| 1 | //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements extra semantic analysis beyond what is enforced |
| 10 | // by the C type system. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "CheckExprLifetime.h" |
| 15 | #include "clang/AST/APValue.h" |
| 16 | #include "clang/AST/ASTContext.h" |
| 17 | #include "clang/AST/ASTDiagnostic.h" |
| 18 | #include "clang/AST/Attr.h" |
| 19 | #include "clang/AST/AttrIterator.h" |
| 20 | #include "clang/AST/CharUnits.h" |
| 21 | #include "clang/AST/Decl.h" |
| 22 | #include "clang/AST/DeclBase.h" |
| 23 | #include "clang/AST/DeclCXX.h" |
| 24 | #include "clang/AST/DeclObjC.h" |
| 25 | #include "clang/AST/DeclarationName.h" |
| 26 | #include "clang/AST/EvaluatedExprVisitor.h" |
| 27 | #include "clang/AST/Expr.h" |
| 28 | #include "clang/AST/ExprCXX.h" |
| 29 | #include "clang/AST/ExprObjC.h" |
| 30 | #include "clang/AST/FormatString.h" |
| 31 | #include "clang/AST/IgnoreExpr.h" |
| 32 | #include "clang/AST/NSAPI.h" |
| 33 | #include "clang/AST/NonTrivialTypeVisitor.h" |
| 34 | #include "clang/AST/OperationKinds.h" |
| 35 | #include "clang/AST/RecordLayout.h" |
| 36 | #include "clang/AST/Stmt.h" |
| 37 | #include "clang/AST/TemplateBase.h" |
| 38 | #include "clang/AST/Type.h" |
| 39 | #include "clang/AST/TypeLoc.h" |
| 40 | #include "clang/AST/UnresolvedSet.h" |
| 41 | #include "clang/Basic/AddressSpaces.h" |
| 42 | #include "clang/Basic/Diagnostic.h" |
| 43 | #include "clang/Basic/IdentifierTable.h" |
| 44 | #include "clang/Basic/LLVM.h" |
| 45 | #include "clang/Basic/LangOptions.h" |
| 46 | #include "clang/Basic/OpenCLOptions.h" |
| 47 | #include "clang/Basic/OperatorKinds.h" |
| 48 | #include "clang/Basic/PartialDiagnostic.h" |
| 49 | #include "clang/Basic/SourceLocation.h" |
| 50 | #include "clang/Basic/SourceManager.h" |
| 51 | #include "clang/Basic/Specifiers.h" |
| 52 | #include "clang/Basic/SyncScope.h" |
| 53 | #include "clang/Basic/TargetInfo.h" |
| 54 | #include "clang/Basic/TypeTraits.h" |
| 55 | #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. |
| 56 | #include "clang/Sema/Initialization.h" |
| 57 | #include "clang/Sema/Lookup.h" |
| 58 | #include "clang/Sema/Ownership.h" |
| 59 | #include "clang/Sema/Scope.h" |
| 60 | #include "clang/Sema/ScopeInfo.h" |
| 61 | #include "clang/Sema/Sema.h" |
| 62 | #include "clang/Sema/SemaAMDGPU.h" |
| 63 | #include "clang/Sema/SemaARM.h" |
| 64 | #include "clang/Sema/SemaBPF.h" |
| 65 | #include "clang/Sema/SemaDirectX.h" |
| 66 | #include "clang/Sema/SemaHLSL.h" |
| 67 | #include "clang/Sema/SemaHexagon.h" |
| 68 | #include "clang/Sema/SemaLoongArch.h" |
| 69 | #include "clang/Sema/SemaMIPS.h" |
| 70 | #include "clang/Sema/SemaNVPTX.h" |
| 71 | #include "clang/Sema/SemaObjC.h" |
| 72 | #include "clang/Sema/SemaOpenCL.h" |
| 73 | #include "clang/Sema/SemaPPC.h" |
| 74 | #include "clang/Sema/SemaRISCV.h" |
| 75 | #include "clang/Sema/SemaSPIRV.h" |
| 76 | #include "clang/Sema/SemaSystemZ.h" |
| 77 | #include "clang/Sema/SemaWasm.h" |
| 78 | #include "clang/Sema/SemaX86.h" |
| 79 | #include "llvm/ADT/APFloat.h" |
| 80 | #include "llvm/ADT/APInt.h" |
| 81 | #include "llvm/ADT/APSInt.h" |
| 82 | #include "llvm/ADT/ArrayRef.h" |
| 83 | #include "llvm/ADT/DenseMap.h" |
| 84 | #include "llvm/ADT/FoldingSet.h" |
| 85 | #include "llvm/ADT/STLExtras.h" |
| 86 | #include "llvm/ADT/STLForwardCompat.h" |
| 87 | #include "llvm/ADT/SmallBitVector.h" |
| 88 | #include "llvm/ADT/SmallPtrSet.h" |
| 89 | #include "llvm/ADT/SmallString.h" |
| 90 | #include "llvm/ADT/SmallVector.h" |
| 91 | #include "llvm/ADT/StringExtras.h" |
| 92 | #include "llvm/ADT/StringRef.h" |
| 93 | #include "llvm/ADT/StringSet.h" |
| 94 | #include "llvm/ADT/StringSwitch.h" |
| 95 | #include "llvm/Support/AtomicOrdering.h" |
| 96 | #include "llvm/Support/Compiler.h" |
| 97 | #include "llvm/Support/ConvertUTF.h" |
| 98 | #include "llvm/Support/ErrorHandling.h" |
| 99 | #include "llvm/Support/Format.h" |
| 100 | #include "llvm/Support/Locale.h" |
| 101 | #include "llvm/Support/MathExtras.h" |
| 102 | #include "llvm/Support/SaveAndRestore.h" |
| 103 | #include "llvm/Support/raw_ostream.h" |
| 104 | #include "llvm/TargetParser/RISCVTargetParser.h" |
| 105 | #include "llvm/TargetParser/Triple.h" |
| 106 | #include <algorithm> |
| 107 | #include <cassert> |
| 108 | #include <cctype> |
| 109 | #include <cstddef> |
| 110 | #include <cstdint> |
| 111 | #include <functional> |
| 112 | #include <limits> |
| 113 | #include <optional> |
| 114 | #include <string> |
| 115 | #include <tuple> |
| 116 | #include <utility> |
| 117 | |
| 118 | using namespace clang; |
| 119 | using namespace sema; |
| 120 | |
| 121 | SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, |
| 122 | unsigned ByteNo) const { |
| 123 | return SL->getLocationOfByte(ByteNo, SM: getSourceManager(), Features: LangOpts, |
| 124 | Target: Context.getTargetInfo()); |
| 125 | } |
| 126 | |
| 127 | static constexpr unsigned short combineFAPK(Sema::FormatArgumentPassingKind A, |
| 128 | Sema::FormatArgumentPassingKind B) { |
| 129 | return (A << 8) | B; |
| 130 | } |
| 131 | |
| 132 | bool Sema::checkArgCountAtLeast(CallExpr *Call, unsigned MinArgCount) { |
| 133 | unsigned ArgCount = Call->getNumArgs(); |
| 134 | if (ArgCount >= MinArgCount) |
| 135 | return false; |
| 136 | |
| 137 | return Diag(Loc: Call->getEndLoc(), DiagID: diag::err_typecheck_call_too_few_args) |
| 138 | << 0 /*function call*/ << MinArgCount << ArgCount |
| 139 | << /*is non object*/ 0 << Call->getSourceRange(); |
| 140 | } |
| 141 | |
| 142 | bool Sema::checkArgCountAtMost(CallExpr *Call, unsigned MaxArgCount) { |
| 143 | unsigned ArgCount = Call->getNumArgs(); |
| 144 | if (ArgCount <= MaxArgCount) |
| 145 | return false; |
| 146 | return Diag(Loc: Call->getEndLoc(), DiagID: diag::err_typecheck_call_too_many_args_at_most) |
| 147 | << 0 /*function call*/ << MaxArgCount << ArgCount |
| 148 | << /*is non object*/ 0 << Call->getSourceRange(); |
| 149 | } |
| 150 | |
| 151 | bool Sema::checkArgCountRange(CallExpr *Call, unsigned MinArgCount, |
| 152 | unsigned MaxArgCount) { |
| 153 | return checkArgCountAtLeast(Call, MinArgCount) || |
| 154 | checkArgCountAtMost(Call, MaxArgCount); |
| 155 | } |
| 156 | |
| 157 | bool Sema::checkArgCount(CallExpr *Call, unsigned DesiredArgCount) { |
| 158 | unsigned ArgCount = Call->getNumArgs(); |
| 159 | if (ArgCount == DesiredArgCount) |
| 160 | return false; |
| 161 | |
| 162 | if (checkArgCountAtLeast(Call, MinArgCount: DesiredArgCount)) |
| 163 | return true; |
| 164 | assert(ArgCount > DesiredArgCount && "should have diagnosed this" ); |
| 165 | |
| 166 | // Highlight all the excess arguments. |
| 167 | SourceRange Range(Call->getArg(Arg: DesiredArgCount)->getBeginLoc(), |
| 168 | Call->getArg(Arg: ArgCount - 1)->getEndLoc()); |
| 169 | |
| 170 | return Diag(Loc: Range.getBegin(), DiagID: diag::err_typecheck_call_too_many_args) |
| 171 | << 0 /*function call*/ << DesiredArgCount << ArgCount |
| 172 | << /*is non object*/ 0 << Range; |
| 173 | } |
| 174 | |
| 175 | static bool checkBuiltinVerboseTrap(CallExpr *Call, Sema &S) { |
| 176 | bool HasError = false; |
| 177 | |
| 178 | for (unsigned I = 0; I < Call->getNumArgs(); ++I) { |
| 179 | Expr *Arg = Call->getArg(Arg: I); |
| 180 | |
| 181 | if (Arg->isValueDependent()) |
| 182 | continue; |
| 183 | |
| 184 | std::optional<std::string> ArgString = Arg->tryEvaluateString(Ctx&: S.Context); |
| 185 | int DiagMsgKind = -1; |
| 186 | // Arguments must be pointers to constant strings and cannot use '$'. |
| 187 | if (!ArgString.has_value()) |
| 188 | DiagMsgKind = 0; |
| 189 | else if (ArgString->find(c: '$') != std::string::npos) |
| 190 | DiagMsgKind = 1; |
| 191 | |
| 192 | if (DiagMsgKind >= 0) { |
| 193 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_builtin_verbose_trap_arg) |
| 194 | << DiagMsgKind << Arg->getSourceRange(); |
| 195 | HasError = true; |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | return !HasError; |
| 200 | } |
| 201 | |
| 202 | static bool convertArgumentToType(Sema &S, Expr *&Value, QualType Ty) { |
| 203 | if (Value->isTypeDependent()) |
| 204 | return false; |
| 205 | |
| 206 | InitializedEntity Entity = |
| 207 | InitializedEntity::InitializeParameter(Context&: S.Context, Type: Ty, Consumed: false); |
| 208 | ExprResult Result = |
| 209 | S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Value); |
| 210 | if (Result.isInvalid()) |
| 211 | return true; |
| 212 | Value = Result.get(); |
| 213 | return false; |
| 214 | } |
| 215 | |
| 216 | /// Check that the first argument to __builtin_annotation is an integer |
| 217 | /// and the second argument is a non-wide string literal. |
| 218 | static bool BuiltinAnnotation(Sema &S, CallExpr *TheCall) { |
| 219 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
| 220 | return true; |
| 221 | |
| 222 | // First argument should be an integer. |
| 223 | Expr *ValArg = TheCall->getArg(Arg: 0); |
| 224 | QualType Ty = ValArg->getType(); |
| 225 | if (!Ty->isIntegerType()) { |
| 226 | S.Diag(Loc: ValArg->getBeginLoc(), DiagID: diag::err_builtin_annotation_first_arg) |
| 227 | << ValArg->getSourceRange(); |
| 228 | return true; |
| 229 | } |
| 230 | |
| 231 | // Second argument should be a constant string. |
| 232 | Expr *StrArg = TheCall->getArg(Arg: 1)->IgnoreParenCasts(); |
| 233 | StringLiteral *Literal = dyn_cast<StringLiteral>(Val: StrArg); |
| 234 | if (!Literal || !Literal->isOrdinary()) { |
| 235 | S.Diag(Loc: StrArg->getBeginLoc(), DiagID: diag::err_builtin_annotation_second_arg) |
| 236 | << StrArg->getSourceRange(); |
| 237 | return true; |
| 238 | } |
| 239 | |
| 240 | TheCall->setType(Ty); |
| 241 | return false; |
| 242 | } |
| 243 | |
| 244 | static bool BuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { |
| 245 | // We need at least one argument. |
| 246 | if (TheCall->getNumArgs() < 1) { |
| 247 | S.Diag(Loc: TheCall->getEndLoc(), DiagID: diag::err_typecheck_call_too_few_args_at_least) |
| 248 | << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0 |
| 249 | << TheCall->getCallee()->getSourceRange(); |
| 250 | return true; |
| 251 | } |
| 252 | |
| 253 | // All arguments should be wide string literals. |
| 254 | for (Expr *Arg : TheCall->arguments()) { |
| 255 | auto *Literal = dyn_cast<StringLiteral>(Val: Arg->IgnoreParenCasts()); |
| 256 | if (!Literal || !Literal->isWide()) { |
| 257 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_msvc_annotation_wide_str) |
| 258 | << Arg->getSourceRange(); |
| 259 | return true; |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | return false; |
| 264 | } |
| 265 | |
| 266 | /// Check that the argument to __builtin_addressof is a glvalue, and set the |
| 267 | /// result type to the corresponding pointer type. |
| 268 | static bool BuiltinAddressof(Sema &S, CallExpr *TheCall) { |
| 269 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 270 | return true; |
| 271 | |
| 272 | ExprResult Arg(TheCall->getArg(Arg: 0)); |
| 273 | QualType ResultType = S.CheckAddressOfOperand(Operand&: Arg, OpLoc: TheCall->getBeginLoc()); |
| 274 | if (ResultType.isNull()) |
| 275 | return true; |
| 276 | |
| 277 | TheCall->setArg(Arg: 0, ArgExpr: Arg.get()); |
| 278 | TheCall->setType(ResultType); |
| 279 | return false; |
| 280 | } |
| 281 | |
| 282 | /// Check that the argument to __builtin_function_start is a function. |
| 283 | static bool BuiltinFunctionStart(Sema &S, CallExpr *TheCall) { |
| 284 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 285 | return true; |
| 286 | |
| 287 | ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(E: TheCall->getArg(Arg: 0)); |
| 288 | if (Arg.isInvalid()) |
| 289 | return true; |
| 290 | |
| 291 | TheCall->setArg(Arg: 0, ArgExpr: Arg.get()); |
| 292 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>( |
| 293 | Val: Arg.get()->getAsBuiltinConstantDeclRef(Context: S.getASTContext())); |
| 294 | |
| 295 | if (!FD) { |
| 296 | S.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_function_start_invalid_type) |
| 297 | << TheCall->getSourceRange(); |
| 298 | return true; |
| 299 | } |
| 300 | |
| 301 | return !S.checkAddressOfFunctionIsAvailable(Function: FD, /*Complain=*/true, |
| 302 | Loc: TheCall->getBeginLoc()); |
| 303 | } |
| 304 | |
| 305 | /// Check the number of arguments and set the result type to |
| 306 | /// the argument type. |
| 307 | static bool BuiltinPreserveAI(Sema &S, CallExpr *TheCall) { |
| 308 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 309 | return true; |
| 310 | |
| 311 | TheCall->setType(TheCall->getArg(Arg: 0)->getType()); |
| 312 | return false; |
| 313 | } |
| 314 | |
| 315 | /// Check that the value argument for __builtin_is_aligned(value, alignment) and |
| 316 | /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer |
| 317 | /// type (but not a function pointer) and that the alignment is a power-of-two. |
| 318 | static bool BuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) { |
| 319 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
| 320 | return true; |
| 321 | |
| 322 | clang::Expr *Source = TheCall->getArg(Arg: 0); |
| 323 | bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned; |
| 324 | |
| 325 | auto IsValidIntegerType = [](QualType Ty) { |
| 326 | return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType(); |
| 327 | }; |
| 328 | QualType SrcTy = Source->getType(); |
| 329 | // We should also be able to use it with arrays (but not functions!). |
| 330 | if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) { |
| 331 | SrcTy = S.Context.getDecayedType(T: SrcTy); |
| 332 | } |
| 333 | if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) || |
| 334 | SrcTy->isFunctionPointerType()) { |
| 335 | // FIXME: this is not quite the right error message since we don't allow |
| 336 | // floating point types, or member pointers. |
| 337 | S.Diag(Loc: Source->getExprLoc(), DiagID: diag::err_typecheck_expect_scalar_operand) |
| 338 | << SrcTy; |
| 339 | return true; |
| 340 | } |
| 341 | |
| 342 | clang::Expr *AlignOp = TheCall->getArg(Arg: 1); |
| 343 | if (!IsValidIntegerType(AlignOp->getType())) { |
| 344 | S.Diag(Loc: AlignOp->getExprLoc(), DiagID: diag::err_typecheck_expect_int) |
| 345 | << AlignOp->getType(); |
| 346 | return true; |
| 347 | } |
| 348 | Expr::EvalResult AlignResult; |
| 349 | unsigned MaxAlignmentBits = S.Context.getIntWidth(T: SrcTy) - 1; |
| 350 | // We can't check validity of alignment if it is value dependent. |
| 351 | if (!AlignOp->isValueDependent() && |
| 352 | AlignOp->EvaluateAsInt(Result&: AlignResult, Ctx: S.Context, |
| 353 | AllowSideEffects: Expr::SE_AllowSideEffects)) { |
| 354 | llvm::APSInt AlignValue = AlignResult.Val.getInt(); |
| 355 | llvm::APSInt MaxValue( |
| 356 | llvm::APInt::getOneBitSet(numBits: MaxAlignmentBits + 1, BitNo: MaxAlignmentBits)); |
| 357 | if (AlignValue < 1) { |
| 358 | S.Diag(Loc: AlignOp->getExprLoc(), DiagID: diag::err_alignment_too_small) << 1; |
| 359 | return true; |
| 360 | } |
| 361 | if (llvm::APSInt::compareValues(I1: AlignValue, I2: MaxValue) > 0) { |
| 362 | S.Diag(Loc: AlignOp->getExprLoc(), DiagID: diag::err_alignment_too_big) |
| 363 | << toString(I: MaxValue, Radix: 10); |
| 364 | return true; |
| 365 | } |
| 366 | if (!AlignValue.isPowerOf2()) { |
| 367 | S.Diag(Loc: AlignOp->getExprLoc(), DiagID: diag::err_alignment_not_power_of_two); |
| 368 | return true; |
| 369 | } |
| 370 | if (AlignValue == 1) { |
| 371 | S.Diag(Loc: AlignOp->getExprLoc(), DiagID: diag::warn_alignment_builtin_useless) |
| 372 | << IsBooleanAlignBuiltin; |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | ExprResult SrcArg = S.PerformCopyInitialization( |
| 377 | Entity: InitializedEntity::InitializeParameter(Context&: S.Context, Type: SrcTy, Consumed: false), |
| 378 | EqualLoc: SourceLocation(), Init: Source); |
| 379 | if (SrcArg.isInvalid()) |
| 380 | return true; |
| 381 | TheCall->setArg(Arg: 0, ArgExpr: SrcArg.get()); |
| 382 | ExprResult AlignArg = |
| 383 | S.PerformCopyInitialization(Entity: InitializedEntity::InitializeParameter( |
| 384 | Context&: S.Context, Type: AlignOp->getType(), Consumed: false), |
| 385 | EqualLoc: SourceLocation(), Init: AlignOp); |
| 386 | if (AlignArg.isInvalid()) |
| 387 | return true; |
| 388 | TheCall->setArg(Arg: 1, ArgExpr: AlignArg.get()); |
| 389 | // For align_up/align_down, the return type is the same as the (potentially |
| 390 | // decayed) argument type including qualifiers. For is_aligned(), the result |
| 391 | // is always bool. |
| 392 | TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy); |
| 393 | return false; |
| 394 | } |
| 395 | |
| 396 | static bool BuiltinOverflow(Sema &S, CallExpr *TheCall, unsigned BuiltinID) { |
| 397 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
| 398 | return true; |
| 399 | |
| 400 | std::pair<unsigned, const char *> Builtins[] = { |
| 401 | { Builtin::BI__builtin_add_overflow, "ckd_add" }, |
| 402 | { Builtin::BI__builtin_sub_overflow, "ckd_sub" }, |
| 403 | { Builtin::BI__builtin_mul_overflow, "ckd_mul" }, |
| 404 | }; |
| 405 | |
| 406 | bool CkdOperation = llvm::any_of(Range&: Builtins, P: [&](const std::pair<unsigned, |
| 407 | const char *> &P) { |
| 408 | return BuiltinID == P.first && TheCall->getExprLoc().isMacroID() && |
| 409 | Lexer::getImmediateMacroName(Loc: TheCall->getExprLoc(), |
| 410 | SM: S.getSourceManager(), LangOpts: S.getLangOpts()) == P.second; |
| 411 | }); |
| 412 | |
| 413 | auto ValidCkdIntType = [](QualType QT) { |
| 414 | // A valid checked integer type is an integer type other than a plain char, |
| 415 | // bool, a bit-precise type, or an enumeration type. |
| 416 | if (const auto *BT = QT.getCanonicalType()->getAs<BuiltinType>()) |
| 417 | return (BT->getKind() >= BuiltinType::Short && |
| 418 | BT->getKind() <= BuiltinType::Int128) || ( |
| 419 | BT->getKind() >= BuiltinType::UShort && |
| 420 | BT->getKind() <= BuiltinType::UInt128) || |
| 421 | BT->getKind() == BuiltinType::UChar || |
| 422 | BT->getKind() == BuiltinType::SChar; |
| 423 | return false; |
| 424 | }; |
| 425 | |
| 426 | // First two arguments should be integers. |
| 427 | for (unsigned I = 0; I < 2; ++I) { |
| 428 | ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(E: TheCall->getArg(Arg: I)); |
| 429 | if (Arg.isInvalid()) return true; |
| 430 | TheCall->setArg(Arg: I, ArgExpr: Arg.get()); |
| 431 | |
| 432 | QualType Ty = Arg.get()->getType(); |
| 433 | bool IsValid = CkdOperation ? ValidCkdIntType(Ty) : Ty->isIntegerType(); |
| 434 | if (!IsValid) { |
| 435 | S.Diag(Loc: Arg.get()->getBeginLoc(), DiagID: diag::err_overflow_builtin_must_be_int) |
| 436 | << CkdOperation << Ty << Arg.get()->getSourceRange(); |
| 437 | return true; |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | // Third argument should be a pointer to a non-const integer. |
| 442 | // IRGen correctly handles volatile, restrict, and address spaces, and |
| 443 | // the other qualifiers aren't possible. |
| 444 | { |
| 445 | ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(E: TheCall->getArg(Arg: 2)); |
| 446 | if (Arg.isInvalid()) return true; |
| 447 | TheCall->setArg(Arg: 2, ArgExpr: Arg.get()); |
| 448 | |
| 449 | QualType Ty = Arg.get()->getType(); |
| 450 | const auto *PtrTy = Ty->getAs<PointerType>(); |
| 451 | if (!PtrTy || |
| 452 | !PtrTy->getPointeeType()->isIntegerType() || |
| 453 | (!ValidCkdIntType(PtrTy->getPointeeType()) && CkdOperation) || |
| 454 | PtrTy->getPointeeType().isConstQualified()) { |
| 455 | S.Diag(Loc: Arg.get()->getBeginLoc(), |
| 456 | DiagID: diag::err_overflow_builtin_must_be_ptr_int) |
| 457 | << CkdOperation << Ty << Arg.get()->getSourceRange(); |
| 458 | return true; |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | // Disallow signed bit-precise integer args larger than 128 bits to mul |
| 463 | // function until we improve backend support. |
| 464 | if (BuiltinID == Builtin::BI__builtin_mul_overflow) { |
| 465 | for (unsigned I = 0; I < 3; ++I) { |
| 466 | const auto Arg = TheCall->getArg(Arg: I); |
| 467 | // Third argument will be a pointer. |
| 468 | auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType(); |
| 469 | if (Ty->isBitIntType() && Ty->isSignedIntegerType() && |
| 470 | S.getASTContext().getIntWidth(T: Ty) > 128) |
| 471 | return S.Diag(Loc: Arg->getBeginLoc(), |
| 472 | DiagID: diag::err_overflow_builtin_bit_int_max_size) |
| 473 | << 128; |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | return false; |
| 478 | } |
| 479 | |
| 480 | namespace { |
| 481 | struct BuiltinDumpStructGenerator { |
| 482 | Sema &S; |
| 483 | CallExpr *TheCall; |
| 484 | SourceLocation Loc = TheCall->getBeginLoc(); |
| 485 | SmallVector<Expr *, 32> Actions; |
| 486 | DiagnosticErrorTrap ErrorTracker; |
| 487 | PrintingPolicy Policy; |
| 488 | |
| 489 | BuiltinDumpStructGenerator(Sema &S, CallExpr *TheCall) |
| 490 | : S(S), TheCall(TheCall), ErrorTracker(S.getDiagnostics()), |
| 491 | Policy(S.Context.getPrintingPolicy()) { |
| 492 | Policy.AnonymousTagLocations = false; |
| 493 | } |
| 494 | |
| 495 | Expr *makeOpaqueValueExpr(Expr *Inner) { |
| 496 | auto *OVE = new (S.Context) |
| 497 | OpaqueValueExpr(Loc, Inner->getType(), Inner->getValueKind(), |
| 498 | Inner->getObjectKind(), Inner); |
| 499 | Actions.push_back(Elt: OVE); |
| 500 | return OVE; |
| 501 | } |
| 502 | |
| 503 | Expr *getStringLiteral(llvm::StringRef Str) { |
| 504 | Expr *Lit = S.Context.getPredefinedStringLiteralFromCache(Key: Str); |
| 505 | // Wrap the literal in parentheses to attach a source location. |
| 506 | return new (S.Context) ParenExpr(Loc, Loc, Lit); |
| 507 | } |
| 508 | |
| 509 | bool callPrintFunction(llvm::StringRef Format, |
| 510 | llvm::ArrayRef<Expr *> Exprs = {}) { |
| 511 | SmallVector<Expr *, 8> Args; |
| 512 | assert(TheCall->getNumArgs() >= 2); |
| 513 | Args.reserve(N: (TheCall->getNumArgs() - 2) + /*Format*/ 1 + Exprs.size()); |
| 514 | Args.assign(in_start: TheCall->arg_begin() + 2, in_end: TheCall->arg_end()); |
| 515 | Args.push_back(Elt: getStringLiteral(Str: Format)); |
| 516 | llvm::append_range(C&: Args, R&: Exprs); |
| 517 | |
| 518 | // Register a note to explain why we're performing the call. |
| 519 | Sema::CodeSynthesisContext Ctx; |
| 520 | Ctx.Kind = Sema::CodeSynthesisContext::BuildingBuiltinDumpStructCall; |
| 521 | Ctx.PointOfInstantiation = Loc; |
| 522 | Ctx.CallArgs = Args.data(); |
| 523 | Ctx.NumCallArgs = Args.size(); |
| 524 | S.pushCodeSynthesisContext(Ctx); |
| 525 | |
| 526 | ExprResult RealCall = |
| 527 | S.BuildCallExpr(/*Scope=*/S: nullptr, Fn: TheCall->getArg(Arg: 1), |
| 528 | LParenLoc: TheCall->getBeginLoc(), ArgExprs: Args, RParenLoc: TheCall->getRParenLoc()); |
| 529 | |
| 530 | S.popCodeSynthesisContext(); |
| 531 | if (!RealCall.isInvalid()) |
| 532 | Actions.push_back(Elt: RealCall.get()); |
| 533 | // Bail out if we've hit any errors, even if we managed to build the |
| 534 | // call. We don't want to produce more than one error. |
| 535 | return RealCall.isInvalid() || ErrorTracker.hasErrorOccurred(); |
| 536 | } |
| 537 | |
| 538 | Expr *getIndentString(unsigned Depth) { |
| 539 | if (!Depth) |
| 540 | return nullptr; |
| 541 | |
| 542 | llvm::SmallString<32> Indent; |
| 543 | Indent.resize(N: Depth * Policy.Indentation, NV: ' '); |
| 544 | return getStringLiteral(Str: Indent); |
| 545 | } |
| 546 | |
| 547 | Expr *getTypeString(QualType T) { |
| 548 | return getStringLiteral(Str: T.getAsString(Policy)); |
| 549 | } |
| 550 | |
| 551 | bool appendFormatSpecifier(QualType T, llvm::SmallVectorImpl<char> &Str) { |
| 552 | llvm::raw_svector_ostream OS(Str); |
| 553 | |
| 554 | // Format 'bool', 'char', 'signed char', 'unsigned char' as numbers, rather |
| 555 | // than trying to print a single character. |
| 556 | if (auto *BT = T->getAs<BuiltinType>()) { |
| 557 | switch (BT->getKind()) { |
| 558 | case BuiltinType::Bool: |
| 559 | OS << "%d" ; |
| 560 | return true; |
| 561 | case BuiltinType::Char_U: |
| 562 | case BuiltinType::UChar: |
| 563 | OS << "%hhu" ; |
| 564 | return true; |
| 565 | case BuiltinType::Char_S: |
| 566 | case BuiltinType::SChar: |
| 567 | OS << "%hhd" ; |
| 568 | return true; |
| 569 | default: |
| 570 | break; |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | analyze_printf::PrintfSpecifier Specifier; |
| 575 | if (Specifier.fixType(QT: T, LangOpt: S.getLangOpts(), Ctx&: S.Context, /*IsObjCLiteral=*/false)) { |
| 576 | // We were able to guess how to format this. |
| 577 | if (Specifier.getConversionSpecifier().getKind() == |
| 578 | analyze_printf::PrintfConversionSpecifier::sArg) { |
| 579 | // Wrap double-quotes around a '%s' specifier and limit its maximum |
| 580 | // length. Ideally we'd also somehow escape special characters in the |
| 581 | // contents but printf doesn't support that. |
| 582 | // FIXME: '%s' formatting is not safe in general. |
| 583 | OS << '"'; |
| 584 | Specifier.setPrecision(analyze_printf::OptionalAmount(32u)); |
| 585 | Specifier.toString(os&: OS); |
| 586 | OS << '"'; |
| 587 | // FIXME: It would be nice to include a '...' if the string doesn't fit |
| 588 | // in the length limit. |
| 589 | } else { |
| 590 | Specifier.toString(os&: OS); |
| 591 | } |
| 592 | return true; |
| 593 | } |
| 594 | |
| 595 | if (T->isPointerType()) { |
| 596 | // Format all pointers with '%p'. |
| 597 | OS << "%p" ; |
| 598 | return true; |
| 599 | } |
| 600 | |
| 601 | return false; |
| 602 | } |
| 603 | |
| 604 | bool dumpUnnamedRecord(const RecordDecl *RD, Expr *E, unsigned Depth) { |
| 605 | Expr *IndentLit = getIndentString(Depth); |
| 606 | Expr *TypeLit = getTypeString(T: S.Context.getRecordType(Decl: RD)); |
| 607 | if (IndentLit ? callPrintFunction(Format: "%s%s" , Exprs: {IndentLit, TypeLit}) |
| 608 | : callPrintFunction(Format: "%s" , Exprs: {TypeLit})) |
| 609 | return true; |
| 610 | |
| 611 | return dumpRecordValue(RD, E, RecordIndent: IndentLit, Depth); |
| 612 | } |
| 613 | |
| 614 | // Dump a record value. E should be a pointer or lvalue referring to an RD. |
| 615 | bool dumpRecordValue(const RecordDecl *RD, Expr *E, Expr *RecordIndent, |
| 616 | unsigned Depth) { |
| 617 | // FIXME: Decide what to do if RD is a union. At least we should probably |
| 618 | // turn off printing `const char*` members with `%s`, because that is very |
| 619 | // likely to crash if that's not the active member. Whatever we decide, we |
| 620 | // should document it. |
| 621 | |
| 622 | // Build an OpaqueValueExpr so we can refer to E more than once without |
| 623 | // triggering re-evaluation. |
| 624 | Expr *RecordArg = makeOpaqueValueExpr(Inner: E); |
| 625 | bool RecordArgIsPtr = RecordArg->getType()->isPointerType(); |
| 626 | |
| 627 | if (callPrintFunction(Format: " {\n" )) |
| 628 | return true; |
| 629 | |
| 630 | // Dump each base class, regardless of whether they're aggregates. |
| 631 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
| 632 | for (const auto &Base : CXXRD->bases()) { |
| 633 | QualType BaseType = |
| 634 | RecordArgIsPtr ? S.Context.getPointerType(T: Base.getType()) |
| 635 | : S.Context.getLValueReferenceType(T: Base.getType()); |
| 636 | ExprResult BasePtr = S.BuildCStyleCastExpr( |
| 637 | LParenLoc: Loc, Ty: S.Context.getTrivialTypeSourceInfo(T: BaseType, Loc), RParenLoc: Loc, |
| 638 | Op: RecordArg); |
| 639 | if (BasePtr.isInvalid() || |
| 640 | dumpUnnamedRecord(RD: Base.getType()->getAsRecordDecl(), E: BasePtr.get(), |
| 641 | Depth: Depth + 1)) |
| 642 | return true; |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | Expr *FieldIndentArg = getIndentString(Depth: Depth + 1); |
| 647 | |
| 648 | // Dump each field. |
| 649 | for (auto *D : RD->decls()) { |
| 650 | auto *IFD = dyn_cast<IndirectFieldDecl>(Val: D); |
| 651 | auto *FD = IFD ? IFD->getAnonField() : dyn_cast<FieldDecl>(Val: D); |
| 652 | if (!FD || FD->isUnnamedBitField() || FD->isAnonymousStructOrUnion()) |
| 653 | continue; |
| 654 | |
| 655 | llvm::SmallString<20> Format = llvm::StringRef("%s%s %s " ); |
| 656 | llvm::SmallVector<Expr *, 5> Args = {FieldIndentArg, |
| 657 | getTypeString(T: FD->getType()), |
| 658 | getStringLiteral(Str: FD->getName())}; |
| 659 | |
| 660 | if (FD->isBitField()) { |
| 661 | Format += ": %zu " ; |
| 662 | QualType SizeT = S.Context.getSizeType(); |
| 663 | llvm::APInt BitWidth(S.Context.getIntWidth(T: SizeT), |
| 664 | FD->getBitWidthValue()); |
| 665 | Args.push_back(Elt: IntegerLiteral::Create(C: S.Context, V: BitWidth, type: SizeT, l: Loc)); |
| 666 | } |
| 667 | |
| 668 | Format += "=" ; |
| 669 | |
| 670 | ExprResult Field = |
| 671 | IFD ? S.BuildAnonymousStructUnionMemberReference( |
| 672 | SS: CXXScopeSpec(), nameLoc: Loc, indirectField: IFD, |
| 673 | FoundDecl: DeclAccessPair::make(D: IFD, AS: AS_public), baseObjectExpr: RecordArg, opLoc: Loc) |
| 674 | : S.BuildFieldReferenceExpr( |
| 675 | BaseExpr: RecordArg, IsArrow: RecordArgIsPtr, OpLoc: Loc, SS: CXXScopeSpec(), Field: FD, |
| 676 | FoundDecl: DeclAccessPair::make(D: FD, AS: AS_public), |
| 677 | MemberNameInfo: DeclarationNameInfo(FD->getDeclName(), Loc)); |
| 678 | if (Field.isInvalid()) |
| 679 | return true; |
| 680 | |
| 681 | auto *InnerRD = FD->getType()->getAsRecordDecl(); |
| 682 | auto *InnerCXXRD = dyn_cast_or_null<CXXRecordDecl>(Val: InnerRD); |
| 683 | if (InnerRD && (!InnerCXXRD || InnerCXXRD->isAggregate())) { |
| 684 | // Recursively print the values of members of aggregate record type. |
| 685 | if (callPrintFunction(Format, Exprs: Args) || |
| 686 | dumpRecordValue(RD: InnerRD, E: Field.get(), RecordIndent: FieldIndentArg, Depth: Depth + 1)) |
| 687 | return true; |
| 688 | } else { |
| 689 | Format += " " ; |
| 690 | if (appendFormatSpecifier(T: FD->getType(), Str&: Format)) { |
| 691 | // We know how to print this field. |
| 692 | Args.push_back(Elt: Field.get()); |
| 693 | } else { |
| 694 | // We don't know how to print this field. Print out its address |
| 695 | // with a format specifier that a smart tool will be able to |
| 696 | // recognize and treat specially. |
| 697 | Format += "*%p" ; |
| 698 | ExprResult FieldAddr = |
| 699 | S.BuildUnaryOp(S: nullptr, OpLoc: Loc, Opc: UO_AddrOf, Input: Field.get()); |
| 700 | if (FieldAddr.isInvalid()) |
| 701 | return true; |
| 702 | Args.push_back(Elt: FieldAddr.get()); |
| 703 | } |
| 704 | Format += "\n" ; |
| 705 | if (callPrintFunction(Format, Exprs: Args)) |
| 706 | return true; |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | return RecordIndent ? callPrintFunction(Format: "%s}\n" , Exprs: RecordIndent) |
| 711 | : callPrintFunction(Format: "}\n" ); |
| 712 | } |
| 713 | |
| 714 | Expr *buildWrapper() { |
| 715 | auto *Wrapper = PseudoObjectExpr::Create(Context: S.Context, syntactic: TheCall, semantic: Actions, |
| 716 | resultIndex: PseudoObjectExpr::NoResult); |
| 717 | TheCall->setType(Wrapper->getType()); |
| 718 | TheCall->setValueKind(Wrapper->getValueKind()); |
| 719 | return Wrapper; |
| 720 | } |
| 721 | }; |
| 722 | } // namespace |
| 723 | |
| 724 | static ExprResult BuiltinDumpStruct(Sema &S, CallExpr *TheCall) { |
| 725 | if (S.checkArgCountAtLeast(Call: TheCall, MinArgCount: 2)) |
| 726 | return ExprError(); |
| 727 | |
| 728 | ExprResult PtrArgResult = S.DefaultLvalueConversion(E: TheCall->getArg(Arg: 0)); |
| 729 | if (PtrArgResult.isInvalid()) |
| 730 | return ExprError(); |
| 731 | TheCall->setArg(Arg: 0, ArgExpr: PtrArgResult.get()); |
| 732 | |
| 733 | // First argument should be a pointer to a struct. |
| 734 | QualType PtrArgType = PtrArgResult.get()->getType(); |
| 735 | if (!PtrArgType->isPointerType() || |
| 736 | !PtrArgType->getPointeeType()->isRecordType()) { |
| 737 | S.Diag(Loc: PtrArgResult.get()->getBeginLoc(), |
| 738 | DiagID: diag::err_expected_struct_pointer_argument) |
| 739 | << 1 << TheCall->getDirectCallee() << PtrArgType; |
| 740 | return ExprError(); |
| 741 | } |
| 742 | QualType Pointee = PtrArgType->getPointeeType(); |
| 743 | const RecordDecl *RD = Pointee->getAsRecordDecl(); |
| 744 | // Try to instantiate the class template as appropriate; otherwise, access to |
| 745 | // its data() may lead to a crash. |
| 746 | if (S.RequireCompleteType(Loc: PtrArgResult.get()->getBeginLoc(), T: Pointee, |
| 747 | DiagID: diag::err_incomplete_type)) |
| 748 | return ExprError(); |
| 749 | // Second argument is a callable, but we can't fully validate it until we try |
| 750 | // calling it. |
| 751 | QualType FnArgType = TheCall->getArg(Arg: 1)->getType(); |
| 752 | if (!FnArgType->isFunctionType() && !FnArgType->isFunctionPointerType() && |
| 753 | !FnArgType->isBlockPointerType() && |
| 754 | !(S.getLangOpts().CPlusPlus && FnArgType->isRecordType())) { |
| 755 | auto *BT = FnArgType->getAs<BuiltinType>(); |
| 756 | switch (BT ? BT->getKind() : BuiltinType::Void) { |
| 757 | case BuiltinType::Dependent: |
| 758 | case BuiltinType::Overload: |
| 759 | case BuiltinType::BoundMember: |
| 760 | case BuiltinType::PseudoObject: |
| 761 | case BuiltinType::UnknownAny: |
| 762 | case BuiltinType::BuiltinFn: |
| 763 | // This might be a callable. |
| 764 | break; |
| 765 | |
| 766 | default: |
| 767 | S.Diag(Loc: TheCall->getArg(Arg: 1)->getBeginLoc(), |
| 768 | DiagID: diag::err_expected_callable_argument) |
| 769 | << 2 << TheCall->getDirectCallee() << FnArgType; |
| 770 | return ExprError(); |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | BuiltinDumpStructGenerator Generator(S, TheCall); |
| 775 | |
| 776 | // Wrap parentheses around the given pointer. This is not necessary for |
| 777 | // correct code generation, but it means that when we pretty-print the call |
| 778 | // arguments in our diagnostics we will produce '(&s)->n' instead of the |
| 779 | // incorrect '&s->n'. |
| 780 | Expr *PtrArg = PtrArgResult.get(); |
| 781 | PtrArg = new (S.Context) |
| 782 | ParenExpr(PtrArg->getBeginLoc(), |
| 783 | S.getLocForEndOfToken(Loc: PtrArg->getEndLoc()), PtrArg); |
| 784 | if (Generator.dumpUnnamedRecord(RD, E: PtrArg, Depth: 0)) |
| 785 | return ExprError(); |
| 786 | |
| 787 | return Generator.buildWrapper(); |
| 788 | } |
| 789 | |
| 790 | static bool BuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { |
| 791 | if (S.checkArgCount(Call: BuiltinCall, DesiredArgCount: 2)) |
| 792 | return true; |
| 793 | |
| 794 | SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); |
| 795 | Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); |
| 796 | Expr *Call = BuiltinCall->getArg(Arg: 0); |
| 797 | Expr *Chain = BuiltinCall->getArg(Arg: 1); |
| 798 | |
| 799 | if (Call->getStmtClass() != Stmt::CallExprClass) { |
| 800 | S.Diag(Loc: BuiltinLoc, DiagID: diag::err_first_argument_to_cwsc_not_call) |
| 801 | << Call->getSourceRange(); |
| 802 | return true; |
| 803 | } |
| 804 | |
| 805 | auto CE = cast<CallExpr>(Val: Call); |
| 806 | if (CE->getCallee()->getType()->isBlockPointerType()) { |
| 807 | S.Diag(Loc: BuiltinLoc, DiagID: diag::err_first_argument_to_cwsc_block_call) |
| 808 | << Call->getSourceRange(); |
| 809 | return true; |
| 810 | } |
| 811 | |
| 812 | const Decl *TargetDecl = CE->getCalleeDecl(); |
| 813 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: TargetDecl)) |
| 814 | if (FD->getBuiltinID()) { |
| 815 | S.Diag(Loc: BuiltinLoc, DiagID: diag::err_first_argument_to_cwsc_builtin_call) |
| 816 | << Call->getSourceRange(); |
| 817 | return true; |
| 818 | } |
| 819 | |
| 820 | if (isa<CXXPseudoDestructorExpr>(Val: CE->getCallee()->IgnoreParens())) { |
| 821 | S.Diag(Loc: BuiltinLoc, DiagID: diag::err_first_argument_to_cwsc_pdtor_call) |
| 822 | << Call->getSourceRange(); |
| 823 | return true; |
| 824 | } |
| 825 | |
| 826 | ExprResult ChainResult = S.UsualUnaryConversions(E: Chain); |
| 827 | if (ChainResult.isInvalid()) |
| 828 | return true; |
| 829 | if (!ChainResult.get()->getType()->isPointerType()) { |
| 830 | S.Diag(Loc: BuiltinLoc, DiagID: diag::err_second_argument_to_cwsc_not_pointer) |
| 831 | << Chain->getSourceRange(); |
| 832 | return true; |
| 833 | } |
| 834 | |
| 835 | QualType ReturnTy = CE->getCallReturnType(Ctx: S.Context); |
| 836 | QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; |
| 837 | QualType BuiltinTy = S.Context.getFunctionType( |
| 838 | ResultTy: ReturnTy, Args: ArgTys, EPI: FunctionProtoType::ExtProtoInfo()); |
| 839 | QualType BuiltinPtrTy = S.Context.getPointerType(T: BuiltinTy); |
| 840 | |
| 841 | Builtin = |
| 842 | S.ImpCastExprToType(E: Builtin, Type: BuiltinPtrTy, CK: CK_BuiltinFnToFnPtr).get(); |
| 843 | |
| 844 | BuiltinCall->setType(CE->getType()); |
| 845 | BuiltinCall->setValueKind(CE->getValueKind()); |
| 846 | BuiltinCall->setObjectKind(CE->getObjectKind()); |
| 847 | BuiltinCall->setCallee(Builtin); |
| 848 | BuiltinCall->setArg(Arg: 1, ArgExpr: ChainResult.get()); |
| 849 | |
| 850 | return false; |
| 851 | } |
| 852 | |
| 853 | namespace { |
| 854 | |
| 855 | class ScanfDiagnosticFormatHandler |
| 856 | : public analyze_format_string::FormatStringHandler { |
| 857 | // Accepts the argument index (relative to the first destination index) of the |
| 858 | // argument whose size we want. |
| 859 | using ComputeSizeFunction = |
| 860 | llvm::function_ref<std::optional<llvm::APSInt>(unsigned)>; |
| 861 | |
| 862 | // Accepts the argument index (relative to the first destination index), the |
| 863 | // destination size, and the source size). |
| 864 | using DiagnoseFunction = |
| 865 | llvm::function_ref<void(unsigned, unsigned, unsigned)>; |
| 866 | |
| 867 | ComputeSizeFunction ComputeSizeArgument; |
| 868 | DiagnoseFunction Diagnose; |
| 869 | |
| 870 | public: |
| 871 | ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument, |
| 872 | DiagnoseFunction Diagnose) |
| 873 | : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {} |
| 874 | |
| 875 | bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, |
| 876 | const char *StartSpecifier, |
| 877 | unsigned specifierLen) override { |
| 878 | if (!FS.consumesDataArgument()) |
| 879 | return true; |
| 880 | |
| 881 | unsigned NulByte = 0; |
| 882 | switch ((FS.getConversionSpecifier().getKind())) { |
| 883 | default: |
| 884 | return true; |
| 885 | case analyze_format_string::ConversionSpecifier::sArg: |
| 886 | case analyze_format_string::ConversionSpecifier::ScanListArg: |
| 887 | NulByte = 1; |
| 888 | break; |
| 889 | case analyze_format_string::ConversionSpecifier::cArg: |
| 890 | break; |
| 891 | } |
| 892 | |
| 893 | analyze_format_string::OptionalAmount FW = FS.getFieldWidth(); |
| 894 | if (FW.getHowSpecified() != |
| 895 | analyze_format_string::OptionalAmount::HowSpecified::Constant) |
| 896 | return true; |
| 897 | |
| 898 | unsigned SourceSize = FW.getConstantAmount() + NulByte; |
| 899 | |
| 900 | std::optional<llvm::APSInt> DestSizeAPS = |
| 901 | ComputeSizeArgument(FS.getArgIndex()); |
| 902 | if (!DestSizeAPS) |
| 903 | return true; |
| 904 | |
| 905 | unsigned DestSize = DestSizeAPS->getZExtValue(); |
| 906 | |
| 907 | if (DestSize < SourceSize) |
| 908 | Diagnose(FS.getArgIndex(), DestSize, SourceSize); |
| 909 | |
| 910 | return true; |
| 911 | } |
| 912 | }; |
| 913 | |
| 914 | class EstimateSizeFormatHandler |
| 915 | : public analyze_format_string::FormatStringHandler { |
| 916 | size_t Size; |
| 917 | /// Whether the format string contains Linux kernel's format specifier |
| 918 | /// extension. |
| 919 | bool IsKernelCompatible = true; |
| 920 | |
| 921 | public: |
| 922 | EstimateSizeFormatHandler(StringRef Format) |
| 923 | : Size(std::min(a: Format.find(C: 0), b: Format.size()) + |
| 924 | 1 /* null byte always written by sprintf */) {} |
| 925 | |
| 926 | bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, |
| 927 | const char *, unsigned SpecifierLen, |
| 928 | const TargetInfo &) override { |
| 929 | |
| 930 | const size_t FieldWidth = computeFieldWidth(FS); |
| 931 | const size_t Precision = computePrecision(FS); |
| 932 | |
| 933 | // The actual format. |
| 934 | switch (FS.getConversionSpecifier().getKind()) { |
| 935 | // Just a char. |
| 936 | case analyze_format_string::ConversionSpecifier::cArg: |
| 937 | case analyze_format_string::ConversionSpecifier::CArg: |
| 938 | Size += std::max(a: FieldWidth, b: (size_t)1); |
| 939 | break; |
| 940 | // Just an integer. |
| 941 | case analyze_format_string::ConversionSpecifier::dArg: |
| 942 | case analyze_format_string::ConversionSpecifier::DArg: |
| 943 | case analyze_format_string::ConversionSpecifier::iArg: |
| 944 | case analyze_format_string::ConversionSpecifier::oArg: |
| 945 | case analyze_format_string::ConversionSpecifier::OArg: |
| 946 | case analyze_format_string::ConversionSpecifier::uArg: |
| 947 | case analyze_format_string::ConversionSpecifier::UArg: |
| 948 | case analyze_format_string::ConversionSpecifier::xArg: |
| 949 | case analyze_format_string::ConversionSpecifier::XArg: |
| 950 | Size += std::max(a: FieldWidth, b: Precision); |
| 951 | break; |
| 952 | |
| 953 | // %g style conversion switches between %f or %e style dynamically. |
| 954 | // %g removes trailing zeros, and does not print decimal point if there are |
| 955 | // no digits that follow it. Thus %g can print a single digit. |
| 956 | // FIXME: If it is alternative form: |
| 957 | // For g and G conversions, trailing zeros are not removed from the result. |
| 958 | case analyze_format_string::ConversionSpecifier::gArg: |
| 959 | case analyze_format_string::ConversionSpecifier::GArg: |
| 960 | Size += 1; |
| 961 | break; |
| 962 | |
| 963 | // Floating point number in the form '[+]ddd.ddd'. |
| 964 | case analyze_format_string::ConversionSpecifier::fArg: |
| 965 | case analyze_format_string::ConversionSpecifier::FArg: |
| 966 | Size += std::max(a: FieldWidth, b: 1 /* integer part */ + |
| 967 | (Precision ? 1 + Precision |
| 968 | : 0) /* period + decimal */); |
| 969 | break; |
| 970 | |
| 971 | // Floating point number in the form '[-]d.ddde[+-]dd'. |
| 972 | case analyze_format_string::ConversionSpecifier::eArg: |
| 973 | case analyze_format_string::ConversionSpecifier::EArg: |
| 974 | Size += |
| 975 | std::max(a: FieldWidth, |
| 976 | b: 1 /* integer part */ + |
| 977 | (Precision ? 1 + Precision : 0) /* period + decimal */ + |
| 978 | 1 /* e or E letter */ + 2 /* exponent */); |
| 979 | break; |
| 980 | |
| 981 | // Floating point number in the form '[-]0xh.hhhhp±dd'. |
| 982 | case analyze_format_string::ConversionSpecifier::aArg: |
| 983 | case analyze_format_string::ConversionSpecifier::AArg: |
| 984 | Size += |
| 985 | std::max(a: FieldWidth, |
| 986 | b: 2 /* 0x */ + 1 /* integer part */ + |
| 987 | (Precision ? 1 + Precision : 0) /* period + decimal */ + |
| 988 | 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */); |
| 989 | break; |
| 990 | |
| 991 | // Just a string. |
| 992 | case analyze_format_string::ConversionSpecifier::sArg: |
| 993 | case analyze_format_string::ConversionSpecifier::SArg: |
| 994 | Size += FieldWidth; |
| 995 | break; |
| 996 | |
| 997 | // Just a pointer in the form '0xddd'. |
| 998 | case analyze_format_string::ConversionSpecifier::pArg: |
| 999 | // Linux kernel has its own extesion for `%p` specifier. |
| 1000 | // Kernel Document: |
| 1001 | // https://docs.kernel.org/core-api/printk-formats.html#pointer-types |
| 1002 | IsKernelCompatible = false; |
| 1003 | Size += std::max(a: FieldWidth, b: 2 /* leading 0x */ + Precision); |
| 1004 | break; |
| 1005 | |
| 1006 | // A plain percent. |
| 1007 | case analyze_format_string::ConversionSpecifier::PercentArg: |
| 1008 | Size += 1; |
| 1009 | break; |
| 1010 | |
| 1011 | default: |
| 1012 | break; |
| 1013 | } |
| 1014 | |
| 1015 | // If field width is specified, the sign/space is already accounted for |
| 1016 | // within the field width, so no additional size is needed. |
| 1017 | if ((FS.hasPlusPrefix() || FS.hasSpacePrefix()) && FieldWidth == 0) |
| 1018 | Size += 1; |
| 1019 | |
| 1020 | if (FS.hasAlternativeForm()) { |
| 1021 | switch (FS.getConversionSpecifier().getKind()) { |
| 1022 | // For o conversion, it increases the precision, if and only if necessary, |
| 1023 | // to force the first digit of the result to be a zero |
| 1024 | // (if the value and precision are both 0, a single 0 is printed) |
| 1025 | case analyze_format_string::ConversionSpecifier::oArg: |
| 1026 | // For b conversion, a nonzero result has 0b prefixed to it. |
| 1027 | case analyze_format_string::ConversionSpecifier::bArg: |
| 1028 | // For x (or X) conversion, a nonzero result has 0x (or 0X) prefixed to |
| 1029 | // it. |
| 1030 | case analyze_format_string::ConversionSpecifier::xArg: |
| 1031 | case analyze_format_string::ConversionSpecifier::XArg: |
| 1032 | // Note: even when the prefix is added, if |
| 1033 | // (prefix_width <= FieldWidth - formatted_length) holds, |
| 1034 | // the prefix does not increase the format |
| 1035 | // size. e.g.(("%#3x", 0xf) is "0xf") |
| 1036 | |
| 1037 | // If the result is zero, o, b, x, X adds nothing. |
| 1038 | break; |
| 1039 | // For a, A, e, E, f, F, g, and G conversions, |
| 1040 | // the result of converting a floating-point number always contains a |
| 1041 | // decimal-point |
| 1042 | case analyze_format_string::ConversionSpecifier::aArg: |
| 1043 | case analyze_format_string::ConversionSpecifier::AArg: |
| 1044 | case analyze_format_string::ConversionSpecifier::eArg: |
| 1045 | case analyze_format_string::ConversionSpecifier::EArg: |
| 1046 | case analyze_format_string::ConversionSpecifier::fArg: |
| 1047 | case analyze_format_string::ConversionSpecifier::FArg: |
| 1048 | case analyze_format_string::ConversionSpecifier::gArg: |
| 1049 | case analyze_format_string::ConversionSpecifier::GArg: |
| 1050 | Size += (Precision ? 0 : 1); |
| 1051 | break; |
| 1052 | // For other conversions, the behavior is undefined. |
| 1053 | default: |
| 1054 | break; |
| 1055 | } |
| 1056 | } |
| 1057 | assert(SpecifierLen <= Size && "no underflow" ); |
| 1058 | Size -= SpecifierLen; |
| 1059 | return true; |
| 1060 | } |
| 1061 | |
| 1062 | size_t getSizeLowerBound() const { return Size; } |
| 1063 | bool isKernelCompatible() const { return IsKernelCompatible; } |
| 1064 | |
| 1065 | private: |
| 1066 | static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) { |
| 1067 | const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth(); |
| 1068 | size_t FieldWidth = 0; |
| 1069 | if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant) |
| 1070 | FieldWidth = FW.getConstantAmount(); |
| 1071 | return FieldWidth; |
| 1072 | } |
| 1073 | |
| 1074 | static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) { |
| 1075 | const analyze_format_string::OptionalAmount &FW = FS.getPrecision(); |
| 1076 | size_t Precision = 0; |
| 1077 | |
| 1078 | // See man 3 printf for default precision value based on the specifier. |
| 1079 | switch (FW.getHowSpecified()) { |
| 1080 | case analyze_format_string::OptionalAmount::NotSpecified: |
| 1081 | switch (FS.getConversionSpecifier().getKind()) { |
| 1082 | default: |
| 1083 | break; |
| 1084 | case analyze_format_string::ConversionSpecifier::dArg: // %d |
| 1085 | case analyze_format_string::ConversionSpecifier::DArg: // %D |
| 1086 | case analyze_format_string::ConversionSpecifier::iArg: // %i |
| 1087 | Precision = 1; |
| 1088 | break; |
| 1089 | case analyze_format_string::ConversionSpecifier::oArg: // %d |
| 1090 | case analyze_format_string::ConversionSpecifier::OArg: // %D |
| 1091 | case analyze_format_string::ConversionSpecifier::uArg: // %d |
| 1092 | case analyze_format_string::ConversionSpecifier::UArg: // %D |
| 1093 | case analyze_format_string::ConversionSpecifier::xArg: // %d |
| 1094 | case analyze_format_string::ConversionSpecifier::XArg: // %D |
| 1095 | Precision = 1; |
| 1096 | break; |
| 1097 | case analyze_format_string::ConversionSpecifier::fArg: // %f |
| 1098 | case analyze_format_string::ConversionSpecifier::FArg: // %F |
| 1099 | case analyze_format_string::ConversionSpecifier::eArg: // %e |
| 1100 | case analyze_format_string::ConversionSpecifier::EArg: // %E |
| 1101 | case analyze_format_string::ConversionSpecifier::gArg: // %g |
| 1102 | case analyze_format_string::ConversionSpecifier::GArg: // %G |
| 1103 | Precision = 6; |
| 1104 | break; |
| 1105 | case analyze_format_string::ConversionSpecifier::pArg: // %d |
| 1106 | Precision = 1; |
| 1107 | break; |
| 1108 | } |
| 1109 | break; |
| 1110 | case analyze_format_string::OptionalAmount::Constant: |
| 1111 | Precision = FW.getConstantAmount(); |
| 1112 | break; |
| 1113 | default: |
| 1114 | break; |
| 1115 | } |
| 1116 | return Precision; |
| 1117 | } |
| 1118 | }; |
| 1119 | |
| 1120 | } // namespace |
| 1121 | |
| 1122 | static bool ProcessFormatStringLiteral(const Expr *FormatExpr, |
| 1123 | StringRef &FormatStrRef, size_t &StrLen, |
| 1124 | ASTContext &Context) { |
| 1125 | if (const auto *Format = dyn_cast<StringLiteral>(Val: FormatExpr); |
| 1126 | Format && (Format->isOrdinary() || Format->isUTF8())) { |
| 1127 | FormatStrRef = Format->getString(); |
| 1128 | const ConstantArrayType *T = |
| 1129 | Context.getAsConstantArrayType(T: Format->getType()); |
| 1130 | assert(T && "String literal not of constant array type!" ); |
| 1131 | size_t TypeSize = T->getZExtSize(); |
| 1132 | // In case there's a null byte somewhere. |
| 1133 | StrLen = std::min(a: std::max(a: TypeSize, b: size_t(1)) - 1, b: FormatStrRef.find(C: 0)); |
| 1134 | return true; |
| 1135 | } |
| 1136 | return false; |
| 1137 | } |
| 1138 | |
| 1139 | void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, |
| 1140 | CallExpr *TheCall) { |
| 1141 | if (TheCall->isValueDependent() || TheCall->isTypeDependent() || |
| 1142 | isConstantEvaluatedContext()) |
| 1143 | return; |
| 1144 | |
| 1145 | bool UseDABAttr = false; |
| 1146 | const FunctionDecl *UseDecl = FD; |
| 1147 | |
| 1148 | const auto *DABAttr = FD->getAttr<DiagnoseAsBuiltinAttr>(); |
| 1149 | if (DABAttr) { |
| 1150 | UseDecl = DABAttr->getFunction(); |
| 1151 | assert(UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!" ); |
| 1152 | UseDABAttr = true; |
| 1153 | } |
| 1154 | |
| 1155 | unsigned BuiltinID = UseDecl->getBuiltinID(/*ConsiderWrappers=*/ConsiderWrapperFunctions: true); |
| 1156 | |
| 1157 | if (!BuiltinID) |
| 1158 | return; |
| 1159 | |
| 1160 | const TargetInfo &TI = getASTContext().getTargetInfo(); |
| 1161 | unsigned SizeTypeWidth = TI.getTypeWidth(T: TI.getSizeType()); |
| 1162 | |
| 1163 | auto TranslateIndex = [&](unsigned Index) -> std::optional<unsigned> { |
| 1164 | // If we refer to a diagnose_as_builtin attribute, we need to change the |
| 1165 | // argument index to refer to the arguments of the called function. Unless |
| 1166 | // the index is out of bounds, which presumably means it's a variadic |
| 1167 | // function. |
| 1168 | if (!UseDABAttr) |
| 1169 | return Index; |
| 1170 | unsigned DABIndices = DABAttr->argIndices_size(); |
| 1171 | unsigned NewIndex = Index < DABIndices |
| 1172 | ? DABAttr->argIndices_begin()[Index] |
| 1173 | : Index - DABIndices + FD->getNumParams(); |
| 1174 | if (NewIndex >= TheCall->getNumArgs()) |
| 1175 | return std::nullopt; |
| 1176 | return NewIndex; |
| 1177 | }; |
| 1178 | |
| 1179 | auto ComputeExplicitObjectSizeArgument = |
| 1180 | [&](unsigned Index) -> std::optional<llvm::APSInt> { |
| 1181 | std::optional<unsigned> IndexOptional = TranslateIndex(Index); |
| 1182 | if (!IndexOptional) |
| 1183 | return std::nullopt; |
| 1184 | unsigned NewIndex = *IndexOptional; |
| 1185 | Expr::EvalResult Result; |
| 1186 | Expr *SizeArg = TheCall->getArg(Arg: NewIndex); |
| 1187 | if (!SizeArg->EvaluateAsInt(Result, Ctx: getASTContext())) |
| 1188 | return std::nullopt; |
| 1189 | llvm::APSInt Integer = Result.Val.getInt(); |
| 1190 | Integer.setIsUnsigned(true); |
| 1191 | return Integer; |
| 1192 | }; |
| 1193 | |
| 1194 | auto ComputeSizeArgument = |
| 1195 | [&](unsigned Index) -> std::optional<llvm::APSInt> { |
| 1196 | // If the parameter has a pass_object_size attribute, then we should use its |
| 1197 | // (potentially) more strict checking mode. Otherwise, conservatively assume |
| 1198 | // type 0. |
| 1199 | int BOSType = 0; |
| 1200 | // This check can fail for variadic functions. |
| 1201 | if (Index < FD->getNumParams()) { |
| 1202 | if (const auto *POS = |
| 1203 | FD->getParamDecl(i: Index)->getAttr<PassObjectSizeAttr>()) |
| 1204 | BOSType = POS->getType(); |
| 1205 | } |
| 1206 | |
| 1207 | std::optional<unsigned> IndexOptional = TranslateIndex(Index); |
| 1208 | if (!IndexOptional) |
| 1209 | return std::nullopt; |
| 1210 | unsigned NewIndex = *IndexOptional; |
| 1211 | |
| 1212 | if (NewIndex >= TheCall->getNumArgs()) |
| 1213 | return std::nullopt; |
| 1214 | |
| 1215 | const Expr *ObjArg = TheCall->getArg(Arg: NewIndex); |
| 1216 | uint64_t Result; |
| 1217 | if (!ObjArg->tryEvaluateObjectSize(Result, Ctx&: getASTContext(), Type: BOSType)) |
| 1218 | return std::nullopt; |
| 1219 | |
| 1220 | // Get the object size in the target's size_t width. |
| 1221 | return llvm::APSInt::getUnsigned(X: Result).extOrTrunc(width: SizeTypeWidth); |
| 1222 | }; |
| 1223 | |
| 1224 | auto ComputeStrLenArgument = |
| 1225 | [&](unsigned Index) -> std::optional<llvm::APSInt> { |
| 1226 | std::optional<unsigned> IndexOptional = TranslateIndex(Index); |
| 1227 | if (!IndexOptional) |
| 1228 | return std::nullopt; |
| 1229 | unsigned NewIndex = *IndexOptional; |
| 1230 | |
| 1231 | const Expr *ObjArg = TheCall->getArg(Arg: NewIndex); |
| 1232 | uint64_t Result; |
| 1233 | if (!ObjArg->tryEvaluateStrLen(Result, Ctx&: getASTContext())) |
| 1234 | return std::nullopt; |
| 1235 | // Add 1 for null byte. |
| 1236 | return llvm::APSInt::getUnsigned(X: Result + 1).extOrTrunc(width: SizeTypeWidth); |
| 1237 | }; |
| 1238 | |
| 1239 | std::optional<llvm::APSInt> SourceSize; |
| 1240 | std::optional<llvm::APSInt> DestinationSize; |
| 1241 | unsigned DiagID = 0; |
| 1242 | bool IsChkVariant = false; |
| 1243 | |
| 1244 | auto GetFunctionName = [&]() { |
| 1245 | std::string FunctionNameStr = |
| 1246 | getASTContext().BuiltinInfo.getName(ID: BuiltinID); |
| 1247 | llvm::StringRef FunctionName = FunctionNameStr; |
| 1248 | // Skim off the details of whichever builtin was called to produce a better |
| 1249 | // diagnostic, as it's unlikely that the user wrote the __builtin |
| 1250 | // explicitly. |
| 1251 | if (IsChkVariant) { |
| 1252 | FunctionName = FunctionName.drop_front(N: std::strlen(s: "__builtin___" )); |
| 1253 | FunctionName = FunctionName.drop_back(N: std::strlen(s: "_chk" )); |
| 1254 | } else { |
| 1255 | FunctionName.consume_front(Prefix: "__builtin_" ); |
| 1256 | } |
| 1257 | return FunctionName.str(); |
| 1258 | }; |
| 1259 | |
| 1260 | switch (BuiltinID) { |
| 1261 | default: |
| 1262 | return; |
| 1263 | case Builtin::BI__builtin_stpcpy: |
| 1264 | case Builtin::BIstpcpy: |
| 1265 | case Builtin::BI__builtin_strcpy: |
| 1266 | case Builtin::BIstrcpy: { |
| 1267 | DiagID = diag::warn_fortify_strlen_overflow; |
| 1268 | SourceSize = ComputeStrLenArgument(1); |
| 1269 | DestinationSize = ComputeSizeArgument(0); |
| 1270 | break; |
| 1271 | } |
| 1272 | |
| 1273 | case Builtin::BI__builtin___stpcpy_chk: |
| 1274 | case Builtin::BI__builtin___strcpy_chk: { |
| 1275 | DiagID = diag::warn_fortify_strlen_overflow; |
| 1276 | SourceSize = ComputeStrLenArgument(1); |
| 1277 | DestinationSize = ComputeExplicitObjectSizeArgument(2); |
| 1278 | IsChkVariant = true; |
| 1279 | break; |
| 1280 | } |
| 1281 | |
| 1282 | case Builtin::BIscanf: |
| 1283 | case Builtin::BIfscanf: |
| 1284 | case Builtin::BIsscanf: { |
| 1285 | unsigned FormatIndex = 1; |
| 1286 | unsigned DataIndex = 2; |
| 1287 | if (BuiltinID == Builtin::BIscanf) { |
| 1288 | FormatIndex = 0; |
| 1289 | DataIndex = 1; |
| 1290 | } |
| 1291 | |
| 1292 | const auto *FormatExpr = |
| 1293 | TheCall->getArg(Arg: FormatIndex)->IgnoreParenImpCasts(); |
| 1294 | |
| 1295 | StringRef FormatStrRef; |
| 1296 | size_t StrLen; |
| 1297 | if (!ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) |
| 1298 | return; |
| 1299 | |
| 1300 | auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize, |
| 1301 | unsigned SourceSize) { |
| 1302 | DiagID = diag::warn_fortify_scanf_overflow; |
| 1303 | unsigned Index = ArgIndex + DataIndex; |
| 1304 | std::string FunctionName = GetFunctionName(); |
| 1305 | DiagRuntimeBehavior(Loc: TheCall->getArg(Arg: Index)->getBeginLoc(), Statement: TheCall, |
| 1306 | PD: PDiag(DiagID) << FunctionName << (Index + 1) |
| 1307 | << DestSize << SourceSize); |
| 1308 | }; |
| 1309 | |
| 1310 | auto ShiftedComputeSizeArgument = [&](unsigned Index) { |
| 1311 | return ComputeSizeArgument(Index + DataIndex); |
| 1312 | }; |
| 1313 | ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose); |
| 1314 | const char *FormatBytes = FormatStrRef.data(); |
| 1315 | analyze_format_string::ParseScanfString(H, beg: FormatBytes, |
| 1316 | end: FormatBytes + StrLen, LO: getLangOpts(), |
| 1317 | Target: Context.getTargetInfo()); |
| 1318 | |
| 1319 | // Unlike the other cases, in this one we have already issued the diagnostic |
| 1320 | // here, so no need to continue (because unlike the other cases, here the |
| 1321 | // diagnostic refers to the argument number). |
| 1322 | return; |
| 1323 | } |
| 1324 | |
| 1325 | case Builtin::BIsprintf: |
| 1326 | case Builtin::BI__builtin___sprintf_chk: { |
| 1327 | size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3; |
| 1328 | auto *FormatExpr = TheCall->getArg(Arg: FormatIndex)->IgnoreParenImpCasts(); |
| 1329 | |
| 1330 | StringRef FormatStrRef; |
| 1331 | size_t StrLen; |
| 1332 | if (ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) { |
| 1333 | EstimateSizeFormatHandler H(FormatStrRef); |
| 1334 | const char *FormatBytes = FormatStrRef.data(); |
| 1335 | if (!analyze_format_string::ParsePrintfString( |
| 1336 | H, beg: FormatBytes, end: FormatBytes + StrLen, LO: getLangOpts(), |
| 1337 | Target: Context.getTargetInfo(), isFreeBSDKPrintf: false)) { |
| 1338 | DiagID = H.isKernelCompatible() |
| 1339 | ? diag::warn_format_overflow |
| 1340 | : diag::warn_format_overflow_non_kprintf; |
| 1341 | SourceSize = llvm::APSInt::getUnsigned(X: H.getSizeLowerBound()) |
| 1342 | .extOrTrunc(width: SizeTypeWidth); |
| 1343 | if (BuiltinID == Builtin::BI__builtin___sprintf_chk) { |
| 1344 | DestinationSize = ComputeExplicitObjectSizeArgument(2); |
| 1345 | IsChkVariant = true; |
| 1346 | } else { |
| 1347 | DestinationSize = ComputeSizeArgument(0); |
| 1348 | } |
| 1349 | break; |
| 1350 | } |
| 1351 | } |
| 1352 | return; |
| 1353 | } |
| 1354 | case Builtin::BI__builtin___memcpy_chk: |
| 1355 | case Builtin::BI__builtin___memmove_chk: |
| 1356 | case Builtin::BI__builtin___memset_chk: |
| 1357 | case Builtin::BI__builtin___strlcat_chk: |
| 1358 | case Builtin::BI__builtin___strlcpy_chk: |
| 1359 | case Builtin::BI__builtin___strncat_chk: |
| 1360 | case Builtin::BI__builtin___strncpy_chk: |
| 1361 | case Builtin::BI__builtin___stpncpy_chk: |
| 1362 | case Builtin::BI__builtin___memccpy_chk: |
| 1363 | case Builtin::BI__builtin___mempcpy_chk: { |
| 1364 | DiagID = diag::warn_builtin_chk_overflow; |
| 1365 | SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2); |
| 1366 | DestinationSize = |
| 1367 | ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); |
| 1368 | IsChkVariant = true; |
| 1369 | break; |
| 1370 | } |
| 1371 | |
| 1372 | case Builtin::BI__builtin___snprintf_chk: |
| 1373 | case Builtin::BI__builtin___vsnprintf_chk: { |
| 1374 | DiagID = diag::warn_builtin_chk_overflow; |
| 1375 | SourceSize = ComputeExplicitObjectSizeArgument(1); |
| 1376 | DestinationSize = ComputeExplicitObjectSizeArgument(3); |
| 1377 | IsChkVariant = true; |
| 1378 | break; |
| 1379 | } |
| 1380 | |
| 1381 | case Builtin::BIstrncat: |
| 1382 | case Builtin::BI__builtin_strncat: |
| 1383 | case Builtin::BIstrncpy: |
| 1384 | case Builtin::BI__builtin_strncpy: |
| 1385 | case Builtin::BIstpncpy: |
| 1386 | case Builtin::BI__builtin_stpncpy: { |
| 1387 | // Whether these functions overflow depends on the runtime strlen of the |
| 1388 | // string, not just the buffer size, so emitting the "always overflow" |
| 1389 | // diagnostic isn't quite right. We should still diagnose passing a buffer |
| 1390 | // size larger than the destination buffer though; this is a runtime abort |
| 1391 | // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. |
| 1392 | DiagID = diag::warn_fortify_source_size_mismatch; |
| 1393 | SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); |
| 1394 | DestinationSize = ComputeSizeArgument(0); |
| 1395 | break; |
| 1396 | } |
| 1397 | |
| 1398 | case Builtin::BImemcpy: |
| 1399 | case Builtin::BI__builtin_memcpy: |
| 1400 | case Builtin::BImemmove: |
| 1401 | case Builtin::BI__builtin_memmove: |
| 1402 | case Builtin::BImemset: |
| 1403 | case Builtin::BI__builtin_memset: |
| 1404 | case Builtin::BImempcpy: |
| 1405 | case Builtin::BI__builtin_mempcpy: { |
| 1406 | DiagID = diag::warn_fortify_source_overflow; |
| 1407 | SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); |
| 1408 | DestinationSize = ComputeSizeArgument(0); |
| 1409 | break; |
| 1410 | } |
| 1411 | case Builtin::BIsnprintf: |
| 1412 | case Builtin::BI__builtin_snprintf: |
| 1413 | case Builtin::BIvsnprintf: |
| 1414 | case Builtin::BI__builtin_vsnprintf: { |
| 1415 | DiagID = diag::warn_fortify_source_size_mismatch; |
| 1416 | SourceSize = ComputeExplicitObjectSizeArgument(1); |
| 1417 | const auto *FormatExpr = TheCall->getArg(Arg: 2)->IgnoreParenImpCasts(); |
| 1418 | StringRef FormatStrRef; |
| 1419 | size_t StrLen; |
| 1420 | if (SourceSize && |
| 1421 | ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) { |
| 1422 | EstimateSizeFormatHandler H(FormatStrRef); |
| 1423 | const char *FormatBytes = FormatStrRef.data(); |
| 1424 | if (!analyze_format_string::ParsePrintfString( |
| 1425 | H, beg: FormatBytes, end: FormatBytes + StrLen, LO: getLangOpts(), |
| 1426 | Target: Context.getTargetInfo(), /*isFreeBSDKPrintf=*/false)) { |
| 1427 | llvm::APSInt FormatSize = |
| 1428 | llvm::APSInt::getUnsigned(X: H.getSizeLowerBound()) |
| 1429 | .extOrTrunc(width: SizeTypeWidth); |
| 1430 | if (FormatSize > *SourceSize && *SourceSize != 0) { |
| 1431 | unsigned TruncationDiagID = |
| 1432 | H.isKernelCompatible() ? diag::warn_format_truncation |
| 1433 | : diag::warn_format_truncation_non_kprintf; |
| 1434 | SmallString<16> SpecifiedSizeStr; |
| 1435 | SmallString<16> FormatSizeStr; |
| 1436 | SourceSize->toString(Str&: SpecifiedSizeStr, /*Radix=*/10); |
| 1437 | FormatSize.toString(Str&: FormatSizeStr, /*Radix=*/10); |
| 1438 | DiagRuntimeBehavior(Loc: TheCall->getBeginLoc(), Statement: TheCall, |
| 1439 | PD: PDiag(DiagID: TruncationDiagID) |
| 1440 | << GetFunctionName() << SpecifiedSizeStr |
| 1441 | << FormatSizeStr); |
| 1442 | } |
| 1443 | } |
| 1444 | } |
| 1445 | DestinationSize = ComputeSizeArgument(0); |
| 1446 | } |
| 1447 | } |
| 1448 | |
| 1449 | if (!SourceSize || !DestinationSize || |
| 1450 | llvm::APSInt::compareValues(I1: *SourceSize, I2: *DestinationSize) <= 0) |
| 1451 | return; |
| 1452 | |
| 1453 | std::string FunctionName = GetFunctionName(); |
| 1454 | |
| 1455 | SmallString<16> DestinationStr; |
| 1456 | SmallString<16> SourceStr; |
| 1457 | DestinationSize->toString(Str&: DestinationStr, /*Radix=*/10); |
| 1458 | SourceSize->toString(Str&: SourceStr, /*Radix=*/10); |
| 1459 | DiagRuntimeBehavior(Loc: TheCall->getBeginLoc(), Statement: TheCall, |
| 1460 | PD: PDiag(DiagID) |
| 1461 | << FunctionName << DestinationStr << SourceStr); |
| 1462 | } |
| 1463 | |
| 1464 | static bool BuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, |
| 1465 | Scope::ScopeFlags NeededScopeFlags, |
| 1466 | unsigned DiagID) { |
| 1467 | // Scopes aren't available during instantiation. Fortunately, builtin |
| 1468 | // functions cannot be template args so they cannot be formed through template |
| 1469 | // instantiation. Therefore checking once during the parse is sufficient. |
| 1470 | if (SemaRef.inTemplateInstantiation()) |
| 1471 | return false; |
| 1472 | |
| 1473 | Scope *S = SemaRef.getCurScope(); |
| 1474 | while (S && !S->isSEHExceptScope()) |
| 1475 | S = S->getParent(); |
| 1476 | if (!S || !(S->getFlags() & NeededScopeFlags)) { |
| 1477 | auto *DRE = cast<DeclRefExpr>(Val: TheCall->getCallee()->IgnoreParenCasts()); |
| 1478 | SemaRef.Diag(Loc: TheCall->getExprLoc(), DiagID) |
| 1479 | << DRE->getDecl()->getIdentifier(); |
| 1480 | return true; |
| 1481 | } |
| 1482 | |
| 1483 | return false; |
| 1484 | } |
| 1485 | |
| 1486 | // In OpenCL, __builtin_alloca_* should return a pointer to address space |
| 1487 | // that corresponds to the stack address space i.e private address space. |
| 1488 | static void builtinAllocaAddrSpace(Sema &S, CallExpr *TheCall) { |
| 1489 | QualType RT = TheCall->getType(); |
| 1490 | assert((RT->isPointerType() && !(RT->getPointeeType().hasAddressSpace())) && |
| 1491 | "__builtin_alloca has invalid address space" ); |
| 1492 | |
| 1493 | RT = RT->getPointeeType(); |
| 1494 | RT = S.Context.getAddrSpaceQualType(T: RT, AddressSpace: LangAS::opencl_private); |
| 1495 | TheCall->setType(S.Context.getPointerType(T: RT)); |
| 1496 | } |
| 1497 | |
| 1498 | namespace { |
| 1499 | enum PointerAuthOpKind { |
| 1500 | PAO_Strip, |
| 1501 | PAO_Sign, |
| 1502 | PAO_Auth, |
| 1503 | PAO_SignGeneric, |
| 1504 | PAO_Discriminator, |
| 1505 | PAO_BlendPointer, |
| 1506 | PAO_BlendInteger |
| 1507 | }; |
| 1508 | } |
| 1509 | |
| 1510 | bool Sema::checkPointerAuthEnabled(SourceLocation Loc, SourceRange Range) { |
| 1511 | if (getLangOpts().PointerAuthIntrinsics) |
| 1512 | return false; |
| 1513 | |
| 1514 | Diag(Loc, DiagID: diag::err_ptrauth_disabled) << Range; |
| 1515 | return true; |
| 1516 | } |
| 1517 | |
| 1518 | static bool checkPointerAuthEnabled(Sema &S, Expr *E) { |
| 1519 | return S.checkPointerAuthEnabled(Loc: E->getExprLoc(), Range: E->getSourceRange()); |
| 1520 | } |
| 1521 | |
| 1522 | static bool checkPointerAuthKey(Sema &S, Expr *&Arg) { |
| 1523 | // Convert it to type 'int'. |
| 1524 | if (convertArgumentToType(S, Value&: Arg, Ty: S.Context.IntTy)) |
| 1525 | return true; |
| 1526 | |
| 1527 | // Value-dependent expressions are okay; wait for template instantiation. |
| 1528 | if (Arg->isValueDependent()) |
| 1529 | return false; |
| 1530 | |
| 1531 | unsigned KeyValue; |
| 1532 | return S.checkConstantPointerAuthKey(keyExpr: Arg, key&: KeyValue); |
| 1533 | } |
| 1534 | |
| 1535 | bool Sema::checkConstantPointerAuthKey(Expr *Arg, unsigned &Result) { |
| 1536 | // Attempt to constant-evaluate the expression. |
| 1537 | std::optional<llvm::APSInt> KeyValue = Arg->getIntegerConstantExpr(Ctx: Context); |
| 1538 | if (!KeyValue) { |
| 1539 | Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_expr_not_ice) |
| 1540 | << 0 << Arg->getSourceRange(); |
| 1541 | return true; |
| 1542 | } |
| 1543 | |
| 1544 | // Ask the target to validate the key parameter. |
| 1545 | if (!Context.getTargetInfo().validatePointerAuthKey(value: *KeyValue)) { |
| 1546 | llvm::SmallString<32> Value; |
| 1547 | { |
| 1548 | llvm::raw_svector_ostream Str(Value); |
| 1549 | Str << *KeyValue; |
| 1550 | } |
| 1551 | |
| 1552 | Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_ptrauth_invalid_key) |
| 1553 | << Value << Arg->getSourceRange(); |
| 1554 | return true; |
| 1555 | } |
| 1556 | |
| 1557 | Result = KeyValue->getZExtValue(); |
| 1558 | return false; |
| 1559 | } |
| 1560 | |
| 1561 | bool Sema::checkPointerAuthDiscriminatorArg(Expr *Arg, |
| 1562 | PointerAuthDiscArgKind Kind, |
| 1563 | unsigned &IntVal) { |
| 1564 | if (!Arg) { |
| 1565 | IntVal = 0; |
| 1566 | return true; |
| 1567 | } |
| 1568 | |
| 1569 | std::optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(Ctx: Context); |
| 1570 | if (!Result) { |
| 1571 | Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_ptrauth_arg_not_ice); |
| 1572 | return false; |
| 1573 | } |
| 1574 | |
| 1575 | unsigned Max; |
| 1576 | bool IsAddrDiscArg = false; |
| 1577 | |
| 1578 | switch (Kind) { |
| 1579 | case PointerAuthDiscArgKind::Addr: |
| 1580 | Max = 1; |
| 1581 | IsAddrDiscArg = true; |
| 1582 | break; |
| 1583 | case PointerAuthDiscArgKind::Extra: |
| 1584 | Max = PointerAuthQualifier::MaxDiscriminator; |
| 1585 | break; |
| 1586 | }; |
| 1587 | |
| 1588 | if (*Result < 0 || *Result > Max) { |
| 1589 | if (IsAddrDiscArg) |
| 1590 | Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_ptrauth_address_discrimination_invalid) |
| 1591 | << Result->getExtValue(); |
| 1592 | else |
| 1593 | Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_ptrauth_extra_discriminator_invalid) |
| 1594 | << Result->getExtValue() << Max; |
| 1595 | |
| 1596 | return false; |
| 1597 | }; |
| 1598 | |
| 1599 | IntVal = Result->getZExtValue(); |
| 1600 | return true; |
| 1601 | } |
| 1602 | |
| 1603 | static std::pair<const ValueDecl *, CharUnits> |
| 1604 | findConstantBaseAndOffset(Sema &S, Expr *E) { |
| 1605 | // Must evaluate as a pointer. |
| 1606 | Expr::EvalResult Result; |
| 1607 | if (!E->EvaluateAsRValue(Result, Ctx: S.Context) || !Result.Val.isLValue()) |
| 1608 | return {nullptr, CharUnits()}; |
| 1609 | |
| 1610 | const auto *BaseDecl = |
| 1611 | Result.Val.getLValueBase().dyn_cast<const ValueDecl *>(); |
| 1612 | if (!BaseDecl) |
| 1613 | return {nullptr, CharUnits()}; |
| 1614 | |
| 1615 | return {BaseDecl, Result.Val.getLValueOffset()}; |
| 1616 | } |
| 1617 | |
| 1618 | static bool checkPointerAuthValue(Sema &S, Expr *&Arg, PointerAuthOpKind OpKind, |
| 1619 | bool RequireConstant = false) { |
| 1620 | if (Arg->hasPlaceholderType()) { |
| 1621 | ExprResult R = S.CheckPlaceholderExpr(E: Arg); |
| 1622 | if (R.isInvalid()) |
| 1623 | return true; |
| 1624 | Arg = R.get(); |
| 1625 | } |
| 1626 | |
| 1627 | auto AllowsPointer = [](PointerAuthOpKind OpKind) { |
| 1628 | return OpKind != PAO_BlendInteger; |
| 1629 | }; |
| 1630 | auto AllowsInteger = [](PointerAuthOpKind OpKind) { |
| 1631 | return OpKind == PAO_Discriminator || OpKind == PAO_BlendInteger || |
| 1632 | OpKind == PAO_SignGeneric; |
| 1633 | }; |
| 1634 | |
| 1635 | // Require the value to have the right range of type. |
| 1636 | QualType ExpectedTy; |
| 1637 | if (AllowsPointer(OpKind) && Arg->getType()->isPointerType()) { |
| 1638 | ExpectedTy = Arg->getType().getUnqualifiedType(); |
| 1639 | } else if (AllowsPointer(OpKind) && Arg->getType()->isNullPtrType()) { |
| 1640 | ExpectedTy = S.Context.VoidPtrTy; |
| 1641 | } else if (AllowsInteger(OpKind) && |
| 1642 | Arg->getType()->isIntegralOrUnscopedEnumerationType()) { |
| 1643 | ExpectedTy = S.Context.getUIntPtrType(); |
| 1644 | |
| 1645 | } else { |
| 1646 | // Diagnose the failures. |
| 1647 | S.Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_ptrauth_value_bad_type) |
| 1648 | << unsigned(OpKind == PAO_Discriminator ? 1 |
| 1649 | : OpKind == PAO_BlendPointer ? 2 |
| 1650 | : OpKind == PAO_BlendInteger ? 3 |
| 1651 | : 0) |
| 1652 | << unsigned(AllowsInteger(OpKind) ? (AllowsPointer(OpKind) ? 2 : 1) : 0) |
| 1653 | << Arg->getType() << Arg->getSourceRange(); |
| 1654 | return true; |
| 1655 | } |
| 1656 | |
| 1657 | // Convert to that type. This should just be an lvalue-to-rvalue |
| 1658 | // conversion. |
| 1659 | if (convertArgumentToType(S, Value&: Arg, Ty: ExpectedTy)) |
| 1660 | return true; |
| 1661 | |
| 1662 | if (!RequireConstant) { |
| 1663 | // Warn about null pointers for non-generic sign and auth operations. |
| 1664 | if ((OpKind == PAO_Sign || OpKind == PAO_Auth) && |
| 1665 | Arg->isNullPointerConstant(Ctx&: S.Context, NPC: Expr::NPC_ValueDependentIsNull)) { |
| 1666 | S.Diag(Loc: Arg->getExprLoc(), DiagID: OpKind == PAO_Sign |
| 1667 | ? diag::warn_ptrauth_sign_null_pointer |
| 1668 | : diag::warn_ptrauth_auth_null_pointer) |
| 1669 | << Arg->getSourceRange(); |
| 1670 | } |
| 1671 | |
| 1672 | return false; |
| 1673 | } |
| 1674 | |
| 1675 | // Perform special checking on the arguments to ptrauth_sign_constant. |
| 1676 | |
| 1677 | // The main argument. |
| 1678 | if (OpKind == PAO_Sign) { |
| 1679 | // Require the value we're signing to have a special form. |
| 1680 | auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, E: Arg); |
| 1681 | bool Invalid; |
| 1682 | |
| 1683 | // Must be rooted in a declaration reference. |
| 1684 | if (!BaseDecl) |
| 1685 | Invalid = true; |
| 1686 | |
| 1687 | // If it's a function declaration, we can't have an offset. |
| 1688 | else if (isa<FunctionDecl>(Val: BaseDecl)) |
| 1689 | Invalid = !Offset.isZero(); |
| 1690 | |
| 1691 | // Otherwise we're fine. |
| 1692 | else |
| 1693 | Invalid = false; |
| 1694 | |
| 1695 | if (Invalid) |
| 1696 | S.Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_ptrauth_bad_constant_pointer); |
| 1697 | return Invalid; |
| 1698 | } |
| 1699 | |
| 1700 | // The discriminator argument. |
| 1701 | assert(OpKind == PAO_Discriminator); |
| 1702 | |
| 1703 | // Must be a pointer or integer or blend thereof. |
| 1704 | Expr *Pointer = nullptr; |
| 1705 | Expr *Integer = nullptr; |
| 1706 | if (auto *Call = dyn_cast<CallExpr>(Val: Arg->IgnoreParens())) { |
| 1707 | if (Call->getBuiltinCallee() == |
| 1708 | Builtin::BI__builtin_ptrauth_blend_discriminator) { |
| 1709 | Pointer = Call->getArg(Arg: 0); |
| 1710 | Integer = Call->getArg(Arg: 1); |
| 1711 | } |
| 1712 | } |
| 1713 | if (!Pointer && !Integer) { |
| 1714 | if (Arg->getType()->isPointerType()) |
| 1715 | Pointer = Arg; |
| 1716 | else |
| 1717 | Integer = Arg; |
| 1718 | } |
| 1719 | |
| 1720 | // Check the pointer. |
| 1721 | bool Invalid = false; |
| 1722 | if (Pointer) { |
| 1723 | assert(Pointer->getType()->isPointerType()); |
| 1724 | |
| 1725 | // TODO: if we're initializing a global, check that the address is |
| 1726 | // somehow related to what we're initializing. This probably will |
| 1727 | // never really be feasible and we'll have to catch it at link-time. |
| 1728 | auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, E: Pointer); |
| 1729 | if (!BaseDecl || !isa<VarDecl>(Val: BaseDecl)) |
| 1730 | Invalid = true; |
| 1731 | } |
| 1732 | |
| 1733 | // Check the integer. |
| 1734 | if (Integer) { |
| 1735 | assert(Integer->getType()->isIntegerType()); |
| 1736 | if (!Integer->isEvaluatable(Ctx: S.Context)) |
| 1737 | Invalid = true; |
| 1738 | } |
| 1739 | |
| 1740 | if (Invalid) |
| 1741 | S.Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_ptrauth_bad_constant_discriminator); |
| 1742 | return Invalid; |
| 1743 | } |
| 1744 | |
| 1745 | static ExprResult PointerAuthStrip(Sema &S, CallExpr *Call) { |
| 1746 | if (S.checkArgCount(Call, DesiredArgCount: 2)) |
| 1747 | return ExprError(); |
| 1748 | if (checkPointerAuthEnabled(S, E: Call)) |
| 1749 | return ExprError(); |
| 1750 | if (checkPointerAuthValue(S, Arg&: Call->getArgs()[0], OpKind: PAO_Strip) || |
| 1751 | checkPointerAuthKey(S, Arg&: Call->getArgs()[1])) |
| 1752 | return ExprError(); |
| 1753 | |
| 1754 | Call->setType(Call->getArgs()[0]->getType()); |
| 1755 | return Call; |
| 1756 | } |
| 1757 | |
| 1758 | static ExprResult PointerAuthBlendDiscriminator(Sema &S, CallExpr *Call) { |
| 1759 | if (S.checkArgCount(Call, DesiredArgCount: 2)) |
| 1760 | return ExprError(); |
| 1761 | if (checkPointerAuthEnabled(S, E: Call)) |
| 1762 | return ExprError(); |
| 1763 | if (checkPointerAuthValue(S, Arg&: Call->getArgs()[0], OpKind: PAO_BlendPointer) || |
| 1764 | checkPointerAuthValue(S, Arg&: Call->getArgs()[1], OpKind: PAO_BlendInteger)) |
| 1765 | return ExprError(); |
| 1766 | |
| 1767 | Call->setType(S.Context.getUIntPtrType()); |
| 1768 | return Call; |
| 1769 | } |
| 1770 | |
| 1771 | static ExprResult PointerAuthSignGenericData(Sema &S, CallExpr *Call) { |
| 1772 | if (S.checkArgCount(Call, DesiredArgCount: 2)) |
| 1773 | return ExprError(); |
| 1774 | if (checkPointerAuthEnabled(S, E: Call)) |
| 1775 | return ExprError(); |
| 1776 | if (checkPointerAuthValue(S, Arg&: Call->getArgs()[0], OpKind: PAO_SignGeneric) || |
| 1777 | checkPointerAuthValue(S, Arg&: Call->getArgs()[1], OpKind: PAO_Discriminator)) |
| 1778 | return ExprError(); |
| 1779 | |
| 1780 | Call->setType(S.Context.getUIntPtrType()); |
| 1781 | return Call; |
| 1782 | } |
| 1783 | |
| 1784 | static ExprResult PointerAuthSignOrAuth(Sema &S, CallExpr *Call, |
| 1785 | PointerAuthOpKind OpKind, |
| 1786 | bool RequireConstant) { |
| 1787 | if (S.checkArgCount(Call, DesiredArgCount: 3)) |
| 1788 | return ExprError(); |
| 1789 | if (checkPointerAuthEnabled(S, E: Call)) |
| 1790 | return ExprError(); |
| 1791 | if (checkPointerAuthValue(S, Arg&: Call->getArgs()[0], OpKind, RequireConstant) || |
| 1792 | checkPointerAuthKey(S, Arg&: Call->getArgs()[1]) || |
| 1793 | checkPointerAuthValue(S, Arg&: Call->getArgs()[2], OpKind: PAO_Discriminator, |
| 1794 | RequireConstant)) |
| 1795 | return ExprError(); |
| 1796 | |
| 1797 | Call->setType(Call->getArgs()[0]->getType()); |
| 1798 | return Call; |
| 1799 | } |
| 1800 | |
| 1801 | static ExprResult PointerAuthAuthAndResign(Sema &S, CallExpr *Call) { |
| 1802 | if (S.checkArgCount(Call, DesiredArgCount: 5)) |
| 1803 | return ExprError(); |
| 1804 | if (checkPointerAuthEnabled(S, E: Call)) |
| 1805 | return ExprError(); |
| 1806 | if (checkPointerAuthValue(S, Arg&: Call->getArgs()[0], OpKind: PAO_Auth) || |
| 1807 | checkPointerAuthKey(S, Arg&: Call->getArgs()[1]) || |
| 1808 | checkPointerAuthValue(S, Arg&: Call->getArgs()[2], OpKind: PAO_Discriminator) || |
| 1809 | checkPointerAuthKey(S, Arg&: Call->getArgs()[3]) || |
| 1810 | checkPointerAuthValue(S, Arg&: Call->getArgs()[4], OpKind: PAO_Discriminator)) |
| 1811 | return ExprError(); |
| 1812 | |
| 1813 | Call->setType(Call->getArgs()[0]->getType()); |
| 1814 | return Call; |
| 1815 | } |
| 1816 | |
| 1817 | static ExprResult PointerAuthStringDiscriminator(Sema &S, CallExpr *Call) { |
| 1818 | if (checkPointerAuthEnabled(S, E: Call)) |
| 1819 | return ExprError(); |
| 1820 | |
| 1821 | // We've already performed normal call type-checking. |
| 1822 | const Expr *Arg = Call->getArg(Arg: 0)->IgnoreParenImpCasts(); |
| 1823 | |
| 1824 | // Operand must be an ordinary or UTF-8 string literal. |
| 1825 | const auto *Literal = dyn_cast<StringLiteral>(Val: Arg); |
| 1826 | if (!Literal || Literal->getCharByteWidth() != 1) { |
| 1827 | S.Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_ptrauth_string_not_literal) |
| 1828 | << (Literal ? 1 : 0) << Arg->getSourceRange(); |
| 1829 | return ExprError(); |
| 1830 | } |
| 1831 | |
| 1832 | return Call; |
| 1833 | } |
| 1834 | |
| 1835 | static ExprResult GetVTablePointer(Sema &S, CallExpr *Call) { |
| 1836 | if (S.checkArgCount(Call, DesiredArgCount: 1)) |
| 1837 | return ExprError(); |
| 1838 | Expr *FirstArg = Call->getArg(Arg: 0); |
| 1839 | ExprResult FirstValue = S.DefaultFunctionArrayLvalueConversion(E: FirstArg); |
| 1840 | if (FirstValue.isInvalid()) |
| 1841 | return ExprError(); |
| 1842 | Call->setArg(Arg: 0, ArgExpr: FirstValue.get()); |
| 1843 | QualType FirstArgType = FirstArg->getType(); |
| 1844 | if (FirstArgType->canDecayToPointerType() && FirstArgType->isArrayType()) |
| 1845 | FirstArgType = S.Context.getDecayedType(T: FirstArgType); |
| 1846 | |
| 1847 | const CXXRecordDecl *FirstArgRecord = FirstArgType->getPointeeCXXRecordDecl(); |
| 1848 | if (!FirstArgRecord) { |
| 1849 | S.Diag(Loc: FirstArg->getBeginLoc(), DiagID: diag::err_get_vtable_pointer_incorrect_type) |
| 1850 | << /*isPolymorphic=*/0 << FirstArgType; |
| 1851 | return ExprError(); |
| 1852 | } |
| 1853 | if (S.RequireCompleteType( |
| 1854 | Loc: FirstArg->getBeginLoc(), T: FirstArgType->getPointeeType(), |
| 1855 | DiagID: diag::err_get_vtable_pointer_requires_complete_type)) { |
| 1856 | return ExprError(); |
| 1857 | } |
| 1858 | |
| 1859 | if (!FirstArgRecord->isPolymorphic()) { |
| 1860 | S.Diag(Loc: FirstArg->getBeginLoc(), DiagID: diag::err_get_vtable_pointer_incorrect_type) |
| 1861 | << /*isPolymorphic=*/1 << FirstArgRecord; |
| 1862 | return ExprError(); |
| 1863 | } |
| 1864 | QualType ReturnType = S.Context.getPointerType(T: S.Context.VoidTy.withConst()); |
| 1865 | Call->setType(ReturnType); |
| 1866 | return Call; |
| 1867 | } |
| 1868 | |
| 1869 | static ExprResult BuiltinLaunder(Sema &S, CallExpr *TheCall) { |
| 1870 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 1871 | return ExprError(); |
| 1872 | |
| 1873 | // Compute __builtin_launder's parameter type from the argument. |
| 1874 | // The parameter type is: |
| 1875 | // * The type of the argument if it's not an array or function type, |
| 1876 | // Otherwise, |
| 1877 | // * The decayed argument type. |
| 1878 | QualType ParamTy = [&]() { |
| 1879 | QualType ArgTy = TheCall->getArg(Arg: 0)->getType(); |
| 1880 | if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) |
| 1881 | return S.Context.getPointerType(T: Ty->getElementType()); |
| 1882 | if (ArgTy->isFunctionType()) { |
| 1883 | return S.Context.getPointerType(T: ArgTy); |
| 1884 | } |
| 1885 | return ArgTy; |
| 1886 | }(); |
| 1887 | |
| 1888 | TheCall->setType(ParamTy); |
| 1889 | |
| 1890 | auto DiagSelect = [&]() -> std::optional<unsigned> { |
| 1891 | if (!ParamTy->isPointerType()) |
| 1892 | return 0; |
| 1893 | if (ParamTy->isFunctionPointerType()) |
| 1894 | return 1; |
| 1895 | if (ParamTy->isVoidPointerType()) |
| 1896 | return 2; |
| 1897 | return std::optional<unsigned>{}; |
| 1898 | }(); |
| 1899 | if (DiagSelect) { |
| 1900 | S.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_launder_invalid_arg) |
| 1901 | << *DiagSelect << TheCall->getSourceRange(); |
| 1902 | return ExprError(); |
| 1903 | } |
| 1904 | |
| 1905 | // We either have an incomplete class type, or we have a class template |
| 1906 | // whose instantiation has not been forced. Example: |
| 1907 | // |
| 1908 | // template <class T> struct Foo { T value; }; |
| 1909 | // Foo<int> *p = nullptr; |
| 1910 | // auto *d = __builtin_launder(p); |
| 1911 | if (S.RequireCompleteType(Loc: TheCall->getBeginLoc(), T: ParamTy->getPointeeType(), |
| 1912 | DiagID: diag::err_incomplete_type)) |
| 1913 | return ExprError(); |
| 1914 | |
| 1915 | assert(ParamTy->getPointeeType()->isObjectType() && |
| 1916 | "Unhandled non-object pointer case" ); |
| 1917 | |
| 1918 | InitializedEntity Entity = |
| 1919 | InitializedEntity::InitializeParameter(Context&: S.Context, Type: ParamTy, Consumed: false); |
| 1920 | ExprResult Arg = |
| 1921 | S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: TheCall->getArg(Arg: 0)); |
| 1922 | if (Arg.isInvalid()) |
| 1923 | return ExprError(); |
| 1924 | TheCall->setArg(Arg: 0, ArgExpr: Arg.get()); |
| 1925 | |
| 1926 | return TheCall; |
| 1927 | } |
| 1928 | |
| 1929 | static ExprResult BuiltinIsWithinLifetime(Sema &S, CallExpr *TheCall) { |
| 1930 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 1931 | return ExprError(); |
| 1932 | |
| 1933 | ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(E: TheCall->getArg(Arg: 0)); |
| 1934 | if (Arg.isInvalid()) |
| 1935 | return ExprError(); |
| 1936 | QualType ParamTy = Arg.get()->getType(); |
| 1937 | TheCall->setArg(Arg: 0, ArgExpr: Arg.get()); |
| 1938 | TheCall->setType(S.Context.BoolTy); |
| 1939 | |
| 1940 | // Only accept pointers to objects as arguments, which should have object |
| 1941 | // pointer or void pointer types. |
| 1942 | if (const auto *PT = ParamTy->getAs<PointerType>()) { |
| 1943 | // LWG4138: Function pointer types not allowed |
| 1944 | if (PT->getPointeeType()->isFunctionType()) { |
| 1945 | S.Diag(Loc: TheCall->getArg(Arg: 0)->getExprLoc(), |
| 1946 | DiagID: diag::err_builtin_is_within_lifetime_invalid_arg) |
| 1947 | << 1; |
| 1948 | return ExprError(); |
| 1949 | } |
| 1950 | // Disallow VLAs too since those shouldn't be able to |
| 1951 | // be a template parameter for `std::is_within_lifetime` |
| 1952 | if (PT->getPointeeType()->isVariableArrayType()) { |
| 1953 | S.Diag(Loc: TheCall->getArg(Arg: 0)->getExprLoc(), DiagID: diag::err_vla_unsupported) |
| 1954 | << 1 << "__builtin_is_within_lifetime" ; |
| 1955 | return ExprError(); |
| 1956 | } |
| 1957 | } else { |
| 1958 | S.Diag(Loc: TheCall->getArg(Arg: 0)->getExprLoc(), |
| 1959 | DiagID: diag::err_builtin_is_within_lifetime_invalid_arg) |
| 1960 | << 0; |
| 1961 | return ExprError(); |
| 1962 | } |
| 1963 | return TheCall; |
| 1964 | } |
| 1965 | |
| 1966 | static ExprResult BuiltinTriviallyRelocate(Sema &S, CallExpr *TheCall) { |
| 1967 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
| 1968 | return ExprError(); |
| 1969 | |
| 1970 | QualType Dest = TheCall->getArg(Arg: 0)->getType(); |
| 1971 | if (!Dest->isPointerType() || Dest.getCVRQualifiers() != 0) { |
| 1972 | S.Diag(Loc: TheCall->getArg(Arg: 0)->getExprLoc(), |
| 1973 | DiagID: diag::err_builtin_trivially_relocate_invalid_arg_type) |
| 1974 | << /*a pointer*/ 0; |
| 1975 | return ExprError(); |
| 1976 | } |
| 1977 | |
| 1978 | QualType T = Dest->getPointeeType(); |
| 1979 | if (S.RequireCompleteType(Loc: TheCall->getBeginLoc(), T, |
| 1980 | DiagID: diag::err_incomplete_type)) |
| 1981 | return ExprError(); |
| 1982 | |
| 1983 | if (T.isConstQualified() || !S.IsCXXTriviallyRelocatableType(T) || |
| 1984 | T->isIncompleteArrayType()) { |
| 1985 | S.Diag(Loc: TheCall->getArg(Arg: 0)->getExprLoc(), |
| 1986 | DiagID: diag::err_builtin_trivially_relocate_invalid_arg_type) |
| 1987 | << (T.isConstQualified() ? /*non-const*/ 1 : /*relocatable*/ 2); |
| 1988 | return ExprError(); |
| 1989 | } |
| 1990 | |
| 1991 | TheCall->setType(Dest); |
| 1992 | |
| 1993 | QualType Src = TheCall->getArg(Arg: 1)->getType(); |
| 1994 | if (Src.getCanonicalType() != Dest.getCanonicalType()) { |
| 1995 | S.Diag(Loc: TheCall->getArg(Arg: 1)->getExprLoc(), |
| 1996 | DiagID: diag::err_builtin_trivially_relocate_invalid_arg_type) |
| 1997 | << /*the same*/ 3; |
| 1998 | return ExprError(); |
| 1999 | } |
| 2000 | |
| 2001 | Expr *SizeExpr = TheCall->getArg(Arg: 2); |
| 2002 | ExprResult Size = S.DefaultLvalueConversion(E: SizeExpr); |
| 2003 | if (Size.isInvalid()) |
| 2004 | return ExprError(); |
| 2005 | |
| 2006 | Size = S.tryConvertExprToType(E: Size.get(), Ty: S.getASTContext().getSizeType()); |
| 2007 | if (Size.isInvalid()) |
| 2008 | return ExprError(); |
| 2009 | SizeExpr = Size.get(); |
| 2010 | TheCall->setArg(Arg: 2, ArgExpr: SizeExpr); |
| 2011 | |
| 2012 | return TheCall; |
| 2013 | } |
| 2014 | |
| 2015 | // Emit an error and return true if the current object format type is in the |
| 2016 | // list of unsupported types. |
| 2017 | static bool CheckBuiltinTargetNotInUnsupported( |
| 2018 | Sema &S, unsigned BuiltinID, CallExpr *TheCall, |
| 2019 | ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes) { |
| 2020 | llvm::Triple::ObjectFormatType CurObjFormat = |
| 2021 | S.getASTContext().getTargetInfo().getTriple().getObjectFormat(); |
| 2022 | if (llvm::is_contained(Range&: UnsupportedObjectFormatTypes, Element: CurObjFormat)) { |
| 2023 | S.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_target_unsupported) |
| 2024 | << TheCall->getSourceRange(); |
| 2025 | return true; |
| 2026 | } |
| 2027 | return false; |
| 2028 | } |
| 2029 | |
| 2030 | // Emit an error and return true if the current architecture is not in the list |
| 2031 | // of supported architectures. |
| 2032 | static bool |
| 2033 | CheckBuiltinTargetInSupported(Sema &S, CallExpr *TheCall, |
| 2034 | ArrayRef<llvm::Triple::ArchType> SupportedArchs) { |
| 2035 | llvm::Triple::ArchType CurArch = |
| 2036 | S.getASTContext().getTargetInfo().getTriple().getArch(); |
| 2037 | if (llvm::is_contained(Range&: SupportedArchs, Element: CurArch)) |
| 2038 | return false; |
| 2039 | S.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_target_unsupported) |
| 2040 | << TheCall->getSourceRange(); |
| 2041 | return true; |
| 2042 | } |
| 2043 | |
| 2044 | static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, |
| 2045 | SourceLocation CallSiteLoc); |
| 2046 | |
| 2047 | bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, |
| 2048 | CallExpr *TheCall) { |
| 2049 | switch (TI.getTriple().getArch()) { |
| 2050 | default: |
| 2051 | // Some builtins don't require additional checking, so just consider these |
| 2052 | // acceptable. |
| 2053 | return false; |
| 2054 | case llvm::Triple::arm: |
| 2055 | case llvm::Triple::armeb: |
| 2056 | case llvm::Triple::thumb: |
| 2057 | case llvm::Triple::thumbeb: |
| 2058 | return ARM().CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall); |
| 2059 | case llvm::Triple::aarch64: |
| 2060 | case llvm::Triple::aarch64_32: |
| 2061 | case llvm::Triple::aarch64_be: |
| 2062 | return ARM().CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall); |
| 2063 | case llvm::Triple::bpfeb: |
| 2064 | case llvm::Triple::bpfel: |
| 2065 | return BPF().CheckBPFBuiltinFunctionCall(BuiltinID, TheCall); |
| 2066 | case llvm::Triple::dxil: |
| 2067 | return DirectX().CheckDirectXBuiltinFunctionCall(BuiltinID, TheCall); |
| 2068 | case llvm::Triple::hexagon: |
| 2069 | return Hexagon().CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall); |
| 2070 | case llvm::Triple::mips: |
| 2071 | case llvm::Triple::mipsel: |
| 2072 | case llvm::Triple::mips64: |
| 2073 | case llvm::Triple::mips64el: |
| 2074 | return MIPS().CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall); |
| 2075 | case llvm::Triple::spirv: |
| 2076 | case llvm::Triple::spirv32: |
| 2077 | case llvm::Triple::spirv64: |
| 2078 | if (TI.getTriple().getOS() != llvm::Triple::OSType::AMDHSA) |
| 2079 | return SPIRV().CheckSPIRVBuiltinFunctionCall(TI, BuiltinID, TheCall); |
| 2080 | return false; |
| 2081 | case llvm::Triple::systemz: |
| 2082 | return SystemZ().CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall); |
| 2083 | case llvm::Triple::x86: |
| 2084 | case llvm::Triple::x86_64: |
| 2085 | return X86().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall); |
| 2086 | case llvm::Triple::ppc: |
| 2087 | case llvm::Triple::ppcle: |
| 2088 | case llvm::Triple::ppc64: |
| 2089 | case llvm::Triple::ppc64le: |
| 2090 | return PPC().CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall); |
| 2091 | case llvm::Triple::amdgcn: |
| 2092 | return AMDGPU().CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall); |
| 2093 | case llvm::Triple::riscv32: |
| 2094 | case llvm::Triple::riscv64: |
| 2095 | return RISCV().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall); |
| 2096 | case llvm::Triple::loongarch32: |
| 2097 | case llvm::Triple::loongarch64: |
| 2098 | return LoongArch().CheckLoongArchBuiltinFunctionCall(TI, BuiltinID, |
| 2099 | TheCall); |
| 2100 | case llvm::Triple::wasm32: |
| 2101 | case llvm::Triple::wasm64: |
| 2102 | return Wasm().CheckWebAssemblyBuiltinFunctionCall(TI, BuiltinID, TheCall); |
| 2103 | case llvm::Triple::nvptx: |
| 2104 | case llvm::Triple::nvptx64: |
| 2105 | return NVPTX().CheckNVPTXBuiltinFunctionCall(TI, BuiltinID, TheCall); |
| 2106 | } |
| 2107 | } |
| 2108 | |
| 2109 | // Check if \p Ty is a valid type for the elementwise math builtins. If it is |
| 2110 | // not a valid type, emit an error message and return true. Otherwise return |
| 2111 | // false. |
| 2112 | static bool |
