1 | //===--- SemaOpenACC.cpp - Semantic Analysis for OpenACC constructs -------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// This file implements semantic analysis for OpenACC constructs, and things |
10 | /// that are not clause specific. |
11 | /// |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "clang/Sema/SemaOpenACC.h" |
15 | #include "clang/AST/DeclOpenACC.h" |
16 | #include "clang/AST/StmtOpenACC.h" |
17 | #include "clang/Basic/DiagnosticSema.h" |
18 | #include "clang/Basic/OpenACCKinds.h" |
19 | #include "clang/Basic/SourceManager.h" |
20 | #include "clang/Sema/Scope.h" |
21 | #include "clang/Sema/Sema.h" |
22 | #include "llvm/ADT/StringExtras.h" |
23 | #include "llvm/Support/Casting.h" |
24 | |
25 | using namespace clang; |
26 | |
27 | namespace { |
28 | bool diagnoseConstructAppertainment(SemaOpenACC &S, OpenACCDirectiveKind K, |
29 | SourceLocation StartLoc, bool IsStmt) { |
30 | switch (K) { |
31 | default: |
32 | case OpenACCDirectiveKind::Invalid: |
33 | // Nothing to do here, both invalid and unimplemented don't really need to |
34 | // do anything. |
35 | break; |
36 | case OpenACCDirectiveKind::Parallel: |
37 | case OpenACCDirectiveKind::ParallelLoop: |
38 | case OpenACCDirectiveKind::Serial: |
39 | case OpenACCDirectiveKind::SerialLoop: |
40 | case OpenACCDirectiveKind::Kernels: |
41 | case OpenACCDirectiveKind::KernelsLoop: |
42 | case OpenACCDirectiveKind::Loop: |
43 | case OpenACCDirectiveKind::Data: |
44 | case OpenACCDirectiveKind::EnterData: |
45 | case OpenACCDirectiveKind::ExitData: |
46 | case OpenACCDirectiveKind::HostData: |
47 | case OpenACCDirectiveKind::Wait: |
48 | case OpenACCDirectiveKind::Update: |
49 | case OpenACCDirectiveKind::Init: |
50 | case OpenACCDirectiveKind::Shutdown: |
51 | case OpenACCDirectiveKind::Cache: |
52 | case OpenACCDirectiveKind::Atomic: |
53 | if (!IsStmt) |
54 | return S.Diag(Loc: StartLoc, DiagID: diag::err_acc_construct_appertainment) << K; |
55 | break; |
56 | } |
57 | return false; |
58 | } |
59 | |
60 | void CollectActiveReductionClauses( |
61 | llvm::SmallVector<OpenACCReductionClause *> &ActiveClauses, |
62 | ArrayRef<OpenACCClause *> CurClauses) { |
63 | for (auto *CurClause : CurClauses) { |
64 | if (auto *RedClause = dyn_cast<OpenACCReductionClause>(Val: CurClause); |
65 | RedClause && !RedClause->getVarList().empty()) |
66 | ActiveClauses.push_back(Elt: RedClause); |
67 | } |
68 | } |
69 | |
70 | // Depth needs to be preserved for all associated statements that aren't |
71 | // supposed to modify the compute/combined/loop construct information. |
72 | bool PreserveLoopRAIIDepthInAssociatedStmtRAII(OpenACCDirectiveKind DK) { |
73 | switch (DK) { |
74 | case OpenACCDirectiveKind::Parallel: |
75 | case OpenACCDirectiveKind::ParallelLoop: |
76 | case OpenACCDirectiveKind::Serial: |
77 | case OpenACCDirectiveKind::SerialLoop: |
78 | case OpenACCDirectiveKind::Kernels: |
79 | case OpenACCDirectiveKind::KernelsLoop: |
80 | case OpenACCDirectiveKind::Loop: |
81 | return false; |
82 | case OpenACCDirectiveKind::Data: |
83 | case OpenACCDirectiveKind::HostData: |
84 | case OpenACCDirectiveKind::Atomic: |
85 | return true; |
86 | case OpenACCDirectiveKind::Cache: |
87 | case OpenACCDirectiveKind::Routine: |
88 | case OpenACCDirectiveKind::Declare: |
89 | case OpenACCDirectiveKind::EnterData: |
90 | case OpenACCDirectiveKind::ExitData: |
91 | case OpenACCDirectiveKind::Wait: |
92 | case OpenACCDirectiveKind::Init: |
93 | case OpenACCDirectiveKind::Shutdown: |
94 | case OpenACCDirectiveKind::Set: |
95 | case OpenACCDirectiveKind::Update: |
96 | llvm_unreachable("Doesn't have an associated stmt" ); |
97 | case OpenACCDirectiveKind::Invalid: |
98 | llvm_unreachable("Unhandled directive kind?" ); |
99 | } |
100 | llvm_unreachable("Unhandled directive kind?" ); |
101 | } |
102 | |
103 | } // namespace |
104 | |
105 | SemaOpenACC::SemaOpenACC(Sema &S) : SemaBase(S) {} |
106 | |
107 | SemaOpenACC::AssociatedStmtRAII::AssociatedStmtRAII( |
108 | SemaOpenACC &S, OpenACCDirectiveKind DK, SourceLocation DirLoc, |
109 | ArrayRef<const OpenACCClause *> UnInstClauses, |
110 | ArrayRef<OpenACCClause *> Clauses) |
111 | : SemaRef(S), OldActiveComputeConstructInfo(S.ActiveComputeConstructInfo), |
112 | DirKind(DK), OldLoopGangClauseOnKernel(S.LoopGangClauseOnKernel), |
113 | OldLoopWorkerClauseLoc(S.LoopWorkerClauseLoc), |
114 | OldLoopVectorClauseLoc(S.LoopVectorClauseLoc), |
115 | OldLoopWithoutSeqInfo(S.LoopWithoutSeqInfo), |
116 | ActiveReductionClauses(S.ActiveReductionClauses), |
117 | LoopRAII(SemaRef, PreserveLoopRAIIDepthInAssociatedStmtRAII(DK: DirKind)) { |
118 | |
119 | // Compute constructs end up taking their 'loop'. |
120 | if (DirKind == OpenACCDirectiveKind::Parallel || |
121 | DirKind == OpenACCDirectiveKind::Serial || |
122 | DirKind == OpenACCDirectiveKind::Kernels) { |
123 | CollectActiveReductionClauses(ActiveClauses&: S.ActiveReductionClauses, CurClauses: Clauses); |
124 | SemaRef.ActiveComputeConstructInfo.Kind = DirKind; |
125 | SemaRef.ActiveComputeConstructInfo.Clauses = Clauses; |
126 | |
127 | // OpenACC 3.3 2.9.2: When the parent compute construct is a kernels |
128 | // construct, the gang clause behaves as follows. ... The region of a loop |
129 | // with a gang clause may not contain another loop with a gang clause unless |
130 | // within a nested compute region. |
131 | // |
132 | // Implement the 'unless within a nested compute region' part. |
133 | SemaRef.LoopGangClauseOnKernel = {}; |
134 | SemaRef.LoopWorkerClauseLoc = {}; |
135 | SemaRef.LoopVectorClauseLoc = {}; |
136 | SemaRef.LoopWithoutSeqInfo = {}; |
137 | } else if (DirKind == OpenACCDirectiveKind::ParallelLoop || |
138 | DirKind == OpenACCDirectiveKind::SerialLoop || |
139 | DirKind == OpenACCDirectiveKind::KernelsLoop) { |
140 | SemaRef.ActiveComputeConstructInfo.Kind = DirKind; |
141 | SemaRef.ActiveComputeConstructInfo.Clauses = Clauses; |
142 | |
143 | CollectActiveReductionClauses(ActiveClauses&: S.ActiveReductionClauses, CurClauses: Clauses); |
144 | SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses); |
145 | SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses); |
146 | |
147 | SemaRef.LoopGangClauseOnKernel = {}; |
148 | SemaRef.LoopWorkerClauseLoc = {}; |
149 | SemaRef.LoopVectorClauseLoc = {}; |
150 | |
151 | // Set the active 'loop' location if there isn't a 'seq' on it, so we can |
152 | // diagnose the for loops. |
153 | SemaRef.LoopWithoutSeqInfo = {}; |
154 | if (Clauses.end() == |
155 | llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCSeqClause>)) |
156 | SemaRef.LoopWithoutSeqInfo = {.Kind: DirKind, .Loc: DirLoc}; |
157 | |
158 | // OpenACC 3.3 2.9.2: When the parent compute construct is a kernels |
159 | // construct, the gang clause behaves as follows. ... The region of a loop |
160 | // with a gang clause may not contain another loop with a gang clause unless |
161 | // within a nested compute region. |
162 | // |
163 | // We don't bother doing this when this is a template instantiation, as |
164 | // there is no reason to do these checks: the existance of a |
165 | // gang/kernels/etc cannot be dependent. |
166 | if (DirKind == OpenACCDirectiveKind::KernelsLoop && UnInstClauses.empty()) { |
167 | // This handles the 'outer loop' part of this. |
168 | auto *Itr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCGangClause>); |
169 | if (Itr != Clauses.end()) |
170 | SemaRef.LoopGangClauseOnKernel = {.Loc: (*Itr)->getBeginLoc(), .DirKind: DirKind}; |
171 | } |
172 | |
173 | if (UnInstClauses.empty()) { |
174 | auto *Itr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCWorkerClause>); |
175 | if (Itr != Clauses.end()) |
176 | SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc(); |
177 | |
178 | auto *Itr2 = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCVectorClause>); |
179 | if (Itr2 != Clauses.end()) |
180 | SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc(); |
181 | } |
182 | } else if (DirKind == OpenACCDirectiveKind::Loop) { |
183 | CollectActiveReductionClauses(ActiveClauses&: S.ActiveReductionClauses, CurClauses: Clauses); |
184 | SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses); |
185 | SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses); |
186 | |
187 | // Set the active 'loop' location if there isn't a 'seq' on it, so we can |
188 | // diagnose the for loops. |
189 | SemaRef.LoopWithoutSeqInfo = {}; |
190 | if (Clauses.end() == |
191 | llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCSeqClause>)) |
192 | SemaRef.LoopWithoutSeqInfo = {.Kind: DirKind, .Loc: DirLoc}; |
193 | |
194 | // OpenACC 3.3 2.9.2: When the parent compute construct is a kernels |
195 | // construct, the gang clause behaves as follows. ... The region of a loop |
196 | // with a gang clause may not contain another loop with a gang clause unless |
197 | // within a nested compute region. |
198 | // |
199 | // We don't bother doing this when this is a template instantiation, as |
200 | // there is no reason to do these checks: the existance of a |
201 | // gang/kernels/etc cannot be dependent. |
202 | if (SemaRef.getActiveComputeConstructInfo().Kind == |
203 | OpenACCDirectiveKind::Kernels && |
204 | UnInstClauses.empty()) { |
205 | // This handles the 'outer loop' part of this. |
206 | auto *Itr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCGangClause>); |
207 | if (Itr != Clauses.end()) |
208 | SemaRef.LoopGangClauseOnKernel = {.Loc: (*Itr)->getBeginLoc(), |
209 | .DirKind: OpenACCDirectiveKind::Kernels}; |
210 | } |
211 | |
212 | if (UnInstClauses.empty()) { |
213 | auto *Itr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCWorkerClause>); |
214 | if (Itr != Clauses.end()) |
215 | SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc(); |
216 | |
217 | auto *Itr2 = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCVectorClause>); |
218 | if (Itr2 != Clauses.end()) |
219 | SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc(); |
220 | } |
221 | } |
222 | } |
223 | |
224 | namespace { |
225 | // Given two collapse clauses, and the uninstanted version of the new one, |
226 | // return the 'best' one for the purposes of setting the collapse checking |
227 | // values. |
228 | const OpenACCCollapseClause * |
229 | getBestCollapseCandidate(const OpenACCCollapseClause *Old, |
230 | const OpenACCCollapseClause *New, |
231 | const OpenACCCollapseClause *UnInstNew) { |
232 | // If the loop count is nullptr, it is because instantiation failed, so this |
233 | // can't be the best one. |
234 | if (!New->getLoopCount()) |
235 | return Old; |
236 | |
237 | // If the loop-count had an error, than 'new' isn't a candidate. |
238 | if (!New->getLoopCount()) |
239 | return Old; |
240 | |
241 | // Don't consider uninstantiated ones, since we can't really check these. |
242 | if (New->getLoopCount()->isInstantiationDependent()) |
243 | return Old; |
244 | |
245 | // If this is an instantiation, and the old version wasn't instantation |
246 | // dependent, than nothing has changed and we've already done a diagnostic |
247 | // based on this one, so don't consider it. |
248 | if (UnInstNew && !UnInstNew->getLoopCount()->isInstantiationDependent()) |
249 | return Old; |
250 | |
251 | // New is now a valid candidate, so if there isn't an old one at this point, |
252 | // New is the only valid one. |
253 | if (!Old) |
254 | return New; |
255 | |
256 | // If the 'New' expression has a larger value than 'Old', then it is the new |
257 | // best candidate. |
258 | if (cast<ConstantExpr>(Val: Old->getLoopCount())->getResultAsAPSInt() < |
259 | cast<ConstantExpr>(Val: New->getLoopCount())->getResultAsAPSInt()) |
260 | return New; |
261 | |
262 | return Old; |
263 | } |
264 | } // namespace |
265 | |
266 | void SemaOpenACC::AssociatedStmtRAII::SetCollapseInfoBeforeAssociatedStmt( |
267 | ArrayRef<const OpenACCClause *> UnInstClauses, |
268 | ArrayRef<OpenACCClause *> Clauses) { |
269 | |
270 | // Reset this checking for loops that aren't covered in a RAII object. |
271 | SemaRef.LoopInfo.CurLevelHasLoopAlready = false; |
272 | SemaRef.CollapseInfo.CollapseDepthSatisfied = true; |
273 | SemaRef.CollapseInfo.CurCollapseCount = 0; |
274 | SemaRef.TileInfo.TileDepthSatisfied = true; |
275 | |
276 | // We make sure to take an optional list of uninstantiated clauses, so that |
277 | // we can check to make sure we don't 'double diagnose' in the event that |
278 | // the value of 'N' was not dependent in a template. Since we cannot count on |
279 | // there only being a single collapse clause, we count on the order to make |
280 | // sure get the matching ones, and we count on TreeTransform not removing |
281 | // these, even if loop-count instantiation failed. We can check the |
282 | // non-dependent ones right away, and realize that subsequent instantiation |
283 | // can only make it more specific. |
284 | |
285 | auto *UnInstClauseItr = |
286 | llvm::find_if(Range&: UnInstClauses, P: llvm::IsaPred<OpenACCCollapseClause>); |
287 | auto *ClauseItr = |
288 | llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCCollapseClause>); |
289 | const OpenACCCollapseClause *FoundClause = nullptr; |
290 | |
291 | // Loop through the list of Collapse clauses and find the one that: |
292 | // 1- Has a non-dependent, non-null loop count (null means error, likely |
293 | // during instantiation). |
294 | // 2- If UnInstClauses isn't empty, its corresponding |
295 | // loop count was dependent. |
296 | // 3- Has the largest 'loop count' of all. |
297 | while (ClauseItr != Clauses.end()) { |
298 | const OpenACCCollapseClause *CurClause = |
299 | cast<OpenACCCollapseClause>(Val: *ClauseItr); |
