1 | //===- SemaHLSL.cpp - Semantic Analysis for HLSL constructs ---------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // This implements Semantic Analysis for HLSL constructs. |
9 | //===----------------------------------------------------------------------===// |
10 | |
11 | #include "clang/Sema/SemaHLSL.h" |
12 | #include "clang/AST/ASTConsumer.h" |
13 | #include "clang/AST/ASTContext.h" |
14 | #include "clang/AST/Attr.h" |
15 | #include "clang/AST/Attrs.inc" |
16 | #include "clang/AST/Decl.h" |
17 | #include "clang/AST/DeclBase.h" |
18 | #include "clang/AST/DeclCXX.h" |
19 | #include "clang/AST/DeclarationName.h" |
20 | #include "clang/AST/DynamicRecursiveASTVisitor.h" |
21 | #include "clang/AST/Expr.h" |
22 | #include "clang/AST/Type.h" |
23 | #include "clang/AST/TypeLoc.h" |
24 | #include "clang/Basic/Builtins.h" |
25 | #include "clang/Basic/DiagnosticSema.h" |
26 | #include "clang/Basic/IdentifierTable.h" |
27 | #include "clang/Basic/LLVM.h" |
28 | #include "clang/Basic/SourceLocation.h" |
29 | #include "clang/Basic/Specifiers.h" |
30 | #include "clang/Basic/TargetInfo.h" |
31 | #include "clang/Sema/Initialization.h" |
32 | #include "clang/Sema/Lookup.h" |
33 | #include "clang/Sema/ParsedAttr.h" |
34 | #include "clang/Sema/Sema.h" |
35 | #include "clang/Sema/Template.h" |
36 | #include "llvm/ADT/ArrayRef.h" |
37 | #include "llvm/ADT/STLExtras.h" |
38 | #include "llvm/ADT/SmallVector.h" |
39 | #include "llvm/ADT/StringExtras.h" |
40 | #include "llvm/ADT/StringRef.h" |
41 | #include "llvm/ADT/Twine.h" |
42 | #include "llvm/Frontend/HLSL/HLSLRootSignatureUtils.h" |
43 | #include "llvm/Support/Casting.h" |
44 | #include "llvm/Support/DXILABI.h" |
45 | #include "llvm/Support/ErrorHandling.h" |
46 | #include "llvm/TargetParser/Triple.h" |
47 | #include <cstddef> |
48 | #include <iterator> |
49 | #include <utility> |
50 | |
51 | using namespace clang; |
52 | using RegisterType = HLSLResourceBindingAttr::RegisterType; |
53 | |
54 | static CXXRecordDecl *createHostLayoutStruct(Sema &S, |
55 | CXXRecordDecl *StructDecl); |
56 | |
57 | static RegisterType getRegisterType(ResourceClass RC) { |
58 | switch (RC) { |
59 | case ResourceClass::SRV: |
60 | return RegisterType::SRV; |
61 | case ResourceClass::UAV: |
62 | return RegisterType::UAV; |
63 | case ResourceClass::CBuffer: |
64 | return RegisterType::CBuffer; |
65 | case ResourceClass::Sampler: |
66 | return RegisterType::Sampler; |
67 | } |
68 | llvm_unreachable("unexpected ResourceClass value" ); |
69 | } |
70 | |
71 | // Converts the first letter of string Slot to RegisterType. |
72 | // Returns false if the letter does not correspond to a valid register type. |
73 | static bool convertToRegisterType(StringRef Slot, RegisterType *RT) { |
74 | assert(RT != nullptr); |
75 | switch (Slot[0]) { |
76 | case 't': |
77 | case 'T': |
78 | *RT = RegisterType::SRV; |
79 | return true; |
80 | case 'u': |
81 | case 'U': |
82 | *RT = RegisterType::UAV; |
83 | return true; |
84 | case 'b': |
85 | case 'B': |
86 | *RT = RegisterType::CBuffer; |
87 | return true; |
88 | case 's': |
89 | case 'S': |
90 | *RT = RegisterType::Sampler; |
91 | return true; |
92 | case 'c': |
93 | case 'C': |
94 | *RT = RegisterType::C; |
95 | return true; |
96 | case 'i': |
97 | case 'I': |
98 | *RT = RegisterType::I; |
99 | return true; |
100 | default: |
101 | return false; |
102 | } |
103 | } |
104 | |
105 | static ResourceClass getResourceClass(RegisterType RT) { |
106 | switch (RT) { |
107 | case RegisterType::SRV: |
108 | return ResourceClass::SRV; |
109 | case RegisterType::UAV: |
110 | return ResourceClass::UAV; |
111 | case RegisterType::CBuffer: |
112 | return ResourceClass::CBuffer; |
113 | case RegisterType::Sampler: |
114 | return ResourceClass::Sampler; |
115 | case RegisterType::C: |
116 | case RegisterType::I: |
117 | // Deliberately falling through to the unreachable below. |
118 | break; |
119 | } |
120 | llvm_unreachable("unexpected RegisterType value" ); |
121 | } |
122 | |
123 | static Builtin::ID getSpecConstBuiltinId(const Type *Type) { |
124 | const auto *BT = dyn_cast<BuiltinType>(Val: Type); |
125 | if (!BT) { |
126 | if (!Type->isEnumeralType()) |
127 | return Builtin::NotBuiltin; |
128 | return Builtin::BI__builtin_get_spirv_spec_constant_int; |
129 | } |
130 | |
131 | switch (BT->getKind()) { |
132 | case BuiltinType::Bool: |
133 | return Builtin::BI__builtin_get_spirv_spec_constant_bool; |
134 | case BuiltinType::Short: |
135 | return Builtin::BI__builtin_get_spirv_spec_constant_short; |
136 | case BuiltinType::Int: |
137 | return Builtin::BI__builtin_get_spirv_spec_constant_int; |
138 | case BuiltinType::LongLong: |
139 | return Builtin::BI__builtin_get_spirv_spec_constant_longlong; |
140 | case BuiltinType::UShort: |
141 | return Builtin::BI__builtin_get_spirv_spec_constant_ushort; |
142 | case BuiltinType::UInt: |
143 | return Builtin::BI__builtin_get_spirv_spec_constant_uint; |
144 | case BuiltinType::ULongLong: |
145 | return Builtin::BI__builtin_get_spirv_spec_constant_ulonglong; |
146 | case BuiltinType::Half: |
147 | return Builtin::BI__builtin_get_spirv_spec_constant_half; |
148 | case BuiltinType::Float: |
149 | return Builtin::BI__builtin_get_spirv_spec_constant_float; |
150 | case BuiltinType::Double: |
151 | return Builtin::BI__builtin_get_spirv_spec_constant_double; |
152 | default: |
153 | return Builtin::NotBuiltin; |
154 | } |
155 | } |
156 | |
157 | DeclBindingInfo *ResourceBindings::addDeclBindingInfo(const VarDecl *VD, |
158 | ResourceClass ResClass) { |
159 | assert(getDeclBindingInfo(VD, ResClass) == nullptr && |
160 | "DeclBindingInfo already added" ); |
161 | assert(!hasBindingInfoForDecl(VD) || BindingsList.back().Decl == VD); |
162 | // VarDecl may have multiple entries for different resource classes. |
163 | // DeclToBindingListIndex stores the index of the first binding we saw |
164 | // for this decl. If there are any additional ones then that index |
165 | // shouldn't be updated. |
166 | DeclToBindingListIndex.try_emplace(Key: VD, Args: BindingsList.size()); |
167 | return &BindingsList.emplace_back(Args&: VD, Args&: ResClass); |
168 | } |
169 | |
170 | DeclBindingInfo *ResourceBindings::getDeclBindingInfo(const VarDecl *VD, |
171 | ResourceClass ResClass) { |
172 | auto Entry = DeclToBindingListIndex.find(Val: VD); |
173 | if (Entry != DeclToBindingListIndex.end()) { |
174 | for (unsigned Index = Entry->getSecond(); |
175 | Index < BindingsList.size() && BindingsList[Index].Decl == VD; |
176 | ++Index) { |
177 | if (BindingsList[Index].ResClass == ResClass) |
178 | return &BindingsList[Index]; |
179 | } |
180 | } |
181 | return nullptr; |
182 | } |
183 | |
184 | bool ResourceBindings::hasBindingInfoForDecl(const VarDecl *VD) const { |
185 | return DeclToBindingListIndex.contains(Val: VD); |
186 | } |
187 | |
188 | SemaHLSL::SemaHLSL(Sema &S) : SemaBase(S) {} |
189 | |
190 | Decl *SemaHLSL::ActOnStartBuffer(Scope *BufferScope, bool CBuffer, |
191 | SourceLocation KwLoc, IdentifierInfo *Ident, |
192 | SourceLocation IdentLoc, |
193 | SourceLocation LBrace) { |
194 | // For anonymous namespace, take the location of the left brace. |
195 | DeclContext *LexicalParent = SemaRef.getCurLexicalContext(); |
196 | HLSLBufferDecl *Result = HLSLBufferDecl::Create( |
197 | C&: getASTContext(), LexicalParent, CBuffer, KwLoc, ID: Ident, IDLoc: IdentLoc, LBrace); |
198 | |
199 | // if CBuffer is false, then it's a TBuffer |
200 | auto RC = CBuffer ? llvm::hlsl::ResourceClass::CBuffer |
201 | : llvm::hlsl::ResourceClass::SRV; |
202 | Result->addAttr(A: HLSLResourceClassAttr::CreateImplicit(Ctx&: getASTContext(), ResourceClass: RC)); |
203 | |
204 | SemaRef.PushOnScopeChains(D: Result, S: BufferScope); |
205 | SemaRef.PushDeclContext(S: BufferScope, DC: Result); |
206 | |
207 | return Result; |
208 | } |
209 | |
210 | static unsigned calculateLegacyCbufferFieldAlign(const ASTContext &Context, |
211 | QualType T) { |
212 | // Arrays and Structs are always aligned to new buffer rows |
213 | if (T->isArrayType() || T->isStructureType()) |
214 | return 16; |
215 | |
216 | // Vectors are aligned to the type they contain |
217 | if (const VectorType *VT = T->getAs<VectorType>()) |
218 | return calculateLegacyCbufferFieldAlign(Context, T: VT->getElementType()); |
219 | |
220 | assert(Context.getTypeSize(T) <= 64 && |
221 | "Scalar bit widths larger than 64 not supported" ); |
222 | |
223 | // Scalar types are aligned to their byte width |
224 | return Context.getTypeSize(T) / 8; |
225 | } |
226 | |
227 | // Calculate the size of a legacy cbuffer type in bytes based on |
228 | // https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-packing-rules |
229 | static unsigned calculateLegacyCbufferSize(const ASTContext &Context, |
230 | QualType T) { |
231 | constexpr unsigned CBufferAlign = 16; |
232 | if (const RecordType *RT = T->getAs<RecordType>()) { |
233 | unsigned Size = 0; |
234 | const RecordDecl *RD = RT->getDecl(); |
235 | for (const FieldDecl *Field : RD->fields()) { |
236 | QualType Ty = Field->getType(); |
237 | unsigned FieldSize = calculateLegacyCbufferSize(Context, T: Ty); |
238 | unsigned FieldAlign = calculateLegacyCbufferFieldAlign(Context, T: Ty); |
239 | |
240 | // If the field crosses the row boundary after alignment it drops to the |
241 | // next row |
242 | unsigned AlignSize = llvm::alignTo(Value: Size, Align: FieldAlign); |
243 | if ((AlignSize % CBufferAlign) + FieldSize > CBufferAlign) { |
244 | FieldAlign = CBufferAlign; |
245 | } |
246 | |
247 | Size = llvm::alignTo(Value: Size, Align: FieldAlign); |
248 | Size += FieldSize; |
249 | } |
250 | return Size; |
251 | } |
252 | |
253 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { |
254 | unsigned ElementCount = AT->getSize().getZExtValue(); |
255 | if (ElementCount == 0) |
256 | return 0; |
257 | |
258 | unsigned ElementSize = |
259 | calculateLegacyCbufferSize(Context, T: AT->getElementType()); |
260 | unsigned AlignedElementSize = llvm::alignTo(Value: ElementSize, Align: CBufferAlign); |
261 | return AlignedElementSize * (ElementCount - 1) + ElementSize; |
262 | } |
263 | |
264 | if (const VectorType *VT = T->getAs<VectorType>()) { |
265 | unsigned ElementCount = VT->getNumElements(); |
266 | unsigned ElementSize = |
267 | calculateLegacyCbufferSize(Context, T: VT->getElementType()); |
268 | return ElementSize * ElementCount; |
269 | } |
270 | |
271 | return Context.getTypeSize(T) / 8; |
272 | } |
273 | |
274 | // Validate packoffset: |
275 | // - if packoffset it used it must be set on all declarations inside the buffer |
276 | // - packoffset ranges must not overlap |
277 | static void validatePackoffset(Sema &S, HLSLBufferDecl *BufDecl) { |
278 | llvm::SmallVector<std::pair<VarDecl *, HLSLPackOffsetAttr *>> PackOffsetVec; |
279 | |
280 | // Make sure the packoffset annotations are either on all declarations |
281 | // or on none. |
282 | bool HasPackOffset = false; |
283 | bool HasNonPackOffset = false; |
284 | for (auto *Field : BufDecl->buffer_decls()) { |
285 | VarDecl *Var = dyn_cast<VarDecl>(Val: Field); |
286 | if (!Var) |
287 | continue; |
288 | if (Field->hasAttr<HLSLPackOffsetAttr>()) { |
289 | PackOffsetVec.emplace_back(Args&: Var, Args: Field->getAttr<HLSLPackOffsetAttr>()); |
290 | HasPackOffset = true; |
291 | } else { |
292 | HasNonPackOffset = true; |
293 | } |
294 | } |
295 | |
296 | if (!HasPackOffset) |
297 | return; |
298 | |
299 | if (HasNonPackOffset) |
300 | S.Diag(Loc: BufDecl->getLocation(), DiagID: diag::warn_hlsl_packoffset_mix); |
301 | |
302 | // Make sure there is no overlap in packoffset - sort PackOffsetVec by offset |
303 | // and compare adjacent values. |
304 | bool IsValid = true; |
305 | ASTContext &Context = S.getASTContext(); |
306 | std::sort(first: PackOffsetVec.begin(), last: PackOffsetVec.end(), |
307 | comp: [](const std::pair<VarDecl *, HLSLPackOffsetAttr *> &LHS, |
308 | const std::pair<VarDecl *, HLSLPackOffsetAttr *> &RHS) { |
309 | return LHS.second->getOffsetInBytes() < |
310 | RHS.second->getOffsetInBytes(); |
311 | }); |
312 | for (unsigned i = 0; i < PackOffsetVec.size() - 1; i++) { |
313 | VarDecl *Var = PackOffsetVec[i].first; |
314 | HLSLPackOffsetAttr *Attr = PackOffsetVec[i].second; |
315 | unsigned Size = calculateLegacyCbufferSize(Context, T: Var->getType()); |
316 | unsigned Begin = Attr->getOffsetInBytes(); |
317 | unsigned End = Begin + Size; |
318 | unsigned NextBegin = PackOffsetVec[i + 1].second->getOffsetInBytes(); |
319 | if (End > NextBegin) { |
320 | VarDecl *NextVar = PackOffsetVec[i + 1].first; |
321 | S.Diag(Loc: NextVar->getLocation(), DiagID: diag::err_hlsl_packoffset_overlap) |
322 | << NextVar << Var; |
323 | IsValid = false; |
324 | } |
325 | } |
326 | BufDecl->setHasValidPackoffset(IsValid); |
327 | } |
328 | |
329 | // Returns true if the array has a zero size = if any of the dimensions is 0 |
330 | static bool isZeroSizedArray(const ConstantArrayType *CAT) { |
331 | while (CAT && !CAT->isZeroSize()) |
332 | CAT = dyn_cast<ConstantArrayType>( |
333 | Val: CAT->getElementType()->getUnqualifiedDesugaredType()); |
334 | return CAT != nullptr; |
335 | } |
336 | |
337 | // Returns true if the record type is an HLSL resource class or an array of |
338 | // resource classes |
339 | static bool isResourceRecordTypeOrArrayOf(const Type *Ty) { |
340 | while (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(Val: Ty)) |
341 | Ty = CAT->getArrayElementTypeNoTypeQual(); |
342 | return HLSLAttributedResourceType::findHandleTypeOnResource(RT: Ty) != nullptr; |
343 | } |
344 | |
345 | static bool isResourceRecordTypeOrArrayOf(VarDecl *VD) { |
346 | return isResourceRecordTypeOrArrayOf(Ty: VD->getType().getTypePtr()); |
347 | } |
348 | |
349 | // Returns true if the type is a leaf element type that is not valid to be |
350 | // included in HLSL Buffer, such as a resource class, empty struct, zero-sized |
351 | // array, or a builtin intangible type. Returns false it is a valid leaf element |
352 | // type or if it is a record type that needs to be inspected further. |
353 | static bool isInvalidConstantBufferLeafElementType(const Type *Ty) { |
354 | Ty = Ty->getUnqualifiedDesugaredType(); |
355 | if (isResourceRecordTypeOrArrayOf(Ty)) |
356 | return true; |
357 | if (Ty->isRecordType()) |
358 | return Ty->getAsCXXRecordDecl()->isEmpty(); |
359 | if (Ty->isConstantArrayType() && |
360 | isZeroSizedArray(CAT: cast<ConstantArrayType>(Val: Ty))) |
361 | return true; |
362 | if (Ty->isHLSLBuiltinIntangibleType() || Ty->isHLSLAttributedResourceType()) |
363 | return true; |
364 | return false; |
365 | } |
366 | |
367 | // Returns true if the struct contains at least one element that prevents it |
368 | // from being included inside HLSL Buffer as is, such as an intangible type, |
369 | // empty struct, or zero-sized array. If it does, a new implicit layout struct |
370 | // needs to be created for HLSL Buffer use that will exclude these unwanted |
371 | // declarations (see createHostLayoutStruct function). |
372 | static bool requiresImplicitBufferLayoutStructure(const CXXRecordDecl *RD) { |
373 | if (RD->getTypeForDecl()->isHLSLIntangibleType() || RD->isEmpty()) |
374 | return true; |
375 | // check fields |
376 | for (const FieldDecl *Field : RD->fields()) { |
377 | QualType Ty = Field->getType(); |
378 | if (isInvalidConstantBufferLeafElementType(Ty: Ty.getTypePtr())) |
379 | return true; |
380 | if (Ty->isRecordType() && |
381 | requiresImplicitBufferLayoutStructure(RD: Ty->getAsCXXRecordDecl())) |
382 | return true; |
383 | } |
384 | // check bases |
385 | for (const CXXBaseSpecifier &Base : RD->bases()) |
386 | if (requiresImplicitBufferLayoutStructure( |
387 | RD: Base.getType()->getAsCXXRecordDecl())) |
388 | return true; |
389 | return false; |
390 | } |
391 | |
392 | static CXXRecordDecl *findRecordDeclInContext(IdentifierInfo *II, |
393 | DeclContext *DC) { |
394 | CXXRecordDecl *RD = nullptr; |
395 | for (NamedDecl *Decl : |
396 | DC->getNonTransparentContext()->lookup(Name: DeclarationName(II))) { |
397 | if (CXXRecordDecl *FoundRD = dyn_cast<CXXRecordDecl>(Val: Decl)) { |
398 | assert(RD == nullptr && |
399 | "there should be at most 1 record by a given name in a scope" ); |
400 | RD = FoundRD; |
401 | } |
402 | } |
403 | return RD; |
404 | } |
405 | |
406 | // Creates a name for buffer layout struct using the provide name base. |
407 | // If the name must be unique (not previously defined), a suffix is added |
408 | // until a unique name is found. |
409 | static IdentifierInfo *getHostLayoutStructName(Sema &S, NamedDecl *BaseDecl, |
410 | bool MustBeUnique) { |
411 | ASTContext &AST = S.getASTContext(); |
412 | |
413 | IdentifierInfo *NameBaseII = BaseDecl->getIdentifier(); |
414 | llvm::SmallString<64> Name("__cblayout_" ); |
415 | if (NameBaseII) { |
416 | Name.append(RHS: NameBaseII->getName()); |
417 | } else { |
418 | // anonymous struct |
419 | Name.append(RHS: "anon" ); |
420 | MustBeUnique = true; |
421 | } |
422 | |
423 | size_t NameLength = Name.size(); |
424 | IdentifierInfo *II = &AST.Idents.get(Name, TokenCode: tok::TokenKind::identifier); |
425 | if (!MustBeUnique) |
426 | return II; |
427 | |
428 | unsigned suffix = 0; |
429 | while (true) { |
430 | if (suffix != 0) { |
431 | Name.append(RHS: "_" ); |
432 | Name.append(RHS: llvm::Twine(suffix).str()); |
433 | II = &AST.Idents.get(Name, TokenCode: tok::TokenKind::identifier); |
434 | } |
435 | if (!findRecordDeclInContext(II, DC: BaseDecl->getDeclContext())) |
436 | return II; |
437 | // declaration with that name already exists - increment suffix and try |
438 | // again until unique name is found |
439 | suffix++; |
440 | Name.truncate(N: NameLength); |
441 | }; |
442 | } |
443 | |
444 | // Creates a field declaration of given name and type for HLSL buffer layout |
445 | // struct. Returns nullptr if the type cannot be use in HLSL Buffer layout. |
446 | static FieldDecl *createFieldForHostLayoutStruct(Sema &S, const Type *Ty, |
447 | IdentifierInfo *II, |
448 | CXXRecordDecl *LayoutStruct) { |
449 | if (isInvalidConstantBufferLeafElementType(Ty)) |
450 | return nullptr; |
451 | |
452 | if (Ty->isRecordType()) { |
453 | CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
454 | if (requiresImplicitBufferLayoutStructure(RD)) { |
455 | RD = createHostLayoutStruct(S, StructDecl: RD); |
456 | if (!RD) |
457 | return nullptr; |
458 | Ty = RD->getTypeForDecl(); |
459 | } |
460 | } |
461 | |
462 | QualType QT = QualType(Ty, 0); |
463 | ASTContext &AST = S.getASTContext(); |
464 | TypeSourceInfo *TSI = AST.getTrivialTypeSourceInfo(T: QT, Loc: SourceLocation()); |
465 | auto *Field = FieldDecl::Create(C: AST, DC: LayoutStruct, StartLoc: SourceLocation(), |
466 | IdLoc: SourceLocation(), Id: II, T: QT, TInfo: TSI, BW: nullptr, Mutable: false, |
467 | InitStyle: InClassInitStyle::ICIS_NoInit); |
468 | Field->setAccess(AccessSpecifier::AS_public); |
469 | return Field; |
470 | } |
471 | |
472 | // Creates host layout struct for a struct included in HLSL Buffer. |
473 | // The layout struct will include only fields that are allowed in HLSL buffer. |
474 | // These fields will be filtered out: |
475 | // - resource classes |
476 | // - empty structs |
477 | // - zero-sized arrays |
478 | // Returns nullptr if the resulting layout struct would be empty. |
479 | static CXXRecordDecl *createHostLayoutStruct(Sema &S, |
480 | CXXRecordDecl *StructDecl) { |
481 | assert(requiresImplicitBufferLayoutStructure(StructDecl) && |
482 | "struct is already HLSL buffer compatible" ); |
483 | |
484 | ASTContext &AST = S.getASTContext(); |
485 | DeclContext *DC = StructDecl->getDeclContext(); |
486 | IdentifierInfo *II = getHostLayoutStructName(S, BaseDecl: StructDecl, MustBeUnique: false); |
487 | |
488 | // reuse existing if the layout struct if it already exists |
489 | if (CXXRecordDecl *RD = findRecordDeclInContext(II, DC)) |
490 | return RD; |
491 | |
492 | CXXRecordDecl *LS = |
493 | CXXRecordDecl::Create(C: AST, TK: TagDecl::TagKind::Struct, DC, StartLoc: SourceLocation(), |
494 | IdLoc: SourceLocation(), Id: II); |
495 | LS->setImplicit(true); |
496 | LS->addAttr(A: PackedAttr::CreateImplicit(Ctx&: AST)); |
497 | LS->startDefinition(); |
498 | |
499 | // copy base struct, create HLSL Buffer compatible version if needed |
500 | if (unsigned NumBases = StructDecl->getNumBases()) { |
501 | assert(NumBases == 1 && "HLSL supports only one base type" ); |
502 | (void)NumBases; |
503 | CXXBaseSpecifier Base = *StructDecl->bases_begin(); |
504 | CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
505 | if (requiresImplicitBufferLayoutStructure(RD: BaseDecl)) { |
506 | BaseDecl = createHostLayoutStruct(S, StructDecl: BaseDecl); |
507 | if (BaseDecl) { |
508 | TypeSourceInfo *TSI = AST.getTrivialTypeSourceInfo( |
509 | T: QualType(BaseDecl->getTypeForDecl(), 0)); |
510 | Base = CXXBaseSpecifier(SourceRange(), false, StructDecl->isClass(), |
511 | AS_none, TSI, SourceLocation()); |
512 | } |
513 | } |
514 | if (BaseDecl) { |
515 | const CXXBaseSpecifier *BasesArray[1] = {&Base}; |
516 | LS->setBases(Bases: BasesArray, NumBases: 1); |
517 | } |
518 | } |
519 | |
520 | // filter struct fields |
521 | for (const FieldDecl *FD : StructDecl->fields()) { |
522 | const Type *Ty = FD->getType()->getUnqualifiedDesugaredType(); |
523 | if (FieldDecl *NewFD = |