| 2113 | checkMathBuiltinElementType(Sema &S, SourceLocation Loc, QualType ArgTy, |
| 2114 | Sema::EltwiseBuiltinArgTyRestriction ArgTyRestr, |
| 2115 | int ArgOrdinal) { |
| 2116 | QualType EltTy = ArgTy; |
| 2117 | if (auto *VecTy = EltTy->getAs<VectorType>()) |
| 2118 | EltTy = VecTy->getElementType(); |
| 2119 | |
| 2120 | switch (ArgTyRestr) { |
| 2121 | case Sema::EltwiseBuiltinArgTyRestriction::None: |
| 2122 | if (!ArgTy->getAs<VectorType>() && |
| 2123 | !ConstantMatrixType::isValidElementType(T: ArgTy)) { |
| 2124 | return S.Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
| 2125 | << ArgOrdinal << /* vector */ 2 << /* integer */ 1 << /* fp */ 1 |
| 2126 | << ArgTy; |
| 2127 | } |
| 2128 | break; |
| 2129 | case Sema::EltwiseBuiltinArgTyRestriction::FloatTy: |
| 2130 | if (!EltTy->isRealFloatingType()) { |
| 2131 | return S.Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
| 2132 | << ArgOrdinal << /* scalar or vector */ 5 << /* no int */ 0 |
| 2133 | << /* floating-point */ 1 << ArgTy; |
| 2134 | } |
| 2135 | break; |
| 2136 | case Sema::EltwiseBuiltinArgTyRestriction::IntegerTy: |
| 2137 | if (!EltTy->isIntegerType()) { |
| 2138 | return S.Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
| 2139 | << ArgOrdinal << /* scalar or vector */ 5 << /* integer */ 1 |
| 2140 | << /* no fp */ 0 << ArgTy; |
| 2141 | } |
| 2142 | break; |
| 2143 | case Sema::EltwiseBuiltinArgTyRestriction::SignedIntOrFloatTy: |
| 2144 | if (EltTy->isUnsignedIntegerType()) { |
| 2145 | return S.Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
| 2146 | << 1 << /* scalar or vector */ 5 << /* signed int */ 2 |
| 2147 | << /* or fp */ 1 << ArgTy; |
| 2148 | } |
| 2149 | break; |
| 2150 | } |
| 2151 | |
| 2152 | return false; |
| 2153 | } |
| 2154 | |
| 2155 | /// BuiltinCpu{Supports|Is} - Handle __builtin_cpu_{supports|is}(char *). |
| 2156 | /// This checks that the target supports the builtin and that the string |
| 2157 | /// argument is constant and valid. |
| 2158 | static bool BuiltinCpu(Sema &S, const TargetInfo &TI, CallExpr *TheCall, |
| 2159 | const TargetInfo *AuxTI, unsigned BuiltinID) { |
| 2160 | assert((BuiltinID == Builtin::BI__builtin_cpu_supports || |
| 2161 | BuiltinID == Builtin::BI__builtin_cpu_is) && |
| 2162 | "Expecting __builtin_cpu_..." ); |
| 2163 | |
| 2164 | bool IsCPUSupports = BuiltinID == Builtin::BI__builtin_cpu_supports; |
| 2165 | const TargetInfo *TheTI = &TI; |
| 2166 | auto SupportsBI = [=](const TargetInfo *TInfo) { |
| 2167 | return TInfo && ((IsCPUSupports && TInfo->supportsCpuSupports()) || |
| 2168 | (!IsCPUSupports && TInfo->supportsCpuIs())); |
| 2169 | }; |
| 2170 | if (!SupportsBI(&TI) && SupportsBI(AuxTI)) |
| 2171 | TheTI = AuxTI; |
| 2172 | |
| 2173 | if ((!IsCPUSupports && !TheTI->supportsCpuIs()) || |
| 2174 | (IsCPUSupports && !TheTI->supportsCpuSupports())) |
| 2175 | return S.Diag(Loc: TheCall->getBeginLoc(), |
| 2176 | DiagID: TI.getTriple().isOSAIX() |
| 2177 | ? diag::err_builtin_aix_os_unsupported |
| 2178 | : diag::err_builtin_target_unsupported) |
| 2179 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
| 2180 | |
| 2181 | Expr *Arg = TheCall->getArg(Arg: 0)->IgnoreParenImpCasts(); |
| 2182 | // Check if the argument is a string literal. |
| 2183 | if (!isa<StringLiteral>(Val: Arg)) |
| 2184 | return S.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_expr_not_string_literal) |
| 2185 | << Arg->getSourceRange(); |
| 2186 | |
| 2187 | // Check the contents of the string. |
| 2188 | StringRef Feature = cast<StringLiteral>(Val: Arg)->getString(); |
| 2189 | if (IsCPUSupports && !TheTI->validateCpuSupports(Name: Feature)) { |
| 2190 | S.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_invalid_cpu_supports) |
| 2191 | << Arg->getSourceRange(); |
| 2192 | return false; |
| 2193 | } |
| 2194 | if (!IsCPUSupports && !TheTI->validateCpuIs(Name: Feature)) |
| 2195 | return S.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_invalid_cpu_is) |
| 2196 | << Arg->getSourceRange(); |
| 2197 | return false; |
| 2198 | } |
| 2199 | |
| 2200 | /// Checks that __builtin_popcountg was called with a single argument, which is |
| 2201 | /// an unsigned integer. |
| 2202 | static bool BuiltinPopcountg(Sema &S, CallExpr *TheCall) { |
| 2203 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 2204 | return true; |
| 2205 | |
| 2206 | ExprResult ArgRes = S.DefaultLvalueConversion(E: TheCall->getArg(Arg: 0)); |
| 2207 | if (ArgRes.isInvalid()) |
| 2208 | return true; |
| 2209 | |
| 2210 | Expr *Arg = ArgRes.get(); |
| 2211 | TheCall->setArg(Arg: 0, ArgExpr: Arg); |
| 2212 | |
| 2213 | QualType ArgTy = Arg->getType(); |
| 2214 | |
| 2215 | if (!ArgTy->isUnsignedIntegerType()) { |
| 2216 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
| 2217 | << 1 << /* scalar */ 1 << /* unsigned integer ty */ 3 << /* no fp */ 0 |
| 2218 | << ArgTy; |
| 2219 | return true; |
| 2220 | } |
| 2221 | return false; |
| 2222 | } |
| 2223 | |
| 2224 | /// Checks that __builtin_{clzg,ctzg} was called with a first argument, which is |
| 2225 | /// an unsigned integer, and an optional second argument, which is promoted to |
| 2226 | /// an 'int'. |
| 2227 | static bool BuiltinCountZeroBitsGeneric(Sema &S, CallExpr *TheCall) { |
| 2228 | if (S.checkArgCountRange(Call: TheCall, MinArgCount: 1, MaxArgCount: 2)) |
| 2229 | return true; |
| 2230 | |
| 2231 | ExprResult Arg0Res = S.DefaultLvalueConversion(E: TheCall->getArg(Arg: 0)); |
| 2232 | if (Arg0Res.isInvalid()) |
| 2233 | return true; |
| 2234 | |
| 2235 | Expr *Arg0 = Arg0Res.get(); |
| 2236 | TheCall->setArg(Arg: 0, ArgExpr: Arg0); |
| 2237 | |
| 2238 | QualType Arg0Ty = Arg0->getType(); |
| 2239 | |
| 2240 | if (!Arg0Ty->isUnsignedIntegerType()) { |
| 2241 | S.Diag(Loc: Arg0->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
| 2242 | << 1 << /* scalar */ 1 << /* unsigned integer ty */ 3 << /* no fp */ 0 |
| 2243 | << Arg0Ty; |
| 2244 | return true; |
| 2245 | } |
| 2246 | |
| 2247 | if (TheCall->getNumArgs() > 1) { |
| 2248 | ExprResult Arg1Res = S.UsualUnaryConversions(E: TheCall->getArg(Arg: 1)); |
| 2249 | if (Arg1Res.isInvalid()) |
| 2250 | return true; |
| 2251 | |
| 2252 | Expr *Arg1 = Arg1Res.get(); |
| 2253 | TheCall->setArg(Arg: 1, ArgExpr: Arg1); |
| 2254 | |
| 2255 | QualType Arg1Ty = Arg1->getType(); |
| 2256 | |
| 2257 | if (!Arg1Ty->isSpecificBuiltinType(K: BuiltinType::Int)) { |
| 2258 | S.Diag(Loc: Arg1->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
| 2259 | << 2 << /* scalar */ 1 << /* 'int' ty */ 4 << /* no fp */ 0 << Arg1Ty; |
| 2260 | return true; |
| 2261 | } |
| 2262 | } |
| 2263 | |
| 2264 | return false; |
| 2265 | } |
| 2266 | |
| 2267 | static ExprResult BuiltinInvoke(Sema &S, CallExpr *TheCall) { |
| 2268 | SourceLocation Loc = TheCall->getBeginLoc(); |
| 2269 | MutableArrayRef Args(TheCall->getArgs(), TheCall->getNumArgs()); |
| 2270 | assert(llvm::none_of(Args, [](Expr *Arg) { return Arg->isTypeDependent(); })); |
| 2271 | |
| 2272 | if (Args.size() == 0) { |
| 2273 | S.Diag(Loc: TheCall->getBeginLoc(), |
| 2274 | DiagID: diag::err_typecheck_call_too_few_args_at_least) |
| 2275 | << /*callee_type=*/0 << /*min_arg_count=*/1 << /*actual_arg_count=*/0 |
| 2276 | << /*is_non_object=*/0 << TheCall->getSourceRange(); |
| 2277 | return ExprError(); |
| 2278 | } |
| 2279 | |
| 2280 | QualType FuncT = Args[0]->getType(); |
| 2281 | |
| 2282 | if (const auto *MPT = FuncT->getAs<MemberPointerType>()) { |
| 2283 | if (Args.size() < 2) { |
| 2284 | S.Diag(Loc: TheCall->getBeginLoc(), |
| 2285 | DiagID: diag::err_typecheck_call_too_few_args_at_least) |
| 2286 | << /*callee_type=*/0 << /*min_arg_count=*/2 << /*actual_arg_count=*/1 |
| 2287 | << /*is_non_object=*/0 << TheCall->getSourceRange(); |
| 2288 | return ExprError(); |
| 2289 | } |
| 2290 | |
| 2291 | const Type *MemPtrClass = MPT->getQualifier()->getAsType(); |
| 2292 | QualType ObjectT = Args[1]->getType(); |
| 2293 | |
| 2294 | if (MPT->isMemberDataPointer() && S.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
| 2295 | return ExprError(); |
| 2296 | |
| 2297 | ExprResult ObjectArg = [&]() -> ExprResult { |
| 2298 | // (1.1): (t1.*f)(t2, ..., tN) when f is a pointer to a member function of |
| 2299 | // a class T and is_same_v<T, remove_cvref_t<decltype(t1)>> || |
| 2300 | // is_base_of_v<T, remove_cvref_t<decltype(t1)>> is true; |
| 2301 | // (1.4): t1.*f when N=1 and f is a pointer to data member of a class T |
| 2302 | // and is_same_v<T, remove_cvref_t<decltype(t1)>> || |
| 2303 | // is_base_of_v<T, remove_cvref_t<decltype(t1)>> is true; |
| 2304 | if (S.Context.hasSameType(T1: QualType(MemPtrClass, 0), |
| 2305 | T2: S.BuiltinRemoveCVRef(BaseType: ObjectT, Loc)) || |
| 2306 | S.BuiltinIsBaseOf(RhsTLoc: Args[1]->getBeginLoc(), LhsT: QualType(MemPtrClass, 0), |
| 2307 | RhsT: S.BuiltinRemoveCVRef(BaseType: ObjectT, Loc))) { |
| 2308 | return Args[1]; |
| 2309 | } |
| 2310 | |
| 2311 | // (t1.get().*f)(t2, ..., tN) when f is a pointer to a member function of |
| 2312 | // a class T and remove_cvref_t<decltype(t1)> is a specialization of |
| 2313 | // reference_wrapper; |
| 2314 | if (const auto *RD = ObjectT->getAsCXXRecordDecl()) { |
| 2315 | if (RD->isInStdNamespace() && |
| 2316 | RD->getDeclName().getAsString() == "reference_wrapper" ) { |
| 2317 | CXXScopeSpec SS; |
| 2318 | IdentifierInfo *GetName = &S.Context.Idents.get(Name: "get" ); |
| 2319 | UnqualifiedId GetID; |
| 2320 | GetID.setIdentifier(Id: GetName, IdLoc: Loc); |
| 2321 | |
| 2322 | ExprResult MemExpr = S.ActOnMemberAccessExpr( |
| 2323 | S: S.getCurScope(), Base: Args[1], OpLoc: Loc, OpKind: tok::period, SS, |
| 2324 | /*TemplateKWLoc=*/SourceLocation(), Member&: GetID, ObjCImpDecl: nullptr); |
| 2325 | |
| 2326 | if (MemExpr.isInvalid()) |
| 2327 | return ExprError(); |
| 2328 | |
| 2329 | return S.ActOnCallExpr(S: S.getCurScope(), Fn: MemExpr.get(), LParenLoc: Loc, ArgExprs: {}, RParenLoc: Loc); |
| 2330 | } |
| 2331 | } |
| 2332 | |
| 2333 | // ((*t1).*f)(t2, ..., tN) when f is a pointer to a member function of a |
| 2334 | // class T and t1 does not satisfy the previous two items; |
| 2335 | |
| 2336 | return S.ActOnUnaryOp(S: S.getCurScope(), OpLoc: Loc, Op: tok::star, Input: Args[1]); |
| 2337 | }(); |
| 2338 | |
| 2339 | if (ObjectArg.isInvalid()) |
| 2340 | return ExprError(); |
| 2341 | |
| 2342 | ExprResult BinOp = S.ActOnBinOp(S: S.getCurScope(), TokLoc: TheCall->getBeginLoc(), |
| 2343 | Kind: tok::periodstar, LHSExpr: ObjectArg.get(), RHSExpr: Args[0]); |
| 2344 | if (BinOp.isInvalid()) |
| 2345 | return ExprError(); |
| 2346 | |
| 2347 | if (MPT->isMemberDataPointer()) |
| 2348 | return BinOp; |
| 2349 | |
| 2350 | auto *MemCall = new (S.Context) |
| 2351 | ParenExpr(SourceLocation(), SourceLocation(), BinOp.get()); |
| 2352 | |
| 2353 | return S.ActOnCallExpr(S: S.getCurScope(), Fn: MemCall, LParenLoc: TheCall->getBeginLoc(), |
| 2354 | ArgExprs: Args.drop_front(N: 2), RParenLoc: TheCall->getRParenLoc()); |
| 2355 | } |
| 2356 | return S.ActOnCallExpr(S: S.getCurScope(), Fn: Args.front(), LParenLoc: TheCall->getBeginLoc(), |
| 2357 | ArgExprs: Args.drop_front(), RParenLoc: TheCall->getRParenLoc()); |
| 2358 | } |
| 2359 | |
| 2360 | ExprResult |
| 2361 | Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, |
| 2362 | CallExpr *TheCall) { |
| 2363 | ExprResult TheCallResult(TheCall); |
| 2364 | |
| 2365 | // Find out if any arguments are required to be integer constant expressions. |
| 2366 | unsigned ICEArguments = 0; |
| 2367 | ASTContext::GetBuiltinTypeError Error; |
| 2368 | Context.GetBuiltinType(ID: BuiltinID, Error, IntegerConstantArgs: &ICEArguments); |
| 2369 | if (Error != ASTContext::GE_None) |
| 2370 | ICEArguments = 0; // Don't diagnose previously diagnosed errors. |
| 2371 | |
| 2372 | // If any arguments are required to be ICE's, check and diagnose. |
| 2373 | for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { |
| 2374 | // Skip arguments not required to be ICE's. |
| 2375 | if ((ICEArguments & (1 << ArgNo)) == 0) continue; |
| 2376 | |
| 2377 | llvm::APSInt Result; |
| 2378 | // If we don't have enough arguments, continue so we can issue better |
| 2379 | // diagnostic in checkArgCount(...) |
| 2380 | if (ArgNo < TheCall->getNumArgs() && |
| 2381 | BuiltinConstantArg(TheCall, ArgNum: ArgNo, Result)) |
| 2382 | return true; |
| 2383 | ICEArguments &= ~(1 << ArgNo); |
| 2384 | } |
| 2385 | |
| 2386 | FPOptions FPO; |
| 2387 | switch (BuiltinID) { |
| 2388 | case Builtin::BI__builtin_cpu_supports: |
| 2389 | case Builtin::BI__builtin_cpu_is: |
| 2390 | if (BuiltinCpu(S&: *this, TI: Context.getTargetInfo(), TheCall, |
| 2391 | AuxTI: Context.getAuxTargetInfo(), BuiltinID)) |
| 2392 | return ExprError(); |
| 2393 | break; |
| 2394 | case Builtin::BI__builtin_cpu_init: |
| 2395 | if (!Context.getTargetInfo().supportsCpuInit()) { |
| 2396 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_target_unsupported) |
| 2397 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
| 2398 | return ExprError(); |
| 2399 | } |
| 2400 | break; |
| 2401 | case Builtin::BI__builtin___CFStringMakeConstantString: |
| 2402 | // CFStringMakeConstantString is currently not implemented for GOFF (i.e., |
| 2403 | // on z/OS) and for XCOFF (i.e., on AIX). Emit unsupported |
| 2404 | if (CheckBuiltinTargetNotInUnsupported( |
| 2405 | S&: *this, BuiltinID, TheCall, |
| 2406 | UnsupportedObjectFormatTypes: {llvm::Triple::GOFF, llvm::Triple::XCOFF})) |
| 2407 | return ExprError(); |
| 2408 | assert(TheCall->getNumArgs() == 1 && |
| 2409 | "Wrong # arguments to builtin CFStringMakeConstantString" ); |
| 2410 | if (ObjC().CheckObjCString(Arg: TheCall->getArg(Arg: 0))) |
| 2411 | return ExprError(); |
| 2412 | break; |
| 2413 | case Builtin::BI__builtin_ms_va_start: |
| 2414 | case Builtin::BI__builtin_stdarg_start: |
| 2415 | case Builtin::BI__builtin_va_start: |
| 2416 | case Builtin::BI__builtin_c23_va_start: |
| 2417 | if (BuiltinVAStart(BuiltinID, TheCall)) |
| 2418 | return ExprError(); |
| 2419 | break; |
| 2420 | case Builtin::BI__va_start: { |
| 2421 | switch (Context.getTargetInfo().getTriple().getArch()) { |
| 2422 | case llvm::Triple::aarch64: |
| 2423 | case llvm::Triple::arm: |
| 2424 | case llvm::Triple::thumb: |
| 2425 | if (BuiltinVAStartARMMicrosoft(Call: TheCall)) |
| 2426 | return ExprError(); |
| 2427 | break; |
| 2428 | default: |
| 2429 | if (BuiltinVAStart(BuiltinID, TheCall)) |
| 2430 | return ExprError(); |
| 2431 | break; |
| 2432 | } |
| 2433 | break; |
| 2434 | } |
| 2435 | |
| 2436 | // The acquire, release, and no fence variants are ARM and AArch64 only. |
| 2437 | case Builtin::BI_interlockedbittestandset_acq: |
| 2438 | case Builtin::BI_interlockedbittestandset_rel: |
| 2439 | case Builtin::BI_interlockedbittestandset_nf: |
| 2440 | case Builtin::BI_interlockedbittestandreset_acq: |
| 2441 | case Builtin::BI_interlockedbittestandreset_rel: |
| 2442 | case Builtin::BI_interlockedbittestandreset_nf: |
| 2443 | if (CheckBuiltinTargetInSupported( |
| 2444 | S&: *this, TheCall, |
| 2445 | SupportedArchs: {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) |
| 2446 | return ExprError(); |
| 2447 | break; |
| 2448 | |
| 2449 | // The 64-bit bittest variants are x64, ARM, and AArch64 only. |
| 2450 | case Builtin::BI_bittest64: |
| 2451 | case Builtin::BI_bittestandcomplement64: |
| 2452 | case Builtin::BI_bittestandreset64: |
| 2453 | case Builtin::BI_bittestandset64: |
| 2454 | case Builtin::BI_interlockedbittestandreset64: |
| 2455 | case Builtin::BI_interlockedbittestandset64: |
| 2456 | if (CheckBuiltinTargetInSupported( |
| 2457 | S&: *this, TheCall, |
| 2458 | SupportedArchs: {llvm::Triple::x86_64, llvm::Triple::arm, llvm::Triple::thumb, |
| 2459 | llvm::Triple::aarch64, llvm::Triple::amdgcn})) |
| 2460 | return ExprError(); |
| 2461 | break; |
| 2462 | |
| 2463 | // The 64-bit acquire, release, and no fence variants are AArch64 only. |
| 2464 | case Builtin::BI_interlockedbittestandreset64_acq: |
| 2465 | case Builtin::BI_interlockedbittestandreset64_rel: |
| 2466 | case Builtin::BI_interlockedbittestandreset64_nf: |
| 2467 | case Builtin::BI_interlockedbittestandset64_acq: |
| 2468 | case Builtin::BI_interlockedbittestandset64_rel: |
| 2469 | case Builtin::BI_interlockedbittestandset64_nf: |
| 2470 | if (CheckBuiltinTargetInSupported(S&: *this, TheCall, SupportedArchs: {llvm::Triple::aarch64})) |
| 2471 | return ExprError(); |
| 2472 | break; |
| 2473 | |
| 2474 | case Builtin::BI__builtin_set_flt_rounds: |
| 2475 | if (CheckBuiltinTargetInSupported( |
| 2476 | S&: *this, TheCall, |
| 2477 | SupportedArchs: {llvm::Triple::x86, llvm::Triple::x86_64, llvm::Triple::arm, |
| 2478 | llvm::Triple::thumb, llvm::Triple::aarch64, llvm::Triple::amdgcn, |
| 2479 | llvm::Triple::ppc, llvm::Triple::ppc64, llvm::Triple::ppcle, |
| 2480 | llvm::Triple::ppc64le})) |
| 2481 | return ExprError(); |
| 2482 | break; |
| 2483 | |
| 2484 | case Builtin::BI__builtin_isgreater: |
| 2485 | case Builtin::BI__builtin_isgreaterequal: |
| 2486 | case Builtin::BI__builtin_isless: |
| 2487 | case Builtin::BI__builtin_islessequal: |
| 2488 | case Builtin::BI__builtin_islessgreater: |
| 2489 | case Builtin::BI__builtin_isunordered: |
| 2490 | if (BuiltinUnorderedCompare(TheCall, BuiltinID)) |
| 2491 | return ExprError(); |
| 2492 | break; |
| 2493 | case Builtin::BI__builtin_fpclassify: |
| 2494 | if (BuiltinFPClassification(TheCall, NumArgs: 6, BuiltinID)) |
| 2495 | return ExprError(); |
| 2496 | break; |
| 2497 | case Builtin::BI__builtin_isfpclass: |
| 2498 | if (BuiltinFPClassification(TheCall, NumArgs: 2, BuiltinID)) |
| 2499 | return ExprError(); |
| 2500 | break; |
| 2501 | case Builtin::BI__builtin_isfinite: |
| 2502 | case Builtin::BI__builtin_isinf: |
| 2503 | case Builtin::BI__builtin_isinf_sign: |
| 2504 | case Builtin::BI__builtin_isnan: |
| 2505 | case Builtin::BI__builtin_issignaling: |
| 2506 | case Builtin::BI__builtin_isnormal: |
| 2507 | case Builtin::BI__builtin_issubnormal: |
| 2508 | case Builtin::BI__builtin_iszero: |
| 2509 | case Builtin::BI__builtin_signbit: |
| 2510 | case Builtin::BI__builtin_signbitf: |
| 2511 | case Builtin::BI__builtin_signbitl: |
| 2512 | if (BuiltinFPClassification(TheCall, NumArgs: 1, BuiltinID)) |
| 2513 | return ExprError(); |
| 2514 | break; |
| 2515 | case Builtin::BI__builtin_shufflevector: |
| 2516 | return BuiltinShuffleVector(TheCall); |
| 2517 | // TheCall will be freed by the smart pointer here, but that's fine, since |
| 2518 | // BuiltinShuffleVector guts it, but then doesn't release it. |
| 2519 | case Builtin::BI__builtin_invoke: |
| 2520 | return BuiltinInvoke(S&: *this, TheCall); |
| 2521 | case Builtin::BI__builtin_prefetch: |
| 2522 | if (BuiltinPrefetch(TheCall)) |
| 2523 | return ExprError(); |
| 2524 | break; |
| 2525 | case Builtin::BI__builtin_alloca_with_align: |
| 2526 | case Builtin::BI__builtin_alloca_with_align_uninitialized: |
| 2527 | if (BuiltinAllocaWithAlign(TheCall)) |
| 2528 | return ExprError(); |
| 2529 | [[fallthrough]]; |
| 2530 | case Builtin::BI__builtin_alloca: |
| 2531 | case Builtin::BI__builtin_alloca_uninitialized: |
| 2532 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_alloca) |
| 2533 | << TheCall->getDirectCallee(); |
| 2534 | if (getLangOpts().OpenCL) { |
| 2535 | builtinAllocaAddrSpace(S&: *this, TheCall); |
| 2536 | } |
| 2537 | break; |
| 2538 | case Builtin::BI__arithmetic_fence: |
| 2539 | if (BuiltinArithmeticFence(TheCall)) |
| 2540 | return ExprError(); |
| 2541 | break; |
| 2542 | case Builtin::BI__assume: |
| 2543 | case Builtin::BI__builtin_assume: |
| 2544 | if (BuiltinAssume(TheCall)) |
| 2545 | return ExprError(); |
| 2546 | break; |
| 2547 | case Builtin::BI__builtin_assume_aligned: |
| 2548 | if (BuiltinAssumeAligned(TheCall)) |
| 2549 | return ExprError(); |
| 2550 | break; |
| 2551 | case Builtin::BI__builtin_dynamic_object_size: |
| 2552 | case Builtin::BI__builtin_object_size: |
| 2553 | if (BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 3)) |
| 2554 | return ExprError(); |
| 2555 | break; |
| 2556 | case Builtin::BI__builtin_longjmp: |
| 2557 | if (BuiltinLongjmp(TheCall)) |
| 2558 | return ExprError(); |
| 2559 | break; |
| 2560 | case Builtin::BI__builtin_setjmp: |
| 2561 | if (BuiltinSetjmp(TheCall)) |
| 2562 | return ExprError(); |
| 2563 | break; |
| 2564 | case Builtin::BI__builtin_classify_type: |
| 2565 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 2566 | return true; |
| 2567 | TheCall->setType(Context.IntTy); |
| 2568 | break; |
| 2569 | case Builtin::BI__builtin_complex: |
| 2570 | if (BuiltinComplex(TheCall)) |
| 2571 | return ExprError(); |
| 2572 | break; |
| 2573 | case Builtin::BI__builtin_constant_p: { |
| 2574 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 2575 | return true; |
| 2576 | ExprResult Arg = DefaultFunctionArrayLvalueConversion(E: TheCall->getArg(Arg: 0)); |
| 2577 | if (Arg.isInvalid()) return true; |
| 2578 | TheCall->setArg(Arg: 0, ArgExpr: Arg.get()); |
| 2579 | TheCall->setType(Context.IntTy); |
| 2580 | break; |
| 2581 | } |
| 2582 | case Builtin::BI__builtin_launder: |
| 2583 | return BuiltinLaunder(S&: *this, TheCall); |
| 2584 | case Builtin::BI__builtin_is_within_lifetime: |
| 2585 | return BuiltinIsWithinLifetime(S&: *this, TheCall); |
| 2586 | case Builtin::BI__builtin_trivially_relocate: |
| 2587 | return BuiltinTriviallyRelocate(S&: *this, TheCall); |
| 2588 | |
| 2589 | case Builtin::BI__sync_fetch_and_add: |
| 2590 | case Builtin::BI__sync_fetch_and_add_1: |
| 2591 | case Builtin::BI__sync_fetch_and_add_2: |
| 2592 | case Builtin::BI__sync_fetch_and_add_4: |
| 2593 | case Builtin::BI__sync_fetch_and_add_8: |
| 2594 | case Builtin::BI__sync_fetch_and_add_16: |
| 2595 | case Builtin::BI__sync_fetch_and_sub: |
| 2596 | case Builtin::BI__sync_fetch_and_sub_1: |
| 2597 | case Builtin::BI__sync_fetch_and_sub_2: |
| 2598 | case Builtin::BI__sync_fetch_and_sub_4: |
| 2599 | case Builtin::BI__sync_fetch_and_sub_8: |
| 2600 | case Builtin::BI__sync_fetch_and_sub_16: |
| 2601 | case Builtin::BI__sync_fetch_and_or: |
| 2602 | case Builtin::BI__sync_fetch_and_or_1: |
| 2603 | case Builtin::BI__sync_fetch_and_or_2: |
| 2604 | case Builtin::BI__sync_fetch_and_or_4: |
| 2605 | case Builtin::BI__sync_fetch_and_or_8: |
| 2606 | case Builtin::BI__sync_fetch_and_or_16: |
| 2607 | case Builtin::BI__sync_fetch_and_and: |
| 2608 | case Builtin::BI__sync_fetch_and_and_1: |
| 2609 | case Builtin::BI__sync_fetch_and_and_2: |
| 2610 | case Builtin::BI__sync_fetch_and_and_4: |
| 2611 | case Builtin::BI__sync_fetch_and_and_8: |
| 2612 | case Builtin::BI__sync_fetch_and_and_16: |
| 2613 | case Builtin::BI__sync_fetch_and_xor: |
| 2614 | case Builtin::BI__sync_fetch_and_xor_1: |
| 2615 | case Builtin::BI__sync_fetch_and_xor_2: |
| 2616 | case Builtin::BI__sync_fetch_and_xor_4: |
| 2617 | case Builtin::BI__sync_fetch_and_xor_8: |
| 2618 | case Builtin::BI__sync_fetch_and_xor_16: |
| 2619 | case Builtin::BI__sync_fetch_and_nand: |
| 2620 | case Builtin::BI__sync_fetch_and_nand_1: |
| 2621 | case Builtin::BI__sync_fetch_and_nand_2: |
| 2622 | case Builtin::BI__sync_fetch_and_nand_4: |
| 2623 | case Builtin::BI__sync_fetch_and_nand_8: |
| 2624 | case Builtin::BI__sync_fetch_and_nand_16: |
| 2625 | case Builtin::BI__sync_add_and_fetch: |
| 2626 | case Builtin::BI__sync_add_and_fetch_1: |
| 2627 | case Builtin::BI__sync_add_and_fetch_2: |
| 2628 | case Builtin::BI__sync_add_and_fetch_4: |
| 2629 | case Builtin::BI__sync_add_and_fetch_8: |
| 2630 | case Builtin::BI__sync_add_and_fetch_16: |
| 2631 | case Builtin::BI__sync_sub_and_fetch: |
| 2632 | case Builtin::BI__sync_sub_and_fetch_1: |
| 2633 | case Builtin::BI__sync_sub_and_fetch_2: |
| 2634 | case Builtin::BI__sync_sub_and_fetch_4: |
| 2635 | case Builtin::BI__sync_sub_and_fetch_8: |
| 2636 | case Builtin::BI__sync_sub_and_fetch_16: |
| 2637 | case Builtin::BI__sync_and_and_fetch: |
| 2638 | case Builtin::BI__sync_and_and_fetch_1: |
| 2639 | case Builtin::BI__sync_and_and_fetch_2: |
| 2640 | case Builtin::BI__sync_and_and_fetch_4: |
| 2641 | case Builtin::BI__sync_and_and_fetch_8: |
| 2642 | case Builtin::BI__sync_and_and_fetch_16: |
| 2643 | case Builtin::BI__sync_or_and_fetch: |
| 2644 | case Builtin::BI__sync_or_and_fetch_1: |
| 2645 | case Builtin::BI__sync_or_and_fetch_2: |
| 2646 | case Builtin::BI__sync_or_and_fetch_4: |
| 2647 | case Builtin::BI__sync_or_and_fetch_8: |
| 2648 | case Builtin::BI__sync_or_and_fetch_16: |
| 2649 | case Builtin::BI__sync_xor_and_fetch: |
| 2650 | case Builtin::BI__sync_xor_and_fetch_1: |
| 2651 | case Builtin::BI__sync_xor_and_fetch_2: |
| 2652 | case Builtin::BI__sync_xor_and_fetch_4: |
| 2653 | case Builtin::BI__sync_xor_and_fetch_8: |
| 2654 | case Builtin::BI__sync_xor_and_fetch_16: |
| 2655 | case Builtin::BI__sync_nand_and_fetch: |
| 2656 | case Builtin::BI__sync_nand_and_fetch_1: |
| 2657 | case Builtin::BI__sync_nand_and_fetch_2: |
| 2658 | case Builtin::BI__sync_nand_and_fetch_4: |
| 2659 | case Builtin::BI__sync_nand_and_fetch_8: |
| 2660 | case Builtin::BI__sync_nand_and_fetch_16: |
| 2661 | case Builtin::BI__sync_val_compare_and_swap: |
| 2662 | case Builtin::BI__sync_val_compare_and_swap_1: |
| 2663 | case Builtin::BI__sync_val_compare_and_swap_2: |
| 2664 | case Builtin::BI__sync_val_compare_and_swap_4: |
| 2665 | case Builtin::BI__sync_val_compare_and_swap_8: |
| 2666 | case Builtin::BI__sync_val_compare_and_swap_16: |
| 2667 | case Builtin::BI__sync_bool_compare_and_swap: |
| 2668 | case Builtin::BI__sync_bool_compare_and_swap_1: |
| 2669 | case Builtin::BI__sync_bool_compare_and_swap_2: |
| 2670 | case Builtin::BI__sync_bool_compare_and_swap_4: |
| 2671 | case Builtin::BI__sync_bool_compare_and_swap_8: |
| 2672 | case Builtin::BI__sync_bool_compare_and_swap_16: |
| 2673 | case Builtin::BI__sync_lock_test_and_set: |
| 2674 | case Builtin::BI__sync_lock_test_and_set_1: |
| 2675 | case Builtin::BI__sync_lock_test_and_set_2: |
| 2676 | case Builtin::BI__sync_lock_test_and_set_4: |
| 2677 | case Builtin::BI__sync_lock_test_and_set_8: |
| 2678 | case Builtin::BI__sync_lock_test_and_set_16: |
| 2679 | case Builtin::BI__sync_lock_release: |
| 2680 | case Builtin::BI__sync_lock_release_1: |
| 2681 | case Builtin::BI__sync_lock_release_2: |
| 2682 | case Builtin::BI__sync_lock_release_4: |
| 2683 | case Builtin::BI__sync_lock_release_8: |
| 2684 | case Builtin::BI__sync_lock_release_16: |
| 2685 | case Builtin::BI__sync_swap: |
| 2686 | case Builtin::BI__sync_swap_1: |
| 2687 | case Builtin::BI__sync_swap_2: |
| 2688 | case Builtin::BI__sync_swap_4: |
| 2689 | case Builtin::BI__sync_swap_8: |
| 2690 | case Builtin::BI__sync_swap_16: |
| 2691 | return BuiltinAtomicOverloaded(TheCallResult); |
| 2692 | case Builtin::BI__sync_synchronize: |
| 2693 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_atomic_implicit_seq_cst) |
| 2694 | << TheCall->getCallee()->getSourceRange(); |
| 2695 | break; |
| 2696 | case Builtin::BI__builtin_nontemporal_load: |
| 2697 | case Builtin::BI__builtin_nontemporal_store: |
| 2698 | return BuiltinNontemporalOverloaded(TheCallResult); |
| 2699 | case Builtin::BI__builtin_memcpy_inline: { |
| 2700 | clang::Expr *SizeOp = TheCall->getArg(Arg: 2); |
| 2701 | // We warn about copying to or from `nullptr` pointers when `size` is |
| 2702 | // greater than 0. When `size` is value dependent we cannot evaluate its |
| 2703 | // value so we bail out. |
| 2704 | if (SizeOp->isValueDependent()) |
| 2705 | break; |
| 2706 | if (!SizeOp->EvaluateKnownConstInt(Ctx: Context).isZero()) { |
| 2707 | CheckNonNullArgument(S&: *this, ArgExpr: TheCall->getArg(Arg: 0), CallSiteLoc: TheCall->getExprLoc()); |
| 2708 | CheckNonNullArgument(S&: *this, ArgExpr: TheCall->getArg(Arg: 1), CallSiteLoc: TheCall->getExprLoc()); |
| 2709 | } |
| 2710 | break; |
| 2711 | } |
| 2712 | case Builtin::BI__builtin_memset_inline: { |
| 2713 | clang::Expr *SizeOp = TheCall->getArg(Arg: 2); |
| 2714 | // We warn about filling to `nullptr` pointers when `size` is greater than |
| 2715 | // 0. When `size` is value dependent we cannot evaluate its value so we bail |
| 2716 | // out. |
| 2717 | if (SizeOp->isValueDependent()) |
| 2718 | break; |
| 2719 | if (!SizeOp->EvaluateKnownConstInt(Ctx: Context).isZero()) |
| 2720 | CheckNonNullArgument(S&: *this, ArgExpr: TheCall->getArg(Arg: 0), CallSiteLoc: TheCall->getExprLoc()); |
| 2721 | break; |
| 2722 | } |
| 2723 | #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ |
| 2724 | case Builtin::BI##ID: \ |
| 2725 | return AtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); |
| 2726 | #include "clang/Basic/Builtins.inc" |
| 2727 | case Builtin::BI__annotation: |
| 2728 | if (BuiltinMSVCAnnotation(S&: *this, TheCall)) |
| 2729 | return ExprError(); |
| 2730 | break; |
| 2731 | case Builtin::BI__builtin_annotation: |
| 2732 | if (BuiltinAnnotation(S&: *this, TheCall)) |
| 2733 | return ExprError(); |
| 2734 | break; |
| 2735 | case Builtin::BI__builtin_addressof: |
| 2736 | if (BuiltinAddressof(S&: *this, TheCall)) |
| 2737 | return ExprError(); |
| 2738 | break; |
| 2739 | case Builtin::BI__builtin_function_start: |
| 2740 | if (BuiltinFunctionStart(S&: *this, TheCall)) |
| 2741 | return ExprError(); |
| 2742 | break; |
| 2743 | case Builtin::BI__builtin_is_aligned: |
| 2744 | case Builtin::BI__builtin_align_up: |
| 2745 | case Builtin::BI__builtin_align_down: |
| 2746 | if (BuiltinAlignment(S&: *this, TheCall, ID: BuiltinID)) |
| 2747 | return ExprError(); |
| 2748 | break; |
| 2749 | case Builtin::BI__builtin_add_overflow: |
| 2750 | case Builtin::BI__builtin_sub_overflow: |
| 2751 | case Builtin::BI__builtin_mul_overflow: |
| 2752 | if (BuiltinOverflow(S&: *this, TheCall, BuiltinID)) |
| 2753 | return ExprError(); |
| 2754 | break; |
| 2755 | case Builtin::BI__builtin_operator_new: |
| 2756 | case Builtin::BI__builtin_operator_delete: { |
| 2757 | bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; |
| 2758 | ExprResult Res = |
| 2759 | BuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); |
| 2760 | return Res; |
| 2761 | } |
| 2762 | case Builtin::BI__builtin_dump_struct: |
| 2763 | return BuiltinDumpStruct(S&: *this, TheCall); |
| 2764 | case Builtin::BI__builtin_expect_with_probability: { |
| 2765 | // We first want to ensure we are called with 3 arguments |
| 2766 | if (checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
| 2767 | return ExprError(); |
| 2768 | // then check probability is constant float in range [0.0, 1.0] |
| 2769 | const Expr *ProbArg = TheCall->getArg(Arg: 2); |
| 2770 | SmallVector<PartialDiagnosticAt, 8> Notes; |
| 2771 | Expr::EvalResult Eval; |
| 2772 | Eval.Diag = &Notes; |
| 2773 | if ((!ProbArg->EvaluateAsConstantExpr(Result&: Eval, Ctx: Context)) || |
| 2774 | !Eval.Val.isFloat()) { |
| 2775 | Diag(Loc: ProbArg->getBeginLoc(), DiagID: diag::err_probability_not_constant_float) |
| 2776 | << ProbArg->getSourceRange(); |
| 2777 | for (const PartialDiagnosticAt &PDiag : Notes) |
| 2778 | Diag(Loc: PDiag.first, PD: PDiag.second); |
| 2779 | return ExprError(); |
| 2780 | } |
| 2781 | llvm::APFloat Probability = Eval.Val.getFloat(); |
| 2782 | bool LoseInfo = false; |
| 2783 | Probability.convert(ToSemantics: llvm::APFloat::IEEEdouble(), |
| 2784 | RM: llvm::RoundingMode::Dynamic, losesInfo: &LoseInfo); |
| 2785 | if (!(Probability >= llvm::APFloat(0.0) && |
| 2786 | Probability <= llvm::APFloat(1.0))) { |
| 2787 | Diag(Loc: ProbArg->getBeginLoc(), DiagID: diag::err_probability_out_of_range) |
| 2788 | << ProbArg->getSourceRange(); |
| 2789 | return ExprError(); |
| 2790 | } |
| 2791 | break; |
| 2792 | } |
| 2793 | case Builtin::BI__builtin_preserve_access_index: |
| 2794 | if (BuiltinPreserveAI(S&: *this, TheCall)) |
| 2795 | return ExprError(); |
| 2796 | break; |
| 2797 | case Builtin::BI__builtin_call_with_static_chain: |
| 2798 | if (BuiltinCallWithStaticChain(S&: *this, BuiltinCall: TheCall)) |
| 2799 | return ExprError(); |
| 2800 | break; |
| 2801 | case Builtin::BI__exception_code: |
| 2802 | case Builtin::BI_exception_code: |
| 2803 | if (BuiltinSEHScopeCheck(SemaRef&: *this, TheCall, NeededScopeFlags: Scope::SEHExceptScope, |
| 2804 | DiagID: diag::err_seh___except_block)) |
| 2805 | return ExprError(); |
| 2806 | break; |
| 2807 | case Builtin::BI__exception_info: |
| 2808 | case Builtin::BI_exception_info: |
| 2809 | if (BuiltinSEHScopeCheck(SemaRef&: *this, TheCall, NeededScopeFlags: Scope::SEHFilterScope, |
| 2810 | DiagID: diag::err_seh___except_filter)) |
| 2811 | return ExprError(); |
| 2812 | break; |
| 2813 | case Builtin::BI__GetExceptionInfo: |
| 2814 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 2815 | return ExprError(); |
| 2816 | |
| 2817 | if (CheckCXXThrowOperand( |
| 2818 | ThrowLoc: TheCall->getBeginLoc(), |
| 2819 | ThrowTy: Context.getExceptionObjectType(T: FDecl->getParamDecl(i: 0)->getType()), |
| 2820 | E: TheCall)) |
| 2821 | return ExprError(); |
| 2822 | |
| 2823 | TheCall->setType(Context.VoidPtrTy); |
| 2824 | break; |
| 2825 | case Builtin::BIaddressof: |
| 2826 | case Builtin::BI__addressof: |
| 2827 | case Builtin::BIforward: |
| 2828 | case Builtin::BIforward_like: |
| 2829 | case Builtin::BImove: |
| 2830 | case Builtin::BImove_if_noexcept: |
| 2831 | case Builtin::BIas_const: { |
| 2832 | // These are all expected to be of the form |
| 2833 | // T &/&&/* f(U &/&&) |
| 2834 | // where T and U only differ in qualification. |
| 2835 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 2836 | return ExprError(); |
| 2837 | QualType Param = FDecl->getParamDecl(i: 0)->getType(); |
| 2838 | QualType Result = FDecl->getReturnType(); |
| 2839 | bool ReturnsPointer = BuiltinID == Builtin::BIaddressof || |
| 2840 | BuiltinID == Builtin::BI__addressof; |
| 2841 | if (!(Param->isReferenceType() && |
| 2842 | (ReturnsPointer ? Result->isAnyPointerType() |
| 2843 | : Result->isReferenceType()) && |
| 2844 | Context.hasSameUnqualifiedType(T1: Param->getPointeeType(), |
| 2845 | T2: Result->getPointeeType()))) { |
| 2846 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_move_forward_unsupported) |
| 2847 | << FDecl; |
| 2848 | return ExprError(); |
| 2849 | } |
| 2850 | break; |
| 2851 | } |
| 2852 | case Builtin::BI__builtin_ptrauth_strip: |
| 2853 | return PointerAuthStrip(S&: *this, Call: TheCall); |
| 2854 | case Builtin::BI__builtin_ptrauth_blend_discriminator: |
| 2855 | return PointerAuthBlendDiscriminator(S&: *this, Call: TheCall); |
| 2856 | case Builtin::BI__builtin_ptrauth_sign_constant: |
| 2857 | return PointerAuthSignOrAuth(S&: *this, Call: TheCall, OpKind: PAO_Sign, |
| 2858 | /*RequireConstant=*/true); |
| 2859 | case Builtin::BI__builtin_ptrauth_sign_unauthenticated: |
| 2860 | return PointerAuthSignOrAuth(S&: *this, Call: TheCall, OpKind: PAO_Sign, |
| 2861 | /*RequireConstant=*/false); |
| 2862 | case Builtin::BI__builtin_ptrauth_auth: |
| 2863 | return PointerAuthSignOrAuth(S&: *this, Call: TheCall, OpKind: PAO_Auth, |
| 2864 | /*RequireConstant=*/false); |
| 2865 | case Builtin::BI__builtin_ptrauth_sign_generic_data: |
| 2866 | return PointerAuthSignGenericData(S&: *this, Call: TheCall); |
| 2867 | case Builtin::BI__builtin_ptrauth_auth_and_resign: |
| 2868 | return PointerAuthAuthAndResign(S&: *this, Call: TheCall); |
| 2869 | case Builtin::BI__builtin_ptrauth_string_discriminator: |
| 2870 | return PointerAuthStringDiscriminator(S&: *this, Call: TheCall); |
| 2871 | |
| 2872 | case Builtin::BI__builtin_get_vtable_pointer: |
| 2873 | return GetVTablePointer(S&: *this, Call: TheCall); |
| 2874 | |
| 2875 | // OpenCL v2.0, s6.13.16 - Pipe functions |
| 2876 | case Builtin::BIread_pipe: |
| 2877 | case Builtin::BIwrite_pipe: |
| 2878 | // Since those two functions are declared with var args, we need a semantic |
| 2879 | // check for the argument. |
| 2880 | if (OpenCL().checkBuiltinRWPipe(Call: TheCall)) |
| 2881 | return ExprError(); |
| 2882 | break; |
| 2883 | case Builtin::BIreserve_read_pipe: |
| 2884 | case Builtin::BIreserve_write_pipe: |
| 2885 | case Builtin::BIwork_group_reserve_read_pipe: |
| 2886 | case Builtin::BIwork_group_reserve_write_pipe: |
| 2887 | if (OpenCL().checkBuiltinReserveRWPipe(Call: TheCall)) |
| 2888 | return ExprError(); |
| 2889 | break; |
| 2890 | case Builtin::BIsub_group_reserve_read_pipe: |
| 2891 | case Builtin::BIsub_group_reserve_write_pipe: |
| 2892 | if (OpenCL().checkSubgroupExt(Call: TheCall) || |
| 2893 | OpenCL().checkBuiltinReserveRWPipe(Call: TheCall)) |
| 2894 | return ExprError(); |
| 2895 | break; |
| 2896 | case Builtin::BIcommit_read_pipe: |
| 2897 | case Builtin::BIcommit_write_pipe: |
| 2898 | case Builtin::BIwork_group_commit_read_pipe: |
| 2899 | case Builtin::BIwork_group_commit_write_pipe: |
| 2900 | if (OpenCL().checkBuiltinCommitRWPipe(Call: TheCall)) |
| 2901 | return ExprError(); |
| 2902 | break; |
| 2903 | case Builtin::BIsub_group_commit_read_pipe: |
| 2904 | case Builtin::BIsub_group_commit_write_pipe: |
| 2905 | if (OpenCL().checkSubgroupExt(Call: TheCall) || |
| 2906 | OpenCL().checkBuiltinCommitRWPipe(Call: TheCall)) |
| 2907 | return ExprError(); |
| 2908 | break; |
| 2909 | case Builtin::BIget_pipe_num_packets: |
| 2910 | case Builtin::BIget_pipe_max_packets: |
| 2911 | if (OpenCL().checkBuiltinPipePackets(Call: TheCall)) |
| 2912 | return ExprError(); |
| 2913 | break; |
| 2914 | case Builtin::BIto_global: |
| 2915 | case Builtin::BIto_local: |
| 2916 | case Builtin::BIto_private: |
| 2917 | if (OpenCL().checkBuiltinToAddr(BuiltinID, Call: TheCall)) |
| 2918 | return ExprError(); |
| 2919 | break; |
| 2920 | // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. |
| 2921 | case Builtin::BIenqueue_kernel: |
| 2922 | if (OpenCL().checkBuiltinEnqueueKernel(TheCall)) |
| 2923 | return ExprError(); |
| 2924 | break; |
| 2925 | case Builtin::BIget_kernel_work_group_size: |
| 2926 | case Builtin::BIget_kernel_preferred_work_group_size_multiple: |
| 2927 | if (OpenCL().checkBuiltinKernelWorkGroupSize(TheCall)) |
| 2928 | return ExprError(); |
| 2929 | break; |
| 2930 | case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: |
| 2931 | case Builtin::BIget_kernel_sub_group_count_for_ndrange: |
| 2932 | if (OpenCL().checkBuiltinNDRangeAndBlock(TheCall)) |
| 2933 | return ExprError(); |
| 2934 | break; |
| 2935 | case Builtin::BI__builtin_os_log_format: |
| 2936 | Cleanup.setExprNeedsCleanups(true); |
| 2937 | [[fallthrough]]; |
| 2938 | case Builtin::BI__builtin_os_log_format_buffer_size: |
| 2939 | if (BuiltinOSLogFormat(TheCall)) |
| 2940 | return ExprError(); |
| 2941 | break; |
| 2942 | case Builtin::BI__builtin_frame_address: |
| 2943 | case Builtin::BI__builtin_return_address: { |
| 2944 | if (BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 0xFFFF)) |
| 2945 | return ExprError(); |
| 2946 | |
| 2947 | // -Wframe-address warning if non-zero passed to builtin |
| 2948 | // return/frame address. |
| 2949 | Expr::EvalResult Result; |
| 2950 | if (!TheCall->getArg(Arg: 0)->isValueDependent() && |
| 2951 | TheCall->getArg(Arg: 0)->EvaluateAsInt(Result, Ctx: getASTContext()) && |
| 2952 | Result.Val.getInt() != 0) |
| 2953 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_frame_address) |
| 2954 | << ((BuiltinID == Builtin::BI__builtin_return_address) |
| 2955 | ? "__builtin_return_address" |
| 2956 | : "__builtin_frame_address" ) |
| 2957 | << TheCall->getSourceRange(); |
| 2958 | break; |
| 2959 | } |
| 2960 | |
| 2961 | case Builtin::BI__builtin_nondeterministic_value: { |
| 2962 | if (BuiltinNonDeterministicValue(TheCall)) |
| 2963 | return ExprError(); |
| 2964 | break; |
| 2965 | } |
| 2966 | |
| 2967 | // __builtin_elementwise_abs restricts the element type to signed integers or |
| 2968 | // floating point types only. |
| 2969 | case Builtin::BI__builtin_elementwise_abs: |
| 2970 | if (PrepareBuiltinElementwiseMathOneArgCall( |
| 2971 | TheCall, ArgTyRestr: EltwiseBuiltinArgTyRestriction::SignedIntOrFloatTy)) |
| 2972 | return ExprError(); |
| 2973 | break; |
| 2974 | |
| 2975 | // These builtins restrict the element type to floating point |
| 2976 | // types only. |
| 2977 | case Builtin::BI__builtin_elementwise_acos: |
| 2978 | case Builtin::BI__builtin_elementwise_asin: |
| 2979 | case Builtin::BI__builtin_elementwise_atan: |
| 2980 | case Builtin::BI__builtin_elementwise_ceil: |
| 2981 | case Builtin::BI__builtin_elementwise_cos: |
| 2982 | case Builtin::BI__builtin_elementwise_cosh: |
| 2983 | case Builtin::BI__builtin_elementwise_exp: |
| 2984 | case Builtin::BI__builtin_elementwise_exp2: |
| 2985 | case Builtin::BI__builtin_elementwise_exp10: |
| 2986 | case Builtin::BI__builtin_elementwise_floor: |
| 2987 | case Builtin::BI__builtin_elementwise_log: |
| 2988 | case Builtin::BI__builtin_elementwise_log2: |
| 2989 | case Builtin::BI__builtin_elementwise_log10: |
| 2990 | case Builtin::BI__builtin_elementwise_roundeven: |
| 2991 | case Builtin::BI__builtin_elementwise_round: |
| 2992 | case Builtin::BI__builtin_elementwise_rint: |
| 2993 | case Builtin::BI__builtin_elementwise_nearbyint: |
| 2994 | case Builtin::BI__builtin_elementwise_sin: |
| 2995 | case Builtin::BI__builtin_elementwise_sinh: |
| 2996 | case Builtin::BI__builtin_elementwise_sqrt: |
| 2997 | case Builtin::BI__builtin_elementwise_tan: |
| 2998 | case Builtin::BI__builtin_elementwise_tanh: |
| 2999 | case Builtin::BI__builtin_elementwise_trunc: |
| 3000 | case Builtin::BI__builtin_elementwise_canonicalize: |
| 3001 | if (PrepareBuiltinElementwiseMathOneArgCall( |
| 3002 | TheCall, ArgTyRestr: EltwiseBuiltinArgTyRestriction::FloatTy)) |
| 3003 | return ExprError(); |
| 3004 | break; |
| 3005 | case Builtin::BI__builtin_elementwise_fma: |
| 3006 | if (BuiltinElementwiseTernaryMath(TheCall)) |
| 3007 | return ExprError(); |
| 3008 | break; |
| 3009 | |
| 3010 | // These builtins restrict the element type to floating point |
| 3011 | // types only, and take in two arguments. |
| 3012 | case Builtin::BI__builtin_elementwise_minnum: |
| 3013 | case Builtin::BI__builtin_elementwise_maxnum: |
| 3014 | case Builtin::BI__builtin_elementwise_minimum: |
| 3015 | case Builtin::BI__builtin_elementwise_maximum: |
| 3016 | case Builtin::BI__builtin_elementwise_atan2: |
| 3017 | case Builtin::BI__builtin_elementwise_fmod: |
| 3018 | case Builtin::BI__builtin_elementwise_pow: |
| 3019 | if (BuiltinElementwiseMath(TheCall, |
| 3020 | ArgTyRestr: EltwiseBuiltinArgTyRestriction::FloatTy)) |
| 3021 | return ExprError(); |
| 3022 | break; |
| 3023 | // These builtins restrict the element type to integer |
| 3024 | // types only. |
| 3025 | case Builtin::BI__builtin_elementwise_add_sat: |
| 3026 | case Builtin::BI__builtin_elementwise_sub_sat: |
| 3027 | if (BuiltinElementwiseMath(TheCall, |
| 3028 | ArgTyRestr: EltwiseBuiltinArgTyRestriction::IntegerTy)) |
| 3029 | return ExprError(); |
| 3030 | break; |
| 3031 | case Builtin::BI__builtin_elementwise_min: |
| 3032 | case Builtin::BI__builtin_elementwise_max: |
| 3033 | if (BuiltinElementwiseMath(TheCall)) |
| 3034 | return ExprError(); |
| 3035 | break; |
| 3036 | case Builtin::BI__builtin_elementwise_popcount: |
| 3037 | case Builtin::BI__builtin_elementwise_bitreverse: |
| 3038 | if (PrepareBuiltinElementwiseMathOneArgCall( |
| 3039 | TheCall, ArgTyRestr: EltwiseBuiltinArgTyRestriction::IntegerTy)) |
| 3040 | return ExprError(); |
| 3041 | break; |
| 3042 | case Builtin::BI__builtin_elementwise_copysign: { |
| 3043 | if (checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
| 3044 | return ExprError(); |
| 3045 | |
| 3046 | ExprResult Magnitude = UsualUnaryConversions(E: TheCall->getArg(Arg: 0)); |
| 3047 | ExprResult Sign = UsualUnaryConversions(E: TheCall->getArg(Arg: 1)); |
| 3048 | if (Magnitude.isInvalid() || Sign.isInvalid()) |
| 3049 | return ExprError(); |
| 3050 | |
| 3051 | QualType MagnitudeTy = Magnitude.get()->getType(); |
| 3052 | QualType SignTy = Sign.get()->getType(); |
| 3053 | if (checkMathBuiltinElementType( |
| 3054 | S&: *this, Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), ArgTy: MagnitudeTy, |
| 3055 | ArgTyRestr: EltwiseBuiltinArgTyRestriction::FloatTy, ArgOrdinal: 1) || |
| 3056 | checkMathBuiltinElementType( |
| 3057 | S&: *this, Loc: TheCall->getArg(Arg: 1)->getBeginLoc(), ArgTy: SignTy, |
| 3058 | ArgTyRestr: EltwiseBuiltinArgTyRestriction::FloatTy, ArgOrdinal: 2)) { |
| 3059 | return ExprError(); |
| 3060 | } |
| 3061 | |
| 3062 | if (MagnitudeTy.getCanonicalType() != SignTy.getCanonicalType()) { |
| 3063 | return Diag(Loc: Sign.get()->getBeginLoc(), |
| 3064 | DiagID: diag::err_typecheck_call_different_arg_types) |
| 3065 | << MagnitudeTy << SignTy; |
| 3066 | } |
| 3067 | |
| 3068 | TheCall->setArg(Arg: 0, ArgExpr: Magnitude.get()); |
| 3069 | TheCall->setArg(Arg: 1, ArgExpr: Sign.get()); |
| 3070 | TheCall->setType(Magnitude.get()->getType()); |
| 3071 | break; |
| 3072 | } |
| 3073 | case Builtin::BI__builtin_reduce_max: |
| 3074 | case Builtin::BI__builtin_reduce_min: { |
| 3075 | if (PrepareBuiltinReduceMathOneArgCall(TheCall)) |
| 3076 | return ExprError(); |
| 3077 | |
| 3078 | const Expr *Arg = TheCall->getArg(Arg: 0); |
| 3079 | const auto *TyA = Arg->getType()->getAs<VectorType>(); |
| 3080 | |
| 3081 | QualType ElTy; |
| 3082 | if (TyA) |
| 3083 | ElTy = TyA->getElementType(); |
| 3084 | else if (Arg->getType()->isSizelessVectorType()) |
| 3085 | ElTy = Arg->getType()->getSizelessVectorEltType(Ctx: Context); |
| 3086 | |
| 3087 | if (ElTy.isNull()) { |
| 3088 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
| 3089 | << 1 << /* vector ty */ 2 << /* no int */ 0 << /* no fp */ 0 |
| 3090 | << Arg->getType(); |
| 3091 | return ExprError(); |
| 3092 | } |
| 3093 | |
| 3094 | TheCall->setType(ElTy); |
| 3095 | break; |
| 3096 | } |
| 3097 | case Builtin::BI__builtin_reduce_maximum: |
| 3098 | case Builtin::BI__builtin_reduce_minimum: { |
| 3099 | if (PrepareBuiltinReduceMathOneArgCall(TheCall)) |
| 3100 | return ExprError(); |
| 3101 | |
| 3102 | const Expr *Arg = TheCall->getArg(Arg: 0); |
| 3103 | const auto *TyA = Arg->getType()->getAs<VectorType>(); |
| 3104 | |
| 3105 | QualType ElTy; |
| 3106 | if (TyA) |
| 3107 | ElTy = TyA->getElementType(); |
| 3108 | else if (Arg->getType()->isSizelessVectorType()) |
| 3109 | ElTy = Arg->getType()->getSizelessVectorEltType(Ctx: Context); |
| 3110 | |
| 3111 | if (ElTy.isNull() || !ElTy->isFloatingType()) { |
| 3112 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
| 3113 | << 1 << /* vector of */ 4 << /* no int */ 0 << /* fp */ 1 |
| 3114 | << Arg->getType(); |
| 3115 | return ExprError(); |
| 3116 | } |
| 3117 | |
| 3118 | TheCall->setType(ElTy); |
| 3119 | break; |
| 3120 | } |
| 3121 | |
| 3122 | // These builtins support vectors of integers only. |
| 3123 | // TODO: ADD/MUL should support floating-point types. |
| 3124 | case Builtin::BI__builtin_reduce_add: |
| 3125 | case Builtin::BI__builtin_reduce_mul: |
| 3126 | case Builtin::BI__builtin_reduce_xor: |
| 3127 | case Builtin::BI__builtin_reduce_or: |
| 3128 | case Builtin::BI__builtin_reduce_and: { |
| 3129 | if (PrepareBuiltinReduceMathOneArgCall(TheCall)) |
| 3130 | return ExprError(); |
| 3131 | |
| 3132 | const Expr *Arg = TheCall->getArg(Arg: 0); |
| 3133 | const auto *TyA = Arg->getType()->getAs<VectorType>(); |
| 3134 | |
| 3135 | QualType ElTy; |
| 3136 | if (TyA) |
| 3137 | ElTy = TyA->getElementType(); |
| 3138 | else if (Arg->getType()->isSizelessVectorType()) |
| 3139 | ElTy = Arg->getType()->getSizelessVectorEltType(Ctx: Context); |
| 3140 | |
| 3141 | if (ElTy.isNull() || !ElTy->isIntegerType()) { |
| 3142 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
| 3143 | << 1 << /* vector of */ 4 << /* int */ 1 << /* no fp */ 0 |
| 3144 | << Arg->getType(); |
| 3145 | return ExprError(); |
| 3146 | } |
| 3147 | |
| 3148 | TheCall->setType(ElTy); |
| 3149 | break; |
| 3150 | } |
| 3151 | |
| 3152 | case Builtin::BI__builtin_matrix_transpose: |
| 3153 | return BuiltinMatrixTranspose(TheCall, CallResult: TheCallResult); |
| 3154 | |
| 3155 | case Builtin::BI__builtin_matrix_column_major_load: |
| 3156 | return BuiltinMatrixColumnMajorLoad(TheCall, CallResult: TheCallResult); |
| 3157 | |
| 3158 | case Builtin::BI__builtin_matrix_column_major_store: |
| 3159 | return BuiltinMatrixColumnMajorStore(TheCall, CallResult: TheCallResult); |
| 3160 | |
| 3161 | case Builtin::BI__builtin_verbose_trap: |
| 3162 | if (!checkBuiltinVerboseTrap(Call: TheCall, S&: *this)) |
| 3163 | return ExprError(); |
| 3164 | break; |
| 3165 | |
| 3166 | case Builtin::BI__builtin_get_device_side_mangled_name: { |
| 3167 | auto Check = [](CallExpr *TheCall) { |
| 3168 | if (TheCall->getNumArgs() != 1) |
| 3169 | return false; |
| 3170 | auto *DRE = dyn_cast<DeclRefExpr>(Val: TheCall->getArg(Arg: 0)->IgnoreImpCasts()); |
| 3171 | if (!DRE) |
| 3172 | return false; |
| 3173 | auto *D = DRE->getDecl(); |
| 3174 | if (!isa<FunctionDecl>(Val: D) && !isa<VarDecl>(Val: D)) |
| 3175 | return false; |
| 3176 | return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() || |
| 3177 | D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>(); |
| 3178 | }; |
| 3179 | if (!Check(TheCall)) { |
| 3180 | Diag(Loc: TheCall->getBeginLoc(), |
| 3181 | DiagID: diag::err_hip_invalid_args_builtin_mangled_name); |
| 3182 | return ExprError(); |
| 3183 | } |
| 3184 | break; |
| 3185 | } |
| 3186 | case Builtin::BI__builtin_popcountg: |
| 3187 | if (BuiltinPopcountg(S&: *this, TheCall)) |
| 3188 | return ExprError(); |
| 3189 | break; |
| 3190 | case Builtin::BI__builtin_clzg: |
| 3191 | case Builtin::BI__builtin_ctzg: |
| 3192 | if (BuiltinCountZeroBitsGeneric(S&: *this, TheCall)) |
| 3193 | return ExprError(); |
| 3194 | break; |
| 3195 | |
| 3196 | case Builtin::BI__builtin_allow_runtime_check: { |
| 3197 | Expr *Arg = TheCall->getArg(Arg: 0); |
| 3198 | // Check if the argument is a string literal. |
| 3199 | if (!isa<StringLiteral>(Val: Arg->IgnoreParenImpCasts())) { |
| 3200 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_expr_not_string_literal) |
| 3201 | << Arg->getSourceRange(); |
| 3202 | return ExprError(); |
| 3203 | } |
| 3204 | break; |
| 3205 | } |
| 3206 | case Builtin::BI__builtin_counted_by_ref: |
| 3207 | if (BuiltinCountedByRef(TheCall)) |
| 3208 | return ExprError(); |
| 3209 | break; |
| 3210 | } |
| 3211 | |
| 3212 | if (getLangOpts().HLSL && HLSL().CheckBuiltinFunctionCall(BuiltinID, TheCall)) |
| 3213 | return ExprError(); |
| 3214 | |
| 3215 | // Since the target specific builtins for each arch overlap, only check those |
| 3216 | // of the arch we are compiling for. |
| 3217 | if (Context.BuiltinInfo.isTSBuiltin(ID: BuiltinID)) { |
| 3218 | if (Context.BuiltinInfo.isAuxBuiltinID(ID: BuiltinID)) { |
| 3219 | assert(Context.getAuxTargetInfo() && |
| 3220 | "Aux Target Builtin, but not an aux target?" ); |
| 3221 | |
| 3222 | if (CheckTSBuiltinFunctionCall( |
| 3223 | TI: *Context.getAuxTargetInfo(), |
| 3224 | BuiltinID: Context.BuiltinInfo.getAuxBuiltinID(ID: BuiltinID), TheCall)) |
| 3225 | return ExprError(); |
| 3226 | } else { |
| 3227 | if (CheckTSBuiltinFunctionCall(TI: Context.getTargetInfo(), BuiltinID, |
| 3228 | TheCall)) |
| 3229 | return ExprError(); |
| 3230 | } |
| 3231 | } |
| 3232 | |
| 3233 | return TheCallResult; |
| 3234 | } |
| 3235 | |
| 3236 | bool Sema::ValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) { |
| 3237 | llvm::APSInt Result; |
| 3238 | // We can't check the value of a dependent argument. |
| 3239 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
| 3240 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| 3241 | return false; |
| 3242 | |
| 3243 | // Check constant-ness first. |
| 3244 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
| 3245 | return true; |
| 3246 | |
| 3247 | // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s. |
| 3248 | if (Result.isShiftedMask() || (~Result).isShiftedMask()) |
| 3249 | return false; |
| 3250 | |
| 3251 | return Diag(Loc: TheCall->getBeginLoc(), |
| 3252 | DiagID: diag::err_argument_not_contiguous_bit_field) |
| 3253 | << ArgNum << Arg->getSourceRange(); |
| 3254 | } |
| 3255 | |
| 3256 | bool Sema::getFormatStringInfo(const Decl *D, unsigned FormatIdx, |
| 3257 | unsigned FirstArg, FormatStringInfo *FSI) { |
| 3258 | bool IsCXXMember = false; |
| 3259 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: D)) |
| 3260 | IsCXXMember = MD->isInstance(); |
| 3261 | bool IsVariadic = false; |
| 3262 | if (const FunctionType *FnTy = D->getFunctionType()) |
| 3263 | IsVariadic = cast<FunctionProtoType>(Val: FnTy)->isVariadic(); |
| 3264 | else if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) |
| 3265 | IsVariadic = BD->isVariadic(); |
| 3266 | else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(Val: D)) |
| 3267 | IsVariadic = OMD->isVariadic(); |
| 3268 | |
| 3269 | return getFormatStringInfo(FormatIdx, FirstArg, IsCXXMember, IsVariadic, FSI); |
| 3270 | } |
| 3271 | |
| 3272 | bool Sema::getFormatStringInfo(unsigned FormatIdx, unsigned FirstArg, |
| 3273 | bool IsCXXMember, bool IsVariadic, |
| 3274 | FormatStringInfo *FSI) { |
| 3275 | if (FirstArg == 0) |
| 3276 | FSI->ArgPassingKind = FAPK_VAList; |
| 3277 | else if (IsVariadic) |
| 3278 | FSI->ArgPassingKind = FAPK_Variadic; |
| 3279 | else |
| 3280 | FSI->ArgPassingKind = FAPK_Fixed; |
| 3281 | FSI->FormatIdx = FormatIdx - 1; |
| 3282 | FSI->FirstDataArg = FSI->ArgPassingKind == FAPK_VAList ? 0 : FirstArg - 1; |
| 3283 | |
| 3284 | // The way the format attribute works in GCC, the implicit this argument |
| 3285 | // of member functions is counted. However, it doesn't appear in our own |
| 3286 | // lists, so decrement format_idx in that case. |
| 3287 | if (IsCXXMember) { |
| 3288 | if(FSI->FormatIdx == 0) |
| 3289 | return false; |
| 3290 | --FSI->FormatIdx; |
| 3291 | if (FSI->FirstDataArg != 0) |
| 3292 | --FSI->FirstDataArg; |
| 3293 | } |
| 3294 | return true; |
| 3295 | } |
| 3296 | |
| 3297 | /// Checks if a the given expression evaluates to null. |
| 3298 | /// |
| 3299 | /// Returns true if the value evaluates to null. |
| 3300 | static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { |
| 3301 | // Treat (smart) pointers constructed from nullptr as null, whether we can |
| 3302 | // const-evaluate them or not. |
| 3303 | // This must happen first: the smart pointer expr might have _Nonnull type! |
| 3304 | if (isa<CXXNullPtrLiteralExpr>( |
| 3305 | Val: IgnoreExprNodes(E: Expr, Fns&: IgnoreImplicitAsWrittenSingleStep, |
| 3306 | Fns&: IgnoreElidableImplicitConstructorSingleStep))) |
| 3307 | return true; |
| 3308 | |
| 3309 | // If the expression has non-null type, it doesn't evaluate to null. |
| 3310 | if (auto nullability = Expr->IgnoreImplicit()->getType()->getNullability()) { |
| 3311 | if (*nullability == NullabilityKind::NonNull) |
| 3312 | return false; |
| 3313 | } |
| 3314 | |
| 3315 | // As a special case, transparent unions initialized with zero are |
| 3316 | // considered null for the purposes of the nonnull attribute. |
| 3317 | if (const RecordType *UT = Expr->getType()->getAsUnionType(); |
| 3318 | UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { |
| 3319 | if (const auto *CLE = dyn_cast<CompoundLiteralExpr>(Val: Expr)) |
| 3320 | if (const auto *ILE = dyn_cast<InitListExpr>(Val: CLE->getInitializer())) |
| 3321 | Expr = ILE->getInit(Init: 0); |
| 3322 | } |
| 3323 | |
| 3324 | bool Result; |
| 3325 | return (!Expr->isValueDependent() && |
| 3326 | Expr->EvaluateAsBooleanCondition(Result, Ctx: S.Context) && |
| 3327 | !Result); |
| 3328 | } |
| 3329 | |
| 3330 | static void CheckNonNullArgument(Sema &S, |
| 3331 | const Expr *ArgExpr, |
| 3332 | SourceLocation CallSiteLoc) { |
| 3333 | if (CheckNonNullExpr(S, Expr: ArgExpr)) |
| 3334 | S.DiagRuntimeBehavior(Loc: CallSiteLoc, Statement: ArgExpr, |
| 3335 | PD: S.PDiag(DiagID: diag::warn_null_arg) |
| 3336 | << ArgExpr->getSourceRange()); |
| 3337 | } |
| 3338 | |
| 3339 | /// Determine whether the given type has a non-null nullability annotation. |
| 3340 | static bool isNonNullType(QualType type) { |
| 3341 | if (auto nullability = type->getNullability()) |
| 3342 | return *nullability == NullabilityKind::NonNull; |
| 3343 | |
| 3344 | return false; |
| 3345 | } |
| 3346 | |
| 3347 | static void CheckNonNullArguments(Sema &S, |
| 3348 | const NamedDecl *FDecl, |
| 3349 | const FunctionProtoType *Proto, |
| 3350 | ArrayRef<const Expr *> Args, |
| 3351 | SourceLocation CallSiteLoc) { |
| 3352 | assert((FDecl || Proto) && "Need a function declaration or prototype" ); |
| 3353 | |
| 3354 | // Already checked by constant evaluator. |
| 3355 | if (S.isConstantEvaluatedContext()) |
| 3356 | return; |
| 3357 | // Check the attributes attached to the method/function itself. |
| 3358 | llvm::SmallBitVector NonNullArgs; |
| 3359 | if (FDecl) { |
| 3360 | // Handle the nonnull attribute on the function/method declaration itself. |
| 3361 | for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { |
| 3362 | if (!NonNull->args_size()) { |
| 3363 | // Easy case: all pointer arguments are nonnull. |
| 3364 | for (const auto *Arg : Args) |
| 3365 | if (S.isValidPointerAttrType(T: Arg->getType())) |
| 3366 | CheckNonNullArgument(S, ArgExpr: Arg, CallSiteLoc); |
| 3367 | return; |
| 3368 | } |
| 3369 | |
| 3370 | for (const ParamIdx &Idx : NonNull->args()) { |
| 3371 | unsigned IdxAST = Idx.getASTIndex(); |
| 3372 | if (IdxAST >= Args.size()) |
| 3373 | continue; |
| 3374 | if (NonNullArgs.empty()) |
| 3375 | NonNullArgs.resize(N: Args.size()); |
| 3376 | NonNullArgs.set(IdxAST); |
| 3377 | } |
| 3378 | } |
| 3379 | } |
| 3380 | |
| 3381 | if (FDecl && (isa<FunctionDecl>(Val: FDecl) || isa<ObjCMethodDecl>(Val: FDecl))) { |
| 3382 | // Handle the nonnull attribute on the parameters of the |
| 3383 | // function/method. |
| 3384 | ArrayRef<ParmVarDecl*> parms; |
| 3385 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: FDecl)) |
| 3386 | parms = FD->parameters(); |
| 3387 | else |
| 3388 | parms = cast<ObjCMethodDecl>(Val: FDecl)->parameters(); |
| 3389 | |
| 3390 | unsigned ParamIndex = 0; |
| 3391 | for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); |
| 3392 | I != E; ++I, ++ParamIndex) { |
| 3393 | const ParmVarDecl *PVD = *I; |
| 3394 | if (PVD->hasAttr<NonNullAttr>() || isNonNullType(type: PVD->getType())) { |
| 3395 | if (NonNullArgs.empty()) |
| 3396 | NonNullArgs.resize(N: Args.size()); |
| 3397 | |
| 3398 | NonNullArgs.set(ParamIndex); |
| 3399 | } |
| 3400 | } |
| 3401 | } else { |
| 3402 | // If we have a non-function, non-method declaration but no |
| 3403 | // function prototype, try to dig out the function prototype. |
| 3404 | if (!Proto) { |
| 3405 | if (const ValueDecl *VD = dyn_cast<ValueDecl>(Val: FDecl)) { |
| 3406 | QualType type = VD->getType().getNonReferenceType(); |
| 3407 | if (auto pointerType = type->getAs<PointerType>()) |
| 3408 | type = pointerType->getPointeeType(); |
| 3409 | else if (auto blockType = type->getAs<BlockPointerType>()) |
| 3410 | type = blockType->getPointeeType(); |
| 3411 | // FIXME: data member pointers? |
| 3412 | |
| 3413 | // Dig out the function prototype, if there is one. |
| 3414 | Proto = type->getAs<FunctionProtoType>(); |
| 3415 | } |
| 3416 | } |
| 3417 | |
| 3418 | // Fill in non-null argument information from the nullability |
| 3419 | // information on the parameter types (if we have them). |
| 3420 | if (Proto) { |
| 3421 | unsigned Index = 0; |
| 3422 | for (auto paramType : Proto->getParamTypes()) { |
| 3423 | if (isNonNullType(type: paramType)) { |
| 3424 | if (NonNullArgs.empty()) |
| 3425 | NonNullArgs.resize(N: Args.size()); |
| 3426 | |
| 3427 | NonNullArgs.set(Index); |
| 3428 | } |
| 3429 | |
| 3430 | ++Index; |
| 3431 | } |
| 3432 | } |
| 3433 | } |
| 3434 | |
| 3435 | // Check for non-null arguments. |
| 3436 | for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); |
| 3437 | ArgIndex != ArgIndexEnd; ++ArgIndex) { |
| 3438 | if (NonNullArgs[ArgIndex]) |
| 3439 | CheckNonNullArgument(S, ArgExpr: Args[ArgIndex], CallSiteLoc: Args[ArgIndex]->getExprLoc()); |
| 3440 | } |
| 3441 | } |
| 3442 | |
| 3443 | void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl, |
| 3444 | StringRef ParamName, QualType ArgTy, |
| 3445 | QualType ParamTy) { |
| 3446 | |
| 3447 | // If a function accepts a pointer or reference type |
| 3448 | if (!ParamTy->isPointerType() && !ParamTy->isReferenceType()) |
| 3449 | return; |
| 3450 | |
| 3451 | // If the parameter is a pointer type, get the pointee type for the |
| 3452 | // argument too. If the parameter is a reference type, don't try to get |
| 3453 | // the pointee type for the argument. |
| 3454 | if (ParamTy->isPointerType()) |
| 3455 | ArgTy = ArgTy->getPointeeType(); |
| 3456 | |
| 3457 | // Remove reference or pointer |
| 3458 | ParamTy = ParamTy->getPointeeType(); |
| 3459 | |
| 3460 | // Find expected alignment, and the actual alignment of the passed object. |
| 3461 | // getTypeAlignInChars requires complete types |
| 3462 | if (ArgTy.isNull() || ParamTy->isDependentType() || |
| 3463 | ParamTy->isIncompleteType() || ArgTy->isIncompleteType() || |
| 3464 | ParamTy->isUndeducedType() || ArgTy->isUndeducedType()) |
| 3465 | return; |
| 3466 | |
| 3467 | CharUnits ParamAlign = Context.getTypeAlignInChars(T: ParamTy); |
| 3468 | CharUnits ArgAlign = Context.getTypeAlignInChars(T: ArgTy); |
| 3469 | |
| 3470 | // If the argument is less aligned than the parameter, there is a |
| 3471 | // potential alignment issue. |
| 3472 | if (ArgAlign < ParamAlign) |
| 3473 | Diag(Loc, DiagID: diag::warn_param_mismatched_alignment) |
| 3474 | << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity() |
| 3475 | << ParamName << (FDecl != nullptr) << FDecl; |
| 3476 | } |
| 3477 | |
| 3478 | void Sema::checkLifetimeCaptureBy(FunctionDecl *FD, bool IsMemberFunction, |
| 3479 | const Expr *ThisArg, |
| 3480 | ArrayRef<const Expr *> Args) { |
| 3481 | if (!FD || Args.empty()) |
| 3482 | return; |
| 3483 | auto GetArgAt = [&](int Idx) -> const Expr * { |
| 3484 | if (Idx == LifetimeCaptureByAttr::Global || |
| 3485 | Idx == LifetimeCaptureByAttr::Unknown) |
| 3486 | return nullptr; |
| 3487 | if (IsMemberFunction && Idx == 0) |
| 3488 | return ThisArg; |
| 3489 | return Args[Idx - IsMemberFunction]; |
| 3490 | }; |
| 3491 | auto HandleCaptureByAttr = [&](const LifetimeCaptureByAttr *Attr, |
| 3492 | unsigned ArgIdx) { |
| 3493 | if (!Attr) |
| 3494 | return; |
| 3495 | |
| 3496 | Expr *Captured = const_cast<Expr *>(GetArgAt(ArgIdx)); |
| 3497 | for (int CapturingParamIdx : Attr->params()) { |
| 3498 | // lifetime_capture_by(this) case is handled in the lifetimebound expr |
| 3499 | // initialization codepath. |
| 3500 | if (CapturingParamIdx == LifetimeCaptureByAttr::This && |
| 3501 | isa<CXXConstructorDecl>(Val: FD)) |
| 3502 | continue; |
| 3503 | Expr *Capturing = const_cast<Expr *>(GetArgAt(CapturingParamIdx)); |
| 3504 | CapturingEntity CE{.Entity: Capturing}; |
| 3505 | // Ensure that 'Captured' outlives the 'Capturing' entity. |
| 3506 | checkCaptureByLifetime(SemaRef&: *this, Entity: CE, Init: Captured); |
| 3507 | } |
| 3508 | }; |
| 3509 | for (unsigned I = 0; I < FD->getNumParams(); ++I) |
| 3510 | HandleCaptureByAttr(FD->getParamDecl(i: I)->getAttr<LifetimeCaptureByAttr>(), |
| 3511 | I + IsMemberFunction); |
| 3512 | // Check when the implicit object param is captured. |
| 3513 | if (IsMemberFunction) { |
| 3514 | TypeSourceInfo *TSI = FD->getTypeSourceInfo(); |
| 3515 | if (!TSI) |
| 3516 | return; |
| 3517 | AttributedTypeLoc ATL; |
| 3518 | for (TypeLoc TL = TSI->getTypeLoc(); |
| 3519 | (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); |
| 3520 | TL = ATL.getModifiedLoc()) |
| 3521 | HandleCaptureByAttr(ATL.getAttrAs<LifetimeCaptureByAttr>(), 0); |
| 3522 | } |
| 3523 | } |
| 3524 | |
| 3525 | void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, |
| 3526 | const Expr *ThisArg, ArrayRef<const Expr *> Args, |
| 3527 | bool IsMemberFunction, SourceLocation Loc, |
| 3528 | SourceRange Range, VariadicCallType CallType) { |
| 3529 | // FIXME: We should check as much as we can in the template definition. |
| 3530 | if (CurContext->isDependentContext()) |
| 3531 | return; |
| 3532 | |
| 3533 | // Printf and scanf checking. |
| 3534 | llvm::SmallBitVector CheckedVarArgs; |
| 3535 | if (FDecl) { |
| 3536 | for (const auto *I : FDecl->specific_attrs<FormatMatchesAttr>()) { |
| 3537 | // Only create vector if there are format attributes. |
| 3538 | CheckedVarArgs.resize(N: Args.size()); |
| 3539 | CheckFormatString(Format: I, Args, IsCXXMember: IsMemberFunction, CallType, Loc, Range, |
| 3540 | CheckedVarArgs); |
| 3541 | } |
| 3542 | |
| 3543 | for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { |
| 3544 | CheckedVarArgs.resize(N: Args.size()); |
| 3545 | CheckFormatArguments(Format: I, Args, IsCXXMember: IsMemberFunction, CallType, Loc, Range, |
| 3546 | CheckedVarArgs); |
| 3547 | } |
| 3548 | } |
| 3549 | |
| 3550 | // Refuse POD arguments that weren't caught by the format string |
| 3551 | // checks above. |
| 3552 | auto *FD = dyn_cast_or_null<FunctionDecl>(Val: FDecl); |
| 3553 | if (CallType != VariadicCallType::DoesNotApply && |
| 3554 | (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { |
| 3555 | unsigned NumParams = Proto ? Proto->getNumParams() |
| 3556 | : isa_and_nonnull<FunctionDecl>(Val: FDecl) |
| 3557 | ? cast<FunctionDecl>(Val: FDecl)->getNumParams() |
| 3558 | : isa_and_nonnull<ObjCMethodDecl>(Val: FDecl) |
| 3559 | ? cast<ObjCMethodDecl>(Val: FDecl)->param_size() |
| 3560 | : 0; |
| 3561 | |
| 3562 | for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { |
| 3563 | // Args[ArgIdx] can be null in malformed code. |
| 3564 | if (const Expr *Arg = Args[ArgIdx]) { |
| 3565 | if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) |
| 3566 | checkVariadicArgument(E: Arg, CT: CallType); |
| 3567 | } |
| 3568 | } |
| 3569 | } |
| 3570 | if (FD) |
| 3571 | checkLifetimeCaptureBy(FD, IsMemberFunction, ThisArg, Args); |
| 3572 | if (FDecl || Proto) { |
| 3573 | CheckNonNullArguments(S&: *this, FDecl, Proto, Args, CallSiteLoc: Loc); |
| 3574 | |
| 3575 | // Type safety checking. |
| 3576 | if (FDecl) { |
| 3577 | for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) |
| 3578 | CheckArgumentWithTypeTag(Attr: I, ExprArgs: Args, CallSiteLoc: Loc); |
| 3579 | } |
| 3580 | } |
| 3581 | |
| 3582 | // Check that passed arguments match the alignment of original arguments. |
| 3583 | // Try to get the missing prototype from the declaration. |
| 3584 | if (!Proto && FDecl) { |
| 3585 | const auto *FT = FDecl->getFunctionType(); |
| 3586 | if (isa_and_nonnull<FunctionProtoType>(Val: FT)) |
| 3587 | Proto = cast<FunctionProtoType>(Val: FDecl->getFunctionType()); |
| 3588 | } |
| 3589 | if (Proto) { |
| 3590 | // For variadic functions, we may have more args than parameters. |
| 3591 | // For some K&R functions, we may have less args than parameters. |
| 3592 | const auto N = std::min<unsigned>(a: Proto->getNumParams(), b: Args.size()); |
| 3593 | bool IsScalableRet = Proto->getReturnType()->isSizelessVectorType(); |
| 3594 | bool IsScalableArg = false; |
| 3595 | for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) { |
| 3596 | // Args[ArgIdx] can be null in malformed code. |
| 3597 | if (const Expr *Arg = Args[ArgIdx]) { |
| 3598 | if (Arg->containsErrors()) |
| 3599 | continue; |
| 3600 | |
| 3601 | if (Context.getTargetInfo().getTriple().isOSAIX() && FDecl && Arg && |
| 3602 | FDecl->hasLinkage() && |
| 3603 | FDecl->getFormalLinkage() != Linkage::Internal && |
| 3604 | CallType == VariadicCallType::DoesNotApply) |
| 3605 | PPC().checkAIXMemberAlignment(Loc: (Arg->getExprLoc()), Arg); |
| 3606 | |
| 3607 | QualType ParamTy = Proto->getParamType(i: ArgIdx); |
| 3608 | if (ParamTy->isSizelessVectorType()) |
| 3609 | IsScalableArg = true; |
| 3610 | QualType ArgTy = Arg->getType(); |
| 3611 | CheckArgAlignment(Loc: Arg->getExprLoc(), FDecl, ParamName: std::to_string(val: ArgIdx + 1), |
| 3612 | ArgTy, ParamTy); |
| 3613 | } |
| 3614 | } |
| 3615 | |
| 3616 | // If the callee has an AArch64 SME attribute to indicate that it is an |
| 3617 | // __arm_streaming function, then the caller requires SME to be available. |
| 3618 | FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo(); |
| 3619 | if (ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask) { |
| 3620 | if (auto *CallerFD = dyn_cast<FunctionDecl>(Val: CurContext)) { |
| 3621 | llvm::StringMap<bool> CallerFeatureMap; |
| 3622 | Context.getFunctionFeatureMap(FeatureMap&: CallerFeatureMap, CallerFD); |
| 3623 | if (!CallerFeatureMap.contains(Key: "sme" )) |
| 3624 | Diag(Loc, DiagID: diag::err_sme_call_in_non_sme_target); |
| 3625 | } else if (!Context.getTargetInfo().hasFeature(Feature: "sme" )) { |
| 3626 | Diag(Loc, DiagID: diag::err_sme_call_in_non_sme_target); |
| 3627 | } |
| 3628 | } |
| 3629 | |
| 3630 | // If the call requires a streaming-mode change and has scalable vector |
| 3631 | // arguments or return values, then warn the user that the streaming and |
| 3632 | // non-streaming vector lengths may be different. |
| 3633 | const auto *CallerFD = dyn_cast<FunctionDecl>(Val: CurContext); |
| 3634 | if (CallerFD && (!FD || !FD->getBuiltinID()) && |
| 3635 | (IsScalableArg || IsScalableRet)) { |
| 3636 | bool IsCalleeStreaming = |
| 3637 | ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask; |
| 3638 | bool IsCalleeStreamingCompatible = |
| 3639 | ExtInfo.AArch64SMEAttributes & |
| 3640 | FunctionType::SME_PStateSMCompatibleMask; |
| 3641 | SemaARM::ArmStreamingType CallerFnType = getArmStreamingFnType(FD: CallerFD); |
| 3642 | if (!IsCalleeStreamingCompatible && |
| 3643 | (CallerFnType == SemaARM::ArmStreamingCompatible || |
| 3644 | ((CallerFnType == SemaARM::ArmStreaming) ^ IsCalleeStreaming))) { |
| 3645 | if (IsScalableArg) |
| 3646 | Diag(Loc, DiagID: diag::warn_sme_streaming_pass_return_vl_to_non_streaming) |
| 3647 | << /*IsArg=*/true; |
| 3648 | if (IsScalableRet) |
| 3649 | Diag(Loc, DiagID: diag::warn_sme_streaming_pass_return_vl_to_non_streaming) |
| 3650 | << /*IsArg=*/false; |
| 3651 | } |
| 3652 | } |
| 3653 | |
| 3654 | FunctionType::ArmStateValue CalleeArmZAState = |
| 3655 | FunctionType::getArmZAState(AttrBits: ExtInfo.AArch64SMEAttributes); |
| 3656 | FunctionType::ArmStateValue CalleeArmZT0State = |
| 3657 | FunctionType::getArmZT0State(AttrBits: ExtInfo.AArch64SMEAttributes); |
| 3658 | if (CalleeArmZAState != FunctionType::ARM_None || |
| 3659 | CalleeArmZT0State != FunctionType::ARM_None) { |
| 3660 | bool CallerHasZAState = false; |
| 3661 | bool CallerHasZT0State = false; |
| 3662 | if (CallerFD) { |
| 3663 | auto *Attr = CallerFD->getAttr<ArmNewAttr>(); |
| 3664 | if (Attr && Attr->isNewZA()) |
| 3665 | CallerHasZAState = true; |
| 3666 | if (Attr && Attr->isNewZT0()) |
| 3667 | CallerHasZT0State = true; |
| 3668 | if (const auto *FPT = CallerFD->getType()->getAs<FunctionProtoType>()) { |
| 3669 | CallerHasZAState |= |
| 3670 | FunctionType::getArmZAState( |
| 3671 | AttrBits: FPT->getExtProtoInfo().AArch64SMEAttributes) != |
| 3672 | FunctionType::ARM_None; |
| 3673 | CallerHasZT0State |= |
| 3674 | FunctionType::getArmZT0State( |
| 3675 | AttrBits: FPT->getExtProtoInfo().AArch64SMEAttributes) != |
| 3676 | FunctionType::ARM_None; |
| 3677 | } |
| 3678 | } |
| 3679 | |
| 3680 | if (CalleeArmZAState != FunctionType::ARM_None && !CallerHasZAState) |
| 3681 | Diag(Loc, DiagID: diag::err_sme_za_call_no_za_state); |
| 3682 | |
| 3683 | if (CalleeArmZT0State != FunctionType::ARM_None && !CallerHasZT0State) |
| 3684 | Diag(Loc, DiagID: diag::err_sme_zt0_call_no_zt0_state); |
| 3685 | |
| 3686 | if (CallerHasZAState && CalleeArmZAState == FunctionType::ARM_None && |
| 3687 | CalleeArmZT0State != FunctionType::ARM_None) { |
| 3688 | Diag(Loc, DiagID: diag::err_sme_unimplemented_za_save_restore); |
| 3689 | Diag(Loc, DiagID: diag::note_sme_use_preserves_za); |
| 3690 | } |
| 3691 | } |
| 3692 | } |
| 3693 | |
| 3694 | if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) { |
| 3695 | auto *AA = FDecl->getAttr<AllocAlignAttr>(); |
| 3696 | const Expr *Arg = Args[AA->getParamIndex().getASTIndex()]; |
| 3697 | if (!Arg->isValueDependent()) { |
| 3698 | Expr::EvalResult Align; |
| 3699 | if (Arg->EvaluateAsInt(Result&: Align, Ctx: Context)) { |
| 3700 | const llvm::APSInt &I = Align.Val.getInt(); |
| 3701 | if (!I.isPowerOf2()) |
| 3702 | Diag(Loc: Arg->getExprLoc(), DiagID: diag::warn_alignment_not_power_of_two) |
| 3703 | << Arg->getSourceRange(); |
| 3704 | |
| 3705 | if (I > Sema::MaximumAlignment) |
| 3706 | Diag(Loc: Arg->getExprLoc(), DiagID: diag::warn_assume_aligned_too_great) |
| 3707 | << Arg->getSourceRange() << Sema::MaximumAlignment; |
| 3708 | } |
| 3709 | } |
| 3710 | } |
| 3711 | |
| 3712 | if (FD) |
| 3713 | diagnoseArgDependentDiagnoseIfAttrs(Function: FD, ThisArg, Args, Loc); |
| 3714 | } |
| 3715 | |
| 3716 | void Sema::CheckConstrainedAuto(const AutoType *AutoT, SourceLocation Loc) { |
| 3717 | if (ConceptDecl *Decl = AutoT->getTypeConstraintConcept()) { |
| 3718 | DiagnoseUseOfDecl(D: Decl, Locs: Loc); |
| 3719 | } |
| 3720 | } |
| 3721 | |
| 3722 | void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType, |
| 3723 | ArrayRef<const Expr *> Args, |
| 3724 | const FunctionProtoType *Proto, |
| 3725 | SourceLocation Loc) { |
| 3726 | VariadicCallType CallType = Proto->isVariadic() |
| 3727 | ? VariadicCallType::Constructor |
| 3728 | : VariadicCallType::DoesNotApply; |
| 3729 | |
| 3730 | auto *Ctor = cast<CXXConstructorDecl>(Val: FDecl); |
| 3731 | CheckArgAlignment( |
| 3732 | Loc, FDecl, ParamName: "'this'" , ArgTy: Context.getPointerType(T: ThisType), |
| 3733 | ParamTy: Context.getPointerType(T: Ctor->getFunctionObjectParameterType())); |
| 3734 | |
| 3735 | checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, |
| 3736 | Loc, Range: SourceRange(), CallType); |
| 3737 | } |
| 3738 | |
| 3739 | bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, |
| 3740 | const FunctionProtoType *Proto) { |
| 3741 | bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(Val: TheCall) && |
| 3742 | isa<CXXMethodDecl>(Val: FDecl); |
| 3743 | bool IsMemberFunction = isa<CXXMemberCallExpr>(Val: TheCall) || |
| 3744 | IsMemberOperatorCall; |
| 3745 | VariadicCallType CallType = getVariadicCallType(FDecl, Proto, |
| 3746 | Fn: TheCall->getCallee()); |
| 3747 | Expr** Args = TheCall->getArgs(); |
| 3748 | unsigned NumArgs = TheCall->getNumArgs(); |
| 3749 | |
| 3750 | Expr *ImplicitThis = nullptr; |
| 3751 | if (IsMemberOperatorCall && !FDecl->hasCXXExplicitFunctionObjectParameter()) { |
| 3752 | // If this is a call to a member operator, hide the first |
| 3753 | // argument from checkCall. |
| 3754 | // FIXME: Our choice of AST representation here is less than ideal. |
| 3755 | ImplicitThis = Args[0]; |
| 3756 | ++Args; |
| 3757 | --NumArgs; |
| 3758 | } else if (IsMemberFunction && !FDecl->isStatic() && |
| 3759 | !FDecl->hasCXXExplicitFunctionObjectParameter()) |
| 3760 | ImplicitThis = |
| 3761 | cast<CXXMemberCallExpr>(Val: TheCall)->getImplicitObjectArgument(); |
| 3762 | |
| 3763 | if (ImplicitThis) { |
| 3764 | // ImplicitThis may or may not be a pointer, depending on whether . or -> is |
| 3765 | // used. |
| 3766 | QualType ThisType = ImplicitThis->getType(); |
| 3767 | if (!ThisType->isPointerType()) { |
| 3768 | assert(!ThisType->isReferenceType()); |
| 3769 | ThisType = Context.getPointerType(T: ThisType); |
| 3770 | } |
| 3771 | |
| 3772 | QualType ThisTypeFromDecl = Context.getPointerType( |
| 3773 | T: cast<CXXMethodDecl>(Val: FDecl)->getFunctionObjectParameterType()); |
| 3774 | |
| 3775 | CheckArgAlignment(Loc: TheCall->getRParenLoc(), FDecl, ParamName: "'this'" , ArgTy: ThisType, |
| 3776 | ParamTy: ThisTypeFromDecl); |
| 3777 | } |
| 3778 | |
| 3779 | checkCall(FDecl, Proto, ThisArg: ImplicitThis, Args: llvm::ArrayRef(Args, NumArgs), |
| 3780 | IsMemberFunction, Loc: TheCall->getRParenLoc(), |
| 3781 | Range: TheCall->getCallee()->getSourceRange(), CallType); |
| 3782 | |
| 3783 | IdentifierInfo *FnInfo = FDecl->getIdentifier(); |
| 3784 | // None of the checks below are needed for functions that don't have |
| 3785 | // simple names (e.g., C++ conversion functions). |
| 3786 | if (!FnInfo) |
| 3787 | return false; |
| 3788 | |
| 3789 | // Enforce TCB except for builtin calls, which are always allowed. |
| 3790 | if (FDecl->getBuiltinID() == 0) |
| 3791 | CheckTCBEnforcement(CallExprLoc: TheCall->getExprLoc(), Callee: FDecl); |
| 3792 | |
| 3793 | CheckAbsoluteValueFunction(Call: TheCall, FDecl); |
| 3794 | CheckMaxUnsignedZero(Call: TheCall, FDecl); |
| 3795 | CheckInfNaNFunction(Call: TheCall, FDecl); |
| 3796 | |
| 3797 | if (getLangOpts().ObjC) |
| 3798 | ObjC().DiagnoseCStringFormatDirectiveInCFAPI(FDecl, Args, NumArgs); |
| 3799 | |
| 3800 | unsigned CMId = FDecl->getMemoryFunctionKind(); |
| 3801 | |
| 3802 | // Handle memory setting and copying functions. |
| 3803 | switch (CMId) { |
| 3804 | case 0: |
| 3805 | return false; |
| 3806 | case Builtin::BIstrlcpy: // fallthrough |
| 3807 | case Builtin::BIstrlcat: |
| 3808 | CheckStrlcpycatArguments(Call: TheCall, FnName: FnInfo); |
| 3809 | break; |
| 3810 | case Builtin::BIstrncat: |
| 3811 | CheckStrncatArguments(Call: TheCall, FnName: FnInfo); |
| 3812 | break; |
| 3813 | case Builtin::BIfree: |
| 3814 | CheckFreeArguments(E: TheCall); |
| 3815 | break; |
| 3816 | default: |
| 3817 | CheckMemaccessArguments(Call: TheCall, BId: CMId, FnName: FnInfo); |
| 3818 | } |
| 3819 | |
| 3820 | return false; |
| 3821 | } |
| 3822 | |
| 3823 | bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, |
| 3824 | const FunctionProtoType *Proto) { |
| 3825 | QualType Ty; |
| 3826 | if (const auto *V = dyn_cast<VarDecl>(Val: NDecl)) |
| 3827 | Ty = V->getType().getNonReferenceType(); |
| 3828 | else if (const auto *F = dyn_cast<FieldDecl>(Val: NDecl)) |
| 3829 | Ty = F->getType().getNonReferenceType(); |
| 3830 | else |
| 3831 | return false; |
| 3832 | |
| 3833 | if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && |
| 3834 | !Ty->isFunctionProtoType()) |
| 3835 | return false; |
| 3836 | |
| 3837 | VariadicCallType CallType; |
| 3838 | if (!Proto || !Proto->isVariadic()) { |
| 3839 | CallType = VariadicCallType::DoesNotApply; |
| 3840 | } else if (Ty->isBlockPointerType()) { |
| 3841 | CallType = VariadicCallType::Block; |
| 3842 | } else { // Ty->isFunctionPointerType() |
| 3843 | CallType = VariadicCallType::Function; |
| 3844 | } |
| 3845 | |
| 3846 | checkCall(FDecl: NDecl, Proto, /*ThisArg=*/nullptr, |
| 3847 | Args: llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), |
| 3848 | /*IsMemberFunction=*/false, Loc: TheCall->getRParenLoc(), |
| 3849 | Range: TheCall->getCallee()->getSourceRange(), CallType); |
| 3850 | |
| 3851 | return false; |
| 3852 | } |
| 3853 | |
| 3854 | bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { |
| 3855 | VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, |
| 3856 | Fn: TheCall->getCallee()); |
| 3857 | checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, |
| 3858 | Args: llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), |
| 3859 | /*IsMemberFunction=*/false, Loc: TheCall->getRParenLoc(), |
| 3860 | Range: TheCall->getCallee()->getSourceRange(), CallType); |
| 3861 | |
| 3862 | return false; |
| 3863 | } |
| 3864 | |
| 3865 | static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { |
| 3866 | if (!llvm::isValidAtomicOrderingCABI(I: Ordering)) |
| 3867 | return false; |
| 3868 | |
| 3869 | auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; |
| 3870 | switch (Op) { |
| 3871 | case AtomicExpr::AO__c11_atomic_init: |
| 3872 | case AtomicExpr::AO__opencl_atomic_init: |
| 3873 | llvm_unreachable("There is no ordering argument for an init" ); |
| 3874 | |
| 3875 | case AtomicExpr::AO__c11_atomic_load: |
| 3876 | case AtomicExpr::AO__opencl_atomic_load: |
| 3877 | case AtomicExpr::AO__hip_atomic_load: |
| 3878 | case AtomicExpr::AO__atomic_load_n: |
| 3879 | case AtomicExpr::AO__atomic_load: |
| 3880 | case AtomicExpr::AO__scoped_atomic_load_n: |
| 3881 | case AtomicExpr::AO__scoped_atomic_load: |
| 3882 | return OrderingCABI != llvm::AtomicOrderingCABI::release && |
| 3883 | OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; |
| 3884 | |
| 3885 | case AtomicExpr::AO__c11_atomic_store: |
| 3886 | case AtomicExpr::AO__opencl_atomic_store: |
| 3887 | case AtomicExpr::AO__hip_atomic_store: |
| 3888 | case AtomicExpr::AO__atomic_store: |
| 3889 | case AtomicExpr::AO__atomic_store_n: |
| 3890 | case AtomicExpr::AO__scoped_atomic_store: |
| 3891 | case AtomicExpr::AO__scoped_atomic_store_n: |
| 3892 | case AtomicExpr::AO__atomic_clear: |
| 3893 | return OrderingCABI != llvm::AtomicOrderingCABI::consume && |
| 3894 | OrderingCABI != llvm::AtomicOrderingCABI::acquire && |
| 3895 | OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; |
| 3896 | |
| 3897 | default: |
| 3898 | return true; |
| 3899 | } |
| 3900 | } |
| 3901 | |
| 3902 | ExprResult Sema::AtomicOpsOverloaded(ExprResult TheCallResult, |
| 3903 | AtomicExpr::AtomicOp Op) { |
| 3904 | CallExpr *TheCall = cast<CallExpr>(Val: TheCallResult.get()); |
| 3905 | DeclRefExpr *DRE =cast<DeclRefExpr>(Val: TheCall->getCallee()->IgnoreParenCasts()); |
| 3906 | MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; |
| 3907 | return BuildAtomicExpr(CallRange: {TheCall->getBeginLoc(), TheCall->getEndLoc()}, |
| 3908 | ExprRange: DRE->getSourceRange(), RParenLoc: TheCall->getRParenLoc(), Args, |
| 3909 | Op); |
| 3910 | } |
| 3911 | |
| 3912 | ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, |
| 3913 | SourceLocation RParenLoc, MultiExprArg Args, |
| 3914 | AtomicExpr::AtomicOp Op, |
| 3915 | AtomicArgumentOrder ArgOrder) { |
| 3916 | // All the non-OpenCL operations take one of the following forms. |
| 3917 | // The OpenCL operations take the __c11 forms with one extra argument for |
| 3918 | // synchronization scope. |
| 3919 | enum { |
| 3920 | // C __c11_atomic_init(A *, C) |
| 3921 | Init, |
| 3922 | |
| 3923 | // C __c11_atomic_load(A *, int) |
| 3924 | Load, |
| 3925 | |
| 3926 | // void __atomic_load(A *, CP, int) |
| 3927 | LoadCopy, |
| 3928 | |
| 3929 | // void __atomic_store(A *, CP, int) |
| 3930 | Copy, |
| 3931 | |
| 3932 | // C __c11_atomic_add(A *, M, int) |
| 3933 | Arithmetic, |
| 3934 | |
| 3935 | // C __atomic_exchange_n(A *, CP, int) |
| 3936 | Xchg, |
| 3937 | |
| 3938 | // void __atomic_exchange(A *, C *, CP, int) |
| 3939 | GNUXchg, |
| 3940 | |
| 3941 | // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) |
| 3942 | C11CmpXchg, |
| 3943 | |
| 3944 | // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) |
| 3945 | GNUCmpXchg, |
| 3946 | |
| 3947 | // bool __atomic_test_and_set(A *, int) |
| 3948 | TestAndSetByte, |
| 3949 | |
| 3950 | // void __atomic_clear(A *, int) |
| 3951 | ClearByte, |
| 3952 | } Form = Init; |
| 3953 | |
| 3954 | const unsigned NumForm = ClearByte + 1; |
| 3955 | const unsigned NumArgs[] = {2, 2, 3, 3, 3, 3, 4, 5, 6, 2, 2}; |
| 3956 | const unsigned NumVals[] = {1, 0, 1, 1, 1, 1, 2, 2, 3, 0, 0}; |
| 3957 | // where: |
| 3958 | // C is an appropriate type, |
| 3959 | // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, |
| 3960 | // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, |
| 3961 | // M is C if C is an integer, and ptrdiff_t if C is a pointer, and |
| 3962 | // the int parameters are for orderings. |
| 3963 | |
| 3964 | static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm |
| 3965 | && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, |
| 3966 | "need to update code for modified forms" ); |
| 3967 | static_assert(AtomicExpr::AO__atomic_add_fetch == 0 && |
| 3968 | AtomicExpr::AO__atomic_xor_fetch + 1 == |
| 3969 | AtomicExpr::AO__c11_atomic_compare_exchange_strong, |
| 3970 | "need to update code for modified C11 atomics" ); |
| 3971 | bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_compare_exchange_strong && |
| 3972 | Op <= AtomicExpr::AO__opencl_atomic_store; |
| 3973 | bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_compare_exchange_strong && |
| 3974 | Op <= AtomicExpr::AO__hip_atomic_store; |
| 3975 | bool IsScoped = Op >= AtomicExpr::AO__scoped_atomic_add_fetch && |
| 3976 | Op <= AtomicExpr::AO__scoped_atomic_xor_fetch; |
| 3977 | bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_compare_exchange_strong && |
| 3978 | Op <= AtomicExpr::AO__c11_atomic_store) || |
| 3979 | IsOpenCL; |
| 3980 | bool IsN = Op == AtomicExpr::AO__atomic_load_n || |
| 3981 | Op == AtomicExpr::AO__atomic_store_n || |
| 3982 | Op == AtomicExpr::AO__atomic_exchange_n || |
| 3983 | Op == AtomicExpr::AO__atomic_compare_exchange_n || |
| 3984 | Op == AtomicExpr::AO__scoped_atomic_load_n || |
| 3985 | Op == AtomicExpr::AO__scoped_atomic_store_n || |
| 3986 | Op == AtomicExpr::AO__scoped_atomic_exchange_n || |
| 3987 | Op == AtomicExpr::AO__scoped_atomic_compare_exchange_n; |
| 3988 | // Bit mask for extra allowed value types other than integers for atomic |
| 3989 | // arithmetic operations. Add/sub allow pointer and floating point. Min/max |
| 3990 | // allow floating point. |
| 3991 | enum { |
| 3992 | AOEVT_None = 0, |
| 3993 | AOEVT_Pointer = 1, |
| 3994 | AOEVT_FP = 2, |
| 3995 | }; |
| 3996 | unsigned ArithAllows = AOEVT_None; |
| 3997 | |
| 3998 | switch (Op) { |
| 3999 | case AtomicExpr::AO__c11_atomic_init: |
| 4000 | case AtomicExpr::AO__opencl_atomic_init: |
| 4001 | Form = Init; |
| 4002 | break; |
| 4003 | |
| 4004 | case AtomicExpr::AO__c11_atomic_load: |
| 4005 | case AtomicExpr::AO__opencl_atomic_load: |
| 4006 | case AtomicExpr::AO__hip_atomic_load: |
| 4007 | case AtomicExpr::AO__atomic_load_n: |
| 4008 | case AtomicExpr::AO__scoped_atomic_load_n: |
| 4009 | Form = Load; |
| 4010 | break; |
| 4011 | |
| 4012 | case AtomicExpr::AO__atomic_load: |
| 4013 | case AtomicExpr::AO__scoped_atomic_load: |
| 4014 | Form = LoadCopy; |
| 4015 | break; |
| 4016 | |
| 4017 | case AtomicExpr::AO__c11_atomic_store: |
| 4018 | case AtomicExpr::AO__opencl_atomic_store: |
| 4019 | case AtomicExpr::AO__hip_atomic_store: |
| 4020 | case AtomicExpr::AO__atomic_store: |
| 4021 | case AtomicExpr::AO__atomic_store_n: |
| 4022 | case AtomicExpr::AO__scoped_atomic_store: |
| 4023 | case AtomicExpr::AO__scoped_atomic_store_n: |
| 4024 | Form = Copy; |
| 4025 | break; |
| 4026 | case AtomicExpr::AO__atomic_fetch_add: |
| 4027 | case AtomicExpr::AO__atomic_fetch_sub: |
| 4028 | case AtomicExpr::AO__atomic_add_fetch: |
| 4029 | case AtomicExpr::AO__atomic_sub_fetch: |
| 4030 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
| 4031 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
| 4032 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
| 4033 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
| 4034 | case AtomicExpr::AO__c11_atomic_fetch_add: |
| 4035 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
| 4036 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
| 4037 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
| 4038 | case AtomicExpr::AO__hip_atomic_fetch_add: |
| 4039 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
| 4040 | ArithAllows = AOEVT_Pointer | AOEVT_FP; |
| 4041 | Form = Arithmetic; |
| 4042 | break; |
| 4043 | case AtomicExpr::AO__atomic_fetch_max: |
| 4044 | case AtomicExpr::AO__atomic_fetch_min: |
| 4045 | case AtomicExpr::AO__atomic_max_fetch: |
| 4046 | case AtomicExpr::AO__atomic_min_fetch: |
| 4047 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
| 4048 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
| 4049 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
| 4050 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
| 4051 | case AtomicExpr::AO__c11_atomic_fetch_max: |
| 4052 | case AtomicExpr::AO__c11_atomic_fetch_min: |
| 4053 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
| 4054 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
| 4055 | case AtomicExpr::AO__hip_atomic_fetch_max: |
| 4056 | case AtomicExpr::AO__hip_atomic_fetch_min: |
| 4057 | ArithAllows = AOEVT_FP; |
| 4058 | Form = Arithmetic; |
| 4059 | break; |
| 4060 | case AtomicExpr::AO__c11_atomic_fetch_and: |
| 4061 | case AtomicExpr::AO__c11_atomic_fetch_or: |
| 4062 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
| 4063 | case AtomicExpr::AO__hip_atomic_fetch_and: |
| 4064 | case AtomicExpr::AO__hip_atomic_fetch_or: |
| 4065 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
| 4066 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
| 4067 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
| 4068 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
| 4069 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
| 4070 | case AtomicExpr::AO__atomic_fetch_and: |
| 4071 | case AtomicExpr::AO__atomic_fetch_or: |
| 4072 | case AtomicExpr::AO__atomic_fetch_xor: |
| 4073 | case AtomicExpr::AO__atomic_fetch_nand: |
| 4074 | case AtomicExpr::AO__atomic_and_fetch: |
| 4075 | case AtomicExpr::AO__atomic_or_fetch: |
| 4076 | case AtomicExpr::AO__atomic_xor_fetch: |
| 4077 | case AtomicExpr::AO__atomic_nand_fetch: |
| 4078 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
| 4079 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
| 4080 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
| 4081 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
| 4082 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
| 4083 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
| 4084 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
| 4085 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
| 4086 | Form = Arithmetic; |
| 4087 | break; |
| 4088 | |
| 4089 | case AtomicExpr::AO__c11_atomic_exchange: |
| 4090 | case AtomicExpr::AO__hip_atomic_exchange: |
| 4091 | case AtomicExpr::AO__opencl_atomic_exchange: |
| 4092 | case AtomicExpr::AO__atomic_exchange_n: |
| 4093 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
| 4094 | Form = Xchg; |
| 4095 | break; |
| 4096 | |
| 4097 | case AtomicExpr::AO__atomic_exchange: |
| 4098 | case AtomicExpr::AO__scoped_atomic_exchange: |
| 4099 | Form = GNUXchg; |
| 4100 | break; |
| 4101 | |
| 4102 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
| 4103 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
| 4104 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
| 4105 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
| 4106 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
| 4107 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
| 4108 | Form = C11CmpXchg; |
| 4109 | break; |
| 4110 | |
| 4111 | case AtomicExpr::AO__atomic_compare_exchange: |
| 4112 | case AtomicExpr::AO__atomic_compare_exchange_n: |
| 4113 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
| 4114 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: |
| 4115 | Form = GNUCmpXchg; |
| 4116 | break; |
| 4117 | |
| 4118 | case AtomicExpr::AO__atomic_test_and_set: |
| 4119 | Form = TestAndSetByte; |
| 4120 | break; |
| 4121 | |
| 4122 | case AtomicExpr::AO__atomic_clear: |
| 4123 | Form = ClearByte; |
| 4124 | break; |
| 4125 | } |
| 4126 | |
