| 1 | //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements C++ template argument deduction. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "TreeTransform.h" |
| 14 | #include "TypeLocBuilder.h" |
| 15 | #include "clang/AST/ASTContext.h" |
| 16 | #include "clang/AST/ASTLambda.h" |
| 17 | #include "clang/AST/Decl.h" |
| 18 | #include "clang/AST/DeclAccessPair.h" |
| 19 | #include "clang/AST/DeclBase.h" |
| 20 | #include "clang/AST/DeclCXX.h" |
| 21 | #include "clang/AST/DeclTemplate.h" |
| 22 | #include "clang/AST/DeclarationName.h" |
| 23 | #include "clang/AST/DynamicRecursiveASTVisitor.h" |
| 24 | #include "clang/AST/Expr.h" |
| 25 | #include "clang/AST/ExprCXX.h" |
| 26 | #include "clang/AST/NestedNameSpecifier.h" |
| 27 | #include "clang/AST/TemplateBase.h" |
| 28 | #include "clang/AST/TemplateName.h" |
| 29 | #include "clang/AST/Type.h" |
| 30 | #include "clang/AST/TypeLoc.h" |
| 31 | #include "clang/AST/TypeOrdering.h" |
| 32 | #include "clang/AST/UnresolvedSet.h" |
| 33 | #include "clang/Basic/AddressSpaces.h" |
| 34 | #include "clang/Basic/ExceptionSpecificationType.h" |
| 35 | #include "clang/Basic/LLVM.h" |
| 36 | #include "clang/Basic/LangOptions.h" |
| 37 | #include "clang/Basic/PartialDiagnostic.h" |
| 38 | #include "clang/Basic/SourceLocation.h" |
| 39 | #include "clang/Basic/Specifiers.h" |
| 40 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
| 41 | #include "clang/Sema/Ownership.h" |
| 42 | #include "clang/Sema/Sema.h" |
| 43 | #include "clang/Sema/Template.h" |
| 44 | #include "clang/Sema/TemplateDeduction.h" |
| 45 | #include "llvm/ADT/APInt.h" |
| 46 | #include "llvm/ADT/APSInt.h" |
| 47 | #include "llvm/ADT/ArrayRef.h" |
| 48 | #include "llvm/ADT/DenseMap.h" |
| 49 | #include "llvm/ADT/FoldingSet.h" |
| 50 | #include "llvm/ADT/SmallBitVector.h" |
| 51 | #include "llvm/ADT/SmallPtrSet.h" |
| 52 | #include "llvm/ADT/SmallVector.h" |
| 53 | #include "llvm/Support/Casting.h" |
| 54 | #include "llvm/Support/Compiler.h" |
| 55 | #include "llvm/Support/ErrorHandling.h" |
| 56 | #include "llvm/Support/SaveAndRestore.h" |
| 57 | #include <algorithm> |
| 58 | #include <cassert> |
| 59 | #include <optional> |
| 60 | #include <tuple> |
| 61 | #include <type_traits> |
| 62 | #include <utility> |
| 63 | |
| 64 | namespace clang { |
| 65 | |
| 66 | /// Various flags that control template argument deduction. |
| 67 | /// |
| 68 | /// These flags can be bitwise-OR'd together. |
| 69 | enum TemplateDeductionFlags { |
| 70 | /// No template argument deduction flags, which indicates the |
| 71 | /// strictest results for template argument deduction (as used for, e.g., |
| 72 | /// matching class template partial specializations). |
| 73 | TDF_None = 0, |
| 74 | |
| 75 | /// Within template argument deduction from a function call, we are |
| 76 | /// matching with a parameter type for which the original parameter was |
| 77 | /// a reference. |
| 78 | TDF_ParamWithReferenceType = 0x1, |
| 79 | |
| 80 | /// Within template argument deduction from a function call, we |
| 81 | /// are matching in a case where we ignore cv-qualifiers. |
| 82 | TDF_IgnoreQualifiers = 0x02, |
| 83 | |
| 84 | /// Within template argument deduction from a function call, |
| 85 | /// we are matching in a case where we can perform template argument |
| 86 | /// deduction from a template-id of a derived class of the argument type. |
| 87 | TDF_DerivedClass = 0x04, |
| 88 | |
| 89 | /// Allow non-dependent types to differ, e.g., when performing |
| 90 | /// template argument deduction from a function call where conversions |
| 91 | /// may apply. |
| 92 | TDF_SkipNonDependent = 0x08, |
| 93 | |
| 94 | /// Whether we are performing template argument deduction for |
| 95 | /// parameters and arguments in a top-level template argument |
| 96 | TDF_TopLevelParameterTypeList = 0x10, |
| 97 | |
| 98 | /// Within template argument deduction from overload resolution per |
| 99 | /// C++ [over.over] allow matching function types that are compatible in |
| 100 | /// terms of noreturn and default calling convention adjustments, or |
| 101 | /// similarly matching a declared template specialization against a |
| 102 | /// possible template, per C++ [temp.deduct.decl]. In either case, permit |
| 103 | /// deduction where the parameter is a function type that can be converted |
| 104 | /// to the argument type. |
| 105 | TDF_AllowCompatibleFunctionType = 0x20, |
| 106 | |
| 107 | /// Within template argument deduction for a conversion function, we are |
| 108 | /// matching with an argument type for which the original argument was |
| 109 | /// a reference. |
| 110 | TDF_ArgWithReferenceType = 0x40, |
| 111 | }; |
| 112 | } |
| 113 | |
| 114 | using namespace clang; |
| 115 | using namespace sema; |
| 116 | |
| 117 | /// The kind of PartialOrdering we're performing template argument deduction |
| 118 | /// for (C++11 [temp.deduct.partial]). |
| 119 | enum class PartialOrderingKind { None, NonCall, Call }; |
| 120 | |
| 121 | static TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch( |
| 122 | Sema &S, TemplateParameterList *TemplateParams, QualType Param, |
| 123 | QualType Arg, TemplateDeductionInfo &Info, |
| 124 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF, |
| 125 | PartialOrderingKind POK, bool DeducedFromArrayBound, |
| 126 | bool *HasDeducedAnyParam); |
| 127 | |
| 128 | /// What directions packs are allowed to match non-packs. |
| 129 | enum class PackFold { ParameterToArgument, ArgumentToParameter, Both }; |
| 130 | |
| 131 | static TemplateDeductionResult |
| 132 | DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, |
| 133 | ArrayRef<TemplateArgument> Ps, |
| 134 | ArrayRef<TemplateArgument> As, |
| 135 | TemplateDeductionInfo &Info, |
| 136 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 137 | bool NumberOfArgumentsMustMatch, bool PartialOrdering, |
| 138 | PackFold PackFold, bool *HasDeducedAnyParam); |
| 139 | |
| 140 | static void MarkUsedTemplateParameters(ASTContext &Ctx, |
| 141 | const TemplateArgument &TemplateArg, |
| 142 | bool OnlyDeduced, unsigned Depth, |
| 143 | llvm::SmallBitVector &Used); |
| 144 | |
| 145 | static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, |
| 146 | bool OnlyDeduced, unsigned Level, |
| 147 | llvm::SmallBitVector &Deduced); |
| 148 | |
| 149 | /// If the given expression is of a form that permits the deduction |
| 150 | /// of a non-type template parameter, return the declaration of that |
| 151 | /// non-type template parameter. |
| 152 | static const NonTypeTemplateParmDecl * |
| 153 | getDeducedParameterFromExpr(const Expr *E, unsigned Depth) { |
| 154 | // If we are within an alias template, the expression may have undergone |
| 155 | // any number of parameter substitutions already. |
| 156 | while (true) { |
| 157 | if (const auto *IC = dyn_cast<ImplicitCastExpr>(Val: E)) |
| 158 | E = IC->getSubExpr(); |
| 159 | else if (const auto *CE = dyn_cast<ConstantExpr>(Val: E)) |
| 160 | E = CE->getSubExpr(); |
| 161 | else if (const auto *Subst = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: E)) |
| 162 | E = Subst->getReplacement(); |
| 163 | else if (const auto *CCE = dyn_cast<CXXConstructExpr>(Val: E)) { |
| 164 | // Look through implicit copy construction from an lvalue of the same type. |
| 165 | if (CCE->getParenOrBraceRange().isValid()) |
| 166 | break; |
| 167 | // Note, there could be default arguments. |
| 168 | assert(CCE->getNumArgs() >= 1 && "implicit construct expr should have 1 arg" ); |
| 169 | E = CCE->getArg(Arg: 0); |
| 170 | } else |
| 171 | break; |
| 172 | } |
| 173 | |
| 174 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
| 175 | if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: DRE->getDecl())) |
| 176 | if (NTTP->getDepth() == Depth) |
| 177 | return NTTP; |
| 178 | |
| 179 | return nullptr; |
| 180 | } |
| 181 | |
| 182 | static const NonTypeTemplateParmDecl * |
| 183 | getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) { |
| 184 | return getDeducedParameterFromExpr(E, Depth: Info.getDeducedDepth()); |
| 185 | } |
| 186 | |
| 187 | /// Determine whether two declaration pointers refer to the same |
| 188 | /// declaration. |
| 189 | static bool isSameDeclaration(Decl *X, Decl *Y) { |
| 190 | if (NamedDecl *NX = dyn_cast<NamedDecl>(Val: X)) |
| 191 | X = NX->getUnderlyingDecl(); |
| 192 | if (NamedDecl *NY = dyn_cast<NamedDecl>(Val: Y)) |
| 193 | Y = NY->getUnderlyingDecl(); |
| 194 | |
| 195 | return X->getCanonicalDecl() == Y->getCanonicalDecl(); |
| 196 | } |
| 197 | |
| 198 | /// Verify that the given, deduced template arguments are compatible. |
| 199 | /// |
| 200 | /// \returns The deduced template argument, or a NULL template argument if |
| 201 | /// the deduced template arguments were incompatible. |
| 202 | static DeducedTemplateArgument |
| 203 | checkDeducedTemplateArguments(ASTContext &Context, |
| 204 | const DeducedTemplateArgument &X, |
| 205 | const DeducedTemplateArgument &Y, |
| 206 | bool AggregateCandidateDeduction = false) { |
| 207 | // We have no deduction for one or both of the arguments; they're compatible. |
| 208 | if (X.isNull()) |
| 209 | return Y; |
| 210 | if (Y.isNull()) |
| 211 | return X; |
| 212 | |
| 213 | // If we have two non-type template argument values deduced for the same |
| 214 | // parameter, they must both match the type of the parameter, and thus must |
| 215 | // match each other's type. As we're only keeping one of them, we must check |
| 216 | // for that now. The exception is that if either was deduced from an array |
| 217 | // bound, the type is permitted to differ. |
| 218 | if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) { |
| 219 | QualType XType = X.getNonTypeTemplateArgumentType(); |
| 220 | if (!XType.isNull()) { |
| 221 | QualType YType = Y.getNonTypeTemplateArgumentType(); |
| 222 | if (YType.isNull() || !Context.hasSameType(T1: XType, T2: YType)) |
| 223 | return DeducedTemplateArgument(); |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | switch (X.getKind()) { |
| 228 | case TemplateArgument::Null: |
| 229 | llvm_unreachable("Non-deduced template arguments handled above" ); |
| 230 | |
| 231 | case TemplateArgument::Type: { |
| 232 | // If two template type arguments have the same type, they're compatible. |
| 233 | QualType TX = X.getAsType(), TY = Y.getAsType(); |
| 234 | if (Y.getKind() == TemplateArgument::Type && Context.hasSameType(T1: TX, T2: TY)) |
| 235 | return DeducedTemplateArgument(Context.getCommonSugaredType(X: TX, Y: TY), |
| 236 | X.wasDeducedFromArrayBound() || |
| 237 | Y.wasDeducedFromArrayBound()); |
| 238 | |
| 239 | // If one of the two arguments was deduced from an array bound, the other |
| 240 | // supersedes it. |
| 241 | if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound()) |
| 242 | return X.wasDeducedFromArrayBound() ? Y : X; |
| 243 | |
| 244 | // The arguments are not compatible. |
| 245 | return DeducedTemplateArgument(); |
| 246 | } |
| 247 | |
| 248 | case TemplateArgument::Integral: |
| 249 | // If we deduced a constant in one case and either a dependent expression or |
| 250 | // declaration in another case, keep the integral constant. |
| 251 | // If both are integral constants with the same value, keep that value. |
| 252 | if (Y.getKind() == TemplateArgument::Expression || |
| 253 | Y.getKind() == TemplateArgument::Declaration || |
| 254 | (Y.getKind() == TemplateArgument::Integral && |
| 255 | llvm::APSInt::isSameValue(I1: X.getAsIntegral(), I2: Y.getAsIntegral()))) |
| 256 | return X.wasDeducedFromArrayBound() ? Y : X; |
| 257 | |
| 258 | // All other combinations are incompatible. |
| 259 | return DeducedTemplateArgument(); |
| 260 | |
| 261 | case TemplateArgument::StructuralValue: |
| 262 | // If we deduced a value and a dependent expression, keep the value. |
| 263 | if (Y.getKind() == TemplateArgument::Expression || |
| 264 | (Y.getKind() == TemplateArgument::StructuralValue && |
| 265 | X.structurallyEquals(Other: Y))) |
| 266 | return X; |
| 267 | |
| 268 | // All other combinations are incompatible. |
| 269 | return DeducedTemplateArgument(); |
| 270 | |
| 271 | case TemplateArgument::Template: |
| 272 | if (Y.getKind() == TemplateArgument::Template && |
| 273 | Context.hasSameTemplateName(X: X.getAsTemplate(), Y: Y.getAsTemplate())) |
| 274 | return X; |
| 275 | |
| 276 | // All other combinations are incompatible. |
| 277 | return DeducedTemplateArgument(); |
| 278 | |
| 279 | case TemplateArgument::TemplateExpansion: |
| 280 | if (Y.getKind() == TemplateArgument::TemplateExpansion && |
| 281 | Context.hasSameTemplateName(X: X.getAsTemplateOrTemplatePattern(), |
| 282 | Y: Y.getAsTemplateOrTemplatePattern())) |
| 283 | return X; |
| 284 | |
| 285 | // All other combinations are incompatible. |
| 286 | return DeducedTemplateArgument(); |
| 287 | |
| 288 | case TemplateArgument::Expression: { |
| 289 | if (Y.getKind() != TemplateArgument::Expression) |
| 290 | return checkDeducedTemplateArguments(Context, X: Y, Y: X); |
| 291 | |
| 292 | // Compare the expressions for equality |
| 293 | llvm::FoldingSetNodeID ID1, ID2; |
| 294 | X.getAsExpr()->Profile(ID&: ID1, Context, Canonical: true); |
| 295 | Y.getAsExpr()->Profile(ID&: ID2, Context, Canonical: true); |
| 296 | if (ID1 == ID2) |
| 297 | return X.wasDeducedFromArrayBound() ? Y : X; |
| 298 | |
| 299 | // Differing dependent expressions are incompatible. |
| 300 | return DeducedTemplateArgument(); |
| 301 | } |
| 302 | |
| 303 | case TemplateArgument::Declaration: |
| 304 | assert(!X.wasDeducedFromArrayBound()); |
| 305 | |
| 306 | // If we deduced a declaration and a dependent expression, keep the |
| 307 | // declaration. |
| 308 | if (Y.getKind() == TemplateArgument::Expression) |
| 309 | return X; |
| 310 | |
| 311 | // If we deduced a declaration and an integral constant, keep the |
| 312 | // integral constant and whichever type did not come from an array |
| 313 | // bound. |
| 314 | if (Y.getKind() == TemplateArgument::Integral) { |
| 315 | if (Y.wasDeducedFromArrayBound()) |
| 316 | return TemplateArgument(Context, Y.getAsIntegral(), |
| 317 | X.getParamTypeForDecl()); |
| 318 | return Y; |
| 319 | } |
| 320 | |
| 321 | // If we deduced two declarations, make sure that they refer to the |
| 322 | // same declaration. |
| 323 | if (Y.getKind() == TemplateArgument::Declaration && |
| 324 | isSameDeclaration(X: X.getAsDecl(), Y: Y.getAsDecl())) |
| 325 | return X; |
| 326 | |
| 327 | // All other combinations are incompatible. |
| 328 | return DeducedTemplateArgument(); |
| 329 | |
| 330 | case TemplateArgument::NullPtr: |
| 331 | // If we deduced a null pointer and a dependent expression, keep the |
| 332 | // null pointer. |
| 333 | if (Y.getKind() == TemplateArgument::Expression) |
| 334 | return TemplateArgument(Context.getCommonSugaredType( |
| 335 | X: X.getNullPtrType(), Y: Y.getAsExpr()->getType()), |
| 336 | true); |
| 337 | |
| 338 | // If we deduced a null pointer and an integral constant, keep the |
| 339 | // integral constant. |
| 340 | if (Y.getKind() == TemplateArgument::Integral) |
| 341 | return Y; |
| 342 | |
| 343 | // If we deduced two null pointers, they are the same. |
| 344 | if (Y.getKind() == TemplateArgument::NullPtr) |
| 345 | return TemplateArgument( |
| 346 | Context.getCommonSugaredType(X: X.getNullPtrType(), Y: Y.getNullPtrType()), |
| 347 | true); |
| 348 | |
| 349 | // All other combinations are incompatible. |
| 350 | return DeducedTemplateArgument(); |
| 351 | |
| 352 | case TemplateArgument::Pack: { |
| 353 | if (Y.getKind() != TemplateArgument::Pack || |
| 354 | (!AggregateCandidateDeduction && X.pack_size() != Y.pack_size())) |
| 355 | return DeducedTemplateArgument(); |
| 356 | |
| 357 | llvm::SmallVector<TemplateArgument, 8> NewPack; |
| 358 | for (TemplateArgument::pack_iterator |
| 359 | XA = X.pack_begin(), |
| 360 | XAEnd = X.pack_end(), YA = Y.pack_begin(), YAEnd = Y.pack_end(); |
| 361 | XA != XAEnd; ++XA) { |
| 362 | if (YA != YAEnd) { |
| 363 | TemplateArgument Merged = checkDeducedTemplateArguments( |
| 364 | Context, X: DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), |
| 365 | Y: DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())); |
| 366 | if (Merged.isNull() && !(XA->isNull() && YA->isNull())) |
| 367 | return DeducedTemplateArgument(); |
| 368 | NewPack.push_back(Elt: Merged); |
| 369 | ++YA; |
| 370 | } else { |
| 371 | NewPack.push_back(Elt: *XA); |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | return DeducedTemplateArgument( |
| 376 | TemplateArgument::CreatePackCopy(Context, Args: NewPack), |
| 377 | X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound()); |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | llvm_unreachable("Invalid TemplateArgument Kind!" ); |
| 382 | } |
| 383 | |
| 384 | /// Deduce the value of the given non-type template parameter |
| 385 | /// as the given deduced template argument. All non-type template parameter |
| 386 | /// deduction is funneled through here. |
| 387 | static TemplateDeductionResult |
| 388 | DeduceNonTypeTemplateArgument(Sema &S, TemplateParameterList *TemplateParams, |
| 389 | const NonTypeTemplateParmDecl *NTTP, |
| 390 | const DeducedTemplateArgument &NewDeduced, |
| 391 | QualType ValueType, TemplateDeductionInfo &Info, |
| 392 | bool PartialOrdering, |
| 393 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 394 | bool *HasDeducedAnyParam) { |
| 395 | assert(NTTP->getDepth() == Info.getDeducedDepth() && |
| 396 | "deducing non-type template argument with wrong depth" ); |
| 397 | |
| 398 | DeducedTemplateArgument Result = checkDeducedTemplateArguments( |
| 399 | Context&: S.Context, X: Deduced[NTTP->getIndex()], Y: NewDeduced); |
| 400 | if (Result.isNull()) { |
| 401 | Info.Param = const_cast<NonTypeTemplateParmDecl*>(NTTP); |
| 402 | Info.FirstArg = Deduced[NTTP->getIndex()]; |
| 403 | Info.SecondArg = NewDeduced; |
| 404 | return TemplateDeductionResult::Inconsistent; |
| 405 | } |
| 406 | |
| 407 | Deduced[NTTP->getIndex()] = Result; |
| 408 | if (!S.getLangOpts().CPlusPlus17) |
| 409 | return TemplateDeductionResult::Success; |
| 410 | |
| 411 | if (NTTP->isExpandedParameterPack()) |
| 412 | // FIXME: We may still need to deduce parts of the type here! But we |
| 413 | // don't have any way to find which slice of the type to use, and the |
| 414 | // type stored on the NTTP itself is nonsense. Perhaps the type of an |
| 415 | // expanded NTTP should be a pack expansion type? |
| 416 | return TemplateDeductionResult::Success; |
| 417 | |
| 418 | // Get the type of the parameter for deduction. If it's a (dependent) array |
| 419 | // or function type, we will not have decayed it yet, so do that now. |
| 420 | QualType ParamType = S.Context.getAdjustedParameterType(T: NTTP->getType()); |
| 421 | if (auto *Expansion = dyn_cast<PackExpansionType>(Val&: ParamType)) |
| 422 | ParamType = Expansion->getPattern(); |
| 423 | |
| 424 | // FIXME: It's not clear how deduction of a parameter of reference |
| 425 | // type from an argument (of non-reference type) should be performed. |
| 426 | // For now, we just make the argument have same reference type as the |
| 427 | // parameter. |
| 428 | if (ParamType->isReferenceType() && !ValueType->isReferenceType()) { |
| 429 | if (ParamType->isRValueReferenceType()) |
| 430 | ValueType = S.Context.getRValueReferenceType(T: ValueType); |
| 431 | else |
| 432 | ValueType = S.Context.getLValueReferenceType(T: ValueType); |
| 433 | } |
| 434 | |
| 435 | return DeduceTemplateArgumentsByTypeMatch( |
| 436 | S, TemplateParams, Param: ParamType, Arg: ValueType, Info, Deduced, |
| 437 | TDF: TDF_SkipNonDependent | TDF_IgnoreQualifiers, |
| 438 | POK: PartialOrdering ? PartialOrderingKind::NonCall |
| 439 | : PartialOrderingKind::None, |
| 440 | /*ArrayBound=*/DeducedFromArrayBound: NewDeduced.wasDeducedFromArrayBound(), HasDeducedAnyParam); |
| 441 | } |
| 442 | |
| 443 | /// Deduce the value of the given non-type template parameter |
| 444 | /// from the given integral constant. |
| 445 | static TemplateDeductionResult DeduceNonTypeTemplateArgument( |
| 446 | Sema &S, TemplateParameterList *TemplateParams, |
| 447 | const NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value, |
| 448 | QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info, |
| 449 | bool PartialOrdering, SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 450 | bool *HasDeducedAnyParam) { |
| 451 | return DeduceNonTypeTemplateArgument( |
| 452 | S, TemplateParams, NTTP, |
| 453 | NewDeduced: DeducedTemplateArgument(S.Context, Value, ValueType, |
| 454 | DeducedFromArrayBound), |
| 455 | ValueType, Info, PartialOrdering, Deduced, HasDeducedAnyParam); |
| 456 | } |
| 457 | |
| 458 | /// Deduce the value of the given non-type template parameter |
| 459 | /// from the given null pointer template argument type. |
| 460 | static TemplateDeductionResult |
| 461 | DeduceNullPtrTemplateArgument(Sema &S, TemplateParameterList *TemplateParams, |
| 462 | const NonTypeTemplateParmDecl *NTTP, |
| 463 | QualType NullPtrType, TemplateDeductionInfo &Info, |
| 464 | bool PartialOrdering, |
| 465 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 466 | bool *HasDeducedAnyParam) { |
| 467 | Expr *Value = S.ImpCastExprToType( |
| 468 | E: new (S.Context) CXXNullPtrLiteralExpr(S.Context.NullPtrTy, |
| 469 | NTTP->getLocation()), |
| 470 | Type: NullPtrType, |
| 471 | CK: NullPtrType->isMemberPointerType() ? CK_NullToMemberPointer |
| 472 | : CK_NullToPointer) |
| 473 | .get(); |
| 474 | return DeduceNonTypeTemplateArgument( |
| 475 | S, TemplateParams, NTTP, NewDeduced: TemplateArgument(Value, /*IsCanonical=*/false), |
| 476 | ValueType: Value->getType(), Info, PartialOrdering, Deduced, HasDeducedAnyParam); |
| 477 | } |
| 478 | |
| 479 | /// Deduce the value of the given non-type template parameter |
| 480 | /// from the given type- or value-dependent expression. |
| 481 | /// |
| 482 | /// \returns true if deduction succeeded, false otherwise. |
| 483 | static TemplateDeductionResult |
| 484 | DeduceNonTypeTemplateArgument(Sema &S, TemplateParameterList *TemplateParams, |
| 485 | const NonTypeTemplateParmDecl *NTTP, Expr *Value, |
| 486 | TemplateDeductionInfo &Info, bool PartialOrdering, |
| 487 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 488 | bool *HasDeducedAnyParam) { |
| 489 | return DeduceNonTypeTemplateArgument( |
| 490 | S, TemplateParams, NTTP, NewDeduced: TemplateArgument(Value, /*IsCanonical=*/false), |
| 491 | ValueType: Value->getType(), Info, PartialOrdering, Deduced, HasDeducedAnyParam); |
| 492 | } |
| 493 | |
| 494 | /// Deduce the value of the given non-type template parameter |
| 495 | /// from the given declaration. |
| 496 | /// |
| 497 | /// \returns true if deduction succeeded, false otherwise. |
| 498 | static TemplateDeductionResult |
| 499 | DeduceNonTypeTemplateArgument(Sema &S, TemplateParameterList *TemplateParams, |
| 500 | const NonTypeTemplateParmDecl *NTTP, ValueDecl *D, |
| 501 | QualType T, TemplateDeductionInfo &Info, |
| 502 | bool PartialOrdering, |
| 503 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 504 | bool *HasDeducedAnyParam) { |
| 505 | TemplateArgument New(D, T); |
| 506 | return DeduceNonTypeTemplateArgument( |
| 507 | S, TemplateParams, NTTP, NewDeduced: DeducedTemplateArgument(New), ValueType: T, Info, |
| 508 | PartialOrdering, Deduced, HasDeducedAnyParam); |
| 509 | } |
| 510 | |
| 511 | static TemplateDeductionResult DeduceTemplateArguments( |
| 512 | Sema &S, TemplateParameterList *TemplateParams, TemplateName Param, |
| 513 | TemplateName Arg, TemplateDeductionInfo &Info, |
| 514 | ArrayRef<TemplateArgument> DefaultArguments, bool PartialOrdering, |
| 515 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 516 | bool *HasDeducedAnyParam) { |
| 517 | TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); |
| 518 | if (!ParamDecl) { |
| 519 | // The parameter type is dependent and is not a template template parameter, |
| 520 | // so there is nothing that we can deduce. |
| 521 | return TemplateDeductionResult::Success; |
| 522 | } |
| 523 | |
| 524 | if (auto *TempParam = dyn_cast<TemplateTemplateParmDecl>(Val: ParamDecl)) { |
| 525 | // If we're not deducing at this depth, there's nothing to deduce. |
| 526 | if (TempParam->getDepth() != Info.getDeducedDepth()) |
| 527 | return TemplateDeductionResult::Success; |
| 528 | |
| 529 | ArrayRef<NamedDecl *> Params = |
| 530 | ParamDecl->getTemplateParameters()->asArray(); |
| 531 | unsigned StartPos = 0; |
| 532 | for (unsigned I = 0, E = std::min(a: Params.size(), b: DefaultArguments.size()); |
| 533 | I < E; ++I) { |
| 534 | if (Params[I]->isParameterPack()) { |
| 535 | StartPos = DefaultArguments.size(); |
| 536 | break; |
| 537 | } |
| 538 | StartPos = I + 1; |
| 539 | } |
| 540 | |
| 541 | // Provisional resolution for CWG2398: If Arg names a template |
| 542 | // specialization, then we deduce a synthesized template name |
| 543 | // based on A, but using the TS's extra arguments, relative to P, as |
| 544 | // defaults. |
| 545 | DeducedTemplateArgument NewDeduced = |
| 546 | PartialOrdering |
| 547 | ? TemplateArgument(S.Context.getDeducedTemplateName( |
| 548 | Underlying: Arg, DefaultArgs: {.StartPos: StartPos, .Args: DefaultArguments.drop_front(N: StartPos)})) |
| 549 | : Arg; |
| 550 | |
| 551 | DeducedTemplateArgument Result = checkDeducedTemplateArguments( |
| 552 | Context&: S.Context, X: Deduced[TempParam->getIndex()], Y: NewDeduced); |
| 553 | if (Result.isNull()) { |
| 554 | Info.Param = TempParam; |
| 555 | Info.FirstArg = Deduced[TempParam->getIndex()]; |
| 556 | Info.SecondArg = NewDeduced; |
| 557 | return TemplateDeductionResult::Inconsistent; |
| 558 | } |
| 559 | |
| 560 | Deduced[TempParam->getIndex()] = Result; |
| 561 | if (HasDeducedAnyParam) |
| 562 | *HasDeducedAnyParam = true; |
| 563 | return TemplateDeductionResult::Success; |
| 564 | } |
| 565 | |
| 566 | // Verify that the two template names are equivalent. |
| 567 | if (S.Context.hasSameTemplateName( |
| 568 | X: Param, Y: Arg, /*IgnoreDeduced=*/DefaultArguments.size() != 0)) |
| 569 | return TemplateDeductionResult::Success; |
| 570 | |
| 571 | // Mismatch of non-dependent template parameter to argument. |
| 572 | Info.FirstArg = TemplateArgument(Param); |
| 573 | Info.SecondArg = TemplateArgument(Arg); |
| 574 | return TemplateDeductionResult::NonDeducedMismatch; |
| 575 | } |
| 576 | |
| 577 | /// Deduce the template arguments by comparing the template parameter |
| 578 | /// type (which is a template-id) with the template argument type. |
| 579 | /// |
| 580 | /// \param S the Sema |
| 581 | /// |
| 582 | /// \param TemplateParams the template parameters that we are deducing |
| 583 | /// |
| 584 | /// \param P the parameter type |
| 585 | /// |
| 586 | /// \param A the argument type |
| 587 | /// |
| 588 | /// \param Info information about the template argument deduction itself |
| 589 | /// |
| 590 | /// \param Deduced the deduced template arguments |
| 591 | /// |
| 592 | /// \returns the result of template argument deduction so far. Note that a |
| 593 | /// "success" result means that template argument deduction has not yet failed, |
| 594 | /// but it may still fail, later, for other reasons. |
| 595 | |
| 596 | static const TemplateSpecializationType *getLastTemplateSpecType(QualType QT) { |
| 597 | const TemplateSpecializationType *LastTST = nullptr; |
| 598 | for (const Type *T = QT.getTypePtr(); /**/; /**/) { |
| 599 | const TemplateSpecializationType *TST = |
| 600 | T->getAs<TemplateSpecializationType>(); |
| 601 | if (!TST) |
| 602 | return LastTST; |
| 603 | if (!TST->isSugared()) |
| 604 | return TST; |
| 605 | LastTST = TST; |
| 606 | T = TST->desugar().getTypePtr(); |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | static TemplateDeductionResult |
| 611 | DeduceTemplateSpecArguments(Sema &S, TemplateParameterList *TemplateParams, |
| 612 | const QualType P, QualType A, |
| 613 | TemplateDeductionInfo &Info, bool PartialOrdering, |
| 614 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 615 | bool *HasDeducedAnyParam) { |
| 616 | QualType UP = P; |
| 617 | if (const auto *IP = P->getAs<InjectedClassNameType>()) |
| 618 | UP = IP->getInjectedSpecializationType(); |
| 619 | |
| 620 | assert(isa<TemplateSpecializationType>(UP.getCanonicalType())); |
| 621 | const TemplateSpecializationType *TP = ::getLastTemplateSpecType(QT: UP); |
| 622 | TemplateName TNP = TP->getTemplateName(); |
| 623 | |
| 624 | // If the parameter is an alias template, there is nothing to deduce. |
| 625 | if (const auto *TD = TNP.getAsTemplateDecl(); TD && TD->isTypeAlias()) |
| 626 | return TemplateDeductionResult::Success; |
| 627 | |
| 628 | // FIXME: To preserve sugar, the TST needs to carry sugared resolved |
| 629 | // arguments. |
| 630 | ArrayRef<TemplateArgument> PResolved = |
| 631 | TP->getCanonicalTypeInternal() |
| 632 | ->castAs<TemplateSpecializationType>() |
| 633 | ->template_arguments(); |
| 634 | |
| 635 | QualType UA = A; |
| 636 | std::optional<NestedNameSpecifier *> NNS; |
| 637 | // Treat an injected-class-name as its underlying template-id. |
| 638 | if (const auto *Elaborated = A->getAs<ElaboratedType>()) { |
| 639 | NNS = Elaborated->getQualifier(); |
| 640 | } else if (const auto *Injected = A->getAs<InjectedClassNameType>()) { |
| 641 | UA = Injected->getInjectedSpecializationType(); |
| 642 | NNS = nullptr; |
| 643 | } |
| 644 | |
| 645 | // Check whether the template argument is a dependent template-id. |
| 646 | if (isa<TemplateSpecializationType>(Val: UA.getCanonicalType())) { |
| 647 | const TemplateSpecializationType *SA = ::getLastTemplateSpecType(QT: UA); |
| 648 | TemplateName TNA = SA->getTemplateName(); |
| 649 | |
| 650 | // If the argument is an alias template, there is nothing to deduce. |
| 651 | if (const auto *TD = TNA.getAsTemplateDecl(); TD && TD->isTypeAlias()) |
| 652 | return TemplateDeductionResult::Success; |
| 653 | |
| 654 | // FIXME: To preserve sugar, the TST needs to carry sugared resolved |
| 655 | // arguments. |
| 656 | ArrayRef<TemplateArgument> AResolved = |
| 657 | SA->getCanonicalTypeInternal() |
| 658 | ->castAs<TemplateSpecializationType>() |
| 659 | ->template_arguments(); |
| 660 | |
| 661 | // Perform template argument deduction for the template name. |
| 662 | if (auto Result = DeduceTemplateArguments(S, TemplateParams, Param: TNP, Arg: TNA, Info, |
| 663 | /*DefaultArguments=*/AResolved, |
| 664 | PartialOrdering, Deduced, |
| 665 | HasDeducedAnyParam); |
| 666 | Result != TemplateDeductionResult::Success) |
| 667 | return Result; |
| 668 | |
| 669 | // Perform template argument deduction on each template |
| 670 | // argument. Ignore any missing/extra arguments, since they could be |
| 671 | // filled in by default arguments. |
| 672 | return DeduceTemplateArguments( |
| 673 | S, TemplateParams, Ps: PResolved, As: AResolved, Info, Deduced, |
| 674 | /*NumberOfArgumentsMustMatch=*/false, PartialOrdering, |
| 675 | PackFold: PackFold::ParameterToArgument, HasDeducedAnyParam); |
| 676 | } |
| 677 | |
| 678 | // If the argument type is a class template specialization, we |
| 679 | // perform template argument deduction using its template |
| 680 | // arguments. |
| 681 | const auto *RA = UA->getAs<RecordType>(); |
| 682 | const auto *SA = |
| 683 | RA ? dyn_cast<ClassTemplateSpecializationDecl>(Val: RA->getDecl()) : nullptr; |
| 684 | if (!SA) { |
| 685 | Info.FirstArg = TemplateArgument(P); |
| 686 | Info.SecondArg = TemplateArgument(A); |
| 687 | return TemplateDeductionResult::NonDeducedMismatch; |
| 688 | } |
| 689 | |
| 690 | TemplateName TNA = TemplateName(SA->getSpecializedTemplate()); |
| 691 | if (NNS) |
| 692 | TNA = S.Context.getQualifiedTemplateName( |
| 693 | NNS: *NNS, TemplateKeyword: false, Template: TemplateName(SA->getSpecializedTemplate())); |
| 694 | |
| 695 | // Perform template argument deduction for the template name. |
| 696 | if (auto Result = DeduceTemplateArguments( |
| 697 | S, TemplateParams, Param: TNP, Arg: TNA, Info, |
| 698 | /*DefaultArguments=*/SA->getTemplateArgs().asArray(), PartialOrdering, |
| 699 | Deduced, HasDeducedAnyParam); |
| 700 | Result != TemplateDeductionResult::Success) |
| 701 | return Result; |
| 702 | |
| 703 | // Perform template argument deduction for the template arguments. |
| 704 | return DeduceTemplateArguments(S, TemplateParams, Ps: PResolved, |
| 705 | As: SA->getTemplateArgs().asArray(), Info, Deduced, |
| 706 | /*NumberOfArgumentsMustMatch=*/true, |
| 707 | PartialOrdering, PackFold: PackFold::ParameterToArgument, |
| 708 | HasDeducedAnyParam); |
| 709 | } |
| 710 | |
| 711 | static bool IsPossiblyOpaquelyQualifiedTypeInternal(const Type *T) { |
| 712 | assert(T->isCanonicalUnqualified()); |
| 713 | |
| 714 | switch (T->getTypeClass()) { |
| 715 | case Type::TypeOfExpr: |
| 716 | case Type::TypeOf: |
| 717 | case Type::DependentName: |
| 718 | case Type::Decltype: |
| 719 | case Type::PackIndexing: |
| 720 | case Type::UnresolvedUsing: |
| 721 | case Type::TemplateTypeParm: |
| 722 | case Type::Auto: |
| 723 | return true; |
| 724 | |
| 725 | case Type::ConstantArray: |
| 726 | case Type::IncompleteArray: |
| 727 | case Type::VariableArray: |
| 728 | case Type::DependentSizedArray: |
| 729 | return IsPossiblyOpaquelyQualifiedTypeInternal( |
| 730 | T: cast<ArrayType>(Val: T)->getElementType().getTypePtr()); |
| 731 | |
| 732 | default: |
| 733 | return false; |
| 734 | } |
| 735 | } |
| 736 | |
| 737 | /// Determines whether the given type is an opaque type that |
| 738 | /// might be more qualified when instantiated. |
| 739 | static bool IsPossiblyOpaquelyQualifiedType(QualType T) { |
| 740 | return IsPossiblyOpaquelyQualifiedTypeInternal( |
| 741 | T: T->getCanonicalTypeInternal().getTypePtr()); |
| 742 | } |
| 743 | |
| 744 | /// Helper function to build a TemplateParameter when we don't |
| 745 | /// know its type statically. |
| 746 | static TemplateParameter makeTemplateParameter(Decl *D) { |
| 747 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: D)) |
| 748 | return TemplateParameter(TTP); |
| 749 | if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: D)) |
| 750 | return TemplateParameter(NTTP); |
| 751 | |
| 752 | return TemplateParameter(cast<TemplateTemplateParmDecl>(Val: D)); |
| 753 | } |
| 754 | |
| 755 | /// A pack that we're currently deducing. |
| 756 | struct clang::DeducedPack { |
| 757 | // The index of the pack. |
| 758 | unsigned Index; |
| 759 | |
| 760 | // The old value of the pack before we started deducing it. |
| 761 | DeducedTemplateArgument Saved; |
| 762 | |
| 763 | // A deferred value of this pack from an inner deduction, that couldn't be |
| 764 | // deduced because this deduction hadn't happened yet. |
| 765 | DeducedTemplateArgument DeferredDeduction; |
| 766 | |
| 767 | // The new value of the pack. |
| 768 | SmallVector<DeducedTemplateArgument, 4> New; |
| 769 | |
| 770 | // The outer deduction for this pack, if any. |
| 771 | DeducedPack *Outer = nullptr; |
| 772 | |
| 773 | DeducedPack(unsigned Index) : Index(Index) {} |
| 774 | }; |
| 775 | |
| 776 | namespace { |
| 777 | |
| 778 | /// A scope in which we're performing pack deduction. |
| 779 | class PackDeductionScope { |
| 780 | public: |
| 781 | /// Prepare to deduce the packs named within Pattern. |
| 782 | /// \param FinishingDeduction Don't attempt to deduce the pack. Useful when |
| 783 | /// just checking a previous deduction of the pack. |
| 784 | PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, |
| 785 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 786 | TemplateDeductionInfo &Info, TemplateArgument Pattern, |
| 787 | bool DeducePackIfNotAlreadyDeduced = false, |
| 788 | bool FinishingDeduction = false) |
| 789 | : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info), |
| 790 | DeducePackIfNotAlreadyDeduced(DeducePackIfNotAlreadyDeduced), |
| 791 | FinishingDeduction(FinishingDeduction) { |
| 792 | unsigned NumNamedPacks = addPacks(Pattern); |
| 793 | finishConstruction(NumNamedPacks); |
| 794 | } |
| 795 | |
| 796 | /// Prepare to directly deduce arguments of the parameter with index \p Index. |
