1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CheckExprLifetime.h"
14#include "TreeTransform.h"
15#include "UsedDeclVisitor.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTDiagnostic.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/ASTMutationListener.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/DynamicRecursiveASTVisitor.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExprObjC.h"
30#include "clang/AST/MangleNumberingContext.h"
31#include "clang/AST/OperationKinds.h"
32#include "clang/AST/Type.h"
33#include "clang/AST/TypeLoc.h"
34#include "clang/Basic/Builtins.h"
35#include "clang/Basic/DiagnosticSema.h"
36#include "clang/Basic/PartialDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/Specifiers.h"
39#include "clang/Basic/TargetInfo.h"
40#include "clang/Basic/TypeTraits.h"
41#include "clang/Lex/LiteralSupport.h"
42#include "clang/Lex/Preprocessor.h"
43#include "clang/Sema/AnalysisBasedWarnings.h"
44#include "clang/Sema/DeclSpec.h"
45#include "clang/Sema/DelayedDiagnostic.h"
46#include "clang/Sema/Designator.h"
47#include "clang/Sema/EnterExpressionEvaluationContext.h"
48#include "clang/Sema/Initialization.h"
49#include "clang/Sema/Lookup.h"
50#include "clang/Sema/Overload.h"
51#include "clang/Sema/ParsedTemplate.h"
52#include "clang/Sema/Scope.h"
53#include "clang/Sema/ScopeInfo.h"
54#include "clang/Sema/SemaARM.h"
55#include "clang/Sema/SemaCUDA.h"
56#include "clang/Sema/SemaFixItUtils.h"
57#include "clang/Sema/SemaHLSL.h"
58#include "clang/Sema/SemaObjC.h"
59#include "clang/Sema/SemaOpenMP.h"
60#include "clang/Sema/SemaPseudoObject.h"
61#include "clang/Sema/Template.h"
62#include "llvm/ADT/STLExtras.h"
63#include "llvm/ADT/StringExtras.h"
64#include "llvm/Support/ConvertUTF.h"
65#include "llvm/Support/SaveAndRestore.h"
66#include "llvm/Support/TimeProfiler.h"
67#include "llvm/Support/TypeSize.h"
68#include <optional>
69
70using namespace clang;
71using namespace sema;
72
73bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
74 // See if this is an auto-typed variable whose initializer we are parsing.
75 if (ParsingInitForAutoVars.count(Ptr: D))
76 return false;
77
78 // See if this is a deleted function.
79 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) {
80 if (FD->isDeleted())
81 return false;
82
83 // If the function has a deduced return type, and we can't deduce it,
84 // then we can't use it either.
85 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
86 DeduceReturnType(FD, Loc: SourceLocation(), /*Diagnose*/ false))
87 return false;
88
89 // See if this is an aligned allocation/deallocation function that is
90 // unavailable.
91 if (TreatUnavailableAsInvalid &&
92 isUnavailableAlignedAllocationFunction(FD: *FD))
93 return false;
94 }
95
96 // See if this function is unavailable.
97 if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
98 cast<Decl>(Val: CurContext)->getAvailability() != AR_Unavailable)
99 return false;
100
101 if (isa<UnresolvedUsingIfExistsDecl>(Val: D))
102 return false;
103
104 return true;
105}
106
107static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
108 // Warn if this is used but marked unused.
109 if (const auto *A = D->getAttr<UnusedAttr>()) {
110 // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
111 // should diagnose them.
112 if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
113 A->getSemanticSpelling() != UnusedAttr::C23_maybe_unused) {
114 const Decl *DC = cast_or_null<Decl>(Val: S.ObjC().getCurObjCLexicalContext());
115 if (DC && !DC->hasAttr<UnusedAttr>())
116 S.Diag(Loc, DiagID: diag::warn_used_but_marked_unused) << D;
117 }
118 }
119}
120
121void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
122 assert(Decl && Decl->isDeleted());
123
124 if (Decl->isDefaulted()) {
125 // If the method was explicitly defaulted, point at that declaration.
126 if (!Decl->isImplicit())
127 Diag(Loc: Decl->getLocation(), DiagID: diag::note_implicitly_deleted);
128
129 // Try to diagnose why this special member function was implicitly
130 // deleted. This might fail, if that reason no longer applies.
131 DiagnoseDeletedDefaultedFunction(FD: Decl);
132 return;
133 }
134
135 auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: Decl);
136 if (Ctor && Ctor->isInheritingConstructor())
137 return NoteDeletedInheritingConstructor(CD: Ctor);
138
139 Diag(Loc: Decl->getLocation(), DiagID: diag::note_availability_specified_here)
140 << Decl << 1;
141}
142
143/// Determine whether a FunctionDecl was ever declared with an
144/// explicit storage class.
145static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
146 for (auto *I : D->redecls()) {
147 if (I->getStorageClass() != SC_None)
148 return true;
149 }
150 return false;
151}
152
153/// Check whether we're in an extern inline function and referring to a
154/// variable or function with internal linkage (C11 6.7.4p3).
155///
156/// This is only a warning because we used to silently accept this code, but
157/// in many cases it will not behave correctly. This is not enabled in C++ mode
158/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
159/// and so while there may still be user mistakes, most of the time we can't
160/// prove that there are errors.
161static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
162 const NamedDecl *D,
163 SourceLocation Loc) {
164 // This is disabled under C++; there are too many ways for this to fire in
165 // contexts where the warning is a false positive, or where it is technically
166 // correct but benign.
167 if (S.getLangOpts().CPlusPlus)
168 return;
169
170 // Check if this is an inlined function or method.
171 FunctionDecl *Current = S.getCurFunctionDecl();
172 if (!Current)
173 return;
174 if (!Current->isInlined())
175 return;
176 if (!Current->isExternallyVisible())
177 return;
178
179 // Check if the decl has internal linkage.
180 if (D->getFormalLinkage() != Linkage::Internal)
181 return;
182
183 // Downgrade from ExtWarn to Extension if
184 // (1) the supposedly external inline function is in the main file,
185 // and probably won't be included anywhere else.
186 // (2) the thing we're referencing is a pure function.
187 // (3) the thing we're referencing is another inline function.
188 // This last can give us false negatives, but it's better than warning on
189 // wrappers for simple C library functions.
190 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(Val: D);
191 bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
192 if (!DowngradeWarning && UsedFn)
193 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
194
195 S.Diag(Loc, DiagID: DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
196 : diag::ext_internal_in_extern_inline)
197 << /*IsVar=*/!UsedFn << D;
198
199 S.MaybeSuggestAddingStaticToDecl(D: Current);
200
201 S.Diag(Loc: D->getCanonicalDecl()->getLocation(), DiagID: diag::note_entity_declared_at)
202 << D;
203}
204
205void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
206 const FunctionDecl *First = Cur->getFirstDecl();
207
208 // Suggest "static" on the function, if possible.
209 if (!hasAnyExplicitStorageClass(D: First)) {
210 SourceLocation DeclBegin = First->getSourceRange().getBegin();
211 Diag(Loc: DeclBegin, DiagID: diag::note_convert_inline_to_static)
212 << Cur << FixItHint::CreateInsertion(InsertionLoc: DeclBegin, Code: "static ");
213 }
214}
215
216bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
217 const ObjCInterfaceDecl *UnknownObjCClass,
218 bool ObjCPropertyAccess,
219 bool AvoidPartialAvailabilityChecks,
220 ObjCInterfaceDecl *ClassReceiver,
221 bool SkipTrailingRequiresClause) {
222 SourceLocation Loc = Locs.front();
223 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(Val: D)) {
224 // If there were any diagnostics suppressed by template argument deduction,
225 // emit them now.
226 auto Pos = SuppressedDiagnostics.find(Val: D->getCanonicalDecl());
227 if (Pos != SuppressedDiagnostics.end()) {
228 for (const auto &[DiagLoc, PD] : Pos->second) {
229 DiagnosticBuilder Builder(Diags.Report(Loc: DiagLoc, DiagID: PD.getDiagID()));
230 PD.Emit(DB: Builder);
231 }
232 // Clear out the list of suppressed diagnostics, so that we don't emit
233 // them again for this specialization. However, we don't obsolete this
234 // entry from the table, because we want to avoid ever emitting these
235 // diagnostics again.
236 Pos->second.clear();
237 }
238
239 // C++ [basic.start.main]p3:
240 // The function 'main' shall not be used within a program.
241 if (cast<FunctionDecl>(Val: D)->isMain())
242 Diag(Loc, DiagID: diag::ext_main_used);
243
244 diagnoseUnavailableAlignedAllocation(FD: *cast<FunctionDecl>(Val: D), Loc);
245 }
246
247 // See if this is an auto-typed variable whose initializer we are parsing.
248 if (ParsingInitForAutoVars.count(Ptr: D)) {
249 if (isa<BindingDecl>(Val: D)) {
250 Diag(Loc, DiagID: diag::err_binding_cannot_appear_in_own_initializer)
251 << D->getDeclName();
252 } else {
253 Diag(Loc, DiagID: diag::err_auto_variable_cannot_appear_in_own_initializer)
254 << diag::ParsingInitFor::Var << D->getDeclName()
255 << cast<VarDecl>(Val: D)->getType();
256 }
257 return true;
258 }
259
260 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) {
261 // See if this is a deleted function.
262 if (FD->isDeleted()) {
263 auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: FD);
264 if (Ctor && Ctor->isInheritingConstructor())
265 Diag(Loc, DiagID: diag::err_deleted_inherited_ctor_use)
266 << Ctor->getParent()
267 << Ctor->getInheritedConstructor().getConstructor()->getParent();
268 else {
269 StringLiteral *Msg = FD->getDeletedMessage();
270 Diag(Loc, DiagID: diag::err_deleted_function_use)
271 << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef());
272 }
273 NoteDeletedFunction(Decl: FD);
274 return true;
275 }
276
277 // [expr.prim.id]p4
278 // A program that refers explicitly or implicitly to a function with a
279 // trailing requires-clause whose constraint-expression is not satisfied,
280 // other than to declare it, is ill-formed. [...]
281 //
282 // See if this is a function with constraints that need to be satisfied.
283 // Check this before deducing the return type, as it might instantiate the
284 // definition.
285 if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) {
286 ConstraintSatisfaction Satisfaction;
287 if (CheckFunctionConstraints(FD, Satisfaction, UsageLoc: Loc,
288 /*ForOverloadResolution*/ true))
289 // A diagnostic will have already been generated (non-constant
290 // constraint expression, for example)
291 return true;
292 if (!Satisfaction.IsSatisfied) {
293 Diag(Loc,
294 DiagID: diag::err_reference_to_function_with_unsatisfied_constraints)
295 << D;
296 DiagnoseUnsatisfiedConstraint(Satisfaction);
297 return true;
298 }
299 }
300
301 // If the function has a deduced return type, and we can't deduce it,
302 // then we can't use it either.
303 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
304 DeduceReturnType(FD, Loc))
305 return true;
306
307 if (getLangOpts().CUDA && !CUDA().CheckCall(Loc, Callee: FD))
308 return true;
309
310 }
311
312 if (auto *Concept = dyn_cast<ConceptDecl>(Val: D);
313 Concept && CheckConceptUseInDefinition(Concept, Loc))
314 return true;
315
316 if (auto *MD = dyn_cast<CXXMethodDecl>(Val: D)) {
317 // Lambdas are only default-constructible or assignable in C++2a onwards.
318 if (MD->getParent()->isLambda() &&
319 ((isa<CXXConstructorDecl>(Val: MD) &&
320 cast<CXXConstructorDecl>(Val: MD)->isDefaultConstructor()) ||
321 MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
322 Diag(Loc, DiagID: diag::warn_cxx17_compat_lambda_def_ctor_assign)
323 << !isa<CXXConstructorDecl>(Val: MD);
324 }
325 }
326
327 auto getReferencedObjCProp = [](const NamedDecl *D) ->
328 const ObjCPropertyDecl * {
329 if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D))
330 return MD->findPropertyDecl();
331 return nullptr;
332 };
333 if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
334 if (diagnoseArgIndependentDiagnoseIfAttrs(ND: ObjCPDecl, Loc))
335 return true;
336 } else if (diagnoseArgIndependentDiagnoseIfAttrs(ND: D, Loc)) {
337 return true;
338 }
339
340 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
341 // Only the variables omp_in and omp_out are allowed in the combiner.
342 // Only the variables omp_priv and omp_orig are allowed in the
343 // initializer-clause.
344 auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Val: CurContext);
345 if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
346 isa<VarDecl>(Val: D)) {
347 Diag(Loc, DiagID: diag::err_omp_wrong_var_in_declare_reduction)
348 << getCurFunction()->HasOMPDeclareReductionCombiner;
349 Diag(Loc: D->getLocation(), DiagID: diag::note_entity_declared_at) << D;
350 return true;
351 }
352
353 // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
354 // List-items in map clauses on this construct may only refer to the declared
355 // variable var and entities that could be referenced by a procedure defined
356 // at the same location.
357 // [OpenMP 5.2] Also allow iterator declared variables.
358 if (LangOpts.OpenMP && isa<VarDecl>(Val: D) &&
359 !OpenMP().isOpenMPDeclareMapperVarDeclAllowed(VD: cast<VarDecl>(Val: D))) {
360 Diag(Loc, DiagID: diag::err_omp_declare_mapper_wrong_var)
361 << OpenMP().getOpenMPDeclareMapperVarName();
362 Diag(Loc: D->getLocation(), DiagID: diag::note_entity_declared_at) << D;
363 return true;
364 }
365
366 if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(Val: D)) {
367 Diag(Loc, DiagID: diag::err_use_of_empty_using_if_exists);
368 Diag(Loc: EmptyD->getLocation(), DiagID: diag::note_empty_using_if_exists_here);
369 return true;
370 }
371
372 DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
373 AvoidPartialAvailabilityChecks, ClassReceiver);
374
375 DiagnoseUnusedOfDecl(S&: *this, D, Loc);
376
377 diagnoseUseOfInternalDeclInInlineFunction(S&: *this, D, Loc);
378
379 if (D->hasAttr<AvailableOnlyInDefaultEvalMethodAttr>()) {
380 if (getLangOpts().getFPEvalMethod() !=
381 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine &&
382 PP.getLastFPEvalPragmaLocation().isValid() &&
383 PP.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod())
384 Diag(Loc: D->getLocation(),
385 DiagID: diag::err_type_available_only_in_default_eval_method)
386 << D->getName();
387 }
388
389 if (auto *VD = dyn_cast<ValueDecl>(Val: D))
390 checkTypeSupport(Ty: VD->getType(), Loc, D: VD);
391
392 if (LangOpts.SYCLIsDevice ||
393 (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)) {
394 if (!Context.getTargetInfo().isTLSSupported())
395 if (const auto *VD = dyn_cast<VarDecl>(Val: D))
396 if (VD->getTLSKind() != VarDecl::TLS_None)
397 targetDiag(Loc: *Locs.begin(), DiagID: diag::err_thread_unsupported);
398 }
399
400 return false;
401}
402
403void Sema::DiagnoseSentinelCalls(const NamedDecl *D, SourceLocation Loc,
404 ArrayRef<Expr *> Args) {
405 const SentinelAttr *Attr = D->getAttr<SentinelAttr>();
406 if (!Attr)
407 return;
408
409 // The number of formal parameters of the declaration.
410 unsigned NumFormalParams;
411
412 // The kind of declaration. This is also an index into a %select in
413 // the diagnostic.
414 enum { CK_Function, CK_Method, CK_Block } CalleeKind;
415
416 if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) {
417 NumFormalParams = MD->param_size();
418 CalleeKind = CK_Method;
419 } else if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) {
420 NumFormalParams = FD->param_size();
421 CalleeKind = CK_Function;
422 } else if (const auto *VD = dyn_cast<VarDecl>(Val: D)) {
423 QualType Ty = VD->getType();
424 const FunctionType *Fn = nullptr;
425 if (const auto *PtrTy = Ty->getAs<PointerType>()) {
426 Fn = PtrTy->getPointeeType()->getAs<FunctionType>();
427 if (!Fn)
428 return;
429 CalleeKind = CK_Function;
430 } else if (const auto *PtrTy = Ty->getAs<BlockPointerType>()) {
431 Fn = PtrTy->getPointeeType()->castAs<FunctionType>();
432 CalleeKind = CK_Block;
433 } else {
434 return;
435 }
436
437 if (const auto *proto = dyn_cast<FunctionProtoType>(Val: Fn))
438 NumFormalParams = proto->getNumParams();
439 else
440 NumFormalParams = 0;
441 } else {
442 return;
443 }
444
445 // "NullPos" is the number of formal parameters at the end which
446 // effectively count as part of the variadic arguments. This is
447 // useful if you would prefer to not have *any* formal parameters,
448 // but the language forces you to have at least one.
449 unsigned NullPos = Attr->getNullPos();
450 assert((NullPos == 0 || NullPos == 1) && "invalid null position on sentinel");
451 NumFormalParams = (NullPos > NumFormalParams ? 0 : NumFormalParams - NullPos);
452
453 // The number of arguments which should follow the sentinel.
454 unsigned NumArgsAfterSentinel = Attr->getSentinel();
455
456 // If there aren't enough arguments for all the formal parameters,
457 // the sentinel, and the args after the sentinel, complain.
458 if (Args.size() < NumFormalParams + NumArgsAfterSentinel + 1) {
459 Diag(Loc, DiagID: diag::warn_not_enough_argument) << D->getDeclName();
460 Diag(Loc: D->getLocation(), DiagID: diag::note_sentinel_here) << int(CalleeKind);
461 return;
462 }
463
464 // Otherwise, find the sentinel expression.
465 const Expr *SentinelExpr = Args[Args.size() - NumArgsAfterSentinel - 1];
466 if (!SentinelExpr)
467 return;
468 if (SentinelExpr->isValueDependent())
469 return;
470 if (Context.isSentinelNullExpr(E: SentinelExpr))
471 return;
472
473 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
474 // or 'NULL' if those are actually defined in the context. Only use
475 // 'nil' for ObjC methods, where it's much more likely that the
476 // variadic arguments form a list of object pointers.
477 SourceLocation MissingNilLoc = getLocForEndOfToken(Loc: SentinelExpr->getEndLoc());
478 std::string NullValue;
479 if (CalleeKind == CK_Method && PP.isMacroDefined(Id: "nil"))
480 NullValue = "nil";
481 else if (getLangOpts().CPlusPlus11)
482 NullValue = "nullptr";
483 else if (PP.isMacroDefined(Id: "NULL"))
484 NullValue = "NULL";
485 else
486 NullValue = "(void*) 0";
487
488 if (MissingNilLoc.isInvalid())
489 Diag(Loc, DiagID: diag::warn_missing_sentinel) << int(CalleeKind);
490 else
491 Diag(Loc: MissingNilLoc, DiagID: diag::warn_missing_sentinel)
492 << int(CalleeKind)
493 << FixItHint::CreateInsertion(InsertionLoc: MissingNilLoc, Code: ", " + NullValue);
494 Diag(Loc: D->getLocation(), DiagID: diag::note_sentinel_here)
495 << int(CalleeKind) << Attr->getRange();
496}
497
498SourceRange Sema::getExprRange(Expr *E) const {
499 return E ? E->getSourceRange() : SourceRange();
500}
501
502//===----------------------------------------------------------------------===//
503// Standard Promotions and Conversions
504//===----------------------------------------------------------------------===//
505
506/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
507ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
508 // Handle any placeholder expressions which made it here.
509 if (E->hasPlaceholderType()) {
510 ExprResult result = CheckPlaceholderExpr(E);
511 if (result.isInvalid()) return ExprError();
512 E = result.get();
513 }
514
515 QualType Ty = E->getType();
516 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
517
518 if (Ty->isFunctionType()) {
519 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenCasts()))
520 if (auto *FD = dyn_cast<FunctionDecl>(Val: DRE->getDecl()))
521 if (!checkAddressOfFunctionIsAvailable(Function: FD, Complain: Diagnose, Loc: E->getExprLoc()))
522 return ExprError();
523
524 E = ImpCastExprToType(E, Type: Context.getPointerType(T: Ty),
525 CK: CK_FunctionToPointerDecay).get();
526 } else if (Ty->isArrayType()) {
527 // In C90 mode, arrays only promote to pointers if the array expression is
528 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
529 // type 'array of type' is converted to an expression that has type 'pointer
530 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
531 // that has type 'array of type' ...". The relevant change is "an lvalue"
532 // (C90) to "an expression" (C99).
533 //
534 // C++ 4.2p1:
535 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
536 // T" can be converted to an rvalue of type "pointer to T".
537 //
538 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
539 ExprResult Res = ImpCastExprToType(E, Type: Context.getArrayDecayedType(T: Ty),
540 CK: CK_ArrayToPointerDecay);
541 if (Res.isInvalid())
542 return ExprError();
543 E = Res.get();
544 }
545 }
546 return E;
547}
548
549static void CheckForNullPointerDereference(Sema &S, Expr *E) {
550 // Check to see if we are dereferencing a null pointer. If so,
551 // and if not volatile-qualified, this is undefined behavior that the
552 // optimizer will delete, so warn about it. People sometimes try to use this
553 // to get a deterministic trap and are surprised by clang's behavior. This
554 // only handles the pattern "*null", which is a very syntactic check.
555 const auto *UO = dyn_cast<UnaryOperator>(Val: E->IgnoreParenCasts());
556 if (UO && UO->getOpcode() == UO_Deref &&
557 UO->getSubExpr()->getType()->isPointerType()) {
558 const LangAS AS =
559 UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
560 if ((!isTargetAddressSpace(AS) ||
561 (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
562 UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
563 Ctx&: S.Context, NPC: Expr::NPC_ValueDependentIsNotNull) &&
564 !UO->getType().isVolatileQualified()) {
565 S.DiagRuntimeBehavior(Loc: UO->getOperatorLoc(), Statement: UO,
566 PD: S.PDiag(DiagID: diag::warn_indirection_through_null)
567 << UO->getSubExpr()->getSourceRange());
568 S.DiagRuntimeBehavior(Loc: UO->getOperatorLoc(), Statement: UO,
569 PD: S.PDiag(DiagID: diag::note_indirection_through_null));
570 }
571 }
572}
573
574static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
575 SourceLocation AssignLoc,
576 const Expr* RHS) {
577 const ObjCIvarDecl *IV = OIRE->getDecl();
578 if (!IV)
579 return;
580
581 DeclarationName MemberName = IV->getDeclName();
582 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
583 if (!Member || !Member->isStr(Str: "isa"))
584 return;
585
586 const Expr *Base = OIRE->getBase();
587 QualType BaseType = Base->getType();
588 if (OIRE->isArrow())
589 BaseType = BaseType->getPointeeType();
590 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
591 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
592 ObjCInterfaceDecl *ClassDeclared = nullptr;
593 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(IVarName: Member, ClassDeclared);
594 if (!ClassDeclared->getSuperClass()
595 && (*ClassDeclared->ivar_begin()) == IV) {
596 if (RHS) {
597 NamedDecl *ObjectSetClass =
598 S.LookupSingleName(S: S.TUScope,
599 Name: &S.Context.Idents.get(Name: "object_setClass"),
600 Loc: SourceLocation(), NameKind: S.LookupOrdinaryName);
601 if (ObjectSetClass) {
602 SourceLocation RHSLocEnd = S.getLocForEndOfToken(Loc: RHS->getEndLoc());
603 S.Diag(Loc: OIRE->getExprLoc(), DiagID: diag::warn_objc_isa_assign)
604 << FixItHint::CreateInsertion(InsertionLoc: OIRE->getBeginLoc(),
605 Code: "object_setClass(")
606 << FixItHint::CreateReplacement(
607 RemoveRange: SourceRange(OIRE->getOpLoc(), AssignLoc), Code: ",")
608 << FixItHint::CreateInsertion(InsertionLoc: RHSLocEnd, Code: ")");
609 }
610 else
611 S.Diag(Loc: OIRE->getLocation(), DiagID: diag::warn_objc_isa_assign);
612 } else {
613 NamedDecl *ObjectGetClass =
614 S.LookupSingleName(S: S.TUScope,
615 Name: &S.Context.Idents.get(Name: "object_getClass"),
616 Loc: SourceLocation(), NameKind: S.LookupOrdinaryName);
617 if (ObjectGetClass)
618 S.Diag(Loc: OIRE->getExprLoc(), DiagID: diag::warn_objc_isa_use)
619 << FixItHint::CreateInsertion(InsertionLoc: OIRE->getBeginLoc(),
620 Code: "object_getClass(")
621 << FixItHint::CreateReplacement(
622 RemoveRange: SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), Code: ")");
623 else
624 S.Diag(Loc: OIRE->getLocation(), DiagID: diag::warn_objc_isa_use);
625 }
626 S.Diag(Loc: IV->getLocation(), DiagID: diag::note_ivar_decl);
627 }
628 }
629}
630
631ExprResult Sema::DefaultLvalueConversion(Expr *E) {
632 // Handle any placeholder expressions which made it here.
633 if (E->hasPlaceholderType()) {
634 ExprResult result = CheckPlaceholderExpr(E);
635 if (result.isInvalid()) return ExprError();
636 E = result.get();
637 }
638
639 // C++ [conv.lval]p1:
640 // A glvalue of a non-function, non-array type T can be
641 // converted to a prvalue.
642 if (!E->isGLValue()) return E;
643
644 QualType T = E->getType();
645 assert(!T.isNull() && "r-value conversion on typeless expression?");
646
647 // lvalue-to-rvalue conversion cannot be applied to types that decay to
648 // pointers (i.e. function or array types).
649 if (T->canDecayToPointerType())
650 return E;
651
652 // We don't want to throw lvalue-to-rvalue casts on top of
653 // expressions of certain types in C++.
654 if (getLangOpts().CPlusPlus) {
655 if (T == Context.OverloadTy || T->isRecordType() ||
656 (T->isDependentType() && !T->isAnyPointerType() &&
657 !T->isMemberPointerType()))
658 return E;
659 }
660
661 // The C standard is actually really unclear on this point, and
662 // DR106 tells us what the result should be but not why. It's
663 // generally best to say that void types just doesn't undergo
664 // lvalue-to-rvalue at all. Note that expressions of unqualified
665 // 'void' type are never l-values, but qualified void can be.
666 if (T->isVoidType())
667 return E;
668
669 // OpenCL usually rejects direct accesses to values of 'half' type.
670 if (getLangOpts().OpenCL &&
671 !getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16", LO: getLangOpts()) &&
672 T->isHalfType()) {
673 Diag(Loc: E->getExprLoc(), DiagID: diag::err_opencl_half_load_store)
674 << 0 << T;
675 return ExprError();
676 }
677
678 CheckForNullPointerDereference(S&: *this, E);
679 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(Val: E->IgnoreParenCasts())) {
680 NamedDecl *ObjectGetClass = LookupSingleName(S: TUScope,
681 Name: &Context.Idents.get(Name: "object_getClass"),
682 Loc: SourceLocation(), NameKind: LookupOrdinaryName);
683 if (ObjectGetClass)
684 Diag(Loc: E->getExprLoc(), DiagID: diag::warn_objc_isa_use)
685 << FixItHint::CreateInsertion(InsertionLoc: OISA->getBeginLoc(), Code: "object_getClass(")
686 << FixItHint::CreateReplacement(
687 RemoveRange: SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), Code: ")");
688 else
689 Diag(Loc: E->getExprLoc(), DiagID: diag::warn_objc_isa_use);
690 }
691 else if (const ObjCIvarRefExpr *OIRE =
692 dyn_cast<ObjCIvarRefExpr>(Val: E->IgnoreParenCasts()))
693 DiagnoseDirectIsaAccess(S&: *this, OIRE, AssignLoc: SourceLocation(), /* Expr*/RHS: nullptr);
694
695 // C++ [conv.lval]p1:
696 // [...] If T is a non-class type, the type of the prvalue is the
697 // cv-unqualified version of T. Otherwise, the type of the
698 // rvalue is T.
699 //
700 // C99 6.3.2.1p2:
701 // If the lvalue has qualified type, the value has the unqualified
702 // version of the type of the lvalue; otherwise, the value has the
703 // type of the lvalue.
704 if (T.hasQualifiers())
705 T = T.getUnqualifiedType();
706
707 // Under the MS ABI, lock down the inheritance model now.
708 if (T->isMemberPointerType() &&
709 Context.getTargetInfo().getCXXABI().isMicrosoft())
710 (void)isCompleteType(Loc: E->getExprLoc(), T);
711
712 ExprResult Res = CheckLValueToRValueConversionOperand(E);
713 if (Res.isInvalid())
714 return Res;
715 E = Res.get();
716
717 // Loading a __weak object implicitly retains the value, so we need a cleanup to
718 // balance that.
719 if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
720 Cleanup.setExprNeedsCleanups(true);
721
722 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
723 Cleanup.setExprNeedsCleanups(true);
724
725 if (!BoundsSafetyCheckUseOfCountAttrPtr(E: Res.get()))
726 return ExprError();
727
728 // C++ [conv.lval]p3:
729 // If T is cv std::nullptr_t, the result is a null pointer constant.
730 CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
731 Res = ImplicitCastExpr::Create(Context, T, Kind: CK, Operand: E, BasePath: nullptr, Cat: VK_PRValue,
732 FPO: CurFPFeatureOverrides());
733
734 // C11 6.3.2.1p2:
735 // ... if the lvalue has atomic type, the value has the non-atomic version
736 // of the type of the lvalue ...
737 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
738 T = Atomic->getValueType().getUnqualifiedType();
739 Res = ImplicitCastExpr::Create(Context, T, Kind: CK_AtomicToNonAtomic, Operand: Res.get(),
740 BasePath: nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride());
741 }
742
743 return Res;
744}
745
746ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
747 ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
748 if (Res.isInvalid())
749 return ExprError();
750 Res = DefaultLvalueConversion(E: Res.get());
751 if (Res.isInvalid())
752 return ExprError();
753 return Res;
754}
755
756ExprResult Sema::CallExprUnaryConversions(Expr *E) {
757 QualType Ty = E->getType();
758 ExprResult Res = E;
759 // Only do implicit cast for a function type, but not for a pointer
760 // to function type.
761 if (Ty->isFunctionType()) {
762 Res = ImpCastExprToType(E, Type: Context.getPointerType(T: Ty),
763 CK: CK_FunctionToPointerDecay);
764 if (Res.isInvalid())
765 return ExprError();
766 }
767 Res = DefaultLvalueConversion(E: Res.get());
768 if (Res.isInvalid())
769 return ExprError();
770 return Res.get();
771}
772
773/// UsualUnaryFPConversions - Promotes floating-point types according to the
774/// current language semantics.
775ExprResult Sema::UsualUnaryFPConversions(Expr *E) {
776 QualType Ty = E->getType();
777 assert(!Ty.isNull() && "UsualUnaryFPConversions - missing type");
778
779 LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
780 if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
781 (getLangOpts().getFPEvalMethod() !=
782 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
783 PP.getLastFPEvalPragmaLocation().isValid())) {
784 switch (EvalMethod) {
785 default:
786 llvm_unreachable("Unrecognized float evaluation method");
787 break;
788 case LangOptions::FEM_UnsetOnCommandLine:
789 llvm_unreachable("Float evaluation method should be set by now");
790 break;
791 case LangOptions::FEM_Double:
792 if (Context.getFloatingTypeOrder(LHS: Context.DoubleTy, RHS: Ty) > 0)
793 // Widen the expression to double.
794 return Ty->isComplexType()
795 ? ImpCastExprToType(E,
796 Type: Context.getComplexType(T: Context.DoubleTy),
797 CK: CK_FloatingComplexCast)
798 : ImpCastExprToType(E, Type: Context.DoubleTy, CK: CK_FloatingCast);
799 break;
800 case LangOptions::FEM_Extended:
801 if (Context.getFloatingTypeOrder(LHS: Context.LongDoubleTy, RHS: Ty) > 0)
802 // Widen the expression to long double.
803 return Ty->isComplexType()
804 ? ImpCastExprToType(
805 E, Type: Context.getComplexType(T: Context.LongDoubleTy),
806 CK: CK_FloatingComplexCast)
807 : ImpCastExprToType(E, Type: Context.LongDoubleTy,
808 CK: CK_FloatingCast);
809 break;
810 }
811 }
812
813 // Half FP have to be promoted to float unless it is natively supported
814 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
815 return ImpCastExprToType(E, Type: Context.FloatTy, CK: CK_FloatingCast);
816
817 return E;
818}
819
820/// UsualUnaryConversions - Performs various conversions that are common to most
821/// operators (C99 6.3). The conversions of array and function types are
822/// sometimes suppressed. For example, the array->pointer conversion doesn't
823/// apply if the array is an argument to the sizeof or address (&) operators.
824/// In these instances, this routine should *not* be called.
825ExprResult Sema::UsualUnaryConversions(Expr *E) {
826 // First, convert to an r-value.
827 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
828 if (Res.isInvalid())
829 return ExprError();
830
831 // Promote floating-point types.
832 Res = UsualUnaryFPConversions(E: Res.get());
833 if (Res.isInvalid())
834 return ExprError();
835 E = Res.get();
836
837 QualType Ty = E->getType();
838 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
839
840 // Try to perform integral promotions if the object has a theoretically
841 // promotable type.
842 if (Ty->isIntegralOrUnscopedEnumerationType()) {
843 // C99 6.3.1.1p2:
844 //
845 // The following may be used in an expression wherever an int or
846 // unsigned int may be used:
847 // - an object or expression with an integer type whose integer
848 // conversion rank is less than or equal to the rank of int
849 // and unsigned int.
850 // - A bit-field of type _Bool, int, signed int, or unsigned int.
851 //
852 // If an int can represent all values of the original type, the
853 // value is converted to an int; otherwise, it is converted to an
854 // unsigned int. These are called the integer promotions. All
855 // other types are unchanged by the integer promotions.
856
857 QualType PTy = Context.isPromotableBitField(E);
858 if (!PTy.isNull()) {
859 E = ImpCastExprToType(E, Type: PTy, CK: CK_IntegralCast).get();
860 return E;
861 }
862 if (Context.isPromotableIntegerType(T: Ty)) {
863 QualType PT = Context.getPromotedIntegerType(PromotableType: Ty);
864 E = ImpCastExprToType(E, Type: PT, CK: CK_IntegralCast).get();
865 return E;
866 }
867 }
868 return E;
869}
870
871/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
872/// do not have a prototype. Arguments that have type float or __fp16
873/// are promoted to double. All other argument types are converted by
874/// UsualUnaryConversions().
875ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
876 QualType Ty = E->getType();
877 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
878
879 ExprResult Res = UsualUnaryConversions(E);
880 if (Res.isInvalid())
881 return ExprError();
882 E = Res.get();
883
884 // If this is a 'float' or '__fp16' (CVR qualified or typedef)
885 // promote to double.
886 // Note that default argument promotion applies only to float (and
887 // half/fp16); it does not apply to _Float16.
888 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
889 if (BTy && (BTy->getKind() == BuiltinType::Half ||
890 BTy->getKind() == BuiltinType::Float)) {
891 if (getLangOpts().OpenCL &&
892 !getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp64", LO: getLangOpts())) {
893 if (BTy->getKind() == BuiltinType::Half) {
894 E = ImpCastExprToType(E, Type: Context.FloatTy, CK: CK_FloatingCast).get();
895 }
896 } else {
897 E = ImpCastExprToType(E, Type: Context.DoubleTy, CK: CK_FloatingCast).get();
898 }
899 }
900 if (BTy &&
901 getLangOpts().getExtendIntArgs() ==
902 LangOptions::ExtendArgsKind::ExtendTo64 &&
903 Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
904 Context.getTypeSizeInChars(T: BTy) <
905 Context.getTypeSizeInChars(T: Context.LongLongTy)) {
906 E = (Ty->isUnsignedIntegerType())
907 ? ImpCastExprToType(E, Type: Context.UnsignedLongLongTy, CK: CK_IntegralCast)
908 .get()
909 : ImpCastExprToType(E, Type: Context.LongLongTy, CK: CK_IntegralCast).get();
910 assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
911 "Unexpected typesize for LongLongTy");
912 }
913
914 // C++ performs lvalue-to-rvalue conversion as a default argument
915 // promotion, even on class types, but note:
916 // C++11 [conv.lval]p2:
917 // When an lvalue-to-rvalue conversion occurs in an unevaluated
918 // operand or a subexpression thereof the value contained in the
919 // referenced object is not accessed. Otherwise, if the glvalue
920 // has a class type, the conversion copy-initializes a temporary
921 // of type T from the glvalue and the result of the conversion
922 // is a prvalue for the temporary.
923 // FIXME: add some way to gate this entire thing for correctness in
924 // potentially potentially evaluated contexts.
925 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
926 ExprResult Temp = PerformCopyInitialization(
927 Entity: InitializedEntity::InitializeTemporary(Type: E->getType()),
928 EqualLoc: E->getExprLoc(), Init: E);
929 if (Temp.isInvalid())
930 return ExprError();
931 E = Temp.get();
932 }
933
934 // C++ [expr.call]p7, per CWG722:
935 // An argument that has (possibly cv-qualified) type std::nullptr_t is
936 // converted to void* ([conv.ptr]).
937 // (This does not apply to C23 nullptr)
938 if (getLangOpts().CPlusPlus && E->getType()->isNullPtrType())
939 E = ImpCastExprToType(E, Type: Context.VoidPtrTy, CK: CK_NullToPointer).get();
940
941 return E;
942}
943
944VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
945 if (Ty->isIncompleteType()) {
946 // C++11 [expr.call]p7:
947 // After these conversions, if the argument does not have arithmetic,
948 // enumeration, pointer, pointer to member, or class type, the program
949 // is ill-formed.
950 //
951 // Since we've already performed null pointer conversion, array-to-pointer
952 // decay and function-to-pointer decay, the only such type in C++ is cv
953 // void. This also handles initializer lists as variadic arguments.
954 if (Ty->isVoidType())
955 return VarArgKind::Invalid;
956
957 if (Ty->isObjCObjectType())
958 return VarArgKind::Invalid;
959 return VarArgKind::Valid;
960 }
961
962 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
963 return VarArgKind::Invalid;
964
965 if (Context.getTargetInfo().getTriple().isWasm() &&
966 Ty.isWebAssemblyReferenceType()) {
967 return VarArgKind::Invalid;
968 }
969
970 if (Ty.isCXX98PODType(Context))
971 return VarArgKind::Valid;
972
973 // C++11 [expr.call]p7:
974 // Passing a potentially-evaluated argument of class type (Clause 9)
975 // having a non-trivial copy constructor, a non-trivial move constructor,
976 // or a non-trivial destructor, with no corresponding parameter,
977 // is conditionally-supported with implementation-defined semantics.
978 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
979 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
980 if (!Record->hasNonTrivialCopyConstructor() &&
981 !Record->hasNonTrivialMoveConstructor() &&
982 !Record->hasNonTrivialDestructor())
983 return VarArgKind::ValidInCXX11;
984
985 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
986 return VarArgKind::Valid;
987
988 if (Ty->isObjCObjectType())
989 return VarArgKind::Invalid;
990
991 if (getLangOpts().HLSL && Ty->getAs<HLSLAttributedResourceType>())
992 return VarArgKind::Valid;
993
994 if (getLangOpts().MSVCCompat)
995 return VarArgKind::MSVCUndefined;
996
997 if (getLangOpts().HLSL && Ty->getAs<HLSLAttributedResourceType>())
998 return VarArgKind::Valid;
999
1000 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
1001 // permitted to reject them. We should consider doing so.
1002 return VarArgKind::Undefined;
1003}
1004
1005void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
1006 // Don't allow one to pass an Objective-C interface to a vararg.
1007 const QualType &Ty = E->getType();
1008 VarArgKind VAK = isValidVarArgType(Ty);
1009
1010 // Complain about passing non-POD types through varargs.
1011 switch (VAK) {
1012 case VarArgKind::ValidInCXX11:
1013 DiagRuntimeBehavior(
1014 Loc: E->getBeginLoc(), Statement: nullptr,
1015 PD: PDiag(DiagID: diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
1016 [[fallthrough]];
1017 case VarArgKind::Valid:
1018 if (Ty->isRecordType()) {
1019 // This is unlikely to be what the user intended. If the class has a
1020 // 'c_str' member function, the user probably meant to call that.
1021 DiagRuntimeBehavior(Loc: E->getBeginLoc(), Statement: nullptr,
1022 PD: PDiag(DiagID: diag::warn_pass_class_arg_to_vararg)
1023 << Ty << CT << hasCStrMethod(E) << ".c_str()");
1024 }
1025 break;
1026
1027 case VarArgKind::Undefined:
1028 case VarArgKind::MSVCUndefined:
1029 DiagRuntimeBehavior(Loc: E->getBeginLoc(), Statement: nullptr,
1030 PD: PDiag(DiagID: diag::warn_cannot_pass_non_pod_arg_to_vararg)
1031 << getLangOpts().CPlusPlus11 << Ty << CT);
1032 break;
1033
1034 case VarArgKind::Invalid:
1035 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1036 Diag(Loc: E->getBeginLoc(),
1037 DiagID: diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1038 << Ty << CT;
1039 else if (Ty->isObjCObjectType())
1040 DiagRuntimeBehavior(Loc: E->getBeginLoc(), Statement: nullptr,
1041 PD: PDiag(DiagID: diag::err_cannot_pass_objc_interface_to_vararg)
1042 << Ty << CT);
1043 else
1044 Diag(Loc: E->getBeginLoc(), DiagID: diag::err_cannot_pass_to_vararg)
1045 << isa<InitListExpr>(Val: E) << Ty << CT;
1046 break;
1047 }
1048}
1049
1050ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1051 FunctionDecl *FDecl) {
1052 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1053 // Strip the unbridged-cast placeholder expression off, if applicable.
1054 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1055 (CT == VariadicCallType::Method ||
1056 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1057 E = ObjC().stripARCUnbridgedCast(e: E);
1058
1059 // Otherwise, do normal placeholder checking.
1060 } else {
1061 ExprResult ExprRes = CheckPlaceholderExpr(E);
1062 if (ExprRes.isInvalid())
1063 return ExprError();
1064 E = ExprRes.get();
1065 }
1066 }
1067
1068 ExprResult ExprRes = DefaultArgumentPromotion(E);
1069 if (ExprRes.isInvalid())
1070 return ExprError();
1071
1072 // Copy blocks to the heap.
1073 if (ExprRes.get()->getType()->isBlockPointerType())
1074 maybeExtendBlockObject(E&: ExprRes);
1075
1076 E = ExprRes.get();
1077
1078 // Diagnostics regarding non-POD argument types are
1079 // emitted along with format string checking in Sema::CheckFunctionCall().
1080 if (isValidVarArgType(Ty: E->getType()) == VarArgKind::Undefined) {
1081 // Turn this into a trap.
1082 CXXScopeSpec SS;
1083 SourceLocation TemplateKWLoc;
1084 UnqualifiedId Name;
1085 Name.setIdentifier(Id: PP.getIdentifierInfo(Name: "__builtin_trap"),
1086 IdLoc: E->getBeginLoc());
1087 ExprResult TrapFn = ActOnIdExpression(S: TUScope, SS, TemplateKWLoc, Id&: Name,
1088 /*HasTrailingLParen=*/true,
1089 /*IsAddressOfOperand=*/false);
1090 if (TrapFn.isInvalid())
1091 return ExprError();
1092
1093 ExprResult Call = BuildCallExpr(S: TUScope, Fn: TrapFn.get(), LParenLoc: E->getBeginLoc(), ArgExprs: {},
1094 RParenLoc: E->getEndLoc());
1095 if (Call.isInvalid())
1096 return ExprError();
1097
1098 ExprResult Comma =
1099 ActOnBinOp(S: TUScope, TokLoc: E->getBeginLoc(), Kind: tok::comma, LHSExpr: Call.get(), RHSExpr: E);
1100 if (Comma.isInvalid())
1101 return ExprError();
1102 return Comma.get();
1103 }
1104
1105 if (!getLangOpts().CPlusPlus &&
1106 RequireCompleteType(Loc: E->getExprLoc(), T: E->getType(),
1107 DiagID: diag::err_call_incomplete_argument))
1108 return ExprError();
1109
1110 return E;
1111}
1112
1113/// Convert complex integers to complex floats and real integers to
1114/// real floats as required for complex arithmetic. Helper function of
1115/// UsualArithmeticConversions()
1116///
1117/// \return false if the integer expression is an integer type and is
1118/// successfully converted to the (complex) float type.
1119static bool handleComplexIntegerToFloatConversion(Sema &S, ExprResult &IntExpr,
1120 ExprResult &ComplexExpr,
1121 QualType IntTy,
1122 QualType ComplexTy,
1123 bool SkipCast) {
1124 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1125 if (SkipCast) return false;
1126 if (IntTy->isIntegerType()) {
1127 QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1128 IntExpr = S.ImpCastExprToType(E: IntExpr.get(), Type: fpTy, CK: CK_IntegralToFloating);
1129 } else {
1130 assert(IntTy->isComplexIntegerType());
1131 IntExpr = S.ImpCastExprToType(E: IntExpr.get(), Type: ComplexTy,
1132 CK: CK_IntegralComplexToFloatingComplex);
1133 }
1134 return false;
1135}
1136
1137// This handles complex/complex, complex/float, or float/complex.
1138// When both operands are complex, the shorter operand is converted to the
1139// type of the longer, and that is the type of the result. This corresponds
1140// to what is done when combining two real floating-point operands.
1141// The fun begins when size promotion occur across type domains.
1142// From H&S 6.3.4: When one operand is complex and the other is a real
1143// floating-point type, the less precise type is converted, within it's
1144// real or complex domain, to the precision of the other type. For example,
1145// when combining a "long double" with a "double _Complex", the
1146// "double _Complex" is promoted to "long double _Complex".
1147static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1148 QualType ShorterType,
1149 QualType LongerType,
1150 bool PromotePrecision) {
1151 bool LongerIsComplex = isa<ComplexType>(Val: LongerType.getCanonicalType());
1152 QualType Result =
1153 LongerIsComplex ? LongerType : S.Context.getComplexType(T: LongerType);
1154
1155 if (PromotePrecision) {
1156 if (isa<ComplexType>(Val: ShorterType.getCanonicalType())) {
1157 Shorter =
1158 S.ImpCastExprToType(E: Shorter.get(), Type: Result, CK: CK_FloatingComplexCast);
1159 } else {
1160 if (LongerIsComplex)
1161 LongerType = LongerType->castAs<ComplexType>()->getElementType();
1162 Shorter = S.ImpCastExprToType(E: Shorter.get(), Type: LongerType, CK: CK_FloatingCast);
1163 }
1164 }
1165 return Result;
1166}
1167
1168/// Handle arithmetic conversion with complex types. Helper function of
1169/// UsualArithmeticConversions()
1170static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1171 ExprResult &RHS, QualType LHSType,
1172 QualType RHSType, bool IsCompAssign) {
1173 // Handle (complex) integer types.
1174 if (!handleComplexIntegerToFloatConversion(S, IntExpr&: RHS, ComplexExpr&: LHS, IntTy: RHSType, ComplexTy: LHSType,
1175 /*SkipCast=*/false))
1176 return LHSType;
1177 if (!handleComplexIntegerToFloatConversion(S, IntExpr&: LHS, ComplexExpr&: RHS, IntTy: LHSType, ComplexTy: RHSType,
1178 /*SkipCast=*/IsCompAssign))
1179 return RHSType;
1180
1181 // Compute the rank of the two types, regardless of whether they are complex.
1182 int Order = S.Context.getFloatingTypeOrder(LHS: LHSType, RHS: RHSType);
1183 if (Order < 0)
1184 // Promote the precision of the LHS if not an assignment.
1185 return handleComplexFloatConversion(S, Shorter&: LHS, ShorterType: LHSType, LongerType: RHSType,
1186 /*PromotePrecision=*/!IsCompAssign);
1187 // Promote the precision of the RHS unless it is already the same as the LHS.
1188 return handleComplexFloatConversion(S, Shorter&: RHS, ShorterType: RHSType, LongerType: LHSType,
1189 /*PromotePrecision=*/Order > 0);
1190}
1191
1192/// Handle arithmetic conversion from integer to float. Helper function
1193/// of UsualArithmeticConversions()
1194static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1195 ExprResult &IntExpr,
1196 QualType FloatTy, QualType IntTy,
1197 bool ConvertFloat, bool ConvertInt) {
1198 if (IntTy->isIntegerType()) {
1199 if (ConvertInt)
1200 // Convert intExpr to the lhs floating point type.
1201 IntExpr = S.ImpCastExprToType(E: IntExpr.get(), Type: FloatTy,
1202 CK: CK_IntegralToFloating);
1203 return FloatTy;
1204 }
1205
1206 // Convert both sides to the appropriate complex float.
1207 assert(IntTy->isComplexIntegerType());
1208 QualType result = S.Context.getComplexType(T: FloatTy);
1209
1210 // _Complex int -> _Complex float
1211 if (ConvertInt)
1212 IntExpr = S.ImpCastExprToType(E: IntExpr.get(), Type: result,
1213 CK: CK_IntegralComplexToFloatingComplex);
1214
1215 // float -> _Complex float
1216 if (ConvertFloat)
1217 FloatExpr = S.ImpCastExprToType(E: FloatExpr.get(), Type: result,
1218 CK: CK_FloatingRealToComplex);
1219
1220 return result;
1221}
1222
1223/// Handle arithmethic conversion with floating point types. Helper
1224/// function of UsualArithmeticConversions()
1225static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1226 ExprResult &RHS, QualType LHSType,
1227 QualType RHSType, bool IsCompAssign) {
1228 bool LHSFloat = LHSType->isRealFloatingType();
1229 bool RHSFloat = RHSType->isRealFloatingType();
1230
1231 // N1169 4.1.4: If one of the operands has a floating type and the other
1232 // operand has a fixed-point type, the fixed-point operand
1233 // is converted to the floating type [...]
1234 if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1235 if (LHSFloat)
1236 RHS = S.ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_FixedPointToFloating);
1237 else if (!IsCompAssign)
1238 LHS = S.ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_FixedPointToFloating);
1239 return LHSFloat ? LHSType : RHSType;
1240 }
1241
1242 // If we have two real floating types, convert the smaller operand
1243 // to the bigger result.
1244 if (LHSFloat && RHSFloat) {
1245 int order = S.Context.getFloatingTypeOrder(LHS: LHSType, RHS: RHSType);
1246 if (order > 0) {
1247 RHS = S.ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_FloatingCast);
1248 return LHSType;
1249 }
1250
1251 assert(order < 0 && "illegal float comparison");
1252 if (!IsCompAssign)
1253 LHS = S.ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_FloatingCast);
1254 return RHSType;
1255 }
1256
1257 if (LHSFloat) {
1258 // Half FP has to be promoted to float unless it is natively supported
1259 if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1260 LHSType = S.Context.FloatTy;
1261
1262 return handleIntToFloatConversion(S, FloatExpr&: LHS, IntExpr&: RHS, FloatTy: LHSType, IntTy: RHSType,
1263 /*ConvertFloat=*/!IsCompAssign,
1264 /*ConvertInt=*/ true);
1265 }
1266 assert(RHSFloat);
1267 return handleIntToFloatConversion(S, FloatExpr&: RHS, IntExpr&: LHS, FloatTy: RHSType, IntTy: LHSType,
1268 /*ConvertFloat=*/ true,
1269 /*ConvertInt=*/!IsCompAssign);
1270}
1271
1272/// Diagnose attempts to convert between __float128, __ibm128 and
1273/// long double if there is no support for such conversion.
1274/// Helper function of UsualArithmeticConversions().
1275static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1276 QualType RHSType) {
1277 // No issue if either is not a floating point type.
1278 if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1279 return false;
1280
1281 // No issue if both have the same 128-bit float semantics.
1282 auto *LHSComplex = LHSType->getAs<ComplexType>();
1283 auto *RHSComplex = RHSType->getAs<ComplexType>();
1284
1285 QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1286 QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1287
1288 const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(T: LHSElem);
1289 const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(T: RHSElem);
1290
1291 if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1292 &RHSSem != &llvm::APFloat::IEEEquad()) &&
1293 (&LHSSem != &llvm::APFloat::IEEEquad() ||
1294 &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1295 return false;
1296
1297 return true;
1298}
1299
1300typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1301
1302namespace {
1303/// These helper callbacks are placed in an anonymous namespace to
1304/// permit their use as function template parameters.
1305ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1306 return S.ImpCastExprToType(E: op, Type: toType, CK: CK_IntegralCast);
1307}
1308
1309ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1310 return S.ImpCastExprToType(E: op, Type: S.Context.getComplexType(T: toType),
1311 CK: CK_IntegralComplexCast);
1312}
1313}
1314
1315/// Handle integer arithmetic conversions. Helper function of
1316/// UsualArithmeticConversions()
1317template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1318static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1319 ExprResult &RHS, QualType LHSType,
1320 QualType RHSType, bool IsCompAssign) {
1321 // The rules for this case are in C99 6.3.1.8
1322 int order = S.Context.getIntegerTypeOrder(LHS: LHSType, RHS: RHSType);
1323 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1324 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1325 if (LHSSigned == RHSSigned) {
1326 // Same signedness; use the higher-ranked type
1327 if (order >= 0) {
1328 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1329 return LHSType;
1330 } else if (!IsCompAssign)
1331 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1332 return RHSType;
1333 } else if (order != (LHSSigned ? 1 : -1)) {
1334 // The unsigned type has greater than or equal rank to the
1335 // signed type, so use the unsigned type
1336 if (RHSSigned) {
1337 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1338 return LHSType;
1339 } else if (!IsCompAssign)
1340 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1341 return RHSType;
1342 } else if (S.Context.getIntWidth(T: LHSType) != S.Context.getIntWidth(T: RHSType)) {
1343 // The two types are different widths; if we are here, that
1344 // means the signed type is larger than the unsigned type, so
1345 // use the signed type.
1346 if (LHSSigned) {
1347 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1348 return LHSType;
1349 } else if (!IsCompAssign)
1350 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1351 return RHSType;
1352 } else {
1353 // The signed type is higher-ranked than the unsigned type,
1354 // but isn't actually any bigger (like unsigned int and long
1355 // on most 32-bit systems). Use the unsigned type corresponding
1356 // to the signed type.
1357 QualType result =
1358 S.Context.getCorrespondingUnsignedType(T: LHSSigned ? LHSType : RHSType);
1359 RHS = (*doRHSCast)(S, RHS.get(), result);
1360 if (!IsCompAssign)
1361 LHS = (*doLHSCast)(S, LHS.get(), result);
1362 return result;
1363 }
1364}
1365
1366/// Handle conversions with GCC complex int extension. Helper function
1367/// of UsualArithmeticConversions()
1368static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1369 ExprResult &RHS, QualType LHSType,
1370 QualType RHSType,
1371 bool IsCompAssign) {
1372 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1373 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1374
1375 if (LHSComplexInt && RHSComplexInt) {
1376 QualType LHSEltType = LHSComplexInt->getElementType();
1377 QualType RHSEltType = RHSComplexInt->getElementType();
1378 QualType ScalarType =
1379 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1380 (S, LHS, RHS, LHSType: LHSEltType, RHSType: RHSEltType, IsCompAssign);
1381
1382 return S.Context.getComplexType(T: ScalarType);
1383 }
1384
1385 if (LHSComplexInt) {
1386 QualType LHSEltType = LHSComplexInt->getElementType();
1387 QualType ScalarType =
1388 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1389 (S, LHS, RHS, LHSType: LHSEltType, RHSType, IsCompAssign);
1390 QualType ComplexType = S.Context.getComplexType(T: ScalarType);
1391 RHS = S.ImpCastExprToType(E: RHS.get(), Type: ComplexType,
1392 CK: CK_IntegralRealToComplex);
1393
1394 return ComplexType;
1395 }
1396
1397 assert(RHSComplexInt);
1398
1399 QualType RHSEltType = RHSComplexInt->getElementType();
1400 QualType ScalarType =
1401 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1402 (S, LHS, RHS, LHSType, RHSType: RHSEltType, IsCompAssign);
1403 QualType ComplexType = S.Context.getComplexType(T: ScalarType);
1404
1405 if (!IsCompAssign)
1406 LHS = S.ImpCastExprToType(E: LHS.get(), Type: ComplexType,
1407 CK: CK_IntegralRealToComplex);
1408 return ComplexType;
1409}
1410
1411/// Return the rank of a given fixed point or integer type. The value itself
1412/// doesn't matter, but the values must be increasing with proper increasing
1413/// rank as described in N1169 4.1.1.
1414static unsigned GetFixedPointRank(QualType Ty) {
1415 const auto *BTy = Ty->getAs<BuiltinType>();
1416 assert(BTy && "Expected a builtin type.");
1417
1418 switch (BTy->getKind()) {
1419 case BuiltinType::ShortFract:
1420 case BuiltinType::UShortFract:
1421 case BuiltinType::SatShortFract:
1422 case BuiltinType::SatUShortFract:
1423 return 1;
1424 case BuiltinType::Fract:
1425 case BuiltinType::UFract:
1426 case BuiltinType::SatFract:
1427 case BuiltinType::SatUFract:
1428 return 2;
1429 case BuiltinType::LongFract:
1430 case BuiltinType::ULongFract:
1431 case BuiltinType::SatLongFract:
1432 case BuiltinType::SatULongFract:
1433 return 3;
1434 case BuiltinType::ShortAccum:
1435 case BuiltinType::UShortAccum:
1436 case BuiltinType::SatShortAccum:
1437 case BuiltinType::SatUShortAccum:
1438 return 4;
1439 case BuiltinType::Accum:
1440 case BuiltinType::UAccum:
1441 case BuiltinType::SatAccum:
1442 case BuiltinType::SatUAccum:
1443 return 5;
1444 case BuiltinType::LongAccum:
1445 case BuiltinType::ULongAccum:
1446 case BuiltinType::SatLongAccum:
1447 case BuiltinType::SatULongAccum:
1448 return 6;
1449 default:
1450 if (BTy->isInteger())
1451 return 0;
1452 llvm_unreachable("Unexpected fixed point or integer type");
1453 }
1454}
1455
1456/// handleFixedPointConversion - Fixed point operations between fixed
1457/// point types and integers or other fixed point types do not fall under
1458/// usual arithmetic conversion since these conversions could result in loss
1459/// of precsision (N1169 4.1.4). These operations should be calculated with
1460/// the full precision of their result type (N1169 4.1.6.2.1).
1461static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1462 QualType RHSTy) {
1463 assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1464 "Expected at least one of the operands to be a fixed point type");
1465 assert((LHSTy->isFixedPointOrIntegerType() ||
1466 RHSTy->isFixedPointOrIntegerType()) &&
1467 "Special fixed point arithmetic operation conversions are only "
1468 "applied to ints or other fixed point types");
1469
1470 // If one operand has signed fixed-point type and the other operand has
1471 // unsigned fixed-point type, then the unsigned fixed-point operand is
1472 // converted to its corresponding signed fixed-point type and the resulting
1473 // type is the type of the converted operand.
1474 if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1475 LHSTy = S.Context.getCorrespondingSignedFixedPointType(Ty: LHSTy);
1476 else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1477 RHSTy = S.Context.getCorrespondingSignedFixedPointType(Ty: RHSTy);
1478
1479 // The result type is the type with the highest rank, whereby a fixed-point
1480 // conversion rank is always greater than an integer conversion rank; if the
1481 // type of either of the operands is a saturating fixedpoint type, the result
1482 // type shall be the saturating fixed-point type corresponding to the type
1483 // with the highest rank; the resulting value is converted (taking into
1484 // account rounding and overflow) to the precision of the resulting type.
1485 // Same ranks between signed and unsigned types are resolved earlier, so both
1486 // types are either signed or both unsigned at this point.
1487 unsigned LHSTyRank = GetFixedPointRank(Ty: LHSTy);
1488 unsigned RHSTyRank = GetFixedPointRank(Ty: RHSTy);
1489
1490 QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1491
1492 if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1493 ResultTy = S.Context.getCorrespondingSaturatedType(Ty: ResultTy);
1494
1495 return ResultTy;
1496}
1497
1498/// Check that the usual arithmetic conversions can be performed on this pair of
1499/// expressions that might be of enumeration type.
1500void Sema::checkEnumArithmeticConversions(Expr *LHS, Expr *RHS,
1501 SourceLocation Loc,
1502 ArithConvKind ACK) {
1503 // C++2a [expr.arith.conv]p1:
1504 // If one operand is of enumeration type and the other operand is of a
1505 // different enumeration type or a floating-point type, this behavior is
1506 // deprecated ([depr.arith.conv.enum]).
1507 //
1508 // Warn on this in all language modes. Produce a deprecation warning in C++20.
1509 // Eventually we will presumably reject these cases (in C++23 onwards?).
1510 QualType L = LHS->getEnumCoercedType(Ctx: Context),
1511 R = RHS->getEnumCoercedType(Ctx: Context);
1512 bool LEnum = L->isUnscopedEnumerationType(),
1513 REnum = R->isUnscopedEnumerationType();
1514 bool IsCompAssign = ACK == ArithConvKind::CompAssign;
1515 if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1516 (REnum && L->isFloatingType())) {
1517 Diag(Loc, DiagID: getLangOpts().CPlusPlus26 ? diag::err_arith_conv_enum_float_cxx26
1518 : getLangOpts().CPlusPlus20
1519 ? diag::warn_arith_conv_enum_float_cxx20
1520 : diag::warn_arith_conv_enum_float)
1521 << LHS->getSourceRange() << RHS->getSourceRange() << (int)ACK << LEnum
1522 << L << R;
1523 } else if (!IsCompAssign && LEnum && REnum &&
1524 !Context.hasSameUnqualifiedType(T1: L, T2: R)) {
1525 unsigned DiagID;
1526 // In C++ 26, usual arithmetic conversions between 2 different enum types
1527 // are ill-formed.
1528 if (getLangOpts().CPlusPlus26)
1529 DiagID = diag::warn_conv_mixed_enum_types_cxx26;
1530 else if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1531 !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1532 // If either enumeration type is unnamed, it's less likely that the
1533 // user cares about this, but this situation is still deprecated in
1534 // C++2a. Use a different warning group.
1535 DiagID = getLangOpts().CPlusPlus20
1536 ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1537 : diag::warn_arith_conv_mixed_anon_enum_types;
1538 } else if (ACK == ArithConvKind::Conditional) {
1539 // Conditional expressions are separated out because they have
1540 // historically had a different warning flag.
1541 DiagID = getLangOpts().CPlusPlus20
1542 ? diag::warn_conditional_mixed_enum_types_cxx20
1543 : diag::warn_conditional_mixed_enum_types;
1544 } else if (ACK == ArithConvKind::Comparison) {
1545 // Comparison expressions are separated out because they have
1546 // historically had a different warning flag.
1547 DiagID = getLangOpts().CPlusPlus20
1548 ? diag::warn_comparison_mixed_enum_types_cxx20
1549 : diag::warn_comparison_mixed_enum_types;
1550 } else {
1551 DiagID = getLangOpts().CPlusPlus20
1552 ? diag::warn_arith_conv_mixed_enum_types_cxx20
1553 : diag::warn_arith_conv_mixed_enum_types;
1554 }
1555 Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1556 << (int)ACK << L << R;
1557 }
1558}
1559
1560static void CheckUnicodeArithmeticConversions(Sema &SemaRef, Expr *LHS,
1561 Expr *RHS, SourceLocation Loc,
1562 ArithConvKind ACK) {
1563 QualType LHSType = LHS->getType().getUnqualifiedType();
1564 QualType RHSType = RHS->getType().getUnqualifiedType();
1565
1566 if (!SemaRef.getLangOpts().CPlusPlus || !LHSType->isUnicodeCharacterType() ||
1567 !RHSType->isUnicodeCharacterType())
1568 return;
1569
1570 if (ACK == ArithConvKind::Comparison) {
1571 if (SemaRef.getASTContext().hasSameType(T1: LHSType, T2: RHSType))
1572 return;
1573
1574 auto IsSingleCodeUnitCP = [](const QualType &T, const llvm::APSInt &Value) {
1575 if (T->isChar8Type())
1576 return llvm::IsSingleCodeUnitUTF8Codepoint(Value.getExtValue());
1577 if (T->isChar16Type())
1578 return llvm::IsSingleCodeUnitUTF16Codepoint(Value.getExtValue());
1579 assert(T->isChar32Type());
1580 return llvm::IsSingleCodeUnitUTF32Codepoint(Value.getExtValue());
1581 };
1582
1583 Expr::EvalResult LHSRes, RHSRes;
1584 bool LHSSuccess = LHS->EvaluateAsInt(Result&: LHSRes, Ctx: SemaRef.getASTContext(),
1585 AllowSideEffects: Expr::SE_AllowSideEffects,
1586 InConstantContext: SemaRef.isConstantEvaluatedContext());
1587 bool RHSuccess = RHS->EvaluateAsInt(Result&: RHSRes, Ctx: SemaRef.getASTContext(),
1588 AllowSideEffects: Expr::SE_AllowSideEffects,
1589 InConstantContext: SemaRef.isConstantEvaluatedContext());
1590
1591 // Don't warn if the one known value is a representable
1592 // in the type of both expressions.
1593 if (LHSSuccess != RHSuccess) {
1594 Expr::EvalResult &Res = LHSSuccess ? LHSRes : RHSRes;
1595 if (IsSingleCodeUnitCP(LHSType, Res.Val.getInt()) &&
1596 IsSingleCodeUnitCP(RHSType, Res.Val.getInt()))
1597 return;
1598 }
1599
1600 if (!LHSSuccess || !RHSuccess) {
1601 SemaRef.Diag(Loc, DiagID: diag::warn_comparison_unicode_mixed_types)
1602 << LHS->getSourceRange() << RHS->getSourceRange() << LHSType
1603 << RHSType;
1604 return;
1605 }
1606
1607 llvm::APSInt LHSValue(32);
1608 LHSValue = LHSRes.Val.getInt();
1609 llvm::APSInt RHSValue(32);
1610 RHSValue = RHSRes.Val.getInt();
1611
1612 bool LHSSafe = IsSingleCodeUnitCP(LHSType, LHSValue);
1613 bool RHSSafe = IsSingleCodeUnitCP(RHSType, RHSValue);
1614 if (LHSSafe && RHSSafe)
1615 return;
1616
1617 SemaRef.Diag(Loc, DiagID: diag::warn_comparison_unicode_mixed_types_constant)
1618 << LHS->getSourceRange() << RHS->getSourceRange() << LHSType << RHSType
1619 << FormatUTFCodeUnitAsCodepoint(Value: LHSValue.getExtValue(), T: LHSType)
1620 << FormatUTFCodeUnitAsCodepoint(Value: RHSValue.getExtValue(), T: RHSType);
1621 return;
1622 }
1623
1624 if (SemaRef.getASTContext().hasSameType(T1: LHSType, T2: RHSType))
1625 return;
1626
1627 SemaRef.Diag(Loc, DiagID: diag::warn_arith_conv_mixed_unicode_types)
1628 << LHS->getSourceRange() << RHS->getSourceRange() << ACK << LHSType
1629 << RHSType;
1630}
1631
1632/// UsualArithmeticConversions - Performs various conversions that are common to
1633/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1634/// routine returns the first non-arithmetic type found. The client is
1635/// responsible for emitting appropriate error diagnostics.
1636QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1637 SourceLocation Loc,
1638 ArithConvKind ACK) {
1639
1640 checkEnumArithmeticConversions(LHS: LHS.get(), RHS: RHS.get(), Loc, ACK);
1641
1642 CheckUnicodeArithmeticConversions(SemaRef&: *this, LHS: LHS.get(), RHS: RHS.get(), Loc, ACK);
1643
1644 if (ACK != ArithConvKind::CompAssign) {
1645 LHS = UsualUnaryConversions(E: LHS.get());
1646 if (LHS.isInvalid())
1647 return QualType();
1648 }
1649
1650 RHS = UsualUnaryConversions(E: RHS.get());
1651 if (RHS.isInvalid())
1652 return QualType();
1653
1654 // For conversion purposes, we ignore any qualifiers.
1655 // For example, "const float" and "float" are equivalent.
1656 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1657 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1658
1659 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1660 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1661 LHSType = AtomicLHS->getValueType();
1662
1663 // If both types are identical, no conversion is needed.
1664 if (Context.hasSameType(T1: LHSType, T2: RHSType))
1665 return Context.getCommonSugaredType(X: LHSType, Y: RHSType);
1666
1667 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1668 // The caller can deal with this (e.g. pointer + int).
1669 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1670 return QualType();
1671
1672 // Apply unary and bitfield promotions to the LHS's type.
1673 QualType LHSUnpromotedType = LHSType;
1674 if (Context.isPromotableIntegerType(T: LHSType))
1675 LHSType = Context.getPromotedIntegerType(PromotableType: LHSType);
1676 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(E: LHS.get());
1677 if (!LHSBitfieldPromoteTy.isNull())
1678 LHSType = LHSBitfieldPromoteTy;
1679 if (LHSType != LHSUnpromotedType && ACK != ArithConvKind::CompAssign)
1680 LHS = ImpCastExprToType(E: LHS.get(), Type: LHSType, CK: CK_IntegralCast);
1681
1682 // If both types are identical, no conversion is needed.
1683 if (Context.hasSameType(T1: LHSType, T2: RHSType))
1684 return Context.getCommonSugaredType(X: LHSType, Y: RHSType);
1685
1686 // At this point, we have two different arithmetic types.
1687
1688 // Diagnose attempts to convert between __ibm128, __float128 and long double
1689 // where such conversions currently can't be handled.
1690 if (unsupportedTypeConversion(S: *this, LHSType, RHSType))
1691 return QualType();
1692
1693 // Handle complex types first (C99 6.3.1.8p1).
1694 if (LHSType->isComplexType() || RHSType->isComplexType())
1695 return handleComplexConversion(S&: *this, LHS, RHS, LHSType, RHSType,
1696 IsCompAssign: ACK == ArithConvKind::CompAssign);
1697
1698 // Now handle "real" floating types (i.e. float, double, long double).
1699 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1700 return handleFloatConversion(S&: *this, LHS, RHS, LHSType, RHSType,
1701 IsCompAssign: ACK == ArithConvKind::CompAssign);
1702
1703 // Handle GCC complex int extension.
1704 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1705 return handleComplexIntConversion(S&: *this, LHS, RHS, LHSType, RHSType,
1706 IsCompAssign: ACK == ArithConvKind::CompAssign);
1707
1708 if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1709 return handleFixedPointConversion(S&: *this, LHSTy: LHSType, RHSTy: RHSType);
1710
1711 // Finally, we have two differing integer types.
1712 return handleIntegerConversion<doIntegralCast, doIntegralCast>(
1713 S&: *this, LHS, RHS, LHSType, RHSType, IsCompAssign: ACK == ArithConvKind::CompAssign);
1714}
1715
1716//===----------------------------------------------------------------------===//
1717// Semantic Analysis for various Expression Types
1718//===----------------------------------------------------------------------===//
1719
1720
1721ExprResult Sema::ActOnGenericSelectionExpr(
1722 SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1723 bool PredicateIsExpr, void *ControllingExprOrType,
1724 ArrayRef<ParsedType> ArgTypes, ArrayRef<Expr *> ArgExprs) {
1725 unsigned NumAssocs = ArgTypes.size();
1726 assert(NumAssocs == ArgExprs.size());
1727
1728 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1729 for (unsigned i = 0; i < NumAssocs; ++i) {
1730 if (ArgTypes[i])
1731 (void) GetTypeFromParser(Ty: ArgTypes[i], TInfo: &Types[i]);
1732 else
1733 Types[i] = nullptr;
1734 }
1735
1736 // If we have a controlling type, we need to convert it from a parsed type
1737 // into a semantic type and then pass that along.
1738 if (!PredicateIsExpr) {
1739 TypeSourceInfo *ControllingType;
1740 (void)GetTypeFromParser(Ty: ParsedType::getFromOpaquePtr(P: ControllingExprOrType),
1741 TInfo: &ControllingType);
1742 assert(ControllingType && "couldn't get the type out of the parser");
1743 ControllingExprOrType = ControllingType;
1744 }
1745
1746 ExprResult ER = CreateGenericSelectionExpr(
1747 KeyLoc, DefaultLoc, RParenLoc, PredicateIsExpr, ControllingExprOrType,
1748 Types: llvm::ArrayRef(Types, NumAssocs), Exprs: ArgExprs);
1749 delete [] Types;
1750 return ER;
1751}
1752
1753ExprResult Sema::CreateGenericSelectionExpr(
1754 SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1755 bool PredicateIsExpr, void *ControllingExprOrType,
1756 ArrayRef<TypeSourceInfo *> Types, ArrayRef<Expr *> Exprs) {
1757 unsigned NumAssocs = Types.size();
1758 assert(NumAssocs == Exprs.size());
1759 assert(ControllingExprOrType &&
1760 "Must have either a controlling expression or a controlling type");
1761
1762 Expr *ControllingExpr = nullptr;
1763 TypeSourceInfo *ControllingType = nullptr;
1764 if (PredicateIsExpr) {
1765 // Decay and strip qualifiers for the controlling expression type, and
1766 // handle placeholder type replacement. See committee discussion from WG14
1767 // DR423.
1768 EnterExpressionEvaluationContext Unevaluated(
1769 *this, Sema::ExpressionEvaluationContext::Unevaluated);
1770 ExprResult R = DefaultFunctionArrayLvalueConversion(
1771 E: reinterpret_cast<Expr *>(ControllingExprOrType));
1772 if (R.isInvalid())
1773 return ExprError();
1774 ControllingExpr = R.get();
1775 } else {
1776 // The extension form uses the type directly rather than converting it.
1777 ControllingType = reinterpret_cast<TypeSourceInfo *>(ControllingExprOrType);
1778 if (!ControllingType)
1779 return ExprError();
1780 }
1781
1782 bool TypeErrorFound = false,
1783 IsResultDependent = ControllingExpr
1784 ? ControllingExpr->isTypeDependent()
1785 : ControllingType->getType()->isDependentType(),
1786 ContainsUnexpandedParameterPack =
1787 ControllingExpr
1788 ? ControllingExpr->containsUnexpandedParameterPack()
1789 : ControllingType->getType()->containsUnexpandedParameterPack();
1790
1791 // The controlling expression is an unevaluated operand, so side effects are
1792 // likely unintended.
1793 if (!inTemplateInstantiation() && !IsResultDependent && ControllingExpr &&
1794 ControllingExpr->HasSideEffects(Ctx: Context, IncludePossibleEffects: false))
1795 Diag(Loc: ControllingExpr->getExprLoc(),
1796 DiagID: diag::warn_side_effects_unevaluated_context);
1797
1798 for (unsigned i = 0; i < NumAssocs; ++i) {
1799 if (Exprs[i]->containsUnexpandedParameterPack())
1800 ContainsUnexpandedParameterPack = true;
1801
1802 if (Types[i]) {
1803 if (Types[i]->getType()->containsUnexpandedParameterPack())
1804 ContainsUnexpandedParameterPack = true;
1805
1806 if (Types[i]->getType()->isDependentType()) {
1807 IsResultDependent = true;
1808 } else {
1809 // We relax the restriction on use of incomplete types and non-object
1810 // types with the type-based extension of _Generic. Allowing incomplete
1811 // objects means those can be used as "tags" for a type-safe way to map
1812 // to a value. Similarly, matching on function types rather than
1813 // function pointer types can be useful. However, the restriction on VM
1814 // types makes sense to retain as there are open questions about how
1815 // the selection can be made at compile time.
1816 //
1817 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1818 // complete object type other than a variably modified type."
1819 // C2y removed the requirement that an expression form must
1820 // use a complete type, though it's still as-if the type has undergone
1821 // lvalue conversion. We support this as an extension in C23 and
1822 // earlier because GCC does so.
1823 unsigned D = 0;
1824 if (ControllingExpr && Types[i]->getType()->isIncompleteType())
1825 D = LangOpts.C2y ? diag::warn_c2y_compat_assoc_type_incomplete
1826 : diag::ext_assoc_type_incomplete;
1827 else if (ControllingExpr && !Types[i]->getType()->isObjectType())
1828 D = diag::err_assoc_type_nonobject;
1829 else if (Types[i]->getType()->isVariablyModifiedType())
1830 D = diag::err_assoc_type_variably_modified;
1831 else if (ControllingExpr) {
1832 // Because the controlling expression undergoes lvalue conversion,
1833 // array conversion, and function conversion, an association which is
1834 // of array type, function type, or is qualified can never be
1835 // reached. We will warn about this so users are less surprised by
1836 // the unreachable association. However, we don't have to handle
1837 // function types; that's not an object type, so it's handled above.
1838 //
1839 // The logic is somewhat different for C++ because C++ has different
1840 // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1841 // If T is a non-class type, the type of the prvalue is the cv-
1842 // unqualified version of T. Otherwise, the type of the prvalue is T.
1843 // The result of these rules is that all qualified types in an
1844 // association in C are unreachable, and in C++, only qualified non-
1845 // class types are unreachable.
1846 //
1847 // NB: this does not apply when the first operand is a type rather
1848 // than an expression, because the type form does not undergo
1849 // conversion.
1850 unsigned Reason = 0;
1851 QualType QT = Types[i]->getType();
1852 if (QT->isArrayType())
1853 Reason = 1;
1854 else if (QT.hasQualifiers() &&
1855 (!LangOpts.CPlusPlus || !QT->isRecordType()))
1856 Reason = 2;
1857
1858 if (Reason)
1859 Diag(Loc: Types[i]->getTypeLoc().getBeginLoc(),
1860 DiagID: diag::warn_unreachable_association)
1861 << QT << (Reason - 1);
1862 }
1863
1864 if (D != 0) {
1865 Diag(Loc: Types[i]->getTypeLoc().getBeginLoc(), DiagID: D)
1866 << Types[i]->getTypeLoc().getSourceRange() << Types[i]->getType();
1867 if (getDiagnostics().getDiagnosticLevel(
1868 DiagID: D, Loc: Types[i]->getTypeLoc().getBeginLoc()) >=
1869 DiagnosticsEngine::Error)
1870 TypeErrorFound = true;
1871 }
1872
1873 // C11 6.5.1.1p2 "No two generic associations in the same generic
1874 // selection shall specify compatible types."
1875 for (unsigned j = i+1; j < NumAssocs; ++j)
1876 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1877 Context.typesAreCompatible(T1: Types[i]->getType(),
1878 T2: Types[j]->getType())) {
1879 Diag(Loc: Types[j]->getTypeLoc().getBeginLoc(),
1880 DiagID: diag::err_assoc_compatible_types)
1881 << Types[j]->getTypeLoc().getSourceRange()
1882 << Types[j]->getType()
1883 << Types[i]->getType();
1884 Diag(Loc: Types[i]->getTypeLoc().getBeginLoc(),
1885 DiagID: diag::note_compat_assoc)
1886 << Types[i]->getTypeLoc().getSourceRange()
1887 << Types[i]->getType();
1888 TypeErrorFound = true;
1889 }
1890 }
1891 }
1892 }
1893 if (TypeErrorFound)
1894 return ExprError();
1895
1896 // If we determined that the generic selection is result-dependent, don't
1897 // try to compute the result expression.
1898 if (IsResultDependent) {
1899 if (ControllingExpr)
1900 return GenericSelectionExpr::Create(Context, GenericLoc: KeyLoc, ControllingExpr,
1901 AssocTypes: Types, AssocExprs: Exprs, DefaultLoc, RParenLoc,
1902 ContainsUnexpandedParameterPack);
1903 return GenericSelectionExpr::Create(Context, GenericLoc: KeyLoc, ControllingType, AssocTypes: Types,
1904 AssocExprs: Exprs, DefaultLoc, RParenLoc,
1905 ContainsUnexpandedParameterPack);
1906 }
1907
1908 SmallVector<unsigned, 1> CompatIndices;
1909 unsigned DefaultIndex = -1U;
1910 // Look at the canonical type of the controlling expression in case it was a
1911 // deduced type like __auto_type. However, when issuing diagnostics, use the
1912 // type the user wrote in source rather than the canonical one.
1913 for (unsigned i = 0; i < NumAssocs; ++i) {
1914 if (!Types[i])
1915 DefaultIndex = i;
1916 else if (ControllingExpr &&
1917 Context.typesAreCompatible(
1918 T1: ControllingExpr->getType().getCanonicalType(),
1919 T2: Types[i]->getType()))
1920 CompatIndices.push_back(Elt: i);
1921 else if (ControllingType &&
1922 Context.typesAreCompatible(
1923 T1: ControllingType->getType().getCanonicalType(),
1924 T2: Types[i]->getType()))
1925 CompatIndices.push_back(Elt: i);
1926 }
1927
1928 auto GetControllingRangeAndType = [](Expr *ControllingExpr,
1929 TypeSourceInfo *ControllingType) {
1930 // We strip parens here because the controlling expression is typically
1931 // parenthesized in macro definitions.
1932 if (ControllingExpr)
1933 ControllingExpr = ControllingExpr->IgnoreParens();
1934
1935 SourceRange SR = ControllingExpr
1936 ? ControllingExpr->getSourceRange()
1937 : ControllingType->getTypeLoc().getSourceRange();
1938 QualType QT = ControllingExpr ? ControllingExpr->getType()
1939 : ControllingType->getType();
1940
1941 return std::make_pair(x&: SR, y&: QT);
1942 };
1943
1944 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1945 // type compatible with at most one of the types named in its generic
1946 // association list."
1947 if (CompatIndices.size() > 1) {
1948 auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1949 SourceRange SR = P.first;
1950 Diag(Loc: SR.getBegin(), DiagID: diag::err_generic_sel_multi_match)
1951 << SR << P.second << (unsigned)CompatIndices.size();
1952 for (unsigned I : CompatIndices) {
1953 Diag(Loc: Types[I]->getTypeLoc().getBeginLoc(),
1954 DiagID: diag::note_compat_assoc)
1955 << Types[I]->getTypeLoc().getSourceRange()
1956 << Types[I]->getType();
1957 }
1958 return ExprError();
1959 }
1960
1961 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1962 // its controlling expression shall have type compatible with exactly one of
1963 // the types named in its generic association list."
1964 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1965 auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1966 SourceRange SR = P.first;
1967 Diag(Loc: SR.getBegin(), DiagID: diag::err_generic_sel_no_match) << SR << P.second;
1968 return ExprError();
1969 }
1970
1971 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1972 // type name that is compatible with the type of the controlling expression,
1973 // then the result expression of the generic selection is the expression
1974 // in that generic association. Otherwise, the result expression of the
1975 // generic selection is the expression in the default generic association."
1976 unsigned ResultIndex =
1977 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1978
1979 if (ControllingExpr) {
1980 return GenericSelectionExpr::Create(
1981 Context, GenericLoc: KeyLoc, ControllingExpr, AssocTypes: Types, AssocExprs: Exprs, DefaultLoc, RParenLoc,
1982 ContainsUnexpandedParameterPack, ResultIndex);
1983 }
1984 return GenericSelectionExpr::Create(
1985 Context, GenericLoc: KeyLoc, ControllingType, AssocTypes: Types, AssocExprs: Exprs, DefaultLoc, RParenLoc,
1986 ContainsUnexpandedParameterPack, ResultIndex);
1987}
1988
1989static PredefinedIdentKind getPredefinedExprKind(tok::TokenKind Kind) {
1990 switch (Kind) {
1991 default:
1992 llvm_unreachable("unexpected TokenKind");
1993 case tok::kw___func__:
1994 return PredefinedIdentKind::Func; // [C99 6.4.2.2]
1995 case tok::kw___FUNCTION__:
1996 return PredefinedIdentKind::Function;
1997 case tok::kw___FUNCDNAME__:
1998 return PredefinedIdentKind::FuncDName; // [MS]
1999 case tok::kw___FUNCSIG__:
2000 return PredefinedIdentKind::FuncSig; // [MS]
2001 case tok::kw_L__FUNCTION__:
2002 return PredefinedIdentKind::LFunction; // [MS]
2003 case tok::kw_L__FUNCSIG__:
2004 return PredefinedIdentKind::LFuncSig; // [MS]
2005 case tok::kw___PRETTY_FUNCTION__:
2006 return PredefinedIdentKind::PrettyFunction; // [GNU]
2007 }
2008}
2009
2010/// getPredefinedExprDecl - Returns Decl of a given DeclContext that can be used
2011/// to determine the value of a PredefinedExpr. This can be either a
2012/// block, lambda, captured statement, function, otherwise a nullptr.
2013static Decl *getPredefinedExprDecl(DeclContext *DC) {
2014 while (DC && !isa<BlockDecl, CapturedDecl, FunctionDecl, ObjCMethodDecl>(Val: DC))
2015 DC = DC->getParent();
2016 return cast_or_null<Decl>(Val: DC);
2017}
2018
2019/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
2020/// location of the token and the offset of the ud-suffix within it.
2021static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
2022 unsigned Offset) {
2023 return Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: Offset, SM: S.getSourceManager(),
2024 LangOpts: S.getLangOpts());
2025}
2026
2027/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
2028/// the corresponding cooked (non-raw) literal operator, and build a call to it.
2029static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
2030 IdentifierInfo *UDSuffix,
2031 SourceLocation UDSuffixLoc,
2032 ArrayRef<Expr*> Args,
2033 SourceLocation LitEndLoc) {
2034 assert(Args.size() <= 2 && "too many arguments for literal operator");
2035
2036 QualType ArgTy[2];
2037 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2038 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
2039 if (ArgTy[ArgIdx]->isArrayType())
2040 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(T: ArgTy[ArgIdx]);
2041 }
2042
2043 DeclarationName OpName =
2044 S.Context.DeclarationNames.getCXXLiteralOperatorName(II: UDSuffix);
2045 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2046 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2047
2048 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
2049 if (S.LookupLiteralOperator(S: Scope, R, ArgTys: llvm::ArrayRef(ArgTy, Args.size()),
2050 /*AllowRaw*/ false, /*AllowTemplate*/ false,
2051 /*AllowStringTemplatePack*/ AllowStringTemplate: false,
2052 /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
2053 return ExprError();
2054
2055 return S.BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args, LitEndLoc);
2056}
2057
2058ExprResult Sema::ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks) {
2059 // StringToks needs backing storage as it doesn't hold array elements itself
2060 std::vector<Token> ExpandedToks;
2061 if (getLangOpts().MicrosoftExt)
2062 StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(Toks: StringToks);
2063
2064 StringLiteralParser Literal(StringToks, PP,
2065 StringLiteralEvalMethod::Unevaluated);
2066 if (Literal.hadError)
2067 return ExprError();
2068
2069 SmallVector<SourceLocation, 4> StringTokLocs;
2070 for (const Token &Tok : StringToks)
2071 StringTokLocs.push_back(Elt: Tok.getLocation());
2072
2073 StringLiteral *Lit = StringLiteral::Create(Ctx: Context, Str: Literal.GetString(),
2074 Kind: StringLiteralKind::Unevaluated,
2075 Pascal: false, Ty: {}, Locs: StringTokLocs);
2076
2077 if (!Literal.getUDSuffix().empty()) {
2078 SourceLocation UDSuffixLoc =
2079 getUDSuffixLoc(S&: *this, TokLoc: StringTokLocs[Literal.getUDSuffixToken()],
2080 Offset: Literal.getUDSuffixOffset());
2081 return ExprError(Diag(Loc: UDSuffixLoc, DiagID: diag::err_invalid_string_udl));
2082 }
2083
2084 return Lit;
2085}
2086
2087std::vector<Token>
2088Sema::ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks) {
2089 // MSVC treats some predefined identifiers (e.g. __FUNCTION__) as function
2090 // local macros that expand to string literals that may be concatenated.
2091 // These macros are expanded here (in Sema), because StringLiteralParser
2092 // (in Lex) doesn't know the enclosing function (because it hasn't been
2093 // parsed yet).
2094 assert(getLangOpts().MicrosoftExt);
2095
2096 // Note: Although function local macros are defined only inside functions,
2097 // we ensure a valid `CurrentDecl` even outside of a function. This allows
2098 // expansion of macros into empty string literals without additional checks.
2099 Decl *CurrentDecl = getPredefinedExprDecl(DC: CurContext);
2100 if (!CurrentDecl)
2101 CurrentDecl = Context.getTranslationUnitDecl();
2102
2103 std::vector<Token> ExpandedToks;
2104 ExpandedToks.reserve(n: Toks.size());
2105 for (const Token &Tok : Toks) {
2106 if (!isFunctionLocalStringLiteralMacro(K: Tok.getKind(), LO: getLangOpts())) {
2107 assert(tok::isStringLiteral(Tok.getKind()));
2108 ExpandedToks.emplace_back(args: Tok);
2109 continue;
2110 }
2111 if (isa<TranslationUnitDecl>(Val: CurrentDecl))
2112 Diag(Loc: Tok.getLocation(), DiagID: diag::ext_predef_outside_function);
2113 // Stringify predefined expression
2114 Diag(Loc: Tok.getLocation(), DiagID: diag::ext_string_literal_from_predefined)
2115 << Tok.getKind();
2116 SmallString<64> Str;
2117 llvm::raw_svector_ostream OS(Str);
2118 Token &Exp = ExpandedToks.emplace_back();
2119 Exp.startToken();
2120 if (Tok.getKind() == tok::kw_L__FUNCTION__ ||
2121 Tok.getKind() == tok::kw_L__FUNCSIG__) {
2122 OS << 'L';
2123 Exp.setKind(tok::wide_string_literal);
2124 } else {
2125 Exp.setKind(tok::string_literal);
2126 }
2127 OS << '"'
2128 << Lexer::Stringify(Str: PredefinedExpr::ComputeName(
2129 IK: getPredefinedExprKind(Kind: Tok.getKind()), CurrentDecl))
2130 << '"';
2131 PP.CreateString(Str: OS.str(), Tok&: Exp, ExpansionLocStart: Tok.getLocation(), ExpansionLocEnd: Tok.getEndLoc());
2132 }
2133 return ExpandedToks;
2134}
2135
2136ExprResult
2137Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
2138 assert(!StringToks.empty() && "Must have at least one string!");
2139
2140 // StringToks needs backing storage as it doesn't hold array elements itself
2141 std::vector<Token> ExpandedToks;
2142 if (getLangOpts().MicrosoftExt)
2143 StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(Toks: StringToks);
2144
2145 StringLiteralParser Literal(StringToks, PP);
2146 if (Literal.hadError)
2147 return ExprError();
2148
2149 SmallVector<SourceLocation, 4> StringTokLocs;
2150 for (const Token &Tok : StringToks)
2151 StringTokLocs.push_back(Elt: Tok.getLocation());
2152
2153 QualType CharTy = Context.CharTy;
2154 StringLiteralKind Kind = StringLiteralKind::Ordinary;
2155 if (Literal.isWide()) {
2156 CharTy = Context.getWideCharType();
2157 Kind = StringLiteralKind::Wide;
2158 } else if (Literal.isUTF8()) {
2159 if (getLangOpts().Char8)
2160 CharTy = Context.Char8Ty;
2161 else if (getLangOpts().C23)
2162 CharTy = Context.UnsignedCharTy;
2163 Kind = StringLiteralKind::UTF8;
2164 } else if (Literal.isUTF16()) {
2165 CharTy = Context.Char16Ty;
2166 Kind = StringLiteralKind::UTF16;
2167 } else if (Literal.isUTF32()) {
2168 CharTy = Context.Char32Ty;
2169 Kind = StringLiteralKind::UTF32;
2170 } else if (Literal.isPascal()) {
2171 CharTy = Context.UnsignedCharTy;
2172 }
2173
2174 // Warn on u8 string literals before C++20 and C23, whose type
2175 // was an array of char before but becomes an array of char8_t.
2176 // In C++20, it cannot be used where a pointer to char is expected.
2177 // In C23, it might have an unexpected value if char was signed.
2178 if (Kind == StringLiteralKind::UTF8 &&
2179 (getLangOpts().CPlusPlus
2180 ? !getLangOpts().CPlusPlus20 && !getLangOpts().Char8
2181 : !getLangOpts().C23)) {
2182 Diag(Loc: StringTokLocs.front(), DiagID: getLangOpts().CPlusPlus
2183 ? diag::warn_cxx20_compat_utf8_string
2184 : diag::warn_c23_compat_utf8_string);
2185
2186 // Create removals for all 'u8' prefixes in the string literal(s). This
2187 // ensures C++20/C23 compatibility (but may change the program behavior when
2188 // built by non-Clang compilers for which the execution character set is
2189 // not always UTF-8).
2190 auto RemovalDiag = PDiag(DiagID: diag::note_cxx20_c23_compat_utf8_string_remove_u8);
2191 SourceLocation RemovalDiagLoc;
2192 for (const Token &Tok : StringToks) {
2193 if (Tok.getKind() == tok::utf8_string_literal) {
2194 if (RemovalDiagLoc.isInvalid())
2195 RemovalDiagLoc = Tok.getLocation();
2196 RemovalDiag << FixItHint::CreateRemoval(RemoveRange: CharSourceRange::getCharRange(
2197 B: Tok.getLocation(),
2198 E: Lexer::AdvanceToTokenCharacter(TokStart: Tok.getLocation(), Characters: 2,
2199 SM: getSourceManager(), LangOpts: getLangOpts())));
2200 }
2201 }
2202 Diag(Loc: RemovalDiagLoc, PD: RemovalDiag);
2203 }
2204
2205 QualType StrTy =
2206 Context.getStringLiteralArrayType(EltTy: CharTy, Length: Literal.GetNumStringChars());
2207
2208 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
2209 StringLiteral *Lit = StringLiteral::Create(
2210 Ctx: Context, Str: Literal.GetString(), Kind, Pascal: Literal.Pascal, Ty: StrTy, Locs: StringTokLocs);
2211 if (Literal.getUDSuffix().empty())
2212 return Lit;
2213
2214 // We're building a user-defined literal.
2215 IdentifierInfo *UDSuffix = &Context.Idents.get(Name: Literal.getUDSuffix());
2216 SourceLocation UDSuffixLoc =
2217 getUDSuffixLoc(S&: *this, TokLoc: StringTokLocs[Literal.getUDSuffixToken()],
2218 Offset: Literal.getUDSuffixOffset());
2219
2220 // Make sure we're allowed user-defined literals here.
2221 if (!UDLScope)
2222 return ExprError(Diag(Loc: UDSuffixLoc, DiagID: diag::err_invalid_string_udl));
2223
2224 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
2225 // operator "" X (str, len)
2226 QualType SizeType = Context.getSizeType();
2227
2228 DeclarationName OpName =
2229 Context.DeclarationNames.getCXXLiteralOperatorName(II: UDSuffix);
2230 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2231 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2232
2233 QualType ArgTy[] = {
2234 Context.getArrayDecayedType(T: StrTy), SizeType
2235 };
2236
2237 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2238 switch (LookupLiteralOperator(S: UDLScope, R, ArgTys: ArgTy,
2239 /*AllowRaw*/ false, /*AllowTemplate*/ true,
2240 /*AllowStringTemplatePack*/ AllowStringTemplate: true,
2241 /*DiagnoseMissing*/ true, StringLit: Lit)) {
2242
2243 case LOLR_Cooked: {
2244 llvm::APInt Len(Context.getIntWidth(T: SizeType), Literal.GetNumStringChars());
2245 IntegerLiteral *LenArg = IntegerLiteral::Create(C: Context, V: Len, type: SizeType,
2246 l: StringTokLocs[0]);
2247 Expr *Args[] = { Lit, LenArg };
2248
2249 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args, LitEndLoc: StringTokLocs.back());
2250 }
2251
2252 case LOLR_Template: {
2253 TemplateArgumentListInfo ExplicitArgs;
2254 TemplateArgument Arg(Lit, /*IsCanonical=*/false);
2255 TemplateArgumentLocInfo ArgInfo(Lit);
2256 ExplicitArgs.addArgument(Loc: TemplateArgumentLoc(Arg, ArgInfo));
2257 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args: {}, LitEndLoc: StringTokLocs.back(),
2258 ExplicitTemplateArgs: &ExplicitArgs);
2259 }
2260
2261 case LOLR_StringTemplatePack: {
2262 TemplateArgumentListInfo ExplicitArgs;
2263
2264 unsigned CharBits = Context.getIntWidth(T: CharTy);
2265 bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
2266 llvm::APSInt Value(CharBits, CharIsUnsigned);
2267
2268 TemplateArgument TypeArg(CharTy);
2269 TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(T: CharTy));
2270 ExplicitArgs.addArgument(Loc: TemplateArgumentLoc(TypeArg, TypeArgInfo));
2271
2272 for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
2273 Value = Lit->getCodeUnit(i: I);
2274 TemplateArgument Arg(Context, Value, CharTy);
2275 TemplateArgumentLocInfo ArgInfo;
2276 ExplicitArgs.addArgument(Loc: TemplateArgumentLoc(Arg, ArgInfo));
2277 }
2278 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args: {}, LitEndLoc: StringTokLocs.back(),
2279 ExplicitTemplateArgs: &ExplicitArgs);
2280 }
2281 case LOLR_Raw:
2282 case LOLR_ErrorNoDiagnostic:
2283 llvm_unreachable("unexpected literal operator lookup result");
2284 case LOLR_Error:
2285 return ExprError();
2286 }
2287 llvm_unreachable("unexpected literal operator lookup result");
2288}
2289
2290DeclRefExpr *
2291Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2292 SourceLocation Loc,
2293 const CXXScopeSpec *SS) {
2294 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2295 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2296}
2297
2298DeclRefExpr *
2299Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2300 const DeclarationNameInfo &NameInfo,
2301 const CXXScopeSpec *SS, NamedDecl *FoundD,
2302 SourceLocation TemplateKWLoc,
2303 const TemplateArgumentListInfo *TemplateArgs) {
2304 NestedNameSpecifierLoc NNS =
2305 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2306 return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2307 TemplateArgs);
2308}
2309
2310// CUDA/HIP: Check whether a captured reference variable is referencing a
2311// host variable in a device or host device lambda.
2312static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2313 VarDecl *VD) {
2314 if (!S.getLangOpts().CUDA || !VD->hasInit())
2315 return false;
2316 assert(VD->getType()->isReferenceType());
2317
2318 // Check whether the reference variable is referencing a host variable.
2319 auto *DRE = dyn_cast<DeclRefExpr>(Val: VD->getInit());
2320 if (!DRE)
2321 return false;
2322 auto *Referee = dyn_cast<VarDecl>(Val: DRE->getDecl());
2323 if (!Referee || !Referee->hasGlobalStorage() ||
2324 Referee->hasAttr<CUDADeviceAttr>())
2325 return false;
2326
2327 // Check whether the current function is a device or host device lambda.
2328 // Check whether the reference variable is a capture by getDeclContext()
2329 // since refersToEnclosingVariableOrCapture() is not ready at this point.
2330 auto *MD = dyn_cast_or_null<CXXMethodDecl>(Val: S.CurContext);
2331 if (MD && MD->getParent()->isLambda() &&
2332 MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2333 VD->getDeclContext() != MD)
2334 return true;
2335
2336 return false;
2337}
2338
2339NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2340 // A declaration named in an unevaluated operand never constitutes an odr-use.
2341 if (isUnevaluatedContext())
2342 return NOUR_Unevaluated;
2343
2344 // C++2a [basic.def.odr]p4:
2345 // A variable x whose name appears as a potentially-evaluated expression e
2346 // is odr-used by e unless [...] x is a reference that is usable in
2347 // constant expressions.
2348 // CUDA/HIP:
2349 // If a reference variable referencing a host variable is captured in a
2350 // device or host device lambda, the value of the referee must be copied
2351 // to the capture and the reference variable must be treated as odr-use
2352 // since the value of the referee is not known at compile time and must
2353 // be loaded from the captured.
2354 if (VarDecl *VD = dyn_cast<VarDecl>(Val: D)) {
2355 if (VD->getType()->isReferenceType() &&
2356 !(getLangOpts().OpenMP && OpenMP().isOpenMPCapturedDecl(D)) &&
2357 !isCapturingReferenceToHostVarInCUDADeviceLambda(S: *this, VD) &&
2358 VD->isUsableInConstantExpressions(C: Context))
2359 return NOUR_Constant;
2360 }
2361
2362 // All remaining non-variable cases constitute an odr-use. For variables, we
2363 // need to wait and see how the expression is used.
2364 return NOUR_None;
2365}
2366
2367DeclRefExpr *
2368Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2369 const DeclarationNameInfo &NameInfo,
2370 NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2371 SourceLocation TemplateKWLoc,
2372 const TemplateArgumentListInfo *TemplateArgs) {
2373 bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(Val: D) &&
2374 NeedToCaptureVariable(Var: D, Loc: NameInfo.getLoc());
2375
2376 DeclRefExpr *E = DeclRefExpr::Create(
2377 Context, QualifierLoc: NNS, TemplateKWLoc, D, RefersToEnclosingVariableOrCapture: RefersToCapturedVariable, NameInfo, T: Ty,
2378 VK, FoundD, TemplateArgs, NOUR: getNonOdrUseReasonInCurrentContext(D));
2379 MarkDeclRefReferenced(E);
2380
2381 // C++ [except.spec]p17:
2382 // An exception-specification is considered to be needed when:
2383 // - in an expression, the function is the unique lookup result or
2384 // the selected member of a set of overloaded functions.
2385 //
2386 // We delay doing this until after we've built the function reference and
2387 // marked it as used so that:
2388 // a) if the function is defaulted, we get errors from defining it before /
2389 // instead of errors from computing its exception specification, and
2390 // b) if the function is a defaulted comparison, we can use the body we
2391 // build when defining it as input to the exception specification
2392 // computation rather than computing a new body.
2393 if (const auto *FPT = Ty->getAs<FunctionProtoType>()) {
2394 if (isUnresolvedExceptionSpec(ESpecType: FPT->getExceptionSpecType())) {
2395 if (const auto *NewFPT = ResolveExceptionSpec(Loc: NameInfo.getLoc(), FPT))
2396 E->setType(Context.getQualifiedType(T: NewFPT, Qs: Ty.getQualifiers()));
2397 }
2398 }
2399
2400 if (getLangOpts().ObjCWeak && isa<VarDecl>(Val: D) &&
2401 Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2402 !Diags.isIgnored(DiagID: diag::warn_arc_repeated_use_of_weak, Loc: E->getBeginLoc()))
2403 getCurFunction()->recordUseOfWeak(E);
2404
2405 const auto *FD = dyn_cast<FieldDecl>(Val: D);
2406 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(Val: D))
2407 FD = IFD->getAnonField();
2408 if (FD) {
2409 UnusedPrivateFields.remove(X: FD);
2410 // Just in case we're building an illegal pointer-to-member.
2411 if (FD->isBitField())
2412 E->setObjectKind(OK_BitField);
2413 }
2414
2415 // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2416 // designates a bit-field.
2417 if (const auto *BD = dyn_cast<BindingDecl>(Val: D))
2418 if (const auto *BE = BD->getBinding())
2419 E->setObjectKind(BE->getObjectKind());
2420
2421 return E;
2422}
2423
2424void
2425Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2426 TemplateArgumentListInfo &Buffer,
2427 DeclarationNameInfo &NameInfo,
2428 const TemplateArgumentListInfo *&TemplateArgs) {
2429 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2430 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2431 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2432
2433 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2434 Id.TemplateId->NumArgs);
2435 translateTemplateArguments(In: TemplateArgsPtr, Out&: Buffer);
2436
2437 TemplateName TName = Id.TemplateId->Template.get();
2438 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2439 NameInfo = Context.getNameForTemplate(Name: TName, NameLoc: TNameLoc);
2440 TemplateArgs = &Buffer;
2441 } else {
2442 NameInfo = GetNameFromUnqualifiedId(Name: Id);
2443 TemplateArgs = nullptr;
2444 }
2445}
2446
2447bool Sema::DiagnoseDependentMemberLookup(const LookupResult &R) {
2448 // During a default argument instantiation the CurContext points
2449 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2450 // function parameter list, hence add an explicit check.
2451 bool isDefaultArgument =
2452 !CodeSynthesisContexts.empty() &&
2453 CodeSynthesisContexts.back().Kind ==
2454 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2455 const auto *CurMethod = dyn_cast<CXXMethodDecl>(Val: CurContext);
2456 bool isInstance = CurMethod && CurMethod->isInstance() &&
2457 R.getNamingClass() == CurMethod->getParent() &&
2458 !isDefaultArgument;
2459
2460 // There are two ways we can find a class-scope declaration during template
2461 // instantiation that we did not find in the template definition: if it is a
2462 // member of a dependent base class, or if it is declared after the point of
2463 // use in the same class. Distinguish these by comparing the class in which
2464 // the member was found to the naming class of the lookup.
2465 unsigned DiagID = diag::err_found_in_dependent_base;
2466 unsigned NoteID = diag::note_member_declared_at;
2467 if (R.getRepresentativeDecl()->getDeclContext()->Equals(DC: R.getNamingClass())) {
2468 DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2469 : diag::err_found_later_in_class;
2470 } else if (getLangOpts().MSVCCompat) {
2471 DiagID = diag::ext_found_in_dependent_base;
2472 NoteID = diag::note_dependent_member_use;
2473 }
2474
2475 if (isInstance) {
2476 // Give a code modification hint to insert 'this->'.
2477 Diag(Loc: R.getNameLoc(), DiagID)
2478 << R.getLookupName()
2479 << FixItHint::CreateInsertion(InsertionLoc: R.getNameLoc(), Code: "this->");
2480 CheckCXXThisCapture(Loc: R.getNameLoc());
2481 } else {
2482 // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2483 // they're not shadowed).
2484 Diag(Loc: R.getNameLoc(), DiagID) << R.getLookupName();
2485 }
2486
2487 for (const NamedDecl *D : R)
2488 Diag(Loc: D->getLocation(), DiagID: NoteID);
2489
2490 // Return true if we are inside a default argument instantiation
2491 // and the found name refers to an instance member function, otherwise
2492 // the caller will try to create an implicit member call and this is wrong
2493 // for default arguments.
2494 //
2495 // FIXME: Is this special case necessary? We could allow the caller to
2496 // diagnose this.
2497 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2498 Diag(Loc: R.getNameLoc(), DiagID: diag::err_member_call_without_object) << 0;
2499 return true;
2500 }
2501
2502 // Tell the callee to try to recover.
2503 return false;
2504}
2505
2506bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2507 CorrectionCandidateCallback &CCC,
2508 TemplateArgumentListInfo *ExplicitTemplateArgs,
2509 ArrayRef<Expr *> Args, DeclContext *LookupCtx) {
2510 DeclarationName Name = R.getLookupName();
2511 SourceRange NameRange = R.getLookupNameInfo().getSourceRange();
2512
2513 unsigned diagnostic = diag::err_undeclared_var_use;
2514 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2515 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2516 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2517 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2518 diagnostic = diag::err_undeclared_use;
2519 diagnostic_suggest = diag::err_undeclared_use_suggest;
2520 }
2521
2522 // If the original lookup was an unqualified lookup, fake an
2523 // unqualified lookup. This is useful when (for example) the
2524 // original lookup would not have found something because it was a
2525 // dependent name.
2526 DeclContext *DC =
2527 LookupCtx ? LookupCtx : (SS.isEmpty() ? CurContext : nullptr);
2528 while (DC) {
2529 if (isa<CXXRecordDecl>(Val: DC)) {
2530 if (ExplicitTemplateArgs) {
2531 if (LookupTemplateName(
2532 R, S, SS, ObjectType: Context.getRecordType(Decl: cast<CXXRecordDecl>(Val: DC)),
2533 /*EnteringContext*/ false, RequiredTemplate: TemplateNameIsRequired,
2534 /*RequiredTemplateKind*/ ATK: nullptr, /*AllowTypoCorrection*/ true))
2535 return true;
2536 } else {
2537 LookupQualifiedName(R, LookupCtx: DC);
2538 }
2539
2540 if (!R.empty()) {
2541 // Don't give errors about ambiguities in this lookup.
2542 R.suppressDiagnostics();
2543
2544 // If there's a best viable function among the results, only mention
2545 // that one in the notes.
2546 OverloadCandidateSet Candidates(R.getNameLoc(),
2547 OverloadCandidateSet::CSK_Normal);
2548 AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, CandidateSet&: Candidates);
2549 OverloadCandidateSet::iterator Best;
2550 if (Candidates.BestViableFunction(S&: *this, Loc: R.getNameLoc(), Best) ==
2551 OR_Success) {
2552 R.clear();
2553 R.addDecl(D: Best->FoundDecl.getDecl(), AS: Best->FoundDecl.getAccess());
2554 R.resolveKind();
2555 }
2556
2557 return DiagnoseDependentMemberLookup(R);
2558 }
2559
2560 R.clear();
2561 }
2562
2563 DC = DC->getLookupParent();
2564 }
2565
2566 // We didn't find anything, so try to correct for a typo.
2567 TypoCorrection Corrected;
2568 if (S && (Corrected =
2569 CorrectTypo(Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S, SS: &SS,
2570 CCC, Mode: CorrectTypoKind::ErrorRecovery, MemberContext: LookupCtx))) {
2571 std::string CorrectedStr(Corrected.getAsString(LO: getLangOpts()));
2572 bool DroppedSpecifier =
2573 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2574 R.setLookupName(Corrected.getCorrection());
2575
2576 bool AcceptableWithRecovery = false;
2577 bool AcceptableWithoutRecovery = false;
2578 NamedDecl *ND = Corrected.getFoundDecl();
2579 if (ND) {
2580 if (Corrected.isOverloaded()) {
2581 OverloadCandidateSet OCS(R.getNameLoc(),
2582 OverloadCandidateSet::CSK_Normal);
2583 OverloadCandidateSet::iterator Best;
2584 for (NamedDecl *CD : Corrected) {
2585 if (FunctionTemplateDecl *FTD =
2586 dyn_cast<FunctionTemplateDecl>(Val: CD))
2587 AddTemplateOverloadCandidate(
2588 FunctionTemplate: FTD, FoundDecl: DeclAccessPair::make(D: FTD, AS: AS_none), ExplicitTemplateArgs,
2589 Args, CandidateSet&: OCS);
2590 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: CD))
2591 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2592 AddOverloadCandidate(Function: FD, FoundDecl: DeclAccessPair::make(D: FD, AS: AS_none),
2593 Args, CandidateSet&: OCS);
2594 }
2595 switch (OCS.BestViableFunction(S&: *this, Loc: R.getNameLoc(), Best)) {
2596 case OR_Success:
2597 ND = Best->FoundDecl;
2598 Corrected.setCorrectionDecl(ND);
2599 break;
2600 default:
2601 // FIXME: Arbitrarily pick the first declaration for the note.
2602 Corrected.setCorrectionDecl(ND);
2603 break;
2604 }
2605 }
2606 R.addDecl(D: ND);
2607 if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2608 CXXRecordDecl *Record = nullptr;
2609 if (Corrected.getCorrectionSpecifier()) {
2610 const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2611 Record = Ty->getAsCXXRecordDecl();
2612 }
2613 if (!Record)
2614 Record = cast<CXXRecordDecl>(
2615 Val: ND->getDeclContext()->getRedeclContext());
2616 R.setNamingClass(Record);
2617 }
2618
2619 auto *UnderlyingND = ND->getUnderlyingDecl();
2620 AcceptableWithRecovery = isa<ValueDecl>(Val: UnderlyingND) ||
2621 isa<FunctionTemplateDecl>(Val: UnderlyingND);
2622 // FIXME: If we ended up with a typo for a type name or
2623 // Objective-C class name, we're in trouble because the parser
2624 // is in the wrong place to recover. Suggest the typo
2625 // correction, but don't make it a fix-it since we're not going
2626 // to recover well anyway.
2627 AcceptableWithoutRecovery = isa<TypeDecl>(Val: UnderlyingND) ||
2628 getAsTypeTemplateDecl(D: UnderlyingND) ||
2629 isa<ObjCInterfaceDecl>(Val: UnderlyingND);
2630 } else {
2631 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2632 // because we aren't able to recover.
2633 AcceptableWithoutRecovery = true;
2634 }
2635
2636 if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2637 unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2638 ? diag::note_implicit_param_decl
2639 : diag::note_previous_decl;
2640 if (SS.isEmpty())
2641 diagnoseTypo(Correction: Corrected, TypoDiag: PDiag(DiagID: diagnostic_suggest) << Name << NameRange,
2642 PrevNote: PDiag(DiagID: NoteID), ErrorRecovery: AcceptableWithRecovery);
2643 else
2644 diagnoseTypo(Correction: Corrected,
2645 TypoDiag: PDiag(DiagID: diag::err_no_member_suggest)
2646 << Name << computeDeclContext(SS, EnteringContext: false)
2647 << DroppedSpecifier << NameRange,
2648 PrevNote: PDiag(DiagID: NoteID), ErrorRecovery: AcceptableWithRecovery);
2649
2650 // Tell the callee whether to try to recover.
2651 return !AcceptableWithRecovery;
2652 }
2653 }
2654 R.clear();
2655
2656 // Emit a special diagnostic for failed member lookups.