524 | createFieldForHostLayoutStruct(S, Ty, II: FD->getIdentifier(), LayoutStruct: LS)) |
525 | LS->addDecl(D: NewFD); |
526 | } |
527 | LS->completeDefinition(); |
528 | |
529 | if (LS->field_empty() && LS->getNumBases() == 0) |
530 | return nullptr; |
531 | |
532 | DC->addDecl(D: LS); |
533 | return LS; |
534 | } |
535 | |
536 | // Creates host layout struct for HLSL Buffer. The struct will include only |
537 | // fields of types that are allowed in HLSL buffer and it will filter out: |
538 | // - static or groupshared variable declarations |
539 | // - resource classes |
540 | // - empty structs |
541 | // - zero-sized arrays |
542 | // - non-variable declarations |
543 | // The layout struct will be added to the HLSLBufferDecl declarations. |
544 | void createHostLayoutStructForBuffer(Sema &S, HLSLBufferDecl *BufDecl) { |
545 | ASTContext &AST = S.getASTContext(); |
546 | IdentifierInfo *II = getHostLayoutStructName(S, BaseDecl: BufDecl, MustBeUnique: true); |
547 | |
548 | CXXRecordDecl *LS = |
549 | CXXRecordDecl::Create(C: AST, TK: TagDecl::TagKind::Struct, DC: BufDecl, |
550 | StartLoc: SourceLocation(), IdLoc: SourceLocation(), Id: II); |
551 | LS->addAttr(A: PackedAttr::CreateImplicit(Ctx&: AST)); |
552 | LS->setImplicit(true); |
553 | LS->startDefinition(); |
554 | |
555 | for (Decl *D : BufDecl->buffer_decls()) { |
556 | VarDecl *VD = dyn_cast<VarDecl>(Val: D); |
557 | if (!VD || VD->getStorageClass() == SC_Static || |
558 | VD->getType().getAddressSpace() == LangAS::hlsl_groupshared) |
559 | continue; |
560 | const Type *Ty = VD->getType()->getUnqualifiedDesugaredType(); |
561 | if (FieldDecl *FD = |
562 | createFieldForHostLayoutStruct(S, Ty, II: VD->getIdentifier(), LayoutStruct: LS)) { |
563 | // add the field decl to the layout struct |
564 | LS->addDecl(D: FD); |
565 | // update address space of the original decl to hlsl_constant |
566 | QualType NewTy = |
567 | AST.getAddrSpaceQualType(T: VD->getType(), AddressSpace: LangAS::hlsl_constant); |
568 | VD->setType(NewTy); |
569 | } |
570 | } |
571 | LS->completeDefinition(); |
572 | BufDecl->addLayoutStruct(LS); |
573 | } |
574 | |
575 | static void addImplicitBindingAttrToBuffer(Sema &S, HLSLBufferDecl *BufDecl, |
576 | uint32_t ImplicitBindingOrderID) { |
577 | RegisterType RT = |
578 | BufDecl->isCBuffer() ? RegisterType::CBuffer : RegisterType::SRV; |
579 | auto *Attr = |
580 | HLSLResourceBindingAttr::CreateImplicit(Ctx&: S.getASTContext(), Slot: "" , Space: "0" , Range: {}); |
581 | std::optional<unsigned> RegSlot; |
582 | Attr->setBinding(RT, SlotNum: RegSlot, SpaceNum: 0); |
583 | Attr->setImplicitBindingOrderID(ImplicitBindingOrderID); |
584 | BufDecl->addAttr(A: Attr); |
585 | } |
586 | |
587 | // Handle end of cbuffer/tbuffer declaration |
588 | void SemaHLSL::ActOnFinishBuffer(Decl *Dcl, SourceLocation RBrace) { |
589 | auto *BufDecl = cast<HLSLBufferDecl>(Val: Dcl); |
590 | BufDecl->setRBraceLoc(RBrace); |
591 | |
592 | validatePackoffset(S&: SemaRef, BufDecl); |
593 | |
594 | // create buffer layout struct |
595 | createHostLayoutStructForBuffer(S&: SemaRef, BufDecl); |
596 | |
597 | HLSLResourceBindingAttr *RBA = Dcl->getAttr<HLSLResourceBindingAttr>(); |
598 | if (!RBA || !RBA->hasRegisterSlot()) { |
599 | SemaRef.Diag(Loc: Dcl->getLocation(), DiagID: diag::warn_hlsl_implicit_binding); |
600 | // Use HLSLResourceBindingAttr to transfer implicit binding order_ID |
601 | // to codegen. If it does not exist, create an implicit attribute. |
602 | uint32_t OrderID = getNextImplicitBindingOrderID(); |
603 | if (RBA) |
604 | RBA->setImplicitBindingOrderID(OrderID); |
605 | else |
606 | addImplicitBindingAttrToBuffer(S&: SemaRef, BufDecl, ImplicitBindingOrderID: OrderID); |
607 | } |
608 | |
609 | SemaRef.PopDeclContext(); |
610 | } |
611 | |
612 | HLSLNumThreadsAttr *SemaHLSL::mergeNumThreadsAttr(Decl *D, |
613 | const AttributeCommonInfo &AL, |
614 | int X, int Y, int Z) { |
615 | if (HLSLNumThreadsAttr *NT = D->getAttr<HLSLNumThreadsAttr>()) { |
616 | if (NT->getX() != X || NT->getY() != Y || NT->getZ() != Z) { |
617 | Diag(Loc: NT->getLocation(), DiagID: diag::err_hlsl_attribute_param_mismatch) << AL; |
618 | Diag(Loc: AL.getLoc(), DiagID: diag::note_conflicting_attribute); |
619 | } |
620 | return nullptr; |
621 | } |
622 | return ::new (getASTContext()) |
623 | HLSLNumThreadsAttr(getASTContext(), AL, X, Y, Z); |
624 | } |
625 | |
626 | HLSLWaveSizeAttr *SemaHLSL::mergeWaveSizeAttr(Decl *D, |
627 | const AttributeCommonInfo &AL, |
628 | int Min, int Max, int Preferred, |
629 | int SpelledArgsCount) { |
630 | if (HLSLWaveSizeAttr *WS = D->getAttr<HLSLWaveSizeAttr>()) { |
631 | if (WS->getMin() != Min || WS->getMax() != Max || |
632 | WS->getPreferred() != Preferred || |
633 | WS->getSpelledArgsCount() != SpelledArgsCount) { |
634 | Diag(Loc: WS->getLocation(), DiagID: diag::err_hlsl_attribute_param_mismatch) << AL; |
635 | Diag(Loc: AL.getLoc(), DiagID: diag::note_conflicting_attribute); |
636 | } |
637 | return nullptr; |
638 | } |
639 | HLSLWaveSizeAttr *Result = ::new (getASTContext()) |
640 | HLSLWaveSizeAttr(getASTContext(), AL, Min, Max, Preferred); |
641 | Result->setSpelledArgsCount(SpelledArgsCount); |
642 | return Result; |
643 | } |
644 | |
645 | HLSLVkConstantIdAttr * |
646 | SemaHLSL::mergeVkConstantIdAttr(Decl *D, const AttributeCommonInfo &AL, |
647 | int Id) { |
648 | |
649 | auto &TargetInfo = getASTContext().getTargetInfo(); |
650 | if (TargetInfo.getTriple().getArch() != llvm::Triple::spirv) { |
651 | Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_ignored) << AL; |
652 | return nullptr; |
653 | } |
654 | |
655 | auto *VD = cast<VarDecl>(Val: D); |
656 | |
657 | if (getSpecConstBuiltinId(Type: VD->getType()->getUnqualifiedDesugaredType()) == |
658 | Builtin::NotBuiltin) { |
659 | Diag(Loc: VD->getLocation(), DiagID: diag::err_specialization_const); |
660 | return nullptr; |
661 | } |
662 | |
663 | if (!VD->getType().isConstQualified()) { |
664 | Diag(Loc: VD->getLocation(), DiagID: diag::err_specialization_const); |
665 | return nullptr; |
666 | } |
667 | |
668 | if (HLSLVkConstantIdAttr *CI = D->getAttr<HLSLVkConstantIdAttr>()) { |
669 | if (CI->getId() != Id) { |
670 | Diag(Loc: CI->getLocation(), DiagID: diag::err_hlsl_attribute_param_mismatch) << AL; |
671 | Diag(Loc: AL.getLoc(), DiagID: diag::note_conflicting_attribute); |
672 | } |
673 | return nullptr; |
674 | } |
675 | |
676 | HLSLVkConstantIdAttr *Result = |
677 | ::new (getASTContext()) HLSLVkConstantIdAttr(getASTContext(), AL, Id); |
678 | return Result; |
679 | } |
680 | |
681 | HLSLShaderAttr * |
682 | SemaHLSL::mergeShaderAttr(Decl *D, const AttributeCommonInfo &AL, |
683 | llvm::Triple::EnvironmentType ShaderType) { |
684 | if (HLSLShaderAttr *NT = D->getAttr<HLSLShaderAttr>()) { |
685 | if (NT->getType() != ShaderType) { |
686 | Diag(Loc: NT->getLocation(), DiagID: diag::err_hlsl_attribute_param_mismatch) << AL; |
687 | Diag(Loc: AL.getLoc(), DiagID: diag::note_conflicting_attribute); |
688 | } |
689 | return nullptr; |
690 | } |
691 | return HLSLShaderAttr::Create(Ctx&: getASTContext(), Type: ShaderType, CommonInfo: AL); |
692 | } |
693 | |
694 | HLSLParamModifierAttr * |
695 | SemaHLSL::mergeParamModifierAttr(Decl *D, const AttributeCommonInfo &AL, |
696 | HLSLParamModifierAttr::Spelling Spelling) { |
697 | // We can only merge an `in` attribute with an `out` attribute. All other |
698 | // combinations of duplicated attributes are ill-formed. |
699 | if (HLSLParamModifierAttr *PA = D->getAttr<HLSLParamModifierAttr>()) { |
700 | if ((PA->isIn() && Spelling == HLSLParamModifierAttr::Keyword_out) || |
701 | (PA->isOut() && Spelling == HLSLParamModifierAttr::Keyword_in)) { |
702 | D->dropAttr<HLSLParamModifierAttr>(); |
703 | SourceRange AdjustedRange = {PA->getLocation(), AL.getRange().getEnd()}; |
704 | return HLSLParamModifierAttr::Create( |
705 | Ctx&: getASTContext(), /*MergedSpelling=*/true, Range: AdjustedRange, |
706 | S: HLSLParamModifierAttr::Keyword_inout); |
707 | } |
708 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_duplicate_parameter_modifier) << AL; |
709 | Diag(Loc: PA->getLocation(), DiagID: diag::note_conflicting_attribute); |
710 | return nullptr; |
711 | } |
712 | return HLSLParamModifierAttr::Create(Ctx&: getASTContext(), CommonInfo: AL); |
713 | } |
714 | |
715 | void SemaHLSL::ActOnTopLevelFunction(FunctionDecl *FD) { |
716 | auto &TargetInfo = getASTContext().getTargetInfo(); |
717 | |
718 | if (FD->getName() != TargetInfo.getTargetOpts().HLSLEntry) |
719 | return; |
720 | |
721 | llvm::Triple::EnvironmentType Env = TargetInfo.getTriple().getEnvironment(); |
722 | if (HLSLShaderAttr::isValidShaderType(ShaderType: Env) && Env != llvm::Triple::Library) { |
723 | if (const auto *Shader = FD->getAttr<HLSLShaderAttr>()) { |
724 | // The entry point is already annotated - check that it matches the |
725 | // triple. |
726 | if (Shader->getType() != Env) { |
727 | Diag(Loc: Shader->getLocation(), DiagID: diag::err_hlsl_entry_shader_attr_mismatch) |
728 | << Shader; |
729 | FD->setInvalidDecl(); |
730 | } |
731 | } else { |
732 | // Implicitly add the shader attribute if the entry function isn't |
733 | // explicitly annotated. |
734 | FD->addAttr(A: HLSLShaderAttr::CreateImplicit(Ctx&: getASTContext(), Type: Env, |
735 | Range: FD->getBeginLoc())); |
736 | } |
737 | } else { |
738 | switch (Env) { |
739 | case llvm::Triple::UnknownEnvironment: |
740 | case llvm::Triple::Library: |
741 | break; |
742 | default: |
743 | llvm_unreachable("Unhandled environment in triple" ); |
744 | } |
745 | } |
746 | } |
747 | |
748 | void SemaHLSL::CheckEntryPoint(FunctionDecl *FD) { |
749 | const auto *ShaderAttr = FD->getAttr<HLSLShaderAttr>(); |
750 | assert(ShaderAttr && "Entry point has no shader attribute" ); |
751 | llvm::Triple::EnvironmentType ST = ShaderAttr->getType(); |
752 | auto &TargetInfo = getASTContext().getTargetInfo(); |
753 | VersionTuple Ver = TargetInfo.getTriple().getOSVersion(); |
754 | switch (ST) { |
755 | case llvm::Triple::Pixel: |
756 | case llvm::Triple::Vertex: |
757 | case llvm::Triple::Geometry: |
758 | case llvm::Triple::Hull: |
759 | case llvm::Triple::Domain: |
760 | case llvm::Triple::RayGeneration: |
761 | case llvm::Triple::Intersection: |
762 | case llvm::Triple::AnyHit: |
763 | case llvm::Triple::ClosestHit: |
764 | case llvm::Triple::Miss: |
765 | case llvm::Triple::Callable: |
766 | if (const auto *NT = FD->getAttr<HLSLNumThreadsAttr>()) { |
767 | DiagnoseAttrStageMismatch(A: NT, Stage: ST, |
768 | AllowedStages: {llvm::Triple::Compute, |
769 | llvm::Triple::Amplification, |
770 | llvm::Triple::Mesh}); |
771 | FD->setInvalidDecl(); |
772 | } |
773 | if (const auto *WS = FD->getAttr<HLSLWaveSizeAttr>()) { |
774 | DiagnoseAttrStageMismatch(A: WS, Stage: ST, |
775 | AllowedStages: {llvm::Triple::Compute, |
776 | llvm::Triple::Amplification, |
777 | llvm::Triple::Mesh}); |
778 | FD->setInvalidDecl(); |
779 | } |
780 | break; |
781 | |
782 | case llvm::Triple::Compute: |
783 | case llvm::Triple::Amplification: |
784 | case llvm::Triple::Mesh: |
785 | if (!FD->hasAttr<HLSLNumThreadsAttr>()) { |
786 | Diag(Loc: FD->getLocation(), DiagID: diag::err_hlsl_missing_numthreads) |
787 | << llvm::Triple::getEnvironmentTypeName(Kind: ST); |
788 | FD->setInvalidDecl(); |
789 | } |
790 | if (const auto *WS = FD->getAttr<HLSLWaveSizeAttr>()) { |
791 | if (Ver < VersionTuple(6, 6)) { |
792 | Diag(Loc: WS->getLocation(), DiagID: diag::err_hlsl_attribute_in_wrong_shader_model) |
793 | << WS << "6.6" ; |
794 | FD->setInvalidDecl(); |
795 | } else if (WS->getSpelledArgsCount() > 1 && Ver < VersionTuple(6, 8)) { |
796 | Diag( |
797 | Loc: WS->getLocation(), |
798 | DiagID: diag::err_hlsl_attribute_number_arguments_insufficient_shader_model) |
799 | << WS << WS->getSpelledArgsCount() << "6.8" ; |
800 | FD->setInvalidDecl(); |
801 | } |
802 | } |
803 | break; |
804 | default: |
805 | llvm_unreachable("Unhandled environment in triple" ); |
806 | } |
807 | |
808 | for (ParmVarDecl *Param : FD->parameters()) { |
809 | if (const auto *AnnotationAttr = Param->getAttr<HLSLAnnotationAttr>()) { |
810 | CheckSemanticAnnotation(EntryPoint: FD, Param, AnnotationAttr); |
811 | } else { |
812 | // FIXME: Handle struct parameters where annotations are on struct fields. |
813 | // See: https://github.com/llvm/llvm-project/issues/57875 |
814 | Diag(Loc: FD->getLocation(), DiagID: diag::err_hlsl_missing_semantic_annotation); |
815 | Diag(Loc: Param->getLocation(), DiagID: diag::note_previous_decl) << Param; |
816 | FD->setInvalidDecl(); |
817 | } |
818 | } |
819 | // FIXME: Verify return type semantic annotation. |
820 | } |
821 | |
822 | void SemaHLSL::CheckSemanticAnnotation( |
823 | FunctionDecl *EntryPoint, const Decl *Param, |
824 | const HLSLAnnotationAttr *AnnotationAttr) { |
825 | auto *ShaderAttr = EntryPoint->getAttr<HLSLShaderAttr>(); |
826 | assert(ShaderAttr && "Entry point has no shader attribute" ); |
827 | llvm::Triple::EnvironmentType ST = ShaderAttr->getType(); |
828 | |
829 | switch (AnnotationAttr->getKind()) { |
830 | case attr::HLSLSV_DispatchThreadID: |
831 | case attr::HLSLSV_GroupIndex: |
832 | case attr::HLSLSV_GroupThreadID: |
833 | case attr::HLSLSV_GroupID: |
834 | if (ST == llvm::Triple::Compute) |
835 | return; |
836 | DiagnoseAttrStageMismatch(A: AnnotationAttr, Stage: ST, AllowedStages: {llvm::Triple::Compute}); |
837 | break; |
838 | case attr::HLSLSV_Position: |
839 | // TODO(#143523): allow use on other shader types & output once the overall |
840 | // semantic logic is implemented. |
841 | if (ST == llvm::Triple::Pixel) |
842 | return; |
843 | DiagnoseAttrStageMismatch(A: AnnotationAttr, Stage: ST, AllowedStages: {llvm::Triple::Pixel}); |
844 | break; |
845 | default: |
846 | llvm_unreachable("Unknown HLSLAnnotationAttr" ); |
847 | } |
848 | } |
849 | |
850 | void SemaHLSL::DiagnoseAttrStageMismatch( |
851 | const Attr *A, llvm::Triple::EnvironmentType Stage, |
852 | std::initializer_list<llvm::Triple::EnvironmentType> AllowedStages) { |
853 | SmallVector<StringRef, 8> StageStrings; |
854 | llvm::transform(Range&: AllowedStages, d_first: std::back_inserter(x&: StageStrings), |
855 | F: [](llvm::Triple::EnvironmentType ST) { |
856 | return StringRef( |
857 | HLSLShaderAttr::ConvertEnvironmentTypeToStr(Val: ST)); |
858 | }); |
859 | Diag(Loc: A->getLoc(), DiagID: diag::err_hlsl_attr_unsupported_in_stage) |
860 | << A->getAttrName() << llvm::Triple::getEnvironmentTypeName(Kind: Stage) |
861 | << (AllowedStages.size() != 1) << join(R&: StageStrings, Separator: ", " ); |
862 | } |
863 | |
864 | template <CastKind Kind> |
865 | static void castVector(Sema &S, ExprResult &E, QualType &Ty, unsigned Sz) { |
866 | if (const auto *VTy = Ty->getAs<VectorType>()) |
867 | Ty = VTy->getElementType(); |
868 | Ty = S.getASTContext().getExtVectorType(VectorType: Ty, NumElts: Sz); |
869 | E = S.ImpCastExprToType(E: E.get(), Type: Ty, CK: Kind); |
870 | } |
871 | |
872 | template <CastKind Kind> |
873 | static QualType castElement(Sema &S, ExprResult &E, QualType Ty) { |
874 | E = S.ImpCastExprToType(E: E.get(), Type: Ty, CK: Kind); |
875 | return Ty; |
876 | } |
877 | |
878 | static QualType handleFloatVectorBinOpConversion( |
879 | Sema &SemaRef, ExprResult &LHS, ExprResult &RHS, QualType LHSType, |
880 | QualType RHSType, QualType LElTy, QualType RElTy, bool IsCompAssign) { |
881 | bool LHSFloat = LElTy->isRealFloatingType(); |
882 | bool RHSFloat = RElTy->isRealFloatingType(); |
883 | |
884 | if (LHSFloat && RHSFloat) { |
885 | if (IsCompAssign || |
886 | SemaRef.getASTContext().getFloatingTypeOrder(LHS: LElTy, RHS: RElTy) > 0) |
887 | return castElement<CK_FloatingCast>(S&: SemaRef, E&: RHS, Ty: LHSType); |
888 | |
889 | return castElement<CK_FloatingCast>(S&: SemaRef, E&: LHS, Ty: RHSType); |
890 | } |
891 | |
892 | if (LHSFloat) |
893 | return castElement<CK_IntegralToFloating>(S&: SemaRef, E&: RHS, Ty: LHSType); |
894 | |
895 | assert(RHSFloat); |
896 | if (IsCompAssign) |
897 | return castElement<clang::CK_FloatingToIntegral>(S&: SemaRef, E&: RHS, Ty: LHSType); |
898 | |
899 | return castElement<CK_IntegralToFloating>(S&: SemaRef, E&: LHS, Ty: RHSType); |
900 | } |
901 | |
902 | static QualType handleIntegerVectorBinOpConversion( |
903 | Sema &SemaRef, ExprResult &LHS, ExprResult &RHS, QualType LHSType, |
904 | QualType RHSType, QualType LElTy, QualType RElTy, bool IsCompAssign) { |
905 | |
906 | int IntOrder = SemaRef.Context.getIntegerTypeOrder(LHS: LElTy, RHS: RElTy); |
907 | bool LHSSigned = LElTy->hasSignedIntegerRepresentation(); |
908 | bool RHSSigned = RElTy->hasSignedIntegerRepresentation(); |
909 | auto &Ctx = SemaRef.getASTContext(); |
910 | |
911 | // If both types have the same signedness, use the higher ranked type. |
912 | if (LHSSigned == RHSSigned) { |
913 | if (IsCompAssign || IntOrder >= 0) |
914 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: RHS, Ty: LHSType); |
915 | |
916 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: LHS, Ty: RHSType); |
917 | } |
918 | |
919 | // If the unsigned type has greater than or equal rank of the signed type, use |
920 | // the unsigned type. |
921 | if (IntOrder != (LHSSigned ? 1 : -1)) { |
922 | if (IsCompAssign || RHSSigned) |
923 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: RHS, Ty: LHSType); |
924 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: LHS, Ty: RHSType); |
925 | } |
926 | |
927 | // At this point the signed type has higher rank than the unsigned type, which |
928 | // means it will be the same size or bigger. If the signed type is bigger, it |
929 | // can represent all the values of the unsigned type, so select it. |
930 | if (Ctx.getIntWidth(T: LElTy) != Ctx.getIntWidth(T: RElTy)) { |
931 | if (IsCompAssign || LHSSigned) |
932 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: RHS, Ty: LHSType); |
933 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: LHS, Ty: RHSType); |
934 | } |
935 | |
936 | // This is a bit of an odd duck case in HLSL. It shouldn't happen, but can due |
937 | // to C/C++ leaking through. The place this happens today is long vs long |
938 | // long. When arguments are vector<unsigned long, N> and vector<long long, N>, |
939 | // the long long has higher rank than long even though they are the same size. |
940 | |
941 | // If this is a compound assignment cast the right hand side to the left hand |
942 | // side's type. |
943 | if (IsCompAssign) |
944 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: RHS, Ty: LHSType); |
945 | |
946 | // If this isn't a compound assignment we convert to unsigned long long. |
947 | QualType ElTy = Ctx.getCorrespondingUnsignedType(T: LHSSigned ? LElTy : RElTy); |
948 | QualType NewTy = Ctx.getExtVectorType( |
949 | VectorType: ElTy, NumElts: RHSType->castAs<VectorType>()->getNumElements()); |
950 | (void)castElement<CK_IntegralCast>(S&: SemaRef, E&: RHS, Ty: NewTy); |
951 | |
952 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: LHS, Ty: NewTy); |
953 | } |
954 | |
955 | static CastKind getScalarCastKind(ASTContext &Ctx, QualType DestTy, |
956 | QualType SrcTy) { |
957 | if (DestTy->isRealFloatingType() && SrcTy->isRealFloatingType()) |
958 | return CK_FloatingCast; |
959 | if (DestTy->isIntegralType(Ctx) && SrcTy->isIntegralType(Ctx)) |
960 | return CK_IntegralCast; |
961 | if (DestTy->isRealFloatingType()) |
962 | return CK_IntegralToFloating; |
963 | assert(SrcTy->isRealFloatingType() && DestTy->isIntegralType(Ctx)); |
964 | return CK_FloatingToIntegral; |
965 | } |
966 | |
967 | QualType SemaHLSL::handleVectorBinOpConversion(ExprResult &LHS, ExprResult &RHS, |
968 | QualType LHSType, |
969 | QualType RHSType, |
970 | bool IsCompAssign) { |
971 | const auto *LVecTy = LHSType->getAs<VectorType>(); |
972 | const auto *RVecTy = RHSType->getAs<VectorType>(); |
973 | auto &Ctx = getASTContext(); |
974 | |
975 | // If the LHS is not a vector and this is a compound assignment, we truncate |
976 | // the argument to a scalar then convert it to the LHS's type. |
977 | if (!LVecTy && IsCompAssign) { |
978 | QualType RElTy = RHSType->castAs<VectorType>()->getElementType(); |
979 | RHS = SemaRef.ImpCastExprToType(E: RHS.get(), Type: RElTy, CK: CK_HLSLVectorTruncation); |
980 | RHSType = RHS.get()->getType(); |
981 | if (Ctx.hasSameUnqualifiedType(T1: LHSType, T2: RHSType)) |
982 | return LHSType; |
983 | RHS = SemaRef.ImpCastExprToType(E: RHS.get(), Type: LHSType, |
984 | CK: getScalarCastKind(Ctx, DestTy: LHSType, SrcTy: RHSType)); |
985 | return LHSType; |
986 | } |
987 | |
988 | unsigned EndSz = std::numeric_limits<unsigned>::max(); |
989 | unsigned LSz = 0; |
990 | if (LVecTy) |
991 | LSz = EndSz = LVecTy->getNumElements(); |
992 | if (RVecTy) |
993 | EndSz = std::min(a: RVecTy->getNumElements(), b: EndSz); |
994 | assert(EndSz != std::numeric_limits<unsigned>::max() && |
995 | "one of the above should have had a value" ); |
996 | |
997 | // In a compound assignment, the left operand does not change type, the right |
998 | // operand is converted to the type of the left operand. |
999 | if (IsCompAssign && LSz != EndSz) { |
1000 | Diag(Loc: LHS.get()->getBeginLoc(), |
1001 | DiagID: diag::err_hlsl_vector_compound_assignment_truncation) |
1002 | << LHSType << RHSType; |
1003 | return QualType(); |
1004 | } |
1005 | |