| 797 | PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, |
| 798 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 799 | TemplateDeductionInfo &Info, unsigned Index) |
| 800 | : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { |
| 801 | addPack(Index); |
| 802 | finishConstruction(NumNamedPacks: 1); |
| 803 | } |
| 804 | |
| 805 | private: |
| 806 | void addPack(unsigned Index) { |
| 807 | // Save the deduced template argument for the parameter pack expanded |
| 808 | // by this pack expansion, then clear out the deduction. |
| 809 | DeducedFromEarlierParameter = !Deduced[Index].isNull(); |
| 810 | DeducedPack Pack(Index); |
| 811 | if (!FinishingDeduction) { |
| 812 | Pack.Saved = Deduced[Index]; |
| 813 | Deduced[Index] = TemplateArgument(); |
| 814 | } |
| 815 | |
| 816 | // FIXME: What if we encounter multiple packs with different numbers of |
| 817 | // pre-expanded expansions? (This should already have been diagnosed |
| 818 | // during substitution.) |
| 819 | if (UnsignedOrNone ExpandedPackExpansions = |
| 820 | getExpandedPackSize(Param: TemplateParams->getParam(Idx: Index))) |
| 821 | FixedNumExpansions = ExpandedPackExpansions; |
| 822 | |
| 823 | Packs.push_back(Elt: Pack); |
| 824 | } |
| 825 | |
| 826 | unsigned addPacks(TemplateArgument Pattern) { |
| 827 | // Compute the set of template parameter indices that correspond to |
| 828 | // parameter packs expanded by the pack expansion. |
| 829 | llvm::SmallBitVector SawIndices(TemplateParams->size()); |
| 830 | llvm::SmallVector<TemplateArgument, 4> ; |
| 831 | |
| 832 | auto AddPack = [&](unsigned Index) { |
| 833 | if (SawIndices[Index]) |
| 834 | return; |
| 835 | SawIndices[Index] = true; |
| 836 | addPack(Index); |
| 837 | |
| 838 | // Deducing a parameter pack that is a pack expansion also constrains the |
| 839 | // packs appearing in that parameter to have the same deduced arity. Also, |
| 840 | // in C++17 onwards, deducing a non-type template parameter deduces its |
| 841 | // type, so we need to collect the pending deduced values for those packs. |
| 842 | if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>( |
| 843 | Val: TemplateParams->getParam(Idx: Index))) { |
| 844 | if (!NTTP->isExpandedParameterPack()) |
| 845 | // FIXME: CWG2982 suggests a type-constraint forms a non-deduced |
| 846 | // context, however it is not yet resolved. |
| 847 | if (auto *Expansion = dyn_cast<PackExpansionType>( |
| 848 | Val: S.Context.getUnconstrainedType(T: NTTP->getType()))) |
| 849 | ExtraDeductions.push_back(Elt: Expansion->getPattern()); |
| 850 | } |
| 851 | // FIXME: Also collect the unexpanded packs in any type and template |
| 852 | // parameter packs that are pack expansions. |
| 853 | }; |
| 854 | |
| 855 | auto Collect = [&](TemplateArgument Pattern) { |
| 856 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| 857 | S.collectUnexpandedParameterPacks(Arg: Pattern, Unexpanded); |
| 858 | for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { |
| 859 | unsigned Depth, Index; |
| 860 | std::tie(args&: Depth, args&: Index) = getDepthAndIndex(UPP: Unexpanded[I]); |
| 861 | if (Depth == Info.getDeducedDepth()) |
| 862 | AddPack(Index); |
| 863 | } |
| 864 | }; |
| 865 | |
| 866 | // Look for unexpanded packs in the pattern. |
| 867 | Collect(Pattern); |
| 868 | assert(!Packs.empty() && "Pack expansion without unexpanded packs?" ); |
| 869 | |
| 870 | unsigned NumNamedPacks = Packs.size(); |
| 871 | |
| 872 | // Also look for unexpanded packs that are indirectly deduced by deducing |
| 873 | // the sizes of the packs in this pattern. |
| 874 | while (!ExtraDeductions.empty()) |
| 875 | Collect(ExtraDeductions.pop_back_val()); |
| 876 | |
| 877 | return NumNamedPacks; |
| 878 | } |
| 879 | |
| 880 | void finishConstruction(unsigned NumNamedPacks) { |
| 881 | // Dig out the partially-substituted pack, if there is one. |
| 882 | const TemplateArgument *PartialPackArgs = nullptr; |
| 883 | unsigned NumPartialPackArgs = 0; |
| 884 | std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u); |
| 885 | if (auto *Scope = S.CurrentInstantiationScope) |
| 886 | if (auto *Partial = Scope->getPartiallySubstitutedPack( |
| 887 | ExplicitArgs: &PartialPackArgs, NumExplicitArgs: &NumPartialPackArgs)) |
| 888 | PartialPackDepthIndex = getDepthAndIndex(ND: Partial); |
| 889 | |
| 890 | // This pack expansion will have been partially or fully expanded if |
| 891 | // it only names explicitly-specified parameter packs (including the |
| 892 | // partially-substituted one, if any). |
| 893 | bool IsExpanded = true; |
| 894 | for (unsigned I = 0; I != NumNamedPacks; ++I) { |
| 895 | if (Packs[I].Index >= Info.getNumExplicitArgs()) { |
| 896 | IsExpanded = false; |
| 897 | IsPartiallyExpanded = false; |
| 898 | break; |
| 899 | } |
| 900 | if (PartialPackDepthIndex == |
| 901 | std::make_pair(x: Info.getDeducedDepth(), y&: Packs[I].Index)) { |
| 902 | IsPartiallyExpanded = true; |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | // Skip over the pack elements that were expanded into separate arguments. |
| 907 | // If we partially expanded, this is the number of partial arguments. |
| 908 | // FIXME: `&& FixedNumExpansions` is a workaround for UB described in |
| 909 | // https://github.com/llvm/llvm-project/issues/100095 |
| 910 | if (IsPartiallyExpanded) |
| 911 | PackElements += NumPartialPackArgs; |
| 912 | else if (IsExpanded && FixedNumExpansions) |
| 913 | PackElements += *FixedNumExpansions; |
| 914 | |
| 915 | for (auto &Pack : Packs) { |
| 916 | if (Info.PendingDeducedPacks.size() > Pack.Index) |
| 917 | Pack.Outer = Info.PendingDeducedPacks[Pack.Index]; |
| 918 | else |
| 919 | Info.PendingDeducedPacks.resize(N: Pack.Index + 1); |
| 920 | Info.PendingDeducedPacks[Pack.Index] = &Pack; |
| 921 | |
| 922 | if (PartialPackDepthIndex == |
| 923 | std::make_pair(x: Info.getDeducedDepth(), y&: Pack.Index)) { |
| 924 | Pack.New.append(in_start: PartialPackArgs, in_end: PartialPackArgs + NumPartialPackArgs); |
| 925 | // We pre-populate the deduced value of the partially-substituted |
| 926 | // pack with the specified value. This is not entirely correct: the |
| 927 | // value is supposed to have been substituted, not deduced, but the |
| 928 | // cases where this is observable require an exact type match anyway. |
| 929 | // |
| 930 | // FIXME: If we could represent a "depth i, index j, pack elem k" |
| 931 | // parameter, we could substitute the partially-substituted pack |
| 932 | // everywhere and avoid this. |
| 933 | if (!FinishingDeduction && !IsPartiallyExpanded) |
| 934 | Deduced[Pack.Index] = Pack.New[PackElements]; |
| 935 | } |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | public: |
| 940 | ~PackDeductionScope() { |
| 941 | for (auto &Pack : Packs) |
| 942 | Info.PendingDeducedPacks[Pack.Index] = Pack.Outer; |
| 943 | } |
| 944 | |
| 945 | // Return the size of the saved packs if all of them has the same size. |
| 946 | UnsignedOrNone getSavedPackSizeIfAllEqual() const { |
| 947 | unsigned PackSize = Packs[0].Saved.pack_size(); |
| 948 | |
| 949 | if (std::all_of(first: Packs.begin() + 1, last: Packs.end(), pred: [&PackSize](const auto &P) { |
| 950 | return P.Saved.pack_size() == PackSize; |
| 951 | })) |
| 952 | return PackSize; |
| 953 | return std::nullopt; |
| 954 | } |
| 955 | |
| 956 | /// Determine whether this pack has already been deduced from a previous |
| 957 | /// argument. |
| 958 | bool isDeducedFromEarlierParameter() const { |
| 959 | return DeducedFromEarlierParameter; |
| 960 | } |
| 961 | |
| 962 | /// Determine whether this pack has already been partially expanded into a |
| 963 | /// sequence of (prior) function parameters / template arguments. |
| 964 | bool isPartiallyExpanded() { return IsPartiallyExpanded; } |
| 965 | |
| 966 | /// Determine whether this pack expansion scope has a known, fixed arity. |
| 967 | /// This happens if it involves a pack from an outer template that has |
| 968 | /// (notionally) already been expanded. |
| 969 | bool hasFixedArity() { return static_cast<bool>(FixedNumExpansions); } |
| 970 | |
| 971 | /// Determine whether the next element of the argument is still part of this |
| 972 | /// pack. This is the case unless the pack is already expanded to a fixed |
| 973 | /// length. |
| 974 | bool hasNextElement() { |
| 975 | return !FixedNumExpansions || *FixedNumExpansions > PackElements; |
| 976 | } |
| 977 | |
| 978 | /// Move to deducing the next element in each pack that is being deduced. |
| 979 | void nextPackElement() { |
| 980 | // Capture the deduced template arguments for each parameter pack expanded |
| 981 | // by this pack expansion, add them to the list of arguments we've deduced |
| 982 | // for that pack, then clear out the deduced argument. |
| 983 | if (!FinishingDeduction) { |
| 984 | for (auto &Pack : Packs) { |
| 985 | DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index]; |
| 986 | if (!Pack.New.empty() || !DeducedArg.isNull()) { |
| 987 | while (Pack.New.size() < PackElements) |
| 988 | Pack.New.push_back(Elt: DeducedTemplateArgument()); |
| 989 | if (Pack.New.size() == PackElements) |
| 990 | Pack.New.push_back(Elt: DeducedArg); |
| 991 | else |
| 992 | Pack.New[PackElements] = DeducedArg; |
| 993 | DeducedArg = Pack.New.size() > PackElements + 1 |
| 994 | ? Pack.New[PackElements + 1] |
| 995 | : DeducedTemplateArgument(); |
| 996 | } |
| 997 | } |
| 998 | } |
| 999 | ++PackElements; |
| 1000 | } |
| 1001 | |
| 1002 | /// Finish template argument deduction for a set of argument packs, |
| 1003 | /// producing the argument packs and checking for consistency with prior |
| 1004 | /// deductions. |
| 1005 | TemplateDeductionResult finish() { |
| 1006 | if (FinishingDeduction) |
| 1007 | return TemplateDeductionResult::Success; |
| 1008 | // Build argument packs for each of the parameter packs expanded by this |
| 1009 | // pack expansion. |
| 1010 | for (auto &Pack : Packs) { |
| 1011 | // Put back the old value for this pack. |
| 1012 | if (!FinishingDeduction) |
| 1013 | Deduced[Pack.Index] = Pack.Saved; |
| 1014 | |
| 1015 | // Always make sure the size of this pack is correct, even if we didn't |
| 1016 | // deduce any values for it. |
| 1017 | // |
| 1018 | // FIXME: This isn't required by the normative wording, but substitution |
| 1019 | // and post-substitution checking will always fail if the arity of any |
| 1020 | // pack is not equal to the number of elements we processed. (Either that |
| 1021 | // or something else has gone *very* wrong.) We're permitted to skip any |
| 1022 | // hard errors from those follow-on steps by the intent (but not the |
| 1023 | // wording) of C++ [temp.inst]p8: |
| 1024 | // |
| 1025 | // If the function selected by overload resolution can be determined |
| 1026 | // without instantiating a class template definition, it is unspecified |
| 1027 | // whether that instantiation actually takes place |
| 1028 | Pack.New.resize(N: PackElements); |
| 1029 | |
| 1030 | // Build or find a new value for this pack. |
| 1031 | DeducedTemplateArgument NewPack; |
| 1032 | if (Pack.New.empty()) { |
| 1033 | // If we deduced an empty argument pack, create it now. |
| 1034 | NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack()); |
| 1035 | } else { |
| 1036 | TemplateArgument *ArgumentPack = |
| 1037 | new (S.Context) TemplateArgument[Pack.New.size()]; |
| 1038 | std::copy(first: Pack.New.begin(), last: Pack.New.end(), result: ArgumentPack); |
| 1039 | NewPack = DeducedTemplateArgument( |
| 1040 | TemplateArgument(llvm::ArrayRef(ArgumentPack, Pack.New.size())), |
| 1041 | // FIXME: This is wrong, it's possible that some pack elements are |
| 1042 | // deduced from an array bound and others are not: |
| 1043 | // template<typename ...T, T ...V> void g(const T (&...p)[V]); |
| 1044 | // g({1, 2, 3}, {{}, {}}); |
| 1045 | // ... should deduce T = {int, size_t (from array bound)}. |
| 1046 | Pack.New[0].wasDeducedFromArrayBound()); |
| 1047 | } |
| 1048 | |
| 1049 | // Pick where we're going to put the merged pack. |
| 1050 | DeducedTemplateArgument *Loc; |
| 1051 | if (Pack.Outer) { |
| 1052 | if (Pack.Outer->DeferredDeduction.isNull()) { |
| 1053 | // Defer checking this pack until we have a complete pack to compare |
| 1054 | // it against. |
| 1055 | Pack.Outer->DeferredDeduction = NewPack; |
| 1056 | continue; |
| 1057 | } |
| 1058 | Loc = &Pack.Outer->DeferredDeduction; |
| 1059 | } else { |
| 1060 | Loc = &Deduced[Pack.Index]; |
| 1061 | } |
| 1062 | |
| 1063 | // Check the new pack matches any previous value. |
| 1064 | DeducedTemplateArgument OldPack = *Loc; |
| 1065 | DeducedTemplateArgument Result = checkDeducedTemplateArguments( |
| 1066 | Context&: S.Context, X: OldPack, Y: NewPack, AggregateCandidateDeduction: DeducePackIfNotAlreadyDeduced); |
| 1067 | |
| 1068 | Info.AggregateDeductionCandidateHasMismatchedArity = |
| 1069 | OldPack.getKind() == TemplateArgument::Pack && |
| 1070 | NewPack.getKind() == TemplateArgument::Pack && |
| 1071 | OldPack.pack_size() != NewPack.pack_size() && !Result.isNull(); |
| 1072 | |
| 1073 | // If we deferred a deduction of this pack, check that one now too. |
| 1074 | if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) { |
| 1075 | OldPack = Result; |
| 1076 | NewPack = Pack.DeferredDeduction; |
| 1077 | Result = checkDeducedTemplateArguments(Context&: S.Context, X: OldPack, Y: NewPack); |
| 1078 | } |
| 1079 | |
| 1080 | NamedDecl *Param = TemplateParams->getParam(Idx: Pack.Index); |
| 1081 | if (Result.isNull()) { |
| 1082 | Info.Param = makeTemplateParameter(D: Param); |
| 1083 | Info.FirstArg = OldPack; |
| 1084 | Info.SecondArg = NewPack; |
| 1085 | return TemplateDeductionResult::Inconsistent; |
| 1086 | } |
| 1087 | |
| 1088 | // If we have a pre-expanded pack and we didn't deduce enough elements |
| 1089 | // for it, fail deduction. |
| 1090 | if (UnsignedOrNone Expansions = getExpandedPackSize(Param)) { |
| 1091 | if (*Expansions != PackElements) { |
| 1092 | Info.Param = makeTemplateParameter(D: Param); |
| 1093 | Info.FirstArg = Result; |
| 1094 | return TemplateDeductionResult::IncompletePack; |
| 1095 | } |
| 1096 | } |
| 1097 | |
| 1098 | *Loc = Result; |
| 1099 | } |
| 1100 | |
| 1101 | return TemplateDeductionResult::Success; |
| 1102 | } |
| 1103 | |
| 1104 | private: |
| 1105 | Sema &S; |
| 1106 | TemplateParameterList *TemplateParams; |
| 1107 | SmallVectorImpl<DeducedTemplateArgument> &Deduced; |
| 1108 | TemplateDeductionInfo &Info; |
| 1109 | unsigned PackElements = 0; |
| 1110 | bool IsPartiallyExpanded = false; |
| 1111 | bool DeducePackIfNotAlreadyDeduced = false; |
| 1112 | bool DeducedFromEarlierParameter = false; |
| 1113 | bool FinishingDeduction = false; |
| 1114 | /// The number of expansions, if we have a fully-expanded pack in this scope. |
| 1115 | UnsignedOrNone FixedNumExpansions = std::nullopt; |
| 1116 | |
| 1117 | SmallVector<DeducedPack, 2> Packs; |
| 1118 | }; |
| 1119 | |
| 1120 | } // namespace |
| 1121 | |
| 1122 | template <class T> |
| 1123 | static TemplateDeductionResult DeduceForEachType( |
| 1124 | Sema &S, TemplateParameterList *TemplateParams, ArrayRef<QualType> Params, |
| 1125 | ArrayRef<QualType> Args, TemplateDeductionInfo &Info, |
| 1126 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, PartialOrderingKind POK, |
| 1127 | bool FinishingDeduction, T &&DeductFunc) { |
| 1128 | // C++0x [temp.deduct.type]p10: |
| 1129 | // Similarly, if P has a form that contains (T), then each parameter type |
| 1130 | // Pi of the respective parameter-type- list of P is compared with the |
| 1131 | // corresponding parameter type Ai of the corresponding parameter-type-list |
| 1132 | // of A. [...] |
| 1133 | unsigned ArgIdx = 0, ParamIdx = 0; |
| 1134 | for (; ParamIdx != Params.size(); ++ParamIdx) { |
| 1135 | // Check argument types. |
| 1136 | const PackExpansionType *Expansion |
| 1137 | = dyn_cast<PackExpansionType>(Val: Params[ParamIdx]); |
| 1138 | if (!Expansion) { |
| 1139 | // Simple case: compare the parameter and argument types at this point. |
| 1140 | |
| 1141 | // Make sure we have an argument. |
| 1142 | if (ArgIdx >= Args.size()) |
| 1143 | return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| 1144 | |
| 1145 | if (isa<PackExpansionType>(Val: Args[ArgIdx])) { |
| 1146 | // C++0x [temp.deduct.type]p22: |
| 1147 | // If the original function parameter associated with A is a function |
| 1148 | // parameter pack and the function parameter associated with P is not |
| 1149 | // a function parameter pack, then template argument deduction fails. |
| 1150 | return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| 1151 | } |
| 1152 | |
| 1153 | if (TemplateDeductionResult Result = |
| 1154 | DeductFunc(S, TemplateParams, ParamIdx, ArgIdx, |
| 1155 | Params[ParamIdx].getUnqualifiedType(), |
| 1156 | Args[ArgIdx].getUnqualifiedType(), Info, Deduced, POK); |
| 1157 | Result != TemplateDeductionResult::Success) |
| 1158 | return Result; |
| 1159 | |
| 1160 | ++ArgIdx; |
| 1161 | continue; |
| 1162 | } |
| 1163 | |
| 1164 | // C++0x [temp.deduct.type]p10: |
| 1165 | // If the parameter-declaration corresponding to Pi is a function |
| 1166 | // parameter pack, then the type of its declarator- id is compared with |
| 1167 | // each remaining parameter type in the parameter-type-list of A. Each |
| 1168 | // comparison deduces template arguments for subsequent positions in the |
| 1169 | // template parameter packs expanded by the function parameter pack. |
| 1170 | |
| 1171 | QualType Pattern = Expansion->getPattern(); |
| 1172 | PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern, |
| 1173 | /*DeducePackIfNotAlreadyDeduced=*/false, |
| 1174 | FinishingDeduction); |
| 1175 | |
| 1176 | // A pack scope with fixed arity is not really a pack any more, so is not |
| 1177 | // a non-deduced context. |
| 1178 | if (ParamIdx + 1 == Params.size() || PackScope.hasFixedArity()) { |
| 1179 | for (; ArgIdx < Args.size() && PackScope.hasNextElement(); ++ArgIdx) { |
| 1180 | // Deduce template arguments from the pattern. |
| 1181 | if (TemplateDeductionResult Result = DeductFunc( |
| 1182 | S, TemplateParams, ParamIdx, ArgIdx, |
| 1183 | Pattern.getUnqualifiedType(), Args[ArgIdx].getUnqualifiedType(), |
| 1184 | Info, Deduced, POK); |
| 1185 | Result != TemplateDeductionResult::Success) |
| 1186 | return Result; |
| 1187 | PackScope.nextPackElement(); |
| 1188 | } |
| 1189 | } else { |
| 1190 | // C++0x [temp.deduct.type]p5: |
| 1191 | // The non-deduced contexts are: |
| 1192 | // - A function parameter pack that does not occur at the end of the |
| 1193 | // parameter-declaration-clause. |
| 1194 | // |
| 1195 | // FIXME: There is no wording to say what we should do in this case. We |
| 1196 | // choose to resolve this by applying the same rule that is applied for a |
| 1197 | // function call: that is, deduce all contained packs to their |
| 1198 | // explicitly-specified values (or to <> if there is no such value). |
| 1199 | // |
| 1200 | // This is seemingly-arbitrarily different from the case of a template-id |
| 1201 | // with a non-trailing pack-expansion in its arguments, which renders the |
| 1202 | // entire template-argument-list a non-deduced context. |
| 1203 | |
| 1204 | // If the parameter type contains an explicitly-specified pack that we |
| 1205 | // could not expand, skip the number of parameters notionally created |
| 1206 | // by the expansion. |
| 1207 | UnsignedOrNone NumExpansions = Expansion->getNumExpansions(); |
| 1208 | if (NumExpansions && !PackScope.isPartiallyExpanded()) { |
| 1209 | for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size(); |
| 1210 | ++I, ++ArgIdx) |
| 1211 | PackScope.nextPackElement(); |
| 1212 | } |
| 1213 | } |
| 1214 | |
| 1215 | // Build argument packs for each of the parameter packs expanded by this |
| 1216 | // pack expansion. |
| 1217 | if (auto Result = PackScope.finish(); |
| 1218 | Result != TemplateDeductionResult::Success) |
| 1219 | return Result; |
| 1220 | } |
| 1221 | |
| 1222 | // DR692, DR1395 |
| 1223 | // C++0x [temp.deduct.type]p10: |
| 1224 | // If the parameter-declaration corresponding to P_i ... |
| 1225 | // During partial ordering, if Ai was originally a function parameter pack: |
| 1226 | // - if P does not contain a function parameter type corresponding to Ai then |
| 1227 | // Ai is ignored; |
| 1228 | if (POK == PartialOrderingKind::Call && ArgIdx + 1 == Args.size() && |
| 1229 | isa<PackExpansionType>(Val: Args[ArgIdx])) |
| 1230 | return TemplateDeductionResult::Success; |
| 1231 | |
| 1232 | // Make sure we don't have any extra arguments. |
| 1233 | if (ArgIdx < Args.size()) |
| 1234 | return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| 1235 | |
| 1236 | return TemplateDeductionResult::Success; |
| 1237 | } |
| 1238 | |
| 1239 | /// Deduce the template arguments by comparing the list of parameter |
| 1240 | /// types to the list of argument types, as in the parameter-type-lists of |
| 1241 | /// function types (C++ [temp.deduct.type]p10). |
| 1242 | /// |
| 1243 | /// \param S The semantic analysis object within which we are deducing |
| 1244 | /// |
| 1245 | /// \param TemplateParams The template parameters that we are deducing |
| 1246 | /// |
| 1247 | /// \param Params The list of parameter types |
| 1248 | /// |
| 1249 | /// \param Args The list of argument types |
| 1250 | /// |
| 1251 | /// \param Info information about the template argument deduction itself |
| 1252 | /// |
| 1253 | /// \param Deduced the deduced template arguments |
| 1254 | /// |
| 1255 | /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe |
| 1256 | /// how template argument deduction is performed. |
| 1257 | /// |
| 1258 | /// \param PartialOrdering If true, we are performing template argument |
| 1259 | /// deduction for during partial ordering for a call |
| 1260 | /// (C++0x [temp.deduct.partial]). |
| 1261 | /// |
| 1262 | /// \param HasDeducedAnyParam If set, the object pointed at will indicate |
| 1263 | /// whether any template parameter was deduced. |
| 1264 | /// |
| 1265 | /// \param HasDeducedParam If set, the bit vector will be used to represent |
| 1266 | /// which template parameters were deduced, in order. |
| 1267 | /// |
| 1268 | /// \returns the result of template argument deduction so far. Note that a |
| 1269 | /// "success" result means that template argument deduction has not yet failed, |
| 1270 | /// but it may still fail, later, for other reasons. |
| 1271 | static TemplateDeductionResult DeduceTemplateArguments( |
| 1272 | Sema &S, TemplateParameterList *TemplateParams, ArrayRef<QualType> Params, |
| 1273 | ArrayRef<QualType> Args, TemplateDeductionInfo &Info, |
| 1274 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF, |
| 1275 | PartialOrderingKind POK, bool *HasDeducedAnyParam, |
| 1276 | llvm::SmallBitVector *HasDeducedParam) { |
| 1277 | return ::DeduceForEachType( |
| 1278 | S, TemplateParams, Params, Args, Info, Deduced, POK, |
| 1279 | /*FinishingDeduction=*/false, |
| 1280 | DeductFunc: [&](Sema &S, TemplateParameterList *TemplateParams, int ParamIdx, |
| 1281 | int ArgIdx, QualType P, QualType A, TemplateDeductionInfo &Info, |
| 1282 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 1283 | PartialOrderingKind POK) { |
| 1284 | bool HasDeducedAnyParamCopy = false; |
| 1285 | TemplateDeductionResult TDR = DeduceTemplateArgumentsByTypeMatch( |
| 1286 | S, TemplateParams, Param: P, Arg: A, Info, Deduced, TDF, POK, |
| 1287 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam: &HasDeducedAnyParamCopy); |
| 1288 | if (HasDeducedAnyParam && HasDeducedAnyParamCopy) |
| 1289 | *HasDeducedAnyParam = true; |
| 1290 | if (HasDeducedParam && HasDeducedAnyParamCopy) |
| 1291 | (*HasDeducedParam)[ParamIdx] = true; |
| 1292 | return TDR; |
| 1293 | }); |
| 1294 | } |
| 1295 | |
| 1296 | /// Determine whether the parameter has qualifiers that the argument |
| 1297 | /// lacks. Put another way, determine whether there is no way to add |
| 1298 | /// a deduced set of qualifiers to the ParamType that would result in |
| 1299 | /// its qualifiers matching those of the ArgType. |
| 1300 | static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, |
| 1301 | QualType ArgType) { |
| 1302 | Qualifiers ParamQs = ParamType.getQualifiers(); |
| 1303 | Qualifiers ArgQs = ArgType.getQualifiers(); |
| 1304 | |
| 1305 | if (ParamQs == ArgQs) |
| 1306 | return false; |
| 1307 | |
| 1308 | // Mismatched (but not missing) Objective-C GC attributes. |
| 1309 | if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && |
| 1310 | ParamQs.hasObjCGCAttr()) |
| 1311 | return true; |
| 1312 | |
| 1313 | // Mismatched (but not missing) address spaces. |
| 1314 | if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && |
| 1315 | ParamQs.hasAddressSpace()) |
| 1316 | return true; |
| 1317 | |
| 1318 | // Mismatched (but not missing) Objective-C lifetime qualifiers. |
| 1319 | if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && |
| 1320 | ParamQs.hasObjCLifetime()) |
| 1321 | return true; |
| 1322 | |
| 1323 | // CVR qualifiers inconsistent or a superset. |
| 1324 | return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0; |
| 1325 | } |
| 1326 | |
| 1327 | bool Sema::isSameOrCompatibleFunctionType(QualType P, QualType A) { |
| 1328 | const FunctionType *PF = P->getAs<FunctionType>(), |
| 1329 | *AF = A->getAs<FunctionType>(); |
| 1330 | |
| 1331 | // Just compare if not functions. |
| 1332 | if (!PF || !AF) |
| 1333 | return Context.hasSameType(T1: P, T2: A); |
| 1334 | |
| 1335 | // Noreturn and noexcept adjustment. |
| 1336 | if (QualType AdjustedParam; TryFunctionConversion(FromType: P, ToType: A, ResultTy&: AdjustedParam)) |
| 1337 | P = AdjustedParam; |
| 1338 | |
| 1339 | // FIXME: Compatible calling conventions. |
| 1340 | return Context.hasSameFunctionTypeIgnoringExceptionSpec(T: P, U: A); |
| 1341 | } |
| 1342 | |
| 1343 | /// Get the index of the first template parameter that was originally from the |
| 1344 | /// innermost template-parameter-list. This is 0 except when we concatenate |
| 1345 | /// the template parameter lists of a class template and a constructor template |
| 1346 | /// when forming an implicit deduction guide. |
| 1347 | static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) { |
| 1348 | auto *Guide = dyn_cast<CXXDeductionGuideDecl>(Val: FTD->getTemplatedDecl()); |
| 1349 | if (!Guide || !Guide->isImplicit()) |
| 1350 | return 0; |
| 1351 | return Guide->getDeducedTemplate()->getTemplateParameters()->size(); |
| 1352 | } |
| 1353 | |
| 1354 | /// Determine whether a type denotes a forwarding reference. |
| 1355 | static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) { |
| 1356 | // C++1z [temp.deduct.call]p3: |
| 1357 | // A forwarding reference is an rvalue reference to a cv-unqualified |
| 1358 | // template parameter that does not represent a template parameter of a |
| 1359 | // class template. |
| 1360 | if (auto *ParamRef = Param->getAs<RValueReferenceType>()) { |
| 1361 | if (ParamRef->getPointeeType().getQualifiers()) |
| 1362 | return false; |
| 1363 | auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>(); |
| 1364 | return TypeParm && TypeParm->getIndex() >= FirstInnerIndex; |
| 1365 | } |
| 1366 | return false; |
| 1367 | } |
| 1368 | |
| 1369 | /// Attempt to deduce the template arguments by checking the base types |
| 1370 | /// according to (C++20 [temp.deduct.call] p4b3. |
| 1371 | /// |
| 1372 | /// \param S the semantic analysis object within which we are deducing. |
| 1373 | /// |
| 1374 | /// \param RD the top level record object we are deducing against. |
| 1375 | /// |
| 1376 | /// \param TemplateParams the template parameters that we are deducing. |
| 1377 | /// |
| 1378 | /// \param P the template specialization parameter type. |
| 1379 | /// |
| 1380 | /// \param Info information about the template argument deduction itself. |
| 1381 | /// |
| 1382 | /// \param Deduced the deduced template arguments. |
| 1383 | /// |
| 1384 | /// \returns the result of template argument deduction with the bases. "invalid" |
| 1385 | /// means no matches, "success" found a single item, and the |
| 1386 | /// "MiscellaneousDeductionFailure" result happens when the match is ambiguous. |
| 1387 | static TemplateDeductionResult |
| 1388 | DeduceTemplateBases(Sema &S, const CXXRecordDecl *RD, |
| 1389 | TemplateParameterList *TemplateParams, QualType P, |
| 1390 | TemplateDeductionInfo &Info, bool PartialOrdering, |
| 1391 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 1392 | bool *HasDeducedAnyParam) { |
| 1393 | // C++14 [temp.deduct.call] p4b3: |
| 1394 | // If P is a class and P has the form simple-template-id, then the |
| 1395 | // transformed A can be a derived class of the deduced A. Likewise if |
| 1396 | // P is a pointer to a class of the form simple-template-id, the |
| 1397 | // transformed A can be a pointer to a derived class pointed to by the |
| 1398 | // deduced A. However, if there is a class C that is a (direct or |
| 1399 | // indirect) base class of D and derived (directly or indirectly) from a |
| 1400 | // class B and that would be a valid deduced A, the deduced A cannot be |
| 1401 | // B or pointer to B, respectively. |
| 1402 | // |
| 1403 | // These alternatives are considered only if type deduction would |
| 1404 | // otherwise fail. If they yield more than one possible deduced A, the |
| 1405 | // type deduction fails. |
| 1406 | |
| 1407 | // Use a breadth-first search through the bases to collect the set of |
| 1408 | // successful matches. Visited contains the set of nodes we have already |
| 1409 | // visited, while ToVisit is our stack of records that we still need to |
| 1410 | // visit. Matches contains a list of matches that have yet to be |
| 1411 | // disqualified. |
| 1412 | llvm::SmallPtrSet<const CXXRecordDecl *, 8> Visited; |
| 1413 | SmallVector<QualType, 8> ToVisit; |
| 1414 | // We iterate over this later, so we have to use MapVector to ensure |
| 1415 | // determinism. |
| 1416 | struct MatchValue { |
| 1417 | SmallVector<DeducedTemplateArgument, 8> Deduced; |
| 1418 | bool HasDeducedAnyParam; |
| 1419 | }; |
| 1420 | llvm::MapVector<const CXXRecordDecl *, MatchValue> Matches; |
| 1421 | |
| 1422 | auto AddBases = [&Visited, &ToVisit](const CXXRecordDecl *RD) { |
| 1423 | for (const auto &Base : RD->bases()) { |
| 1424 | QualType T = Base.getType(); |
| 1425 | assert(T->isRecordType() && "Base class that isn't a record?" ); |
| 1426 | if (Visited.insert(Ptr: T->getAsCXXRecordDecl()).second) |
| 1427 | ToVisit.push_back(Elt: T); |
| 1428 | } |
| 1429 | }; |
| 1430 | |
| 1431 | // Set up the loop by adding all the bases. |
| 1432 | AddBases(RD); |
| 1433 | |
| 1434 | // Search each path of bases until we either run into a successful match |
| 1435 | // (where all bases of it are invalid), or we run out of bases. |
| 1436 | while (!ToVisit.empty()) { |
| 1437 | QualType NextT = ToVisit.pop_back_val(); |
| 1438 | |
| 1439 | SmallVector<DeducedTemplateArgument, 8> DeducedCopy(Deduced.begin(), |
| 1440 | Deduced.end()); |
| 1441 | TemplateDeductionInfo BaseInfo(TemplateDeductionInfo::ForBase, Info); |
| 1442 | bool HasDeducedAnyParamCopy = false; |
| 1443 | TemplateDeductionResult BaseResult = DeduceTemplateSpecArguments( |
| 1444 | S, TemplateParams, P, A: NextT, Info&: BaseInfo, PartialOrdering, Deduced&: DeducedCopy, |
| 1445 | HasDeducedAnyParam: &HasDeducedAnyParamCopy); |
| 1446 | |
| 1447 | // If this was a successful deduction, add it to the list of matches, |
| 1448 | // otherwise we need to continue searching its bases. |
| 1449 | const CXXRecordDecl *RD = NextT->getAsCXXRecordDecl(); |
| 1450 | if (BaseResult == TemplateDeductionResult::Success) |
| 1451 | Matches.insert(KV: {RD, {.Deduced: DeducedCopy, .HasDeducedAnyParam: HasDeducedAnyParamCopy}}); |
| 1452 | else |
| 1453 | AddBases(RD); |
| 1454 | } |
| 1455 | |
| 1456 | // At this point, 'Matches' contains a list of seemingly valid bases, however |
| 1457 | // in the event that we have more than 1 match, it is possible that the base |
| 1458 | // of one of the matches might be disqualified for being a base of another |
| 1459 | // valid match. We can count on cyclical instantiations being invalid to |
| 1460 | // simplify the disqualifications. That is, if A & B are both matches, and B |
| 1461 | // inherits from A (disqualifying A), we know that A cannot inherit from B. |
| 1462 | if (Matches.size() > 1) { |
| 1463 | Visited.clear(); |
| 1464 | for (const auto &Match : Matches) |
| 1465 | AddBases(Match.first); |
| 1466 | |
| 1467 | // We can give up once we have a single item (or have run out of things to |
| 1468 | // search) since cyclical inheritance isn't valid. |
| 1469 | while (Matches.size() > 1 && !ToVisit.empty()) { |
| 1470 | const CXXRecordDecl *RD = ToVisit.pop_back_val()->getAsCXXRecordDecl(); |
| 1471 | Matches.erase(Key: RD); |
| 1472 | |
| 1473 | // Always add all bases, since the inheritance tree can contain |
| 1474 | // disqualifications for multiple matches. |
| 1475 | AddBases(RD); |
| 1476 | } |
| 1477 | } |
| 1478 | |
| 1479 | if (Matches.empty()) |
| 1480 | return TemplateDeductionResult::Invalid; |
| 1481 | if (Matches.size() > 1) |
| 1482 | return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| 1483 | |
| 1484 | std::swap(LHS&: Matches.front().second.Deduced, RHS&: Deduced); |
| 1485 | if (bool HasDeducedAnyParamCopy = Matches.front().second.HasDeducedAnyParam; |
| 1486 | HasDeducedAnyParamCopy && HasDeducedAnyParam) |
| 1487 | *HasDeducedAnyParam = HasDeducedAnyParamCopy; |
| 1488 | return TemplateDeductionResult::Success; |
| 1489 | } |
| 1490 | |
| 1491 | /// When propagating a partial ordering kind into a NonCall context, |
| 1492 | /// this is used to downgrade a 'Call' into a 'NonCall', so that |
| 1493 | /// the kind still reflects whether we are in a partial ordering context. |
| 1494 | static PartialOrderingKind |
| 1495 | degradeCallPartialOrderingKind(PartialOrderingKind POK) { |
| 1496 | return std::min(a: POK, b: PartialOrderingKind::NonCall); |
| 1497 | } |
| 1498 | |
| 1499 | /// Deduce the template arguments by comparing the parameter type and |
| 1500 | /// the argument type (C++ [temp.deduct.type]). |
| 1501 | /// |
| 1502 | /// \param S the semantic analysis object within which we are deducing |
| 1503 | /// |
| 1504 | /// \param TemplateParams the template parameters that we are deducing |
| 1505 | /// |
| 1506 | /// \param P the parameter type |
| 1507 | /// |
| 1508 | /// \param A the argument type |
| 1509 | /// |
| 1510 | /// \param Info information about the template argument deduction itself |
| 1511 | /// |
| 1512 | /// \param Deduced the deduced template arguments |
| 1513 | /// |
| 1514 | /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe |
| 1515 | /// how template argument deduction is performed. |
| 1516 | /// |
| 1517 | /// \param PartialOrdering Whether we're performing template argument deduction |
| 1518 | /// in the context of partial ordering (C++0x [temp.deduct.partial]). |
| 1519 | /// |
| 1520 | /// \returns the result of template argument deduction so far. Note that a |
| 1521 | /// "success" result means that template argument deduction has not yet failed, |
| 1522 | /// but it may still fail, later, for other reasons. |
| 1523 | static TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch( |
| 1524 | Sema &S, TemplateParameterList *TemplateParams, QualType P, QualType A, |
| 1525 | TemplateDeductionInfo &Info, |
| 1526 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF, |
| 1527 | PartialOrderingKind POK, bool DeducedFromArrayBound, |
| 1528 | bool *HasDeducedAnyParam) { |
| 1529 | |
| 1530 | // If the argument type is a pack expansion, look at its pattern. |
| 1531 | // This isn't explicitly called out |
| 1532 | if (const auto *AExp = dyn_cast<PackExpansionType>(Val&: A)) |
| 1533 | A = AExp->getPattern(); |
| 1534 | assert(!isa<PackExpansionType>(A.getCanonicalType())); |
| 1535 | |
| 1536 | if (POK == PartialOrderingKind::Call) { |
| 1537 | // C++11 [temp.deduct.partial]p5: |
| 1538 | // Before the partial ordering is done, certain transformations are |
