| 1 | //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements semantic analysis for statements. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "CheckExprLifetime.h" |
| 14 | #include "clang/AST/ASTContext.h" |
| 15 | #include "clang/AST/ASTLambda.h" |
| 16 | #include "clang/AST/CXXInheritance.h" |
| 17 | #include "clang/AST/CharUnits.h" |
| 18 | #include "clang/AST/DeclObjC.h" |
| 19 | #include "clang/AST/DynamicRecursiveASTVisitor.h" |
| 20 | #include "clang/AST/EvaluatedExprVisitor.h" |
| 21 | #include "clang/AST/ExprCXX.h" |
| 22 | #include "clang/AST/ExprObjC.h" |
| 23 | #include "clang/AST/IgnoreExpr.h" |
| 24 | #include "clang/AST/StmtCXX.h" |
| 25 | #include "clang/AST/StmtObjC.h" |
| 26 | #include "clang/AST/TypeLoc.h" |
| 27 | #include "clang/AST/TypeOrdering.h" |
| 28 | #include "clang/Basic/TargetInfo.h" |
| 29 | #include "clang/Lex/Preprocessor.h" |
| 30 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
| 31 | #include "clang/Sema/Initialization.h" |
| 32 | #include "clang/Sema/Lookup.h" |
| 33 | #include "clang/Sema/Ownership.h" |
| 34 | #include "clang/Sema/Scope.h" |
| 35 | #include "clang/Sema/ScopeInfo.h" |
| 36 | #include "clang/Sema/SemaCUDA.h" |
| 37 | #include "clang/Sema/SemaObjC.h" |
| 38 | #include "clang/Sema/SemaOpenMP.h" |
| 39 | #include "llvm/ADT/ArrayRef.h" |
| 40 | #include "llvm/ADT/DenseMap.h" |
| 41 | #include "llvm/ADT/STLExtras.h" |
| 42 | #include "llvm/ADT/SmallVector.h" |
| 43 | #include "llvm/ADT/StringExtras.h" |
| 44 | |
| 45 | using namespace clang; |
| 46 | using namespace sema; |
| 47 | |
| 48 | StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) { |
| 49 | if (FE.isInvalid()) |
| 50 | return StmtError(); |
| 51 | |
| 52 | FE = ActOnFinishFullExpr(Expr: FE.get(), CC: FE.get()->getExprLoc(), DiscardedValue); |
| 53 | if (FE.isInvalid()) |
| 54 | return StmtError(); |
| 55 | |
| 56 | // C99 6.8.3p2: The expression in an expression statement is evaluated as a |
| 57 | // void expression for its side effects. Conversion to void allows any |
| 58 | // operand, even incomplete types. |
| 59 | |
| 60 | // Same thing in for stmt first clause (when expr) and third clause. |
| 61 | return StmtResult(FE.getAs<Stmt>()); |
| 62 | } |
| 63 | |
| 64 | |
| 65 | StmtResult Sema::ActOnExprStmtError() { |
| 66 | DiscardCleanupsInEvaluationContext(); |
| 67 | return StmtError(); |
| 68 | } |
| 69 | |
| 70 | StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc, |
| 71 | bool HasLeadingEmptyMacro) { |
| 72 | return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro); |
| 73 | } |
| 74 | |
| 75 | StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc, |
| 76 | SourceLocation EndLoc) { |
| 77 | DeclGroupRef DG = dg.get(); |
| 78 | |
| 79 | // If we have an invalid decl, just return an error. |
| 80 | if (DG.isNull()) return StmtError(); |
| 81 | |
| 82 | return new (Context) DeclStmt(DG, StartLoc, EndLoc); |
| 83 | } |
| 84 | |
| 85 | void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) { |
| 86 | DeclGroupRef DG = dg.get(); |
| 87 | |
| 88 | // If we don't have a declaration, or we have an invalid declaration, |
| 89 | // just return. |
| 90 | if (DG.isNull() || !DG.isSingleDecl()) |
| 91 | return; |
| 92 | |
| 93 | Decl *decl = DG.getSingleDecl(); |
| 94 | if (!decl || decl->isInvalidDecl()) |
| 95 | return; |
| 96 | |
| 97 | // Only variable declarations are permitted. |
| 98 | VarDecl *var = dyn_cast<VarDecl>(Val: decl); |
| 99 | if (!var) { |
| 100 | Diag(Loc: decl->getLocation(), DiagID: diag::err_non_variable_decl_in_for); |
| 101 | decl->setInvalidDecl(); |
| 102 | return; |
| 103 | } |
| 104 | |
| 105 | // foreach variables are never actually initialized in the way that |
| 106 | // the parser came up with. |
| 107 | var->setInit(nullptr); |
| 108 | |
| 109 | // In ARC, we don't need to retain the iteration variable of a fast |
| 110 | // enumeration loop. Rather than actually trying to catch that |
| 111 | // during declaration processing, we remove the consequences here. |
| 112 | if (getLangOpts().ObjCAutoRefCount) { |
| 113 | QualType type = var->getType(); |
| 114 | |
| 115 | // Only do this if we inferred the lifetime. Inferred lifetime |
| 116 | // will show up as a local qualifier because explicit lifetime |
| 117 | // should have shown up as an AttributedType instead. |
| 118 | if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) { |
| 119 | // Add 'const' and mark the variable as pseudo-strong. |
| 120 | var->setType(type.withConst()); |
| 121 | var->setARCPseudoStrong(true); |
| 122 | } |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | /// Diagnose unused comparisons, both builtin and overloaded operators. |
| 127 | /// For '==' and '!=', suggest fixits for '=' or '|='. |
| 128 | /// |
| 129 | /// Adding a cast to void (or other expression wrappers) will prevent the |
| 130 | /// warning from firing. |
| 131 | static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) { |
| 132 | SourceLocation Loc; |
| 133 | bool CanAssign; |
| 134 | enum { Equality, Inequality, Relational, ThreeWay } Kind; |
| 135 | |
| 136 | if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(Val: E)) { |
| 137 | if (!Op->isComparisonOp()) |
| 138 | return false; |
| 139 | |
| 140 | if (Op->getOpcode() == BO_EQ) |
| 141 | Kind = Equality; |
| 142 | else if (Op->getOpcode() == BO_NE) |
| 143 | Kind = Inequality; |
| 144 | else if (Op->getOpcode() == BO_Cmp) |
| 145 | Kind = ThreeWay; |
| 146 | else { |
| 147 | assert(Op->isRelationalOp()); |
| 148 | Kind = Relational; |
| 149 | } |
| 150 | Loc = Op->getOperatorLoc(); |
| 151 | CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue(); |
| 152 | } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(Val: E)) { |
| 153 | switch (Op->getOperator()) { |
| 154 | case OO_EqualEqual: |
| 155 | Kind = Equality; |
| 156 | break; |
| 157 | case OO_ExclaimEqual: |
| 158 | Kind = Inequality; |
| 159 | break; |
| 160 | case OO_Less: |
| 161 | case OO_Greater: |
| 162 | case OO_GreaterEqual: |
| 163 | case OO_LessEqual: |
| 164 | Kind = Relational; |
| 165 | break; |
| 166 | case OO_Spaceship: |
| 167 | Kind = ThreeWay; |
| 168 | break; |
| 169 | default: |
| 170 | return false; |
| 171 | } |
| 172 | |
| 173 | Loc = Op->getOperatorLoc(); |
| 174 | CanAssign = Op->getArg(Arg: 0)->IgnoreParenImpCasts()->isLValue(); |
| 175 | } else { |
| 176 | // Not a typo-prone comparison. |
| 177 | return false; |
| 178 | } |
| 179 | |
| 180 | // Suppress warnings when the operator, suspicious as it may be, comes from |
| 181 | // a macro expansion. |
| 182 | if (S.SourceMgr.isMacroBodyExpansion(Loc)) |
| 183 | return false; |
| 184 | |
| 185 | S.Diag(Loc, DiagID: diag::warn_unused_comparison) |
| 186 | << (unsigned)Kind << E->getSourceRange(); |
| 187 | |
| 188 | // If the LHS is a plausible entity to assign to, provide a fixit hint to |
| 189 | // correct common typos. |
| 190 | if (CanAssign) { |
| 191 | if (Kind == Inequality) |
| 192 | S.Diag(Loc, DiagID: diag::note_inequality_comparison_to_or_assign) |
| 193 | << FixItHint::CreateReplacement(RemoveRange: Loc, Code: "|=" ); |
| 194 | else if (Kind == Equality) |
| 195 | S.Diag(Loc, DiagID: diag::note_equality_comparison_to_assign) |
| 196 | << FixItHint::CreateReplacement(RemoveRange: Loc, Code: "=" ); |
| 197 | } |
| 198 | |
| 199 | return true; |
| 200 | } |
| 201 | |
| 202 | static bool DiagnoseNoDiscard(Sema &S, const NamedDecl *OffendingDecl, |
| 203 | const WarnUnusedResultAttr *A, SourceLocation Loc, |
| 204 | SourceRange R1, SourceRange R2, bool IsCtor) { |
| 205 | if (!A) |
| 206 | return false; |
| 207 | StringRef Msg = A->getMessage(); |
| 208 | |
| 209 | if (Msg.empty()) { |
| 210 | if (OffendingDecl) |
| 211 | return S.Diag(Loc, DiagID: diag::warn_unused_return_type) |
| 212 | << IsCtor << A << OffendingDecl << false << R1 << R2; |
| 213 | if (IsCtor) |
| 214 | return S.Diag(Loc, DiagID: diag::warn_unused_constructor) |
| 215 | << A << false << R1 << R2; |
| 216 | return S.Diag(Loc, DiagID: diag::warn_unused_result) << A << false << R1 << R2; |
| 217 | } |
| 218 | |
| 219 | if (OffendingDecl) |
| 220 | return S.Diag(Loc, DiagID: diag::warn_unused_return_type) |
| 221 | << IsCtor << A << OffendingDecl << true << Msg << R1 << R2; |
| 222 | if (IsCtor) |
| 223 | return S.Diag(Loc, DiagID: diag::warn_unused_constructor) |
| 224 | << A << true << Msg << R1 << R2; |
| 225 | return S.Diag(Loc, DiagID: diag::warn_unused_result) << A << true << Msg << R1 << R2; |
| 226 | } |
| 227 | |
| 228 | namespace { |
| 229 | |
| 230 | // Diagnoses unused expressions that call functions marked [[nodiscard]], |
| 231 | // [[gnu::warn_unused_result]] and similar. |
| 232 | // Additionally, a DiagID can be provided to emit a warning in additional |
| 233 | // contexts (such as for an unused LHS of a comma expression) |
| 234 | void DiagnoseUnused(Sema &S, const Expr *E, std::optional<unsigned> DiagID) { |
| 235 | bool NoDiscardOnly = !DiagID.has_value(); |
| 236 | |
| 237 | // If we are in an unevaluated expression context, then there can be no unused |
| 238 | // results because the results aren't expected to be used in the first place. |
| 239 | if (S.isUnevaluatedContext()) |
| 240 | return; |
| 241 | |
| 242 | SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc(); |
| 243 | // In most cases, we don't want to warn if the expression is written in a |
| 244 | // macro body, or if the macro comes from a system header. If the offending |
| 245 | // expression is a call to a function with the warn_unused_result attribute, |
| 246 | // we warn no matter the location. Because of the order in which the various |
| 247 | // checks need to happen, we factor out the macro-related test here. |
| 248 | bool ShouldSuppress = S.SourceMgr.isMacroBodyExpansion(Loc: ExprLoc) || |
| 249 | S.SourceMgr.isInSystemMacro(loc: ExprLoc); |
| 250 | |
| 251 | const Expr *WarnExpr; |
| 252 | SourceLocation Loc; |
| 253 | SourceRange R1, R2; |
| 254 | if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Ctx&: S.Context)) |
| 255 | return; |
| 256 | |
| 257 | if (!NoDiscardOnly) { |
| 258 | // If this is a GNU statement expression expanded from a macro, it is |
| 259 | // probably unused because it is a function-like macro that can be used as |
| 260 | // either an expression or statement. Don't warn, because it is almost |
| 261 | // certainly a false positive. |
| 262 | if (isa<StmtExpr>(Val: E) && Loc.isMacroID()) |
| 263 | return; |
| 264 | |
| 265 | // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers. |
| 266 | // That macro is frequently used to suppress "unused parameter" warnings, |
| 267 | // but its implementation makes clang's -Wunused-value fire. Prevent this. |
| 268 | if (isa<ParenExpr>(Val: E->IgnoreImpCasts()) && Loc.isMacroID()) { |
| 269 | SourceLocation SpellLoc = Loc; |
| 270 | if (S.findMacroSpelling(loc&: SpellLoc, name: "UNREFERENCED_PARAMETER" )) |
| 271 | return; |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | // Okay, we have an unused result. Depending on what the base expression is, |
| 276 | // we might want to make a more specific diagnostic. Check for one of these |
| 277 | // cases now. |
| 278 | if (const FullExpr *Temps = dyn_cast<FullExpr>(Val: E)) |
| 279 | E = Temps->getSubExpr(); |
| 280 | if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(Val: E)) |
| 281 | E = TempExpr->getSubExpr(); |
| 282 | |
| 283 | if (DiagnoseUnusedComparison(S, E)) |
| 284 | return; |
| 285 | |
| 286 | E = WarnExpr; |
| 287 | if (const auto *Cast = dyn_cast<CastExpr>(Val: E)) |
| 288 | if (Cast->getCastKind() == CK_NoOp || |
| 289 | Cast->getCastKind() == CK_ConstructorConversion || |
| 290 | Cast->getCastKind() == CK_IntegralCast) |
| 291 | E = Cast->getSubExpr()->IgnoreImpCasts(); |
| 292 | |
| 293 | if (const CallExpr *CE = dyn_cast<CallExpr>(Val: E)) { |
| 294 | if (E->getType()->isVoidType()) |
| 295 | return; |
| 296 | |
| 297 | auto [OffendingDecl, A] = CE->getUnusedResultAttr(Ctx: S.Context); |
| 298 | if (DiagnoseNoDiscard(S, OffendingDecl, |
| 299 | A: cast_or_null<WarnUnusedResultAttr>(Val: A), Loc, R1, R2, |
| 300 | /*isCtor=*/IsCtor: false)) |
| 301 | return; |
| 302 | |
| 303 | // If the callee has attribute pure, const, or warn_unused_result, warn with |
| 304 | // a more specific message to make it clear what is happening. If the call |
| 305 | // is written in a macro body, only warn if it has the warn_unused_result |
| 306 | // attribute. |
| 307 | if (const Decl *FD = CE->getCalleeDecl()) { |
| 308 | if (ShouldSuppress) |
| 309 | return; |
| 310 | if (FD->hasAttr<PureAttr>()) { |
| 311 | S.Diag(Loc, DiagID: diag::warn_unused_call) << R1 << R2 << "pure" ; |
| 312 | return; |
| 313 | } |
| 314 | if (FD->hasAttr<ConstAttr>()) { |
| 315 | S.Diag(Loc, DiagID: diag::warn_unused_call) << R1 << R2 << "const" ; |
| 316 | return; |
| 317 | } |
| 318 | } |
| 319 | } else if (const auto *CE = dyn_cast<CXXConstructExpr>(Val: E)) { |
| 320 | if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { |
| 321 | const NamedDecl *OffendingDecl = nullptr; |
| 322 | const auto *A = Ctor->getAttr<WarnUnusedResultAttr>(); |
| 323 | if (!A) { |
| 324 | OffendingDecl = Ctor->getParent(); |
| 325 | A = OffendingDecl->getAttr<WarnUnusedResultAttr>(); |
| 326 | } |
| 327 | if (DiagnoseNoDiscard(S, OffendingDecl, A, Loc, R1, R2, |
| 328 | /*isCtor=*/IsCtor: true)) |
| 329 | return; |
| 330 | } |
| 331 | } else if (const auto *ILE = dyn_cast<InitListExpr>(Val: E)) { |
| 332 | if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) { |
| 333 | |
| 334 | if (DiagnoseNoDiscard(S, OffendingDecl: TD, A: TD->getAttr<WarnUnusedResultAttr>(), Loc, R1, |
| 335 | R2, /*isCtor=*/IsCtor: false)) |
| 336 | return; |
| 337 | } |
| 338 | } else if (ShouldSuppress) |
| 339 | return; |
| 340 | |
| 341 | E = WarnExpr; |
| 342 | if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Val: E)) { |
| 343 | if (S.getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) { |
| 344 | S.Diag(Loc, DiagID: diag::err_arc_unused_init_message) << R1; |
| 345 | return; |
| 346 | } |
| 347 | const ObjCMethodDecl *MD = ME->getMethodDecl(); |
| 348 | if (MD) { |
| 349 | if (DiagnoseNoDiscard(S, OffendingDecl: nullptr, A: MD->getAttr<WarnUnusedResultAttr>(), |
| 350 | Loc, R1, R2, |
| 351 | /*isCtor=*/IsCtor: false)) |
| 352 | return; |
| 353 | } |
| 354 | } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Val: E)) { |
| 355 | const Expr *Source = POE->getSyntacticForm(); |
| 356 | // Handle the actually selected call of an OpenMP specialized call. |
| 357 | if (S.LangOpts.OpenMP && isa<CallExpr>(Val: Source) && |
| 358 | POE->getNumSemanticExprs() == 1 && |
| 359 | isa<CallExpr>(Val: POE->getSemanticExpr(index: 0))) |
| 360 | return DiagnoseUnused(S, E: POE->getSemanticExpr(index: 0), DiagID); |
| 361 | if (isa<ObjCSubscriptRefExpr>(Val: Source)) |
| 362 | DiagID = diag::warn_unused_container_subscript_expr; |
| 363 | else if (isa<ObjCPropertyRefExpr>(Val: Source)) |
| 364 | DiagID = diag::warn_unused_property_expr; |
| 365 | } else if (const CXXFunctionalCastExpr *FC |
| 366 | = dyn_cast<CXXFunctionalCastExpr>(Val: E)) { |
| 367 | const Expr *E = FC->getSubExpr(); |
| 368 | if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(Val: E)) |
| 369 | E = TE->getSubExpr(); |
| 370 | if (isa<CXXTemporaryObjectExpr>(Val: E)) |
| 371 | return; |
| 372 | if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Val: E)) |
| 373 | if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl()) |
| 374 | if (!RD->getAttr<WarnUnusedAttr>()) |
| 375 | return; |
| 376 | } |
| 377 | |
| 378 | if (NoDiscardOnly) |
| 379 | return; |
| 380 | |
| 381 | // Diagnose "(void*) blah" as a typo for "(void) blah". |
| 382 | if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(Val: E)) { |
| 383 | TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); |
| 384 | QualType T = TI->getType(); |
| 385 | |
| 386 | // We really do want to use the non-canonical type here. |
| 387 | if (T == S.Context.VoidPtrTy) { |
| 388 | PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>(); |
| 389 | |
| 390 | S.Diag(Loc, DiagID: diag::warn_unused_voidptr) |
| 391 | << FixItHint::CreateRemoval(RemoveRange: TL.getStarLoc()); |
| 392 | return; |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | // Tell the user to assign it into a variable to force a volatile load if this |
| 397 | // isn't an array. |
| 398 | if (E->isGLValue() && E->getType().isVolatileQualified() && |
| 399 | !E->getType()->isArrayType()) { |
| 400 | S.Diag(Loc, DiagID: diag::warn_unused_volatile) << R1 << R2; |
| 401 | return; |
| 402 | } |
| 403 | |
| 404 | // Do not diagnose use of a comma operator in a SFINAE context because the |
| 405 | // type of the left operand could be used for SFINAE, so technically it is |
| 406 | // *used*. |
| 407 | if (DiagID == diag::warn_unused_comma_left_operand && S.isSFINAEContext()) |
| 408 | return; |
| 409 | |
| 410 | S.DiagIfReachable(Loc, Stmts: llvm::ArrayRef<const Stmt *>(E), |
| 411 | PD: S.PDiag(DiagID: *DiagID) << R1 << R2); |
| 412 | } |
| 413 | } // namespace |
| 414 | |
| 415 | void Sema::DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID) { |
| 416 | if (const LabelStmt *Label = dyn_cast_if_present<LabelStmt>(Val: S)) |
| 417 | S = Label->getSubStmt(); |
| 418 | |
| 419 | const Expr *E = dyn_cast_if_present<Expr>(Val: S); |
| 420 | if (!E) |
| 421 | return; |
| 422 | |
| 423 | DiagnoseUnused(S&: *this, E, DiagID); |
| 424 | } |
| 425 | |
| 426 | void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) { |
| 427 | PushCompoundScope(IsStmtExpr); |
| 428 | } |
| 429 | |
| 430 | void Sema::ActOnAfterCompoundStatementLeadingPragmas() { |
| 431 | if (getCurFPFeatures().isFPConstrained()) { |
| 432 | FunctionScopeInfo *FSI = getCurFunction(); |
| 433 | assert(FSI); |
| 434 | FSI->setUsesFPIntrin(); |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | void Sema::ActOnFinishOfCompoundStmt() { |
| 439 | PopCompoundScope(); |
| 440 | } |
| 441 | |
| 442 | sema::CompoundScopeInfo &Sema::getCurCompoundScope() const { |
| 443 | return getCurFunction()->CompoundScopes.back(); |
| 444 | } |
| 445 | |
| 446 | StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, |
| 447 | ArrayRef<Stmt *> Elts, bool isStmtExpr) { |
| 448 | const unsigned NumElts = Elts.size(); |
| 449 | |
| 450 | // If we're in C mode, check that we don't have any decls after stmts. If |
| 451 | // so, emit an extension diagnostic in C89 and potentially a warning in later |
| 452 | // versions. |
| 453 | const unsigned MixedDeclsCodeID = getLangOpts().C99 |
| 454 | ? diag::warn_mixed_decls_code |
| 455 | : diag::ext_mixed_decls_code; |
| 456 | if (!getLangOpts().CPlusPlus && !Diags.isIgnored(DiagID: MixedDeclsCodeID, Loc: L)) { |
| 457 | // Note that __extension__ can be around a decl. |
| 458 | unsigned i = 0; |
| 459 | // Skip over all declarations. |
| 460 | for (; i != NumElts && isa<DeclStmt>(Val: Elts[i]); ++i) |
| 461 | /*empty*/; |
| 462 | |
| 463 | // We found the end of the list or a statement. Scan for another declstmt. |
| 464 | for (; i != NumElts && !isa<DeclStmt>(Val: Elts[i]); ++i) |
| 465 | /*empty*/; |
| 466 | |
| 467 | if (i != NumElts) { |
| 468 | Decl *D = *cast<DeclStmt>(Val: Elts[i])->decl_begin(); |
| 469 | Diag(Loc: D->getLocation(), DiagID: MixedDeclsCodeID); |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | // Check for suspicious empty body (null statement) in `for' and `while' |
| 474 | // statements. Don't do anything for template instantiations, this just adds |
| 475 | // noise. |
| 476 | if (NumElts != 0 && !CurrentInstantiationScope && |
| 477 | getCurCompoundScope().HasEmptyLoopBodies) { |
| 478 | for (unsigned i = 0; i != NumElts - 1; ++i) |
| 479 | DiagnoseEmptyLoopBody(S: Elts[i], PossibleBody: Elts[i + 1]); |
| 480 | } |
| 481 | |
| 482 | // Calculate difference between FP options in this compound statement and in |
| 483 | // the enclosing one. If this is a function body, take the difference against |
| 484 | // default options. In this case the difference will indicate options that are |
| 485 | // changed upon entry to the statement. |
| 486 | FPOptions FPO = (getCurFunction()->CompoundScopes.size() == 1) |
| 487 | ? FPOptions(getLangOpts()) |
| 488 | : getCurCompoundScope().InitialFPFeatures; |
| 489 | FPOptionsOverride FPDiff = getCurFPFeatures().getChangesFrom(Base: FPO); |
| 490 | |
| 491 | return CompoundStmt::Create(C: Context, Stmts: Elts, FPFeatures: FPDiff, LB: L, RB: R); |
| 492 | } |
| 493 | |
| 494 | ExprResult |
| 495 | Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) { |
| 496 | if (!Val.get()) |
| 497 | return Val; |
| 498 | |
| 499 | if (DiagnoseUnexpandedParameterPack(E: Val.get())) |
| 500 | return ExprError(); |
| 501 | |
| 502 | // If we're not inside a switch, let the 'case' statement handling diagnose |
| 503 | // this. Just clean up after the expression as best we can. |
| 504 | if (getCurFunction()->SwitchStack.empty()) |
| 505 | return ActOnFinishFullExpr(Expr: Val.get(), CC: Val.get()->getExprLoc(), DiscardedValue: false, |
| 506 | IsConstexpr: getLangOpts().CPlusPlus11); |
| 507 | |
| 508 | Expr *CondExpr = |
| 509 | getCurFunction()->SwitchStack.back().getPointer()->getCond(); |
| 510 | if (!CondExpr) |
| 511 | return ExprError(); |
| 512 | QualType CondType = CondExpr->getType(); |
| 513 | |
| 514 | auto CheckAndFinish = [&](Expr *E) { |
| 515 | if (CondType->isDependentType() || E->isTypeDependent()) |
| 516 | return ExprResult(E); |
| 517 | |
| 518 | if (getLangOpts().CPlusPlus11) { |
| 519 | // C++11 [stmt.switch]p2: the constant-expression shall be a converted |
| 520 | // constant expression of the promoted type of the switch condition. |
| 521 | llvm::APSInt TempVal; |
| 522 | return CheckConvertedConstantExpression(From: E, T: CondType, Value&: TempVal, |
| 523 | CCE: CCEKind::CaseValue); |
| 524 | } |
| 525 | |
| 526 | ExprResult ER = E; |
| 527 | if (!E->isValueDependent()) |
| 528 | ER = VerifyIntegerConstantExpression(E, CanFold: AllowFoldKind::Allow); |
| 529 | if (!ER.isInvalid()) |
| 530 | ER = DefaultLvalueConversion(E: ER.get()); |
| 531 | if (!ER.isInvalid()) |
| 532 | ER = ImpCastExprToType(E: ER.get(), Type: CondType, CK: CK_IntegralCast); |
| 533 | if (!ER.isInvalid()) |
| 534 | ER = ActOnFinishFullExpr(Expr: ER.get(), CC: ER.get()->getExprLoc(), DiscardedValue: false); |
| 535 | return ER; |
| 536 | }; |
| 537 | |
| 538 | return CheckAndFinish(Val.get()); |
| 539 | } |
| 540 | |
| 541 | StmtResult |
| 542 | Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal, |
| 543 | SourceLocation DotDotDotLoc, ExprResult RHSVal, |
| 544 | SourceLocation ColonLoc) { |
| 545 | assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value" ); |
| 546 | assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset() |
| 547 | : RHSVal.isInvalid() || RHSVal.get()) && |
| 548 | "missing RHS value" ); |
| 549 | |
| 550 | if (getCurFunction()->SwitchStack.empty()) { |
| 551 | Diag(Loc: CaseLoc, DiagID: diag::err_case_not_in_switch); |
| 552 | return StmtError(); |
| 553 | } |
| 554 | |
| 555 | if (LHSVal.isInvalid() || RHSVal.isInvalid()) { |
| 556 | getCurFunction()->SwitchStack.back().setInt(true); |
| 557 | return StmtError(); |
| 558 | } |
| 559 | |
| 560 | if (LangOpts.OpenACC && |
| 561 | getCurScope()->isInOpenACCComputeConstructScope(Flags: Scope::SwitchScope)) { |
| 562 | Diag(Loc: CaseLoc, DiagID: diag::err_acc_branch_in_out_compute_construct) |
| 563 | << /*branch*/ 0 << /*into*/ 1; |
| 564 | return StmtError(); |
| 565 | } |
| 566 | |
| 567 | auto *CS = CaseStmt::Create(Ctx: Context, lhs: LHSVal.get(), rhs: RHSVal.get(), |
| 568 | caseLoc: CaseLoc, ellipsisLoc: DotDotDotLoc, colonLoc: ColonLoc); |
| 569 | getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(SC: CS); |
| 570 | return CS; |
| 571 | } |
| 572 | |
| 573 | void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) { |
| 574 | cast<CaseStmt>(Val: S)->setSubStmt(SubStmt); |
| 575 | } |
| 576 | |
| 577 | StmtResult |
| 578 | Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, |
| 579 | Stmt *SubStmt, Scope *CurScope) { |
| 580 | if (getCurFunction()->SwitchStack.empty()) { |
| 581 | Diag(Loc: DefaultLoc, DiagID: diag::err_default_not_in_switch); |
| 582 | return SubStmt; |
| 583 | } |
| 584 | |
| 585 | if (LangOpts.OpenACC && |
| 586 | getCurScope()->isInOpenACCComputeConstructScope(Flags: Scope::SwitchScope)) { |
| 587 | Diag(Loc: DefaultLoc, DiagID: diag::err_acc_branch_in_out_compute_construct) |
| 588 | << /*branch*/ 0 << /*into*/ 1; |
| 589 | return StmtError(); |
| 590 | } |
| 591 | |
| 592 | DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt); |
| 593 | getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(SC: DS); |
| 594 | return DS; |
| 595 | } |
| 596 | |
| 597 | StmtResult |
| 598 | Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, |
| 599 | SourceLocation ColonLoc, Stmt *SubStmt) { |
| 600 | // If the label was multiply defined, reject it now. |
| 601 | if (TheDecl->getStmt()) { |
| 602 | Diag(Loc: IdentLoc, DiagID: diag::err_redefinition_of_label) << TheDecl->getDeclName(); |
| 603 | Diag(Loc: TheDecl->getLocation(), DiagID: diag::note_previous_definition); |
| 604 | return SubStmt; |
| 605 | } |
| 606 | |
| 607 | ReservedIdentifierStatus Status = TheDecl->isReserved(LangOpts: getLangOpts()); |
| 608 | if (isReservedInAllContexts(Status) && |
| 609 | !Context.getSourceManager().isInSystemHeader(Loc: IdentLoc)) |
| 610 | Diag(Loc: IdentLoc, DiagID: diag::warn_reserved_extern_symbol) |
| 611 | << TheDecl << static_cast<int>(Status); |
| 612 | |
| 613 | // If this label is in a compute construct scope, we need to make sure we |
| 614 | // check gotos in/out. |
| 615 | if (getCurScope()->isInOpenACCComputeConstructScope()) |
| 616 | setFunctionHasBranchProtectedScope(); |
| 617 | |
| 618 | // OpenACC3.3 2.14.4: |
| 619 | // The update directive is executable. It must not appear in place of the |
| 620 | // statement following an 'if', 'while', 'do', 'switch', or 'label' in C or |
| 621 | // C++. |
| 622 | if (isa<OpenACCUpdateConstruct>(Val: SubStmt)) { |
| 623 | Diag(Loc: SubStmt->getBeginLoc(), DiagID: diag::err_acc_update_as_body) << /*Label*/ 4; |
| 624 | SubStmt = new (Context) NullStmt(SubStmt->getBeginLoc()); |
| 625 | } |
| 626 | |
| 627 | // Otherwise, things are good. Fill in the declaration and return it. |
| 628 | LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt); |
| 629 | TheDecl->setStmt(LS); |
| 630 | if (!TheDecl->isGnuLocal()) { |
| 631 | TheDecl->setLocStart(IdentLoc); |
| 632 | if (!TheDecl->isMSAsmLabel()) { |
| 633 | // Don't update the location of MS ASM labels. These will result in |
