| 1 | //===--- SemaOpenACC.cpp - Semantic Analysis for OpenACC constructs -------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// This file implements semantic analysis for OpenACC constructs, and things |
| 10 | /// that are not clause specific. |
| 11 | /// |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "clang/Sema/SemaOpenACC.h" |
| 15 | #include "clang/AST/DeclOpenACC.h" |
| 16 | #include "clang/AST/StmtOpenACC.h" |
| 17 | #include "clang/Basic/DiagnosticSema.h" |
| 18 | #include "clang/Basic/OpenACCKinds.h" |
| 19 | #include "clang/Basic/SourceManager.h" |
| 20 | #include "clang/Sema/Scope.h" |
| 21 | #include "clang/Sema/Sema.h" |
| 22 | #include "llvm/ADT/StringExtras.h" |
| 23 | #include "llvm/Support/Casting.h" |
| 24 | |
| 25 | using namespace clang; |
| 26 | |
| 27 | namespace { |
| 28 | bool diagnoseConstructAppertainment(SemaOpenACC &S, OpenACCDirectiveKind K, |
| 29 | SourceLocation StartLoc, bool IsStmt) { |
| 30 | switch (K) { |
| 31 | default: |
| 32 | case OpenACCDirectiveKind::Invalid: |
| 33 | // Nothing to do here, both invalid and unimplemented don't really need to |
| 34 | // do anything. |
| 35 | break; |
| 36 | case OpenACCDirectiveKind::Parallel: |
| 37 | case OpenACCDirectiveKind::ParallelLoop: |
| 38 | case OpenACCDirectiveKind::Serial: |
| 39 | case OpenACCDirectiveKind::SerialLoop: |
| 40 | case OpenACCDirectiveKind::Kernels: |
| 41 | case OpenACCDirectiveKind::KernelsLoop: |
| 42 | case OpenACCDirectiveKind::Loop: |
| 43 | case OpenACCDirectiveKind::Data: |
| 44 | case OpenACCDirectiveKind::EnterData: |
| 45 | case OpenACCDirectiveKind::ExitData: |
| 46 | case OpenACCDirectiveKind::HostData: |
| 47 | case OpenACCDirectiveKind::Wait: |
| 48 | case OpenACCDirectiveKind::Update: |
| 49 | case OpenACCDirectiveKind::Init: |
| 50 | case OpenACCDirectiveKind::Shutdown: |
| 51 | case OpenACCDirectiveKind::Cache: |
| 52 | case OpenACCDirectiveKind::Atomic: |
| 53 | if (!IsStmt) |
| 54 | return S.Diag(Loc: StartLoc, DiagID: diag::err_acc_construct_appertainment) << K; |
| 55 | break; |
| 56 | } |
| 57 | return false; |
| 58 | } |
| 59 | |
| 60 | void CollectActiveReductionClauses( |
| 61 | llvm::SmallVector<OpenACCReductionClause *> &ActiveClauses, |
| 62 | ArrayRef<OpenACCClause *> CurClauses) { |
| 63 | for (auto *CurClause : CurClauses) { |
| 64 | if (auto *RedClause = dyn_cast<OpenACCReductionClause>(Val: CurClause); |
| 65 | RedClause && !RedClause->getVarList().empty()) |
| 66 | ActiveClauses.push_back(Elt: RedClause); |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | // Depth needs to be preserved for all associated statements that aren't |
| 71 | // supposed to modify the compute/combined/loop construct information. |
| 72 | bool PreserveLoopRAIIDepthInAssociatedStmtRAII(OpenACCDirectiveKind DK) { |
| 73 | switch (DK) { |
| 74 | case OpenACCDirectiveKind::Parallel: |
| 75 | case OpenACCDirectiveKind::ParallelLoop: |
| 76 | case OpenACCDirectiveKind::Serial: |
| 77 | case OpenACCDirectiveKind::SerialLoop: |
| 78 | case OpenACCDirectiveKind::Kernels: |
| 79 | case OpenACCDirectiveKind::KernelsLoop: |
| 80 | case OpenACCDirectiveKind::Loop: |
| 81 | return false; |
| 82 | case OpenACCDirectiveKind::Data: |
| 83 | case OpenACCDirectiveKind::HostData: |
| 84 | case OpenACCDirectiveKind::Atomic: |
| 85 | return true; |
| 86 | case OpenACCDirectiveKind::Cache: |
| 87 | case OpenACCDirectiveKind::Routine: |
| 88 | case OpenACCDirectiveKind::Declare: |
| 89 | case OpenACCDirectiveKind::EnterData: |
| 90 | case OpenACCDirectiveKind::ExitData: |
| 91 | case OpenACCDirectiveKind::Wait: |
| 92 | case OpenACCDirectiveKind::Init: |
| 93 | case OpenACCDirectiveKind::Shutdown: |
| 94 | case OpenACCDirectiveKind::Set: |
| 95 | case OpenACCDirectiveKind::Update: |
| 96 | llvm_unreachable("Doesn't have an associated stmt" ); |
| 97 | case OpenACCDirectiveKind::Invalid: |
| 98 | llvm_unreachable("Unhandled directive kind?" ); |
| 99 | } |
| 100 | llvm_unreachable("Unhandled directive kind?" ); |
| 101 | } |
| 102 | |
| 103 | } // namespace |
| 104 | |
| 105 | SemaOpenACC::SemaOpenACC(Sema &S) : SemaBase(S) {} |
| 106 | |
| 107 | SemaOpenACC::AssociatedStmtRAII::AssociatedStmtRAII( |
| 108 | SemaOpenACC &S, OpenACCDirectiveKind DK, SourceLocation DirLoc, |
| 109 | ArrayRef<const OpenACCClause *> UnInstClauses, |
| 110 | ArrayRef<OpenACCClause *> Clauses) |
| 111 | : SemaRef(S), OldActiveComputeConstructInfo(S.ActiveComputeConstructInfo), |
| 112 | DirKind(DK), OldLoopGangClauseOnKernel(S.LoopGangClauseOnKernel), |
| 113 | OldLoopWorkerClauseLoc(S.LoopWorkerClauseLoc), |
| 114 | OldLoopVectorClauseLoc(S.LoopVectorClauseLoc), |
| 115 | OldLoopWithoutSeqInfo(S.LoopWithoutSeqInfo), |
| 116 | ActiveReductionClauses(S.ActiveReductionClauses), |
| 117 | LoopRAII(SemaRef, PreserveLoopRAIIDepthInAssociatedStmtRAII(DK: DirKind)) { |
| 118 | |
| 119 | // Compute constructs end up taking their 'loop'. |
| 120 | if (DirKind == OpenACCDirectiveKind::Parallel || |
| 121 | DirKind == OpenACCDirectiveKind::Serial || |
| 122 | DirKind == OpenACCDirectiveKind::Kernels) { |
| 123 | CollectActiveReductionClauses(ActiveClauses&: S.ActiveReductionClauses, CurClauses: Clauses); |
| 124 | SemaRef.ActiveComputeConstructInfo.Kind = DirKind; |
| 125 | SemaRef.ActiveComputeConstructInfo.Clauses = Clauses; |
| 126 | |
| 127 | // OpenACC 3.3 2.9.2: When the parent compute construct is a kernels |
| 128 | // construct, the gang clause behaves as follows. ... The region of a loop |
| 129 | // with a gang clause may not contain another loop with a gang clause unless |
| 130 | // within a nested compute region. |
| 131 | // |
| 132 | // Implement the 'unless within a nested compute region' part. |
| 133 | SemaRef.LoopGangClauseOnKernel = {}; |
| 134 | SemaRef.LoopWorkerClauseLoc = {}; |
| 135 | SemaRef.LoopVectorClauseLoc = {}; |
| 136 | SemaRef.LoopWithoutSeqInfo = {}; |
| 137 | } else if (DirKind == OpenACCDirectiveKind::ParallelLoop || |
| 138 | DirKind == OpenACCDirectiveKind::SerialLoop || |
| 139 | DirKind == OpenACCDirectiveKind::KernelsLoop) { |
| 140 | SemaRef.ActiveComputeConstructInfo.Kind = DirKind; |
| 141 | SemaRef.ActiveComputeConstructInfo.Clauses = Clauses; |
| 142 | |
| 143 | CollectActiveReductionClauses(ActiveClauses&: S.ActiveReductionClauses, CurClauses: Clauses); |
| 144 | SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses); |
| 145 | SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses); |
| 146 | |
| 147 | SemaRef.LoopGangClauseOnKernel = {}; |
| 148 | SemaRef.LoopWorkerClauseLoc = {}; |
| 149 | SemaRef.LoopVectorClauseLoc = {}; |
| 150 | |
| 151 | // Set the active 'loop' location if there isn't a 'seq' on it, so we can |
| 152 | // diagnose the for loops. |
| 153 | SemaRef.LoopWithoutSeqInfo = {}; |
| 154 | if (Clauses.end() == |
| 155 | llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCSeqClause>)) |
| 156 | SemaRef.LoopWithoutSeqInfo = {.Kind: DirKind, .Loc: DirLoc}; |
| 157 | |
| 158 | // OpenACC 3.3 2.9.2: When the parent compute construct is a kernels |
| 159 | // construct, the gang clause behaves as follows. ... The region of a loop |
| 160 | // with a gang clause may not contain another loop with a gang clause unless |
| 161 | // within a nested compute region. |
| 162 | // |
| 163 | // We don't bother doing this when this is a template instantiation, as |
| 164 | // there is no reason to do these checks: the existance of a |
| 165 | // gang/kernels/etc cannot be dependent. |
| 166 | if (DirKind == OpenACCDirectiveKind::KernelsLoop && UnInstClauses.empty()) { |
| 167 | // This handles the 'outer loop' part of this. |
| 168 | auto *Itr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCGangClause>); |
| 169 | if (Itr != Clauses.end()) |
| 170 | SemaRef.LoopGangClauseOnKernel = {.Loc: (*Itr)->getBeginLoc(), .DirKind: DirKind}; |
| 171 | } |
| 172 | |
| 173 | if (UnInstClauses.empty()) { |
| 174 | auto *Itr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCWorkerClause>); |
| 175 | if (Itr != Clauses.end()) |
| 176 | SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc(); |
| 177 | |
| 178 | auto *Itr2 = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCVectorClause>); |
| 179 | if (Itr2 != Clauses.end()) |
| 180 | SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc(); |
| 181 | } |
| 182 | } else if (DirKind == OpenACCDirectiveKind::Loop) { |
| 183 | CollectActiveReductionClauses(ActiveClauses&: S.ActiveReductionClauses, CurClauses: Clauses); |
| 184 | SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses); |
| 185 | SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses); |
| 186 | |
| 187 | // Set the active 'loop' location if there isn't a 'seq' on it, so we can |
| 188 | // diagnose the for loops. |
| 189 | SemaRef.LoopWithoutSeqInfo = {}; |
| 190 | if (Clauses.end() == |
| 191 | llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCSeqClause>)) |
| 192 | SemaRef.LoopWithoutSeqInfo = {.Kind: DirKind, .Loc: DirLoc}; |
| 193 | |
| 194 | // OpenACC 3.3 2.9.2: When the parent compute construct is a kernels |
| 195 | // construct, the gang clause behaves as follows. ... The region of a loop |
| 196 | // with a gang clause may not contain another loop with a gang clause unless |
| 197 | // within a nested compute region. |
| 198 | // |
| 199 | // We don't bother doing this when this is a template instantiation, as |
| 200 | // there is no reason to do these checks: the existance of a |
| 201 | // gang/kernels/etc cannot be dependent. |
| 202 | if (SemaRef.getActiveComputeConstructInfo().Kind == |
| 203 | OpenACCDirectiveKind::Kernels && |
| 204 | UnInstClauses.empty()) { |
| 205 | // This handles the 'outer loop' part of this. |
| 206 | auto *Itr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCGangClause>); |
| 207 | if (Itr != Clauses.end()) |
| 208 | SemaRef.LoopGangClauseOnKernel = {.Loc: (*Itr)->getBeginLoc(), |
| 209 | .DirKind: OpenACCDirectiveKind::Kernels}; |
| 210 | } |
| 211 | |
| 212 | if (UnInstClauses.empty()) { |
| 213 | auto *Itr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCWorkerClause>); |
| 214 | if (Itr != Clauses.end()) |
| 215 | SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc(); |
| 216 | |
| 217 | auto *Itr2 = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCVectorClause>); |
| 218 | if (Itr2 != Clauses.end()) |
| 219 | SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc(); |
| 220 | } |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | namespace { |
| 225 | // Given two collapse clauses, and the uninstanted version of the new one, |
| 226 | // return the 'best' one for the purposes of setting the collapse checking |
| 227 | // values. |
| 228 | const OpenACCCollapseClause * |
| 229 | getBestCollapseCandidate(const OpenACCCollapseClause *Old, |
| 230 | const OpenACCCollapseClause *New, |
| 231 | const OpenACCCollapseClause *UnInstNew) { |
| 232 | // If the loop count is nullptr, it is because instantiation failed, so this |
| 233 | // can't be the best one. |
| 234 | if (!New->getLoopCount()) |
| 235 | return Old; |
| 236 | |
| 237 | // If the loop-count had an error, than 'new' isn't a candidate. |
| 238 | if (!New->getLoopCount()) |
| 239 | return Old; |
| 240 | |
| 241 | // Don't consider uninstantiated ones, since we can't really check these. |
| 242 | if (New->getLoopCount()->isInstantiationDependent()) |
| 243 | return Old; |
| 244 | |
| 245 | // If this is an instantiation, and the old version wasn't instantation |
| 246 | // dependent, than nothing has changed and we've already done a diagnostic |
| 247 | // based on this one, so don't consider it. |
| 248 | if (UnInstNew && !UnInstNew->getLoopCount()->isInstantiationDependent()) |
| 249 | return Old; |
| 250 | |
| 251 | // New is now a valid candidate, so if there isn't an old one at this point, |
| 252 | // New is the only valid one. |
| 253 | if (!Old) |
| 254 | return New; |
| 255 | |
| 256 | // If the 'New' expression has a larger value than 'Old', then it is the new |
| 257 | // best candidate. |
| 258 | if (cast<ConstantExpr>(Val: Old->getLoopCount())->getResultAsAPSInt() < |
| 259 | cast<ConstantExpr>(Val: New->getLoopCount())->getResultAsAPSInt()) |
| 260 | return New; |
| 261 | |
| 262 | return Old; |
| 263 | } |
| 264 | } // namespace |
| 265 | |
| 266 | void SemaOpenACC::AssociatedStmtRAII::SetCollapseInfoBeforeAssociatedStmt( |
| 267 | ArrayRef<const OpenACCClause *> UnInstClauses, |
| 268 | ArrayRef<OpenACCClause *> Clauses) { |
| 269 | |
| 270 | // Reset this checking for loops that aren't covered in a RAII object. |
| 271 | SemaRef.LoopInfo.CurLevelHasLoopAlready = false; |
| 272 | SemaRef.CollapseInfo.CollapseDepthSatisfied = true; |
| 273 | SemaRef.CollapseInfo.CurCollapseCount = 0; |
| 274 | SemaRef.TileInfo.TileDepthSatisfied = true; |
| 275 | |
| 276 | // We make sure to take an optional list of uninstantiated clauses, so that |
| 277 | // we can check to make sure we don't 'double diagnose' in the event that |
| 278 | // the value of 'N' was not dependent in a template. Since we cannot count on |
| 279 | // there only being a single collapse clause, we count on the order to make |
| 280 | // sure get the matching ones, and we count on TreeTransform not removing |
| 281 | // these, even if loop-count instantiation failed. We can check the |
| 282 | // non-dependent ones right away, and realize that subsequent instantiation |
| 283 | // can only make it more specific. |
| 284 | |
| 285 | auto *UnInstClauseItr = |
| 286 | llvm::find_if(Range&: UnInstClauses, P: llvm::IsaPred<OpenACCCollapseClause>); |
| 287 | auto *ClauseItr = |
| 288 | llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCCollapseClause>); |
| 289 | const OpenACCCollapseClause *FoundClause = nullptr; |
| 290 | |
| 291 | // Loop through the list of Collapse clauses and find the one that: |
| 292 | // 1- Has a non-dependent, non-null loop count (null means error, likely |
| 293 | // during instantiation). |
| 294 | // 2- If UnInstClauses isn't empty, its corresponding |
| 295 | // loop count was dependent. |
| 296 | // 3- Has the largest 'loop count' of all. |
| 297 | while (ClauseItr != Clauses.end()) { |
| 298 | const OpenACCCollapseClause *CurClause = |
| 299 | cast<OpenACCCollapseClause>(Val: *ClauseItr); |
| 300 | const OpenACCCollapseClause *UnInstCurClause = |