| 1539 | // performed on the types used for partial ordering: |
| 1540 | // - If P is a reference type, P is replaced by the type referred to. |
| 1541 | const ReferenceType *PRef = P->getAs<ReferenceType>(); |
| 1542 | if (PRef) |
| 1543 | P = PRef->getPointeeType(); |
| 1544 | |
| 1545 | // - If A is a reference type, A is replaced by the type referred to. |
| 1546 | const ReferenceType *ARef = A->getAs<ReferenceType>(); |
| 1547 | if (ARef) |
| 1548 | A = A->getPointeeType(); |
| 1549 | |
| 1550 | if (PRef && ARef && S.Context.hasSameUnqualifiedType(T1: P, T2: A)) { |
| 1551 | // C++11 [temp.deduct.partial]p9: |
| 1552 | // If, for a given type, deduction succeeds in both directions (i.e., |
| 1553 | // the types are identical after the transformations above) and both |
| 1554 | // P and A were reference types [...]: |
| 1555 | // - if [one type] was an lvalue reference and [the other type] was |
| 1556 | // not, [the other type] is not considered to be at least as |
| 1557 | // specialized as [the first type] |
| 1558 | // - if [one type] is more cv-qualified than [the other type], |
| 1559 | // [the other type] is not considered to be at least as specialized |
| 1560 | // as [the first type] |
| 1561 | // Objective-C ARC adds: |
| 1562 | // - [one type] has non-trivial lifetime, [the other type] has |
| 1563 | // __unsafe_unretained lifetime, and the types are otherwise |
| 1564 | // identical |
| 1565 | // |
| 1566 | // A is "considered to be at least as specialized" as P iff deduction |
| 1567 | // succeeds, so we model this as a deduction failure. Note that |
| 1568 | // [the first type] is P and [the other type] is A here; the standard |
| 1569 | // gets this backwards. |
| 1570 | Qualifiers PQuals = P.getQualifiers(), AQuals = A.getQualifiers(); |
| 1571 | if ((PRef->isLValueReferenceType() && !ARef->isLValueReferenceType()) || |
| 1572 | PQuals.isStrictSupersetOf(Other: AQuals) || |
| 1573 | (PQuals.hasNonTrivialObjCLifetime() && |
| 1574 | AQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone && |
| 1575 | PQuals.withoutObjCLifetime() == AQuals.withoutObjCLifetime())) { |
| 1576 | Info.FirstArg = TemplateArgument(P); |
| 1577 | Info.SecondArg = TemplateArgument(A); |
| 1578 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1579 | } |
| 1580 | } |
| 1581 | Qualifiers DiscardedQuals; |
| 1582 | // C++11 [temp.deduct.partial]p7: |
| 1583 | // Remove any top-level cv-qualifiers: |
| 1584 | // - If P is a cv-qualified type, P is replaced by the cv-unqualified |
| 1585 | // version of P. |
| 1586 | P = S.Context.getUnqualifiedArrayType(T: P, Quals&: DiscardedQuals); |
| 1587 | // - If A is a cv-qualified type, A is replaced by the cv-unqualified |
| 1588 | // version of A. |
| 1589 | A = S.Context.getUnqualifiedArrayType(T: A, Quals&: DiscardedQuals); |
| 1590 | } else { |
| 1591 | // C++0x [temp.deduct.call]p4 bullet 1: |
| 1592 | // - If the original P is a reference type, the deduced A (i.e., the type |
| 1593 | // referred to by the reference) can be more cv-qualified than the |
| 1594 | // transformed A. |
| 1595 | if (TDF & TDF_ParamWithReferenceType) { |
| 1596 | Qualifiers Quals; |
| 1597 | QualType UnqualP = S.Context.getUnqualifiedArrayType(T: P, Quals); |
| 1598 | Quals.setCVRQualifiers(Quals.getCVRQualifiers() & A.getCVRQualifiers()); |
| 1599 | P = S.Context.getQualifiedType(T: UnqualP, Qs: Quals); |
| 1600 | } |
| 1601 | |
| 1602 | if ((TDF & TDF_TopLevelParameterTypeList) && !P->isFunctionType()) { |
| 1603 | // C++0x [temp.deduct.type]p10: |
| 1604 | // If P and A are function types that originated from deduction when |
| 1605 | // taking the address of a function template (14.8.2.2) or when deducing |
| 1606 | // template arguments from a function declaration (14.8.2.6) and Pi and |
| 1607 | // Ai are parameters of the top-level parameter-type-list of P and A, |
| 1608 | // respectively, Pi is adjusted if it is a forwarding reference and Ai |
| 1609 | // is an lvalue reference, in |
| 1610 | // which case the type of Pi is changed to be the template parameter |
| 1611 | // type (i.e., T&& is changed to simply T). [ Note: As a result, when |
| 1612 | // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be |
| 1613 | // deduced as X&. - end note ] |
| 1614 | TDF &= ~TDF_TopLevelParameterTypeList; |
| 1615 | if (isForwardingReference(Param: P, /*FirstInnerIndex=*/0) && |
| 1616 | A->isLValueReferenceType()) |
| 1617 | P = P->getPointeeType(); |
| 1618 | } |
| 1619 | } |
| 1620 | |
| 1621 | // C++ [temp.deduct.type]p9: |
| 1622 | // A template type argument T, a template template argument TT or a |
| 1623 | // template non-type argument i can be deduced if P and A have one of |
| 1624 | // the following forms: |
| 1625 | // |
| 1626 | // T |
| 1627 | // cv-list T |
| 1628 | if (const auto *TTP = P->getAs<TemplateTypeParmType>()) { |
| 1629 | // Just skip any attempts to deduce from a placeholder type or a parameter |
| 1630 | // at a different depth. |
| 1631 | if (A->isPlaceholderType() || Info.getDeducedDepth() != TTP->getDepth()) |
| 1632 | return TemplateDeductionResult::Success; |
| 1633 | |
| 1634 | unsigned Index = TTP->getIndex(); |
| 1635 | |
| 1636 | // If the argument type is an array type, move the qualifiers up to the |
| 1637 | // top level, so they can be matched with the qualifiers on the parameter. |
| 1638 | if (A->isArrayType()) { |
| 1639 | Qualifiers Quals; |
| 1640 | A = S.Context.getUnqualifiedArrayType(T: A, Quals); |
| 1641 | if (Quals) |
| 1642 | A = S.Context.getQualifiedType(T: A, Qs: Quals); |
| 1643 | } |
| 1644 | |
| 1645 | // The argument type can not be less qualified than the parameter |
| 1646 | // type. |
| 1647 | if (!(TDF & TDF_IgnoreQualifiers) && |
| 1648 | hasInconsistentOrSupersetQualifiersOf(ParamType: P, ArgType: A)) { |
| 1649 | Info.Param = cast<TemplateTypeParmDecl>(Val: TemplateParams->getParam(Idx: Index)); |
| 1650 | Info.FirstArg = TemplateArgument(P); |
| 1651 | Info.SecondArg = TemplateArgument(A); |
| 1652 | return TemplateDeductionResult::Underqualified; |
| 1653 | } |
| 1654 | |
| 1655 | // Do not match a function type with a cv-qualified type. |
| 1656 | // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584 |
| 1657 | if (A->isFunctionType() && P.hasQualifiers()) |
| 1658 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1659 | |
| 1660 | assert(TTP->getDepth() == Info.getDeducedDepth() && |
| 1661 | "saw template type parameter with wrong depth" ); |
| 1662 | assert(A->getCanonicalTypeInternal() != S.Context.OverloadTy && |
| 1663 | "Unresolved overloaded function" ); |
| 1664 | QualType DeducedType = A; |
| 1665 | |
| 1666 | // Remove any qualifiers on the parameter from the deduced type. |
| 1667 | // We checked the qualifiers for consistency above. |
| 1668 | Qualifiers DeducedQs = DeducedType.getQualifiers(); |
| 1669 | Qualifiers ParamQs = P.getQualifiers(); |
| 1670 | DeducedQs.removeCVRQualifiers(mask: ParamQs.getCVRQualifiers()); |
| 1671 | if (ParamQs.hasObjCGCAttr()) |
| 1672 | DeducedQs.removeObjCGCAttr(); |
| 1673 | if (ParamQs.hasAddressSpace()) |
| 1674 | DeducedQs.removeAddressSpace(); |
| 1675 | if (ParamQs.hasObjCLifetime()) |
| 1676 | DeducedQs.removeObjCLifetime(); |
| 1677 | |
| 1678 | // Objective-C ARC: |
| 1679 | // If template deduction would produce a lifetime qualifier on a type |
| 1680 | // that is not a lifetime type, template argument deduction fails. |
| 1681 | if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() && |
| 1682 | !DeducedType->isDependentType()) { |
| 1683 | Info.Param = cast<TemplateTypeParmDecl>(Val: TemplateParams->getParam(Idx: Index)); |
| 1684 | Info.FirstArg = TemplateArgument(P); |
| 1685 | Info.SecondArg = TemplateArgument(A); |
| 1686 | return TemplateDeductionResult::Underqualified; |
| 1687 | } |
| 1688 | |
| 1689 | // Objective-C ARC: |
| 1690 | // If template deduction would produce an argument type with lifetime type |
| 1691 | // but no lifetime qualifier, the __strong lifetime qualifier is inferred. |
| 1692 | if (S.getLangOpts().ObjCAutoRefCount && DeducedType->isObjCLifetimeType() && |
| 1693 | !DeducedQs.hasObjCLifetime()) |
| 1694 | DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); |
| 1695 | |
| 1696 | DeducedType = |
| 1697 | S.Context.getQualifiedType(T: DeducedType.getUnqualifiedType(), Qs: DeducedQs); |
| 1698 | |
| 1699 | DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound); |
| 1700 | DeducedTemplateArgument Result = |
| 1701 | checkDeducedTemplateArguments(Context&: S.Context, X: Deduced[Index], Y: NewDeduced); |
| 1702 | if (Result.isNull()) { |
| 1703 | // We can also get inconsistencies when matching NTTP type. |
| 1704 | switch (NamedDecl *Param = TemplateParams->getParam(Idx: Index); |
| 1705 | Param->getKind()) { |
| 1706 | case Decl::TemplateTypeParm: |
| 1707 | Info.Param = cast<TemplateTypeParmDecl>(Val: Param); |
| 1708 | break; |
| 1709 | case Decl::NonTypeTemplateParm: |
| 1710 | Info.Param = cast<NonTypeTemplateParmDecl>(Val: Param); |
| 1711 | break; |
| 1712 | case Decl::TemplateTemplateParm: |
| 1713 | Info.Param = cast<TemplateTemplateParmDecl>(Val: Param); |
| 1714 | break; |
| 1715 | default: |
| 1716 | llvm_unreachable("unexpected kind" ); |
| 1717 | } |
| 1718 | Info.FirstArg = Deduced[Index]; |
| 1719 | Info.SecondArg = NewDeduced; |
| 1720 | return TemplateDeductionResult::Inconsistent; |
| 1721 | } |
| 1722 | |
| 1723 | Deduced[Index] = Result; |
| 1724 | if (HasDeducedAnyParam) |
| 1725 | *HasDeducedAnyParam = true; |
| 1726 | return TemplateDeductionResult::Success; |
| 1727 | } |
| 1728 | |
| 1729 | // Set up the template argument deduction information for a failure. |
| 1730 | Info.FirstArg = TemplateArgument(P); |
| 1731 | Info.SecondArg = TemplateArgument(A); |
| 1732 | |
| 1733 | // If the parameter is an already-substituted template parameter |
| 1734 | // pack, do nothing: we don't know which of its arguments to look |
| 1735 | // at, so we have to wait until all of the parameter packs in this |
| 1736 | // expansion have arguments. |
| 1737 | if (P->getAs<SubstTemplateTypeParmPackType>()) |
| 1738 | return TemplateDeductionResult::Success; |
| 1739 | |
| 1740 | // Check the cv-qualifiers on the parameter and argument types. |
| 1741 | if (!(TDF & TDF_IgnoreQualifiers)) { |
| 1742 | if (TDF & TDF_ParamWithReferenceType) { |
| 1743 | if (hasInconsistentOrSupersetQualifiersOf(ParamType: P, ArgType: A)) |
| 1744 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1745 | } else if (TDF & TDF_ArgWithReferenceType) { |
| 1746 | // C++ [temp.deduct.conv]p4: |
| 1747 | // If the original A is a reference type, A can be more cv-qualified |
| 1748 | // than the deduced A |
| 1749 | if (!A.getQualifiers().compatiblyIncludes(other: P.getQualifiers(), |
| 1750 | Ctx: S.getASTContext())) |
| 1751 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1752 | |
| 1753 | // Strip out all extra qualifiers from the argument to figure out the |
| 1754 | // type we're converting to, prior to the qualification conversion. |
| 1755 | Qualifiers Quals; |
| 1756 | A = S.Context.getUnqualifiedArrayType(T: A, Quals); |
| 1757 | A = S.Context.getQualifiedType(T: A, Qs: P.getQualifiers()); |
| 1758 | } else if (!IsPossiblyOpaquelyQualifiedType(T: P)) { |
| 1759 | if (P.getCVRQualifiers() != A.getCVRQualifiers()) |
| 1760 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1761 | } |
| 1762 | } |
| 1763 | |
| 1764 | // If the parameter type is not dependent, there is nothing to deduce. |
| 1765 | if (!P->isDependentType()) { |
| 1766 | if (TDF & TDF_SkipNonDependent) |
| 1767 | return TemplateDeductionResult::Success; |
| 1768 | if ((TDF & TDF_IgnoreQualifiers) ? S.Context.hasSameUnqualifiedType(T1: P, T2: A) |
| 1769 | : S.Context.hasSameType(T1: P, T2: A)) |
| 1770 | return TemplateDeductionResult::Success; |
| 1771 | if (TDF & TDF_AllowCompatibleFunctionType && |
| 1772 | S.isSameOrCompatibleFunctionType(P, A)) |
| 1773 | return TemplateDeductionResult::Success; |
| 1774 | if (!(TDF & TDF_IgnoreQualifiers)) |
| 1775 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1776 | // Otherwise, when ignoring qualifiers, the types not having the same |
| 1777 | // unqualified type does not mean they do not match, so in this case we |
| 1778 | // must keep going and analyze with a non-dependent parameter type. |
| 1779 | } |
| 1780 | |
| 1781 | switch (P.getCanonicalType()->getTypeClass()) { |
| 1782 | // Non-canonical types cannot appear here. |
| 1783 | #define NON_CANONICAL_TYPE(Class, Base) \ |
| 1784 | case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); |
| 1785 | #define TYPE(Class, Base) |
| 1786 | #include "clang/AST/TypeNodes.inc" |
| 1787 | |
| 1788 | case Type::TemplateTypeParm: |
| 1789 | case Type::SubstTemplateTypeParmPack: |
| 1790 | llvm_unreachable("Type nodes handled above" ); |
| 1791 | |
| 1792 | case Type::Auto: |
| 1793 | // C++23 [temp.deduct.funcaddr]/3: |
| 1794 | // A placeholder type in the return type of a function template is a |
| 1795 | // non-deduced context. |
| 1796 | // There's no corresponding wording for [temp.deduct.decl], but we treat |
| 1797 | // it the same to match other compilers. |
| 1798 | if (P->isDependentType()) |
| 1799 | return TemplateDeductionResult::Success; |
| 1800 | [[fallthrough]]; |
| 1801 | case Type::Builtin: |
| 1802 | case Type::VariableArray: |
| 1803 | case Type::Vector: |
| 1804 | case Type::FunctionNoProto: |
| 1805 | case Type::Record: |
| 1806 | case Type::Enum: |
| 1807 | case Type::ObjCObject: |
| 1808 | case Type::ObjCInterface: |
| 1809 | case Type::ObjCObjectPointer: |
| 1810 | case Type::BitInt: |
| 1811 | return (TDF & TDF_SkipNonDependent) || |
| 1812 | ((TDF & TDF_IgnoreQualifiers) |
| 1813 | ? S.Context.hasSameUnqualifiedType(T1: P, T2: A) |
| 1814 | : S.Context.hasSameType(T1: P, T2: A)) |
| 1815 | ? TemplateDeductionResult::Success |
| 1816 | : TemplateDeductionResult::NonDeducedMismatch; |
| 1817 | |
| 1818 | // _Complex T [placeholder extension] |
| 1819 | case Type::Complex: { |
| 1820 | const auto *CP = P->castAs<ComplexType>(), *CA = A->getAs<ComplexType>(); |
| 1821 | if (!CA) |
| 1822 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1823 | return DeduceTemplateArgumentsByTypeMatch( |
| 1824 | S, TemplateParams, P: CP->getElementType(), A: CA->getElementType(), Info, |
| 1825 | Deduced, TDF, POK: degradeCallPartialOrderingKind(POK), |
| 1826 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 1827 | } |
| 1828 | |
| 1829 | // _Atomic T [extension] |
| 1830 | case Type::Atomic: { |
| 1831 | const auto *PA = P->castAs<AtomicType>(), *AA = A->getAs<AtomicType>(); |
| 1832 | if (!AA) |
| 1833 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1834 | return DeduceTemplateArgumentsByTypeMatch( |
| 1835 | S, TemplateParams, P: PA->getValueType(), A: AA->getValueType(), Info, |
| 1836 | Deduced, TDF, POK: degradeCallPartialOrderingKind(POK), |
| 1837 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 1838 | } |
| 1839 | |
| 1840 | // T * |
| 1841 | case Type::Pointer: { |
| 1842 | QualType PointeeType; |
| 1843 | if (const auto *PA = A->getAs<PointerType>()) { |
| 1844 | PointeeType = PA->getPointeeType(); |
| 1845 | } else if (const auto *PA = A->getAs<ObjCObjectPointerType>()) { |
| 1846 | PointeeType = PA->getPointeeType(); |
| 1847 | } else { |
| 1848 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1849 | } |
| 1850 | return DeduceTemplateArgumentsByTypeMatch( |
| 1851 | S, TemplateParams, P: P->castAs<PointerType>()->getPointeeType(), |
| 1852 | A: PointeeType, Info, Deduced, |
| 1853 | TDF: TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass), |
| 1854 | POK: degradeCallPartialOrderingKind(POK), |
| 1855 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 1856 | } |
| 1857 | |
| 1858 | // T & |
| 1859 | case Type::LValueReference: { |
| 1860 | const auto *RP = P->castAs<LValueReferenceType>(), |
| 1861 | *RA = A->getAs<LValueReferenceType>(); |
| 1862 | if (!RA) |
| 1863 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1864 | |
| 1865 | return DeduceTemplateArgumentsByTypeMatch( |
| 1866 | S, TemplateParams, P: RP->getPointeeType(), A: RA->getPointeeType(), Info, |
| 1867 | Deduced, TDF: 0, POK: degradeCallPartialOrderingKind(POK), |
| 1868 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 1869 | } |
| 1870 | |
| 1871 | // T && [C++0x] |
| 1872 | case Type::RValueReference: { |
| 1873 | const auto *RP = P->castAs<RValueReferenceType>(), |
| 1874 | *RA = A->getAs<RValueReferenceType>(); |
| 1875 | if (!RA) |
| 1876 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1877 | |
| 1878 | return DeduceTemplateArgumentsByTypeMatch( |
| 1879 | S, TemplateParams, P: RP->getPointeeType(), A: RA->getPointeeType(), Info, |
| 1880 | Deduced, TDF: 0, POK: degradeCallPartialOrderingKind(POK), |
| 1881 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 1882 | } |
| 1883 | |
| 1884 | // T [] (implied, but not stated explicitly) |
| 1885 | case Type::IncompleteArray: { |
| 1886 | const auto *IAA = S.Context.getAsIncompleteArrayType(T: A); |
| 1887 | if (!IAA) |
| 1888 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1889 | |
| 1890 | const auto *IAP = S.Context.getAsIncompleteArrayType(T: P); |
| 1891 | assert(IAP && "Template parameter not of incomplete array type" ); |
| 1892 | |
| 1893 | return DeduceTemplateArgumentsByTypeMatch( |
| 1894 | S, TemplateParams, P: IAP->getElementType(), A: IAA->getElementType(), Info, |
| 1895 | Deduced, TDF: TDF & TDF_IgnoreQualifiers, |
| 1896 | POK: degradeCallPartialOrderingKind(POK), |
| 1897 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 1898 | } |
| 1899 | |
| 1900 | // T [integer-constant] |
| 1901 | case Type::ConstantArray: { |
| 1902 | const auto *CAA = S.Context.getAsConstantArrayType(T: A), |
| 1903 | *CAP = S.Context.getAsConstantArrayType(T: P); |
| 1904 | assert(CAP); |
| 1905 | if (!CAA || CAA->getSize() != CAP->getSize()) |
| 1906 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1907 | |
| 1908 | return DeduceTemplateArgumentsByTypeMatch( |
| 1909 | S, TemplateParams, P: CAP->getElementType(), A: CAA->getElementType(), Info, |
| 1910 | Deduced, TDF: TDF & TDF_IgnoreQualifiers, |
| 1911 | POK: degradeCallPartialOrderingKind(POK), |
| 1912 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 1913 | } |
| 1914 | |
| 1915 | // type [i] |
| 1916 | case Type::DependentSizedArray: { |
| 1917 | const auto *AA = S.Context.getAsArrayType(T: A); |
| 1918 | if (!AA) |
| 1919 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1920 | |
| 1921 | // Check the element type of the arrays |
| 1922 | const auto *DAP = S.Context.getAsDependentSizedArrayType(T: P); |
| 1923 | assert(DAP); |
| 1924 | if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| 1925 | S, TemplateParams, P: DAP->getElementType(), A: AA->getElementType(), |
| 1926 | Info, Deduced, TDF: TDF & TDF_IgnoreQualifiers, |
| 1927 | POK: degradeCallPartialOrderingKind(POK), |
| 1928 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 1929 | Result != TemplateDeductionResult::Success) |
| 1930 | return Result; |
| 1931 | |
| 1932 | // Determine the array bound is something we can deduce. |
| 1933 | const NonTypeTemplateParmDecl *NTTP = |
| 1934 | getDeducedParameterFromExpr(Info, E: DAP->getSizeExpr()); |
| 1935 | if (!NTTP) |
| 1936 | return TemplateDeductionResult::Success; |
| 1937 | |
| 1938 | // We can perform template argument deduction for the given non-type |
| 1939 | // template parameter. |
| 1940 | assert(NTTP->getDepth() == Info.getDeducedDepth() && |
| 1941 | "saw non-type template parameter with wrong depth" ); |
| 1942 | if (const auto *CAA = dyn_cast<ConstantArrayType>(Val: AA)) { |
| 1943 | llvm::APSInt Size(CAA->getSize()); |
| 1944 | return DeduceNonTypeTemplateArgument( |
| 1945 | S, TemplateParams, NTTP, Value: Size, ValueType: S.Context.getSizeType(), |
| 1946 | /*ArrayBound=*/DeducedFromArrayBound: true, Info, PartialOrdering: POK != PartialOrderingKind::None, |
| 1947 | Deduced, HasDeducedAnyParam); |
| 1948 | } |
| 1949 | if (const auto *DAA = dyn_cast<DependentSizedArrayType>(Val: AA)) |
| 1950 | if (DAA->getSizeExpr()) |
| 1951 | return DeduceNonTypeTemplateArgument( |
| 1952 | S, TemplateParams, NTTP, Value: DAA->getSizeExpr(), Info, |
| 1953 | PartialOrdering: POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| 1954 | |
| 1955 | // Incomplete type does not match a dependently-sized array type |
| 1956 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1957 | } |
| 1958 | |
| 1959 | // type(*)(T) |
| 1960 | // T(*)() |
| 1961 | // T(*)(T) |
| 1962 | case Type::FunctionProto: { |
| 1963 | const auto *FPP = P->castAs<FunctionProtoType>(), |
| 1964 | *FPA = A->getAs<FunctionProtoType>(); |
| 1965 | if (!FPA) |
| 1966 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1967 | |
| 1968 | if (FPP->getMethodQuals() != FPA->getMethodQuals() || |
| 1969 | FPP->getRefQualifier() != FPA->getRefQualifier() || |
| 1970 | FPP->isVariadic() != FPA->isVariadic()) |
| 1971 | return TemplateDeductionResult::NonDeducedMismatch; |
| 1972 | |
| 1973 | // Check return types. |
| 1974 | if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| 1975 | S, TemplateParams, P: FPP->getReturnType(), A: FPA->getReturnType(), |
| 1976 | Info, Deduced, TDF: 0, POK: degradeCallPartialOrderingKind(POK), |
| 1977 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 1978 | Result != TemplateDeductionResult::Success) |
| 1979 | return Result; |
| 1980 | |
| 1981 | // Check parameter types. |
| 1982 | if (auto Result = DeduceTemplateArguments( |
| 1983 | S, TemplateParams, Params: FPP->param_types(), Args: FPA->param_types(), Info, |
| 1984 | Deduced, TDF: TDF & TDF_TopLevelParameterTypeList, POK, |
| 1985 | HasDeducedAnyParam, |
| 1986 | /*HasDeducedParam=*/nullptr); |
| 1987 | Result != TemplateDeductionResult::Success) |
| 1988 | return Result; |
| 1989 | |
| 1990 | if (TDF & TDF_AllowCompatibleFunctionType) |
| 1991 | return TemplateDeductionResult::Success; |
| 1992 | |
| 1993 | // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit |
| 1994 | // deducing through the noexcept-specifier if it's part of the canonical |
| 1995 | // type. libstdc++ relies on this. |
| 1996 | Expr *NoexceptExpr = FPP->getNoexceptExpr(); |
| 1997 | if (const NonTypeTemplateParmDecl *NTTP = |
| 1998 | NoexceptExpr ? getDeducedParameterFromExpr(Info, E: NoexceptExpr) |
| 1999 | : nullptr) { |
| 2000 | assert(NTTP->getDepth() == Info.getDeducedDepth() && |
| 2001 | "saw non-type template parameter with wrong depth" ); |
| 2002 | |
| 2003 | llvm::APSInt Noexcept(1); |
| 2004 | switch (FPA->canThrow()) { |
| 2005 | case CT_Cannot: |
| 2006 | Noexcept = 1; |
| 2007 | [[fallthrough]]; |
| 2008 | |
| 2009 | case CT_Can: |
| 2010 | // We give E in noexcept(E) the "deduced from array bound" treatment. |
| 2011 | // FIXME: Should we? |
| 2012 | return DeduceNonTypeTemplateArgument( |
| 2013 | S, TemplateParams, NTTP, Value: Noexcept, ValueType: S.Context.BoolTy, |
| 2014 | /*DeducedFromArrayBound=*/true, Info, |
| 2015 | PartialOrdering: POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| 2016 | |
| 2017 | case CT_Dependent: |
| 2018 | if (Expr *ArgNoexceptExpr = FPA->getNoexceptExpr()) |
| 2019 | return DeduceNonTypeTemplateArgument( |
| 2020 | S, TemplateParams, NTTP, Value: ArgNoexceptExpr, Info, |
| 2021 | PartialOrdering: POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| 2022 | // Can't deduce anything from throw(T...). |
| 2023 | break; |
| 2024 | } |
| 2025 | } |
| 2026 | // FIXME: Detect non-deduced exception specification mismatches? |
| 2027 | // |
| 2028 | // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow |
| 2029 | // top-level differences in noexcept-specifications. |
| 2030 | |
| 2031 | return TemplateDeductionResult::Success; |
| 2032 | } |
| 2033 | |
| 2034 | case Type::InjectedClassName: |
| 2035 | // Treat a template's injected-class-name as if the template |
| 2036 | // specialization type had been used. |
| 2037 | |
| 2038 | // template-name<T> (where template-name refers to a class template) |
| 2039 | // template-name<i> |
| 2040 | // TT<T> |
| 2041 | // TT<i> |
| 2042 | // TT<> |
| 2043 | case Type::TemplateSpecialization: { |
| 2044 | // When Arg cannot be a derived class, we can just try to deduce template |
| 2045 | // arguments from the template-id. |
| 2046 | if (!(TDF & TDF_DerivedClass) || !A->isRecordType()) |
| 2047 | return DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info, |
| 2048 | PartialOrdering: POK != PartialOrderingKind::None, |
| 2049 | Deduced, HasDeducedAnyParam); |
| 2050 | |
| 2051 | SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(), |
| 2052 | Deduced.end()); |
| 2053 | |
| 2054 | auto Result = DeduceTemplateSpecArguments( |
| 2055 | S, TemplateParams, P, A, Info, PartialOrdering: POK != PartialOrderingKind::None, |
| 2056 | Deduced, HasDeducedAnyParam); |
| 2057 | if (Result == TemplateDeductionResult::Success) |
| 2058 | return Result; |
| 2059 | |
| 2060 | // We cannot inspect base classes as part of deduction when the type |
| 2061 | // is incomplete, so either instantiate any templates necessary to |
| 2062 | // complete the type, or skip over it if it cannot be completed. |
| 2063 | if (!S.isCompleteType(Loc: Info.getLocation(), T: A)) |
| 2064 | return Result; |
| 2065 | |
| 2066 | const CXXRecordDecl *RD = A->getAsCXXRecordDecl(); |
| 2067 | if (RD->isInvalidDecl()) |
| 2068 | return Result; |
| 2069 | |
| 2070 | // Reset the incorrectly deduced argument from above. |
| 2071 | Deduced = DeducedOrig; |
| 2072 | |
| 2073 | // Check bases according to C++14 [temp.deduct.call] p4b3: |
| 2074 | auto BaseResult = DeduceTemplateBases(S, RD, TemplateParams, P, Info, |
| 2075 | PartialOrdering: POK != PartialOrderingKind::None, |
| 2076 | Deduced, HasDeducedAnyParam); |
| 2077 | return BaseResult != TemplateDeductionResult::Invalid ? BaseResult |
| 2078 | : Result; |
| 2079 | } |
| 2080 | |
| 2081 | // T type::* |
| 2082 | // T T::* |
| 2083 | // T (type::*)() |
| 2084 | // type (T::*)() |
| 2085 | // type (type::*)(T) |
| 2086 | // type (T::*)(T) |
| 2087 | // T (type::*)(T) |
| 2088 | // T (T::*)() |
| 2089 | // T (T::*)(T) |
| 2090 | case Type::MemberPointer: { |
| 2091 | const auto *MPP = P->castAs<MemberPointerType>(), |
| 2092 | *MPA = A->getAs<MemberPointerType>(); |
| 2093 | if (!MPA) |
| 2094 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2095 | |
| 2096 | QualType PPT = MPP->getPointeeType(); |
| 2097 | if (PPT->isFunctionType()) |
| 2098 | S.adjustMemberFunctionCC(T&: PPT, /*HasThisPointer=*/false, |
| 2099 | /*IsCtorOrDtor=*/false, Loc: Info.getLocation()); |
| 2100 | QualType APT = MPA->getPointeeType(); |
| 2101 | if (APT->isFunctionType()) |
| 2102 | S.adjustMemberFunctionCC(T&: APT, /*HasThisPointer=*/false, |
| 2103 | /*IsCtorOrDtor=*/false, Loc: Info.getLocation()); |
| 2104 | |
| 2105 | unsigned SubTDF = TDF & TDF_IgnoreQualifiers; |
| 2106 | if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| 2107 | S, TemplateParams, P: PPT, A: APT, Info, Deduced, TDF: SubTDF, |
| 2108 | POK: degradeCallPartialOrderingKind(POK), |
| 2109 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 2110 | Result != TemplateDeductionResult::Success) |
| 2111 | return Result; |
| 2112 | |
| 2113 | QualType TP; |
| 2114 | if (MPP->isSugared()) { |
| 2115 | TP = S.Context.getTypeDeclType(Decl: MPP->getMostRecentCXXRecordDecl()); |
| 2116 | } else { |
| 2117 | NestedNameSpecifier *QP = MPP->getQualifier(); |
| 2118 | if (QP->getKind() == NestedNameSpecifier::Identifier) |
| 2119 | // Skip translation if it's a non-deduced context anyway. |
| 2120 | return TemplateDeductionResult::Success; |
| 2121 | TP = QualType(QP->translateToType(Context: S.Context), 0); |
| 2122 | } |
| 2123 | assert(!TP.isNull() && "member pointer with non-type class" ); |
| 2124 | |
| 2125 | QualType TA; |
| 2126 | if (MPA->isSugared()) { |
| 2127 | TA = S.Context.getTypeDeclType(Decl: MPA->getMostRecentCXXRecordDecl()); |
| 2128 | } else { |
| 2129 | NestedNameSpecifier *QA = MPA->getQualifier(); |
| 2130 | TA = QualType(QA->translateToType(Context: S.Context), 0).getUnqualifiedType(); |
| 2131 | } |
| 2132 | assert(!TA.isNull() && "member pointer with non-type class" ); |
| 2133 | return DeduceTemplateArgumentsByTypeMatch( |
| 2134 | S, TemplateParams, P: TP, A: TA, Info, Deduced, TDF: SubTDF, |
| 2135 | POK: degradeCallPartialOrderingKind(POK), |
| 2136 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 2137 | } |
| 2138 | |
| 2139 | // (clang extension) |
| 2140 | // |
| 2141 | // type(^)(T) |
| 2142 | // T(^)() |
| 2143 | // T(^)(T) |
| 2144 | case Type::BlockPointer: { |
| 2145 | const auto *BPP = P->castAs<BlockPointerType>(), |
| 2146 | *BPA = A->getAs<BlockPointerType>(); |
| 2147 | if (!BPA) |
| 2148 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2149 | return DeduceTemplateArgumentsByTypeMatch( |
| 2150 | S, TemplateParams, P: BPP->getPointeeType(), A: BPA->getPointeeType(), Info, |
| 2151 | Deduced, TDF: 0, POK: degradeCallPartialOrderingKind(POK), |
| 2152 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 2153 | } |
| 2154 | |
| 2155 | // (clang extension) |
| 2156 | // |
| 2157 | // T __attribute__(((ext_vector_type(<integral constant>)))) |
| 2158 | case Type::ExtVector: { |
| 2159 | const auto *VP = P->castAs<ExtVectorType>(); |
| 2160 | QualType ElementType; |
| 2161 | if (const auto *VA = A->getAs<ExtVectorType>()) { |
| 2162 | // Make sure that the vectors have the same number of elements. |
| 2163 | if (VP->getNumElements() != VA->getNumElements()) |
| 2164 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2165 | ElementType = VA->getElementType(); |
| 2166 | } else if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) { |
| 2167 | // We can't check the number of elements, since the argument has a |
| 2168 | // dependent number of elements. This can only occur during partial |
| 2169 | // ordering. |
| 2170 | ElementType = VA->getElementType(); |
| 2171 | } else { |
| 2172 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2173 | } |
| 2174 | // Perform deduction on the element types. |
| 2175 | return DeduceTemplateArgumentsByTypeMatch( |
| 2176 | S, TemplateParams, P: VP->getElementType(), A: ElementType, Info, Deduced, |
| 2177 | TDF, POK: degradeCallPartialOrderingKind(POK), |
| 2178 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 2179 | } |
| 2180 | |
| 2181 | case Type::DependentVector: { |
| 2182 | const auto *VP = P->castAs<DependentVectorType>(); |
| 2183 | |
| 2184 | if (const auto *VA = A->getAs<VectorType>()) { |
| 2185 | // Perform deduction on the element types. |
| 2186 | if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| 2187 | S, TemplateParams, P: VP->getElementType(), A: VA->getElementType(), |
| 2188 | Info, Deduced, TDF, POK: degradeCallPartialOrderingKind(POK), |
| 2189 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 2190 | Result != TemplateDeductionResult::Success) |
| 2191 | return Result; |
| 2192 | |
| 2193 | // Perform deduction on the vector size, if we can. |
| 2194 | const NonTypeTemplateParmDecl *NTTP = |
| 2195 | getDeducedParameterFromExpr(Info, E: VP->getSizeExpr()); |
| 2196 | if (!NTTP) |
| 2197 | return TemplateDeductionResult::Success; |
| 2198 | |
| 2199 | llvm::APSInt ArgSize(S.Context.getTypeSize(T: S.Context.IntTy), false); |
| 2200 | ArgSize = VA->getNumElements(); |
| 2201 | // Note that we use the "array bound" rules here; just like in that |
| 2202 | // case, we don't have any particular type for the vector size, but |
| 2203 | // we can provide one if necessary. |
| 2204 | return DeduceNonTypeTemplateArgument( |
| 2205 | S, TemplateParams, NTTP, Value: ArgSize, ValueType: S.Context.UnsignedIntTy, DeducedFromArrayBound: true, |
| 2206 | Info, PartialOrdering: POK != PartialOrderingKind::None, Deduced, |
| 2207 | HasDeducedAnyParam); |
| 2208 | } |
| 2209 | |
| 2210 | if (const auto *VA = A->getAs<DependentVectorType>()) { |
| 2211 | // Perform deduction on the element types. |
| 2212 | if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| 2213 | S, TemplateParams, P: VP->getElementType(), A: VA->getElementType(), |
| 2214 | Info, Deduced, TDF, POK: degradeCallPartialOrderingKind(POK), |
| 2215 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 2216 | Result != TemplateDeductionResult::Success) |
| 2217 | return Result; |
| 2218 | |
| 2219 | // Perform deduction on the vector size, if we can. |
| 2220 | const NonTypeTemplateParmDecl *NTTP = |
| 2221 | getDeducedParameterFromExpr(Info, E: VP->getSizeExpr()); |
| 2222 | if (!NTTP) |
| 2223 | return TemplateDeductionResult::Success; |
| 2224 | |
| 2225 | return DeduceNonTypeTemplateArgument( |
| 2226 | S, TemplateParams, NTTP, Value: VA->getSizeExpr(), Info, |
| 2227 | PartialOrdering: POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| 2228 | } |
| 2229 | |
| 2230 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2231 | } |
| 2232 | |
| 2233 | // (clang extension) |
| 2234 | // |
| 2235 | // T __attribute__(((ext_vector_type(N)))) |
| 2236 | case Type::DependentSizedExtVector: { |
| 2237 | const auto *VP = P->castAs<DependentSizedExtVectorType>(); |
| 2238 | |
| 2239 | if (const auto *VA = A->getAs<ExtVectorType>()) { |
| 2240 | // Perform deduction on the element types. |
| 2241 | if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| 2242 | S, TemplateParams, P: VP->getElementType(), A: VA->getElementType(), |
| 2243 | Info, Deduced, TDF, POK: degradeCallPartialOrderingKind(POK), |
| 2244 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 2245 | Result != TemplateDeductionResult::Success) |
| 2246 | return Result; |
| 2247 | |
| 2248 | // Perform deduction on the vector size, if we can. |
| 2249 | const NonTypeTemplateParmDecl *NTTP = |
| 2250 | getDeducedParameterFromExpr(Info, E: VP->getSizeExpr()); |
| 2251 | if (!NTTP) |
| 2252 | return TemplateDeductionResult::Success; |
| 2253 | |
| 2254 | llvm::APSInt ArgSize(S.Context.getTypeSize(T: S.Context.IntTy), false); |
| 2255 | ArgSize = VA->getNumElements(); |
| 2256 | // Note that we use the "array bound" rules here; just like in that |
| 2257 | // case, we don't have any particular type for the vector size, but |
| 2258 | // we can provide one if necessary. |
| 2259 | return DeduceNonTypeTemplateArgument( |
| 2260 | S, TemplateParams, NTTP, Value: ArgSize, ValueType: S.Context.IntTy, DeducedFromArrayBound: true, Info, |
| 2261 | PartialOrdering: POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| 2262 | } |
| 2263 | |
| 2264 | if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) { |
| 2265 | // Perform deduction on the element types. |
| 2266 | if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| 2267 | S, TemplateParams, P: VP->getElementType(), A: VA->getElementType(), |
| 2268 | Info, Deduced, TDF, POK: degradeCallPartialOrderingKind(POK), |
| 2269 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 2270 | Result != TemplateDeductionResult::Success) |
| 2271 | return Result; |
| 2272 | |
| 2273 | // Perform deduction on the vector size, if we can. |
| 2274 | const NonTypeTemplateParmDecl *NTTP = |
| 2275 | getDeducedParameterFromExpr(Info, E: VP->getSizeExpr()); |
| 2276 | if (!NTTP) |
| 2277 | return TemplateDeductionResult::Success; |
| 2278 | |
| 2279 | return DeduceNonTypeTemplateArgument( |
| 2280 | S, TemplateParams, NTTP, Value: VA->getSizeExpr(), Info, |
| 2281 | PartialOrdering: POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| 2282 | } |
| 2283 | |
| 2284 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2285 | } |
| 2286 | |
| 2287 | // (clang extension) |
| 2288 | // |
| 2289 | // T __attribute__((matrix_type(<integral constant>, |
| 2290 | // <integral constant>))) |
| 2291 | case Type::ConstantMatrix: { |
| 2292 | const auto *MP = P->castAs<ConstantMatrixType>(), |
| 2293 | *MA = A->getAs<ConstantMatrixType>(); |
| 2294 | if (!MA) |
| 2295 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2296 | |
| 2297 | // Check that the dimensions are the same |
| 2298 | if (MP->getNumRows() != MA->getNumRows() || |
| 2299 | MP->getNumColumns() != MA->getNumColumns()) { |