2657 // FIXME: computing the declaration context might fail here (?)
2658 if (!SS.isEmpty()) {
2659 Diag(Loc: R.getNameLoc(), DiagID: diag::err_no_member)
2660 << Name << computeDeclContext(SS, EnteringContext: false) << NameRange;
2661 return true;
2662 }
2663
2664 // Give up, we can't recover.
2665 Diag(Loc: R.getNameLoc(), DiagID: diagnostic) << Name << NameRange;
2666 return true;
2667}
2668
2669/// In Microsoft mode, if we are inside a template class whose parent class has
2670/// dependent base classes, and we can't resolve an unqualified identifier, then
2671/// assume the identifier is a member of a dependent base class. We can only
2672/// recover successfully in static methods, instance methods, and other contexts
2673/// where 'this' is available. This doesn't precisely match MSVC's
2674/// instantiation model, but it's close enough.
2675static Expr *
2676recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2677 DeclarationNameInfo &NameInfo,
2678 SourceLocation TemplateKWLoc,
2679 const TemplateArgumentListInfo *TemplateArgs) {
2680 // Only try to recover from lookup into dependent bases in static methods or
2681 // contexts where 'this' is available.
2682 QualType ThisType = S.getCurrentThisType();
2683 const CXXRecordDecl *RD = nullptr;
2684 if (!ThisType.isNull())
2685 RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2686 else if (auto *MD = dyn_cast<CXXMethodDecl>(Val: S.CurContext))
2687 RD = MD->getParent();
2688 if (!RD || !RD->hasDefinition() || !RD->hasAnyDependentBases())
2689 return nullptr;
2690
2691 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
2692 // is available, suggest inserting 'this->' as a fixit.
2693 SourceLocation Loc = NameInfo.getLoc();
2694 auto DB = S.Diag(Loc, DiagID: diag::ext_undeclared_unqual_id_with_dependent_base);
2695 DB << NameInfo.getName() << RD;
2696
2697 if (!ThisType.isNull()) {
2698 DB << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: "this->");
2699 return CXXDependentScopeMemberExpr::Create(
2700 Ctx: Context, /*This=*/Base: nullptr, BaseType: ThisType, /*IsArrow=*/true,
2701 /*Op=*/OperatorLoc: SourceLocation(), QualifierLoc: NestedNameSpecifierLoc(), TemplateKWLoc,
2702 /*FirstQualifierFoundInScope=*/nullptr, MemberNameInfo: NameInfo, TemplateArgs);
2703 }
2704
2705 // Synthesize a fake NNS that points to the derived class. This will
2706 // perform name lookup during template instantiation.
2707 CXXScopeSpec SS;
2708 auto *NNS =
2709 NestedNameSpecifier::Create(Context, Prefix: nullptr, T: RD->getTypeForDecl());
2710 SS.MakeTrivial(Context, Qualifier: NNS, R: SourceRange(Loc, Loc));
2711 return DependentScopeDeclRefExpr::Create(
2712 Context, QualifierLoc: SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2713 TemplateArgs);
2714}
2715
2716ExprResult
2717Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2718 SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2719 bool HasTrailingLParen, bool IsAddressOfOperand,
2720 CorrectionCandidateCallback *CCC,
2721 bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2722 assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2723 "cannot be direct & operand and have a trailing lparen");
2724 if (SS.isInvalid())
2725 return ExprError();
2726
2727 TemplateArgumentListInfo TemplateArgsBuffer;
2728
2729 // Decompose the UnqualifiedId into the following data.
2730 DeclarationNameInfo NameInfo;
2731 const TemplateArgumentListInfo *TemplateArgs;
2732 DecomposeUnqualifiedId(Id, Buffer&: TemplateArgsBuffer, NameInfo, TemplateArgs);
2733
2734 DeclarationName Name = NameInfo.getName();
2735 IdentifierInfo *II = Name.getAsIdentifierInfo();
2736 SourceLocation NameLoc = NameInfo.getLoc();
2737
2738 if (II && II->isEditorPlaceholder()) {
2739 // FIXME: When typed placeholders are supported we can create a typed
2740 // placeholder expression node.
2741 return ExprError();
2742 }
2743
2744 // This specially handles arguments of attributes appertains to a type of C
2745 // struct field such that the name lookup within a struct finds the member
2746 // name, which is not the case for other contexts in C.
2747 if (isAttrContext() && !getLangOpts().CPlusPlus && S->isClassScope()) {
2748 // See if this is reference to a field of struct.
2749 LookupResult R(*this, NameInfo, LookupMemberName);
2750 // LookupName handles a name lookup from within anonymous struct.
2751 if (LookupName(R, S)) {
2752 if (auto *VD = dyn_cast<ValueDecl>(Val: R.getFoundDecl())) {
2753 QualType type = VD->getType().getNonReferenceType();
2754 // This will eventually be translated into MemberExpr upon
2755 // the use of instantiated struct fields.
2756 return BuildDeclRefExpr(D: VD, Ty: type, VK: VK_LValue, Loc: NameLoc);
2757 }
2758 }
2759 }
2760
2761 // Perform the required lookup.
2762 LookupResult R(*this, NameInfo,
2763 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2764 ? LookupObjCImplicitSelfParam
2765 : LookupOrdinaryName);
2766 if (TemplateKWLoc.isValid() || TemplateArgs) {
2767 // Lookup the template name again to correctly establish the context in
2768 // which it was found. This is really unfortunate as we already did the
2769 // lookup to determine that it was a template name in the first place. If
2770 // this becomes a performance hit, we can work harder to preserve those
2771 // results until we get here but it's likely not worth it.
2772 AssumedTemplateKind AssumedTemplate;
2773 if (LookupTemplateName(R, S, SS, /*ObjectType=*/QualType(),
2774 /*EnteringContext=*/false, RequiredTemplate: TemplateKWLoc,
2775 ATK: &AssumedTemplate))
2776 return ExprError();
2777
2778 if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2779 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2780 isAddressOfOperand: IsAddressOfOperand, TemplateArgs);
2781 } else {
2782 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2783 LookupParsedName(R, S, SS: &SS, /*ObjectType=*/QualType(),
2784 /*AllowBuiltinCreation=*/!IvarLookupFollowUp);
2785
2786 // If the result might be in a dependent base class, this is a dependent
2787 // id-expression.
2788 if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2789 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2790 isAddressOfOperand: IsAddressOfOperand, TemplateArgs);
2791
2792 // If this reference is in an Objective-C method, then we need to do
2793 // some special Objective-C lookup, too.
2794 if (IvarLookupFollowUp) {
2795 ExprResult E(ObjC().LookupInObjCMethod(LookUp&: R, S, II, AllowBuiltinCreation: true));
2796 if (E.isInvalid())
2797 return ExprError();
2798
2799 if (Expr *Ex = E.getAs<Expr>())
2800 return Ex;
2801 }
2802 }
2803
2804 if (R.isAmbiguous())
2805 return ExprError();
2806
2807 // This could be an implicitly declared function reference if the language
2808 // mode allows it as a feature.
2809 if (R.empty() && HasTrailingLParen && II &&
2810 getLangOpts().implicitFunctionsAllowed()) {
2811 NamedDecl *D = ImplicitlyDefineFunction(Loc: NameLoc, II&: *II, S);
2812 if (D) R.addDecl(D);
2813 }
2814
2815 // Determine whether this name might be a candidate for
2816 // argument-dependent lookup.
2817 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2818
2819 if (R.empty() && !ADL) {
2820 if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2821 if (Expr *E = recoverFromMSUnqualifiedLookup(S&: *this, Context, NameInfo,
2822 TemplateKWLoc, TemplateArgs))
2823 return E;
2824 }
2825
2826 // Don't diagnose an empty lookup for inline assembly.
2827 if (IsInlineAsmIdentifier)
2828 return ExprError();
2829
2830 // If this name wasn't predeclared and if this is not a function
2831 // call, diagnose the problem.
2832 DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2833 : nullptr);
2834 DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2835 assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2836 "Typo correction callback misconfigured");
2837 if (CCC) {
2838 // Make sure the callback knows what the typo being diagnosed is.
2839 CCC->setTypoName(II);
2840 if (SS.isValid())
2841 CCC->setTypoNNS(SS.getScopeRep());
2842 }
2843 // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2844 // a template name, but we happen to have always already looked up the name
2845 // before we get here if it must be a template name.
2846 if (DiagnoseEmptyLookup(S, SS, R, CCC&: CCC ? *CCC : DefaultValidator, ExplicitTemplateArgs: nullptr,
2847 Args: {}, LookupCtx: nullptr))
2848 return ExprError();
2849
2850 assert(!R.empty() &&
2851 "DiagnoseEmptyLookup returned false but added no results");
2852
2853 // If we found an Objective-C instance variable, let
2854 // LookupInObjCMethod build the appropriate expression to
2855 // reference the ivar.
2856 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2857 R.clear();
2858 ExprResult E(ObjC().LookupInObjCMethod(LookUp&: R, S, II: Ivar->getIdentifier()));
2859 // In a hopelessly buggy code, Objective-C instance variable
2860 // lookup fails and no expression will be built to reference it.
2861 if (!E.isInvalid() && !E.get())
2862 return ExprError();
2863 return E;
2864 }
2865 }
2866
2867 // This is guaranteed from this point on.
2868 assert(!R.empty() || ADL);
2869
2870 // Check whether this might be a C++ implicit instance member access.
2871 // C++ [class.mfct.non-static]p3:
2872 // When an id-expression that is not part of a class member access
2873 // syntax and not used to form a pointer to member is used in the
2874 // body of a non-static member function of class X, if name lookup
2875 // resolves the name in the id-expression to a non-static non-type
2876 // member of some class C, the id-expression is transformed into a
2877 // class member access expression using (*this) as the
2878 // postfix-expression to the left of the . operator.
2879 //
2880 // But we don't actually need to do this for '&' operands if R
2881 // resolved to a function or overloaded function set, because the
2882 // expression is ill-formed if it actually works out to be a
2883 // non-static member function:
2884 //
2885 // C++ [expr.ref]p4:
2886 // Otherwise, if E1.E2 refers to a non-static member function. . .
2887 // [t]he expression can be used only as the left-hand operand of a
2888 // member function call.
2889 //
2890 // There are other safeguards against such uses, but it's important
2891 // to get this right here so that we don't end up making a
2892 // spuriously dependent expression if we're inside a dependent
2893 // instance method.
2894 if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
2895 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs,
2896 S);
2897
2898 if (TemplateArgs || TemplateKWLoc.isValid()) {
2899
2900 // In C++1y, if this is a variable template id, then check it
2901 // in BuildTemplateIdExpr().
2902 // The single lookup result must be a variable template declaration.
2903 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2904 Id.TemplateId->Kind == TNK_Var_template) {
2905 assert(R.getAsSingle<VarTemplateDecl>() &&
2906 "There should only be one declaration found.");
2907 }
2908
2909 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL: ADL, TemplateArgs);
2910 }
2911
2912 return BuildDeclarationNameExpr(SS, R, NeedsADL: ADL);
2913}
2914
2915ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2916 CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2917 bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI) {
2918 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2919 LookupParsedName(R, /*S=*/nullptr, SS: &SS, /*ObjectType=*/QualType());
2920
2921 if (R.isAmbiguous())
2922 return ExprError();
2923
2924 if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2925 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2926 NameInfo, /*TemplateArgs=*/nullptr);
2927
2928 if (R.empty()) {
2929 // Don't diagnose problems with invalid record decl, the secondary no_member
2930 // diagnostic during template instantiation is likely bogus, e.g. if a class
2931 // is invalid because it's derived from an invalid base class, then missing
2932 // members were likely supposed to be inherited.
2933 DeclContext *DC = computeDeclContext(SS);
2934 if (const auto *CD = dyn_cast<CXXRecordDecl>(Val: DC))
2935 if (CD->isInvalidDecl())
2936 return ExprError();
2937 Diag(Loc: NameInfo.getLoc(), DiagID: diag::err_no_member)
2938 << NameInfo.getName() << DC << SS.getRange();
2939 return ExprError();
2940 }
2941
2942 if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2943 QualType Ty = Context.getTypeDeclType(Decl: TD);
2944 QualType ET = getElaboratedType(Keyword: ElaboratedTypeKeyword::None, SS, T: Ty);
2945
2946 // Diagnose a missing typename if this resolved unambiguously to a type in
2947 // a dependent context. If we can recover with a type, downgrade this to
2948 // a warning in Microsoft compatibility mode.
2949 unsigned DiagID = diag::err_typename_missing;
2950 if (RecoveryTSI && getLangOpts().MSVCCompat)
2951 DiagID = diag::ext_typename_missing;
2952 SourceLocation Loc = SS.getBeginLoc();
2953 auto D = Diag(Loc, DiagID);
2954 D << ET << SourceRange(Loc, NameInfo.getEndLoc());
2955
2956 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2957 // context.
2958 if (!RecoveryTSI)
2959 return ExprError();
2960
2961 // Only issue the fixit if we're prepared to recover.
2962 D << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: "typename ");
2963
2964 // Recover by pretending this was an elaborated type.
2965 TypeLocBuilder TLB;
2966 TLB.pushTypeSpec(T: Ty).setNameLoc(NameInfo.getLoc());
2967
2968 ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(T: ET);
2969 QTL.setElaboratedKeywordLoc(SourceLocation());
2970 QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2971
2972 *RecoveryTSI = TLB.getTypeSourceInfo(Context, T: ET);
2973
2974 return ExprEmpty();
2975 }
2976
2977 // If necessary, build an implicit class member access.
2978 if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
2979 return BuildPossibleImplicitMemberExpr(SS,
2980 /*TemplateKWLoc=*/SourceLocation(),
2981 R, /*TemplateArgs=*/nullptr,
2982 /*S=*/nullptr);
2983
2984 return BuildDeclarationNameExpr(SS, R, /*ADL=*/NeedsADL: false);
2985}
2986
2987ExprResult
2988Sema::PerformObjectMemberConversion(Expr *From,
2989 NestedNameSpecifier *Qualifier,
2990 NamedDecl *FoundDecl,
2991 NamedDecl *Member) {
2992 const auto *RD = dyn_cast<CXXRecordDecl>(Val: Member->getDeclContext());
2993 if (!RD)
2994 return From;
2995
2996 QualType DestRecordType;
2997 QualType DestType;
2998 QualType FromRecordType;
2999 QualType FromType = From->getType();
3000 bool PointerConversions = false;
3001 if (isa<FieldDecl>(Val: Member)) {
3002 DestRecordType = Context.getCanonicalType(T: Context.getTypeDeclType(Decl: RD));
3003 auto FromPtrType = FromType->getAs<PointerType>();
3004 DestRecordType = Context.getAddrSpaceQualType(
3005 T: DestRecordType, AddressSpace: FromPtrType
3006 ? FromType->getPointeeType().getAddressSpace()
3007 : FromType.getAddressSpace());
3008
3009 if (FromPtrType) {
3010 DestType = Context.getPointerType(T: DestRecordType);
3011 FromRecordType = FromPtrType->getPointeeType();
3012 PointerConversions = true;
3013 } else {
3014 DestType = DestRecordType;
3015 FromRecordType = FromType;
3016 }
3017 } else if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: Member)) {
3018 if (!Method->isImplicitObjectMemberFunction())
3019 return From;
3020
3021 DestType = Method->getThisType().getNonReferenceType();
3022 DestRecordType = Method->getFunctionObjectParameterType();
3023
3024 if (FromType->getAs<PointerType>()) {
3025 FromRecordType = FromType->getPointeeType();
3026 PointerConversions = true;
3027 } else {
3028 FromRecordType = FromType;
3029 DestType = DestRecordType;
3030 }
3031
3032 LangAS FromAS = FromRecordType.getAddressSpace();
3033 LangAS DestAS = DestRecordType.getAddressSpace();
3034 if (FromAS != DestAS) {
3035 QualType FromRecordTypeWithoutAS =
3036 Context.removeAddrSpaceQualType(T: FromRecordType);
3037 QualType FromTypeWithDestAS =
3038 Context.getAddrSpaceQualType(T: FromRecordTypeWithoutAS, AddressSpace: DestAS);
3039 if (PointerConversions)
3040 FromTypeWithDestAS = Context.getPointerType(T: FromTypeWithDestAS);
3041 From = ImpCastExprToType(E: From, Type: FromTypeWithDestAS,
3042 CK: CK_AddressSpaceConversion, VK: From->getValueKind())
3043 .get();
3044 }
3045 } else {
3046 // No conversion necessary.
3047 return From;
3048 }
3049
3050 if (DestType->isDependentType() || FromType->isDependentType())
3051 return From;
3052
3053 // If the unqualified types are the same, no conversion is necessary.
3054 if (Context.hasSameUnqualifiedType(T1: FromRecordType, T2: DestRecordType))
3055 return From;
3056
3057 SourceRange FromRange = From->getSourceRange();
3058 SourceLocation FromLoc = FromRange.getBegin();
3059
3060 ExprValueKind VK = From->getValueKind();
3061
3062 // C++ [class.member.lookup]p8:
3063 // [...] Ambiguities can often be resolved by qualifying a name with its
3064 // class name.
3065 //
3066 // If the member was a qualified name and the qualified referred to a
3067 // specific base subobject type, we'll cast to that intermediate type
3068 // first and then to the object in which the member is declared. That allows
3069 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3070 //
3071 // class Base { public: int x; };
3072 // class Derived1 : public Base { };
3073 // class Derived2 : public Base { };
3074 // class VeryDerived : public Derived1, public Derived2 { void f(); };
3075 //
3076 // void VeryDerived::f() {
3077 // x = 17; // error: ambiguous base subobjects
3078 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
3079 // }
3080 if (Qualifier && Qualifier->getAsType()) {
3081 QualType QType = QualType(Qualifier->getAsType(), 0);
3082 assert(QType->isRecordType() && "lookup done with non-record type");
3083
3084 QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3085
3086 // In C++98, the qualifier type doesn't actually have to be a base
3087 // type of the object type, in which case we just ignore it.
3088 // Otherwise build the appropriate casts.
3089 if (IsDerivedFrom(Loc: FromLoc, Derived: FromRecordType, Base: QRecordType)) {
3090 CXXCastPath BasePath;
3091 if (CheckDerivedToBaseConversion(Derived: FromRecordType, Base: QRecordType,
3092 Loc: FromLoc, Range: FromRange, BasePath: &BasePath))
3093 return ExprError();
3094
3095 if (PointerConversions)
3096 QType = Context.getPointerType(T: QType);
3097 From = ImpCastExprToType(E: From, Type: QType, CK: CK_UncheckedDerivedToBase,
3098 VK, BasePath: &BasePath).get();
3099
3100 FromType = QType;
3101 FromRecordType = QRecordType;
3102
3103 // If the qualifier type was the same as the destination type,
3104 // we're done.
3105 if (Context.hasSameUnqualifiedType(T1: FromRecordType, T2: DestRecordType))
3106 return From;
3107 }
3108 }
3109
3110 CXXCastPath BasePath;
3111 if (CheckDerivedToBaseConversion(Derived: FromRecordType, Base: DestRecordType,
3112 Loc: FromLoc, Range: FromRange, BasePath: &BasePath,
3113 /*IgnoreAccess=*/true))
3114 return ExprError();
3115
3116 // Propagate qualifiers to base subobjects as per:
3117 // C++ [basic.type.qualifier]p1.2:
3118 // A volatile object is [...] a subobject of a volatile object.
3119 Qualifiers FromTypeQuals = FromType.getQualifiers();
3120 FromTypeQuals.setAddressSpace(DestType.getAddressSpace());
3121 DestType = Context.getQualifiedType(T: DestType, Qs: FromTypeQuals);
3122
3123 return ImpCastExprToType(E: From, Type: DestType, CK: CK_UncheckedDerivedToBase, VK,
3124 BasePath: &BasePath);
3125}
3126
3127bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3128 const LookupResult &R,
3129 bool HasTrailingLParen) {
3130 // Only when used directly as the postfix-expression of a call.
3131 if (!HasTrailingLParen)
3132 return false;
3133
3134 // Never if a scope specifier was provided.
3135 if (SS.isNotEmpty())
3136 return false;
3137
3138 // Only in C++ or ObjC++.
3139 if (!getLangOpts().CPlusPlus)
3140 return false;
3141
3142 // Turn off ADL when we find certain kinds of declarations during
3143 // normal lookup:
3144 for (const NamedDecl *D : R) {
3145 // C++0x [basic.lookup.argdep]p3:
3146 // -- a declaration of a class member
3147 // Since using decls preserve this property, we check this on the
3148 // original decl.
3149 if (D->isCXXClassMember())
3150 return false;
3151
3152 // C++0x [basic.lookup.argdep]p3:
3153 // -- a block-scope function declaration that is not a
3154 // using-declaration
3155 // NOTE: we also trigger this for function templates (in fact, we
3156 // don't check the decl type at all, since all other decl types
3157 // turn off ADL anyway).
3158 if (isa<UsingShadowDecl>(Val: D))
3159 D = cast<UsingShadowDecl>(Val: D)->getTargetDecl();
3160 else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3161 return false;
3162
3163 // C++0x [basic.lookup.argdep]p3:
3164 // -- a declaration that is neither a function or a function
3165 // template
3166 // And also for builtin functions.
3167 if (const auto *FDecl = dyn_cast<FunctionDecl>(Val: D)) {
3168 // But also builtin functions.
3169 if (FDecl->getBuiltinID() && FDecl->isImplicit())
3170 return false;
3171 } else if (!isa<FunctionTemplateDecl>(Val: D))
3172 return false;
3173 }
3174
3175 return true;
3176}
3177
3178
3179/// Diagnoses obvious problems with the use of the given declaration
3180/// as an expression. This is only actually called for lookups that
3181/// were not overloaded, and it doesn't promise that the declaration
3182/// will in fact be used.
3183static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3184 bool AcceptInvalid) {
3185 if (D->isInvalidDecl() && !AcceptInvalid)
3186 return true;
3187
3188 if (isa<TypedefNameDecl>(Val: D)) {
3189 S.Diag(Loc, DiagID: diag::err_unexpected_typedef) << D->getDeclName();
3190 return true;
3191 }
3192
3193 if (isa<ObjCInterfaceDecl>(Val: D)) {
3194 S.Diag(Loc, DiagID: diag::err_unexpected_interface) << D->getDeclName();
3195 return true;
3196 }
3197
3198 if (isa<NamespaceDecl>(Val: D)) {
3199 S.Diag(Loc, DiagID: diag::err_unexpected_namespace) << D->getDeclName();
3200 return true;
3201 }
3202
3203 return false;
3204}
3205
3206// Certain multiversion types should be treated as overloaded even when there is
3207// only one result.
3208static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3209 assert(R.isSingleResult() && "Expected only a single result");
3210 const auto *FD = dyn_cast<FunctionDecl>(Val: R.getFoundDecl());
3211 return FD &&
3212 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3213}
3214
3215ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3216 LookupResult &R, bool NeedsADL,
3217 bool AcceptInvalidDecl) {
3218 // If this is a single, fully-resolved result and we don't need ADL,
3219 // just build an ordinary singleton decl ref.
3220 if (!NeedsADL && R.isSingleResult() &&
3221 !R.getAsSingle<FunctionTemplateDecl>() &&
3222 !ShouldLookupResultBeMultiVersionOverload(R))
3223 return BuildDeclarationNameExpr(SS, NameInfo: R.getLookupNameInfo(), D: R.getFoundDecl(),
3224 FoundD: R.getRepresentativeDecl(), TemplateArgs: nullptr,
3225 AcceptInvalidDecl);
3226
3227 // We only need to check the declaration if there's exactly one
3228 // result, because in the overloaded case the results can only be
3229 // functions and function templates.
3230 if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3231 CheckDeclInExpr(S&: *this, Loc: R.getNameLoc(), D: R.getFoundDecl(),
3232 AcceptInvalid: AcceptInvalidDecl))
3233 return ExprError();
3234
3235 // Otherwise, just build an unresolved lookup expression. Suppress
3236 // any lookup-related diagnostics; we'll hash these out later, when
3237 // we've picked a target.
3238 R.suppressDiagnostics();
3239
3240 UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(
3241 Context, NamingClass: R.getNamingClass(), QualifierLoc: SS.getWithLocInContext(Context),
3242 NameInfo: R.getLookupNameInfo(), RequiresADL: NeedsADL, Begin: R.begin(), End: R.end(),
3243 /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false);
3244
3245 return ULE;
3246}
3247
3248static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3249 SourceLocation loc,
3250 ValueDecl *var);
3251
3252ExprResult Sema::BuildDeclarationNameExpr(
3253 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3254 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3255 bool AcceptInvalidDecl) {
3256 assert(D && "Cannot refer to a NULL declaration");
3257 assert(!isa<FunctionTemplateDecl>(D) &&
3258 "Cannot refer unambiguously to a function template");
3259
3260 SourceLocation Loc = NameInfo.getLoc();
3261 if (CheckDeclInExpr(S&: *this, Loc, D, AcceptInvalid: AcceptInvalidDecl)) {
3262 // Recovery from invalid cases (e.g. D is an invalid Decl).
3263 // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3264 // diagnostics, as invalid decls use int as a fallback type.
3265 return CreateRecoveryExpr(Begin: NameInfo.getBeginLoc(), End: NameInfo.getEndLoc(), SubExprs: {});
3266 }
3267
3268 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(Val: D)) {
3269 // Specifically diagnose references to class templates that are missing
3270 // a template argument list.
3271 diagnoseMissingTemplateArguments(SS, /*TemplateKeyword=*/false, TD, Loc);
3272 return ExprError();
3273 }
3274
3275 // Make sure that we're referring to a value.
3276 if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(Val: D)) {
3277 Diag(Loc, DiagID: diag::err_ref_non_value) << D << SS.getRange();
3278 Diag(Loc: D->getLocation(), DiagID: diag::note_declared_at);
3279 return ExprError();
3280 }
3281
3282 // Check whether this declaration can be used. Note that we suppress
3283 // this check when we're going to perform argument-dependent lookup
3284 // on this function name, because this might not be the function
3285 // that overload resolution actually selects.
3286 if (DiagnoseUseOfDecl(D, Locs: Loc))
3287 return ExprError();
3288
3289 auto *VD = cast<ValueDecl>(Val: D);
3290
3291 // Only create DeclRefExpr's for valid Decl's.
3292 if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3293 return ExprError();
3294
3295 // Handle members of anonymous structs and unions. If we got here,
3296 // and the reference is to a class member indirect field, then this
3297 // must be the subject of a pointer-to-member expression.
3298 if (auto *IndirectField = dyn_cast<IndirectFieldDecl>(Val: VD);
3299 IndirectField && !IndirectField->isCXXClassMember())
3300 return BuildAnonymousStructUnionMemberReference(SS, nameLoc: NameInfo.getLoc(),
3301 indirectField: IndirectField);
3302
3303 QualType type = VD->getType();
3304 if (type.isNull())
3305 return ExprError();
3306 ExprValueKind valueKind = VK_PRValue;
3307
3308 // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3309 // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3310 // is expanded by some outer '...' in the context of the use.
3311 type = type.getNonPackExpansionType();
3312
3313 switch (D->getKind()) {
3314 // Ignore all the non-ValueDecl kinds.
3315#define ABSTRACT_DECL(kind)
3316#define VALUE(type, base)
3317#define DECL(type, base) case Decl::type:
3318#include "clang/AST/DeclNodes.inc"
3319 llvm_unreachable("invalid value decl kind");
3320
3321 // These shouldn't make it here.
3322 case Decl::ObjCAtDefsField:
3323 llvm_unreachable("forming non-member reference to ivar?");
3324
3325 // Enum constants are always r-values and never references.
3326 // Unresolved using declarations are dependent.
3327 case Decl::EnumConstant:
3328 case Decl::UnresolvedUsingValue:
3329 case Decl::OMPDeclareReduction:
3330 case Decl::OMPDeclareMapper:
3331 valueKind = VK_PRValue;
3332 break;
3333
3334 // Fields and indirect fields that got here must be for
3335 // pointer-to-member expressions; we just call them l-values for
3336 // internal consistency, because this subexpression doesn't really
3337 // exist in the high-level semantics.
3338 case Decl::Field:
3339 case Decl::IndirectField:
3340 case Decl::ObjCIvar:
3341 assert((getLangOpts().CPlusPlus || isAttrContext()) &&
3342 "building reference to field in C?");
3343
3344 // These can't have reference type in well-formed programs, but
3345 // for internal consistency we do this anyway.
3346 type = type.getNonReferenceType();
3347 valueKind = VK_LValue;
3348 break;
3349
3350 // Non-type template parameters are either l-values or r-values
3351 // depending on the type.
3352 case Decl::NonTypeTemplateParm: {
3353 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3354 type = reftype->getPointeeType();
3355 valueKind = VK_LValue; // even if the parameter is an r-value reference
3356 break;
3357 }
3358
3359 // [expr.prim.id.unqual]p2:
3360 // If the entity is a template parameter object for a template
3361 // parameter of type T, the type of the expression is const T.
3362 // [...] The expression is an lvalue if the entity is a [...] template
3363 // parameter object.
3364 if (type->isRecordType()) {
3365 type = type.getUnqualifiedType().withConst();
3366 valueKind = VK_LValue;
3367 break;
3368 }
3369
3370 // For non-references, we need to strip qualifiers just in case
3371 // the template parameter was declared as 'const int' or whatever.
3372 valueKind = VK_PRValue;
3373 type = type.getUnqualifiedType();
3374 break;
3375 }
3376
3377 case Decl::Var:
3378 case Decl::VarTemplateSpecialization:
3379 case Decl::VarTemplatePartialSpecialization:
3380 case Decl::Decomposition:
3381 case Decl::Binding:
3382 case Decl::OMPCapturedExpr:
3383 // In C, "extern void blah;" is valid and is an r-value.
3384 if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3385 type->isVoidType()) {
3386 valueKind = VK_PRValue;
3387 break;
3388 }
3389 [[fallthrough]];
3390
3391 case Decl::ImplicitParam:
3392 case Decl::ParmVar: {
3393 // These are always l-values.
3394 valueKind = VK_LValue;
3395 type = type.getNonReferenceType();
3396
3397 // FIXME: Does the addition of const really only apply in
3398 // potentially-evaluated contexts? Since the variable isn't actually
3399 // captured in an unevaluated context, it seems that the answer is no.
3400 if (!isUnevaluatedContext()) {
3401 QualType CapturedType = getCapturedDeclRefType(Var: cast<ValueDecl>(Val: VD), Loc);
3402 if (!CapturedType.isNull())
3403 type = CapturedType;
3404 }
3405 break;
3406 }
3407
3408 case Decl::Function: {
3409 if (unsigned BID = cast<FunctionDecl>(Val: VD)->getBuiltinID()) {
3410 if (!Context.BuiltinInfo.isDirectlyAddressable(ID: BID)) {
3411 type = Context.BuiltinFnTy;
3412 valueKind = VK_PRValue;
3413 break;
3414 }
3415 }
3416
3417 const FunctionType *fty = type->castAs<FunctionType>();
3418
3419 // If we're referring to a function with an __unknown_anytype
3420 // result type, make the entire expression __unknown_anytype.
3421 if (fty->getReturnType() == Context.UnknownAnyTy) {
3422 type = Context.UnknownAnyTy;
3423 valueKind = VK_PRValue;
3424 break;
3425 }
3426
3427 // Functions are l-values in C++.
3428 if (getLangOpts().CPlusPlus) {
3429 valueKind = VK_LValue;
3430 break;
3431 }
3432
3433 // C99 DR 316 says that, if a function type comes from a
3434 // function definition (without a prototype), that type is only
3435 // used for checking compatibility. Therefore, when referencing
3436 // the function, we pretend that we don't have the full function
3437 // type.
3438 if (!cast<FunctionDecl>(Val: VD)->hasPrototype() && isa<FunctionProtoType>(Val: fty))
3439 type = Context.getFunctionNoProtoType(ResultTy: fty->getReturnType(),
3440 Info: fty->getExtInfo());
3441
3442 // Functions are r-values in C.
3443 valueKind = VK_PRValue;
3444 break;
3445 }
3446
3447 case Decl::CXXDeductionGuide:
3448 llvm_unreachable("building reference to deduction guide");
3449
3450 case Decl::MSProperty:
3451 case Decl::MSGuid:
3452 case Decl::TemplateParamObject:
3453 // FIXME: Should MSGuidDecl and template parameter objects be subject to
3454 // capture in OpenMP, or duplicated between host and device?
3455 valueKind = VK_LValue;
3456 break;
3457
3458 case Decl::UnnamedGlobalConstant:
3459 valueKind = VK_LValue;
3460 break;
3461
3462 case Decl::CXXMethod:
3463 // If we're referring to a method with an __unknown_anytype
3464 // result type, make the entire expression __unknown_anytype.
3465 // This should only be possible with a type written directly.
3466 if (const FunctionProtoType *proto =
3467 dyn_cast<FunctionProtoType>(Val: VD->getType()))
3468 if (proto->getReturnType() == Context.UnknownAnyTy) {
3469 type = Context.UnknownAnyTy;
3470 valueKind = VK_PRValue;
3471 break;
3472 }
3473
3474 // C++ methods are l-values if static, r-values if non-static.
3475 if (cast<CXXMethodDecl>(Val: VD)->isStatic()) {
3476 valueKind = VK_LValue;
3477 break;
3478 }
3479 [[fallthrough]];
3480
3481 case Decl::CXXConversion:
3482 case Decl::CXXDestructor:
3483 case Decl::CXXConstructor:
3484 valueKind = VK_PRValue;
3485 break;
3486 }
3487
3488 auto *E =
3489 BuildDeclRefExpr(D: VD, Ty: type, VK: valueKind, NameInfo, SS: &SS, FoundD,
3490 /*FIXME: TemplateKWLoc*/ TemplateKWLoc: SourceLocation(), TemplateArgs);
3491 // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3492 // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3493 // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3494 // diagnostics).
3495 if (VD->isInvalidDecl() && E)
3496 return CreateRecoveryExpr(Begin: E->getBeginLoc(), End: E->getEndLoc(), SubExprs: {E});
3497 return E;
3498}
3499
3500static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3501 SmallString<32> &Target) {
3502 Target.resize(N: CharByteWidth * (Source.size() + 1));
3503 char *ResultPtr = &Target[0];
3504 const llvm::UTF8 *ErrorPtr;
3505 bool success =
3506 llvm::ConvertUTF8toWide(WideCharWidth: CharByteWidth, Source, ResultPtr, ErrorPtr);
3507 (void)success;
3508 assert(success);
3509 Target.resize(N: ResultPtr - &Target[0]);
3510}
3511
3512ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3513 PredefinedIdentKind IK) {
3514 Decl *currentDecl = getPredefinedExprDecl(DC: CurContext);
3515 if (!currentDecl) {
3516 Diag(Loc, DiagID: diag::ext_predef_outside_function);
3517 currentDecl = Context.getTranslationUnitDecl();
3518 }
3519
3520 QualType ResTy;
3521 StringLiteral *SL = nullptr;
3522 if (cast<DeclContext>(Val: currentDecl)->isDependentContext())
3523 ResTy = Context.DependentTy;
3524 else {
3525 // Pre-defined identifiers are of type char[x], where x is the length of
3526 // the string.
3527 bool ForceElaboratedPrinting =
3528 IK == PredefinedIdentKind::Function && getLangOpts().MSVCCompat;
3529 auto Str =
3530 PredefinedExpr::ComputeName(IK, CurrentDecl: currentDecl, ForceElaboratedPrinting);
3531 unsigned Length = Str.length();
3532
3533 llvm::APInt LengthI(32, Length + 1);
3534 if (IK == PredefinedIdentKind::LFunction ||
3535 IK == PredefinedIdentKind::LFuncSig) {
3536 ResTy =
3537 Context.adjustStringLiteralBaseType(StrLTy: Context.WideCharTy.withConst());
3538 SmallString<32> RawChars;
3539 ConvertUTF8ToWideString(CharByteWidth: Context.getTypeSizeInChars(T: ResTy).getQuantity(),
3540 Source: Str, Target&: RawChars);
3541 ResTy = Context.getConstantArrayType(EltTy: ResTy, ArySize: LengthI, SizeExpr: nullptr,
3542 ASM: ArraySizeModifier::Normal,
3543 /*IndexTypeQuals*/ 0);
3544 SL = StringLiteral::Create(Ctx: Context, Str: RawChars, Kind: StringLiteralKind::Wide,
3545 /*Pascal*/ false, Ty: ResTy, Locs: Loc);
3546 } else {
3547 ResTy = Context.adjustStringLiteralBaseType(StrLTy: Context.CharTy.withConst());
3548 ResTy = Context.getConstantArrayType(EltTy: ResTy, ArySize: LengthI, SizeExpr: nullptr,
3549 ASM: ArraySizeModifier::Normal,
3550 /*IndexTypeQuals*/ 0);
3551 SL = StringLiteral::Create(Ctx: Context, Str, Kind: StringLiteralKind::Ordinary,
3552 /*Pascal*/ false, Ty: ResTy, Locs: Loc);
3553 }
3554 }
3555
3556 return PredefinedExpr::Create(Ctx: Context, L: Loc, FNTy: ResTy, IK, IsTransparent: LangOpts.MicrosoftExt,
3557 SL);
3558}
3559
3560ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3561 return BuildPredefinedExpr(Loc, IK: getPredefinedExprKind(Kind));
3562}
3563
3564ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3565 SmallString<16> CharBuffer;
3566 bool Invalid = false;
3567 StringRef ThisTok = PP.getSpelling(Tok, Buffer&: CharBuffer, Invalid: &Invalid);
3568 if (Invalid)
3569 return ExprError();
3570
3571 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3572 PP, Tok.getKind());
3573 if (Literal.hadError())
3574 return ExprError();
3575
3576 QualType Ty;
3577 if (Literal.isWide())
3578 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3579 else if (Literal.isUTF8() && getLangOpts().C23)
3580 Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C23
3581 else if (Literal.isUTF8() && getLangOpts().Char8)
3582 Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3583 else if (Literal.isUTF16())
3584 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3585 else if (Literal.isUTF32())
3586 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3587 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3588 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
3589 else
3590 Ty = Context.CharTy; // 'x' -> char in C++;
3591 // u8'x' -> char in C11-C17 and in C++ without char8_t.
3592
3593 CharacterLiteralKind Kind = CharacterLiteralKind::Ascii;
3594 if (Literal.isWide())
3595 Kind = CharacterLiteralKind::Wide;
3596 else if (Literal.isUTF16())
3597 Kind = CharacterLiteralKind::UTF16;
3598 else if (Literal.isUTF32())
3599 Kind = CharacterLiteralKind::UTF32;
3600 else if (Literal.isUTF8())
3601 Kind = CharacterLiteralKind::UTF8;
3602
3603 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3604 Tok.getLocation());
3605
3606 if (Literal.getUDSuffix().empty())
3607 return Lit;
3608
3609 // We're building a user-defined literal.
3610 IdentifierInfo *UDSuffix = &Context.Idents.get(Name: Literal.getUDSuffix());
3611 SourceLocation UDSuffixLoc =
3612 getUDSuffixLoc(S&: *this, TokLoc: Tok.getLocation(), Offset: Literal.getUDSuffixOffset());
3613
3614 // Make sure we're allowed user-defined literals here.
3615 if (!UDLScope)
3616 return ExprError(Diag(Loc: UDSuffixLoc, DiagID: diag::err_invalid_character_udl));
3617
3618 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3619 // operator "" X (ch)
3620 return BuildCookedLiteralOperatorCall(S&: *this, Scope: UDLScope, UDSuffix, UDSuffixLoc,
3621 Args: Lit, LitEndLoc: Tok.getLocation());
3622}
3623
3624ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, int64_t Val) {
3625 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3626 return IntegerLiteral::Create(C: Context,
3627 V: llvm::APInt(IntSize, Val, /*isSigned=*/true),
3628 type: Context.IntTy, l: Loc);
3629}
3630
3631static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3632 QualType Ty, SourceLocation Loc) {
3633 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(T: Ty);
3634
3635 using llvm::APFloat;
3636 APFloat Val(Format);
3637
3638 llvm::RoundingMode RM = S.CurFPFeatures.getRoundingMode();
3639 if (RM == llvm::RoundingMode::Dynamic)
3640 RM = llvm::RoundingMode::NearestTiesToEven;
3641 APFloat::opStatus result = Literal.GetFloatValue(Result&: Val, RM);
3642
3643 // Overflow is always an error, but underflow is only an error if
3644 // we underflowed to zero (APFloat reports denormals as underflow).
3645 if ((result & APFloat::opOverflow) ||
3646 ((result & APFloat::opUnderflow) && Val.isZero())) {
3647 unsigned diagnostic;
3648 SmallString<20> buffer;
3649 if (result & APFloat::opOverflow) {
3650 diagnostic = diag::warn_float_overflow;
3651 APFloat::getLargest(Sem: Format).toString(Str&: buffer);
3652 } else {
3653 diagnostic = diag::warn_float_underflow;
3654 APFloat::getSmallest(Sem: Format).toString(Str&: buffer);
3655 }
3656
3657 S.Diag(Loc, DiagID: diagnostic) << Ty << buffer.str();
3658 }
3659
3660 bool isExact = (result == APFloat::opOK);
3661 return FloatingLiteral::Create(C: S.Context, V: Val, isexact: isExact, Type: Ty, L: Loc);
3662}
3663
3664bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc, bool AllowZero) {
3665 assert(E && "Invalid expression");
3666
3667 if (E->isValueDependent())
3668 return false;
3669
3670 QualType QT = E->getType();
3671 if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3672 Diag(Loc: E->getExprLoc(), DiagID: diag::err_pragma_loop_invalid_argument_type) << QT;
3673 return true;
3674 }
3675
3676 llvm::APSInt ValueAPS;
3677 ExprResult R = VerifyIntegerConstantExpression(E, Result: &ValueAPS);
3678
3679 if (R.isInvalid())
3680 return true;
3681
3682 // GCC allows the value of unroll count to be 0.
3683 // https://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html says
3684 // "The values of 0 and 1 block any unrolling of the loop."
3685 // The values doesn't have to be strictly positive in '#pragma GCC unroll' and
3686 // '#pragma unroll' cases.
3687 bool ValueIsPositive =
3688 AllowZero ? ValueAPS.isNonNegative() : ValueAPS.isStrictlyPositive();
3689 if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3690 Diag(Loc: E->getExprLoc(), DiagID: diag::err_requires_positive_value)
3691 << toString(I: ValueAPS, Radix: 10) << ValueIsPositive;
3692 return true;
3693 }
3694
3695 return false;
3696}
3697
3698ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3699 // Fast path for a single digit (which is quite common). A single digit
3700 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3701 if (Tok.getLength() == 1 || Tok.getKind() == tok::binary_data) {
3702 const uint8_t Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3703 return ActOnIntegerConstant(Loc: Tok.getLocation(), Val);
3704 }
3705
3706 SmallString<128> SpellingBuffer;
3707 // NumericLiteralParser wants to overread by one character. Add padding to
3708 // the buffer in case the token is copied to the buffer. If getSpelling()
3709 // returns a StringRef to the memory buffer, it should have a null char at
3710 // the EOF, so it is also safe.
3711 SpellingBuffer.resize(N: Tok.getLength() + 1);
3712
3713 // Get the spelling of the token, which eliminates trigraphs, etc.
3714 bool Invalid = false;
3715 StringRef TokSpelling = PP.getSpelling(Tok, Buffer&: SpellingBuffer, Invalid: &Invalid);
3716 if (Invalid)
3717 return ExprError();
3718
3719 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3720 PP.getSourceManager(), PP.getLangOpts(),
3721 PP.getTargetInfo(), PP.getDiagnostics());
3722 if (Literal.hadError)
3723 return ExprError();
3724
3725 if (Literal.hasUDSuffix()) {
3726 // We're building a user-defined literal.
3727 const IdentifierInfo *UDSuffix = &Context.Idents.get(Name: Literal.getUDSuffix());
3728 SourceLocation UDSuffixLoc =
3729 getUDSuffixLoc(S&: *this, TokLoc: Tok.getLocation(), Offset: Literal.getUDSuffixOffset());
3730
3731 // Make sure we're allowed user-defined literals here.
3732 if (!UDLScope)
3733 return ExprError(Diag(Loc: UDSuffixLoc, DiagID: diag::err_invalid_numeric_udl));
3734
3735 QualType CookedTy;
3736 if (Literal.isFloatingLiteral()) {
3737 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3738 // long double, the literal is treated as a call of the form
3739 // operator "" X (f L)
3740 CookedTy = Context.LongDoubleTy;
3741 } else {
3742 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3743 // unsigned long long, the literal is treated as a call of the form
3744 // operator "" X (n ULL)
3745 CookedTy = Context.UnsignedLongLongTy;
3746 }
3747
3748 DeclarationName OpName =
3749 Context.DeclarationNames.getCXXLiteralOperatorName(II: UDSuffix);
3750 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3751 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3752
3753 SourceLocation TokLoc = Tok.getLocation();
3754
3755 // Perform literal operator lookup to determine if we're building a raw
3756 // literal or a cooked one.
3757 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3758 switch (LookupLiteralOperator(S: UDLScope, R, ArgTys: CookedTy,
3759 /*AllowRaw*/ true, /*AllowTemplate*/ true,
3760 /*AllowStringTemplatePack*/ AllowStringTemplate: false,
3761 /*DiagnoseMissing*/ !Literal.isImaginary)) {
3762 case LOLR_ErrorNoDiagnostic:
3763 // Lookup failure for imaginary constants isn't fatal, there's still the
3764 // GNU extension producing _Complex types.
3765 break;
3766 case LOLR_Error:
3767 return ExprError();
3768 case LOLR_Cooked: {
3769 Expr *Lit;
3770 if (Literal.isFloatingLiteral()) {
3771 Lit = BuildFloatingLiteral(S&: *this, Literal, Ty: CookedTy, Loc: Tok.getLocation());
3772 } else {
3773 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3774 if (Literal.GetIntegerValue(Val&: ResultVal))
3775 Diag(Loc: Tok.getLocation(), DiagID: diag::err_integer_literal_too_large)
3776 << /* Unsigned */ 1;
3777 Lit = IntegerLiteral::Create(C: Context, V: ResultVal, type: CookedTy,
3778 l: Tok.getLocation());
3779 }
3780 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args: Lit, LitEndLoc: TokLoc);
3781 }
3782
3783 case LOLR_Raw: {
3784 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3785 // literal is treated as a call of the form
3786 // operator "" X ("n")
3787 unsigned Length = Literal.getUDSuffixOffset();
3788 QualType StrTy = Context.getConstantArrayType(
3789 EltTy: Context.adjustStringLiteralBaseType(StrLTy: Context.CharTy.withConst()),
3790 ArySize: llvm::APInt(32, Length + 1), SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
3791 Expr *Lit =
3792 StringLiteral::Create(Ctx: Context, Str: StringRef(TokSpelling.data(), Length),
3793 Kind: StringLiteralKind::Ordinary,
3794 /*Pascal*/ false, Ty: StrTy, Locs: TokLoc);
3795 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args: Lit, LitEndLoc: TokLoc);
3796 }
3797
3798 case LOLR_Template: {
3799 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3800 // template), L is treated as a call fo the form
3801 // operator "" X <'c1', 'c2', ... 'ck'>()
3802 // where n is the source character sequence c1 c2 ... ck.
3803 TemplateArgumentListInfo ExplicitArgs;
3804 unsigned CharBits = Context.getIntWidth(T: Context.CharTy);
3805 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3806 llvm::APSInt Value(CharBits, CharIsUnsigned);
3807 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3808 Value = TokSpelling[I];
3809 TemplateArgument Arg(Context, Value, Context.CharTy);
3810 TemplateArgumentLocInfo ArgInfo;
3811 ExplicitArgs.addArgument(Loc: TemplateArgumentLoc(Arg, ArgInfo));
3812 }
3813 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args: {}, LitEndLoc: TokLoc, ExplicitTemplateArgs: &ExplicitArgs);
3814 }
3815 case LOLR_StringTemplatePack:
3816 llvm_unreachable("unexpected literal operator lookup result");
3817 }
3818 }
3819
3820 Expr *Res;
3821
3822 if (Literal.isFixedPointLiteral()) {
3823 QualType Ty;
3824
3825 if (Literal.isAccum) {
3826 if (Literal.isHalf) {
3827 Ty = Context.ShortAccumTy;
3828 } else if (Literal.isLong) {
3829 Ty = Context.LongAccumTy;
3830 } else {
3831 Ty = Context.AccumTy;
3832 }
3833 } else if (Literal.isFract) {
3834 if (Literal.isHalf) {
3835 Ty = Context.ShortFractTy;
3836 } else if (Literal.isLong) {
3837 Ty = Context.LongFractTy;
3838 } else {
3839 Ty = Context.FractTy;
3840 }
3841 }
3842
3843 if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(T: Ty);
3844
3845 bool isSigned = !Literal.isUnsigned;
3846 unsigned scale = Context.getFixedPointScale(Ty);
3847 unsigned bit_width = Context.getTypeInfo(T: Ty).Width;
3848
3849 llvm::APInt Val(bit_width, 0, isSigned);
3850 bool Overflowed = Literal.GetFixedPointValue(StoreVal&: Val, Scale: scale);
3851 bool ValIsZero = Val.isZero() && !Overflowed;
3852
3853 auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3854 if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3855 // Clause 6.4.4 - The value of a constant shall be in the range of
3856 // representable values for its type, with exception for constants of a
3857 // fract type with a value of exactly 1; such a constant shall denote
3858 // the maximal value for the type.
3859 --Val;
3860 else if (Val.ugt(RHS: MaxVal) || Overflowed)
3861 Diag(Loc: Tok.getLocation(), DiagID: diag::err_too_large_for_fixed_point);
3862
3863 Res = FixedPointLiteral::CreateFromRawInt(C: Context, V: Val, type: Ty,
3864 l: Tok.getLocation(), Scale: scale);
3865 } else if (Literal.isFloatingLiteral()) {
3866 QualType Ty;
3867 if (Literal.isHalf){
3868 if (getLangOpts().HLSL ||
3869 getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16", LO: getLangOpts()))
3870 Ty = Context.HalfTy;
3871 else {
3872 Diag(Loc: Tok.getLocation(), DiagID: diag::err_half_const_requires_fp16);
3873 return ExprError();
3874 }
3875 } else if (Literal.isFloat)
3876 Ty = Context.FloatTy;
3877 else if (Literal.isLong)
3878 Ty = !getLangOpts().HLSL ? Context.LongDoubleTy : Context.DoubleTy;
3879 else if (Literal.isFloat16)
3880 Ty = Context.Float16Ty;
3881 else if (Literal.isFloat128)
3882 Ty = Context.Float128Ty;
3883 else if (getLangOpts().HLSL)
3884 Ty = Context.FloatTy;
3885 else
3886 Ty = Context.DoubleTy;
3887
3888 Res = BuildFloatingLiteral(S&: *this, Literal, Ty, Loc: Tok.getLocation());
3889
3890 if (Ty == Context.DoubleTy) {
3891 if (getLangOpts().SinglePrecisionConstants) {
3892 if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3893 Res = ImpCastExprToType(E: Res, Type: Context.FloatTy, CK: CK_FloatingCast).get();
3894 }
3895 } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3896 Ext: "cl_khr_fp64", LO: getLangOpts())) {
3897 // Impose single-precision float type when cl_khr_fp64 is not enabled.
3898 Diag(Loc: Tok.getLocation(), DiagID: diag::warn_double_const_requires_fp64)
3899 << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
3900 Res = ImpCastExprToType(E: Res, Type: Context.FloatTy, CK: CK_FloatingCast).get();
3901 }
3902 }
3903 } else if (!Literal.isIntegerLiteral()) {
3904 return ExprError();
3905 } else {
3906 QualType Ty;
3907
3908 // 'z/uz' literals are a C++23 feature.
3909 if (Literal.isSizeT)
3910 Diag(Loc: Tok.getLocation(), DiagID: getLangOpts().CPlusPlus
3911 ? getLangOpts().CPlusPlus23
3912 ? diag::warn_cxx20_compat_size_t_suffix
3913 : diag::ext_cxx23_size_t_suffix
3914 : diag::err_cxx23_size_t_suffix);
3915
3916 // 'wb/uwb' literals are a C23 feature. We support _BitInt as a type in C++,
3917 // but we do not currently support the suffix in C++ mode because it's not
3918 // entirely clear whether WG21 will prefer this suffix to return a library
3919 // type such as std::bit_int instead of returning a _BitInt. '__wb/__uwb'
3920 // literals are a C++ extension.
3921 if (Literal.isBitInt)
3922 PP.Diag(Loc: Tok.getLocation(),
3923 DiagID: getLangOpts().CPlusPlus ? diag::ext_cxx_bitint_suffix
3924 : getLangOpts().C23 ? diag::warn_c23_compat_bitint_suffix
3925 : diag::ext_c23_bitint_suffix);
3926
3927 // Get the value in the widest-possible width. What is "widest" depends on
3928 // whether the literal is a bit-precise integer or not. For a bit-precise
3929 // integer type, try to scan the source to determine how many bits are
3930 // needed to represent the value. This may seem a bit expensive, but trying
3931 // to get the integer value from an overly-wide APInt is *extremely*
3932 // expensive, so the naive approach of assuming
3933 // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
3934 unsigned BitsNeeded = Context.getTargetInfo().getIntMaxTWidth();
3935 if (Literal.isBitInt)
3936 BitsNeeded = llvm::APInt::getSufficientBitsNeeded(
3937 Str: Literal.getLiteralDigits(), Radix: Literal.getRadix());
3938 if (Literal.MicrosoftInteger) {
3939 if (Literal.MicrosoftInteger == 128 &&
3940 !Context.getTargetInfo().hasInt128Type())
3941 PP.Diag(Loc: Tok.getLocation(), DiagID: diag::err_integer_literal_too_large)
3942 << Literal.isUnsigned;
3943 BitsNeeded = Literal.MicrosoftInteger;
3944 }
3945
3946 llvm::APInt ResultVal(BitsNeeded, 0);
3947
3948 if (Literal.GetIntegerValue(Val&: ResultVal)) {
3949 // If this value didn't fit into uintmax_t, error and force to ull.
3950 Diag(Loc: Tok.getLocation(), DiagID: diag::err_integer_literal_too_large)
3951 << /* Unsigned */ 1;
3952 Ty = Context.UnsignedLongLongTy;
3953 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3954 "long long is not intmax_t?");
3955 } else {
3956 // If this value fits into a ULL, try to figure out what else it fits into
3957 // according to the rules of C99 6.4.4.1p5.
3958
3959 // Octal, Hexadecimal, and integers with a U suffix are allowed to
3960 // be an unsigned int.
3961 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3962
3963 // HLSL doesn't really have `long` or `long long`. We support the `ll`
3964 // suffix for portability of code with C++, but both `l` and `ll` are
3965 // 64-bit integer types, and we want the type of `1l` and `1ll` to be the
3966 // same.
3967 if (getLangOpts().HLSL && !Literal.isLong && Literal.isLongLong) {
3968 Literal.isLong = true;
3969 Literal.isLongLong = false;
3970 }
3971
3972 // Check from smallest to largest, picking the smallest type we can.
3973 unsigned Width = 0;
3974
3975 // Microsoft specific integer suffixes are explicitly sized.
3976 if (Literal.MicrosoftInteger) {
3977 if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3978 Width = 8;
3979 Ty = Context.CharTy;
3980 } else {
3981 Width = Literal.MicrosoftInteger;
3982 Ty = Context.getIntTypeForBitwidth(DestWidth: Width,
3983 /*Signed=*/!Literal.isUnsigned);
3984 }
3985 }
3986
3987 // Bit-precise integer literals are automagically-sized based on the
3988 // width required by the literal.
3989 if (Literal.isBitInt) {
3990 // The signed version has one more bit for the sign value. There are no
3991 // zero-width bit-precise integers, even if the literal value is 0.
3992 Width = std::max(a: ResultVal.getActiveBits(), b: 1u) +
3993 (Literal.isUnsigned ? 0u : 1u);
3994
3995 // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
3996 // and reset the type to the largest supported width.
3997 unsigned int MaxBitIntWidth =
3998 Context.getTargetInfo().getMaxBitIntWidth();
3999 if (Width > MaxBitIntWidth) {
4000 Diag(Loc: Tok.getLocation(), DiagID: diag::err_integer_literal_too_large)
4001 << Literal.isUnsigned;
4002 Width = MaxBitIntWidth;
4003 }
4004
4005 // Reset the result value to the smaller APInt and select the correct
4006 // type to be used. Note, we zext even for signed values because the
4007 // literal itself is always an unsigned value (a preceeding - is a
4008 // unary operator, not part of the literal).
4009 ResultVal = ResultVal.zextOrTrunc(width: Width);
4010 Ty = Context.getBitIntType(Unsigned: Literal.isUnsigned, NumBits: Width);
4011 }
4012
4013 // Check C++23 size_t literals.
4014 if (Literal.isSizeT) {
4015 assert(!Literal.MicrosoftInteger &&
4016 "size_t literals can't be Microsoft literals");
4017 unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
4018 T: Context.getTargetInfo().getSizeType());
4019
4020 // Does it fit in size_t?
4021 if (ResultVal.isIntN(N: SizeTSize)) {
4022 // Does it fit in ssize_t?
4023 if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
4024 Ty = Context.getSignedSizeType();
4025 else if (AllowUnsigned)
4026 Ty = Context.getSizeType();
4027 Width = SizeTSize;
4028 }
4029 }
4030
4031 if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
4032 !Literal.isSizeT) {
4033 // Are int/unsigned possibilities?
4034 unsigned IntSize = Context.getTargetInfo().getIntWidth();
4035
4036 // Does it fit in a unsigned int?
4037 if (ResultVal.isIntN(N: IntSize)) {
4038 // Does it fit in a signed int?
4039 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
4040 Ty = Context.IntTy;
4041 else if (AllowUnsigned)
4042 Ty = Context.UnsignedIntTy;
4043 Width = IntSize;
4044 }
4045 }
4046
4047 // Are long/unsigned long possibilities?
4048 if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4049 unsigned LongSize = Context.getTargetInfo().getLongWidth();
4050
4051 // Does it fit in a unsigned long?
4052 if (ResultVal.isIntN(N: LongSize)) {
4053 // Does it fit in a signed long?
4054 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4055 Ty = Context.LongTy;
4056 else if (AllowUnsigned)
4057 Ty = Context.UnsignedLongTy;
4058 // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4059 // is compatible.
4060 else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4061 const unsigned LongLongSize =
4062 Context.getTargetInfo().getLongLongWidth();
4063 Diag(Loc: Tok.getLocation(),
4064 DiagID: getLangOpts().CPlusPlus
4065 ? Literal.isLong
4066 ? diag::warn_old_implicitly_unsigned_long_cxx
4067 : /*C++98 UB*/ diag::
4068 ext_old_implicitly_unsigned_long_cxx
4069 : diag::warn_old_implicitly_unsigned_long)
4070 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4071 : /*will be ill-formed*/ 1);
4072 Ty = Context.UnsignedLongTy;
4073 }
4074 Width = LongSize;
4075 }
4076 }
4077
4078 // Check long long if needed.
4079 if (Ty.isNull() && !Literal.isSizeT) {
4080 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4081
4082 // Does it fit in a unsigned long long?
4083 if (ResultVal.isIntN(N: LongLongSize)) {
4084 // Does it fit in a signed long long?
4085 // To be compatible with MSVC, hex integer literals ending with the
4086 // LL or i64 suffix are always signed in Microsoft mode.
4087 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4088 (getLangOpts().MSVCCompat && Literal.isLongLong)))
4089 Ty = Context.LongLongTy;
4090 else if (AllowUnsigned)
4091 Ty = Context.UnsignedLongLongTy;
4092 Width = LongLongSize;
4093
4094 // 'long long' is a C99 or C++11 feature, whether the literal
4095 // explicitly specified 'long long' or we needed the extra width.
4096 if (getLangOpts().CPlusPlus)
4097 Diag(Loc: Tok.getLocation(), DiagID: getLangOpts().CPlusPlus11
4098 ? diag::warn_cxx98_compat_longlong
4099 : diag::ext_cxx11_longlong);
4100 else if (!getLangOpts().C99)
4101 Diag(Loc: Tok.getLocation(), DiagID: diag::ext_c99_longlong);
4102 }
4103 }
4104
4105 // If we still couldn't decide a type, we either have 'size_t' literal
4106 // that is out of range, or a decimal literal that does not fit in a
4107 // signed long long and has no U suffix.
4108 if (Ty.isNull()) {
4109 if (Literal.isSizeT)
4110 Diag(Loc: Tok.getLocation(), DiagID: diag::err_size_t_literal_too_large)
4111 << Literal.isUnsigned;
4112 else
4113 Diag(Loc: Tok.getLocation(),
4114 DiagID: diag::ext_integer_literal_too_large_for_signed);
4115 Ty = Context.UnsignedLongLongTy;
4116 Width = Context.getTargetInfo().getLongLongWidth();
4117 }
4118
4119 if (ResultVal.getBitWidth() != Width)
4120 ResultVal = ResultVal.trunc(width: Width);
4121 }
4122 Res = IntegerLiteral::Create(C: Context, V: ResultVal, type: Ty, l: Tok.getLocation());
4123 }
4124
4125 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4126 if (Literal.isImaginary) {
4127 Res = new (Context) ImaginaryLiteral(Res,
4128 Context.getComplexType(T: Res->getType()));
4129
4130 // In C++, this is a GNU extension. In C, it's a C2y extension.
4131 unsigned DiagId;
4132 if (getLangOpts().CPlusPlus)
4133 DiagId = diag::ext_gnu_imaginary_constant;
4134 else if (getLangOpts().C2y)
4135 DiagId = diag::warn_c23_compat_imaginary_constant;
4136 else
4137 DiagId = diag::ext_c2y_imaginary_constant;
4138 Diag(Loc: Tok.getLocation(), DiagID: DiagId);
4139 }
4140 return Res;
4141}
4142
4143ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4144 assert(E && "ActOnParenExpr() missing expr");
4145 QualType ExprTy = E->getType();
4146 if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4147 !E->isLValue() && ExprTy->hasFloatingRepresentation())
4148 return BuildBuiltinCallExpr(Loc: R, Id: Builtin::BI__arithmetic_fence, CallArgs: E);
4149 return new (Context) ParenExpr(L, R, E);
4150}
4151
4152static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4153 SourceLocation Loc,
4154 SourceRange ArgRange) {
4155 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4156 // scalar or vector data type argument..."
4157 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4158 // type (C99 6.2.5p18) or void.
4159 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4160 S.Diag(Loc, DiagID: diag::err_vecstep_non_scalar_vector_type)
4161 << T << ArgRange;
4162 return true;
4163 }
4164
4165 assert((T->isVoidType() || !T->isIncompleteType()) &&
4166 "Scalar types should always be complete");
4167 return false;
4168}
4169
4170static bool CheckVectorElementsTraitOperandType(Sema &S, QualType T,
4171 SourceLocation Loc,
4172 SourceRange ArgRange) {
4173 // builtin_vectorelements supports both fixed-sized and scalable vectors.
4174 if (!T->isVectorType() && !T->isSizelessVectorType())
4175 return S.Diag(Loc, DiagID: diag::err_builtin_non_vector_type)
4176 << ""
4177 << "__builtin_vectorelements" << T << ArgRange;
4178
4179 return false;
4180}
4181
4182static bool checkPtrAuthTypeDiscriminatorOperandType(Sema &S, QualType T,
4183 SourceLocation Loc,
4184 SourceRange ArgRange) {
4185 if (S.checkPointerAuthEnabled(Loc, Range: ArgRange))
4186 return true;
4187
4188 if (!T->isFunctionType() && !T->isFunctionPointerType() &&
4189 !T->isFunctionReferenceType() && !T->isMemberFunctionPointerType()) {
4190 S.Diag(Loc, DiagID: diag::err_ptrauth_type_disc_undiscriminated) << T << ArgRange;
4191 return true;
4192 }
4193
4194 return false;
4195}
4196
4197static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4198 SourceLocation Loc,
4199 SourceRange ArgRange,
4200 UnaryExprOrTypeTrait TraitKind) {
4201 // Invalid types must be hard errors for SFINAE in C++.
4202 if (S.LangOpts.CPlusPlus)
4203 return true;
4204
4205 // C99 6.5.3.4p1:
4206 if (T->isFunctionType() &&
4207 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4208 TraitKind == UETT_PreferredAlignOf)) {
4209 // sizeof(function)/alignof(function) is allowed as an extension.
4210 S.Diag(Loc, DiagID: diag::ext_sizeof_alignof_function_type)
4211 << getTraitSpelling(T: TraitKind) << ArgRange;
4212 return false;
4213 }
4214
4215 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4216 // this is an error (OpenCL v1.1 s6.3.k)
4217 if (T->isVoidType()) {
4218 unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4219 : diag::ext_sizeof_alignof_void_type;
4220 S.Diag(Loc, DiagID) << getTraitSpelling(T: TraitKind) << ArgRange;
4221 return false;
4222 }
4223
4224 return true;
4225}
4226
4227static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4228 SourceLocation Loc,
4229 SourceRange ArgRange,
4230 UnaryExprOrTypeTrait TraitKind) {
4231 // Reject sizeof(interface) and sizeof(interface<proto>) if the
4232 // runtime doesn't allow it.
4233 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4234 S.Diag(Loc, DiagID: diag::err_sizeof_nonfragile_interface)
4235 << T << (TraitKind == UETT_SizeOf)
4236 << ArgRange;
4237 return true;
4238 }
4239
4240 return false;
4241}
4242
4243/// Check whether E is a pointer from a decayed array type (the decayed
4244/// pointer type is equal to T) and emit a warning if it is.
4245static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4246 const Expr *E) {
4247 // Don't warn if the operation changed the type.
4248 if (T != E->getType())
4249 return;
4250
4251 // Now look for array decays.
4252 const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E);
4253 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4254 return;
4255
4256 S.Diag(Loc, DiagID: diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4257 << ICE->getType()
4258 << ICE->getSubExpr()->getType();
4259}
4260
4261bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4262 UnaryExprOrTypeTrait ExprKind) {
4263 QualType ExprTy = E->getType();
4264 assert(!ExprTy->isReferenceType());
4265
4266 bool IsUnevaluatedOperand =
4267 (ExprKind == UETT_SizeOf || ExprKind == UETT_DataSizeOf ||
4268 ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4269 ExprKind == UETT_VecStep || ExprKind == UETT_CountOf);
4270 if (IsUnevaluatedOperand) {
4271 ExprResult Result = CheckUnevaluatedOperand(E);
4272 if (Result.isInvalid())
4273 return true;
4274 E = Result.get();
4275 }
4276
4277 // The operand for sizeof and alignof is in an unevaluated expression context,
4278 // so side effects could result in unintended consequences.
4279 // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4280 // used to build SFINAE gadgets.
4281 // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4282 if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4283 !E->isInstantiationDependent() &&
4284 !E->getType()->isVariableArrayType() &&
4285 E->HasSideEffects(Ctx: Context, IncludePossibleEffects: false))
4286 Diag(Loc: E->getExprLoc(), DiagID: diag::warn_side_effects_unevaluated_context);
4287
4288 if (ExprKind == UETT_VecStep)
4289 return CheckVecStepTraitOperandType(S&: *this, T: ExprTy, Loc: E->getExprLoc(),
4290 ArgRange: E->getSourceRange());
4291
4292 if (ExprKind == UETT_VectorElements)
4293 return CheckVectorElementsTraitOperandType(S&: *this, T: ExprTy, Loc: E->getExprLoc(),
4294 ArgRange: E->getSourceRange());
4295
4296 // Explicitly list some types as extensions.
4297 if (!CheckExtensionTraitOperandType(S&: *this, T: ExprTy, Loc: E->getExprLoc(),
4298 ArgRange: E->getSourceRange(), TraitKind: ExprKind))
4299 return false;
4300
4301 // WebAssembly tables are always illegal operands to unary expressions and
4302 // type traits.
4303 if (Context.getTargetInfo().getTriple().isWasm() &&
4304 E->getType()->isWebAssemblyTableType()) {
4305 Diag(Loc: E->getExprLoc(), DiagID: diag::err_wasm_table_invalid_uett_operand)
4306 << getTraitSpelling(T: ExprKind);
4307 return true;
4308 }
4309
4310 // 'alignof' applied to an expression only requires the base element type of
4311 // the expression to be complete. 'sizeof' requires the expression's type to
4312 // be complete (and will attempt to complete it if it's an array of unknown
4313 // bound).
4314 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4315 if (RequireCompleteSizedType(
4316 Loc: E->getExprLoc(), T: Context.getBaseElementType(QT: E->getType()),
4317 DiagID: diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4318 Args: getTraitSpelling(T: ExprKind), Args: E->getSourceRange()))
4319 return true;
4320 } else {
4321 if (RequireCompleteSizedExprType(
4322 E, DiagID: diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4323 Args: getTraitSpelling(T: ExprKind), Args: E->getSourceRange()))
4324 return true;
4325 }
4326
4327 // Completing the expression's type may have changed it.
4328 ExprTy = E->getType();
4329 assert(!ExprTy->isReferenceType());
4330
4331 if (ExprTy->isFunctionType()) {
4332 Diag(Loc: E->getExprLoc(), DiagID: diag::err_sizeof_alignof_function_type)
4333 << getTraitSpelling(T: ExprKind) << E->getSourceRange();
4334 return true;
4335 }
4336
4337 if (CheckObjCTraitOperandConstraints(S&: *this, T: ExprTy, Loc: E->getExprLoc(),
4338 ArgRange: E->getSourceRange(), TraitKind: ExprKind))
4339 return true;
4340
4341 if (ExprKind == UETT_CountOf) {
4342 // The type has to be an array type. We already checked for incomplete
4343 // types above.
4344 QualType ExprType = E->IgnoreParens()->getType();
4345 if (!ExprType->isArrayType()) {
4346 Diag(Loc: E->getExprLoc(), DiagID: diag::err_countof_arg_not_array_type) << ExprType;
4347 return true;
4348 }
4349 // FIXME: warn on _Countof on an array parameter. Not warning on it
4350 // currently because there are papers in WG14 about array types which do
4351 // not decay that could impact this behavior, so we want to see if anything
4352 // changes here before coming up with a warning group for _Countof-related
4353 // diagnostics.
4354 }
4355
4356 if (ExprKind == UETT_SizeOf) {
4357 if (const auto *DeclRef = dyn_cast<DeclRefExpr>(Val: E->IgnoreParens())) {
4358 if (const auto *PVD = dyn_cast<ParmVarDecl>(Val: DeclRef->getFoundDecl())) {
4359 QualType OType = PVD->getOriginalType();
4360 QualType Type = PVD->getType();
4361 if (Type->isPointerType() && OType->isArrayType()) {
4362 Diag(Loc: E->getExprLoc(), DiagID: diag::warn_sizeof_array_param)
4363 << Type << OType;
4364 Diag(Loc: PVD->getLocation(), DiagID: diag::note_declared_at);
4365 }
4366 }
4367 }
4368
4369 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4370 // decays into a pointer and returns an unintended result. This is most
4371 // likely a typo for "sizeof(array) op x".
4372 if (const auto *BO = dyn_cast<BinaryOperator>(Val: E->IgnoreParens())) {
4373 warnOnSizeofOnArrayDecay(S&: *this, Loc: BO->getOperatorLoc(), T: BO->getType(),
4374 E: BO->getLHS());
4375 warnOnSizeofOnArrayDecay(S&: *this, Loc: BO->getOperatorLoc(), T: BO->getType(),
4376 E: BO->getRHS());
4377 }
4378 }
4379
4380 return false;
4381}
4382
4383static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4384 // Cannot know anything else if the expression is dependent.
4385 if (E->isTypeDependent())
4386 return false;
4387
4388 if (E->getObjectKind() == OK_BitField) {
4389 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_sizeof_alignof_typeof_bitfield)
4390 << 1 << E->getSourceRange();
4391 return true;
4392 }
4393
4394 ValueDecl *D = nullptr;
4395 Expr *Inner = E->IgnoreParens();
4396 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Inner)) {
4397 D = DRE->getDecl();
4398 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Val: Inner)) {
4399 D = ME->getMemberDecl();
4400 }
4401
4402 // If it's a field, require the containing struct to have a
4403 // complete definition so that we can compute the layout.
4404 //
4405 // This can happen in C++11 onwards, either by naming the member
4406 // in a way that is not transformed into a member access expression
4407 // (in an unevaluated operand, for instance), or by naming the member
4408 // in a trailing-return-type.
4409 //
4410 // For the record, since __alignof__ on expressions is a GCC
4411 // extension, GCC seems to permit this but always gives the
4412 // nonsensical answer 0.
4413 //
4414 // We don't really need the layout here --- we could instead just
4415 // directly check for all the appropriate alignment-lowing
4416 // attributes --- but that would require duplicating a lot of
4417 // logic that just isn't worth duplicating for such a marginal
4418 // use-case.
4419 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(Val: D)) {
4420 // Fast path this check, since we at least know the record has a
4421 // definition if we can find a member of it.
4422 if (!FD->getParent()->isCompleteDefinition()) {
4423 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_alignof_member_of_incomplete_type)
4424 << E->getSourceRange();
4425 return true;
4426 }
4427
4428 // Otherwise, if it's a field, and the field doesn't have
4429 // reference type, then it must have a complete type (or be a
4430 // flexible array member, which we explicitly want to
4431 // white-list anyway), which makes the following checks trivial.
4432 if (!FD->getType()->isReferenceType())
4433 return false;
4434 }
4435
4436 return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4437}
4438
4439bool Sema::CheckVecStepExpr(Expr *E) {
4440 E = E->IgnoreParens();
4441
4442 // Cannot know anything else if the expression is dependent.
4443 if (E->isTypeDependent())
4444 return false;
4445
4446 return CheckUnaryExprOrTypeTraitOperand(E, ExprKind: UETT_VecStep);
4447}
4448
4449static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4450 CapturingScopeInfo *CSI) {
4451 assert(T->isVariablyModifiedType());
4452 assert(CSI != nullptr);
4453
4454 // We're going to walk down into the type and look for VLA expressions.
4455 do {
4456 const Type *Ty = T.getTypePtr();
4457 switch (Ty->getTypeClass()) {
4458#define TYPE(Class, Base)
4459#define ABSTRACT_TYPE(Class, Base)
4460#define NON_CANONICAL_TYPE(Class, Base)
4461#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4462#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4463#include "clang/AST/TypeNodes.inc"
4464 T = QualType();
4465 break;
4466 // These types are never variably-modified.
4467 case Type::Builtin:
4468 case Type::Complex:
4469 case Type::Vector:
4470 case Type::ExtVector:
4471 case Type::ConstantMatrix:
4472 case Type::Record:
4473 case Type::Enum:
4474 case Type::TemplateSpecialization:
4475 case Type::ObjCObject:
4476 case Type::ObjCInterface:
4477 case Type::ObjCObjectPointer:
4478 case Type::ObjCTypeParam:
4479 case Type::Pipe:
4480 case Type::BitInt:
4481 case Type::HLSLInlineSpirv:
4482 llvm_unreachable("type class is never variably-modified!");
4483 case Type::Elaborated:
4484 T = cast<ElaboratedType>(Val: Ty)->getNamedType();
4485 break;
4486 case Type::Adjusted:
4487 T = cast<AdjustedType>(Val: Ty)->getOriginalType();
4488 break;
4489 case Type::Decayed:
4490 T = cast<DecayedType>(Val: Ty)->getPointeeType();
4491 break;
4492 case Type::ArrayParameter:
4493 T = cast<ArrayParameterType>(Val: Ty)->getElementType();
4494 break;
4495 case Type::Pointer:
4496 T = cast<PointerType>(Val: Ty)->getPointeeType();
4497 break;
4498 case Type::BlockPointer:
4499 T = cast<BlockPointerType>(Val: Ty)->getPointeeType();
4500 break;
4501 case Type::LValueReference:
4502 case Type::RValueReference:
4503 T = cast<ReferenceType>(Val: Ty)->getPointeeType();
4504 break;
4505 case Type::MemberPointer:
4506 T = cast<MemberPointerType>(Val: Ty)->getPointeeType();
4507 break;
4508 case Type::ConstantArray:
4509 case Type::IncompleteArray:
4510 // Losing element qualification here is fine.
4511 T = cast<ArrayType>(Val: Ty)->getElementType();
4512 break;
4513 case Type::VariableArray: {
4514 // Losing element qualification here is fine.
4515 const VariableArrayType *VAT = cast<VariableArrayType>(Val: Ty);
4516
4517 // Unknown size indication requires no size computation.
4518 // Otherwise, evaluate and record it.
4519 auto Size = VAT->getSizeExpr();
4520 if (Size && !CSI->isVLATypeCaptured(VAT) &&
4521 (isa<CapturedRegionScopeInfo>(Val: CSI) || isa<LambdaScopeInfo>(Val: CSI)))
4522 CSI->addVLATypeCapture(Loc: Size->getExprLoc(), VLAType: VAT, CaptureType: Context.getSizeType());
4523
4524 T = VAT->getElementType();
4525 break;
4526 }
4527 case Type::FunctionProto:
4528 case Type::FunctionNoProto:
4529 T = cast<FunctionType>(Val: Ty)->getReturnType();
4530 break;
4531 case Type::Paren:
4532 case Type::TypeOf:
4533 case Type::UnaryTransform:
4534 case Type::Attributed:
4535 case Type::BTFTagAttributed:
4536 case Type::HLSLAttributedResource:
4537 case Type::SubstTemplateTypeParm:
4538 case Type::MacroQualified:
4539 case Type::CountAttributed:
4540 // Keep walking after single level desugaring.
4541 T = T.getSingleStepDesugaredType(Context);
4542 break;
4543 case Type::Typedef:
4544 T = cast<TypedefType>(Val: Ty)->desugar();
4545 break;
4546 case Type::Decltype:
4547 T = cast<DecltypeType>(Val: Ty)->desugar();
4548 break;
4549 case Type::PackIndexing:
4550 T = cast<PackIndexingType>(Val: Ty)->desugar();
4551 break;
4552 case Type::Using:
4553 T = cast<UsingType>(Val: Ty)->desugar();
4554 break;
4555 case Type::Auto:
4556 case Type::DeducedTemplateSpecialization:
4557 T = cast<DeducedType>(Val: Ty)->getDeducedType();
4558 break;
4559 case Type::TypeOfExpr:
4560 T = cast<TypeOfExprType>(Val: Ty)->getUnderlyingExpr()->getType();
4561 break;
4562 case Type::Atomic:
4563 T = cast<AtomicType>(Val: Ty)->getValueType();
4564 break;
4565 }
4566 } while (!T.isNull() && T->isVariablyModifiedType());
4567}
4568
4569bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4570 SourceLocation OpLoc,
4571 SourceRange ExprRange,
4572 UnaryExprOrTypeTrait ExprKind,
4573 StringRef KWName) {
4574 if (ExprType->isDependentType())
4575 return false;
4576
4577 // C++ [expr.sizeof]p2:
4578 // When applied to a reference or a reference type, the result
4579 // is the size of the referenced type.
4580 // C++11 [expr.alignof]p3:
4581 // When alignof is applied to a reference type, the result
4582 // shall be the alignment of the referenced type.
4583 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4584 ExprType = Ref->getPointeeType();
4585
4586 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4587 // When alignof or _Alignof is applied to an array type, the result
4588 // is the alignment of the element type.
4589 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4590 ExprKind == UETT_OpenMPRequiredSimdAlign) {
4591 // If the trait is 'alignof' in C before C2y, the ability to apply the
4592 // trait to an incomplete array is an extension.
4593 if (ExprKind == UETT_AlignOf && !getLangOpts().CPlusPlus &&
4594 ExprType->isIncompleteArrayType())
4595 Diag(Loc: OpLoc, DiagID: getLangOpts().C2y
4596 ? diag::warn_c2y_compat_alignof_incomplete_array
4597 : diag::ext_c2y_alignof_incomplete_array);
4598 ExprType = Context.getBaseElementType(QT: ExprType);
4599 }
4600
4601 if (ExprKind == UETT_VecStep)
4602 return CheckVecStepTraitOperandType(S&: *this, T: ExprType, Loc: OpLoc, ArgRange: ExprRange);
4603
4604 if (ExprKind == UETT_VectorElements)
4605 return CheckVectorElementsTraitOperandType(S&: *this, T: ExprType, Loc: OpLoc,
4606 ArgRange: ExprRange);
4607
4608 if (ExprKind == UETT_PtrAuthTypeDiscriminator)
4609 return checkPtrAuthTypeDiscriminatorOperandType(S&: *this, T: ExprType, Loc: OpLoc,
4610 ArgRange: ExprRange);
4611
4612 // Explicitly list some types as extensions.
4613 if (!CheckExtensionTraitOperandType(S&: *this, T: ExprType, Loc: OpLoc, ArgRange: ExprRange,
4614 TraitKind: ExprKind))
4615 return false;
4616
4617 if (RequireCompleteSizedType(
4618 Loc: OpLoc, T: ExprType, DiagID: diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4619 Args: KWName, Args: ExprRange))
4620 return true;
4621
4622 if (ExprType->isFunctionType()) {
4623 Diag(Loc: OpLoc, DiagID: diag::err_sizeof_alignof_function_type) << KWName << ExprRange;
4624 return true;
4625 }
4626
4627 if (ExprKind == UETT_CountOf) {
4628 // The type has to be an array type. We already checked for incomplete
4629 // types above.
4630 if (!ExprType->isArrayType()) {
4631 Diag(Loc: OpLoc, DiagID: diag::err_countof_arg_not_array_type) << ExprType;
4632 return true;
4633 }
4634 }
4635
4636 // WebAssembly tables are always illegal operands to unary expressions and
4637 // type traits.
4638 if (Context.getTargetInfo().getTriple().isWasm() &&
4639 ExprType->isWebAssemblyTableType()) {
4640 Diag(Loc: OpLoc, DiagID: diag::err_wasm_table_invalid_uett_operand)
4641 << getTraitSpelling(T: ExprKind);
4642 return true;
4643 }
4644
4645 if (CheckObjCTraitOperandConstraints(S&: *this, T: ExprType, Loc: OpLoc, ArgRange: ExprRange,
4646 TraitKind: ExprKind))
4647 return true;
4648
4649 if (ExprType->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4650 if (auto *TT = ExprType->getAs<TypedefType>()) {
4651 for (auto I = FunctionScopes.rbegin(),
4652 E = std::prev(x: FunctionScopes.rend());
4653 I != E; ++I) {
4654 auto *CSI = dyn_cast<CapturingScopeInfo>(Val: *I);
4655 if (CSI == nullptr)
4656 break;
4657 DeclContext *DC = nullptr;
4658 if (auto *LSI = dyn_cast<LambdaScopeInfo>(Val: CSI))
4659 DC = LSI->CallOperator;
4660 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(Val: CSI))
4661 DC = CRSI->TheCapturedDecl;
4662 else if (auto *BSI = dyn_cast<BlockScopeInfo>(Val: CSI))
4663 DC = BSI->TheDecl;
4664 if (DC) {
4665 if (DC->containsDecl(D: TT->getDecl()))
4666 break;
4667 captureVariablyModifiedType(Context, T: ExprType, CSI);
4668 }
4669 }
4670 }
4671 }
4672
4673 return false;
4674}
4675
4676ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4677 SourceLocation OpLoc,
4678 UnaryExprOrTypeTrait ExprKind,
4679 SourceRange R) {
4680 if (!TInfo)
4681 return ExprError();
4682
4683 QualType T = TInfo->getType();
4684
4685 if (!T->isDependentType() &&
4686 CheckUnaryExprOrTypeTraitOperand(ExprType: T, OpLoc, ExprRange: R, ExprKind,
4687 KWName: getTraitSpelling(T: ExprKind)))
4688 return ExprError();
4689
4690 // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to
4691 // properly deal with VLAs in nested calls of sizeof and typeof.
4692 if (currentEvaluationContext().isUnevaluated() &&
4693 currentEvaluationContext().InConditionallyConstantEvaluateContext &&
4694 (ExprKind == UETT_SizeOf || ExprKind == UETT_CountOf) &&
4695 TInfo->getType()->isVariablyModifiedType())
4696 TInfo = TransformToPotentiallyEvaluated(TInfo);
4697
4698 // It's possible that the transformation above failed.
4699 if (!TInfo)
4700 return ExprError();
4701
4702 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4703 return new (Context) UnaryExprOrTypeTraitExpr(
4704 ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4705}
4706
4707ExprResult
4708Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4709 UnaryExprOrTypeTrait ExprKind) {
4710 ExprResult PE = CheckPlaceholderExpr(E);
4711 if (PE.isInvalid())
4712 return ExprError();
4713
4714 E = PE.get();
4715
4716 // Verify that the operand is valid.
4717 bool isInvalid = false;
4718 if (E->isTypeDependent()) {
4719 // Delay type-checking for type-dependent expressions.
4720 } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4721 isInvalid = CheckAlignOfExpr(S&: *this, E, ExprKind);
4722 } else if (ExprKind == UETT_VecStep) {
4723 isInvalid = CheckVecStepExpr(E);
4724 } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4725 Diag(Loc: E->getExprLoc(), DiagID: diag::err_openmp_default_simd_align_expr);
4726 isInvalid = true;
4727 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
4728 Diag(Loc: E->getExprLoc(), DiagID: diag::err_sizeof_alignof_typeof_bitfield) << 0;
4729 isInvalid = true;
4730 } else if (ExprKind == UETT_VectorElements || ExprKind == UETT_SizeOf ||
4731 ExprKind == UETT_CountOf) { // FIXME: __datasizeof?
4732 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4733 }
4734
4735 if (isInvalid)
4736 return ExprError();
4737
4738 if ((ExprKind == UETT_SizeOf || ExprKind == UETT_CountOf) &&
4739 E->getType()->isVariableArrayType()) {
4740 PE = TransformToPotentiallyEvaluated(E);
4741 if (PE.isInvalid()) return ExprError();
4742 E = PE.get();
4743 }
4744
4745 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4746 return new (Context) UnaryExprOrTypeTraitExpr(
4747 ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4748}
4749
4750ExprResult
4751Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4752 UnaryExprOrTypeTrait ExprKind, bool IsType,
4753 void *TyOrEx, SourceRange ArgRange) {
4754 // If error parsing type, ignore.
4755 if (!TyOrEx) return ExprError();
4756
4757 if (IsType) {
4758 TypeSourceInfo *TInfo;
4759 (void) GetTypeFromParser(Ty: ParsedType::getFromOpaquePtr(P: TyOrEx), TInfo: &TInfo);
4760 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R: ArgRange);
4761 }
4762
4763 Expr *ArgEx = (Expr *)TyOrEx;
4764 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(E: ArgEx, OpLoc, ExprKind);
4765 return Result;
4766}
4767
4768bool Sema::CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo,
4769 SourceLocation OpLoc, SourceRange R) {
4770 if (!TInfo)
4771 return true;
4772 return CheckUnaryExprOrTypeTraitOperand(ExprType: TInfo->getType(), OpLoc, ExprRange: R,
4773 ExprKind: UETT_AlignOf, KWName);
4774}
4775
4776bool Sema::ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty,
4777 SourceLocation OpLoc, SourceRange R) {
4778 TypeSourceInfo *TInfo;
4779 (void)GetTypeFromParser(Ty: ParsedType::getFromOpaquePtr(P: Ty.getAsOpaquePtr()),
4780 TInfo: &TInfo);
4781 return CheckAlignasTypeArgument(KWName, TInfo, OpLoc, R);
4782}
4783
4784static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4785 bool IsReal) {
4786 if (V.get()->isTypeDependent())
4787 return S.Context.DependentTy;
4788
4789 // _Real and _Imag are only l-values for normal l-values.
4790 if (V.get()->getObjectKind() != OK_Ordinary) {
4791 V = S.DefaultLvalueConversion(E: V.get());
4792 if (V.isInvalid())
4793 return QualType();
4794 }
4795
4796 // These operators return the element type of a complex type.
4797 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4798 return CT->getElementType();
4799
4800 // Otherwise they pass through real integer and floating point types here.
4801 if (V.get()->getType()->isArithmeticType())
4802 return V.get()->getType();
4803
4804 // Test for placeholders.
4805 ExprResult PR = S.CheckPlaceholderExpr(E: V.get());
4806 if (PR.isInvalid()) return QualType();
4807 if (PR.get() != V.get()) {
4808 V = PR;
4809 return CheckRealImagOperand(S, V, Loc, IsReal);
4810 }
4811
4812 // Reject anything else.
4813 S.Diag(Loc, DiagID: diag::err_realimag_invalid_type) << V.get()->getType()
4814 << (IsReal ? "__real" : "__imag");
4815 return QualType();
4816}
4817
4818
4819
4820ExprResult
4821Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4822 tok::TokenKind Kind, Expr *Input) {
4823 UnaryOperatorKind Opc;
4824 switch (Kind) {
4825 default: llvm_unreachable("Unknown unary op!");
4826 case tok::plusplus: Opc = UO_PostInc; break;
4827 case tok::minusminus: Opc = UO_PostDec; break;
4828 }
4829
4830 // Since this might is a postfix expression, get rid of ParenListExprs.
4831 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, ME: Input);
4832 if (Result.isInvalid()) return ExprError();
4833 Input = Result.get();
4834
4835 return BuildUnaryOp(S, OpLoc, Opc, Input);
4836}
4837
4838/// Diagnose if arithmetic on the given ObjC pointer is illegal.
4839///
4840/// \return true on error
4841static bool checkArithmeticOnObjCPointer(Sema &S,
4842 SourceLocation opLoc,
4843 Expr *op) {
4844 assert(op->getType()->isObjCObjectPointerType());
4845 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4846 !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4847 return false;
4848
4849 S.Diag(Loc: opLoc, DiagID: diag::err_arithmetic_nonfragile_interface)
4850 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4851 << op->getSourceRange();
4852 return true;
4853}
4854
4855static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4856 auto *BaseNoParens = Base->IgnoreParens();
4857 if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(Val: BaseNoParens))
4858 return MSProp->getPropertyDecl()->getType()->isArrayType();
4859 return isa<MSPropertySubscriptExpr>(Val: BaseNoParens);
4860}
4861
4862// Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
4863// Typically this is DependentTy, but can sometimes be more precise.
4864//
4865// There are cases when we could determine a non-dependent type:
4866// - LHS and RHS may have non-dependent types despite being type-dependent
4867// (e.g. unbounded array static members of the current instantiation)
4868// - one may be a dependent-sized array with known element type
4869// - one may be a dependent-typed valid index (enum in current instantiation)
4870//
4871// We *always* return a dependent type, in such cases it is DependentTy.
4872// This avoids creating type-dependent expressions with non-dependent types.
4873// FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
4874static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
4875 const ASTContext &Ctx) {
4876 assert(LHS->isTypeDependent() || RHS->isTypeDependent());
4877 QualType LTy = LHS->getType(), RTy = RHS->getType();
4878 QualType Result = Ctx.DependentTy;
4879 if (RTy->isIntegralOrUnscopedEnumerationType()) {
4880 if (const PointerType *PT = LTy->getAs<PointerType>())
4881 Result = PT->getPointeeType();
4882 else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
4883 Result = AT->getElementType();
4884 } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
4885 if (const PointerType *PT = RTy->getAs<PointerType>())
4886 Result = PT->getPointeeType();
4887 else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
4888 Result = AT->getElementType();
4889 }
4890 // Ensure we return a dependent type.
4891 return Result->isDependentType() ? Result : Ctx.DependentTy;
4892}
4893
4894ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
4895 SourceLocation lbLoc,
4896 MultiExprArg ArgExprs,
4897 SourceLocation rbLoc) {
4898
4899 if (base && !base->getType().isNull() &&
4900 base->hasPlaceholderType(K: BuiltinType::ArraySection)) {
4901 auto *AS = cast<ArraySectionExpr>(Val: base);
4902 if (AS->isOMPArraySection())
4903 return OpenMP().ActOnOMPArraySectionExpr(
4904 Base: base, LBLoc: lbLoc, LowerBound: ArgExprs.front(), ColonLocFirst: SourceLocation(), ColonLocSecond: SourceLocation(),
4905 /*Length*/ nullptr,
4906 /*Stride=*/nullptr, RBLoc: rbLoc);
4907
4908 return OpenACC().ActOnArraySectionExpr(Base: base, LBLoc: lbLoc, LowerBound: ArgExprs.front(),
4909 ColonLocFirst: SourceLocation(), /*Length*/ nullptr,
4910 RBLoc: rbLoc);
4911 }
4912
4913 // Since this might be a postfix expression, get rid of ParenListExprs.
4914 if (isa<ParenListExpr>(Val: base)) {
4915 ExprResult result = MaybeConvertParenListExprToParenExpr(S, ME: base);
4916 if (result.isInvalid())
4917 return ExprError();
4918 base = result.get();
4919 }
4920
4921 // Check if base and idx form a MatrixSubscriptExpr.
4922 //
4923 // Helper to check for comma expressions, which are not allowed as indices for
4924 // matrix subscript expressions.
4925 auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4926 if (isa<BinaryOperator>(Val: E) && cast<BinaryOperator>(Val: E)->isCommaOp()) {
4927 Diag(Loc: E->getExprLoc(), DiagID: diag::err_matrix_subscript_comma)
4928 << SourceRange(base->getBeginLoc(), rbLoc);
4929 return true;
4930 }
4931 return false;
4932 };
4933 // The matrix subscript operator ([][])is considered a single operator.
4934 // Separating the index expressions by parenthesis is not allowed.
4935 if (base && !base->getType().isNull() &&
4936 base->hasPlaceholderType(K: BuiltinType::IncompleteMatrixIdx) &&
4937 !isa<MatrixSubscriptExpr>(Val: base)) {
4938 Diag(Loc: base->getExprLoc(), DiagID: diag::err_matrix_separate_incomplete_index)
4939 << SourceRange(base->getBeginLoc(), rbLoc);
4940 return ExprError();
4941 }
4942 // If the base is a MatrixSubscriptExpr, try to create a new
4943 // MatrixSubscriptExpr.
4944 auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(Val: base);
4945 if (matSubscriptE) {
4946 assert(ArgExprs.size() == 1);
4947 if (CheckAndReportCommaError(ArgExprs.front()))
4948 return ExprError();
4949
4950 assert(matSubscriptE->isIncomplete() &&
4951 "base has to be an incomplete matrix subscript");
4952 return CreateBuiltinMatrixSubscriptExpr(Base: matSubscriptE->getBase(),
4953 RowIdx: matSubscriptE->getRowIdx(),
4954 ColumnIdx: ArgExprs.front(), RBLoc: rbLoc);
4955 }
4956 if (base->getType()->isWebAssemblyTableType()) {
4957 Diag(Loc: base->getExprLoc(), DiagID: diag::err_wasm_table_art)
4958 << SourceRange(base->getBeginLoc(), rbLoc) << 3;
4959 return ExprError();
4960 }
4961
4962 CheckInvalidBuiltinCountedByRef(E: base,
4963 K: BuiltinCountedByRefKind::ArraySubscript);
4964
4965 // Handle any non-overload placeholder types in the base and index
4966 // expressions. We can't handle overloads here because the other
4967 // operand might be an overloadable type, in which case the overload
4968 // resolution for the operator overload should get the first crack
4969 // at the overload.
4970 bool IsMSPropertySubscript = false;
4971 if (base->getType()->isNonOverloadPlaceholderType()) {
4972 IsMSPropertySubscript = isMSPropertySubscriptExpr(S&: *this, Base: base);
4973 if (!IsMSPropertySubscript) {
4974 ExprResult result = CheckPlaceholderExpr(E: base);
4975 if (result.isInvalid())
4976 return ExprError();
4977 base = result.get();
4978 }
4979 }
4980
4981 // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4982 if (base->getType()->isMatrixType()) {
4983 assert(ArgExprs.size() == 1);
4984 if (CheckAndReportCommaError(ArgExprs.front()))
4985 return ExprError();
4986
4987 return CreateBuiltinMatrixSubscriptExpr(Base: base, RowIdx: ArgExprs.front(), ColumnIdx: nullptr,
4988 RBLoc: rbLoc);
4989 }
4990
4991 if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
4992 Expr *idx = ArgExprs[0];
4993 if ((isa<BinaryOperator>(Val: idx) && cast<BinaryOperator>(Val: idx)->isCommaOp()) ||
4994 (isa<CXXOperatorCallExpr>(Val: idx) &&
4995 cast<CXXOperatorCallExpr>(Val: idx)->getOperator() == OO_Comma)) {
4996 Diag(Loc: idx->getExprLoc(), DiagID: diag::warn_deprecated_comma_subscript)
4997 << SourceRange(base->getBeginLoc(), rbLoc);
4998 }
4999 }
5000
5001 if (ArgExprs.size() == 1 &&
5002 ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
5003 ExprResult result = CheckPlaceholderExpr(E: ArgExprs[0]);
5004 if (result.isInvalid())
5005 return ExprError();
5006 ArgExprs[0] = result.get();
5007 } else {
5008 if (CheckArgsForPlaceholders(args: ArgExprs))
5009 return ExprError();
5010 }
5011
5012 // Build an unanalyzed expression if either operand is type-dependent.
5013 if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
5014 (base->isTypeDependent() ||
5015 Expr::hasAnyTypeDependentArguments(Exprs: ArgExprs)) &&
5016 !isa<PackExpansionExpr>(Val: ArgExprs[0])) {
5017 return new (Context) ArraySubscriptExpr(
5018 base, ArgExprs.front(),
5019 getDependentArraySubscriptType(LHS: base, RHS: ArgExprs.front(), Ctx: getASTContext()),
5020 VK_LValue, OK_Ordinary, rbLoc);
5021 }
5022
5023 // MSDN, property (C++)
5024 // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
5025 // This attribute can also be used in the declaration of an empty array in a
5026 // class or structure definition. For example:
5027 // __declspec(property(get=GetX, put=PutX)) int x[];
5028 // The above statement indicates that x[] can be used with one or more array
5029 // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
5030 // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
5031 if (IsMSPropertySubscript) {
5032 assert(ArgExprs.size() == 1);
5033 // Build MS property subscript expression if base is MS property reference
5034 // or MS property subscript.
5035 return new (Context)
5036 MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
5037 VK_LValue, OK_Ordinary, rbLoc);
5038 }
5039
5040 // Use C++ overloaded-operator rules if either operand has record
5041 // type. The spec says to do this if either type is *overloadable*,
5042 // but enum types can't declare subscript operators or conversion
5043 // operators, so there's nothing interesting for overload resolution
5044 // to do if there aren't any record types involved.
5045 //
5046 // ObjC pointers have their own subscripting logic that is not tied
5047 // to overload resolution and so should not take this path.
5048 if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
5049 ((base->getType()->isRecordType() ||
5050 (ArgExprs.size() != 1 || isa<PackExpansionExpr>(Val: ArgExprs[0]) ||
5051 ArgExprs[0]->getType()->isRecordType())))) {
5052 return CreateOverloadedArraySubscriptExpr(LLoc: lbLoc, RLoc: rbLoc, Base: base, Args: ArgExprs);
5053 }
5054
5055 ExprResult Res =
5056 CreateBuiltinArraySubscriptExpr(Base: base, LLoc: lbLoc, Idx: ArgExprs.front(), RLoc: rbLoc);
5057
5058 if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Val: Res.get()))
5059 CheckSubscriptAccessOfNoDeref(E: cast<ArraySubscriptExpr>(Val: Res.get()));
5060
5061 return Res;
5062}
5063
5064ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
5065 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Type: Ty);
5066 InitializationKind Kind =
5067 InitializationKind::CreateCopy(InitLoc: E->getBeginLoc(), EqualLoc: SourceLocation());
5068 InitializationSequence InitSeq(*this, Entity, Kind, E);
5069 return InitSeq.Perform(S&: *this, Entity, Kind, Args: E);
5070}
5071
5072ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5073 Expr *ColumnIdx,
5074 SourceLocation RBLoc) {
5075 ExprResult BaseR = CheckPlaceholderExpr(E: Base);
5076 if (BaseR.isInvalid())
5077 return BaseR;
5078 Base = BaseR.get();
5079
5080 ExprResult RowR = CheckPlaceholderExpr(E: RowIdx);
5081 if (RowR.isInvalid())
5082 return RowR;
5083 RowIdx = RowR.get();
5084
5085 if (!ColumnIdx)
5086 return new (Context) MatrixSubscriptExpr(
5087 Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
5088
5089 // Build an unanalyzed expression if any of the operands is type-dependent.
5090 if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
5091 ColumnIdx->isTypeDependent())
5092 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5093 Context.DependentTy, RBLoc);
5094
5095 ExprResult ColumnR = CheckPlaceholderExpr(E: ColumnIdx);
5096 if (ColumnR.isInvalid())
5097 return ColumnR;
5098 ColumnIdx = ColumnR.get();
5099
5100 // Check that IndexExpr is an integer expression. If it is a constant
5101 // expression, check that it is less than Dim (= the number of elements in the
5102 // corresponding dimension).
5103 auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5104 bool IsColumnIdx) -> Expr * {
5105 if (!IndexExpr->getType()->isIntegerType() &&
5106 !IndexExpr->isTypeDependent()) {
5107 Diag(Loc: IndexExpr->getBeginLoc(), DiagID: diag::err_matrix_index_not_integer)
5108 << IsColumnIdx;
5109 return nullptr;
5110 }
5111
5112 if (std::optional<llvm::APSInt> Idx =
5113 IndexExpr->getIntegerConstantExpr(Ctx: Context)) {
5114 if ((*Idx < 0 || *Idx >= Dim)) {
5115 Diag(Loc: IndexExpr->getBeginLoc(), DiagID: diag::err_matrix_index_outside_range)
5116 << IsColumnIdx << Dim;
5117 return nullptr;
5118 }
5119 }
5120
5121 ExprResult ConvExpr = IndexExpr;
5122 assert(!ConvExpr.isInvalid() &&
5123 "should be able to convert any integer type to size type");
5124 return ConvExpr.get();
5125 };
5126
5127 auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5128 RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5129 ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5130 if (!RowIdx || !ColumnIdx)
5131 return ExprError();
5132
5133 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5134 MTy->getElementType(), RBLoc);
5135}
5136
5137void Sema::CheckAddressOfNoDeref(const Expr *E) {
5138 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5139 const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5140
5141 // For expressions like `&(*s).b`, the base is recorded and what should be
5142 // checked.
5143 const MemberExpr *Member = nullptr;
5144 while ((Member = dyn_cast<MemberExpr>(Val: StrippedExpr)) && !Member->isArrow())
5145 StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5146
5147 LastRecord.PossibleDerefs.erase(Ptr: StrippedExpr);
5148}
5149
5150void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5151 if (isUnevaluatedContext())
5152 return;
5153
5154 QualType ResultTy = E->getType();
5155 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5156
5157 // Bail if the element is an array since it is not memory access.
5158 if (isa<ArrayType>(Val: ResultTy))
5159 return;
5160
5161 if (ResultTy->hasAttr(AK: attr::NoDeref)) {
5162 LastRecord.PossibleDerefs.insert(Ptr: E);
5163 return;
5164 }
5165
5166 // Check if the base type is a pointer to a member access of a struct
5167 // marked with noderef.
5168 const Expr *Base = E->getBase();
5169 QualType BaseTy = Base->getType();
5170 if (!(isa<ArrayType>(Val: BaseTy) || isa<PointerType>(Val: BaseTy)))
5171 // Not a pointer access
5172 return;
5173
5174 const MemberExpr *Member = nullptr;
5175 while ((Member = dyn_cast<MemberExpr>(Val: Base->IgnoreParenCasts())) &&
5176 Member->isArrow())
5177 Base = Member->getBase();
5178
5179 if (const auto *Ptr = dyn_cast<PointerType>(Val: Base->getType())) {
5180 if (Ptr->getPointeeType()->hasAttr(AK: attr::NoDeref))
5181 LastRecord.PossibleDerefs.insert(Ptr: E);
5182 }
5183}
5184
5185ExprResult
5186Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5187 Expr *Idx, SourceLocation RLoc) {
5188 Expr *LHSExp = Base;
5189 Expr *RHSExp = Idx;
5190
5191 ExprValueKind VK = VK_LValue;
5192 ExprObjectKind OK = OK_Ordinary;
5193
5194 // Per C++ core issue 1213, the result is an xvalue if either operand is
5195 // a non-lvalue array, and an lvalue otherwise.
5196 if (getLangOpts().CPlusPlus11) {
5197 for (auto *Op : {LHSExp, RHSExp}) {
5198 Op = Op->IgnoreImplicit();
5199 if (Op->getType()->isArrayType() && !Op->isLValue())
5200 VK = VK_XValue;
5201 }
5202 }
5203
5204 // Perform default conversions.
5205 if (!LHSExp->getType()->isSubscriptableVectorType()) {
5206 ExprResult Result = DefaultFunctionArrayLvalueConversion(E: LHSExp);
5207 if (Result.isInvalid())
5208 return ExprError();
5209 LHSExp = Result.get();
5210 }
5211 ExprResult Result = DefaultFunctionArrayLvalueConversion(E: RHSExp);
5212 if (Result.isInvalid())
5213 return ExprError();
5214 RHSExp = Result.get();
5215
5216 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5217
5218 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5219 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5220 // in the subscript position. As a result, we need to derive the array base
5221 // and index from the expression types.
5222 Expr *BaseExpr, *IndexExpr;
5223 QualType ResultType;
5224 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5225 BaseExpr = LHSExp;
5226 IndexExpr = RHSExp;
5227 ResultType =
5228 getDependentArraySubscriptType(LHS: LHSExp, RHS: RHSExp, Ctx: getASTContext());
5229 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5230 BaseExpr = LHSExp;
5231 IndexExpr = RHSExp;
5232 ResultType = PTy->getPointeeType();
5233 } else if (const ObjCObjectPointerType *PTy =
5234 LHSTy->getAs<ObjCObjectPointerType>()) {
5235 BaseExpr = LHSExp;
5236 IndexExpr = RHSExp;
5237
5238 // Use custom logic if this should be the pseudo-object subscript
5239 // expression.
5240 if (!LangOpts.isSubscriptPointerArithmetic())
5241 return ObjC().BuildObjCSubscriptExpression(RB: RLoc, BaseExpr, IndexExpr,
5242 getterMethod: nullptr, setterMethod: nullptr);
5243
5244 ResultType = PTy->getPointeeType();
5245 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5246 // Handle the uncommon case of "123[Ptr]".
5247 BaseExpr = RHSExp;
5248 IndexExpr = LHSExp;
5249 ResultType = PTy->getPointeeType();
5250 } else if (const ObjCObjectPointerType *PTy =
5251 RHSTy->getAs<ObjCObjectPointerType>()) {
5252 // Handle the uncommon case of "123[Ptr]".
5253 BaseExpr = RHSExp;
5254 IndexExpr = LHSExp;
5255 ResultType = PTy->getPointeeType();
5256 if (!LangOpts.isSubscriptPointerArithmetic()) {
5257 Diag(Loc: LLoc, DiagID: diag::err_subscript_nonfragile_interface)
5258 << ResultType << BaseExpr->getSourceRange();
5259 return ExprError();
5260 }
5261 } else if (LHSTy->isSubscriptableVectorType()) {
5262 if (LHSTy->isBuiltinType() &&
5263 LHSTy->getAs<BuiltinType>()->isSveVLSBuiltinType()) {
5264 const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5265 if (BTy->isSVEBool())
5266 return ExprError(Diag(Loc: LLoc, DiagID: diag::err_subscript_svbool_t)
5267 << LHSExp->getSourceRange()
5268 << RHSExp->getSourceRange());
5269 ResultType = BTy->getSveEltType(Ctx: Context);
5270 } else {
5271 const VectorType *VTy = LHSTy->getAs<VectorType>();
5272 ResultType = VTy->getElementType();
5273 }
5274 BaseExpr = LHSExp; // vectors: V[123]
5275 IndexExpr = RHSExp;
5276 // We apply C++ DR1213 to vector subscripting too.
5277 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5278 ExprResult Materialized = TemporaryMaterializationConversion(E: LHSExp);
5279 if (Materialized.isInvalid())
5280 return ExprError();
5281 LHSExp = Materialized.get();
5282 }
5283 VK = LHSExp->getValueKind();
5284 if (VK != VK_PRValue)
5285 OK = OK_VectorComponent;
5286
5287 QualType BaseType = BaseExpr->getType();
5288 Qualifiers BaseQuals = BaseType.getQualifiers();
5289 Qualifiers MemberQuals = ResultType.getQualifiers();
5290 Qualifiers Combined = BaseQuals + MemberQuals;
5291 if (Combined != MemberQuals)
5292 ResultType = Context.getQualifiedType(T: ResultType, Qs: Combined);
5293 } else if (LHSTy->isArrayType()) {
5294 // If we see an array that wasn't promoted by
5295 // DefaultFunctionArrayLvalueConversion, it must be an array that
5296 // wasn't promoted because of the C90 rule that doesn't
5297 // allow promoting non-lvalue arrays. Warn, then
5298 // force the promotion here.
5299 Diag(Loc: LHSExp->getBeginLoc(), DiagID: diag::ext_subscript_non_lvalue)
5300 << LHSExp->getSourceRange();
5301 LHSExp = ImpCastExprToType(E: LHSExp, Type: Context.getArrayDecayedType(T: LHSTy),
5302 CK: CK_ArrayToPointerDecay).get();
5303 LHSTy = LHSExp->getType();
5304
5305 BaseExpr = LHSExp;
5306 IndexExpr = RHSExp;
5307 ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5308 } else if (RHSTy->isArrayType()) {
5309 // Same as previous, except for 123[f().a] case
5310 Diag(Loc: RHSExp->getBeginLoc(), DiagID: diag::ext_subscript_non_lvalue)
5311 << RHSExp->getSourceRange();
5312 RHSExp = ImpCastExprToType(E: RHSExp, Type: Context.getArrayDecayedType(T: RHSTy),
5313 CK: CK_ArrayToPointerDecay).get();
5314 RHSTy = RHSExp->getType();
5315
5316 BaseExpr = RHSExp;
5317 IndexExpr = LHSExp;
5318 ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5319 } else {
5320 return ExprError(Diag(Loc: LLoc, DiagID: diag::err_typecheck_subscript_value)
5321 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5322 }
5323 // C99 6.5.2.1p1
5324 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5325 return ExprError(Diag(Loc: LLoc, DiagID: diag::err_typecheck_subscript_not_integer)
5326 << IndexExpr->getSourceRange());
5327
5328 if ((IndexExpr->getType()->isSpecificBuiltinType(K: BuiltinType::Char_S) ||
5329 IndexExpr->getType()->isSpecificBuiltinType(K: BuiltinType::Char_U)) &&
5330 !IndexExpr->isTypeDependent()) {
5331 std::optional<llvm::APSInt> IntegerContantExpr =
5332 IndexExpr->getIntegerConstantExpr(Ctx: getASTContext());
5333 if (!IntegerContantExpr.has_value() ||
5334 IntegerContantExpr.value().isNegative())
5335 Diag(Loc: LLoc, DiagID: diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5336 }
5337
5338 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5339 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5340 // type. Note that Functions are not objects, and that (in C99 parlance)
5341 // incomplete types are not object types.
5342 if (ResultType->isFunctionType()) {
5343 Diag(Loc: BaseExpr->getBeginLoc(), DiagID: diag::err_subscript_function_type)
5344 << ResultType << BaseExpr->getSourceRange();
5345 return ExprError();
5346 }
5347
5348 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5349 // GNU extension: subscripting on pointer to void
5350 Diag(Loc: LLoc, DiagID: diag::ext_gnu_subscript_void_type)
5351 << BaseExpr->getSourceRange();
5352
5353 // C forbids expressions of unqualified void type from being l-values.
5354 // See IsCForbiddenLValueType.
5355 if (!ResultType.hasQualifiers())
5356 VK = VK_PRValue;
5357 } else if (!ResultType->isDependentType() &&
5358 !ResultType.isWebAssemblyReferenceType() &&
5359 RequireCompleteSizedType(
5360 Loc: LLoc, T: ResultType,
5361 DiagID: diag::err_subscript_incomplete_or_sizeless_type, Args: BaseExpr))
5362 return ExprError();
5363
5364 assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
5365 !ResultType.isCForbiddenLValueType());
5366
5367 if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5368 FunctionScopes.size() > 1) {
5369 if (auto *TT =
5370 LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5371 for (auto I = FunctionScopes.rbegin(),
5372 E = std::prev(x: FunctionScopes.rend());
5373 I != E; ++I) {
5374 auto *CSI = dyn_cast<CapturingScopeInfo>(Val: *I);
5375 if (CSI == nullptr)
5376 break;
5377 DeclContext *DC = nullptr;
5378 if (auto *LSI = dyn_cast<LambdaScopeInfo>(Val: CSI))
5379 DC = LSI->CallOperator;
5380 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(Val: CSI))
5381 DC = CRSI->TheCapturedDecl;
5382 else if (auto *BSI = dyn_cast<BlockScopeInfo>(Val: CSI))
5383 DC = BSI->TheDecl;
5384 if (DC) {
5385 if (DC->containsDecl(D: TT->getDecl()))
5386 break;
5387 captureVariablyModifiedType(
5388 Context, T: LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5389 }
5390 }
5391 }
5392 }
5393
5394 return new (Context)
5395 ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5396}
5397
5398bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5399 ParmVarDecl *Param, Expr *RewrittenInit,
5400 bool SkipImmediateInvocations) {
5401 if (Param->hasUnparsedDefaultArg()) {
5402 assert(!RewrittenInit && "Should not have a rewritten init expression yet");
5403 // If we've already cleared out the location for the default argument,
5404 // that means we're parsing it right now.