| 301 | UnInstClauseItr == UnInstClauses.end() |
| 302 | ? nullptr |
| 303 | : cast<OpenACCCollapseClause>(Val: *UnInstClauseItr); |
| 304 | |
| 305 | FoundClause = |
| 306 | getBestCollapseCandidate(Old: FoundClause, New: CurClause, UnInstNew: UnInstCurClause); |
| 307 | |
| 308 | UnInstClauseItr = |
| 309 | UnInstClauseItr == UnInstClauses.end() |
| 310 | ? UnInstClauseItr |
| 311 | : std::find_if(first: std::next(x: UnInstClauseItr), last: UnInstClauses.end(), |
| 312 | pred: llvm::IsaPred<OpenACCCollapseClause>); |
| 313 | ClauseItr = std::find_if(first: std::next(x: ClauseItr), last: Clauses.end(), |
| 314 | pred: llvm::IsaPred<OpenACCCollapseClause>); |
| 315 | } |
| 316 | |
| 317 | if (!FoundClause) |
| 318 | return; |
| 319 | |
| 320 | SemaRef.CollapseInfo.ActiveCollapse = FoundClause; |
| 321 | SemaRef.CollapseInfo.CollapseDepthSatisfied = false; |
| 322 | SemaRef.CollapseInfo.CurCollapseCount = |
| 323 | cast<ConstantExpr>(Val: FoundClause->getLoopCount())->getResultAsAPSInt(); |
| 324 | SemaRef.CollapseInfo.DirectiveKind = DirKind; |
| 325 | } |
| 326 | |
| 327 | void SemaOpenACC::AssociatedStmtRAII::SetTileInfoBeforeAssociatedStmt( |
| 328 | ArrayRef<const OpenACCClause *> UnInstClauses, |
| 329 | ArrayRef<OpenACCClause *> Clauses) { |
| 330 | // We don't diagnose if this is during instantiation, since the only thing we |
| 331 | // care about is the number of arguments, which we can figure out without |
| 332 | // instantiation, so we don't want to double-diagnose. |
| 333 | if (UnInstClauses.size() > 0) |
| 334 | return; |
| 335 | auto *TileClauseItr = |
| 336 | llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCTileClause>); |
| 337 | |
| 338 | if (Clauses.end() == TileClauseItr) |
| 339 | return; |
| 340 | |
| 341 | OpenACCTileClause *TileClause = cast<OpenACCTileClause>(Val: *TileClauseItr); |
| 342 | |
| 343 | // Multiple tile clauses are allowed, so ensure that we use the one with the |
| 344 | // largest 'tile count'. |
| 345 | while (Clauses.end() != |
| 346 | (TileClauseItr = std::find_if(first: std::next(x: TileClauseItr), last: Clauses.end(), |
| 347 | pred: llvm::IsaPred<OpenACCTileClause>))) { |
| 348 | OpenACCTileClause *NewClause = cast<OpenACCTileClause>(Val: *TileClauseItr); |
| 349 | if (NewClause->getSizeExprs().size() > TileClause->getSizeExprs().size()) |
| 350 | TileClause = NewClause; |
| 351 | } |
| 352 | |
| 353 | SemaRef.TileInfo.ActiveTile = TileClause; |
| 354 | SemaRef.TileInfo.TileDepthSatisfied = false; |
| 355 | SemaRef.TileInfo.CurTileCount = |
| 356 | static_cast<unsigned>(TileClause->getSizeExprs().size()); |
| 357 | SemaRef.TileInfo.DirectiveKind = DirKind; |
| 358 | } |
| 359 | |
| 360 | SemaOpenACC::AssociatedStmtRAII::~AssociatedStmtRAII() { |
| 361 | if (DirKind == OpenACCDirectiveKind::Parallel || |
| 362 | DirKind == OpenACCDirectiveKind::Serial || |
| 363 | DirKind == OpenACCDirectiveKind::Kernels || |
| 364 | DirKind == OpenACCDirectiveKind::Loop || |
| 365 | DirKind == OpenACCDirectiveKind::ParallelLoop || |
| 366 | DirKind == OpenACCDirectiveKind::SerialLoop || |
| 367 | DirKind == OpenACCDirectiveKind::KernelsLoop) { |
| 368 | SemaRef.ActiveComputeConstructInfo = OldActiveComputeConstructInfo; |
| 369 | SemaRef.LoopGangClauseOnKernel = OldLoopGangClauseOnKernel; |
| 370 | SemaRef.LoopWorkerClauseLoc = OldLoopWorkerClauseLoc; |
| 371 | SemaRef.LoopVectorClauseLoc = OldLoopVectorClauseLoc; |
| 372 | SemaRef.LoopWithoutSeqInfo = OldLoopWithoutSeqInfo; |
| 373 | SemaRef.ActiveReductionClauses.swap(RHS&: ActiveReductionClauses); |
| 374 | } else if (DirKind == OpenACCDirectiveKind::Data || |
| 375 | DirKind == OpenACCDirectiveKind::HostData) { |
| 376 | // Intentionally doesn't reset the Loop, Compute Construct, or reduction |
| 377 | // effects. |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | void SemaOpenACC::ActOnConstruct(OpenACCDirectiveKind K, |
| 382 | SourceLocation DirLoc) { |
| 383 | // Start an evaluation context to parse the clause arguments on. |
| 384 | SemaRef.PushExpressionEvaluationContext( |
| 385 | NewContext: Sema::ExpressionEvaluationContext::PotentiallyEvaluated); |
| 386 | |
| 387 | // There is nothing do do here as all we have at this point is the name of the |
| 388 | // construct itself. |
| 389 | } |
| 390 | |
| 391 | ExprResult SemaOpenACC::ActOnIntExpr(OpenACCDirectiveKind DK, |
| 392 | OpenACCClauseKind CK, SourceLocation Loc, |
| 393 | Expr *IntExpr) { |
| 394 | |
| 395 | assert(((DK != OpenACCDirectiveKind::Invalid && |
| 396 | CK == OpenACCClauseKind::Invalid) || |
| 397 | (DK == OpenACCDirectiveKind::Invalid && |
| 398 | CK != OpenACCClauseKind::Invalid) || |
| 399 | (DK == OpenACCDirectiveKind::Invalid && |
| 400 | CK == OpenACCClauseKind::Invalid)) && |
| 401 | "Only one of directive or clause kind should be provided" ); |
| 402 | |
| 403 | class IntExprConverter : public Sema::ICEConvertDiagnoser { |
| 404 | OpenACCDirectiveKind DirectiveKind; |
| 405 | OpenACCClauseKind ClauseKind; |
| 406 | Expr *IntExpr; |
| 407 | |
| 408 | // gets the index into the diagnostics so we can use this for clauses, |
| 409 | // directives, and sub array.s |
| 410 | unsigned getDiagKind() const { |
| 411 | if (ClauseKind != OpenACCClauseKind::Invalid) |
| 412 | return 0; |
| 413 | if (DirectiveKind != OpenACCDirectiveKind::Invalid) |
| 414 | return 1; |
| 415 | return 2; |
| 416 | } |
| 417 | |
| 418 | public: |
| 419 | IntExprConverter(OpenACCDirectiveKind DK, OpenACCClauseKind CK, |
| 420 | Expr *IntExpr) |
| 421 | : ICEConvertDiagnoser(/*AllowScopedEnumerations=*/false, |
| 422 | /*Suppress=*/false, |
| 423 | /*SuppressConversion=*/true), |
| 424 | DirectiveKind(DK), ClauseKind(CK), IntExpr(IntExpr) {} |
| 425 | |
| 426 | bool match(QualType T) override { |
| 427 | // OpenACC spec just calls this 'integer expression' as having an |
| 428 | // 'integer type', so fall back on C99's 'integer type'. |
| 429 | return T->isIntegerType(); |
| 430 | } |
| 431 | SemaBase::SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, |
| 432 | QualType T) override { |
| 433 | return S.Diag(Loc, DiagID: diag::err_acc_int_expr_requires_integer) |
| 434 | << getDiagKind() << ClauseKind << DirectiveKind << T; |
| 435 | } |
| 436 | |
| 437 | SemaBase::SemaDiagnosticBuilder |
| 438 | diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) override { |
| 439 | return S.Diag(Loc, DiagID: diag::err_acc_int_expr_incomplete_class_type) |
| 440 | << T << IntExpr->getSourceRange(); |
| 441 | } |
| 442 | |
| 443 | SemaBase::SemaDiagnosticBuilder |
| 444 | diagnoseExplicitConv(Sema &S, SourceLocation Loc, QualType T, |
| 445 | QualType ConvTy) override { |
| 446 | return S.Diag(Loc, DiagID: diag::err_acc_int_expr_explicit_conversion) |
| 447 | << T << ConvTy; |
| 448 | } |
| 449 | |
| 450 | SemaBase::SemaDiagnosticBuilder noteExplicitConv(Sema &S, |
| 451 | CXXConversionDecl *Conv, |
| 452 | QualType ConvTy) override { |
| 453 | return S.Diag(Loc: Conv->getLocation(), DiagID: diag::note_acc_int_expr_conversion) |
| 454 | << ConvTy->isEnumeralType() << ConvTy; |
| 455 | } |
| 456 | |
| 457 | SemaBase::SemaDiagnosticBuilder |
| 458 | diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) override { |
| 459 | return S.Diag(Loc, DiagID: diag::err_acc_int_expr_multiple_conversions) << T; |
| 460 | } |
| 461 | |
| 462 | SemaBase::SemaDiagnosticBuilder |
| 463 | noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { |
| 464 | return S.Diag(Loc: Conv->getLocation(), DiagID: diag::note_acc_int_expr_conversion) |
| 465 | << ConvTy->isEnumeralType() << ConvTy; |
| 466 | } |
| 467 | |
| 468 | SemaBase::SemaDiagnosticBuilder |
| 469 | diagnoseConversion(Sema &S, SourceLocation Loc, QualType T, |
| 470 | QualType ConvTy) override { |
| 471 | llvm_unreachable("conversion functions are permitted" ); |
| 472 | } |
| 473 | } IntExprDiagnoser(DK, CK, IntExpr); |
| 474 | |
| 475 | if (!IntExpr) |
| 476 | return ExprError(); |
| 477 | |
| 478 | ExprResult IntExprResult = SemaRef.PerformContextualImplicitConversion( |
| 479 | Loc, FromE: IntExpr, Converter&: IntExprDiagnoser); |
| 480 | if (IntExprResult.isInvalid()) |
| 481 | return ExprError(); |
| 482 | |
| 483 | IntExpr = IntExprResult.get(); |
| 484 | if (!IntExpr->isTypeDependent() && !IntExpr->getType()->isIntegerType()) |
| 485 | return ExprError(); |
| 486 | |
| 487 | // TODO OpenACC: Do we want to perform usual unary conversions here? When |
| 488 | // doing codegen we might find that is necessary, but skip it for now. |
| 489 | return IntExpr; |
| 490 | } |
| 491 | |
| 492 | bool SemaOpenACC::CheckVarIsPointerType(OpenACCClauseKind ClauseKind, |
| 493 | Expr *VarExpr) { |
| 494 | // We already know that VarExpr is a proper reference to a variable, so we |
| 495 | // should be able to just take the type of the expression to get the type of |
| 496 | // the referenced variable. |
| 497 | |
| 498 | // We've already seen an error, don't diagnose anything else. |
| 499 | if (!VarExpr || VarExpr->containsErrors()) |
| 500 | return false; |
| 501 | |
| 502 | if (isa<ArraySectionExpr>(Val: VarExpr->IgnoreParenImpCasts()) || |
| 503 | VarExpr->hasPlaceholderType(K: BuiltinType::ArraySection)) { |
| 504 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_array_section_use) << /*OpenACC=*/0; |
| 505 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::note_acc_expected_pointer_var); |
| 506 | return true; |
| 507 | } |
| 508 | |
| 509 | QualType Ty = VarExpr->getType(); |
| 510 | Ty = Ty.getNonReferenceType().getUnqualifiedType(); |
| 511 | |
| 512 | // Nothing we can do if this is a dependent type. |
| 513 | if (Ty->isDependentType()) |
| 514 | return false; |
| 515 | |
| 516 | if (!Ty->isPointerType()) |
| 517 | return Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_var_not_pointer_type) |
| 518 | << ClauseKind << Ty; |
| 519 | return false; |
| 520 | } |
| 521 | |
| 522 | void SemaOpenACC::ActOnStartParseVar(OpenACCDirectiveKind DK, |
| 523 | OpenACCClauseKind CK) { |
| 524 | if (DK == OpenACCDirectiveKind::Cache) { |
| 525 | CacheInfo.ParsingCacheVarList = true; |
| 526 | CacheInfo.IsInvalidCacheRef = false; |
| 527 | } |
| 528 | } |
| 529 | |
| 530 | void SemaOpenACC::ActOnInvalidParseVar() { |
| 531 | CacheInfo.ParsingCacheVarList = false; |
| 532 | CacheInfo.IsInvalidCacheRef = false; |
| 533 | } |
| 534 | |
| 535 | ExprResult SemaOpenACC::ActOnCacheVar(Expr *VarExpr) { |
| 536 | Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts(); |
| 537 | // Clear this here, so we can do the returns based on the invalid cache ref |
| 538 | // here. Note all return statements in this function must return ExprError if |
| 539 | // IsInvalidCacheRef. However, instead of doing an 'early return' in that |
| 540 | // case, we can let the rest of the diagnostics happen, as the invalid decl |
| 541 | // ref is a warning. |
| 542 | bool WasParsingInvalidCacheRef = |
| 543 | CacheInfo.ParsingCacheVarList && CacheInfo.IsInvalidCacheRef; |
| 544 | CacheInfo.ParsingCacheVarList = false; |
| 545 | CacheInfo.IsInvalidCacheRef = false; |
| 546 | |
| 547 | if (!isa<ArraySectionExpr, ArraySubscriptExpr>(Val: CurVarExpr)) { |
| 548 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref_cache); |
| 549 | return ExprError(); |
| 550 | } |
| 551 | |
| 552 | // It isn't clear what 'simple array element or simple subarray' means, so we |
| 553 | // will just allow arbitrary depth. |
| 554 | while (isa<ArraySectionExpr, ArraySubscriptExpr>(Val: CurVarExpr)) { |
| 555 | if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(Val: CurVarExpr)) |
| 556 | CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts(); |
| 557 | else |
| 558 | CurVarExpr = |
| 559 | cast<ArraySectionExpr>(Val: CurVarExpr)->getBase()->IgnoreParenImpCasts(); |
| 560 | } |
| 561 | |
| 562 | // References to a VarDecl are fine. |
| 563 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: CurVarExpr)) { |
| 564 | if (isa<VarDecl, NonTypeTemplateParmDecl>( |
| 565 | Val: DRE->getFoundDecl()->getCanonicalDecl())) |
| 566 | return WasParsingInvalidCacheRef ? ExprEmpty() : VarExpr; |
| 567 | } |
| 568 | |
| 569 | if (const auto *ME = dyn_cast<MemberExpr>(Val: CurVarExpr)) { |
| 570 | if (isa<FieldDecl>(Val: ME->getMemberDecl()->getCanonicalDecl())) { |
| 571 | return WasParsingInvalidCacheRef ? ExprEmpty() : VarExpr; |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | // Nothing really we can do here, as these are dependent. So just return they |
| 576 | // are valid. |
| 577 | if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(Val: CurVarExpr)) |
| 578 | return WasParsingInvalidCacheRef ? ExprEmpty() : VarExpr; |
| 579 | |
| 580 | // There isn't really anything we can do in the case of a recovery expr, so |
| 581 | // skip the diagnostic rather than produce a confusing diagnostic. |
| 582 | if (isa<RecoveryExpr>(Val: CurVarExpr)) |
| 583 | return ExprError(); |
| 584 | |
| 585 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref_cache); |
| 586 | return ExprError(); |
| 587 | } |
| 588 | |
| 589 | void SemaOpenACC::CheckDeclReference(SourceLocation Loc, Expr *E, Decl *D) { |
| 590 | if (!getLangOpts().OpenACC || !CacheInfo.ParsingCacheVarList || !D || |
| 591 | D->isInvalidDecl()) |
| 592 | return; |
| 593 | // A 'cache' variable reference MUST be declared before the 'acc.loop' we |
| 594 | // generate in codegen, so we have to mark it invalid here in some way. We do |
| 595 | // so in a bit of a convoluted way as there is no good way to put this into |
| 596 | // the AST, so we store it in SemaOpenACC State. We can check the Scope |
| 597 | // during parsing to make sure there is a 'loop' before the decl is |
| 598 | // declared(and skip during instantiation). |
| 599 | // We only diagnose this as a warning, as this isn't required by the standard |
| 600 | // (unless you take a VERY awkward reading of some awkward prose). |
| 601 | |
| 602 | Scope *CurScope = SemaRef.getCurScope(); |
| 603 | |
| 604 | // if we are at TU level, we are either doing some EXTRA wacky, or are in a |
| 605 | // template instantiation, so just give up. |
| 606 | if (CurScope->getDepth() == 0) |
| 607 | return; |
| 608 | |
| 609 | while (CurScope) { |
| 610 | // If we run into a loop construct scope, than this is 'correct' in that the |