| 4127 | unsigned AdjustedNumArgs = NumArgs[Form]; |
| 4128 | if ((IsOpenCL || IsHIP || IsScoped) && |
| 4129 | Op != AtomicExpr::AO__opencl_atomic_init) |
| 4130 | ++AdjustedNumArgs; |
| 4131 | // Check we have the right number of arguments. |
| 4132 | if (Args.size() < AdjustedNumArgs) { |
| 4133 | Diag(Loc: CallRange.getEnd(), DiagID: diag::err_typecheck_call_too_few_args) |
| 4134 | << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) |
| 4135 | << /*is non object*/ 0 << ExprRange; |
| 4136 | return ExprError(); |
| 4137 | } else if (Args.size() > AdjustedNumArgs) { |
| 4138 | Diag(Loc: Args[AdjustedNumArgs]->getBeginLoc(), |
| 4139 | DiagID: diag::err_typecheck_call_too_many_args) |
| 4140 | << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) |
| 4141 | << /*is non object*/ 0 << ExprRange; |
| 4142 | return ExprError(); |
| 4143 | } |
| 4144 | |
| 4145 | // Inspect the first argument of the atomic operation. |
| 4146 | Expr *Ptr = Args[0]; |
| 4147 | ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(E: Ptr); |
| 4148 | if (ConvertedPtr.isInvalid()) |
| 4149 | return ExprError(); |
| 4150 | |
| 4151 | Ptr = ConvertedPtr.get(); |
| 4152 | const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); |
| 4153 | if (!pointerType) { |
| 4154 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_atomic_builtin_must_be_pointer) |
| 4155 | << Ptr->getType() << 0 << Ptr->getSourceRange(); |
| 4156 | return ExprError(); |
| 4157 | } |
| 4158 | |
| 4159 | // For a __c11 builtin, this should be a pointer to an _Atomic type. |
| 4160 | QualType AtomTy = pointerType->getPointeeType(); // 'A' |
| 4161 | QualType ValType = AtomTy; // 'C' |
| 4162 | if (IsC11) { |
| 4163 | if (!AtomTy->isAtomicType()) { |
| 4164 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_atomic_op_needs_atomic) |
| 4165 | << Ptr->getType() << Ptr->getSourceRange(); |
| 4166 | return ExprError(); |
| 4167 | } |
| 4168 | if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || |
| 4169 | AtomTy.getAddressSpace() == LangAS::opencl_constant) { |
| 4170 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_atomic_op_needs_non_const_atomic) |
| 4171 | << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() |
| 4172 | << Ptr->getSourceRange(); |
| 4173 | return ExprError(); |
| 4174 | } |
| 4175 | ValType = AtomTy->castAs<AtomicType>()->getValueType(); |
| 4176 | } else if (Form != Load && Form != LoadCopy) { |
| 4177 | if (ValType.isConstQualified()) { |
| 4178 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_atomic_op_needs_non_const_pointer) |
| 4179 | << Ptr->getType() << Ptr->getSourceRange(); |
| 4180 | return ExprError(); |
| 4181 | } |
| 4182 | } |
| 4183 | |
| 4184 | if (Form != TestAndSetByte && Form != ClearByte) { |
| 4185 | // Pointer to object of size zero is not allowed. |
| 4186 | if (RequireCompleteType(Loc: Ptr->getBeginLoc(), T: AtomTy, |
| 4187 | DiagID: diag::err_incomplete_type)) |
| 4188 | return ExprError(); |
| 4189 | |
| 4190 | if (Context.getTypeInfoInChars(T: AtomTy).Width.isZero()) { |
| 4191 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_atomic_builtin_must_be_pointer) |
| 4192 | << Ptr->getType() << 1 << Ptr->getSourceRange(); |
| 4193 | return ExprError(); |
| 4194 | } |
| 4195 | } else { |
| 4196 | // The __atomic_clear and __atomic_test_and_set intrinsics accept any |
| 4197 | // non-const pointer type, including void* and pointers to incomplete |
| 4198 | // structs, but only access the first byte. |
| 4199 | AtomTy = Context.CharTy; |
| 4200 | AtomTy = AtomTy.withCVRQualifiers( |
| 4201 | CVR: pointerType->getPointeeType().getCVRQualifiers()); |
| 4202 | QualType PointerQT = Context.getPointerType(T: AtomTy); |
| 4203 | pointerType = PointerQT->getAs<PointerType>(); |
| 4204 | Ptr = ImpCastExprToType(E: Ptr, Type: PointerQT, CK: CK_BitCast).get(); |
| 4205 | ValType = AtomTy; |
| 4206 | } |
| 4207 | |
| 4208 | PointerAuthQualifier PointerAuth = AtomTy.getPointerAuth(); |
| 4209 | if (PointerAuth && PointerAuth.isAddressDiscriminated()) { |
| 4210 | Diag(Loc: ExprRange.getBegin(), |
| 4211 | DiagID: diag::err_atomic_op_needs_non_address_discriminated_pointer) |
| 4212 | << 0 << Ptr->getType() << Ptr->getSourceRange(); |
| 4213 | return ExprError(); |
| 4214 | } |
| 4215 | |
| 4216 | // For an arithmetic operation, the implied arithmetic must be well-formed. |
| 4217 | if (Form == Arithmetic) { |
| 4218 | // GCC does not enforce these rules for GNU atomics, but we do to help catch |
| 4219 | // trivial type errors. |
| 4220 | auto IsAllowedValueType = [&](QualType ValType, |
| 4221 | unsigned AllowedType) -> bool { |
| 4222 | if (ValType->isIntegerType()) |
| 4223 | return true; |
| 4224 | if (ValType->isPointerType()) |
| 4225 | return AllowedType & AOEVT_Pointer; |
| 4226 | if (!(ValType->isFloatingType() && (AllowedType & AOEVT_FP))) |
| 4227 | return false; |
| 4228 | // LLVM Parser does not allow atomicrmw with x86_fp80 type. |
| 4229 | if (ValType->isSpecificBuiltinType(K: BuiltinType::LongDouble) && |
| 4230 | &Context.getTargetInfo().getLongDoubleFormat() == |
| 4231 | &llvm::APFloat::x87DoubleExtended()) |
| 4232 | return false; |
| 4233 | return true; |
| 4234 | }; |
| 4235 | if (!IsAllowedValueType(ValType, ArithAllows)) { |
| 4236 | auto DID = ArithAllows & AOEVT_FP |
| 4237 | ? (ArithAllows & AOEVT_Pointer |
| 4238 | ? diag::err_atomic_op_needs_atomic_int_ptr_or_fp |
| 4239 | : diag::err_atomic_op_needs_atomic_int_or_fp) |
| 4240 | : diag::err_atomic_op_needs_atomic_int; |
| 4241 | Diag(Loc: ExprRange.getBegin(), DiagID: DID) |
| 4242 | << IsC11 << Ptr->getType() << Ptr->getSourceRange(); |
| 4243 | return ExprError(); |
| 4244 | } |
| 4245 | if (IsC11 && ValType->isPointerType() && |
| 4246 | RequireCompleteType(Loc: Ptr->getBeginLoc(), T: ValType->getPointeeType(), |
| 4247 | DiagID: diag::err_incomplete_type)) { |
| 4248 | return ExprError(); |
| 4249 | } |
| 4250 | } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { |
| 4251 | // For __atomic_*_n operations, the value type must be a scalar integral or |
| 4252 | // pointer type which is 1, 2, 4, 8 or 16 bytes in length. |
| 4253 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_atomic_op_needs_atomic_int_or_ptr) |
| 4254 | << IsC11 << Ptr->getType() << Ptr->getSourceRange(); |
| 4255 | return ExprError(); |
| 4256 | } |
| 4257 | |
| 4258 | if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && |
| 4259 | !AtomTy->isScalarType()) { |
| 4260 | // For GNU atomics, require a trivially-copyable type. This is not part of |
| 4261 | // the GNU atomics specification but we enforce it for consistency with |
| 4262 | // other atomics which generally all require a trivially-copyable type. This |
| 4263 | // is because atomics just copy bits. |
| 4264 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_atomic_op_needs_trivial_copy) |
| 4265 | << Ptr->getType() << Ptr->getSourceRange(); |
| 4266 | return ExprError(); |
| 4267 | } |
| 4268 | |
| 4269 | switch (ValType.getObjCLifetime()) { |
| 4270 | case Qualifiers::OCL_None: |
| 4271 | case Qualifiers::OCL_ExplicitNone: |
| 4272 | // okay |
| 4273 | break; |
| 4274 | |
| 4275 | case Qualifiers::OCL_Weak: |
| 4276 | case Qualifiers::OCL_Strong: |
| 4277 | case Qualifiers::OCL_Autoreleasing: |
| 4278 | // FIXME: Can this happen? By this point, ValType should be known |
| 4279 | // to be trivially copyable. |
| 4280 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_arc_atomic_ownership) |
| 4281 | << ValType << Ptr->getSourceRange(); |
| 4282 | return ExprError(); |
| 4283 | } |
| 4284 | |
| 4285 | // All atomic operations have an overload which takes a pointer to a volatile |
| 4286 | // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself |
| 4287 | // into the result or the other operands. Similarly atomic_load takes a |
| 4288 | // pointer to a const 'A'. |
| 4289 | ValType.removeLocalVolatile(); |
| 4290 | ValType.removeLocalConst(); |
| 4291 | QualType ResultType = ValType; |
| 4292 | if (Form == Copy || Form == LoadCopy || Form == GNUXchg || Form == Init || |
| 4293 | Form == ClearByte) |
| 4294 | ResultType = Context.VoidTy; |
| 4295 | else if (Form == C11CmpXchg || Form == GNUCmpXchg || Form == TestAndSetByte) |
| 4296 | ResultType = Context.BoolTy; |
| 4297 | |
| 4298 | // The type of a parameter passed 'by value'. In the GNU atomics, such |
| 4299 | // arguments are actually passed as pointers. |
| 4300 | QualType ByValType = ValType; // 'CP' |
| 4301 | bool IsPassedByAddress = false; |
| 4302 | if (!IsC11 && !IsHIP && !IsN) { |
| 4303 | ByValType = Ptr->getType(); |
| 4304 | IsPassedByAddress = true; |
| 4305 | } |
| 4306 | |
| 4307 | SmallVector<Expr *, 5> APIOrderedArgs; |
| 4308 | if (ArgOrder == Sema::AtomicArgumentOrder::AST) { |
| 4309 | APIOrderedArgs.push_back(Elt: Args[0]); |
| 4310 | switch (Form) { |
| 4311 | case Init: |
| 4312 | case Load: |
| 4313 | APIOrderedArgs.push_back(Elt: Args[1]); // Val1/Order |
| 4314 | break; |
| 4315 | case LoadCopy: |
| 4316 | case Copy: |
| 4317 | case Arithmetic: |
| 4318 | case Xchg: |
| 4319 | APIOrderedArgs.push_back(Elt: Args[2]); // Val1 |
| 4320 | APIOrderedArgs.push_back(Elt: Args[1]); // Order |
| 4321 | break; |
| 4322 | case GNUXchg: |
| 4323 | APIOrderedArgs.push_back(Elt: Args[2]); // Val1 |
| 4324 | APIOrderedArgs.push_back(Elt: Args[3]); // Val2 |
| 4325 | APIOrderedArgs.push_back(Elt: Args[1]); // Order |
| 4326 | break; |
| 4327 | case C11CmpXchg: |
| 4328 | APIOrderedArgs.push_back(Elt: Args[2]); // Val1 |
| 4329 | APIOrderedArgs.push_back(Elt: Args[4]); // Val2 |
| 4330 | APIOrderedArgs.push_back(Elt: Args[1]); // Order |
| 4331 | APIOrderedArgs.push_back(Elt: Args[3]); // OrderFail |
| 4332 | break; |
| 4333 | case GNUCmpXchg: |
| 4334 | APIOrderedArgs.push_back(Elt: Args[2]); // Val1 |
| 4335 | APIOrderedArgs.push_back(Elt: Args[4]); // Val2 |
| 4336 | APIOrderedArgs.push_back(Elt: Args[5]); // Weak |
| 4337 | APIOrderedArgs.push_back(Elt: Args[1]); // Order |
| 4338 | APIOrderedArgs.push_back(Elt: Args[3]); // OrderFail |
| 4339 | break; |
| 4340 | case TestAndSetByte: |
| 4341 | case ClearByte: |
| 4342 | APIOrderedArgs.push_back(Elt: Args[1]); // Order |
| 4343 | break; |
| 4344 | } |
| 4345 | } else |
| 4346 | APIOrderedArgs.append(in_start: Args.begin(), in_end: Args.end()); |
| 4347 | |
| 4348 | // The first argument's non-CV pointer type is used to deduce the type of |
| 4349 | // subsequent arguments, except for: |
| 4350 | // - weak flag (always converted to bool) |
| 4351 | // - memory order (always converted to int) |
| 4352 | // - scope (always converted to int) |
| 4353 | for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { |
| 4354 | QualType Ty; |
| 4355 | if (i < NumVals[Form] + 1) { |
| 4356 | switch (i) { |
| 4357 | case 0: |
| 4358 | // The first argument is always a pointer. It has a fixed type. |
| 4359 | // It is always dereferenced, a nullptr is undefined. |
| 4360 | CheckNonNullArgument(S&: *this, ArgExpr: APIOrderedArgs[i], CallSiteLoc: ExprRange.getBegin()); |
| 4361 | // Nothing else to do: we already know all we want about this pointer. |
| 4362 | continue; |
| 4363 | case 1: |
| 4364 | // The second argument is the non-atomic operand. For arithmetic, this |
| 4365 | // is always passed by value, and for a compare_exchange it is always |
| 4366 | // passed by address. For the rest, GNU uses by-address and C11 uses |
| 4367 | // by-value. |
| 4368 | assert(Form != Load); |
| 4369 | if (Form == Arithmetic && ValType->isPointerType()) |
| 4370 | Ty = Context.getPointerDiffType(); |
| 4371 | else if (Form == Init || Form == Arithmetic) |
| 4372 | Ty = ValType; |
| 4373 | else if (Form == Copy || Form == Xchg) { |
| 4374 | if (IsPassedByAddress) { |
| 4375 | // The value pointer is always dereferenced, a nullptr is undefined. |
| 4376 | CheckNonNullArgument(S&: *this, ArgExpr: APIOrderedArgs[i], |
| 4377 | CallSiteLoc: ExprRange.getBegin()); |
| 4378 | } |
| 4379 | Ty = ByValType; |
| 4380 | } else { |
| 4381 | Expr *ValArg = APIOrderedArgs[i]; |
| 4382 | // The value pointer is always dereferenced, a nullptr is undefined. |
| 4383 | CheckNonNullArgument(S&: *this, ArgExpr: ValArg, CallSiteLoc: ExprRange.getBegin()); |
| 4384 | LangAS AS = LangAS::Default; |
| 4385 | // Keep address space of non-atomic pointer type. |
| 4386 | if (const PointerType *PtrTy = |
| 4387 | ValArg->getType()->getAs<PointerType>()) { |
| 4388 | AS = PtrTy->getPointeeType().getAddressSpace(); |
| 4389 | } |
| 4390 | Ty = Context.getPointerType( |
| 4391 | T: Context.getAddrSpaceQualType(T: ValType.getUnqualifiedType(), AddressSpace: AS)); |
| 4392 | } |
| 4393 | break; |
| 4394 | case 2: |
| 4395 | // The third argument to compare_exchange / GNU exchange is the desired |
| 4396 | // value, either by-value (for the C11 and *_n variant) or as a pointer. |
| 4397 | if (IsPassedByAddress) |
| 4398 | CheckNonNullArgument(S&: *this, ArgExpr: APIOrderedArgs[i], CallSiteLoc: ExprRange.getBegin()); |
| 4399 | Ty = ByValType; |
| 4400 | break; |
| 4401 | case 3: |
| 4402 | // The fourth argument to GNU compare_exchange is a 'weak' flag. |
| 4403 | Ty = Context.BoolTy; |
| 4404 | break; |
| 4405 | } |
| 4406 | } else { |
| 4407 | // The order(s) and scope are always converted to int. |
| 4408 | Ty = Context.IntTy; |
| 4409 | } |
| 4410 | |
| 4411 | InitializedEntity Entity = |
| 4412 | InitializedEntity::InitializeParameter(Context, Type: Ty, Consumed: false); |
| 4413 | ExprResult Arg = APIOrderedArgs[i]; |
| 4414 | Arg = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Arg); |
| 4415 | if (Arg.isInvalid()) |
| 4416 | return true; |
| 4417 | APIOrderedArgs[i] = Arg.get(); |
| 4418 | } |
| 4419 | |
| 4420 | // Permute the arguments into a 'consistent' order. |
| 4421 | SmallVector<Expr*, 5> SubExprs; |
| 4422 | SubExprs.push_back(Elt: Ptr); |
| 4423 | switch (Form) { |
| 4424 | case Init: |
| 4425 | // Note, AtomicExpr::getVal1() has a special case for this atomic. |
| 4426 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Val1 |
| 4427 | break; |
| 4428 | case Load: |
| 4429 | case TestAndSetByte: |
| 4430 | case ClearByte: |
| 4431 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Order |
| 4432 | break; |
| 4433 | case LoadCopy: |
| 4434 | case Copy: |
| 4435 | case Arithmetic: |
| 4436 | case Xchg: |
| 4437 | SubExprs.push_back(Elt: APIOrderedArgs[2]); // Order |
| 4438 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Val1 |
| 4439 | break; |
| 4440 | case GNUXchg: |
| 4441 | // Note, AtomicExpr::getVal2() has a special case for this atomic. |
| 4442 | SubExprs.push_back(Elt: APIOrderedArgs[3]); // Order |
| 4443 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Val1 |
| 4444 | SubExprs.push_back(Elt: APIOrderedArgs[2]); // Val2 |
| 4445 | break; |
| 4446 | case C11CmpXchg: |
| 4447 | SubExprs.push_back(Elt: APIOrderedArgs[3]); // Order |
| 4448 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Val1 |
| 4449 | SubExprs.push_back(Elt: APIOrderedArgs[4]); // OrderFail |
| 4450 | SubExprs.push_back(Elt: APIOrderedArgs[2]); // Val2 |
| 4451 | break; |
| 4452 | case GNUCmpXchg: |
| 4453 | SubExprs.push_back(Elt: APIOrderedArgs[4]); // Order |
| 4454 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Val1 |
| 4455 | SubExprs.push_back(Elt: APIOrderedArgs[5]); // OrderFail |
| 4456 | SubExprs.push_back(Elt: APIOrderedArgs[2]); // Val2 |
| 4457 | SubExprs.push_back(Elt: APIOrderedArgs[3]); // Weak |
| 4458 | break; |
| 4459 | } |
| 4460 | |
| 4461 | // If the memory orders are constants, check they are valid. |
| 4462 | if (SubExprs.size() >= 2 && Form != Init) { |
| 4463 | std::optional<llvm::APSInt> Success = |
| 4464 | SubExprs[1]->getIntegerConstantExpr(Ctx: Context); |
| 4465 | if (Success && !isValidOrderingForOp(Ordering: Success->getSExtValue(), Op)) { |
| 4466 | Diag(Loc: SubExprs[1]->getBeginLoc(), |
| 4467 | DiagID: diag::warn_atomic_op_has_invalid_memory_order) |
| 4468 | << /*success=*/(Form == C11CmpXchg || Form == GNUCmpXchg) |
| 4469 | << SubExprs[1]->getSourceRange(); |
| 4470 | } |
| 4471 | if (SubExprs.size() >= 5) { |
| 4472 | if (std::optional<llvm::APSInt> Failure = |
| 4473 | SubExprs[3]->getIntegerConstantExpr(Ctx: Context)) { |
| 4474 | if (!llvm::is_contained( |
| 4475 | Set: {llvm::AtomicOrderingCABI::relaxed, |
| 4476 | llvm::AtomicOrderingCABI::consume, |
| 4477 | llvm::AtomicOrderingCABI::acquire, |
| 4478 | llvm::AtomicOrderingCABI::seq_cst}, |
| 4479 | Element: (llvm::AtomicOrderingCABI)Failure->getSExtValue())) { |
| 4480 | Diag(Loc: SubExprs[3]->getBeginLoc(), |
| 4481 | DiagID: diag::warn_atomic_op_has_invalid_memory_order) |
| 4482 | << /*failure=*/2 << SubExprs[3]->getSourceRange(); |
| 4483 | } |
| 4484 | } |
| 4485 | } |
| 4486 | } |
| 4487 | |
| 4488 | if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { |
| 4489 | auto *Scope = Args[Args.size() - 1]; |
| 4490 | if (std::optional<llvm::APSInt> Result = |
| 4491 | Scope->getIntegerConstantExpr(Ctx: Context)) { |
| 4492 | if (!ScopeModel->isValid(S: Result->getZExtValue())) |
| 4493 | Diag(Loc: Scope->getBeginLoc(), DiagID: diag::err_atomic_op_has_invalid_sync_scope) |
| 4494 | << Scope->getSourceRange(); |
| 4495 | } |
| 4496 | SubExprs.push_back(Elt: Scope); |
| 4497 | } |
| 4498 | |
| 4499 | AtomicExpr *AE = new (Context) |
| 4500 | AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); |
| 4501 | |
| 4502 | if ((Op == AtomicExpr::AO__c11_atomic_load || |
| 4503 | Op == AtomicExpr::AO__c11_atomic_store || |
| 4504 | Op == AtomicExpr::AO__opencl_atomic_load || |
| 4505 | Op == AtomicExpr::AO__hip_atomic_load || |
| 4506 | Op == AtomicExpr::AO__opencl_atomic_store || |
| 4507 | Op == AtomicExpr::AO__hip_atomic_store) && |
| 4508 | Context.AtomicUsesUnsupportedLibcall(E: AE)) |
| 4509 | Diag(Loc: AE->getBeginLoc(), DiagID: diag::err_atomic_load_store_uses_lib) |
| 4510 | << ((Op == AtomicExpr::AO__c11_atomic_load || |
| 4511 | Op == AtomicExpr::AO__opencl_atomic_load || |
| 4512 | Op == AtomicExpr::AO__hip_atomic_load) |
| 4513 | ? 0 |
| 4514 | : 1); |
| 4515 | |
| 4516 | if (ValType->isBitIntType()) { |
| 4517 | Diag(Loc: Ptr->getExprLoc(), DiagID: diag::err_atomic_builtin_bit_int_prohibit); |
| 4518 | return ExprError(); |
| 4519 | } |
| 4520 | |
| 4521 | return AE; |
| 4522 | } |
| 4523 | |
| 4524 | /// checkBuiltinArgument - Given a call to a builtin function, perform |
| 4525 | /// normal type-checking on the given argument, updating the call in |
| 4526 | /// place. This is useful when a builtin function requires custom |
| 4527 | /// type-checking for some of its arguments but not necessarily all of |
| 4528 | /// them. |
| 4529 | /// |
| 4530 | /// Returns true on error. |
| 4531 | static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { |
| 4532 | FunctionDecl *Fn = E->getDirectCallee(); |
| 4533 | assert(Fn && "builtin call without direct callee!" ); |
| 4534 | |
| 4535 | ParmVarDecl *Param = Fn->getParamDecl(i: ArgIndex); |
| 4536 | InitializedEntity Entity = |
| 4537 | InitializedEntity::InitializeParameter(Context&: S.Context, Parm: Param); |
| 4538 | |
| 4539 | ExprResult Arg = E->getArg(Arg: ArgIndex); |
| 4540 | Arg = S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Arg); |
| 4541 | if (Arg.isInvalid()) |
| 4542 | return true; |
| 4543 | |
| 4544 | E->setArg(Arg: ArgIndex, ArgExpr: Arg.get()); |
| 4545 | return false; |
| 4546 | } |
| 4547 | |
| 4548 | ExprResult Sema::BuiltinAtomicOverloaded(ExprResult TheCallResult) { |
| 4549 | CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); |
| 4550 | Expr *Callee = TheCall->getCallee(); |
| 4551 | DeclRefExpr *DRE = cast<DeclRefExpr>(Val: Callee->IgnoreParenCasts()); |
| 4552 | FunctionDecl *FDecl = cast<FunctionDecl>(Val: DRE->getDecl()); |
| 4553 | |
| 4554 | // Ensure that we have at least one argument to do type inference from. |
| 4555 | if (TheCall->getNumArgs() < 1) { |
| 4556 | Diag(Loc: TheCall->getEndLoc(), DiagID: diag::err_typecheck_call_too_few_args_at_least) |
| 4557 | << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0 |
| 4558 | << Callee->getSourceRange(); |
| 4559 | return ExprError(); |
| 4560 | } |
| 4561 | |
| 4562 | // Inspect the first argument of the atomic builtin. This should always be |
| 4563 | // a pointer type, whose element is an integral scalar or pointer type. |
| 4564 | // Because it is a pointer type, we don't have to worry about any implicit |
| 4565 | // casts here. |
| 4566 | // FIXME: We don't allow floating point scalars as input. |
| 4567 | Expr *FirstArg = TheCall->getArg(Arg: 0); |
| 4568 | ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(E: FirstArg); |
| 4569 | if (FirstArgResult.isInvalid()) |
| 4570 | return ExprError(); |
| 4571 | FirstArg = FirstArgResult.get(); |
| 4572 | TheCall->setArg(Arg: 0, ArgExpr: FirstArg); |
| 4573 | |
| 4574 | const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); |
| 4575 | if (!pointerType) { |
| 4576 | Diag(Loc: DRE->getBeginLoc(), DiagID: diag::err_atomic_builtin_must_be_pointer) |
| 4577 | << FirstArg->getType() << 0 << FirstArg->getSourceRange(); |
| 4578 | return ExprError(); |
| 4579 | } |
| 4580 | |
| 4581 | QualType ValType = pointerType->getPointeeType(); |
| 4582 | if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && |
| 4583 | !ValType->isBlockPointerType()) { |
| 4584 | Diag(Loc: DRE->getBeginLoc(), DiagID: diag::err_atomic_builtin_must_be_pointer_intptr) |
| 4585 | << FirstArg->getType() << 0 << FirstArg->getSourceRange(); |
| 4586 | return ExprError(); |
| 4587 | } |
| 4588 | PointerAuthQualifier PointerAuth = ValType.getPointerAuth(); |
| 4589 | if (PointerAuth && PointerAuth.isAddressDiscriminated()) { |
| 4590 | Diag(Loc: FirstArg->getBeginLoc(), |
| 4591 | DiagID: diag::err_atomic_op_needs_non_address_discriminated_pointer) |
| 4592 | << 1 << ValType << FirstArg->getSourceRange(); |
| 4593 | return ExprError(); |
| 4594 | } |
| 4595 | |
| 4596 | if (ValType.isConstQualified()) { |
| 4597 | Diag(Loc: DRE->getBeginLoc(), DiagID: diag::err_atomic_builtin_cannot_be_const) |
| 4598 | << FirstArg->getType() << FirstArg->getSourceRange(); |
| 4599 | return ExprError(); |
| 4600 | } |
| 4601 | |
| 4602 | switch (ValType.getObjCLifetime()) { |
| 4603 | case Qualifiers::OCL_None: |
| 4604 | case Qualifiers::OCL_ExplicitNone: |
| 4605 | // okay |
| 4606 | break; |
| 4607 | |
| 4608 | case Qualifiers::OCL_Weak: |
| 4609 | case Qualifiers::OCL_Strong: |
| 4610 | case Qualifiers::OCL_Autoreleasing: |
| 4611 | Diag(Loc: DRE->getBeginLoc(), DiagID: diag::err_arc_atomic_ownership) |
| 4612 | << ValType << FirstArg->getSourceRange(); |
| 4613 | return ExprError(); |
| 4614 | } |
| 4615 | |
| 4616 | // Strip any qualifiers off ValType. |
| 4617 | ValType = ValType.getUnqualifiedType(); |
| 4618 | |
| 4619 | // The majority of builtins return a value, but a few have special return |
| 4620 | // types, so allow them to override appropriately below. |
| 4621 | QualType ResultType = ValType; |
| 4622 | |
| 4623 | // We need to figure out which concrete builtin this maps onto. For example, |
| 4624 | // __sync_fetch_and_add with a 2 byte object turns into |
| 4625 | // __sync_fetch_and_add_2. |
| 4626 | #define BUILTIN_ROW(x) \ |
| 4627 | { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ |
| 4628 | Builtin::BI##x##_8, Builtin::BI##x##_16 } |
| 4629 | |
| 4630 | static const unsigned BuiltinIndices[][5] = { |
| 4631 | BUILTIN_ROW(__sync_fetch_and_add), |
| 4632 | BUILTIN_ROW(__sync_fetch_and_sub), |
| 4633 | BUILTIN_ROW(__sync_fetch_and_or), |
| 4634 | BUILTIN_ROW(__sync_fetch_and_and), |
| 4635 | BUILTIN_ROW(__sync_fetch_and_xor), |
| 4636 | BUILTIN_ROW(__sync_fetch_and_nand), |
| 4637 | |
| 4638 | BUILTIN_ROW(__sync_add_and_fetch), |
| 4639 | BUILTIN_ROW(__sync_sub_and_fetch), |
| 4640 | BUILTIN_ROW(__sync_and_and_fetch), |
| 4641 | BUILTIN_ROW(__sync_or_and_fetch), |
| 4642 | BUILTIN_ROW(__sync_xor_and_fetch), |
| 4643 | BUILTIN_ROW(__sync_nand_and_fetch), |
| 4644 | |
| 4645 | BUILTIN_ROW(__sync_val_compare_and_swap), |
| 4646 | BUILTIN_ROW(__sync_bool_compare_and_swap), |
| 4647 | BUILTIN_ROW(__sync_lock_test_and_set), |
| 4648 | BUILTIN_ROW(__sync_lock_release), |
| 4649 | BUILTIN_ROW(__sync_swap) |
| 4650 | }; |
| 4651 | #undef BUILTIN_ROW |
| 4652 | |
| 4653 | // Determine the index of the size. |
| 4654 | unsigned SizeIndex; |
| 4655 | switch (Context.getTypeSizeInChars(T: ValType).getQuantity()) { |
| 4656 | case 1: SizeIndex = 0; break; |
| 4657 | case 2: SizeIndex = 1; break; |
| 4658 | case 4: SizeIndex = 2; break; |
| 4659 | case 8: SizeIndex = 3; break; |
| 4660 | case 16: SizeIndex = 4; break; |
| 4661 | default: |
| 4662 | Diag(Loc: DRE->getBeginLoc(), DiagID: diag::err_atomic_builtin_pointer_size) |
| 4663 | << FirstArg->getType() << FirstArg->getSourceRange(); |
| 4664 | return ExprError(); |
| 4665 | } |
| 4666 | |
| 4667 | // Each of these builtins has one pointer argument, followed by some number of |
| 4668 | // values (0, 1 or 2) followed by a potentially empty varags list of stuff |
| 4669 | // that we ignore. Find out which row of BuiltinIndices to read from as well |
| 4670 | // as the number of fixed args. |
| 4671 | unsigned BuiltinID = FDecl->getBuiltinID(); |
| 4672 | unsigned BuiltinIndex, NumFixed = 1; |
| 4673 | bool WarnAboutSemanticsChange = false; |
| 4674 | switch (BuiltinID) { |
| 4675 | default: llvm_unreachable("Unknown overloaded atomic builtin!" ); |
| 4676 | case Builtin::BI__sync_fetch_and_add: |
| 4677 | case Builtin::BI__sync_fetch_and_add_1: |
| 4678 | case Builtin::BI__sync_fetch_and_add_2: |
| 4679 | case Builtin::BI__sync_fetch_and_add_4: |
| 4680 | case Builtin::BI__sync_fetch_and_add_8: |
| 4681 | case Builtin::BI__sync_fetch_and_add_16: |
| 4682 | BuiltinIndex = 0; |
| 4683 | break; |
| 4684 | |
| 4685 | case Builtin::BI__sync_fetch_and_sub: |
| 4686 | case Builtin::BI__sync_fetch_and_sub_1: |
| 4687 | case Builtin::BI__sync_fetch_and_sub_2: |
| 4688 | case Builtin::BI__sync_fetch_and_sub_4: |
| 4689 | case Builtin::BI__sync_fetch_and_sub_8: |
| 4690 | case Builtin::BI__sync_fetch_and_sub_16: |
| 4691 | BuiltinIndex = 1; |
| 4692 | break; |
| 4693 | |
| 4694 | case Builtin::BI__sync_fetch_and_or: |
| 4695 | case Builtin::BI__sync_fetch_and_or_1: |
| 4696 | case Builtin::BI__sync_fetch_and_or_2: |
| 4697 | case Builtin::BI__sync_fetch_and_or_4: |
| 4698 | case Builtin::BI__sync_fetch_and_or_8: |
| 4699 | case Builtin::BI__sync_fetch_and_or_16: |
| 4700 | BuiltinIndex = 2; |
| 4701 | break; |
| 4702 | |
| 4703 | case Builtin::BI__sync_fetch_and_and: |
| 4704 | case Builtin::BI__sync_fetch_and_and_1: |
| 4705 | case Builtin::BI__sync_fetch_and_and_2: |
| 4706 | case Builtin::BI__sync_fetch_and_and_4: |
| 4707 | case Builtin::BI__sync_fetch_and_and_8: |
| 4708 | case Builtin::BI__sync_fetch_and_and_16: |
| 4709 | BuiltinIndex = 3; |
| 4710 | break; |
| 4711 | |
| 4712 | case Builtin::BI__sync_fetch_and_xor: |
| 4713 | case Builtin::BI__sync_fetch_and_xor_1: |
| 4714 | case Builtin::BI__sync_fetch_and_xor_2: |
| 4715 | case Builtin::BI__sync_fetch_and_xor_4: |
| 4716 | case Builtin::BI__sync_fetch_and_xor_8: |
| 4717 | case Builtin::BI__sync_fetch_and_xor_16: |
| 4718 | BuiltinIndex = 4; |
| 4719 | break; |
| 4720 | |
| 4721 | case Builtin::BI__sync_fetch_and_nand: |
| 4722 | case Builtin::BI__sync_fetch_and_nand_1: |
| 4723 | case Builtin::BI__sync_fetch_and_nand_2: |
| 4724 | case Builtin::BI__sync_fetch_and_nand_4: |
| 4725 | case Builtin::BI__sync_fetch_and_nand_8: |
| 4726 | case Builtin::BI__sync_fetch_and_nand_16: |
| 4727 | BuiltinIndex = 5; |
| 4728 | WarnAboutSemanticsChange = true; |
| 4729 | break; |
| 4730 | |
| 4731 | case Builtin::BI__sync_add_and_fetch: |
| 4732 | case Builtin::BI__sync_add_and_fetch_1: |
| 4733 | case Builtin::BI__sync_add_and_fetch_2: |
| 4734 | case Builtin::BI__sync_add_and_fetch_4: |
| 4735 | case Builtin::BI__sync_add_and_fetch_8: |
| 4736 | case Builtin::BI__sync_add_and_fetch_16: |
| 4737 | BuiltinIndex = 6; |
| 4738 | break; |
| 4739 | |
| 4740 | case Builtin::BI__sync_sub_and_fetch: |
| 4741 | case Builtin::BI__sync_sub_and_fetch_1: |
| 4742 | case Builtin::BI__sync_sub_and_fetch_2: |
| 4743 | case Builtin::BI__sync_sub_and_fetch_4: |
| 4744 | case Builtin::BI__sync_sub_and_fetch_8: |
| 4745 | case Builtin::BI__sync_sub_and_fetch_16: |
| 4746 | BuiltinIndex = 7; |
| 4747 | break; |
| 4748 | |
| 4749 | case Builtin::BI__sync_and_and_fetch: |
| 4750 | case Builtin::BI__sync_and_and_fetch_1: |
| 4751 | case Builtin::BI__sync_and_and_fetch_2: |
| 4752 | case Builtin::BI__sync_and_and_fetch_4: |
| 4753 | case Builtin::BI__sync_and_and_fetch_8: |
| 4754 | case Builtin::BI__sync_and_and_fetch_16: |
| 4755 | BuiltinIndex = 8; |
| 4756 | break; |
| 4757 | |
| 4758 | case Builtin::BI__sync_or_and_fetch: |
| 4759 | case Builtin::BI__sync_or_and_fetch_1: |
| 4760 | case Builtin::BI__sync_or_and_fetch_2: |
| 4761 | case Builtin::BI__sync_or_and_fetch_4: |
| 4762 | case Builtin::BI__sync_or_and_fetch_8: |
| 4763 | case Builtin::BI__sync_or_and_fetch_16: |
| 4764 | BuiltinIndex = 9; |
| 4765 | break; |
| 4766 | |
| 4767 | case Builtin::BI__sync_xor_and_fetch: |
| 4768 | case Builtin::BI__sync_xor_and_fetch_1: |
| 4769 | case Builtin::BI__sync_xor_and_fetch_2: |
| 4770 | case Builtin::BI__sync_xor_and_fetch_4: |
| 4771 | case Builtin::BI__sync_xor_and_fetch_8: |
| 4772 | case Builtin::BI__sync_xor_and_fetch_16: |
| 4773 | BuiltinIndex = 10; |
| 4774 | break; |
| 4775 | |
| 4776 | case Builtin::BI__sync_nand_and_fetch: |
| 4777 | case Builtin::BI__sync_nand_and_fetch_1: |
| 4778 | case Builtin::BI__sync_nand_and_fetch_2: |
| 4779 | case Builtin::BI__sync_nand_and_fetch_4: |
| 4780 | case Builtin::BI__sync_nand_and_fetch_8: |
| 4781 | case Builtin::BI__sync_nand_and_fetch_16: |
| 4782 | BuiltinIndex = 11; |
| 4783 | WarnAboutSemanticsChange = true; |
| 4784 | break; |
| 4785 | |
| 4786 | case Builtin::BI__sync_val_compare_and_swap: |
| 4787 | case Builtin::BI__sync_val_compare_and_swap_1: |
| 4788 | case Builtin::BI__sync_val_compare_and_swap_2: |
| 4789 | case Builtin::BI__sync_val_compare_and_swap_4: |
| 4790 | case Builtin::BI__sync_val_compare_and_swap_8: |
| 4791 | case Builtin::BI__sync_val_compare_and_swap_16: |
| 4792 | BuiltinIndex = 12; |
| 4793 | NumFixed = 2; |
| 4794 | break; |
| 4795 | |
| 4796 | case Builtin::BI__sync_bool_compare_and_swap: |
| 4797 | case Builtin::BI__sync_bool_compare_and_swap_1: |
| 4798 | case Builtin::BI__sync_bool_compare_and_swap_2: |
| 4799 | case Builtin::BI__sync_bool_compare_and_swap_4: |
| 4800 | case Builtin::BI__sync_bool_compare_and_swap_8: |
| 4801 | case Builtin::BI__sync_bool_compare_and_swap_16: |
| 4802 | BuiltinIndex = 13; |
| 4803 | NumFixed = 2; |
| 4804 | ResultType = Context.BoolTy; |
| 4805 | break; |
| 4806 | |
| 4807 | case Builtin::BI__sync_lock_test_and_set: |
| 4808 | case Builtin::BI__sync_lock_test_and_set_1: |
| 4809 | case Builtin::BI__sync_lock_test_and_set_2: |
| 4810 | case Builtin::BI__sync_lock_test_and_set_4: |
| 4811 | case Builtin::BI__sync_lock_test_and_set_8: |
| 4812 | case Builtin::BI__sync_lock_test_and_set_16: |
| 4813 | BuiltinIndex = 14; |
| 4814 | break; |
| 4815 | |
| 4816 | case Builtin::BI__sync_lock_release: |
| 4817 | case Builtin::BI__sync_lock_release_1: |
| 4818 | case Builtin::BI__sync_lock_release_2: |
| 4819 | case Builtin::BI__sync_lock_release_4: |
| 4820 | case Builtin::BI__sync_lock_release_8: |
| 4821 | case Builtin::BI__sync_lock_release_16: |
| 4822 | BuiltinIndex = 15; |
| 4823 | NumFixed = 0; |
| 4824 | ResultType = Context.VoidTy; |
| 4825 | break; |
| 4826 | |
| 4827 | case Builtin::BI__sync_swap: |
| 4828 | case Builtin::BI__sync_swap_1: |
| 4829 | case Builtin::BI__sync_swap_2: |
| 4830 | case Builtin::BI__sync_swap_4: |
| 4831 | case Builtin::BI__sync_swap_8: |
| 4832 | case Builtin::BI__sync_swap_16: |
| 4833 | BuiltinIndex = 16; |
| 4834 | break; |
| 4835 | } |
| 4836 | |
| 4837 | // Now that we know how many fixed arguments we expect, first check that we |
| 4838 | // have at least that many. |
| 4839 | if (TheCall->getNumArgs() < 1+NumFixed) { |
| 4840 | Diag(Loc: TheCall->getEndLoc(), DiagID: diag::err_typecheck_call_too_few_args_at_least) |
| 4841 | << 0 << 1 + NumFixed << TheCall->getNumArgs() << /*is non object*/ 0 |
| 4842 | << Callee->getSourceRange(); |
| 4843 | return ExprError(); |
| 4844 | } |
| 4845 | |
| 4846 | Diag(Loc: TheCall->getEndLoc(), DiagID: diag::warn_atomic_implicit_seq_cst) |
| 4847 | << Callee->getSourceRange(); |
| 4848 | |
| 4849 | if (WarnAboutSemanticsChange) { |
| 4850 | Diag(Loc: TheCall->getEndLoc(), DiagID: diag::warn_sync_fetch_and_nand_semantics_change) |
| 4851 | << Callee->getSourceRange(); |
| 4852 | } |
| 4853 | |
| 4854 | // Get the decl for the concrete builtin from this, we can tell what the |
| 4855 | // concrete integer type we should convert to is. |
| 4856 | unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; |
| 4857 | std::string NewBuiltinName = Context.BuiltinInfo.getName(ID: NewBuiltinID); |
| 4858 | FunctionDecl *NewBuiltinDecl; |
| 4859 | if (NewBuiltinID == BuiltinID) |
| 4860 | NewBuiltinDecl = FDecl; |
| 4861 | else { |
| 4862 | // Perform builtin lookup to avoid redeclaring it. |
| 4863 | DeclarationName DN(&Context.Idents.get(Name: NewBuiltinName)); |
| 4864 | LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); |
| 4865 | LookupName(R&: Res, S: TUScope, /*AllowBuiltinCreation=*/true); |
| 4866 | assert(Res.getFoundDecl()); |
| 4867 | NewBuiltinDecl = dyn_cast<FunctionDecl>(Val: Res.getFoundDecl()); |
| 4868 | if (!NewBuiltinDecl) |
| 4869 | return ExprError(); |
| 4870 | } |
| 4871 | |
| 4872 | // The first argument --- the pointer --- has a fixed type; we |
| 4873 | // deduce the types of the rest of the arguments accordingly. Walk |
| 4874 | // the remaining arguments, converting them to the deduced value type. |
| 4875 | for (unsigned i = 0; i != NumFixed; ++i) { |
| 4876 | ExprResult Arg = TheCall->getArg(Arg: i+1); |
| 4877 | |
| 4878 | // GCC does an implicit conversion to the pointer or integer ValType. This |
| 4879 | // can fail in some cases (1i -> int**), check for this error case now. |
| 4880 | // Initialize the argument. |
| 4881 | InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, |
| 4882 | Type: ValType, /*consume*/ Consumed: false); |
| 4883 | Arg = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Arg); |
| 4884 | if (Arg.isInvalid()) |
| 4885 | return ExprError(); |
| 4886 | |
| 4887 | // Okay, we have something that *can* be converted to the right type. Check |
| 4888 | // to see if there is a potentially weird extension going on here. This can |
| 4889 | // happen when you do an atomic operation on something like an char* and |
| 4890 | // pass in 42. The 42 gets converted to char. This is even more strange |
| 4891 | // for things like 45.123 -> char, etc. |
| 4892 | // FIXME: Do this check. |
| 4893 | TheCall->setArg(Arg: i+1, ArgExpr: Arg.get()); |
| 4894 | } |
| 4895 | |
| 4896 | // Create a new DeclRefExpr to refer to the new decl. |
| 4897 | DeclRefExpr *NewDRE = DeclRefExpr::Create( |
| 4898 | Context, QualifierLoc: DRE->getQualifierLoc(), TemplateKWLoc: SourceLocation(), D: NewBuiltinDecl, |
| 4899 | /*enclosing*/ RefersToEnclosingVariableOrCapture: false, NameLoc: DRE->getLocation(), T: Context.BuiltinFnTy, |
| 4900 | VK: DRE->getValueKind(), FoundD: nullptr, TemplateArgs: nullptr, NOUR: DRE->isNonOdrUse()); |
| 4901 | |
| 4902 | // Set the callee in the CallExpr. |
| 4903 | // FIXME: This loses syntactic information. |
| 4904 | QualType CalleePtrTy = Context.getPointerType(T: NewBuiltinDecl->getType()); |
| 4905 | ExprResult PromotedCall = ImpCastExprToType(E: NewDRE, Type: CalleePtrTy, |
| 4906 | CK: CK_BuiltinFnToFnPtr); |
| 4907 | TheCall->setCallee(PromotedCall.get()); |
| 4908 | |
| 4909 | // Change the result type of the call to match the original value type. This |
| 4910 | // is arbitrary, but the codegen for these builtins ins design to handle it |
| 4911 | // gracefully. |
| 4912 | TheCall->setType(ResultType); |
| 4913 | |
| 4914 | // Prohibit problematic uses of bit-precise integer types with atomic |
| 4915 | // builtins. The arguments would have already been converted to the first |
| 4916 | // argument's type, so only need to check the first argument. |
| 4917 | const auto *BitIntValType = ValType->getAs<BitIntType>(); |
| 4918 | if (BitIntValType && !llvm::isPowerOf2_64(Value: BitIntValType->getNumBits())) { |
| 4919 | Diag(Loc: FirstArg->getExprLoc(), DiagID: diag::err_atomic_builtin_ext_int_size); |
| 4920 | return ExprError(); |
| 4921 | } |
| 4922 | |
| 4923 | return TheCallResult; |
| 4924 | } |
| 4925 | |
| 4926 | ExprResult Sema::BuiltinNontemporalOverloaded(ExprResult TheCallResult) { |
| 4927 | CallExpr *TheCall = (CallExpr *)TheCallResult.get(); |
| 4928 | DeclRefExpr *DRE = |
| 4929 | cast<DeclRefExpr>(Val: TheCall->getCallee()->IgnoreParenCasts()); |
| 4930 | FunctionDecl *FDecl = cast<FunctionDecl>(Val: DRE->getDecl()); |
| 4931 | unsigned BuiltinID = FDecl->getBuiltinID(); |
| 4932 | assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || |
| 4933 | BuiltinID == Builtin::BI__builtin_nontemporal_load) && |
| 4934 | "Unexpected nontemporal load/store builtin!" ); |
| 4935 | bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; |
| 4936 | unsigned numArgs = isStore ? 2 : 1; |
| 4937 | |
| 4938 | // Ensure that we have the proper number of arguments. |
| 4939 | if (checkArgCount(Call: TheCall, DesiredArgCount: numArgs)) |
| 4940 | return ExprError(); |
| 4941 | |
| 4942 | // Inspect the last argument of the nontemporal builtin. This should always |
| 4943 | // be a pointer type, from which we imply the type of the memory access. |
| 4944 | // Because it is a pointer type, we don't have to worry about any implicit |
| 4945 | // casts here. |
| 4946 | Expr *PointerArg = TheCall->getArg(Arg: numArgs - 1); |
| 4947 | ExprResult PointerArgResult = |
| 4948 | DefaultFunctionArrayLvalueConversion(E: PointerArg); |
| 4949 | |
| 4950 | if (PointerArgResult.isInvalid()) |
| 4951 | return ExprError(); |
| 4952 | PointerArg = PointerArgResult.get(); |
| 4953 | TheCall->setArg(Arg: numArgs - 1, ArgExpr: PointerArg); |
| 4954 | |
| 4955 | const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); |
| 4956 | if (!pointerType) { |
| 4957 | Diag(Loc: DRE->getBeginLoc(), DiagID: diag::err_nontemporal_builtin_must_be_pointer) |
| 4958 | << PointerArg->getType() << PointerArg->getSourceRange(); |
| 4959 | return ExprError(); |
| 4960 | } |
| 4961 | |
| 4962 | QualType ValType = pointerType->getPointeeType(); |
| 4963 | |
| 4964 | // Strip any qualifiers off ValType. |
| 4965 | ValType = ValType.getUnqualifiedType(); |
| 4966 | if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && |
| 4967 | !ValType->isBlockPointerType() && !ValType->isFloatingType() && |
| 4968 | !ValType->isVectorType()) { |
| 4969 | Diag(Loc: DRE->getBeginLoc(), |
| 4970 | DiagID: diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) |
| 4971 | << PointerArg->getType() << PointerArg->getSourceRange(); |
| 4972 | return ExprError(); |
| 4973 | } |
| 4974 | |
| 4975 | if (!isStore) { |
| 4976 | TheCall->setType(ValType); |
| 4977 | return TheCallResult; |
| 4978 | } |
| 4979 | |
| 4980 | ExprResult ValArg = TheCall->getArg(Arg: 0); |
| 4981 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
| 4982 | Context, Type: ValType, /*consume*/ Consumed: false); |
| 4983 | ValArg = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: ValArg); |
| 4984 | if (ValArg.isInvalid()) |
| 4985 | return ExprError(); |
| 4986 | |
| 4987 | TheCall->setArg(Arg: 0, ArgExpr: ValArg.get()); |
| 4988 | TheCall->setType(Context.VoidTy); |
| 4989 | return TheCallResult; |
| 4990 | } |
| 4991 | |
| 4992 | /// CheckObjCString - Checks that the format string argument to the os_log() |
| 4993 | /// and os_trace() functions is correct, and converts it to const char *. |
| 4994 | ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { |
| 4995 | Arg = Arg->IgnoreParenCasts(); |
| 4996 | auto *Literal = dyn_cast<StringLiteral>(Val: Arg); |
| 4997 | if (!Literal) { |
| 4998 | if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Val: Arg)) { |
| 4999 | Literal = ObjcLiteral->getString(); |
| 5000 | } |
| 5001 | } |
| 5002 | |
| 5003 | if (!Literal || (!Literal->isOrdinary() && !Literal->isUTF8())) { |
| 5004 | return ExprError( |
| 5005 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_os_log_format_not_string_constant) |
| 5006 | << Arg->getSourceRange()); |
| 5007 | } |
| 5008 | |
| 5009 | ExprResult Result(Literal); |
| 5010 | QualType ResultTy = Context.getPointerType(T: Context.CharTy.withConst()); |
| 5011 | InitializedEntity Entity = |
| 5012 | InitializedEntity::InitializeParameter(Context, Type: ResultTy, Consumed: false); |
| 5013 | Result = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Result); |
| 5014 | return Result; |
| 5015 | } |
| 5016 | |
| 5017 | /// Check that the user is calling the appropriate va_start builtin for the |
| 5018 | /// target and calling convention. |
| 5019 | static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { |
| 5020 | const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); |
| 5021 | bool IsX64 = TT.getArch() == llvm::Triple::x86_64; |
| 5022 | bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 || |
| 5023 | TT.getArch() == llvm::Triple::aarch64_32); |
| 5024 | bool IsWindowsOrUEFI = TT.isOSWindows() || TT.isUEFI(); |
| 5025 | bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; |
| 5026 | if (IsX64 || IsAArch64) { |
| 5027 | CallingConv CC = CC_C; |
| 5028 | if (const FunctionDecl *FD = S.getCurFunctionDecl()) |
| 5029 | CC = FD->getType()->castAs<FunctionType>()->getCallConv(); |
| 5030 | if (IsMSVAStart) { |
| 5031 | // Don't allow this in System V ABI functions. |
| 5032 | if (CC == CC_X86_64SysV || (!IsWindowsOrUEFI && CC != CC_Win64)) |
| 5033 | return S.Diag(Loc: Fn->getBeginLoc(), |
| 5034 | DiagID: diag::err_ms_va_start_used_in_sysv_function); |
| 5035 | } else { |
| 5036 | // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. |
| 5037 | // On x64 Windows, don't allow this in System V ABI functions. |
| 5038 | // (Yes, that means there's no corresponding way to support variadic |
| 5039 | // System V ABI functions on Windows.) |
| 5040 | if ((IsWindowsOrUEFI && CC == CC_X86_64SysV) || |
| 5041 | (!IsWindowsOrUEFI && CC == CC_Win64)) |
| 5042 | return S.Diag(Loc: Fn->getBeginLoc(), |
| 5043 | DiagID: diag::err_va_start_used_in_wrong_abi_function) |
| 5044 | << !IsWindowsOrUEFI; |
| 5045 | } |
| 5046 | return false; |
| 5047 | } |
| 5048 | |
| 5049 | if (IsMSVAStart) |
| 5050 | return S.Diag(Loc: Fn->getBeginLoc(), DiagID: diag::err_builtin_x64_aarch64_only); |
| 5051 | return false; |
| 5052 | } |
| 5053 | |
| 5054 | static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, |
| 5055 | ParmVarDecl **LastParam = nullptr) { |
| 5056 | // Determine whether the current function, block, or obj-c method is variadic |
| 5057 | // and get its parameter list. |
| 5058 | bool IsVariadic = false; |
| 5059 | ArrayRef<ParmVarDecl *> Params; |
| 5060 | DeclContext *Caller = S.CurContext; |
| 5061 | if (auto *Block = dyn_cast<BlockDecl>(Val: Caller)) { |
| 5062 | IsVariadic = Block->isVariadic(); |
| 5063 | Params = Block->parameters(); |
| 5064 | } else if (auto *FD = dyn_cast<FunctionDecl>(Val: Caller)) { |
| 5065 | IsVariadic = FD->isVariadic(); |
| 5066 | Params = FD->parameters(); |
| 5067 | } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Val: Caller)) { |
| 5068 | IsVariadic = MD->isVariadic(); |
| 5069 | // FIXME: This isn't correct for methods (results in bogus warning). |
| 5070 | Params = MD->parameters(); |
| 5071 | } else if (isa<CapturedDecl>(Val: Caller)) { |
| 5072 | // We don't support va_start in a CapturedDecl. |
| 5073 | S.Diag(Loc: Fn->getBeginLoc(), DiagID: diag::err_va_start_captured_stmt); |
| 5074 | return true; |
| 5075 | } else { |
| 5076 | // This must be some other declcontext that parses exprs. |
| 5077 | S.Diag(Loc: Fn->getBeginLoc(), DiagID: diag::err_va_start_outside_function); |
| 5078 | return true; |
| 5079 | } |
| 5080 | |
| 5081 | if (!IsVariadic) { |
| 5082 | S.Diag(Loc: Fn->getBeginLoc(), DiagID: diag::err_va_start_fixed_function); |
| 5083 | return true; |
| 5084 | } |
| 5085 | |
| 5086 | if (LastParam) |
| 5087 | *LastParam = Params.empty() ? nullptr : Params.back(); |
| 5088 | |
| 5089 | return false; |
| 5090 | } |
| 5091 | |
| 5092 | bool Sema::BuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { |
| 5093 | Expr *Fn = TheCall->getCallee(); |
| 5094 | if (checkVAStartABI(S&: *this, BuiltinID, Fn)) |
| 5095 | return true; |
| 5096 | |
| 5097 | if (BuiltinID == Builtin::BI__builtin_c23_va_start) { |
| 5098 | // This builtin requires one argument (the va_list), allows two arguments, |
| 5099 | // but diagnoses more than two arguments. e.g., |
| 5100 | // __builtin_c23_va_start(); // error |
| 5101 | // __builtin_c23_va_start(list); // ok |
| 5102 | // __builtin_c23_va_start(list, param); // ok |
| 5103 | // __builtin_c23_va_start(list, anything, anything); // error |
| 5104 | // This differs from the GCC behavior in that they accept the last case |
| 5105 | // with a warning, but it doesn't seem like a useful behavior to allow. |
| 5106 | if (checkArgCountRange(Call: TheCall, MinArgCount: 1, MaxArgCount: 2)) |
| 5107 | return true; |
| 5108 | } else { |
| 5109 | // In C23 mode, va_start only needs one argument. However, the builtin still |
| 5110 | // requires two arguments (which matches the behavior of the GCC builtin), |
| 5111 | // <stdarg.h> passes `0` as the second argument in C23 mode. |
| 5112 | if (checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
| 5113 | return true; |
| 5114 | } |
| 5115 | |
| 5116 | // Type-check the first argument normally. |
| 5117 | if (checkBuiltinArgument(S&: *this, E: TheCall, ArgIndex: 0)) |
| 5118 | return true; |
| 5119 | |
| 5120 | // Check that the current function is variadic, and get its last parameter. |
| 5121 | ParmVarDecl *LastParam; |
| 5122 | if (checkVAStartIsInVariadicFunction(S&: *this, Fn, LastParam: &LastParam)) |
| 5123 | return true; |
| 5124 | |
| 5125 | // Verify that the second argument to the builtin is the last non-variadic |
| 5126 | // argument of the current function or method. In C23 mode, if the call is |
| 5127 | // not to __builtin_c23_va_start, and the second argument is an integer |
| 5128 | // constant expression with value 0, then we don't bother with this check. |
| 5129 | // For __builtin_c23_va_start, we only perform the check for the second |
| 5130 | // argument being the last argument to the current function if there is a |
| 5131 | // second argument present. |
| 5132 | if (BuiltinID == Builtin::BI__builtin_c23_va_start && |
| 5133 | TheCall->getNumArgs() < 2) { |
| 5134 | Diag(Loc: TheCall->getExprLoc(), DiagID: diag::warn_c17_compat_va_start_one_arg); |
| 5135 | return false; |
| 5136 | } |
| 5137 | |
| 5138 | const Expr *Arg = TheCall->getArg(Arg: 1)->IgnoreParenCasts(); |
| 5139 | if (std::optional<llvm::APSInt> Val = |
| 5140 | TheCall->getArg(Arg: 1)->getIntegerConstantExpr(Ctx: Context); |
| 5141 | Val && LangOpts.C23 && *Val == 0 && |
| 5142 | BuiltinID != Builtin::BI__builtin_c23_va_start) { |
| 5143 | Diag(Loc: TheCall->getExprLoc(), DiagID: diag::warn_c17_compat_va_start_one_arg); |
| 5144 | return false; |
| 5145 | } |
| 5146 | |
| 5147 | // These are valid if SecondArgIsLastNonVariadicArgument is false after the |
| 5148 | // next block. |
| 5149 | QualType Type; |
| 5150 | SourceLocation ParamLoc; |
| 5151 | bool IsCRegister = false; |
| 5152 | bool SecondArgIsLastNonVariadicArgument = false; |
| 5153 | if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Val: Arg)) { |
| 5154 | if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(Val: DR->getDecl())) { |
| 5155 | SecondArgIsLastNonVariadicArgument = PV == LastParam; |
| 5156 | |
| 5157 | Type = PV->getType(); |
| 5158 | ParamLoc = PV->getLocation(); |
| 5159 | IsCRegister = |
| 5160 | PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; |
| 5161 | } |
| 5162 | } |
| 5163 | |
| 5164 | if (!SecondArgIsLastNonVariadicArgument) |
| 5165 | Diag(Loc: TheCall->getArg(Arg: 1)->getBeginLoc(), |
| 5166 | DiagID: diag::warn_second_arg_of_va_start_not_last_non_variadic_param); |
| 5167 | else if (IsCRegister || Type->isReferenceType() || |
| 5168 | Type->isSpecificBuiltinType(K: BuiltinType::Float) || [=] { |
| 5169 | // Promotable integers are UB, but enumerations need a bit of |
| 5170 | // extra checking to see what their promotable type actually is. |
| 5171 | if (!Context.isPromotableIntegerType(T: Type)) |
| 5172 | return false; |
| 5173 | if (!Type->isEnumeralType()) |
| 5174 | return true; |
| 5175 | const EnumDecl *ED = Type->castAs<EnumType>()->getDecl(); |
| 5176 | return !(ED && |
| 5177 | Context.typesAreCompatible(T1: ED->getPromotionType(), T2: Type)); |
| 5178 | }()) { |
| 5179 | unsigned Reason = 0; |
| 5180 | if (Type->isReferenceType()) Reason = 1; |
| 5181 | else if (IsCRegister) Reason = 2; |
| 5182 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::warn_va_start_type_is_undefined) << Reason; |
| 5183 | Diag(Loc: ParamLoc, DiagID: diag::note_parameter_type) << Type; |
| 5184 | } |
| 5185 | |
| 5186 | return false; |
| 5187 | } |
| 5188 | |
| 5189 | bool Sema::BuiltinVAStartARMMicrosoft(CallExpr *Call) { |
| 5190 | auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool { |
| 5191 | const LangOptions &LO = getLangOpts(); |
| 5192 | |
| 5193 | if (LO.CPlusPlus) |
| 5194 | return Arg->getType() |
| 5195 | .getCanonicalType() |
| 5196 | .getTypePtr() |
| 5197 | ->getPointeeType() |
| 5198 | .withoutLocalFastQualifiers() == Context.CharTy; |
| 5199 | |
| 5200 | // In C, allow aliasing through `char *`, this is required for AArch64 at |
| 5201 | // least. |
| 5202 | return true; |
| 5203 | }; |
| 5204 | |
| 5205 | // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, |
| 5206 | // const char *named_addr); |
| 5207 | |
| 5208 | Expr *Func = Call->getCallee(); |
| 5209 | |
| 5210 | if (Call->getNumArgs() < 3) |
| 5211 | return Diag(Loc: Call->getEndLoc(), |
| 5212 | DiagID: diag::err_typecheck_call_too_few_args_at_least) |
| 5213 | << 0 /*function call*/ << 3 << Call->getNumArgs() |
| 5214 | << /*is non object*/ 0; |
| 5215 | |
| 5216 | // Type-check the first argument normally. |
| 5217 | if (checkBuiltinArgument(S&: *this, E: Call, ArgIndex: 0)) |
| 5218 | return true; |
| 5219 | |
| 5220 | // Check that the current function is variadic. |
| 5221 | if (checkVAStartIsInVariadicFunction(S&: *this, Fn: Func)) |
| 5222 | return true; |
| 5223 | |
| 5224 | // __va_start on Windows does not validate the parameter qualifiers |
| 5225 | |
| 5226 | const Expr *Arg1 = Call->getArg(Arg: 1)->IgnoreParens(); |
| 5227 | const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); |
| 5228 | |
| 5229 | const Expr *Arg2 = Call->getArg(Arg: 2)->IgnoreParens(); |
| 5230 | const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); |
| 5231 | |
| 5232 | const QualType &ConstCharPtrTy = |
| 5233 | Context.getPointerType(T: Context.CharTy.withConst()); |
| 5234 | if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1)) |
| 5235 | Diag(Loc: Arg1->getBeginLoc(), DiagID: diag::err_typecheck_convert_incompatible) |
| 5236 | << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ |
| 5237 | << 0 /* qualifier difference */ |
| 5238 | << 3 /* parameter mismatch */ |
| 5239 | << 2 << Arg1->getType() << ConstCharPtrTy; |
| 5240 | |
| 5241 | const QualType SizeTy = Context.getSizeType(); |
| 5242 | if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) |
| 5243 | Diag(Loc: Arg2->getBeginLoc(), DiagID: diag::err_typecheck_convert_incompatible) |
| 5244 | << Arg2->getType() << SizeTy << 1 /* different class */ |
| 5245 | << 0 /* qualifier difference */ |
| 5246 | << 3 /* parameter mismatch */ |
| 5247 | << 3 << Arg2->getType() << SizeTy; |
| 5248 | |
| 5249 | return false; |
| 5250 | } |
| 5251 | |
| 5252 | bool Sema::BuiltinUnorderedCompare(CallExpr *TheCall, unsigned BuiltinID) { |
| 5253 | if (checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
| 5254 | return true; |
| 5255 | |
| 5256 | if (BuiltinID == Builtin::BI__builtin_isunordered && |
| 5257 | TheCall->getFPFeaturesInEffect(LO: getLangOpts()).getNoHonorNaNs()) |
| 5258 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_fp_nan_inf_when_disabled) |
| 5259 | << 1 << 0 << TheCall->getSourceRange(); |
| 5260 | |
| 5261 | ExprResult OrigArg0 = TheCall->getArg(Arg: 0); |
| 5262 | ExprResult OrigArg1 = TheCall->getArg(Arg: 1); |
| 5263 | |
| 5264 | // Do standard promotions between the two arguments, returning their common |
| 5265 | // type. |
| 5266 | QualType Res = UsualArithmeticConversions( |
| 5267 | LHS&: OrigArg0, RHS&: OrigArg1, Loc: TheCall->getExprLoc(), ACK: ArithConvKind::Comparison); |
| 5268 | if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) |
| 5269 | return true; |
| 5270 | |
| 5271 | // Make sure any conversions are pushed back into the call; this is |
| 5272 | // type safe since unordered compare builtins are declared as "_Bool |
| 5273 | // foo(...)". |
| 5274 | TheCall->setArg(Arg: 0, ArgExpr: OrigArg0.get()); |
| 5275 | TheCall->setArg(Arg: 1, ArgExpr: OrigArg1.get()); |
| 5276 | |
| 5277 | if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) |
| 5278 | return false; |
| 5279 | |
| 5280 | // If the common type isn't a real floating type, then the arguments were |
| 5281 | // invalid for this operation. |
| 5282 | if (Res.isNull() || !Res->isRealFloatingType()) |
| 5283 | return Diag(Loc: OrigArg0.get()->getBeginLoc(), |
| 5284 | DiagID: diag::err_typecheck_call_invalid_ordered_compare) |
| 5285 | << OrigArg0.get()->getType() << OrigArg1.get()->getType() |
| 5286 | << SourceRange(OrigArg0.get()->getBeginLoc(), |
| 5287 | OrigArg1.get()->getEndLoc()); |
| 5288 | |
| 5289 | return false; |
| 5290 | } |
| 5291 | |
| 5292 | bool Sema::BuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs, |
| 5293 | unsigned BuiltinID) { |
| 5294 | if (checkArgCount(Call: TheCall, DesiredArgCount: NumArgs)) |
| 5295 | return true; |
| 5296 | |
| 5297 | FPOptions FPO = TheCall->getFPFeaturesInEffect(LO: getLangOpts()); |
| 5298 | if (FPO.getNoHonorInfs() && (BuiltinID == Builtin::BI__builtin_isfinite || |
| 5299 | BuiltinID == Builtin::BI__builtin_isinf || |
| 5300 | BuiltinID == Builtin::BI__builtin_isinf_sign)) |
| 5301 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_fp_nan_inf_when_disabled) |
| 5302 | << 0 << 0 << TheCall->getSourceRange(); |
| 5303 | |
| 5304 | if (FPO.getNoHonorNaNs() && (BuiltinID == Builtin::BI__builtin_isnan || |
| 5305 | BuiltinID == Builtin::BI__builtin_isunordered)) |
| 5306 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_fp_nan_inf_when_disabled) |
| 5307 | << 1 << 0 << TheCall->getSourceRange(); |
| 5308 | |
| 5309 | bool IsFPClass = NumArgs == 2; |
| 5310 | |
| 5311 | // Find out position of floating-point argument. |
| 5312 | unsigned FPArgNo = IsFPClass ? 0 : NumArgs - 1; |
| 5313 | |
| 5314 | // We can count on all parameters preceding the floating-point just being int. |
| 5315 | // Try all of those. |
| 5316 | for (unsigned i = 0; i < FPArgNo; ++i) { |
| 5317 | Expr *Arg = TheCall->getArg(Arg: i); |
| 5318 | |
| 5319 | if (Arg->isTypeDependent()) |
| 5320 | return false; |
| 5321 | |
| 5322 | ExprResult Res = PerformImplicitConversion(From: Arg, ToType: Context.IntTy, |
| 5323 | Action: AssignmentAction::Passing); |
| 5324 | |
| 5325 | if (Res.isInvalid()) |
| 5326 | return true; |
| 5327 | TheCall->setArg(Arg: i, ArgExpr: Res.get()); |
| 5328 | } |
| 5329 | |
| 5330 | Expr *OrigArg = TheCall->getArg(Arg: FPArgNo); |
| 5331 | |
| 5332 | if (OrigArg->isTypeDependent()) |
| 5333 | return false; |
| 5334 | |
| 5335 | // Usual Unary Conversions will convert half to float, which we want for |
| 5336 | // machines that use fp16 conversion intrinsics. Else, we wnat to leave the |
| 5337 | // type how it is, but do normal L->Rvalue conversions. |
| 5338 | if (Context.getTargetInfo().useFP16ConversionIntrinsics()) { |
| 5339 | ExprResult Res = UsualUnaryConversions(E: OrigArg); |
| 5340 | |
| 5341 | if (!Res.isUsable()) |
| 5342 | return true; |
| 5343 | OrigArg = Res.get(); |
| 5344 | } else { |
| 5345 | ExprResult Res = DefaultFunctionArrayLvalueConversion(E: OrigArg); |
| 5346 | |
| 5347 | if (!Res.isUsable()) |
| 5348 | return true; |
| 5349 | OrigArg = Res.get(); |
| 5350 | } |
| 5351 | TheCall->setArg(Arg: FPArgNo, ArgExpr: OrigArg); |
| 5352 | |
| 5353 | QualType VectorResultTy; |
| 5354 | QualType ElementTy = OrigArg->getType(); |
| 5355 | // TODO: When all classification function are implemented with is_fpclass, |
| 5356 | // vector argument can be supported in all of them. |
| 5357 | if (ElementTy->isVectorType() && IsFPClass) { |
| 5358 | VectorResultTy = GetSignedVectorType(V: ElementTy); |
| 5359 | ElementTy = ElementTy->castAs<VectorType>()->getElementType(); |
| 5360 | } |
| 5361 | |
| 5362 | // This operation requires a non-_Complex floating-point number. |
| 5363 | if (!ElementTy->isRealFloatingType()) |
| 5364 | return Diag(Loc: OrigArg->getBeginLoc(), |
| 5365 | DiagID: diag::err_typecheck_call_invalid_unary_fp) |
| 5366 | << OrigArg->getType() << OrigArg->getSourceRange(); |
| 5367 | |
| 5368 | // __builtin_isfpclass has integer parameter that specify test mask. It is |
| 5369 | // passed in (...), so it should be analyzed completely here. |
| 5370 | if (IsFPClass) |
| 5371 | if (BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: llvm::fcAllFlags)) |
| 5372 | return true; |
| 5373 | |
| 5374 | // TODO: enable this code to all classification functions. |
| 5375 | if (IsFPClass) { |
| 5376 | QualType ResultTy; |
| 5377 | if (!VectorResultTy.isNull()) |
| 5378 | ResultTy = VectorResultTy; |
| 5379 | else |
| 5380 | ResultTy = Context.IntTy; |
| 5381 | TheCall->setType(ResultTy); |
| 5382 | } |
| 5383 | |
| 5384 | return false; |
| 5385 | } |
| 5386 | |
| 5387 | bool Sema::BuiltinComplex(CallExpr *TheCall) { |
| 5388 | if (checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
| 5389 | return true; |
| 5390 | |
| 5391 | bool Dependent = false; |
| 5392 | for (unsigned I = 0; I != 2; ++I) { |
| 5393 | Expr *Arg = TheCall->getArg(Arg: I); |
| 5394 | QualType T = Arg->getType(); |
| 5395 | if (T->isDependentType()) { |
| 5396 | Dependent = true; |
| 5397 | continue; |
| 5398 | } |
| 5399 | |
| 5400 | // Despite supporting _Complex int, GCC requires a real floating point type |
| 5401 | // for the operands of __builtin_complex. |
| 5402 | if (!T->isRealFloatingType()) { |
| 5403 | return Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_typecheck_call_requires_real_fp) |
| 5404 | << Arg->getType() << Arg->getSourceRange(); |
| 5405 | } |
| 5406 | |
| 5407 | ExprResult Converted = DefaultLvalueConversion(E: Arg); |
| 5408 | if (Converted.isInvalid()) |
| 5409 | return true; |
| 5410 | TheCall->setArg(Arg: I, ArgExpr: Converted.get()); |
| 5411 | } |
| 5412 | |
| 5413 | if (Dependent) { |
| 5414 | TheCall->setType(Context.DependentTy); |
| 5415 | return false; |
| 5416 | } |
| 5417 | |
| 5418 | Expr *Real = TheCall->getArg(Arg: 0); |
| 5419 | Expr *Imag = TheCall->getArg(Arg: 1); |
| 5420 | if (!Context.hasSameType(T1: Real->getType(), T2: Imag->getType())) { |
| 5421 | return Diag(Loc: Real->getBeginLoc(), |
| 5422 | DiagID: diag::err_typecheck_call_different_arg_types) |
| 5423 | << Real->getType() << Imag->getType() |
| 5424 | << Real->getSourceRange() << Imag->getSourceRange(); |
| 5425 | } |
| 5426 | |
| 5427 | // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers; |
| 5428 | // don't allow this builtin to form those types either. |
| 5429 | // FIXME: Should we allow these types? |
| 5430 | if (Real->getType()->isFloat16Type()) |
| 5431 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_invalid_complex_spec) |
| 5432 | << "_Float16" ; |
| 5433 | if (Real->getType()->isHalfType()) |
| 5434 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_invalid_complex_spec) |
| 5435 | << "half" ; |
| 5436 | |
| 5437 | TheCall->setType(Context.getComplexType(T: Real->getType())); |
| 5438 | return false; |
| 5439 | } |
| 5440 | |
| 5441 | /// BuiltinShuffleVector - Handle __builtin_shufflevector. |
| 5442 | // This is declared to take (...), so we have to check everything. |
| 5443 | ExprResult Sema::BuiltinShuffleVector(CallExpr *TheCall) { |
| 5444 | if (TheCall->getNumArgs() < 2) |
| 5445 | return ExprError(Diag(Loc: TheCall->getEndLoc(), |
| 5446 | DiagID: diag::err_typecheck_call_too_few_args_at_least) |
| 5447 | << 0 /*function call*/ << 2 << TheCall->getNumArgs() |
| 5448 | << /*is non object*/ 0 << TheCall->getSourceRange()); |
| 5449 | |
| 5450 | // Determine which of the following types of shufflevector we're checking: |
| 5451 | // 1) unary, vector mask: (lhs, mask) |
| 5452 | // 2) binary, scalar mask: (lhs, rhs, index, ..., index) |
| 5453 | QualType resType = TheCall->getArg(Arg: 0)->getType(); |
| 5454 | unsigned numElements = 0; |
| 5455 | |
| 5456 | if (!TheCall->getArg(Arg: 0)->isTypeDependent() && |
| 5457 | !TheCall->getArg(Arg: 1)->isTypeDependent()) { |
| 5458 | QualType LHSType = TheCall->getArg(Arg: 0)->getType(); |
| 5459 | QualType RHSType = TheCall->getArg(Arg: 1)->getType(); |
| 5460 | |
| 5461 | if (!LHSType->isVectorType() || !RHSType->isVectorType()) |
| 5462 | return ExprError( |
| 5463 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_vec_builtin_non_vector) |
| 5464 | << TheCall->getDirectCallee() << /*isMorethantwoArgs*/ false |
| 5465 | << SourceRange(TheCall->getArg(Arg: 0)->getBeginLoc(), |
| 5466 | TheCall->getArg(Arg: 1)->getEndLoc())); |
| 5467 | |
| 5468 | numElements = LHSType->castAs<VectorType>()->getNumElements(); |
| 5469 | unsigned numResElements = TheCall->getNumArgs() - 2; |
| 5470 | |
| 5471 | // Check to see if we have a call with 2 vector arguments, the unary shuffle |
| 5472 | // with mask. If so, verify that RHS is an integer vector type with the |
| 5473 | // same number of elts as lhs. |
| 5474 | if (TheCall->getNumArgs() == 2) { |
| 5475 | if (!RHSType->hasIntegerRepresentation() || |
| 5476 | RHSType->castAs<VectorType>()->getNumElements() != numElements) |
| 5477 | return ExprError(Diag(Loc: TheCall->getBeginLoc(), |
| 5478 | DiagID: diag::err_vec_builtin_incompatible_vector) |
| 5479 | << TheCall->getDirectCallee() |
| 5480 | << /*isMorethantwoArgs*/ false |
| 5481 | << SourceRange(TheCall->getArg(Arg: 1)->getBeginLoc(), |
| 5482 | TheCall->getArg(Arg: 1)->getEndLoc())); |
| 5483 | } else if (!Context.hasSameUnqualifiedType(T1: LHSType, T2: RHSType)) { |
| 5484 | return ExprError(Diag(Loc: TheCall->getBeginLoc(), |
| 5485 | DiagID: diag::err_vec_builtin_incompatible_vector) |
| 5486 | << TheCall->getDirectCallee() |
| 5487 | << /*isMorethantwoArgs*/ false |
| 5488 | << SourceRange(TheCall->getArg(Arg: 0)->getBeginLoc(), |
| 5489 | TheCall->getArg(Arg: 1)->getEndLoc())); |
| 5490 | } else if (numElements != numResElements) { |
| 5491 | QualType eltType = LHSType->castAs<VectorType>()->getElementType(); |
| 5492 | resType = |
| 5493 | Context.getVectorType(VectorType: eltType, NumElts: numResElements, VecKind: VectorKind::Generic); |
| 5494 | } |
| 5495 | } |
| 5496 | |
| 5497 | for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { |
| 5498 | Expr *Arg = TheCall->getArg(Arg: i); |
| 5499 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| 5500 | continue; |
| 5501 | |
| 5502 | std::optional<llvm::APSInt> Result; |
| 5503 | if (!(Result = Arg->getIntegerConstantExpr(Ctx: Context))) |
| 5504 | return ExprError(Diag(Loc: TheCall->getBeginLoc(), |
| 5505 | DiagID: diag::err_shufflevector_nonconstant_argument) |
| 5506 | << Arg->getSourceRange()); |
| 5507 | |
| 5508 | // Allow -1 which will be translated to undef in the IR. |
| 5509 | if (Result->isSigned() && Result->isAllOnes()) |
| 5510 | ; |
| 5511 | else if (Result->getActiveBits() > 64 || |
| 5512 | Result->getZExtValue() >= numElements * 2) |
| 5513 | return ExprError(Diag(Loc: TheCall->getBeginLoc(), |
| 5514 | DiagID: diag::err_shufflevector_argument_too_large) |
| 5515 | << Arg->getSourceRange()); |
| 5516 | |
| 5517 | TheCall->setArg(Arg: i, ArgExpr: ConstantExpr::Create(Context, E: Arg, Result: APValue(*Result))); |
| 5518 | } |
| 5519 | |
| 5520 | SmallVector<Expr *> exprs; |
| 5521 | for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { |
| 5522 | exprs.push_back(Elt: TheCall->getArg(Arg: i)); |
| 5523 | TheCall->setArg(Arg: i, ArgExpr: nullptr); |
| 5524 | } |
| 5525 | |
| 5526 | return new (Context) ShuffleVectorExpr(Context, exprs, resType, |
| 5527 | TheCall->getCallee()->getBeginLoc(), |
| 5528 | TheCall->getRParenLoc()); |
| 5529 | } |
| 5530 | |
| 5531 | ExprResult Sema::ConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, |
| 5532 | SourceLocation BuiltinLoc, |
| 5533 | SourceLocation RParenLoc) { |
| 5534 | ExprValueKind VK = VK_PRValue; |
| 5535 | ExprObjectKind OK = OK_Ordinary; |
| 5536 | QualType DstTy = TInfo->getType(); |
| 5537 | QualType SrcTy = E->getType(); |
| 5538 | |
| 5539 | if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) |
| 5540 | return ExprError(Diag(Loc: BuiltinLoc, |
| 5541 | DiagID: diag::err_convertvector_non_vector) |
| 5542 | << E->getSourceRange()); |
| 5543 | if (!DstTy->isVectorType() && !DstTy->isDependentType()) |
| 5544 | return ExprError(Diag(Loc: BuiltinLoc, DiagID: diag::err_builtin_non_vector_type) |
| 5545 | << "second" |
| 5546 | << "__builtin_convertvector" ); |
| 5547 | |
| 5548 | if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { |
| 5549 | unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements(); |
| 5550 | unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements(); |
| 5551 | if (SrcElts != DstElts) |
| 5552 | return ExprError(Diag(Loc: BuiltinLoc, |
| 5553 | DiagID: diag::err_convertvector_incompatible_vector) |
| 5554 | << E->getSourceRange()); |
| 5555 | } |
| 5556 | |
| 5557 | return ConvertVectorExpr::Create(C: Context, SrcExpr: E, TI: TInfo, DstType: DstTy, VK, OK, BuiltinLoc, |
| 5558 | RParenLoc, FPFeatures: CurFPFeatureOverrides()); |
| 5559 | } |
| 5560 | |
| 5561 | bool Sema::BuiltinPrefetch(CallExpr *TheCall) { |
| 5562 | unsigned NumArgs = TheCall->getNumArgs(); |
| 5563 | |
| 5564 | if (NumArgs > 3) |
| 5565 | return Diag(Loc: TheCall->getEndLoc(), |
| 5566 | DiagID: diag::err_typecheck_call_too_many_args_at_most) |
| 5567 | << 0 /*function call*/ << 3 << NumArgs << /*is non object*/ 0 |
| 5568 | << TheCall->getSourceRange(); |
| 5569 | |
| 5570 | // Argument 0 is checked for us and the remaining arguments must be |
| 5571 | // constant integers. |
| 5572 | for (unsigned i = 1; i != NumArgs; ++i) |
| 5573 | if (BuiltinConstantArgRange(TheCall, ArgNum: i, Low: 0, High: i == 1 ? 1 : 3)) |
| 5574 | return true; |
| 5575 | |
| 5576 | return false; |
| 5577 | } |
| 5578 | |
| 5579 | bool Sema::BuiltinArithmeticFence(CallExpr *TheCall) { |
| 5580 | if (!Context.getTargetInfo().checkArithmeticFenceSupported()) |
| 5581 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_target_unsupported) |
| 5582 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
| 5583 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 5584 | return true; |
| 5585 | Expr *Arg = TheCall->getArg(Arg: 0); |
| 5586 | if (Arg->isInstantiationDependent()) |
| 5587 | return false; |
| 5588 | |
| 5589 | QualType ArgTy = Arg->getType(); |
| 5590 | if (!ArgTy->hasFloatingRepresentation()) |
| 5591 | return Diag(Loc: TheCall->getEndLoc(), DiagID: diag::err_typecheck_expect_flt_or_vector) |
| 5592 | << ArgTy; |
| 5593 | if (Arg->isLValue()) { |
| 5594 | ExprResult FirstArg = DefaultLvalueConversion(E: Arg); |
| 5595 | TheCall->setArg(Arg: 0, ArgExpr: FirstArg.get()); |
| 5596 | } |
| 5597 | TheCall->setType(TheCall->getArg(Arg: 0)->getType()); |
| 5598 | return false; |
| 5599 | } |
| 5600 | |
| 5601 | bool Sema::BuiltinAssume(CallExpr *TheCall) { |
| 5602 | Expr *Arg = TheCall->getArg(Arg: 0); |
| 5603 | if (Arg->isInstantiationDependent()) return false; |
| 5604 | |
| 5605 | if (Arg->HasSideEffects(Ctx: Context)) |
| 5606 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::warn_assume_side_effects) |
| 5607 | << Arg->getSourceRange() |
| 5608 | << cast<FunctionDecl>(Val: TheCall->getCalleeDecl())->getIdentifier(); |
| 5609 | |
| 5610 | return false; |
| 5611 | } |
| 5612 | |
| 5613 | bool Sema::BuiltinAllocaWithAlign(CallExpr *TheCall) { |
| 5614 | // The alignment must be a constant integer. |
| 5615 | Expr *Arg = TheCall->getArg(Arg: 1); |
| 5616 | |
| 5617 | // We can't check the value of a dependent argument. |
| 5618 | if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { |
| 5619 | if (const auto *UE = |
| 5620 | dyn_cast<UnaryExprOrTypeTraitExpr>(Val: Arg->IgnoreParenImpCasts())) |
| 5621 | if (UE->getKind() == UETT_AlignOf || |
| 5622 | UE->getKind() == UETT_PreferredAlignOf) |
| 5623 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_alloca_align_alignof) |
| 5624 | << Arg->getSourceRange(); |
| 5625 | |
| 5626 | llvm::APSInt Result = Arg->EvaluateKnownConstInt(Ctx: Context); |
| 5627 | |
| 5628 | if (!Result.isPowerOf2()) |
| 5629 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_alignment_not_power_of_two) |
| 5630 | << Arg->getSourceRange(); |
| 5631 | |
| 5632 | if (Result < Context.getCharWidth()) |
| 5633 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_alignment_too_small) |
| 5634 | << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); |
| 5635 | |
| 5636 | if (Result > std::numeric_limits<int32_t>::max()) |
| 5637 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_alignment_too_big) |
| 5638 | << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); |
| 5639 | } |
| 5640 | |
| 5641 | return false; |
| 5642 | } |
| 5643 | |
| 5644 | bool Sema::BuiltinAssumeAligned(CallExpr *TheCall) { |
| 5645 | if (checkArgCountRange(Call: TheCall, MinArgCount: 2, MaxArgCount: 3)) |
| 5646 | return true; |
| 5647 | |
| 5648 | unsigned NumArgs = TheCall->getNumArgs(); |
| 5649 | Expr *FirstArg = TheCall->getArg(Arg: 0); |
| 5650 | |
| 5651 | { |
| 5652 | ExprResult FirstArgResult = |
| 5653 | DefaultFunctionArrayLvalueConversion(E: FirstArg); |
| 5654 | if (!FirstArgResult.get()->getType()->isPointerType()) { |
| 5655 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_assume_aligned_invalid_arg) |
| 5656 | << TheCall->getSourceRange(); |
| 5657 | return true; |
| 5658 | } |
| 5659 | TheCall->setArg(Arg: 0, ArgExpr: FirstArgResult.get()); |
| 5660 | } |
| 5661 | |
| 5662 | // The alignment must be a constant integer. |
| 5663 | Expr *SecondArg = TheCall->getArg(Arg: 1); |
| 5664 | |
| 5665 | // We can't check the value of a dependent argument. |
| 5666 | if (!SecondArg->isValueDependent()) { |
| 5667 | llvm::APSInt Result; |
| 5668 | if (BuiltinConstantArg(TheCall, ArgNum: 1, Result)) |
| 5669 | return true; |
| 5670 | |
| 5671 | if (!Result.isPowerOf2()) |
| 5672 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_alignment_not_power_of_two) |
| 5673 | << SecondArg->getSourceRange(); |
| 5674 | |
| 5675 | if (Result > Sema::MaximumAlignment) |
| 5676 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_assume_aligned_too_great) |
| 5677 | << SecondArg->getSourceRange() << Sema::MaximumAlignment; |
| 5678 | } |
| 5679 | |
| 5680 | if (NumArgs > 2) { |
| 5681 | Expr *ThirdArg = TheCall->getArg(Arg: 2); |
| 5682 | if (convertArgumentToType(S&: *this, Value&: ThirdArg, Ty: Context.getSizeType())) |
| 5683 | return true; |
| 5684 | TheCall->setArg(Arg: 2, ArgExpr: ThirdArg); |
| 5685 | } |
| 5686 | |
| 5687 | return false; |
| 5688 | } |
| 5689 | |
| 5690 | bool Sema::BuiltinOSLogFormat(CallExpr *TheCall) { |
| 5691 | unsigned BuiltinID = |
| 5692 | cast<FunctionDecl>(Val: TheCall->getCalleeDecl())->getBuiltinID(); |
| 5693 | bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; |
| 5694 | |
| 5695 | unsigned NumArgs = TheCall->getNumArgs(); |
| 5696 | unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; |
| 5697 | if (NumArgs < NumRequiredArgs) { |
| 5698 | return Diag(Loc: TheCall->getEndLoc(), DiagID: diag::err_typecheck_call_too_few_args) |
| 5699 | << 0 /* function call */ << NumRequiredArgs << NumArgs |
| 5700 | << /*is non object*/ 0 << TheCall->getSourceRange(); |
| 5701 | } |
| 5702 | if (NumArgs >= NumRequiredArgs + 0x100) { |
| 5703 | return Diag(Loc: TheCall->getEndLoc(), |
| 5704 | DiagID: diag::err_typecheck_call_too_many_args_at_most) |
| 5705 | << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs |
| 5706 | << /*is non object*/ 0 << TheCall->getSourceRange(); |
| 5707 | } |
| 5708 | unsigned i = 0; |
| 5709 | |
| 5710 | // For formatting call, check buffer arg. |
| 5711 | if (!IsSizeCall) { |
| 5712 | ExprResult Arg(TheCall->getArg(Arg: i)); |
| 5713 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
| 5714 | Context, Type: Context.VoidPtrTy, Consumed: false); |
| 5715 | Arg = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Arg); |
| 5716 | if (Arg.isInvalid()) |
| 5717 | return true; |
| 5718 | TheCall->setArg(Arg: i, ArgExpr: Arg.get()); |
| 5719 | i++; |
| 5720 | } |
| 5721 | |
| 5722 | // Check string literal arg. |
| 5723 | unsigned FormatIdx = i; |
| 5724 | { |
| 5725 | ExprResult Arg = CheckOSLogFormatStringArg(Arg: TheCall->getArg(Arg: i)); |
| 5726 | if (Arg.isInvalid()) |
| 5727 | return true; |
| 5728 | TheCall->setArg(Arg: i, ArgExpr: Arg.get()); |
| 5729 | i++; |
| 5730 | } |
| 5731 | |
| 5732 | // Make sure variadic args are scalar. |
| 5733 | unsigned FirstDataArg = i; |
| 5734 | while (i < NumArgs) { |
| 5735 | ExprResult Arg = DefaultVariadicArgumentPromotion( |
| 5736 | E: TheCall->getArg(Arg: i), CT: VariadicCallType::Function, FDecl: nullptr); |
| 5737 | if (Arg.isInvalid()) |
| 5738 | return true; |
| 5739 | CharUnits ArgSize = Context.getTypeSizeInChars(T: Arg.get()->getType()); |
| 5740 | if (ArgSize.getQuantity() >= 0x100) { |
| 5741 | return Diag(Loc: Arg.get()->getEndLoc(), DiagID: diag::err_os_log_argument_too_big) |
| 5742 | << i << (int)ArgSize.getQuantity() << 0xff |
| 5743 | << TheCall->getSourceRange(); |
| 5744 | } |
| 5745 | TheCall->setArg(Arg: i, ArgExpr: Arg.get()); |
| 5746 | i++; |
| 5747 | } |
| 5748 | |
| 5749 | // Check formatting specifiers. NOTE: We're only doing this for the non-size |
| 5750 | // call to avoid duplicate diagnostics. |
| 5751 | if (!IsSizeCall) { |
| 5752 | llvm::SmallBitVector CheckedVarArgs(NumArgs, false); |
| 5753 | ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); |
| 5754 | bool Success = CheckFormatArguments( |
| 5755 | Args, FAPK: FAPK_Variadic, ReferenceFormatString: nullptr, format_idx: FormatIdx, firstDataArg: FirstDataArg, |
| 5756 | Type: FormatStringType::OSLog, CallType: VariadicCallType::Function, |
| 5757 | Loc: TheCall->getBeginLoc(), range: SourceRange(), CheckedVarArgs); |
| 5758 | if (!Success) |
| 5759 | return true; |
| 5760 | } |
| 5761 | |
| 5762 | if (IsSizeCall) { |
| 5763 | TheCall->setType(Context.getSizeType()); |
| 5764 | } else { |
| 5765 | TheCall->setType(Context.VoidPtrTy); |
| 5766 | } |
| 5767 | return false; |
| 5768 | } |
| 5769 | |
| 5770 | bool Sema::BuiltinConstantArg(CallExpr *TheCall, int ArgNum, |
| 5771 | llvm::APSInt &Result) { |
| 5772 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
| 5773 | DeclRefExpr *DRE =cast<DeclRefExpr>(Val: TheCall->getCallee()->IgnoreParenCasts()); |
| 5774 | FunctionDecl *FDecl = cast<FunctionDecl>(Val: DRE->getDecl()); |
| 5775 | |
| 5776 | if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; |
| 5777 | |
| 5778 | std::optional<llvm::APSInt> R; |
| 5779 | if (!(R = Arg->getIntegerConstantExpr(Ctx: Context))) |
| 5780 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_constant_integer_arg_type) |
| 5781 | << FDecl->getDeclName() << Arg->getSourceRange(); |
| 5782 | Result = *R; |
| 5783 | return false; |
| 5784 | } |
| 5785 | |
| 5786 | bool Sema::BuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low, |
| 5787 | int High, bool RangeIsError) { |
| 5788 | if (isConstantEvaluatedContext()) |
| 5789 | return false; |
| 5790 | llvm::APSInt Result; |
| 5791 | |
| 5792 | // We can't check the value of a dependent argument. |
| 5793 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
| 5794 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| 5795 | return false; |
| 5796 | |
| 5797 | // Check constant-ness first. |
| 5798 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
| 5799 | return true; |
| 5800 | |
| 5801 | if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { |
| 5802 | if (RangeIsError) |
| 5803 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_argument_invalid_range) |
| 5804 | << toString(I: Result, Radix: 10) << Low << High << Arg->getSourceRange(); |
| 5805 | else |
| 5806 | // Defer the warning until we know if the code will be emitted so that |
| 5807 | // dead code can ignore this. |
| 5808 | DiagRuntimeBehavior(Loc: TheCall->getBeginLoc(), Statement: TheCall, |
| 5809 | PD: PDiag(DiagID: diag::warn_argument_invalid_range) |
| 5810 | << toString(I: Result, Radix: 10) << Low << High |
| 5811 | << Arg->getSourceRange()); |
| 5812 | } |
| 5813 | |
| 5814 | return false; |
| 5815 | } |
| 5816 | |
| 5817 | bool Sema::BuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, |
| 5818 | unsigned Num) { |
| 5819 | llvm::APSInt Result; |
| 5820 | |
| 5821 | // We can't check the value of a dependent argument. |
| 5822 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
| 5823 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| 5824 | return false; |
| 5825 | |
| 5826 | // Check constant-ness first. |
| 5827 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
| 5828 | return true; |
| 5829 | |
| 5830 | if (Result.getSExtValue() % Num != 0) |
| 5831 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_argument_not_multiple) |
| 5832 | << Num << Arg->getSourceRange(); |
| 5833 | |
| 5834 | return false; |
| 5835 | } |
| 5836 | |
| 5837 | bool Sema::BuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) { |
| 5838 | llvm::APSInt Result; |
| 5839 | |
| 5840 | // We can't check the value of a dependent argument. |
| 5841 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
| 5842 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| 5843 | return false; |
| 5844 | |
| 5845 | // Check constant-ness first. |
| 5846 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
| 5847 | return true; |
| 5848 | |
| 5849 | // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if |
| 5850 | // and only if x is a power of 2. |
| 5851 | if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0) |
| 5852 | return false; |
| 5853 | |
| 5854 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_argument_not_power_of_2) |
| 5855 | << Arg->getSourceRange(); |
| 5856 | } |
| 5857 | |
| 5858 | static bool IsShiftedByte(llvm::APSInt Value) { |
| 5859 | if (Value.isNegative()) |
| 5860 | return false; |
| 5861 | |
| 5862 | // Check if it's a shifted byte, by shifting it down |
| 5863 | while (true) { |
| 5864 | // If the value fits in the bottom byte, the check passes. |
| 5865 | if (Value < 0x100) |
| 5866 | return true; |
| 5867 | |
| 5868 | // Otherwise, if the value has _any_ bits in the bottom byte, the check |
| 5869 | // fails. |
| 5870 | if ((Value & 0xFF) != 0) |
| 5871 | return false; |
| 5872 | |
| 5873 | // If the bottom 8 bits are all 0, but something above that is nonzero, |
| 5874 | // then shifting the value right by 8 bits won't affect whether it's a |
| 5875 | // shifted byte or not. So do that, and go round again. |
| 5876 | Value >>= 8; |
| 5877 | } |
| 5878 | } |
| 5879 | |
| 5880 | bool Sema::BuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, |
| 5881 | unsigned ArgBits) { |
| 5882 | llvm::APSInt Result; |
| 5883 | |
| 5884 | // We can't check the value of a dependent argument. |
| 5885 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
| 5886 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| 5887 | return false; |
| 5888 | |
| 5889 | // Check constant-ness first. |
| 5890 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
| 5891 | return true; |
| 5892 | |
| 5893 | // Truncate to the given size. |
| 5894 | Result = Result.getLoBits(numBits: ArgBits); |
| 5895 | Result.setIsUnsigned(true); |
| 5896 | |
| 5897 | if (IsShiftedByte(Value: Result)) |
| 5898 | return false; |
| 5899 | |
| 5900 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_argument_not_shifted_byte) |
| 5901 | << Arg->getSourceRange(); |
| 5902 | } |
| 5903 | |
| 5904 | bool Sema::BuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum, |
| 5905 | unsigned ArgBits) { |
| 5906 | llvm::APSInt Result; |
| 5907 | |
| 5908 | // We can't check the value of a dependent argument. |
| 5909 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
| 5910 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| 5911 | return false; |
| 5912 | |
| 5913 | // Check constant-ness first. |
| 5914 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
| 5915 | return true; |
| 5916 | |
| 5917 | // Truncate to the given size. |
| 5918 | Result = Result.getLoBits(numBits: ArgBits); |
| 5919 | Result.setIsUnsigned(true); |
| 5920 | |
| 5921 | // Check to see if it's in either of the required forms. |
| 5922 | if (IsShiftedByte(Value: Result) || |
| 5923 | (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF)) |
| 5924 | return false; |
| 5925 | |
| 5926 | return Diag(Loc: TheCall->getBeginLoc(), |
| 5927 | DiagID: diag::err_argument_not_shifted_byte_or_xxff) |
| 5928 | << Arg->getSourceRange(); |
| 5929 | } |
| 5930 | |
| 5931 | bool Sema::BuiltinLongjmp(CallExpr *TheCall) { |
| 5932 | if (!Context.getTargetInfo().hasSjLjLowering()) |
| 5933 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_longjmp_unsupported) |
| 5934 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
| 5935 | |
| 5936 | Expr *Arg = TheCall->getArg(Arg: 1); |
| 5937 | llvm::APSInt Result; |
| 5938 | |
| 5939 | // TODO: This is less than ideal. Overload this to take a value. |
| 5940 | if (BuiltinConstantArg(TheCall, ArgNum: 1, Result)) |
| 5941 | return true; |
| 5942 | |
| 5943 | if (Result != 1) |
| 5944 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_longjmp_invalid_val) |
| 5945 | << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); |
| 5946 | |
| 5947 | return false; |
| 5948 | } |
| 5949 | |
| 5950 | bool Sema::BuiltinSetjmp(CallExpr *TheCall) { |
| 5951 | if (!Context.getTargetInfo().hasSjLjLowering()) |
| 5952 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_setjmp_unsupported) |
| 5953 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
| 5954 | return false; |
| 5955 | } |
| 5956 | |
| 5957 | bool Sema::BuiltinCountedByRef(CallExpr *TheCall) { |
| 5958 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 5959 | return true; |
| 5960 | |
| 5961 | ExprResult ArgRes = UsualUnaryConversions(E: TheCall->getArg(Arg: 0)); |
| 5962 | if (ArgRes.isInvalid()) |
| 5963 | return true; |
| 5964 | |
| 5965 | // For simplicity, we support only limited expressions for the argument. |
| 5966 | // Specifically a pointer to a flexible array member:'ptr->array'. This |
| 5967 | // allows us to reject arguments with complex casting, which really shouldn't |
| 5968 | // be a huge problem. |
| 5969 | const Expr *Arg = ArgRes.get()->IgnoreParenImpCasts(); |
| 5970 | if (!isa<PointerType>(Val: Arg->getType()) && !Arg->getType()->isArrayType()) |
| 5971 | return Diag(Loc: Arg->getBeginLoc(), |
| 5972 | DiagID: diag::err_builtin_counted_by_ref_must_be_flex_array_member) |
| 5973 | << Arg->getSourceRange(); |
| 5974 | |
| 5975 | if (Arg->HasSideEffects(Ctx: Context)) |
| 5976 | return Diag(Loc: Arg->getBeginLoc(), |
| 5977 | DiagID: diag::err_builtin_counted_by_ref_has_side_effects) |
| 5978 | << Arg->getSourceRange(); |
| 5979 | |
| 5980 | if (const auto *ME = dyn_cast<MemberExpr>(Val: Arg)) { |
| 5981 | if (!ME->isFlexibleArrayMemberLike( |
| 5982 | Context, StrictFlexArraysLevel: getLangOpts().getStrictFlexArraysLevel())) |
| 5983 | return Diag(Loc: Arg->getBeginLoc(), |
| 5984 | DiagID: diag::err_builtin_counted_by_ref_must_be_flex_array_member) |
| 5985 | << Arg->getSourceRange(); |
| 5986 | |
| 5987 | if (auto *CATy = |
| 5988 | ME->getMemberDecl()->getType()->getAs<CountAttributedType>(); |
| 5989 | CATy && CATy->getKind() == CountAttributedType::CountedBy) { |
| 5990 | const auto *FAMDecl = cast<FieldDecl>(Val: ME->getMemberDecl()); |
| 5991 | if (const FieldDecl *CountFD = FAMDecl->findCountedByField()) { |
| 5992 | TheCall->setType(Context.getPointerType(T: CountFD->getType())); |
| 5993 | return false; |
| 5994 | } |
| 5995 | } |
| 5996 | } else { |
| 5997 | return Diag(Loc: Arg->getBeginLoc(), |
| 5998 | DiagID: diag::err_builtin_counted_by_ref_must_be_flex_array_member) |
| 5999 | << Arg->getSourceRange(); |
| 6000 | } |
| 6001 | |
| 6002 | TheCall->setType(Context.getPointerType(T: Context.VoidTy)); |
| 6003 | return false; |
| 6004 | } |
| 6005 | |
| 6006 | /// The result of __builtin_counted_by_ref cannot be assigned to a variable. |
| 6007 | /// It allows leaking and modification of bounds safety information. |
| 6008 | bool Sema::CheckInvalidBuiltinCountedByRef(const Expr *E, |
| 6009 | BuiltinCountedByRefKind K) { |
| 6010 | const CallExpr *CE = |
| 6011 | E ? dyn_cast<CallExpr>(Val: E->IgnoreParenImpCasts()) : nullptr; |
| 6012 | if (!CE || CE->getBuiltinCallee() != Builtin::BI__builtin_counted_by_ref) |
| 6013 | return false; |
| 6014 | |
| 6015 | switch (K) { |
| 6016 | case BuiltinCountedByRefKind::Assignment: |
| 6017 | case BuiltinCountedByRefKind::Initializer: |
| 6018 | Diag(Loc: E->getExprLoc(), |
| 6019 | DiagID: diag::err_builtin_counted_by_ref_cannot_leak_reference) |
| 6020 | << 0 << E->getSourceRange(); |
| 6021 | break; |
| 6022 | case BuiltinCountedByRefKind::FunctionArg: |
| 6023 | Diag(Loc: E->getExprLoc(), |
| 6024 | DiagID: diag::err_builtin_counted_by_ref_cannot_leak_reference) |
| 6025 | << 1 << E->getSourceRange(); |
| 6026 | break; |
| 6027 | case BuiltinCountedByRefKind::ReturnArg: |
| 6028 | Diag(Loc: E->getExprLoc(), |
| 6029 | DiagID: diag::err_builtin_counted_by_ref_cannot_leak_reference) |
| 6030 | << 2 << E->getSourceRange(); |
| 6031 | break; |
| 6032 | case BuiltinCountedByRefKind::ArraySubscript: |
| 6033 | Diag(Loc: E->getExprLoc(), DiagID: diag::err_builtin_counted_by_ref_invalid_use) |
| 6034 | << 0 << E->getSourceRange(); |
| 6035 | break; |
| 6036 | case BuiltinCountedByRefKind::BinaryExpr: |
| 6037 | Diag(Loc: E->getExprLoc(), DiagID: diag::err_builtin_counted_by_ref_invalid_use) |
| 6038 | << 1 << E->getSourceRange(); |
| 6039 | break; |
| 6040 | } |
| 6041 | |
| 6042 | return true; |
| 6043 | } |
| 6044 | |
| 6045 | namespace { |
| 6046 | |
| 6047 | class UncoveredArgHandler { |
| 6048 | enum { Unknown = -1, AllCovered = -2 }; |
| 6049 | |
| 6050 | signed FirstUncoveredArg = Unknown; |
| 6051 | SmallVector<const Expr *, 4> DiagnosticExprs; |
| 6052 | |
| 6053 | public: |
| 6054 | UncoveredArgHandler() = default; |
| 6055 | |
| 6056 | bool hasUncoveredArg() const { |
| 6057 | return (FirstUncoveredArg >= 0); |
| 6058 | } |
| 6059 | |
| 6060 | unsigned getUncoveredArg() const { |
| 6061 | assert(hasUncoveredArg() && "no uncovered argument" ); |
| 6062 | return FirstUncoveredArg; |
| 6063 | } |
| 6064 | |
| 6065 | void setAllCovered() { |
| 6066 | // A string has been found with all arguments covered, so clear out |
| 6067 | // the diagnostics. |
| 6068 | DiagnosticExprs.clear(); |
| 6069 | FirstUncoveredArg = AllCovered; |
| 6070 | } |
| 6071 | |
| 6072 | void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { |
| 6073 | assert(NewFirstUncoveredArg >= 0 && "Outside range" ); |
| 6074 | |
| 6075 | // Don't update if a previous string covers all arguments. |
| 6076 | if (FirstUncoveredArg == AllCovered) |
| 6077 | return; |
| 6078 | |
| 6079 | // UncoveredArgHandler tracks the highest uncovered argument index |
| 6080 | // and with it all the strings that match this index. |
| 6081 | if (NewFirstUncoveredArg == FirstUncoveredArg) |
| 6082 | DiagnosticExprs.push_back(Elt: StrExpr); |
| 6083 | else if (NewFirstUncoveredArg > FirstUncoveredArg) { |
| 6084 | DiagnosticExprs.clear(); |
| 6085 | DiagnosticExprs.push_back(Elt: StrExpr); |
| 6086 | FirstUncoveredArg = NewFirstUncoveredArg; |
| 6087 | } |
| 6088 | } |
| 6089 | |
| 6090 | void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); |
| 6091 | }; |
| 6092 | |
| 6093 | enum StringLiteralCheckType { |
| 6094 | SLCT_NotALiteral, |
| 6095 | SLCT_UncheckedLiteral, |
| 6096 | SLCT_CheckedLiteral |
| 6097 | }; |
| 6098 | |
| 6099 | } // namespace |
| 6100 | |
| 6101 | static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, |
| 6102 | BinaryOperatorKind BinOpKind, |
| 6103 | bool AddendIsRight) { |
| 6104 | unsigned BitWidth = Offset.getBitWidth(); |
| 6105 | unsigned AddendBitWidth = Addend.getBitWidth(); |
| 6106 | // There might be negative interim results. |
| 6107 | if (Addend.isUnsigned()) { |
| 6108 | Addend = Addend.zext(width: ++AddendBitWidth); |
| 6109 | Addend.setIsSigned(true); |
| 6110 | } |
| 6111 | // Adjust the bit width of the APSInts. |
| 6112 | if (AddendBitWidth > BitWidth) { |
| 6113 | Offset = Offset.sext(width: AddendBitWidth); |
| 6114 | BitWidth = AddendBitWidth; |
| 6115 | } else if (BitWidth > AddendBitWidth) { |
| 6116 | Addend = Addend.sext(width: BitWidth); |
| 6117 | } |
| 6118 | |
| 6119 | bool Ov = false; |
| 6120 | llvm::APSInt ResOffset = Offset; |
| 6121 | if (BinOpKind == BO_Add) |
| 6122 | ResOffset = Offset.sadd_ov(RHS: Addend, Overflow&: Ov); |
| 6123 | else { |
| 6124 | assert(AddendIsRight && BinOpKind == BO_Sub && |
| 6125 | "operator must be add or sub with addend on the right" ); |
| 6126 | ResOffset = Offset.ssub_ov(RHS: Addend, Overflow&: Ov); |
| 6127 | } |
| 6128 | |
| 6129 | // We add an offset to a pointer here so we should support an offset as big as |
| 6130 | // possible. |
| 6131 | if (Ov) { |
| 6132 | assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && |
| 6133 | "index (intermediate) result too big" ); |
| 6134 | Offset = Offset.sext(width: 2 * BitWidth); |
| 6135 | sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); |
| 6136 | return; |
| 6137 | } |
| 6138 | |
| 6139 | Offset = ResOffset; |
| 6140 | } |
| 6141 | |
| 6142 | namespace { |
| 6143 | |
| 6144 | // This is a wrapper class around StringLiteral to support offsetted string |
| 6145 | // literals as format strings. It takes the offset into account when returning |
| 6146 | // the string and its length or the source locations to display notes correctly. |
| 6147 | class FormatStringLiteral { |
| 6148 | const StringLiteral *FExpr; |
| 6149 | int64_t Offset; |
| 6150 | |
| 6151 | public: |
| 6152 | FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) |
| 6153 | : FExpr(fexpr), Offset(Offset) {} |
| 6154 | |
| 6155 | const StringLiteral *getFormatString() const { return FExpr; } |
| 6156 | |
| 6157 | StringRef getString() const { return FExpr->getString().drop_front(N: Offset); } |