1006 | if (RVecTy && RVecTy->getNumElements() > EndSz) |
1007 | castVector<CK_HLSLVectorTruncation>(S&: SemaRef, E&: RHS, Ty&: RHSType, Sz: EndSz); |
1008 | if (!IsCompAssign && LVecTy && LVecTy->getNumElements() > EndSz) |
1009 | castVector<CK_HLSLVectorTruncation>(S&: SemaRef, E&: LHS, Ty&: LHSType, Sz: EndSz); |
1010 | |
1011 | if (!RVecTy) |
1012 | castVector<CK_VectorSplat>(S&: SemaRef, E&: RHS, Ty&: RHSType, Sz: EndSz); |
1013 | if (!IsCompAssign && !LVecTy) |
1014 | castVector<CK_VectorSplat>(S&: SemaRef, E&: LHS, Ty&: LHSType, Sz: EndSz); |
1015 | |
1016 | // If we're at the same type after resizing we can stop here. |
1017 | if (Ctx.hasSameUnqualifiedType(T1: LHSType, T2: RHSType)) |
1018 | return Ctx.getCommonSugaredType(X: LHSType, Y: RHSType); |
1019 | |
1020 | QualType LElTy = LHSType->castAs<VectorType>()->getElementType(); |
1021 | QualType RElTy = RHSType->castAs<VectorType>()->getElementType(); |
1022 | |
1023 | // Handle conversion for floating point vectors. |
1024 | if (LElTy->isRealFloatingType() || RElTy->isRealFloatingType()) |
1025 | return handleFloatVectorBinOpConversion(SemaRef, LHS, RHS, LHSType, RHSType, |
1026 | LElTy, RElTy, IsCompAssign); |
1027 | |
1028 | assert(LElTy->isIntegralType(Ctx) && RElTy->isIntegralType(Ctx) && |
1029 | "HLSL Vectors can only contain integer or floating point types" ); |
1030 | return handleIntegerVectorBinOpConversion(SemaRef, LHS, RHS, LHSType, RHSType, |
1031 | LElTy, RElTy, IsCompAssign); |
1032 | } |
1033 | |
1034 | void SemaHLSL::emitLogicalOperatorFixIt(Expr *LHS, Expr *RHS, |
1035 | BinaryOperatorKind Opc) { |
1036 | assert((Opc == BO_LOr || Opc == BO_LAnd) && |
1037 | "Called with non-logical operator" ); |
1038 | llvm::SmallVector<char, 256> Buff; |
1039 | llvm::raw_svector_ostream OS(Buff); |
1040 | PrintingPolicy PP(SemaRef.getLangOpts()); |
1041 | StringRef NewFnName = Opc == BO_LOr ? "or" : "and" ; |
1042 | OS << NewFnName << "(" ; |
1043 | LHS->printPretty(OS, Helper: nullptr, Policy: PP); |
1044 | OS << ", " ; |
1045 | RHS->printPretty(OS, Helper: nullptr, Policy: PP); |
1046 | OS << ")" ; |
1047 | SourceRange FullRange = SourceRange(LHS->getBeginLoc(), RHS->getEndLoc()); |
1048 | SemaRef.Diag(Loc: LHS->getBeginLoc(), DiagID: diag::note_function_suggestion) |
1049 | << NewFnName << FixItHint::CreateReplacement(RemoveRange: FullRange, Code: OS.str()); |
1050 | } |
1051 | |
1052 | std::pair<IdentifierInfo *, bool> |
1053 | SemaHLSL::ActOnStartRootSignatureDecl(StringRef Signature) { |
1054 | llvm::hash_code Hash = llvm::hash_value(S: Signature); |
1055 | std::string IdStr = "__hlsl_rootsig_decl_" + std::to_string(val: Hash); |
1056 | IdentifierInfo *DeclIdent = &(getASTContext().Idents.get(Name: IdStr)); |
1057 | |
1058 | // Check if we have already found a decl of the same name. |
1059 | LookupResult R(SemaRef, DeclIdent, SourceLocation(), |
1060 | Sema::LookupOrdinaryName); |
1061 | bool Found = SemaRef.LookupQualifiedName(R, LookupCtx: SemaRef.CurContext); |
1062 | return {DeclIdent, Found}; |
1063 | } |
1064 | |
1065 | void SemaHLSL::ActOnFinishRootSignatureDecl( |
1066 | SourceLocation Loc, IdentifierInfo *DeclIdent, |
1067 | SmallVector<llvm::hlsl::rootsig::RootElement> &Elements) { |
1068 | |
1069 | auto *SignatureDecl = HLSLRootSignatureDecl::Create( |
1070 | C&: SemaRef.getASTContext(), /*DeclContext=*/DC: SemaRef.CurContext, Loc, |
1071 | ID: DeclIdent, Version: SemaRef.getLangOpts().HLSLRootSigVer, RootElements: Elements); |
1072 | |
1073 | if (handleRootSignatureDecl(D: SignatureDecl, Loc)) |
1074 | return; |
1075 | |
1076 | SignatureDecl->setImplicit(); |
1077 | SemaRef.PushOnScopeChains(D: SignatureDecl, S: SemaRef.getCurScope()); |
1078 | } |
1079 | |
1080 | bool SemaHLSL::handleRootSignatureDecl(HLSLRootSignatureDecl *D, |
1081 | SourceLocation Loc) { |
1082 | // The following conducts analysis on resource ranges to detect and report |
1083 | // any overlaps in resource ranges. |
1084 | // |
1085 | // A resource range overlaps with another resource range if they have: |
1086 | // - equivalent ResourceClass (SRV, UAV, CBuffer, Sampler) |
1087 | // - equivalent resource space |
1088 | // - overlapping visbility |
1089 | // |
1090 | // The following algorithm is implemented in the following steps: |
1091 | // |
1092 | // 1. Collect RangeInfo from relevant RootElements: |
1093 | // - RangeInfo will retain the interval, ResourceClass, Space and Visibility |
1094 | // 2. Sort the RangeInfo's such that they are grouped together by |
1095 | // ResourceClass and Space (GroupT defined below) |
1096 | // 3. Iterate through the collected RangeInfos by their groups |
1097 | // - For each group we will have a ResourceRange for each visibility |
1098 | // - As we iterate through we will: |
1099 | // A: Insert the current RangeInfo into the corresponding Visibility |
1100 | // ResourceRange |
1101 | // B: Check for overlap with any overlapping Visibility ResourceRange |
1102 | using RangeInfo = llvm::hlsl::rootsig::RangeInfo; |
1103 | using ResourceRange = llvm::hlsl::rootsig::ResourceRange; |
1104 | using GroupT = std::pair<ResourceClass, /*Space*/ uint32_t>; |
1105 | |
1106 | // 1. Collect RangeInfos |
1107 | llvm::SmallVector<RangeInfo> Infos; |
1108 | for (const llvm::hlsl::rootsig::RootElement &Elem : D->getRootElements()) { |
1109 | if (const auto *Descriptor = |
1110 | std::get_if<llvm::hlsl::rootsig::RootDescriptor>(ptr: &Elem)) { |
1111 | RangeInfo Info; |
1112 | Info.LowerBound = Descriptor->Reg.Number; |
1113 | Info.UpperBound = Info.LowerBound; // use inclusive ranges [] |
1114 | |
1115 | Info.Class = |
1116 | llvm::dxil::ResourceClass(llvm::to_underlying(E: Descriptor->Type)); |
1117 | Info.Space = Descriptor->Space; |
1118 | Info.Visibility = Descriptor->Visibility; |
1119 | Infos.push_back(Elt: Info); |
1120 | } else if (const auto *Constants = |
1121 | std::get_if<llvm::hlsl::rootsig::RootConstants>(ptr: &Elem)) { |
1122 | RangeInfo Info; |
1123 | Info.LowerBound = Constants->Reg.Number; |
1124 | Info.UpperBound = Info.LowerBound; // use inclusive ranges [] |
1125 | |
1126 | Info.Class = llvm::dxil::ResourceClass::CBuffer; |
1127 | Info.Space = Constants->Space; |
1128 | Info.Visibility = Constants->Visibility; |
1129 | Infos.push_back(Elt: Info); |
1130 | } else if (const auto *Sampler = |
1131 | std::get_if<llvm::hlsl::rootsig::StaticSampler>(ptr: &Elem)) { |
1132 | RangeInfo Info; |
1133 | Info.LowerBound = Sampler->Reg.Number; |
1134 | Info.UpperBound = Info.LowerBound; // use inclusive ranges [] |
1135 | |
1136 | Info.Class = llvm::dxil::ResourceClass::Sampler; |
1137 | Info.Space = Sampler->Space; |
1138 | Info.Visibility = Sampler->Visibility; |
1139 | Infos.push_back(Elt: Info); |
1140 | } else if (const auto *Clause = |
1141 | std::get_if<llvm::hlsl::rootsig::DescriptorTableClause>( |
1142 | ptr: &Elem)) { |
1143 | RangeInfo Info; |
1144 | Info.LowerBound = Clause->Reg.Number; |
1145 | assert(0 < Clause->NumDescriptors && "Verified as part of TODO(#129940)" ); |
1146 | Info.UpperBound = Clause->NumDescriptors == RangeInfo::Unbounded |
1147 | ? RangeInfo::Unbounded |
1148 | : Info.LowerBound + Clause->NumDescriptors - |
1149 | 1; // use inclusive ranges [] |
1150 | |
1151 | Info.Class = Clause->Type; |
1152 | Info.Space = Clause->Space; |
1153 | // Note: Clause does not hold the visibility this will need to |
1154 | Infos.push_back(Elt: Info); |
1155 | } else if (const auto *Table = |
1156 | std::get_if<llvm::hlsl::rootsig::DescriptorTable>(ptr: &Elem)) { |
1157 | // Table holds the Visibility of all owned Clauses in Table, so iterate |
1158 | // owned Clauses and update their corresponding RangeInfo |
1159 | assert(Table->NumClauses <= Infos.size() && "RootElement" ); |
1160 | // The last Table->NumClauses elements of Infos are the owned Clauses |
1161 | // generated RangeInfo |
1162 | auto TableInfos = |
1163 | MutableArrayRef<RangeInfo>(Infos).take_back(N: Table->NumClauses); |
1164 | for (RangeInfo &Info : TableInfos) |
1165 | Info.Visibility = Table->Visibility; |
1166 | } |
1167 | } |
1168 | |
1169 | // 2. Sort the RangeInfo's by their GroupT to form groupings |
1170 | std::sort(first: Infos.begin(), last: Infos.end(), comp: [](RangeInfo A, RangeInfo B) { |
1171 | return std::tie(args&: A.Class, args&: A.Space) < std::tie(args&: B.Class, args&: B.Space); |
1172 | }); |
1173 | |
1174 | // 3. First we will init our state to track: |
1175 | if (Infos.size() == 0) |
1176 | return false; // No ranges to overlap |
1177 | GroupT CurGroup = {Infos[0].Class, Infos[0].Space}; |
1178 | bool HadOverlap = false; |
1179 | |
1180 | // Create a ResourceRange for each Visibility |
1181 | ResourceRange::MapT::Allocator Allocator; |
1182 | std::array<ResourceRange, 8> Ranges = { |
1183 | ResourceRange(Allocator), // All |
1184 | ResourceRange(Allocator), // Vertex |
1185 | ResourceRange(Allocator), // Hull |
1186 | ResourceRange(Allocator), // Domain |
1187 | ResourceRange(Allocator), // Geometry |
1188 | ResourceRange(Allocator), // Pixel |
1189 | ResourceRange(Allocator), // Amplification |
1190 | ResourceRange(Allocator), // Mesh |
1191 | }; |
1192 | |
1193 | // Reset the ResourceRanges for when we iterate through a new group |
1194 | auto ClearRanges = [&Ranges]() { |
1195 | for (ResourceRange &Range : Ranges) |
1196 | Range.clear(); |
1197 | }; |
1198 | |
1199 | // Helper to report diagnostics |
1200 | auto ReportOverlap = [this, Loc, &HadOverlap](const RangeInfo *Info, |
1201 | const RangeInfo *OInfo) { |
1202 | HadOverlap = true; |
1203 | auto CommonVis = Info->Visibility == llvm::dxbc::ShaderVisibility::All |
1204 | ? OInfo->Visibility |
1205 | : Info->Visibility; |
1206 | this->Diag(Loc, DiagID: diag::err_hlsl_resource_range_overlap) |
1207 | << llvm::to_underlying(E: Info->Class) << Info->LowerBound |
1208 | << /*unbounded=*/(Info->UpperBound == RangeInfo::Unbounded) |
1209 | << Info->UpperBound << llvm::to_underlying(E: OInfo->Class) |
1210 | << OInfo->LowerBound |
1211 | << /*unbounded=*/(OInfo->UpperBound == RangeInfo::Unbounded) |
1212 | << OInfo->UpperBound << Info->Space << CommonVis; |
1213 | }; |
1214 | |
1215 | // 3: Iterate through collected RangeInfos |
1216 | for (const RangeInfo &Info : Infos) { |
1217 | GroupT InfoGroup = {Info.Class, Info.Space}; |
1218 | // Reset our ResourceRanges when we enter a new group |
1219 | if (CurGroup != InfoGroup) { |
1220 | ClearRanges(); |
1221 | CurGroup = InfoGroup; |
1222 | } |
1223 | |
1224 | // 3A: Insert range info into corresponding Visibility ResourceRange |
1225 | ResourceRange &VisRange = Ranges[llvm::to_underlying(E: Info.Visibility)]; |
1226 | if (std::optional<const RangeInfo *> Overlapping = VisRange.insert(Info)) |
1227 | ReportOverlap(&Info, Overlapping.value()); |
1228 | |
1229 | // 3B: Check for overlap in all overlapping Visibility ResourceRanges |
1230 | // |
1231 | // If the range that we are inserting has ShaderVisiblity::All it needs to |
1232 | // check for an overlap in all other visibility types as well. |
1233 | // Otherwise, the range that is inserted needs to check that it does not |
1234 | // overlap with ShaderVisibility::All. |
1235 | // |
1236 | // OverlapRanges will be an ArrayRef to all non-all visibility |
1237 | // ResourceRanges in the former case and it will be an ArrayRef to just the |
1238 | // all visiblity ResourceRange in the latter case. |
1239 | ArrayRef<ResourceRange> OverlapRanges = |
1240 | Info.Visibility == llvm::dxbc::ShaderVisibility::All |
1241 | ? ArrayRef<ResourceRange>{Ranges}.drop_front() |
1242 | : ArrayRef<ResourceRange>{Ranges}.take_front(); |
1243 | |
1244 | for (const ResourceRange &Range : OverlapRanges) |
1245 | if (std::optional<const RangeInfo *> Overlapping = |
1246 | Range.getOverlapping(Info)) |
1247 | ReportOverlap(&Info, Overlapping.value()); |
1248 | } |
1249 | |
1250 | return HadOverlap; |
1251 | } |
1252 | |
1253 | void SemaHLSL::handleRootSignatureAttr(Decl *D, const ParsedAttr &AL) { |
1254 | if (AL.getNumArgs() != 1) { |
1255 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << AL << 1; |
1256 | return; |
1257 | } |
1258 | |
1259 | IdentifierInfo *Ident = AL.getArgAsIdent(Arg: 0)->getIdentifierInfo(); |
1260 | if (auto *RS = D->getAttr<RootSignatureAttr>()) { |
1261 | if (RS->getSignatureIdent() != Ident) { |
1262 | Diag(Loc: AL.getLoc(), DiagID: diag::err_disallowed_duplicate_attribute) << RS; |
1263 | return; |
1264 | } |
1265 | |
1266 | Diag(Loc: AL.getLoc(), DiagID: diag::warn_duplicate_attribute_exact) << RS; |
1267 | return; |
1268 | } |
1269 | |
1270 | LookupResult R(SemaRef, Ident, SourceLocation(), Sema::LookupOrdinaryName); |
1271 | if (SemaRef.LookupQualifiedName(R, LookupCtx: D->getDeclContext())) |
1272 | if (auto *SignatureDecl = |
1273 | dyn_cast<HLSLRootSignatureDecl>(Val: R.getFoundDecl())) { |
1274 | D->addAttr(A: ::new (getASTContext()) RootSignatureAttr( |
1275 | getASTContext(), AL, Ident, SignatureDecl)); |
1276 | } |
1277 | } |
1278 | |
1279 | void SemaHLSL::handleNumThreadsAttr(Decl *D, const ParsedAttr &AL) { |
1280 | llvm::VersionTuple SMVersion = |
1281 | getASTContext().getTargetInfo().getTriple().getOSVersion(); |
1282 | bool IsDXIL = getASTContext().getTargetInfo().getTriple().getArch() == |
1283 | llvm::Triple::dxil; |
1284 | |
1285 | uint32_t ZMax = 1024; |
1286 | uint32_t ThreadMax = 1024; |
1287 | if (IsDXIL && SMVersion.getMajor() <= 4) { |
1288 | ZMax = 1; |
1289 | ThreadMax = 768; |
1290 | } else if (IsDXIL && SMVersion.getMajor() == 5) { |
1291 | ZMax = 64; |
1292 | ThreadMax = 1024; |
1293 | } |
1294 | |
1295 | uint32_t X; |
1296 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: X)) |
1297 | return; |
1298 | if (X > 1024) { |
1299 | Diag(Loc: AL.getArgAsExpr(Arg: 0)->getExprLoc(), |
1300 | DiagID: diag::err_hlsl_numthreads_argument_oor) |
1301 | << 0 << 1024; |
1302 | return; |
1303 | } |
1304 | uint32_t Y; |
1305 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 1), Val&: Y)) |
1306 | return; |
1307 | if (Y > 1024) { |
1308 | Diag(Loc: AL.getArgAsExpr(Arg: 1)->getExprLoc(), |
1309 | DiagID: diag::err_hlsl_numthreads_argument_oor) |
1310 | << 1 << 1024; |
1311 | return; |
1312 | } |
1313 | uint32_t Z; |
1314 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 2), Val&: Z)) |
1315 | return; |
1316 | if (Z > ZMax) { |
1317 | SemaRef.Diag(Loc: AL.getArgAsExpr(Arg: 2)->getExprLoc(), |
1318 | DiagID: diag::err_hlsl_numthreads_argument_oor) |
1319 | << 2 << ZMax; |
1320 | return; |
1321 | } |
1322 | |
1323 | if (X * Y * Z > ThreadMax) { |
1324 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_numthreads_invalid) << ThreadMax; |
1325 | return; |
1326 | } |
1327 | |
1328 | HLSLNumThreadsAttr *NewAttr = mergeNumThreadsAttr(D, AL, X, Y, Z); |
1329 | if (NewAttr) |
1330 | D->addAttr(A: NewAttr); |
1331 | } |
1332 | |
1333 | static bool isValidWaveSizeValue(unsigned Value) { |
1334 | return llvm::isPowerOf2_32(Value) && Value >= 4 && Value <= 128; |
1335 | } |
1336 | |
1337 | void SemaHLSL::handleWaveSizeAttr(Decl *D, const ParsedAttr &AL) { |
1338 | // validate that the wavesize argument is a power of 2 between 4 and 128 |
1339 | // inclusive |
1340 | unsigned SpelledArgsCount = AL.getNumArgs(); |
1341 | if (SpelledArgsCount == 0 || SpelledArgsCount > 3) |
1342 | return; |
1343 | |
1344 | uint32_t Min; |
1345 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: Min)) |
1346 | return; |
1347 | |
1348 | uint32_t Max = 0; |
1349 | if (SpelledArgsCount > 1 && |
1350 | !SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 1), Val&: Max)) |
1351 | return; |
1352 | |
1353 | uint32_t Preferred = 0; |
1354 | if (SpelledArgsCount > 2 && |
1355 | !SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 2), Val&: Preferred)) |
1356 | return; |
1357 | |
1358 | if (SpelledArgsCount > 2) { |
1359 | if (!isValidWaveSizeValue(Value: Preferred)) { |
1360 | Diag(Loc: AL.getArgAsExpr(Arg: 2)->getExprLoc(), |
1361 | DiagID: diag::err_attribute_power_of_two_in_range) |
1362 | << AL << llvm::dxil::MinWaveSize << llvm::dxil::MaxWaveSize |
1363 | << Preferred; |
1364 | return; |
1365 | } |
1366 | // Preferred not in range. |
1367 | if (Preferred < Min || Preferred > Max) { |
1368 | Diag(Loc: AL.getArgAsExpr(Arg: 2)->getExprLoc(), |
1369 | DiagID: diag::err_attribute_power_of_two_in_range) |
1370 | << AL << Min << Max << Preferred; |
1371 | return; |
1372 | } |
1373 | } else if (SpelledArgsCount > 1) { |
1374 | if (!isValidWaveSizeValue(Value: Max)) { |
1375 | Diag(Loc: AL.getArgAsExpr(Arg: 1)->getExprLoc(), |
1376 | DiagID: diag::err_attribute_power_of_two_in_range) |
1377 | << AL << llvm::dxil::MinWaveSize << llvm::dxil::MaxWaveSize << Max; |
1378 | return; |
1379 | } |
1380 | if (Max < Min) { |
1381 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_invalid) << AL << 1; |
1382 | return; |
1383 | } else if (Max == Min) { |
1384 | Diag(Loc: AL.getLoc(), DiagID: diag::warn_attr_min_eq_max) << AL; |
1385 | } |
1386 | } else { |
1387 | if (!isValidWaveSizeValue(Value: Min)) { |
1388 | Diag(Loc: AL.getArgAsExpr(Arg: 0)->getExprLoc(), |
1389 | DiagID: diag::err_attribute_power_of_two_in_range) |
1390 | << AL << llvm::dxil::MinWaveSize << llvm::dxil::MaxWaveSize << Min; |
1391 | return; |
1392 | } |
1393 | } |
1394 | |
1395 | HLSLWaveSizeAttr *NewAttr = |
1396 | mergeWaveSizeAttr(D, AL, Min, Max, Preferred, SpelledArgsCount); |
1397 | if (NewAttr) |
1398 | D->addAttr(A: NewAttr); |
1399 | } |
1400 | |
1401 | void SemaHLSL::handleVkExtBuiltinInputAttr(Decl *D, const ParsedAttr &AL) { |
1402 | uint32_t ID; |
1403 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: ID)) |
1404 | return; |
1405 | D->addAttr(A: ::new (getASTContext()) |
1406 | HLSLVkExtBuiltinInputAttr(getASTContext(), AL, ID)); |
1407 | } |
1408 | |
1409 | void SemaHLSL::handleVkConstantIdAttr(Decl *D, const ParsedAttr &AL) { |
1410 | uint32_t Id; |
1411 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: Id)) |
1412 | return; |
1413 | HLSLVkConstantIdAttr *NewAttr = mergeVkConstantIdAttr(D, AL, Id); |
1414 | if (NewAttr) |
1415 | D->addAttr(A: NewAttr); |
1416 | } |
1417 | |
1418 | bool SemaHLSL::diagnoseInputIDType(QualType T, const ParsedAttr &AL) { |
1419 | const auto *VT = T->getAs<VectorType>(); |
1420 | |
1421 | if (!T->hasUnsignedIntegerRepresentation() || |
1422 | (VT && VT->getNumElements() > 3)) { |
1423 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_attr_invalid_type) |
1424 | << AL << "uint/uint2/uint3" ; |
1425 | return false; |
1426 | } |
1427 | |
1428 | return true; |
1429 | } |
1430 | |
1431 | void SemaHLSL::handleSV_DispatchThreadIDAttr(Decl *D, const ParsedAttr &AL) { |
1432 | auto *VD = cast<ValueDecl>(Val: D); |
1433 | if (!diagnoseInputIDType(T: VD->getType(), AL)) |
1434 | return; |
1435 | |
1436 | D->addAttr(A: ::new (getASTContext()) |
1437 | HLSLSV_DispatchThreadIDAttr(getASTContext(), AL)); |
1438 | } |
1439 | |
1440 | bool SemaHLSL::diagnosePositionType(QualType T, const ParsedAttr &AL) { |
1441 | const auto *VT = T->getAs<VectorType>(); |
1442 | |
1443 | if (!T->hasFloatingRepresentation() || (VT && VT->getNumElements() > 4)) { |
1444 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_attr_invalid_type) |
1445 | << AL << "float/float1/float2/float3/float4" ; |
1446 | return false; |
1447 | } |
1448 | |
1449 | return true; |
1450 | } |
1451 | |
1452 | void SemaHLSL::handleSV_PositionAttr(Decl *D, const ParsedAttr &AL) { |
1453 | auto *VD = cast<ValueDecl>(Val: D); |
1454 | if (!diagnosePositionType(T: VD->getType(), AL)) |
1455 | return; |
1456 | |
1457 | D->addAttr(A: ::new (getASTContext()) HLSLSV_PositionAttr(getASTContext(), AL)); |
1458 | } |
1459 | |
1460 | void SemaHLSL::handleSV_GroupThreadIDAttr(Decl *D, const ParsedAttr &AL) { |
1461 | auto *VD = cast<ValueDecl>(Val: D); |
1462 | if (!diagnoseInputIDType(T: VD->getType(), AL)) |
1463 | return; |
1464 | |
1465 | D->addAttr(A: ::new (getASTContext()) |
1466 | HLSLSV_GroupThreadIDAttr(getASTContext(), AL)); |
1467 | } |
1468 | |
1469 | void SemaHLSL::handleSV_GroupIDAttr(Decl *D, const ParsedAttr &AL) { |
1470 | auto *VD = cast<ValueDecl>(Val: D); |
1471 | if (!diagnoseInputIDType(T: VD->getType(), AL)) |
1472 | return; |
1473 | |
1474 | D->addAttr(A: ::new (getASTContext()) HLSLSV_GroupIDAttr(getASTContext(), AL)); |
1475 | } |
1476 | |
1477 | void SemaHLSL::handlePackOffsetAttr(Decl *D, const ParsedAttr &AL) { |
1478 | if (!isa<VarDecl>(Val: D) || !isa<HLSLBufferDecl>(Val: D->getDeclContext())) { |
1479 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_attr_invalid_ast_node) |
1480 | << AL << "shader constant in a constant buffer" ; |
1481 | return; |
1482 | } |
1483 | |
1484 | uint32_t SubComponent; |
1485 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: SubComponent)) |
1486 | return; |
1487 | uint32_t Component; |
1488 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 1), Val&: Component)) |
1489 | return; |
1490 | |
1491 | QualType T = cast<VarDecl>(Val: D)->getType().getCanonicalType(); |
1492 | // Check if T is an array or struct type. |
1493 | // TODO: mark matrix type as aggregate type. |
1494 | bool IsAggregateTy = (T->isArrayType() || T->isStructureType()); |
1495 | |
1496 | // Check Component is valid for T. |
1497 | if (Component) { |
1498 | unsigned Size = getASTContext().getTypeSize(T); |
1499 | if (IsAggregateTy || Size > 128) { |