| 611 | // declaration is outside of the loop. |
| 612 | if (CurScope->isOpenACCLoopConstructScope()) |
| 613 | return; |
| 614 | |
| 615 | if (CurScope->isDeclScope(D)) { |
| 616 | Diag(Loc, DiagID: diag::warn_acc_cache_var_not_outside_loop); |
| 617 | |
| 618 | CacheInfo.IsInvalidCacheRef = true; |
| 619 | } |
| 620 | |
| 621 | CurScope = CurScope->getParent(); |
| 622 | } |
| 623 | // If we don't find the decl at all, we assume that it must be outside of the |
| 624 | // loop (or we aren't in a loop!) so skip the diagnostic. |
| 625 | } |
| 626 | |
| 627 | ExprResult SemaOpenACC::ActOnVar(OpenACCDirectiveKind DK, OpenACCClauseKind CK, |
| 628 | Expr *VarExpr) { |
| 629 | // This has unique enough restrictions that we should split it to a separate |
| 630 | // function. |
| 631 | if (DK == OpenACCDirectiveKind::Cache) |
| 632 | return ActOnCacheVar(VarExpr); |
| 633 | |
| 634 | Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts(); |
| 635 | |
| 636 | // 'use_device' doesn't allow array subscript or array sections. |
| 637 | // OpenACC3.3 2.8: |
| 638 | // A 'var' in a 'use_device' clause must be the name of a variable or array. |
| 639 | // OpenACC3.3 2.13: |
| 640 | // A 'var' in a 'declare' directive must be a variable or array name. |
| 641 | if ((CK == OpenACCClauseKind::UseDevice || |
| 642 | DK == OpenACCDirectiveKind::Declare) && |
| 643 | isa<ArraySectionExpr, ArraySubscriptExpr>(Val: CurVarExpr)) { |
| 644 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref_use_device_declare) |
| 645 | << (DK == OpenACCDirectiveKind::Declare); |
| 646 | return ExprError(); |
| 647 | } |
| 648 | |
| 649 | // Sub-arrays/subscript-exprs are fine as long as the base is a |
| 650 | // VarExpr/MemberExpr. So strip all of those off. |
| 651 | while (isa<ArraySectionExpr, ArraySubscriptExpr>(Val: CurVarExpr)) { |
| 652 | if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(Val: CurVarExpr)) |
| 653 | CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts(); |
| 654 | else |
| 655 | CurVarExpr = |
| 656 | cast<ArraySectionExpr>(Val: CurVarExpr)->getBase()->IgnoreParenImpCasts(); |
| 657 | } |
| 658 | |
| 659 | // References to a VarDecl are fine. |
| 660 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: CurVarExpr)) { |
| 661 | if (isa<VarDecl, NonTypeTemplateParmDecl>( |
| 662 | Val: DRE->getFoundDecl()->getCanonicalDecl())) |
| 663 | return VarExpr; |
| 664 | } |
| 665 | |
| 666 | // If CK is a Reduction, this special cases for OpenACC3.3 2.5.15: "A var in a |
| 667 | // reduction clause must be a scalar variable name, an aggregate variable |
| 668 | // name, an array element, or a subarray. |
| 669 | // If CK is a 'use_device', this also isn't valid, as it isn't the name of a |
| 670 | // variable or array, if not done as a member expr. |
| 671 | // A MemberExpr that references a Field is valid for other clauses. |
| 672 | if (const auto *ME = dyn_cast<MemberExpr>(Val: CurVarExpr)) { |
| 673 | if (isa<FieldDecl>(Val: ME->getMemberDecl()->getCanonicalDecl())) { |
| 674 | if (DK == OpenACCDirectiveKind::Declare || |
| 675 | CK == OpenACCClauseKind::Reduction || |
| 676 | CK == OpenACCClauseKind::UseDevice) { |
| 677 | |
| 678 | // We can allow 'member expr' if the 'this' is implicit in the case of |
| 679 | // declare, reduction, and use_device. |
| 680 | const auto *This = dyn_cast<CXXThisExpr>(Val: ME->getBase()); |
| 681 | if (This && This->isImplicit()) |
| 682 | return VarExpr; |
| 683 | } else { |
| 684 | return VarExpr; |
| 685 | } |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | // Referring to 'this' is ok for the most part, but for 'use_device'/'declare' |
| 690 | // doesn't fall into 'variable or array name' |
| 691 | if (CK != OpenACCClauseKind::UseDevice && |
| 692 | DK != OpenACCDirectiveKind::Declare && isa<CXXThisExpr>(Val: CurVarExpr)) |
| 693 | return VarExpr; |
| 694 | |
| 695 | // Nothing really we can do here, as these are dependent. So just return they |
| 696 | // are valid. |
| 697 | if (isa<DependentScopeDeclRefExpr>(Val: CurVarExpr) || |
| 698 | (CK != OpenACCClauseKind::Reduction && |
| 699 | isa<CXXDependentScopeMemberExpr>(Val: CurVarExpr))) |
| 700 | return VarExpr; |
| 701 | |
| 702 | // There isn't really anything we can do in the case of a recovery expr, so |
| 703 | // skip the diagnostic rather than produce a confusing diagnostic. |
| 704 | if (isa<RecoveryExpr>(Val: CurVarExpr)) |
| 705 | return ExprError(); |
| 706 | |
| 707 | if (DK == OpenACCDirectiveKind::Declare) |
| 708 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref_use_device_declare) |
| 709 | << /*declare*/ 1; |
| 710 | else if (CK == OpenACCClauseKind::UseDevice) |
| 711 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref_use_device_declare) |
| 712 | << /*use_device*/ 0; |
| 713 | else |
| 714 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref) |
| 715 | << (CK != OpenACCClauseKind::Reduction); |
| 716 | return ExprError(); |
| 717 | } |
| 718 | |
| 719 | ExprResult SemaOpenACC::ActOnArraySectionExpr(Expr *Base, SourceLocation LBLoc, |
| 720 | Expr *LowerBound, |
| 721 | SourceLocation ColonLoc, |
| 722 | Expr *Length, |
| 723 | SourceLocation RBLoc) { |
| 724 | ASTContext &Context = getASTContext(); |
| 725 | |
| 726 | // Handle placeholders. |
| 727 | if (Base->hasPlaceholderType() && |
| 728 | !Base->hasPlaceholderType(K: BuiltinType::ArraySection)) { |
| 729 | ExprResult Result = SemaRef.CheckPlaceholderExpr(E: Base); |
| 730 | if (Result.isInvalid()) |
| 731 | return ExprError(); |
| 732 | Base = Result.get(); |
| 733 | } |
| 734 | if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) { |
| 735 | ExprResult Result = SemaRef.CheckPlaceholderExpr(E: LowerBound); |
| 736 | if (Result.isInvalid()) |
| 737 | return ExprError(); |
| 738 | Result = SemaRef.DefaultLvalueConversion(E: Result.get()); |
| 739 | if (Result.isInvalid()) |
| 740 | return ExprError(); |
| 741 | LowerBound = Result.get(); |
| 742 | } |
| 743 | if (Length && Length->getType()->isNonOverloadPlaceholderType()) { |
| 744 | ExprResult Result = SemaRef.CheckPlaceholderExpr(E: Length); |
| 745 | if (Result.isInvalid()) |
| 746 | return ExprError(); |
| 747 | Result = SemaRef.DefaultLvalueConversion(E: Result.get()); |
| 748 | if (Result.isInvalid()) |
| 749 | return ExprError(); |
| 750 | Length = Result.get(); |
| 751 | } |
| 752 | |
| 753 | // Check the 'base' value, it must be an array or pointer type, and not to/of |
| 754 | // a function type. |
| 755 | QualType OriginalBaseTy = ArraySectionExpr::getBaseOriginalType(Base); |
| 756 | QualType ResultTy; |
| 757 | if (!Base->isTypeDependent()) { |
| 758 | if (OriginalBaseTy->isAnyPointerType()) { |
| 759 | ResultTy = OriginalBaseTy->getPointeeType(); |
| 760 | } else if (OriginalBaseTy->isArrayType()) { |
| 761 | ResultTy = OriginalBaseTy->getAsArrayTypeUnsafe()->getElementType(); |
| 762 | } else { |
| 763 | return ExprError( |
| 764 | Diag(Loc: Base->getExprLoc(), DiagID: diag::err_acc_typecheck_subarray_value) |
| 765 | << Base->getSourceRange()); |
| 766 | } |
| 767 | |
| 768 | if (ResultTy->isFunctionType()) { |
| 769 | Diag(Loc: Base->getExprLoc(), DiagID: diag::err_acc_subarray_function_type) |
| 770 | << ResultTy << Base->getSourceRange(); |
| 771 | return ExprError(); |
| 772 | } |
| 773 | |
| 774 | if (SemaRef.RequireCompleteType(Loc: Base->getExprLoc(), T: ResultTy, |
| 775 | DiagID: diag::err_acc_subarray_incomplete_type, |
| 776 | Args: Base)) |
| 777 | return ExprError(); |
| 778 | |
| 779 | if (!Base->hasPlaceholderType(K: BuiltinType::ArraySection)) { |
| 780 | ExprResult Result = SemaRef.DefaultFunctionArrayLvalueConversion(E: Base); |
| 781 | if (Result.isInvalid()) |
| 782 | return ExprError(); |
| 783 | Base = Result.get(); |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | auto GetRecovery = [&](Expr *E, QualType Ty) { |
| 788 | ExprResult Recovery = |
| 789 | SemaRef.CreateRecoveryExpr(Begin: E->getBeginLoc(), End: E->getEndLoc(), SubExprs: E, T: Ty); |
| 790 | return Recovery.isUsable() ? Recovery.get() : nullptr; |
| 791 | }; |
| 792 | |
| 793 | // Ensure both of the expressions are int-exprs. |
| 794 | if (LowerBound && !LowerBound->isTypeDependent()) { |
| 795 | ExprResult LBRes = |
| 796 | ActOnIntExpr(DK: OpenACCDirectiveKind::Invalid, CK: OpenACCClauseKind::Invalid, |
| 797 | Loc: LowerBound->getExprLoc(), IntExpr: LowerBound); |
| 798 | |
| 799 | if (LBRes.isUsable()) |
| 800 | LBRes = SemaRef.DefaultLvalueConversion(E: LBRes.get()); |
| 801 | LowerBound = |
| 802 | LBRes.isUsable() ? LBRes.get() : GetRecovery(LowerBound, Context.IntTy); |
| 803 | } |
| 804 | |
| 805 | if (Length && !Length->isTypeDependent()) { |
| 806 | ExprResult LenRes = |
| 807 | ActOnIntExpr(DK: OpenACCDirectiveKind::Invalid, CK: OpenACCClauseKind::Invalid, |
| 808 | Loc: Length->getExprLoc(), IntExpr: Length); |
| 809 | |
| 810 | if (LenRes.isUsable()) |
| 811 | LenRes = SemaRef.DefaultLvalueConversion(E: LenRes.get()); |
| 812 | Length = |
| 813 | LenRes.isUsable() ? LenRes.get() : GetRecovery(Length, Context.IntTy); |
| 814 | } |
| 815 | |
| 816 | // Length is required if the base type is not an array of known bounds. |
| 817 | if (!Length && (OriginalBaseTy.isNull() || |
| 818 | (!OriginalBaseTy->isDependentType() && |
| 819 | !OriginalBaseTy->isConstantArrayType() && |
| 820 | !OriginalBaseTy->isDependentSizedArrayType()))) { |
| 821 | bool IsArray = !OriginalBaseTy.isNull() && OriginalBaseTy->isArrayType(); |
| 822 | SourceLocation DiagLoc = ColonLoc.isInvalid() ? LBLoc : ColonLoc; |
| 823 | Diag(Loc: DiagLoc, DiagID: diag::err_acc_subarray_no_length) << IsArray; |
| 824 | // Fill in a dummy 'length' so that when we instantiate this we don't |
| 825 | // double-diagnose here. |
| 826 | ExprResult Recovery = SemaRef.CreateRecoveryExpr( |
| 827 | Begin: DiagLoc, End: SourceLocation(), SubExprs: ArrayRef<Expr *>(), T: Context.IntTy); |
| 828 | Length = Recovery.isUsable() ? Recovery.get() : nullptr; |
| 829 | } |
| 830 | |
| 831 | // Check the values of each of the arguments, they cannot be negative(we |
| 832 | // assume), and if the array bound is known, must be within range. As we do |
| 833 | // so, do our best to continue with evaluation, we can set the |
| 834 | // value/expression to nullptr/nullopt if they are invalid, and treat them as |
| 835 | // not present for the rest of evaluation. |
| 836 | |
| 837 | // We don't have to check for dependence, because the dependent size is |
| 838 | // represented as a different AST node. |
| 839 | std::optional<llvm::APSInt> BaseSize; |
| 840 | if (!OriginalBaseTy.isNull() && OriginalBaseTy->isConstantArrayType()) { |
| 841 | const auto *ArrayTy = Context.getAsConstantArrayType(T: OriginalBaseTy); |
| 842 | BaseSize = ArrayTy->getSize(); |
| 843 | } |
| 844 | |
| 845 | auto GetBoundValue = [&](Expr *E) -> std::optional<llvm::APSInt> { |
| 846 | if (!E || E->isInstantiationDependent()) |
| 847 | return std::nullopt; |
| 848 | |
| 849 | Expr::EvalResult Res; |
| 850 | if (!E->EvaluateAsInt(Result&: Res, Ctx: Context)) |
| 851 | return std::nullopt; |
| 852 | return Res.Val.getInt(); |
| 853 | }; |
| 854 | |
| 855 | std::optional<llvm::APSInt> LowerBoundValue = GetBoundValue(LowerBound); |
| 856 | std::optional<llvm::APSInt> LengthValue = GetBoundValue(Length); |
| 857 | |
| 858 | // Check lower bound for negative or out of range. |
| 859 | if (LowerBoundValue.has_value()) { |
| 860 | if (LowerBoundValue->isNegative()) { |
| 861 | Diag(Loc: LowerBound->getExprLoc(), DiagID: diag::err_acc_subarray_negative) |
| 862 | << /*LowerBound=*/0 << toString(I: *LowerBoundValue, /*Radix=*/10); |
| 863 | LowerBoundValue.reset(); |
| 864 | LowerBound = GetRecovery(LowerBound, LowerBound->getType()); |
| 865 | } else if (BaseSize.has_value() && |
| 866 | llvm::APSInt::compareValues(I1: *LowerBoundValue, I2: *BaseSize) >= 0) { |
| 867 | // Lower bound (start index) must be less than the size of the array. |
| 868 | Diag(Loc: LowerBound->getExprLoc(), DiagID: diag::err_acc_subarray_out_of_range) |
| 869 | << /*LowerBound=*/0 << toString(I: *LowerBoundValue, /*Radix=*/10) |
| 870 | << toString(I: *BaseSize, /*Radix=*/10); |
| 871 | LowerBoundValue.reset(); |
| 872 | LowerBound = GetRecovery(LowerBound, LowerBound->getType()); |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | // Check length for negative or out of range. |
| 877 | if (LengthValue.has_value()) { |
| 878 | if (LengthValue->isNegative()) { |
| 879 | Diag(Loc: Length->getExprLoc(), DiagID: diag::err_acc_subarray_negative) |
| 880 | << /*Length=*/1 << toString(I: *LengthValue, /*Radix=*/10); |
| 881 | LengthValue.reset(); |
| 882 | Length = GetRecovery(Length, Length->getType()); |
| 883 | } else if (BaseSize.has_value() && |
| 884 | llvm::APSInt::compareValues(I1: *LengthValue, I2: *BaseSize) > 0) { |
| 885 | // Length must be lessthan or EQUAL to the size of the array. |
| 886 | Diag(Loc: Length->getExprLoc(), DiagID: diag::err_acc_subarray_out_of_range) |
| 887 | << /*Length=*/1 << toString(I: *LengthValue, /*Radix=*/10) |
| 888 | << toString(I: *BaseSize, /*Radix=*/10); |
| 889 | LengthValue.reset(); |
| 890 | Length = GetRecovery(Length, Length->getType()); |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | // Adding two APSInts requires matching sign, so extract that here. |
| 895 | auto AddAPSInt = [](llvm::APSInt LHS, llvm::APSInt RHS) -> llvm::APSInt { |
| 896 | if (LHS.isSigned() == RHS.isSigned()) |
| 897 | return LHS + RHS; |
| 898 | |
| 899 | unsigned Width = std::max(a: LHS.getBitWidth(), b: RHS.getBitWidth()) + 1; |
| 900 | return llvm::APSInt(LHS.sext(width: Width) + RHS.sext(width: Width), /*Signed=*/true); |
| 901 | }; |
| 902 | |
| 903 | // If we know all 3 values, we can diagnose that the total value would be out |
| 904 | // of range. |
| 905 | if (BaseSize.has_value() && LowerBoundValue.has_value() && |
| 906 | LengthValue.has_value() && |
| 907 | llvm::APSInt::compareValues(I1: AddAPSInt(*LowerBoundValue, *LengthValue), |
| 908 | I2: *BaseSize) > 0) { |
| 909 | Diag(Loc: Base->getExprLoc(), |
| 910 | DiagID: diag::err_acc_subarray_base_plus_length_out_of_range) |
| 911 | << toString(I: *LowerBoundValue, /*Radix=*/10) |
| 912 | << toString(I: *LengthValue, /*Radix=*/10) |
| 913 | << toString(I: *BaseSize, /*Radix=*/10); |
| 914 | |