| 6158 | |
| 6159 | unsigned getByteLength() const { |
| 6160 | return FExpr->getByteLength() - getCharByteWidth() * Offset; |
| 6161 | } |
| 6162 | |
| 6163 | unsigned getLength() const { return FExpr->getLength() - Offset; } |
| 6164 | unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } |
| 6165 | |
| 6166 | StringLiteralKind getKind() const { return FExpr->getKind(); } |
| 6167 | |
| 6168 | QualType getType() const { return FExpr->getType(); } |
| 6169 | |
| 6170 | bool isAscii() const { return FExpr->isOrdinary(); } |
| 6171 | bool isWide() const { return FExpr->isWide(); } |
| 6172 | bool isUTF8() const { return FExpr->isUTF8(); } |
| 6173 | bool isUTF16() const { return FExpr->isUTF16(); } |
| 6174 | bool isUTF32() const { return FExpr->isUTF32(); } |
| 6175 | bool isPascal() const { return FExpr->isPascal(); } |
| 6176 | |
| 6177 | SourceLocation getLocationOfByte( |
| 6178 | unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, |
| 6179 | const TargetInfo &Target, unsigned *StartToken = nullptr, |
| 6180 | unsigned *StartTokenByteOffset = nullptr) const { |
| 6181 | return FExpr->getLocationOfByte(ByteNo: ByteNo + Offset, SM, Features, Target, |
| 6182 | StartToken, StartTokenByteOffset); |
| 6183 | } |
| 6184 | |
| 6185 | SourceLocation getBeginLoc() const LLVM_READONLY { |
| 6186 | return FExpr->getBeginLoc().getLocWithOffset(Offset); |
| 6187 | } |
| 6188 | |
| 6189 | SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } |
| 6190 | }; |
| 6191 | |
| 6192 | } // namespace |
| 6193 | |
| 6194 | static void CheckFormatString( |
| 6195 | Sema &S, const FormatStringLiteral *FExpr, |
| 6196 | const StringLiteral *ReferenceFormatString, const Expr *OrigFormatExpr, |
| 6197 | ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK, |
| 6198 | unsigned format_idx, unsigned firstDataArg, FormatStringType Type, |
| 6199 | bool inFunctionCall, VariadicCallType CallType, |
| 6200 | llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg, |
| 6201 | bool IgnoreStringsWithoutSpecifiers); |
| 6202 | |
| 6203 | static const Expr *maybeConstEvalStringLiteral(ASTContext &Context, |
| 6204 | const Expr *E); |
| 6205 | |
| 6206 | // Determine if an expression is a string literal or constant string. |
| 6207 | // If this function returns false on the arguments to a function expecting a |
| 6208 | // format string, we will usually need to emit a warning. |
| 6209 | // True string literals are then checked by CheckFormatString. |
| 6210 | static StringLiteralCheckType checkFormatStringExpr( |
| 6211 | Sema &S, const StringLiteral *ReferenceFormatString, const Expr *E, |
| 6212 | ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK, |
| 6213 | unsigned format_idx, unsigned firstDataArg, FormatStringType Type, |
| 6214 | VariadicCallType CallType, bool InFunctionCall, |
| 6215 | llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg, |
| 6216 | llvm::APSInt Offset, bool IgnoreStringsWithoutSpecifiers = false) { |
| 6217 | if (S.isConstantEvaluatedContext()) |
| 6218 | return SLCT_NotALiteral; |
| 6219 | tryAgain: |
| 6220 | assert(Offset.isSigned() && "invalid offset" ); |
| 6221 | |
| 6222 | if (E->isTypeDependent() || E->isValueDependent()) |
| 6223 | return SLCT_NotALiteral; |
| 6224 | |
| 6225 | E = E->IgnoreParenCasts(); |
| 6226 | |
| 6227 | if (E->isNullPointerConstant(Ctx&: S.Context, NPC: Expr::NPC_ValueDependentIsNotNull)) |
| 6228 | // Technically -Wformat-nonliteral does not warn about this case. |
| 6229 | // The behavior of printf and friends in this case is implementation |
| 6230 | // dependent. Ideally if the format string cannot be null then |
| 6231 | // it should have a 'nonnull' attribute in the function prototype. |
| 6232 | return SLCT_UncheckedLiteral; |
| 6233 | |
| 6234 | switch (E->getStmtClass()) { |
| 6235 | case Stmt::InitListExprClass: |
| 6236 | // Handle expressions like {"foobar"}. |
| 6237 | if (const clang::Expr *SLE = maybeConstEvalStringLiteral(Context&: S.Context, E)) { |
| 6238 | return checkFormatStringExpr( |
| 6239 | S, ReferenceFormatString, E: SLE, Args, APK, format_idx, firstDataArg, |
| 6240 | Type, CallType, /*InFunctionCall*/ false, CheckedVarArgs, |
| 6241 | UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers); |
| 6242 | } |
| 6243 | return SLCT_NotALiteral; |
| 6244 | case Stmt::BinaryConditionalOperatorClass: |
| 6245 | case Stmt::ConditionalOperatorClass: { |
| 6246 | // The expression is a literal if both sub-expressions were, and it was |
| 6247 | // completely checked only if both sub-expressions were checked. |
| 6248 | const AbstractConditionalOperator *C = |
| 6249 | cast<AbstractConditionalOperator>(Val: E); |
| 6250 | |
| 6251 | // Determine whether it is necessary to check both sub-expressions, for |
| 6252 | // example, because the condition expression is a constant that can be |
| 6253 | // evaluated at compile time. |
| 6254 | bool CheckLeft = true, CheckRight = true; |
| 6255 | |
| 6256 | bool Cond; |
| 6257 | if (C->getCond()->EvaluateAsBooleanCondition( |
| 6258 | Result&: Cond, Ctx: S.getASTContext(), InConstantContext: S.isConstantEvaluatedContext())) { |
| 6259 | if (Cond) |
| 6260 | CheckRight = false; |
| 6261 | else |
| 6262 | CheckLeft = false; |
| 6263 | } |
| 6264 | |
| 6265 | // We need to maintain the offsets for the right and the left hand side |
| 6266 | // separately to check if every possible indexed expression is a valid |
| 6267 | // string literal. They might have different offsets for different string |
| 6268 | // literals in the end. |
| 6269 | StringLiteralCheckType Left; |
| 6270 | if (!CheckLeft) |
| 6271 | Left = SLCT_UncheckedLiteral; |
| 6272 | else { |
| 6273 | Left = checkFormatStringExpr( |
| 6274 | S, ReferenceFormatString, E: C->getTrueExpr(), Args, APK, format_idx, |
| 6275 | firstDataArg, Type, CallType, InFunctionCall, CheckedVarArgs, |
| 6276 | UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers); |
| 6277 | if (Left == SLCT_NotALiteral || !CheckRight) { |
| 6278 | return Left; |
| 6279 | } |
| 6280 | } |
| 6281 | |
| 6282 | StringLiteralCheckType Right = checkFormatStringExpr( |
| 6283 | S, ReferenceFormatString, E: C->getFalseExpr(), Args, APK, format_idx, |
| 6284 | firstDataArg, Type, CallType, InFunctionCall, CheckedVarArgs, |
| 6285 | UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers); |
| 6286 | |
| 6287 | return (CheckLeft && Left < Right) ? Left : Right; |
| 6288 | } |
| 6289 | |
| 6290 | case Stmt::ImplicitCastExprClass: |
| 6291 | E = cast<ImplicitCastExpr>(Val: E)->getSubExpr(); |
| 6292 | goto tryAgain; |
| 6293 | |
| 6294 | case Stmt::OpaqueValueExprClass: |
| 6295 | if (const Expr *src = cast<OpaqueValueExpr>(Val: E)->getSourceExpr()) { |
| 6296 | E = src; |
| 6297 | goto tryAgain; |
| 6298 | } |
| 6299 | return SLCT_NotALiteral; |
| 6300 | |
| 6301 | case Stmt::PredefinedExprClass: |
| 6302 | // While __func__, etc., are technically not string literals, they |
| 6303 | // cannot contain format specifiers and thus are not a security |
| 6304 | // liability. |
| 6305 | return SLCT_UncheckedLiteral; |
| 6306 | |
| 6307 | case Stmt::DeclRefExprClass: { |
| 6308 | const DeclRefExpr *DR = cast<DeclRefExpr>(Val: E); |
| 6309 | |
| 6310 | // As an exception, do not flag errors for variables binding to |
| 6311 | // const string literals. |
| 6312 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: DR->getDecl())) { |
| 6313 | bool isConstant = false; |
| 6314 | QualType T = DR->getType(); |
| 6315 | |
| 6316 | if (const ArrayType *AT = S.Context.getAsArrayType(T)) { |
| 6317 | isConstant = AT->getElementType().isConstant(Ctx: S.Context); |
| 6318 | } else if (const PointerType *PT = T->getAs<PointerType>()) { |
| 6319 | isConstant = T.isConstant(Ctx: S.Context) && |
| 6320 | PT->getPointeeType().isConstant(Ctx: S.Context); |
| 6321 | } else if (T->isObjCObjectPointerType()) { |
| 6322 | // In ObjC, there is usually no "const ObjectPointer" type, |
| 6323 | // so don't check if the pointee type is constant. |
| 6324 | isConstant = T.isConstant(Ctx: S.Context); |
| 6325 | } |
| 6326 | |
| 6327 | if (isConstant) { |
| 6328 | if (const Expr *Init = VD->getAnyInitializer()) { |
| 6329 | // Look through initializers like const char c[] = { "foo" } |
| 6330 | if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Val: Init)) { |
| 6331 | if (InitList->isStringLiteralInit()) |
| 6332 | Init = InitList->getInit(Init: 0)->IgnoreParenImpCasts(); |
| 6333 | } |
| 6334 | return checkFormatStringExpr( |
| 6335 | S, ReferenceFormatString, E: Init, Args, APK, format_idx, |
| 6336 | firstDataArg, Type, CallType, |
| 6337 | /*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg, Offset); |
| 6338 | } |
| 6339 | } |
| 6340 | |
| 6341 | // When the format argument is an argument of this function, and this |
| 6342 | // function also has the format attribute, there are several interactions |
| 6343 | // for which there shouldn't be a warning. For instance, when calling |
| 6344 | // v*printf from a function that has the printf format attribute, we |
| 6345 | // should not emit a warning about using `fmt`, even though it's not |
| 6346 | // constant, because the arguments have already been checked for the |
| 6347 | // caller of `logmessage`: |
| 6348 | // |
| 6349 | // __attribute__((format(printf, 1, 2))) |
| 6350 | // void logmessage(char const *fmt, ...) { |
| 6351 | // va_list ap; |
| 6352 | // va_start(ap, fmt); |
| 6353 | // vprintf(fmt, ap); /* do not emit a warning about "fmt" */ |
| 6354 | // ... |
| 6355 | // } |
| 6356 | // |
| 6357 | // Another interaction that we need to support is using a format string |
| 6358 | // specified by the format_matches attribute: |
| 6359 | // |
| 6360 | // __attribute__((format_matches(printf, 1, "%s %d"))) |
| 6361 | // void logmessage(char const *fmt, const char *a, int b) { |
| 6362 | // printf(fmt, a, b); /* do not emit a warning about "fmt" */ |
| 6363 | // printf(fmt, 123.4); /* emit warnings that "%s %d" is incompatible */ |
| 6364 | // ... |
| 6365 | // } |
| 6366 | // |
| 6367 | // Yet another interaction that we need to support is calling a variadic |
| 6368 | // format function from a format function that has fixed arguments. For |
| 6369 | // instance: |
| 6370 | // |
| 6371 | // __attribute__((format(printf, 1, 2))) |
| 6372 | // void logstring(char const *fmt, char const *str) { |
| 6373 | // printf(fmt, str); /* do not emit a warning about "fmt" */ |
| 6374 | // } |
| 6375 | // |
| 6376 | // Same (and perhaps more relatably) for the variadic template case: |
| 6377 | // |
| 6378 | // template<typename... Args> |
| 6379 | // __attribute__((format(printf, 1, 2))) |
| 6380 | // void log(const char *fmt, Args&&... args) { |
| 6381 | // printf(fmt, forward<Args>(args)...); |
| 6382 | // /* do not emit a warning about "fmt" */ |
| 6383 | // } |
| 6384 | // |
| 6385 | // Due to implementation difficulty, we only check the format, not the |
| 6386 | // format arguments, in all cases. |
| 6387 | // |
| 6388 | if (const auto *PV = dyn_cast<ParmVarDecl>(Val: VD)) { |
| 6389 | if (const auto *D = dyn_cast<Decl>(Val: PV->getDeclContext())) { |
| 6390 | for (const auto *PVFormatMatches : |
| 6391 | D->specific_attrs<FormatMatchesAttr>()) { |
| 6392 | Sema::FormatStringInfo CalleeFSI; |
| 6393 | if (!Sema::getFormatStringInfo(D, FormatIdx: PVFormatMatches->getFormatIdx(), |
| 6394 | FirstArg: 0, FSI: &CalleeFSI)) |
| 6395 | continue; |
| 6396 | if (PV->getFunctionScopeIndex() == CalleeFSI.FormatIdx) { |
| 6397 | // If using the wrong type of format string, emit a diagnostic |
| 6398 | // here and stop checking to avoid irrelevant diagnostics. |
| 6399 | if (Type != S.GetFormatStringType(Format: PVFormatMatches)) { |
| 6400 | S.Diag(Loc: Args[format_idx]->getBeginLoc(), |
| 6401 | DiagID: diag::warn_format_string_type_incompatible) |
| 6402 | << PVFormatMatches->getType()->getName() |
| 6403 | << S.GetFormatStringTypeName(FST: Type); |
| 6404 | if (!InFunctionCall) { |
| 6405 | S.Diag(Loc: PVFormatMatches->getFormatString()->getBeginLoc(), |
| 6406 | DiagID: diag::note_format_string_defined); |
| 6407 | } |
| 6408 | return SLCT_UncheckedLiteral; |
| 6409 | } |
| 6410 | return checkFormatStringExpr( |
| 6411 | S, ReferenceFormatString, E: PVFormatMatches->getFormatString(), |
| 6412 | Args, APK, format_idx, firstDataArg, Type, CallType, |
| 6413 | /*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg, |
| 6414 | Offset, IgnoreStringsWithoutSpecifiers); |
| 6415 | } |
| 6416 | } |
| 6417 | |
| 6418 | for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) { |
| 6419 | Sema::FormatStringInfo CallerFSI; |
| 6420 | if (!Sema::getFormatStringInfo(D, FormatIdx: PVFormat->getFormatIdx(), |
| 6421 | FirstArg: PVFormat->getFirstArg(), FSI: &CallerFSI)) |
| 6422 | continue; |
| 6423 | if (PV->getFunctionScopeIndex() == CallerFSI.FormatIdx) { |
| 6424 | // We also check if the formats are compatible. |
| 6425 | // We can't pass a 'scanf' string to a 'printf' function. |
| 6426 | if (Type != S.GetFormatStringType(Format: PVFormat)) { |
| 6427 | S.Diag(Loc: Args[format_idx]->getBeginLoc(), |
| 6428 | DiagID: diag::warn_format_string_type_incompatible) |
| 6429 | << PVFormat->getType()->getName() |
| 6430 | << S.GetFormatStringTypeName(FST: Type); |
| 6431 | if (!InFunctionCall) { |
| 6432 | S.Diag(Loc: E->getBeginLoc(), DiagID: diag::note_format_string_defined); |
| 6433 | } |
| 6434 | return SLCT_UncheckedLiteral; |
| 6435 | } |
| 6436 | // Lastly, check that argument passing kinds transition in a |
| 6437 | // way that makes sense: |
| 6438 | // from a caller with FAPK_VAList, allow FAPK_VAList |
| 6439 | // from a caller with FAPK_Fixed, allow FAPK_Fixed |
| 6440 | // from a caller with FAPK_Fixed, allow FAPK_Variadic |
| 6441 | // from a caller with FAPK_Variadic, allow FAPK_VAList |
| 6442 | switch (combineFAPK(A: CallerFSI.ArgPassingKind, B: APK)) { |
| 6443 | case combineFAPK(A: Sema::FAPK_VAList, B: Sema::FAPK_VAList): |
| 6444 | case combineFAPK(A: Sema::FAPK_Fixed, B: Sema::FAPK_Fixed): |
| 6445 | case combineFAPK(A: Sema::FAPK_Fixed, B: Sema::FAPK_Variadic): |
| 6446 | case combineFAPK(A: Sema::FAPK_Variadic, B: Sema::FAPK_VAList): |
| 6447 | return SLCT_UncheckedLiteral; |
| 6448 | } |
| 6449 | } |
| 6450 | } |
| 6451 | } |
| 6452 | } |
| 6453 | } |
| 6454 | |
| 6455 | return SLCT_NotALiteral; |
| 6456 | } |
| 6457 | |
| 6458 | case Stmt::CallExprClass: |
| 6459 | case Stmt::CXXMemberCallExprClass: { |
| 6460 | const CallExpr *CE = cast<CallExpr>(Val: E); |
| 6461 | if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Val: CE->getCalleeDecl())) { |
| 6462 | bool IsFirst = true; |
| 6463 | StringLiteralCheckType CommonResult; |
| 6464 | for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { |
| 6465 | const Expr *Arg = CE->getArg(Arg: FA->getFormatIdx().getASTIndex()); |
| 6466 | StringLiteralCheckType Result = checkFormatStringExpr( |
| 6467 | S, ReferenceFormatString, E: Arg, Args, APK, format_idx, firstDataArg, |
| 6468 | Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, |
| 6469 | Offset, IgnoreStringsWithoutSpecifiers); |
| 6470 | if (IsFirst) { |
| 6471 | CommonResult = Result; |
| 6472 | IsFirst = false; |
| 6473 | } |
| 6474 | } |
| 6475 | if (!IsFirst) |
| 6476 | return CommonResult; |
| 6477 | |
| 6478 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
| 6479 | unsigned BuiltinID = FD->getBuiltinID(); |
| 6480 | if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || |
| 6481 | BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { |
| 6482 | const Expr *Arg = CE->getArg(Arg: 0); |
| 6483 | return checkFormatStringExpr( |
| 6484 | S, ReferenceFormatString, E: Arg, Args, APK, format_idx, |
| 6485 | firstDataArg, Type, CallType, InFunctionCall, CheckedVarArgs, |
| 6486 | UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers); |
| 6487 | } |
| 6488 | } |
| 6489 | } |
| 6490 | if (const Expr *SLE = maybeConstEvalStringLiteral(Context&: S.Context, E)) |
| 6491 | return checkFormatStringExpr( |
| 6492 | S, ReferenceFormatString, E: SLE, Args, APK, format_idx, firstDataArg, |
| 6493 | Type, CallType, /*InFunctionCall*/ false, CheckedVarArgs, |
| 6494 | UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers); |
| 6495 | return SLCT_NotALiteral; |
| 6496 | } |
| 6497 | case Stmt::ObjCMessageExprClass: { |
| 6498 | const auto *ME = cast<ObjCMessageExpr>(Val: E); |
| 6499 | if (const auto *MD = ME->getMethodDecl()) { |
| 6500 | if (const auto *FA = MD->getAttr<FormatArgAttr>()) { |
| 6501 | // As a special case heuristic, if we're using the method -[NSBundle |
| 6502 | // localizedStringForKey:value:table:], ignore any key strings that lack |
| 6503 | // format specifiers. The idea is that if the key doesn't have any |
| 6504 | // format specifiers then its probably just a key to map to the |
| 6505 | // localized strings. If it does have format specifiers though, then its |
| 6506 | // likely that the text of the key is the format string in the |
| 6507 | // programmer's language, and should be checked. |
| 6508 | const ObjCInterfaceDecl *IFace; |
| 6509 | if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && |
| 6510 | IFace->getIdentifier()->isStr(Str: "NSBundle" ) && |
| 6511 | MD->getSelector().isKeywordSelector( |
| 6512 | Names: {"localizedStringForKey" , "value" , "table" })) { |
| 6513 | IgnoreStringsWithoutSpecifiers = true; |
| 6514 | } |
| 6515 | |
| 6516 | const Expr *Arg = ME->getArg(Arg: FA->getFormatIdx().getASTIndex()); |
| 6517 | return checkFormatStringExpr( |
| 6518 | S, ReferenceFormatString, E: Arg, Args, APK, format_idx, firstDataArg, |
| 6519 | Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, |
| 6520 | Offset, IgnoreStringsWithoutSpecifiers); |
| 6521 | } |
| 6522 | } |
| 6523 | |
| 6524 | return SLCT_NotALiteral; |
| 6525 | } |
| 6526 | case Stmt::ObjCStringLiteralClass: |
| 6527 | case Stmt::StringLiteralClass: { |
| 6528 | const StringLiteral *StrE = nullptr; |
| 6529 | |
| 6530 | if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(Val: E)) |
| 6531 | StrE = ObjCFExpr->getString(); |
| 6532 | else |
| 6533 | StrE = cast<StringLiteral>(Val: E); |
| 6534 | |
| 6535 | if (StrE) { |
| 6536 | if (Offset.isNegative() || Offset > StrE->getLength()) { |
| 6537 | // TODO: It would be better to have an explicit warning for out of |
| 6538 | // bounds literals. |
| 6539 | return SLCT_NotALiteral; |
| 6540 | } |
| 6541 | FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(width: 64).getSExtValue()); |
| 6542 | CheckFormatString(S, FExpr: &FStr, ReferenceFormatString, OrigFormatExpr: E, Args, APK, |
| 6543 | format_idx, firstDataArg, Type, inFunctionCall: InFunctionCall, |
| 6544 | CallType, CheckedVarArgs, UncoveredArg, |
| 6545 | IgnoreStringsWithoutSpecifiers); |
| 6546 | return SLCT_CheckedLiteral; |
| 6547 | } |
| 6548 | |
| 6549 | return SLCT_NotALiteral; |
| 6550 | } |
| 6551 | case Stmt::BinaryOperatorClass: { |
| 6552 | const BinaryOperator *BinOp = cast<BinaryOperator>(Val: E); |
| 6553 | |
| 6554 | // A string literal + an int offset is still a string literal. |
| 6555 | if (BinOp->isAdditiveOp()) { |
| 6556 | Expr::EvalResult LResult, RResult; |
| 6557 | |
| 6558 | bool LIsInt = BinOp->getLHS()->EvaluateAsInt( |
| 6559 | Result&: LResult, Ctx: S.Context, AllowSideEffects: Expr::SE_NoSideEffects, |
| 6560 | InConstantContext: S.isConstantEvaluatedContext()); |
| 6561 | bool RIsInt = BinOp->getRHS()->EvaluateAsInt( |
| 6562 | Result&: RResult, Ctx: S.Context, AllowSideEffects: Expr::SE_NoSideEffects, |
| 6563 | InConstantContext: S.isConstantEvaluatedContext()); |
| 6564 | |
| 6565 | if (LIsInt != RIsInt) { |
| 6566 | BinaryOperatorKind BinOpKind = BinOp->getOpcode(); |
| 6567 | |
| 6568 | if (LIsInt) { |
| 6569 | if (BinOpKind == BO_Add) { |
| 6570 | sumOffsets(Offset, Addend: LResult.Val.getInt(), BinOpKind, AddendIsRight: RIsInt); |
| 6571 | E = BinOp->getRHS(); |
| 6572 | goto tryAgain; |
| 6573 | } |
| 6574 | } else { |
| 6575 | sumOffsets(Offset, Addend: RResult.Val.getInt(), BinOpKind, AddendIsRight: RIsInt); |
| 6576 | E = BinOp->getLHS(); |
| 6577 | goto tryAgain; |
| 6578 | } |
| 6579 | } |
| 6580 | } |
| 6581 | |
| 6582 | return SLCT_NotALiteral; |
| 6583 | } |
| 6584 | case Stmt::UnaryOperatorClass: { |
| 6585 | const UnaryOperator *UnaOp = cast<UnaryOperator>(Val: E); |
| 6586 | auto ASE = dyn_cast<ArraySubscriptExpr>(Val: UnaOp->getSubExpr()); |
| 6587 | if (UnaOp->getOpcode() == UO_AddrOf && ASE) { |
| 6588 | Expr::EvalResult IndexResult; |
| 6589 | if (ASE->getRHS()->EvaluateAsInt(Result&: IndexResult, Ctx: S.Context, |
| 6590 | AllowSideEffects: Expr::SE_NoSideEffects, |
| 6591 | InConstantContext: S.isConstantEvaluatedContext())) { |
| 6592 | sumOffsets(Offset, Addend: IndexResult.Val.getInt(), BinOpKind: BO_Add, |
| 6593 | /*RHS is int*/ AddendIsRight: true); |
| 6594 | E = ASE->getBase(); |
| 6595 | goto tryAgain; |
| 6596 | } |
| 6597 | } |
| 6598 | |
| 6599 | return SLCT_NotALiteral; |
| 6600 | } |
| 6601 | |
| 6602 | default: |
| 6603 | return SLCT_NotALiteral; |
| 6604 | } |
| 6605 | } |
| 6606 | |
| 6607 | // If this expression can be evaluated at compile-time, |
| 6608 | // check if the result is a StringLiteral and return it |
| 6609 | // otherwise return nullptr |
| 6610 | static const Expr *maybeConstEvalStringLiteral(ASTContext &Context, |
| 6611 | const Expr *E) { |
| 6612 | Expr::EvalResult Result; |
| 6613 | if (E->EvaluateAsRValue(Result, Ctx: Context) && Result.Val.isLValue()) { |
| 6614 | const auto *LVE = Result.Val.getLValueBase().dyn_cast<const Expr *>(); |
| 6615 | if (isa_and_nonnull<StringLiteral>(Val: LVE)) |
| 6616 | return LVE; |
| 6617 | } |
| 6618 | return nullptr; |
| 6619 | } |
| 6620 | |
| 6621 | StringRef Sema::GetFormatStringTypeName(FormatStringType FST) { |
| 6622 | switch (FST) { |
| 6623 | case FormatStringType::Scanf: |
| 6624 | return "scanf" ; |
| 6625 | case FormatStringType::Printf: |
| 6626 | return "printf" ; |
| 6627 | case FormatStringType::NSString: |
| 6628 | return "NSString" ; |
| 6629 | case FormatStringType::Strftime: |
| 6630 | return "strftime" ; |
| 6631 | case FormatStringType::Strfmon: |
| 6632 | return "strfmon" ; |
| 6633 | case FormatStringType::Kprintf: |
| 6634 | return "kprintf" ; |
| 6635 | case FormatStringType::FreeBSDKPrintf: |
| 6636 | return "freebsd_kprintf" ; |
| 6637 | case FormatStringType::OSLog: |
| 6638 | return "os_log" ; |
| 6639 | default: |
| 6640 | return "<unknown>" ; |
| 6641 | } |
| 6642 | } |
| 6643 | |
| 6644 | FormatStringType Sema::GetFormatStringType(StringRef Flavor) { |
| 6645 | return llvm::StringSwitch<FormatStringType>(Flavor) |
| 6646 | .Case(S: "scanf" , Value: FormatStringType::Scanf) |
| 6647 | .Cases(S0: "printf" , S1: "printf0" , S2: "syslog" , Value: FormatStringType::Printf) |
| 6648 | .Cases(S0: "NSString" , S1: "CFString" , Value: FormatStringType::NSString) |
| 6649 | .Case(S: "strftime" , Value: FormatStringType::Strftime) |
| 6650 | .Case(S: "strfmon" , Value: FormatStringType::Strfmon) |
| 6651 | .Cases(S0: "kprintf" , S1: "cmn_err" , S2: "vcmn_err" , S3: "zcmn_err" , |
| 6652 | Value: FormatStringType::Kprintf) |
| 6653 | .Case(S: "freebsd_kprintf" , Value: FormatStringType::FreeBSDKPrintf) |
| 6654 | .Case(S: "os_trace" , Value: FormatStringType::OSLog) |
| 6655 | .Case(S: "os_log" , Value: FormatStringType::OSLog) |
| 6656 | .Default(Value: FormatStringType::Unknown); |
| 6657 | } |
| 6658 | |
| 6659 | FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { |
| 6660 | return GetFormatStringType(Flavor: Format->getType()->getName()); |
| 6661 | } |
| 6662 | |
| 6663 | FormatStringType Sema::GetFormatStringType(const FormatMatchesAttr *Format) { |
| 6664 | return GetFormatStringType(Flavor: Format->getType()->getName()); |
| 6665 | } |
| 6666 | |
| 6667 | bool Sema::CheckFormatArguments(const FormatAttr *Format, |
| 6668 | ArrayRef<const Expr *> Args, bool IsCXXMember, |
| 6669 | VariadicCallType CallType, SourceLocation Loc, |
| 6670 | SourceRange Range, |
| 6671 | llvm::SmallBitVector &CheckedVarArgs) { |
| 6672 | FormatStringInfo FSI; |
| 6673 | if (getFormatStringInfo(FormatIdx: Format->getFormatIdx(), FirstArg: Format->getFirstArg(), |
| 6674 | IsCXXMember, |
| 6675 | IsVariadic: CallType != VariadicCallType::DoesNotApply, FSI: &FSI)) |
| 6676 | return CheckFormatArguments( |
| 6677 | Args, FAPK: FSI.ArgPassingKind, ReferenceFormatString: nullptr, format_idx: FSI.FormatIdx, firstDataArg: FSI.FirstDataArg, |
| 6678 | Type: GetFormatStringType(Format), CallType, Loc, range: Range, CheckedVarArgs); |
| 6679 | return false; |
| 6680 | } |
| 6681 | |
| 6682 | bool Sema::CheckFormatString(const FormatMatchesAttr *Format, |
| 6683 | ArrayRef<const Expr *> Args, bool IsCXXMember, |
| 6684 | VariadicCallType CallType, SourceLocation Loc, |
| 6685 | SourceRange Range, |
| 6686 | llvm::SmallBitVector &CheckedVarArgs) { |
| 6687 | FormatStringInfo FSI; |
| 6688 | if (getFormatStringInfo(FormatIdx: Format->getFormatIdx(), FirstArg: 0, IsCXXMember, IsVariadic: false, |
| 6689 | FSI: &FSI)) { |
| 6690 | FSI.ArgPassingKind = Sema::FAPK_Elsewhere; |
| 6691 | return CheckFormatArguments(Args, FAPK: FSI.ArgPassingKind, |
| 6692 | ReferenceFormatString: Format->getFormatString(), format_idx: FSI.FormatIdx, |
| 6693 | firstDataArg: FSI.FirstDataArg, Type: GetFormatStringType(Format), |
| 6694 | CallType, Loc, range: Range, CheckedVarArgs); |
| 6695 | } |
| 6696 | return false; |
| 6697 | } |
| 6698 | |
| 6699 | bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, |
| 6700 | Sema::FormatArgumentPassingKind APK, |
| 6701 | const StringLiteral *ReferenceFormatString, |
| 6702 | unsigned format_idx, unsigned firstDataArg, |
| 6703 | FormatStringType Type, |
| 6704 | VariadicCallType CallType, SourceLocation Loc, |
| 6705 | SourceRange Range, |
| 6706 | llvm::SmallBitVector &CheckedVarArgs) { |
| 6707 | // CHECK: printf/scanf-like function is called with no format string. |
| 6708 | if (format_idx >= Args.size()) { |
| 6709 | Diag(Loc, DiagID: diag::warn_missing_format_string) << Range; |
| 6710 | return false; |
| 6711 | } |
| 6712 | |
| 6713 | const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); |
| 6714 | |
| 6715 | // CHECK: format string is not a string literal. |
| 6716 | // |
| 6717 | // Dynamically generated format strings are difficult to |
| 6718 | // automatically vet at compile time. Requiring that format strings |
| 6719 | // are string literals: (1) permits the checking of format strings by |
| 6720 | // the compiler and thereby (2) can practically remove the source of |
| 6721 | // many format string exploits. |
| 6722 | |
| 6723 | // Format string can be either ObjC string (e.g. @"%d") or |
| 6724 | // C string (e.g. "%d") |
| 6725 | // ObjC string uses the same format specifiers as C string, so we can use |
| 6726 | // the same format string checking logic for both ObjC and C strings. |
| 6727 | UncoveredArgHandler UncoveredArg; |
| 6728 | StringLiteralCheckType CT = checkFormatStringExpr( |
| 6729 | S&: *this, ReferenceFormatString, E: OrigFormatExpr, Args, APK, format_idx, |
| 6730 | firstDataArg, Type, CallType, |
| 6731 | /*IsFunctionCall*/ InFunctionCall: true, CheckedVarArgs, UncoveredArg, |
| 6732 | /*no string offset*/ Offset: llvm::APSInt(64, false) = 0); |
| 6733 | |
| 6734 | // Generate a diagnostic where an uncovered argument is detected. |
| 6735 | if (UncoveredArg.hasUncoveredArg()) { |
| 6736 | unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; |
| 6737 | assert(ArgIdx < Args.size() && "ArgIdx outside bounds" ); |
| 6738 | UncoveredArg.Diagnose(S&: *this, /*IsFunctionCall*/true, ArgExpr: Args[ArgIdx]); |
| 6739 | } |
| 6740 | |
| 6741 | if (CT != SLCT_NotALiteral) |
| 6742 | // Literal format string found, check done! |
| 6743 | return CT == SLCT_CheckedLiteral; |
| 6744 | |
| 6745 | // Strftime is particular as it always uses a single 'time' argument, |
| 6746 | // so it is safe to pass a non-literal string. |
| 6747 | if (Type == FormatStringType::Strftime) |
| 6748 | return false; |
| 6749 | |
| 6750 | // Do not emit diag when the string param is a macro expansion and the |
| 6751 | // format is either NSString or CFString. This is a hack to prevent |
| 6752 | // diag when using the NSLocalizedString and CFCopyLocalizedString macros |
| 6753 | // which are usually used in place of NS and CF string literals. |
| 6754 | SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); |
| 6755 | if (Type == FormatStringType::NSString && |
| 6756 | SourceMgr.isInSystemMacro(loc: FormatLoc)) |
| 6757 | return false; |
| 6758 | |
| 6759 | // If there are no arguments specified, warn with -Wformat-security, otherwise |
| 6760 | // warn only with -Wformat-nonliteral. |
| 6761 | if (Args.size() == firstDataArg) { |
| 6762 | Diag(Loc: FormatLoc, DiagID: diag::warn_format_nonliteral_noargs) |
| 6763 | << OrigFormatExpr->getSourceRange(); |
| 6764 | switch (Type) { |
| 6765 | default: |
| 6766 | break; |
| 6767 | case FormatStringType::Kprintf: |
| 6768 | case FormatStringType::FreeBSDKPrintf: |
| 6769 | case FormatStringType::Printf: |
| 6770 | case FormatStringType::Syslog: |
| 6771 | Diag(Loc: FormatLoc, DiagID: diag::note_format_security_fixit) |
| 6772 | << FixItHint::CreateInsertion(InsertionLoc: FormatLoc, Code: "\"%s\", " ); |
| 6773 | break; |
| 6774 | case FormatStringType::NSString: |
| 6775 | Diag(Loc: FormatLoc, DiagID: diag::note_format_security_fixit) |
| 6776 | << FixItHint::CreateInsertion(InsertionLoc: FormatLoc, Code: "@\"%@\", " ); |
| 6777 | break; |
| 6778 | } |
| 6779 | } else { |
| 6780 | Diag(Loc: FormatLoc, DiagID: diag::warn_format_nonliteral) |
| 6781 | << OrigFormatExpr->getSourceRange(); |
| 6782 | } |
| 6783 | return false; |
| 6784 | } |
| 6785 | |
| 6786 | namespace { |
| 6787 | |
| 6788 | class CheckFormatHandler : public analyze_format_string::FormatStringHandler { |
| 6789 | protected: |
| 6790 | Sema &S; |
| 6791 | const FormatStringLiteral *FExpr; |
| 6792 | const Expr *OrigFormatExpr; |
| 6793 | const FormatStringType FSType; |
| 6794 | const unsigned FirstDataArg; |
| 6795 | const unsigned NumDataArgs; |
| 6796 | const char *Beg; // Start of format string. |
| 6797 | const Sema::FormatArgumentPassingKind ArgPassingKind; |
| 6798 | ArrayRef<const Expr *> Args; |
| 6799 | unsigned FormatIdx; |
| 6800 | llvm::SmallBitVector CoveredArgs; |
| 6801 | bool usesPositionalArgs = false; |
| 6802 | bool atFirstArg = true; |
| 6803 | bool inFunctionCall; |
| 6804 | VariadicCallType CallType; |
| 6805 | llvm::SmallBitVector &CheckedVarArgs; |
| 6806 | UncoveredArgHandler &UncoveredArg; |
| 6807 | |
| 6808 | public: |
| 6809 | CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, |
| 6810 | const Expr *origFormatExpr, const FormatStringType type, |
| 6811 | unsigned firstDataArg, unsigned numDataArgs, |
| 6812 | const char *beg, Sema::FormatArgumentPassingKind APK, |
| 6813 | ArrayRef<const Expr *> Args, unsigned formatIdx, |
| 6814 | bool inFunctionCall, VariadicCallType callType, |
| 6815 | llvm::SmallBitVector &CheckedVarArgs, |
| 6816 | UncoveredArgHandler &UncoveredArg) |
| 6817 | : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), |
| 6818 | FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), |
| 6819 | ArgPassingKind(APK), Args(Args), FormatIdx(formatIdx), |
| 6820 | inFunctionCall(inFunctionCall), CallType(callType), |
| 6821 | CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { |
| 6822 | CoveredArgs.resize(N: numDataArgs); |
| 6823 | CoveredArgs.reset(); |
| 6824 | } |
| 6825 | |
| 6826 | bool HasFormatArguments() const { |
| 6827 | return ArgPassingKind == Sema::FAPK_Fixed || |
| 6828 | ArgPassingKind == Sema::FAPK_Variadic; |
| 6829 | } |
| 6830 | |
| 6831 | void DoneProcessing(); |
| 6832 | |
| 6833 | void HandleIncompleteSpecifier(const char *startSpecifier, |
| 6834 | unsigned specifierLen) override; |
| 6835 | |
| 6836 | void HandleInvalidLengthModifier( |
| 6837 | const analyze_format_string::FormatSpecifier &FS, |
| 6838 | const analyze_format_string::ConversionSpecifier &CS, |
| 6839 | const char *startSpecifier, unsigned specifierLen, |
| 6840 | unsigned DiagID); |
| 6841 | |
| 6842 | void HandleNonStandardLengthModifier( |
| 6843 | const analyze_format_string::FormatSpecifier &FS, |
| 6844 | const char *startSpecifier, unsigned specifierLen); |
| 6845 | |
| 6846 | void HandleNonStandardConversionSpecifier( |
| 6847 | const analyze_format_string::ConversionSpecifier &CS, |
| 6848 | const char *startSpecifier, unsigned specifierLen); |
| 6849 | |
| 6850 | void HandlePosition(const char *startPos, unsigned posLen) override; |
| 6851 | |
| 6852 | void HandleInvalidPosition(const char *startSpecifier, |
| 6853 | unsigned specifierLen, |
| 6854 | analyze_format_string::PositionContext p) override; |
| 6855 | |
| 6856 | void HandleZeroPosition(const char *startPos, unsigned posLen) override; |
| 6857 | |
| 6858 | void HandleNullChar(const char *nullCharacter) override; |
| 6859 | |
| 6860 | template <typename Range> |
| 6861 | static void |
| 6862 | EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, |
| 6863 | const PartialDiagnostic &PDiag, SourceLocation StringLoc, |
| 6864 | bool IsStringLocation, Range StringRange, |
| 6865 | ArrayRef<FixItHint> Fixit = {}); |
| 6866 | |
| 6867 | protected: |
| 6868 | bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, |
| 6869 | const char *startSpec, |
| 6870 | unsigned specifierLen, |
| 6871 | const char *csStart, unsigned csLen); |
| 6872 | |
| 6873 | void HandlePositionalNonpositionalArgs(SourceLocation Loc, |
| 6874 | const char *startSpec, |
| 6875 | unsigned specifierLen); |
| 6876 | |
| 6877 | SourceRange getFormatStringRange(); |
| 6878 | CharSourceRange getSpecifierRange(const char *startSpecifier, |
| 6879 | unsigned specifierLen); |
| 6880 | SourceLocation getLocationOfByte(const char *x); |
| 6881 | |
| 6882 | const Expr *getDataArg(unsigned i) const; |
| 6883 | |
| 6884 | bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, |
| 6885 | const analyze_format_string::ConversionSpecifier &CS, |
| 6886 | const char *startSpecifier, unsigned specifierLen, |
| 6887 | unsigned argIndex); |
| 6888 | |
| 6889 | template <typename Range> |
| 6890 | void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, |
| 6891 | bool IsStringLocation, Range StringRange, |
| 6892 | ArrayRef<FixItHint> Fixit = {}); |
| 6893 | }; |
| 6894 | |
| 6895 | } // namespace |
| 6896 | |
| 6897 | SourceRange CheckFormatHandler::getFormatStringRange() { |
| 6898 | return OrigFormatExpr->getSourceRange(); |
| 6899 | } |
| 6900 | |
| 6901 | CharSourceRange CheckFormatHandler:: |
| 6902 | getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { |
| 6903 | SourceLocation Start = getLocationOfByte(x: startSpecifier); |
| 6904 | SourceLocation End = getLocationOfByte(x: startSpecifier + specifierLen - 1); |
| 6905 | |
| 6906 | // Advance the end SourceLocation by one due to half-open ranges. |
| 6907 | End = End.getLocWithOffset(Offset: 1); |
| 6908 | |
| 6909 | return CharSourceRange::getCharRange(B: Start, E: End); |
| 6910 | } |
| 6911 | |
| 6912 | SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { |
| 6913 | return FExpr->getLocationOfByte(ByteNo: x - Beg, SM: S.getSourceManager(), |
| 6914 | Features: S.getLangOpts(), Target: S.Context.getTargetInfo()); |
| 6915 | } |
| 6916 | |
| 6917 | void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, |
| 6918 | unsigned specifierLen){ |
| 6919 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_incomplete_specifier), |
| 6920 | Loc: getLocationOfByte(x: startSpecifier), |
| 6921 | /*IsStringLocation*/true, |
| 6922 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 6923 | } |
| 6924 | |
| 6925 | void CheckFormatHandler::HandleInvalidLengthModifier( |
| 6926 | const analyze_format_string::FormatSpecifier &FS, |
| 6927 | const analyze_format_string::ConversionSpecifier &CS, |
| 6928 | const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { |
| 6929 | using namespace analyze_format_string; |
| 6930 | |
| 6931 | const LengthModifier &LM = FS.getLengthModifier(); |
| 6932 | CharSourceRange LMRange = getSpecifierRange(startSpecifier: LM.getStart(), specifierLen: LM.getLength()); |
| 6933 | |
| 6934 | // See if we know how to fix this length modifier. |
| 6935 | std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); |
| 6936 | if (FixedLM) { |
| 6937 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID) << LM.toString() << CS.toString(), |
| 6938 | Loc: getLocationOfByte(x: LM.getStart()), |
| 6939 | /*IsStringLocation*/true, |
| 6940 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 6941 | |
| 6942 | S.Diag(Loc: getLocationOfByte(x: LM.getStart()), DiagID: diag::note_format_fix_specifier) |
| 6943 | << FixedLM->toString() |
| 6944 | << FixItHint::CreateReplacement(RemoveRange: LMRange, Code: FixedLM->toString()); |
| 6945 | |
| 6946 | } else { |
| 6947 | FixItHint Hint; |
| 6948 | if (DiagID == diag::warn_format_nonsensical_length) |
| 6949 | Hint = FixItHint::CreateRemoval(RemoveRange: LMRange); |
| 6950 | |
| 6951 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID) << LM.toString() << CS.toString(), |
| 6952 | Loc: getLocationOfByte(x: LM.getStart()), |
| 6953 | /*IsStringLocation*/true, |
| 6954 | StringRange: getSpecifierRange(startSpecifier, specifierLen), |
| 6955 | FixIt: Hint); |
| 6956 | } |
| 6957 | } |
| 6958 | |
| 6959 | void CheckFormatHandler::HandleNonStandardLengthModifier( |
| 6960 | const analyze_format_string::FormatSpecifier &FS, |
| 6961 | const char *startSpecifier, unsigned specifierLen) { |
| 6962 | using namespace analyze_format_string; |
| 6963 | |
| 6964 | const LengthModifier &LM = FS.getLengthModifier(); |
| 6965 | CharSourceRange LMRange = getSpecifierRange(startSpecifier: LM.getStart(), specifierLen: LM.getLength()); |
| 6966 | |
| 6967 | // See if we know how to fix this length modifier. |
| 6968 | std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); |
| 6969 | if (FixedLM) { |
| 6970 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_non_standard) |
| 6971 | << LM.toString() << 0, |
| 6972 | Loc: getLocationOfByte(x: LM.getStart()), |
| 6973 | /*IsStringLocation*/true, |
| 6974 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 6975 | |
| 6976 | S.Diag(Loc: getLocationOfByte(x: LM.getStart()), DiagID: diag::note_format_fix_specifier) |
| 6977 | << FixedLM->toString() |
| 6978 | << FixItHint::CreateReplacement(RemoveRange: LMRange, Code: FixedLM->toString()); |
| 6979 | |
| 6980 | } else { |
| 6981 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_non_standard) |
| 6982 | << LM.toString() << 0, |
| 6983 | Loc: getLocationOfByte(x: LM.getStart()), |
| 6984 | /*IsStringLocation*/true, |
| 6985 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 6986 | } |
| 6987 | } |
| 6988 | |
| 6989 | void CheckFormatHandler::HandleNonStandardConversionSpecifier( |
| 6990 | const analyze_format_string::ConversionSpecifier &CS, |
| 6991 | const char *startSpecifier, unsigned specifierLen) { |
| 6992 | using namespace analyze_format_string; |
| 6993 | |
| 6994 | // See if we know how to fix this conversion specifier. |
| 6995 | std::optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); |
| 6996 | if (FixedCS) { |
| 6997 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_non_standard) |
| 6998 | << CS.toString() << /*conversion specifier*/1, |
| 6999 | Loc: getLocationOfByte(x: CS.getStart()), |
| 7000 | /*IsStringLocation*/true, |
| 7001 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 7002 | |
| 7003 | CharSourceRange CSRange = getSpecifierRange(startSpecifier: CS.getStart(), specifierLen: CS.getLength()); |
| 7004 | S.Diag(Loc: getLocationOfByte(x: CS.getStart()), DiagID: diag::note_format_fix_specifier) |
| 7005 | << FixedCS->toString() |
| 7006 | << FixItHint::CreateReplacement(RemoveRange: CSRange, Code: FixedCS->toString()); |
| 7007 | } else { |
| 7008 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_non_standard) |
| 7009 | << CS.toString() << /*conversion specifier*/1, |
| 7010 | Loc: getLocationOfByte(x: CS.getStart()), |
| 7011 | /*IsStringLocation*/true, |
| 7012 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 7013 | } |
| 7014 | } |
| 7015 | |
| 7016 | void CheckFormatHandler::HandlePosition(const char *startPos, |
| 7017 | unsigned posLen) { |
| 7018 | if (!S.getDiagnostics().isIgnored( |
| 7019 | DiagID: diag::warn_format_non_standard_positional_arg, Loc: SourceLocation())) |
| 7020 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_non_standard_positional_arg), |
| 7021 | Loc: getLocationOfByte(x: startPos), |
| 7022 | /*IsStringLocation*/ true, |
| 7023 | StringRange: getSpecifierRange(startSpecifier: startPos, specifierLen: posLen)); |
| 7024 | } |
| 7025 | |
| 7026 | void CheckFormatHandler::HandleInvalidPosition( |
| 7027 | const char *startSpecifier, unsigned specifierLen, |
| 7028 | analyze_format_string::PositionContext p) { |
| 7029 | if (!S.getDiagnostics().isIgnored( |
| 7030 | DiagID: diag::warn_format_invalid_positional_specifier, Loc: SourceLocation())) |
| 7031 | EmitFormatDiagnostic( |
| 7032 | PDiag: S.PDiag(DiagID: diag::warn_format_invalid_positional_specifier) << (unsigned)p, |
| 7033 | Loc: getLocationOfByte(x: startSpecifier), /*IsStringLocation*/ true, |
| 7034 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 7035 | } |
| 7036 | |
| 7037 | void CheckFormatHandler::HandleZeroPosition(const char *startPos, |
| 7038 | unsigned posLen) { |
| 7039 | if (!S.getDiagnostics().isIgnored(DiagID: diag::warn_format_zero_positional_specifier, |
| 7040 | Loc: SourceLocation())) |
| 7041 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_zero_positional_specifier), |
| 7042 | Loc: getLocationOfByte(x: startPos), |
| 7043 | /*IsStringLocation*/ true, |
| 7044 | StringRange: getSpecifierRange(startSpecifier: startPos, specifierLen: posLen)); |
| 7045 | } |
| 7046 | |
| 7047 | void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { |
| 7048 | if (!isa<ObjCStringLiteral>(Val: OrigFormatExpr)) { |
| 7049 | // The presence of a null character is likely an error. |
| 7050 | EmitFormatDiagnostic( |
| 7051 | PDiag: S.PDiag(DiagID: diag::warn_printf_format_string_contains_null_char), |
| 7052 | Loc: getLocationOfByte(x: nullCharacter), /*IsStringLocation*/true, |
| 7053 | StringRange: getFormatStringRange()); |
| 7054 | } |
| 7055 | } |
| 7056 | |
| 7057 | // Note that this may return NULL if there was an error parsing or building |
| 7058 | // one of the argument expressions. |
| 7059 | const Expr *CheckFormatHandler::getDataArg(unsigned i) const { |
| 7060 | return Args[FirstDataArg + i]; |
| 7061 | } |
| 7062 | |
| 7063 | void CheckFormatHandler::DoneProcessing() { |
| 7064 | // Does the number of data arguments exceed the number of |
| 7065 | // format conversions in the format string? |
| 7066 | if (HasFormatArguments()) { |
| 7067 | // Find any arguments that weren't covered. |
| 7068 | CoveredArgs.flip(); |
| 7069 | signed notCoveredArg = CoveredArgs.find_first(); |
| 7070 | if (notCoveredArg >= 0) { |
| 7071 | assert((unsigned)notCoveredArg < NumDataArgs); |
| 7072 | UncoveredArg.Update(NewFirstUncoveredArg: notCoveredArg, StrExpr: OrigFormatExpr); |
| 7073 | } else { |
| 7074 | UncoveredArg.setAllCovered(); |
| 7075 | } |
| 7076 | } |
| 7077 | } |
| 7078 | |
| 7079 | void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, |
| 7080 | const Expr *ArgExpr) { |
| 7081 | assert(hasUncoveredArg() && !DiagnosticExprs.empty() && |
| 7082 | "Invalid state" ); |
| 7083 | |
| 7084 | if (!ArgExpr) |
| 7085 | return; |
| 7086 | |
| 7087 | SourceLocation Loc = ArgExpr->getBeginLoc(); |
| 7088 | |
| 7089 | if (S.getSourceManager().isInSystemMacro(loc: Loc)) |
| 7090 | return; |
| 7091 | |
| 7092 | PartialDiagnostic PDiag = S.PDiag(DiagID: diag::warn_printf_data_arg_not_used); |
| 7093 | for (auto E : DiagnosticExprs) |
| 7094 | PDiag << E->getSourceRange(); |
| 7095 | |
| 7096 | CheckFormatHandler::EmitFormatDiagnostic( |
| 7097 | S, InFunctionCall: IsFunctionCall, ArgumentExpr: DiagnosticExprs[0], |
| 7098 | PDiag, Loc, /*IsStringLocation*/false, |
| 7099 | StringRange: DiagnosticExprs[0]->getSourceRange()); |
| 7100 | } |
| 7101 | |
| 7102 | bool |
| 7103 | CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, |
| 7104 | SourceLocation Loc, |
| 7105 | const char *startSpec, |
| 7106 | unsigned specifierLen, |
| 7107 | const char *csStart, |
| 7108 | unsigned csLen) { |
| 7109 | bool keepGoing = true; |
| 7110 | if (argIndex < NumDataArgs) { |
| 7111 | // Consider the argument coverered, even though the specifier doesn't |
| 7112 | // make sense. |
| 7113 | CoveredArgs.set(argIndex); |
| 7114 | } |
| 7115 | else { |
| 7116 | // If argIndex exceeds the number of data arguments we |
| 7117 | // don't issue a warning because that is just a cascade of warnings (and |
| 7118 | // they may have intended '%%' anyway). We don't want to continue processing |
| 7119 | // the format string after this point, however, as we will like just get |
| 7120 | // gibberish when trying to match arguments. |
| 7121 | keepGoing = false; |
| 7122 | } |
| 7123 | |
| 7124 | StringRef Specifier(csStart, csLen); |
| 7125 | |
| 7126 | // If the specifier in non-printable, it could be the first byte of a UTF-8 |
| 7127 | // sequence. In that case, print the UTF-8 code point. If not, print the byte |
| 7128 | // hex value. |
| 7129 | std::string CodePointStr; |
| 7130 | if (!llvm::sys::locale::isPrint(c: *csStart)) { |
| 7131 | llvm::UTF32 CodePoint; |
| 7132 | const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); |
| 7133 | const llvm::UTF8 *E = |
| 7134 | reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); |
| 7135 | llvm::ConversionResult Result = |
| 7136 | llvm::convertUTF8Sequence(source: B, sourceEnd: E, target: &CodePoint, flags: llvm::strictConversion); |
| 7137 | |
| 7138 | if (Result != llvm::conversionOK) { |
| 7139 | unsigned char FirstChar = *csStart; |
| 7140 | CodePoint = (llvm::UTF32)FirstChar; |
| 7141 | } |
| 7142 | |
| 7143 | llvm::raw_string_ostream OS(CodePointStr); |
| 7144 | if (CodePoint < 256) |
| 7145 | OS << "\\x" << llvm::format(Fmt: "%02x" , Vals: CodePoint); |
| 7146 | else if (CodePoint <= 0xFFFF) |
| 7147 | OS << "\\u" << llvm::format(Fmt: "%04x" , Vals: CodePoint); |
| 7148 | else |
| 7149 | OS << "\\U" << llvm::format(Fmt: "%08x" , Vals: CodePoint); |
| 7150 | Specifier = CodePointStr; |
| 7151 | } |
| 7152 | |
| 7153 | EmitFormatDiagnostic( |
| 7154 | PDiag: S.PDiag(DiagID: diag::warn_format_invalid_conversion) << Specifier, Loc, |
| 7155 | /*IsStringLocation*/ true, StringRange: getSpecifierRange(startSpecifier: startSpec, specifierLen)); |
| 7156 | |
| 7157 | return keepGoing; |
| 7158 | } |
| 7159 | |
| 7160 | void |
| 7161 | CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, |
| 7162 | const char *startSpec, |
| 7163 | unsigned specifierLen) { |
| 7164 | EmitFormatDiagnostic( |
| 7165 | PDiag: S.PDiag(DiagID: diag::warn_format_mix_positional_nonpositional_args), |
| 7166 | Loc, /*isStringLoc*/IsStringLocation: true, StringRange: getSpecifierRange(startSpecifier: startSpec, specifierLen)); |
| 7167 | } |
| 7168 | |
| 7169 | bool |
| 7170 | CheckFormatHandler::CheckNumArgs( |
| 7171 | const analyze_format_string::FormatSpecifier &FS, |
| 7172 | const analyze_format_string::ConversionSpecifier &CS, |
| 7173 | const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { |
| 7174 | |
| 7175 | if (HasFormatArguments() && argIndex >= NumDataArgs) { |
| 7176 | PartialDiagnostic PDiag = FS.usesPositionalArg() |
| 7177 | ? (S.PDiag(DiagID: diag::warn_printf_positional_arg_exceeds_data_args) |
| 7178 | << (argIndex+1) << NumDataArgs) |
| 7179 | : S.PDiag(DiagID: diag::warn_printf_insufficient_data_args); |
| 7180 | EmitFormatDiagnostic( |
| 7181 | PDiag, Loc: getLocationOfByte(x: CS.getStart()), /*IsStringLocation*/true, |
| 7182 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 7183 | |
| 7184 | // Since more arguments than conversion tokens are given, by extension |
| 7185 | // all arguments are covered, so mark this as so. |
| 7186 | UncoveredArg.setAllCovered(); |
| 7187 | return false; |
| 7188 | } |
| 7189 | return true; |
| 7190 | } |
| 7191 | |
| 7192 | template<typename Range> |
| 7193 | void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, |
| 7194 | SourceLocation Loc, |
| 7195 | bool IsStringLocation, |
| 7196 | Range StringRange, |
| 7197 | ArrayRef<FixItHint> FixIt) { |
| 7198 | EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, |
| 7199 | Loc, IsStringLocation, StringRange, FixIt); |
| 7200 | } |
| 7201 | |
| 7202 | /// If the format string is not within the function call, emit a note |
| 7203 | /// so that the function call and string are in diagnostic messages. |
| 7204 | /// |
| 7205 | /// \param InFunctionCall if true, the format string is within the function |
| 7206 | /// call and only one diagnostic message will be produced. Otherwise, an |
| 7207 | /// extra note will be emitted pointing to location of the format string. |
| 7208 | /// |
| 7209 | /// \param ArgumentExpr the expression that is passed as the format string |
| 7210 | /// argument in the function call. Used for getting locations when two |
| 7211 | /// diagnostics are emitted. |
| 7212 | /// |
| 7213 | /// \param PDiag the callee should already have provided any strings for the |
| 7214 | /// diagnostic message. This function only adds locations and fixits |
| 7215 | /// to diagnostics. |
| 7216 | /// |
| 7217 | /// \param Loc primary location for diagnostic. If two diagnostics are |
| 7218 | /// required, one will be at Loc and a new SourceLocation will be created for |
| 7219 | /// the other one. |
| 7220 | /// |
| 7221 | /// \param IsStringLocation if true, Loc points to the format string should be |
| 7222 | /// used for the note. Otherwise, Loc points to the argument list and will |
| 7223 | /// be used with PDiag. |
| 7224 | /// |
| 7225 | /// \param StringRange some or all of the string to highlight. This is |
| 7226 | /// templated so it can accept either a CharSourceRange or a SourceRange. |
| 7227 | /// |
| 7228 | /// \param FixIt optional fix it hint for the format string. |
| 7229 | template <typename Range> |
| 7230 | void CheckFormatHandler::EmitFormatDiagnostic( |
| 7231 | Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, |
| 7232 | const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, |
| 7233 | Range StringRange, ArrayRef<FixItHint> FixIt) { |
| 7234 | if (InFunctionCall) { |
| 7235 | const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PD: PDiag); |
| 7236 | D << StringRange; |
| 7237 | D << FixIt; |
| 7238 | } else { |
| 7239 | S.Diag(Loc: IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PD: PDiag) |
| 7240 | << ArgumentExpr->getSourceRange(); |
| 7241 | |
| 7242 | const Sema::SemaDiagnosticBuilder &Note = |
| 7243 | S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), |
| 7244 | diag::note_format_string_defined); |
| 7245 | |
| 7246 | Note << StringRange; |
| 7247 | Note << FixIt; |
| 7248 | } |
| 7249 | } |
| 7250 | |
| 7251 | //===--- CHECK: Printf format string checking -----------------------------===// |
| 7252 | |
| 7253 | namespace { |
| 7254 | |
| 7255 | class CheckPrintfHandler : public CheckFormatHandler { |
| 7256 | public: |
| 7257 | CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, |
| 7258 | const Expr *origFormatExpr, const FormatStringType type, |
| 7259 | unsigned firstDataArg, unsigned numDataArgs, bool isObjC, |
| 7260 | const char *beg, Sema::FormatArgumentPassingKind APK, |
| 7261 | ArrayRef<const Expr *> Args, unsigned formatIdx, |
| 7262 | bool inFunctionCall, VariadicCallType CallType, |
| 7263 | llvm::SmallBitVector &CheckedVarArgs, |
| 7264 | UncoveredArgHandler &UncoveredArg) |
| 7265 | : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, |
| 7266 | numDataArgs, beg, APK, Args, formatIdx, |
| 7267 | inFunctionCall, CallType, CheckedVarArgs, |
| 7268 | UncoveredArg) {} |
| 7269 | |
| 7270 | bool isObjCContext() const { return FSType == FormatStringType::NSString; } |
| 7271 | |
| 7272 | /// Returns true if '%@' specifiers are allowed in the format string. |
| 7273 | bool allowsObjCArg() const { |
| 7274 | return FSType == FormatStringType::NSString || |
| 7275 | FSType == FormatStringType::OSLog || |
| 7276 | FSType == FormatStringType::OSTrace; |
| 7277 | } |
| 7278 | |
| 7279 | bool HandleInvalidPrintfConversionSpecifier( |
| 7280 | const analyze_printf::PrintfSpecifier &FS, |
| 7281 | const char *startSpecifier, |
| 7282 | unsigned specifierLen) override; |
| 7283 | |
| 7284 | void handleInvalidMaskType(StringRef MaskType) override; |
| 7285 | |
| 7286 | bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, |
| 7287 | const char *startSpecifier, unsigned specifierLen, |
| 7288 | const TargetInfo &Target) override; |
| 7289 | bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, |
| 7290 | const char *StartSpecifier, |
| 7291 | unsigned SpecifierLen, |
| 7292 | const Expr *E); |
| 7293 | |
| 7294 | bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, |
| 7295 | const char *startSpecifier, unsigned specifierLen); |
| 7296 | void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, |
| 7297 | const analyze_printf::OptionalAmount &Amt, |
| 7298 | unsigned type, |
| 7299 | const char *startSpecifier, unsigned specifierLen); |
| 7300 | void HandleFlag(const analyze_printf::PrintfSpecifier &FS, |
| 7301 | const analyze_printf::OptionalFlag &flag, |
| 7302 | const char *startSpecifier, unsigned specifierLen); |
| 7303 | void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, |
| 7304 | const analyze_printf::OptionalFlag &ignoredFlag, |
| 7305 | const analyze_printf::OptionalFlag &flag, |
| 7306 | const char *startSpecifier, unsigned specifierLen); |
| 7307 | bool checkForCStrMembers(const analyze_printf::ArgType &AT, |
| 7308 | const Expr *E); |
| 7309 | |
| 7310 | void HandleEmptyObjCModifierFlag(const char *startFlag, |
| 7311 | unsigned flagLen) override; |
| 7312 | |
| 7313 | void HandleInvalidObjCModifierFlag(const char *startFlag, |
| 7314 | unsigned flagLen) override; |
| 7315 | |
| 7316 | void |
| 7317 | HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, |
| 7318 | const char *flagsEnd, |
| 7319 | const char *conversionPosition) override; |
| 7320 | }; |
| 7321 | |
| 7322 | /// Keeps around the information needed to verify that two specifiers are |
| 7323 | /// compatible. |
| 7324 | class EquatableFormatArgument { |
| 7325 | public: |
| 7326 | enum SpecifierSensitivity : unsigned { |
| 7327 | SS_None, |
| 7328 | SS_Private, |
| 7329 | SS_Public, |
| 7330 | SS_Sensitive |
| 7331 | }; |
| 7332 | |
| 7333 | enum FormatArgumentRole : unsigned { |
| 7334 | FAR_Data, |
| 7335 | FAR_FieldWidth, |
| 7336 | FAR_Precision, |
| 7337 | FAR_Auxiliary, // FreeBSD kernel %b and %D |
| 7338 | }; |
| 7339 | |
| 7340 | private: |
| 7341 | analyze_format_string::ArgType ArgType; |
| 7342 | analyze_format_string::LengthModifier::Kind LengthMod; |
| 7343 | StringRef SpecifierLetter; |
| 7344 | CharSourceRange Range; |
| 7345 | SourceLocation ElementLoc; |
| 7346 | FormatArgumentRole Role : 2; |
| 7347 | SpecifierSensitivity Sensitivity : 2; // only set for FAR_Data |
| 7348 | unsigned Position : 14; |
| 7349 | unsigned ModifierFor : 14; // not set for FAR_Data |
| 7350 | |
| 7351 | void EmitDiagnostic(Sema &S, PartialDiagnostic PDiag, const Expr *FmtExpr, |
| 7352 | bool InFunctionCall) const; |
| 7353 | |
| 7354 | public: |
| 7355 | EquatableFormatArgument(CharSourceRange Range, SourceLocation ElementLoc, |
| 7356 | analyze_format_string::LengthModifier::Kind LengthMod, |
| 7357 | StringRef SpecifierLetter, |
| 7358 | analyze_format_string::ArgType ArgType, |
| 7359 | FormatArgumentRole Role, |
| 7360 | SpecifierSensitivity Sensitivity, unsigned Position, |
| 7361 | unsigned ModifierFor) |
| 7362 | : ArgType(ArgType), LengthMod(LengthMod), |
| 7363 | SpecifierLetter(SpecifierLetter), Range(Range), ElementLoc(ElementLoc), |
| 7364 | Role(Role), Sensitivity(Sensitivity), Position(Position), |
| 7365 | ModifierFor(ModifierFor) {} |
| 7366 | |
| 7367 | unsigned getPosition() const { return Position; } |
| 7368 | SourceLocation getSourceLocation() const { return ElementLoc; } |
| 7369 | CharSourceRange getSourceRange() const { return Range; } |
| 7370 | analyze_format_string::LengthModifier getLengthModifier() const { |
| 7371 | return analyze_format_string::LengthModifier(nullptr, LengthMod); |
| 7372 | } |
| 7373 | void setModifierFor(unsigned V) { ModifierFor = V; } |
| 7374 | |
| 7375 | std::string buildFormatSpecifier() const { |
| 7376 | std::string result; |
| 7377 | llvm::raw_string_ostream(result) |
| 7378 | << getLengthModifier().toString() << SpecifierLetter; |
| 7379 | return result; |
| 7380 | } |
| 7381 | |
| 7382 | bool VerifyCompatible(Sema &S, const EquatableFormatArgument &Other, |
| 7383 | const Expr *FmtExpr, bool InFunctionCall) const; |
| 7384 | }; |
| 7385 | |
| 7386 | /// Turns format strings into lists of EquatableSpecifier objects. |
| 7387 | class DecomposePrintfHandler : public CheckPrintfHandler { |
| 7388 | llvm::SmallVectorImpl<EquatableFormatArgument> &Specs; |
| 7389 | bool HadError; |
| 7390 | |
| 7391 | DecomposePrintfHandler(Sema &s, const FormatStringLiteral *fexpr, |
| 7392 | const Expr *origFormatExpr, |
| 7393 | const FormatStringType type, unsigned firstDataArg, |
| 7394 | unsigned numDataArgs, bool isObjC, const char *beg, |
| 7395 | Sema::FormatArgumentPassingKind APK, |
| 7396 | ArrayRef<const Expr *> Args, unsigned formatIdx, |
| 7397 | bool inFunctionCall, VariadicCallType CallType, |
| 7398 | llvm::SmallBitVector &CheckedVarArgs, |
| 7399 | UncoveredArgHandler &UncoveredArg, |
| 7400 | llvm::SmallVectorImpl<EquatableFormatArgument> &Specs) |
| 7401 | : CheckPrintfHandler(s, fexpr, origFormatExpr, type, firstDataArg, |
| 7402 | numDataArgs, isObjC, beg, APK, Args, formatIdx, |
| 7403 | inFunctionCall, CallType, CheckedVarArgs, |
| 7404 | UncoveredArg), |
| 7405 | Specs(Specs), HadError(false) {} |
| 7406 | |
| 7407 | public: |
| 7408 | static bool |
| 7409 | GetSpecifiers(Sema &S, const FormatStringLiteral *FSL, const Expr *FmtExpr, |
| 7410 | FormatStringType type, bool IsObjC, bool InFunctionCall, |
| 7411 | llvm::SmallVectorImpl<EquatableFormatArgument> &Args); |
| 7412 | |
| 7413 | virtual bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, |
| 7414 | const char *startSpecifier, |
| 7415 | unsigned specifierLen, |
| 7416 | const TargetInfo &Target) override; |
| 7417 | }; |
| 7418 | |
| 7419 | } // namespace |
| 7420 | |
| 7421 | bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( |
| 7422 | const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier, |
| 7423 | unsigned specifierLen) { |
| 7424 | const analyze_printf::PrintfConversionSpecifier &CS = |
| 7425 | FS.getConversionSpecifier(); |
| 7426 | |
| 7427 | return HandleInvalidConversionSpecifier(argIndex: FS.getArgIndex(), |
| 7428 | Loc: getLocationOfByte(x: CS.getStart()), |
| 7429 | startSpec: startSpecifier, specifierLen, |
| 7430 | csStart: CS.getStart(), csLen: CS.getLength()); |
| 7431 | } |
| 7432 | |
| 7433 | void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { |
| 7434 | S.Diag(Loc: getLocationOfByte(x: MaskType.data()), DiagID: diag::err_invalid_mask_type_size); |
| 7435 | } |
| 7436 | |
| 7437 | bool CheckPrintfHandler::HandleAmount( |
| 7438 | const analyze_format_string::OptionalAmount &Amt, unsigned k, |
| 7439 | const char *startSpecifier, unsigned specifierLen) { |
| 7440 | if (Amt.hasDataArgument()) { |
| 7441 | if (HasFormatArguments()) { |
| 7442 | unsigned argIndex = Amt.getArgIndex(); |
| 7443 | if (argIndex >= NumDataArgs) { |
| 7444 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_asterisk_missing_arg) |
| 7445 | << k, |
| 7446 | Loc: getLocationOfByte(x: Amt.getStart()), |
| 7447 | /*IsStringLocation*/ true, |
| 7448 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 7449 | // Don't do any more checking. We will just emit |
| 7450 | // spurious errors. |
| 7451 | return false; |
| 7452 | } |
| 7453 | |
| 7454 | // Type check the data argument. It should be an 'int'. |
| 7455 | // Although not in conformance with C99, we also allow the argument to be |
| 7456 | // an 'unsigned int' as that is a reasonably safe case. GCC also |
| 7457 | // doesn't emit a warning for that case. |
| 7458 | CoveredArgs.set(argIndex); |
| 7459 | const Expr *Arg = getDataArg(i: argIndex); |
| 7460 | if (!Arg) |
| 7461 | return false; |
| 7462 | |
| 7463 | QualType T = Arg->getType(); |
| 7464 | |
| 7465 | const analyze_printf::ArgType &AT = Amt.getArgType(Ctx&: S.Context); |
| 7466 | assert(AT.isValid()); |
| 7467 | |
| 7468 | if (!AT.matchesType(C&: S.Context, argTy: T)) { |
| 7469 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_asterisk_wrong_type) |
| 7470 | << k << AT.getRepresentativeTypeName(C&: S.Context) |
| 7471 | << T << Arg->getSourceRange(), |
| 7472 | Loc: getLocationOfByte(x: Amt.getStart()), |
| 7473 | /*IsStringLocation*/true, |
| 7474 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 7475 | // Don't do any more checking. We will just emit |
| 7476 | // spurious errors. |
| 7477 | return false; |
| 7478 | } |
| 7479 | } |
| 7480 | } |
| 7481 | return true; |
| 7482 | } |
| 7483 | |
| 7484 | void CheckPrintfHandler::HandleInvalidAmount( |
| 7485 | const analyze_printf::PrintfSpecifier &FS, |
| 7486 | const analyze_printf::OptionalAmount &Amt, |
| 7487 | unsigned type, |
| 7488 | const char *startSpecifier, |
| 7489 | unsigned specifierLen) { |
| 7490 | const analyze_printf::PrintfConversionSpecifier &CS = |
| 7491 | FS.getConversionSpecifier(); |
| 7492 | |
| 7493 | FixItHint fixit = |
| 7494 | Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant |
| 7495 | ? FixItHint::CreateRemoval(RemoveRange: getSpecifierRange(startSpecifier: Amt.getStart(), |
| 7496 | specifierLen: Amt.getConstantLength())) |
| 7497 | : FixItHint(); |
| 7498 | |
| 7499 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_nonsensical_optional_amount) |
| 7500 | << type << CS.toString(), |
| 7501 | Loc: getLocationOfByte(x: Amt.getStart()), |
| 7502 | /*IsStringLocation*/true, |
| 7503 | StringRange: getSpecifierRange(startSpecifier, specifierLen), |
| 7504 | FixIt: fixit); |
| 7505 | } |
| 7506 | |
| 7507 | void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, |
| 7508 | const analyze_printf::OptionalFlag &flag, |
| 7509 | const char *startSpecifier, |
| 7510 | unsigned specifierLen) { |
| 7511 | // Warn about pointless flag with a fixit removal. |
| 7512 | const analyze_printf::PrintfConversionSpecifier &CS = |
| 7513 | FS.getConversionSpecifier(); |
| 7514 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_nonsensical_flag) |
| 7515 | << flag.toString() << CS.toString(), |
| 7516 | Loc: getLocationOfByte(x: flag.getPosition()), |
| 7517 | /*IsStringLocation*/true, |
| 7518 | StringRange: getSpecifierRange(startSpecifier, specifierLen), |
| 7519 | FixIt: FixItHint::CreateRemoval( |
| 7520 | RemoveRange: getSpecifierRange(startSpecifier: flag.getPosition(), specifierLen: 1))); |
| 7521 | } |
| 7522 | |
| 7523 | void CheckPrintfHandler::HandleIgnoredFlag( |
| 7524 | const analyze_printf::PrintfSpecifier &FS, |
| 7525 | const analyze_printf::OptionalFlag &ignoredFlag, |
| 7526 | const analyze_printf::OptionalFlag &flag, |
| 7527 | const char *startSpecifier, |
| 7528 | unsigned specifierLen) { |
| 7529 | // Warn about ignored flag with a fixit removal. |
| 7530 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_ignored_flag) |
| 7531 | << ignoredFlag.toString() << flag.toString(), |
| 7532 | Loc: getLocationOfByte(x: ignoredFlag.getPosition()), |
| 7533 | /*IsStringLocation*/true, |
| 7534 | StringRange: getSpecifierRange(startSpecifier, specifierLen), |
| 7535 | FixIt: FixItHint::CreateRemoval( |
| 7536 | RemoveRange: getSpecifierRange(startSpecifier: ignoredFlag.getPosition(), specifierLen: 1))); |
| 7537 | } |
| 7538 | |
| 7539 | void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, |
| 7540 | unsigned flagLen) { |
| 7541 | // Warn about an empty flag. |
| 7542 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_empty_objc_flag), |
| 7543 | Loc: getLocationOfByte(x: startFlag), |
| 7544 | /*IsStringLocation*/true, |
| 7545 | StringRange: getSpecifierRange(startSpecifier: startFlag, specifierLen: flagLen)); |
| 7546 | } |
| 7547 | |
| 7548 | void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, |
| 7549 | unsigned flagLen) { |
| 7550 | // Warn about an invalid flag. |
| 7551 | auto Range = getSpecifierRange(startSpecifier: startFlag, specifierLen: flagLen); |
| 7552 | StringRef flag(startFlag, flagLen); |
| 7553 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_invalid_objc_flag) << flag, |
| 7554 | Loc: getLocationOfByte(x: startFlag), |
| 7555 | /*IsStringLocation*/true, |
| 7556 | StringRange: Range, FixIt: FixItHint::CreateRemoval(RemoveRange: Range)); |
| 7557 | } |
| 7558 | |
| 7559 | void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( |
| 7560 | const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { |
| 7561 | // Warn about using '[...]' without a '@' conversion. |
| 7562 | auto Range = getSpecifierRange(startSpecifier: flagsStart, specifierLen: flagsEnd - flagsStart + 1); |
| 7563 | auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; |
| 7564 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag) << StringRef(conversionPosition, 1), |
| 7565 | Loc: getLocationOfByte(x: conversionPosition), |
| 7566 | /*IsStringLocation*/ true, StringRange: Range, |
| 7567 | FixIt: FixItHint::CreateRemoval(RemoveRange: Range)); |
| 7568 | } |
| 7569 | |
| 7570 | void EquatableFormatArgument::EmitDiagnostic(Sema &S, PartialDiagnostic PDiag, |
| 7571 | const Expr *FmtExpr, |
| 7572 | bool InFunctionCall) const { |
| 7573 | CheckFormatHandler::EmitFormatDiagnostic(S, InFunctionCall, ArgumentExpr: FmtExpr, PDiag, |
| 7574 | Loc: ElementLoc, IsStringLocation: true, StringRange: Range); |
| 7575 | } |
| 7576 | |
| 7577 | bool EquatableFormatArgument::VerifyCompatible( |
| 7578 | Sema &S, const EquatableFormatArgument &Other, const Expr *FmtExpr, |
| 7579 | bool InFunctionCall) const { |
| 7580 | using MK = analyze_format_string::ArgType::MatchKind; |
| 7581 | if (Role != Other.Role) { |
| 7582 | // diagnose and stop |
| 7583 | EmitDiagnostic( |
| 7584 | S, PDiag: S.PDiag(DiagID: diag::warn_format_cmp_role_mismatch) << Role << Other.Role, |
| 7585 | FmtExpr, InFunctionCall); |
| 7586 | S.Diag(Loc: Other.ElementLoc, DiagID: diag::note_format_cmp_with) << 0 << Other.Range; |
| 7587 | return false; |
| 7588 | } |
| 7589 | |
| 7590 | if (Role != FAR_Data) { |
| 7591 | if (ModifierFor != Other.ModifierFor) { |
| 7592 | // diagnose and stop |
| 7593 | EmitDiagnostic(S, |
| 7594 | PDiag: S.PDiag(DiagID: diag::warn_format_cmp_modifierfor_mismatch) |
| 7595 | << (ModifierFor + 1) << (Other.ModifierFor + 1), |
| 7596 | FmtExpr, InFunctionCall); |
| 7597 | S.Diag(Loc: Other.ElementLoc, DiagID: diag::note_format_cmp_with) << 0 << Other.Range; |
| 7598 | return false; |
| 7599 | } |
| 7600 | return true; |
| 7601 | } |
| 7602 | |
| 7603 | bool HadError = false; |
| 7604 | if (Sensitivity != Other.Sensitivity) { |
| 7605 | // diagnose and continue |
| 7606 | EmitDiagnostic(S, |
| 7607 | PDiag: S.PDiag(DiagID: diag::warn_format_cmp_sensitivity_mismatch) |
| 7608 | << Sensitivity << Other.Sensitivity, |
| 7609 | FmtExpr, InFunctionCall); |
| 7610 | HadError = S.Diag(Loc: Other.ElementLoc, DiagID: diag::note_format_cmp_with) |
| 7611 | << 0 << Other.Range; |
| 7612 | } |
| 7613 | |
| 7614 | switch (ArgType.matchesArgType(C&: S.Context, other: Other.ArgType)) { |
| 7615 | case MK::Match: |
| 7616 | break; |
| 7617 | |
| 7618 | case MK::MatchPromotion: |
| 7619 | // Per consensus reached at https://discourse.llvm.org/t/-/83076/12, |
| 7620 | // MatchPromotion is treated as a failure by format_matches. |
| 7621 | case MK::NoMatch: |
| 7622 | case MK::NoMatchTypeConfusion: |
| 7623 | case MK::NoMatchPromotionTypeConfusion: |
| 7624 | EmitDiagnostic(S, |
| 7625 | PDiag: S.PDiag(DiagID: diag::warn_format_cmp_specifier_mismatch) |
| 7626 | << buildFormatSpecifier() |
| 7627 | << Other.buildFormatSpecifier(), |
| 7628 | FmtExpr, InFunctionCall); |
| 7629 | HadError = S.Diag(Loc: Other.ElementLoc, DiagID: diag::note_format_cmp_with) |
| 7630 | << 0 << Other.Range; |
| 7631 | break; |
| 7632 | |
| 7633 | case MK::NoMatchPedantic: |
| 7634 | EmitDiagnostic(S, |
| 7635 | PDiag: S.PDiag(DiagID: diag::warn_format_cmp_specifier_mismatch_pedantic) |
| 7636 | << buildFormatSpecifier() |
| 7637 | << Other.buildFormatSpecifier(), |
| 7638 | FmtExpr, InFunctionCall); |
| 7639 | HadError = S.Diag(Loc: Other.ElementLoc, DiagID: diag::note_format_cmp_with) |
| 7640 | << 0 << Other.Range; |
| 7641 | break; |
| 7642 | |
| 7643 | case MK::NoMatchSignedness: |
| 7644 | if (!S.getDiagnostics().isIgnored( |
| 7645 | DiagID: diag::warn_format_conversion_argument_type_mismatch_signedness, |
| 7646 | Loc: ElementLoc)) { |
| 7647 | EmitDiagnostic(S, |
| 7648 | PDiag: S.PDiag(DiagID: diag::warn_format_cmp_specifier_sign_mismatch) |
| 7649 | << buildFormatSpecifier() |
| 7650 | << Other.buildFormatSpecifier(), |
| 7651 | FmtExpr, InFunctionCall); |
| 7652 | HadError = S.Diag(Loc: Other.ElementLoc, DiagID: diag::note_format_cmp_with) |
| 7653 | << 0 << Other.Range; |
| 7654 | } |
| 7655 | break; |
| 7656 | } |
| 7657 | return !HadError; |
| 7658 | } |
| 7659 | |
| 7660 | bool DecomposePrintfHandler::GetSpecifiers( |
| 7661 | Sema &S, const FormatStringLiteral *FSL, const Expr *FmtExpr, |
| 7662 | FormatStringType Type, bool IsObjC, bool InFunctionCall, |
| 7663 | llvm::SmallVectorImpl<EquatableFormatArgument> &Args) { |
| 7664 | StringRef Data = FSL->getString(); |
| 7665 | const char *Str = Data.data(); |
| 7666 | llvm::SmallBitVector BV; |
| 7667 | UncoveredArgHandler UA; |
| 7668 | const Expr *PrintfArgs[] = {FSL->getFormatString()}; |
| 7669 | DecomposePrintfHandler H(S, FSL, FSL->getFormatString(), Type, 0, 0, IsObjC, |
| 7670 | Str, Sema::FAPK_Elsewhere, PrintfArgs, 0, |
| 7671 | InFunctionCall, VariadicCallType::DoesNotApply, BV, |
| 7672 | UA, Args); |
| 7673 | |
| 7674 | if (!analyze_format_string::ParsePrintfString( |
| 7675 | H, beg: Str, end: Str + Data.size(), LO: S.getLangOpts(), Target: S.Context.getTargetInfo(), |
| 7676 | isFreeBSDKPrintf: Type == FormatStringType::FreeBSDKPrintf)) |
| 7677 | H.DoneProcessing(); |
| 7678 | if (H.HadError) |
| 7679 | return false; |
| 7680 | |
| 7681 | llvm::stable_sort(Range&: Args, C: [](const EquatableFormatArgument &A, |
| 7682 | const EquatableFormatArgument &B) { |
| 7683 | return A.getPosition() < B.getPosition(); |
| 7684 | }); |
| 7685 | return true; |
| 7686 | } |
| 7687 | |
| 7688 | bool DecomposePrintfHandler::HandlePrintfSpecifier( |
| 7689 | const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier, |
| 7690 | unsigned specifierLen, const TargetInfo &Target) { |
| 7691 | if (!CheckPrintfHandler::HandlePrintfSpecifier(FS, startSpecifier, |
| 7692 | specifierLen, Target)) { |
| 7693 | HadError = true; |
| 7694 | return false; |
| 7695 | } |
| 7696 | |
| 7697 | // Do not add any specifiers to the list for %%. This is possibly incorrect |
| 7698 | // if using a precision/width with a data argument, but that combination is |
| 7699 | // meaningless and we wouldn't know which format to attach the |
| 7700 | // precision/width to. |
| 7701 | const auto &CS = FS.getConversionSpecifier(); |
| 7702 | if (CS.getKind() == analyze_format_string::ConversionSpecifier::PercentArg) |
| 7703 | return true; |
| 7704 | |
| 7705 | // have to patch these to have the right ModifierFor if they are used |
| 7706 | const unsigned Unset = ~0; |
| 7707 | unsigned FieldWidthIndex = Unset; |
| 7708 | unsigned PrecisionIndex = Unset; |
| 7709 | |
| 7710 | // field width? |
| 7711 | const auto &FieldWidth = FS.getFieldWidth(); |
| 7712 | if (!FieldWidth.isInvalid() && FieldWidth.hasDataArgument()) { |
| 7713 | FieldWidthIndex = Specs.size(); |
| 7714 | Specs.emplace_back(Args: getSpecifierRange(startSpecifier, specifierLen), |
| 7715 | Args: getLocationOfByte(x: FieldWidth.getStart()), |
| 7716 | Args: analyze_format_string::LengthModifier::None, Args: "*" , |
| 7717 | Args: FieldWidth.getArgType(Ctx&: S.Context), |
| 7718 | Args: EquatableFormatArgument::FAR_FieldWidth, |
| 7719 | Args: EquatableFormatArgument::SS_None, |
| 7720 | Args: FieldWidth.usesPositionalArg() |
| 7721 | ? FieldWidth.getPositionalArgIndex() - 1 |
| 7722 | : FieldWidthIndex, |
| 7723 | Args: 0); |
| 7724 | } |
| 7725 | // precision? |
| 7726 | const auto &Precision = FS.getPrecision(); |
| 7727 | if (!Precision.isInvalid() && Precision.hasDataArgument()) { |
| 7728 | PrecisionIndex = Specs.size(); |
| 7729 | Specs.emplace_back( |
| 7730 | Args: getSpecifierRange(startSpecifier, specifierLen), |
| 7731 | Args: getLocationOfByte(x: Precision.getStart()), |
| 7732 | Args: analyze_format_string::LengthModifier::None, Args: ".*" , |
| 7733 | Args: Precision.getArgType(Ctx&: S.Context), Args: EquatableFormatArgument::FAR_Precision, |
| 7734 | Args: EquatableFormatArgument::SS_None, |
| 7735 | Args: Precision.usesPositionalArg() ? Precision.getPositionalArgIndex() - 1 |
| 7736 | : PrecisionIndex, |
| 7737 | Args: 0); |
| 7738 | } |
| 7739 | |
| 7740 | // this specifier |
| 7741 | unsigned SpecIndex = |
| 7742 | FS.usesPositionalArg() ? FS.getPositionalArgIndex() - 1 : Specs.size(); |
| 7743 | if (FieldWidthIndex != Unset) |
| 7744 | Specs[FieldWidthIndex].setModifierFor(SpecIndex); |
| 7745 | if (PrecisionIndex != Unset) |
| 7746 | Specs[PrecisionIndex].setModifierFor(SpecIndex); |
| 7747 | |
| 7748 | EquatableFormatArgument::SpecifierSensitivity Sensitivity; |
| 7749 | if (FS.isPrivate()) |
| 7750 | Sensitivity = EquatableFormatArgument::SS_Private; |
| 7751 | else if (FS.isPublic()) |
| 7752 | Sensitivity = EquatableFormatArgument::SS_Public; |
| 7753 | else if (FS.isSensitive()) |
| 7754 | Sensitivity = EquatableFormatArgument::SS_Sensitive; |
| 7755 | else |
| 7756 | Sensitivity = EquatableFormatArgument::SS_None; |
| 7757 | |
| 7758 | Specs.emplace_back( |
| 7759 | Args: getSpecifierRange(startSpecifier, specifierLen), |
| 7760 | Args: getLocationOfByte(x: CS.getStart()), Args: FS.getLengthModifier().getKind(), |
| 7761 | Args: CS.getCharacters(), Args: FS.getArgType(Ctx&: S.Context, IsObjCLiteral: isObjCContext()), |
| 7762 | Args: EquatableFormatArgument::FAR_Data, Args&: Sensitivity, Args&: SpecIndex, Args: 0); |
| 7763 | |
| 7764 | // auxiliary argument? |
| 7765 | if (CS.getKind() == analyze_format_string::ConversionSpecifier::FreeBSDbArg || |
| 7766 | CS.getKind() == analyze_format_string::ConversionSpecifier::FreeBSDDArg) { |
| 7767 | Specs.emplace_back(Args: getSpecifierRange(startSpecifier, specifierLen), |
| 7768 | Args: getLocationOfByte(x: CS.getStart()), |
| 7769 | Args: analyze_format_string::LengthModifier::None, |
| 7770 | Args: CS.getCharacters(), |
| 7771 | Args: analyze_format_string::ArgType::CStrTy, |
| 7772 | Args: EquatableFormatArgument::FAR_Auxiliary, Args&: Sensitivity, |
| 7773 | Args: SpecIndex + 1, Args&: SpecIndex); |
| 7774 | } |
| 7775 | return true; |
| 7776 | } |
| 7777 | |
| 7778 | // Determines if the specified is a C++ class or struct containing |
| 7779 | // a member with the specified name and kind (e.g. a CXXMethodDecl named |
| 7780 | // "c_str()"). |
| 7781 | template<typename MemberKind> |
| 7782 | static llvm::SmallPtrSet<MemberKind*, 1> |
| 7783 | CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { |
| 7784 | const RecordType *RT = Ty->getAs<RecordType>(); |
| 7785 | llvm::SmallPtrSet<MemberKind*, 1> Results; |
| 7786 | |
| 7787 | if (!RT) |
| 7788 | return Results; |
| 7789 | const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 7790 | if (!RD || !RD->getDefinition()) |
| 7791 | return Results; |
| 7792 | |
| 7793 | LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), |
| 7794 | Sema::LookupMemberName); |
| 7795 | R.suppressDiagnostics(); |
| 7796 | |
| 7797 | // We just need to include all members of the right kind turned up by the |
| 7798 | // filter, at this point. |
| 7799 | if (S.LookupQualifiedName(R, LookupCtx: RT->getDecl())) |
| 7800 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
| 7801 | NamedDecl *decl = (*I)->getUnderlyingDecl(); |
| 7802 | if (MemberKind *FK = dyn_cast<MemberKind>(decl)) |
| 7803 | Results.insert(FK); |
| 7804 | } |
| 7805 | return Results; |
| 7806 | } |
| 7807 | |
| 7808 | /// Check if we could call '.c_str()' on an object. |
| 7809 | /// |
| 7810 | /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't |
| 7811 | /// allow the call, or if it would be ambiguous). |
| 7812 | bool Sema::hasCStrMethod(const Expr *E) { |
| 7813 | using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; |
| 7814 | |
| 7815 | MethodSet Results = |
| 7816 | CXXRecordMembersNamed<CXXMethodDecl>(Name: "c_str" , S&: *this, Ty: E->getType()); |
| 7817 | for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); |
| 7818 | MI != ME; ++MI) |
| 7819 | if ((*MI)->getMinRequiredArguments() == 0) |
| 7820 | return true; |
| 7821 | return false; |
| 7822 | } |
| 7823 | |
| 7824 | // Check if a (w)string was passed when a (w)char* was needed, and offer a |
| 7825 | // better diagnostic if so. AT is assumed to be valid. |
| 7826 | // Returns true when a c_str() conversion method is found. |
| 7827 | bool CheckPrintfHandler::checkForCStrMembers( |
| 7828 | const analyze_printf::ArgType &AT, const Expr *E) { |
| 7829 | using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; |
| 7830 | |
| 7831 | MethodSet Results = |
| 7832 | CXXRecordMembersNamed<CXXMethodDecl>(Name: "c_str" , S, Ty: E->getType()); |
| 7833 | |
| 7834 | for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); |
| 7835 | MI != ME; ++MI) { |
| 7836 | const CXXMethodDecl *Method = *MI; |
| 7837 | if (Method->getMinRequiredArguments() == 0 && |
| 7838 | AT.matchesType(C&: S.Context, argTy: Method->getReturnType())) { |
| 7839 | // FIXME: Suggest parens if the expression needs them. |
| 7840 | SourceLocation EndLoc = S.getLocForEndOfToken(Loc: E->getEndLoc()); |
| 7841 | S.Diag(Loc: E->getBeginLoc(), DiagID: diag::note_printf_c_str) |
| 7842 | << "c_str()" << FixItHint::CreateInsertion(InsertionLoc: EndLoc, Code: ".c_str()" ); |
| 7843 | return true; |
| 7844 | } |
| 7845 | } |
| 7846 | |
| 7847 | return false; |
| 7848 | } |
| 7849 | |
| 7850 | bool CheckPrintfHandler::HandlePrintfSpecifier( |
| 7851 | const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier, |
| 7852 | unsigned specifierLen, const TargetInfo &Target) { |
| 7853 | using namespace analyze_format_string; |
| 7854 | using namespace analyze_printf; |
| 7855 | |
| 7856 | const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); |
| 7857 | |
| 7858 | if (FS.consumesDataArgument()) { |
| 7859 | if (atFirstArg) { |
| 7860 | atFirstArg = false; |
| 7861 | usesPositionalArgs = FS.usesPositionalArg(); |
| 7862 | } |
| 7863 | else if (usesPositionalArgs != FS.usesPositionalArg()) { |
| 7864 | HandlePositionalNonpositionalArgs(Loc: getLocationOfByte(x: CS.getStart()), |
| 7865 | startSpec: startSpecifier, specifierLen); |
| 7866 | return false; |
| 7867 | } |
| 7868 | } |
| 7869 | |
| 7870 | // First check if the field width, precision, and conversion specifier |
| 7871 | // have matching data arguments. |
| 7872 | if (!HandleAmount(Amt: FS.getFieldWidth(), /* field width */ k: 0, |
| 7873 | startSpecifier, specifierLen)) { |
| 7874 | return false; |
| 7875 | } |
| 7876 | |
| 7877 | if (!HandleAmount(Amt: FS.getPrecision(), /* precision */ k: 1, |
| 7878 | startSpecifier, specifierLen)) { |
| 7879 | return false; |
| 7880 | } |
| 7881 | |
| 7882 | if (!CS.consumesDataArgument()) { |
| 7883 | // FIXME: Technically specifying a precision or field width here |
| 7884 | // makes no sense. Worth issuing a warning at some point. |
| 7885 | return true; |
| 7886 | } |
| 7887 | |
| 7888 | // Consume the argument. |
| 7889 | unsigned argIndex = FS.getArgIndex(); |
| 7890 | if (argIndex < NumDataArgs) { |
| 7891 | // The check to see if the argIndex is valid will come later. |
| 7892 | // We set the bit here because we may exit early from this |
| 7893 | // function if we encounter some other error. |
| 7894 | CoveredArgs.set(argIndex); |
| 7895 | } |
| 7896 | |
| 7897 | // FreeBSD kernel extensions. |
| 7898 | if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || |
| 7899 | CS.getKind() == ConversionSpecifier::FreeBSDDArg) { |
| 7900 | // We need at least two arguments. |
| 7901 | if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex: argIndex + 1)) |
| 7902 | return false; |
| 7903 | |
| 7904 | if (HasFormatArguments()) { |
| 7905 | // Claim the second argument. |
| 7906 | CoveredArgs.set(argIndex + 1); |
| 7907 | |
| 7908 | // Type check the first argument (int for %b, pointer for %D) |
| 7909 | const Expr *Ex = getDataArg(i: argIndex); |
| 7910 | const analyze_printf::ArgType &AT = |
| 7911 | (CS.getKind() == ConversionSpecifier::FreeBSDbArg) |
| 7912 | ? ArgType(S.Context.IntTy) |
| 7913 | : ArgType::CPointerTy; |
| 7914 | if (AT.isValid() && !AT.matchesType(C&: S.Context, argTy: Ex->getType())) |
| 7915 | EmitFormatDiagnostic( |
| 7916 | PDiag: S.PDiag(DiagID: diag::warn_format_conversion_argument_type_mismatch) |
| 7917 | << AT.getRepresentativeTypeName(C&: S.Context) << Ex->getType() |
| 7918 | << false << Ex->getSourceRange(), |
| 7919 | Loc: Ex->getBeginLoc(), /*IsStringLocation*/ false, |
| 7920 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 7921 | |
| 7922 | // Type check the second argument (char * for both %b and %D) |
| 7923 | Ex = getDataArg(i: argIndex + 1); |
| 7924 | const analyze_printf::ArgType &AT2 = ArgType::CStrTy; |
| 7925 | if (AT2.isValid() && !AT2.matchesType(C&: S.Context, argTy: Ex->getType())) |
| 7926 | EmitFormatDiagnostic( |
| 7927 | PDiag: S.PDiag(DiagID: diag::warn_format_conversion_argument_type_mismatch) |
| 7928 | << AT2.getRepresentativeTypeName(C&: S.Context) << Ex->getType() |
| 7929 | << false << Ex->getSourceRange(), |
| 7930 | Loc: Ex->getBeginLoc(), /*IsStringLocation*/ false, |
| 7931 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 7932 | } |
| 7933 | return true; |
| 7934 | } |
| 7935 | |
| 7936 | // Check for using an Objective-C specific conversion specifier |
| 7937 | // in a non-ObjC literal. |
| 7938 | if (!allowsObjCArg() && CS.isObjCArg()) { |
| 7939 | return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, |
| 7940 | specifierLen); |
| 7941 | } |
| 7942 | |
| 7943 | // %P can only be used with os_log. |
| 7944 | if (FSType != FormatStringType::OSLog && |
| 7945 | CS.getKind() == ConversionSpecifier::PArg) { |
| 7946 | return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, |
| 7947 | specifierLen); |
| 7948 | } |
| 7949 | |
| 7950 | // %n is not allowed with os_log. |
| 7951 | if (FSType == FormatStringType::OSLog && |
| 7952 | CS.getKind() == ConversionSpecifier::nArg) { |
| 7953 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_os_log_format_narg), |
| 7954 | Loc: getLocationOfByte(x: CS.getStart()), |
| 7955 | /*IsStringLocation*/ false, |
| 7956 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 7957 | |
| 7958 | return true; |
| 7959 | } |
| 7960 | |
| 7961 | // Only scalars are allowed for os_trace. |
| 7962 | if (FSType == FormatStringType::OSTrace && |
| 7963 | (CS.getKind() == ConversionSpecifier::PArg || |
| 7964 | CS.getKind() == ConversionSpecifier::sArg || |
| 7965 | CS.getKind() == ConversionSpecifier::ObjCObjArg)) { |
| 7966 | return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, |
| 7967 | specifierLen); |
| 7968 | } |
| 7969 | |
| 7970 | // Check for use of public/private annotation outside of os_log(). |
| 7971 | if (FSType != FormatStringType::OSLog) { |
| 7972 | if (FS.isPublic().isSet()) { |
| 7973 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_invalid_annotation) |
| 7974 | << "public" , |
| 7975 | Loc: getLocationOfByte(x: FS.isPublic().getPosition()), |
| 7976 | /*IsStringLocation*/ false, |
| 7977 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 7978 | } |
| 7979 | if (FS.isPrivate().isSet()) { |
| 7980 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_invalid_annotation) |
| 7981 | << "private" , |
| 7982 | Loc: getLocationOfByte(x: FS.isPrivate().getPosition()), |
| 7983 | /*IsStringLocation*/ false, |
| 7984 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 7985 | } |
| 7986 | } |
| 7987 | |
| 7988 | const llvm::Triple &Triple = Target.getTriple(); |
| 7989 | if (CS.getKind() == ConversionSpecifier::nArg && |
| 7990 | (Triple.isAndroid() || Triple.isOSFuchsia())) { |
| 7991 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_narg_not_supported), |
| 7992 | Loc: getLocationOfByte(x: CS.getStart()), |
| 7993 | /*IsStringLocation*/ false, |
| 7994 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 7995 | } |
| 7996 | |
| 7997 | // Check for invalid use of field width |
| 7998 | if (!FS.hasValidFieldWidth()) { |
| 7999 | HandleInvalidAmount(FS, Amt: FS.getFieldWidth(), /* field width */ type: 0, |
| 8000 | startSpecifier, specifierLen); |
| 8001 | } |
| 8002 | |
| 8003 | // Check for invalid use of precision |
| 8004 | if (!FS.hasValidPrecision()) { |
| 8005 | HandleInvalidAmount(FS, Amt: FS.getPrecision(), /* precision */ type: 1, |
| 8006 | startSpecifier, specifierLen); |
| 8007 | } |
| 8008 | |
| 8009 | // Precision is mandatory for %P specifier. |
| 8010 | if (CS.getKind() == ConversionSpecifier::PArg && |
| 8011 | FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { |
| 8012 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_P_no_precision), |
| 8013 | Loc: getLocationOfByte(x: startSpecifier), |
| 8014 | /*IsStringLocation*/ false, |
| 8015 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 8016 | } |
| 8017 | |
| 8018 | // Check each flag does not conflict with any other component. |
| 8019 | if (!FS.hasValidThousandsGroupingPrefix()) |
| 8020 | HandleFlag(FS, flag: FS.hasThousandsGrouping(), startSpecifier, specifierLen); |
| 8021 | if (!FS.hasValidLeadingZeros()) |
| 8022 | HandleFlag(FS, flag: FS.hasLeadingZeros(), startSpecifier, specifierLen); |
| 8023 | if (!FS.hasValidPlusPrefix()) |
| 8024 | HandleFlag(FS, flag: FS.hasPlusPrefix(), startSpecifier, specifierLen); |
| 8025 | if (!FS.hasValidSpacePrefix()) |
| 8026 | HandleFlag(FS, flag: FS.hasSpacePrefix(), startSpecifier, specifierLen); |
| 8027 | if (!FS.hasValidAlternativeForm()) |
| 8028 | HandleFlag(FS, flag: FS.hasAlternativeForm(), startSpecifier, specifierLen); |
| 8029 | if (!FS.hasValidLeftJustified()) |
| 8030 | HandleFlag(FS, flag: FS.isLeftJustified(), startSpecifier, specifierLen); |
| 8031 | |
| 8032 | // Check that flags are not ignored by another flag |
| 8033 | if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' |
| 8034 | HandleIgnoredFlag(FS, ignoredFlag: FS.hasSpacePrefix(), flag: FS.hasPlusPrefix(), |
| 8035 | startSpecifier, specifierLen); |
| 8036 | if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' |
| 8037 | HandleIgnoredFlag(FS, ignoredFlag: FS.hasLeadingZeros(), flag: FS.isLeftJustified(), |
| 8038 | startSpecifier, specifierLen); |
| 8039 | |
| 8040 | // Check the length modifier is valid with the given conversion specifier. |
| 8041 | if (!FS.hasValidLengthModifier(Target: S.getASTContext().getTargetInfo(), |
| 8042 | LO: S.getLangOpts())) |
| 8043 | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
| 8044 | DiagID: diag::warn_format_nonsensical_length); |
| 8045 | else if (!FS.hasStandardLengthModifier()) |
| 8046 | HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); |
| 8047 | else if (!FS.hasStandardLengthConversionCombination()) |
| 8048 | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
| 8049 | DiagID: diag::warn_format_non_standard_conversion_spec); |
| 8050 | |
| 8051 | if (!FS.hasStandardConversionSpecifier(LangOpt: S.getLangOpts())) |
| 8052 | HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); |
| 8053 | |
| 8054 | // The remaining checks depend on the data arguments. |
| 8055 | if (!HasFormatArguments()) |
| 8056 | return true; |
| 8057 | |
| 8058 | if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) |
| 8059 | return false; |
| 8060 | |
| 8061 | const Expr *Arg = getDataArg(i: argIndex); |
| 8062 | if (!Arg) |
| 8063 | return true; |
| 8064 | |
| 8065 | return checkFormatExpr(FS, StartSpecifier: startSpecifier, SpecifierLen: specifierLen, E: Arg); |
| 8066 | } |
| 8067 | |
| 8068 | static bool requiresParensToAddCast(const Expr *E) { |
| 8069 | // FIXME: We should have a general way to reason about operator |
| 8070 | // precedence and whether parens are actually needed here. |
| 8071 | // Take care of a few common cases where they aren't. |
| 8072 | const Expr *Inside = E->IgnoreImpCasts(); |
| 8073 | if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Val: Inside)) |
| 8074 | Inside = POE->getSyntacticForm()->IgnoreImpCasts(); |
| 8075 | |
| 8076 | switch (Inside->getStmtClass()) { |
| 8077 | case Stmt::ArraySubscriptExprClass: |
| 8078 | case Stmt::CallExprClass: |
| 8079 | case Stmt::CharacterLiteralClass: |
| 8080 | case Stmt::CXXBoolLiteralExprClass: |
| 8081 | case Stmt::DeclRefExprClass: |
| 8082 | case Stmt::FloatingLiteralClass: |
| 8083 | case Stmt::IntegerLiteralClass: |
| 8084 | case Stmt::MemberExprClass: |
| 8085 | case Stmt::ObjCArrayLiteralClass: |
| 8086 | case Stmt::ObjCBoolLiteralExprClass: |
| 8087 | case Stmt::ObjCBoxedExprClass: |
| 8088 | case Stmt::ObjCDictionaryLiteralClass: |
| 8089 | case Stmt::ObjCEncodeExprClass: |
| 8090 | case Stmt::ObjCIvarRefExprClass: |
| 8091 | case Stmt::ObjCMessageExprClass: |
| 8092 | case Stmt::ObjCPropertyRefExprClass: |
| 8093 | case Stmt::ObjCStringLiteralClass: |
| 8094 | case Stmt::ObjCSubscriptRefExprClass: |
| 8095 | case Stmt::ParenExprClass: |
| 8096 | case Stmt::StringLiteralClass: |
| 8097 | case Stmt::UnaryOperatorClass: |
| 8098 | return false; |
| 8099 | default: |
| 8100 | return true; |
| 8101 | } |
| 8102 | } |
| 8103 | |
| 8104 | static std::pair<QualType, StringRef> |
| 8105 | shouldNotPrintDirectly(const ASTContext &Context, |
| 8106 | QualType IntendedTy, |
| 8107 | const Expr *E) { |
| 8108 | // Use a 'while' to peel off layers of typedefs. |
| 8109 | QualType TyTy = IntendedTy; |
| 8110 | while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { |
| 8111 | StringRef Name = UserTy->getDecl()->getName(); |
| 8112 | QualType CastTy = llvm::StringSwitch<QualType>(Name) |
| 8113 | .Case(S: "CFIndex" , Value: Context.getNSIntegerType()) |
| 8114 | .Case(S: "NSInteger" , Value: Context.getNSIntegerType()) |
| 8115 | .Case(S: "NSUInteger" , Value: Context.getNSUIntegerType()) |
| 8116 | .Case(S: "SInt32" , Value: Context.IntTy) |
| 8117 | .Case(S: "UInt32" , Value: Context.UnsignedIntTy) |
| 8118 | .Default(Value: QualType()); |
| 8119 | |
| 8120 | if (!CastTy.isNull()) |
| 8121 | return std::make_pair(x&: CastTy, y&: Name); |