| 634 | // a diagnostic, and changing the location here will mess that up. |
| 635 | TheDecl->setLocation(IdentLoc); |
| 636 | } |
| 637 | } |
| 638 | return LS; |
| 639 | } |
| 640 | |
| 641 | StmtResult Sema::BuildAttributedStmt(SourceLocation AttrsLoc, |
| 642 | ArrayRef<const Attr *> Attrs, |
| 643 | Stmt *SubStmt) { |
| 644 | // FIXME: this code should move when a planned refactoring around statement |
| 645 | // attributes lands. |
| 646 | for (const auto *A : Attrs) { |
| 647 | if (A->getKind() == attr::MustTail) { |
| 648 | if (!checkAndRewriteMustTailAttr(St: SubStmt, MTA: *A)) { |
| 649 | return SubStmt; |
| 650 | } |
| 651 | setFunctionHasMustTail(); |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | return AttributedStmt::Create(C: Context, Loc: AttrsLoc, Attrs, SubStmt); |
| 656 | } |
| 657 | |
| 658 | StmtResult Sema::ActOnAttributedStmt(const ParsedAttributes &Attrs, |
| 659 | Stmt *SubStmt) { |
| 660 | SmallVector<const Attr *, 1> SemanticAttrs; |
| 661 | ProcessStmtAttributes(Stmt: SubStmt, InAttrs: Attrs, OutAttrs&: SemanticAttrs); |
| 662 | if (!SemanticAttrs.empty()) |
| 663 | return BuildAttributedStmt(AttrsLoc: Attrs.Range.getBegin(), Attrs: SemanticAttrs, SubStmt); |
| 664 | // If none of the attributes applied, that's fine, we can recover by |
| 665 | // returning the substatement directly instead of making an AttributedStmt |
| 666 | // with no attributes on it. |
| 667 | return SubStmt; |
| 668 | } |
| 669 | |
| 670 | bool Sema::checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA) { |
| 671 | ReturnStmt *R = cast<ReturnStmt>(Val: St); |
| 672 | Expr *E = R->getRetValue(); |
| 673 | |
| 674 | if (CurContext->isDependentContext() || (E && E->isInstantiationDependent())) |
| 675 | // We have to suspend our check until template instantiation time. |
| 676 | return true; |
| 677 | |
| 678 | if (!checkMustTailAttr(St, MTA)) |
| 679 | return false; |
| 680 | |
| 681 | // FIXME: Replace Expr::IgnoreImplicitAsWritten() with this function. |
| 682 | // Currently it does not skip implicit constructors in an initialization |
| 683 | // context. |
| 684 | auto IgnoreImplicitAsWritten = [](Expr *E) -> Expr * { |
| 685 | return IgnoreExprNodes(E, Fns&: IgnoreImplicitAsWrittenSingleStep, |
| 686 | Fns&: IgnoreElidableImplicitConstructorSingleStep); |
| 687 | }; |
| 688 | |
| 689 | // Now that we have verified that 'musttail' is valid here, rewrite the |
| 690 | // return value to remove all implicit nodes, but retain parentheses. |
| 691 | R->setRetValue(IgnoreImplicitAsWritten(E)); |
| 692 | return true; |
| 693 | } |
| 694 | |
| 695 | bool Sema::checkMustTailAttr(const Stmt *St, const Attr &MTA) { |
| 696 | assert(!CurContext->isDependentContext() && |
| 697 | "musttail cannot be checked from a dependent context" ); |
| 698 | |
| 699 | // FIXME: Add Expr::IgnoreParenImplicitAsWritten() with this definition. |
| 700 | auto IgnoreParenImplicitAsWritten = [](const Expr *E) -> const Expr * { |
| 701 | return IgnoreExprNodes(E: const_cast<Expr *>(E), Fns&: IgnoreParensSingleStep, |
| 702 | Fns&: IgnoreImplicitAsWrittenSingleStep, |
| 703 | Fns&: IgnoreElidableImplicitConstructorSingleStep); |
| 704 | }; |
| 705 | |
| 706 | const Expr *E = cast<ReturnStmt>(Val: St)->getRetValue(); |
| 707 | const auto *CE = dyn_cast_or_null<CallExpr>(Val: IgnoreParenImplicitAsWritten(E)); |
| 708 | |
| 709 | if (!CE) { |
| 710 | Diag(Loc: St->getBeginLoc(), DiagID: diag::err_musttail_needs_call) << &MTA; |
| 711 | return false; |
| 712 | } |
| 713 | |
| 714 | if (const FunctionDecl *CalleeDecl = CE->getDirectCallee(); |
| 715 | CalleeDecl && CalleeDecl->hasAttr<NotTailCalledAttr>()) { |
| 716 | Diag(Loc: St->getBeginLoc(), DiagID: diag::err_musttail_mismatch) << /*show-function-callee=*/true << CalleeDecl; |
| 717 | Diag(Loc: CalleeDecl->getLocation(), DiagID: diag::note_musttail_disabled_by_not_tail_called); |
| 718 | return false; |
| 719 | } |
| 720 | |
| 721 | if (const auto *EWC = dyn_cast<ExprWithCleanups>(Val: E)) { |
| 722 | if (EWC->cleanupsHaveSideEffects()) { |
| 723 | Diag(Loc: St->getBeginLoc(), DiagID: diag::err_musttail_needs_trivial_args) << &MTA; |
| 724 | return false; |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | // We need to determine the full function type (including "this" type, if any) |
| 729 | // for both caller and callee. |
| 730 | struct FuncType { |
| 731 | enum { |
| 732 | ft_non_member, |
| 733 | ft_static_member, |
| 734 | ft_non_static_member, |
| 735 | ft_pointer_to_member, |
| 736 | } MemberType = ft_non_member; |
| 737 | |
| 738 | QualType This; |
| 739 | const FunctionProtoType *Func; |
| 740 | const CXXMethodDecl *Method = nullptr; |
| 741 | } CallerType, CalleeType; |
| 742 | |
| 743 | auto GetMethodType = [this, St, MTA](const CXXMethodDecl *CMD, FuncType &Type, |
| 744 | bool IsCallee) -> bool { |
| 745 | if (isa<CXXConstructorDecl, CXXDestructorDecl>(Val: CMD)) { |
| 746 | Diag(Loc: St->getBeginLoc(), DiagID: diag::err_musttail_structors_forbidden) |
| 747 | << IsCallee << isa<CXXDestructorDecl>(Val: CMD); |
| 748 | if (IsCallee) |
| 749 | Diag(Loc: CMD->getBeginLoc(), DiagID: diag::note_musttail_structors_forbidden) |
| 750 | << isa<CXXDestructorDecl>(Val: CMD); |
| 751 | Diag(Loc: MTA.getLocation(), DiagID: diag::note_tail_call_required) << &MTA; |
| 752 | return false; |
| 753 | } |
| 754 | if (CMD->isStatic()) |
| 755 | Type.MemberType = FuncType::ft_static_member; |
| 756 | else { |
| 757 | Type.This = CMD->getFunctionObjectParameterType(); |
| 758 | Type.MemberType = FuncType::ft_non_static_member; |
| 759 | } |
| 760 | Type.Func = CMD->getType()->castAs<FunctionProtoType>(); |
| 761 | return true; |
| 762 | }; |
| 763 | |
| 764 | const auto *CallerDecl = dyn_cast<FunctionDecl>(Val: CurContext); |
| 765 | |
| 766 | // Find caller function signature. |
| 767 | if (!CallerDecl) { |
| 768 | int ContextType; |
| 769 | if (isa<BlockDecl>(Val: CurContext)) |
| 770 | ContextType = 0; |
| 771 | else if (isa<ObjCMethodDecl>(Val: CurContext)) |
| 772 | ContextType = 1; |
| 773 | else |
| 774 | ContextType = 2; |
| 775 | Diag(Loc: St->getBeginLoc(), DiagID: diag::err_musttail_forbidden_from_this_context) |
| 776 | << &MTA << ContextType; |
| 777 | return false; |
| 778 | } else if (const auto *CMD = dyn_cast<CXXMethodDecl>(Val: CurContext)) { |
| 779 | // Caller is a class/struct method. |
| 780 | if (!GetMethodType(CMD, CallerType, false)) |
| 781 | return false; |
| 782 | } else { |
| 783 | // Caller is a non-method function. |
| 784 | CallerType.Func = CallerDecl->getType()->getAs<FunctionProtoType>(); |
| 785 | } |
| 786 | |
| 787 | const Expr *CalleeExpr = CE->getCallee()->IgnoreParens(); |
| 788 | const auto *CalleeBinOp = dyn_cast<BinaryOperator>(Val: CalleeExpr); |
| 789 | SourceLocation CalleeLoc = CE->getCalleeDecl() |
| 790 | ? CE->getCalleeDecl()->getBeginLoc() |
| 791 | : St->getBeginLoc(); |
| 792 | |
| 793 | // Find callee function signature. |
| 794 | if (const CXXMethodDecl *CMD = |
| 795 | dyn_cast_or_null<CXXMethodDecl>(Val: CE->getCalleeDecl())) { |
| 796 | // Call is: obj.method(), obj->method(), functor(), etc. |
| 797 | if (!GetMethodType(CMD, CalleeType, true)) |
| 798 | return false; |
| 799 | } else if (CalleeBinOp && CalleeBinOp->isPtrMemOp()) { |
| 800 | // Call is: obj->*method_ptr or obj.*method_ptr |
| 801 | const auto *MPT = |
| 802 | CalleeBinOp->getRHS()->getType()->castAs<MemberPointerType>(); |
| 803 | CalleeType.This = |
| 804 | Context.getTypeDeclType(Decl: MPT->getMostRecentCXXRecordDecl()); |
| 805 | CalleeType.Func = MPT->getPointeeType()->castAs<FunctionProtoType>(); |
| 806 | CalleeType.MemberType = FuncType::ft_pointer_to_member; |
| 807 | } else if (isa<CXXPseudoDestructorExpr>(Val: CalleeExpr)) { |
| 808 | Diag(Loc: St->getBeginLoc(), DiagID: diag::err_musttail_structors_forbidden) |
| 809 | << /* IsCallee = */ 1 << /* IsDestructor = */ 1; |
| 810 | Diag(Loc: MTA.getLocation(), DiagID: diag::note_tail_call_required) << &MTA; |
| 811 | return false; |
| 812 | } else { |
| 813 | // Non-method function. |
| 814 | CalleeType.Func = |
| 815 | CalleeExpr->getType()->getPointeeType()->getAs<FunctionProtoType>(); |
| 816 | } |
| 817 | |
| 818 | // Both caller and callee must have a prototype (no K&R declarations). |
| 819 | if (!CalleeType.Func || !CallerType.Func) { |
| 820 | Diag(Loc: St->getBeginLoc(), DiagID: diag::err_musttail_needs_prototype) << &MTA; |
| 821 | if (!CalleeType.Func && CE->getDirectCallee()) { |
| 822 | Diag(Loc: CE->getDirectCallee()->getBeginLoc(), |
| 823 | DiagID: diag::note_musttail_fix_non_prototype); |
| 824 | } |
| 825 | if (!CallerType.Func) |
| 826 | Diag(Loc: CallerDecl->getBeginLoc(), DiagID: diag::note_musttail_fix_non_prototype); |
| 827 | return false; |
| 828 | } |
| 829 | |
| 830 | // Caller and callee must have matching calling conventions. |
| 831 | // |
| 832 | // Some calling conventions are physically capable of supporting tail calls |
| 833 | // even if the function types don't perfectly match. LLVM is currently too |
| 834 | // strict to allow this, but if LLVM added support for this in the future, we |
| 835 | // could exit early here and skip the remaining checks if the functions are |
| 836 | // using such a calling convention. |
| 837 | if (CallerType.Func->getCallConv() != CalleeType.Func->getCallConv()) { |
| 838 | if (const auto *ND = dyn_cast_or_null<NamedDecl>(Val: CE->getCalleeDecl())) |
| 839 | Diag(Loc: St->getBeginLoc(), DiagID: diag::err_musttail_callconv_mismatch) |
| 840 | << true << ND->getDeclName(); |
| 841 | else |
| 842 | Diag(Loc: St->getBeginLoc(), DiagID: diag::err_musttail_callconv_mismatch) << false; |
| 843 | Diag(Loc: CalleeLoc, DiagID: diag::note_musttail_callconv_mismatch) |
| 844 | << FunctionType::getNameForCallConv(CC: CallerType.Func->getCallConv()) |
| 845 | << FunctionType::getNameForCallConv(CC: CalleeType.Func->getCallConv()); |
| 846 | Diag(Loc: MTA.getLocation(), DiagID: diag::note_tail_call_required) << &MTA; |
| 847 | return false; |
| 848 | } |
| 849 | |
| 850 | if (CalleeType.Func->isVariadic() || CallerType.Func->isVariadic()) { |
| 851 | Diag(Loc: St->getBeginLoc(), DiagID: diag::err_musttail_no_variadic) << &MTA; |
| 852 | return false; |
| 853 | } |
| 854 | |
| 855 | const auto *CalleeDecl = CE->getCalleeDecl(); |
| 856 | if (CalleeDecl && CalleeDecl->hasAttr<CXX11NoReturnAttr>()) { |
| 857 | Diag(Loc: St->getBeginLoc(), DiagID: diag::err_musttail_no_return) << &MTA; |
| 858 | return false; |
| 859 | } |
| 860 | |
| 861 | // Caller and callee must match in whether they have a "this" parameter. |
| 862 | if (CallerType.This.isNull() != CalleeType.This.isNull()) { |
| 863 | if (const auto *ND = dyn_cast_or_null<NamedDecl>(Val: CE->getCalleeDecl())) { |
| 864 | Diag(Loc: St->getBeginLoc(), DiagID: diag::err_musttail_member_mismatch) |
| 865 | << CallerType.MemberType << CalleeType.MemberType << true |
| 866 | << ND->getDeclName(); |
| 867 | Diag(Loc: CalleeLoc, DiagID: diag::note_musttail_callee_defined_here) |
| 868 | << ND->getDeclName(); |
| 869 | } else |
| 870 | Diag(Loc: St->getBeginLoc(), DiagID: diag::err_musttail_member_mismatch) |
| 871 | << CallerType.MemberType << CalleeType.MemberType << false; |
| 872 | Diag(Loc: MTA.getLocation(), DiagID: diag::note_tail_call_required) << &MTA; |
| 873 | return false; |
| 874 | } |
| 875 | |
| 876 | auto CheckTypesMatch = [this](FuncType CallerType, FuncType CalleeType, |
| 877 | PartialDiagnostic &PD) -> bool { |
| 878 | enum { |
| 879 | ft_different_class, |
| 880 | ft_parameter_arity, |
| 881 | ft_parameter_mismatch, |
| 882 | ft_return_type, |
| 883 | }; |
| 884 | |
| 885 | auto DoTypesMatch = [this, &PD](QualType A, QualType B, |
| 886 | unsigned Select) -> bool { |
| 887 | if (!Context.hasSimilarType(T1: A, T2: B)) { |
| 888 | PD << Select << A.getUnqualifiedType() << B.getUnqualifiedType(); |
| 889 | return false; |
| 890 | } |
| 891 | return true; |
| 892 | }; |
| 893 | |
| 894 | if (!CallerType.This.isNull() && |
| 895 | !DoTypesMatch(CallerType.This, CalleeType.This, ft_different_class)) |
| 896 | return false; |
| 897 | |
| 898 | if (!DoTypesMatch(CallerType.Func->getReturnType(), |
| 899 | CalleeType.Func->getReturnType(), ft_return_type)) |
| 900 | return false; |
| 901 | |
| 902 | if (CallerType.Func->getNumParams() != CalleeType.Func->getNumParams()) { |
| 903 | PD << ft_parameter_arity << CallerType.Func->getNumParams() |
| 904 | << CalleeType.Func->getNumParams(); |
| 905 | return false; |
| 906 | } |
| 907 | |
| 908 | ArrayRef<QualType> CalleeParams = CalleeType.Func->getParamTypes(); |
| 909 | ArrayRef<QualType> CallerParams = CallerType.Func->getParamTypes(); |
| 910 | size_t N = CallerType.Func->getNumParams(); |
| 911 | for (size_t I = 0; I < N; I++) { |
| 912 | if (!DoTypesMatch(CalleeParams[I], CallerParams[I], |
| 913 | ft_parameter_mismatch)) { |
| 914 | PD << static_cast<int>(I) + 1; |
| 915 | return false; |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | return true; |
| 920 | }; |
| 921 | |
| 922 | PartialDiagnostic PD = PDiag(DiagID: diag::note_musttail_mismatch); |
| 923 | if (!CheckTypesMatch(CallerType, CalleeType, PD)) { |
| 924 | if (const auto *ND = dyn_cast_or_null<NamedDecl>(Val: CE->getCalleeDecl())) |
| 925 | Diag(Loc: St->getBeginLoc(), DiagID: diag::err_musttail_mismatch) |
| 926 | << true << ND->getDeclName(); |
| 927 | else |
| 928 | Diag(Loc: St->getBeginLoc(), DiagID: diag::err_musttail_mismatch) << false; |
| 929 | Diag(Loc: CalleeLoc, PD); |
| 930 | Diag(Loc: MTA.getLocation(), DiagID: diag::note_tail_call_required) << &MTA; |
| 931 | return false; |
| 932 | } |
| 933 | |
| 934 | // The lifetimes of locals and incoming function parameters must end before |
| 935 | // the call, because we can't have a stack frame to store them, so diagnose |
| 936 | // any pointers or references to them passed into the musttail call. |
| 937 | for (auto ArgExpr : CE->arguments()) { |
| 938 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
| 939 | Context, Type: ArgExpr->getType(), Consumed: false); |
| 940 | checkExprLifetimeMustTailArg(SemaRef&: *this, Entity, Init: const_cast<Expr *>(ArgExpr)); |
| 941 | } |
| 942 | |
| 943 | return true; |
| 944 | } |
| 945 | |
| 946 | namespace { |
| 947 | class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> { |
| 948 | typedef EvaluatedExprVisitor<CommaVisitor> Inherited; |
| 949 | Sema &SemaRef; |
| 950 | public: |
| 951 | CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {} |
| 952 | void VisitBinaryOperator(BinaryOperator *E) { |
| 953 | if (E->getOpcode() == BO_Comma) |
| 954 | SemaRef.DiagnoseCommaOperator(LHS: E->getLHS(), Loc: E->getExprLoc()); |
| 955 | EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(S: E); |
| 956 | } |
| 957 | }; |
| 958 | } |
| 959 | |
| 960 | StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc, |
| 961 | IfStatementKind StatementKind, |
| 962 | SourceLocation LParenLoc, Stmt *InitStmt, |
| 963 | ConditionResult Cond, SourceLocation RParenLoc, |
| 964 | Stmt *thenStmt, SourceLocation ElseLoc, |
| 965 | Stmt *elseStmt) { |
| 966 | if (Cond.isInvalid()) |
| 967 | return StmtError(); |
| 968 | |
| 969 | bool ConstevalOrNegatedConsteval = |
| 970 | StatementKind == IfStatementKind::ConstevalNonNegated || |
| 971 | StatementKind == IfStatementKind::ConstevalNegated; |
| 972 | |
| 973 | Expr *CondExpr = Cond.get().second; |
| 974 | assert((CondExpr || ConstevalOrNegatedConsteval) && |
| 975 | "If statement: missing condition" ); |
| 976 | // Only call the CommaVisitor when not C89 due to differences in scope flags. |
| 977 | if (CondExpr && (getLangOpts().C99 || getLangOpts().CPlusPlus) && |
| 978 | !Diags.isIgnored(DiagID: diag::warn_comma_operator, Loc: CondExpr->getExprLoc())) |
| 979 | CommaVisitor(*this).Visit(S: CondExpr); |
| 980 | |
| 981 | if (!ConstevalOrNegatedConsteval && !elseStmt) |
| 982 | DiagnoseEmptyStmtBody(StmtLoc: RParenLoc, Body: thenStmt, DiagID: diag::warn_empty_if_body); |
| 983 | |
| 984 | if (ConstevalOrNegatedConsteval || |
| 985 | StatementKind == IfStatementKind::Constexpr) { |
| 986 | auto DiagnoseLikelihood = [&](const Stmt *S) { |
| 987 | if (const Attr *A = Stmt::getLikelihoodAttr(S)) { |
| 988 | Diags.Report(Loc: A->getLocation(), |
| 989 | DiagID: diag::warn_attribute_has_no_effect_on_compile_time_if) |
| 990 | << A << ConstevalOrNegatedConsteval << A->getRange(); |
| 991 | Diags.Report(Loc: IfLoc, |
| 992 | DiagID: diag::note_attribute_has_no_effect_on_compile_time_if_here) |
| 993 | << ConstevalOrNegatedConsteval |
| 994 | << SourceRange(IfLoc, (ConstevalOrNegatedConsteval |
| 995 | ? thenStmt->getBeginLoc() |
| 996 | : LParenLoc) |
| 997 | .getLocWithOffset(Offset: -1)); |
| 998 | } |
| 999 | }; |
| 1000 | DiagnoseLikelihood(thenStmt); |
| 1001 | DiagnoseLikelihood(elseStmt); |
| 1002 | } else { |
| 1003 | std::tuple<bool, const Attr *, const Attr *> LHC = |
| 1004 | Stmt::determineLikelihoodConflict(Then: thenStmt, Else: elseStmt); |
| 1005 | if (std::get<0>(t&: LHC)) { |
| 1006 | const Attr *ThenAttr = std::get<1>(t&: LHC); |
| 1007 | const Attr *ElseAttr = std::get<2>(t&: LHC); |
| 1008 | Diags.Report(Loc: ThenAttr->getLocation(), |
| 1009 | DiagID: diag::warn_attributes_likelihood_ifstmt_conflict) |
| 1010 | << ThenAttr << ThenAttr->getRange(); |
| 1011 | Diags.Report(Loc: ElseAttr->getLocation(), DiagID: diag::note_conflicting_attribute) |
| 1012 | << ElseAttr << ElseAttr->getRange(); |
| 1013 | } |
| 1014 | } |
| 1015 | |
| 1016 | if (ConstevalOrNegatedConsteval) { |
| 1017 | bool Immediate = ExprEvalContexts.back().Context == |
| 1018 | ExpressionEvaluationContext::ImmediateFunctionContext; |
| 1019 | if (CurContext->isFunctionOrMethod()) { |
| 1020 | const auto *FD = |
| 1021 | dyn_cast<FunctionDecl>(Val: Decl::castFromDeclContext(CurContext)); |
| 1022 | if (FD && FD->isImmediateFunction()) |
| 1023 | Immediate = true; |
| 1024 | } |
| 1025 | if (isUnevaluatedContext() || Immediate) |
| 1026 | Diags.Report(Loc: IfLoc, DiagID: diag::warn_consteval_if_always_true) << Immediate; |
| 1027 | } |
| 1028 | |
| 1029 | // OpenACC3.3 2.14.4: |
| 1030 | // The update directive is executable. It must not appear in place of the |
| 1031 | // statement following an 'if', 'while', 'do', 'switch', or 'label' in C or |
| 1032 | // C++. |
| 1033 | if (isa<OpenACCUpdateConstruct>(Val: thenStmt)) { |
| 1034 | Diag(Loc: thenStmt->getBeginLoc(), DiagID: diag::err_acc_update_as_body) << /*if*/ 0; |
| 1035 | thenStmt = new (Context) NullStmt(thenStmt->getBeginLoc()); |
| 1036 | } |
| 1037 | |
| 1038 | return BuildIfStmt(IfLoc, StatementKind, LParenLoc, InitStmt, Cond, RParenLoc, |
| 1039 | ThenVal: thenStmt, ElseLoc, ElseVal: elseStmt); |
| 1040 | } |
| 1041 | |
| 1042 | StmtResult Sema::BuildIfStmt(SourceLocation IfLoc, |
| 1043 | IfStatementKind StatementKind, |
| 1044 | SourceLocation LParenLoc, Stmt *InitStmt, |
| 1045 | ConditionResult Cond, SourceLocation RParenLoc, |
| 1046 | Stmt *thenStmt, SourceLocation ElseLoc, |
| 1047 | Stmt *elseStmt) { |
| 1048 | if (Cond.isInvalid()) |
| 1049 | return StmtError(); |
| 1050 | |
| 1051 | if (StatementKind != IfStatementKind::Ordinary || |
| 1052 | isa<ObjCAvailabilityCheckExpr>(Val: Cond.get().second)) |
| 1053 | setFunctionHasBranchProtectedScope(); |
| 1054 | |
| 1055 | return IfStmt::Create(Ctx: Context, IL: IfLoc, Kind: StatementKind, Init: InitStmt, |
| 1056 | Var: Cond.get().first, Cond: Cond.get().second, LPL: LParenLoc, |
| 1057 | RPL: RParenLoc, Then: thenStmt, EL: ElseLoc, Else: elseStmt); |
| 1058 | } |
| 1059 | |
| 1060 | namespace { |
| 1061 | struct CaseCompareFunctor { |
| 1062 | bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, |
| 1063 | const llvm::APSInt &RHS) { |
| 1064 | return LHS.first < RHS; |
| 1065 | } |
| 1066 | bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, |
| 1067 | const std::pair<llvm::APSInt, CaseStmt*> &RHS) { |
| 1068 | return LHS.first < RHS.first; |
| 1069 | } |
| 1070 | bool operator()(const llvm::APSInt &LHS, |
| 1071 | const std::pair<llvm::APSInt, CaseStmt*> &RHS) { |
| 1072 | return LHS < RHS.first; |
| 1073 | } |
| 1074 | }; |
| 1075 | } |
| 1076 | |
| 1077 | /// CmpCaseVals - Comparison predicate for sorting case values. |
| 1078 | /// |
| 1079 | static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs, |
| 1080 | const std::pair<llvm::APSInt, CaseStmt*>& rhs) { |
| 1081 | if (lhs.first < rhs.first) |
| 1082 | return true; |
| 1083 | |
| 1084 | if (lhs.first == rhs.first && |
| 1085 | lhs.second->getCaseLoc() < rhs.second->getCaseLoc()) |
| 1086 | return true; |
| 1087 | return false; |
| 1088 | } |
| 1089 | |
| 1090 | /// CmpEnumVals - Comparison predicate for sorting enumeration values. |
| 1091 | /// |
| 1092 | static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, |
| 1093 | const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) |
| 1094 | { |
| 1095 | return lhs.first < rhs.first; |
| 1096 | } |
| 1097 | |
| 1098 | /// EqEnumVals - Comparison preficate for uniqing enumeration values. |
| 1099 | /// |
| 1100 | static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, |
| 1101 | const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) |
| 1102 | { |
| 1103 | return lhs.first == rhs.first; |
| 1104 | } |
| 1105 | |
| 1106 | /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of |
| 1107 | /// potentially integral-promoted expression @p expr. |
| 1108 | static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) { |
| 1109 | if (const auto *FE = dyn_cast<FullExpr>(Val: E)) |
| 1110 | E = FE->getSubExpr(); |
| 1111 | while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(Val: E)) { |
| 1112 | if (ImpCast->getCastKind() != CK_IntegralCast) break; |
| 1113 | E = ImpCast->getSubExpr(); |
| 1114 | } |
| 1115 | return E->getType(); |
| 1116 | } |
| 1117 | |
| 1118 | ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) { |
| 1119 | class SwitchConvertDiagnoser : public ICEConvertDiagnoser { |
| 1120 | Expr *Cond; |
| 1121 | |
| 1122 | public: |
| 1123 | SwitchConvertDiagnoser(Expr *Cond) |
| 1124 | : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true), |
| 1125 | Cond(Cond) {} |
| 1126 | |
| 1127 | SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, |
| 1128 | QualType T) override { |
| 1129 | return S.Diag(Loc, DiagID: diag::err_typecheck_statement_requires_integer) << T; |
| 1130 | } |
| 1131 | |
| 1132 | SemaDiagnosticBuilder diagnoseIncomplete( |
| 1133 | Sema &S, SourceLocation Loc, QualType T) override { |
| 1134 | return S.Diag(Loc, DiagID: diag::err_switch_incomplete_class_type) |
| 1135 | << T << Cond->getSourceRange(); |
| 1136 | } |
| 1137 | |
| 1138 | SemaDiagnosticBuilder diagnoseExplicitConv( |
| 1139 | Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { |
| 1140 | return S.Diag(Loc, DiagID: diag::err_switch_explicit_conversion) << T << ConvTy; |
| 1141 | } |
| 1142 | |
| 1143 | SemaDiagnosticBuilder noteExplicitConv( |
| 1144 | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { |
| 1145 | return S.Diag(Loc: Conv->getLocation(), DiagID: diag::note_switch_conversion) |
| 1146 | << ConvTy->isEnumeralType() << ConvTy; |
| 1147 | } |
| 1148 | |
| 1149 | SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, |
| 1150 | QualType T) override { |
| 1151 | return S.Diag(Loc, DiagID: diag::err_switch_multiple_conversions) << T; |
| 1152 | } |
| 1153 | |
| 1154 | SemaDiagnosticBuilder noteAmbiguous( |
| 1155 | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { |
| 1156 | return S.Diag(Loc: Conv->getLocation(), DiagID: diag::note_switch_conversion) |
| 1157 | << ConvTy->isEnumeralType() << ConvTy; |
| 1158 | } |
| 1159 | |
| 1160 | SemaDiagnosticBuilder diagnoseConversion( |
| 1161 | Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { |
| 1162 | llvm_unreachable("conversion functions are permitted" ); |
| 1163 | } |
| 1164 | } SwitchDiagnoser(Cond); |
| 1165 | |
| 1166 | ExprResult CondResult = |
| 1167 | PerformContextualImplicitConversion(Loc: SwitchLoc, FromE: Cond, Converter&: SwitchDiagnoser); |
| 1168 | if (CondResult.isInvalid()) |
| 1169 | return ExprError(); |
| 1170 | |
| 1171 | // FIXME: PerformContextualImplicitConversion doesn't always tell us if it |
| 1172 | // failed and produced a diagnostic. |
| 1173 | Cond = CondResult.get(); |
| 1174 | if (!Cond->isTypeDependent() && |
| 1175 | !Cond->getType()->isIntegralOrEnumerationType()) |
| 1176 | return ExprError(); |
| 1177 | |
| 1178 | // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. |
| 1179 | return UsualUnaryConversions(E: Cond); |
| 1180 | } |
| 1181 | |
| 1182 | StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, |
| 1183 | SourceLocation LParenLoc, |
| 1184 | Stmt *InitStmt, ConditionResult Cond, |
| 1185 | SourceLocation RParenLoc) { |
| 1186 | Expr *CondExpr = Cond.get().second; |
| 1187 | assert((Cond.isInvalid() || CondExpr) && "switch with no condition" ); |
| 1188 | |
| 1189 | if (CondExpr && !CondExpr->isTypeDependent()) { |
| 1190 | // We have already converted the expression to an integral or enumeration |
| 1191 | // type, when we parsed the switch condition. There are cases where we don't |
| 1192 | // have an appropriate type, e.g. a typo-expr Cond was corrected to an |
| 1193 | // inappropriate-type expr, we just return an error. |
| 1194 | if (!CondExpr->getType()->isIntegralOrEnumerationType()) |
| 1195 | return StmtError(); |
| 1196 | if (CondExpr->isKnownToHaveBooleanValue()) { |
| 1197 | // switch(bool_expr) {...} is often a programmer error, e.g. |
| 1198 | // switch(n && mask) { ... } // Doh - should be "n & mask". |
| 1199 | // One can always use an if statement instead of switch(bool_expr). |
| 1200 | Diag(Loc: SwitchLoc, DiagID: diag::warn_bool_switch_condition) |
| 1201 | << CondExpr->getSourceRange(); |
| 1202 | } |
| 1203 | } |
| 1204 | |
| 1205 | setFunctionHasBranchIntoScope(); |
| 1206 | |
| 1207 | auto *SS = SwitchStmt::Create(Ctx: Context, Init: InitStmt, Var: Cond.get().first, Cond: CondExpr, |
| 1208 | LParenLoc, RParenLoc); |
| 1209 | getCurFunction()->SwitchStack.push_back( |
| 1210 | Elt: FunctionScopeInfo::SwitchInfo(SS, false)); |
| 1211 | return SS; |
| 1212 | } |
| 1213 | |
| 1214 | static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) { |
| 1215 | Val = Val.extOrTrunc(width: BitWidth); |
| 1216 | Val.setIsSigned(IsSigned); |
| 1217 | } |
| 1218 | |
| 1219 | /// Check the specified case value is in range for the given unpromoted switch |
| 1220 | /// type. |
| 1221 | static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val, |
| 1222 | unsigned UnpromotedWidth, bool UnpromotedSign) { |
| 1223 | // In C++11 onwards, this is checked by the language rules. |