300 | const OpenACCCollapseClause *UnInstCurClause = |
301 | UnInstClauseItr == UnInstClauses.end() |
302 | ? nullptr |
303 | : cast<OpenACCCollapseClause>(Val: *UnInstClauseItr); |
304 | |
305 | FoundClause = |
306 | getBestCollapseCandidate(Old: FoundClause, New: CurClause, UnInstNew: UnInstCurClause); |
307 | |
308 | UnInstClauseItr = |
309 | UnInstClauseItr == UnInstClauses.end() |
310 | ? UnInstClauseItr |
311 | : std::find_if(first: std::next(x: UnInstClauseItr), last: UnInstClauses.end(), |
312 | pred: llvm::IsaPred<OpenACCCollapseClause>); |
313 | ClauseItr = std::find_if(first: std::next(x: ClauseItr), last: Clauses.end(), |
314 | pred: llvm::IsaPred<OpenACCCollapseClause>); |
315 | } |
316 | |
317 | if (!FoundClause) |
318 | return; |
319 | |
320 | SemaRef.CollapseInfo.ActiveCollapse = FoundClause; |
321 | SemaRef.CollapseInfo.CollapseDepthSatisfied = false; |
322 | SemaRef.CollapseInfo.CurCollapseCount = |
323 | cast<ConstantExpr>(Val: FoundClause->getLoopCount())->getResultAsAPSInt(); |
324 | SemaRef.CollapseInfo.DirectiveKind = DirKind; |
325 | } |
326 | |
327 | void SemaOpenACC::AssociatedStmtRAII::SetTileInfoBeforeAssociatedStmt( |
328 | ArrayRef<const OpenACCClause *> UnInstClauses, |
329 | ArrayRef<OpenACCClause *> Clauses) { |
330 | // We don't diagnose if this is during instantiation, since the only thing we |
331 | // care about is the number of arguments, which we can figure out without |
332 | // instantiation, so we don't want to double-diagnose. |
333 | if (UnInstClauses.size() > 0) |
334 | return; |
335 | auto *TileClauseItr = |
336 | llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCTileClause>); |
337 | |
338 | if (Clauses.end() == TileClauseItr) |
339 | return; |
340 | |
341 | OpenACCTileClause *TileClause = cast<OpenACCTileClause>(Val: *TileClauseItr); |
342 | |
343 | // Multiple tile clauses are allowed, so ensure that we use the one with the |
344 | // largest 'tile count'. |
345 | while (Clauses.end() != |
346 | (TileClauseItr = std::find_if(first: std::next(x: TileClauseItr), last: Clauses.end(), |
347 | pred: llvm::IsaPred<OpenACCTileClause>))) { |
348 | OpenACCTileClause *NewClause = cast<OpenACCTileClause>(Val: *TileClauseItr); |
349 | if (NewClause->getSizeExprs().size() > TileClause->getSizeExprs().size()) |
350 | TileClause = NewClause; |
351 | } |
352 | |
353 | SemaRef.TileInfo.ActiveTile = TileClause; |
354 | SemaRef.TileInfo.TileDepthSatisfied = false; |
355 | SemaRef.TileInfo.CurTileCount = |
356 | static_cast<unsigned>(TileClause->getSizeExprs().size()); |
357 | SemaRef.TileInfo.DirectiveKind = DirKind; |
358 | } |
359 | |
360 | SemaOpenACC::AssociatedStmtRAII::~AssociatedStmtRAII() { |
361 | if (DirKind == OpenACCDirectiveKind::Parallel || |
362 | DirKind == OpenACCDirectiveKind::Serial || |
363 | DirKind == OpenACCDirectiveKind::Kernels || |
364 | DirKind == OpenACCDirectiveKind::Loop || |
365 | DirKind == OpenACCDirectiveKind::ParallelLoop || |
366 | DirKind == OpenACCDirectiveKind::SerialLoop || |
367 | DirKind == OpenACCDirectiveKind::KernelsLoop) { |
368 | SemaRef.ActiveComputeConstructInfo = OldActiveComputeConstructInfo; |
369 | SemaRef.LoopGangClauseOnKernel = OldLoopGangClauseOnKernel; |
370 | SemaRef.LoopWorkerClauseLoc = OldLoopWorkerClauseLoc; |
371 | SemaRef.LoopVectorClauseLoc = OldLoopVectorClauseLoc; |
372 | SemaRef.LoopWithoutSeqInfo = OldLoopWithoutSeqInfo; |
373 | SemaRef.ActiveReductionClauses.swap(RHS&: ActiveReductionClauses); |
374 | } else if (DirKind == OpenACCDirectiveKind::Data || |
375 | DirKind == OpenACCDirectiveKind::HostData) { |
376 | // Intentionally doesn't reset the Loop, Compute Construct, or reduction |
377 | // effects. |
378 | } |
379 | } |
380 | |
381 | void SemaOpenACC::ActOnConstruct(OpenACCDirectiveKind K, |
382 | SourceLocation DirLoc) { |
383 | // Start an evaluation context to parse the clause arguments on. |
384 | SemaRef.PushExpressionEvaluationContext( |
385 | NewContext: Sema::ExpressionEvaluationContext::PotentiallyEvaluated); |
386 | |
387 | // There is nothing do do here as all we have at this point is the name of the |
388 | // construct itself. |
389 | } |
390 | |
391 | ExprResult SemaOpenACC::ActOnIntExpr(OpenACCDirectiveKind DK, |
392 | OpenACCClauseKind CK, SourceLocation Loc, |
393 | Expr *IntExpr) { |
394 | |
395 | assert(((DK != OpenACCDirectiveKind::Invalid && |
396 | CK == OpenACCClauseKind::Invalid) || |
397 | (DK == OpenACCDirectiveKind::Invalid && |
398 | CK != OpenACCClauseKind::Invalid) || |
399 | (DK == OpenACCDirectiveKind::Invalid && |
400 | CK == OpenACCClauseKind::Invalid)) && |
401 | "Only one of directive or clause kind should be provided" ); |
402 | |
403 | class IntExprConverter : public Sema::ICEConvertDiagnoser { |
404 | OpenACCDirectiveKind DirectiveKind; |
405 | OpenACCClauseKind ClauseKind; |
406 | Expr *IntExpr; |
407 | |
408 | // gets the index into the diagnostics so we can use this for clauses, |
409 | // directives, and sub array.s |
410 | unsigned getDiagKind() const { |
411 | if (ClauseKind != OpenACCClauseKind::Invalid) |
412 | return 0; |
413 | if (DirectiveKind != OpenACCDirectiveKind::Invalid) |
414 | return 1; |
415 | return 2; |
416 | } |
417 | |
418 | public: |
419 | IntExprConverter(OpenACCDirectiveKind DK, OpenACCClauseKind CK, |
420 | Expr *IntExpr) |
421 | : ICEConvertDiagnoser(/*AllowScopedEnumerations=*/false, |
422 | /*Suppress=*/false, |
423 | /*SuppressConversion=*/true), |
424 | DirectiveKind(DK), ClauseKind(CK), IntExpr(IntExpr) {} |
425 | |
426 | bool match(QualType T) override { |
427 | // OpenACC spec just calls this 'integer expression' as having an |
428 | // 'integer type', so fall back on C99's 'integer type'. |
429 | return T->isIntegerType(); |
430 | } |
431 | SemaBase::SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, |
432 | QualType T) override { |
433 | return S.Diag(Loc, DiagID: diag::err_acc_int_expr_requires_integer) |
434 | << getDiagKind() << ClauseKind << DirectiveKind << T; |
435 | } |
436 | |
437 | SemaBase::SemaDiagnosticBuilder |
438 | diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) override { |
439 | return S.Diag(Loc, DiagID: diag::err_acc_int_expr_incomplete_class_type) |
440 | << T << IntExpr->getSourceRange(); |
441 | } |
442 | |
443 | SemaBase::SemaDiagnosticBuilder |
444 | diagnoseExplicitConv(Sema &S, SourceLocation Loc, QualType T, |
445 | QualType ConvTy) override { |
446 | return S.Diag(Loc, DiagID: diag::err_acc_int_expr_explicit_conversion) |
447 | << T << ConvTy; |
448 | } |
449 | |
450 | SemaBase::SemaDiagnosticBuilder noteExplicitConv(Sema &S, |
451 | CXXConversionDecl *Conv, |
452 | QualType ConvTy) override { |
453 | return S.Diag(Loc: Conv->getLocation(), DiagID: diag::note_acc_int_expr_conversion) |
454 | << ConvTy->isEnumeralType() << ConvTy; |
455 | } |
456 | |
457 | SemaBase::SemaDiagnosticBuilder |
458 | diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) override { |
459 | return S.Diag(Loc, DiagID: diag::err_acc_int_expr_multiple_conversions) << T; |
460 | } |
461 | |
462 | SemaBase::SemaDiagnosticBuilder |
463 | noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { |
464 | return S.Diag(Loc: Conv->getLocation(), DiagID: diag::note_acc_int_expr_conversion) |
465 | << ConvTy->isEnumeralType() << ConvTy; |
466 | } |
467 | |
468 | SemaBase::SemaDiagnosticBuilder |
469 | diagnoseConversion(Sema &S, SourceLocation Loc, QualType T, |
470 | QualType ConvTy) override { |
471 | llvm_unreachable("conversion functions are permitted" ); |
472 | } |
473 | } IntExprDiagnoser(DK, CK, IntExpr); |
474 | |
475 | if (!IntExpr) |
476 | return ExprError(); |
477 | |
478 | ExprResult IntExprResult = SemaRef.PerformContextualImplicitConversion( |
479 | Loc, FromE: IntExpr, Converter&: IntExprDiagnoser); |
480 | if (IntExprResult.isInvalid()) |
481 | return ExprError(); |
482 | |
483 | IntExpr = IntExprResult.get(); |
484 | if (!IntExpr->isTypeDependent() && !IntExpr->getType()->isIntegerType()) |
485 | return ExprError(); |
486 | |
487 | // TODO OpenACC: Do we want to perform usual unary conversions here? When |
488 | // doing codegen we might find that is necessary, but skip it for now. |
489 | return IntExpr; |
490 | } |
491 | |
492 | bool SemaOpenACC::CheckVarIsPointerType(OpenACCClauseKind ClauseKind, |
493 | Expr *VarExpr) { |
494 | // We already know that VarExpr is a proper reference to a variable, so we |
495 | // should be able to just take the type of the expression to get the type of |
496 | // the referenced variable. |
497 | |
498 | // We've already seen an error, don't diagnose anything else. |
499 | if (!VarExpr || VarExpr->containsErrors()) |
500 | return false; |
501 | |
502 | if (isa<ArraySectionExpr>(Val: VarExpr->IgnoreParenImpCasts()) || |
503 | VarExpr->hasPlaceholderType(K: BuiltinType::ArraySection)) { |
504 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_array_section_use) << /*OpenACC=*/0; |
505 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::note_acc_expected_pointer_var); |
506 | return true; |
507 | } |
508 | |
509 | QualType Ty = VarExpr->getType(); |
510 | Ty = Ty.getNonReferenceType().getUnqualifiedType(); |
511 | |
512 | // Nothing we can do if this is a dependent type. |
513 | if (Ty->isDependentType()) |
514 | return false; |
515 | |
516 | if (!Ty->isPointerType()) |
517 | return Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_var_not_pointer_type) |
518 | << ClauseKind << Ty; |
519 | return false; |
520 | } |
521 | |
522 | void SemaOpenACC::ActOnStartParseVar(OpenACCDirectiveKind DK, |
523 | OpenACCClauseKind CK) { |
524 | if (DK == OpenACCDirectiveKind::Cache) { |
525 | CacheInfo.ParsingCacheVarList = true; |
526 | CacheInfo.IsInvalidCacheRef = false; |
527 | } |
528 | } |
529 | |
530 | void SemaOpenACC::ActOnInvalidParseVar() { |
531 | CacheInfo.ParsingCacheVarList = false; |
532 | CacheInfo.IsInvalidCacheRef = false; |
533 | } |
534 | |
535 | ExprResult SemaOpenACC::ActOnCacheVar(Expr *VarExpr) { |
536 | Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts(); |
537 | // Clear this here, so we can do the returns based on the invalid cache ref |
538 | // here. Note all return statements in this function must return ExprError if |
539 | // IsInvalidCacheRef. However, instead of doing an 'early return' in that |
540 | // case, we can let the rest of the diagnostics happen, as the invalid decl |
541 | // ref is a warning. |
542 | bool WasParsingInvalidCacheRef = |
543 | CacheInfo.ParsingCacheVarList && CacheInfo.IsInvalidCacheRef; |
544 | CacheInfo.ParsingCacheVarList = false; |
545 | CacheInfo.IsInvalidCacheRef = false; |
546 | |
547 | if (!isa<ArraySectionExpr, ArraySubscriptExpr>(Val: CurVarExpr)) { |
548 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref_cache); |
549 | return ExprError(); |
550 | } |
551 | |
552 | // It isn't clear what 'simple array element or simple subarray' means, so we |
553 | // will just allow arbitrary depth. |
554 | while (isa<ArraySectionExpr, ArraySubscriptExpr>(Val: CurVarExpr)) { |
555 | if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(Val: CurVarExpr)) |
556 | CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts(); |
557 | else |
558 | CurVarExpr = |
559 | cast<ArraySectionExpr>(Val: CurVarExpr)->getBase()->IgnoreParenImpCasts(); |
560 | } |
561 | |
562 | // References to a VarDecl are fine. |
563 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: CurVarExpr)) { |
564 | if (isa<VarDecl, NonTypeTemplateParmDecl>( |
565 | Val: DRE->getFoundDecl()->getCanonicalDecl())) |
566 | return WasParsingInvalidCacheRef ? ExprEmpty() : VarExpr; |
567 | } |
568 | |
569 | if (const auto *ME = dyn_cast<MemberExpr>(Val: CurVarExpr)) { |
570 | if (isa<FieldDecl>(Val: ME->getMemberDecl()->getCanonicalDecl())) { |
571 | return WasParsingInvalidCacheRef ? ExprEmpty() : VarExpr; |
572 | } |
573 | } |
574 | |
575 | // Nothing really we can do here, as these are dependent. So just return they |
576 | // are valid. |
577 | if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(Val: CurVarExpr)) |
578 | return WasParsingInvalidCacheRef ? ExprEmpty() : VarExpr; |
579 | |
580 | // There isn't really anything we can do in the case of a recovery expr, so |
581 | // skip the diagnostic rather than produce a confusing diagnostic. |
582 | if (isa<RecoveryExpr>(Val: CurVarExpr)) |
583 | return ExprError(); |
584 | |
585 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref_cache); |
586 | return ExprError(); |
587 | } |
588 | |
589 | void SemaOpenACC::CheckDeclReference(SourceLocation Loc, Expr *E, Decl *D) { |
590 | if (!getLangOpts().OpenACC || !CacheInfo.ParsingCacheVarList || !D || |
591 | D->isInvalidDecl()) |
592 | return; |
593 | // A 'cache' variable reference MUST be declared before the 'acc.loop' we |
594 | // generate in codegen, so we have to mark it invalid here in some way. We do |
595 | // so in a bit of a convoluted way as there is no good way to put this into |
596 | // the AST, so we store it in SemaOpenACC State. We can check the Scope |
597 | // during parsing to make sure there is a 'loop' before the decl is |
598 | // declared(and skip during instantiation). |
599 | // We only diagnose this as a warning, as this isn't required by the standard |
600 | // (unless you take a VERY awkward reading of some awkward prose). |
601 | |
602 | Scope *CurScope = SemaRef.getCurScope(); |
603 | |
604 | // if we are at TU level, we are either doing some EXTRA wacky, or are in a |
605 | // template instantiation, so just give up. |
606 | if (CurScope->getDepth() == 0) |
607 | return; |
608 | |
609 | while (CurScope) { |
610 | // If we run into a loop construct scope, than this is 'correct' in that the |