5405 if (!UnparsedDefaultArgLocs.count(Val: Param)) {
5406 Diag(Loc: Param->getBeginLoc(), DiagID: diag::err_recursive_default_argument) << FD;
5407 Diag(Loc: CallLoc, DiagID: diag::note_recursive_default_argument_used_here);
5408 Param->setInvalidDecl();
5409 return true;
5410 }
5411
5412 Diag(Loc: CallLoc, DiagID: diag::err_use_of_default_argument_to_function_declared_later)
5413 << FD << cast<CXXRecordDecl>(Val: FD->getDeclContext());
5414 Diag(Loc: UnparsedDefaultArgLocs[Param],
5415 DiagID: diag::note_default_argument_declared_here);
5416 return true;
5417 }
5418
5419 if (Param->hasUninstantiatedDefaultArg()) {
5420 assert(!RewrittenInit && "Should not have a rewitten init expression yet");
5421 if (InstantiateDefaultArgument(CallLoc, FD, Param))
5422 return true;
5423 }
5424
5425 Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit();
5426 assert(Init && "default argument but no initializer?");
5427
5428 // If the default expression creates temporaries, we need to
5429 // push them to the current stack of expression temporaries so they'll
5430 // be properly destroyed.
5431 // FIXME: We should really be rebuilding the default argument with new
5432 // bound temporaries; see the comment in PR5810.
5433 // We don't need to do that with block decls, though, because
5434 // blocks in default argument expression can never capture anything.
5435 if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Val: Init)) {
5436 // Set the "needs cleanups" bit regardless of whether there are
5437 // any explicit objects.
5438 Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects());
5439 // Append all the objects to the cleanup list. Right now, this
5440 // should always be a no-op, because blocks in default argument
5441 // expressions should never be able to capture anything.
5442 assert(!InitWithCleanup->getNumObjects() &&
5443 "default argument expression has capturing blocks?");
5444 }
5445 // C++ [expr.const]p15.1:
5446 // An expression or conversion is in an immediate function context if it is
5447 // potentially evaluated and [...] its innermost enclosing non-block scope
5448 // is a function parameter scope of an immediate function.
5449 EnterExpressionEvaluationContext EvalContext(
5450 *this,
5451 FD->isImmediateFunction()
5452 ? ExpressionEvaluationContext::ImmediateFunctionContext
5453 : ExpressionEvaluationContext::PotentiallyEvaluated,
5454 Param);
5455 ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5456 SkipImmediateInvocations;
5457 runWithSufficientStackSpace(Loc: CallLoc, Fn: [&] {
5458 MarkDeclarationsReferencedInExpr(E: Init, /*SkipLocalVariables=*/true);
5459 });
5460 return false;
5461}
5462
5463struct ImmediateCallVisitor : DynamicRecursiveASTVisitor {
5464 const ASTContext &Context;
5465 ImmediateCallVisitor(const ASTContext &Ctx) : Context(Ctx) {
5466 ShouldVisitImplicitCode = true;
5467 }
5468
5469 bool HasImmediateCalls = false;
5470
5471 bool VisitCallExpr(CallExpr *E) override {
5472 if (const FunctionDecl *FD = E->getDirectCallee())
5473 HasImmediateCalls |= FD->isImmediateFunction();
5474 return DynamicRecursiveASTVisitor::VisitStmt(S: E);
5475 }
5476
5477 bool VisitCXXConstructExpr(CXXConstructExpr *E) override {
5478 if (const FunctionDecl *FD = E->getConstructor())
5479 HasImmediateCalls |= FD->isImmediateFunction();
5480 return DynamicRecursiveASTVisitor::VisitStmt(S: E);
5481 }
5482
5483 // SourceLocExpr are not immediate invocations
5484 // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
5485 // need to be rebuilt so that they refer to the correct SourceLocation and
5486 // DeclContext.
5487 bool VisitSourceLocExpr(SourceLocExpr *E) override {
5488 HasImmediateCalls = true;
5489 return DynamicRecursiveASTVisitor::VisitStmt(S: E);
5490 }
5491
5492 // A nested lambda might have parameters with immediate invocations
5493 // in their default arguments.
5494 // The compound statement is not visited (as it does not constitute a
5495 // subexpression).
5496 // FIXME: We should consider visiting and transforming captures
5497 // with init expressions.
5498 bool VisitLambdaExpr(LambdaExpr *E) override {
5499 return VisitCXXMethodDecl(D: E->getCallOperator());
5500 }
5501
5502 bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) override {
5503 return TraverseStmt(S: E->getExpr());
5504 }
5505
5506 bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) override {
5507 return TraverseStmt(S: E->getExpr());
5508 }
5509};
5510
5511struct EnsureImmediateInvocationInDefaultArgs
5512 : TreeTransform<EnsureImmediateInvocationInDefaultArgs> {
5513 EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef)
5514 : TreeTransform(SemaRef) {}
5515
5516 bool AlwaysRebuild() { return true; }
5517
5518 // Lambda can only have immediate invocations in the default
5519 // args of their parameters, which is transformed upon calling the closure.
5520 // The body is not a subexpression, so we have nothing to do.
5521 // FIXME: Immediate calls in capture initializers should be transformed.
5522 ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; }
5523 ExprResult TransformBlockExpr(BlockExpr *E) { return E; }
5524
5525 // Make sure we don't rebuild the this pointer as it would
5526 // cause it to incorrectly point it to the outermost class
5527 // in the case of nested struct initialization.
5528 ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; }
5529
5530 // Rewrite to source location to refer to the context in which they are used.
5531 ExprResult TransformSourceLocExpr(SourceLocExpr *E) {
5532 DeclContext *DC = E->getParentContext();
5533 if (DC == SemaRef.CurContext)
5534 return E;
5535
5536 // FIXME: During instantiation, because the rebuild of defaults arguments
5537 // is not always done in the context of the template instantiator,
5538 // we run the risk of producing a dependent source location
5539 // that would never be rebuilt.
5540 // This usually happens during overload resolution, or in contexts
5541 // where the value of the source location does not matter.
5542 // However, we should find a better way to deal with source location
5543 // of function templates.
5544 if (!SemaRef.CurrentInstantiationScope ||
5545 !SemaRef.CurContext->isDependentContext() || DC->isDependentContext())
5546 DC = SemaRef.CurContext;
5547
5548 return getDerived().RebuildSourceLocExpr(
5549 Kind: E->getIdentKind(), ResultTy: E->getType(), BuiltinLoc: E->getBeginLoc(), RPLoc: E->getEndLoc(), ParentContext: DC);
5550 }
5551};
5552
5553ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5554 FunctionDecl *FD, ParmVarDecl *Param,
5555 Expr *Init) {
5556 assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
5557
5558 bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5559 bool NeedRebuild = needsRebuildOfDefaultArgOrInit();
5560 std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5561 InitializationContext =
5562 OutermostDeclarationWithDelayedImmediateInvocations();
5563 if (!InitializationContext.has_value())
5564 InitializationContext.emplace(args&: CallLoc, args&: Param, args&: CurContext);
5565
5566 if (!Init && !Param->hasUnparsedDefaultArg()) {
5567 // Mark that we are replacing a default argument first.
5568 // If we are instantiating a template we won't have to
5569 // retransform immediate calls.
5570 // C++ [expr.const]p15.1:
5571 // An expression or conversion is in an immediate function context if it
5572 // is potentially evaluated and [...] its innermost enclosing non-block
5573 // scope is a function parameter scope of an immediate function.
5574 EnterExpressionEvaluationContext EvalContext(
5575 *this,
5576 FD->isImmediateFunction()
5577 ? ExpressionEvaluationContext::ImmediateFunctionContext
5578 : ExpressionEvaluationContext::PotentiallyEvaluated,
5579 Param);
5580
5581 if (Param->hasUninstantiatedDefaultArg()) {
5582 if (InstantiateDefaultArgument(CallLoc, FD, Param))
5583 return ExprError();
5584 }
5585 // CWG2631
5586 // An immediate invocation that is not evaluated where it appears is
5587 // evaluated and checked for whether it is a constant expression at the
5588 // point where the enclosing initializer is used in a function call.
5589 ImmediateCallVisitor V(getASTContext());
5590 if (!NestedDefaultChecking)
5591 V.TraverseDecl(D: Param);
5592
5593 // Rewrite the call argument that was created from the corresponding
5594 // parameter's default argument.
5595 if (V.HasImmediateCalls ||
5596 (NeedRebuild && isa_and_present<ExprWithCleanups>(Val: Param->getInit()))) {
5597 if (V.HasImmediateCalls)
5598 ExprEvalContexts.back().DelayedDefaultInitializationContext = {
5599 CallLoc, Param, CurContext};
5600 // Pass down lifetime extending flag, and collect temporaries in
5601 // CreateMaterializeTemporaryExpr when we rewrite the call argument.
5602 currentEvaluationContext().InLifetimeExtendingContext =
5603 parentEvaluationContext().InLifetimeExtendingContext;
5604 EnsureImmediateInvocationInDefaultArgs Immediate(*this);
5605 ExprResult Res;
5606 runWithSufficientStackSpace(Loc: CallLoc, Fn: [&] {
5607 Res = Immediate.TransformInitializer(Init: Param->getInit(),
5608 /*NotCopy=*/NotCopyInit: false);
5609 });
5610 if (Res.isInvalid())
5611 return ExprError();
5612 Res = ConvertParamDefaultArgument(Param, DefaultArg: Res.get(),
5613 EqualLoc: Res.get()->getBeginLoc());
5614 if (Res.isInvalid())
5615 return ExprError();
5616 Init = Res.get();
5617 }
5618 }
5619
5620 if (CheckCXXDefaultArgExpr(
5621 CallLoc, FD, Param, RewrittenInit: Init,
5622 /*SkipImmediateInvocations=*/NestedDefaultChecking))
5623 return ExprError();
5624
5625 return CXXDefaultArgExpr::Create(C: Context, Loc: InitializationContext->Loc, Param,
5626 RewrittenExpr: Init, UsedContext: InitializationContext->Context);
5627}
5628
5629static FieldDecl *FindFieldDeclInstantiationPattern(const ASTContext &Ctx,
5630 FieldDecl *Field) {
5631 if (FieldDecl *Pattern = Ctx.getInstantiatedFromUnnamedFieldDecl(Field))
5632 return Pattern;
5633 auto *ParentRD = cast<CXXRecordDecl>(Val: Field->getParent());
5634 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
5635 DeclContext::lookup_result Lookup =
5636 ClassPattern->lookup(Name: Field->getDeclName());
5637 auto Rng = llvm::make_filter_range(
5638 Range&: Lookup, Pred: [](auto &&L) { return isa<FieldDecl>(*L); });
5639 if (Rng.empty())
5640 return nullptr;
5641 // FIXME: this breaks clang/test/Modules/pr28812.cpp
5642 // assert(std::distance(Rng.begin(), Rng.end()) <= 1
5643 // && "Duplicated instantiation pattern for field decl");
5644 return cast<FieldDecl>(Val: *Rng.begin());
5645}
5646
5647ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
5648 assert(Field->hasInClassInitializer());
5649
5650 CXXThisScopeRAII This(*this, Field->getParent(), Qualifiers());
5651
5652 auto *ParentRD = cast<CXXRecordDecl>(Val: Field->getParent());
5653
5654 std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5655 InitializationContext =
5656 OutermostDeclarationWithDelayedImmediateInvocations();
5657 if (!InitializationContext.has_value())
5658 InitializationContext.emplace(args&: Loc, args&: Field, args&: CurContext);
5659
5660 Expr *Init = nullptr;
5661
5662 bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5663 bool NeedRebuild = needsRebuildOfDefaultArgOrInit();
5664 EnterExpressionEvaluationContext EvalContext(
5665 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field);
5666
5667 if (!Field->getInClassInitializer()) {
5668 // Maybe we haven't instantiated the in-class initializer. Go check the
5669 // pattern FieldDecl to see if it has one.
5670 if (isTemplateInstantiation(Kind: ParentRD->getTemplateSpecializationKind())) {
5671 FieldDecl *Pattern =
5672 FindFieldDeclInstantiationPattern(Ctx: getASTContext(), Field);
5673 assert(Pattern && "We must have set the Pattern!");
5674 if (!Pattern->hasInClassInitializer() ||
5675 InstantiateInClassInitializer(PointOfInstantiation: Loc, Instantiation: Field, Pattern,
5676 TemplateArgs: getTemplateInstantiationArgs(D: Field))) {
5677 Field->setInvalidDecl();
5678 return ExprError();
5679 }
5680 }
5681 }
5682
5683 // CWG2631
5684 // An immediate invocation that is not evaluated where it appears is
5685 // evaluated and checked for whether it is a constant expression at the
5686 // point where the enclosing initializer is used in a [...] a constructor
5687 // definition, or an aggregate initialization.
5688 ImmediateCallVisitor V(getASTContext());
5689 if (!NestedDefaultChecking)
5690 V.TraverseDecl(D: Field);
5691
5692 // CWG1815
5693 // Support lifetime extension of temporary created by aggregate
5694 // initialization using a default member initializer. We should rebuild
5695 // the initializer in a lifetime extension context if the initializer
5696 // expression is an ExprWithCleanups. Then make sure the normal lifetime
5697 // extension code recurses into the default initializer and does lifetime
5698 // extension when warranted.
5699 bool ContainsAnyTemporaries =
5700 isa_and_present<ExprWithCleanups>(Val: Field->getInClassInitializer());
5701 if (Field->getInClassInitializer() &&
5702 !Field->getInClassInitializer()->containsErrors() &&
5703 (V.HasImmediateCalls || (NeedRebuild && ContainsAnyTemporaries))) {
5704 ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field,
5705 CurContext};
5706 ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5707 NestedDefaultChecking;
5708 // Pass down lifetime extending flag, and collect temporaries in
5709 // CreateMaterializeTemporaryExpr when we rewrite the call argument.
5710 currentEvaluationContext().InLifetimeExtendingContext =
5711 parentEvaluationContext().InLifetimeExtendingContext;
5712 EnsureImmediateInvocationInDefaultArgs Immediate(*this);
5713 ExprResult Res;
5714 runWithSufficientStackSpace(Loc, Fn: [&] {
5715 Res = Immediate.TransformInitializer(Init: Field->getInClassInitializer(),
5716 /*CXXDirectInit=*/NotCopyInit: false);
5717 });
5718 if (!Res.isInvalid())
5719 Res = ConvertMemberDefaultInitExpression(FD: Field, InitExpr: Res.get(), InitLoc: Loc);
5720 if (Res.isInvalid()) {
5721 Field->setInvalidDecl();
5722 return ExprError();
5723 }
5724 Init = Res.get();
5725 }
5726
5727 if (Field->getInClassInitializer()) {
5728 Expr *E = Init ? Init : Field->getInClassInitializer();
5729 if (!NestedDefaultChecking)
5730 runWithSufficientStackSpace(Loc, Fn: [&] {
5731 MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false);
5732 });
5733 if (isInLifetimeExtendingContext())
5734 DiscardCleanupsInEvaluationContext();
5735 // C++11 [class.base.init]p7:
5736 // The initialization of each base and member constitutes a
5737 // full-expression.
5738 ExprResult Res = ActOnFinishFullExpr(Expr: E, /*DiscardedValue=*/false);
5739 if (Res.isInvalid()) {
5740 Field->setInvalidDecl();
5741 return ExprError();
5742 }
5743 Init = Res.get();
5744
5745 return CXXDefaultInitExpr::Create(Ctx: Context, Loc: InitializationContext->Loc,
5746 Field, UsedContext: InitializationContext->Context,
5747 RewrittenInitExpr: Init);
5748 }
5749
5750 // DR1351:
5751 // If the brace-or-equal-initializer of a non-static data member
5752 // invokes a defaulted default constructor of its class or of an
5753 // enclosing class in a potentially evaluated subexpression, the
5754 // program is ill-formed.
5755 //
5756 // This resolution is unworkable: the exception specification of the
5757 // default constructor can be needed in an unevaluated context, in
5758 // particular, in the operand of a noexcept-expression, and we can be
5759 // unable to compute an exception specification for an enclosed class.
5760 //
5761 // Any attempt to resolve the exception specification of a defaulted default
5762 // constructor before the initializer is lexically complete will ultimately
5763 // come here at which point we can diagnose it.
5764 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
5765 Diag(Loc, DiagID: diag::err_default_member_initializer_not_yet_parsed)
5766 << OutermostClass << Field;
5767 Diag(Loc: Field->getEndLoc(),
5768 DiagID: diag::note_default_member_initializer_not_yet_parsed);
5769 // Recover by marking the field invalid, unless we're in a SFINAE context.
5770 if (!isSFINAEContext())
5771 Field->setInvalidDecl();
5772 return ExprError();
5773}
5774
5775VariadicCallType Sema::getVariadicCallType(FunctionDecl *FDecl,
5776 const FunctionProtoType *Proto,
5777 Expr *Fn) {
5778 if (Proto && Proto->isVariadic()) {
5779 if (isa_and_nonnull<CXXConstructorDecl>(Val: FDecl))
5780 return VariadicCallType::Constructor;
5781 else if (Fn && Fn->getType()->isBlockPointerType())
5782 return VariadicCallType::Block;
5783 else if (FDecl) {
5784 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Val: FDecl))
5785 if (Method->isInstance())
5786 return VariadicCallType::Method;
5787 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5788 return VariadicCallType::Method;
5789 return VariadicCallType::Function;
5790 }
5791 return VariadicCallType::DoesNotApply;
5792}
5793
5794namespace {
5795class FunctionCallCCC final : public FunctionCallFilterCCC {
5796public:
5797 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5798 unsigned NumArgs, MemberExpr *ME)
5799 : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5800 FunctionName(FuncName) {}
5801
5802 bool ValidateCandidate(const TypoCorrection &candidate) override {
5803 if (!candidate.getCorrectionSpecifier() ||
5804 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5805 return false;
5806 }
5807
5808 return FunctionCallFilterCCC::ValidateCandidate(candidate);
5809 }
5810
5811 std::unique_ptr<CorrectionCandidateCallback> clone() override {
5812 return std::make_unique<FunctionCallCCC>(args&: *this);
5813 }
5814
5815private:
5816 const IdentifierInfo *const FunctionName;
5817};
5818}
5819
5820static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5821 FunctionDecl *FDecl,
5822 ArrayRef<Expr *> Args) {
5823 MemberExpr *ME = dyn_cast<MemberExpr>(Val: Fn);
5824 DeclarationName FuncName = FDecl->getDeclName();
5825 SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5826
5827 FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5828 if (TypoCorrection Corrected = S.CorrectTypo(
5829 Typo: DeclarationNameInfo(FuncName, NameLoc), LookupKind: Sema::LookupOrdinaryName,
5830 S: S.getScopeForContext(Ctx: S.CurContext), SS: nullptr, CCC,
5831 Mode: CorrectTypoKind::ErrorRecovery)) {
5832 if (NamedDecl *ND = Corrected.getFoundDecl()) {
5833 if (Corrected.isOverloaded()) {
5834 OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5835 OverloadCandidateSet::iterator Best;
5836 for (NamedDecl *CD : Corrected) {
5837 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: CD))
5838 S.AddOverloadCandidate(Function: FD, FoundDecl: DeclAccessPair::make(D: FD, AS: AS_none), Args,
5839 CandidateSet&: OCS);
5840 }
5841 switch (OCS.BestViableFunction(S, Loc: NameLoc, Best)) {
5842 case OR_Success:
5843 ND = Best->FoundDecl;
5844 Corrected.setCorrectionDecl(ND);
5845 break;
5846 default:
5847 break;
5848 }
5849 }
5850 ND = ND->getUnderlyingDecl();
5851 if (isa<ValueDecl>(Val: ND) || isa<FunctionTemplateDecl>(Val: ND))
5852 return Corrected;
5853 }
5854 }
5855 return TypoCorrection();
5856}
5857
5858// [C++26][[expr.unary.op]/p4
5859// A pointer to member is only formed when an explicit &
5860// is used and its operand is a qualified-id not enclosed in parentheses.
5861static bool isParenthetizedAndQualifiedAddressOfExpr(Expr *Fn) {
5862 if (!isa<ParenExpr>(Val: Fn))
5863 return false;
5864
5865 Fn = Fn->IgnoreParens();
5866
5867 auto *UO = dyn_cast<UnaryOperator>(Val: Fn);
5868 if (!UO || UO->getOpcode() != clang::UO_AddrOf)
5869 return false;
5870 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: UO->getSubExpr()->IgnoreParens())) {
5871 return DRE->hasQualifier();
5872 }
5873 if (auto *OVL = dyn_cast<OverloadExpr>(Val: UO->getSubExpr()->IgnoreParens()))
5874 return OVL->getQualifier();
5875 return false;
5876}
5877
5878bool
5879Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5880 FunctionDecl *FDecl,
5881 const FunctionProtoType *Proto,
5882 ArrayRef<Expr *> Args,
5883 SourceLocation RParenLoc,
5884 bool IsExecConfig) {
5885 // Bail out early if calling a builtin with custom typechecking.
5886 if (FDecl)
5887 if (unsigned ID = FDecl->getBuiltinID())
5888 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5889 return false;
5890
5891 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5892 // assignment, to the types of the corresponding parameter, ...
5893
5894 bool AddressOf = isParenthetizedAndQualifiedAddressOfExpr(Fn);
5895 bool HasExplicitObjectParameter =
5896 !AddressOf && FDecl && FDecl->hasCXXExplicitFunctionObjectParameter();
5897 unsigned ExplicitObjectParameterOffset = HasExplicitObjectParameter ? 1 : 0;
5898 unsigned NumParams = Proto->getNumParams();
5899 bool Invalid = false;
5900 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5901 unsigned FnKind = Fn->getType()->isBlockPointerType()
5902 ? 1 /* block */
5903 : (IsExecConfig ? 3 /* kernel function (exec config) */
5904 : 0 /* function */);
5905
5906 // If too few arguments are available (and we don't have default
5907 // arguments for the remaining parameters), don't make the call.
5908 if (Args.size() < NumParams) {
5909 if (Args.size() < MinArgs) {
5910 TypoCorrection TC;
5911 if (FDecl && (TC = TryTypoCorrectionForCall(S&: *this, Fn, FDecl, Args))) {
5912 unsigned diag_id =
5913 MinArgs == NumParams && !Proto->isVariadic()
5914 ? diag::err_typecheck_call_too_few_args_suggest
5915 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5916 diagnoseTypo(
5917 Correction: TC, TypoDiag: PDiag(DiagID: diag_id)
5918 << FnKind << MinArgs - ExplicitObjectParameterOffset
5919 << static_cast<unsigned>(Args.size()) -
5920 ExplicitObjectParameterOffset
5921 << HasExplicitObjectParameter << TC.getCorrectionRange());
5922 } else if (MinArgs - ExplicitObjectParameterOffset == 1 && FDecl &&
5923 FDecl->getParamDecl(i: ExplicitObjectParameterOffset)
5924 ->getDeclName())
5925 Diag(Loc: RParenLoc,
5926 DiagID: MinArgs == NumParams && !Proto->isVariadic()
5927 ? diag::err_typecheck_call_too_few_args_one
5928 : diag::err_typecheck_call_too_few_args_at_least_one)
5929 << FnKind << FDecl->getParamDecl(i: ExplicitObjectParameterOffset)
5930 << HasExplicitObjectParameter << Fn->getSourceRange();
5931 else
5932 Diag(Loc: RParenLoc, DiagID: MinArgs == NumParams && !Proto->isVariadic()
5933 ? diag::err_typecheck_call_too_few_args
5934 : diag::err_typecheck_call_too_few_args_at_least)
5935 << FnKind << MinArgs - ExplicitObjectParameterOffset
5936 << static_cast<unsigned>(Args.size()) -
5937 ExplicitObjectParameterOffset
5938 << HasExplicitObjectParameter << Fn->getSourceRange();
5939
5940 // Emit the location of the prototype.
5941 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5942 Diag(Loc: FDecl->getLocation(), DiagID: diag::note_callee_decl)
5943 << FDecl << FDecl->getParametersSourceRange();
5944
5945 return true;
5946 }
5947 // We reserve space for the default arguments when we create
5948 // the call expression, before calling ConvertArgumentsForCall.
5949 assert((Call->getNumArgs() == NumParams) &&
5950 "We should have reserved space for the default arguments before!");
5951 }
5952
5953 // If too many are passed and not variadic, error on the extras and drop
5954 // them.
5955 if (Args.size() > NumParams) {
5956 if (!Proto->isVariadic()) {
5957 TypoCorrection TC;
5958 if (FDecl && (TC = TryTypoCorrectionForCall(S&: *this, Fn, FDecl, Args))) {
5959 unsigned diag_id =
5960 MinArgs == NumParams && !Proto->isVariadic()
5961 ? diag::err_typecheck_call_too_many_args_suggest
5962 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5963 diagnoseTypo(
5964 Correction: TC, TypoDiag: PDiag(DiagID: diag_id)
5965 << FnKind << NumParams - ExplicitObjectParameterOffset
5966 << static_cast<unsigned>(Args.size()) -
5967 ExplicitObjectParameterOffset
5968 << HasExplicitObjectParameter << TC.getCorrectionRange());
5969 } else if (NumParams - ExplicitObjectParameterOffset == 1 && FDecl &&
5970 FDecl->getParamDecl(i: ExplicitObjectParameterOffset)
5971 ->getDeclName())
5972 Diag(Loc: Args[NumParams]->getBeginLoc(),
5973 DiagID: MinArgs == NumParams
5974 ? diag::err_typecheck_call_too_many_args_one
5975 : diag::err_typecheck_call_too_many_args_at_most_one)
5976 << FnKind << FDecl->getParamDecl(i: ExplicitObjectParameterOffset)
5977 << static_cast<unsigned>(Args.size()) -
5978 ExplicitObjectParameterOffset
5979 << HasExplicitObjectParameter << Fn->getSourceRange()
5980 << SourceRange(Args[NumParams]->getBeginLoc(),
5981 Args.back()->getEndLoc());
5982 else
5983 Diag(Loc: Args[NumParams]->getBeginLoc(),
5984 DiagID: MinArgs == NumParams
5985 ? diag::err_typecheck_call_too_many_args
5986 : diag::err_typecheck_call_too_many_args_at_most)
5987 << FnKind << NumParams - ExplicitObjectParameterOffset
5988 << static_cast<unsigned>(Args.size()) -
5989 ExplicitObjectParameterOffset
5990 << HasExplicitObjectParameter << Fn->getSourceRange()
5991 << SourceRange(Args[NumParams]->getBeginLoc(),
5992 Args.back()->getEndLoc());
5993
5994 // Emit the location of the prototype.
5995 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5996 Diag(Loc: FDecl->getLocation(), DiagID: diag::note_callee_decl)
5997 << FDecl << FDecl->getParametersSourceRange();
5998
5999 // This deletes the extra arguments.
6000 Call->shrinkNumArgs(NewNumArgs: NumParams);
6001 return true;
6002 }
6003 }
6004 SmallVector<Expr *, 8> AllArgs;
6005 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
6006
6007 Invalid = GatherArgumentsForCall(CallLoc: Call->getExprLoc(), FDecl, Proto, FirstParam: 0, Args,
6008 AllArgs, CallType);
6009 if (Invalid)
6010 return true;
6011 unsigned TotalNumArgs = AllArgs.size();
6012 for (unsigned i = 0; i < TotalNumArgs; ++i)
6013 Call->setArg(Arg: i, ArgExpr: AllArgs[i]);
6014
6015 Call->computeDependence();
6016 return false;
6017}
6018
6019bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
6020 const FunctionProtoType *Proto,
6021 unsigned FirstParam, ArrayRef<Expr *> Args,
6022 SmallVectorImpl<Expr *> &AllArgs,
6023 VariadicCallType CallType, bool AllowExplicit,
6024 bool IsListInitialization) {
6025 unsigned NumParams = Proto->getNumParams();
6026 bool Invalid = false;
6027 size_t ArgIx = 0;
6028 // Continue to check argument types (even if we have too few/many args).
6029 for (unsigned i = FirstParam; i < NumParams; i++) {
6030 QualType ProtoArgType = Proto->getParamType(i);
6031
6032 Expr *Arg;
6033 ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
6034 if (ArgIx < Args.size()) {
6035 Arg = Args[ArgIx++];
6036
6037 if (RequireCompleteType(Loc: Arg->getBeginLoc(), T: ProtoArgType,
6038 DiagID: diag::err_call_incomplete_argument, Args: Arg))
6039 return true;
6040
6041 // Strip the unbridged-cast placeholder expression off, if applicable.
6042 bool CFAudited = false;
6043 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
6044 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6045 (!Param || !Param->hasAttr<CFConsumedAttr>()))
6046 Arg = ObjC().stripARCUnbridgedCast(e: Arg);
6047 else if (getLangOpts().ObjCAutoRefCount &&
6048 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6049 (!Param || !Param->hasAttr<CFConsumedAttr>()))
6050 CFAudited = true;
6051
6052 if (Proto->getExtParameterInfo(I: i).isNoEscape() &&
6053 ProtoArgType->isBlockPointerType())
6054 if (auto *BE = dyn_cast<BlockExpr>(Val: Arg->IgnoreParenNoopCasts(Ctx: Context)))
6055 BE->getBlockDecl()->setDoesNotEscape();
6056 if ((Proto->getExtParameterInfo(I: i).getABI() == ParameterABI::HLSLOut ||
6057 Proto->getExtParameterInfo(I: i).getABI() == ParameterABI::HLSLInOut)) {
6058 ExprResult ArgExpr = HLSL().ActOnOutParamExpr(Param, Arg);
6059 if (ArgExpr.isInvalid())
6060 return true;
6061 Arg = ArgExpr.getAs<Expr>();
6062 }
6063
6064 InitializedEntity Entity =
6065 Param ? InitializedEntity::InitializeParameter(Context, Parm: Param,
6066 Type: ProtoArgType)
6067 : InitializedEntity::InitializeParameter(
6068 Context, Type: ProtoArgType, Consumed: Proto->isParamConsumed(I: i));
6069
6070 // Remember that parameter belongs to a CF audited API.
6071 if (CFAudited)
6072 Entity.setParameterCFAudited();
6073
6074 ExprResult ArgE = PerformCopyInitialization(
6075 Entity, EqualLoc: SourceLocation(), Init: Arg, TopLevelOfInitList: IsListInitialization, AllowExplicit);
6076 if (ArgE.isInvalid())
6077 return true;
6078
6079 Arg = ArgE.getAs<Expr>();
6080 } else {
6081 assert(Param && "can't use default arguments without a known callee");
6082
6083 ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FD: FDecl, Param);
6084 if (ArgExpr.isInvalid())
6085 return true;
6086
6087 Arg = ArgExpr.getAs<Expr>();
6088 }
6089
6090 // Check for array bounds violations for each argument to the call. This
6091 // check only triggers warnings when the argument isn't a more complex Expr
6092 // with its own checking, such as a BinaryOperator.
6093 CheckArrayAccess(E: Arg);
6094
6095 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6096 CheckStaticArrayArgument(CallLoc, Param, ArgExpr: Arg);
6097
6098 AllArgs.push_back(Elt: Arg);
6099 }
6100
6101 // If this is a variadic call, handle args passed through "...".
6102 if (CallType != VariadicCallType::DoesNotApply) {
6103 // Assume that extern "C" functions with variadic arguments that
6104 // return __unknown_anytype aren't *really* variadic.
6105 if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6106 FDecl->isExternC()) {
6107 for (Expr *A : Args.slice(N: ArgIx)) {
6108 QualType paramType; // ignored
6109 ExprResult arg = checkUnknownAnyArg(callLoc: CallLoc, result: A, paramType);
6110 Invalid |= arg.isInvalid();
6111 AllArgs.push_back(Elt: arg.get());
6112 }
6113
6114 // Otherwise do argument promotion, (C99 6.5.2.2p7).
6115 } else {
6116 for (Expr *A : Args.slice(N: ArgIx)) {
6117 ExprResult Arg = DefaultVariadicArgumentPromotion(E: A, CT: CallType, FDecl);
6118 Invalid |= Arg.isInvalid();
6119 AllArgs.push_back(Elt: Arg.get());
6120 }
6121 }
6122
6123 // Check for array bounds violations.
6124 for (Expr *A : Args.slice(N: ArgIx))
6125 CheckArrayAccess(E: A);
6126 }
6127 return Invalid;
6128}
6129
6130static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6131 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6132 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6133 TL = DTL.getOriginalLoc();
6134 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6135 S.Diag(Loc: PVD->getLocation(), DiagID: diag::note_callee_static_array)
6136 << ATL.getLocalSourceRange();
6137}
6138
6139void
6140Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6141 ParmVarDecl *Param,
6142 const Expr *ArgExpr) {
6143 // Static array parameters are not supported in C++.
6144 if (!Param || getLangOpts().CPlusPlus)
6145 return;
6146
6147 QualType OrigTy = Param->getOriginalType();
6148
6149 const ArrayType *AT = Context.getAsArrayType(T: OrigTy);
6150 if (!AT || AT->getSizeModifier() != ArraySizeModifier::Static)
6151 return;
6152
6153 if (ArgExpr->isNullPointerConstant(Ctx&: Context,
6154 NPC: Expr::NPC_NeverValueDependent)) {
6155 Diag(Loc: CallLoc, DiagID: diag::warn_null_arg) << ArgExpr->getSourceRange();
6156 DiagnoseCalleeStaticArrayParam(S&: *this, PVD: Param);
6157 return;
6158 }
6159
6160 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(Val: AT);
6161 if (!CAT)
6162 return;
6163
6164 const ConstantArrayType *ArgCAT =
6165 Context.getAsConstantArrayType(T: ArgExpr->IgnoreParenCasts()->getType());
6166 if (!ArgCAT)
6167 return;
6168
6169 if (getASTContext().hasSameUnqualifiedType(T1: CAT->getElementType(),
6170 T2: ArgCAT->getElementType())) {
6171 if (ArgCAT->getSize().ult(RHS: CAT->getSize())) {
6172 Diag(Loc: CallLoc, DiagID: diag::warn_static_array_too_small)
6173 << ArgExpr->getSourceRange() << (unsigned)ArgCAT->getZExtSize()
6174 << (unsigned)CAT->getZExtSize() << 0;
6175 DiagnoseCalleeStaticArrayParam(S&: *this, PVD: Param);
6176 }
6177 return;
6178 }
6179
6180 std::optional<CharUnits> ArgSize =
6181 getASTContext().getTypeSizeInCharsIfKnown(Ty: ArgCAT);
6182 std::optional<CharUnits> ParmSize =
6183 getASTContext().getTypeSizeInCharsIfKnown(Ty: CAT);
6184 if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6185 Diag(Loc: CallLoc, DiagID: diag::warn_static_array_too_small)
6186 << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6187 << (unsigned)ParmSize->getQuantity() << 1;
6188 DiagnoseCalleeStaticArrayParam(S&: *this, PVD: Param);
6189 }
6190}
6191
6192/// Given a function expression of unknown-any type, try to rebuild it
6193/// to have a function type.
6194static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6195
6196/// Is the given type a placeholder that we need to lower out
6197/// immediately during argument processing?
6198static bool isPlaceholderToRemoveAsArg(QualType type) {
6199 // Placeholders are never sugared.
6200 const BuiltinType *placeholder = dyn_cast<BuiltinType>(Val&: type);
6201 if (!placeholder) return false;
6202
6203 switch (placeholder->getKind()) {
6204 // Ignore all the non-placeholder types.
6205#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6206 case BuiltinType::Id:
6207#include "clang/Basic/OpenCLImageTypes.def"
6208#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6209 case BuiltinType::Id:
6210#include "clang/Basic/OpenCLExtensionTypes.def"
6211 // In practice we'll never use this, since all SVE types are sugared
6212 // via TypedefTypes rather than exposed directly as BuiltinTypes.
6213#define SVE_TYPE(Name, Id, SingletonId) \
6214 case BuiltinType::Id:
6215#include "clang/Basic/AArch64ACLETypes.def"
6216#define PPC_VECTOR_TYPE(Name, Id, Size) \
6217 case BuiltinType::Id:
6218#include "clang/Basic/PPCTypes.def"
6219#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6220#include "clang/Basic/RISCVVTypes.def"
6221#define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6222#include "clang/Basic/WebAssemblyReferenceTypes.def"
6223#define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id:
6224#include "clang/Basic/AMDGPUTypes.def"
6225#define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6226#include "clang/Basic/HLSLIntangibleTypes.def"
6227#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6228#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6229#include "clang/AST/BuiltinTypes.def"
6230 return false;
6231
6232 case BuiltinType::UnresolvedTemplate:
6233 // We cannot lower out overload sets; they might validly be resolved
6234 // by the call machinery.
6235 case BuiltinType::Overload:
6236 return false;
6237
6238 // Unbridged casts in ARC can be handled in some call positions and
6239 // should be left in place.
6240 case BuiltinType::ARCUnbridgedCast:
6241 return false;
6242
6243 // Pseudo-objects should be converted as soon as possible.
6244 case BuiltinType::PseudoObject:
6245 return true;
6246
6247 // The debugger mode could theoretically but currently does not try
6248 // to resolve unknown-typed arguments based on known parameter types.
6249 case BuiltinType::UnknownAny:
6250 return true;
6251
6252 // These are always invalid as call arguments and should be reported.
6253 case BuiltinType::BoundMember:
6254 case BuiltinType::BuiltinFn:
6255 case BuiltinType::IncompleteMatrixIdx:
6256 case BuiltinType::ArraySection:
6257 case BuiltinType::OMPArrayShaping:
6258 case BuiltinType::OMPIterator:
6259 return true;
6260
6261 }
6262 llvm_unreachable("bad builtin type kind");
6263}
6264
6265bool Sema::CheckArgsForPlaceholders(MultiExprArg args) {
6266 // Apply this processing to all the arguments at once instead of
6267 // dying at the first failure.
6268 bool hasInvalid = false;
6269 for (size_t i = 0, e = args.size(); i != e; i++) {
6270 if (isPlaceholderToRemoveAsArg(type: args[i]->getType())) {
6271 ExprResult result = CheckPlaceholderExpr(E: args[i]);
6272 if (result.isInvalid()) hasInvalid = true;
6273 else args[i] = result.get();
6274 }
6275 }
6276 return hasInvalid;
6277}
6278
6279/// If a builtin function has a pointer argument with no explicit address
6280/// space, then it should be able to accept a pointer to any address
6281/// space as input. In order to do this, we need to replace the
6282/// standard builtin declaration with one that uses the same address space
6283/// as the call.
6284///
6285/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6286/// it does not contain any pointer arguments without
6287/// an address space qualifer. Otherwise the rewritten
6288/// FunctionDecl is returned.
6289/// TODO: Handle pointer return types.
6290static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6291 FunctionDecl *FDecl,
6292 MultiExprArg ArgExprs) {
6293
6294 QualType DeclType = FDecl->getType();
6295 const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Val&: DeclType);
6296
6297 if (!Context.BuiltinInfo.hasPtrArgsOrResult(ID: FDecl->getBuiltinID()) || !FT ||
6298 ArgExprs.size() < FT->getNumParams())
6299 return nullptr;
6300
6301 bool NeedsNewDecl = false;
6302 unsigned i = 0;
6303 SmallVector<QualType, 8> OverloadParams;
6304
6305 for (QualType ParamType : FT->param_types()) {
6306
6307 // Convert array arguments to pointer to simplify type lookup.
6308 ExprResult ArgRes =
6309 Sema->DefaultFunctionArrayLvalueConversion(E: ArgExprs[i++]);
6310 if (ArgRes.isInvalid())
6311 return nullptr;
6312 Expr *Arg = ArgRes.get();
6313 QualType ArgType = Arg->getType();
6314 if (!ParamType->isPointerType() ||
6315 ParamType->getPointeeType().hasAddressSpace() ||
6316 !ArgType->isPointerType() ||
6317 !ArgType->getPointeeType().hasAddressSpace() ||
6318 isPtrSizeAddressSpace(AS: ArgType->getPointeeType().getAddressSpace())) {
6319 OverloadParams.push_back(Elt: ParamType);
6320 continue;
6321 }
6322
6323 QualType PointeeType = ParamType->getPointeeType();
6324 NeedsNewDecl = true;
6325 LangAS AS = ArgType->getPointeeType().getAddressSpace();
6326
6327 PointeeType = Context.getAddrSpaceQualType(T: PointeeType, AddressSpace: AS);
6328 OverloadParams.push_back(Elt: Context.getPointerType(T: PointeeType));
6329 }
6330
6331 if (!NeedsNewDecl)
6332 return nullptr;
6333
6334 FunctionProtoType::ExtProtoInfo EPI;
6335 EPI.Variadic = FT->isVariadic();
6336 QualType OverloadTy = Context.getFunctionType(ResultTy: FT->getReturnType(),
6337 Args: OverloadParams, EPI);
6338 DeclContext *Parent = FDecl->getParent();
6339 FunctionDecl *OverloadDecl = FunctionDecl::Create(
6340 C&: Context, DC: Parent, StartLoc: FDecl->getLocation(), NLoc: FDecl->getLocation(),
6341 N: FDecl->getIdentifier(), T: OverloadTy,
6342 /*TInfo=*/nullptr, SC: SC_Extern, UsesFPIntrin: Sema->getCurFPFeatures().isFPConstrained(),
6343 isInlineSpecified: false,
6344 /*hasPrototype=*/hasWrittenPrototype: true);
6345 SmallVector<ParmVarDecl*, 16> Params;
6346 FT = cast<FunctionProtoType>(Val&: OverloadTy);
6347 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6348 QualType ParamType = FT->getParamType(i);
6349 ParmVarDecl *Parm =
6350 ParmVarDecl::Create(C&: Context, DC: OverloadDecl, StartLoc: SourceLocation(),
6351 IdLoc: SourceLocation(), Id: nullptr, T: ParamType,
6352 /*TInfo=*/nullptr, S: SC_None, DefArg: nullptr);
6353 Parm->setScopeInfo(scopeDepth: 0, parameterIndex: i);
6354 Params.push_back(Elt: Parm);
6355 }
6356 OverloadDecl->setParams(Params);
6357 // We cannot merge host/device attributes of redeclarations. They have to
6358 // be consistent when created.
6359 if (Sema->LangOpts.CUDA) {
6360 if (FDecl->hasAttr<CUDAHostAttr>())
6361 OverloadDecl->addAttr(A: CUDAHostAttr::CreateImplicit(Ctx&: Context));
6362 if (FDecl->hasAttr<CUDADeviceAttr>())
6363 OverloadDecl->addAttr(A: CUDADeviceAttr::CreateImplicit(Ctx&: Context));
6364 }
6365 Sema->mergeDeclAttributes(New: OverloadDecl, Old: FDecl);
6366 return OverloadDecl;
6367}
6368
6369static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6370 FunctionDecl *Callee,
6371 MultiExprArg ArgExprs) {
6372 // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6373 // similar attributes) really don't like it when functions are called with an
6374 // invalid number of args.
6375 if (S.TooManyArguments(NumParams: Callee->getNumParams(), NumArgs: ArgExprs.size(),
6376 /*PartialOverloading=*/false) &&
6377 !Callee->isVariadic())
6378 return;
6379 if (Callee->getMinRequiredArguments() > ArgExprs.size())
6380 return;
6381
6382 if (const EnableIfAttr *Attr =
6383 S.CheckEnableIf(Function: Callee, CallLoc: Fn->getBeginLoc(), Args: ArgExprs, MissingImplicitThis: true)) {
6384 S.Diag(Loc: Fn->getBeginLoc(),
6385 DiagID: isa<CXXMethodDecl>(Val: Callee)
6386 ? diag::err_ovl_no_viable_member_function_in_call
6387 : diag::err_ovl_no_viable_function_in_call)
6388 << Callee << Callee->getSourceRange();
6389 S.Diag(Loc: Callee->getLocation(),
6390 DiagID: diag::note_ovl_candidate_disabled_by_function_cond_attr)
6391 << Attr->getCond()->getSourceRange() << Attr->getMessage();
6392 return;
6393 }
6394}
6395
6396static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6397 const UnresolvedMemberExpr *const UME, Sema &S) {
6398
6399 const auto GetFunctionLevelDCIfCXXClass =
6400 [](Sema &S) -> const CXXRecordDecl * {
6401 const DeclContext *const DC = S.getFunctionLevelDeclContext();
6402 if (!DC || !DC->getParent())
6403 return nullptr;
6404
6405 // If the call to some member function was made from within a member
6406 // function body 'M' return return 'M's parent.
6407 if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: DC))
6408 return MD->getParent()->getCanonicalDecl();
6409 // else the call was made from within a default member initializer of a
6410 // class, so return the class.
6411 if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: DC))
6412 return RD->getCanonicalDecl();
6413 return nullptr;
6414 };
6415 // If our DeclContext is neither a member function nor a class (in the
6416 // case of a lambda in a default member initializer), we can't have an
6417 // enclosing 'this'.
6418
6419 const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6420 if (!CurParentClass)
6421 return false;
6422
6423 // The naming class for implicit member functions call is the class in which
6424 // name lookup starts.
6425 const CXXRecordDecl *const NamingClass =
6426 UME->getNamingClass()->getCanonicalDecl();
6427 assert(NamingClass && "Must have naming class even for implicit access");
6428
6429 // If the unresolved member functions were found in a 'naming class' that is
6430 // related (either the same or derived from) to the class that contains the
6431 // member function that itself contained the implicit member access.
6432
6433 return CurParentClass == NamingClass ||
6434 CurParentClass->isDerivedFrom(Base: NamingClass);
6435}
6436
6437static void
6438tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6439 Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6440
6441 if (!UME)
6442 return;
6443
6444 LambdaScopeInfo *const CurLSI = S.getCurLambda();
6445 // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6446 // already been captured, or if this is an implicit member function call (if
6447 // it isn't, an attempt to capture 'this' should already have been made).
6448 if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6449 !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6450 return;
6451
6452 // Check if the naming class in which the unresolved members were found is
6453 // related (same as or is a base of) to the enclosing class.
6454
6455 if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6456 return;
6457
6458
6459 DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6460 // If the enclosing function is not dependent, then this lambda is
6461 // capture ready, so if we can capture this, do so.
6462 if (!EnclosingFunctionCtx->isDependentContext()) {
6463 // If the current lambda and all enclosing lambdas can capture 'this' -
6464 // then go ahead and capture 'this' (since our unresolved overload set
6465 // contains at least one non-static member function).
6466 if (!S.CheckCXXThisCapture(Loc: CallLoc, /*Explcit*/ Explicit: false, /*Diagnose*/ BuildAndDiagnose: false))
6467 S.CheckCXXThisCapture(Loc: CallLoc);
6468 } else if (S.CurContext->isDependentContext()) {
6469 // ... since this is an implicit member reference, that might potentially
6470 // involve a 'this' capture, mark 'this' for potential capture in
6471 // enclosing lambdas.
6472 if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6473 CurLSI->addPotentialThisCapture(Loc: CallLoc);
6474 }
6475}
6476
6477// Once a call is fully resolved, warn for unqualified calls to specific
6478// C++ standard functions, like move and forward.
6479static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S,
6480 const CallExpr *Call) {
6481 // We are only checking unary move and forward so exit early here.
6482 if (Call->getNumArgs() != 1)
6483 return;
6484
6485 const Expr *E = Call->getCallee()->IgnoreParenImpCasts();
6486 if (!E || isa<UnresolvedLookupExpr>(Val: E))
6487 return;
6488 const DeclRefExpr *DRE = dyn_cast_if_present<DeclRefExpr>(Val: E);
6489 if (!DRE || !DRE->getLocation().isValid())
6490 return;
6491
6492 if (DRE->getQualifier())
6493 return;
6494
6495 const FunctionDecl *FD = Call->getDirectCallee();
6496 if (!FD)
6497 return;
6498
6499 // Only warn for some functions deemed more frequent or problematic.
6500 unsigned BuiltinID = FD->getBuiltinID();
6501 if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
6502 return;
6503
6504 S.Diag(Loc: DRE->getLocation(), DiagID: diag::warn_unqualified_call_to_std_cast_function)
6505 << FD->getQualifiedNameAsString()
6506 << FixItHint::CreateInsertion(InsertionLoc: DRE->getLocation(), Code: "std::");
6507}
6508
6509ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6510 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6511 Expr *ExecConfig) {
6512 ExprResult Call =
6513 BuildCallExpr(S: Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6514 /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6515 if (Call.isInvalid())
6516 return Call;
6517
6518 // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6519 // language modes.
6520 if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(Val: Fn);
6521 ULE && ULE->hasExplicitTemplateArgs() &&
6522 ULE->decls_begin() == ULE->decls_end()) {
6523 DiagCompat(Loc: Fn->getExprLoc(), CompatDiagId: diag_compat::adl_only_template_id)
6524 << ULE->getName();
6525 }
6526
6527 if (LangOpts.OpenMP)
6528 Call = OpenMP().ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6529 ExecConfig);
6530 if (LangOpts.CPlusPlus) {
6531 if (const auto *CE = dyn_cast<CallExpr>(Val: Call.get()))
6532 DiagnosedUnqualifiedCallsToStdFunctions(S&: *this, Call: CE);
6533
6534 // If we previously found that the id-expression of this call refers to a
6535 // consteval function but the call is dependent, we should not treat is an
6536 // an invalid immediate call.
6537 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: Fn->IgnoreParens());
6538 DRE && Call.get()->isValueDependent()) {
6539 currentEvaluationContext().ReferenceToConsteval.erase(Ptr: DRE);
6540 }
6541 }
6542 return Call;
6543}
6544
6545// Any type that could be used to form a callable expression
6546static bool MayBeFunctionType(const ASTContext &Context, const Expr *E) {
6547 QualType T = E->getType();
6548 if (T->isDependentType())
6549 return true;
6550
6551 if (T == Context.BoundMemberTy || T == Context.UnknownAnyTy ||
6552 T == Context.BuiltinFnTy || T == Context.OverloadTy ||
6553 T->isFunctionType() || T->isFunctionReferenceType() ||
6554 T->isMemberFunctionPointerType() || T->isFunctionPointerType() ||
6555 T->isBlockPointerType() || T->isRecordType())
6556 return true;
6557
6558 return isa<CallExpr, DeclRefExpr, MemberExpr, CXXPseudoDestructorExpr,
6559 OverloadExpr, UnresolvedMemberExpr, UnaryOperator>(Val: E);
6560}
6561
6562ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6563 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6564 Expr *ExecConfig, bool IsExecConfig,
6565 bool AllowRecovery) {
6566 // Since this might be a postfix expression, get rid of ParenListExprs.
6567 ExprResult Result = MaybeConvertParenListExprToParenExpr(S: Scope, ME: Fn);
6568 if (Result.isInvalid()) return ExprError();
6569 Fn = Result.get();
6570
6571 if (CheckArgsForPlaceholders(args: ArgExprs))
6572 return ExprError();
6573
6574 // The result of __builtin_counted_by_ref cannot be used as a function
6575 // argument. It allows leaking and modification of bounds safety information.
6576 for (const Expr *Arg : ArgExprs)
6577 if (CheckInvalidBuiltinCountedByRef(E: Arg,
6578 K: BuiltinCountedByRefKind::FunctionArg))
6579 return ExprError();
6580
6581 if (getLangOpts().CPlusPlus) {
6582 // If this is a pseudo-destructor expression, build the call immediately.
6583 if (isa<CXXPseudoDestructorExpr>(Val: Fn)) {
6584 if (!ArgExprs.empty()) {
6585 // Pseudo-destructor calls should not have any arguments.
6586 Diag(Loc: Fn->getBeginLoc(), DiagID: diag::err_pseudo_dtor_call_with_args)
6587 << FixItHint::CreateRemoval(
6588 RemoveRange: SourceRange(ArgExprs.front()->getBeginLoc(),
6589 ArgExprs.back()->getEndLoc()));
6590 }
6591
6592 return CallExpr::Create(Ctx: Context, Fn, /*Args=*/{}, Ty: Context.VoidTy,
6593 VK: VK_PRValue, RParenLoc, FPFeatures: CurFPFeatureOverrides());
6594 }
6595 if (Fn->getType() == Context.PseudoObjectTy) {
6596 ExprResult result = CheckPlaceholderExpr(E: Fn);
6597 if (result.isInvalid()) return ExprError();
6598 Fn = result.get();
6599 }
6600
6601 // Determine whether this is a dependent call inside a C++ template,
6602 // in which case we won't do any semantic analysis now.
6603 if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(Exprs: ArgExprs)) {
6604 if (ExecConfig) {
6605 return CUDAKernelCallExpr::Create(Ctx: Context, Fn,
6606 Config: cast<CallExpr>(Val: ExecConfig), Args: ArgExprs,
6607 Ty: Context.DependentTy, VK: VK_PRValue,
6608 RP: RParenLoc, FPFeatures: CurFPFeatureOverrides());
6609 } else {
6610
6611 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6612 S&: *this, UME: dyn_cast<UnresolvedMemberExpr>(Val: Fn->IgnoreParens()),
6613 CallLoc: Fn->getBeginLoc());
6614
6615 // If the type of the function itself is not dependent
6616 // check that it is a reasonable as a function, as type deduction
6617 // later assume the CallExpr has a sensible TYPE.
6618 if (!MayBeFunctionType(Context, E: Fn))
6619 return ExprError(
6620 Diag(Loc: LParenLoc, DiagID: diag::err_typecheck_call_not_function)
6621 << Fn->getType() << Fn->getSourceRange());
6622
6623 return CallExpr::Create(Ctx: Context, Fn, Args: ArgExprs, Ty: Context.DependentTy,
6624 VK: VK_PRValue, RParenLoc, FPFeatures: CurFPFeatureOverrides());
6625 }
6626 }
6627
6628 // Determine whether this is a call to an object (C++ [over.call.object]).
6629 if (Fn->getType()->isRecordType())
6630 return BuildCallToObjectOfClassType(S: Scope, Object: Fn, LParenLoc, Args: ArgExprs,
6631 RParenLoc);
6632
6633 if (Fn->getType() == Context.UnknownAnyTy) {
6634 ExprResult result = rebuildUnknownAnyFunction(S&: *this, fn: Fn);
6635 if (result.isInvalid()) return ExprError();
6636 Fn = result.get();
6637 }
6638
6639 if (Fn->getType() == Context.BoundMemberTy) {
6640 return BuildCallToMemberFunction(S: Scope, MemExpr: Fn, LParenLoc, Args: ArgExprs,
6641 RParenLoc, ExecConfig, IsExecConfig,
6642 AllowRecovery);
6643 }
6644 }
6645
6646 // Check for overloaded calls. This can happen even in C due to extensions.
6647 if (Fn->getType() == Context.OverloadTy) {
6648 OverloadExpr::FindResult find = OverloadExpr::find(E: Fn);
6649
6650 // We aren't supposed to apply this logic if there's an '&' involved.
6651 if (!find.HasFormOfMemberPointer || find.IsAddressOfOperandWithParen) {
6652 if (Expr::hasAnyTypeDependentArguments(Exprs: ArgExprs))
6653 return CallExpr::Create(Ctx: Context, Fn, Args: ArgExprs, Ty: Context.DependentTy,
6654 VK: VK_PRValue, RParenLoc, FPFeatures: CurFPFeatureOverrides());
6655 OverloadExpr *ovl = find.Expression;
6656 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Val: ovl))
6657 return BuildOverloadedCallExpr(
6658 S: Scope, Fn, ULE, LParenLoc, Args: ArgExprs, RParenLoc, ExecConfig,
6659 /*AllowTypoCorrection=*/true, CalleesAddressIsTaken: find.IsAddressOfOperand);
6660 return BuildCallToMemberFunction(S: Scope, MemExpr: Fn, LParenLoc, Args: ArgExprs,
6661 RParenLoc, ExecConfig, IsExecConfig,
6662 AllowRecovery);
6663 }
6664 }
6665
6666 // If we're directly calling a function, get the appropriate declaration.
6667 if (Fn->getType() == Context.UnknownAnyTy) {
6668 ExprResult result = rebuildUnknownAnyFunction(S&: *this, fn: Fn);
6669 if (result.isInvalid()) return ExprError();
6670 Fn = result.get();
6671 }
6672
6673 Expr *NakedFn = Fn->IgnoreParens();
6674
6675 bool CallingNDeclIndirectly = false;
6676 NamedDecl *NDecl = nullptr;
6677 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: NakedFn)) {
6678 if (UnOp->getOpcode() == UO_AddrOf) {
6679 CallingNDeclIndirectly = true;
6680 NakedFn = UnOp->getSubExpr()->IgnoreParens();
6681 }
6682 }
6683
6684 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: NakedFn)) {
6685 NDecl = DRE->getDecl();
6686
6687 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Val: NDecl);
6688 if (FDecl && FDecl->getBuiltinID()) {
6689 // Rewrite the function decl for this builtin by replacing parameters
6690 // with no explicit address space with the address space of the arguments
6691 // in ArgExprs.
6692 if ((FDecl =
6693 rewriteBuiltinFunctionDecl(Sema: this, Context, FDecl, ArgExprs))) {
6694 NDecl = FDecl;
6695 Fn = DeclRefExpr::Create(
6696 Context, QualifierLoc: FDecl->getQualifierLoc(), TemplateKWLoc: SourceLocation(), D: FDecl, RefersToEnclosingVariableOrCapture: false,
6697 NameLoc: SourceLocation(), T: FDecl->getType(), VK: Fn->getValueKind(), FoundD: FDecl,
6698 TemplateArgs: nullptr, NOUR: DRE->isNonOdrUse());
6699 }
6700 }
6701 } else if (auto *ME = dyn_cast<MemberExpr>(Val: NakedFn))
6702 NDecl = ME->getMemberDecl();
6703
6704 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: NDecl)) {
6705 if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6706 Function: FD, /*Complain=*/true, Loc: Fn->getBeginLoc()))
6707 return ExprError();
6708
6709 checkDirectCallValidity(S&: *this, Fn, Callee: FD, ArgExprs);
6710
6711 // If this expression is a call to a builtin function in HIP device
6712 // compilation, allow a pointer-type argument to default address space to be
6713 // passed as a pointer-type parameter to a non-default address space.
6714 // If Arg is declared in the default address space and Param is declared
6715 // in a non-default address space, perform an implicit address space cast to
6716 // the parameter type.
6717 if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
6718 FD->getBuiltinID()) {
6719 for (unsigned Idx = 0; Idx < ArgExprs.size() && Idx < FD->param_size();
6720 ++Idx) {
6721 ParmVarDecl *Param = FD->getParamDecl(i: Idx);
6722 if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
6723 !ArgExprs[Idx]->getType()->isPointerType())
6724 continue;
6725
6726 auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
6727 auto ArgTy = ArgExprs[Idx]->getType();
6728 auto ArgPtTy = ArgTy->getPointeeType();
6729 auto ArgAS = ArgPtTy.getAddressSpace();
6730
6731 // Add address space cast if target address spaces are different
6732 bool NeedImplicitASC =
6733 ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling.
6734 ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS
6735 // or from specific AS which has target AS matching that of Param.
6736 getASTContext().getTargetAddressSpace(AS: ArgAS) == getASTContext().getTargetAddressSpace(AS: ParamAS));
6737 if (!NeedImplicitASC)
6738 continue;
6739
6740 // First, ensure that the Arg is an RValue.
6741 if (ArgExprs[Idx]->isGLValue()) {
6742 ArgExprs[Idx] = ImplicitCastExpr::Create(
6743 Context, T: ArgExprs[Idx]->getType(), Kind: CK_NoOp, Operand: ArgExprs[Idx],
6744 BasePath: nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride());
6745 }
6746
6747 // Construct a new arg type with address space of Param
6748 Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
6749 ArgPtQuals.setAddressSpace(ParamAS);
6750 auto NewArgPtTy =
6751 Context.getQualifiedType(T: ArgPtTy.getUnqualifiedType(), Qs: ArgPtQuals);
6752 auto NewArgTy =
6753 Context.getQualifiedType(T: Context.getPointerType(T: NewArgPtTy),
6754 Qs: ArgTy.getQualifiers());
6755
6756 // Finally perform an implicit address space cast
6757 ArgExprs[Idx] = ImpCastExprToType(E: ArgExprs[Idx], Type: NewArgTy,
6758 CK: CK_AddressSpaceConversion)
6759 .get();
6760 }
6761 }
6762 }
6763
6764 if (Context.isDependenceAllowed() &&
6765 (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(Exprs: ArgExprs))) {
6766 assert(!getLangOpts().CPlusPlus);
6767 assert((Fn->containsErrors() ||
6768 llvm::any_of(ArgExprs,
6769 [](clang::Expr *E) { return E->containsErrors(); })) &&
6770 "should only occur in error-recovery path.");
6771 return CallExpr::Create(Ctx: Context, Fn, Args: ArgExprs, Ty: Context.DependentTy,
6772 VK: VK_PRValue, RParenLoc, FPFeatures: CurFPFeatureOverrides());
6773 }
6774 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Arg: ArgExprs, RParenLoc,
6775 Config: ExecConfig, IsExecConfig);
6776}
6777
6778Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
6779 MultiExprArg CallArgs) {
6780 std::string Name = Context.BuiltinInfo.getName(ID: Id);
6781 LookupResult R(*this, &Context.Idents.get(Name), Loc,
6782 Sema::LookupOrdinaryName);
6783 LookupName(R, S: TUScope, /*AllowBuiltinCreation=*/true);
6784
6785 auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
6786 assert(BuiltInDecl && "failed to find builtin declaration");
6787
6788 ExprResult DeclRef =
6789 BuildDeclRefExpr(D: BuiltInDecl, Ty: BuiltInDecl->getType(), VK: VK_LValue, Loc);
6790 assert(DeclRef.isUsable() && "Builtin reference cannot fail");
6791
6792 ExprResult Call =
6793 BuildCallExpr(/*Scope=*/nullptr, Fn: DeclRef.get(), LParenLoc: Loc, ArgExprs: CallArgs, RParenLoc: Loc);
6794
6795 assert(!Call.isInvalid() && "Call to builtin cannot fail!");
6796 return Call.get();
6797}
6798
6799ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6800 SourceLocation BuiltinLoc,
6801 SourceLocation RParenLoc) {
6802 QualType DstTy = GetTypeFromParser(Ty: ParsedDestTy);
6803 return BuildAsTypeExpr(E, DestTy: DstTy, BuiltinLoc, RParenLoc);
6804}
6805
6806ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
6807 SourceLocation BuiltinLoc,
6808 SourceLocation RParenLoc) {
6809 ExprValueKind VK = VK_PRValue;
6810 ExprObjectKind OK = OK_Ordinary;
6811 QualType SrcTy = E->getType();
6812 if (!SrcTy->isDependentType() &&
6813 Context.getTypeSize(T: DestTy) != Context.getTypeSize(T: SrcTy))
6814 return ExprError(
6815 Diag(Loc: BuiltinLoc, DiagID: diag::err_invalid_astype_of_different_size)
6816 << DestTy << SrcTy << E->getSourceRange());
6817 return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
6818}
6819
6820ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6821 SourceLocation BuiltinLoc,
6822 SourceLocation RParenLoc) {
6823 TypeSourceInfo *TInfo;
6824 GetTypeFromParser(Ty: ParsedDestTy, TInfo: &TInfo);
6825 return ConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6826}
6827
6828ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6829 SourceLocation LParenLoc,
6830 ArrayRef<Expr *> Args,
6831 SourceLocation RParenLoc, Expr *Config,
6832 bool IsExecConfig, ADLCallKind UsesADL) {
6833 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(Val: NDecl);
6834 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
6835
6836 // Functions with 'interrupt' attribute cannot be called directly.
6837 if (FDecl) {
6838 if (FDecl->hasAttr<AnyX86InterruptAttr>()) {
6839 Diag(Loc: Fn->getExprLoc(), DiagID: diag::err_anyx86_interrupt_called);
6840 return ExprError();
6841 }
6842 if (FDecl->hasAttr<ARMInterruptAttr>()) {
6843 Diag(Loc: Fn->getExprLoc(), DiagID: diag::err_arm_interrupt_called);
6844 return ExprError();
6845 }
6846 }
6847
6848 // X86 interrupt handlers may only call routines with attribute
6849 // no_caller_saved_registers since there is no efficient way to
6850 // save and restore the non-GPR state.
6851 if (auto *Caller = getCurFunctionDecl()) {
6852 if (Caller->hasAttr<AnyX86InterruptAttr>() ||
6853 Caller->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) {
6854 const TargetInfo &TI = Context.getTargetInfo();
6855 bool HasNonGPRRegisters =
6856 TI.hasFeature(Feature: "sse") || TI.hasFeature(Feature: "x87") || TI.hasFeature(Feature: "mmx");
6857 if (HasNonGPRRegisters &&
6858 (!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())) {
6859 Diag(Loc: Fn->getExprLoc(), DiagID: diag::warn_anyx86_excessive_regsave)
6860 << (Caller->hasAttr<AnyX86InterruptAttr>() ? 0 : 1);
6861 if (FDecl)
6862 Diag(Loc: FDecl->getLocation(), DiagID: diag::note_callee_decl) << FDecl;
6863 }
6864 }
6865 }
6866
6867 // Promote the function operand.
6868 // We special-case function promotion here because we only allow promoting
6869 // builtin functions to function pointers in the callee of a call.
6870 ExprResult Result;
6871 QualType ResultTy;
6872 if (BuiltinID &&
6873 Fn->getType()->isSpecificBuiltinType(K: BuiltinType::BuiltinFn)) {
6874 // Extract the return type from the (builtin) function pointer type.
6875 // FIXME Several builtins still have setType in
6876 // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6877 // Builtins.td to ensure they are correct before removing setType calls.
6878 QualType FnPtrTy = Context.getPointerType(T: FDecl->getType());
6879 Result = ImpCastExprToType(E: Fn, Type: FnPtrTy, CK: CK_BuiltinFnToFnPtr).get();
6880 ResultTy = FDecl->getCallResultType();
6881 } else {
6882 Result = CallExprUnaryConversions(E: Fn);
6883 ResultTy = Context.BoolTy;
6884 }
6885 if (Result.isInvalid())
6886 return ExprError();
6887 Fn = Result.get();
6888
6889 // Check for a valid function type, but only if it is not a builtin which
6890 // requires custom type checking. These will be handled by
6891 // CheckBuiltinFunctionCall below just after creation of the call expression.
6892 const FunctionType *FuncT = nullptr;
6893 if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(ID: BuiltinID)) {
6894 retry:
6895 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
6896 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6897 // have type pointer to function".
6898 FuncT = PT->getPointeeType()->getAs<FunctionType>();
6899 if (!FuncT)
6900 return ExprError(Diag(Loc: LParenLoc, DiagID: diag::err_typecheck_call_not_function)
6901 << Fn->getType() << Fn->getSourceRange());
6902 } else if (const BlockPointerType *BPT =
6903 Fn->getType()->getAs<BlockPointerType>()) {
6904 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
6905 } else {
6906 // Handle calls to expressions of unknown-any type.
6907 if (Fn->getType() == Context.UnknownAnyTy) {
6908 ExprResult rewrite = rebuildUnknownAnyFunction(S&: *this, fn: Fn);
6909 if (rewrite.isInvalid())
6910 return ExprError();
6911 Fn = rewrite.get();
6912 goto retry;
6913 }
6914
6915 return ExprError(Diag(Loc: LParenLoc, DiagID: diag::err_typecheck_call_not_function)
6916 << Fn->getType() << Fn->getSourceRange());
6917 }
6918 }
6919
6920 // Get the number of parameters in the function prototype, if any.
6921 // We will allocate space for max(Args.size(), NumParams) arguments
6922 // in the call expression.
6923 const auto *Proto = dyn_cast_or_null<FunctionProtoType>(Val: FuncT);
6924 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
6925
6926 CallExpr *TheCall;
6927 if (Config) {
6928 assert(UsesADL == ADLCallKind::NotADL &&
6929 "CUDAKernelCallExpr should not use ADL");
6930 TheCall = CUDAKernelCallExpr::Create(Ctx: Context, Fn, Config: cast<CallExpr>(Val: Config),
6931 Args, Ty: ResultTy, VK: VK_PRValue, RP: RParenLoc,
6932 FPFeatures: CurFPFeatureOverrides(), MinNumArgs: NumParams);
6933 } else {
6934 TheCall =
6935 CallExpr::Create(Ctx: Context, Fn, Args, Ty: ResultTy, VK: VK_PRValue, RParenLoc,
6936 FPFeatures: CurFPFeatureOverrides(), MinNumArgs: NumParams, UsesADL);
6937 }
6938
6939 // Bail out early if calling a builtin with custom type checking.
6940 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(ID: BuiltinID)) {
6941 ExprResult E = CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6942 if (!E.isInvalid() && Context.BuiltinInfo.isImmediate(ID: BuiltinID))
6943 E = CheckForImmediateInvocation(E, Decl: FDecl);
6944 return E;
6945 }
6946
6947 if (getLangOpts().CUDA) {
6948 if (Config) {
6949 // CUDA: Kernel calls must be to global functions
6950 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
6951 return ExprError(Diag(Loc: LParenLoc,DiagID: diag::err_kern_call_not_global_function)
6952 << FDecl << Fn->getSourceRange());
6953
6954 // CUDA: Kernel function must have 'void' return type
6955 if (!FuncT->getReturnType()->isVoidType() &&
6956 !FuncT->getReturnType()->getAs<AutoType>() &&
6957 !FuncT->getReturnType()->isInstantiationDependentType())
6958 return ExprError(Diag(Loc: LParenLoc, DiagID: diag::err_kern_type_not_void_return)
6959 << Fn->getType() << Fn->getSourceRange());
6960 } else {
6961 // CUDA: Calls to global functions must be configured
6962 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
6963 return ExprError(Diag(Loc: LParenLoc, DiagID: diag::err_global_call_not_config)
6964 << FDecl << Fn->getSourceRange());
6965 }
6966 }
6967
6968 // Check for a valid return type
6969 if (CheckCallReturnType(ReturnType: FuncT->getReturnType(), Loc: Fn->getBeginLoc(), CE: TheCall,
6970 FD: FDecl))
6971 return ExprError();
6972
6973 // We know the result type of the call, set it.
6974 TheCall->setType(FuncT->getCallResultType(Context));
6975 TheCall->setValueKind(Expr::getValueKindForType(T: FuncT->getReturnType()));
6976
6977 // WebAssembly tables can't be used as arguments.
6978 if (Context.getTargetInfo().getTriple().isWasm()) {
6979 for (const Expr *Arg : Args) {
6980 if (Arg && Arg->getType()->isWebAssemblyTableType()) {
6981 return ExprError(Diag(Loc: Arg->getExprLoc(),
6982 DiagID: diag::err_wasm_table_as_function_parameter));
6983 }
6984 }
6985 }
6986
6987 if (Proto) {
6988 if (ConvertArgumentsForCall(Call: TheCall, Fn, FDecl, Proto, Args, RParenLoc,
6989 IsExecConfig))
6990 return ExprError();
6991 } else {
6992 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
6993
6994 if (FDecl) {
6995 // Check if we have too few/too many template arguments, based
6996 // on our knowledge of the function definition.
6997 const FunctionDecl *Def = nullptr;
6998 if (FDecl->hasBody(Definition&: Def) && Args.size() != Def->param_size()) {
6999 Proto = Def->getType()->getAs<FunctionProtoType>();
7000 if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
7001 Diag(Loc: RParenLoc, DiagID: diag::warn_call_wrong_number_of_arguments)
7002 << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
7003 }
7004
7005 // If the function we're calling isn't a function prototype, but we have
7006 // a function prototype from a prior declaratiom, use that prototype.
7007 if (!FDecl->hasPrototype())
7008 Proto = FDecl->getType()->getAs<FunctionProtoType>();
7009 }
7010
7011 // If we still haven't found a prototype to use but there are arguments to
7012 // the call, diagnose this as calling a function without a prototype.
7013 // However, if we found a function declaration, check to see if
7014 // -Wdeprecated-non-prototype was disabled where the function was declared.
7015 // If so, we will silence the diagnostic here on the assumption that this
7016 // interface is intentional and the user knows what they're doing. We will
7017 // also silence the diagnostic if there is a function declaration but it
7018 // was implicitly defined (the user already gets diagnostics about the
7019 // creation of the implicit function declaration, so the additional warning
7020 // is not helpful).
7021 if (!Proto && !Args.empty() &&
7022 (!FDecl || (!FDecl->isImplicit() &&
7023 !Diags.isIgnored(DiagID: diag::warn_strict_uses_without_prototype,
7024 Loc: FDecl->getLocation()))))
7025 Diag(Loc: LParenLoc, DiagID: diag::warn_strict_uses_without_prototype)
7026 << (FDecl != nullptr) << FDecl;
7027
7028 // Promote the arguments (C99 6.5.2.2p6).
7029 for (unsigned i = 0, e = Args.size(); i != e; i++) {
7030 Expr *Arg = Args[i];
7031
7032 if (Proto && i < Proto->getNumParams()) {
7033 InitializedEntity Entity = InitializedEntity::InitializeParameter(
7034 Context, Type: Proto->getParamType(i), Consumed: Proto->isParamConsumed(I: i));
7035 ExprResult ArgE =
7036 PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Arg);
7037 if (ArgE.isInvalid())
7038 return true;
7039
7040 Arg = ArgE.getAs<Expr>();
7041
7042 } else {
7043 ExprResult ArgE = DefaultArgumentPromotion(E: Arg);
7044
7045 if (ArgE.isInvalid())
7046 return true;
7047
7048 Arg = ArgE.getAs<Expr>();
7049 }
7050
7051 if (RequireCompleteType(Loc: Arg->getBeginLoc(), T: Arg->getType(),
7052 DiagID: diag::err_call_incomplete_argument, Args: Arg))
7053 return ExprError();
7054
7055 TheCall->setArg(Arg: i, ArgExpr: Arg);
7056 }
7057 TheCall->computeDependence();
7058 }
7059
7060 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Val: FDecl))
7061 if (Method->isImplicitObjectMemberFunction())
7062 return ExprError(Diag(Loc: LParenLoc, DiagID: diag::err_member_call_without_object)
7063 << Fn->getSourceRange() << 0);
7064
7065 // Check for sentinels
7066 if (NDecl)
7067 DiagnoseSentinelCalls(D: NDecl, Loc: LParenLoc, Args);
7068
7069 // Warn for unions passing across security boundary (CMSE).
7070 if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
7071 for (unsigned i = 0, e = Args.size(); i != e; i++) {
7072 if (const auto *RT =
7073 dyn_cast<RecordType>(Val: Args[i]->getType().getCanonicalType())) {
7074 if (RT->getDecl()->isOrContainsUnion())
7075 Diag(Loc: Args[i]->getBeginLoc(), DiagID: diag::warn_cmse_nonsecure_union)
7076 << 0 << i;
7077 }
7078 }
7079 }
7080
7081 // Do special checking on direct calls to functions.
7082 if (FDecl) {
7083 if (CheckFunctionCall(FDecl, TheCall, Proto))
7084 return ExprError();
7085
7086 checkFortifiedBuiltinMemoryFunction(FD: FDecl, TheCall);
7087
7088 if (BuiltinID)
7089 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7090 } else if (NDecl) {
7091 if (CheckPointerCall(NDecl, TheCall, Proto))
7092 return ExprError();
7093 } else {
7094 if (CheckOtherCall(TheCall, Proto))
7095 return ExprError();
7096 }
7097
7098 return CheckForImmediateInvocation(E: MaybeBindToTemporary(E: TheCall), Decl: FDecl);
7099}
7100
7101ExprResult
7102Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7103 SourceLocation RParenLoc, Expr *InitExpr) {
7104 assert(Ty && "ActOnCompoundLiteral(): missing type");
7105 assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
7106
7107 TypeSourceInfo *TInfo;
7108 QualType literalType = GetTypeFromParser(Ty, TInfo: &TInfo);
7109 if (!TInfo)
7110 TInfo = Context.getTrivialTypeSourceInfo(T: literalType);
7111
7112 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, LiteralExpr: InitExpr);
7113}
7114
7115ExprResult
7116Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7117 SourceLocation RParenLoc, Expr *LiteralExpr) {
7118 QualType literalType = TInfo->getType();
7119
7120 if (literalType->isArrayType()) {
7121 if (RequireCompleteSizedType(
7122 Loc: LParenLoc, T: Context.getBaseElementType(QT: literalType),
7123 DiagID: diag::err_array_incomplete_or_sizeless_type,
7124 Args: SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7125 return ExprError();
7126 if (literalType->isVariableArrayType()) {
7127 // C23 6.7.10p4: An entity of variable length array type shall not be
7128 // initialized except by an empty initializer.
7129 //
7130 // The C extension warnings are issued from ParseBraceInitializer() and
7131 // do not need to be issued here. However, we continue to issue an error
7132 // in the case there are initializers or we are compiling C++. We allow
7133 // use of VLAs in C++, but it's not clear we want to allow {} to zero
7134 // init a VLA in C++ in all cases (such as with non-trivial constructors).
7135 // FIXME: should we allow this construct in C++ when it makes sense to do
7136 // so?
7137 //
7138 // But: C99-C23 6.5.2.5 Compound literals constraint 1: The type name
7139 // shall specify an object type or an array of unknown size, but not a
7140 // variable length array type. This seems odd, as it allows 'int a[size] =
7141 // {}', but forbids 'int *a = (int[size]){}'. As this is what the standard
7142 // says, this is what's implemented here for C (except for the extension
7143 // that permits constant foldable size arrays)
7144
7145 auto diagID = LangOpts.CPlusPlus
7146 ? diag::err_variable_object_no_init
7147 : diag::err_compound_literal_with_vla_type;
7148 if (!tryToFixVariablyModifiedVarType(TInfo, T&: literalType, Loc: LParenLoc,
7149 FailedFoldDiagID: diagID))
7150 return ExprError();
7151 }
7152 } else if (!literalType->isDependentType() &&
7153 RequireCompleteType(Loc: LParenLoc, T: literalType,
7154 DiagID: diag::err_typecheck_decl_incomplete_type,
7155 Args: SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7156 return ExprError();
7157
7158 InitializedEntity Entity
7159 = InitializedEntity::InitializeCompoundLiteralInit(TSI: TInfo);
7160 InitializationKind Kind
7161 = InitializationKind::CreateCStyleCast(StartLoc: LParenLoc,
7162 TypeRange: SourceRange(LParenLoc, RParenLoc),
7163 /*InitList=*/true);
7164 InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7165 ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args: LiteralExpr,
7166 ResultType: &literalType);
7167 if (Result.isInvalid())
7168 return ExprError();
7169 LiteralExpr = Result.get();
7170
7171 // We treat the compound literal as being at file scope if it's not in a
7172 // function or method body, or within the function's prototype scope. This
7173 // means the following compound literal is not at file scope:
7174 // void func(char *para[(int [1]){ 0 }[0]);
7175 const Scope *S = getCurScope();
7176 bool IsFileScope = !CurContext->isFunctionOrMethod() &&
7177 !S->isInCFunctionScope() &&
7178 (!S || !S->isFunctionPrototypeScope());
7179
7180 // In C, compound literals are l-values for some reason.
7181 // For GCC compatibility, in C++, file-scope array compound literals with
7182 // constant initializers are also l-values, and compound literals are
7183 // otherwise prvalues.
7184 //
7185 // (GCC also treats C++ list-initialized file-scope array prvalues with
7186 // constant initializers as l-values, but that's non-conforming, so we don't
7187 // follow it there.)
7188 //
7189 // FIXME: It would be better to handle the lvalue cases as materializing and
7190 // lifetime-extending a temporary object, but our materialized temporaries
7191 // representation only supports lifetime extension from a variable, not "out
7192 // of thin air".
7193 // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7194 // is bound to the result of applying array-to-pointer decay to the compound
7195 // literal.
7196 // FIXME: GCC supports compound literals of reference type, which should
7197 // obviously have a value kind derived from the kind of reference involved.
7198 ExprValueKind VK =
7199 (getLangOpts().CPlusPlus && !(IsFileScope && literalType->isArrayType()))
7200 ? VK_PRValue
7201 : VK_LValue;
7202
7203 // C99 6.5.2.5
7204 // "If the compound literal occurs outside the body of a function, the
7205 // initializer list shall consist of constant expressions."
7206 if (IsFileScope)
7207 if (auto ILE = dyn_cast<InitListExpr>(Val: LiteralExpr))
7208 for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7209 Expr *Init = ILE->getInit(Init: i);
7210 if (!Init->isTypeDependent() && !Init->isValueDependent() &&
7211 !Init->isConstantInitializer(Ctx&: Context, /*IsForRef=*/ForRef: false)) {
7212 Diag(Loc: Init->getExprLoc(), DiagID: diag::err_init_element_not_constant)
7213 << Init->getSourceBitField();
7214 return ExprError();
7215 }
7216
7217 ILE->setInit(Init: i, expr: ConstantExpr::Create(Context, E: Init));
7218 }
7219
7220 auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType, VK,
7221 LiteralExpr, IsFileScope);
7222 if (IsFileScope) {
7223 if (!LiteralExpr->isTypeDependent() &&
7224 !LiteralExpr->isValueDependent() &&
7225 !literalType->isDependentType()) // C99 6.5.2.5p3
7226 if (CheckForConstantInitializer(Init: LiteralExpr))
7227 return ExprError();
7228 } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7229 literalType.getAddressSpace() != LangAS::Default) {
7230 // Embedded-C extensions to C99 6.5.2.5:
7231 // "If the compound literal occurs inside the body of a function, the
7232 // type name shall not be qualified by an address-space qualifier."
7233 Diag(Loc: LParenLoc, DiagID: diag::err_compound_literal_with_address_space)
7234 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7235 return ExprError();
7236 }
7237
7238 if (!IsFileScope && !getLangOpts().CPlusPlus) {
7239 // Compound literals that have automatic storage duration are destroyed at
7240 // the end of the scope in C; in C++, they're just temporaries.
7241
7242 // Emit diagnostics if it is or contains a C union type that is non-trivial
7243 // to destruct.
7244 if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7245 checkNonTrivialCUnion(QT: E->getType(), Loc: E->getExprLoc(),
7246 UseContext: NonTrivialCUnionContext::CompoundLiteral,
7247 NonTrivialKind: NTCUK_Destruct);
7248
7249 // Diagnose jumps that enter or exit the lifetime of the compound literal.
7250 if (literalType.isDestructedType()) {
7251 Cleanup.setExprNeedsCleanups(true);
7252 ExprCleanupObjects.push_back(Elt: E);
7253 getCurFunction()->setHasBranchProtectedScope();
7254 }
7255 }
7256
7257 if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7258 E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7259 checkNonTrivialCUnionInInitializer(Init: E->getInitializer(),
7260 Loc: E->getInitializer()->getExprLoc());
7261
7262 return MaybeBindToTemporary(E);
7263}
7264
7265ExprResult
7266Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7267 SourceLocation RBraceLoc) {
7268 // Only produce each kind of designated initialization diagnostic once.
7269 SourceLocation FirstDesignator;
7270 bool DiagnosedArrayDesignator = false;
7271 bool DiagnosedNestedDesignator = false;
7272 bool DiagnosedMixedDesignator = false;
7273
7274 // Check that any designated initializers are syntactically valid in the
7275 // current language mode.
7276 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7277 if (auto *DIE = dyn_cast<DesignatedInitExpr>(Val: InitArgList[I])) {
7278 if (FirstDesignator.isInvalid())
7279 FirstDesignator = DIE->getBeginLoc();
7280
7281 if (!getLangOpts().CPlusPlus)
7282 break;
7283
7284 if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7285 DiagnosedNestedDesignator = true;
7286 Diag(Loc: DIE->getBeginLoc(), DiagID: diag::ext_designated_init_nested)
7287 << DIE->getDesignatorsSourceRange();
7288 }
7289
7290 for (auto &Desig : DIE->designators()) {
7291 if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7292 DiagnosedArrayDesignator = true;
7293 Diag(Loc: Desig.getBeginLoc(), DiagID: diag::ext_designated_init_array)
7294 << Desig.getSourceRange();
7295 }
7296 }
7297
7298 if (!DiagnosedMixedDesignator &&
7299 !isa<DesignatedInitExpr>(Val: InitArgList[0])) {
7300 DiagnosedMixedDesignator = true;
7301 Diag(Loc: DIE->getBeginLoc(), DiagID: diag::ext_designated_init_mixed)
7302 << DIE->getSourceRange();
7303 Diag(Loc: InitArgList[0]->getBeginLoc(), DiagID: diag::note_designated_init_mixed)
7304 << InitArgList[0]->getSourceRange();
7305 }
7306 } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7307 isa<DesignatedInitExpr>(Val: InitArgList[0])) {
7308 DiagnosedMixedDesignator = true;
7309 auto *DIE = cast<DesignatedInitExpr>(Val: InitArgList[0]);
7310 Diag(Loc: DIE->getBeginLoc(), DiagID: diag::ext_designated_init_mixed)
7311 << DIE->getSourceRange();
7312 Diag(Loc: InitArgList[I]->getBeginLoc(), DiagID: diag::note_designated_init_mixed)
7313 << InitArgList[I]->getSourceRange();
7314 }
7315 }
7316
7317 if (FirstDesignator.isValid()) {
7318 // Only diagnose designated initiaization as a C++20 extension if we didn't
7319 // already diagnose use of (non-C++20) C99 designator syntax.
7320 if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7321 !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7322 Diag(Loc: FirstDesignator, DiagID: getLangOpts().CPlusPlus20
7323 ? diag::warn_cxx17_compat_designated_init
7324 : diag::ext_cxx_designated_init);
7325 } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7326 Diag(Loc: FirstDesignator, DiagID: diag::ext_designated_init);
7327 }
7328 }
7329
7330 return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7331}
7332
7333ExprResult
7334Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7335 SourceLocation RBraceLoc) {
7336 // Semantic analysis for initializers is done by ActOnDeclarator() and
7337 // CheckInitializer() - it requires knowledge of the object being initialized.
7338
7339 // Immediately handle non-overload placeholders. Overloads can be
7340 // resolved contextually, but everything else here can't.
7341 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7342 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7343 ExprResult result = CheckPlaceholderExpr(E: InitArgList[I]);
7344
7345 // Ignore failures; dropping the entire initializer list because
7346 // of one failure would be terrible for indexing/etc.
7347 if (result.isInvalid()) continue;
7348
7349 InitArgList[I] = result.get();
7350 }
7351 }
7352
7353 InitListExpr *E =
7354 new (Context) InitListExpr(Context, LBraceLoc, InitArgList, RBraceLoc);
7355 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7356 return E;
7357}
7358
7359void Sema::maybeExtendBlockObject(ExprResult &E) {
7360 assert(E.get()->getType()->isBlockPointerType());
7361 assert(E.get()->isPRValue());
7362
7363 // Only do this in an r-value context.
7364 if (!getLangOpts().ObjCAutoRefCount) return;
7365
7366 E = ImplicitCastExpr::Create(
7367 Context, T: E.get()->getType(), Kind: CK_ARCExtendBlockObject, Operand: E.get(),
7368 /*base path*/ BasePath: nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride());
7369 Cleanup.setExprNeedsCleanups(true);
7370}
7371
7372CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7373 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7374 // Also, callers should have filtered out the invalid cases with
7375 // pointers. Everything else should be possible.
7376
7377 QualType SrcTy = Src.get()->getType();
7378 if (Context.hasSameUnqualifiedType(T1: SrcTy, T2: DestTy))
7379 return CK_NoOp;
7380
7381 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7382 case Type::STK_MemberPointer:
7383 llvm_unreachable("member pointer type in C");
7384
7385 case Type::STK_CPointer:
7386 case Type::STK_BlockPointer:
7387 case Type::STK_ObjCObjectPointer:
7388 switch (DestTy->getScalarTypeKind()) {
7389 case Type::STK_CPointer: {
7390 LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7391 LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7392 if (SrcAS != DestAS)
7393 return CK_AddressSpaceConversion;
7394 if (Context.hasCvrSimilarType(T1: SrcTy, T2: DestTy))
7395 return CK_NoOp;
7396 return CK_BitCast;
7397 }
7398 case Type::STK_BlockPointer:
7399 return (SrcKind == Type::STK_BlockPointer
7400 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7401 case Type::STK_ObjCObjectPointer:
7402 if (SrcKind == Type::STK_ObjCObjectPointer)
7403 return CK_BitCast;
7404 if (SrcKind == Type::STK_CPointer)
7405 return CK_CPointerToObjCPointerCast;
7406 maybeExtendBlockObject(E&: Src);
7407 return CK_BlockPointerToObjCPointerCast;
7408 case Type::STK_Bool:
7409 return CK_PointerToBoolean;
7410 case Type::STK_Integral:
7411 return CK_PointerToIntegral;
7412 case Type::STK_Floating:
7413 case Type::STK_FloatingComplex:
7414 case Type::STK_IntegralComplex:
7415 case Type::STK_MemberPointer:
7416 case Type::STK_FixedPoint:
7417 llvm_unreachable("illegal cast from pointer");
7418 }
7419 llvm_unreachable("Should have returned before this");
7420
7421 case Type::STK_FixedPoint:
7422 switch (DestTy->getScalarTypeKind()) {
7423 case Type::STK_FixedPoint:
7424 return CK_FixedPointCast;
7425 case Type::STK_Bool:
7426 return CK_FixedPointToBoolean;
7427 case Type::STK_Integral:
7428 return CK_FixedPointToIntegral;
7429 case Type::STK_Floating:
7430 return CK_FixedPointToFloating;
7431 case Type::STK_IntegralComplex:
7432 case Type::STK_FloatingComplex:
7433 Diag(Loc: Src.get()->getExprLoc(),
7434 DiagID: diag::err_unimplemented_conversion_with_fixed_point_type)
7435 << DestTy;
7436 return CK_IntegralCast;
7437 case Type::STK_CPointer:
7438 case Type::STK_ObjCObjectPointer:
7439 case Type::STK_BlockPointer:
7440 case Type::STK_MemberPointer:
7441 llvm_unreachable("illegal cast to pointer type");
7442 }
7443 llvm_unreachable("Should have returned before this");
7444
7445 case Type::STK_Bool: // casting from bool is like casting from an integer
7446 case Type::STK_Integral:
7447 switch (DestTy->getScalarTypeKind()) {
7448 case Type::STK_CPointer:
7449 case Type::STK_ObjCObjectPointer:
7450 case Type::STK_BlockPointer:
7451 if (Src.get()->isNullPointerConstant(Ctx&: Context,
7452 NPC: Expr::NPC_ValueDependentIsNull))
7453 return CK_NullToPointer;
7454 return CK_IntegralToPointer;
7455 case Type::STK_Bool:
7456 return CK_IntegralToBoolean;
7457 case Type::STK_Integral:
7458 return CK_IntegralCast;
7459 case Type::STK_Floating:
7460 return CK_IntegralToFloating;
7461 case Type::STK_IntegralComplex:
7462 Src = ImpCastExprToType(E: Src.get(),
7463 Type: DestTy->castAs<ComplexType>()->getElementType(),
7464 CK: CK_IntegralCast);
7465 return CK_IntegralRealToComplex;
7466 case Type::STK_FloatingComplex:
7467 Src = ImpCastExprToType(E: Src.get(),
7468 Type: DestTy->castAs<ComplexType>()->getElementType(),
7469 CK: CK_IntegralToFloating);
7470 return CK_FloatingRealToComplex;
7471 case Type::STK_MemberPointer:
7472 llvm_unreachable("member pointer type in C");
7473 case Type::STK_FixedPoint:
7474 return CK_IntegralToFixedPoint;
7475 }
7476 llvm_unreachable("Should have returned before this");
7477
7478 case Type::STK_Floating:
7479 switch (DestTy->getScalarTypeKind()) {
7480 case Type::STK_Floating:
7481 return CK_FloatingCast;
7482 case Type::STK_Bool:
7483 return CK_FloatingToBoolean;
7484 case Type::STK_Integral:
7485 return CK_FloatingToIntegral;
7486 case Type::STK_FloatingComplex:
7487 Src = ImpCastExprToType(E: Src.get(),
7488 Type: DestTy->castAs<ComplexType>()->getElementType(),
7489 CK: CK_FloatingCast);
7490 return CK_FloatingRealToComplex;
7491 case Type::STK_IntegralComplex:
7492 Src = ImpCastExprToType(E: Src.get(),
7493 Type: DestTy->castAs<ComplexType>()->getElementType(),
7494 CK: CK_FloatingToIntegral);
7495 return CK_IntegralRealToComplex;
7496 case Type::STK_CPointer:
7497 case Type::STK_ObjCObjectPointer:
7498 case Type::STK_BlockPointer:
7499 llvm_unreachable("valid float->pointer cast?");
7500 case Type::STK_MemberPointer:
7501 llvm_unreachable("member pointer type in C");
7502 case Type::STK_FixedPoint:
7503 return CK_FloatingToFixedPoint;
7504 }
7505 llvm_unreachable("Should have returned before this");
7506
7507 case Type::STK_FloatingComplex:
7508 switch (DestTy->getScalarTypeKind()) {
7509 case Type::STK_FloatingComplex:
7510 return CK_FloatingComplexCast;
7511 case Type::STK_IntegralComplex:
7512 return CK_FloatingComplexToIntegralComplex;
7513 case Type::STK_Floating: {
7514 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7515 if (Context.hasSameType(T1: ET, T2: DestTy))
7516 return CK_FloatingComplexToReal;
7517 Src = ImpCastExprToType(E: Src.get(), Type: ET, CK: CK_FloatingComplexToReal);
7518 return CK_FloatingCast;
7519 }
7520 case Type::STK_Bool:
7521 return CK_FloatingComplexToBoolean;
7522 case Type::STK_Integral:
7523 Src = ImpCastExprToType(E: Src.get(),
7524 Type: SrcTy->castAs<ComplexType>()->getElementType(),
7525 CK: CK_FloatingComplexToReal);
7526 return CK_FloatingToIntegral;
7527 case Type::STK_CPointer:
7528 case Type::STK_ObjCObjectPointer:
7529 case Type::STK_BlockPointer:
7530 llvm_unreachable("valid complex float->pointer cast?");
7531 case Type::STK_MemberPointer:
7532 llvm_unreachable("member pointer type in C");
7533 case Type::STK_FixedPoint:
7534 Diag(Loc: Src.get()->getExprLoc(),
7535 DiagID: diag::err_unimplemented_conversion_with_fixed_point_type)
7536 << SrcTy;
7537 return CK_IntegralCast;
7538 }
7539 llvm_unreachable("Should have returned before this");
7540
7541 case Type::STK_IntegralComplex:
7542 switch (DestTy->getScalarTypeKind()) {
7543 case Type::STK_FloatingComplex:
7544 return CK_IntegralComplexToFloatingComplex;
7545 case Type::STK_IntegralComplex:
7546 return CK_IntegralComplexCast;
7547 case Type::STK_Integral: {
7548 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7549 if (Context.hasSameType(T1: ET, T2: DestTy))
7550 return CK_IntegralComplexToReal;
7551 Src = ImpCastExprToType(E: Src.get(), Type: ET, CK: CK_IntegralComplexToReal);
7552 return CK_IntegralCast;
7553 }
7554 case Type::STK_Bool:
7555 return CK_IntegralComplexToBoolean;
7556 case Type::STK_Floating:
7557 Src = ImpCastExprToType(E: Src.get(),
7558 Type: SrcTy->castAs<ComplexType>()->getElementType(),
7559 CK: CK_IntegralComplexToReal);
7560 return CK_IntegralToFloating;
7561 case Type::STK_CPointer:
7562 case Type::STK_ObjCObjectPointer:
7563 case Type::STK_BlockPointer:
7564 llvm_unreachable("valid complex int->pointer cast?");
7565 case Type::STK_MemberPointer:
7566 llvm_unreachable("member pointer type in C");
7567 case Type::STK_FixedPoint:
7568 Diag(Loc: Src.get()->getExprLoc(),
7569 DiagID: diag::err_unimplemented_conversion_with_fixed_point_type)
7570 << SrcTy;
7571 return CK_IntegralCast;
7572 }
7573 llvm_unreachable("Should have returned before this");
7574 }
7575
7576 llvm_unreachable("Unhandled scalar cast");
7577}
7578
7579static bool breakDownVectorType(QualType type, uint64_t &len,
7580 QualType &eltType) {
7581 // Vectors are simple.
7582 if (const VectorType *vecType = type->getAs<VectorType>()) {
7583 len = vecType->getNumElements();
7584 eltType = vecType->getElementType();
7585 assert(eltType->isScalarType() || eltType->isMFloat8Type());
7586 return true;
7587 }
7588
7589 // We allow lax conversion to and from non-vector types, but only if
7590 // they're real types (i.e. non-complex, non-pointer scalar types).
7591 if (!type->isRealType()) return false;
7592
7593 len = 1;
7594 eltType = type;
7595 return true;
7596}
7597
7598bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7599 assert(srcTy->isVectorType() || destTy->isVectorType());
7600
7601 auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7602 if (!FirstType->isSVESizelessBuiltinType())
7603 return false;
7604
7605 const auto *VecTy = SecondType->getAs<VectorType>();
7606 return VecTy && VecTy->getVectorKind() == VectorKind::SveFixedLengthData;
7607 };
7608
7609 return ValidScalableConversion(srcTy, destTy) ||
7610 ValidScalableConversion(destTy, srcTy);
7611}
7612
7613bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7614 if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7615 return false;
7616
7617 const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7618 const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7619
7620 return matSrcType->getNumRows() == matDestType->getNumRows() &&
7621 matSrcType->getNumColumns() == matDestType->getNumColumns();
7622}
7623
7624bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7625 assert(DestTy->isVectorType() || SrcTy->isVectorType());
7626
7627 uint64_t SrcLen, DestLen;
7628 QualType SrcEltTy, DestEltTy;
7629 if (!breakDownVectorType(type: SrcTy, len&: SrcLen, eltType&: SrcEltTy))
7630 return false;
7631 if (!breakDownVectorType(type: DestTy, len&: DestLen, eltType&: DestEltTy))
7632 return false;
7633
7634 // ASTContext::getTypeSize will return the size rounded up to a
7635 // power of 2, so instead of using that, we need to use the raw
7636 // element size multiplied by the element count.
7637 uint64_t SrcEltSize = Context.getTypeSize(T: SrcEltTy);
7638 uint64_t DestEltSize = Context.getTypeSize(T: DestEltTy);
7639
7640 return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7641}
7642
7643bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
7644 assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
7645 "expected at least one type to be a vector here");
7646
7647 bool IsSrcTyAltivec =
7648 SrcTy->isVectorType() && ((SrcTy->castAs<VectorType>()->getVectorKind() ==
7649 VectorKind::AltiVecVector) ||
7650 (SrcTy->castAs<VectorType>()->getVectorKind() ==
7651 VectorKind::AltiVecBool) ||
7652 (SrcTy->castAs<VectorType>()->getVectorKind() ==
7653 VectorKind::AltiVecPixel));
7654
7655 bool IsDestTyAltivec = DestTy->isVectorType() &&
7656 ((DestTy->castAs<VectorType>()->getVectorKind() ==
7657 VectorKind::AltiVecVector) ||
7658 (DestTy->castAs<VectorType>()->getVectorKind() ==
7659 VectorKind::AltiVecBool) ||
7660 (DestTy->castAs<VectorType>()->getVectorKind() ==
7661 VectorKind::AltiVecPixel));
7662
7663 return (IsSrcTyAltivec || IsDestTyAltivec);
7664}
7665
7666bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7667 assert(destTy->isVectorType() || srcTy->isVectorType());
7668
7669 // Disallow lax conversions between scalars and ExtVectors (these
7670 // conversions are allowed for other vector types because common headers
7671 // depend on them). Most scalar OP ExtVector cases are handled by the
7672 // splat path anyway, which does what we want (convert, not bitcast).
7673 // What this rules out for ExtVectors is crazy things like char4*float.
7674 if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7675 if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7676
7677 return areVectorTypesSameSize(SrcTy: srcTy, DestTy: destTy);
7678}
7679
7680bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7681 assert(destTy->isVectorType() || srcTy->isVectorType());
7682
7683 switch (Context.getLangOpts().getLaxVectorConversions()) {
7684 case LangOptions::LaxVectorConversionKind::None:
7685 return false;
7686
7687 case LangOptions::LaxVectorConversionKind::Integer:
7688 if (!srcTy->isIntegralOrEnumerationType()) {
7689 auto *Vec = srcTy->getAs<VectorType>();
7690 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7691 return false;
7692 }
7693 if (!destTy->isIntegralOrEnumerationType()) {
7694 auto *Vec = destTy->getAs<VectorType>();
7695 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7696 return false;
7697 }
7698 // OK, integer (vector) -> integer (vector) bitcast.
7699 break;
7700
7701 case LangOptions::LaxVectorConversionKind::All:
7702 break;
7703 }
7704
7705 return areLaxCompatibleVectorTypes(srcTy, destTy);
7706}
7707
7708bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
7709 CastKind &Kind) {
7710 if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
7711 if (!areMatrixTypesOfTheSameDimension(srcTy: SrcTy, destTy: DestTy)) {
7712 return Diag(Loc: R.getBegin(), DiagID: diag::err_invalid_conversion_between_matrixes)
7713 << DestTy << SrcTy << R;
7714 }
7715 } else if (SrcTy->isMatrixType()) {
7716 return Diag(Loc: R.getBegin(),
7717 DiagID: diag::err_invalid_conversion_between_matrix_and_type)
7718 << SrcTy << DestTy << R;
7719 } else if (DestTy->isMatrixType()) {
7720 return Diag(Loc: R.getBegin(),
7721 DiagID: diag::err_invalid_conversion_between_matrix_and_type)
7722 << DestTy << SrcTy << R;
7723 }
7724
7725 Kind = CK_MatrixCast;
7726 return false;
7727}
7728
7729bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7730 CastKind &Kind) {
7731 assert(VectorTy->isVectorType() && "Not a vector type!");
7732
7733 if (Ty->isVectorType() || Ty->isIntegralType(Ctx: Context)) {
7734 if (!areLaxCompatibleVectorTypes(srcTy: Ty, destTy: VectorTy))
7735 return Diag(Loc: R.getBegin(),
7736 DiagID: Ty->isVectorType() ?
7737 diag::err_invalid_conversion_between_vectors :
7738 diag::err_invalid_conversion_between_vector_and_integer)
7739 << VectorTy << Ty << R;
7740 } else
7741 return Diag(Loc: R.getBegin(),
7742 DiagID: diag::err_invalid_conversion_between_vector_and_scalar)
7743 << VectorTy << Ty << R;
7744
7745 Kind = CK_BitCast;
7746 return false;
7747}
7748
7749ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7750 QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7751
7752 if (DestElemTy == SplattedExpr->getType())
7753 return SplattedExpr;
7754
7755 assert(DestElemTy->isFloatingType() ||
7756 DestElemTy->isIntegralOrEnumerationType());
7757
7758 CastKind CK;
7759 if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7760 // OpenCL requires that we convert `true` boolean expressions to -1, but
7761 // only when splatting vectors.
7762 if (DestElemTy->isFloatingType()) {
7763 // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7764 // in two steps: boolean to signed integral, then to floating.
7765 ExprResult CastExprRes = ImpCastExprToType(E: SplattedExpr, Type: Context.IntTy,
7766 CK: CK_BooleanToSignedIntegral);
7767 SplattedExpr = CastExprRes.get();
7768 CK = CK_IntegralToFloating;
7769 } else {
7770 CK = CK_BooleanToSignedIntegral;
7771 }
7772 } else {
7773 ExprResult CastExprRes = SplattedExpr;
7774 CK = PrepareScalarCast(Src&: CastExprRes, DestTy: DestElemTy);
7775 if (CastExprRes.isInvalid())
7776 return ExprError();
7777 SplattedExpr = CastExprRes.get();
7778 }
7779 return ImpCastExprToType(E: SplattedExpr, Type: DestElemTy, CK);
7780}
7781
7782ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7783 Expr *CastExpr, CastKind &Kind) {
7784 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
7785
7786 QualType SrcTy = CastExpr->getType();
7787
7788 // If SrcTy is a VectorType, the total size must match to explicitly cast to
7789 // an ExtVectorType.
7790 // In OpenCL, casts between vectors of different types are not allowed.
7791 // (See OpenCL 6.2).
7792 if (SrcTy->isVectorType()) {
7793 if (!areLaxCompatibleVectorTypes(srcTy: SrcTy, destTy: DestTy) ||
7794 (getLangOpts().OpenCL &&
7795 !Context.hasSameUnqualifiedType(T1: DestTy, T2: SrcTy))) {
7796 Diag(Loc: R.getBegin(),DiagID: diag::err_invalid_conversion_between_ext_vectors)
7797 << DestTy << SrcTy << R;
7798 return ExprError();
7799 }
7800 Kind = CK_BitCast;
7801 return CastExpr;
7802 }
7803
7804 // All non-pointer scalars can be cast to ExtVector type. The appropriate
7805 // conversion will take place first from scalar to elt type, and then
7806 // splat from elt type to vector.
7807 if (SrcTy->isPointerType())
7808 return Diag(Loc: R.getBegin(),
7809 DiagID: diag::err_invalid_conversion_between_vector_and_scalar)
7810 << DestTy << SrcTy << R;
7811
7812 Kind = CK_VectorSplat;
7813 return prepareVectorSplat(VectorTy: DestTy, SplattedExpr: CastExpr);
7814}
7815
7816ExprResult
7817Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7818 Declarator &D, ParsedType &Ty,
7819 SourceLocation RParenLoc, Expr *CastExpr) {
7820 assert(!D.isInvalidType() && (CastExpr != nullptr) &&
7821 "ActOnCastExpr(): missing type or expr");
7822
7823 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, FromTy: CastExpr->getType());
7824 if (D.isInvalidType())
7825 return ExprError();
7826
7827 if (getLangOpts().CPlusPlus) {
7828 // Check that there are no default arguments (C++ only).
7829 CheckExtraCXXDefaultArguments(D);
7830 }
7831
7832 checkUnusedDeclAttributes(D);
7833
7834 QualType castType = castTInfo->getType();
7835 Ty = CreateParsedType(T: castType, TInfo: castTInfo);
7836
7837 bool isVectorLiteral = false;
7838
7839 // Check for an altivec or OpenCL literal,
7840 // i.e. all the elements are integer constants.
7841 ParenExpr *PE = dyn_cast<ParenExpr>(Val: CastExpr);
7842 ParenListExpr *PLE = dyn_cast<ParenListExpr>(Val: CastExpr);
7843 if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7844 && castType->isVectorType() && (PE || PLE)) {
7845 if (PLE && PLE->getNumExprs() == 0) {
7846 Diag(Loc: PLE->getExprLoc(), DiagID: diag::err_altivec_empty_initializer);
7847 return ExprError();
7848 }
7849 if (PE || PLE->getNumExprs() == 1) {
7850 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(Init: 0));
7851 if (!E->isTypeDependent() && !E->getType()->isVectorType())
7852 isVectorLiteral = true;
7853 }
7854 else
7855 isVectorLiteral = true;
7856 }
7857
7858 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7859 // then handle it as such.
7860 if (isVectorLiteral)
7861 return BuildVectorLiteral(LParenLoc, RParenLoc, E: CastExpr, TInfo: castTInfo);
7862
7863 // If the Expr being casted is a ParenListExpr, handle it specially.
7864 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7865 // sequence of BinOp comma operators.
7866 if (isa<ParenListExpr>(Val: CastExpr)) {
7867 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, ME: CastExpr);
7868 if (Result.isInvalid()) return ExprError();
7869 CastExpr = Result.get();
7870 }
7871
7872 if (getLangOpts().CPlusPlus && !castType->isVoidType())
7873 Diag(Loc: LParenLoc, DiagID: diag::warn_old_style_cast) << CastExpr->getSourceRange();
7874
7875 ObjC().CheckTollFreeBridgeCast(castType, castExpr: CastExpr);
7876
7877 ObjC().CheckObjCBridgeRelatedCast(castType, castExpr: CastExpr);
7878
7879 DiscardMisalignedMemberAddress(T: castType.getTypePtr(), E: CastExpr);
7880
7881 return BuildCStyleCastExpr(LParenLoc, Ty: castTInfo, RParenLoc, Op: CastExpr);
7882}
7883
7884ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
7885 SourceLocation RParenLoc, Expr *E,
7886 TypeSourceInfo *TInfo) {
7887 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
7888 "Expected paren or paren list expression");
7889
7890 Expr **exprs;
7891 unsigned numExprs;
7892 Expr *subExpr;
7893 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
7894 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(Val: E)) {
7895 LiteralLParenLoc = PE->getLParenLoc();
7896 LiteralRParenLoc = PE->getRParenLoc();
7897 exprs = PE->getExprs();
7898 numExprs = PE->getNumExprs();
7899 } else { // isa<ParenExpr> by assertion at function entrance
7900 LiteralLParenLoc = cast<ParenExpr>(Val: E)->getLParen();
7901 LiteralRParenLoc = cast<ParenExpr>(Val: E)->getRParen();
7902 subExpr = cast<ParenExpr>(Val: E)->getSubExpr();
7903 exprs = &subExpr;
7904 numExprs = 1;
7905 }
7906
7907 QualType Ty = TInfo->getType();
7908 assert(Ty->isVectorType() && "Expected vector type");
7909
7910 SmallVector<Expr *, 8> initExprs;
7911 const VectorType *VTy = Ty->castAs<VectorType>();
7912 unsigned numElems = VTy->getNumElements();
7913
7914 // '(...)' form of vector initialization in AltiVec: the number of
7915 // initializers must be one or must match the size of the vector.
7916 // If a single value is specified in the initializer then it will be
7917 // replicated to all the components of the vector
7918 if (CheckAltivecInitFromScalar(R: E->getSourceRange(), VecTy: Ty,
7919 SrcTy: VTy->getElementType()))
7920 return ExprError();
7921 if (ShouldSplatAltivecScalarInCast(VecTy: VTy)) {
7922 // The number of initializers must be one or must match the size of the
7923 // vector. If a single value is specified in the initializer then it will
7924 // be replicated to all the components of the vector
7925 if (numExprs == 1) {
7926 QualType ElemTy = VTy->getElementType();
7927 ExprResult Literal = DefaultLvalueConversion(E: exprs[0]);
7928 if (Literal.isInvalid())
7929 return ExprError();
7930 Literal = ImpCastExprToType(E: Literal.get(), Type: ElemTy,
7931 CK: PrepareScalarCast(Src&: Literal, DestTy: ElemTy));
7932 return BuildCStyleCastExpr(LParenLoc, Ty: TInfo, RParenLoc, Op: Literal.get());
7933 }
7934 else if (numExprs < numElems) {
7935 Diag(Loc: E->getExprLoc(),
7936 DiagID: diag::err_incorrect_number_of_vector_initializers);
7937 return ExprError();
7938 }
7939 else
7940 initExprs.append(in_start: exprs, in_end: exprs + numExprs);
7941 }
7942 else {
7943 // For OpenCL, when the number of initializers is a single value,
7944 // it will be replicated to all components of the vector.
7945 if (getLangOpts().OpenCL && VTy->getVectorKind() == VectorKind::Generic &&
7946 numExprs == 1) {
7947 QualType ElemTy = VTy->getElementType();
7948 ExprResult Literal = DefaultLvalueConversion(E: exprs[0]);
7949 if (Literal.isInvalid())
7950 return ExprError();
7951 Literal = ImpCastExprToType(E: Literal.get(), Type: ElemTy,
7952 CK: PrepareScalarCast(Src&: Literal, DestTy: ElemTy));
7953 return BuildCStyleCastExpr(LParenLoc, Ty: TInfo, RParenLoc, Op: Literal.get());
7954 }
7955
7956 initExprs.append(in_start: exprs, in_end: exprs + numExprs);
7957 }
7958 // FIXME: This means that pretty-printing the final AST will produce curly
7959 // braces instead of the original commas.