| 8122 | |
| 8123 | TyTy = UserTy->desugar(); |
| 8124 | } |
| 8125 | |
| 8126 | // Strip parens if necessary. |
| 8127 | if (const ParenExpr *PE = dyn_cast<ParenExpr>(Val: E)) |
| 8128 | return shouldNotPrintDirectly(Context, |
| 8129 | IntendedTy: PE->getSubExpr()->getType(), |
| 8130 | E: PE->getSubExpr()); |
| 8131 | |
| 8132 | // If this is a conditional expression, then its result type is constructed |
| 8133 | // via usual arithmetic conversions and thus there might be no necessary |
| 8134 | // typedef sugar there. Recurse to operands to check for NSInteger & |
| 8135 | // Co. usage condition. |
| 8136 | if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E)) { |
| 8137 | QualType TrueTy, FalseTy; |
| 8138 | StringRef TrueName, FalseName; |
| 8139 | |
| 8140 | std::tie(args&: TrueTy, args&: TrueName) = |
| 8141 | shouldNotPrintDirectly(Context, |
| 8142 | IntendedTy: CO->getTrueExpr()->getType(), |
| 8143 | E: CO->getTrueExpr()); |
| 8144 | std::tie(args&: FalseTy, args&: FalseName) = |
| 8145 | shouldNotPrintDirectly(Context, |
| 8146 | IntendedTy: CO->getFalseExpr()->getType(), |
| 8147 | E: CO->getFalseExpr()); |
| 8148 | |
| 8149 | if (TrueTy == FalseTy) |
| 8150 | return std::make_pair(x&: TrueTy, y&: TrueName); |
| 8151 | else if (TrueTy.isNull()) |
| 8152 | return std::make_pair(x&: FalseTy, y&: FalseName); |
| 8153 | else if (FalseTy.isNull()) |
| 8154 | return std::make_pair(x&: TrueTy, y&: TrueName); |
| 8155 | } |
| 8156 | |
| 8157 | return std::make_pair(x: QualType(), y: StringRef()); |
| 8158 | } |
| 8159 | |
| 8160 | /// Return true if \p ICE is an implicit argument promotion of an arithmetic |
| 8161 | /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked |
| 8162 | /// type do not count. |
| 8163 | static bool |
| 8164 | isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { |
| 8165 | QualType From = ICE->getSubExpr()->getType(); |
| 8166 | QualType To = ICE->getType(); |
| 8167 | // It's an integer promotion if the destination type is the promoted |
| 8168 | // source type. |
| 8169 | if (ICE->getCastKind() == CK_IntegralCast && |
| 8170 | S.Context.isPromotableIntegerType(T: From) && |
| 8171 | S.Context.getPromotedIntegerType(PromotableType: From) == To) |
| 8172 | return true; |
| 8173 | // Look through vector types, since we do default argument promotion for |
| 8174 | // those in OpenCL. |
| 8175 | if (const auto *VecTy = From->getAs<ExtVectorType>()) |
| 8176 | From = VecTy->getElementType(); |
| 8177 | if (const auto *VecTy = To->getAs<ExtVectorType>()) |
| 8178 | To = VecTy->getElementType(); |
| 8179 | // It's a floating promotion if the source type is a lower rank. |
| 8180 | return ICE->getCastKind() == CK_FloatingCast && |
| 8181 | S.Context.getFloatingTypeOrder(LHS: From, RHS: To) < 0; |
| 8182 | } |
| 8183 | |
| 8184 | static analyze_format_string::ArgType::MatchKind |
| 8185 | handleFormatSignedness(analyze_format_string::ArgType::MatchKind Match, |
| 8186 | DiagnosticsEngine &Diags, SourceLocation Loc) { |
| 8187 | if (Match == analyze_format_string::ArgType::NoMatchSignedness) { |
| 8188 | Match = |
| 8189 | Diags.isIgnored( |
| 8190 | DiagID: diag::warn_format_conversion_argument_type_mismatch_signedness, Loc) |
| 8191 | ? analyze_format_string::ArgType::Match |
| 8192 | : analyze_format_string::ArgType::NoMatch; |
| 8193 | } |
| 8194 | return Match; |
| 8195 | } |
| 8196 | |
| 8197 | bool |
| 8198 | CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, |
| 8199 | const char *StartSpecifier, |
| 8200 | unsigned SpecifierLen, |
| 8201 | const Expr *E) { |
| 8202 | using namespace analyze_format_string; |
| 8203 | using namespace analyze_printf; |
| 8204 | |
| 8205 | // Now type check the data expression that matches the |
| 8206 | // format specifier. |
| 8207 | const analyze_printf::ArgType &AT = FS.getArgType(Ctx&: S.Context, IsObjCLiteral: isObjCContext()); |
| 8208 | if (!AT.isValid()) |
| 8209 | return true; |
| 8210 | |
| 8211 | QualType ExprTy = E->getType(); |
| 8212 | while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(Val&: ExprTy)) { |
| 8213 | ExprTy = TET->getUnderlyingExpr()->getType(); |
| 8214 | } |
| 8215 | |
| 8216 | // When using the format attribute in C++, you can receive a function or an |
| 8217 | // array that will necessarily decay to a pointer when passed to the final |
| 8218 | // format consumer. Apply decay before type comparison. |
| 8219 | if (ExprTy->canDecayToPointerType()) |
| 8220 | ExprTy = S.Context.getDecayedType(T: ExprTy); |
| 8221 | |
| 8222 | // Diagnose attempts to print a boolean value as a character. Unlike other |
| 8223 | // -Wformat diagnostics, this is fine from a type perspective, but it still |
| 8224 | // doesn't make sense. |
| 8225 | if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && |
| 8226 | E->isKnownToHaveBooleanValue()) { |
| 8227 | const CharSourceRange &CSR = |
| 8228 | getSpecifierRange(startSpecifier: StartSpecifier, specifierLen: SpecifierLen); |
| 8229 | SmallString<4> FSString; |
| 8230 | llvm::raw_svector_ostream os(FSString); |
| 8231 | FS.toString(os); |
| 8232 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_bool_as_character) |
| 8233 | << FSString, |
| 8234 | Loc: E->getExprLoc(), IsStringLocation: false, StringRange: CSR); |
| 8235 | return true; |
| 8236 | } |
| 8237 | |
| 8238 | // Diagnose attempts to use '%P' with ObjC object types, which will result in |
| 8239 | // dumping raw class data (like is-a pointer), not actual data. |
| 8240 | if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::PArg && |
| 8241 | ExprTy->isObjCObjectPointerType()) { |
| 8242 | const CharSourceRange &CSR = |
| 8243 | getSpecifierRange(startSpecifier: StartSpecifier, specifierLen: SpecifierLen); |
| 8244 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_P_with_objc_pointer), |
| 8245 | Loc: E->getExprLoc(), IsStringLocation: false, StringRange: CSR); |
| 8246 | return true; |
| 8247 | } |
| 8248 | |
| 8249 | ArgType::MatchKind ImplicitMatch = ArgType::NoMatch; |
| 8250 | ArgType::MatchKind Match = AT.matchesType(C&: S.Context, argTy: ExprTy); |
| 8251 | ArgType::MatchKind OrigMatch = Match; |
| 8252 | |
| 8253 | Match = handleFormatSignedness(Match, Diags&: S.getDiagnostics(), Loc: E->getExprLoc()); |
| 8254 | if (Match == ArgType::Match) |
| 8255 | return true; |
| 8256 | |
| 8257 | // NoMatchPromotionTypeConfusion should be only returned in ImplictCastExpr |
| 8258 | assert(Match != ArgType::NoMatchPromotionTypeConfusion); |
| 8259 | |
| 8260 | // Look through argument promotions for our error message's reported type. |
| 8261 | // This includes the integral and floating promotions, but excludes array |
| 8262 | // and function pointer decay (seeing that an argument intended to be a |
| 8263 | // string has type 'char [6]' is probably more confusing than 'char *') and |
| 8264 | // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). |
| 8265 | if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
| 8266 | if (isArithmeticArgumentPromotion(S, ICE)) { |
| 8267 | E = ICE->getSubExpr(); |
| 8268 | ExprTy = E->getType(); |
| 8269 | |
| 8270 | // Check if we didn't match because of an implicit cast from a 'char' |
| 8271 | // or 'short' to an 'int'. This is done because printf is a varargs |
| 8272 | // function. |
| 8273 | if (ICE->getType() == S.Context.IntTy || |
| 8274 | ICE->getType() == S.Context.UnsignedIntTy) { |
| 8275 | // All further checking is done on the subexpression |
| 8276 | ImplicitMatch = AT.matchesType(C&: S.Context, argTy: ExprTy); |
| 8277 | if (OrigMatch == ArgType::NoMatchSignedness && |
| 8278 | ImplicitMatch != ArgType::NoMatchSignedness) |
| 8279 | // If the original match was a signedness match this match on the |
| 8280 | // implicit cast type also need to be signedness match otherwise we |
| 8281 | // might introduce new unexpected warnings from -Wformat-signedness. |
| 8282 | return true; |
| 8283 | ImplicitMatch = handleFormatSignedness( |
| 8284 | Match: ImplicitMatch, Diags&: S.getDiagnostics(), Loc: E->getExprLoc()); |
| 8285 | if (ImplicitMatch == ArgType::Match) |
| 8286 | return true; |
| 8287 | } |
| 8288 | } |
| 8289 | } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(Val: E)) { |
| 8290 | // Special case for 'a', which has type 'int' in C. |
| 8291 | // Note, however, that we do /not/ want to treat multibyte constants like |
| 8292 | // 'MooV' as characters! This form is deprecated but still exists. In |
| 8293 | // addition, don't treat expressions as of type 'char' if one byte length |
| 8294 | // modifier is provided. |
| 8295 | if (ExprTy == S.Context.IntTy && |
| 8296 | FS.getLengthModifier().getKind() != LengthModifier::AsChar) |
| 8297 | if (llvm::isUIntN(N: S.Context.getCharWidth(), x: CL->getValue())) { |
| 8298 | ExprTy = S.Context.CharTy; |
| 8299 | // To improve check results, we consider a character literal in C |
| 8300 | // to be a 'char' rather than an 'int'. 'printf("%hd", 'a');' is |
| 8301 | // more likely a type confusion situation, so we will suggest to |
| 8302 | // use '%hhd' instead by discarding the MatchPromotion. |
| 8303 | if (Match == ArgType::MatchPromotion) |
| 8304 | Match = ArgType::NoMatch; |
| 8305 | } |
| 8306 | } |
| 8307 | if (Match == ArgType::MatchPromotion) { |
| 8308 | // WG14 N2562 only clarified promotions in *printf |
| 8309 | // For NSLog in ObjC, just preserve -Wformat behavior |
| 8310 | if (!S.getLangOpts().ObjC && |
| 8311 | ImplicitMatch != ArgType::NoMatchPromotionTypeConfusion && |
| 8312 | ImplicitMatch != ArgType::NoMatchTypeConfusion) |
| 8313 | return true; |
| 8314 | Match = ArgType::NoMatch; |
| 8315 | } |
| 8316 | if (ImplicitMatch == ArgType::NoMatchPedantic || |
| 8317 | ImplicitMatch == ArgType::NoMatchTypeConfusion) |
| 8318 | Match = ImplicitMatch; |
| 8319 | assert(Match != ArgType::MatchPromotion); |
| 8320 | |
| 8321 | // Look through unscoped enums to their underlying type. |
| 8322 | bool IsEnum = false; |
| 8323 | bool IsScopedEnum = false; |
| 8324 | QualType IntendedTy = ExprTy; |
| 8325 | if (auto EnumTy = ExprTy->getAs<EnumType>()) { |
| 8326 | IntendedTy = EnumTy->getDecl()->getIntegerType(); |
| 8327 | if (EnumTy->isUnscopedEnumerationType()) { |
| 8328 | ExprTy = IntendedTy; |
| 8329 | // This controls whether we're talking about the underlying type or not, |
| 8330 | // which we only want to do when it's an unscoped enum. |
| 8331 | IsEnum = true; |
| 8332 | } else { |
| 8333 | IsScopedEnum = true; |
| 8334 | } |
| 8335 | } |
| 8336 | |
| 8337 | // %C in an Objective-C context prints a unichar, not a wchar_t. |
| 8338 | // If the argument is an integer of some kind, believe the %C and suggest |
| 8339 | // a cast instead of changing the conversion specifier. |
| 8340 | if (isObjCContext() && |
| 8341 | FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { |
| 8342 | if (ExprTy->isIntegralOrUnscopedEnumerationType() && |
| 8343 | !ExprTy->isCharType()) { |
| 8344 | // 'unichar' is defined as a typedef of unsigned short, but we should |
| 8345 | // prefer using the typedef if it is visible. |
| 8346 | IntendedTy = S.Context.UnsignedShortTy; |
| 8347 | |
| 8348 | // While we are here, check if the value is an IntegerLiteral that happens |
| 8349 | // to be within the valid range. |
| 8350 | if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(Val: E)) { |
| 8351 | const llvm::APInt &V = IL->getValue(); |
| 8352 | if (V.getActiveBits() <= S.Context.getTypeSize(T: IntendedTy)) |
| 8353 | return true; |
| 8354 | } |
| 8355 | |
| 8356 | LookupResult Result(S, &S.Context.Idents.get(Name: "unichar" ), E->getBeginLoc(), |
| 8357 | Sema::LookupOrdinaryName); |
| 8358 | if (S.LookupName(R&: Result, S: S.getCurScope())) { |
| 8359 | NamedDecl *ND = Result.getFoundDecl(); |
| 8360 | if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(Val: ND)) |
| 8361 | if (TD->getUnderlyingType() == IntendedTy) |
| 8362 | IntendedTy = S.Context.getTypedefType(Decl: TD); |
| 8363 | } |
| 8364 | } |
| 8365 | } |
| 8366 | |
| 8367 | // Special-case some of Darwin's platform-independence types by suggesting |
| 8368 | // casts to primitive types that are known to be large enough. |
| 8369 | bool ShouldNotPrintDirectly = false; StringRef CastTyName; |
| 8370 | if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { |
| 8371 | QualType CastTy; |
| 8372 | std::tie(args&: CastTy, args&: CastTyName) = shouldNotPrintDirectly(Context: S.Context, IntendedTy, E); |
| 8373 | if (!CastTy.isNull()) { |
| 8374 | // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int |
| 8375 | // (long in ASTContext). Only complain to pedants or when they're the |
| 8376 | // underlying type of a scoped enum (which always needs a cast). |
| 8377 | if (!IsScopedEnum && |
| 8378 | (CastTyName == "NSInteger" || CastTyName == "NSUInteger" ) && |
| 8379 | (AT.isSizeT() || AT.isPtrdiffT()) && |
| 8380 | AT.matchesType(C&: S.Context, argTy: CastTy)) |
| 8381 | Match = ArgType::NoMatchPedantic; |
| 8382 | IntendedTy = CastTy; |
| 8383 | ShouldNotPrintDirectly = true; |
| 8384 | } |
| 8385 | } |
| 8386 | |
| 8387 | // We may be able to offer a FixItHint if it is a supported type. |
| 8388 | PrintfSpecifier fixedFS = FS; |
| 8389 | bool Success = |
| 8390 | fixedFS.fixType(QT: IntendedTy, LangOpt: S.getLangOpts(), Ctx&: S.Context, IsObjCLiteral: isObjCContext()); |
| 8391 | |
| 8392 | if (Success) { |
| 8393 | // Get the fix string from the fixed format specifier |
| 8394 | SmallString<16> buf; |
| 8395 | llvm::raw_svector_ostream os(buf); |
| 8396 | fixedFS.toString(os); |
| 8397 | |
| 8398 | CharSourceRange SpecRange = getSpecifierRange(startSpecifier: StartSpecifier, specifierLen: SpecifierLen); |
| 8399 | |
| 8400 | if (IntendedTy == ExprTy && !ShouldNotPrintDirectly && !IsScopedEnum) { |
| 8401 | unsigned Diag; |
| 8402 | switch (Match) { |
| 8403 | case ArgType::Match: |
| 8404 | case ArgType::MatchPromotion: |
| 8405 | case ArgType::NoMatchPromotionTypeConfusion: |
| 8406 | case ArgType::NoMatchSignedness: |
| 8407 | llvm_unreachable("expected non-matching" ); |
| 8408 | case ArgType::NoMatchPedantic: |
| 8409 | Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; |
| 8410 | break; |
| 8411 | case ArgType::NoMatchTypeConfusion: |
| 8412 | Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; |
| 8413 | break; |
| 8414 | case ArgType::NoMatch: |
| 8415 | Diag = diag::warn_format_conversion_argument_type_mismatch; |
| 8416 | break; |
| 8417 | } |
| 8418 | |
| 8419 | // In this case, the specifier is wrong and should be changed to match |
| 8420 | // the argument. |
| 8421 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: Diag) |
| 8422 | << AT.getRepresentativeTypeName(C&: S.Context) |
| 8423 | << IntendedTy << IsEnum << E->getSourceRange(), |
| 8424 | Loc: E->getBeginLoc(), |
| 8425 | /*IsStringLocation*/ false, StringRange: SpecRange, |
| 8426 | FixIt: FixItHint::CreateReplacement(RemoveRange: SpecRange, Code: os.str())); |
| 8427 | } else { |
| 8428 | // The canonical type for formatting this value is different from the |
| 8429 | // actual type of the expression. (This occurs, for example, with Darwin's |
| 8430 | // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but |
| 8431 | // should be printed as 'long' for 64-bit compatibility.) |
| 8432 | // Rather than emitting a normal format/argument mismatch, we want to |
| 8433 | // add a cast to the recommended type (and correct the format string |
| 8434 | // if necessary). We should also do so for scoped enumerations. |
| 8435 | SmallString<16> CastBuf; |
| 8436 | llvm::raw_svector_ostream CastFix(CastBuf); |
| 8437 | CastFix << (S.LangOpts.CPlusPlus ? "static_cast<" : "(" ); |
| 8438 | IntendedTy.print(OS&: CastFix, Policy: S.Context.getPrintingPolicy()); |
| 8439 | CastFix << (S.LangOpts.CPlusPlus ? ">" : ")" ); |
| 8440 | |
| 8441 | SmallVector<FixItHint,4> Hints; |
| 8442 | ArgType::MatchKind IntendedMatch = AT.matchesType(C&: S.Context, argTy: IntendedTy); |
| 8443 | IntendedMatch = handleFormatSignedness(Match: IntendedMatch, Diags&: S.getDiagnostics(), |
| 8444 | Loc: E->getExprLoc()); |
| 8445 | if ((IntendedMatch != ArgType::Match) || ShouldNotPrintDirectly) |
| 8446 | Hints.push_back(Elt: FixItHint::CreateReplacement(RemoveRange: SpecRange, Code: os.str())); |
| 8447 | |
| 8448 | if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(Val: E)) { |
| 8449 | // If there's already a cast present, just replace it. |
| 8450 | SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); |
| 8451 | Hints.push_back(Elt: FixItHint::CreateReplacement(RemoveRange: CastRange, Code: CastFix.str())); |
| 8452 | |
| 8453 | } else if (!requiresParensToAddCast(E) && !S.LangOpts.CPlusPlus) { |
| 8454 | // If the expression has high enough precedence, |
| 8455 | // just write the C-style cast. |
| 8456 | Hints.push_back( |
| 8457 | Elt: FixItHint::CreateInsertion(InsertionLoc: E->getBeginLoc(), Code: CastFix.str())); |
| 8458 | } else { |
| 8459 | // Otherwise, add parens around the expression as well as the cast. |
| 8460 | CastFix << "(" ; |
| 8461 | Hints.push_back( |
| 8462 | Elt: FixItHint::CreateInsertion(InsertionLoc: E->getBeginLoc(), Code: CastFix.str())); |
| 8463 | |
| 8464 | // We don't use getLocForEndOfToken because it returns invalid source |
| 8465 | // locations for macro expansions (by design). |
| 8466 | SourceLocation EndLoc = S.SourceMgr.getSpellingLoc(Loc: E->getEndLoc()); |
| 8467 | SourceLocation After = EndLoc.getLocWithOffset( |
| 8468 | Offset: Lexer::MeasureTokenLength(Loc: EndLoc, SM: S.SourceMgr, LangOpts: S.LangOpts)); |
| 8469 | Hints.push_back(Elt: FixItHint::CreateInsertion(InsertionLoc: After, Code: ")" )); |
| 8470 | } |
| 8471 | |
| 8472 | if (ShouldNotPrintDirectly && !IsScopedEnum) { |
| 8473 | // The expression has a type that should not be printed directly. |
| 8474 | // We extract the name from the typedef because we don't want to show |
| 8475 | // the underlying type in the diagnostic. |
| 8476 | StringRef Name; |
| 8477 | if (const auto *TypedefTy = ExprTy->getAs<TypedefType>()) |
| 8478 | Name = TypedefTy->getDecl()->getName(); |
| 8479 | else |
| 8480 | Name = CastTyName; |
| 8481 | unsigned Diag = Match == ArgType::NoMatchPedantic |
| 8482 | ? diag::warn_format_argument_needs_cast_pedantic |
| 8483 | : diag::warn_format_argument_needs_cast; |
| 8484 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: Diag) << Name << IntendedTy << IsEnum |
| 8485 | << E->getSourceRange(), |
| 8486 | Loc: E->getBeginLoc(), /*IsStringLocation=*/false, |
| 8487 | StringRange: SpecRange, FixIt: Hints); |
| 8488 | } else { |
| 8489 | // In this case, the expression could be printed using a different |
| 8490 | // specifier, but we've decided that the specifier is probably correct |
| 8491 | // and we should cast instead. Just use the normal warning message. |
| 8492 | |
| 8493 | unsigned Diag = |
| 8494 | IsScopedEnum |
| 8495 | ? diag::warn_format_conversion_argument_type_mismatch_pedantic |
| 8496 | : diag::warn_format_conversion_argument_type_mismatch; |
| 8497 | |
| 8498 | EmitFormatDiagnostic( |
| 8499 | PDiag: S.PDiag(DiagID: Diag) << AT.getRepresentativeTypeName(C&: S.Context) << ExprTy |
| 8500 | << IsEnum << E->getSourceRange(), |
| 8501 | Loc: E->getBeginLoc(), /*IsStringLocation*/ false, StringRange: SpecRange, FixIt: Hints); |
| 8502 | } |
| 8503 | } |
| 8504 | } else { |
| 8505 | const CharSourceRange &CSR = getSpecifierRange(startSpecifier: StartSpecifier, |
| 8506 | specifierLen: SpecifierLen); |
| 8507 | // Since the warning for passing non-POD types to variadic functions |
| 8508 | // was deferred until now, we emit a warning for non-POD |
| 8509 | // arguments here. |
| 8510 | bool EmitTypeMismatch = false; |
| 8511 | switch (S.isValidVarArgType(Ty: ExprTy)) { |
| 8512 | case VarArgKind::Valid: |
| 8513 | case VarArgKind::ValidInCXX11: { |
| 8514 | unsigned Diag; |
| 8515 | switch (Match) { |
| 8516 | case ArgType::Match: |
| 8517 | case ArgType::MatchPromotion: |
| 8518 | case ArgType::NoMatchPromotionTypeConfusion: |
| 8519 | case ArgType::NoMatchSignedness: |
| 8520 | llvm_unreachable("expected non-matching" ); |
| 8521 | case ArgType::NoMatchPedantic: |
| 8522 | Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; |
| 8523 | break; |
| 8524 | case ArgType::NoMatchTypeConfusion: |
| 8525 | Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; |
| 8526 | break; |
| 8527 | case ArgType::NoMatch: |
| 8528 | Diag = diag::warn_format_conversion_argument_type_mismatch; |
| 8529 | break; |
| 8530 | } |
| 8531 | |
| 8532 | EmitFormatDiagnostic( |
| 8533 | PDiag: S.PDiag(DiagID: Diag) << AT.getRepresentativeTypeName(C&: S.Context) << ExprTy |
| 8534 | << IsEnum << CSR << E->getSourceRange(), |
| 8535 | Loc: E->getBeginLoc(), /*IsStringLocation*/ false, StringRange: CSR); |
| 8536 | break; |
| 8537 | } |
| 8538 | case VarArgKind::Undefined: |
| 8539 | case VarArgKind::MSVCUndefined: |
| 8540 | if (CallType == VariadicCallType::DoesNotApply) { |
| 8541 | EmitTypeMismatch = true; |
| 8542 | } else { |
| 8543 | EmitFormatDiagnostic( |
| 8544 | PDiag: S.PDiag(DiagID: diag::warn_non_pod_vararg_with_format_string) |
| 8545 | << S.getLangOpts().CPlusPlus11 << ExprTy << CallType |
| 8546 | << AT.getRepresentativeTypeName(C&: S.Context) << CSR |
| 8547 | << E->getSourceRange(), |
| 8548 | Loc: E->getBeginLoc(), /*IsStringLocation*/ false, StringRange: CSR); |
| 8549 | checkForCStrMembers(AT, E); |
| 8550 | } |
| 8551 | break; |
| 8552 | |
| 8553 | case VarArgKind::Invalid: |
| 8554 | if (CallType == VariadicCallType::DoesNotApply) |
| 8555 | EmitTypeMismatch = true; |
| 8556 | else if (ExprTy->isObjCObjectType()) |
| 8557 | EmitFormatDiagnostic( |
| 8558 | PDiag: S.PDiag(DiagID: diag::err_cannot_pass_objc_interface_to_vararg_format) |
| 8559 | << S.getLangOpts().CPlusPlus11 << ExprTy << CallType |
| 8560 | << AT.getRepresentativeTypeName(C&: S.Context) << CSR |
| 8561 | << E->getSourceRange(), |
| 8562 | Loc: E->getBeginLoc(), /*IsStringLocation*/ false, StringRange: CSR); |
| 8563 | else |
| 8564 | // FIXME: If this is an initializer list, suggest removing the braces |
| 8565 | // or inserting a cast to the target type. |
| 8566 | S.Diag(Loc: E->getBeginLoc(), DiagID: diag::err_cannot_pass_to_vararg_format) |
| 8567 | << isa<InitListExpr>(Val: E) << ExprTy << CallType |
| 8568 | << AT.getRepresentativeTypeName(C&: S.Context) << E->getSourceRange(); |
| 8569 | break; |
| 8570 | } |
| 8571 | |
| 8572 | if (EmitTypeMismatch) { |
| 8573 | // The function is not variadic, so we do not generate warnings about |
| 8574 | // being allowed to pass that object as a variadic argument. Instead, |
| 8575 | // since there are inherently no printf specifiers for types which cannot |
| 8576 | // be passed as variadic arguments, emit a plain old specifier mismatch |
| 8577 | // argument. |
| 8578 | EmitFormatDiagnostic( |
| 8579 | PDiag: S.PDiag(DiagID: diag::warn_format_conversion_argument_type_mismatch) |
| 8580 | << AT.getRepresentativeTypeName(C&: S.Context) << ExprTy << false |
| 8581 | << E->getSourceRange(), |
| 8582 | Loc: E->getBeginLoc(), IsStringLocation: false, StringRange: CSR); |
| 8583 | } |
| 8584 | |
| 8585 | assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && |
| 8586 | "format string specifier index out of range" ); |
| 8587 | CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; |
| 8588 | } |
| 8589 | |
| 8590 | return true; |
| 8591 | } |
| 8592 | |
| 8593 | //===--- CHECK: Scanf format string checking ------------------------------===// |
| 8594 | |
| 8595 | namespace { |
| 8596 | |
| 8597 | class CheckScanfHandler : public CheckFormatHandler { |
| 8598 | public: |
| 8599 | CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, |
| 8600 | const Expr *origFormatExpr, FormatStringType type, |
| 8601 | unsigned firstDataArg, unsigned numDataArgs, |
| 8602 | const char *beg, Sema::FormatArgumentPassingKind APK, |
| 8603 | ArrayRef<const Expr *> Args, unsigned formatIdx, |
| 8604 | bool inFunctionCall, VariadicCallType CallType, |
| 8605 | llvm::SmallBitVector &CheckedVarArgs, |
| 8606 | UncoveredArgHandler &UncoveredArg) |
| 8607 | : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, |
| 8608 | numDataArgs, beg, APK, Args, formatIdx, |
| 8609 | inFunctionCall, CallType, CheckedVarArgs, |
| 8610 | UncoveredArg) {} |
| 8611 | |
| 8612 | bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, |
| 8613 | const char *startSpecifier, |
| 8614 | unsigned specifierLen) override; |
| 8615 | |
| 8616 | bool HandleInvalidScanfConversionSpecifier( |
| 8617 | const analyze_scanf::ScanfSpecifier &FS, |
| 8618 | const char *startSpecifier, |
| 8619 | unsigned specifierLen) override; |
| 8620 | |
| 8621 | void HandleIncompleteScanList(const char *start, const char *end) override; |
| 8622 | }; |
| 8623 | |
| 8624 | } // namespace |
| 8625 | |
| 8626 | void CheckScanfHandler::HandleIncompleteScanList(const char *start, |
| 8627 | const char *end) { |
| 8628 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_scanf_scanlist_incomplete), |
| 8629 | Loc: getLocationOfByte(x: end), /*IsStringLocation*/true, |
| 8630 | StringRange: getSpecifierRange(startSpecifier: start, specifierLen: end - start)); |
| 8631 | } |
| 8632 | |
| 8633 | bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( |
| 8634 | const analyze_scanf::ScanfSpecifier &FS, |
| 8635 | const char *startSpecifier, |
| 8636 | unsigned specifierLen) { |
| 8637 | const analyze_scanf::ScanfConversionSpecifier &CS = |
| 8638 | FS.getConversionSpecifier(); |
| 8639 | |
| 8640 | return HandleInvalidConversionSpecifier(argIndex: FS.getArgIndex(), |
| 8641 | Loc: getLocationOfByte(x: CS.getStart()), |
| 8642 | startSpec: startSpecifier, specifierLen, |
| 8643 | csStart: CS.getStart(), csLen: CS.getLength()); |
| 8644 | } |
| 8645 | |
| 8646 | bool CheckScanfHandler::HandleScanfSpecifier( |
| 8647 | const analyze_scanf::ScanfSpecifier &FS, |
| 8648 | const char *startSpecifier, |
| 8649 | unsigned specifierLen) { |
| 8650 | using namespace analyze_scanf; |
| 8651 | using namespace analyze_format_string; |
| 8652 | |
| 8653 | const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); |
| 8654 | |
| 8655 | // Handle case where '%' and '*' don't consume an argument. These shouldn't |
| 8656 | // be used to decide if we are using positional arguments consistently. |
| 8657 | if (FS.consumesDataArgument()) { |
| 8658 | if (atFirstArg) { |
| 8659 | atFirstArg = false; |
| 8660 | usesPositionalArgs = FS.usesPositionalArg(); |
| 8661 | } |
| 8662 | else if (usesPositionalArgs != FS.usesPositionalArg()) { |
| 8663 | HandlePositionalNonpositionalArgs(Loc: getLocationOfByte(x: CS.getStart()), |
| 8664 | startSpec: startSpecifier, specifierLen); |
| 8665 | return false; |
| 8666 | } |
| 8667 | } |
| 8668 | |
| 8669 | // Check if the field with is non-zero. |
| 8670 | const OptionalAmount &Amt = FS.getFieldWidth(); |
| 8671 | if (Amt.getHowSpecified() == OptionalAmount::Constant) { |
| 8672 | if (Amt.getConstantAmount() == 0) { |
| 8673 | const CharSourceRange &R = getSpecifierRange(startSpecifier: Amt.getStart(), |
| 8674 | specifierLen: Amt.getConstantLength()); |
| 8675 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_scanf_nonzero_width), |
| 8676 | Loc: getLocationOfByte(x: Amt.getStart()), |
| 8677 | /*IsStringLocation*/true, StringRange: R, |
| 8678 | FixIt: FixItHint::CreateRemoval(RemoveRange: R)); |
| 8679 | } |
| 8680 | } |
| 8681 | |
| 8682 | if (!FS.consumesDataArgument()) { |
| 8683 | // FIXME: Technically specifying a precision or field width here |
| 8684 | // makes no sense. Worth issuing a warning at some point. |
| 8685 | return true; |
| 8686 | } |
| 8687 | |
| 8688 | // Consume the argument. |
| 8689 | unsigned argIndex = FS.getArgIndex(); |
| 8690 | if (argIndex < NumDataArgs) { |
| 8691 | // The check to see if the argIndex is valid will come later. |
| 8692 | // We set the bit here because we may exit early from this |
| 8693 | // function if we encounter some other error. |
| 8694 | CoveredArgs.set(argIndex); |
| 8695 | } |
| 8696 | |
| 8697 | // Check the length modifier is valid with the given conversion specifier. |
| 8698 | if (!FS.hasValidLengthModifier(Target: S.getASTContext().getTargetInfo(), |
| 8699 | LO: S.getLangOpts())) |
| 8700 | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
| 8701 | DiagID: diag::warn_format_nonsensical_length); |
| 8702 | else if (!FS.hasStandardLengthModifier()) |
| 8703 | HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); |
| 8704 | else if (!FS.hasStandardLengthConversionCombination()) |
| 8705 | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
| 8706 | DiagID: diag::warn_format_non_standard_conversion_spec); |
| 8707 | |
| 8708 | if (!FS.hasStandardConversionSpecifier(LangOpt: S.getLangOpts())) |
| 8709 | HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); |
| 8710 | |
| 8711 | // The remaining checks depend on the data arguments. |
| 8712 | if (!HasFormatArguments()) |
| 8713 | return true; |
| 8714 | |
| 8715 | if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) |
| 8716 | return false; |
| 8717 | |
| 8718 | // Check that the argument type matches the format specifier. |
| 8719 | const Expr *Ex = getDataArg(i: argIndex); |
| 8720 | if (!Ex) |
| 8721 | return true; |
| 8722 | |
| 8723 | const analyze_format_string::ArgType &AT = FS.getArgType(Ctx&: S.Context); |
| 8724 | |
| 8725 | if (!AT.isValid()) { |
| 8726 | return true; |
| 8727 | } |
| 8728 | |
| 8729 | analyze_format_string::ArgType::MatchKind Match = |
| 8730 | AT.matchesType(C&: S.Context, argTy: Ex->getType()); |
| 8731 | Match = handleFormatSignedness(Match, Diags&: S.getDiagnostics(), Loc: Ex->getExprLoc()); |
| 8732 | bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; |
| 8733 | if (Match == analyze_format_string::ArgType::Match) |
| 8734 | return true; |
| 8735 | |
| 8736 | ScanfSpecifier fixedFS = FS; |
| 8737 | bool Success = fixedFS.fixType(QT: Ex->getType(), RawQT: Ex->IgnoreImpCasts()->getType(), |
| 8738 | LangOpt: S.getLangOpts(), Ctx&: S.Context); |
| 8739 | |
| 8740 | unsigned Diag = |
| 8741 | Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic |
| 8742 | : diag::warn_format_conversion_argument_type_mismatch; |
| 8743 | |
| 8744 | if (Success) { |
| 8745 | // Get the fix string from the fixed format specifier. |
| 8746 | SmallString<128> buf; |
| 8747 | llvm::raw_svector_ostream os(buf); |
| 8748 | fixedFS.toString(os); |
| 8749 | |
| 8750 | EmitFormatDiagnostic( |
| 8751 | PDiag: S.PDiag(DiagID: Diag) << AT.getRepresentativeTypeName(C&: S.Context) |
| 8752 | << Ex->getType() << false << Ex->getSourceRange(), |
| 8753 | Loc: Ex->getBeginLoc(), |
| 8754 | /*IsStringLocation*/ false, |
| 8755 | StringRange: getSpecifierRange(startSpecifier, specifierLen), |
| 8756 | FixIt: FixItHint::CreateReplacement( |
| 8757 | RemoveRange: getSpecifierRange(startSpecifier, specifierLen), Code: os.str())); |
| 8758 | } else { |
| 8759 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: Diag) |
| 8760 | << AT.getRepresentativeTypeName(C&: S.Context) |
| 8761 | << Ex->getType() << false << Ex->getSourceRange(), |
| 8762 | Loc: Ex->getBeginLoc(), |
| 8763 | /*IsStringLocation*/ false, |
| 8764 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
| 8765 | } |
| 8766 | |
| 8767 | return true; |
| 8768 | } |
| 8769 | |
| 8770 | static bool CompareFormatSpecifiers(Sema &S, const StringLiteral *Ref, |
| 8771 | ArrayRef<EquatableFormatArgument> RefArgs, |
| 8772 | const StringLiteral *Fmt, |
| 8773 | ArrayRef<EquatableFormatArgument> FmtArgs, |
| 8774 | const Expr *FmtExpr, bool InFunctionCall) { |
| 8775 | bool HadError = false; |
| 8776 | auto FmtIter = FmtArgs.begin(), FmtEnd = FmtArgs.end(); |
| 8777 | auto RefIter = RefArgs.begin(), RefEnd = RefArgs.end(); |
| 8778 | while (FmtIter < FmtEnd && RefIter < RefEnd) { |
| 8779 | // In positional-style format strings, the same specifier can appear |
| 8780 | // multiple times (like %2$i %2$d). Specifiers in both RefArgs and FmtArgs |
| 8781 | // are sorted by getPosition(), and we process each range of equal |
| 8782 | // getPosition() values as one group. |
| 8783 | // RefArgs are taken from a string literal that was given to |
| 8784 | // attribute(format_matches), and if we got this far, we have already |
| 8785 | // verified that if it has positional specifiers that appear in multiple |
| 8786 | // locations, then they are all mutually compatible. What's left for us to |
| 8787 | // do is verify that all specifiers with the same position in FmtArgs are |
| 8788 | // compatible with the RefArgs specifiers. We check each specifier from |
| 8789 | // FmtArgs against the first member of the RefArgs group. |
| 8790 | for (; FmtIter < FmtEnd; ++FmtIter) { |
| 8791 | // Clang does not diagnose missing format specifiers in positional-style |
| 8792 | // strings (TODO: which it probably should do, as it is UB to skip over a |
| 8793 | // format argument). Skip specifiers if needed. |
| 8794 | if (FmtIter->getPosition() < RefIter->getPosition()) |
| 8795 | continue; |
| 8796 | |
| 8797 | // Delimits a new getPosition() value. |
| 8798 | if (FmtIter->getPosition() > RefIter->getPosition()) |
| 8799 | break; |
| 8800 | |
| 8801 | HadError |= |
| 8802 | !FmtIter->VerifyCompatible(S, Other: *RefIter, FmtExpr, InFunctionCall); |
| 8803 | } |
| 8804 | |
| 8805 | // Jump RefIter to the start of the next group. |
| 8806 | RefIter = std::find_if(first: RefIter + 1, last: RefEnd, pred: [=](const auto &Arg) { |
| 8807 | return Arg.getPosition() != RefIter->getPosition(); |
| 8808 | }); |
| 8809 | } |
| 8810 | |
| 8811 | if (FmtIter < FmtEnd) { |
| 8812 | CheckFormatHandler::EmitFormatDiagnostic( |
| 8813 | S, InFunctionCall, ArgumentExpr: FmtExpr, |
| 8814 | PDiag: S.PDiag(DiagID: diag::warn_format_cmp_specifier_arity) << 1, |
| 8815 | Loc: FmtExpr->getBeginLoc(), IsStringLocation: false, StringRange: FmtIter->getSourceRange()); |
| 8816 | HadError = S.Diag(Loc: Ref->getBeginLoc(), DiagID: diag::note_format_cmp_with) << 1; |
| 8817 | } else if (RefIter < RefEnd) { |
| 8818 | CheckFormatHandler::EmitFormatDiagnostic( |
| 8819 | S, InFunctionCall, ArgumentExpr: FmtExpr, |
| 8820 | PDiag: S.PDiag(DiagID: diag::warn_format_cmp_specifier_arity) << 0, |
| 8821 | Loc: FmtExpr->getBeginLoc(), IsStringLocation: false, StringRange: Fmt->getSourceRange()); |
| 8822 | HadError = S.Diag(Loc: Ref->getBeginLoc(), DiagID: diag::note_format_cmp_with) |
| 8823 | << 1 << RefIter->getSourceRange(); |
| 8824 | } |
| 8825 | return !HadError; |
| 8826 | } |
| 8827 | |
| 8828 | static void CheckFormatString( |
| 8829 | Sema &S, const FormatStringLiteral *FExpr, |
| 8830 | const StringLiteral *ReferenceFormatString, const Expr *OrigFormatExpr, |
| 8831 | ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK, |
| 8832 | unsigned format_idx, unsigned firstDataArg, FormatStringType Type, |
| 8833 | bool inFunctionCall, VariadicCallType CallType, |
| 8834 | llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg, |
| 8835 | bool IgnoreStringsWithoutSpecifiers) { |
| 8836 | // CHECK: is the format string a wide literal? |
| 8837 | if (!FExpr->isAscii() && !FExpr->isUTF8()) { |
| 8838 | CheckFormatHandler::EmitFormatDiagnostic( |
| 8839 | S, InFunctionCall: inFunctionCall, ArgumentExpr: Args[format_idx], |
| 8840 | PDiag: S.PDiag(DiagID: diag::warn_format_string_is_wide_literal), Loc: FExpr->getBeginLoc(), |
| 8841 | /*IsStringLocation*/ true, StringRange: OrigFormatExpr->getSourceRange()); |
| 8842 | return; |
| 8843 | } |
| 8844 | |
| 8845 | // Str - The format string. NOTE: this is NOT null-terminated! |
| 8846 | StringRef StrRef = FExpr->getString(); |
| 8847 | const char *Str = StrRef.data(); |
| 8848 | // Account for cases where the string literal is truncated in a declaration. |
| 8849 | const ConstantArrayType *T = |
| 8850 | S.Context.getAsConstantArrayType(T: FExpr->getType()); |
| 8851 | assert(T && "String literal not of constant array type!" ); |
| 8852 | size_t TypeSize = T->getZExtSize(); |
| 8853 | size_t StrLen = std::min(a: std::max(a: TypeSize, b: size_t(1)) - 1, b: StrRef.size()); |
| 8854 | const unsigned numDataArgs = Args.size() - firstDataArg; |
| 8855 | |
| 8856 | if (IgnoreStringsWithoutSpecifiers && |
| 8857 | !analyze_format_string::parseFormatStringHasFormattingSpecifiers( |
| 8858 | Begin: Str, End: Str + StrLen, LO: S.getLangOpts(), Target: S.Context.getTargetInfo())) |
| 8859 | return; |
| 8860 | |
| 8861 | // Emit a warning if the string literal is truncated and does not contain an |
| 8862 | // embedded null character. |
| 8863 | if (TypeSize <= StrRef.size() && !StrRef.substr(Start: 0, N: TypeSize).contains(C: '\0')) { |
| 8864 | CheckFormatHandler::EmitFormatDiagnostic( |
| 8865 | S, InFunctionCall: inFunctionCall, ArgumentExpr: Args[format_idx], |
| 8866 | PDiag: S.PDiag(DiagID: diag::warn_printf_format_string_not_null_terminated), |
| 8867 | Loc: FExpr->getBeginLoc(), |
| 8868 | /*IsStringLocation=*/true, StringRange: OrigFormatExpr->getSourceRange()); |
| 8869 | return; |
| 8870 | } |
| 8871 | |
| 8872 | // CHECK: empty format string? |
| 8873 | if (StrLen == 0 && numDataArgs > 0) { |
| 8874 | CheckFormatHandler::EmitFormatDiagnostic( |
| 8875 | S, InFunctionCall: inFunctionCall, ArgumentExpr: Args[format_idx], |
| 8876 | PDiag: S.PDiag(DiagID: diag::warn_empty_format_string), Loc: FExpr->getBeginLoc(), |
| 8877 | /*IsStringLocation*/ true, StringRange: OrigFormatExpr->getSourceRange()); |
| 8878 | return; |
| 8879 | } |
| 8880 | |
| 8881 | if (Type == FormatStringType::Printf || Type == FormatStringType::NSString || |
| 8882 | Type == FormatStringType::Kprintf || |
| 8883 | Type == FormatStringType::FreeBSDKPrintf || |
| 8884 | Type == FormatStringType::OSLog || Type == FormatStringType::OSTrace || |
| 8885 | Type == FormatStringType::Syslog) { |
| 8886 | bool IsObjC = |
| 8887 | Type == FormatStringType::NSString || Type == FormatStringType::OSTrace; |
| 8888 | if (ReferenceFormatString == nullptr) { |
| 8889 | CheckPrintfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, |
| 8890 | numDataArgs, IsObjC, Str, APK, Args, format_idx, |
| 8891 | inFunctionCall, CallType, CheckedVarArgs, |
| 8892 | UncoveredArg); |
| 8893 | |
| 8894 | if (!analyze_format_string::ParsePrintfString( |
| 8895 | H, beg: Str, end: Str + StrLen, LO: S.getLangOpts(), Target: S.Context.getTargetInfo(), |
| 8896 | isFreeBSDKPrintf: Type == FormatStringType::Kprintf || |
| 8897 | Type == FormatStringType::FreeBSDKPrintf)) |
| 8898 | H.DoneProcessing(); |
| 8899 | } else { |
| 8900 | S.CheckFormatStringsCompatible( |
| 8901 | FST: Type, AuthoritativeFormatString: ReferenceFormatString, TestedFormatString: FExpr->getFormatString(), |
| 8902 | FunctionCallArg: inFunctionCall ? nullptr : Args[format_idx]); |
| 8903 | } |
| 8904 | } else if (Type == FormatStringType::Scanf) { |
| 8905 | CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, |
| 8906 | numDataArgs, Str, APK, Args, format_idx, inFunctionCall, |
| 8907 | CallType, CheckedVarArgs, UncoveredArg); |
| 8908 | |
| 8909 | if (!analyze_format_string::ParseScanfString( |
| 8910 | H, beg: Str, end: Str + StrLen, LO: S.getLangOpts(), Target: S.Context.getTargetInfo())) |
| 8911 | H.DoneProcessing(); |
| 8912 | } // TODO: handle other formats |
| 8913 | } |
| 8914 | |
| 8915 | bool Sema::CheckFormatStringsCompatible( |
| 8916 | FormatStringType Type, const StringLiteral *AuthoritativeFormatString, |
| 8917 | const StringLiteral *TestedFormatString, const Expr *FunctionCallArg) { |
| 8918 | if (Type != FormatStringType::Printf && Type != FormatStringType::NSString && |
| 8919 | Type != FormatStringType::Kprintf && |
| 8920 | Type != FormatStringType::FreeBSDKPrintf && |
| 8921 | Type != FormatStringType::OSLog && Type != FormatStringType::OSTrace && |
| 8922 | Type != FormatStringType::Syslog) |
| 8923 | return true; |
| 8924 | |
| 8925 | bool IsObjC = |
| 8926 | Type == FormatStringType::NSString || Type == FormatStringType::OSTrace; |
| 8927 | llvm::SmallVector<EquatableFormatArgument, 9> RefArgs, FmtArgs; |
| 8928 | FormatStringLiteral RefLit = AuthoritativeFormatString; |
| 8929 | FormatStringLiteral TestLit = TestedFormatString; |
| 8930 | const Expr *Arg; |
| 8931 | bool DiagAtStringLiteral; |
| 8932 | if (FunctionCallArg) { |
| 8933 | Arg = FunctionCallArg; |
| 8934 | DiagAtStringLiteral = false; |
| 8935 | } else { |
| 8936 | Arg = TestedFormatString; |
| 8937 | DiagAtStringLiteral = true; |
| 8938 | } |
| 8939 | if (DecomposePrintfHandler::GetSpecifiers(S&: *this, FSL: &RefLit, |
| 8940 | FmtExpr: AuthoritativeFormatString, Type, |
| 8941 | IsObjC, InFunctionCall: true, Args&: RefArgs) && |
| 8942 | DecomposePrintfHandler::GetSpecifiers(S&: *this, FSL: &TestLit, FmtExpr: Arg, Type, IsObjC, |
| 8943 | InFunctionCall: DiagAtStringLiteral, Args&: FmtArgs)) { |
| 8944 | return CompareFormatSpecifiers(S&: *this, Ref: AuthoritativeFormatString, RefArgs, |
| 8945 | Fmt: TestedFormatString, FmtArgs, FmtExpr: Arg, |
| 8946 | InFunctionCall: DiagAtStringLiteral); |
| 8947 | } |
| 8948 | return false; |
| 8949 | } |
| 8950 | |
| 8951 | bool Sema::ValidateFormatString(FormatStringType Type, |
| 8952 | const StringLiteral *Str) { |
| 8953 | if (Type != FormatStringType::Printf && Type != FormatStringType::NSString && |
| 8954 | Type != FormatStringType::Kprintf && |
| 8955 | Type != FormatStringType::FreeBSDKPrintf && |
| 8956 | Type != FormatStringType::OSLog && Type != FormatStringType::OSTrace && |
| 8957 | Type != FormatStringType::Syslog) |
| 8958 | return true; |
| 8959 | |
| 8960 | FormatStringLiteral RefLit = Str; |
| 8961 | llvm::SmallVector<EquatableFormatArgument, 9> Args; |
| 8962 | bool IsObjC = |
| 8963 | Type == FormatStringType::NSString || Type == FormatStringType::OSTrace; |
| 8964 | if (!DecomposePrintfHandler::GetSpecifiers(S&: *this, FSL: &RefLit, FmtExpr: Str, Type, IsObjC, |
| 8965 | InFunctionCall: true, Args)) |
| 8966 | return false; |
| 8967 | |
| 8968 | // Group arguments by getPosition() value, and check that each member of the |
| 8969 | // group is compatible with the first member. This verifies that when |
| 8970 | // positional arguments are used multiple times (such as %2$i %2$d), all uses |
| 8971 | // are mutually compatible. As an optimization, don't test the first member |
| 8972 | // against itself. |
| 8973 | bool HadError = false; |
| 8974 | auto Iter = Args.begin(); |
| 8975 | auto End = Args.end(); |
| 8976 | while (Iter != End) { |
| 8977 | const auto &FirstInGroup = *Iter; |
| 8978 | for (++Iter; |
| 8979 | Iter != End && Iter->getPosition() == FirstInGroup.getPosition(); |
| 8980 | ++Iter) { |
| 8981 | HadError |= !Iter->VerifyCompatible(S&: *this, Other: FirstInGroup, FmtExpr: Str, InFunctionCall: true); |
| 8982 | } |
| 8983 | } |
| 8984 | return !HadError; |
| 8985 | } |
| 8986 | |
| 8987 | bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { |
| 8988 | // Str - The format string. NOTE: this is NOT null-terminated! |
| 8989 | StringRef StrRef = FExpr->getString(); |
| 8990 | const char *Str = StrRef.data(); |
| 8991 | // Account for cases where the string literal is truncated in a declaration. |
| 8992 | const ConstantArrayType *T = Context.getAsConstantArrayType(T: FExpr->getType()); |
| 8993 | assert(T && "String literal not of constant array type!" ); |
| 8994 | size_t TypeSize = T->getZExtSize(); |
| 8995 | size_t StrLen = std::min(a: std::max(a: TypeSize, b: size_t(1)) - 1, b: StrRef.size()); |
| 8996 | return analyze_format_string::ParseFormatStringHasSArg(beg: Str, end: Str + StrLen, |
| 8997 | LO: getLangOpts(), |
| 8998 | Target: Context.getTargetInfo()); |
| 8999 | } |
| 9000 | |
| 9001 | //===--- CHECK: Warn on use of wrong absolute value function. -------------===// |
| 9002 | |
| 9003 | // Returns the related absolute value function that is larger, of 0 if one |
| 9004 | // does not exist. |
| 9005 | static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { |
| 9006 | switch (AbsFunction) { |
| 9007 | default: |
| 9008 | return 0; |
| 9009 | |
| 9010 | case Builtin::BI__builtin_abs: |
| 9011 | return Builtin::BI__builtin_labs; |
| 9012 | case Builtin::BI__builtin_labs: |
| 9013 | return Builtin::BI__builtin_llabs; |
| 9014 | case Builtin::BI__builtin_llabs: |
| 9015 | return 0; |
| 9016 | |
| 9017 | case Builtin::BI__builtin_fabsf: |
| 9018 | return Builtin::BI__builtin_fabs; |
| 9019 | case Builtin::BI__builtin_fabs: |
| 9020 | return Builtin::BI__builtin_fabsl; |
| 9021 | case Builtin::BI__builtin_fabsl: |
| 9022 | return 0; |
| 9023 | |
| 9024 | case Builtin::BI__builtin_cabsf: |
| 9025 | return Builtin::BI__builtin_cabs; |
| 9026 | case Builtin::BI__builtin_cabs: |
| 9027 | return Builtin::BI__builtin_cabsl; |
| 9028 | case Builtin::BI__builtin_cabsl: |
| 9029 | return 0; |
| 9030 | |
| 9031 | case Builtin::BIabs: |
| 9032 | return Builtin::BIlabs; |
| 9033 | case Builtin::BIlabs: |
| 9034 | return Builtin::BIllabs; |
| 9035 | case Builtin::BIllabs: |
| 9036 | return 0; |
| 9037 | |
| 9038 | case Builtin::BIfabsf: |
| 9039 | return Builtin::BIfabs; |
| 9040 | case Builtin::BIfabs: |
| 9041 | return Builtin::BIfabsl; |
| 9042 | case Builtin::BIfabsl: |
| 9043 | return 0; |
| 9044 | |
| 9045 | case Builtin::BIcabsf: |
| 9046 | return Builtin::BIcabs; |
| 9047 | case Builtin::BIcabs: |
| 9048 | return Builtin::BIcabsl; |
| 9049 | case Builtin::BIcabsl: |
| 9050 | return 0; |
| 9051 | } |
| 9052 | } |
| 9053 | |
| 9054 | // Returns the argument type of the absolute value function. |
| 9055 | static QualType getAbsoluteValueArgumentType(ASTContext &Context, |
| 9056 | unsigned AbsType) { |
| 9057 | if (AbsType == 0) |
| 9058 | return QualType(); |
| 9059 | |
| 9060 | ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; |
| 9061 | QualType BuiltinType = Context.GetBuiltinType(ID: AbsType, Error); |
| 9062 | if (Error != ASTContext::GE_None) |
| 9063 | return QualType(); |
| 9064 | |
| 9065 | const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); |
| 9066 | if (!FT) |
| 9067 | return QualType(); |
| 9068 | |
| 9069 | if (FT->getNumParams() != 1) |
| 9070 | return QualType(); |
| 9071 | |
| 9072 | return FT->getParamType(i: 0); |
| 9073 | } |
| 9074 | |
| 9075 | // Returns the best absolute value function, or zero, based on type and |
| 9076 | // current absolute value function. |
| 9077 | static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, |
| 9078 | unsigned AbsFunctionKind) { |
| 9079 | unsigned BestKind = 0; |
| 9080 | uint64_t ArgSize = Context.getTypeSize(T: ArgType); |
| 9081 | for (unsigned Kind = AbsFunctionKind; Kind != 0; |
| 9082 | Kind = getLargerAbsoluteValueFunction(AbsFunction: Kind)) { |
| 9083 | QualType ParamType = getAbsoluteValueArgumentType(Context, AbsType: Kind); |
| 9084 | if (Context.getTypeSize(T: ParamType) >= ArgSize) { |
| 9085 | if (BestKind == 0) |
| 9086 | BestKind = Kind; |
| 9087 | else if (Context.hasSameType(T1: ParamType, T2: ArgType)) { |
| 9088 | BestKind = Kind; |
| 9089 | break; |
| 9090 | } |
| 9091 | } |
| 9092 | } |
| 9093 | return BestKind; |
| 9094 | } |
| 9095 | |
| 9096 | enum AbsoluteValueKind { |
| 9097 | AVK_Integer, |
| 9098 | AVK_Floating, |
| 9099 | AVK_Complex |
| 9100 | }; |
| 9101 | |
| 9102 | static AbsoluteValueKind getAbsoluteValueKind(QualType T) { |
| 9103 | if (T->isIntegralOrEnumerationType()) |
| 9104 | return AVK_Integer; |
| 9105 | if (T->isRealFloatingType()) |
| 9106 | return AVK_Floating; |
| 9107 | if (T->isAnyComplexType()) |
| 9108 | return AVK_Complex; |
| 9109 | |
| 9110 | llvm_unreachable("Type not integer, floating, or complex" ); |
| 9111 | } |
| 9112 | |
| 9113 | // Changes the absolute value function to a different type. Preserves whether |
| 9114 | // the function is a builtin. |
| 9115 | static unsigned changeAbsFunction(unsigned AbsKind, |
| 9116 | AbsoluteValueKind ValueKind) { |
| 9117 | switch (ValueKind) { |
| 9118 | case AVK_Integer: |
| 9119 | switch (AbsKind) { |
| 9120 | default: |
| 9121 | return 0; |
| 9122 | case Builtin::BI__builtin_fabsf: |
| 9123 | case Builtin::BI__builtin_fabs: |
| 9124 | case Builtin::BI__builtin_fabsl: |
| 9125 | case Builtin::BI__builtin_cabsf: |
| 9126 | case Builtin::BI__builtin_cabs: |
| 9127 | case Builtin::BI__builtin_cabsl: |
| 9128 | return Builtin::BI__builtin_abs; |
| 9129 | case Builtin::BIfabsf: |
| 9130 | case Builtin::BIfabs: |
| 9131 | case Builtin::BIfabsl: |
| 9132 | case Builtin::BIcabsf: |
| 9133 | case Builtin::BIcabs: |
| 9134 | case Builtin::BIcabsl: |
| 9135 | return Builtin::BIabs; |
| 9136 | } |
| 9137 | case AVK_Floating: |
| 9138 | switch (AbsKind) { |
| 9139 | default: |
| 9140 | return 0; |
| 9141 | case Builtin::BI__builtin_abs: |
| 9142 | case Builtin::BI__builtin_labs: |
| 9143 | case Builtin::BI__builtin_llabs: |
| 9144 | case Builtin::BI__builtin_cabsf: |
| 9145 | case Builtin::BI__builtin_cabs: |
| 9146 | case Builtin::BI__builtin_cabsl: |
| 9147 | return Builtin::BI__builtin_fabsf; |
| 9148 | case Builtin::BIabs: |
| 9149 | case Builtin::BIlabs: |
| 9150 | case Builtin::BIllabs: |
| 9151 | case Builtin::BIcabsf: |
| 9152 | case Builtin::BIcabs: |
| 9153 | case Builtin::BIcabsl: |
| 9154 | return Builtin::BIfabsf; |
| 9155 | } |
| 9156 | case AVK_Complex: |
| 9157 | switch (AbsKind) { |
| 9158 | default: |
| 9159 | return 0; |
| 9160 | case Builtin::BI__builtin_abs: |
| 9161 | case Builtin::BI__builtin_labs: |
| 9162 | case Builtin::BI__builtin_llabs: |
| 9163 | case Builtin::BI__builtin_fabsf: |
| 9164 | case Builtin::BI__builtin_fabs: |
| 9165 | case Builtin::BI__builtin_fabsl: |
| 9166 | return Builtin::BI__builtin_cabsf; |
| 9167 | case Builtin::BIabs: |
| 9168 | case Builtin::BIlabs: |
| 9169 | case Builtin::BIllabs: |
| 9170 | case Builtin::BIfabsf: |
| 9171 | case Builtin::BIfabs: |
| 9172 | case Builtin::BIfabsl: |
| 9173 | return Builtin::BIcabsf; |
| 9174 | } |
| 9175 | } |
| 9176 | llvm_unreachable("Unable to convert function" ); |
| 9177 | } |
| 9178 | |
| 9179 | static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { |
| 9180 | const IdentifierInfo *FnInfo = FDecl->getIdentifier(); |
| 9181 | if (!FnInfo) |
| 9182 | return 0; |
| 9183 | |
| 9184 | switch (FDecl->getBuiltinID()) { |
| 9185 | default: |
| 9186 | return 0; |
| 9187 | case Builtin::BI__builtin_abs: |
| 9188 | case Builtin::BI__builtin_fabs: |
| 9189 | case Builtin::BI__builtin_fabsf: |
| 9190 | case Builtin::BI__builtin_fabsl: |
| 9191 | case Builtin::BI__builtin_labs: |
| 9192 | case Builtin::BI__builtin_llabs: |
| 9193 | case Builtin::BI__builtin_cabs: |
| 9194 | case Builtin::BI__builtin_cabsf: |
| 9195 | case Builtin::BI__builtin_cabsl: |
| 9196 | case Builtin::BIabs: |
| 9197 | case Builtin::BIlabs: |
| 9198 | case Builtin::BIllabs: |
| 9199 | case Builtin::BIfabs: |
| 9200 | case Builtin::BIfabsf: |
| 9201 | case Builtin::BIfabsl: |
| 9202 | case Builtin::BIcabs: |
| 9203 | case Builtin::BIcabsf: |
| 9204 | case Builtin::BIcabsl: |
| 9205 | return FDecl->getBuiltinID(); |
| 9206 | } |
| 9207 | llvm_unreachable("Unknown Builtin type" ); |
| 9208 | } |
| 9209 | |
| 9210 | // If the replacement is valid, emit a note with replacement function. |
| 9211 | // Additionally, suggest including the proper header if not already included. |
| 9212 | static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, |
| 9213 | unsigned AbsKind, QualType ArgType) { |
| 9214 | bool = true; |
| 9215 | const char * = nullptr; |
| 9216 | std::string FunctionName; |
| 9217 | if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { |
| 9218 | FunctionName = "std::abs" ; |
| 9219 | if (ArgType->isIntegralOrEnumerationType()) { |
| 9220 | HeaderName = "cstdlib" ; |
| 9221 | } else if (ArgType->isRealFloatingType()) { |
| 9222 | HeaderName = "cmath" ; |
| 9223 | } else { |
| 9224 | llvm_unreachable("Invalid Type" ); |
| 9225 | } |
| 9226 | |
| 9227 | // Lookup all std::abs |
| 9228 | if (NamespaceDecl *Std = S.getStdNamespace()) { |
| 9229 | LookupResult R(S, &S.Context.Idents.get(Name: "abs" ), Loc, Sema::LookupAnyName); |
| 9230 | R.suppressDiagnostics(); |
| 9231 | S.LookupQualifiedName(R, LookupCtx: Std); |
| 9232 | |
| 9233 | for (const auto *I : R) { |
| 9234 | const FunctionDecl *FDecl = nullptr; |
| 9235 | if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(Val: I)) { |
| 9236 | FDecl = dyn_cast<FunctionDecl>(Val: UsingD->getTargetDecl()); |
| 9237 | } else { |
| 9238 | FDecl = dyn_cast<FunctionDecl>(Val: I); |
| 9239 | } |
| 9240 | if (!FDecl) |
| 9241 | continue; |
| 9242 | |
| 9243 | // Found std::abs(), check that they are the right ones. |
| 9244 | if (FDecl->getNumParams() != 1) |
| 9245 | continue; |
| 9246 | |
| 9247 | // Check that the parameter type can handle the argument. |
| 9248 | QualType ParamType = FDecl->getParamDecl(i: 0)->getType(); |
| 9249 | if (getAbsoluteValueKind(T: ArgType) == getAbsoluteValueKind(T: ParamType) && |
| 9250 | S.Context.getTypeSize(T: ArgType) <= |
| 9251 | S.Context.getTypeSize(T: ParamType)) { |
| 9252 | // Found a function, don't need the header hint. |
| 9253 | EmitHeaderHint = false; |
| 9254 | break; |
| 9255 | } |
| 9256 | } |
| 9257 | } |
| 9258 | } else { |
| 9259 | FunctionName = S.Context.BuiltinInfo.getName(ID: AbsKind); |
| 9260 | HeaderName = S.Context.BuiltinInfo.getHeaderName(ID: AbsKind); |
| 9261 | |
| 9262 | if (HeaderName) { |
| 9263 | DeclarationName DN(&S.Context.Idents.get(Name: FunctionName)); |
| 9264 | LookupResult R(S, DN, Loc, Sema::LookupAnyName); |
| 9265 | R.suppressDiagnostics(); |
| 9266 | S.LookupName(R, S: S.getCurScope()); |
| 9267 | |
| 9268 | if (R.isSingleResult()) { |
| 9269 | FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: R.getFoundDecl()); |
| 9270 | if (FD && FD->getBuiltinID() == AbsKind) { |
| 9271 | EmitHeaderHint = false; |
| 9272 | } else { |
| 9273 | return; |
| 9274 | } |
| 9275 | } else if (!R.empty()) { |
| 9276 | return; |
| 9277 | } |
| 9278 | } |
| 9279 | } |
| 9280 | |
| 9281 | S.Diag(Loc, DiagID: diag::note_replace_abs_function) |
| 9282 | << FunctionName << FixItHint::CreateReplacement(RemoveRange: Range, Code: FunctionName); |
| 9283 | |
| 9284 | if (!HeaderName) |
| 9285 | return; |
| 9286 | |
| 9287 | if (!EmitHeaderHint) |
| 9288 | return; |
| 9289 | |
| 9290 | S.Diag(Loc, DiagID: diag::note_include_header_or_declare) << HeaderName |
| 9291 | << FunctionName; |
| 9292 | } |
| 9293 | |
| 9294 | template <std::size_t StrLen> |
| 9295 | static bool IsStdFunction(const FunctionDecl *FDecl, |
| 9296 | const char (&Str)[StrLen]) { |
| 9297 | if (!FDecl) |
| 9298 | return false; |
| 9299 | if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) |
| 9300 | return false; |
| 9301 | if (!FDecl->isInStdNamespace()) |
| 9302 | return false; |
| 9303 | |
| 9304 | return true; |
| 9305 | } |
| 9306 | |
| 9307 | enum class MathCheck { NaN, Inf }; |
| 9308 | static bool IsInfOrNanFunction(StringRef calleeName, MathCheck Check) { |
| 9309 | auto MatchesAny = [&](std::initializer_list<llvm::StringRef> names) { |
| 9310 | return llvm::is_contained(Set: names, Element: calleeName); |
| 9311 | }; |
| 9312 | |
| 9313 | switch (Check) { |
| 9314 | case MathCheck::NaN: |
| 9315 | return MatchesAny({"__builtin_nan" , "__builtin_nanf" , "__builtin_nanl" , |
| 9316 | "__builtin_nanf16" , "__builtin_nanf128" }); |
| 9317 | case MathCheck::Inf: |
| 9318 | return MatchesAny({"__builtin_inf" , "__builtin_inff" , "__builtin_infl" , |
| 9319 | "__builtin_inff16" , "__builtin_inff128" }); |
| 9320 | } |
| 9321 | llvm_unreachable("unknown MathCheck" ); |
| 9322 | } |
| 9323 | |
| 9324 | static bool IsInfinityFunction(const FunctionDecl *FDecl) { |
| 9325 | if (FDecl->getName() != "infinity" ) |
| 9326 | return false; |
| 9327 | |
| 9328 | if (const CXXMethodDecl *MDecl = dyn_cast<CXXMethodDecl>(Val: FDecl)) { |
| 9329 | const CXXRecordDecl *RDecl = MDecl->getParent(); |
| 9330 | if (RDecl->getName() != "numeric_limits" ) |
| 9331 | return false; |
| 9332 | |
| 9333 | if (const NamespaceDecl *NSDecl = |
| 9334 | dyn_cast<NamespaceDecl>(Val: RDecl->getDeclContext())) |
| 9335 | return NSDecl->isStdNamespace(); |
| 9336 | } |
| 9337 | |
| 9338 | return false; |
| 9339 | } |
| 9340 | |
| 9341 | void Sema::CheckInfNaNFunction(const CallExpr *Call, |
| 9342 | const FunctionDecl *FDecl) { |
| 9343 | if (!FDecl->getIdentifier()) |
| 9344 | return; |
| 9345 | |
| 9346 | FPOptions FPO = Call->getFPFeaturesInEffect(LO: getLangOpts()); |
| 9347 | if (FPO.getNoHonorNaNs() && |
| 9348 | (IsStdFunction(FDecl, Str: "isnan" ) || IsStdFunction(FDecl, Str: "isunordered" ) || |
| 9349 | IsInfOrNanFunction(calleeName: FDecl->getName(), Check: MathCheck::NaN))) { |
| 9350 | Diag(Loc: Call->getBeginLoc(), DiagID: diag::warn_fp_nan_inf_when_disabled) |
| 9351 | << 1 << 0 << Call->getSourceRange(); |
| 9352 | return; |
| 9353 | } |
| 9354 | |
| 9355 | if (FPO.getNoHonorInfs() && |
| 9356 | (IsStdFunction(FDecl, Str: "isinf" ) || IsStdFunction(FDecl, Str: "isfinite" ) || |
| 9357 | IsInfinityFunction(FDecl) || |
| 9358 | IsInfOrNanFunction(calleeName: FDecl->getName(), Check: MathCheck::Inf))) { |
| 9359 | Diag(Loc: Call->getBeginLoc(), DiagID: diag::warn_fp_nan_inf_when_disabled) |
| 9360 | << 0 << 0 << Call->getSourceRange(); |
| 9361 | } |
| 9362 | } |
| 9363 | |
| 9364 | void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, |
| 9365 | const FunctionDecl *FDecl) { |
| 9366 | if (Call->getNumArgs() != 1) |
| 9367 | return; |
| 9368 | |
| 9369 | unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); |
| 9370 | bool IsStdAbs = IsStdFunction(FDecl, Str: "abs" ); |
| 9371 | if (AbsKind == 0 && !IsStdAbs) |
| 9372 | return; |
| 9373 | |
| 9374 | QualType ArgType = Call->getArg(Arg: 0)->IgnoreParenImpCasts()->getType(); |
| 9375 | QualType ParamType = Call->getArg(Arg: 0)->getType(); |
| 9376 | |
| 9377 | // Unsigned types cannot be negative. Suggest removing the absolute value |
| 9378 | // function call. |
| 9379 | if (ArgType->isUnsignedIntegerType()) { |
| 9380 | std::string FunctionName = |
| 9381 | IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(ID: AbsKind); |
| 9382 | Diag(Loc: Call->getExprLoc(), DiagID: diag::warn_unsigned_abs) << ArgType << ParamType; |
| 9383 | Diag(Loc: Call->getExprLoc(), DiagID: diag::note_remove_abs) |
| 9384 | << FunctionName |
| 9385 | << FixItHint::CreateRemoval(RemoveRange: Call->getCallee()->getSourceRange()); |
| 9386 | return; |
| 9387 | } |
| 9388 | |
| 9389 | // Taking the absolute value of a pointer is very suspicious, they probably |
| 9390 | // wanted to index into an array, dereference a pointer, call a function, etc. |
| 9391 | if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { |
| 9392 | unsigned DiagType = 0; |
| 9393 | if (ArgType->isFunctionType()) |
| 9394 | DiagType = 1; |
| 9395 | else if (ArgType->isArrayType()) |
| 9396 | DiagType = 2; |
| 9397 | |
| 9398 | Diag(Loc: Call->getExprLoc(), DiagID: diag::warn_pointer_abs) << DiagType << ArgType; |
| 9399 | return; |
| 9400 | } |
| 9401 | |
| 9402 | // std::abs has overloads which prevent most of the absolute value problems |
| 9403 | // from occurring. |
| 9404 | if (IsStdAbs) |
| 9405 | return; |
| 9406 | |
| 9407 | AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(T: ArgType); |
| 9408 | AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(T: ParamType); |
| 9409 | |
| 9410 | // The argument and parameter are the same kind. Check if they are the right |
| 9411 | // size. |
| 9412 | if (ArgValueKind == ParamValueKind) { |
| 9413 | if (Context.getTypeSize(T: ArgType) <= Context.getTypeSize(T: ParamType)) |
| 9414 | return; |
| 9415 | |
| 9416 | unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsFunctionKind: AbsKind); |
| 9417 | Diag(Loc: Call->getExprLoc(), DiagID: diag::warn_abs_too_small) |
| 9418 | << FDecl << ArgType << ParamType; |
| 9419 | |
| 9420 | if (NewAbsKind == 0) |
| 9421 | return; |
| 9422 | |
| 9423 | emitReplacement(S&: *this, Loc: Call->getExprLoc(), |
| 9424 | Range: Call->getCallee()->getSourceRange(), AbsKind: NewAbsKind, ArgType); |
| 9425 | return; |
| 9426 | } |
| 9427 | |
| 9428 | // ArgValueKind != ParamValueKind |
| 9429 | // The wrong type of absolute value function was used. Attempt to find the |
| 9430 | // proper one. |
| 9431 | unsigned NewAbsKind = changeAbsFunction(AbsKind, ValueKind: ArgValueKind); |
| 9432 | NewAbsKind = getBestAbsFunction(Context, ArgType, AbsFunctionKind: NewAbsKind); |
| 9433 | if (NewAbsKind == 0) |
| 9434 | return; |
| 9435 | |
| 9436 | Diag(Loc: Call->getExprLoc(), DiagID: diag::warn_wrong_absolute_value_type) |
| 9437 | << FDecl << ParamValueKind << ArgValueKind; |
| 9438 | |
| 9439 | emitReplacement(S&: *this, Loc: Call->getExprLoc(), |
| 9440 | Range: Call->getCallee()->getSourceRange(), AbsKind: NewAbsKind, ArgType); |
| 9441 | } |
| 9442 | |
| 9443 | //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// |
| 9444 | void Sema::CheckMaxUnsignedZero(const CallExpr *Call, |
| 9445 | const FunctionDecl *FDecl) { |
| 9446 | if (!Call || !FDecl) return; |
| 9447 | |
| 9448 | // Ignore template specializations and macros. |
| 9449 | if (inTemplateInstantiation()) return; |
| 9450 | if (Call->getExprLoc().isMacroID()) return; |
| 9451 | |
| 9452 | // Only care about the one template argument, two function parameter std::max |
| 9453 | if (Call->getNumArgs() != 2) return; |
| 9454 | if (!IsStdFunction(FDecl, Str: "max" )) return; |
| 9455 | const auto * ArgList = FDecl->getTemplateSpecializationArgs(); |
| 9456 | if (!ArgList) return; |
| 9457 | if (ArgList->size() != 1) return; |
| 9458 | |
| 9459 | // Check that template type argument is unsigned integer. |
| 9460 | const auto& TA = ArgList->get(Idx: 0); |
| 9461 | if (TA.getKind() != TemplateArgument::Type) return; |
| 9462 | QualType ArgType = TA.getAsType(); |
| 9463 | if (!ArgType->isUnsignedIntegerType()) return; |
| 9464 | |
| 9465 | // See if either argument is a literal zero. |
| 9466 | auto IsLiteralZeroArg = [](const Expr* E) -> bool { |
| 9467 | const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E); |
| 9468 | if (!MTE) return false; |
| 9469 | const auto *Num = dyn_cast<IntegerLiteral>(Val: MTE->getSubExpr()); |
| 9470 | if (!Num) return false; |
| 9471 | if (Num->getValue() != 0) return false; |
| 9472 | return true; |
| 9473 | }; |
| 9474 | |
| 9475 | const Expr *FirstArg = Call->getArg(Arg: 0); |
| 9476 | const Expr *SecondArg = Call->getArg(Arg: 1); |
| 9477 | const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); |
| 9478 | const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); |
| 9479 | |
| 9480 | // Only warn when exactly one argument is zero. |
| 9481 | if (IsFirstArgZero == IsSecondArgZero) return; |
| 9482 | |
| 9483 | SourceRange FirstRange = FirstArg->getSourceRange(); |
| 9484 | SourceRange SecondRange = SecondArg->getSourceRange(); |
| 9485 | |
| 9486 | SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; |
| 9487 | |
| 9488 | Diag(Loc: Call->getExprLoc(), DiagID: diag::warn_max_unsigned_zero) |
| 9489 | << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; |
| 9490 | |
| 9491 | // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". |
| 9492 | SourceRange RemovalRange; |
| 9493 | if (IsFirstArgZero) { |
| 9494 | RemovalRange = SourceRange(FirstRange.getBegin(), |
| 9495 | SecondRange.getBegin().getLocWithOffset(Offset: -1)); |
| 9496 | } else { |
| 9497 | RemovalRange = SourceRange(getLocForEndOfToken(Loc: FirstRange.getEnd()), |
| 9498 | SecondRange.getEnd()); |
| 9499 | } |
| 9500 | |
| 9501 | Diag(Loc: Call->getExprLoc(), DiagID: diag::note_remove_max_call) |
| 9502 | << FixItHint::CreateRemoval(RemoveRange: Call->getCallee()->getSourceRange()) |
| 9503 | << FixItHint::CreateRemoval(RemoveRange: RemovalRange); |
| 9504 | } |
| 9505 | |
| 9506 | //===--- CHECK: Standard memory functions ---------------------------------===// |
| 9507 | |
| 9508 | /// Takes the expression passed to the size_t parameter of functions |
| 9509 | /// such as memcmp, strncat, etc and warns if it's a comparison. |
| 9510 | /// |
| 9511 | /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. |
| 9512 | static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, |
| 9513 | const IdentifierInfo *FnName, |
| 9514 | SourceLocation FnLoc, |
| 9515 | SourceLocation RParenLoc) { |
| 9516 | const auto *Size = dyn_cast<BinaryOperator>(Val: E); |
| 9517 | if (!Size) |
| 9518 | return false; |
| 9519 | |
| 9520 | // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: |
| 9521 | if (!Size->isComparisonOp() && !Size->isLogicalOp()) |
| 9522 | return false; |
| 9523 | |
| 9524 | SourceRange SizeRange = Size->getSourceRange(); |
| 9525 | S.Diag(Loc: Size->getOperatorLoc(), DiagID: diag::warn_memsize_comparison) |
| 9526 | << SizeRange << FnName; |
| 9527 | S.Diag(Loc: FnLoc, DiagID: diag::note_memsize_comparison_paren) |
| 9528 | << FnName |
| 9529 | << FixItHint::CreateInsertion( |
| 9530 | InsertionLoc: S.getLocForEndOfToken(Loc: Size->getLHS()->getEndLoc()), Code: ")" ) |
| 9531 | << FixItHint::CreateRemoval(RemoveRange: RParenLoc); |
| 9532 | S.Diag(Loc: SizeRange.getBegin(), DiagID: diag::note_memsize_comparison_cast_silence) |
| 9533 | << FixItHint::CreateInsertion(InsertionLoc: SizeRange.getBegin(), Code: "(size_t)(" ) |
| 9534 | << FixItHint::CreateInsertion(InsertionLoc: S.getLocForEndOfToken(Loc: SizeRange.getEnd()), |
| 9535 | Code: ")" ); |
| 9536 | |
| 9537 | return true; |
| 9538 | } |
| 9539 | |
| 9540 | /// Determine whether the given type is or contains a dynamic class type |
| 9541 | /// (e.g., whether it has a vtable). |
| 9542 | static const CXXRecordDecl *getContainedDynamicClass(QualType T, |
| 9543 | bool &IsContained) { |
| 9544 | // Look through array types while ignoring qualifiers. |
| 9545 | const Type *Ty = T->getBaseElementTypeUnsafe(); |
| 9546 | IsContained = false; |
| 9547 | |
| 9548 | const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
| 9549 | RD = RD ? RD->getDefinition() : nullptr; |
| 9550 | if (!RD || RD->isInvalidDecl()) |
| 9551 | return nullptr; |
| 9552 | |
| 9553 | if (RD->isDynamicClass()) |
| 9554 | return RD; |
| 9555 | |
| 9556 | // Check all the fields. If any bases were dynamic, the class is dynamic. |
| 9557 | // It's impossible for a class to transitively contain itself by value, so |
| 9558 | // infinite recursion is impossible. |
| 9559 | for (auto *FD : RD->fields()) { |
| 9560 | bool SubContained; |
| 9561 | if (const CXXRecordDecl *ContainedRD = |
| 9562 | getContainedDynamicClass(T: FD->getType(), IsContained&: SubContained)) { |
| 9563 | IsContained = true; |
| 9564 | return ContainedRD; |
| 9565 | } |
| 9566 | } |
| 9567 | |
| 9568 | return nullptr; |
| 9569 | } |
| 9570 | |
| 9571 | static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { |
| 9572 | if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(Val: E)) |
| 9573 | if (Unary->getKind() == UETT_SizeOf) |
| 9574 | return Unary; |
| 9575 | return nullptr; |
| 9576 | } |
| 9577 | |
| 9578 | /// If E is a sizeof expression, returns its argument expression, |
| 9579 | /// otherwise returns NULL. |
| 9580 | static const Expr *getSizeOfExprArg(const Expr *E) { |
| 9581 | if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) |
| 9582 | if (!SizeOf->isArgumentType()) |
| 9583 | return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); |
| 9584 | return nullptr; |
| 9585 | } |
| 9586 | |
| 9587 | /// If E is a sizeof expression, returns its argument type. |
| 9588 | static QualType getSizeOfArgType(const Expr *E) { |
| 9589 | if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) |
| 9590 | return SizeOf->getTypeOfArgument(); |
| 9591 | return QualType(); |
| 9592 | } |
| 9593 | |
| 9594 | namespace { |
| 9595 | |
| 9596 | struct SearchNonTrivialToInitializeField |
| 9597 | : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { |
| 9598 | using Super = |
| 9599 | DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; |
| 9600 | |
| 9601 | SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} |
| 9602 | |
| 9603 | void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, |
| 9604 | SourceLocation SL) { |
| 9605 | if (const auto *AT = asDerived().getContext().getAsArrayType(T: FT)) { |
| 9606 | asDerived().visitArray(PDIK, AT, SL); |
| 9607 | return; |
| 9608 | } |
| 9609 | |
| 9610 | Super::visitWithKind(PDIK, FT, Args&: SL); |
| 9611 | } |
| 9612 | |
| 9613 | void visitARCStrong(QualType FT, SourceLocation SL) { |
| 9614 | S.DiagRuntimeBehavior(Loc: SL, Statement: E, PD: S.PDiag(DiagID: diag::note_nontrivial_field) << 1); |
| 9615 | } |
| 9616 | void visitARCWeak(QualType FT, SourceLocation SL) { |
| 9617 | S.DiagRuntimeBehavior(Loc: SL, Statement: E, PD: S.PDiag(DiagID: diag::note_nontrivial_field) << 1); |
| 9618 | } |
| 9619 | void visitStruct(QualType FT, SourceLocation SL) { |
| 9620 | for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) |
| 9621 | visit(FT: FD->getType(), Args: FD->getLocation()); |
| 9622 | } |
| 9623 | void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, |
| 9624 | const ArrayType *AT, SourceLocation SL) { |
| 9625 | visit(FT: getContext().getBaseElementType(VAT: AT), Args&: SL); |
| 9626 | } |
| 9627 | void visitTrivial(QualType FT, SourceLocation SL) {} |
| 9628 | |
| 9629 | static void diag(QualType RT, const Expr *E, Sema &S) { |
| 9630 | SearchNonTrivialToInitializeField(E, S).visitStruct(FT: RT, SL: SourceLocation()); |
| 9631 | } |
| 9632 | |
| 9633 | ASTContext &getContext() { return S.getASTContext(); } |
| 9634 | |
| 9635 | const Expr *E; |
| 9636 | Sema &S; |
| 9637 | }; |
| 9638 | |
| 9639 | struct SearchNonTrivialToCopyField |
| 9640 | : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { |
| 9641 | using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; |
| 9642 | |
| 9643 | SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} |
| 9644 | |
| 9645 | void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, |
| 9646 | SourceLocation SL) { |
| 9647 | if (const auto *AT = asDerived().getContext().getAsArrayType(T: FT)) { |
| 9648 | asDerived().visitArray(PCK, AT, SL); |
| 9649 | return; |
| 9650 | } |
| 9651 | |
| 9652 | Super::visitWithKind(PCK, FT, Args&: SL); |
| 9653 | } |
| 9654 | |
| 9655 | void visitARCStrong(QualType FT, SourceLocation SL) { |
| 9656 | S.DiagRuntimeBehavior(Loc: SL, Statement: E, PD: S.PDiag(DiagID: diag::note_nontrivial_field) << 0); |
| 9657 | } |
| 9658 | void visitARCWeak(QualType FT, SourceLocation SL) { |
| 9659 | S.DiagRuntimeBehavior(Loc: SL, Statement: E, PD: S.PDiag(DiagID: diag::note_nontrivial_field) << 0); |
| 9660 | } |
| 9661 | void visitPtrAuth(QualType FT, SourceLocation SL) { |
| 9662 | S.DiagRuntimeBehavior(Loc: SL, Statement: E, PD: S.PDiag(DiagID: diag::note_nontrivial_field) << 0); |
| 9663 | } |
| 9664 | void visitStruct(QualType FT, SourceLocation SL) { |
| 9665 | for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) |
| 9666 | visit(FT: FD->getType(), Args: FD->getLocation()); |
| 9667 | } |
| 9668 | void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, |
| 9669 | SourceLocation SL) { |
| 9670 | visit(FT: getContext().getBaseElementType(VAT: AT), Args&: SL); |
| 9671 | } |
| 9672 | void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, |
| 9673 | SourceLocation SL) {} |
| 9674 | void visitTrivial(QualType FT, SourceLocation SL) {} |
| 9675 | void visitVolatileTrivial(QualType FT, SourceLocation SL) {} |
| 9676 | |
| 9677 | static void diag(QualType RT, const Expr *E, Sema &S) { |
| 9678 | SearchNonTrivialToCopyField(E, S).visitStruct(FT: RT, SL: SourceLocation()); |
| 9679 | } |
| 9680 | |
| 9681 | ASTContext &getContext() { return S.getASTContext(); } |
| 9682 | |
| 9683 | const Expr *E; |
| 9684 | Sema &S; |
| 9685 | }; |
| 9686 | |
| 9687 | } |
| 9688 | |
| 9689 | /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. |
| 9690 | static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { |
| 9691 | SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); |
| 9692 | |
| 9693 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: SizeofExpr)) { |
| 9694 | if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) |
| 9695 | return false; |
| 9696 | |
| 9697 | return doesExprLikelyComputeSize(SizeofExpr: BO->getLHS()) || |
| 9698 | doesExprLikelyComputeSize(SizeofExpr: BO->getRHS()); |
| 9699 | } |
| 9700 | |
| 9701 | return getAsSizeOfExpr(E: SizeofExpr) != nullptr; |
| 9702 | } |
| 9703 | |
| 9704 | /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. |
| 9705 | /// |
| 9706 | /// \code |
| 9707 | /// #define MACRO 0 |
| 9708 | /// foo(MACRO); |
| 9709 | /// foo(0); |
| 9710 | /// \endcode |
| 9711 | /// |
| 9712 | /// This should return true for the first call to foo, but not for the second |
| 9713 | /// (regardless of whether foo is a macro or function). |
| 9714 | static bool isArgumentExpandedFromMacro(SourceManager &SM, |
| 9715 | SourceLocation CallLoc, |
| 9716 | SourceLocation ArgLoc) { |
| 9717 | if (!CallLoc.isMacroID()) |
| 9718 | return SM.getFileID(SpellingLoc: CallLoc) != SM.getFileID(SpellingLoc: ArgLoc); |
| 9719 | |
| 9720 | return SM.getFileID(SpellingLoc: SM.getImmediateMacroCallerLoc(Loc: CallLoc)) != |
| 9721 | SM.getFileID(SpellingLoc: SM.getImmediateMacroCallerLoc(Loc: ArgLoc)); |
| 9722 | } |
| 9723 | |
| 9724 | /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the |
| 9725 | /// last two arguments transposed. |
| 9726 | static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { |
| 9727 | if (BId != Builtin::BImemset && BId != Builtin::BIbzero) |
| 9728 | return; |
| 9729 | |
| 9730 | const Expr *SizeArg = |
| 9731 | Call->getArg(Arg: BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); |
| 9732 | |
| 9733 | auto isLiteralZero = [](const Expr *E) { |
| 9734 | return (isa<IntegerLiteral>(Val: E) && |
| 9735 | cast<IntegerLiteral>(Val: E)->getValue() == 0) || |
| 9736 | (isa<CharacterLiteral>(Val: E) && |
| 9737 | cast<CharacterLiteral>(Val: E)->getValue() == 0); |
| 9738 | }; |
| 9739 | |
| 9740 | // If we're memsetting or bzeroing 0 bytes, then this is likely an error. |
| 9741 | SourceLocation CallLoc = Call->getRParenLoc(); |
| 9742 | SourceManager &SM = S.getSourceManager(); |
| 9743 | if (isLiteralZero(SizeArg) && |
| 9744 | !isArgumentExpandedFromMacro(SM, CallLoc, ArgLoc: SizeArg->getExprLoc())) { |
| 9745 | |
| 9746 | SourceLocation DiagLoc = SizeArg->getExprLoc(); |
| 9747 | |
| 9748 | // Some platforms #define bzero to __builtin_memset. See if this is the |
| 9749 | // case, and if so, emit a better diagnostic. |
| 9750 | if (BId == Builtin::BIbzero || |
| 9751 | (CallLoc.isMacroID() && Lexer::getImmediateMacroName( |
| 9752 | Loc: CallLoc, SM, LangOpts: S.getLangOpts()) == "bzero" )) { |
| 9753 | S.Diag(Loc: DiagLoc, DiagID: diag::warn_suspicious_bzero_size); |
| 9754 | S.Diag(Loc: DiagLoc, DiagID: diag::note_suspicious_bzero_size_silence); |
| 9755 | } else if (!isLiteralZero(Call->getArg(Arg: 1)->IgnoreImpCasts())) { |
| 9756 | S.Diag(Loc: DiagLoc, DiagID: diag::warn_suspicious_sizeof_memset) << 0; |
| 9757 | S.Diag(Loc: DiagLoc, DiagID: diag::note_suspicious_sizeof_memset_silence) << 0; |
| 9758 | } |
| 9759 | return; |
| 9760 | } |
| 9761 | |
| 9762 | // If the second argument to a memset is a sizeof expression and the third |
| 9763 | // isn't, this is also likely an error. This should catch |
| 9764 | // 'memset(buf, sizeof(buf), 0xff)'. |
| 9765 | if (BId == Builtin::BImemset && |
| 9766 | doesExprLikelyComputeSize(SizeofExpr: Call->getArg(Arg: 1)) && |
| 9767 | !doesExprLikelyComputeSize(SizeofExpr: Call->getArg(Arg: 2))) { |
| 9768 | SourceLocation DiagLoc = Call->getArg(Arg: 1)->getExprLoc(); |
| 9769 | S.Diag(Loc: DiagLoc, DiagID: diag::warn_suspicious_sizeof_memset) << 1; |
| 9770 | S.Diag(Loc: DiagLoc, DiagID: diag::note_suspicious_sizeof_memset_silence) << 1; |
| 9771 | return; |
| 9772 | } |
| 9773 | } |
| 9774 | |
| 9775 | void Sema::CheckMemaccessArguments(const CallExpr *Call, |
| 9776 | unsigned BId, |
| 9777 | IdentifierInfo *FnName) { |
| 9778 | assert(BId != 0); |
| 9779 | |
| 9780 | // It is possible to have a non-standard definition of memset. Validate |
| 9781 | // we have enough arguments, and if not, abort further checking. |
| 9782 | unsigned ExpectedNumArgs = |
| 9783 | (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); |
| 9784 | if (Call->getNumArgs() < ExpectedNumArgs) |
| 9785 | return; |
| 9786 | |
| 9787 | unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || |
| 9788 | BId == Builtin::BIstrndup ? 1 : 2); |
| 9789 | unsigned LenArg = |
| 9790 | (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); |
| 9791 | const Expr *LenExpr = Call->getArg(Arg: LenArg)->IgnoreParenImpCasts(); |
| 9792 | |
| 9793 | if (CheckMemorySizeofForComparison(S&: *this, E: LenExpr, FnName, |
| 9794 | FnLoc: Call->getBeginLoc(), RParenLoc: Call->getRParenLoc())) |
| 9795 | return; |
| 9796 | |
| 9797 | // Catch cases like 'memset(buf, sizeof(buf), 0)'. |
| 9798 | CheckMemaccessSize(S&: *this, BId, Call); |
| 9799 | |
| 9800 | // We have special checking when the length is a sizeof expression. |
| 9801 | QualType SizeOfArgTy = getSizeOfArgType(E: LenExpr); |
| 9802 | const Expr *SizeOfArg = getSizeOfExprArg(E: LenExpr); |
| 9803 | llvm::FoldingSetNodeID SizeOfArgID; |
| 9804 | |
| 9805 | // Although widely used, 'bzero' is not a standard function. Be more strict |
| 9806 | // with the argument types before allowing diagnostics and only allow the |
| 9807 | // form bzero(ptr, sizeof(...)). |
| 9808 | QualType FirstArgTy = Call->getArg(Arg: 0)->IgnoreParenImpCasts()->getType(); |
| 9809 | if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) |
| 9810 | return; |
| 9811 | |
| 9812 | for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { |
| 9813 | const Expr *Dest = Call->getArg(Arg: ArgIdx)->IgnoreParenImpCasts(); |
| 9814 | SourceRange ArgRange = Call->getArg(Arg: ArgIdx)->getSourceRange(); |
| 9815 | |
| 9816 | QualType DestTy = Dest->getType(); |
| 9817 | QualType PointeeTy; |
| 9818 | if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { |
| 9819 | PointeeTy = DestPtrTy->getPointeeType(); |
| 9820 | |
| 9821 | // Never warn about void type pointers. This can be used to suppress |
| 9822 | // false positives. |
| 9823 | if (PointeeTy->isVoidType()) |
| 9824 | continue; |
| 9825 | |
| 9826 | // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by |
| 9827 | // actually comparing the expressions for equality. Because computing the |
| 9828 | // expression IDs can be expensive, we only do this if the diagnostic is |
| 9829 | // enabled. |
| 9830 | if (SizeOfArg && |
| 9831 | !Diags.isIgnored(DiagID: diag::warn_sizeof_pointer_expr_memaccess, |
| 9832 | Loc: SizeOfArg->getExprLoc())) { |
| 9833 | // We only compute IDs for expressions if the warning is enabled, and |
| 9834 | // cache the sizeof arg's ID. |
| 9835 | if (SizeOfArgID == llvm::FoldingSetNodeID()) |
| 9836 | SizeOfArg->Profile(ID&: SizeOfArgID, Context, Canonical: true); |
| 9837 | llvm::FoldingSetNodeID DestID; |
| 9838 | Dest->Profile(ID&: DestID, Context, Canonical: true); |
| 9839 | if (DestID == SizeOfArgID) { |
| 9840 | // TODO: For strncpy() and friends, this could suggest sizeof(dst) |
| 9841 | // over sizeof(src) as well. |
| 9842 | unsigned ActionIdx = 0; // Default is to suggest dereferencing. |
| 9843 | StringRef ReadableName = FnName->getName(); |
| 9844 | |
| 9845 | if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Val: Dest)) |
| 9846 | if (UnaryOp->getOpcode() == UO_AddrOf) |
| 9847 | ActionIdx = 1; // If its an address-of operator, just remove it. |
| 9848 | if (!PointeeTy->isIncompleteType() && |
| 9849 | (Context.getTypeSize(T: PointeeTy) == Context.getCharWidth())) |
| 9850 | ActionIdx = 2; // If the pointee's size is sizeof(char), |
| 9851 | // suggest an explicit length. |
| 9852 | |
| 9853 | // If the function is defined as a builtin macro, do not show macro |
| 9854 | // expansion. |
| 9855 | SourceLocation SL = SizeOfArg->getExprLoc(); |
| 9856 | SourceRange DSR = Dest->getSourceRange(); |
| 9857 | SourceRange SSR = SizeOfArg->getSourceRange(); |
| 9858 | SourceManager &SM = getSourceManager(); |
| 9859 | |
| 9860 | if (SM.isMacroArgExpansion(Loc: SL)) { |
| 9861 | ReadableName = Lexer::getImmediateMacroName(Loc: SL, SM, LangOpts); |
| 9862 | SL = SM.getSpellingLoc(Loc: SL); |
| 9863 | DSR = SourceRange(SM.getSpellingLoc(Loc: DSR.getBegin()), |
| 9864 | SM.getSpellingLoc(Loc: DSR.getEnd())); |
| 9865 | SSR = SourceRange(SM.getSpellingLoc(Loc: SSR.getBegin()), |
| 9866 | SM.getSpellingLoc(Loc: SSR.getEnd())); |
| 9867 | } |
| 9868 | |
| 9869 | DiagRuntimeBehavior(Loc: SL, Statement: SizeOfArg, |
| 9870 | PD: PDiag(DiagID: diag::warn_sizeof_pointer_expr_memaccess) |
| 9871 | << ReadableName |
| 9872 | << PointeeTy |
| 9873 | << DestTy |
| 9874 | << DSR |
| 9875 | << SSR); |
| 9876 | DiagRuntimeBehavior(Loc: SL, Statement: SizeOfArg, |
| 9877 | PD: PDiag(DiagID: diag::warn_sizeof_pointer_expr_memaccess_note) |
| 9878 | << ActionIdx |
| 9879 | << SSR); |
| 9880 | |
| 9881 | break; |
| 9882 | } |
| 9883 | } |
| 9884 | |
| 9885 | // Also check for cases where the sizeof argument is the exact same |
| 9886 | // type as the memory argument, and where it points to a user-defined |
| 9887 | // record type. |
| 9888 | if (SizeOfArgTy != QualType()) { |
| 9889 | if (PointeeTy->isRecordType() && |
| 9890 | Context.typesAreCompatible(T1: SizeOfArgTy, T2: DestTy)) { |
| 9891 | DiagRuntimeBehavior(Loc: LenExpr->getExprLoc(), Statement: Dest, |
| 9892 | PD: PDiag(DiagID: diag::warn_sizeof_pointer_type_memaccess) |
| 9893 | << FnName << SizeOfArgTy << ArgIdx |
| 9894 | << PointeeTy << Dest->getSourceRange() |
| 9895 | << LenExpr->getSourceRange()); |
| 9896 | break; |
| 9897 | } |
| 9898 | } |
| 9899 | } else if (DestTy->isArrayType()) { |
| 9900 | PointeeTy = DestTy; |
| 9901 | } |
| 9902 | |
| 9903 | if (PointeeTy == QualType()) |
| 9904 | continue; |
| 9905 | |
| 9906 | // Always complain about dynamic classes. |
| 9907 | bool IsContained; |
| 9908 | if (const CXXRecordDecl *ContainedRD = |
| 9909 | getContainedDynamicClass(T: PointeeTy, IsContained)) { |
| 9910 | |
| 9911 | unsigned OperationType = 0; |
| 9912 | const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; |
| 9913 | // "overwritten" if we're warning about the destination for any call |
| 9914 | // but memcmp; otherwise a verb appropriate to the call. |
| 9915 | if (ArgIdx != 0 || IsCmp) { |
| 9916 | if (BId == Builtin::BImemcpy) |
| 9917 | OperationType = 1; |
| 9918 | else if(BId == Builtin::BImemmove) |
| 9919 | OperationType = 2; |
| 9920 | else if (IsCmp) |
| 9921 | OperationType = 3; |
| 9922 | } |
| 9923 | |
| 9924 | DiagRuntimeBehavior(Loc: Dest->getExprLoc(), Statement: Dest, |
| 9925 | PD: PDiag(DiagID: diag::warn_dyn_class_memaccess) |
| 9926 | << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName |
| 9927 | << IsContained << ContainedRD << OperationType |
| 9928 | << Call->getCallee()->getSourceRange()); |
| 9929 | } else if (PointeeTy.hasNonTrivialObjCLifetime() && |
| 9930 | BId != Builtin::BImemset) |
| 9931 | DiagRuntimeBehavior( |
| 9932 | Loc: Dest->getExprLoc(), Statement: Dest, |
| 9933 | PD: PDiag(DiagID: diag::warn_arc_object_memaccess) |
| 9934 | << ArgIdx << FnName << PointeeTy |
| 9935 | << Call->getCallee()->getSourceRange()); |
| 9936 | else if (const auto *RT = PointeeTy->getAs<RecordType>()) { |
| 9937 | |
| 9938 | // FIXME: Do not consider incomplete types even though they may be |
| 9939 | // completed later. GCC does not diagnose such code, but we may want to |
| 9940 | // consider diagnosing it in the future, perhaps under a different, but |
| 9941 | // related, diagnostic group. |
| 9942 | bool NonTriviallyCopyableCXXRecord = |
| 9943 | getLangOpts().CPlusPlus && !RT->isIncompleteType() && |
| 9944 | !RT->desugar().isTriviallyCopyableType(Context); |
| 9945 | |
| 9946 | if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && |
| 9947 | RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { |
| 9948 | DiagRuntimeBehavior(Loc: Dest->getExprLoc(), Statement: Dest, |
| 9949 | PD: PDiag(DiagID: diag::warn_cstruct_memaccess) |
| 9950 | << ArgIdx << FnName << PointeeTy << 0); |
| 9951 | SearchNonTrivialToInitializeField::diag(RT: PointeeTy, E: Dest, S&: *this); |
| 9952 | } else if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && |
| 9953 | NonTriviallyCopyableCXXRecord && ArgIdx == 0) { |
| 9954 | // FIXME: Limiting this warning to dest argument until we decide |
| 9955 | // whether it's valid for source argument too. |
| 9956 | DiagRuntimeBehavior(Loc: Dest->getExprLoc(), Statement: Dest, |
| 9957 | PD: PDiag(DiagID: diag::warn_cxxstruct_memaccess) |
| 9958 | << FnName << PointeeTy); |
| 9959 | } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && |
| 9960 | RT->getDecl()->isNonTrivialToPrimitiveCopy()) { |
| 9961 | DiagRuntimeBehavior(Loc: Dest->getExprLoc(), Statement: Dest, |
| 9962 | PD: PDiag(DiagID: diag::warn_cstruct_memaccess) |
| 9963 | << ArgIdx << FnName << PointeeTy << 1); |
| 9964 | SearchNonTrivialToCopyField::diag(RT: PointeeTy, E: Dest, S&: *this); |
| 9965 | } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && |
| 9966 | NonTriviallyCopyableCXXRecord && ArgIdx == 0) { |
| 9967 | // FIXME: Limiting this warning to dest argument until we decide |
| 9968 | // whether it's valid for source argument too. |
| 9969 | DiagRuntimeBehavior(Loc: Dest->getExprLoc(), Statement: Dest, |
| 9970 | PD: PDiag(DiagID: diag::warn_cxxstruct_memaccess) |
| 9971 | << FnName << PointeeTy); |
| 9972 | } else { |
| 9973 | continue; |
| 9974 | } |
| 9975 | } else |
| 9976 | continue; |
| 9977 | |
| 9978 | DiagRuntimeBehavior( |
| 9979 | Loc: Dest->getExprLoc(), Statement: Dest, |
| 9980 | PD: PDiag(DiagID: diag::note_bad_memaccess_silence) |
| 9981 | << FixItHint::CreateInsertion(InsertionLoc: ArgRange.getBegin(), Code: "(void*)" )); |
| 9982 | break; |
| 9983 | } |
| 9984 | } |
| 9985 | |
| 9986 | // A little helper routine: ignore addition and subtraction of integer literals. |
| 9987 | // This intentionally does not ignore all integer constant expressions because |
| 9988 | // we don't want to remove sizeof(). |
| 9989 | static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { |
| 9990 | Ex = Ex->IgnoreParenCasts(); |
| 9991 | |
| 9992 | while (true) { |
| 9993 | const BinaryOperator * BO = dyn_cast<BinaryOperator>(Val: Ex); |
| 9994 | if (!BO || !BO->isAdditiveOp()) |
| 9995 | break; |
| 9996 | |
| 9997 | const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); |
| 9998 | const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); |
| 9999 | |
| 10000 | if (isa<IntegerLiteral>(Val: RHS)) |
| 10001 | Ex = LHS; |
| 10002 | else if (isa<IntegerLiteral>(Val: LHS)) |
| 10003 | Ex = RHS; |
| 10004 | else |
| 10005 | break; |
| 10006 | } |
| 10007 | |
| 10008 | return Ex; |
| 10009 | } |
| 10010 | |
| 10011 | static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, |
| 10012 | ASTContext &Context) { |
| 10013 | // Only handle constant-sized or VLAs, but not flexible members. |
| 10014 | if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T: Ty)) { |
| 10015 | // Only issue the FIXIT for arrays of size > 1. |
| 10016 | if (CAT->getZExtSize() <= 1) |
| 10017 | return false; |
| 10018 | } else if (!Ty->isVariableArrayType()) { |
| 10019 | return false; |
| 10020 | } |
| 10021 | return true; |
| 10022 | } |
| 10023 | |
| 10024 | void Sema::CheckStrlcpycatArguments(const CallExpr *Call, |
| 10025 | IdentifierInfo *FnName) { |
| 10026 | |
| 10027 | // Don't crash if the user has the wrong number of arguments |
| 10028 | unsigned NumArgs = Call->getNumArgs(); |
| 10029 | if ((NumArgs != 3) && (NumArgs != 4)) |
| 10030 | return; |
| 10031 | |
| 10032 | const Expr *SrcArg = ignoreLiteralAdditions(Ex: Call->getArg(Arg: 1), Ctx&: Context); |
| 10033 | const Expr *SizeArg = ignoreLiteralAdditions(Ex: Call->getArg(Arg: 2), Ctx&: Context); |
| 10034 | const Expr *CompareWithSrc = nullptr; |
| 10035 | |
| 10036 | if (CheckMemorySizeofForComparison(S&: *this, E: SizeArg, FnName, |
| 10037 | FnLoc: Call->getBeginLoc(), RParenLoc: Call->getRParenLoc())) |
| 10038 | return; |
| 10039 | |
| 10040 | // Look for 'strlcpy(dst, x, sizeof(x))' |
| 10041 | if (const Expr *Ex = getSizeOfExprArg(E: SizeArg)) |
| 10042 | CompareWithSrc = Ex; |
| 10043 | else { |
| 10044 | // Look for 'strlcpy(dst, x, strlen(x))' |
| 10045 | if (const CallExpr *SizeCall = dyn_cast<CallExpr>(Val: SizeArg)) { |
| 10046 | if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && |
| 10047 | SizeCall->getNumArgs() == 1) |
| 10048 | CompareWithSrc = ignoreLiteralAdditions(Ex: SizeCall->getArg(Arg: 0), Ctx&: Context); |
| 10049 | } |
| 10050 | } |
| 10051 | |
| 10052 | if (!CompareWithSrc) |
| 10053 | return; |
| 10054 | |
| 10055 | // Determine if the argument to sizeof/strlen is equal to the source |
| 10056 | // argument. In principle there's all kinds of things you could do |
| 10057 | // here, for instance creating an == expression and evaluating it with |
| 10058 | // EvaluateAsBooleanCondition, but this uses a more direct technique: |
| 10059 | const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(Val: SrcArg); |
| 10060 | if (!SrcArgDRE) |
| 10061 | return; |
| 10062 | |
| 10063 | const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(Val: CompareWithSrc); |
| 10064 | if (!CompareWithSrcDRE || |
| 10065 | SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) |
| 10066 | return; |
| 10067 | |
| 10068 | const Expr *OriginalSizeArg = Call->getArg(Arg: 2); |
| 10069 | Diag(Loc: CompareWithSrcDRE->getBeginLoc(), DiagID: diag::warn_strlcpycat_wrong_size) |
| 10070 | << OriginalSizeArg->getSourceRange() << FnName; |
| 10071 | |
| 10072 | // Output a FIXIT hint if the destination is an array (rather than a |
| 10073 | // pointer to an array). This could be enhanced to handle some |
| 10074 | // pointers if we know the actual size, like if DstArg is 'array+2' |
| 10075 | // we could say 'sizeof(array)-2'. |
| 10076 | const Expr *DstArg = Call->getArg(Arg: 0)->IgnoreParenImpCasts(); |
| 10077 | if (!isConstantSizeArrayWithMoreThanOneElement(Ty: DstArg->getType(), Context)) |
| 10078 | return; |
| 10079 | |
| 10080 | SmallString<128> sizeString; |
| 10081 | llvm::raw_svector_ostream OS(sizeString); |
| 10082 | OS << "sizeof(" ; |
| 10083 | DstArg->printPretty(OS, Helper: nullptr, Policy: getPrintingPolicy()); |
| 10084 | OS << ")" ; |
| 10085 | |
| 10086 | Diag(Loc: OriginalSizeArg->getBeginLoc(), DiagID: diag::note_strlcpycat_wrong_size) |
| 10087 | << FixItHint::CreateReplacement(RemoveRange: OriginalSizeArg->getSourceRange(), |
| 10088 | Code: OS.str()); |
| 10089 | } |
| 10090 | |
| 10091 | /// Check if two expressions refer to the same declaration. |
| 10092 | static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { |
| 10093 | if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(Val: E1)) |
| 10094 | if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(Val: E2)) |
| 10095 | return D1->getDecl() == D2->getDecl(); |
| 10096 | return false; |
| 10097 | } |
| 10098 | |
| 10099 | static const Expr *getStrlenExprArg(const Expr *E) { |