| 915 | LowerBoundValue.reset(); |
| 916 | LowerBound = GetRecovery(LowerBound, LowerBound->getType()); |
| 917 | LengthValue.reset(); |
| 918 | Length = GetRecovery(Length, Length->getType()); |
| 919 | } |
| 920 | |
| 921 | // If any part of the expression is dependent, return a dependent sub-array. |
| 922 | QualType ArrayExprTy = Context.ArraySectionTy; |
| 923 | if (Base->isTypeDependent() || |
| 924 | (LowerBound && LowerBound->isInstantiationDependent()) || |
| 925 | (Length && Length->isInstantiationDependent())) |
| 926 | ArrayExprTy = Context.DependentTy; |
| 927 | |
| 928 | return new (Context) |
| 929 | ArraySectionExpr(Base, LowerBound, Length, ArrayExprTy, VK_LValue, |
| 930 | OK_Ordinary, ColonLoc, RBLoc); |
| 931 | } |
| 932 | |
| 933 | void SemaOpenACC::ActOnWhileStmt(SourceLocation WhileLoc) { |
| 934 | if (!getLangOpts().OpenACC) |
| 935 | return; |
| 936 | |
| 937 | if (!LoopInfo.TopLevelLoopSeen) |
| 938 | return; |
| 939 | |
| 940 | if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) { |
| 941 | Diag(Loc: WhileLoc, DiagID: diag::err_acc_invalid_in_loop) |
| 942 | << /*while loop*/ 1 << CollapseInfo.DirectiveKind |
| 943 | << OpenACCClauseKind::Collapse; |
| 944 | assert(CollapseInfo.ActiveCollapse && "Collapse count without object?" ); |
| 945 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
| 946 | DiagID: diag::note_acc_active_clause_here) |
| 947 | << OpenACCClauseKind::Collapse; |
| 948 | |
| 949 | // Remove the value so that we don't get cascading errors in the body. The |
| 950 | // caller RAII object will restore this. |
| 951 | CollapseInfo.CurCollapseCount = std::nullopt; |
| 952 | } |
| 953 | |
| 954 | if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) { |
| 955 | Diag(Loc: WhileLoc, DiagID: diag::err_acc_invalid_in_loop) |
| 956 | << /*while loop*/ 1 << TileInfo.DirectiveKind |
| 957 | << OpenACCClauseKind::Tile; |
| 958 | assert(TileInfo.ActiveTile && "tile count without object?" ); |
| 959 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), DiagID: diag::note_acc_active_clause_here) |
| 960 | << OpenACCClauseKind::Tile; |
| 961 | |
| 962 | // Remove the value so that we don't get cascading errors in the body. The |
| 963 | // caller RAII object will restore this. |
| 964 | TileInfo.CurTileCount = std::nullopt; |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | void SemaOpenACC::ActOnDoStmt(SourceLocation DoLoc) { |
| 969 | if (!getLangOpts().OpenACC) |
| 970 | return; |
| 971 | |
| 972 | if (!LoopInfo.TopLevelLoopSeen) |
| 973 | return; |
| 974 | |
| 975 | if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) { |
| 976 | Diag(Loc: DoLoc, DiagID: diag::err_acc_invalid_in_loop) |
| 977 | << /*do loop*/ 2 << CollapseInfo.DirectiveKind |
| 978 | << OpenACCClauseKind::Collapse; |
| 979 | assert(CollapseInfo.ActiveCollapse && "Collapse count without object?" ); |
| 980 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
| 981 | DiagID: diag::note_acc_active_clause_here) |
| 982 | << OpenACCClauseKind::Collapse; |
| 983 | |
| 984 | // Remove the value so that we don't get cascading errors in the body. The |
| 985 | // caller RAII object will restore this. |
| 986 | CollapseInfo.CurCollapseCount = std::nullopt; |
| 987 | } |
| 988 | |
| 989 | if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) { |
| 990 | Diag(Loc: DoLoc, DiagID: diag::err_acc_invalid_in_loop) |
| 991 | << /*do loop*/ 2 << TileInfo.DirectiveKind << OpenACCClauseKind::Tile; |
| 992 | assert(TileInfo.ActiveTile && "tile count without object?" ); |
| 993 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), DiagID: diag::note_acc_active_clause_here) |
| 994 | << OpenACCClauseKind::Tile; |
| 995 | |
| 996 | // Remove the value so that we don't get cascading errors in the body. The |
| 997 | // caller RAII object will restore this. |
| 998 | TileInfo.CurTileCount = std::nullopt; |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | void SemaOpenACC::ForStmtBeginHelper(SourceLocation ForLoc, |
| 1003 | ForStmtBeginChecker &C) { |
| 1004 | assert(getLangOpts().OpenACC && "Check enabled when not OpenACC?" ); |
| 1005 | |
| 1006 | // Enable the while/do-while checking. |
| 1007 | LoopInfo.TopLevelLoopSeen = true; |
| 1008 | |
| 1009 | if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) { |
| 1010 | // Check the format of this loop if it is affected by the collapse. |
| 1011 | C.check(); |
| 1012 | |
| 1013 | // OpenACC 3.3 2.9.1: |
| 1014 | // Each associated loop, except the innermost, must contain exactly one loop |
| 1015 | // or loop nest. |
| 1016 | // This checks for more than 1 loop at the current level, the |
| 1017 | // 'depth'-satisifed checking manages the 'not zero' case. |
| 1018 | if (LoopInfo.CurLevelHasLoopAlready) { |
| 1019 | Diag(Loc: ForLoc, DiagID: diag::err_acc_clause_multiple_loops) |
| 1020 | << CollapseInfo.DirectiveKind << OpenACCClauseKind::Collapse; |
| 1021 | assert(CollapseInfo.ActiveCollapse && "No collapse object?" ); |
| 1022 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
| 1023 | DiagID: diag::note_acc_active_clause_here) |
| 1024 | << OpenACCClauseKind::Collapse; |
| 1025 | } else { |
| 1026 | --(*CollapseInfo.CurCollapseCount); |
| 1027 | |
| 1028 | // Once we've hit zero here, we know we have deep enough 'for' loops to |
| 1029 | // get to the bottom. |
| 1030 | if (*CollapseInfo.CurCollapseCount == 0) |
| 1031 | CollapseInfo.CollapseDepthSatisfied = true; |
| 1032 | } |
| 1033 | } |
| 1034 | |
| 1035 | if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) { |
| 1036 | // Check the format of this loop if it is affected by the tile. |
| 1037 | C.check(); |
| 1038 | |
| 1039 | if (LoopInfo.CurLevelHasLoopAlready) { |
| 1040 | Diag(Loc: ForLoc, DiagID: diag::err_acc_clause_multiple_loops) |
| 1041 | << TileInfo.DirectiveKind << OpenACCClauseKind::Tile; |
| 1042 | assert(TileInfo.ActiveTile && "No tile object?" ); |
| 1043 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), |
| 1044 | DiagID: diag::note_acc_active_clause_here) |
| 1045 | << OpenACCClauseKind::Tile; |
| 1046 | } else { |
| 1047 | TileInfo.CurTileCount = *TileInfo.CurTileCount - 1; |
| 1048 | // Once we've hit zero here, we know we have deep enough 'for' loops to |
| 1049 | // get to the bottom. |
| 1050 | if (*TileInfo.CurTileCount == 0) |
| 1051 | TileInfo.TileDepthSatisfied = true; |
| 1052 | } |
| 1053 | } |
| 1054 | |
| 1055 | // Set this to 'false' for the body of this loop, so that the next level |
| 1056 | // checks independently. |
| 1057 | LoopInfo.CurLevelHasLoopAlready = false; |
| 1058 | } |
| 1059 | |
| 1060 | namespace { |
| 1061 | bool isValidLoopVariableType(QualType LoopVarTy) { |
| 1062 | // Just skip if it is dependent, it could be any of the below. |
| 1063 | if (LoopVarTy->isDependentType()) |
| 1064 | return true; |
| 1065 | |
| 1066 | // The loop variable must be of integer, |
| 1067 | if (LoopVarTy->isIntegerType()) |
| 1068 | return true; |
| 1069 | |
| 1070 | // C/C++ pointer, |
| 1071 | if (LoopVarTy->isPointerType()) |
| 1072 | return true; |
| 1073 | |
| 1074 | // or C++ random-access iterator type. |
| 1075 | if (const auto *RD = LoopVarTy->getAsCXXRecordDecl()) { |
| 1076 | // Note: Only do CXXRecordDecl because RecordDecl can't be a random access |
| 1077 | // iterator type! |
| 1078 | |
| 1079 | // We could either do a lot of work to see if this matches |
| 1080 | // random-access-iterator, but it seems that just checking that the |
| 1081 | // 'iterator_category' typedef is more than sufficient. If programmers are |
| 1082 | // willing to lie about this, we can let them. |
| 1083 | |
| 1084 | for (const auto *TD : |
| 1085 | llvm::make_filter_range(Range: RD->decls(), Pred: llvm::IsaPred<TypedefNameDecl>)) { |
| 1086 | const auto *TDND = cast<TypedefNameDecl>(Val: TD)->getCanonicalDecl(); |
| 1087 | |
| 1088 | if (TDND->getName() != "iterator_category" ) |
| 1089 | continue; |
| 1090 | |
| 1091 | // If there is no type for this decl, return false. |
| 1092 | if (TDND->getUnderlyingType().isNull()) |
| 1093 | return false; |
| 1094 | |
| 1095 | const CXXRecordDecl *ItrCategoryDecl = |
| 1096 | TDND->getUnderlyingType()->getAsCXXRecordDecl(); |
| 1097 | |
| 1098 | // If the category isn't a record decl, it isn't the tag type. |
| 1099 | if (!ItrCategoryDecl) |
| 1100 | return false; |
| 1101 | |
| 1102 | auto IsRandomAccessIteratorTag = [](const CXXRecordDecl *RD) { |
| 1103 | if (RD->getName() != "random_access_iterator_tag" ) |
| 1104 | return false; |
| 1105 | // Checks just for std::random_access_iterator_tag. |
| 1106 | return RD->getEnclosingNamespaceContext()->isStdNamespace(); |
| 1107 | }; |
| 1108 | |
| 1109 | if (IsRandomAccessIteratorTag(ItrCategoryDecl)) |
| 1110 | return true; |
| 1111 | |
| 1112 | // We can also support tag-types inherited from the |
| 1113 | // random_access_iterator_tag. |
| 1114 | for (CXXBaseSpecifier BS : ItrCategoryDecl->bases()) |
| 1115 | if (IsRandomAccessIteratorTag(BS.getType()->getAsCXXRecordDecl())) |
| 1116 | return true; |
| 1117 | |
| 1118 | return false; |
| 1119 | } |
| 1120 | } |
| 1121 | |
| 1122 | return false; |
| 1123 | } |
| 1124 | const ValueDecl *getDeclFromExpr(const Expr *E) { |
| 1125 | E = E->IgnoreParenImpCasts(); |
| 1126 | if (const auto *FE = dyn_cast<FullExpr>(Val: E)) |
| 1127 | E = FE->getSubExpr(); |
| 1128 | |
| 1129 | E = E->IgnoreParenImpCasts(); |
| 1130 | |
| 1131 | if (!E) |
| 1132 | return nullptr; |
| 1133 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
| 1134 | return dyn_cast<ValueDecl>(Val: DRE->getDecl()); |
| 1135 | |
| 1136 | if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) |
| 1137 | if (isa<CXXThisExpr>(Val: ME->getBase()->IgnoreParenImpCasts())) |
| 1138 | return ME->getMemberDecl(); |
| 1139 | |
| 1140 | return nullptr; |
| 1141 | } |
| 1142 | } // namespace |
| 1143 | |
| 1144 | void SemaOpenACC::ForStmtBeginChecker::checkRangeFor() { |
| 1145 | const RangeForInfo &RFI = std::get<RangeForInfo>(v&: Info); |
| 1146 | // If this hasn't changed since last instantiated we're done. |
| 1147 | if (RFI.Uninstantiated == RFI.CurrentVersion) |
| 1148 | return; |
| 1149 | |
| 1150 | const DeclStmt *UninstRangeStmt = |
| 1151 | IsInstantiation ? RFI.Uninstantiated->getBeginStmt() : nullptr; |
| 1152 | const DeclStmt *RangeStmt = RFI.CurrentVersion->getBeginStmt(); |
| 1153 | |
| 1154 | // If this isn't the first time we've checked this loop, suppress any cases |
| 1155 | // where we previously diagnosed. |
| 1156 | if (UninstRangeStmt) { |
| 1157 | const ValueDecl *InitVar = |
| 1158 | cast<ValueDecl>(Val: UninstRangeStmt->getSingleDecl()); |
| 1159 | QualType VarType = InitVar->getType().getNonReferenceType(); |
| 1160 | |
| 1161 | if (!isValidLoopVariableType(LoopVarTy: VarType)) |
| 1162 | return; |
| 1163 | } |
| 1164 | |
| 1165 | // In some dependent contexts, the autogenerated range statement doesn't get |
| 1166 | // included until instantiation, so skip for now. |
| 1167 | if (RangeStmt) { |
| 1168 | const ValueDecl *InitVar = cast<ValueDecl>(Val: RangeStmt->getSingleDecl()); |
| 1169 | QualType VarType = InitVar->getType().getNonReferenceType(); |
| 1170 | |
| 1171 | if (!isValidLoopVariableType(LoopVarTy: VarType)) { |
| 1172 | SemaRef.Diag(Loc: InitVar->getBeginLoc(), DiagID: diag::err_acc_loop_variable_type) |
| 1173 | << SemaRef.LoopWithoutSeqInfo.Kind << VarType; |
| 1174 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1175 | DiagID: diag::note_acc_construct_here) |
| 1176 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1177 | return; |
| 1178 | } |
| 1179 | } |
| 1180 | } |
| 1181 | bool SemaOpenACC::ForStmtBeginChecker::checkForInit(const Stmt *InitStmt, |
| 1182 | const ValueDecl *&InitVar, |
| 1183 | bool Diag) { |
| 1184 | // Init statement is required. |
| 1185 | if (!InitStmt) { |
| 1186 | if (Diag) { |
| 1187 | SemaRef.Diag(Loc: ForLoc, DiagID: diag::err_acc_loop_variable) |
| 1188 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1189 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1190 | DiagID: diag::note_acc_construct_here) |
| 1191 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1192 | } |
| 1193 | return true; |
| 1194 | } |
| 1195 | auto DiagLoopVar = [this, Diag, InitStmt]() { |
| 1196 | if (Diag) { |
| 1197 | SemaRef.Diag(Loc: InitStmt->getBeginLoc(), DiagID: diag::err_acc_loop_variable) |
| 1198 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1199 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1200 | DiagID: diag::note_acc_construct_here) |
| 1201 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1202 | } |
| 1203 | return true; |
| 1204 | }; |
| 1205 | |
| 1206 | if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(Val: InitStmt)) |
| 1207 | InitStmt = ExprTemp->getSubExpr(); |
| 1208 | if (const auto *E = dyn_cast<Expr>(Val: InitStmt)) |
| 1209 | InitStmt = E->IgnoreParenImpCasts(); |
| 1210 | |
| 1211 | InitVar = nullptr; |
| 1212 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: InitStmt)) { |
| 1213 | // Allow assignment operator here. |
| 1214 | |
| 1215 | if (!BO->isAssignmentOp()) |
| 1216 | return DiagLoopVar(); |
| 1217 | |
| 1218 | const Expr *LHS = BO->getLHS()->IgnoreParenImpCasts(); |
| 1219 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: LHS)) |
| 1220 | InitVar = DRE->getDecl(); |
| 1221 | } else if (const auto *DS = dyn_cast<DeclStmt>(Val: InitStmt)) { |
| 1222 | // Allow T t = <whatever> |
| 1223 | if (!DS->isSingleDecl()) |
| 1224 | return DiagLoopVar(); |
| 1225 | InitVar = dyn_cast<ValueDecl>(Val: DS->getSingleDecl()); |
| 1226 | |
| 1227 | // Ensure we have an initializer, unless this is a record/dependent type. |
| 1228 | if (InitVar) { |
| 1229 | if (!isa<VarDecl>(Val: InitVar)) |
| 1230 | return DiagLoopVar(); |
| 1231 | |
| 1232 | if (!InitVar->getType()->isRecordType() && |
| 1233 | !InitVar->getType()->isDependentType() && |
| 1234 | !cast<VarDecl>(Val: InitVar)->hasInit()) |
| 1235 | return DiagLoopVar(); |
| 1236 | } |
| 1237 | } else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(Val: InitStmt)) { |
| 1238 | // Allow assignment operator call. |
| 1239 | if (CE->getOperator() != OO_Equal) |
| 1240 | return DiagLoopVar(); |
| 1241 | |
| 1242 | const Expr *LHS = CE->getArg(Arg: 0)->IgnoreParenImpCasts(); |