611 | // declaration is outside of the loop. |
612 | if (CurScope->isOpenACCLoopConstructScope()) |
613 | return; |
614 | |
615 | if (CurScope->isDeclScope(D)) { |
616 | Diag(Loc, DiagID: diag::warn_acc_cache_var_not_outside_loop); |
617 | |
618 | CacheInfo.IsInvalidCacheRef = true; |
619 | } |
620 | |
621 | CurScope = CurScope->getParent(); |
622 | } |
623 | // If we don't find the decl at all, we assume that it must be outside of the |
624 | // loop (or we aren't in a loop!) so skip the diagnostic. |
625 | } |
626 | |
627 | ExprResult SemaOpenACC::ActOnVar(OpenACCDirectiveKind DK, OpenACCClauseKind CK, |
628 | Expr *VarExpr) { |
629 | // This has unique enough restrictions that we should split it to a separate |
630 | // function. |
631 | if (DK == OpenACCDirectiveKind::Cache) |
632 | return ActOnCacheVar(VarExpr); |
633 | |
634 | Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts(); |
635 | |
636 | // 'use_device' doesn't allow array subscript or array sections. |
637 | // OpenACC3.3 2.8: |
638 | // A 'var' in a 'use_device' clause must be the name of a variable or array. |
639 | // OpenACC3.3 2.13: |
640 | // A 'var' in a 'declare' directive must be a variable or array name. |
641 | if ((CK == OpenACCClauseKind::UseDevice || |
642 | DK == OpenACCDirectiveKind::Declare) && |
643 | isa<ArraySectionExpr, ArraySubscriptExpr>(Val: CurVarExpr)) { |
644 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref_use_device_declare) |
645 | << (DK == OpenACCDirectiveKind::Declare); |
646 | return ExprError(); |
647 | } |
648 | |
649 | // Sub-arrays/subscript-exprs are fine as long as the base is a |
650 | // VarExpr/MemberExpr. So strip all of those off. |
651 | while (isa<ArraySectionExpr, ArraySubscriptExpr>(Val: CurVarExpr)) { |
652 | if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(Val: CurVarExpr)) |
653 | CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts(); |
654 | else |
655 | CurVarExpr = |
656 | cast<ArraySectionExpr>(Val: CurVarExpr)->getBase()->IgnoreParenImpCasts(); |
657 | } |
658 | |
659 | // References to a VarDecl are fine. |
660 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: CurVarExpr)) { |
661 | if (isa<VarDecl, NonTypeTemplateParmDecl>( |
662 | Val: DRE->getFoundDecl()->getCanonicalDecl())) |
663 | return VarExpr; |
664 | } |
665 | |
666 | // If CK is a Reduction, this special cases for OpenACC3.3 2.5.15: "A var in a |
667 | // reduction clause must be a scalar variable name, an aggregate variable |
668 | // name, an array element, or a subarray. |
669 | // If CK is a 'use_device', this also isn't valid, as it isn't the name of a |
670 | // variable or array, if not done as a member expr. |
671 | // A MemberExpr that references a Field is valid for other clauses. |
672 | if (const auto *ME = dyn_cast<MemberExpr>(Val: CurVarExpr)) { |
673 | if (isa<FieldDecl>(Val: ME->getMemberDecl()->getCanonicalDecl())) { |
674 | if (DK == OpenACCDirectiveKind::Declare || |
675 | CK == OpenACCClauseKind::Reduction || |
676 | CK == OpenACCClauseKind::UseDevice) { |
677 | |
678 | // We can allow 'member expr' if the 'this' is implicit in the case of |
679 | // declare, reduction, and use_device. |
680 | const auto *This = dyn_cast<CXXThisExpr>(Val: ME->getBase()); |
681 | if (This && This->isImplicit()) |
682 | return VarExpr; |
683 | } else { |
684 | return VarExpr; |
685 | } |
686 | } |
687 | } |
688 | |
689 | // Referring to 'this' is ok for the most part, but for 'use_device'/'declare' |
690 | // doesn't fall into 'variable or array name' |
691 | if (CK != OpenACCClauseKind::UseDevice && |
692 | DK != OpenACCDirectiveKind::Declare && isa<CXXThisExpr>(Val: CurVarExpr)) |
693 | return VarExpr; |
694 | |
695 | // Nothing really we can do here, as these are dependent. So just return they |
696 | // are valid. |
697 | if (isa<DependentScopeDeclRefExpr>(Val: CurVarExpr) || |
698 | (CK != OpenACCClauseKind::Reduction && |
699 | isa<CXXDependentScopeMemberExpr>(Val: CurVarExpr))) |
700 | return VarExpr; |
701 | |
702 | // There isn't really anything we can do in the case of a recovery expr, so |
703 | // skip the diagnostic rather than produce a confusing diagnostic. |
704 | if (isa<RecoveryExpr>(Val: CurVarExpr)) |
705 | return ExprError(); |
706 | |
707 | if (DK == OpenACCDirectiveKind::Declare) |
708 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref_use_device_declare) |
709 | << /*declare*/ 1; |
710 | else if (CK == OpenACCClauseKind::UseDevice) |
711 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref_use_device_declare) |
712 | << /*use_device*/ 0; |
713 | else |
714 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_not_a_var_ref) |
715 | << (CK != OpenACCClauseKind::Reduction); |
716 | return ExprError(); |
717 | } |
718 | |
719 | ExprResult SemaOpenACC::ActOnArraySectionExpr(Expr *Base, SourceLocation LBLoc, |
720 | Expr *LowerBound, |
721 | SourceLocation ColonLoc, |
722 | Expr *Length, |
723 | SourceLocation RBLoc) { |
724 | ASTContext &Context = getASTContext(); |
725 | |
726 | // Handle placeholders. |
727 | if (Base->hasPlaceholderType() && |
728 | !Base->hasPlaceholderType(K: BuiltinType::ArraySection)) { |
729 | ExprResult Result = SemaRef.CheckPlaceholderExpr(E: Base); |
730 | if (Result.isInvalid()) |
731 | return ExprError(); |
732 | Base = Result.get(); |
733 | } |
734 | if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) { |
735 | ExprResult Result = SemaRef.CheckPlaceholderExpr(E: LowerBound); |
736 | if (Result.isInvalid()) |
737 | return ExprError(); |
738 | Result = SemaRef.DefaultLvalueConversion(E: Result.get()); |
739 | if (Result.isInvalid()) |
740 | return ExprError(); |
741 | LowerBound = Result.get(); |
742 | } |
743 | if (Length && Length->getType()->isNonOverloadPlaceholderType()) { |
744 | ExprResult Result = SemaRef.CheckPlaceholderExpr(E: Length); |
745 | if (Result.isInvalid()) |
746 | return ExprError(); |
747 | Result = SemaRef.DefaultLvalueConversion(E: Result.get()); |
748 | if (Result.isInvalid()) |
749 | return ExprError(); |
750 | Length = Result.get(); |
751 | } |
752 | |
753 | // Check the 'base' value, it must be an array or pointer type, and not to/of |
754 | // a function type. |
755 | QualType OriginalBaseTy = ArraySectionExpr::getBaseOriginalType(Base); |
756 | QualType ResultTy; |
757 | if (!Base->isTypeDependent()) { |
758 | if (OriginalBaseTy->isAnyPointerType()) { |
759 | ResultTy = OriginalBaseTy->getPointeeType(); |
760 | } else if (OriginalBaseTy->isArrayType()) { |
761 | ResultTy = OriginalBaseTy->getAsArrayTypeUnsafe()->getElementType(); |
762 | } else { |
763 | return ExprError( |
764 | Diag(Loc: Base->getExprLoc(), DiagID: diag::err_acc_typecheck_subarray_value) |
765 | << Base->getSourceRange()); |
766 | } |
767 | |
768 | if (ResultTy->isFunctionType()) { |
769 | Diag(Loc: Base->getExprLoc(), DiagID: diag::err_acc_subarray_function_type) |
770 | << ResultTy << Base->getSourceRange(); |
771 | return ExprError(); |
772 | } |
773 | |
774 | if (SemaRef.RequireCompleteType(Loc: Base->getExprLoc(), T: ResultTy, |
775 | DiagID: diag::err_acc_subarray_incomplete_type, |
776 | Args: Base)) |
777 | return ExprError(); |
778 | |
779 | if (!Base->hasPlaceholderType(K: BuiltinType::ArraySection)) { |
780 | ExprResult Result = SemaRef.DefaultFunctionArrayLvalueConversion(E: Base); |
781 | if (Result.isInvalid()) |
782 | return ExprError(); |
783 | Base = Result.get(); |
784 | } |
785 | } |
786 | |
787 | auto GetRecovery = [&](Expr *E, QualType Ty) { |
788 | ExprResult Recovery = |
789 | SemaRef.CreateRecoveryExpr(Begin: E->getBeginLoc(), End: E->getEndLoc(), SubExprs: E, T: Ty); |
790 | return Recovery.isUsable() ? Recovery.get() : nullptr; |
791 | }; |
792 | |
793 | // Ensure both of the expressions are int-exprs. |
794 | if (LowerBound && !LowerBound->isTypeDependent()) { |
795 | ExprResult LBRes = |
796 | ActOnIntExpr(DK: OpenACCDirectiveKind::Invalid, CK: OpenACCClauseKind::Invalid, |
797 | Loc: LowerBound->getExprLoc(), IntExpr: LowerBound); |
798 | |
799 | if (LBRes.isUsable()) |
800 | LBRes = SemaRef.DefaultLvalueConversion(E: LBRes.get()); |
801 | LowerBound = |
802 | LBRes.isUsable() ? LBRes.get() : GetRecovery(LowerBound, Context.IntTy); |
803 | } |
804 | |
805 | if (Length && !Length->isTypeDependent()) { |
806 | ExprResult LenRes = |
807 | ActOnIntExpr(DK: OpenACCDirectiveKind::Invalid, CK: OpenACCClauseKind::Invalid, |
808 | Loc: Length->getExprLoc(), IntExpr: Length); |
809 | |
810 | if (LenRes.isUsable()) |
811 | LenRes = SemaRef.DefaultLvalueConversion(E: LenRes.get()); |
812 | Length = |
813 | LenRes.isUsable() ? LenRes.get() : GetRecovery(Length, Context.IntTy); |
814 | } |
815 | |
816 | // Length is required if the base type is not an array of known bounds. |
817 | if (!Length && (OriginalBaseTy.isNull() || |
818 | (!OriginalBaseTy->isDependentType() && |
819 | !OriginalBaseTy->isConstantArrayType() && |
820 | !OriginalBaseTy->isDependentSizedArrayType()))) { |
821 | bool IsArray = !OriginalBaseTy.isNull() && OriginalBaseTy->isArrayType(); |
822 | SourceLocation DiagLoc = ColonLoc.isInvalid() ? LBLoc : ColonLoc; |
823 | Diag(Loc: DiagLoc, DiagID: diag::err_acc_subarray_no_length) << IsArray; |
824 | // Fill in a dummy 'length' so that when we instantiate this we don't |
825 | // double-diagnose here. |
826 | ExprResult Recovery = SemaRef.CreateRecoveryExpr( |
827 | Begin: DiagLoc, End: SourceLocation(), SubExprs: ArrayRef<Expr *>(), T: Context.IntTy); |
828 | Length = Recovery.isUsable() ? Recovery.get() : nullptr; |
829 | } |
830 | |
831 | // Check the values of each of the arguments, they cannot be negative(we |
832 | // assume), and if the array bound is known, must be within range. As we do |
833 | // so, do our best to continue with evaluation, we can set the |
834 | // value/expression to nullptr/nullopt if they are invalid, and treat them as |
835 | // not present for the rest of evaluation. |
836 | |
837 | // We don't have to check for dependence, because the dependent size is |
838 | // represented as a different AST node. |
839 | std::optional<llvm::APSInt> BaseSize; |
840 | if (!OriginalBaseTy.isNull() && OriginalBaseTy->isConstantArrayType()) { |
841 | const auto *ArrayTy = Context.getAsConstantArrayType(T: OriginalBaseTy); |
842 | BaseSize = ArrayTy->getSize(); |
843 | } |
844 | |
845 | auto GetBoundValue = [&](Expr *E) -> std::optional<llvm::APSInt> { |
846 | if (!E || E->isInstantiationDependent()) |
847 | return std::nullopt; |
848 | |
849 | Expr::EvalResult Res; |
850 | if (!E->EvaluateAsInt(Result&: Res, Ctx: Context)) |
851 | return std::nullopt; |
852 | return Res.Val.getInt(); |
853 | }; |
854 | |
855 | std::optional<llvm::APSInt> LowerBoundValue = GetBoundValue(LowerBound); |
856 | std::optional<llvm::APSInt> LengthValue = GetBoundValue(Length); |
857 | |
858 | // Check lower bound for negative or out of range. |
859 | if (LowerBoundValue.has_value()) { |
860 | if (LowerBoundValue->isNegative()) { |
861 | Diag(Loc: LowerBound->getExprLoc(), DiagID: diag::err_acc_subarray_negative) |
862 | << /*LowerBound=*/0 << toString(I: *LowerBoundValue, /*Radix=*/10); |
863 | LowerBoundValue.reset(); |
864 | LowerBound = GetRecovery(LowerBound, LowerBound->getType()); |
865 | } else if (BaseSize.has_value() && |
866 | llvm::APSInt::compareValues(I1: *LowerBoundValue, I2: *BaseSize) >= 0) { |
867 | // Lower bound (start index) must be less than the size of the array. |
868 | Diag(Loc: LowerBound->getExprLoc(), DiagID: diag::err_acc_subarray_out_of_range) |
869 | << /*LowerBound=*/0 << toString(I: *LowerBoundValue, /*Radix=*/10) |
870 | << toString(I: *BaseSize, /*Radix=*/10); |
871 | LowerBoundValue.reset(); |
872 | LowerBound = GetRecovery(LowerBound, LowerBound->getType()); |
873 | } |
874 | } |
875 | |
876 | // Check length for negative or out of range. |
877 | if (LengthValue.has_value()) { |
878 | if (LengthValue->isNegative()) { |
879 | Diag(Loc: Length->getExprLoc(), DiagID: diag::err_acc_subarray_negative) |
880 | << /*Length=*/1 << toString(I: *LengthValue, /*Radix=*/10); |
881 | LengthValue.reset(); |
882 | Length = GetRecovery(Length, Length->getType()); |
883 | } else if (BaseSize.has_value() && |
884 | llvm::APSInt::compareValues(I1: *LengthValue, I2: *BaseSize) > 0) { |
885 | // Length must be lessthan or EQUAL to the size of the array. |
886 | Diag(Loc: Length->getExprLoc(), DiagID: diag::err_acc_subarray_out_of_range) |
887 | << /*Length=*/1 << toString(I: *LengthValue, /*Radix=*/10) |
888 | << toString(I: *BaseSize, /*Radix=*/10); |
889 | LengthValue.reset(); |
890 | Length = GetRecovery(Length, Length->getType()); |
891 | } |
892 | } |
893 | |
894 | // Adding two APSInts requires matching sign, so extract that here. |
895 | auto AddAPSInt = [](llvm::APSInt LHS, llvm::APSInt RHS) -> llvm::APSInt { |
896 | if (LHS.isSigned() == RHS.isSigned()) |
897 | return LHS + RHS; |
898 | |
899 | unsigned Width = std::max(a: LHS.getBitWidth(), b: RHS.getBitWidth()) + 1; |
900 | return llvm::APSInt(LHS.sext(width: Width) + RHS.sext(width: Width), /*Signed=*/true); |
901 | }; |
902 | |
903 | // If we know all 3 values, we can diagnose that the total value would be out |
904 | // of range. |
905 | if (BaseSize.has_value() && LowerBoundValue.has_value() && |
906 | LengthValue.has_value() && |
907 | llvm::APSInt::compareValues(I1: AddAPSInt(*LowerBoundValue, *LengthValue), |
908 | I2: *BaseSize) > 0) { |
909 | Diag(Loc: Base->getExprLoc(), |
910 | DiagID: diag::err_acc_subarray_base_plus_length_out_of_range) |
911 | << toString(I: *LowerBoundValue, /*Radix=*/10) |
912 | << toString(I: *LengthValue, /*Radix=*/10) |