1500 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_packoffset_cross_reg_boundary); |
1501 | return; |
1502 | } else { |
1503 | // Make sure Component + sizeof(T) <= 4. |
1504 | if ((Component * 32 + Size) > 128) { |
1505 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_packoffset_cross_reg_boundary); |
1506 | return; |
1507 | } |
1508 | QualType EltTy = T; |
1509 | if (const auto *VT = T->getAs<VectorType>()) |
1510 | EltTy = VT->getElementType(); |
1511 | unsigned Align = getASTContext().getTypeAlign(T: EltTy); |
1512 | if (Align > 32 && Component == 1) { |
1513 | // NOTE: Component 3 will hit err_hlsl_packoffset_cross_reg_boundary. |
1514 | // So we only need to check Component 1 here. |
1515 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_packoffset_alignment_mismatch) |
1516 | << Align << EltTy; |
1517 | return; |
1518 | } |
1519 | } |
1520 | } |
1521 | |
1522 | D->addAttr(A: ::new (getASTContext()) HLSLPackOffsetAttr( |
1523 | getASTContext(), AL, SubComponent, Component)); |
1524 | } |
1525 | |
1526 | void SemaHLSL::handleShaderAttr(Decl *D, const ParsedAttr &AL) { |
1527 | StringRef Str; |
1528 | SourceLocation ArgLoc; |
1529 | if (!SemaRef.checkStringLiteralArgumentAttr(Attr: AL, ArgNum: 0, Str, ArgLocation: &ArgLoc)) |
1530 | return; |
1531 | |
1532 | llvm::Triple::EnvironmentType ShaderType; |
1533 | if (!HLSLShaderAttr::ConvertStrToEnvironmentType(Val: Str, Out&: ShaderType)) { |
1534 | Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_type_not_supported) |
1535 | << AL << Str << ArgLoc; |
1536 | return; |
1537 | } |
1538 | |
1539 | // FIXME: check function match the shader stage. |
1540 | |
1541 | HLSLShaderAttr *NewAttr = mergeShaderAttr(D, AL, ShaderType); |
1542 | if (NewAttr) |
1543 | D->addAttr(A: NewAttr); |
1544 | } |
1545 | |
1546 | bool clang::CreateHLSLAttributedResourceType( |
1547 | Sema &S, QualType Wrapped, ArrayRef<const Attr *> AttrList, |
1548 | QualType &ResType, HLSLAttributedResourceLocInfo *LocInfo) { |
1549 | assert(AttrList.size() && "expected list of resource attributes" ); |
1550 | |
1551 | QualType ContainedTy = QualType(); |
1552 | TypeSourceInfo *ContainedTyInfo = nullptr; |
1553 | SourceLocation LocBegin = AttrList[0]->getRange().getBegin(); |
1554 | SourceLocation LocEnd = AttrList[0]->getRange().getEnd(); |
1555 | |
1556 | HLSLAttributedResourceType::Attributes ResAttrs; |
1557 | |
1558 | bool HasResourceClass = false; |
1559 | for (const Attr *A : AttrList) { |
1560 | if (!A) |
1561 | continue; |
1562 | LocEnd = A->getRange().getEnd(); |
1563 | switch (A->getKind()) { |
1564 | case attr::HLSLResourceClass: { |
1565 | ResourceClass RC = cast<HLSLResourceClassAttr>(Val: A)->getResourceClass(); |
1566 | if (HasResourceClass) { |
1567 | S.Diag(Loc: A->getLocation(), DiagID: ResAttrs.ResourceClass == RC |
1568 | ? diag::warn_duplicate_attribute_exact |
1569 | : diag::warn_duplicate_attribute) |
1570 | << A; |
1571 | return false; |
1572 | } |
1573 | ResAttrs.ResourceClass = RC; |
1574 | HasResourceClass = true; |
1575 | break; |
1576 | } |
1577 | case attr::HLSLROV: |
1578 | if (ResAttrs.IsROV) { |
1579 | S.Diag(Loc: A->getLocation(), DiagID: diag::warn_duplicate_attribute_exact) << A; |
1580 | return false; |
1581 | } |
1582 | ResAttrs.IsROV = true; |
1583 | break; |
1584 | case attr::HLSLRawBuffer: |
1585 | if (ResAttrs.RawBuffer) { |
1586 | S.Diag(Loc: A->getLocation(), DiagID: diag::warn_duplicate_attribute_exact) << A; |
1587 | return false; |
1588 | } |
1589 | ResAttrs.RawBuffer = true; |
1590 | break; |
1591 | case attr::HLSLContainedType: { |
1592 | const HLSLContainedTypeAttr *CTAttr = cast<HLSLContainedTypeAttr>(Val: A); |
1593 | QualType Ty = CTAttr->getType(); |
1594 | if (!ContainedTy.isNull()) { |
1595 | S.Diag(Loc: A->getLocation(), DiagID: ContainedTy == Ty |
1596 | ? diag::warn_duplicate_attribute_exact |
1597 | : diag::warn_duplicate_attribute) |
1598 | << A; |
1599 | return false; |
1600 | } |
1601 | ContainedTy = Ty; |
1602 | ContainedTyInfo = CTAttr->getTypeLoc(); |
1603 | break; |
1604 | } |
1605 | default: |
1606 | llvm_unreachable("unhandled resource attribute type" ); |
1607 | } |
1608 | } |
1609 | |
1610 | if (!HasResourceClass) { |
1611 | S.Diag(Loc: AttrList.back()->getRange().getEnd(), |
1612 | DiagID: diag::err_hlsl_missing_resource_class); |
1613 | return false; |
1614 | } |
1615 | |
1616 | ResType = S.getASTContext().getHLSLAttributedResourceType( |
1617 | Wrapped, Contained: ContainedTy, Attrs: ResAttrs); |
1618 | |
1619 | if (LocInfo && ContainedTyInfo) { |
1620 | LocInfo->Range = SourceRange(LocBegin, LocEnd); |
1621 | LocInfo->ContainedTyInfo = ContainedTyInfo; |
1622 | } |
1623 | return true; |
1624 | } |
1625 | |
1626 | // Validates and creates an HLSL attribute that is applied as type attribute on |
1627 | // HLSL resource. The attributes are collected in HLSLResourcesTypeAttrs and at |
1628 | // the end of the declaration they are applied to the declaration type by |
1629 | // wrapping it in HLSLAttributedResourceType. |
1630 | bool SemaHLSL::handleResourceTypeAttr(QualType T, const ParsedAttr &AL) { |
1631 | // only allow resource type attributes on intangible types |
1632 | if (!T->isHLSLResourceType()) { |
1633 | Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_attribute_needs_intangible_type) |
1634 | << AL << getASTContext().HLSLResourceTy; |
1635 | return false; |
1636 | } |
1637 | |
1638 | // validate number of arguments |
1639 | if (!AL.checkExactlyNumArgs(S&: SemaRef, Num: AL.getMinArgs())) |
1640 | return false; |
1641 | |
1642 | Attr *A = nullptr; |
1643 | switch (AL.getKind()) { |
1644 | case ParsedAttr::AT_HLSLResourceClass: { |
1645 | if (!AL.isArgIdent(Arg: 0)) { |
1646 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
1647 | << AL << AANT_ArgumentIdentifier; |
1648 | return false; |
1649 | } |
1650 | |
1651 | IdentifierLoc *Loc = AL.getArgAsIdent(Arg: 0); |
1652 | StringRef Identifier = Loc->getIdentifierInfo()->getName(); |
1653 | SourceLocation ArgLoc = Loc->getLoc(); |
1654 | |
1655 | // Validate resource class value |
1656 | ResourceClass RC; |
1657 | if (!HLSLResourceClassAttr::ConvertStrToResourceClass(Val: Identifier, Out&: RC)) { |
1658 | Diag(Loc: ArgLoc, DiagID: diag::warn_attribute_type_not_supported) |
1659 | << "ResourceClass" << Identifier; |
1660 | return false; |
1661 | } |
1662 | A = HLSLResourceClassAttr::Create(Ctx&: getASTContext(), ResourceClass: RC, Range: AL.getLoc()); |
1663 | break; |
1664 | } |
1665 | |
1666 | case ParsedAttr::AT_HLSLROV: |
1667 | A = HLSLROVAttr::Create(Ctx&: getASTContext(), Range: AL.getLoc()); |
1668 | break; |
1669 | |
1670 | case ParsedAttr::AT_HLSLRawBuffer: |
1671 | A = HLSLRawBufferAttr::Create(Ctx&: getASTContext(), Range: AL.getLoc()); |
1672 | break; |
1673 | |
1674 | case ParsedAttr::AT_HLSLContainedType: { |
1675 | if (AL.getNumArgs() != 1 && !AL.hasParsedType()) { |
1676 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << AL << 1; |
1677 | return false; |
1678 | } |
1679 | |
1680 | TypeSourceInfo *TSI = nullptr; |
1681 | QualType QT = SemaRef.GetTypeFromParser(Ty: AL.getTypeArg(), TInfo: &TSI); |
1682 | assert(TSI && "no type source info for attribute argument" ); |
1683 | if (SemaRef.RequireCompleteType(Loc: TSI->getTypeLoc().getBeginLoc(), T: QT, |
1684 | DiagID: diag::err_incomplete_type)) |
1685 | return false; |
1686 | A = HLSLContainedTypeAttr::Create(Ctx&: getASTContext(), Type: TSI, Range: AL.getLoc()); |
1687 | break; |
1688 | } |
1689 | |
1690 | default: |
1691 | llvm_unreachable("unhandled HLSL attribute" ); |
1692 | } |
1693 | |
1694 | HLSLResourcesTypeAttrs.emplace_back(Args&: A); |
1695 | return true; |
1696 | } |
1697 | |
1698 | // Combines all resource type attributes and creates HLSLAttributedResourceType. |
1699 | QualType SemaHLSL::ProcessResourceTypeAttributes(QualType CurrentType) { |
1700 | if (!HLSLResourcesTypeAttrs.size()) |
1701 | return CurrentType; |
1702 | |
1703 | QualType QT = CurrentType; |
1704 | HLSLAttributedResourceLocInfo LocInfo; |
1705 | if (CreateHLSLAttributedResourceType(S&: SemaRef, Wrapped: CurrentType, |
1706 | AttrList: HLSLResourcesTypeAttrs, ResType&: QT, LocInfo: &LocInfo)) { |
1707 | const HLSLAttributedResourceType *RT = |
1708 | cast<HLSLAttributedResourceType>(Val: QT.getTypePtr()); |
1709 | |
1710 | // Temporarily store TypeLoc information for the new type. |
1711 | // It will be transferred to HLSLAttributesResourceTypeLoc |
1712 | // shortly after the type is created by TypeSpecLocFiller which |
1713 | // will call the TakeLocForHLSLAttribute method below. |
1714 | LocsForHLSLAttributedResources.insert(KV: std::pair(RT, LocInfo)); |
1715 | } |
1716 | HLSLResourcesTypeAttrs.clear(); |
1717 | return QT; |
1718 | } |
1719 | |
1720 | // Returns source location for the HLSLAttributedResourceType |
1721 | HLSLAttributedResourceLocInfo |
1722 | SemaHLSL::TakeLocForHLSLAttribute(const HLSLAttributedResourceType *RT) { |
1723 | HLSLAttributedResourceLocInfo LocInfo = {}; |
1724 | auto I = LocsForHLSLAttributedResources.find(Val: RT); |
1725 | if (I != LocsForHLSLAttributedResources.end()) { |
1726 | LocInfo = I->second; |
1727 | LocsForHLSLAttributedResources.erase(I); |
1728 | return LocInfo; |
1729 | } |
1730 | LocInfo.Range = SourceRange(); |
1731 | return LocInfo; |
1732 | } |
1733 | |
1734 | // Walks though the global variable declaration, collects all resource binding |
1735 | // requirements and adds them to Bindings |
1736 | void SemaHLSL::collectResourceBindingsOnUserRecordDecl(const VarDecl *VD, |
1737 | const RecordType *RT) { |
1738 | const RecordDecl *RD = RT->getDecl(); |
1739 | for (FieldDecl *FD : RD->fields()) { |
1740 | const Type *Ty = FD->getType()->getUnqualifiedDesugaredType(); |
1741 | |
1742 | // Unwrap arrays |
1743 | // FIXME: Calculate array size while unwrapping |
1744 | assert(!Ty->isIncompleteArrayType() && |
1745 | "incomplete arrays inside user defined types are not supported" ); |
1746 | while (Ty->isConstantArrayType()) { |
1747 | const ConstantArrayType *CAT = cast<ConstantArrayType>(Val: Ty); |
1748 | Ty = CAT->getElementType()->getUnqualifiedDesugaredType(); |
1749 | } |
1750 | |
1751 | if (!Ty->isRecordType()) |
1752 | continue; |
1753 | |
1754 | if (const HLSLAttributedResourceType *AttrResType = |
1755 | HLSLAttributedResourceType::findHandleTypeOnResource(RT: Ty)) { |
1756 | // Add a new DeclBindingInfo to Bindings if it does not already exist |
1757 | ResourceClass RC = AttrResType->getAttrs().ResourceClass; |
1758 | DeclBindingInfo *DBI = Bindings.getDeclBindingInfo(VD, ResClass: RC); |
1759 | if (!DBI) |
1760 | Bindings.addDeclBindingInfo(VD, ResClass: RC); |
1761 | } else if (const RecordType *RT = dyn_cast<RecordType>(Val: Ty)) { |
1762 | // Recursively scan embedded struct or class; it would be nice to do this |
1763 | // without recursion, but tricky to correctly calculate the size of the |
1764 | // binding, which is something we are probably going to need to do later |
1765 | // on. Hopefully nesting of structs in structs too many levels is |
1766 | // unlikely. |
1767 | collectResourceBindingsOnUserRecordDecl(VD, RT); |
1768 | } |
1769 | } |
1770 | } |
1771 | |
1772 | // Diagnose localized register binding errors for a single binding; does not |
1773 | // diagnose resource binding on user record types, that will be done later |
1774 | // in processResourceBindingOnDecl based on the information collected in |
1775 | // collectResourceBindingsOnVarDecl. |
1776 | // Returns false if the register binding is not valid. |
1777 | static bool DiagnoseLocalRegisterBinding(Sema &S, SourceLocation &ArgLoc, |
1778 | Decl *D, RegisterType RegType, |
1779 | bool SpecifiedSpace) { |
1780 | int RegTypeNum = static_cast<int>(RegType); |
1781 | |
1782 | // check if the decl type is groupshared |
1783 | if (D->hasAttr<HLSLGroupSharedAddressSpaceAttr>()) { |
1784 | S.Diag(Loc: ArgLoc, DiagID: diag::err_hlsl_binding_type_mismatch) << RegTypeNum; |
1785 | return false; |
1786 | } |
1787 | |
1788 | // Cbuffers and Tbuffers are HLSLBufferDecl types |
1789 | if (HLSLBufferDecl *CBufferOrTBuffer = dyn_cast<HLSLBufferDecl>(Val: D)) { |
1790 | ResourceClass RC = CBufferOrTBuffer->isCBuffer() ? ResourceClass::CBuffer |
1791 | : ResourceClass::SRV; |
1792 | if (RegType == getRegisterType(RC)) |
1793 | return true; |
1794 | |
1795 | S.Diag(Loc: D->getLocation(), DiagID: diag::err_hlsl_binding_type_mismatch) |
1796 | << RegTypeNum; |
1797 | return false; |
1798 | } |
1799 | |
1800 | // Samplers, UAVs, and SRVs are VarDecl types |
1801 | assert(isa<VarDecl>(D) && "D is expected to be VarDecl or HLSLBufferDecl" ); |
1802 | VarDecl *VD = cast<VarDecl>(Val: D); |
1803 | |
1804 | // Resource |
1805 | if (const HLSLAttributedResourceType *AttrResType = |
1806 | HLSLAttributedResourceType::findHandleTypeOnResource( |
1807 | RT: VD->getType().getTypePtr())) { |
1808 | if (RegType == getRegisterType(RC: AttrResType->getAttrs().ResourceClass)) |
1809 | return true; |
1810 | |
1811 | S.Diag(Loc: D->getLocation(), DiagID: diag::err_hlsl_binding_type_mismatch) |
1812 | << RegTypeNum; |
1813 | return false; |
1814 | } |
1815 | |
1816 | const clang::Type *Ty = VD->getType().getTypePtr(); |
1817 | while (Ty->isArrayType()) |
1818 | Ty = Ty->getArrayElementTypeNoTypeQual(); |
1819 | |
1820 | // Basic types |
1821 | if (Ty->isArithmeticType() || Ty->isVectorType()) { |
1822 | bool DeclaredInCOrTBuffer = isa<HLSLBufferDecl>(Val: D->getDeclContext()); |
1823 | if (SpecifiedSpace && !DeclaredInCOrTBuffer) |
1824 | S.Diag(Loc: ArgLoc, DiagID: diag::err_hlsl_space_on_global_constant); |
1825 | |
1826 | if (!DeclaredInCOrTBuffer && (Ty->isIntegralType(Ctx: S.getASTContext()) || |
1827 | Ty->isFloatingType() || Ty->isVectorType())) { |
1828 | // Register annotation on default constant buffer declaration ($Globals) |
1829 | if (RegType == RegisterType::CBuffer) |
1830 | S.Diag(Loc: ArgLoc, DiagID: diag::warn_hlsl_deprecated_register_type_b); |
1831 | else if (RegType != RegisterType::C) |
1832 | S.Diag(Loc: ArgLoc, DiagID: diag::err_hlsl_binding_type_mismatch) << RegTypeNum; |
1833 | else |
1834 | return true; |
1835 | } else { |
1836 | if (RegType == RegisterType::C) |
1837 | S.Diag(Loc: ArgLoc, DiagID: diag::warn_hlsl_register_type_c_packoffset); |
1838 | else |
1839 | S.Diag(Loc: ArgLoc, DiagID: diag::err_hlsl_binding_type_mismatch) << RegTypeNum; |
1840 | } |
1841 | return false; |
1842 | } |
1843 | if (Ty->isRecordType()) |
1844 | // RecordTypes will be diagnosed in processResourceBindingOnDecl |
1845 | // that is called from ActOnVariableDeclarator |
1846 | return true; |
1847 | |
1848 | // Anything else is an error |
1849 | S.Diag(Loc: ArgLoc, DiagID: diag::err_hlsl_binding_type_mismatch) << RegTypeNum; |
1850 | return false; |
1851 | } |
1852 | |
1853 | static bool ValidateMultipleRegisterAnnotations(Sema &S, Decl *TheDecl, |
1854 | RegisterType regType) { |
1855 | // make sure that there are no two register annotations |
1856 | // applied to the decl with the same register type |
1857 | bool RegisterTypesDetected[5] = {false}; |
1858 | RegisterTypesDetected[static_cast<int>(regType)] = true; |
1859 | |
1860 | for (auto it = TheDecl->attr_begin(); it != TheDecl->attr_end(); ++it) { |
1861 | if (HLSLResourceBindingAttr *attr = |
1862 | dyn_cast<HLSLResourceBindingAttr>(Val: *it)) { |
1863 | |
1864 | RegisterType otherRegType = attr->getRegisterType(); |
1865 | if (RegisterTypesDetected[static_cast<int>(otherRegType)]) { |
1866 | int otherRegTypeNum = static_cast<int>(otherRegType); |
1867 | S.Diag(Loc: TheDecl->getLocation(), |
1868 | DiagID: diag::err_hlsl_duplicate_register_annotation) |
1869 | << otherRegTypeNum; |
1870 | return false; |
1871 | } |
1872 | RegisterTypesDetected[static_cast<int>(otherRegType)] = true; |
1873 | } |
1874 | } |
1875 | return true; |
1876 | } |
1877 | |
1878 | static bool DiagnoseHLSLRegisterAttribute(Sema &S, SourceLocation &ArgLoc, |
1879 | Decl *D, RegisterType RegType, |
1880 | bool SpecifiedSpace) { |
1881 | |
1882 | // exactly one of these two types should be set |
1883 | assert(((isa<VarDecl>(D) && !isa<HLSLBufferDecl>(D)) || |
1884 | (!isa<VarDecl>(D) && isa<HLSLBufferDecl>(D))) && |
1885 | "expecting VarDecl or HLSLBufferDecl" ); |
1886 | |
1887 | // check if the declaration contains resource matching the register type |
1888 | if (!DiagnoseLocalRegisterBinding(S, ArgLoc, D, RegType, SpecifiedSpace)) |
1889 | return false; |
1890 | |
1891 | // next, if multiple register annotations exist, check that none conflict. |
1892 | return ValidateMultipleRegisterAnnotations(S, TheDecl: D, regType: RegType); |
1893 | } |
1894 | |
1895 | void SemaHLSL::handleResourceBindingAttr(Decl *TheDecl, const ParsedAttr &AL) { |
1896 | if (isa<VarDecl>(Val: TheDecl)) { |
1897 | if (SemaRef.RequireCompleteType(Loc: TheDecl->getBeginLoc(), |
1898 | T: cast<ValueDecl>(Val: TheDecl)->getType(), |
1899 | DiagID: diag::err_incomplete_type)) |
1900 | return; |
1901 | } |
1902 | |
1903 | StringRef Slot = "" ; |
1904 | StringRef Space = "" ; |
1905 | SourceLocation SlotLoc, SpaceLoc; |
1906 | |
1907 | if (!AL.isArgIdent(Arg: 0)) { |
1908 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
1909 | << AL << AANT_ArgumentIdentifier; |
1910 | return; |
1911 | } |
1912 | IdentifierLoc *Loc = AL.getArgAsIdent(Arg: 0); |
1913 | |
1914 | if (AL.getNumArgs() == 2) { |
1915 | Slot = Loc->getIdentifierInfo()->getName(); |
1916 | SlotLoc = Loc->getLoc(); |
1917 | if (!AL.isArgIdent(Arg: 1)) { |
1918 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
1919 | << AL << AANT_ArgumentIdentifier; |
1920 | return; |
1921 | } |
1922 | Loc = AL.getArgAsIdent(Arg: 1); |
1923 | Space = Loc->getIdentifierInfo()->getName(); |
1924 | SpaceLoc = Loc->getLoc(); |
1925 | } else { |
1926 | StringRef Str = Loc->getIdentifierInfo()->getName(); |
1927 | if (Str.starts_with(Prefix: "space" )) { |
1928 | Space = Str; |
1929 | SpaceLoc = Loc->getLoc(); |
1930 | } else { |
1931 | Slot = Str; |
1932 | SlotLoc = Loc->getLoc(); |
1933 | Space = "space0" ; |
1934 | } |
1935 | } |
1936 | |
1937 | RegisterType RegType = RegisterType::SRV; |
1938 | std::optional<unsigned> SlotNum; |
1939 | unsigned SpaceNum = 0; |
1940 | |
1941 | // Validate slot |
1942 | if (!Slot.empty()) { |
1943 | if (!convertToRegisterType(Slot, RT: &RegType)) { |
1944 | Diag(Loc: SlotLoc, DiagID: diag::err_hlsl_binding_type_invalid) << Slot.substr(Start: 0, N: 1); |
1945 | return; |
1946 | } |
1947 | if (RegType == RegisterType::I) { |
1948 | Diag(Loc: SlotLoc, DiagID: diag::warn_hlsl_deprecated_register_type_i); |
1949 | return; |
1950 | } |
1951 | StringRef SlotNumStr = Slot.substr(Start: 1); |
1952 | unsigned N; |
1953 | if (SlotNumStr.getAsInteger(Radix: 10, Result&: N)) { |
1954 | Diag(Loc: SlotLoc, DiagID: diag::err_hlsl_unsupported_register_number); |
1955 | return; |
1956 | } |
1957 | SlotNum = N; |
1958 | } |
1959 | |
1960 | // Validate space |
1961 | if (!Space.starts_with(Prefix: "space" )) { |
1962 | Diag(Loc: SpaceLoc, DiagID: diag::err_hlsl_expected_space) << Space; |
1963 | return; |
1964 | } |
1965 | StringRef SpaceNumStr = Space.substr(Start: 5); |
1966 | if (SpaceNumStr.getAsInteger(Radix: 10, Result&: SpaceNum)) { |
1967 | Diag(Loc: SpaceLoc, DiagID: diag::err_hlsl_expected_space) << Space; |
1968 | return; |
1969 | } |
1970 | |
1971 | // If we have slot, diagnose it is the right register type for the decl |
1972 | if (SlotNum.has_value()) |
1973 | if (!DiagnoseHLSLRegisterAttribute(S&: SemaRef, ArgLoc&: SlotLoc, D: TheDecl, RegType, |
1974 | SpecifiedSpace: !SpaceLoc.isInvalid())) |
1975 | return; |
1976 | |
1977 | HLSLResourceBindingAttr *NewAttr = |
1978 | HLSLResourceBindingAttr::Create(Ctx&: getASTContext(), Slot, Space, CommonInfo: AL); |
1979 | if (NewAttr) { |
1980 | NewAttr->setBinding(RT: RegType, SlotNum, SpaceNum); |
1981 | TheDecl->addAttr(A: NewAttr); |
1982 | } |
1983 | } |
1984 | |
1985 | void SemaHLSL::handleParamModifierAttr(Decl *D, const ParsedAttr &AL) { |
1986 | HLSLParamModifierAttr *NewAttr = mergeParamModifierAttr( |
1987 | D, AL, |
1988 | Spelling: static_cast<HLSLParamModifierAttr::Spelling>(AL.getSemanticSpelling())); |
1989 | if (NewAttr) |
1990 | D->addAttr(A: NewAttr); |
1991 | } |
1992 | |
1993 | namespace { |
1994 | |
1995 | /// This class implements HLSL availability diagnostics for default |
1996 | /// and relaxed mode |
1997 | /// |
1998 | /// The goal of this diagnostic is to emit an error or warning when an |
1999 | /// unavailable API is found in code that is reachable from the shader |
2000 | /// entry function or from an exported function (when compiling a shader |
2001 | /// library). |
2002 | /// |
2003 | /// This is done by traversing the AST of all shader entry point functions |
2004 | /// and of all exported functions, and any functions that are referenced |
2005 | /// from this AST. In other words, any functions that are reachable from |
2006 | /// the entry points. |
2007 | class DiagnoseHLSLAvailability : public DynamicRecursiveASTVisitor { |
2008 | Sema &SemaRef; |
2009 | |
2010 | // Stack of functions to be scaned |
2011 | llvm::SmallVector<const FunctionDecl *, 8> DeclsToScan; |
2012 | |
2013 | // Tracks which environments functions have been scanned in. |
2014 | // |
2015 | // Maps FunctionDecl to an unsigned number that represents the set of shader |
2016 | // environments the function has been scanned for. |