| 1224 | if (S.getLangOpts().CPlusPlus11) |
| 1225 | return; |
| 1226 | |
| 1227 | // If the case value was signed and negative and the switch expression is |
| 1228 | // unsigned, don't bother to warn: this is implementation-defined behavior. |
| 1229 | // FIXME: Introduce a second, default-ignored warning for this case? |
| 1230 | if (UnpromotedWidth < Val.getBitWidth()) { |
| 1231 | llvm::APSInt ConvVal(Val); |
| 1232 | AdjustAPSInt(Val&: ConvVal, BitWidth: UnpromotedWidth, IsSigned: UnpromotedSign); |
| 1233 | AdjustAPSInt(Val&: ConvVal, BitWidth: Val.getBitWidth(), IsSigned: Val.isSigned()); |
| 1234 | // FIXME: Use different diagnostics for overflow in conversion to promoted |
| 1235 | // type versus "switch expression cannot have this value". Use proper |
| 1236 | // IntRange checking rather than just looking at the unpromoted type here. |
| 1237 | if (ConvVal != Val) |
| 1238 | S.Diag(Loc, DiagID: diag::warn_case_value_overflow) << toString(I: Val, Radix: 10) |
| 1239 | << toString(I: ConvVal, Radix: 10); |
| 1240 | } |
| 1241 | } |
| 1242 | |
| 1243 | typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy; |
| 1244 | |
| 1245 | /// Returns true if we should emit a diagnostic about this case expression not |
| 1246 | /// being a part of the enum used in the switch controlling expression. |
| 1247 | static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S, |
| 1248 | const EnumDecl *ED, |
| 1249 | const Expr *CaseExpr, |
| 1250 | EnumValsTy::iterator &EI, |
| 1251 | EnumValsTy::iterator &EIEnd, |
| 1252 | const llvm::APSInt &Val) { |
| 1253 | if (!ED->isClosed()) |
| 1254 | return false; |
| 1255 | |
| 1256 | if (const DeclRefExpr *DRE = |
| 1257 | dyn_cast<DeclRefExpr>(Val: CaseExpr->IgnoreParenImpCasts())) { |
| 1258 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: DRE->getDecl())) { |
| 1259 | QualType VarType = VD->getType(); |
| 1260 | QualType EnumType = S.Context.getTypeDeclType(Decl: ED); |
| 1261 | if (VD->hasGlobalStorage() && VarType.isConstQualified() && |
| 1262 | S.Context.hasSameUnqualifiedType(T1: EnumType, T2: VarType)) |
| 1263 | return false; |
| 1264 | } |
| 1265 | } |
| 1266 | |
| 1267 | if (ED->hasAttr<FlagEnumAttr>()) |
| 1268 | return !S.IsValueInFlagEnum(ED, Val, AllowMask: false); |
| 1269 | |
| 1270 | while (EI != EIEnd && EI->first < Val) |
| 1271 | EI++; |
| 1272 | |
| 1273 | if (EI != EIEnd && EI->first == Val) |
| 1274 | return false; |
| 1275 | |
| 1276 | return true; |
| 1277 | } |
| 1278 | |
| 1279 | static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond, |
| 1280 | const Expr *Case) { |
| 1281 | QualType CondType = Cond->getType(); |
| 1282 | QualType CaseType = Case->getType(); |
| 1283 | |
| 1284 | const EnumType *CondEnumType = CondType->getAs<EnumType>(); |
| 1285 | const EnumType *CaseEnumType = CaseType->getAs<EnumType>(); |
| 1286 | if (!CondEnumType || !CaseEnumType) |
| 1287 | return; |
| 1288 | |
| 1289 | // Ignore anonymous enums. |
| 1290 | if (!CondEnumType->getDecl()->getIdentifier() && |
| 1291 | !CondEnumType->getDecl()->getTypedefNameForAnonDecl()) |
| 1292 | return; |
| 1293 | if (!CaseEnumType->getDecl()->getIdentifier() && |
| 1294 | !CaseEnumType->getDecl()->getTypedefNameForAnonDecl()) |
| 1295 | return; |
| 1296 | |
| 1297 | if (S.Context.hasSameUnqualifiedType(T1: CondType, T2: CaseType)) |
| 1298 | return; |
| 1299 | |
| 1300 | S.Diag(Loc: Case->getExprLoc(), DiagID: diag::warn_comparison_of_mixed_enum_types_switch) |
| 1301 | << CondType << CaseType << Cond->getSourceRange() |
| 1302 | << Case->getSourceRange(); |
| 1303 | } |
| 1304 | |
| 1305 | StmtResult |
| 1306 | Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, |
| 1307 | Stmt *BodyStmt) { |
| 1308 | SwitchStmt *SS = cast<SwitchStmt>(Val: Switch); |
| 1309 | bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt(); |
| 1310 | assert(SS == getCurFunction()->SwitchStack.back().getPointer() && |
| 1311 | "switch stack missing push/pop!" ); |
| 1312 | |
| 1313 | getCurFunction()->SwitchStack.pop_back(); |
| 1314 | |
| 1315 | if (!BodyStmt) return StmtError(); |
| 1316 | |
| 1317 | // OpenACC3.3 2.14.4: |
| 1318 | // The update directive is executable. It must not appear in place of the |
| 1319 | // statement following an 'if', 'while', 'do', 'switch', or 'label' in C or |
| 1320 | // C++. |
| 1321 | if (isa<OpenACCUpdateConstruct>(Val: BodyStmt)) { |
| 1322 | Diag(Loc: BodyStmt->getBeginLoc(), DiagID: diag::err_acc_update_as_body) << /*switch*/ 3; |
| 1323 | BodyStmt = new (Context) NullStmt(BodyStmt->getBeginLoc()); |
| 1324 | } |
| 1325 | |
| 1326 | SS->setBody(S: BodyStmt, SL: SwitchLoc); |
| 1327 | |
| 1328 | Expr *CondExpr = SS->getCond(); |
| 1329 | if (!CondExpr) return StmtError(); |
| 1330 | |
| 1331 | QualType CondType = CondExpr->getType(); |
| 1332 | |
| 1333 | // C++ 6.4.2.p2: |
| 1334 | // Integral promotions are performed (on the switch condition). |
| 1335 | // |
| 1336 | // A case value unrepresentable by the original switch condition |
| 1337 | // type (before the promotion) doesn't make sense, even when it can |
| 1338 | // be represented by the promoted type. Therefore we need to find |
| 1339 | // the pre-promotion type of the switch condition. |
| 1340 | const Expr *CondExprBeforePromotion = CondExpr; |
| 1341 | QualType CondTypeBeforePromotion = |
| 1342 | GetTypeBeforeIntegralPromotion(E&: CondExprBeforePromotion); |
| 1343 | |
| 1344 | // Get the bitwidth of the switched-on value after promotions. We must |
| 1345 | // convert the integer case values to this width before comparison. |
| 1346 | bool HasDependentValue |
| 1347 | = CondExpr->isTypeDependent() || CondExpr->isValueDependent(); |
| 1348 | unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(T: CondType); |
| 1349 | bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType(); |
| 1350 | |
| 1351 | // Get the width and signedness that the condition might actually have, for |
| 1352 | // warning purposes. |
| 1353 | // FIXME: Grab an IntRange for the condition rather than using the unpromoted |
| 1354 | // type. |
| 1355 | unsigned CondWidthBeforePromotion |
| 1356 | = HasDependentValue ? 0 : Context.getIntWidth(T: CondTypeBeforePromotion); |
| 1357 | bool CondIsSignedBeforePromotion |
| 1358 | = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType(); |
| 1359 | |
| 1360 | // Accumulate all of the case values in a vector so that we can sort them |
| 1361 | // and detect duplicates. This vector contains the APInt for the case after |
| 1362 | // it has been converted to the condition type. |
| 1363 | typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy; |
| 1364 | CaseValsTy CaseVals; |
| 1365 | |
| 1366 | // Keep track of any GNU case ranges we see. The APSInt is the low value. |
| 1367 | typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy; |
| 1368 | CaseRangesTy CaseRanges; |
| 1369 | |
| 1370 | DefaultStmt *TheDefaultStmt = nullptr; |
| 1371 | |
| 1372 | bool CaseListIsErroneous = false; |
| 1373 | |
| 1374 | // FIXME: We'd better diagnose missing or duplicate default labels even |
| 1375 | // in the dependent case. Because default labels themselves are never |
| 1376 | // dependent. |
| 1377 | for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue; |
| 1378 | SC = SC->getNextSwitchCase()) { |
| 1379 | |
| 1380 | if (DefaultStmt *DS = dyn_cast<DefaultStmt>(Val: SC)) { |
| 1381 | if (TheDefaultStmt) { |
| 1382 | Diag(Loc: DS->getDefaultLoc(), DiagID: diag::err_multiple_default_labels_defined); |
| 1383 | Diag(Loc: TheDefaultStmt->getDefaultLoc(), DiagID: diag::note_duplicate_case_prev); |
| 1384 | |
| 1385 | // FIXME: Remove the default statement from the switch block so that |
| 1386 | // we'll return a valid AST. This requires recursing down the AST and |
| 1387 | // finding it, not something we are set up to do right now. For now, |
| 1388 | // just lop the entire switch stmt out of the AST. |
| 1389 | CaseListIsErroneous = true; |
| 1390 | } |
| 1391 | TheDefaultStmt = DS; |
| 1392 | |
| 1393 | } else { |
| 1394 | CaseStmt *CS = cast<CaseStmt>(Val: SC); |
| 1395 | |
| 1396 | Expr *Lo = CS->getLHS(); |
| 1397 | |
| 1398 | if (Lo->isValueDependent()) { |
| 1399 | HasDependentValue = true; |
| 1400 | break; |
| 1401 | } |
| 1402 | |
| 1403 | // We already verified that the expression has a constant value; |
| 1404 | // get that value (prior to conversions). |
| 1405 | const Expr *LoBeforePromotion = Lo; |
| 1406 | GetTypeBeforeIntegralPromotion(E&: LoBeforePromotion); |
| 1407 | llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Ctx: Context); |
| 1408 | |
| 1409 | // Check the unconverted value is within the range of possible values of |
| 1410 | // the switch expression. |
| 1411 | checkCaseValue(S&: *this, Loc: Lo->getBeginLoc(), Val: LoVal, UnpromotedWidth: CondWidthBeforePromotion, |
| 1412 | UnpromotedSign: CondIsSignedBeforePromotion); |
| 1413 | |
| 1414 | // FIXME: This duplicates the check performed for warn_not_in_enum below. |
| 1415 | checkEnumTypesInSwitchStmt(S&: *this, Cond: CondExprBeforePromotion, |
| 1416 | Case: LoBeforePromotion); |
| 1417 | |
| 1418 | // Convert the value to the same width/sign as the condition. |
| 1419 | AdjustAPSInt(Val&: LoVal, BitWidth: CondWidth, IsSigned: CondIsSigned); |
| 1420 | |
| 1421 | // If this is a case range, remember it in CaseRanges, otherwise CaseVals. |
| 1422 | if (CS->getRHS()) { |
| 1423 | if (CS->getRHS()->isValueDependent()) { |
| 1424 | HasDependentValue = true; |
| 1425 | break; |
| 1426 | } |
| 1427 | CaseRanges.push_back(x: std::make_pair(x&: LoVal, y&: CS)); |
| 1428 | } else |
| 1429 | CaseVals.push_back(Elt: std::make_pair(x&: LoVal, y&: CS)); |
| 1430 | } |
| 1431 | } |
| 1432 | |
| 1433 | if (!HasDependentValue) { |
| 1434 | // If we don't have a default statement, check whether the |
| 1435 | // condition is constant. |
| 1436 | llvm::APSInt ConstantCondValue; |
| 1437 | bool HasConstantCond = false; |
| 1438 | if (!TheDefaultStmt) { |
| 1439 | Expr::EvalResult Result; |
| 1440 | HasConstantCond = CondExpr->EvaluateAsInt(Result, Ctx: Context, |
| 1441 | AllowSideEffects: Expr::SE_AllowSideEffects); |
| 1442 | if (Result.Val.isInt()) |
| 1443 | ConstantCondValue = Result.Val.getInt(); |
| 1444 | assert(!HasConstantCond || |
| 1445 | (ConstantCondValue.getBitWidth() == CondWidth && |
| 1446 | ConstantCondValue.isSigned() == CondIsSigned)); |
| 1447 | Diag(Loc: SwitchLoc, DiagID: diag::warn_switch_default); |
| 1448 | } |
| 1449 | bool ShouldCheckConstantCond = HasConstantCond; |
| 1450 | |
| 1451 | // Sort all the scalar case values so we can easily detect duplicates. |
| 1452 | llvm::stable_sort(Range&: CaseVals, C: CmpCaseVals); |
| 1453 | |
| 1454 | if (!CaseVals.empty()) { |
| 1455 | for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) { |
| 1456 | if (ShouldCheckConstantCond && |
| 1457 | CaseVals[i].first == ConstantCondValue) |
| 1458 | ShouldCheckConstantCond = false; |
| 1459 | |
| 1460 | if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) { |
| 1461 | // If we have a duplicate, report it. |
| 1462 | // First, determine if either case value has a name |
| 1463 | StringRef PrevString, CurrString; |
| 1464 | Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts(); |
| 1465 | Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts(); |
| 1466 | if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Val: PrevCase)) { |
| 1467 | PrevString = DeclRef->getDecl()->getName(); |
| 1468 | } |
| 1469 | if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Val: CurrCase)) { |
| 1470 | CurrString = DeclRef->getDecl()->getName(); |
| 1471 | } |
| 1472 | SmallString<16> CaseValStr; |
| 1473 | CaseVals[i-1].first.toString(Str&: CaseValStr); |
| 1474 | |
| 1475 | if (PrevString == CurrString) |
| 1476 | Diag(Loc: CaseVals[i].second->getLHS()->getBeginLoc(), |
| 1477 | DiagID: diag::err_duplicate_case) |
| 1478 | << (PrevString.empty() ? CaseValStr.str() : PrevString); |
| 1479 | else |
| 1480 | Diag(Loc: CaseVals[i].second->getLHS()->getBeginLoc(), |
| 1481 | DiagID: diag::err_duplicate_case_differing_expr) |
| 1482 | << (PrevString.empty() ? CaseValStr.str() : PrevString) |
| 1483 | << (CurrString.empty() ? CaseValStr.str() : CurrString) |
| 1484 | << CaseValStr; |
| 1485 | |
| 1486 | Diag(Loc: CaseVals[i - 1].second->getLHS()->getBeginLoc(), |
| 1487 | DiagID: diag::note_duplicate_case_prev); |
| 1488 | // FIXME: We really want to remove the bogus case stmt from the |
| 1489 | // substmt, but we have no way to do this right now. |
| 1490 | CaseListIsErroneous = true; |
| 1491 | } |
| 1492 | } |
| 1493 | } |
| 1494 | |
| 1495 | // Detect duplicate case ranges, which usually don't exist at all in |
| 1496 | // the first place. |
| 1497 | if (!CaseRanges.empty()) { |
| 1498 | // Sort all the case ranges by their low value so we can easily detect |
| 1499 | // overlaps between ranges. |
| 1500 | llvm::stable_sort(Range&: CaseRanges); |
| 1501 | |
| 1502 | // Scan the ranges, computing the high values and removing empty ranges. |
| 1503 | std::vector<llvm::APSInt> HiVals; |
| 1504 | for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { |
| 1505 | llvm::APSInt &LoVal = CaseRanges[i].first; |
| 1506 | CaseStmt *CR = CaseRanges[i].second; |
| 1507 | Expr *Hi = CR->getRHS(); |
| 1508 | |
| 1509 | const Expr *HiBeforePromotion = Hi; |
| 1510 | GetTypeBeforeIntegralPromotion(E&: HiBeforePromotion); |
| 1511 | llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Ctx: Context); |
| 1512 | |
| 1513 | // Check the unconverted value is within the range of possible values of |
| 1514 | // the switch expression. |
| 1515 | checkCaseValue(S&: *this, Loc: Hi->getBeginLoc(), Val: HiVal, |
| 1516 | UnpromotedWidth: CondWidthBeforePromotion, UnpromotedSign: CondIsSignedBeforePromotion); |
| 1517 | |
| 1518 | // Convert the value to the same width/sign as the condition. |
| 1519 | AdjustAPSInt(Val&: HiVal, BitWidth: CondWidth, IsSigned: CondIsSigned); |
| 1520 | |
| 1521 | // If the low value is bigger than the high value, the case is empty. |
| 1522 | if (LoVal > HiVal) { |
| 1523 | Diag(Loc: CR->getLHS()->getBeginLoc(), DiagID: diag::warn_case_empty_range) |
| 1524 | << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc()); |
| 1525 | CaseRanges.erase(position: CaseRanges.begin()+i); |
| 1526 | --i; |
| 1527 | --e; |
| 1528 | continue; |
| 1529 | } |
| 1530 | |
| 1531 | if (ShouldCheckConstantCond && |
| 1532 | LoVal <= ConstantCondValue && |
| 1533 | ConstantCondValue <= HiVal) |
| 1534 | ShouldCheckConstantCond = false; |
| 1535 | |
| 1536 | HiVals.push_back(x: HiVal); |
| 1537 | } |
| 1538 | |
| 1539 | // Rescan the ranges, looking for overlap with singleton values and other |
| 1540 | // ranges. Since the range list is sorted, we only need to compare case |
| 1541 | // ranges with their neighbors. |
| 1542 | for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { |
| 1543 | llvm::APSInt &CRLo = CaseRanges[i].first; |
| 1544 | llvm::APSInt &CRHi = HiVals[i]; |
| 1545 | CaseStmt *CR = CaseRanges[i].second; |
| 1546 | |
| 1547 | // Check to see whether the case range overlaps with any |
| 1548 | // singleton cases. |
| 1549 | CaseStmt *OverlapStmt = nullptr; |
| 1550 | llvm::APSInt OverlapVal(32); |
| 1551 | |
| 1552 | // Find the smallest value >= the lower bound. If I is in the |
| 1553 | // case range, then we have overlap. |
| 1554 | CaseValsTy::iterator I = |
| 1555 | llvm::lower_bound(Range&: CaseVals, Value&: CRLo, C: CaseCompareFunctor()); |
| 1556 | if (I != CaseVals.end() && I->first < CRHi) { |
| 1557 | OverlapVal = I->first; // Found overlap with scalar. |
| 1558 | OverlapStmt = I->second; |
| 1559 | } |
| 1560 | |
| 1561 | // Find the smallest value bigger than the upper bound. |
| 1562 | I = std::upper_bound(first: I, last: CaseVals.end(), val: CRHi, comp: CaseCompareFunctor()); |
| 1563 | if (I != CaseVals.begin() && (I-1)->first >= CRLo) { |
| 1564 | OverlapVal = (I-1)->first; // Found overlap with scalar. |
| 1565 | OverlapStmt = (I-1)->second; |
| 1566 | } |
| 1567 | |
| 1568 | // Check to see if this case stmt overlaps with the subsequent |
| 1569 | // case range. |
| 1570 | if (i && CRLo <= HiVals[i-1]) { |
| 1571 | OverlapVal = HiVals[i-1]; // Found overlap with range. |
| 1572 | OverlapStmt = CaseRanges[i-1].second; |
| 1573 | } |
| 1574 | |
| 1575 | if (OverlapStmt) { |
| 1576 | // If we have a duplicate, report it. |
| 1577 | Diag(Loc: CR->getLHS()->getBeginLoc(), DiagID: diag::err_duplicate_case) |
| 1578 | << toString(I: OverlapVal, Radix: 10); |
| 1579 | Diag(Loc: OverlapStmt->getLHS()->getBeginLoc(), |
| 1580 | DiagID: diag::note_duplicate_case_prev); |
| 1581 | // FIXME: We really want to remove the bogus case stmt from the |
| 1582 | // substmt, but we have no way to do this right now. |
| 1583 | CaseListIsErroneous = true; |
| 1584 | } |
| 1585 | } |
| 1586 | } |
| 1587 | |
| 1588 | // Complain if we have a constant condition and we didn't find a match. |
| 1589 | if (!CaseListIsErroneous && !CaseListIsIncomplete && |
| 1590 | ShouldCheckConstantCond) { |
| 1591 | // TODO: it would be nice if we printed enums as enums, chars as |
| 1592 | // chars, etc. |
| 1593 | Diag(Loc: CondExpr->getExprLoc(), DiagID: diag::warn_missing_case_for_condition) |
| 1594 | << toString(I: ConstantCondValue, Radix: 10) |
| 1595 | << CondExpr->getSourceRange(); |
| 1596 | } |
| 1597 | |
| 1598 | // Check to see if switch is over an Enum and handles all of its |
| 1599 | // values. We only issue a warning if there is not 'default:', but |
| 1600 | // we still do the analysis to preserve this information in the AST |
| 1601 | // (which can be used by flow-based analyes). |
| 1602 | // |
| 1603 | const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>(); |
| 1604 | |
| 1605 | // If switch has default case, then ignore it. |
| 1606 | if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond && |
| 1607 | ET && ET->getDecl()->isCompleteDefinition() && |
| 1608 | !ET->getDecl()->enumerators().empty()) { |
| 1609 | const EnumDecl *ED = ET->getDecl(); |
| 1610 | EnumValsTy EnumVals; |
| 1611 | |
| 1612 | // Gather all enum values, set their type and sort them, |
| 1613 | // allowing easier comparison with CaseVals. |
| 1614 | for (auto *EDI : ED->enumerators()) { |
| 1615 | llvm::APSInt Val = EDI->getInitVal(); |
| 1616 | AdjustAPSInt(Val, BitWidth: CondWidth, IsSigned: CondIsSigned); |
| 1617 | EnumVals.push_back(Elt: std::make_pair(x&: Val, y&: EDI)); |
| 1618 | } |
| 1619 | llvm::stable_sort(Range&: EnumVals, C: CmpEnumVals); |
| 1620 | auto EI = EnumVals.begin(), EIEnd = llvm::unique(R&: EnumVals, P: EqEnumVals); |
| 1621 | |
| 1622 | // See which case values aren't in enum. |
| 1623 | for (CaseValsTy::const_iterator CI = CaseVals.begin(); |
| 1624 | CI != CaseVals.end(); CI++) { |
| 1625 | Expr *CaseExpr = CI->second->getLHS(); |
| 1626 | if (ShouldDiagnoseSwitchCaseNotInEnum(S: *this, ED, CaseExpr, EI, EIEnd, |
| 1627 | Val: CI->first)) |
| 1628 | Diag(Loc: CaseExpr->getExprLoc(), DiagID: diag::warn_not_in_enum) |
| 1629 | << CondTypeBeforePromotion; |
| 1630 | } |
| 1631 | |
| 1632 | // See which of case ranges aren't in enum |
| 1633 | EI = EnumVals.begin(); |
| 1634 | for (CaseRangesTy::const_iterator RI = CaseRanges.begin(); |
| 1635 | RI != CaseRanges.end(); RI++) { |
| 1636 | Expr *CaseExpr = RI->second->getLHS(); |
| 1637 | if (ShouldDiagnoseSwitchCaseNotInEnum(S: *this, ED, CaseExpr, EI, EIEnd, |
| 1638 | Val: RI->first)) |
| 1639 | Diag(Loc: CaseExpr->getExprLoc(), DiagID: diag::warn_not_in_enum) |
| 1640 | << CondTypeBeforePromotion; |
| 1641 | |
| 1642 | llvm::APSInt Hi = |
| 1643 | RI->second->getRHS()->EvaluateKnownConstInt(Ctx: Context); |
| 1644 | AdjustAPSInt(Val&: Hi, BitWidth: CondWidth, IsSigned: CondIsSigned); |
| 1645 | |
| 1646 | CaseExpr = RI->second->getRHS(); |
| 1647 | if (ShouldDiagnoseSwitchCaseNotInEnum(S: *this, ED, CaseExpr, EI, EIEnd, |
| 1648 | Val: Hi)) |
| 1649 | Diag(Loc: CaseExpr->getExprLoc(), DiagID: diag::warn_not_in_enum) |
| 1650 | << CondTypeBeforePromotion; |
| 1651 | } |
| 1652 | |
| 1653 | // Check which enum vals aren't in switch |
| 1654 | auto CI = CaseVals.begin(); |
| 1655 | auto RI = CaseRanges.begin(); |
| 1656 | bool hasCasesNotInSwitch = false; |
| 1657 | |
| 1658 | SmallVector<DeclarationName,8> UnhandledNames; |
| 1659 | |
| 1660 | for (EI = EnumVals.begin(); EI != EIEnd; EI++) { |
| 1661 | // Don't warn about omitted unavailable EnumConstantDecls. |
| 1662 | switch (EI->second->getAvailability()) { |
| 1663 | case AR_Deprecated: |
| 1664 | // Deprecated enumerators need to be handled: they may be deprecated, |
| 1665 | // but can still occur. |
| 1666 | break; |
| 1667 | |
| 1668 | case AR_Unavailable: |
| 1669 | // Omitting an unavailable enumerator is ok; it should never occur. |
| 1670 | continue; |
| 1671 | |
| 1672 | case AR_NotYetIntroduced: |
| 1673 | // Partially available enum constants should be present. Note that we |
| 1674 | // suppress -Wunguarded-availability diagnostics for such uses. |
| 1675 | case AR_Available: |
| 1676 | break; |
| 1677 | } |
| 1678 | |
| 1679 | if (EI->second->hasAttr<UnusedAttr>()) |
| 1680 | continue; |
| 1681 | |
| 1682 | // Drop unneeded case values |
| 1683 | while (CI != CaseVals.end() && CI->first < EI->first) |
| 1684 | CI++; |
| 1685 | |
| 1686 | if (CI != CaseVals.end() && CI->first == EI->first) |
| 1687 | continue; |
| 1688 | |
| 1689 | // Drop unneeded case ranges |
| 1690 | for (; RI != CaseRanges.end(); RI++) { |
| 1691 | llvm::APSInt Hi = |
| 1692 | RI->second->getRHS()->EvaluateKnownConstInt(Ctx: Context); |
| 1693 | AdjustAPSInt(Val&: Hi, BitWidth: CondWidth, IsSigned: CondIsSigned); |
| 1694 | if (EI->first <= Hi) |
| 1695 | break; |
| 1696 | } |
| 1697 | |
| 1698 | if (RI == CaseRanges.end() || EI->first < RI->first) { |
| 1699 | hasCasesNotInSwitch = true; |
| 1700 | UnhandledNames.push_back(Elt: EI->second->getDeclName()); |
| 1701 | } |
| 1702 | } |
| 1703 | |
| 1704 | if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag()) |
| 1705 | Diag(Loc: TheDefaultStmt->getDefaultLoc(), DiagID: diag::warn_unreachable_default); |
| 1706 | |
| 1707 | // Produce a nice diagnostic if multiple values aren't handled. |
| 1708 | if (!UnhandledNames.empty()) { |
| 1709 | auto DB = Diag(Loc: CondExpr->getExprLoc(), DiagID: TheDefaultStmt |
| 1710 | ? diag::warn_def_missing_case |
| 1711 | : diag::warn_missing_case) |
| 1712 | << CondExpr->getSourceRange() << (int)UnhandledNames.size(); |
| 1713 | |
| 1714 | for (size_t I = 0, E = std::min(a: UnhandledNames.size(), b: (size_t)3); |
| 1715 | I != E; ++I) |
| 1716 | DB << UnhandledNames[I]; |
| 1717 | } |
| 1718 | |
| 1719 | if (!hasCasesNotInSwitch) |
| 1720 | SS->setAllEnumCasesCovered(); |
| 1721 | } |
| 1722 | } |
| 1723 | |
| 1724 | if (BodyStmt) |
| 1725 | DiagnoseEmptyStmtBody(StmtLoc: CondExpr->getEndLoc(), Body: BodyStmt, |
| 1726 | DiagID: diag::warn_empty_switch_body); |
| 1727 | |
| 1728 | // FIXME: If the case list was broken is some way, we don't have a good system |
| 1729 | // to patch it up. Instead, just return the whole substmt as broken. |
| 1730 | if (CaseListIsErroneous) |
| 1731 | return StmtError(); |
| 1732 | |
| 1733 | return SS; |
| 1734 | } |
| 1735 | |
| 1736 | void |
| 1737 | Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, |
| 1738 | Expr *SrcExpr) { |
| 1739 | |
| 1740 | const auto *ET = DstType->getAs<EnumType>(); |
| 1741 | if (!ET) |
| 1742 | return; |
| 1743 | |
| 1744 | if (!SrcType->isIntegerType() || |
| 1745 | Context.hasSameUnqualifiedType(T1: SrcType, T2: DstType)) |
| 1746 | return; |
| 1747 | |
| 1748 | if (SrcExpr->isTypeDependent() || SrcExpr->isValueDependent()) |
| 1749 | return; |
| 1750 | |
| 1751 | const EnumDecl *ED = ET->getDecl(); |
| 1752 | if (!ED->isClosed()) |
| 1753 | return; |
| 1754 | |
| 1755 | if (Diags.isIgnored(DiagID: diag::warn_not_in_enum_assignment, Loc: SrcExpr->getExprLoc())) |
| 1756 | return; |
| 1757 | |
| 1758 | std::optional<llvm::APSInt> RHSVal = SrcExpr->getIntegerConstantExpr(Ctx: Context); |
| 1759 | if (!RHSVal) |
| 1760 | return; |
| 1761 | |
| 1762 | // Get the bitwidth of the enum value before promotions. |
| 1763 | unsigned DstWidth = Context.getIntWidth(T: DstType); |
| 1764 | bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType(); |
| 1765 | AdjustAPSInt(Val&: *RHSVal, BitWidth: DstWidth, IsSigned: DstIsSigned); |
| 1766 | |
| 1767 | if (ED->hasAttr<FlagEnumAttr>()) { |
| 1768 | if (!IsValueInFlagEnum(ED, Val: *RHSVal, /*AllowMask=*/true)) |
| 1769 | Diag(Loc: SrcExpr->getExprLoc(), DiagID: diag::warn_not_in_enum_assignment) |
| 1770 | << DstType.getUnqualifiedType(); |
| 1771 | return; |
| 1772 | } |
| 1773 | |
| 1774 | typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64> |
| 1775 | EnumValsTy; |
| 1776 | EnumValsTy EnumVals; |
| 1777 | |
| 1778 | // Gather all enum values, set their type and sort them, |
| 1779 | // allowing easier comparison with rhs constant. |
| 1780 | for (auto *EDI : ED->enumerators()) { |
| 1781 | llvm::APSInt Val = EDI->getInitVal(); |
| 1782 | AdjustAPSInt(Val, BitWidth: DstWidth, IsSigned: DstIsSigned); |
| 1783 | EnumVals.emplace_back(Args&: Val, Args&: EDI); |
| 1784 | } |
| 1785 | if (EnumVals.empty()) |
| 1786 | return; |
| 1787 | llvm::stable_sort(Range&: EnumVals, C: CmpEnumVals); |
| 1788 | EnumValsTy::iterator EIend = llvm::unique(R&: EnumVals, P: EqEnumVals); |
| 1789 | |
| 1790 | // See which values aren't in the enum. |
| 1791 | EnumValsTy::const_iterator EI = EnumVals.begin(); |
| 1792 | while (EI != EIend && EI->first < *RHSVal) |
| 1793 | EI++; |
| 1794 | if (EI == EIend || EI->first != *RHSVal) { |
| 1795 | Diag(Loc: SrcExpr->getExprLoc(), DiagID: diag::warn_not_in_enum_assignment) |
| 1796 | << DstType.getUnqualifiedType(); |
| 1797 | } |
| 1798 | } |
| 1799 | |
| 1800 | StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, |
| 1801 | SourceLocation LParenLoc, ConditionResult Cond, |
| 1802 | SourceLocation RParenLoc, Stmt *Body) { |
| 1803 | if (Cond.isInvalid()) |
| 1804 | return StmtError(); |
| 1805 | |
| 1806 | auto CondVal = Cond.get(); |
| 1807 | CheckBreakContinueBinding(E: CondVal.second); |
| 1808 | |
| 1809 | if (CondVal.second && |
| 1810 | !Diags.isIgnored(DiagID: diag::warn_comma_operator, Loc: CondVal.second->getExprLoc())) |
| 1811 | CommaVisitor(*this).Visit(S: CondVal.second); |
| 1812 | |
| 1813 | // OpenACC3.3 2.14.4: |
| 1814 | // The update directive is executable. It must not appear in place of the |
| 1815 | // statement following an 'if', 'while', 'do', 'switch', or 'label' in C or |
| 1816 | // C++. |
| 1817 | if (isa<OpenACCUpdateConstruct>(Val: Body)) { |