913 | << toString(I: *BaseSize, /*Radix=*/10); |
914 | |
915 | LowerBoundValue.reset(); |
916 | LowerBound = GetRecovery(LowerBound, LowerBound->getType()); |
917 | LengthValue.reset(); |
918 | Length = GetRecovery(Length, Length->getType()); |
919 | } |
920 | |
921 | // If any part of the expression is dependent, return a dependent sub-array. |
922 | QualType ArrayExprTy = Context.ArraySectionTy; |
923 | if (Base->isTypeDependent() || |
924 | (LowerBound && LowerBound->isInstantiationDependent()) || |
925 | (Length && Length->isInstantiationDependent())) |
926 | ArrayExprTy = Context.DependentTy; |
927 | |
928 | return new (Context) |
929 | ArraySectionExpr(Base, LowerBound, Length, ArrayExprTy, VK_LValue, |
930 | OK_Ordinary, ColonLoc, RBLoc); |
931 | } |
932 | |
933 | void SemaOpenACC::ActOnWhileStmt(SourceLocation WhileLoc) { |
934 | if (!getLangOpts().OpenACC) |
935 | return; |
936 | |
937 | if (!LoopInfo.TopLevelLoopSeen) |
938 | return; |
939 | |
940 | if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) { |
941 | Diag(Loc: WhileLoc, DiagID: diag::err_acc_invalid_in_loop) |
942 | << /*while loop*/ 1 << CollapseInfo.DirectiveKind |
943 | << OpenACCClauseKind::Collapse; |
944 | assert(CollapseInfo.ActiveCollapse && "Collapse count without object?" ); |
945 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
946 | DiagID: diag::note_acc_active_clause_here) |
947 | << OpenACCClauseKind::Collapse; |
948 | |
949 | // Remove the value so that we don't get cascading errors in the body. The |
950 | // caller RAII object will restore this. |
951 | CollapseInfo.CurCollapseCount = std::nullopt; |
952 | } |
953 | |
954 | if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) { |
955 | Diag(Loc: WhileLoc, DiagID: diag::err_acc_invalid_in_loop) |
956 | << /*while loop*/ 1 << TileInfo.DirectiveKind |
957 | << OpenACCClauseKind::Tile; |
958 | assert(TileInfo.ActiveTile && "tile count without object?" ); |
959 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), DiagID: diag::note_acc_active_clause_here) |
960 | << OpenACCClauseKind::Tile; |
961 | |
962 | // Remove the value so that we don't get cascading errors in the body. The |
963 | // caller RAII object will restore this. |
964 | TileInfo.CurTileCount = std::nullopt; |
965 | } |
966 | } |
967 | |
968 | void SemaOpenACC::ActOnDoStmt(SourceLocation DoLoc) { |
969 | if (!getLangOpts().OpenACC) |
970 | return; |
971 | |
972 | if (!LoopInfo.TopLevelLoopSeen) |
973 | return; |
974 | |
975 | if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) { |
976 | Diag(Loc: DoLoc, DiagID: diag::err_acc_invalid_in_loop) |
977 | << /*do loop*/ 2 << CollapseInfo.DirectiveKind |
978 | << OpenACCClauseKind::Collapse; |
979 | assert(CollapseInfo.ActiveCollapse && "Collapse count without object?" ); |
980 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
981 | DiagID: diag::note_acc_active_clause_here) |
982 | << OpenACCClauseKind::Collapse; |
983 | |
984 | // Remove the value so that we don't get cascading errors in the body. The |
985 | // caller RAII object will restore this. |
986 | CollapseInfo.CurCollapseCount = std::nullopt; |
987 | } |
988 | |
989 | if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) { |
990 | Diag(Loc: DoLoc, DiagID: diag::err_acc_invalid_in_loop) |
991 | << /*do loop*/ 2 << TileInfo.DirectiveKind << OpenACCClauseKind::Tile; |
992 | assert(TileInfo.ActiveTile && "tile count without object?" ); |
993 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), DiagID: diag::note_acc_active_clause_here) |
994 | << OpenACCClauseKind::Tile; |
995 | |
996 | // Remove the value so that we don't get cascading errors in the body. The |
997 | // caller RAII object will restore this. |
998 | TileInfo.CurTileCount = std::nullopt; |
999 | } |
1000 | } |
1001 | |
1002 | void SemaOpenACC::ForStmtBeginHelper(SourceLocation ForLoc, |
1003 | ForStmtBeginChecker &C) { |
1004 | assert(getLangOpts().OpenACC && "Check enabled when not OpenACC?" ); |
1005 | |
1006 | // Enable the while/do-while checking. |
1007 | LoopInfo.TopLevelLoopSeen = true; |
1008 | |
1009 | if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) { |
1010 | // Check the format of this loop if it is affected by the collapse. |
1011 | C.check(); |
1012 | |
1013 | // OpenACC 3.3 2.9.1: |
1014 | // Each associated loop, except the innermost, must contain exactly one loop |
1015 | // or loop nest. |
1016 | // This checks for more than 1 loop at the current level, the |
1017 | // 'depth'-satisifed checking manages the 'not zero' case. |
1018 | if (LoopInfo.CurLevelHasLoopAlready) { |
1019 | Diag(Loc: ForLoc, DiagID: diag::err_acc_clause_multiple_loops) |
1020 | << CollapseInfo.DirectiveKind << OpenACCClauseKind::Collapse; |
1021 | assert(CollapseInfo.ActiveCollapse && "No collapse object?" ); |
1022 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
1023 | DiagID: diag::note_acc_active_clause_here) |
1024 | << OpenACCClauseKind::Collapse; |
1025 | } else { |
1026 | --(*CollapseInfo.CurCollapseCount); |
1027 | |
1028 | // Once we've hit zero here, we know we have deep enough 'for' loops to |
1029 | // get to the bottom. |
1030 | if (*CollapseInfo.CurCollapseCount == 0) |
1031 | CollapseInfo.CollapseDepthSatisfied = true; |
1032 | } |
1033 | } |
1034 | |
1035 | if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) { |
1036 | // Check the format of this loop if it is affected by the tile. |
1037 | C.check(); |
1038 | |
1039 | if (LoopInfo.CurLevelHasLoopAlready) { |
1040 | Diag(Loc: ForLoc, DiagID: diag::err_acc_clause_multiple_loops) |
1041 | << TileInfo.DirectiveKind << OpenACCClauseKind::Tile; |
1042 | assert(TileInfo.ActiveTile && "No tile object?" ); |
1043 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), |
1044 | DiagID: diag::note_acc_active_clause_here) |
1045 | << OpenACCClauseKind::Tile; |
1046 | } else { |
1047 | TileInfo.CurTileCount = *TileInfo.CurTileCount - 1; |
1048 | // Once we've hit zero here, we know we have deep enough 'for' loops to |
1049 | // get to the bottom. |
1050 | if (*TileInfo.CurTileCount == 0) |
1051 | TileInfo.TileDepthSatisfied = true; |
1052 | } |
1053 | } |
1054 | |
1055 | // Set this to 'false' for the body of this loop, so that the next level |
1056 | // checks independently. |
1057 | LoopInfo.CurLevelHasLoopAlready = false; |
1058 | } |
1059 | |
1060 | namespace { |
1061 | bool isValidLoopVariableType(QualType LoopVarTy) { |
1062 | // Just skip if it is dependent, it could be any of the below. |
1063 | if (LoopVarTy->isDependentType()) |
1064 | return true; |
1065 | |
1066 | // The loop variable must be of integer, |
1067 | if (LoopVarTy->isIntegerType()) |
1068 | return true; |
1069 | |
1070 | // C/C++ pointer, |
1071 | if (LoopVarTy->isPointerType()) |
1072 | return true; |
1073 | |
1074 | // or C++ random-access iterator type. |
1075 | if (const auto *RD = LoopVarTy->getAsCXXRecordDecl()) { |
1076 | // Note: Only do CXXRecordDecl because RecordDecl can't be a random access |
1077 | // iterator type! |
1078 | |
1079 | // We could either do a lot of work to see if this matches |
1080 | // random-access-iterator, but it seems that just checking that the |
1081 | // 'iterator_category' typedef is more than sufficient. If programmers are |
1082 | // willing to lie about this, we can let them. |
1083 | |
1084 | for (const auto *TD : |
1085 | llvm::make_filter_range(Range: RD->decls(), Pred: llvm::IsaPred<TypedefNameDecl>)) { |
1086 | const auto *TDND = cast<TypedefNameDecl>(Val: TD)->getCanonicalDecl(); |
1087 | |
1088 | if (TDND->getName() != "iterator_category" ) |
1089 | continue; |
1090 | |
1091 | // If there is no type for this decl, return false. |
1092 | if (TDND->getUnderlyingType().isNull()) |
1093 | return false; |
1094 | |
1095 | const CXXRecordDecl *ItrCategoryDecl = |
1096 | TDND->getUnderlyingType()->getAsCXXRecordDecl(); |
1097 | |
1098 | // If the category isn't a record decl, it isn't the tag type. |
1099 | if (!ItrCategoryDecl) |
1100 | return false; |
1101 | |
1102 | auto IsRandomAccessIteratorTag = [](const CXXRecordDecl *RD) { |
1103 | if (RD->getName() != "random_access_iterator_tag" ) |
1104 | return false; |
1105 | // Checks just for std::random_access_iterator_tag. |
1106 | return RD->getEnclosingNamespaceContext()->isStdNamespace(); |
1107 | }; |
1108 | |
1109 | if (IsRandomAccessIteratorTag(ItrCategoryDecl)) |
1110 | return true; |
1111 | |
1112 | // We can also support tag-types inherited from the |
1113 | // random_access_iterator_tag. |
1114 | for (CXXBaseSpecifier BS : ItrCategoryDecl->bases()) |
1115 | if (IsRandomAccessIteratorTag(BS.getType()->getAsCXXRecordDecl())) |
1116 | return true; |
1117 | |
1118 | return false; |
1119 | } |
1120 | } |
1121 | |
1122 | return false; |
1123 | } |
1124 | const ValueDecl *getDeclFromExpr(const Expr *E) { |
1125 | E = E->IgnoreParenImpCasts(); |
1126 | if (const auto *FE = dyn_cast<FullExpr>(Val: E)) |
1127 | E = FE->getSubExpr(); |
1128 | |
1129 | E = E->IgnoreParenImpCasts(); |
1130 | |
1131 | if (!E) |
1132 | return nullptr; |
1133 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
1134 | return dyn_cast<ValueDecl>(Val: DRE->getDecl()); |
1135 | |
1136 | if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) |
1137 | if (isa<CXXThisExpr>(Val: ME->getBase()->IgnoreParenImpCasts())) |
1138 | return ME->getMemberDecl(); |
1139 | |
1140 | return nullptr; |
1141 | } |
1142 | } // namespace |
1143 | |
1144 | void SemaOpenACC::ForStmtBeginChecker::checkRangeFor() { |
1145 | const RangeForInfo &RFI = std::get<RangeForInfo>(v&: Info); |
1146 | // If this hasn't changed since last instantiated we're done. |
1147 | if (RFI.Uninstantiated == RFI.CurrentVersion) |
1148 | return; |
1149 | |
1150 | const DeclStmt *UninstRangeStmt = |
1151 | IsInstantiation ? RFI.Uninstantiated->getBeginStmt() : nullptr; |
1152 | const DeclStmt *RangeStmt = RFI.CurrentVersion->getBeginStmt(); |
1153 | |
1154 | // If this isn't the first time we've checked this loop, suppress any cases |
1155 | // where we previously diagnosed. |
1156 | if (UninstRangeStmt) { |
1157 | const ValueDecl *InitVar = |
1158 | cast<ValueDecl>(Val: UninstRangeStmt->getSingleDecl()); |
1159 | QualType VarType = InitVar->getType().getNonReferenceType(); |
1160 | |
1161 | if (!isValidLoopVariableType(LoopVarTy: VarType)) |
1162 | return; |
1163 | } |
1164 | |
1165 | // In some dependent contexts, the autogenerated range statement doesn't get |
1166 | // included until instantiation, so skip for now. |
1167 | if (RangeStmt) { |
1168 | const ValueDecl *InitVar = cast<ValueDecl>(Val: RangeStmt->getSingleDecl()); |
1169 | QualType VarType = InitVar->getType().getNonReferenceType(); |
1170 | |
1171 | if (!isValidLoopVariableType(LoopVarTy: VarType)) { |
1172 | SemaRef.Diag(Loc: InitVar->getBeginLoc(), DiagID: diag::err_acc_loop_variable_type) |
1173 | << SemaRef.LoopWithoutSeqInfo.Kind << VarType; |
1174 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
1175 | DiagID: diag::note_acc_construct_here) |
1176 | << SemaRef.LoopWithoutSeqInfo.Kind; |
1177 | return; |
1178 | } |
1179 | } |
1180 | } |
1181 | bool SemaOpenACC::ForStmtBeginChecker::checkForInit(const Stmt *InitStmt, |
1182 | const ValueDecl *&InitVar, |
1183 | bool Diag) { |
1184 | // Init statement is required. |
1185 | if (!InitStmt) { |
1186 | if (Diag) { |
1187 | SemaRef.Diag(Loc: ForLoc, DiagID: diag::err_acc_loop_variable) |
1188 | << SemaRef.LoopWithoutSeqInfo.Kind; |
1189 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
1190 | DiagID: diag::note_acc_construct_here) |
1191 | << SemaRef.LoopWithoutSeqInfo.Kind; |
1192 | } |
1193 | return true; |
1194 | } |
1195 | auto DiagLoopVar = [this, Diag, InitStmt]() { |
1196 | if (Diag) { |
1197 | SemaRef.Diag(Loc: InitStmt->getBeginLoc(), DiagID: diag::err_acc_loop_variable) |
1198 | << SemaRef.LoopWithoutSeqInfo.Kind; |
1199 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
1200 | DiagID: diag::note_acc_construct_here) |
1201 | << SemaRef.LoopWithoutSeqInfo.Kind; |
1202 | } |
1203 | return true; |
1204 | }; |
1205 | |
1206 | if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(Val: InitStmt)) |
1207 | InitStmt = ExprTemp->getSubExpr(); |
1208 | if (const auto *E = dyn_cast<Expr>(Val: InitStmt)) |
1209 | InitStmt = E->IgnoreParenImpCasts(); |
1210 | |
1211 | InitVar = nullptr; |
1212 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: InitStmt)) { |
1213 | // Allow assignment operator here. |
1214 | |
1215 | if (!BO->isAssignmentOp()) |
1216 | return DiagLoopVar(); |
1217 | |
1218 | const Expr *LHS = BO->getLHS()->IgnoreParenImpCasts(); |
1219 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: LHS)) |
1220 | InitVar = DRE->getDecl(); |
1221 | } else if (const auto *DS = dyn_cast<DeclStmt>(Val: InitStmt)) { |
1222 | // Allow T t = <whatever> |
1223 | if (!DS->isSingleDecl()) |
1224 | return DiagLoopVar(); |
1225 | InitVar = dyn_cast<ValueDecl>(Val: DS->getSingleDecl()); |
1226 | |
1227 | // Ensure we have an initializer, unless this is a record/dependent type. |
1228 | if (InitVar) { |
1229 | if (!isa<VarDecl>(Val: InitVar)) |
1230 | return DiagLoopVar(); |
1231 | |
1232 | if (!InitVar->getType()->isRecordType() && |
1233 | !InitVar->getType()->isDependentType() && |
1234 | !cast<VarDecl>(Val: InitVar)->hasInit()) |
1235 | return DiagLoopVar(); |
1236 | } |
1237 | } else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(Val: InitStmt)) { |
1238 | // Allow assignment operator call. |
1239 | if (CE->getOperator() != OO_Equal) |
1240 | return DiagLoopVar(); |
1241 | |
1242 | const Expr *LHS = CE->getArg(Arg: 0)->IgnoreParenImpCasts(); |
1243 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: LHS)) { |