| 10100 | if (const CallExpr *CE = dyn_cast<CallExpr>(Val: E)) { |
| 10101 | const FunctionDecl *FD = CE->getDirectCallee(); |
| 10102 | if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) |
| 10103 | return nullptr; |
| 10104 | return CE->getArg(Arg: 0)->IgnoreParenCasts(); |
| 10105 | } |
| 10106 | return nullptr; |
| 10107 | } |
| 10108 | |
| 10109 | void Sema::CheckStrncatArguments(const CallExpr *CE, |
| 10110 | const IdentifierInfo *FnName) { |
| 10111 | // Don't crash if the user has the wrong number of arguments. |
| 10112 | if (CE->getNumArgs() < 3) |
| 10113 | return; |
| 10114 | const Expr *DstArg = CE->getArg(Arg: 0)->IgnoreParenCasts(); |
| 10115 | const Expr *SrcArg = CE->getArg(Arg: 1)->IgnoreParenCasts(); |
| 10116 | const Expr *LenArg = CE->getArg(Arg: 2)->IgnoreParenCasts(); |
| 10117 | |
| 10118 | if (CheckMemorySizeofForComparison(S&: *this, E: LenArg, FnName, FnLoc: CE->getBeginLoc(), |
| 10119 | RParenLoc: CE->getRParenLoc())) |
| 10120 | return; |
| 10121 | |
| 10122 | // Identify common expressions, which are wrongly used as the size argument |
| 10123 | // to strncat and may lead to buffer overflows. |
| 10124 | unsigned PatternType = 0; |
| 10125 | if (const Expr *SizeOfArg = getSizeOfExprArg(E: LenArg)) { |
| 10126 | // - sizeof(dst) |
| 10127 | if (referToTheSameDecl(E1: SizeOfArg, E2: DstArg)) |
| 10128 | PatternType = 1; |
| 10129 | // - sizeof(src) |
| 10130 | else if (referToTheSameDecl(E1: SizeOfArg, E2: SrcArg)) |
| 10131 | PatternType = 2; |
| 10132 | } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Val: LenArg)) { |
| 10133 | if (BE->getOpcode() == BO_Sub) { |
| 10134 | const Expr *L = BE->getLHS()->IgnoreParenCasts(); |
| 10135 | const Expr *R = BE->getRHS()->IgnoreParenCasts(); |
| 10136 | // - sizeof(dst) - strlen(dst) |
| 10137 | if (referToTheSameDecl(E1: DstArg, E2: getSizeOfExprArg(E: L)) && |
| 10138 | referToTheSameDecl(E1: DstArg, E2: getStrlenExprArg(E: R))) |
| 10139 | PatternType = 1; |
| 10140 | // - sizeof(src) - (anything) |
| 10141 | else if (referToTheSameDecl(E1: SrcArg, E2: getSizeOfExprArg(E: L))) |
| 10142 | PatternType = 2; |
| 10143 | } |
| 10144 | } |
| 10145 | |
| 10146 | if (PatternType == 0) |
| 10147 | return; |
| 10148 | |
| 10149 | // Generate the diagnostic. |
| 10150 | SourceLocation SL = LenArg->getBeginLoc(); |
| 10151 | SourceRange SR = LenArg->getSourceRange(); |
| 10152 | SourceManager &SM = getSourceManager(); |
| 10153 | |
| 10154 | // If the function is defined as a builtin macro, do not show macro expansion. |
| 10155 | if (SM.isMacroArgExpansion(Loc: SL)) { |
| 10156 | SL = SM.getSpellingLoc(Loc: SL); |
| 10157 | SR = SourceRange(SM.getSpellingLoc(Loc: SR.getBegin()), |
| 10158 | SM.getSpellingLoc(Loc: SR.getEnd())); |
| 10159 | } |
| 10160 | |
| 10161 | // Check if the destination is an array (rather than a pointer to an array). |
| 10162 | QualType DstTy = DstArg->getType(); |
| 10163 | bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(Ty: DstTy, |
| 10164 | Context); |
| 10165 | if (!isKnownSizeArray) { |
| 10166 | if (PatternType == 1) |
| 10167 | Diag(Loc: SL, DiagID: diag::warn_strncat_wrong_size) << SR; |
| 10168 | else |
| 10169 | Diag(Loc: SL, DiagID: diag::warn_strncat_src_size) << SR; |
| 10170 | return; |
| 10171 | } |
| 10172 | |
| 10173 | if (PatternType == 1) |
| 10174 | Diag(Loc: SL, DiagID: diag::warn_strncat_large_size) << SR; |
| 10175 | else |
| 10176 | Diag(Loc: SL, DiagID: diag::warn_strncat_src_size) << SR; |
| 10177 | |
| 10178 | SmallString<128> sizeString; |
| 10179 | llvm::raw_svector_ostream OS(sizeString); |
| 10180 | OS << "sizeof(" ; |
| 10181 | DstArg->printPretty(OS, Helper: nullptr, Policy: getPrintingPolicy()); |
| 10182 | OS << ") - " ; |
| 10183 | OS << "strlen(" ; |
| 10184 | DstArg->printPretty(OS, Helper: nullptr, Policy: getPrintingPolicy()); |
| 10185 | OS << ") - 1" ; |
| 10186 | |
| 10187 | Diag(Loc: SL, DiagID: diag::note_strncat_wrong_size) |
| 10188 | << FixItHint::CreateReplacement(RemoveRange: SR, Code: OS.str()); |
| 10189 | } |
| 10190 | |
| 10191 | namespace { |
| 10192 | void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName, |
| 10193 | const UnaryOperator *UnaryExpr, const Decl *D) { |
| 10194 | if (isa<FieldDecl, FunctionDecl, VarDecl>(Val: D)) { |
| 10195 | S.Diag(Loc: UnaryExpr->getBeginLoc(), DiagID: diag::warn_free_nonheap_object) |
| 10196 | << CalleeName << 0 /*object: */ << cast<NamedDecl>(Val: D); |
| 10197 | return; |
| 10198 | } |
| 10199 | } |
| 10200 | |
| 10201 | void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName, |
| 10202 | const UnaryOperator *UnaryExpr) { |
| 10203 | if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Val: UnaryExpr->getSubExpr())) { |
| 10204 | const Decl *D = Lvalue->getDecl(); |
| 10205 | if (const auto *DD = dyn_cast<DeclaratorDecl>(Val: D)) { |
| 10206 | if (!DD->getType()->isReferenceType()) |
| 10207 | return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D); |
| 10208 | } |
| 10209 | } |
| 10210 | |
| 10211 | if (const auto *Lvalue = dyn_cast<MemberExpr>(Val: UnaryExpr->getSubExpr())) |
| 10212 | return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, |
| 10213 | D: Lvalue->getMemberDecl()); |
| 10214 | } |
| 10215 | |
| 10216 | void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName, |
| 10217 | const UnaryOperator *UnaryExpr) { |
| 10218 | const auto *Lambda = dyn_cast<LambdaExpr>( |
| 10219 | Val: UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens()); |
| 10220 | if (!Lambda) |
| 10221 | return; |
| 10222 | |
| 10223 | S.Diag(Loc: Lambda->getBeginLoc(), DiagID: diag::warn_free_nonheap_object) |
| 10224 | << CalleeName << 2 /*object: lambda expression*/; |
| 10225 | } |
| 10226 | |
| 10227 | void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName, |
| 10228 | const DeclRefExpr *Lvalue) { |
| 10229 | const auto *Var = dyn_cast<VarDecl>(Val: Lvalue->getDecl()); |
| 10230 | if (Var == nullptr) |
| 10231 | return; |
| 10232 | |
| 10233 | S.Diag(Loc: Lvalue->getBeginLoc(), DiagID: diag::warn_free_nonheap_object) |
| 10234 | << CalleeName << 0 /*object: */ << Var; |
| 10235 | } |
| 10236 | |
| 10237 | void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName, |
| 10238 | const CastExpr *Cast) { |
| 10239 | SmallString<128> SizeString; |
| 10240 | llvm::raw_svector_ostream OS(SizeString); |
| 10241 | |
| 10242 | clang::CastKind Kind = Cast->getCastKind(); |
| 10243 | if (Kind == clang::CK_BitCast && |
| 10244 | !Cast->getSubExpr()->getType()->isFunctionPointerType()) |
| 10245 | return; |
| 10246 | if (Kind == clang::CK_IntegralToPointer && |
| 10247 | !isa<IntegerLiteral>( |
| 10248 | Val: Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens())) |
| 10249 | return; |
| 10250 | |
| 10251 | switch (Cast->getCastKind()) { |
| 10252 | case clang::CK_BitCast: |
| 10253 | case clang::CK_IntegralToPointer: |
| 10254 | case clang::CK_FunctionToPointerDecay: |
| 10255 | OS << '\''; |
| 10256 | Cast->printPretty(OS, Helper: nullptr, Policy: S.getPrintingPolicy()); |
| 10257 | OS << '\''; |
| 10258 | break; |
| 10259 | default: |
| 10260 | return; |
| 10261 | } |
| 10262 | |
| 10263 | S.Diag(Loc: Cast->getBeginLoc(), DiagID: diag::warn_free_nonheap_object) |
| 10264 | << CalleeName << 0 /*object: */ << OS.str(); |
| 10265 | } |
| 10266 | } // namespace |
| 10267 | |
| 10268 | void Sema::CheckFreeArguments(const CallExpr *E) { |
| 10269 | const std::string CalleeName = |
| 10270 | cast<FunctionDecl>(Val: E->getCalleeDecl())->getQualifiedNameAsString(); |
| 10271 | |
| 10272 | { // Prefer something that doesn't involve a cast to make things simpler. |
| 10273 | const Expr *Arg = E->getArg(Arg: 0)->IgnoreParenCasts(); |
| 10274 | if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Val: Arg)) |
| 10275 | switch (UnaryExpr->getOpcode()) { |
| 10276 | case UnaryOperator::Opcode::UO_AddrOf: |
| 10277 | return CheckFreeArgumentsAddressof(S&: *this, CalleeName, UnaryExpr); |
| 10278 | case UnaryOperator::Opcode::UO_Plus: |
| 10279 | return CheckFreeArgumentsPlus(S&: *this, CalleeName, UnaryExpr); |
| 10280 | default: |
| 10281 | break; |
| 10282 | } |
| 10283 | |
| 10284 | if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Val: Arg)) |
| 10285 | if (Lvalue->getType()->isArrayType()) |
| 10286 | return CheckFreeArgumentsStackArray(S&: *this, CalleeName, Lvalue); |
| 10287 | |
| 10288 | if (const auto *Label = dyn_cast<AddrLabelExpr>(Val: Arg)) { |
| 10289 | Diag(Loc: Label->getBeginLoc(), DiagID: diag::warn_free_nonheap_object) |
| 10290 | << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier(); |
| 10291 | return; |
| 10292 | } |
| 10293 | |
| 10294 | if (isa<BlockExpr>(Val: Arg)) { |
| 10295 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::warn_free_nonheap_object) |
| 10296 | << CalleeName << 1 /*object: block*/; |
| 10297 | return; |
| 10298 | } |
| 10299 | } |
| 10300 | // Maybe the cast was important, check after the other cases. |
| 10301 | if (const auto *Cast = dyn_cast<CastExpr>(Val: E->getArg(Arg: 0))) |
| 10302 | return CheckFreeArgumentsCast(S&: *this, CalleeName, Cast); |
| 10303 | } |
| 10304 | |
| 10305 | void |
| 10306 | Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, |
| 10307 | SourceLocation ReturnLoc, |
| 10308 | bool isObjCMethod, |
| 10309 | const AttrVec *Attrs, |
| 10310 | const FunctionDecl *FD) { |
| 10311 | // Check if the return value is null but should not be. |
| 10312 | if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(container: *Attrs)) || |
| 10313 | (!isObjCMethod && isNonNullType(type: lhsType))) && |
| 10314 | CheckNonNullExpr(S&: *this, Expr: RetValExp)) |
| 10315 | Diag(Loc: ReturnLoc, DiagID: diag::warn_null_ret) |
| 10316 | << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); |
| 10317 | |
| 10318 | // C++11 [basic.stc.dynamic.allocation]p4: |
| 10319 | // If an allocation function declared with a non-throwing |
| 10320 | // exception-specification fails to allocate storage, it shall return |
| 10321 | // a null pointer. Any other allocation function that fails to allocate |
| 10322 | // storage shall indicate failure only by throwing an exception [...] |
| 10323 | if (FD) { |
| 10324 | OverloadedOperatorKind Op = FD->getOverloadedOperator(); |
| 10325 | if (Op == OO_New || Op == OO_Array_New) { |
| 10326 | const FunctionProtoType *Proto |
| 10327 | = FD->getType()->castAs<FunctionProtoType>(); |
| 10328 | if (!Proto->isNothrow(/*ResultIfDependent*/true) && |
| 10329 | CheckNonNullExpr(S&: *this, Expr: RetValExp)) |
| 10330 | Diag(Loc: ReturnLoc, DiagID: diag::warn_operator_new_returns_null) |
| 10331 | << FD << getLangOpts().CPlusPlus11; |
| 10332 | } |
| 10333 | } |
| 10334 | |
| 10335 | if (RetValExp && RetValExp->getType()->isWebAssemblyTableType()) { |
| 10336 | Diag(Loc: ReturnLoc, DiagID: diag::err_wasm_table_art) << 1; |
| 10337 | } |
| 10338 | |
| 10339 | // PPC MMA non-pointer types are not allowed as return type. Checking the type |
| 10340 | // here prevent the user from using a PPC MMA type as trailing return type. |
| 10341 | if (Context.getTargetInfo().getTriple().isPPC64()) |
| 10342 | PPC().CheckPPCMMAType(Type: RetValExp->getType(), TypeLoc: ReturnLoc); |
| 10343 | } |
| 10344 | |
| 10345 | void Sema::CheckFloatComparison(SourceLocation Loc, const Expr *LHS, |
| 10346 | const Expr *RHS, BinaryOperatorKind Opcode) { |
| 10347 | if (!BinaryOperator::isEqualityOp(Opc: Opcode)) |
| 10348 | return; |
| 10349 | |
| 10350 | // Match and capture subexpressions such as "(float) X == 0.1". |
| 10351 | const FloatingLiteral *FPLiteral; |
| 10352 | const CastExpr *FPCast; |
| 10353 | auto getCastAndLiteral = [&FPLiteral, &FPCast](const Expr *L, const Expr *R) { |
| 10354 | FPLiteral = dyn_cast<FloatingLiteral>(Val: L->IgnoreParens()); |
| 10355 | FPCast = dyn_cast<CastExpr>(Val: R->IgnoreParens()); |
| 10356 | return FPLiteral && FPCast; |
| 10357 | }; |
| 10358 | |
| 10359 | if (getCastAndLiteral(LHS, RHS) || getCastAndLiteral(RHS, LHS)) { |
| 10360 | auto *SourceTy = FPCast->getSubExpr()->getType()->getAs<BuiltinType>(); |
| 10361 | auto *TargetTy = FPLiteral->getType()->getAs<BuiltinType>(); |
| 10362 | if (SourceTy && TargetTy && SourceTy->isFloatingPoint() && |
| 10363 | TargetTy->isFloatingPoint()) { |
| 10364 | bool Lossy; |
| 10365 | llvm::APFloat TargetC = FPLiteral->getValue(); |
| 10366 | TargetC.convert(ToSemantics: Context.getFloatTypeSemantics(T: QualType(SourceTy, 0)), |
| 10367 | RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &Lossy); |
| 10368 | if (Lossy) { |
| 10369 | // If the literal cannot be represented in the source type, then a |
| 10370 | // check for == is always false and check for != is always true. |
| 10371 | Diag(Loc, DiagID: diag::warn_float_compare_literal) |
| 10372 | << (Opcode == BO_EQ) << QualType(SourceTy, 0) |
| 10373 | << LHS->getSourceRange() << RHS->getSourceRange(); |
| 10374 | return; |
| 10375 | } |
| 10376 | } |
| 10377 | } |
| 10378 | |
| 10379 | // Match a more general floating-point equality comparison (-Wfloat-equal). |
| 10380 | const Expr *LeftExprSansParen = LHS->IgnoreParenImpCasts(); |
| 10381 | const Expr *RightExprSansParen = RHS->IgnoreParenImpCasts(); |
| 10382 | |
| 10383 | // Special case: check for x == x (which is OK). |
| 10384 | // Do not emit warnings for such cases. |
| 10385 | if (const auto *DRL = dyn_cast<DeclRefExpr>(Val: LeftExprSansParen)) |
| 10386 | if (const auto *DRR = dyn_cast<DeclRefExpr>(Val: RightExprSansParen)) |
| 10387 | if (DRL->getDecl() == DRR->getDecl()) |
| 10388 | return; |
| 10389 | |
| 10390 | // Special case: check for comparisons against literals that can be exactly |
| 10391 | // represented by APFloat. In such cases, do not emit a warning. This |
| 10392 | // is a heuristic: often comparison against such literals are used to |
| 10393 | // detect if a value in a variable has not changed. This clearly can |
| 10394 | // lead to false negatives. |
| 10395 | if (const auto *FLL = dyn_cast<FloatingLiteral>(Val: LeftExprSansParen)) { |
| 10396 | if (FLL->isExact()) |
| 10397 | return; |
| 10398 | } else if (const auto *FLR = dyn_cast<FloatingLiteral>(Val: RightExprSansParen)) |
| 10399 | if (FLR->isExact()) |
| 10400 | return; |
| 10401 | |
| 10402 | // Check for comparisons with builtin types. |
| 10403 | if (const auto *CL = dyn_cast<CallExpr>(Val: LeftExprSansParen); |
| 10404 | CL && CL->getBuiltinCallee()) |
| 10405 | return; |
| 10406 | |
| 10407 | if (const auto *CR = dyn_cast<CallExpr>(Val: RightExprSansParen); |
| 10408 | CR && CR->getBuiltinCallee()) |
| 10409 | return; |
| 10410 | |
| 10411 | // Emit the diagnostic. |
| 10412 | Diag(Loc, DiagID: diag::warn_floatingpoint_eq) |
| 10413 | << LHS->getSourceRange() << RHS->getSourceRange(); |
| 10414 | } |
| 10415 | |
| 10416 | //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// |
| 10417 | //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// |
| 10418 | |
| 10419 | namespace { |
| 10420 | |
| 10421 | /// Structure recording the 'active' range of an integer-valued |
| 10422 | /// expression. |
| 10423 | struct IntRange { |
| 10424 | /// The number of bits active in the int. Note that this includes exactly one |
| 10425 | /// sign bit if !NonNegative. |
| 10426 | unsigned Width; |
| 10427 | |
| 10428 | /// True if the int is known not to have negative values. If so, all leading |
| 10429 | /// bits before Width are known zero, otherwise they are known to be the |
| 10430 | /// same as the MSB within Width. |
| 10431 | bool NonNegative; |
| 10432 | |
| 10433 | IntRange(unsigned Width, bool NonNegative) |
| 10434 | : Width(Width), NonNegative(NonNegative) {} |
| 10435 | |
| 10436 | /// Number of bits excluding the sign bit. |
| 10437 | unsigned valueBits() const { |
| 10438 | return NonNegative ? Width : Width - 1; |
| 10439 | } |
| 10440 | |
| 10441 | /// Returns the range of the bool type. |
| 10442 | static IntRange forBoolType() { |
| 10443 | return IntRange(1, true); |
| 10444 | } |
| 10445 | |
| 10446 | /// Returns the range of an opaque value of the given integral type. |
| 10447 | static IntRange forValueOfType(ASTContext &C, QualType T) { |
| 10448 | return forValueOfCanonicalType(C, |
| 10449 | T: T->getCanonicalTypeInternal().getTypePtr()); |
| 10450 | } |
| 10451 | |
| 10452 | /// Returns the range of an opaque value of a canonical integral type. |
| 10453 | static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { |
| 10454 | assert(T->isCanonicalUnqualified()); |
| 10455 | |
| 10456 | if (const auto *VT = dyn_cast<VectorType>(Val: T)) |
| 10457 | T = VT->getElementType().getTypePtr(); |
| 10458 | if (const auto *CT = dyn_cast<ComplexType>(Val: T)) |
| 10459 | T = CT->getElementType().getTypePtr(); |
| 10460 | if (const auto *AT = dyn_cast<AtomicType>(Val: T)) |
| 10461 | T = AT->getValueType().getTypePtr(); |
| 10462 | |
| 10463 | if (!C.getLangOpts().CPlusPlus) { |
| 10464 | // For enum types in C code, use the underlying datatype. |
| 10465 | if (const auto *ET = dyn_cast<EnumType>(Val: T)) |
| 10466 | T = ET->getDecl()->getIntegerType().getDesugaredType(Context: C).getTypePtr(); |
| 10467 | } else if (const auto *ET = dyn_cast<EnumType>(Val: T)) { |
| 10468 | // For enum types in C++, use the known bit width of the enumerators. |
| 10469 | EnumDecl *Enum = ET->getDecl(); |
| 10470 | // In C++11, enums can have a fixed underlying type. Use this type to |
| 10471 | // compute the range. |
| 10472 | if (Enum->isFixed()) { |
| 10473 | return IntRange(C.getIntWidth(T: QualType(T, 0)), |
| 10474 | !ET->isSignedIntegerOrEnumerationType()); |
| 10475 | } |
| 10476 | |
| 10477 | unsigned NumPositive = Enum->getNumPositiveBits(); |
| 10478 | unsigned NumNegative = Enum->getNumNegativeBits(); |
| 10479 | |
| 10480 | if (NumNegative == 0) |
| 10481 | return IntRange(NumPositive, true/*NonNegative*/); |
| 10482 | else |
| 10483 | return IntRange(std::max(a: NumPositive + 1, b: NumNegative), |
| 10484 | false/*NonNegative*/); |
| 10485 | } |
| 10486 | |
| 10487 | if (const auto *EIT = dyn_cast<BitIntType>(Val: T)) |
| 10488 | return IntRange(EIT->getNumBits(), EIT->isUnsigned()); |
| 10489 | |
| 10490 | const BuiltinType *BT = cast<BuiltinType>(Val: T); |
| 10491 | assert(BT->isInteger()); |
| 10492 | |
| 10493 | return IntRange(C.getIntWidth(T: QualType(T, 0)), BT->isUnsignedInteger()); |
| 10494 | } |
| 10495 | |
| 10496 | /// Returns the "target" range of a canonical integral type, i.e. |
| 10497 | /// the range of values expressible in the type. |
| 10498 | /// |
| 10499 | /// This matches forValueOfCanonicalType except that enums have the |
| 10500 | /// full range of their type, not the range of their enumerators. |
| 10501 | static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { |
| 10502 | assert(T->isCanonicalUnqualified()); |
| 10503 | |
| 10504 | if (const VectorType *VT = dyn_cast<VectorType>(Val: T)) |
| 10505 | T = VT->getElementType().getTypePtr(); |
| 10506 | if (const ComplexType *CT = dyn_cast<ComplexType>(Val: T)) |
| 10507 | T = CT->getElementType().getTypePtr(); |
| 10508 | if (const AtomicType *AT = dyn_cast<AtomicType>(Val: T)) |
| 10509 | T = AT->getValueType().getTypePtr(); |
| 10510 | if (const EnumType *ET = dyn_cast<EnumType>(Val: T)) |
| 10511 | T = C.getCanonicalType(T: ET->getDecl()->getIntegerType()).getTypePtr(); |
| 10512 | |
| 10513 | if (const auto *EIT = dyn_cast<BitIntType>(Val: T)) |
| 10514 | return IntRange(EIT->getNumBits(), EIT->isUnsigned()); |
| 10515 | |
| 10516 | const BuiltinType *BT = cast<BuiltinType>(Val: T); |
| 10517 | assert(BT->isInteger()); |
| 10518 | |
| 10519 | return IntRange(C.getIntWidth(T: QualType(T, 0)), BT->isUnsignedInteger()); |
| 10520 | } |
| 10521 | |
| 10522 | /// Returns the supremum of two ranges: i.e. their conservative merge. |
| 10523 | static IntRange join(IntRange L, IntRange R) { |
| 10524 | bool Unsigned = L.NonNegative && R.NonNegative; |
| 10525 | return IntRange(std::max(a: L.valueBits(), b: R.valueBits()) + !Unsigned, |
| 10526 | L.NonNegative && R.NonNegative); |
| 10527 | } |
| 10528 | |
| 10529 | /// Return the range of a bitwise-AND of the two ranges. |
| 10530 | static IntRange bit_and(IntRange L, IntRange R) { |
| 10531 | unsigned Bits = std::max(a: L.Width, b: R.Width); |
| 10532 | bool NonNegative = false; |
| 10533 | if (L.NonNegative) { |
| 10534 | Bits = std::min(a: Bits, b: L.Width); |
| 10535 | NonNegative = true; |
| 10536 | } |
| 10537 | if (R.NonNegative) { |
| 10538 | Bits = std::min(a: Bits, b: R.Width); |
| 10539 | NonNegative = true; |
| 10540 | } |
| 10541 | return IntRange(Bits, NonNegative); |
| 10542 | } |
| 10543 | |
| 10544 | /// Return the range of a sum of the two ranges. |
| 10545 | static IntRange sum(IntRange L, IntRange R) { |
| 10546 | bool Unsigned = L.NonNegative && R.NonNegative; |
| 10547 | return IntRange(std::max(a: L.valueBits(), b: R.valueBits()) + 1 + !Unsigned, |
| 10548 | Unsigned); |
| 10549 | } |
| 10550 | |
| 10551 | /// Return the range of a difference of the two ranges. |
| 10552 | static IntRange difference(IntRange L, IntRange R) { |
| 10553 | // We need a 1-bit-wider range if: |
| 10554 | // 1) LHS can be negative: least value can be reduced. |
| 10555 | // 2) RHS can be negative: greatest value can be increased. |
| 10556 | bool CanWiden = !L.NonNegative || !R.NonNegative; |
| 10557 | bool Unsigned = L.NonNegative && R.Width == 0; |
| 10558 | return IntRange(std::max(a: L.valueBits(), b: R.valueBits()) + CanWiden + |
| 10559 | !Unsigned, |
| 10560 | Unsigned); |
| 10561 | } |
| 10562 | |
| 10563 | /// Return the range of a product of the two ranges. |
| 10564 | static IntRange product(IntRange L, IntRange R) { |
| 10565 | // If both LHS and RHS can be negative, we can form |
| 10566 | // -2^L * -2^R = 2^(L + R) |
| 10567 | // which requires L + R + 1 value bits to represent. |
| 10568 | bool CanWiden = !L.NonNegative && !R.NonNegative; |
| 10569 | bool Unsigned = L.NonNegative && R.NonNegative; |
| 10570 | return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned, |
| 10571 | Unsigned); |
| 10572 | } |
| 10573 | |
| 10574 | /// Return the range of a remainder operation between the two ranges. |
| 10575 | static IntRange rem(IntRange L, IntRange R) { |
| 10576 | // The result of a remainder can't be larger than the result of |
| 10577 | // either side. The sign of the result is the sign of the LHS. |
| 10578 | bool Unsigned = L.NonNegative; |
| 10579 | return IntRange(std::min(a: L.valueBits(), b: R.valueBits()) + !Unsigned, |
| 10580 | Unsigned); |
| 10581 | } |
| 10582 | }; |
| 10583 | |
| 10584 | } // namespace |
| 10585 | |
| 10586 | static IntRange GetValueRange(llvm::APSInt &value, unsigned MaxWidth) { |
| 10587 | if (value.isSigned() && value.isNegative()) |
| 10588 | return IntRange(value.getSignificantBits(), false); |
| 10589 | |
| 10590 | if (value.getBitWidth() > MaxWidth) |
| 10591 | value = value.trunc(width: MaxWidth); |
| 10592 | |
| 10593 | // isNonNegative() just checks the sign bit without considering |
| 10594 | // signedness. |
| 10595 | return IntRange(value.getActiveBits(), true); |
| 10596 | } |
| 10597 | |
| 10598 | static IntRange GetValueRange(APValue &result, QualType Ty, unsigned MaxWidth) { |
| 10599 | if (result.isInt()) |
| 10600 | return GetValueRange(value&: result.getInt(), MaxWidth); |
| 10601 | |
| 10602 | if (result.isVector()) { |
| 10603 | IntRange R = GetValueRange(result&: result.getVectorElt(I: 0), Ty, MaxWidth); |
| 10604 | for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { |
| 10605 | IntRange El = GetValueRange(result&: result.getVectorElt(I: i), Ty, MaxWidth); |
| 10606 | R = IntRange::join(L: R, R: El); |
| 10607 | } |
| 10608 | return R; |
| 10609 | } |
| 10610 | |
| 10611 | if (result.isComplexInt()) { |
| 10612 | IntRange R = GetValueRange(value&: result.getComplexIntReal(), MaxWidth); |
| 10613 | IntRange I = GetValueRange(value&: result.getComplexIntImag(), MaxWidth); |
| 10614 | return IntRange::join(L: R, R: I); |
| 10615 | } |
| 10616 | |
| 10617 | // This can happen with lossless casts to intptr_t of "based" lvalues. |
| 10618 | // Assume it might use arbitrary bits. |
| 10619 | // FIXME: The only reason we need to pass the type in here is to get |
| 10620 | // the sign right on this one case. It would be nice if APValue |
| 10621 | // preserved this. |
| 10622 | assert(result.isLValue() || result.isAddrLabelDiff()); |
| 10623 | return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); |
| 10624 | } |
| 10625 | |
| 10626 | static QualType GetExprType(const Expr *E) { |
| 10627 | QualType Ty = E->getType(); |
| 10628 | if (const auto *AtomicRHS = Ty->getAs<AtomicType>()) |
| 10629 | Ty = AtomicRHS->getValueType(); |
| 10630 | return Ty; |
| 10631 | } |
| 10632 | |
| 10633 | /// Attempts to estimate an approximate range for the given integer expression. |
| 10634 | /// Returns a range if successful, otherwise it returns \c std::nullopt if a |
| 10635 | /// reliable estimation cannot be determined. |
| 10636 | /// |
| 10637 | /// \param MaxWidth The width to which the value will be truncated. |
| 10638 | /// \param InConstantContext If \c true, interpret the expression within a |
| 10639 | /// constant context. |
| 10640 | /// \param Approximate If \c true, provide a likely range of values by assuming |
| 10641 | /// that arithmetic on narrower types remains within those types. |
| 10642 | /// If \c false, return a range that includes all possible values |
| 10643 | /// resulting from the expression. |
| 10644 | /// \returns A range of values that the expression might take, or |
| 10645 | /// std::nullopt if a reliable estimation cannot be determined. |
| 10646 | static std::optional<IntRange> TryGetExprRange(ASTContext &C, const Expr *E, |
| 10647 | unsigned MaxWidth, |
| 10648 | bool InConstantContext, |
| 10649 | bool Approximate) { |
| 10650 | E = E->IgnoreParens(); |
| 10651 | |
| 10652 | // Try a full evaluation first. |
| 10653 | Expr::EvalResult result; |
| 10654 | if (E->EvaluateAsRValue(Result&: result, Ctx: C, InConstantContext)) |
| 10655 | return GetValueRange(result&: result.Val, Ty: GetExprType(E), MaxWidth); |
| 10656 | |
| 10657 | // I think we only want to look through implicit casts here; if the |
| 10658 | // user has an explicit widening cast, we should treat the value as |
| 10659 | // being of the new, wider type. |
| 10660 | if (const auto *CE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
| 10661 | if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) |
| 10662 | return TryGetExprRange(C, E: CE->getSubExpr(), MaxWidth, InConstantContext, |
| 10663 | Approximate); |
| 10664 | |
| 10665 | IntRange OutputTypeRange = IntRange::forValueOfType(C, T: GetExprType(E: CE)); |
| 10666 | |
| 10667 | bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || |
| 10668 | CE->getCastKind() == CK_BooleanToSignedIntegral; |
| 10669 | |
| 10670 | // Assume that non-integer casts can span the full range of the type. |
| 10671 | if (!isIntegerCast) |
| 10672 | return OutputTypeRange; |
| 10673 | |
| 10674 | std::optional<IntRange> SubRange = TryGetExprRange( |
| 10675 | C, E: CE->getSubExpr(), MaxWidth: std::min(a: MaxWidth, b: OutputTypeRange.Width), |
| 10676 | InConstantContext, Approximate); |
| 10677 | if (!SubRange) |
| 10678 | return std::nullopt; |
| 10679 | |
| 10680 | // Bail out if the subexpr's range is as wide as the cast type. |
| 10681 | if (SubRange->Width >= OutputTypeRange.Width) |
| 10682 | return OutputTypeRange; |
| 10683 | |
| 10684 | // Otherwise, we take the smaller width, and we're non-negative if |
| 10685 | // either the output type or the subexpr is. |
| 10686 | return IntRange(SubRange->Width, |
| 10687 | SubRange->NonNegative || OutputTypeRange.NonNegative); |
| 10688 | } |
| 10689 | |
| 10690 | if (const auto *CO = dyn_cast<ConditionalOperator>(Val: E)) { |
| 10691 | // If we can fold the condition, just take that operand. |
| 10692 | bool CondResult; |
| 10693 | if (CO->getCond()->EvaluateAsBooleanCondition(Result&: CondResult, Ctx: C)) |
| 10694 | return TryGetExprRange( |
| 10695 | C, E: CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), MaxWidth, |
| 10696 | InConstantContext, Approximate); |
| 10697 | |
| 10698 | // Otherwise, conservatively merge. |
| 10699 | // TryGetExprRange requires an integer expression, but a throw expression |
| 10700 | // results in a void type. |
| 10701 | Expr *TrueExpr = CO->getTrueExpr(); |
| 10702 | if (TrueExpr->getType()->isVoidType()) |
| 10703 | return std::nullopt; |
| 10704 | |
| 10705 | std::optional<IntRange> L = |
| 10706 | TryGetExprRange(C, E: TrueExpr, MaxWidth, InConstantContext, Approximate); |
| 10707 | if (!L) |
| 10708 | return std::nullopt; |
| 10709 | |
| 10710 | Expr *FalseExpr = CO->getFalseExpr(); |
| 10711 | if (FalseExpr->getType()->isVoidType()) |
| 10712 | return std::nullopt; |
| 10713 | |
| 10714 | std::optional<IntRange> R = |
| 10715 | TryGetExprRange(C, E: FalseExpr, MaxWidth, InConstantContext, Approximate); |
| 10716 | if (!R) |
| 10717 | return std::nullopt; |
| 10718 | |
| 10719 | return IntRange::join(L: *L, R: *R); |
| 10720 | } |
| 10721 | |
| 10722 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 10723 | IntRange (*Combine)(IntRange, IntRange) = IntRange::join; |
| 10724 | |
| 10725 | switch (BO->getOpcode()) { |
| 10726 | case BO_Cmp: |
| 10727 | llvm_unreachable("builtin <=> should have class type" ); |
| 10728 | |
| 10729 | // Boolean-valued operations are single-bit and positive. |
| 10730 | case BO_LAnd: |
| 10731 | case BO_LOr: |
| 10732 | case BO_LT: |
| 10733 | case BO_GT: |
| 10734 | case BO_LE: |
| 10735 | case BO_GE: |
| 10736 | case BO_EQ: |
| 10737 | case BO_NE: |
| 10738 | return IntRange::forBoolType(); |
| 10739 | |
| 10740 | // The type of the assignments is the type of the LHS, so the RHS |
| 10741 | // is not necessarily the same type. |
| 10742 | case BO_MulAssign: |
| 10743 | case BO_DivAssign: |
| 10744 | case BO_RemAssign: |
| 10745 | case BO_AddAssign: |
| 10746 | case BO_SubAssign: |
| 10747 | case BO_XorAssign: |
| 10748 | case BO_OrAssign: |
| 10749 | // TODO: bitfields? |
| 10750 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
| 10751 | |
| 10752 | // Simple assignments just pass through the RHS, which will have |
| 10753 | // been coerced to the LHS type. |
| 10754 | case BO_Assign: |
| 10755 | // TODO: bitfields? |
| 10756 | return TryGetExprRange(C, E: BO->getRHS(), MaxWidth, InConstantContext, |
| 10757 | Approximate); |
| 10758 | |
| 10759 | // Operations with opaque sources are black-listed. |
| 10760 | case BO_PtrMemD: |
| 10761 | case BO_PtrMemI: |
| 10762 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
| 10763 | |
| 10764 | // Bitwise-and uses the *infinum* of the two source ranges. |
| 10765 | case BO_And: |
| 10766 | case BO_AndAssign: |
| 10767 | Combine = IntRange::bit_and; |
| 10768 | break; |
| 10769 | |
| 10770 | // Left shift gets black-listed based on a judgement call. |
| 10771 | case BO_Shl: |
| 10772 | // ...except that we want to treat '1 << (blah)' as logically |
| 10773 | // positive. It's an important idiom. |
| 10774 | if (IntegerLiteral *I |
| 10775 | = dyn_cast<IntegerLiteral>(Val: BO->getLHS()->IgnoreParenCasts())) { |
| 10776 | if (I->getValue() == 1) { |
| 10777 | IntRange R = IntRange::forValueOfType(C, T: GetExprType(E)); |
| 10778 | return IntRange(R.Width, /*NonNegative*/ true); |
| 10779 | } |
| 10780 | } |
| 10781 | [[fallthrough]]; |
| 10782 | |
| 10783 | case BO_ShlAssign: |
| 10784 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
| 10785 | |
| 10786 | // Right shift by a constant can narrow its left argument. |
| 10787 | case BO_Shr: |
| 10788 | case BO_ShrAssign: { |
| 10789 | std::optional<IntRange> L = TryGetExprRange( |
| 10790 | C, E: BO->getLHS(), MaxWidth, InConstantContext, Approximate); |
| 10791 | if (!L) |
| 10792 | return std::nullopt; |
| 10793 | |
| 10794 | // If the shift amount is a positive constant, drop the width by |
| 10795 | // that much. |
| 10796 | if (std::optional<llvm::APSInt> shift = |
| 10797 | BO->getRHS()->getIntegerConstantExpr(Ctx: C)) { |
| 10798 | if (shift->isNonNegative()) { |
| 10799 | if (shift->uge(RHS: L->Width)) |
| 10800 | L->Width = (L->NonNegative ? 0 : 1); |
| 10801 | else |
| 10802 | L->Width -= shift->getZExtValue(); |
| 10803 | } |
| 10804 | } |
| 10805 | |
| 10806 | return L; |
| 10807 | } |
| 10808 | |
| 10809 | // Comma acts as its right operand. |
| 10810 | case BO_Comma: |
| 10811 | return TryGetExprRange(C, E: BO->getRHS(), MaxWidth, InConstantContext, |
| 10812 | Approximate); |
| 10813 | |
| 10814 | case BO_Add: |
| 10815 | if (!Approximate) |
| 10816 | Combine = IntRange::sum; |
| 10817 | break; |
| 10818 | |
| 10819 | case BO_Sub: |
| 10820 | if (BO->getLHS()->getType()->isPointerType()) |
| 10821 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
| 10822 | if (!Approximate) |
| 10823 | Combine = IntRange::difference; |
| 10824 | break; |
| 10825 | |
| 10826 | case BO_Mul: |
| 10827 | if (!Approximate) |
| 10828 | Combine = IntRange::product; |
| 10829 | break; |
| 10830 | |
| 10831 | // The width of a division result is mostly determined by the size |
| 10832 | // of the LHS. |
| 10833 | case BO_Div: { |
| 10834 | // Don't 'pre-truncate' the operands. |
| 10835 | unsigned opWidth = C.getIntWidth(T: GetExprType(E)); |
| 10836 | std::optional<IntRange> L = TryGetExprRange( |
| 10837 | C, E: BO->getLHS(), MaxWidth: opWidth, InConstantContext, Approximate); |
| 10838 | if (!L) |
| 10839 | return std::nullopt; |
| 10840 | |
| 10841 | // If the divisor is constant, use that. |
| 10842 | if (std::optional<llvm::APSInt> divisor = |
| 10843 | BO->getRHS()->getIntegerConstantExpr(Ctx: C)) { |
| 10844 | unsigned log2 = divisor->logBase2(); // floor(log_2(divisor)) |
| 10845 | if (log2 >= L->Width) |
| 10846 | L->Width = (L->NonNegative ? 0 : 1); |
| 10847 | else |
| 10848 | L->Width = std::min(a: L->Width - log2, b: MaxWidth); |
| 10849 | return L; |
| 10850 | } |
| 10851 | |
| 10852 | // Otherwise, just use the LHS's width. |
| 10853 | // FIXME: This is wrong if the LHS could be its minimal value and the RHS |
| 10854 | // could be -1. |
| 10855 | std::optional<IntRange> R = TryGetExprRange( |
| 10856 | C, E: BO->getRHS(), MaxWidth: opWidth, InConstantContext, Approximate); |
| 10857 | if (!R) |
| 10858 | return std::nullopt; |
| 10859 | |
| 10860 | return IntRange(L->Width, L->NonNegative && R->NonNegative); |
| 10861 | } |
| 10862 | |
| 10863 | case BO_Rem: |
| 10864 | Combine = IntRange::rem; |
| 10865 | break; |
| 10866 | |
| 10867 | // The default behavior is okay for these. |
| 10868 | case BO_Xor: |
| 10869 | case BO_Or: |
| 10870 | break; |
| 10871 | } |
| 10872 | |
| 10873 | // Combine the two ranges, but limit the result to the type in which we |
| 10874 | // performed the computation. |
| 10875 | QualType T = GetExprType(E); |
| 10876 | unsigned opWidth = C.getIntWidth(T); |
| 10877 | std::optional<IntRange> L = TryGetExprRange(C, E: BO->getLHS(), MaxWidth: opWidth, |
| 10878 | InConstantContext, Approximate); |
| 10879 | if (!L) |
| 10880 | return std::nullopt; |
| 10881 | |
| 10882 | std::optional<IntRange> R = TryGetExprRange(C, E: BO->getRHS(), MaxWidth: opWidth, |
| 10883 | InConstantContext, Approximate); |
| 10884 | if (!R) |
| 10885 | return std::nullopt; |
| 10886 | |
| 10887 | IntRange C = Combine(*L, *R); |
| 10888 | C.NonNegative |= T->isUnsignedIntegerOrEnumerationType(); |
| 10889 | C.Width = std::min(a: C.Width, b: MaxWidth); |
| 10890 | return C; |
| 10891 | } |
| 10892 | |
| 10893 | if (const auto *UO = dyn_cast<UnaryOperator>(Val: E)) { |
| 10894 | switch (UO->getOpcode()) { |
| 10895 | // Boolean-valued operations are white-listed. |
| 10896 | case UO_LNot: |
| 10897 | return IntRange::forBoolType(); |
| 10898 | |
| 10899 | // Operations with opaque sources are black-listed. |
| 10900 | case UO_Deref: |
| 10901 | case UO_AddrOf: // should be impossible |
| 10902 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
| 10903 | |
| 10904 | case UO_Minus: { |
| 10905 | if (E->getType()->isUnsignedIntegerType()) { |
| 10906 | return TryGetExprRange(C, E: UO->getSubExpr(), MaxWidth, InConstantContext, |
| 10907 | Approximate); |
| 10908 | } |
| 10909 | |
| 10910 | std::optional<IntRange> SubRange = TryGetExprRange( |
| 10911 | C, E: UO->getSubExpr(), MaxWidth, InConstantContext, Approximate); |
| 10912 | |
| 10913 | if (!SubRange) |
| 10914 | return std::nullopt; |
| 10915 | |
| 10916 | // If the range was previously non-negative, we need an extra bit for the |
| 10917 | // sign bit. Otherwise, we need an extra bit because the negation of the |
| 10918 | // most-negative value is one bit wider than that value. |
| 10919 | return IntRange(std::min(a: SubRange->Width + 1, b: MaxWidth), false); |
| 10920 | } |
| 10921 | |
| 10922 | case UO_Not: { |
| 10923 | if (E->getType()->isUnsignedIntegerType()) { |
| 10924 | return TryGetExprRange(C, E: UO->getSubExpr(), MaxWidth, InConstantContext, |
| 10925 | Approximate); |
| 10926 | } |
| 10927 | |
| 10928 | std::optional<IntRange> SubRange = TryGetExprRange( |
| 10929 | C, E: UO->getSubExpr(), MaxWidth, InConstantContext, Approximate); |
| 10930 | |
| 10931 | if (!SubRange) |
| 10932 | return std::nullopt; |
| 10933 | |
| 10934 | // The width increments by 1 if the sub-expression cannot be negative |
| 10935 | // since it now can be. |
| 10936 | return IntRange( |
| 10937 | std::min(a: SubRange->Width + (int)SubRange->NonNegative, b: MaxWidth), |
| 10938 | false); |
| 10939 | } |
| 10940 | |
| 10941 | default: |
| 10942 | return TryGetExprRange(C, E: UO->getSubExpr(), MaxWidth, InConstantContext, |
| 10943 | Approximate); |
| 10944 | } |
| 10945 | } |
| 10946 | |
| 10947 | if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E)) |
| 10948 | return TryGetExprRange(C, E: OVE->getSourceExpr(), MaxWidth, InConstantContext, |
| 10949 | Approximate); |
| 10950 | |
| 10951 | if (const auto *BitField = E->getSourceBitField()) |
| 10952 | return IntRange(BitField->getBitWidthValue(), |
| 10953 | BitField->getType()->isUnsignedIntegerOrEnumerationType()); |
| 10954 | |
| 10955 | if (GetExprType(E)->isVoidType()) |
| 10956 | return std::nullopt; |
| 10957 | |
| 10958 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
| 10959 | } |
| 10960 | |
| 10961 | static std::optional<IntRange> TryGetExprRange(ASTContext &C, const Expr *E, |
| 10962 | bool InConstantContext, |
| 10963 | bool Approximate) { |
| 10964 | return TryGetExprRange(C, E, MaxWidth: C.getIntWidth(T: GetExprType(E)), InConstantContext, |
| 10965 | Approximate); |
| 10966 | } |
| 10967 | |
| 10968 | /// Checks whether the given value, which currently has the given |
| 10969 | /// source semantics, has the same value when coerced through the |
| 10970 | /// target semantics. |
| 10971 | static bool IsSameFloatAfterCast(const llvm::APFloat &value, |
| 10972 | const llvm::fltSemantics &Src, |
| 10973 | const llvm::fltSemantics &Tgt) { |
| 10974 | llvm::APFloat truncated = value; |
| 10975 | |
| 10976 | bool ignored; |
| 10977 | truncated.convert(ToSemantics: Src, RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &ignored); |
| 10978 | truncated.convert(ToSemantics: Tgt, RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &ignored); |
| 10979 | |
| 10980 | return truncated.bitwiseIsEqual(RHS: value); |
| 10981 | } |
| 10982 | |
| 10983 | /// Checks whether the given value, which currently has the given |
| 10984 | /// source semantics, has the same value when coerced through the |
| 10985 | /// target semantics. |
| 10986 | /// |
| 10987 | /// The value might be a vector of floats (or a complex number). |
| 10988 | static bool IsSameFloatAfterCast(const APValue &value, |
| 10989 | const llvm::fltSemantics &Src, |
| 10990 | const llvm::fltSemantics &Tgt) { |
| 10991 | if (value.isFloat()) |
| 10992 | return IsSameFloatAfterCast(value: value.getFloat(), Src, Tgt); |
| 10993 | |
| 10994 | if (value.isVector()) { |
| 10995 | for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) |
| 10996 | if (!IsSameFloatAfterCast(value: value.getVectorElt(I: i), Src, Tgt)) |
| 10997 | return false; |
| 10998 | return true; |
| 10999 | } |
| 11000 | |
| 11001 | assert(value.isComplexFloat()); |
| 11002 | return (IsSameFloatAfterCast(value: value.getComplexFloatReal(), Src, Tgt) && |
| 11003 | IsSameFloatAfterCast(value: value.getComplexFloatImag(), Src, Tgt)); |
| 11004 | } |
| 11005 | |
| 11006 | static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, |
| 11007 | bool IsListInit = false); |
| 11008 | |
| 11009 | static bool IsEnumConstOrFromMacro(Sema &S, const Expr *E) { |
| 11010 | // Suppress cases where we are comparing against an enum constant. |
| 11011 | if (const auto *DR = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenImpCasts())) |
| 11012 | if (isa<EnumConstantDecl>(Val: DR->getDecl())) |
| 11013 | return true; |
| 11014 | |
| 11015 | // Suppress cases where the value is expanded from a macro, unless that macro |
| 11016 | // is how a language represents a boolean literal. This is the case in both C |
| 11017 | // and Objective-C. |
| 11018 | SourceLocation BeginLoc = E->getBeginLoc(); |
| 11019 | if (BeginLoc.isMacroID()) { |
| 11020 | StringRef MacroName = Lexer::getImmediateMacroName( |
| 11021 | Loc: BeginLoc, SM: S.getSourceManager(), LangOpts: S.getLangOpts()); |
| 11022 | return MacroName != "YES" && MacroName != "NO" && |
| 11023 | MacroName != "true" && MacroName != "false" ; |
| 11024 | } |
| 11025 | |
| 11026 | return false; |
| 11027 | } |
| 11028 | |
| 11029 | static bool isKnownToHaveUnsignedValue(const Expr *E) { |
| 11030 | return E->getType()->isIntegerType() && |
| 11031 | (!E->getType()->isSignedIntegerType() || |
| 11032 | !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); |
| 11033 | } |
| 11034 | |
| 11035 | namespace { |
| 11036 | /// The promoted range of values of a type. In general this has the |
| 11037 | /// following structure: |
| 11038 | /// |
| 11039 | /// |-----------| . . . |-----------| |
| 11040 | /// ^ ^ ^ ^ |
| 11041 | /// Min HoleMin HoleMax Max |
| 11042 | /// |
| 11043 | /// ... where there is only a hole if a signed type is promoted to unsigned |
| 11044 | /// (in which case Min and Max are the smallest and largest representable |
| 11045 | /// values). |
| 11046 | struct PromotedRange { |
| 11047 | // Min, or HoleMax if there is a hole. |
| 11048 | llvm::APSInt PromotedMin; |
| 11049 | // Max, or HoleMin if there is a hole. |
| 11050 | llvm::APSInt PromotedMax; |
| 11051 | |
| 11052 | PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { |
| 11053 | if (R.Width == 0) |
| 11054 | PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); |
| 11055 | else if (R.Width >= BitWidth && !Unsigned) { |
| 11056 | // Promotion made the type *narrower*. This happens when promoting |
| 11057 | // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. |
| 11058 | // Treat all values of 'signed int' as being in range for now. |
| 11059 | PromotedMin = llvm::APSInt::getMinValue(numBits: BitWidth, Unsigned); |
| 11060 | PromotedMax = llvm::APSInt::getMaxValue(numBits: BitWidth, Unsigned); |
| 11061 | } else { |
| 11062 | PromotedMin = llvm::APSInt::getMinValue(numBits: R.Width, Unsigned: R.NonNegative) |
| 11063 | .extOrTrunc(width: BitWidth); |
| 11064 | PromotedMin.setIsUnsigned(Unsigned); |
| 11065 | |
| 11066 | PromotedMax = llvm::APSInt::getMaxValue(numBits: R.Width, Unsigned: R.NonNegative) |
| 11067 | .extOrTrunc(width: BitWidth); |
| 11068 | PromotedMax.setIsUnsigned(Unsigned); |
| 11069 | } |
| 11070 | } |
| 11071 | |
| 11072 | // Determine whether this range is contiguous (has no hole). |
| 11073 | bool isContiguous() const { return PromotedMin <= PromotedMax; } |
| 11074 | |
| 11075 | // Where a constant value is within the range. |
| 11076 | enum ComparisonResult { |
| 11077 | LT = 0x1, |
| 11078 | LE = 0x2, |
| 11079 | GT = 0x4, |
| 11080 | GE = 0x8, |
| 11081 | EQ = 0x10, |
| 11082 | NE = 0x20, |
| 11083 | InRangeFlag = 0x40, |
| 11084 | |
| 11085 | Less = LE | LT | NE, |
| 11086 | Min = LE | InRangeFlag, |
| 11087 | InRange = InRangeFlag, |
| 11088 | Max = GE | InRangeFlag, |
| 11089 | Greater = GE | GT | NE, |
| 11090 | |
| 11091 | OnlyValue = LE | GE | EQ | InRangeFlag, |
| 11092 | InHole = NE |
| 11093 | }; |
| 11094 | |
| 11095 | ComparisonResult compare(const llvm::APSInt &Value) const { |
| 11096 | assert(Value.getBitWidth() == PromotedMin.getBitWidth() && |
| 11097 | Value.isUnsigned() == PromotedMin.isUnsigned()); |
| 11098 | if (!isContiguous()) { |
| 11099 | assert(Value.isUnsigned() && "discontiguous range for signed compare" ); |
| 11100 | if (Value.isMinValue()) return Min; |
| 11101 | if (Value.isMaxValue()) return Max; |
| 11102 | if (Value >= PromotedMin) return InRange; |
| 11103 | if (Value <= PromotedMax) return InRange; |
| 11104 | return InHole; |
| 11105 | } |
| 11106 | |
| 11107 | switch (llvm::APSInt::compareValues(I1: Value, I2: PromotedMin)) { |
| 11108 | case -1: return Less; |
| 11109 | case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; |
| 11110 | case 1: |
| 11111 | switch (llvm::APSInt::compareValues(I1: Value, I2: PromotedMax)) { |
| 11112 | case -1: return InRange; |
| 11113 | case 0: return Max; |
| 11114 | case 1: return Greater; |
| 11115 | } |
| 11116 | } |
| 11117 | |
| 11118 | llvm_unreachable("impossible compare result" ); |
| 11119 | } |
| 11120 | |
| 11121 | static std::optional<StringRef> |
| 11122 | constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { |
| 11123 | if (Op == BO_Cmp) { |
| 11124 | ComparisonResult LTFlag = LT, GTFlag = GT; |
| 11125 | if (ConstantOnRHS) std::swap(a&: LTFlag, b&: GTFlag); |
| 11126 | |
| 11127 | if (R & EQ) return StringRef("'std::strong_ordering::equal'" ); |
| 11128 | if (R & LTFlag) return StringRef("'std::strong_ordering::less'" ); |
| 11129 | if (R & GTFlag) return StringRef("'std::strong_ordering::greater'" ); |
| 11130 | return std::nullopt; |
| 11131 | } |
| 11132 | |
| 11133 | ComparisonResult TrueFlag, FalseFlag; |
| 11134 | if (Op == BO_EQ) { |
| 11135 | TrueFlag = EQ; |
| 11136 | FalseFlag = NE; |
| 11137 | } else if (Op == BO_NE) { |
| 11138 | TrueFlag = NE; |
| 11139 | FalseFlag = EQ; |
| 11140 | } else { |
| 11141 | if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { |
| 11142 | TrueFlag = LT; |
| 11143 | FalseFlag = GE; |
| 11144 | } else { |
| 11145 | TrueFlag = GT; |
| 11146 | FalseFlag = LE; |
| 11147 | } |
| 11148 | if (Op == BO_GE || Op == BO_LE) |
| 11149 | std::swap(a&: TrueFlag, b&: FalseFlag); |
| 11150 | } |
| 11151 | if (R & TrueFlag) |
| 11152 | return StringRef("true" ); |
| 11153 | if (R & FalseFlag) |
| 11154 | return StringRef("false" ); |
| 11155 | return std::nullopt; |
| 11156 | } |
| 11157 | }; |
| 11158 | } |
| 11159 | |
| 11160 | static bool HasEnumType(const Expr *E) { |
| 11161 | // Strip off implicit integral promotions. |
| 11162 | while (const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
| 11163 | if (ICE->getCastKind() != CK_IntegralCast && |
| 11164 | ICE->getCastKind() != CK_NoOp) |
| 11165 | break; |
| 11166 | E = ICE->getSubExpr(); |
| 11167 | } |
| 11168 | |
| 11169 | return E->getType()->isEnumeralType(); |
| 11170 | } |
| 11171 | |
| 11172 | static int classifyConstantValue(Expr *Constant) { |
| 11173 | // The values of this enumeration are used in the diagnostics |
| 11174 | // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. |
| 11175 | enum ConstantValueKind { |
| 11176 | Miscellaneous = 0, |
| 11177 | LiteralTrue, |
| 11178 | LiteralFalse |
| 11179 | }; |
| 11180 | if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Val: Constant)) |
| 11181 | return BL->getValue() ? ConstantValueKind::LiteralTrue |
| 11182 | : ConstantValueKind::LiteralFalse; |
| 11183 | return ConstantValueKind::Miscellaneous; |
| 11184 | } |
| 11185 | |
| 11186 | static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, |
| 11187 | Expr *Constant, Expr *Other, |
| 11188 | const llvm::APSInt &Value, |
| 11189 | bool RhsConstant) { |
| 11190 | if (S.inTemplateInstantiation()) |
| 11191 | return false; |
| 11192 | |
| 11193 | Expr *OriginalOther = Other; |
| 11194 | |
| 11195 | Constant = Constant->IgnoreParenImpCasts(); |
| 11196 | Other = Other->IgnoreParenImpCasts(); |
| 11197 | |
| 11198 | // Suppress warnings on tautological comparisons between values of the same |
| 11199 | // enumeration type. There are only two ways we could warn on this: |
| 11200 | // - If the constant is outside the range of representable values of |
| 11201 | // the enumeration. In such a case, we should warn about the cast |
| 11202 | // to enumeration type, not about the comparison. |
| 11203 | // - If the constant is the maximum / minimum in-range value. For an |
| 11204 | // enumeratin type, such comparisons can be meaningful and useful. |
| 11205 | if (Constant->getType()->isEnumeralType() && |
| 11206 | S.Context.hasSameUnqualifiedType(T1: Constant->getType(), T2: Other->getType())) |
| 11207 | return false; |
| 11208 | |
| 11209 | std::optional<IntRange> OtherValueRange = TryGetExprRange( |
| 11210 | C&: S.Context, E: Other, InConstantContext: S.isConstantEvaluatedContext(), /*Approximate=*/false); |
| 11211 | if (!OtherValueRange) |
| 11212 | return false; |
| 11213 | |
| 11214 | QualType OtherT = Other->getType(); |
| 11215 | if (const auto *AT = OtherT->getAs<AtomicType>()) |
| 11216 | OtherT = AT->getValueType(); |
| 11217 | IntRange OtherTypeRange = IntRange::forValueOfType(C&: S.Context, T: OtherT); |
| 11218 | |
| 11219 | // Special case for ObjC BOOL on targets where its a typedef for a signed char |
| 11220 | // (Namely, macOS). FIXME: IntRange::forValueOfType should do this. |
| 11221 | bool IsObjCSignedCharBool = S.getLangOpts().ObjC && |
| 11222 | S.ObjC().NSAPIObj->isObjCBOOLType(T: OtherT) && |
| 11223 | OtherT->isSpecificBuiltinType(K: BuiltinType::SChar); |
| 11224 | |
| 11225 | // Whether we're treating Other as being a bool because of the form of |
| 11226 | // expression despite it having another type (typically 'int' in C). |
| 11227 | bool OtherIsBooleanDespiteType = |
| 11228 | !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); |
| 11229 | if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) |
| 11230 | OtherTypeRange = *OtherValueRange = IntRange::forBoolType(); |
| 11231 | |
| 11232 | // Check if all values in the range of possible values of this expression |
| 11233 | // lead to the same comparison outcome. |
| 11234 | PromotedRange OtherPromotedValueRange(*OtherValueRange, Value.getBitWidth(), |
| 11235 | Value.isUnsigned()); |
| 11236 | auto Cmp = OtherPromotedValueRange.compare(Value); |
| 11237 | auto Result = PromotedRange::constantValue(Op: E->getOpcode(), R: Cmp, ConstantOnRHS: RhsConstant); |
| 11238 | if (!Result) |
| 11239 | return false; |
| 11240 | |
| 11241 | // Also consider the range determined by the type alone. This allows us to |
| 11242 | // classify the warning under the proper diagnostic group. |
| 11243 | bool TautologicalTypeCompare = false; |
| 11244 | { |
| 11245 | PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(), |
| 11246 | Value.isUnsigned()); |
| 11247 | auto TypeCmp = OtherPromotedTypeRange.compare(Value); |
| 11248 | if (auto TypeResult = PromotedRange::constantValue(Op: E->getOpcode(), R: TypeCmp, |
| 11249 | ConstantOnRHS: RhsConstant)) { |
| 11250 | TautologicalTypeCompare = true; |
| 11251 | Cmp = TypeCmp; |
| 11252 | Result = TypeResult; |
| 11253 | } |
| 11254 | } |
| 11255 | |
| 11256 | // Don't warn if the non-constant operand actually always evaluates to the |
| 11257 | // same value. |
| 11258 | if (!TautologicalTypeCompare && OtherValueRange->Width == 0) |
| 11259 | return false; |
| 11260 | |
| 11261 | // Suppress the diagnostic for an in-range comparison if the constant comes |
| 11262 | // from a macro or enumerator. We don't want to diagnose |
| 11263 | // |
| 11264 | // some_long_value <= INT_MAX |
| 11265 | // |
| 11266 | // when sizeof(int) == sizeof(long). |
| 11267 | bool InRange = Cmp & PromotedRange::InRangeFlag; |
| 11268 | if (InRange && IsEnumConstOrFromMacro(S, E: Constant)) |
| 11269 | return false; |
| 11270 | |
| 11271 | // A comparison of an unsigned bit-field against 0 is really a type problem, |
| 11272 | // even though at the type level the bit-field might promote to 'signed int'. |
| 11273 | if (Other->refersToBitField() && InRange && Value == 0 && |
| 11274 | Other->getType()->isUnsignedIntegerOrEnumerationType()) |
| 11275 | TautologicalTypeCompare = true; |
| 11276 | |
| 11277 | // If this is a comparison to an enum constant, include that |
| 11278 | // constant in the diagnostic. |
| 11279 | const EnumConstantDecl *ED = nullptr; |
| 11280 | if (const auto *DR = dyn_cast<DeclRefExpr>(Val: Constant)) |
| 11281 | ED = dyn_cast<EnumConstantDecl>(Val: DR->getDecl()); |
| 11282 | |
| 11283 | // Should be enough for uint128 (39 decimal digits) |
| 11284 | SmallString<64> PrettySourceValue; |
| 11285 | llvm::raw_svector_ostream OS(PrettySourceValue); |
| 11286 | if (ED) { |
| 11287 | OS << '\'' << *ED << "' (" << Value << ")" ; |
| 11288 | } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>( |
| 11289 | Val: Constant->IgnoreParenImpCasts())) { |
| 11290 | OS << (BL->getValue() ? "YES" : "NO" ); |
| 11291 | } else { |
| 11292 | OS << Value; |
| 11293 | } |
| 11294 | |
| 11295 | if (!TautologicalTypeCompare) { |
| 11296 | S.Diag(Loc: E->getOperatorLoc(), DiagID: diag::warn_tautological_compare_value_range) |
| 11297 | << RhsConstant << OtherValueRange->Width << OtherValueRange->NonNegative |
| 11298 | << E->getOpcodeStr() << OS.str() << *Result |
| 11299 | << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); |
| 11300 | return true; |
| 11301 | } |
| 11302 | |
| 11303 | if (IsObjCSignedCharBool) { |
| 11304 | S.DiagRuntimeBehavior(Loc: E->getOperatorLoc(), Statement: E, |
| 11305 | PD: S.PDiag(DiagID: diag::warn_tautological_compare_objc_bool) |
| 11306 | << OS.str() << *Result); |
| 11307 | return true; |
| 11308 | } |
| 11309 | |
| 11310 | // FIXME: We use a somewhat different formatting for the in-range cases and |
| 11311 | // cases involving boolean values for historical reasons. We should pick a |
| 11312 | // consistent way of presenting these diagnostics. |
| 11313 | if (!InRange || Other->isKnownToHaveBooleanValue()) { |
| 11314 | |
| 11315 | S.DiagRuntimeBehavior( |
| 11316 | Loc: E->getOperatorLoc(), Statement: E, |
| 11317 | PD: S.PDiag(DiagID: !InRange ? diag::warn_out_of_range_compare |
| 11318 | : diag::warn_tautological_bool_compare) |
| 11319 | << OS.str() << classifyConstantValue(Constant) << OtherT |
| 11320 | << OtherIsBooleanDespiteType << *Result |
| 11321 | << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); |
| 11322 | } else { |
| 11323 | bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy; |
| 11324 | unsigned Diag = |
| 11325 | (isKnownToHaveUnsignedValue(E: OriginalOther) && Value == 0) |
| 11326 | ? (HasEnumType(E: OriginalOther) |
| 11327 | ? diag::warn_unsigned_enum_always_true_comparison |
| 11328 | : IsCharTy ? diag::warn_unsigned_char_always_true_comparison |
| 11329 | : diag::warn_unsigned_always_true_comparison) |
| 11330 | : diag::warn_tautological_constant_compare; |
| 11331 | |
| 11332 | S.Diag(Loc: E->getOperatorLoc(), DiagID: Diag) |
| 11333 | << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result |
| 11334 | << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); |
| 11335 | } |
| 11336 | |
| 11337 | return true; |
| 11338 | } |
| 11339 | |
| 11340 | /// Analyze the operands of the given comparison. Implements the |
| 11341 | /// fallback case from AnalyzeComparison. |
| 11342 | static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { |
| 11343 | AnalyzeImplicitConversions(S, E: E->getLHS(), CC: E->getOperatorLoc()); |
| 11344 | AnalyzeImplicitConversions(S, E: E->getRHS(), CC: E->getOperatorLoc()); |
| 11345 | } |
| 11346 | |
| 11347 | /// Implements -Wsign-compare. |
| 11348 | /// |
| 11349 | /// \param E the binary operator to check for warnings |
| 11350 | static void AnalyzeComparison(Sema &S, BinaryOperator *E) { |
| 11351 | // The type the comparison is being performed in. |
| 11352 | QualType T = E->getLHS()->getType(); |
| 11353 | |
| 11354 | // Only analyze comparison operators where both sides have been converted to |
| 11355 | // the same type. |
| 11356 | if (!S.Context.hasSameUnqualifiedType(T1: T, T2: E->getRHS()->getType())) |
| 11357 | return AnalyzeImpConvsInComparison(S, E); |
| 11358 | |
| 11359 | // Don't analyze value-dependent comparisons directly. |
| 11360 | if (E->isValueDependent()) |
| 11361 | return AnalyzeImpConvsInComparison(S, E); |
| 11362 | |
| 11363 | Expr *LHS = E->getLHS(); |
| 11364 | Expr *RHS = E->getRHS(); |
| 11365 | |
| 11366 | if (T->isIntegralType(Ctx: S.Context)) { |
| 11367 | std::optional<llvm::APSInt> RHSValue = |
| 11368 | RHS->getIntegerConstantExpr(Ctx: S.Context); |
| 11369 | std::optional<llvm::APSInt> LHSValue = |
| 11370 | LHS->getIntegerConstantExpr(Ctx: S.Context); |
| 11371 | |
| 11372 | // We don't care about expressions whose result is a constant. |
| 11373 | if (RHSValue && LHSValue) |
| 11374 | return AnalyzeImpConvsInComparison(S, E); |
| 11375 | |
| 11376 | // We only care about expressions where just one side is literal |
| 11377 | if ((bool)RHSValue ^ (bool)LHSValue) { |
| 11378 | // Is the constant on the RHS or LHS? |
| 11379 | const bool RhsConstant = (bool)RHSValue; |
| 11380 | Expr *Const = RhsConstant ? RHS : LHS; |
| 11381 | Expr *Other = RhsConstant ? LHS : RHS; |
| 11382 | const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue; |
| 11383 | |
| 11384 | // Check whether an integer constant comparison results in a value |
| 11385 | // of 'true' or 'false'. |
| 11386 | if (CheckTautologicalComparison(S, E, Constant: Const, Other, Value, RhsConstant)) |
| 11387 | return AnalyzeImpConvsInComparison(S, E); |
| 11388 | } |
| 11389 | } |
| 11390 | |
| 11391 | if (!T->hasUnsignedIntegerRepresentation()) { |
| 11392 | // We don't do anything special if this isn't an unsigned integral |
| 11393 | // comparison: we're only interested in integral comparisons, and |
| 11394 | // signed comparisons only happen in cases we don't care to warn about. |
| 11395 | return AnalyzeImpConvsInComparison(S, E); |
| 11396 | } |
| 11397 | |
| 11398 | LHS = LHS->IgnoreParenImpCasts(); |
| 11399 | RHS = RHS->IgnoreParenImpCasts(); |
| 11400 | |
| 11401 | if (!S.getLangOpts().CPlusPlus) { |
| 11402 | // Avoid warning about comparison of integers with different signs when |
| 11403 | // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of |
| 11404 | // the type of `E`. |
| 11405 | if (const auto *TET = dyn_cast<TypeOfExprType>(Val: LHS->getType())) |
| 11406 | LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); |
| 11407 | if (const auto *TET = dyn_cast<TypeOfExprType>(Val: RHS->getType())) |
| 11408 | RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); |
| 11409 | } |
| 11410 | |
| 11411 | // Check to see if one of the (unmodified) operands is of different |
| 11412 | // signedness. |
| 11413 | Expr *signedOperand, *unsignedOperand; |
| 11414 | if (LHS->getType()->hasSignedIntegerRepresentation()) { |
| 11415 | assert(!RHS->getType()->hasSignedIntegerRepresentation() && |
| 11416 | "unsigned comparison between two signed integer expressions?" ); |
| 11417 | signedOperand = LHS; |
| 11418 | unsignedOperand = RHS; |
| 11419 | } else if (RHS->getType()->hasSignedIntegerRepresentation()) { |
| 11420 | signedOperand = RHS; |
| 11421 | unsignedOperand = LHS; |
| 11422 | } else { |
| 11423 | return AnalyzeImpConvsInComparison(S, E); |
| 11424 | } |
| 11425 | |
| 11426 | // Otherwise, calculate the effective range of the signed operand. |
| 11427 | std::optional<IntRange> signedRange = |
| 11428 | TryGetExprRange(C&: S.Context, E: signedOperand, InConstantContext: S.isConstantEvaluatedContext(), |
| 11429 | /*Approximate=*/true); |
| 11430 | if (!signedRange) |
| 11431 | return; |
| 11432 | |
| 11433 | // Go ahead and analyze implicit conversions in the operands. Note |
| 11434 | // that we skip the implicit conversions on both sides. |
| 11435 | AnalyzeImplicitConversions(S, E: LHS, CC: E->getOperatorLoc()); |
| 11436 | AnalyzeImplicitConversions(S, E: RHS, CC: E->getOperatorLoc()); |
| 11437 | |
| 11438 | // If the signed range is non-negative, -Wsign-compare won't fire. |
| 11439 | if (signedRange->NonNegative) |
| 11440 | return; |
| 11441 | |
| 11442 | // For (in)equality comparisons, if the unsigned operand is a |
| 11443 | // constant which cannot collide with a overflowed signed operand, |
| 11444 | // then reinterpreting the signed operand as unsigned will not |
| 11445 | // change the result of the comparison. |
| 11446 | if (E->isEqualityOp()) { |
| 11447 | unsigned comparisonWidth = S.Context.getIntWidth(T); |
| 11448 | std::optional<IntRange> unsignedRange = TryGetExprRange( |
| 11449 | C&: S.Context, E: unsignedOperand, InConstantContext: S.isConstantEvaluatedContext(), |
| 11450 | /*Approximate=*/true); |
| 11451 | if (!unsignedRange) |
| 11452 | return; |
| 11453 | |
| 11454 | // We should never be unable to prove that the unsigned operand is |
| 11455 | // non-negative. |
| 11456 | assert(unsignedRange->NonNegative && "unsigned range includes negative?" ); |
| 11457 | |
| 11458 | if (unsignedRange->Width < comparisonWidth) |
| 11459 | return; |
| 11460 | } |
| 11461 | |
| 11462 | S.DiagRuntimeBehavior(Loc: E->getOperatorLoc(), Statement: E, |
| 11463 | PD: S.PDiag(DiagID: diag::warn_mixed_sign_comparison) |
| 11464 | << LHS->getType() << RHS->getType() |
| 11465 | << LHS->getSourceRange() << RHS->getSourceRange()); |
| 11466 | } |
| 11467 | |
| 11468 | /// Analyzes an attempt to assign the given value to a bitfield. |
| 11469 | /// |
| 11470 | /// Returns true if there was something fishy about the attempt. |
| 11471 | static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, |
| 11472 | SourceLocation InitLoc) { |
| 11473 | assert(Bitfield->isBitField()); |
| 11474 | if (Bitfield->isInvalidDecl()) |
| 11475 | return false; |
| 11476 | |
| 11477 | // White-list bool bitfields. |
| 11478 | QualType BitfieldType = Bitfield->getType(); |
| 11479 | if (BitfieldType->isBooleanType()) |
| 11480 | return false; |
| 11481 | |
| 11482 | if (BitfieldType->isEnumeralType()) { |
| 11483 | EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl(); |
| 11484 | // If the underlying enum type was not explicitly specified as an unsigned |
| 11485 | // type and the enum contain only positive values, MSVC++ will cause an |
| 11486 | // inconsistency by storing this as a signed type. |
| 11487 | if (S.getLangOpts().CPlusPlus11 && |
| 11488 | !BitfieldEnumDecl->getIntegerTypeSourceInfo() && |
| 11489 | BitfieldEnumDecl->getNumPositiveBits() > 0 && |
| 11490 | BitfieldEnumDecl->getNumNegativeBits() == 0) { |
| 11491 | S.Diag(Loc: InitLoc, DiagID: diag::warn_no_underlying_type_specified_for_enum_bitfield) |
| 11492 | << BitfieldEnumDecl; |
| 11493 | } |
| 11494 | } |
| 11495 | |
| 11496 | // Ignore value- or type-dependent expressions. |
| 11497 | if (Bitfield->getBitWidth()->isValueDependent() || |
| 11498 | Bitfield->getBitWidth()->isTypeDependent() || |
| 11499 | Init->isValueDependent() || |
| 11500 | Init->isTypeDependent()) |
| 11501 | return false; |
| 11502 | |
| 11503 | Expr *OriginalInit = Init->IgnoreParenImpCasts(); |
| 11504 | unsigned FieldWidth = Bitfield->getBitWidthValue(); |
| 11505 | |
| 11506 | Expr::EvalResult Result; |
| 11507 | if (!OriginalInit->EvaluateAsInt(Result, Ctx: S.Context, |
| 11508 | AllowSideEffects: Expr::SE_AllowSideEffects)) { |
| 11509 | // The RHS is not constant. If the RHS has an enum type, make sure the |
| 11510 | // bitfield is wide enough to hold all the values of the enum without |
| 11511 | // truncation. |
| 11512 | const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>(); |
| 11513 | const PreferredTypeAttr *PTAttr = nullptr; |
| 11514 | if (!EnumTy) { |
| 11515 | PTAttr = Bitfield->getAttr<PreferredTypeAttr>(); |
| 11516 | if (PTAttr) |
| 11517 | EnumTy = PTAttr->getType()->getAs<EnumType>(); |
| 11518 | } |
| 11519 | if (EnumTy) { |
| 11520 | EnumDecl *ED = EnumTy->getDecl(); |
| 11521 | bool SignedBitfield = BitfieldType->isSignedIntegerOrEnumerationType(); |
| 11522 | |
| 11523 | // Enum types are implicitly signed on Windows, so check if there are any |
| 11524 | // negative enumerators to see if the enum was intended to be signed or |
| 11525 | // not. |
| 11526 | bool SignedEnum = ED->getNumNegativeBits() > 0; |
| 11527 | |
| 11528 | // Check for surprising sign changes when assigning enum values to a |
| 11529 | // bitfield of different signedness. If the bitfield is signed and we |
| 11530 | // have exactly the right number of bits to store this unsigned enum, |
| 11531 | // suggest changing the enum to an unsigned type. This typically happens |
| 11532 | // on Windows where unfixed enums always use an underlying type of 'int'. |
| 11533 | unsigned DiagID = 0; |
| 11534 | if (SignedEnum && !SignedBitfield) { |
| 11535 | DiagID = |
| 11536 | PTAttr == nullptr |
| 11537 | ? diag::warn_unsigned_bitfield_assigned_signed_enum |
| 11538 | : diag:: |
| 11539 | warn_preferred_type_unsigned_bitfield_assigned_signed_enum; |
| 11540 | } else if (SignedBitfield && !SignedEnum && |
| 11541 | ED->getNumPositiveBits() == FieldWidth) { |
| 11542 | DiagID = |
| 11543 | PTAttr == nullptr |
| 11544 | ? diag::warn_signed_bitfield_enum_conversion |
| 11545 | : diag::warn_preferred_type_signed_bitfield_enum_conversion; |
| 11546 | } |
| 11547 | if (DiagID) { |
| 11548 | S.Diag(Loc: InitLoc, DiagID) << Bitfield << ED; |
| 11549 | TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); |
| 11550 | SourceRange TypeRange = |
| 11551 | TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); |
| 11552 | S.Diag(Loc: Bitfield->getTypeSpecStartLoc(), DiagID: diag::note_change_bitfield_sign) |
| 11553 | << SignedEnum << TypeRange; |
| 11554 | if (PTAttr) |
| 11555 | S.Diag(Loc: PTAttr->getLocation(), DiagID: diag::note_bitfield_preferred_type) |
| 11556 | << ED; |
| 11557 | } |
| 11558 | |
| 11559 | // Compute the required bitwidth. If the enum has negative values, we need |
| 11560 | // one more bit than the normal number of positive bits to represent the |
| 11561 | // sign bit. |
| 11562 | unsigned BitsNeeded = SignedEnum ? std::max(a: ED->getNumPositiveBits() + 1, |
| 11563 | b: ED->getNumNegativeBits()) |
| 11564 | : ED->getNumPositiveBits(); |
| 11565 | |
| 11566 | // Check the bitwidth. |
| 11567 | if (BitsNeeded > FieldWidth) { |
| 11568 | Expr *WidthExpr = Bitfield->getBitWidth(); |
| 11569 | auto DiagID = |
| 11570 | PTAttr == nullptr |
| 11571 | ? diag::warn_bitfield_too_small_for_enum |
| 11572 | : diag::warn_preferred_type_bitfield_too_small_for_enum; |
| 11573 | S.Diag(Loc: InitLoc, DiagID) << Bitfield << ED; |
| 11574 | S.Diag(Loc: WidthExpr->getExprLoc(), DiagID: diag::note_widen_bitfield) |
| 11575 | << BitsNeeded << ED << WidthExpr->getSourceRange(); |
| 11576 | if (PTAttr) |
| 11577 | S.Diag(Loc: PTAttr->getLocation(), DiagID: diag::note_bitfield_preferred_type) |
| 11578 | << ED; |
| 11579 | } |
| 11580 | } |
| 11581 | |
| 11582 | return false; |
| 11583 | } |
| 11584 | |
| 11585 | llvm::APSInt Value = Result.Val.getInt(); |
| 11586 | |
| 11587 | unsigned OriginalWidth = Value.getBitWidth(); |
| 11588 | |
| 11589 | // In C, the macro 'true' from stdbool.h will evaluate to '1'; To reduce |
| 11590 | // false positives where the user is demonstrating they intend to use the |
| 11591 | // bit-field as a Boolean, check to see if the value is 1 and we're assigning |
| 11592 | // to a one-bit bit-field to see if the value came from a macro named 'true'. |
| 11593 | bool OneAssignedToOneBitBitfield = FieldWidth == 1 && Value == 1; |
| 11594 | if (OneAssignedToOneBitBitfield && !S.LangOpts.CPlusPlus) { |
| 11595 | SourceLocation MaybeMacroLoc = OriginalInit->getBeginLoc(); |
| 11596 | if (S.SourceMgr.isInSystemMacro(loc: MaybeMacroLoc) && |
| 11597 | S.findMacroSpelling(loc&: MaybeMacroLoc, name: "true" )) |
| 11598 | return false; |
| 11599 | } |
| 11600 | |
| 11601 | if (!Value.isSigned() || Value.isNegative()) |
| 11602 | if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: OriginalInit)) |
| 11603 | if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) |
| 11604 | OriginalWidth = Value.getSignificantBits(); |
| 11605 | |
| 11606 | if (OriginalWidth <= FieldWidth) |
| 11607 | return false; |
| 11608 | |
| 11609 | // Compute the value which the bitfield will contain. |
| 11610 | llvm::APSInt TruncatedValue = Value.trunc(width: FieldWidth); |
| 11611 | TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); |
| 11612 | |
| 11613 | // Check whether the stored value is equal to the original value. |
| 11614 | TruncatedValue = TruncatedValue.extend(width: OriginalWidth); |
| 11615 | if (llvm::APSInt::isSameValue(I1: Value, I2: TruncatedValue)) |
| 11616 | return false; |
| 11617 | |
| 11618 | std::string PrettyValue = toString(I: Value, Radix: 10); |
| 11619 | std::string PrettyTrunc = toString(I: TruncatedValue, Radix: 10); |
| 11620 | |
| 11621 | S.Diag(Loc: InitLoc, DiagID: OneAssignedToOneBitBitfield |
| 11622 | ? diag::warn_impcast_single_bit_bitield_precision_constant |
| 11623 | : diag::warn_impcast_bitfield_precision_constant) |
| 11624 | << PrettyValue << PrettyTrunc << OriginalInit->getType() |
| 11625 | << Init->getSourceRange(); |
| 11626 | |
| 11627 | return true; |
| 11628 | } |
| 11629 | |
| 11630 | /// Analyze the given simple or compound assignment for warning-worthy |
| 11631 | /// operations. |
| 11632 | static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { |
| 11633 | // Just recurse on the LHS. |
| 11634 | AnalyzeImplicitConversions(S, E: E->getLHS(), CC: E->getOperatorLoc()); |
| 11635 | |
| 11636 | // We want to recurse on the RHS as normal unless we're assigning to |
| 11637 | // a bitfield. |
| 11638 | if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { |
| 11639 | if (AnalyzeBitFieldAssignment(S, Bitfield, Init: E->getRHS(), |
| 11640 | InitLoc: E->getOperatorLoc())) { |
| 11641 | // Recurse, ignoring any implicit conversions on the RHS. |
| 11642 | return AnalyzeImplicitConversions(S, E: E->getRHS()->IgnoreParenImpCasts(), |
| 11643 | CC: E->getOperatorLoc()); |
| 11644 | } |
| 11645 | } |
| 11646 | |
| 11647 | AnalyzeImplicitConversions(S, E: E->getRHS(), CC: E->getOperatorLoc()); |
| 11648 | |
| 11649 | // Diagnose implicitly sequentially-consistent atomic assignment. |
| 11650 | if (E->getLHS()->getType()->isAtomicType()) |
| 11651 | S.Diag(Loc: E->getRHS()->getBeginLoc(), DiagID: diag::warn_atomic_implicit_seq_cst); |
| 11652 | } |
| 11653 | |
| 11654 | /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. |
| 11655 | static void DiagnoseImpCast(Sema &S, const Expr *E, QualType SourceType, |
| 11656 | QualType T, SourceLocation CContext, unsigned diag, |
| 11657 | bool PruneControlFlow = false) { |
| 11658 | // For languages like HLSL and OpenCL, implicit conversion diagnostics listing |
| 11659 | // address space annotations isn't really useful. The warnings aren't because |
| 11660 | // you're converting a `private int` to `unsigned int`, it is because you're |
| 11661 | // conerting `int` to `unsigned int`. |
| 11662 | if (SourceType.hasAddressSpace()) |
| 11663 | SourceType = S.getASTContext().removeAddrSpaceQualType(T: SourceType); |
| 11664 | if (T.hasAddressSpace()) |
| 11665 | T = S.getASTContext().removeAddrSpaceQualType(T); |
| 11666 | if (PruneControlFlow) { |
| 11667 | S.DiagRuntimeBehavior(Loc: E->getExprLoc(), Statement: E, |
| 11668 | PD: S.PDiag(DiagID: diag) |
| 11669 | << SourceType << T << E->getSourceRange() |
| 11670 | << SourceRange(CContext)); |
| 11671 | return; |
| 11672 | } |
| 11673 | S.Diag(Loc: E->getExprLoc(), DiagID: diag) |
| 11674 | << SourceType << T << E->getSourceRange() << SourceRange(CContext); |
| 11675 | } |
| 11676 | |
| 11677 | /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. |
| 11678 | static void DiagnoseImpCast(Sema &S, const Expr *E, QualType T, |
| 11679 | SourceLocation CContext, unsigned diag, |
| 11680 | bool PruneControlFlow = false) { |
| 11681 | DiagnoseImpCast(S, E, SourceType: E->getType(), T, CContext, diag, PruneControlFlow); |
| 11682 | } |
| 11683 | |
| 11684 | /// Diagnose an implicit cast from a floating point value to an integer value. |
| 11685 | static void DiagnoseFloatingImpCast(Sema &S, const Expr *E, QualType T, |
| 11686 | SourceLocation CContext) { |
| 11687 | bool IsBool = T->isSpecificBuiltinType(K: BuiltinType::Bool); |
| 11688 | bool PruneWarnings = S.inTemplateInstantiation(); |
| 11689 | |
| 11690 | const Expr *InnerE = E->IgnoreParenImpCasts(); |
| 11691 | // We also want to warn on, e.g., "int i = -1.234" |
| 11692 | if (const auto *UOp = dyn_cast<UnaryOperator>(Val: InnerE)) |
| 11693 | if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) |
| 11694 | InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); |
| 11695 | |
| 11696 | bool IsLiteral = isa<FloatingLiteral>(Val: E) || isa<FloatingLiteral>(Val: InnerE); |
| 11697 | |
| 11698 | llvm::APFloat Value(0.0); |
| 11699 | bool IsConstant = |
| 11700 | E->EvaluateAsFloat(Result&: Value, Ctx: S.Context, AllowSideEffects: Expr::SE_AllowSideEffects); |
| 11701 | if (!IsConstant) { |
| 11702 | if (S.ObjC().isSignedCharBool(Ty: T)) { |
| 11703 | return S.ObjC().adornBoolConversionDiagWithTernaryFixit( |
| 11704 | SourceExpr: E, Builder: S.Diag(Loc: CContext, DiagID: diag::warn_impcast_float_to_objc_signed_char_bool) |
| 11705 | << E->getType()); |
| 11706 | } |
| 11707 | |
| 11708 | return DiagnoseImpCast(S, E, T, CContext, |
| 11709 | diag: diag::warn_impcast_float_integer, PruneControlFlow: PruneWarnings); |
| 11710 | } |
| 11711 | |
| 11712 | bool isExact = false; |
| 11713 | |
| 11714 | llvm::APSInt IntegerValue(S.Context.getIntWidth(T), |
| 11715 | T->hasUnsignedIntegerRepresentation()); |
| 11716 | llvm::APFloat::opStatus Result = Value.convertToInteger( |
| 11717 | Result&: IntegerValue, RM: llvm::APFloat::rmTowardZero, IsExact: &isExact); |
| 11718 | |
| 11719 | // FIXME: Force the precision of the source value down so we don't print |
| 11720 | // digits which are usually useless (we don't really care here if we |
| 11721 | // truncate a digit by accident in edge cases). Ideally, APFloat::toString |
| 11722 | // would automatically print the shortest representation, but it's a bit |
| 11723 | // tricky to implement. |
| 11724 | SmallString<16> PrettySourceValue; |
| 11725 | unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); |
| 11726 | precision = (precision * 59 + 195) / 196; |
| 11727 | Value.toString(Str&: PrettySourceValue, FormatPrecision: precision); |
| 11728 | |
| 11729 | if (S.ObjC().isSignedCharBool(Ty: T) && IntegerValue != 0 && IntegerValue != 1) { |
| 11730 | return S.ObjC().adornBoolConversionDiagWithTernaryFixit( |
| 11731 | SourceExpr: E, Builder: S.Diag(Loc: CContext, DiagID: diag::warn_impcast_constant_value_to_objc_bool) |
| 11732 | << PrettySourceValue); |
| 11733 | } |
| 11734 | |
| 11735 | if (Result == llvm::APFloat::opOK && isExact) { |
| 11736 | if (IsLiteral) return; |
| 11737 | return DiagnoseImpCast(S, E, T, CContext, diag: diag::warn_impcast_float_integer, |
| 11738 | PruneControlFlow: PruneWarnings); |
| 11739 | } |
| 11740 | |
| 11741 | // Conversion of a floating-point value to a non-bool integer where the |
| 11742 | // integral part cannot be represented by the integer type is undefined. |
| 11743 | if (!IsBool && Result == llvm::APFloat::opInvalidOp) |
| 11744 | return DiagnoseImpCast( |
| 11745 | S, E, T, CContext, |
| 11746 | diag: IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range |
| 11747 | : diag::warn_impcast_float_to_integer_out_of_range, |
| 11748 | PruneControlFlow: PruneWarnings); |
| 11749 | |
| 11750 | unsigned DiagID = 0; |
| 11751 | if (IsLiteral) { |
| 11752 | // Warn on floating point literal to integer. |
| 11753 | DiagID = diag::warn_impcast_literal_float_to_integer; |
| 11754 | } else if (IntegerValue == 0) { |
| 11755 | if (Value.isZero()) { // Skip -0.0 to 0 conversion. |
| 11756 | return DiagnoseImpCast(S, E, T, CContext, |
| 11757 | diag: diag::warn_impcast_float_integer, PruneControlFlow: PruneWarnings); |
| 11758 | } |
| 11759 | // Warn on non-zero to zero conversion. |
| 11760 | DiagID = diag::warn_impcast_float_to_integer_zero; |
| 11761 | } else { |
| 11762 | if (IntegerValue.isUnsigned()) { |
| 11763 | if (!IntegerValue.isMaxValue()) { |
| 11764 | return DiagnoseImpCast(S, E, T, CContext, |
| 11765 | diag: diag::warn_impcast_float_integer, PruneControlFlow: PruneWarnings); |
| 11766 | } |
| 11767 | } else { // IntegerValue.isSigned() |
| 11768 | if (!IntegerValue.isMaxSignedValue() && |
| 11769 | !IntegerValue.isMinSignedValue()) { |
| 11770 | return DiagnoseImpCast(S, E, T, CContext, |
| 11771 | diag: diag::warn_impcast_float_integer, PruneControlFlow: PruneWarnings); |
| 11772 | } |
| 11773 | } |
| 11774 | // Warn on evaluatable floating point expression to integer conversion. |
| 11775 | DiagID = diag::warn_impcast_float_to_integer; |
| 11776 | } |
| 11777 | |
| 11778 | SmallString<16> PrettyTargetValue; |
| 11779 | if (IsBool) |
| 11780 | PrettyTargetValue = Value.isZero() ? "false" : "true" ; |
| 11781 | else |
| 11782 | IntegerValue.toString(Str&: PrettyTargetValue); |
| 11783 | |
| 11784 | if (PruneWarnings) { |
| 11785 | S.DiagRuntimeBehavior(Loc: E->getExprLoc(), Statement: E, |
| 11786 | PD: S.PDiag(DiagID) |
| 11787 | << E->getType() << T.getUnqualifiedType() |
| 11788 | << PrettySourceValue << PrettyTargetValue |
| 11789 | << E->getSourceRange() << SourceRange(CContext)); |
| 11790 | } else { |
| 11791 | S.Diag(Loc: E->getExprLoc(), DiagID) |
| 11792 | << E->getType() << T.getUnqualifiedType() << PrettySourceValue |
| 11793 | << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); |
| 11794 | } |
| 11795 | } |
| 11796 | |
| 11797 | /// Analyze the given compound assignment for the possible losing of |
| 11798 | /// floating-point precision. |
| 11799 | static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { |
| 11800 | assert(isa<CompoundAssignOperator>(E) && |
| 11801 | "Must be compound assignment operation" ); |
| 11802 | // Recurse on the LHS and RHS in here |
| 11803 | AnalyzeImplicitConversions(S, E: E->getLHS(), CC: E->getOperatorLoc()); |
| 11804 | AnalyzeImplicitConversions(S, E: E->getRHS(), CC: E->getOperatorLoc()); |
| 11805 | |
| 11806 | if (E->getLHS()->getType()->isAtomicType()) |
| 11807 | S.Diag(Loc: E->getOperatorLoc(), DiagID: diag::warn_atomic_implicit_seq_cst); |
| 11808 | |
| 11809 | // Now check the outermost expression |
| 11810 | const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); |
| 11811 | const auto *RBT = cast<CompoundAssignOperator>(Val: E) |
| 11812 | ->getComputationResultType() |
| 11813 | ->getAs<BuiltinType>(); |
| 11814 | |
| 11815 | // The below checks assume source is floating point. |
| 11816 | if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; |
| 11817 | |
| 11818 | // If source is floating point but target is an integer. |
| 11819 | if (ResultBT->isInteger()) |
| 11820 | return DiagnoseImpCast(S, E, SourceType: E->getRHS()->getType(), T: E->getLHS()->getType(), |
| 11821 | CContext: E->getExprLoc(), diag: diag::warn_impcast_float_integer); |
| 11822 | |
| 11823 | if (!ResultBT->isFloatingPoint()) |
| 11824 | return; |
| 11825 | |
| 11826 | // If both source and target are floating points, warn about losing precision. |
| 11827 | int Order = S.getASTContext().getFloatingTypeSemanticOrder( |
| 11828 | LHS: QualType(ResultBT, 0), RHS: QualType(RBT, 0)); |
| 11829 | if (Order < 0 && !S.SourceMgr.isInSystemMacro(loc: E->getOperatorLoc())) |
| 11830 | // warn about dropping FP rank. |
| 11831 | DiagnoseImpCast(S, E: E->getRHS(), T: E->getLHS()->getType(), CContext: E->getOperatorLoc(), |
| 11832 | diag: diag::warn_impcast_float_result_precision); |
| 11833 | } |
| 11834 | |
| 11835 | static std::string PrettyPrintInRange(const llvm::APSInt &Value, |
| 11836 | IntRange Range) { |
| 11837 | if (!Range.Width) return "0" ; |
| 11838 | |
| 11839 | llvm::APSInt ValueInRange = Value; |
| 11840 | ValueInRange.setIsSigned(!Range.NonNegative); |
| 11841 | ValueInRange = ValueInRange.trunc(width: Range.Width); |
| 11842 | return toString(I: ValueInRange, Radix: 10); |
| 11843 | } |
| 11844 | |
| 11845 | static bool IsImplicitBoolFloatConversion(Sema &S, const Expr *Ex, |
| 11846 | bool ToBool) { |
| 11847 | if (!isa<ImplicitCastExpr>(Val: Ex)) |
| 11848 | return false; |
| 11849 | |
| 11850 | const Expr *InnerE = Ex->IgnoreParenImpCasts(); |
| 11851 | const Type *Target = S.Context.getCanonicalType(T: Ex->getType()).getTypePtr(); |
| 11852 | const Type *Source = |
| 11853 | S.Context.getCanonicalType(T: InnerE->getType()).getTypePtr(); |
| 11854 | if (Target->isDependentType()) |
| 11855 | return false; |
| 11856 | |
| 11857 | const auto *FloatCandidateBT = |
| 11858 | dyn_cast<BuiltinType>(Val: ToBool ? Source : Target); |
| 11859 | const Type *BoolCandidateType = ToBool ? Target : Source; |
| 11860 | |
| 11861 | return (BoolCandidateType->isSpecificBuiltinType(K: BuiltinType::Bool) && |
| 11862 | FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); |
| 11863 | } |
| 11864 | |
| 11865 | static void CheckImplicitArgumentConversions(Sema &S, const CallExpr *TheCall, |
| 11866 | SourceLocation CC) { |
| 11867 | for (unsigned I = 0, N = TheCall->getNumArgs(); I < N; ++I) { |
| 11868 | const Expr *CurrA = TheCall->getArg(Arg: I); |
| 11869 | if (!IsImplicitBoolFloatConversion(S, Ex: CurrA, ToBool: true)) |
| 11870 | continue; |
| 11871 | |
| 11872 | bool IsSwapped = ((I > 0) && IsImplicitBoolFloatConversion( |
| 11873 | S, Ex: TheCall->getArg(Arg: I - 1), ToBool: false)); |
| 11874 | IsSwapped |= ((I < (N - 1)) && IsImplicitBoolFloatConversion( |
| 11875 | S, Ex: TheCall->getArg(Arg: I + 1), ToBool: false)); |
| 11876 | if (IsSwapped) { |
| 11877 | // Warn on this floating-point to bool conversion. |
| 11878 | DiagnoseImpCast(S, E: CurrA->IgnoreParenImpCasts(), |
| 11879 | T: CurrA->getType(), CContext: CC, |
| 11880 | diag: diag::warn_impcast_floating_point_to_bool); |
| 11881 | } |
| 11882 | } |
| 11883 | } |
| 11884 | |
| 11885 | static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, |
| 11886 | SourceLocation CC) { |
| 11887 | // Don't warn on functions which have return type nullptr_t. |
| 11888 | if (isa<CallExpr>(Val: E)) |
| 11889 | return; |
| 11890 | |
| 11891 | // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). |
| 11892 | const Expr *NewE = E->IgnoreParenImpCasts(); |
| 11893 | bool IsGNUNullExpr = isa<GNUNullExpr>(Val: NewE); |
| 11894 | bool HasNullPtrType = NewE->getType()->isNullPtrType(); |
| 11895 | if (!IsGNUNullExpr && !HasNullPtrType) |
| 11896 | return; |
| 11897 | |
| 11898 | // Return if target type is a safe conversion. |
| 11899 | if (T->isAnyPointerType() || T->isBlockPointerType() || |
| 11900 | T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) |
| 11901 | return; |
| 11902 | |
| 11903 | if (S.Diags.isIgnored(DiagID: diag::warn_impcast_null_pointer_to_integer, |
| 11904 | Loc: E->getExprLoc())) |
| 11905 | return; |
| 11906 | |
| 11907 | SourceLocation Loc = E->getSourceRange().getBegin(); |
| 11908 | |
| 11909 | // Venture through the macro stacks to get to the source of macro arguments. |
| 11910 | // The new location is a better location than the complete location that was |
| 11911 | // passed in. |
| 11912 | Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); |
| 11913 | CC = S.SourceMgr.getTopMacroCallerLoc(Loc: CC); |
| 11914 | |
| 11915 | // __null is usually wrapped in a macro. Go up a macro if that is the case. |
| 11916 | if (IsGNUNullExpr && Loc.isMacroID()) { |
| 11917 | StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( |
| 11918 | Loc, SM: S.SourceMgr, LangOpts: S.getLangOpts()); |
| 11919 | if (MacroName == "NULL" ) |
| 11920 | Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); |
| 11921 | } |
| 11922 | |
| 11923 | // Only warn if the null and context location are in the same macro expansion. |
| 11924 | if (S.SourceMgr.getFileID(SpellingLoc: Loc) != S.SourceMgr.getFileID(SpellingLoc: CC)) |
| 11925 | return; |
| 11926 | |
| 11927 | S.Diag(Loc, DiagID: diag::warn_impcast_null_pointer_to_integer) |
| 11928 | << HasNullPtrType << T << SourceRange(CC) |
| 11929 | << FixItHint::CreateReplacement(RemoveRange: Loc, |
| 11930 | Code: S.getFixItZeroLiteralForType(T, Loc)); |
| 11931 | } |
| 11932 | |
| 11933 | // Helper function to filter out cases for constant width constant conversion. |
| 11934 | // Don't warn on char array initialization or for non-decimal values. |
| 11935 | static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, |
| 11936 | SourceLocation CC) { |
| 11937 | // If initializing from a constant, and the constant starts with '0', |
| 11938 | // then it is a binary, octal, or hexadecimal. Allow these constants |
| 11939 | // to fill all the bits, even if there is a sign change. |
| 11940 | if (auto *IntLit = dyn_cast<IntegerLiteral>(Val: E->IgnoreParenImpCasts())) { |
| 11941 | const char FirstLiteralCharacter = |
| 11942 | S.getSourceManager().getCharacterData(SL: IntLit->getBeginLoc())[0]; |
| 11943 | if (FirstLiteralCharacter == '0') |
| 11944 | return false; |
| 11945 | } |
| 11946 | |
| 11947 | // If the CC location points to a '{', and the type is char, then assume |
| 11948 | // assume it is an array initialization. |
| 11949 | if (CC.isValid() && T->isCharType()) { |
| 11950 | const char FirstContextCharacter = |
| 11951 | S.getSourceManager().getCharacterData(SL: CC)[0]; |
| 11952 | if (FirstContextCharacter == '{') |
| 11953 | return false; |
| 11954 | } |
| 11955 | |
| 11956 | return true; |
| 11957 | } |
| 11958 | |
| 11959 | static const IntegerLiteral *getIntegerLiteral(Expr *E) { |
| 11960 | const auto *IL = dyn_cast<IntegerLiteral>(Val: E); |
| 11961 | if (!IL) { |
| 11962 | if (auto *UO = dyn_cast<UnaryOperator>(Val: E)) { |
| 11963 | if (UO->getOpcode() == UO_Minus) |
| 11964 | return dyn_cast<IntegerLiteral>(Val: UO->getSubExpr()); |
| 11965 | } |
| 11966 | } |
| 11967 | |
| 11968 | return IL; |
| 11969 | } |
| 11970 | |
| 11971 | static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { |
| 11972 | E = E->IgnoreParenImpCasts(); |
| 11973 | SourceLocation ExprLoc = E->getExprLoc(); |
| 11974 | |
| 11975 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 11976 | BinaryOperator::Opcode Opc = BO->getOpcode(); |
| 11977 | Expr::EvalResult Result; |
| 11978 | // Do not diagnose unsigned shifts. |
| 11979 | if (Opc == BO_Shl) { |
| 11980 | const auto *LHS = getIntegerLiteral(E: BO->getLHS()); |
| 11981 | const auto *RHS = getIntegerLiteral(E: BO->getRHS()); |
| 11982 | if (LHS && LHS->getValue() == 0) |
| 11983 | S.Diag(Loc: ExprLoc, DiagID: diag::warn_left_shift_always) << 0; |
| 11984 | else if (!E->isValueDependent() && LHS && RHS && |
| 11985 | RHS->getValue().isNonNegative() && |
| 11986 | E->EvaluateAsInt(Result, Ctx: S.Context, AllowSideEffects: Expr::SE_AllowSideEffects)) |
| 11987 | S.Diag(Loc: ExprLoc, DiagID: diag::warn_left_shift_always) |
| 11988 | << (Result.Val.getInt() != 0); |
| 11989 | else if (E->getType()->isSignedIntegerType()) |
| 11990 | S.Diag(Loc: ExprLoc, DiagID: diag::warn_left_shift_in_bool_context) |
| 11991 | << FixItHint::CreateInsertion(InsertionLoc: E->getBeginLoc(), Code: "(" ) |
| 11992 | << FixItHint::CreateInsertion(InsertionLoc: S.getLocForEndOfToken(Loc: E->getEndLoc()), |
| 11993 | Code: ") != 0" ); |
| 11994 | } |
| 11995 | } |
| 11996 | |
| 11997 | if (const auto *CO = dyn_cast<ConditionalOperator>(Val: E)) { |
| 11998 | const auto *LHS = getIntegerLiteral(E: CO->getTrueExpr()); |
| 11999 | const auto *RHS = getIntegerLiteral(E: CO->getFalseExpr()); |
| 12000 | if (!LHS || !RHS) |
| 12001 | return; |
| 12002 | if ((LHS->getValue() == 0 || LHS->getValue() == 1) && |
| 12003 | (RHS->getValue() == 0 || RHS->getValue() == 1)) |
| 12004 | // Do not diagnose common idioms. |
| 12005 | return; |
| 12006 | if (LHS->getValue() != 0 && RHS->getValue() != 0) |
| 12007 | S.Diag(Loc: ExprLoc, DiagID: diag::warn_integer_constants_in_conditional_always_true); |
| 12008 | } |
| 12009 | } |
| 12010 | |
| 12011 | static void DiagnoseMixedUnicodeImplicitConversion(Sema &S, const Type *Source, |
| 12012 | const Type *Target, Expr *E, |
| 12013 | QualType T, |
| 12014 | SourceLocation CC) { |
| 12015 | assert(Source->isUnicodeCharacterType() && Target->isUnicodeCharacterType() && |
| 12016 | Source != Target); |
| 12017 | Expr::EvalResult Result; |
| 12018 | if (E->EvaluateAsInt(Result, Ctx: S.getASTContext(), AllowSideEffects: Expr::SE_AllowSideEffects, |
| 12019 | InConstantContext: S.isConstantEvaluatedContext())) { |
| 12020 | llvm::APSInt Value(32); |
| 12021 | Value = Result.Val.getInt(); |
| 12022 | bool IsASCII = Value <= 0x7F; |
| 12023 | bool IsBMP = Value <= 0xD7FF || (Value >= 0xE000 && Value <= 0xFFFF); |
| 12024 | bool ConversionPreservesSemantics = |
| 12025 | IsASCII || (!Source->isChar8Type() && !Target->isChar8Type() && IsBMP); |
| 12026 | |
| 12027 | if (!ConversionPreservesSemantics) { |
| 12028 | auto IsSingleCodeUnitCP = [](const QualType &T, |
| 12029 | const llvm::APSInt &Value) { |
| 12030 | if (T->isChar8Type()) |
| 12031 | return llvm::IsSingleCodeUnitUTF8Codepoint(Value.getExtValue()); |
| 12032 | if (T->isChar16Type()) |
| 12033 | return llvm::IsSingleCodeUnitUTF16Codepoint(Value.getExtValue()); |
| 12034 | assert(T->isChar32Type()); |
| 12035 | return llvm::IsSingleCodeUnitUTF32Codepoint(Value.getExtValue()); |
| 12036 | }; |
| 12037 | |
| 12038 | S.Diag(Loc: CC, DiagID: diag::warn_impcast_unicode_char_type_constant) |
| 12039 | << E->getType() << T |
| 12040 | << IsSingleCodeUnitCP(E->getType().getUnqualifiedType(), Value) |
| 12041 | << FormatUTFCodeUnitAsCodepoint(Value: Value.getExtValue(), T: E->getType()); |
| 12042 | } |
| 12043 | } else { |
| 12044 | bool LosesPrecision = S.getASTContext().getIntWidth(T: E->getType()) > |
| 12045 | S.getASTContext().getIntWidth(T); |
| 12046 | DiagnoseImpCast(S, E, T, CContext: CC, |
| 12047 | diag: LosesPrecision ? diag::warn_impcast_unicode_precision |
| 12048 | : diag::warn_impcast_unicode_char_type); |
| 12049 | } |
| 12050 | } |
| 12051 | |
| 12052 | enum CFIUncheckedCalleeChange { |
| 12053 | None, |
| 12054 | Adding, |
| 12055 | Discarding, |
| 12056 | }; |
| 12057 | |
| 12058 | static CFIUncheckedCalleeChange AdjustingCFIUncheckedCallee(QualType From, |
| 12059 | QualType To) { |
| 12060 | QualType MaybePointee = From->getPointeeType(); |
| 12061 | if (!MaybePointee.isNull() && MaybePointee->getAs<FunctionType>()) |
| 12062 | From = MaybePointee; |
| 12063 | MaybePointee = To->getPointeeType(); |
| 12064 | if (!MaybePointee.isNull() && MaybePointee->getAs<FunctionType>()) |
| 12065 | To = MaybePointee; |
| 12066 | |