| 1818 | Diag(Loc: Body->getBeginLoc(), DiagID: diag::err_acc_update_as_body) << /*while*/ 1; |
| 1819 | Body = new (Context) NullStmt(Body->getBeginLoc()); |
| 1820 | } |
| 1821 | |
| 1822 | if (isa<NullStmt>(Val: Body)) |
| 1823 | getCurCompoundScope().setHasEmptyLoopBodies(); |
| 1824 | |
| 1825 | return WhileStmt::Create(Ctx: Context, Var: CondVal.first, Cond: CondVal.second, Body, |
| 1826 | WL: WhileLoc, LParenLoc, RParenLoc); |
| 1827 | } |
| 1828 | |
| 1829 | StmtResult |
| 1830 | Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, |
| 1831 | SourceLocation WhileLoc, SourceLocation CondLParen, |
| 1832 | Expr *Cond, SourceLocation CondRParen) { |
| 1833 | assert(Cond && "ActOnDoStmt(): missing expression" ); |
| 1834 | |
| 1835 | CheckBreakContinueBinding(E: Cond); |
| 1836 | ExprResult CondResult = CheckBooleanCondition(Loc: DoLoc, E: Cond); |
| 1837 | if (CondResult.isInvalid()) |
| 1838 | return StmtError(); |
| 1839 | Cond = CondResult.get(); |
| 1840 | |
| 1841 | CondResult = ActOnFinishFullExpr(Expr: Cond, CC: DoLoc, /*DiscardedValue*/ false); |
| 1842 | if (CondResult.isInvalid()) |
| 1843 | return StmtError(); |
| 1844 | Cond = CondResult.get(); |
| 1845 | |
| 1846 | // Only call the CommaVisitor for C89 due to differences in scope flags. |
| 1847 | if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus && |
| 1848 | !Diags.isIgnored(DiagID: diag::warn_comma_operator, Loc: Cond->getExprLoc())) |
| 1849 | CommaVisitor(*this).Visit(S: Cond); |
| 1850 | |
| 1851 | // OpenACC3.3 2.14.4: |
| 1852 | // The update directive is executable. It must not appear in place of the |
| 1853 | // statement following an 'if', 'while', 'do', 'switch', or 'label' in C or |
| 1854 | // C++. |
| 1855 | if (isa<OpenACCUpdateConstruct>(Val: Body)) { |
| 1856 | Diag(Loc: Body->getBeginLoc(), DiagID: diag::err_acc_update_as_body) << /*do*/ 2; |
| 1857 | Body = new (Context) NullStmt(Body->getBeginLoc()); |
| 1858 | } |
| 1859 | |
| 1860 | return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen); |
| 1861 | } |
| 1862 | |
| 1863 | namespace { |
| 1864 | // Use SetVector since the diagnostic cares about the ordering of the Decl's. |
| 1865 | using DeclSetVector = llvm::SmallSetVector<VarDecl *, 8>; |
| 1866 | |
| 1867 | // This visitor will traverse a conditional statement and store all |
| 1868 | // the evaluated decls into a vector. Simple is set to true if none |
| 1869 | // of the excluded constructs are used. |
| 1870 | class : public EvaluatedExprVisitor<DeclExtractor> { |
| 1871 | DeclSetVector &; |
| 1872 | SmallVectorImpl<SourceRange> &; |
| 1873 | bool ; |
| 1874 | public: |
| 1875 | typedef EvaluatedExprVisitor<DeclExtractor> ; |
| 1876 | |
| 1877 | (Sema &S, DeclSetVector &Decls, |
| 1878 | SmallVectorImpl<SourceRange> &Ranges) : |
| 1879 | Inherited(S.Context), |
| 1880 | Decls(Decls), |
| 1881 | Ranges(Ranges), |
| 1882 | Simple(true) {} |
| 1883 | |
| 1884 | bool () { return Simple; } |
| 1885 | |
| 1886 | // Replaces the method in EvaluatedExprVisitor. |
| 1887 | void (MemberExpr* E) { |
| 1888 | Simple = false; |
| 1889 | } |
| 1890 | |
| 1891 | // Any Stmt not explicitly listed will cause the condition to be marked |
| 1892 | // complex. |
| 1893 | void (Stmt *S) { Simple = false; } |
| 1894 | |
| 1895 | void (BinaryOperator *E) { |
| 1896 | Visit(S: E->getLHS()); |
| 1897 | Visit(S: E->getRHS()); |
| 1898 | } |
| 1899 | |
| 1900 | void (CastExpr *E) { |
| 1901 | Visit(S: E->getSubExpr()); |
| 1902 | } |
| 1903 | |
| 1904 | void (UnaryOperator *E) { |
| 1905 | // Skip checking conditionals with derefernces. |
| 1906 | if (E->getOpcode() == UO_Deref) |
| 1907 | Simple = false; |
| 1908 | else |
| 1909 | Visit(S: E->getSubExpr()); |
| 1910 | } |
| 1911 | |
| 1912 | void (ConditionalOperator *E) { |
| 1913 | Visit(S: E->getCond()); |
| 1914 | Visit(S: E->getTrueExpr()); |
| 1915 | Visit(S: E->getFalseExpr()); |
| 1916 | } |
| 1917 | |
| 1918 | void (ParenExpr *E) { |
| 1919 | Visit(S: E->getSubExpr()); |
| 1920 | } |
| 1921 | |
| 1922 | void (BinaryConditionalOperator *E) { |
| 1923 | Visit(S: E->getOpaqueValue()->getSourceExpr()); |
| 1924 | Visit(S: E->getFalseExpr()); |
| 1925 | } |
| 1926 | |
| 1927 | void (IntegerLiteral *E) { } |
| 1928 | void (FloatingLiteral *E) { } |
| 1929 | void (CXXBoolLiteralExpr *E) { } |
| 1930 | void (CharacterLiteral *E) { } |
| 1931 | void (GNUNullExpr *E) { } |
| 1932 | void (ImaginaryLiteral *E) { } |
| 1933 | |
| 1934 | void (DeclRefExpr *E) { |
| 1935 | VarDecl *VD = dyn_cast<VarDecl>(Val: E->getDecl()); |
| 1936 | if (!VD) { |
| 1937 | // Don't allow unhandled Decl types. |
| 1938 | Simple = false; |
| 1939 | return; |
| 1940 | } |
| 1941 | |
| 1942 | Ranges.push_back(Elt: E->getSourceRange()); |
| 1943 | |
| 1944 | Decls.insert(X: VD); |
| 1945 | } |
| 1946 | |
| 1947 | }; // end class DeclExtractor |
| 1948 | |
| 1949 | // DeclMatcher checks to see if the decls are used in a non-evaluated |
| 1950 | // context. |
| 1951 | class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> { |
| 1952 | DeclSetVector &Decls; |
| 1953 | bool FoundDecl; |
| 1954 | |
| 1955 | public: |
| 1956 | typedef EvaluatedExprVisitor<DeclMatcher> Inherited; |
| 1957 | |
| 1958 | DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) : |
| 1959 | Inherited(S.Context), Decls(Decls), FoundDecl(false) { |
| 1960 | if (!Statement) return; |
| 1961 | |
| 1962 | Visit(S: Statement); |
| 1963 | } |
| 1964 | |
| 1965 | void VisitReturnStmt(ReturnStmt *S) { |
| 1966 | FoundDecl = true; |
| 1967 | } |
| 1968 | |
| 1969 | void VisitBreakStmt(BreakStmt *S) { |
| 1970 | FoundDecl = true; |
| 1971 | } |
| 1972 | |
| 1973 | void VisitGotoStmt(GotoStmt *S) { |
| 1974 | FoundDecl = true; |
| 1975 | } |
| 1976 | |
| 1977 | void VisitCastExpr(CastExpr *E) { |
| 1978 | if (E->getCastKind() == CK_LValueToRValue) |
| 1979 | CheckLValueToRValueCast(E: E->getSubExpr()); |
| 1980 | else |
| 1981 | Visit(S: E->getSubExpr()); |
| 1982 | } |
| 1983 | |
| 1984 | void CheckLValueToRValueCast(Expr *E) { |
| 1985 | E = E->IgnoreParenImpCasts(); |
| 1986 | |
| 1987 | if (isa<DeclRefExpr>(Val: E)) { |
| 1988 | return; |
| 1989 | } |
| 1990 | |
| 1991 | if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E)) { |
| 1992 | Visit(S: CO->getCond()); |
| 1993 | CheckLValueToRValueCast(E: CO->getTrueExpr()); |
| 1994 | CheckLValueToRValueCast(E: CO->getFalseExpr()); |
| 1995 | return; |
| 1996 | } |
| 1997 | |
| 1998 | if (BinaryConditionalOperator *BCO = |
| 1999 | dyn_cast<BinaryConditionalOperator>(Val: E)) { |
| 2000 | CheckLValueToRValueCast(E: BCO->getOpaqueValue()->getSourceExpr()); |
| 2001 | CheckLValueToRValueCast(E: BCO->getFalseExpr()); |
| 2002 | return; |
| 2003 | } |
| 2004 | |
| 2005 | Visit(S: E); |
| 2006 | } |
| 2007 | |
| 2008 | void VisitDeclRefExpr(DeclRefExpr *E) { |
| 2009 | if (VarDecl *VD = dyn_cast<VarDecl>(Val: E->getDecl())) |
| 2010 | if (Decls.count(key: VD)) |
| 2011 | FoundDecl = true; |
| 2012 | } |
| 2013 | |
| 2014 | void VisitPseudoObjectExpr(PseudoObjectExpr *POE) { |
| 2015 | // Only need to visit the semantics for POE. |
| 2016 | // SyntaticForm doesn't really use the Decal. |
| 2017 | for (auto *S : POE->semantics()) { |
| 2018 | if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: S)) |
| 2019 | // Look past the OVE into the expression it binds. |
| 2020 | Visit(S: OVE->getSourceExpr()); |
| 2021 | else |
| 2022 | Visit(S); |
| 2023 | } |
| 2024 | } |
| 2025 | |
| 2026 | bool FoundDeclInUse() { return FoundDecl; } |
| 2027 | |
| 2028 | }; // end class DeclMatcher |
| 2029 | |
| 2030 | void CheckForLoopConditionalStatement(Sema &S, Expr *Second, |
| 2031 | Expr *Third, Stmt *Body) { |
| 2032 | // Condition is empty |
| 2033 | if (!Second) return; |
| 2034 | |
| 2035 | if (S.Diags.isIgnored(DiagID: diag::warn_variables_not_in_loop_body, |
| 2036 | Loc: Second->getBeginLoc())) |
| 2037 | return; |
| 2038 | |
| 2039 | PartialDiagnostic PDiag = S.PDiag(DiagID: diag::warn_variables_not_in_loop_body); |
| 2040 | DeclSetVector Decls; |
| 2041 | SmallVector<SourceRange, 10> Ranges; |
| 2042 | DeclExtractor DE(S, Decls, Ranges); |
| 2043 | DE.Visit(S: Second); |
| 2044 | |
| 2045 | // Don't analyze complex conditionals. |
| 2046 | if (!DE.isSimple()) return; |
| 2047 | |
| 2048 | // No decls found. |
| 2049 | if (Decls.size() == 0) return; |
| 2050 | |
| 2051 | // Don't warn on volatile, static, or global variables. |
| 2052 | for (auto *VD : Decls) |
| 2053 | if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage()) |
| 2054 | return; |
| 2055 | |
| 2056 | if (DeclMatcher(S, Decls, Second).FoundDeclInUse() || |
| 2057 | DeclMatcher(S, Decls, Third).FoundDeclInUse() || |
| 2058 | DeclMatcher(S, Decls, Body).FoundDeclInUse()) |
| 2059 | return; |
| 2060 | |
| 2061 | // Load decl names into diagnostic. |
| 2062 | if (Decls.size() > 4) { |
| 2063 | PDiag << 0; |
| 2064 | } else { |
| 2065 | PDiag << (unsigned)Decls.size(); |
| 2066 | for (auto *VD : Decls) |
| 2067 | PDiag << VD->getDeclName(); |
| 2068 | } |
| 2069 | |
| 2070 | for (auto Range : Ranges) |
| 2071 | PDiag << Range; |
| 2072 | |
| 2073 | S.Diag(Loc: Ranges.begin()->getBegin(), PD: PDiag); |
| 2074 | } |
| 2075 | |
| 2076 | // If Statement is an incemement or decrement, return true and sets the |
| 2077 | // variables Increment and DRE. |
| 2078 | bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment, |
| 2079 | DeclRefExpr *&DRE) { |
| 2080 | if (auto Cleanups = dyn_cast<ExprWithCleanups>(Val: Statement)) |
| 2081 | if (!Cleanups->cleanupsHaveSideEffects()) |
| 2082 | Statement = Cleanups->getSubExpr(); |
| 2083 | |
| 2084 | if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: Statement)) { |
| 2085 | switch (UO->getOpcode()) { |
| 2086 | default: return false; |
| 2087 | case UO_PostInc: |
| 2088 | case UO_PreInc: |
| 2089 | Increment = true; |
| 2090 | break; |
| 2091 | case UO_PostDec: |
| 2092 | case UO_PreDec: |
| 2093 | Increment = false; |
| 2094 | break; |
| 2095 | } |
| 2096 | DRE = dyn_cast<DeclRefExpr>(Val: UO->getSubExpr()); |
| 2097 | return DRE; |
| 2098 | } |
| 2099 | |
| 2100 | if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Val: Statement)) { |
| 2101 | FunctionDecl *FD = Call->getDirectCallee(); |
| 2102 | if (!FD || !FD->isOverloadedOperator()) return false; |
| 2103 | switch (FD->getOverloadedOperator()) { |
| 2104 | default: return false; |
| 2105 | case OO_PlusPlus: |
| 2106 | Increment = true; |
| 2107 | break; |
| 2108 | case OO_MinusMinus: |
| 2109 | Increment = false; |
| 2110 | break; |
| 2111 | } |
| 2112 | DRE = dyn_cast<DeclRefExpr>(Val: Call->getArg(Arg: 0)); |
| 2113 | return DRE; |
| 2114 | } |
| 2115 | |
| 2116 | return false; |
| 2117 | } |
| 2118 | |
| 2119 | // A visitor to determine if a continue or break statement is a |
| 2120 | // subexpression. |
| 2121 | class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> { |
| 2122 | SourceLocation BreakLoc; |
| 2123 | SourceLocation ContinueLoc; |
| 2124 | bool InSwitch = false; |
| 2125 | |
| 2126 | public: |
| 2127 | BreakContinueFinder(Sema &S, const Stmt* Body) : |
| 2128 | Inherited(S.Context) { |
| 2129 | Visit(S: Body); |
| 2130 | } |
| 2131 | |
| 2132 | typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited; |
| 2133 | |
| 2134 | void VisitContinueStmt(const ContinueStmt* E) { |
| 2135 | ContinueLoc = E->getContinueLoc(); |
| 2136 | } |
| 2137 | |
| 2138 | void VisitBreakStmt(const BreakStmt* E) { |
| 2139 | if (!InSwitch) |
| 2140 | BreakLoc = E->getBreakLoc(); |
| 2141 | } |
| 2142 | |
| 2143 | void VisitSwitchStmt(const SwitchStmt* S) { |
| 2144 | if (const Stmt *Init = S->getInit()) |
| 2145 | Visit(S: Init); |
| 2146 | if (const Stmt *CondVar = S->getConditionVariableDeclStmt()) |
| 2147 | Visit(S: CondVar); |
| 2148 | if (const Stmt *Cond = S->getCond()) |
| 2149 | Visit(S: Cond); |
| 2150 | |
| 2151 | // Don't return break statements from the body of a switch. |
| 2152 | InSwitch = true; |
| 2153 | if (const Stmt *Body = S->getBody()) |
| 2154 | Visit(S: Body); |
| 2155 | InSwitch = false; |
| 2156 | } |
| 2157 | |
| 2158 | void VisitForStmt(const ForStmt *S) { |
| 2159 | // Only visit the init statement of a for loop; the body |
| 2160 | // has a different break/continue scope. |
| 2161 | if (const Stmt *Init = S->getInit()) |
| 2162 | Visit(S: Init); |
| 2163 | } |
| 2164 | |
| 2165 | void VisitWhileStmt(const WhileStmt *) { |
| 2166 | // Do nothing; the children of a while loop have a different |
| 2167 | // break/continue scope. |
| 2168 | } |
| 2169 | |
| 2170 | void VisitDoStmt(const DoStmt *) { |
| 2171 | // Do nothing; the children of a while loop have a different |
| 2172 | // break/continue scope. |
| 2173 | } |
| 2174 | |
| 2175 | void VisitCXXForRangeStmt(const CXXForRangeStmt *S) { |
| 2176 | // Only visit the initialization of a for loop; the body |
| 2177 | // has a different break/continue scope. |
| 2178 | if (const Stmt *Init = S->getInit()) |
| 2179 | Visit(S: Init); |
| 2180 | if (const Stmt *Range = S->getRangeStmt()) |
| 2181 | Visit(S: Range); |
| 2182 | if (const Stmt *Begin = S->getBeginStmt()) |
| 2183 | Visit(S: Begin); |
| 2184 | if (const Stmt *End = S->getEndStmt()) |
| 2185 | Visit(S: End); |
| 2186 | } |
| 2187 | |
| 2188 | void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) { |
| 2189 | // Only visit the initialization of a for loop; the body |
| 2190 | // has a different break/continue scope. |
| 2191 | if (const Stmt *Element = S->getElement()) |
| 2192 | Visit(S: Element); |
| 2193 | if (const Stmt *Collection = S->getCollection()) |
| 2194 | Visit(S: Collection); |
| 2195 | } |
| 2196 | |
| 2197 | bool ContinueFound() { return ContinueLoc.isValid(); } |
| 2198 | bool BreakFound() { return BreakLoc.isValid(); } |
| 2199 | SourceLocation GetContinueLoc() { return ContinueLoc; } |
| 2200 | SourceLocation GetBreakLoc() { return BreakLoc; } |
| 2201 | |
| 2202 | }; // end class BreakContinueFinder |
| 2203 | |
| 2204 | // Emit a warning when a loop increment/decrement appears twice per loop |
| 2205 | // iteration. The conditions which trigger this warning are: |
| 2206 | // 1) The last statement in the loop body and the third expression in the |
| 2207 | // for loop are both increment or both decrement of the same variable |
| 2208 | // 2) No continue statements in the loop body. |
| 2209 | void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) { |
| 2210 | // Return when there is nothing to check. |
| 2211 | if (!Body || !Third) return; |
| 2212 | |
| 2213 | // Get the last statement from the loop body. |
| 2214 | CompoundStmt *CS = dyn_cast<CompoundStmt>(Val: Body); |
| 2215 | if (!CS || CS->body_empty()) return; |
| 2216 | Stmt *LastStmt = CS->body_back(); |
| 2217 | if (!LastStmt) return; |
| 2218 | |
| 2219 | if (S.Diags.isIgnored(DiagID: diag::warn_redundant_loop_iteration, |
| 2220 | Loc: Third->getBeginLoc())) |
| 2221 | return; |
| 2222 | |
| 2223 | bool LoopIncrement, LastIncrement; |
| 2224 | DeclRefExpr *LoopDRE, *LastDRE; |
| 2225 | |
| 2226 | if (!ProcessIterationStmt(S, Statement: Third, Increment&: LoopIncrement, DRE&: LoopDRE)) return; |
| 2227 | if (!ProcessIterationStmt(S, Statement: LastStmt, Increment&: LastIncrement, DRE&: LastDRE)) return; |
| 2228 | |
| 2229 | // Check that the two statements are both increments or both decrements |
| 2230 | // on the same variable. |
| 2231 | if (LoopIncrement != LastIncrement || |
| 2232 | LoopDRE->getDecl() != LastDRE->getDecl()) return; |
| 2233 | |
| 2234 | if (BreakContinueFinder(S, Body).ContinueFound()) return; |
| 2235 | |
| 2236 | S.Diag(Loc: LastDRE->getLocation(), DiagID: diag::warn_redundant_loop_iteration) |
| 2237 | << LastDRE->getDecl() << LastIncrement; |
| 2238 | S.Diag(Loc: LoopDRE->getLocation(), DiagID: diag::note_loop_iteration_here) |
| 2239 | << LoopIncrement; |
| 2240 | } |
| 2241 | |
| 2242 | } // end namespace |
| 2243 | |
| 2244 | |
| 2245 | void Sema::CheckBreakContinueBinding(Expr *E) { |
| 2246 | if (!E || getLangOpts().CPlusPlus) |
| 2247 | return; |
| 2248 | BreakContinueFinder BCFinder(*this, E); |
| 2249 | Scope *BreakParent = CurScope->getBreakParent(); |
| 2250 | if (BCFinder.BreakFound() && BreakParent) { |
| 2251 | if (BreakParent->getFlags() & Scope::SwitchScope) { |
| 2252 | Diag(Loc: BCFinder.GetBreakLoc(), DiagID: diag::warn_break_binds_to_switch); |
| 2253 | } else { |
| 2254 | Diag(Loc: BCFinder.GetBreakLoc(), DiagID: diag::warn_loop_ctrl_binds_to_inner) |
| 2255 | << "break" ; |
| 2256 | } |
| 2257 | } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) { |
| 2258 | Diag(Loc: BCFinder.GetContinueLoc(), DiagID: diag::warn_loop_ctrl_binds_to_inner) |
| 2259 | << "continue" ; |
| 2260 | } |
| 2261 | } |
| 2262 | |
| 2263 | StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, |
| 2264 | Stmt *First, ConditionResult Second, |
| 2265 | FullExprArg third, SourceLocation RParenLoc, |
| 2266 | Stmt *Body) { |
| 2267 | if (Second.isInvalid()) |
| 2268 | return StmtError(); |
| 2269 | |
| 2270 | if (!getLangOpts().CPlusPlus) { |
| 2271 | if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(Val: First)) { |
| 2272 | // C99 6.8.5p3: The declaration part of a 'for' statement shall only |
| 2273 | // declare identifiers for objects having storage class 'auto' or |
| 2274 | // 'register'. |
| 2275 | const Decl *NonVarSeen = nullptr; |
| 2276 | bool VarDeclSeen = false; |
| 2277 | for (auto *DI : DS->decls()) { |
| 2278 | if (VarDecl *VD = dyn_cast<VarDecl>(Val: DI)) { |
| 2279 | VarDeclSeen = true; |
| 2280 | if (VD->isLocalVarDecl() && !VD->hasLocalStorage()) |
| 2281 | Diag(Loc: DI->getLocation(), |
| 2282 | DiagID: getLangOpts().C23 |
| 2283 | ? diag::warn_c17_non_local_variable_decl_in_for |
| 2284 | : diag::ext_c23_non_local_variable_decl_in_for); |
| 2285 | } else if (!NonVarSeen) { |
| 2286 | // Keep track of the first non-variable declaration we saw so that |
| 2287 | // we can diagnose if we don't see any variable declarations. This |
| 2288 | // covers a case like declaring a typedef, function, or structure |
| 2289 | // type rather than a variable. |
| 2290 | NonVarSeen = DI; |
| 2291 | } |
| 2292 | } |
| 2293 | // Diagnose if we saw a non-variable declaration but no variable |
| 2294 | // declarations. |
| 2295 | if (NonVarSeen && !VarDeclSeen) |
| 2296 | Diag(Loc: NonVarSeen->getLocation(), |
| 2297 | DiagID: getLangOpts().C23 ? diag::warn_c17_non_variable_decl_in_for |
| 2298 | : diag::ext_c23_non_variable_decl_in_for); |
| 2299 | } |
| 2300 | } |
| 2301 | |
| 2302 | CheckBreakContinueBinding(E: Second.get().second); |
| 2303 | CheckBreakContinueBinding(E: third.get()); |
| 2304 | |
| 2305 | if (!Second.get().first) |
| 2306 | CheckForLoopConditionalStatement(S&: *this, Second: Second.get().second, Third: third.get(), |
| 2307 | Body); |
| 2308 | CheckForRedundantIteration(S&: *this, Third: third.get(), Body); |
| 2309 | |
| 2310 | if (Second.get().second && |
| 2311 | !Diags.isIgnored(DiagID: diag::warn_comma_operator, |
| 2312 | Loc: Second.get().second->getExprLoc())) |
| 2313 | CommaVisitor(*this).Visit(S: Second.get().second); |
| 2314 | |
| 2315 | Expr *Third = third.release().getAs<Expr>(); |
| 2316 | if (isa<NullStmt>(Val: Body)) |
| 2317 | getCurCompoundScope().setHasEmptyLoopBodies(); |
| 2318 | |
| 2319 | return new (Context) |
| 2320 | ForStmt(Context, First, Second.get().second, Second.get().first, Third, |
| 2321 | Body, ForLoc, LParenLoc, RParenLoc); |
| 2322 | } |
| 2323 | |
| 2324 | StmtResult Sema::ActOnForEachLValueExpr(Expr *E) { |
| 2325 | // Reduce placeholder expressions here. Note that this rejects the |
| 2326 | // use of pseudo-object l-values in this position. |
| 2327 | ExprResult result = CheckPlaceholderExpr(E); |
| 2328 | if (result.isInvalid()) return StmtError(); |
| 2329 | E = result.get(); |
| 2330 | |
| 2331 | ExprResult FullExpr = ActOnFinishFullExpr(Expr: E, /*DiscardedValue*/ false); |
| 2332 | if (FullExpr.isInvalid()) |
| 2333 | return StmtError(); |
| 2334 | return StmtResult(static_cast<Stmt*>(FullExpr.get())); |
| 2335 | } |
| 2336 | |
| 2337 | /// Finish building a variable declaration for a for-range statement. |
| 2338 | /// \return true if an error occurs. |
| 2339 | static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init, |
| 2340 | SourceLocation Loc, int DiagID) { |
| 2341 | if (Decl->getType()->isUndeducedType()) { |
| 2342 | ExprResult Res = Init; |
| 2343 | if (!Res.isUsable()) { |
| 2344 | Decl->setInvalidDecl(); |
| 2345 | return true; |
| 2346 | } |
| 2347 | Init = Res.get(); |
| 2348 | } |
| 2349 | |
| 2350 | // Deduce the type for the iterator variable now rather than leaving it to |
| 2351 | // AddInitializerToDecl, so we can produce a more suitable diagnostic. |
| 2352 | QualType InitType; |
| 2353 | if (!isa<InitListExpr>(Val: Init) && Init->getType()->isVoidType()) { |
| 2354 | SemaRef.Diag(Loc, DiagID) << Init->getType(); |
| 2355 | } else { |
| 2356 | TemplateDeductionInfo Info(Init->getExprLoc()); |
| 2357 | TemplateDeductionResult Result = SemaRef.DeduceAutoType( |
| 2358 | AutoTypeLoc: Decl->getTypeSourceInfo()->getTypeLoc(), Initializer: Init, Result&: InitType, Info); |
| 2359 | if (Result != TemplateDeductionResult::Success && |
| 2360 | Result != TemplateDeductionResult::AlreadyDiagnosed) |
| 2361 | SemaRef.Diag(Loc, DiagID) << Init->getType(); |
| 2362 | } |
| 2363 | |
| 2364 | if (InitType.isNull()) { |
| 2365 | Decl->setInvalidDecl(); |
| 2366 | return true; |
| 2367 | } |
| 2368 | Decl->setType(InitType); |
| 2369 | |
| 2370 | // In ARC, infer lifetime. |
| 2371 | // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if |
| 2372 | // we're doing the equivalent of fast iteration. |
| 2373 | if (SemaRef.getLangOpts().ObjCAutoRefCount && |
| 2374 | SemaRef.ObjC().inferObjCARCLifetime(decl: Decl)) |
| 2375 | Decl->setInvalidDecl(); |
| 2376 | |
| 2377 | SemaRef.AddInitializerToDecl(dcl: Decl, init: Init, /*DirectInit=*/false); |
| 2378 | SemaRef.FinalizeDeclaration(D: Decl); |
| 2379 | SemaRef.CurContext->addHiddenDecl(D: Decl); |
| 2380 | return false; |
| 2381 | } |
| 2382 | |
| 2383 | namespace { |
| 2384 | // An enum to represent whether something is dealing with a call to begin() |
| 2385 | // or a call to end() in a range-based for loop. |
| 2386 | enum BeginEndFunction { |
| 2387 | BEF_begin, |
| 2388 | BEF_end |
| 2389 | }; |
| 2390 | |
| 2391 | /// Produce a note indicating which begin/end function was implicitly called |
| 2392 | /// by a C++11 for-range statement. This is often not obvious from the code, |
| 2393 | /// nor from the diagnostics produced when analysing the implicit expressions |
| 2394 | /// required in a for-range statement. |
| 2395 | void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E, |
| 2396 | BeginEndFunction BEF) { |
| 2397 | CallExpr *CE = dyn_cast<CallExpr>(Val: E); |
| 2398 | if (!CE) |
| 2399 | return; |
| 2400 | FunctionDecl *D = dyn_cast<FunctionDecl>(Val: CE->getCalleeDecl()); |
| 2401 | if (!D) |
| 2402 | return; |
| 2403 | SourceLocation Loc = D->getLocation(); |
| 2404 | |
| 2405 | std::string Description; |
| 2406 | bool IsTemplate = false; |
| 2407 | if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) { |
| 2408 | Description = SemaRef.getTemplateArgumentBindingsText( |
| 2409 | Params: FunTmpl->getTemplateParameters(), Args: *D->getTemplateSpecializationArgs()); |
| 2410 | IsTemplate = true; |
| 2411 | } |
| 2412 | |
| 2413 | SemaRef.Diag(Loc, DiagID: diag::note_for_range_begin_end) |
| 2414 | << BEF << IsTemplate << Description << E->getType(); |
| 2415 | } |
| 2416 | |
| 2417 | /// Build a variable declaration for a for-range statement. |
| 2418 | VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc, |
| 2419 | QualType Type, StringRef Name) { |
| 2420 | DeclContext *DC = SemaRef.CurContext; |
| 2421 | IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name); |
| 2422 | TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(T: Type, Loc); |
| 2423 | VarDecl *Decl = VarDecl::Create(C&: SemaRef.Context, DC, StartLoc: Loc, IdLoc: Loc, Id: II, T: Type, |
| 2424 | TInfo, S: SC_None); |
| 2425 | Decl->setImplicit(); |
| 2426 | return Decl; |
| 2427 | } |
| 2428 | |
| 2429 | } |
| 2430 | |
| 2431 | static bool ObjCEnumerationCollection(Expr *Collection) { |
| 2432 | return !Collection->isTypeDependent() |
| 2433 | && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr; |
| 2434 | } |
| 2435 | |
| 2436 | StmtResult Sema::ActOnCXXForRangeStmt( |
| 2437 | Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, |
| 2438 | Stmt *First, SourceLocation ColonLoc, Expr *Range, SourceLocation RParenLoc, |
| 2439 | BuildForRangeKind Kind, |
| 2440 | ArrayRef<MaterializeTemporaryExpr *> LifetimeExtendTemps) { |
| 2441 | // FIXME: recover in order to allow the body to be parsed. |
| 2442 | if (!First) |
| 2443 | return StmtError(); |
| 2444 | |
| 2445 | if (Range && ObjCEnumerationCollection(Collection: Range)) { |
| 2446 | // FIXME: Support init-statements in Objective-C++20 ranged for statement. |
| 2447 | if (InitStmt) |
| 2448 | return Diag(Loc: InitStmt->getBeginLoc(), DiagID: diag::err_objc_for_range_init_stmt) |
| 2449 | << InitStmt->getSourceRange(); |
| 2450 | return ObjC().ActOnObjCForCollectionStmt(ForColLoc: ForLoc, First, collection: Range, RParenLoc); |
| 2451 | } |
| 2452 | |
| 2453 | DeclStmt *DS = dyn_cast<DeclStmt>(Val: First); |
| 2454 | assert(DS && "first part of for range not a decl stmt" ); |
| 2455 | |
| 2456 | if (!DS->isSingleDecl()) { |
| 2457 | Diag(Loc: DS->getBeginLoc(), DiagID: diag::err_type_defined_in_for_range); |
| 2458 | return StmtError(); |
| 2459 | } |
| 2460 | |
| 2461 | // This function is responsible for attaching an initializer to LoopVar. We |
| 2462 | // must call ActOnInitializerError if we fail to do so. |
| 2463 | Decl *LoopVar = DS->getSingleDecl(); |
| 2464 | if (LoopVar->isInvalidDecl() || !Range || |
| 2465 | DiagnoseUnexpandedParameterPack(E: Range, UPPC: UPPC_Expression)) { |
| 2466 | ActOnInitializerError(Dcl: LoopVar); |
| 2467 | return StmtError(); |
| 2468 | } |
| 2469 | |
| 2470 | // Build the coroutine state immediately and not later during template |
| 2471 | // instantiation |
| 2472 | if (!CoawaitLoc.isInvalid()) { |
| 2473 | if (!ActOnCoroutineBodyStart(S, KwLoc: CoawaitLoc, Keyword: "co_await" )) { |
| 2474 | ActOnInitializerError(Dcl: LoopVar); |
| 2475 | return StmtError(); |
| 2476 | } |
| 2477 | } |
| 2478 | |
| 2479 | // Build auto && __range = range-init |
| 2480 | // Divide by 2, since the variables are in the inner scope (loop body). |
| 2481 | const auto DepthStr = std::to_string(val: S->getDepth() / 2); |
| 2482 | SourceLocation RangeLoc = Range->getBeginLoc(); |