| 2300 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2301 | } |
| 2302 | // Perform deduction on element types. |
| 2303 | return DeduceTemplateArgumentsByTypeMatch( |
| 2304 | S, TemplateParams, P: MP->getElementType(), A: MA->getElementType(), Info, |
| 2305 | Deduced, TDF, POK: degradeCallPartialOrderingKind(POK), |
| 2306 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 2307 | } |
| 2308 | |
| 2309 | case Type::DependentSizedMatrix: { |
| 2310 | const auto *MP = P->castAs<DependentSizedMatrixType>(); |
| 2311 | const auto *MA = A->getAs<MatrixType>(); |
| 2312 | if (!MA) |
| 2313 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2314 | |
| 2315 | // Check the element type of the matrixes. |
| 2316 | if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| 2317 | S, TemplateParams, P: MP->getElementType(), A: MA->getElementType(), |
| 2318 | Info, Deduced, TDF, POK: degradeCallPartialOrderingKind(POK), |
| 2319 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 2320 | Result != TemplateDeductionResult::Success) |
| 2321 | return Result; |
| 2322 | |
| 2323 | // Try to deduce a matrix dimension. |
| 2324 | auto DeduceMatrixArg = |
| 2325 | [&S, &Info, &Deduced, &TemplateParams, &HasDeducedAnyParam, POK]( |
| 2326 | Expr *ParamExpr, const MatrixType *A, |
| 2327 | unsigned (ConstantMatrixType::*GetArgDimension)() const, |
| 2328 | Expr *(DependentSizedMatrixType::*GetArgDimensionExpr)() const) { |
| 2329 | const auto *ACM = dyn_cast<ConstantMatrixType>(Val: A); |
| 2330 | const auto *ADM = dyn_cast<DependentSizedMatrixType>(Val: A); |
| 2331 | if (!ParamExpr->isValueDependent()) { |
| 2332 | std::optional<llvm::APSInt> ParamConst = |
| 2333 | ParamExpr->getIntegerConstantExpr(Ctx: S.Context); |
| 2334 | if (!ParamConst) |
| 2335 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2336 | |
| 2337 | if (ACM) { |
| 2338 | if ((ACM->*GetArgDimension)() == *ParamConst) |
| 2339 | return TemplateDeductionResult::Success; |
| 2340 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2341 | } |
| 2342 | |
| 2343 | Expr *ArgExpr = (ADM->*GetArgDimensionExpr)(); |
| 2344 | if (std::optional<llvm::APSInt> ArgConst = |
| 2345 | ArgExpr->getIntegerConstantExpr(Ctx: S.Context)) |
| 2346 | if (*ArgConst == *ParamConst) |
| 2347 | return TemplateDeductionResult::Success; |
| 2348 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2349 | } |
| 2350 | |
| 2351 | const NonTypeTemplateParmDecl *NTTP = |
| 2352 | getDeducedParameterFromExpr(Info, E: ParamExpr); |
| 2353 | if (!NTTP) |
| 2354 | return TemplateDeductionResult::Success; |
| 2355 | |
| 2356 | if (ACM) { |
| 2357 | llvm::APSInt ArgConst( |
| 2358 | S.Context.getTypeSize(T: S.Context.getSizeType())); |
| 2359 | ArgConst = (ACM->*GetArgDimension)(); |
| 2360 | return DeduceNonTypeTemplateArgument( |
| 2361 | S, TemplateParams, NTTP, Value: ArgConst, ValueType: S.Context.getSizeType(), |
| 2362 | /*ArrayBound=*/DeducedFromArrayBound: true, Info, PartialOrdering: POK != PartialOrderingKind::None, |
| 2363 | Deduced, HasDeducedAnyParam); |
| 2364 | } |
| 2365 | |
| 2366 | return DeduceNonTypeTemplateArgument( |
| 2367 | S, TemplateParams, NTTP, Value: (ADM->*GetArgDimensionExpr)(), Info, |
| 2368 | PartialOrdering: POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| 2369 | }; |
| 2370 | |
| 2371 | if (auto Result = DeduceMatrixArg(MP->getRowExpr(), MA, |
| 2372 | &ConstantMatrixType::getNumRows, |
| 2373 | &DependentSizedMatrixType::getRowExpr); |
| 2374 | Result != TemplateDeductionResult::Success) |
| 2375 | return Result; |
| 2376 | |
| 2377 | return DeduceMatrixArg(MP->getColumnExpr(), MA, |
| 2378 | &ConstantMatrixType::getNumColumns, |
| 2379 | &DependentSizedMatrixType::getColumnExpr); |
| 2380 | } |
| 2381 | |
| 2382 | // (clang extension) |
| 2383 | // |
| 2384 | // T __attribute__(((address_space(N)))) |
| 2385 | case Type::DependentAddressSpace: { |
| 2386 | const auto *ASP = P->castAs<DependentAddressSpaceType>(); |
| 2387 | |
| 2388 | if (const auto *ASA = A->getAs<DependentAddressSpaceType>()) { |
| 2389 | // Perform deduction on the pointer type. |
| 2390 | if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| 2391 | S, TemplateParams, P: ASP->getPointeeType(), A: ASA->getPointeeType(), |
| 2392 | Info, Deduced, TDF, POK: degradeCallPartialOrderingKind(POK), |
| 2393 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 2394 | Result != TemplateDeductionResult::Success) |
| 2395 | return Result; |
| 2396 | |
| 2397 | // Perform deduction on the address space, if we can. |
| 2398 | const NonTypeTemplateParmDecl *NTTP = |
| 2399 | getDeducedParameterFromExpr(Info, E: ASP->getAddrSpaceExpr()); |
| 2400 | if (!NTTP) |
| 2401 | return TemplateDeductionResult::Success; |
| 2402 | |
| 2403 | return DeduceNonTypeTemplateArgument( |
| 2404 | S, TemplateParams, NTTP, Value: ASA->getAddrSpaceExpr(), Info, |
| 2405 | PartialOrdering: POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| 2406 | } |
| 2407 | |
| 2408 | if (isTargetAddressSpace(AS: A.getAddressSpace())) { |
| 2409 | llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(T: S.Context.IntTy), |
| 2410 | false); |
| 2411 | ArgAddressSpace = toTargetAddressSpace(AS: A.getAddressSpace()); |
| 2412 | |
| 2413 | // Perform deduction on the pointer types. |
| 2414 | if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| 2415 | S, TemplateParams, P: ASP->getPointeeType(), |
| 2416 | A: S.Context.removeAddrSpaceQualType(T: A), Info, Deduced, TDF, |
| 2417 | POK: degradeCallPartialOrderingKind(POK), |
| 2418 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 2419 | Result != TemplateDeductionResult::Success) |
| 2420 | return Result; |
| 2421 | |
| 2422 | // Perform deduction on the address space, if we can. |
| 2423 | const NonTypeTemplateParmDecl *NTTP = |
| 2424 | getDeducedParameterFromExpr(Info, E: ASP->getAddrSpaceExpr()); |
| 2425 | if (!NTTP) |
| 2426 | return TemplateDeductionResult::Success; |
| 2427 | |
| 2428 | return DeduceNonTypeTemplateArgument( |
| 2429 | S, TemplateParams, NTTP, Value: ArgAddressSpace, ValueType: S.Context.IntTy, DeducedFromArrayBound: true, |
| 2430 | Info, PartialOrdering: POK != PartialOrderingKind::None, Deduced, |
| 2431 | HasDeducedAnyParam); |
| 2432 | } |
| 2433 | |
| 2434 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2435 | } |
| 2436 | case Type::DependentBitInt: { |
| 2437 | const auto *IP = P->castAs<DependentBitIntType>(); |
| 2438 | |
| 2439 | if (const auto *IA = A->getAs<BitIntType>()) { |
| 2440 | if (IP->isUnsigned() != IA->isUnsigned()) |
| 2441 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2442 | |
| 2443 | const NonTypeTemplateParmDecl *NTTP = |
| 2444 | getDeducedParameterFromExpr(Info, E: IP->getNumBitsExpr()); |
| 2445 | if (!NTTP) |
| 2446 | return TemplateDeductionResult::Success; |
| 2447 | |
| 2448 | llvm::APSInt ArgSize(S.Context.getTypeSize(T: S.Context.IntTy), false); |
| 2449 | ArgSize = IA->getNumBits(); |
| 2450 | |
| 2451 | return DeduceNonTypeTemplateArgument( |
| 2452 | S, TemplateParams, NTTP, Value: ArgSize, ValueType: S.Context.IntTy, DeducedFromArrayBound: true, Info, |
| 2453 | PartialOrdering: POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| 2454 | } |
| 2455 | |
| 2456 | if (const auto *IA = A->getAs<DependentBitIntType>()) { |
| 2457 | if (IP->isUnsigned() != IA->isUnsigned()) |
| 2458 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2459 | return TemplateDeductionResult::Success; |
| 2460 | } |
| 2461 | |
| 2462 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2463 | } |
| 2464 | |
| 2465 | case Type::TypeOfExpr: |
| 2466 | case Type::TypeOf: |
| 2467 | case Type::DependentName: |
| 2468 | case Type::UnresolvedUsing: |
| 2469 | case Type::Decltype: |
| 2470 | case Type::UnaryTransform: |
| 2471 | case Type::DeducedTemplateSpecialization: |
| 2472 | case Type::DependentTemplateSpecialization: |
| 2473 | case Type::PackExpansion: |
| 2474 | case Type::Pipe: |
| 2475 | case Type::ArrayParameter: |
| 2476 | case Type::HLSLAttributedResource: |
| 2477 | case Type::HLSLInlineSpirv: |
| 2478 | // No template argument deduction for these types |
| 2479 | return TemplateDeductionResult::Success; |
| 2480 | |
| 2481 | case Type::PackIndexing: { |
| 2482 | const PackIndexingType *PIT = P->getAs<PackIndexingType>(); |
| 2483 | if (PIT->hasSelectedType()) { |
| 2484 | return DeduceTemplateArgumentsByTypeMatch( |
| 2485 | S, TemplateParams, P: PIT->getSelectedType(), A, Info, Deduced, TDF, |
| 2486 | POK: degradeCallPartialOrderingKind(POK), |
| 2487 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 2488 | } |
| 2489 | return TemplateDeductionResult::IncompletePack; |
| 2490 | } |
| 2491 | } |
| 2492 | |
| 2493 | llvm_unreachable("Invalid Type Class!" ); |
| 2494 | } |
| 2495 | |
| 2496 | static TemplateDeductionResult |
| 2497 | DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, |
| 2498 | const TemplateArgument &P, TemplateArgument A, |
| 2499 | TemplateDeductionInfo &Info, bool PartialOrdering, |
| 2500 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 2501 | bool *HasDeducedAnyParam) { |
| 2502 | // If the template argument is a pack expansion, perform template argument |
| 2503 | // deduction against the pattern of that expansion. This only occurs during |
| 2504 | // partial ordering. |
| 2505 | if (A.isPackExpansion()) |
| 2506 | A = A.getPackExpansionPattern(); |
| 2507 | |
| 2508 | switch (P.getKind()) { |
| 2509 | case TemplateArgument::Null: |
| 2510 | llvm_unreachable("Null template argument in parameter list" ); |
| 2511 | |
| 2512 | case TemplateArgument::Type: |
| 2513 | if (A.getKind() == TemplateArgument::Type) |
| 2514 | return DeduceTemplateArgumentsByTypeMatch( |
| 2515 | S, TemplateParams, P: P.getAsType(), A: A.getAsType(), Info, Deduced, TDF: 0, |
| 2516 | POK: PartialOrdering ? PartialOrderingKind::NonCall |
| 2517 | : PartialOrderingKind::None, |
| 2518 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 2519 | Info.FirstArg = P; |
| 2520 | Info.SecondArg = A; |
| 2521 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2522 | |
| 2523 | case TemplateArgument::Template: |
| 2524 | // PartialOrdering does not matter here, since template specializations are |
| 2525 | // not being deduced. |
| 2526 | if (A.getKind() == TemplateArgument::Template) |
| 2527 | return DeduceTemplateArguments( |
| 2528 | S, TemplateParams, Param: P.getAsTemplate(), Arg: A.getAsTemplate(), Info, |
| 2529 | /*DefaultArguments=*/{}, /*PartialOrdering=*/false, Deduced, |
| 2530 | HasDeducedAnyParam); |
| 2531 | Info.FirstArg = P; |
| 2532 | Info.SecondArg = A; |
| 2533 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2534 | |
| 2535 | case TemplateArgument::TemplateExpansion: |
| 2536 | llvm_unreachable("caller should handle pack expansions" ); |
| 2537 | |
| 2538 | case TemplateArgument::Declaration: |
| 2539 | if (A.getKind() == TemplateArgument::Declaration && |
| 2540 | isSameDeclaration(X: P.getAsDecl(), Y: A.getAsDecl())) |
| 2541 | return TemplateDeductionResult::Success; |
| 2542 | |
| 2543 | Info.FirstArg = P; |
| 2544 | Info.SecondArg = A; |
| 2545 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2546 | |
| 2547 | case TemplateArgument::NullPtr: |
| 2548 | // 'nullptr' has only one possible value, so it always matches. |
| 2549 | if (A.getKind() == TemplateArgument::NullPtr) |
| 2550 | return TemplateDeductionResult::Success; |
| 2551 | Info.FirstArg = P; |
| 2552 | Info.SecondArg = A; |
| 2553 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2554 | |
| 2555 | case TemplateArgument::Integral: |
| 2556 | if (A.getKind() == TemplateArgument::Integral) { |
| 2557 | if (llvm::APSInt::isSameValue(I1: P.getAsIntegral(), I2: A.getAsIntegral())) |
| 2558 | return TemplateDeductionResult::Success; |
| 2559 | } |
| 2560 | Info.FirstArg = P; |
| 2561 | Info.SecondArg = A; |
| 2562 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2563 | |
| 2564 | case TemplateArgument::StructuralValue: |
| 2565 | // FIXME: structural equality will also compare types, |
| 2566 | // but they should match iff they have the same value. |
| 2567 | if (A.getKind() == TemplateArgument::StructuralValue && |
| 2568 | A.structurallyEquals(Other: P)) |
| 2569 | return TemplateDeductionResult::Success; |
| 2570 | |
| 2571 | Info.FirstArg = P; |
| 2572 | Info.SecondArg = A; |
| 2573 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2574 | |
| 2575 | case TemplateArgument::Expression: |
| 2576 | if (const NonTypeTemplateParmDecl *NTTP = |
| 2577 | getDeducedParameterFromExpr(Info, E: P.getAsExpr())) { |
| 2578 | switch (A.getKind()) { |
| 2579 | case TemplateArgument::Expression: { |
| 2580 | const Expr *E = A.getAsExpr(); |
| 2581 | // When checking NTTP, if either the parameter or the argument is |
| 2582 | // dependent, as there would be otherwise nothing to deduce, we force |
| 2583 | // the argument to the parameter type using this dependent implicit |
| 2584 | // cast, in order to maintain invariants. Now we can deduce the |
| 2585 | // resulting type from the original type, and deduce the original type |
| 2586 | // against the parameter we are checking. |
| 2587 | if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E); |
| 2588 | ICE && ICE->getCastKind() == clang::CK_Dependent) { |
| 2589 | E = ICE->getSubExpr(); |
| 2590 | if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| 2591 | S, TemplateParams, P: ICE->getType(), A: E->getType(), Info, |
| 2592 | Deduced, TDF: TDF_SkipNonDependent, |
| 2593 | POK: PartialOrdering ? PartialOrderingKind::NonCall |
| 2594 | : PartialOrderingKind::None, |
| 2595 | /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| 2596 | Result != TemplateDeductionResult::Success) |
| 2597 | return Result; |
| 2598 | } |
| 2599 | return DeduceNonTypeTemplateArgument( |
| 2600 | S, TemplateParams, NTTP, NewDeduced: DeducedTemplateArgument(A), ValueType: E->getType(), |
| 2601 | Info, PartialOrdering, Deduced, HasDeducedAnyParam); |
| 2602 | } |
| 2603 | case TemplateArgument::Integral: |
| 2604 | case TemplateArgument::StructuralValue: |
| 2605 | return DeduceNonTypeTemplateArgument( |
| 2606 | S, TemplateParams, NTTP, NewDeduced: DeducedTemplateArgument(A), |
| 2607 | ValueType: A.getNonTypeTemplateArgumentType(), Info, PartialOrdering, Deduced, |
| 2608 | HasDeducedAnyParam); |
| 2609 | |
| 2610 | case TemplateArgument::NullPtr: |
| 2611 | return DeduceNullPtrTemplateArgument( |
| 2612 | S, TemplateParams, NTTP, NullPtrType: A.getNullPtrType(), Info, PartialOrdering, |
| 2613 | Deduced, HasDeducedAnyParam); |
| 2614 | |
| 2615 | case TemplateArgument::Declaration: |
| 2616 | return DeduceNonTypeTemplateArgument( |
| 2617 | S, TemplateParams, NTTP, D: A.getAsDecl(), T: A.getParamTypeForDecl(), |
| 2618 | Info, PartialOrdering, Deduced, HasDeducedAnyParam); |
| 2619 | |
| 2620 | case TemplateArgument::Null: |
| 2621 | case TemplateArgument::Type: |
| 2622 | case TemplateArgument::Template: |
| 2623 | case TemplateArgument::TemplateExpansion: |
| 2624 | case TemplateArgument::Pack: |
| 2625 | Info.FirstArg = P; |
| 2626 | Info.SecondArg = A; |
| 2627 | return TemplateDeductionResult::NonDeducedMismatch; |
| 2628 | } |
| 2629 | llvm_unreachable("Unknown template argument kind" ); |
| 2630 | } |
| 2631 | |
| 2632 | // Can't deduce anything, but that's okay. |
| 2633 | return TemplateDeductionResult::Success; |
| 2634 | case TemplateArgument::Pack: |
| 2635 | llvm_unreachable("Argument packs should be expanded by the caller!" ); |
| 2636 | } |
| 2637 | |
| 2638 | llvm_unreachable("Invalid TemplateArgument Kind!" ); |
| 2639 | } |
| 2640 | |
| 2641 | /// Determine whether there is a template argument to be used for |
| 2642 | /// deduction. |
| 2643 | /// |
| 2644 | /// This routine "expands" argument packs in-place, overriding its input |
| 2645 | /// parameters so that \c Args[ArgIdx] will be the available template argument. |
| 2646 | /// |
| 2647 | /// \returns true if there is another template argument (which will be at |
| 2648 | /// \c Args[ArgIdx]), false otherwise. |
| 2649 | static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args, |
| 2650 | unsigned &ArgIdx) { |
| 2651 | if (ArgIdx == Args.size()) |
| 2652 | return false; |
| 2653 | |
| 2654 | const TemplateArgument &Arg = Args[ArgIdx]; |
| 2655 | if (Arg.getKind() != TemplateArgument::Pack) |
| 2656 | return true; |
| 2657 | |
| 2658 | assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?" ); |
| 2659 | Args = Arg.pack_elements(); |
| 2660 | ArgIdx = 0; |
| 2661 | return ArgIdx < Args.size(); |
| 2662 | } |
| 2663 | |
| 2664 | /// Determine whether the given set of template arguments has a pack |
| 2665 | /// expansion that is not the last template argument. |
| 2666 | static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) { |
| 2667 | bool FoundPackExpansion = false; |
| 2668 | for (const auto &A : Args) { |
| 2669 | if (FoundPackExpansion) |
| 2670 | return true; |
| 2671 | |
| 2672 | if (A.getKind() == TemplateArgument::Pack) |
| 2673 | return hasPackExpansionBeforeEnd(Args: A.pack_elements()); |
| 2674 | |
| 2675 | // FIXME: If this is a fixed-arity pack expansion from an outer level of |
| 2676 | // templates, it should not be treated as a pack expansion. |
| 2677 | if (A.isPackExpansion()) |
| 2678 | FoundPackExpansion = true; |
| 2679 | } |
| 2680 | |
| 2681 | return false; |
| 2682 | } |
| 2683 | |
| 2684 | static TemplateDeductionResult |
| 2685 | DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, |
| 2686 | ArrayRef<TemplateArgument> Ps, |
| 2687 | ArrayRef<TemplateArgument> As, |
| 2688 | TemplateDeductionInfo &Info, |
| 2689 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 2690 | bool NumberOfArgumentsMustMatch, bool PartialOrdering, |
| 2691 | PackFold PackFold, bool *HasDeducedAnyParam) { |
| 2692 | bool FoldPackParameter = PackFold == PackFold::ParameterToArgument || |
| 2693 | PackFold == PackFold::Both, |
| 2694 | FoldPackArgument = PackFold == PackFold::ArgumentToParameter || |
| 2695 | PackFold == PackFold::Both; |
| 2696 | |
| 2697 | // C++0x [temp.deduct.type]p9: |
| 2698 | // If the template argument list of P contains a pack expansion that is not |
| 2699 | // the last template argument, the entire template argument list is a |
| 2700 | // non-deduced context. |
| 2701 | if (FoldPackParameter && hasPackExpansionBeforeEnd(Args: Ps)) |
| 2702 | return TemplateDeductionResult::Success; |
| 2703 | |
| 2704 | // C++0x [temp.deduct.type]p9: |
| 2705 | // If P has a form that contains <T> or <i>, then each argument Pi of the |
| 2706 | // respective template argument list P is compared with the corresponding |
| 2707 | // argument Ai of the corresponding template argument list of A. |
| 2708 | for (unsigned ArgIdx = 0, ParamIdx = 0; /**/; /**/) { |
| 2709 | if (!hasTemplateArgumentForDeduction(Args&: Ps, ArgIdx&: ParamIdx)) |
| 2710 | return !FoldPackParameter && hasTemplateArgumentForDeduction(Args&: As, ArgIdx) |
| 2711 | ? TemplateDeductionResult::MiscellaneousDeductionFailure |
| 2712 | : TemplateDeductionResult::Success; |
| 2713 | |
| 2714 | if (!Ps[ParamIdx].isPackExpansion()) { |
| 2715 | // The simple case: deduce template arguments by matching Pi and Ai. |
| 2716 | |
| 2717 | // Check whether we have enough arguments. |
| 2718 | if (!hasTemplateArgumentForDeduction(Args&: As, ArgIdx)) |
| 2719 | return !FoldPackArgument && NumberOfArgumentsMustMatch |
| 2720 | ? TemplateDeductionResult::MiscellaneousDeductionFailure |
| 2721 | : TemplateDeductionResult::Success; |
| 2722 | |
| 2723 | if (As[ArgIdx].isPackExpansion()) { |
| 2724 | // C++1z [temp.deduct.type]p9: |
| 2725 | // During partial ordering, if Ai was originally a pack expansion |
| 2726 | // [and] Pi is not a pack expansion, template argument deduction |
| 2727 | // fails. |
| 2728 | if (!FoldPackArgument) |
| 2729 | return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| 2730 | |
| 2731 | TemplateArgument Pattern = As[ArgIdx].getPackExpansionPattern(); |
| 2732 | for (;;) { |
| 2733 | // Deduce template parameters from the pattern. |
| 2734 | if (auto Result = DeduceTemplateArguments( |
| 2735 | S, TemplateParams, P: Ps[ParamIdx], A: Pattern, Info, |
| 2736 | PartialOrdering, Deduced, HasDeducedAnyParam); |
| 2737 | Result != TemplateDeductionResult::Success) |
| 2738 | return Result; |
| 2739 | |
| 2740 | ++ParamIdx; |
| 2741 | if (!hasTemplateArgumentForDeduction(Args&: Ps, ArgIdx&: ParamIdx)) |
| 2742 | return TemplateDeductionResult::Success; |
| 2743 | if (Ps[ParamIdx].isPackExpansion()) |
| 2744 | break; |
| 2745 | } |
| 2746 | } else { |
| 2747 | // Perform deduction for this Pi/Ai pair. |
| 2748 | if (auto Result = DeduceTemplateArguments( |
| 2749 | S, TemplateParams, P: Ps[ParamIdx], A: As[ArgIdx], Info, |
| 2750 | PartialOrdering, Deduced, HasDeducedAnyParam); |
| 2751 | Result != TemplateDeductionResult::Success) |
| 2752 | return Result; |
| 2753 | |
| 2754 | ++ArgIdx; |
| 2755 | ++ParamIdx; |
| 2756 | continue; |
| 2757 | } |
| 2758 | } |
| 2759 | |
| 2760 | // The parameter is a pack expansion. |
| 2761 | |
| 2762 | // C++0x [temp.deduct.type]p9: |
| 2763 | // If Pi is a pack expansion, then the pattern of Pi is compared with |
| 2764 | // each remaining argument in the template argument list of A. Each |
| 2765 | // comparison deduces template arguments for subsequent positions in the |
| 2766 | // template parameter packs expanded by Pi. |
| 2767 | TemplateArgument Pattern = Ps[ParamIdx].getPackExpansionPattern(); |
| 2768 | |
| 2769 | // Prepare to deduce the packs within the pattern. |
| 2770 | PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); |
| 2771 | |
| 2772 | // Keep track of the deduced template arguments for each parameter pack |
| 2773 | // expanded by this pack expansion (the outer index) and for each |
| 2774 | // template argument (the inner SmallVectors). |
| 2775 | for (; hasTemplateArgumentForDeduction(Args&: As, ArgIdx) && |
| 2776 | PackScope.hasNextElement(); |
| 2777 | ++ArgIdx) { |
| 2778 | if (!As[ArgIdx].isPackExpansion()) { |
| 2779 | if (!FoldPackParameter) |
| 2780 | return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| 2781 | if (FoldPackArgument) |
| 2782 | Info.setStrictPackMatch(); |
| 2783 | } |
| 2784 | // Deduce template arguments from the pattern. |
| 2785 | if (auto Result = DeduceTemplateArguments( |
| 2786 | S, TemplateParams, P: Pattern, A: As[ArgIdx], Info, PartialOrdering, |
| 2787 | Deduced, HasDeducedAnyParam); |
| 2788 | Result != TemplateDeductionResult::Success) |
| 2789 | return Result; |
| 2790 | |
| 2791 | PackScope.nextPackElement(); |
| 2792 | } |
| 2793 | |
| 2794 | // Build argument packs for each of the parameter packs expanded by this |
| 2795 | // pack expansion. |
| 2796 | return PackScope.finish(); |
| 2797 | } |
| 2798 | } |
| 2799 | |
| 2800 | TemplateDeductionResult Sema::DeduceTemplateArguments( |
| 2801 | TemplateParameterList *TemplateParams, ArrayRef<TemplateArgument> Ps, |
| 2802 | ArrayRef<TemplateArgument> As, sema::TemplateDeductionInfo &Info, |
| 2803 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 2804 | bool NumberOfArgumentsMustMatch) { |
| 2805 | return ::DeduceTemplateArguments( |
| 2806 | S&: *this, TemplateParams, Ps, As, Info, Deduced, NumberOfArgumentsMustMatch, |
| 2807 | /*PartialOrdering=*/false, PackFold: PackFold::ParameterToArgument, |
| 2808 | /*HasDeducedAnyParam=*/nullptr); |
| 2809 | } |
| 2810 | |
| 2811 | TemplateArgumentLoc |
| 2812 | Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, |
| 2813 | QualType NTTPType, SourceLocation Loc, |
| 2814 | NamedDecl *TemplateParam) { |
| 2815 | switch (Arg.getKind()) { |
| 2816 | case TemplateArgument::Null: |
| 2817 | llvm_unreachable("Can't get a NULL template argument here" ); |
| 2818 | |
| 2819 | case TemplateArgument::Type: |
| 2820 | return TemplateArgumentLoc( |
| 2821 | Arg, Context.getTrivialTypeSourceInfo(T: Arg.getAsType(), Loc)); |
| 2822 | |
| 2823 | case TemplateArgument::Declaration: { |
| 2824 | if (NTTPType.isNull()) |
| 2825 | NTTPType = Arg.getParamTypeForDecl(); |
| 2826 | Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, ParamType: NTTPType, Loc, |
| 2827 | TemplateParam) |
| 2828 | .getAs<Expr>(); |
| 2829 | return TemplateArgumentLoc(TemplateArgument(E, /*IsCanonical=*/false), E); |
| 2830 | } |
| 2831 | |
| 2832 | case TemplateArgument::NullPtr: { |
| 2833 | if (NTTPType.isNull()) |
| 2834 | NTTPType = Arg.getNullPtrType(); |
| 2835 | Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, ParamType: NTTPType, Loc) |
| 2836 | .getAs<Expr>(); |
| 2837 | return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true), |
| 2838 | E); |
| 2839 | } |
| 2840 | |
| 2841 | case TemplateArgument::Integral: |
| 2842 | case TemplateArgument::StructuralValue: { |
| 2843 | Expr *E = BuildExpressionFromNonTypeTemplateArgument(Arg, Loc).get(); |
| 2844 | return TemplateArgumentLoc(TemplateArgument(E, /*IsCanonical=*/false), E); |
| 2845 | } |
| 2846 | |
| 2847 | case TemplateArgument::Template: |
| 2848 | case TemplateArgument::TemplateExpansion: { |
| 2849 | NestedNameSpecifierLocBuilder Builder; |
| 2850 | TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); |
| 2851 | if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) |
| 2852 | Builder.MakeTrivial(Context, Qualifier: DTN->getQualifier(), R: Loc); |
| 2853 | else if (QualifiedTemplateName *QTN = |
| 2854 | Template.getAsQualifiedTemplateName()) |
| 2855 | Builder.MakeTrivial(Context, Qualifier: QTN->getQualifier(), R: Loc); |
| 2856 | |
| 2857 | if (Arg.getKind() == TemplateArgument::Template) |
| 2858 | return TemplateArgumentLoc(Context, Arg, |
| 2859 | Builder.getWithLocInContext(Context), Loc); |
| 2860 | |
| 2861 | return TemplateArgumentLoc( |
| 2862 | Context, Arg, Builder.getWithLocInContext(Context), Loc, Loc); |
| 2863 | } |
| 2864 | |
| 2865 | case TemplateArgument::Expression: |
| 2866 | return TemplateArgumentLoc(Arg, Arg.getAsExpr()); |
| 2867 | |
| 2868 | case TemplateArgument::Pack: |
| 2869 | return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); |
| 2870 | } |
| 2871 | |
| 2872 | llvm_unreachable("Invalid TemplateArgument Kind!" ); |
| 2873 | } |
| 2874 | |
| 2875 | TemplateArgumentLoc |
| 2876 | Sema::getIdentityTemplateArgumentLoc(NamedDecl *TemplateParm, |
| 2877 | SourceLocation Location) { |
| 2878 | return getTrivialTemplateArgumentLoc( |
| 2879 | Arg: Context.getInjectedTemplateArg(ParamDecl: TemplateParm), NTTPType: QualType(), Loc: Location); |
| 2880 | } |
| 2881 | |
| 2882 | /// Convert the given deduced template argument and add it to the set of |
| 2883 | /// fully-converted template arguments. |
| 2884 | static bool |
| 2885 | ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param, |
| 2886 | DeducedTemplateArgument Arg, NamedDecl *Template, |
| 2887 | TemplateDeductionInfo &Info, bool IsDeduced, |
| 2888 | Sema::CheckTemplateArgumentInfo &CTAI) { |
| 2889 | auto ConvertArg = [&](DeducedTemplateArgument Arg, |
| 2890 | unsigned ArgumentPackIndex) { |
| 2891 | // Convert the deduced template argument into a template |
| 2892 | // argument that we can check, almost as if the user had written |
| 2893 | // the template argument explicitly. |
| 2894 | TemplateArgumentLoc ArgLoc = S.getTrivialTemplateArgumentLoc( |
| 2895 | Arg, NTTPType: QualType(), Loc: Info.getLocation(), TemplateParam: Param); |
| 2896 | |
| 2897 | SaveAndRestore _1(CTAI.MatchingTTP, false); |
| 2898 | SaveAndRestore _2(CTAI.StrictPackMatch, false); |
| 2899 | // Check the template argument, converting it as necessary. |
| 2900 | auto Res = S.CheckTemplateArgument( |
| 2901 | Param, Arg&: ArgLoc, Template, TemplateLoc: Template->getLocation(), |
| 2902 | RAngleLoc: Template->getSourceRange().getEnd(), ArgumentPackIndex, CTAI, |
| 2903 | CTAK: IsDeduced |
| 2904 | ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound |
| 2905 | : Sema::CTAK_Deduced) |
| 2906 | : Sema::CTAK_Specified); |
| 2907 | if (CTAI.StrictPackMatch) |
| 2908 | Info.setStrictPackMatch(); |
| 2909 | return Res; |
| 2910 | }; |
| 2911 | |
| 2912 | if (Arg.getKind() == TemplateArgument::Pack) { |
| 2913 | // This is a template argument pack, so check each of its arguments against |
| 2914 | // the template parameter. |
| 2915 | SmallVector<TemplateArgument, 2> SugaredPackedArgsBuilder, |
| 2916 | CanonicalPackedArgsBuilder; |
| 2917 | for (const auto &P : Arg.pack_elements()) { |
| 2918 | // When converting the deduced template argument, append it to the |
| 2919 | // general output list. We need to do this so that the template argument |
| 2920 | // checking logic has all of the prior template arguments available. |
| 2921 | DeducedTemplateArgument InnerArg(P); |
| 2922 | InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); |
| 2923 | assert(InnerArg.getKind() != TemplateArgument::Pack && |
| 2924 | "deduced nested pack" ); |
| 2925 | if (P.isNull()) { |
| 2926 | // We deduced arguments for some elements of this pack, but not for |
| 2927 | // all of them. This happens if we get a conditionally-non-deduced |
| 2928 | // context in a pack expansion (such as an overload set in one of the |
| 2929 | // arguments). |
| 2930 | S.Diag(Loc: Param->getLocation(), |
| 2931 | DiagID: diag::err_template_arg_deduced_incomplete_pack) |
| 2932 | << Arg << Param; |
| 2933 | return true; |
| 2934 | } |
| 2935 | if (ConvertArg(InnerArg, SugaredPackedArgsBuilder.size())) |
| 2936 | return true; |
| 2937 | |
| 2938 | // Move the converted template argument into our argument pack. |
| 2939 | SugaredPackedArgsBuilder.push_back(Elt: CTAI.SugaredConverted.pop_back_val()); |
| 2940 | CanonicalPackedArgsBuilder.push_back( |
| 2941 | Elt: CTAI.CanonicalConverted.pop_back_val()); |
| 2942 | } |
| 2943 | |
| 2944 | // If the pack is empty, we still need to substitute into the parameter |
| 2945 | // itself, in case that substitution fails. |
| 2946 | if (SugaredPackedArgsBuilder.empty()) { |
| 2947 | LocalInstantiationScope Scope(S); |
| 2948 | MultiLevelTemplateArgumentList Args(Template, CTAI.SugaredConverted, |
| 2949 | /*Final=*/true); |
| 2950 | Sema::ArgPackSubstIndexRAII OnlySubstNonPackExpansion(S, std::nullopt); |
| 2951 | |
| 2952 | if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) { |
| 2953 | Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, |
| 2954 | NTTP, CTAI.SugaredConverted, |
| 2955 | Template->getSourceRange()); |
| 2956 | if (Inst.isInvalid() || |
| 2957 | S.SubstType(T: NTTP->getType(), TemplateArgs: Args, Loc: NTTP->getLocation(), |
| 2958 | Entity: NTTP->getDeclName()).isNull()) |
| 2959 | return true; |
| 2960 | } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: Param)) { |
| 2961 | Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, |
| 2962 | TTP, CTAI.SugaredConverted, |
| 2963 | Template->getSourceRange()); |
| 2964 | if (Inst.isInvalid() || !S.SubstDecl(D: TTP, Owner: S.CurContext, TemplateArgs: Args)) |
| 2965 | return true; |
| 2966 | } |
| 2967 | // For type parameters, no substitution is ever required. |
| 2968 | } |
| 2969 | |
| 2970 | // Create the resulting argument pack. |
| 2971 | CTAI.SugaredConverted.push_back( |
| 2972 | Elt: TemplateArgument::CreatePackCopy(Context&: S.Context, Args: SugaredPackedArgsBuilder)); |
| 2973 | CTAI.CanonicalConverted.push_back(Elt: TemplateArgument::CreatePackCopy( |
| 2974 | Context&: S.Context, Args: CanonicalPackedArgsBuilder)); |
| 2975 | return false; |
| 2976 | } |
| 2977 | |
| 2978 | return ConvertArg(Arg, 0); |
| 2979 | } |
| 2980 | |
| 2981 | /// \param IsIncomplete When used, we only consider template parameters that |
| 2982 | /// were deduced, disregarding any default arguments. After the function |
| 2983 | /// finishes, the object pointed at will contain a value indicating if the |
| 2984 | /// conversion was actually incomplete. |
| 2985 | static TemplateDeductionResult ConvertDeducedTemplateArguments( |
| 2986 | Sema &S, NamedDecl *Template, TemplateParameterList *TemplateParams, |
| 2987 | bool IsDeduced, SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 2988 | TemplateDeductionInfo &Info, Sema::CheckTemplateArgumentInfo &CTAI, |
| 2989 | LocalInstantiationScope *CurrentInstantiationScope, |
| 2990 | unsigned NumAlreadyConverted, bool *IsIncomplete) { |
| 2991 | for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { |
| 2992 | NamedDecl *Param = TemplateParams->getParam(Idx: I); |
| 2993 | |
| 2994 | // C++0x [temp.arg.explicit]p3: |
| 2995 | // A trailing template parameter pack (14.5.3) not otherwise deduced will |
| 2996 | // be deduced to an empty sequence of template arguments. |
| 2997 | // FIXME: Where did the word "trailing" come from? |
| 2998 | if (Deduced[I].isNull() && Param->isTemplateParameterPack()) { |
| 2999 | if (auto Result = |
| 3000 | PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish(); |
| 3001 | Result != TemplateDeductionResult::Success) |
| 3002 | return Result; |
| 3003 | } |
| 3004 | |
| 3005 | if (!Deduced[I].isNull()) { |
| 3006 | if (I < NumAlreadyConverted) { |
| 3007 | // We may have had explicitly-specified template arguments for a |
| 3008 | // template parameter pack (that may or may not have been extended |
| 3009 | // via additional deduced arguments). |
| 3010 | if (Param->isParameterPack() && CurrentInstantiationScope && |
| 3011 | CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) { |
| 3012 | // Forget the partially-substituted pack; its substitution is now |
| 3013 | // complete. |
| 3014 | CurrentInstantiationScope->ResetPartiallySubstitutedPack(); |
| 3015 | // We still need to check the argument in case it was extended by |
| 3016 | // deduction. |
| 3017 | } else { |
| 3018 | // We have already fully type-checked and converted this |
| 3019 | // argument, because it was explicitly-specified. Just record the |
| 3020 | // presence of this argument. |
| 3021 | CTAI.SugaredConverted.push_back(Elt: Deduced[I]); |
| 3022 | CTAI.CanonicalConverted.push_back( |
| 3023 | Elt: S.Context.getCanonicalTemplateArgument(Arg: Deduced[I])); |
| 3024 | continue; |
| 3025 | } |
| 3026 | } |
| 3027 | |
| 3028 | // We may have deduced this argument, so it still needs to be |
| 3029 | // checked and converted. |
| 3030 | if (ConvertDeducedTemplateArgument(S, Param, Arg: Deduced[I], Template, Info, |
| 3031 | IsDeduced, CTAI)) { |
| 3032 | Info.Param = makeTemplateParameter(D: Param); |
| 3033 | // FIXME: These template arguments are temporary. Free them! |
| 3034 | Info.reset( |
| 3035 | NewDeducedSugared: TemplateArgumentList::CreateCopy(Context&: S.Context, Args: CTAI.SugaredConverted), |
| 3036 | NewDeducedCanonical: TemplateArgumentList::CreateCopy(Context&: S.Context, |
| 3037 | Args: CTAI.CanonicalConverted)); |
| 3038 | return TemplateDeductionResult::SubstitutionFailure; |
| 3039 | } |
| 3040 | |
| 3041 | continue; |
| 3042 | } |
| 3043 | |
| 3044 | // [C++26][temp.deduct.partial]p12 - When partial ordering, it's ok for |
| 3045 | // template parameters to remain not deduced. As a provisional fix for a |
| 3046 | // core issue that does not exist yet, which may be related to CWG2160, only |
| 3047 | // consider template parameters that were deduced, disregarding any default |
| 3048 | // arguments. |
| 3049 | if (IsIncomplete) { |
| 3050 | *IsIncomplete = true; |
| 3051 | CTAI.SugaredConverted.push_back(Elt: {}); |
| 3052 | CTAI.CanonicalConverted.push_back(Elt: {}); |
| 3053 | continue; |
| 3054 | } |
| 3055 | |
| 3056 | // Substitute into the default template argument, if available. |
| 3057 | bool HasDefaultArg = false; |
| 3058 | TemplateDecl *TD = dyn_cast<TemplateDecl>(Val: Template); |
| 3059 | if (!TD) { |
| 3060 | assert(isa<ClassTemplatePartialSpecializationDecl>(Template) || |
| 3061 | isa<VarTemplatePartialSpecializationDecl>(Template)); |
| 3062 | return TemplateDeductionResult::Incomplete; |
| 3063 | } |
| 3064 | |
| 3065 | TemplateArgumentLoc DefArg; |
| 3066 | { |
| 3067 | Qualifiers ThisTypeQuals; |
| 3068 | CXXRecordDecl *ThisContext = nullptr; |
| 3069 | if (auto *Rec = dyn_cast<CXXRecordDecl>(Val: TD->getDeclContext())) |
| 3070 | if (Rec->isLambda()) |
| 3071 | if (auto *Method = dyn_cast<CXXMethodDecl>(Val: Rec->getDeclContext())) { |
| 3072 | ThisContext = Method->getParent(); |