| 1243 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: LHS)) { |
| 1244 | InitVar = DRE->getDecl(); |
| 1245 | } else if (auto *ME = dyn_cast<MemberExpr>(Val: LHS)) { |
| 1246 | if (isa<CXXThisExpr>(Val: ME->getBase()->IgnoreParenImpCasts())) |
| 1247 | InitVar = ME->getMemberDecl(); |
| 1248 | } |
| 1249 | } |
| 1250 | |
| 1251 | // If after all of that, we haven't found a variable, give up. |
| 1252 | if (!InitVar) |
| 1253 | return DiagLoopVar(); |
| 1254 | |
| 1255 | InitVar = cast<ValueDecl>(Val: InitVar->getCanonicalDecl()); |
| 1256 | QualType VarType = InitVar->getType().getNonReferenceType(); |
| 1257 | |
| 1258 | // Since we have one, all we need to do is ensure it is the right type. |
| 1259 | if (!isValidLoopVariableType(LoopVarTy: VarType)) { |
| 1260 | if (Diag) { |
| 1261 | SemaRef.Diag(Loc: InitVar->getBeginLoc(), DiagID: diag::err_acc_loop_variable_type) |
| 1262 | << SemaRef.LoopWithoutSeqInfo.Kind << VarType; |
| 1263 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1264 | DiagID: diag::note_acc_construct_here) |
| 1265 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1266 | } |
| 1267 | return true; |
| 1268 | } |
| 1269 | |
| 1270 | return false; |
| 1271 | } |
| 1272 | |
| 1273 | bool SemaOpenACC::ForStmtBeginChecker::checkForCond(const Stmt *CondStmt, |
| 1274 | const ValueDecl *InitVar, |
| 1275 | bool Diag) { |
| 1276 | // A condition statement is required. |
| 1277 | if (!CondStmt) { |
| 1278 | if (Diag) { |
| 1279 | SemaRef.Diag(Loc: ForLoc, DiagID: diag::err_acc_loop_terminating_condition) |
| 1280 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1281 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1282 | DiagID: diag::note_acc_construct_here) |
| 1283 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1284 | } |
| 1285 | |
| 1286 | return true; |
| 1287 | } |
| 1288 | auto DiagCondVar = [this, Diag, CondStmt] { |
| 1289 | if (Diag) { |
| 1290 | SemaRef.Diag(Loc: CondStmt->getBeginLoc(), |
| 1291 | DiagID: diag::err_acc_loop_terminating_condition) |
| 1292 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1293 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1294 | DiagID: diag::note_acc_construct_here) |
| 1295 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1296 | } |
| 1297 | return true; |
| 1298 | }; |
| 1299 | |
| 1300 | if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(Val: CondStmt)) |
| 1301 | CondStmt = ExprTemp->getSubExpr(); |
| 1302 | if (const auto *E = dyn_cast<Expr>(Val: CondStmt)) |
| 1303 | CondStmt = E->IgnoreParenImpCasts(); |
| 1304 | |
| 1305 | const ValueDecl *CondVar = nullptr; |
| 1306 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: CondStmt)) { |
| 1307 | switch (BO->getOpcode()) { |
| 1308 | default: |
| 1309 | return DiagCondVar(); |
| 1310 | case BO_EQ: |
| 1311 | case BO_LT: |
| 1312 | case BO_GT: |
| 1313 | case BO_NE: |
| 1314 | case BO_LE: |
| 1315 | case BO_GE: |
| 1316 | break; |
| 1317 | } |
| 1318 | |
| 1319 | // Assign the condition-var to the LHS. If it either comes back null, or |
| 1320 | // the LHS doesn't match the InitVar, assign it to the RHS so that 5 < N is |
| 1321 | // allowed. |
| 1322 | CondVar = getDeclFromExpr(E: BO->getLHS()); |
| 1323 | if (!CondVar || |
| 1324 | (InitVar && CondVar->getCanonicalDecl() != InitVar->getCanonicalDecl())) |
| 1325 | CondVar = getDeclFromExpr(E: BO->getRHS()); |
| 1326 | |
| 1327 | } else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(Val: CondStmt)) { |
| 1328 | // Any of the comparison ops should be ok here, but we don't know how to |
| 1329 | // handle spaceship, so disallow for now. |
| 1330 | if (!CE->isComparisonOp() || CE->getOperator() == OO_Spaceship) |
| 1331 | return DiagCondVar(); |
| 1332 | |
| 1333 | // Same logic here: Assign it to the LHS, unless the LHS comes back null or |
| 1334 | // not equal to the init var. |
| 1335 | CondVar = getDeclFromExpr(E: CE->getArg(Arg: 0)); |
| 1336 | if (!CondVar || |
| 1337 | (InitVar && |
| 1338 | CondVar->getCanonicalDecl() != InitVar->getCanonicalDecl() && |
| 1339 | CE->getNumArgs() > 1)) |
| 1340 | CondVar = getDeclFromExpr(E: CE->getArg(Arg: 1)); |
| 1341 | } else { |
| 1342 | return DiagCondVar(); |
| 1343 | } |
| 1344 | |
| 1345 | if (!CondVar) |
| 1346 | return DiagCondVar(); |
| 1347 | |
| 1348 | // Don't consider this an error unless the init variable was properly set, |
| 1349 | // else check to make sure they are the same variable. |
| 1350 | if (InitVar && CondVar->getCanonicalDecl() != InitVar->getCanonicalDecl()) |
| 1351 | return DiagCondVar(); |
| 1352 | |
| 1353 | return false; |
| 1354 | } |
| 1355 | |
| 1356 | namespace { |
| 1357 | // Helper to check the RHS of an assignment during for's step. We can allow |
| 1358 | // InitVar = InitVar + N, InitVar = N + InitVar, and Initvar = Initvar - N, |
| 1359 | // where N is an integer. |
| 1360 | bool isValidForIncRHSAssign(const ValueDecl *InitVar, const Expr *RHS) { |
| 1361 | |
| 1362 | auto isValid = [](const ValueDecl *InitVar, const Expr *InnerLHS, |
| 1363 | const Expr *InnerRHS, bool IsAddition) { |
| 1364 | // ONE of the sides has to be an integer type. |
| 1365 | if (!InnerLHS->getType()->isIntegerType() && |
| 1366 | !InnerRHS->getType()->isIntegerType()) |
| 1367 | return false; |
| 1368 | |
| 1369 | // If the init var is already an error, don't bother trying to check for |
| 1370 | // it. |
| 1371 | if (!InitVar) |
| 1372 | return true; |
| 1373 | |
| 1374 | const ValueDecl *LHSDecl = getDeclFromExpr(E: InnerLHS); |
| 1375 | const ValueDecl *RHSDecl = getDeclFromExpr(E: InnerRHS); |
| 1376 | // If we can't get a declaration, this is probably an error, so give up. |
| 1377 | if (!LHSDecl || !RHSDecl) |
| 1378 | return true; |
| 1379 | |
| 1380 | // If the LHS is the InitVar, the other must be int, so this is valid. |
| 1381 | if (LHSDecl->getCanonicalDecl() == |
| 1382 | InitVar->getCanonicalDecl()) |
| 1383 | return true; |
| 1384 | |
| 1385 | // Subtraction doesn't allow the RHS to be init var, so this is invalid. |
| 1386 | if (!IsAddition) |
| 1387 | return false; |
| 1388 | |
| 1389 | return RHSDecl->getCanonicalDecl() == |
| 1390 | InitVar->getCanonicalDecl(); |
| 1391 | }; |
| 1392 | |
| 1393 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: RHS)) { |
| 1394 | BinaryOperatorKind OpC = BO->getOpcode(); |
| 1395 | if (OpC != BO_Add && OpC != BO_Sub) |
| 1396 | return false; |
| 1397 | return isValid(InitVar, BO->getLHS(), BO->getRHS(), OpC == BO_Add); |
| 1398 | } else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(Val: RHS)) { |
| 1399 | OverloadedOperatorKind Op = CE->getOperator(); |
| 1400 | if (Op != OO_Plus && Op != OO_Minus) |
| 1401 | return false; |
| 1402 | return isValid(InitVar, CE->getArg(Arg: 0), CE->getArg(Arg: 1), Op == OO_Plus); |
| 1403 | } |
| 1404 | |
| 1405 | return false; |
| 1406 | } |
| 1407 | } // namespace |
| 1408 | |
| 1409 | bool SemaOpenACC::ForStmtBeginChecker::checkForInc(const Stmt *IncStmt, |
| 1410 | const ValueDecl *InitVar, |
| 1411 | bool Diag) { |
| 1412 | if (!IncStmt) { |
| 1413 | if (Diag) { |
| 1414 | SemaRef.Diag(Loc: ForLoc, DiagID: diag::err_acc_loop_not_monotonic) |
| 1415 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1416 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1417 | DiagID: diag::note_acc_construct_here) |
| 1418 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1419 | } |
| 1420 | return true; |
| 1421 | } |
| 1422 | auto DiagIncVar = [this, Diag, IncStmt] { |
| 1423 | if (Diag) { |
| 1424 | SemaRef.Diag(Loc: IncStmt->getBeginLoc(), DiagID: diag::err_acc_loop_not_monotonic) |
| 1425 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1426 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
| 1427 | DiagID: diag::note_acc_construct_here) |
| 1428 | << SemaRef.LoopWithoutSeqInfo.Kind; |
| 1429 | } |
| 1430 | return true; |
| 1431 | }; |
| 1432 | |
| 1433 | if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(Val: IncStmt)) |
| 1434 | IncStmt = ExprTemp->getSubExpr(); |
| 1435 | if (const auto *E = dyn_cast<Expr>(Val: IncStmt)) |
| 1436 | IncStmt = E->IgnoreParenImpCasts(); |
| 1437 | |
| 1438 | const ValueDecl *IncVar = nullptr; |
| 1439 | // Here we enforce the monotonically increase/decrease: |
| 1440 | if (const auto *UO = dyn_cast<UnaryOperator>(Val: IncStmt)) { |
| 1441 | // Allow increment/decrement ops. |
| 1442 | if (!UO->isIncrementDecrementOp()) |
| 1443 | return DiagIncVar(); |
| 1444 | IncVar = getDeclFromExpr(E: UO->getSubExpr()); |
| 1445 | } else if (const auto *BO = dyn_cast<BinaryOperator>(Val: IncStmt)) { |
| 1446 | switch (BO->getOpcode()) { |
| 1447 | default: |
| 1448 | return DiagIncVar(); |
| 1449 | case BO_AddAssign: |
| 1450 | case BO_SubAssign: |
| 1451 | break; |
| 1452 | case BO_Assign: |
| 1453 | // For assignment we also allow InitVar = InitVar + N, InitVar = N + |
| 1454 | // InitVar, and InitVar = InitVar - N; BUT only if 'N' is integral. |
| 1455 | if (!isValidForIncRHSAssign(InitVar, RHS: BO->getRHS())) |
| 1456 | return DiagIncVar(); |
| 1457 | break; |
| 1458 | } |
| 1459 | IncVar = getDeclFromExpr(E: BO->getLHS()); |
| 1460 | } else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(Val: IncStmt)) { |
| 1461 | switch (CE->getOperator()) { |
| 1462 | default: |
| 1463 | return DiagIncVar(); |
| 1464 | case OO_PlusPlus: |
| 1465 | case OO_MinusMinus: |
| 1466 | case OO_PlusEqual: |
| 1467 | case OO_MinusEqual: |
| 1468 | break; |
| 1469 | case OO_Equal: |
| 1470 | // For assignment we also allow InitVar = InitVar + N, InitVar = N + |
| 1471 | // InitVar, and InitVar = InitVar - N; BUT only if 'N' is integral. |
| 1472 | if (!isValidForIncRHSAssign(InitVar, RHS: CE->getArg(Arg: 1))) |
| 1473 | return DiagIncVar(); |
| 1474 | break; |
| 1475 | } |
| 1476 | |
| 1477 | IncVar = getDeclFromExpr(E: CE->getArg(Arg: 0)); |
| 1478 | } else { |
| 1479 | return DiagIncVar(); |
| 1480 | } |
| 1481 | |
| 1482 | if (!IncVar) |
| 1483 | return DiagIncVar(); |
| 1484 | |
| 1485 | // InitVar shouldn't be null unless there was an error, so don't diagnose if |
| 1486 | // that is the case. Else we should ensure that it refers to the loop |
| 1487 | // value. |
| 1488 | if (InitVar && IncVar->getCanonicalDecl() != InitVar->getCanonicalDecl()) |
| 1489 | return DiagIncVar(); |
| 1490 | |
| 1491 | return false; |
| 1492 | } |
| 1493 | |
| 1494 | void SemaOpenACC::ForStmtBeginChecker::checkFor() { |
| 1495 | const CheckForInfo &CFI = std::get<CheckForInfo>(v&: Info); |
| 1496 | |
| 1497 | if (!IsInstantiation) { |
| 1498 | // If this isn't an instantiation, we can just check all of these and |
| 1499 | // diagnose. |
| 1500 | const ValueDecl *CurInitVar = nullptr; |
| 1501 | checkForInit(InitStmt: CFI.Current.Init, InitVar&: CurInitVar, /*Diag=*/true); |
| 1502 | checkForCond(CondStmt: CFI.Current.Condition, InitVar: CurInitVar, /*Diag=*/true); |
| 1503 | checkForInc(IncStmt: CFI.Current.Increment, InitVar: CurInitVar, /*DIag=*/Diag: true); |
| 1504 | } else { |
| 1505 | const ValueDecl *UninstInitVar = nullptr; |
| 1506 | // Checking the 'init' section first. We have to always run both versions, |
| 1507 | // at minimum with the 'diag' off, so that we can ensure we get the correct |
| 1508 | // instantiation var for checking by later ones. |
| 1509 | bool UninstInitFailed = |
| 1510 | checkForInit(InitStmt: CFI.Uninst.Init, InitVar&: UninstInitVar, /*Diag=*/false); |
| 1511 | |
| 1512 | // VarDecls are always rebuild because they are dependent, so we can do a |
| 1513 | // little work to suppress some of the double checking based on whether the |
| 1514 | // type is instantiation dependent. This is imperfect, but will get us most |
| 1515 | // cases suppressed. Currently this only handles the 'T t =' case. |
| 1516 | auto InitChanged = [=]() { |
| 1517 | if (CFI.Uninst.Init == CFI.Current.Init) |
| 1518 | return false; |
| 1519 | |
| 1520 | QualType OldVDTy; |
| 1521 | QualType NewVDTy; |
| 1522 | |
| 1523 | if (const auto *DS = dyn_cast<DeclStmt>(Val: CFI.Uninst.Init)) |
| 1524 | if (const VarDecl *VD = dyn_cast_if_present<VarDecl>( |
| 1525 | Val: DS->isSingleDecl() ? DS->getSingleDecl() : nullptr)) |
| 1526 | OldVDTy = VD->getType(); |
| 1527 | if (const auto *DS = dyn_cast<DeclStmt>(Val: CFI.Current.Init)) |
| 1528 | if (const VarDecl *VD = dyn_cast_if_present<VarDecl>( |
| 1529 | Val: DS->isSingleDecl() ? DS->getSingleDecl() : nullptr)) |
| 1530 | NewVDTy = VD->getType(); |
| 1531 | |
| 1532 | if (OldVDTy.isNull() || NewVDTy.isNull()) |
| 1533 | return true; |
| 1534 | |
| 1535 | return OldVDTy->isInstantiationDependentType() != |
| 1536 | NewVDTy->isInstantiationDependentType(); |
| 1537 | }; |
| 1538 | |
| 1539 | // Only diagnose the new 'init' if the previous version didn't fail, AND the |
| 1540 | // current init changed meaningfully. |
| 1541 | bool ShouldDiagNewInit = !UninstInitFailed && InitChanged(); |
| 1542 | const ValueDecl *CurInitVar = nullptr; |
| 1543 | checkForInit(InitStmt: CFI.Current.Init, InitVar&: CurInitVar, /*Diag=*/ShouldDiagNewInit); |
| 1544 | |
| 1545 | // Check the condition and increment only if the previous version passed, |
| 1546 | // and this changed. |
| 1547 | if (CFI.Uninst.Condition != CFI.Current.Condition && |
| 1548 | !checkForCond(CondStmt: CFI.Uninst.Condition, InitVar: UninstInitVar, /*Diag=*/false)) |
| 1549 | checkForCond(CondStmt: CFI.Current.Condition, InitVar: CurInitVar, /*Diag=*/true); |
| 1550 | if (CFI.Uninst.Increment != CFI.Current.Increment && |
| 1551 | !checkForInc(IncStmt: CFI.Uninst.Increment, InitVar: UninstInitVar, /*Diag=*/false)) |
| 1552 | checkForInc(IncStmt: CFI.Current.Increment, InitVar: CurInitVar, /*Diag=*/true); |
| 1553 | } |
| 1554 | } |
| 1555 | |
| 1556 | void SemaOpenACC::ForStmtBeginChecker::check() { |
| 1557 | // If this isn't an active loop without a seq, immediately return, nothing to |
| 1558 | // check. |
| 1559 | if (SemaRef.LoopWithoutSeqInfo.Kind == OpenACCDirectiveKind::Invalid) |
| 1560 | return; |
| 1561 | |
| 1562 | // If we've already checked, because this is a 'top level' one (and asking |
| 1563 | // again because 'tile' and 'collapse' might apply), just return, nothing to |
| 1564 | // do here. |
| 1565 | if (AlreadyChecked) |
| 1566 | return; |
| 1567 | AlreadyChecked = true; |
| 1568 | |
| 1569 | // OpenACC3.3 2.1: |