| 2483 | VarDecl *RangeVar = BuildForRangeVarDecl(SemaRef&: *this, Loc: RangeLoc, |
| 2484 | Type: Context.getAutoRRefDeductType(), |
| 2485 | Name: std::string("__range" ) + DepthStr); |
| 2486 | if (FinishForRangeVarDecl(SemaRef&: *this, Decl: RangeVar, Init: Range, Loc: RangeLoc, |
| 2487 | DiagID: diag::err_for_range_deduction_failure)) { |
| 2488 | ActOnInitializerError(Dcl: LoopVar); |
| 2489 | return StmtError(); |
| 2490 | } |
| 2491 | |
| 2492 | // Claim the type doesn't contain auto: we've already done the checking. |
| 2493 | DeclGroupPtrTy RangeGroup = |
| 2494 | BuildDeclaratorGroup(Group: MutableArrayRef<Decl *>((Decl **)&RangeVar, 1)); |
| 2495 | StmtResult RangeDecl = ActOnDeclStmt(dg: RangeGroup, StartLoc: RangeLoc, EndLoc: RangeLoc); |
| 2496 | if (RangeDecl.isInvalid()) { |
| 2497 | ActOnInitializerError(Dcl: LoopVar); |
| 2498 | return StmtError(); |
| 2499 | } |
| 2500 | |
| 2501 | StmtResult R = BuildCXXForRangeStmt( |
| 2502 | ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl: RangeDecl.get(), |
| 2503 | /*BeginStmt=*/Begin: nullptr, /*EndStmt=*/End: nullptr, |
| 2504 | /*Cond=*/nullptr, /*Inc=*/nullptr, LoopVarDecl: DS, RParenLoc, Kind, |
| 2505 | LifetimeExtendTemps); |
| 2506 | if (R.isInvalid()) { |
| 2507 | ActOnInitializerError(Dcl: LoopVar); |
| 2508 | return StmtError(); |
| 2509 | } |
| 2510 | |
| 2511 | return R; |
| 2512 | } |
| 2513 | |
| 2514 | /// Create the initialization, compare, and increment steps for |
| 2515 | /// the range-based for loop expression. |
| 2516 | /// This function does not handle array-based for loops, |
| 2517 | /// which are created in Sema::BuildCXXForRangeStmt. |
| 2518 | /// |
| 2519 | /// \returns a ForRangeStatus indicating success or what kind of error occurred. |
| 2520 | /// BeginExpr and EndExpr are set and FRS_Success is returned on success; |
| 2521 | /// CandidateSet and BEF are set and some non-success value is returned on |
| 2522 | /// failure. |
| 2523 | static Sema::ForRangeStatus |
| 2524 | BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange, |
| 2525 | QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar, |
| 2526 | SourceLocation ColonLoc, SourceLocation CoawaitLoc, |
| 2527 | OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr, |
| 2528 | ExprResult *EndExpr, BeginEndFunction *BEF) { |
| 2529 | DeclarationNameInfo BeginNameInfo( |
| 2530 | &SemaRef.PP.getIdentifierTable().get(Name: "begin" ), ColonLoc); |
| 2531 | DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get(Name: "end" ), |
| 2532 | ColonLoc); |
| 2533 | |
| 2534 | LookupResult BeginMemberLookup(SemaRef, BeginNameInfo, |
| 2535 | Sema::LookupMemberName); |
| 2536 | LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName); |
| 2537 | |
| 2538 | auto BuildBegin = [&] { |
| 2539 | *BEF = BEF_begin; |
| 2540 | Sema::ForRangeStatus RangeStatus = |
| 2541 | SemaRef.BuildForRangeBeginEndCall(Loc: ColonLoc, RangeLoc: ColonLoc, NameInfo: BeginNameInfo, |
| 2542 | MemberLookup&: BeginMemberLookup, CandidateSet, |
| 2543 | Range: BeginRange, CallExpr: BeginExpr); |
| 2544 | |
| 2545 | if (RangeStatus != Sema::FRS_Success) { |
| 2546 | if (RangeStatus == Sema::FRS_DiagnosticIssued) |
| 2547 | SemaRef.Diag(Loc: BeginRange->getBeginLoc(), DiagID: diag::note_in_for_range) |
| 2548 | << ColonLoc << BEF_begin << BeginRange->getType(); |
| 2549 | return RangeStatus; |
| 2550 | } |
| 2551 | if (!CoawaitLoc.isInvalid()) { |
| 2552 | // FIXME: getCurScope() should not be used during template instantiation. |
| 2553 | // We should pick up the set of unqualified lookup results for operator |
| 2554 | // co_await during the initial parse. |
| 2555 | *BeginExpr = SemaRef.ActOnCoawaitExpr(S: SemaRef.getCurScope(), KwLoc: ColonLoc, |
| 2556 | E: BeginExpr->get()); |
| 2557 | if (BeginExpr->isInvalid()) |
| 2558 | return Sema::FRS_DiagnosticIssued; |
| 2559 | } |
| 2560 | if (FinishForRangeVarDecl(SemaRef, Decl: BeginVar, Init: BeginExpr->get(), Loc: ColonLoc, |
| 2561 | DiagID: diag::err_for_range_iter_deduction_failure)) { |
| 2562 | NoteForRangeBeginEndFunction(SemaRef, E: BeginExpr->get(), BEF: *BEF); |
| 2563 | return Sema::FRS_DiagnosticIssued; |
| 2564 | } |
| 2565 | return Sema::FRS_Success; |
| 2566 | }; |
| 2567 | |
| 2568 | auto BuildEnd = [&] { |
| 2569 | *BEF = BEF_end; |
| 2570 | Sema::ForRangeStatus RangeStatus = |
| 2571 | SemaRef.BuildForRangeBeginEndCall(Loc: ColonLoc, RangeLoc: ColonLoc, NameInfo: EndNameInfo, |
| 2572 | MemberLookup&: EndMemberLookup, CandidateSet, |
| 2573 | Range: EndRange, CallExpr: EndExpr); |
| 2574 | if (RangeStatus != Sema::FRS_Success) { |
| 2575 | if (RangeStatus == Sema::FRS_DiagnosticIssued) |
| 2576 | SemaRef.Diag(Loc: EndRange->getBeginLoc(), DiagID: diag::note_in_for_range) |
| 2577 | << ColonLoc << BEF_end << EndRange->getType(); |
| 2578 | return RangeStatus; |
| 2579 | } |
| 2580 | if (FinishForRangeVarDecl(SemaRef, Decl: EndVar, Init: EndExpr->get(), Loc: ColonLoc, |
| 2581 | DiagID: diag::err_for_range_iter_deduction_failure)) { |
| 2582 | NoteForRangeBeginEndFunction(SemaRef, E: EndExpr->get(), BEF: *BEF); |
| 2583 | return Sema::FRS_DiagnosticIssued; |
| 2584 | } |
| 2585 | return Sema::FRS_Success; |
| 2586 | }; |
| 2587 | |
| 2588 | if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) { |
| 2589 | // - if _RangeT is a class type, the unqualified-ids begin and end are |
| 2590 | // looked up in the scope of class _RangeT as if by class member access |
| 2591 | // lookup (3.4.5), and if either (or both) finds at least one |
| 2592 | // declaration, begin-expr and end-expr are __range.begin() and |
| 2593 | // __range.end(), respectively; |
| 2594 | SemaRef.LookupQualifiedName(R&: BeginMemberLookup, LookupCtx: D); |
| 2595 | if (BeginMemberLookup.isAmbiguous()) |
| 2596 | return Sema::FRS_DiagnosticIssued; |
| 2597 | |
| 2598 | SemaRef.LookupQualifiedName(R&: EndMemberLookup, LookupCtx: D); |
| 2599 | if (EndMemberLookup.isAmbiguous()) |
| 2600 | return Sema::FRS_DiagnosticIssued; |
| 2601 | |
| 2602 | if (BeginMemberLookup.empty() != EndMemberLookup.empty()) { |
| 2603 | // Look up the non-member form of the member we didn't find, first. |
| 2604 | // This way we prefer a "no viable 'end'" diagnostic over a "i found |
| 2605 | // a 'begin' but ignored it because there was no member 'end'" |
| 2606 | // diagnostic. |
| 2607 | auto BuildNonmember = [&]( |
| 2608 | BeginEndFunction BEFFound, LookupResult &Found, |
| 2609 | llvm::function_ref<Sema::ForRangeStatus()> BuildFound, |
| 2610 | llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) { |
| 2611 | LookupResult OldFound = std::move(Found); |
| 2612 | Found.clear(); |
| 2613 | |
| 2614 | if (Sema::ForRangeStatus Result = BuildNotFound()) |
| 2615 | return Result; |
| 2616 | |
| 2617 | switch (BuildFound()) { |
| 2618 | case Sema::FRS_Success: |
| 2619 | return Sema::FRS_Success; |
| 2620 | |
| 2621 | case Sema::FRS_NoViableFunction: |
| 2622 | CandidateSet->NoteCandidates( |
| 2623 | PA: PartialDiagnosticAt(BeginRange->getBeginLoc(), |
| 2624 | SemaRef.PDiag(DiagID: diag::err_for_range_invalid) |
| 2625 | << BeginRange->getType() << BEFFound), |
| 2626 | S&: SemaRef, OCD: OCD_AllCandidates, Args: BeginRange); |
| 2627 | [[fallthrough]]; |
| 2628 | |
| 2629 | case Sema::FRS_DiagnosticIssued: |
| 2630 | for (NamedDecl *D : OldFound) { |
| 2631 | SemaRef.Diag(Loc: D->getLocation(), |
| 2632 | DiagID: diag::note_for_range_member_begin_end_ignored) |
| 2633 | << BeginRange->getType() << BEFFound; |
| 2634 | } |
| 2635 | return Sema::FRS_DiagnosticIssued; |
| 2636 | } |
| 2637 | llvm_unreachable("unexpected ForRangeStatus" ); |
| 2638 | }; |
| 2639 | if (BeginMemberLookup.empty()) |
| 2640 | return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin); |
| 2641 | return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd); |
| 2642 | } |
| 2643 | } else { |
| 2644 | // - otherwise, begin-expr and end-expr are begin(__range) and |
| 2645 | // end(__range), respectively, where begin and end are looked up with |
| 2646 | // argument-dependent lookup (3.4.2). For the purposes of this name |
| 2647 | // lookup, namespace std is an associated namespace. |
| 2648 | } |
| 2649 | |
| 2650 | if (Sema::ForRangeStatus Result = BuildBegin()) |
| 2651 | return Result; |
| 2652 | return BuildEnd(); |
| 2653 | } |
| 2654 | |
| 2655 | /// Speculatively attempt to dereference an invalid range expression. |
| 2656 | /// If the attempt fails, this function will return a valid, null StmtResult |
| 2657 | /// and emit no diagnostics. |
| 2658 | static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S, |
| 2659 | SourceLocation ForLoc, |
| 2660 | SourceLocation CoawaitLoc, |
| 2661 | Stmt *InitStmt, |
| 2662 | Stmt *LoopVarDecl, |
| 2663 | SourceLocation ColonLoc, |
| 2664 | Expr *Range, |
| 2665 | SourceLocation RangeLoc, |
| 2666 | SourceLocation RParenLoc) { |
| 2667 | // Determine whether we can rebuild the for-range statement with a |
| 2668 | // dereferenced range expression. |
| 2669 | ExprResult AdjustedRange; |
| 2670 | { |
| 2671 | Sema::SFINAETrap Trap(SemaRef); |
| 2672 | |
| 2673 | AdjustedRange = SemaRef.BuildUnaryOp(S, OpLoc: RangeLoc, Opc: UO_Deref, Input: Range); |
| 2674 | if (AdjustedRange.isInvalid()) |
| 2675 | return StmtResult(); |
| 2676 | |
| 2677 | StmtResult SR = SemaRef.ActOnCXXForRangeStmt( |
| 2678 | S, ForLoc, CoawaitLoc, InitStmt, First: LoopVarDecl, ColonLoc, |
| 2679 | Range: AdjustedRange.get(), RParenLoc, Kind: Sema::BFRK_Check); |
| 2680 | if (SR.isInvalid()) |
| 2681 | return StmtResult(); |
| 2682 | } |
| 2683 | |
| 2684 | // The attempt to dereference worked well enough that it could produce a valid |
| 2685 | // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in |
| 2686 | // case there are any other (non-fatal) problems with it. |
| 2687 | SemaRef.Diag(Loc: RangeLoc, DiagID: diag::err_for_range_dereference) |
| 2688 | << Range->getType() << FixItHint::CreateInsertion(InsertionLoc: RangeLoc, Code: "*" ); |
| 2689 | return SemaRef.ActOnCXXForRangeStmt( |
| 2690 | S, ForLoc, CoawaitLoc, InitStmt, First: LoopVarDecl, ColonLoc, |
| 2691 | Range: AdjustedRange.get(), RParenLoc, Kind: Sema::BFRK_Rebuild); |
| 2692 | } |
| 2693 | |
| 2694 | StmtResult Sema::BuildCXXForRangeStmt( |
| 2695 | SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, |
| 2696 | SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *Begin, Stmt *End, |
| 2697 | Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc, |
| 2698 | BuildForRangeKind Kind, |
| 2699 | ArrayRef<MaterializeTemporaryExpr *> LifetimeExtendTemps) { |
| 2700 | // FIXME: This should not be used during template instantiation. We should |
| 2701 | // pick up the set of unqualified lookup results for the != and + operators |
| 2702 | // in the initial parse. |
| 2703 | // |
| 2704 | // Testcase (accepts-invalid): |
| 2705 | // template<typename T> void f() { for (auto x : T()) {} } |
| 2706 | // namespace N { struct X { X begin(); X end(); int operator*(); }; } |
| 2707 | // bool operator!=(N::X, N::X); void operator++(N::X); |
| 2708 | // void g() { f<N::X>(); } |
| 2709 | Scope *S = getCurScope(); |
| 2710 | |
| 2711 | DeclStmt *RangeDS = cast<DeclStmt>(Val: RangeDecl); |
| 2712 | VarDecl *RangeVar = cast<VarDecl>(Val: RangeDS->getSingleDecl()); |
| 2713 | QualType RangeVarType = RangeVar->getType(); |
| 2714 | |
| 2715 | DeclStmt *LoopVarDS = cast<DeclStmt>(Val: LoopVarDecl); |
| 2716 | VarDecl *LoopVar = cast<VarDecl>(Val: LoopVarDS->getSingleDecl()); |
| 2717 | |
| 2718 | StmtResult BeginDeclStmt = Begin; |
| 2719 | StmtResult EndDeclStmt = End; |
| 2720 | ExprResult NotEqExpr = Cond, IncrExpr = Inc; |
| 2721 | |
| 2722 | if (RangeVarType->isDependentType()) { |
| 2723 | // The range is implicitly used as a placeholder when it is dependent. |
| 2724 | RangeVar->markUsed(C&: Context); |
| 2725 | |
| 2726 | // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill |
| 2727 | // them in properly when we instantiate the loop. |
| 2728 | if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { |
| 2729 | if (auto *DD = dyn_cast<DecompositionDecl>(Val: LoopVar)) |
| 2730 | for (auto *Binding : DD->bindings()) { |
| 2731 | if (!Binding->isParameterPack()) |
| 2732 | Binding->setType(Context.DependentTy); |
| 2733 | } |
| 2734 | LoopVar->setType(SubstAutoTypeDependent(TypeWithAuto: LoopVar->getType())); |
| 2735 | } |
| 2736 | } else if (!BeginDeclStmt.get()) { |
| 2737 | SourceLocation RangeLoc = RangeVar->getLocation(); |
| 2738 | |
| 2739 | const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType(); |
| 2740 | |
| 2741 | ExprResult BeginRangeRef = BuildDeclRefExpr(D: RangeVar, Ty: RangeVarNonRefType, |
| 2742 | VK: VK_LValue, Loc: ColonLoc); |
| 2743 | if (BeginRangeRef.isInvalid()) |
| 2744 | return StmtError(); |
| 2745 | |
| 2746 | ExprResult EndRangeRef = BuildDeclRefExpr(D: RangeVar, Ty: RangeVarNonRefType, |
| 2747 | VK: VK_LValue, Loc: ColonLoc); |
| 2748 | if (EndRangeRef.isInvalid()) |
| 2749 | return StmtError(); |
| 2750 | |
| 2751 | QualType AutoType = Context.getAutoDeductType(); |
| 2752 | Expr *Range = RangeVar->getInit(); |
| 2753 | if (!Range) |
| 2754 | return StmtError(); |
| 2755 | QualType RangeType = Range->getType(); |
| 2756 | |
| 2757 | if (RequireCompleteType(Loc: RangeLoc, T: RangeType, |
| 2758 | DiagID: diag::err_for_range_incomplete_type)) |
| 2759 | return StmtError(); |
| 2760 | |
| 2761 | // P2718R0 - Lifetime extension in range-based for loops. |
| 2762 | if (getLangOpts().CPlusPlus23 && !LifetimeExtendTemps.empty()) { |
| 2763 | InitializedEntity Entity = |
| 2764 | InitializedEntity::InitializeVariable(Var: RangeVar); |
| 2765 | for (auto *MTE : LifetimeExtendTemps) |
| 2766 | MTE->setExtendingDecl(ExtendedBy: RangeVar, ManglingNumber: Entity.allocateManglingNumber()); |
| 2767 | } |
| 2768 | |
| 2769 | // Build auto __begin = begin-expr, __end = end-expr. |
| 2770 | // Divide by 2, since the variables are in the inner scope (loop body). |
| 2771 | const auto DepthStr = std::to_string(val: S->getDepth() / 2); |
| 2772 | VarDecl *BeginVar = BuildForRangeVarDecl(SemaRef&: *this, Loc: ColonLoc, Type: AutoType, |
| 2773 | Name: std::string("__begin" ) + DepthStr); |
| 2774 | VarDecl *EndVar = BuildForRangeVarDecl(SemaRef&: *this, Loc: ColonLoc, Type: AutoType, |
| 2775 | Name: std::string("__end" ) + DepthStr); |
| 2776 | |
| 2777 | // Build begin-expr and end-expr and attach to __begin and __end variables. |
| 2778 | ExprResult BeginExpr, EndExpr; |
| 2779 | if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) { |
| 2780 | // - if _RangeT is an array type, begin-expr and end-expr are __range and |
| 2781 | // __range + __bound, respectively, where __bound is the array bound. If |
| 2782 | // _RangeT is an array of unknown size or an array of incomplete type, |
| 2783 | // the program is ill-formed; |
| 2784 | |
| 2785 | // begin-expr is __range. |
| 2786 | BeginExpr = BeginRangeRef; |
| 2787 | if (!CoawaitLoc.isInvalid()) { |
| 2788 | BeginExpr = ActOnCoawaitExpr(S, KwLoc: ColonLoc, E: BeginExpr.get()); |
| 2789 | if (BeginExpr.isInvalid()) |
| 2790 | return StmtError(); |
| 2791 | } |
| 2792 | if (FinishForRangeVarDecl(SemaRef&: *this, Decl: BeginVar, Init: BeginRangeRef.get(), Loc: ColonLoc, |
| 2793 | DiagID: diag::err_for_range_iter_deduction_failure)) { |
| 2794 | NoteForRangeBeginEndFunction(SemaRef&: *this, E: BeginExpr.get(), BEF: BEF_begin); |
| 2795 | return StmtError(); |
| 2796 | } |
| 2797 | |
| 2798 | // Find the array bound. |
| 2799 | ExprResult BoundExpr; |
| 2800 | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(Val: UnqAT)) |
| 2801 | BoundExpr = IntegerLiteral::Create( |
| 2802 | C: Context, V: CAT->getSize(), type: Context.getPointerDiffType(), l: RangeLoc); |
| 2803 | else if (const VariableArrayType *VAT = |
| 2804 | dyn_cast<VariableArrayType>(Val: UnqAT)) { |
| 2805 | // For a variably modified type we can't just use the expression within |
| 2806 | // the array bounds, since we don't want that to be re-evaluated here. |
| 2807 | // Rather, we need to determine what it was when the array was first |
| 2808 | // created - so we resort to using sizeof(vla)/sizeof(element). |
| 2809 | // For e.g. |
| 2810 | // void f(int b) { |
| 2811 | // int vla[b]; |
| 2812 | // b = -1; <-- This should not affect the num of iterations below |
| 2813 | // for (int &c : vla) { .. } |
| 2814 | // } |
| 2815 | |
| 2816 | // FIXME: This results in codegen generating IR that recalculates the |
| 2817 | // run-time number of elements (as opposed to just using the IR Value |
| 2818 | // that corresponds to the run-time value of each bound that was |
| 2819 | // generated when the array was created.) If this proves too embarrassing |
| 2820 | // even for unoptimized IR, consider passing a magic-value/cookie to |
| 2821 | // codegen that then knows to simply use that initial llvm::Value (that |
| 2822 | // corresponds to the bound at time of array creation) within |
| 2823 | // getelementptr. But be prepared to pay the price of increasing a |
| 2824 | // customized form of coupling between the two components - which could |
| 2825 | // be hard to maintain as the codebase evolves. |
| 2826 | |
| 2827 | ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr( |
| 2828 | OpLoc: EndVar->getLocation(), ExprKind: UETT_SizeOf, |
| 2829 | /*IsType=*/true, |
| 2830 | TyOrEx: CreateParsedType(T: VAT->desugar(), TInfo: Context.getTrivialTypeSourceInfo( |
| 2831 | T: VAT->desugar(), Loc: RangeLoc)) |
| 2832 | .getAsOpaquePtr(), |
| 2833 | ArgRange: EndVar->getSourceRange()); |
| 2834 | if (SizeOfVLAExprR.isInvalid()) |
| 2835 | return StmtError(); |
| 2836 | |
| 2837 | ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr( |
| 2838 | OpLoc: EndVar->getLocation(), ExprKind: UETT_SizeOf, |
| 2839 | /*IsType=*/true, |
| 2840 | TyOrEx: CreateParsedType(T: VAT->desugar(), |
| 2841 | TInfo: Context.getTrivialTypeSourceInfo( |
| 2842 | T: VAT->getElementType(), Loc: RangeLoc)) |
| 2843 | .getAsOpaquePtr(), |
| 2844 | ArgRange: EndVar->getSourceRange()); |
| 2845 | if (SizeOfEachElementExprR.isInvalid()) |
| 2846 | return StmtError(); |
| 2847 | |
| 2848 | BoundExpr = |
| 2849 | ActOnBinOp(S, TokLoc: EndVar->getLocation(), Kind: tok::slash, |
| 2850 | LHSExpr: SizeOfVLAExprR.get(), RHSExpr: SizeOfEachElementExprR.get()); |
| 2851 | if (BoundExpr.isInvalid()) |
| 2852 | return StmtError(); |
| 2853 | |
| 2854 | } else { |
| 2855 | // Can't be a DependentSizedArrayType or an IncompleteArrayType since |
| 2856 | // UnqAT is not incomplete and Range is not type-dependent. |
| 2857 | llvm_unreachable("Unexpected array type in for-range" ); |
| 2858 | } |
| 2859 | |
| 2860 | // end-expr is __range + __bound. |
| 2861 | EndExpr = ActOnBinOp(S, TokLoc: ColonLoc, Kind: tok::plus, LHSExpr: EndRangeRef.get(), |
| 2862 | RHSExpr: BoundExpr.get()); |
| 2863 | if (EndExpr.isInvalid()) |
| 2864 | return StmtError(); |
| 2865 | if (FinishForRangeVarDecl(SemaRef&: *this, Decl: EndVar, Init: EndExpr.get(), Loc: ColonLoc, |
| 2866 | DiagID: diag::err_for_range_iter_deduction_failure)) { |
| 2867 | NoteForRangeBeginEndFunction(SemaRef&: *this, E: EndExpr.get(), BEF: BEF_end); |
| 2868 | return StmtError(); |
| 2869 | } |
| 2870 | } else { |
| 2871 | OverloadCandidateSet CandidateSet(RangeLoc, |
| 2872 | OverloadCandidateSet::CSK_Normal); |
| 2873 | BeginEndFunction BEFFailure; |
| 2874 | ForRangeStatus RangeStatus = BuildNonArrayForRange( |
| 2875 | SemaRef&: *this, BeginRange: BeginRangeRef.get(), EndRange: EndRangeRef.get(), RangeType, BeginVar, |
| 2876 | EndVar, ColonLoc, CoawaitLoc, CandidateSet: &CandidateSet, BeginExpr: &BeginExpr, EndExpr: &EndExpr, |
| 2877 | BEF: &BEFFailure); |
| 2878 | |
| 2879 | if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction && |
| 2880 | BEFFailure == BEF_begin) { |
| 2881 | // If the range is being built from an array parameter, emit a |
| 2882 | // a diagnostic that it is being treated as a pointer. |
| 2883 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Range)) { |
| 2884 | if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Val: DRE->getDecl())) { |
| 2885 | QualType ArrayTy = PVD->getOriginalType(); |
| 2886 | QualType PointerTy = PVD->getType(); |
| 2887 | if (PointerTy->isPointerType() && ArrayTy->isArrayType()) { |
| 2888 | Diag(Loc: Range->getBeginLoc(), DiagID: diag::err_range_on_array_parameter) |
| 2889 | << RangeLoc << PVD << ArrayTy << PointerTy; |
| 2890 | Diag(Loc: PVD->getLocation(), DiagID: diag::note_declared_at); |
| 2891 | return StmtError(); |
| 2892 | } |
| 2893 | } |
| 2894 | } |
| 2895 | |
| 2896 | // If building the range failed, try dereferencing the range expression |
| 2897 | // unless a diagnostic was issued or the end function is problematic. |
| 2898 | StmtResult SR = RebuildForRangeWithDereference(SemaRef&: *this, S, ForLoc, |
| 2899 | CoawaitLoc, InitStmt, |
| 2900 | LoopVarDecl, ColonLoc, |
| 2901 | Range, RangeLoc, |
| 2902 | RParenLoc); |
| 2903 | if (SR.isInvalid() || SR.isUsable()) |
| 2904 | return SR; |
| 2905 | } |
| 2906 | |
| 2907 | // Otherwise, emit diagnostics if we haven't already. |
| 2908 | if (RangeStatus == FRS_NoViableFunction) { |
| 2909 | Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get(); |
| 2910 | CandidateSet.NoteCandidates( |
| 2911 | PA: PartialDiagnosticAt(Range->getBeginLoc(), |
| 2912 | PDiag(DiagID: diag::err_for_range_invalid) |
| 2913 | << RangeLoc << Range->getType() |
| 2914 | << BEFFailure), |
| 2915 | S&: *this, OCD: OCD_AllCandidates, Args: Range); |
| 2916 | } |
| 2917 | // Return an error if no fix was discovered. |
| 2918 | if (RangeStatus != FRS_Success) |
| 2919 | return StmtError(); |
| 2920 | } |
| 2921 | |
| 2922 | assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() && |
| 2923 | "invalid range expression in for loop" ); |
| 2924 | |
| 2925 | // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same. |
| 2926 | // C++1z removes this restriction. |
| 2927 | QualType BeginType = BeginVar->getType(), EndType = EndVar->getType(); |
| 2928 | if (!Context.hasSameType(T1: BeginType, T2: EndType)) { |
| 2929 | Diag(Loc: RangeLoc, DiagID: getLangOpts().CPlusPlus17 |
| 2930 | ? diag::warn_for_range_begin_end_types_differ |
| 2931 | : diag::ext_for_range_begin_end_types_differ) |
| 2932 | << BeginType << EndType; |
| 2933 | NoteForRangeBeginEndFunction(SemaRef&: *this, E: BeginExpr.get(), BEF: BEF_begin); |
| 2934 | NoteForRangeBeginEndFunction(SemaRef&: *this, E: EndExpr.get(), BEF: BEF_end); |
| 2935 | } |
| 2936 | |
| 2937 | BeginDeclStmt = |
| 2938 | ActOnDeclStmt(dg: ConvertDeclToDeclGroup(Ptr: BeginVar), StartLoc: ColonLoc, EndLoc: ColonLoc); |
| 2939 | EndDeclStmt = |
| 2940 | ActOnDeclStmt(dg: ConvertDeclToDeclGroup(Ptr: EndVar), StartLoc: ColonLoc, EndLoc: ColonLoc); |
| 2941 | |
| 2942 | const QualType BeginRefNonRefType = BeginType.getNonReferenceType(); |
| 2943 | ExprResult BeginRef = BuildDeclRefExpr(D: BeginVar, Ty: BeginRefNonRefType, |
| 2944 | VK: VK_LValue, Loc: ColonLoc); |
| 2945 | if (BeginRef.isInvalid()) |
| 2946 | return StmtError(); |
| 2947 | |
| 2948 | ExprResult EndRef = BuildDeclRefExpr(D: EndVar, Ty: EndType.getNonReferenceType(), |
| 2949 | VK: VK_LValue, Loc: ColonLoc); |
| 2950 | if (EndRef.isInvalid()) |
| 2951 | return StmtError(); |
| 2952 | |
| 2953 | // Build and check __begin != __end expression. |
| 2954 | NotEqExpr = ActOnBinOp(S, TokLoc: ColonLoc, Kind: tok::exclaimequal, |
| 2955 | LHSExpr: BeginRef.get(), RHSExpr: EndRef.get()); |
| 2956 | if (!NotEqExpr.isInvalid()) |
| 2957 | NotEqExpr = CheckBooleanCondition(Loc: ColonLoc, E: NotEqExpr.get()); |
| 2958 | if (!NotEqExpr.isInvalid()) |
| 2959 | NotEqExpr = |
| 2960 | ActOnFinishFullExpr(Expr: NotEqExpr.get(), /*DiscardedValue*/ false); |
| 2961 | if (NotEqExpr.isInvalid()) { |
| 2962 | Diag(Loc: RangeLoc, DiagID: diag::note_for_range_invalid_iterator) |
| 2963 | << RangeLoc << 0 << BeginRangeRef.get()->getType(); |
| 2964 | NoteForRangeBeginEndFunction(SemaRef&: *this, E: BeginExpr.get(), BEF: BEF_begin); |
| 2965 | if (!Context.hasSameType(T1: BeginType, T2: EndType)) |
| 2966 | NoteForRangeBeginEndFunction(SemaRef&: *this, E: EndExpr.get(), BEF: BEF_end); |
| 2967 | return StmtError(); |
| 2968 | } |
| 2969 | |
| 2970 | // Build and check ++__begin expression. |
| 2971 | BeginRef = BuildDeclRefExpr(D: BeginVar, Ty: BeginRefNonRefType, |
| 2972 | VK: VK_LValue, Loc: ColonLoc); |
| 2973 | if (BeginRef.isInvalid()) |
| 2974 | return StmtError(); |
| 2975 | |
| 2976 | IncrExpr = ActOnUnaryOp(S, OpLoc: ColonLoc, Op: tok::plusplus, Input: BeginRef.get()); |
| 2977 | if (!IncrExpr.isInvalid() && CoawaitLoc.isValid()) |
| 2978 | // FIXME: getCurScope() should not be used during template instantiation. |
| 2979 | // We should pick up the set of unqualified lookup results for operator |
| 2980 | // co_await during the initial parse. |
| 2981 | IncrExpr = ActOnCoawaitExpr(S, KwLoc: CoawaitLoc, E: IncrExpr.get()); |
| 2982 | if (!IncrExpr.isInvalid()) |
| 2983 | IncrExpr = ActOnFinishFullExpr(Expr: IncrExpr.get(), /*DiscardedValue*/ false); |
| 2984 | if (IncrExpr.isInvalid()) { |
| 2985 | Diag(Loc: RangeLoc, DiagID: diag::note_for_range_invalid_iterator) |
| 2986 | << RangeLoc << 2 << BeginRangeRef.get()->getType() ; |
| 2987 | NoteForRangeBeginEndFunction(SemaRef&: *this, E: BeginExpr.get(), BEF: BEF_begin); |
| 2988 | return StmtError(); |
| 2989 | } |
| 2990 | |
| 2991 | // Build and check *__begin expression. |
| 2992 | BeginRef = BuildDeclRefExpr(D: BeginVar, Ty: BeginRefNonRefType, |
| 2993 | VK: VK_LValue, Loc: ColonLoc); |
| 2994 | if (BeginRef.isInvalid()) |
| 2995 | return StmtError(); |
| 2996 | |
| 2997 | ExprResult DerefExpr = ActOnUnaryOp(S, OpLoc: ColonLoc, Op: tok::star, Input: BeginRef.get()); |
| 2998 | if (DerefExpr.isInvalid()) { |
| 2999 | Diag(Loc: RangeLoc, DiagID: diag::note_for_range_invalid_iterator) |
| 3000 | << RangeLoc << 1 << BeginRangeRef.get()->getType(); |
| 3001 | NoteForRangeBeginEndFunction(SemaRef&: *this, E: BeginExpr.get(), BEF: BEF_begin); |
| 3002 | return StmtError(); |
| 3003 | } |
| 3004 | |
| 3005 | // Attach *__begin as initializer for VD. Don't touch it if we're just |
| 3006 | // trying to determine whether this would be a valid range. |
| 3007 | if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { |
| 3008 | AddInitializerToDecl(dcl: LoopVar, init: DerefExpr.get(), /*DirectInit=*/false); |
| 3009 | if (LoopVar->isInvalidDecl() || |
| 3010 | (LoopVar->getInit() && LoopVar->getInit()->containsErrors())) |
| 3011 | NoteForRangeBeginEndFunction(SemaRef&: *this, E: BeginExpr.get(), BEF: BEF_begin); |
| 3012 | } |
| 3013 | } |
| 3014 | |