2017 | // The llvm::Triple::EnvironmentType enum values for shader stages guaranteed |
2018 | // to be numbered from llvm::Triple::Pixel to llvm::Triple::Amplification |
2019 | // (verified by static_asserts in Triple.cpp), we can use it to index |
2020 | // individual bits in the set, as long as we shift the values to start with 0 |
2021 | // by subtracting the value of llvm::Triple::Pixel first. |
2022 | // |
2023 | // The N'th bit in the set will be set if the function has been scanned |
2024 | // in shader environment whose llvm::Triple::EnvironmentType integer value |
2025 | // equals (llvm::Triple::Pixel + N). |
2026 | // |
2027 | // For example, if a function has been scanned in compute and pixel stage |
2028 | // environment, the value will be 0x21 (100001 binary) because: |
2029 | // |
2030 | // (int)(llvm::Triple::Pixel - llvm::Triple::Pixel) == 0 |
2031 | // (int)(llvm::Triple::Compute - llvm::Triple::Pixel) == 5 |
2032 | // |
2033 | // A FunctionDecl is mapped to 0 (or not included in the map) if it has not |
2034 | // been scanned in any environment. |
2035 | llvm::DenseMap<const FunctionDecl *, unsigned> ScannedDecls; |
2036 | |
2037 | // Do not access these directly, use the get/set methods below to make |
2038 | // sure the values are in sync |
2039 | llvm::Triple::EnvironmentType CurrentShaderEnvironment; |
2040 | unsigned CurrentShaderStageBit; |
2041 | |
2042 | // True if scanning a function that was already scanned in a different |
2043 | // shader stage context, and therefore we should not report issues that |
2044 | // depend only on shader model version because they would be duplicate. |
2045 | bool ReportOnlyShaderStageIssues; |
2046 | |
2047 | // Helper methods for dealing with current stage context / environment |
2048 | void SetShaderStageContext(llvm::Triple::EnvironmentType ShaderType) { |
2049 | static_assert(sizeof(unsigned) >= 4); |
2050 | assert(HLSLShaderAttr::isValidShaderType(ShaderType)); |
2051 | assert((unsigned)(ShaderType - llvm::Triple::Pixel) < 31 && |
2052 | "ShaderType is too big for this bitmap" ); // 31 is reserved for |
2053 | // "unknown" |
2054 | |
2055 | unsigned bitmapIndex = ShaderType - llvm::Triple::Pixel; |
2056 | CurrentShaderEnvironment = ShaderType; |
2057 | CurrentShaderStageBit = (1 << bitmapIndex); |
2058 | } |
2059 | |
2060 | void SetUnknownShaderStageContext() { |
2061 | CurrentShaderEnvironment = llvm::Triple::UnknownEnvironment; |
2062 | CurrentShaderStageBit = (1 << 31); |
2063 | } |
2064 | |
2065 | llvm::Triple::EnvironmentType GetCurrentShaderEnvironment() const { |
2066 | return CurrentShaderEnvironment; |
2067 | } |
2068 | |
2069 | bool InUnknownShaderStageContext() const { |
2070 | return CurrentShaderEnvironment == llvm::Triple::UnknownEnvironment; |
2071 | } |
2072 | |
2073 | // Helper methods for dealing with shader stage bitmap |
2074 | void AddToScannedFunctions(const FunctionDecl *FD) { |
2075 | unsigned &ScannedStages = ScannedDecls[FD]; |
2076 | ScannedStages |= CurrentShaderStageBit; |
2077 | } |
2078 | |
2079 | unsigned GetScannedStages(const FunctionDecl *FD) { return ScannedDecls[FD]; } |
2080 | |
2081 | bool WasAlreadyScannedInCurrentStage(const FunctionDecl *FD) { |
2082 | return WasAlreadyScannedInCurrentStage(ScannerStages: GetScannedStages(FD)); |
2083 | } |
2084 | |
2085 | bool WasAlreadyScannedInCurrentStage(unsigned ScannerStages) { |
2086 | return ScannerStages & CurrentShaderStageBit; |
2087 | } |
2088 | |
2089 | static bool NeverBeenScanned(unsigned ScannedStages) { |
2090 | return ScannedStages == 0; |
2091 | } |
2092 | |
2093 | // Scanning methods |
2094 | void HandleFunctionOrMethodRef(FunctionDecl *FD, Expr *RefExpr); |
2095 | void CheckDeclAvailability(NamedDecl *D, const AvailabilityAttr *AA, |
2096 | SourceRange Range); |
2097 | const AvailabilityAttr *FindAvailabilityAttr(const Decl *D); |
2098 | bool HasMatchingEnvironmentOrNone(const AvailabilityAttr *AA); |
2099 | |
2100 | public: |
2101 | DiagnoseHLSLAvailability(Sema &SemaRef) |
2102 | : SemaRef(SemaRef), |
2103 | CurrentShaderEnvironment(llvm::Triple::UnknownEnvironment), |
2104 | CurrentShaderStageBit(0), ReportOnlyShaderStageIssues(false) {} |
2105 | |
2106 | // AST traversal methods |
2107 | void RunOnTranslationUnit(const TranslationUnitDecl *TU); |
2108 | void RunOnFunction(const FunctionDecl *FD); |
2109 | |
2110 | bool VisitDeclRefExpr(DeclRefExpr *DRE) override { |
2111 | FunctionDecl *FD = llvm::dyn_cast<FunctionDecl>(Val: DRE->getDecl()); |
2112 | if (FD) |
2113 | HandleFunctionOrMethodRef(FD, RefExpr: DRE); |
2114 | return true; |
2115 | } |
2116 | |
2117 | bool VisitMemberExpr(MemberExpr *ME) override { |
2118 | FunctionDecl *FD = llvm::dyn_cast<FunctionDecl>(Val: ME->getMemberDecl()); |
2119 | if (FD) |
2120 | HandleFunctionOrMethodRef(FD, RefExpr: ME); |
2121 | return true; |
2122 | } |
2123 | }; |
2124 | |
2125 | void DiagnoseHLSLAvailability::HandleFunctionOrMethodRef(FunctionDecl *FD, |
2126 | Expr *RefExpr) { |
2127 | assert((isa<DeclRefExpr>(RefExpr) || isa<MemberExpr>(RefExpr)) && |
2128 | "expected DeclRefExpr or MemberExpr" ); |
2129 | |
2130 | // has a definition -> add to stack to be scanned |
2131 | const FunctionDecl *FDWithBody = nullptr; |
2132 | if (FD->hasBody(Definition&: FDWithBody)) { |
2133 | if (!WasAlreadyScannedInCurrentStage(FD: FDWithBody)) |
2134 | DeclsToScan.push_back(Elt: FDWithBody); |
2135 | return; |
2136 | } |
2137 | |
2138 | // no body -> diagnose availability |
2139 | const AvailabilityAttr *AA = FindAvailabilityAttr(D: FD); |
2140 | if (AA) |
2141 | CheckDeclAvailability( |
2142 | D: FD, AA, Range: SourceRange(RefExpr->getBeginLoc(), RefExpr->getEndLoc())); |
2143 | } |
2144 | |
2145 | void DiagnoseHLSLAvailability::RunOnTranslationUnit( |
2146 | const TranslationUnitDecl *TU) { |
2147 | |
2148 | // Iterate over all shader entry functions and library exports, and for those |
2149 | // that have a body (definiton), run diag scan on each, setting appropriate |
2150 | // shader environment context based on whether it is a shader entry function |
2151 | // or an exported function. Exported functions can be in namespaces and in |
2152 | // export declarations so we need to scan those declaration contexts as well. |
2153 | llvm::SmallVector<const DeclContext *, 8> DeclContextsToScan; |
2154 | DeclContextsToScan.push_back(Elt: TU); |
2155 | |
2156 | while (!DeclContextsToScan.empty()) { |
2157 | const DeclContext *DC = DeclContextsToScan.pop_back_val(); |
2158 | for (auto &D : DC->decls()) { |
2159 | // do not scan implicit declaration generated by the implementation |
2160 | if (D->isImplicit()) |
2161 | continue; |
2162 | |
2163 | // for namespace or export declaration add the context to the list to be |
2164 | // scanned later |
2165 | if (llvm::dyn_cast<NamespaceDecl>(Val: D) || llvm::dyn_cast<ExportDecl>(Val: D)) { |
2166 | DeclContextsToScan.push_back(Elt: llvm::dyn_cast<DeclContext>(Val: D)); |
2167 | continue; |
2168 | } |
2169 | |
2170 | // skip over other decls or function decls without body |
2171 | const FunctionDecl *FD = llvm::dyn_cast<FunctionDecl>(Val: D); |
2172 | if (!FD || !FD->isThisDeclarationADefinition()) |
2173 | continue; |
2174 | |
2175 | // shader entry point |
2176 | if (HLSLShaderAttr *ShaderAttr = FD->getAttr<HLSLShaderAttr>()) { |
2177 | SetShaderStageContext(ShaderAttr->getType()); |
2178 | RunOnFunction(FD); |
2179 | continue; |
2180 | } |
2181 | // exported library function |
2182 | // FIXME: replace this loop with external linkage check once issue #92071 |
2183 | // is resolved |
2184 | bool isExport = FD->isInExportDeclContext(); |
2185 | if (!isExport) { |
2186 | for (const auto *Redecl : FD->redecls()) { |
2187 | if (Redecl->isInExportDeclContext()) { |
2188 | isExport = true; |
2189 | break; |
2190 | } |
2191 | } |
2192 | } |
2193 | if (isExport) { |
2194 | SetUnknownShaderStageContext(); |
2195 | RunOnFunction(FD); |
2196 | continue; |
2197 | } |
2198 | } |
2199 | } |
2200 | } |
2201 | |
2202 | void DiagnoseHLSLAvailability::RunOnFunction(const FunctionDecl *FD) { |
2203 | assert(DeclsToScan.empty() && "DeclsToScan should be empty" ); |
2204 | DeclsToScan.push_back(Elt: FD); |
2205 | |
2206 | while (!DeclsToScan.empty()) { |
2207 | // Take one decl from the stack and check it by traversing its AST. |
2208 | // For any CallExpr found during the traversal add it's callee to the top of |
2209 | // the stack to be processed next. Functions already processed are stored in |
2210 | // ScannedDecls. |
2211 | const FunctionDecl *FD = DeclsToScan.pop_back_val(); |
2212 | |
2213 | // Decl was already scanned |
2214 | const unsigned ScannedStages = GetScannedStages(FD); |
2215 | if (WasAlreadyScannedInCurrentStage(ScannerStages: ScannedStages)) |
2216 | continue; |
2217 | |
2218 | ReportOnlyShaderStageIssues = !NeverBeenScanned(ScannedStages); |
2219 | |
2220 | AddToScannedFunctions(FD); |
2221 | TraverseStmt(S: FD->getBody()); |
2222 | } |
2223 | } |
2224 | |
2225 | bool DiagnoseHLSLAvailability::HasMatchingEnvironmentOrNone( |
2226 | const AvailabilityAttr *AA) { |
2227 | IdentifierInfo *IIEnvironment = AA->getEnvironment(); |
2228 | if (!IIEnvironment) |
2229 | return true; |
2230 | |
2231 | llvm::Triple::EnvironmentType CurrentEnv = GetCurrentShaderEnvironment(); |
2232 | if (CurrentEnv == llvm::Triple::UnknownEnvironment) |
2233 | return false; |
2234 | |
2235 | llvm::Triple::EnvironmentType AttrEnv = |
2236 | AvailabilityAttr::getEnvironmentType(Environment: IIEnvironment->getName()); |
2237 | |
2238 | return CurrentEnv == AttrEnv; |
2239 | } |
2240 | |
2241 | const AvailabilityAttr * |
2242 | DiagnoseHLSLAvailability::FindAvailabilityAttr(const Decl *D) { |
2243 | AvailabilityAttr const *PartialMatch = nullptr; |
2244 | // Check each AvailabilityAttr to find the one for this platform. |
2245 | // For multiple attributes with the same platform try to find one for this |
2246 | // environment. |
2247 | for (const auto *A : D->attrs()) { |
2248 | if (const auto *Avail = dyn_cast<AvailabilityAttr>(Val: A)) { |
2249 | StringRef AttrPlatform = Avail->getPlatform()->getName(); |
2250 | StringRef TargetPlatform = |
2251 | SemaRef.getASTContext().getTargetInfo().getPlatformName(); |
2252 | |
2253 | // Match the platform name. |
2254 | if (AttrPlatform == TargetPlatform) { |
2255 | // Find the best matching attribute for this environment |
2256 | if (HasMatchingEnvironmentOrNone(AA: Avail)) |
2257 | return Avail; |
2258 | PartialMatch = Avail; |
2259 | } |
2260 | } |
2261 | } |
2262 | return PartialMatch; |
2263 | } |
2264 | |
2265 | // Check availability against target shader model version and current shader |
2266 | // stage and emit diagnostic |
2267 | void DiagnoseHLSLAvailability::CheckDeclAvailability(NamedDecl *D, |
2268 | const AvailabilityAttr *AA, |
2269 | SourceRange Range) { |
2270 | |
2271 | IdentifierInfo *IIEnv = AA->getEnvironment(); |
2272 | |
2273 | if (!IIEnv) { |
2274 | // The availability attribute does not have environment -> it depends only |
2275 | // on shader model version and not on specific the shader stage. |
2276 | |
2277 | // Skip emitting the diagnostics if the diagnostic mode is set to |
2278 | // strict (-fhlsl-strict-availability) because all relevant diagnostics |
2279 | // were already emitted in the DiagnoseUnguardedAvailability scan |
2280 | // (SemaAvailability.cpp). |
2281 | if (SemaRef.getLangOpts().HLSLStrictAvailability) |
2282 | return; |
2283 | |
2284 | // Do not report shader-stage-independent issues if scanning a function |
2285 | // that was already scanned in a different shader stage context (they would |
2286 | // be duplicate) |
2287 | if (ReportOnlyShaderStageIssues) |
2288 | return; |
2289 | |
2290 | } else { |
2291 | // The availability attribute has environment -> we need to know |
2292 | // the current stage context to property diagnose it. |
2293 | if (InUnknownShaderStageContext()) |
2294 | return; |
2295 | } |
2296 | |
2297 | // Check introduced version and if environment matches |
2298 | bool EnvironmentMatches = HasMatchingEnvironmentOrNone(AA); |
2299 | VersionTuple Introduced = AA->getIntroduced(); |
2300 | VersionTuple TargetVersion = |
2301 | SemaRef.Context.getTargetInfo().getPlatformMinVersion(); |
2302 | |
2303 | if (TargetVersion >= Introduced && EnvironmentMatches) |
2304 | return; |
2305 | |
2306 | // Emit diagnostic message |
2307 | const TargetInfo &TI = SemaRef.getASTContext().getTargetInfo(); |
2308 | llvm::StringRef PlatformName( |
2309 | AvailabilityAttr::getPrettyPlatformName(Platform: TI.getPlatformName())); |
2310 | |
2311 | llvm::StringRef CurrentEnvStr = |
2312 | llvm::Triple::getEnvironmentTypeName(Kind: GetCurrentShaderEnvironment()); |
2313 | |
2314 | llvm::StringRef AttrEnvStr = |
2315 | AA->getEnvironment() ? AA->getEnvironment()->getName() : "" ; |
2316 | bool UseEnvironment = !AttrEnvStr.empty(); |
2317 | |
2318 | if (EnvironmentMatches) { |
2319 | SemaRef.Diag(Loc: Range.getBegin(), DiagID: diag::warn_hlsl_availability) |
2320 | << Range << D << PlatformName << Introduced.getAsString() |
2321 | << UseEnvironment << CurrentEnvStr; |
2322 | } else { |
2323 | SemaRef.Diag(Loc: Range.getBegin(), DiagID: diag::warn_hlsl_availability_unavailable) |
2324 | << Range << D; |
2325 | } |
2326 | |
2327 | SemaRef.Diag(Loc: D->getLocation(), DiagID: diag::note_partial_availability_specified_here) |
2328 | << D << PlatformName << Introduced.getAsString() |
2329 | << SemaRef.Context.getTargetInfo().getPlatformMinVersion().getAsString() |
2330 | << UseEnvironment << AttrEnvStr << CurrentEnvStr; |
2331 | } |
2332 | |
2333 | } // namespace |
2334 | |
2335 | void SemaHLSL::ActOnEndOfTranslationUnit(TranslationUnitDecl *TU) { |
2336 | // process default CBuffer - create buffer layout struct and invoke codegenCGH |
2337 | if (!DefaultCBufferDecls.empty()) { |
2338 | HLSLBufferDecl *DefaultCBuffer = HLSLBufferDecl::CreateDefaultCBuffer( |
2339 | C&: SemaRef.getASTContext(), LexicalParent: SemaRef.getCurLexicalContext(), |
2340 | DefaultCBufferDecls); |
2341 | addImplicitBindingAttrToBuffer(S&: SemaRef, BufDecl: DefaultCBuffer, |
2342 | ImplicitBindingOrderID: getNextImplicitBindingOrderID()); |
2343 | SemaRef.getCurLexicalContext()->addDecl(D: DefaultCBuffer); |
2344 | createHostLayoutStructForBuffer(S&: SemaRef, BufDecl: DefaultCBuffer); |
2345 | |
2346 | // Set HasValidPackoffset if any of the decls has a register(c#) annotation; |
2347 | for (const Decl *VD : DefaultCBufferDecls) { |
2348 | const HLSLResourceBindingAttr *RBA = |
2349 | VD->getAttr<HLSLResourceBindingAttr>(); |
2350 | if (RBA && RBA->hasRegisterSlot() && |
2351 | RBA->getRegisterType() == HLSLResourceBindingAttr::RegisterType::C) { |
2352 | DefaultCBuffer->setHasValidPackoffset(true); |
2353 | break; |
2354 | } |
2355 | } |
2356 | |
2357 | DeclGroupRef DG(DefaultCBuffer); |
2358 | SemaRef.Consumer.HandleTopLevelDecl(D: DG); |
2359 | } |
2360 | diagnoseAvailabilityViolations(TU); |
2361 | } |
2362 | |
2363 | void SemaHLSL::diagnoseAvailabilityViolations(TranslationUnitDecl *TU) { |
2364 | // Skip running the diagnostics scan if the diagnostic mode is |
2365 | // strict (-fhlsl-strict-availability) and the target shader stage is known |
2366 | // because all relevant diagnostics were already emitted in the |
2367 | // DiagnoseUnguardedAvailability scan (SemaAvailability.cpp). |
2368 | const TargetInfo &TI = SemaRef.getASTContext().getTargetInfo(); |
2369 | if (SemaRef.getLangOpts().HLSLStrictAvailability && |
2370 | TI.getTriple().getEnvironment() != llvm::Triple::EnvironmentType::Library) |
2371 | return; |
2372 | |
2373 | DiagnoseHLSLAvailability(SemaRef).RunOnTranslationUnit(TU); |
2374 | } |
2375 | |
2376 | static bool CheckAllArgsHaveSameType(Sema *S, CallExpr *TheCall) { |
2377 | assert(TheCall->getNumArgs() > 1); |
2378 | QualType ArgTy0 = TheCall->getArg(Arg: 0)->getType(); |
2379 | |
2380 | for (unsigned I = 1, N = TheCall->getNumArgs(); I < N; ++I) { |
2381 | if (!S->getASTContext().hasSameUnqualifiedType( |
2382 | T1: ArgTy0, T2: TheCall->getArg(Arg: I)->getType())) { |
2383 | S->Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_vec_builtin_incompatible_vector) |
2384 | << TheCall->getDirectCallee() << /*useAllTerminology*/ true |
2385 | << SourceRange(TheCall->getArg(Arg: 0)->getBeginLoc(), |
2386 | TheCall->getArg(Arg: N - 1)->getEndLoc()); |
2387 | return true; |
2388 | } |
2389 | } |
2390 | return false; |
2391 | } |
2392 | |
2393 | static bool CheckArgTypeMatches(Sema *S, Expr *Arg, QualType ExpectedType) { |
2394 | QualType ArgType = Arg->getType(); |
2395 | if (!S->getASTContext().hasSameUnqualifiedType(T1: ArgType, T2: ExpectedType)) { |
2396 | S->Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_typecheck_convert_incompatible) |
2397 | << ArgType << ExpectedType << 1 << 0 << 0; |
2398 | return true; |
2399 | } |
2400 | return false; |
2401 | } |
2402 | |
2403 | static bool CheckAllArgTypesAreCorrect( |
2404 | Sema *S, CallExpr *TheCall, |
2405 | llvm::function_ref<bool(Sema *S, SourceLocation Loc, int ArgOrdinal, |
2406 | clang::QualType PassedType)> |
2407 | Check) { |
2408 | for (unsigned I = 0; I < TheCall->getNumArgs(); ++I) { |
2409 | Expr *Arg = TheCall->getArg(Arg: I); |
2410 | if (Check(S, Arg->getBeginLoc(), I + 1, Arg->getType())) |
2411 | return true; |
2412 | } |
2413 | return false; |
2414 | } |
2415 | |
2416 | static bool CheckFloatOrHalfRepresentation(Sema *S, SourceLocation Loc, |
2417 | int ArgOrdinal, |
2418 | clang::QualType PassedType) { |
2419 | clang::QualType BaseType = |
2420 | PassedType->isVectorType() |
2421 | ? PassedType->castAs<clang::VectorType>()->getElementType() |
2422 | : PassedType; |
2423 | if (!BaseType->isHalfType() && !BaseType->isFloat32Type()) |
2424 | return S->Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
2425 | << ArgOrdinal << /* scalar or vector of */ 5 << /* no int */ 0 |
2426 | << /* half or float */ 2 << PassedType; |
2427 | return false; |
2428 | } |
2429 | |
2430 | static bool CheckModifiableLValue(Sema *S, CallExpr *TheCall, |
2431 | unsigned ArgIndex) { |
2432 | auto *Arg = TheCall->getArg(Arg: ArgIndex); |
2433 | SourceLocation OrigLoc = Arg->getExprLoc(); |
2434 | if (Arg->IgnoreCasts()->isModifiableLvalue(Ctx&: S->Context, Loc: &OrigLoc) == |
2435 | Expr::MLV_Valid) |
2436 | return false; |
2437 | S->Diag(Loc: OrigLoc, DiagID: diag::error_hlsl_inout_lvalue) << Arg << 0; |
2438 | return true; |
2439 | } |
2440 | |
2441 | static bool CheckNoDoubleVectors(Sema *S, SourceLocation Loc, int ArgOrdinal, |
2442 | clang::QualType PassedType) { |
2443 | const auto *VecTy = PassedType->getAs<VectorType>(); |
2444 | if (!VecTy) |
2445 | return false; |
2446 | |
2447 | if (VecTy->getElementType()->isDoubleType()) |
2448 | return S->Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
2449 | << ArgOrdinal << /* scalar */ 1 << /* no int */ 0 << /* fp */ 1 |
2450 | << PassedType; |
2451 | return false; |
2452 | } |
2453 | |
2454 | static bool CheckFloatingOrIntRepresentation(Sema *S, SourceLocation Loc, |
2455 | int ArgOrdinal, |
2456 | clang::QualType PassedType) { |
2457 | if (!PassedType->hasIntegerRepresentation() && |
2458 | !PassedType->hasFloatingRepresentation()) |
2459 | return S->Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
2460 | << ArgOrdinal << /* scalar or vector of */ 5 << /* integer */ 1 |
2461 | << /* fp */ 1 << PassedType; |
2462 | return false; |
2463 | } |
2464 | |
2465 | static bool CheckUnsignedIntVecRepresentation(Sema *S, SourceLocation Loc, |
2466 | int ArgOrdinal, |
2467 | clang::QualType PassedType) { |
2468 | if (auto *VecTy = PassedType->getAs<VectorType>()) |
2469 | if (VecTy->getElementType()->isUnsignedIntegerType()) |
2470 | return false; |
2471 | |
2472 | return S->Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
2473 | << ArgOrdinal << /* vector of */ 4 << /* uint */ 3 << /* no fp */ 0 |
2474 | << PassedType; |
2475 | } |
2476 | |
2477 | // checks for unsigned ints of all sizes |
2478 | static bool CheckUnsignedIntRepresentation(Sema *S, SourceLocation Loc, |
2479 | int ArgOrdinal, |
2480 | clang::QualType PassedType) { |
2481 | if (!PassedType->hasUnsignedIntegerRepresentation()) |
2482 | return S->Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
2483 | << ArgOrdinal << /* scalar or vector of */ 5 << /* unsigned int */ 3 |
2484 | << /* no fp */ 0 << PassedType; |
2485 | return false; |
2486 | } |
2487 | |
2488 | static void SetElementTypeAsReturnType(Sema *S, CallExpr *TheCall, |
2489 | QualType ReturnType) { |
2490 | auto *VecTyA = TheCall->getArg(Arg: 0)->getType()->getAs<VectorType>(); |
2491 | if (VecTyA) |
2492 | ReturnType = |
2493 | S->Context.getExtVectorType(VectorType: ReturnType, NumElts: VecTyA->getNumElements()); |
2494 | |
2495 | TheCall->setType(ReturnType); |
2496 | } |
2497 | |
2498 | static bool CheckScalarOrVector(Sema *S, CallExpr *TheCall, QualType Scalar, |
2499 | unsigned ArgIndex) { |
2500 | assert(TheCall->getNumArgs() >= ArgIndex); |
2501 | QualType ArgType = TheCall->getArg(Arg: ArgIndex)->getType(); |
2502 | auto *VTy = ArgType->getAs<VectorType>(); |
2503 | // not the scalar or vector<scalar> |
2504 | if (!(S->Context.hasSameUnqualifiedType(T1: ArgType, T2: Scalar) || |
2505 | (VTy && |
2506 | S->Context.hasSameUnqualifiedType(T1: VTy->getElementType(), T2: Scalar)))) { |