7960 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
7961 initExprs, LiteralRParenLoc);
7962 initE->setType(Ty);
7963 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, LiteralExpr: initE);
7964}
7965
7966ExprResult
7967Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
7968 ParenListExpr *E = dyn_cast<ParenListExpr>(Val: OrigExpr);
7969 if (!E)
7970 return OrigExpr;
7971
7972 ExprResult Result(E->getExpr(Init: 0));
7973
7974 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
7975 Result = ActOnBinOp(S, TokLoc: E->getExprLoc(), Kind: tok::comma, LHSExpr: Result.get(),
7976 RHSExpr: E->getExpr(Init: i));
7977
7978 if (Result.isInvalid()) return ExprError();
7979
7980 return ActOnParenExpr(L: E->getLParenLoc(), R: E->getRParenLoc(), E: Result.get());
7981}
7982
7983ExprResult Sema::ActOnParenListExpr(SourceLocation L,
7984 SourceLocation R,
7985 MultiExprArg Val) {
7986 return ParenListExpr::Create(Ctx: Context, LParenLoc: L, Exprs: Val, RParenLoc: R);
7987}
7988
7989ExprResult Sema::ActOnCXXParenListInitExpr(ArrayRef<Expr *> Args, QualType T,
7990 unsigned NumUserSpecifiedExprs,
7991 SourceLocation InitLoc,
7992 SourceLocation LParenLoc,
7993 SourceLocation RParenLoc) {
7994 return CXXParenListInitExpr::Create(C&: Context, Args, T, NumUserSpecifiedExprs,
7995 InitLoc, LParenLoc, RParenLoc);
7996}
7997
7998bool Sema::DiagnoseConditionalForNull(const Expr *LHSExpr, const Expr *RHSExpr,
7999 SourceLocation QuestionLoc) {
8000 const Expr *NullExpr = LHSExpr;
8001 const Expr *NonPointerExpr = RHSExpr;
8002 Expr::NullPointerConstantKind NullKind =
8003 NullExpr->isNullPointerConstant(Ctx&: Context,
8004 NPC: Expr::NPC_ValueDependentIsNotNull);
8005
8006 if (NullKind == Expr::NPCK_NotNull) {
8007 NullExpr = RHSExpr;
8008 NonPointerExpr = LHSExpr;
8009 NullKind =
8010 NullExpr->isNullPointerConstant(Ctx&: Context,
8011 NPC: Expr::NPC_ValueDependentIsNotNull);
8012 }
8013
8014 if (NullKind == Expr::NPCK_NotNull)
8015 return false;
8016
8017 if (NullKind == Expr::NPCK_ZeroExpression)
8018 return false;
8019
8020 if (NullKind == Expr::NPCK_ZeroLiteral) {
8021 // In this case, check to make sure that we got here from a "NULL"
8022 // string in the source code.
8023 NullExpr = NullExpr->IgnoreParenImpCasts();
8024 SourceLocation loc = NullExpr->getExprLoc();
8025 if (!findMacroSpelling(loc, name: "NULL"))
8026 return false;
8027 }
8028
8029 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
8030 Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_incompatible_operands_null)
8031 << NonPointerExpr->getType() << DiagType
8032 << NonPointerExpr->getSourceRange();
8033 return true;
8034}
8035
8036/// Return false if the condition expression is valid, true otherwise.
8037static bool checkCondition(Sema &S, const Expr *Cond,
8038 SourceLocation QuestionLoc) {
8039 QualType CondTy = Cond->getType();
8040
8041 // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
8042 if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
8043 S.Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_expect_nonfloat)
8044 << CondTy << Cond->getSourceRange();
8045 return true;
8046 }
8047
8048 // C99 6.5.15p2
8049 if (CondTy->isScalarType()) return false;
8050
8051 S.Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_expect_scalar)
8052 << CondTy << Cond->getSourceRange();
8053 return true;
8054}
8055
8056/// Return false if the NullExpr can be promoted to PointerTy,
8057/// true otherwise.
8058static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
8059 QualType PointerTy) {
8060 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
8061 !NullExpr.get()->isNullPointerConstant(Ctx&: S.Context,
8062 NPC: Expr::NPC_ValueDependentIsNull))
8063 return true;
8064
8065 NullExpr = S.ImpCastExprToType(E: NullExpr.get(), Type: PointerTy, CK: CK_NullToPointer);
8066 return false;
8067}
8068
8069/// Checks compatibility between two pointers and return the resulting
8070/// type.
8071static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
8072 ExprResult &RHS,
8073 SourceLocation Loc) {
8074 QualType LHSTy = LHS.get()->getType();
8075 QualType RHSTy = RHS.get()->getType();
8076
8077 if (S.Context.hasSameType(T1: LHSTy, T2: RHSTy)) {
8078 // Two identical pointers types are always compatible.
8079 return S.Context.getCommonSugaredType(X: LHSTy, Y: RHSTy);
8080 }
8081
8082 QualType lhptee, rhptee;
8083
8084 // Get the pointee types.
8085 bool IsBlockPointer = false;
8086 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
8087 lhptee = LHSBTy->getPointeeType();
8088 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
8089 IsBlockPointer = true;
8090 } else {
8091 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8092 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8093 }
8094
8095 // C99 6.5.15p6: If both operands are pointers to compatible types or to
8096 // differently qualified versions of compatible types, the result type is
8097 // a pointer to an appropriately qualified version of the composite
8098 // type.
8099
8100 // Only CVR-qualifiers exist in the standard, and the differently-qualified
8101 // clause doesn't make sense for our extensions. E.g. address space 2 should
8102 // be incompatible with address space 3: they may live on different devices or
8103 // anything.
8104 Qualifiers lhQual = lhptee.getQualifiers();
8105 Qualifiers rhQual = rhptee.getQualifiers();
8106
8107 LangAS ResultAddrSpace = LangAS::Default;
8108 LangAS LAddrSpace = lhQual.getAddressSpace();
8109 LangAS RAddrSpace = rhQual.getAddressSpace();
8110
8111 // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8112 // spaces is disallowed.
8113 if (lhQual.isAddressSpaceSupersetOf(other: rhQual, Ctx: S.getASTContext()))
8114 ResultAddrSpace = LAddrSpace;
8115 else if (rhQual.isAddressSpaceSupersetOf(other: lhQual, Ctx: S.getASTContext()))
8116 ResultAddrSpace = RAddrSpace;
8117 else {
8118 S.Diag(Loc, DiagID: diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8119 << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8120 << RHS.get()->getSourceRange();
8121 return QualType();
8122 }
8123
8124 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8125 auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8126 lhQual.removeCVRQualifiers();
8127 rhQual.removeCVRQualifiers();
8128
8129 if (!lhQual.getPointerAuth().isEquivalent(Other: rhQual.getPointerAuth())) {
8130 S.Diag(Loc, DiagID: diag::err_typecheck_cond_incompatible_ptrauth)
8131 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8132 << RHS.get()->getSourceRange();
8133 return QualType();
8134 }
8135
8136 // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8137 // (C99 6.7.3) for address spaces. We assume that the check should behave in
8138 // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8139 // qual types are compatible iff
8140 // * corresponded types are compatible
8141 // * CVR qualifiers are equal
8142 // * address spaces are equal
8143 // Thus for conditional operator we merge CVR and address space unqualified
8144 // pointees and if there is a composite type we return a pointer to it with
8145 // merged qualifiers.
8146 LHSCastKind =
8147 LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8148 RHSCastKind =
8149 RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8150 lhQual.removeAddressSpace();
8151 rhQual.removeAddressSpace();
8152
8153 lhptee = S.Context.getQualifiedType(T: lhptee.getUnqualifiedType(), Qs: lhQual);
8154 rhptee = S.Context.getQualifiedType(T: rhptee.getUnqualifiedType(), Qs: rhQual);
8155
8156 QualType CompositeTy = S.Context.mergeTypes(
8157 lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false,
8158 /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
8159
8160 if (CompositeTy.isNull()) {
8161 // In this situation, we assume void* type. No especially good
8162 // reason, but this is what gcc does, and we do have to pick
8163 // to get a consistent AST.
8164 QualType incompatTy;
8165 incompatTy = S.Context.getPointerType(
8166 T: S.Context.getAddrSpaceQualType(T: S.Context.VoidTy, AddressSpace: ResultAddrSpace));
8167 LHS = S.ImpCastExprToType(E: LHS.get(), Type: incompatTy, CK: LHSCastKind);
8168 RHS = S.ImpCastExprToType(E: RHS.get(), Type: incompatTy, CK: RHSCastKind);
8169
8170 // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8171 // for casts between types with incompatible address space qualifiers.
8172 // For the following code the compiler produces casts between global and
8173 // local address spaces of the corresponded innermost pointees:
8174 // local int *global *a;
8175 // global int *global *b;
8176 // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8177 S.Diag(Loc, DiagID: diag::ext_typecheck_cond_incompatible_pointers)
8178 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8179 << RHS.get()->getSourceRange();
8180
8181 return incompatTy;
8182 }
8183
8184 // The pointer types are compatible.
8185 // In case of OpenCL ResultTy should have the address space qualifier
8186 // which is a superset of address spaces of both the 2nd and the 3rd
8187 // operands of the conditional operator.
8188 QualType ResultTy = [&, ResultAddrSpace]() {
8189 if (S.getLangOpts().OpenCL) {
8190 Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8191 CompositeQuals.setAddressSpace(ResultAddrSpace);
8192 return S.Context
8193 .getQualifiedType(T: CompositeTy.getUnqualifiedType(), Qs: CompositeQuals)
8194 .withCVRQualifiers(CVR: MergedCVRQual);
8195 }
8196 return CompositeTy.withCVRQualifiers(CVR: MergedCVRQual);
8197 }();
8198 if (IsBlockPointer)
8199 ResultTy = S.Context.getBlockPointerType(T: ResultTy);
8200 else
8201 ResultTy = S.Context.getPointerType(T: ResultTy);
8202
8203 LHS = S.ImpCastExprToType(E: LHS.get(), Type: ResultTy, CK: LHSCastKind);
8204 RHS = S.ImpCastExprToType(E: RHS.get(), Type: ResultTy, CK: RHSCastKind);
8205 return ResultTy;
8206}
8207
8208/// Return the resulting type when the operands are both block pointers.
8209static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8210 ExprResult &LHS,
8211 ExprResult &RHS,
8212 SourceLocation Loc) {
8213 QualType LHSTy = LHS.get()->getType();
8214 QualType RHSTy = RHS.get()->getType();
8215
8216 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8217 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8218 QualType destType = S.Context.getPointerType(T: S.Context.VoidTy);
8219 LHS = S.ImpCastExprToType(E: LHS.get(), Type: destType, CK: CK_BitCast);
8220 RHS = S.ImpCastExprToType(E: RHS.get(), Type: destType, CK: CK_BitCast);
8221 return destType;
8222 }
8223 S.Diag(Loc, DiagID: diag::err_typecheck_cond_incompatible_operands)
8224 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8225 << RHS.get()->getSourceRange();
8226 return QualType();
8227 }
8228
8229 // We have 2 block pointer types.
8230 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8231}
8232
8233/// Return the resulting type when the operands are both pointers.
8234static QualType
8235checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8236 ExprResult &RHS,
8237 SourceLocation Loc) {
8238 // get the pointer types
8239 QualType LHSTy = LHS.get()->getType();
8240 QualType RHSTy = RHS.get()->getType();
8241
8242 // get the "pointed to" types
8243 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8244 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8245
8246 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8247 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8248 // Figure out necessary qualifiers (C99 6.5.15p6)
8249 QualType destPointee
8250 = S.Context.getQualifiedType(T: lhptee, Qs: rhptee.getQualifiers());
8251 QualType destType = S.Context.getPointerType(T: destPointee);
8252 // Add qualifiers if necessary.
8253 LHS = S.ImpCastExprToType(E: LHS.get(), Type: destType, CK: CK_NoOp);
8254 // Promote to void*.
8255 RHS = S.ImpCastExprToType(E: RHS.get(), Type: destType, CK: CK_BitCast);
8256 return destType;
8257 }
8258 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8259 QualType destPointee
8260 = S.Context.getQualifiedType(T: rhptee, Qs: lhptee.getQualifiers());
8261 QualType destType = S.Context.getPointerType(T: destPointee);
8262 // Add qualifiers if necessary.
8263 RHS = S.ImpCastExprToType(E: RHS.get(), Type: destType, CK: CK_NoOp);
8264 // Promote to void*.
8265 LHS = S.ImpCastExprToType(E: LHS.get(), Type: destType, CK: CK_BitCast);
8266 return destType;
8267 }
8268
8269 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8270}
8271
8272/// Return false if the first expression is not an integer and the second
8273/// expression is not a pointer, true otherwise.
8274static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8275 Expr* PointerExpr, SourceLocation Loc,
8276 bool IsIntFirstExpr) {
8277 if (!PointerExpr->getType()->isPointerType() ||
8278 !Int.get()->getType()->isIntegerType())
8279 return false;
8280
8281 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8282 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8283
8284 S.Diag(Loc, DiagID: diag::ext_typecheck_cond_pointer_integer_mismatch)
8285 << Expr1->getType() << Expr2->getType()
8286 << Expr1->getSourceRange() << Expr2->getSourceRange();
8287 Int = S.ImpCastExprToType(E: Int.get(), Type: PointerExpr->getType(),
8288 CK: CK_IntegralToPointer);
8289 return true;
8290}
8291
8292/// Simple conversion between integer and floating point types.
8293///
8294/// Used when handling the OpenCL conditional operator where the
8295/// condition is a vector while the other operands are scalar.
8296///
8297/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8298/// types are either integer or floating type. Between the two
8299/// operands, the type with the higher rank is defined as the "result
8300/// type". The other operand needs to be promoted to the same type. No
8301/// other type promotion is allowed. We cannot use
8302/// UsualArithmeticConversions() for this purpose, since it always
8303/// promotes promotable types.
8304static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8305 ExprResult &RHS,
8306 SourceLocation QuestionLoc) {
8307 LHS = S.DefaultFunctionArrayLvalueConversion(E: LHS.get());
8308 if (LHS.isInvalid())
8309 return QualType();
8310 RHS = S.DefaultFunctionArrayLvalueConversion(E: RHS.get());
8311 if (RHS.isInvalid())
8312 return QualType();
8313
8314 // For conversion purposes, we ignore any qualifiers.
8315 // For example, "const float" and "float" are equivalent.
8316 QualType LHSType =
8317 S.Context.getCanonicalType(T: LHS.get()->getType()).getUnqualifiedType();
8318 QualType RHSType =
8319 S.Context.getCanonicalType(T: RHS.get()->getType()).getUnqualifiedType();
8320
8321 if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8322 S.Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_expect_int_float)
8323 << LHSType << LHS.get()->getSourceRange();
8324 return QualType();
8325 }
8326
8327 if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8328 S.Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_expect_int_float)
8329 << RHSType << RHS.get()->getSourceRange();
8330 return QualType();
8331 }
8332
8333 // If both types are identical, no conversion is needed.
8334 if (LHSType == RHSType)
8335 return LHSType;
8336
8337 // Now handle "real" floating types (i.e. float, double, long double).
8338 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8339 return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8340 /*IsCompAssign = */ false);
8341
8342 // Finally, we have two differing integer types.
8343 return handleIntegerConversion<doIntegralCast, doIntegralCast>
8344 (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8345}
8346
8347/// Convert scalar operands to a vector that matches the
8348/// condition in length.
8349///
8350/// Used when handling the OpenCL conditional operator where the
8351/// condition is a vector while the other operands are scalar.
8352///
8353/// We first compute the "result type" for the scalar operands
8354/// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8355/// into a vector of that type where the length matches the condition
8356/// vector type. s6.11.6 requires that the element types of the result
8357/// and the condition must have the same number of bits.
8358static QualType
8359OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8360 QualType CondTy, SourceLocation QuestionLoc) {
8361 QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8362 if (ResTy.isNull()) return QualType();
8363
8364 const VectorType *CV = CondTy->getAs<VectorType>();
8365 assert(CV);
8366
8367 // Determine the vector result type
8368 unsigned NumElements = CV->getNumElements();
8369 QualType VectorTy = S.Context.getExtVectorType(VectorType: ResTy, NumElts: NumElements);
8370
8371 // Ensure that all types have the same number of bits
8372 if (S.Context.getTypeSize(T: CV->getElementType())
8373 != S.Context.getTypeSize(T: ResTy)) {
8374 // Since VectorTy is created internally, it does not pretty print
8375 // with an OpenCL name. Instead, we just print a description.
8376 std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8377 SmallString<64> Str;
8378 llvm::raw_svector_ostream OS(Str);
8379 OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8380 S.Diag(Loc: QuestionLoc, DiagID: diag::err_conditional_vector_element_size)
8381 << CondTy << OS.str();
8382 return QualType();
8383 }
8384
8385 // Convert operands to the vector result type
8386 LHS = S.ImpCastExprToType(E: LHS.get(), Type: VectorTy, CK: CK_VectorSplat);
8387 RHS = S.ImpCastExprToType(E: RHS.get(), Type: VectorTy, CK: CK_VectorSplat);
8388
8389 return VectorTy;
8390}
8391
8392/// Return false if this is a valid OpenCL condition vector
8393static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8394 SourceLocation QuestionLoc) {
8395 // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8396 // integral type.
8397 const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8398 assert(CondTy);
8399 QualType EleTy = CondTy->getElementType();
8400 if (EleTy->isIntegerType()) return false;
8401
8402 S.Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_expect_nonfloat)
8403 << Cond->getType() << Cond->getSourceRange();
8404 return true;
8405}
8406
8407/// Return false if the vector condition type and the vector
8408/// result type are compatible.
8409///
8410/// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8411/// number of elements, and their element types have the same number
8412/// of bits.
8413static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8414 SourceLocation QuestionLoc) {
8415 const VectorType *CV = CondTy->getAs<VectorType>();
8416 const VectorType *RV = VecResTy->getAs<VectorType>();
8417 assert(CV && RV);
8418
8419 if (CV->getNumElements() != RV->getNumElements()) {
8420 S.Diag(Loc: QuestionLoc, DiagID: diag::err_conditional_vector_size)
8421 << CondTy << VecResTy;
8422 return true;
8423 }
8424
8425 QualType CVE = CV->getElementType();
8426 QualType RVE = RV->getElementType();
8427
8428 if (S.Context.getTypeSize(T: CVE) != S.Context.getTypeSize(T: RVE)) {
8429 S.Diag(Loc: QuestionLoc, DiagID: diag::err_conditional_vector_element_size)
8430 << CondTy << VecResTy;
8431 return true;
8432 }
8433
8434 return false;
8435}
8436
8437/// Return the resulting type for the conditional operator in
8438/// OpenCL (aka "ternary selection operator", OpenCL v1.1
8439/// s6.3.i) when the condition is a vector type.
8440static QualType
8441OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8442 ExprResult &LHS, ExprResult &RHS,
8443 SourceLocation QuestionLoc) {
8444 Cond = S.DefaultFunctionArrayLvalueConversion(E: Cond.get());
8445 if (Cond.isInvalid())
8446 return QualType();
8447 QualType CondTy = Cond.get()->getType();
8448
8449 if (checkOpenCLConditionVector(S, Cond: Cond.get(), QuestionLoc))
8450 return QualType();
8451
8452 // If either operand is a vector then find the vector type of the
8453 // result as specified in OpenCL v1.1 s6.3.i.
8454 if (LHS.get()->getType()->isVectorType() ||
8455 RHS.get()->getType()->isVectorType()) {
8456 bool IsBoolVecLang =
8457 !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
8458 QualType VecResTy =
8459 S.CheckVectorOperands(LHS, RHS, Loc: QuestionLoc,
8460 /*isCompAssign*/ IsCompAssign: false,
8461 /*AllowBothBool*/ true,
8462 /*AllowBoolConversions*/ AllowBoolConversion: false,
8463 /*AllowBooleanOperation*/ AllowBoolOperation: IsBoolVecLang,
8464 /*ReportInvalid*/ true);
8465 if (VecResTy.isNull())
8466 return QualType();
8467 // The result type must match the condition type as specified in
8468 // OpenCL v1.1 s6.11.6.
8469 if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8470 return QualType();
8471 return VecResTy;
8472 }
8473
8474 // Both operands are scalar.
8475 return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8476}
8477
8478/// Return true if the Expr is block type
8479static bool checkBlockType(Sema &S, const Expr *E) {
8480 if (E->getType()->isBlockPointerType()) {
8481 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_opencl_ternary_with_block);
8482 return true;
8483 }
8484
8485 if (const CallExpr *CE = dyn_cast<CallExpr>(Val: E)) {
8486 QualType Ty = CE->getCallee()->getType();
8487 if (Ty->isBlockPointerType()) {
8488 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_opencl_ternary_with_block);
8489 return true;
8490 }
8491 }
8492 return false;
8493}
8494
8495/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8496/// In that case, LHS = cond.
8497/// C99 6.5.15
8498QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8499 ExprResult &RHS, ExprValueKind &VK,
8500 ExprObjectKind &OK,
8501 SourceLocation QuestionLoc) {
8502
8503 ExprResult LHSResult = CheckPlaceholderExpr(E: LHS.get());
8504 if (!LHSResult.isUsable()) return QualType();
8505 LHS = LHSResult;
8506
8507 ExprResult RHSResult = CheckPlaceholderExpr(E: RHS.get());
8508 if (!RHSResult.isUsable()) return QualType();
8509 RHS = RHSResult;
8510
8511 // C++ is sufficiently different to merit its own checker.
8512 if (getLangOpts().CPlusPlus)
8513 return CXXCheckConditionalOperands(cond&: Cond, lhs&: LHS, rhs&: RHS, VK, OK, questionLoc: QuestionLoc);
8514
8515 VK = VK_PRValue;
8516 OK = OK_Ordinary;
8517
8518 if (Context.isDependenceAllowed() &&
8519 (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8520 RHS.get()->isTypeDependent())) {
8521 assert(!getLangOpts().CPlusPlus);
8522 assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
8523 RHS.get()->containsErrors()) &&
8524 "should only occur in error-recovery path.");
8525 return Context.DependentTy;
8526 }
8527
8528 // The OpenCL operator with a vector condition is sufficiently
8529 // different to merit its own checker.
8530 if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8531 Cond.get()->getType()->isExtVectorType())
8532 return OpenCLCheckVectorConditional(S&: *this, Cond, LHS, RHS, QuestionLoc);
8533
8534 // First, check the condition.
8535 Cond = UsualUnaryConversions(E: Cond.get());
8536 if (Cond.isInvalid())
8537 return QualType();
8538 if (checkCondition(S&: *this, Cond: Cond.get(), QuestionLoc))
8539 return QualType();
8540
8541 // Handle vectors.
8542 if (LHS.get()->getType()->isVectorType() ||
8543 RHS.get()->getType()->isVectorType())
8544 return CheckVectorOperands(LHS, RHS, Loc: QuestionLoc, /*isCompAssign*/ IsCompAssign: false,
8545 /*AllowBothBool*/ true,
8546 /*AllowBoolConversions*/ AllowBoolConversion: false,
8547 /*AllowBooleanOperation*/ AllowBoolOperation: false,
8548 /*ReportInvalid*/ true);
8549
8550 QualType ResTy = UsualArithmeticConversions(LHS, RHS, Loc: QuestionLoc,
8551 ACK: ArithConvKind::Conditional);
8552 if (LHS.isInvalid() || RHS.isInvalid())
8553 return QualType();
8554
8555 // WebAssembly tables are not allowed as conditional LHS or RHS.
8556 QualType LHSTy = LHS.get()->getType();
8557 QualType RHSTy = RHS.get()->getType();
8558 if (LHSTy->isWebAssemblyTableType() || RHSTy->isWebAssemblyTableType()) {
8559 Diag(Loc: QuestionLoc, DiagID: diag::err_wasm_table_conditional_expression)
8560 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8561 return QualType();
8562 }
8563
8564 // Diagnose attempts to convert between __ibm128, __float128 and long double
8565 // where such conversions currently can't be handled.
8566 if (unsupportedTypeConversion(S: *this, LHSType: LHSTy, RHSType: RHSTy)) {
8567 Diag(Loc: QuestionLoc,
8568 DiagID: diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8569 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8570 return QualType();
8571 }
8572
8573 // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8574 // selection operator (?:).
8575 if (getLangOpts().OpenCL &&
8576 ((int)checkBlockType(S&: *this, E: LHS.get()) | (int)checkBlockType(S&: *this, E: RHS.get()))) {
8577 return QualType();
8578 }
8579
8580 // If both operands have arithmetic type, do the usual arithmetic conversions
8581 // to find a common type: C99 6.5.15p3,5.
8582 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8583 // Disallow invalid arithmetic conversions, such as those between bit-
8584 // precise integers types of different sizes, or between a bit-precise
8585 // integer and another type.
8586 if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
8587 Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_incompatible_operands)
8588 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8589 << RHS.get()->getSourceRange();
8590 return QualType();
8591 }
8592
8593 LHS = ImpCastExprToType(E: LHS.get(), Type: ResTy, CK: PrepareScalarCast(Src&: LHS, DestTy: ResTy));
8594 RHS = ImpCastExprToType(E: RHS.get(), Type: ResTy, CK: PrepareScalarCast(Src&: RHS, DestTy: ResTy));
8595
8596 return ResTy;
8597 }
8598
8599 // If both operands are the same structure or union type, the result is that
8600 // type.
8601 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
8602 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8603 if (LHSRT->getDecl() == RHSRT->getDecl())
8604 // "If both the operands have structure or union type, the result has
8605 // that type." This implies that CV qualifiers are dropped.
8606 return Context.getCommonSugaredType(X: LHSTy.getUnqualifiedType(),
8607 Y: RHSTy.getUnqualifiedType());
8608 // FIXME: Type of conditional expression must be complete in C mode.
8609 }
8610
8611 // C99 6.5.15p5: "If both operands have void type, the result has void type."
8612 // The following || allows only one side to be void (a GCC-ism).
8613 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8614 QualType ResTy;
8615 if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
8616 ResTy = Context.getCommonSugaredType(X: LHSTy, Y: RHSTy);
8617 } else if (RHSTy->isVoidType()) {
8618 ResTy = RHSTy;
8619 Diag(Loc: RHS.get()->getBeginLoc(), DiagID: diag::ext_typecheck_cond_one_void)
8620 << RHS.get()->getSourceRange();
8621 } else {
8622 ResTy = LHSTy;
8623 Diag(Loc: LHS.get()->getBeginLoc(), DiagID: diag::ext_typecheck_cond_one_void)
8624 << LHS.get()->getSourceRange();
8625 }
8626 LHS = ImpCastExprToType(E: LHS.get(), Type: ResTy, CK: CK_ToVoid);
8627 RHS = ImpCastExprToType(E: RHS.get(), Type: ResTy, CK: CK_ToVoid);
8628 return ResTy;
8629 }
8630
8631 // C23 6.5.15p7:
8632 // ... if both the second and third operands have nullptr_t type, the
8633 // result also has that type.
8634 if (LHSTy->isNullPtrType() && Context.hasSameType(T1: LHSTy, T2: RHSTy))
8635 return ResTy;
8636
8637 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8638 // the type of the other operand."
8639 if (!checkConditionalNullPointer(S&: *this, NullExpr&: RHS, PointerTy: LHSTy)) return LHSTy;
8640 if (!checkConditionalNullPointer(S&: *this, NullExpr&: LHS, PointerTy: RHSTy)) return RHSTy;
8641
8642 // All objective-c pointer type analysis is done here.
8643 QualType compositeType =
8644 ObjC().FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
8645 if (LHS.isInvalid() || RHS.isInvalid())
8646 return QualType();
8647 if (!compositeType.isNull())
8648 return compositeType;
8649
8650
8651 // Handle block pointer types.
8652 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8653 return checkConditionalBlockPointerCompatibility(S&: *this, LHS, RHS,
8654 Loc: QuestionLoc);
8655
8656 // Check constraints for C object pointers types (C99 6.5.15p3,6).
8657 if (LHSTy->isPointerType() && RHSTy->isPointerType())
8658 return checkConditionalObjectPointersCompatibility(S&: *this, LHS, RHS,
8659 Loc: QuestionLoc);
8660
8661 // GCC compatibility: soften pointer/integer mismatch. Note that
8662 // null pointers have been filtered out by this point.
8663 if (checkPointerIntegerMismatch(S&: *this, Int&: LHS, PointerExpr: RHS.get(), Loc: QuestionLoc,
8664 /*IsIntFirstExpr=*/true))
8665 return RHSTy;
8666 if (checkPointerIntegerMismatch(S&: *this, Int&: RHS, PointerExpr: LHS.get(), Loc: QuestionLoc,
8667 /*IsIntFirstExpr=*/false))
8668 return LHSTy;
8669
8670 // Emit a better diagnostic if one of the expressions is a null pointer
8671 // constant and the other is not a pointer type. In this case, the user most
8672 // likely forgot to take the address of the other expression.
8673 if (DiagnoseConditionalForNull(LHSExpr: LHS.get(), RHSExpr: RHS.get(), QuestionLoc))
8674 return QualType();
8675
8676 // Finally, if the LHS and RHS types are canonically the same type, we can
8677 // use the common sugared type.
8678 if (Context.hasSameType(T1: LHSTy, T2: RHSTy))
8679 return Context.getCommonSugaredType(X: LHSTy, Y: RHSTy);
8680
8681 // Otherwise, the operands are not compatible.
8682 Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_incompatible_operands)
8683 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8684 << RHS.get()->getSourceRange();
8685 return QualType();
8686}
8687
8688/// SuggestParentheses - Emit a note with a fixit hint that wraps
8689/// ParenRange in parentheses.
8690static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8691 const PartialDiagnostic &Note,
8692 SourceRange ParenRange) {
8693 SourceLocation EndLoc = Self.getLocForEndOfToken(Loc: ParenRange.getEnd());
8694 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8695 EndLoc.isValid()) {
8696 Self.Diag(Loc, PD: Note)
8697 << FixItHint::CreateInsertion(InsertionLoc: ParenRange.getBegin(), Code: "(")
8698 << FixItHint::CreateInsertion(InsertionLoc: EndLoc, Code: ")");
8699 } else {
8700 // We can't display the parentheses, so just show the bare note.
8701 Self.Diag(Loc, PD: Note) << ParenRange;
8702 }
8703}
8704
8705static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8706 return BinaryOperator::isAdditiveOp(Opc) ||
8707 BinaryOperator::isMultiplicativeOp(Opc) ||
8708 BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8709 // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8710 // not any of the logical operators. Bitwise-xor is commonly used as a
8711 // logical-xor because there is no logical-xor operator. The logical
8712 // operators, including uses of xor, have a high false positive rate for
8713 // precedence warnings.
8714}
8715
8716/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8717/// expression, either using a built-in or overloaded operator,
8718/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8719/// expression.
8720static bool IsArithmeticBinaryExpr(const Expr *E, BinaryOperatorKind *Opcode,
8721 const Expr **RHSExprs) {
8722 // Don't strip parenthesis: we should not warn if E is in parenthesis.
8723 E = E->IgnoreImpCasts();
8724 E = E->IgnoreConversionOperatorSingleStep();
8725 E = E->IgnoreImpCasts();
8726 if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E)) {
8727 E = MTE->getSubExpr();
8728 E = E->IgnoreImpCasts();
8729 }
8730
8731 // Built-in binary operator.
8732 if (const auto *OP = dyn_cast<BinaryOperator>(Val: E);
8733 OP && IsArithmeticOp(Opc: OP->getOpcode())) {
8734 *Opcode = OP->getOpcode();
8735 *RHSExprs = OP->getRHS();
8736 return true;
8737 }
8738
8739 // Overloaded operator.
8740 if (const auto *Call = dyn_cast<CXXOperatorCallExpr>(Val: E)) {
8741 if (Call->getNumArgs() != 2)
8742 return false;
8743
8744 // Make sure this is really a binary operator that is safe to pass into
8745 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8746 OverloadedOperatorKind OO = Call->getOperator();
8747 if (OO < OO_Plus || OO > OO_Arrow ||
8748 OO == OO_PlusPlus || OO == OO_MinusMinus)
8749 return false;
8750
8751 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8752 if (IsArithmeticOp(Opc: OpKind)) {
8753 *Opcode = OpKind;
8754 *RHSExprs = Call->getArg(Arg: 1);
8755 return true;
8756 }
8757 }
8758
8759 return false;
8760}
8761
8762/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8763/// or is a logical expression such as (x==y) which has int type, but is
8764/// commonly interpreted as boolean.
8765static bool ExprLooksBoolean(const Expr *E) {
8766 E = E->IgnoreParenImpCasts();
8767
8768 if (E->getType()->isBooleanType())
8769 return true;
8770 if (const auto *OP = dyn_cast<BinaryOperator>(Val: E))
8771 return OP->isComparisonOp() || OP->isLogicalOp();
8772 if (const auto *OP = dyn_cast<UnaryOperator>(Val: E))
8773 return OP->getOpcode() == UO_LNot;
8774 if (E->getType()->isPointerType())
8775 return true;
8776 // FIXME: What about overloaded operator calls returning "unspecified boolean
8777 // type"s (commonly pointer-to-members)?
8778
8779 return false;
8780}
8781
8782/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
8783/// and binary operator are mixed in a way that suggests the programmer assumed
8784/// the conditional operator has higher precedence, for example:
8785/// "int x = a + someBinaryCondition ? 1 : 2".
8786static void DiagnoseConditionalPrecedence(Sema &Self, SourceLocation OpLoc,
8787 Expr *Condition, const Expr *LHSExpr,
8788 const Expr *RHSExpr) {
8789 BinaryOperatorKind CondOpcode;
8790 const Expr *CondRHS;
8791
8792 if (!IsArithmeticBinaryExpr(E: Condition, Opcode: &CondOpcode, RHSExprs: &CondRHS))
8793 return;
8794 if (!ExprLooksBoolean(E: CondRHS))
8795 return;
8796
8797 // The condition is an arithmetic binary expression, with a right-
8798 // hand side that looks boolean, so warn.
8799
8800 unsigned DiagID = BinaryOperator::isBitwiseOp(Opc: CondOpcode)
8801 ? diag::warn_precedence_bitwise_conditional
8802 : diag::warn_precedence_conditional;
8803
8804 Self.Diag(Loc: OpLoc, DiagID)
8805 << Condition->getSourceRange()
8806 << BinaryOperator::getOpcodeStr(Op: CondOpcode);
8807
8808 SuggestParentheses(
8809 Self, Loc: OpLoc,
8810 Note: Self.PDiag(DiagID: diag::note_precedence_silence)
8811 << BinaryOperator::getOpcodeStr(Op: CondOpcode),
8812 ParenRange: SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
8813
8814 SuggestParentheses(Self, Loc: OpLoc,
8815 Note: Self.PDiag(DiagID: diag::note_precedence_conditional_first),
8816 ParenRange: SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
8817}
8818
8819/// Compute the nullability of a conditional expression.
8820static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
8821 QualType LHSTy, QualType RHSTy,
8822 ASTContext &Ctx) {
8823 if (!ResTy->isAnyPointerType())
8824 return ResTy;
8825
8826 auto GetNullability = [](QualType Ty) {
8827 std::optional<NullabilityKind> Kind = Ty->getNullability();
8828 if (Kind) {
8829 // For our purposes, treat _Nullable_result as _Nullable.
8830 if (*Kind == NullabilityKind::NullableResult)
8831 return NullabilityKind::Nullable;
8832 return *Kind;
8833 }
8834 return NullabilityKind::Unspecified;
8835 };
8836
8837 auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
8838 NullabilityKind MergedKind;
8839
8840 // Compute nullability of a binary conditional expression.
8841 if (IsBin) {
8842 if (LHSKind == NullabilityKind::NonNull)
8843 MergedKind = NullabilityKind::NonNull;
8844 else
8845 MergedKind = RHSKind;
8846 // Compute nullability of a normal conditional expression.
8847 } else {
8848 if (LHSKind == NullabilityKind::Nullable ||
8849 RHSKind == NullabilityKind::Nullable)
8850 MergedKind = NullabilityKind::Nullable;
8851 else if (LHSKind == NullabilityKind::NonNull)
8852 MergedKind = RHSKind;
8853 else if (RHSKind == NullabilityKind::NonNull)
8854 MergedKind = LHSKind;
8855 else
8856 MergedKind = NullabilityKind::Unspecified;
8857 }
8858
8859 // Return if ResTy already has the correct nullability.
8860 if (GetNullability(ResTy) == MergedKind)
8861 return ResTy;
8862
8863 // Strip all nullability from ResTy.
8864 while (ResTy->getNullability())
8865 ResTy = ResTy.getSingleStepDesugaredType(Context: Ctx);
8866
8867 // Create a new AttributedType with the new nullability kind.
8868 return Ctx.getAttributedType(nullability: MergedKind, modifiedType: ResTy, equivalentType: ResTy);
8869}
8870
8871ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
8872 SourceLocation ColonLoc,
8873 Expr *CondExpr, Expr *LHSExpr,
8874 Expr *RHSExpr) {
8875 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
8876 // was the condition.
8877 OpaqueValueExpr *opaqueValue = nullptr;
8878 Expr *commonExpr = nullptr;
8879 if (!LHSExpr) {
8880 commonExpr = CondExpr;
8881 // Lower out placeholder types first. This is important so that we don't
8882 // try to capture a placeholder. This happens in few cases in C++; such
8883 // as Objective-C++'s dictionary subscripting syntax.
8884 if (commonExpr->hasPlaceholderType()) {
8885 ExprResult result = CheckPlaceholderExpr(E: commonExpr);
8886 if (!result.isUsable()) return ExprError();
8887 commonExpr = result.get();
8888 }
8889 // We usually want to apply unary conversions *before* saving, except
8890 // in the special case of a C++ l-value conditional.
8891 if (!(getLangOpts().CPlusPlus
8892 && !commonExpr->isTypeDependent()
8893 && commonExpr->getValueKind() == RHSExpr->getValueKind()
8894 && commonExpr->isGLValue()
8895 && commonExpr->isOrdinaryOrBitFieldObject()
8896 && RHSExpr->isOrdinaryOrBitFieldObject()
8897 && Context.hasSameType(T1: commonExpr->getType(), T2: RHSExpr->getType()))) {
8898 ExprResult commonRes = UsualUnaryConversions(E: commonExpr);
8899 if (commonRes.isInvalid())
8900 return ExprError();
8901 commonExpr = commonRes.get();
8902 }
8903
8904 // If the common expression is a class or array prvalue, materialize it
8905 // so that we can safely refer to it multiple times.
8906 if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
8907 commonExpr->getType()->isArrayType())) {
8908 ExprResult MatExpr = TemporaryMaterializationConversion(E: commonExpr);
8909 if (MatExpr.isInvalid())
8910 return ExprError();
8911 commonExpr = MatExpr.get();
8912 }
8913
8914 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
8915 commonExpr->getType(),
8916 commonExpr->getValueKind(),
8917 commonExpr->getObjectKind(),
8918 commonExpr);
8919 LHSExpr = CondExpr = opaqueValue;
8920 }
8921
8922 QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
8923 ExprValueKind VK = VK_PRValue;
8924 ExprObjectKind OK = OK_Ordinary;
8925 ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
8926 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
8927 VK, OK, QuestionLoc);
8928 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
8929 RHS.isInvalid())
8930 return ExprError();
8931
8932 DiagnoseConditionalPrecedence(Self&: *this, OpLoc: QuestionLoc, Condition: Cond.get(), LHSExpr: LHS.get(),
8933 RHSExpr: RHS.get());
8934
8935 CheckBoolLikeConversion(E: Cond.get(), CC: QuestionLoc);
8936
8937 result = computeConditionalNullability(ResTy: result, IsBin: commonExpr, LHSTy, RHSTy,
8938 Ctx&: Context);
8939
8940 if (!commonExpr)
8941 return new (Context)
8942 ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
8943 RHS.get(), result, VK, OK);
8944
8945 return new (Context) BinaryConditionalOperator(
8946 commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
8947 ColonLoc, result, VK, OK);
8948}
8949
8950bool Sema::IsInvalidSMECallConversion(QualType FromType, QualType ToType) {
8951 unsigned FromAttributes = 0, ToAttributes = 0;
8952 if (const auto *FromFn =
8953 dyn_cast<FunctionProtoType>(Val: Context.getCanonicalType(T: FromType)))
8954 FromAttributes =
8955 FromFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
8956 if (const auto *ToFn =
8957 dyn_cast<FunctionProtoType>(Val: Context.getCanonicalType(T: ToType)))
8958 ToAttributes =
8959 ToFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
8960
8961 return FromAttributes != ToAttributes;
8962}
8963
8964// Check if we have a conversion between incompatible cmse function pointer
8965// types, that is, a conversion between a function pointer with the
8966// cmse_nonsecure_call attribute and one without.
8967static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
8968 QualType ToType) {
8969 if (const auto *ToFn =
8970 dyn_cast<FunctionType>(Val: S.Context.getCanonicalType(T: ToType))) {
8971 if (const auto *FromFn =
8972 dyn_cast<FunctionType>(Val: S.Context.getCanonicalType(T: FromType))) {
8973 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
8974 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
8975
8976 return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
8977 }
8978 }
8979 return false;
8980}
8981
8982// checkPointerTypesForAssignment - This is a very tricky routine (despite
8983// being closely modeled after the C99 spec:-). The odd characteristic of this
8984// routine is it effectively iqnores the qualifiers on the top level pointee.
8985// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
8986// FIXME: add a couple examples in this comment.
8987static AssignConvertType checkPointerTypesForAssignment(Sema &S,
8988 QualType LHSType,
8989 QualType RHSType,
8990 SourceLocation Loc) {
8991 assert(LHSType.isCanonical() && "LHS not canonicalized!");
8992 assert(RHSType.isCanonical() && "RHS not canonicalized!");
8993
8994 // get the "pointed to" type (ignoring qualifiers at the top level)
8995 const Type *lhptee, *rhptee;
8996 Qualifiers lhq, rhq;
8997 std::tie(args&: lhptee, args&: lhq) =
8998 cast<PointerType>(Val&: LHSType)->getPointeeType().split().asPair();
8999 std::tie(args&: rhptee, args&: rhq) =
9000 cast<PointerType>(Val&: RHSType)->getPointeeType().split().asPair();
9001
9002 AssignConvertType ConvTy = AssignConvertType::Compatible;
9003
9004 // C99 6.5.16.1p1: This following citation is common to constraints
9005 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9006 // qualifiers of the type *pointed to* by the right;
9007
9008 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9009 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
9010 lhq.compatiblyIncludesObjCLifetime(other: rhq)) {
9011 // Ignore lifetime for further calculation.
9012 lhq.removeObjCLifetime();
9013 rhq.removeObjCLifetime();
9014 }
9015
9016 if (!lhq.compatiblyIncludes(other: rhq, Ctx: S.getASTContext())) {
9017 // Treat address-space mismatches as fatal.
9018 if (!lhq.isAddressSpaceSupersetOf(other: rhq, Ctx: S.getASTContext()))
9019 return AssignConvertType::IncompatiblePointerDiscardsQualifiers;
9020
9021 // It's okay to add or remove GC or lifetime qualifiers when converting to
9022 // and from void*.
9023 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime().compatiblyIncludes(
9024 other: rhq.withoutObjCGCAttr().withoutObjCLifetime(),
9025 Ctx: S.getASTContext()) &&
9026 (lhptee->isVoidType() || rhptee->isVoidType()))
9027 ; // keep old
9028
9029 // Treat lifetime mismatches as fatal.
9030 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
9031 ConvTy = AssignConvertType::IncompatiblePointerDiscardsQualifiers;
9032
9033 // Treat pointer-auth mismatches as fatal.
9034 else if (!lhq.getPointerAuth().isEquivalent(Other: rhq.getPointerAuth()))
9035 ConvTy = AssignConvertType::IncompatiblePointerDiscardsQualifiers;
9036
9037 // For GCC/MS compatibility, other qualifier mismatches are treated
9038 // as still compatible in C.
9039 else
9040 ConvTy = AssignConvertType::CompatiblePointerDiscardsQualifiers;
9041 }
9042
9043 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9044 // incomplete type and the other is a pointer to a qualified or unqualified
9045 // version of void...
9046 if (lhptee->isVoidType()) {
9047 if (rhptee->isIncompleteOrObjectType())
9048 return ConvTy;
9049
9050 // As an extension, we allow cast to/from void* to function pointer.
9051 assert(rhptee->isFunctionType());
9052 return AssignConvertType::FunctionVoidPointer;
9053 }
9054
9055 if (rhptee->isVoidType()) {
9056 // In C, void * to another pointer type is compatible, but we want to note
9057 // that there will be an implicit conversion happening here.
9058 if (lhptee->isIncompleteOrObjectType())
9059 return ConvTy == AssignConvertType::Compatible &&
9060 !S.getLangOpts().CPlusPlus
9061 ? AssignConvertType::CompatibleVoidPtrToNonVoidPtr
9062 : ConvTy;
9063
9064 // As an extension, we allow cast to/from void* to function pointer.
9065 assert(lhptee->isFunctionType());
9066 return AssignConvertType::FunctionVoidPointer;
9067 }
9068
9069 if (!S.Diags.isIgnored(
9070 DiagID: diag::warn_typecheck_convert_incompatible_function_pointer_strict,
9071 Loc) &&
9072 RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() &&
9073 !S.TryFunctionConversion(FromType: RHSType, ToType: LHSType, ResultTy&: RHSType))
9074 return AssignConvertType::IncompatibleFunctionPointerStrict;
9075
9076 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9077 // unqualified versions of compatible types, ...
9078 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9079 if (!S.Context.typesAreCompatible(T1: ltrans, T2: rtrans)) {
9080 // Check if the pointee types are compatible ignoring the sign.
9081 // We explicitly check for char so that we catch "char" vs
9082 // "unsigned char" on systems where "char" is unsigned.
9083 if (lhptee->isCharType())
9084 ltrans = S.Context.UnsignedCharTy;
9085 else if (lhptee->hasSignedIntegerRepresentation())
9086 ltrans = S.Context.getCorrespondingUnsignedType(T: ltrans);
9087
9088 if (rhptee->isCharType())
9089 rtrans = S.Context.UnsignedCharTy;
9090 else if (rhptee->hasSignedIntegerRepresentation())
9091 rtrans = S.Context.getCorrespondingUnsignedType(T: rtrans);
9092
9093 if (ltrans == rtrans) {
9094 // Types are compatible ignoring the sign. Qualifier incompatibility
9095 // takes priority over sign incompatibility because the sign
9096 // warning can be disabled.
9097 if (!S.IsAssignConvertCompatible(ConvTy))
9098 return ConvTy;
9099
9100 return AssignConvertType::IncompatiblePointerSign;
9101 }
9102
9103 // If we are a multi-level pointer, it's possible that our issue is simply
9104 // one of qualification - e.g. char ** -> const char ** is not allowed. If
9105 // the eventual target type is the same and the pointers have the same
9106 // level of indirection, this must be the issue.
9107 if (isa<PointerType>(Val: lhptee) && isa<PointerType>(Val: rhptee)) {
9108 do {
9109 std::tie(args&: lhptee, args&: lhq) =
9110 cast<PointerType>(Val: lhptee)->getPointeeType().split().asPair();
9111 std::tie(args&: rhptee, args&: rhq) =
9112 cast<PointerType>(Val: rhptee)->getPointeeType().split().asPair();
9113
9114 // Inconsistent address spaces at this point is invalid, even if the
9115 // address spaces would be compatible.
9116 // FIXME: This doesn't catch address space mismatches for pointers of
9117 // different nesting levels, like:
9118 // __local int *** a;
9119 // int ** b = a;
9120 // It's not clear how to actually determine when such pointers are
9121 // invalidly incompatible.
9122 if (lhq.getAddressSpace() != rhq.getAddressSpace())
9123 return AssignConvertType::
9124 IncompatibleNestedPointerAddressSpaceMismatch;
9125
9126 } while (isa<PointerType>(Val: lhptee) && isa<PointerType>(Val: rhptee));
9127
9128 if (lhptee == rhptee)
9129 return AssignConvertType::IncompatibleNestedPointerQualifiers;
9130 }
9131
9132 // General pointer incompatibility takes priority over qualifiers.
9133 if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9134 return AssignConvertType::IncompatibleFunctionPointer;
9135 return AssignConvertType::IncompatiblePointer;
9136 }
9137 bool DiscardingCFIUncheckedCallee, AddingCFIUncheckedCallee;
9138 if (!S.getLangOpts().CPlusPlus &&
9139 S.IsFunctionConversion(FromType: ltrans, ToType: rtrans, DiscardingCFIUncheckedCallee: &DiscardingCFIUncheckedCallee,
9140 AddingCFIUncheckedCallee: &AddingCFIUncheckedCallee)) {
9141 // Allow conversions between CFIUncheckedCallee-ness.
9142 if (!DiscardingCFIUncheckedCallee && !AddingCFIUncheckedCallee)
9143 return AssignConvertType::IncompatibleFunctionPointer;
9144 }
9145 if (IsInvalidCmseNSCallConversion(S, FromType: ltrans, ToType: rtrans))
9146 return AssignConvertType::IncompatibleFunctionPointer;
9147 if (S.IsInvalidSMECallConversion(FromType: rtrans, ToType: ltrans))
9148 return AssignConvertType::IncompatibleFunctionPointer;
9149 return ConvTy;
9150}
9151
9152/// checkBlockPointerTypesForAssignment - This routine determines whether two
9153/// block pointer types are compatible or whether a block and normal pointer
9154/// are compatible. It is more restrict than comparing two function pointer
9155// types.
9156static AssignConvertType checkBlockPointerTypesForAssignment(Sema &S,
9157 QualType LHSType,
9158 QualType RHSType) {
9159 assert(LHSType.isCanonical() && "LHS not canonicalized!");
9160 assert(RHSType.isCanonical() && "RHS not canonicalized!");
9161
9162 QualType lhptee, rhptee;
9163
9164 // get the "pointed to" type (ignoring qualifiers at the top level)
9165 lhptee = cast<BlockPointerType>(Val&: LHSType)->getPointeeType();
9166 rhptee = cast<BlockPointerType>(Val&: RHSType)->getPointeeType();
9167
9168 // In C++, the types have to match exactly.
9169 if (S.getLangOpts().CPlusPlus)
9170 return AssignConvertType::IncompatibleBlockPointer;
9171
9172 AssignConvertType ConvTy = AssignConvertType::Compatible;
9173
9174 // For blocks we enforce that qualifiers are identical.
9175 Qualifiers LQuals = lhptee.getLocalQualifiers();
9176 Qualifiers RQuals = rhptee.getLocalQualifiers();
9177 if (S.getLangOpts().OpenCL) {
9178 LQuals.removeAddressSpace();
9179 RQuals.removeAddressSpace();
9180 }
9181 if (LQuals != RQuals)
9182 ConvTy = AssignConvertType::CompatiblePointerDiscardsQualifiers;
9183
9184 // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9185 // assignment.
9186 // The current behavior is similar to C++ lambdas. A block might be
9187 // assigned to a variable iff its return type and parameters are compatible
9188 // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9189 // an assignment. Presumably it should behave in way that a function pointer
9190 // assignment does in C, so for each parameter and return type:
9191 // * CVR and address space of LHS should be a superset of CVR and address
9192 // space of RHS.
9193 // * unqualified types should be compatible.
9194 if (S.getLangOpts().OpenCL) {
9195 if (!S.Context.typesAreBlockPointerCompatible(
9196 S.Context.getQualifiedType(T: LHSType.getUnqualifiedType(), Qs: LQuals),
9197 S.Context.getQualifiedType(T: RHSType.getUnqualifiedType(), Qs: RQuals)))
9198 return AssignConvertType::IncompatibleBlockPointer;
9199 } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9200 return AssignConvertType::IncompatibleBlockPointer;
9201
9202 return ConvTy;
9203}
9204
9205/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9206/// for assignment compatibility.
9207static AssignConvertType checkObjCPointerTypesForAssignment(Sema &S,
9208 QualType LHSType,
9209 QualType RHSType) {
9210 assert(LHSType.isCanonical() && "LHS was not canonicalized!");
9211 assert(RHSType.isCanonical() && "RHS was not canonicalized!");
9212
9213 if (LHSType->isObjCBuiltinType()) {
9214 // Class is not compatible with ObjC object pointers.
9215 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9216 !RHSType->isObjCQualifiedClassType())
9217 return AssignConvertType::IncompatiblePointer;
9218 return AssignConvertType::Compatible;
9219 }
9220 if (RHSType->isObjCBuiltinType()) {
9221 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9222 !LHSType->isObjCQualifiedClassType())
9223 return AssignConvertType::IncompatiblePointer;
9224 return AssignConvertType::Compatible;
9225 }
9226 QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9227 QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9228
9229 if (!lhptee.isAtLeastAsQualifiedAs(other: rhptee, Ctx: S.getASTContext()) &&
9230 // make an exception for id<P>
9231 !LHSType->isObjCQualifiedIdType())
9232 return AssignConvertType::CompatiblePointerDiscardsQualifiers;
9233
9234 if (S.Context.typesAreCompatible(T1: LHSType, T2: RHSType))
9235 return AssignConvertType::Compatible;
9236 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9237 return AssignConvertType::IncompatibleObjCQualifiedId;
9238 return AssignConvertType::IncompatiblePointer;
9239}
9240
9241AssignConvertType Sema::CheckAssignmentConstraints(SourceLocation Loc,
9242 QualType LHSType,
9243 QualType RHSType) {
9244 // Fake up an opaque expression. We don't actually care about what
9245 // cast operations are required, so if CheckAssignmentConstraints
9246 // adds casts to this they'll be wasted, but fortunately that doesn't
9247 // usually happen on valid code.
9248 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9249 ExprResult RHSPtr = &RHSExpr;
9250 CastKind K;
9251
9252 return CheckAssignmentConstraints(LHSType, RHS&: RHSPtr, Kind&: K, /*ConvertRHS=*/false);
9253}
9254
9255/// This helper function returns true if QT is a vector type that has element
9256/// type ElementType.
9257static bool isVector(QualType QT, QualType ElementType) {
9258 if (const VectorType *VT = QT->getAs<VectorType>())
9259 return VT->getElementType().getCanonicalType() == ElementType;
9260 return false;
9261}
9262
9263/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9264/// has code to accommodate several GCC extensions when type checking
9265/// pointers. Here are some objectionable examples that GCC considers warnings:
9266///
9267/// int a, *pint;
9268/// short *pshort;
9269/// struct foo *pfoo;
9270///
9271/// pint = pshort; // warning: assignment from incompatible pointer type
9272/// a = pint; // warning: assignment makes integer from pointer without a cast
9273/// pint = a; // warning: assignment makes pointer from integer without a cast
9274/// pint = pfoo; // warning: assignment from incompatible pointer type
9275///
9276/// As a result, the code for dealing with pointers is more complex than the
9277/// C99 spec dictates.
9278///
9279/// Sets 'Kind' for any result kind except Incompatible.
9280AssignConvertType Sema::CheckAssignmentConstraints(QualType LHSType,
9281 ExprResult &RHS,
9282 CastKind &Kind,
9283 bool ConvertRHS) {
9284 QualType RHSType = RHS.get()->getType();
9285 QualType OrigLHSType = LHSType;
9286
9287 // Get canonical types. We're not formatting these types, just comparing
9288 // them.
9289 LHSType = Context.getCanonicalType(T: LHSType).getUnqualifiedType();
9290 RHSType = Context.getCanonicalType(T: RHSType).getUnqualifiedType();
9291
9292 // Common case: no conversion required.
9293 if (LHSType == RHSType) {
9294 Kind = CK_NoOp;
9295 return AssignConvertType::Compatible;
9296 }
9297
9298 // If the LHS has an __auto_type, there are no additional type constraints
9299 // to be worried about.
9300 if (const auto *AT = dyn_cast<AutoType>(Val&: LHSType)) {
9301 if (AT->isGNUAutoType()) {
9302 Kind = CK_NoOp;
9303 return AssignConvertType::Compatible;
9304 }
9305 }
9306
9307 // If we have an atomic type, try a non-atomic assignment, then just add an
9308 // atomic qualification step.
9309 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(Val&: LHSType)) {
9310 AssignConvertType result =
9311 CheckAssignmentConstraints(LHSType: AtomicTy->getValueType(), RHS, Kind);
9312 if (result != AssignConvertType::Compatible)
9313 return result;
9314 if (Kind != CK_NoOp && ConvertRHS)
9315 RHS = ImpCastExprToType(E: RHS.get(), Type: AtomicTy->getValueType(), CK: Kind);
9316 Kind = CK_NonAtomicToAtomic;
9317 return AssignConvertType::Compatible;
9318 }
9319
9320 // If the left-hand side is a reference type, then we are in a
9321 // (rare!) case where we've allowed the use of references in C,
9322 // e.g., as a parameter type in a built-in function. In this case,
9323 // just make sure that the type referenced is compatible with the
9324 // right-hand side type. The caller is responsible for adjusting
9325 // LHSType so that the resulting expression does not have reference
9326 // type.
9327 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9328 if (Context.typesAreCompatible(T1: LHSTypeRef->getPointeeType(), T2: RHSType)) {
9329 Kind = CK_LValueBitCast;
9330 return AssignConvertType::Compatible;
9331 }
9332 return AssignConvertType::Incompatible;
9333 }
9334
9335 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9336 // to the same ExtVector type.
9337 if (LHSType->isExtVectorType()) {
9338 if (RHSType->isExtVectorType())
9339 return AssignConvertType::Incompatible;
9340 if (RHSType->isArithmeticType()) {
9341 // CK_VectorSplat does T -> vector T, so first cast to the element type.
9342 if (ConvertRHS)
9343 RHS = prepareVectorSplat(VectorTy: LHSType, SplattedExpr: RHS.get());
9344 Kind = CK_VectorSplat;
9345 return AssignConvertType::Compatible;
9346 }
9347 }
9348
9349 // Conversions to or from vector type.
9350 if (LHSType->isVectorType() || RHSType->isVectorType()) {
9351 if (LHSType->isVectorType() && RHSType->isVectorType()) {
9352 // Allow assignments of an AltiVec vector type to an equivalent GCC
9353 // vector type and vice versa
9354 if (Context.areCompatibleVectorTypes(FirstVec: LHSType, SecondVec: RHSType)) {
9355 Kind = CK_BitCast;
9356 return AssignConvertType::Compatible;
9357 }
9358
9359 // If we are allowing lax vector conversions, and LHS and RHS are both
9360 // vectors, the total size only needs to be the same. This is a bitcast;
9361 // no bits are changed but the result type is different.
9362 if (isLaxVectorConversion(srcTy: RHSType, destTy: LHSType)) {
9363 // The default for lax vector conversions with Altivec vectors will
9364 // change, so if we are converting between vector types where
9365 // at least one is an Altivec vector, emit a warning.
9366 if (Context.getTargetInfo().getTriple().isPPC() &&
9367 anyAltivecTypes(SrcTy: RHSType, DestTy: LHSType) &&
9368 !Context.areCompatibleVectorTypes(FirstVec: RHSType, SecondVec: LHSType))
9369 Diag(Loc: RHS.get()->getExprLoc(), DiagID: diag::warn_deprecated_lax_vec_conv_all)
9370 << RHSType << LHSType;
9371 Kind = CK_BitCast;
9372 return AssignConvertType::IncompatibleVectors;
9373 }
9374 }
9375
9376 // When the RHS comes from another lax conversion (e.g. binops between
9377 // scalars and vectors) the result is canonicalized as a vector. When the
9378 // LHS is also a vector, the lax is allowed by the condition above. Handle
9379 // the case where LHS is a scalar.
9380 if (LHSType->isScalarType()) {
9381 const VectorType *VecType = RHSType->getAs<VectorType>();
9382 if (VecType && VecType->getNumElements() == 1 &&
9383 isLaxVectorConversion(srcTy: RHSType, destTy: LHSType)) {
9384 if (Context.getTargetInfo().getTriple().isPPC() &&
9385 (VecType->getVectorKind() == VectorKind::AltiVecVector ||
9386 VecType->getVectorKind() == VectorKind::AltiVecBool ||
9387 VecType->getVectorKind() == VectorKind::AltiVecPixel))
9388 Diag(Loc: RHS.get()->getExprLoc(), DiagID: diag::warn_deprecated_lax_vec_conv_all)
9389 << RHSType << LHSType;
9390 ExprResult *VecExpr = &RHS;
9391 *VecExpr = ImpCastExprToType(E: VecExpr->get(), Type: LHSType, CK: CK_BitCast);
9392 Kind = CK_BitCast;
9393 return AssignConvertType::Compatible;
9394 }
9395 }
9396
9397 // Allow assignments between fixed-length and sizeless SVE vectors.
9398 if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) ||
9399 (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType()))
9400 if (ARM().areCompatibleSveTypes(FirstType: LHSType, SecondType: RHSType) ||
9401 ARM().areLaxCompatibleSveTypes(FirstType: LHSType, SecondType: RHSType)) {
9402 Kind = CK_BitCast;
9403 return AssignConvertType::Compatible;
9404 }
9405
9406 // Allow assignments between fixed-length and sizeless RVV vectors.
9407 if ((LHSType->isRVVSizelessBuiltinType() && RHSType->isVectorType()) ||
9408 (LHSType->isVectorType() && RHSType->isRVVSizelessBuiltinType())) {
9409 if (Context.areCompatibleRVVTypes(FirstType: LHSType, SecondType: RHSType) ||
9410 Context.areLaxCompatibleRVVTypes(FirstType: LHSType, SecondType: RHSType)) {
9411 Kind = CK_BitCast;
9412 return AssignConvertType::Compatible;
9413 }
9414 }
9415
9416 return AssignConvertType::Incompatible;
9417 }
9418
9419 // Diagnose attempts to convert between __ibm128, __float128 and long double
9420 // where such conversions currently can't be handled.
9421 if (unsupportedTypeConversion(S: *this, LHSType, RHSType))
9422 return AssignConvertType::Incompatible;
9423
9424 // Disallow assigning a _Complex to a real type in C++ mode since it simply
9425 // discards the imaginary part.
9426 if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9427 !LHSType->getAs<ComplexType>())
9428 return AssignConvertType::Incompatible;
9429
9430 // Arithmetic conversions.
9431 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9432 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9433 if (ConvertRHS)
9434 Kind = PrepareScalarCast(Src&: RHS, DestTy: LHSType);
9435 return AssignConvertType::Compatible;
9436 }
9437
9438 // Conversions to normal pointers.
9439 if (const PointerType *LHSPointer = dyn_cast<PointerType>(Val&: LHSType)) {
9440 // U* -> T*
9441 if (isa<PointerType>(Val: RHSType)) {
9442 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9443 LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9444 if (AddrSpaceL != AddrSpaceR)
9445 Kind = CK_AddressSpaceConversion;
9446 else if (Context.hasCvrSimilarType(T1: RHSType, T2: LHSType))
9447 Kind = CK_NoOp;
9448 else
9449 Kind = CK_BitCast;
9450 return checkPointerTypesForAssignment(S&: *this, LHSType, RHSType,
9451 Loc: RHS.get()->getBeginLoc());
9452 }
9453
9454 // int -> T*
9455 if (RHSType->isIntegerType()) {
9456 Kind = CK_IntegralToPointer; // FIXME: null?
9457 return AssignConvertType::IntToPointer;
9458 }
9459
9460 // C pointers are not compatible with ObjC object pointers,
9461 // with two exceptions:
9462 if (isa<ObjCObjectPointerType>(Val: RHSType)) {
9463 // - conversions to void*
9464 if (LHSPointer->getPointeeType()->isVoidType()) {
9465 Kind = CK_BitCast;
9466 return AssignConvertType::Compatible;
9467 }
9468
9469 // - conversions from 'Class' to the redefinition type
9470 if (RHSType->isObjCClassType() &&
9471 Context.hasSameType(T1: LHSType,
9472 T2: Context.getObjCClassRedefinitionType())) {
9473 Kind = CK_BitCast;
9474 return AssignConvertType::Compatible;
9475 }
9476
9477 Kind = CK_BitCast;
9478 return AssignConvertType::IncompatiblePointer;
9479 }
9480
9481 // U^ -> void*
9482 if (RHSType->getAs<BlockPointerType>()) {
9483 if (LHSPointer->getPointeeType()->isVoidType()) {
9484 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9485 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9486 ->getPointeeType()
9487 .getAddressSpace();
9488 Kind =
9489 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9490 return AssignConvertType::Compatible;
9491 }
9492 }
9493
9494 return AssignConvertType::Incompatible;
9495 }
9496
9497 // Conversions to block pointers.
9498 if (isa<BlockPointerType>(Val: LHSType)) {
9499 // U^ -> T^
9500 if (RHSType->isBlockPointerType()) {
9501 LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9502 ->getPointeeType()
9503 .getAddressSpace();
9504 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9505 ->getPointeeType()
9506 .getAddressSpace();
9507 Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9508 return checkBlockPointerTypesForAssignment(S&: *this, LHSType, RHSType);
9509 }
9510
9511 // int or null -> T^
9512 if (RHSType->isIntegerType()) {
9513 Kind = CK_IntegralToPointer; // FIXME: null
9514 return AssignConvertType::IntToBlockPointer;
9515 }
9516
9517 // id -> T^
9518 if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9519 Kind = CK_AnyPointerToBlockPointerCast;
9520 return AssignConvertType::Compatible;
9521 }
9522
9523 // void* -> T^
9524 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9525 if (RHSPT->getPointeeType()->isVoidType()) {
9526 Kind = CK_AnyPointerToBlockPointerCast;
9527 return AssignConvertType::Compatible;
9528 }
9529
9530 return AssignConvertType::Incompatible;
9531 }
9532
9533 // Conversions to Objective-C pointers.
9534 if (isa<ObjCObjectPointerType>(Val: LHSType)) {
9535 // A* -> B*
9536 if (RHSType->isObjCObjectPointerType()) {
9537 Kind = CK_BitCast;
9538 AssignConvertType result =
9539 checkObjCPointerTypesForAssignment(S&: *this, LHSType, RHSType);
9540 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9541 result == AssignConvertType::Compatible &&
9542 !ObjC().CheckObjCARCUnavailableWeakConversion(castType: OrigLHSType, ExprType: RHSType))
9543 result = AssignConvertType::IncompatibleObjCWeakRef;
9544 return result;
9545 }
9546
9547 // int or null -> A*
9548 if (RHSType->isIntegerType()) {
9549 Kind = CK_IntegralToPointer; // FIXME: null
9550 return AssignConvertType::IntToPointer;
9551 }
9552
9553 // In general, C pointers are not compatible with ObjC object pointers,
9554 // with two exceptions:
9555 if (isa<PointerType>(Val: RHSType)) {
9556 Kind = CK_CPointerToObjCPointerCast;
9557
9558 // - conversions from 'void*'
9559 if (RHSType->isVoidPointerType()) {
9560 return AssignConvertType::Compatible;
9561 }
9562
9563 // - conversions to 'Class' from its redefinition type
9564 if (LHSType->isObjCClassType() &&
9565 Context.hasSameType(T1: RHSType,
9566 T2: Context.getObjCClassRedefinitionType())) {
9567 return AssignConvertType::Compatible;
9568 }
9569
9570 return AssignConvertType::IncompatiblePointer;
9571 }
9572
9573 // Only under strict condition T^ is compatible with an Objective-C pointer.
9574 if (RHSType->isBlockPointerType() &&
9575 LHSType->isBlockCompatibleObjCPointerType(ctx&: Context)) {
9576 if (ConvertRHS)
9577 maybeExtendBlockObject(E&: RHS);
9578 Kind = CK_BlockPointerToObjCPointerCast;
9579 return AssignConvertType::Compatible;
9580 }
9581
9582 return AssignConvertType::Incompatible;
9583 }
9584
9585 // Conversion to nullptr_t (C23 only)
9586 if (getLangOpts().C23 && LHSType->isNullPtrType() &&
9587 RHS.get()->isNullPointerConstant(Ctx&: Context,
9588 NPC: Expr::NPC_ValueDependentIsNull)) {
9589 // null -> nullptr_t
9590 Kind = CK_NullToPointer;
9591 return AssignConvertType::Compatible;
9592 }
9593
9594 // Conversions from pointers that are not covered by the above.
9595 if (isa<PointerType>(Val: RHSType)) {
9596 // T* -> _Bool
9597 if (LHSType == Context.BoolTy) {
9598 Kind = CK_PointerToBoolean;
9599 return AssignConvertType::Compatible;
9600 }
9601
9602 // T* -> int
9603 if (LHSType->isIntegerType()) {
9604 Kind = CK_PointerToIntegral;
9605 return AssignConvertType::PointerToInt;
9606 }
9607
9608 return AssignConvertType::Incompatible;
9609 }
9610
9611 // Conversions from Objective-C pointers that are not covered by the above.
9612 if (isa<ObjCObjectPointerType>(Val: RHSType)) {
9613 // T* -> _Bool
9614 if (LHSType == Context.BoolTy) {
9615 Kind = CK_PointerToBoolean;
9616 return AssignConvertType::Compatible;
9617 }
9618
9619 // T* -> int
9620 if (LHSType->isIntegerType()) {
9621 Kind = CK_PointerToIntegral;
9622 return AssignConvertType::PointerToInt;
9623 }
9624
9625 return AssignConvertType::Incompatible;
9626 }
9627
9628 // struct A -> struct B
9629 if (isa<TagType>(Val: LHSType) && isa<TagType>(Val: RHSType)) {
9630 if (Context.typesAreCompatible(T1: LHSType, T2: RHSType)) {
9631 Kind = CK_NoOp;
9632 return AssignConvertType::Compatible;
9633 }
9634 }
9635
9636 if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9637 Kind = CK_IntToOCLSampler;
9638 return AssignConvertType::Compatible;
9639 }
9640
9641 return AssignConvertType::Incompatible;
9642}
9643
9644/// Constructs a transparent union from an expression that is
9645/// used to initialize the transparent union.
9646static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9647 ExprResult &EResult, QualType UnionType,
9648 FieldDecl *Field) {
9649 // Build an initializer list that designates the appropriate member
9650 // of the transparent union.
9651 Expr *E = EResult.get();
9652 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9653 E, SourceLocation());
9654 Initializer->setType(UnionType);
9655 Initializer->setInitializedFieldInUnion(Field);
9656
9657 // Build a compound literal constructing a value of the transparent
9658 // union type from this initializer list.
9659 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(T: UnionType);
9660 EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9661 VK_PRValue, Initializer, false);
9662}
9663
9664AssignConvertType
9665Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9666 ExprResult &RHS) {
9667 QualType RHSType = RHS.get()->getType();
9668
9669 // If the ArgType is a Union type, we want to handle a potential
9670 // transparent_union GCC extension.
9671 const RecordType *UT = ArgType->getAsUnionType();
9672 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9673 return AssignConvertType::Incompatible;
9674
9675 // The field to initialize within the transparent union.
9676 RecordDecl *UD = UT->getDecl();
9677 FieldDecl *InitField = nullptr;
9678 // It's compatible if the expression matches any of the fields.
9679 for (auto *it : UD->fields()) {
9680 if (it->getType()->isPointerType()) {
9681 // If the transparent union contains a pointer type, we allow:
9682 // 1) void pointer
9683 // 2) null pointer constant
9684 if (RHSType->isPointerType())
9685 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9686 RHS = ImpCastExprToType(E: RHS.get(), Type: it->getType(), CK: CK_BitCast);
9687 InitField = it;
9688 break;
9689 }
9690
9691 if (RHS.get()->isNullPointerConstant(Ctx&: Context,
9692 NPC: Expr::NPC_ValueDependentIsNull)) {
9693 RHS = ImpCastExprToType(E: RHS.get(), Type: it->getType(),
9694 CK: CK_NullToPointer);
9695 InitField = it;
9696 break;
9697 }
9698 }
9699
9700 CastKind Kind;
9701 if (CheckAssignmentConstraints(LHSType: it->getType(), RHS, Kind) ==
9702 AssignConvertType::Compatible) {
9703 RHS = ImpCastExprToType(E: RHS.get(), Type: it->getType(), CK: Kind);
9704 InitField = it;
9705 break;
9706 }
9707 }
9708
9709 if (!InitField)
9710 return AssignConvertType::Incompatible;
9711
9712 ConstructTransparentUnion(S&: *this, C&: Context, EResult&: RHS, UnionType: ArgType, Field: InitField);
9713 return AssignConvertType::Compatible;
9714}
9715
9716AssignConvertType Sema::CheckSingleAssignmentConstraints(QualType LHSType,
9717 ExprResult &CallerRHS,
9718 bool Diagnose,
9719 bool DiagnoseCFAudited,
9720 bool ConvertRHS) {
9721 // We need to be able to tell the caller whether we diagnosed a problem, if
9722 // they ask us to issue diagnostics.
9723 assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
9724
9725 // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9726 // we can't avoid *all* modifications at the moment, so we need some somewhere
9727 // to put the updated value.
9728 ExprResult LocalRHS = CallerRHS;
9729 ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9730
9731 if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9732 if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9733 if (RHSPtrType->getPointeeType()->hasAttr(AK: attr::NoDeref) &&
9734 !LHSPtrType->getPointeeType()->hasAttr(AK: attr::NoDeref)) {
9735 Diag(Loc: RHS.get()->getExprLoc(),
9736 DiagID: diag::warn_noderef_to_dereferenceable_pointer)
9737 << RHS.get()->getSourceRange();
9738 }
9739 }
9740 }
9741
9742 if (getLangOpts().CPlusPlus) {
9743 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9744 // C++ 5.17p3: If the left operand is not of class type, the
9745 // expression is implicitly converted (C++ 4) to the
9746 // cv-unqualified type of the left operand.
9747 QualType RHSType = RHS.get()->getType();
9748 if (Diagnose) {
9749 RHS = PerformImplicitConversion(From: RHS.get(), ToType: LHSType.getUnqualifiedType(),
9750 Action: AssignmentAction::Assigning);
9751 } else {
9752 ImplicitConversionSequence ICS =
9753 TryImplicitConversion(From: RHS.get(), ToType: LHSType.getUnqualifiedType(),
9754 /*SuppressUserConversions=*/false,
9755 AllowExplicit: AllowedExplicit::None,
9756 /*InOverloadResolution=*/false,
9757 /*CStyle=*/false,
9758 /*AllowObjCWritebackConversion=*/false);
9759 if (ICS.isFailure())
9760 return AssignConvertType::Incompatible;
9761 RHS = PerformImplicitConversion(From: RHS.get(), ToType: LHSType.getUnqualifiedType(),
9762 ICS, Action: AssignmentAction::Assigning);
9763 }
9764 if (RHS.isInvalid())
9765 return AssignConvertType::Incompatible;
9766 AssignConvertType result = AssignConvertType::Compatible;
9767 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9768 !ObjC().CheckObjCARCUnavailableWeakConversion(castType: LHSType, ExprType: RHSType))
9769 result = AssignConvertType::IncompatibleObjCWeakRef;
9770 return result;
9771 }
9772
9773 // FIXME: Currently, we fall through and treat C++ classes like C
9774 // structures.
9775 // FIXME: We also fall through for atomics; not sure what should
9776 // happen there, though.
9777 } else if (RHS.get()->getType() == Context.OverloadTy) {
9778 // As a set of extensions to C, we support overloading on functions. These
9779 // functions need to be resolved here.
9780 DeclAccessPair DAP;
9781 if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9782 AddressOfExpr: RHS.get(), TargetType: LHSType, /*Complain=*/false, Found&: DAP))
9783 RHS = FixOverloadedFunctionReference(E: RHS.get(), FoundDecl: DAP, Fn: FD);
9784 else
9785 return AssignConvertType::Incompatible;
9786 }
9787
9788 // This check seems unnatural, however it is necessary to ensure the proper
9789 // conversion of functions/arrays. If the conversion were done for all
9790 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
9791 // expressions that suppress this implicit conversion (&, sizeof). This needs
9792 // to happen before we check for null pointer conversions because C does not
9793 // undergo the same implicit conversions as C++ does above (by the calls to
9794 // TryImplicitConversion() and PerformImplicitConversion()) which insert the
9795 // lvalue to rvalue cast before checking for null pointer constraints. This
9796 // addresses code like: nullptr_t val; int *ptr; ptr = val;
9797 //
9798 // Suppress this for references: C++ 8.5.3p5.
9799 if (!LHSType->isReferenceType()) {
9800 // FIXME: We potentially allocate here even if ConvertRHS is false.
9801 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get(), Diagnose);
9802 if (RHS.isInvalid())
9803 return AssignConvertType::Incompatible;
9804 }
9805
9806 // The constraints are expressed in terms of the atomic, qualified, or
9807 // unqualified type of the LHS.
9808 QualType LHSTypeAfterConversion = LHSType.getAtomicUnqualifiedType();
9809
9810 // C99 6.5.16.1p1: the left operand is a pointer and the right is
9811 // a null pointer constant <C23>or its type is nullptr_t;</C23>.
9812 if ((LHSTypeAfterConversion->isPointerType() ||
9813 LHSTypeAfterConversion->isObjCObjectPointerType() ||
9814 LHSTypeAfterConversion->isBlockPointerType()) &&
9815 ((getLangOpts().C23 && RHS.get()->getType()->isNullPtrType()) ||
9816 RHS.get()->isNullPointerConstant(Ctx&: Context,
9817 NPC: Expr::NPC_ValueDependentIsNull))) {
9818 AssignConvertType Ret = AssignConvertType::Compatible;
9819 if (Diagnose || ConvertRHS) {
9820 CastKind Kind;
9821 CXXCastPath Path;
9822 CheckPointerConversion(From: RHS.get(), ToType: LHSType, Kind, BasePath&: Path,
9823 /*IgnoreBaseAccess=*/false, Diagnose);
9824
9825 // If there is a conversion of some kind, check to see what kind of
9826 // pointer conversion happened so we can diagnose a C++ compatibility
9827 // diagnostic if the conversion is invalid. This only matters if the RHS
9828 // is some kind of void pointer. We have a carve-out when the RHS is from
9829 // a macro expansion because the use of a macro may indicate different
9830 // code between C and C++. Consider: char *s = NULL; where NULL is
9831 // defined as (void *)0 in C (which would be invalid in C++), but 0 in
9832 // C++, which is valid in C++.
9833 if (Kind != CK_NoOp && !getLangOpts().CPlusPlus &&
9834 !RHS.get()->getBeginLoc().isMacroID()) {
9835 QualType CanRHS =
9836 RHS.get()->getType().getCanonicalType().getUnqualifiedType();
9837 QualType CanLHS = LHSType.getCanonicalType().getUnqualifiedType();
9838 if (CanRHS->isVoidPointerType() && CanLHS->isPointerType()) {
9839 Ret = checkPointerTypesForAssignment(S&: *this, LHSType: CanLHS, RHSType: CanRHS,
9840 Loc: RHS.get()->getExprLoc());
9841 // Anything that's not considered perfectly compatible would be
9842 // incompatible in C++.
9843 if (Ret != AssignConvertType::Compatible)
9844 Ret = AssignConvertType::CompatibleVoidPtrToNonVoidPtr;
9845 }
9846 }
9847
9848 if (ConvertRHS)
9849 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: Kind, VK: VK_PRValue, BasePath: &Path);
9850 }
9851 return Ret;
9852 }
9853 // C23 6.5.16.1p1: the left operand has type atomic, qualified, or
9854 // unqualified bool, and the right operand is a pointer or its type is
9855 // nullptr_t.
9856 if (getLangOpts().C23 && LHSType->isBooleanType() &&
9857 RHS.get()->getType()->isNullPtrType()) {
9858 // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only
9859 // only handles nullptr -> _Bool due to needing an extra conversion
9860 // step.
9861 // We model this by converting from nullptr -> void * and then let the
9862 // conversion from void * -> _Bool happen naturally.
9863 if (Diagnose || ConvertRHS) {
9864 CastKind Kind;
9865 CXXCastPath Path;
9866 CheckPointerConversion(From: RHS.get(), ToType: Context.VoidPtrTy, Kind, BasePath&: Path,
9867 /*IgnoreBaseAccess=*/false, Diagnose);
9868 if (ConvertRHS)
9869 RHS = ImpCastExprToType(E: RHS.get(), Type: Context.VoidPtrTy, CK: Kind, VK: VK_PRValue,
9870 BasePath: &Path);
9871 }
9872 }
9873
9874 // OpenCL queue_t type assignment.
9875 if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
9876 Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull)) {
9877 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
9878 return AssignConvertType::Compatible;
9879 }
9880
9881 CastKind Kind;
9882 AssignConvertType result =
9883 CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
9884
9885 // C99 6.5.16.1p2: The value of the right operand is converted to the
9886 // type of the assignment expression.
9887 // CheckAssignmentConstraints allows the left-hand side to be a reference,
9888 // so that we can use references in built-in functions even in C.
9889 // The getNonReferenceType() call makes sure that the resulting expression
9890 // does not have reference type.
9891 if (result != AssignConvertType::Incompatible &&
9892 RHS.get()->getType() != LHSType) {
9893 QualType Ty = LHSType.getNonLValueExprType(Context);
9894 Expr *E = RHS.get();
9895
9896 // Check for various Objective-C errors. If we are not reporting
9897 // diagnostics and just checking for errors, e.g., during overload
9898 // resolution, return Incompatible to indicate the failure.
9899 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9900 ObjC().CheckObjCConversion(castRange: SourceRange(), castType: Ty, op&: E,
9901 CCK: CheckedConversionKind::Implicit, Diagnose,
9902 DiagnoseCFAudited) != SemaObjC::ACR_okay) {
9903 if (!Diagnose)
9904 return AssignConvertType::Incompatible;
9905 }
9906 if (getLangOpts().ObjC &&
9907 (ObjC().CheckObjCBridgeRelatedConversions(Loc: E->getBeginLoc(), DestType: LHSType,
9908 SrcType: E->getType(), SrcExpr&: E, Diagnose) ||
9909 ObjC().CheckConversionToObjCLiteral(DstType: LHSType, SrcExpr&: E, Diagnose))) {
9910 if (!Diagnose)
9911 return AssignConvertType::Incompatible;
9912 // Replace the expression with a corrected version and continue so we
9913 // can find further errors.
9914 RHS = E;
9915 return AssignConvertType::Compatible;
9916 }
9917
9918 if (ConvertRHS)
9919 RHS = ImpCastExprToType(E, Type: Ty, CK: Kind);
9920 }
9921
9922 return result;
9923}
9924
9925namespace {
9926/// The original operand to an operator, prior to the application of the usual
9927/// arithmetic conversions and converting the arguments of a builtin operator
9928/// candidate.
9929struct OriginalOperand {
9930 explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
9931 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: Op))
9932 Op = MTE->getSubExpr();
9933 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Val: Op))
9934 Op = BTE->getSubExpr();
9935 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: Op)) {
9936 Orig = ICE->getSubExprAsWritten();
9937 Conversion = ICE->getConversionFunction();
9938 }
9939 }
9940
9941 QualType getType() const { return Orig->getType(); }
9942
9943 Expr *Orig;
9944 NamedDecl *Conversion;
9945};
9946}
9947
9948QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
9949 ExprResult &RHS) {
9950 OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
9951
9952 Diag(Loc, DiagID: diag::err_typecheck_invalid_operands)
9953 << OrigLHS.getType() << OrigRHS.getType()
9954 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9955
9956 // If a user-defined conversion was applied to either of the operands prior
9957 // to applying the built-in operator rules, tell the user about it.
9958 if (OrigLHS.Conversion) {
9959 Diag(Loc: OrigLHS.Conversion->getLocation(),
9960 DiagID: diag::note_typecheck_invalid_operands_converted)
9961 << 0 << LHS.get()->getType();
9962 }
9963 if (OrigRHS.Conversion) {
9964 Diag(Loc: OrigRHS.Conversion->getLocation(),
9965 DiagID: diag::note_typecheck_invalid_operands_converted)
9966 << 1 << RHS.get()->getType();
9967 }
9968
9969 return QualType();
9970}
9971
9972QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
9973 ExprResult &RHS) {
9974 QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
9975 QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
9976
9977 bool LHSNatVec = LHSType->isVectorType();
9978 bool RHSNatVec = RHSType->isVectorType();
9979
9980 if (!(LHSNatVec && RHSNatVec)) {
9981 Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
9982 Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
9983 Diag(Loc, DiagID: diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9984 << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
9985 << Vector->getSourceRange();
9986 return QualType();
9987 }
9988
9989 Diag(Loc, DiagID: diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9990 << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
9991 << RHS.get()->getSourceRange();
9992
9993 return QualType();
9994}
9995
9996/// Try to convert a value of non-vector type to a vector type by converting
9997/// the type to the element type of the vector and then performing a splat.
9998/// If the language is OpenCL, we only use conversions that promote scalar
9999/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
10000/// for float->int.
10001///
10002/// OpenCL V2.0 6.2.6.p2:
10003/// An error shall occur if any scalar operand type has greater rank
10004/// than the type of the vector element.
10005///
10006/// \param scalar - if non-null, actually perform the conversions
10007/// \return true if the operation fails (but without diagnosing the failure)
10008static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
10009 QualType scalarTy,
10010 QualType vectorEltTy,
10011 QualType vectorTy,
10012 unsigned &DiagID) {
10013 // The conversion to apply to the scalar before splatting it,
10014 // if necessary.
10015 CastKind scalarCast = CK_NoOp;
10016
10017 if (vectorEltTy->isBooleanType() && scalarTy->isIntegralType(Ctx: S.Context)) {
10018 scalarCast = CK_IntegralToBoolean;
10019 } else if (vectorEltTy->isIntegralType(Ctx: S.Context)) {
10020 if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
10021 (scalarTy->isIntegerType() &&
10022 S.Context.getIntegerTypeOrder(LHS: vectorEltTy, RHS: scalarTy) < 0))) {
10023 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10024 return true;
10025 }
10026 if (!scalarTy->isIntegralType(Ctx: S.Context))
10027 return true;
10028 scalarCast = CK_IntegralCast;
10029 } else if (vectorEltTy->isRealFloatingType()) {
10030 if (scalarTy->isRealFloatingType()) {
10031 if (S.getLangOpts().OpenCL &&
10032 S.Context.getFloatingTypeOrder(LHS: vectorEltTy, RHS: scalarTy) < 0) {
10033 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10034 return true;
10035 }
10036 scalarCast = CK_FloatingCast;
10037 }
10038 else if (scalarTy->isIntegralType(Ctx: S.Context))
10039 scalarCast = CK_IntegralToFloating;
10040 else
10041 return true;
10042 } else {
10043 return true;
10044 }
10045
10046 // Adjust scalar if desired.
10047 if (scalar) {
10048 if (scalarCast != CK_NoOp)
10049 *scalar = S.ImpCastExprToType(E: scalar->get(), Type: vectorEltTy, CK: scalarCast);
10050 *scalar = S.ImpCastExprToType(E: scalar->get(), Type: vectorTy, CK: CK_VectorSplat);
10051 }
10052 return false;
10053}
10054
10055/// Convert vector E to a vector with the same number of elements but different
10056/// element type.
10057static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
10058 const auto *VecTy = E->getType()->getAs<VectorType>();
10059 assert(VecTy && "Expression E must be a vector");
10060 QualType NewVecTy =
10061 VecTy->isExtVectorType()
10062 ? S.Context.getExtVectorType(VectorType: ElementType, NumElts: VecTy->getNumElements())
10063 : S.Context.getVectorType(VectorType: ElementType, NumElts: VecTy->getNumElements(),
10064 VecKind: VecTy->getVectorKind());
10065
10066 // Look through the implicit cast. Return the subexpression if its type is
10067 // NewVecTy.
10068 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E))
10069 if (ICE->getSubExpr()->getType() == NewVecTy)
10070 return ICE->getSubExpr();
10071
10072 auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
10073 return S.ImpCastExprToType(E, Type: NewVecTy, CK: Cast);
10074}
10075
10076/// Test if a (constant) integer Int can be casted to another integer type
10077/// IntTy without losing precision.
10078static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
10079 QualType OtherIntTy) {
10080 if (Int->get()->containsErrors())
10081 return false;
10082
10083 QualType IntTy = Int->get()->getType().getUnqualifiedType();
10084
10085 // Reject cases where the value of the Int is unknown as that would
10086 // possibly cause truncation, but accept cases where the scalar can be
10087 // demoted without loss of precision.
10088 Expr::EvalResult EVResult;
10089 bool CstInt = Int->get()->EvaluateAsInt(Result&: EVResult, Ctx: S.Context);
10090 int Order = S.Context.getIntegerTypeOrder(LHS: OtherIntTy, RHS: IntTy);
10091 bool IntSigned = IntTy->hasSignedIntegerRepresentation();
10092 bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
10093
10094 if (CstInt) {
10095 // If the scalar is constant and is of a higher order and has more active
10096 // bits that the vector element type, reject it.
10097 llvm::APSInt Result = EVResult.Val.getInt();
10098 unsigned NumBits = IntSigned
10099 ? (Result.isNegative() ? Result.getSignificantBits()
10100 : Result.getActiveBits())
10101 : Result.getActiveBits();
10102 if (Order < 0 && S.Context.getIntWidth(T: OtherIntTy) < NumBits)
10103 return true;
10104
10105 // If the signedness of the scalar type and the vector element type
10106 // differs and the number of bits is greater than that of the vector
10107 // element reject it.
10108 return (IntSigned != OtherIntSigned &&
10109 NumBits > S.Context.getIntWidth(T: OtherIntTy));
10110 }
10111
10112 // Reject cases where the value of the scalar is not constant and it's
10113 // order is greater than that of the vector element type.
10114 return (Order < 0);
10115}
10116
10117/// Test if a (constant) integer Int can be casted to floating point type
10118/// FloatTy without losing precision.
10119static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
10120 QualType FloatTy) {
10121 if (Int->get()->containsErrors())
10122 return false;
10123
10124 QualType IntTy = Int->get()->getType().getUnqualifiedType();
10125
10126 // Determine if the integer constant can be expressed as a floating point
10127 // number of the appropriate type.
10128 Expr::EvalResult EVResult;
10129 bool CstInt = Int->get()->EvaluateAsInt(Result&: EVResult, Ctx: S.Context);
10130
10131 uint64_t Bits = 0;
10132 if (CstInt) {
10133 // Reject constants that would be truncated if they were converted to
10134 // the floating point type. Test by simple to/from conversion.
10135 // FIXME: Ideally the conversion to an APFloat and from an APFloat
10136 // could be avoided if there was a convertFromAPInt method
10137 // which could signal back if implicit truncation occurred.
10138 llvm::APSInt Result = EVResult.Val.getInt();
10139 llvm::APFloat Float(S.Context.getFloatTypeSemantics(T: FloatTy));
10140 Float.convertFromAPInt(Input: Result, IsSigned: IntTy->hasSignedIntegerRepresentation(),
10141 RM: llvm::APFloat::rmTowardZero);
10142 llvm::APSInt ConvertBack(S.Context.getIntWidth(T: IntTy),
10143 !IntTy->hasSignedIntegerRepresentation());
10144 bool Ignored = false;
10145 Float.convertToInteger(Result&: ConvertBack, RM: llvm::APFloat::rmNearestTiesToEven,
10146 IsExact: &Ignored);
10147 if (Result != ConvertBack)
10148 return true;
10149 } else {
10150 // Reject types that cannot be fully encoded into the mantissa of
10151 // the float.
10152 Bits = S.Context.getTypeSize(T: IntTy);
10153 unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10154 S.Context.getFloatTypeSemantics(T: FloatTy));
10155 if (Bits > FloatPrec)
10156 return true;
10157 }
10158
10159 return false;
10160}
10161
10162/// Attempt to convert and splat Scalar into a vector whose types matches
10163/// Vector following GCC conversion rules. The rule is that implicit
10164/// conversion can occur when Scalar can be casted to match Vector's element
10165/// type without causing truncation of Scalar.
10166static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10167 ExprResult *Vector) {
10168 QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10169 QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10170 QualType VectorEltTy;
10171
10172 if (const auto *VT = VectorTy->getAs<VectorType>()) {
10173 assert(!isa<ExtVectorType>(VT) &&
10174 "ExtVectorTypes should not be handled here!");
10175 VectorEltTy = VT->getElementType();
10176 } else if (VectorTy->isSveVLSBuiltinType()) {
10177 VectorEltTy =
10178 VectorTy->castAs<BuiltinType>()->getSveEltType(Ctx: S.getASTContext());
10179 } else {
10180 llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
10181 }
10182
10183 // Reject cases where the vector element type or the scalar element type are
10184 // not integral or floating point types.
10185 if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10186 return true;
10187
10188 // The conversion to apply to the scalar before splatting it,
10189 // if necessary.
10190 CastKind ScalarCast = CK_NoOp;
10191
10192 // Accept cases where the vector elements are integers and the scalar is
10193 // an integer.
10194 // FIXME: Notionally if the scalar was a floating point value with a precise
10195 // integral representation, we could cast it to an appropriate integer
10196 // type and then perform the rest of the checks here. GCC will perform
10197 // this conversion in some cases as determined by the input language.
10198 // We should accept it on a language independent basis.
10199 if (VectorEltTy->isIntegralType(Ctx: S.Context) &&
10200 ScalarTy->isIntegralType(Ctx: S.Context) &&
10201 S.Context.getIntegerTypeOrder(LHS: VectorEltTy, RHS: ScalarTy)) {
10202
10203 if (canConvertIntToOtherIntTy(S, Int: Scalar, OtherIntTy: VectorEltTy))
10204 return true;
10205
10206 ScalarCast = CK_IntegralCast;
10207 } else if (VectorEltTy->isIntegralType(Ctx: S.Context) &&
10208 ScalarTy->isRealFloatingType()) {
10209 if (S.Context.getTypeSize(T: VectorEltTy) == S.Context.getTypeSize(T: ScalarTy))
10210 ScalarCast = CK_FloatingToIntegral;
10211 else
10212 return true;
10213 } else if (VectorEltTy->isRealFloatingType()) {
10214 if (ScalarTy->isRealFloatingType()) {
10215
10216 // Reject cases where the scalar type is not a constant and has a higher
10217 // Order than the vector element type.
10218 llvm::APFloat Result(0.0);
10219
10220 // Determine whether this is a constant scalar. In the event that the
10221 // value is dependent (and thus cannot be evaluated by the constant
10222 // evaluator), skip the evaluation. This will then diagnose once the
10223 // expression is instantiated.
10224 bool CstScalar = Scalar->get()->isValueDependent() ||
10225 Scalar->get()->EvaluateAsFloat(Result, Ctx: S.Context);
10226 int Order = S.Context.getFloatingTypeOrder(LHS: VectorEltTy, RHS: ScalarTy);
10227 if (!CstScalar && Order < 0)
10228 return true;
10229
10230 // If the scalar cannot be safely casted to the vector element type,
10231 // reject it.
10232 if (CstScalar) {
10233 bool Truncated = false;
10234 Result.convert(ToSemantics: S.Context.getFloatTypeSemantics(T: VectorEltTy),
10235 RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &Truncated);
10236 if (Truncated)
10237 return true;
10238 }
10239
10240 ScalarCast = CK_FloatingCast;
10241 } else if (ScalarTy->isIntegralType(Ctx: S.Context)) {
10242 if (canConvertIntTyToFloatTy(S, Int: Scalar, FloatTy: VectorEltTy))
10243 return true;
10244
10245 ScalarCast = CK_IntegralToFloating;
10246 } else
10247 return true;
10248 } else if (ScalarTy->isEnumeralType())
10249 return true;
10250
10251 // Adjust scalar if desired.
10252 if (ScalarCast != CK_NoOp)
10253 *Scalar = S.ImpCastExprToType(E: Scalar->get(), Type: VectorEltTy, CK: ScalarCast);
10254 *Scalar = S.ImpCastExprToType(E: Scalar->get(), Type: VectorTy, CK: CK_VectorSplat);
10255 return false;
10256}
10257
10258QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10259 SourceLocation Loc, bool IsCompAssign,
10260 bool AllowBothBool,
10261 bool AllowBoolConversions,
10262 bool AllowBoolOperation,
10263 bool ReportInvalid) {
10264 if (!IsCompAssign) {
10265 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
10266 if (LHS.isInvalid())
10267 return QualType();
10268 }
10269 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
10270 if (RHS.isInvalid())
10271 return QualType();
10272
10273 // For conversion purposes, we ignore any qualifiers.
10274 // For example, "const float" and "float" are equivalent.
10275 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10276 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10277
10278 const VectorType *LHSVecType = LHSType->getAs<VectorType>();
10279 const VectorType *RHSVecType = RHSType->getAs<VectorType>();
10280 assert(LHSVecType || RHSVecType);
10281
10282 if (getLangOpts().HLSL)
10283 return HLSL().handleVectorBinOpConversion(LHS, RHS, LHSType, RHSType,
10284 IsCompAssign);
10285
10286 // Any operation with MFloat8 type is only possible with C intrinsics
10287 if ((LHSVecType && LHSVecType->getElementType()->isMFloat8Type()) ||
10288 (RHSVecType && RHSVecType->getElementType()->isMFloat8Type()))
10289 return InvalidOperands(Loc, LHS, RHS);
10290
10291 // AltiVec-style "vector bool op vector bool" combinations are allowed
10292 // for some operators but not others.
10293 if (!AllowBothBool && LHSVecType &&
10294 LHSVecType->getVectorKind() == VectorKind::AltiVecBool && RHSVecType &&
10295 RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
10296 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10297
10298 // This operation may not be performed on boolean vectors.
10299 if (!AllowBoolOperation &&
10300 (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
10301 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10302
10303 // If the vector types are identical, return.
10304 if (Context.hasSameType(T1: LHSType, T2: RHSType))
10305 return Context.getCommonSugaredType(X: LHSType, Y: RHSType);
10306
10307 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10308 if (LHSVecType && RHSVecType &&
10309 Context.areCompatibleVectorTypes(FirstVec: LHSType, SecondVec: RHSType)) {
10310 if (isa<ExtVectorType>(Val: LHSVecType)) {
10311 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_BitCast);
10312 return LHSType;
10313 }
10314
10315 if (!IsCompAssign)
10316 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_BitCast);
10317 return RHSType;
10318 }
10319
10320 // AllowBoolConversions says that bool and non-bool AltiVec vectors
10321 // can be mixed, with the result being the non-bool type. The non-bool
10322 // operand must have integer element type.
10323 if (AllowBoolConversions && LHSVecType && RHSVecType &&
10324 LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10325 (Context.getTypeSize(T: LHSVecType->getElementType()) ==
10326 Context.getTypeSize(T: RHSVecType->getElementType()))) {
10327 if (LHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
10328 LHSVecType->getElementType()->isIntegerType() &&
10329 RHSVecType->getVectorKind() == VectorKind::AltiVecBool) {
10330 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_BitCast);
10331 return LHSType;
10332 }
10333 if (!IsCompAssign &&
10334 LHSVecType->getVectorKind() == VectorKind::AltiVecBool &&
10335 RHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
10336 RHSVecType->getElementType()->isIntegerType()) {
10337 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_BitCast);
10338 return RHSType;
10339 }
10340 }
10341
10342 // Expressions containing fixed-length and sizeless SVE/RVV vectors are
10343 // invalid since the ambiguity can affect the ABI.
10344 auto IsSveRVVConversion = [](QualType FirstType, QualType SecondType,
10345 unsigned &SVEorRVV) {
10346 const VectorType *VecType = SecondType->getAs<VectorType>();
10347 SVEorRVV = 0;
10348 if (FirstType->isSizelessBuiltinType() && VecType) {
10349 if (VecType->getVectorKind() == VectorKind::SveFixedLengthData ||
10350 VecType->getVectorKind() == VectorKind::SveFixedLengthPredicate)
10351 return true;
10352 if (VecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
10353 VecType->getVectorKind() == VectorKind::RVVFixedLengthMask ||
10354 VecType->getVectorKind() == VectorKind::RVVFixedLengthMask_1 ||
10355 VecType->getVectorKind() == VectorKind::RVVFixedLengthMask_2 ||
10356 VecType->getVectorKind() == VectorKind::RVVFixedLengthMask_4) {
10357 SVEorRVV = 1;
10358 return true;
10359 }
10360 }
10361
10362 return false;
10363 };
10364
10365 unsigned SVEorRVV;
10366 if (IsSveRVVConversion(LHSType, RHSType, SVEorRVV) ||
10367 IsSveRVVConversion(RHSType, LHSType, SVEorRVV)) {
10368 Diag(Loc, DiagID: diag::err_typecheck_sve_rvv_ambiguous)
10369 << SVEorRVV << LHSType << RHSType;
10370 return QualType();
10371 }
10372
10373 // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are
10374 // invalid since the ambiguity can affect the ABI.
10375 auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType,
10376 unsigned &SVEorRVV) {
10377 const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10378 const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10379
10380 SVEorRVV = 0;
10381 if (FirstVecType && SecondVecType) {
10382 if (FirstVecType->getVectorKind() == VectorKind::Generic) {
10383 if (SecondVecType->getVectorKind() == VectorKind::SveFixedLengthData ||
10384 SecondVecType->getVectorKind() ==
10385 VectorKind::SveFixedLengthPredicate)
10386 return true;
10387 if (SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
10388 SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthMask ||
10389 SecondVecType->getVectorKind() ==
10390 VectorKind::RVVFixedLengthMask_1 ||
10391 SecondVecType->getVectorKind() ==
10392 VectorKind::RVVFixedLengthMask_2 ||
10393 SecondVecType->getVectorKind() ==
10394 VectorKind::RVVFixedLengthMask_4) {
10395 SVEorRVV = 1;
10396 return true;
10397 }
10398 }
10399 return false;
10400 }
10401
10402 if (SecondVecType &&
10403 SecondVecType->getVectorKind() == VectorKind::Generic) {
10404 if (FirstType->isSVESizelessBuiltinType())
10405 return true;
10406 if (FirstType->isRVVSizelessBuiltinType()) {
10407 SVEorRVV = 1;
10408 return true;
10409 }
10410 }
10411
10412 return false;
10413 };
10414
10415 if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) ||
10416 IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) {
10417 Diag(Loc, DiagID: diag::err_typecheck_sve_rvv_gnu_ambiguous)
10418 << SVEorRVV << LHSType << RHSType;
10419 return QualType();
10420 }
10421
10422 // If there's a vector type and a scalar, try to convert the scalar to
10423 // the vector element type and splat.
10424 unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10425 if (!RHSVecType) {
10426 if (isa<ExtVectorType>(Val: LHSVecType)) {
10427 if (!tryVectorConvertAndSplat(S&: *this, scalar: &RHS, scalarTy: RHSType,
10428 vectorEltTy: LHSVecType->getElementType(), vectorTy: LHSType,
10429 DiagID))
10430 return LHSType;
10431 } else {
10432 if (!tryGCCVectorConvertAndSplat(S&: *this, Scalar: &RHS, Vector: &LHS))
10433 return LHSType;
10434 }
10435 }
10436 if (!LHSVecType) {
10437 if (isa<ExtVectorType>(Val: RHSVecType)) {
10438 if (!tryVectorConvertAndSplat(S&: *this, scalar: (IsCompAssign ? nullptr : &LHS),
10439 scalarTy: LHSType, vectorEltTy: RHSVecType->getElementType(),
10440 vectorTy: RHSType, DiagID))
10441 return RHSType;
10442 } else {
10443 if (LHS.get()->isLValue() ||
10444 !tryGCCVectorConvertAndSplat(S&: *this, Scalar: &LHS, Vector: &RHS))
10445 return RHSType;
10446 }
10447 }
10448
10449 // FIXME: The code below also handles conversion between vectors and
10450 // non-scalars, we should break this down into fine grained specific checks
10451 // and emit proper diagnostics.
10452 QualType VecType = LHSVecType ? LHSType : RHSType;
10453 const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10454 QualType OtherType = LHSVecType ? RHSType : LHSType;
10455 ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10456 if (isLaxVectorConversion(srcTy: OtherType, destTy: VecType)) {
10457 if (Context.getTargetInfo().getTriple().isPPC() &&
10458 anyAltivecTypes(SrcTy: RHSType, DestTy: LHSType) &&
10459 !Context.areCompatibleVectorTypes(FirstVec: RHSType, SecondVec: LHSType))
10460 Diag(Loc, DiagID: diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
10461 // If we're allowing lax vector conversions, only the total (data) size
10462 // needs to be the same. For non compound assignment, if one of the types is
10463 // scalar, the result is always the vector type.
10464 if (!IsCompAssign) {
10465 *OtherExpr = ImpCastExprToType(E: OtherExpr->get(), Type: VecType, CK: CK_BitCast);
10466 return VecType;
10467 // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10468 // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10469 // type. Note that this is already done by non-compound assignments in
10470 // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10471 // <1 x T> -> T. The result is also a vector type.
10472 } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10473 (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10474 ExprResult *RHSExpr = &RHS;
10475 *RHSExpr = ImpCastExprToType(E: RHSExpr->get(), Type: LHSType, CK: CK_BitCast);
10476 return VecType;
10477 }
10478 }
10479
10480 // Okay, the expression is invalid.
10481
10482 // If there's a non-vector, non-real operand, diagnose that.
10483 if ((!RHSVecType && !RHSType->isRealType()) ||
10484 (!LHSVecType && !LHSType->isRealType())) {
10485 Diag(Loc, DiagID: diag::err_typecheck_vector_not_convertable_non_scalar)
10486 << LHSType << RHSType
10487 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10488 return QualType();
10489 }
10490
10491 // OpenCL V1.1 6.2.6.p1:
10492 // If the operands are of more than one vector type, then an error shall
10493 // occur. Implicit conversions between vector types are not permitted, per
10494 // section 6.2.1.
10495 if (getLangOpts().OpenCL &&
10496 RHSVecType && isa<ExtVectorType>(Val: RHSVecType) &&
10497 LHSVecType && isa<ExtVectorType>(Val: LHSVecType)) {
10498 Diag(Loc, DiagID: diag::err_opencl_implicit_vector_conversion) << LHSType
10499 << RHSType;
10500 return QualType();
10501 }
10502
10503
10504 // If there is a vector type that is not a ExtVector and a scalar, we reach
10505 // this point if scalar could not be converted to the vector's element type
10506 // without truncation.
10507 if ((RHSVecType && !isa<ExtVectorType>(Val: RHSVecType)) ||
10508 (LHSVecType && !isa<ExtVectorType>(Val: LHSVecType))) {
10509 QualType Scalar = LHSVecType ? RHSType : LHSType;
10510 QualType Vector = LHSVecType ? LHSType : RHSType;
10511 unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10512 Diag(Loc,
10513 DiagID: diag::err_typecheck_vector_not_convertable_implict_truncation)
10514 << ScalarOrVector << Scalar << Vector;
10515
10516 return QualType();
10517 }
10518
10519 // Otherwise, use the generic diagnostic.
10520 Diag(Loc, DiagID)
10521 << LHSType << RHSType
10522 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10523 return QualType();
10524}
10525
10526QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
10527 SourceLocation Loc,
10528 bool IsCompAssign,
10529 ArithConvKind OperationKind) {
10530 if (!IsCompAssign) {
10531 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
10532 if (LHS.isInvalid())
10533 return QualType();
10534 }
10535 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
10536 if (RHS.isInvalid())
10537 return QualType();
10538
10539 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10540 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10541
10542 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
10543 const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
10544
10545 unsigned DiagID = diag::err_typecheck_invalid_operands;
10546 if ((OperationKind == ArithConvKind::Arithmetic) &&
10547 ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
10548 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
10549 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10550 << RHS.get()->getSourceRange();
10551 return QualType();
10552 }
10553
10554 if (Context.hasSameType(T1: LHSType, T2: RHSType))
10555 return LHSType;
10556
10557 if (LHSType->isSveVLSBuiltinType() && !RHSType->isSveVLSBuiltinType()) {
10558 if (!tryGCCVectorConvertAndSplat(S&: *this, Scalar: &RHS, Vector: &LHS))
10559 return LHSType;
10560 }
10561 if (RHSType->isSveVLSBuiltinType() && !LHSType->isSveVLSBuiltinType()) {
10562 if (LHS.get()->isLValue() ||
10563 !tryGCCVectorConvertAndSplat(S&: *this, Scalar: &LHS, Vector: &RHS))
10564 return RHSType;
10565 }
10566
10567 if ((!LHSType->isSveVLSBuiltinType() && !LHSType->isRealType()) ||
10568 (!RHSType->isSveVLSBuiltinType() && !RHSType->isRealType())) {
10569 Diag(Loc, DiagID: diag::err_typecheck_vector_not_convertable_non_scalar)
10570 << LHSType << RHSType << LHS.get()->getSourceRange()
10571 << RHS.get()->getSourceRange();
10572 return QualType();
10573 }
10574
10575 if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
10576 Context.getBuiltinVectorTypeInfo(VecTy: LHSBuiltinTy).EC !=
10577 Context.getBuiltinVectorTypeInfo(VecTy: RHSBuiltinTy).EC) {
10578 Diag(Loc, DiagID: diag::err_typecheck_vector_lengths_not_equal)
10579 << LHSType << RHSType << LHS.get()->getSourceRange()
10580 << RHS.get()->getSourceRange();
10581 return QualType();
10582 }
10583
10584 if (LHSType->isSveVLSBuiltinType() || RHSType->isSveVLSBuiltinType()) {
10585 QualType Scalar = LHSType->isSveVLSBuiltinType() ? RHSType : LHSType;
10586 QualType Vector = LHSType->isSveVLSBuiltinType() ? LHSType : RHSType;
10587 bool ScalarOrVector =
10588 LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType();
10589
10590 Diag(Loc, DiagID: diag::err_typecheck_vector_not_convertable_implict_truncation)
10591 << ScalarOrVector << Scalar << Vector;
10592
10593 return QualType();
10594 }
10595
10596 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10597 << RHS.get()->getSourceRange();
10598 return QualType();
10599}
10600
10601// checkArithmeticNull - Detect when a NULL constant is used improperly in an
10602// expression. These are mainly cases where the null pointer is used as an
10603// integer instead of a pointer.
10604static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10605 SourceLocation Loc, bool IsCompare) {
10606 // The canonical way to check for a GNU null is with isNullPointerConstant,
10607 // but we use a bit of a hack here for speed; this is a relatively
10608 // hot path, and isNullPointerConstant is slow.
10609 bool LHSNull = isa<GNUNullExpr>(Val: LHS.get()->IgnoreParenImpCasts());
10610 bool RHSNull = isa<GNUNullExpr>(Val: RHS.get()->IgnoreParenImpCasts());
10611
10612 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10613
10614 // Avoid analyzing cases where the result will either be invalid (and
10615 // diagnosed as such) or entirely valid and not something to warn about.
10616 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10617 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10618 return;
10619
10620 // Comparison operations would not make sense with a null pointer no matter
10621 // what the other expression is.
10622 if (!IsCompare) {
10623 S.Diag(Loc, DiagID: diag::warn_null_in_arithmetic_operation)
10624 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10625 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10626 return;
10627 }
10628
10629 // The rest of the operations only make sense with a null pointer
10630 // if the other expression is a pointer.
10631 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10632 NonNullType->canDecayToPointerType())
10633 return;
10634
10635 S.Diag(Loc, DiagID: diag::warn_null_in_comparison_operation)
10636 << LHSNull /* LHS is NULL */ << NonNullType
10637 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10638}
10639
10640static void DetectPrecisionLossInComplexDivision(Sema &S, QualType DivisorTy,
10641 SourceLocation OpLoc) {
10642 // If the divisor is real, then this is real/real or complex/real division.
10643 // Either way there can be no precision loss.
10644 auto *CT = DivisorTy->getAs<ComplexType>();
10645 if (!CT)
10646 return;
10647
10648 QualType ElementType = CT->getElementType();
10649 bool IsComplexRangePromoted = S.getLangOpts().getComplexRange() ==
10650 LangOptions::ComplexRangeKind::CX_Promoted;
10651 if (!ElementType->isFloatingType() || !IsComplexRangePromoted)
10652 return;
10653
10654 ASTContext &Ctx = S.getASTContext();
10655 QualType HigherElementType = Ctx.GetHigherPrecisionFPType(ElementType);
10656 const llvm::fltSemantics &ElementTypeSemantics =
10657 Ctx.getFloatTypeSemantics(T: ElementType);
10658 const llvm::fltSemantics &HigherElementTypeSemantics =
10659 Ctx.getFloatTypeSemantics(T: HigherElementType);
10660
10661 if ((llvm::APFloat::semanticsMaxExponent(ElementTypeSemantics) * 2 + 1 >
10662 llvm::APFloat::semanticsMaxExponent(HigherElementTypeSemantics)) ||
10663 (HigherElementType == Ctx.LongDoubleTy &&
10664 !Ctx.getTargetInfo().hasLongDoubleType())) {
10665 // Retain the location of the first use of higher precision type.