| 3015 | // Don't bother to actually allocate the result if we're just trying to |
| 3016 | // determine whether it would be valid. |
| 3017 | if (Kind == BFRK_Check) |
| 3018 | return StmtResult(); |
| 3019 | |
| 3020 | // In OpenMP loop region loop control variable must be private. Perform |
| 3021 | // analysis of first part (if any). |
| 3022 | if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable()) |
| 3023 | OpenMP().ActOnOpenMPLoopInitialization(ForLoc, Init: BeginDeclStmt.get()); |
| 3024 | |
| 3025 | return new (Context) CXXForRangeStmt( |
| 3026 | InitStmt, RangeDS, cast_or_null<DeclStmt>(Val: BeginDeclStmt.get()), |
| 3027 | cast_or_null<DeclStmt>(Val: EndDeclStmt.get()), NotEqExpr.get(), |
| 3028 | IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc, |
| 3029 | ColonLoc, RParenLoc); |
| 3030 | } |
| 3031 | |
| 3032 | // Warn when the loop variable is a const reference that creates a copy. |
| 3033 | // Suggest using the non-reference type for copies. If a copy can be prevented |
| 3034 | // suggest the const reference type that would do so. |
| 3035 | // For instance, given "for (const &Foo : Range)", suggest |
| 3036 | // "for (const Foo : Range)" to denote a copy is made for the loop. If |
| 3037 | // possible, also suggest "for (const &Bar : Range)" if this type prevents |
| 3038 | // the copy altogether. |
| 3039 | static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef, |
| 3040 | const VarDecl *VD, |
| 3041 | QualType RangeInitType) { |
| 3042 | const Expr *InitExpr = VD->getInit(); |
| 3043 | if (!InitExpr) |
| 3044 | return; |
| 3045 | |
| 3046 | QualType VariableType = VD->getType(); |
| 3047 | |
| 3048 | if (auto Cleanups = dyn_cast<ExprWithCleanups>(Val: InitExpr)) |
| 3049 | if (!Cleanups->cleanupsHaveSideEffects()) |
| 3050 | InitExpr = Cleanups->getSubExpr(); |
| 3051 | |
| 3052 | const MaterializeTemporaryExpr *MTE = |
| 3053 | dyn_cast<MaterializeTemporaryExpr>(Val: InitExpr); |
| 3054 | |
| 3055 | // No copy made. |
| 3056 | if (!MTE) |
| 3057 | return; |
| 3058 | |
| 3059 | const Expr *E = MTE->getSubExpr()->IgnoreImpCasts(); |
| 3060 | |
| 3061 | // Searching for either UnaryOperator for dereference of a pointer or |
| 3062 | // CXXOperatorCallExpr for handling iterators. |
| 3063 | while (!isa<CXXOperatorCallExpr>(Val: E) && !isa<UnaryOperator>(Val: E)) { |
| 3064 | if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Val: E)) { |
| 3065 | E = CCE->getArg(Arg: 0); |
| 3066 | } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(Val: E)) { |
| 3067 | const MemberExpr *ME = cast<MemberExpr>(Val: Call->getCallee()); |
| 3068 | E = ME->getBase(); |
| 3069 | } else { |
| 3070 | const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(Val: E); |
| 3071 | E = MTE->getSubExpr(); |
| 3072 | } |
| 3073 | E = E->IgnoreImpCasts(); |
| 3074 | } |
| 3075 | |
| 3076 | QualType ReferenceReturnType; |
| 3077 | if (isa<UnaryOperator>(Val: E)) { |
| 3078 | ReferenceReturnType = SemaRef.Context.getLValueReferenceType(T: E->getType()); |
| 3079 | } else { |
| 3080 | const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(Val: E); |
| 3081 | const FunctionDecl *FD = Call->getDirectCallee(); |
| 3082 | QualType ReturnType = FD->getReturnType(); |
| 3083 | if (ReturnType->isReferenceType()) |
| 3084 | ReferenceReturnType = ReturnType; |
| 3085 | } |
| 3086 | |
| 3087 | if (!ReferenceReturnType.isNull()) { |
| 3088 | // Loop variable creates a temporary. Suggest either to go with |
| 3089 | // non-reference loop variable to indicate a copy is made, or |
| 3090 | // the correct type to bind a const reference. |
| 3091 | SemaRef.Diag(Loc: VD->getLocation(), |
| 3092 | DiagID: diag::warn_for_range_const_ref_binds_temp_built_from_ref) |
| 3093 | << VD << VariableType << ReferenceReturnType; |
| 3094 | QualType NonReferenceType = VariableType.getNonReferenceType(); |
| 3095 | NonReferenceType.removeLocalConst(); |
| 3096 | QualType NewReferenceType = |
| 3097 | SemaRef.Context.getLValueReferenceType(T: E->getType().withConst()); |
| 3098 | SemaRef.Diag(Loc: VD->getBeginLoc(), DiagID: diag::note_use_type_or_non_reference) |
| 3099 | << NonReferenceType << NewReferenceType << VD->getSourceRange() |
| 3100 | << FixItHint::CreateRemoval(RemoveRange: VD->getTypeSpecEndLoc()); |
| 3101 | } else if (!VariableType->isRValueReferenceType()) { |
| 3102 | // The range always returns a copy, so a temporary is always created. |
| 3103 | // Suggest removing the reference from the loop variable. |
| 3104 | // If the type is a rvalue reference do not warn since that changes the |
| 3105 | // semantic of the code. |
| 3106 | SemaRef.Diag(Loc: VD->getLocation(), DiagID: diag::warn_for_range_ref_binds_ret_temp) |
| 3107 | << VD << RangeInitType; |
| 3108 | QualType NonReferenceType = VariableType.getNonReferenceType(); |
| 3109 | NonReferenceType.removeLocalConst(); |
| 3110 | SemaRef.Diag(Loc: VD->getBeginLoc(), DiagID: diag::note_use_non_reference_type) |
| 3111 | << NonReferenceType << VD->getSourceRange() |
| 3112 | << FixItHint::CreateRemoval(RemoveRange: VD->getTypeSpecEndLoc()); |
| 3113 | } |
| 3114 | } |
| 3115 | |
| 3116 | /// Determines whether the @p VariableType's declaration is a record with the |
| 3117 | /// clang::trivial_abi attribute. |
| 3118 | static bool hasTrivialABIAttr(QualType VariableType) { |
| 3119 | if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl()) |
| 3120 | return RD->hasAttr<TrivialABIAttr>(); |
| 3121 | |
| 3122 | return false; |
| 3123 | } |
| 3124 | |
| 3125 | // Warns when the loop variable can be changed to a reference type to |
| 3126 | // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest |
| 3127 | // "for (const Foo &x : Range)" if this form does not make a copy. |
| 3128 | static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef, |
| 3129 | const VarDecl *VD) { |
| 3130 | const Expr *InitExpr = VD->getInit(); |
| 3131 | if (!InitExpr) |
| 3132 | return; |
| 3133 | |
| 3134 | QualType VariableType = VD->getType(); |
| 3135 | |
| 3136 | if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Val: InitExpr)) { |
| 3137 | if (!CE->getConstructor()->isCopyConstructor()) |
| 3138 | return; |
| 3139 | } else if (const CastExpr *CE = dyn_cast<CastExpr>(Val: InitExpr)) { |
| 3140 | if (CE->getCastKind() != CK_LValueToRValue) |
| 3141 | return; |
| 3142 | } else { |
| 3143 | return; |
| 3144 | } |
| 3145 | |
| 3146 | // Small trivially copyable types are cheap to copy. Do not emit the |
| 3147 | // diagnostic for these instances. 64 bytes is a common size of a cache line. |
| 3148 | // (The function `getTypeSize` returns the size in bits.) |
| 3149 | ASTContext &Ctx = SemaRef.Context; |
| 3150 | if (Ctx.getTypeSize(T: VariableType) <= 64 * 8 && |
| 3151 | (VariableType.isTriviallyCopyConstructibleType(Context: Ctx) || |
| 3152 | hasTrivialABIAttr(VariableType))) |
| 3153 | return; |
| 3154 | |
| 3155 | // Suggest changing from a const variable to a const reference variable |
| 3156 | // if doing so will prevent a copy. |
| 3157 | SemaRef.Diag(Loc: VD->getLocation(), DiagID: diag::warn_for_range_copy) |
| 3158 | << VD << VariableType; |
| 3159 | SemaRef.Diag(Loc: VD->getBeginLoc(), DiagID: diag::note_use_reference_type) |
| 3160 | << SemaRef.Context.getLValueReferenceType(T: VariableType) |
| 3161 | << VD->getSourceRange() |
| 3162 | << FixItHint::CreateInsertion(InsertionLoc: VD->getLocation(), Code: "&" ); |
| 3163 | } |
| 3164 | |
| 3165 | /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them. |
| 3166 | /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest |
| 3167 | /// using "const foo x" to show that a copy is made |
| 3168 | /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar. |
| 3169 | /// Suggest either "const bar x" to keep the copying or "const foo& x" to |
| 3170 | /// prevent the copy. |
| 3171 | /// 3) for (const foo x : foos) where x is constructed from a reference foo. |
| 3172 | /// Suggest "const foo &x" to prevent the copy. |
| 3173 | static void DiagnoseForRangeVariableCopies(Sema &SemaRef, |
| 3174 | const CXXForRangeStmt *ForStmt) { |
| 3175 | if (SemaRef.inTemplateInstantiation()) |
| 3176 | return; |
| 3177 | |
| 3178 | SourceLocation Loc = ForStmt->getBeginLoc(); |
| 3179 | if (SemaRef.Diags.isIgnored( |
| 3180 | DiagID: diag::warn_for_range_const_ref_binds_temp_built_from_ref, Loc) && |
| 3181 | SemaRef.Diags.isIgnored(DiagID: diag::warn_for_range_ref_binds_ret_temp, Loc) && |
| 3182 | SemaRef.Diags.isIgnored(DiagID: diag::warn_for_range_copy, Loc)) { |
| 3183 | return; |
| 3184 | } |
| 3185 | |
| 3186 | const VarDecl *VD = ForStmt->getLoopVariable(); |
| 3187 | if (!VD) |
| 3188 | return; |
| 3189 | |
| 3190 | QualType VariableType = VD->getType(); |
| 3191 | |
| 3192 | if (VariableType->isIncompleteType()) |
| 3193 | return; |
| 3194 | |
| 3195 | const Expr *InitExpr = VD->getInit(); |
| 3196 | if (!InitExpr) |
| 3197 | return; |
| 3198 | |
| 3199 | if (InitExpr->getExprLoc().isMacroID()) |
| 3200 | return; |
| 3201 | |
| 3202 | if (VariableType->isReferenceType()) { |
| 3203 | DiagnoseForRangeReferenceVariableCopies(SemaRef, VD, |
| 3204 | RangeInitType: ForStmt->getRangeInit()->getType()); |
| 3205 | } else if (VariableType.isConstQualified()) { |
| 3206 | DiagnoseForRangeConstVariableCopies(SemaRef, VD); |
| 3207 | } |
| 3208 | } |
| 3209 | |
| 3210 | StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) { |
| 3211 | if (!S || !B) |
| 3212 | return StmtError(); |
| 3213 | |
| 3214 | if (isa<ObjCForCollectionStmt>(Val: S)) |
| 3215 | return ObjC().FinishObjCForCollectionStmt(ForCollection: S, Body: B); |
| 3216 | |
| 3217 | CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(Val: S); |
| 3218 | ForStmt->setBody(B); |
| 3219 | |
| 3220 | DiagnoseEmptyStmtBody(StmtLoc: ForStmt->getRParenLoc(), Body: B, |
| 3221 | DiagID: diag::warn_empty_range_based_for_body); |
| 3222 | |
| 3223 | DiagnoseForRangeVariableCopies(SemaRef&: *this, ForStmt); |
| 3224 | |
| 3225 | return S; |
| 3226 | } |
| 3227 | |
| 3228 | StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc, |
| 3229 | SourceLocation LabelLoc, |
| 3230 | LabelDecl *TheDecl) { |
| 3231 | setFunctionHasBranchIntoScope(); |
| 3232 | |
| 3233 | // If this goto is in a compute construct scope, we need to make sure we check |
| 3234 | // gotos in/out. |
| 3235 | if (getCurScope()->isInOpenACCComputeConstructScope()) |
| 3236 | setFunctionHasBranchProtectedScope(); |
| 3237 | |
| 3238 | TheDecl->markUsed(C&: Context); |
| 3239 | return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc); |
| 3240 | } |
| 3241 | |
| 3242 | StmtResult |
| 3243 | Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, |
| 3244 | Expr *E) { |
| 3245 | // Convert operand to void* |
| 3246 | if (!E->isTypeDependent()) { |
| 3247 | QualType ETy = E->getType(); |
| 3248 | QualType DestTy = Context.getPointerType(T: Context.VoidTy.withConst()); |
| 3249 | ExprResult ExprRes = E; |
| 3250 | AssignConvertType ConvTy = |
| 3251 | CheckSingleAssignmentConstraints(LHSType: DestTy, RHS&: ExprRes); |
| 3252 | if (ExprRes.isInvalid()) |
| 3253 | return StmtError(); |
| 3254 | E = ExprRes.get(); |
| 3255 | if (DiagnoseAssignmentResult(ConvTy, Loc: StarLoc, DstType: DestTy, SrcType: ETy, SrcExpr: E, |
| 3256 | Action: AssignmentAction::Passing)) |
| 3257 | return StmtError(); |
| 3258 | } |
| 3259 | |
| 3260 | ExprResult ExprRes = ActOnFinishFullExpr(Expr: E, /*DiscardedValue*/ false); |
| 3261 | if (ExprRes.isInvalid()) |
| 3262 | return StmtError(); |
| 3263 | E = ExprRes.get(); |
| 3264 | |
| 3265 | setFunctionHasIndirectGoto(); |
| 3266 | |
| 3267 | // If this goto is in a compute construct scope, we need to make sure we |
| 3268 | // check gotos in/out. |
| 3269 | if (getCurScope()->isInOpenACCComputeConstructScope()) |
| 3270 | setFunctionHasBranchProtectedScope(); |
| 3271 | |
| 3272 | return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E); |
| 3273 | } |
| 3274 | |
| 3275 | static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc, |
| 3276 | const Scope &DestScope) { |
| 3277 | if (!S.CurrentSEHFinally.empty() && |
| 3278 | DestScope.Contains(rhs: *S.CurrentSEHFinally.back())) { |
| 3279 | S.Diag(Loc, DiagID: diag::warn_jump_out_of_seh_finally); |
| 3280 | } |
| 3281 | } |
| 3282 | |
| 3283 | StmtResult |
| 3284 | Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { |
| 3285 | Scope *S = CurScope->getContinueParent(); |
| 3286 | if (!S) { |
| 3287 | // C99 6.8.6.2p1: A break shall appear only in or as a loop body. |
| 3288 | return StmtError(Diag(Loc: ContinueLoc, DiagID: diag::err_continue_not_in_loop)); |
| 3289 | } |
| 3290 | if (S->isConditionVarScope()) { |
| 3291 | // We cannot 'continue;' from within a statement expression in the |
| 3292 | // initializer of a condition variable because we would jump past the |
| 3293 | // initialization of that variable. |
| 3294 | return StmtError(Diag(Loc: ContinueLoc, DiagID: diag::err_continue_from_cond_var_init)); |
| 3295 | } |
| 3296 | |
| 3297 | // A 'continue' that would normally have execution continue on a block outside |
| 3298 | // of a compute construct counts as 'branching out of' the compute construct, |
| 3299 | // so diagnose here. |
| 3300 | if (S->isOpenACCComputeConstructScope()) |
| 3301 | return StmtError( |
| 3302 | Diag(Loc: ContinueLoc, DiagID: diag::err_acc_branch_in_out_compute_construct) |
| 3303 | << /*branch*/ 0 << /*out of */ 0); |
| 3304 | |
| 3305 | CheckJumpOutOfSEHFinally(S&: *this, Loc: ContinueLoc, DestScope: *S); |
| 3306 | |
| 3307 | return new (Context) ContinueStmt(ContinueLoc); |
| 3308 | } |
| 3309 | |
| 3310 | StmtResult |
| 3311 | Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { |
| 3312 | Scope *S = CurScope->getBreakParent(); |
| 3313 | if (!S) { |
| 3314 | // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. |
| 3315 | return StmtError(Diag(Loc: BreakLoc, DiagID: diag::err_break_not_in_loop_or_switch)); |
| 3316 | } |
| 3317 | if (S->isOpenMPLoopScope()) |
| 3318 | return StmtError(Diag(Loc: BreakLoc, DiagID: diag::err_omp_loop_cannot_use_stmt) |
| 3319 | << "break" ); |
| 3320 | |
| 3321 | // OpenACC doesn't allow 'break'ing from a compute construct, so diagnose if |
| 3322 | // we are trying to do so. This can come in 2 flavors: 1-the break'able thing |
| 3323 | // (besides the compute construct) 'contains' the compute construct, at which |
| 3324 | // point the 'break' scope will be the compute construct. Else it could be a |
| 3325 | // loop of some sort that has a direct parent of the compute construct. |
| 3326 | // However, a 'break' in a 'switch' marked as a compute construct doesn't |
| 3327 | // count as 'branch out of' the compute construct. |
| 3328 | if (S->isOpenACCComputeConstructScope() || |
| 3329 | (S->isLoopScope() && S->getParent() && |
| 3330 | S->getParent()->isOpenACCComputeConstructScope())) |
| 3331 | return StmtError( |
| 3332 | Diag(Loc: BreakLoc, DiagID: diag::err_acc_branch_in_out_compute_construct) |
| 3333 | << /*branch*/ 0 << /*out of */ 0); |
| 3334 | |
| 3335 | CheckJumpOutOfSEHFinally(S&: *this, Loc: BreakLoc, DestScope: *S); |
| 3336 | |
| 3337 | return new (Context) BreakStmt(BreakLoc); |
| 3338 | } |
| 3339 | |
| 3340 | Sema::NamedReturnInfo Sema::getNamedReturnInfo(Expr *&E, |
| 3341 | SimplerImplicitMoveMode Mode) { |
| 3342 | if (!E) |
| 3343 | return NamedReturnInfo(); |
| 3344 | // - in a return statement in a function [where] ... |
| 3345 | // ... the expression is the name of a non-volatile automatic object ... |
| 3346 | const auto *DR = dyn_cast<DeclRefExpr>(Val: E->IgnoreParens()); |
| 3347 | if (!DR || DR->refersToEnclosingVariableOrCapture()) |
| 3348 | return NamedReturnInfo(); |
| 3349 | const auto *VD = dyn_cast<VarDecl>(Val: DR->getDecl()); |
| 3350 | if (!VD) |
| 3351 | return NamedReturnInfo(); |
| 3352 | if (VD->getInit() && VD->getInit()->containsErrors()) |
| 3353 | return NamedReturnInfo(); |
| 3354 | NamedReturnInfo Res = getNamedReturnInfo(VD); |
| 3355 | if (Res.Candidate && !E->isXValue() && |
| 3356 | (Mode == SimplerImplicitMoveMode::ForceOn || |
| 3357 | (Mode != SimplerImplicitMoveMode::ForceOff && |
| 3358 | getLangOpts().CPlusPlus23))) { |
| 3359 | E = ImplicitCastExpr::Create(Context, T: VD->getType().getNonReferenceType(), |
| 3360 | Kind: CK_NoOp, Operand: E, BasePath: nullptr, Cat: VK_XValue, |
| 3361 | FPO: FPOptionsOverride()); |
| 3362 | } |
| 3363 | return Res; |
| 3364 | } |
| 3365 | |
| 3366 | Sema::NamedReturnInfo Sema::getNamedReturnInfo(const VarDecl *VD) { |
| 3367 | NamedReturnInfo Info{.Candidate: VD, .S: NamedReturnInfo::MoveEligibleAndCopyElidable}; |
| 3368 | |
| 3369 | // C++20 [class.copy.elision]p3: |
| 3370 | // - in a return statement in a function with ... |
| 3371 | // (other than a function ... parameter) |
| 3372 | if (VD->getKind() == Decl::ParmVar) |
| 3373 | Info.S = NamedReturnInfo::MoveEligible; |
| 3374 | else if (VD->getKind() != Decl::Var) |
| 3375 | return NamedReturnInfo(); |
| 3376 | |
| 3377 | // (other than ... a catch-clause parameter) |
| 3378 | if (VD->isExceptionVariable()) |
| 3379 | Info.S = NamedReturnInfo::MoveEligible; |
| 3380 | |
| 3381 | // ...automatic... |
| 3382 | if (!VD->hasLocalStorage()) |
| 3383 | return NamedReturnInfo(); |
| 3384 | |
| 3385 | // We don't want to implicitly move out of a __block variable during a return |
| 3386 | // because we cannot assume the variable will no longer be used. |
| 3387 | if (VD->hasAttr<BlocksAttr>()) |
| 3388 | return NamedReturnInfo(); |
| 3389 | |
| 3390 | QualType VDType = VD->getType(); |
| 3391 | if (VDType->isObjectType()) { |
| 3392 | // C++17 [class.copy.elision]p3: |
| 3393 | // ...non-volatile automatic object... |
| 3394 | if (VDType.isVolatileQualified()) |
| 3395 | return NamedReturnInfo(); |
| 3396 | } else if (VDType->isRValueReferenceType()) { |
| 3397 | // C++20 [class.copy.elision]p3: |
| 3398 | // ...either a non-volatile object or an rvalue reference to a non-volatile |
| 3399 | // object type... |
| 3400 | QualType VDReferencedType = VDType.getNonReferenceType(); |
| 3401 | if (VDReferencedType.isVolatileQualified() || |
| 3402 | !VDReferencedType->isObjectType()) |
| 3403 | return NamedReturnInfo(); |
| 3404 | Info.S = NamedReturnInfo::MoveEligible; |
| 3405 | } else { |
| 3406 | return NamedReturnInfo(); |
| 3407 | } |
| 3408 | |
| 3409 | // Variables with higher required alignment than their type's ABI |
| 3410 | // alignment cannot use NRVO. |
| 3411 | if (!VD->hasDependentAlignment() && !VDType->isIncompleteType() && |
| 3412 | Context.getDeclAlign(D: VD) > Context.getTypeAlignInChars(T: VDType)) |
| 3413 | Info.S = NamedReturnInfo::MoveEligible; |
| 3414 | |
| 3415 | return Info; |
| 3416 | } |
| 3417 | |
| 3418 | const VarDecl *Sema::getCopyElisionCandidate(NamedReturnInfo &Info, |
| 3419 | QualType ReturnType) { |
| 3420 | if (!Info.Candidate) |
| 3421 | return nullptr; |
| 3422 | |
| 3423 | auto invalidNRVO = [&] { |
| 3424 | Info = NamedReturnInfo(); |
| 3425 | return nullptr; |
| 3426 | }; |
| 3427 | |
| 3428 | // If we got a non-deduced auto ReturnType, we are in a dependent context and |
| 3429 | // there is no point in allowing copy elision since we won't have it deduced |
| 3430 | // by the point the VardDecl is instantiated, which is the last chance we have |
| 3431 | // of deciding if the candidate is really copy elidable. |
| 3432 | if ((ReturnType->getTypeClass() == Type::TypeClass::Auto && |
| 3433 | ReturnType->isCanonicalUnqualified()) || |
| 3434 | ReturnType->isSpecificBuiltinType(K: BuiltinType::Dependent)) |
| 3435 | return invalidNRVO(); |
| 3436 | |
| 3437 | if (!ReturnType->isDependentType()) { |
| 3438 | // - in a return statement in a function with ... |
| 3439 | // ... a class return type ... |
| 3440 | if (!ReturnType->isRecordType()) |
| 3441 | return invalidNRVO(); |
| 3442 | |
| 3443 | QualType VDType = Info.Candidate->getType(); |
| 3444 | // ... the same cv-unqualified type as the function return type ... |
| 3445 | // When considering moving this expression out, allow dissimilar types. |
| 3446 | if (!VDType->isDependentType() && |
| 3447 | !Context.hasSameUnqualifiedType(T1: ReturnType, T2: VDType)) |
| 3448 | Info.S = NamedReturnInfo::MoveEligible; |
| 3449 | } |
| 3450 | return Info.isCopyElidable() ? Info.Candidate : nullptr; |
| 3451 | } |
| 3452 | |
| 3453 | /// Verify that the initialization sequence that was picked for the |
| 3454 | /// first overload resolution is permissible under C++98. |
| 3455 | /// |
| 3456 | /// Reject (possibly converting) constructors not taking an rvalue reference, |
| 3457 | /// or user conversion operators which are not ref-qualified. |
| 3458 | static bool |
| 3459 | VerifyInitializationSequenceCXX98(const Sema &S, |
| 3460 | const InitializationSequence &Seq) { |
| 3461 | const auto *Step = llvm::find_if(Range: Seq.steps(), P: [](const auto &Step) { |
| 3462 | return Step.Kind == InitializationSequence::SK_ConstructorInitialization || |
| 3463 | Step.Kind == InitializationSequence::SK_UserConversion; |
| 3464 | }); |
| 3465 | if (Step != Seq.step_end()) { |
| 3466 | const auto *FD = Step->Function.Function; |
| 3467 | if (isa<CXXConstructorDecl>(Val: FD) |
| 3468 | ? !FD->getParamDecl(i: 0)->getType()->isRValueReferenceType() |
| 3469 | : cast<CXXMethodDecl>(Val: FD)->getRefQualifier() == RQ_None) |
| 3470 | return false; |
| 3471 | } |
| 3472 | return true; |
| 3473 | } |
| 3474 | |
| 3475 | ExprResult Sema::PerformMoveOrCopyInitialization( |
| 3476 | const InitializedEntity &Entity, const NamedReturnInfo &NRInfo, Expr *Value, |
| 3477 | bool SupressSimplerImplicitMoves) { |
| 3478 | if (getLangOpts().CPlusPlus && |
| 3479 | (!getLangOpts().CPlusPlus23 || SupressSimplerImplicitMoves) && |
| 3480 | NRInfo.isMoveEligible()) { |
| 3481 | ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(), |
| 3482 | CK_NoOp, Value, VK_XValue, FPOptionsOverride()); |
| 3483 | Expr *InitExpr = &AsRvalue; |
| 3484 | auto Kind = InitializationKind::CreateCopy(InitLoc: Value->getBeginLoc(), |
| 3485 | EqualLoc: Value->getBeginLoc()); |
| 3486 | InitializationSequence Seq(*this, Entity, Kind, InitExpr); |
| 3487 | auto Res = Seq.getFailedOverloadResult(); |
| 3488 | if ((Res == OR_Success || Res == OR_Deleted) && |
| 3489 | (getLangOpts().CPlusPlus11 || |
| 3490 | VerifyInitializationSequenceCXX98(S: *this, Seq))) { |
| 3491 | // Promote "AsRvalue" to the heap, since we now need this |
| 3492 | // expression node to persist. |
| 3493 | Value = |
| 3494 | ImplicitCastExpr::Create(Context, T: Value->getType(), Kind: CK_NoOp, Operand: Value, |
| 3495 | BasePath: nullptr, Cat: VK_XValue, FPO: FPOptionsOverride()); |
| 3496 | // Complete type-checking the initialization of the return type |
| 3497 | // using the constructor we found. |
| 3498 | return Seq.Perform(S&: *this, Entity, Kind, Args: Value); |
| 3499 | } |
| 3500 | } |
| 3501 | // Either we didn't meet the criteria for treating an lvalue as an rvalue, |
| 3502 | // above, or overload resolution failed. Either way, we need to try |
| 3503 | // (again) now with the return value expression as written. |
| 3504 | return PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Value); |
| 3505 | } |
| 3506 | |
| 3507 | /// Determine whether the declared return type of the specified function |
| 3508 | /// contains 'auto'. |
| 3509 | static bool hasDeducedReturnType(FunctionDecl *FD) { |
| 3510 | const FunctionProtoType *FPT = |
| 3511 | FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); |
| 3512 | return FPT->getReturnType()->isUndeducedType(); |
| 3513 | } |
| 3514 | |
| 3515 | StmtResult Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, |
| 3516 | Expr *RetValExp, |
| 3517 | NamedReturnInfo &NRInfo, |
| 3518 | bool SupressSimplerImplicitMoves) { |
| 3519 | // If this is the first return we've seen, infer the return type. |
| 3520 | // [expr.prim.lambda]p4 in C++11; block literals follow the same rules. |
| 3521 | CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(Val: getCurFunction()); |
| 3522 | QualType FnRetType = CurCap->ReturnType; |
| 3523 | LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(Val: CurCap); |
| 3524 | if (CurLambda && CurLambda->CallOperator->getType().isNull()) |
| 3525 | return StmtError(); |
| 3526 | bool HasDeducedReturnType = |
| 3527 | CurLambda && hasDeducedReturnType(FD: CurLambda->CallOperator); |
| 3528 | |
| 3529 | if (ExprEvalContexts.back().isDiscardedStatementContext() && |
| 3530 | (HasDeducedReturnType || CurCap->HasImplicitReturnType)) { |
| 3531 | if (RetValExp) { |
| 3532 | ExprResult ER = |
| 3533 | ActOnFinishFullExpr(Expr: RetValExp, CC: ReturnLoc, /*DiscardedValue*/ false); |
| 3534 | if (ER.isInvalid()) |
| 3535 | return StmtError(); |
| 3536 | RetValExp = ER.get(); |
| 3537 | } |
| 3538 | return ReturnStmt::Create(Ctx: Context, RL: ReturnLoc, E: RetValExp, |
| 3539 | /* NRVOCandidate=*/nullptr); |
| 3540 | } |
| 3541 | |
| 3542 | if (HasDeducedReturnType) { |
| 3543 | FunctionDecl *FD = CurLambda->CallOperator; |
| 3544 | // If we've already decided this lambda is invalid, e.g. because |
| 3545 | // we saw a `return` whose expression had an error, don't keep |
| 3546 | // trying to deduce its return type. |
| 3547 | if (FD->isInvalidDecl()) |
| 3548 | return StmtError(); |
| 3549 | // In C++1y, the return type may involve 'auto'. |
| 3550 | // FIXME: Blocks might have a return type of 'auto' explicitly specified. |
| 3551 | if (CurCap->ReturnType.isNull()) |
| 3552 | CurCap->ReturnType = FD->getReturnType(); |
| 3553 | |
| 3554 | AutoType *AT = CurCap->ReturnType->getContainedAutoType(); |
| 3555 | assert(AT && "lost auto type from lambda return type" ); |
| 3556 | if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetExpr: RetValExp, AT)) { |
| 3557 | FD->setInvalidDecl(); |
| 3558 | // FIXME: preserve the ill-formed return expression. |
| 3559 | return StmtError(); |
| 3560 | } |
| 3561 | CurCap->ReturnType = FnRetType = FD->getReturnType(); |
| 3562 | } else if (CurCap->HasImplicitReturnType) { |
| 3563 | // For blocks/lambdas with implicit return types, we check each return |
| 3564 | // statement individually, and deduce the common return type when the block |
| 3565 | // or lambda is completed. |
| 3566 | // FIXME: Fold this into the 'auto' codepath above. |
| 3567 | if (RetValExp && !isa<InitListExpr>(Val: RetValExp)) { |
| 3568 | ExprResult Result = DefaultFunctionArrayLvalueConversion(E: RetValExp); |
| 3569 | if (Result.isInvalid()) |
| 3570 | return StmtError(); |
| 3571 | RetValExp = Result.get(); |
| 3572 | |
| 3573 | // DR1048: even prior to C++14, we should use the 'auto' deduction rules |