1244 | InitVar = DRE->getDecl(); |
1245 | } else if (auto *ME = dyn_cast<MemberExpr>(Val: LHS)) { |
1246 | if (isa<CXXThisExpr>(Val: ME->getBase()->IgnoreParenImpCasts())) |
1247 | InitVar = ME->getMemberDecl(); |
1248 | } |
1249 | } |
1250 | |
1251 | // If after all of that, we haven't found a variable, give up. |
1252 | if (!InitVar) |
1253 | return DiagLoopVar(); |
1254 | |
1255 | InitVar = cast<ValueDecl>(Val: InitVar->getCanonicalDecl()); |
1256 | QualType VarType = InitVar->getType().getNonReferenceType(); |
1257 | |
1258 | // Since we have one, all we need to do is ensure it is the right type. |
1259 | if (!isValidLoopVariableType(LoopVarTy: VarType)) { |
1260 | if (Diag) { |
1261 | SemaRef.Diag(Loc: InitVar->getBeginLoc(), DiagID: diag::err_acc_loop_variable_type) |
1262 | << SemaRef.LoopWithoutSeqInfo.Kind << VarType; |
1263 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
1264 | DiagID: diag::note_acc_construct_here) |
1265 | << SemaRef.LoopWithoutSeqInfo.Kind; |
1266 | } |
1267 | return true; |
1268 | } |
1269 | |
1270 | return false; |
1271 | } |
1272 | |
1273 | bool SemaOpenACC::ForStmtBeginChecker::checkForCond(const Stmt *CondStmt, |
1274 | const ValueDecl *InitVar, |
1275 | bool Diag) { |
1276 | // A condition statement is required. |
1277 | if (!CondStmt) { |
1278 | if (Diag) { |
1279 | SemaRef.Diag(Loc: ForLoc, DiagID: diag::err_acc_loop_terminating_condition) |
1280 | << SemaRef.LoopWithoutSeqInfo.Kind; |
1281 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
1282 | DiagID: diag::note_acc_construct_here) |
1283 | << SemaRef.LoopWithoutSeqInfo.Kind; |
1284 | } |
1285 | |
1286 | return true; |
1287 | } |
1288 | auto DiagCondVar = [this, Diag, CondStmt] { |
1289 | if (Diag) { |
1290 | SemaRef.Diag(Loc: CondStmt->getBeginLoc(), |
1291 | DiagID: diag::err_acc_loop_terminating_condition) |
1292 | << SemaRef.LoopWithoutSeqInfo.Kind; |
1293 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
1294 | DiagID: diag::note_acc_construct_here) |
1295 | << SemaRef.LoopWithoutSeqInfo.Kind; |
1296 | } |
1297 | return true; |
1298 | }; |
1299 | |
1300 | if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(Val: CondStmt)) |
1301 | CondStmt = ExprTemp->getSubExpr(); |
1302 | if (const auto *E = dyn_cast<Expr>(Val: CondStmt)) |
1303 | CondStmt = E->IgnoreParenImpCasts(); |
1304 | |
1305 | const ValueDecl *CondVar = nullptr; |
1306 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: CondStmt)) { |
1307 | switch (BO->getOpcode()) { |
1308 | default: |
1309 | return DiagCondVar(); |
1310 | case BO_EQ: |
1311 | case BO_LT: |
1312 | case BO_GT: |
1313 | case BO_NE: |
1314 | case BO_LE: |
1315 | case BO_GE: |
1316 | break; |
1317 | } |
1318 | |
1319 | // Assign the condition-var to the LHS. If it either comes back null, or |
1320 | // the LHS doesn't match the InitVar, assign it to the RHS so that 5 < N is |
1321 | // allowed. |
1322 | CondVar = getDeclFromExpr(E: BO->getLHS()); |
1323 | if (!CondVar || |
1324 | (InitVar && CondVar->getCanonicalDecl() != InitVar->getCanonicalDecl())) |
1325 | CondVar = getDeclFromExpr(E: BO->getRHS()); |
1326 | |
1327 | } else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(Val: CondStmt)) { |
1328 | // Any of the comparison ops should be ok here, but we don't know how to |
1329 | // handle spaceship, so disallow for now. |
1330 | if (!CE->isComparisonOp() || CE->getOperator() == OO_Spaceship) |
1331 | return DiagCondVar(); |
1332 | |
1333 | // Same logic here: Assign it to the LHS, unless the LHS comes back null or |
1334 | // not equal to the init var. |
1335 | CondVar = getDeclFromExpr(E: CE->getArg(Arg: 0)); |
1336 | if (!CondVar || |
1337 | (InitVar && |
1338 | CondVar->getCanonicalDecl() != InitVar->getCanonicalDecl() && |
1339 | CE->getNumArgs() > 1)) |
1340 | CondVar = getDeclFromExpr(E: CE->getArg(Arg: 1)); |
1341 | } else { |
1342 | return DiagCondVar(); |
1343 | } |
1344 | |
1345 | if (!CondVar) |
1346 | return DiagCondVar(); |
1347 | |
1348 | // Don't consider this an error unless the init variable was properly set, |
1349 | // else check to make sure they are the same variable. |
1350 | if (InitVar && CondVar->getCanonicalDecl() != InitVar->getCanonicalDecl()) |
1351 | return DiagCondVar(); |
1352 | |
1353 | return false; |
1354 | } |
1355 | |
1356 | namespace { |
1357 | // Helper to check the RHS of an assignment during for's step. We can allow |
1358 | // InitVar = InitVar + N, InitVar = N + InitVar, and Initvar = Initvar - N, |
1359 | // where N is an integer. |
1360 | bool isValidForIncRHSAssign(const ValueDecl *InitVar, const Expr *RHS) { |
1361 | |
1362 | auto isValid = [](const ValueDecl *InitVar, const Expr *InnerLHS, |
1363 | const Expr *InnerRHS, bool IsAddition) { |
1364 | // ONE of the sides has to be an integer type. |
1365 | if (!InnerLHS->getType()->isIntegerType() && |
1366 | !InnerRHS->getType()->isIntegerType()) |
1367 | return false; |
1368 | |
1369 | // If the init var is already an error, don't bother trying to check for |
1370 | // it. |
1371 | if (!InitVar) |
1372 | return true; |
1373 | |
1374 | const ValueDecl *LHSDecl = getDeclFromExpr(E: InnerLHS); |
1375 | const ValueDecl *RHSDecl = getDeclFromExpr(E: InnerRHS); |
1376 | // If we can't get a declaration, this is probably an error, so give up. |
1377 | if (!LHSDecl || !RHSDecl) |
1378 | return true; |
1379 | |
1380 | // If the LHS is the InitVar, the other must be int, so this is valid. |
1381 | if (LHSDecl->getCanonicalDecl() == |
1382 | InitVar->getCanonicalDecl()) |
1383 | return true; |
1384 | |
1385 | // Subtraction doesn't allow the RHS to be init var, so this is invalid. |
1386 | if (!IsAddition) |
1387 | return false; |
1388 | |
1389 | return RHSDecl->getCanonicalDecl() == |
1390 | InitVar->getCanonicalDecl(); |
1391 | }; |
1392 | |
1393 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: RHS)) { |
1394 | BinaryOperatorKind OpC = BO->getOpcode(); |
1395 | if (OpC != BO_Add && OpC != BO_Sub) |
1396 | return false; |
1397 | return isValid(InitVar, BO->getLHS(), BO->getRHS(), OpC == BO_Add); |
1398 | } else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(Val: RHS)) { |
1399 | OverloadedOperatorKind Op = CE->getOperator(); |
1400 | if (Op != OO_Plus && Op != OO_Minus) |
1401 | return false; |
1402 | return isValid(InitVar, CE->getArg(Arg: 0), CE->getArg(Arg: 1), Op == OO_Plus); |
1403 | } |
1404 | |
1405 | return false; |
1406 | } |
1407 | } // namespace |
1408 | |
1409 | bool SemaOpenACC::ForStmtBeginChecker::checkForInc(const Stmt *IncStmt, |
1410 | const ValueDecl *InitVar, |
1411 | bool Diag) { |
1412 | if (!IncStmt) { |
1413 | if (Diag) { |
1414 | SemaRef.Diag(Loc: ForLoc, DiagID: diag::err_acc_loop_not_monotonic) |
1415 | << SemaRef.LoopWithoutSeqInfo.Kind; |
1416 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
1417 | DiagID: diag::note_acc_construct_here) |
1418 | << SemaRef.LoopWithoutSeqInfo.Kind; |
1419 | } |
1420 | return true; |
1421 | } |
1422 | auto DiagIncVar = [this, Diag, IncStmt] { |
1423 | if (Diag) { |
1424 | SemaRef.Diag(Loc: IncStmt->getBeginLoc(), DiagID: diag::err_acc_loop_not_monotonic) |
1425 | << SemaRef.LoopWithoutSeqInfo.Kind; |
1426 | SemaRef.Diag(Loc: SemaRef.LoopWithoutSeqInfo.Loc, |
1427 | DiagID: diag::note_acc_construct_here) |
1428 | << SemaRef.LoopWithoutSeqInfo.Kind; |
1429 | } |
1430 | return true; |
1431 | }; |
1432 | |
1433 | if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(Val: IncStmt)) |
1434 | IncStmt = ExprTemp->getSubExpr(); |
1435 | if (const auto *E = dyn_cast<Expr>(Val: IncStmt)) |
1436 | IncStmt = E->IgnoreParenImpCasts(); |
1437 | |
1438 | const ValueDecl *IncVar = nullptr; |
1439 | // Here we enforce the monotonically increase/decrease: |
1440 | if (const auto *UO = dyn_cast<UnaryOperator>(Val: IncStmt)) { |
1441 | // Allow increment/decrement ops. |
1442 | if (!UO->isIncrementDecrementOp()) |
1443 | return DiagIncVar(); |
1444 | IncVar = getDeclFromExpr(E: UO->getSubExpr()); |
1445 | } else if (const auto *BO = dyn_cast<BinaryOperator>(Val: IncStmt)) { |
1446 | switch (BO->getOpcode()) { |
1447 | default: |
1448 | return DiagIncVar(); |
1449 | case BO_AddAssign: |
1450 | case BO_SubAssign: |
1451 | break; |
1452 | case BO_Assign: |
1453 | // For assignment we also allow InitVar = InitVar + N, InitVar = N + |
1454 | // InitVar, and InitVar = InitVar - N; BUT only if 'N' is integral. |
1455 | if (!isValidForIncRHSAssign(InitVar, RHS: BO->getRHS())) |
1456 | return DiagIncVar(); |
1457 | break; |
1458 | } |
1459 | IncVar = getDeclFromExpr(E: BO->getLHS()); |
1460 | } else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(Val: IncStmt)) { |
1461 | switch (CE->getOperator()) { |
1462 | default: |
1463 | return DiagIncVar(); |
1464 | case OO_PlusPlus: |
1465 | case OO_MinusMinus: |
1466 | case OO_PlusEqual: |
1467 | case OO_MinusEqual: |
1468 | break; |
1469 | case OO_Equal: |
1470 | // For assignment we also allow InitVar = InitVar + N, InitVar = N + |
1471 | // InitVar, and InitVar = InitVar - N; BUT only if 'N' is integral. |
1472 | if (!isValidForIncRHSAssign(InitVar, RHS: CE->getArg(Arg: 1))) |
1473 | return DiagIncVar(); |
1474 | break; |
1475 | } |
1476 | |
1477 | IncVar = getDeclFromExpr(E: CE->getArg(Arg: 0)); |
1478 | } else { |
1479 | return DiagIncVar(); |
1480 | } |
1481 | |
1482 | if (!IncVar) |
1483 | return DiagIncVar(); |
1484 | |
1485 | // InitVar shouldn't be null unless there was an error, so don't diagnose if |
1486 | // that is the case. Else we should ensure that it refers to the loop |
1487 | // value. |
1488 | if (InitVar && IncVar->getCanonicalDecl() != InitVar->getCanonicalDecl()) |
1489 | return DiagIncVar(); |
1490 | |
1491 | return false; |
1492 | } |
1493 | |
1494 | void SemaOpenACC::ForStmtBeginChecker::checkFor() { |
1495 | const CheckForInfo &CFI = std::get<CheckForInfo>(v&: Info); |
1496 | |
1497 | if (!IsInstantiation) { |
1498 | // If this isn't an instantiation, we can just check all of these and |
1499 | // diagnose. |
1500 | const ValueDecl *CurInitVar = nullptr; |
1501 | checkForInit(InitStmt: CFI.Current.Init, InitVar&: CurInitVar, /*Diag=*/true); |
1502 | checkForCond(CondStmt: CFI.Current.Condition, InitVar: CurInitVar, /*Diag=*/true); |
1503 | checkForInc(IncStmt: CFI.Current.Increment, InitVar: CurInitVar, /*DIag=*/Diag: true); |
1504 | } else { |
1505 | const ValueDecl *UninstInitVar = nullptr; |
1506 | // Checking the 'init' section first. We have to always run both versions, |
1507 | // at minimum with the 'diag' off, so that we can ensure we get the correct |
1508 | // instantiation var for checking by later ones. |
1509 | bool UninstInitFailed = |
1510 | checkForInit(InitStmt: CFI.Uninst.Init, InitVar&: UninstInitVar, /*Diag=*/false); |
1511 | |
1512 | // VarDecls are always rebuild because they are dependent, so we can do a |
1513 | // little work to suppress some of the double checking based on whether the |
1514 | // type is instantiation dependent. This is imperfect, but will get us most |
1515 | // cases suppressed. Currently this only handles the 'T t =' case. |
1516 | auto InitChanged = [=]() { |
1517 | if (CFI.Uninst.Init == CFI.Current.Init) |
1518 | return false; |
1519 | |
1520 | QualType OldVDTy; |
1521 | QualType NewVDTy; |
1522 | |
1523 | if (const auto *DS = dyn_cast<DeclStmt>(Val: CFI.Uninst.Init)) |
1524 | if (const VarDecl *VD = dyn_cast_if_present<VarDecl>( |
1525 | Val: DS->isSingleDecl() ? DS->getSingleDecl() : nullptr)) |
1526 | OldVDTy = VD->getType(); |
1527 | if (const auto *DS = dyn_cast<DeclStmt>(Val: CFI.Current.Init)) |
1528 | if (const VarDecl *VD = dyn_cast_if_present<VarDecl>( |
1529 | Val: DS->isSingleDecl() ? DS->getSingleDecl() : nullptr)) |
1530 | NewVDTy = VD->getType(); |
1531 | |
1532 | if (OldVDTy.isNull() || NewVDTy.isNull()) |
1533 | return true; |
1534 | |
1535 | return OldVDTy->isInstantiationDependentType() != |
1536 | NewVDTy->isInstantiationDependentType(); |
1537 | }; |
1538 | |
1539 | // Only diagnose the new 'init' if the previous version didn't fail, AND the |
1540 | // current init changed meaningfully. |
1541 | bool ShouldDiagNewInit = !UninstInitFailed && InitChanged(); |
1542 | const ValueDecl *CurInitVar = nullptr; |
1543 | checkForInit(InitStmt: CFI.Current.Init, InitVar&: CurInitVar, /*Diag=*/ShouldDiagNewInit); |
1544 | |
1545 | // Check the condition and increment only if the previous version passed, |
1546 | // and this changed. |
1547 | if (CFI.Uninst.Condition != CFI.Current.Condition && |
1548 | !checkForCond(CondStmt: CFI.Uninst.Condition, InitVar: UninstInitVar, /*Diag=*/false)) |
1549 | checkForCond(CondStmt: CFI.Current.Condition, InitVar: CurInitVar, /*Diag=*/true); |
1550 | if (CFI.Uninst.Increment != CFI.Current.Increment && |
1551 | !checkForInc(IncStmt: CFI.Uninst.Increment, InitVar: UninstInitVar, /*Diag=*/false)) |
1552 | checkForInc(IncStmt: CFI.Current.Increment, InitVar: CurInitVar, /*Diag=*/true); |
1553 | } |
1554 | } |
1555 | |
1556 | void SemaOpenACC::ForStmtBeginChecker::check() { |
1557 | // If this isn't an active loop without a seq, immediately return, nothing to |
1558 | // check. |
1559 | if (SemaRef.LoopWithoutSeqInfo.Kind == OpenACCDirectiveKind::Invalid) |
1560 | return; |
1561 | |
1562 | // If we've already checked, because this is a 'top level' one (and asking |
1563 | // again because 'tile' and 'collapse' might apply), just return, nothing to |
1564 | // do here. |
1565 | if (AlreadyChecked) |
1566 | return; |
1567 | AlreadyChecked = true; |
1568 | |
1569 | // OpenACC3.3 2.1: |
1570 | // A loop associated with a loop construct that does not have a seq clause |
1571 | // must be written to meet all the following conditions: |