10666 if (!S.LocationOfExcessPrecisionNotSatisfied.isValid())
10667 S.LocationOfExcessPrecisionNotSatisfied = OpLoc;
10668 for (auto &[Type, Num] : S.ExcessPrecisionNotSatisfied) {
10669 if (Type == HigherElementType) {
10670 Num++;
10671 return;
10672 }
10673 }
10674 S.ExcessPrecisionNotSatisfied.push_back(x: std::make_pair(
10675 x&: HigherElementType, y: S.ExcessPrecisionNotSatisfied.size()));
10676 }
10677}
10678
10679static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10680 SourceLocation Loc) {
10681 const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(Val: LHS);
10682 const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(Val: RHS);
10683 if (!LUE || !RUE)
10684 return;
10685 if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10686 RUE->getKind() != UETT_SizeOf)
10687 return;
10688
10689 const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10690 QualType LHSTy = LHSArg->getType();
10691 QualType RHSTy;
10692
10693 if (RUE->isArgumentType())
10694 RHSTy = RUE->getArgumentType().getNonReferenceType();
10695 else
10696 RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10697
10698 if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10699 if (!S.Context.hasSameUnqualifiedType(T1: LHSTy->getPointeeType(), T2: RHSTy))
10700 return;
10701
10702 S.Diag(Loc, DiagID: diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10703 if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: LHSArg)) {
10704 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10705 S.Diag(Loc: LHSArgDecl->getLocation(), DiagID: diag::note_pointer_declared_here)
10706 << LHSArgDecl;
10707 }
10708 } else if (const auto *ArrayTy = S.Context.getAsArrayType(T: LHSTy)) {
10709 QualType ArrayElemTy = ArrayTy->getElementType();
10710 if (ArrayElemTy != S.Context.getBaseElementType(VAT: ArrayTy) ||
10711 ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10712 RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10713 S.Context.getTypeSize(T: ArrayElemTy) == S.Context.getTypeSize(T: RHSTy))
10714 return;
10715 S.Diag(Loc, DiagID: diag::warn_division_sizeof_array)
10716 << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10717 if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: LHSArg)) {
10718 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10719 S.Diag(Loc: LHSArgDecl->getLocation(), DiagID: diag::note_array_declared_here)
10720 << LHSArgDecl;
10721 }
10722
10723 S.Diag(Loc, DiagID: diag::note_precedence_silence) << RHS;
10724 }
10725}
10726
10727static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10728 ExprResult &RHS,
10729 SourceLocation Loc, bool IsDiv) {
10730 // Check for division/remainder by zero.
10731 Expr::EvalResult RHSValue;
10732 if (!RHS.get()->isValueDependent() &&
10733 RHS.get()->EvaluateAsInt(Result&: RHSValue, Ctx: S.Context) &&
10734 RHSValue.Val.getInt() == 0)
10735 S.DiagRuntimeBehavior(Loc, Statement: RHS.get(),
10736 PD: S.PDiag(DiagID: diag::warn_remainder_division_by_zero)
10737 << IsDiv << RHS.get()->getSourceRange());
10738}
10739
10740QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10741 SourceLocation Loc,
10742 bool IsCompAssign, bool IsDiv) {
10743 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
10744
10745 QualType LHSTy = LHS.get()->getType();
10746 QualType RHSTy = RHS.get()->getType();
10747 if (LHSTy->isVectorType() || RHSTy->isVectorType())
10748 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10749 /*AllowBothBool*/ getLangOpts().AltiVec,
10750 /*AllowBoolConversions*/ false,
10751 /*AllowBooleanOperation*/ AllowBoolOperation: false,
10752 /*ReportInvalid*/ true);
10753 if (LHSTy->isSveVLSBuiltinType() || RHSTy->isSveVLSBuiltinType())
10754 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10755 OperationKind: ArithConvKind::Arithmetic);
10756 if (!IsDiv &&
10757 (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
10758 return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10759 // For division, only matrix-by-scalar is supported. Other combinations with
10760 // matrix types are invalid.
10761 if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
10762 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
10763
10764 QualType compType = UsualArithmeticConversions(
10765 LHS, RHS, Loc,
10766 ACK: IsCompAssign ? ArithConvKind::CompAssign : ArithConvKind::Arithmetic);
10767 if (LHS.isInvalid() || RHS.isInvalid())
10768 return QualType();
10769
10770
10771 if (compType.isNull() || !compType->isArithmeticType())
10772 return InvalidOperands(Loc, LHS, RHS);
10773 if (IsDiv) {
10774 DetectPrecisionLossInComplexDivision(S&: *this, DivisorTy: RHS.get()->getType(), OpLoc: Loc);
10775 DiagnoseBadDivideOrRemainderValues(S&: *this, LHS, RHS, Loc, IsDiv);
10776 DiagnoseDivisionSizeofPointerOrArray(S&: *this, LHS: LHS.get(), RHS: RHS.get(), Loc);
10777 }
10778 return compType;
10779}
10780
10781QualType Sema::CheckRemainderOperands(
10782 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10783 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
10784
10785 // Note: This check is here to simplify the double exclusions of
10786 // scalar and vector HLSL checks. No getLangOpts().HLSL
10787 // is needed since all languages exlcude doubles.
10788 if (LHS.get()->getType()->isDoubleType() ||
10789 RHS.get()->getType()->isDoubleType() ||
10790 (LHS.get()->getType()->isVectorType() && LHS.get()
10791 ->getType()
10792 ->getAs<VectorType>()
10793 ->getElementType()
10794 ->isDoubleType()) ||
10795 (RHS.get()->getType()->isVectorType() && RHS.get()
10796 ->getType()
10797 ->getAs<VectorType>()
10798 ->getElementType()
10799 ->isDoubleType()))
10800 return InvalidOperands(Loc, LHS, RHS);
10801
10802 if (LHS.get()->getType()->isVectorType() ||
10803 RHS.get()->getType()->isVectorType()) {
10804 if ((LHS.get()->getType()->hasIntegerRepresentation() &&
10805 RHS.get()->getType()->hasIntegerRepresentation()) ||
10806 (getLangOpts().HLSL &&
10807 (LHS.get()->getType()->hasFloatingRepresentation() ||
10808 RHS.get()->getType()->hasFloatingRepresentation())))
10809 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10810 /*AllowBothBool*/ getLangOpts().AltiVec,
10811 /*AllowBoolConversions*/ false,
10812 /*AllowBooleanOperation*/ AllowBoolOperation: false,
10813 /*ReportInvalid*/ true);
10814 return InvalidOperands(Loc, LHS, RHS);
10815 }
10816
10817 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
10818 RHS.get()->getType()->isSveVLSBuiltinType()) {
10819 if (LHS.get()->getType()->hasIntegerRepresentation() &&
10820 RHS.get()->getType()->hasIntegerRepresentation())
10821 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10822 OperationKind: ArithConvKind::Arithmetic);
10823
10824 return InvalidOperands(Loc, LHS, RHS);
10825 }
10826
10827 QualType compType = UsualArithmeticConversions(
10828 LHS, RHS, Loc,
10829 ACK: IsCompAssign ? ArithConvKind::CompAssign : ArithConvKind::Arithmetic);
10830 if (LHS.isInvalid() || RHS.isInvalid())
10831 return QualType();
10832
10833 if (compType.isNull() ||
10834 (!compType->isIntegerType() &&
10835 !(getLangOpts().HLSL && compType->isFloatingType())))
10836 return InvalidOperands(Loc, LHS, RHS);
10837 DiagnoseBadDivideOrRemainderValues(S&: *this, LHS, RHS, Loc, IsDiv: false /* IsDiv */);
10838 return compType;
10839}
10840
10841/// Diagnose invalid arithmetic on two void pointers.
10842static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10843 Expr *LHSExpr, Expr *RHSExpr) {
10844 S.Diag(Loc, DiagID: S.getLangOpts().CPlusPlus
10845 ? diag::err_typecheck_pointer_arith_void_type
10846 : diag::ext_gnu_void_ptr)
10847 << 1 /* two pointers */ << LHSExpr->getSourceRange()
10848 << RHSExpr->getSourceRange();
10849}
10850
10851/// Diagnose invalid arithmetic on a void pointer.
10852static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10853 Expr *Pointer) {
10854 S.Diag(Loc, DiagID: S.getLangOpts().CPlusPlus
10855 ? diag::err_typecheck_pointer_arith_void_type
10856 : diag::ext_gnu_void_ptr)
10857 << 0 /* one pointer */ << Pointer->getSourceRange();
10858}
10859
10860/// Diagnose invalid arithmetic on a null pointer.
10861///
10862/// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10863/// idiom, which we recognize as a GNU extension.
10864///
10865static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10866 Expr *Pointer, bool IsGNUIdiom) {
10867 if (IsGNUIdiom)
10868 S.Diag(Loc, DiagID: diag::warn_gnu_null_ptr_arith)
10869 << Pointer->getSourceRange();
10870 else
10871 S.Diag(Loc, DiagID: diag::warn_pointer_arith_null_ptr)
10872 << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10873}
10874
10875/// Diagnose invalid subraction on a null pointer.
10876///
10877static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
10878 Expr *Pointer, bool BothNull) {
10879 // Null - null is valid in C++ [expr.add]p7
10880 if (BothNull && S.getLangOpts().CPlusPlus)
10881 return;
10882
10883 // Is this s a macro from a system header?
10884 if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(loc: Loc))
10885 return;
10886
10887 S.DiagRuntimeBehavior(Loc, Statement: Pointer,
10888 PD: S.PDiag(DiagID: diag::warn_pointer_sub_null_ptr)
10889 << S.getLangOpts().CPlusPlus
10890 << Pointer->getSourceRange());
10891}
10892
10893/// Diagnose invalid arithmetic on two function pointers.
10894static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10895 Expr *LHS, Expr *RHS) {
10896 assert(LHS->getType()->isAnyPointerType());
10897 assert(RHS->getType()->isAnyPointerType());
10898 S.Diag(Loc, DiagID: S.getLangOpts().CPlusPlus
10899 ? diag::err_typecheck_pointer_arith_function_type
10900 : diag::ext_gnu_ptr_func_arith)
10901 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10902 // We only show the second type if it differs from the first.
10903 << (unsigned)!S.Context.hasSameUnqualifiedType(T1: LHS->getType(),
10904 T2: RHS->getType())
10905 << RHS->getType()->getPointeeType()
10906 << LHS->getSourceRange() << RHS->getSourceRange();
10907}
10908
10909/// Diagnose invalid arithmetic on a function pointer.
10910static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10911 Expr *Pointer) {
10912 assert(Pointer->getType()->isAnyPointerType());
10913 S.Diag(Loc, DiagID: S.getLangOpts().CPlusPlus
10914 ? diag::err_typecheck_pointer_arith_function_type
10915 : diag::ext_gnu_ptr_func_arith)
10916 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10917 << 0 /* one pointer, so only one type */
10918 << Pointer->getSourceRange();
10919}
10920
10921/// Emit error if Operand is incomplete pointer type
10922///
10923/// \returns True if pointer has incomplete type
10924static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10925 Expr *Operand) {
10926 QualType ResType = Operand->getType();
10927 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10928 ResType = ResAtomicType->getValueType();
10929
10930 assert(ResType->isAnyPointerType());
10931 QualType PointeeTy = ResType->getPointeeType();
10932 return S.RequireCompleteSizedType(
10933 Loc, T: PointeeTy,
10934 DiagID: diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10935 Args: Operand->getSourceRange());
10936}
10937
10938/// Check the validity of an arithmetic pointer operand.
10939///
10940/// If the operand has pointer type, this code will check for pointer types
10941/// which are invalid in arithmetic operations. These will be diagnosed
10942/// appropriately, including whether or not the use is supported as an
10943/// extension.
10944///
10945/// \returns True when the operand is valid to use (even if as an extension).
10946static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10947 Expr *Operand) {
10948 QualType ResType = Operand->getType();
10949 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10950 ResType = ResAtomicType->getValueType();
10951
10952 if (!ResType->isAnyPointerType()) return true;
10953
10954 QualType PointeeTy = ResType->getPointeeType();
10955 if (PointeeTy->isVoidType()) {
10956 diagnoseArithmeticOnVoidPointer(S, Loc, Pointer: Operand);
10957 return !S.getLangOpts().CPlusPlus;
10958 }
10959 if (PointeeTy->isFunctionType()) {
10960 diagnoseArithmeticOnFunctionPointer(S, Loc, Pointer: Operand);
10961 return !S.getLangOpts().CPlusPlus;
10962 }
10963
10964 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10965
10966 return true;
10967}
10968
10969/// Check the validity of a binary arithmetic operation w.r.t. pointer
10970/// operands.
10971///
10972/// This routine will diagnose any invalid arithmetic on pointer operands much
10973/// like \see checkArithmeticOpPointerOperand. However, it has special logic
10974/// for emitting a single diagnostic even for operations where both LHS and RHS
10975/// are (potentially problematic) pointers.
10976///
10977/// \returns True when the operand is valid to use (even if as an extension).
10978static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
10979 Expr *LHSExpr, Expr *RHSExpr) {
10980 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
10981 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
10982 if (!isLHSPointer && !isRHSPointer) return true;
10983
10984 QualType LHSPointeeTy, RHSPointeeTy;
10985 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
10986 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
10987
10988 // if both are pointers check if operation is valid wrt address spaces
10989 if (isLHSPointer && isRHSPointer) {
10990 if (!LHSPointeeTy.isAddressSpaceOverlapping(T: RHSPointeeTy,
10991 Ctx: S.getASTContext())) {
10992 S.Diag(Loc,
10993 DiagID: diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10994 << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
10995 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10996 return false;
10997 }
10998 }
10999
11000 // Check for arithmetic on pointers to incomplete types.
11001 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
11002 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
11003 if (isLHSVoidPtr || isRHSVoidPtr) {
11004 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, Pointer: LHSExpr);
11005 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, Pointer: RHSExpr);
11006 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
11007
11008 return !S.getLangOpts().CPlusPlus;
11009 }
11010
11011 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
11012 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
11013 if (isLHSFuncPtr || isRHSFuncPtr) {
11014 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, Pointer: LHSExpr);
11015 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
11016 Pointer: RHSExpr);
11017 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHS: LHSExpr, RHS: RHSExpr);
11018
11019 return !S.getLangOpts().CPlusPlus;
11020 }
11021
11022 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, Operand: LHSExpr))
11023 return false;
11024 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, Operand: RHSExpr))
11025 return false;
11026
11027 return true;
11028}
11029
11030/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
11031/// literal.
11032static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
11033 Expr *LHSExpr, Expr *RHSExpr) {
11034 StringLiteral* StrExpr = dyn_cast<StringLiteral>(Val: LHSExpr->IgnoreImpCasts());
11035 Expr* IndexExpr = RHSExpr;
11036 if (!StrExpr) {
11037 StrExpr = dyn_cast<StringLiteral>(Val: RHSExpr->IgnoreImpCasts());
11038 IndexExpr = LHSExpr;
11039 }
11040
11041 bool IsStringPlusInt = StrExpr &&
11042 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
11043 if (!IsStringPlusInt || IndexExpr->isValueDependent())
11044 return;
11045
11046 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11047 Self.Diag(Loc: OpLoc, DiagID: diag::warn_string_plus_int)
11048 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
11049
11050 // Only print a fixit for "str" + int, not for int + "str".
11051 if (IndexExpr == RHSExpr) {
11052 SourceLocation EndLoc = Self.getLocForEndOfToken(Loc: RHSExpr->getEndLoc());
11053 Self.Diag(Loc: OpLoc, DiagID: diag::note_string_plus_scalar_silence)
11054 << FixItHint::CreateInsertion(InsertionLoc: LHSExpr->getBeginLoc(), Code: "&")
11055 << FixItHint::CreateReplacement(RemoveRange: SourceRange(OpLoc), Code: "[")
11056 << FixItHint::CreateInsertion(InsertionLoc: EndLoc, Code: "]");
11057 } else
11058 Self.Diag(Loc: OpLoc, DiagID: diag::note_string_plus_scalar_silence);
11059}
11060
11061/// Emit a warning when adding a char literal to a string.
11062static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
11063 Expr *LHSExpr, Expr *RHSExpr) {
11064 const Expr *StringRefExpr = LHSExpr;
11065 const CharacterLiteral *CharExpr =
11066 dyn_cast<CharacterLiteral>(Val: RHSExpr->IgnoreImpCasts());
11067
11068 if (!CharExpr) {
11069 CharExpr = dyn_cast<CharacterLiteral>(Val: LHSExpr->IgnoreImpCasts());
11070 StringRefExpr = RHSExpr;
11071 }
11072
11073 if (!CharExpr || !StringRefExpr)
11074 return;
11075
11076 const QualType StringType = StringRefExpr->getType();
11077
11078 // Return if not a PointerType.
11079 if (!StringType->isAnyPointerType())
11080 return;
11081
11082 // Return if not a CharacterType.
11083 if (!StringType->getPointeeType()->isAnyCharacterType())
11084 return;
11085
11086 ASTContext &Ctx = Self.getASTContext();
11087 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11088
11089 const QualType CharType = CharExpr->getType();
11090 if (!CharType->isAnyCharacterType() &&
11091 CharType->isIntegerType() &&
11092 llvm::isUIntN(N: Ctx.getCharWidth(), x: CharExpr->getValue())) {
11093 Self.Diag(Loc: OpLoc, DiagID: diag::warn_string_plus_char)
11094 << DiagRange << Ctx.CharTy;
11095 } else {
11096 Self.Diag(Loc: OpLoc, DiagID: diag::warn_string_plus_char)
11097 << DiagRange << CharExpr->getType();
11098 }
11099
11100 // Only print a fixit for str + char, not for char + str.
11101 if (isa<CharacterLiteral>(Val: RHSExpr->IgnoreImpCasts())) {
11102 SourceLocation EndLoc = Self.getLocForEndOfToken(Loc: RHSExpr->getEndLoc());
11103 Self.Diag(Loc: OpLoc, DiagID: diag::note_string_plus_scalar_silence)
11104 << FixItHint::CreateInsertion(InsertionLoc: LHSExpr->getBeginLoc(), Code: "&")
11105 << FixItHint::CreateReplacement(RemoveRange: SourceRange(OpLoc), Code: "[")
11106 << FixItHint::CreateInsertion(InsertionLoc: EndLoc, Code: "]");
11107 } else {
11108 Self.Diag(Loc: OpLoc, DiagID: diag::note_string_plus_scalar_silence);
11109 }
11110}
11111
11112/// Emit error when two pointers are incompatible.
11113static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
11114 Expr *LHSExpr, Expr *RHSExpr) {
11115 assert(LHSExpr->getType()->isAnyPointerType());
11116 assert(RHSExpr->getType()->isAnyPointerType());
11117 S.Diag(Loc, DiagID: diag::err_typecheck_sub_ptr_compatible)
11118 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
11119 << RHSExpr->getSourceRange();
11120}
11121
11122// C99 6.5.6
11123QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
11124 SourceLocation Loc, BinaryOperatorKind Opc,
11125 QualType* CompLHSTy) {
11126 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
11127
11128 if (LHS.get()->getType()->isVectorType() ||
11129 RHS.get()->getType()->isVectorType()) {
11130 QualType compType =
11131 CheckVectorOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy,
11132 /*AllowBothBool*/ getLangOpts().AltiVec,
11133 /*AllowBoolConversions*/ getLangOpts().ZVector,
11134 /*AllowBooleanOperation*/ AllowBoolOperation: false,
11135 /*ReportInvalid*/ true);
11136 if (CompLHSTy) *CompLHSTy = compType;
11137 return compType;
11138 }
11139
11140 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11141 RHS.get()->getType()->isSveVLSBuiltinType()) {
11142 QualType compType = CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy,
11143 OperationKind: ArithConvKind::Arithmetic);
11144 if (CompLHSTy)
11145 *CompLHSTy = compType;
11146 return compType;
11147 }
11148
11149 if (LHS.get()->getType()->isConstantMatrixType() ||
11150 RHS.get()->getType()->isConstantMatrixType()) {
11151 QualType compType =
11152 CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy);
11153 if (CompLHSTy)
11154 *CompLHSTy = compType;
11155 return compType;
11156 }
11157
11158 QualType compType = UsualArithmeticConversions(
11159 LHS, RHS, Loc,
11160 ACK: CompLHSTy ? ArithConvKind::CompAssign : ArithConvKind::Arithmetic);
11161 if (LHS.isInvalid() || RHS.isInvalid())
11162 return QualType();
11163
11164 // Diagnose "string literal" '+' int and string '+' "char literal".
11165 if (Opc == BO_Add) {
11166 diagnoseStringPlusInt(Self&: *this, OpLoc: Loc, LHSExpr: LHS.get(), RHSExpr: RHS.get());
11167 diagnoseStringPlusChar(Self&: *this, OpLoc: Loc, LHSExpr: LHS.get(), RHSExpr: RHS.get());
11168 }
11169
11170 // handle the common case first (both operands are arithmetic).
11171 if (!compType.isNull() && compType->isArithmeticType()) {
11172 if (CompLHSTy) *CompLHSTy = compType;
11173 return compType;
11174 }
11175
11176 // Type-checking. Ultimately the pointer's going to be in PExp;
11177 // note that we bias towards the LHS being the pointer.
11178 Expr *PExp = LHS.get(), *IExp = RHS.get();
11179
11180 bool isObjCPointer;
11181 if (PExp->getType()->isPointerType()) {
11182 isObjCPointer = false;
11183 } else if (PExp->getType()->isObjCObjectPointerType()) {
11184 isObjCPointer = true;
11185 } else {
11186 std::swap(a&: PExp, b&: IExp);
11187 if (PExp->getType()->isPointerType()) {
11188 isObjCPointer = false;
11189 } else if (PExp->getType()->isObjCObjectPointerType()) {
11190 isObjCPointer = true;
11191 } else {
11192 return InvalidOperands(Loc, LHS, RHS);
11193 }
11194 }
11195 assert(PExp->getType()->isAnyPointerType());
11196
11197 if (!IExp->getType()->isIntegerType())
11198 return InvalidOperands(Loc, LHS, RHS);
11199
11200 // Adding to a null pointer results in undefined behavior.
11201 if (PExp->IgnoreParenCasts()->isNullPointerConstant(
11202 Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNotNull)) {
11203 // In C++ adding zero to a null pointer is defined.
11204 Expr::EvalResult KnownVal;
11205 if (!getLangOpts().CPlusPlus ||
11206 (!IExp->isValueDependent() &&
11207 (!IExp->EvaluateAsInt(Result&: KnownVal, Ctx: Context) ||
11208 KnownVal.Val.getInt() != 0))) {
11209 // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11210 bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
11211 Ctx&: Context, Opc: BO_Add, LHS: PExp, RHS: IExp);
11212 diagnoseArithmeticOnNullPointer(S&: *this, Loc, Pointer: PExp, IsGNUIdiom);
11213 }
11214 }
11215
11216 if (!checkArithmeticOpPointerOperand(S&: *this, Loc, Operand: PExp))
11217 return QualType();
11218
11219 if (isObjCPointer && checkArithmeticOnObjCPointer(S&: *this, opLoc: Loc, op: PExp))
11220 return QualType();
11221
11222 // Arithmetic on label addresses is normally allowed, except when we add
11223 // a ptrauth signature to the addresses.
11224 if (isa<AddrLabelExpr>(Val: PExp) && getLangOpts().PointerAuthIndirectGotos) {
11225 Diag(Loc, DiagID: diag::err_ptrauth_indirect_goto_addrlabel_arithmetic)
11226 << /*addition*/ 1;
11227 return QualType();
11228 }
11229
11230 // Check array bounds for pointer arithemtic
11231 CheckArrayAccess(BaseExpr: PExp, IndexExpr: IExp);
11232
11233 if (CompLHSTy) {
11234 QualType LHSTy = Context.isPromotableBitField(E: LHS.get());
11235 if (LHSTy.isNull()) {
11236 LHSTy = LHS.get()->getType();
11237 if (Context.isPromotableIntegerType(T: LHSTy))
11238 LHSTy = Context.getPromotedIntegerType(PromotableType: LHSTy);
11239 }
11240 *CompLHSTy = LHSTy;
11241 }
11242
11243 return PExp->getType();
11244}
11245
11246// C99 6.5.6
11247QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
11248 SourceLocation Loc,
11249 QualType* CompLHSTy) {
11250 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
11251
11252 if (LHS.get()->getType()->isVectorType() ||
11253 RHS.get()->getType()->isVectorType()) {
11254 QualType compType =
11255 CheckVectorOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy,
11256 /*AllowBothBool*/ getLangOpts().AltiVec,
11257 /*AllowBoolConversions*/ getLangOpts().ZVector,
11258 /*AllowBooleanOperation*/ AllowBoolOperation: false,
11259 /*ReportInvalid*/ true);
11260 if (CompLHSTy) *CompLHSTy = compType;
11261 return compType;
11262 }
11263
11264 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11265 RHS.get()->getType()->isSveVLSBuiltinType()) {
11266 QualType compType = CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy,
11267 OperationKind: ArithConvKind::Arithmetic);
11268 if (CompLHSTy)
11269 *CompLHSTy = compType;
11270 return compType;
11271 }
11272
11273 if (LHS.get()->getType()->isConstantMatrixType() ||
11274 RHS.get()->getType()->isConstantMatrixType()) {
11275 QualType compType =
11276 CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy);
11277 if (CompLHSTy)
11278 *CompLHSTy = compType;
11279 return compType;
11280 }
11281
11282 QualType compType = UsualArithmeticConversions(
11283 LHS, RHS, Loc,
11284 ACK: CompLHSTy ? ArithConvKind::CompAssign : ArithConvKind::Arithmetic);
11285 if (LHS.isInvalid() || RHS.isInvalid())
11286 return QualType();
11287
11288 // Enforce type constraints: C99 6.5.6p3.
11289
11290 // Handle the common case first (both operands are arithmetic).
11291 if (!compType.isNull() && compType->isArithmeticType()) {
11292 if (CompLHSTy) *CompLHSTy = compType;
11293 return compType;
11294 }
11295
11296 // Either ptr - int or ptr - ptr.
11297 if (LHS.get()->getType()->isAnyPointerType()) {
11298 QualType lpointee = LHS.get()->getType()->getPointeeType();
11299
11300 // Diagnose bad cases where we step over interface counts.
11301 if (LHS.get()->getType()->isObjCObjectPointerType() &&
11302 checkArithmeticOnObjCPointer(S&: *this, opLoc: Loc, op: LHS.get()))
11303 return QualType();
11304
11305 // Arithmetic on label addresses is normally allowed, except when we add
11306 // a ptrauth signature to the addresses.
11307 if (isa<AddrLabelExpr>(Val: LHS.get()) &&
11308 getLangOpts().PointerAuthIndirectGotos) {
11309 Diag(Loc, DiagID: diag::err_ptrauth_indirect_goto_addrlabel_arithmetic)
11310 << /*subtraction*/ 0;
11311 return QualType();
11312 }
11313
11314 // The result type of a pointer-int computation is the pointer type.
11315 if (RHS.get()->getType()->isIntegerType()) {
11316 // Subtracting from a null pointer should produce a warning.
11317 // The last argument to the diagnose call says this doesn't match the
11318 // GNU int-to-pointer idiom.
11319 if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Ctx&: Context,
11320 NPC: Expr::NPC_ValueDependentIsNotNull)) {
11321 // In C++ adding zero to a null pointer is defined.
11322 Expr::EvalResult KnownVal;
11323 if (!getLangOpts().CPlusPlus ||
11324 (!RHS.get()->isValueDependent() &&
11325 (!RHS.get()->EvaluateAsInt(Result&: KnownVal, Ctx: Context) ||
11326 KnownVal.Val.getInt() != 0))) {
11327 diagnoseArithmeticOnNullPointer(S&: *this, Loc, Pointer: LHS.get(), IsGNUIdiom: false);
11328 }
11329 }
11330
11331 if (!checkArithmeticOpPointerOperand(S&: *this, Loc, Operand: LHS.get()))
11332 return QualType();
11333
11334 // Check array bounds for pointer arithemtic
11335 CheckArrayAccess(BaseExpr: LHS.get(), IndexExpr: RHS.get(), /*ArraySubscriptExpr*/ASE: nullptr,
11336 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
11337
11338 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11339 return LHS.get()->getType();
11340 }
11341
11342 // Handle pointer-pointer subtractions.
11343 if (const PointerType *RHSPTy
11344 = RHS.get()->getType()->getAs<PointerType>()) {
11345 QualType rpointee = RHSPTy->getPointeeType();
11346
11347 if (getLangOpts().CPlusPlus) {
11348 // Pointee types must be the same: C++ [expr.add]
11349 if (!Context.hasSameUnqualifiedType(T1: lpointee, T2: rpointee)) {
11350 diagnosePointerIncompatibility(S&: *this, Loc, LHSExpr: LHS.get(), RHSExpr: RHS.get());
11351 }
11352 } else {
11353 // Pointee types must be compatible C99 6.5.6p3
11354 if (!Context.typesAreCompatible(
11355 T1: Context.getCanonicalType(T: lpointee).getUnqualifiedType(),
11356 T2: Context.getCanonicalType(T: rpointee).getUnqualifiedType())) {
11357 diagnosePointerIncompatibility(S&: *this, Loc, LHSExpr: LHS.get(), RHSExpr: RHS.get());
11358 return QualType();
11359 }
11360 }
11361
11362 if (!checkArithmeticBinOpPointerOperands(S&: *this, Loc,
11363 LHSExpr: LHS.get(), RHSExpr: RHS.get()))
11364 return QualType();
11365
11366 bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11367 Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNotNull);
11368 bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11369 Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNotNull);
11370
11371 // Subtracting nullptr or from nullptr is suspect
11372 if (LHSIsNullPtr)
11373 diagnoseSubtractionOnNullPointer(S&: *this, Loc, Pointer: LHS.get(), BothNull: RHSIsNullPtr);
11374 if (RHSIsNullPtr)
11375 diagnoseSubtractionOnNullPointer(S&: *this, Loc, Pointer: RHS.get(), BothNull: LHSIsNullPtr);
11376
11377 // The pointee type may have zero size. As an extension, a structure or
11378 // union may have zero size or an array may have zero length. In this
11379 // case subtraction does not make sense.
11380 if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
11381 CharUnits ElementSize = Context.getTypeSizeInChars(T: rpointee);
11382 if (ElementSize.isZero()) {
11383 Diag(Loc,DiagID: diag::warn_sub_ptr_zero_size_types)
11384 << rpointee.getUnqualifiedType()
11385 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11386 }
11387 }
11388
11389 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11390 return Context.getPointerDiffType();
11391 }
11392 }
11393
11394 return InvalidOperands(Loc, LHS, RHS);
11395}
11396
11397static bool isScopedEnumerationType(QualType T) {
11398 if (const EnumType *ET = T->getAs<EnumType>())
11399 return ET->getDecl()->isScoped();
11400 return false;
11401}
11402
11403static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
11404 SourceLocation Loc, BinaryOperatorKind Opc,
11405 QualType LHSType) {
11406 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
11407 // so skip remaining warnings as we don't want to modify values within Sema.
11408 if (S.getLangOpts().OpenCL)
11409 return;
11410
11411 if (Opc == BO_Shr &&
11412 LHS.get()->IgnoreParenImpCasts()->getType()->isBooleanType())
11413 S.Diag(Loc, DiagID: diag::warn_shift_bool) << LHS.get()->getSourceRange();
11414
11415 // Check right/shifter operand
11416 Expr::EvalResult RHSResult;
11417 if (RHS.get()->isValueDependent() ||
11418 !RHS.get()->EvaluateAsInt(Result&: RHSResult, Ctx: S.Context))
11419 return;
11420 llvm::APSInt Right = RHSResult.Val.getInt();
11421
11422 if (Right.isNegative()) {
11423 S.DiagRuntimeBehavior(Loc, Statement: RHS.get(),
11424 PD: S.PDiag(DiagID: diag::warn_shift_negative)
11425 << RHS.get()->getSourceRange());
11426 return;
11427 }
11428
11429 QualType LHSExprType = LHS.get()->getType();
11430 uint64_t LeftSize = S.Context.getTypeSize(T: LHSExprType);
11431 if (LHSExprType->isBitIntType())
11432 LeftSize = S.Context.getIntWidth(T: LHSExprType);
11433 else if (LHSExprType->isFixedPointType()) {
11434 auto FXSema = S.Context.getFixedPointSemantics(Ty: LHSExprType);
11435 LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
11436 }
11437 if (Right.uge(RHS: LeftSize)) {
11438 S.DiagRuntimeBehavior(Loc, Statement: RHS.get(),
11439 PD: S.PDiag(DiagID: diag::warn_shift_gt_typewidth)
11440 << RHS.get()->getSourceRange());
11441 return;
11442 }
11443
11444 // FIXME: We probably need to handle fixed point types specially here.
11445 if (Opc != BO_Shl || LHSExprType->isFixedPointType())
11446 return;
11447
11448 // When left shifting an ICE which is signed, we can check for overflow which
11449 // according to C++ standards prior to C++2a has undefined behavior
11450 // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
11451 // more than the maximum value representable in the result type, so never
11452 // warn for those. (FIXME: Unsigned left-shift overflow in a constant
11453 // expression is still probably a bug.)
11454 Expr::EvalResult LHSResult;
11455 if (LHS.get()->isValueDependent() ||
11456 LHSType->hasUnsignedIntegerRepresentation() ||
11457 !LHS.get()->EvaluateAsInt(Result&: LHSResult, Ctx: S.Context))
11458 return;
11459 llvm::APSInt Left = LHSResult.Val.getInt();
11460
11461 // Don't warn if signed overflow is defined, then all the rest of the
11462 // diagnostics will not be triggered because the behavior is defined.
11463 // Also don't warn in C++20 mode (and newer), as signed left shifts
11464 // always wrap and never overflow.
11465 if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
11466 return;
11467
11468 // If LHS does not have a non-negative value then, the
11469 // behavior is undefined before C++2a. Warn about it.
11470 if (Left.isNegative()) {
11471 S.DiagRuntimeBehavior(Loc, Statement: LHS.get(),
11472 PD: S.PDiag(DiagID: diag::warn_shift_lhs_negative)
11473 << LHS.get()->getSourceRange());
11474 return;
11475 }
11476
11477 llvm::APInt ResultBits =
11478 static_cast<llvm::APInt &>(Right) + Left.getSignificantBits();
11479 if (ResultBits.ule(RHS: LeftSize))
11480 return;
11481 llvm::APSInt Result = Left.extend(width: ResultBits.getLimitedValue());
11482 Result = Result.shl(ShiftAmt: Right);
11483
11484 // Print the bit representation of the signed integer as an unsigned
11485 // hexadecimal number.
11486 SmallString<40> HexResult;
11487 Result.toString(Str&: HexResult, Radix: 16, /*Signed =*/false, /*Literal =*/formatAsCLiteral: true);
11488
11489 // If we are only missing a sign bit, this is less likely to result in actual
11490 // bugs -- if the result is cast back to an unsigned type, it will have the
11491 // expected value. Thus we place this behind a different warning that can be
11492 // turned off separately if needed.
11493 if (ResultBits - 1 == LeftSize) {
11494 S.Diag(Loc, DiagID: diag::warn_shift_result_sets_sign_bit)
11495 << HexResult << LHSType
11496 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11497 return;
11498 }
11499
11500 S.Diag(Loc, DiagID: diag::warn_shift_result_gt_typewidth)
11501 << HexResult.str() << Result.getSignificantBits() << LHSType
11502 << Left.getBitWidth() << LHS.get()->getSourceRange()
11503 << RHS.get()->getSourceRange();
11504}
11505
11506/// Return the resulting type when a vector is shifted
11507/// by a scalar or vector shift amount.
11508static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
11509 SourceLocation Loc, bool IsCompAssign) {
11510 // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
11511 if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
11512 !LHS.get()->getType()->isVectorType()) {
11513 S.Diag(Loc, DiagID: diag::err_shift_rhs_only_vector)
11514 << RHS.get()->getType() << LHS.get()->getType()
11515 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11516 return QualType();
11517 }
11518
11519 if (!IsCompAssign) {
11520 LHS = S.UsualUnaryConversions(E: LHS.get());
11521 if (LHS.isInvalid()) return QualType();
11522 }
11523
11524 RHS = S.UsualUnaryConversions(E: RHS.get());
11525 if (RHS.isInvalid()) return QualType();
11526
11527 QualType LHSType = LHS.get()->getType();
11528 // Note that LHS might be a scalar because the routine calls not only in
11529 // OpenCL case.
11530 const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
11531 QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
11532
11533 // Note that RHS might not be a vector.
11534 QualType RHSType = RHS.get()->getType();
11535 const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
11536 QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
11537
11538 // Do not allow shifts for boolean vectors.
11539 if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
11540 (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
11541 S.Diag(Loc, DiagID: diag::err_typecheck_invalid_operands)
11542 << LHS.get()->getType() << RHS.get()->getType()
11543 << LHS.get()->getSourceRange();
11544 return QualType();
11545 }
11546
11547 // The operands need to be integers.
11548 if (!LHSEleType->isIntegerType()) {
11549 S.Diag(Loc, DiagID: diag::err_typecheck_expect_int)
11550 << LHS.get()->getType() << LHS.get()->getSourceRange();
11551 return QualType();
11552 }
11553
11554 if (!RHSEleType->isIntegerType()) {
11555 S.Diag(Loc, DiagID: diag::err_typecheck_expect_int)
11556 << RHS.get()->getType() << RHS.get()->getSourceRange();
11557 return QualType();
11558 }
11559
11560 if (!LHSVecTy) {
11561 assert(RHSVecTy);
11562 if (IsCompAssign)
11563 return RHSType;
11564 if (LHSEleType != RHSEleType) {
11565 LHS = S.ImpCastExprToType(E: LHS.get(),Type: RHSEleType, CK: CK_IntegralCast);
11566 LHSEleType = RHSEleType;
11567 }
11568 QualType VecTy =
11569 S.Context.getExtVectorType(VectorType: LHSEleType, NumElts: RHSVecTy->getNumElements());
11570 LHS = S.ImpCastExprToType(E: LHS.get(), Type: VecTy, CK: CK_VectorSplat);
11571 LHSType = VecTy;
11572 } else if (RHSVecTy) {
11573 // OpenCL v1.1 s6.3.j says that for vector types, the operators
11574 // are applied component-wise. So if RHS is a vector, then ensure
11575 // that the number of elements is the same as LHS...
11576 if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
11577 S.Diag(Loc, DiagID: diag::err_typecheck_vector_lengths_not_equal)
11578 << LHS.get()->getType() << RHS.get()->getType()
11579 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11580 return QualType();
11581 }
11582 if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
11583 const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
11584 const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
11585 if (LHSBT != RHSBT &&
11586 S.Context.getTypeSize(T: LHSBT) != S.Context.getTypeSize(T: RHSBT)) {
11587 S.Diag(Loc, DiagID: diag::warn_typecheck_vector_element_sizes_not_equal)
11588 << LHS.get()->getType() << RHS.get()->getType()
11589 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11590 }
11591 }
11592 } else {
11593 // ...else expand RHS to match the number of elements in LHS.
11594 QualType VecTy =
11595 S.Context.getExtVectorType(VectorType: RHSEleType, NumElts: LHSVecTy->getNumElements());
11596 RHS = S.ImpCastExprToType(E: RHS.get(), Type: VecTy, CK: CK_VectorSplat);
11597 }
11598
11599 return LHSType;
11600}
11601
11602static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
11603 ExprResult &RHS, SourceLocation Loc,
11604 bool IsCompAssign) {
11605 if (!IsCompAssign) {
11606 LHS = S.UsualUnaryConversions(E: LHS.get());
11607 if (LHS.isInvalid())
11608 return QualType();
11609 }
11610
11611 RHS = S.UsualUnaryConversions(E: RHS.get());
11612 if (RHS.isInvalid())
11613 return QualType();
11614
11615 QualType LHSType = LHS.get()->getType();
11616 const BuiltinType *LHSBuiltinTy = LHSType->castAs<BuiltinType>();
11617 QualType LHSEleType = LHSType->isSveVLSBuiltinType()
11618 ? LHSBuiltinTy->getSveEltType(Ctx: S.getASTContext())
11619 : LHSType;
11620
11621 // Note that RHS might not be a vector
11622 QualType RHSType = RHS.get()->getType();
11623 const BuiltinType *RHSBuiltinTy = RHSType->castAs<BuiltinType>();
11624 QualType RHSEleType = RHSType->isSveVLSBuiltinType()
11625 ? RHSBuiltinTy->getSveEltType(Ctx: S.getASTContext())
11626 : RHSType;
11627
11628 if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11629 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
11630 S.Diag(Loc, DiagID: diag::err_typecheck_invalid_operands)
11631 << LHSType << RHSType << LHS.get()->getSourceRange();
11632 return QualType();
11633 }
11634
11635 if (!LHSEleType->isIntegerType()) {
11636 S.Diag(Loc, DiagID: diag::err_typecheck_expect_int)
11637 << LHS.get()->getType() << LHS.get()->getSourceRange();
11638 return QualType();
11639 }
11640
11641 if (!RHSEleType->isIntegerType()) {
11642 S.Diag(Loc, DiagID: diag::err_typecheck_expect_int)
11643 << RHS.get()->getType() << RHS.get()->getSourceRange();
11644 return QualType();
11645 }
11646
11647 if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
11648 (S.Context.getBuiltinVectorTypeInfo(VecTy: LHSBuiltinTy).EC !=
11649 S.Context.getBuiltinVectorTypeInfo(VecTy: RHSBuiltinTy).EC)) {
11650 S.Diag(Loc, DiagID: diag::err_typecheck_invalid_operands)
11651 << LHSType << RHSType << LHS.get()->getSourceRange()
11652 << RHS.get()->getSourceRange();
11653 return QualType();
11654 }
11655
11656 if (!LHSType->isSveVLSBuiltinType()) {
11657 assert(RHSType->isSveVLSBuiltinType());
11658 if (IsCompAssign)
11659 return RHSType;
11660 if (LHSEleType != RHSEleType) {
11661 LHS = S.ImpCastExprToType(E: LHS.get(), Type: RHSEleType, CK: clang::CK_IntegralCast);
11662 LHSEleType = RHSEleType;
11663 }
11664 const llvm::ElementCount VecSize =
11665 S.Context.getBuiltinVectorTypeInfo(VecTy: RHSBuiltinTy).EC;
11666 QualType VecTy =
11667 S.Context.getScalableVectorType(EltTy: LHSEleType, NumElts: VecSize.getKnownMinValue());
11668 LHS = S.ImpCastExprToType(E: LHS.get(), Type: VecTy, CK: clang::CK_VectorSplat);
11669 LHSType = VecTy;
11670 } else if (RHSBuiltinTy && RHSBuiltinTy->isSveVLSBuiltinType()) {
11671 if (S.Context.getTypeSize(T: RHSBuiltinTy) !=
11672 S.Context.getTypeSize(T: LHSBuiltinTy)) {
11673 S.Diag(Loc, DiagID: diag::err_typecheck_vector_lengths_not_equal)
11674 << LHSType << RHSType << LHS.get()->getSourceRange()
11675 << RHS.get()->getSourceRange();
11676 return QualType();
11677 }
11678 } else {
11679 const llvm::ElementCount VecSize =
11680 S.Context.getBuiltinVectorTypeInfo(VecTy: LHSBuiltinTy).EC;
11681 if (LHSEleType != RHSEleType) {
11682 RHS = S.ImpCastExprToType(E: RHS.get(), Type: LHSEleType, CK: clang::CK_IntegralCast);
11683 RHSEleType = LHSEleType;
11684 }
11685 QualType VecTy =
11686 S.Context.getScalableVectorType(EltTy: RHSEleType, NumElts: VecSize.getKnownMinValue());
11687 RHS = S.ImpCastExprToType(E: RHS.get(), Type: VecTy, CK: CK_VectorSplat);
11688 }
11689
11690 return LHSType;
11691}
11692
11693// C99 6.5.7
11694QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11695 SourceLocation Loc, BinaryOperatorKind Opc,
11696 bool IsCompAssign) {
11697 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
11698
11699 // Vector shifts promote their scalar inputs to vector type.
11700 if (LHS.get()->getType()->isVectorType() ||
11701 RHS.get()->getType()->isVectorType()) {
11702 if (LangOpts.ZVector) {
11703 // The shift operators for the z vector extensions work basically
11704 // like general shifts, except that neither the LHS nor the RHS is
11705 // allowed to be a "vector bool".
11706 if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11707 if (LHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11708 return InvalidOperands(Loc, LHS, RHS);
11709 if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11710 if (RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11711 return InvalidOperands(Loc, LHS, RHS);
11712 }
11713 return checkVectorShift(S&: *this, LHS, RHS, Loc, IsCompAssign);
11714 }
11715
11716 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11717 RHS.get()->getType()->isSveVLSBuiltinType())
11718 return checkSizelessVectorShift(S&: *this, LHS, RHS, Loc, IsCompAssign);
11719
11720 // Shifts don't perform usual arithmetic conversions, they just do integer
11721 // promotions on each operand. C99 6.5.7p3
11722
11723 // For the LHS, do usual unary conversions, but then reset them away
11724 // if this is a compound assignment.
11725 ExprResult OldLHS = LHS;
11726 LHS = UsualUnaryConversions(E: LHS.get());
11727 if (LHS.isInvalid())
11728 return QualType();
11729 QualType LHSType = LHS.get()->getType();
11730 if (IsCompAssign) LHS = OldLHS;
11731
11732 // The RHS is simpler.
11733 RHS = UsualUnaryConversions(E: RHS.get());
11734 if (RHS.isInvalid())
11735 return QualType();
11736 QualType RHSType = RHS.get()->getType();
11737
11738 // C99 6.5.7p2: Each of the operands shall have integer type.
11739 // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
11740 if ((!LHSType->isFixedPointOrIntegerType() &&
11741 !LHSType->hasIntegerRepresentation()) ||
11742 !RHSType->hasIntegerRepresentation())
11743 return InvalidOperands(Loc, LHS, RHS);
11744
11745 // C++0x: Don't allow scoped enums. FIXME: Use something better than
11746 // hasIntegerRepresentation() above instead of this.
11747 if (isScopedEnumerationType(T: LHSType) ||
11748 isScopedEnumerationType(T: RHSType)) {
11749 return InvalidOperands(Loc, LHS, RHS);
11750 }
11751 DiagnoseBadShiftValues(S&: *this, LHS, RHS, Loc, Opc, LHSType);
11752
11753 // "The type of the result is that of the promoted left operand."
11754 return LHSType;
11755}
11756
11757/// Diagnose bad pointer comparisons.
11758static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
11759 ExprResult &LHS, ExprResult &RHS,
11760 bool IsError) {
11761 S.Diag(Loc, DiagID: IsError ? diag::err_typecheck_comparison_of_distinct_pointers
11762 : diag::ext_typecheck_comparison_of_distinct_pointers)
11763 << LHS.get()->getType() << RHS.get()->getType()
11764 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11765}
11766
11767/// Returns false if the pointers are converted to a composite type,
11768/// true otherwise.
11769static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
11770 ExprResult &LHS, ExprResult &RHS) {
11771 // C++ [expr.rel]p2:
11772 // [...] Pointer conversions (4.10) and qualification
11773 // conversions (4.4) are performed on pointer operands (or on
11774 // a pointer operand and a null pointer constant) to bring
11775 // them to their composite pointer type. [...]
11776 //
11777 // C++ [expr.eq]p1 uses the same notion for (in)equality
11778 // comparisons of pointers.
11779
11780 QualType LHSType = LHS.get()->getType();
11781 QualType RHSType = RHS.get()->getType();
11782 assert(LHSType->isPointerType() || RHSType->isPointerType() ||
11783 LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
11784
11785 QualType T = S.FindCompositePointerType(Loc, E1&: LHS, E2&: RHS);
11786 if (T.isNull()) {
11787 if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
11788 (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
11789 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/IsError: true);
11790 else
11791 S.InvalidOperands(Loc, LHS, RHS);
11792 return true;
11793 }
11794
11795 return false;
11796}
11797
11798static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11799 ExprResult &LHS,
11800 ExprResult &RHS,
11801 bool IsError) {
11802 S.Diag(Loc, DiagID: IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11803 : diag::ext_typecheck_comparison_of_fptr_to_void)
11804 << LHS.get()->getType() << RHS.get()->getType()
11805 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11806}
11807
11808static bool isObjCObjectLiteral(ExprResult &E) {
11809 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11810 case Stmt::ObjCArrayLiteralClass:
11811 case Stmt::ObjCDictionaryLiteralClass:
11812 case Stmt::ObjCStringLiteralClass:
11813 case Stmt::ObjCBoxedExprClass:
11814 return true;
11815 default:
11816 // Note that ObjCBoolLiteral is NOT an object literal!
11817 return false;
11818 }
11819}
11820
11821static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11822 const ObjCObjectPointerType *Type =
11823 LHS->getType()->getAs<ObjCObjectPointerType>();
11824
11825 // If this is not actually an Objective-C object, bail out.
11826 if (!Type)
11827 return false;
11828
11829 // Get the LHS object's interface type.
11830 QualType InterfaceType = Type->getPointeeType();
11831
11832 // If the RHS isn't an Objective-C object, bail out.
11833 if (!RHS->getType()->isObjCObjectPointerType())
11834 return false;
11835
11836 // Try to find the -isEqual: method.
11837 Selector IsEqualSel = S.ObjC().NSAPIObj->getIsEqualSelector();
11838 ObjCMethodDecl *Method =
11839 S.ObjC().LookupMethodInObjectType(Sel: IsEqualSel, Ty: InterfaceType,
11840 /*IsInstance=*/true);
11841 if (!Method) {
11842 if (Type->isObjCIdType()) {
11843 // For 'id', just check the global pool.
11844 Method =
11845 S.ObjC().LookupInstanceMethodInGlobalPool(Sel: IsEqualSel, R: SourceRange(),
11846 /*receiverId=*/receiverIdOrClass: true);
11847 } else {
11848 // Check protocols.
11849 Method = S.ObjC().LookupMethodInQualifiedType(Sel: IsEqualSel, OPT: Type,
11850 /*IsInstance=*/true);
11851 }
11852 }
11853
11854 if (!Method)
11855 return false;
11856
11857 QualType T = Method->parameters()[0]->getType();
11858 if (!T->isObjCObjectPointerType())
11859 return false;
11860
11861 QualType R = Method->getReturnType();
11862 if (!R->isScalarType())
11863 return false;
11864
11865 return true;
11866}
11867
11868static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
11869 ExprResult &LHS, ExprResult &RHS,
11870 BinaryOperator::Opcode Opc){
11871 Expr *Literal;
11872 Expr *Other;
11873 if (isObjCObjectLiteral(E&: LHS)) {
11874 Literal = LHS.get();
11875 Other = RHS.get();
11876 } else {
11877 Literal = RHS.get();
11878 Other = LHS.get();
11879 }
11880
11881 // Don't warn on comparisons against nil.
11882 Other = Other->IgnoreParenCasts();
11883 if (Other->isNullPointerConstant(Ctx&: S.getASTContext(),
11884 NPC: Expr::NPC_ValueDependentIsNotNull))
11885 return;
11886
11887 // This should be kept in sync with warn_objc_literal_comparison.
11888 // LK_String should always be after the other literals, since it has its own
11889 // warning flag.
11890 SemaObjC::ObjCLiteralKind LiteralKind = S.ObjC().CheckLiteralKind(FromE: Literal);
11891 assert(LiteralKind != SemaObjC::LK_Block);
11892 if (LiteralKind == SemaObjC::LK_None) {
11893 llvm_unreachable("Unknown Objective-C object literal kind");
11894 }
11895
11896 if (LiteralKind == SemaObjC::LK_String)
11897 S.Diag(Loc, DiagID: diag::warn_objc_string_literal_comparison)
11898 << Literal->getSourceRange();
11899 else
11900 S.Diag(Loc, DiagID: diag::warn_objc_literal_comparison)
11901 << LiteralKind << Literal->getSourceRange();
11902
11903 if (BinaryOperator::isEqualityOp(Opc) &&
11904 hasIsEqualMethod(S, LHS: LHS.get(), RHS: RHS.get())) {
11905 SourceLocation Start = LHS.get()->getBeginLoc();
11906 SourceLocation End = S.getLocForEndOfToken(Loc: RHS.get()->getEndLoc());
11907 CharSourceRange OpRange =
11908 CharSourceRange::getCharRange(B: Loc, E: S.getLocForEndOfToken(Loc));
11909
11910 S.Diag(Loc, DiagID: diag::note_objc_literal_comparison_isequal)
11911 << FixItHint::CreateInsertion(InsertionLoc: Start, Code: Opc == BO_EQ ? "[" : "![")
11912 << FixItHint::CreateReplacement(RemoveRange: OpRange, Code: " isEqual:")
11913 << FixItHint::CreateInsertion(InsertionLoc: End, Code: "]");
11914 }
11915}
11916
11917/// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
11918static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11919 ExprResult &RHS, SourceLocation Loc,
11920 BinaryOperatorKind Opc) {
11921 // Check that left hand side is !something.
11922 UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: LHS.get()->IgnoreImpCasts());
11923 if (!UO || UO->getOpcode() != UO_LNot) return;
11924
11925 // Only check if the right hand side is non-bool arithmetic type.
11926 if (RHS.get()->isKnownToHaveBooleanValue()) return;
11927
11928 // Make sure that the something in !something is not bool.
11929 Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11930 if (SubExpr->isKnownToHaveBooleanValue()) return;
11931
11932 // Emit warning.
11933 bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11934 S.Diag(Loc: UO->getOperatorLoc(), DiagID: diag::warn_logical_not_on_lhs_of_check)
11935 << Loc << IsBitwiseOp;
11936
11937 // First note suggest !(x < y)
11938 SourceLocation FirstOpen = SubExpr->getBeginLoc();
11939 SourceLocation FirstClose = RHS.get()->getEndLoc();
11940 FirstClose = S.getLocForEndOfToken(Loc: FirstClose);
11941 if (FirstClose.isInvalid())
11942 FirstOpen = SourceLocation();
11943 S.Diag(Loc: UO->getOperatorLoc(), DiagID: diag::note_logical_not_fix)
11944 << IsBitwiseOp
11945 << FixItHint::CreateInsertion(InsertionLoc: FirstOpen, Code: "(")
11946 << FixItHint::CreateInsertion(InsertionLoc: FirstClose, Code: ")");
11947
11948 // Second note suggests (!x) < y
11949 SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11950 SourceLocation SecondClose = LHS.get()->getEndLoc();
11951 SecondClose = S.getLocForEndOfToken(Loc: SecondClose);
11952 if (SecondClose.isInvalid())
11953 SecondOpen = SourceLocation();
11954 S.Diag(Loc: UO->getOperatorLoc(), DiagID: diag::note_logical_not_silence_with_parens)
11955 << FixItHint::CreateInsertion(InsertionLoc: SecondOpen, Code: "(")
11956 << FixItHint::CreateInsertion(InsertionLoc: SecondClose, Code: ")");
11957}
11958
11959// Returns true if E refers to a non-weak array.
11960static bool checkForArray(const Expr *E) {
11961 const ValueDecl *D = nullptr;
11962 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Val: E)) {
11963 D = DR->getDecl();
11964 } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(Val: E)) {
11965 if (Mem->isImplicitAccess())
11966 D = Mem->getMemberDecl();
11967 }
11968 if (!D)
11969 return false;
11970 return D->getType()->isArrayType() && !D->isWeak();
11971}
11972
11973/// Detect patterns ptr + size >= ptr and ptr + size < ptr, where ptr is a
11974/// pointer and size is an unsigned integer. Return whether the result is
11975/// always true/false.
11976static std::optional<bool> isTautologicalBoundsCheck(Sema &S, const Expr *LHS,
11977 const Expr *RHS,
11978 BinaryOperatorKind Opc) {
11979 if (!LHS->getType()->isPointerType() ||
11980 S.getLangOpts().PointerOverflowDefined)
11981 return std::nullopt;
11982
11983 // Canonicalize to >= or < predicate.
11984 switch (Opc) {
11985 case BO_GE:
11986 case BO_LT:
11987 break;
11988 case BO_GT:
11989 std::swap(a&: LHS, b&: RHS);
11990 Opc = BO_LT;
11991 break;
11992 case BO_LE:
11993 std::swap(a&: LHS, b&: RHS);
11994 Opc = BO_GE;
11995 break;
11996 default:
11997 return std::nullopt;
11998 }
11999
12000 auto *BO = dyn_cast<BinaryOperator>(Val: LHS);
12001 if (!BO || BO->getOpcode() != BO_Add)
12002 return std::nullopt;
12003
12004 Expr *Other;
12005 if (Expr::isSameComparisonOperand(E1: BO->getLHS(), E2: RHS))
12006 Other = BO->getRHS();
12007 else if (Expr::isSameComparisonOperand(E1: BO->getRHS(), E2: RHS))
12008 Other = BO->getLHS();
12009 else
12010 return std::nullopt;
12011
12012 if (!Other->getType()->isUnsignedIntegerType())
12013 return std::nullopt;
12014
12015 return Opc == BO_GE;
12016}
12017
12018/// Diagnose some forms of syntactically-obvious tautological comparison.
12019static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
12020 Expr *LHS, Expr *RHS,
12021 BinaryOperatorKind Opc) {
12022 Expr *LHSStripped = LHS->IgnoreParenImpCasts();
12023 Expr *RHSStripped = RHS->IgnoreParenImpCasts();
12024
12025 QualType LHSType = LHS->getType();
12026 QualType RHSType = RHS->getType();
12027 if (LHSType->hasFloatingRepresentation() ||
12028 (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
12029 S.inTemplateInstantiation())
12030 return;
12031
12032 // WebAssembly Tables cannot be compared, therefore shouldn't emit
12033 // Tautological diagnostics.
12034 if (LHSType->isWebAssemblyTableType() || RHSType->isWebAssemblyTableType())
12035 return;
12036
12037 // Comparisons between two array types are ill-formed for operator<=>, so
12038 // we shouldn't emit any additional warnings about it.
12039 if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
12040 return;
12041
12042 // For non-floating point types, check for self-comparisons of the form
12043 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12044 // often indicate logic errors in the program.
12045 //
12046 // NOTE: Don't warn about comparison expressions resulting from macro
12047 // expansion. Also don't warn about comparisons which are only self
12048 // comparisons within a template instantiation. The warnings should catch
12049 // obvious cases in the definition of the template anyways. The idea is to
12050 // warn when the typed comparison operator will always evaluate to the same
12051 // result.
12052
12053 // Used for indexing into %select in warn_comparison_always
12054 enum {
12055 AlwaysConstant,
12056 AlwaysTrue,
12057 AlwaysFalse,
12058 AlwaysEqual, // std::strong_ordering::equal from operator<=>
12059 };
12060
12061 // C++1a [array.comp]:
12062 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12063 // operands of array type.
12064 // C++2a [depr.array.comp]:
12065 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12066 // operands of array type are deprecated.
12067 if (S.getLangOpts().CPlusPlus && LHSStripped->getType()->isArrayType() &&
12068 RHSStripped->getType()->isArrayType()) {
12069 auto IsDeprArrayComparionIgnored =
12070 S.getDiagnostics().isIgnored(DiagID: diag::warn_depr_array_comparison, Loc);
12071 auto DiagID = S.getLangOpts().CPlusPlus26
12072 ? diag::warn_array_comparison_cxx26
12073 : !S.getLangOpts().CPlusPlus20 || IsDeprArrayComparionIgnored
12074 ? diag::warn_array_comparison
12075 : diag::warn_depr_array_comparison;
12076 S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
12077 << LHSStripped->getType() << RHSStripped->getType();
12078 // Carry on to produce the tautological comparison warning, if this
12079 // expression is potentially-evaluated, we can resolve the array to a
12080 // non-weak declaration, and so on.
12081 }
12082
12083 if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
12084 if (Expr::isSameComparisonOperand(E1: LHS, E2: RHS)) {
12085 unsigned Result;
12086 switch (Opc) {
12087 case BO_EQ:
12088 case BO_LE:
12089 case BO_GE:
12090 Result = AlwaysTrue;
12091 break;
12092 case BO_NE:
12093 case BO_LT:
12094 case BO_GT:
12095 Result = AlwaysFalse;
12096 break;
12097 case BO_Cmp:
12098 Result = AlwaysEqual;
12099 break;
12100 default:
12101 Result = AlwaysConstant;
12102 break;
12103 }
12104 S.DiagRuntimeBehavior(Loc, Statement: nullptr,
12105 PD: S.PDiag(DiagID: diag::warn_comparison_always)
12106 << 0 /*self-comparison*/
12107 << Result);
12108 } else if (checkForArray(E: LHSStripped) && checkForArray(E: RHSStripped)) {
12109 // What is it always going to evaluate to?
12110 unsigned Result;
12111 switch (Opc) {
12112 case BO_EQ: // e.g. array1 == array2
12113 Result = AlwaysFalse;
12114 break;
12115 case BO_NE: // e.g. array1 != array2
12116 Result = AlwaysTrue;
12117 break;
12118 default: // e.g. array1 <= array2
12119 // The best we can say is 'a constant'
12120 Result = AlwaysConstant;
12121 break;
12122 }
12123 S.DiagRuntimeBehavior(Loc, Statement: nullptr,
12124 PD: S.PDiag(DiagID: diag::warn_comparison_always)
12125 << 1 /*array comparison*/
12126 << Result);
12127 } else if (std::optional<bool> Res =
12128 isTautologicalBoundsCheck(S, LHS, RHS, Opc)) {
12129 S.DiagRuntimeBehavior(Loc, Statement: nullptr,
12130 PD: S.PDiag(DiagID: diag::warn_comparison_always)
12131 << 2 /*pointer comparison*/
12132 << (*Res ? AlwaysTrue : AlwaysFalse));
12133 }
12134 }
12135
12136 if (isa<CastExpr>(Val: LHSStripped))
12137 LHSStripped = LHSStripped->IgnoreParenCasts();
12138 if (isa<CastExpr>(Val: RHSStripped))
12139 RHSStripped = RHSStripped->IgnoreParenCasts();
12140
12141 // Warn about comparisons against a string constant (unless the other
12142 // operand is null); the user probably wants string comparison function.
12143 Expr *LiteralString = nullptr;
12144 Expr *LiteralStringStripped = nullptr;
12145 if ((isa<StringLiteral>(Val: LHSStripped) || isa<ObjCEncodeExpr>(Val: LHSStripped)) &&
12146 !RHSStripped->isNullPointerConstant(Ctx&: S.Context,
12147 NPC: Expr::NPC_ValueDependentIsNull)) {
12148 LiteralString = LHS;
12149 LiteralStringStripped = LHSStripped;
12150 } else if ((isa<StringLiteral>(Val: RHSStripped) ||
12151 isa<ObjCEncodeExpr>(Val: RHSStripped)) &&
12152 !LHSStripped->isNullPointerConstant(Ctx&: S.Context,
12153 NPC: Expr::NPC_ValueDependentIsNull)) {
12154 LiteralString = RHS;
12155 LiteralStringStripped = RHSStripped;
12156 }
12157
12158 if (LiteralString) {
12159 S.DiagRuntimeBehavior(Loc, Statement: nullptr,
12160 PD: S.PDiag(DiagID: diag::warn_stringcompare)
12161 << isa<ObjCEncodeExpr>(Val: LiteralStringStripped)
12162 << LiteralString->getSourceRange());
12163 }
12164}
12165
12166static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
12167 switch (CK) {
12168 default: {
12169#ifndef NDEBUG
12170 llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
12171 << "\n";
12172#endif
12173 llvm_unreachable("unhandled cast kind");
12174 }
12175 case CK_UserDefinedConversion:
12176 return ICK_Identity;
12177 case CK_LValueToRValue:
12178 return ICK_Lvalue_To_Rvalue;
12179 case CK_ArrayToPointerDecay:
12180 return ICK_Array_To_Pointer;
12181 case CK_FunctionToPointerDecay:
12182 return ICK_Function_To_Pointer;
12183 case CK_IntegralCast:
12184 return ICK_Integral_Conversion;
12185 case CK_FloatingCast:
12186 return ICK_Floating_Conversion;
12187 case CK_IntegralToFloating:
12188 case CK_FloatingToIntegral:
12189 return ICK_Floating_Integral;
12190 case CK_IntegralComplexCast:
12191 case CK_FloatingComplexCast:
12192 case CK_FloatingComplexToIntegralComplex:
12193 case CK_IntegralComplexToFloatingComplex:
12194 return ICK_Complex_Conversion;
12195 case CK_FloatingComplexToReal:
12196 case CK_FloatingRealToComplex:
12197 case CK_IntegralComplexToReal:
12198 case CK_IntegralRealToComplex:
12199 return ICK_Complex_Real;
12200 case CK_HLSLArrayRValue:
12201 return ICK_HLSL_Array_RValue;
12202 }
12203}
12204
12205static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
12206 QualType FromType,
12207 SourceLocation Loc) {
12208 // Check for a narrowing implicit conversion.
12209 StandardConversionSequence SCS;
12210 SCS.setAsIdentityConversion();
12211 SCS.setToType(Idx: 0, T: FromType);
12212 SCS.setToType(Idx: 1, T: ToType);
12213 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E))
12214 SCS.Second = castKindToImplicitConversionKind(CK: ICE->getCastKind());
12215
12216 APValue PreNarrowingValue;
12217 QualType PreNarrowingType;
12218 switch (SCS.getNarrowingKind(Context&: S.Context, Converted: E, ConstantValue&: PreNarrowingValue,
12219 ConstantType&: PreNarrowingType,
12220 /*IgnoreFloatToIntegralConversion*/ true)) {
12221 case NK_Dependent_Narrowing:
12222 // Implicit conversion to a narrower type, but the expression is
12223 // value-dependent so we can't tell whether it's actually narrowing.
12224 case NK_Not_Narrowing:
12225 return false;
12226
12227 case NK_Constant_Narrowing:
12228 // Implicit conversion to a narrower type, and the value is not a constant
12229 // expression.
12230 S.Diag(Loc: E->getBeginLoc(), DiagID: diag::err_spaceship_argument_narrowing)
12231 << /*Constant*/ 1
12232 << PreNarrowingValue.getAsString(Ctx: S.Context, Ty: PreNarrowingType) << ToType;
12233 return true;
12234
12235 case NK_Variable_Narrowing:
12236 // Implicit conversion to a narrower type, and the value is not a constant
12237 // expression.
12238 case NK_Type_Narrowing:
12239 S.Diag(Loc: E->getBeginLoc(), DiagID: diag::err_spaceship_argument_narrowing)
12240 << /*Constant*/ 0 << FromType << ToType;
12241 // TODO: It's not a constant expression, but what if the user intended it
12242 // to be? Can we produce notes to help them figure out why it isn't?
12243 return true;
12244 }
12245 llvm_unreachable("unhandled case in switch");
12246}
12247
12248static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
12249 ExprResult &LHS,
12250 ExprResult &RHS,
12251 SourceLocation Loc) {
12252 QualType LHSType = LHS.get()->getType();
12253 QualType RHSType = RHS.get()->getType();
12254 // Dig out the original argument type and expression before implicit casts
12255 // were applied. These are the types/expressions we need to check the
12256 // [expr.spaceship] requirements against.
12257 ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
12258 ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
12259 QualType LHSStrippedType = LHSStripped.get()->getType();
12260 QualType RHSStrippedType = RHSStripped.get()->getType();
12261
12262 // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12263 // other is not, the program is ill-formed.
12264 if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
12265 S.InvalidOperands(Loc, LHS&: LHSStripped, RHS&: RHSStripped);
12266 return QualType();
12267 }
12268
12269 // FIXME: Consider combining this with checkEnumArithmeticConversions.
12270 int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
12271 RHSStrippedType->isEnumeralType();
12272 if (NumEnumArgs == 1) {
12273 bool LHSIsEnum = LHSStrippedType->isEnumeralType();
12274 QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
12275 if (OtherTy->hasFloatingRepresentation()) {
12276 S.InvalidOperands(Loc, LHS&: LHSStripped, RHS&: RHSStripped);
12277 return QualType();
12278 }
12279 }
12280 if (NumEnumArgs == 2) {
12281 // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12282 // type E, the operator yields the result of converting the operands
12283 // to the underlying type of E and applying <=> to the converted operands.
12284 if (!S.Context.hasSameUnqualifiedType(T1: LHSStrippedType, T2: RHSStrippedType)) {
12285 S.InvalidOperands(Loc, LHS, RHS);
12286 return QualType();
12287 }
12288 QualType IntType =
12289 LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
12290 assert(IntType->isArithmeticType());
12291
12292 // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12293 // promote the boolean type, and all other promotable integer types, to
12294 // avoid this.
12295 if (S.Context.isPromotableIntegerType(T: IntType))
12296 IntType = S.Context.getPromotedIntegerType(PromotableType: IntType);
12297
12298 LHS = S.ImpCastExprToType(E: LHS.get(), Type: IntType, CK: CK_IntegralCast);
12299 RHS = S.ImpCastExprToType(E: RHS.get(), Type: IntType, CK: CK_IntegralCast);
12300 LHSType = RHSType = IntType;
12301 }
12302
12303 // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
12304 // usual arithmetic conversions are applied to the operands.
12305 QualType Type =
12306 S.UsualArithmeticConversions(LHS, RHS, Loc, ACK: ArithConvKind::Comparison);
12307 if (LHS.isInvalid() || RHS.isInvalid())
12308 return QualType();
12309 if (Type.isNull())
12310 return S.InvalidOperands(Loc, LHS, RHS);
12311
12312 std::optional<ComparisonCategoryType> CCT =
12313 getComparisonCategoryForBuiltinCmp(T: Type);
12314 if (!CCT)
12315 return S.InvalidOperands(Loc, LHS, RHS);
12316
12317 bool HasNarrowing = checkThreeWayNarrowingConversion(
12318 S, ToType: Type, E: LHS.get(), FromType: LHSType, Loc: LHS.get()->getBeginLoc());
12319 HasNarrowing |= checkThreeWayNarrowingConversion(S, ToType: Type, E: RHS.get(), FromType: RHSType,
12320 Loc: RHS.get()->getBeginLoc());
12321 if (HasNarrowing)
12322 return QualType();
12323
12324 assert(!Type.isNull() && "composite type for <=> has not been set");
12325
12326 return S.CheckComparisonCategoryType(
12327 Kind: *CCT, Loc, Usage: Sema::ComparisonCategoryUsage::OperatorInExpression);
12328}
12329
12330static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
12331 ExprResult &RHS,
12332 SourceLocation Loc,
12333 BinaryOperatorKind Opc) {
12334 if (Opc == BO_Cmp)
12335 return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
12336
12337 // C99 6.5.8p3 / C99 6.5.9p4
12338 QualType Type =
12339 S.UsualArithmeticConversions(LHS, RHS, Loc, ACK: ArithConvKind::Comparison);
12340 if (LHS.isInvalid() || RHS.isInvalid())
12341 return QualType();
12342 if (Type.isNull())
12343 return S.InvalidOperands(Loc, LHS, RHS);
12344 assert(Type->isArithmeticType() || Type->isEnumeralType());
12345
12346 if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
12347 return S.InvalidOperands(Loc, LHS, RHS);
12348
12349 // Check for comparisons of floating point operands using != and ==.
12350 if (Type->hasFloatingRepresentation())
12351 S.CheckFloatComparison(Loc, LHS: LHS.get(), RHS: RHS.get(), Opcode: Opc);
12352
12353 // The result of comparisons is 'bool' in C++, 'int' in C.
12354 return S.Context.getLogicalOperationType();
12355}
12356
12357void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
12358 if (!NullE.get()->getType()->isAnyPointerType())
12359 return;
12360 int NullValue = PP.isMacroDefined(Id: "NULL") ? 0 : 1;
12361 if (!E.get()->getType()->isAnyPointerType() &&
12362 E.get()->isNullPointerConstant(Ctx&: Context,
12363 NPC: Expr::NPC_ValueDependentIsNotNull) ==
12364 Expr::NPCK_ZeroExpression) {
12365 if (const auto *CL = dyn_cast<CharacterLiteral>(Val: E.get())) {
12366 if (CL->getValue() == 0)
12367 Diag(Loc: E.get()->getExprLoc(), DiagID: diag::warn_pointer_compare)
12368 << NullValue
12369 << FixItHint::CreateReplacement(RemoveRange: E.get()->getExprLoc(),
12370 Code: NullValue ? "NULL" : "(void *)0");
12371 } else if (const auto *CE = dyn_cast<CStyleCastExpr>(Val: E.get())) {
12372 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
12373 QualType T = Context.getCanonicalType(T: TI->getType()).getUnqualifiedType();
12374 if (T == Context.CharTy)
12375 Diag(Loc: E.get()->getExprLoc(), DiagID: diag::warn_pointer_compare)
12376 << NullValue
12377 << FixItHint::CreateReplacement(RemoveRange: E.get()->getExprLoc(),
12378 Code: NullValue ? "NULL" : "(void *)0");
12379 }
12380 }
12381}
12382
12383// C99 6.5.8, C++ [expr.rel]
12384QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
12385 SourceLocation Loc,
12386 BinaryOperatorKind Opc) {
12387 bool IsRelational = BinaryOperator::isRelationalOp(Opc);
12388 bool IsThreeWay = Opc == BO_Cmp;
12389 bool IsOrdered = IsRelational || IsThreeWay;
12390 auto IsAnyPointerType = [](ExprResult E) {
12391 QualType Ty = E.get()->getType();
12392 return Ty->isPointerType() || Ty->isMemberPointerType();
12393 };
12394
12395 // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
12396 // type, array-to-pointer, ..., conversions are performed on both operands to
12397 // bring them to their composite type.
12398 // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
12399 // any type-related checks.
12400 if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
12401 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
12402 if (LHS.isInvalid())
12403 return QualType();
12404 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
12405 if (RHS.isInvalid())
12406 return QualType();
12407 } else {
12408 LHS = DefaultLvalueConversion(E: LHS.get());
12409 if (LHS.isInvalid())
12410 return QualType();
12411 RHS = DefaultLvalueConversion(E: RHS.get());
12412 if (RHS.isInvalid())
12413 return QualType();
12414 }
12415
12416 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/true);
12417 if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
12418 CheckPtrComparisonWithNullChar(E&: LHS, NullE&: RHS);
12419 CheckPtrComparisonWithNullChar(E&: RHS, NullE&: LHS);
12420 }
12421
12422 // Handle vector comparisons separately.
12423 if (LHS.get()->getType()->isVectorType() ||
12424 RHS.get()->getType()->isVectorType())
12425 return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
12426
12427 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12428 RHS.get()->getType()->isSveVLSBuiltinType())
12429 return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
12430
12431 diagnoseLogicalNotOnLHSofCheck(S&: *this, LHS, RHS, Loc, Opc);
12432 diagnoseTautologicalComparison(S&: *this, Loc, LHS: LHS.get(), RHS: RHS.get(), Opc);
12433
12434 QualType LHSType = LHS.get()->getType();
12435 QualType RHSType = RHS.get()->getType();
12436 if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
12437 (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
12438 return checkArithmeticOrEnumeralCompare(S&: *this, LHS, RHS, Loc, Opc);
12439
12440 if ((LHSType->isPointerType() &&
12441 LHSType->getPointeeType().isWebAssemblyReferenceType()) ||
12442 (RHSType->isPointerType() &&
12443 RHSType->getPointeeType().isWebAssemblyReferenceType()))
12444 return InvalidOperands(Loc, LHS, RHS);
12445
12446 const Expr::NullPointerConstantKind LHSNullKind =
12447 LHS.get()->isNullPointerConstant(Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull);
12448 const Expr::NullPointerConstantKind RHSNullKind =
12449 RHS.get()->isNullPointerConstant(Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull);
12450 bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
12451 bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
12452
12453 auto computeResultTy = [&]() {
12454 if (Opc != BO_Cmp)
12455 return Context.getLogicalOperationType();
12456 assert(getLangOpts().CPlusPlus);
12457 assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
12458
12459 QualType CompositeTy = LHS.get()->getType();
12460 assert(!CompositeTy->isReferenceType());
12461
12462 std::optional<ComparisonCategoryType> CCT =
12463 getComparisonCategoryForBuiltinCmp(T: CompositeTy);
12464 if (!CCT)
12465 return InvalidOperands(Loc, LHS, RHS);
12466
12467 if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
12468 // P0946R0: Comparisons between a null pointer constant and an object
12469 // pointer result in std::strong_equality, which is ill-formed under
12470 // P1959R0.
12471 Diag(Loc, DiagID: diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
12472 << (LHSIsNull ? LHS.get()->getSourceRange()
12473 : RHS.get()->getSourceRange());
12474 return QualType();
12475 }
12476
12477 return CheckComparisonCategoryType(
12478 Kind: *CCT, Loc, Usage: ComparisonCategoryUsage::OperatorInExpression);
12479 };
12480
12481 if (!IsOrdered && LHSIsNull != RHSIsNull) {
12482 bool IsEquality = Opc == BO_EQ;
12483 if (RHSIsNull)
12484 DiagnoseAlwaysNonNullPointer(E: LHS.get(), NullType: RHSNullKind, IsEqual: IsEquality,
12485 Range: RHS.get()->getSourceRange());
12486 else
12487 DiagnoseAlwaysNonNullPointer(E: RHS.get(), NullType: LHSNullKind, IsEqual: IsEquality,
12488 Range: LHS.get()->getSourceRange());
12489 }
12490
12491 if (IsOrdered && LHSType->isFunctionPointerType() &&
12492 RHSType->isFunctionPointerType()) {
12493 // Valid unless a relational comparison of function pointers
12494 bool IsError = Opc == BO_Cmp;
12495 auto DiagID =
12496 IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
12497 : getLangOpts().CPlusPlus
12498 ? diag::warn_typecheck_ordered_comparison_of_function_pointers
12499 : diag::ext_typecheck_ordered_comparison_of_function_pointers;
12500 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
12501 << RHS.get()->getSourceRange();
12502 if (IsError)
12503 return QualType();
12504 }
12505
12506 if ((LHSType->isIntegerType() && !LHSIsNull) ||
12507 (RHSType->isIntegerType() && !RHSIsNull)) {
12508 // Skip normal pointer conversion checks in this case; we have better
12509 // diagnostics for this below.
12510 } else if (getLangOpts().CPlusPlus) {
12511 // Equality comparison of a function pointer to a void pointer is invalid,
12512 // but we allow it as an extension.
12513 // FIXME: If we really want to allow this, should it be part of composite
12514 // pointer type computation so it works in conditionals too?
12515 if (!IsOrdered &&
12516 ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
12517 (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
12518 // This is a gcc extension compatibility comparison.
12519 // In a SFINAE context, we treat this as a hard error to maintain
12520 // conformance with the C++ standard.
12521 diagnoseFunctionPointerToVoidComparison(
12522 S&: *this, Loc, LHS, RHS, /*isError*/ IsError: (bool)isSFINAEContext());
12523
12524 if (isSFINAEContext())
12525 return QualType();
12526
12527 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_BitCast);
12528 return computeResultTy();
12529 }
12530
12531 // C++ [expr.eq]p2:
12532 // If at least one operand is a pointer [...] bring them to their
12533 // composite pointer type.
12534 // C++ [expr.spaceship]p6
12535 // If at least one of the operands is of pointer type, [...] bring them
12536 // to their composite pointer type.
12537 // C++ [expr.rel]p2:
12538 // If both operands are pointers, [...] bring them to their composite
12539 // pointer type.
12540 // For <=>, the only valid non-pointer types are arrays and functions, and
12541 // we already decayed those, so this is really the same as the relational
12542 // comparison rule.
12543 if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
12544 (IsOrdered ? 2 : 1) &&
12545 (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
12546 RHSType->isObjCObjectPointerType()))) {
12547 if (convertPointersToCompositeType(S&: *this, Loc, LHS, RHS))
12548 return QualType();
12549 return computeResultTy();
12550 }
12551 } else if (LHSType->isPointerType() &&
12552 RHSType->isPointerType()) { // C99 6.5.8p2
12553 // All of the following pointer-related warnings are GCC extensions, except
12554 // when handling null pointer constants.
12555 QualType LCanPointeeTy =
12556 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12557 QualType RCanPointeeTy =
12558 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12559
12560 // C99 6.5.9p2 and C99 6.5.8p2
12561 if (Context.typesAreCompatible(T1: LCanPointeeTy.getUnqualifiedType(),
12562 T2: RCanPointeeTy.getUnqualifiedType())) {
12563 if (IsRelational) {
12564 // Pointers both need to point to complete or incomplete types
12565 if ((LCanPointeeTy->isIncompleteType() !=
12566 RCanPointeeTy->isIncompleteType()) &&
12567 !getLangOpts().C11) {
12568 Diag(Loc, DiagID: diag::ext_typecheck_compare_complete_incomplete_pointers)
12569 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
12570 << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
12571 << RCanPointeeTy->isIncompleteType();
12572 }
12573 }
12574 } else if (!IsRelational &&
12575 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
12576 // Valid unless comparison between non-null pointer and function pointer
12577 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
12578 && !LHSIsNull && !RHSIsNull)
12579 diagnoseFunctionPointerToVoidComparison(S&: *this, Loc, LHS, RHS,
12580 /*isError*/IsError: false);
12581 } else {
12582 // Invalid
12583 diagnoseDistinctPointerComparison(S&: *this, Loc, LHS, RHS, /*isError*/IsError: false);
12584 }
12585 if (LCanPointeeTy != RCanPointeeTy) {
12586 // Treat NULL constant as a special case in OpenCL.
12587 if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
12588 if (!LCanPointeeTy.isAddressSpaceOverlapping(T: RCanPointeeTy,
12589 Ctx: getASTContext())) {
12590 Diag(Loc,
12591 DiagID: diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
12592 << LHSType << RHSType << 0 /* comparison */
12593 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12594 }
12595 }
12596 LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
12597 LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
12598 CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
12599 : CK_BitCast;
12600
12601 const FunctionType *LFn = LCanPointeeTy->getAs<FunctionType>();
12602 const FunctionType *RFn = RCanPointeeTy->getAs<FunctionType>();
12603 bool LHSHasCFIUncheckedCallee = LFn && LFn->getCFIUncheckedCalleeAttr();
12604 bool RHSHasCFIUncheckedCallee = RFn && RFn->getCFIUncheckedCalleeAttr();
12605 bool ChangingCFIUncheckedCallee =
12606 LHSHasCFIUncheckedCallee != RHSHasCFIUncheckedCallee;
12607
12608 if (LHSIsNull && !RHSIsNull)
12609 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: Kind);
12610 else if (!ChangingCFIUncheckedCallee)
12611 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: Kind);
12612 }
12613 return computeResultTy();
12614 }
12615
12616
12617 // C++ [expr.eq]p4:
12618 // Two operands of type std::nullptr_t or one operand of type
12619 // std::nullptr_t and the other a null pointer constant compare
12620 // equal.
12621 // C23 6.5.9p5:
12622 // If both operands have type nullptr_t or one operand has type nullptr_t
12623 // and the other is a null pointer constant, they compare equal if the
12624 // former is a null pointer.
12625 if (!IsOrdered && LHSIsNull && RHSIsNull) {
12626 if (LHSType->isNullPtrType()) {
12627 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12628 return computeResultTy();
12629 }
12630 if (RHSType->isNullPtrType()) {
12631 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12632 return computeResultTy();
12633 }
12634 }
12635
12636 if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) {
12637 // C23 6.5.9p6:
12638 // Otherwise, at least one operand is a pointer. If one is a pointer and
12639 // the other is a null pointer constant or has type nullptr_t, they
12640 // compare equal
12641 if (LHSIsNull && RHSType->isPointerType()) {
12642 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12643 return computeResultTy();
12644 }
12645 if (RHSIsNull && LHSType->isPointerType()) {
12646 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12647 return computeResultTy();
12648 }
12649 }
12650
12651 // Comparison of Objective-C pointers and block pointers against nullptr_t.
12652 // These aren't covered by the composite pointer type rules.
12653 if (!IsOrdered && RHSType->isNullPtrType() &&
12654 (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
12655 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12656 return computeResultTy();
12657 }
12658 if (!IsOrdered && LHSType->isNullPtrType() &&
12659 (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
12660 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12661 return computeResultTy();
12662 }
12663
12664 if (getLangOpts().CPlusPlus) {
12665 if (IsRelational &&
12666 ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
12667 (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
12668 // HACK: Relational comparison of nullptr_t against a pointer type is
12669 // invalid per DR583, but we allow it within std::less<> and friends,
12670 // since otherwise common uses of it break.
12671 // FIXME: Consider removing this hack once LWG fixes std::less<> and
12672 // friends to have std::nullptr_t overload candidates.
12673 DeclContext *DC = CurContext;
12674 if (isa<FunctionDecl>(Val: DC))
12675 DC = DC->getParent();
12676 if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: DC)) {
12677 if (CTSD->isInStdNamespace() &&
12678 llvm::StringSwitch<bool>(CTSD->getName())
12679 .Cases(S0: "less", S1: "less_equal", S2: "greater", S3: "greater_equal", Value: true)
12680 .Default(Value: false)) {
12681 if (RHSType->isNullPtrType())
12682 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12683 else
12684 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12685 return computeResultTy();
12686 }
12687 }
12688 }
12689
12690 // C++ [expr.eq]p2:
12691 // If at least one operand is a pointer to member, [...] bring them to
12692 // their composite pointer type.
12693 if (!IsOrdered &&
12694 (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
12695 if (convertPointersToCompositeType(S&: *this, Loc, LHS, RHS))
12696 return QualType();
12697 else
12698 return computeResultTy();
12699 }
12700 }
12701
12702 // Handle block pointer types.
12703 if (!IsOrdered && LHSType->isBlockPointerType() &&
12704 RHSType->isBlockPointerType()) {
12705 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
12706 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
12707
12708 if (!LHSIsNull && !RHSIsNull &&
12709 !Context.typesAreCompatible(T1: lpointee, T2: rpointee)) {
12710 Diag(Loc, DiagID: diag::err_typecheck_comparison_of_distinct_blocks)
12711 << LHSType << RHSType << LHS.get()->getSourceRange()
12712 << RHS.get()->getSourceRange();
12713 }
12714 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_BitCast);
12715 return computeResultTy();
12716 }
12717
12718 // Allow block pointers to be compared with null pointer constants.
12719 if (!IsOrdered
12720 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
12721 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
12722 if (!LHSIsNull && !RHSIsNull) {
12723 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
12724 ->getPointeeType()->isVoidType())
12725 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
12726 ->getPointeeType()->isVoidType())))
12727 Diag(Loc, DiagID: diag::err_typecheck_comparison_of_distinct_blocks)
12728 << LHSType << RHSType << LHS.get()->getSourceRange()
12729 << RHS.get()->getSourceRange();
12730 }
12731 if (LHSIsNull && !RHSIsNull)
12732 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType,
12733 CK: RHSType->isPointerType() ? CK_BitCast
12734 : CK_AnyPointerToBlockPointerCast);
12735 else
12736 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType,
12737 CK: LHSType->isPointerType() ? CK_BitCast
12738 : CK_AnyPointerToBlockPointerCast);
12739 return computeResultTy();
12740 }
12741
12742 if (LHSType->isObjCObjectPointerType() ||
12743 RHSType->isObjCObjectPointerType()) {
12744 const PointerType *LPT = LHSType->getAs<PointerType>();
12745 const PointerType *RPT = RHSType->getAs<PointerType>();
12746 if (LPT || RPT) {
12747 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
12748 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
12749
12750 if (!LPtrToVoid && !RPtrToVoid &&
12751 !Context.typesAreCompatible(T1: LHSType, T2: RHSType)) {
12752 diagnoseDistinctPointerComparison(S&: *this, Loc, LHS, RHS,
12753 /*isError*/IsError: false);
12754 }
12755 // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
12756 // the RHS, but we have test coverage for this behavior.
12757 // FIXME: Consider using convertPointersToCompositeType in C++.
12758 if (LHSIsNull && !RHSIsNull) {
12759 Expr *E = LHS.get();
12760 if (getLangOpts().ObjCAutoRefCount)
12761 ObjC().CheckObjCConversion(castRange: SourceRange(), castType: RHSType, op&: E,
12762 CCK: CheckedConversionKind::Implicit);
12763 LHS = ImpCastExprToType(E, Type: RHSType,
12764 CK: RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12765 }
12766 else {
12767 Expr *E = RHS.get();
12768 if (getLangOpts().ObjCAutoRefCount)
12769 ObjC().CheckObjCConversion(castRange: SourceRange(), castType: LHSType, op&: E,
12770 CCK: CheckedConversionKind::Implicit,
12771 /*Diagnose=*/true,
12772 /*DiagnoseCFAudited=*/false, Opc);
12773 RHS = ImpCastExprToType(E, Type: LHSType,
12774 CK: LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12775 }
12776 return computeResultTy();
12777 }
12778 if (LHSType->isObjCObjectPointerType() &&
12779 RHSType->isObjCObjectPointerType()) {
12780 if (!Context.areComparableObjCPointerTypes(LHS: LHSType, RHS: RHSType))
12781 diagnoseDistinctPointerComparison(S&: *this, Loc, LHS, RHS,
12782 /*isError*/IsError: false);
12783 if (isObjCObjectLiteral(E&: LHS) || isObjCObjectLiteral(E&: RHS))
12784 diagnoseObjCLiteralComparison(S&: *this, Loc, LHS, RHS, Opc);
12785
12786 if (LHSIsNull && !RHSIsNull)
12787 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_BitCast);
12788 else
12789 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_BitCast);
12790 return computeResultTy();
12791 }
12792
12793 if (!IsOrdered && LHSType->isBlockPointerType() &&
12794 RHSType->isBlockCompatibleObjCPointerType(ctx&: Context)) {
12795 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType,
12796 CK: CK_BlockPointerToObjCPointerCast);
12797 return computeResultTy();
12798 } else if (!IsOrdered &&
12799 LHSType->isBlockCompatibleObjCPointerType(ctx&: Context) &&
12800 RHSType->isBlockPointerType()) {
12801 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType,
12802 CK: CK_BlockPointerToObjCPointerCast);
12803 return computeResultTy();
12804 }
12805 }
12806 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
12807 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
12808 unsigned DiagID = 0;
12809 bool isError = false;
12810 if (LangOpts.DebuggerSupport) {
12811 // Under a debugger, allow the comparison of pointers to integers,
12812 // since users tend to want to compare addresses.
12813 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
12814 (RHSIsNull && RHSType->isIntegerType())) {
12815 if (IsOrdered) {
12816 isError = getLangOpts().CPlusPlus;
12817 DiagID =
12818 isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
12819 : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
12820 }
12821 } else if (getLangOpts().CPlusPlus) {
12822 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
12823 isError = true;
12824 } else if (IsOrdered)
12825 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
12826 else
12827 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
12828
12829 if (DiagID) {
12830 Diag(Loc, DiagID)
12831 << LHSType << RHSType << LHS.get()->getSourceRange()
12832 << RHS.get()->getSourceRange();
12833 if (isError)
12834 return QualType();
12835 }
12836
12837 if (LHSType->isIntegerType())
12838 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType,
12839 CK: LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12840 else
12841 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType,
12842 CK: RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12843 return computeResultTy();
12844 }
12845
12846 // Handle block pointers.
12847 if (!IsOrdered && RHSIsNull
12848 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
12849 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12850 return computeResultTy();
12851 }
12852 if (!IsOrdered && LHSIsNull
12853 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
12854 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12855 return computeResultTy();
12856 }
12857
12858 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
12859 if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
12860 return computeResultTy();
12861 }
12862
12863 if (LHSType->isQueueT() && RHSType->isQueueT()) {
12864 return computeResultTy();
12865 }
12866
12867 if (LHSIsNull && RHSType->isQueueT()) {
12868 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12869 return computeResultTy();
12870 }
12871
12872 if (LHSType->isQueueT() && RHSIsNull) {
12873 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12874 return computeResultTy();
12875 }
12876 }
12877
12878 return InvalidOperands(Loc, LHS, RHS);
12879}
12880
12881QualType Sema::GetSignedVectorType(QualType V) {
12882 const VectorType *VTy = V->castAs<VectorType>();
12883 unsigned TypeSize = Context.getTypeSize(T: VTy->getElementType());
12884
12885 if (isa<ExtVectorType>(Val: VTy)) {
12886 if (VTy->isExtVectorBoolType())
12887 return Context.getExtVectorType(VectorType: Context.BoolTy, NumElts: VTy->getNumElements());
12888 if (TypeSize == Context.getTypeSize(T: Context.CharTy))
12889 return Context.getExtVectorType(VectorType: Context.CharTy, NumElts: VTy->getNumElements());
12890 if (TypeSize == Context.getTypeSize(T: Context.ShortTy))
12891 return Context.getExtVectorType(VectorType: Context.ShortTy, NumElts: VTy->getNumElements());
12892 if (TypeSize == Context.getTypeSize(T: Context.IntTy))
12893 return Context.getExtVectorType(VectorType: Context.IntTy, NumElts: VTy->getNumElements());
12894 if (TypeSize == Context.getTypeSize(T: Context.Int128Ty))
12895 return Context.getExtVectorType(VectorType: Context.Int128Ty, NumElts: VTy->getNumElements());
12896 if (TypeSize == Context.getTypeSize(T: Context.LongTy))
12897 return Context.getExtVectorType(VectorType: Context.LongTy, NumElts: VTy->getNumElements());
12898 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
12899 "Unhandled vector element size in vector compare");
12900 return Context.getExtVectorType(VectorType: Context.LongLongTy, NumElts: VTy->getNumElements());
12901 }
12902
12903 if (TypeSize == Context.getTypeSize(T: Context.Int128Ty))
12904 return Context.getVectorType(VectorType: Context.Int128Ty, NumElts: VTy->getNumElements(),
12905 VecKind: VectorKind::Generic);
12906 if (TypeSize == Context.getTypeSize(T: Context.LongLongTy))
12907 return Context.getVectorType(VectorType: Context.LongLongTy, NumElts: VTy->getNumElements(),
12908 VecKind: VectorKind::Generic);
12909 if (TypeSize == Context.getTypeSize(T: Context.LongTy))
12910 return Context.getVectorType(VectorType: Context.LongTy, NumElts: VTy->getNumElements(),
12911 VecKind: VectorKind::Generic);
12912 if (TypeSize == Context.getTypeSize(T: Context.IntTy))
12913 return Context.getVectorType(VectorType: Context.IntTy, NumElts: VTy->getNumElements(),
12914 VecKind: VectorKind::Generic);
12915 if (TypeSize == Context.getTypeSize(T: Context.ShortTy))
12916 return Context.getVectorType(VectorType: Context.ShortTy, NumElts: VTy->getNumElements(),
12917 VecKind: VectorKind::Generic);
12918 assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
12919 "Unhandled vector element size in vector compare");
12920 return Context.getVectorType(VectorType: Context.CharTy, NumElts: VTy->getNumElements(),
12921 VecKind: VectorKind::Generic);
12922}
12923
12924QualType Sema::GetSignedSizelessVectorType(QualType V) {
12925 const BuiltinType *VTy = V->castAs<BuiltinType>();
12926 assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
12927
12928 const QualType ETy = V->getSveEltType(Ctx: Context);
12929 const auto TypeSize = Context.getTypeSize(T: ETy);
12930
12931 const QualType IntTy = Context.getIntTypeForBitwidth(DestWidth: TypeSize, Signed: true);
12932 const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VecTy: VTy).EC;
12933 return Context.getScalableVectorType(EltTy: IntTy, NumElts: VecSize.getKnownMinValue());
12934}
12935
12936QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
12937 SourceLocation Loc,
12938 BinaryOperatorKind Opc) {
12939 if (Opc == BO_Cmp) {
12940 Diag(Loc, DiagID: diag::err_three_way_vector_comparison);
12941 return QualType();
12942 }
12943
12944 // Check to make sure we're operating on vectors of the same type and width,
12945 // Allowing one side to be a scalar of element type.
12946 QualType vType =
12947 CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ IsCompAssign: false,
12948 /*AllowBothBool*/ true,
12949 /*AllowBoolConversions*/ getLangOpts().ZVector,
12950 /*AllowBooleanOperation*/ AllowBoolOperation: true,
12951 /*ReportInvalid*/ true);
12952 if (vType.isNull())
12953 return vType;
12954
12955 QualType LHSType = LHS.get()->getType();
12956
12957 // Determine the return type of a vector compare. By default clang will return
12958 // a scalar for all vector compares except vector bool and vector pixel.
12959 // With the gcc compiler we will always return a vector type and with the xl
12960 // compiler we will always return a scalar type. This switch allows choosing
12961 // which behavior is prefered.
12962 if (getLangOpts().AltiVec) {
12963 switch (getLangOpts().getAltivecSrcCompat()) {
12964 case LangOptions::AltivecSrcCompatKind::Mixed:
12965 // If AltiVec, the comparison results in a numeric type, i.e.
12966 // bool for C++, int for C
12967 if (vType->castAs<VectorType>()->getVectorKind() ==
12968 VectorKind::AltiVecVector)
12969 return Context.getLogicalOperationType();
12970 else
12971 Diag(Loc, DiagID: diag::warn_deprecated_altivec_src_compat);
12972 break;
12973 case LangOptions::AltivecSrcCompatKind::GCC:
12974 // For GCC we always return the vector type.
12975 break;
12976 case LangOptions::AltivecSrcCompatKind::XL:
12977 return Context.getLogicalOperationType();
12978 break;
12979 }
12980 }
12981
12982 // For non-floating point types, check for self-comparisons of the form
12983 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12984 // often indicate logic errors in the program.
12985 diagnoseTautologicalComparison(S&: *this, Loc, LHS: LHS.get(), RHS: RHS.get(), Opc);
12986
12987 // Check for comparisons of floating point operands using != and ==.
12988 if (LHSType->hasFloatingRepresentation()) {
12989 assert(RHS.get()->getType()->hasFloatingRepresentation());
12990 CheckFloatComparison(Loc, LHS: LHS.get(), RHS: RHS.get(), Opcode: Opc);
12991 }
12992
12993 // Return a signed type for the vector.
12994 return GetSignedVectorType(V: vType);
12995}
12996
12997QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
12998 ExprResult &RHS,
12999 SourceLocation Loc,
13000 BinaryOperatorKind Opc) {
13001 if (Opc == BO_Cmp) {
13002 Diag(Loc, DiagID: diag::err_three_way_vector_comparison);
13003 return QualType();
13004 }
13005
13006 // Check to make sure we're operating on vectors of the same type and width,
13007 // Allowing one side to be a scalar of element type.
13008 QualType vType = CheckSizelessVectorOperands(
13009 LHS, RHS, Loc, /*isCompAssign*/ IsCompAssign: false, OperationKind: ArithConvKind::Comparison);
13010
13011 if (vType.isNull())
13012 return vType;
13013
13014 QualType LHSType = LHS.get()->getType();
13015
13016 // For non-floating point types, check for self-comparisons of the form
13017 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
13018 // often indicate logic errors in the program.
13019 diagnoseTautologicalComparison(S&: *this, Loc, LHS: LHS.get(), RHS: RHS.get(), Opc);
13020
13021 // Check for comparisons of floating point operands using != and ==.
13022 if (LHSType->hasFloatingRepresentation()) {
13023 assert(RHS.get()->getType()->hasFloatingRepresentation());
13024 CheckFloatComparison(Loc, LHS: LHS.get(), RHS: RHS.get(), Opcode: Opc);
13025 }
13026
13027 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
13028 const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
13029
13030 if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
13031 RHSBuiltinTy->isSVEBool())
13032 return LHSType;
13033
13034 // Return a signed type for the vector.
13035 return GetSignedSizelessVectorType(V: vType);
13036}
13037
13038static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
13039 const ExprResult &XorRHS,
13040 const SourceLocation Loc) {
13041 // Do not diagnose macros.
13042 if (Loc.isMacroID())
13043 return;
13044
13045 // Do not diagnose if both LHS and RHS are macros.
13046 if (XorLHS.get()->getExprLoc().isMacroID() &&
13047 XorRHS.get()->getExprLoc().isMacroID())
13048 return;
13049
13050 bool Negative = false;
13051 bool ExplicitPlus = false;
13052 const auto *LHSInt = dyn_cast<IntegerLiteral>(Val: XorLHS.get());
13053 const auto *RHSInt = dyn_cast<IntegerLiteral>(Val: XorRHS.get());
13054
13055 if (!LHSInt)
13056 return;
13057 if (!RHSInt) {
13058 // Check negative literals.
13059 if (const auto *UO = dyn_cast<UnaryOperator>(Val: XorRHS.get())) {
13060 UnaryOperatorKind Opc = UO->getOpcode();
13061 if (Opc != UO_Minus && Opc != UO_Plus)
13062 return;
13063 RHSInt = dyn_cast<IntegerLiteral>(Val: UO->getSubExpr());
13064 if (!RHSInt)
13065 return;
13066 Negative = (Opc == UO_Minus);
13067 ExplicitPlus = !Negative;
13068 } else {
13069 return;
13070 }
13071 }
13072
13073 const llvm::APInt &LeftSideValue = LHSInt->getValue();
13074 llvm::APInt RightSideValue = RHSInt->getValue();
13075 if (LeftSideValue != 2 && LeftSideValue != 10)
13076 return;
13077
13078 if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
13079 return;
13080
13081 CharSourceRange ExprRange = CharSourceRange::getCharRange(
13082 B: LHSInt->getBeginLoc(), E: S.getLocForEndOfToken(Loc: RHSInt->getLocation()));
13083 llvm::StringRef ExprStr =
13084 Lexer::getSourceText(Range: ExprRange, SM: S.getSourceManager(), LangOpts: S.getLangOpts());
13085
13086 CharSourceRange XorRange =
13087 CharSourceRange::getCharRange(B: Loc, E: S.getLocForEndOfToken(Loc));
13088 llvm::StringRef XorStr =
13089 Lexer::getSourceText(Range: XorRange, SM: S.getSourceManager(), LangOpts: S.getLangOpts());
13090 // Do not diagnose if xor keyword/macro is used.
13091 if (XorStr == "xor")
13092 return;
13093
13094 std::string LHSStr = std::string(Lexer::getSourceText(
13095 Range: CharSourceRange::getTokenRange(R: LHSInt->getSourceRange()),
13096 SM: S.getSourceManager(), LangOpts: S.getLangOpts()));
13097 std::string RHSStr = std::string(Lexer::getSourceText(
13098 Range: CharSourceRange::getTokenRange(R: RHSInt->getSourceRange()),
13099 SM: S.getSourceManager(), LangOpts: S.getLangOpts()));
13100
13101 if (Negative) {
13102 RightSideValue = -RightSideValue;
13103 RHSStr = "-" + RHSStr;
13104 } else if (ExplicitPlus) {
13105 RHSStr = "+" + RHSStr;
13106 }
13107
13108 StringRef LHSStrRef = LHSStr;
13109 StringRef RHSStrRef = RHSStr;
13110 // Do not diagnose literals with digit separators, binary, hexadecimal, octal
13111 // literals.
13112 if (LHSStrRef.starts_with(Prefix: "0b") || LHSStrRef.starts_with(Prefix: "0B") ||
13113 RHSStrRef.starts_with(Prefix: "0b") || RHSStrRef.starts_with(Prefix: "0B") ||
13114 LHSStrRef.starts_with(Prefix: "0x") || LHSStrRef.starts_with(Prefix: "0X") ||
13115 RHSStrRef.starts_with(Prefix: "0x") || RHSStrRef.starts_with(Prefix: "0X") ||
13116 (LHSStrRef.size() > 1 && LHSStrRef.starts_with(Prefix: "0")) ||
13117 (RHSStrRef.size() > 1 && RHSStrRef.starts_with(Prefix: "0")) ||
13118 LHSStrRef.contains(C: '\'') || RHSStrRef.contains(C: '\''))
13119 return;
13120
13121 bool SuggestXor =
13122 S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined(Id: "xor");
13123 const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
13124 int64_t RightSideIntValue = RightSideValue.getSExtValue();
13125 if (LeftSideValue == 2 && RightSideIntValue >= 0) {
13126 std::string SuggestedExpr = "1 << " + RHSStr;
13127 bool Overflow = false;
13128 llvm::APInt One = (LeftSideValue - 1);
13129 llvm::APInt PowValue = One.sshl_ov(Amt: RightSideValue, Overflow);
13130 if (Overflow) {
13131 if (RightSideIntValue < 64)
13132 S.Diag(Loc, DiagID: diag::warn_xor_used_as_pow_base)
13133 << ExprStr << toString(I: XorValue, Radix: 10, Signed: true) << ("1LL << " + RHSStr)
13134 << FixItHint::CreateReplacement(RemoveRange: ExprRange, Code: "1LL << " + RHSStr);
13135 else if (RightSideIntValue == 64)
13136 S.Diag(Loc, DiagID: diag::warn_xor_used_as_pow)
13137 << ExprStr << toString(I: XorValue, Radix: 10, Signed: true);
13138 else
13139 return;
13140 } else {
13141 S.Diag(Loc, DiagID: diag::warn_xor_used_as_pow_base_extra)
13142 << ExprStr << toString(I: XorValue, Radix: 10, Signed: true) << SuggestedExpr
13143 << toString(I: PowValue, Radix: 10, Signed: true)
13144 << FixItHint::CreateReplacement(
13145 RemoveRange: ExprRange, Code: (RightSideIntValue == 0) ? "1" : SuggestedExpr);
13146 }
13147
13148 S.Diag(Loc, DiagID: diag::note_xor_used_as_pow_silence)
13149 << ("0x2 ^ " + RHSStr) << SuggestXor;
13150 } else if (LeftSideValue == 10) {
13151 std::string SuggestedValue = "1e" + std::to_string(val: RightSideIntValue);
13152 S.Diag(Loc, DiagID: diag::warn_xor_used_as_pow_base)
13153 << ExprStr << toString(I: XorValue, Radix: 10, Signed: true) << SuggestedValue
13154 << FixItHint::CreateReplacement(RemoveRange: ExprRange, Code: SuggestedValue);
13155 S.Diag(Loc, DiagID: diag::note_xor_used_as_pow_silence)
13156 << ("0xA ^ " + RHSStr) << SuggestXor;
13157 }
13158}
13159
13160QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13161 SourceLocation Loc,
13162 BinaryOperatorKind Opc) {
13163 // Ensure that either both operands are of the same vector type, or
13164 // one operand is of a vector type and the other is of its element type.
13165 QualType vType = CheckVectorOperands(LHS, RHS, Loc, IsCompAssign: false,
13166 /*AllowBothBool*/ true,
13167 /*AllowBoolConversions*/ false,
13168 /*AllowBooleanOperation*/ AllowBoolOperation: false,
13169 /*ReportInvalid*/ false);
13170 if (vType.isNull())
13171 return InvalidOperands(Loc, LHS, RHS);
13172 if (getLangOpts().OpenCL &&
13173 getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13174 vType->hasFloatingRepresentation())
13175 return InvalidOperands(Loc, LHS, RHS);
13176 // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13177 // usage of the logical operators && and || with vectors in C. This
13178 // check could be notionally dropped.
13179 if (!getLangOpts().CPlusPlus &&
13180 !(isa<ExtVectorType>(Val: vType->getAs<VectorType>())))
13181 return InvalidLogicalVectorOperands(Loc, LHS, RHS);
13182 // Beginning with HLSL 2021, HLSL disallows logical operators on vector
13183 // operands and instead requires the use of the `and`, `or`, `any`, `all`, and
13184 // `select` functions.
13185 if (getLangOpts().HLSL &&
13186 getLangOpts().getHLSLVersion() >= LangOptionsBase::HLSL_2021) {
13187 (void)InvalidOperands(Loc, LHS, RHS);
13188 HLSL().emitLogicalOperatorFixIt(LHS: LHS.get(), RHS: RHS.get(), Opc);
13189 return QualType();
13190 }
13191
13192 return GetSignedVectorType(V: LHS.get()->getType());
13193}
13194
13195QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
13196 SourceLocation Loc,
13197 bool IsCompAssign) {
13198 if (!IsCompAssign) {
13199 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
13200 if (LHS.isInvalid())
13201 return QualType();
13202 }
13203 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
13204 if (RHS.isInvalid())
13205 return QualType();
13206
13207 // For conversion purposes, we ignore any qualifiers.
13208 // For example, "const float" and "float" are equivalent.
13209 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
13210 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
13211
13212 const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
13213 const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
13214 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13215
13216 if (Context.hasSameType(T1: LHSType, T2: RHSType))
13217 return Context.getCommonSugaredType(X: LHSType, Y: RHSType);
13218
13219 // Type conversion may change LHS/RHS. Keep copies to the original results, in
13220 // case we have to return InvalidOperands.
13221 ExprResult OriginalLHS = LHS;
13222 ExprResult OriginalRHS = RHS;
13223 if (LHSMatType && !RHSMatType) {
13224 RHS = tryConvertExprToType(E: RHS.get(), Ty: LHSMatType->getElementType());
13225 if (!RHS.isInvalid())
13226 return LHSType;
13227
13228 return InvalidOperands(Loc, LHS&: OriginalLHS, RHS&: OriginalRHS);
13229 }
13230
13231 if (!LHSMatType && RHSMatType) {
13232 LHS = tryConvertExprToType(E: LHS.get(), Ty: RHSMatType->getElementType());
13233 if (!LHS.isInvalid())
13234 return RHSType;
13235 return InvalidOperands(Loc, LHS&: OriginalLHS, RHS&: OriginalRHS);
13236 }
13237
13238 return InvalidOperands(Loc, LHS, RHS);
13239}
13240
13241QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
13242 SourceLocation Loc,
13243 bool IsCompAssign) {
13244 if (!IsCompAssign) {
13245 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
13246 if (LHS.isInvalid())
13247 return QualType();
13248 }
13249 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
13250 if (RHS.isInvalid())
13251 return QualType();
13252
13253 auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
13254 auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
13255 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13256
13257 if (LHSMatType && RHSMatType) {
13258 if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
13259 return InvalidOperands(Loc, LHS, RHS);
13260
13261 if (Context.hasSameType(T1: LHSMatType, T2: RHSMatType))
13262 return Context.getCommonSugaredType(
13263 X: LHS.get()->getType().getUnqualifiedType(),
13264 Y: RHS.get()->getType().getUnqualifiedType());
13265
13266 QualType LHSELTy = LHSMatType->getElementType(),
13267 RHSELTy = RHSMatType->getElementType();
13268 if (!Context.hasSameType(T1: LHSELTy, T2: RHSELTy))
13269 return InvalidOperands(Loc, LHS, RHS);
13270
13271 return Context.getConstantMatrixType(
13272 ElementType: Context.getCommonSugaredType(X: LHSELTy, Y: RHSELTy),
13273 NumRows: LHSMatType->getNumRows(), NumColumns: RHSMatType->getNumColumns());
13274 }
13275 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
13276}
13277
13278static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
13279 switch (Opc) {
13280 default:
13281 return false;
13282 case BO_And:
13283 case BO_AndAssign:
13284 case BO_Or:
13285 case BO_OrAssign:
13286 case BO_Xor:
13287 case BO_XorAssign:
13288 return true;
13289 }
13290}
13291
13292inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
13293 SourceLocation Loc,
13294 BinaryOperatorKind Opc) {
13295 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
13296
13297 bool IsCompAssign =
13298 Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
13299
13300 bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
13301
13302 if (LHS.get()->getType()->isVectorType() ||
13303 RHS.get()->getType()->isVectorType()) {
13304 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13305 RHS.get()->getType()->hasIntegerRepresentation())
13306 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
13307 /*AllowBothBool*/ true,
13308 /*AllowBoolConversions*/ getLangOpts().ZVector,
13309 /*AllowBooleanOperation*/ AllowBoolOperation: LegalBoolVecOperator,
13310 /*ReportInvalid*/ true);
13311 return InvalidOperands(Loc, LHS, RHS);
13312 }
13313
13314 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13315 RHS.get()->getType()->isSveVLSBuiltinType()) {
13316 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13317 RHS.get()->getType()->hasIntegerRepresentation())
13318 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13319 OperationKind: ArithConvKind::BitwiseOp);
13320 return InvalidOperands(Loc, LHS, RHS);
13321 }
13322
13323 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13324 RHS.get()->getType()->isSveVLSBuiltinType()) {
13325 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13326 RHS.get()->getType()->hasIntegerRepresentation())
13327 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13328 OperationKind: ArithConvKind::BitwiseOp);
13329 return InvalidOperands(Loc, LHS, RHS);
13330 }
13331
13332 if (Opc == BO_And)
13333 diagnoseLogicalNotOnLHSofCheck(S&: *this, LHS, RHS, Loc, Opc);
13334
13335 if (LHS.get()->getType()->hasFloatingRepresentation() ||
13336 RHS.get()->getType()->hasFloatingRepresentation())
13337 return InvalidOperands(Loc, LHS, RHS);
13338
13339 ExprResult LHSResult = LHS, RHSResult = RHS;
13340 QualType compType = UsualArithmeticConversions(
13341 LHS&: LHSResult, RHS&: RHSResult, Loc,
13342 ACK: IsCompAssign ? ArithConvKind::CompAssign : ArithConvKind::BitwiseOp);
13343 if (LHSResult.isInvalid() || RHSResult.isInvalid())
13344 return QualType();
13345 LHS = LHSResult.get();
13346 RHS = RHSResult.get();
13347
13348 if (Opc == BO_Xor)
13349 diagnoseXorMisusedAsPow(S&: *this, XorLHS: LHS, XorRHS: RHS, Loc);
13350
13351 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
13352 return compType;
13353 return InvalidOperands(Loc, LHS, RHS);
13354}
13355
13356// C99 6.5.[13,14]
13357inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13358 SourceLocation Loc,
13359 BinaryOperatorKind Opc) {
13360 // Check vector operands differently.