| 12067 | if (const auto *FromFn = From->getAs<FunctionType>()) { |
| 12068 | if (const auto *ToFn = To->getAs<FunctionType>()) { |
| 12069 | if (FromFn->getCFIUncheckedCalleeAttr() && |
| 12070 | !ToFn->getCFIUncheckedCalleeAttr()) |
| 12071 | return Discarding; |
| 12072 | if (!FromFn->getCFIUncheckedCalleeAttr() && |
| 12073 | ToFn->getCFIUncheckedCalleeAttr()) |
| 12074 | return Adding; |
| 12075 | } |
| 12076 | } |
| 12077 | return None; |
| 12078 | } |
| 12079 | |
| 12080 | bool Sema::DiscardingCFIUncheckedCallee(QualType From, QualType To) const { |
| 12081 | From = Context.getCanonicalType(T: From); |
| 12082 | To = Context.getCanonicalType(T: To); |
| 12083 | return ::AdjustingCFIUncheckedCallee(From, To) == Discarding; |
| 12084 | } |
| 12085 | |
| 12086 | bool Sema::AddingCFIUncheckedCallee(QualType From, QualType To) const { |
| 12087 | From = Context.getCanonicalType(T: From); |
| 12088 | To = Context.getCanonicalType(T: To); |
| 12089 | return ::AdjustingCFIUncheckedCallee(From, To) == Adding; |
| 12090 | } |
| 12091 | |
| 12092 | void Sema::CheckImplicitConversion(Expr *E, QualType T, SourceLocation CC, |
| 12093 | bool *ICContext, bool IsListInit) { |
| 12094 | if (E->isTypeDependent() || E->isValueDependent()) return; |
| 12095 | |
| 12096 | const Type *Source = Context.getCanonicalType(T: E->getType()).getTypePtr(); |
| 12097 | const Type *Target = Context.getCanonicalType(T).getTypePtr(); |
| 12098 | if (Source == Target) return; |
| 12099 | if (Target->isDependentType()) return; |
| 12100 | |
| 12101 | // If the conversion context location is invalid don't complain. We also |
| 12102 | // don't want to emit a warning if the issue occurs from the expansion of |
| 12103 | // a system macro. The problem is that 'getSpellingLoc()' is slow, so we |
| 12104 | // delay this check as long as possible. Once we detect we are in that |
| 12105 | // scenario, we just return. |
| 12106 | if (CC.isInvalid()) |
| 12107 | return; |
| 12108 | |
| 12109 | if (Source->isAtomicType()) |
| 12110 | Diag(Loc: E->getExprLoc(), DiagID: diag::warn_atomic_implicit_seq_cst); |
| 12111 | |
| 12112 | // Diagnose implicit casts to bool. |
| 12113 | if (Target->isSpecificBuiltinType(K: BuiltinType::Bool)) { |
| 12114 | if (isa<StringLiteral>(Val: E)) |
| 12115 | // Warn on string literal to bool. Checks for string literals in logical |
| 12116 | // and expressions, for instance, assert(0 && "error here"), are |
| 12117 | // prevented by a check in AnalyzeImplicitConversions(). |
| 12118 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
| 12119 | diag: diag::warn_impcast_string_literal_to_bool); |
| 12120 | if (isa<ObjCStringLiteral>(Val: E) || isa<ObjCArrayLiteral>(Val: E) || |
| 12121 | isa<ObjCDictionaryLiteral>(Val: E) || isa<ObjCBoxedExpr>(Val: E)) { |
| 12122 | // This covers the literal expressions that evaluate to Objective-C |
| 12123 | // objects. |
| 12124 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
| 12125 | diag: diag::warn_impcast_objective_c_literal_to_bool); |
| 12126 | } |
| 12127 | if (Source->isPointerType() || Source->canDecayToPointerType()) { |
| 12128 | // Warn on pointer to bool conversion that is always true. |
| 12129 | DiagnoseAlwaysNonNullPointer(E, NullType: Expr::NPCK_NotNull, /*IsEqual*/ false, |
| 12130 | Range: SourceRange(CC)); |
| 12131 | } |
| 12132 | } |
| 12133 | |
| 12134 | // If the we're converting a constant to an ObjC BOOL on a platform where BOOL |
| 12135 | // is a typedef for signed char (macOS), then that constant value has to be 1 |
| 12136 | // or 0. |
| 12137 | if (ObjC().isSignedCharBool(Ty: T) && Source->isIntegralType(Ctx: Context)) { |
| 12138 | Expr::EvalResult Result; |
| 12139 | if (E->EvaluateAsInt(Result, Ctx: getASTContext(), AllowSideEffects: Expr::SE_AllowSideEffects)) { |
| 12140 | if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { |
| 12141 | ObjC().adornBoolConversionDiagWithTernaryFixit( |
| 12142 | SourceExpr: E, Builder: Diag(Loc: CC, DiagID: diag::warn_impcast_constant_value_to_objc_bool) |
| 12143 | << toString(I: Result.Val.getInt(), Radix: 10)); |
| 12144 | } |
| 12145 | return; |
| 12146 | } |
| 12147 | } |
| 12148 | |
| 12149 | // Check implicit casts from Objective-C collection literals to specialized |
| 12150 | // collection types, e.g., NSArray<NSString *> *. |
| 12151 | if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Val: E)) |
| 12152 | ObjC().checkArrayLiteral(TargetType: QualType(Target, 0), ArrayLiteral); |
| 12153 | else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Val: E)) |
| 12154 | ObjC().checkDictionaryLiteral(TargetType: QualType(Target, 0), DictionaryLiteral); |
| 12155 | |
| 12156 | // Strip vector types. |
| 12157 | if (isa<VectorType>(Val: Source)) { |
| 12158 | if (Target->isSveVLSBuiltinType() && |
| 12159 | (ARM().areCompatibleSveTypes(FirstType: QualType(Target, 0), |
| 12160 | SecondType: QualType(Source, 0)) || |
| 12161 | ARM().areLaxCompatibleSveTypes(FirstType: QualType(Target, 0), |
| 12162 | SecondType: QualType(Source, 0)))) |
| 12163 | return; |
| 12164 | |
| 12165 | if (Target->isRVVVLSBuiltinType() && |
| 12166 | (Context.areCompatibleRVVTypes(FirstType: QualType(Target, 0), |
| 12167 | SecondType: QualType(Source, 0)) || |
| 12168 | Context.areLaxCompatibleRVVTypes(FirstType: QualType(Target, 0), |
| 12169 | SecondType: QualType(Source, 0)))) |
| 12170 | return; |
| 12171 | |
| 12172 | if (!isa<VectorType>(Val: Target)) { |
| 12173 | if (SourceMgr.isInSystemMacro(loc: CC)) |
| 12174 | return; |
| 12175 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, diag: diag::warn_impcast_vector_scalar); |
| 12176 | } else if (getLangOpts().HLSL && |
| 12177 | Target->castAs<VectorType>()->getNumElements() < |
| 12178 | Source->castAs<VectorType>()->getNumElements()) { |
| 12179 | // Diagnose vector truncation but don't return. We may also want to |
| 12180 | // diagnose an element conversion. |
| 12181 | DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
| 12182 | diag: diag::warn_hlsl_impcast_vector_truncation); |
| 12183 | } |
| 12184 | |
| 12185 | // If the vector cast is cast between two vectors of the same size, it is |
| 12186 | // a bitcast, not a conversion, except under HLSL where it is a conversion. |
| 12187 | if (!getLangOpts().HLSL && |
| 12188 | Context.getTypeSize(T: Source) == Context.getTypeSize(T: Target)) |
| 12189 | return; |
| 12190 | |
| 12191 | Source = cast<VectorType>(Val: Source)->getElementType().getTypePtr(); |
| 12192 | Target = cast<VectorType>(Val: Target)->getElementType().getTypePtr(); |
| 12193 | } |
| 12194 | if (auto VecTy = dyn_cast<VectorType>(Val: Target)) |
| 12195 | Target = VecTy->getElementType().getTypePtr(); |
| 12196 | |
| 12197 | // Strip complex types. |
| 12198 | if (isa<ComplexType>(Val: Source)) { |
| 12199 | if (!isa<ComplexType>(Val: Target)) { |
| 12200 | if (SourceMgr.isInSystemMacro(loc: CC) || Target->isBooleanType()) |
| 12201 | return; |
| 12202 | |
| 12203 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
| 12204 | diag: getLangOpts().CPlusPlus |
| 12205 | ? diag::err_impcast_complex_scalar |
| 12206 | : diag::warn_impcast_complex_scalar); |
| 12207 | } |
| 12208 | |
| 12209 | Source = cast<ComplexType>(Val: Source)->getElementType().getTypePtr(); |
| 12210 | Target = cast<ComplexType>(Val: Target)->getElementType().getTypePtr(); |
| 12211 | } |
| 12212 | |
| 12213 | const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Val: Source); |
| 12214 | const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Val: Target); |
| 12215 | |
| 12216 | // Strip SVE vector types |
| 12217 | if (SourceBT && SourceBT->isSveVLSBuiltinType()) { |
| 12218 | // Need the original target type for vector type checks |
| 12219 | const Type *OriginalTarget = Context.getCanonicalType(T).getTypePtr(); |
| 12220 | // Handle conversion from scalable to fixed when msve-vector-bits is |
| 12221 | // specified |
| 12222 | if (ARM().areCompatibleSveTypes(FirstType: QualType(OriginalTarget, 0), |
| 12223 | SecondType: QualType(Source, 0)) || |
| 12224 | ARM().areLaxCompatibleSveTypes(FirstType: QualType(OriginalTarget, 0), |
| 12225 | SecondType: QualType(Source, 0))) |
| 12226 | return; |
| 12227 | |
| 12228 | // If the vector cast is cast between two vectors of the same size, it is |
| 12229 | // a bitcast, not a conversion. |
| 12230 | if (Context.getTypeSize(T: Source) == Context.getTypeSize(T: Target)) |
| 12231 | return; |
| 12232 | |
| 12233 | Source = SourceBT->getSveEltType(Ctx: Context).getTypePtr(); |
| 12234 | } |
| 12235 | |
| 12236 | if (TargetBT && TargetBT->isSveVLSBuiltinType()) |
| 12237 | Target = TargetBT->getSveEltType(Ctx: Context).getTypePtr(); |
| 12238 | |
| 12239 | // If the source is floating point... |
| 12240 | if (SourceBT && SourceBT->isFloatingPoint()) { |
| 12241 | // ...and the target is floating point... |
| 12242 | if (TargetBT && TargetBT->isFloatingPoint()) { |
| 12243 | // ...then warn if we're dropping FP rank. |
| 12244 | |
| 12245 | int Order = getASTContext().getFloatingTypeSemanticOrder( |
| 12246 | LHS: QualType(SourceBT, 0), RHS: QualType(TargetBT, 0)); |
| 12247 | if (Order > 0) { |
| 12248 | // Don't warn about float constants that are precisely |
| 12249 | // representable in the target type. |
| 12250 | Expr::EvalResult result; |
| 12251 | if (E->EvaluateAsRValue(Result&: result, Ctx: Context)) { |
| 12252 | // Value might be a float, a float vector, or a float complex. |
| 12253 | if (IsSameFloatAfterCast( |
| 12254 | value: result.Val, |
| 12255 | Src: Context.getFloatTypeSemantics(T: QualType(TargetBT, 0)), |
| 12256 | Tgt: Context.getFloatTypeSemantics(T: QualType(SourceBT, 0)))) |
| 12257 | return; |
| 12258 | } |
| 12259 | |
| 12260 | if (SourceMgr.isInSystemMacro(loc: CC)) |
| 12261 | return; |
| 12262 | |
| 12263 | DiagnoseImpCast(S&: *this, E, T, CContext: CC, diag: diag::warn_impcast_float_precision); |
| 12264 | } |
| 12265 | // ... or possibly if we're increasing rank, too |
| 12266 | else if (Order < 0) { |
| 12267 | if (SourceMgr.isInSystemMacro(loc: CC)) |
| 12268 | return; |
| 12269 | |
| 12270 | DiagnoseImpCast(S&: *this, E, T, CContext: CC, diag: diag::warn_impcast_double_promotion); |
| 12271 | } |
| 12272 | return; |
| 12273 | } |
| 12274 | |
| 12275 | // If the target is integral, always warn. |
| 12276 | if (TargetBT && TargetBT->isInteger()) { |
| 12277 | if (SourceMgr.isInSystemMacro(loc: CC)) |
| 12278 | return; |
| 12279 | |
| 12280 | DiagnoseFloatingImpCast(S&: *this, E, T, CContext: CC); |
| 12281 | } |
| 12282 | |
| 12283 | // Detect the case where a call result is converted from floating-point to |
| 12284 | // to bool, and the final argument to the call is converted from bool, to |
| 12285 | // discover this typo: |
| 12286 | // |
| 12287 | // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" |
| 12288 | // |
| 12289 | // FIXME: This is an incredibly special case; is there some more general |
| 12290 | // way to detect this class of misplaced-parentheses bug? |
| 12291 | if (Target->isBooleanType() && isa<CallExpr>(Val: E)) { |
| 12292 | // Check last argument of function call to see if it is an |
| 12293 | // implicit cast from a type matching the type the result |
| 12294 | // is being cast to. |
| 12295 | CallExpr *CEx = cast<CallExpr>(Val: E); |
| 12296 | if (unsigned NumArgs = CEx->getNumArgs()) { |
| 12297 | Expr *LastA = CEx->getArg(Arg: NumArgs - 1); |
| 12298 | Expr *InnerE = LastA->IgnoreParenImpCasts(); |
| 12299 | if (isa<ImplicitCastExpr>(Val: LastA) && |
| 12300 | InnerE->getType()->isBooleanType()) { |
| 12301 | // Warn on this floating-point to bool conversion |
| 12302 | DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
| 12303 | diag: diag::warn_impcast_floating_point_to_bool); |
| 12304 | } |
| 12305 | } |
| 12306 | } |
| 12307 | return; |
| 12308 | } |
| 12309 | |
| 12310 | // Valid casts involving fixed point types should be accounted for here. |
| 12311 | if (Source->isFixedPointType()) { |
| 12312 | if (Target->isUnsaturatedFixedPointType()) { |
| 12313 | Expr::EvalResult Result; |
| 12314 | if (E->EvaluateAsFixedPoint(Result, Ctx: Context, AllowSideEffects: Expr::SE_AllowSideEffects, |
| 12315 | InConstantContext: isConstantEvaluatedContext())) { |
| 12316 | llvm::APFixedPoint Value = Result.Val.getFixedPoint(); |
| 12317 | llvm::APFixedPoint MaxVal = Context.getFixedPointMax(Ty: T); |
| 12318 | llvm::APFixedPoint MinVal = Context.getFixedPointMin(Ty: T); |
| 12319 | if (Value > MaxVal || Value < MinVal) { |
| 12320 | DiagRuntimeBehavior(Loc: E->getExprLoc(), Statement: E, |
| 12321 | PD: PDiag(DiagID: diag::warn_impcast_fixed_point_range) |
| 12322 | << Value.toString() << T |
| 12323 | << E->getSourceRange() |
| 12324 | << clang::SourceRange(CC)); |
| 12325 | return; |
| 12326 | } |
| 12327 | } |
| 12328 | } else if (Target->isIntegerType()) { |
| 12329 | Expr::EvalResult Result; |
| 12330 | if (!isConstantEvaluatedContext() && |
| 12331 | E->EvaluateAsFixedPoint(Result, Ctx: Context, AllowSideEffects: Expr::SE_AllowSideEffects)) { |
| 12332 | llvm::APFixedPoint FXResult = Result.Val.getFixedPoint(); |
| 12333 | |
| 12334 | bool Overflowed; |
| 12335 | llvm::APSInt IntResult = FXResult.convertToInt( |
| 12336 | DstWidth: Context.getIntWidth(T), DstSign: Target->isSignedIntegerOrEnumerationType(), |
| 12337 | Overflow: &Overflowed); |
| 12338 | |
| 12339 | if (Overflowed) { |
| 12340 | DiagRuntimeBehavior(Loc: E->getExprLoc(), Statement: E, |
| 12341 | PD: PDiag(DiagID: diag::warn_impcast_fixed_point_range) |
| 12342 | << FXResult.toString() << T |
| 12343 | << E->getSourceRange() |
| 12344 | << clang::SourceRange(CC)); |
| 12345 | return; |
| 12346 | } |
| 12347 | } |
| 12348 | } |
| 12349 | } else if (Target->isUnsaturatedFixedPointType()) { |
| 12350 | if (Source->isIntegerType()) { |
| 12351 | Expr::EvalResult Result; |
| 12352 | if (!isConstantEvaluatedContext() && |
| 12353 | E->EvaluateAsInt(Result, Ctx: Context, AllowSideEffects: Expr::SE_AllowSideEffects)) { |
| 12354 | llvm::APSInt Value = Result.Val.getInt(); |
| 12355 | |
| 12356 | bool Overflowed; |
| 12357 | llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue( |
| 12358 | Value, DstFXSema: Context.getFixedPointSemantics(Ty: T), Overflow: &Overflowed); |
| 12359 | |
| 12360 | if (Overflowed) { |
| 12361 | DiagRuntimeBehavior(Loc: E->getExprLoc(), Statement: E, |
| 12362 | PD: PDiag(DiagID: diag::warn_impcast_fixed_point_range) |
| 12363 | << toString(I: Value, /*Radix=*/10) << T |
| 12364 | << E->getSourceRange() |
| 12365 | << clang::SourceRange(CC)); |
| 12366 | return; |
| 12367 | } |
| 12368 | } |
| 12369 | } |
| 12370 | } |
| 12371 | |
| 12372 | // If we are casting an integer type to a floating point type without |
| 12373 | // initialization-list syntax, we might lose accuracy if the floating |
| 12374 | // point type has a narrower significand than the integer type. |
| 12375 | if (SourceBT && TargetBT && SourceBT->isIntegerType() && |
| 12376 | TargetBT->isFloatingType() && !IsListInit) { |
| 12377 | // Determine the number of precision bits in the source integer type. |
| 12378 | std::optional<IntRange> SourceRange = |
| 12379 | TryGetExprRange(C&: Context, E, InConstantContext: isConstantEvaluatedContext(), |
| 12380 | /*Approximate=*/true); |
| 12381 | if (!SourceRange) |
| 12382 | return; |
| 12383 | unsigned int SourcePrecision = SourceRange->Width; |
| 12384 | |
| 12385 | // Determine the number of precision bits in the |
| 12386 | // target floating point type. |
| 12387 | unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision( |
| 12388 | Context.getFloatTypeSemantics(T: QualType(TargetBT, 0))); |
| 12389 | |
| 12390 | if (SourcePrecision > 0 && TargetPrecision > 0 && |
| 12391 | SourcePrecision > TargetPrecision) { |
| 12392 | |
| 12393 | if (std::optional<llvm::APSInt> SourceInt = |
| 12394 | E->getIntegerConstantExpr(Ctx: Context)) { |
| 12395 | // If the source integer is a constant, convert it to the target |
| 12396 | // floating point type. Issue a warning if the value changes |
| 12397 | // during the whole conversion. |
| 12398 | llvm::APFloat TargetFloatValue( |
| 12399 | Context.getFloatTypeSemantics(T: QualType(TargetBT, 0))); |
| 12400 | llvm::APFloat::opStatus ConversionStatus = |
| 12401 | TargetFloatValue.convertFromAPInt( |
| 12402 | Input: *SourceInt, IsSigned: SourceBT->isSignedInteger(), |
| 12403 | RM: llvm::APFloat::rmNearestTiesToEven); |
| 12404 | |
| 12405 | if (ConversionStatus != llvm::APFloat::opOK) { |
| 12406 | SmallString<32> PrettySourceValue; |
| 12407 | SourceInt->toString(Str&: PrettySourceValue, Radix: 10); |
| 12408 | SmallString<32> PrettyTargetValue; |
| 12409 | TargetFloatValue.toString(Str&: PrettyTargetValue, FormatPrecision: TargetPrecision); |
| 12410 | |
| 12411 | DiagRuntimeBehavior( |
| 12412 | Loc: E->getExprLoc(), Statement: E, |
| 12413 | PD: PDiag(DiagID: diag::warn_impcast_integer_float_precision_constant) |
| 12414 | << PrettySourceValue << PrettyTargetValue << E->getType() << T |
| 12415 | << E->getSourceRange() << clang::SourceRange(CC)); |
| 12416 | } |
| 12417 | } else { |
| 12418 | // Otherwise, the implicit conversion may lose precision. |
| 12419 | DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
| 12420 | diag: diag::warn_impcast_integer_float_precision); |
| 12421 | } |
| 12422 | } |
| 12423 | } |
| 12424 | |
| 12425 | DiagnoseNullConversion(S&: *this, E, T, CC); |
| 12426 | |
| 12427 | DiscardMisalignedMemberAddress(T: Target, E); |
| 12428 | |
| 12429 | if (Source->isUnicodeCharacterType() && Target->isUnicodeCharacterType()) { |
| 12430 | DiagnoseMixedUnicodeImplicitConversion(S&: *this, Source, Target, E, T, CC); |
| 12431 | return; |
| 12432 | } |
| 12433 | |
| 12434 | if (Target->isBooleanType()) |
| 12435 | DiagnoseIntInBoolContext(S&: *this, E); |
| 12436 | |
| 12437 | if (DiscardingCFIUncheckedCallee(From: QualType(Source, 0), To: QualType(Target, 0))) { |
| 12438 | Diag(Loc: CC, DiagID: diag::warn_cast_discards_cfi_unchecked_callee) |
| 12439 | << QualType(Source, 0) << QualType(Target, 0); |
| 12440 | } |
| 12441 | |
| 12442 | if (!Source->isIntegerType() || !Target->isIntegerType()) |
| 12443 | return; |
| 12444 | |
| 12445 | // TODO: remove this early return once the false positives for constant->bool |
| 12446 | // in templates, macros, etc, are reduced or removed. |
| 12447 | if (Target->isSpecificBuiltinType(K: BuiltinType::Bool)) |
| 12448 | return; |
| 12449 | |
| 12450 | if (ObjC().isSignedCharBool(Ty: T) && !Source->isCharType() && |
| 12451 | !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) { |
| 12452 | return ObjC().adornBoolConversionDiagWithTernaryFixit( |
| 12453 | SourceExpr: E, Builder: Diag(Loc: CC, DiagID: diag::warn_impcast_int_to_objc_signed_char_bool) |
| 12454 | << E->getType()); |
| 12455 | } |
| 12456 | std::optional<IntRange> LikelySourceRange = TryGetExprRange( |
| 12457 | C&: Context, E, InConstantContext: isConstantEvaluatedContext(), /*Approximate=*/true); |
| 12458 | if (!LikelySourceRange) |
| 12459 | return; |
| 12460 | |
| 12461 | IntRange SourceTypeRange = |
| 12462 | IntRange::forTargetOfCanonicalType(C&: Context, T: Source); |
| 12463 | IntRange TargetRange = IntRange::forTargetOfCanonicalType(C&: Context, T: Target); |
| 12464 | |
| 12465 | if (LikelySourceRange->Width > TargetRange.Width) { |
| 12466 | // If the source is a constant, use a default-on diagnostic. |
| 12467 | // TODO: this should happen for bitfield stores, too. |
| 12468 | Expr::EvalResult Result; |
| 12469 | if (E->EvaluateAsInt(Result, Ctx: Context, AllowSideEffects: Expr::SE_AllowSideEffects, |
| 12470 | InConstantContext: isConstantEvaluatedContext())) { |
| 12471 | llvm::APSInt Value(32); |
| 12472 | Value = Result.Val.getInt(); |
| 12473 | |
| 12474 | if (SourceMgr.isInSystemMacro(loc: CC)) |
| 12475 | return; |
| 12476 | |
| 12477 | std::string PrettySourceValue = toString(I: Value, Radix: 10); |
| 12478 | std::string PrettyTargetValue = PrettyPrintInRange(Value, Range: TargetRange); |
| 12479 | |
| 12480 | DiagRuntimeBehavior(Loc: E->getExprLoc(), Statement: E, |
| 12481 | PD: PDiag(DiagID: diag::warn_impcast_integer_precision_constant) |
| 12482 | << PrettySourceValue << PrettyTargetValue |
| 12483 | << E->getType() << T << E->getSourceRange() |
| 12484 | << SourceRange(CC)); |
| 12485 | return; |
| 12486 | } |
| 12487 | |
| 12488 | // People want to build with -Wshorten-64-to-32 and not -Wconversion. |
| 12489 | if (SourceMgr.isInSystemMacro(loc: CC)) |
| 12490 | return; |
| 12491 | |
| 12492 | if (const auto *UO = dyn_cast<UnaryOperator>(Val: E)) { |
| 12493 | if (UO->getOpcode() == UO_Minus) |
| 12494 | return DiagnoseImpCast( |
| 12495 | S&: *this, E, T, CContext: CC, diag: diag::warn_impcast_integer_precision_on_negation); |
| 12496 | } |
| 12497 | |
| 12498 | if (TargetRange.Width == 32 && Context.getIntWidth(T: E->getType()) == 64) |
| 12499 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, diag: diag::warn_impcast_integer_64_32, |
| 12500 | /* pruneControlFlow */ PruneControlFlow: true); |
| 12501 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
| 12502 | diag: diag::warn_impcast_integer_precision); |
| 12503 | } |
| 12504 | |
| 12505 | if (TargetRange.Width > SourceTypeRange.Width) { |
| 12506 | if (auto *UO = dyn_cast<UnaryOperator>(Val: E)) |
| 12507 | if (UO->getOpcode() == UO_Minus) |
| 12508 | if (Source->isUnsignedIntegerType()) { |
| 12509 | if (Target->isUnsignedIntegerType()) |
| 12510 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
| 12511 | diag: diag::warn_impcast_high_order_zero_bits); |
| 12512 | if (Target->isSignedIntegerType()) |
| 12513 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
| 12514 | diag: diag::warn_impcast_nonnegative_result); |
| 12515 | } |
| 12516 | } |
| 12517 | |
| 12518 | if (TargetRange.Width == LikelySourceRange->Width && |
| 12519 | !TargetRange.NonNegative && LikelySourceRange->NonNegative && |
| 12520 | Source->isSignedIntegerType()) { |
| 12521 | // Warn when doing a signed to signed conversion, warn if the positive |
| 12522 | // source value is exactly the width of the target type, which will |
| 12523 | // cause a negative value to be stored. |
| 12524 | |
| 12525 | Expr::EvalResult Result; |
| 12526 | if (E->EvaluateAsInt(Result, Ctx: Context, AllowSideEffects: Expr::SE_AllowSideEffects) && |
| 12527 | !SourceMgr.isInSystemMacro(loc: CC)) { |
| 12528 | llvm::APSInt Value = Result.Val.getInt(); |
| 12529 | if (isSameWidthConstantConversion(S&: *this, E, T, CC)) { |
| 12530 | std::string PrettySourceValue = toString(I: Value, Radix: 10); |
| 12531 | std::string PrettyTargetValue = PrettyPrintInRange(Value, Range: TargetRange); |
| 12532 | |
| 12533 | Diag(Loc: E->getExprLoc(), |
| 12534 | PD: PDiag(DiagID: diag::warn_impcast_integer_precision_constant) |
| 12535 | << PrettySourceValue << PrettyTargetValue << E->getType() << T |
| 12536 | << E->getSourceRange() << SourceRange(CC)); |
| 12537 | return; |
| 12538 | } |
| 12539 | } |
| 12540 | |
| 12541 | // Fall through for non-constants to give a sign conversion warning. |
| 12542 | } |
| 12543 | |
| 12544 | if ((!isa<EnumType>(Val: Target) || !isa<EnumType>(Val: Source)) && |
| 12545 | ((TargetRange.NonNegative && !LikelySourceRange->NonNegative) || |
| 12546 | (!TargetRange.NonNegative && LikelySourceRange->NonNegative && |
| 12547 | LikelySourceRange->Width == TargetRange.Width))) { |
| 12548 | if (SourceMgr.isInSystemMacro(loc: CC)) |
| 12549 | return; |
| 12550 | |
| 12551 | if (SourceBT && SourceBT->isInteger() && TargetBT && |
| 12552 | TargetBT->isInteger() && |
| 12553 | Source->isSignedIntegerType() == Target->isSignedIntegerType()) { |
| 12554 | return; |
| 12555 | } |
| 12556 | |
| 12557 | unsigned DiagID = diag::warn_impcast_integer_sign; |
| 12558 | |
| 12559 | // Traditionally, gcc has warned about this under -Wsign-compare. |
| 12560 | // We also want to warn about it in -Wconversion. |
| 12561 | // So if -Wconversion is off, use a completely identical diagnostic |
| 12562 | // in the sign-compare group. |
| 12563 | // The conditional-checking code will |
| 12564 | if (ICContext) { |
| 12565 | DiagID = diag::warn_impcast_integer_sign_conditional; |
| 12566 | *ICContext = true; |
| 12567 | } |
| 12568 | |
| 12569 | DiagnoseImpCast(S&: *this, E, T, CContext: CC, diag: DiagID); |
| 12570 | } |
| 12571 | |
| 12572 | // If we're implicitly converting from an integer into an enumeration, that |
| 12573 | // is valid in C but invalid in C++. |
| 12574 | QualType SourceType = E->getEnumCoercedType(Ctx: Context); |
| 12575 | const BuiltinType *CoercedSourceBT = SourceType->getAs<BuiltinType>(); |
| 12576 | if (CoercedSourceBT && CoercedSourceBT->isInteger() && isa<EnumType>(Val: Target)) |
| 12577 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, diag: diag::warn_impcast_int_to_enum); |
| 12578 | |
| 12579 | // Diagnose conversions between different enumeration types. |
| 12580 | // In C, we pretend that the type of an EnumConstantDecl is its enumeration |
| 12581 | // type, to give us better diagnostics. |
| 12582 | Source = Context.getCanonicalType(T: SourceType).getTypePtr(); |
| 12583 | |
| 12584 | if (const EnumType *SourceEnum = Source->getAs<EnumType>()) |
| 12585 | if (const EnumType *TargetEnum = Target->getAs<EnumType>()) |
| 12586 | if (SourceEnum->getDecl()->hasNameForLinkage() && |
| 12587 | TargetEnum->getDecl()->hasNameForLinkage() && |
| 12588 | SourceEnum != TargetEnum) { |
| 12589 | if (SourceMgr.isInSystemMacro(loc: CC)) |
| 12590 | return; |
| 12591 | |
| 12592 | return DiagnoseImpCast(S&: *this, E, SourceType, T, CContext: CC, |
| 12593 | diag: diag::warn_impcast_different_enum_types); |
| 12594 | } |
| 12595 | } |
| 12596 | |
| 12597 | static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, |
| 12598 | SourceLocation CC, QualType T); |
| 12599 | |
| 12600 | static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, |
| 12601 | SourceLocation CC, bool &ICContext) { |
| 12602 | E = E->IgnoreParenImpCasts(); |
| 12603 | // Diagnose incomplete type for second or third operand in C. |
| 12604 | if (!S.getLangOpts().CPlusPlus && E->getType()->isRecordType()) |
| 12605 | S.RequireCompleteExprType(E, DiagID: diag::err_incomplete_type); |
| 12606 | |
| 12607 | if (auto *CO = dyn_cast<AbstractConditionalOperator>(Val: E)) |
| 12608 | return CheckConditionalOperator(S, E: CO, CC, T); |
| 12609 | |
| 12610 | AnalyzeImplicitConversions(S, E, CC); |
| 12611 | if (E->getType() != T) |
| 12612 | return S.CheckImplicitConversion(E, T, CC, ICContext: &ICContext); |
| 12613 | } |
| 12614 | |
| 12615 | static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, |
| 12616 | SourceLocation CC, QualType T) { |
| 12617 | AnalyzeImplicitConversions(S, E: E->getCond(), CC: E->getQuestionLoc()); |
| 12618 | |
| 12619 | Expr *TrueExpr = E->getTrueExpr(); |
| 12620 | if (auto *BCO = dyn_cast<BinaryConditionalOperator>(Val: E)) |
| 12621 | TrueExpr = BCO->getCommon(); |
| 12622 | |
| 12623 | bool Suspicious = false; |
| 12624 | CheckConditionalOperand(S, E: TrueExpr, T, CC, ICContext&: Suspicious); |
| 12625 | CheckConditionalOperand(S, E: E->getFalseExpr(), T, CC, ICContext&: Suspicious); |
| 12626 | |
| 12627 | if (T->isBooleanType()) |
| 12628 | DiagnoseIntInBoolContext(S, E); |
| 12629 | |
| 12630 | // If -Wconversion would have warned about either of the candidates |
| 12631 | // for a signedness conversion to the context type... |
| 12632 | if (!Suspicious) return; |
| 12633 | |
| 12634 | // ...but it's currently ignored... |
| 12635 | if (!S.Diags.isIgnored(DiagID: diag::warn_impcast_integer_sign_conditional, Loc: CC)) |
| 12636 | return; |
| 12637 | |
| 12638 | // ...then check whether it would have warned about either of the |
| 12639 | // candidates for a signedness conversion to the condition type. |
| 12640 | if (E->getType() == T) return; |
| 12641 | |
| 12642 | Suspicious = false; |
| 12643 | S.CheckImplicitConversion(E: TrueExpr->IgnoreParenImpCasts(), T: E->getType(), CC, |
| 12644 | ICContext: &Suspicious); |
| 12645 | if (!Suspicious) |
| 12646 | S.CheckImplicitConversion(E: E->getFalseExpr()->IgnoreParenImpCasts(), |
| 12647 | T: E->getType(), CC, ICContext: &Suspicious); |
| 12648 | } |
| 12649 | |
| 12650 | /// Check conversion of given expression to boolean. |
| 12651 | /// Input argument E is a logical expression. |
| 12652 | static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { |
| 12653 | // Run the bool-like conversion checks only for C since there bools are |
| 12654 | // still not used as the return type from "boolean" operators or as the input |
| 12655 | // type for conditional operators. |
| 12656 | if (S.getLangOpts().CPlusPlus) |
| 12657 | return; |
| 12658 | if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) |
| 12659 | return; |
| 12660 | S.CheckImplicitConversion(E: E->IgnoreParenImpCasts(), T: S.Context.BoolTy, CC); |
| 12661 | } |
| 12662 | |
| 12663 | namespace { |
| 12664 | struct AnalyzeImplicitConversionsWorkItem { |
| 12665 | Expr *E; |
| 12666 | SourceLocation CC; |
| 12667 | bool IsListInit; |
| 12668 | }; |
| 12669 | } |
| 12670 | |
| 12671 | static void CheckCommaOperand( |
| 12672 | Sema &S, Expr *E, QualType T, SourceLocation CC, |
| 12673 | bool , |
| 12674 | llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) { |
| 12675 | E = E->IgnoreParenImpCasts(); |
| 12676 | WorkList.push_back(Elt: {.E: E, .CC: CC, .IsListInit: false}); |
| 12677 | |
| 12678 | if (ExtraCheckForImplicitConversion && E->getType() != T) |
| 12679 | S.CheckImplicitConversion(E, T, CC); |
| 12680 | } |
| 12681 | |
| 12682 | /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions |
| 12683 | /// that should be visited are added to WorkList. |
| 12684 | static void AnalyzeImplicitConversions( |
| 12685 | Sema &S, AnalyzeImplicitConversionsWorkItem Item, |
| 12686 | llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) { |
| 12687 | Expr *OrigE = Item.E; |
| 12688 | SourceLocation CC = Item.CC; |
| 12689 | |
| 12690 | QualType T = OrigE->getType(); |
| 12691 | Expr *E = OrigE->IgnoreParenImpCasts(); |
| 12692 | |
| 12693 | // Propagate whether we are in a C++ list initialization expression. |
| 12694 | // If so, we do not issue warnings for implicit int-float conversion |
| 12695 | // precision loss, because C++11 narrowing already handles it. |
| 12696 | // |
| 12697 | // HLSL's initialization lists are special, so they shouldn't observe the C++ |
| 12698 | // behavior here. |
| 12699 | bool IsListInit = |
| 12700 | Item.IsListInit || (isa<InitListExpr>(Val: OrigE) && |
| 12701 | S.getLangOpts().CPlusPlus && !S.getLangOpts().HLSL); |
| 12702 | |
| 12703 | if (E->isTypeDependent() || E->isValueDependent()) |
| 12704 | return; |
| 12705 | |
| 12706 | Expr *SourceExpr = E; |
| 12707 | // Examine, but don't traverse into the source expression of an |
| 12708 | // OpaqueValueExpr, since it may have multiple parents and we don't want to |
| 12709 | // emit duplicate diagnostics. Its fine to examine the form or attempt to |
| 12710 | // evaluate it in the context of checking the specific conversion to T though. |
| 12711 | if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E)) |
| 12712 | if (auto *Src = OVE->getSourceExpr()) |
| 12713 | SourceExpr = Src; |
| 12714 | |
| 12715 | if (const auto *UO = dyn_cast<UnaryOperator>(Val: SourceExpr)) |
| 12716 | if (UO->getOpcode() == UO_Not && |
| 12717 | UO->getSubExpr()->isKnownToHaveBooleanValue()) |
| 12718 | S.Diag(Loc: UO->getBeginLoc(), DiagID: diag::warn_bitwise_negation_bool) |
| 12719 | << OrigE->getSourceRange() << T->isBooleanType() |
| 12720 | << FixItHint::CreateReplacement(RemoveRange: UO->getBeginLoc(), Code: "!" ); |
| 12721 | |
| 12722 | if (auto *BO = dyn_cast<BinaryOperator>(Val: SourceExpr)) { |
| 12723 | if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) && |
| 12724 | BO->getLHS()->isKnownToHaveBooleanValue() && |
| 12725 | BO->getRHS()->isKnownToHaveBooleanValue() && |
| 12726 | BO->getLHS()->HasSideEffects(Ctx: S.Context) && |
| 12727 | BO->getRHS()->HasSideEffects(Ctx: S.Context)) { |
| 12728 | SourceManager &SM = S.getSourceManager(); |
| 12729 | const LangOptions &LO = S.getLangOpts(); |
| 12730 | SourceLocation BLoc = BO->getOperatorLoc(); |
| 12731 | SourceLocation ELoc = Lexer::getLocForEndOfToken(Loc: BLoc, Offset: 0, SM, LangOpts: LO); |
| 12732 | StringRef SR = clang::Lexer::getSourceText( |
| 12733 | Range: clang::CharSourceRange::getTokenRange(B: BLoc, E: ELoc), SM, LangOpts: LO); |
| 12734 | // To reduce false positives, only issue the diagnostic if the operator |
| 12735 | // is explicitly spelled as a punctuator. This suppresses the diagnostic |
| 12736 | // when using 'bitand' or 'bitor' either as keywords in C++ or as macros |
| 12737 | // in C, along with other macro spellings the user might invent. |
| 12738 | if (SR.str() == "&" || SR.str() == "|" ) { |
| 12739 | |
| 12740 | S.Diag(Loc: BO->getBeginLoc(), DiagID: diag::warn_bitwise_instead_of_logical) |
| 12741 | << (BO->getOpcode() == BO_And ? "&" : "|" ) |
| 12742 | << OrigE->getSourceRange() |
| 12743 | << FixItHint::CreateReplacement( |
| 12744 | RemoveRange: BO->getOperatorLoc(), |
| 12745 | Code: (BO->getOpcode() == BO_And ? "&&" : "||" )); |
| 12746 | S.Diag(Loc: BO->getBeginLoc(), DiagID: diag::note_cast_operand_to_int); |
| 12747 | } |
| 12748 | } else if (BO->isCommaOp() && !S.getLangOpts().CPlusPlus) { |
| 12749 | /// Analyze the given comma operator. The basic idea behind the analysis |
| 12750 | /// is to analyze the left and right operands slightly differently. The |
| 12751 | /// left operand needs to check whether the operand itself has an implicit |
| 12752 | /// conversion, but not whether the left operand induces an implicit |
| 12753 | /// conversion for the entire comma expression itself. This is similar to |
| 12754 | /// how CheckConditionalOperand behaves; it's as-if the correct operand |
| 12755 | /// were directly used for the implicit conversion check. |
| 12756 | CheckCommaOperand(S, E: BO->getLHS(), T, CC: BO->getOperatorLoc(), |
| 12757 | /*ExtraCheckForImplicitConversion=*/false, WorkList); |
| 12758 | CheckCommaOperand(S, E: BO->getRHS(), T, CC: BO->getOperatorLoc(), |
| 12759 | /*ExtraCheckForImplicitConversion=*/true, WorkList); |
| 12760 | return; |
| 12761 | } |
| 12762 | } |
| 12763 | |
| 12764 | // For conditional operators, we analyze the arguments as if they |
| 12765 | // were being fed directly into the output. |
| 12766 | if (auto *CO = dyn_cast<AbstractConditionalOperator>(Val: SourceExpr)) { |
| 12767 | CheckConditionalOperator(S, E: CO, CC, T); |
| 12768 | return; |
| 12769 | } |
| 12770 | |
| 12771 | // Check implicit argument conversions for function calls. |
| 12772 | if (const auto *Call = dyn_cast<CallExpr>(Val: SourceExpr)) |
| 12773 | CheckImplicitArgumentConversions(S, TheCall: Call, CC); |
| 12774 | |
| 12775 | // Go ahead and check any implicit conversions we might have skipped. |
| 12776 | // The non-canonical typecheck is just an optimization; |
| 12777 | // CheckImplicitConversion will filter out dead implicit conversions. |
| 12778 | if (SourceExpr->getType() != T) |
| 12779 | S.CheckImplicitConversion(E: SourceExpr, T, CC, ICContext: nullptr, IsListInit); |
| 12780 | |
| 12781 | // Now continue drilling into this expression. |
| 12782 | |
| 12783 | if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Val: E)) { |
| 12784 | // The bound subexpressions in a PseudoObjectExpr are not reachable |
| 12785 | // as transitive children. |
| 12786 | // FIXME: Use a more uniform representation for this. |
| 12787 | for (auto *SE : POE->semantics()) |
| 12788 | if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: SE)) |
| 12789 | WorkList.push_back(Elt: {.E: OVE->getSourceExpr(), .CC: CC, .IsListInit: IsListInit}); |
| 12790 | } |
| 12791 | |
| 12792 | // Skip past explicit casts. |
| 12793 | if (auto *CE = dyn_cast<ExplicitCastExpr>(Val: E)) { |
| 12794 | E = CE->getSubExpr()->IgnoreParenImpCasts(); |
| 12795 | if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) |
| 12796 | S.Diag(Loc: E->getBeginLoc(), DiagID: diag::warn_atomic_implicit_seq_cst); |
| 12797 | WorkList.push_back(Elt: {.E: E, .CC: CC, .IsListInit: IsListInit}); |
| 12798 | return; |
| 12799 | } |
| 12800 | |
| 12801 | if (auto *OutArgE = dyn_cast<HLSLOutArgExpr>(Val: E)) { |
| 12802 | WorkList.push_back(Elt: {.E: OutArgE->getArgLValue(), .CC: CC, .IsListInit: IsListInit}); |
| 12803 | // The base expression is only used to initialize the parameter for |
| 12804 | // arguments to `inout` parameters, so we only traverse down the base |
| 12805 | // expression for `inout` cases. |
| 12806 | if (OutArgE->isInOut()) |
| 12807 | WorkList.push_back( |
| 12808 | Elt: {.E: OutArgE->getCastedTemporary()->getSourceExpr(), .CC: CC, .IsListInit: IsListInit}); |
| 12809 | WorkList.push_back(Elt: {.E: OutArgE->getWritebackCast(), .CC: CC, .IsListInit: IsListInit}); |
| 12810 | return; |
| 12811 | } |
| 12812 | |
| 12813 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 12814 | // Do a somewhat different check with comparison operators. |
| 12815 | if (BO->isComparisonOp()) |
| 12816 | return AnalyzeComparison(S, E: BO); |
| 12817 | |
| 12818 | // And with simple assignments. |
| 12819 | if (BO->getOpcode() == BO_Assign) |
| 12820 | return AnalyzeAssignment(S, E: BO); |
| 12821 | // And with compound assignments. |
| 12822 | if (BO->isAssignmentOp()) |
| 12823 | return AnalyzeCompoundAssignment(S, E: BO); |
| 12824 | } |
| 12825 | |
| 12826 | // These break the otherwise-useful invariant below. Fortunately, |
| 12827 | // we don't really need to recurse into them, because any internal |
| 12828 | // expressions should have been analyzed already when they were |
| 12829 | // built into statements. |
| 12830 | if (isa<StmtExpr>(Val: E)) return; |
| 12831 | |
| 12832 | // Don't descend into unevaluated contexts. |
| 12833 | if (isa<UnaryExprOrTypeTraitExpr>(Val: E)) return; |
| 12834 | |
| 12835 | // Now just recurse over the expression's children. |
| 12836 | CC = E->getExprLoc(); |
| 12837 | BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E); |
| 12838 | bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; |
| 12839 | for (Stmt *SubStmt : E->children()) { |
| 12840 | Expr *ChildExpr = dyn_cast_or_null<Expr>(Val: SubStmt); |
| 12841 | if (!ChildExpr) |
| 12842 | continue; |
| 12843 | |
| 12844 | if (auto *CSE = dyn_cast<CoroutineSuspendExpr>(Val: E)) |
| 12845 | if (ChildExpr == CSE->getOperand()) |
| 12846 | // Do not recurse over a CoroutineSuspendExpr's operand. |
| 12847 | // The operand is also a subexpression of getCommonExpr(), and |
| 12848 | // recursing into it directly would produce duplicate diagnostics. |
| 12849 | continue; |
| 12850 | |
| 12851 | if (IsLogicalAndOperator && |
| 12852 | isa<StringLiteral>(Val: ChildExpr->IgnoreParenImpCasts())) |
| 12853 | // Ignore checking string literals that are in logical and operators. |
| 12854 | // This is a common pattern for asserts. |
| 12855 | continue; |
| 12856 | WorkList.push_back(Elt: {.E: ChildExpr, .CC: CC, .IsListInit: IsListInit}); |
| 12857 | } |
| 12858 | |
| 12859 | if (BO && BO->isLogicalOp()) { |
| 12860 | Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); |
| 12861 | if (!IsLogicalAndOperator || !isa<StringLiteral>(Val: SubExpr)) |
| 12862 | ::CheckBoolLikeConversion(S, E: SubExpr, CC: BO->getExprLoc()); |
| 12863 | |
| 12864 | SubExpr = BO->getRHS()->IgnoreParenImpCasts(); |
| 12865 | if (!IsLogicalAndOperator || !isa<StringLiteral>(Val: SubExpr)) |
| 12866 | ::CheckBoolLikeConversion(S, E: SubExpr, CC: BO->getExprLoc()); |
| 12867 | } |
| 12868 | |
| 12869 | if (const UnaryOperator *U = dyn_cast<UnaryOperator>(Val: E)) { |
| 12870 | if (U->getOpcode() == UO_LNot) { |
| 12871 | ::CheckBoolLikeConversion(S, E: U->getSubExpr(), CC); |
| 12872 | } else if (U->getOpcode() != UO_AddrOf) { |
| 12873 | if (U->getSubExpr()->getType()->isAtomicType()) |
| 12874 | S.Diag(Loc: U->getSubExpr()->getBeginLoc(), |
| 12875 | DiagID: diag::warn_atomic_implicit_seq_cst); |
| 12876 | } |
| 12877 | } |
| 12878 | } |
| 12879 | |
| 12880 | /// AnalyzeImplicitConversions - Find and report any interesting |
| 12881 | /// implicit conversions in the given expression. There are a couple |
| 12882 | /// of competing diagnostics here, -Wconversion and -Wsign-compare. |
| 12883 | static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC, |
| 12884 | bool IsListInit/*= false*/) { |
| 12885 | llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList; |
| 12886 | WorkList.push_back(Elt: {.E: OrigE, .CC: CC, .IsListInit: IsListInit}); |
| 12887 | while (!WorkList.empty()) |
| 12888 | AnalyzeImplicitConversions(S, Item: WorkList.pop_back_val(), WorkList); |
| 12889 | } |
| 12890 | |
| 12891 | // Helper function for Sema::DiagnoseAlwaysNonNullPointer. |
| 12892 | // Returns true when emitting a warning about taking the address of a reference. |
| 12893 | static bool CheckForReference(Sema &SemaRef, const Expr *E, |
| 12894 | const PartialDiagnostic &PD) { |
| 12895 | E = E->IgnoreParenImpCasts(); |
| 12896 | |
| 12897 | const FunctionDecl *FD = nullptr; |
| 12898 | |
| 12899 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) { |
| 12900 | if (!DRE->getDecl()->getType()->isReferenceType()) |
| 12901 | return false; |
| 12902 | } else if (const MemberExpr *M = dyn_cast<MemberExpr>(Val: E)) { |
| 12903 | if (!M->getMemberDecl()->getType()->isReferenceType()) |
| 12904 | return false; |
| 12905 | } else if (const CallExpr *Call = dyn_cast<CallExpr>(Val: E)) { |
| 12906 | if (!Call->getCallReturnType(Ctx: SemaRef.Context)->isReferenceType()) |
| 12907 | return false; |
| 12908 | FD = Call->getDirectCallee(); |
| 12909 | } else { |
| 12910 | return false; |
| 12911 | } |
| 12912 | |
| 12913 | SemaRef.Diag(Loc: E->getExprLoc(), PD); |
| 12914 | |
| 12915 | // If possible, point to location of function. |
| 12916 | if (FD) { |
| 12917 | SemaRef.Diag(Loc: FD->getLocation(), DiagID: diag::note_reference_is_return_value) << FD; |
| 12918 | } |
| 12919 | |
| 12920 | return true; |
| 12921 | } |
| 12922 | |
| 12923 | // Returns true if the SourceLocation is expanded from any macro body. |
| 12924 | // Returns false if the SourceLocation is invalid, is from not in a macro |
| 12925 | // expansion, or is from expanded from a top-level macro argument. |
| 12926 | static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { |
| 12927 | if (Loc.isInvalid()) |
| 12928 | return false; |
| 12929 | |
| 12930 | while (Loc.isMacroID()) { |
| 12931 | if (SM.isMacroBodyExpansion(Loc)) |
| 12932 | return true; |
| 12933 | Loc = SM.getImmediateMacroCallerLoc(Loc); |
| 12934 | } |
| 12935 | |
| 12936 | return false; |
| 12937 | } |
| 12938 | |
| 12939 | void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, |
| 12940 | Expr::NullPointerConstantKind NullKind, |
| 12941 | bool IsEqual, SourceRange Range) { |
| 12942 | if (!E) |
| 12943 | return; |
| 12944 | |
| 12945 | // Don't warn inside macros. |
| 12946 | if (E->getExprLoc().isMacroID()) { |
| 12947 | const SourceManager &SM = getSourceManager(); |
| 12948 | if (IsInAnyMacroBody(SM, Loc: E->getExprLoc()) || |
| 12949 | IsInAnyMacroBody(SM, Loc: Range.getBegin())) |
| 12950 | return; |
| 12951 | } |
| 12952 | E = E->IgnoreImpCasts(); |
| 12953 | |
| 12954 | const bool IsCompare = NullKind != Expr::NPCK_NotNull; |
| 12955 | |
| 12956 | if (isa<CXXThisExpr>(Val: E)) { |
| 12957 | unsigned DiagID = IsCompare ? diag::warn_this_null_compare |
| 12958 | : diag::warn_this_bool_conversion; |
| 12959 | Diag(Loc: E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; |
| 12960 | return; |
| 12961 | } |
| 12962 | |
| 12963 | bool IsAddressOf = false; |
| 12964 | |
| 12965 | if (auto *UO = dyn_cast<UnaryOperator>(Val: E->IgnoreParens())) { |
| 12966 | if (UO->getOpcode() != UO_AddrOf) |
| 12967 | return; |
| 12968 | IsAddressOf = true; |
| 12969 | E = UO->getSubExpr(); |
| 12970 | } |
| 12971 | |
| 12972 | if (IsAddressOf) { |
| 12973 | unsigned DiagID = IsCompare |
| 12974 | ? diag::warn_address_of_reference_null_compare |
| 12975 | : diag::warn_address_of_reference_bool_conversion; |
| 12976 | PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range |
| 12977 | << IsEqual; |
| 12978 | if (CheckForReference(SemaRef&: *this, E, PD)) { |
| 12979 | return; |
| 12980 | } |
| 12981 | } |
| 12982 | |
| 12983 | auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { |
| 12984 | bool IsParam = isa<NonNullAttr>(Val: NonnullAttr); |
| 12985 | std::string Str; |
| 12986 | llvm::raw_string_ostream S(Str); |
| 12987 | E->printPretty(OS&: S, Helper: nullptr, Policy: getPrintingPolicy()); |
| 12988 | unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare |
| 12989 | : diag::warn_cast_nonnull_to_bool; |
| 12990 | Diag(Loc: E->getExprLoc(), DiagID) << IsParam << S.str() |
| 12991 | << E->getSourceRange() << Range << IsEqual; |
| 12992 | Diag(Loc: NonnullAttr->getLocation(), DiagID: diag::note_declared_nonnull) << IsParam; |
| 12993 | }; |
| 12994 | |
| 12995 | // If we have a CallExpr that is tagged with returns_nonnull, we can complain. |
| 12996 | if (auto *Call = dyn_cast<CallExpr>(Val: E->IgnoreParenImpCasts())) { |
| 12997 | if (auto *Callee = Call->getDirectCallee()) { |
| 12998 | if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { |
| 12999 | ComplainAboutNonnullParamOrCall(A); |
| 13000 | return; |
| 13001 | } |
| 13002 | } |
| 13003 | } |
| 13004 | |
| 13005 | // Complain if we are converting a lambda expression to a boolean value |
| 13006 | // outside of instantiation. |
| 13007 | if (!inTemplateInstantiation()) { |
| 13008 | if (const auto *MCallExpr = dyn_cast<CXXMemberCallExpr>(Val: E)) { |
| 13009 | if (const auto *MRecordDecl = MCallExpr->getRecordDecl(); |
| 13010 | MRecordDecl && MRecordDecl->isLambda()) { |
| 13011 | Diag(Loc: E->getExprLoc(), DiagID: diag::warn_impcast_pointer_to_bool) |
| 13012 | << /*LambdaPointerConversionOperatorType=*/3 |
| 13013 | << MRecordDecl->getSourceRange() << Range << IsEqual; |
| 13014 | return; |
| 13015 | } |
| 13016 | } |
| 13017 | } |
| 13018 | |
| 13019 | // Expect to find a single Decl. Skip anything more complicated. |
| 13020 | ValueDecl *D = nullptr; |
| 13021 | if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(Val: E)) { |
| 13022 | D = R->getDecl(); |
| 13023 | } else if (MemberExpr *M = dyn_cast<MemberExpr>(Val: E)) { |
| 13024 | D = M->getMemberDecl(); |
| 13025 | } |
| 13026 | |
| 13027 | // Weak Decls can be null. |
| 13028 | if (!D || D->isWeak()) |
| 13029 | return; |
| 13030 | |
| 13031 | // Check for parameter decl with nonnull attribute |
| 13032 | if (const auto* PV = dyn_cast<ParmVarDecl>(Val: D)) { |
| 13033 | if (getCurFunction() && |
| 13034 | !getCurFunction()->ModifiedNonNullParams.count(Ptr: PV)) { |
| 13035 | if (const Attr *A = PV->getAttr<NonNullAttr>()) { |
| 13036 | ComplainAboutNonnullParamOrCall(A); |
| 13037 | return; |
| 13038 | } |
| 13039 | |
| 13040 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: PV->getDeclContext())) { |
| 13041 | // Skip function template not specialized yet. |
| 13042 | if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) |
| 13043 | return; |
| 13044 | auto ParamIter = llvm::find(Range: FD->parameters(), Val: PV); |
| 13045 | assert(ParamIter != FD->param_end()); |
| 13046 | unsigned ParamNo = std::distance(first: FD->param_begin(), last: ParamIter); |
| 13047 | |
| 13048 | for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { |
| 13049 | if (!NonNull->args_size()) { |
| 13050 | ComplainAboutNonnullParamOrCall(NonNull); |
| 13051 | return; |
| 13052 | } |
| 13053 | |
| 13054 | for (const ParamIdx &ArgNo : NonNull->args()) { |
| 13055 | if (ArgNo.getASTIndex() == ParamNo) { |
| 13056 | ComplainAboutNonnullParamOrCall(NonNull); |
| 13057 | return; |
| 13058 | } |
| 13059 | } |
| 13060 | } |
| 13061 | } |
| 13062 | } |
| 13063 | } |
| 13064 | |
| 13065 | QualType T = D->getType(); |
| 13066 | const bool IsArray = T->isArrayType(); |
| 13067 | const bool IsFunction = T->isFunctionType(); |
| 13068 | |
| 13069 | // Address of function is used to silence the function warning. |
| 13070 | if (IsAddressOf && IsFunction) { |
| 13071 | return; |
| 13072 | } |
| 13073 | |
| 13074 | // Found nothing. |
| 13075 | if (!IsAddressOf && !IsFunction && !IsArray) |
| 13076 | return; |
| 13077 | |
| 13078 | // Pretty print the expression for the diagnostic. |
| 13079 | std::string Str; |
| 13080 | llvm::raw_string_ostream S(Str); |
| 13081 | E->printPretty(OS&: S, Helper: nullptr, Policy: getPrintingPolicy()); |
| 13082 | |
| 13083 | unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare |
| 13084 | : diag::warn_impcast_pointer_to_bool; |
| 13085 | enum { |
| 13086 | AddressOf, |
| 13087 | FunctionPointer, |
| 13088 | ArrayPointer |
| 13089 | } DiagType; |
| 13090 | if (IsAddressOf) |
| 13091 | DiagType = AddressOf; |
| 13092 | else if (IsFunction) |
| 13093 | DiagType = FunctionPointer; |
| 13094 | else if (IsArray) |
| 13095 | DiagType = ArrayPointer; |
| 13096 | else |
| 13097 | llvm_unreachable("Could not determine diagnostic." ); |
| 13098 | Diag(Loc: E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() |
| 13099 | << Range << IsEqual; |
| 13100 | |
| 13101 | if (!IsFunction) |
| 13102 | return; |
| 13103 | |
| 13104 | // Suggest '&' to silence the function warning. |
| 13105 | Diag(Loc: E->getExprLoc(), DiagID: diag::note_function_warning_silence) |
| 13106 | << FixItHint::CreateInsertion(InsertionLoc: E->getBeginLoc(), Code: "&" ); |
| 13107 | |
| 13108 | // Check to see if '()' fixit should be emitted. |
| 13109 | QualType ReturnType; |
| 13110 | UnresolvedSet<4> NonTemplateOverloads; |
| 13111 | tryExprAsCall(E&: *E, ZeroArgCallReturnTy&: ReturnType, NonTemplateOverloads); |
| 13112 | if (ReturnType.isNull()) |
| 13113 | return; |
| 13114 | |
| 13115 | if (IsCompare) { |
| 13116 | // There are two cases here. If there is null constant, the only suggest |
| 13117 | // for a pointer return type. If the null is 0, then suggest if the return |
| 13118 | // type is a pointer or an integer type. |
| 13119 | if (!ReturnType->isPointerType()) { |
| 13120 | if (NullKind == Expr::NPCK_ZeroExpression || |
| 13121 | NullKind == Expr::NPCK_ZeroLiteral) { |
| 13122 | if (!ReturnType->isIntegerType()) |
| 13123 | return; |
| 13124 | } else { |
| 13125 | return; |
| 13126 | } |
| 13127 | } |
| 13128 | } else { // !IsCompare |
| 13129 | // For function to bool, only suggest if the function pointer has bool |
| 13130 | // return type. |
| 13131 | if (!ReturnType->isSpecificBuiltinType(K: BuiltinType::Bool)) |
| 13132 | return; |
| 13133 | } |
| 13134 | Diag(Loc: E->getExprLoc(), DiagID: diag::note_function_to_function_call) |
| 13135 | << FixItHint::CreateInsertion(InsertionLoc: getLocForEndOfToken(Loc: E->getEndLoc()), Code: "()" ); |
| 13136 | } |
| 13137 | |
| 13138 | void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { |
| 13139 | // Don't diagnose in unevaluated contexts. |
| 13140 | if (isUnevaluatedContext()) |
| 13141 | return; |
| 13142 | |
| 13143 | // Don't diagnose for value- or type-dependent expressions. |
| 13144 | if (E->isTypeDependent() || E->isValueDependent()) |
| 13145 | return; |
| 13146 | |
| 13147 | // Check for array bounds violations in cases where the check isn't triggered |
| 13148 | // elsewhere for other Expr types (like BinaryOperators), e.g. when an |
| 13149 | // ArraySubscriptExpr is on the RHS of a variable initialization. |
| 13150 | CheckArrayAccess(E); |
| 13151 | |
| 13152 | // This is not the right CC for (e.g.) a variable initialization. |
| 13153 | AnalyzeImplicitConversions(S&: *this, OrigE: E, CC); |
| 13154 | } |
| 13155 | |
| 13156 | void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { |
| 13157 | ::CheckBoolLikeConversion(S&: *this, E, CC); |
| 13158 | } |
| 13159 | |
| 13160 | void Sema::CheckForIntOverflow (const Expr *E) { |
| 13161 | // Use a work list to deal with nested struct initializers. |
| 13162 | SmallVector<const Expr *, 2> Exprs(1, E); |
| 13163 | |
| 13164 | do { |
| 13165 | const Expr *OriginalE = Exprs.pop_back_val(); |
| 13166 | const Expr *E = OriginalE->IgnoreParenCasts(); |
| 13167 | |
| 13168 | if (isa<BinaryOperator, UnaryOperator>(Val: E)) { |
| 13169 | E->EvaluateForOverflow(Ctx: Context); |
| 13170 | continue; |
| 13171 | } |
| 13172 | |
| 13173 | if (const auto *InitList = dyn_cast<InitListExpr>(Val: OriginalE)) |
| 13174 | Exprs.append(in_start: InitList->inits().begin(), in_end: InitList->inits().end()); |
| 13175 | else if (isa<ObjCBoxedExpr>(Val: OriginalE)) |
| 13176 | E->EvaluateForOverflow(Ctx: Context); |
| 13177 | else if (const auto *Call = dyn_cast<CallExpr>(Val: E)) |
| 13178 | Exprs.append(in_start: Call->arg_begin(), in_end: Call->arg_end()); |
| 13179 | else if (const auto *Message = dyn_cast<ObjCMessageExpr>(Val: E)) |
| 13180 | Exprs.append(in_start: Message->arg_begin(), in_end: Message->arg_end()); |
| 13181 | else if (const auto *Construct = dyn_cast<CXXConstructExpr>(Val: E)) |
| 13182 | Exprs.append(in_start: Construct->arg_begin(), in_end: Construct->arg_end()); |
| 13183 | else if (const auto *Temporary = dyn_cast<CXXBindTemporaryExpr>(Val: E)) |
| 13184 | Exprs.push_back(Elt: Temporary->getSubExpr()); |
| 13185 | else if (const auto *Array = dyn_cast<ArraySubscriptExpr>(Val: E)) |
| 13186 | Exprs.push_back(Elt: Array->getIdx()); |
| 13187 | else if (const auto *Compound = dyn_cast<CompoundLiteralExpr>(Val: E)) |
| 13188 | Exprs.push_back(Elt: Compound->getInitializer()); |
| 13189 | else if (const auto *New = dyn_cast<CXXNewExpr>(Val: E); |
| 13190 | New && New->isArray()) { |
| 13191 | if (auto ArraySize = New->getArraySize()) |
| 13192 | Exprs.push_back(Elt: *ArraySize); |
| 13193 | } else if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: OriginalE)) |
| 13194 | Exprs.push_back(Elt: MTE->getSubExpr()); |
| 13195 | } while (!Exprs.empty()); |
| 13196 | } |
| 13197 | |
| 13198 | namespace { |
| 13199 | |
| 13200 | /// Visitor for expressions which looks for unsequenced operations on the |
| 13201 | /// same object. |
| 13202 | class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> { |
| 13203 | using Base = ConstEvaluatedExprVisitor<SequenceChecker>; |
| 13204 | |
| 13205 | /// A tree of sequenced regions within an expression. Two regions are |
| 13206 | /// unsequenced if one is an ancestor or a descendent of the other. When we |
| 13207 | /// finish processing an expression with sequencing, such as a comma |
| 13208 | /// expression, we fold its tree nodes into its parent, since they are |
| 13209 | /// unsequenced with respect to nodes we will visit later. |
| 13210 | class SequenceTree { |
| 13211 | struct Value { |
| 13212 | explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} |
| 13213 | unsigned Parent : 31; |
| 13214 | LLVM_PREFERRED_TYPE(bool) |
| 13215 | unsigned Merged : 1; |
| 13216 | }; |
| 13217 | SmallVector<Value, 8> Values; |
| 13218 | |
| 13219 | public: |
| 13220 | /// A region within an expression which may be sequenced with respect |
| 13221 | /// to some other region. |
| 13222 | class Seq { |
| 13223 | friend class SequenceTree; |
| 13224 | |
| 13225 | unsigned Index; |
| 13226 | |
| 13227 | explicit Seq(unsigned N) : Index(N) {} |
| 13228 | |
| 13229 | public: |
| 13230 | Seq() : Index(0) {} |
| 13231 | }; |
| 13232 | |
| 13233 | SequenceTree() { Values.push_back(Elt: Value(0)); } |
| 13234 | Seq root() const { return Seq(0); } |
| 13235 | |
| 13236 | /// Create a new sequence of operations, which is an unsequenced |
| 13237 | /// subset of \p Parent. This sequence of operations is sequenced with |
| 13238 | /// respect to other children of \p Parent. |
| 13239 | Seq allocate(Seq Parent) { |
| 13240 | Values.push_back(Elt: Value(Parent.Index)); |
| 13241 | return Seq(Values.size() - 1); |
| 13242 | } |
| 13243 | |
| 13244 | /// Merge a sequence of operations into its parent. |
| 13245 | void merge(Seq S) { |
| 13246 | Values[S.Index].Merged = true; |
| 13247 | } |
| 13248 | |
| 13249 | /// Determine whether two operations are unsequenced. This operation |
| 13250 | /// is asymmetric: \p Cur should be the more recent sequence, and \p Old |
| 13251 | /// should have been merged into its parent as appropriate. |
| 13252 | bool isUnsequenced(Seq Cur, Seq Old) { |
| 13253 | unsigned C = representative(K: Cur.Index); |
| 13254 | unsigned Target = representative(K: Old.Index); |
| 13255 | while (C >= Target) { |
| 13256 | if (C == Target) |
| 13257 | return true; |
| 13258 | C = Values[C].Parent; |
| 13259 | } |
| 13260 | return false; |
| 13261 | } |
| 13262 | |
| 13263 | private: |
| 13264 | /// Pick a representative for a sequence. |
| 13265 | unsigned representative(unsigned K) { |
| 13266 | if (Values[K].Merged) |
| 13267 | // Perform path compression as we go. |
| 13268 | return Values[K].Parent = representative(K: Values[K].Parent); |
| 13269 | return K; |
| 13270 | } |
| 13271 | }; |
| 13272 | |
| 13273 | /// An object for which we can track unsequenced uses. |
| 13274 | using Object = const NamedDecl *; |
| 13275 | |
| 13276 | /// Different flavors of object usage which we track. We only track the |
| 13277 | /// least-sequenced usage of each kind. |
| 13278 | enum UsageKind { |
| 13279 | /// A read of an object. Multiple unsequenced reads are OK. |
| 13280 | UK_Use, |
| 13281 | |
| 13282 | /// A modification of an object which is sequenced before the value |
| 13283 | /// computation of the expression, such as ++n in C++. |
| 13284 | UK_ModAsValue, |
| 13285 | |
| 13286 | /// A modification of an object which is not sequenced before the value |
| 13287 | /// computation of the expression, such as n++. |
| 13288 | UK_ModAsSideEffect, |
| 13289 | |
| 13290 | UK_Count = UK_ModAsSideEffect + 1 |
| 13291 | }; |
| 13292 | |
| 13293 | /// Bundle together a sequencing region and the expression corresponding |
| 13294 | /// to a specific usage. One Usage is stored for each usage kind in UsageInfo. |
| 13295 | struct Usage { |
| 13296 | const Expr *UsageExpr = nullptr; |
| 13297 | SequenceTree::Seq Seq; |
| 13298 | |
| 13299 | Usage() = default; |
| 13300 | }; |
| 13301 | |
| 13302 | struct UsageInfo { |
| 13303 | Usage Uses[UK_Count]; |
| 13304 | |
| 13305 | /// Have we issued a diagnostic for this object already? |
| 13306 | bool Diagnosed = false; |
| 13307 | |
| 13308 | UsageInfo(); |
| 13309 | }; |
| 13310 | using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; |
| 13311 | |
| 13312 | Sema &SemaRef; |
| 13313 | |
| 13314 | /// Sequenced regions within the expression. |
| 13315 | SequenceTree Tree; |
| 13316 | |
| 13317 | /// Declaration modifications and references which we have seen. |
| 13318 | UsageInfoMap UsageMap; |
| 13319 | |
| 13320 | /// The region we are currently within. |
| 13321 | SequenceTree::Seq Region; |
| 13322 | |
| 13323 | /// Filled in with declarations which were modified as a side-effect |
| 13324 | /// (that is, post-increment operations). |
| 13325 | SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; |
| 13326 | |
| 13327 | /// Expressions to check later. We defer checking these to reduce |
| 13328 | /// stack usage. |
| 13329 | SmallVectorImpl<const Expr *> &WorkList; |
| 13330 | |
| 13331 | /// RAII object wrapping the visitation of a sequenced subexpression of an |
| 13332 | /// expression. At the end of this process, the side-effects of the evaluation |
| 13333 | /// become sequenced with respect to the value computation of the result, so |
| 13334 | /// we downgrade any UK_ModAsSideEffect within the evaluation to |
| 13335 | /// UK_ModAsValue. |
| 13336 | struct SequencedSubexpression { |
| 13337 | SequencedSubexpression(SequenceChecker &Self) |
| 13338 | : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { |
| 13339 | Self.ModAsSideEffect = &ModAsSideEffect; |
| 13340 | } |
| 13341 | |
| 13342 | ~SequencedSubexpression() { |
| 13343 | for (const std::pair<Object, Usage> &M : llvm::reverse(C&: ModAsSideEffect)) { |
| 13344 | // Add a new usage with usage kind UK_ModAsValue, and then restore |
| 13345 | // the previous usage with UK_ModAsSideEffect (thus clearing it if |
| 13346 | // the previous one was empty). |
| 13347 | UsageInfo &UI = Self.UsageMap[M.first]; |
| 13348 | auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect]; |
| 13349 | Self.addUsage(O: M.first, UI, UsageExpr: SideEffectUsage.UsageExpr, UK: UK_ModAsValue); |
| 13350 | SideEffectUsage = M.second; |
| 13351 | } |
| 13352 | Self.ModAsSideEffect = OldModAsSideEffect; |
| 13353 | } |
| 13354 | |
| 13355 | SequenceChecker &Self; |
| 13356 | SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; |
| 13357 | SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; |
| 13358 | }; |
| 13359 | |
| 13360 | /// RAII object wrapping the visitation of a subexpression which we might |
| 13361 | /// choose to evaluate as a constant. If any subexpression is evaluated and |
| 13362 | /// found to be non-constant, this allows us to suppress the evaluation of |
| 13363 | /// the outer expression. |
| 13364 | class EvaluationTracker { |
| 13365 | public: |
| 13366 | EvaluationTracker(SequenceChecker &Self) |
| 13367 | : Self(Self), Prev(Self.EvalTracker) { |
| 13368 | Self.EvalTracker = this; |
| 13369 | } |
| 13370 | |
| 13371 | ~EvaluationTracker() { |
| 13372 | Self.EvalTracker = Prev; |
| 13373 | if (Prev) |
| 13374 | Prev->EvalOK &= EvalOK; |
| 13375 | } |
| 13376 | |
| 13377 | bool evaluate(const Expr *E, bool &Result) { |
| 13378 | if (!EvalOK || E->isValueDependent()) |
| 13379 | return false; |
| 13380 | EvalOK = E->EvaluateAsBooleanCondition( |
| 13381 | Result, Ctx: Self.SemaRef.Context, |
| 13382 | InConstantContext: Self.SemaRef.isConstantEvaluatedContext()); |
| 13383 | return EvalOK; |
| 13384 | } |
| 13385 | |
| 13386 | private: |
| 13387 | SequenceChecker &Self; |
| 13388 | EvaluationTracker *Prev; |
| 13389 | bool EvalOK = true; |
| 13390 | } *EvalTracker = nullptr; |
| 13391 | |
| 13392 | /// Find the object which is produced by the specified expression, |
| 13393 | /// if any. |
| 13394 | Object getObject(const Expr *E, bool Mod) const { |
| 13395 | E = E->IgnoreParenCasts(); |
| 13396 | if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: E)) { |
| 13397 | if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) |
| 13398 | return getObject(E: UO->getSubExpr(), Mod); |
| 13399 | } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 13400 | if (BO->getOpcode() == BO_Comma) |
| 13401 | return getObject(E: BO->getRHS(), Mod); |
| 13402 | if (Mod && BO->isAssignmentOp()) |
| 13403 | return getObject(E: BO->getLHS(), Mod); |
| 13404 | } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E)) { |
| 13405 | // FIXME: Check for more interesting cases, like "x.n = ++x.n". |
| 13406 | if (isa<CXXThisExpr>(Val: ME->getBase()->IgnoreParenCasts())) |
| 13407 | return ME->getMemberDecl(); |
| 13408 | } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
| 13409 | // FIXME: If this is a reference, map through to its value. |
| 13410 | return DRE->getDecl(); |
| 13411 | return nullptr; |
| 13412 | } |
| 13413 | |
| 13414 | /// Note that an object \p O was modified or used by an expression |
| 13415 | /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for |
| 13416 | /// the object \p O as obtained via the \p UsageMap. |
| 13417 | void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) { |
| 13418 | // Get the old usage for the given object and usage kind. |
| 13419 | Usage &U = UI.Uses[UK]; |
| 13420 | if (!U.UsageExpr || !Tree.isUnsequenced(Cur: Region, Old: U.Seq)) { |
| 13421 | // If we have a modification as side effect and are in a sequenced |
| 13422 | // subexpression, save the old Usage so that we can restore it later |
| 13423 | // in SequencedSubexpression::~SequencedSubexpression. |
| 13424 | if (UK == UK_ModAsSideEffect && ModAsSideEffect) |
| 13425 | ModAsSideEffect->push_back(Elt: std::make_pair(x&: O, y&: U)); |
| 13426 | // Then record the new usage with the current sequencing region. |
| 13427 | U.UsageExpr = UsageExpr; |
| 13428 | U.Seq = Region; |
| 13429 | } |
| 13430 | } |
| 13431 | |
| 13432 | /// Check whether a modification or use of an object \p O in an expression |
| 13433 | /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is |
| 13434 | /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap. |
| 13435 | /// \p IsModMod is true when we are checking for a mod-mod unsequenced |
| 13436 | /// usage and false we are checking for a mod-use unsequenced usage. |
| 13437 | void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, |
| 13438 | UsageKind OtherKind, bool IsModMod) { |
| 13439 | if (UI.Diagnosed) |
| 13440 | return; |
| 13441 | |
| 13442 | const Usage &U = UI.Uses[OtherKind]; |
| 13443 | if (!U.UsageExpr || !Tree.isUnsequenced(Cur: Region, Old: U.Seq)) |
| 13444 | return; |
| 13445 | |
| 13446 | const Expr *Mod = U.UsageExpr; |
| 13447 | const Expr *ModOrUse = UsageExpr; |
| 13448 | if (OtherKind == UK_Use) |
| 13449 | std::swap(a&: Mod, b&: ModOrUse); |
| 13450 | |
| 13451 | SemaRef.DiagRuntimeBehavior( |
| 13452 | Loc: Mod->getExprLoc(), Stmts: {Mod, ModOrUse}, |
| 13453 | PD: SemaRef.PDiag(DiagID: IsModMod ? diag::warn_unsequenced_mod_mod |
| 13454 | : diag::warn_unsequenced_mod_use) |
| 13455 | << O << SourceRange(ModOrUse->getExprLoc())); |
| 13456 | UI.Diagnosed = true; |
| 13457 | } |
| 13458 | |
| 13459 | // A note on note{Pre, Post}{Use, Mod}: |
| 13460 | // |
| 13461 | // (It helps to follow the algorithm with an expression such as |
| 13462 | // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced |
| 13463 | // operations before C++17 and both are well-defined in C++17). |
| 13464 | // |
| 13465 | // When visiting a node which uses/modify an object we first call notePreUse |
| 13466 | // or notePreMod before visiting its sub-expression(s). At this point the |
| 13467 | // children of the current node have not yet been visited and so the eventual |
| 13468 | // uses/modifications resulting from the children of the current node have not |
| 13469 | // been recorded yet. |
| 13470 | // |
| 13471 | // We then visit the children of the current node. After that notePostUse or |
| 13472 | // notePostMod is called. These will 1) detect an unsequenced modification |
| 13473 | // as side effect (as in "k++ + k") and 2) add a new usage with the |
| 13474 | // appropriate usage kind. |
| 13475 | // |
| 13476 | // We also have to be careful that some operation sequences modification as |
| 13477 | // side effect as well (for example: || or ,). To account for this we wrap |
| 13478 | // the visitation of such a sub-expression (for example: the LHS of || or ,) |
| 13479 | // with SequencedSubexpression. SequencedSubexpression is an RAII object |
| 13480 | // which record usages which are modifications as side effect, and then |
| 13481 | // downgrade them (or more accurately restore the previous usage which was a |
| 13482 | // modification as side effect) when exiting the scope of the sequenced |
| 13483 | // subexpression. |
| 13484 | |
| 13485 | void notePreUse(Object O, const Expr *UseExpr) { |
| 13486 | UsageInfo &UI = UsageMap[O]; |
| 13487 | // Uses conflict with other modifications. |
| 13488 | checkUsage(O, UI, UsageExpr: UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false); |
| 13489 | } |
| 13490 | |
| 13491 | void notePostUse(Object O, const Expr *UseExpr) { |
| 13492 | UsageInfo &UI = UsageMap[O]; |
| 13493 | checkUsage(O, UI, UsageExpr: UseExpr, /*OtherKind=*/UK_ModAsSideEffect, |
| 13494 | /*IsModMod=*/false); |
| 13495 | addUsage(O, UI, UsageExpr: UseExpr, /*UsageKind=*/UK: UK_Use); |
| 13496 | } |
| 13497 | |
| 13498 | void notePreMod(Object O, const Expr *ModExpr) { |
| 13499 | UsageInfo &UI = UsageMap[O]; |
| 13500 | // Modifications conflict with other modifications and with uses. |
| 13501 | checkUsage(O, UI, UsageExpr: ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true); |
| 13502 | checkUsage(O, UI, UsageExpr: ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false); |
| 13503 | } |
| 13504 | |
| 13505 | void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) { |
| 13506 | UsageInfo &UI = UsageMap[O]; |
| 13507 | checkUsage(O, UI, UsageExpr: ModExpr, /*OtherKind=*/UK_ModAsSideEffect, |
| 13508 | /*IsModMod=*/true); |
| 13509 | addUsage(O, UI, UsageExpr: ModExpr, /*UsageKind=*/UK); |
| 13510 | } |
| 13511 | |
| 13512 | public: |
| 13513 | SequenceChecker(Sema &S, const Expr *E, |
| 13514 | SmallVectorImpl<const Expr *> &WorkList) |
| 13515 | : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { |
| 13516 | Visit(S: E); |
| 13517 | // Silence a -Wunused-private-field since WorkList is now unused. |
| 13518 | // TODO: Evaluate if it can be used, and if not remove it. |
| 13519 | (void)this->WorkList; |
| 13520 | } |
| 13521 | |
| 13522 | void VisitStmt(const Stmt *S) { |
| 13523 | // Skip all statements which aren't expressions for now. |
| 13524 | } |
| 13525 | |
| 13526 | void VisitExpr(const Expr *E) { |
| 13527 | // By default, just recurse to evaluated subexpressions. |
| 13528 | Base::VisitStmt(S: E); |
| 13529 | } |
| 13530 | |
| 13531 | void VisitCoroutineSuspendExpr(const CoroutineSuspendExpr *CSE) { |
| 13532 | for (auto *Sub : CSE->children()) { |
| 13533 | const Expr *ChildExpr = dyn_cast_or_null<Expr>(Val: Sub); |
| 13534 | if (!ChildExpr) |
| 13535 | continue; |
| 13536 | |
| 13537 | if (ChildExpr == CSE->getOperand()) |
| 13538 | // Do not recurse over a CoroutineSuspendExpr's operand. |
| 13539 | // The operand is also a subexpression of getCommonExpr(), and |
| 13540 | // recursing into it directly could confuse object management |
| 13541 | // for the sake of sequence tracking. |
| 13542 | continue; |
| 13543 | |
| 13544 | Visit(S: Sub); |
| 13545 | } |
| 13546 | } |
| 13547 | |
| 13548 | void VisitCastExpr(const CastExpr *E) { |
| 13549 | Object O = Object(); |
| 13550 | if (E->getCastKind() == CK_LValueToRValue) |
| 13551 | O = getObject(E: E->getSubExpr(), Mod: false); |
| 13552 | |
| 13553 | if (O) |
| 13554 | notePreUse(O, UseExpr: E); |
| 13555 | VisitExpr(E); |
| 13556 | if (O) |
| 13557 | notePostUse(O, UseExpr: E); |
| 13558 | } |
| 13559 | |
| 13560 | void VisitSequencedExpressions(const Expr *SequencedBefore, |
| 13561 | const Expr *SequencedAfter) { |
| 13562 | SequenceTree::Seq BeforeRegion = Tree.allocate(Parent: Region); |
| 13563 | SequenceTree::Seq AfterRegion = Tree.allocate(Parent: Region); |
| 13564 | SequenceTree::Seq OldRegion = Region; |
| 13565 | |
| 13566 | { |
| 13567 | SequencedSubexpression SeqBefore(*this); |
| 13568 | Region = BeforeRegion; |
| 13569 | Visit(S: SequencedBefore); |
| 13570 | } |
| 13571 | |
| 13572 | Region = AfterRegion; |
| 13573 | Visit(S: SequencedAfter); |
| 13574 | |
| 13575 | Region = OldRegion; |
| 13576 | |
| 13577 | Tree.merge(S: BeforeRegion); |
| 13578 | Tree.merge(S: AfterRegion); |
| 13579 | } |
| 13580 | |
| 13581 | void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) { |
| 13582 | // C++17 [expr.sub]p1: |
| 13583 | // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The |
| 13584 | // expression E1 is sequenced before the expression E2. |
| 13585 | if (SemaRef.getLangOpts().CPlusPlus17) |
| 13586 | VisitSequencedExpressions(SequencedBefore: ASE->getLHS(), SequencedAfter: ASE->getRHS()); |
| 13587 | else { |
| 13588 | Visit(S: ASE->getLHS()); |
| 13589 | Visit(S: ASE->getRHS()); |
| 13590 | } |
| 13591 | } |
| 13592 | |
| 13593 | void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); } |
| 13594 | void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); } |
| 13595 | void VisitBinPtrMem(const BinaryOperator *BO) { |
| 13596 | // C++17 [expr.mptr.oper]p4: |
| 13597 | // Abbreviating pm-expression.*cast-expression as E1.*E2, [...] |
| 13598 | // the expression E1 is sequenced before the expression E2. |
| 13599 | if (SemaRef.getLangOpts().CPlusPlus17) |
| 13600 | VisitSequencedExpressions(SequencedBefore: BO->getLHS(), SequencedAfter: BO->getRHS()); |
| 13601 | else { |
| 13602 | Visit(S: BO->getLHS()); |
| 13603 | Visit(S: BO->getRHS()); |
| 13604 | } |
| 13605 | } |
| 13606 | |
| 13607 | void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); } |
| 13608 | void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); } |
| 13609 | void VisitBinShlShr(const BinaryOperator *BO) { |
| 13610 | // C++17 [expr.shift]p4: |
| 13611 | // The expression E1 is sequenced before the expression E2. |
| 13612 | if (SemaRef.getLangOpts().CPlusPlus17) |
| 13613 | VisitSequencedExpressions(SequencedBefore: BO->getLHS(), SequencedAfter: BO->getRHS()); |
| 13614 | else { |
| 13615 | Visit(S: BO->getLHS()); |
| 13616 | Visit(S: BO->getRHS()); |
| 13617 | } |
| 13618 | } |
| 13619 | |
| 13620 | void VisitBinComma(const BinaryOperator *BO) { |
| 13621 | // C++11 [expr.comma]p1: |
| 13622 | // Every value computation and side effect associated with the left |
| 13623 | // expression is sequenced before every value computation and side |
| 13624 | // effect associated with the right expression. |
| 13625 | VisitSequencedExpressions(SequencedBefore: BO->getLHS(), SequencedAfter: BO->getRHS()); |
| 13626 | } |
| 13627 | |
| 13628 | void VisitBinAssign(const BinaryOperator *BO) { |
| 13629 | SequenceTree::Seq RHSRegion; |
| 13630 | SequenceTree::Seq LHSRegion; |
| 13631 | if (SemaRef.getLangOpts().CPlusPlus17) { |
| 13632 | RHSRegion = Tree.allocate(Parent: Region); |
| 13633 | LHSRegion = Tree.allocate(Parent: Region); |
| 13634 | } else { |
| 13635 | RHSRegion = Region; |
| 13636 | LHSRegion = Region; |
| 13637 | } |
| 13638 | SequenceTree::Seq OldRegion = Region; |
| 13639 | |
| 13640 | // C++11 [expr.ass]p1: |
| 13641 | // [...] the assignment is sequenced after the value computation |
| 13642 | // of the right and left operands, [...] |
| 13643 | // |
| 13644 | // so check it before inspecting the operands and update the |
| 13645 | // map afterwards. |
| 13646 | Object O = getObject(E: BO->getLHS(), /*Mod=*/true); |
| 13647 | if (O) |
| 13648 | notePreMod(O, ModExpr: BO); |
| 13649 | |
| 13650 | if (SemaRef.getLangOpts().CPlusPlus17) { |
| 13651 | // C++17 [expr.ass]p1: |
| 13652 | // [...] The right operand is sequenced before the left operand. [...] |
| 13653 | { |
| 13654 | SequencedSubexpression SeqBefore(*this); |
| 13655 | Region = RHSRegion; |
| 13656 | Visit(S: BO->getRHS()); |
| 13657 | } |
| 13658 | |
| 13659 | Region = LHSRegion; |
| 13660 | Visit(S: BO->getLHS()); |
| 13661 | |
| 13662 | if (O && isa<CompoundAssignOperator>(Val: BO)) |
| 13663 | notePostUse(O, UseExpr: BO); |
| 13664 | |
| 13665 | } else { |
| 13666 | // C++11 does not specify any sequencing between the LHS and RHS. |
| 13667 | Region = LHSRegion; |
| 13668 | Visit(S: BO->getLHS()); |
| 13669 | |
| 13670 | if (O && isa<CompoundAssignOperator>(Val: BO)) |
| 13671 | notePostUse(O, UseExpr: BO); |
| 13672 | |
| 13673 | Region = RHSRegion; |
| 13674 | Visit(S: BO->getRHS()); |
| 13675 | } |
| 13676 | |
| 13677 | // C++11 [expr.ass]p1: |
| 13678 | // the assignment is sequenced [...] before the value computation of the |
| 13679 | // assignment expression. |
| 13680 | // C11 6.5.16/3 has no such rule. |
| 13681 | Region = OldRegion; |
| 13682 | if (O) |
| 13683 | notePostMod(O, ModExpr: BO, |
| 13684 | UK: SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue |
| 13685 | : UK_ModAsSideEffect); |
| 13686 | if (SemaRef.getLangOpts().CPlusPlus17) { |
| 13687 | Tree.merge(S: RHSRegion); |
| 13688 | Tree.merge(S: LHSRegion); |
| 13689 | } |
| 13690 | } |
| 13691 | |
| 13692 | void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) { |
| 13693 | VisitBinAssign(BO: CAO); |
| 13694 | } |
| 13695 | |
| 13696 | void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } |
| 13697 | void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } |
| 13698 | void VisitUnaryPreIncDec(const UnaryOperator *UO) { |
| 13699 | Object O = getObject(E: UO->getSubExpr(), Mod: true); |
| 13700 | if (!O) |
| 13701 | return VisitExpr(E: UO); |
| 13702 | |
| 13703 | notePreMod(O, ModExpr: UO); |
| 13704 | Visit(S: UO->getSubExpr()); |
| 13705 | // C++11 [expr.pre.incr]p1: |
| 13706 | // the expression ++x is equivalent to x+=1 |
| 13707 | notePostMod(O, ModExpr: UO, |
| 13708 | UK: SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue |
| 13709 | : UK_ModAsSideEffect); |
| 13710 | } |
| 13711 | |
| 13712 | void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } |
| 13713 | void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } |
| 13714 | void VisitUnaryPostIncDec(const UnaryOperator *UO) { |
| 13715 | Object O = getObject(E: UO->getSubExpr(), Mod: true); |
| 13716 | if (!O) |
| 13717 | return VisitExpr(E: UO); |
| 13718 | |
| 13719 | notePreMod(O, ModExpr: UO); |
| 13720 | Visit(S: UO->getSubExpr()); |
| 13721 | notePostMod(O, ModExpr: UO, UK: UK_ModAsSideEffect); |
| 13722 | } |
| 13723 | |
| 13724 | void VisitBinLOr(const BinaryOperator *BO) { |
| 13725 | // C++11 [expr.log.or]p2: |
| 13726 | // If the second expression is evaluated, every value computation and |
| 13727 | // side effect associated with the first expression is sequenced before |
| 13728 | // every value computation and side effect associated with the |
| 13729 | // second expression. |
| 13730 | SequenceTree::Seq LHSRegion = Tree.allocate(Parent: Region); |
| 13731 | SequenceTree::Seq RHSRegion = Tree.allocate(Parent: Region); |
| 13732 | SequenceTree::Seq OldRegion = Region; |
| 13733 | |
| 13734 | EvaluationTracker Eval(*this); |
| 13735 | { |
| 13736 | SequencedSubexpression Sequenced(*this); |
| 13737 | Region = LHSRegion; |
| 13738 | Visit(S: BO->getLHS()); |
| 13739 | } |
| 13740 | |
| 13741 | // C++11 [expr.log.or]p1: |
| 13742 | // [...] the second operand is not evaluated if the first operand |
| 13743 | // evaluates to true. |
| 13744 | bool EvalResult = false; |
| 13745 | bool EvalOK = Eval.evaluate(E: BO->getLHS(), Result&: EvalResult); |
| 13746 | bool ShouldVisitRHS = !EvalOK || !EvalResult; |
| 13747 | if (ShouldVisitRHS) { |
| 13748 | Region = RHSRegion; |
| 13749 | Visit(S: BO->getRHS()); |
| 13750 | } |
| 13751 | |
| 13752 | Region = OldRegion; |
| 13753 | Tree.merge(S: LHSRegion); |
| 13754 | Tree.merge(S: RHSRegion); |
| 13755 | } |
| 13756 | |
| 13757 | void VisitBinLAnd(const BinaryOperator *BO) { |
| 13758 | // C++11 [expr.log.and]p2: |
| 13759 | // If the second expression is evaluated, every value computation and |
| 13760 | // side effect associated with the first expression is sequenced before |
| 13761 | // every value computation and side effect associated with the |
| 13762 | // second expression. |
| 13763 | SequenceTree::Seq LHSRegion = Tree.allocate(Parent: Region); |
| 13764 | SequenceTree::Seq RHSRegion = Tree.allocate(Parent: Region); |
| 13765 | SequenceTree::Seq OldRegion = Region; |
| 13766 | |
| 13767 | EvaluationTracker Eval(*this); |
| 13768 | { |
| 13769 | SequencedSubexpression Sequenced(*this); |
| 13770 | Region = LHSRegion; |
| 13771 | Visit(S: BO->getLHS()); |
| 13772 | } |
| 13773 | |
| 13774 | // C++11 [expr.log.and]p1: |
| 13775 | // [...] the second operand is not evaluated if the first operand is false. |
| 13776 | bool EvalResult = false; |
| 13777 | bool EvalOK = Eval.evaluate(E: BO->getLHS(), Result&: EvalResult); |
| 13778 | bool ShouldVisitRHS = !EvalOK || EvalResult; |
| 13779 | if (ShouldVisitRHS) { |
| 13780 | Region = RHSRegion; |
| 13781 | Visit(S: BO->getRHS()); |
| 13782 | } |
| 13783 | |
| 13784 | Region = OldRegion; |
| 13785 | Tree.merge(S: LHSRegion); |
| 13786 | Tree.merge(S: RHSRegion); |
| 13787 | } |
| 13788 | |
| 13789 | void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) { |
| 13790 | // C++11 [expr.cond]p1: |
| 13791 | // [...] Every value computation and side effect associated with the first |
| 13792 | // expression is sequenced before every value computation and side effect |
| 13793 | // associated with the second or third expression. |
| 13794 | SequenceTree::Seq ConditionRegion = Tree.allocate(Parent: Region); |
| 13795 | |
| 13796 | // No sequencing is specified between the true and false expression. |
| 13797 | // However since exactly one of both is going to be evaluated we can |
| 13798 | // consider them to be sequenced. This is needed to avoid warning on |
| 13799 | // something like "x ? y+= 1 : y += 2;" in the case where we will visit |
| 13800 | // both the true and false expressions because we can't evaluate x. |
| 13801 | // This will still allow us to detect an expression like (pre C++17) |
| 13802 | // "(x ? y += 1 : y += 2) = y". |
| 13803 | // |
| 13804 | // We don't wrap the visitation of the true and false expression with |
| 13805 | // SequencedSubexpression because we don't want to downgrade modifications |
| 13806 | // as side effect in the true and false expressions after the visition |
| 13807 | // is done. (for example in the expression "(x ? y++ : y++) + y" we should |
| 13808 | // not warn between the two "y++", but we should warn between the "y++" |
| 13809 | // and the "y". |
| 13810 | SequenceTree::Seq TrueRegion = Tree.allocate(Parent: Region); |
| 13811 | SequenceTree::Seq FalseRegion = Tree.allocate(Parent: Region); |
| 13812 | SequenceTree::Seq OldRegion = Region; |
| 13813 | |
| 13814 | EvaluationTracker Eval(*this); |
| 13815 | { |
| 13816 | SequencedSubexpression Sequenced(*this); |
| 13817 | Region = ConditionRegion; |
| 13818 | Visit(S: CO->getCond()); |
| 13819 | } |
| 13820 | |
| 13821 | // C++11 [expr.cond]p1: |
| 13822 | // [...] The first expression is contextually converted to bool (Clause 4). |
| 13823 | // It is evaluated and if it is true, the result of the conditional |
| 13824 | // expression is the value of the second expression, otherwise that of the |
| 13825 | // third expression. Only one of the second and third expressions is |
| 13826 | // evaluated. [...] |
| 13827 | bool EvalResult = false; |
| 13828 | bool EvalOK = Eval.evaluate(E: CO->getCond(), Result&: EvalResult); |
| 13829 | bool ShouldVisitTrueExpr = !EvalOK || EvalResult; |
| 13830 | bool ShouldVisitFalseExpr = !EvalOK || !EvalResult; |
| 13831 | if (ShouldVisitTrueExpr) { |
| 13832 | Region = TrueRegion; |
| 13833 | Visit(S: CO->getTrueExpr()); |
| 13834 | } |
| 13835 | if (ShouldVisitFalseExpr) { |
| 13836 | Region = FalseRegion; |
| 13837 | Visit(S: CO->getFalseExpr()); |
| 13838 | } |
| 13839 | |
| 13840 | Region = OldRegion; |
| 13841 | Tree.merge(S: ConditionRegion); |
| 13842 | Tree.merge(S: TrueRegion); |
| 13843 | Tree.merge(S: FalseRegion); |
| 13844 | } |
| 13845 | |
| 13846 | void VisitCallExpr(const CallExpr *CE) { |
| 13847 | // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. |
| 13848 | |
| 13849 | if (CE->isUnevaluatedBuiltinCall(Ctx: Context)) |
| 13850 | return; |
| 13851 | |
| 13852 | // C++11 [intro.execution]p15: |
| 13853 | // When calling a function [...], every value computation and side effect |
| 13854 | // associated with any argument expression, or with the postfix expression |
| 13855 | // designating the called function, is sequenced before execution of every |
| 13856 | // expression or statement in the body of the function [and thus before |
| 13857 | // the value computation of its result]. |
| 13858 | SequencedSubexpression Sequenced(*this); |
| 13859 | SemaRef.runWithSufficientStackSpace(Loc: CE->getExprLoc(), Fn: [&] { |
| 13860 | // C++17 [expr.call]p5 |
| 13861 | // The postfix-expression is sequenced before each expression in the |
| 13862 | // expression-list and any default argument. [...] |
| 13863 | SequenceTree::Seq CalleeRegion; |
| 13864 | SequenceTree::Seq OtherRegion; |
| 13865 | if (SemaRef.getLangOpts().CPlusPlus17) { |
| 13866 | CalleeRegion = Tree.allocate(Parent: Region); |
| 13867 | OtherRegion = Tree.allocate(Parent: Region); |
| 13868 | } else { |
| 13869 | CalleeRegion = Region; |
| 13870 | OtherRegion = Region; |
| 13871 | } |
| 13872 | SequenceTree::Seq OldRegion = Region; |
| 13873 | |
| 13874 | // Visit the callee expression first. |
| 13875 | Region = CalleeRegion; |
| 13876 | if (SemaRef.getLangOpts().CPlusPlus17) { |
| 13877 | SequencedSubexpression Sequenced(*this); |
| 13878 | Visit(S: CE->getCallee()); |
| 13879 | } else { |
| 13880 | Visit(S: CE->getCallee()); |
| 13881 | } |
| 13882 | |
| 13883 | // Then visit the argument expressions. |
| 13884 | Region = OtherRegion; |
| 13885 | for (const Expr *Argument : CE->arguments()) |
| 13886 | Visit(S: Argument); |
| 13887 | |
| 13888 | Region = OldRegion; |
| 13889 | if (SemaRef.getLangOpts().CPlusPlus17) { |
| 13890 | Tree.merge(S: CalleeRegion); |
| 13891 | Tree.merge(S: OtherRegion); |
| 13892 | } |
| 13893 | }); |
| 13894 | } |
| 13895 | |
| 13896 | void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) { |
| 13897 | // C++17 [over.match.oper]p2: |
| 13898 | // [...] the operator notation is first transformed to the equivalent |
| 13899 | // function-call notation as summarized in Table 12 (where @ denotes one |
| 13900 | // of the operators covered in the specified subclause). However, the |
| 13901 | // operands are sequenced in the order prescribed for the built-in |
| 13902 | // operator (Clause 8). |
| 13903 | // |
| 13904 | // From the above only overloaded binary operators and overloaded call |
| 13905 | // operators have sequencing rules in C++17 that we need to handle |
| 13906 | // separately. |
| 13907 | if (!SemaRef.getLangOpts().CPlusPlus17 || |
| 13908 | (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call)) |
| 13909 | return VisitCallExpr(CE: CXXOCE); |
| 13910 | |
| 13911 | enum { |
| 13912 | NoSequencing, |
| 13913 | LHSBeforeRHS, |
| 13914 | RHSBeforeLHS, |
| 13915 | LHSBeforeRest |
| 13916 | } SequencingKind; |
| 13917 | switch (CXXOCE->getOperator()) { |
| 13918 | case OO_Equal: |
| 13919 | case OO_PlusEqual: |
| 13920 | case OO_MinusEqual: |
| 13921 | case OO_StarEqual: |
| 13922 | case OO_SlashEqual: |
| 13923 | case OO_PercentEqual: |
| 13924 | case OO_CaretEqual: |
| 13925 | case OO_AmpEqual: |
| 13926 | case OO_PipeEqual: |
| 13927 | case OO_LessLessEqual: |
| 13928 | case OO_GreaterGreaterEqual: |
| 13929 | SequencingKind = RHSBeforeLHS; |
| 13930 | break; |
| 13931 | |
| 13932 | case OO_LessLess: |
| 13933 | case OO_GreaterGreater: |
| 13934 | case OO_AmpAmp: |
| 13935 | case OO_PipePipe: |
| 13936 | case OO_Comma: |
| 13937 | case OO_ArrowStar: |
| 13938 | case OO_Subscript: |
| 13939 | SequencingKind = LHSBeforeRHS; |
| 13940 | break; |
| 13941 | |
| 13942 | case OO_Call: |
| 13943 | SequencingKind = LHSBeforeRest; |
| 13944 | break; |
| 13945 | |
| 13946 | default: |
| 13947 | SequencingKind = NoSequencing; |
| 13948 | break; |
| 13949 | } |
| 13950 | |
| 13951 | if (SequencingKind == NoSequencing) |
| 13952 | return VisitCallExpr(CE: CXXOCE); |
| 13953 | |
| 13954 | // This is a call, so all subexpressions are sequenced before the result. |
| 13955 | SequencedSubexpression Sequenced(*this); |
| 13956 | |
| 13957 | SemaRef.runWithSufficientStackSpace(Loc: CXXOCE->getExprLoc(), Fn: [&] { |
| 13958 | assert(SemaRef.getLangOpts().CPlusPlus17 && |
| 13959 | "Should only get there with C++17 and above!" ); |
| 13960 | assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && |
| 13961 | "Should only get there with an overloaded binary operator" |
| 13962 | " or an overloaded call operator!" ); |
| 13963 | |
| 13964 | if (SequencingKind == LHSBeforeRest) { |
| 13965 | assert(CXXOCE->getOperator() == OO_Call && |
| 13966 | "We should only have an overloaded call operator here!" ); |
| 13967 | |
| 13968 | // This is very similar to VisitCallExpr, except that we only have the |
| 13969 | // C++17 case. The postfix-expression is the first argument of the |
| 13970 | // CXXOperatorCallExpr. The expressions in the expression-list, if any, |
| 13971 | // are in the following arguments. |
| 13972 | // |
| 13973 | // Note that we intentionally do not visit the callee expression since |
| 13974 | // it is just a decayed reference to a function. |
| 13975 | SequenceTree::Seq PostfixExprRegion = Tree.allocate(Parent: Region); |
| 13976 | SequenceTree::Seq ArgsRegion = Tree.allocate(Parent: Region); |
| 13977 | SequenceTree::Seq OldRegion = Region; |
| 13978 | |
| 13979 | assert(CXXOCE->getNumArgs() >= 1 && |
| 13980 | "An overloaded call operator must have at least one argument" |
| 13981 | " for the postfix-expression!" ); |
| 13982 | const Expr *PostfixExpr = CXXOCE->getArgs()[0]; |
| 13983 | llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1, |
| 13984 | CXXOCE->getNumArgs() - 1); |
| 13985 | |
| 13986 | // Visit the postfix-expression first. |
| 13987 | { |
| 13988 | Region = PostfixExprRegion; |
| 13989 | SequencedSubexpression Sequenced(*this); |
| 13990 | Visit(S: PostfixExpr); |
| 13991 | } |
| 13992 | |
| 13993 | // Then visit the argument expressions. |
| 13994 | Region = ArgsRegion; |
| 13995 | for (const Expr *Arg : Args) |
| 13996 | Visit(S: Arg); |
| 13997 | |
| 13998 | Region = OldRegion; |
| 13999 | Tree.merge(S: PostfixExprRegion); |
| 14000 | Tree.merge(S: ArgsRegion); |
| 14001 | } else { |
| 14002 | assert(CXXOCE->getNumArgs() == 2 && |
| 14003 | "Should only have two arguments here!" ); |
| 14004 | assert((SequencingKind == LHSBeforeRHS || |
| 14005 | SequencingKind == RHSBeforeLHS) && |
| 14006 | "Unexpected sequencing kind!" ); |
| 14007 | |
| 14008 | // We do not visit the callee expression since it is just a decayed |
| 14009 | // reference to a function. |
| 14010 | const Expr *E1 = CXXOCE->getArg(Arg: 0); |
| 14011 | const Expr *E2 = CXXOCE->getArg(Arg: 1); |
| 14012 | if (SequencingKind == RHSBeforeLHS) |
| 14013 | std::swap(a&: E1, b&: E2); |
| 14014 | |
| 14015 | return VisitSequencedExpressions(SequencedBefore: E1, SequencedAfter: E2); |
| 14016 | } |
| 14017 | }); |
| 14018 | } |
| 14019 | |
| 14020 | void VisitCXXConstructExpr(const CXXConstructExpr *CCE) { |
| 14021 | // This is a call, so all subexpressions are sequenced before the result. |
| 14022 | SequencedSubexpression Sequenced(*this); |
| 14023 | |
| 14024 | if (!CCE->isListInitialization()) |
| 14025 | return VisitExpr(E: CCE); |
| 14026 | |
| 14027 | // In C++11, list initializations are sequenced. |
| 14028 | SequenceExpressionsInOrder( |
| 14029 | ExpressionList: llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs())); |
| 14030 | } |
| 14031 | |
| 14032 | void VisitInitListExpr(const InitListExpr *ILE) { |
| 14033 | if (!SemaRef.getLangOpts().CPlusPlus11) |
| 14034 | return VisitExpr(E: ILE); |
| 14035 | |
| 14036 | // In C++11, list initializations are sequenced. |
| 14037 | SequenceExpressionsInOrder(ExpressionList: ILE->inits()); |
| 14038 | } |
| 14039 | |
| 14040 | void VisitCXXParenListInitExpr(const CXXParenListInitExpr *PLIE) { |
| 14041 | // C++20 parenthesized list initializations are sequenced. See C++20 |
| 14042 | // [decl.init.general]p16.5 and [decl.init.general]p16.6.2.2. |
| 14043 | SequenceExpressionsInOrder(ExpressionList: PLIE->getInitExprs()); |
| 14044 | } |
| 14045 | |
| 14046 | private: |
| 14047 | void SequenceExpressionsInOrder(ArrayRef<const Expr *> ExpressionList) { |