| 3073 | ThisTypeQuals = Method->getMethodQualifiers(); |
| 3074 | } |
| 3075 | |
| 3076 | Sema::CXXThisScopeRAII ThisScope(S, ThisContext, ThisTypeQuals, |
| 3077 | S.getLangOpts().CPlusPlus17); |
| 3078 | |
| 3079 | DefArg = S.SubstDefaultTemplateArgumentIfAvailable( |
| 3080 | Template: TD, TemplateLoc: TD->getLocation(), RAngleLoc: TD->getSourceRange().getEnd(), Param, |
| 3081 | SugaredConverted: CTAI.SugaredConverted, CanonicalConverted: CTAI.CanonicalConverted, HasDefaultArg); |
| 3082 | } |
| 3083 | |
| 3084 | // If there was no default argument, deduction is incomplete. |
| 3085 | if (DefArg.getArgument().isNull()) { |
| 3086 | Info.Param = makeTemplateParameter( |
| 3087 | D: const_cast<NamedDecl *>(TemplateParams->getParam(Idx: I))); |
| 3088 | Info.reset( |
| 3089 | NewDeducedSugared: TemplateArgumentList::CreateCopy(Context&: S.Context, Args: CTAI.SugaredConverted), |
| 3090 | NewDeducedCanonical: TemplateArgumentList::CreateCopy(Context&: S.Context, Args: CTAI.CanonicalConverted)); |
| 3091 | |
| 3092 | return HasDefaultArg ? TemplateDeductionResult::SubstitutionFailure |
| 3093 | : TemplateDeductionResult::Incomplete; |
| 3094 | } |
| 3095 | |
| 3096 | SaveAndRestore _1(CTAI.PartialOrdering, false); |
| 3097 | SaveAndRestore _2(CTAI.MatchingTTP, false); |
| 3098 | SaveAndRestore _3(CTAI.StrictPackMatch, false); |
| 3099 | // Check whether we can actually use the default argument. |
| 3100 | if (S.CheckTemplateArgument( |
| 3101 | Param, Arg&: DefArg, Template: TD, TemplateLoc: TD->getLocation(), RAngleLoc: TD->getSourceRange().getEnd(), |
| 3102 | /*ArgumentPackIndex=*/0, CTAI, CTAK: Sema::CTAK_Specified)) { |
| 3103 | Info.Param = makeTemplateParameter( |
| 3104 | D: const_cast<NamedDecl *>(TemplateParams->getParam(Idx: I))); |
| 3105 | // FIXME: These template arguments are temporary. Free them! |
| 3106 | Info.reset( |
| 3107 | NewDeducedSugared: TemplateArgumentList::CreateCopy(Context&: S.Context, Args: CTAI.SugaredConverted), |
| 3108 | NewDeducedCanonical: TemplateArgumentList::CreateCopy(Context&: S.Context, Args: CTAI.CanonicalConverted)); |
| 3109 | return TemplateDeductionResult::SubstitutionFailure; |
| 3110 | } |
| 3111 | |
| 3112 | // If we get here, we successfully used the default template argument. |
| 3113 | } |
| 3114 | |
| 3115 | return TemplateDeductionResult::Success; |
| 3116 | } |
| 3117 | |
| 3118 | static DeclContext *getAsDeclContextOrEnclosing(Decl *D) { |
| 3119 | if (auto *DC = dyn_cast<DeclContext>(Val: D)) |
| 3120 | return DC; |
| 3121 | return D->getDeclContext(); |
| 3122 | } |
| 3123 | |
| 3124 | template<typename T> struct IsPartialSpecialization { |
| 3125 | static constexpr bool value = false; |
| 3126 | }; |
| 3127 | template<> |
| 3128 | struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> { |
| 3129 | static constexpr bool value = true; |
| 3130 | }; |
| 3131 | template<> |
| 3132 | struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> { |
| 3133 | static constexpr bool value = true; |
| 3134 | }; |
| 3135 | |
| 3136 | static TemplateDeductionResult |
| 3137 | CheckDeducedArgumentConstraints(Sema &S, NamedDecl *Template, |
| 3138 | ArrayRef<TemplateArgument> SugaredDeducedArgs, |
| 3139 | ArrayRef<TemplateArgument> CanonicalDeducedArgs, |
| 3140 | TemplateDeductionInfo &Info) { |
| 3141 | llvm::SmallVector<AssociatedConstraint, 3> AssociatedConstraints; |
| 3142 | bool DeducedArgsNeedReplacement = false; |
| 3143 | if (auto *TD = dyn_cast<ClassTemplatePartialSpecializationDecl>(Val: Template)) { |
| 3144 | TD->getAssociatedConstraints(AC&: AssociatedConstraints); |
| 3145 | DeducedArgsNeedReplacement = !TD->isClassScopeExplicitSpecialization(); |
| 3146 | } else if (auto *TD = |
| 3147 | dyn_cast<VarTemplatePartialSpecializationDecl>(Val: Template)) { |
| 3148 | TD->getAssociatedConstraints(AC&: AssociatedConstraints); |
| 3149 | DeducedArgsNeedReplacement = !TD->isClassScopeExplicitSpecialization(); |
| 3150 | } else { |
| 3151 | cast<TemplateDecl>(Val: Template)->getAssociatedConstraints( |
| 3152 | AC&: AssociatedConstraints); |
| 3153 | } |
| 3154 | |
| 3155 | std::optional<ArrayRef<TemplateArgument>> Innermost; |
| 3156 | // If we don't need to replace the deduced template arguments, |
| 3157 | // we can add them immediately as the inner-most argument list. |
| 3158 | if (!DeducedArgsNeedReplacement) |
| 3159 | Innermost = CanonicalDeducedArgs; |
| 3160 | |
| 3161 | MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs( |
| 3162 | D: Template, DC: Template->getDeclContext(), /*Final=*/false, Innermost, |
| 3163 | /*RelativeToPrimary=*/true, /*Pattern=*/ |
| 3164 | nullptr, /*ForConstraintInstantiation=*/true); |
| 3165 | |
| 3166 | // getTemplateInstantiationArgs picks up the non-deduced version of the |
| 3167 | // template args when this is a variable template partial specialization and |
| 3168 | // not class-scope explicit specialization, so replace with Deduced Args |
| 3169 | // instead of adding to inner-most. |
| 3170 | if (!Innermost) |
| 3171 | MLTAL.replaceInnermostTemplateArguments(AssociatedDecl: Template, Args: CanonicalDeducedArgs); |
| 3172 | |
| 3173 | if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints, TemplateArgLists: MLTAL, |
| 3174 | TemplateIDRange: Info.getLocation(), |
| 3175 | Satisfaction&: Info.AssociatedConstraintsSatisfaction) || |
| 3176 | !Info.AssociatedConstraintsSatisfaction.IsSatisfied) { |
| 3177 | Info.reset( |
| 3178 | NewDeducedSugared: TemplateArgumentList::CreateCopy(Context&: S.Context, Args: SugaredDeducedArgs), |
| 3179 | NewDeducedCanonical: TemplateArgumentList::CreateCopy(Context&: S.Context, Args: CanonicalDeducedArgs)); |
| 3180 | return TemplateDeductionResult::ConstraintsNotSatisfied; |
| 3181 | } |
| 3182 | return TemplateDeductionResult::Success; |
| 3183 | } |
| 3184 | |
| 3185 | /// Complete template argument deduction. |
| 3186 | static TemplateDeductionResult FinishTemplateArgumentDeduction( |
| 3187 | Sema &S, NamedDecl *Entity, TemplateParameterList *EntityTPL, |
| 3188 | TemplateDecl *Template, bool PartialOrdering, |
| 3189 | ArrayRef<TemplateArgumentLoc> Ps, ArrayRef<TemplateArgument> As, |
| 3190 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 3191 | TemplateDeductionInfo &Info, bool CopyDeducedArgs) { |
| 3192 | // Unevaluated SFINAE context. |
| 3193 | EnterExpressionEvaluationContext Unevaluated( |
| 3194 | S, Sema::ExpressionEvaluationContext::Unevaluated); |
| 3195 | |
| 3196 | Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(D: Entity)); |
| 3197 | |
| 3198 | // C++ [temp.deduct.type]p2: |
| 3199 | // [...] or if any template argument remains neither deduced nor |
| 3200 | // explicitly specified, template argument deduction fails. |
| 3201 | Sema::CheckTemplateArgumentInfo CTAI(PartialOrdering); |
| 3202 | if (auto Result = ConvertDeducedTemplateArguments( |
| 3203 | S, Template: Entity, TemplateParams: EntityTPL, /*IsDeduced=*/PartialOrdering, Deduced, Info, |
| 3204 | CTAI, |
| 3205 | /*CurrentInstantiationScope=*/nullptr, |
| 3206 | /*NumAlreadyConverted=*/0U, /*IsIncomplete=*/nullptr); |
| 3207 | Result != TemplateDeductionResult::Success) |
| 3208 | return Result; |
| 3209 | |
| 3210 | if (CopyDeducedArgs) { |
| 3211 | // Form the template argument list from the deduced template arguments. |
| 3212 | TemplateArgumentList *SugaredDeducedArgumentList = |
| 3213 | TemplateArgumentList::CreateCopy(Context&: S.Context, Args: CTAI.SugaredConverted); |
| 3214 | TemplateArgumentList *CanonicalDeducedArgumentList = |
| 3215 | TemplateArgumentList::CreateCopy(Context&: S.Context, Args: CTAI.CanonicalConverted); |
| 3216 | Info.reset(NewDeducedSugared: SugaredDeducedArgumentList, NewDeducedCanonical: CanonicalDeducedArgumentList); |
| 3217 | } |
| 3218 | |
| 3219 | TemplateParameterList *TPL = Template->getTemplateParameters(); |
| 3220 | TemplateArgumentListInfo InstArgs(TPL->getLAngleLoc(), TPL->getRAngleLoc()); |
| 3221 | MultiLevelTemplateArgumentList MLTAL(Entity, CTAI.SugaredConverted, |
| 3222 | /*Final=*/true); |
| 3223 | MLTAL.addOuterRetainedLevels(Num: TPL->getDepth()); |
| 3224 | |
| 3225 | if (S.SubstTemplateArguments(Args: Ps, TemplateArgs: MLTAL, Outputs&: InstArgs)) { |
| 3226 | unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; |
| 3227 | if (ParamIdx >= TPL->size()) |
| 3228 | ParamIdx = TPL->size() - 1; |
| 3229 | |
| 3230 | Decl *Param = const_cast<NamedDecl *>(TPL->getParam(Idx: ParamIdx)); |
| 3231 | Info.Param = makeTemplateParameter(D: Param); |
| 3232 | Info.FirstArg = Ps[ArgIdx].getArgument(); |
| 3233 | return TemplateDeductionResult::SubstitutionFailure; |
| 3234 | } |
| 3235 | |
| 3236 | bool ConstraintsNotSatisfied; |
| 3237 | Sema::CheckTemplateArgumentInfo InstCTAI; |
| 3238 | if (S.CheckTemplateArgumentList(Template, TemplateLoc: Template->getLocation(), TemplateArgs&: InstArgs, |
| 3239 | /*DefaultArgs=*/{}, PartialTemplateArgs: false, CTAI&: InstCTAI, |
| 3240 | /*UpdateArgsWithConversions=*/true, |
| 3241 | ConstraintsNotSatisfied: &ConstraintsNotSatisfied)) |
| 3242 | return ConstraintsNotSatisfied |
| 3243 | ? TemplateDeductionResult::ConstraintsNotSatisfied |
| 3244 | : TemplateDeductionResult::SubstitutionFailure; |
| 3245 | |
| 3246 | // Check that we produced the correct argument list. |
| 3247 | SmallVector<ArrayRef<TemplateArgument>, 4> PsStack{InstCTAI.SugaredConverted}, |
| 3248 | AsStack{As}; |
| 3249 | for (;;) { |
| 3250 | auto take = [](SmallVectorImpl<ArrayRef<TemplateArgument>> &Stack) |
| 3251 | -> std::tuple<ArrayRef<TemplateArgument> &, TemplateArgument> { |
| 3252 | while (!Stack.empty()) { |
| 3253 | auto &Xs = Stack.back(); |
| 3254 | if (Xs.empty()) { |
| 3255 | Stack.pop_back(); |
| 3256 | continue; |
| 3257 | } |
| 3258 | auto &X = Xs.front(); |
| 3259 | if (X.getKind() == TemplateArgument::Pack) { |
| 3260 | Stack.emplace_back(Args: X.getPackAsArray()); |
| 3261 | Xs = Xs.drop_front(); |
| 3262 | continue; |
| 3263 | } |
| 3264 | assert(!X.isNull()); |
| 3265 | return {Xs, X}; |
| 3266 | } |
| 3267 | static constexpr ArrayRef<TemplateArgument> None; |
| 3268 | return {const_cast<ArrayRef<TemplateArgument> &>(None), |
| 3269 | TemplateArgument()}; |
| 3270 | }; |
| 3271 | auto [Ps, P] = take(PsStack); |
| 3272 | auto [As, A] = take(AsStack); |
| 3273 | if (P.isNull() && A.isNull()) |
| 3274 | break; |
| 3275 | TemplateArgument PP = P.isPackExpansion() ? P.getPackExpansionPattern() : P, |
| 3276 | PA = A.isPackExpansion() ? A.getPackExpansionPattern() : A; |
| 3277 | if (!S.Context.isSameTemplateArgument(Arg1: PP, Arg2: PA)) { |
| 3278 | if (!P.isPackExpansion() && !A.isPackExpansion()) { |
| 3279 | Info.Param = makeTemplateParameter(D: TPL->getParam( |
| 3280 | Idx: (AsStack.empty() ? As.end() : AsStack.back().begin()) - |
| 3281 | As.begin())); |
| 3282 | Info.FirstArg = P; |
| 3283 | Info.SecondArg = A; |
| 3284 | return TemplateDeductionResult::NonDeducedMismatch; |
| 3285 | } |
| 3286 | if (P.isPackExpansion()) { |
| 3287 | Ps = Ps.drop_front(); |
| 3288 | continue; |
| 3289 | } |
| 3290 | if (A.isPackExpansion()) { |
| 3291 | As = As.drop_front(); |
| 3292 | continue; |
| 3293 | } |
| 3294 | } |
| 3295 | Ps = Ps.drop_front(N: P.isPackExpansion() ? 0 : 1); |
| 3296 | As = As.drop_front(N: A.isPackExpansion() && !P.isPackExpansion() ? 0 : 1); |
| 3297 | } |
| 3298 | assert(PsStack.empty()); |
| 3299 | assert(AsStack.empty()); |
| 3300 | |
| 3301 | if (!PartialOrdering) { |
| 3302 | if (auto Result = CheckDeducedArgumentConstraints( |
| 3303 | S, Template: Entity, SugaredDeducedArgs: CTAI.SugaredConverted, CanonicalDeducedArgs: CTAI.CanonicalConverted, Info); |
| 3304 | Result != TemplateDeductionResult::Success) |
| 3305 | return Result; |
| 3306 | } |
| 3307 | |
| 3308 | return TemplateDeductionResult::Success; |
| 3309 | } |
| 3310 | static TemplateDeductionResult FinishTemplateArgumentDeduction( |
| 3311 | Sema &S, NamedDecl *Entity, TemplateParameterList *EntityTPL, |
| 3312 | TemplateDecl *Template, bool PartialOrdering, ArrayRef<TemplateArgument> Ps, |
| 3313 | ArrayRef<TemplateArgument> As, |
| 3314 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 3315 | TemplateDeductionInfo &Info, bool CopyDeducedArgs) { |
| 3316 | TemplateParameterList *TPL = Template->getTemplateParameters(); |
| 3317 | SmallVector<TemplateArgumentLoc, 8> PsLoc(Ps.size()); |
| 3318 | for (unsigned I = 0, N = Ps.size(); I != N; ++I) |
| 3319 | PsLoc[I] = S.getTrivialTemplateArgumentLoc(Arg: Ps[I], NTTPType: QualType(), |
| 3320 | Loc: TPL->getParam(Idx: I)->getLocation()); |
| 3321 | return FinishTemplateArgumentDeduction(S, Entity, EntityTPL, Template, |
| 3322 | PartialOrdering, Ps: PsLoc, As, Deduced, |
| 3323 | Info, CopyDeducedArgs); |
| 3324 | } |
| 3325 | |
| 3326 | /// Complete template argument deduction for DeduceTemplateArgumentsFromType. |
| 3327 | /// FIXME: this is mostly duplicated with the above two versions. Deduplicate |
| 3328 | /// the three implementations. |
| 3329 | static TemplateDeductionResult FinishTemplateArgumentDeduction( |
| 3330 | Sema &S, TemplateDecl *TD, |
| 3331 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 3332 | TemplateDeductionInfo &Info) { |
| 3333 | // Unevaluated SFINAE context. |
| 3334 | EnterExpressionEvaluationContext Unevaluated( |
| 3335 | S, Sema::ExpressionEvaluationContext::Unevaluated); |
| 3336 | |
| 3337 | Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(D: TD)); |
| 3338 | |
| 3339 | // C++ [temp.deduct.type]p2: |
| 3340 | // [...] or if any template argument remains neither deduced nor |
| 3341 | // explicitly specified, template argument deduction fails. |
| 3342 | Sema::CheckTemplateArgumentInfo CTAI; |
| 3343 | if (auto Result = ConvertDeducedTemplateArguments( |
| 3344 | S, Template: TD, TemplateParams: TD->getTemplateParameters(), /*IsDeduced=*/false, Deduced, |
| 3345 | Info, CTAI, |
| 3346 | /*CurrentInstantiationScope=*/nullptr, /*NumAlreadyConverted=*/0, |
| 3347 | /*IsIncomplete=*/nullptr); |
| 3348 | Result != TemplateDeductionResult::Success) |
| 3349 | return Result; |
| 3350 | |
| 3351 | return ::CheckDeducedArgumentConstraints(S, Template: TD, SugaredDeducedArgs: CTAI.SugaredConverted, |
| 3352 | CanonicalDeducedArgs: CTAI.CanonicalConverted, Info); |
| 3353 | } |
| 3354 | |
| 3355 | /// Perform template argument deduction to determine whether the given template |
| 3356 | /// arguments match the given class or variable template partial specialization |
| 3357 | /// per C++ [temp.class.spec.match]. |
| 3358 | template <typename T> |
| 3359 | static std::enable_if_t<IsPartialSpecialization<T>::value, |
| 3360 | TemplateDeductionResult> |
| 3361 | DeduceTemplateArguments(Sema &S, T *Partial, |
| 3362 | ArrayRef<TemplateArgument> TemplateArgs, |
| 3363 | TemplateDeductionInfo &Info) { |
| 3364 | if (Partial->isInvalidDecl()) |
| 3365 | return TemplateDeductionResult::Invalid; |
| 3366 | |
| 3367 | // C++ [temp.class.spec.match]p2: |
| 3368 | // A partial specialization matches a given actual template |
| 3369 | // argument list if the template arguments of the partial |
| 3370 | // specialization can be deduced from the actual template argument |
| 3371 | // list (14.8.2). |
| 3372 | |
| 3373 | // Unevaluated SFINAE context. |
| 3374 | EnterExpressionEvaluationContext Unevaluated( |
| 3375 | S, Sema::ExpressionEvaluationContext::Unevaluated); |
| 3376 | Sema::SFINAETrap Trap(S); |
| 3377 | |
| 3378 | // This deduction has no relation to any outer instantiation we might be |
| 3379 | // performing. |
| 3380 | LocalInstantiationScope InstantiationScope(S); |
| 3381 | |
| 3382 | SmallVector<DeducedTemplateArgument, 4> Deduced; |
| 3383 | Deduced.resize(Partial->getTemplateParameters()->size()); |
| 3384 | if (TemplateDeductionResult Result = ::DeduceTemplateArguments( |
| 3385 | S, Partial->getTemplateParameters(), |
| 3386 | Partial->getTemplateArgs().asArray(), TemplateArgs, Info, Deduced, |
| 3387 | /*NumberOfArgumentsMustMatch=*/false, /*PartialOrdering=*/false, |
| 3388 | PackFold::ParameterToArgument, |
| 3389 | /*HasDeducedAnyParam=*/nullptr); |
| 3390 | Result != TemplateDeductionResult::Success) |
| 3391 | return Result; |
| 3392 | |
| 3393 | SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); |
| 3394 | Sema::InstantiatingTemplate Inst(S, Info.getLocation(), Partial, DeducedArgs, |
| 3395 | Info); |
| 3396 | if (Inst.isInvalid()) |
| 3397 | return TemplateDeductionResult::InstantiationDepth; |
| 3398 | |
| 3399 | TemplateDeductionResult Result; |
| 3400 | S.runWithSufficientStackSpace(Loc: Info.getLocation(), Fn: [&] { |
| 3401 | Result = ::FinishTemplateArgumentDeduction( |
| 3402 | S, Partial, Partial->getTemplateParameters(), |
| 3403 | Partial->getSpecializedTemplate(), |
| 3404 | /*IsPartialOrdering=*/false, |
| 3405 | Partial->getTemplateArgsAsWritten()->arguments(), TemplateArgs, Deduced, |
| 3406 | Info, /*CopyDeducedArgs=*/true); |
| 3407 | }); |
| 3408 | |
| 3409 | if (Result != TemplateDeductionResult::Success) |
| 3410 | return Result; |
| 3411 | |
| 3412 | if (Trap.hasErrorOccurred()) |
| 3413 | return TemplateDeductionResult::SubstitutionFailure; |
| 3414 | |
| 3415 | return TemplateDeductionResult::Success; |
| 3416 | } |
| 3417 | |
| 3418 | TemplateDeductionResult |
| 3419 | Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, |
| 3420 | ArrayRef<TemplateArgument> TemplateArgs, |
| 3421 | TemplateDeductionInfo &Info) { |
| 3422 | return ::DeduceTemplateArguments(S&: *this, Partial, TemplateArgs, Info); |
| 3423 | } |
| 3424 | TemplateDeductionResult |
| 3425 | Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, |
| 3426 | ArrayRef<TemplateArgument> TemplateArgs, |
| 3427 | TemplateDeductionInfo &Info) { |
| 3428 | return ::DeduceTemplateArguments(S&: *this, Partial, TemplateArgs, Info); |
| 3429 | } |
| 3430 | |
| 3431 | TemplateDeductionResult |
| 3432 | Sema::DeduceTemplateArgumentsFromType(TemplateDecl *TD, QualType FromType, |
| 3433 | sema::TemplateDeductionInfo &Info) { |
| 3434 | if (TD->isInvalidDecl()) |
| 3435 | return TemplateDeductionResult::Invalid; |
| 3436 | |
| 3437 | QualType PType; |
| 3438 | if (const auto *CTD = dyn_cast<ClassTemplateDecl>(Val: TD)) { |
| 3439 | // Use the InjectedClassNameType. |
| 3440 | PType = Context.getTypeDeclType(Decl: CTD->getTemplatedDecl()); |
| 3441 | } else if (const auto *AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Val: TD)) { |
| 3442 | PType = AliasTemplate->getTemplatedDecl()->getUnderlyingType(); |
| 3443 | } else { |
| 3444 | assert(false && "Expected a class or alias template" ); |
| 3445 | } |
| 3446 | |
| 3447 | // Unevaluated SFINAE context. |
| 3448 | EnterExpressionEvaluationContext Unevaluated( |
| 3449 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 3450 | SFINAETrap Trap(*this); |
| 3451 | |
| 3452 | // This deduction has no relation to any outer instantiation we might be |
| 3453 | // performing. |
| 3454 | LocalInstantiationScope InstantiationScope(*this); |
| 3455 | |
| 3456 | SmallVector<DeducedTemplateArgument> Deduced( |
| 3457 | TD->getTemplateParameters()->size()); |
| 3458 | SmallVector<TemplateArgument> PArgs = {TemplateArgument(PType)}; |
| 3459 | SmallVector<TemplateArgument> AArgs = {TemplateArgument(FromType)}; |
| 3460 | if (auto DeducedResult = DeduceTemplateArguments( |
| 3461 | TemplateParams: TD->getTemplateParameters(), Ps: PArgs, As: AArgs, Info, Deduced, NumberOfArgumentsMustMatch: false); |
| 3462 | DeducedResult != TemplateDeductionResult::Success) { |
| 3463 | return DeducedResult; |
| 3464 | } |
| 3465 | |
| 3466 | SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); |
| 3467 | InstantiatingTemplate Inst(*this, Info.getLocation(), TD, DeducedArgs, Info); |
| 3468 | if (Inst.isInvalid()) |
| 3469 | return TemplateDeductionResult::InstantiationDepth; |
| 3470 | |
| 3471 | TemplateDeductionResult Result; |
| 3472 | runWithSufficientStackSpace(Loc: Info.getLocation(), Fn: [&] { |
| 3473 | Result = ::FinishTemplateArgumentDeduction(S&: *this, TD, Deduced, Info); |
| 3474 | }); |
| 3475 | |
| 3476 | if (Result != TemplateDeductionResult::Success) |
| 3477 | return Result; |
| 3478 | |
| 3479 | if (Trap.hasErrorOccurred()) |
| 3480 | return TemplateDeductionResult::SubstitutionFailure; |
| 3481 | |
| 3482 | return TemplateDeductionResult::Success; |
| 3483 | } |
| 3484 | |
| 3485 | /// Determine whether the given type T is a simple-template-id type. |
| 3486 | static bool isSimpleTemplateIdType(QualType T) { |
| 3487 | if (const TemplateSpecializationType *Spec |
| 3488 | = T->getAs<TemplateSpecializationType>()) |
| 3489 | return Spec->getTemplateName().getAsTemplateDecl() != nullptr; |
| 3490 | |
| 3491 | // C++17 [temp.local]p2: |
| 3492 | // the injected-class-name [...] is equivalent to the template-name followed |
| 3493 | // by the template-arguments of the class template specialization or partial |
| 3494 | // specialization enclosed in <> |
| 3495 | // ... which means it's equivalent to a simple-template-id. |
| 3496 | // |
| 3497 | // This only arises during class template argument deduction for a copy |
| 3498 | // deduction candidate, where it permits slicing. |
| 3499 | if (T->getAs<InjectedClassNameType>()) |
| 3500 | return true; |
| 3501 | |
| 3502 | return false; |
| 3503 | } |
| 3504 | |
| 3505 | TemplateDeductionResult Sema::SubstituteExplicitTemplateArguments( |
| 3506 | FunctionTemplateDecl *FunctionTemplate, |
| 3507 | TemplateArgumentListInfo &ExplicitTemplateArgs, |
| 3508 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 3509 | SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType, |
| 3510 | TemplateDeductionInfo &Info) { |
| 3511 | FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| 3512 | TemplateParameterList *TemplateParams |
| 3513 | = FunctionTemplate->getTemplateParameters(); |
| 3514 | |
| 3515 | if (ExplicitTemplateArgs.size() == 0) { |
| 3516 | // No arguments to substitute; just copy over the parameter types and |
| 3517 | // fill in the function type. |
| 3518 | for (auto *P : Function->parameters()) |
| 3519 | ParamTypes.push_back(Elt: P->getType()); |
| 3520 | |
| 3521 | if (FunctionType) |
| 3522 | *FunctionType = Function->getType(); |
| 3523 | return TemplateDeductionResult::Success; |
| 3524 | } |
| 3525 | |
| 3526 | // Unevaluated SFINAE context. |
| 3527 | EnterExpressionEvaluationContext Unevaluated( |
| 3528 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 3529 | SFINAETrap Trap(*this); |
| 3530 | |
| 3531 | // C++ [temp.arg.explicit]p3: |
| 3532 | // Template arguments that are present shall be specified in the |
| 3533 | // declaration order of their corresponding template-parameters. The |
| 3534 | // template argument list shall not specify more template-arguments than |
| 3535 | // there are corresponding template-parameters. |
| 3536 | |
| 3537 | // Enter a new template instantiation context where we check the |
| 3538 | // explicitly-specified template arguments against this function template, |
| 3539 | // and then substitute them into the function parameter types. |
| 3540 | SmallVector<TemplateArgument, 4> DeducedArgs; |
| 3541 | InstantiatingTemplate Inst( |
| 3542 | *this, Info.getLocation(), FunctionTemplate, DeducedArgs, |
| 3543 | CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); |
| 3544 | if (Inst.isInvalid()) |
| 3545 | return TemplateDeductionResult::InstantiationDepth; |
| 3546 | |
| 3547 | CheckTemplateArgumentInfo CTAI; |
| 3548 | if (CheckTemplateArgumentList(Template: FunctionTemplate, TemplateLoc: SourceLocation(), |
| 3549 | TemplateArgs&: ExplicitTemplateArgs, /*DefaultArgs=*/{}, |
| 3550 | /*PartialTemplateArgs=*/true, CTAI, |
| 3551 | /*UpdateArgsWithConversions=*/false) || |
| 3552 | Trap.hasErrorOccurred()) { |
| 3553 | unsigned Index = CTAI.SugaredConverted.size(); |
| 3554 | if (Index >= TemplateParams->size()) |
| 3555 | return TemplateDeductionResult::SubstitutionFailure; |
| 3556 | Info.Param = makeTemplateParameter(D: TemplateParams->getParam(Idx: Index)); |
| 3557 | return TemplateDeductionResult::InvalidExplicitArguments; |
| 3558 | } |
| 3559 | |
| 3560 | // Form the template argument list from the explicitly-specified |
| 3561 | // template arguments. |
| 3562 | TemplateArgumentList *SugaredExplicitArgumentList = |
| 3563 | TemplateArgumentList::CreateCopy(Context, Args: CTAI.SugaredConverted); |
| 3564 | TemplateArgumentList *CanonicalExplicitArgumentList = |
| 3565 | TemplateArgumentList::CreateCopy(Context, Args: CTAI.CanonicalConverted); |
| 3566 | Info.setExplicitArgs(NewDeducedSugared: SugaredExplicitArgumentList, |
| 3567 | NewDeducedCanonical: CanonicalExplicitArgumentList); |
| 3568 | |
| 3569 | // Template argument deduction and the final substitution should be |
| 3570 | // done in the context of the templated declaration. Explicit |
| 3571 | // argument substitution, on the other hand, needs to happen in the |
| 3572 | // calling context. |
| 3573 | ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); |
| 3574 | |
| 3575 | // If we deduced template arguments for a template parameter pack, |
| 3576 | // note that the template argument pack is partially substituted and record |
| 3577 | // the explicit template arguments. They'll be used as part of deduction |
| 3578 | // for this template parameter pack. |
| 3579 | unsigned PartiallySubstitutedPackIndex = -1u; |
| 3580 | if (!CTAI.SugaredConverted.empty()) { |
| 3581 | const TemplateArgument &Arg = CTAI.SugaredConverted.back(); |
| 3582 | if (Arg.getKind() == TemplateArgument::Pack) { |
| 3583 | auto *Param = TemplateParams->getParam(Idx: CTAI.SugaredConverted.size() - 1); |
| 3584 | // If this is a fully-saturated fixed-size pack, it should be |
| 3585 | // fully-substituted, not partially-substituted. |
| 3586 | UnsignedOrNone Expansions = getExpandedPackSize(Param); |
| 3587 | if (!Expansions || Arg.pack_size() < *Expansions) { |
| 3588 | PartiallySubstitutedPackIndex = CTAI.SugaredConverted.size() - 1; |
| 3589 | CurrentInstantiationScope->SetPartiallySubstitutedPack( |
| 3590 | Pack: Param, ExplicitArgs: Arg.pack_begin(), NumExplicitArgs: Arg.pack_size()); |
| 3591 | } |
| 3592 | } |
| 3593 | } |
| 3594 | |
| 3595 | const FunctionProtoType *Proto |
| 3596 | = Function->getType()->getAs<FunctionProtoType>(); |
| 3597 | assert(Proto && "Function template does not have a prototype?" ); |
| 3598 | |
| 3599 | // Isolate our substituted parameters from our caller. |
| 3600 | LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true); |
| 3601 | |
| 3602 | ExtParameterInfoBuilder ExtParamInfos; |
| 3603 | |
| 3604 | MultiLevelTemplateArgumentList MLTAL(FunctionTemplate, |
| 3605 | SugaredExplicitArgumentList->asArray(), |
| 3606 | /*Final=*/true); |
| 3607 | |
| 3608 | // Instantiate the types of each of the function parameters given the |
| 3609 | // explicitly-specified template arguments. If the function has a trailing |
| 3610 | // return type, substitute it after the arguments to ensure we substitute |
| 3611 | // in lexical order. |
| 3612 | if (Proto->hasTrailingReturn()) { |
| 3613 | if (SubstParmTypes(Loc: Function->getLocation(), Params: Function->parameters(), |
| 3614 | ExtParamInfos: Proto->getExtParameterInfosOrNull(), TemplateArgs: MLTAL, ParamTypes, |
| 3615 | /*params=*/OutParams: nullptr, ParamInfos&: ExtParamInfos)) |
| 3616 | return TemplateDeductionResult::SubstitutionFailure; |
| 3617 | } |
| 3618 | |
| 3619 | // Instantiate the return type. |
| 3620 | QualType ResultType; |
| 3621 | { |
| 3622 | // C++11 [expr.prim.general]p3: |
| 3623 | // If a declaration declares a member function or member function |
| 3624 | // template of a class X, the expression this is a prvalue of type |
| 3625 | // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq |
| 3626 | // and the end of the function-definition, member-declarator, or |
| 3627 | // declarator. |
| 3628 | Qualifiers ThisTypeQuals; |
| 3629 | CXXRecordDecl *ThisContext = nullptr; |
| 3630 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: Function)) { |
| 3631 | ThisContext = Method->getParent(); |
| 3632 | ThisTypeQuals = Method->getMethodQualifiers(); |
| 3633 | } |
| 3634 | |
| 3635 | CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals, |
| 3636 | getLangOpts().CPlusPlus11); |
| 3637 | |
| 3638 | ResultType = |
| 3639 | SubstType(T: Proto->getReturnType(), TemplateArgs: MLTAL, |
| 3640 | Loc: Function->getTypeSpecStartLoc(), Entity: Function->getDeclName()); |
| 3641 | if (ResultType.isNull() || Trap.hasErrorOccurred()) |
| 3642 | return TemplateDeductionResult::SubstitutionFailure; |
| 3643 | // CUDA: Kernel function must have 'void' return type. |
| 3644 | if (getLangOpts().CUDA) |
| 3645 | if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) { |
| 3646 | Diag(Loc: Function->getLocation(), DiagID: diag::err_kern_type_not_void_return) |
| 3647 | << Function->getType() << Function->getSourceRange(); |
| 3648 | return TemplateDeductionResult::SubstitutionFailure; |
| 3649 | } |
| 3650 | } |
| 3651 | |
| 3652 | // Instantiate the types of each of the function parameters given the |
| 3653 | // explicitly-specified template arguments if we didn't do so earlier. |
| 3654 | if (!Proto->hasTrailingReturn() && |
| 3655 | SubstParmTypes(Loc: Function->getLocation(), Params: Function->parameters(), |
| 3656 | ExtParamInfos: Proto->getExtParameterInfosOrNull(), TemplateArgs: MLTAL, ParamTypes, |
| 3657 | /*params*/ OutParams: nullptr, ParamInfos&: ExtParamInfos)) |
| 3658 | return TemplateDeductionResult::SubstitutionFailure; |
| 3659 | |
| 3660 | if (FunctionType) { |
| 3661 | auto EPI = Proto->getExtProtoInfo(); |
| 3662 | EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(numParams: ParamTypes.size()); |
| 3663 | *FunctionType = BuildFunctionType(T: ResultType, ParamTypes, |
| 3664 | Loc: Function->getLocation(), |
| 3665 | Entity: Function->getDeclName(), |
| 3666 | EPI); |
| 3667 | if (FunctionType->isNull() || Trap.hasErrorOccurred()) |
| 3668 | return TemplateDeductionResult::SubstitutionFailure; |
| 3669 | } |
| 3670 | |
| 3671 | // C++ [temp.arg.explicit]p2: |
| 3672 | // Trailing template arguments that can be deduced (14.8.2) may be |
| 3673 | // omitted from the list of explicit template-arguments. If all of the |
| 3674 | // template arguments can be deduced, they may all be omitted; in this |
| 3675 | // case, the empty template argument list <> itself may also be omitted. |
| 3676 | // |
| 3677 | // Take all of the explicitly-specified arguments and put them into |
| 3678 | // the set of deduced template arguments. The partially-substituted |
| 3679 | // parameter pack, however, will be set to NULL since the deduction |
| 3680 | // mechanism handles the partially-substituted argument pack directly. |
| 3681 | Deduced.reserve(N: TemplateParams->size()); |
| 3682 | for (unsigned I = 0, N = SugaredExplicitArgumentList->size(); I != N; ++I) { |
| 3683 | const TemplateArgument &Arg = SugaredExplicitArgumentList->get(Idx: I); |
| 3684 | if (I == PartiallySubstitutedPackIndex) |
| 3685 | Deduced.push_back(Elt: DeducedTemplateArgument()); |
| 3686 | else |
| 3687 | Deduced.push_back(Elt: Arg); |
| 3688 | } |
| 3689 | |
| 3690 | return TemplateDeductionResult::Success; |
| 3691 | } |
| 3692 | |
| 3693 | /// Check whether the deduced argument type for a call to a function |
| 3694 | /// template matches the actual argument type per C++ [temp.deduct.call]p4. |
| 3695 | static TemplateDeductionResult |
| 3696 | CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info, |
| 3697 | Sema::OriginalCallArg OriginalArg, |
| 3698 | QualType DeducedA) { |
| 3699 | ASTContext &Context = S.Context; |
| 3700 | |
| 3701 | auto Failed = [&]() -> TemplateDeductionResult { |
| 3702 | Info.FirstArg = TemplateArgument(DeducedA); |
| 3703 | Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType); |
| 3704 | Info.CallArgIndex = OriginalArg.ArgIdx; |
| 3705 | return OriginalArg.DecomposedParam |
| 3706 | ? TemplateDeductionResult::DeducedMismatchNested |
| 3707 | : TemplateDeductionResult::DeducedMismatch; |
| 3708 | }; |
| 3709 | |
| 3710 | QualType A = OriginalArg.OriginalArgType; |
| 3711 | QualType OriginalParamType = OriginalArg.OriginalParamType; |
| 3712 | |
| 3713 | // Check for type equality (top-level cv-qualifiers are ignored). |
| 3714 | if (Context.hasSameUnqualifiedType(T1: A, T2: DeducedA)) |
| 3715 | return TemplateDeductionResult::Success; |
| 3716 | |
| 3717 | // Strip off references on the argument types; they aren't needed for |
| 3718 | // the following checks. |
| 3719 | if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>()) |
| 3720 | DeducedA = DeducedARef->getPointeeType(); |
| 3721 | if (const ReferenceType *ARef = A->getAs<ReferenceType>()) |
| 3722 | A = ARef->getPointeeType(); |
| 3723 | |
| 3724 | // C++ [temp.deduct.call]p4: |
| 3725 | // [...] However, there are three cases that allow a difference: |
| 3726 | // - If the original P is a reference type, the deduced A (i.e., the |
| 3727 | // type referred to by the reference) can be more cv-qualified than |
| 3728 | // the transformed A. |
| 3729 | if (const ReferenceType *OriginalParamRef |
| 3730 | = OriginalParamType->getAs<ReferenceType>()) { |
| 3731 | // We don't want to keep the reference around any more. |
| 3732 | OriginalParamType = OriginalParamRef->getPointeeType(); |
| 3733 | |
| 3734 | // FIXME: Resolve core issue (no number yet): if the original P is a |
| 3735 | // reference type and the transformed A is function type "noexcept F", |
| 3736 | // the deduced A can be F. |
| 3737 | if (A->isFunctionType() && S.IsFunctionConversion(FromType: A, ToType: DeducedA)) |
| 3738 | return TemplateDeductionResult::Success; |
| 3739 | |
| 3740 | Qualifiers AQuals = A.getQualifiers(); |
| 3741 | Qualifiers DeducedAQuals = DeducedA.getQualifiers(); |
| 3742 | |
| 3743 | // Under Objective-C++ ARC, the deduced type may have implicitly |
| 3744 | // been given strong or (when dealing with a const reference) |
| 3745 | // unsafe_unretained lifetime. If so, update the original |
| 3746 | // qualifiers to include this lifetime. |
| 3747 | if (S.getLangOpts().ObjCAutoRefCount && |
| 3748 | ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong && |
| 3749 | AQuals.getObjCLifetime() == Qualifiers::OCL_None) || |
| 3750 | (DeducedAQuals.hasConst() && |
| 3751 | DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) { |
| 3752 | AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime()); |
| 3753 | } |
| 3754 | |
| 3755 | if (AQuals == DeducedAQuals) { |
| 3756 | // Qualifiers match; there's nothing to do. |
| 3757 | } else if (!DeducedAQuals.compatiblyIncludes(other: AQuals, Ctx: S.getASTContext())) { |
| 3758 | return Failed(); |
| 3759 | } else { |
| 3760 | // Qualifiers are compatible, so have the argument type adopt the |
| 3761 | // deduced argument type's qualifiers as if we had performed the |
| 3762 | // qualification conversion. |
| 3763 | A = Context.getQualifiedType(T: A.getUnqualifiedType(), Qs: DeducedAQuals); |
| 3764 | } |
| 3765 | } |
| 3766 | |
| 3767 | // - The transformed A can be another pointer or pointer to member |
| 3768 | // type that can be converted to the deduced A via a function pointer |
| 3769 | // conversion and/or a qualification conversion. |
| 3770 | // |
| 3771 | // Also allow conversions which merely strip __attribute__((noreturn)) from |
| 3772 | // function types (recursively). |
| 3773 | bool ObjCLifetimeConversion = false; |
| 3774 | if ((A->isAnyPointerType() || A->isMemberPointerType()) && |
| 3775 | (S.IsQualificationConversion(FromType: A, ToType: DeducedA, CStyle: false, |
| 3776 | ObjCLifetimeConversion) || |
| 3777 | S.IsFunctionConversion(FromType: A, ToType: DeducedA))) |
| 3778 | return TemplateDeductionResult::Success; |
| 3779 | |
| 3780 | // - If P is a class and P has the form simple-template-id, then the |
| 3781 | // transformed A can be a derived class of the deduced A. [...] |
| 3782 | // [...] Likewise, if P is a pointer to a class of the form |
| 3783 | // simple-template-id, the transformed A can be a pointer to a |
| 3784 | // derived class pointed to by the deduced A. |
| 3785 | if (const PointerType *OriginalParamPtr |
| 3786 | = OriginalParamType->getAs<PointerType>()) { |