| 1570 | // A loop associated with a loop construct that does not have a seq clause |
| 1571 | // must be written to meet all the following conditions: |
| 1572 | // - The loop variable must be of integer, C/C++ pointer, or C++ random-access |
| 1573 | // iterator type. |
| 1574 | // - The loop variable must monotonically increase or decrease in the |
| 1575 | // direction of its termination condition. |
| 1576 | // - The loop trip count must be computable in constant time when entering the |
| 1577 | // loop construct. |
| 1578 | // |
| 1579 | // For a C++ range-based for loop, the loop variable |
| 1580 | // identified by the above conditions is the internal iterator, such as a |
| 1581 | // pointer, that the compiler generates to iterate the range. it is not the |
| 1582 | // variable declared by the for loop. |
| 1583 | |
| 1584 | if (std::holds_alternative<RangeForInfo>(v: Info)) |
| 1585 | return checkRangeFor(); |
| 1586 | |
| 1587 | return checkFor(); |
| 1588 | } |
| 1589 | |
| 1590 | void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *OldFirst, |
| 1591 | const Stmt *First, const Stmt *OldSecond, |
| 1592 | const Stmt *Second, const Stmt *OldThird, |
| 1593 | const Stmt *Third) { |
| 1594 | if (!getLangOpts().OpenACC) |
| 1595 | return; |
| 1596 | |
| 1597 | ForStmtBeginChecker FSBC{*this, ForLoc, OldFirst, OldSecond, |
| 1598 | OldThird, First, Second, Third}; |
| 1599 | // Check if this is the top-level 'for' for a 'loop'. Else it will be checked |
| 1600 | // as a part of the helper if a tile/collapse applies. |
| 1601 | if (!LoopInfo.TopLevelLoopSeen) { |
| 1602 | FSBC.check(); |
| 1603 | } |
| 1604 | |
| 1605 | ForStmtBeginHelper(ForLoc, C&: FSBC); |
| 1606 | } |
| 1607 | |
| 1608 | void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *First, |
| 1609 | const Stmt *Second, const Stmt *Third) { |
| 1610 | if (!getLangOpts().OpenACC) |
| 1611 | return; |
| 1612 | |
| 1613 | ForStmtBeginChecker FSBC{*this, ForLoc, First, Second, Third}; |
| 1614 | |
| 1615 | // Check if this is the top-level 'for' for a 'loop'. Else it will be checked |
| 1616 | // as a part of the helper if a tile/collapse applies. |
| 1617 | if (!LoopInfo.TopLevelLoopSeen) |
| 1618 | FSBC.check(); |
| 1619 | |
| 1620 | ForStmtBeginHelper(ForLoc, C&: FSBC); |
| 1621 | } |
| 1622 | |
| 1623 | void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc, |
| 1624 | const Stmt *OldRangeFor, |
| 1625 | const Stmt *RangeFor) { |
| 1626 | if (!getLangOpts().OpenACC || OldRangeFor == nullptr || RangeFor == nullptr) |
| 1627 | return; |
| 1628 | |
| 1629 | ForStmtBeginChecker FSBC{*this, ForLoc, |
| 1630 | cast_if_present<CXXForRangeStmt>(Val: OldRangeFor), |
| 1631 | cast_if_present<CXXForRangeStmt>(Val: RangeFor)}; |
| 1632 | // Check if this is the top-level 'for' for a 'loop'. Else it will be checked |
| 1633 | // as a part of the helper if a tile/collapse applies. |
| 1634 | if (!LoopInfo.TopLevelLoopSeen) { |
| 1635 | FSBC.check(); |
| 1636 | } |
| 1637 | ForStmtBeginHelper(ForLoc, C&: FSBC); |
| 1638 | } |
| 1639 | |
| 1640 | void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc, |
| 1641 | const Stmt *RangeFor) { |
| 1642 | if (!getLangOpts().OpenACC || RangeFor == nullptr) |
| 1643 | return; |
| 1644 | |
| 1645 | ForStmtBeginChecker FSBC = {*this, ForLoc, |
| 1646 | cast_if_present<CXXForRangeStmt>(Val: RangeFor)}; |
| 1647 | |
| 1648 | // Check if this is the top-level 'for' for a 'loop'. Else it will be checked |
| 1649 | // as a part of the helper if a tile/collapse applies. |
| 1650 | if (!LoopInfo.TopLevelLoopSeen) |
| 1651 | FSBC.check(); |
| 1652 | |
| 1653 | ForStmtBeginHelper(ForLoc, C&: FSBC); |
| 1654 | } |
| 1655 | |
| 1656 | namespace { |
| 1657 | SourceLocation FindInterveningCodeInLoop(const Stmt *CurStmt) { |
| 1658 | // We should diagnose on anything except `CompoundStmt`, `NullStmt`, |
| 1659 | // `ForStmt`, `CXXForRangeStmt`, since those are legal, and `WhileStmt` and |
| 1660 | // `DoStmt`, as those are caught as a violation elsewhere. |
| 1661 | // For `CompoundStmt` we need to search inside of it. |
| 1662 | if (!CurStmt || |
| 1663 | isa<ForStmt, NullStmt, ForStmt, CXXForRangeStmt, WhileStmt, DoStmt>( |
| 1664 | Val: CurStmt)) |
| 1665 | return SourceLocation{}; |
| 1666 | |
| 1667 | // Any other construct is an error anyway, so it has already been diagnosed. |
| 1668 | if (isa<OpenACCConstructStmt>(Val: CurStmt)) |
| 1669 | return SourceLocation{}; |
| 1670 | |
| 1671 | // Search inside the compound statement, this allows for arbitrary nesting |
| 1672 | // of compound statements, as long as there isn't any code inside. |
| 1673 | if (const auto *CS = dyn_cast<CompoundStmt>(Val: CurStmt)) { |
| 1674 | for (const auto *ChildStmt : CS->children()) { |
| 1675 | SourceLocation ChildStmtLoc = FindInterveningCodeInLoop(CurStmt: ChildStmt); |
| 1676 | if (ChildStmtLoc.isValid()) |
| 1677 | return ChildStmtLoc; |
| 1678 | } |
| 1679 | // Empty/not invalid compound statements are legal. |
| 1680 | return SourceLocation{}; |
| 1681 | } |
| 1682 | return CurStmt->getBeginLoc(); |
| 1683 | } |
| 1684 | } // namespace |
| 1685 | |
| 1686 | void SemaOpenACC::ActOnForStmtEnd(SourceLocation ForLoc, StmtResult Body) { |
| 1687 | if (!getLangOpts().OpenACC) |
| 1688 | return; |
| 1689 | |
| 1690 | // Set this to 'true' so if we find another one at this level we can diagnose. |
| 1691 | LoopInfo.CurLevelHasLoopAlready = true; |
| 1692 | |
| 1693 | if (!Body.isUsable()) |
| 1694 | return; |
| 1695 | |
| 1696 | bool IsActiveCollapse = CollapseInfo.CurCollapseCount && |
| 1697 | *CollapseInfo.CurCollapseCount > 0 && |
| 1698 | !CollapseInfo.ActiveCollapse->hasForce(); |
| 1699 | bool IsActiveTile = TileInfo.CurTileCount && *TileInfo.CurTileCount > 0; |
| 1700 | |
| 1701 | if (IsActiveCollapse || IsActiveTile) { |
| 1702 | SourceLocation OtherStmtLoc = FindInterveningCodeInLoop(CurStmt: Body.get()); |
| 1703 | |
| 1704 | if (OtherStmtLoc.isValid() && IsActiveCollapse) { |
| 1705 | Diag(Loc: OtherStmtLoc, DiagID: diag::err_acc_intervening_code) |
| 1706 | << OpenACCClauseKind::Collapse << CollapseInfo.DirectiveKind; |
| 1707 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
| 1708 | DiagID: diag::note_acc_active_clause_here) |
| 1709 | << OpenACCClauseKind::Collapse; |
| 1710 | } |
| 1711 | |
| 1712 | if (OtherStmtLoc.isValid() && IsActiveTile) { |
| 1713 | Diag(Loc: OtherStmtLoc, DiagID: diag::err_acc_intervening_code) |
| 1714 | << OpenACCClauseKind::Tile << TileInfo.DirectiveKind; |
| 1715 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), |
| 1716 | DiagID: diag::note_acc_active_clause_here) |
| 1717 | << OpenACCClauseKind::Tile; |
| 1718 | } |
| 1719 | } |
| 1720 | } |
| 1721 | |
| 1722 | namespace { |
| 1723 | // Helper that should mirror ActOnRoutineName to get the FunctionDecl out for |
| 1724 | // magic-static checking. |
| 1725 | FunctionDecl *getFunctionFromRoutineName(Expr *RoutineName) { |
| 1726 | if (!RoutineName) |
| 1727 | return nullptr; |
| 1728 | RoutineName = RoutineName->IgnoreParenImpCasts(); |
| 1729 | if (isa<RecoveryExpr>(Val: RoutineName)) { |
| 1730 | // There is nothing we can do here, this isn't a function we can count on. |
| 1731 | return nullptr; |
| 1732 | } else if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>( |
| 1733 | Val: RoutineName)) { |
| 1734 | // The lookup is dependent, so we'll have to figure this out later. |
| 1735 | return nullptr; |
| 1736 | } else if (auto *DRE = dyn_cast<DeclRefExpr>(Val: RoutineName)) { |
| 1737 | ValueDecl *VD = DRE->getDecl(); |
| 1738 | |
| 1739 | if (auto *FD = dyn_cast<FunctionDecl>(Val: VD)) |
| 1740 | return FD; |
| 1741 | |
| 1742 | // Allow lambdas. |
| 1743 | if (auto *VarD = dyn_cast<VarDecl>(Val: VD)) { |
| 1744 | QualType VarDTy = VarD->getType(); |
| 1745 | if (!VarDTy.isNull()) { |
| 1746 | if (auto *RD = VarDTy->getAsCXXRecordDecl()) { |
| 1747 | if (RD->isGenericLambda()) |
| 1748 | return nullptr; |
| 1749 | if (RD->isLambda()) |
| 1750 | return RD->getLambdaCallOperator(); |
| 1751 | } else if (VarDTy->isDependentType()) { |
| 1752 | // We don't really know what this is going to be. |
| 1753 | return nullptr; |
| 1754 | } |
| 1755 | } |
| 1756 | return nullptr; |
| 1757 | } else if (isa<OverloadExpr>(Val: RoutineName)) { |
| 1758 | return nullptr; |
| 1759 | } |
| 1760 | } |
| 1761 | return nullptr; |
| 1762 | } |
| 1763 | } // namespace |
| 1764 | |
| 1765 | ExprResult SemaOpenACC::ActOnRoutineName(Expr *RoutineName) { |
| 1766 | assert(RoutineName && "Routine name cannot be null here" ); |
| 1767 | RoutineName = RoutineName->IgnoreParenImpCasts(); |
| 1768 | |
| 1769 | if (isa<RecoveryExpr>(Val: RoutineName)) { |
| 1770 | // This has already been diagnosed, so we can skip it. |
| 1771 | return ExprError(); |
| 1772 | } else if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>( |
| 1773 | Val: RoutineName)) { |
| 1774 | // These are dependent and we can't really check them, so delay until |
| 1775 | // instantiation. |
| 1776 | return RoutineName; |
| 1777 | } else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: RoutineName)) { |
| 1778 | const ValueDecl *VD = DRE->getDecl(); |
| 1779 | |
| 1780 | if (isa<FunctionDecl>(Val: VD)) |
| 1781 | return RoutineName; |
| 1782 | |
| 1783 | // Allow lambdas. |
| 1784 | if (const auto *VarD = dyn_cast<VarDecl>(Val: VD)) { |
| 1785 | QualType VarDTy = VarD->getType(); |
| 1786 | if (!VarDTy.isNull()) { |
| 1787 | if (const auto *RD = VarDTy->getAsCXXRecordDecl()) { |
| 1788 | if (RD->isGenericLambda()) { |
| 1789 | Diag(Loc: RoutineName->getBeginLoc(), DiagID: diag::err_acc_routine_overload_set) |
| 1790 | << RoutineName; |
| 1791 | return ExprError(); |
| 1792 | } |
| 1793 | if (RD->isLambda()) |
| 1794 | return RoutineName; |
| 1795 | } else if (VarDTy->isDependentType()) { |
| 1796 | // If this is a dependent variable, it might be a lambda. So we just |
| 1797 | // accept this and catch it next time. |
| 1798 | return RoutineName; |
| 1799 | } |
| 1800 | } |
| 1801 | } |
| 1802 | |
| 1803 | Diag(Loc: RoutineName->getBeginLoc(), DiagID: diag::err_acc_routine_not_func) |
| 1804 | << RoutineName; |
| 1805 | return ExprError(); |
| 1806 | } else if (isa<OverloadExpr>(Val: RoutineName)) { |
| 1807 | // This happens in function templates, even when the template arguments are |
| 1808 | // fully specified. We could possibly do some sort of matching to make sure |
| 1809 | // that this is looked up/deduced, but GCC does not do this, so there |
| 1810 | // doesn't seem to be a good reason for us to do it either. |
| 1811 | Diag(Loc: RoutineName->getBeginLoc(), DiagID: diag::err_acc_routine_overload_set) |
| 1812 | << RoutineName; |
| 1813 | return ExprError(); |
| 1814 | } |
| 1815 | |
| 1816 | Diag(Loc: RoutineName->getBeginLoc(), DiagID: diag::err_acc_routine_not_func) |
| 1817 | << RoutineName; |
| 1818 | return ExprError(); |
| 1819 | } |
| 1820 | void SemaOpenACC::ActOnVariableDeclarator(VarDecl *VD) { |
| 1821 | if (!getLangOpts().OpenACC || VD->isInvalidDecl() || !VD->isStaticLocal()) |
| 1822 | return; |
| 1823 | |
| 1824 | // This cast should be safe, since a static-local can only happen in a |
| 1825 | // function declaration. |
| 1826 | auto *ContextDecl = cast<FunctionDecl>(Val: getCurContext()); |
| 1827 | |
| 1828 | // OpenACC 3.3 2.15: |
| 1829 | // In C and C++, function static variables are not supported in functions to |
| 1830 | // which a routine directive applies. |
| 1831 | for (const auto *A : ContextDecl->attrs()) { |
| 1832 | if (isa<OpenACCRoutineDeclAttr, OpenACCRoutineAnnotAttr>(Val: A)) { |
| 1833 | Diag(Loc: VD->getBeginLoc(), DiagID: diag::err_acc_magic_static_in_routine); |
| 1834 | Diag(Loc: A->getLocation(), DiagID: diag::note_acc_construct_here) |
| 1835 | << OpenACCDirectiveKind::Routine; |
| 1836 | return; |
| 1837 | } |
| 1838 | } |
| 1839 | |
| 1840 | MagicStaticLocs.insert(KV: {ContextDecl->getCanonicalDecl(), VD->getBeginLoc()}); |
| 1841 | } |
| 1842 | void SemaOpenACC::CheckLastRoutineDeclNameConflict(const NamedDecl *ND) { |
| 1843 | // OpenACC 3.3 A.3.4 |
| 1844 | // When a procedure with that name is in scope and it is not the same |
| 1845 | // procedure as the immediately following procedure declaration or |
| 1846 | // definition, the resolution of the name can be confusing. Implementations |
| 1847 | // should then issue a compile-time warning diagnostic even though the |
| 1848 | // application is conforming. |
| 1849 | |
| 1850 | // If we haven't created one, also can't diagnose. |
| 1851 | if (!LastRoutineDecl) |
| 1852 | return; |
| 1853 | |
| 1854 | // If the currently created function doesn't have a name, we can't diagnose on |
| 1855 | // a match. |
| 1856 | if (!ND->getDeclName().isIdentifier()) |
| 1857 | return; |
| 1858 | |
| 1859 | // If the two are in different decl contexts, it doesn't make sense to |
| 1860 | // diagnose. |
| 1861 | if (LastRoutineDecl->getDeclContext() != ND->getLexicalDeclContext()) |
| 1862 | return; |
| 1863 | |
| 1864 | // If we don't have a referenced thing yet, we can't diagnose. |
| 1865 | FunctionDecl *RoutineTarget = |
| 1866 | getFunctionFromRoutineName(RoutineName: LastRoutineDecl->getFunctionReference()); |
| 1867 | if (!RoutineTarget) |
| 1868 | return; |
| 1869 | |
| 1870 | // If the Routine target doesn't have a name, we can't diagnose. |
| 1871 | if (!RoutineTarget->getDeclName().isIdentifier()) |
| 1872 | return; |
| 1873 | |
| 1874 | // Of course don't diagnose if the names don't match. |
| 1875 | if (ND->getName() != RoutineTarget->getName()) |
| 1876 | return; |
| 1877 | |
| 1878 | long NDLine = SemaRef.SourceMgr.getSpellingLineNumber(Loc: ND->getBeginLoc()); |
| 1879 | long LastLine = |
| 1880 | SemaRef.SourceMgr.getSpellingLineNumber(Loc: LastRoutineDecl->getBeginLoc()); |
| 1881 | |
| 1882 | // Do some line-number math to make sure they are within a line of eachother. |
| 1883 | // Comments or newlines can be inserted to clarify intent. |
| 1884 | if (NDLine - LastLine > 1) |
| 1885 | return; |
| 1886 | |
| 1887 | // Don't warn if it actually DOES apply to this function via redecls. |
| 1888 | if (ND->getCanonicalDecl() == RoutineTarget->getCanonicalDecl()) |
| 1889 | return; |
| 1890 | |
| 1891 | Diag(Loc: LastRoutineDecl->getFunctionReference()->getBeginLoc(), |