1572 | // - The loop variable must be of integer, C/C++ pointer, or C++ random-access |
1573 | // iterator type. |
1574 | // - The loop variable must monotonically increase or decrease in the |
1575 | // direction of its termination condition. |
1576 | // - The loop trip count must be computable in constant time when entering the |
1577 | // loop construct. |
1578 | // |
1579 | // For a C++ range-based for loop, the loop variable |
1580 | // identified by the above conditions is the internal iterator, such as a |
1581 | // pointer, that the compiler generates to iterate the range. it is not the |
1582 | // variable declared by the for loop. |
1583 | |
1584 | if (std::holds_alternative<RangeForInfo>(v: Info)) |
1585 | return checkRangeFor(); |
1586 | |
1587 | return checkFor(); |
1588 | } |
1589 | |
1590 | void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *OldFirst, |
1591 | const Stmt *First, const Stmt *OldSecond, |
1592 | const Stmt *Second, const Stmt *OldThird, |
1593 | const Stmt *Third) { |
1594 | if (!getLangOpts().OpenACC) |
1595 | return; |
1596 | |
1597 | ForStmtBeginChecker FSBC{*this, ForLoc, OldFirst, OldSecond, |
1598 | OldThird, First, Second, Third}; |
1599 | // Check if this is the top-level 'for' for a 'loop'. Else it will be checked |
1600 | // as a part of the helper if a tile/collapse applies. |
1601 | if (!LoopInfo.TopLevelLoopSeen) { |
1602 | FSBC.check(); |
1603 | } |
1604 | |
1605 | ForStmtBeginHelper(ForLoc, C&: FSBC); |
1606 | } |
1607 | |
1608 | void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *First, |
1609 | const Stmt *Second, const Stmt *Third) { |
1610 | if (!getLangOpts().OpenACC) |
1611 | return; |
1612 | |
1613 | ForStmtBeginChecker FSBC{*this, ForLoc, First, Second, Third}; |
1614 | |
1615 | // Check if this is the top-level 'for' for a 'loop'. Else it will be checked |
1616 | // as a part of the helper if a tile/collapse applies. |
1617 | if (!LoopInfo.TopLevelLoopSeen) |
1618 | FSBC.check(); |
1619 | |
1620 | ForStmtBeginHelper(ForLoc, C&: FSBC); |
1621 | } |
1622 | |
1623 | void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc, |
1624 | const Stmt *OldRangeFor, |
1625 | const Stmt *RangeFor) { |
1626 | if (!getLangOpts().OpenACC || OldRangeFor == nullptr || RangeFor == nullptr) |
1627 | return; |
1628 | |
1629 | ForStmtBeginChecker FSBC{*this, ForLoc, |
1630 | cast_if_present<CXXForRangeStmt>(Val: OldRangeFor), |
1631 | cast_if_present<CXXForRangeStmt>(Val: RangeFor)}; |
1632 | // Check if this is the top-level 'for' for a 'loop'. Else it will be checked |
1633 | // as a part of the helper if a tile/collapse applies. |
1634 | if (!LoopInfo.TopLevelLoopSeen) { |
1635 | FSBC.check(); |
1636 | } |
1637 | ForStmtBeginHelper(ForLoc, C&: FSBC); |
1638 | } |
1639 | |
1640 | void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc, |
1641 | const Stmt *RangeFor) { |
1642 | if (!getLangOpts().OpenACC || RangeFor == nullptr) |
1643 | return; |
1644 | |
1645 | ForStmtBeginChecker FSBC = {*this, ForLoc, |
1646 | cast_if_present<CXXForRangeStmt>(Val: RangeFor)}; |
1647 | |
1648 | // Check if this is the top-level 'for' for a 'loop'. Else it will be checked |
1649 | // as a part of the helper if a tile/collapse applies. |
1650 | if (!LoopInfo.TopLevelLoopSeen) |
1651 | FSBC.check(); |
1652 | |
1653 | ForStmtBeginHelper(ForLoc, C&: FSBC); |
1654 | } |
1655 | |
1656 | namespace { |
1657 | SourceLocation FindInterveningCodeInLoop(const Stmt *CurStmt) { |
1658 | // We should diagnose on anything except `CompoundStmt`, `NullStmt`, |
1659 | // `ForStmt`, `CXXForRangeStmt`, since those are legal, and `WhileStmt` and |
1660 | // `DoStmt`, as those are caught as a violation elsewhere. |
1661 | // For `CompoundStmt` we need to search inside of it. |
1662 | if (!CurStmt || |
1663 | isa<ForStmt, NullStmt, ForStmt, CXXForRangeStmt, WhileStmt, DoStmt>( |
1664 | Val: CurStmt)) |
1665 | return SourceLocation{}; |
1666 | |
1667 | // Any other construct is an error anyway, so it has already been diagnosed. |
1668 | if (isa<OpenACCConstructStmt>(Val: CurStmt)) |
1669 | return SourceLocation{}; |
1670 | |
1671 | // Search inside the compound statement, this allows for arbitrary nesting |
1672 | // of compound statements, as long as there isn't any code inside. |
1673 | if (const auto *CS = dyn_cast<CompoundStmt>(Val: CurStmt)) { |
1674 | for (const auto *ChildStmt : CS->children()) { |
1675 | SourceLocation ChildStmtLoc = FindInterveningCodeInLoop(CurStmt: ChildStmt); |
1676 | if (ChildStmtLoc.isValid()) |
1677 | return ChildStmtLoc; |
1678 | } |
1679 | // Empty/not invalid compound statements are legal. |
1680 | return SourceLocation{}; |
1681 | } |
1682 | return CurStmt->getBeginLoc(); |
1683 | } |
1684 | } // namespace |
1685 | |
1686 | void SemaOpenACC::ActOnForStmtEnd(SourceLocation ForLoc, StmtResult Body) { |
1687 | if (!getLangOpts().OpenACC) |
1688 | return; |
1689 | |
1690 | // Set this to 'true' so if we find another one at this level we can diagnose. |
1691 | LoopInfo.CurLevelHasLoopAlready = true; |
1692 | |
1693 | if (!Body.isUsable()) |
1694 | return; |
1695 | |
1696 | bool IsActiveCollapse = CollapseInfo.CurCollapseCount && |
1697 | *CollapseInfo.CurCollapseCount > 0 && |
1698 | !CollapseInfo.ActiveCollapse->hasForce(); |
1699 | bool IsActiveTile = TileInfo.CurTileCount && *TileInfo.CurTileCount > 0; |
1700 | |
1701 | if (IsActiveCollapse || IsActiveTile) { |
1702 | SourceLocation OtherStmtLoc = FindInterveningCodeInLoop(CurStmt: Body.get()); |
1703 | |
1704 | if (OtherStmtLoc.isValid() && IsActiveCollapse) { |
1705 | Diag(Loc: OtherStmtLoc, DiagID: diag::err_acc_intervening_code) |
1706 | << OpenACCClauseKind::Collapse << CollapseInfo.DirectiveKind; |
1707 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
1708 | DiagID: diag::note_acc_active_clause_here) |
1709 | << OpenACCClauseKind::Collapse; |
1710 | } |
1711 | |
1712 | if (OtherStmtLoc.isValid() && IsActiveTile) { |
1713 | Diag(Loc: OtherStmtLoc, DiagID: diag::err_acc_intervening_code) |
1714 | << OpenACCClauseKind::Tile << TileInfo.DirectiveKind; |
1715 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), |
1716 | DiagID: diag::note_acc_active_clause_here) |
1717 | << OpenACCClauseKind::Tile; |
1718 | } |
1719 | } |
1720 | } |
1721 | |
1722 | namespace { |
1723 | // Helper that should mirror ActOnRoutineName to get the FunctionDecl out for |
1724 | // magic-static checking. |
1725 | FunctionDecl *getFunctionFromRoutineName(Expr *RoutineName) { |
1726 | if (!RoutineName) |
1727 | return nullptr; |
1728 | RoutineName = RoutineName->IgnoreParenImpCasts(); |
1729 | if (isa<RecoveryExpr>(Val: RoutineName)) { |
1730 | // There is nothing we can do here, this isn't a function we can count on. |
1731 | return nullptr; |
1732 | } else if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>( |
1733 | Val: RoutineName)) { |
1734 | // The lookup is dependent, so we'll have to figure this out later. |
1735 | return nullptr; |
1736 | } else if (auto *DRE = dyn_cast<DeclRefExpr>(Val: RoutineName)) { |
1737 | ValueDecl *VD = DRE->getDecl(); |
1738 | |
1739 | if (auto *FD = dyn_cast<FunctionDecl>(Val: VD)) |
1740 | return FD; |
1741 | |
1742 | // Allow lambdas. |
1743 | if (auto *VarD = dyn_cast<VarDecl>(Val: VD)) { |
1744 | QualType VarDTy = VarD->getType(); |
1745 | if (!VarDTy.isNull()) { |
1746 | if (auto *RD = VarDTy->getAsCXXRecordDecl()) { |
1747 | if (RD->isGenericLambda()) |
1748 | return nullptr; |
1749 | if (RD->isLambda()) |
1750 | return RD->getLambdaCallOperator(); |
1751 | } else if (VarDTy->isDependentType()) { |
1752 | // We don't really know what this is going to be. |
1753 | return nullptr; |
1754 | } |
1755 | } |
1756 | return nullptr; |
1757 | } else if (isa<OverloadExpr>(Val: RoutineName)) { |
1758 | return nullptr; |
1759 | } |
1760 | } |
1761 | return nullptr; |
1762 | } |
1763 | } // namespace |
1764 | |
1765 | ExprResult SemaOpenACC::ActOnRoutineName(Expr *RoutineName) { |
1766 | assert(RoutineName && "Routine name cannot be null here" ); |
1767 | RoutineName = RoutineName->IgnoreParenImpCasts(); |
1768 | |
1769 | if (isa<RecoveryExpr>(Val: RoutineName)) { |
1770 | // This has already been diagnosed, so we can skip it. |
1771 | return ExprError(); |
1772 | } else if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>( |
1773 | Val: RoutineName)) { |
1774 | // These are dependent and we can't really check them, so delay until |
1775 | // instantiation. |
1776 | return RoutineName; |
1777 | } else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: RoutineName)) { |
1778 | const ValueDecl *VD = DRE->getDecl(); |
1779 | |
1780 | if (isa<FunctionDecl>(Val: VD)) |
1781 | return RoutineName; |
1782 | |
1783 | // Allow lambdas. |
1784 | if (const auto *VarD = dyn_cast<VarDecl>(Val: VD)) { |
1785 | QualType VarDTy = VarD->getType(); |
1786 | if (!VarDTy.isNull()) { |
1787 | if (const auto *RD = VarDTy->getAsCXXRecordDecl()) { |
1788 | if (RD->isGenericLambda()) { |
1789 | Diag(Loc: RoutineName->getBeginLoc(), DiagID: diag::err_acc_routine_overload_set) |
1790 | << RoutineName; |
1791 | return ExprError(); |
1792 | } |
1793 | if (RD->isLambda()) |
1794 | return RoutineName; |
1795 | } else if (VarDTy->isDependentType()) { |
1796 | // If this is a dependent variable, it might be a lambda. So we just |
1797 | // accept this and catch it next time. |
1798 | return RoutineName; |
1799 | } |
1800 | } |
1801 | } |
1802 | |
1803 | Diag(Loc: RoutineName->getBeginLoc(), DiagID: diag::err_acc_routine_not_func) |
1804 | << RoutineName; |
1805 | return ExprError(); |
1806 | } else if (isa<OverloadExpr>(Val: RoutineName)) { |
1807 | // This happens in function templates, even when the template arguments are |
1808 | // fully specified. We could possibly do some sort of matching to make sure |
1809 | // that this is looked up/deduced, but GCC does not do this, so there |
1810 | // doesn't seem to be a good reason for us to do it either. |
1811 | Diag(Loc: RoutineName->getBeginLoc(), DiagID: diag::err_acc_routine_overload_set) |
1812 | << RoutineName; |
1813 | return ExprError(); |
1814 | } |
1815 | |
1816 | Diag(Loc: RoutineName->getBeginLoc(), DiagID: diag::err_acc_routine_not_func) |
1817 | << RoutineName; |
1818 | return ExprError(); |
1819 | } |
1820 | void SemaOpenACC::ActOnVariableDeclarator(VarDecl *VD) { |
1821 | if (!getLangOpts().OpenACC || VD->isInvalidDecl() || !VD->isStaticLocal()) |
1822 | return; |
1823 | |
1824 | // This cast should be safe, since a static-local can only happen in a |
1825 | // function declaration. |
1826 | auto *ContextDecl = cast<FunctionDecl>(Val: getCurContext()); |
1827 | |
1828 | // OpenACC 3.3 2.15: |
1829 | // In C and C++, function static variables are not supported in functions to |
1830 | // which a routine directive applies. |
1831 | for (const auto *A : ContextDecl->attrs()) { |
1832 | if (isa<OpenACCRoutineDeclAttr, OpenACCRoutineAnnotAttr>(Val: A)) { |
1833 | Diag(Loc: VD->getBeginLoc(), DiagID: diag::err_acc_magic_static_in_routine); |
1834 | Diag(Loc: A->getLocation(), DiagID: diag::note_acc_construct_here) |
1835 | << OpenACCDirectiveKind::Routine; |
1836 | return; |
1837 | } |
1838 | } |
1839 | |
1840 | MagicStaticLocs.insert(KV: {ContextDecl->getCanonicalDecl(), VD->getBeginLoc()}); |
1841 | } |
1842 | void SemaOpenACC::CheckLastRoutineDeclNameConflict(const NamedDecl *ND) { |
1843 | // OpenACC 3.3 A.3.4 |
1844 | // When a procedure with that name is in scope and it is not the same |
1845 | // procedure as the immediately following procedure declaration or |
1846 | // definition, the resolution of the name can be confusing. Implementations |
1847 | // should then issue a compile-time warning diagnostic even though the |
1848 | // application is conforming. |
1849 | |
1850 | // If we haven't created one, also can't diagnose. |
1851 | if (!LastRoutineDecl) |
1852 | return; |
1853 | |
1854 | // If the currently created function doesn't have a name, we can't diagnose on |
1855 | // a match. |
1856 | if (!ND->getDeclName().isIdentifier()) |
1857 | return; |
1858 | |
1859 | // If the two are in different decl contexts, it doesn't make sense to |
1860 | // diagnose. |
1861 | if (LastRoutineDecl->getDeclContext() != ND->getLexicalDeclContext()) |
1862 | return; |
1863 | |
1864 | // If we don't have a referenced thing yet, we can't diagnose. |
1865 | FunctionDecl *RoutineTarget = |
1866 | getFunctionFromRoutineName(RoutineName: LastRoutineDecl->getFunctionReference()); |
1867 | if (!RoutineTarget) |
1868 | return; |
1869 | |
1870 | // If the Routine target doesn't have a name, we can't diagnose. |
1871 | if (!RoutineTarget->getDeclName().isIdentifier()) |
1872 | return; |
1873 | |
1874 | // Of course don't diagnose if the names don't match. |
1875 | if (ND->getName() != RoutineTarget->getName()) |
1876 | return; |
1877 | |
1878 | long NDLine = SemaRef.SourceMgr.getSpellingLineNumber(Loc: ND->getBeginLoc()); |
1879 | long LastLine = |
1880 | SemaRef.SourceMgr.getSpellingLineNumber(Loc: LastRoutineDecl->getBeginLoc()); |
1881 | |
1882 | // Do some line-number math to make sure they are within a line of eachother. |
1883 | // Comments or newlines can be inserted to clarify intent. |
1884 | if (NDLine - LastLine > 1) |
1885 | return; |
1886 | |
1887 | // Don't warn if it actually DOES apply to this function via redecls. |
1888 | if (ND->getCanonicalDecl() == RoutineTarget->getCanonicalDecl()) |
1889 | return; |
1890 | |
1891 | Diag(Loc: LastRoutineDecl->getFunctionReference()->getBeginLoc(), |
1892 | DiagID: diag::warn_acc_confusing_routine_name); |
1893 | Diag(Loc: RoutineTarget->getBeginLoc(), DiagID: diag::note_previous_decl) << ND; |