| 3787 | if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) { |
| 3788 | if (const PointerType *APtr = A->getAs<PointerType>()) { |
| 3789 | if (A->getPointeeType()->isRecordType()) { |
| 3790 | OriginalParamType = OriginalParamPtr->getPointeeType(); |
| 3791 | DeducedA = DeducedAPtr->getPointeeType(); |
| 3792 | A = APtr->getPointeeType(); |
| 3793 | } |
| 3794 | } |
| 3795 | } |
| 3796 | } |
| 3797 | |
| 3798 | if (Context.hasSameUnqualifiedType(T1: A, T2: DeducedA)) |
| 3799 | return TemplateDeductionResult::Success; |
| 3800 | |
| 3801 | if (A->isRecordType() && isSimpleTemplateIdType(T: OriginalParamType) && |
| 3802 | S.IsDerivedFrom(Loc: Info.getLocation(), Derived: A, Base: DeducedA)) |
| 3803 | return TemplateDeductionResult::Success; |
| 3804 | |
| 3805 | return Failed(); |
| 3806 | } |
| 3807 | |
| 3808 | /// Find the pack index for a particular parameter index in an instantiation of |
| 3809 | /// a function template with specific arguments. |
| 3810 | /// |
| 3811 | /// \return The pack index for whichever pack produced this parameter, or -1 |
| 3812 | /// if this was not produced by a parameter. Intended to be used as the |
| 3813 | /// ArgumentPackSubstitutionIndex for further substitutions. |
| 3814 | // FIXME: We should track this in OriginalCallArgs so we don't need to |
| 3815 | // reconstruct it here. |
| 3816 | static UnsignedOrNone |
| 3817 | getPackIndexForParam(Sema &S, FunctionTemplateDecl *FunctionTemplate, |
| 3818 | const MultiLevelTemplateArgumentList &Args, |
| 3819 | unsigned ParamIdx) { |
| 3820 | unsigned Idx = 0; |
| 3821 | for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) { |
| 3822 | if (PD->isParameterPack()) { |
| 3823 | UnsignedOrNone NumArgs = |
| 3824 | S.getNumArgumentsInExpansion(T: PD->getType(), TemplateArgs: Args); |
| 3825 | unsigned NumExpansions = NumArgs ? *NumArgs : 1; |
| 3826 | if (Idx + NumExpansions > ParamIdx) |
| 3827 | return ParamIdx - Idx; |
| 3828 | Idx += NumExpansions; |
| 3829 | } else { |
| 3830 | if (Idx == ParamIdx) |
| 3831 | return std::nullopt; // Not a pack expansion |
| 3832 | ++Idx; |
| 3833 | } |
| 3834 | } |
| 3835 | |
| 3836 | llvm_unreachable("parameter index would not be produced from template" ); |
| 3837 | } |
| 3838 | |
| 3839 | // if `Specialization` is a `CXXConstructorDecl` or `CXXConversionDecl`, |
| 3840 | // we'll try to instantiate and update its explicit specifier after constraint |
| 3841 | // checking. |
| 3842 | static TemplateDeductionResult instantiateExplicitSpecifierDeferred( |
| 3843 | Sema &S, FunctionDecl *Specialization, |
| 3844 | const MultiLevelTemplateArgumentList &SubstArgs, |
| 3845 | TemplateDeductionInfo &Info, FunctionTemplateDecl *FunctionTemplate, |
| 3846 | ArrayRef<TemplateArgument> DeducedArgs) { |
| 3847 | auto GetExplicitSpecifier = [](FunctionDecl *D) { |
| 3848 | return isa<CXXConstructorDecl>(Val: D) |
| 3849 | ? cast<CXXConstructorDecl>(Val: D)->getExplicitSpecifier() |
| 3850 | : cast<CXXConversionDecl>(Val: D)->getExplicitSpecifier(); |
| 3851 | }; |
| 3852 | auto SetExplicitSpecifier = [](FunctionDecl *D, ExplicitSpecifier ES) { |
| 3853 | isa<CXXConstructorDecl>(Val: D) |
| 3854 | ? cast<CXXConstructorDecl>(Val: D)->setExplicitSpecifier(ES) |
| 3855 | : cast<CXXConversionDecl>(Val: D)->setExplicitSpecifier(ES); |
| 3856 | }; |
| 3857 | |
| 3858 | ExplicitSpecifier ES = GetExplicitSpecifier(Specialization); |
| 3859 | Expr *ExplicitExpr = ES.getExpr(); |
| 3860 | if (!ExplicitExpr) |
| 3861 | return TemplateDeductionResult::Success; |
| 3862 | if (!ExplicitExpr->isValueDependent()) |
| 3863 | return TemplateDeductionResult::Success; |
| 3864 | |
| 3865 | Sema::InstantiatingTemplate Inst( |
| 3866 | S, Info.getLocation(), FunctionTemplate, DeducedArgs, |
| 3867 | Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); |
| 3868 | if (Inst.isInvalid()) |
| 3869 | return TemplateDeductionResult::InstantiationDepth; |
| 3870 | Sema::SFINAETrap Trap(S); |
| 3871 | const ExplicitSpecifier InstantiatedES = |
| 3872 | S.instantiateExplicitSpecifier(TemplateArgs: SubstArgs, ES); |
| 3873 | if (InstantiatedES.isInvalid() || Trap.hasErrorOccurred()) { |
| 3874 | Specialization->setInvalidDecl(true); |
| 3875 | return TemplateDeductionResult::SubstitutionFailure; |
| 3876 | } |
| 3877 | SetExplicitSpecifier(Specialization, InstantiatedES); |
| 3878 | return TemplateDeductionResult::Success; |
| 3879 | } |
| 3880 | |
| 3881 | TemplateDeductionResult Sema::FinishTemplateArgumentDeduction( |
| 3882 | FunctionTemplateDecl *FunctionTemplate, |
| 3883 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 3884 | unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, |
| 3885 | TemplateDeductionInfo &Info, |
| 3886 | SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs, |
| 3887 | bool PartialOverloading, bool PartialOrdering, |
| 3888 | llvm::function_ref<bool(bool)> CheckNonDependent) { |
| 3889 | // Unevaluated SFINAE context. |
| 3890 | EnterExpressionEvaluationContext Unevaluated( |
| 3891 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 3892 | SFINAETrap Trap(*this); |
| 3893 | |
| 3894 | // Enter a new template instantiation context while we instantiate the |
| 3895 | // actual function declaration. |
| 3896 | SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); |
| 3897 | InstantiatingTemplate Inst( |
| 3898 | *this, Info.getLocation(), FunctionTemplate, DeducedArgs, |
| 3899 | CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); |
| 3900 | if (Inst.isInvalid()) |
| 3901 | return TemplateDeductionResult::InstantiationDepth; |
| 3902 | |
| 3903 | ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); |
| 3904 | |
| 3905 | // C++ [temp.deduct.type]p2: |
| 3906 | // [...] or if any template argument remains neither deduced nor |
| 3907 | // explicitly specified, template argument deduction fails. |
| 3908 | bool IsIncomplete = false; |
| 3909 | CheckTemplateArgumentInfo CTAI(PartialOrdering); |
| 3910 | if (auto Result = ConvertDeducedTemplateArguments( |
| 3911 | S&: *this, Template: FunctionTemplate, TemplateParams: FunctionTemplate->getTemplateParameters(), |
| 3912 | /*IsDeduced=*/true, Deduced, Info, CTAI, CurrentInstantiationScope, |
| 3913 | NumAlreadyConverted: NumExplicitlySpecified, IsIncomplete: PartialOverloading ? &IsIncomplete : nullptr); |
| 3914 | Result != TemplateDeductionResult::Success) |
| 3915 | return Result; |
| 3916 | |
| 3917 | // Form the template argument list from the deduced template arguments. |
| 3918 | TemplateArgumentList *SugaredDeducedArgumentList = |
| 3919 | TemplateArgumentList::CreateCopy(Context, Args: CTAI.SugaredConverted); |
| 3920 | TemplateArgumentList *CanonicalDeducedArgumentList = |
| 3921 | TemplateArgumentList::CreateCopy(Context, Args: CTAI.CanonicalConverted); |
| 3922 | Info.reset(NewDeducedSugared: SugaredDeducedArgumentList, NewDeducedCanonical: CanonicalDeducedArgumentList); |
| 3923 | |
| 3924 | // Substitute the deduced template arguments into the function template |
| 3925 | // declaration to produce the function template specialization. |
| 3926 | DeclContext *Owner = FunctionTemplate->getDeclContext(); |
| 3927 | if (FunctionTemplate->getFriendObjectKind()) |
| 3928 | Owner = FunctionTemplate->getLexicalDeclContext(); |
| 3929 | FunctionDecl *FD = FunctionTemplate->getTemplatedDecl(); |
| 3930 | |
| 3931 | if (CheckNonDependent(/*OnlyInitializeNonUserDefinedConversions=*/true)) |
| 3932 | return TemplateDeductionResult::NonDependentConversionFailure; |
| 3933 | |
| 3934 | // C++20 [temp.deduct.general]p5: [CWG2369] |
| 3935 | // If the function template has associated constraints, those constraints |
| 3936 | // are checked for satisfaction. If the constraints are not satisfied, type |
| 3937 | // deduction fails. |
| 3938 | // |
| 3939 | // FIXME: We haven't implemented CWG2369 for lambdas yet, because we need |
| 3940 | // to figure out how to instantiate lambda captures to the scope without |
| 3941 | // first instantiating the lambda. |
| 3942 | bool IsLambda = isLambdaCallOperator(DC: FD) || isLambdaConversionOperator(D: FD); |
| 3943 | if (!IsLambda && !IsIncomplete) { |
| 3944 | if (CheckFunctionTemplateConstraints( |
| 3945 | PointOfInstantiation: Info.getLocation(), |
| 3946 | Decl: FunctionTemplate->getCanonicalDecl()->getTemplatedDecl(), |
| 3947 | TemplateArgs: CTAI.CanonicalConverted, Satisfaction&: Info.AssociatedConstraintsSatisfaction)) |
| 3948 | return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| 3949 | if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) { |
| 3950 | Info.reset(NewDeducedSugared: Info.takeSugared(), NewDeducedCanonical: TemplateArgumentList::CreateCopy( |
| 3951 | Context, Args: CTAI.CanonicalConverted)); |
| 3952 | return TemplateDeductionResult::ConstraintsNotSatisfied; |
| 3953 | } |
| 3954 | } |
| 3955 | // C++ [temp.deduct.call]p10: [CWG1391] |
| 3956 | // If deduction succeeds for all parameters that contain |
| 3957 | // template-parameters that participate in template argument deduction, |
| 3958 | // and all template arguments are explicitly specified, deduced, or |
| 3959 | // obtained from default template arguments, remaining parameters are then |
| 3960 | // compared with the corresponding arguments. For each remaining parameter |
| 3961 | // P with a type that was non-dependent before substitution of any |
| 3962 | // explicitly-specified template arguments, if the corresponding argument |
| 3963 | // A cannot be implicitly converted to P, deduction fails. |
| 3964 | if (CheckNonDependent(/*OnlyInitializeNonUserDefinedConversions=*/false)) |
| 3965 | return TemplateDeductionResult::NonDependentConversionFailure; |
| 3966 | |
| 3967 | MultiLevelTemplateArgumentList SubstArgs( |
| 3968 | FunctionTemplate, CanonicalDeducedArgumentList->asArray(), |
| 3969 | /*Final=*/false); |
| 3970 | Specialization = cast_or_null<FunctionDecl>( |
| 3971 | Val: SubstDecl(D: FD, Owner, TemplateArgs: SubstArgs)); |
| 3972 | if (!Specialization || Specialization->isInvalidDecl()) |
| 3973 | return TemplateDeductionResult::SubstitutionFailure; |
| 3974 | |
| 3975 | assert(isSameDeclaration(Specialization->getPrimaryTemplate(), |
| 3976 | FunctionTemplate)); |
| 3977 | |
| 3978 | // If the template argument list is owned by the function template |
| 3979 | // specialization, release it. |
| 3980 | if (Specialization->getTemplateSpecializationArgs() == |
| 3981 | CanonicalDeducedArgumentList && |
| 3982 | !Trap.hasErrorOccurred()) |
| 3983 | Info.takeCanonical(); |
| 3984 | |
| 3985 | // There may have been an error that did not prevent us from constructing a |
| 3986 | // declaration. Mark the declaration invalid and return with a substitution |
| 3987 | // failure. |
| 3988 | if (Trap.hasErrorOccurred()) { |
| 3989 | Specialization->setInvalidDecl(true); |
| 3990 | return TemplateDeductionResult::SubstitutionFailure; |
| 3991 | } |
| 3992 | |
| 3993 | // C++2a [temp.deduct]p5 |
| 3994 | // [...] When all template arguments have been deduced [...] all uses of |
| 3995 | // template parameters [...] are replaced with the corresponding deduced |
| 3996 | // or default argument values. |
| 3997 | // [...] If the function template has associated constraints |
| 3998 | // ([temp.constr.decl]), those constraints are checked for satisfaction |
| 3999 | // ([temp.constr.constr]). If the constraints are not satisfied, type |
| 4000 | // deduction fails. |
| 4001 | if (IsLambda && !IsIncomplete) { |
| 4002 | if (CheckFunctionTemplateConstraints( |
| 4003 | PointOfInstantiation: Info.getLocation(), Decl: Specialization, TemplateArgs: CTAI.CanonicalConverted, |
| 4004 | Satisfaction&: Info.AssociatedConstraintsSatisfaction)) |
| 4005 | return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| 4006 | |
| 4007 | if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) { |
| 4008 | Info.reset(NewDeducedSugared: Info.takeSugared(), NewDeducedCanonical: TemplateArgumentList::CreateCopy( |
| 4009 | Context, Args: CTAI.CanonicalConverted)); |
| 4010 | return TemplateDeductionResult::ConstraintsNotSatisfied; |
| 4011 | } |
| 4012 | } |
| 4013 | |
| 4014 | // We skipped the instantiation of the explicit-specifier during the |
| 4015 | // substitution of `FD` before. So, we try to instantiate it back if |
| 4016 | // `Specialization` is either a constructor or a conversion function. |
| 4017 | if (isa<CXXConstructorDecl, CXXConversionDecl>(Val: Specialization)) { |
| 4018 | if (TemplateDeductionResult::Success != |
| 4019 | instantiateExplicitSpecifierDeferred(S&: *this, Specialization, SubstArgs, |
| 4020 | Info, FunctionTemplate, |
| 4021 | DeducedArgs)) { |
| 4022 | return TemplateDeductionResult::SubstitutionFailure; |
| 4023 | } |
| 4024 | } |
| 4025 | |
| 4026 | if (OriginalCallArgs) { |
| 4027 | // C++ [temp.deduct.call]p4: |
| 4028 | // In general, the deduction process attempts to find template argument |
| 4029 | // values that will make the deduced A identical to A (after the type A |
| 4030 | // is transformed as described above). [...] |
| 4031 | llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes; |
| 4032 | for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) { |
| 4033 | OriginalCallArg OriginalArg = (*OriginalCallArgs)[I]; |
| 4034 | |
| 4035 | auto ParamIdx = OriginalArg.ArgIdx; |
| 4036 | unsigned ExplicitOffset = |
| 4037 | Specialization->hasCXXExplicitFunctionObjectParameter() ? 1 : 0; |
| 4038 | if (ParamIdx >= Specialization->getNumParams() - ExplicitOffset) |
| 4039 | // FIXME: This presumably means a pack ended up smaller than we |
| 4040 | // expected while deducing. Should this not result in deduction |
| 4041 | // failure? Can it even happen? |
| 4042 | continue; |
| 4043 | |
| 4044 | QualType DeducedA; |
| 4045 | if (!OriginalArg.DecomposedParam) { |
| 4046 | // P is one of the function parameters, just look up its substituted |
| 4047 | // type. |
| 4048 | DeducedA = |
| 4049 | Specialization->getParamDecl(i: ParamIdx + ExplicitOffset)->getType(); |
| 4050 | } else { |
| 4051 | // P is a decomposed element of a parameter corresponding to a |
| 4052 | // braced-init-list argument. Substitute back into P to find the |
| 4053 | // deduced A. |
| 4054 | QualType &CacheEntry = |
| 4055 | DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}]; |
| 4056 | if (CacheEntry.isNull()) { |
| 4057 | ArgPackSubstIndexRAII PackIndex( |
| 4058 | *this, getPackIndexForParam(S&: *this, FunctionTemplate, Args: SubstArgs, |
| 4059 | ParamIdx)); |
| 4060 | CacheEntry = |
| 4061 | SubstType(T: OriginalArg.OriginalParamType, TemplateArgs: SubstArgs, |
| 4062 | Loc: Specialization->getTypeSpecStartLoc(), |
| 4063 | Entity: Specialization->getDeclName()); |
| 4064 | } |
| 4065 | DeducedA = CacheEntry; |
| 4066 | } |
| 4067 | |
| 4068 | if (auto TDK = |
| 4069 | CheckOriginalCallArgDeduction(S&: *this, Info, OriginalArg, DeducedA); |
| 4070 | TDK != TemplateDeductionResult::Success) |
| 4071 | return TDK; |
| 4072 | } |
| 4073 | } |
| 4074 | |
| 4075 | // If we suppressed any diagnostics while performing template argument |
| 4076 | // deduction, and if we haven't already instantiated this declaration, |
| 4077 | // keep track of these diagnostics. They'll be emitted if this specialization |
| 4078 | // is actually used. |
| 4079 | if (Info.diag_begin() != Info.diag_end()) { |
| 4080 | auto [Pos, Inserted] = |
| 4081 | SuppressedDiagnostics.try_emplace(Key: Specialization->getCanonicalDecl()); |
| 4082 | if (Inserted) |
| 4083 | Pos->second.append(in_start: Info.diag_begin(), in_end: Info.diag_end()); |
| 4084 | } |
| 4085 | |
| 4086 | return TemplateDeductionResult::Success; |
| 4087 | } |
| 4088 | |
| 4089 | /// Gets the type of a function for template-argument-deducton |
| 4090 | /// purposes when it's considered as part of an overload set. |
| 4091 | static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R, |
| 4092 | FunctionDecl *Fn) { |
| 4093 | // We may need to deduce the return type of the function now. |
| 4094 | if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() && |
| 4095 | S.DeduceReturnType(FD: Fn, Loc: R.Expression->getExprLoc(), /*Diagnose*/ false)) |
| 4096 | return {}; |
| 4097 | |
| 4098 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: Fn)) |
| 4099 | if (Method->isImplicitObjectMemberFunction()) { |
| 4100 | // An instance method that's referenced in a form that doesn't |
| 4101 | // look like a member pointer is just invalid. |
| 4102 | if (!R.HasFormOfMemberPointer) |
| 4103 | return {}; |
| 4104 | |
| 4105 | return S.Context.getMemberPointerType( |
| 4106 | T: Fn->getType(), /*Qualifier=*/nullptr, Cls: Method->getParent()); |
| 4107 | } |
| 4108 | |
| 4109 | if (!R.IsAddressOfOperand) return Fn->getType(); |
| 4110 | return S.Context.getPointerType(T: Fn->getType()); |
| 4111 | } |
| 4112 | |
| 4113 | /// Apply the deduction rules for overload sets. |
| 4114 | /// |
| 4115 | /// \return the null type if this argument should be treated as an |
| 4116 | /// undeduced context |
| 4117 | static QualType |
| 4118 | ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, |
| 4119 | Expr *Arg, QualType ParamType, |
| 4120 | bool ParamWasReference, |
| 4121 | TemplateSpecCandidateSet *FailedTSC = nullptr) { |
| 4122 | |
| 4123 | OverloadExpr::FindResult R = OverloadExpr::find(E: Arg); |
| 4124 | |
| 4125 | OverloadExpr *Ovl = R.Expression; |
| 4126 | |
| 4127 | // C++0x [temp.deduct.call]p4 |
| 4128 | unsigned TDF = 0; |
| 4129 | if (ParamWasReference) |
| 4130 | TDF |= TDF_ParamWithReferenceType; |
| 4131 | if (R.IsAddressOfOperand) |
| 4132 | TDF |= TDF_IgnoreQualifiers; |
| 4133 | |
| 4134 | // C++0x [temp.deduct.call]p6: |
| 4135 | // When P is a function type, pointer to function type, or pointer |
| 4136 | // to member function type: |
| 4137 | |
| 4138 | if (!ParamType->isFunctionType() && |
| 4139 | !ParamType->isFunctionPointerType() && |
| 4140 | !ParamType->isMemberFunctionPointerType()) { |
| 4141 | if (Ovl->hasExplicitTemplateArgs()) { |
| 4142 | // But we can still look for an explicit specialization. |
| 4143 | if (FunctionDecl *ExplicitSpec = |
| 4144 | S.ResolveSingleFunctionTemplateSpecialization( |
| 4145 | ovl: Ovl, /*Complain=*/false, |
| 4146 | /*Found=*/nullptr, FailedTSC, |
| 4147 | /*ForTypeDeduction=*/true)) |
| 4148 | return GetTypeOfFunction(S, R, Fn: ExplicitSpec); |
| 4149 | } |
| 4150 | |
| 4151 | DeclAccessPair DAP; |
| 4152 | if (FunctionDecl *Viable = |
| 4153 | S.resolveAddressOfSingleOverloadCandidate(E: Arg, FoundResult&: DAP)) |
| 4154 | return GetTypeOfFunction(S, R, Fn: Viable); |
| 4155 | |
| 4156 | return {}; |
| 4157 | } |
| 4158 | |
| 4159 | // Gather the explicit template arguments, if any. |
| 4160 | TemplateArgumentListInfo ExplicitTemplateArgs; |
| 4161 | if (Ovl->hasExplicitTemplateArgs()) |
| 4162 | Ovl->copyTemplateArgumentsInto(List&: ExplicitTemplateArgs); |
| 4163 | QualType Match; |
| 4164 | for (UnresolvedSetIterator I = Ovl->decls_begin(), |
| 4165 | E = Ovl->decls_end(); I != E; ++I) { |
| 4166 | NamedDecl *D = (*I)->getUnderlyingDecl(); |
| 4167 | |
| 4168 | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: D)) { |
| 4169 | // - If the argument is an overload set containing one or more |
| 4170 | // function templates, the parameter is treated as a |
| 4171 | // non-deduced context. |
| 4172 | if (!Ovl->hasExplicitTemplateArgs()) |
| 4173 | return {}; |
| 4174 | |
| 4175 | // Otherwise, see if we can resolve a function type |
| 4176 | FunctionDecl *Specialization = nullptr; |
| 4177 | TemplateDeductionInfo Info(Ovl->getNameLoc()); |
| 4178 | if (S.DeduceTemplateArguments(FunctionTemplate: FunTmpl, ExplicitTemplateArgs: &ExplicitTemplateArgs, |
| 4179 | Specialization, |
| 4180 | Info) != TemplateDeductionResult::Success) |
| 4181 | continue; |
| 4182 | |
| 4183 | D = Specialization; |
| 4184 | } |
| 4185 | |
| 4186 | FunctionDecl *Fn = cast<FunctionDecl>(Val: D); |
| 4187 | QualType ArgType = GetTypeOfFunction(S, R, Fn); |
| 4188 | if (ArgType.isNull()) continue; |
| 4189 | |
| 4190 | // Function-to-pointer conversion. |
| 4191 | if (!ParamWasReference && ParamType->isPointerType() && |
| 4192 | ArgType->isFunctionType()) |
| 4193 | ArgType = S.Context.getPointerType(T: ArgType); |
| 4194 | |
| 4195 | // - If the argument is an overload set (not containing function |
| 4196 | // templates), trial argument deduction is attempted using each |
| 4197 | // of the members of the set. If deduction succeeds for only one |
| 4198 | // of the overload set members, that member is used as the |
| 4199 | // argument value for the deduction. If deduction succeeds for |
| 4200 | // more than one member of the overload set the parameter is |
| 4201 | // treated as a non-deduced context. |
| 4202 | |
| 4203 | // We do all of this in a fresh context per C++0x [temp.deduct.type]p2: |
| 4204 | // Type deduction is done independently for each P/A pair, and |
| 4205 | // the deduced template argument values are then combined. |
| 4206 | // So we do not reject deductions which were made elsewhere. |
| 4207 | SmallVector<DeducedTemplateArgument, 8> |
| 4208 | Deduced(TemplateParams->size()); |
| 4209 | TemplateDeductionInfo Info(Ovl->getNameLoc()); |
| 4210 | TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch( |
| 4211 | S, TemplateParams, P: ParamType, A: ArgType, Info, Deduced, TDF, |
| 4212 | POK: PartialOrderingKind::None, /*DeducedFromArrayBound=*/false, |
| 4213 | /*HasDeducedAnyParam=*/nullptr); |
| 4214 | if (Result != TemplateDeductionResult::Success) |
| 4215 | continue; |
| 4216 | // C++ [temp.deduct.call]p6: |
| 4217 | // [...] If all successful deductions yield the same deduced A, that |
| 4218 | // deduced A is the result of deduction; otherwise, the parameter is |
| 4219 | // treated as a non-deduced context. [...] |
| 4220 | if (!Match.isNull() && !S.isSameOrCompatibleFunctionType(P: Match, A: ArgType)) |
| 4221 | return {}; |
| 4222 | Match = ArgType; |
| 4223 | } |
| 4224 | |
| 4225 | return Match; |
| 4226 | } |
| 4227 | |
| 4228 | /// Perform the adjustments to the parameter and argument types |
| 4229 | /// described in C++ [temp.deduct.call]. |
| 4230 | /// |
| 4231 | /// \returns true if the caller should not attempt to perform any template |
| 4232 | /// argument deduction based on this P/A pair because the argument is an |
| 4233 | /// overloaded function set that could not be resolved. |
| 4234 | static bool AdjustFunctionParmAndArgTypesForDeduction( |
| 4235 | Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, |
| 4236 | QualType &ParamType, QualType &ArgType, |
| 4237 | Expr::Classification ArgClassification, Expr *Arg, unsigned &TDF, |
| 4238 | TemplateSpecCandidateSet *FailedTSC = nullptr) { |
| 4239 | // C++0x [temp.deduct.call]p3: |
| 4240 | // If P is a cv-qualified type, the top level cv-qualifiers of P's type |
| 4241 | // are ignored for type deduction. |
| 4242 | if (ParamType.hasQualifiers()) |
| 4243 | ParamType = ParamType.getUnqualifiedType(); |
| 4244 | |
| 4245 | // [...] If P is a reference type, the type referred to by P is |
| 4246 | // used for type deduction. |
| 4247 | const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>(); |
| 4248 | if (ParamRefType) |
| 4249 | ParamType = ParamRefType->getPointeeType(); |
| 4250 | |
| 4251 | // Overload sets usually make this parameter an undeduced context, |
| 4252 | // but there are sometimes special circumstances. Typically |
| 4253 | // involving a template-id-expr. |
| 4254 | if (ArgType == S.Context.OverloadTy) { |
| 4255 | assert(Arg && "expected a non-null arg expression" ); |
| 4256 | ArgType = ResolveOverloadForDeduction(S, TemplateParams, Arg, ParamType, |
| 4257 | ParamWasReference: ParamRefType != nullptr, FailedTSC); |
| 4258 | if (ArgType.isNull()) |
| 4259 | return true; |
| 4260 | } |
| 4261 | |
| 4262 | if (ParamRefType) { |
| 4263 | // If the argument has incomplete array type, try to complete its type. |
| 4264 | if (ArgType->isIncompleteArrayType()) { |
| 4265 | assert(Arg && "expected a non-null arg expression" ); |
| 4266 | ArgType = S.getCompletedType(E: Arg); |
| 4267 | } |
| 4268 | |
| 4269 | // C++1z [temp.deduct.call]p3: |
| 4270 | // If P is a forwarding reference and the argument is an lvalue, the type |
| 4271 | // "lvalue reference to A" is used in place of A for type deduction. |
| 4272 | if (isForwardingReference(Param: QualType(ParamRefType, 0), FirstInnerIndex) && |
| 4273 | ArgClassification.isLValue()) { |
| 4274 | if (S.getLangOpts().OpenCL && !ArgType.hasAddressSpace()) |
| 4275 | ArgType = S.Context.getAddrSpaceQualType( |
| 4276 | T: ArgType, AddressSpace: S.Context.getDefaultOpenCLPointeeAddrSpace()); |
| 4277 | ArgType = S.Context.getLValueReferenceType(T: ArgType); |
| 4278 | } |
| 4279 | } else { |
| 4280 | // C++ [temp.deduct.call]p2: |
| 4281 | // If P is not a reference type: |
| 4282 | // - If A is an array type, the pointer type produced by the |
| 4283 | // array-to-pointer standard conversion (4.2) is used in place of |
| 4284 | // A for type deduction; otherwise, |
| 4285 | // - If A is a function type, the pointer type produced by the |
| 4286 | // function-to-pointer standard conversion (4.3) is used in place |
| 4287 | // of A for type deduction; otherwise, |
| 4288 | if (ArgType->canDecayToPointerType()) |
| 4289 | ArgType = S.Context.getDecayedType(T: ArgType); |
| 4290 | else { |
| 4291 | // - If A is a cv-qualified type, the top level cv-qualifiers of A's |
| 4292 | // type are ignored for type deduction. |
| 4293 | ArgType = ArgType.getUnqualifiedType(); |
| 4294 | } |
| 4295 | } |
| 4296 | |
| 4297 | // C++0x [temp.deduct.call]p4: |
| 4298 | // In general, the deduction process attempts to find template argument |
| 4299 | // values that will make the deduced A identical to A (after the type A |
| 4300 | // is transformed as described above). [...] |
| 4301 | TDF = TDF_SkipNonDependent; |
| 4302 | |
| 4303 | // - If the original P is a reference type, the deduced A (i.e., the |
| 4304 | // type referred to by the reference) can be more cv-qualified than |
| 4305 | // the transformed A. |
| 4306 | if (ParamRefType) |
| 4307 | TDF |= TDF_ParamWithReferenceType; |
| 4308 | // - The transformed A can be another pointer or pointer to member |
| 4309 | // type that can be converted to the deduced A via a qualification |
| 4310 | // conversion (4.4). |
| 4311 | if (ArgType->isPointerType() || ArgType->isMemberPointerType() || |
| 4312 | ArgType->isObjCObjectPointerType()) |
| 4313 | TDF |= TDF_IgnoreQualifiers; |
| 4314 | // - If P is a class and P has the form simple-template-id, then the |
| 4315 | // transformed A can be a derived class of the deduced A. Likewise, |
| 4316 | // if P is a pointer to a class of the form simple-template-id, the |
| 4317 | // transformed A can be a pointer to a derived class pointed to by |
| 4318 | // the deduced A. |
| 4319 | if (isSimpleTemplateIdType(T: ParamType) || |
| 4320 | (ParamType->getAs<PointerType>() && |
| 4321 | isSimpleTemplateIdType( |
| 4322 | T: ParamType->castAs<PointerType>()->getPointeeType()))) |
| 4323 | TDF |= TDF_DerivedClass; |
| 4324 | |
| 4325 | return false; |
| 4326 | } |
| 4327 | |
| 4328 | static bool |
| 4329 | hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, |
| 4330 | QualType T); |
| 4331 | |
| 4332 | static TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( |
| 4333 | Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, |
| 4334 | QualType ParamType, QualType ArgType, |
| 4335 | Expr::Classification ArgClassification, Expr *Arg, |
| 4336 | TemplateDeductionInfo &Info, |
| 4337 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 4338 | SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, |
| 4339 | bool DecomposedParam, unsigned ArgIdx, unsigned TDF, |
| 4340 | TemplateSpecCandidateSet *FailedTSC = nullptr); |
| 4341 | |
| 4342 | /// Attempt template argument deduction from an initializer list |
| 4343 | /// deemed to be an argument in a function call. |
| 4344 | static TemplateDeductionResult DeduceFromInitializerList( |
| 4345 | Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType, |
| 4346 | InitListExpr *ILE, TemplateDeductionInfo &Info, |
| 4347 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 4348 | SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx, |
| 4349 | unsigned TDF) { |
| 4350 | // C++ [temp.deduct.call]p1: (CWG 1591) |
| 4351 | // If removing references and cv-qualifiers from P gives |
| 4352 | // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is |
| 4353 | // a non-empty initializer list, then deduction is performed instead for |
| 4354 | // each element of the initializer list, taking P0 as a function template |
| 4355 | // parameter type and the initializer element as its argument |
| 4356 | // |
| 4357 | // We've already removed references and cv-qualifiers here. |
| 4358 | if (!ILE->getNumInits()) |
| 4359 | return TemplateDeductionResult::Success; |
| 4360 | |
| 4361 | QualType ElTy; |
| 4362 | auto *ArrTy = S.Context.getAsArrayType(T: AdjustedParamType); |
| 4363 | if (ArrTy) |
| 4364 | ElTy = ArrTy->getElementType(); |
| 4365 | else if (!S.isStdInitializerList(Ty: AdjustedParamType, Element: &ElTy)) { |
| 4366 | // Otherwise, an initializer list argument causes the parameter to be |
| 4367 | // considered a non-deduced context |
| 4368 | return TemplateDeductionResult::Success; |
| 4369 | } |
| 4370 | |
| 4371 | // Resolving a core issue: a braced-init-list containing any designators is |
| 4372 | // a non-deduced context. |
| 4373 | for (Expr *E : ILE->inits()) |
| 4374 | if (isa<DesignatedInitExpr>(Val: E)) |
| 4375 | return TemplateDeductionResult::Success; |
| 4376 | |
| 4377 | // Deduction only needs to be done for dependent types. |
| 4378 | if (ElTy->isDependentType()) { |
| 4379 | for (Expr *E : ILE->inits()) { |
| 4380 | if (auto Result = DeduceTemplateArgumentsFromCallArgument( |
| 4381 | S, TemplateParams, FirstInnerIndex: 0, ParamType: ElTy, ArgType: E->getType(), |
| 4382 | ArgClassification: E->Classify(Ctx&: S.getASTContext()), Arg: E, Info, Deduced, |
| 4383 | OriginalCallArgs, DecomposedParam: true, ArgIdx, TDF); |
| 4384 | Result != TemplateDeductionResult::Success) |
| 4385 | return Result; |
| 4386 | } |
| 4387 | } |
| 4388 | |
| 4389 | // in the P0[N] case, if N is a non-type template parameter, N is deduced |
| 4390 | // from the length of the initializer list. |
| 4391 | if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(Val: ArrTy)) { |
| 4392 | // Determine the array bound is something we can deduce. |
| 4393 | if (const NonTypeTemplateParmDecl *NTTP = |
| 4394 | getDeducedParameterFromExpr(Info, E: DependentArrTy->getSizeExpr())) { |
| 4395 | // We can perform template argument deduction for the given non-type |
| 4396 | // template parameter. |
| 4397 | // C++ [temp.deduct.type]p13: |
| 4398 | // The type of N in the type T[N] is std::size_t. |
| 4399 | QualType T = S.Context.getSizeType(); |
| 4400 | llvm::APInt Size(S.Context.getIntWidth(T), |
| 4401 | ILE->getNumInitsWithEmbedExpanded()); |
| 4402 | if (auto Result = DeduceNonTypeTemplateArgument( |
| 4403 | S, TemplateParams, NTTP, Value: llvm::APSInt(Size), ValueType: T, |
| 4404 | /*ArrayBound=*/DeducedFromArrayBound: true, Info, /*PartialOrdering=*/false, Deduced, |
| 4405 | /*HasDeducedAnyParam=*/nullptr); |
| 4406 | Result != TemplateDeductionResult::Success) |
| 4407 | return Result; |
| 4408 | } |
| 4409 | } |
| 4410 | |
| 4411 | return TemplateDeductionResult::Success; |
| 4412 | } |
| 4413 | |
| 4414 | /// Perform template argument deduction per [temp.deduct.call] for a |
| 4415 | /// single parameter / argument pair. |
| 4416 | static TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( |
| 4417 | Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, |
| 4418 | QualType ParamType, QualType ArgType, |
| 4419 | Expr::Classification ArgClassification, Expr *Arg, |
| 4420 | TemplateDeductionInfo &Info, |
| 4421 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 4422 | SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, |
| 4423 | bool DecomposedParam, unsigned ArgIdx, unsigned TDF, |
| 4424 | TemplateSpecCandidateSet *FailedTSC) { |
| 4425 | |
| 4426 | QualType OrigParamType = ParamType; |
| 4427 | |
| 4428 | // If P is a reference type [...] |
| 4429 | // If P is a cv-qualified type [...] |
| 4430 | if (AdjustFunctionParmAndArgTypesForDeduction( |
| 4431 | S, TemplateParams, FirstInnerIndex, ParamType, ArgType, |
| 4432 | ArgClassification, Arg, TDF, FailedTSC)) |
| 4433 | return TemplateDeductionResult::Success; |
| 4434 | |
| 4435 | // If [...] the argument is a non-empty initializer list [...] |
| 4436 | if (InitListExpr *ILE = dyn_cast_if_present<InitListExpr>(Val: Arg)) |
| 4437 | return DeduceFromInitializerList(S, TemplateParams, AdjustedParamType: ParamType, ILE, Info, |
| 4438 | Deduced, OriginalCallArgs, ArgIdx, TDF); |
| 4439 | |
| 4440 | // [...] the deduction process attempts to find template argument values |
| 4441 | // that will make the deduced A identical to A |
| 4442 | // |
| 4443 | // Keep track of the argument type and corresponding parameter index, |
| 4444 | // so we can check for compatibility between the deduced A and A. |
| 4445 | if (Arg) |
| 4446 | OriginalCallArgs.push_back( |
| 4447 | Elt: Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType)); |
| 4448 | return DeduceTemplateArgumentsByTypeMatch( |
| 4449 | S, TemplateParams, P: ParamType, A: ArgType, Info, Deduced, TDF, |
| 4450 | POK: PartialOrderingKind::None, /*DeducedFromArrayBound=*/false, |
| 4451 | /*HasDeducedAnyParam=*/nullptr); |
| 4452 | } |
| 4453 | |
| 4454 | TemplateDeductionResult Sema::DeduceTemplateArguments( |
| 4455 | FunctionTemplateDecl *FunctionTemplate, |
| 4456 | TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, |
| 4457 | FunctionDecl *&Specialization, TemplateDeductionInfo &Info, |
| 4458 | bool PartialOverloading, bool AggregateDeductionCandidate, |
| 4459 | bool PartialOrdering, QualType ObjectType, |
| 4460 | Expr::Classification ObjectClassification, |
| 4461 | bool ForOverloadSetAddressResolution, |
| 4462 | llvm::function_ref<bool(ArrayRef<QualType>, bool)> CheckNonDependent) { |
| 4463 | if (FunctionTemplate->isInvalidDecl()) |
| 4464 | return TemplateDeductionResult::Invalid; |
| 4465 | |
| 4466 | FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| 4467 | unsigned NumParams = Function->getNumParams(); |
| 4468 | bool HasExplicitObject = false; |
| 4469 | int ExplicitObjectOffset = 0; |
| 4470 | |
| 4471 | // [C++26] [over.call.func]p3 |
| 4472 | // If the primary-expression is the address of an overload set, |
| 4473 | // the argument list is the same as the expression-list in the call. |
| 4474 | // Otherwise, the argument list is the expression-list in the call augmented |
| 4475 | // by the addition of an implied object argument as in a qualified function |
| 4476 | // call. |
| 4477 | if (!ForOverloadSetAddressResolution && |
| 4478 | Function->hasCXXExplicitFunctionObjectParameter()) { |
| 4479 | HasExplicitObject = true; |
| 4480 | ExplicitObjectOffset = 1; |
| 4481 | } |
| 4482 | |
| 4483 | unsigned FirstInnerIndex = getFirstInnerIndex(FTD: FunctionTemplate); |
| 4484 | |
| 4485 | // C++ [temp.deduct.call]p1: |
| 4486 | // Template argument deduction is done by comparing each function template |
| 4487 | // parameter type (call it P) with the type of the corresponding argument |
| 4488 | // of the call (call it A) as described below. |
| 4489 | if (Args.size() < Function->getMinRequiredExplicitArguments() && |
| 4490 | !PartialOverloading) |
| 4491 | return TemplateDeductionResult::TooFewArguments; |
| 4492 | else if (TooManyArguments(NumParams, NumArgs: Args.size() + ExplicitObjectOffset, |
| 4493 | PartialOverloading)) { |
| 4494 | const auto *Proto = Function->getType()->castAs<FunctionProtoType>(); |
| 4495 | if (Proto->isTemplateVariadic()) |
| 4496 | /* Do nothing */; |
| 4497 | else if (!Proto->isVariadic()) |
| 4498 | return TemplateDeductionResult::TooManyArguments; |
| 4499 | } |
| 4500 | |
| 4501 | // The types of the parameters from which we will perform template argument |
| 4502 | // deduction. |
| 4503 | LocalInstantiationScope InstScope(*this); |