| 3574 | // when deducing a return type for a lambda-expression (or by extension |
| 3575 | // for a block). These rules differ from the stated C++11 rules only in |
| 3576 | // that they remove top-level cv-qualifiers. |
| 3577 | if (!CurContext->isDependentContext()) |
| 3578 | FnRetType = RetValExp->getType().getUnqualifiedType(); |
| 3579 | else |
| 3580 | FnRetType = CurCap->ReturnType = Context.DependentTy; |
| 3581 | } else { |
| 3582 | if (RetValExp) { |
| 3583 | // C++11 [expr.lambda.prim]p4 bans inferring the result from an |
| 3584 | // initializer list, because it is not an expression (even |
| 3585 | // though we represent it as one). We still deduce 'void'. |
| 3586 | Diag(Loc: ReturnLoc, DiagID: diag::err_lambda_return_init_list) |
| 3587 | << RetValExp->getSourceRange(); |
| 3588 | } |
| 3589 | |
| 3590 | FnRetType = Context.VoidTy; |
| 3591 | } |
| 3592 | |
| 3593 | // Although we'll properly infer the type of the block once it's completed, |
| 3594 | // make sure we provide a return type now for better error recovery. |
| 3595 | if (CurCap->ReturnType.isNull()) |
| 3596 | CurCap->ReturnType = FnRetType; |
| 3597 | } |
| 3598 | const VarDecl *NRVOCandidate = getCopyElisionCandidate(Info&: NRInfo, ReturnType: FnRetType); |
| 3599 | |
| 3600 | if (auto *CurBlock = dyn_cast<BlockScopeInfo>(Val: CurCap)) { |
| 3601 | if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) { |
| 3602 | Diag(Loc: ReturnLoc, DiagID: diag::err_noreturn_has_return_expr) |
| 3603 | << diag::FalloffFunctionKind::Block; |
| 3604 | return StmtError(); |
| 3605 | } |
| 3606 | } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(Val: CurCap)) { |
| 3607 | Diag(Loc: ReturnLoc, DiagID: diag::err_return_in_captured_stmt) << CurRegion->getRegionName(); |
| 3608 | return StmtError(); |
| 3609 | } else { |
| 3610 | assert(CurLambda && "unknown kind of captured scope" ); |
| 3611 | if (CurLambda->CallOperator->getType() |
| 3612 | ->castAs<FunctionType>() |
| 3613 | ->getNoReturnAttr()) { |
| 3614 | Diag(Loc: ReturnLoc, DiagID: diag::err_noreturn_has_return_expr) |
| 3615 | << diag::FalloffFunctionKind::Lambda; |
| 3616 | return StmtError(); |
| 3617 | } |
| 3618 | } |
| 3619 | |
| 3620 | // Otherwise, verify that this result type matches the previous one. We are |
| 3621 | // pickier with blocks than for normal functions because we don't have GCC |
| 3622 | // compatibility to worry about here. |
| 3623 | if (FnRetType->isDependentType()) { |
| 3624 | // Delay processing for now. TODO: there are lots of dependent |
| 3625 | // types we can conclusively prove aren't void. |
| 3626 | } else if (FnRetType->isVoidType()) { |
| 3627 | if (RetValExp && !isa<InitListExpr>(Val: RetValExp) && |
| 3628 | !(getLangOpts().CPlusPlus && |
| 3629 | (RetValExp->isTypeDependent() || |
| 3630 | RetValExp->getType()->isVoidType()))) { |
| 3631 | if (!getLangOpts().CPlusPlus && |
| 3632 | RetValExp->getType()->isVoidType()) |
| 3633 | Diag(Loc: ReturnLoc, DiagID: diag::ext_return_has_void_expr) << "literal" << 2; |
| 3634 | else { |
| 3635 | Diag(Loc: ReturnLoc, DiagID: diag::err_return_block_has_expr); |
| 3636 | RetValExp = nullptr; |
| 3637 | } |
| 3638 | } |
| 3639 | } else if (!RetValExp) { |
| 3640 | return StmtError(Diag(Loc: ReturnLoc, DiagID: diag::err_block_return_missing_expr)); |
| 3641 | } else if (!RetValExp->isTypeDependent()) { |
| 3642 | // we have a non-void block with an expression, continue checking |
| 3643 | |
| 3644 | // C99 6.8.6.4p3(136): The return statement is not an assignment. The |
| 3645 | // overlap restriction of subclause 6.5.16.1 does not apply to the case of |
| 3646 | // function return. |
| 3647 | |
| 3648 | // In C++ the return statement is handled via a copy initialization. |
| 3649 | // the C version of which boils down to CheckSingleAssignmentConstraints. |
| 3650 | InitializedEntity Entity = |
| 3651 | InitializedEntity::InitializeResult(ReturnLoc, Type: FnRetType); |
| 3652 | ExprResult Res = PerformMoveOrCopyInitialization( |
| 3653 | Entity, NRInfo, Value: RetValExp, SupressSimplerImplicitMoves); |
| 3654 | if (Res.isInvalid()) { |
| 3655 | // FIXME: Cleanup temporaries here, anyway? |
| 3656 | return StmtError(); |
| 3657 | } |
| 3658 | RetValExp = Res.get(); |
| 3659 | CheckReturnValExpr(RetValExp, lhsType: FnRetType, ReturnLoc); |
| 3660 | } |
| 3661 | |
| 3662 | if (RetValExp) { |
| 3663 | ExprResult ER = |
| 3664 | ActOnFinishFullExpr(Expr: RetValExp, CC: ReturnLoc, /*DiscardedValue*/ false); |
| 3665 | if (ER.isInvalid()) |
| 3666 | return StmtError(); |
| 3667 | RetValExp = ER.get(); |
| 3668 | } |
| 3669 | auto *Result = |
| 3670 | ReturnStmt::Create(Ctx: Context, RL: ReturnLoc, E: RetValExp, NRVOCandidate); |
| 3671 | |
| 3672 | // If we need to check for the named return value optimization, |
| 3673 | // or if we need to infer the return type, |
| 3674 | // save the return statement in our scope for later processing. |
| 3675 | if (CurCap->HasImplicitReturnType || NRVOCandidate) |
| 3676 | FunctionScopes.back()->Returns.push_back(Elt: Result); |
| 3677 | |
| 3678 | if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) |
| 3679 | FunctionScopes.back()->FirstReturnLoc = ReturnLoc; |
| 3680 | |
| 3681 | if (auto *CurBlock = dyn_cast<BlockScopeInfo>(Val: CurCap); |
| 3682 | CurBlock && CurCap->HasImplicitReturnType && RetValExp && |
| 3683 | RetValExp->containsErrors()) |
| 3684 | CurBlock->TheDecl->setInvalidDecl(); |
| 3685 | |
| 3686 | return Result; |
| 3687 | } |
| 3688 | |
| 3689 | namespace { |
| 3690 | /// Marks all typedefs in all local classes in a type referenced. |
| 3691 | /// |
| 3692 | /// In a function like |
| 3693 | /// auto f() { |
| 3694 | /// struct S { typedef int a; }; |
| 3695 | /// return S(); |
| 3696 | /// } |
| 3697 | /// |
| 3698 | /// the local type escapes and could be referenced in some TUs but not in |
| 3699 | /// others. Pretend that all local typedefs are always referenced, to not warn |
| 3700 | /// on this. This isn't necessary if f has internal linkage, or the typedef |
| 3701 | /// is private. |
| 3702 | class LocalTypedefNameReferencer : public DynamicRecursiveASTVisitor { |
| 3703 | public: |
| 3704 | LocalTypedefNameReferencer(Sema &S) : S(S) {} |
| 3705 | bool VisitRecordType(RecordType *RT) override; |
| 3706 | |
| 3707 | private: |
| 3708 | Sema &S; |
| 3709 | }; |
| 3710 | bool LocalTypedefNameReferencer::VisitRecordType(RecordType *RT) { |
| 3711 | auto *R = dyn_cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 3712 | if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() || |
| 3713 | R->isDependentType()) |
| 3714 | return true; |
| 3715 | for (auto *TmpD : R->decls()) |
| 3716 | if (auto *T = dyn_cast<TypedefNameDecl>(Val: TmpD)) |
| 3717 | if (T->getAccess() != AS_private || R->hasFriends()) |
| 3718 | S.MarkAnyDeclReferenced(Loc: T->getLocation(), D: T, /*OdrUse=*/MightBeOdrUse: false); |
| 3719 | return true; |
| 3720 | } |
| 3721 | } |
| 3722 | |
| 3723 | TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const { |
| 3724 | return FD->getTypeSourceInfo() |
| 3725 | ->getTypeLoc() |
| 3726 | .getAsAdjusted<FunctionProtoTypeLoc>() |
| 3727 | .getReturnLoc(); |
| 3728 | } |
| 3729 | |
| 3730 | bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, |
| 3731 | SourceLocation ReturnLoc, |
| 3732 | Expr *RetExpr, const AutoType *AT) { |
| 3733 | // If this is the conversion function for a lambda, we choose to deduce its |
| 3734 | // type from the corresponding call operator, not from the synthesized return |
| 3735 | // statement within it. See Sema::DeduceReturnType. |
| 3736 | if (isLambdaConversionOperator(D: FD)) |
| 3737 | return false; |
| 3738 | |
| 3739 | if (isa_and_nonnull<InitListExpr>(Val: RetExpr)) { |
| 3740 | // If the deduction is for a return statement and the initializer is |
| 3741 | // a braced-init-list, the program is ill-formed. |
| 3742 | Diag(Loc: RetExpr->getExprLoc(), |
| 3743 | DiagID: getCurLambda() ? diag::err_lambda_return_init_list |
| 3744 | : diag::err_auto_fn_return_init_list) |
| 3745 | << RetExpr->getSourceRange(); |
| 3746 | return true; |
| 3747 | } |
| 3748 | |
| 3749 | if (FD->isDependentContext()) { |
| 3750 | // C++1y [dcl.spec.auto]p12: |
| 3751 | // Return type deduction [...] occurs when the definition is |
| 3752 | // instantiated even if the function body contains a return |
| 3753 | // statement with a non-type-dependent operand. |
| 3754 | assert(AT->isDeduced() && "should have deduced to dependent type" ); |
| 3755 | return false; |
| 3756 | } |
| 3757 | |
| 3758 | TypeLoc OrigResultType = getReturnTypeLoc(FD); |
| 3759 | // In the case of a return with no operand, the initializer is considered |
| 3760 | // to be void(). |
| 3761 | CXXScalarValueInitExpr VoidVal(Context.VoidTy, nullptr, SourceLocation()); |
| 3762 | if (!RetExpr) { |
| 3763 | // For a function with a deduced result type to return with omitted |
| 3764 | // expression, the result type as written must be 'auto' or |
| 3765 | // 'decltype(auto)', possibly cv-qualified or constrained, but not |
| 3766 | // ref-qualified. |
| 3767 | if (!OrigResultType.getType()->getAs<AutoType>()) { |
| 3768 | Diag(Loc: ReturnLoc, DiagID: diag::err_auto_fn_return_void_but_not_auto) |
| 3769 | << OrigResultType.getType(); |
| 3770 | return true; |
| 3771 | } |
| 3772 | RetExpr = &VoidVal; |
| 3773 | } |
| 3774 | |
| 3775 | QualType Deduced = AT->getDeducedType(); |
| 3776 | { |
| 3777 | // Otherwise, [...] deduce a value for U using the rules of template |
| 3778 | // argument deduction. |
| 3779 | auto RetExprLoc = RetExpr->getExprLoc(); |
| 3780 | TemplateDeductionInfo Info(RetExprLoc); |
| 3781 | SourceLocation TemplateSpecLoc; |
| 3782 | if (RetExpr->getType() == Context.OverloadTy) { |
| 3783 | auto FindResult = OverloadExpr::find(E: RetExpr); |
| 3784 | if (FindResult.Expression) |
| 3785 | TemplateSpecLoc = FindResult.Expression->getNameLoc(); |
| 3786 | } |
| 3787 | TemplateSpecCandidateSet FailedTSC(TemplateSpecLoc); |
| 3788 | TemplateDeductionResult Res = DeduceAutoType( |
| 3789 | AutoTypeLoc: OrigResultType, Initializer: RetExpr, Result&: Deduced, Info, /*DependentDeduction=*/false, |
| 3790 | /*IgnoreConstraints=*/false, FailedTSC: &FailedTSC); |
| 3791 | if (Res != TemplateDeductionResult::Success && FD->isInvalidDecl()) |
| 3792 | return true; |
| 3793 | switch (Res) { |
| 3794 | case TemplateDeductionResult::Success: |
| 3795 | break; |
| 3796 | case TemplateDeductionResult::AlreadyDiagnosed: |
| 3797 | return true; |
| 3798 | case TemplateDeductionResult::Inconsistent: { |
| 3799 | // If a function with a declared return type that contains a placeholder |
| 3800 | // type has multiple return statements, the return type is deduced for |
| 3801 | // each return statement. [...] if the type deduced is not the same in |
| 3802 | // each deduction, the program is ill-formed. |
| 3803 | const LambdaScopeInfo *LambdaSI = getCurLambda(); |
| 3804 | if (LambdaSI && LambdaSI->HasImplicitReturnType) |
| 3805 | Diag(Loc: ReturnLoc, DiagID: diag::err_typecheck_missing_return_type_incompatible) |
| 3806 | << Info.SecondArg << Info.FirstArg << true /*IsLambda*/; |
| 3807 | else |
| 3808 | Diag(Loc: ReturnLoc, DiagID: diag::err_auto_fn_different_deductions) |
| 3809 | << (AT->isDecltypeAuto() ? 1 : 0) << Info.SecondArg |
| 3810 | << Info.FirstArg; |
| 3811 | return true; |
| 3812 | } |
| 3813 | default: |
| 3814 | Diag(Loc: RetExpr->getExprLoc(), DiagID: diag::err_auto_fn_deduction_failure) |
| 3815 | << OrigResultType.getType() << RetExpr->getType(); |
| 3816 | FailedTSC.NoteCandidates(S&: *this, Loc: RetExprLoc); |
| 3817 | return true; |
| 3818 | } |
| 3819 | } |
| 3820 | |
| 3821 | // If a local type is part of the returned type, mark its fields as |
| 3822 | // referenced. |
| 3823 | LocalTypedefNameReferencer(*this).TraverseType(T: RetExpr->getType()); |
| 3824 | |
| 3825 | // CUDA: Kernel function must have 'void' return type. |
| 3826 | if (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>() && |
| 3827 | !Deduced->isVoidType()) { |
| 3828 | Diag(Loc: FD->getLocation(), DiagID: diag::err_kern_type_not_void_return) |
| 3829 | << FD->getType() << FD->getSourceRange(); |
| 3830 | return true; |
| 3831 | } |
| 3832 | |
| 3833 | if (!FD->isInvalidDecl() && AT->getDeducedType() != Deduced) |
| 3834 | // Update all declarations of the function to have the deduced return type. |
| 3835 | Context.adjustDeducedFunctionResultType(FD, ResultType: Deduced); |
| 3836 | |
| 3837 | return false; |
| 3838 | } |
| 3839 | |
| 3840 | StmtResult |
| 3841 | Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, |
| 3842 | Scope *CurScope) { |
| 3843 | ExprResult RetVal = RetValExp; |
| 3844 | if (RetVal.isInvalid()) |
| 3845 | return StmtError(); |
| 3846 | |
| 3847 | if (getCurScope()->isInOpenACCComputeConstructScope()) |
| 3848 | return StmtError( |
| 3849 | Diag(Loc: ReturnLoc, DiagID: diag::err_acc_branch_in_out_compute_construct) |
| 3850 | << /*return*/ 1 << /*out of */ 0); |
| 3851 | |
| 3852 | // using plain return in a coroutine is not allowed. |
| 3853 | FunctionScopeInfo *FSI = getCurFunction(); |
| 3854 | if (FSI->FirstReturnLoc.isInvalid() && FSI->isCoroutine()) { |
| 3855 | assert(FSI->FirstCoroutineStmtLoc.isValid() && |
| 3856 | "first coroutine location not set" ); |
| 3857 | Diag(Loc: ReturnLoc, DiagID: diag::err_return_in_coroutine); |
| 3858 | Diag(Loc: FSI->FirstCoroutineStmtLoc, DiagID: diag::note_declared_coroutine_here) |
| 3859 | << FSI->getFirstCoroutineStmtKeyword(); |
| 3860 | } |
| 3861 | |
| 3862 | CheckInvalidBuiltinCountedByRef(E: RetVal.get(), |
| 3863 | K: BuiltinCountedByRefKind::ReturnArg); |
| 3864 | |
| 3865 | StmtResult R = |
| 3866 | BuildReturnStmt(ReturnLoc, RetValExp: RetVal.get(), /*AllowRecovery=*/true); |
| 3867 | if (R.isInvalid() || ExprEvalContexts.back().isDiscardedStatementContext()) |
| 3868 | return R; |
| 3869 | |
| 3870 | VarDecl *VD = |
| 3871 | const_cast<VarDecl *>(cast<ReturnStmt>(Val: R.get())->getNRVOCandidate()); |
| 3872 | |
| 3873 | CurScope->updateNRVOCandidate(VD); |
| 3874 | |
| 3875 | CheckJumpOutOfSEHFinally(S&: *this, Loc: ReturnLoc, DestScope: *CurScope->getFnParent()); |
| 3876 | |
| 3877 | return R; |
| 3878 | } |
| 3879 | |
| 3880 | static bool CheckSimplerImplicitMovesMSVCWorkaround(const Sema &S, |
| 3881 | const Expr *E) { |
| 3882 | if (!E || !S.getLangOpts().CPlusPlus23 || !S.getLangOpts().MSVCCompat) |
| 3883 | return false; |
| 3884 | const Decl *D = E->getReferencedDeclOfCallee(); |
| 3885 | if (!D || !S.SourceMgr.isInSystemHeader(Loc: D->getLocation())) |
| 3886 | return false; |
| 3887 | for (const DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) { |
| 3888 | if (DC->isStdNamespace()) |
| 3889 | return true; |
| 3890 | } |
| 3891 | return false; |
| 3892 | } |
| 3893 | |
| 3894 | StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, |
| 3895 | bool AllowRecovery) { |
| 3896 | // Check for unexpanded parameter packs. |
| 3897 | if (RetValExp && DiagnoseUnexpandedParameterPack(E: RetValExp)) |
| 3898 | return StmtError(); |
| 3899 | |
| 3900 | // HACK: We suppress simpler implicit move here in msvc compatibility mode |
| 3901 | // just as a temporary work around, as the MSVC STL has issues with |
| 3902 | // this change. |
| 3903 | bool SupressSimplerImplicitMoves = |
| 3904 | CheckSimplerImplicitMovesMSVCWorkaround(S: *this, E: RetValExp); |
| 3905 | NamedReturnInfo NRInfo = getNamedReturnInfo( |
| 3906 | E&: RetValExp, Mode: SupressSimplerImplicitMoves ? SimplerImplicitMoveMode::ForceOff |
| 3907 | : SimplerImplicitMoveMode::Normal); |
| 3908 | |
| 3909 | if (isa<CapturingScopeInfo>(Val: getCurFunction())) |
| 3910 | return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp, NRInfo, |
| 3911 | SupressSimplerImplicitMoves); |
| 3912 | |
| 3913 | QualType FnRetType; |
| 3914 | QualType RelatedRetType; |
| 3915 | const AttrVec *Attrs = nullptr; |
| 3916 | bool isObjCMethod = false; |
| 3917 | |
| 3918 | if (const FunctionDecl *FD = getCurFunctionDecl()) { |
| 3919 | FnRetType = FD->getReturnType(); |
| 3920 | if (FD->hasAttrs()) |
| 3921 | Attrs = &FD->getAttrs(); |
| 3922 | if (FD->isNoReturn() && !getCurFunction()->isCoroutine()) |
| 3923 | Diag(Loc: ReturnLoc, DiagID: diag::warn_noreturn_function_has_return_expr) << FD; |
| 3924 | if (FD->isMain() && RetValExp) |
| 3925 | if (isa<CXXBoolLiteralExpr>(Val: RetValExp)) |
| 3926 | Diag(Loc: ReturnLoc, DiagID: diag::warn_main_returns_bool_literal) |
| 3927 | << RetValExp->getSourceRange(); |
| 3928 | if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) { |
| 3929 | if (const auto *RT = dyn_cast<RecordType>(Val: FnRetType.getCanonicalType())) { |
| 3930 | if (RT->getDecl()->isOrContainsUnion()) |
| 3931 | Diag(Loc: RetValExp->getBeginLoc(), DiagID: diag::warn_cmse_nonsecure_union) << 1; |
| 3932 | } |
| 3933 | } |
| 3934 | } else if (ObjCMethodDecl *MD = getCurMethodDecl()) { |
| 3935 | FnRetType = MD->getReturnType(); |
| 3936 | isObjCMethod = true; |
| 3937 | if (MD->hasAttrs()) |
| 3938 | Attrs = &MD->getAttrs(); |
| 3939 | if (MD->hasRelatedResultType() && MD->getClassInterface()) { |
| 3940 | // In the implementation of a method with a related return type, the |
| 3941 | // type used to type-check the validity of return statements within the |
| 3942 | // method body is a pointer to the type of the class being implemented. |
| 3943 | RelatedRetType = Context.getObjCInterfaceType(Decl: MD->getClassInterface()); |
| 3944 | RelatedRetType = Context.getObjCObjectPointerType(OIT: RelatedRetType); |
| 3945 | } |
| 3946 | } else // If we don't have a function/method context, bail. |
| 3947 | return StmtError(); |
| 3948 | |
| 3949 | if (RetValExp) { |
| 3950 | const auto *ATy = dyn_cast<ArrayType>(Val: RetValExp->getType()); |
| 3951 | if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) { |
| 3952 | Diag(Loc: ReturnLoc, DiagID: diag::err_wasm_table_art) << 1; |
| 3953 | return StmtError(); |
| 3954 | } |
| 3955 | } |
| 3956 | |
| 3957 | // C++1z: discarded return statements are not considered when deducing a |
| 3958 | // return type. |
| 3959 | if (ExprEvalContexts.back().isDiscardedStatementContext() && |
| 3960 | FnRetType->getContainedAutoType()) { |
| 3961 | if (RetValExp) { |
| 3962 | ExprResult ER = |
| 3963 | ActOnFinishFullExpr(Expr: RetValExp, CC: ReturnLoc, /*DiscardedValue*/ false); |
| 3964 | if (ER.isInvalid()) |
| 3965 | return StmtError(); |
| 3966 | RetValExp = ER.get(); |
| 3967 | } |
| 3968 | return ReturnStmt::Create(Ctx: Context, RL: ReturnLoc, E: RetValExp, |
| 3969 | /* NRVOCandidate=*/nullptr); |
| 3970 | } |
| 3971 | |
| 3972 | // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing |
| 3973 | // deduction. |
| 3974 | if (getLangOpts().CPlusPlus14) { |
| 3975 | if (AutoType *AT = FnRetType->getContainedAutoType()) { |
| 3976 | FunctionDecl *FD = cast<FunctionDecl>(Val: CurContext); |
| 3977 | // If we've already decided this function is invalid, e.g. because |
| 3978 | // we saw a `return` whose expression had an error, don't keep |
| 3979 | // trying to deduce its return type. |
| 3980 | // (Some return values may be needlessly wrapped in RecoveryExpr). |
| 3981 | if (FD->isInvalidDecl() || |
| 3982 | DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetExpr: RetValExp, AT)) { |
| 3983 | FD->setInvalidDecl(); |
| 3984 | if (!AllowRecovery) |
| 3985 | return StmtError(); |
| 3986 | // The deduction failure is diagnosed and marked, try to recover. |
| 3987 | if (RetValExp) { |
| 3988 | // Wrap return value with a recovery expression of the previous type. |
| 3989 | // If no deduction yet, use DependentTy. |
| 3990 | auto Recovery = CreateRecoveryExpr( |
| 3991 | Begin: RetValExp->getBeginLoc(), End: RetValExp->getEndLoc(), SubExprs: RetValExp, |
| 3992 | T: AT->isDeduced() ? FnRetType : QualType()); |
| 3993 | if (Recovery.isInvalid()) |
| 3994 | return StmtError(); |
| 3995 | RetValExp = Recovery.get(); |
| 3996 | } else { |
| 3997 | // Nothing to do: a ReturnStmt with no value is fine recovery. |
| 3998 | } |
| 3999 | } else { |
| 4000 | FnRetType = FD->getReturnType(); |
| 4001 | } |
| 4002 | } |
| 4003 | } |
| 4004 | const VarDecl *NRVOCandidate = getCopyElisionCandidate(Info&: NRInfo, ReturnType: FnRetType); |
| 4005 | |
| 4006 | bool HasDependentReturnType = FnRetType->isDependentType(); |
| 4007 | |
| 4008 | ReturnStmt *Result = nullptr; |
| 4009 | if (FnRetType->isVoidType()) { |
| 4010 | if (RetValExp) { |
| 4011 | if (auto *ILE = dyn_cast<InitListExpr>(Val: RetValExp)) { |
| 4012 | // We simply never allow init lists as the return value of void |
| 4013 | // functions. This is compatible because this was never allowed before, |
| 4014 | // so there's no legacy code to deal with. |
| 4015 | NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); |
| 4016 | int FunctionKind = 0; |
| 4017 | if (isa<ObjCMethodDecl>(Val: CurDecl)) |
| 4018 | FunctionKind = 1; |
| 4019 | else if (isa<CXXConstructorDecl>(Val: CurDecl)) |
| 4020 | FunctionKind = 2; |
| 4021 | else if (isa<CXXDestructorDecl>(Val: CurDecl)) |
| 4022 | FunctionKind = 3; |
| 4023 | |
| 4024 | Diag(Loc: ReturnLoc, DiagID: diag::err_return_init_list) |
| 4025 | << CurDecl << FunctionKind << RetValExp->getSourceRange(); |
| 4026 | |
| 4027 | // Preserve the initializers in the AST. |
| 4028 | RetValExp = AllowRecovery |
| 4029 | ? CreateRecoveryExpr(Begin: ILE->getLBraceLoc(), |
| 4030 | End: ILE->getRBraceLoc(), SubExprs: ILE->inits()) |
| 4031 | .get() |
| 4032 | : nullptr; |
| 4033 | } else if (!RetValExp->isTypeDependent()) { |
| 4034 | // C99 6.8.6.4p1 (ext_ since GCC warns) |
| 4035 | unsigned D = diag::ext_return_has_expr; |
| 4036 | if (RetValExp->getType()->isVoidType()) { |
| 4037 | NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); |
| 4038 | if (isa<CXXConstructorDecl>(Val: CurDecl) || |
| 4039 | isa<CXXDestructorDecl>(Val: CurDecl)) |
| 4040 | D = diag::err_ctor_dtor_returns_void; |
| 4041 | else |
| 4042 | D = diag::ext_return_has_void_expr; |
| 4043 | } |
| 4044 | else { |
| 4045 | ExprResult Result = RetValExp; |
| 4046 | Result = IgnoredValueConversions(E: Result.get()); |
| 4047 | if (Result.isInvalid()) |
| 4048 | return StmtError(); |
| 4049 | RetValExp = Result.get(); |
| 4050 | RetValExp = ImpCastExprToType(E: RetValExp, |
| 4051 | Type: Context.VoidTy, CK: CK_ToVoid).get(); |
| 4052 | } |
| 4053 | // return of void in constructor/destructor is illegal in C++. |
| 4054 | if (D == diag::err_ctor_dtor_returns_void) { |
| 4055 | NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); |
| 4056 | Diag(Loc: ReturnLoc, DiagID: D) << CurDecl << isa<CXXDestructorDecl>(Val: CurDecl) |
| 4057 | << RetValExp->getSourceRange(); |
| 4058 | } |
| 4059 | // return (some void expression); is legal in C++ and C2y. |
| 4060 | else if (D != diag::ext_return_has_void_expr || |
| 4061 | (!getLangOpts().CPlusPlus && !getLangOpts().C2y)) { |
| 4062 | NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); |
| 4063 | |
| 4064 | int FunctionKind = 0; |
| 4065 | if (isa<ObjCMethodDecl>(Val: CurDecl)) |
| 4066 | FunctionKind = 1; |
| 4067 | else if (isa<CXXConstructorDecl>(Val: CurDecl)) |
| 4068 | FunctionKind = 2; |
| 4069 | else if (isa<CXXDestructorDecl>(Val: CurDecl)) |
| 4070 | FunctionKind = 3; |
| 4071 | |
| 4072 | Diag(Loc: ReturnLoc, DiagID: D) |
| 4073 | << CurDecl << FunctionKind << RetValExp->getSourceRange(); |
| 4074 | } |
| 4075 | } |
| 4076 | |
| 4077 | if (RetValExp) { |
| 4078 | ExprResult ER = |
| 4079 | ActOnFinishFullExpr(Expr: RetValExp, CC: ReturnLoc, /*DiscardedValue*/ false); |
| 4080 | if (ER.isInvalid()) |
| 4081 | return StmtError(); |
| 4082 | RetValExp = ER.get(); |
| 4083 | } |
| 4084 | } |
| 4085 | |
| 4086 | Result = ReturnStmt::Create(Ctx: Context, RL: ReturnLoc, E: RetValExp, |
| 4087 | /* NRVOCandidate=*/nullptr); |
| 4088 | } else if (!RetValExp && !HasDependentReturnType) { |
| 4089 | FunctionDecl *FD = getCurFunctionDecl(); |
| 4090 | |
| 4091 | if ((FD && FD->isInvalidDecl()) || FnRetType->containsErrors()) { |
| 4092 | // The intended return type might have been "void", so don't warn. |
| 4093 | } else if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) { |
| 4094 | // C++11 [stmt.return]p2 |
| 4095 | Diag(Loc: ReturnLoc, DiagID: diag::err_constexpr_return_missing_expr) |
| 4096 | << FD << FD->isConsteval(); |
| 4097 | FD->setInvalidDecl(); |
| 4098 | } else { |
| 4099 | // C99 6.8.6.4p1 (ext_ since GCC warns) |
| 4100 | // C90 6.6.6.4p4 |
| 4101 | unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr |
| 4102 | : diag::warn_return_missing_expr; |
| 4103 | // Note that at this point one of getCurFunctionDecl() or |
| 4104 | // getCurMethodDecl() must be non-null (see above). |
| 4105 | assert((getCurFunctionDecl() || getCurMethodDecl()) && |
| 4106 | "Not in a FunctionDecl or ObjCMethodDecl?" ); |
| 4107 | bool IsMethod = FD == nullptr; |
| 4108 | const NamedDecl *ND = |
| 4109 | IsMethod ? cast<NamedDecl>(Val: getCurMethodDecl()) : cast<NamedDecl>(Val: FD); |
| 4110 | Diag(Loc: ReturnLoc, DiagID) << ND << IsMethod; |
| 4111 | } |
| 4112 | |
| 4113 | Result = ReturnStmt::Create(Ctx: Context, RL: ReturnLoc, /* RetExpr=*/E: nullptr, |
| 4114 | /* NRVOCandidate=*/nullptr); |
| 4115 | } else { |
| 4116 | assert(RetValExp || HasDependentReturnType); |
| 4117 | QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType; |
| 4118 | |
| 4119 | // C99 6.8.6.4p3(136): The return statement is not an assignment. The |
| 4120 | // overlap restriction of subclause 6.5.16.1 does not apply to the case of |
| 4121 | // function return. |
| 4122 | |
| 4123 | // In C++ the return statement is handled via a copy initialization, |
| 4124 | // the C version of which boils down to CheckSingleAssignmentConstraints. |
| 4125 | if (!HasDependentReturnType && !RetValExp->isTypeDependent()) { |
| 4126 | // we have a non-void function with an expression, continue checking |
| 4127 | InitializedEntity Entity = |
| 4128 | InitializedEntity::InitializeResult(ReturnLoc, Type: RetType); |
| 4129 | ExprResult Res = PerformMoveOrCopyInitialization( |
| 4130 | Entity, NRInfo, Value: RetValExp, SupressSimplerImplicitMoves); |
| 4131 | if (Res.isInvalid() && AllowRecovery) |
| 4132 | Res = CreateRecoveryExpr(Begin: RetValExp->getBeginLoc(), |
| 4133 | End: RetValExp->getEndLoc(), SubExprs: RetValExp, T: RetType); |
| 4134 | if (Res.isInvalid()) { |
| 4135 | // FIXME: Clean up temporaries here anyway? |
| 4136 | return StmtError(); |
| 4137 | } |
| 4138 | RetValExp = Res.getAs<Expr>(); |
| 4139 | |
| 4140 | // If we have a related result type, we need to implicitly |
| 4141 | // convert back to the formal result type. We can't pretend to |