1894 | } |
1895 | |
1896 | void SemaOpenACC::ActOnVariableInit(VarDecl *VD, QualType InitType) { |
1897 | if (!VD || !getLangOpts().OpenACC || InitType.isNull()) |
1898 | return; |
1899 | |
1900 | // To avoid double-diagnostic, just diagnose this during instantiation. We'll |
1901 | // get 1 warning per instantiation, but this permits us to be more sensible |
1902 | // for cases where the lookup is confusing. |
1903 | if (VD->getLexicalDeclContext()->isDependentContext()) |
1904 | return; |
1905 | |
1906 | const auto *RD = InitType->getAsCXXRecordDecl(); |
1907 | // If this isn't a lambda, no sense in diagnosing. |
1908 | if (!RD || !RD->isLambda()) |
1909 | return; |
1910 | |
1911 | CheckLastRoutineDeclNameConflict(ND: VD); |
1912 | } |
1913 | |
1914 | void SemaOpenACC::ActOnFunctionDeclarator(FunctionDecl *FD) { |
1915 | if (!FD || !getLangOpts().OpenACC) |
1916 | return; |
1917 | CheckLastRoutineDeclNameConflict(ND: FD); |
1918 | } |
1919 | |
1920 | bool SemaOpenACC::ActOnStartStmtDirective( |
1921 | OpenACCDirectiveKind K, SourceLocation StartLoc, |
1922 | ArrayRef<const OpenACCClause *> Clauses) { |
1923 | |
1924 | // Declaration directives an appear in a statement location, so call into that |
1925 | // function here. |
1926 | if (K == OpenACCDirectiveKind::Declare || K == OpenACCDirectiveKind::Routine) |
1927 | return ActOnStartDeclDirective(K, StartLoc, Clauses); |
1928 | |
1929 | SemaRef.DiscardCleanupsInEvaluationContext(); |
1930 | SemaRef.PopExpressionEvaluationContext(); |
1931 | |
1932 | // OpenACC 3.3 2.9.1: |
1933 | // Intervening code must not contain other OpenACC directives or calls to API |
1934 | // routines. |
1935 | // |
1936 | // ALL constructs are ill-formed if there is an active 'collapse' |
1937 | if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) { |
1938 | Diag(Loc: StartLoc, DiagID: diag::err_acc_invalid_in_loop) |
1939 | << /*OpenACC Construct*/ 0 << CollapseInfo.DirectiveKind |
1940 | << OpenACCClauseKind::Collapse << K; |
1941 | assert(CollapseInfo.ActiveCollapse && "Collapse count without object?" ); |
1942 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
1943 | DiagID: diag::note_acc_active_clause_here) |
1944 | << OpenACCClauseKind::Collapse; |
1945 | } |
1946 | if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) { |
1947 | Diag(Loc: StartLoc, DiagID: diag::err_acc_invalid_in_loop) |
1948 | << /*OpenACC Construct*/ 0 << TileInfo.DirectiveKind |
1949 | << OpenACCClauseKind::Tile << K; |
1950 | assert(TileInfo.ActiveTile && "Tile count without object?" ); |
1951 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), DiagID: diag::note_acc_active_clause_here) |
1952 | << OpenACCClauseKind::Tile; |
1953 | } |
1954 | |
1955 | if (DiagnoseRequiredClauses(DK: K, DirLoc: StartLoc, Clauses)) |
1956 | return true; |
1957 | return diagnoseConstructAppertainment(S&: *this, K, StartLoc, /*IsStmt=*/true); |
1958 | } |
1959 | |
1960 | StmtResult SemaOpenACC::ActOnEndStmtDirective( |
1961 | OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc, |
1962 | SourceLocation LParenLoc, SourceLocation MiscLoc, ArrayRef<Expr *> Exprs, |
1963 | OpenACCAtomicKind AtomicKind, SourceLocation RParenLoc, |
1964 | SourceLocation EndLoc, ArrayRef<OpenACCClause *> Clauses, |
1965 | StmtResult AssocStmt) { |
1966 | switch (K) { |
1967 | case OpenACCDirectiveKind::Invalid: |
1968 | return StmtError(); |
1969 | case OpenACCDirectiveKind::Parallel: |
1970 | case OpenACCDirectiveKind::Serial: |
1971 | case OpenACCDirectiveKind::Kernels: { |
1972 | return OpenACCComputeConstruct::Create( |
1973 | C: getASTContext(), K, BeginLoc: StartLoc, DirectiveLoc: DirLoc, EndLoc, Clauses, |
1974 | StructuredBlock: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
1975 | } |
1976 | case OpenACCDirectiveKind::ParallelLoop: |
1977 | case OpenACCDirectiveKind::SerialLoop: |
1978 | case OpenACCDirectiveKind::KernelsLoop: { |
1979 | return OpenACCCombinedConstruct::Create( |
1980 | C: getASTContext(), K, Start: StartLoc, DirectiveLoc: DirLoc, End: EndLoc, Clauses, |
1981 | StructuredBlock: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
1982 | } |
1983 | case OpenACCDirectiveKind::Loop: { |
1984 | return OpenACCLoopConstruct::Create( |
1985 | C: getASTContext(), ParentKind: ActiveComputeConstructInfo.Kind, BeginLoc: StartLoc, DirLoc, |
1986 | EndLoc, Clauses, Loop: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
1987 | } |
1988 | case OpenACCDirectiveKind::Data: { |
1989 | return OpenACCDataConstruct::Create( |
1990 | C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, End: EndLoc, Clauses, |
1991 | StructuredBlock: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
1992 | } |
1993 | case OpenACCDirectiveKind::EnterData: { |
1994 | return OpenACCEnterDataConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
1995 | End: EndLoc, Clauses); |
1996 | } |
1997 | case OpenACCDirectiveKind::ExitData: { |
1998 | return OpenACCExitDataConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
1999 | End: EndLoc, Clauses); |
2000 | } |
2001 | case OpenACCDirectiveKind::HostData: { |
2002 | return OpenACCHostDataConstruct::Create( |
2003 | C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, End: EndLoc, Clauses, |
2004 | StructuredBlock: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
2005 | } |
2006 | case OpenACCDirectiveKind::Wait: { |
2007 | return OpenACCWaitConstruct::Create( |
2008 | C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, LParenLoc, DevNumExpr: Exprs.front(), QueuesLoc: MiscLoc, |
2009 | QueueIdExprs: Exprs.drop_front(), RParenLoc, End: EndLoc, Clauses); |
2010 | } |
2011 | case OpenACCDirectiveKind::Init: { |
2012 | return OpenACCInitConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
2013 | End: EndLoc, Clauses); |
2014 | } |
2015 | case OpenACCDirectiveKind::Shutdown: { |
2016 | return OpenACCShutdownConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
2017 | End: EndLoc, Clauses); |
2018 | } |
2019 | case OpenACCDirectiveKind::Set: { |
2020 | return OpenACCSetConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
2021 | End: EndLoc, Clauses); |
2022 | } |
2023 | case OpenACCDirectiveKind::Update: { |
2024 | return OpenACCUpdateConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
2025 | End: EndLoc, Clauses); |
2026 | } |
2027 | case OpenACCDirectiveKind::Atomic: { |
2028 | return OpenACCAtomicConstruct::Create( |
2029 | C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, AtKind: AtomicKind, End: EndLoc, Clauses, |
2030 | AssociatedStmt: AssocStmt.isUsable() ? AssocStmt.get() : nullptr); |
2031 | } |
2032 | case OpenACCDirectiveKind::Cache: { |
2033 | assert(Clauses.empty() && "Cache doesn't allow clauses" ); |
2034 | return OpenACCCacheConstruct::Create(C: getASTContext(), Start: StartLoc, DirectiveLoc: DirLoc, |
2035 | LParenLoc, ReadOnlyLoc: MiscLoc, VarList: Exprs, RParenLoc, |
2036 | End: EndLoc); |
2037 | } |
2038 | case OpenACCDirectiveKind::Routine: |
2039 | llvm_unreachable("routine shouldn't handled here" ); |
2040 | case OpenACCDirectiveKind::Declare: { |
2041 | // Declare and routine arei declaration directives, but can be used here as |
2042 | // long as we wrap it in a DeclStmt. So make sure we do that here. |
2043 | DeclGroupRef DR = ActOnEndDeclDirective(K, StartLoc, DirLoc, LParenLoc, |
2044 | RParenLoc, EndLoc, Clauses); |
2045 | |
2046 | return SemaRef.ActOnDeclStmt(Decl: DeclGroupPtrTy::make(P: DR), StartLoc, EndLoc); |
2047 | } |
2048 | } |
2049 | llvm_unreachable("Unhandled case in directive handling?" ); |
2050 | } |
2051 | |
2052 | StmtResult SemaOpenACC::ActOnAssociatedStmt( |
2053 | SourceLocation DirectiveLoc, OpenACCDirectiveKind K, |
2054 | OpenACCAtomicKind AtKind, ArrayRef<const OpenACCClause *> Clauses, |
2055 | StmtResult AssocStmt) { |
2056 | switch (K) { |
2057 | default: |
2058 | llvm_unreachable("Unimplemented associated statement application" ); |
2059 | case OpenACCDirectiveKind::EnterData: |
2060 | case OpenACCDirectiveKind::ExitData: |
2061 | case OpenACCDirectiveKind::Wait: |
2062 | case OpenACCDirectiveKind::Init: |
2063 | case OpenACCDirectiveKind::Shutdown: |
2064 | case OpenACCDirectiveKind::Set: |
2065 | case OpenACCDirectiveKind::Cache: |
2066 | llvm_unreachable( |
2067 | "these don't have associated statements, so shouldn't get here" ); |
2068 | case OpenACCDirectiveKind::Atomic: |
2069 | return CheckAtomicAssociatedStmt(AtomicDirLoc: DirectiveLoc, AtKind, AssocStmt); |
2070 | case OpenACCDirectiveKind::Parallel: |
2071 | case OpenACCDirectiveKind::Serial: |
2072 | case OpenACCDirectiveKind::Kernels: |
2073 | case OpenACCDirectiveKind::Data: |
2074 | case OpenACCDirectiveKind::HostData: |
2075 | // There really isn't any checking here that could happen. As long as we |
2076 | // have a statement to associate, this should be fine. |
2077 | // OpenACC 3.3 Section 6: |
2078 | // Structured Block: in C or C++, an executable statement, possibly |
2079 | // compound, with a single entry at the top and a single exit at the |
2080 | // bottom. |
2081 | // FIXME: Should we reject DeclStmt's here? The standard isn't clear, and |
2082 | // an interpretation of it is to allow this and treat the initializer as |
2083 | // the 'structured block'. |
2084 | return AssocStmt; |
2085 | case OpenACCDirectiveKind::Loop: |
2086 | case OpenACCDirectiveKind::ParallelLoop: |
2087 | case OpenACCDirectiveKind::SerialLoop: |
2088 | case OpenACCDirectiveKind::KernelsLoop: |
2089 | if (!AssocStmt.isUsable()) |
2090 | return StmtError(); |
2091 | |
2092 | if (!isa<CXXForRangeStmt, ForStmt>(Val: AssocStmt.get())) { |
2093 | Diag(Loc: AssocStmt.get()->getBeginLoc(), DiagID: diag::err_acc_loop_not_for_loop) |
2094 | << K; |
2095 | Diag(Loc: DirectiveLoc, DiagID: diag::note_acc_construct_here) << K; |
2096 | return StmtError(); |
2097 | } |
2098 | |
2099 | if (!CollapseInfo.CollapseDepthSatisfied || !TileInfo.TileDepthSatisfied) { |
2100 | if (!CollapseInfo.CollapseDepthSatisfied) { |
2101 | Diag(Loc: DirectiveLoc, DiagID: diag::err_acc_insufficient_loops) |
2102 | << OpenACCClauseKind::Collapse; |
2103 | assert(CollapseInfo.ActiveCollapse && "Collapse count without object?" ); |
2104 | Diag(Loc: CollapseInfo.ActiveCollapse->getBeginLoc(), |
2105 | DiagID: diag::note_acc_active_clause_here) |
2106 | << OpenACCClauseKind::Collapse; |
2107 | } |
2108 | |
2109 | if (!TileInfo.TileDepthSatisfied) { |
2110 | Diag(Loc: DirectiveLoc, DiagID: diag::err_acc_insufficient_loops) |
2111 | << OpenACCClauseKind::Tile; |
2112 | assert(TileInfo.ActiveTile && "Collapse count without object?" ); |
2113 | Diag(Loc: TileInfo.ActiveTile->getBeginLoc(), |
2114 | DiagID: diag::note_acc_active_clause_here) |
2115 | << OpenACCClauseKind::Tile; |
2116 | } |
2117 | return StmtError(); |
2118 | } |
2119 | |
2120 | return AssocStmt.get(); |
2121 | } |
2122 | llvm_unreachable("Invalid associated statement application" ); |
2123 | } |
2124 | |
2125 | namespace { |
2126 | |
2127 | // Routine has some pretty complicated set of rules for how device_type |
2128 | // interacts with 'gang', 'worker', 'vector', and 'seq'. Enforce part of it |
2129 | // here. |
2130 | bool CheckValidRoutineGangWorkerVectorSeqClauses( |
2131 | SemaOpenACC &SemaRef, SourceLocation DirectiveLoc, |
2132 | ArrayRef<const OpenACCClause *> Clauses) { |
2133 | auto RequiredPred = llvm::IsaPred<OpenACCGangClause, OpenACCWorkerClause, |
2134 | OpenACCVectorClause, OpenACCSeqClause>; |
2135 | // The clause handling has assured us that there is no duplicates. That is, |
2136 | // if there is 1 before a device_type, there are none after a device_type. |
2137 | // If not, there is at most 1 applying to each device_type. |
2138 | |
2139 | // What is left to legalize is that either: |
2140 | // 1- there is 1 before the first device_type. |
2141 | // 2- there is 1 AFTER each device_type. |
2142 | auto *FirstDeviceType = |
2143 | llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCDeviceTypeClause>); |
2144 | |
2145 | // If there is 1 before the first device_type (or at all if no device_type), |
2146 | // we are legal. |
2147 | auto *ClauseItr = |
2148 | std::find_if(first: Clauses.begin(), last: FirstDeviceType, pred: RequiredPred); |
2149 | |
2150 | if (ClauseItr != FirstDeviceType) |
2151 | return false; |
2152 | |
2153 | // If there IS no device_type, and no clause, diagnose. |
2154 | if (FirstDeviceType == Clauses.end()) |
2155 | return SemaRef.Diag(Loc: DirectiveLoc, DiagID: diag::err_acc_construct_one_clause_of) |
2156 | << OpenACCDirectiveKind::Routine |
2157 | << "'gang', 'seq', 'vector', or 'worker'" ; |
2158 | |
2159 | // Else, we have to check EACH device_type group. PrevDeviceType is the |
2160 | // device-type before the current group. |
2161 | auto *PrevDeviceType = FirstDeviceType; |
2162 | |
2163 | while (PrevDeviceType != Clauses.end()) { |
2164 | auto *NextDeviceType = |
2165 | std::find_if(first: std::next(x: PrevDeviceType), last: Clauses.end(), |
2166 | pred: llvm::IsaPred<OpenACCDeviceTypeClause>); |
2167 | |
2168 | ClauseItr = std::find_if(first: PrevDeviceType, last: NextDeviceType, pred: RequiredPred); |
2169 | |
2170 | if (ClauseItr == NextDeviceType) |
2171 | return SemaRef.Diag(Loc: (*PrevDeviceType)->getBeginLoc(), |
2172 | DiagID: diag::err_acc_clause_routine_one_of_in_region); |
2173 | |
2174 | PrevDeviceType = NextDeviceType; |
2175 | } |
2176 | |
2177 | return false; |
2178 | } |
2179 | } // namespace |
2180 | |
2181 | bool SemaOpenACC::ActOnStartDeclDirective( |
2182 | OpenACCDirectiveKind K, SourceLocation StartLoc, |
2183 | ArrayRef<const OpenACCClause *> Clauses) { |
2184 | // OpenCC3.3 2.1 (line 889) |