| 4504 | TemplateParameterList *TemplateParams |
| 4505 | = FunctionTemplate->getTemplateParameters(); |
| 4506 | SmallVector<DeducedTemplateArgument, 4> Deduced; |
| 4507 | SmallVector<QualType, 8> ParamTypes; |
| 4508 | unsigned NumExplicitlySpecified = 0; |
| 4509 | if (ExplicitTemplateArgs) { |
| 4510 | TemplateDeductionResult Result; |
| 4511 | runWithSufficientStackSpace(Loc: Info.getLocation(), Fn: [&] { |
| 4512 | Result = SubstituteExplicitTemplateArguments( |
| 4513 | FunctionTemplate, ExplicitTemplateArgs&: *ExplicitTemplateArgs, Deduced, ParamTypes, FunctionType: nullptr, |
| 4514 | Info); |
| 4515 | }); |
| 4516 | if (Result != TemplateDeductionResult::Success) |
| 4517 | return Result; |
| 4518 | |
| 4519 | NumExplicitlySpecified = Deduced.size(); |
| 4520 | } else { |
| 4521 | // Just fill in the parameter types from the function declaration. |
| 4522 | for (unsigned I = 0; I != NumParams; ++I) |
| 4523 | ParamTypes.push_back(Elt: Function->getParamDecl(i: I)->getType()); |
| 4524 | } |
| 4525 | |
| 4526 | SmallVector<OriginalCallArg, 8> OriginalCallArgs; |
| 4527 | |
| 4528 | // Deduce an argument of type ParamType from an expression with index ArgIdx. |
| 4529 | auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx, |
| 4530 | bool ExplicitObjectArgument) { |
| 4531 | // C++ [demp.deduct.call]p1: (DR1391) |
| 4532 | // Template argument deduction is done by comparing each function template |
| 4533 | // parameter that contains template-parameters that participate in |
| 4534 | // template argument deduction ... |
| 4535 | if (!hasDeducibleTemplateParameters(S&: *this, FunctionTemplate, T: ParamType)) |
| 4536 | return TemplateDeductionResult::Success; |
| 4537 | |
| 4538 | if (ExplicitObjectArgument) { |
| 4539 | // ... with the type of the corresponding argument |
| 4540 | return DeduceTemplateArgumentsFromCallArgument( |
| 4541 | S&: *this, TemplateParams, FirstInnerIndex, ParamType, ArgType: ObjectType, |
| 4542 | ArgClassification: ObjectClassification, |
| 4543 | /*Arg=*/nullptr, Info, Deduced, OriginalCallArgs, |
| 4544 | /*Decomposed*/ DecomposedParam: false, ArgIdx, /*TDF*/ 0); |
| 4545 | } |
| 4546 | |
| 4547 | // ... with the type of the corresponding argument |
| 4548 | return DeduceTemplateArgumentsFromCallArgument( |
| 4549 | S&: *this, TemplateParams, FirstInnerIndex, ParamType, |
| 4550 | ArgType: Args[ArgIdx]->getType(), ArgClassification: Args[ArgIdx]->Classify(Ctx&: getASTContext()), |
| 4551 | Arg: Args[ArgIdx], Info, Deduced, OriginalCallArgs, /*Decomposed*/ DecomposedParam: false, |
| 4552 | ArgIdx, /*TDF*/ 0); |
| 4553 | }; |
| 4554 | |
| 4555 | // Deduce template arguments from the function parameters. |
| 4556 | Deduced.resize(N: TemplateParams->size()); |
| 4557 | SmallVector<QualType, 8> ParamTypesForArgChecking; |
| 4558 | for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0; |
| 4559 | ParamIdx != NumParamTypes; ++ParamIdx) { |
| 4560 | QualType ParamType = ParamTypes[ParamIdx]; |
| 4561 | |
| 4562 | const PackExpansionType *ParamExpansion = |
| 4563 | dyn_cast<PackExpansionType>(Val&: ParamType); |
| 4564 | if (!ParamExpansion) { |
| 4565 | // Simple case: matching a function parameter to a function argument. |
| 4566 | if (ArgIdx >= Args.size() && !(HasExplicitObject && ParamIdx == 0)) |
| 4567 | break; |
| 4568 | |
| 4569 | ParamTypesForArgChecking.push_back(Elt: ParamType); |
| 4570 | |
| 4571 | if (ParamIdx == 0 && HasExplicitObject) { |
| 4572 | if (ObjectType.isNull()) |
| 4573 | return TemplateDeductionResult::InvalidExplicitArguments; |
| 4574 | |
| 4575 | if (auto Result = DeduceCallArgument(ParamType, 0, |
| 4576 | /*ExplicitObjectArgument=*/true); |
| 4577 | Result != TemplateDeductionResult::Success) |
| 4578 | return Result; |
| 4579 | continue; |
| 4580 | } |
| 4581 | |
| 4582 | if (auto Result = DeduceCallArgument(ParamType, ArgIdx++, |
| 4583 | /*ExplicitObjectArgument=*/false); |
| 4584 | Result != TemplateDeductionResult::Success) |
| 4585 | return Result; |
| 4586 | |
| 4587 | continue; |
| 4588 | } |
| 4589 | |
| 4590 | bool IsTrailingPack = ParamIdx + 1 == NumParamTypes; |
| 4591 | |
| 4592 | QualType ParamPattern = ParamExpansion->getPattern(); |
| 4593 | PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info, |
| 4594 | ParamPattern, |
| 4595 | AggregateDeductionCandidate && IsTrailingPack); |
| 4596 | |
| 4597 | // C++0x [temp.deduct.call]p1: |
| 4598 | // For a function parameter pack that occurs at the end of the |
| 4599 | // parameter-declaration-list, the type A of each remaining argument of |
| 4600 | // the call is compared with the type P of the declarator-id of the |
| 4601 | // function parameter pack. Each comparison deduces template arguments |
| 4602 | // for subsequent positions in the template parameter packs expanded by |
| 4603 | // the function parameter pack. When a function parameter pack appears |
| 4604 | // in a non-deduced context [not at the end of the list], the type of |
| 4605 | // that parameter pack is never deduced. |
| 4606 | // |
| 4607 | // FIXME: The above rule allows the size of the parameter pack to change |
| 4608 | // after we skip it (in the non-deduced case). That makes no sense, so |
| 4609 | // we instead notionally deduce the pack against N arguments, where N is |
| 4610 | // the length of the explicitly-specified pack if it's expanded by the |
| 4611 | // parameter pack and 0 otherwise, and we treat each deduction as a |
| 4612 | // non-deduced context. |
| 4613 | if (IsTrailingPack || PackScope.hasFixedArity()) { |
| 4614 | for (; ArgIdx < Args.size() && PackScope.hasNextElement(); |
| 4615 | PackScope.nextPackElement(), ++ArgIdx) { |
| 4616 | ParamTypesForArgChecking.push_back(Elt: ParamPattern); |
| 4617 | if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx, |
| 4618 | /*ExplicitObjectArgument=*/false); |
| 4619 | Result != TemplateDeductionResult::Success) |
| 4620 | return Result; |
| 4621 | } |
| 4622 | } else { |
| 4623 | // If the parameter type contains an explicitly-specified pack that we |
| 4624 | // could not expand, skip the number of parameters notionally created |
| 4625 | // by the expansion. |
| 4626 | UnsignedOrNone NumExpansions = ParamExpansion->getNumExpansions(); |
| 4627 | if (NumExpansions && !PackScope.isPartiallyExpanded()) { |
| 4628 | for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size(); |
| 4629 | ++I, ++ArgIdx) { |
| 4630 | ParamTypesForArgChecking.push_back(Elt: ParamPattern); |
| 4631 | // FIXME: Should we add OriginalCallArgs for these? What if the |
| 4632 | // corresponding argument is a list? |
| 4633 | PackScope.nextPackElement(); |
| 4634 | } |
| 4635 | } else if (!IsTrailingPack && !PackScope.isPartiallyExpanded() && |
| 4636 | PackScope.isDeducedFromEarlierParameter()) { |
| 4637 | // [temp.deduct.general#3] |
| 4638 | // When all template arguments have been deduced |
| 4639 | // or obtained from default template arguments, all uses of template |
| 4640 | // parameters in the template parameter list of the template are |
| 4641 | // replaced with the corresponding deduced or default argument values |
| 4642 | // |
| 4643 | // If we have a trailing parameter pack, that has been deduced |
| 4644 | // previously we substitute the pack here in a similar fashion as |
| 4645 | // above with the trailing parameter packs. The main difference here is |
| 4646 | // that, in this case we are not processing all of the remaining |
| 4647 | // arguments. We are only process as many arguments as we have in |
| 4648 | // the already deduced parameter. |
| 4649 | UnsignedOrNone ArgPosAfterSubstitution = |
| 4650 | PackScope.getSavedPackSizeIfAllEqual(); |
| 4651 | if (!ArgPosAfterSubstitution) |
| 4652 | continue; |
| 4653 | |
| 4654 | unsigned PackArgEnd = ArgIdx + *ArgPosAfterSubstitution; |
| 4655 | for (; ArgIdx < PackArgEnd && ArgIdx < Args.size(); ArgIdx++) { |
| 4656 | ParamTypesForArgChecking.push_back(Elt: ParamPattern); |
| 4657 | if (auto Result = |
| 4658 | DeduceCallArgument(ParamPattern, ArgIdx, |
| 4659 | /*ExplicitObjectArgument=*/false); |
| 4660 | Result != TemplateDeductionResult::Success) |
| 4661 | return Result; |
| 4662 | |
| 4663 | PackScope.nextPackElement(); |
| 4664 | } |
| 4665 | } |
| 4666 | } |
| 4667 | |
| 4668 | // Build argument packs for each of the parameter packs expanded by this |
| 4669 | // pack expansion. |
| 4670 | if (auto Result = PackScope.finish(); |
| 4671 | Result != TemplateDeductionResult::Success) |
| 4672 | return Result; |
| 4673 | } |
| 4674 | |
| 4675 | // Capture the context in which the function call is made. This is the context |
| 4676 | // that is needed when the accessibility of template arguments is checked. |
| 4677 | DeclContext *CallingCtx = CurContext; |
| 4678 | |
| 4679 | TemplateDeductionResult Result; |
| 4680 | runWithSufficientStackSpace(Loc: Info.getLocation(), Fn: [&] { |
| 4681 | Result = FinishTemplateArgumentDeduction( |
| 4682 | FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info, |
| 4683 | OriginalCallArgs: &OriginalCallArgs, PartialOverloading, PartialOrdering, |
| 4684 | CheckNonDependent: [&, CallingCtx](bool OnlyInitializeNonUserDefinedConversions) { |
| 4685 | ContextRAII SavedContext(*this, CallingCtx); |
| 4686 | return CheckNonDependent(ParamTypesForArgChecking, |
| 4687 | OnlyInitializeNonUserDefinedConversions); |
| 4688 | }); |
| 4689 | }); |
| 4690 | return Result; |
| 4691 | } |
| 4692 | |
| 4693 | QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType, |
| 4694 | QualType FunctionType, |
| 4695 | bool AdjustExceptionSpec) { |
| 4696 | if (ArgFunctionType.isNull()) |
| 4697 | return ArgFunctionType; |
| 4698 | |
| 4699 | const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>(); |
| 4700 | const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>(); |
| 4701 | FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo(); |
| 4702 | bool Rebuild = false; |
| 4703 | |
| 4704 | CallingConv CC = FunctionTypeP->getCallConv(); |
| 4705 | if (EPI.ExtInfo.getCC() != CC) { |
| 4706 | EPI.ExtInfo = EPI.ExtInfo.withCallingConv(cc: CC); |
| 4707 | Rebuild = true; |
| 4708 | } |
| 4709 | |
| 4710 | bool NoReturn = FunctionTypeP->getNoReturnAttr(); |
| 4711 | if (EPI.ExtInfo.getNoReturn() != NoReturn) { |
| 4712 | EPI.ExtInfo = EPI.ExtInfo.withNoReturn(noReturn: NoReturn); |
| 4713 | Rebuild = true; |
| 4714 | } |
| 4715 | |
| 4716 | if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() || |
| 4717 | ArgFunctionTypeP->hasExceptionSpec())) { |
| 4718 | EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec; |
| 4719 | Rebuild = true; |
| 4720 | } |
| 4721 | |
| 4722 | if (!Rebuild) |
| 4723 | return ArgFunctionType; |
| 4724 | |
| 4725 | return Context.getFunctionType(ResultTy: ArgFunctionTypeP->getReturnType(), |
| 4726 | Args: ArgFunctionTypeP->getParamTypes(), EPI); |
| 4727 | } |
| 4728 | |
| 4729 | TemplateDeductionResult Sema::DeduceTemplateArguments( |
| 4730 | FunctionTemplateDecl *FunctionTemplate, |
| 4731 | TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, |
| 4732 | FunctionDecl *&Specialization, TemplateDeductionInfo &Info, |
| 4733 | bool IsAddressOfFunction) { |
| 4734 | if (FunctionTemplate->isInvalidDecl()) |
| 4735 | return TemplateDeductionResult::Invalid; |
| 4736 | |
| 4737 | FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| 4738 | TemplateParameterList *TemplateParams |
| 4739 | = FunctionTemplate->getTemplateParameters(); |
| 4740 | QualType FunctionType = Function->getType(); |
| 4741 | |
| 4742 | // Substitute any explicit template arguments. |
| 4743 | LocalInstantiationScope InstScope(*this); |
| 4744 | SmallVector<DeducedTemplateArgument, 4> Deduced; |
| 4745 | unsigned NumExplicitlySpecified = 0; |
| 4746 | SmallVector<QualType, 4> ParamTypes; |
| 4747 | if (ExplicitTemplateArgs) { |
| 4748 | TemplateDeductionResult Result; |
| 4749 | runWithSufficientStackSpace(Loc: Info.getLocation(), Fn: [&] { |
| 4750 | Result = SubstituteExplicitTemplateArguments( |
| 4751 | FunctionTemplate, ExplicitTemplateArgs&: *ExplicitTemplateArgs, Deduced, ParamTypes, |
| 4752 | FunctionType: &FunctionType, Info); |
| 4753 | }); |
| 4754 | if (Result != TemplateDeductionResult::Success) |
| 4755 | return Result; |
| 4756 | |
| 4757 | NumExplicitlySpecified = Deduced.size(); |
| 4758 | } |
| 4759 | |
| 4760 | // When taking the address of a function, we require convertibility of |
| 4761 | // the resulting function type. Otherwise, we allow arbitrary mismatches |
| 4762 | // of calling convention and noreturn. |
| 4763 | if (!IsAddressOfFunction) |
| 4764 | ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType, |
| 4765 | /*AdjustExceptionSpec*/false); |
| 4766 | |
| 4767 | // Unevaluated SFINAE context. |
| 4768 | std::optional<EnterExpressionEvaluationContext> Unevaluated( |
| 4769 | std::in_place, *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 4770 | SFINAETrap Trap(*this); |
| 4771 | |
| 4772 | Deduced.resize(N: TemplateParams->size()); |
| 4773 | |
| 4774 | // If the function has a deduced return type, substitute it for a dependent |
| 4775 | // type so that we treat it as a non-deduced context in what follows. |
| 4776 | bool HasDeducedReturnType = false; |
| 4777 | if (getLangOpts().CPlusPlus14 && |
| 4778 | Function->getReturnType()->getContainedAutoType()) { |
| 4779 | FunctionType = SubstAutoTypeDependent(TypeWithAuto: FunctionType); |
| 4780 | HasDeducedReturnType = true; |
| 4781 | } |
| 4782 | |
| 4783 | if (!ArgFunctionType.isNull() && !FunctionType.isNull()) { |
| 4784 | unsigned TDF = |
| 4785 | TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType; |
| 4786 | // Deduce template arguments from the function type. |
| 4787 | if (TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch( |
| 4788 | S&: *this, TemplateParams, P: FunctionType, A: ArgFunctionType, Info, Deduced, |
| 4789 | TDF, POK: PartialOrderingKind::None, /*DeducedFromArrayBound=*/false, |
| 4790 | /*HasDeducedAnyParam=*/nullptr); |
| 4791 | Result != TemplateDeductionResult::Success) |
| 4792 | return Result; |
| 4793 | } |
| 4794 | |
| 4795 | TemplateDeductionResult Result; |
| 4796 | runWithSufficientStackSpace(Loc: Info.getLocation(), Fn: [&] { |
| 4797 | Result = FinishTemplateArgumentDeduction( |
| 4798 | FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info, |
| 4799 | /*OriginalCallArgs=*/nullptr, /*PartialOverloading=*/false, |
| 4800 | /*PartialOrdering=*/true); |
| 4801 | }); |
| 4802 | if (Result != TemplateDeductionResult::Success) |
| 4803 | return Result; |
| 4804 | |
| 4805 | // If the function has a deduced return type, deduce it now, so we can check |
| 4806 | // that the deduced function type matches the requested type. |
| 4807 | if (HasDeducedReturnType && IsAddressOfFunction && |
| 4808 | Specialization->getReturnType()->isUndeducedType() && |
| 4809 | DeduceReturnType(FD: Specialization, Loc: Info.getLocation(), Diagnose: false)) |
| 4810 | return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| 4811 | |
| 4812 | Unevaluated = std::nullopt; |
| 4813 | // [C++26][expr.const]/p17 |
| 4814 | // An expression or conversion is immediate-escalating if it is not initially |
| 4815 | // in an immediate function context and it is [...] |
| 4816 | // a potentially-evaluated id-expression that denotes an immediate function. |
| 4817 | if (IsAddressOfFunction && getLangOpts().CPlusPlus20 && |
| 4818 | Specialization->isImmediateEscalating() && |
| 4819 | currentEvaluationContext().isPotentiallyEvaluated() && |
| 4820 | CheckIfFunctionSpecializationIsImmediate(FD: Specialization, |
| 4821 | Loc: Info.getLocation())) |
| 4822 | return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| 4823 | |
| 4824 | // Adjust the exception specification of the argument to match the |
| 4825 | // substituted and resolved type we just formed. (Calling convention and |
| 4826 | // noreturn can't be dependent, so we don't actually need this for them |
| 4827 | // right now.) |
| 4828 | QualType SpecializationType = Specialization->getType(); |
| 4829 | if (!IsAddressOfFunction) { |
| 4830 | ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType: SpecializationType, |
| 4831 | /*AdjustExceptionSpec*/true); |
| 4832 | |
| 4833 | // Revert placeholder types in the return type back to undeduced types so |
| 4834 | // that the comparison below compares the declared return types. |
| 4835 | if (HasDeducedReturnType) { |
| 4836 | SpecializationType = SubstAutoType(TypeWithAuto: SpecializationType, Replacement: QualType()); |
| 4837 | ArgFunctionType = SubstAutoType(TypeWithAuto: ArgFunctionType, Replacement: QualType()); |
| 4838 | } |
| 4839 | } |
| 4840 | |
| 4841 | // If the requested function type does not match the actual type of the |
| 4842 | // specialization with respect to arguments of compatible pointer to function |
| 4843 | // types, template argument deduction fails. |
| 4844 | if (!ArgFunctionType.isNull()) { |
| 4845 | if (IsAddressOfFunction ? !isSameOrCompatibleFunctionType( |
| 4846 | P: SpecializationType, A: ArgFunctionType) |
| 4847 | : !Context.hasSameFunctionTypeIgnoringExceptionSpec( |
| 4848 | T: SpecializationType, U: ArgFunctionType)) { |
| 4849 | Info.FirstArg = TemplateArgument(SpecializationType); |
| 4850 | Info.SecondArg = TemplateArgument(ArgFunctionType); |
| 4851 | return TemplateDeductionResult::NonDeducedMismatch; |
| 4852 | } |
| 4853 | } |
| 4854 | |
| 4855 | return TemplateDeductionResult::Success; |
| 4856 | } |
| 4857 | |
| 4858 | TemplateDeductionResult Sema::DeduceTemplateArguments( |
| 4859 | FunctionTemplateDecl *ConversionTemplate, QualType ObjectType, |
| 4860 | Expr::Classification ObjectClassification, QualType A, |
| 4861 | CXXConversionDecl *&Specialization, TemplateDeductionInfo &Info) { |
| 4862 | if (ConversionTemplate->isInvalidDecl()) |
| 4863 | return TemplateDeductionResult::Invalid; |
| 4864 | |
| 4865 | CXXConversionDecl *ConversionGeneric |
| 4866 | = cast<CXXConversionDecl>(Val: ConversionTemplate->getTemplatedDecl()); |
| 4867 | |
| 4868 | QualType P = ConversionGeneric->getConversionType(); |
| 4869 | bool IsReferenceP = P->isReferenceType(); |
| 4870 | bool IsReferenceA = A->isReferenceType(); |
| 4871 | |
| 4872 | // C++0x [temp.deduct.conv]p2: |
| 4873 | // If P is a reference type, the type referred to by P is used for |
| 4874 | // type deduction. |
| 4875 | if (const ReferenceType *PRef = P->getAs<ReferenceType>()) |
| 4876 | P = PRef->getPointeeType(); |
| 4877 | |
| 4878 | // C++0x [temp.deduct.conv]p4: |
| 4879 | // [...] If A is a reference type, the type referred to by A is used |
| 4880 | // for type deduction. |
| 4881 | if (const ReferenceType *ARef = A->getAs<ReferenceType>()) { |
| 4882 | A = ARef->getPointeeType(); |
| 4883 | // We work around a defect in the standard here: cv-qualifiers are also |
| 4884 | // removed from P and A in this case, unless P was a reference type. This |
| 4885 | // seems to mostly match what other compilers are doing. |
| 4886 | if (!IsReferenceP) { |
| 4887 | A = A.getUnqualifiedType(); |
| 4888 | P = P.getUnqualifiedType(); |
| 4889 | } |
| 4890 | |
| 4891 | // C++ [temp.deduct.conv]p3: |
| 4892 | // |
| 4893 | // If A is not a reference type: |
| 4894 | } else { |
| 4895 | assert(!A->isReferenceType() && "Reference types were handled above" ); |
| 4896 | |
| 4897 | // - If P is an array type, the pointer type produced by the |
| 4898 | // array-to-pointer standard conversion (4.2) is used in place |
| 4899 | // of P for type deduction; otherwise, |
| 4900 | if (P->isArrayType()) |
| 4901 | P = Context.getArrayDecayedType(T: P); |
| 4902 | // - If P is a function type, the pointer type produced by the |
| 4903 | // function-to-pointer standard conversion (4.3) is used in |
| 4904 | // place of P for type deduction; otherwise, |
| 4905 | else if (P->isFunctionType()) |
| 4906 | P = Context.getPointerType(T: P); |
| 4907 | // - If P is a cv-qualified type, the top level cv-qualifiers of |
| 4908 | // P's type are ignored for type deduction. |
| 4909 | else |
| 4910 | P = P.getUnqualifiedType(); |
| 4911 | |
| 4912 | // C++0x [temp.deduct.conv]p4: |
| 4913 | // If A is a cv-qualified type, the top level cv-qualifiers of A's |
| 4914 | // type are ignored for type deduction. If A is a reference type, the type |
| 4915 | // referred to by A is used for type deduction. |
| 4916 | A = A.getUnqualifiedType(); |
| 4917 | } |
| 4918 | |
| 4919 | // Unevaluated SFINAE context. |
| 4920 | EnterExpressionEvaluationContext Unevaluated( |
| 4921 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 4922 | SFINAETrap Trap(*this); |
| 4923 | |
| 4924 | // C++ [temp.deduct.conv]p1: |
| 4925 | // Template argument deduction is done by comparing the return |
| 4926 | // type of the template conversion function (call it P) with the |
| 4927 | // type that is required as the result of the conversion (call it |
| 4928 | // A) as described in 14.8.2.4. |
| 4929 | TemplateParameterList *TemplateParams |
| 4930 | = ConversionTemplate->getTemplateParameters(); |
| 4931 | SmallVector<DeducedTemplateArgument, 4> Deduced; |
| 4932 | Deduced.resize(N: TemplateParams->size()); |
| 4933 | |
| 4934 | // C++0x [temp.deduct.conv]p4: |
| 4935 | // In general, the deduction process attempts to find template |
| 4936 | // argument values that will make the deduced A identical to |
| 4937 | // A. However, there are two cases that allow a difference: |
| 4938 | unsigned TDF = 0; |
| 4939 | // - If the original A is a reference type, A can be more |
| 4940 | // cv-qualified than the deduced A (i.e., the type referred to |
| 4941 | // by the reference) |
| 4942 | if (IsReferenceA) |
| 4943 | TDF |= TDF_ArgWithReferenceType; |
| 4944 | // - The deduced A can be another pointer or pointer to member |
| 4945 | // type that can be converted to A via a qualification |
| 4946 | // conversion. |
| 4947 | // |
| 4948 | // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when |
| 4949 | // both P and A are pointers or member pointers. In this case, we |
| 4950 | // just ignore cv-qualifiers completely). |
| 4951 | if ((P->isPointerType() && A->isPointerType()) || |
| 4952 | (P->isMemberPointerType() && A->isMemberPointerType())) |
| 4953 | TDF |= TDF_IgnoreQualifiers; |
| 4954 | |
| 4955 | SmallVector<Sema::OriginalCallArg, 1> OriginalCallArgs; |
| 4956 | if (ConversionGeneric->isExplicitObjectMemberFunction()) { |
| 4957 | QualType ParamType = ConversionGeneric->getParamDecl(i: 0)->getType(); |
| 4958 | if (TemplateDeductionResult Result = |
| 4959 | DeduceTemplateArgumentsFromCallArgument( |
| 4960 | S&: *this, TemplateParams, FirstInnerIndex: getFirstInnerIndex(FTD: ConversionTemplate), |
| 4961 | ParamType, ArgType: ObjectType, ArgClassification: ObjectClassification, |
| 4962 | /*Arg=*/nullptr, Info, Deduced, OriginalCallArgs, |
| 4963 | /*Decomposed*/ DecomposedParam: false, ArgIdx: 0, /*TDF*/ 0); |
| 4964 | Result != TemplateDeductionResult::Success) |
| 4965 | return Result; |
| 4966 | } |
| 4967 | |
| 4968 | if (TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch( |
| 4969 | S&: *this, TemplateParams, P, A, Info, Deduced, TDF, |
| 4970 | POK: PartialOrderingKind::None, /*DeducedFromArrayBound=*/false, |
| 4971 | /*HasDeducedAnyParam=*/nullptr); |
| 4972 | Result != TemplateDeductionResult::Success) |
| 4973 | return Result; |
| 4974 | |
| 4975 | // Create an Instantiation Scope for finalizing the operator. |
| 4976 | LocalInstantiationScope InstScope(*this); |
| 4977 | // Finish template argument deduction. |
| 4978 | FunctionDecl *ConversionSpecialized = nullptr; |
| 4979 | TemplateDeductionResult Result; |
| 4980 | runWithSufficientStackSpace(Loc: Info.getLocation(), Fn: [&] { |
| 4981 | Result = FinishTemplateArgumentDeduction( |
| 4982 | FunctionTemplate: ConversionTemplate, Deduced, NumExplicitlySpecified: 0, Specialization&: ConversionSpecialized, Info, |
| 4983 | OriginalCallArgs: &OriginalCallArgs, /*PartialOverloading=*/false, |
| 4984 | /*PartialOrdering=*/false); |
| 4985 | }); |
| 4986 | Specialization = cast_or_null<CXXConversionDecl>(Val: ConversionSpecialized); |
| 4987 | return Result; |
| 4988 | } |
| 4989 | |
| 4990 | TemplateDeductionResult |
| 4991 | Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, |
| 4992 | TemplateArgumentListInfo *ExplicitTemplateArgs, |
| 4993 | FunctionDecl *&Specialization, |
| 4994 | TemplateDeductionInfo &Info, |
| 4995 | bool IsAddressOfFunction) { |
| 4996 | return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, |
| 4997 | ArgFunctionType: QualType(), Specialization, Info, |
| 4998 | IsAddressOfFunction); |
| 4999 | } |
| 5000 | |
| 5001 | namespace { |
| 5002 | struct DependentAuto { bool IsPack; }; |
| 5003 | |
| 5004 | /// Substitute the 'auto' specifier or deduced template specialization type |
| 5005 | /// specifier within a type for a given replacement type. |
| 5006 | class SubstituteDeducedTypeTransform : |
| 5007 | public TreeTransform<SubstituteDeducedTypeTransform> { |
| 5008 | QualType Replacement; |
| 5009 | bool ReplacementIsPack; |
| 5010 | bool UseTypeSugar; |
| 5011 | using inherited = TreeTransform<SubstituteDeducedTypeTransform>; |
| 5012 | |
| 5013 | public: |
| 5014 | SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA) |
| 5015 | : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), |
| 5016 | ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {} |
| 5017 | |
| 5018 | SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement, |
| 5019 | bool UseTypeSugar = true) |
| 5020 | : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), |
| 5021 | Replacement(Replacement), ReplacementIsPack(false), |
| 5022 | UseTypeSugar(UseTypeSugar) {} |
| 5023 | |
| 5024 | QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) { |
| 5025 | assert(isa<TemplateTypeParmType>(Replacement) && |
| 5026 | "unexpected unsugared replacement kind" ); |
| 5027 | QualType Result = Replacement; |
| 5028 | TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(T: Result); |
| 5029 | NewTL.setNameLoc(TL.getNameLoc()); |
| 5030 | return Result; |
| 5031 | } |
| 5032 | |
| 5033 | QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { |
| 5034 | // If we're building the type pattern to deduce against, don't wrap the |
| 5035 | // substituted type in an AutoType. Certain template deduction rules |
| 5036 | // apply only when a template type parameter appears directly (and not if |
| 5037 | // the parameter is found through desugaring). For instance: |
| 5038 | // auto &&lref = lvalue; |
| 5039 | // must transform into "rvalue reference to T" not "rvalue reference to |
| 5040 | // auto type deduced as T" in order for [temp.deduct.call]p3 to apply. |
| 5041 | // |
| 5042 | // FIXME: Is this still necessary? |
| 5043 | if (!UseTypeSugar) |
| 5044 | return TransformDesugared(TLB, TL); |
| 5045 | |
| 5046 | QualType Result = SemaRef.Context.getAutoType( |
| 5047 | DeducedType: Replacement, Keyword: TL.getTypePtr()->getKeyword(), IsDependent: Replacement.isNull(), |
| 5048 | IsPack: ReplacementIsPack, TypeConstraintConcept: TL.getTypePtr()->getTypeConstraintConcept(), |
| 5049 | TypeConstraintArgs: TL.getTypePtr()->getTypeConstraintArguments()); |
| 5050 | auto NewTL = TLB.push<AutoTypeLoc>(T: Result); |
| 5051 | NewTL.copy(Loc: TL); |
| 5052 | return Result; |
| 5053 | } |
| 5054 | |
| 5055 | QualType TransformDeducedTemplateSpecializationType( |
| 5056 | TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) { |
| 5057 | if (!UseTypeSugar) |
| 5058 | return TransformDesugared(TLB, TL); |
| 5059 | |
| 5060 | QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType( |
| 5061 | Template: TL.getTypePtr()->getTemplateName(), |
| 5062 | DeducedType: Replacement, IsDependent: Replacement.isNull()); |
| 5063 | auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(T: Result); |
| 5064 | NewTL.setNameLoc(TL.getNameLoc()); |
| 5065 | return Result; |
| 5066 | } |
| 5067 | |
| 5068 | ExprResult TransformLambdaExpr(LambdaExpr *E) { |
| 5069 | // Lambdas never need to be transformed. |
| 5070 | return E; |
| 5071 | } |
| 5072 | bool TransformExceptionSpec(SourceLocation Loc, |
| 5073 | FunctionProtoType::ExceptionSpecInfo &ESI, |
| 5074 | SmallVectorImpl<QualType> &Exceptions, |
| 5075 | bool &Changed) { |
| 5076 | if (ESI.Type == EST_Uninstantiated) { |
| 5077 | ESI.instantiate(); |
| 5078 | Changed = true; |
| 5079 | } |
| 5080 | return inherited::TransformExceptionSpec(Loc, ESI, Exceptions, Changed); |
| 5081 | } |
| 5082 | |
| 5083 | QualType Apply(TypeLoc TL) { |
| 5084 | // Create some scratch storage for the transformed type locations. |
| 5085 | // FIXME: We're just going to throw this information away. Don't build it. |
| 5086 | TypeLocBuilder TLB; |
| 5087 | TLB.reserve(Requested: TL.getFullDataSize()); |
| 5088 | return TransformType(TLB, T: TL); |
| 5089 | } |
| 5090 | }; |
| 5091 | |
| 5092 | } // namespace |
| 5093 | |
| 5094 | static bool CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type, |
| 5095 | AutoTypeLoc TypeLoc, |
| 5096 | QualType Deduced) { |
| 5097 | ConstraintSatisfaction Satisfaction; |
| 5098 | ConceptDecl *Concept = Type.getTypeConstraintConcept(); |
| 5099 | TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(), |
| 5100 | TypeLoc.getRAngleLoc()); |
| 5101 | TemplateArgs.addArgument( |
| 5102 | Loc: TemplateArgumentLoc(TemplateArgument(Deduced), |
| 5103 | S.Context.getTrivialTypeSourceInfo( |
| 5104 | T: Deduced, Loc: TypeLoc.getNameLoc()))); |
| 5105 | for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I) |
| 5106 | TemplateArgs.addArgument(Loc: TypeLoc.getArgLoc(i: I)); |
| 5107 | |
| 5108 | Sema::CheckTemplateArgumentInfo CTAI; |
| 5109 | if (S.CheckTemplateArgumentList(Template: Concept, TemplateLoc: SourceLocation(), TemplateArgs, |
| 5110 | /*DefaultArgs=*/{}, |
| 5111 | /*PartialTemplateArgs=*/false, CTAI)) |
| 5112 | return true; |
| 5113 | MultiLevelTemplateArgumentList MLTAL(Concept, CTAI.CanonicalConverted, |
| 5114 | /*Final=*/false); |
| 5115 | // Build up an EvaluationContext with an ImplicitConceptSpecializationDecl so |
| 5116 | // that the template arguments of the constraint can be preserved. For |
| 5117 | // example: |
| 5118 | // |
| 5119 | // template <class T> |
| 5120 | // concept C = []<D U = void>() { return true; }(); |
| 5121 | // |
| 5122 | // We need the argument for T while evaluating type constraint D in |
| 5123 | // building the CallExpr to the lambda. |
| 5124 | EnterExpressionEvaluationContext EECtx( |
| 5125 | S, Sema::ExpressionEvaluationContext::Unevaluated, |
| 5126 | ImplicitConceptSpecializationDecl::Create( |
| 5127 | C: S.getASTContext(), DC: Concept->getDeclContext(), SL: Concept->getLocation(), |
| 5128 | ConvertedArgs: CTAI.CanonicalConverted)); |
| 5129 | if (S.CheckConstraintSatisfaction( |
| 5130 | Template: Concept, AssociatedConstraints: AssociatedConstraint(Concept->getConstraintExpr()), TemplateArgLists: MLTAL, |
| 5131 | TemplateIDRange: TypeLoc.getLocalSourceRange(), Satisfaction)) |
| 5132 | return true; |
| 5133 | if (!Satisfaction.IsSatisfied) { |
| 5134 | std::string Buf; |
| 5135 | llvm::raw_string_ostream OS(Buf); |
| 5136 | OS << "'" << Concept->getName(); |
| 5137 | if (TypeLoc.hasExplicitTemplateArgs()) { |
| 5138 | printTemplateArgumentList( |
| 5139 | OS, Args: Type.getTypeConstraintArguments(), Policy: S.getPrintingPolicy(), |
| 5140 | TPL: Type.getTypeConstraintConcept()->getTemplateParameters()); |
| 5141 | } |
| 5142 | OS << "'" ; |
| 5143 | S.Diag(Loc: TypeLoc.getConceptNameLoc(), |
| 5144 | DiagID: diag::err_placeholder_constraints_not_satisfied) |
| 5145 | << Deduced << Buf << TypeLoc.getLocalSourceRange(); |
| 5146 | S.DiagnoseUnsatisfiedConstraint(Satisfaction); |
| 5147 | return true; |
| 5148 | } |
| 5149 | return false; |
| 5150 | } |
| 5151 | |
| 5152 | TemplateDeductionResult |
| 5153 | Sema::DeduceAutoType(TypeLoc Type, Expr *Init, QualType &Result, |
| 5154 | TemplateDeductionInfo &Info, bool DependentDeduction, |
| 5155 | bool IgnoreConstraints, |
| 5156 | TemplateSpecCandidateSet *FailedTSC) { |
| 5157 | assert(DependentDeduction || Info.getDeducedDepth() == 0); |
| 5158 | if (Init->containsErrors()) |
| 5159 | return TemplateDeductionResult::AlreadyDiagnosed; |
| 5160 | |
| 5161 | const AutoType *AT = Type.getType()->getContainedAutoType(); |
| 5162 | assert(AT); |
| 5163 | |
| 5164 | if (Init->getType()->isNonOverloadPlaceholderType() || AT->isDecltypeAuto()) { |
| 5165 | ExprResult NonPlaceholder = CheckPlaceholderExpr(E: Init); |
| 5166 | if (NonPlaceholder.isInvalid()) |
| 5167 | return TemplateDeductionResult::AlreadyDiagnosed; |
| 5168 | Init = NonPlaceholder.get(); |
| 5169 | } |
| 5170 | |
| 5171 | DependentAuto DependentResult = { |
| 5172 | /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()}; |
| 5173 | |
| 5174 | if (!DependentDeduction && |
| 5175 | (Type.getType()->isDependentType() || Init->isTypeDependent() || |
| 5176 | Init->containsUnexpandedParameterPack())) { |
| 5177 | Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(TL: Type); |
| 5178 | assert(!Result.isNull() && "substituting DependentTy can't fail" ); |
| 5179 | return TemplateDeductionResult::Success; |
| 5180 | } |
| 5181 | |
| 5182 | // Make sure that we treat 'char[]' equaly as 'char*' in C23 mode. |
| 5183 | auto *String = dyn_cast<StringLiteral>(Val: Init); |
| 5184 | if (getLangOpts().C23 && String && Type.getType()->isArrayType()) { |
| 5185 | Diag(Loc: Type.getBeginLoc(), DiagID: diag::ext_c23_auto_non_plain_identifier); |
| 5186 | TypeLoc TL = TypeLoc(Init->getType(), Type.getOpaqueData()); |
| 5187 | Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(TL); |
| 5188 | assert(!Result.isNull() && "substituting DependentTy can't fail" ); |
| 5189 | return TemplateDeductionResult::Success; |
| 5190 | } |
| 5191 | |
| 5192 | // Emit a warning if 'auto*' is used in pedantic and in C23 mode. |
| 5193 | if (getLangOpts().C23 && Type.getType()->isPointerType()) { |
| 5194 | Diag(Loc: Type.getBeginLoc(), DiagID: diag::ext_c23_auto_non_plain_identifier); |
| 5195 | } |
| 5196 | |
| 5197 | auto *InitList = dyn_cast<InitListExpr>(Val: Init); |
| 5198 | if (!getLangOpts().CPlusPlus && InitList) { |
| 5199 | Diag(Loc: Init->getBeginLoc(), DiagID: diag::err_auto_init_list_from_c) |
| 5200 | << (int)AT->getKeyword() << getLangOpts().C23; |
| 5201 | return TemplateDeductionResult::AlreadyDiagnosed; |
| 5202 | } |
| 5203 | |
| 5204 | // Deduce type of TemplParam in Func(Init) |
| 5205 | SmallVector<DeducedTemplateArgument, 1> Deduced; |
| 5206 | Deduced.resize(N: 1); |
| 5207 | |
| 5208 | // If deduction failed, don't diagnose if the initializer is dependent; it |
| 5209 | // might acquire a matching type in the instantiation. |
| 5210 | auto DeductionFailed = [&](TemplateDeductionResult TDK) { |
| 5211 | if (Init->isTypeDependent()) { |
| 5212 | Result = |
| 5213 | SubstituteDeducedTypeTransform(*this, DependentResult).Apply(TL: Type); |
| 5214 | assert(!Result.isNull() && "substituting DependentTy can't fail" ); |
| 5215 | return TemplateDeductionResult::Success; |
| 5216 | } |
| 5217 | return TDK; |
| 5218 | }; |
| 5219 | |
| 5220 | SmallVector<OriginalCallArg, 4> OriginalCallArgs; |
| 5221 | |
| 5222 | QualType DeducedType; |
| 5223 | // If this is a 'decltype(auto)' specifier, do the decltype dance. |
| 5224 | if (AT->isDecltypeAuto()) { |
| 5225 | if (InitList) { |
| 5226 | Diag(Loc: Init->getBeginLoc(), DiagID: diag::err_decltype_auto_initializer_list); |
| 5227 | return TemplateDeductionResult::AlreadyDiagnosed; |
| 5228 | } |
| 5229 | |
| 5230 | DeducedType = getDecltypeForExpr(E: Init); |
| 5231 | assert(!DeducedType.isNull()); |
| 5232 | } else { |
| 5233 | LocalInstantiationScope InstScope(*this); |
| 5234 | |
| 5235 | // Build template<class TemplParam> void Func(FuncParam); |
| 5236 | SourceLocation Loc = Init->getExprLoc(); |
| 5237 | TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create( |
| 5238 | C: Context, DC: nullptr, KeyLoc: SourceLocation(), NameLoc: Loc, D: Info.getDeducedDepth(), P: 0, |
| 5239 | Id: nullptr, Typename: false, ParameterPack: false, HasTypeConstraint: false); |
| 5240 | QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0); |