13361 if (LHS.get()->getType()->isVectorType() ||
13362 RHS.get()->getType()->isVectorType())
13363 return CheckVectorLogicalOperands(LHS, RHS, Loc, Opc);
13364
13365 bool EnumConstantInBoolContext = false;
13366 for (const ExprResult &HS : {LHS, RHS}) {
13367 if (const auto *DREHS = dyn_cast<DeclRefExpr>(Val: HS.get())) {
13368 const auto *ECDHS = dyn_cast<EnumConstantDecl>(Val: DREHS->getDecl());
13369 if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
13370 EnumConstantInBoolContext = true;
13371 }
13372 }
13373
13374 if (EnumConstantInBoolContext)
13375 Diag(Loc, DiagID: diag::warn_enum_constant_in_bool_context);
13376
13377 // WebAssembly tables can't be used with logical operators.
13378 QualType LHSTy = LHS.get()->getType();
13379 QualType RHSTy = RHS.get()->getType();
13380 const auto *LHSATy = dyn_cast<ArrayType>(Val&: LHSTy);
13381 const auto *RHSATy = dyn_cast<ArrayType>(Val&: RHSTy);
13382 if ((LHSATy && LHSATy->getElementType().isWebAssemblyReferenceType()) ||
13383 (RHSATy && RHSATy->getElementType().isWebAssemblyReferenceType())) {
13384 return InvalidOperands(Loc, LHS, RHS);
13385 }
13386
13387 // Diagnose cases where the user write a logical and/or but probably meant a
13388 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
13389 // is a constant.
13390 if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
13391 !LHS.get()->getType()->isBooleanType() &&
13392 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
13393 // Don't warn in macros or template instantiations.
13394 !Loc.isMacroID() && !inTemplateInstantiation()) {
13395 // If the RHS can be constant folded, and if it constant folds to something
13396 // that isn't 0 or 1 (which indicate a potential logical operation that
13397 // happened to fold to true/false) then warn.
13398 // Parens on the RHS are ignored.
13399 Expr::EvalResult EVResult;
13400 if (RHS.get()->EvaluateAsInt(Result&: EVResult, Ctx: Context)) {
13401 llvm::APSInt Result = EVResult.Val.getInt();
13402 if ((getLangOpts().CPlusPlus && !RHS.get()->getType()->isBooleanType() &&
13403 !RHS.get()->getExprLoc().isMacroID()) ||
13404 (Result != 0 && Result != 1)) {
13405 Diag(Loc, DiagID: diag::warn_logical_instead_of_bitwise)
13406 << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
13407 // Suggest replacing the logical operator with the bitwise version
13408 Diag(Loc, DiagID: diag::note_logical_instead_of_bitwise_change_operator)
13409 << (Opc == BO_LAnd ? "&" : "|")
13410 << FixItHint::CreateReplacement(
13411 RemoveRange: SourceRange(Loc, getLocForEndOfToken(Loc)),
13412 Code: Opc == BO_LAnd ? "&" : "|");
13413 if (Opc == BO_LAnd)
13414 // Suggest replacing "Foo() && kNonZero" with "Foo()"
13415 Diag(Loc, DiagID: diag::note_logical_instead_of_bitwise_remove_constant)
13416 << FixItHint::CreateRemoval(
13417 RemoveRange: SourceRange(getLocForEndOfToken(Loc: LHS.get()->getEndLoc()),
13418 RHS.get()->getEndLoc()));
13419 }
13420 }
13421 }
13422
13423 if (!Context.getLangOpts().CPlusPlus) {
13424 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
13425 // not operate on the built-in scalar and vector float types.
13426 if (Context.getLangOpts().OpenCL &&
13427 Context.getLangOpts().OpenCLVersion < 120) {
13428 if (LHS.get()->getType()->isFloatingType() ||
13429 RHS.get()->getType()->isFloatingType())
13430 return InvalidOperands(Loc, LHS, RHS);
13431 }
13432
13433 LHS = UsualUnaryConversions(E: LHS.get());
13434 if (LHS.isInvalid())
13435 return QualType();
13436
13437 RHS = UsualUnaryConversions(E: RHS.get());
13438 if (RHS.isInvalid())
13439 return QualType();
13440
13441 if (!LHS.get()->getType()->isScalarType() ||
13442 !RHS.get()->getType()->isScalarType())
13443 return InvalidOperands(Loc, LHS, RHS);
13444
13445 return Context.IntTy;
13446 }
13447
13448 // The following is safe because we only use this method for
13449 // non-overloadable operands.
13450
13451 // C++ [expr.log.and]p1
13452 // C++ [expr.log.or]p1
13453 // The operands are both contextually converted to type bool.
13454 ExprResult LHSRes = PerformContextuallyConvertToBool(From: LHS.get());
13455 if (LHSRes.isInvalid())
13456 return InvalidOperands(Loc, LHS, RHS);
13457 LHS = LHSRes;
13458
13459 ExprResult RHSRes = PerformContextuallyConvertToBool(From: RHS.get());
13460 if (RHSRes.isInvalid())
13461 return InvalidOperands(Loc, LHS, RHS);
13462 RHS = RHSRes;
13463
13464 // C++ [expr.log.and]p2
13465 // C++ [expr.log.or]p2
13466 // The result is a bool.
13467 return Context.BoolTy;
13468}
13469
13470static bool IsReadonlyMessage(Expr *E, Sema &S) {
13471 const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E);
13472 if (!ME) return false;
13473 if (!isa<FieldDecl>(Val: ME->getMemberDecl())) return false;
13474 ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
13475 Val: ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
13476 if (!Base) return false;
13477 return Base->getMethodDecl() != nullptr;
13478}
13479
13480/// Is the given expression (which must be 'const') a reference to a
13481/// variable which was originally non-const, but which has become
13482/// 'const' due to being captured within a block?
13483enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
13484static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
13485 assert(E->isLValue() && E->getType().isConstQualified());
13486 E = E->IgnoreParens();
13487
13488 // Must be a reference to a declaration from an enclosing scope.
13489 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E);
13490 if (!DRE) return NCCK_None;
13491 if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
13492
13493 ValueDecl *Value = dyn_cast<ValueDecl>(Val: DRE->getDecl());
13494
13495 // The declaration must be a value which is not declared 'const'.
13496 if (!Value || Value->getType().isConstQualified())
13497 return NCCK_None;
13498
13499 BindingDecl *Binding = dyn_cast<BindingDecl>(Val: Value);
13500 if (Binding) {
13501 assert(S.getLangOpts().CPlusPlus && "BindingDecl outside of C++?");
13502 assert(!isa<BlockDecl>(Binding->getDeclContext()));
13503 return NCCK_Lambda;
13504 }
13505
13506 VarDecl *Var = dyn_cast<VarDecl>(Val: Value);
13507 if (!Var)
13508 return NCCK_None;
13509
13510 assert(Var->hasLocalStorage() && "capture added 'const' to non-local?");
13511
13512 // Decide whether the first capture was for a block or a lambda.
13513 DeclContext *DC = S.CurContext, *Prev = nullptr;
13514 // Decide whether the first capture was for a block or a lambda.
13515 while (DC) {
13516 // For init-capture, it is possible that the variable belongs to the
13517 // template pattern of the current context.
13518 if (auto *FD = dyn_cast<FunctionDecl>(Val: DC))
13519 if (Var->isInitCapture() &&
13520 FD->getTemplateInstantiationPattern() == Var->getDeclContext())
13521 break;
13522 if (DC == Var->getDeclContext())
13523 break;
13524 Prev = DC;
13525 DC = DC->getParent();
13526 }
13527 // Unless we have an init-capture, we've gone one step too far.
13528 if (!Var->isInitCapture())
13529 DC = Prev;
13530 return (isa<BlockDecl>(Val: DC) ? NCCK_Block : NCCK_Lambda);
13531}
13532
13533static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
13534 Ty = Ty.getNonReferenceType();
13535 if (IsDereference && Ty->isPointerType())
13536 Ty = Ty->getPointeeType();
13537 return !Ty.isConstQualified();
13538}
13539
13540// Update err_typecheck_assign_const and note_typecheck_assign_const
13541// when this enum is changed.
13542enum {
13543 ConstFunction,
13544 ConstVariable,
13545 ConstMember,
13546 ConstMethod,
13547 NestedConstMember,
13548 ConstUnknown, // Keep as last element
13549};
13550
13551/// Emit the "read-only variable not assignable" error and print notes to give
13552/// more information about why the variable is not assignable, such as pointing
13553/// to the declaration of a const variable, showing that a method is const, or
13554/// that the function is returning a const reference.
13555static void DiagnoseConstAssignment(Sema &S, const Expr *E,
13556 SourceLocation Loc) {
13557 SourceRange ExprRange = E->getSourceRange();
13558
13559 // Only emit one error on the first const found. All other consts will emit
13560 // a note to the error.
13561 bool DiagnosticEmitted = false;
13562
13563 // Track if the current expression is the result of a dereference, and if the
13564 // next checked expression is the result of a dereference.
13565 bool IsDereference = false;
13566 bool NextIsDereference = false;
13567
13568 // Loop to process MemberExpr chains.
13569 while (true) {
13570 IsDereference = NextIsDereference;
13571
13572 E = E->IgnoreImplicit()->IgnoreParenImpCasts();
13573 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E)) {
13574 NextIsDereference = ME->isArrow();
13575 const ValueDecl *VD = ME->getMemberDecl();
13576 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Val: VD)) {
13577 // Mutable fields can be modified even if the class is const.
13578 if (Field->isMutable()) {
13579 assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
13580 break;
13581 }
13582
13583 if (!IsTypeModifiable(Ty: Field->getType(), IsDereference)) {
13584 if (!DiagnosticEmitted) {
13585 S.Diag(Loc, DiagID: diag::err_typecheck_assign_const)
13586 << ExprRange << ConstMember << false /*static*/ << Field
13587 << Field->getType();
13588 DiagnosticEmitted = true;
13589 }
13590 S.Diag(Loc: VD->getLocation(), DiagID: diag::note_typecheck_assign_const)
13591 << ConstMember << false /*static*/ << Field << Field->getType()
13592 << Field->getSourceRange();
13593 }
13594 E = ME->getBase();
13595 continue;
13596 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(Val: VD)) {
13597 if (VDecl->getType().isConstQualified()) {
13598 if (!DiagnosticEmitted) {
13599 S.Diag(Loc, DiagID: diag::err_typecheck_assign_const)
13600 << ExprRange << ConstMember << true /*static*/ << VDecl
13601 << VDecl->getType();
13602 DiagnosticEmitted = true;
13603 }
13604 S.Diag(Loc: VD->getLocation(), DiagID: diag::note_typecheck_assign_const)
13605 << ConstMember << true /*static*/ << VDecl << VDecl->getType()
13606 << VDecl->getSourceRange();
13607 }
13608 // Static fields do not inherit constness from parents.
13609 break;
13610 }
13611 break; // End MemberExpr
13612 } else if (const ArraySubscriptExpr *ASE =
13613 dyn_cast<ArraySubscriptExpr>(Val: E)) {
13614 E = ASE->getBase()->IgnoreParenImpCasts();
13615 continue;
13616 } else if (const ExtVectorElementExpr *EVE =
13617 dyn_cast<ExtVectorElementExpr>(Val: E)) {
13618 E = EVE->getBase()->IgnoreParenImpCasts();
13619 continue;
13620 }
13621 break;
13622 }
13623
13624 if (const CallExpr *CE = dyn_cast<CallExpr>(Val: E)) {
13625 // Function calls
13626 const FunctionDecl *FD = CE->getDirectCallee();
13627 if (FD && !IsTypeModifiable(Ty: FD->getReturnType(), IsDereference)) {
13628 if (!DiagnosticEmitted) {
13629 S.Diag(Loc, DiagID: diag::err_typecheck_assign_const) << ExprRange
13630 << ConstFunction << FD;
13631 DiagnosticEmitted = true;
13632 }
13633 S.Diag(Loc: FD->getReturnTypeSourceRange().getBegin(),
13634 DiagID: diag::note_typecheck_assign_const)
13635 << ConstFunction << FD << FD->getReturnType()
13636 << FD->getReturnTypeSourceRange();
13637 }
13638 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) {
13639 // Point to variable declaration.
13640 if (const ValueDecl *VD = DRE->getDecl()) {
13641 if (!IsTypeModifiable(Ty: VD->getType(), IsDereference)) {
13642 if (!DiagnosticEmitted) {
13643 S.Diag(Loc, DiagID: diag::err_typecheck_assign_const)
13644 << ExprRange << ConstVariable << VD << VD->getType();
13645 DiagnosticEmitted = true;
13646 }
13647 S.Diag(Loc: VD->getLocation(), DiagID: diag::note_typecheck_assign_const)
13648 << ConstVariable << VD << VD->getType() << VD->getSourceRange();
13649 }
13650 }
13651 } else if (isa<CXXThisExpr>(Val: E)) {
13652 if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
13653 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: DC)) {
13654 if (MD->isConst()) {
13655 if (!DiagnosticEmitted) {
13656 S.Diag(Loc, DiagID: diag::err_typecheck_assign_const) << ExprRange
13657 << ConstMethod << MD;
13658 DiagnosticEmitted = true;
13659 }
13660 S.Diag(Loc: MD->getLocation(), DiagID: diag::note_typecheck_assign_const)
13661 << ConstMethod << MD << MD->getSourceRange();
13662 }
13663 }
13664 }
13665 }
13666
13667 if (DiagnosticEmitted)
13668 return;
13669
13670 // Can't determine a more specific message, so display the generic error.
13671 S.Diag(Loc, DiagID: diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
13672}
13673
13674enum OriginalExprKind {
13675 OEK_Variable,
13676 OEK_Member,
13677 OEK_LValue
13678};
13679
13680static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
13681 const RecordType *Ty,
13682 SourceLocation Loc, SourceRange Range,
13683 OriginalExprKind OEK,
13684 bool &DiagnosticEmitted) {
13685 std::vector<const RecordType *> RecordTypeList;
13686 RecordTypeList.push_back(x: Ty);
13687 unsigned NextToCheckIndex = 0;
13688 // We walk the record hierarchy breadth-first to ensure that we print
13689 // diagnostics in field nesting order.
13690 while (RecordTypeList.size() > NextToCheckIndex) {
13691 bool IsNested = NextToCheckIndex > 0;
13692 for (const FieldDecl *Field :
13693 RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
13694 // First, check every field for constness.
13695 QualType FieldTy = Field->getType();
13696 if (FieldTy.isConstQualified()) {
13697 if (!DiagnosticEmitted) {
13698 S.Diag(Loc, DiagID: diag::err_typecheck_assign_const)
13699 << Range << NestedConstMember << OEK << VD
13700 << IsNested << Field;
13701 DiagnosticEmitted = true;
13702 }
13703 S.Diag(Loc: Field->getLocation(), DiagID: diag::note_typecheck_assign_const)
13704 << NestedConstMember << IsNested << Field
13705 << FieldTy << Field->getSourceRange();
13706 }
13707
13708 // Then we append it to the list to check next in order.
13709 FieldTy = FieldTy.getCanonicalType();
13710 if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
13711 if (!llvm::is_contained(Range&: RecordTypeList, Element: FieldRecTy))
13712 RecordTypeList.push_back(x: FieldRecTy);
13713 }
13714 }
13715 ++NextToCheckIndex;
13716 }
13717}
13718
13719/// Emit an error for the case where a record we are trying to assign to has a
13720/// const-qualified field somewhere in its hierarchy.
13721static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
13722 SourceLocation Loc) {
13723 QualType Ty = E->getType();
13724 assert(Ty->isRecordType() && "lvalue was not record?");
13725 SourceRange Range = E->getSourceRange();
13726 const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
13727 bool DiagEmitted = false;
13728
13729 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E))
13730 DiagnoseRecursiveConstFields(S, VD: ME->getMemberDecl(), Ty: RTy, Loc,
13731 Range, OEK: OEK_Member, DiagnosticEmitted&: DiagEmitted);
13732 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E))
13733 DiagnoseRecursiveConstFields(S, VD: DRE->getDecl(), Ty: RTy, Loc,
13734 Range, OEK: OEK_Variable, DiagnosticEmitted&: DiagEmitted);
13735 else
13736 DiagnoseRecursiveConstFields(S, VD: nullptr, Ty: RTy, Loc,
13737 Range, OEK: OEK_LValue, DiagnosticEmitted&: DiagEmitted);
13738 if (!DiagEmitted)
13739 DiagnoseConstAssignment(S, E, Loc);
13740}
13741
13742/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
13743/// emit an error and return true. If so, return false.
13744static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
13745 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
13746
13747 S.CheckShadowingDeclModification(E, Loc);
13748
13749 SourceLocation OrigLoc = Loc;
13750 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(Ctx&: S.Context,
13751 Loc: &Loc);
13752 if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
13753 IsLV = Expr::MLV_InvalidMessageExpression;
13754 if (IsLV == Expr::MLV_Valid)
13755 return false;
13756
13757 unsigned DiagID = 0;
13758 bool NeedType = false;
13759 switch (IsLV) { // C99 6.5.16p2
13760 case Expr::MLV_ConstQualified:
13761 // Use a specialized diagnostic when we're assigning to an object
13762 // from an enclosing function or block.
13763 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
13764 if (NCCK == NCCK_Block)
13765 DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
13766 else
13767 DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
13768 break;
13769 }
13770
13771 // In ARC, use some specialized diagnostics for occasions where we
13772 // infer 'const'. These are always pseudo-strong variables.
13773 if (S.getLangOpts().ObjCAutoRefCount) {
13774 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenCasts());
13775 if (declRef && isa<VarDecl>(Val: declRef->getDecl())) {
13776 VarDecl *var = cast<VarDecl>(Val: declRef->getDecl());
13777
13778 // Use the normal diagnostic if it's pseudo-__strong but the
13779 // user actually wrote 'const'.
13780 if (var->isARCPseudoStrong() &&
13781 (!var->getTypeSourceInfo() ||
13782 !var->getTypeSourceInfo()->getType().isConstQualified())) {
13783 // There are three pseudo-strong cases:
13784 // - self
13785 ObjCMethodDecl *method = S.getCurMethodDecl();
13786 if (method && var == method->getSelfDecl()) {
13787 DiagID = method->isClassMethod()
13788 ? diag::err_typecheck_arc_assign_self_class_method
13789 : diag::err_typecheck_arc_assign_self;
13790
13791 // - Objective-C externally_retained attribute.
13792 } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
13793 isa<ParmVarDecl>(Val: var)) {
13794 DiagID = diag::err_typecheck_arc_assign_externally_retained;
13795
13796 // - fast enumeration variables
13797 } else {
13798 DiagID = diag::err_typecheck_arr_assign_enumeration;
13799 }
13800
13801 SourceRange Assign;
13802 if (Loc != OrigLoc)
13803 Assign = SourceRange(OrigLoc, OrigLoc);
13804 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13805 // We need to preserve the AST regardless, so migration tool
13806 // can do its job.
13807 return false;
13808 }
13809 }
13810 }
13811
13812 // If none of the special cases above are triggered, then this is a
13813 // simple const assignment.
13814 if (DiagID == 0) {
13815 DiagnoseConstAssignment(S, E, Loc);
13816 return true;
13817 }
13818
13819 break;
13820 case Expr::MLV_ConstAddrSpace:
13821 DiagnoseConstAssignment(S, E, Loc);
13822 return true;
13823 case Expr::MLV_ConstQualifiedField:
13824 DiagnoseRecursiveConstFields(S, E, Loc);
13825 return true;
13826 case Expr::MLV_ArrayType:
13827 case Expr::MLV_ArrayTemporary:
13828 DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
13829 NeedType = true;
13830 break;
13831 case Expr::MLV_NotObjectType:
13832 DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
13833 NeedType = true;
13834 break;
13835 case Expr::MLV_LValueCast:
13836 DiagID = diag::err_typecheck_lvalue_casts_not_supported;
13837 break;
13838 case Expr::MLV_Valid:
13839 llvm_unreachable("did not take early return for MLV_Valid");
13840 case Expr::MLV_InvalidExpression:
13841 case Expr::MLV_MemberFunction:
13842 case Expr::MLV_ClassTemporary:
13843 DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
13844 break;
13845 case Expr::MLV_IncompleteType:
13846 case Expr::MLV_IncompleteVoidType:
13847 return S.RequireCompleteType(Loc, T: E->getType(),
13848 DiagID: diag::err_typecheck_incomplete_type_not_modifiable_lvalue, Args: E);
13849 case Expr::MLV_DuplicateVectorComponents:
13850 DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
13851 break;
13852 case Expr::MLV_NoSetterProperty:
13853 llvm_unreachable("readonly properties should be processed differently");
13854 case Expr::MLV_InvalidMessageExpression:
13855 DiagID = diag::err_readonly_message_assignment;
13856 break;
13857 case Expr::MLV_SubObjCPropertySetting:
13858 DiagID = diag::err_no_subobject_property_setting;
13859 break;
13860 }
13861
13862 SourceRange Assign;
13863 if (Loc != OrigLoc)
13864 Assign = SourceRange(OrigLoc, OrigLoc);
13865 if (NeedType)
13866 S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
13867 else
13868 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13869 return true;
13870}
13871
13872static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
13873 SourceLocation Loc,
13874 Sema &Sema) {
13875 if (Sema.inTemplateInstantiation())
13876 return;
13877 if (Sema.isUnevaluatedContext())
13878 return;
13879 if (Loc.isInvalid() || Loc.isMacroID())
13880 return;
13881 if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
13882 return;
13883
13884 // C / C++ fields
13885 MemberExpr *ML = dyn_cast<MemberExpr>(Val: LHSExpr);
13886 MemberExpr *MR = dyn_cast<MemberExpr>(Val: RHSExpr);
13887 if (ML && MR) {
13888 if (!(isa<CXXThisExpr>(Val: ML->getBase()) && isa<CXXThisExpr>(Val: MR->getBase())))
13889 return;
13890 const ValueDecl *LHSDecl =
13891 cast<ValueDecl>(Val: ML->getMemberDecl()->getCanonicalDecl());
13892 const ValueDecl *RHSDecl =
13893 cast<ValueDecl>(Val: MR->getMemberDecl()->getCanonicalDecl());
13894 if (LHSDecl != RHSDecl)
13895 return;
13896 if (LHSDecl->getType().isVolatileQualified())
13897 return;
13898 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13899 if (RefTy->getPointeeType().isVolatileQualified())
13900 return;
13901
13902 Sema.Diag(Loc, DiagID: diag::warn_identity_field_assign) << 0;
13903 }
13904
13905 // Objective-C instance variables
13906 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(Val: LHSExpr);
13907 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(Val: RHSExpr);
13908 if (OL && OR && OL->getDecl() == OR->getDecl()) {
13909 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(Val: OL->getBase()->IgnoreImpCasts());
13910 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(Val: OR->getBase()->IgnoreImpCasts());
13911 if (RL && RR && RL->getDecl() == RR->getDecl())
13912 Sema.Diag(Loc, DiagID: diag::warn_identity_field_assign) << 1;
13913 }
13914}
13915
13916// C99 6.5.16.1
13917QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
13918 SourceLocation Loc,
13919 QualType CompoundType,
13920 BinaryOperatorKind Opc) {
13921 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
13922
13923 // Verify that LHS is a modifiable lvalue, and emit error if not.
13924 if (CheckForModifiableLvalue(E: LHSExpr, Loc, S&: *this))
13925 return QualType();
13926
13927 QualType LHSType = LHSExpr->getType();
13928 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
13929 CompoundType;
13930
13931 if (RHS.isUsable()) {
13932 // Even if this check fails don't return early to allow the best
13933 // possible error recovery and to allow any subsequent diagnostics to
13934 // work.
13935 const ValueDecl *Assignee = nullptr;
13936 bool ShowFullyQualifiedAssigneeName = false;
13937 // In simple cases describe what is being assigned to
13938 if (auto *DR = dyn_cast<DeclRefExpr>(Val: LHSExpr->IgnoreParenCasts())) {
13939 Assignee = DR->getDecl();
13940 } else if (auto *ME = dyn_cast<MemberExpr>(Val: LHSExpr->IgnoreParenCasts())) {
13941 Assignee = ME->getMemberDecl();
13942 ShowFullyQualifiedAssigneeName = true;
13943 }
13944
13945 BoundsSafetyCheckAssignmentToCountAttrPtr(
13946 LHSTy: LHSType, RHSExpr: RHS.get(), Action: AssignmentAction::Assigning, Loc, Assignee,
13947 ShowFullyQualifiedAssigneeName);
13948 }
13949
13950 // OpenCL v1.2 s6.1.1.1 p2:
13951 // The half data type can only be used to declare a pointer to a buffer that
13952 // contains half values
13953 if (getLangOpts().OpenCL &&
13954 !getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16", LO: getLangOpts()) &&
13955 LHSType->isHalfType()) {
13956 Diag(Loc, DiagID: diag::err_opencl_half_load_store) << 1
13957 << LHSType.getUnqualifiedType();
13958 return QualType();
13959 }
13960
13961 // WebAssembly tables can't be used on RHS of an assignment expression.
13962 if (RHSType->isWebAssemblyTableType()) {
13963 Diag(Loc, DiagID: diag::err_wasm_table_art) << 0;
13964 return QualType();
13965 }
13966
13967 AssignConvertType ConvTy;
13968 if (CompoundType.isNull()) {
13969 Expr *RHSCheck = RHS.get();
13970
13971 CheckIdentityFieldAssignment(LHSExpr, RHSExpr: RHSCheck, Loc, Sema&: *this);
13972
13973 QualType LHSTy(LHSType);
13974 ConvTy = CheckSingleAssignmentConstraints(LHSType: LHSTy, CallerRHS&: RHS);
13975 if (RHS.isInvalid())
13976 return QualType();
13977 // Special case of NSObject attributes on c-style pointer types.
13978 if (ConvTy == AssignConvertType::IncompatiblePointer &&
13979 ((Context.isObjCNSObjectType(Ty: LHSType) &&
13980 RHSType->isObjCObjectPointerType()) ||
13981 (Context.isObjCNSObjectType(Ty: RHSType) &&
13982 LHSType->isObjCObjectPointerType())))
13983 ConvTy = AssignConvertType::Compatible;
13984
13985 if (IsAssignConvertCompatible(ConvTy) && LHSType->isObjCObjectType())
13986 Diag(Loc, DiagID: diag::err_objc_object_assignment) << LHSType;
13987
13988 // If the RHS is a unary plus or minus, check to see if they = and + are
13989 // right next to each other. If so, the user may have typo'd "x =+ 4"
13990 // instead of "x += 4".
13991 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: RHSCheck))
13992 RHSCheck = ICE->getSubExpr();
13993 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: RHSCheck)) {
13994 if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
13995 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
13996 // Only if the two operators are exactly adjacent.
13997 Loc.getLocWithOffset(Offset: 1) == UO->getOperatorLoc() &&
13998 // And there is a space or other character before the subexpr of the
13999 // unary +/-. We don't want to warn on "x=-1".
14000 Loc.getLocWithOffset(Offset: 2) != UO->getSubExpr()->getBeginLoc() &&
14001 UO->getSubExpr()->getBeginLoc().isFileID()) {
14002 Diag(Loc, DiagID: diag::warn_not_compound_assign)
14003 << (UO->getOpcode() == UO_Plus ? "+" : "-")
14004 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
14005 }
14006 }
14007
14008 if (IsAssignConvertCompatible(ConvTy)) {
14009 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
14010 // Warn about retain cycles where a block captures the LHS, but
14011 // not if the LHS is a simple variable into which the block is
14012 // being stored...unless that variable can be captured by reference!
14013 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
14014 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: InnerLHS);
14015 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
14016 ObjC().checkRetainCycles(receiver: LHSExpr, argument: RHS.get());
14017 }
14018
14019 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
14020 LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
14021 // It is safe to assign a weak reference into a strong variable.
14022 // Although this code can still have problems:
14023 // id x = self.weakProp;
14024 // id y = self.weakProp;
14025 // we do not warn to warn spuriously when 'x' and 'y' are on separate
14026 // paths through the function. This should be revisited if
14027 // -Wrepeated-use-of-weak is made flow-sensitive.
14028 // For ObjCWeak only, we do not warn if the assign is to a non-weak
14029 // variable, which will be valid for the current autorelease scope.
14030 if (!Diags.isIgnored(DiagID: diag::warn_arc_repeated_use_of_weak,
14031 Loc: RHS.get()->getBeginLoc()))
14032 getCurFunction()->markSafeWeakUse(E: RHS.get());
14033
14034 } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
14035 checkUnsafeExprAssigns(Loc, LHS: LHSExpr, RHS: RHS.get());
14036 }
14037 }
14038 } else {
14039 // Compound assignment "x += y"
14040 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
14041 }
14042
14043 if (DiagnoseAssignmentResult(ConvTy, Loc, DstType: LHSType, SrcType: RHSType, SrcExpr: RHS.get(),
14044 Action: AssignmentAction::Assigning))
14045 return QualType();
14046
14047 CheckForNullPointerDereference(S&: *this, E: LHSExpr);
14048
14049 AssignedEntity AE{.LHS: LHSExpr};
14050 checkAssignmentLifetime(SemaRef&: *this, Entity: AE, Init: RHS.get());
14051
14052 if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
14053 if (CompoundType.isNull()) {
14054 // C++2a [expr.ass]p5:
14055 // A simple-assignment whose left operand is of a volatile-qualified
14056 // type is deprecated unless the assignment is either a discarded-value
14057 // expression or an unevaluated operand
14058 ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(Elt: LHSExpr);
14059 }
14060 }
14061
14062 // C11 6.5.16p3: The type of an assignment expression is the type of the
14063 // left operand would have after lvalue conversion.
14064 // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
14065 // qualified type, the value has the unqualified version of the type of the
14066 // lvalue; additionally, if the lvalue has atomic type, the value has the
14067 // non-atomic version of the type of the lvalue.
14068 // C++ 5.17p1: the type of the assignment expression is that of its left
14069 // operand.
14070 return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
14071}
14072
14073// Scenarios to ignore if expression E is:
14074// 1. an explicit cast expression into void
14075// 2. a function call expression that returns void
14076static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
14077 E = E->IgnoreParens();
14078
14079 if (const CastExpr *CE = dyn_cast<CastExpr>(Val: E)) {
14080 if (CE->getCastKind() == CK_ToVoid) {
14081 return true;
14082 }
14083
14084 // static_cast<void> on a dependent type will not show up as CK_ToVoid.
14085 if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
14086 CE->getSubExpr()->getType()->isDependentType()) {
14087 return true;
14088 }
14089 }
14090
14091 if (const auto *CE = dyn_cast<CallExpr>(Val: E))
14092 return CE->getCallReturnType(Ctx: Context)->isVoidType();
14093 return false;
14094}
14095
14096void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
14097 // No warnings in macros
14098 if (Loc.isMacroID())
14099 return;
14100
14101 // Don't warn in template instantiations.
14102 if (inTemplateInstantiation())
14103 return;
14104
14105 // Scope isn't fine-grained enough to explicitly list the specific cases, so
14106 // instead, skip more than needed, then call back into here with the
14107 // CommaVisitor in SemaStmt.cpp.
14108 // The listed locations are the initialization and increment portions
14109 // of a for loop. The additional checks are on the condition of
14110 // if statements, do/while loops, and for loops.
14111 // Differences in scope flags for C89 mode requires the extra logic.
14112 const unsigned ForIncrementFlags =
14113 getLangOpts().C99 || getLangOpts().CPlusPlus
14114 ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
14115 : Scope::ContinueScope | Scope::BreakScope;
14116 const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
14117 const unsigned ScopeFlags = getCurScope()->getFlags();
14118 if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
14119 (ScopeFlags & ForInitFlags) == ForInitFlags)
14120 return;
14121
14122 // If there are multiple comma operators used together, get the RHS of the
14123 // of the comma operator as the LHS.
14124 while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: LHS)) {
14125 if (BO->getOpcode() != BO_Comma)
14126 break;
14127 LHS = BO->getRHS();
14128 }
14129
14130 // Only allow some expressions on LHS to not warn.
14131 if (IgnoreCommaOperand(E: LHS, Context))
14132 return;
14133
14134 Diag(Loc, DiagID: diag::warn_comma_operator);
14135 Diag(Loc: LHS->getBeginLoc(), DiagID: diag::note_cast_to_void)
14136 << LHS->getSourceRange()
14137 << FixItHint::CreateInsertion(InsertionLoc: LHS->getBeginLoc(),
14138 Code: LangOpts.CPlusPlus ? "static_cast<void>("
14139 : "(void)(")
14140 << FixItHint::CreateInsertion(InsertionLoc: PP.getLocForEndOfToken(Loc: LHS->getEndLoc()),
14141 Code: ")");
14142}
14143
14144// C99 6.5.17
14145static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
14146 SourceLocation Loc) {
14147 LHS = S.CheckPlaceholderExpr(E: LHS.get());
14148 RHS = S.CheckPlaceholderExpr(E: RHS.get());
14149 if (LHS.isInvalid() || RHS.isInvalid())
14150 return QualType();
14151
14152 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
14153 // operands, but not unary promotions.
14154 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
14155
14156 // So we treat the LHS as a ignored value, and in C++ we allow the
14157 // containing site to determine what should be done with the RHS.
14158 LHS = S.IgnoredValueConversions(E: LHS.get());
14159 if (LHS.isInvalid())
14160 return QualType();
14161
14162 S.DiagnoseUnusedExprResult(S: LHS.get(), DiagID: diag::warn_unused_comma_left_operand);
14163
14164 if (!S.getLangOpts().CPlusPlus) {
14165 RHS = S.DefaultFunctionArrayLvalueConversion(E: RHS.get());
14166 if (RHS.isInvalid())
14167 return QualType();
14168 if (!RHS.get()->getType()->isVoidType())
14169 S.RequireCompleteType(Loc, T: RHS.get()->getType(),
14170 DiagID: diag::err_incomplete_type);
14171 }
14172
14173 if (!S.getDiagnostics().isIgnored(DiagID: diag::warn_comma_operator, Loc))
14174 S.DiagnoseCommaOperator(LHS: LHS.get(), Loc);
14175
14176 return RHS.get()->getType();
14177}
14178
14179/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
14180/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
14181static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
14182 ExprValueKind &VK,
14183 ExprObjectKind &OK,
14184 SourceLocation OpLoc, bool IsInc,
14185 bool IsPrefix) {
14186 QualType ResType = Op->getType();
14187 // Atomic types can be used for increment / decrement where the non-atomic
14188 // versions can, so ignore the _Atomic() specifier for the purpose of
14189 // checking.
14190 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
14191 ResType = ResAtomicType->getValueType();
14192
14193 assert(!ResType.isNull() && "no type for increment/decrement expression");
14194
14195 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
14196 // Decrement of bool is not allowed.
14197 if (!IsInc) {
14198 S.Diag(Loc: OpLoc, DiagID: diag::err_decrement_bool) << Op->getSourceRange();
14199 return QualType();
14200 }
14201 // Increment of bool sets it to true, but is deprecated.
14202 S.Diag(Loc: OpLoc, DiagID: S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
14203 : diag::warn_increment_bool)
14204 << Op->getSourceRange();
14205 } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
14206 // Error on enum increments and decrements in C++ mode
14207 S.Diag(Loc: OpLoc, DiagID: diag::err_increment_decrement_enum) << IsInc << ResType;
14208 return QualType();
14209 } else if (ResType->isRealType()) {
14210 // OK!
14211 } else if (ResType->isPointerType()) {
14212 // C99 6.5.2.4p2, 6.5.6p2
14213 if (!checkArithmeticOpPointerOperand(S, Loc: OpLoc, Operand: Op))
14214 return QualType();
14215 } else if (ResType->isObjCObjectPointerType()) {
14216 // On modern runtimes, ObjC pointer arithmetic is forbidden.
14217 // Otherwise, we just need a complete type.
14218 if (checkArithmeticIncompletePointerType(S, Loc: OpLoc, Operand: Op) ||
14219 checkArithmeticOnObjCPointer(S, opLoc: OpLoc, op: Op))
14220 return QualType();
14221 } else if (ResType->isAnyComplexType()) {
14222 // C99 does not support ++/-- on complex types, we allow as an extension.
14223 S.Diag(Loc: OpLoc, DiagID: S.getLangOpts().C2y ? diag::warn_c2y_compat_increment_complex
14224 : diag::ext_c2y_increment_complex)
14225 << IsInc << Op->getSourceRange();
14226 } else if (ResType->isPlaceholderType()) {
14227 ExprResult PR = S.CheckPlaceholderExpr(E: Op);
14228 if (PR.isInvalid()) return QualType();
14229 return CheckIncrementDecrementOperand(S, Op: PR.get(), VK, OK, OpLoc,
14230 IsInc, IsPrefix);
14231 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
14232 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14233 } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
14234 (ResType->castAs<VectorType>()->getVectorKind() !=
14235 VectorKind::AltiVecBool)) {
14236 // The z vector extensions allow ++ and -- for non-bool vectors.
14237 } else if (S.getLangOpts().OpenCL && ResType->isVectorType() &&
14238 ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
14239 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14240 } else {
14241 S.Diag(Loc: OpLoc, DiagID: diag::err_typecheck_illegal_increment_decrement)
14242 << ResType << int(IsInc) << Op->getSourceRange();
14243 return QualType();
14244 }
14245 // At this point, we know we have a real, complex or pointer type.
14246 // Now make sure the operand is a modifiable lvalue.
14247 if (CheckForModifiableLvalue(E: Op, Loc: OpLoc, S))
14248 return QualType();
14249 if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
14250 // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14251 // An operand with volatile-qualified type is deprecated
14252 S.Diag(Loc: OpLoc, DiagID: diag::warn_deprecated_increment_decrement_volatile)
14253 << IsInc << ResType;
14254 }
14255 // In C++, a prefix increment is the same type as the operand. Otherwise
14256 // (in C or with postfix), the increment is the unqualified type of the
14257 // operand.
14258 if (IsPrefix && S.getLangOpts().CPlusPlus) {
14259 VK = VK_LValue;
14260 OK = Op->getObjectKind();
14261 return ResType;
14262 } else {
14263 VK = VK_PRValue;
14264 return ResType.getUnqualifiedType();
14265 }
14266}
14267
14268/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14269/// This routine allows us to typecheck complex/recursive expressions
14270/// where the declaration is needed for type checking. We only need to
14271/// handle cases when the expression references a function designator
14272/// or is an lvalue. Here are some examples:
14273/// - &(x) => x
14274/// - &*****f => f for f a function designator.
14275/// - &s.xx => s
14276/// - &s.zz[1].yy -> s, if zz is an array
14277/// - *(x + 1) -> x, if x is an array
14278/// - &"123"[2] -> 0
14279/// - & __real__ x -> x
14280///
14281/// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14282/// members.
14283static ValueDecl *getPrimaryDecl(Expr *E) {
14284 switch (E->getStmtClass()) {
14285 case Stmt::DeclRefExprClass:
14286 return cast<DeclRefExpr>(Val: E)->getDecl();
14287 case Stmt::MemberExprClass:
14288 // If this is an arrow operator, the address is an offset from
14289 // the base's value, so the object the base refers to is
14290 // irrelevant.
14291 if (cast<MemberExpr>(Val: E)->isArrow())
14292 return nullptr;
14293 // Otherwise, the expression refers to a part of the base
14294 return getPrimaryDecl(E: cast<MemberExpr>(Val: E)->getBase());
14295 case Stmt::ArraySubscriptExprClass: {
14296 // FIXME: This code shouldn't be necessary! We should catch the implicit
14297 // promotion of register arrays earlier.
14298 Expr* Base = cast<ArraySubscriptExpr>(Val: E)->getBase();
14299 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Val: Base)) {
14300 if (ICE->getSubExpr()->getType()->isArrayType())
14301 return getPrimaryDecl(E: ICE->getSubExpr());
14302 }
14303 return nullptr;
14304 }
14305 case Stmt::UnaryOperatorClass: {
14306 UnaryOperator *UO = cast<UnaryOperator>(Val: E);
14307
14308 switch(UO->getOpcode()) {
14309 case UO_Real:
14310 case UO_Imag:
14311 case UO_Extension:
14312 return getPrimaryDecl(E: UO->getSubExpr());
14313 default:
14314 return nullptr;
14315 }
14316 }
14317 case Stmt::ParenExprClass:
14318 return getPrimaryDecl(E: cast<ParenExpr>(Val: E)->getSubExpr());
14319 case Stmt::ImplicitCastExprClass:
14320 // If the result of an implicit cast is an l-value, we care about
14321 // the sub-expression; otherwise, the result here doesn't matter.
14322 return getPrimaryDecl(E: cast<ImplicitCastExpr>(Val: E)->getSubExpr());
14323 case Stmt::CXXUuidofExprClass:
14324 return cast<CXXUuidofExpr>(Val: E)->getGuidDecl();
14325 default:
14326 return nullptr;
14327 }
14328}
14329
14330namespace {
14331enum {
14332 AO_Bit_Field = 0,
14333 AO_Vector_Element = 1,
14334 AO_Property_Expansion = 2,
14335 AO_Register_Variable = 3,
14336 AO_Matrix_Element = 4,
14337 AO_No_Error = 5
14338};
14339}
14340/// Diagnose invalid operand for address of operations.
14341///
14342/// \param Type The type of operand which cannot have its address taken.
14343static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
14344 Expr *E, unsigned Type) {
14345 S.Diag(Loc, DiagID: diag::err_typecheck_address_of) << Type << E->getSourceRange();
14346}
14347
14348bool Sema::CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,
14349 const Expr *Op,
14350 const CXXMethodDecl *MD) {
14351 const auto *DRE = cast<DeclRefExpr>(Val: Op->IgnoreParens());
14352
14353 if (Op != DRE)
14354 return Diag(Loc: OpLoc, DiagID: diag::err_parens_pointer_member_function)
14355 << Op->getSourceRange();
14356
14357 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
14358 if (isa<CXXDestructorDecl>(Val: MD))
14359 return Diag(Loc: OpLoc, DiagID: diag::err_typecheck_addrof_dtor)
14360 << DRE->getSourceRange();
14361
14362 if (DRE->getQualifier())
14363 return false;
14364
14365 if (MD->getParent()->getName().empty())
14366 return Diag(Loc: OpLoc, DiagID: diag::err_unqualified_pointer_member_function)
14367 << DRE->getSourceRange();
14368
14369 SmallString<32> Str;
14370 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Out&: Str);
14371 return Diag(Loc: OpLoc, DiagID: diag::err_unqualified_pointer_member_function)
14372 << DRE->getSourceRange()
14373 << FixItHint::CreateInsertion(InsertionLoc: DRE->getSourceRange().getBegin(), Code: Qual);
14374}
14375
14376QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
14377 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
14378 if (PTy->getKind() == BuiltinType::Overload) {
14379 Expr *E = OrigOp.get()->IgnoreParens();
14380 if (!isa<OverloadExpr>(Val: E)) {
14381 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
14382 Diag(Loc: OpLoc, DiagID: diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
14383 << OrigOp.get()->getSourceRange();
14384 return QualType();
14385 }
14386
14387 OverloadExpr *Ovl = cast<OverloadExpr>(Val: E);
14388 if (isa<UnresolvedMemberExpr>(Val: Ovl))
14389 if (!ResolveSingleFunctionTemplateSpecialization(ovl: Ovl)) {
14390 Diag(Loc: OpLoc, DiagID: diag::err_invalid_form_pointer_member_function)
14391 << OrigOp.get()->getSourceRange();
14392 return QualType();
14393 }
14394
14395 return Context.OverloadTy;
14396 }
14397
14398 if (PTy->getKind() == BuiltinType::UnknownAny)
14399 return Context.UnknownAnyTy;
14400
14401 if (PTy->getKind() == BuiltinType::BoundMember) {
14402 Diag(Loc: OpLoc, DiagID: diag::err_invalid_form_pointer_member_function)
14403 << OrigOp.get()->getSourceRange();
14404 return QualType();
14405 }
14406
14407 OrigOp = CheckPlaceholderExpr(E: OrigOp.get());
14408 if (OrigOp.isInvalid()) return QualType();
14409 }
14410
14411 if (OrigOp.get()->isTypeDependent())
14412 return Context.DependentTy;
14413
14414 assert(!OrigOp.get()->hasPlaceholderType());
14415
14416 // Make sure to ignore parentheses in subsequent checks
14417 Expr *op = OrigOp.get()->IgnoreParens();
14418
14419 // In OpenCL captures for blocks called as lambda functions
14420 // are located in the private address space. Blocks used in
14421 // enqueue_kernel can be located in a different address space
14422 // depending on a vendor implementation. Thus preventing
14423 // taking an address of the capture to avoid invalid AS casts.
14424 if (LangOpts.OpenCL) {
14425 auto* VarRef = dyn_cast<DeclRefExpr>(Val: op);
14426 if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
14427 Diag(Loc: op->getExprLoc(), DiagID: diag::err_opencl_taking_address_capture);
14428 return QualType();
14429 }
14430 }
14431
14432 if (getLangOpts().C99) {
14433 // Implement C99-only parts of addressof rules.
14434 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(Val: op)) {
14435 if (uOp->getOpcode() == UO_Deref)
14436 // Per C99 6.5.3.2, the address of a deref always returns a valid result
14437 // (assuming the deref expression is valid).
14438 return uOp->getSubExpr()->getType();
14439 }
14440 // Technically, there should be a check for array subscript
14441 // expressions here, but the result of one is always an lvalue anyway.
14442 }
14443 ValueDecl *dcl = getPrimaryDecl(E: op);
14444
14445 if (auto *FD = dyn_cast_or_null<FunctionDecl>(Val: dcl))
14446 if (!checkAddressOfFunctionIsAvailable(Function: FD, /*Complain=*/true,
14447 Loc: op->getBeginLoc()))
14448 return QualType();
14449
14450 Expr::LValueClassification lval = op->ClassifyLValue(Ctx&: Context);
14451 unsigned AddressOfError = AO_No_Error;
14452
14453 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
14454 bool sfinae = (bool)isSFINAEContext();
14455 Diag(Loc: OpLoc, DiagID: isSFINAEContext() ? diag::err_typecheck_addrof_temporary
14456 : diag::ext_typecheck_addrof_temporary)
14457 << op->getType() << op->getSourceRange();
14458 if (sfinae)
14459 return QualType();
14460 // Materialize the temporary as an lvalue so that we can take its address.
14461 OrigOp = op =
14462 CreateMaterializeTemporaryExpr(T: op->getType(), Temporary: OrigOp.get(), BoundToLvalueReference: true);
14463 } else if (isa<ObjCSelectorExpr>(Val: op)) {
14464 return Context.getPointerType(T: op->getType());
14465 } else if (lval == Expr::LV_MemberFunction) {
14466 // If it's an instance method, make a member pointer.
14467 // The expression must have exactly the form &A::foo.
14468
14469 // If the underlying expression isn't a decl ref, give up.
14470 if (!isa<DeclRefExpr>(Val: op)) {
14471 Diag(Loc: OpLoc, DiagID: diag::err_invalid_form_pointer_member_function)
14472 << OrigOp.get()->getSourceRange();
14473 return QualType();
14474 }
14475 DeclRefExpr *DRE = cast<DeclRefExpr>(Val: op);
14476 CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: DRE->getDecl());
14477
14478 CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, Op: OrigOp.get(), MD);
14479 QualType MPTy = Context.getMemberPointerType(
14480 T: op->getType(), Qualifier: DRE->getQualifier(), Cls: MD->getParent());
14481
14482 if (getLangOpts().PointerAuthCalls && MD->isVirtual() &&
14483 !isUnevaluatedContext() && !MPTy->isDependentType()) {
14484 // When pointer authentication is enabled, argument and return types of
14485 // vitual member functions must be complete. This is because vitrual
14486 // member function pointers are implemented using virtual dispatch
14487 // thunks and the thunks cannot be emitted if the argument or return
14488 // types are incomplete.
14489 auto ReturnOrParamTypeIsIncomplete = [&](QualType T,
14490 SourceLocation DeclRefLoc,
14491 SourceLocation RetArgTypeLoc) {
14492 if (RequireCompleteType(Loc: DeclRefLoc, T, DiagID: diag::err_incomplete_type)) {
14493 Diag(Loc: DeclRefLoc,
14494 DiagID: diag::note_ptrauth_virtual_function_pointer_incomplete_arg_ret);
14495 Diag(Loc: RetArgTypeLoc,
14496 DiagID: diag::note_ptrauth_virtual_function_incomplete_arg_ret_type)
14497 << T;
14498 return true;
14499 }
14500 return false;
14501 };
14502 QualType RetTy = MD->getReturnType();
14503 bool IsIncomplete =
14504 !RetTy->isVoidType() &&
14505 ReturnOrParamTypeIsIncomplete(
14506 RetTy, OpLoc, MD->getReturnTypeSourceRange().getBegin());
14507 for (auto *PVD : MD->parameters())
14508 IsIncomplete |= ReturnOrParamTypeIsIncomplete(PVD->getType(), OpLoc,
14509 PVD->getBeginLoc());
14510 if (IsIncomplete)
14511 return QualType();
14512 }
14513
14514 // Under the MS ABI, lock down the inheritance model now.
14515 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14516 (void)isCompleteType(Loc: OpLoc, T: MPTy);
14517 return MPTy;
14518 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
14519 // C99 6.5.3.2p1
14520 // The operand must be either an l-value or a function designator
14521 if (!op->getType()->isFunctionType()) {
14522 // Use a special diagnostic for loads from property references.
14523 if (isa<PseudoObjectExpr>(Val: op)) {
14524 AddressOfError = AO_Property_Expansion;
14525 } else {
14526 Diag(Loc: OpLoc, DiagID: diag::err_typecheck_invalid_lvalue_addrof)
14527 << op->getType() << op->getSourceRange();
14528 return QualType();
14529 }
14530 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: op)) {
14531 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Val: DRE->getDecl()))
14532 CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, Op: OrigOp.get(), MD);
14533 }
14534
14535 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
14536 // The operand cannot be a bit-field
14537 AddressOfError = AO_Bit_Field;
14538 } else if (op->getObjectKind() == OK_VectorComponent) {
14539 // The operand cannot be an element of a vector
14540 AddressOfError = AO_Vector_Element;
14541 } else if (op->getObjectKind() == OK_MatrixComponent) {
14542 // The operand cannot be an element of a matrix.
14543 AddressOfError = AO_Matrix_Element;
14544 } else if (dcl) { // C99 6.5.3.2p1
14545 // We have an lvalue with a decl. Make sure the decl is not declared
14546 // with the register storage-class specifier.
14547 if (const VarDecl *vd = dyn_cast<VarDecl>(Val: dcl)) {
14548 // in C++ it is not error to take address of a register
14549 // variable (c++03 7.1.1P3)
14550 if (vd->getStorageClass() == SC_Register &&
14551 !getLangOpts().CPlusPlus) {
14552 AddressOfError = AO_Register_Variable;
14553 }
14554 } else if (isa<MSPropertyDecl>(Val: dcl)) {
14555 AddressOfError = AO_Property_Expansion;
14556 } else if (isa<FunctionTemplateDecl>(Val: dcl)) {
14557 return Context.OverloadTy;
14558 } else if (isa<FieldDecl>(Val: dcl) || isa<IndirectFieldDecl>(Val: dcl)) {
14559 // Okay: we can take the address of a field.
14560 // Could be a pointer to member, though, if there is an explicit
14561 // scope qualifier for the class.
14562
14563 // [C++26] [expr.prim.id.general]
14564 // If an id-expression E denotes a non-static non-type member
14565 // of some class C [...] and if E is a qualified-id, E is
14566 // not the un-parenthesized operand of the unary & operator [...]
14567 // the id-expression is transformed into a class member access expression.
14568 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: op);
14569 DRE && DRE->getQualifier() && !isa<ParenExpr>(Val: OrigOp.get())) {
14570 DeclContext *Ctx = dcl->getDeclContext();
14571 if (Ctx && Ctx->isRecord()) {
14572 if (dcl->getType()->isReferenceType()) {
14573 Diag(Loc: OpLoc,
14574 DiagID: diag::err_cannot_form_pointer_to_member_of_reference_type)
14575 << dcl->getDeclName() << dcl->getType();
14576 return QualType();
14577 }
14578
14579 while (cast<RecordDecl>(Val: Ctx)->isAnonymousStructOrUnion())
14580 Ctx = Ctx->getParent();
14581
14582 QualType MPTy = Context.getMemberPointerType(
14583 T: op->getType(), Qualifier: DRE->getQualifier(), Cls: cast<CXXRecordDecl>(Val: Ctx));
14584 // Under the MS ABI, lock down the inheritance model now.
14585 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14586 (void)isCompleteType(Loc: OpLoc, T: MPTy);
14587 return MPTy;
14588 }
14589 }
14590 } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
14591 MSGuidDecl, UnnamedGlobalConstantDecl>(Val: dcl))
14592 llvm_unreachable("Unknown/unexpected decl type");
14593 }
14594
14595 if (AddressOfError != AO_No_Error) {
14596 diagnoseAddressOfInvalidType(S&: *this, Loc: OpLoc, E: op, Type: AddressOfError);
14597 return QualType();
14598 }
14599
14600 if (lval == Expr::LV_IncompleteVoidType) {
14601 // Taking the address of a void variable is technically illegal, but we
14602 // allow it in cases which are otherwise valid.
14603 // Example: "extern void x; void* y = &x;".
14604 Diag(Loc: OpLoc, DiagID: diag::ext_typecheck_addrof_void) << op->getSourceRange();
14605 }
14606
14607 // If the operand has type "type", the result has type "pointer to type".
14608 if (op->getType()->isObjCObjectType())
14609 return Context.getObjCObjectPointerType(OIT: op->getType());
14610
14611 // Cannot take the address of WebAssembly references or tables.
14612 if (Context.getTargetInfo().getTriple().isWasm()) {
14613 QualType OpTy = op->getType();
14614 if (OpTy.isWebAssemblyReferenceType()) {
14615 Diag(Loc: OpLoc, DiagID: diag::err_wasm_ca_reference)
14616 << 1 << OrigOp.get()->getSourceRange();
14617 return QualType();
14618 }
14619 if (OpTy->isWebAssemblyTableType()) {
14620 Diag(Loc: OpLoc, DiagID: diag::err_wasm_table_pr)
14621 << 1 << OrigOp.get()->getSourceRange();
14622 return QualType();
14623 }
14624 }
14625
14626 CheckAddressOfPackedMember(rhs: op);
14627
14628 return Context.getPointerType(T: op->getType());
14629}
14630
14631static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
14632 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Exp);
14633 if (!DRE)
14634 return;
14635 const Decl *D = DRE->getDecl();
14636 if (!D)
14637 return;
14638 const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Val: D);
14639 if (!Param)
14640 return;
14641 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Val: Param->getDeclContext()))
14642 if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
14643 return;
14644 if (FunctionScopeInfo *FD = S.getCurFunction())
14645 FD->ModifiedNonNullParams.insert(Ptr: Param);
14646}
14647
14648/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
14649static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
14650 SourceLocation OpLoc,
14651 bool IsAfterAmp = false) {
14652 ExprResult ConvResult = S.UsualUnaryConversions(E: Op);
14653 if (ConvResult.isInvalid())
14654 return QualType();
14655 Op = ConvResult.get();
14656 QualType OpTy = Op->getType();
14657 QualType Result;
14658
14659 if (isa<CXXReinterpretCastExpr>(Val: Op)) {
14660 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
14661 S.CheckCompatibleReinterpretCast(SrcType: OpOrigType, DestType: OpTy, /*IsDereference*/true,
14662 Range: Op->getSourceRange());
14663 }
14664
14665 if (const PointerType *PT = OpTy->getAs<PointerType>())
14666 {
14667 Result = PT->getPointeeType();
14668 }
14669 else if (const ObjCObjectPointerType *OPT =
14670 OpTy->getAs<ObjCObjectPointerType>())
14671 Result = OPT->getPointeeType();
14672 else {
14673 ExprResult PR = S.CheckPlaceholderExpr(E: Op);
14674 if (PR.isInvalid()) return QualType();
14675 if (PR.get() != Op)
14676 return CheckIndirectionOperand(S, Op: PR.get(), VK, OpLoc);
14677 }
14678
14679 if (Result.isNull()) {
14680 S.Diag(Loc: OpLoc, DiagID: diag::err_typecheck_indirection_requires_pointer)
14681 << OpTy << Op->getSourceRange();
14682 return QualType();
14683 }
14684
14685 if (Result->isVoidType()) {
14686 // C++ [expr.unary.op]p1:
14687 // [...] the expression to which [the unary * operator] is applied shall
14688 // be a pointer to an object type, or a pointer to a function type
14689 LangOptions LO = S.getLangOpts();
14690 if (LO.CPlusPlus)
14691 S.Diag(Loc: OpLoc, DiagID: diag::err_typecheck_indirection_through_void_pointer_cpp)
14692 << OpTy << Op->getSourceRange();
14693 else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext())
14694 S.Diag(Loc: OpLoc, DiagID: diag::ext_typecheck_indirection_through_void_pointer)
14695 << OpTy << Op->getSourceRange();
14696 }
14697
14698 // Dereferences are usually l-values...
14699 VK = VK_LValue;
14700
14701 // ...except that certain expressions are never l-values in C.
14702 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
14703 VK = VK_PRValue;
14704
14705 return Result;
14706}
14707
14708BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
14709 BinaryOperatorKind Opc;
14710 switch (Kind) {
14711 default: llvm_unreachable("Unknown binop!");
14712 case tok::periodstar: Opc = BO_PtrMemD; break;
14713 case tok::arrowstar: Opc = BO_PtrMemI; break;
14714 case tok::star: Opc = BO_Mul; break;
14715 case tok::slash: Opc = BO_Div; break;
14716 case tok::percent: Opc = BO_Rem; break;
14717 case tok::plus: Opc = BO_Add; break;
14718 case tok::minus: Opc = BO_Sub; break;
14719 case tok::lessless: Opc = BO_Shl; break;
14720 case tok::greatergreater: Opc = BO_Shr; break;
14721 case tok::lessequal: Opc = BO_LE; break;
14722 case tok::less: Opc = BO_LT; break;
14723 case tok::greaterequal: Opc = BO_GE; break;
14724 case tok::greater: Opc = BO_GT; break;
14725 case tok::exclaimequal: Opc = BO_NE; break;
14726 case tok::equalequal: Opc = BO_EQ; break;
14727 case tok::spaceship: Opc = BO_Cmp; break;
14728 case tok::amp: Opc = BO_And; break;
14729 case tok::caret: Opc = BO_Xor; break;
14730 case tok::pipe: Opc = BO_Or; break;
14731 case tok::ampamp: Opc = BO_LAnd; break;
14732 case tok::pipepipe: Opc = BO_LOr; break;
14733 case tok::equal: Opc = BO_Assign; break;
14734 case tok::starequal: Opc = BO_MulAssign; break;
14735 case tok::slashequal: Opc = BO_DivAssign; break;
14736 case tok::percentequal: Opc = BO_RemAssign; break;
14737 case tok::plusequal: Opc = BO_AddAssign; break;
14738 case tok::minusequal: Opc = BO_SubAssign; break;
14739 case tok::lesslessequal: Opc = BO_ShlAssign; break;
14740 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
14741 case tok::ampequal: Opc = BO_AndAssign; break;
14742 case tok::caretequal: Opc = BO_XorAssign; break;
14743 case tok::pipeequal: Opc = BO_OrAssign; break;
14744 case tok::comma: Opc = BO_Comma; break;
14745 }
14746 return Opc;
14747}
14748
14749static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
14750 tok::TokenKind Kind) {
14751 UnaryOperatorKind Opc;
14752 switch (Kind) {
14753 default: llvm_unreachable("Unknown unary op!");
14754 case tok::plusplus: Opc = UO_PreInc; break;
14755 case tok::minusminus: Opc = UO_PreDec; break;
14756 case tok::amp: Opc = UO_AddrOf; break;
14757 case tok::star: Opc = UO_Deref; break;
14758 case tok::plus: Opc = UO_Plus; break;
14759 case tok::minus: Opc = UO_Minus; break;
14760 case tok::tilde: Opc = UO_Not; break;
14761 case tok::exclaim: Opc = UO_LNot; break;
14762 case tok::kw___real: Opc = UO_Real; break;
14763 case tok::kw___imag: Opc = UO_Imag; break;
14764 case tok::kw___extension__: Opc = UO_Extension; break;
14765 }
14766 return Opc;
14767}
14768
14769const FieldDecl *
14770Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
14771 // Explore the case for adding 'this->' to the LHS of a self assignment, very
14772 // common for setters.
14773 // struct A {
14774 // int X;
14775 // -void setX(int X) { X = X; }
14776 // +void setX(int X) { this->X = X; }
14777 // };
14778
14779 // Only consider parameters for self assignment fixes.
14780 if (!isa<ParmVarDecl>(Val: SelfAssigned))
14781 return nullptr;
14782 const auto *Method =
14783 dyn_cast_or_null<CXXMethodDecl>(Val: getCurFunctionDecl(AllowLambda: true));
14784 if (!Method)
14785 return nullptr;
14786
14787 const CXXRecordDecl *Parent = Method->getParent();
14788 // In theory this is fixable if the lambda explicitly captures this, but
14789 // that's added complexity that's rarely going to be used.
14790 if (Parent->isLambda())
14791 return nullptr;
14792
14793 // FIXME: Use an actual Lookup operation instead of just traversing fields
14794 // in order to get base class fields.
14795 auto Field =
14796 llvm::find_if(Range: Parent->fields(),
14797 P: [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
14798 return F->getDeclName() == Name;
14799 });
14800 return (Field != Parent->field_end()) ? *Field : nullptr;
14801}
14802
14803/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
14804/// This warning suppressed in the event of macro expansions.
14805static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
14806 SourceLocation OpLoc, bool IsBuiltin) {
14807 if (S.inTemplateInstantiation())
14808 return;
14809 if (S.isUnevaluatedContext())
14810 return;
14811 if (OpLoc.isInvalid() || OpLoc.isMacroID())
14812 return;
14813 LHSExpr = LHSExpr->IgnoreParenImpCasts();
14814 RHSExpr = RHSExpr->IgnoreParenImpCasts();
14815 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(Val: LHSExpr);
14816 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(Val: RHSExpr);
14817 if (!LHSDeclRef || !RHSDeclRef ||
14818 LHSDeclRef->getLocation().isMacroID() ||
14819 RHSDeclRef->getLocation().isMacroID())
14820 return;
14821 const ValueDecl *LHSDecl =
14822 cast<ValueDecl>(Val: LHSDeclRef->getDecl()->getCanonicalDecl());
14823 const ValueDecl *RHSDecl =
14824 cast<ValueDecl>(Val: RHSDeclRef->getDecl()->getCanonicalDecl());
14825 if (LHSDecl != RHSDecl)
14826 return;
14827 if (LHSDecl->getType().isVolatileQualified())
14828 return;
14829 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14830 if (RefTy->getPointeeType().isVolatileQualified())
14831 return;
14832
14833 auto Diag = S.Diag(Loc: OpLoc, DiagID: IsBuiltin ? diag::warn_self_assignment_builtin
14834 : diag::warn_self_assignment_overloaded)
14835 << LHSDeclRef->getType() << LHSExpr->getSourceRange()
14836 << RHSExpr->getSourceRange();
14837 if (const FieldDecl *SelfAssignField =
14838 S.getSelfAssignmentClassMemberCandidate(SelfAssigned: RHSDecl))
14839 Diag << 1 << SelfAssignField
14840 << FixItHint::CreateInsertion(InsertionLoc: LHSDeclRef->getBeginLoc(), Code: "this->");
14841 else
14842 Diag << 0;
14843}
14844
14845/// Check if a bitwise-& is performed on an Objective-C pointer. This
14846/// is usually indicative of introspection within the Objective-C pointer.
14847static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
14848 SourceLocation OpLoc) {
14849 if (!S.getLangOpts().ObjC)
14850 return;
14851
14852 const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
14853 const Expr *LHS = L.get();
14854 const Expr *RHS = R.get();
14855
14856 if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14857 ObjCPointerExpr = LHS;
14858 OtherExpr = RHS;
14859 }
14860 else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14861 ObjCPointerExpr = RHS;
14862 OtherExpr = LHS;
14863 }
14864
14865 // This warning is deliberately made very specific to reduce false
14866 // positives with logic that uses '&' for hashing. This logic mainly
14867 // looks for code trying to introspect into tagged pointers, which
14868 // code should generally never do.
14869 if (ObjCPointerExpr && isa<IntegerLiteral>(Val: OtherExpr->IgnoreParenCasts())) {
14870 unsigned Diag = diag::warn_objc_pointer_masking;
14871 // Determine if we are introspecting the result of performSelectorXXX.
14872 const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
14873 // Special case messages to -performSelector and friends, which
14874 // can return non-pointer values boxed in a pointer value.
14875 // Some clients may wish to silence warnings in this subcase.
14876 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Val: Ex)) {
14877 Selector S = ME->getSelector();
14878 StringRef SelArg0 = S.getNameForSlot(argIndex: 0);
14879 if (SelArg0.starts_with(Prefix: "performSelector"))
14880 Diag = diag::warn_objc_pointer_masking_performSelector;
14881 }
14882
14883 S.Diag(Loc: OpLoc, DiagID: Diag)
14884 << ObjCPointerExpr->getSourceRange();
14885 }
14886}
14887
14888// This helper function promotes a binary operator's operands (which are of a
14889// half vector type) to a vector of floats and then truncates the result to
14890// a vector of either half or short.
14891static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
14892 BinaryOperatorKind Opc, QualType ResultTy,
14893 ExprValueKind VK, ExprObjectKind OK,
14894 bool IsCompAssign, SourceLocation OpLoc,
14895 FPOptionsOverride FPFeatures) {
14896 auto &Context = S.getASTContext();
14897 assert((isVector(ResultTy, Context.HalfTy) ||
14898 isVector(ResultTy, Context.ShortTy)) &&
14899 "Result must be a vector of half or short");
14900 assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
14901 isVector(RHS.get()->getType(), Context.HalfTy) &&
14902 "both operands expected to be a half vector");
14903
14904 RHS = convertVector(E: RHS.get(), ElementType: Context.FloatTy, S);
14905 QualType BinOpResTy = RHS.get()->getType();
14906
14907 // If Opc is a comparison, ResultType is a vector of shorts. In that case,
14908 // change BinOpResTy to a vector of ints.
14909 if (isVector(QT: ResultTy, ElementType: Context.ShortTy))
14910 BinOpResTy = S.GetSignedVectorType(V: BinOpResTy);
14911
14912 if (IsCompAssign)
14913 return CompoundAssignOperator::Create(C: Context, lhs: LHS.get(), rhs: RHS.get(), opc: Opc,
14914 ResTy: ResultTy, VK, OK, opLoc: OpLoc, FPFeatures,
14915 CompLHSType: BinOpResTy, CompResultType: BinOpResTy);
14916
14917 LHS = convertVector(E: LHS.get(), ElementType: Context.FloatTy, S);
14918 auto *BO = BinaryOperator::Create(C: Context, lhs: LHS.get(), rhs: RHS.get(), opc: Opc,
14919 ResTy: BinOpResTy, VK, OK, opLoc: OpLoc, FPFeatures);
14920 return convertVector(E: BO, ElementType: ResultTy->castAs<VectorType>()->getElementType(), S);
14921}
14922
14923/// Returns true if conversion between vectors of halfs and vectors of floats
14924/// is needed.
14925static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
14926 Expr *E0, Expr *E1 = nullptr) {
14927 if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
14928 Ctx.getTargetInfo().useFP16ConversionIntrinsics())
14929 return false;
14930
14931 auto HasVectorOfHalfType = [&Ctx](Expr *E) {
14932 QualType Ty = E->IgnoreImplicit()->getType();
14933
14934 // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
14935 // to vectors of floats. Although the element type of the vectors is __fp16,
14936 // the vectors shouldn't be treated as storage-only types. See the
14937 // discussion here: https://reviews.llvm.org/rG825235c140e7
14938 if (const VectorType *VT = Ty->getAs<VectorType>()) {
14939 if (VT->getVectorKind() == VectorKind::Neon)
14940 return false;
14941 return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
14942 }
14943 return false;
14944 };
14945
14946 return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
14947}
14948
14949ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
14950 BinaryOperatorKind Opc, Expr *LHSExpr,
14951 Expr *RHSExpr, bool ForFoldExpression) {
14952 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(Val: RHSExpr)) {
14953 // The syntax only allows initializer lists on the RHS of assignment,
14954 // so we don't need to worry about accepting invalid code for
14955 // non-assignment operators.
14956 // C++11 5.17p9:
14957 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
14958 // of x = {} is x = T().
14959 InitializationKind Kind = InitializationKind::CreateDirectList(
14960 InitLoc: RHSExpr->getBeginLoc(), LBraceLoc: RHSExpr->getBeginLoc(), RBraceLoc: RHSExpr->getEndLoc());
14961 InitializedEntity Entity =
14962 InitializedEntity::InitializeTemporary(Type: LHSExpr->getType());
14963 InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
14964 ExprResult Init = InitSeq.Perform(S&: *this, Entity, Kind, Args: RHSExpr);
14965 if (Init.isInvalid())
14966 return Init;
14967 RHSExpr = Init.get();
14968 }
14969
14970 ExprResult LHS = LHSExpr, RHS = RHSExpr;
14971 QualType ResultTy; // Result type of the binary operator.
14972 // The following two variables are used for compound assignment operators
14973 QualType CompLHSTy; // Type of LHS after promotions for computation
14974 QualType CompResultTy; // Type of computation result
14975 ExprValueKind VK = VK_PRValue;
14976 ExprObjectKind OK = OK_Ordinary;
14977 bool ConvertHalfVec = false;
14978
14979 if (!LHS.isUsable() || !RHS.isUsable())
14980 return ExprError();
14981
14982 if (getLangOpts().OpenCL) {
14983 QualType LHSTy = LHSExpr->getType();
14984 QualType RHSTy = RHSExpr->getType();
14985 // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
14986 // the ATOMIC_VAR_INIT macro.
14987 if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
14988 SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14989 if (BO_Assign == Opc)
14990 Diag(Loc: OpLoc, DiagID: diag::err_opencl_atomic_init) << 0 << SR;
14991 else
14992 ResultTy = InvalidOperands(Loc: OpLoc, LHS, RHS);
14993 return ExprError();
14994 }
14995
14996 // OpenCL special types - image, sampler, pipe, and blocks are to be used
14997 // only with a builtin functions and therefore should be disallowed here.
14998 if (LHSTy->isImageType() || RHSTy->isImageType() ||
14999 LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
15000 LHSTy->isPipeType() || RHSTy->isPipeType() ||
15001 LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
15002 ResultTy = InvalidOperands(Loc: OpLoc, LHS, RHS);
15003 return ExprError();
15004 }
15005 }
15006
15007 checkTypeSupport(Ty: LHSExpr->getType(), Loc: OpLoc, /*ValueDecl*/ D: nullptr);
15008 checkTypeSupport(Ty: RHSExpr->getType(), Loc: OpLoc, /*ValueDecl*/ D: nullptr);
15009
15010 switch (Opc) {
15011 case BO_Assign:
15012 ResultTy = CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: QualType(), Opc);
15013 if (getLangOpts().CPlusPlus &&
15014 LHS.get()->getObjectKind() != OK_ObjCProperty) {
15015 VK = LHS.get()->getValueKind();
15016 OK = LHS.get()->getObjectKind();
15017 }
15018 if (!ResultTy.isNull()) {
15019 DiagnoseSelfAssignment(S&: *this, LHSExpr: LHS.get(), RHSExpr: RHS.get(), OpLoc, IsBuiltin: true);
15020 DiagnoseSelfMove(LHSExpr: LHS.get(), RHSExpr: RHS.get(), OpLoc);
15021
15022 // Avoid copying a block to the heap if the block is assigned to a local
15023 // auto variable that is declared in the same scope as the block. This
15024 // optimization is unsafe if the local variable is declared in an outer
15025 // scope. For example:
15026 //
15027 // BlockTy b;
15028 // {
15029 // b = ^{...};
15030 // }
15031 // // It is unsafe to invoke the block here if it wasn't copied to the
15032 // // heap.
15033 // b();
15034
15035 if (auto *BE = dyn_cast<BlockExpr>(Val: RHS.get()->IgnoreParens()))
15036 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: LHS.get()->IgnoreParens()))
15037 if (auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()))
15038 if (VD->hasLocalStorage() && getCurScope()->isDeclScope(D: VD))
15039 BE->getBlockDecl()->setCanAvoidCopyToHeap();
15040
15041 if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
15042 checkNonTrivialCUnion(QT: LHS.get()->getType(), Loc: LHS.get()->getExprLoc(),
15043 UseContext: NonTrivialCUnionContext::Assignment, NonTrivialKind: NTCUK_Copy);
15044 }
15045 RecordModifiableNonNullParam(S&: *this, Exp: LHS.get());
15046 break;
15047 case BO_PtrMemD:
15048 case BO_PtrMemI:
15049 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
15050 isIndirect: Opc == BO_PtrMemI);
15051 break;
15052 case BO_Mul:
15053 case BO_Div:
15054 ConvertHalfVec = true;
15055 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, Loc: OpLoc, IsCompAssign: false,
15056 IsDiv: Opc == BO_Div);
15057 break;
15058 case BO_Rem:
15059 ResultTy = CheckRemainderOperands(LHS, RHS, Loc: OpLoc);
15060 break;
15061 case BO_Add:
15062 ConvertHalfVec = true;
15063 ResultTy = CheckAdditionOperands(LHS, RHS, Loc: OpLoc, Opc);
15064 break;
15065 case BO_Sub:
15066 ConvertHalfVec = true;
15067 ResultTy = CheckSubtractionOperands(LHS, RHS, Loc: OpLoc);
15068 break;
15069 case BO_Shl:
15070 case BO_Shr:
15071 ResultTy = CheckShiftOperands(LHS, RHS, Loc: OpLoc, Opc);
15072 break;
15073 case BO_LE:
15074 case BO_LT:
15075 case BO_GE:
15076 case BO_GT:
15077 ConvertHalfVec = true;
15078 ResultTy = CheckCompareOperands(LHS, RHS, Loc: OpLoc, Opc);
15079
15080 if (const auto *BI = dyn_cast<BinaryOperator>(Val: LHSExpr);
15081 !ForFoldExpression && BI && BI->isComparisonOp())
15082 Diag(Loc: OpLoc, DiagID: diag::warn_consecutive_comparison)
15083 << BI->getOpcodeStr() << BinaryOperator::getOpcodeStr(Op: Opc);
15084
15085 break;
15086 case BO_EQ:
15087 case BO_NE:
15088 ConvertHalfVec = true;
15089 ResultTy = CheckCompareOperands(LHS, RHS, Loc: OpLoc, Opc);
15090 break;
15091 case BO_Cmp:
15092 ConvertHalfVec = true;
15093 ResultTy = CheckCompareOperands(LHS, RHS, Loc: OpLoc, Opc);
15094 assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
15095 break;
15096 case BO_And:
15097 checkObjCPointerIntrospection(S&: *this, L&: LHS, R&: RHS, OpLoc);
15098 [[fallthrough]];
15099 case BO_Xor:
15100 case BO_Or:
15101 ResultTy = CheckBitwiseOperands(LHS, RHS, Loc: OpLoc, Opc);
15102 break;
15103 case BO_LAnd:
15104 case BO_LOr:
15105 ConvertHalfVec = true;
15106 ResultTy = CheckLogicalOperands(LHS, RHS, Loc: OpLoc, Opc);
15107 break;
15108 case BO_MulAssign:
15109 case BO_DivAssign:
15110 ConvertHalfVec = true;
15111 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, Loc: OpLoc, IsCompAssign: true,
15112 IsDiv: Opc == BO_DivAssign);
15113 CompLHSTy = CompResultTy;
15114 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15115 ResultTy =
15116 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
15117 break;
15118 case BO_RemAssign:
15119 CompResultTy = CheckRemainderOperands(LHS, RHS, Loc: OpLoc, IsCompAssign: true);
15120 CompLHSTy = CompResultTy;
15121 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15122 ResultTy =
15123 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
15124 break;
15125 case BO_AddAssign:
15126 ConvertHalfVec = true;
15127 CompResultTy = CheckAdditionOperands(LHS, RHS, Loc: OpLoc, Opc, CompLHSTy: &CompLHSTy);
15128 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15129 ResultTy =
15130 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
15131 break;
15132 case BO_SubAssign:
15133 ConvertHalfVec = true;
15134 CompResultTy = CheckSubtractionOperands(LHS, RHS, Loc: OpLoc, CompLHSTy: &CompLHSTy);
15135 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15136 ResultTy =
15137 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
15138 break;
15139 case BO_ShlAssign:
15140 case BO_ShrAssign:
15141 CompResultTy = CheckShiftOperands(LHS, RHS, Loc: OpLoc, Opc, IsCompAssign: true);
15142 CompLHSTy = CompResultTy;
15143 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15144 ResultTy =
15145 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
15146 break;
15147 case BO_AndAssign:
15148 case BO_OrAssign: // fallthrough
15149 DiagnoseSelfAssignment(S&: *this, LHSExpr: LHS.get(), RHSExpr: RHS.get(), OpLoc, IsBuiltin: true);
15150 [[fallthrough]];
15151 case BO_XorAssign:
15152 CompResultTy = CheckBitwiseOperands(LHS, RHS, Loc: OpLoc, Opc);
15153 CompLHSTy = CompResultTy;
15154 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15155 ResultTy =
15156 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
15157 break;
15158 case BO_Comma:
15159 ResultTy = CheckCommaOperands(S&: *this, LHS, RHS, Loc: OpLoc);
15160 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
15161 VK = RHS.get()->getValueKind();
15162 OK = RHS.get()->getObjectKind();
15163 }
15164 break;
15165 }
15166 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
15167 return ExprError();
15168
15169 // Some of the binary operations require promoting operands of half vector to
15170 // float vectors and truncating the result back to half vector. For now, we do
15171 // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15172 // arm64).
15173 assert(
15174 (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
15175 isVector(LHS.get()->getType(), Context.HalfTy)) &&
15176 "both sides are half vectors or neither sides are");
15177 ConvertHalfVec =
15178 needsConversionOfHalfVec(OpRequiresConversion: ConvertHalfVec, Ctx&: Context, E0: LHS.get(), E1: RHS.get());
15179
15180 // Check for array bounds violations for both sides of the BinaryOperator
15181 CheckArrayAccess(E: LHS.get());
15182 CheckArrayAccess(E: RHS.get());
15183
15184 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(Val: LHS.get()->IgnoreParenCasts())) {
15185 NamedDecl *ObjectSetClass = LookupSingleName(S: TUScope,
15186 Name: &Context.Idents.get(Name: "object_setClass"),
15187 Loc: SourceLocation(), NameKind: LookupOrdinaryName);
15188 if (ObjectSetClass && isa<ObjCIsaExpr>(Val: LHS.get())) {
15189 SourceLocation RHSLocEnd = getLocForEndOfToken(Loc: RHS.get()->getEndLoc());
15190 Diag(Loc: LHS.get()->getExprLoc(), DiagID: diag::warn_objc_isa_assign)
15191 << FixItHint::CreateInsertion(InsertionLoc: LHS.get()->getBeginLoc(),
15192 Code: "object_setClass(")
15193 << FixItHint::CreateReplacement(RemoveRange: SourceRange(OISA->getOpLoc(), OpLoc),
15194 Code: ",")
15195 << FixItHint::CreateInsertion(InsertionLoc: RHSLocEnd, Code: ")");
15196 }
15197 else
15198 Diag(Loc: LHS.get()->getExprLoc(), DiagID: diag::warn_objc_isa_assign);
15199 }
15200 else if (const ObjCIvarRefExpr *OIRE =
15201 dyn_cast<ObjCIvarRefExpr>(Val: LHS.get()->IgnoreParenCasts()))
15202 DiagnoseDirectIsaAccess(S&: *this, OIRE, AssignLoc: OpLoc, RHS: RHS.get());
15203
15204 // Opc is not a compound assignment if CompResultTy is null.
15205 if (CompResultTy.isNull()) {
15206 if (ConvertHalfVec)
15207 return convertHalfVecBinOp(S&: *this, LHS, RHS, Opc, ResultTy, VK, OK, IsCompAssign: false,
15208 OpLoc, FPFeatures: CurFPFeatureOverrides());
15209 return BinaryOperator::Create(C: Context, lhs: LHS.get(), rhs: RHS.get(), opc: Opc, ResTy: ResultTy,
15210 VK, OK, opLoc: OpLoc, FPFeatures: CurFPFeatureOverrides());
15211 }
15212
15213 // Handle compound assignments.
15214 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
15215 OK_ObjCProperty) {
15216 VK = VK_LValue;
15217 OK = LHS.get()->getObjectKind();
15218 }
15219
15220 // The LHS is not converted to the result type for fixed-point compound
15221 // assignment as the common type is computed on demand. Reset the CompLHSTy
15222 // to the LHS type we would have gotten after unary conversions.
15223 if (CompResultTy->isFixedPointType())
15224 CompLHSTy = UsualUnaryConversions(E: LHS.get()).get()->getType();
15225
15226 if (ConvertHalfVec)
15227 return convertHalfVecBinOp(S&: *this, LHS, RHS, Opc, ResultTy, VK, OK, IsCompAssign: true,
15228 OpLoc, FPFeatures: CurFPFeatureOverrides());
15229
15230 return CompoundAssignOperator::Create(
15231 C: Context, lhs: LHS.get(), rhs: RHS.get(), opc: Opc, ResTy: ResultTy, VK, OK, opLoc: OpLoc,
15232 FPFeatures: CurFPFeatureOverrides(), CompLHSType: CompLHSTy, CompResultType: CompResultTy);
15233}
15234
15235/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15236/// operators are mixed in a way that suggests that the programmer forgot that
15237/// comparison operators have higher precedence. The most typical example of
15238/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
15239static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
15240 SourceLocation OpLoc, Expr *LHSExpr,
15241 Expr *RHSExpr) {
15242 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(Val: LHSExpr);
15243 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(Val: RHSExpr);
15244
15245 // Check that one of the sides is a comparison operator and the other isn't.
15246 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
15247 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
15248 if (isLeftComp == isRightComp)
15249 return;
15250
15251 // Bitwise operations are sometimes used as eager logical ops.
15252 // Don't diagnose this.
15253 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
15254 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
15255 if (isLeftBitwise || isRightBitwise)
15256 return;
15257
15258 SourceRange DiagRange = isLeftComp
15259 ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
15260 : SourceRange(OpLoc, RHSExpr->getEndLoc());
15261 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
15262 SourceRange ParensRange =
15263 isLeftComp
15264 ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
15265 : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
15266
15267 Self.Diag(Loc: OpLoc, DiagID: diag::warn_precedence_bitwise_rel)
15268 << DiagRange << BinaryOperator::getOpcodeStr(Op: Opc) << OpStr;
15269 SuggestParentheses(Self, Loc: OpLoc,
15270 Note: Self.PDiag(DiagID: diag::note_precedence_silence) << OpStr,
15271 ParenRange: (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
15272 SuggestParentheses(Self, Loc: OpLoc,
15273 Note: Self.PDiag(DiagID: diag::note_precedence_bitwise_first)
15274 << BinaryOperator::getOpcodeStr(Op: Opc),
15275 ParenRange: ParensRange);
15276}
15277
15278/// It accepts a '&&' expr that is inside a '||' one.
15279/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15280/// in parentheses.
15281static void
15282EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
15283 BinaryOperator *Bop) {
15284 assert(Bop->getOpcode() == BO_LAnd);
15285 Self.Diag(Loc: Bop->getOperatorLoc(), DiagID: diag::warn_logical_and_in_logical_or)
15286 << Bop->getSourceRange() << OpLoc;
15287 SuggestParentheses(Self, Loc: Bop->getOperatorLoc(),
15288 Note: Self.PDiag(DiagID: diag::note_precedence_silence)
15289 << Bop->getOpcodeStr(),
15290 ParenRange: Bop->getSourceRange());
15291}
15292
15293/// Look for '&&' in the left hand of a '||' expr.
15294static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
15295 Expr *LHSExpr, Expr *RHSExpr) {
15296 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: LHSExpr)) {
15297 if (Bop->getOpcode() == BO_LAnd) {
15298 // If it's "string_literal && a || b" don't warn since the precedence
15299 // doesn't matter.
15300 if (!isa<StringLiteral>(Val: Bop->getLHS()->IgnoreParenImpCasts()))
15301 return EmitDiagnosticForLogicalAndInLogicalOr(Self&: S, OpLoc, Bop);
15302 } else if (Bop->getOpcode() == BO_LOr) {
15303 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Val: Bop->getRHS())) {
15304 // If it's "a || b && string_literal || c" we didn't warn earlier for
15305 // "a || b && string_literal", but warn now.
15306 if (RBop->getOpcode() == BO_LAnd &&
15307 isa<StringLiteral>(Val: RBop->getRHS()->IgnoreParenImpCasts()))
15308 return EmitDiagnosticForLogicalAndInLogicalOr(Self&: S, OpLoc, Bop: RBop);
15309 }
15310 }
15311 }
15312}
15313
15314/// Look for '&&' in the right hand of a '||' expr.
15315static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
15316 Expr *LHSExpr, Expr *RHSExpr) {
15317 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: RHSExpr)) {
15318 if (Bop->getOpcode() == BO_LAnd) {
15319 // If it's "a || b && string_literal" don't warn since the precedence
15320 // doesn't matter.
15321 if (!isa<StringLiteral>(Val: Bop->getRHS()->IgnoreParenImpCasts()))
15322 return EmitDiagnosticForLogicalAndInLogicalOr(Self&: S, OpLoc, Bop);
15323 }
15324 }
15325}
15326
15327/// Look for bitwise op in the left or right hand of a bitwise op with
15328/// lower precedence and emit a diagnostic together with a fixit hint that wraps
15329/// the '&' expression in parentheses.
15330static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
15331 SourceLocation OpLoc, Expr *SubExpr) {
15332 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: SubExpr)) {
15333 if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
15334 S.Diag(Loc: Bop->getOperatorLoc(), DiagID: diag::warn_bitwise_op_in_bitwise_op)
15335 << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Op: Opc)
15336 << Bop->getSourceRange() << OpLoc;
15337 SuggestParentheses(Self&: S, Loc: Bop->getOperatorLoc(),
15338 Note: S.PDiag(DiagID: diag::note_precedence_silence)
15339 << Bop->getOpcodeStr(),
15340 ParenRange: Bop->getSourceRange());
15341 }
15342 }
15343}
15344
15345static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
15346 Expr *SubExpr, StringRef Shift) {
15347 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: SubExpr)) {
15348 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
15349 StringRef Op = Bop->getOpcodeStr();
15350 S.Diag(Loc: Bop->getOperatorLoc(), DiagID: diag::warn_addition_in_bitshift)
15351 << Bop->getSourceRange() << OpLoc << Shift << Op;
15352 SuggestParentheses(Self&: S, Loc: Bop->getOperatorLoc(),
15353 Note: S.PDiag(DiagID: diag::note_precedence_silence) << Op,
15354 ParenRange: Bop->getSourceRange());
15355 }
15356 }
15357}
15358
15359static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15360 Expr *LHSExpr, Expr *RHSExpr) {
15361 CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(Val: LHSExpr);
15362 if (!OCE)
15363 return;
15364
15365 FunctionDecl *FD = OCE->getDirectCallee();
15366 if (!FD || !FD->isOverloadedOperator())
15367 return;
15368
15369 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
15370 if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
15371 return;
15372
15373 S.Diag(Loc: OpLoc, DiagID: diag::warn_overloaded_shift_in_comparison)
15374 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
15375 << (Kind == OO_LessLess);
15376 SuggestParentheses(Self&: S, Loc: OCE->getOperatorLoc(),
15377 Note: S.PDiag(DiagID: diag::note_precedence_silence)
15378 << (Kind == OO_LessLess ? "<<" : ">>"),
15379 ParenRange: OCE->getSourceRange());
15380 SuggestParentheses(
15381 Self&: S, Loc: OpLoc, Note: S.PDiag(DiagID: diag::note_evaluate_comparison_first),
15382 ParenRange: SourceRange(OCE->getArg(Arg: 1)->getBeginLoc(), RHSExpr->getEndLoc()));
15383}
15384
15385/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
15386/// precedence.
15387static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
15388 SourceLocation OpLoc, Expr *LHSExpr,
15389 Expr *RHSExpr){
15390 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
15391 if (BinaryOperator::isBitwiseOp(Opc))
15392 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
15393
15394 // Diagnose "arg1 & arg2 | arg3"
15395 if ((Opc == BO_Or || Opc == BO_Xor) &&
15396 !OpLoc.isMacroID()/* Don't warn in macros. */) {
15397 DiagnoseBitwiseOpInBitwiseOp(S&: Self, Opc, OpLoc, SubExpr: LHSExpr);
15398 DiagnoseBitwiseOpInBitwiseOp(S&: Self, Opc, OpLoc, SubExpr: RHSExpr);
15399 }
15400
15401 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
15402 // We don't warn for 'assert(a || b && "bad")' since this is safe.
15403 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
15404 DiagnoseLogicalAndInLogicalOrLHS(S&: Self, OpLoc, LHSExpr, RHSExpr);
15405 DiagnoseLogicalAndInLogicalOrRHS(S&: Self, OpLoc, LHSExpr, RHSExpr);
15406 }
15407
15408 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Ctx: Self.getASTContext()))
15409 || Opc == BO_Shr) {
15410 StringRef Shift = BinaryOperator::getOpcodeStr(Op: Opc);
15411 DiagnoseAdditionInShift(S&: Self, OpLoc, SubExpr: LHSExpr, Shift);
15412 DiagnoseAdditionInShift(S&: Self, OpLoc, SubExpr: RHSExpr, Shift);
15413 }
15414
15415 // Warn on overloaded shift operators and comparisons, such as:
15416 // cout << 5 == 4;
15417 if (BinaryOperator::isComparisonOp(Opc))
15418 DiagnoseShiftCompare(S&: Self, OpLoc, LHSExpr, RHSExpr);
15419}
15420
15421ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
15422 tok::TokenKind Kind,
15423 Expr *LHSExpr, Expr *RHSExpr) {
15424 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
15425 assert(LHSExpr && "ActOnBinOp(): missing left expression");
15426 assert(RHSExpr && "ActOnBinOp(): missing right expression");
15427
15428 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
15429 DiagnoseBinOpPrecedence(Self&: *this, Opc, OpLoc: TokLoc, LHSExpr, RHSExpr);
15430
15431 BuiltinCountedByRefKind K = BinaryOperator::isAssignmentOp(Opc)
15432 ? BuiltinCountedByRefKind::Assignment
15433 : BuiltinCountedByRefKind::BinaryExpr;
15434
15435 CheckInvalidBuiltinCountedByRef(E: LHSExpr, K);
15436 CheckInvalidBuiltinCountedByRef(E: RHSExpr, K);
15437
15438 return BuildBinOp(S, OpLoc: TokLoc, Opc, LHSExpr, RHSExpr);
15439}
15440
15441void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
15442 UnresolvedSetImpl &Functions) {
15443 OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
15444 if (OverOp != OO_None && OverOp != OO_Equal)
15445 LookupOverloadedOperatorName(Op: OverOp, S, Functions);
15446
15447 // In C++20 onwards, we may have a second operator to look up.
15448 if (getLangOpts().CPlusPlus20) {
15449 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Kind: OverOp))
15450 LookupOverloadedOperatorName(Op: ExtraOp, S, Functions);
15451 }
15452}
15453
15454/// Build an overloaded binary operator expression in the given scope.
15455static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
15456 BinaryOperatorKind Opc,
15457 Expr *LHS, Expr *RHS) {
15458 switch (Opc) {
15459 case BO_Assign:
15460 // In the non-overloaded case, we warn about self-assignment (x = x) for
15461 // both simple assignment and certain compound assignments where algebra
15462 // tells us the operation yields a constant result. When the operator is
15463 // overloaded, we can't do the latter because we don't want to assume that
15464 // those algebraic identities still apply; for example, a path-building
15465 // library might use operator/= to append paths. But it's still reasonable
15466 // to assume that simple assignment is just moving/copying values around
15467 // and so self-assignment is likely a bug.
15468 DiagnoseSelfAssignment(S, LHSExpr: LHS, RHSExpr: RHS, OpLoc, IsBuiltin: false);
15469 [[fallthrough]];
15470 case BO_DivAssign:
15471 case BO_RemAssign:
15472 case BO_SubAssign:
15473 case BO_AndAssign:
15474 case BO_OrAssign:
15475 case BO_XorAssign:
15476 CheckIdentityFieldAssignment(LHSExpr: LHS, RHSExpr: RHS, Loc: OpLoc, Sema&: S);
15477 break;
15478 default:
15479 break;
15480 }
15481
15482 // Find all of the overloaded operators visible from this point.
15483 UnresolvedSet<16> Functions;
15484 S.LookupBinOp(S: Sc, OpLoc, Opc, Functions);
15485
15486 // Build the (potentially-overloaded, potentially-dependent)
15487 // binary operation.
15488 return S.CreateOverloadedBinOp(OpLoc, Opc, Fns: Functions, LHS, RHS);
15489}
15490
15491ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
15492 BinaryOperatorKind Opc, Expr *LHSExpr,
15493 Expr *RHSExpr, bool ForFoldExpression) {
15494 if (!LHSExpr || !RHSExpr)
15495 return ExprError();
15496
15497 // We want to end up calling one of SemaPseudoObject::checkAssignment
15498 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
15499 // both expressions are overloadable or either is type-dependent),
15500 // or CreateBuiltinBinOp (in any other case). We also want to get
15501 // any placeholder types out of the way.
15502
15503 // Handle pseudo-objects in the LHS.
15504 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
15505 // Assignments with a pseudo-object l-value need special analysis.
15506 if (pty->getKind() == BuiltinType::PseudoObject &&
15507 BinaryOperator::isAssignmentOp(Opc))
15508 return PseudoObject().checkAssignment(S, OpLoc, Opcode: Opc, LHS: LHSExpr, RHS: RHSExpr);
15509
15510 // Don't resolve overloads if the other type is overloadable.
15511 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
15512 // We can't actually test that if we still have a placeholder,
15513 // though. Fortunately, none of the exceptions we see in that
15514 // code below are valid when the LHS is an overload set. Note
15515 // that an overload set can be dependently-typed, but it never
15516 // instantiates to having an overloadable type.
15517 ExprResult resolvedRHS = CheckPlaceholderExpr(E: RHSExpr);
15518 if (resolvedRHS.isInvalid()) return ExprError();
15519 RHSExpr = resolvedRHS.get();
15520
15521 if (RHSExpr->isTypeDependent() ||
15522 RHSExpr->getType()->isOverloadableType())
15523 return BuildOverloadedBinOp(S&: *this, Sc: S, OpLoc, Opc, LHS: LHSExpr, RHS: RHSExpr);
15524 }
15525
15526 // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
15527 // template, diagnose the missing 'template' keyword instead of diagnosing
15528 // an invalid use of a bound member function.
15529 //
15530 // Note that "A::x < b" might be valid if 'b' has an overloadable type due
15531 // to C++1z [over.over]/1.4, but we already checked for that case above.
15532 if (Opc == BO_LT && inTemplateInstantiation() &&
15533 (pty->getKind() == BuiltinType::BoundMember ||
15534 pty->getKind() == BuiltinType::Overload)) {
15535 auto *OE = dyn_cast<OverloadExpr>(Val: LHSExpr);
15536 if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
15537 llvm::any_of(Range: OE->decls(), P: [](NamedDecl *ND) {
15538 return isa<FunctionTemplateDecl>(Val: ND);
15539 })) {
15540 Diag(Loc: OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
15541 : OE->getNameLoc(),
15542 DiagID: diag::err_template_kw_missing)
15543 << OE->getName().getAsIdentifierInfo();
15544 return ExprError();
15545 }
15546 }
15547
15548 ExprResult LHS = CheckPlaceholderExpr(E: LHSExpr);
15549 if (LHS.isInvalid()) return ExprError();
15550 LHSExpr = LHS.get();
15551 }
15552
15553 // Handle pseudo-objects in the RHS.
15554 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
15555 // An overload in the RHS can potentially be resolved by the type
15556 // being assigned to.
15557 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
15558 if (getLangOpts().CPlusPlus &&
15559 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15560 LHSExpr->getType()->isOverloadableType()))
15561 return BuildOverloadedBinOp(S&: *this, Sc: S, OpLoc, Opc, LHS: LHSExpr, RHS: RHSExpr);
15562
15563 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr,
15564 ForFoldExpression);
15565 }
15566
15567 // Don't resolve overloads if the other type is overloadable.
15568 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
15569 LHSExpr->getType()->isOverloadableType())
15570 return BuildOverloadedBinOp(S&: *this, Sc: S, OpLoc, Opc, LHS: LHSExpr, RHS: RHSExpr);
15571
15572 ExprResult resolvedRHS = CheckPlaceholderExpr(E: RHSExpr);
15573 if (!resolvedRHS.isUsable()) return ExprError();
15574 RHSExpr = resolvedRHS.get();
15575 }
15576
15577 if (getLangOpts().CPlusPlus) {
15578 // Otherwise, build an overloaded op if either expression is type-dependent
15579 // or has an overloadable type.
15580 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15581 LHSExpr->getType()->isOverloadableType() ||
15582 RHSExpr->getType()->isOverloadableType())
15583 return BuildOverloadedBinOp(S&: *this, Sc: S, OpLoc, Opc, LHS: LHSExpr, RHS: RHSExpr);
15584 }
15585
15586 if (getLangOpts().RecoveryAST &&
15587 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
15588 assert(!getLangOpts().CPlusPlus);
15589 assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
15590 "Should only occur in error-recovery path.");
15591 if (BinaryOperator::isCompoundAssignmentOp(Opc))
15592 // C [6.15.16] p3:
15593 // An assignment expression has the value of the left operand after the
15594 // assignment, but is not an lvalue.
15595 return CompoundAssignOperator::Create(
15596 C: Context, lhs: LHSExpr, rhs: RHSExpr, opc: Opc,
15597 ResTy: LHSExpr->getType().getUnqualifiedType(), VK: VK_PRValue, OK: OK_Ordinary,
15598 opLoc: OpLoc, FPFeatures: CurFPFeatureOverrides());
15599 QualType ResultType;
15600 switch (Opc) {
15601 case BO_Assign:
15602 ResultType = LHSExpr->getType().getUnqualifiedType();
15603 break;
15604 case BO_LT:
15605 case BO_GT:
15606 case BO_LE:
15607 case BO_GE:
15608 case BO_EQ:
15609 case BO_NE:
15610 case BO_LAnd:
15611 case BO_LOr:
15612 // These operators have a fixed result type regardless of operands.
15613 ResultType = Context.IntTy;
15614 break;
15615 case BO_Comma:
15616 ResultType = RHSExpr->getType();
15617 break;
15618 default:
15619 ResultType = Context.DependentTy;
15620 break;
15621 }
15622 return BinaryOperator::Create(C: Context, lhs: LHSExpr, rhs: RHSExpr, opc: Opc, ResTy: ResultType,
15623 VK: VK_PRValue, OK: OK_Ordinary, opLoc: OpLoc,
15624 FPFeatures: CurFPFeatureOverrides());
15625 }
15626
15627 // Build a built-in binary operation.
15628 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr, ForFoldExpression);
15629}
15630
15631static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
15632 if (T.isNull() || T->isDependentType())
15633 return false;
15634
15635 if (!Ctx.isPromotableIntegerType(T))
15636 return true;
15637
15638 return Ctx.getIntWidth(T) >= Ctx.getIntWidth(T: Ctx.IntTy);
15639}
15640
15641ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
15642 UnaryOperatorKind Opc, Expr *InputExpr,
15643 bool IsAfterAmp) {
15644 ExprResult Input = InputExpr;
15645 ExprValueKind VK = VK_PRValue;
15646 ExprObjectKind OK = OK_Ordinary;
15647 QualType resultType;
15648 bool CanOverflow = false;
15649
15650 bool ConvertHalfVec = false;
15651 if (getLangOpts().OpenCL) {
15652 QualType Ty = InputExpr->getType();
15653 // The only legal unary operation for atomics is '&'.
15654 if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
15655 // OpenCL special types - image, sampler, pipe, and blocks are to be used
15656 // only with a builtin functions and therefore should be disallowed here.
15657 (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
15658 || Ty->isBlockPointerType())) {
15659 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15660 << InputExpr->getType()
15661 << Input.get()->getSourceRange());
15662 }
15663 }
15664
15665 if (getLangOpts().HLSL && OpLoc.isValid()) {
15666 if (Opc == UO_AddrOf)
15667 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_hlsl_operator_unsupported) << 0);
15668 if (Opc == UO_Deref)
15669 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_hlsl_operator_unsupported) << 1);
15670 }
15671
15672 if (InputExpr->isTypeDependent() &&
15673 InputExpr->getType()->isSpecificBuiltinType(K: BuiltinType::Dependent)) {
15674 resultType = Context.DependentTy;
15675 } else {
15676 switch (Opc) {
15677 case UO_PreInc:
15678 case UO_PreDec:
15679 case UO_PostInc:
15680 case UO_PostDec:
15681 resultType =
15682 CheckIncrementDecrementOperand(S&: *this, Op: Input.get(), VK, OK, OpLoc,
15683 IsInc: Opc == UO_PreInc || Opc == UO_PostInc,
15684 IsPrefix: Opc == UO_PreInc || Opc == UO_PreDec);
15685 CanOverflow = isOverflowingIntegerType(Ctx&: Context, T: resultType);
15686 break;
15687 case UO_AddrOf:
15688 resultType = CheckAddressOfOperand(OrigOp&: Input, OpLoc);
15689 CheckAddressOfNoDeref(E: InputExpr);
15690 RecordModifiableNonNullParam(S&: *this, Exp: InputExpr);
15691 break;
15692 case UO_Deref: {
15693 Input = DefaultFunctionArrayLvalueConversion(E: Input.get());
15694 if (Input.isInvalid())
15695 return ExprError();
15696 resultType =
15697 CheckIndirectionOperand(S&: *this, Op: Input.get(), VK, OpLoc, IsAfterAmp);
15698 break;
15699 }
15700 case UO_Plus:
15701 case UO_Minus:
15702 CanOverflow = Opc == UO_Minus &&
15703 isOverflowingIntegerType(Ctx&: Context, T: Input.get()->getType());
15704 Input = UsualUnaryConversions(E: Input.get());
15705 if (Input.isInvalid())
15706 return ExprError();
15707 // Unary plus and minus require promoting an operand of half vector to a
15708 // float vector and truncating the result back to a half vector. For now,
15709 // we do this only when HalfArgsAndReturns is set (that is, when the
15710 // target is arm or arm64).
15711 ConvertHalfVec = needsConversionOfHalfVec(OpRequiresConversion: true, Ctx&: Context, E0: Input.get());
15712
15713 // If the operand is a half vector, promote it to a float vector.
15714 if (ConvertHalfVec)
15715 Input = convertVector(E: Input.get(), ElementType: Context.FloatTy, S&: *this);
15716 resultType = Input.get()->getType();
15717 if (resultType->isArithmeticType()) // C99 6.5.3.3p1
15718 break;
15719 else if (resultType->isVectorType() &&
15720 // The z vector extensions don't allow + or - with bool vectors.
15721 (!Context.getLangOpts().ZVector ||
15722 resultType->castAs<VectorType>()->getVectorKind() !=
15723 VectorKind::AltiVecBool))
15724 break;
15725 else if (resultType->isSveVLSBuiltinType()) // SVE vectors allow + and -
15726 break;
15727 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
15728 Opc == UO_Plus && resultType->isPointerType())
15729 break;
15730
15731 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15732 << resultType << Input.get()->getSourceRange());
15733
15734 case UO_Not: // bitwise complement
15735 Input = UsualUnaryConversions(E: Input.get());
15736 if (Input.isInvalid())
15737 return ExprError();
15738 resultType = Input.get()->getType();
15739 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
15740 if (resultType->isComplexType() || resultType->isComplexIntegerType())
15741 // C99 does not support '~' for complex conjugation.
15742 Diag(Loc: OpLoc, DiagID: diag::ext_integer_complement_complex)
15743 << resultType << Input.get()->getSourceRange();
15744 else if (resultType->hasIntegerRepresentation())
15745 break;
15746 else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
15747 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
15748 // on vector float types.
15749 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15750 if (!T->isIntegerType())
15751 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15752 << resultType << Input.get()->getSourceRange());
15753 } else {
15754 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15755 << resultType << Input.get()->getSourceRange());
15756 }
15757 break;
15758
15759 case UO_LNot: // logical negation
15760 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
15761 Input = DefaultFunctionArrayLvalueConversion(E: Input.get());
15762 if (Input.isInvalid())
15763 return ExprError();
15764 resultType = Input.get()->getType();
15765
15766 // Though we still have to promote half FP to float...
15767 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
15768 Input = ImpCastExprToType(E: Input.get(), Type: Context.FloatTy, CK: CK_FloatingCast)
15769 .get();
15770 resultType = Context.FloatTy;
15771 }
15772
15773 // WebAsembly tables can't be used in unary expressions.
15774 if (resultType->isPointerType() &&
15775 resultType->getPointeeType().isWebAssemblyReferenceType()) {
15776 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15777 << resultType << Input.get()->getSourceRange());
15778 }
15779
15780 if (resultType->isScalarType() && !isScopedEnumerationType(T: resultType)) {
15781 // C99 6.5.3.3p1: ok, fallthrough;
15782 if (Context.getLangOpts().CPlusPlus) {
15783 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
15784 // operand contextually converted to bool.
15785 Input = ImpCastExprToType(E: Input.get(), Type: Context.BoolTy,
15786 CK: ScalarTypeToBooleanCastKind(ScalarTy: resultType));
15787 } else if (Context.getLangOpts().OpenCL &&
15788 Context.getLangOpts().OpenCLVersion < 120) {
15789 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15790 // operate on scalar float types.
15791 if (!resultType->isIntegerType() && !resultType->isPointerType())
15792 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15793 << resultType << Input.get()->getSourceRange());
15794 }
15795 } else if (resultType->isExtVectorType()) {
15796 if (Context.getLangOpts().OpenCL &&
15797 Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
15798 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15799 // operate on vector float types.
15800 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15801 if (!T->isIntegerType())
15802 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15803 << resultType << Input.get()->getSourceRange());
15804 }
15805 // Vector logical not returns the signed variant of the operand type.
15806 resultType = GetSignedVectorType(V: resultType);
15807 break;
15808 } else if (Context.getLangOpts().CPlusPlus &&
15809 resultType->isVectorType()) {
15810 const VectorType *VTy = resultType->castAs<VectorType>();
15811 if (VTy->getVectorKind() != VectorKind::Generic)
15812 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15813 << resultType << Input.get()->getSourceRange());
15814
15815 // Vector logical not returns the signed variant of the operand type.
15816 resultType = GetSignedVectorType(V: resultType);
15817 break;
15818 } else {
15819 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15820 << resultType << Input.get()->getSourceRange());
15821 }
15822
15823 // LNot always has type int. C99 6.5.3.3p5.
15824 // In C++, it's bool. C++ 5.3.1p8
15825 resultType = Context.getLogicalOperationType();
15826 break;
15827 case UO_Real:
15828 case UO_Imag:
15829 resultType = CheckRealImagOperand(S&: *this, V&: Input, Loc: OpLoc, IsReal: Opc == UO_Real);
15830 // _Real maps ordinary l-values into ordinary l-values. _Imag maps
15831 // ordinary complex l-values to ordinary l-values and all other values to
15832 // r-values.
15833 if (Input.isInvalid())
15834 return ExprError();
15835 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
15836 if (Input.get()->isGLValue() &&
15837 Input.get()->getObjectKind() == OK_Ordinary)
15838 VK = Input.get()->getValueKind();
15839 } else if (!getLangOpts().CPlusPlus) {
15840 // In C, a volatile scalar is read by __imag. In C++, it is not.
15841 Input = DefaultLvalueConversion(E: Input.get());
15842 }
15843 break;
15844 case UO_Extension:
15845 resultType = Input.get()->getType();
15846 VK = Input.get()->getValueKind();
15847 OK = Input.get()->getObjectKind();
15848 break;
15849 case UO_Coawait:
15850 // It's unnecessary to represent the pass-through operator co_await in the
15851 // AST; just return the input expression instead.
15852 assert(!Input.get()->getType()->isDependentType() &&
15853 "the co_await expression must be non-dependant before "
15854 "building operator co_await");
15855 return Input;
15856 }
15857 }
15858 if (resultType.isNull() || Input.isInvalid())
15859 return ExprError();
15860
15861 // Check for array bounds violations in the operand of the UnaryOperator,
15862 // except for the '*' and '&' operators that have to be handled specially
15863 // by CheckArrayAccess (as there are special cases like &array[arraysize]
15864 // that are explicitly defined as valid by the standard).
15865 if (Opc != UO_AddrOf && Opc != UO_Deref)
15866 CheckArrayAccess(E: Input.get());
15867
15868 auto *UO =
15869 UnaryOperator::Create(C: Context, input: Input.get(), opc: Opc, type: resultType, VK, OK,
15870 l: OpLoc, CanOverflow, FPFeatures: CurFPFeatureOverrides());
15871
15872 if (Opc == UO_Deref && UO->getType()->hasAttr(AK: attr::NoDeref) &&
15873 !isa<ArrayType>(Val: UO->getType().getDesugaredType(Context)) &&
15874 !isUnevaluatedContext())
15875 ExprEvalContexts.back().PossibleDerefs.insert(Ptr: UO);
15876
15877 // Convert the result back to a half vector.
15878 if (ConvertHalfVec)
15879 return convertVector(E: UO, ElementType: Context.HalfTy, S&: *this);
15880 return UO;
15881}
15882
15883bool Sema::isQualifiedMemberAccess(Expr *E) {
15884 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) {
15885 if (!DRE->getQualifier())
15886 return false;
15887
15888 ValueDecl *VD = DRE->getDecl();
15889 if (!VD->isCXXClassMember())
15890 return false;
15891
15892 if (isa<FieldDecl>(Val: VD) || isa<IndirectFieldDecl>(Val: VD))
15893 return true;
15894 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: VD))
15895 return Method->isImplicitObjectMemberFunction();
15896
15897 return false;
15898 }
15899
15900 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Val: E)) {
15901 if (!ULE->getQualifier())
15902 return false;
15903
15904 for (NamedDecl *D : ULE->decls()) {
15905 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: D)) {
15906 if (Method->isImplicitObjectMemberFunction())
15907 return true;
15908 } else {
15909 // Overload set does not contain methods.
15910 break;
15911 }
15912 }
15913
15914 return false;
15915 }
15916
15917 return false;
15918}
15919
15920ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
15921 UnaryOperatorKind Opc, Expr *Input,
15922 bool IsAfterAmp) {
15923 // First things first: handle placeholders so that the
15924 // overloaded-operator check considers the right type.
15925 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
15926 // Increment and decrement of pseudo-object references.
15927 if (pty->getKind() == BuiltinType::PseudoObject &&
15928 UnaryOperator::isIncrementDecrementOp(Op: Opc))
15929 return PseudoObject().checkIncDec(S, OpLoc, Opcode: Opc, Op: Input);
15930
15931 // extension is always a builtin operator.
15932 if (Opc == UO_Extension)
15933 return CreateBuiltinUnaryOp(OpLoc, Opc, InputExpr: Input);
15934
15935 // & gets special logic for several kinds of placeholder.
15936 // The builtin code knows what to do.
15937 if (Opc == UO_AddrOf &&
15938 (pty->getKind() == BuiltinType::Overload ||
15939 pty->getKind() == BuiltinType::UnknownAny ||
15940 pty->getKind() == BuiltinType::BoundMember))
15941 return CreateBuiltinUnaryOp(OpLoc, Opc, InputExpr: Input);
15942
15943 // Anything else needs to be handled now.
15944 ExprResult Result = CheckPlaceholderExpr(E: Input);
15945 if (Result.isInvalid()) return ExprError();
15946 Input = Result.get();
15947 }
15948
15949 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
15950 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
15951 !(Opc == UO_AddrOf && isQualifiedMemberAccess(E: Input))) {
15952 // Find all of the overloaded operators visible from this point.