| 1892 | DiagID: diag::warn_acc_confusing_routine_name); |
| 1893 | Diag(Loc: RoutineTarget->getBeginLoc(), DiagID: diag::note_previous_decl) << ND; |
| 1894 | } |
| 1895 | |
| 1896 | void SemaOpenACC::ActOnVariableInit(VarDecl *VD, QualType InitType) { |
| 1897 | if (!VD || !getLangOpts().OpenACC || InitType.isNull()) |
| 1898 | return; |
| 1899 | |
| 1900 | // To avoid double-diagnostic, just diagnose this during instantiation. We'll |
| 1901 | // get 1 warning per instantiation, but this permits us to be more sensible |
| 1902 | // for cases where the lookup is confusing. |
| 1903 | if (VD->getLexicalDeclContext()->isDependentContext()) |
| 1904 | return; |
| 1905 | |
| 1906 | const auto *RD = InitType->getAsCXXRecordDecl(); |
| 1907 | // If this isn't a lambda, no sense in diagnosing. |
| 1908 | if (!RD || !RD->isLambda()) |
| 1909 | return; |
| 1910 | |
| 1911 | CheckLastRoutineDeclNameConflict(ND: VD); |
| 1912 | } |
| 1913 | |
| 1914 | void SemaOpenACC::ActOnFunctionDeclarator(FunctionDecl *FD) { |
| 1915 | if (!FD || !getLangOpts().OpenACC) |
| 1916 | return; |
| 1917 | CheckLastRoutineDeclNameConflict(ND: FD); |
| 1918 | } |
| 1919 | |
| 1920 | bool SemaOpenACC::ActOnStartStmtDirective( |
| 1921 | OpenACCDirectiveKind K, SourceLocation StartLoc, |
| 1922 | ArrayRef<const OpenACCClause *> Clauses) { |
| 1923 | |
| 1924 | // Declaration directives an appear in a statement location, so call into that |
| 1925 | // function here. |
| 1926 | if (K == OpenACCDirectiveKind::Declare || K == OpenACCDirectiveKind::Routine) |
| 1927 | return ActOnStartDeclDirective(K, StartLoc, Clauses); |
| 1928 | |
| 1929 | SemaRef.DiscardCleanupsInEvaluationContext(); |
| 1930 | SemaRef.PopExpressionEvaluationContext(); |
| 1931 | |
| 1932 | // OpenACC 3.3 2.9.1: |
| 1933 | // Intervening code must not contain other OpenACC directives or calls to API |
| 1934 | // routines. |
| 1935 | // |
| 1936 | // ALL constructs are ill-formed if there is an active 'collapse' |
| 1937 | if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) { |
| 1938 | Diag(Loc: StartLoc, DiagID: diag::err_acc_invalid_in_loop) |
| 1939 | << /*OpenACC Construct*/ 0 << CollapseInfo.DirectiveKind |
| 1940 | << OpenACCClauseKind::Collapse << K; |
| 1941 | assert(CollapseInfo.ActiveCollapse && "Collapse count without object?" ); |
| 1942 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
| 1943 | DiagID: diag::note_acc_active_clause_here) |
| 1944 | << OpenACCClauseKind::Collapse; |
| 1945 | } |
| 1946 | if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) { |
| 1947 | Diag(Loc: StartLoc, DiagID: diag::err_acc_invalid_in_loop) |
| 1948 | << /*OpenACC Construct*/ 0 << TileInfo.DirectiveKind |
| 1949 | << OpenACCClauseKind::Tile << K; |
| 1950 | assert(TileInfo.ActiveTile && "Tile count without object?" ); |
| 1951 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), DiagID: diag::note_acc_active_clause_here) |
| 1952 | << OpenACCClauseKind::Tile; |
| 1953 | } |
| 1954 | |
| 1955 | if (DiagnoseRequiredClauses(DK: K, DirLoc: StartLoc, Clauses)) |
| 1956 | return true; |
| 1957 | return diagnoseConstructAppertainment(S&: *this, K, StartLoc, /*IsStmt=*/true); |
| 1958 | } |
| 1959 | |
| 1960 | StmtResult SemaOpenACC::ActOnEndStmtDirective( |
| 1961 | OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc, |
| 1962 | SourceLocation LParenLoc, SourceLocation MiscLoc, ArrayRef<Expr *> Exprs, |
| 1963 | OpenACCAtomicKind AtomicKind, SourceLocation RParenLoc, |
| 1964 | SourceLocation EndLoc, ArrayRef<OpenACCClause *> Clauses, |
| 1965 | StmtResult AssocStmt) { |
| 1966 | switch (K) { |
| 1967 | case OpenACCDirectiveKind::Invalid: |
| 1968 | return StmtError(); |
| 1969 | case OpenACCDirectiveKind::Parallel: |
| 1970 | case OpenACCDirectiveKind::Serial: |
| 1971 | case OpenACCDirectiveKind::Kernels: { |
| 1972 | return OpenACCComputeConstruct::Create( |
| 1973 | C: getASTContext(), K, BeginLoc: StartLoc, DirectiveLoc: DirLoc, EndLoc, Clauses, |
| 1974 | StructuredBlock: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
| 1975 | } |
| 1976 | case OpenACCDirectiveKind::ParallelLoop: |
| 1977 | case OpenACCDirectiveKind::SerialLoop: |
| 1978 | case OpenACCDirectiveKind::KernelsLoop: { |
| 1979 | return OpenACCCombinedConstruct::Create( |
| 1980 | C: getASTContext(), K, Start: StartLoc, DirectiveLoc: DirLoc, End: EndLoc, Clauses, |
| 1981 | StructuredBlock: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
| 1982 | } |
| 1983 | case OpenACCDirectiveKind::Loop: { |
| 1984 | return OpenACCLoopConstruct::Create( |
| 1985 | C: getASTContext(), ParentKind: ActiveComputeConstructInfo.Kind, BeginLoc: StartLoc, DirLoc, |
| 1986 | EndLoc, Clauses, Loop: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
| 1987 | } |
| 1988 | case OpenACCDirectiveKind::Data: { |
| 1989 | return OpenACCDataConstruct::Create( |
| 1990 | C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, End: EndLoc, Clauses, |
| 1991 | StructuredBlock: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
| 1992 | } |
| 1993 | case OpenACCDirectiveKind::EnterData: { |
| 1994 | return OpenACCEnterDataConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
| 1995 | End: EndLoc, Clauses); |
| 1996 | } |
| 1997 | case OpenACCDirectiveKind::ExitData: { |
| 1998 | return OpenACCExitDataConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
| 1999 | End: EndLoc, Clauses); |
| 2000 | } |
| 2001 | case OpenACCDirectiveKind::HostData: { |
| 2002 | return OpenACCHostDataConstruct::Create( |
| 2003 | C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, End: EndLoc, Clauses, |
| 2004 | StructuredBlock: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
| 2005 | } |
| 2006 | case OpenACCDirectiveKind::Wait: { |
| 2007 | return OpenACCWaitConstruct::Create( |
| 2008 | C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, LParenLoc, DevNumExpr: Exprs.front(), QueuesLoc: MiscLoc, |
| 2009 | QueueIdExprs: Exprs.drop_front(), RParenLoc, End: EndLoc, Clauses); |
| 2010 | } |
| 2011 | case OpenACCDirectiveKind::Init: { |
| 2012 | return OpenACCInitConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
| 2013 | End: EndLoc, Clauses); |
| 2014 | } |
| 2015 | case OpenACCDirectiveKind::Shutdown: { |
| 2016 | return OpenACCShutdownConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
| 2017 | End: EndLoc, Clauses); |
| 2018 | } |
| 2019 | case OpenACCDirectiveKind::Set: { |
| 2020 | return OpenACCSetConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
| 2021 | End: EndLoc, Clauses); |
| 2022 | } |
| 2023 | case OpenACCDirectiveKind::Update: { |
| 2024 | return OpenACCUpdateConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
| 2025 | End: EndLoc, Clauses); |
| 2026 | } |
| 2027 | case OpenACCDirectiveKind::Atomic: { |
| 2028 | return OpenACCAtomicConstruct::Create( |
| 2029 | C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, AtKind: AtomicKind, End: EndLoc, Clauses, |
| 2030 | AssociatedStmt: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
| 2031 | } |
| 2032 | case OpenACCDirectiveKind::Cache: { |
| 2033 | assert(Clauses.empty() && "Cache doesn't allow clauses" ); |
| 2034 | return OpenACCCacheConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
| 2035 | LParenLoc, ReadOnlyLoc: MiscLoc, VarList: Exprs, RParenLoc, |
| 2036 | End: EndLoc); |
| 2037 | } |
| 2038 | case OpenACCDirectiveKind::Routine: |
| 2039 | llvm_unreachable("routine shouldn't handled here" ); |
| 2040 | case OpenACCDirectiveKind::Declare: { |
| 2041 | // Declare and routine arei declaration directives, but can be used here as |
| 2042 | // long as we wrap it in a DeclStmt. So make sure we do that here. |
| 2043 | DeclGroupRef DR = ActOnEndDeclDirective(K, StartLoc, DirLoc, LParenLoc, |
| 2044 | RParenLoc, EndLoc, Clauses); |
| 2045 | |
| 2046 | return SemaRef.ActOnDeclStmt(Decl: DeclGroupPtrTy::make(P: DR), StartLoc, EndLoc); |
| 2047 | } |
| 2048 | } |
| 2049 | llvm_unreachable("Unhandled case in directive handling?" ); |
| 2050 | } |
| 2051 | |
| 2052 | StmtResult SemaOpenACC::ActOnAssociatedStmt( |
| 2053 | SourceLocation DirectiveLoc, OpenACCDirectiveKind K, |
| 2054 | OpenACCAtomicKind AtKind, ArrayRef<const OpenACCClause *> Clauses, |
| 2055 | StmtResult AssocStmt) { |
| 2056 | switch (K) { |
| 2057 | default: |
| 2058 | llvm_unreachable("Unimplemented associated statement application" ); |
| 2059 | case OpenACCDirectiveKind::EnterData: |
| 2060 | case OpenACCDirectiveKind::ExitData: |
| 2061 | case OpenACCDirectiveKind::Wait: |
| 2062 | case OpenACCDirectiveKind::Init: |
| 2063 | case OpenACCDirectiveKind::Shutdown: |
| 2064 | case OpenACCDirectiveKind::Set: |
| 2065 | case OpenACCDirectiveKind::Cache: |
| 2066 | llvm_unreachable( |
| 2067 | "these don't have associated statements, so shouldn't get here" ); |
| 2068 | case OpenACCDirectiveKind::Atomic: |
| 2069 | return CheckAtomicAssociatedStmt(AtomicDirLoc: DirectiveLoc, AtKind, AssocStmt); |
| 2070 | case OpenACCDirectiveKind::Parallel: |
| 2071 | case OpenACCDirectiveKind::Serial: |
| 2072 | case OpenACCDirectiveKind::Kernels: |
| 2073 | case OpenACCDirectiveKind::Data: |
| 2074 | case OpenACCDirectiveKind::HostData: |
| 2075 | // There really isn't any checking here that could happen. As long as we |
| 2076 | // have a statement to associate, this should be fine. |
| 2077 | // OpenACC 3.3 Section 6: |
| 2078 | // Structured Block: in C or C++, an executable statement, possibly |
| 2079 | // compound, with a single entry at the top and a single exit at the |
| 2080 | // bottom. |
| 2081 | // FIXME: Should we reject DeclStmt's here? The standard isn't clear, and |
| 2082 | // an interpretation of it is to allow this and treat the initializer as |
| 2083 | // the 'structured block'. |
| 2084 | return AssocStmt; |
| 2085 | case OpenACCDirectiveKind::Loop: |
| 2086 | case OpenACCDirectiveKind::ParallelLoop: |
| 2087 | case OpenACCDirectiveKind::SerialLoop: |
| 2088 | case OpenACCDirectiveKind::KernelsLoop: |
| 2089 | if (!AssocStmt.isUsable()) |
| 2090 | return StmtError(); |
| 2091 | |
| 2092 | if (!isa<CXXForRangeStmt, ForStmt>(Val: AssocStmt.get())) { |
| 2093 | Diag(Loc: AssocStmt.get()->getBeginLoc(), DiagID: diag::err_acc_loop_not_for_loop) |
| 2094 | << K; |
| 2095 | Diag(Loc: DirectiveLoc, DiagID: diag::note_acc_construct_here) << K; |
| 2096 | return StmtError(); |
| 2097 | } |
| 2098 | |
| 2099 | if (!CollapseInfo.CollapseDepthSatisfied || !TileInfo.TileDepthSatisfied) { |
| 2100 | if (!CollapseInfo.CollapseDepthSatisfied) { |
| 2101 | Diag(Loc: DirectiveLoc, DiagID: diag::err_acc_insufficient_loops) |
| 2102 | << OpenACCClauseKind::Collapse; |
| 2103 | assert(CollapseInfo.ActiveCollapse && "Collapse count without object?" ); |
| 2104 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
| 2105 | DiagID: diag::note_acc_active_clause_here) |
| 2106 | << OpenACCClauseKind::Collapse; |
| 2107 | } |
| 2108 | |
| 2109 | if (!TileInfo.TileDepthSatisfied) { |
| 2110 | Diag(Loc: DirectiveLoc, DiagID: diag::err_acc_insufficient_loops) |
| 2111 | << OpenACCClauseKind::Tile; |
| 2112 | assert(TileInfo.ActiveTile && "Collapse count without object?" ); |
| 2113 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), |
| 2114 | DiagID: diag::note_acc_active_clause_here) |
| 2115 | << OpenACCClauseKind::Tile; |
| 2116 | } |
| 2117 | return StmtError(); |
| 2118 | } |
| 2119 | |
| 2120 | return AssocStmt.get(); |
| 2121 | } |
| 2122 | llvm_unreachable("Invalid associated statement application" ); |
| 2123 | } |
| 2124 | |
| 2125 | namespace { |
| 2126 | |
| 2127 | // Routine has some pretty complicated set of rules for how device_type |
| 2128 | // interacts with 'gang', 'worker', 'vector', and 'seq'. Enforce part of it |
| 2129 | // here. |
| 2130 | bool CheckValidRoutineGangWorkerVectorSeqClauses( |
| 2131 | SemaOpenACC &SemaRef, SourceLocation DirectiveLoc, |
| 2132 | ArrayRef<const OpenACCClause *> Clauses) { |
| 2133 | auto RequiredPred = llvm::IsaPred<OpenACCGangClause, OpenACCWorkerClause, |
| 2134 | OpenACCVectorClause, OpenACCSeqClause>; |
| 2135 | // The clause handling has assured us that there is no duplicates. That is, |
| 2136 | // if there is 1 before a device_type, there are none after a device_type. |
| 2137 | // If not, there is at most 1 applying to each device_type. |
| 2138 | |
| 2139 | // What is left to legalize is that either: |
| 2140 | // 1- there is 1 before the first device_type. |
| 2141 | // 2- there is 1 AFTER each device_type. |
| 2142 | auto *FirstDeviceType = |
| 2143 | llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCDeviceTypeClause>); |
| 2144 | |
| 2145 | // If there is 1 before the first device_type (or at all if no device_type), |
| 2146 | // we are legal. |
| 2147 | auto *ClauseItr = |
| 2148 | std::find_if(first: Clauses.begin(), last: FirstDeviceType, pred: RequiredPred); |
| 2149 | |
| 2150 | if (ClauseItr != FirstDeviceType) |
| 2151 | return false; |
| 2152 | |
| 2153 | // If there IS no device_type, and no clause, diagnose. |
| 2154 | if (FirstDeviceType == Clauses.end()) |
| 2155 | return SemaRef.Diag(Loc: DirectiveLoc, DiagID: diag::err_acc_construct_one_clause_of) |
| 2156 | << OpenACCDirectiveKind::Routine |
| 2157 | << "'gang', 'seq', 'vector', or 'worker'" ; |
| 2158 | |
| 2159 | // Else, we have to check EACH device_type group. PrevDeviceType is the |
| 2160 | // device-type before the current group. |
| 2161 | auto *PrevDeviceType = FirstDeviceType; |
| 2162 | |
| 2163 | while (PrevDeviceType != Clauses.end()) { |
| 2164 | auto *NextDeviceType = |
| 2165 | std::find_if(first: std::next(x: PrevDeviceType), last: Clauses.end(), |
| 2166 | pred: llvm::IsaPred<OpenACCDeviceTypeClause>); |
| 2167 | |
| 2168 | ClauseItr = std::find_if(first: PrevDeviceType, last: NextDeviceType, pred: RequiredPred); |
| 2169 | |
| 2170 | if (ClauseItr == NextDeviceType) |
| 2171 | return SemaRef.Diag(Loc: (*PrevDeviceType)->getBeginLoc(), |
| 2172 | DiagID: diag::err_acc_clause_routine_one_of_in_region); |
| 2173 | |
| 2174 | PrevDeviceType = NextDeviceType; |
| 2175 | } |
| 2176 | |
| 2177 | return false; |
| 2178 | } |
| 2179 | } // namespace |
| 2180 | |
| 2181 | bool SemaOpenACC::ActOnStartDeclDirective( |
| 2182 | OpenACCDirectiveKind K, SourceLocation StartLoc, |
| 2183 | ArrayRef<const OpenACCClause *> Clauses) { |