2507 | S->Diag(Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
2508 | DiagID: diag::err_typecheck_expect_scalar_or_vector) |
2509 | << ArgType << Scalar; |
2510 | return true; |
2511 | } |
2512 | return false; |
2513 | } |
2514 | |
2515 | static bool CheckAnyScalarOrVector(Sema *S, CallExpr *TheCall, |
2516 | unsigned ArgIndex) { |
2517 | assert(TheCall->getNumArgs() >= ArgIndex); |
2518 | QualType ArgType = TheCall->getArg(Arg: ArgIndex)->getType(); |
2519 | auto *VTy = ArgType->getAs<VectorType>(); |
2520 | // not the scalar or vector<scalar> |
2521 | if (!(ArgType->isScalarType() || |
2522 | (VTy && VTy->getElementType()->isScalarType()))) { |
2523 | S->Diag(Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
2524 | DiagID: diag::err_typecheck_expect_any_scalar_or_vector) |
2525 | << ArgType << 1; |
2526 | return true; |
2527 | } |
2528 | return false; |
2529 | } |
2530 | |
2531 | static bool CheckWaveActive(Sema *S, CallExpr *TheCall) { |
2532 | QualType BoolType = S->getASTContext().BoolTy; |
2533 | assert(TheCall->getNumArgs() >= 1); |
2534 | QualType ArgType = TheCall->getArg(Arg: 0)->getType(); |
2535 | auto *VTy = ArgType->getAs<VectorType>(); |
2536 | // is the bool or vector<bool> |
2537 | if (S->Context.hasSameUnqualifiedType(T1: ArgType, T2: BoolType) || |
2538 | (VTy && |
2539 | S->Context.hasSameUnqualifiedType(T1: VTy->getElementType(), T2: BoolType))) { |
2540 | S->Diag(Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
2541 | DiagID: diag::err_typecheck_expect_any_scalar_or_vector) |
2542 | << ArgType << 0; |
2543 | return true; |
2544 | } |
2545 | return false; |
2546 | } |
2547 | |
2548 | static bool CheckBoolSelect(Sema *S, CallExpr *TheCall) { |
2549 | assert(TheCall->getNumArgs() == 3); |
2550 | Expr *Arg1 = TheCall->getArg(Arg: 1); |
2551 | Expr *Arg2 = TheCall->getArg(Arg: 2); |
2552 | if (!S->Context.hasSameUnqualifiedType(T1: Arg1->getType(), T2: Arg2->getType())) { |
2553 | S->Diag(Loc: TheCall->getBeginLoc(), |
2554 | DiagID: diag::err_typecheck_call_different_arg_types) |
2555 | << Arg1->getType() << Arg2->getType() << Arg1->getSourceRange() |
2556 | << Arg2->getSourceRange(); |
2557 | return true; |
2558 | } |
2559 | |
2560 | TheCall->setType(Arg1->getType()); |
2561 | return false; |
2562 | } |
2563 | |
2564 | static bool CheckVectorSelect(Sema *S, CallExpr *TheCall) { |
2565 | assert(TheCall->getNumArgs() == 3); |
2566 | Expr *Arg1 = TheCall->getArg(Arg: 1); |
2567 | QualType Arg1Ty = Arg1->getType(); |
2568 | Expr *Arg2 = TheCall->getArg(Arg: 2); |
2569 | QualType Arg2Ty = Arg2->getType(); |
2570 | |
2571 | QualType Arg1ScalarTy = Arg1Ty; |
2572 | if (auto VTy = Arg1ScalarTy->getAs<VectorType>()) |
2573 | Arg1ScalarTy = VTy->getElementType(); |
2574 | |
2575 | QualType Arg2ScalarTy = Arg2Ty; |
2576 | if (auto VTy = Arg2ScalarTy->getAs<VectorType>()) |
2577 | Arg2ScalarTy = VTy->getElementType(); |
2578 | |
2579 | if (!S->Context.hasSameUnqualifiedType(T1: Arg1ScalarTy, T2: Arg2ScalarTy)) |
2580 | S->Diag(Loc: Arg1->getBeginLoc(), DiagID: diag::err_hlsl_builtin_scalar_vector_mismatch) |
2581 | << /* second and third */ 1 << TheCall->getCallee() << Arg1Ty << Arg2Ty; |
2582 | |
2583 | QualType Arg0Ty = TheCall->getArg(Arg: 0)->getType(); |
2584 | unsigned Arg0Length = Arg0Ty->getAs<VectorType>()->getNumElements(); |
2585 | unsigned Arg1Length = Arg1Ty->isVectorType() |
2586 | ? Arg1Ty->getAs<VectorType>()->getNumElements() |
2587 | : 0; |
2588 | unsigned Arg2Length = Arg2Ty->isVectorType() |
2589 | ? Arg2Ty->getAs<VectorType>()->getNumElements() |
2590 | : 0; |
2591 | if (Arg1Length > 0 && Arg0Length != Arg1Length) { |
2592 | S->Diag(Loc: TheCall->getBeginLoc(), |
2593 | DiagID: diag::err_typecheck_vector_lengths_not_equal) |
2594 | << Arg0Ty << Arg1Ty << TheCall->getArg(Arg: 0)->getSourceRange() |
2595 | << Arg1->getSourceRange(); |
2596 | return true; |
2597 | } |
2598 | |
2599 | if (Arg2Length > 0 && Arg0Length != Arg2Length) { |
2600 | S->Diag(Loc: TheCall->getBeginLoc(), |
2601 | DiagID: diag::err_typecheck_vector_lengths_not_equal) |
2602 | << Arg0Ty << Arg2Ty << TheCall->getArg(Arg: 0)->getSourceRange() |
2603 | << Arg2->getSourceRange(); |
2604 | return true; |
2605 | } |
2606 | |
2607 | TheCall->setType( |
2608 | S->getASTContext().getExtVectorType(VectorType: Arg1ScalarTy, NumElts: Arg0Length)); |
2609 | return false; |
2610 | } |
2611 | |
2612 | static bool CheckResourceHandle( |
2613 | Sema *S, CallExpr *TheCall, unsigned ArgIndex, |
2614 | llvm::function_ref<bool(const HLSLAttributedResourceType *ResType)> Check = |
2615 | nullptr) { |
2616 | assert(TheCall->getNumArgs() >= ArgIndex); |
2617 | QualType ArgType = TheCall->getArg(Arg: ArgIndex)->getType(); |
2618 | const HLSLAttributedResourceType *ResTy = |
2619 | ArgType.getTypePtr()->getAs<HLSLAttributedResourceType>(); |
2620 | if (!ResTy) { |
2621 | S->Diag(Loc: TheCall->getArg(Arg: ArgIndex)->getBeginLoc(), |
2622 | DiagID: diag::err_typecheck_expect_hlsl_resource) |
2623 | << ArgType; |
2624 | return true; |
2625 | } |
2626 | if (Check && Check(ResTy)) { |
2627 | S->Diag(Loc: TheCall->getArg(Arg: ArgIndex)->getExprLoc(), |
2628 | DiagID: diag::err_invalid_hlsl_resource_type) |
2629 | << ArgType; |
2630 | return true; |
2631 | } |
2632 | return false; |
2633 | } |
2634 | |
2635 | // Note: returning true in this case results in CheckBuiltinFunctionCall |
2636 | // returning an ExprError |
2637 | bool SemaHLSL::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { |
2638 | switch (BuiltinID) { |
2639 | case Builtin::BI__builtin_hlsl_adduint64: { |
2640 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
2641 | return true; |
2642 | |
2643 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2644 | Check: CheckUnsignedIntVecRepresentation)) |
2645 | return true; |
2646 | |
2647 | auto *VTy = TheCall->getArg(Arg: 0)->getType()->getAs<VectorType>(); |
2648 | // ensure arg integers are 32-bits |
2649 | uint64_t ElementBitCount = getASTContext() |
2650 | .getTypeSizeInChars(T: VTy->getElementType()) |
2651 | .getQuantity() * |
2652 | 8; |
2653 | if (ElementBitCount != 32) { |
2654 | SemaRef.Diag(Loc: TheCall->getBeginLoc(), |
2655 | DiagID: diag::err_integer_incorrect_bit_count) |
2656 | << 32 << ElementBitCount; |
2657 | return true; |
2658 | } |
2659 | |
2660 | // ensure both args are vectors of total bit size of a multiple of 64 |
2661 | int NumElementsArg = VTy->getNumElements(); |
2662 | if (NumElementsArg != 2 && NumElementsArg != 4) { |
2663 | SemaRef.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_vector_incorrect_bit_count) |
2664 | << 1 /*a multiple of*/ << 64 << NumElementsArg * ElementBitCount; |
2665 | return true; |
2666 | } |
2667 | |
2668 | // ensure first arg and second arg have the same type |
2669 | if (CheckAllArgsHaveSameType(S: &SemaRef, TheCall)) |
2670 | return true; |
2671 | |
2672 | ExprResult A = TheCall->getArg(Arg: 0); |
2673 | QualType ArgTyA = A.get()->getType(); |
2674 | // return type is the same as the input type |
2675 | TheCall->setType(ArgTyA); |
2676 | break; |
2677 | } |
2678 | case Builtin::BI__builtin_hlsl_resource_getpointer: { |
2679 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2) || |
2680 | CheckResourceHandle(S: &SemaRef, TheCall, ArgIndex: 0) || |
2681 | CheckArgTypeMatches(S: &SemaRef, Arg: TheCall->getArg(Arg: 1), |
2682 | ExpectedType: SemaRef.getASTContext().UnsignedIntTy)) |
2683 | return true; |
2684 | |
2685 | auto *ResourceTy = |
2686 | TheCall->getArg(Arg: 0)->getType()->castAs<HLSLAttributedResourceType>(); |
2687 | QualType ContainedTy = ResourceTy->getContainedType(); |
2688 | auto ReturnType = |
2689 | SemaRef.Context.getAddrSpaceQualType(T: ContainedTy, AddressSpace: LangAS::hlsl_device); |
2690 | ReturnType = SemaRef.Context.getPointerType(T: ReturnType); |
2691 | TheCall->setType(ReturnType); |
2692 | TheCall->setValueKind(VK_LValue); |
2693 | |
2694 | break; |
2695 | } |
2696 | case Builtin::BI__builtin_hlsl_resource_uninitializedhandle: { |
2697 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1) || |
2698 | CheckResourceHandle(S: &SemaRef, TheCall, ArgIndex: 0)) |
2699 | return true; |
2700 | // use the type of the handle (arg0) as a return type |
2701 | QualType ResourceTy = TheCall->getArg(Arg: 0)->getType(); |
2702 | TheCall->setType(ResourceTy); |
2703 | break; |
2704 | } |
2705 | case Builtin::BI__builtin_hlsl_resource_handlefrombinding: { |
2706 | ASTContext &AST = SemaRef.getASTContext(); |
2707 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 6) || |
2708 | CheckResourceHandle(S: &SemaRef, TheCall, ArgIndex: 0) || |
2709 | CheckArgTypeMatches(S: &SemaRef, Arg: TheCall->getArg(Arg: 1), ExpectedType: AST.UnsignedIntTy) || |
2710 | CheckArgTypeMatches(S: &SemaRef, Arg: TheCall->getArg(Arg: 2), ExpectedType: AST.UnsignedIntTy) || |
2711 | CheckArgTypeMatches(S: &SemaRef, Arg: TheCall->getArg(Arg: 3), ExpectedType: AST.IntTy) || |
2712 | CheckArgTypeMatches(S: &SemaRef, Arg: TheCall->getArg(Arg: 4), ExpectedType: AST.UnsignedIntTy) || |
2713 | CheckArgTypeMatches(S: &SemaRef, Arg: TheCall->getArg(Arg: 5), |
2714 | ExpectedType: AST.getPointerType(T: AST.CharTy.withConst()))) |
2715 | return true; |
2716 | // use the type of the handle (arg0) as a return type |
2717 | QualType ResourceTy = TheCall->getArg(Arg: 0)->getType(); |
2718 | TheCall->setType(ResourceTy); |
2719 | break; |
2720 | } |
2721 | case Builtin::BI__builtin_hlsl_resource_handlefromimplicitbinding: { |
2722 | ASTContext &AST = SemaRef.getASTContext(); |
2723 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 6) || |
2724 | CheckResourceHandle(S: &SemaRef, TheCall, ArgIndex: 0) || |
2725 | CheckArgTypeMatches(S: &SemaRef, Arg: TheCall->getArg(Arg: 1), ExpectedType: AST.UnsignedIntTy) || |
2726 | CheckArgTypeMatches(S: &SemaRef, Arg: TheCall->getArg(Arg: 2), ExpectedType: AST.IntTy) || |
2727 | CheckArgTypeMatches(S: &SemaRef, Arg: TheCall->getArg(Arg: 3), ExpectedType: AST.UnsignedIntTy) || |
2728 | CheckArgTypeMatches(S: &SemaRef, Arg: TheCall->getArg(Arg: 4), ExpectedType: AST.UnsignedIntTy) || |
2729 | CheckArgTypeMatches(S: &SemaRef, Arg: TheCall->getArg(Arg: 5), |
2730 | ExpectedType: AST.getPointerType(T: AST.CharTy.withConst()))) |
2731 | return true; |
2732 | // use the type of the handle (arg0) as a return type |
2733 | QualType ResourceTy = TheCall->getArg(Arg: 0)->getType(); |
2734 | TheCall->setType(ResourceTy); |
2735 | break; |
2736 | } |
2737 | case Builtin::BI__builtin_hlsl_and: |
2738 | case Builtin::BI__builtin_hlsl_or: { |
2739 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
2740 | return true; |
2741 | if (CheckScalarOrVector(S: &SemaRef, TheCall, Scalar: getASTContext().BoolTy, ArgIndex: 0)) |
2742 | return true; |
2743 | if (CheckAllArgsHaveSameType(S: &SemaRef, TheCall)) |
2744 | return true; |
2745 | |
2746 | ExprResult A = TheCall->getArg(Arg: 0); |
2747 | QualType ArgTyA = A.get()->getType(); |
2748 | // return type is the same as the input type |
2749 | TheCall->setType(ArgTyA); |
2750 | break; |
2751 | } |
2752 | case Builtin::BI__builtin_hlsl_all: |
2753 | case Builtin::BI__builtin_hlsl_any: { |
2754 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2755 | return true; |
2756 | if (CheckAnyScalarOrVector(S: &SemaRef, TheCall, ArgIndex: 0)) |
2757 | return true; |
2758 | break; |
2759 | } |
2760 | case Builtin::BI__builtin_hlsl_asdouble: { |
2761 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
2762 | return true; |
2763 | if (CheckScalarOrVector( |
2764 | S: &SemaRef, TheCall, |
2765 | /*only check for uint*/ Scalar: SemaRef.Context.UnsignedIntTy, |
2766 | /* arg index */ ArgIndex: 0)) |
2767 | return true; |
2768 | if (CheckScalarOrVector( |
2769 | S: &SemaRef, TheCall, |
2770 | /*only check for uint*/ Scalar: SemaRef.Context.UnsignedIntTy, |
2771 | /* arg index */ ArgIndex: 1)) |
2772 | return true; |
2773 | if (CheckAllArgsHaveSameType(S: &SemaRef, TheCall)) |
2774 | return true; |
2775 | |
2776 | SetElementTypeAsReturnType(S: &SemaRef, TheCall, ReturnType: getASTContext().DoubleTy); |
2777 | break; |
2778 | } |
2779 | case Builtin::BI__builtin_hlsl_elementwise_clamp: { |
2780 | if (SemaRef.BuiltinElementwiseTernaryMath( |
2781 | TheCall, /*ArgTyRestr=*/ |
2782 | Sema::EltwiseBuiltinArgTyRestriction::None)) |
2783 | return true; |
2784 | break; |
2785 | } |
2786 | case Builtin::BI__builtin_hlsl_dot: { |
2787 | // arg count is checked by BuiltinVectorToScalarMath |
2788 | if (SemaRef.BuiltinVectorToScalarMath(TheCall)) |
2789 | return true; |
2790 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, Check: CheckNoDoubleVectors)) |
2791 | return true; |
2792 | break; |
2793 | } |
2794 | case Builtin::BI__builtin_hlsl_elementwise_firstbithigh: |
2795 | case Builtin::BI__builtin_hlsl_elementwise_firstbitlow: { |
2796 | if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
2797 | return true; |
2798 | |
2799 | const Expr *Arg = TheCall->getArg(Arg: 0); |
2800 | QualType ArgTy = Arg->getType(); |
2801 | QualType EltTy = ArgTy; |
2802 | |
2803 | QualType ResTy = SemaRef.Context.UnsignedIntTy; |
2804 | |
2805 | if (auto *VecTy = EltTy->getAs<VectorType>()) { |
2806 | EltTy = VecTy->getElementType(); |
2807 | ResTy = SemaRef.Context.getExtVectorType(VectorType: ResTy, NumElts: VecTy->getNumElements()); |
2808 | } |
2809 | |
2810 | if (!EltTy->isIntegerType()) { |
2811 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
2812 | << 1 << /* scalar or vector of */ 5 << /* integer ty */ 1 |
2813 | << /* no fp */ 0 << ArgTy; |
2814 | return true; |
2815 | } |
2816 | |
2817 | TheCall->setType(ResTy); |
2818 | break; |
2819 | } |
2820 | case Builtin::BI__builtin_hlsl_select: { |
2821 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
2822 | return true; |
2823 | if (CheckScalarOrVector(S: &SemaRef, TheCall, Scalar: getASTContext().BoolTy, ArgIndex: 0)) |
2824 | return true; |
2825 | QualType ArgTy = TheCall->getArg(Arg: 0)->getType(); |
2826 | if (ArgTy->isBooleanType() && CheckBoolSelect(S: &SemaRef, TheCall)) |
2827 | return true; |
2828 | auto *VTy = ArgTy->getAs<VectorType>(); |
2829 | if (VTy && VTy->getElementType()->isBooleanType() && |
2830 | CheckVectorSelect(S: &SemaRef, TheCall)) |
2831 | return true; |
2832 | break; |
2833 | } |
2834 | case Builtin::BI__builtin_hlsl_elementwise_saturate: |
2835 | case Builtin::BI__builtin_hlsl_elementwise_rcp: { |
2836 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2837 | return true; |
2838 | if (!TheCall->getArg(Arg: 0) |
2839 | ->getType() |
2840 | ->hasFloatingRepresentation()) // half or float or double |
2841 | return SemaRef.Diag(Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
2842 | DiagID: diag::err_builtin_invalid_arg_type) |
2843 | << /* ordinal */ 1 << /* scalar or vector */ 5 << /* no int */ 0 |
2844 | << /* fp */ 1 << TheCall->getArg(Arg: 0)->getType(); |
2845 | if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
2846 | return true; |
2847 | break; |
2848 | } |
2849 | case Builtin::BI__builtin_hlsl_elementwise_degrees: |
2850 | case Builtin::BI__builtin_hlsl_elementwise_radians: |
2851 | case Builtin::BI__builtin_hlsl_elementwise_rsqrt: |
2852 | case Builtin::BI__builtin_hlsl_elementwise_frac: { |
2853 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2854 | return true; |
2855 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2856 | Check: CheckFloatOrHalfRepresentation)) |
2857 | return true; |
2858 | if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
2859 | return true; |
2860 | break; |
2861 | } |
2862 | case Builtin::BI__builtin_hlsl_elementwise_isinf: { |
2863 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2864 | return true; |
2865 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2866 | Check: CheckFloatOrHalfRepresentation)) |
2867 | return true; |
2868 | if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
2869 | return true; |
2870 | SetElementTypeAsReturnType(S: &SemaRef, TheCall, ReturnType: getASTContext().BoolTy); |
2871 | break; |
2872 | } |
2873 | case Builtin::BI__builtin_hlsl_lerp: { |
2874 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
2875 | return true; |
2876 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2877 | Check: CheckFloatOrHalfRepresentation)) |
2878 | return true; |
2879 | if (CheckAllArgsHaveSameType(S: &SemaRef, TheCall)) |
2880 | return true; |
2881 | if (SemaRef.BuiltinElementwiseTernaryMath(TheCall)) |
2882 | return true; |
2883 | break; |
2884 | } |
2885 | case Builtin::BI__builtin_hlsl_mad: { |
2886 | if (SemaRef.BuiltinElementwiseTernaryMath( |
2887 | TheCall, /*ArgTyRestr=*/ |
2888 | Sema::EltwiseBuiltinArgTyRestriction::None)) |
2889 | return true; |
2890 | break; |
2891 | } |
2892 | case Builtin::BI__builtin_hlsl_normalize: { |
2893 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2894 | return true; |
2895 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2896 | Check: CheckFloatOrHalfRepresentation)) |
2897 | return true; |
2898 | ExprResult A = TheCall->getArg(Arg: 0); |
2899 | QualType ArgTyA = A.get()->getType(); |
2900 | // return type is the same as the input type |
2901 | TheCall->setType(ArgTyA); |
2902 | break; |
2903 | } |
2904 | case Builtin::BI__builtin_hlsl_elementwise_sign: { |
2905 | if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
2906 | return true; |
2907 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2908 | Check: CheckFloatingOrIntRepresentation)) |
2909 | return true; |
2910 | SetElementTypeAsReturnType(S: &SemaRef, TheCall, ReturnType: getASTContext().IntTy); |
2911 | break; |
2912 | } |
2913 | case Builtin::BI__builtin_hlsl_step: { |
2914 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
2915 | return true; |
2916 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2917 | Check: CheckFloatOrHalfRepresentation)) |
2918 | return true; |
2919 | |
2920 | ExprResult A = TheCall->getArg(Arg: 0); |
2921 | QualType ArgTyA = A.get()->getType(); |
2922 | // return type is the same as the input type |
2923 | TheCall->setType(ArgTyA); |
2924 | break; |
2925 | } |
2926 | case Builtin::BI__builtin_hlsl_wave_active_max: |
2927 | case Builtin::BI__builtin_hlsl_wave_active_sum: { |
2928 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2929 | return true; |
2930 | |
2931 | // Ensure input expr type is a scalar/vector and the same as the return type |
2932 | if (CheckAnyScalarOrVector(S: &SemaRef, TheCall, ArgIndex: 0)) |
2933 | return true; |
2934 | if (CheckWaveActive(S: &SemaRef, TheCall)) |
2935 | return true; |
2936 | ExprResult Expr = TheCall->getArg(Arg: 0); |
2937 | QualType ArgTyExpr = Expr.get()->getType(); |
2938 | TheCall->setType(ArgTyExpr); |
2939 | break; |
2940 | } |
2941 | // Note these are llvm builtins that we want to catch invalid intrinsic |
2942 | // generation. Normal handling of these builitns will occur elsewhere. |
2943 | case Builtin::BI__builtin_elementwise_bitreverse: { |
2944 | // does not include a check for number of arguments |
2945 | // because that is done previously |
2946 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2947 | Check: CheckUnsignedIntRepresentation)) |
2948 | return true; |
2949 | break; |
2950 | } |
2951 | case Builtin::BI__builtin_hlsl_wave_read_lane_at: { |
2952 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
2953 | return true; |
2954 | |
2955 | // Ensure index parameter type can be interpreted as a uint |
2956 | ExprResult Index = TheCall->getArg(Arg: 1); |
2957 | QualType ArgTyIndex = Index.get()->getType(); |
2958 | if (!ArgTyIndex->isIntegerType()) { |
2959 | SemaRef.Diag(Loc: TheCall->getArg(Arg: 1)->getBeginLoc(), |
2960 | DiagID: diag::err_typecheck_convert_incompatible) |
2961 | << ArgTyIndex << SemaRef.Context.UnsignedIntTy << 1 << 0 << 0; |
2962 | return true; |
2963 | } |
2964 | |
2965 | // Ensure input expr type is a scalar/vector and the same as the return type |
2966 | if (CheckAnyScalarOrVector(S: &SemaRef, TheCall, ArgIndex: 0)) |
2967 | return true; |
2968 | |
2969 | ExprResult Expr = TheCall->getArg(Arg: 0); |
2970 | QualType ArgTyExpr = Expr.get()->getType(); |
2971 | TheCall->setType(ArgTyExpr); |
2972 | break; |
2973 | } |
2974 | case Builtin::BI__builtin_hlsl_wave_get_lane_index: { |
2975 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 0)) |
2976 | return true; |
2977 | break; |
2978 | } |
2979 | case Builtin::BI__builtin_hlsl_elementwise_splitdouble: { |
2980 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
2981 | return true; |
2982 | |
2983 | if (CheckScalarOrVector(S: &SemaRef, TheCall, Scalar: SemaRef.Context.DoubleTy, ArgIndex: 0) || |
2984 | CheckScalarOrVector(S: &SemaRef, TheCall, Scalar: SemaRef.Context.UnsignedIntTy, |
2985 | ArgIndex: 1) || |
2986 | CheckScalarOrVector(S: &SemaRef, TheCall, Scalar: SemaRef.Context.UnsignedIntTy, |
2987 | ArgIndex: 2)) |
2988 | return true; |
2989 | |
2990 | if (CheckModifiableLValue(S: &SemaRef, TheCall, ArgIndex: 1) || |
2991 | CheckModifiableLValue(S: &SemaRef, TheCall, ArgIndex: 2)) |
2992 | return true; |
2993 | break; |
2994 | } |
2995 | case Builtin::BI__builtin_hlsl_elementwise_clip: { |
2996 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2997 | return true; |
2998 | |
2999 | if (CheckScalarOrVector(S: &SemaRef, TheCall, Scalar: SemaRef.Context.FloatTy, ArgIndex: 0)) |
3000 | return true; |
3001 | break; |
3002 | } |