15953 UnresolvedSet<16> Functions;
15954 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
15955 if (S && OverOp != OO_None)
15956 LookupOverloadedOperatorName(Op: OverOp, S, Functions);
15957
15958 return CreateOverloadedUnaryOp(OpLoc, Opc, Fns: Functions, input: Input);
15959 }
15960
15961 return CreateBuiltinUnaryOp(OpLoc, Opc, InputExpr: Input, IsAfterAmp);
15962}
15963
15964ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
15965 Expr *Input, bool IsAfterAmp) {
15966 return BuildUnaryOp(S, OpLoc, Opc: ConvertTokenKindToUnaryOpcode(Kind: Op), Input,
15967 IsAfterAmp);
15968}
15969
15970ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
15971 LabelDecl *TheDecl) {
15972 TheDecl->markUsed(C&: Context);
15973 // Create the AST node. The address of a label always has type 'void*'.
15974 auto *Res = new (Context) AddrLabelExpr(
15975 OpLoc, LabLoc, TheDecl, Context.getPointerType(T: Context.VoidTy));
15976
15977 if (getCurFunction())
15978 getCurFunction()->AddrLabels.push_back(Elt: Res);
15979
15980 return Res;
15981}
15982
15983void Sema::ActOnStartStmtExpr() {
15984 PushExpressionEvaluationContext(NewContext: ExprEvalContexts.back().Context);
15985 // Make sure we diagnose jumping into a statement expression.
15986 setFunctionHasBranchProtectedScope();
15987}
15988
15989void Sema::ActOnStmtExprError() {
15990 // Note that function is also called by TreeTransform when leaving a
15991 // StmtExpr scope without rebuilding anything.
15992
15993 DiscardCleanupsInEvaluationContext();
15994 PopExpressionEvaluationContext();
15995}
15996
15997ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
15998 SourceLocation RPLoc) {
15999 return BuildStmtExpr(LPLoc, SubStmt, RPLoc, TemplateDepth: getTemplateDepth(S));
16000}
16001
16002ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
16003 SourceLocation RPLoc, unsigned TemplateDepth) {
16004 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
16005 CompoundStmt *Compound = cast<CompoundStmt>(Val: SubStmt);
16006
16007 if (hasAnyUnrecoverableErrorsInThisFunction())
16008 DiscardCleanupsInEvaluationContext();
16009 assert(!Cleanup.exprNeedsCleanups() &&
16010 "cleanups within StmtExpr not correctly bound!");
16011 PopExpressionEvaluationContext();
16012
16013 // FIXME: there are a variety of strange constraints to enforce here, for
16014 // example, it is not possible to goto into a stmt expression apparently.
16015 // More semantic analysis is needed.
16016
16017 // If there are sub-stmts in the compound stmt, take the type of the last one
16018 // as the type of the stmtexpr.
16019 QualType Ty = Context.VoidTy;
16020 bool StmtExprMayBindToTemp = false;
16021 if (!Compound->body_empty()) {
16022 // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
16023 if (const auto *LastStmt =
16024 dyn_cast<ValueStmt>(Val: Compound->getStmtExprResult())) {
16025 if (const Expr *Value = LastStmt->getExprStmt()) {
16026 StmtExprMayBindToTemp = true;
16027 Ty = Value->getType();
16028 }
16029 }
16030 }
16031
16032 // FIXME: Check that expression type is complete/non-abstract; statement
16033 // expressions are not lvalues.
16034 Expr *ResStmtExpr =
16035 new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
16036 if (StmtExprMayBindToTemp)
16037 return MaybeBindToTemporary(E: ResStmtExpr);
16038 return ResStmtExpr;
16039}
16040
16041ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
16042 if (ER.isInvalid())
16043 return ExprError();
16044
16045 // Do function/array conversion on the last expression, but not
16046 // lvalue-to-rvalue. However, initialize an unqualified type.
16047 ER = DefaultFunctionArrayConversion(E: ER.get());
16048 if (ER.isInvalid())
16049 return ExprError();
16050 Expr *E = ER.get();
16051
16052 if (E->isTypeDependent())
16053 return E;
16054
16055 // In ARC, if the final expression ends in a consume, splice
16056 // the consume out and bind it later. In the alternate case
16057 // (when dealing with a retainable type), the result
16058 // initialization will create a produce. In both cases the
16059 // result will be +1, and we'll need to balance that out with
16060 // a bind.
16061 auto *Cast = dyn_cast<ImplicitCastExpr>(Val: E);
16062 if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
16063 return Cast->getSubExpr();
16064
16065 // FIXME: Provide a better location for the initialization.
16066 return PerformCopyInitialization(
16067 Entity: InitializedEntity::InitializeStmtExprResult(
16068 ReturnLoc: E->getBeginLoc(), Type: E->getType().getAtomicUnqualifiedType()),
16069 EqualLoc: SourceLocation(), Init: E);
16070}
16071
16072ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
16073 TypeSourceInfo *TInfo,
16074 ArrayRef<OffsetOfComponent> Components,
16075 SourceLocation RParenLoc) {
16076 QualType ArgTy = TInfo->getType();
16077 bool Dependent = ArgTy->isDependentType();
16078 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
16079
16080 // We must have at least one component that refers to the type, and the first
16081 // one is known to be a field designator. Verify that the ArgTy represents
16082 // a struct/union/class.
16083 if (!Dependent && !ArgTy->isRecordType())
16084 return ExprError(Diag(Loc: BuiltinLoc, DiagID: diag::err_offsetof_record_type)
16085 << ArgTy << TypeRange);
16086
16087 // Type must be complete per C99 7.17p3 because a declaring a variable
16088 // with an incomplete type would be ill-formed.
16089 if (!Dependent
16090 && RequireCompleteType(Loc: BuiltinLoc, T: ArgTy,
16091 DiagID: diag::err_offsetof_incomplete_type, Args: TypeRange))
16092 return ExprError();
16093
16094 bool DidWarnAboutNonPOD = false;
16095 QualType CurrentType = ArgTy;
16096 SmallVector<OffsetOfNode, 4> Comps;
16097 SmallVector<Expr*, 4> Exprs;
16098 for (const OffsetOfComponent &OC : Components) {
16099 if (OC.isBrackets) {
16100 // Offset of an array sub-field. TODO: Should we allow vector elements?
16101 if (!CurrentType->isDependentType()) {
16102 const ArrayType *AT = Context.getAsArrayType(T: CurrentType);
16103 if(!AT)
16104 return ExprError(Diag(Loc: OC.LocEnd, DiagID: diag::err_offsetof_array_type)
16105 << CurrentType);
16106 CurrentType = AT->getElementType();
16107 } else
16108 CurrentType = Context.DependentTy;
16109
16110 ExprResult IdxRval = DefaultLvalueConversion(E: static_cast<Expr*>(OC.U.E));
16111 if (IdxRval.isInvalid())
16112 return ExprError();
16113 Expr *Idx = IdxRval.get();
16114
16115 // The expression must be an integral expression.
16116 // FIXME: An integral constant expression?
16117 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
16118 !Idx->getType()->isIntegerType())
16119 return ExprError(
16120 Diag(Loc: Idx->getBeginLoc(), DiagID: diag::err_typecheck_subscript_not_integer)
16121 << Idx->getSourceRange());
16122
16123 // Record this array index.
16124 Comps.push_back(Elt: OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
16125 Exprs.push_back(Elt: Idx);
16126 continue;
16127 }
16128
16129 // Offset of a field.
16130 if (CurrentType->isDependentType()) {
16131 // We have the offset of a field, but we can't look into the dependent
16132 // type. Just record the identifier of the field.
16133 Comps.push_back(Elt: OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
16134 CurrentType = Context.DependentTy;
16135 continue;
16136 }
16137
16138 // We need to have a complete type to look into.
16139 if (RequireCompleteType(Loc: OC.LocStart, T: CurrentType,
16140 DiagID: diag::err_offsetof_incomplete_type))
16141 return ExprError();
16142
16143 // Look for the designated field.
16144 const RecordType *RC = CurrentType->getAs<RecordType>();
16145 if (!RC)
16146 return ExprError(Diag(Loc: OC.LocEnd, DiagID: diag::err_offsetof_record_type)
16147 << CurrentType);
16148 RecordDecl *RD = RC->getDecl();
16149
16150 // C++ [lib.support.types]p5:
16151 // The macro offsetof accepts a restricted set of type arguments in this
16152 // International Standard. type shall be a POD structure or a POD union
16153 // (clause 9).
16154 // C++11 [support.types]p4:
16155 // If type is not a standard-layout class (Clause 9), the results are
16156 // undefined.
16157 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(Val: RD)) {
16158 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
16159 unsigned DiagID =
16160 LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
16161 : diag::ext_offsetof_non_pod_type;
16162
16163 if (!IsSafe && !DidWarnAboutNonPOD && !isUnevaluatedContext()) {
16164 Diag(Loc: BuiltinLoc, DiagID)
16165 << SourceRange(Components[0].LocStart, OC.LocEnd) << CurrentType;
16166 DidWarnAboutNonPOD = true;
16167 }
16168 }
16169
16170 // Look for the field.
16171 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
16172 LookupQualifiedName(R, LookupCtx: RD);
16173 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
16174 IndirectFieldDecl *IndirectMemberDecl = nullptr;
16175 if (!MemberDecl) {
16176 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
16177 MemberDecl = IndirectMemberDecl->getAnonField();
16178 }
16179
16180 if (!MemberDecl) {
16181 // Lookup could be ambiguous when looking up a placeholder variable
16182 // __builtin_offsetof(S, _).
16183 // In that case we would already have emitted a diagnostic
16184 if (!R.isAmbiguous())
16185 Diag(Loc: BuiltinLoc, DiagID: diag::err_no_member)
16186 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd);
16187 return ExprError();
16188 }
16189
16190 // C99 7.17p3:
16191 // (If the specified member is a bit-field, the behavior is undefined.)
16192 //
16193 // We diagnose this as an error.
16194 if (MemberDecl->isBitField()) {
16195 Diag(Loc: OC.LocEnd, DiagID: diag::err_offsetof_bitfield)
16196 << MemberDecl->getDeclName()
16197 << SourceRange(BuiltinLoc, RParenLoc);
16198 Diag(Loc: MemberDecl->getLocation(), DiagID: diag::note_bitfield_decl);
16199 return ExprError();
16200 }
16201
16202 RecordDecl *Parent = MemberDecl->getParent();
16203 if (IndirectMemberDecl)
16204 Parent = cast<RecordDecl>(Val: IndirectMemberDecl->getDeclContext());
16205
16206 // If the member was found in a base class, introduce OffsetOfNodes for
16207 // the base class indirections.
16208 CXXBasePaths Paths;
16209 if (IsDerivedFrom(Loc: OC.LocStart, Derived: CurrentType, Base: Context.getTypeDeclType(Decl: Parent),
16210 Paths)) {
16211 if (Paths.getDetectedVirtual()) {
16212 Diag(Loc: OC.LocEnd, DiagID: diag::err_offsetof_field_of_virtual_base)
16213 << MemberDecl->getDeclName()
16214 << SourceRange(BuiltinLoc, RParenLoc);
16215 return ExprError();
16216 }
16217
16218 CXXBasePath &Path = Paths.front();
16219 for (const CXXBasePathElement &B : Path)
16220 Comps.push_back(Elt: OffsetOfNode(B.Base));
16221 }
16222
16223 if (IndirectMemberDecl) {
16224 for (auto *FI : IndirectMemberDecl->chain()) {
16225 assert(isa<FieldDecl>(FI));
16226 Comps.push_back(Elt: OffsetOfNode(OC.LocStart,
16227 cast<FieldDecl>(Val: FI), OC.LocEnd));
16228 }
16229 } else
16230 Comps.push_back(Elt: OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
16231
16232 CurrentType = MemberDecl->getType().getNonReferenceType();
16233 }
16234
16235 return OffsetOfExpr::Create(C: Context, type: Context.getSizeType(), OperatorLoc: BuiltinLoc, tsi: TInfo,
16236 comps: Comps, exprs: Exprs, RParenLoc);
16237}
16238
16239ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
16240 SourceLocation BuiltinLoc,
16241 SourceLocation TypeLoc,
16242 ParsedType ParsedArgTy,
16243 ArrayRef<OffsetOfComponent> Components,
16244 SourceLocation RParenLoc) {
16245
16246 TypeSourceInfo *ArgTInfo;
16247 QualType ArgTy = GetTypeFromParser(Ty: ParsedArgTy, TInfo: &ArgTInfo);
16248 if (ArgTy.isNull())
16249 return ExprError();
16250
16251 if (!ArgTInfo)
16252 ArgTInfo = Context.getTrivialTypeSourceInfo(T: ArgTy, Loc: TypeLoc);
16253
16254 return BuildBuiltinOffsetOf(BuiltinLoc, TInfo: ArgTInfo, Components, RParenLoc);
16255}
16256
16257
16258ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
16259 Expr *CondExpr,
16260 Expr *LHSExpr, Expr *RHSExpr,
16261 SourceLocation RPLoc) {
16262 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
16263
16264 ExprValueKind VK = VK_PRValue;
16265 ExprObjectKind OK = OK_Ordinary;
16266 QualType resType;
16267 bool CondIsTrue = false;
16268 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
16269 resType = Context.DependentTy;
16270 } else {
16271 // The conditional expression is required to be a constant expression.
16272 llvm::APSInt condEval(32);
16273 ExprResult CondICE = VerifyIntegerConstantExpression(
16274 E: CondExpr, Result: &condEval, DiagID: diag::err_typecheck_choose_expr_requires_constant);
16275 if (CondICE.isInvalid())
16276 return ExprError();
16277 CondExpr = CondICE.get();
16278 CondIsTrue = condEval.getZExtValue();
16279
16280 // If the condition is > zero, then the AST type is the same as the LHSExpr.
16281 Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
16282
16283 resType = ActiveExpr->getType();
16284 VK = ActiveExpr->getValueKind();
16285 OK = ActiveExpr->getObjectKind();
16286 }
16287
16288 return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
16289 resType, VK, OK, RPLoc, CondIsTrue);
16290}
16291
16292//===----------------------------------------------------------------------===//
16293// Clang Extensions.
16294//===----------------------------------------------------------------------===//
16295
16296void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
16297 BlockDecl *Block = BlockDecl::Create(C&: Context, DC: CurContext, L: CaretLoc);
16298
16299 if (LangOpts.CPlusPlus) {
16300 MangleNumberingContext *MCtx;
16301 Decl *ManglingContextDecl;
16302 std::tie(args&: MCtx, args&: ManglingContextDecl) =
16303 getCurrentMangleNumberContext(DC: Block->getDeclContext());
16304 if (MCtx) {
16305 unsigned ManglingNumber = MCtx->getManglingNumber(BD: Block);
16306 Block->setBlockMangling(Number: ManglingNumber, Ctx: ManglingContextDecl);
16307 }
16308 }
16309
16310 PushBlockScope(BlockScope: CurScope, Block);
16311 CurContext->addDecl(D: Block);
16312 if (CurScope)
16313 PushDeclContext(S: CurScope, DC: Block);
16314 else
16315 CurContext = Block;
16316
16317 getCurBlock()->HasImplicitReturnType = true;
16318
16319 // Enter a new evaluation context to insulate the block from any
16320 // cleanups from the enclosing full-expression.
16321 PushExpressionEvaluationContext(
16322 NewContext: ExpressionEvaluationContext::PotentiallyEvaluated);
16323}
16324
16325void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
16326 Scope *CurScope) {
16327 assert(ParamInfo.getIdentifier() == nullptr &&
16328 "block-id should have no identifier!");
16329 assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
16330 BlockScopeInfo *CurBlock = getCurBlock();
16331
16332 TypeSourceInfo *Sig = GetTypeForDeclarator(D&: ParamInfo);
16333 QualType T = Sig->getType();
16334 DiagnoseUnexpandedParameterPack(Loc: CaretLoc, T: Sig, UPPC: UPPC_Block);
16335
16336 // GetTypeForDeclarator always produces a function type for a block
16337 // literal signature. Furthermore, it is always a FunctionProtoType
16338 // unless the function was written with a typedef.
16339 assert(T->isFunctionType() &&
16340 "GetTypeForDeclarator made a non-function block signature");
16341
16342 // Look for an explicit signature in that function type.
16343 FunctionProtoTypeLoc ExplicitSignature;
16344
16345 if ((ExplicitSignature = Sig->getTypeLoc()
16346 .getAsAdjusted<FunctionProtoTypeLoc>())) {
16347
16348 // Check whether that explicit signature was synthesized by
16349 // GetTypeForDeclarator. If so, don't save that as part of the
16350 // written signature.
16351 if (ExplicitSignature.getLocalRangeBegin() ==
16352 ExplicitSignature.getLocalRangeEnd()) {
16353 // This would be much cheaper if we stored TypeLocs instead of
16354 // TypeSourceInfos.
16355 TypeLoc Result = ExplicitSignature.getReturnLoc();
16356 unsigned Size = Result.getFullDataSize();
16357 Sig = Context.CreateTypeSourceInfo(T: Result.getType(), Size);
16358 Sig->getTypeLoc().initializeFullCopy(Other: Result, Size);
16359
16360 ExplicitSignature = FunctionProtoTypeLoc();
16361 }
16362 }
16363
16364 CurBlock->TheDecl->setSignatureAsWritten(Sig);
16365 CurBlock->FunctionType = T;
16366
16367 const auto *Fn = T->castAs<FunctionType>();
16368 QualType RetTy = Fn->getReturnType();
16369 bool isVariadic =
16370 (isa<FunctionProtoType>(Val: Fn) && cast<FunctionProtoType>(Val: Fn)->isVariadic());
16371
16372 CurBlock->TheDecl->setIsVariadic(isVariadic);
16373
16374 // Context.DependentTy is used as a placeholder for a missing block
16375 // return type. TODO: what should we do with declarators like:
16376 // ^ * { ... }
16377 // If the answer is "apply template argument deduction"....
16378 if (RetTy != Context.DependentTy) {
16379 CurBlock->ReturnType = RetTy;
16380 CurBlock->TheDecl->setBlockMissingReturnType(false);
16381 CurBlock->HasImplicitReturnType = false;
16382 }
16383
16384 // Push block parameters from the declarator if we had them.
16385 SmallVector<ParmVarDecl*, 8> Params;
16386 if (ExplicitSignature) {
16387 for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
16388 ParmVarDecl *Param = ExplicitSignature.getParam(i: I);
16389 if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
16390 !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
16391 // Diagnose this as an extension in C17 and earlier.
16392 if (!getLangOpts().C23)
16393 Diag(Loc: Param->getLocation(), DiagID: diag::ext_parameter_name_omitted_c23);
16394 }
16395 Params.push_back(Elt: Param);
16396 }
16397
16398 // Fake up parameter variables if we have a typedef, like
16399 // ^ fntype { ... }
16400 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
16401 for (const auto &I : Fn->param_types()) {
16402 ParmVarDecl *Param = BuildParmVarDeclForTypedef(
16403 DC: CurBlock->TheDecl, Loc: ParamInfo.getBeginLoc(), T: I);
16404 Params.push_back(Elt: Param);
16405 }
16406 }
16407
16408 // Set the parameters on the block decl.
16409 if (!Params.empty()) {
16410 CurBlock->TheDecl->setParams(Params);
16411 CheckParmsForFunctionDef(Parameters: CurBlock->TheDecl->parameters(),
16412 /*CheckParameterNames=*/false);
16413 }
16414
16415 // Finally we can process decl attributes.
16416 ProcessDeclAttributes(S: CurScope, D: CurBlock->TheDecl, PD: ParamInfo);
16417
16418 // Put the parameter variables in scope.
16419 for (auto *AI : CurBlock->TheDecl->parameters()) {
16420 AI->setOwningFunction(CurBlock->TheDecl);
16421
16422 // If this has an identifier, add it to the scope stack.
16423 if (AI->getIdentifier()) {
16424 CheckShadow(S: CurBlock->TheScope, D: AI);
16425
16426 PushOnScopeChains(D: AI, S: CurBlock->TheScope);
16427 }
16428
16429 if (AI->isInvalidDecl())
16430 CurBlock->TheDecl->setInvalidDecl();
16431 }
16432}
16433
16434void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
16435 // Leave the expression-evaluation context.
16436 DiscardCleanupsInEvaluationContext();
16437 PopExpressionEvaluationContext();
16438
16439 // Pop off CurBlock, handle nested blocks.
16440 PopDeclContext();
16441 PopFunctionScopeInfo();
16442}
16443
16444ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
16445 Stmt *Body, Scope *CurScope) {
16446 // If blocks are disabled, emit an error.
16447 if (!LangOpts.Blocks)
16448 Diag(Loc: CaretLoc, DiagID: diag::err_blocks_disable) << LangOpts.OpenCL;
16449
16450 // Leave the expression-evaluation context.
16451 if (hasAnyUnrecoverableErrorsInThisFunction())
16452 DiscardCleanupsInEvaluationContext();
16453 assert(!Cleanup.exprNeedsCleanups() &&
16454 "cleanups within block not correctly bound!");
16455 PopExpressionEvaluationContext();
16456
16457 BlockScopeInfo *BSI = cast<BlockScopeInfo>(Val: FunctionScopes.back());
16458 BlockDecl *BD = BSI->TheDecl;
16459
16460 maybeAddDeclWithEffects(D: BD);
16461
16462 if (BSI->HasImplicitReturnType)
16463 deduceClosureReturnType(CSI&: *BSI);
16464
16465 QualType RetTy = Context.VoidTy;
16466 if (!BSI->ReturnType.isNull())
16467 RetTy = BSI->ReturnType;
16468
16469 bool NoReturn = BD->hasAttr<NoReturnAttr>();
16470 QualType BlockTy;
16471
16472 // If the user wrote a function type in some form, try to use that.
16473 if (!BSI->FunctionType.isNull()) {
16474 const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
16475
16476 FunctionType::ExtInfo Ext = FTy->getExtInfo();
16477 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(noReturn: true);
16478
16479 // Turn protoless block types into nullary block types.
16480 if (isa<FunctionNoProtoType>(Val: FTy)) {
16481 FunctionProtoType::ExtProtoInfo EPI;
16482 EPI.ExtInfo = Ext;
16483 BlockTy = Context.getFunctionType(ResultTy: RetTy, Args: {}, EPI);
16484
16485 // Otherwise, if we don't need to change anything about the function type,
16486 // preserve its sugar structure.
16487 } else if (FTy->getReturnType() == RetTy &&
16488 (!NoReturn || FTy->getNoReturnAttr())) {
16489 BlockTy = BSI->FunctionType;
16490
16491 // Otherwise, make the minimal modifications to the function type.
16492 } else {
16493 const FunctionProtoType *FPT = cast<FunctionProtoType>(Val: FTy);
16494 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
16495 EPI.TypeQuals = Qualifiers();
16496 EPI.ExtInfo = Ext;
16497 BlockTy = Context.getFunctionType(ResultTy: RetTy, Args: FPT->getParamTypes(), EPI);
16498 }
16499
16500 // If we don't have a function type, just build one from nothing.
16501 } else {
16502 FunctionProtoType::ExtProtoInfo EPI;
16503 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(noReturn: NoReturn);
16504 BlockTy = Context.getFunctionType(ResultTy: RetTy, Args: {}, EPI);
16505 }
16506
16507 DiagnoseUnusedParameters(Parameters: BD->parameters());
16508 BlockTy = Context.getBlockPointerType(T: BlockTy);
16509
16510 // If needed, diagnose invalid gotos and switches in the block.
16511 if (getCurFunction()->NeedsScopeChecking() &&
16512 !PP.isCodeCompletionEnabled())
16513 DiagnoseInvalidJumps(Body: cast<CompoundStmt>(Val: Body));
16514
16515 BD->setBody(cast<CompoundStmt>(Val: Body));
16516
16517 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
16518 DiagnoseUnguardedAvailabilityViolations(FD: BD);
16519
16520 // Try to apply the named return value optimization. We have to check again
16521 // if we can do this, though, because blocks keep return statements around
16522 // to deduce an implicit return type.
16523 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
16524 !BD->isDependentContext())
16525 computeNRVO(Body, Scope: BSI);
16526
16527 if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
16528 RetTy.hasNonTrivialToPrimitiveCopyCUnion())
16529 checkNonTrivialCUnion(QT: RetTy, Loc: BD->getCaretLocation(),
16530 UseContext: NonTrivialCUnionContext::FunctionReturn,
16531 NonTrivialKind: NTCUK_Destruct | NTCUK_Copy);
16532
16533 PopDeclContext();
16534
16535 // Set the captured variables on the block.
16536 SmallVector<BlockDecl::Capture, 4> Captures;
16537 for (Capture &Cap : BSI->Captures) {
16538 if (Cap.isInvalid() || Cap.isThisCapture())
16539 continue;
16540 // Cap.getVariable() is always a VarDecl because
16541 // blocks cannot capture structured bindings or other ValueDecl kinds.
16542 auto *Var = cast<VarDecl>(Val: Cap.getVariable());
16543 Expr *CopyExpr = nullptr;
16544 if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
16545 if (const RecordType *Record =
16546 Cap.getCaptureType()->getAs<RecordType>()) {
16547 // The capture logic needs the destructor, so make sure we mark it.
16548 // Usually this is unnecessary because most local variables have
16549 // their destructors marked at declaration time, but parameters are
16550 // an exception because it's technically only the call site that
16551 // actually requires the destructor.
16552 if (isa<ParmVarDecl>(Val: Var))
16553 FinalizeVarWithDestructor(VD: Var, DeclInitType: Record);
16554
16555 // Enter a separate potentially-evaluated context while building block
16556 // initializers to isolate their cleanups from those of the block
16557 // itself.
16558 // FIXME: Is this appropriate even when the block itself occurs in an
16559 // unevaluated operand?
16560 EnterExpressionEvaluationContext EvalContext(
16561 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16562
16563 SourceLocation Loc = Cap.getLocation();
16564
16565 ExprResult Result = BuildDeclarationNameExpr(
16566 SS: CXXScopeSpec(), NameInfo: DeclarationNameInfo(Var->getDeclName(), Loc), D: Var);
16567
16568 // According to the blocks spec, the capture of a variable from
16569 // the stack requires a const copy constructor. This is not true
16570 // of the copy/move done to move a __block variable to the heap.
16571 if (!Result.isInvalid() &&
16572 !Result.get()->getType().isConstQualified()) {
16573 Result = ImpCastExprToType(E: Result.get(),
16574 Type: Result.get()->getType().withConst(),
16575 CK: CK_NoOp, VK: VK_LValue);
16576 }
16577
16578 if (!Result.isInvalid()) {
16579 Result = PerformCopyInitialization(
16580 Entity: InitializedEntity::InitializeBlock(BlockVarLoc: Var->getLocation(),
16581 Type: Cap.getCaptureType()),
16582 EqualLoc: Loc, Init: Result.get());
16583 }
16584
16585 // Build a full-expression copy expression if initialization
16586 // succeeded and used a non-trivial constructor. Recover from
16587 // errors by pretending that the copy isn't necessary.
16588 if (!Result.isInvalid() &&
16589 !cast<CXXConstructExpr>(Val: Result.get())->getConstructor()
16590 ->isTrivial()) {
16591 Result = MaybeCreateExprWithCleanups(SubExpr: Result);
16592 CopyExpr = Result.get();
16593 }
16594 }
16595 }
16596
16597 BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
16598 CopyExpr);
16599 Captures.push_back(Elt: NewCap);
16600 }
16601 BD->setCaptures(Context, Captures, CapturesCXXThis: BSI->CXXThisCaptureIndex != 0);
16602
16603 // Pop the block scope now but keep it alive to the end of this function.
16604 AnalysisBasedWarnings::Policy WP =
16605 AnalysisWarnings.getPolicyInEffectAt(Loc: Body->getEndLoc());
16606 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(WP: &WP, D: BD, BlockType: BlockTy);
16607
16608 BlockExpr *Result = new (Context)
16609 BlockExpr(BD, BlockTy, BSI->ContainsUnexpandedParameterPack);
16610
16611 // If the block isn't obviously global, i.e. it captures anything at
16612 // all, then we need to do a few things in the surrounding context:
16613 if (Result->getBlockDecl()->hasCaptures()) {
16614 // First, this expression has a new cleanup object.
16615 ExprCleanupObjects.push_back(Elt: Result->getBlockDecl());
16616 Cleanup.setExprNeedsCleanups(true);
16617
16618 // It also gets a branch-protected scope if any of the captured
16619 // variables needs destruction.
16620 for (const auto &CI : Result->getBlockDecl()->captures()) {
16621 const VarDecl *var = CI.getVariable();
16622 if (var->getType().isDestructedType() != QualType::DK_none) {
16623 setFunctionHasBranchProtectedScope();
16624 break;
16625 }
16626 }
16627 }
16628
16629 if (getCurFunction())
16630 getCurFunction()->addBlock(BD);
16631
16632 // This can happen if the block's return type is deduced, but
16633 // the return expression is invalid.
16634 if (BD->isInvalidDecl())
16635 return CreateRecoveryExpr(Begin: Result->getBeginLoc(), End: Result->getEndLoc(),
16636 SubExprs: {Result}, T: Result->getType());
16637 return Result;
16638}
16639
16640ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
16641 SourceLocation RPLoc) {
16642 TypeSourceInfo *TInfo;
16643 GetTypeFromParser(Ty, TInfo: &TInfo);
16644 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
16645}
16646
16647ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
16648 Expr *E, TypeSourceInfo *TInfo,
16649 SourceLocation RPLoc) {
16650 Expr *OrigExpr = E;
16651 bool IsMS = false;
16652
16653 // CUDA device code does not support varargs.
16654 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
16655 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(Val: CurContext)) {
16656 CUDAFunctionTarget T = CUDA().IdentifyTarget(D: F);
16657 if (T == CUDAFunctionTarget::Global || T == CUDAFunctionTarget::Device ||
16658 T == CUDAFunctionTarget::HostDevice)
16659 return ExprError(Diag(Loc: E->getBeginLoc(), DiagID: diag::err_va_arg_in_device));
16660 }
16661 }
16662
16663 // NVPTX does not support va_arg expression.
16664 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
16665 Context.getTargetInfo().getTriple().isNVPTX())
16666 targetDiag(Loc: E->getBeginLoc(), DiagID: diag::err_va_arg_in_device);
16667
16668 // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
16669 // as Microsoft ABI on an actual Microsoft platform, where
16670 // __builtin_ms_va_list and __builtin_va_list are the same.)
16671 if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
16672 Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
16673 QualType MSVaListType = Context.getBuiltinMSVaListType();
16674 if (Context.hasSameType(T1: MSVaListType, T2: E->getType())) {
16675 if (CheckForModifiableLvalue(E, Loc: BuiltinLoc, S&: *this))
16676 return ExprError();
16677 IsMS = true;
16678 }
16679 }
16680
16681 // Get the va_list type
16682 QualType VaListType = Context.getBuiltinVaListType();
16683 if (!IsMS) {
16684 if (VaListType->isArrayType()) {
16685 // Deal with implicit array decay; for example, on x86-64,
16686 // va_list is an array, but it's supposed to decay to
16687 // a pointer for va_arg.
16688 VaListType = Context.getArrayDecayedType(T: VaListType);
16689 // Make sure the input expression also decays appropriately.
16690 ExprResult Result = UsualUnaryConversions(E);
16691 if (Result.isInvalid())
16692 return ExprError();
16693 E = Result.get();
16694 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
16695 // If va_list is a record type and we are compiling in C++ mode,
16696 // check the argument using reference binding.
16697 InitializedEntity Entity = InitializedEntity::InitializeParameter(
16698 Context, Type: Context.getLValueReferenceType(T: VaListType), Consumed: false);
16699 ExprResult Init = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: E);
16700 if (Init.isInvalid())
16701 return ExprError();
16702 E = Init.getAs<Expr>();
16703 } else {
16704 // Otherwise, the va_list argument must be an l-value because
16705 // it is modified by va_arg.
16706 if (!E->isTypeDependent() &&
16707 CheckForModifiableLvalue(E, Loc: BuiltinLoc, S&: *this))
16708 return ExprError();
16709 }
16710 }
16711
16712 if (!IsMS && !E->isTypeDependent() &&
16713 !Context.hasSameType(T1: VaListType, T2: E->getType()))
16714 return ExprError(
16715 Diag(Loc: E->getBeginLoc(),
16716 DiagID: diag::err_first_argument_to_va_arg_not_of_type_va_list)
16717 << OrigExpr->getType() << E->getSourceRange());
16718
16719 if (!TInfo->getType()->isDependentType()) {
16720 if (RequireCompleteType(Loc: TInfo->getTypeLoc().getBeginLoc(), T: TInfo->getType(),
16721 DiagID: diag::err_second_parameter_to_va_arg_incomplete,
16722 Args: TInfo->getTypeLoc()))
16723 return ExprError();
16724
16725 if (RequireNonAbstractType(Loc: TInfo->getTypeLoc().getBeginLoc(),
16726 T: TInfo->getType(),
16727 DiagID: diag::err_second_parameter_to_va_arg_abstract,
16728 Args: TInfo->getTypeLoc()))
16729 return ExprError();
16730
16731 if (!TInfo->getType().isPODType(Context)) {
16732 Diag(Loc: TInfo->getTypeLoc().getBeginLoc(),
16733 DiagID: TInfo->getType()->isObjCLifetimeType()
16734 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
16735 : diag::warn_second_parameter_to_va_arg_not_pod)
16736 << TInfo->getType()
16737 << TInfo->getTypeLoc().getSourceRange();
16738 }
16739
16740 if (TInfo->getType()->isArrayType()) {
16741 DiagRuntimeBehavior(Loc: TInfo->getTypeLoc().getBeginLoc(), Statement: E,
16742 PD: PDiag(DiagID: diag::warn_second_parameter_to_va_arg_array)
16743 << TInfo->getType()
16744 << TInfo->getTypeLoc().getSourceRange());
16745 }
16746
16747 // Check for va_arg where arguments of the given type will be promoted
16748 // (i.e. this va_arg is guaranteed to have undefined behavior).
16749 QualType PromoteType;
16750 if (Context.isPromotableIntegerType(T: TInfo->getType())) {
16751 PromoteType = Context.getPromotedIntegerType(PromotableType: TInfo->getType());
16752 // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
16753 // and C23 7.16.1.1p2 says, in part:
16754 // If type is not compatible with the type of the actual next argument
16755 // (as promoted according to the default argument promotions), the
16756 // behavior is undefined, except for the following cases:
16757 // - both types are pointers to qualified or unqualified versions of
16758 // compatible types;
16759 // - one type is compatible with a signed integer type, the other
16760 // type is compatible with the corresponding unsigned integer type,
16761 // and the value is representable in both types;
16762 // - one type is pointer to qualified or unqualified void and the
16763 // other is a pointer to a qualified or unqualified character type;
16764 // - or, the type of the next argument is nullptr_t and type is a
16765 // pointer type that has the same representation and alignment
16766 // requirements as a pointer to a character type.
16767 // Given that type compatibility is the primary requirement (ignoring
16768 // qualifications), you would think we could call typesAreCompatible()
16769 // directly to test this. However, in C++, that checks for *same type*,
16770 // which causes false positives when passing an enumeration type to
16771 // va_arg. Instead, get the underlying type of the enumeration and pass
16772 // that.
16773 QualType UnderlyingType = TInfo->getType();
16774 if (const auto *ET = UnderlyingType->getAs<EnumType>())
16775 UnderlyingType = ET->getDecl()->getIntegerType();
16776 if (Context.typesAreCompatible(T1: PromoteType, T2: UnderlyingType,
16777 /*CompareUnqualified*/ true))
16778 PromoteType = QualType();
16779
16780 // If the types are still not compatible, we need to test whether the
16781 // promoted type and the underlying type are the same except for
16782 // signedness. Ask the AST for the correctly corresponding type and see
16783 // if that's compatible.
16784 if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
16785 PromoteType->isUnsignedIntegerType() !=
16786 UnderlyingType->isUnsignedIntegerType()) {
16787 UnderlyingType =
16788 UnderlyingType->isUnsignedIntegerType()
16789 ? Context.getCorrespondingSignedType(T: UnderlyingType)
16790 : Context.getCorrespondingUnsignedType(T: UnderlyingType);
16791 if (Context.typesAreCompatible(T1: PromoteType, T2: UnderlyingType,
16792 /*CompareUnqualified*/ true))
16793 PromoteType = QualType();
16794 }
16795 }
16796 if (TInfo->getType()->isSpecificBuiltinType(K: BuiltinType::Float))
16797 PromoteType = Context.DoubleTy;
16798 if (!PromoteType.isNull())
16799 DiagRuntimeBehavior(Loc: TInfo->getTypeLoc().getBeginLoc(), Statement: E,
16800 PD: PDiag(DiagID: diag::warn_second_parameter_to_va_arg_never_compatible)
16801 << TInfo->getType()
16802 << PromoteType
16803 << TInfo->getTypeLoc().getSourceRange());
16804 }
16805
16806 QualType T = TInfo->getType().getNonLValueExprType(Context);
16807 return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
16808}
16809
16810ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
16811 // The type of __null will be int or long, depending on the size of
16812 // pointers on the target.
16813 QualType Ty;
16814 unsigned pw = Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default);
16815 if (pw == Context.getTargetInfo().getIntWidth())
16816 Ty = Context.IntTy;
16817 else if (pw == Context.getTargetInfo().getLongWidth())
16818 Ty = Context.LongTy;
16819 else if (pw == Context.getTargetInfo().getLongLongWidth())
16820 Ty = Context.LongLongTy;
16821 else {
16822 llvm_unreachable("I don't know size of pointer!");
16823 }
16824
16825 return new (Context) GNUNullExpr(Ty, TokenLoc);
16826}
16827
16828static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
16829 CXXRecordDecl *ImplDecl = nullptr;
16830
16831 // Fetch the std::source_location::__impl decl.
16832 if (NamespaceDecl *Std = S.getStdNamespace()) {
16833 LookupResult ResultSL(S, &S.PP.getIdentifierTable().get(Name: "source_location"),
16834 Loc, Sema::LookupOrdinaryName);
16835 if (S.LookupQualifiedName(R&: ResultSL, LookupCtx: Std)) {
16836 if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
16837 LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get(Name: "__impl"),
16838 Loc, Sema::LookupOrdinaryName);
16839 if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
16840 S.LookupQualifiedName(R&: ResultImpl, LookupCtx: SLDecl)) {
16841 ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
16842 }
16843 }
16844 }
16845 }
16846
16847 if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
16848 S.Diag(Loc, DiagID: diag::err_std_source_location_impl_not_found);
16849 return nullptr;
16850 }
16851
16852 // Verify that __impl is a trivial struct type, with no base classes, and with
16853 // only the four expected fields.
16854 if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
16855 ImplDecl->getNumBases() != 0) {
16856 S.Diag(Loc, DiagID: diag::err_std_source_location_impl_malformed);
16857 return nullptr;
16858 }
16859
16860 unsigned Count = 0;
16861 for (FieldDecl *F : ImplDecl->fields()) {
16862 StringRef Name = F->getName();
16863
16864 if (Name == "_M_file_name") {
16865 if (F->getType() !=
16866 S.Context.getPointerType(T: S.Context.CharTy.withConst()))
16867 break;
16868 Count++;
16869 } else if (Name == "_M_function_name") {
16870 if (F->getType() !=
16871 S.Context.getPointerType(T: S.Context.CharTy.withConst()))
16872 break;
16873 Count++;
16874 } else if (Name == "_M_line") {
16875 if (!F->getType()->isIntegerType())
16876 break;
16877 Count++;
16878 } else if (Name == "_M_column") {
16879 if (!F->getType()->isIntegerType())
16880 break;
16881 Count++;
16882 } else {
16883 Count = 100; // invalid
16884 break;
16885 }
16886 }
16887 if (Count != 4) {
16888 S.Diag(Loc, DiagID: diag::err_std_source_location_impl_malformed);
16889 return nullptr;
16890 }
16891
16892 return ImplDecl;
16893}
16894
16895ExprResult Sema::ActOnSourceLocExpr(SourceLocIdentKind Kind,
16896 SourceLocation BuiltinLoc,
16897 SourceLocation RPLoc) {
16898 QualType ResultTy;
16899 switch (Kind) {
16900 case SourceLocIdentKind::File:
16901 case SourceLocIdentKind::FileName:
16902 case SourceLocIdentKind::Function:
16903 case SourceLocIdentKind::FuncSig: {
16904 QualType ArrTy = Context.getStringLiteralArrayType(EltTy: Context.CharTy, Length: 0);
16905 ResultTy =
16906 Context.getPointerType(T: ArrTy->getAsArrayTypeUnsafe()->getElementType());
16907 break;
16908 }
16909 case SourceLocIdentKind::Line:
16910 case SourceLocIdentKind::Column:
16911 ResultTy = Context.UnsignedIntTy;
16912 break;
16913 case SourceLocIdentKind::SourceLocStruct:
16914 if (!StdSourceLocationImplDecl) {
16915 StdSourceLocationImplDecl =
16916 LookupStdSourceLocationImpl(S&: *this, Loc: BuiltinLoc);
16917 if (!StdSourceLocationImplDecl)
16918 return ExprError();
16919 }
16920 ResultTy = Context.getPointerType(
16921 T: Context.getRecordType(Decl: StdSourceLocationImplDecl).withConst());
16922 break;
16923 }
16924
16925 return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext: CurContext);
16926}
16927
16928ExprResult Sema::BuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy,
16929 SourceLocation BuiltinLoc,
16930 SourceLocation RPLoc,
16931 DeclContext *ParentContext) {
16932 return new (Context)
16933 SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
16934}
16935
16936ExprResult Sema::ActOnEmbedExpr(SourceLocation EmbedKeywordLoc,
16937 StringLiteral *BinaryData, StringRef FileName) {
16938 EmbedDataStorage *Data = new (Context) EmbedDataStorage;
16939 Data->BinaryData = BinaryData;
16940 Data->FileName = FileName;
16941 return new (Context)
16942 EmbedExpr(Context, EmbedKeywordLoc, Data, /*NumOfElements=*/0,
16943 Data->getDataElementCount());
16944}
16945
16946static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
16947 const Expr *SrcExpr) {
16948 if (!DstType->isFunctionPointerType() ||
16949 !SrcExpr->getType()->isFunctionType())
16950 return false;
16951
16952 auto *DRE = dyn_cast<DeclRefExpr>(Val: SrcExpr->IgnoreParenImpCasts());
16953 if (!DRE)
16954 return false;
16955
16956 auto *FD = dyn_cast<FunctionDecl>(Val: DRE->getDecl());
16957 if (!FD)
16958 return false;
16959
16960 return !S.checkAddressOfFunctionIsAvailable(Function: FD,
16961 /*Complain=*/true,
16962 Loc: SrcExpr->getBeginLoc());
16963}
16964
16965bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
16966 SourceLocation Loc,
16967 QualType DstType, QualType SrcType,
16968 Expr *SrcExpr, AssignmentAction Action,
16969 bool *Complained) {
16970 if (Complained)
16971 *Complained = false;
16972
16973 // Decode the result (notice that AST's are still created for extensions).
16974 bool CheckInferredResultType = false;
16975 bool isInvalid = false;
16976 unsigned DiagKind = 0;
16977 ConversionFixItGenerator ConvHints;
16978 bool MayHaveConvFixit = false;
16979 bool MayHaveFunctionDiff = false;
16980 const ObjCInterfaceDecl *IFace = nullptr;
16981 const ObjCProtocolDecl *PDecl = nullptr;
16982
16983 switch (ConvTy) {
16984 case AssignConvertType::Compatible:
16985 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
16986 return false;
16987 case AssignConvertType::CompatibleVoidPtrToNonVoidPtr:
16988 // Still a valid conversion, but we may want to diagnose for C++
16989 // compatibility reasons.
16990 DiagKind = diag::warn_compatible_implicit_pointer_conv;
16991 break;
16992 case AssignConvertType::PointerToInt:
16993 if (getLangOpts().CPlusPlus) {
16994 DiagKind = diag::err_typecheck_convert_pointer_int;
16995 isInvalid = true;
16996 } else {
16997 DiagKind = diag::ext_typecheck_convert_pointer_int;
16998 }
16999 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
17000 MayHaveConvFixit = true;
17001 break;
17002 case AssignConvertType::IntToPointer:
17003 if (getLangOpts().CPlusPlus) {
17004 DiagKind = diag::err_typecheck_convert_int_pointer;
17005 isInvalid = true;
17006 } else {
17007 DiagKind = diag::ext_typecheck_convert_int_pointer;
17008 }
17009 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
17010 MayHaveConvFixit = true;
17011 break;
17012 case AssignConvertType::IncompatibleFunctionPointerStrict:
17013 DiagKind =
17014 diag::warn_typecheck_convert_incompatible_function_pointer_strict;
17015 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
17016 MayHaveConvFixit = true;
17017 break;
17018 case AssignConvertType::IncompatibleFunctionPointer:
17019 if (getLangOpts().CPlusPlus) {
17020 DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
17021 isInvalid = true;
17022 } else {
17023 DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
17024 }
17025 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
17026 MayHaveConvFixit = true;
17027 break;
17028 case AssignConvertType::IncompatiblePointer:
17029 if (Action == AssignmentAction::Passing_CFAudited) {
17030 DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
17031 } else if (getLangOpts().CPlusPlus) {
17032 DiagKind = diag::err_typecheck_convert_incompatible_pointer;
17033 isInvalid = true;
17034 } else {
17035 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
17036 }
17037 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
17038 SrcType->isObjCObjectPointerType();
17039 if (CheckInferredResultType) {
17040 SrcType = SrcType.getUnqualifiedType();
17041 DstType = DstType.getUnqualifiedType();
17042 } else {
17043 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
17044 }
17045 MayHaveConvFixit = true;
17046 break;
17047 case AssignConvertType::IncompatiblePointerSign:
17048 if (getLangOpts().CPlusPlus) {
17049 DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
17050 isInvalid = true;
17051 } else {
17052 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
17053 }
17054 break;
17055 case AssignConvertType::FunctionVoidPointer:
17056 if (getLangOpts().CPlusPlus) {
17057 DiagKind = diag::err_typecheck_convert_pointer_void_func;
17058 isInvalid = true;
17059 } else {
17060 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
17061 }
17062 break;
17063 case AssignConvertType::IncompatiblePointerDiscardsQualifiers: {
17064 // Perform array-to-pointer decay if necessary.
17065 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(T: SrcType);
17066
17067 isInvalid = true;
17068
17069 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
17070 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
17071 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
17072 DiagKind = diag::err_typecheck_incompatible_address_space;
17073 break;
17074 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
17075 DiagKind = diag::err_typecheck_incompatible_ownership;
17076 break;
17077 } else if (!lhq.getPointerAuth().isEquivalent(Other: rhq.getPointerAuth())) {
17078 DiagKind = diag::err_typecheck_incompatible_ptrauth;
17079 break;
17080 }
17081
17082 llvm_unreachable("unknown error case for discarding qualifiers!");
17083 // fallthrough
17084 }
17085 case AssignConvertType::CompatiblePointerDiscardsQualifiers:
17086 // If the qualifiers lost were because we were applying the
17087 // (deprecated) C++ conversion from a string literal to a char*
17088 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
17089 // Ideally, this check would be performed in
17090 // checkPointerTypesForAssignment. However, that would require a
17091 // bit of refactoring (so that the second argument is an
17092 // expression, rather than a type), which should be done as part
17093 // of a larger effort to fix checkPointerTypesForAssignment for
17094 // C++ semantics.
17095 if (getLangOpts().CPlusPlus &&
17096 IsStringLiteralToNonConstPointerConversion(From: SrcExpr, ToType: DstType))
17097 return false;
17098 if (getLangOpts().CPlusPlus) {
17099 DiagKind = diag::err_typecheck_convert_discards_qualifiers;
17100 isInvalid = true;
17101 } else {
17102 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
17103 }
17104
17105 break;
17106 case AssignConvertType::IncompatibleNestedPointerQualifiers:
17107 if (getLangOpts().CPlusPlus) {
17108 isInvalid = true;
17109 DiagKind = diag::err_nested_pointer_qualifier_mismatch;
17110 } else {
17111 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
17112 }
17113 break;
17114 case AssignConvertType::IncompatibleNestedPointerAddressSpaceMismatch:
17115 DiagKind = diag::err_typecheck_incompatible_nested_address_space;
17116 isInvalid = true;
17117 break;
17118 case AssignConvertType::IntToBlockPointer:
17119 DiagKind = diag::err_int_to_block_pointer;
17120 isInvalid = true;
17121 break;
17122 case AssignConvertType::IncompatibleBlockPointer:
17123 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
17124 isInvalid = true;
17125 break;
17126 case AssignConvertType::IncompatibleObjCQualifiedId: {
17127 if (SrcType->isObjCQualifiedIdType()) {
17128 const ObjCObjectPointerType *srcOPT =
17129 SrcType->castAs<ObjCObjectPointerType>();
17130 for (auto *srcProto : srcOPT->quals()) {
17131 PDecl = srcProto;
17132 break;
17133 }
17134 if (const ObjCInterfaceType *IFaceT =
17135 DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17136 IFace = IFaceT->getDecl();
17137 }
17138 else if (DstType->isObjCQualifiedIdType()) {
17139 const ObjCObjectPointerType *dstOPT =
17140 DstType->castAs<ObjCObjectPointerType>();
17141 for (auto *dstProto : dstOPT->quals()) {
17142 PDecl = dstProto;
17143 break;
17144 }
17145 if (const ObjCInterfaceType *IFaceT =
17146 SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17147 IFace = IFaceT->getDecl();
17148 }
17149 if (getLangOpts().CPlusPlus) {
17150 DiagKind = diag::err_incompatible_qualified_id;
17151 isInvalid = true;
17152 } else {
17153 DiagKind = diag::warn_incompatible_qualified_id;
17154 }
17155 break;
17156 }
17157 case AssignConvertType::IncompatibleVectors:
17158 if (getLangOpts().CPlusPlus) {
17159 DiagKind = diag::err_incompatible_vectors;
17160 isInvalid = true;
17161 } else {
17162 DiagKind = diag::warn_incompatible_vectors;
17163 }
17164 break;
17165 case AssignConvertType::IncompatibleObjCWeakRef:
17166 DiagKind = diag::err_arc_weak_unavailable_assign;
17167 isInvalid = true;
17168 break;
17169 case AssignConvertType::Incompatible:
17170 if (maybeDiagnoseAssignmentToFunction(S&: *this, DstType, SrcExpr)) {
17171 if (Complained)
17172 *Complained = true;
17173 return true;
17174 }
17175
17176 DiagKind = diag::err_typecheck_convert_incompatible;
17177 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
17178 MayHaveConvFixit = true;
17179 isInvalid = true;
17180 MayHaveFunctionDiff = true;
17181 break;
17182 }
17183
17184 QualType FirstType, SecondType;
17185 switch (Action) {
17186 case AssignmentAction::Assigning:
17187 case AssignmentAction::Initializing:
17188 // The destination type comes first.
17189 FirstType = DstType;
17190 SecondType = SrcType;
17191 break;
17192
17193 case AssignmentAction::Returning:
17194 case AssignmentAction::Passing:
17195 case AssignmentAction::Passing_CFAudited:
17196 case AssignmentAction::Converting:
17197 case AssignmentAction::Sending:
17198 case AssignmentAction::Casting:
17199 // The source type comes first.
17200 FirstType = SrcType;
17201 SecondType = DstType;
17202 break;
17203 }
17204
17205 PartialDiagnostic FDiag = PDiag(DiagID: DiagKind);
17206 AssignmentAction ActionForDiag = Action;
17207 if (Action == AssignmentAction::Passing_CFAudited)
17208 ActionForDiag = AssignmentAction::Passing;
17209
17210 FDiag << FirstType << SecondType << ActionForDiag
17211 << SrcExpr->getSourceRange();
17212
17213 if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
17214 DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
17215 auto isPlainChar = [](const clang::Type *Type) {
17216 return Type->isSpecificBuiltinType(K: BuiltinType::Char_S) ||
17217 Type->isSpecificBuiltinType(K: BuiltinType::Char_U);
17218 };
17219 FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
17220 isPlainChar(SecondType->getPointeeOrArrayElementType()));
17221 }
17222
17223 // If we can fix the conversion, suggest the FixIts.
17224 if (!ConvHints.isNull()) {
17225 for (FixItHint &H : ConvHints.Hints)
17226 FDiag << H;
17227 }
17228
17229 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
17230
17231 if (MayHaveFunctionDiff)
17232 HandleFunctionTypeMismatch(PDiag&: FDiag, FromType: SecondType, ToType: FirstType);
17233
17234 Diag(Loc, PD: FDiag);
17235 if ((DiagKind == diag::warn_incompatible_qualified_id ||
17236 DiagKind == diag::err_incompatible_qualified_id) &&
17237 PDecl && IFace && !IFace->hasDefinition())
17238 Diag(Loc: IFace->getLocation(), DiagID: diag::note_incomplete_class_and_qualified_id)
17239 << IFace << PDecl;
17240
17241 if (SecondType == Context.OverloadTy)
17242 NoteAllOverloadCandidates(E: OverloadExpr::find(E: SrcExpr).Expression,
17243 DestType: FirstType, /*TakingAddress=*/true);
17244
17245 if (CheckInferredResultType)
17246 ObjC().EmitRelatedResultTypeNote(E: SrcExpr);
17247
17248 if (Action == AssignmentAction::Returning &&
17249 ConvTy == AssignConvertType::IncompatiblePointer)
17250 ObjC().EmitRelatedResultTypeNoteForReturn(destType: DstType);
17251
17252 if (Complained)
17253 *Complained = true;
17254 return isInvalid;
17255}
17256
17257ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17258 llvm::APSInt *Result,
17259 AllowFoldKind CanFold) {
17260 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
17261 public:
17262 SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
17263 QualType T) override {
17264 return S.Diag(Loc, DiagID: diag::err_ice_not_integral)
17265 << T << S.LangOpts.CPlusPlus;
17266 }
17267 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17268 return S.Diag(Loc, DiagID: diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
17269 }
17270 } Diagnoser;
17271
17272 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17273}
17274
17275ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17276 llvm::APSInt *Result,
17277 unsigned DiagID,
17278 AllowFoldKind CanFold) {
17279 class IDDiagnoser : public VerifyICEDiagnoser {
17280 unsigned DiagID;
17281
17282 public:
17283 IDDiagnoser(unsigned DiagID)
17284 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
17285
17286 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17287 return S.Diag(Loc, DiagID);
17288 }
17289 } Diagnoser(DiagID);
17290
17291 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17292}
17293
17294Sema::SemaDiagnosticBuilder
17295Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
17296 QualType T) {
17297 return diagnoseNotICE(S, Loc);
17298}
17299
17300Sema::SemaDiagnosticBuilder
17301Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
17302 return S.Diag(Loc, DiagID: diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
17303}
17304
17305ExprResult
17306Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
17307 VerifyICEDiagnoser &Diagnoser,
17308 AllowFoldKind CanFold) {
17309 SourceLocation DiagLoc = E->getBeginLoc();
17310
17311 if (getLangOpts().CPlusPlus11) {
17312 // C++11 [expr.const]p5:
17313 // If an expression of literal class type is used in a context where an
17314 // integral constant expression is required, then that class type shall
17315 // have a single non-explicit conversion function to an integral or
17316 // unscoped enumeration type
17317 ExprResult Converted;
17318 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
17319 VerifyICEDiagnoser &BaseDiagnoser;
17320 public:
17321 CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
17322 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
17323 BaseDiagnoser.Suppress, true),
17324 BaseDiagnoser(BaseDiagnoser) {}
17325
17326 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
17327 QualType T) override {
17328 return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
17329 }
17330
17331 SemaDiagnosticBuilder diagnoseIncomplete(
17332 Sema &S, SourceLocation Loc, QualType T) override {
17333 return S.Diag(Loc, DiagID: diag::err_ice_incomplete_type) << T;
17334 }
17335
17336 SemaDiagnosticBuilder diagnoseExplicitConv(
17337 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17338 return S.Diag(Loc, DiagID: diag::err_ice_explicit_conversion) << T << ConvTy;
17339 }
17340
17341 SemaDiagnosticBuilder noteExplicitConv(
17342 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17343 return S.Diag(Loc: Conv->getLocation(), DiagID: diag::note_ice_conversion_here)
17344 << ConvTy->isEnumeralType() << ConvTy;
17345 }
17346
17347 SemaDiagnosticBuilder diagnoseAmbiguous(
17348 Sema &S, SourceLocation Loc, QualType T) override {
17349 return S.Diag(Loc, DiagID: diag::err_ice_ambiguous_conversion) << T;
17350 }
17351
17352 SemaDiagnosticBuilder noteAmbiguous(
17353 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17354 return S.Diag(Loc: Conv->getLocation(), DiagID: diag::note_ice_conversion_here)
17355 << ConvTy->isEnumeralType() << ConvTy;
17356 }
17357
17358 SemaDiagnosticBuilder diagnoseConversion(
17359 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17360 llvm_unreachable("conversion functions are permitted");
17361 }
17362 } ConvertDiagnoser(Diagnoser);
17363
17364 Converted = PerformContextualImplicitConversion(Loc: DiagLoc, FromE: E,
17365 Converter&: ConvertDiagnoser);
17366 if (Converted.isInvalid())
17367 return Converted;
17368 E = Converted.get();
17369 // The 'explicit' case causes us to get a RecoveryExpr. Give up here so we
17370 // don't try to evaluate it later. We also don't want to return the
17371 // RecoveryExpr here, as it results in this call succeeding, thus callers of
17372 // this function will attempt to use 'Value'.
17373 if (isa<RecoveryExpr>(Val: E))
17374 return ExprError();
17375 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
17376 return ExprError();
17377 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
17378 // An ICE must be of integral or unscoped enumeration type.
17379 if (!Diagnoser.Suppress)
17380 Diagnoser.diagnoseNotICEType(S&: *this, Loc: DiagLoc, T: E->getType())
17381 << E->getSourceRange();
17382 return ExprError();
17383 }
17384
17385 ExprResult RValueExpr = DefaultLvalueConversion(E);
17386 if (RValueExpr.isInvalid())
17387 return ExprError();
17388
17389 E = RValueExpr.get();
17390
17391 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
17392 // in the non-ICE case.
17393 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Ctx: Context)) {
17394 SmallVector<PartialDiagnosticAt, 8> Notes;
17395 if (Result)
17396 *Result = E->EvaluateKnownConstIntCheckOverflow(Ctx: Context, Diag: &Notes);
17397 if (!isa<ConstantExpr>(Val: E))
17398 E = Result ? ConstantExpr::Create(Context, E, Result: APValue(*Result))
17399 : ConstantExpr::Create(Context, E);
17400
17401 if (Notes.empty())
17402 return E;
17403
17404 // If our only note is the usual "invalid subexpression" note, just point
17405 // the caret at its location rather than producing an essentially
17406 // redundant note.
17407 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17408 diag::note_invalid_subexpr_in_const_expr) {
17409 DiagLoc = Notes[0].first;
17410 Notes.clear();
17411 }
17412
17413 if (getLangOpts().CPlusPlus) {
17414 if (!Diagnoser.Suppress) {
17415 Diagnoser.diagnoseNotICE(S&: *this, Loc: DiagLoc) << E->getSourceRange();
17416 for (const PartialDiagnosticAt &Note : Notes)
17417 Diag(Loc: Note.first, PD: Note.second);
17418 }
17419 return ExprError();
17420 }
17421
17422 Diagnoser.diagnoseFold(S&: *this, Loc: DiagLoc) << E->getSourceRange();
17423 for (const PartialDiagnosticAt &Note : Notes)
17424 Diag(Loc: Note.first, PD: Note.second);
17425
17426 return E;
17427 }
17428
17429 Expr::EvalResult EvalResult;
17430 SmallVector<PartialDiagnosticAt, 8> Notes;
17431 EvalResult.Diag = &Notes;
17432
17433 // Try to evaluate the expression, and produce diagnostics explaining why it's
17434 // not a constant expression as a side-effect.
17435 bool Folded =
17436 E->EvaluateAsRValue(Result&: EvalResult, Ctx: Context, /*isConstantContext*/ InConstantContext: true) &&
17437 EvalResult.Val.isInt() && !EvalResult.HasSideEffects &&
17438 (!getLangOpts().CPlusPlus || !EvalResult.HasUndefinedBehavior);
17439
17440 if (!isa<ConstantExpr>(Val: E))
17441 E = ConstantExpr::Create(Context, E, Result: EvalResult.Val);
17442
17443 // In C++11, we can rely on diagnostics being produced for any expression
17444 // which is not a constant expression. If no diagnostics were produced, then
17445 // this is a constant expression.
17446 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
17447 if (Result)
17448 *Result = EvalResult.Val.getInt();
17449 return E;
17450 }
17451
17452 // If our only note is the usual "invalid subexpression" note, just point
17453 // the caret at its location rather than producing an essentially
17454 // redundant note.
17455 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17456 diag::note_invalid_subexpr_in_const_expr) {
17457 DiagLoc = Notes[0].first;
17458 Notes.clear();
17459 }
17460
17461 if (!Folded || CanFold == AllowFoldKind::No) {
17462 if (!Diagnoser.Suppress) {
17463 Diagnoser.diagnoseNotICE(S&: *this, Loc: DiagLoc) << E->getSourceRange();
17464 for (const PartialDiagnosticAt &Note : Notes)
17465 Diag(Loc: Note.first, PD: Note.second);
17466 }
17467
17468 return ExprError();
17469 }
17470
17471 Diagnoser.diagnoseFold(S&: *this, Loc: DiagLoc) << E->getSourceRange();
17472 for (const PartialDiagnosticAt &Note : Notes)
17473 Diag(Loc: Note.first, PD: Note.second);
17474
17475 if (Result)
17476 *Result = EvalResult.Val.getInt();
17477 return E;
17478}
17479
17480namespace {
17481 // Handle the case where we conclude a expression which we speculatively
17482 // considered to be unevaluated is actually evaluated.
17483 class TransformToPE : public TreeTransform<TransformToPE> {
17484 typedef TreeTransform<TransformToPE> BaseTransform;
17485
17486 public:
17487 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
17488
17489 // Make sure we redo semantic analysis
17490 bool AlwaysRebuild() { return true; }
17491 bool ReplacingOriginal() { return true; }
17492
17493 // We need to special-case DeclRefExprs referring to FieldDecls which
17494 // are not part of a member pointer formation; normal TreeTransforming
17495 // doesn't catch this case because of the way we represent them in the AST.
17496 // FIXME: This is a bit ugly; is it really the best way to handle this
17497 // case?
17498 //
17499 // Error on DeclRefExprs referring to FieldDecls.
17500 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17501 if (isa<FieldDecl>(Val: E->getDecl()) &&
17502 !SemaRef.isUnevaluatedContext())
17503 return SemaRef.Diag(Loc: E->getLocation(),
17504 DiagID: diag::err_invalid_non_static_member_use)
17505 << E->getDecl() << E->getSourceRange();
17506
17507 return BaseTransform::TransformDeclRefExpr(E);
17508 }
17509
17510 // Exception: filter out member pointer formation
17511 ExprResult TransformUnaryOperator(UnaryOperator *E) {
17512 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
17513 return E;
17514
17515 return BaseTransform::TransformUnaryOperator(E);
17516 }
17517
17518 // The body of a lambda-expression is in a separate expression evaluation
17519 // context so never needs to be transformed.
17520 // FIXME: Ideally we wouldn't transform the closure type either, and would
17521 // just recreate the capture expressions and lambda expression.
17522 StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
17523 return SkipLambdaBody(E, S: Body);
17524 }
17525 };
17526}
17527
17528ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
17529 assert(isUnevaluatedContext() &&
17530 "Should only transform unevaluated expressions");
17531 ExprEvalContexts.back().Context =
17532 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
17533 if (isUnevaluatedContext())
17534 return E;
17535 return TransformToPE(*this).TransformExpr(E);
17536}
17537
17538TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
17539 assert(isUnevaluatedContext() &&
17540 "Should only transform unevaluated expressions");
17541 ExprEvalContexts.back().Context = parentEvaluationContext().Context;
17542 if (isUnevaluatedContext())
17543 return TInfo;
17544 return TransformToPE(*this).TransformType(DI: TInfo);
17545}
17546
17547void
17548Sema::PushExpressionEvaluationContext(
17549 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
17550 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17551 ExprEvalContexts.emplace_back(Args&: NewContext, Args: ExprCleanupObjects.size(), Args&: Cleanup,
17552 Args&: LambdaContextDecl, Args&: ExprContext);
17553
17554 // Discarded statements and immediate contexts nested in other
17555 // discarded statements or immediate context are themselves
17556 // a discarded statement or an immediate context, respectively.
17557 ExprEvalContexts.back().InDiscardedStatement =
17558 parentEvaluationContext().isDiscardedStatementContext();
17559
17560 // C++23 [expr.const]/p15
17561 // An expression or conversion is in an immediate function context if [...]
17562 // it is a subexpression of a manifestly constant-evaluated expression or
17563 // conversion.
17564 const auto &Prev = parentEvaluationContext();
17565 ExprEvalContexts.back().InImmediateFunctionContext =
17566 Prev.isImmediateFunctionContext() || Prev.isConstantEvaluated();
17567
17568 ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
17569 Prev.InImmediateEscalatingFunctionContext;
17570
17571 Cleanup.reset();
17572 if (!MaybeODRUseExprs.empty())
17573 std::swap(LHS&: MaybeODRUseExprs, RHS&: ExprEvalContexts.back().SavedMaybeODRUseExprs);
17574}
17575
17576void
17577Sema::PushExpressionEvaluationContext(
17578 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
17579 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17580 Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
17581 PushExpressionEvaluationContext(NewContext, LambdaContextDecl: ClosureContextDecl, ExprContext);
17582}
17583
17584void Sema::PushExpressionEvaluationContextForFunction(
17585 ExpressionEvaluationContext NewContext, FunctionDecl *FD) {
17586 // [expr.const]/p14.1
17587 // An expression or conversion is in an immediate function context if it is
17588 // potentially evaluated and either: its innermost enclosing non-block scope
17589 // is a function parameter scope of an immediate function.
17590 PushExpressionEvaluationContext(
17591 NewContext: FD && FD->isConsteval()
17592 ? ExpressionEvaluationContext::ImmediateFunctionContext
17593 : NewContext);
17594 const Sema::ExpressionEvaluationContextRecord &Parent =
17595 parentEvaluationContext();
17596 Sema::ExpressionEvaluationContextRecord &Current = currentEvaluationContext();
17597
17598 Current.InDiscardedStatement = false;
17599
17600 if (FD) {
17601
17602 // Each ExpressionEvaluationContextRecord also keeps track of whether the
17603 // context is nested in an immediate function context, so smaller contexts
17604 // that appear inside immediate functions (like variable initializers) are
17605 // considered to be inside an immediate function context even though by
17606 // themselves they are not immediate function contexts. But when a new
17607 // function is entered, we need to reset this tracking, since the entered
17608 // function might be not an immediate function.
17609
17610 Current.InImmediateEscalatingFunctionContext =
17611 getLangOpts().CPlusPlus20 && FD->isImmediateEscalating();
17612
17613 if (isLambdaMethod(DC: FD))
17614 Current.InImmediateFunctionContext =
17615 FD->isConsteval() ||
17616 (isLambdaMethod(DC: FD) && (Parent.isConstantEvaluated() ||
17617 Parent.isImmediateFunctionContext()));
17618 else
17619 Current.InImmediateFunctionContext = FD->isConsteval();
17620 }
17621}
17622
17623namespace {
17624
17625const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
17626 PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
17627 if (const auto *E = dyn_cast<UnaryOperator>(Val: PossibleDeref)) {
17628 if (E->getOpcode() == UO_Deref)
17629 return CheckPossibleDeref(S, PossibleDeref: E->getSubExpr());
17630 } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(Val: PossibleDeref)) {
17631 return CheckPossibleDeref(S, PossibleDeref: E->getBase());
17632 } else if (const auto *E = dyn_cast<MemberExpr>(Val: PossibleDeref)) {
17633 return CheckPossibleDeref(S, PossibleDeref: E->getBase());
17634 } else if (const auto E = dyn_cast<DeclRefExpr>(Val: PossibleDeref)) {
17635 QualType Inner;
17636 QualType Ty = E->getType();
17637 if (const auto *Ptr = Ty->getAs<PointerType>())
17638 Inner = Ptr->getPointeeType();
17639 else if (const auto *Arr = S.Context.getAsArrayType(T: Ty))
17640 Inner = Arr->getElementType();
17641 else
17642 return nullptr;
17643
17644 if (Inner->hasAttr(AK: attr::NoDeref))
17645 return E;
17646 }
17647 return nullptr;
17648}
17649
17650} // namespace
17651
17652void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
17653 for (const Expr *E : Rec.PossibleDerefs) {
17654 const DeclRefExpr *DeclRef = CheckPossibleDeref(S&: *this, PossibleDeref: E);
17655 if (DeclRef) {
17656 const ValueDecl *Decl = DeclRef->getDecl();
17657 Diag(Loc: E->getExprLoc(), DiagID: diag::warn_dereference_of_noderef_type)
17658 << Decl->getName() << E->getSourceRange();
17659 Diag(Loc: Decl->getLocation(), DiagID: diag::note_previous_decl) << Decl->getName();
17660 } else {
17661 Diag(Loc: E->getExprLoc(), DiagID: diag::warn_dereference_of_noderef_type_no_decl)
17662 << E->getSourceRange();
17663 }
17664 }
17665 Rec.PossibleDerefs.clear();
17666}
17667
17668void Sema::CheckUnusedVolatileAssignment(Expr *E) {
17669 if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
17670 return;
17671
17672 // Note: ignoring parens here is not justified by the standard rules, but
17673 // ignoring parentheses seems like a more reasonable approach, and this only
17674 // drives a deprecation warning so doesn't affect conformance.
17675 if (auto *BO = dyn_cast<BinaryOperator>(Val: E->IgnoreParenImpCasts())) {
17676 if (BO->getOpcode() == BO_Assign) {
17677 auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
17678 llvm::erase(C&: LHSs, V: BO->getLHS());
17679 }
17680 }
17681}
17682
17683void Sema::MarkExpressionAsImmediateEscalating(Expr *E) {
17684 assert(getLangOpts().CPlusPlus20 &&
17685 ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
17686 "Cannot mark an immediate escalating expression outside of an "
17687 "immediate escalating context");
17688 if (auto *Call = dyn_cast<CallExpr>(Val: E->IgnoreImplicit());
17689 Call && Call->getCallee()) {
17690 if (auto *DeclRef =
17691 dyn_cast<DeclRefExpr>(Val: Call->getCallee()->IgnoreImplicit()))
17692 DeclRef->setIsImmediateEscalating(true);
17693 } else if (auto *Ctr = dyn_cast<CXXConstructExpr>(Val: E->IgnoreImplicit())) {
17694 Ctr->setIsImmediateEscalating(true);
17695 } else if (auto *DeclRef = dyn_cast<DeclRefExpr>(Val: E->IgnoreImplicit())) {
17696 DeclRef->setIsImmediateEscalating(true);
17697 } else {
17698 assert(false && "expected an immediately escalating expression");
17699 }
17700 if (FunctionScopeInfo *FI = getCurFunction())
17701 FI->FoundImmediateEscalatingExpression = true;
17702}
17703
17704ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
17705 if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
17706 !Decl->isImmediateFunction() || isAlwaysConstantEvaluatedContext() ||
17707 isCheckingDefaultArgumentOrInitializer() ||
17708 RebuildingImmediateInvocation || isImmediateFunctionContext())
17709 return E;
17710
17711 /// Opportunistically remove the callee from ReferencesToConsteval if we can.
17712 /// It's OK if this fails; we'll also remove this in
17713 /// HandleImmediateInvocations, but catching it here allows us to avoid
17714 /// walking the AST looking for it in simple cases.
17715 if (auto *Call = dyn_cast<CallExpr>(Val: E.get()->IgnoreImplicit()))
17716 if (auto *DeclRef =
17717 dyn_cast<DeclRefExpr>(Val: Call->getCallee()->IgnoreImplicit()))
17718 ExprEvalContexts.back().ReferenceToConsteval.erase(Ptr: DeclRef);
17719
17720 // C++23 [expr.const]/p16
17721 // An expression or conversion is immediate-escalating if it is not initially
17722 // in an immediate function context and it is [...] an immediate invocation
17723 // that is not a constant expression and is not a subexpression of an
17724 // immediate invocation.
17725 APValue Cached;
17726 auto CheckConstantExpressionAndKeepResult = [&]() {
17727 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17728 Expr::EvalResult Eval;
17729 Eval.Diag = &Notes;
17730 bool Res = E.get()->EvaluateAsConstantExpr(
17731 Result&: Eval, Ctx: getASTContext(), Kind: ConstantExprKind::ImmediateInvocation);
17732 if (Res && Notes.empty()) {
17733 Cached = std::move(Eval.Val);
17734 return true;
17735 }
17736 return false;
17737 };
17738
17739 if (!E.get()->isValueDependent() &&
17740 ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
17741 !CheckConstantExpressionAndKeepResult()) {
17742 MarkExpressionAsImmediateEscalating(E: E.get());
17743 return E;
17744 }
17745
17746 if (Cleanup.exprNeedsCleanups()) {
17747 // Since an immediate invocation is a full expression itself - it requires
17748 // an additional ExprWithCleanups node, but it can participate to a bigger
17749 // full expression which actually requires cleanups to be run after so
17750 // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it
17751 // may discard cleanups for outer expression too early.
17752
17753 // Note that ExprWithCleanups created here must always have empty cleanup
17754 // objects:
17755 // - compound literals do not create cleanup objects in C++ and immediate
17756 // invocations are C++-only.
17757 // - blocks are not allowed inside constant expressions and compiler will
17758 // issue an error if they appear there.
17759 //
17760 // Hence, in correct code any cleanup objects created inside current
17761 // evaluation context must be outside the immediate invocation.
17762 E = ExprWithCleanups::Create(C: getASTContext(), subexpr: E.get(),
17763 CleanupsHaveSideEffects: Cleanup.cleanupsHaveSideEffects(), objects: {});
17764 }
17765
17766 ConstantExpr *Res = ConstantExpr::Create(
17767 Context: getASTContext(), E: E.get(),
17768 Storage: ConstantExpr::getStorageKind(T: Decl->getReturnType().getTypePtr(),
17769 Context: getASTContext()),
17770 /*IsImmediateInvocation*/ true);
17771 if (Cached.hasValue())
17772 Res->MoveIntoResult(Value&: Cached, Context: getASTContext());
17773 /// Value-dependent constant expressions should not be immediately
17774 /// evaluated until they are instantiated.
17775 if (!Res->isValueDependent())
17776 ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Args&: Res, Args: 0);
17777 return Res;
17778}
17779
17780static void EvaluateAndDiagnoseImmediateInvocation(
17781 Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
17782 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17783 Expr::EvalResult Eval;
17784 Eval.Diag = &Notes;
17785 ConstantExpr *CE = Candidate.getPointer();
17786 bool Result = CE->EvaluateAsConstantExpr(
17787 Result&: Eval, Ctx: SemaRef.getASTContext(), Kind: ConstantExprKind::ImmediateInvocation);
17788 if (!Result || !Notes.empty()) {
17789 SemaRef.FailedImmediateInvocations.insert(Ptr: CE);
17790 Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
17791 if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(Val: InnerExpr))
17792 InnerExpr = FunctionalCast->getSubExpr()->IgnoreImplicit();
17793 FunctionDecl *FD = nullptr;
17794 if (auto *Call = dyn_cast<CallExpr>(Val: InnerExpr))
17795 FD = cast<FunctionDecl>(Val: Call->getCalleeDecl());
17796 else if (auto *Call = dyn_cast<CXXConstructExpr>(Val: InnerExpr))
17797 FD = Call->getConstructor();
17798 else if (auto *Cast = dyn_cast<CastExpr>(Val: InnerExpr))
17799 FD = dyn_cast_or_null<FunctionDecl>(Val: Cast->getConversionFunction());
17800
17801 assert(FD && FD->isImmediateFunction() &&
17802 "could not find an immediate function in this expression");
17803 if (FD->isInvalidDecl())
17804 return;
17805 SemaRef.Diag(Loc: CE->getBeginLoc(), DiagID: diag::err_invalid_consteval_call)
17806 << FD << FD->isConsteval();
17807 if (auto Context =
17808 SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
17809 SemaRef.Diag(Loc: Context->Loc, DiagID: diag::note_invalid_consteval_initializer)
17810 << Context->Decl;
17811 SemaRef.Diag(Loc: Context->Decl->getBeginLoc(), DiagID: diag::note_declared_at);
17812 }
17813 if (!FD->isConsteval())
17814 SemaRef.DiagnoseImmediateEscalatingReason(FD);
17815 for (auto &Note : Notes)
17816 SemaRef.Diag(Loc: Note.first, PD: Note.second);
17817 return;
17818 }
17819 CE->MoveIntoResult(Value&: Eval.Val, Context: SemaRef.getASTContext());
17820}
17821
17822static void RemoveNestedImmediateInvocation(
17823 Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
17824 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
17825 struct ComplexRemove : TreeTransform<ComplexRemove> {
17826 using Base = TreeTransform<ComplexRemove>;
17827 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17828 SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
17829 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
17830 CurrentII;
17831 ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
17832 SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
17833 SmallVector<Sema::ImmediateInvocationCandidate,
17834 4>::reverse_iterator Current)
17835 : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
17836 void RemoveImmediateInvocation(ConstantExpr* E) {
17837 auto It = std::find_if(first: CurrentII, last: IISet.rend(),
17838 pred: [E](Sema::ImmediateInvocationCandidate Elem) {
17839 return Elem.getPointer() == E;
17840 });
17841 // It is possible that some subexpression of the current immediate
17842 // invocation was handled from another expression evaluation context. Do
17843 // not handle the current immediate invocation if some of its
17844 // subexpressions failed before.
17845 if (It == IISet.rend()) {
17846 if (SemaRef.FailedImmediateInvocations.contains(Ptr: E))
17847 CurrentII->setInt(1);
17848 } else {
17849 It->setInt(1); // Mark as deleted
17850 }
17851 }
17852 ExprResult TransformConstantExpr(ConstantExpr *E) {
17853 if (!E->isImmediateInvocation())
17854 return Base::TransformConstantExpr(E);
17855 RemoveImmediateInvocation(E);
17856 return Base::TransformExpr(E: E->getSubExpr());
17857 }
17858 /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
17859 /// we need to remove its DeclRefExpr from the DRSet.
17860 ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
17861 DRSet.erase(Ptr: cast<DeclRefExpr>(Val: E->getCallee()->IgnoreImplicit()));
17862 return Base::TransformCXXOperatorCallExpr(E);
17863 }
17864 /// Base::TransformUserDefinedLiteral doesn't preserve the
17865 /// UserDefinedLiteral node.
17866 ExprResult TransformUserDefinedLiteral(UserDefinedLiteral *E) { return E; }
17867 /// Base::TransformInitializer skips ConstantExpr so we need to visit them
17868 /// here.
17869 ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
17870 if (!Init)
17871 return Init;
17872
17873 // We cannot use IgnoreImpCasts because we need to preserve
17874 // full expressions.
17875 while (true) {
17876 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: Init))
17877 Init = ICE->getSubExpr();
17878 else if (auto *ICE = dyn_cast<MaterializeTemporaryExpr>(Val: Init))
17879 Init = ICE->getSubExpr();
17880 else
17881 break;
17882 }
17883 /// ConstantExprs are the first layer of implicit node to be removed so if
17884 /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
17885 if (auto *CE = dyn_cast<ConstantExpr>(Val: Init);
17886 CE && CE->isImmediateInvocation())
17887 RemoveImmediateInvocation(E: CE);
17888 return Base::TransformInitializer(Init, NotCopyInit);
17889 }
17890 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17891 DRSet.erase(Ptr: E);
17892 return E;
17893 }
17894 ExprResult TransformLambdaExpr(LambdaExpr *E) {
17895 // Do not rebuild lambdas to avoid creating a new type.
17896 // Lambdas have already been processed inside their eval contexts.
17897 return E;
17898 }
17899 bool AlwaysRebuild() { return false; }
17900 bool ReplacingOriginal() { return true; }
17901 bool AllowSkippingCXXConstructExpr() {
17902 bool Res = AllowSkippingFirstCXXConstructExpr;
17903 AllowSkippingFirstCXXConstructExpr = true;
17904 return Res;
17905 }
17906 bool AllowSkippingFirstCXXConstructExpr = true;
17907 } Transformer(SemaRef, Rec.ReferenceToConsteval,
17908 Rec.ImmediateInvocationCandidates, It);
17909
17910 /// CXXConstructExpr with a single argument are getting skipped by
17911 /// TreeTransform in some situtation because they could be implicit. This
17912 /// can only occur for the top-level CXXConstructExpr because it is used
17913 /// nowhere in the expression being transformed therefore will not be rebuilt.
17914 /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
17915 /// skipping the first CXXConstructExpr.
17916 if (isa<CXXConstructExpr>(Val: It->getPointer()->IgnoreImplicit()))
17917 Transformer.AllowSkippingFirstCXXConstructExpr = false;
17918
17919 ExprResult Res = Transformer.TransformExpr(E: It->getPointer()->getSubExpr());
17920 // The result may not be usable in case of previous compilation errors.
17921 // In this case evaluation of the expression may result in crash so just
17922 // don't do anything further with the result.
17923 if (Res.isUsable()) {
17924 Res = SemaRef.MaybeCreateExprWithCleanups(SubExpr: Res);
17925 It->getPointer()->setSubExpr(Res.get());
17926 }
17927}
17928
17929static void
17930HandleImmediateInvocations(Sema &SemaRef,
17931 Sema::ExpressionEvaluationContextRecord &Rec) {
17932 if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
17933 Rec.ReferenceToConsteval.size() == 0) ||
17934 Rec.isImmediateFunctionContext() || SemaRef.RebuildingImmediateInvocation)
17935 return;
17936
17937 /// When we have more than 1 ImmediateInvocationCandidates or previously
17938 /// failed immediate invocations, we need to check for nested
17939 /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
17940 /// Otherwise we only need to remove ReferenceToConsteval in the immediate
17941 /// invocation.
17942 if (Rec.ImmediateInvocationCandidates.size() > 1 ||
17943 !SemaRef.FailedImmediateInvocations.empty()) {
17944
17945 /// Prevent sema calls during the tree transform from adding pointers that
17946 /// are already in the sets.
17947 llvm::SaveAndRestore DisableIITracking(
17948 SemaRef.RebuildingImmediateInvocation, true);
17949
17950 /// Prevent diagnostic during tree transfrom as they are duplicates
17951 Sema::TentativeAnalysisScope DisableDiag(SemaRef);
17952
17953 for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
17954 It != Rec.ImmediateInvocationCandidates.rend(); It++)
17955 if (!It->getInt())
17956 RemoveNestedImmediateInvocation(SemaRef, Rec, It);
17957 } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
17958 Rec.ReferenceToConsteval.size()) {
17959 struct SimpleRemove : DynamicRecursiveASTVisitor {
17960 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17961 SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
17962 bool VisitDeclRefExpr(DeclRefExpr *E) override {
17963 DRSet.erase(Ptr: E);
17964 return DRSet.size();
17965 }
17966 } Visitor(Rec.ReferenceToConsteval);
17967 Visitor.TraverseStmt(
17968 S: Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
17969 }
17970 for (auto CE : Rec.ImmediateInvocationCandidates)
17971 if (!CE.getInt())
17972 EvaluateAndDiagnoseImmediateInvocation(SemaRef, Candidate: CE);
17973 for (auto *DR : Rec.ReferenceToConsteval) {
17974 // If the expression is immediate escalating, it is not an error;
17975 // The outer context itself becomes immediate and further errors,
17976 // if any, will be handled by DiagnoseImmediateEscalatingReason.
17977 if (DR->isImmediateEscalating())
17978 continue;
17979 auto *FD = cast<FunctionDecl>(Val: DR->getDecl());
17980 const NamedDecl *ND = FD;
17981 if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: ND);
17982 MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD)))
17983 ND = MD->getParent();
17984
17985 // C++23 [expr.const]/p16
17986 // An expression or conversion is immediate-escalating if it is not
17987 // initially in an immediate function context and it is [...] a
17988 // potentially-evaluated id-expression that denotes an immediate function
17989 // that is not a subexpression of an immediate invocation.
17990 bool ImmediateEscalating = false;
17991 bool IsPotentiallyEvaluated =
17992 Rec.Context ==
17993 Sema::ExpressionEvaluationContext::PotentiallyEvaluated ||
17994 Rec.Context ==
17995 Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed;
17996 if (SemaRef.inTemplateInstantiation() && IsPotentiallyEvaluated)
17997 ImmediateEscalating = Rec.InImmediateEscalatingFunctionContext;
17998
17999 if (!Rec.InImmediateEscalatingFunctionContext ||
18000 (SemaRef.inTemplateInstantiation() && !ImmediateEscalating)) {
18001 SemaRef.Diag(Loc: DR->getBeginLoc(), DiagID: diag::err_invalid_consteval_take_address)
18002 << ND << isa<CXXRecordDecl>(Val: ND) << FD->isConsteval();
18003 if (!FD->getBuiltinID())
18004 SemaRef.Diag(Loc: ND->getLocation(), DiagID: diag::note_declared_at);
18005 if (auto Context =
18006 SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
18007 SemaRef.Diag(Loc: Context->Loc, DiagID: diag::note_invalid_consteval_initializer)
18008 << Context->Decl;
18009 SemaRef.Diag(Loc: Context->Decl->getBeginLoc(), DiagID: diag::note_declared_at);
18010 }
18011 if (FD->isImmediateEscalating() && !FD->isConsteval())
18012 SemaRef.DiagnoseImmediateEscalatingReason(FD);
18013
18014 } else {
18015 SemaRef.MarkExpressionAsImmediateEscalating(E: DR);
18016 }
18017 }
18018}
18019
18020void Sema::PopExpressionEvaluationContext() {
18021 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
18022 if (!Rec.Lambdas.empty()) {
18023 using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
18024 if (!getLangOpts().CPlusPlus20 &&
18025 (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
18026 Rec.isUnevaluated() ||
18027 (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
18028 unsigned D;
18029 if (Rec.isUnevaluated()) {
18030 // C++11 [expr.prim.lambda]p2:
18031 // A lambda-expression shall not appear in an unevaluated operand
18032 // (Clause 5).
18033 D = diag::err_lambda_unevaluated_operand;
18034 } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
18035 // C++1y [expr.const]p2:
18036 // A conditional-expression e is a core constant expression unless the
18037 // evaluation of e, following the rules of the abstract machine, would
18038 // evaluate [...] a lambda-expression.
18039 D = diag::err_lambda_in_constant_expression;
18040 } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
18041 // C++17 [expr.prim.lamda]p2:
18042 // A lambda-expression shall not appear [...] in a template-argument.
18043 D = diag::err_lambda_in_invalid_context;
18044 } else
18045 llvm_unreachable("Couldn't infer lambda error message.");
18046
18047 for (const auto *L : Rec.Lambdas)
18048 Diag(Loc: L->getBeginLoc(), DiagID: D);
18049 }
18050 }
18051
18052 // Append the collected materialized temporaries into previous context before
18053 // exit if the previous also is a lifetime extending context.
18054 if (getLangOpts().CPlusPlus23 && Rec.InLifetimeExtendingContext &&
18055 parentEvaluationContext().InLifetimeExtendingContext &&
18056 !Rec.ForRangeLifetimeExtendTemps.empty()) {
18057 parentEvaluationContext().ForRangeLifetimeExtendTemps.append(
18058 RHS: Rec.ForRangeLifetimeExtendTemps);
18059 }
18060
18061 WarnOnPendingNoDerefs(Rec);
18062 HandleImmediateInvocations(SemaRef&: *this, Rec);
18063
18064 // Warn on any volatile-qualified simple-assignments that are not discarded-
18065 // value expressions nor unevaluated operands (those cases get removed from
18066 // this list by CheckUnusedVolatileAssignment).
18067 for (auto *BO : Rec.VolatileAssignmentLHSs)
18068 Diag(Loc: BO->getBeginLoc(), DiagID: diag::warn_deprecated_simple_assign_volatile)
18069 << BO->getType();
18070
18071 // When are coming out of an unevaluated context, clear out any
18072 // temporaries that we may have created as part of the evaluation of
18073 // the expression in that context: they aren't relevant because they
18074 // will never be constructed.
18075 if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
18076 ExprCleanupObjects.erase(CS: ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
18077 CE: ExprCleanupObjects.end());
18078 Cleanup = Rec.ParentCleanup;
18079 CleanupVarDeclMarking();
18080 std::swap(LHS&: MaybeODRUseExprs, RHS&: Rec.SavedMaybeODRUseExprs);
18081 // Otherwise, merge the contexts together.
18082 } else {
18083 Cleanup.mergeFrom(Rhs: Rec.ParentCleanup);
18084 MaybeODRUseExprs.insert_range(R&: Rec.SavedMaybeODRUseExprs);
18085 }
18086
18087 // Pop the current expression evaluation context off the stack.
18088 ExprEvalContexts.pop_back();
18089}
18090
18091void Sema::DiscardCleanupsInEvaluationContext() {
18092 ExprCleanupObjects.erase(
18093 CS: ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
18094 CE: ExprCleanupObjects.end());
18095 Cleanup.reset();
18096 MaybeODRUseExprs.clear();
18097}
18098
18099ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
18100 ExprResult Result = CheckPlaceholderExpr(E);
18101 if (Result.isInvalid())
18102 return ExprError();
18103 E = Result.get();
18104 if (!E->getType()->isVariablyModifiedType())
18105 return E;
18106 return TransformToPotentiallyEvaluated(E);
18107}
18108
18109/// Are we in a context that is potentially constant evaluated per C++20
18110/// [expr.const]p12?
18111static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
18112 /// C++2a [expr.const]p12:
18113 // An expression or conversion is potentially constant evaluated if it is
18114 switch (SemaRef.ExprEvalContexts.back().Context) {
18115 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18116 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18117
18118 // -- a manifestly constant-evaluated expression,
18119 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18120 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18121 case Sema::ExpressionEvaluationContext::DiscardedStatement:
18122 // -- a potentially-evaluated expression,
18123 case Sema::ExpressionEvaluationContext::UnevaluatedList:
18124 // -- an immediate subexpression of a braced-init-list,
18125
18126 // -- [FIXME] an expression of the form & cast-expression that occurs
18127 // within a templated entity
18128 // -- a subexpression of one of the above that is not a subexpression of
18129 // a nested unevaluated operand.
18130 return true;
18131
18132 case Sema::ExpressionEvaluationContext::Unevaluated:
18133 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18134 // Expressions in this context are never evaluated.
18135 return false;
18136 }
18137 llvm_unreachable("Invalid context");
18138}
18139
18140/// Return true if this function has a calling convention that requires mangling
18141/// in the size of the parameter pack.
18142static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
18143 // These manglings are only applicable for targets whcih use Microsoft
18144 // mangling scheme for C.
18145 if (!S.Context.getTargetInfo().shouldUseMicrosoftCCforMangling())
18146 return false;
18147
18148 // If this is C++ and this isn't an extern "C" function, parameters do not
18149 // need to be complete. In this case, C++ mangling will apply, which doesn't
18150 // use the size of the parameters.
18151 if (S.getLangOpts().CPlusPlus && !FD->isExternC())
18152 return false;
18153
18154 // Stdcall, fastcall, and vectorcall need this special treatment.
18155 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18156 switch (CC) {
18157 case CC_X86StdCall:
18158 case CC_X86FastCall:
18159 case CC_X86VectorCall:
18160 return true;
18161 default:
18162 break;
18163 }
18164 return false;
18165}
18166
18167/// Require that all of the parameter types of function be complete. Normally,
18168/// parameter types are only required to be complete when a function is called
18169/// or defined, but to mangle functions with certain calling conventions, the
18170/// mangler needs to know the size of the parameter list. In this situation,
18171/// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
18172/// the function as _foo@0, i.e. zero bytes of parameters, which will usually
18173/// result in a linker error. Clang doesn't implement this behavior, and instead
18174/// attempts to error at compile time.
18175static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
18176 SourceLocation Loc) {
18177 class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
18178 FunctionDecl *FD;
18179 ParmVarDecl *Param;
18180
18181 public:
18182 ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
18183 : FD(FD), Param(Param) {}
18184
18185 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
18186 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18187 StringRef CCName;
18188 switch (CC) {
18189 case CC_X86StdCall:
18190 CCName = "stdcall";
18191 break;
18192 case CC_X86FastCall:
18193 CCName = "fastcall";
18194 break;
18195 case CC_X86VectorCall:
18196 CCName = "vectorcall";
18197 break;
18198 default:
18199 llvm_unreachable("CC does not need mangling");
18200 }
18201
18202 S.Diag(Loc, DiagID: diag::err_cconv_incomplete_param_type)
18203 << Param->getDeclName() << FD->getDeclName() << CCName;
18204 }
18205 };
18206
18207 for (ParmVarDecl *Param : FD->parameters()) {
18208 ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
18209 S.RequireCompleteType(Loc, T: Param->getType(), Diagnoser);
18210 }
18211}
18212
18213namespace {
18214enum class OdrUseContext {
18215 /// Declarations in this context are not odr-used.
18216 None,
18217 /// Declarations in this context are formally odr-used, but this is a
18218 /// dependent context.
18219 Dependent,
18220 /// Declarations in this context are odr-used but not actually used (yet).
18221 FormallyOdrUsed,
18222 /// Declarations in this context are used.
18223 Used
18224};
18225}
18226
18227/// Are we within a context in which references to resolved functions or to
18228/// variables result in odr-use?
18229static OdrUseContext isOdrUseContext(Sema &SemaRef) {
18230 const Sema::ExpressionEvaluationContextRecord &Context =
18231 SemaRef.currentEvaluationContext();
18232
18233 if (Context.isUnevaluated())
18234 return OdrUseContext::None;
18235
18236 if (SemaRef.CurContext->isDependentContext())
18237 return OdrUseContext::Dependent;
18238
18239 if (Context.isDiscardedStatementContext())
18240 return OdrUseContext::FormallyOdrUsed;
18241
18242 else if (Context.Context ==
18243 Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed)
18244 return OdrUseContext::FormallyOdrUsed;
18245
18246 return OdrUseContext::Used;
18247}
18248
18249static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
18250 if (!Func->isConstexpr())
18251 return false;
18252
18253 if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
18254 return true;
18255
18256 // Lambda conversion operators are never user provided.
18257 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(Val: Func))
18258 return isLambdaConversionOperator(C: Conv);
18259
18260 auto *CCD = dyn_cast<CXXConstructorDecl>(Val: Func);
18261 return CCD && CCD->getInheritedConstructor();
18262}
18263
18264void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
18265 bool MightBeOdrUse) {
18266 assert(Func && "No function?");
18267
18268 Func->setReferenced();
18269
18270 // Recursive functions aren't really used until they're used from some other
18271 // context.
18272 bool IsRecursiveCall = CurContext == Func;
18273
18274 // C++11 [basic.def.odr]p3:
18275 // A function whose name appears as a potentially-evaluated expression is
18276 // odr-used if it is the unique lookup result or the selected member of a
18277 // set of overloaded functions [...].
18278 //
18279 // We (incorrectly) mark overload resolution as an unevaluated context, so we
18280 // can just check that here.
18281 OdrUseContext OdrUse =
18282 MightBeOdrUse ? isOdrUseContext(SemaRef&: *this) : OdrUseContext::None;
18283 if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
18284 OdrUse = OdrUseContext::FormallyOdrUsed;
18285
18286 // Trivial default constructors and destructors are never actually used.
18287 // FIXME: What about other special members?
18288 if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
18289 OdrUse == OdrUseContext::Used) {
18290 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: Func))
18291 if (Constructor->isDefaultConstructor())
18292 OdrUse = OdrUseContext::FormallyOdrUsed;
18293 if (isa<CXXDestructorDecl>(Val: Func))
18294 OdrUse = OdrUseContext::FormallyOdrUsed;
18295 }
18296
18297 // C++20 [expr.const]p12:
18298 // A function [...] is needed for constant evaluation if it is [...] a
18299 // constexpr function that is named by an expression that is potentially
18300 // constant evaluated
18301 bool NeededForConstantEvaluation =
18302 isPotentiallyConstantEvaluatedContext(SemaRef&: *this) &&
18303 isImplicitlyDefinableConstexprFunction(Func);
18304
18305 // Determine whether we require a function definition to exist, per
18306 // C++11 [temp.inst]p3:
18307 // Unless a function template specialization has been explicitly
18308 // instantiated or explicitly specialized, the function template
18309 // specialization is implicitly instantiated when the specialization is
18310 // referenced in a context that requires a function definition to exist.
18311 // C++20 [temp.inst]p7:
18312 // The existence of a definition of a [...] function is considered to
18313 // affect the semantics of the program if the [...] function is needed for
18314 // constant evaluation by an expression
18315 // C++20 [basic.def.odr]p10:
18316 // Every program shall contain exactly one definition of every non-inline
18317 // function or variable that is odr-used in that program outside of a
18318 // discarded statement
18319 // C++20 [special]p1:
18320 // The implementation will implicitly define [defaulted special members]
18321 // if they are odr-used or needed for constant evaluation.
18322 //
18323 // Note that we skip the implicit instantiation of templates that are only
18324 // used in unused default arguments or by recursive calls to themselves.
18325 // This is formally non-conforming, but seems reasonable in practice.
18326 bool NeedDefinition =
18327 !IsRecursiveCall &&
18328 (OdrUse == OdrUseContext::Used ||
18329 (NeededForConstantEvaluation && !Func->isPureVirtual()));
18330
18331 // C++14 [temp.expl.spec]p6:
18332 // If a template [...] is explicitly specialized then that specialization
18333 // shall be declared before the first use of that specialization that would
18334 // cause an implicit instantiation to take place, in every translation unit
18335 // in which such a use occurs
18336 if (NeedDefinition &&
18337 (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
18338 Func->getMemberSpecializationInfo()))
18339 checkSpecializationReachability(Loc, Spec: Func);
18340
18341 if (getLangOpts().CUDA)
18342 CUDA().CheckCall(Loc, Callee: Func);
18343
18344 // If we need a definition, try to create one.
18345 if (NeedDefinition && !Func->getBody()) {
18346 runWithSufficientStackSpace(Loc, Fn: [&] {
18347 if (CXXConstructorDecl *Constructor =
18348 dyn_cast<CXXConstructorDecl>(Val: Func)) {
18349 Constructor = cast<CXXConstructorDecl>(Val: Constructor->getFirstDecl());
18350 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
18351 if (Constructor->isDefaultConstructor()) {
18352 if (Constructor->isTrivial() &&
18353 !Constructor->hasAttr<DLLExportAttr>())
18354 return;
18355 DefineImplicitDefaultConstructor(CurrentLocation: Loc, Constructor);
18356 } else if (Constructor->isCopyConstructor()) {
18357 DefineImplicitCopyConstructor(CurrentLocation: Loc, Constructor);
18358 } else if (Constructor->isMoveConstructor()) {
18359 DefineImplicitMoveConstructor(CurrentLocation: Loc, Constructor);
18360 }
18361 } else if (Constructor->getInheritedConstructor()) {
18362 DefineInheritingConstructor(UseLoc: Loc, Constructor);
18363 }
18364 } else if (CXXDestructorDecl *Destructor =
18365 dyn_cast<CXXDestructorDecl>(Val: Func)) {
18366 Destructor = cast<CXXDestructorDecl>(Val: Destructor->getFirstDecl());
18367 if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
18368 if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
18369 return;
18370 DefineImplicitDestructor(CurrentLocation: Loc, Destructor);
18371 }
18372 if (Destructor->isVirtual() && getLangOpts().AppleKext)
18373 MarkVTableUsed(Loc, Class: Destructor->getParent());
18374 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Val: Func)) {
18375 if (MethodDecl->isOverloadedOperator() &&
18376 MethodDecl->getOverloadedOperator() == OO_Equal) {
18377 MethodDecl = cast<CXXMethodDecl>(Val: MethodDecl->getFirstDecl());
18378 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
18379 if (MethodDecl->isCopyAssignmentOperator())
18380 DefineImplicitCopyAssignment(CurrentLocation: Loc, MethodDecl);
18381 else if (MethodDecl->isMoveAssignmentOperator())
18382 DefineImplicitMoveAssignment(CurrentLocation: Loc, MethodDecl);
18383 }
18384 } else if (isa<CXXConversionDecl>(Val: MethodDecl) &&
18385 MethodDecl->getParent()->isLambda()) {
18386 CXXConversionDecl *Conversion =
18387 cast<CXXConversionDecl>(Val: MethodDecl->getFirstDecl());
18388 if (Conversion->isLambdaToBlockPointerConversion())
18389 DefineImplicitLambdaToBlockPointerConversion(CurrentLoc: Loc, Conv: Conversion);
18390 else
18391 DefineImplicitLambdaToFunctionPointerConversion(CurrentLoc: Loc, Conv: Conversion);
18392 } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
18393 MarkVTableUsed(Loc, Class: MethodDecl->getParent());
18394 }
18395
18396 if (Func->isDefaulted() && !Func->isDeleted()) {
18397 DefaultedComparisonKind DCK = getDefaultedComparisonKind(FD: Func);
18398 if (DCK != DefaultedComparisonKind::None)
18399 DefineDefaultedComparison(Loc, FD: Func, DCK);
18400 }
18401
18402 // Implicit instantiation of function templates and member functions of
18403 // class templates.
18404 if (Func->isImplicitlyInstantiable()) {
18405 TemplateSpecializationKind TSK =
18406 Func->getTemplateSpecializationKindForInstantiation();
18407 SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
18408 bool FirstInstantiation = PointOfInstantiation.isInvalid();
18409 if (FirstInstantiation) {
18410 PointOfInstantiation = Loc;
18411 if (auto *MSI = Func->getMemberSpecializationInfo())
18412 MSI->setPointOfInstantiation(Loc);
18413 // FIXME: Notify listener.
18414 else
18415 Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18416 } else if (TSK != TSK_ImplicitInstantiation) {
18417 // Use the point of use as the point of instantiation, instead of the
18418 // point of explicit instantiation (which we track as the actual point
18419 // of instantiation). This gives better backtraces in diagnostics.
18420 PointOfInstantiation = Loc;
18421 }
18422
18423 if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
18424 Func->isConstexpr()) {
18425 if (isa<CXXRecordDecl>(Val: Func->getDeclContext()) &&
18426 cast<CXXRecordDecl>(Val: Func->getDeclContext())->isLocalClass() &&
18427 CodeSynthesisContexts.size())
18428 PendingLocalImplicitInstantiations.push_back(
18429 x: std::make_pair(x&: Func, y&: PointOfInstantiation));
18430 else if (Func->isConstexpr())
18431 // Do not defer instantiations of constexpr functions, to avoid the
18432 // expression evaluator needing to call back into Sema if it sees a
18433 // call to such a function.
18434 InstantiateFunctionDefinition(PointOfInstantiation, Function: Func);
18435 else {
18436 Func->setInstantiationIsPending(true);
18437 PendingInstantiations.push_back(
18438 x: std::make_pair(x&: Func, y&: PointOfInstantiation));
18439 if (llvm::isTimeTraceVerbose()) {
18440 llvm::timeTraceAddInstantEvent(Name: "DeferInstantiation", Detail: [&] {
18441 std::string Name;
18442 llvm::raw_string_ostream OS(Name);
18443 Func->getNameForDiagnostic(OS, Policy: getPrintingPolicy(),
18444 /*Qualified=*/true);
18445 return Name;
18446 });
18447 }
18448 // Notify the consumer that a function was implicitly instantiated.
18449 Consumer.HandleCXXImplicitFunctionInstantiation(D: Func);
18450 }
18451 }
18452 } else {
18453 // Walk redefinitions, as some of them may be instantiable.
18454 for (auto *i : Func->redecls()) {
18455 if (!i->isUsed(CheckUsedAttr: false) && i->isImplicitlyInstantiable())
18456 MarkFunctionReferenced(Loc, Func: i, MightBeOdrUse);
18457 }
18458 }
18459 });
18460 }
18461
18462 // If a constructor was defined in the context of a default parameter
18463 // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
18464 // context), its initializers may not be referenced yet.
18465 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Val: Func)) {
18466 EnterExpressionEvaluationContext EvalContext(
18467 *this,
18468 Constructor->isImmediateFunction()
18469 ? ExpressionEvaluationContext::ImmediateFunctionContext
18470 : ExpressionEvaluationContext::PotentiallyEvaluated,
18471 Constructor);
18472 for (CXXCtorInitializer *Init : Constructor->inits()) {
18473 if (Init->isInClassMemberInitializer())
18474 runWithSufficientStackSpace(Loc: Init->getSourceLocation(), Fn: [&]() {
18475 MarkDeclarationsReferencedInExpr(E: Init->getInit());
18476 });
18477 }
18478 }
18479
18480 // C++14 [except.spec]p17:
18481 // An exception-specification is considered to be needed when:
18482 // - the function is odr-used or, if it appears in an unevaluated operand,
18483 // would be odr-used if the expression were potentially-evaluated;
18484 //
18485 // Note, we do this even if MightBeOdrUse is false. That indicates that the
18486 // function is a pure virtual function we're calling, and in that case the
18487 // function was selected by overload resolution and we need to resolve its
18488 // exception specification for a different reason.
18489 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
18490 if (FPT && isUnresolvedExceptionSpec(ESpecType: FPT->getExceptionSpecType()))
18491 ResolveExceptionSpec(Loc, FPT);
18492
18493 // A callee could be called by a host function then by a device function.
18494 // If we only try recording once, we will miss recording the use on device
18495 // side. Therefore keep trying until it is recorded.
18496 if (LangOpts.OffloadImplicitHostDeviceTemplates && LangOpts.CUDAIsDevice &&
18497 !getASTContext().CUDAImplicitHostDeviceFunUsedByDevice.count(V: Func))
18498 CUDA().RecordImplicitHostDeviceFuncUsedByDevice(FD: Func);
18499
18500 // If this is the first "real" use, act on that.
18501 if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
18502 // Keep track of used but undefined functions.
18503 if (!Func->isDefined() && !Func->isInAnotherModuleUnit()) {
18504 if (mightHaveNonExternalLinkage(FD: Func))
18505 UndefinedButUsed.insert(KV: std::make_pair(x: Func->getCanonicalDecl(), y&: Loc));
18506 else if (Func->getMostRecentDecl()->isInlined() &&
18507 !LangOpts.GNUInline &&
18508 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
18509 UndefinedButUsed.insert(KV: std::make_pair(x: Func->getCanonicalDecl(), y&: Loc));
18510 else if (isExternalWithNoLinkageType(VD: Func))
18511 UndefinedButUsed.insert(KV: std::make_pair(x: Func->getCanonicalDecl(), y&: Loc));
18512 }
18513
18514 // Some x86 Windows calling conventions mangle the size of the parameter
18515 // pack into the name. Computing the size of the parameters requires the
18516 // parameter types to be complete. Check that now.
18517 if (funcHasParameterSizeMangling(S&: *this, FD: Func))
18518 CheckCompleteParameterTypesForMangler(S&: *this, FD: Func, Loc);
18519
18520 // In the MS C++ ABI, the compiler emits destructor variants where they are
18521 // used. If the destructor is used here but defined elsewhere, mark the
18522 // virtual base destructors referenced. If those virtual base destructors
18523 // are inline, this will ensure they are defined when emitting the complete
18524 // destructor variant. This checking may be redundant if the destructor is
18525 // provided later in this TU.
18526 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
18527 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Val: Func)) {
18528 CXXRecordDecl *Parent = Dtor->getParent();
18529 if (Parent->getNumVBases() > 0 && !Dtor->getBody())
18530 CheckCompleteDestructorVariant(CurrentLocation: Loc, Dtor);
18531 }
18532 }
18533
18534 Func->markUsed(C&: Context);
18535 }
18536}
18537
18538/// Directly mark a variable odr-used. Given a choice, prefer to use
18539/// MarkVariableReferenced since it does additional checks and then
18540/// calls MarkVarDeclODRUsed.
18541/// If the variable must be captured:
18542/// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
18543/// - else capture it in the DeclContext that maps to the
18544/// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
18545static void
18546MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef,
18547 const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
18548 // Keep track of used but undefined variables.
18549 // FIXME: We shouldn't suppress this warning for static data members.
18550 VarDecl *Var = V->getPotentiallyDecomposedVarDecl();
18551 assert(Var && "expected a capturable variable");
18552
18553 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
18554 (!Var->isExternallyVisible() || Var->isInline() ||
18555 SemaRef.isExternalWithNoLinkageType(VD: Var)) &&
18556 !(Var->isStaticDataMember() && Var->hasInit())) {
18557 SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
18558 if (old.isInvalid())
18559 old = Loc;
18560 }
18561 QualType CaptureType, DeclRefType;
18562 if (SemaRef.LangOpts.OpenMP)
18563 SemaRef.OpenMP().tryCaptureOpenMPLambdas(V);
18564 SemaRef.tryCaptureVariable(Var: V, Loc, Kind: TryCaptureKind::Implicit,
18565 /*EllipsisLoc*/ SourceLocation(),
18566 /*BuildAndDiagnose*/ true, CaptureType,
18567 DeclRefType, FunctionScopeIndexToStopAt);
18568
18569 if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
18570 auto *FD = dyn_cast_or_null<FunctionDecl>(Val: SemaRef.CurContext);
18571 auto VarTarget = SemaRef.CUDA().IdentifyTarget(D: Var);
18572 auto UserTarget = SemaRef.CUDA().IdentifyTarget(D: FD);
18573 if (VarTarget == SemaCUDA::CVT_Host &&
18574 (UserTarget == CUDAFunctionTarget::Device ||
18575 UserTarget == CUDAFunctionTarget::HostDevice ||
18576 UserTarget == CUDAFunctionTarget::Global)) {
18577 // Diagnose ODR-use of host global variables in device functions.
18578 // Reference of device global variables in host functions is allowed
18579 // through shadow variables therefore it is not diagnosed.
18580 if (SemaRef.LangOpts.CUDAIsDevice && !SemaRef.LangOpts.HIPStdPar) {
18581 SemaRef.targetDiag(Loc, DiagID: diag::err_ref_bad_target)
18582 << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
18583 SemaRef.targetDiag(Loc: Var->getLocation(),
18584 DiagID: Var->getType().isConstQualified()
18585 ? diag::note_cuda_const_var_unpromoted
18586 : diag::note_cuda_host_var);
18587 }
18588 } else if (VarTarget == SemaCUDA::CVT_Device &&
18589 !Var->hasAttr<CUDASharedAttr>() &&
18590 (UserTarget == CUDAFunctionTarget::Host ||
18591 UserTarget == CUDAFunctionTarget::HostDevice)) {
18592 // Record a CUDA/HIP device side variable if it is ODR-used
18593 // by host code. This is done conservatively, when the variable is
18594 // referenced in any of the following contexts:
18595 // - a non-function context
18596 // - a host function
18597 // - a host device function
18598 // This makes the ODR-use of the device side variable by host code to
18599 // be visible in the device compilation for the compiler to be able to
18600 // emit template variables instantiated by host code only and to
18601 // externalize the static device side variable ODR-used by host code.
18602 if (!Var->hasExternalStorage())
18603 SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(V: Var);
18604 else if (SemaRef.LangOpts.GPURelocatableDeviceCode &&
18605 (!FD || (!FD->getDescribedFunctionTemplate() &&
18606 SemaRef.getASTContext().GetGVALinkageForFunction(FD) ==
18607 GVA_StrongExternal)))
18608 SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(X: Var);
18609 }
18610 }
18611
18612 V->markUsed(C&: SemaRef.Context);
18613}
18614
18615void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture,
18616 SourceLocation Loc,
18617 unsigned CapturingScopeIndex) {
18618 MarkVarDeclODRUsed(V: Capture, Loc, SemaRef&: *this, FunctionScopeIndexToStopAt: &CapturingScopeIndex);
18619}
18620
18621void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
18622 ValueDecl *var) {
18623 DeclContext *VarDC = var->getDeclContext();
18624
18625 // If the parameter still belongs to the translation unit, then
18626 // we're actually just using one parameter in the declaration of
18627 // the next.
18628 if (isa<ParmVarDecl>(Val: var) &&
18629 isa<TranslationUnitDecl>(Val: VarDC))
18630 return;
18631
18632 // For C code, don't diagnose about capture if we're not actually in code
18633 // right now; it's impossible to write a non-constant expression outside of
18634 // function context, so we'll get other (more useful) diagnostics later.
18635 //
18636 // For C++, things get a bit more nasty... it would be nice to suppress this
18637 // diagnostic for certain cases like using a local variable in an array bound
18638 // for a member of a local class, but the correct predicate is not obvious.
