |
4379 | bool IsConst, IsVolatile, IsUnaligned; |
4380 | T = decomposeTypeForEH(Context&: getContext(), T, IsConst, IsVolatile, IsUnaligned); |
4381 | |
4382 | // The CatchableTypeArray enumerates the various (CV-unqualified) types that |
4383 | // the exception object may be caught as. |
4384 | llvm::GlobalVariable *CTA = getCatchableTypeArray(T); |
4385 | // The first field in a CatchableTypeArray is the number of CatchableTypes. |
4386 | // This is used as a component of the mangled name which means that we need to |
4387 | // know what it is in order to see if we have previously generated the |
4388 | // ThrowInfo. |
4389 | uint32_t NumEntries = |
4390 | cast<llvm::ConstantInt>(Val: CTA->getInitializer()->getAggregateElement(Elt: 0U)) |
4391 | ->getLimitedValue(); |
4392 | |
4393 | SmallString<256> MangledName; |
4394 | { |
4395 | llvm::raw_svector_ostream Out(MangledName); |
4396 | getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned, |
4397 | NumEntries, Out); |
4398 | } |
4399 | |
4400 | // Reuse a previously generated ThrowInfo if we have generated an appropriate |
4401 | // one before. |
4402 | if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name: MangledName)) |
4403 | return GV; |
4404 | |
4405 | // The RTTI TypeDescriptor uses an unqualified type but catch clauses must |
4406 | // be at least as CV qualified. Encode this requirement into the Flags |
4407 | // bitfield. |
4408 | uint32_t Flags = 0; |
4409 | if (IsConst) |
4410 | Flags |= 1; |
4411 | if (IsVolatile) |
4412 | Flags |= 2; |
4413 | if (IsUnaligned) |
4414 | Flags |= 4; |
4415 | |
4416 | // The cleanup-function (a destructor) must be called when the exception |
4417 | // object's lifetime ends. |
4418 | llvm::Constant *CleanupFn = llvm::Constant::getNullValue(Ty: CGM.Int8PtrTy); |
4419 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
4420 | if (CXXDestructorDecl *DtorD = RD->getDestructor()) |
4421 | if (!DtorD->isTrivial()) |
4422 | CleanupFn = CGM.getAddrOfCXXStructor(GD: GlobalDecl(DtorD, Dtor_Complete)); |
4423 | // This is unused as far as we can tell, initialize it to null. |
4424 | llvm::Constant *ForwardCompat = |
4425 | getImageRelativeConstant(PtrVal: llvm::Constant::getNullValue(Ty: CGM.Int8PtrTy)); |
4426 | llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(PtrVal: CTA); |
4427 | llvm::StructType *TIType = getThrowInfoType(); |
4428 | llvm::Constant *Fields[] = { |
4429 | llvm::ConstantInt::get(Ty: CGM.IntTy, V: Flags), // Flags |
4430 | getImageRelativeConstant(PtrVal: CleanupFn), // CleanupFn |
4431 | ForwardCompat, // ForwardCompat |
4432 | PointerToCatchableTypes // CatchableTypeArray |
4433 | }; |
4434 | auto *GV = new llvm::GlobalVariable( |
4435 | CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(Ty: T), |
4436 | llvm::ConstantStruct::get(T: TIType, V: Fields), MangledName.str()); |
4437 | GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
4438 | GV->setSection(".xdata" ); |
4439 | if (GV->isWeakForLinker()) |
4440 | GV->setComdat(CGM.getModule().getOrInsertComdat(Name: GV->getName())); |
4441 | return GV; |
4442 | } |
4443 | |
4444 | void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { |
4445 | const Expr *SubExpr = E->getSubExpr(); |
4446 | assert(SubExpr && "SubExpr cannot be null" ); |
4447 | QualType ThrowType = SubExpr->getType(); |
4448 | // The exception object lives on the stack and it's address is passed to the |
4449 | // runtime function. |
4450 | Address AI = CGF.CreateMemTemp(T: ThrowType); |
4451 | CGF.EmitAnyExprToMem(E: SubExpr, Location: AI, Quals: ThrowType.getQualifiers(), |
4452 | /*IsInit=*/IsInitializer: true); |
4453 | |
4454 | // The so-called ThrowInfo is used to describe how the exception object may be |
4455 | // caught. |
4456 | llvm::GlobalVariable *TI = getThrowInfo(T: ThrowType); |
4457 | |
4458 | // Call into the runtime to throw the exception. |
4459 | llvm::Value *Args[] = {AI.emitRawPointer(CGF), TI}; |
4460 | CGF.EmitNoreturnRuntimeCallOrInvoke(callee: getThrowFn(), args: Args); |
4461 | } |
4462 | |
4463 | std::pair<llvm::Value *, const CXXRecordDecl *> |
4464 | MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, |
4465 | const CXXRecordDecl *RD) { |
4466 | std::tie(args&: This, args: std::ignore, args&: RD) = |
4467 | performBaseAdjustment(CGF, Value: This, SrcRecordTy: QualType(RD->getTypeForDecl(), 0)); |
4468 | return {CGF.GetVTablePtr(This, VTableTy: CGM.Int8PtrTy, VTableClass: RD), RD}; |
4469 | } |
4470 | |
4471 | bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate( |
4472 | const CXXRecordDecl *RD) const { |
4473 | // All aggregates are permitted to be HFA on non-ARM platforms, which mostly |
4474 | // affects vectorcall on x64/x86. |
4475 | if (!CGM.getTarget().getTriple().isAArch64()) |
4476 | return true; |
4477 | // MSVC Windows on Arm64 has its own rules for determining if a type is HFA |
4478 | // that are inconsistent with the AAPCS64 ABI. The following are our best |
4479 | // determination of those rules so far, based on observation of MSVC's |
4480 | // behavior. |
4481 | if (RD->isEmpty()) |
4482 | return false; |
4483 | if (RD->isPolymorphic()) |
4484 | return false; |
4485 | if (RD->hasNonTrivialCopyAssignment()) |
4486 | return false; |
4487 | if (RD->hasNonTrivialDestructor()) |
4488 | return false; |
4489 | if (RD->hasNonTrivialDefaultConstructor()) |
4490 | return false; |
4491 | // These two are somewhat redundant given the caller |
4492 | // (ABIInfo::isHomogeneousAggregate) checks the bases and fields, but that |
4493 | // caller doesn't consider empty bases/fields to be non-homogenous, but it |
4494 | // looks like Microsoft's AArch64 ABI does care about these empty types & |
4495 | // anything containing/derived from one is non-homogeneous. |
4496 | // Instead we could add another CXXABI entry point to query this property and |
4497 | // have ABIInfo::isHomogeneousAggregate use that property. |
4498 | // I don't think any other of the features listed above could be true of a |
4499 | // base/field while not true of the outer struct. For example, if you have a |
4500 | // base/field that has an non-trivial copy assignment/dtor/default ctor, then |
4501 | // the outer struct's corresponding operation must be non-trivial. |
4502 | for (const CXXBaseSpecifier &B : RD->bases()) { |
4503 | if (const CXXRecordDecl *FRD = B.getType()->getAsCXXRecordDecl()) { |
4504 | if (!isPermittedToBeHomogeneousAggregate(RD: FRD)) |
4505 | return false; |
4506 | } |
4507 | } |
4508 | // empty fields seem to be caught by the ABIInfo::isHomogeneousAggregate |
4509 | // checking for padding - but maybe there are ways to end up with an empty |
4510 | // field without padding? Not that I know of, so don't check fields here & |
4511 | // rely on the padding check. |
4512 | return true; |
4513 | } |
4514 | |