3003 | case Builtin::BI__builtin_elementwise_acos: |
3004 | case Builtin::BI__builtin_elementwise_asin: |
3005 | case Builtin::BI__builtin_elementwise_atan: |
3006 | case Builtin::BI__builtin_elementwise_atan2: |
3007 | case Builtin::BI__builtin_elementwise_ceil: |
3008 | case Builtin::BI__builtin_elementwise_cos: |
3009 | case Builtin::BI__builtin_elementwise_cosh: |
3010 | case Builtin::BI__builtin_elementwise_exp: |
3011 | case Builtin::BI__builtin_elementwise_exp2: |
3012 | case Builtin::BI__builtin_elementwise_exp10: |
3013 | case Builtin::BI__builtin_elementwise_floor: |
3014 | case Builtin::BI__builtin_elementwise_fmod: |
3015 | case Builtin::BI__builtin_elementwise_log: |
3016 | case Builtin::BI__builtin_elementwise_log2: |
3017 | case Builtin::BI__builtin_elementwise_log10: |
3018 | case Builtin::BI__builtin_elementwise_pow: |
3019 | case Builtin::BI__builtin_elementwise_roundeven: |
3020 | case Builtin::BI__builtin_elementwise_sin: |
3021 | case Builtin::BI__builtin_elementwise_sinh: |
3022 | case Builtin::BI__builtin_elementwise_sqrt: |
3023 | case Builtin::BI__builtin_elementwise_tan: |
3024 | case Builtin::BI__builtin_elementwise_tanh: |
3025 | case Builtin::BI__builtin_elementwise_trunc: { |
3026 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
3027 | Check: CheckFloatOrHalfRepresentation)) |
3028 | return true; |
3029 | break; |
3030 | } |
3031 | case Builtin::BI__builtin_hlsl_buffer_update_counter: { |
3032 | auto checkResTy = [](const HLSLAttributedResourceType *ResTy) -> bool { |
3033 | return !(ResTy->getAttrs().ResourceClass == ResourceClass::UAV && |
3034 | ResTy->getAttrs().RawBuffer && ResTy->hasContainedType()); |
3035 | }; |
3036 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2) || |
3037 | CheckResourceHandle(S: &SemaRef, TheCall, ArgIndex: 0, Check: checkResTy) || |
3038 | CheckArgTypeMatches(S: &SemaRef, Arg: TheCall->getArg(Arg: 1), |
3039 | ExpectedType: SemaRef.getASTContext().IntTy)) |
3040 | return true; |
3041 | Expr *OffsetExpr = TheCall->getArg(Arg: 1); |
3042 | std::optional<llvm::APSInt> Offset = |
3043 | OffsetExpr->getIntegerConstantExpr(Ctx: SemaRef.getASTContext()); |
3044 | if (!Offset.has_value() || std::abs(i: Offset->getExtValue()) != 1) { |
3045 | SemaRef.Diag(Loc: TheCall->getArg(Arg: 1)->getBeginLoc(), |
3046 | DiagID: diag::err_hlsl_expect_arg_const_int_one_or_neg_one) |
3047 | << 1; |
3048 | return true; |
3049 | } |
3050 | break; |
3051 | } |
3052 | } |
3053 | return false; |
3054 | } |
3055 | |
3056 | static void BuildFlattenedTypeList(QualType BaseTy, |
3057 | llvm::SmallVectorImpl<QualType> &List) { |
3058 | llvm::SmallVector<QualType, 16> WorkList; |
3059 | WorkList.push_back(Elt: BaseTy); |
3060 | while (!WorkList.empty()) { |
3061 | QualType T = WorkList.pop_back_val(); |
3062 | T = T.getCanonicalType().getUnqualifiedType(); |
3063 | assert(!isa<MatrixType>(T) && "Matrix types not yet supported in HLSL" ); |
3064 | if (const auto *AT = dyn_cast<ConstantArrayType>(Val&: T)) { |
3065 | llvm::SmallVector<QualType, 16> ElementFields; |
3066 | // Generally I've avoided recursion in this algorithm, but arrays of |
3067 | // structs could be time-consuming to flatten and churn through on the |
3068 | // work list. Hopefully nesting arrays of structs containing arrays |
3069 | // of structs too many levels deep is unlikely. |
3070 | BuildFlattenedTypeList(BaseTy: AT->getElementType(), List&: ElementFields); |
3071 | // Repeat the element's field list n times. |
3072 | for (uint64_t Ct = 0; Ct < AT->getZExtSize(); ++Ct) |
3073 | llvm::append_range(C&: List, R&: ElementFields); |
3074 | continue; |
3075 | } |
3076 | // Vectors can only have element types that are builtin types, so this can |
3077 | // add directly to the list instead of to the WorkList. |
3078 | if (const auto *VT = dyn_cast<VectorType>(Val&: T)) { |
3079 | List.insert(I: List.end(), NumToInsert: VT->getNumElements(), Elt: VT->getElementType()); |
3080 | continue; |
3081 | } |
3082 | if (const auto *RT = dyn_cast<RecordType>(Val&: T)) { |
3083 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); |
3084 | assert(RD && "HLSL record types should all be CXXRecordDecls!" ); |
3085 | |
3086 | if (RD->isStandardLayout()) |
3087 | RD = RD->getStandardLayoutBaseWithFields(); |
3088 | |
3089 | // For types that we shouldn't decompose (unions and non-aggregates), just |
3090 | // add the type itself to the list. |
3091 | if (RD->isUnion() || !RD->isAggregate()) { |
3092 | List.push_back(Elt: T); |
3093 | continue; |
3094 | } |
3095 | |
3096 | llvm::SmallVector<QualType, 16> FieldTypes; |
3097 | for (const auto *FD : RD->fields()) |
3098 | FieldTypes.push_back(Elt: FD->getType()); |
3099 | // Reverse the newly added sub-range. |
3100 | std::reverse(first: FieldTypes.begin(), last: FieldTypes.end()); |
3101 | llvm::append_range(C&: WorkList, R&: FieldTypes); |
3102 | |
3103 | // If this wasn't a standard layout type we may also have some base |
3104 | // classes to deal with. |
3105 | if (!RD->isStandardLayout()) { |
3106 | FieldTypes.clear(); |
3107 | for (const auto &Base : RD->bases()) |
3108 | FieldTypes.push_back(Elt: Base.getType()); |
3109 | std::reverse(first: FieldTypes.begin(), last: FieldTypes.end()); |
3110 | llvm::append_range(C&: WorkList, R&: FieldTypes); |
3111 | } |
3112 | continue; |
3113 | } |
3114 | List.push_back(Elt: T); |
3115 | } |
3116 | } |
3117 | |
3118 | bool SemaHLSL::IsTypedResourceElementCompatible(clang::QualType QT) { |
3119 | // null and array types are not allowed. |
3120 | if (QT.isNull() || QT->isArrayType()) |
3121 | return false; |
3122 | |
3123 | // UDT types are not allowed |
3124 | if (QT->isRecordType()) |
3125 | return false; |
3126 | |
3127 | if (QT->isBooleanType() || QT->isEnumeralType()) |
3128 | return false; |
3129 | |
3130 | // the only other valid builtin types are scalars or vectors |
3131 | if (QT->isArithmeticType()) { |
3132 | if (SemaRef.Context.getTypeSize(T: QT) / 8 > 16) |
3133 | return false; |
3134 | return true; |
3135 | } |
3136 | |
3137 | if (const VectorType *VT = QT->getAs<VectorType>()) { |
3138 | int ArraySize = VT->getNumElements(); |
3139 | |
3140 | if (ArraySize > 4) |
3141 | return false; |
3142 | |
3143 | QualType ElTy = VT->getElementType(); |
3144 | if (ElTy->isBooleanType()) |
3145 | return false; |
3146 | |
3147 | if (SemaRef.Context.getTypeSize(T: QT) / 8 > 16) |
3148 | return false; |
3149 | return true; |
3150 | } |
3151 | |
3152 | return false; |
3153 | } |
3154 | |
3155 | bool SemaHLSL::IsScalarizedLayoutCompatible(QualType T1, QualType T2) const { |
3156 | if (T1.isNull() || T2.isNull()) |
3157 | return false; |
3158 | |
3159 | T1 = T1.getCanonicalType().getUnqualifiedType(); |
3160 | T2 = T2.getCanonicalType().getUnqualifiedType(); |
3161 | |
3162 | // If both types are the same canonical type, they're obviously compatible. |
3163 | if (SemaRef.getASTContext().hasSameType(T1, T2)) |
3164 | return true; |
3165 | |
3166 | llvm::SmallVector<QualType, 16> T1Types; |
3167 | BuildFlattenedTypeList(BaseTy: T1, List&: T1Types); |
3168 | llvm::SmallVector<QualType, 16> T2Types; |
3169 | BuildFlattenedTypeList(BaseTy: T2, List&: T2Types); |
3170 | |
3171 | // Check the flattened type list |
3172 | return llvm::equal(LRange&: T1Types, RRange&: T2Types, |
3173 | P: [this](QualType LHS, QualType RHS) -> bool { |
3174 | return SemaRef.IsLayoutCompatible(T1: LHS, T2: RHS); |
3175 | }); |
3176 | } |
3177 | |
3178 | bool SemaHLSL::CheckCompatibleParameterABI(FunctionDecl *New, |
3179 | FunctionDecl *Old) { |
3180 | if (New->getNumParams() != Old->getNumParams()) |
3181 | return true; |
3182 | |
3183 | bool HadError = false; |
3184 | |
3185 | for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { |
3186 | ParmVarDecl *NewParam = New->getParamDecl(i); |
3187 | ParmVarDecl *OldParam = Old->getParamDecl(i); |
3188 | |
3189 | // HLSL parameter declarations for inout and out must match between |
3190 | // declarations. In HLSL inout and out are ambiguous at the call site, |
3191 | // but have different calling behavior, so you cannot overload a |
3192 | // method based on a difference between inout and out annotations. |
3193 | const auto *NDAttr = NewParam->getAttr<HLSLParamModifierAttr>(); |
3194 | unsigned NSpellingIdx = (NDAttr ? NDAttr->getSpellingListIndex() : 0); |
3195 | const auto *ODAttr = OldParam->getAttr<HLSLParamModifierAttr>(); |
3196 | unsigned OSpellingIdx = (ODAttr ? ODAttr->getSpellingListIndex() : 0); |
3197 | |
3198 | if (NSpellingIdx != OSpellingIdx) { |
3199 | SemaRef.Diag(Loc: NewParam->getLocation(), |
3200 | DiagID: diag::err_hlsl_param_qualifier_mismatch) |
3201 | << NDAttr << NewParam; |
3202 | SemaRef.Diag(Loc: OldParam->getLocation(), DiagID: diag::note_previous_declaration_as) |
3203 | << ODAttr; |
3204 | HadError = true; |
3205 | } |
3206 | } |
3207 | return HadError; |
3208 | } |
3209 | |
3210 | // Generally follows PerformScalarCast, with cases reordered for |
3211 | // clarity of what types are supported |
3212 | bool SemaHLSL::CanPerformScalarCast(QualType SrcTy, QualType DestTy) { |
3213 | |
3214 | if (!SrcTy->isScalarType() || !DestTy->isScalarType()) |
3215 | return false; |
3216 | |
3217 | if (SemaRef.getASTContext().hasSameUnqualifiedType(T1: SrcTy, T2: DestTy)) |
3218 | return true; |
3219 | |
3220 | switch (SrcTy->getScalarTypeKind()) { |
3221 | case Type::STK_Bool: // casting from bool is like casting from an integer |
3222 | case Type::STK_Integral: |
3223 | switch (DestTy->getScalarTypeKind()) { |
3224 | case Type::STK_Bool: |
3225 | case Type::STK_Integral: |
3226 | case Type::STK_Floating: |
3227 | return true; |
3228 | case Type::STK_CPointer: |
3229 | case Type::STK_ObjCObjectPointer: |
3230 | case Type::STK_BlockPointer: |
3231 | case Type::STK_MemberPointer: |
3232 | llvm_unreachable("HLSL doesn't support pointers." ); |
3233 | case Type::STK_IntegralComplex: |
3234 | case Type::STK_FloatingComplex: |
3235 | llvm_unreachable("HLSL doesn't support complex types." ); |
3236 | case Type::STK_FixedPoint: |
3237 | llvm_unreachable("HLSL doesn't support fixed point types." ); |
3238 | } |
3239 | llvm_unreachable("Should have returned before this" ); |
3240 | |
3241 | case Type::STK_Floating: |
3242 | switch (DestTy->getScalarTypeKind()) { |
3243 | case Type::STK_Floating: |
3244 | case Type::STK_Bool: |
3245 | case Type::STK_Integral: |
3246 | return true; |
3247 | case Type::STK_FloatingComplex: |
3248 | case Type::STK_IntegralComplex: |
3249 | llvm_unreachable("HLSL doesn't support complex types." ); |
3250 | case Type::STK_FixedPoint: |
3251 | llvm_unreachable("HLSL doesn't support fixed point types." ); |
3252 | case Type::STK_CPointer: |
3253 | case Type::STK_ObjCObjectPointer: |
3254 | case Type::STK_BlockPointer: |
3255 | case Type::STK_MemberPointer: |
3256 | llvm_unreachable("HLSL doesn't support pointers." ); |
3257 | } |
3258 | llvm_unreachable("Should have returned before this" ); |
3259 | |
3260 | case Type::STK_MemberPointer: |
3261 | case Type::STK_CPointer: |
3262 | case Type::STK_BlockPointer: |
3263 | case Type::STK_ObjCObjectPointer: |
3264 | llvm_unreachable("HLSL doesn't support pointers." ); |
3265 | |
3266 | case Type::STK_FixedPoint: |
3267 | llvm_unreachable("HLSL doesn't support fixed point types." ); |
3268 | |
3269 | case Type::STK_FloatingComplex: |
3270 | case Type::STK_IntegralComplex: |
3271 | llvm_unreachable("HLSL doesn't support complex types." ); |
3272 | } |
3273 | |
3274 | llvm_unreachable("Unhandled scalar cast" ); |
3275 | } |
3276 | |
3277 | // Detect if a type contains a bitfield. Will be removed when |
3278 | // bitfield support is added to HLSLElementwiseCast and HLSLAggregateSplatCast |
3279 | bool SemaHLSL::ContainsBitField(QualType BaseTy) { |
3280 | llvm::SmallVector<QualType, 16> WorkList; |
3281 | WorkList.push_back(Elt: BaseTy); |
3282 | while (!WorkList.empty()) { |
3283 | QualType T = WorkList.pop_back_val(); |
3284 | T = T.getCanonicalType().getUnqualifiedType(); |
3285 | // only check aggregate types |
3286 | if (const auto *AT = dyn_cast<ConstantArrayType>(Val&: T)) { |
3287 | WorkList.push_back(Elt: AT->getElementType()); |
3288 | continue; |
3289 | } |
3290 | if (const auto *RT = dyn_cast<RecordType>(Val&: T)) { |
3291 | const RecordDecl *RD = RT->getDecl(); |
3292 | if (RD->isUnion()) |
3293 | continue; |
3294 | |
3295 | const CXXRecordDecl *CXXD = dyn_cast<CXXRecordDecl>(Val: RD); |
3296 | |
3297 | if (CXXD && CXXD->isStandardLayout()) |
3298 | RD = CXXD->getStandardLayoutBaseWithFields(); |
3299 | |
3300 | for (const auto *FD : RD->fields()) { |
3301 | if (FD->isBitField()) |
3302 | return true; |
3303 | WorkList.push_back(Elt: FD->getType()); |
3304 | } |
3305 | continue; |
3306 | } |
3307 | } |
3308 | return false; |
3309 | } |
3310 | |
3311 | // Can perform an HLSL Aggregate splat cast if the Dest is an aggregate and the |
3312 | // Src is a scalar or a vector of length 1 |
3313 | // Or if Dest is a vector and Src is a vector of length 1 |
3314 | bool SemaHLSL::CanPerformAggregateSplatCast(Expr *Src, QualType DestTy) { |
3315 | |
3316 | QualType SrcTy = Src->getType(); |
3317 | // Not a valid HLSL Aggregate Splat cast if Dest is a scalar or if this is |
3318 | // going to be a vector splat from a scalar. |
3319 | if ((SrcTy->isScalarType() && DestTy->isVectorType()) || |
3320 | DestTy->isScalarType()) |
3321 | return false; |
3322 | |
3323 | const VectorType *SrcVecTy = SrcTy->getAs<VectorType>(); |
3324 | |
3325 | // Src isn't a scalar or a vector of length 1 |
3326 | if (!SrcTy->isScalarType() && !(SrcVecTy && SrcVecTy->getNumElements() == 1)) |
3327 | return false; |
3328 | |
3329 | if (SrcVecTy) |
3330 | SrcTy = SrcVecTy->getElementType(); |
3331 | |
3332 | if (ContainsBitField(BaseTy: DestTy)) |
3333 | return false; |
3334 | |
3335 | llvm::SmallVector<QualType> DestTypes; |
3336 | BuildFlattenedTypeList(BaseTy: DestTy, List&: DestTypes); |
3337 | |
3338 | for (unsigned I = 0, Size = DestTypes.size(); I < Size; ++I) { |
3339 | if (DestTypes[I]->isUnionType()) |
3340 | return false; |
3341 | if (!CanPerformScalarCast(SrcTy, DestTy: DestTypes[I])) |
3342 | return false; |
3343 | } |
3344 | return true; |
3345 | } |
3346 | |
3347 | // Can we perform an HLSL Elementwise cast? |
3348 | // TODO: update this code when matrices are added; see issue #88060 |
3349 | bool SemaHLSL::CanPerformElementwiseCast(Expr *Src, QualType DestTy) { |
3350 | |
3351 | // Don't handle casts where LHS and RHS are any combination of scalar/vector |
3352 | // There must be an aggregate somewhere |
3353 | QualType SrcTy = Src->getType(); |
3354 | if (SrcTy->isScalarType()) // always a splat and this cast doesn't handle that |
3355 | return false; |
3356 | |
3357 | if (SrcTy->isVectorType() && |
3358 | (DestTy->isScalarType() || DestTy->isVectorType())) |
3359 | return false; |
3360 | |
3361 | if (ContainsBitField(BaseTy: DestTy) || ContainsBitField(BaseTy: SrcTy)) |
3362 | return false; |
3363 | |
3364 | llvm::SmallVector<QualType> DestTypes; |
3365 | BuildFlattenedTypeList(BaseTy: DestTy, List&: DestTypes); |
3366 | llvm::SmallVector<QualType> SrcTypes; |
3367 | BuildFlattenedTypeList(BaseTy: SrcTy, List&: SrcTypes); |
3368 | |
3369 | // Usually the size of SrcTypes must be greater than or equal to the size of |
3370 | // DestTypes. |
3371 | if (SrcTypes.size() < DestTypes.size()) |
3372 | return false; |
3373 | |
3374 | unsigned SrcSize = SrcTypes.size(); |
3375 | unsigned DstSize = DestTypes.size(); |
3376 | unsigned I; |
3377 | for (I = 0; I < DstSize && I < SrcSize; I++) { |
3378 | if (SrcTypes[I]->isUnionType() || DestTypes[I]->isUnionType()) |
3379 | return false; |
3380 | if (!CanPerformScalarCast(SrcTy: SrcTypes[I], DestTy: DestTypes[I])) { |
3381 | return false; |
3382 | } |
3383 | } |
3384 | |
3385 | // check the rest of the source type for unions. |
3386 | for (; I < SrcSize; I++) { |
3387 | if (SrcTypes[I]->isUnionType()) |
3388 | return false; |
3389 | } |
3390 | return true; |
3391 | } |
3392 | |
3393 | ExprResult SemaHLSL::ActOnOutParamExpr(ParmVarDecl *Param, Expr *Arg) { |
3394 | assert(Param->hasAttr<HLSLParamModifierAttr>() && |
3395 | "We should not get here without a parameter modifier expression" ); |
3396 | const auto *Attr = Param->getAttr<HLSLParamModifierAttr>(); |
3397 | if (Attr->getABI() == ParameterABI::Ordinary) |
3398 | return ExprResult(Arg); |
3399 | |
3400 | bool IsInOut = Attr->getABI() == ParameterABI::HLSLInOut; |
3401 | if (!Arg->isLValue()) { |
3402 | SemaRef.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::error_hlsl_inout_lvalue) |
3403 | << Arg << (IsInOut ? 1 : 0); |
3404 | return ExprError(); |
3405 | } |
3406 | |
3407 | ASTContext &Ctx = SemaRef.getASTContext(); |
3408 | |
3409 | QualType Ty = Param->getType().getNonLValueExprType(Context: Ctx); |
3410 | |
3411 | // HLSL allows implicit conversions from scalars to vectors, but not the |
3412 | // inverse, so we need to disallow `inout` with scalar->vector or |
3413 | // scalar->matrix conversions. |
3414 | if (Arg->getType()->isScalarType() != Ty->isScalarType()) { |
3415 | SemaRef.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::error_hlsl_inout_scalar_extension) |
3416 | << Arg << (IsInOut ? 1 : 0); |
3417 | return ExprError(); |
3418 | } |
3419 | |
3420 | auto *ArgOpV = new (Ctx) OpaqueValueExpr(Param->getBeginLoc(), Arg->getType(), |
3421 | VK_LValue, OK_Ordinary, Arg); |
3422 | |
3423 | // Parameters are initialized via copy initialization. This allows for |
3424 | // overload resolution of argument constructors. |
3425 | InitializedEntity Entity = |
3426 | InitializedEntity::InitializeParameter(Context&: Ctx, Type: Ty, Consumed: false); |
3427 | ExprResult Res = |
3428 | SemaRef.PerformCopyInitialization(Entity, EqualLoc: Param->getBeginLoc(), Init: ArgOpV); |
3429 | if (Res.isInvalid()) |
3430 | return ExprError(); |
3431 | Expr *Base = Res.get(); |
3432 | // After the cast, drop the reference type when creating the exprs. |
3433 | Ty = Ty.getNonLValueExprType(Context: Ctx); |
3434 | auto *OpV = new (Ctx) |
3435 | OpaqueValueExpr(Param->getBeginLoc(), Ty, VK_LValue, OK_Ordinary, Base); |
3436 | |
3437 | // Writebacks are performed with `=` binary operator, which allows for |
3438 | // overload resolution on writeback result expressions. |
3439 | Res = SemaRef.ActOnBinOp(S: SemaRef.getCurScope(), TokLoc: Param->getBeginLoc(), |
3440 | Kind: tok::equal, LHSExpr: ArgOpV, RHSExpr: OpV); |
3441 | |
3442 | if (Res.isInvalid()) |
3443 | return ExprError(); |
3444 | Expr *Writeback = Res.get(); |
3445 | auto *OutExpr = |
3446 | HLSLOutArgExpr::Create(C: Ctx, Ty, Base: ArgOpV, OpV, WB: Writeback, IsInOut); |
3447 | |
3448 | return ExprResult(OutExpr); |
3449 | } |
3450 | |
3451 | QualType SemaHLSL::getInoutParameterType(QualType Ty) { |
3452 | // If HLSL gains support for references, all the cites that use this will need |
3453 | // to be updated with semantic checking to produce errors for |
3454 | // pointers/references. |
3455 | assert(!Ty->isReferenceType() && |
3456 | "Pointer and reference types cannot be inout or out parameters" ); |
3457 | Ty = SemaRef.getASTContext().getLValueReferenceType(T: Ty); |
3458 | Ty.addRestrict(); |
3459 | return Ty; |
3460 | } |
3461 | |
3462 | static bool IsDefaultBufferConstantDecl(VarDecl *VD) { |
3463 | QualType QT = VD->getType(); |
3464 | return VD->getDeclContext()->isTranslationUnit() && |
3465 | QT.getAddressSpace() == LangAS::Default && |
3466 | VD->getStorageClass() != SC_Static && |
3467 | !VD->hasAttr<HLSLVkConstantIdAttr>() && |
3468 | !isInvalidConstantBufferLeafElementType(Ty: QT.getTypePtr()); |
3469 | } |
3470 | |
3471 | void SemaHLSL::deduceAddressSpace(VarDecl *Decl) { |
3472 | // The variable already has an address space (groupshared for ex). |
3473 | if (Decl->getType().hasAddressSpace()) |
3474 | return; |
3475 | |
3476 | if (Decl->getType()->isDependentType()) |
3477 | return; |
3478 | |
3479 | QualType Type = Decl->getType(); |
3480 | |
3481 | if (Decl->hasAttr<HLSLVkExtBuiltinInputAttr>()) { |
3482 | LangAS ImplAS = LangAS::hlsl_input; |
3483 | Type = SemaRef.getASTContext().getAddrSpaceQualType(T: Type, AddressSpace: ImplAS); |
3484 | Decl->setType(Type); |
3485 | return; |
3486 | } |
3487 | |
3488 | if (Type->isSamplerT() || Type->isVoidType()) |
3489 | return; |
3490 | |
3491 | // Resource handles. |
3492 | if (isResourceRecordTypeOrArrayOf(Ty: Type->getUnqualifiedDesugaredType())) |
3493 | return; |
3494 | |
3495 | // Only static globals belong to the Private address space. |
3496 | // Non-static globals belongs to the cbuffer. |
3497 | if (Decl->getStorageClass() != SC_Static && !Decl->isStaticDataMember()) |
3498 | return; |
3499 | |
3500 | LangAS ImplAS = LangAS::hlsl_private; |
3501 | Type = SemaRef.getASTContext().getAddrSpaceQualType(T: Type, AddressSpace: ImplAS); |
3502 | Decl->setType(Type); |
3503 | } |
3504 | |
3505 | void SemaHLSL::ActOnVariableDeclarator(VarDecl *VD) { |
3506 | if (VD->hasGlobalStorage()) { |
3507 | // make sure the declaration has a complete type |
3508 | if (SemaRef.RequireCompleteType( |
3509 | Loc: VD->getLocation(), |
3510 | T: SemaRef.getASTContext().getBaseElementType(QT: VD->getType()), |
3511 | DiagID: diag::err_typecheck_decl_incomplete_type)) { |
3512 | VD->setInvalidDecl(); |
3513 | deduceAddressSpace(Decl: VD); |
3514 | return; |