18639 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
18640 return;
18641
18642 unsigned ValueKind = isa<BindingDecl>(Val: var) ? 1 : 0;
18643 unsigned ContextKind = 3; // unknown
18644 if (isa<CXXMethodDecl>(Val: VarDC) &&
18645 cast<CXXRecordDecl>(Val: VarDC->getParent())->isLambda()) {
18646 ContextKind = 2;
18647 } else if (isa<FunctionDecl>(Val: VarDC)) {
18648 ContextKind = 0;
18649 } else if (isa<BlockDecl>(Val: VarDC)) {
18650 ContextKind = 1;
18651 }
18652
18653 S.Diag(Loc: loc, DiagID: diag::err_reference_to_local_in_enclosing_context)
18654 << var << ValueKind << ContextKind << VarDC;
18655 S.Diag(Loc: var->getLocation(), DiagID: diag::note_entity_declared_at)
18656 << var;
18657
18658 // FIXME: Add additional diagnostic info about class etc. which prevents
18659 // capture.
18660}
18661
18662static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
18663 ValueDecl *Var,
18664 bool &SubCapturesAreNested,
18665 QualType &CaptureType,
18666 QualType &DeclRefType) {
18667 // Check whether we've already captured it.
18668 if (CSI->CaptureMap.count(Val: Var)) {
18669 // If we found a capture, any subcaptures are nested.
18670 SubCapturesAreNested = true;
18671
18672 // Retrieve the capture type for this variable.
18673 CaptureType = CSI->getCapture(Var).getCaptureType();
18674
18675 // Compute the type of an expression that refers to this variable.
18676 DeclRefType = CaptureType.getNonReferenceType();
18677
18678 // Similarly to mutable captures in lambda, all the OpenMP captures by copy
18679 // are mutable in the sense that user can change their value - they are
18680 // private instances of the captured declarations.
18681 const Capture &Cap = CSI->getCapture(Var);
18682 // C++ [expr.prim.lambda]p10:
18683 // The type of such a data member is [...] an lvalue reference to the
18684 // referenced function type if the entity is a reference to a function.
18685 // [...]
18686 if (Cap.isCopyCapture() && !DeclRefType->isFunctionType() &&
18687 !(isa<LambdaScopeInfo>(Val: CSI) &&
18688 !cast<LambdaScopeInfo>(Val: CSI)->lambdaCaptureShouldBeConst()) &&
18689 !(isa<CapturedRegionScopeInfo>(Val: CSI) &&
18690 cast<CapturedRegionScopeInfo>(Val: CSI)->CapRegionKind == CR_OpenMP))
18691 DeclRefType.addConst();
18692 return true;
18693 }
18694 return false;
18695}
18696
18697// Only block literals, captured statements, and lambda expressions can
18698// capture; other scopes don't work.
18699static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
18700 ValueDecl *Var,
18701 SourceLocation Loc,
18702 const bool Diagnose,
18703 Sema &S) {
18704 if (isa<BlockDecl>(Val: DC) || isa<CapturedDecl>(Val: DC) || isLambdaCallOperator(DC))
18705 return getLambdaAwareParentOfDeclContext(DC);
18706
18707 VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
18708 if (Underlying) {
18709 if (Underlying->hasLocalStorage() && Diagnose)
18710 diagnoseUncapturableValueReferenceOrBinding(S, loc: Loc, var: Var);
18711 }
18712 return nullptr;
18713}
18714
18715// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18716// certain types of variables (unnamed, variably modified types etc.)
18717// so check for eligibility.
18718static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
18719 SourceLocation Loc, const bool Diagnose,
18720 Sema &S) {
18721
18722 assert((isa<VarDecl, BindingDecl>(Var)) &&
18723 "Only variables and structured bindings can be captured");
18724
18725 bool IsBlock = isa<BlockScopeInfo>(Val: CSI);
18726 bool IsLambda = isa<LambdaScopeInfo>(Val: CSI);
18727
18728 // Lambdas are not allowed to capture unnamed variables
18729 // (e.g. anonymous unions).
18730 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
18731 // assuming that's the intent.
18732 if (IsLambda && !Var->getDeclName()) {
18733 if (Diagnose) {
18734 S.Diag(Loc, DiagID: diag::err_lambda_capture_anonymous_var);
18735 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_declared_at);
18736 }
18737 return false;
18738 }
18739
18740 // Prohibit variably-modified types in blocks; they're difficult to deal with.
18741 if (Var->getType()->isVariablyModifiedType() && IsBlock) {
18742 if (Diagnose) {
18743 S.Diag(Loc, DiagID: diag::err_ref_vm_type);
18744 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl) << Var;
18745 }
18746 return false;
18747 }
18748 // Prohibit structs with flexible array members too.
18749 // We cannot capture what is in the tail end of the struct.
18750 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
18751 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
18752 if (Diagnose) {
18753 if (IsBlock)
18754 S.Diag(Loc, DiagID: diag::err_ref_flexarray_type);
18755 else
18756 S.Diag(Loc, DiagID: diag::err_lambda_capture_flexarray_type) << Var;
18757 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl) << Var;
18758 }
18759 return false;
18760 }
18761 }
18762 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18763 // Lambdas and captured statements are not allowed to capture __block
18764 // variables; they don't support the expected semantics.
18765 if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(Val: CSI))) {
18766 if (Diagnose) {
18767 S.Diag(Loc, DiagID: diag::err_capture_block_variable) << Var << !IsLambda;
18768 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl) << Var;
18769 }
18770 return false;
18771 }
18772 // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
18773 if (S.getLangOpts().OpenCL && IsBlock &&
18774 Var->getType()->isBlockPointerType()) {
18775 if (Diagnose)
18776 S.Diag(Loc, DiagID: diag::err_opencl_block_ref_block);
18777 return false;
18778 }
18779
18780 if (isa<BindingDecl>(Val: Var)) {
18781 if (!IsLambda || !S.getLangOpts().CPlusPlus) {
18782 if (Diagnose)
18783 diagnoseUncapturableValueReferenceOrBinding(S, loc: Loc, var: Var);
18784 return false;
18785 } else if (Diagnose && S.getLangOpts().CPlusPlus) {
18786 S.Diag(Loc, DiagID: S.LangOpts.CPlusPlus20
18787 ? diag::warn_cxx17_compat_capture_binding
18788 : diag::ext_capture_binding)
18789 << Var;
18790 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_entity_declared_at) << Var;
18791 }
18792 }
18793
18794 return true;
18795}
18796
18797// Returns true if the capture by block was successful.
18798static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
18799 SourceLocation Loc, const bool BuildAndDiagnose,
18800 QualType &CaptureType, QualType &DeclRefType,
18801 const bool Nested, Sema &S, bool Invalid) {
18802 bool ByRef = false;
18803
18804 // Blocks are not allowed to capture arrays, excepting OpenCL.
18805 // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
18806 // (decayed to pointers).
18807 if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
18808 if (BuildAndDiagnose) {
18809 S.Diag(Loc, DiagID: diag::err_ref_array_type);
18810 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl) << Var;
18811 Invalid = true;
18812 } else {
18813 return false;
18814 }
18815 }
18816
18817 // Forbid the block-capture of autoreleasing variables.
18818 if (!Invalid &&
18819 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18820 if (BuildAndDiagnose) {
18821 S.Diag(Loc, DiagID: diag::err_arc_autoreleasing_capture)
18822 << /*block*/ 0;
18823 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl) << Var;
18824 Invalid = true;
18825 } else {
18826 return false;
18827 }
18828 }
18829
18830 // Warn about implicitly autoreleasing indirect parameters captured by blocks.
18831 if (const auto *PT = CaptureType->getAs<PointerType>()) {
18832 QualType PointeeTy = PT->getPointeeType();
18833
18834 if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
18835 PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
18836 !S.Context.hasDirectOwnershipQualifier(Ty: PointeeTy)) {
18837 if (BuildAndDiagnose) {
18838 SourceLocation VarLoc = Var->getLocation();
18839 S.Diag(Loc, DiagID: diag::warn_block_capture_autoreleasing);
18840 S.Diag(Loc: VarLoc, DiagID: diag::note_declare_parameter_strong);
18841 }
18842 }
18843 }
18844
18845 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18846 if (HasBlocksAttr || CaptureType->isReferenceType() ||
18847 (S.getLangOpts().OpenMP && S.OpenMP().isOpenMPCapturedDecl(D: Var))) {
18848 // Block capture by reference does not change the capture or
18849 // declaration reference types.
18850 ByRef = true;
18851 } else {
18852 // Block capture by copy introduces 'const'.
18853 CaptureType = CaptureType.getNonReferenceType().withConst();
18854 DeclRefType = CaptureType;
18855 }
18856
18857 // Actually capture the variable.
18858 if (BuildAndDiagnose)
18859 BSI->addCapture(Var, isBlock: HasBlocksAttr, isByref: ByRef, isNested: Nested, Loc, EllipsisLoc: SourceLocation(),
18860 CaptureType, Invalid);
18861
18862 return !Invalid;
18863}
18864
18865/// Capture the given variable in the captured region.
18866static bool captureInCapturedRegion(
18867 CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
18868 const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
18869 const bool RefersToCapturedVariable, TryCaptureKind Kind, bool IsTopScope,
18870 Sema &S, bool Invalid) {
18871 // By default, capture variables by reference.
18872 bool ByRef = true;
18873 if (IsTopScope && Kind != TryCaptureKind::Implicit) {
18874 ByRef = (Kind == TryCaptureKind::ExplicitByRef);
18875 } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
18876 // Using an LValue reference type is consistent with Lambdas (see below).
18877 if (S.OpenMP().isOpenMPCapturedDecl(D: Var)) {
18878 bool HasConst = DeclRefType.isConstQualified();
18879 DeclRefType = DeclRefType.getUnqualifiedType();
18880 // Don't lose diagnostics about assignments to const.
18881 if (HasConst)
18882 DeclRefType.addConst();
18883 }
18884 // Do not capture firstprivates in tasks.
18885 if (S.OpenMP().isOpenMPPrivateDecl(D: Var, Level: RSI->OpenMPLevel,
18886 CapLevel: RSI->OpenMPCaptureLevel) != OMPC_unknown)
18887 return true;
18888 ByRef = S.OpenMP().isOpenMPCapturedByRef(D: Var, Level: RSI->OpenMPLevel,
18889 OpenMPCaptureLevel: RSI->OpenMPCaptureLevel);
18890 }
18891
18892 if (ByRef)
18893 CaptureType = S.Context.getLValueReferenceType(T: DeclRefType);
18894 else
18895 CaptureType = DeclRefType;
18896
18897 // Actually capture the variable.
18898 if (BuildAndDiagnose)
18899 RSI->addCapture(Var, /*isBlock*/ false, isByref: ByRef, isNested: RefersToCapturedVariable,
18900 Loc, EllipsisLoc: SourceLocation(), CaptureType, Invalid);
18901
18902 return !Invalid;
18903}
18904
18905/// Capture the given variable in the lambda.
18906static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
18907 SourceLocation Loc, const bool BuildAndDiagnose,
18908 QualType &CaptureType, QualType &DeclRefType,
18909 const bool RefersToCapturedVariable,
18910 const TryCaptureKind Kind,
18911 SourceLocation EllipsisLoc, const bool IsTopScope,
18912 Sema &S, bool Invalid) {
18913 // Determine whether we are capturing by reference or by value.
18914 bool ByRef = false;
18915 if (IsTopScope && Kind != TryCaptureKind::Implicit) {
18916 ByRef = (Kind == TryCaptureKind::ExplicitByRef);
18917 } else {
18918 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
18919 }
18920
18921 if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() &&
18922 CaptureType.getNonReferenceType().isWebAssemblyReferenceType()) {
18923 S.Diag(Loc, DiagID: diag::err_wasm_ca_reference) << 0;
18924 Invalid = true;
18925 }
18926
18927 // Compute the type of the field that will capture this variable.
18928 if (ByRef) {
18929 // C++11 [expr.prim.lambda]p15:
18930 // An entity is captured by reference if it is implicitly or
18931 // explicitly captured but not captured by copy. It is
18932 // unspecified whether additional unnamed non-static data
18933 // members are declared in the closure type for entities
18934 // captured by reference.
18935 //
18936 // FIXME: It is not clear whether we want to build an lvalue reference
18937 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
18938 // to do the former, while EDG does the latter. Core issue 1249 will
18939 // clarify, but for now we follow GCC because it's a more permissive and
18940 // easily defensible position.
18941 CaptureType = S.Context.getLValueReferenceType(T: DeclRefType);
18942 } else {
18943 // C++11 [expr.prim.lambda]p14:
18944 // For each entity captured by copy, an unnamed non-static
18945 // data member is declared in the closure type. The
18946 // declaration order of these members is unspecified. The type
18947 // of such a data member is the type of the corresponding
18948 // captured entity if the entity is not a reference to an
18949 // object, or the referenced type otherwise. [Note: If the
18950 // captured entity is a reference to a function, the
18951 // corresponding data member is also a reference to a
18952 // function. - end note ]
18953 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
18954 if (!RefType->getPointeeType()->isFunctionType())
18955 CaptureType = RefType->getPointeeType();
18956 }
18957
18958 // Forbid the lambda copy-capture of autoreleasing variables.
18959 if (!Invalid &&
18960 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18961 if (BuildAndDiagnose) {
18962 S.Diag(Loc, DiagID: diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
18963 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl)
18964 << Var->getDeclName();
18965 Invalid = true;
18966 } else {
18967 return false;
18968 }
18969 }
18970
18971 // Make sure that by-copy captures are of a complete and non-abstract type.
18972 if (!Invalid && BuildAndDiagnose) {
18973 if (!CaptureType->isDependentType() &&
18974 S.RequireCompleteSizedType(
18975 Loc, T: CaptureType,
18976 DiagID: diag::err_capture_of_incomplete_or_sizeless_type,
18977 Args: Var->getDeclName()))
18978 Invalid = true;
18979 else if (S.RequireNonAbstractType(Loc, T: CaptureType,
18980 DiagID: diag::err_capture_of_abstract_type))
18981 Invalid = true;
18982 }
18983 }
18984
18985 // Compute the type of a reference to this captured variable.
18986 if (ByRef)
18987 DeclRefType = CaptureType.getNonReferenceType();
18988 else {
18989 // C++ [expr.prim.lambda]p5:
18990 // The closure type for a lambda-expression has a public inline
18991 // function call operator [...]. This function call operator is
18992 // declared const (9.3.1) if and only if the lambda-expression's
18993 // parameter-declaration-clause is not followed by mutable.
18994 DeclRefType = CaptureType.getNonReferenceType();
18995 bool Const = LSI->lambdaCaptureShouldBeConst();
18996 // C++ [expr.prim.lambda]p10:
18997 // The type of such a data member is [...] an lvalue reference to the
18998 // referenced function type if the entity is a reference to a function.
18999 // [...]
19000 if (Const && !CaptureType->isReferenceType() &&
19001 !DeclRefType->isFunctionType())
19002 DeclRefType.addConst();
19003 }
19004
19005 // Add the capture.
19006 if (BuildAndDiagnose)
19007 LSI->addCapture(Var, /*isBlock=*/false, isByref: ByRef, isNested: RefersToCapturedVariable,
19008 Loc, EllipsisLoc, CaptureType, Invalid);
19009
19010 return !Invalid;
19011}
19012
19013static bool canCaptureVariableByCopy(ValueDecl *Var,
19014 const ASTContext &Context) {
19015 // Offer a Copy fix even if the type is dependent.
19016 if (Var->getType()->isDependentType())
19017 return true;
19018 QualType T = Var->getType().getNonReferenceType();
19019 if (T.isTriviallyCopyableType(Context))
19020 return true;
19021 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
19022
19023 if (!(RD = RD->getDefinition()))
19024 return false;
19025 if (RD->hasSimpleCopyConstructor())
19026 return true;
19027 if (RD->hasUserDeclaredCopyConstructor())
19028 for (CXXConstructorDecl *Ctor : RD->ctors())
19029 if (Ctor->isCopyConstructor())
19030 return !Ctor->isDeleted();
19031 }
19032 return false;
19033}
19034
19035/// Create up to 4 fix-its for explicit reference and value capture of \p Var or
19036/// default capture. Fixes may be omitted if they aren't allowed by the
19037/// standard, for example we can't emit a default copy capture fix-it if we
19038/// already explicitly copy capture capture another variable.
19039static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
19040 ValueDecl *Var) {
19041 assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
19042 // Don't offer Capture by copy of default capture by copy fixes if Var is
19043 // known not to be copy constructible.
19044 bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Context: Sema.getASTContext());
19045
19046 SmallString<32> FixBuffer;
19047 StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
19048 if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
19049 SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
19050 if (ShouldOfferCopyFix) {
19051 // Offer fixes to insert an explicit capture for the variable.
19052 // [] -> [VarName]
19053 // [OtherCapture] -> [OtherCapture, VarName]
19054 FixBuffer.assign(Refs: {Separator, Var->getName()});
19055 Sema.Diag(Loc: VarInsertLoc, DiagID: diag::note_lambda_variable_capture_fixit)
19056 << Var << /*value*/ 0
19057 << FixItHint::CreateInsertion(InsertionLoc: VarInsertLoc, Code: FixBuffer);
19058 }
19059 // As above but capture by reference.
19060 FixBuffer.assign(Refs: {Separator, "&", Var->getName()});
19061 Sema.Diag(Loc: VarInsertLoc, DiagID: diag::note_lambda_variable_capture_fixit)
19062 << Var << /*reference*/ 1
19063 << FixItHint::CreateInsertion(InsertionLoc: VarInsertLoc, Code: FixBuffer);
19064 }
19065
19066 // Only try to offer default capture if there are no captures excluding this
19067 // and init captures.
19068 // [this]: OK.
19069 // [X = Y]: OK.
19070 // [&A, &B]: Don't offer.
19071 // [A, B]: Don't offer.
19072 if (llvm::any_of(Range&: LSI->Captures, P: [](Capture &C) {
19073 return !C.isThisCapture() && !C.isInitCapture();
19074 }))
19075 return;
19076
19077 // The default capture specifiers, '=' or '&', must appear first in the
19078 // capture body.
19079 SourceLocation DefaultInsertLoc =
19080 LSI->IntroducerRange.getBegin().getLocWithOffset(Offset: 1);
19081
19082 if (ShouldOfferCopyFix) {
19083 bool CanDefaultCopyCapture = true;
19084 // [=, *this] OK since c++17
19085 // [=, this] OK since c++20
19086 if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
19087 CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
19088 ? LSI->getCXXThisCapture().isCopyCapture()
19089 : false;
19090 // We can't use default capture by copy if any captures already specified
19091 // capture by copy.
19092 if (CanDefaultCopyCapture && llvm::none_of(Range&: LSI->Captures, P: [](Capture &C) {
19093 return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
19094 })) {
19095 FixBuffer.assign(Refs: {"=", Separator});
19096 Sema.Diag(Loc: DefaultInsertLoc, DiagID: diag::note_lambda_default_capture_fixit)
19097 << /*value*/ 0
19098 << FixItHint::CreateInsertion(InsertionLoc: DefaultInsertLoc, Code: FixBuffer);
19099 }
19100 }
19101
19102 // We can't use default capture by reference if any captures already specified
19103 // capture by reference.
19104 if (llvm::none_of(Range&: LSI->Captures, P: [](Capture &C) {
19105 return !C.isInitCapture() && C.isReferenceCapture() &&
19106 !C.isThisCapture();
19107 })) {
19108 FixBuffer.assign(Refs: {"&", Separator});
19109 Sema.Diag(Loc: DefaultInsertLoc, DiagID: diag::note_lambda_default_capture_fixit)
19110 << /*reference*/ 1
19111 << FixItHint::CreateInsertion(InsertionLoc: DefaultInsertLoc, Code: FixBuffer);
19112 }
19113}
19114
19115bool Sema::tryCaptureVariable(
19116 ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
19117 SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
19118 QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
19119 // An init-capture is notionally from the context surrounding its
19120 // declaration, but its parent DC is the lambda class.
19121 DeclContext *VarDC = Var->getDeclContext();
19122 DeclContext *DC = CurContext;
19123
19124 // Skip past RequiresExprBodys because they don't constitute function scopes.
19125 while (DC->isRequiresExprBody())
19126 DC = DC->getParent();
19127
19128 // tryCaptureVariable is called every time a DeclRef is formed,
19129 // it can therefore have non-negigible impact on performances.
19130 // For local variables and when there is no capturing scope,
19131 // we can bailout early.
19132 if (CapturingFunctionScopes == 0 && (!BuildAndDiagnose || VarDC == DC))
19133 return true;
19134
19135 // Exception: Function parameters are not tied to the function's DeclContext
19136 // until we enter the function definition. Capturing them anyway would result
19137 // in an out-of-bounds error while traversing DC and its parents.
19138 if (isa<ParmVarDecl>(Val: Var) && !VarDC->isFunctionOrMethod())
19139 return true;
19140
19141 const auto *VD = dyn_cast<VarDecl>(Val: Var);
19142 if (VD) {
19143 if (VD->isInitCapture())
19144 VarDC = VarDC->getParent();
19145 } else {
19146 VD = Var->getPotentiallyDecomposedVarDecl();
19147 }
19148 assert(VD && "Cannot capture a null variable");
19149
19150 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
19151 ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
19152 // We need to sync up the Declaration Context with the
19153 // FunctionScopeIndexToStopAt
19154 if (FunctionScopeIndexToStopAt) {
19155 assert(!FunctionScopes.empty() && "No function scopes to stop at?");
19156 unsigned FSIndex = FunctionScopes.size() - 1;
19157 // When we're parsing the lambda parameter list, the current DeclContext is
19158 // NOT the lambda but its parent. So move away the current LSI before
19159 // aligning DC and FunctionScopeIndexToStopAt.
19160 if (auto *LSI = dyn_cast<LambdaScopeInfo>(Val: FunctionScopes[FSIndex]);
19161 FSIndex && LSI && !LSI->AfterParameterList)
19162 --FSIndex;
19163 assert(MaxFunctionScopesIndex <= FSIndex &&
19164 "FunctionScopeIndexToStopAt should be no greater than FSIndex into "
19165 "FunctionScopes.");
19166 while (FSIndex != MaxFunctionScopesIndex) {
19167 DC = getLambdaAwareParentOfDeclContext(DC);
19168 --FSIndex;
19169 }
19170 }
19171
19172 // Capture global variables if it is required to use private copy of this
19173 // variable.
19174 bool IsGlobal = !VD->hasLocalStorage();
19175 if (IsGlobal && !(LangOpts.OpenMP &&
19176 OpenMP().isOpenMPCapturedDecl(D: Var, /*CheckScopeInfo=*/true,
19177 StopAt: MaxFunctionScopesIndex)))
19178 return true;
19179
19180 if (isa<VarDecl>(Val: Var))
19181 Var = cast<VarDecl>(Val: Var->getCanonicalDecl());
19182
19183 // Walk up the stack to determine whether we can capture the variable,
19184 // performing the "simple" checks that don't depend on type. We stop when
19185 // we've either hit the declared scope of the variable or find an existing
19186 // capture of that variable. We start from the innermost capturing-entity
19187 // (the DC) and ensure that all intervening capturing-entities
19188 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
19189 // declcontext can either capture the variable or have already captured
19190 // the variable.
19191 CaptureType = Var->getType();
19192 DeclRefType = CaptureType.getNonReferenceType();
19193 bool Nested = false;
19194 bool Explicit = (Kind != TryCaptureKind::Implicit);
19195 unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
19196 do {
19197
19198 LambdaScopeInfo *LSI = nullptr;
19199 if (!FunctionScopes.empty())
19200 LSI = dyn_cast_or_null<LambdaScopeInfo>(
19201 Val: FunctionScopes[FunctionScopesIndex]);
19202
19203 bool IsInScopeDeclarationContext =
19204 !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator;
19205
19206 if (LSI && !LSI->AfterParameterList) {
19207 // This allows capturing parameters from a default value which does not
19208 // seems correct
19209 if (isa<ParmVarDecl>(Val: Var) && !Var->getDeclContext()->isFunctionOrMethod())
19210 return true;
19211 }
19212 // If the variable is declared in the current context, there is no need to
19213 // capture it.
19214 if (IsInScopeDeclarationContext &&
19215 FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC)
19216 return true;
19217
19218 // Only block literals, captured statements, and lambda expressions can
19219 // capture; other scopes don't work.
19220 DeclContext *ParentDC =
19221 !IsInScopeDeclarationContext
19222 ? DC->getParent()
19223 : getParentOfCapturingContextOrNull(DC, Var, Loc: ExprLoc,
19224 Diagnose: BuildAndDiagnose, S&: *this);
19225 // We need to check for the parent *first* because, if we *have*
19226 // private-captured a global variable, we need to recursively capture it in
19227 // intermediate blocks, lambdas, etc.
19228 if (!ParentDC) {
19229 if (IsGlobal) {
19230 FunctionScopesIndex = MaxFunctionScopesIndex - 1;
19231 break;
19232 }
19233 return true;
19234 }
19235
19236 FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
19237 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(Val: FSI);
19238
19239 // Check whether we've already captured it.
19240 if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, SubCapturesAreNested&: Nested, CaptureType,
19241 DeclRefType)) {
19242 CSI->getCapture(Var).markUsed(IsODRUse: BuildAndDiagnose);
19243 break;
19244 }
19245
19246 // When evaluating some attributes (like enable_if) we might refer to a
19247 // function parameter appertaining to the same declaration as that
19248 // attribute.
19249 if (const auto *Parm = dyn_cast<ParmVarDecl>(Val: Var);
19250 Parm && Parm->getDeclContext() == DC)
19251 return true;
19252
19253 // If we are instantiating a generic lambda call operator body,
19254 // we do not want to capture new variables. What was captured
19255 // during either a lambdas transformation or initial parsing
19256 // should be used.
19257 if (isGenericLambdaCallOperatorSpecialization(DC)) {
19258 if (BuildAndDiagnose) {
19259 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(Val: CSI);
19260 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
19261 Diag(Loc: ExprLoc, DiagID: diag::err_lambda_impcap) << Var;
19262 Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl) << Var;
19263 Diag(Loc: LSI->Lambda->getBeginLoc(), DiagID: diag::note_lambda_decl);
19264 buildLambdaCaptureFixit(Sema&: *this, LSI, Var);
19265 } else
19266 diagnoseUncapturableValueReferenceOrBinding(S&: *this, loc: ExprLoc, var: Var);
19267 }
19268 return true;
19269 }
19270
19271 // Try to capture variable-length arrays types.
19272 if (Var->getType()->isVariablyModifiedType()) {
19273 // We're going to walk down into the type and look for VLA
19274 // expressions.
19275 QualType QTy = Var->getType();
19276 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Val: Var))
19277 QTy = PVD->getOriginalType();
19278 captureVariablyModifiedType(Context, T: QTy, CSI);
19279 }
19280
19281 if (getLangOpts().OpenMP) {
19282 if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(Val: CSI)) {
19283 // OpenMP private variables should not be captured in outer scope, so
19284 // just break here. Similarly, global variables that are captured in a
19285 // target region should not be captured outside the scope of the region.
19286 if (RSI->CapRegionKind == CR_OpenMP) {
19287 // FIXME: We should support capturing structured bindings in OpenMP.
19288 if (isa<BindingDecl>(Val: Var)) {
19289 if (BuildAndDiagnose) {
19290 Diag(Loc: ExprLoc, DiagID: diag::err_capture_binding_openmp) << Var;
19291 Diag(Loc: Var->getLocation(), DiagID: diag::note_entity_declared_at) << Var;
19292 }
19293 return true;
19294 }
19295 OpenMPClauseKind IsOpenMPPrivateDecl = OpenMP().isOpenMPPrivateDecl(
19296 D: Var, Level: RSI->OpenMPLevel, CapLevel: RSI->OpenMPCaptureLevel);
19297 // If the variable is private (i.e. not captured) and has variably
19298 // modified type, we still need to capture the type for correct
19299 // codegen in all regions, associated with the construct. Currently,
19300 // it is captured in the innermost captured region only.
19301 if (IsOpenMPPrivateDecl != OMPC_unknown &&
19302 Var->getType()->isVariablyModifiedType()) {
19303 QualType QTy = Var->getType();
19304 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Val: Var))
19305 QTy = PVD->getOriginalType();
19306 for (int I = 1,
19307 E = OpenMP().getNumberOfConstructScopes(Level: RSI->OpenMPLevel);
19308 I < E; ++I) {
19309 auto *OuterRSI = cast<CapturedRegionScopeInfo>(
19310 Val: FunctionScopes[FunctionScopesIndex - I]);
19311 assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
19312 "Wrong number of captured regions associated with the "
19313 "OpenMP construct.");
19314 captureVariablyModifiedType(Context, T: QTy, CSI: OuterRSI);
19315 }
19316 }
19317 bool IsTargetCap =
19318 IsOpenMPPrivateDecl != OMPC_private &&
19319 OpenMP().isOpenMPTargetCapturedDecl(D: Var, Level: RSI->OpenMPLevel,
19320 CaptureLevel: RSI->OpenMPCaptureLevel);
19321 // Do not capture global if it is not privatized in outer regions.
19322 bool IsGlobalCap =
19323 IsGlobal && OpenMP().isOpenMPGlobalCapturedDecl(
19324 D: Var, Level: RSI->OpenMPLevel, CaptureLevel: RSI->OpenMPCaptureLevel);
19325
19326 // When we detect target captures we are looking from inside the
19327 // target region, therefore we need to propagate the capture from the
19328 // enclosing region. Therefore, the capture is not initially nested.
19329 if (IsTargetCap)
19330 OpenMP().adjustOpenMPTargetScopeIndex(FunctionScopesIndex,
19331 Level: RSI->OpenMPLevel);
19332
19333 if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
19334 (IsGlobal && !IsGlobalCap)) {
19335 Nested = !IsTargetCap;
19336 bool HasConst = DeclRefType.isConstQualified();
19337 DeclRefType = DeclRefType.getUnqualifiedType();
19338 // Don't lose diagnostics about assignments to const.
19339 if (HasConst)
19340 DeclRefType.addConst();
19341 CaptureType = Context.getLValueReferenceType(T: DeclRefType);
19342 break;
19343 }
19344 }
19345 }
19346 }
19347 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
19348 // No capture-default, and this is not an explicit capture
19349 // so cannot capture this variable.
19350 if (BuildAndDiagnose) {
19351 Diag(Loc: ExprLoc, DiagID: diag::err_lambda_impcap) << Var;
19352 Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl) << Var;
19353 auto *LSI = cast<LambdaScopeInfo>(Val: CSI);
19354 if (LSI->Lambda) {
19355 Diag(Loc: LSI->Lambda->getBeginLoc(), DiagID: diag::note_lambda_decl);
19356 buildLambdaCaptureFixit(Sema&: *this, LSI, Var);
19357 }
19358 // FIXME: If we error out because an outer lambda can not implicitly
19359 // capture a variable that an inner lambda explicitly captures, we
19360 // should have the inner lambda do the explicit capture - because
19361 // it makes for cleaner diagnostics later. This would purely be done
19362 // so that the diagnostic does not misleadingly claim that a variable
19363 // can not be captured by a lambda implicitly even though it is captured
19364 // explicitly. Suggestion:
19365 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
19366 // at the function head
19367 // - cache the StartingDeclContext - this must be a lambda
19368 // - captureInLambda in the innermost lambda the variable.
19369 }
19370 return true;
19371 }
19372 Explicit = false;
19373 FunctionScopesIndex--;
19374 if (IsInScopeDeclarationContext)
19375 DC = ParentDC;
19376 } while (!VarDC->Equals(DC));
19377
19378 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
19379 // computing the type of the capture at each step, checking type-specific
19380 // requirements, and adding captures if requested.
19381 // If the variable had already been captured previously, we start capturing
19382 // at the lambda nested within that one.
19383 bool Invalid = false;
19384 for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
19385 ++I) {
19386 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(Val: FunctionScopes[I]);
19387
19388 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19389 // certain types of variables (unnamed, variably modified types etc.)
19390 // so check for eligibility.
19391 if (!Invalid)
19392 Invalid =
19393 !isVariableCapturable(CSI, Var, Loc: ExprLoc, Diagnose: BuildAndDiagnose, S&: *this);
19394
19395 // After encountering an error, if we're actually supposed to capture, keep
19396 // capturing in nested contexts to suppress any follow-on diagnostics.
19397 if (Invalid && !BuildAndDiagnose)
19398 return true;
19399
19400 if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(Val: CSI)) {
19401 Invalid = !captureInBlock(BSI, Var, Loc: ExprLoc, BuildAndDiagnose, CaptureType,
19402 DeclRefType, Nested, S&: *this, Invalid);
19403 Nested = true;
19404 } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(Val: CSI)) {
19405 Invalid = !captureInCapturedRegion(
19406 RSI, Var, Loc: ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, RefersToCapturedVariable: Nested,
19407 Kind, /*IsTopScope*/ I == N - 1, S&: *this, Invalid);
19408 Nested = true;
19409 } else {
19410 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(Val: CSI);
19411 Invalid =
19412 !captureInLambda(LSI, Var, Loc: ExprLoc, BuildAndDiagnose, CaptureType,
19413 DeclRefType, RefersToCapturedVariable: Nested, Kind, EllipsisLoc,
19414 /*IsTopScope*/ I == N - 1, S&: *this, Invalid);
19415 Nested = true;
19416 }
19417
19418 if (Invalid && !BuildAndDiagnose)
19419 return true;
19420 }
19421 return Invalid;
19422}
19423
19424bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
19425 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
19426 QualType CaptureType;
19427 QualType DeclRefType;
19428 return tryCaptureVariable(Var, ExprLoc: Loc, Kind, EllipsisLoc,
19429 /*BuildAndDiagnose=*/true, CaptureType,
19430 DeclRefType, FunctionScopeIndexToStopAt: nullptr);
19431}
19432
19433bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
19434 QualType CaptureType;
19435 QualType DeclRefType;
19436 return !tryCaptureVariable(
19437 Var, ExprLoc: Loc, Kind: TryCaptureKind::Implicit, EllipsisLoc: SourceLocation(),
19438 /*BuildAndDiagnose=*/false, CaptureType, DeclRefType, FunctionScopeIndexToStopAt: nullptr);
19439}
19440
19441QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
19442 assert(Var && "Null value cannot be captured");
19443
19444 QualType CaptureType;
19445 QualType DeclRefType;
19446
19447 // Determine whether we can capture this variable.
19448 if (tryCaptureVariable(Var, ExprLoc: Loc, Kind: TryCaptureKind::Implicit, EllipsisLoc: SourceLocation(),
19449 /*BuildAndDiagnose=*/false, CaptureType, DeclRefType,
19450 FunctionScopeIndexToStopAt: nullptr))
19451 return QualType();
19452
19453 return DeclRefType;
19454}
19455
19456namespace {
19457// Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
19458// The produced TemplateArgumentListInfo* points to data stored within this
19459// object, so should only be used in contexts where the pointer will not be
19460// used after the CopiedTemplateArgs object is destroyed.
19461class CopiedTemplateArgs {
19462 bool HasArgs;
19463 TemplateArgumentListInfo TemplateArgStorage;
19464public:
19465 template<typename RefExpr>
19466 CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
19467 if (HasArgs)
19468 E->copyTemplateArgumentsInto(TemplateArgStorage);
19469 }
19470 operator TemplateArgumentListInfo*()
19471#ifdef __has_cpp_attribute
19472#if __has_cpp_attribute(clang::lifetimebound)
19473 [[clang::lifetimebound]]
19474#endif
19475#endif
19476 {
19477 return HasArgs ? &TemplateArgStorage : nullptr;
19478 }
19479};
19480}
19481
19482/// Walk the set of potential results of an expression and mark them all as
19483/// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
19484///
19485/// \return A new expression if we found any potential results, ExprEmpty() if
19486/// not, and ExprError() if we diagnosed an error.
19487static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
19488 NonOdrUseReason NOUR) {
19489 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
19490 // an object that satisfies the requirements for appearing in a
19491 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
19492 // is immediately applied." This function handles the lvalue-to-rvalue
19493 // conversion part.
19494 //
19495 // If we encounter a node that claims to be an odr-use but shouldn't be, we
19496 // transform it into the relevant kind of non-odr-use node and rebuild the
19497 // tree of nodes leading to it.
19498 //
19499 // This is a mini-TreeTransform that only transforms a restricted subset of
19500 // nodes (and only certain operands of them).
19501
19502 // Rebuild a subexpression.
19503 auto Rebuild = [&](Expr *Sub) {
19504 return rebuildPotentialResultsAsNonOdrUsed(S, E: Sub, NOUR);
19505 };
19506
19507 // Check whether a potential result satisfies the requirements of NOUR.
19508 auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
19509 // Any entity other than a VarDecl is always odr-used whenever it's named
19510 // in a potentially-evaluated expression.
19511 auto *VD = dyn_cast<VarDecl>(Val: D);
19512 if (!VD)
19513 return true;
19514
19515 // C++2a [basic.def.odr]p4:
19516 // A variable x whose name appears as a potentially-evalauted expression
19517 // e is odr-used by e unless
19518 // -- x is a reference that is usable in constant expressions, or
19519 // -- x is a variable of non-reference type that is usable in constant
19520 // expressions and has no mutable subobjects, and e is an element of
19521 // the set of potential results of an expression of
19522 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
19523 // conversion is applied, or
19524 // -- x is a variable of non-reference type, and e is an element of the
19525 // set of potential results of a discarded-value expression to which
19526 // the lvalue-to-rvalue conversion is not applied
19527 //
19528 // We check the first bullet and the "potentially-evaluated" condition in
19529 // BuildDeclRefExpr. We check the type requirements in the second bullet
19530 // in CheckLValueToRValueConversionOperand below.
19531 switch (NOUR) {
19532 case NOUR_None:
19533 case NOUR_Unevaluated:
19534 llvm_unreachable("unexpected non-odr-use-reason");
19535
19536 case NOUR_Constant:
19537 // Constant references were handled when they were built.
19538 if (VD->getType()->isReferenceType())
19539 return true;
19540 if (auto *RD = VD->getType()->getAsCXXRecordDecl())
19541 if (RD->hasDefinition() && RD->hasMutableFields())
19542 return true;
19543 if (!VD->isUsableInConstantExpressions(C: S.Context))
19544 return true;
19545 break;
19546
19547 case NOUR_Discarded:
19548 if (VD->getType()->isReferenceType())
19549 return true;
19550 break;
19551 }
19552 return false;
19553 };
19554
19555 // Check whether this expression may be odr-used in CUDA/HIP.
19556 auto MaybeCUDAODRUsed = [&]() -> bool {
19557 if (!S.LangOpts.CUDA)
19558 return false;
19559 LambdaScopeInfo *LSI = S.getCurLambda();
19560 if (!LSI)
19561 return false;
19562 auto *DRE = dyn_cast<DeclRefExpr>(Val: E);
19563 if (!DRE)
19564 return false;
19565 auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl());
19566 if (!VD)
19567 return false;
19568 return LSI->CUDAPotentialODRUsedVars.count(Ptr: VD);
19569 };
19570
19571 // Mark that this expression does not constitute an odr-use.
19572 auto MarkNotOdrUsed = [&] {
19573 if (!MaybeCUDAODRUsed()) {
19574 S.MaybeODRUseExprs.remove(X: E);
19575 if (LambdaScopeInfo *LSI = S.getCurLambda())
19576 LSI->markVariableExprAsNonODRUsed(CapturingVarExpr: E);
19577 }
19578 };
19579
19580 // C++2a [basic.def.odr]p2:
19581 // The set of potential results of an expression e is defined as follows:
19582 switch (E->getStmtClass()) {
19583 // -- If e is an id-expression, ...
19584 case Expr::DeclRefExprClass: {
19585 auto *DRE = cast<DeclRefExpr>(Val: E);
19586 if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
19587 break;
19588
19589 // Rebuild as a non-odr-use DeclRefExpr.
19590 MarkNotOdrUsed();
19591 return DeclRefExpr::Create(
19592 Context: S.Context, QualifierLoc: DRE->getQualifierLoc(), TemplateKWLoc: DRE->getTemplateKeywordLoc(),
19593 D: DRE->getDecl(), RefersToEnclosingVariableOrCapture: DRE->refersToEnclosingVariableOrCapture(),
19594 NameInfo: DRE->getNameInfo(), T: DRE->getType(), VK: DRE->getValueKind(),
19595 FoundD: DRE->getFoundDecl(), TemplateArgs: CopiedTemplateArgs(DRE), NOUR);
19596 }
19597
19598 case Expr::FunctionParmPackExprClass: {
19599 auto *FPPE = cast<FunctionParmPackExpr>(Val: E);
19600 // If any of the declarations in the pack is odr-used, then the expression
19601 // as a whole constitutes an odr-use.
19602 for (ValueDecl *D : *FPPE)
19603 if (IsPotentialResultOdrUsed(D))
19604 return ExprEmpty();
19605
19606 // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
19607 // nothing cares about whether we marked this as an odr-use, but it might
19608 // be useful for non-compiler tools.
19609 MarkNotOdrUsed();
19610 break;
19611 }
19612
19613 // -- If e is a subscripting operation with an array operand...
19614 case Expr::ArraySubscriptExprClass: {
19615 auto *ASE = cast<ArraySubscriptExpr>(Val: E);
19616 Expr *OldBase = ASE->getBase()->IgnoreImplicit();
19617 if (!OldBase->getType()->isArrayType())
19618 break;
19619 ExprResult Base = Rebuild(OldBase);
19620 if (!Base.isUsable())
19621 return Base;
19622 Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
19623 Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
19624 SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
19625 return S.ActOnArraySubscriptExpr(S: nullptr, base: LHS, lbLoc: LBracketLoc, ArgExprs: RHS,
19626 rbLoc: ASE->getRBracketLoc());
19627 }
19628
19629 case Expr::MemberExprClass: {
19630 auto *ME = cast<MemberExpr>(Val: E);
19631 // -- If e is a class member access expression [...] naming a non-static
19632 // data member...
19633 if (isa<FieldDecl>(Val: ME->getMemberDecl())) {
19634 ExprResult Base = Rebuild(ME->getBase());
19635 if (!Base.isUsable())
19636 return Base;
19637 return MemberExpr::Create(
19638 C: S.Context, Base: Base.get(), IsArrow: ME->isArrow(), OperatorLoc: ME->getOperatorLoc(),
19639 QualifierLoc: ME->getQualifierLoc(), TemplateKWLoc: ME->getTemplateKeywordLoc(),
19640 MemberDecl: ME->getMemberDecl(), FoundDecl: ME->getFoundDecl(), MemberNameInfo: ME->getMemberNameInfo(),
19641 TemplateArgs: CopiedTemplateArgs(ME), T: ME->getType(), VK: ME->getValueKind(),
19642 OK: ME->getObjectKind(), NOUR: ME->isNonOdrUse());
19643 }
19644
19645 if (ME->getMemberDecl()->isCXXInstanceMember())
19646 break;
19647
19648 // -- If e is a class member access expression naming a static data member,
19649 // ...
19650 if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
19651 break;
19652
19653 // Rebuild as a non-odr-use MemberExpr.
19654 MarkNotOdrUsed();
19655 return MemberExpr::Create(
19656 C: S.Context, Base: ME->getBase(), IsArrow: ME->isArrow(), OperatorLoc: ME->getOperatorLoc(),
19657 QualifierLoc: ME->getQualifierLoc(), TemplateKWLoc: ME->getTemplateKeywordLoc(), MemberDecl: ME->getMemberDecl(),
19658 FoundDecl: ME->getFoundDecl(), MemberNameInfo: ME->getMemberNameInfo(), TemplateArgs: CopiedTemplateArgs(ME),
19659 T: ME->getType(), VK: ME->getValueKind(), OK: ME->getObjectKind(), NOUR);
19660 }
19661
19662 case Expr::BinaryOperatorClass: {
19663 auto *BO = cast<BinaryOperator>(Val: E);
19664 Expr *LHS = BO->getLHS();
19665 Expr *RHS = BO->getRHS();
19666 // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
19667 if (BO->getOpcode() == BO_PtrMemD) {
19668 ExprResult Sub = Rebuild(LHS);
19669 if (!Sub.isUsable())
19670 return Sub;
19671 BO->setLHS(Sub.get());
19672 // -- If e is a comma expression, ...
19673 } else if (BO->getOpcode() == BO_Comma) {
19674 ExprResult Sub = Rebuild(RHS);
19675 if (!Sub.isUsable())
19676 return Sub;
19677 BO->setRHS(Sub.get());
19678 } else {
19679 break;
19680 }
19681 return ExprResult(BO);
19682 }
19683
19684 // -- If e has the form (e1)...
19685 case Expr::ParenExprClass: {
19686 auto *PE = cast<ParenExpr>(Val: E);
19687 ExprResult Sub = Rebuild(PE->getSubExpr());
19688 if (!Sub.isUsable())
19689 return Sub;
19690 return S.ActOnParenExpr(L: PE->getLParen(), R: PE->getRParen(), E: Sub.get());
19691 }
19692
19693 // -- If e is a glvalue conditional expression, ...
19694 // We don't apply this to a binary conditional operator. FIXME: Should we?
19695 case Expr::ConditionalOperatorClass: {
19696 auto *CO = cast<ConditionalOperator>(Val: E);
19697 ExprResult LHS = Rebuild(CO->getLHS());
19698 if (LHS.isInvalid())
19699 return ExprError();
19700 ExprResult RHS = Rebuild(CO->getRHS());
19701 if (RHS.isInvalid())
19702 return ExprError();
19703 if (!LHS.isUsable() && !RHS.isUsable())
19704 return ExprEmpty();
19705 if (!LHS.isUsable())
19706 LHS = CO->getLHS();
19707 if (!RHS.isUsable())
19708 RHS = CO->getRHS();
19709 return S.ActOnConditionalOp(QuestionLoc: CO->getQuestionLoc(), ColonLoc: CO->getColonLoc(),
19710 CondExpr: CO->getCond(), LHSExpr: LHS.get(), RHSExpr: RHS.get());
19711 }
19712
19713 // [Clang extension]
19714 // -- If e has the form __extension__ e1...
19715 case Expr::UnaryOperatorClass: {
19716 auto *UO = cast<UnaryOperator>(Val: E);
19717 if (UO->getOpcode() != UO_Extension)
19718 break;
19719 ExprResult Sub = Rebuild(UO->getSubExpr());
19720 if (!Sub.isUsable())
19721 return Sub;
19722 return S.BuildUnaryOp(S: nullptr, OpLoc: UO->getOperatorLoc(), Opc: UO_Extension,
19723 Input: Sub.get());
19724 }
19725
19726 // [Clang extension]
19727 // -- If e has the form _Generic(...), the set of potential results is the
19728 // union of the sets of potential results of the associated expressions.
19729 case Expr::GenericSelectionExprClass: {
19730 auto *GSE = cast<GenericSelectionExpr>(Val: E);
19731
19732 SmallVector<Expr *, 4> AssocExprs;
19733 bool AnyChanged = false;
19734 for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
19735 ExprResult AssocExpr = Rebuild(OrigAssocExpr);
19736 if (AssocExpr.isInvalid())
19737 return ExprError();
19738 if (AssocExpr.isUsable()) {
19739 AssocExprs.push_back(Elt: AssocExpr.get());
19740 AnyChanged = true;
19741 } else {
19742 AssocExprs.push_back(Elt: OrigAssocExpr);
19743 }
19744 }
19745
19746 void *ExOrTy = nullptr;
19747 bool IsExpr = GSE->isExprPredicate();
19748 if (IsExpr)
19749 ExOrTy = GSE->getControllingExpr();
19750 else
19751 ExOrTy = GSE->getControllingType();
19752 return AnyChanged ? S.CreateGenericSelectionExpr(
19753 KeyLoc: GSE->getGenericLoc(), DefaultLoc: GSE->getDefaultLoc(),
19754 RParenLoc: GSE->getRParenLoc(), PredicateIsExpr: IsExpr, ControllingExprOrType: ExOrTy,
19755 Types: GSE->getAssocTypeSourceInfos(), Exprs: AssocExprs)
19756 : ExprEmpty();
19757 }
19758
19759 // [Clang extension]
19760 // -- If e has the form __builtin_choose_expr(...), the set of potential
19761 // results is the union of the sets of potential results of the
19762 // second and third subexpressions.
19763 case Expr::ChooseExprClass: {
19764 auto *CE = cast<ChooseExpr>(Val: E);
19765
19766 ExprResult LHS = Rebuild(CE->getLHS());
19767 if (LHS.isInvalid())
19768 return ExprError();
19769
19770 ExprResult RHS = Rebuild(CE->getLHS());
19771 if (RHS.isInvalid())
19772 return ExprError();
19773
19774 if (!LHS.get() && !RHS.get())
19775 return ExprEmpty();
19776 if (!LHS.isUsable())
19777 LHS = CE->getLHS();
19778 if (!RHS.isUsable())
19779 RHS = CE->getRHS();
19780
19781 return S.ActOnChooseExpr(BuiltinLoc: CE->getBuiltinLoc(), CondExpr: CE->getCond(), LHSExpr: LHS.get(),
19782 RHSExpr: RHS.get(), RPLoc: CE->getRParenLoc());
19783 }
19784
19785 // Step through non-syntactic nodes.
19786 case Expr::ConstantExprClass: {
19787 auto *CE = cast<ConstantExpr>(Val: E);
19788 ExprResult Sub = Rebuild(CE->getSubExpr());
19789 if (!Sub.isUsable())
19790 return Sub;
19791 return ConstantExpr::Create(Context: S.Context, E: Sub.get());
19792 }
19793
19794 // We could mostly rely on the recursive rebuilding to rebuild implicit
19795 // casts, but not at the top level, so rebuild them here.
19796 case Expr::ImplicitCastExprClass: {
19797 auto *ICE = cast<ImplicitCastExpr>(Val: E);
19798 // Only step through the narrow set of cast kinds we expect to encounter.
19799 // Anything else suggests we've left the region in which potential results
19800 // can be found.
19801 switch (ICE->getCastKind()) {
19802 case CK_NoOp:
19803 case CK_DerivedToBase:
19804 case CK_UncheckedDerivedToBase: {
19805 ExprResult Sub = Rebuild(ICE->getSubExpr());
19806 if (!Sub.isUsable())
19807 return Sub;
19808 CXXCastPath Path(ICE->path());
19809 return S.ImpCastExprToType(E: Sub.get(), Type: ICE->getType(), CK: ICE->getCastKind(),
19810 VK: ICE->getValueKind(), BasePath: &Path);
19811 }
19812
19813 default:
19814 break;
19815 }
19816 break;
19817 }
19818
19819 default:
19820 break;
19821 }
19822
19823 // Can't traverse through this node. Nothing to do.
19824 return ExprEmpty();
19825}
19826
19827ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
19828 // Check whether the operand is or contains an object of non-trivial C union
19829 // type.
19830 if (E->getType().isVolatileQualified() &&
19831 (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
19832 E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
19833 checkNonTrivialCUnion(QT: E->getType(), Loc: E->getExprLoc(),
19834 UseContext: NonTrivialCUnionContext::LValueToRValueVolatile,
19835 NonTrivialKind: NTCUK_Destruct | NTCUK_Copy);
19836
19837 // C++2a [basic.def.odr]p4:
19838 // [...] an expression of non-volatile-qualified non-class type to which
19839 // the lvalue-to-rvalue conversion is applied [...]
19840 if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
19841 return E;
19842
19843 ExprResult Result =
19844 rebuildPotentialResultsAsNonOdrUsed(S&: *this, E, NOUR: NOUR_Constant);
19845 if (Result.isInvalid())
19846 return ExprError();
19847 return Result.get() ? Result : E;
19848}
19849
19850ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
19851 if (!Res.isUsable())
19852 return Res;
19853
19854 // If a constant-expression is a reference to a variable where we delay
19855 // deciding whether it is an odr-use, just assume we will apply the
19856 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
19857 // (a non-type template argument), we have special handling anyway.
19858 return CheckLValueToRValueConversionOperand(E: Res.get());
19859}
19860
19861void Sema::CleanupVarDeclMarking() {
19862 // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
19863 // call.
19864 MaybeODRUseExprSet LocalMaybeODRUseExprs;
19865 std::swap(LHS&: LocalMaybeODRUseExprs, RHS&: MaybeODRUseExprs);
19866
19867 for (Expr *E : LocalMaybeODRUseExprs) {
19868 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) {
19869 MarkVarDeclODRUsed(V: cast<VarDecl>(Val: DRE->getDecl()),
19870 Loc: DRE->getLocation(), SemaRef&: *this);
19871 } else if (auto *ME = dyn_cast<MemberExpr>(Val: E)) {
19872 MarkVarDeclODRUsed(V: cast<VarDecl>(Val: ME->getMemberDecl()), Loc: ME->getMemberLoc(),
19873 SemaRef&: *this);
19874 } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(Val: E)) {
19875 for (ValueDecl *VD : *FP)
19876 MarkVarDeclODRUsed(V: VD, Loc: FP->getParameterPackLocation(), SemaRef&: *this);
19877 } else {
19878 llvm_unreachable("Unexpected expression");
19879 }
19880 }
19881
19882 assert(MaybeODRUseExprs.empty() &&
19883 "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
19884}
19885
19886static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc,
19887 ValueDecl *Var, Expr *E) {
19888 VarDecl *VD = Var->getPotentiallyDecomposedVarDecl();
19889 if (!VD)
19890 return;
19891
19892 const bool RefersToEnclosingScope =
19893 (SemaRef.CurContext != VD->getDeclContext() &&
19894 VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage());
19895 if (RefersToEnclosingScope) {
19896 LambdaScopeInfo *const LSI =
19897 SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
19898 if (LSI && (!LSI->CallOperator ||
19899 !LSI->CallOperator->Encloses(DC: Var->getDeclContext()))) {
19900 // If a variable could potentially be odr-used, defer marking it so
19901 // until we finish analyzing the full expression for any
19902 // lvalue-to-rvalue
19903 // or discarded value conversions that would obviate odr-use.
19904 // Add it to the list of potential captures that will be analyzed
19905 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
19906 // unless the variable is a reference that was initialized by a constant
19907 // expression (this will never need to be captured or odr-used).
19908 //
19909 // FIXME: We can simplify this a lot after implementing P0588R1.
19910 assert(E && "Capture variable should be used in an expression.");
19911 if (!Var->getType()->isReferenceType() ||
19912 !VD->isUsableInConstantExpressions(C: SemaRef.Context))
19913 LSI->addPotentialCapture(VarExpr: E->IgnoreParens());
19914 }
19915 }
19916}
19917
19918static void DoMarkVarDeclReferenced(
19919 Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
19920 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19921 assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
19922 isa<FunctionParmPackExpr>(E)) &&
19923 "Invalid Expr argument to DoMarkVarDeclReferenced");
19924 Var->setReferenced();
19925
19926 if (Var->isInvalidDecl())
19927 return;
19928
19929 auto *MSI = Var->getMemberSpecializationInfo();
19930 TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
19931 : Var->getTemplateSpecializationKind();
19932
19933 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19934 bool UsableInConstantExpr =
19935 Var->mightBeUsableInConstantExpressions(C: SemaRef.Context);
19936
19937 if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
19938 RefsMinusAssignments.insert(KV: {Var, 0}).first->getSecond()++;
19939 }
19940
19941 // C++20 [expr.const]p12:
19942 // A variable [...] is needed for constant evaluation if it is [...] a
19943 // variable whose name appears as a potentially constant evaluated
19944 // expression that is either a contexpr variable or is of non-volatile
19945 // const-qualified integral type or of reference type
19946 bool NeededForConstantEvaluation =
19947 isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
19948
19949 bool NeedDefinition =
19950 OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
19951
19952 assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
19953 "Can't instantiate a partial template specialization.");
19954
19955 // If this might be a member specialization of a static data member, check
19956 // the specialization is visible. We already did the checks for variable
19957 // template specializations when we created them.
19958 if (NeedDefinition && TSK != TSK_Undeclared &&
19959 !isa<VarTemplateSpecializationDecl>(Val: Var))
19960 SemaRef.checkSpecializationVisibility(Loc, Spec: Var);
19961
19962 // Perform implicit instantiation of static data members, static data member
19963 // templates of class templates, and variable template specializations. Delay
19964 // instantiations of variable templates, except for those that could be used
19965 // in a constant expression.
19966 if (NeedDefinition && isTemplateInstantiation(Kind: TSK)) {
19967 // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
19968 // instantiation declaration if a variable is usable in a constant
19969 // expression (among other cases).
19970 bool TryInstantiating =
19971 TSK == TSK_ImplicitInstantiation ||
19972 (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
19973
19974 if (TryInstantiating) {
19975 SourceLocation PointOfInstantiation =
19976 MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
19977 bool FirstInstantiation = PointOfInstantiation.isInvalid();
19978 if (FirstInstantiation) {
19979 PointOfInstantiation = Loc;
19980 if (MSI)
19981 MSI->setPointOfInstantiation(PointOfInstantiation);
19982 // FIXME: Notify listener.
19983 else
19984 Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19985 }
19986
19987 if (UsableInConstantExpr || Var->getType()->isUndeducedType()) {
19988 // Do not defer instantiations of variables that could be used in a
19989 // constant expression.
19990 // The type deduction also needs a complete initializer.
19991 SemaRef.runWithSufficientStackSpace(Loc: PointOfInstantiation, Fn: [&] {
19992 SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
19993 });
19994
19995 // The size of an incomplete array type can be updated by
19996 // instantiating the initializer. The DeclRefExpr's type should be
19997 // updated accordingly too, or users of it would be confused!
19998 if (E)
19999 SemaRef.getCompletedType(E);
20000
20001 // Re-set the member to trigger a recomputation of the dependence bits
20002 // for the expression.
20003 if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(Val: E))
20004 DRE->setDecl(DRE->getDecl());
20005 else if (auto *ME = dyn_cast_or_null<MemberExpr>(Val: E))
20006 ME->setMemberDecl(ME->getMemberDecl());
20007 } else if (FirstInstantiation) {
20008 SemaRef.PendingInstantiations
20009 .push_back(x: std::make_pair(x&: Var, y&: PointOfInstantiation));
20010 } else {
20011 bool Inserted = false;
20012 for (auto &I : SemaRef.SavedPendingInstantiations) {
20013 auto Iter = llvm::find_if(
20014 Range&: I, P: [Var](const Sema::PendingImplicitInstantiation &P) {
20015 return P.first == Var;
20016 });
20017 if (Iter != I.end()) {
20018 SemaRef.PendingInstantiations.push_back(x: *Iter);
20019 I.erase(position: Iter);
20020 Inserted = true;
20021 break;
20022 }
20023 }
20024
20025 // FIXME: For a specialization of a variable template, we don't
20026 // distinguish between "declaration and type implicitly instantiated"
20027 // and "implicit instantiation of definition requested", so we have
20028 // no direct way to avoid enqueueing the pending instantiation
20029 // multiple times.
20030 if (isa<VarTemplateSpecializationDecl>(Val: Var) && !Inserted)
20031 SemaRef.PendingInstantiations
20032 .push_back(x: std::make_pair(x&: Var, y&: PointOfInstantiation));
20033 }
20034 }
20035 }
20036
20037 // C++2a [basic.def.odr]p4:
20038 // A variable x whose name appears as a potentially-evaluated expression e
20039 // is odr-used by e unless
20040 // -- x is a reference that is usable in constant expressions
20041 // -- x is a variable of non-reference type that is usable in constant
20042 // expressions and has no mutable subobjects [FIXME], and e is an
20043 // element of the set of potential results of an expression of
20044 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
20045 // conversion is applied
20046 // -- x is a variable of non-reference type, and e is an element of the set
20047 // of potential results of a discarded-value expression to which the
20048 // lvalue-to-rvalue conversion is not applied [FIXME]
20049 //
20050 // We check the first part of the second bullet here, and
20051 // Sema::CheckLValueToRValueConversionOperand deals with the second part.
20052 // FIXME: To get the third bullet right, we need to delay this even for
20053 // variables that are not usable in constant expressions.
20054
20055 // If we already know this isn't an odr-use, there's nothing more to do.
20056 if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(Val: E))
20057 if (DRE->isNonOdrUse())
20058 return;
20059 if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(Val: E))
20060 if (ME->isNonOdrUse())
20061 return;
20062
20063 switch (OdrUse) {
20064 case OdrUseContext::None:
20065 // In some cases, a variable may not have been marked unevaluated, if it
20066 // appears in a defaukt initializer.
20067 assert((!E || isa<FunctionParmPackExpr>(E) ||
20068 SemaRef.isUnevaluatedContext()) &&
20069 "missing non-odr-use marking for unevaluated decl ref");
20070 break;
20071
20072 case OdrUseContext::FormallyOdrUsed:
20073 // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
20074 // behavior.
20075 break;
20076
20077 case OdrUseContext::Used:
20078 // If we might later find that this expression isn't actually an odr-use,
20079 // delay the marking.
20080 if (E && Var->isUsableInConstantExpressions(C: SemaRef.Context))
20081 SemaRef.MaybeODRUseExprs.insert(X: E);
20082 else
20083 MarkVarDeclODRUsed(V: Var, Loc, SemaRef);
20084 break;
20085
20086 case OdrUseContext::Dependent:
20087 // If this is a dependent context, we don't need to mark variables as
20088 // odr-used, but we may still need to track them for lambda capture.
20089 // FIXME: Do we also need to do this inside dependent typeid expressions
20090 // (which are modeled as unevaluated at this point)?
20091 DoMarkPotentialCapture(SemaRef, Loc, Var, E);
20092 break;
20093 }
20094}
20095
20096static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
20097 BindingDecl *BD, Expr *E) {
20098 BD->setReferenced();
20099
20100 if (BD->isInvalidDecl())
20101 return;
20102
20103 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
20104 if (OdrUse == OdrUseContext::Used) {
20105 QualType CaptureType, DeclRefType;
20106 SemaRef.tryCaptureVariable(Var: BD, ExprLoc: Loc, Kind: TryCaptureKind::Implicit,
20107 /*EllipsisLoc*/ SourceLocation(),
20108 /*BuildAndDiagnose*/ true, CaptureType,
20109 DeclRefType,
20110 /*FunctionScopeIndexToStopAt*/ nullptr);
20111 } else if (OdrUse == OdrUseContext::Dependent) {
20112 DoMarkPotentialCapture(SemaRef, Loc, Var: BD, E);
20113 }
20114}
20115
20116void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
20117 DoMarkVarDeclReferenced(SemaRef&: *this, Loc, Var, E: nullptr, RefsMinusAssignments);
20118}
20119
20120// C++ [temp.dep.expr]p3:
20121// An id-expression is type-dependent if it contains:
20122// - an identifier associated by name lookup with an entity captured by copy
20123// in a lambda-expression that has an explicit object parameter whose type
20124// is dependent ([dcl.fct]),
20125static void FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(
20126 Sema &SemaRef, ValueDecl *D, Expr *E) {
20127 auto *ID = dyn_cast<DeclRefExpr>(Val: E);
20128 if (!ID || ID->isTypeDependent() || !ID->refersToEnclosingVariableOrCapture())
20129 return;
20130
20131 // If any enclosing lambda with a dependent explicit object parameter either
20132 // explicitly captures the variable by value, or has a capture default of '='
20133 // and does not capture the variable by reference, then the type of the DRE
20134 // is dependent on the type of that lambda's explicit object parameter.
20135 auto IsDependent = [&]() {
20136 for (auto *Scope : llvm::reverse(C&: SemaRef.FunctionScopes)) {
20137 auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Val: Scope);
20138 if (!LSI)
20139 continue;
20140
20141 if (LSI->Lambda && !LSI->Lambda->Encloses(DC: SemaRef.CurContext) &&
20142 LSI->AfterParameterList)
20143 return false;
20144
20145 const auto *MD = LSI->CallOperator;
20146 if (MD->getType().isNull())
20147 continue;
20148
20149 const auto *Ty = MD->getType()->getAs<FunctionProtoType>();
20150 if (!Ty || !MD->isExplicitObjectMemberFunction() ||
20151 !Ty->getParamType(i: 0)->isDependentType())
20152 continue;
20153
20154 if (auto *C = LSI->CaptureMap.count(Val: D) ? &LSI->getCapture(Var: D) : nullptr) {
20155 if (C->isCopyCapture())
20156 return true;
20157 continue;
20158 }
20159
20160 if (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByval)
20161 return true;
20162 }
20163 return false;
20164 }();
20165
20166 ID->setCapturedByCopyInLambdaWithExplicitObjectParameter(
20167 Set: IsDependent, Context: SemaRef.getASTContext());
20168}
20169
20170static void
20171MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
20172 bool MightBeOdrUse,
20173 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
20174 if (SemaRef.OpenMP().isInOpenMPDeclareTargetContext())
20175 SemaRef.OpenMP().checkDeclIsAllowedInOpenMPTarget(E, D);
20176
20177 if (SemaRef.getLangOpts().OpenACC)
20178 SemaRef.OpenACC().CheckDeclReference(Loc, E, D);
20179
20180 if (VarDecl *Var = dyn_cast<VarDecl>(Val: D)) {
20181 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
20182 if (SemaRef.getLangOpts().CPlusPlus)
20183 FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20184 D: Var, E);
20185 return;
20186 }
20187
20188 if (BindingDecl *Decl = dyn_cast<BindingDecl>(Val: D)) {
20189 DoMarkBindingDeclReferenced(SemaRef, Loc, BD: Decl, E);
20190 if (SemaRef.getLangOpts().CPlusPlus)
20191 FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20192 D: Decl, E);
20193 return;
20194 }
20195 SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
20196
20197 // If this is a call to a method via a cast, also mark the method in the
20198 // derived class used in case codegen can devirtualize the call.
20199 const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E);
20200 if (!ME)
20201 return;
20202 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: ME->getMemberDecl());
20203 if (!MD)
20204 return;
20205 // Only attempt to devirtualize if this is truly a virtual call.
20206 bool IsVirtualCall = MD->isVirtual() &&
20207 ME->performsVirtualDispatch(LO: SemaRef.getLangOpts());
20208 if (!IsVirtualCall)
20209 return;
20210
20211 // If it's possible to devirtualize the call, mark the called function
20212 // referenced.
20213 CXXMethodDecl *DM = MD->getDevirtualizedMethod(
20214 Base: ME->getBase(), IsAppleKext: SemaRef.getLangOpts().AppleKext);
20215 if (DM)
20216 SemaRef.MarkAnyDeclReferenced(Loc, D: DM, MightBeOdrUse);
20217}
20218
20219void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
20220 // [basic.def.odr] (CWG 1614)
20221 // A function is named by an expression or conversion [...]
20222 // unless it is a pure virtual function and either the expression is not an
20223 // id-expression naming the function with an explicitly qualified name or
20224 // the expression forms a pointer to member
20225 bool OdrUse = true;
20226 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: E->getDecl()))
20227 if (Method->isVirtual() &&
20228 !Method->getDevirtualizedMethod(Base, IsAppleKext: getLangOpts().AppleKext))
20229 OdrUse = false;
20230
20231 if (auto *FD = dyn_cast<FunctionDecl>(Val: E->getDecl())) {
20232 if (!isUnevaluatedContext() && !isConstantEvaluatedContext() &&
20233 !isImmediateFunctionContext() &&
20234 !isCheckingDefaultArgumentOrInitializer() &&
20235 FD->isImmediateFunction() && !RebuildingImmediateInvocation &&
20236 !FD->isDependentContext())
20237 ExprEvalContexts.back().ReferenceToConsteval.insert(Ptr: E);
20238 }
20239 MarkExprReferenced(SemaRef&: *this, Loc: E->getLocation(), D: E->getDecl(), E, MightBeOdrUse: OdrUse,
20240 RefsMinusAssignments);
20241}
20242
20243void Sema::MarkMemberReferenced(MemberExpr *E) {
20244 // C++11 [basic.def.odr]p2:
20245 // A non-overloaded function whose name appears as a potentially-evaluated
20246 // expression or a member of a set of candidate functions, if selected by
20247 // overload resolution when referred to from a potentially-evaluated
20248 // expression, is odr-used, unless it is a pure virtual function and its
20249 // name is not explicitly qualified.
20250 bool MightBeOdrUse = true;
20251 if (E->performsVirtualDispatch(LO: getLangOpts())) {
20252 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: E->getMemberDecl()))
20253 if (Method->isPureVirtual())
20254 MightBeOdrUse = false;
20255 }
20256 SourceLocation Loc =
20257 E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
20258 MarkExprReferenced(SemaRef&: *this, Loc, D: E->getMemberDecl(), E, MightBeOdrUse,
20259 RefsMinusAssignments);
20260}
20261
20262void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
20263 for (ValueDecl *VD : *E)
20264 MarkExprReferenced(SemaRef&: *this, Loc: E->getParameterPackLocation(), D: VD, E, MightBeOdrUse: true,
20265 RefsMinusAssignments);
20266}
20267
20268/// Perform marking for a reference to an arbitrary declaration. It
20269/// marks the declaration referenced, and performs odr-use checking for
20270/// functions and variables. This method should not be used when building a
20271/// normal expression which refers to a variable.
20272void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
20273 bool MightBeOdrUse) {
20274 if (MightBeOdrUse) {
20275 if (auto *VD = dyn_cast<VarDecl>(Val: D)) {
20276 MarkVariableReferenced(Loc, Var: VD);
20277 return;
20278 }
20279 }
20280 if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) {
20281 MarkFunctionReferenced(Loc, Func: FD, MightBeOdrUse);
20282 return;
20283 }
20284 D->setReferenced();
20285}
20286
20287namespace {
20288 // Mark all of the declarations used by a type as referenced.
20289 // FIXME: Not fully implemented yet! We need to have a better understanding
20290 // of when we're entering a context we should not recurse into.
20291 // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
20292 // TreeTransforms rebuilding the type in a new context. Rather than
20293 // duplicating the TreeTransform logic, we should consider reusing it here.
20294 // Currently that causes problems when rebuilding LambdaExprs.
20295class MarkReferencedDecls : public DynamicRecursiveASTVisitor {
20296 Sema &S;
20297 SourceLocation Loc;
20298
20299public:
20300 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) {}
20301
20302 bool TraverseTemplateArgument(const TemplateArgument &Arg) override;
20303};
20304}
20305
20306bool MarkReferencedDecls::TraverseTemplateArgument(
20307 const TemplateArgument &Arg) {
20308 {
20309 // A non-type template argument is a constant-evaluated context.
20310 EnterExpressionEvaluationContext Evaluated(
20311 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
20312 if (Arg.getKind() == TemplateArgument::Declaration) {
20313 if (Decl *D = Arg.getAsDecl())
20314 S.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse: true);
20315 } else if (Arg.getKind() == TemplateArgument::Expression) {
20316 S.MarkDeclarationsReferencedInExpr(E: Arg.getAsExpr(), SkipLocalVariables: false);
20317 }
20318 }
20319
20320 return DynamicRecursiveASTVisitor::TraverseTemplateArgument(Arg);
20321}
20322
20323void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
20324 MarkReferencedDecls Marker(*this, Loc);
20325 Marker.TraverseType(T);
20326}
20327
20328namespace {
20329/// Helper class that marks all of the declarations referenced by
20330/// potentially-evaluated subexpressions as "referenced".
20331class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
20332public:
20333 typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
20334 bool SkipLocalVariables;
20335 ArrayRef<const Expr *> StopAt;
20336
20337 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
20338 ArrayRef<const Expr *> StopAt)
20339 : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
20340
20341 void visitUsedDecl(SourceLocation Loc, Decl *D) {
20342 S.MarkFunctionReferenced(Loc, Func: cast<FunctionDecl>(Val: D));
20343 }
20344
20345 void Visit(Expr *E) {
20346 if (llvm::is_contained(Range&: StopAt, Element: E))
20347 return;
20348 Inherited::Visit(S: E);
20349 }
20350
20351 void VisitConstantExpr(ConstantExpr *E) {
20352 // Don't mark declarations within a ConstantExpression, as this expression
20353 // will be evaluated and folded to a value.
20354 }
20355
20356 void VisitDeclRefExpr(DeclRefExpr *E) {
20357 // If we were asked not to visit local variables, don't.
20358 if (SkipLocalVariables) {
20359 if (VarDecl *VD = dyn_cast<VarDecl>(Val: E->getDecl()))
20360 if (VD->hasLocalStorage())
20361 return;
20362 }
20363
20364 // FIXME: This can trigger the instantiation of the initializer of a
20365 // variable, which can cause the expression to become value-dependent
20366 // or error-dependent. Do we need to propagate the new dependence bits?
20367 S.MarkDeclRefReferenced(E);
20368 }
20369
20370 void VisitMemberExpr(MemberExpr *E) {
20371 S.MarkMemberReferenced(E);
20372 Visit(E: E->getBase());
20373 }
20374};
20375} // namespace
20376
20377void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
20378 bool SkipLocalVariables,
20379 ArrayRef<const Expr*> StopAt) {
20380 EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
20381}
20382
20383/// Emit a diagnostic when statements are reachable.
20384/// FIXME: check for reachability even in expressions for which we don't build a
20385/// CFG (eg, in the initializer of a global or in a constant expression).
20386/// For example,
20387/// namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
20388bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
20389 const PartialDiagnostic &PD) {
20390 if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
20391 if (!FunctionScopes.empty())
20392 FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
20393 Elt: sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
20394 return true;
20395 }
20396
20397 // The initializer of a constexpr variable or of the first declaration of a
20398 // static data member is not syntactically a constant evaluated constant,
20399 // but nonetheless is always required to be a constant expression, so we
20400 // can skip diagnosing.
20401 // FIXME: Using the mangling context here is a hack.
20402 if (auto *VD = dyn_cast_or_null<VarDecl>(
20403 Val: ExprEvalContexts.back().ManglingContextDecl)) {
20404 if (VD->isConstexpr() ||
20405 (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
20406 return false;
20407 // FIXME: For any other kind of variable, we should build a CFG for its
20408 // initializer and check whether the context in question is reachable.
20409 }
20410
20411 Diag(Loc, PD);
20412 return true;
20413}
20414
20415/// Emit a diagnostic that describes an effect on the run-time behavior
20416/// of the program being compiled.
20417///
20418/// This routine emits the given diagnostic when the code currently being
20419/// type-checked is "potentially evaluated", meaning that there is a
20420/// possibility that the code will actually be executable. Code in sizeof()
20421/// expressions, code used only during overload resolution, etc., are not
20422/// potentially evaluated. This routine will suppress such diagnostics or,
20423/// in the absolutely nutty case of potentially potentially evaluated
20424/// expressions (C++ typeid), queue the diagnostic to potentially emit it
20425/// later.
20426///
20427/// This routine should be used for all diagnostics that describe the run-time
20428/// behavior of a program, such as passing a non-POD value through an ellipsis.
20429/// Failure to do so will likely result in spurious diagnostics or failures
20430/// during overload resolution or within sizeof/alignof/typeof/typeid.
20431bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
20432 const PartialDiagnostic &PD) {
20433
20434 if (ExprEvalContexts.back().isDiscardedStatementContext())
20435 return false;
20436
20437 switch (ExprEvalContexts.back().Context) {
20438 case ExpressionEvaluationContext::Unevaluated:
20439 case ExpressionEvaluationContext::UnevaluatedList:
20440 case ExpressionEvaluationContext::UnevaluatedAbstract:
20441 case ExpressionEvaluationContext::DiscardedStatement:
20442 // The argument will never be evaluated, so don't complain.
20443 break;
20444
20445 case ExpressionEvaluationContext::ConstantEvaluated:
20446 case ExpressionEvaluationContext::ImmediateFunctionContext:
20447 // Relevant diagnostics should be produced by constant evaluation.
20448 break;
20449
20450 case ExpressionEvaluationContext::PotentiallyEvaluated:
20451 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
20452 return DiagIfReachable(Loc, Stmts, PD);
20453 }
20454
20455 return false;
20456}
20457
20458bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
20459 const PartialDiagnostic &PD) {
20460 return DiagRuntimeBehavior(
20461 Loc, Stmts: Statement ? llvm::ArrayRef(Statement) : llvm::ArrayRef<Stmt *>(),
20462 PD);
20463}
20464
20465bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
20466 CallExpr *CE, FunctionDecl *FD) {
20467 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
20468 return false;
20469
20470 // If we're inside a decltype's expression, don't check for a valid return
20471 // type or construct temporaries until we know whether this is the last call.
20472 if (ExprEvalContexts.back().ExprContext ==
20473 ExpressionEvaluationContextRecord::EK_Decltype) {
20474 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(Elt: CE);
20475 return false;
20476 }
20477
20478 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
20479 FunctionDecl *FD;
20480 CallExpr *CE;
20481
20482 public:
20483 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
20484 : FD(FD), CE(CE) { }
20485
20486 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
20487 if (!FD) {
20488 S.Diag(Loc, DiagID: diag::err_call_incomplete_return)
20489 << T << CE->getSourceRange();
20490 return;
20491 }
20492
20493 S.Diag(Loc, DiagID: diag::err_call_function_incomplete_return)
20494 << CE->getSourceRange() << FD << T;
20495 S.Diag(Loc: FD->getLocation(), DiagID: diag::note_entity_declared_at)
20496 << FD->getDeclName();
20497 }
20498 } Diagnoser(FD, CE);
20499
20500 if (RequireCompleteType(Loc, T: ReturnType, Diagnoser))
20501 return true;
20502
20503 return false;
20504}
20505
20506// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
20507// will prevent this condition from triggering, which is what we want.
20508void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
20509 SourceLocation Loc;
20510
20511 unsigned diagnostic = diag::warn_condition_is_assignment;
20512 bool IsOrAssign = false;
20513
20514 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(Val: E)) {
20515 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
20516 return;
20517
20518 IsOrAssign = Op->getOpcode() == BO_OrAssign;
20519
20520 // Greylist some idioms by putting them into a warning subcategory.
20521 if (ObjCMessageExpr *ME
20522 = dyn_cast<ObjCMessageExpr>(Val: Op->getRHS()->IgnoreParenCasts())) {
20523 Selector Sel = ME->getSelector();
20524
20525 // self = [<foo> init...]
20526 if (ObjC().isSelfExpr(RExpr: Op->getLHS()) && ME->getMethodFamily() == OMF_init)
20527 diagnostic = diag::warn_condition_is_idiomatic_assignment;
20528
20529 // <foo> = [<bar> nextObject]
20530 else if (Sel.isUnarySelector() && Sel.getNameForSlot(argIndex: 0) == "nextObject")
20531 diagnostic = diag::warn_condition_is_idiomatic_assignment;
20532 }
20533
20534 Loc = Op->getOperatorLoc();
20535 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(Val: E)) {
20536 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
20537 return;
20538
20539 IsOrAssign = Op->getOperator() == OO_PipeEqual;
20540 Loc = Op->getOperatorLoc();
20541 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Val: E))
20542 return DiagnoseAssignmentAsCondition(E: POE->getSyntacticForm());
20543 else {
20544 // Not an assignment.
20545 return;
20546 }
20547
20548 Diag(Loc, DiagID: diagnostic) << E->getSourceRange();
20549
20550 SourceLocation Open = E->getBeginLoc();
20551 SourceLocation Close = getLocForEndOfToken(Loc: E->getSourceRange().getEnd());
20552 Diag(Loc, DiagID: diag::note_condition_assign_silence)
20553 << FixItHint::CreateInsertion(InsertionLoc: Open, Code: "(")
20554 << FixItHint::CreateInsertion(InsertionLoc: Close, Code: ")");
20555
20556 if (IsOrAssign)
20557 Diag(Loc, DiagID: diag::note_condition_or_assign_to_comparison)
20558 << FixItHint::CreateReplacement(RemoveRange: Loc, Code: "!=");
20559 else
20560 Diag(Loc, DiagID: diag::note_condition_assign_to_comparison)
20561 << FixItHint::CreateReplacement(RemoveRange: Loc, Code: "==");
20562}
20563
20564void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
20565 // Don't warn if the parens came from a macro.
20566 SourceLocation parenLoc = ParenE->getBeginLoc();
20567 if (parenLoc.isInvalid() || parenLoc.isMacroID())
20568 return;
20569 // Don't warn for dependent expressions.
20570 if (ParenE->isTypeDependent())
20571 return;
20572
20573 Expr *E = ParenE->IgnoreParens();
20574 if (ParenE->isProducedByFoldExpansion() && ParenE->getSubExpr() == E)
20575 return;
20576
20577 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(Val: E))
20578 if (opE->getOpcode() == BO_EQ &&
20579 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Ctx&: Context)
20580 == Expr::MLV_Valid) {
20581 SourceLocation Loc = opE->getOperatorLoc();
20582
20583 Diag(Loc, DiagID: diag::warn_equality_with_extra_parens) << E->getSourceRange();
20584 SourceRange ParenERange = ParenE->getSourceRange();
20585 Diag(Loc, DiagID: diag::note_equality_comparison_silence)
20586 << FixItHint::CreateRemoval(RemoveRange: ParenERange.getBegin())
20587 << FixItHint::CreateRemoval(RemoveRange: ParenERange.getEnd());
20588 Diag(Loc, DiagID: diag::note_equality_comparison_to_assign)
20589 << FixItHint::CreateReplacement(RemoveRange: Loc, Code: "=");
20590 }
20591}
20592
20593ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
20594 bool IsConstexpr) {
20595 DiagnoseAssignmentAsCondition(E);
20596 if (ParenExpr *parenE = dyn_cast<ParenExpr>(Val: E))
20597 DiagnoseEqualityWithExtraParens(ParenE: parenE);
20598
20599 ExprResult result = CheckPlaceholderExpr(E);
20600 if (result.isInvalid()) return ExprError();
20601 E = result.get();
20602
20603 if (!E->isTypeDependent()) {
20604 if (getLangOpts().CPlusPlus)
20605 return CheckCXXBooleanCondition(CondExpr: E, IsConstexpr); // C++ 6.4p4
20606
20607 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
20608 if (ERes.isInvalid())
20609 return ExprError();
20610 E = ERes.get();
20611
20612 QualType T = E->getType();
20613 if (!T->isScalarType()) { // C99 6.8.4.1p1
20614 Diag(Loc, DiagID: diag::err_typecheck_statement_requires_scalar)
20615 << T << E->getSourceRange();
20616 return ExprError();
20617 }
20618 CheckBoolLikeConversion(E, CC: Loc);
20619 }
20620
20621 return E;
20622}
20623
20624Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
20625 Expr *SubExpr, ConditionKind CK,
20626 bool MissingOK) {
20627 // MissingOK indicates whether having no condition expression is valid
20628 // (for loop) or invalid (e.g. while loop).
20629 if (!SubExpr)
20630 return MissingOK ? ConditionResult() : ConditionError();
20631
20632 ExprResult Cond;
20633 switch (CK) {
20634 case ConditionKind::Boolean:
20635 Cond = CheckBooleanCondition(Loc, E: SubExpr);
20636 break;
20637
20638 case ConditionKind::ConstexprIf:
20639 Cond = CheckBooleanCondition(Loc, E: SubExpr, IsConstexpr: true);
20640 break;
20641
20642 case ConditionKind::Switch:
20643 Cond = CheckSwitchCondition(SwitchLoc: Loc, Cond: SubExpr);
20644 break;
20645 }
20646 if (Cond.isInvalid()) {
20647 Cond = CreateRecoveryExpr(Begin: SubExpr->getBeginLoc(), End: SubExpr->getEndLoc(),
20648 SubExprs: {SubExpr}, T: PreferredConditionType(K: CK));
20649 if (!Cond.get())
20650 return ConditionError();
20651 }
20652 // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
20653 FullExprArg FullExpr = MakeFullExpr(Arg: Cond.get(), CC: Loc);
20654 if (!FullExpr.get())
20655 return ConditionError();
20656
20657 return ConditionResult(*this, nullptr, FullExpr,
20658 CK == ConditionKind::ConstexprIf);
20659}
20660
20661namespace {
20662 /// A visitor for rebuilding a call to an __unknown_any expression
20663 /// to have an appropriate type.
20664 struct RebuildUnknownAnyFunction
20665 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
20666
20667 Sema &S;
20668
20669 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
20670
20671 ExprResult VisitStmt(Stmt *S) {
20672 llvm_unreachable("unexpected statement!");
20673 }
20674
20675 ExprResult VisitExpr(Expr *E) {
20676 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_unsupported_unknown_any_call)
20677 << E->getSourceRange();
20678 return ExprError();
20679 }
20680
20681 /// Rebuild an expression which simply semantically wraps another
20682 /// expression which it shares the type and value kind of.
20683 template <class T> ExprResult rebuildSugarExpr(T *E) {
20684 ExprResult SubResult = Visit(S: E->getSubExpr());
20685 if (SubResult.isInvalid()) return ExprError();
20686
20687 Expr *SubExpr = SubResult.get();
20688 E->setSubExpr(SubExpr);
20689 E->setType(SubExpr->getType());
20690 E->setValueKind(SubExpr->getValueKind());
20691 assert(E->getObjectKind() == OK_Ordinary);
20692 return E;
20693 }
20694
20695 ExprResult VisitParenExpr(ParenExpr *E) {
20696 return rebuildSugarExpr(E);
20697 }
20698
20699 ExprResult VisitUnaryExtension(UnaryOperator *E) {
20700 return rebuildSugarExpr(E);
20701 }
20702
20703 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20704 ExprResult SubResult = Visit(S: E->getSubExpr());
20705 if (SubResult.isInvalid()) return ExprError();
20706
20707 Expr *SubExpr = SubResult.get();
20708 E->setSubExpr(SubExpr);
20709 E->setType(S.Context.getPointerType(T: SubExpr->getType()));
20710 assert(E->isPRValue());
20711 assert(E->getObjectKind() == OK_Ordinary);
20712 return E;
20713 }
20714
20715 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
20716 if (!isa<FunctionDecl>(Val: VD)) return VisitExpr(E);
20717
20718 E->setType(VD->getType());
20719
20720 assert(E->isPRValue());
20721 if (S.getLangOpts().CPlusPlus &&
20722 !(isa<CXXMethodDecl>(Val: VD) &&
20723 cast<CXXMethodDecl>(Val: VD)->isInstance()))
20724 E->setValueKind(VK_LValue);
20725
20726 return E;
20727 }
20728
20729 ExprResult VisitMemberExpr(MemberExpr *E) {
20730 return resolveDecl(E, VD: E->getMemberDecl());
20731 }
20732
20733 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20734 return resolveDecl(E, VD: E->getDecl());
20735 }
20736 };
20737}
20738
20739/// Given a function expression of unknown-any type, try to rebuild it
20740/// to have a function type.
20741static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
20742 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(S: FunctionExpr);
20743 if (Result.isInvalid()) return ExprError();
20744 return S.DefaultFunctionArrayConversion(E: Result.get());
20745}
20746
20747namespace {
20748 /// A visitor for rebuilding an expression of type __unknown_anytype
20749 /// into one which resolves the type directly on the referring
20750 /// expression. Strict preservation of the original source
20751 /// structure is not a goal.
20752 struct RebuildUnknownAnyExpr
20753 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
20754
20755 Sema &S;
20756
20757 /// The current destination type.
20758 QualType DestType;
20759
20760 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
20761 : S(S), DestType(CastType) {}
20762
20763 ExprResult VisitStmt(Stmt *S) {
20764 llvm_unreachable("unexpected statement!");
20765 }
20766
20767 ExprResult VisitExpr(Expr *E) {
20768 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_unsupported_unknown_any_expr)
20769 << E->getSourceRange();
20770 return ExprError();
20771 }
20772
20773 ExprResult VisitCallExpr(CallExpr *E);
20774 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
20775
20776 /// Rebuild an expression which simply semantically wraps another
20777 /// expression which it shares the type and value kind of.
20778 template <class T> ExprResult rebuildSugarExpr(T *E) {
20779 ExprResult SubResult = Visit(S: E->getSubExpr());
20780 if (SubResult.isInvalid()) return ExprError();
20781 Expr *SubExpr = SubResult.get();
20782 E->setSubExpr(SubExpr);
20783 E->setType(SubExpr->getType());
20784 E->setValueKind(SubExpr->getValueKind());
20785 assert(E->getObjectKind() == OK_Ordinary);
20786 return E;
20787 }
20788
20789 ExprResult VisitParenExpr(ParenExpr *E) {
20790 return rebuildSugarExpr(E);
20791 }
20792
20793 ExprResult VisitUnaryExtension(UnaryOperator *E) {
20794 return rebuildSugarExpr(E);
20795 }
20796
20797 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20798 const PointerType *Ptr = DestType->getAs<PointerType>();
20799 if (!Ptr) {
20800 S.Diag(Loc: E->getOperatorLoc(), DiagID: diag::err_unknown_any_addrof)
20801 << E->getSourceRange();
20802 return ExprError();
20803 }
20804
20805 if (isa<CallExpr>(Val: E->getSubExpr())) {
20806 S.Diag(Loc: E->getOperatorLoc(), DiagID: diag::err_unknown_any_addrof_call)
20807 << E->getSourceRange();
20808 return ExprError();
20809 }
20810
20811 assert(E->isPRValue());
20812 assert(E->getObjectKind() == OK_Ordinary);
20813 E->setType(DestType);
20814
20815 // Build the sub-expression as if it were an object of the pointee type.
20816 DestType = Ptr->getPointeeType();
20817 ExprResult SubResult = Visit(S: E->getSubExpr());
20818 if (SubResult.isInvalid()) return ExprError();
20819 E->setSubExpr(SubResult.get());
20820 return E;
20821 }
20822
20823 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
20824
20825 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
20826
20827 ExprResult VisitMemberExpr(MemberExpr *E) {
20828 return resolveDecl(E, VD: E->getMemberDecl());
20829 }
20830
20831 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20832 return resolveDecl(E, VD: E->getDecl());
20833 }
20834 };
20835}
20836
20837/// Rebuilds a call expression which yielded __unknown_anytype.
20838ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
20839 Expr *CalleeExpr = E->getCallee();
20840
20841 enum FnKind {
20842 FK_MemberFunction,
20843 FK_FunctionPointer,
20844 FK_BlockPointer
20845 };
20846
20847 FnKind Kind;
20848 QualType CalleeType = CalleeExpr->getType();
20849 if (CalleeType == S.Context.BoundMemberTy) {
20850 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
20851 Kind = FK_MemberFunction;
20852 CalleeType = Expr::findBoundMemberType(expr: CalleeExpr);
20853 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
20854 CalleeType = Ptr->getPointeeType();
20855 Kind = FK_FunctionPointer;
20856 } else {
20857 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
20858 Kind = FK_BlockPointer;
20859 }
20860 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
20861
20862 // Verify that this is a legal result type of a function.
20863 if ((DestType->isArrayType() && !S.getLangOpts().allowArrayReturnTypes()) ||
20864 DestType->isFunctionType()) {
20865 unsigned diagID = diag::err_func_returning_array_function;
20866 if (Kind == FK_BlockPointer)
20867 diagID = diag::err_block_returning_array_function;
20868
20869 S.Diag(Loc: E->getExprLoc(), DiagID: diagID)
20870 << DestType->isFunctionType() << DestType;
20871 return ExprError();
20872 }
20873
20874 // Otherwise, go ahead and set DestType as the call's result.
20875 E->setType(DestType.getNonLValueExprType(Context: S.Context));
20876 E->setValueKind(Expr::getValueKindForType(T: DestType));
20877 assert(E->getObjectKind() == OK_Ordinary);
20878
20879 // Rebuild the function type, replacing the result type with DestType.
20880 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(Val: FnType);
20881 if (Proto) {
20882 // __unknown_anytype(...) is a special case used by the debugger when
20883 // it has no idea what a function's signature is.
20884 //
20885 // We want to build this call essentially under the K&R
20886 // unprototyped rules, but making a FunctionNoProtoType in C++
20887 // would foul up all sorts of assumptions. However, we cannot
20888 // simply pass all arguments as variadic arguments, nor can we
20889 // portably just call the function under a non-variadic type; see
20890 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
20891 // However, it turns out that in practice it is generally safe to
20892 // call a function declared as "A foo(B,C,D);" under the prototype
20893 // "A foo(B,C,D,...);". The only known exception is with the
20894 // Windows ABI, where any variadic function is implicitly cdecl
20895 // regardless of its normal CC. Therefore we change the parameter
20896 // types to match the types of the arguments.
20897 //
20898 // This is a hack, but it is far superior to moving the
20899 // corresponding target-specific code from IR-gen to Sema/AST.
20900
20901 ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
20902 SmallVector<QualType, 8> ArgTypes;
20903 if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
20904 ArgTypes.reserve(N: E->getNumArgs());
20905 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
20906 ArgTypes.push_back(Elt: S.Context.getReferenceQualifiedType(e: E->getArg(Arg: i)));
20907 }
20908 ParamTypes = ArgTypes;
20909 }
20910 DestType = S.Context.getFunctionType(ResultTy: DestType, Args: ParamTypes,
20911 EPI: Proto->getExtProtoInfo());
20912 } else {
20913 DestType = S.Context.getFunctionNoProtoType(ResultTy: DestType,
20914 Info: FnType->getExtInfo());
20915 }
20916
20917 // Rebuild the appropriate pointer-to-function type.
20918 switch (Kind) {
20919 case FK_MemberFunction:
20920 // Nothing to do.
20921 break;
20922
20923 case FK_FunctionPointer:
20924 DestType = S.Context.getPointerType(T: DestType);
20925 break;
20926
20927 case FK_BlockPointer:
20928 DestType = S.Context.getBlockPointerType(T: DestType);
20929 break;
20930 }
20931
20932 // Finally, we can recurse.
20933 ExprResult CalleeResult = Visit(S: CalleeExpr);
20934 if (!CalleeResult.isUsable()) return ExprError();
20935 E->setCallee(CalleeResult.get());
20936
20937 // Bind a temporary if necessary.
20938 return S.MaybeBindToTemporary(E);
20939}
20940
20941ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
20942 // Verify that this is a legal result type of a call.
20943 if (DestType->isArrayType() || DestType->isFunctionType()) {
20944 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_func_returning_array_function)
20945 << DestType->isFunctionType() << DestType;
20946 return ExprError();
20947 }
20948
20949 // Rewrite the method result type if available.
20950 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
20951 assert(Method->getReturnType() == S.Context.UnknownAnyTy);
20952 Method->setReturnType(DestType);
20953 }
20954
20955 // Change the type of the message.
20956 E->setType(DestType.getNonReferenceType());
20957 E->setValueKind(Expr::getValueKindForType(T: DestType));
20958
20959 return S.MaybeBindToTemporary(E);
20960}
20961
20962ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
20963 // The only case we should ever see here is a function-to-pointer decay.
20964 if (E->getCastKind() == CK_FunctionToPointerDecay) {
20965 assert(E->isPRValue());
20966 assert(E->getObjectKind() == OK_Ordinary);
20967
20968 E->setType(DestType);
20969
20970 // Rebuild the sub-expression as the pointee (function) type.
20971 DestType = DestType->castAs<PointerType>()->getPointeeType();
20972
20973 ExprResult Result = Visit(S: E->getSubExpr());
20974 if (!Result.isUsable()) return ExprError();
20975
20976 E->setSubExpr(Result.get());
20977 return E;
20978 } else if (E->getCastKind() == CK_LValueToRValue) {
20979 assert(E->isPRValue());
20980 assert(E->getObjectKind() == OK_Ordinary);
20981
20982 assert(isa<BlockPointerType>(E->getType()));
20983
20984 E->setType(DestType);
20985
20986 // The sub-expression has to be a lvalue reference, so rebuild it as such.
20987 DestType = S.Context.getLValueReferenceType(T: DestType);
20988
20989 ExprResult Result = Visit(S: E->getSubExpr());
20990 if (!Result.isUsable()) return ExprError();
20991
20992 E->setSubExpr(Result.get());
20993 return E;
20994 } else {
20995 llvm_unreachable("Unhandled cast type!");
20996 }
20997}
20998
20999ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
21000 ExprValueKind ValueKind = VK_LValue;
21001 QualType Type = DestType;
21002
21003 // We know how to make this work for certain kinds of decls:
21004
21005 // - functions
21006 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: VD)) {
21007 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
21008 DestType = Ptr->getPointeeType();
21009 ExprResult Result = resolveDecl(E, VD);
21010 if (Result.isInvalid()) return ExprError();
21011 return S.ImpCastExprToType(E: Result.get(), Type, CK: CK_FunctionToPointerDecay,
21012 VK: VK_PRValue);
21013 }
21014
21015 if (!Type->isFunctionType()) {
21016 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_unknown_any_function)
21017 << VD << E->getSourceRange();
21018 return ExprError();
21019 }
21020 if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
21021 // We must match the FunctionDecl's type to the hack introduced in
21022 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
21023 // type. See the lengthy commentary in that routine.
21024 QualType FDT = FD->getType();
21025 const FunctionType *FnType = FDT->castAs<FunctionType>();
21026 const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(Val: FnType);
21027 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E);
21028 if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
21029 SourceLocation Loc = FD->getLocation();
21030 FunctionDecl *NewFD = FunctionDecl::Create(
21031 C&: S.Context, DC: FD->getDeclContext(), StartLoc: Loc, NLoc: Loc,
21032 N: FD->getNameInfo().getName(), T: DestType, TInfo: FD->getTypeSourceInfo(),
21033 SC: SC_None, UsesFPIntrin: S.getCurFPFeatures().isFPConstrained(),
21034 isInlineSpecified: false /*isInlineSpecified*/, hasWrittenPrototype: FD->hasPrototype(),
21035 /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
21036
21037 if (FD->getQualifier())
21038 NewFD->setQualifierInfo(FD->getQualifierLoc());
21039
21040 SmallVector<ParmVarDecl*, 16> Params;
21041 for (const auto &AI : FT->param_types()) {
21042 ParmVarDecl *Param =
21043 S.BuildParmVarDeclForTypedef(DC: FD, Loc, T: AI);
21044 Param->setScopeInfo(scopeDepth: 0, parameterIndex: Params.size());
21045 Params.push_back(Elt: Param);
21046 }
21047 NewFD->setParams(Params);
21048 DRE->setDecl(NewFD);
21049 VD = DRE->getDecl();
21050 }
21051 }
21052
21053 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD))
21054 if (MD->isInstance()) {
21055 ValueKind = VK_PRValue;
21056 Type = S.Context.BoundMemberTy;
21057 }
21058
21059 // Function references aren't l-values in C.
21060 if (!S.getLangOpts().CPlusPlus)
21061 ValueKind = VK_PRValue;
21062
21063 // - variables
21064 } else if (isa<VarDecl>(Val: VD)) {
21065 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
21066 Type = RefTy->getPointeeType();
21067 } else if (Type->isFunctionType()) {
21068 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_unknown_any_var_function_type)
21069 << VD << E->getSourceRange();
21070 return ExprError();
21071 }
21072
21073 // - nothing else
21074 } else {
21075 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_unsupported_unknown_any_decl)
21076 << VD << E->getSourceRange();
21077 return ExprError();
21078 }
21079
21080 // Modifying the declaration like this is friendly to IR-gen but
21081 // also really dangerous.
21082 VD->setType(DestType);
21083 E->setType(Type);
21084 E->setValueKind(ValueKind);
21085 return E;
21086}
21087
21088ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
21089 Expr *CastExpr, CastKind &CastKind,
21090 ExprValueKind &VK, CXXCastPath &Path) {
21091 // The type we're casting to must be either void or complete.
21092 if (!CastType->isVoidType() &&
21093 RequireCompleteType(Loc: TypeRange.getBegin(), T: CastType,
21094 DiagID: diag::err_typecheck_cast_to_incomplete))
21095 return ExprError();
21096
21097 // Rewrite the casted expression from scratch.
21098 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(S: CastExpr);
21099 if (!result.isUsable()) return ExprError();
21100
21101 CastExpr = result.get();
21102 VK = CastExpr->getValueKind();
21103 CastKind = CK_NoOp;
21104
21105 return CastExpr;
21106}
21107
21108ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
21109 return RebuildUnknownAnyExpr(*this, ToType).Visit(S: E);
21110}
21111
21112ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
21113 Expr *arg, QualType &paramType) {
21114 // If the syntactic form of the argument is not an explicit cast of
21115 // any sort, just do default argument promotion.
21116 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(Val: arg->IgnoreParens());
21117 if (!castArg) {
21118 ExprResult result = DefaultArgumentPromotion(E: arg);
21119 if (result.isInvalid()) return ExprError();
21120 paramType = result.get()->getType();
21121 return result;
21122 }
21123
21124 // Otherwise, use the type that was written in the explicit cast.
21125 assert(!arg->hasPlaceholderType());
21126 paramType = castArg->getTypeAsWritten();
21127
21128 // Copy-initialize a parameter of that type.
21129 InitializedEntity entity =
21130 InitializedEntity::InitializeParameter(Context, Type: paramType,
21131 /*consumed*/ Consumed: false);
21132 return PerformCopyInitialization(Entity: entity, EqualLoc: callLoc, Init: arg);
21133}
21134
21135static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
21136 Expr *orig = E;
21137 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
21138 while (true) {
21139 E = E->IgnoreParenImpCasts();
21140 if (CallExpr *call = dyn_cast<CallExpr>(Val: E)) {
21141 E = call->getCallee();
21142 diagID = diag::err_uncasted_call_of_unknown_any;
21143 } else {
21144 break;
21145 }
21146 }
21147
21148 SourceLocation loc;
21149 NamedDecl *d;
21150 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(Val: E)) {
21151 loc = ref->getLocation();
21152 d = ref->getDecl();
21153 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(Val: E)) {
21154 loc = mem->getMemberLoc();
21155 d = mem->getMemberDecl();
21156 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(Val: E)) {
21157 diagID = diag::err_uncasted_call_of_unknown_any;
21158 loc = msg->getSelectorStartLoc();
21159 d = msg->getMethodDecl();
21160 if (!d) {
21161 S.Diag(Loc: loc, DiagID: diag::err_uncasted_send_to_unknown_any_method)
21162 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
21163 << orig->getSourceRange();
21164 return ExprError();
21165 }
21166 } else {
21167 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_unsupported_unknown_any_expr)
21168 << E->getSourceRange();
21169 return ExprError();
21170 }
21171
21172 S.Diag(Loc: loc, DiagID: diagID) << d << orig->getSourceRange();
21173
21174 // Never recoverable.
21175 return ExprError();
21176}
21177
21178ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
21179 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
21180 if (!placeholderType) return E;
21181
21182 switch (placeholderType->getKind()) {
21183 case BuiltinType::UnresolvedTemplate: {
21184 auto *ULE = cast<UnresolvedLookupExpr>(Val: E);
21185 const DeclarationNameInfo &NameInfo = ULE->getNameInfo();
21186 // There's only one FoundDecl for UnresolvedTemplate type. See
21187 // BuildTemplateIdExpr.
21188 NamedDecl *Temp = *ULE->decls_begin();
21189 const bool IsTypeAliasTemplateDecl = isa<TypeAliasTemplateDecl>(Val: Temp);
21190
21191 NestedNameSpecifier *NNS = ULE->getQualifierLoc().getNestedNameSpecifier();
21192 // FIXME: AssumedTemplate is not very appropriate for error recovery here,
21193 // as it models only the unqualified-id case, where this case can clearly be
21194 // qualified. Thus we can't just qualify an assumed template.
21195 TemplateName TN;
21196 if (auto *TD = dyn_cast<TemplateDecl>(Val: Temp))
21197 TN = Context.getQualifiedTemplateName(NNS, TemplateKeyword: ULE->hasTemplateKeyword(),
21198 Template: TemplateName(TD));
21199 else
21200 TN = Context.getAssumedTemplateName(Name: NameInfo.getName());
21201
21202 Diag(Loc: NameInfo.getLoc(), DiagID: diag::err_template_kw_refers_to_type_template)
21203 << TN << ULE->getSourceRange() << IsTypeAliasTemplateDecl;
21204 Diag(Loc: Temp->getLocation(), DiagID: diag::note_referenced_type_template)
21205 << IsTypeAliasTemplateDecl;
21206
21207 TemplateArgumentListInfo TAL(ULE->getLAngleLoc(), ULE->getRAngleLoc());
21208 bool HasAnyDependentTA = false;
21209 for (const TemplateArgumentLoc &Arg : ULE->template_arguments()) {
21210 HasAnyDependentTA |= Arg.getArgument().isDependent();
21211 TAL.addArgument(Loc: Arg);
21212 }
21213
21214 QualType TST;
21215 {
21216 SFINAETrap Trap(*this);
21217 TST = CheckTemplateIdType(Template: TN, TemplateLoc: NameInfo.getBeginLoc(), TemplateArgs&: TAL);
21218 }
21219 if (TST.isNull())
21220 TST = Context.getTemplateSpecializationType(
21221 T: TN, SpecifiedArgs: ULE->template_arguments(), /*CanonicalArgs=*/{},
21222 Canon: HasAnyDependentTA ? Context.DependentTy : Context.IntTy);
21223 QualType ET =
21224 Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS, NamedType: TST);
21225 return CreateRecoveryExpr(Begin: NameInfo.getBeginLoc(), End: NameInfo.getEndLoc(), SubExprs: {},
21226 T: ET);
21227 }
21228
21229 // Overloaded expressions.
21230 case BuiltinType::Overload: {
21231 // Try to resolve a single function template specialization.
21232 // This is obligatory.
21233 ExprResult Result = E;
21234 if (ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr&: Result, DoFunctionPointerConversion: false))
21235 return Result;
21236
21237 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
21238 // leaves Result unchanged on failure.
21239 Result = E;
21240 if (resolveAndFixAddressOfSingleOverloadCandidate(SrcExpr&: Result))
21241 return Result;
21242
21243 // If that failed, try to recover with a call.
21244 tryToRecoverWithCall(E&: Result, PD: PDiag(DiagID: diag::err_ovl_unresolvable),
21245 /*complain*/ ForceComplain: true);
21246 return Result;
21247 }
21248
21249 // Bound member functions.
21250 case BuiltinType::BoundMember: {
21251 ExprResult result = E;
21252 const Expr *BME = E->IgnoreParens();
21253 PartialDiagnostic PD = PDiag(DiagID: diag::err_bound_member_function);
21254 // Try to give a nicer diagnostic if it is a bound member that we recognize.
21255 if (isa<CXXPseudoDestructorExpr>(Val: BME)) {
21256 PD = PDiag(DiagID: diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
21257 } else if (const auto *ME = dyn_cast<MemberExpr>(Val: BME)) {
21258 if (ME->getMemberNameInfo().getName().getNameKind() ==
21259 DeclarationName::CXXDestructorName)
21260 PD = PDiag(DiagID: diag::err_dtor_expr_without_call) << /*destructor*/ 0;
21261 }
21262 tryToRecoverWithCall(E&: result, PD,
21263 /*complain*/ ForceComplain: true);
21264 return result;
21265 }
21266
21267 // ARC unbridged casts.
21268 case BuiltinType::ARCUnbridgedCast: {
21269 Expr *realCast = ObjC().stripARCUnbridgedCast(e: E);
21270 ObjC().diagnoseARCUnbridgedCast(e: realCast);
21271 return realCast;
21272 }
21273
21274 // Expressions of unknown type.
21275 case BuiltinType::UnknownAny:
21276 return diagnoseUnknownAnyExpr(S&: *this, E);
21277
21278 // Pseudo-objects.
21279 case BuiltinType::PseudoObject:
21280 return PseudoObject().checkRValue(E);
21281
21282 case BuiltinType::BuiltinFn: {
21283 // Accept __noop without parens by implicitly converting it to a call expr.
21284 auto *DRE = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenImpCasts());
21285 if (DRE) {
21286 auto *FD = cast<FunctionDecl>(Val: DRE->getDecl());
21287 unsigned BuiltinID = FD->getBuiltinID();
21288 if (BuiltinID == Builtin::BI__noop) {
21289 E = ImpCastExprToType(E, Type: Context.getPointerType(T: FD->getType()),
21290 CK: CK_BuiltinFnToFnPtr)
21291 .get();
21292 return CallExpr::Create(Ctx: Context, Fn: E, /*Args=*/{}, Ty: Context.IntTy,
21293 VK: VK_PRValue, RParenLoc: SourceLocation(),
21294 FPFeatures: FPOptionsOverride());
21295 }
21296
21297 if (Context.BuiltinInfo.isInStdNamespace(ID: BuiltinID)) {
21298 // Any use of these other than a direct call is ill-formed as of C++20,
21299 // because they are not addressable functions. In earlier language
21300 // modes, warn and force an instantiation of the real body.
21301 Diag(Loc: E->getBeginLoc(),
21302 DiagID: getLangOpts().CPlusPlus20
21303 ? diag::err_use_of_unaddressable_function
21304 : diag::warn_cxx20_compat_use_of_unaddressable_function);
21305 if (FD->isImplicitlyInstantiable()) {
21306 // Require a definition here because a normal attempt at
21307 // instantiation for a builtin will be ignored, and we won't try
21308 // again later. We assume that the definition of the template
21309 // precedes this use.
21310 InstantiateFunctionDefinition(PointOfInstantiation: E->getBeginLoc(), Function: FD,
21311 /*Recursive=*/false,
21312 /*DefinitionRequired=*/true,
21313 /*AtEndOfTU=*/false);
21314 }
21315 // Produce a properly-typed reference to the function.
21316 CXXScopeSpec SS;
21317 SS.Adopt(Other: DRE->getQualifierLoc());
21318 TemplateArgumentListInfo TemplateArgs;
21319 DRE->copyTemplateArgumentsInto(List&: TemplateArgs);
21320 return BuildDeclRefExpr(
21321 D: FD, Ty: FD->getType(), VK: VK_LValue, NameInfo: DRE->getNameInfo(),
21322 SS: DRE->hasQualifier() ? &SS : nullptr, FoundD: DRE->getFoundDecl(),
21323 TemplateKWLoc: DRE->getTemplateKeywordLoc(),
21324 TemplateArgs: DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
21325 }
21326 }
21327
21328 Diag(Loc: E->getBeginLoc(), DiagID: diag::err_builtin_fn_use);
21329 return ExprError();
21330 }
21331
21332 case BuiltinType::IncompleteMatrixIdx:
21333 Diag(Loc: cast<MatrixSubscriptExpr>(Val: E->IgnoreParens())
21334 ->getRowIdx()
21335 ->getBeginLoc(),
21336 DiagID: diag::err_matrix_incomplete_index);
21337 return ExprError();
21338
21339 // Expressions of unknown type.
21340 case BuiltinType::ArraySection:
21341 Diag(Loc: E->getBeginLoc(), DiagID: diag::err_array_section_use)
21342 << cast<ArraySectionExpr>(Val: E)->isOMPArraySection();
21343 return ExprError();
21344
21345 // Expressions of unknown type.
21346 case BuiltinType::OMPArrayShaping:
21347 return ExprError(Diag(Loc: E->getBeginLoc(), DiagID: diag::err_omp_array_shaping_use));
21348
21349 case BuiltinType::OMPIterator:
21350 return ExprError(Diag(Loc: E->getBeginLoc(), DiagID: diag::err_omp_iterator_use));
21351
21352 // Everything else should be impossible.
21353#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
21354 case BuiltinType::Id:
21355#include "clang/Basic/OpenCLImageTypes.def"
21356#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
21357 case BuiltinType::Id:
21358#include "clang/Basic/OpenCLExtensionTypes.def"
21359#define SVE_TYPE(Name, Id, SingletonId) \
21360 case BuiltinType::Id:
21361#include "clang/Basic/AArch64ACLETypes.def"
21362#define PPC_VECTOR_TYPE(Name, Id, Size) \
21363 case BuiltinType::Id:
21364#include "clang/Basic/PPCTypes.def"
21365#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21366#include "clang/Basic/RISCVVTypes.def"
21367#define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21368#include "clang/Basic/WebAssemblyReferenceTypes.def"
21369#define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id:
21370#include "clang/Basic/AMDGPUTypes.def"
21371#define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21372#include "clang/Basic/HLSLIntangibleTypes.def"
21373#define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
21374#define PLACEHOLDER_TYPE(Id, SingletonId)
21375#include "clang/AST/BuiltinTypes.def"
21376 break;
21377 }
21378
21379 llvm_unreachable("invalid placeholder type!");
21380}
21381
21382bool Sema::CheckCaseExpression(Expr *E) {
21383 if (E->isTypeDependent())
21384 return true;
21385 if (E->isValueDependent() || E->isIntegerConstantExpr(Ctx: Context))
21386 return E->getType()->isIntegralOrEnumerationType();
21387 return false;
21388}
21389
21390ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
21391 ArrayRef<Expr *> SubExprs, QualType T) {
21392 if (!Context.getLangOpts().RecoveryAST)
21393 return ExprError();
21394
21395 if (isSFINAEContext())
21396 return ExprError();
21397
21398 if (T.isNull() || T->isUndeducedType() ||
21399 !Context.getLangOpts().RecoveryASTType)
21400 // We don't know the concrete type, fallback to dependent type.
21401 T = Context.DependentTy;
21402
21403 return RecoveryExpr::Create(Ctx&: Context, T, BeginLoc: Begin, EndLoc: End, SubExprs);
21404}
21405