2185 | // A program must not depend on the order of evaluation of expressions in |
2186 | // clause arguments or on any side effects of the evaluations. |
2187 | SemaRef.DiscardCleanupsInEvaluationContext(); |
2188 | SemaRef.PopExpressionEvaluationContext(); |
2189 | |
2190 | if (DiagnoseRequiredClauses(DK: K, DirLoc: StartLoc, Clauses)) |
2191 | return true; |
2192 | if (K == OpenACCDirectiveKind::Routine && |
2193 | CheckValidRoutineGangWorkerVectorSeqClauses(SemaRef&: *this, DirectiveLoc: StartLoc, Clauses)) |
2194 | return true; |
2195 | |
2196 | return diagnoseConstructAppertainment(S&: *this, K, StartLoc, /*IsStmt=*/false); |
2197 | } |
2198 | |
2199 | DeclGroupRef SemaOpenACC::ActOnEndDeclDirective( |
2200 | OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc, |
2201 | SourceLocation LParenLoc, SourceLocation RParenLoc, SourceLocation EndLoc, |
2202 | ArrayRef<OpenACCClause *> Clauses) { |
2203 | switch (K) { |
2204 | default: |
2205 | case OpenACCDirectiveKind::Invalid: |
2206 | return DeclGroupRef{}; |
2207 | case OpenACCDirectiveKind::Declare: { |
2208 | // OpenACC3.3 2.13: At least one clause must appear on a declare directive. |
2209 | if (Clauses.empty()) { |
2210 | Diag(Loc: EndLoc, DiagID: diag::err_acc_declare_required_clauses); |
2211 | // No reason to add this to the AST, as we would just end up trying to |
2212 | // instantiate this, which would double-diagnose here, which we wouldn't |
2213 | // want to do. |
2214 | return DeclGroupRef{}; |
2215 | } |
2216 | |
2217 | auto *DeclareDecl = OpenACCDeclareDecl::Create( |
2218 | Ctx&: getASTContext(), DC: getCurContext(), StartLoc, DirLoc, EndLoc, Clauses); |
2219 | DeclareDecl->setAccess(AS_public); |
2220 | getCurContext()->addDecl(D: DeclareDecl); |
2221 | return DeclGroupRef{DeclareDecl}; |
2222 | } |
2223 | case OpenACCDirectiveKind::Routine: |
2224 | llvm_unreachable("routine shouldn't be handled here" ); |
2225 | } |
2226 | llvm_unreachable("unhandled case in directive handling?" ); |
2227 | } |
2228 | |
2229 | namespace { |
2230 | // Given the decl on the next line, figure out if it is one that is acceptable |
2231 | // to `routine`, or looks like the sort of decl we should be diagnosing against. |
2232 | FunctionDecl *LegalizeNextParsedDecl(Decl *D) { |
2233 | if (!D) |
2234 | return nullptr; |
2235 | |
2236 | // Functions are per-fact acceptable as-is. |
2237 | if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
2238 | return FD; |
2239 | |
2240 | // Function templates are functions, so attach to the templated decl. |
2241 | if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: D)) |
2242 | return FTD->getTemplatedDecl(); |
2243 | |
2244 | if (auto *FD = dyn_cast<FieldDecl>(Val: D)) { |
2245 | auto *RD = |
2246 | FD->getType().isNull() ? nullptr : FD->getType()->getAsCXXRecordDecl(); |
2247 | |
2248 | if (RD && RD->isGenericLambda()) |
2249 | return RD->getDependentLambdaCallOperator()->getTemplatedDecl(); |
2250 | if (RD && RD->isLambda()) |
2251 | return RD->getLambdaCallOperator(); |
2252 | } |
2253 | // VarDecl we can look at the init instead of the type of the variable, this |
2254 | // makes us more tolerant of the 'auto' deduced type. |
2255 | if (auto *VD = dyn_cast<VarDecl>(Val: D)) { |
2256 | Expr *Init = VD->getInit(); |
2257 | if (!Init || Init->getType().isNull()) |
2258 | return nullptr; |
2259 | |
2260 | const auto *RD = Init->getType()->getAsCXXRecordDecl(); |
2261 | if (RD && RD->isGenericLambda()) |
2262 | return RD->getDependentLambdaCallOperator()->getTemplatedDecl(); |
2263 | if (RD && RD->isLambda()) |
2264 | return RD->getLambdaCallOperator(); |
2265 | |
2266 | // FIXME: We could try harder in the case where this is a dependent thing |
2267 | // that ends up being a lambda (that is, the init is an unresolved lookup |
2268 | // expr), but we can't attach to the call/lookup expr. If we instead try to |
2269 | // attach to the VarDecl, when we go to instantiate it, attributes are |
2270 | // instantiated before the init, so we can't actually see the type at any |
2271 | // point where it would be relevant/able to be checked. We could perhaps do |
2272 | // some sort of 'after-init' instantiation/checking here, but that doesn't |
2273 | // seem valuable for a situation that other compilers don't handle. |
2274 | } |
2275 | return nullptr; |
2276 | } |
2277 | |
2278 | void CreateRoutineDeclAttr(SemaOpenACC &SemaRef, SourceLocation DirLoc, |
2279 | ArrayRef<const OpenACCClause *> Clauses, |
2280 | ValueDecl *AddTo) { |
2281 | OpenACCRoutineDeclAttr *A = |
2282 | OpenACCRoutineDeclAttr::Create(Ctx&: SemaRef.getASTContext(), Range: DirLoc); |
2283 | A->Clauses.assign(in_start: Clauses.begin(), in_end: Clauses.end()); |
2284 | AddTo->addAttr(A); |
2285 | } |
2286 | } // namespace |
2287 | |
2288 | // Variant that adds attributes, because this is the unnamed case. |
2289 | void SemaOpenACC::CheckRoutineDecl(SourceLocation DirLoc, |
2290 | ArrayRef<const OpenACCClause *> Clauses, |
2291 | Decl *NextParsedDecl) { |
2292 | |
2293 | FunctionDecl *NextParsedFDecl = LegalizeNextParsedDecl(D: NextParsedDecl); |
2294 | |
2295 | if (!NextParsedFDecl) { |
2296 | // If we don't have a valid 'next thing', just diagnose. |
2297 | SemaRef.Diag(Loc: DirLoc, DiagID: diag::err_acc_decl_for_routine); |
2298 | return; |
2299 | } |
2300 | |
2301 | // OpenACC 3.3 2.15: |
2302 | // In C and C++, function static variables are not supported in functions to |
2303 | // which a routine directive applies. |
2304 | if (auto Itr = MagicStaticLocs.find(Val: NextParsedFDecl->getCanonicalDecl()); |
2305 | Itr != MagicStaticLocs.end()) { |
2306 | Diag(Loc: Itr->second, DiagID: diag::err_acc_magic_static_in_routine); |
2307 | Diag(Loc: DirLoc, DiagID: diag::note_acc_construct_here) |
2308 | << OpenACCDirectiveKind::Routine; |
2309 | |
2310 | return; |
2311 | } |
2312 | |
2313 | auto BindItr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCBindClause>); |
2314 | for (auto *A : NextParsedFDecl->attrs()) { |
2315 | // OpenACC 3.3 2.15: |
2316 | // If a procedure has a bind clause on both the declaration and definition |
2317 | // than they both must bind to the same name. |
2318 | if (auto *RA = dyn_cast<OpenACCRoutineDeclAttr>(Val: A)) { |
2319 | auto OtherBindItr = |
2320 | llvm::find_if(Range&: RA->Clauses, P: llvm::IsaPred<OpenACCBindClause>); |
2321 | if (OtherBindItr != RA->Clauses.end() && |
2322 | (*cast<OpenACCBindClause>(Val: *BindItr)) != |
2323 | (*cast<OpenACCBindClause>(Val: *OtherBindItr))) { |
2324 | Diag(Loc: (*BindItr)->getBeginLoc(), DiagID: diag::err_acc_duplicate_unnamed_bind); |
2325 | Diag(Loc: (*OtherBindItr)->getEndLoc(), DiagID: diag::note_acc_previous_clause_here) |
2326 | << (*BindItr)->getClauseKind(); |
2327 | return; |
2328 | } |
2329 | } |
2330 | |
2331 | // OpenACC 3.3 2.15: |
2332 | // A bind clause may not bind to a routine name that has a visible bind |
2333 | // clause. |
2334 | // We take the combo of these two 2.15 restrictions to mean that the |
2335 | // 'declaration'/'definition' quote is an exception to this. So we're going |
2336 | // to disallow mixing of the two types entirely. |
2337 | if (auto *RA = dyn_cast<OpenACCRoutineAnnotAttr>(Val: A); |
2338 | RA && RA->getRange().getEnd().isValid()) { |
2339 | Diag(Loc: (*BindItr)->getBeginLoc(), DiagID: diag::err_acc_duplicate_bind); |
2340 | Diag(Loc: RA->getRange().getEnd(), DiagID: diag::note_acc_previous_clause_here) |
2341 | << "bind" ; |
2342 | return; |
2343 | } |
2344 | } |
2345 | |
2346 | CreateRoutineDeclAttr(SemaRef&: *this, DirLoc, Clauses, AddTo: NextParsedFDecl); |
2347 | } |
2348 | |
2349 | // Variant that adds a decl, because this is the named case. |
2350 | OpenACCRoutineDecl *SemaOpenACC::CheckRoutineDecl( |
2351 | SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc, |
2352 | Expr *FuncRef, SourceLocation RParenLoc, |
2353 | ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc) { |
2354 | assert(LParenLoc.isValid()); |
2355 | |
2356 | if (FunctionDecl *FD = getFunctionFromRoutineName(RoutineName: FuncRef)) { |
2357 | // OpenACC 3.3 2.15: |
2358 | // In C and C++, function static variables are not supported in functions to |
2359 | // which a routine directive applies. |
2360 | if (auto Itr = MagicStaticLocs.find(Val: FD->getCanonicalDecl()); |
2361 | Itr != MagicStaticLocs.end()) { |
2362 | Diag(Loc: Itr->second, DiagID: diag::err_acc_magic_static_in_routine); |
2363 | Diag(Loc: DirLoc, DiagID: diag::note_acc_construct_here) |
2364 | << OpenACCDirectiveKind::Routine; |
2365 | |
2366 | return nullptr; |
2367 | } |
2368 | |
2369 | // OpenACC 3.3 2.15: |
2370 | // A bind clause may not bind to a routine name that has a visible bind |
2371 | // clause. |
2372 | auto BindItr = llvm::find_if(Range&: Clauses, P: llvm::IsaPred<OpenACCBindClause>); |
2373 | SourceLocation BindLoc; |
2374 | if (BindItr != Clauses.end()) { |
2375 | BindLoc = (*BindItr)->getBeginLoc(); |
2376 | // Since this is adding a 'named' routine, we aren't allowed to combine |
2377 | // with ANY other visible bind clause. Error if we see either. |
2378 | |
2379 | for (auto *A : FD->attrs()) { |
2380 | if (auto *RA = dyn_cast<OpenACCRoutineDeclAttr>(Val: A)) { |
2381 | auto OtherBindItr = |
2382 | llvm::find_if(Range&: RA->Clauses, P: llvm::IsaPred<OpenACCBindClause>); |
2383 | if (OtherBindItr != RA->Clauses.end()) { |
2384 | Diag(Loc: (*BindItr)->getBeginLoc(), DiagID: diag::err_acc_duplicate_bind); |
2385 | Diag(Loc: (*OtherBindItr)->getEndLoc(), |
2386 | DiagID: diag::note_acc_previous_clause_here) |
2387 | << (*BindItr)->getClauseKind(); |
2388 | return nullptr; |
2389 | } |
2390 | } |
2391 | |
2392 | if (auto *RA = dyn_cast<OpenACCRoutineAnnotAttr>(Val: A); |
2393 | RA && RA->getRange().getEnd().isValid()) { |
2394 | Diag(Loc: (*BindItr)->getBeginLoc(), DiagID: diag::err_acc_duplicate_bind); |
2395 | Diag(Loc: RA->getRange().getEnd(), DiagID: diag::note_acc_previous_clause_here) |
2396 | << (*BindItr)->getClauseKind(); |
2397 | return nullptr; |
2398 | } |
2399 | } |
2400 | } |
2401 | |
2402 | // Set the end-range to the 'bind' clause here, so we can look it up |
2403 | // later. |
2404 | auto *RAA = OpenACCRoutineAnnotAttr::CreateImplicit(Ctx&: getASTContext(), |
2405 | Range: {DirLoc, BindLoc}); |
2406 | FD->addAttr(A: RAA); |
2407 | // In case we are referencing not the 'latest' version, make sure we add |
2408 | // the attribute to all declarations. |
2409 | while (FD != FD->getMostRecentDecl()) { |
2410 | FD = FD->getMostRecentDecl(); |
2411 | FD->addAttr(A: RAA); |
2412 | } |
2413 | } |
2414 | |
2415 | LastRoutineDecl = OpenACCRoutineDecl::Create( |
2416 | Ctx&: getASTContext(), DC: getCurContext(), StartLoc, DirLoc, LParenLoc, FuncRef, |
2417 | RParenLoc, EndLoc, Clauses); |
2418 | LastRoutineDecl->setAccess(AS_public); |
2419 | getCurContext()->addDecl(D: LastRoutineDecl); |
2420 | |
2421 | return LastRoutineDecl; |
2422 | } |
2423 | |
2424 | DeclGroupRef SemaOpenACC::ActOnEndRoutineDeclDirective( |
2425 | SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc, |
2426 | Expr *ReferencedFunc, SourceLocation RParenLoc, |
2427 | ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc, |
2428 | DeclGroupPtrTy NextDecl) { |
2429 | assert((!ReferencedFunc || !NextDecl) && |
2430 | "Only one of these should be filled" ); |
2431 | |
2432 | if (LParenLoc.isInvalid()) { |
2433 | Decl *NextLineDecl = nullptr; |
2434 | if (NextDecl && NextDecl.get().isSingleDecl()) |
2435 | NextLineDecl = NextDecl.get().getSingleDecl(); |
2436 | |
2437 | CheckRoutineDecl(DirLoc, Clauses, NextParsedDecl: NextLineDecl); |
2438 | |
2439 | return NextDecl.get(); |
2440 | } |
2441 | |
2442 | return DeclGroupRef{CheckRoutineDecl( |
2443 | StartLoc, DirLoc, LParenLoc, FuncRef: ReferencedFunc, RParenLoc, Clauses, EndLoc)}; |
2444 | } |
2445 | |
2446 | StmtResult SemaOpenACC::ActOnEndRoutineStmtDirective( |
2447 | SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc, |
2448 | Expr *ReferencedFunc, SourceLocation RParenLoc, |
2449 | ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc, |
2450 | Stmt *NextStmt) { |
2451 | assert((!ReferencedFunc || !NextStmt) && |
2452 | "Only one of these should be filled" ); |
2453 | |
2454 | if (LParenLoc.isInvalid()) { |
2455 | Decl *NextLineDecl = nullptr; |
2456 | if (NextStmt) |
2457 | if (DeclStmt *DS = dyn_cast<DeclStmt>(Val: NextStmt); DS && DS->isSingleDecl()) |
2458 | NextLineDecl = DS->getSingleDecl(); |
2459 | |
2460 | CheckRoutineDecl(DirLoc, Clauses, NextParsedDecl: NextLineDecl); |
2461 | return NextStmt; |
2462 | } |
2463 | |
2464 | DeclGroupRef DR{CheckRoutineDecl(StartLoc, DirLoc, LParenLoc, FuncRef: ReferencedFunc, |
2465 | RParenLoc, Clauses, EndLoc)}; |
2466 | return SemaRef.ActOnDeclStmt(Decl: DeclGroupPtrTy::make(P: DR), StartLoc, EndLoc); |
2467 | } |
2468 | |
2469 | OpenACCRoutineDeclAttr * |
2470 | SemaOpenACC::mergeRoutineDeclAttr(const OpenACCRoutineDeclAttr &Old) { |
2471 | OpenACCRoutineDeclAttr *New = |
2472 | OpenACCRoutineDeclAttr::Create(Ctx&: getASTContext(), Range: Old.getLocation()); |
2473 | // We should jsut be able to copy these, there isn't really any |
2474 | // merging/inheriting we have to do, so no worry about doing a deep copy. |
2475 | New->Clauses = Old.Clauses; |
2476 | return New; |
2477 | } |
2478 | ExprResult |
2479 | SemaOpenACC::BuildOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) { |
2480 | return OpenACCAsteriskSizeExpr::Create(C: getASTContext(), Loc: AsteriskLoc); |
2481 | } |
2482 | |
2483 | ExprResult |
2484 | SemaOpenACC::ActOnOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) { |
2485 | return BuildOpenACCAsteriskSizeExpr(AsteriskLoc); |
2486 | } |
2487 | |