3515 | } |
3516 | |
3517 | // Global variables outside a cbuffer block that are not a resource, static, |
3518 | // groupshared, or an empty array or struct belong to the default constant |
3519 | // buffer $Globals (to be created at the end of the translation unit). |
3520 | if (IsDefaultBufferConstantDecl(VD)) { |
3521 | // update address space to hlsl_constant |
3522 | QualType NewTy = getASTContext().getAddrSpaceQualType( |
3523 | T: VD->getType(), AddressSpace: LangAS::hlsl_constant); |
3524 | VD->setType(NewTy); |
3525 | DefaultCBufferDecls.push_back(Elt: VD); |
3526 | } |
3527 | |
3528 | // find all resources bindings on decl |
3529 | if (VD->getType()->isHLSLIntangibleType()) |
3530 | collectResourceBindingsOnVarDecl(D: VD); |
3531 | |
3532 | const Type *VarType = VD->getType().getTypePtr(); |
3533 | while (VarType->isArrayType()) |
3534 | VarType = VarType->getArrayElementTypeNoTypeQual(); |
3535 | if (VarType->isHLSLResourceRecord() || |
3536 | VD->hasAttr<HLSLVkConstantIdAttr>()) { |
3537 | // Make the variable for resources static. The global externally visible |
3538 | // storage is accessed through the handle, which is a member. The variable |
3539 | // itself is not externally visible. |
3540 | VD->setStorageClass(StorageClass::SC_Static); |
3541 | } |
3542 | |
3543 | // process explicit bindings |
3544 | processExplicitBindingsOnDecl(D: VD); |
3545 | } |
3546 | |
3547 | deduceAddressSpace(Decl: VD); |
3548 | } |
3549 | |
3550 | static bool initVarDeclWithCtor(Sema &S, VarDecl *VD, |
3551 | MutableArrayRef<Expr *> Args) { |
3552 | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var: VD); |
3553 | InitializationKind Kind = InitializationKind::CreateDirect( |
3554 | InitLoc: VD->getLocation(), LParenLoc: SourceLocation(), RParenLoc: SourceLocation()); |
3555 | |
3556 | InitializationSequence InitSeq(S, Entity, Kind, Args); |
3557 | if (InitSeq.Failed()) |
3558 | return false; |
3559 | |
3560 | ExprResult Init = InitSeq.Perform(S, Entity, Kind, Args); |
3561 | if (!Init.get()) |
3562 | return false; |
3563 | |
3564 | VD->setInit(S.MaybeCreateExprWithCleanups(SubExpr: Init.get())); |
3565 | VD->setInitStyle(VarDecl::CallInit); |
3566 | S.CheckCompleteVariableDeclaration(VD); |
3567 | return true; |
3568 | } |
3569 | |
3570 | bool SemaHLSL::initGlobalResourceDecl(VarDecl *VD) { |
3571 | std::optional<uint32_t> RegisterSlot; |
3572 | uint32_t SpaceNo = 0; |
3573 | HLSLResourceBindingAttr *RBA = VD->getAttr<HLSLResourceBindingAttr>(); |
3574 | if (RBA) { |
3575 | if (RBA->hasRegisterSlot()) |
3576 | RegisterSlot = RBA->getSlotNumber(); |
3577 | SpaceNo = RBA->getSpaceNumber(); |
3578 | } |
3579 | |
3580 | ASTContext &AST = SemaRef.getASTContext(); |
3581 | uint64_t UIntTySize = AST.getTypeSize(T: AST.UnsignedIntTy); |
3582 | uint64_t IntTySize = AST.getTypeSize(T: AST.IntTy); |
3583 | IntegerLiteral *RangeSize = IntegerLiteral::Create( |
3584 | C: AST, V: llvm::APInt(IntTySize, 1), type: AST.IntTy, l: SourceLocation()); |
3585 | IntegerLiteral *Index = IntegerLiteral::Create( |
3586 | C: AST, V: llvm::APInt(UIntTySize, 0), type: AST.UnsignedIntTy, l: SourceLocation()); |
3587 | IntegerLiteral *Space = |
3588 | IntegerLiteral::Create(C: AST, V: llvm::APInt(UIntTySize, SpaceNo), |
3589 | type: AST.UnsignedIntTy, l: SourceLocation()); |
3590 | StringRef VarName = VD->getName(); |
3591 | StringLiteral *Name = StringLiteral::Create( |
3592 | Ctx: AST, Str: VarName, Kind: StringLiteralKind::Ordinary, Pascal: false, |
3593 | Ty: AST.getStringLiteralArrayType(EltTy: AST.CharTy.withConst(), Length: VarName.size()), |
3594 | Locs: SourceLocation()); |
3595 | |
3596 | // resource with explicit binding |
3597 | if (RegisterSlot.has_value()) { |
3598 | IntegerLiteral *RegSlot = IntegerLiteral::Create( |
3599 | C: AST, V: llvm::APInt(UIntTySize, RegisterSlot.value()), type: AST.UnsignedIntTy, |
3600 | l: SourceLocation()); |
3601 | Expr *Args[] = {RegSlot, Space, RangeSize, Index, Name}; |
3602 | return initVarDeclWithCtor(S&: SemaRef, VD, Args); |
3603 | } |
3604 | |
3605 | // resource with implicit binding |
3606 | IntegerLiteral *OrderId = IntegerLiteral::Create( |
3607 | C: AST, V: llvm::APInt(UIntTySize, getNextImplicitBindingOrderID()), |
3608 | type: AST.UnsignedIntTy, l: SourceLocation()); |
3609 | Expr *Args[] = {Space, RangeSize, Index, OrderId, Name}; |
3610 | return initVarDeclWithCtor(S&: SemaRef, VD, Args); |
3611 | } |
3612 | |
3613 | // Returns true if the initialization has been handled. |
3614 | // Returns false to use default initialization. |
3615 | bool SemaHLSL::ActOnUninitializedVarDecl(VarDecl *VD) { |
3616 | // Objects in the hlsl_constant address space are initialized |
3617 | // externally, so don't synthesize an implicit initializer. |
3618 | if (VD->getType().getAddressSpace() == LangAS::hlsl_constant) |
3619 | return true; |
3620 | |
3621 | // Initialize resources |
3622 | if (!isResourceRecordTypeOrArrayOf(VD)) |
3623 | return false; |
3624 | |
3625 | // FIXME: We currectly support only simple resources - no arrays of resources |
3626 | // or resources in user defined structs. |
3627 | // (llvm/llvm-project#133835, llvm/llvm-project#133837) |
3628 | // Initialize resources at the global scope |
3629 | if (VD->hasGlobalStorage() && VD->getType()->isHLSLResourceRecord()) |
3630 | return initGlobalResourceDecl(VD); |
3631 | |
3632 | return false; |
3633 | } |
3634 | |
3635 | // Walks though the global variable declaration, collects all resource binding |
3636 | // requirements and adds them to Bindings |
3637 | void SemaHLSL::collectResourceBindingsOnVarDecl(VarDecl *VD) { |
3638 | assert(VD->hasGlobalStorage() && VD->getType()->isHLSLIntangibleType() && |
3639 | "expected global variable that contains HLSL resource" ); |
3640 | |
3641 | // Cbuffers and Tbuffers are HLSLBufferDecl types |
3642 | if (const HLSLBufferDecl *CBufferOrTBuffer = dyn_cast<HLSLBufferDecl>(Val: VD)) { |
3643 | Bindings.addDeclBindingInfo(VD, ResClass: CBufferOrTBuffer->isCBuffer() |
3644 | ? ResourceClass::CBuffer |
3645 | : ResourceClass::SRV); |
3646 | return; |
3647 | } |
3648 | |
3649 | // Unwrap arrays |
3650 | // FIXME: Calculate array size while unwrapping |
3651 | const Type *Ty = VD->getType()->getUnqualifiedDesugaredType(); |
3652 | while (Ty->isConstantArrayType()) { |
3653 | const ConstantArrayType *CAT = cast<ConstantArrayType>(Val: Ty); |
3654 | Ty = CAT->getElementType()->getUnqualifiedDesugaredType(); |
3655 | } |
3656 | |
3657 | // Resource (or array of resources) |
3658 | if (const HLSLAttributedResourceType *AttrResType = |
3659 | HLSLAttributedResourceType::findHandleTypeOnResource(RT: Ty)) { |
3660 | Bindings.addDeclBindingInfo(VD, ResClass: AttrResType->getAttrs().ResourceClass); |
3661 | return; |
3662 | } |
3663 | |
3664 | // User defined record type |
3665 | if (const RecordType *RT = dyn_cast<RecordType>(Val: Ty)) |
3666 | collectResourceBindingsOnUserRecordDecl(VD, RT); |
3667 | } |
3668 | |
3669 | // Walks though the explicit resource binding attributes on the declaration, |
3670 | // and makes sure there is a resource that matched the binding and updates |
3671 | // DeclBindingInfoLists |
3672 | void SemaHLSL::processExplicitBindingsOnDecl(VarDecl *VD) { |
3673 | assert(VD->hasGlobalStorage() && "expected global variable" ); |
3674 | |
3675 | bool HasBinding = false; |
3676 | for (Attr *A : VD->attrs()) { |
3677 | HLSLResourceBindingAttr *RBA = dyn_cast<HLSLResourceBindingAttr>(Val: A); |
3678 | if (!RBA || !RBA->hasRegisterSlot()) |
3679 | continue; |
3680 | HasBinding = true; |
3681 | |
3682 | RegisterType RT = RBA->getRegisterType(); |
3683 | assert(RT != RegisterType::I && "invalid or obsolete register type should " |
3684 | "never have an attribute created" ); |
3685 | |
3686 | if (RT == RegisterType::C) { |
3687 | if (Bindings.hasBindingInfoForDecl(VD)) |
3688 | SemaRef.Diag(Loc: VD->getLocation(), |
3689 | DiagID: diag::warn_hlsl_user_defined_type_missing_member) |
3690 | << static_cast<int>(RT); |
3691 | continue; |
3692 | } |
3693 | |
3694 | // Find DeclBindingInfo for this binding and update it, or report error |
3695 | // if it does not exist (user type does to contain resources with the |
3696 | // expected resource class). |
3697 | ResourceClass RC = getResourceClass(RT); |
3698 | if (DeclBindingInfo *BI = Bindings.getDeclBindingInfo(VD, ResClass: RC)) { |
3699 | // update binding info |
3700 | BI->setBindingAttribute(A: RBA, BT: BindingType::Explicit); |
3701 | } else { |
3702 | SemaRef.Diag(Loc: VD->getLocation(), |
3703 | DiagID: diag::warn_hlsl_user_defined_type_missing_member) |
3704 | << static_cast<int>(RT); |
3705 | } |
3706 | } |
3707 | |
3708 | if (!HasBinding && isResourceRecordTypeOrArrayOf(VD)) |
3709 | SemaRef.Diag(Loc: VD->getLocation(), DiagID: diag::warn_hlsl_implicit_binding); |
3710 | } |
3711 | namespace { |
3712 | class InitListTransformer { |
3713 | Sema &S; |
3714 | ASTContext &Ctx; |
3715 | QualType InitTy; |
3716 | QualType *DstIt = nullptr; |
3717 | Expr **ArgIt = nullptr; |
3718 | // Is wrapping the destination type iterator required? This is only used for |
3719 | // incomplete array types where we loop over the destination type since we |
3720 | // don't know the full number of elements from the declaration. |
3721 | bool Wrap; |
3722 | |
3723 | bool castInitializer(Expr *E) { |
3724 | assert(DstIt && "This should always be something!" ); |
3725 | if (DstIt == DestTypes.end()) { |
3726 | if (!Wrap) { |
3727 | ArgExprs.push_back(Elt: E); |
3728 | // This is odd, but it isn't technically a failure due to conversion, we |
3729 | // handle mismatched counts of arguments differently. |
3730 | return true; |
3731 | } |
3732 | DstIt = DestTypes.begin(); |
3733 | } |
3734 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
3735 | Context&: Ctx, Type: *DstIt, /* Consumed (ObjC) */ Consumed: false); |
3736 | ExprResult Res = S.PerformCopyInitialization(Entity, EqualLoc: E->getBeginLoc(), Init: E); |
3737 | if (Res.isInvalid()) |
3738 | return false; |
3739 | Expr *Init = Res.get(); |
3740 | ArgExprs.push_back(Elt: Init); |
3741 | DstIt++; |
3742 | return true; |
3743 | } |
3744 | |
3745 | bool buildInitializerListImpl(Expr *E) { |
3746 | // If this is an initialization list, traverse the sub initializers. |
3747 | if (auto *Init = dyn_cast<InitListExpr>(Val: E)) { |
3748 | for (auto *SubInit : Init->inits()) |
3749 | if (!buildInitializerListImpl(E: SubInit)) |
3750 | return false; |
3751 | return true; |
3752 | } |
3753 | |
3754 | // If this is a scalar type, just enqueue the expression. |
3755 | QualType Ty = E->getType(); |
3756 | |
3757 | if (Ty->isScalarType() || (Ty->isRecordType() && !Ty->isAggregateType())) |
3758 | return castInitializer(E); |
3759 | |
3760 | if (auto *VecTy = Ty->getAs<VectorType>()) { |
3761 | uint64_t Size = VecTy->getNumElements(); |
3762 | |
3763 | QualType SizeTy = Ctx.getSizeType(); |
3764 | uint64_t SizeTySize = Ctx.getTypeSize(T: SizeTy); |
3765 | for (uint64_t I = 0; I < Size; ++I) { |
3766 | auto *Idx = IntegerLiteral::Create(C: Ctx, V: llvm::APInt(SizeTySize, I), |
3767 | type: SizeTy, l: SourceLocation()); |
3768 | |
3769 | ExprResult ElExpr = S.CreateBuiltinArraySubscriptExpr( |
3770 | Base: E, LLoc: E->getBeginLoc(), Idx, RLoc: E->getEndLoc()); |
3771 | if (ElExpr.isInvalid()) |
3772 | return false; |
3773 | if (!castInitializer(E: ElExpr.get())) |
3774 | return false; |
3775 | } |
3776 | return true; |
3777 | } |
3778 | |
3779 | if (auto *ArrTy = dyn_cast<ConstantArrayType>(Val: Ty.getTypePtr())) { |
3780 | uint64_t Size = ArrTy->getZExtSize(); |
3781 | QualType SizeTy = Ctx.getSizeType(); |
3782 | uint64_t SizeTySize = Ctx.getTypeSize(T: SizeTy); |
3783 | for (uint64_t I = 0; I < Size; ++I) { |
3784 | auto *Idx = IntegerLiteral::Create(C: Ctx, V: llvm::APInt(SizeTySize, I), |
3785 | type: SizeTy, l: SourceLocation()); |
3786 | ExprResult ElExpr = S.CreateBuiltinArraySubscriptExpr( |
3787 | Base: E, LLoc: E->getBeginLoc(), Idx, RLoc: E->getEndLoc()); |
3788 | if (ElExpr.isInvalid()) |
3789 | return false; |
3790 | if (!buildInitializerListImpl(E: ElExpr.get())) |
3791 | return false; |
3792 | } |
3793 | return true; |
3794 | } |
3795 | |
3796 | if (auto *RTy = Ty->getAs<RecordType>()) { |
3797 | llvm::SmallVector<const RecordType *> RecordTypes; |
3798 | RecordTypes.push_back(Elt: RTy); |
3799 | while (RecordTypes.back()->getAsCXXRecordDecl()->getNumBases()) { |
3800 | CXXRecordDecl *D = RecordTypes.back()->getAsCXXRecordDecl(); |
3801 | assert(D->getNumBases() == 1 && |
3802 | "HLSL doesn't support multiple inheritance" ); |
3803 | RecordTypes.push_back(Elt: D->bases_begin()->getType()->getAs<RecordType>()); |
3804 | } |
3805 | while (!RecordTypes.empty()) { |
3806 | const RecordType *RT = RecordTypes.pop_back_val(); |
3807 | for (auto *FD : RT->getDecl()->fields()) { |
3808 | DeclAccessPair Found = DeclAccessPair::make(D: FD, AS: FD->getAccess()); |
3809 | DeclarationNameInfo NameInfo(FD->getDeclName(), E->getBeginLoc()); |
3810 | ExprResult Res = S.BuildFieldReferenceExpr( |
3811 | BaseExpr: E, IsArrow: false, OpLoc: E->getBeginLoc(), SS: CXXScopeSpec(), Field: FD, FoundDecl: Found, MemberNameInfo: NameInfo); |
3812 | if (Res.isInvalid()) |
3813 | return false; |
3814 | if (!buildInitializerListImpl(E: Res.get())) |
3815 | return false; |
3816 | } |
3817 | } |
3818 | } |
3819 | return true; |
3820 | } |
3821 | |
3822 | Expr *generateInitListsImpl(QualType Ty) { |
3823 | assert(ArgIt != ArgExprs.end() && "Something is off in iteration!" ); |
3824 | if (Ty->isScalarType() || (Ty->isRecordType() && !Ty->isAggregateType())) |
3825 | return *(ArgIt++); |
3826 | |
3827 | llvm::SmallVector<Expr *> Inits; |
3828 | assert(!isa<MatrixType>(Ty) && "Matrix types not yet supported in HLSL" ); |
3829 | Ty = Ty.getDesugaredType(Context: Ctx); |
3830 | if (Ty->isVectorType() || Ty->isConstantArrayType()) { |
3831 | QualType ElTy; |
3832 | uint64_t Size = 0; |
3833 | if (auto *ATy = Ty->getAs<VectorType>()) { |
3834 | ElTy = ATy->getElementType(); |
3835 | Size = ATy->getNumElements(); |
3836 | } else { |
3837 | auto *VTy = cast<ConstantArrayType>(Val: Ty.getTypePtr()); |
3838 | ElTy = VTy->getElementType(); |
3839 | Size = VTy->getZExtSize(); |
3840 | } |
3841 | for (uint64_t I = 0; I < Size; ++I) |
3842 | Inits.push_back(Elt: generateInitListsImpl(Ty: ElTy)); |
3843 | } |
3844 | if (auto *RTy = Ty->getAs<RecordType>()) { |
3845 | llvm::SmallVector<const RecordType *> RecordTypes; |
3846 | RecordTypes.push_back(Elt: RTy); |
3847 | while (RecordTypes.back()->getAsCXXRecordDecl()->getNumBases()) { |
3848 | CXXRecordDecl *D = RecordTypes.back()->getAsCXXRecordDecl(); |
3849 | assert(D->getNumBases() == 1 && |
3850 | "HLSL doesn't support multiple inheritance" ); |
3851 | RecordTypes.push_back(Elt: D->bases_begin()->getType()->getAs<RecordType>()); |
3852 | } |
3853 | while (!RecordTypes.empty()) { |
3854 | const RecordType *RT = RecordTypes.pop_back_val(); |
3855 | for (auto *FD : RT->getDecl()->fields()) { |
3856 | Inits.push_back(Elt: generateInitListsImpl(Ty: FD->getType())); |
3857 | } |
3858 | } |
3859 | } |
3860 | auto *NewInit = new (Ctx) InitListExpr(Ctx, Inits.front()->getBeginLoc(), |
3861 | Inits, Inits.back()->getEndLoc()); |
3862 | NewInit->setType(Ty); |
3863 | return NewInit; |
3864 | } |
3865 | |
3866 | public: |
3867 | llvm::SmallVector<QualType, 16> DestTypes; |
3868 | llvm::SmallVector<Expr *, 16> ArgExprs; |
3869 | InitListTransformer(Sema &SemaRef, const InitializedEntity &Entity) |
3870 | : S(SemaRef), Ctx(SemaRef.getASTContext()), |
3871 | Wrap(Entity.getType()->isIncompleteArrayType()) { |
3872 | InitTy = Entity.getType().getNonReferenceType(); |
3873 | // When we're generating initializer lists for incomplete array types we |
3874 | // need to wrap around both when building the initializers and when |
3875 | // generating the final initializer lists. |
3876 | if (Wrap) { |
3877 | assert(InitTy->isIncompleteArrayType()); |
3878 | const IncompleteArrayType *IAT = Ctx.getAsIncompleteArrayType(T: InitTy); |
3879 | InitTy = IAT->getElementType(); |
3880 | } |
3881 | BuildFlattenedTypeList(BaseTy: InitTy, List&: DestTypes); |
3882 | DstIt = DestTypes.begin(); |
3883 | } |
3884 | |
3885 | bool buildInitializerList(Expr *E) { return buildInitializerListImpl(E); } |
3886 | |
3887 | Expr *generateInitLists() { |
3888 | assert(!ArgExprs.empty() && |
3889 | "Call buildInitializerList to generate argument expressions." ); |
3890 | ArgIt = ArgExprs.begin(); |
3891 | if (!Wrap) |
3892 | return generateInitListsImpl(Ty: InitTy); |
3893 | llvm::SmallVector<Expr *> Inits; |
3894 | while (ArgIt != ArgExprs.end()) |
3895 | Inits.push_back(Elt: generateInitListsImpl(Ty: InitTy)); |
3896 | |
3897 | auto *NewInit = new (Ctx) InitListExpr(Ctx, Inits.front()->getBeginLoc(), |
3898 | Inits, Inits.back()->getEndLoc()); |
3899 | llvm::APInt ArySize(64, Inits.size()); |
3900 | NewInit->setType(Ctx.getConstantArrayType(EltTy: InitTy, ArySize, SizeExpr: nullptr, |
3901 | ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0)); |
3902 | return NewInit; |
3903 | } |
3904 | }; |
3905 | } // namespace |
3906 | |
3907 | bool SemaHLSL::transformInitList(const InitializedEntity &Entity, |
3908 | InitListExpr *Init) { |
3909 | // If the initializer is a scalar, just return it. |
3910 | if (Init->getType()->isScalarType()) |
3911 | return true; |
3912 | ASTContext &Ctx = SemaRef.getASTContext(); |
3913 | InitListTransformer ILT(SemaRef, Entity); |
3914 | |
3915 | for (unsigned I = 0; I < Init->getNumInits(); ++I) { |
3916 | Expr *E = Init->getInit(Init: I); |
3917 | if (E->HasSideEffects(Ctx)) { |
3918 | QualType Ty = E->getType(); |
3919 | if (Ty->isRecordType()) |
3920 | E = new (Ctx) MaterializeTemporaryExpr(Ty, E, E->isLValue()); |
3921 | E = new (Ctx) OpaqueValueExpr(E->getBeginLoc(), Ty, E->getValueKind(), |
3922 | E->getObjectKind(), E); |
3923 | Init->setInit(Init: I, expr: E); |
3924 | } |
3925 | if (!ILT.buildInitializerList(E)) |
3926 | return false; |
3927 | } |
3928 | size_t ExpectedSize = ILT.DestTypes.size(); |
3929 | size_t ActualSize = ILT.ArgExprs.size(); |
3930 | // For incomplete arrays it is completely arbitrary to choose whether we think |
3931 | // the user intended fewer or more elements. This implementation assumes that |
3932 | // the user intended more, and errors that there are too few initializers to |
3933 | // complete the final element. |
3934 | if (Entity.getType()->isIncompleteArrayType()) |
3935 | ExpectedSize = |
3936 | ((ActualSize + ExpectedSize - 1) / ExpectedSize) * ExpectedSize; |
3937 | |
3938 | // An initializer list might be attempting to initialize a reference or |
3939 | // rvalue-reference. When checking the initializer we should look through |
3940 | // the reference. |
3941 | QualType InitTy = Entity.getType().getNonReferenceType(); |
3942 | if (InitTy.hasAddressSpace()) |
3943 | InitTy = SemaRef.getASTContext().removeAddrSpaceQualType(T: InitTy); |
3944 | if (ExpectedSize != ActualSize) { |
3945 | int TooManyOrFew = ActualSize > ExpectedSize ? 1 : 0; |
3946 | SemaRef.Diag(Loc: Init->getBeginLoc(), DiagID: diag::err_hlsl_incorrect_num_initializers) |
3947 | << TooManyOrFew << InitTy << ExpectedSize << ActualSize; |
3948 | return false; |
3949 | } |
3950 | |
3951 | // generateInitListsImpl will always return an InitListExpr here, because the |
3952 | // scalar case is handled above. |
3953 | auto *NewInit = cast<InitListExpr>(Val: ILT.generateInitLists()); |
3954 | Init->resizeInits(Context: Ctx, NumInits: NewInit->getNumInits()); |
3955 | for (unsigned I = 0; I < NewInit->getNumInits(); ++I) |
3956 | Init->updateInit(C: Ctx, Init: I, expr: NewInit->getInit(Init: I)); |
3957 | return true; |
3958 | } |
3959 | |
3960 | bool SemaHLSL::handleInitialization(VarDecl *VDecl, Expr *&Init) { |
3961 | const HLSLVkConstantIdAttr *ConstIdAttr = |
3962 | VDecl->getAttr<HLSLVkConstantIdAttr>(); |
3963 | if (!ConstIdAttr) |
3964 | return true; |
3965 | |
3966 | ASTContext &Context = SemaRef.getASTContext(); |
3967 | |
3968 | APValue InitValue; |
3969 | if (!Init->isCXX11ConstantExpr(Ctx: Context, Result: &InitValue)) { |
3970 | Diag(Loc: VDecl->getLocation(), DiagID: diag::err_specialization_const); |
3971 | VDecl->setInvalidDecl(); |
3972 | return false; |
3973 | } |
3974 | |
3975 | Builtin::ID BID = |
3976 | getSpecConstBuiltinId(Type: VDecl->getType()->getUnqualifiedDesugaredType()); |
3977 | |
3978 | // Argument 1: The ID from the attribute |
3979 | int ConstantID = ConstIdAttr->getId(); |
3980 | llvm::APInt IDVal(Context.getIntWidth(T: Context.IntTy), ConstantID); |
3981 | Expr *IdExpr = IntegerLiteral::Create(C: Context, V: IDVal, type: Context.IntTy, |
3982 | l: ConstIdAttr->getLocation()); |
3983 | |
3984 | SmallVector<Expr *, 2> Args = {IdExpr, Init}; |
3985 | Expr *C = SemaRef.BuildBuiltinCallExpr(Loc: Init->getExprLoc(), Id: BID, CallArgs: Args); |
3986 | if (C->getType()->getCanonicalTypeUnqualified() != |
3987 | VDecl->getType()->getCanonicalTypeUnqualified()) { |
3988 | C = SemaRef |
3989 | .BuildCStyleCastExpr(LParenLoc: SourceLocation(), |
3990 | Ty: Context.getTrivialTypeSourceInfo( |
3991 | T: Init->getType(), Loc: Init->getExprLoc()), |
3992 | RParenLoc: SourceLocation(), Op: C) |
3993 | .get(); |
3994 | } |
3995 | Init = C; |
3996 | return true; |
3997 | } |
3998 | |