| 2184 | // OpenCC3.3 2.1 (line 889) |
| 2185 | // A program must not depend on the order of evaluation of expressions in |
| 2186 | // clause arguments or on any side effects of the evaluations. |
| 2187 | SemaRef.DiscardCleanupsInEvaluationContext(); |
| 2188 | SemaRef.PopExpressionEvaluationContext(); |
| 2189 | |
| 2190 | if (DiagnoseRequiredClauses(DK: K, DirLoc: StartLoc, Clauses)) |
| 2191 | return true; |
| 2192 | if (K == OpenACCDirectiveKind::Routine && |
| 2193 | CheckValidRoutineGangWorkerVectorSeqClauses(SemaRef&: *this, DirectiveLoc: StartLoc, Clauses)) |
| 2194 | return true; |
| 2195 | |
| 2196 | return diagnoseConstructAppertainment(S&: *this, K, StartLoc, /*IsStmt=*/false); |
| 2197 | } |
| 2198 | |
| 2199 | DeclGroupRef SemaOpenACC::ActOnEndDeclDirective( |
| 2200 | OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc, |
| 2201 | SourceLocation LParenLoc, SourceLocation RParenLoc, SourceLocation EndLoc, |
| 2202 | ArrayRef<OpenACCClause *> Clauses) { |
| 2203 | switch (K) { |
| 2204 | default: |
| 2205 | case OpenACCDirectiveKind::Invalid: |
| 2206 | return DeclGroupRef{}; |
| 2207 | case OpenACCDirectiveKind::Declare: { |
| 2208 | // OpenACC3.3 2.13: At least one clause must appear on a declare directive. |
| 2209 | if (Clauses.empty()) { |
| 2210 | Diag(Loc: EndLoc, DiagID: diag::err_acc_declare_required_clauses); |
| 2211 | // No reason to add this to the AST, as we would just end up trying to |
| 2212 | // instantiate this, which would double-diagnose here, which we wouldn't |
| 2213 | // want to do. |
| 2214 | return DeclGroupRef{}; |
| 2215 | } |
| 2216 | |
| 2217 | auto *DeclareDecl = OpenACCDeclareDecl::Create( |
| 2218 | Ctx&: getASTContext(), DC: getCurContext(), StartLoc, DirLoc, EndLoc, Clauses); |
| 2219 | DeclareDecl->setAccess(AS_public); |
| 2220 | getCurContext()->addDecl(D: DeclareDecl); |
| 2221 | return DeclGroupRef{DeclareDecl}; |
| 2222 | } |
| 2223 | case OpenACCDirectiveKind::Routine: |
| 2224 | llvm_unreachable("routine shouldn't be handled here" ); |
| 2225 | } |
| 2226 | llvm_unreachable("unhandled case in directive handling?" ); |
| 2227 | } |
| 2228 | |
| 2229 | namespace { |
| 2230 | // Given the decl on the next line, figure out if it is one that is acceptable |
| 2231 | // to `routine`, or looks like the sort of decl we should be diagnosing against. |
| 2232 | FunctionDecl *LegalizeNextParsedDecl(Decl *D) { |
| 2233 | if (!D) |
| 2234 | return nullptr; |
| 2235 | |
| 2236 | // Functions are per-fact acceptable as-is. |
| 2237 | if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
| 2238 | return FD; |
| 2239 | |
| 2240 | // Function templates are functions, so attach to the templated decl. |
| 2241 | if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: D)) |
| 2242 | return FTD->getTemplatedDecl(); |
| 2243 | |
| 2244 | if (auto *FD = dyn_cast<FieldDecl>(Val: D)) { |
| 2245 | auto *RD = |
| 2246 | FD->getType().isNull() ? nullptr : FD->getType()->getAsCXXRecordDecl(); |
| 2247 | |
| 2248 | if (RD && RD->isGenericLambda()) |
| 2249 | return RD->getDependentLambdaCallOperator()->getTemplatedDecl(); |
| 2250 | if (RD && RD->isLambda()) |
| 2251 | return RD->getLambdaCallOperator(); |
| 2252 | } |
| 2253 | // VarDecl we can look at the init instead of the type of the variable, this |
| 2254 | // makes us more tolerant of the 'auto' deduced type. |
| 2255 | if (auto *VD = dyn_cast<VarDecl>(Val: D)) { |
| 2256 | Expr *Init = VD->getInit(); |
| 2257 | if (!Init || Init->getType().isNull()) |
| 2258 | return nullptr; |
| 2259 | |
| 2260 | const auto *RD = Init->getType()->getAsCXXRecordDecl(); |
| 2261 | if (RD && RD->isGenericLambda()) |
| 2262 | return RD->getDependentLambdaCallOperator()->getTemplatedDecl(); |
| 2263 | if (RD && RD->isLambda()) |
| 2264 | return RD->getLambdaCallOperator(); |
| 2265 | |
| 2266 | // FIXME: We could try harder in the case where this is a dependent thing |
| 2267 | // that ends up being a lambda (that is, the init is an unresolved lookup |
| 2268 | // expr), but we can't attach to the call/lookup expr. If we instead try to |
| 2269 | // attach to the VarDecl, when we go to instantiate it, attributes are |
| 2270 | // instantiated before the init, so we can't actually see the type at any |
| 2271 | // point where it would be relevant/able to be checked. We could perhaps do |
| 2272 | // some sort of 'after-init' instantiation/checking here, but that doesn't |
| 2273 | // seem valuable for a situation that other compilers don't handle. |
| 2274 | } |
| 2275 | return nullptr; |
| 2276 | } |
| 2277 | |
| 2278 | void CreateRoutineDeclAttr(SemaOpenACC &SemaRef, SourceLocation DirLoc, |
| 2279 | ArrayRef<const OpenACCClause *> Clauses, |
| 2280 | ValueDecl *AddTo) { |
| 2281 | OpenACCRoutineDeclAttr *A = |
| 2282 | OpenACCRoutineDeclAttr::Create(Ctx&: SemaRef.getASTContext(), Range: DirLoc); |
| 2283 | A->Clauses.assign(in_start: Clauses.begin(), in_end: Clauses.end()); |
| 2284 | AddTo->addAttr(A); |
| 2285 | } |
| 2286 | } // namespace |
| 2287 | |
| 2288 | // Variant that adds attributes, because this is the unnamed case. |
| 2289 | void SemaOpenACC::CheckRoutineDecl(SourceLocation DirLoc, |
| 2290 | ArrayRef<const OpenACCClause *> Clauses, |
| 2291 | Decl *NextParsedDecl) { |
| 2292 | |
| 2293 | FunctionDecl *NextParsedFDecl = LegalizeNextParsedDecl(D: NextParsedDecl); |
| 2294 | |
| 2295 | if (!NextParsedFDecl) { |
| 2296 | // If we don't have a valid 'next thing', just diagnose. |
| 2297 | SemaRef.Diag(Loc: DirLoc, DiagID: diag::err_acc_decl_for_routine); |
| 2298 | return; |
| 2299 | } |
| 2300 | |
| 2301 | // OpenACC 3.3 2.15: |
| 2302 | // In C and C++, function static variables are not supported in functions to |
| 2303 | // which a routine directive applies. |
| 2304 | if (auto Itr = MagicStaticLocs.find(Val: NextParsedFDecl->getCanonicalDecl()); |
| 2305 | Itr != MagicStaticLocs.end()) { |
| 2306 | Diag(Loc: Itr->second, DiagID: diag::err_acc_magic_static_in_routine); |
| 2307 | Diag(Loc: DirLoc, DiagID: diag::note_acc_construct_here) |
| 2308 | << OpenACCDirectiveKind::Routine; |
| 2309 | |
| 2310 | return; |
| 2311 | } |
| 2312 | |
| 2313 | auto BindItr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCBindClause>); |
| 2314 | for (auto *A : NextParsedFDecl->attrs()) { |
| 2315 | // OpenACC 3.3 2.15: |
| 2316 | // If a procedure has a bind clause on both the declaration and definition |
| 2317 | // than they both must bind to the same name. |
| 2318 | if (auto *RA = dyn_cast<OpenACCRoutineDeclAttr>(Val: A)) { |
| 2319 | auto OtherBindItr = |
| 2320 | llvm::find_if(Range&: RA->Clauses, P: llvm::IsaPred<OpenACCBindClause>); |
| 2321 | if (OtherBindItr != RA->Clauses.end() && |
| 2322 | (*cast<OpenACCBindClause>(Val: *BindItr)) != |
| 2323 | (*cast<OpenACCBindClause>(Val: *OtherBindItr))) { |
| 2324 | Diag(Loc: (*BindItr)->getBeginLoc(), DiagID: diag::err_acc_duplicate_unnamed_bind); |
| 2325 | Diag(Loc: (*OtherBindItr)->getEndLoc(), DiagID: diag::note_acc_previous_clause_here) |
| 2326 | << (*BindItr)->getClauseKind(); |
| 2327 | return; |
| 2328 | } |
| 2329 | } |
| 2330 | |
| 2331 | // OpenACC 3.3 2.15: |
| 2332 | // A bind clause may not bind to a routine name that has a visible bind |
| 2333 | // clause. |
| 2334 | // We take the combo of these two 2.15 restrictions to mean that the |
| 2335 | // 'declaration'/'definition' quote is an exception to this. So we're going |
| 2336 | // to disallow mixing of the two types entirely. |
| 2337 | if (auto *RA = dyn_cast<OpenACCRoutineAnnotAttr>(Val: A); |
| 2338 | RA && RA->getRange().getEnd().isValid()) { |
| 2339 | Diag(Loc: (*BindItr)->getBeginLoc(), DiagID: diag::err_acc_duplicate_bind); |
| 2340 | Diag(Loc: RA->getRange().getEnd(), DiagID: diag::note_acc_previous_clause_here) |
| 2341 | << "bind" ; |
| 2342 | return; |
| 2343 | } |
| 2344 | } |
| 2345 | |
| 2346 | CreateRoutineDeclAttr(SemaRef&: *this, DirLoc, Clauses, AddTo: NextParsedFDecl); |
| 2347 | } |
| 2348 | |
| 2349 | // Variant that adds a decl, because this is the named case. |
| 2350 | OpenACCRoutineDecl *SemaOpenACC::CheckRoutineDecl( |
| 2351 | SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc, |
| 2352 | Expr *FuncRef, SourceLocation RParenLoc, |
| 2353 | ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc) { |
| 2354 | assert(LParenLoc.isValid()); |
| 2355 | |
| 2356 | if (FunctionDecl *FD = getFunctionFromRoutineName(RoutineName: FuncRef)) { |
| 2357 | // OpenACC 3.3 2.15: |
| 2358 | // In C and C++, function static variables are not supported in functions to |
| 2359 | // which a routine directive applies. |
| 2360 | if (auto Itr = MagicStaticLocs.find(Val: FD->getCanonicalDecl()); |
| 2361 | Itr != MagicStaticLocs.end()) { |
| 2362 | Diag(Loc: Itr->second, DiagID: diag::err_acc_magic_static_in_routine); |
| 2363 | Diag(Loc: DirLoc, DiagID: diag::note_acc_construct_here) |
| 2364 | << OpenACCDirectiveKind::Routine; |
| 2365 | |
| 2366 | return nullptr; |
| 2367 | } |
| 2368 | |
| 2369 | // OpenACC 3.3 2.15: |
| 2370 | // A bind clause may not bind to a routine name that has a visible bind |
| 2371 | // clause. |
| 2372 | auto BindItr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCBindClause>); |
| 2373 | SourceLocation BindLoc; |
| 2374 | if (BindItr != Clauses.end()) { |
| 2375 | BindLoc = (*BindItr)->getBeginLoc(); |
| 2376 | // Since this is adding a 'named' routine, we aren't allowed to combine |
| 2377 | // with ANY other visible bind clause. Error if we see either. |
| 2378 | |
| 2379 | for (auto *A : FD->attrs()) { |
| 2380 | if (auto *RA = dyn_cast<OpenACCRoutineDeclAttr>(Val: A)) { |
| 2381 | auto OtherBindItr = |
| 2382 | llvm::find_if(Range&: RA->Clauses, P: llvm::IsaPred<OpenACCBindClause>); |
| 2383 | if (OtherBindItr != RA->Clauses.end()) { |
| 2384 | Diag(Loc: (*BindItr)->getBeginLoc(), DiagID: diag::err_acc_duplicate_bind); |
| 2385 | Diag(Loc: (*OtherBindItr)->getEndLoc(), |
| 2386 | DiagID: diag::note_acc_previous_clause_here) |
| 2387 | << (*BindItr)->getClauseKind(); |
| 2388 | return nullptr; |
| 2389 | } |
| 2390 | } |
| 2391 | |
| 2392 | if (auto *RA = dyn_cast<OpenACCRoutineAnnotAttr>(Val: A); |
| 2393 | RA && RA->getRange().getEnd().isValid()) { |
| 2394 | Diag(Loc: (*BindItr)->getBeginLoc(), DiagID: diag::err_acc_duplicate_bind); |
| 2395 | Diag(Loc: RA->getRange().getEnd(), DiagID: diag::note_acc_previous_clause_here) |
| 2396 | << (*BindItr)->getClauseKind(); |
| 2397 | return nullptr; |
| 2398 | } |
| 2399 | } |
| 2400 | } |
| 2401 | |
| 2402 | // Set the end-range to the 'bind' clause here, so we can look it up |
| 2403 | // later. |
| 2404 | auto *RAA = OpenACCRoutineAnnotAttr::CreateImplicit(Ctx&: getASTContext(), |
| 2405 | Range: {DirLoc, BindLoc}); |
| 2406 | FD->addAttr(A: RAA); |
| 2407 | // In case we are referencing not the 'latest' version, make sure we add |
| 2408 | // the attribute to all declarations. |
| 2409 | while (FD != FD->getMostRecentDecl()) { |
| 2410 | FD = FD->getMostRecentDecl(); |
| 2411 | FD->addAttr(A: RAA); |
| 2412 | } |
| 2413 | } |
| 2414 | |
| 2415 | LastRoutineDecl = OpenACCRoutineDecl::Create( |
| 2416 | Ctx&: getASTContext(), DC: getCurContext(), StartLoc, DirLoc, LParenLoc, FuncRef, |
| 2417 | RParenLoc, EndLoc, Clauses); |
| 2418 | LastRoutineDecl->setAccess(AS_public); |
| 2419 | getCurContext()->addDecl(D: LastRoutineDecl); |
| 2420 | |
| 2421 | return LastRoutineDecl; |
| 2422 | } |
| 2423 | |
| 2424 | DeclGroupRef SemaOpenACC::ActOnEndRoutineDeclDirective( |
| 2425 | SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc, |
| 2426 | Expr *ReferencedFunc, SourceLocation RParenLoc, |
| 2427 | ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc, |
| 2428 | DeclGroupPtrTy NextDecl) { |
| 2429 | assert((!ReferencedFunc || !NextDecl) && |
| 2430 | "Only one of these should be filled" ); |
| 2431 | |
| 2432 | if (LParenLoc.isInvalid()) { |
| 2433 | Decl *NextLineDecl = nullptr; |
| 2434 | if (NextDecl && NextDecl.get().isSingleDecl()) |
| 2435 | NextLineDecl = NextDecl.get().getSingleDecl(); |
| 2436 | |
| 2437 | CheckRoutineDecl(DirLoc, Clauses, NextParsedDecl: NextLineDecl); |
| 2438 | |
| 2439 | return NextDecl.get(); |
| 2440 | } |
| 2441 | |
| 2442 | return DeclGroupRef{CheckRoutineDecl( |
| 2443 | StartLoc, DirLoc, LParenLoc, FuncRef: ReferencedFunc, RParenLoc, Clauses, EndLoc)}; |
| 2444 | } |
| 2445 | |
| 2446 | StmtResult SemaOpenACC::ActOnEndRoutineStmtDirective( |
| 2447 | SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc, |
| 2448 | Expr *ReferencedFunc, SourceLocation RParenLoc, |
| 2449 | ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc, |
| 2450 | Stmt *NextStmt) { |
| 2451 | assert((!ReferencedFunc || !NextStmt) && |
| 2452 | "Only one of these should be filled" ); |
| 2453 | |
| 2454 | if (LParenLoc.isInvalid()) { |
| 2455 | Decl *NextLineDecl = nullptr; |
| 2456 | if (NextStmt) |
| 2457 | if (DeclStmt *DS = dyn_cast<DeclStmt>(Val: NextStmt); DS && DS->isSingleDecl()) |
| 2458 | NextLineDecl = DS->getSingleDecl(); |
| 2459 | |
| 2460 | CheckRoutineDecl(DirLoc, Clauses, NextParsedDecl: NextLineDecl); |
| 2461 | return NextStmt; |
| 2462 | } |
| 2463 | |
| 2464 | DeclGroupRef DR{CheckRoutineDecl(StartLoc, DirLoc, LParenLoc, FuncRef: ReferencedFunc, |
| 2465 | RParenLoc, Clauses, EndLoc)}; |
| 2466 | return SemaRef.ActOnDeclStmt(Decl: DeclGroupPtrTy::make(P: DR), StartLoc, EndLoc); |
| 2467 | } |
| 2468 | |
| 2469 | OpenACCRoutineDeclAttr * |
| 2470 | SemaOpenACC::mergeRoutineDeclAttr(const OpenACCRoutineDeclAttr &Old) { |
| 2471 | OpenACCRoutineDeclAttr *New = |
| 2472 | OpenACCRoutineDeclAttr::Create(Ctx&: getASTContext(), Range: Old.getLocation()); |
| 2473 | // We should jsut be able to copy these, there isn't really any |
| 2474 | // merging/inheriting we have to do, so no worry about doing a deep copy. |
| 2475 | New->Clauses = Old.Clauses; |
| 2476 | return New; |
| 2477 | } |
| 2478 | ExprResult |
| 2479 | SemaOpenACC::BuildOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) { |
| 2480 | return OpenACCAsteriskSizeExpr::Create(C: getASTContext(), Loc: AsteriskLoc); |
| 2481 | } |
| 2482 | |
| 2483 | ExprResult |
| 2484 | SemaOpenACC::ActOnOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) { |
| 2485 | return BuildOpenACCAsteriskSizeExpr(AsteriskLoc); |
| 2486 | } |
| 2487 | |