| 14048 | SmallVector<SequenceTree::Seq, 32> Elts; |
| 14049 | SequenceTree::Seq Parent = Region; |
| 14050 | for (const Expr *E : ExpressionList) { |
| 14051 | if (!E) |
| 14052 | continue; |
| 14053 | Region = Tree.allocate(Parent); |
| 14054 | Elts.push_back(Elt: Region); |
| 14055 | Visit(S: E); |
| 14056 | } |
| 14057 | |
| 14058 | // Forget that the initializers are sequenced. |
| 14059 | Region = Parent; |
| 14060 | for (unsigned I = 0; I < Elts.size(); ++I) |
| 14061 | Tree.merge(S: Elts[I]); |
| 14062 | } |
| 14063 | }; |
| 14064 | |
| 14065 | SequenceChecker::UsageInfo::UsageInfo() = default; |
| 14066 | |
| 14067 | } // namespace |
| 14068 | |
| 14069 | void Sema::CheckUnsequencedOperations(const Expr *E) { |
| 14070 | SmallVector<const Expr *, 8> WorkList; |
| 14071 | WorkList.push_back(Elt: E); |
| 14072 | while (!WorkList.empty()) { |
| 14073 | const Expr *Item = WorkList.pop_back_val(); |
| 14074 | SequenceChecker(*this, Item, WorkList); |
| 14075 | } |
| 14076 | } |
| 14077 | |
| 14078 | void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, |
| 14079 | bool IsConstexpr) { |
| 14080 | llvm::SaveAndRestore ConstantContext(isConstantEvaluatedOverride, |
| 14081 | IsConstexpr || isa<ConstantExpr>(Val: E)); |
| 14082 | CheckImplicitConversions(E, CC: CheckLoc); |
| 14083 | if (!E->isInstantiationDependent()) |
| 14084 | CheckUnsequencedOperations(E); |
| 14085 | if (!IsConstexpr && !E->isValueDependent()) |
| 14086 | CheckForIntOverflow(E); |
| 14087 | DiagnoseMisalignedMembers(); |
| 14088 | } |
| 14089 | |
| 14090 | void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, |
| 14091 | FieldDecl *BitField, |
| 14092 | Expr *Init) { |
| 14093 | (void) AnalyzeBitFieldAssignment(S&: *this, Bitfield: BitField, Init, InitLoc); |
| 14094 | } |
| 14095 | |
| 14096 | static void diagnoseArrayStarInParamType(Sema &S, QualType PType, |
| 14097 | SourceLocation Loc) { |
| 14098 | if (!PType->isVariablyModifiedType()) |
| 14099 | return; |
| 14100 | if (const auto *PointerTy = dyn_cast<PointerType>(Val&: PType)) { |
| 14101 | diagnoseArrayStarInParamType(S, PType: PointerTy->getPointeeType(), Loc); |
| 14102 | return; |
| 14103 | } |
| 14104 | if (const auto *ReferenceTy = dyn_cast<ReferenceType>(Val&: PType)) { |
| 14105 | diagnoseArrayStarInParamType(S, PType: ReferenceTy->getPointeeType(), Loc); |
| 14106 | return; |
| 14107 | } |
| 14108 | if (const auto *ParenTy = dyn_cast<ParenType>(Val&: PType)) { |
| 14109 | diagnoseArrayStarInParamType(S, PType: ParenTy->getInnerType(), Loc); |
| 14110 | return; |
| 14111 | } |
| 14112 | |
| 14113 | const ArrayType *AT = S.Context.getAsArrayType(T: PType); |
| 14114 | if (!AT) |
| 14115 | return; |
| 14116 | |
| 14117 | if (AT->getSizeModifier() != ArraySizeModifier::Star) { |
| 14118 | diagnoseArrayStarInParamType(S, PType: AT->getElementType(), Loc); |
| 14119 | return; |
| 14120 | } |
| 14121 | |
| 14122 | S.Diag(Loc, DiagID: diag::err_array_star_in_function_definition); |
| 14123 | } |
| 14124 | |
| 14125 | bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, |
| 14126 | bool CheckParameterNames) { |
| 14127 | bool HasInvalidParm = false; |
| 14128 | for (ParmVarDecl *Param : Parameters) { |
| 14129 | assert(Param && "null in a parameter list" ); |
| 14130 | // C99 6.7.5.3p4: the parameters in a parameter type list in a |
| 14131 | // function declarator that is part of a function definition of |
| 14132 | // that function shall not have incomplete type. |
| 14133 | // |
| 14134 | // C++23 [dcl.fct.def.general]/p2 |
| 14135 | // The type of a parameter [...] for a function definition |
| 14136 | // shall not be a (possibly cv-qualified) class type that is incomplete |
| 14137 | // or abstract within the function body unless the function is deleted. |
| 14138 | if (!Param->isInvalidDecl() && |
| 14139 | (RequireCompleteType(Loc: Param->getLocation(), T: Param->getType(), |
| 14140 | DiagID: diag::err_typecheck_decl_incomplete_type) || |
| 14141 | RequireNonAbstractType(Loc: Param->getBeginLoc(), T: Param->getOriginalType(), |
| 14142 | DiagID: diag::err_abstract_type_in_decl, |
| 14143 | Args: AbstractParamType))) { |
| 14144 | Param->setInvalidDecl(); |
| 14145 | HasInvalidParm = true; |
| 14146 | } |
| 14147 | |
| 14148 | // C99 6.9.1p5: If the declarator includes a parameter type list, the |
| 14149 | // declaration of each parameter shall include an identifier. |
| 14150 | if (CheckParameterNames && Param->getIdentifier() == nullptr && |
| 14151 | !Param->isImplicit() && !getLangOpts().CPlusPlus) { |
| 14152 | // Diagnose this as an extension in C17 and earlier. |
| 14153 | if (!getLangOpts().C23) |
| 14154 | Diag(Loc: Param->getLocation(), DiagID: diag::ext_parameter_name_omitted_c23); |
| 14155 | } |
| 14156 | |
| 14157 | // C99 6.7.5.3p12: |
| 14158 | // If the function declarator is not part of a definition of that |
| 14159 | // function, parameters may have incomplete type and may use the [*] |
| 14160 | // notation in their sequences of declarator specifiers to specify |
| 14161 | // variable length array types. |
| 14162 | QualType PType = Param->getOriginalType(); |
| 14163 | // FIXME: This diagnostic should point the '[*]' if source-location |
| 14164 | // information is added for it. |
| 14165 | diagnoseArrayStarInParamType(S&: *this, PType, Loc: Param->getLocation()); |
| 14166 | |
| 14167 | // If the parameter is a c++ class type and it has to be destructed in the |
| 14168 | // callee function, declare the destructor so that it can be called by the |
| 14169 | // callee function. Do not perform any direct access check on the dtor here. |
| 14170 | if (!Param->isInvalidDecl()) { |
| 14171 | if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { |
| 14172 | if (!ClassDecl->isInvalidDecl() && |
| 14173 | !ClassDecl->hasIrrelevantDestructor() && |
| 14174 | !ClassDecl->isDependentContext() && |
| 14175 | ClassDecl->isParamDestroyedInCallee()) { |
| 14176 | CXXDestructorDecl *Destructor = LookupDestructor(Class: ClassDecl); |
| 14177 | MarkFunctionReferenced(Loc: Param->getLocation(), Func: Destructor); |
| 14178 | DiagnoseUseOfDecl(D: Destructor, Locs: Param->getLocation()); |
| 14179 | } |
| 14180 | } |
| 14181 | } |
| 14182 | |
| 14183 | // Parameters with the pass_object_size attribute only need to be marked |
| 14184 | // constant at function definitions. Because we lack information about |
| 14185 | // whether we're on a declaration or definition when we're instantiating the |
| 14186 | // attribute, we need to check for constness here. |
| 14187 | if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) |
| 14188 | if (!Param->getType().isConstQualified()) |
| 14189 | Diag(Loc: Param->getLocation(), DiagID: diag::err_attribute_pointers_only) |
| 14190 | << Attr->getSpelling() << 1; |
| 14191 | |
| 14192 | // Check for parameter names shadowing fields from the class. |
| 14193 | if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { |
| 14194 | // The owning context for the parameter should be the function, but we |
| 14195 | // want to see if this function's declaration context is a record. |
| 14196 | DeclContext *DC = Param->getDeclContext(); |
| 14197 | if (DC && DC->isFunctionOrMethod()) { |
| 14198 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: DC->getParent())) |
| 14199 | CheckShadowInheritedFields(Loc: Param->getLocation(), FieldName: Param->getDeclName(), |
| 14200 | RD, /*DeclIsField*/ false); |
| 14201 | } |
| 14202 | } |
| 14203 | |
| 14204 | if (!Param->isInvalidDecl() && |
| 14205 | Param->getOriginalType()->isWebAssemblyTableType()) { |
| 14206 | Param->setInvalidDecl(); |
| 14207 | HasInvalidParm = true; |
| 14208 | Diag(Loc: Param->getLocation(), DiagID: diag::err_wasm_table_as_function_parameter); |
| 14209 | } |
| 14210 | } |
| 14211 | |
| 14212 | return HasInvalidParm; |
| 14213 | } |
| 14214 | |
| 14215 | std::optional<std::pair< |
| 14216 | CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr |
| 14217 | *E, |
| 14218 | ASTContext |
| 14219 | &Ctx); |
| 14220 | |
| 14221 | /// Compute the alignment and offset of the base class object given the |
| 14222 | /// derived-to-base cast expression and the alignment and offset of the derived |
| 14223 | /// class object. |
| 14224 | static std::pair<CharUnits, CharUnits> |
| 14225 | getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType, |
| 14226 | CharUnits BaseAlignment, CharUnits Offset, |
| 14227 | ASTContext &Ctx) { |
| 14228 | for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE; |
| 14229 | ++PathI) { |
| 14230 | const CXXBaseSpecifier *Base = *PathI; |
| 14231 | const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); |
| 14232 | if (Base->isVirtual()) { |
| 14233 | // The complete object may have a lower alignment than the non-virtual |
| 14234 | // alignment of the base, in which case the base may be misaligned. Choose |
| 14235 | // the smaller of the non-virtual alignment and BaseAlignment, which is a |
| 14236 | // conservative lower bound of the complete object alignment. |
| 14237 | CharUnits NonVirtualAlignment = |
| 14238 | Ctx.getASTRecordLayout(D: BaseDecl).getNonVirtualAlignment(); |
| 14239 | BaseAlignment = std::min(a: BaseAlignment, b: NonVirtualAlignment); |
| 14240 | Offset = CharUnits::Zero(); |
| 14241 | } else { |
| 14242 | const ASTRecordLayout &RL = |
| 14243 | Ctx.getASTRecordLayout(D: DerivedType->getAsCXXRecordDecl()); |
| 14244 | Offset += RL.getBaseClassOffset(Base: BaseDecl); |
| 14245 | } |
| 14246 | DerivedType = Base->getType(); |
| 14247 | } |
| 14248 | |
| 14249 | return std::make_pair(x&: BaseAlignment, y&: Offset); |
| 14250 | } |
| 14251 | |
| 14252 | /// Compute the alignment and offset of a binary additive operator. |
| 14253 | static std::optional<std::pair<CharUnits, CharUnits>> |
| 14254 | getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE, |
| 14255 | bool IsSub, ASTContext &Ctx) { |
| 14256 | QualType PointeeType = PtrE->getType()->getPointeeType(); |
| 14257 | |
| 14258 | if (!PointeeType->isConstantSizeType()) |
| 14259 | return std::nullopt; |
| 14260 | |
| 14261 | auto P = getBaseAlignmentAndOffsetFromPtr(E: PtrE, Ctx); |
| 14262 | |
| 14263 | if (!P) |
| 14264 | return std::nullopt; |
| 14265 | |
| 14266 | CharUnits EltSize = Ctx.getTypeSizeInChars(T: PointeeType); |
| 14267 | if (std::optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) { |
| 14268 | CharUnits Offset = EltSize * IdxRes->getExtValue(); |
| 14269 | if (IsSub) |
| 14270 | Offset = -Offset; |
| 14271 | return std::make_pair(x&: P->first, y: P->second + Offset); |
| 14272 | } |
| 14273 | |
| 14274 | // If the integer expression isn't a constant expression, compute the lower |
| 14275 | // bound of the alignment using the alignment and offset of the pointer |
| 14276 | // expression and the element size. |
| 14277 | return std::make_pair( |
| 14278 | x: P->first.alignmentAtOffset(offset: P->second).alignmentAtOffset(offset: EltSize), |
| 14279 | y: CharUnits::Zero()); |
| 14280 | } |
| 14281 | |
| 14282 | /// This helper function takes an lvalue expression and returns the alignment of |
| 14283 | /// a VarDecl and a constant offset from the VarDecl. |
| 14284 | std::optional<std::pair< |
| 14285 | CharUnits, |
| 14286 | CharUnits>> static getBaseAlignmentAndOffsetFromLValue(const Expr *E, |
| 14287 | ASTContext &Ctx) { |
| 14288 | E = E->IgnoreParens(); |
| 14289 | switch (E->getStmtClass()) { |
| 14290 | default: |
| 14291 | break; |
| 14292 | case Stmt::CStyleCastExprClass: |
| 14293 | case Stmt::CXXStaticCastExprClass: |
| 14294 | case Stmt::ImplicitCastExprClass: { |
| 14295 | auto *CE = cast<CastExpr>(Val: E); |
| 14296 | const Expr *From = CE->getSubExpr(); |
| 14297 | switch (CE->getCastKind()) { |
| 14298 | default: |
| 14299 | break; |
| 14300 | case CK_NoOp: |
| 14301 | return getBaseAlignmentAndOffsetFromLValue(E: From, Ctx); |
| 14302 | case CK_UncheckedDerivedToBase: |
| 14303 | case CK_DerivedToBase: { |
| 14304 | auto P = getBaseAlignmentAndOffsetFromLValue(E: From, Ctx); |
| 14305 | if (!P) |
| 14306 | break; |
| 14307 | return getDerivedToBaseAlignmentAndOffset(CE, DerivedType: From->getType(), BaseAlignment: P->first, |
| 14308 | Offset: P->second, Ctx); |
| 14309 | } |
| 14310 | } |
| 14311 | break; |
| 14312 | } |
| 14313 | case Stmt::ArraySubscriptExprClass: { |
| 14314 | auto *ASE = cast<ArraySubscriptExpr>(Val: E); |
| 14315 | return getAlignmentAndOffsetFromBinAddOrSub(PtrE: ASE->getBase(), IntE: ASE->getIdx(), |
| 14316 | IsSub: false, Ctx); |
| 14317 | } |
| 14318 | case Stmt::DeclRefExprClass: { |
| 14319 | if (auto *VD = dyn_cast<VarDecl>(Val: cast<DeclRefExpr>(Val: E)->getDecl())) { |
| 14320 | // FIXME: If VD is captured by copy or is an escaping __block variable, |
| 14321 | // use the alignment of VD's type. |
| 14322 | if (!VD->getType()->isReferenceType()) { |
| 14323 | // Dependent alignment cannot be resolved -> bail out. |
| 14324 | if (VD->hasDependentAlignment()) |
| 14325 | break; |
| 14326 | return std::make_pair(x: Ctx.getDeclAlign(D: VD), y: CharUnits::Zero()); |
| 14327 | } |
| 14328 | if (VD->hasInit()) |
| 14329 | return getBaseAlignmentAndOffsetFromLValue(E: VD->getInit(), Ctx); |
| 14330 | } |
| 14331 | break; |
| 14332 | } |
| 14333 | case Stmt::MemberExprClass: { |
| 14334 | auto *ME = cast<MemberExpr>(Val: E); |
| 14335 | auto *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl()); |
| 14336 | if (!FD || FD->getType()->isReferenceType() || |
| 14337 | FD->getParent()->isInvalidDecl()) |
| 14338 | break; |
| 14339 | std::optional<std::pair<CharUnits, CharUnits>> P; |
| 14340 | if (ME->isArrow()) |
| 14341 | P = getBaseAlignmentAndOffsetFromPtr(E: ME->getBase(), Ctx); |
| 14342 | else |
| 14343 | P = getBaseAlignmentAndOffsetFromLValue(E: ME->getBase(), Ctx); |
| 14344 | if (!P) |
| 14345 | break; |
| 14346 | const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(D: FD->getParent()); |
| 14347 | uint64_t Offset = Layout.getFieldOffset(FieldNo: FD->getFieldIndex()); |
| 14348 | return std::make_pair(x&: P->first, |
| 14349 | y: P->second + CharUnits::fromQuantity(Quantity: Offset)); |
| 14350 | } |
| 14351 | case Stmt::UnaryOperatorClass: { |
| 14352 | auto *UO = cast<UnaryOperator>(Val: E); |
| 14353 | switch (UO->getOpcode()) { |
| 14354 | default: |
| 14355 | break; |
| 14356 | case UO_Deref: |
| 14357 | return getBaseAlignmentAndOffsetFromPtr(E: UO->getSubExpr(), Ctx); |
| 14358 | } |
| 14359 | break; |
| 14360 | } |
| 14361 | case Stmt::BinaryOperatorClass: { |
| 14362 | auto *BO = cast<BinaryOperator>(Val: E); |
| 14363 | auto Opcode = BO->getOpcode(); |
| 14364 | switch (Opcode) { |
| 14365 | default: |
| 14366 | break; |
| 14367 | case BO_Comma: |
| 14368 | return getBaseAlignmentAndOffsetFromLValue(E: BO->getRHS(), Ctx); |
| 14369 | } |
| 14370 | break; |
| 14371 | } |
| 14372 | } |
| 14373 | return std::nullopt; |
| 14374 | } |
| 14375 | |
| 14376 | /// This helper function takes a pointer expression and returns the alignment of |
| 14377 | /// a VarDecl and a constant offset from the VarDecl. |
| 14378 | std::optional<std::pair< |
| 14379 | CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr |
| 14380 | *E, |
| 14381 | ASTContext |
| 14382 | &Ctx) { |
| 14383 | E = E->IgnoreParens(); |
| 14384 | switch (E->getStmtClass()) { |
| 14385 | default: |
| 14386 | break; |
| 14387 | case Stmt::CStyleCastExprClass: |
| 14388 | case Stmt::CXXStaticCastExprClass: |
| 14389 | case Stmt::ImplicitCastExprClass: { |
| 14390 | auto *CE = cast<CastExpr>(Val: E); |
| 14391 | const Expr *From = CE->getSubExpr(); |
| 14392 | switch (CE->getCastKind()) { |
| 14393 | default: |
| 14394 | break; |
| 14395 | case CK_NoOp: |
| 14396 | return getBaseAlignmentAndOffsetFromPtr(E: From, Ctx); |
| 14397 | case CK_ArrayToPointerDecay: |
| 14398 | return getBaseAlignmentAndOffsetFromLValue(E: From, Ctx); |
| 14399 | case CK_UncheckedDerivedToBase: |
| 14400 | case CK_DerivedToBase: { |
| 14401 | auto P = getBaseAlignmentAndOffsetFromPtr(E: From, Ctx); |
| 14402 | if (!P) |
| 14403 | break; |
| 14404 | return getDerivedToBaseAlignmentAndOffset( |
| 14405 | CE, DerivedType: From->getType()->getPointeeType(), BaseAlignment: P->first, Offset: P->second, Ctx); |
| 14406 | } |
| 14407 | } |
| 14408 | break; |
| 14409 | } |
| 14410 | case Stmt::CXXThisExprClass: { |
| 14411 | auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl(); |
| 14412 | CharUnits Alignment = Ctx.getASTRecordLayout(D: RD).getNonVirtualAlignment(); |
| 14413 | return std::make_pair(x&: Alignment, y: CharUnits::Zero()); |
| 14414 | } |
| 14415 | case Stmt::UnaryOperatorClass: { |
| 14416 | auto *UO = cast<UnaryOperator>(Val: E); |
| 14417 | if (UO->getOpcode() == UO_AddrOf) |
| 14418 | return getBaseAlignmentAndOffsetFromLValue(E: UO->getSubExpr(), Ctx); |
| 14419 | break; |
| 14420 | } |
| 14421 | case Stmt::BinaryOperatorClass: { |
| 14422 | auto *BO = cast<BinaryOperator>(Val: E); |
| 14423 | auto Opcode = BO->getOpcode(); |
| 14424 | switch (Opcode) { |
| 14425 | default: |
| 14426 | break; |
| 14427 | case BO_Add: |
| 14428 | case BO_Sub: { |
| 14429 | const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS(); |
| 14430 | if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType()) |
| 14431 | std::swap(a&: LHS, b&: RHS); |
| 14432 | return getAlignmentAndOffsetFromBinAddOrSub(PtrE: LHS, IntE: RHS, IsSub: Opcode == BO_Sub, |
| 14433 | Ctx); |
| 14434 | } |
| 14435 | case BO_Comma: |
| 14436 | return getBaseAlignmentAndOffsetFromPtr(E: BO->getRHS(), Ctx); |
| 14437 | } |
| 14438 | break; |
| 14439 | } |
| 14440 | } |
| 14441 | return std::nullopt; |
| 14442 | } |
| 14443 | |
| 14444 | static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) { |
| 14445 | // See if we can compute the alignment of a VarDecl and an offset from it. |
| 14446 | std::optional<std::pair<CharUnits, CharUnits>> P = |
| 14447 | getBaseAlignmentAndOffsetFromPtr(E, Ctx&: S.Context); |
| 14448 | |
| 14449 | if (P) |
| 14450 | return P->first.alignmentAtOffset(offset: P->second); |
| 14451 | |
| 14452 | // If that failed, return the type's alignment. |
| 14453 | return S.Context.getTypeAlignInChars(T: E->getType()->getPointeeType()); |
| 14454 | } |
| 14455 | |
| 14456 | void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { |
| 14457 | // This is actually a lot of work to potentially be doing on every |
| 14458 | // cast; don't do it if we're ignoring -Wcast_align (as is the default). |
| 14459 | if (getDiagnostics().isIgnored(DiagID: diag::warn_cast_align, Loc: TRange.getBegin())) |
| 14460 | return; |
| 14461 | |
| 14462 | // Ignore dependent types. |
| 14463 | if (T->isDependentType() || Op->getType()->isDependentType()) |
| 14464 | return; |
| 14465 | |
| 14466 | // Require that the destination be a pointer type. |
| 14467 | const PointerType *DestPtr = T->getAs<PointerType>(); |
| 14468 | if (!DestPtr) return; |
| 14469 | |
| 14470 | // If the destination has alignment 1, we're done. |
| 14471 | QualType DestPointee = DestPtr->getPointeeType(); |
| 14472 | if (DestPointee->isIncompleteType()) return; |
| 14473 | CharUnits DestAlign = Context.getTypeAlignInChars(T: DestPointee); |
| 14474 | if (DestAlign.isOne()) return; |
| 14475 | |
| 14476 | // Require that the source be a pointer type. |
| 14477 | const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); |
| 14478 | if (!SrcPtr) return; |
| 14479 | QualType SrcPointee = SrcPtr->getPointeeType(); |
| 14480 | |
| 14481 | // Explicitly allow casts from cv void*. We already implicitly |
| 14482 | // allowed casts to cv void*, since they have alignment 1. |
| 14483 | // Also allow casts involving incomplete types, which implicitly |
| 14484 | // includes 'void'. |
| 14485 | if (SrcPointee->isIncompleteType()) return; |
| 14486 | |
| 14487 | CharUnits SrcAlign = getPresumedAlignmentOfPointer(E: Op, S&: *this); |
| 14488 | |
| 14489 | if (SrcAlign >= DestAlign) return; |
| 14490 | |
| 14491 | Diag(Loc: TRange.getBegin(), DiagID: diag::warn_cast_align) |
| 14492 | << Op->getType() << T |
| 14493 | << static_cast<unsigned>(SrcAlign.getQuantity()) |
| 14494 | << static_cast<unsigned>(DestAlign.getQuantity()) |
| 14495 | << TRange << Op->getSourceRange(); |
| 14496 | } |
| 14497 | |
| 14498 | void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, |
| 14499 | const ArraySubscriptExpr *ASE, |
| 14500 | bool AllowOnePastEnd, bool IndexNegated) { |
| 14501 | // Already diagnosed by the constant evaluator. |
| 14502 | if (isConstantEvaluatedContext()) |
| 14503 | return; |
| 14504 | |
| 14505 | IndexExpr = IndexExpr->IgnoreParenImpCasts(); |
| 14506 | if (IndexExpr->isValueDependent()) |
| 14507 | return; |
| 14508 | |
| 14509 | const Type *EffectiveType = |
| 14510 | BaseExpr->getType()->getPointeeOrArrayElementType(); |
| 14511 | BaseExpr = BaseExpr->IgnoreParenCasts(); |
| 14512 | const ConstantArrayType *ArrayTy = |
| 14513 | Context.getAsConstantArrayType(T: BaseExpr->getType()); |
| 14514 | |
| 14515 | LangOptions::StrictFlexArraysLevelKind |
| 14516 | StrictFlexArraysLevel = getLangOpts().getStrictFlexArraysLevel(); |
| 14517 | |
| 14518 | const Type *BaseType = |
| 14519 | ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr(); |
| 14520 | bool IsUnboundedArray = |
| 14521 | BaseType == nullptr || BaseExpr->isFlexibleArrayMemberLike( |
| 14522 | Context, StrictFlexArraysLevel, |
| 14523 | /*IgnoreTemplateOrMacroSubstitution=*/true); |
| 14524 | if (EffectiveType->isDependentType() || |
| 14525 | (!IsUnboundedArray && BaseType->isDependentType())) |
| 14526 | return; |
| 14527 | |
| 14528 | Expr::EvalResult Result; |
| 14529 | if (!IndexExpr->EvaluateAsInt(Result, Ctx: Context, AllowSideEffects: Expr::SE_AllowSideEffects)) |
| 14530 | return; |
| 14531 | |
| 14532 | llvm::APSInt index = Result.Val.getInt(); |
| 14533 | if (IndexNegated) { |
| 14534 | index.setIsUnsigned(false); |
| 14535 | index = -index; |
| 14536 | } |
| 14537 | |
| 14538 | if (IsUnboundedArray) { |
| 14539 | if (EffectiveType->isFunctionType()) |
| 14540 | return; |
| 14541 | if (index.isUnsigned() || !index.isNegative()) { |
| 14542 | const auto &ASTC = getASTContext(); |
| 14543 | unsigned AddrBits = ASTC.getTargetInfo().getPointerWidth( |
| 14544 | AddrSpace: EffectiveType->getCanonicalTypeInternal().getAddressSpace()); |
| 14545 | if (index.getBitWidth() < AddrBits) |
| 14546 | index = index.zext(width: AddrBits); |
| 14547 | std::optional<CharUnits> ElemCharUnits = |
| 14548 | ASTC.getTypeSizeInCharsIfKnown(Ty: EffectiveType); |
| 14549 | // PR50741 - If EffectiveType has unknown size (e.g., if it's a void |
| 14550 | // pointer) bounds-checking isn't meaningful. |
| 14551 | if (!ElemCharUnits || ElemCharUnits->isZero()) |
| 14552 | return; |
| 14553 | llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity()); |
| 14554 | // If index has more active bits than address space, we already know |
| 14555 | // we have a bounds violation to warn about. Otherwise, compute |
| 14556 | // address of (index + 1)th element, and warn about bounds violation |
| 14557 | // only if that address exceeds address space. |
| 14558 | if (index.getActiveBits() <= AddrBits) { |
| 14559 | bool Overflow; |
| 14560 | llvm::APInt Product(index); |
| 14561 | Product += 1; |
| 14562 | Product = Product.umul_ov(RHS: ElemBytes, Overflow); |
| 14563 | if (!Overflow && Product.getActiveBits() <= AddrBits) |
| 14564 | return; |
| 14565 | } |
| 14566 | |
| 14567 | // Need to compute max possible elements in address space, since that |
| 14568 | // is included in diag message. |
| 14569 | llvm::APInt MaxElems = llvm::APInt::getMaxValue(numBits: AddrBits); |
| 14570 | MaxElems = MaxElems.zext(width: std::max(a: AddrBits + 1, b: ElemBytes.getBitWidth())); |
| 14571 | MaxElems += 1; |
| 14572 | ElemBytes = ElemBytes.zextOrTrunc(width: MaxElems.getBitWidth()); |
| 14573 | MaxElems = MaxElems.udiv(RHS: ElemBytes); |
| 14574 | |
| 14575 | unsigned DiagID = |
| 14576 | ASE ? diag::warn_array_index_exceeds_max_addressable_bounds |
| 14577 | : diag::warn_ptr_arith_exceeds_max_addressable_bounds; |
| 14578 | |
| 14579 | // Diag message shows element size in bits and in "bytes" (platform- |
| 14580 | // dependent CharUnits) |
| 14581 | DiagRuntimeBehavior(Loc: BaseExpr->getBeginLoc(), Statement: BaseExpr, |
| 14582 | PD: PDiag(DiagID) |
| 14583 | << toString(I: index, Radix: 10, Signed: true) << AddrBits |
| 14584 | << (unsigned)ASTC.toBits(CharSize: *ElemCharUnits) |
| 14585 | << toString(I: ElemBytes, Radix: 10, Signed: false) |
| 14586 | << toString(I: MaxElems, Radix: 10, Signed: false) |
| 14587 | << (unsigned)MaxElems.getLimitedValue(Limit: ~0U) |
| 14588 | << IndexExpr->getSourceRange()); |
| 14589 | |
| 14590 | const NamedDecl *ND = nullptr; |
| 14591 | // Try harder to find a NamedDecl to point at in the note. |
| 14592 | while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Val: BaseExpr)) |
| 14593 | BaseExpr = ASE->getBase()->IgnoreParenCasts(); |
| 14594 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: BaseExpr)) |
| 14595 | ND = DRE->getDecl(); |
| 14596 | if (const auto *ME = dyn_cast<MemberExpr>(Val: BaseExpr)) |
| 14597 | ND = ME->getMemberDecl(); |
| 14598 | |
| 14599 | if (ND) |
| 14600 | DiagRuntimeBehavior(Loc: ND->getBeginLoc(), Statement: BaseExpr, |
| 14601 | PD: PDiag(DiagID: diag::note_array_declared_here) << ND); |
| 14602 | } |
| 14603 | return; |
| 14604 | } |
| 14605 | |
| 14606 | if (index.isUnsigned() || !index.isNegative()) { |
| 14607 | // It is possible that the type of the base expression after |
| 14608 | // IgnoreParenCasts is incomplete, even though the type of the base |
| 14609 | // expression before IgnoreParenCasts is complete (see PR39746 for an |
| 14610 | // example). In this case we have no information about whether the array |
| 14611 | // access exceeds the array bounds. However we can still diagnose an array |
| 14612 | // access which precedes the array bounds. |
| 14613 | if (BaseType->isIncompleteType()) |
| 14614 | return; |
| 14615 | |
| 14616 | llvm::APInt size = ArrayTy->getSize(); |
| 14617 | |
| 14618 | if (BaseType != EffectiveType) { |
| 14619 | // Make sure we're comparing apples to apples when comparing index to |
| 14620 | // size. |
| 14621 | uint64_t ptrarith_typesize = Context.getTypeSize(T: EffectiveType); |
| 14622 | uint64_t array_typesize = Context.getTypeSize(T: BaseType); |
| 14623 | |
| 14624 | // Handle ptrarith_typesize being zero, such as when casting to void*. |
| 14625 | // Use the size in bits (what "getTypeSize()" returns) rather than bytes. |
| 14626 | if (!ptrarith_typesize) |
| 14627 | ptrarith_typesize = Context.getCharWidth(); |
| 14628 | |
| 14629 | if (ptrarith_typesize != array_typesize) { |
| 14630 | // There's a cast to a different size type involved. |
| 14631 | uint64_t ratio = array_typesize / ptrarith_typesize; |
| 14632 | |
| 14633 | // TODO: Be smarter about handling cases where array_typesize is not a |
| 14634 | // multiple of ptrarith_typesize. |
| 14635 | if (ptrarith_typesize * ratio == array_typesize) |
| 14636 | size *= llvm::APInt(size.getBitWidth(), ratio); |
| 14637 | } |
| 14638 | } |
| 14639 | |
| 14640 | if (size.getBitWidth() > index.getBitWidth()) |
| 14641 | index = index.zext(width: size.getBitWidth()); |
| 14642 | else if (size.getBitWidth() < index.getBitWidth()) |
| 14643 | size = size.zext(width: index.getBitWidth()); |
| 14644 | |
| 14645 | // For array subscripting the index must be less than size, but for pointer |
| 14646 | // arithmetic also allow the index (offset) to be equal to size since |
| 14647 | // computing the next address after the end of the array is legal and |
| 14648 | // commonly done e.g. in C++ iterators and range-based for loops. |
| 14649 | if (AllowOnePastEnd ? index.ule(RHS: size) : index.ult(RHS: size)) |
| 14650 | return; |
| 14651 | |
| 14652 | // Suppress the warning if the subscript expression (as identified by the |
| 14653 | // ']' location) and the index expression are both from macro expansions |
| 14654 | // within a system header. |
| 14655 | if (ASE) { |
| 14656 | SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( |
| 14657 | Loc: ASE->getRBracketLoc()); |
| 14658 | if (SourceMgr.isInSystemHeader(Loc: RBracketLoc)) { |
| 14659 | SourceLocation IndexLoc = |
| 14660 | SourceMgr.getSpellingLoc(Loc: IndexExpr->getBeginLoc()); |
| 14661 | if (SourceMgr.isWrittenInSameFile(Loc1: RBracketLoc, Loc2: IndexLoc)) |
| 14662 | return; |
| 14663 | } |
| 14664 | } |
| 14665 | |
| 14666 | unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds |
| 14667 | : diag::warn_ptr_arith_exceeds_bounds; |
| 14668 | unsigned CastMsg = (!ASE || BaseType == EffectiveType) ? 0 : 1; |
| 14669 | QualType CastMsgTy = ASE ? ASE->getLHS()->getType() : QualType(); |
| 14670 | |
| 14671 | DiagRuntimeBehavior( |
| 14672 | Loc: BaseExpr->getBeginLoc(), Statement: BaseExpr, |
| 14673 | PD: PDiag(DiagID) << toString(I: index, Radix: 10, Signed: true) << ArrayTy->desugar() |
| 14674 | << CastMsg << CastMsgTy << IndexExpr->getSourceRange()); |
| 14675 | } else { |
| 14676 | unsigned DiagID = diag::warn_array_index_precedes_bounds; |
| 14677 | if (!ASE) { |
| 14678 | DiagID = diag::warn_ptr_arith_precedes_bounds; |
| 14679 | if (index.isNegative()) index = -index; |
| 14680 | } |
| 14681 | |
| 14682 | DiagRuntimeBehavior(Loc: BaseExpr->getBeginLoc(), Statement: BaseExpr, |
| 14683 | PD: PDiag(DiagID) << toString(I: index, Radix: 10, Signed: true) |
| 14684 | << IndexExpr->getSourceRange()); |
| 14685 | } |
| 14686 | |
| 14687 | const NamedDecl *ND = nullptr; |
| 14688 | // Try harder to find a NamedDecl to point at in the note. |
| 14689 | while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Val: BaseExpr)) |
| 14690 | BaseExpr = ASE->getBase()->IgnoreParenCasts(); |
| 14691 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: BaseExpr)) |
| 14692 | ND = DRE->getDecl(); |
| 14693 | if (const auto *ME = dyn_cast<MemberExpr>(Val: BaseExpr)) |
| 14694 | ND = ME->getMemberDecl(); |
| 14695 | |
| 14696 | if (ND) |
| 14697 | DiagRuntimeBehavior(Loc: ND->getBeginLoc(), Statement: BaseExpr, |
| 14698 | PD: PDiag(DiagID: diag::note_array_declared_here) << ND); |
| 14699 | } |
| 14700 | |
| 14701 | void Sema::CheckArrayAccess(const Expr *expr) { |
| 14702 | int AllowOnePastEnd = 0; |
| 14703 | while (expr) { |
| 14704 | expr = expr->IgnoreParenImpCasts(); |
| 14705 | switch (expr->getStmtClass()) { |
| 14706 | case Stmt::ArraySubscriptExprClass: { |
| 14707 | const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Val: expr); |
| 14708 | CheckArrayAccess(BaseExpr: ASE->getBase(), IndexExpr: ASE->getIdx(), ASE, |
| 14709 | AllowOnePastEnd: AllowOnePastEnd > 0); |
| 14710 | expr = ASE->getBase(); |
| 14711 | break; |
| 14712 | } |
| 14713 | case Stmt::MemberExprClass: { |
| 14714 | expr = cast<MemberExpr>(Val: expr)->getBase(); |
| 14715 | break; |
| 14716 | } |
| 14717 | case Stmt::ArraySectionExprClass: { |
| 14718 | const ArraySectionExpr *ASE = cast<ArraySectionExpr>(Val: expr); |
| 14719 | // FIXME: We should probably be checking all of the elements to the |
| 14720 | // 'length' here as well. |
| 14721 | if (ASE->getLowerBound()) |
| 14722 | CheckArrayAccess(BaseExpr: ASE->getBase(), IndexExpr: ASE->getLowerBound(), |
| 14723 | /*ASE=*/nullptr, AllowOnePastEnd: AllowOnePastEnd > 0); |
| 14724 | return; |
| 14725 | } |
| 14726 | case Stmt::UnaryOperatorClass: { |
| 14727 | // Only unwrap the * and & unary operators |
| 14728 | const UnaryOperator *UO = cast<UnaryOperator>(Val: expr); |
| 14729 | expr = UO->getSubExpr(); |
| 14730 | switch (UO->getOpcode()) { |
| 14731 | case UO_AddrOf: |
| 14732 | AllowOnePastEnd++; |
| 14733 | break; |
| 14734 | case UO_Deref: |
| 14735 | AllowOnePastEnd--; |
| 14736 | break; |
| 14737 | default: |
| 14738 | return; |
| 14739 | } |
| 14740 | break; |
| 14741 | } |
| 14742 | case Stmt::ConditionalOperatorClass: { |
| 14743 | const ConditionalOperator *cond = cast<ConditionalOperator>(Val: expr); |
| 14744 | if (const Expr *lhs = cond->getLHS()) |
| 14745 | CheckArrayAccess(expr: lhs); |
| 14746 | if (const Expr *rhs = cond->getRHS()) |
| 14747 | CheckArrayAccess(expr: rhs); |
| 14748 | return; |
| 14749 | } |
| 14750 | case Stmt::CXXOperatorCallExprClass: { |
| 14751 | const auto *OCE = cast<CXXOperatorCallExpr>(Val: expr); |
| 14752 | for (const auto *Arg : OCE->arguments()) |
| 14753 | CheckArrayAccess(expr: Arg); |
| 14754 | return; |
| 14755 | } |
| 14756 | default: |
| 14757 | return; |
| 14758 | } |
| 14759 | } |
| 14760 | } |
| 14761 | |
| 14762 | static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, |
| 14763 | Expr *RHS, bool isProperty) { |
| 14764 | // Check if RHS is an Objective-C object literal, which also can get |
| 14765 | // immediately zapped in a weak reference. Note that we explicitly |
| 14766 | // allow ObjCStringLiterals, since those are designed to never really die. |
| 14767 | RHS = RHS->IgnoreParenImpCasts(); |
| 14768 | |
| 14769 | // This enum needs to match with the 'select' in |
| 14770 | // warn_objc_arc_literal_assign (off-by-1). |
| 14771 | SemaObjC::ObjCLiteralKind Kind = S.ObjC().CheckLiteralKind(FromE: RHS); |
| 14772 | if (Kind == SemaObjC::LK_String || Kind == SemaObjC::LK_None) |
| 14773 | return false; |
| 14774 | |
| 14775 | S.Diag(Loc, DiagID: diag::warn_arc_literal_assign) |
| 14776 | << (unsigned) Kind |
| 14777 | << (isProperty ? 0 : 1) |
| 14778 | << RHS->getSourceRange(); |
| 14779 | |
| 14780 | return true; |
| 14781 | } |
| 14782 | |
| 14783 | static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, |
| 14784 | Qualifiers::ObjCLifetime LT, |
| 14785 | Expr *RHS, bool isProperty) { |
| 14786 | // Strip off any implicit cast added to get to the one ARC-specific. |
| 14787 | while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(Val: RHS)) { |
| 14788 | if (cast->getCastKind() == CK_ARCConsumeObject) { |
| 14789 | S.Diag(Loc, DiagID: diag::warn_arc_retained_assign) |
| 14790 | << (LT == Qualifiers::OCL_ExplicitNone) |
| 14791 | << (isProperty ? 0 : 1) |
| 14792 | << RHS->getSourceRange(); |
| 14793 | return true; |
| 14794 | } |
| 14795 | RHS = cast->getSubExpr(); |
| 14796 | } |
| 14797 | |
| 14798 | if (LT == Qualifiers::OCL_Weak && |
| 14799 | checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) |
| 14800 | return true; |
| 14801 | |
| 14802 | return false; |
| 14803 | } |
| 14804 | |
| 14805 | bool Sema::checkUnsafeAssigns(SourceLocation Loc, |
| 14806 | QualType LHS, Expr *RHS) { |
| 14807 | Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); |
| 14808 | |
| 14809 | if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) |
| 14810 | return false; |
| 14811 | |
| 14812 | if (checkUnsafeAssignObject(S&: *this, Loc, LT, RHS, isProperty: false)) |
| 14813 | return true; |
| 14814 | |
| 14815 | return false; |
| 14816 | } |
| 14817 | |
| 14818 | void Sema::checkUnsafeExprAssigns(SourceLocation Loc, |
| 14819 | Expr *LHS, Expr *RHS) { |
| 14820 | QualType LHSType; |
| 14821 | // PropertyRef on LHS type need be directly obtained from |
| 14822 | // its declaration as it has a PseudoType. |
| 14823 | ObjCPropertyRefExpr *PRE |
| 14824 | = dyn_cast<ObjCPropertyRefExpr>(Val: LHS->IgnoreParens()); |
| 14825 | if (PRE && !PRE->isImplicitProperty()) { |
| 14826 | const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); |
| 14827 | if (PD) |
| 14828 | LHSType = PD->getType(); |
| 14829 | } |
| 14830 | |
| 14831 | if (LHSType.isNull()) |
| 14832 | LHSType = LHS->getType(); |
| 14833 | |
| 14834 | Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); |
| 14835 | |
| 14836 | if (LT == Qualifiers::OCL_Weak) { |
| 14837 | if (!Diags.isIgnored(DiagID: diag::warn_arc_repeated_use_of_weak, Loc)) |
| 14838 | getCurFunction()->markSafeWeakUse(E: LHS); |
| 14839 | } |
| 14840 | |
| 14841 | if (checkUnsafeAssigns(Loc, LHS: LHSType, RHS)) |
| 14842 | return; |
| 14843 | |
| 14844 | // FIXME. Check for other life times. |
| 14845 | if (LT != Qualifiers::OCL_None) |
| 14846 | return; |
| 14847 | |
| 14848 | if (PRE) { |
| 14849 | if (PRE->isImplicitProperty()) |
| 14850 | return; |
| 14851 | const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); |
| 14852 | if (!PD) |
| 14853 | return; |
| 14854 | |
| 14855 | unsigned Attributes = PD->getPropertyAttributes(); |
| 14856 | if (Attributes & ObjCPropertyAttribute::kind_assign) { |
| 14857 | // when 'assign' attribute was not explicitly specified |
| 14858 | // by user, ignore it and rely on property type itself |
| 14859 | // for lifetime info. |
| 14860 | unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); |
| 14861 | if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) && |
| 14862 | LHSType->isObjCRetainableType()) |
| 14863 | return; |
| 14864 | |
| 14865 | while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(Val: RHS)) { |
| 14866 | if (cast->getCastKind() == CK_ARCConsumeObject) { |
| 14867 | Diag(Loc, DiagID: diag::warn_arc_retained_property_assign) |
| 14868 | << RHS->getSourceRange(); |
| 14869 | return; |
| 14870 | } |
| 14871 | RHS = cast->getSubExpr(); |
| 14872 | } |
| 14873 | } else if (Attributes & ObjCPropertyAttribute::kind_weak) { |
| 14874 | if (checkUnsafeAssignObject(S&: *this, Loc, LT: Qualifiers::OCL_Weak, RHS, isProperty: true)) |
| 14875 | return; |
| 14876 | } |
| 14877 | } |
| 14878 | } |
| 14879 | |
| 14880 | //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// |
| 14881 | |
| 14882 | static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, |
| 14883 | SourceLocation StmtLoc, |
| 14884 | const NullStmt *Body) { |
| 14885 | // Do not warn if the body is a macro that expands to nothing, e.g: |
| 14886 | // |
| 14887 | // #define CALL(x) |
| 14888 | // if (condition) |
| 14889 | // CALL(0); |
| 14890 | if (Body->hasLeadingEmptyMacro()) |
| 14891 | return false; |
| 14892 | |
| 14893 | // Get line numbers of statement and body. |
| 14894 | bool StmtLineInvalid; |
| 14895 | unsigned StmtLine = SourceMgr.getPresumedLineNumber(Loc: StmtLoc, |
| 14896 | Invalid: &StmtLineInvalid); |
| 14897 | if (StmtLineInvalid) |
| 14898 | return false; |
| 14899 | |
| 14900 | bool BodyLineInvalid; |
| 14901 | unsigned BodyLine = SourceMgr.getSpellingLineNumber(Loc: Body->getSemiLoc(), |
| 14902 | Invalid: &BodyLineInvalid); |
| 14903 | if (BodyLineInvalid) |
| 14904 | return false; |
| 14905 | |
| 14906 | // Warn if null statement and body are on the same line. |
| 14907 | if (StmtLine != BodyLine) |
| 14908 | return false; |
| 14909 | |
| 14910 | return true; |
| 14911 | } |
| 14912 | |
| 14913 | void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, |
| 14914 | const Stmt *Body, |
| 14915 | unsigned DiagID) { |
| 14916 | // Since this is a syntactic check, don't emit diagnostic for template |
| 14917 | // instantiations, this just adds noise. |
| 14918 | if (CurrentInstantiationScope) |
| 14919 | return; |
| 14920 | |
| 14921 | // The body should be a null statement. |
| 14922 | const NullStmt *NBody = dyn_cast<NullStmt>(Val: Body); |
| 14923 | if (!NBody) |
| 14924 | return; |
| 14925 | |
| 14926 | // Do the usual checks. |
| 14927 | if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, Body: NBody)) |
| 14928 | return; |
| 14929 | |
| 14930 | Diag(Loc: NBody->getSemiLoc(), DiagID); |
| 14931 | Diag(Loc: NBody->getSemiLoc(), DiagID: diag::note_empty_body_on_separate_line); |
| 14932 | } |
| 14933 | |
| 14934 | void Sema::DiagnoseEmptyLoopBody(const Stmt *S, |
| 14935 | const Stmt *PossibleBody) { |
| 14936 | assert(!CurrentInstantiationScope); // Ensured by caller |
| 14937 | |
| 14938 | SourceLocation StmtLoc; |
| 14939 | const Stmt *Body; |
| 14940 | unsigned DiagID; |
| 14941 | if (const ForStmt *FS = dyn_cast<ForStmt>(Val: S)) { |
| 14942 | StmtLoc = FS->getRParenLoc(); |
| 14943 | Body = FS->getBody(); |
| 14944 | DiagID = diag::warn_empty_for_body; |
| 14945 | } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Val: S)) { |
| 14946 | StmtLoc = WS->getRParenLoc(); |
| 14947 | Body = WS->getBody(); |
| 14948 | DiagID = diag::warn_empty_while_body; |
| 14949 | } else |
| 14950 | return; // Neither `for' nor `while'. |
| 14951 | |
| 14952 | // The body should be a null statement. |
| 14953 | const NullStmt *NBody = dyn_cast<NullStmt>(Val: Body); |
| 14954 | if (!NBody) |
| 14955 | return; |
| 14956 | |
| 14957 | // Skip expensive checks if diagnostic is disabled. |
| 14958 | if (Diags.isIgnored(DiagID, Loc: NBody->getSemiLoc())) |
| 14959 | return; |
| 14960 | |
| 14961 | // Do the usual checks. |
| 14962 | if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, Body: NBody)) |
| 14963 | return; |
| 14964 | |
| 14965 | // `for(...);' and `while(...);' are popular idioms, so in order to keep |
| 14966 | // noise level low, emit diagnostics only if for/while is followed by a |
| 14967 | // CompoundStmt, e.g.: |
| 14968 | // for (int i = 0; i < n; i++); |
| 14969 | // { |
| 14970 | // a(i); |
| 14971 | // } |
| 14972 | // or if for/while is followed by a statement with more indentation |
| 14973 | // than for/while itself: |
| 14974 | // for (int i = 0; i < n; i++); |
| 14975 | // a(i); |
| 14976 | bool ProbableTypo = isa<CompoundStmt>(Val: PossibleBody); |
| 14977 | if (!ProbableTypo) { |
| 14978 | bool BodyColInvalid; |
| 14979 | unsigned BodyCol = SourceMgr.getPresumedColumnNumber( |
| 14980 | Loc: PossibleBody->getBeginLoc(), Invalid: &BodyColInvalid); |
| 14981 | if (BodyColInvalid) |
| 14982 | return; |
| 14983 | |
| 14984 | bool StmtColInvalid; |
| 14985 | unsigned StmtCol = |
| 14986 | SourceMgr.getPresumedColumnNumber(Loc: S->getBeginLoc(), Invalid: &StmtColInvalid); |
| 14987 | if (StmtColInvalid) |
| 14988 | return; |
| 14989 | |
| 14990 | if (BodyCol > StmtCol) |
| 14991 | ProbableTypo = true; |
| 14992 | } |
| 14993 | |
| 14994 | if (ProbableTypo) { |
| 14995 | Diag(Loc: NBody->getSemiLoc(), DiagID); |
| 14996 | Diag(Loc: NBody->getSemiLoc(), DiagID: diag::note_empty_body_on_separate_line); |
| 14997 | } |
| 14998 | } |
| 14999 | |
| 15000 | //===--- CHECK: Warn on self move with std::move. -------------------------===// |
| 15001 | |
| 15002 | void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, |
| 15003 | SourceLocation OpLoc) { |
| 15004 | if (Diags.isIgnored(DiagID: diag::warn_sizeof_pointer_expr_memaccess, Loc: OpLoc)) |
| 15005 | return; |
| 15006 | |
| 15007 | if (inTemplateInstantiation()) |
| 15008 | return; |
| 15009 | |
| 15010 | // Strip parens and casts away. |
| 15011 | LHSExpr = LHSExpr->IgnoreParenImpCasts(); |
| 15012 | RHSExpr = RHSExpr->IgnoreParenImpCasts(); |
| 15013 | |
| 15014 | // Check for a call to std::move or for a static_cast<T&&>(..) to an xvalue |
| 15015 | // which we can treat as an inlined std::move |
| 15016 | if (const auto *CE = dyn_cast<CallExpr>(Val: RHSExpr); |
| 15017 | CE && CE->getNumArgs() == 1 && CE->isCallToStdMove()) |
| 15018 | RHSExpr = CE->getArg(Arg: 0); |
| 15019 | else if (const auto *CXXSCE = dyn_cast<CXXStaticCastExpr>(Val: RHSExpr); |
| 15020 | CXXSCE && CXXSCE->isXValue()) |
| 15021 | RHSExpr = CXXSCE->getSubExpr(); |
| 15022 | else |
| 15023 | return; |
| 15024 | |
| 15025 | const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(Val: LHSExpr); |
| 15026 | const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(Val: RHSExpr); |
| 15027 | |
| 15028 | // Two DeclRefExpr's, check that the decls are the same. |
| 15029 | if (LHSDeclRef && RHSDeclRef) { |
| 15030 | if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) |
| 15031 | return; |
| 15032 | if (LHSDeclRef->getDecl()->getCanonicalDecl() != |
| 15033 | RHSDeclRef->getDecl()->getCanonicalDecl()) |
| 15034 | return; |
| 15035 | |
| 15036 | auto D = Diag(Loc: OpLoc, DiagID: diag::warn_self_move) |
| 15037 | << LHSExpr->getType() << LHSExpr->getSourceRange() |
| 15038 | << RHSExpr->getSourceRange(); |
| 15039 | if (const FieldDecl *F = |
| 15040 | getSelfAssignmentClassMemberCandidate(SelfAssigned: RHSDeclRef->getDecl())) |
| 15041 | D << 1 << F |
| 15042 | << FixItHint::CreateInsertion(InsertionLoc: LHSDeclRef->getBeginLoc(), Code: "this->" ); |
| 15043 | else |
| 15044 | D << 0; |
| 15045 | return; |
| 15046 | } |
| 15047 | |
| 15048 | // Member variables require a different approach to check for self moves. |
| 15049 | // MemberExpr's are the same if every nested MemberExpr refers to the same |
| 15050 | // Decl and that the base Expr's are DeclRefExpr's with the same Decl or |
| 15051 | // the base Expr's are CXXThisExpr's. |
| 15052 | const Expr *LHSBase = LHSExpr; |
| 15053 | const Expr *RHSBase = RHSExpr; |
| 15054 | const MemberExpr *LHSME = dyn_cast<MemberExpr>(Val: LHSExpr); |
| 15055 | const MemberExpr *RHSME = dyn_cast<MemberExpr>(Val: RHSExpr); |
| 15056 | if (!LHSME || !RHSME) |
| 15057 | return; |
| 15058 | |
| 15059 | while (LHSME && RHSME) { |
| 15060 | if (LHSME->getMemberDecl()->getCanonicalDecl() != |
| 15061 | RHSME->getMemberDecl()->getCanonicalDecl()) |
| 15062 | return; |
| 15063 | |
| 15064 | LHSBase = LHSME->getBase(); |
| 15065 | RHSBase = RHSME->getBase(); |
| 15066 | LHSME = dyn_cast<MemberExpr>(Val: LHSBase); |
| 15067 | RHSME = dyn_cast<MemberExpr>(Val: RHSBase); |
| 15068 | } |
| 15069 | |
| 15070 | LHSDeclRef = dyn_cast<DeclRefExpr>(Val: LHSBase); |
| 15071 | RHSDeclRef = dyn_cast<DeclRefExpr>(Val: RHSBase); |
| 15072 | if (LHSDeclRef && RHSDeclRef) { |
| 15073 | if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) |
| 15074 | return; |
| 15075 | if (LHSDeclRef->getDecl()->getCanonicalDecl() != |
| 15076 | RHSDeclRef->getDecl()->getCanonicalDecl()) |
| 15077 | return; |
| 15078 | |
| 15079 | Diag(Loc: OpLoc, DiagID: diag::warn_self_move) |
| 15080 | << LHSExpr->getType() << 0 << LHSExpr->getSourceRange() |
| 15081 | << RHSExpr->getSourceRange(); |
| 15082 | return; |
| 15083 | } |
| 15084 | |
| 15085 | if (isa<CXXThisExpr>(Val: LHSBase) && isa<CXXThisExpr>(Val: RHSBase)) |
| 15086 | Diag(Loc: OpLoc, DiagID: diag::warn_self_move) |
| 15087 | << LHSExpr->getType() << 0 << LHSExpr->getSourceRange() |
| 15088 | << RHSExpr->getSourceRange(); |
| 15089 | } |
| 15090 | |
| 15091 | //===--- Layout compatibility ----------------------------------------------// |
| 15092 | |
| 15093 | static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2); |
| 15094 | |
| 15095 | /// Check if two enumeration types are layout-compatible. |
| 15096 | static bool isLayoutCompatible(const ASTContext &C, const EnumDecl *ED1, |
| 15097 | const EnumDecl *ED2) { |
| 15098 | // C++11 [dcl.enum] p8: |
| 15099 | // Two enumeration types are layout-compatible if they have the same |
| 15100 | // underlying type. |
| 15101 | return ED1->isComplete() && ED2->isComplete() && |
| 15102 | C.hasSameType(T1: ED1->getIntegerType(), T2: ED2->getIntegerType()); |
| 15103 | } |
| 15104 | |
| 15105 | /// Check if two fields are layout-compatible. |
| 15106 | /// Can be used on union members, which are exempt from alignment requirement |
| 15107 | /// of common initial sequence. |
| 15108 | static bool isLayoutCompatible(const ASTContext &C, const FieldDecl *Field1, |
| 15109 | const FieldDecl *Field2, |
| 15110 | bool AreUnionMembers = false) { |
| 15111 | [[maybe_unused]] const Type *Field1Parent = |
| 15112 | Field1->getParent()->getTypeForDecl(); |
| 15113 | [[maybe_unused]] const Type *Field2Parent = |
| 15114 | Field2->getParent()->getTypeForDecl(); |
| 15115 | assert(((Field1Parent->isStructureOrClassType() && |
| 15116 | Field2Parent->isStructureOrClassType()) || |
| 15117 | (Field1Parent->isUnionType() && Field2Parent->isUnionType())) && |
| 15118 | "Can't evaluate layout compatibility between a struct field and a " |
| 15119 | "union field." ); |
| 15120 | assert(((!AreUnionMembers && Field1Parent->isStructureOrClassType()) || |
| 15121 | (AreUnionMembers && Field1Parent->isUnionType())) && |
| 15122 | "AreUnionMembers should be 'true' for union fields (only)." ); |
| 15123 | |
| 15124 | if (!isLayoutCompatible(C, T1: Field1->getType(), T2: Field2->getType())) |
| 15125 | return false; |
| 15126 | |
| 15127 | if (Field1->isBitField() != Field2->isBitField()) |
| 15128 | return false; |
| 15129 | |
| 15130 | if (Field1->isBitField()) { |
| 15131 | // Make sure that the bit-fields are the same length. |
| 15132 | unsigned Bits1 = Field1->getBitWidthValue(); |
| 15133 | unsigned Bits2 = Field2->getBitWidthValue(); |
| 15134 | |
| 15135 | if (Bits1 != Bits2) |
| 15136 | return false; |
| 15137 | } |
| 15138 | |
| 15139 | if (Field1->hasAttr<clang::NoUniqueAddressAttr>() || |
| 15140 | Field2->hasAttr<clang::NoUniqueAddressAttr>()) |
| 15141 | return false; |
| 15142 | |
| 15143 | if (!AreUnionMembers && |
| 15144 | Field1->getMaxAlignment() != Field2->getMaxAlignment()) |
| 15145 | return false; |
| 15146 | |
| 15147 | return true; |
| 15148 | } |
| 15149 | |
| 15150 | /// Check if two standard-layout structs are layout-compatible. |
| 15151 | /// (C++11 [class.mem] p17) |
| 15152 | static bool isLayoutCompatibleStruct(const ASTContext &C, const RecordDecl *RD1, |
| 15153 | const RecordDecl *RD2) { |
| 15154 | // Get to the class where the fields are declared |
| 15155 | if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(Val: RD1)) |
| 15156 | RD1 = D1CXX->getStandardLayoutBaseWithFields(); |
| 15157 | |
| 15158 | if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(Val: RD2)) |
| 15159 | RD2 = D2CXX->getStandardLayoutBaseWithFields(); |
| 15160 | |
| 15161 | // Check the fields. |
| 15162 | return llvm::equal(LRange: RD1->fields(), RRange: RD2->fields(), |
| 15163 | P: [&C](const FieldDecl *F1, const FieldDecl *F2) -> bool { |
| 15164 | return isLayoutCompatible(C, Field1: F1, Field2: F2); |
| 15165 | }); |
| 15166 | } |
| 15167 | |
| 15168 | /// Check if two standard-layout unions are layout-compatible. |
| 15169 | /// (C++11 [class.mem] p18) |
| 15170 | static bool isLayoutCompatibleUnion(const ASTContext &C, const RecordDecl *RD1, |
| 15171 | const RecordDecl *RD2) { |
| 15172 | llvm::SmallPtrSet<const FieldDecl *, 8> UnmatchedFields(llvm::from_range, |
| 15173 | RD2->fields()); |
| 15174 | |
| 15175 | for (auto *Field1 : RD1->fields()) { |
| 15176 | auto I = UnmatchedFields.begin(); |
| 15177 | auto E = UnmatchedFields.end(); |
| 15178 | |
| 15179 | for ( ; I != E; ++I) { |
| 15180 | if (isLayoutCompatible(C, Field1, Field2: *I, /*IsUnionMember=*/AreUnionMembers: true)) { |
| 15181 | bool Result = UnmatchedFields.erase(Ptr: *I); |
| 15182 | (void) Result; |
| 15183 | assert(Result); |
| 15184 | break; |
| 15185 | } |
| 15186 | } |
| 15187 | if (I == E) |
| 15188 | return false; |
| 15189 | } |
| 15190 | |
| 15191 | return UnmatchedFields.empty(); |
| 15192 | } |
| 15193 | |
| 15194 | static bool isLayoutCompatible(const ASTContext &C, const RecordDecl *RD1, |
| 15195 | const RecordDecl *RD2) { |
| 15196 | if (RD1->isUnion() != RD2->isUnion()) |
| 15197 | return false; |
| 15198 | |
| 15199 | if (RD1->isUnion()) |
| 15200 | return isLayoutCompatibleUnion(C, RD1, RD2); |
| 15201 | else |
| 15202 | return isLayoutCompatibleStruct(C, RD1, RD2); |
| 15203 | } |
| 15204 | |
| 15205 | /// Check if two types are layout-compatible in C++11 sense. |
| 15206 | static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2) { |
| 15207 | if (T1.isNull() || T2.isNull()) |
| 15208 | return false; |
| 15209 | |
| 15210 | // C++20 [basic.types] p11: |
| 15211 | // Two types cv1 T1 and cv2 T2 are layout-compatible types |
| 15212 | // if T1 and T2 are the same type, layout-compatible enumerations (9.7.1), |
| 15213 | // or layout-compatible standard-layout class types (11.4). |
| 15214 | T1 = T1.getCanonicalType().getUnqualifiedType(); |
| 15215 | T2 = T2.getCanonicalType().getUnqualifiedType(); |
| 15216 | |
| 15217 | if (C.hasSameType(T1, T2)) |
| 15218 | return true; |
| 15219 | |
| 15220 | const Type::TypeClass TC1 = T1->getTypeClass(); |
| 15221 | const Type::TypeClass TC2 = T2->getTypeClass(); |
| 15222 | |
| 15223 | if (TC1 != TC2) |
| 15224 | return false; |
| 15225 | |
| 15226 | if (TC1 == Type::Enum) { |
| 15227 | return isLayoutCompatible(C, |
| 15228 | ED1: cast<EnumType>(Val&: T1)->getDecl(), |
| 15229 | ED2: cast<EnumType>(Val&: T2)->getDecl()); |
| 15230 | } else if (TC1 == Type::Record) { |
| 15231 | if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) |
| 15232 | return false; |
| 15233 | |
| 15234 | return isLayoutCompatible(C, |
| 15235 | RD1: cast<RecordType>(Val&: T1)->getDecl(), |
| 15236 | RD2: cast<RecordType>(Val&: T2)->getDecl()); |
| 15237 | } |
| 15238 | |
| 15239 | return false; |
| 15240 | } |
| 15241 | |
| 15242 | bool Sema::IsLayoutCompatible(QualType T1, QualType T2) const { |
| 15243 | return isLayoutCompatible(C: getASTContext(), T1, T2); |
| 15244 | } |
| 15245 | |
| 15246 | //===-------------- Pointer interconvertibility ----------------------------// |
| 15247 | |
| 15248 | bool Sema::IsPointerInterconvertibleBaseOf(const TypeSourceInfo *Base, |
| 15249 | const TypeSourceInfo *Derived) { |
| 15250 | QualType BaseT = Base->getType()->getCanonicalTypeUnqualified(); |
| 15251 | QualType DerivedT = Derived->getType()->getCanonicalTypeUnqualified(); |
| 15252 | |
| 15253 | if (BaseT->isStructureOrClassType() && DerivedT->isStructureOrClassType() && |
| 15254 | getASTContext().hasSameType(T1: BaseT, T2: DerivedT)) |
| 15255 | return true; |
| 15256 | |
| 15257 | if (!IsDerivedFrom(Loc: Derived->getTypeLoc().getBeginLoc(), Derived: DerivedT, Base: BaseT)) |
| 15258 | return false; |
| 15259 | |
| 15260 | // Per [basic.compound]/4.3, containing object has to be standard-layout. |
| 15261 | if (DerivedT->getAsCXXRecordDecl()->isStandardLayout()) |
| 15262 | return true; |
| 15263 | |
| 15264 | return false; |
| 15265 | } |
| 15266 | |
| 15267 | //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// |
| 15268 | |
| 15269 | /// Given a type tag expression find the type tag itself. |
| 15270 | /// |
| 15271 | /// \param TypeExpr Type tag expression, as it appears in user's code. |
| 15272 | /// |
| 15273 | /// \param VD Declaration of an identifier that appears in a type tag. |
| 15274 | /// |
| 15275 | /// \param MagicValue Type tag magic value. |
| 15276 | /// |
| 15277 | /// \param isConstantEvaluated whether the evalaution should be performed in |
| 15278 | |
| 15279 | /// constant context. |
| 15280 | static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, |
| 15281 | const ValueDecl **VD, uint64_t *MagicValue, |
| 15282 | bool isConstantEvaluated) { |
| 15283 | while(true) { |
| 15284 | if (!TypeExpr) |
| 15285 | return false; |
| 15286 | |
| 15287 | TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); |
| 15288 | |
| 15289 | switch (TypeExpr->getStmtClass()) { |
| 15290 | case Stmt::UnaryOperatorClass: { |
| 15291 | const UnaryOperator *UO = cast<UnaryOperator>(Val: TypeExpr); |
| 15292 | if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { |
| 15293 | TypeExpr = UO->getSubExpr(); |
| 15294 | continue; |
| 15295 | } |
| 15296 | return false; |
| 15297 | } |
| 15298 | |
| 15299 | case Stmt::DeclRefExprClass: { |
| 15300 | const DeclRefExpr *DRE = cast<DeclRefExpr>(Val: TypeExpr); |
| 15301 | *VD = DRE->getDecl(); |
| 15302 | return true; |
| 15303 | } |
| 15304 | |
| 15305 | case Stmt::IntegerLiteralClass: { |
| 15306 | const IntegerLiteral *IL = cast<IntegerLiteral>(Val: TypeExpr); |
| 15307 | llvm::APInt MagicValueAPInt = IL->getValue(); |
| 15308 | if (MagicValueAPInt.getActiveBits() <= 64) { |
| 15309 | *MagicValue = MagicValueAPInt.getZExtValue(); |
| 15310 | return true; |
| 15311 | } else |
| 15312 | return false; |
| 15313 | } |
| 15314 | |
| 15315 | case Stmt::BinaryConditionalOperatorClass: |
| 15316 | case Stmt::ConditionalOperatorClass: { |
| 15317 | const AbstractConditionalOperator *ACO = |
| 15318 | cast<AbstractConditionalOperator>(Val: TypeExpr); |
| 15319 | bool Result; |
| 15320 | if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx, |
| 15321 | InConstantContext: isConstantEvaluated)) { |
| 15322 | if (Result) |
| 15323 | TypeExpr = ACO->getTrueExpr(); |
| 15324 | else |
| 15325 | TypeExpr = ACO->getFalseExpr(); |
| 15326 | continue; |
| 15327 | } |
| 15328 | return false; |
| 15329 | } |
| 15330 | |
| 15331 | case Stmt::BinaryOperatorClass: { |
| 15332 | const BinaryOperator *BO = cast<BinaryOperator>(Val: TypeExpr); |
| 15333 | if (BO->getOpcode() == BO_Comma) { |
| 15334 | TypeExpr = BO->getRHS(); |
| 15335 | continue; |
| 15336 | } |
| 15337 | return false; |
| 15338 | } |
| 15339 | |
| 15340 | default: |
| 15341 | return false; |
| 15342 | } |
| 15343 | } |
| 15344 | } |
| 15345 | |
| 15346 | /// Retrieve the C type corresponding to type tag TypeExpr. |
| 15347 | /// |
| 15348 | /// \param TypeExpr Expression that specifies a type tag. |
| 15349 | /// |
| 15350 | /// \param MagicValues Registered magic values. |
| 15351 | /// |
| 15352 | /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong |
| 15353 | /// kind. |
| 15354 | /// |
| 15355 | /// \param TypeInfo Information about the corresponding C type. |
| 15356 | /// |
| 15357 | /// \param isConstantEvaluated whether the evalaution should be performed in |
| 15358 | /// constant context. |
| 15359 | /// |
| 15360 | /// \returns true if the corresponding C type was found. |
| 15361 | static bool GetMatchingCType( |
| 15362 | const IdentifierInfo *ArgumentKind, const Expr *TypeExpr, |
| 15363 | const ASTContext &Ctx, |
| 15364 | const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData> |
| 15365 | *MagicValues, |
| 15366 | bool &FoundWrongKind, Sema::TypeTagData &TypeInfo, |
| 15367 | bool isConstantEvaluated) { |
| 15368 | FoundWrongKind = false; |
| 15369 | |
| 15370 | // Variable declaration that has type_tag_for_datatype attribute. |
| 15371 | const ValueDecl *VD = nullptr; |
| 15372 | |
| 15373 | uint64_t MagicValue; |
| 15374 | |
| 15375 | if (!FindTypeTagExpr(TypeExpr, Ctx, VD: &VD, MagicValue: &MagicValue, isConstantEvaluated)) |
| 15376 | return false; |
| 15377 | |
| 15378 | if (VD) { |
| 15379 | if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { |
| 15380 | if (I->getArgumentKind() != ArgumentKind) { |
| 15381 | FoundWrongKind = true; |
| 15382 | return false; |
| 15383 | } |
| 15384 | TypeInfo.Type = I->getMatchingCType(); |
| 15385 | TypeInfo.LayoutCompatible = I->getLayoutCompatible(); |
| 15386 | TypeInfo.MustBeNull = I->getMustBeNull(); |
| 15387 | return true; |
| 15388 | } |
| 15389 | return false; |
| 15390 | } |
| 15391 | |
| 15392 | if (!MagicValues) |
| 15393 | return false; |
| 15394 | |
| 15395 | llvm::DenseMap<Sema::TypeTagMagicValue, |
| 15396 | Sema::TypeTagData>::const_iterator I = |
| 15397 | MagicValues->find(Val: std::make_pair(x&: ArgumentKind, y&: MagicValue)); |
| 15398 | if (I == MagicValues->end()) |
| 15399 | return false; |
| 15400 | |
| 15401 | TypeInfo = I->second; |
| 15402 | return true; |
| 15403 | } |
| 15404 | |
| 15405 | void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, |
| 15406 | uint64_t MagicValue, QualType Type, |
| 15407 | bool LayoutCompatible, |
| 15408 | bool MustBeNull) { |
| 15409 | if (!TypeTagForDatatypeMagicValues) |
| 15410 | TypeTagForDatatypeMagicValues.reset( |
| 15411 | p: new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); |
| 15412 | |
| 15413 | TypeTagMagicValue Magic(ArgumentKind, MagicValue); |
| 15414 | (*TypeTagForDatatypeMagicValues)[Magic] = |
| 15415 | TypeTagData(Type, LayoutCompatible, MustBeNull); |
| 15416 | } |
| 15417 | |
| 15418 | static bool IsSameCharType(QualType T1, QualType T2) { |
| 15419 | const BuiltinType *BT1 = T1->getAs<BuiltinType>(); |
| 15420 | if (!BT1) |
| 15421 | return false; |
| 15422 | |
| 15423 | const BuiltinType *BT2 = T2->getAs<BuiltinType>(); |
| 15424 | if (!BT2) |
| 15425 | return false; |
| 15426 | |
| 15427 | BuiltinType::Kind T1Kind = BT1->getKind(); |
| 15428 | BuiltinType::Kind T2Kind = BT2->getKind(); |
| 15429 | |
| 15430 | return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || |
| 15431 | (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || |
| 15432 | (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || |
| 15433 | (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); |
| 15434 | } |
| 15435 | |
| 15436 | void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, |
| 15437 | const ArrayRef<const Expr *> ExprArgs, |
| 15438 | SourceLocation CallSiteLoc) { |
| 15439 | const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); |
| 15440 | bool IsPointerAttr = Attr->getIsPointer(); |
| 15441 | |
| 15442 | // Retrieve the argument representing the 'type_tag'. |
| 15443 | unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); |
| 15444 | if (TypeTagIdxAST >= ExprArgs.size()) { |
| 15445 | Diag(Loc: CallSiteLoc, DiagID: diag::err_tag_index_out_of_range) |
| 15446 | << 0 << Attr->getTypeTagIdx().getSourceIndex(); |
| 15447 | return; |
| 15448 | } |
| 15449 | const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; |
| 15450 | bool FoundWrongKind; |
| 15451 | TypeTagData TypeInfo; |
| 15452 | if (!GetMatchingCType(ArgumentKind, TypeExpr: TypeTagExpr, Ctx: Context, |
| 15453 | MagicValues: TypeTagForDatatypeMagicValues.get(), FoundWrongKind, |
| 15454 | TypeInfo, isConstantEvaluated: isConstantEvaluatedContext())) { |
| 15455 | if (FoundWrongKind) |
| 15456 | Diag(Loc: TypeTagExpr->getExprLoc(), |
| 15457 | DiagID: diag::warn_type_tag_for_datatype_wrong_kind) |
| 15458 | << TypeTagExpr->getSourceRange(); |
| 15459 | return; |
| 15460 | } |
| 15461 | |
| 15462 | // Retrieve the argument representing the 'arg_idx'. |
| 15463 | unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); |
| 15464 | if (ArgumentIdxAST >= ExprArgs.size()) { |
| 15465 | Diag(Loc: CallSiteLoc, DiagID: diag::err_tag_index_out_of_range) |
| 15466 | << 1 << Attr->getArgumentIdx().getSourceIndex(); |
| 15467 | return; |
| 15468 | } |
| 15469 | const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; |
| 15470 | if (IsPointerAttr) { |
| 15471 | // Skip implicit cast of pointer to `void *' (as a function argument). |
| 15472 | if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: ArgumentExpr)) |
| 15473 | if (ICE->getType()->isVoidPointerType() && |
| 15474 | ICE->getCastKind() == CK_BitCast) |
| 15475 | ArgumentExpr = ICE->getSubExpr(); |
| 15476 | } |
| 15477 | QualType ArgumentType = ArgumentExpr->getType(); |
| 15478 | |
| 15479 | // Passing a `void*' pointer shouldn't trigger a warning. |
| 15480 | if (IsPointerAttr && ArgumentType->isVoidPointerType()) |
| 15481 | return; |
| 15482 | |
| 15483 | if (TypeInfo.MustBeNull) { |
| 15484 | // Type tag with matching void type requires a null pointer. |
| 15485 | if (!ArgumentExpr->isNullPointerConstant(Ctx&: Context, |
| 15486 | NPC: Expr::NPC_ValueDependentIsNotNull)) { |
| 15487 | Diag(Loc: ArgumentExpr->getExprLoc(), |
| 15488 | DiagID: diag::warn_type_safety_null_pointer_required) |
| 15489 | << ArgumentKind->getName() |
| 15490 | << ArgumentExpr->getSourceRange() |
| 15491 | << TypeTagExpr->getSourceRange(); |
| 15492 | } |
| 15493 | return; |
| 15494 | } |
| 15495 | |
| 15496 | QualType RequiredType = TypeInfo.Type; |
| 15497 | if (IsPointerAttr) |
| 15498 | RequiredType = Context.getPointerType(T: RequiredType); |
| 15499 | |
| 15500 | bool mismatch = false; |
| 15501 | if (!TypeInfo.LayoutCompatible) { |
| 15502 | mismatch = !Context.hasSameType(T1: ArgumentType, T2: RequiredType); |
| 15503 | |
| 15504 | // C++11 [basic.fundamental] p1: |
| 15505 | // Plain char, signed char, and unsigned char are three distinct types. |
| 15506 | // |
| 15507 | // But we treat plain `char' as equivalent to `signed char' or `unsigned |
| 15508 | // char' depending on the current char signedness mode. |
| 15509 | if (mismatch) |
| 15510 | if ((IsPointerAttr && IsSameCharType(T1: ArgumentType->getPointeeType(), |
| 15511 | T2: RequiredType->getPointeeType())) || |
| 15512 | (!IsPointerAttr && IsSameCharType(T1: ArgumentType, T2: RequiredType))) |
| 15513 | mismatch = false; |
| 15514 | } else |
| 15515 | if (IsPointerAttr) |
| 15516 | mismatch = !isLayoutCompatible(C: Context, |
| 15517 | T1: ArgumentType->getPointeeType(), |
| 15518 | T2: RequiredType->getPointeeType()); |
| 15519 | else |
| 15520 | mismatch = !isLayoutCompatible(C: Context, T1: ArgumentType, T2: RequiredType); |
| 15521 | |
| 15522 | if (mismatch) |
| 15523 | Diag(Loc: ArgumentExpr->getExprLoc(), DiagID: diag::warn_type_safety_type_mismatch) |
| 15524 | << ArgumentType << ArgumentKind |
| 15525 | << TypeInfo.LayoutCompatible << RequiredType |
| 15526 | << ArgumentExpr->getSourceRange() |
| 15527 | << TypeTagExpr->getSourceRange(); |
| 15528 | } |
| 15529 | |
| 15530 | void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, |
| 15531 | CharUnits Alignment) { |
| 15532 | MisalignedMembers.emplace_back(Args&: E, Args&: RD, Args&: MD, Args&: Alignment); |
| 15533 | } |
| 15534 | |
| 15535 | void Sema::DiagnoseMisalignedMembers() { |
| 15536 | for (MisalignedMember &m : MisalignedMembers) { |
| 15537 | const NamedDecl *ND = m.RD; |
| 15538 | if (ND->getName().empty()) { |
| 15539 | if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) |
| 15540 | ND = TD; |
| 15541 | } |
| 15542 | Diag(Loc: m.E->getBeginLoc(), DiagID: diag::warn_taking_address_of_packed_member) |
| 15543 | << m.MD << ND << m.E->getSourceRange(); |
| 15544 | } |
| 15545 | MisalignedMembers.clear(); |
| 15546 | } |
| 15547 | |
| 15548 | void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { |
| 15549 | E = E->IgnoreParens(); |
| 15550 | if (!T->isPointerType() && !T->isIntegerType() && !T->isDependentType()) |
| 15551 | return; |
| 15552 | if (isa<UnaryOperator>(Val: E) && |
| 15553 | cast<UnaryOperator>(Val: E)->getOpcode() == UO_AddrOf) { |
| 15554 | auto *Op = cast<UnaryOperator>(Val: E)->getSubExpr()->IgnoreParens(); |
| 15555 | if (isa<MemberExpr>(Val: Op)) { |
| 15556 | auto *MA = llvm::find(Range&: MisalignedMembers, Val: MisalignedMember(Op)); |
| 15557 | if (MA != MisalignedMembers.end() && |
| 15558 | (T->isDependentType() || T->isIntegerType() || |
| 15559 | (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || |
| 15560 | Context.getTypeAlignInChars( |
| 15561 | T: T->getPointeeType()) <= MA->Alignment)))) |
| 15562 | MisalignedMembers.erase(CI: MA); |
| 15563 | } |
| 15564 | } |
| 15565 | } |
| 15566 | |
| 15567 | void Sema::RefersToMemberWithReducedAlignment( |
| 15568 | Expr *E, |
| 15569 | llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> |
| 15570 | Action) { |
| 15571 | const auto *ME = dyn_cast<MemberExpr>(Val: E); |
| 15572 | if (!ME) |
| 15573 | return; |
| 15574 | |
| 15575 | // No need to check expressions with an __unaligned-qualified type. |
| 15576 | if (E->getType().getQualifiers().hasUnaligned()) |
| 15577 | return; |
| 15578 | |
| 15579 | // For a chain of MemberExpr like "a.b.c.d" this list |
| 15580 | // will keep FieldDecl's like [d, c, b]. |
| 15581 | SmallVector<FieldDecl *, 4> ReverseMemberChain; |
| 15582 | const MemberExpr *TopME = nullptr; |
| 15583 | bool AnyIsPacked = false; |
| 15584 | do { |
| 15585 | QualType BaseType = ME->getBase()->getType(); |
| 15586 | if (BaseType->isDependentType()) |
| 15587 | return; |
| 15588 | if (ME->isArrow()) |
| 15589 | BaseType = BaseType->getPointeeType(); |
| 15590 | RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl(); |
| 15591 | if (RD->isInvalidDecl()) |
| 15592 | return; |
| 15593 | |
| 15594 | ValueDecl *MD = ME->getMemberDecl(); |
| 15595 | auto *FD = dyn_cast<FieldDecl>(Val: MD); |
| 15596 | // We do not care about non-data members. |
| 15597 | if (!FD || FD->isInvalidDecl()) |
| 15598 | return; |
| 15599 | |
| 15600 | AnyIsPacked = |
| 15601 | AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); |
| 15602 | ReverseMemberChain.push_back(Elt: FD); |
| 15603 | |
| 15604 | TopME = ME; |
| 15605 | ME = dyn_cast<MemberExpr>(Val: ME->getBase()->IgnoreParens()); |
| 15606 | } while (ME); |
| 15607 | assert(TopME && "We did not compute a topmost MemberExpr!" ); |
| 15608 | |
| 15609 | // Not the scope of this diagnostic. |
| 15610 | if (!AnyIsPacked) |
| 15611 | return; |
| 15612 | |
| 15613 | const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); |
| 15614 | const auto *DRE = dyn_cast<DeclRefExpr>(Val: TopBase); |
| 15615 | // TODO: The innermost base of the member expression may be too complicated. |
| 15616 | // For now, just disregard these cases. This is left for future |
| 15617 | // improvement. |
| 15618 | if (!DRE && !isa<CXXThisExpr>(Val: TopBase)) |
| 15619 | return; |
| 15620 | |
| 15621 | // Alignment expected by the whole expression. |
| 15622 | CharUnits ExpectedAlignment = Context.getTypeAlignInChars(T: E->getType()); |
| 15623 | |
| 15624 | // No need to do anything else with this case. |
| 15625 | if (ExpectedAlignment.isOne()) |
| 15626 | return; |
| 15627 | |
| 15628 | // Synthesize offset of the whole access. |
| 15629 | CharUnits Offset; |
| 15630 | for (const FieldDecl *FD : llvm::reverse(C&: ReverseMemberChain)) |
| 15631 | Offset += Context.toCharUnitsFromBits(BitSize: Context.getFieldOffset(FD)); |
| 15632 | |
| 15633 | // Compute the CompleteObjectAlignment as the alignment of the whole chain. |
| 15634 | CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( |
| 15635 | T: ReverseMemberChain.back()->getParent()->getTypeForDecl()); |
| 15636 | |
| 15637 | // The base expression of the innermost MemberExpr may give |
| 15638 | // stronger guarantees than the class containing the member. |
| 15639 | if (DRE && !TopME->isArrow()) { |
| 15640 | const ValueDecl *VD = DRE->getDecl(); |
| 15641 | if (!VD->getType()->isReferenceType()) |
| 15642 | CompleteObjectAlignment = |
| 15643 | std::max(a: CompleteObjectAlignment, b: Context.getDeclAlign(D: VD)); |
| 15644 | } |
| 15645 | |
| 15646 | // Check if the synthesized offset fulfills the alignment. |
| 15647 | if (Offset % ExpectedAlignment != 0 || |
| 15648 | // It may fulfill the offset it but the effective alignment may still be |
| 15649 | // lower than the expected expression alignment. |
| 15650 | CompleteObjectAlignment < ExpectedAlignment) { |
| 15651 | // If this happens, we want to determine a sensible culprit of this. |
| 15652 | // Intuitively, watching the chain of member expressions from right to |
| 15653 | // left, we start with the required alignment (as required by the field |
| 15654 | // type) but some packed attribute in that chain has reduced the alignment. |
| 15655 | // It may happen that another packed structure increases it again. But if |
| 15656 | // we are here such increase has not been enough. So pointing the first |
| 15657 | // FieldDecl that either is packed or else its RecordDecl is, |
| 15658 | // seems reasonable. |
| 15659 | FieldDecl *FD = nullptr; |
| 15660 | CharUnits Alignment; |
| 15661 | for (FieldDecl *FDI : ReverseMemberChain) { |
| 15662 | if (FDI->hasAttr<PackedAttr>() || |
| 15663 | FDI->getParent()->hasAttr<PackedAttr>()) { |
| 15664 | FD = FDI; |
| 15665 | Alignment = std::min( |
| 15666 | a: Context.getTypeAlignInChars(T: FD->getType()), |
| 15667 | b: Context.getTypeAlignInChars(T: FD->getParent()->getTypeForDecl())); |
| 15668 | break; |
| 15669 | } |
| 15670 | } |
| 15671 | assert(FD && "We did not find a packed FieldDecl!" ); |
| 15672 | Action(E, FD->getParent(), FD, Alignment); |
| 15673 | } |
| 15674 | } |
| 15675 | |
| 15676 | void Sema::CheckAddressOfPackedMember(Expr *rhs) { |
| 15677 | using namespace std::placeholders; |
| 15678 | |
| 15679 | RefersToMemberWithReducedAlignment( |
| 15680 | E: rhs, Action: std::bind(f: &Sema::AddPotentialMisalignedMembers, args: std::ref(t&: *this), args: _1, |
| 15681 | args: _2, args: _3, args: _4)); |
| 15682 | } |
| 15683 | |
| 15684 | // Performs a similar job to Sema::UsualUnaryConversions, but without any |
| 15685 | // implicit promotion of integral/enumeration types. |
| 15686 | static ExprResult BuiltinVectorMathConversions(Sema &S, Expr *E) { |
| 15687 | // First, convert to an r-value. |
| 15688 | ExprResult Res = S.DefaultFunctionArrayLvalueConversion(E); |
| 15689 | if (Res.isInvalid()) |
| 15690 | return ExprError(); |
| 15691 | |
| 15692 | // Promote floating-point types. |
| 15693 | return S.UsualUnaryFPConversions(E: Res.get()); |
| 15694 | } |
| 15695 | |
| 15696 | bool Sema::PrepareBuiltinElementwiseMathOneArgCall( |
| 15697 | CallExpr *TheCall, EltwiseBuiltinArgTyRestriction ArgTyRestr) { |
| 15698 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 15699 | return true; |
| 15700 | |
| 15701 | ExprResult A = BuiltinVectorMathConversions(S&: *this, E: TheCall->getArg(Arg: 0)); |
| 15702 | if (A.isInvalid()) |
| 15703 | return true; |
| 15704 | |
| 15705 | TheCall->setArg(Arg: 0, ArgExpr: A.get()); |
| 15706 | QualType TyA = A.get()->getType(); |
| 15707 | |
| 15708 | if (checkMathBuiltinElementType(S&: *this, Loc: A.get()->getBeginLoc(), ArgTy: TyA, |
| 15709 | ArgTyRestr, ArgOrdinal: 1)) |
| 15710 | return true; |
| 15711 | |
| 15712 | TheCall->setType(TyA); |
| 15713 | return false; |
| 15714 | } |
| 15715 | |
| 15716 | bool Sema::BuiltinElementwiseMath(CallExpr *TheCall, |
| 15717 | EltwiseBuiltinArgTyRestriction ArgTyRestr) { |
| 15718 | if (auto Res = BuiltinVectorMath(TheCall, ArgTyRestr); Res.has_value()) { |
| 15719 | TheCall->setType(*Res); |
| 15720 | return false; |
| 15721 | } |
| 15722 | return true; |
| 15723 | } |
| 15724 | |
| 15725 | bool Sema::BuiltinVectorToScalarMath(CallExpr *TheCall) { |
| 15726 | std::optional<QualType> Res = BuiltinVectorMath(TheCall); |
| 15727 | if (!Res) |
| 15728 | return true; |
| 15729 | |
| 15730 | if (auto *VecTy0 = (*Res)->getAs<VectorType>()) |
| 15731 | TheCall->setType(VecTy0->getElementType()); |
| 15732 | else |
| 15733 | TheCall->setType(*Res); |
| 15734 | |
| 15735 | return false; |
| 15736 | } |
| 15737 | |
| 15738 | static bool checkBuiltinVectorMathMixedEnums(Sema &S, Expr *LHS, Expr *RHS, |
| 15739 | SourceLocation Loc) { |
| 15740 | QualType L = LHS->getEnumCoercedType(Ctx: S.Context), |
| 15741 | R = RHS->getEnumCoercedType(Ctx: S.Context); |
| 15742 | if (L->isUnscopedEnumerationType() && R->isUnscopedEnumerationType() && |
| 15743 | !S.Context.hasSameUnqualifiedType(T1: L, T2: R)) { |
| 15744 | return S.Diag(Loc, DiagID: diag::err_conv_mixed_enum_types) |
| 15745 | << LHS->getSourceRange() << RHS->getSourceRange() |
| 15746 | << /*Arithmetic Between*/ 0 << L << R; |
| 15747 | } |
| 15748 | return false; |
| 15749 | } |
| 15750 | |
| 15751 | std::optional<QualType> |
| 15752 | Sema::BuiltinVectorMath(CallExpr *TheCall, |
| 15753 | EltwiseBuiltinArgTyRestriction ArgTyRestr) { |
| 15754 | if (checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
| 15755 | return std::nullopt; |
| 15756 | |
| 15757 | if (checkBuiltinVectorMathMixedEnums( |
| 15758 | S&: *this, LHS: TheCall->getArg(Arg: 0), RHS: TheCall->getArg(Arg: 1), Loc: TheCall->getExprLoc())) |
| 15759 | return std::nullopt; |
| 15760 | |
| 15761 | Expr *Args[2]; |
| 15762 | for (int I = 0; I < 2; ++I) { |
| 15763 | ExprResult Converted = |
| 15764 | BuiltinVectorMathConversions(S&: *this, E: TheCall->getArg(Arg: I)); |
| 15765 | if (Converted.isInvalid()) |
| 15766 | return std::nullopt; |
| 15767 | Args[I] = Converted.get(); |
| 15768 | } |
| 15769 | |
| 15770 | SourceLocation LocA = Args[0]->getBeginLoc(); |
| 15771 | QualType TyA = Args[0]->getType(); |
| 15772 | QualType TyB = Args[1]->getType(); |
| 15773 | |
| 15774 | if (checkMathBuiltinElementType(S&: *this, Loc: LocA, ArgTy: TyA, ArgTyRestr, ArgOrdinal: 1)) |
| 15775 | return std::nullopt; |
| 15776 | |
| 15777 | if (!Context.hasSameUnqualifiedType(T1: TyA, T2: TyB)) { |
| 15778 | Diag(Loc: LocA, DiagID: diag::err_typecheck_call_different_arg_types) << TyA << TyB; |
| 15779 | return std::nullopt; |
| 15780 | } |
| 15781 | |
| 15782 | TheCall->setArg(Arg: 0, ArgExpr: Args[0]); |
| 15783 | TheCall->setArg(Arg: 1, ArgExpr: Args[1]); |
| 15784 | return TyA; |
| 15785 | } |
| 15786 | |
| 15787 | bool Sema::BuiltinElementwiseTernaryMath( |
| 15788 | CallExpr *TheCall, EltwiseBuiltinArgTyRestriction ArgTyRestr) { |
| 15789 | if (checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
| 15790 | return true; |
| 15791 | |
| 15792 | SourceLocation Loc = TheCall->getExprLoc(); |
| 15793 | if (checkBuiltinVectorMathMixedEnums(S&: *this, LHS: TheCall->getArg(Arg: 0), |
| 15794 | RHS: TheCall->getArg(Arg: 1), Loc) || |
| 15795 | checkBuiltinVectorMathMixedEnums(S&: *this, LHS: TheCall->getArg(Arg: 1), |
| 15796 | RHS: TheCall->getArg(Arg: 2), Loc)) |
| 15797 | return true; |
| 15798 | |
| 15799 | Expr *Args[3]; |
| 15800 | for (int I = 0; I < 3; ++I) { |
| 15801 | ExprResult Converted = |
| 15802 | BuiltinVectorMathConversions(S&: *this, E: TheCall->getArg(Arg: I)); |
| 15803 | if (Converted.isInvalid()) |
| 15804 | return true; |
| 15805 | Args[I] = Converted.get(); |
| 15806 | } |
| 15807 | |
| 15808 | int ArgOrdinal = 1; |
| 15809 | for (Expr *Arg : Args) { |
| 15810 | if (checkMathBuiltinElementType(S&: *this, Loc: Arg->getBeginLoc(), ArgTy: Arg->getType(), |
| 15811 | ArgTyRestr, ArgOrdinal: ArgOrdinal++)) |
| 15812 | return true; |
| 15813 | } |
| 15814 | |
| 15815 | for (int I = 1; I < 3; ++I) { |
| 15816 | if (Args[0]->getType().getCanonicalType() != |
| 15817 | Args[I]->getType().getCanonicalType()) { |
| 15818 | return Diag(Loc: Args[0]->getBeginLoc(), |
| 15819 | DiagID: diag::err_typecheck_call_different_arg_types) |
| 15820 | << Args[0]->getType() << Args[I]->getType(); |
| 15821 | } |
| 15822 | |
| 15823 | TheCall->setArg(Arg: I, ArgExpr: Args[I]); |
| 15824 | } |
| 15825 | |
| 15826 | TheCall->setType(Args[0]->getType()); |
| 15827 | return false; |
| 15828 | } |
| 15829 | |
| 15830 | bool Sema::PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall) { |
| 15831 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 15832 | return true; |
| 15833 | |
| 15834 | ExprResult A = UsualUnaryConversions(E: TheCall->getArg(Arg: 0)); |
| 15835 | if (A.isInvalid()) |
| 15836 | return true; |
| 15837 | |
| 15838 | TheCall->setArg(Arg: 0, ArgExpr: A.get()); |
| 15839 | return false; |
| 15840 | } |
| 15841 | |
| 15842 | bool Sema::BuiltinNonDeterministicValue(CallExpr *TheCall) { |
| 15843 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 15844 | return true; |
| 15845 | |
| 15846 | ExprResult Arg = TheCall->getArg(Arg: 0); |
| 15847 | QualType TyArg = Arg.get()->getType(); |
| 15848 | |
| 15849 | if (!TyArg->isBuiltinType() && !TyArg->isVectorType()) |
| 15850 | return Diag(Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
| 15851 | DiagID: diag::err_builtin_invalid_arg_type) |
| 15852 | << 1 << /* vector */ 2 << /* integer */ 1 << /* fp */ 1 << TyArg; |
| 15853 | |
| 15854 | TheCall->setType(TyArg); |
| 15855 | return false; |
| 15856 | } |
| 15857 | |
| 15858 | ExprResult Sema::BuiltinMatrixTranspose(CallExpr *TheCall, |
| 15859 | ExprResult CallResult) { |
| 15860 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
| 15861 | return ExprError(); |
| 15862 | |
| 15863 | ExprResult MatrixArg = DefaultLvalueConversion(E: TheCall->getArg(Arg: 0)); |
| 15864 | if (MatrixArg.isInvalid()) |
| 15865 | return MatrixArg; |
| 15866 | Expr *Matrix = MatrixArg.get(); |
| 15867 | |
| 15868 | auto *MType = Matrix->getType()->getAs<ConstantMatrixType>(); |
| 15869 | if (!MType) { |
| 15870 | Diag(Loc: Matrix->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
| 15871 | << 1 << /* matrix */ 3 << /* no int */ 0 << /* no fp */ 0 |
| 15872 | << Matrix->getType(); |
| 15873 | return ExprError(); |
| 15874 | } |
| 15875 | |
| 15876 | // Create returned matrix type by swapping rows and columns of the argument |
| 15877 | // matrix type. |
| 15878 | QualType ResultType = Context.getConstantMatrixType( |
| 15879 | ElementType: MType->getElementType(), NumRows: MType->getNumColumns(), NumColumns: MType->getNumRows()); |
| 15880 | |
| 15881 | // Change the return type to the type of the returned matrix. |
| 15882 | TheCall->setType(ResultType); |
| 15883 | |
| 15884 | // Update call argument to use the possibly converted matrix argument. |
| 15885 | TheCall->setArg(Arg: 0, ArgExpr: Matrix); |
| 15886 | return CallResult; |
| 15887 | } |
| 15888 | |
| 15889 | // Get and verify the matrix dimensions. |
| 15890 | static std::optional<unsigned> |
| 15891 | getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) { |
| 15892 | SourceLocation ErrorPos; |
| 15893 | std::optional<llvm::APSInt> Value = |
| 15894 | Expr->getIntegerConstantExpr(Ctx: S.Context, Loc: &ErrorPos); |
| 15895 | if (!Value) { |
| 15896 | S.Diag(Loc: Expr->getBeginLoc(), DiagID: diag::err_builtin_matrix_scalar_unsigned_arg) |
| 15897 | << Name; |
| 15898 | return {}; |
| 15899 | } |
| 15900 | uint64_t Dim = Value->getZExtValue(); |
| 15901 | if (!ConstantMatrixType::isDimensionValid(NumElements: Dim)) { |
| 15902 | S.Diag(Loc: Expr->getBeginLoc(), DiagID: diag::err_builtin_matrix_invalid_dimension) |
| 15903 | << Name << ConstantMatrixType::getMaxElementsPerDimension(); |
| 15904 | return {}; |
| 15905 | } |
| 15906 | return Dim; |
| 15907 | } |
| 15908 | |
| 15909 | ExprResult Sema::BuiltinMatrixColumnMajorLoad(CallExpr *TheCall, |
| 15910 | ExprResult CallResult) { |
| 15911 | if (!getLangOpts().MatrixTypes) { |
| 15912 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_matrix_disabled); |
| 15913 | return ExprError(); |
| 15914 | } |
| 15915 | |
| 15916 | if (checkArgCount(Call: TheCall, DesiredArgCount: 4)) |
| 15917 | return ExprError(); |
| 15918 | |
| 15919 | unsigned PtrArgIdx = 0; |
| 15920 | Expr *PtrExpr = TheCall->getArg(Arg: PtrArgIdx); |
| 15921 | Expr *RowsExpr = TheCall->getArg(Arg: 1); |
| 15922 | Expr *ColumnsExpr = TheCall->getArg(Arg: 2); |
| 15923 | Expr *StrideExpr = TheCall->getArg(Arg: 3); |
| 15924 | |
| 15925 | bool ArgError = false; |
| 15926 | |
| 15927 | // Check pointer argument. |
| 15928 | { |
| 15929 | ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(E: PtrExpr); |
| 15930 | if (PtrConv.isInvalid()) |
| 15931 | return PtrConv; |
| 15932 | PtrExpr = PtrConv.get(); |
| 15933 | TheCall->setArg(Arg: 0, ArgExpr: PtrExpr); |
| 15934 | if (PtrExpr->isTypeDependent()) { |
| 15935 | TheCall->setType(Context.DependentTy); |
| 15936 | return TheCall; |
| 15937 | } |
| 15938 | } |
| 15939 | |
| 15940 | auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); |
| 15941 | QualType ElementTy; |
| 15942 | if (!PtrTy) { |
| 15943 | Diag(Loc: PtrExpr->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
| 15944 | << PtrArgIdx + 1 << 0 << /* pointer to element ty */ 5 << /* no fp */ 0 |
| 15945 | << PtrExpr->getType(); |
| 15946 | ArgError = true; |
| 15947 | } else { |
| 15948 | ElementTy = PtrTy->getPointeeType().getUnqualifiedType(); |
| 15949 | |
| 15950 | if (!ConstantMatrixType::isValidElementType(T: ElementTy)) { |
| 15951 | Diag(Loc: PtrExpr->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
| 15952 | << PtrArgIdx + 1 << 0 << /* pointer to element ty */ 5 |
| 15953 | << /* no fp */ 0 << PtrExpr->getType(); |
| 15954 | ArgError = true; |
| 15955 | } |
| 15956 | } |
| 15957 | |
| 15958 | // Apply default Lvalue conversions and convert the expression to size_t. |
| 15959 | auto ApplyArgumentConversions = [this](Expr *E) { |
| 15960 | ExprResult Conv = DefaultLvalueConversion(E); |
| 15961 | if (Conv.isInvalid()) |
| 15962 | return Conv; |
| 15963 | |
| 15964 | return tryConvertExprToType(E: Conv.get(), Ty: Context.getSizeType()); |
| 15965 | }; |
| 15966 | |
| 15967 | // Apply conversion to row and column expressions. |
| 15968 | ExprResult RowsConv = ApplyArgumentConversions(RowsExpr); |
| 15969 | if (!RowsConv.isInvalid()) { |
| 15970 | RowsExpr = RowsConv.get(); |
| 15971 | TheCall->setArg(Arg: 1, ArgExpr: RowsExpr); |
| 15972 | } else |
| 15973 | RowsExpr = nullptr; |
| 15974 | |
| 15975 | ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr); |
| 15976 | if (!ColumnsConv.isInvalid()) { |
| 15977 | ColumnsExpr = ColumnsConv.get(); |
| 15978 | TheCall->setArg(Arg: 2, ArgExpr: ColumnsExpr); |
| 15979 | } else |
| 15980 | ColumnsExpr = nullptr; |
| 15981 | |
| 15982 | // If any part of the result matrix type is still pending, just use |
| 15983 | // Context.DependentTy, until all parts are resolved. |
| 15984 | if ((RowsExpr && RowsExpr->isTypeDependent()) || |
| 15985 | (ColumnsExpr && ColumnsExpr->isTypeDependent())) { |
| 15986 | TheCall->setType(Context.DependentTy); |
| 15987 | return CallResult; |
| 15988 | } |
| 15989 | |
| 15990 | // Check row and column dimensions. |
| 15991 | std::optional<unsigned> MaybeRows; |
| 15992 | if (RowsExpr) |
| 15993 | MaybeRows = getAndVerifyMatrixDimension(Expr: RowsExpr, Name: "row" , S&: *this); |
| 15994 | |
| 15995 | std::optional<unsigned> MaybeColumns; |
| 15996 | if (ColumnsExpr) |
| 15997 | MaybeColumns = getAndVerifyMatrixDimension(Expr: ColumnsExpr, Name: "column" , S&: *this); |
| 15998 | |
| 15999 | // Check stride argument. |
| 16000 | ExprResult StrideConv = ApplyArgumentConversions(StrideExpr); |
| 16001 | if (StrideConv.isInvalid()) |
| 16002 | return ExprError(); |
| 16003 | StrideExpr = StrideConv.get(); |
| 16004 | TheCall->setArg(Arg: 3, ArgExpr: StrideExpr); |
| 16005 | |
| 16006 | if (MaybeRows) { |
| 16007 | if (std::optional<llvm::APSInt> Value = |
| 16008 | StrideExpr->getIntegerConstantExpr(Ctx: Context)) { |
| 16009 | uint64_t Stride = Value->getZExtValue(); |
| 16010 | if (Stride < *MaybeRows) { |
| 16011 | Diag(Loc: StrideExpr->getBeginLoc(), |
| 16012 | DiagID: diag::err_builtin_matrix_stride_too_small); |
| 16013 | ArgError = true; |
| 16014 | } |
| 16015 | } |
| 16016 | } |
| 16017 | |
| 16018 | if (ArgError || !MaybeRows || !MaybeColumns) |
| 16019 | return ExprError(); |
| 16020 | |
| 16021 | TheCall->setType( |
| 16022 | Context.getConstantMatrixType(ElementType: ElementTy, NumRows: *MaybeRows, NumColumns: *MaybeColumns)); |
| 16023 | return CallResult; |
| 16024 | } |
| 16025 | |
| 16026 | ExprResult Sema::BuiltinMatrixColumnMajorStore(CallExpr *TheCall, |
| 16027 | ExprResult CallResult) { |
| 16028 | if (checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
| 16029 | return ExprError(); |
| 16030 | |
| 16031 | unsigned PtrArgIdx = 1; |
| 16032 | Expr *MatrixExpr = TheCall->getArg(Arg: 0); |
| 16033 | Expr *PtrExpr = TheCall->getArg(Arg: PtrArgIdx); |
| 16034 | Expr *StrideExpr = TheCall->getArg(Arg: 2); |
| 16035 | |
| 16036 | bool ArgError = false; |
| 16037 | |
| 16038 | { |
| 16039 | ExprResult MatrixConv = DefaultLvalueConversion(E: MatrixExpr); |
| 16040 | if (MatrixConv.isInvalid()) |
| 16041 | return MatrixConv; |
| 16042 | MatrixExpr = MatrixConv.get(); |
| 16043 | TheCall->setArg(Arg: 0, ArgExpr: MatrixExpr); |
| 16044 | } |
| 16045 | if (MatrixExpr->isTypeDependent()) { |
| 16046 | TheCall->setType(Context.DependentTy); |
| 16047 | return TheCall; |
| 16048 | } |
| 16049 | |
| 16050 | auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>(); |
| 16051 | if (!MatrixTy) { |
| 16052 | Diag(Loc: MatrixExpr->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
| 16053 | << 1 << /* matrix ty */ 3 << 0 << 0 << MatrixExpr->getType(); |
| 16054 | ArgError = true; |
| 16055 | } |
| 16056 | |
| 16057 | { |
| 16058 | ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(E: PtrExpr); |
| 16059 | if (PtrConv.isInvalid()) |
| 16060 | return PtrConv; |
| 16061 | PtrExpr = PtrConv.get(); |
| 16062 | TheCall->setArg(Arg: 1, ArgExpr: PtrExpr); |
| 16063 | if (PtrExpr->isTypeDependent()) { |
| 16064 | TheCall->setType(Context.DependentTy); |
| 16065 | return TheCall; |
| 16066 | } |
| 16067 | } |
| 16068 | |
| 16069 | // Check pointer argument. |
| 16070 | auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); |
| 16071 | if (!PtrTy) { |
| 16072 | Diag(Loc: PtrExpr->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
| 16073 | << PtrArgIdx + 1 << 0 << /* pointer to element ty */ 5 << 0 |
| 16074 | << PtrExpr->getType(); |
| 16075 | ArgError = true; |
| 16076 | } else { |
| 16077 | QualType ElementTy = PtrTy->getPointeeType(); |
| 16078 | if (ElementTy.isConstQualified()) { |
| 16079 | Diag(Loc: PtrExpr->getBeginLoc(), DiagID: diag::err_builtin_matrix_store_to_const); |
| 16080 | ArgError = true; |
| 16081 | } |
| 16082 | ElementTy = ElementTy.getUnqualifiedType().getCanonicalType(); |
| 16083 | if (MatrixTy && |
| 16084 | !Context.hasSameType(T1: ElementTy, T2: MatrixTy->getElementType())) { |
| 16085 | Diag(Loc: PtrExpr->getBeginLoc(), |
| 16086 | DiagID: diag::err_builtin_matrix_pointer_arg_mismatch) |
| 16087 | << ElementTy << MatrixTy->getElementType(); |
| 16088 | ArgError = true; |
| 16089 | } |
| 16090 | } |
| 16091 | |
| 16092 | // Apply default Lvalue conversions and convert the stride expression to |
| 16093 | // size_t. |
| 16094 | { |
| 16095 | ExprResult StrideConv = DefaultLvalueConversion(E: StrideExpr); |
| 16096 | if (StrideConv.isInvalid()) |
| 16097 | return StrideConv; |
| 16098 | |
| 16099 | StrideConv = tryConvertExprToType(E: StrideConv.get(), Ty: Context.getSizeType()); |
| 16100 | if (StrideConv.isInvalid()) |
| 16101 | return StrideConv; |
| 16102 | StrideExpr = StrideConv.get(); |
| 16103 | TheCall->setArg(Arg: 2, ArgExpr: StrideExpr); |
| 16104 | } |
| 16105 | |
| 16106 | // Check stride argument. |
| 16107 | if (MatrixTy) { |
| 16108 | if (std::optional<llvm::APSInt> Value = |
| 16109 | StrideExpr->getIntegerConstantExpr(Ctx: Context)) { |
| 16110 | uint64_t Stride = Value->getZExtValue(); |
| 16111 | if (Stride < MatrixTy->getNumRows()) { |
| 16112 | Diag(Loc: StrideExpr->getBeginLoc(), |
| 16113 | DiagID: diag::err_builtin_matrix_stride_too_small); |
| 16114 | ArgError = true; |
| 16115 | } |
| 16116 | } |
| 16117 | } |
| 16118 | |
| 16119 | if (ArgError) |
| 16120 | return ExprError(); |
| 16121 | |
| 16122 | return CallResult; |
| 16123 | } |
| 16124 | |
| 16125 | void Sema::CheckTCBEnforcement(const SourceLocation CallExprLoc, |
| 16126 | const NamedDecl *Callee) { |
| 16127 | // This warning does not make sense in code that has no runtime behavior. |
| 16128 | if (isUnevaluatedContext()) |
| 16129 | return; |
| 16130 | |
| 16131 | const NamedDecl *Caller = getCurFunctionOrMethodDecl(); |
| 16132 | |
| 16133 | if (!Caller || !Caller->hasAttr<EnforceTCBAttr>()) |
| 16134 | return; |
| 16135 | |
| 16136 | // Search through the enforce_tcb and enforce_tcb_leaf attributes to find |
| 16137 | // all TCBs the callee is a part of. |
| 16138 | llvm::StringSet<> CalleeTCBs; |
| 16139 | for (const auto *A : Callee->specific_attrs<EnforceTCBAttr>()) |
| 16140 | CalleeTCBs.insert(key: A->getTCBName()); |
| 16141 | for (const auto *A : Callee->specific_attrs<EnforceTCBLeafAttr>()) |
| 16142 | CalleeTCBs.insert(key: A->getTCBName()); |
| 16143 | |
| 16144 | // Go through the TCBs the caller is a part of and emit warnings if Caller |
| 16145 | // is in a TCB that the Callee is not. |
| 16146 | for (const auto *A : Caller->specific_attrs<EnforceTCBAttr>()) { |
| 16147 | StringRef CallerTCB = A->getTCBName(); |
| 16148 | if (CalleeTCBs.count(Key: CallerTCB) == 0) { |
| 16149 | this->Diag(Loc: CallExprLoc, DiagID: diag::warn_tcb_enforcement_violation) |
| 16150 | << Callee << CallerTCB; |
| 16151 | } |
| 16152 | } |
| 16153 | } |
| 16154 | |