| 4142 | // initialize the result again --- we might end double-retaining |
| 4143 | // --- so instead we initialize a notional temporary. |
| 4144 | if (!RelatedRetType.isNull()) { |
| 4145 | Entity = InitializedEntity::InitializeRelatedResult(MD: getCurMethodDecl(), |
| 4146 | Type: FnRetType); |
| 4147 | Res = PerformCopyInitialization(Entity, EqualLoc: ReturnLoc, Init: RetValExp); |
| 4148 | if (Res.isInvalid()) { |
| 4149 | // FIXME: Clean up temporaries here anyway? |
| 4150 | return StmtError(); |
| 4151 | } |
| 4152 | RetValExp = Res.getAs<Expr>(); |
| 4153 | } |
| 4154 | |
| 4155 | CheckReturnValExpr(RetValExp, lhsType: FnRetType, ReturnLoc, isObjCMethod, Attrs, |
| 4156 | FD: getCurFunctionDecl()); |
| 4157 | } |
| 4158 | |
| 4159 | if (RetValExp) { |
| 4160 | ExprResult ER = |
| 4161 | ActOnFinishFullExpr(Expr: RetValExp, CC: ReturnLoc, /*DiscardedValue*/ false); |
| 4162 | if (ER.isInvalid()) |
| 4163 | return StmtError(); |
| 4164 | RetValExp = ER.get(); |
| 4165 | } |
| 4166 | Result = ReturnStmt::Create(Ctx: Context, RL: ReturnLoc, E: RetValExp, NRVOCandidate); |
| 4167 | } |
| 4168 | |
| 4169 | // If we need to check for the named return value optimization, save the |
| 4170 | // return statement in our scope for later processing. |
| 4171 | if (Result->getNRVOCandidate()) |
| 4172 | FunctionScopes.back()->Returns.push_back(Elt: Result); |
| 4173 | |
| 4174 | if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) |
| 4175 | FunctionScopes.back()->FirstReturnLoc = ReturnLoc; |
| 4176 | |
| 4177 | return Result; |
| 4178 | } |
| 4179 | |
| 4180 | StmtResult |
| 4181 | Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, |
| 4182 | Stmt *HandlerBlock) { |
| 4183 | // There's nothing to test that ActOnExceptionDecl didn't already test. |
| 4184 | return new (Context) |
| 4185 | CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(Val: ExDecl), HandlerBlock); |
| 4186 | } |
| 4187 | |
| 4188 | namespace { |
| 4189 | class CatchHandlerType { |
| 4190 | QualType QT; |
| 4191 | LLVM_PREFERRED_TYPE(bool) |
| 4192 | unsigned IsPointer : 1; |
| 4193 | |
| 4194 | // This is a special constructor to be used only with DenseMapInfo's |
| 4195 | // getEmptyKey() and getTombstoneKey() functions. |
| 4196 | friend struct llvm::DenseMapInfo<CatchHandlerType>; |
| 4197 | enum Unique { ForDenseMap }; |
| 4198 | CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {} |
| 4199 | |
| 4200 | public: |
| 4201 | /// Used when creating a CatchHandlerType from a handler type; will determine |
| 4202 | /// whether the type is a pointer or reference and will strip off the top |
| 4203 | /// level pointer and cv-qualifiers. |
| 4204 | CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) { |
| 4205 | if (QT->isPointerType()) |
| 4206 | IsPointer = true; |
| 4207 | |
| 4208 | QT = QT.getUnqualifiedType(); |
| 4209 | if (IsPointer || QT->isReferenceType()) |
| 4210 | QT = QT->getPointeeType(); |
| 4211 | } |
| 4212 | |
| 4213 | /// Used when creating a CatchHandlerType from a base class type; pretends the |
| 4214 | /// type passed in had the pointer qualifier, does not need to get an |
| 4215 | /// unqualified type. |
| 4216 | CatchHandlerType(QualType QT, bool IsPointer) |
| 4217 | : QT(QT), IsPointer(IsPointer) {} |
| 4218 | |
| 4219 | QualType underlying() const { return QT; } |
| 4220 | bool isPointer() const { return IsPointer; } |
| 4221 | |
| 4222 | friend bool operator==(const CatchHandlerType &LHS, |
| 4223 | const CatchHandlerType &RHS) { |
| 4224 | // If the pointer qualification does not match, we can return early. |
| 4225 | if (LHS.IsPointer != RHS.IsPointer) |
| 4226 | return false; |
| 4227 | // Otherwise, check the underlying type without cv-qualifiers. |
| 4228 | return LHS.QT == RHS.QT; |
| 4229 | } |
| 4230 | }; |
| 4231 | } // namespace |
| 4232 | |
| 4233 | namespace llvm { |
| 4234 | template <> struct DenseMapInfo<CatchHandlerType> { |
| 4235 | static CatchHandlerType getEmptyKey() { |
| 4236 | return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(), |
| 4237 | CatchHandlerType::ForDenseMap); |
| 4238 | } |
| 4239 | |
| 4240 | static CatchHandlerType getTombstoneKey() { |
| 4241 | return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(), |
| 4242 | CatchHandlerType::ForDenseMap); |
| 4243 | } |
| 4244 | |
| 4245 | static unsigned getHashValue(const CatchHandlerType &Base) { |
| 4246 | return DenseMapInfo<QualType>::getHashValue(Val: Base.underlying()); |
| 4247 | } |
| 4248 | |
| 4249 | static bool isEqual(const CatchHandlerType &LHS, |
| 4250 | const CatchHandlerType &RHS) { |
| 4251 | return LHS == RHS; |
| 4252 | } |
| 4253 | }; |
| 4254 | } |
| 4255 | |
| 4256 | namespace { |
| 4257 | class CatchTypePublicBases { |
| 4258 | const llvm::DenseMap<QualType, CXXCatchStmt *> &TypesToCheck; |
| 4259 | |
| 4260 | CXXCatchStmt *FoundHandler; |
| 4261 | QualType FoundHandlerType; |
| 4262 | QualType TestAgainstType; |
| 4263 | |
| 4264 | public: |
| 4265 | CatchTypePublicBases(const llvm::DenseMap<QualType, CXXCatchStmt *> &T, |
| 4266 | QualType QT) |
| 4267 | : TypesToCheck(T), FoundHandler(nullptr), TestAgainstType(QT) {} |
| 4268 | |
| 4269 | CXXCatchStmt *getFoundHandler() const { return FoundHandler; } |
| 4270 | QualType getFoundHandlerType() const { return FoundHandlerType; } |
| 4271 | |
| 4272 | bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) { |
| 4273 | if (S->getAccessSpecifier() == AccessSpecifier::AS_public) { |
| 4274 | QualType Check = S->getType().getCanonicalType(); |
| 4275 | const auto &M = TypesToCheck; |
| 4276 | auto I = M.find(Val: Check); |
| 4277 | if (I != M.end()) { |
| 4278 | // We're pretty sure we found what we need to find. However, we still |
| 4279 | // need to make sure that we properly compare for pointers and |
| 4280 | // references, to handle cases like: |
| 4281 | // |
| 4282 | // } catch (Base *b) { |
| 4283 | // } catch (Derived &d) { |
| 4284 | // } |
| 4285 | // |
| 4286 | // where there is a qualification mismatch that disqualifies this |
| 4287 | // handler as a potential problem. |
| 4288 | if (I->second->getCaughtType()->isPointerType() == |
| 4289 | TestAgainstType->isPointerType()) { |
| 4290 | FoundHandler = I->second; |
| 4291 | FoundHandlerType = Check; |
| 4292 | return true; |
| 4293 | } |
| 4294 | } |
| 4295 | } |
| 4296 | return false; |
| 4297 | } |
| 4298 | }; |
| 4299 | } |
| 4300 | |
| 4301 | StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, |
| 4302 | ArrayRef<Stmt *> Handlers) { |
| 4303 | const llvm::Triple &T = Context.getTargetInfo().getTriple(); |
| 4304 | const bool IsOpenMPGPUTarget = |
| 4305 | getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN()); |
| 4306 | |
| 4307 | DiagnoseExceptionUse(Loc: TryLoc, /* IsTry= */ true); |
| 4308 | |
| 4309 | // In OpenMP target regions, we assume that catch is never reached on GPU |
| 4310 | // targets. |
| 4311 | if (IsOpenMPGPUTarget) |
| 4312 | targetDiag(Loc: TryLoc, DiagID: diag::warn_try_not_valid_on_target) << T.str(); |
| 4313 | |
| 4314 | // Exceptions aren't allowed in CUDA device code. |
| 4315 | if (getLangOpts().CUDA) |
| 4316 | CUDA().DiagIfDeviceCode(Loc: TryLoc, DiagID: diag::err_cuda_device_exceptions) |
| 4317 | << "try" << CUDA().CurrentTarget(); |
| 4318 | |
| 4319 | if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) |
| 4320 | Diag(Loc: TryLoc, DiagID: diag::err_omp_simd_region_cannot_use_stmt) << "try" ; |
| 4321 | |
| 4322 | sema::FunctionScopeInfo *FSI = getCurFunction(); |
| 4323 | |
| 4324 | // C++ try is incompatible with SEH __try. |
| 4325 | if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) { |
| 4326 | Diag(Loc: TryLoc, DiagID: diag::err_mixing_cxx_try_seh_try) << 0; |
| 4327 | Diag(Loc: FSI->FirstSEHTryLoc, DiagID: diag::note_conflicting_try_here) << "'__try'" ; |
| 4328 | } |
| 4329 | |
| 4330 | const unsigned NumHandlers = Handlers.size(); |
| 4331 | assert(!Handlers.empty() && |
| 4332 | "The parser shouldn't call this if there are no handlers." ); |
| 4333 | |
| 4334 | llvm::DenseMap<QualType, CXXCatchStmt *> HandledBaseTypes; |
| 4335 | llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes; |
| 4336 | for (unsigned i = 0; i < NumHandlers; ++i) { |
| 4337 | CXXCatchStmt *H = cast<CXXCatchStmt>(Val: Handlers[i]); |
| 4338 | |
| 4339 | // Diagnose when the handler is a catch-all handler, but it isn't the last |
| 4340 | // handler for the try block. [except.handle]p5. Also, skip exception |
| 4341 | // declarations that are invalid, since we can't usefully report on them. |
| 4342 | if (!H->getExceptionDecl()) { |
| 4343 | if (i < NumHandlers - 1) |
| 4344 | return StmtError(Diag(Loc: H->getBeginLoc(), DiagID: diag::err_early_catch_all)); |
| 4345 | continue; |
| 4346 | } else if (H->getExceptionDecl()->isInvalidDecl()) |
| 4347 | continue; |
| 4348 | |
| 4349 | // Walk the type hierarchy to diagnose when this type has already been |
| 4350 | // handled (duplication), or cannot be handled (derivation inversion). We |
| 4351 | // ignore top-level cv-qualifiers, per [except.handle]p3 |
| 4352 | CatchHandlerType HandlerCHT = H->getCaughtType().getCanonicalType(); |
| 4353 | |
| 4354 | // We can ignore whether the type is a reference or a pointer; we need the |
| 4355 | // underlying declaration type in order to get at the underlying record |
| 4356 | // decl, if there is one. |
| 4357 | QualType Underlying = HandlerCHT.underlying(); |
| 4358 | if (auto *RD = Underlying->getAsCXXRecordDecl()) { |
| 4359 | if (!RD->hasDefinition()) |
| 4360 | continue; |
| 4361 | // Check that none of the public, unambiguous base classes are in the |
| 4362 | // map ([except.handle]p1). Give the base classes the same pointer |
| 4363 | // qualification as the original type we are basing off of. This allows |
| 4364 | // comparison against the handler type using the same top-level pointer |
| 4365 | // as the original type. |
| 4366 | CXXBasePaths Paths; |
| 4367 | Paths.setOrigin(RD); |
| 4368 | CatchTypePublicBases CTPB(HandledBaseTypes, |
| 4369 | H->getCaughtType().getCanonicalType()); |
| 4370 | if (RD->lookupInBases(BaseMatches: CTPB, Paths)) { |
| 4371 | const CXXCatchStmt *Problem = CTPB.getFoundHandler(); |
| 4372 | if (!Paths.isAmbiguous( |
| 4373 | BaseType: CanQualType::CreateUnsafe(Other: CTPB.getFoundHandlerType()))) { |
| 4374 | Diag(Loc: H->getExceptionDecl()->getTypeSpecStartLoc(), |
| 4375 | DiagID: diag::warn_exception_caught_by_earlier_handler) |
| 4376 | << H->getCaughtType(); |
| 4377 | Diag(Loc: Problem->getExceptionDecl()->getTypeSpecStartLoc(), |
| 4378 | DiagID: diag::note_previous_exception_handler) |
| 4379 | << Problem->getCaughtType(); |
| 4380 | } |
| 4381 | } |
| 4382 | // Strip the qualifiers here because we're going to be comparing this |
| 4383 | // type to the base type specifiers of a class, which are ignored in a |
| 4384 | // base specifier per [class.derived.general]p2. |
| 4385 | HandledBaseTypes[Underlying.getUnqualifiedType()] = H; |
| 4386 | } |
| 4387 | |
| 4388 | // Add the type the list of ones we have handled; diagnose if we've already |
| 4389 | // handled it. |
| 4390 | auto R = HandledTypes.insert( |
| 4391 | KV: std::make_pair(x: H->getCaughtType().getCanonicalType(), y&: H)); |
| 4392 | if (!R.second) { |
| 4393 | const CXXCatchStmt *Problem = R.first->second; |
| 4394 | Diag(Loc: H->getExceptionDecl()->getTypeSpecStartLoc(), |
| 4395 | DiagID: diag::warn_exception_caught_by_earlier_handler) |
| 4396 | << H->getCaughtType(); |
| 4397 | Diag(Loc: Problem->getExceptionDecl()->getTypeSpecStartLoc(), |
| 4398 | DiagID: diag::note_previous_exception_handler) |
| 4399 | << Problem->getCaughtType(); |
| 4400 | } |
| 4401 | } |
| 4402 | |
| 4403 | FSI->setHasCXXTry(TryLoc); |
| 4404 | |
| 4405 | return CXXTryStmt::Create(C: Context, tryLoc: TryLoc, tryBlock: cast<CompoundStmt>(Val: TryBlock), |
| 4406 | handlers: Handlers); |
| 4407 | } |
| 4408 | |
| 4409 | void Sema::DiagnoseExceptionUse(SourceLocation Loc, bool IsTry) { |
| 4410 | const llvm::Triple &T = Context.getTargetInfo().getTriple(); |
| 4411 | const bool IsOpenMPGPUTarget = |
| 4412 | getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN()); |
| 4413 | |
| 4414 | // Don't report an error if 'try' is used in system headers or in an OpenMP |
| 4415 | // target region compiled for a GPU architecture. |
| 4416 | if (IsOpenMPGPUTarget || getLangOpts().CUDA) |
| 4417 | // Delay error emission for the OpenMP device code. |
| 4418 | return; |
| 4419 | |
| 4420 | if (!getLangOpts().CXXExceptions && |
| 4421 | !getSourceManager().isInSystemHeader(Loc) && |
| 4422 | !CurContext->isDependentContext()) |
| 4423 | targetDiag(Loc, DiagID: diag::err_exceptions_disabled) << (IsTry ? "try" : "throw" ); |
| 4424 | } |
| 4425 | |
| 4426 | StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc, |
| 4427 | Stmt *TryBlock, Stmt *Handler) { |
| 4428 | assert(TryBlock && Handler); |
| 4429 | |
| 4430 | sema::FunctionScopeInfo *FSI = getCurFunction(); |
| 4431 | |
| 4432 | // SEH __try is incompatible with C++ try. Borland appears to support this, |
| 4433 | // however. |
| 4434 | if (!getLangOpts().Borland) { |
| 4435 | if (FSI->FirstCXXOrObjCTryLoc.isValid()) { |
| 4436 | Diag(Loc: TryLoc, DiagID: diag::err_mixing_cxx_try_seh_try) << FSI->FirstTryType; |
| 4437 | Diag(Loc: FSI->FirstCXXOrObjCTryLoc, DiagID: diag::note_conflicting_try_here) |
| 4438 | << (FSI->FirstTryType == sema::FunctionScopeInfo::TryLocIsCXX |
| 4439 | ? "'try'" |
| 4440 | : "'@try'" ); |
| 4441 | } |
| 4442 | } |
| 4443 | |
| 4444 | FSI->setHasSEHTry(TryLoc); |
| 4445 | |
| 4446 | // Reject __try in Obj-C methods, blocks, and captured decls, since we don't |
| 4447 | // track if they use SEH. |
| 4448 | DeclContext *DC = CurContext; |
| 4449 | while (DC && !DC->isFunctionOrMethod()) |
| 4450 | DC = DC->getParent(); |
| 4451 | FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: DC); |
| 4452 | if (FD) |
| 4453 | FD->setUsesSEHTry(true); |
| 4454 | else |
| 4455 | Diag(Loc: TryLoc, DiagID: diag::err_seh_try_outside_functions); |
| 4456 | |
| 4457 | // Reject __try on unsupported targets. |
| 4458 | if (!Context.getTargetInfo().isSEHTrySupported()) |
| 4459 | Diag(Loc: TryLoc, DiagID: diag::err_seh_try_unsupported); |
| 4460 | |
| 4461 | return SEHTryStmt::Create(C: Context, isCXXTry: IsCXXTry, TryLoc, TryBlock, Handler); |
| 4462 | } |
| 4463 | |
| 4464 | StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, |
| 4465 | Stmt *Block) { |
| 4466 | assert(FilterExpr && Block); |
| 4467 | QualType FTy = FilterExpr->getType(); |
| 4468 | if (!FTy->isIntegerType() && !FTy->isDependentType()) { |
| 4469 | return StmtError( |
| 4470 | Diag(Loc: FilterExpr->getExprLoc(), DiagID: diag::err_filter_expression_integral) |
| 4471 | << FTy); |
| 4472 | } |
| 4473 | return SEHExceptStmt::Create(C: Context, ExceptLoc: Loc, FilterExpr, Block); |
| 4474 | } |
| 4475 | |
| 4476 | void Sema::ActOnStartSEHFinallyBlock() { |
| 4477 | CurrentSEHFinally.push_back(Elt: CurScope); |
| 4478 | } |
| 4479 | |
| 4480 | void Sema::ActOnAbortSEHFinallyBlock() { |
| 4481 | CurrentSEHFinally.pop_back(); |
| 4482 | } |
| 4483 | |
| 4484 | StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) { |
| 4485 | assert(Block); |
| 4486 | CurrentSEHFinally.pop_back(); |
| 4487 | return SEHFinallyStmt::Create(C: Context, FinallyLoc: Loc, Block); |
| 4488 | } |
| 4489 | |
| 4490 | StmtResult |
| 4491 | Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) { |
| 4492 | Scope *SEHTryParent = CurScope; |
| 4493 | while (SEHTryParent && !SEHTryParent->isSEHTryScope()) |
| 4494 | SEHTryParent = SEHTryParent->getParent(); |
| 4495 | if (!SEHTryParent) |
| 4496 | return StmtError(Diag(Loc, DiagID: diag::err_ms___leave_not_in___try)); |
| 4497 | CheckJumpOutOfSEHFinally(S&: *this, Loc, DestScope: *SEHTryParent); |
| 4498 | |
| 4499 | return new (Context) SEHLeaveStmt(Loc); |
| 4500 | } |
| 4501 | |
| 4502 | StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc, |
| 4503 | bool IsIfExists, |
| 4504 | NestedNameSpecifierLoc QualifierLoc, |
| 4505 | DeclarationNameInfo NameInfo, |
| 4506 | Stmt *Nested) |
| 4507 | { |
| 4508 | return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists, |
| 4509 | QualifierLoc, NameInfo, |
| 4510 | cast<CompoundStmt>(Val: Nested)); |
| 4511 | } |
| 4512 | |
| 4513 | |
| 4514 | StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, |
| 4515 | bool IsIfExists, |
| 4516 | CXXScopeSpec &SS, |
| 4517 | UnqualifiedId &Name, |
| 4518 | Stmt *Nested) { |
| 4519 | return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, |
| 4520 | QualifierLoc: SS.getWithLocInContext(Context), |
| 4521 | NameInfo: GetNameFromUnqualifiedId(Name), |
| 4522 | Nested); |
| 4523 | } |
| 4524 | |
| 4525 | RecordDecl* |
| 4526 | Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, |
| 4527 | unsigned NumParams) { |
| 4528 | DeclContext *DC = CurContext; |
| 4529 | while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) |
| 4530 | DC = DC->getParent(); |
| 4531 | |
| 4532 | RecordDecl *RD = nullptr; |
| 4533 | if (getLangOpts().CPlusPlus) |
| 4534 | RD = CXXRecordDecl::Create(C: Context, TK: TagTypeKind::Struct, DC, StartLoc: Loc, IdLoc: Loc, |
| 4535 | /*Id=*/nullptr); |
| 4536 | else |
| 4537 | RD = RecordDecl::Create(C: Context, TK: TagTypeKind::Struct, DC, StartLoc: Loc, IdLoc: Loc, |
| 4538 | /*Id=*/nullptr); |
| 4539 | |
| 4540 | RD->setCapturedRecord(); |
| 4541 | DC->addDecl(D: RD); |
| 4542 | RD->setImplicit(); |
| 4543 | RD->startDefinition(); |
| 4544 | |
| 4545 | assert(NumParams > 0 && "CapturedStmt requires context parameter" ); |
| 4546 | CD = CapturedDecl::Create(C&: Context, DC: CurContext, NumParams); |
| 4547 | DC->addDecl(D: CD); |
| 4548 | return RD; |
| 4549 | } |
| 4550 | |
| 4551 | static bool |
| 4552 | buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI, |
| 4553 | SmallVectorImpl<CapturedStmt::Capture> &Captures, |
| 4554 | SmallVectorImpl<Expr *> &CaptureInits) { |
| 4555 | for (const sema::Capture &Cap : RSI->Captures) { |
| 4556 | if (Cap.isInvalid()) |
| 4557 | continue; |
| 4558 | |
| 4559 | // Form the initializer for the capture. |
| 4560 | ExprResult Init = S.BuildCaptureInit(Capture: Cap, ImplicitCaptureLoc: Cap.getLocation(), |
| 4561 | IsOpenMPMapping: RSI->CapRegionKind == CR_OpenMP); |
| 4562 | |
| 4563 | // FIXME: Bail out now if the capture is not used and the initializer has |
| 4564 | // no side-effects. |
| 4565 | |
| 4566 | // Create a field for this capture. |
| 4567 | FieldDecl *Field = S.BuildCaptureField(RD: RSI->TheRecordDecl, Capture: Cap); |
| 4568 | |
| 4569 | // Add the capture to our list of captures. |
| 4570 | if (Cap.isThisCapture()) { |
| 4571 | Captures.push_back(Elt: CapturedStmt::Capture(Cap.getLocation(), |
| 4572 | CapturedStmt::VCK_This)); |
| 4573 | } else if (Cap.isVLATypeCapture()) { |
| 4574 | Captures.push_back( |
| 4575 | Elt: CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType)); |
| 4576 | } else { |
| 4577 | assert(Cap.isVariableCapture() && "unknown kind of capture" ); |
| 4578 | |
| 4579 | if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) |
| 4580 | S.OpenMP().setOpenMPCaptureKind(FD: Field, D: Cap.getVariable(), |
| 4581 | Level: RSI->OpenMPLevel); |
| 4582 | |
| 4583 | Captures.push_back(Elt: CapturedStmt::Capture( |
| 4584 | Cap.getLocation(), |
| 4585 | Cap.isReferenceCapture() ? CapturedStmt::VCK_ByRef |
| 4586 | : CapturedStmt::VCK_ByCopy, |
| 4587 | cast<VarDecl>(Val: Cap.getVariable()))); |
| 4588 | } |
| 4589 | CaptureInits.push_back(Elt: Init.get()); |
| 4590 | } |
| 4591 | return false; |
| 4592 | } |
| 4593 | |
| 4594 | static std::optional<int> |
| 4595 | isOpenMPCapturedRegionInArmSMEFunction(Sema const &S, CapturedRegionKind Kind) { |
| 4596 | if (!S.getLangOpts().OpenMP || Kind != CR_OpenMP) |
| 4597 | return {}; |
| 4598 | if (const FunctionDecl *FD = S.getCurFunctionDecl(/*AllowLambda=*/true)) { |
| 4599 | if (IsArmStreamingFunction(FD, /*IncludeLocallyStreaming=*/true)) |
| 4600 | return /* in streaming functions */ 0; |
| 4601 | if (hasArmZAState(FD)) |
| 4602 | return /* in functions with ZA state */ 1; |
| 4603 | if (hasArmZT0State(FD)) |
| 4604 | return /* in fuctions with ZT0 state */ 2; |
| 4605 | } |
| 4606 | return {}; |
| 4607 | } |
| 4608 | |
| 4609 | void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, |
| 4610 | CapturedRegionKind Kind, |
| 4611 | unsigned NumParams) { |
| 4612 | if (auto ErrorIndex = isOpenMPCapturedRegionInArmSMEFunction(S: *this, Kind)) |
| 4613 | Diag(Loc, DiagID: diag::err_sme_openmp_captured_region) << *ErrorIndex; |
| 4614 | |
| 4615 | CapturedDecl *CD = nullptr; |
| 4616 | RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams); |
| 4617 | |
| 4618 | // Build the context parameter |
| 4619 | DeclContext *DC = CapturedDecl::castToDeclContext(D: CD); |
| 4620 | IdentifierInfo *ParamName = &Context.Idents.get(Name: "__context" ); |
| 4621 | QualType ParamType = Context.getPointerType(T: Context.getTagDeclType(Decl: RD)); |
| 4622 | auto *Param = |
| 4623 | ImplicitParamDecl::Create(C&: Context, DC, IdLoc: Loc, Id: ParamName, T: ParamType, |
| 4624 | ParamKind: ImplicitParamKind::CapturedContext); |
| 4625 | DC->addDecl(D: Param); |
| 4626 | |
| 4627 | CD->setContextParam(i: 0, P: Param); |
| 4628 | |
| 4629 | // Enter the capturing scope for this captured region. |
| 4630 | PushCapturedRegionScope(RegionScope: CurScope, CD, RD, K: Kind); |
| 4631 | |
| 4632 | if (CurScope) |
| 4633 | PushDeclContext(S: CurScope, DC: CD); |
| 4634 | else |
| 4635 | CurContext = CD; |
| 4636 | |
| 4637 | PushExpressionEvaluationContext( |
| 4638 | NewContext: ExpressionEvaluationContext::PotentiallyEvaluated); |
| 4639 | ExprEvalContexts.back().InImmediateEscalatingFunctionContext = false; |
| 4640 | } |
| 4641 | |
| 4642 | void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, |
| 4643 | CapturedRegionKind Kind, |
| 4644 | ArrayRef<CapturedParamNameType> Params, |
| 4645 | unsigned OpenMPCaptureLevel) { |
| 4646 | if (auto ErrorIndex = isOpenMPCapturedRegionInArmSMEFunction(S: *this, Kind)) |
| 4647 | Diag(Loc, DiagID: diag::err_sme_openmp_captured_region) << *ErrorIndex; |
| 4648 | |
| 4649 | CapturedDecl *CD = nullptr; |
| 4650 | RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams: Params.size()); |
| 4651 | |
| 4652 | // Build the context parameter |
| 4653 | DeclContext *DC = CapturedDecl::castToDeclContext(D: CD); |
| 4654 | bool ContextIsFound = false; |
| 4655 | unsigned ParamNum = 0; |
| 4656 | for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(), |
| 4657 | E = Params.end(); |
| 4658 | I != E; ++I, ++ParamNum) { |
| 4659 | if (I->second.isNull()) { |
| 4660 | assert(!ContextIsFound && |
| 4661 | "null type has been found already for '__context' parameter" ); |
| 4662 | IdentifierInfo *ParamName = &Context.Idents.get(Name: "__context" ); |
| 4663 | QualType ParamType = Context.getPointerType(T: Context.getTagDeclType(Decl: RD)) |
| 4664 | .withConst() |
| 4665 | .withRestrict(); |
| 4666 | auto *Param = |
| 4667 | ImplicitParamDecl::Create(C&: Context, DC, IdLoc: Loc, Id: ParamName, T: ParamType, |
| 4668 | ParamKind: ImplicitParamKind::CapturedContext); |
| 4669 | DC->addDecl(D: Param); |
| 4670 | CD->setContextParam(i: ParamNum, P: Param); |
| 4671 | ContextIsFound = true; |
| 4672 | } else { |
| 4673 | IdentifierInfo *ParamName = &Context.Idents.get(Name: I->first); |
| 4674 | auto *Param = |
| 4675 | ImplicitParamDecl::Create(C&: Context, DC, IdLoc: Loc, Id: ParamName, T: I->second, |
| 4676 | ParamKind: ImplicitParamKind::CapturedContext); |
| 4677 | DC->addDecl(D: Param); |
| 4678 | CD->setParam(i: ParamNum, P: Param); |
| 4679 | } |
| 4680 | } |
| 4681 | assert(ContextIsFound && "no null type for '__context' parameter" ); |
| 4682 | if (!ContextIsFound) { |
| 4683 | // Add __context implicitly if it is not specified. |
| 4684 | IdentifierInfo *ParamName = &Context.Idents.get(Name: "__context" ); |
| 4685 | QualType ParamType = Context.getPointerType(T: Context.getTagDeclType(Decl: RD)); |
| 4686 | auto *Param = |
| 4687 | ImplicitParamDecl::Create(C&: Context, DC, IdLoc: Loc, Id: ParamName, T: ParamType, |
| 4688 | ParamKind: ImplicitParamKind::CapturedContext); |
| 4689 | DC->addDecl(D: Param); |
| 4690 | CD->setContextParam(i: ParamNum, P: Param); |
| 4691 | } |
| 4692 | // Enter the capturing scope for this captured region. |
| 4693 | PushCapturedRegionScope(RegionScope: CurScope, CD, RD, K: Kind, OpenMPCaptureLevel); |
| 4694 | |
| 4695 | if (CurScope) |
| 4696 | PushDeclContext(S: CurScope, DC: CD); |
| 4697 | else |
| 4698 | CurContext = CD; |
| 4699 | |
| 4700 | PushExpressionEvaluationContext( |
| 4701 | NewContext: ExpressionEvaluationContext::PotentiallyEvaluated); |
| 4702 | } |
| 4703 | |
| 4704 | void Sema::ActOnCapturedRegionError() { |
| 4705 | DiscardCleanupsInEvaluationContext(); |
| 4706 | PopExpressionEvaluationContext(); |
| 4707 | PopDeclContext(); |
| 4708 | PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(); |
| 4709 | CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(Val: ScopeRAII.get()); |
| 4710 | |
| 4711 | RecordDecl *Record = RSI->TheRecordDecl; |
| 4712 | Record->setInvalidDecl(); |
| 4713 | |
| 4714 | SmallVector<Decl*, 4> Fields(Record->fields()); |
| 4715 | ActOnFields(/*Scope=*/S: nullptr, RecLoc: Record->getLocation(), TagDecl: Record, Fields, |
| 4716 | LBrac: SourceLocation(), RBrac: SourceLocation(), AttrList: ParsedAttributesView()); |
| 4717 | } |
| 4718 | |
| 4719 | StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) { |
| 4720 | // Leave the captured scope before we start creating captures in the |
| 4721 | // enclosing scope. |
| 4722 | DiscardCleanupsInEvaluationContext(); |
| 4723 | PopExpressionEvaluationContext(); |
| 4724 | PopDeclContext(); |
| 4725 | PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(); |
| 4726 | CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(Val: ScopeRAII.get()); |
| 4727 | |
| 4728 | SmallVector<CapturedStmt::Capture, 4> Captures; |
| 4729 | SmallVector<Expr *, 4> CaptureInits; |
| 4730 | if (buildCapturedStmtCaptureList(S&: *this, RSI, Captures, CaptureInits)) |
| 4731 | return StmtError(); |
| 4732 | |
| 4733 | CapturedDecl *CD = RSI->TheCapturedDecl; |
| 4734 | RecordDecl *RD = RSI->TheRecordDecl; |
| 4735 | |
| 4736 | CapturedStmt *Res = CapturedStmt::Create( |
| 4737 | Context: getASTContext(), S, Kind: static_cast<CapturedRegionKind>(RSI->CapRegionKind), |
| 4738 | Captures, CaptureInits, CD, RD); |
| 4739 | |
| 4740 | CD->setBody(Res->getCapturedStmt()); |
| 4741 | RD->completeDefinition(); |
| 4742 | |
| 4743 | return Res; |
| 4744 | } |
| 4745 | |