| 5241 | NamedDecl *TemplParamPtr = TemplParam; |
| 5242 | FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt( |
| 5243 | Context, Loc, Loc, TemplParamPtr, Loc, nullptr); |
| 5244 | |
| 5245 | if (InitList) { |
| 5246 | // Notionally, we substitute std::initializer_list<T> for 'auto' and |
| 5247 | // deduce against that. Such deduction only succeeds if removing |
| 5248 | // cv-qualifiers and references results in std::initializer_list<T>. |
| 5249 | if (!Type.getType().getNonReferenceType()->getAs<AutoType>()) |
| 5250 | return TemplateDeductionResult::Invalid; |
| 5251 | |
| 5252 | SourceRange DeducedFromInitRange; |
| 5253 | for (Expr *Init : InitList->inits()) { |
| 5254 | // Resolving a core issue: a braced-init-list containing any designators |
| 5255 | // is a non-deduced context. |
| 5256 | if (isa<DesignatedInitExpr>(Val: Init)) |
| 5257 | return TemplateDeductionResult::Invalid; |
| 5258 | if (auto TDK = DeduceTemplateArgumentsFromCallArgument( |
| 5259 | S&: *this, TemplateParams: TemplateParamsSt.get(), FirstInnerIndex: 0, ParamType: TemplArg, ArgType: Init->getType(), |
| 5260 | ArgClassification: Init->Classify(Ctx&: getASTContext()), Arg: Init, Info, Deduced, |
| 5261 | OriginalCallArgs, |
| 5262 | /*Decomposed=*/DecomposedParam: true, |
| 5263 | /*ArgIdx=*/0, /*TDF=*/0); |
| 5264 | TDK != TemplateDeductionResult::Success) { |
| 5265 | if (TDK == TemplateDeductionResult::Inconsistent) { |
| 5266 | Diag(Loc: Info.getLocation(), DiagID: diag::err_auto_inconsistent_deduction) |
| 5267 | << Info.FirstArg << Info.SecondArg << DeducedFromInitRange |
| 5268 | << Init->getSourceRange(); |
| 5269 | return DeductionFailed(TemplateDeductionResult::AlreadyDiagnosed); |
| 5270 | } |
| 5271 | return DeductionFailed(TDK); |
| 5272 | } |
| 5273 | |
| 5274 | if (DeducedFromInitRange.isInvalid() && |
| 5275 | Deduced[0].getKind() != TemplateArgument::Null) |
| 5276 | DeducedFromInitRange = Init->getSourceRange(); |
| 5277 | } |
| 5278 | } else { |
| 5279 | if (!getLangOpts().CPlusPlus && Init->refersToBitField()) { |
| 5280 | Diag(Loc, DiagID: diag::err_auto_bitfield); |
| 5281 | return TemplateDeductionResult::AlreadyDiagnosed; |
| 5282 | } |
| 5283 | QualType FuncParam = |
| 5284 | SubstituteDeducedTypeTransform(*this, TemplArg).Apply(TL: Type); |
| 5285 | assert(!FuncParam.isNull() && |
| 5286 | "substituting template parameter for 'auto' failed" ); |
| 5287 | if (auto TDK = DeduceTemplateArgumentsFromCallArgument( |
| 5288 | S&: *this, TemplateParams: TemplateParamsSt.get(), FirstInnerIndex: 0, ParamType: FuncParam, ArgType: Init->getType(), |
| 5289 | ArgClassification: Init->Classify(Ctx&: getASTContext()), Arg: Init, Info, Deduced, |
| 5290 | OriginalCallArgs, |
| 5291 | /*Decomposed=*/DecomposedParam: false, /*ArgIdx=*/0, /*TDF=*/0, FailedTSC); |
| 5292 | TDK != TemplateDeductionResult::Success) |
| 5293 | return DeductionFailed(TDK); |
| 5294 | } |
| 5295 | |
| 5296 | // Could be null if somehow 'auto' appears in a non-deduced context. |
| 5297 | if (Deduced[0].getKind() != TemplateArgument::Type) |
| 5298 | return DeductionFailed(TemplateDeductionResult::Incomplete); |
| 5299 | DeducedType = Deduced[0].getAsType(); |
| 5300 | |
| 5301 | if (InitList) { |
| 5302 | DeducedType = BuildStdInitializerList(Element: DeducedType, Loc); |
| 5303 | if (DeducedType.isNull()) |
| 5304 | return TemplateDeductionResult::AlreadyDiagnosed; |
| 5305 | } |
| 5306 | } |
| 5307 | |
| 5308 | if (!Result.isNull()) { |
| 5309 | if (!Context.hasSameType(T1: DeducedType, T2: Result)) { |
| 5310 | Info.FirstArg = Result; |
| 5311 | Info.SecondArg = DeducedType; |
| 5312 | return DeductionFailed(TemplateDeductionResult::Inconsistent); |
| 5313 | } |
| 5314 | DeducedType = Context.getCommonSugaredType(X: Result, Y: DeducedType); |
| 5315 | } |
| 5316 | |
| 5317 | if (AT->isConstrained() && !IgnoreConstraints && |
| 5318 | CheckDeducedPlaceholderConstraints( |
| 5319 | S&: *this, Type: *AT, TypeLoc: Type.getContainedAutoTypeLoc(), Deduced: DeducedType)) |
| 5320 | return TemplateDeductionResult::AlreadyDiagnosed; |
| 5321 | |
| 5322 | Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(TL: Type); |
| 5323 | if (Result.isNull()) |
| 5324 | return TemplateDeductionResult::AlreadyDiagnosed; |
| 5325 | |
| 5326 | // Check that the deduced argument type is compatible with the original |
| 5327 | // argument type per C++ [temp.deduct.call]p4. |
| 5328 | QualType DeducedA = InitList ? Deduced[0].getAsType() : Result; |
| 5329 | for (const OriginalCallArg &OriginalArg : OriginalCallArgs) { |
| 5330 | assert((bool)InitList == OriginalArg.DecomposedParam && |
| 5331 | "decomposed non-init-list in auto deduction?" ); |
| 5332 | if (auto TDK = |
| 5333 | CheckOriginalCallArgDeduction(S&: *this, Info, OriginalArg, DeducedA); |
| 5334 | TDK != TemplateDeductionResult::Success) { |
| 5335 | Result = QualType(); |
| 5336 | return DeductionFailed(TDK); |
| 5337 | } |
| 5338 | } |
| 5339 | |
| 5340 | return TemplateDeductionResult::Success; |
| 5341 | } |
| 5342 | |
| 5343 | QualType Sema::SubstAutoType(QualType TypeWithAuto, |
| 5344 | QualType TypeToReplaceAuto) { |
| 5345 | assert(TypeToReplaceAuto != Context.DependentTy); |
| 5346 | return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) |
| 5347 | .TransformType(T: TypeWithAuto); |
| 5348 | } |
| 5349 | |
| 5350 | TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, |
| 5351 | QualType TypeToReplaceAuto) { |
| 5352 | assert(TypeToReplaceAuto != Context.DependentTy); |
| 5353 | return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) |
| 5354 | .TransformType(DI: TypeWithAuto); |
| 5355 | } |
| 5356 | |
| 5357 | QualType Sema::SubstAutoTypeDependent(QualType TypeWithAuto) { |
| 5358 | return SubstituteDeducedTypeTransform(*this, DependentAuto{.IsPack: false}) |
| 5359 | .TransformType(T: TypeWithAuto); |
| 5360 | } |
| 5361 | |
| 5362 | TypeSourceInfo * |
| 5363 | Sema::SubstAutoTypeSourceInfoDependent(TypeSourceInfo *TypeWithAuto) { |
| 5364 | return SubstituteDeducedTypeTransform(*this, DependentAuto{.IsPack: false}) |
| 5365 | .TransformType(DI: TypeWithAuto); |
| 5366 | } |
| 5367 | |
| 5368 | QualType Sema::ReplaceAutoType(QualType TypeWithAuto, |
| 5369 | QualType TypeToReplaceAuto) { |
| 5370 | return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, |
| 5371 | /*UseTypeSugar*/ false) |
| 5372 | .TransformType(T: TypeWithAuto); |
| 5373 | } |
| 5374 | |
| 5375 | TypeSourceInfo *Sema::ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, |
| 5376 | QualType TypeToReplaceAuto) { |
| 5377 | return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, |
| 5378 | /*UseTypeSugar*/ false) |
| 5379 | .TransformType(DI: TypeWithAuto); |
| 5380 | } |
| 5381 | |
| 5382 | void Sema::DiagnoseAutoDeductionFailure(const VarDecl *VDecl, |
| 5383 | const Expr *Init) { |
| 5384 | if (isa<InitListExpr>(Val: Init)) |
| 5385 | Diag(Loc: VDecl->getLocation(), |
| 5386 | DiagID: VDecl->isInitCapture() |
| 5387 | ? diag::err_init_capture_deduction_failure_from_init_list |
| 5388 | : diag::err_auto_var_deduction_failure_from_init_list) |
| 5389 | << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange(); |
| 5390 | else |
| 5391 | Diag(Loc: VDecl->getLocation(), |
| 5392 | DiagID: VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure |
| 5393 | : diag::err_auto_var_deduction_failure) |
| 5394 | << VDecl->getDeclName() << VDecl->getType() << Init->getType() |
| 5395 | << Init->getSourceRange(); |
| 5396 | } |
| 5397 | |
| 5398 | bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, |
| 5399 | bool Diagnose) { |
| 5400 | assert(FD->getReturnType()->isUndeducedType()); |
| 5401 | |
| 5402 | // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)' |
| 5403 | // within the return type from the call operator's type. |
| 5404 | if (isLambdaConversionOperator(D: FD)) { |
| 5405 | CXXRecordDecl *Lambda = cast<CXXMethodDecl>(Val: FD)->getParent(); |
| 5406 | FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); |
| 5407 | |
| 5408 | // For a generic lambda, instantiate the call operator if needed. |
| 5409 | if (auto *Args = FD->getTemplateSpecializationArgs()) { |
| 5410 | CallOp = InstantiateFunctionDeclaration( |
| 5411 | FTD: CallOp->getDescribedFunctionTemplate(), Args, Loc); |
| 5412 | if (!CallOp || CallOp->isInvalidDecl()) |
| 5413 | return true; |
| 5414 | |
| 5415 | // We might need to deduce the return type by instantiating the definition |
| 5416 | // of the operator() function. |
| 5417 | if (CallOp->getReturnType()->isUndeducedType()) { |
| 5418 | runWithSufficientStackSpace(Loc, Fn: [&] { |
| 5419 | InstantiateFunctionDefinition(PointOfInstantiation: Loc, Function: CallOp); |
| 5420 | }); |
| 5421 | } |
| 5422 | } |
| 5423 | |
| 5424 | if (CallOp->isInvalidDecl()) |
| 5425 | return true; |
| 5426 | assert(!CallOp->getReturnType()->isUndeducedType() && |
| 5427 | "failed to deduce lambda return type" ); |
| 5428 | |
| 5429 | // Build the new return type from scratch. |
| 5430 | CallingConv RetTyCC = FD->getReturnType() |
| 5431 | ->getPointeeType() |
| 5432 | ->castAs<FunctionType>() |
| 5433 | ->getCallConv(); |
| 5434 | QualType RetType = getLambdaConversionFunctionResultType( |
| 5435 | CallOpType: CallOp->getType()->castAs<FunctionProtoType>(), CC: RetTyCC); |
| 5436 | if (FD->getReturnType()->getAs<PointerType>()) |
| 5437 | RetType = Context.getPointerType(T: RetType); |
| 5438 | else { |
| 5439 | assert(FD->getReturnType()->getAs<BlockPointerType>()); |
| 5440 | RetType = Context.getBlockPointerType(T: RetType); |
| 5441 | } |
| 5442 | Context.adjustDeducedFunctionResultType(FD, ResultType: RetType); |
| 5443 | return false; |
| 5444 | } |
| 5445 | |
| 5446 | if (FD->getTemplateInstantiationPattern()) { |
| 5447 | runWithSufficientStackSpace(Loc, Fn: [&] { |
| 5448 | InstantiateFunctionDefinition(PointOfInstantiation: Loc, Function: FD); |
| 5449 | }); |
| 5450 | } |
| 5451 | |
| 5452 | bool StillUndeduced = FD->getReturnType()->isUndeducedType(); |
| 5453 | if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) { |
| 5454 | Diag(Loc, DiagID: diag::err_auto_fn_used_before_defined) << FD; |
| 5455 | Diag(Loc: FD->getLocation(), DiagID: diag::note_callee_decl) << FD; |
| 5456 | } |
| 5457 | |
| 5458 | return StillUndeduced; |
| 5459 | } |
| 5460 | |
| 5461 | bool Sema::CheckIfFunctionSpecializationIsImmediate(FunctionDecl *FD, |
| 5462 | SourceLocation Loc) { |
| 5463 | assert(FD->isImmediateEscalating()); |
| 5464 | |
| 5465 | if (isLambdaConversionOperator(D: FD)) { |
| 5466 | CXXRecordDecl *Lambda = cast<CXXMethodDecl>(Val: FD)->getParent(); |
| 5467 | FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); |
| 5468 | |
| 5469 | // For a generic lambda, instantiate the call operator if needed. |
| 5470 | if (auto *Args = FD->getTemplateSpecializationArgs()) { |
| 5471 | CallOp = InstantiateFunctionDeclaration( |
| 5472 | FTD: CallOp->getDescribedFunctionTemplate(), Args, Loc); |
| 5473 | if (!CallOp || CallOp->isInvalidDecl()) |
| 5474 | return true; |
| 5475 | runWithSufficientStackSpace( |
| 5476 | Loc, Fn: [&] { InstantiateFunctionDefinition(PointOfInstantiation: Loc, Function: CallOp); }); |
| 5477 | } |
| 5478 | return CallOp->isInvalidDecl(); |
| 5479 | } |
| 5480 | |
| 5481 | if (FD->getTemplateInstantiationPattern()) { |
| 5482 | runWithSufficientStackSpace( |
| 5483 | Loc, Fn: [&] { InstantiateFunctionDefinition(PointOfInstantiation: Loc, Function: FD); }); |
| 5484 | } |
| 5485 | return false; |
| 5486 | } |
| 5487 | |
| 5488 | static QualType GetImplicitObjectParameterType(ASTContext &Context, |
| 5489 | const CXXMethodDecl *Method, |
| 5490 | QualType RawType, |
| 5491 | bool IsOtherRvr) { |
| 5492 | // C++20 [temp.func.order]p3.1, p3.2: |
| 5493 | // - The type X(M) is "rvalue reference to cv A" if the optional |
| 5494 | // ref-qualifier of M is && or if M has no ref-qualifier and the |
| 5495 | // positionally-corresponding parameter of the other transformed template |
| 5496 | // has rvalue reference type; if this determination depends recursively |
| 5497 | // upon whether X(M) is an rvalue reference type, it is not considered to |
| 5498 | // have rvalue reference type. |
| 5499 | // |
| 5500 | // - Otherwise, X(M) is "lvalue reference to cv A". |
| 5501 | assert(Method && !Method->isExplicitObjectMemberFunction() && |
| 5502 | "expected a member function with no explicit object parameter" ); |
| 5503 | |
| 5504 | RawType = Context.getQualifiedType(T: RawType, Qs: Method->getMethodQualifiers()); |
| 5505 | if (Method->getRefQualifier() == RQ_RValue || |
| 5506 | (IsOtherRvr && Method->getRefQualifier() == RQ_None)) |
| 5507 | return Context.getRValueReferenceType(T: RawType); |
| 5508 | return Context.getLValueReferenceType(T: RawType); |
| 5509 | } |
| 5510 | |
| 5511 | static TemplateDeductionResult CheckDeductionConsistency( |
| 5512 | Sema &S, FunctionTemplateDecl *FTD, UnsignedOrNone ArgIdx, QualType P, |
| 5513 | QualType A, ArrayRef<TemplateArgument> DeducedArgs, bool CheckConsistency) { |
| 5514 | MultiLevelTemplateArgumentList MLTAL(FTD, DeducedArgs, |
| 5515 | /*Final=*/true); |
| 5516 | Sema::ArgPackSubstIndexRAII PackIndex( |
| 5517 | S, |
| 5518 | ArgIdx ? ::getPackIndexForParam(S, FunctionTemplate: FTD, Args: MLTAL, ParamIdx: *ArgIdx) : std::nullopt); |
| 5519 | bool IsIncompleteSubstitution = false; |
| 5520 | // FIXME: A substitution can be incomplete on a non-structural part of the |
| 5521 | // type. Use the canonical type for now, until the TemplateInstantiator can |
| 5522 | // deal with that. |
| 5523 | QualType InstP = S.SubstType(T: P.getCanonicalType(), TemplateArgs: MLTAL, Loc: FTD->getLocation(), |
| 5524 | Entity: FTD->getDeclName(), IsIncompleteSubstitution: &IsIncompleteSubstitution); |
| 5525 | if (InstP.isNull() && !IsIncompleteSubstitution) |
| 5526 | return TemplateDeductionResult::SubstitutionFailure; |
| 5527 | if (!CheckConsistency) |
| 5528 | return TemplateDeductionResult::Success; |
| 5529 | if (IsIncompleteSubstitution) |
| 5530 | return TemplateDeductionResult::Incomplete; |
| 5531 | |
| 5532 | // [temp.deduct.call]/4 - Check we produced a consistent deduction. |
| 5533 | // This handles just the cases that can appear when partial ordering. |
| 5534 | if (auto *PA = dyn_cast<PackExpansionType>(Val&: A); |
| 5535 | PA && !isa<PackExpansionType>(Val: InstP)) |
| 5536 | A = PA->getPattern(); |
| 5537 | if (!S.Context.hasSameType( |
| 5538 | T1: S.Context.getUnqualifiedArrayType(T: InstP.getNonReferenceType()), |
| 5539 | T2: S.Context.getUnqualifiedArrayType(T: A.getNonReferenceType()))) |
| 5540 | return TemplateDeductionResult::NonDeducedMismatch; |
| 5541 | return TemplateDeductionResult::Success; |
| 5542 | } |
| 5543 | |
| 5544 | template <class T> |
| 5545 | static TemplateDeductionResult FinishTemplateArgumentDeduction( |
| 5546 | Sema &S, FunctionTemplateDecl *FTD, |
| 5547 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 5548 | TemplateDeductionInfo &Info, T &&CheckDeductionConsistency) { |
| 5549 | EnterExpressionEvaluationContext Unevaluated( |
| 5550 | S, Sema::ExpressionEvaluationContext::Unevaluated); |
| 5551 | Sema::SFINAETrap Trap(S); |
| 5552 | |
| 5553 | Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(D: FTD)); |
| 5554 | |
| 5555 | // C++26 [temp.deduct.type]p2: |
| 5556 | // [...] or if any template argument remains neither deduced nor |
| 5557 | // explicitly specified, template argument deduction fails. |
| 5558 | bool IsIncomplete = false; |
| 5559 | Sema::CheckTemplateArgumentInfo CTAI(/*PartialOrdering=*/true); |
| 5560 | if (auto Result = ConvertDeducedTemplateArguments( |
| 5561 | S, Template: FTD, TemplateParams: FTD->getTemplateParameters(), /*IsDeduced=*/true, Deduced, |
| 5562 | Info, CTAI, |
| 5563 | /*CurrentInstantiationScope=*/nullptr, |
| 5564 | /*NumAlreadyConverted=*/0, IsIncomplete: &IsIncomplete); |
| 5565 | Result != TemplateDeductionResult::Success) |
| 5566 | return Result; |
| 5567 | |
| 5568 | // Form the template argument list from the deduced template arguments. |
| 5569 | TemplateArgumentList *SugaredDeducedArgumentList = |
| 5570 | TemplateArgumentList::CreateCopy(Context&: S.Context, Args: CTAI.SugaredConverted); |
| 5571 | TemplateArgumentList *CanonicalDeducedArgumentList = |
| 5572 | TemplateArgumentList::CreateCopy(Context&: S.Context, Args: CTAI.CanonicalConverted); |
| 5573 | |
| 5574 | Info.reset(NewDeducedSugared: SugaredDeducedArgumentList, NewDeducedCanonical: CanonicalDeducedArgumentList); |
| 5575 | |
| 5576 | // Substitute the deduced template arguments into the argument |
| 5577 | // and verify that the instantiated argument is both valid |
| 5578 | // and equivalent to the parameter. |
| 5579 | LocalInstantiationScope InstScope(S); |
| 5580 | |
| 5581 | if (auto TDR = CheckDeductionConsistency(S, FTD, CTAI.SugaredConverted); |
| 5582 | TDR != TemplateDeductionResult::Success) |
| 5583 | return TDR; |
| 5584 | |
| 5585 | return Trap.hasErrorOccurred() ? TemplateDeductionResult::SubstitutionFailure |
| 5586 | : TemplateDeductionResult::Success; |
| 5587 | } |
| 5588 | |
| 5589 | /// Determine whether the function template \p FT1 is at least as |
| 5590 | /// specialized as \p FT2. |
| 5591 | static bool isAtLeastAsSpecializedAs( |
| 5592 | Sema &S, SourceLocation Loc, FunctionTemplateDecl *FT1, |
| 5593 | FunctionTemplateDecl *FT2, TemplatePartialOrderingContext TPOC, |
| 5594 | ArrayRef<QualType> Args1, ArrayRef<QualType> Args2, bool Args1Offset) { |
| 5595 | FunctionDecl *FD1 = FT1->getTemplatedDecl(); |
| 5596 | FunctionDecl *FD2 = FT2->getTemplatedDecl(); |
| 5597 | const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>(); |
| 5598 | const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>(); |
| 5599 | assert(Proto1 && Proto2 && "Function templates must have prototypes" ); |
| 5600 | |
| 5601 | // C++26 [temp.deduct.partial]p3: |
| 5602 | // The types used to determine the ordering depend on the context in which |
| 5603 | // the partial ordering is done: |
| 5604 | // - In the context of a function call, the types used are those function |
| 5605 | // parameter types for which the function call has arguments. |
| 5606 | // - In the context of a call to a conversion operator, the return types |
| 5607 | // of the conversion function templates are used. |
| 5608 | // - In other contexts (14.6.6.2) the function template's function type |
| 5609 | // is used. |
| 5610 | |
| 5611 | if (TPOC == TPOC_Other) { |
| 5612 | // We wouldn't be partial ordering these candidates if these didn't match. |
| 5613 | assert(Proto1->getMethodQuals() == Proto2->getMethodQuals() && |
| 5614 | Proto1->getRefQualifier() == Proto2->getRefQualifier() && |
| 5615 | Proto1->isVariadic() == Proto2->isVariadic() && |
| 5616 | "shouldn't partial order functions with different qualifiers in a " |
| 5617 | "context where the function type is used" ); |
| 5618 | |
| 5619 | assert(Args1.empty() && Args2.empty() && |
| 5620 | "Only call context should have arguments" ); |
| 5621 | Args1 = Proto1->getParamTypes(); |
| 5622 | Args2 = Proto2->getParamTypes(); |
| 5623 | } |
| 5624 | |
| 5625 | TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); |
| 5626 | SmallVector<DeducedTemplateArgument, 4> Deduced(TemplateParams->size()); |
| 5627 | TemplateDeductionInfo Info(Loc); |
| 5628 | |
| 5629 | bool HasDeducedAnyParamFromReturnType = false; |
| 5630 | if (TPOC != TPOC_Call) { |
| 5631 | if (DeduceTemplateArgumentsByTypeMatch( |
| 5632 | S, TemplateParams, P: Proto2->getReturnType(), A: Proto1->getReturnType(), |
| 5633 | Info, Deduced, TDF: TDF_None, POK: PartialOrderingKind::Call, |
| 5634 | /*DeducedFromArrayBound=*/false, |
| 5635 | HasDeducedAnyParam: &HasDeducedAnyParamFromReturnType) != |
| 5636 | TemplateDeductionResult::Success) |
| 5637 | return false; |
| 5638 | } |
| 5639 | |
| 5640 | llvm::SmallBitVector HasDeducedParam; |
| 5641 | if (TPOC != TPOC_Conversion) { |
| 5642 | HasDeducedParam.resize(N: Args2.size()); |
| 5643 | if (DeduceTemplateArguments(S, TemplateParams, Params: Args2, Args: Args1, Info, Deduced, |
| 5644 | TDF: TDF_None, POK: PartialOrderingKind::Call, |
| 5645 | /*HasDeducedAnyParam=*/nullptr, |
| 5646 | HasDeducedParam: &HasDeducedParam) != |
| 5647 | TemplateDeductionResult::Success) |
| 5648 | return false; |
| 5649 | } |
| 5650 | |
| 5651 | SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); |
| 5652 | Sema::InstantiatingTemplate Inst( |
| 5653 | S, Info.getLocation(), FT2, DeducedArgs, |
| 5654 | Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); |
| 5655 | if (Inst.isInvalid()) |
| 5656 | return false; |
| 5657 | |
| 5658 | bool AtLeastAsSpecialized; |
| 5659 | S.runWithSufficientStackSpace(Loc: Info.getLocation(), Fn: [&] { |
| 5660 | AtLeastAsSpecialized = |
| 5661 | ::FinishTemplateArgumentDeduction( |
| 5662 | S, FTD: FT2, Deduced, Info, |
| 5663 | CheckDeductionConsistency: [&](Sema &S, FunctionTemplateDecl *FTD, |
| 5664 | ArrayRef<TemplateArgument> DeducedArgs) { |
| 5665 | // As a provisional fix for a core issue that does not |
| 5666 | // exist yet, which may be related to CWG2160, only check the |
| 5667 | // consistency of parameters and return types which participated |
| 5668 | // in deduction. We will still try to substitute them though. |
| 5669 | if (TPOC != TPOC_Call) { |
| 5670 | if (auto TDR = ::CheckDeductionConsistency( |
| 5671 | S, FTD, /*ArgIdx=*/std::nullopt, |
| 5672 | P: Proto2->getReturnType(), A: Proto1->getReturnType(), |
| 5673 | DeducedArgs, |
| 5674 | /*CheckConsistency=*/HasDeducedAnyParamFromReturnType); |
| 5675 | TDR != TemplateDeductionResult::Success) |
| 5676 | return TDR; |
| 5677 | } |
| 5678 | |
| 5679 | if (TPOC == TPOC_Conversion) |
| 5680 | return TemplateDeductionResult::Success; |
| 5681 | |
| 5682 | return ::DeduceForEachType( |
| 5683 | S, TemplateParams, Params: Args2, Args: Args1, Info, Deduced, |
| 5684 | POK: PartialOrderingKind::Call, /*FinishingDeduction=*/true, |
| 5685 | DeductFunc: [&](Sema &S, TemplateParameterList *, int ParamIdx, |
| 5686 | UnsignedOrNone ArgIdx, QualType P, QualType A, |
| 5687 | TemplateDeductionInfo &Info, |
| 5688 | SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| 5689 | PartialOrderingKind) { |
| 5690 | if (ArgIdx && *ArgIdx >= static_cast<unsigned>(Args1Offset)) |
| 5691 | ArgIdx = *ArgIdx - Args1Offset; |
| 5692 | else |
| 5693 | ArgIdx = std::nullopt; |
| 5694 | return ::CheckDeductionConsistency( |
| 5695 | S, FTD, ArgIdx, P, A, DeducedArgs, |
| 5696 | /*CheckConsistency=*/HasDeducedParam[ParamIdx]); |
| 5697 | }); |
| 5698 | }) == TemplateDeductionResult::Success; |
| 5699 | }); |
| 5700 | if (!AtLeastAsSpecialized) |
| 5701 | return false; |
| 5702 | |
| 5703 | // C++0x [temp.deduct.partial]p11: |
| 5704 | // In most cases, all template parameters must have values in order for |
| 5705 | // deduction to succeed, but for partial ordering purposes a template |
| 5706 | // parameter may remain without a value provided it is not used in the |
| 5707 | // types being used for partial ordering. [ Note: a template parameter used |
| 5708 | // in a non-deduced context is considered used. -end note] |
| 5709 | unsigned ArgIdx = 0, NumArgs = Deduced.size(); |
| 5710 | for (; ArgIdx != NumArgs; ++ArgIdx) |
| 5711 | if (Deduced[ArgIdx].isNull()) |
| 5712 | break; |
| 5713 | |
| 5714 | if (ArgIdx == NumArgs) { |
| 5715 | // All template arguments were deduced. FT1 is at least as specialized |
| 5716 | // as FT2. |
| 5717 | return true; |
| 5718 | } |
| 5719 | |
| 5720 | // Figure out which template parameters were used. |
| 5721 | llvm::SmallBitVector UsedParameters(TemplateParams->size()); |
| 5722 | switch (TPOC) { |
| 5723 | case TPOC_Call: |
| 5724 | for (unsigned I = 0, N = Args2.size(); I != N; ++I) |
| 5725 | ::MarkUsedTemplateParameters(Ctx&: S.Context, T: Args2[I], /*OnlyDeduced=*/false, |
| 5726 | Level: TemplateParams->getDepth(), Deduced&: UsedParameters); |
| 5727 | break; |
| 5728 | |
| 5729 | case TPOC_Conversion: |
| 5730 | ::MarkUsedTemplateParameters(Ctx&: S.Context, T: Proto2->getReturnType(), |
| 5731 | /*OnlyDeduced=*/false, |
| 5732 | Level: TemplateParams->getDepth(), Deduced&: UsedParameters); |
| 5733 | break; |
| 5734 | |
| 5735 | case TPOC_Other: |
| 5736 | // We do not deduce template arguments from the exception specification |
| 5737 | // when determining the primary template of a function template |
| 5738 | // specialization or when taking the address of a function template. |
| 5739 | // Therefore, we do not mark template parameters in the exception |
| 5740 | // specification as used during partial ordering to prevent the following |
| 5741 | // from being ambiguous: |
| 5742 | // |
| 5743 | // template<typename T, typename U> |
| 5744 | // void f(U) noexcept(noexcept(T())); // #1 |
| 5745 | // |
| 5746 | // template<typename T> |
| 5747 | // void f(T*) noexcept; // #2 |
| 5748 | // |
| 5749 | // template<> |
| 5750 | // void f<int>(int*) noexcept; // explicit specialization of #2 |
| 5751 | // |
| 5752 | // Although there is no corresponding wording in the standard, this seems |
| 5753 | // to be the intended behavior given the definition of |
| 5754 | // 'deduction substitution loci' in [temp.deduct]. |
| 5755 | ::MarkUsedTemplateParameters( |
| 5756 | Ctx&: S.Context, |
| 5757 | T: S.Context.getFunctionTypeWithExceptionSpec(Orig: FD2->getType(), ESI: EST_None), |
| 5758 | /*OnlyDeduced=*/false, Level: TemplateParams->getDepth(), Deduced&: UsedParameters); |
| 5759 | break; |
| 5760 | } |
| 5761 | |
| 5762 | for (; ArgIdx != NumArgs; ++ArgIdx) |
| 5763 | // If this argument had no value deduced but was used in one of the types |
| 5764 | // used for partial ordering, then deduction fails. |
| 5765 | if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) |
| 5766 | return false; |
| 5767 | |
| 5768 | return true; |
| 5769 | } |
| 5770 | |
| 5771 | enum class MoreSpecializedTrailingPackTieBreakerResult { Equal, Less, More }; |
| 5772 | |
| 5773 | // This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that |
| 5774 | // there is no wording or even resolution for this issue. |
| 5775 | static MoreSpecializedTrailingPackTieBreakerResult |
| 5776 | getMoreSpecializedTrailingPackTieBreaker( |
| 5777 | const TemplateSpecializationType *TST1, |
| 5778 | const TemplateSpecializationType *TST2) { |
| 5779 | ArrayRef<TemplateArgument> As1 = TST1->template_arguments(), |
| 5780 | As2 = TST2->template_arguments(); |
| 5781 | const TemplateArgument &TA1 = As1.back(), &TA2 = As2.back(); |
| 5782 | bool IsPack = TA1.getKind() == TemplateArgument::Pack; |
| 5783 | assert(IsPack == (TA2.getKind() == TemplateArgument::Pack)); |
| 5784 | if (!IsPack) |
| 5785 | return MoreSpecializedTrailingPackTieBreakerResult::Equal; |
| 5786 | assert(As1.size() == As2.size()); |
| 5787 | |
| 5788 | unsigned PackSize1 = TA1.pack_size(), PackSize2 = TA2.pack_size(); |
| 5789 | bool IsPackExpansion1 = |
| 5790 | PackSize1 && TA1.pack_elements().back().isPackExpansion(); |
| 5791 | bool IsPackExpansion2 = |
| 5792 | PackSize2 && TA2.pack_elements().back().isPackExpansion(); |
| 5793 | if (PackSize1 == PackSize2 && IsPackExpansion1 == IsPackExpansion2) |
| 5794 | return MoreSpecializedTrailingPackTieBreakerResult::Equal; |
| 5795 | if (PackSize1 > PackSize2 && IsPackExpansion1) |
| 5796 | return MoreSpecializedTrailingPackTieBreakerResult::More; |
| 5797 | if (PackSize1 < PackSize2 && IsPackExpansion2) |
| 5798 | return MoreSpecializedTrailingPackTieBreakerResult::Less; |
| 5799 | return MoreSpecializedTrailingPackTieBreakerResult::Equal; |
| 5800 | } |
| 5801 | |
| 5802 | FunctionTemplateDecl *Sema::getMoreSpecializedTemplate( |
| 5803 | FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc, |
| 5804 | TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1, |
| 5805 | QualType RawObj1Ty, QualType RawObj2Ty, bool Reversed, |
| 5806 | bool PartialOverloading) { |
| 5807 | SmallVector<QualType> Args1; |
| 5808 | SmallVector<QualType> Args2; |
| 5809 | const FunctionDecl *FD1 = FT1->getTemplatedDecl(); |
| 5810 | const FunctionDecl *FD2 = FT2->getTemplatedDecl(); |
| 5811 | bool ShouldConvert1 = false; |
| 5812 | bool ShouldConvert2 = false; |
| 5813 | bool Args1Offset = false; |
| 5814 | bool Args2Offset = false; |
| 5815 | QualType Obj1Ty; |
| 5816 | QualType Obj2Ty; |
| 5817 | if (TPOC == TPOC_Call) { |
| 5818 | const FunctionProtoType *Proto1 = |
| 5819 | FD1->getType()->castAs<FunctionProtoType>(); |
| 5820 | const FunctionProtoType *Proto2 = |
| 5821 | FD2->getType()->castAs<FunctionProtoType>(); |
| 5822 | |
| 5823 | // - In the context of a function call, the function parameter types are |
| 5824 | // used. |
| 5825 | const CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(Val: FD1); |
| 5826 | const CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(Val: FD2); |
| 5827 | // C++20 [temp.func.order]p3 |
| 5828 | // [...] Each function template M that is a member function is |
| 5829 | // considered to have a new first parameter of type |
| 5830 | // X(M), described below, inserted in its function parameter list. |
| 5831 | // |
| 5832 | // Note that we interpret "that is a member function" as |
| 5833 | // "that is a member function with no expicit object argument". |
| 5834 | // Otherwise the ordering rules for methods with expicit objet arguments |
| 5835 | // against anything else make no sense. |
| 5836 | |
| 5837 | bool NonStaticMethod1 = Method1 && !Method1->isStatic(), |
| 5838 | NonStaticMethod2 = Method2 && !Method2->isStatic(); |
| 5839 | |
| 5840 | auto Params1Begin = Proto1->param_type_begin(), |
| 5841 | Params2Begin = Proto2->param_type_begin(); |
| 5842 | |
| 5843 | size_t NumComparedArguments = NumCallArguments1; |
| 5844 | |
| 5845 | if (auto OO = FD1->getOverloadedOperator(); |
| 5846 | (NonStaticMethod1 && NonStaticMethod2) || |
| 5847 | (OO != OO_None && OO != OO_Call && OO != OO_Subscript)) { |
| 5848 | ShouldConvert1 = |
| 5849 | NonStaticMethod1 && !Method1->hasCXXExplicitFunctionObjectParameter(); |
| 5850 | ShouldConvert2 = |
| 5851 | NonStaticMethod2 && !Method2->hasCXXExplicitFunctionObjectParameter(); |
| 5852 | NumComparedArguments += 1; |
| 5853 | |
| 5854 | if (ShouldConvert1) { |
| 5855 | bool IsRValRef2 = |
| 5856 | ShouldConvert2 |
| 5857 | ? Method2->getRefQualifier() == RQ_RValue |
| 5858 | : Proto2->param_type_begin()[0]->isRValueReferenceType(); |
| 5859 | // Compare 'this' from Method1 against first parameter from Method2. |
| 5860 | Obj1Ty = GetImplicitObjectParameterType(Context&: this->Context, Method: Method1, |
| 5861 | RawType: RawObj1Ty, IsOtherRvr: IsRValRef2); |
| 5862 | Args1.push_back(Elt: Obj1Ty); |
| 5863 | Args1Offset = true; |
| 5864 | } |
| 5865 | if (ShouldConvert2) { |
| 5866 | bool IsRValRef1 = |
| 5867 | ShouldConvert1 |
| 5868 | ? Method1->getRefQualifier() == RQ_RValue |
| 5869 | : Proto1->param_type_begin()[0]->isRValueReferenceType(); |
| 5870 | // Compare 'this' from Method2 against first parameter from Method1. |
| 5871 | Obj2Ty = GetImplicitObjectParameterType(Context&: this->Context, Method: Method2, |
| 5872 | RawType: RawObj2Ty, IsOtherRvr: IsRValRef1); |
| 5873 | Args2.push_back(Elt: Obj2Ty); |
| 5874 | Args2Offset = true; |
| 5875 | } |
| 5876 | } else { |
| 5877 | if (NonStaticMethod1 && Method1->hasCXXExplicitFunctionObjectParameter()) |
| 5878 | Params1Begin += 1; |
| 5879 | if (NonStaticMethod2 && Method2->hasCXXExplicitFunctionObjectParameter()) |
| 5880 | Params2Begin += 1; |
| 5881 | } |
| 5882 | Args1.insert(I: Args1.end(), From: Params1Begin, To: Proto1->param_type_end()); |
| 5883 | Args2.insert(I: Args2.end(), From: Params2Begin, To: Proto2->param_type_end()); |
| 5884 | |
| 5885 | // C++ [temp.func.order]p5: |
| 5886 | // The presence of unused ellipsis and default arguments has no effect on |
| 5887 | // the partial ordering of function templates. |
| 5888 | Args1.resize(N: std::min(a: Args1.size(), b: NumComparedArguments)); |
| 5889 | Args2.resize(N: std::min(a: Args2.size(), b: NumComparedArguments)); |
| 5890 | |
| 5891 | if (Reversed) |
| 5892 | std::reverse(first: Args2.begin(), last: Args2.end()); |
| 5893 | } else { |
| 5894 | assert(!Reversed && "Only call context could have reversed arguments" ); |
| 5895 | } |
| 5896 | bool Better1 = isAtLeastAsSpecializedAs(S&: *this, Loc, FT1, FT2, TPOC, Args1, |
| 5897 | Args2, Args1Offset: Args2Offset); |
| 5898 | bool Better2 = isAtLeastAsSpecializedAs(S&: *this, Loc, FT1: FT2, FT2: FT1, TPOC, Args1: Args2, |
| 5899 | Args2: Args1, Args1Offset); |
| 5900 | // C++ [temp.deduct.partial]p10: |
| 5901 | // F is more specialized than G if F is at least as specialized as G and G |
| 5902 | // is not at least as specialized as F. |
| 5903 | if (Better1 != Better2) // We have a clear winner |
| 5904 | return Better1 ? FT1 : FT2; |
| 5905 | |
| 5906 | if (!Better1 && !Better2) // Neither is better than the other |
| 5907 | return nullptr; |
| 5908 | |
| 5909 | // C++ [temp.deduct.partial]p11: |
| 5910 | // ... and if G has a trailing function parameter pack for which F does not |
| 5911 | // have a corresponding parameter, and if F does not have a trailing |
| 5912 | // function parameter pack, then F is more specialized than G. |
| 5913 | |
| 5914 | SmallVector<QualType> Param1; |
| 5915 | Param1.reserve(N: FD1->param_size() + ShouldConvert1); |
| 5916 | if (ShouldConvert1) |
| 5917 | Param1.push_back(Elt: Obj1Ty); |
| 5918 | for (const auto &P : FD1->parameters()) |
| 5919 | Param1.push_back(Elt: P->getType()); |
| 5920 | |
| 5921 | SmallVector<QualType> Param2; |
| 5922 | Param2.reserve(N: FD2->param_size() + ShouldConvert2); |
| 5923 | if (ShouldConvert2) |
| 5924 | Param2.push_back(Elt: Obj2Ty); |
| 5925 | for (const auto &P : FD2->parameters()) |
| 5926 | Param2.push_back(Elt: P->getType()); |
| 5927 | |
| 5928 | unsigned NumParams1 = Param1.size(); |
| 5929 | unsigned NumParams2 = Param2.size(); |
| 5930 | |
| 5931 | bool Variadic1 = |
| 5932 | FD1->param_size() && FD1->parameters().back()->isParameterPack(); |
| 5933 | bool Variadic2 = |
| 5934 | FD2->param_size() && FD2->parameters().back()->isParameterPack(); |
| 5935 | if (Variadic1 != Variadic2) { |
| 5936 | if (Variadic1 && NumParams1 > NumParams2) |
| 5937 | return FT2; |
| 5938 | if (Variadic2 && NumParams2 > NumParams1) |
| 5939 | return FT1; |
| 5940 | } |
| 5941 | |
| 5942 | // Skip this tie breaker if we are performing overload resolution with partial |
| 5943 | // arguments, as this breaks some assumptions about how closely related the |
| 5944 | // candidates are. |
| 5945 | for (int i = 0, e = std::min(a: NumParams1, b: NumParams2); |
| 5946 | !PartialOverloading && i < e; ++i) { |
| 5947 | QualType T1 = Param1[i].getCanonicalType(); |
| 5948 | QualType T2 = Param2[i].getCanonicalType(); |
| 5949 | auto *TST1 = dyn_cast<TemplateSpecializationType>(Val&: T1); |
| 5950 | auto *TST2 = dyn_cast<TemplateSpecializationType>(Val&: T2); |
| 5951 | if (!TST1 || !TST2) |
| 5952 | continue; |
| 5953 | switch (getMoreSpecializedTrailingPackTieBreaker(TST1, TST2)) { |
| 5954 | case MoreSpecializedTrailingPackTieBreakerResult::Less: |
| 5955 | return FT1; |
| 5956 | case MoreSpecializedTrailingPackTieBreakerResult::More: |
| 5957 | return FT2; |
| 5958 | case MoreSpecializedTrailingPackTieBreakerResult::Equal: |
| 5959 | continue; |
| 5960 | } |
| 5961 | llvm_unreachable( |
| 5962 | "unknown MoreSpecializedTrailingPackTieBreakerResult value" ); |
| 5963 | } |
| 5964 | |
| 5965 | if (!Context.getLangOpts().CPlusPlus20) |
| 5966 | return nullptr; |
| 5967 | |
| 5968 | // Match GCC on not implementing [temp.func.order]p6.2.1. |
| 5969 | |
| 5970 | // C++20 [temp.func.order]p6: |
| 5971 | // If deduction against the other template succeeds for both transformed |
| 5972 | // templates, constraints can be considered as follows: |
| 5973 | |
| 5974 | // C++20 [temp.func.order]p6.1: |
| 5975 | // If their template-parameter-lists (possibly including template-parameters |
| 5976 | // invented for an abbreviated function template ([dcl.fct])) or function |
| 5977 | // parameter lists differ in length, neither template is more specialized |
| 5978 | // than the other. |
| 5979 | TemplateParameterList *TPL1 = FT1->getTemplateParameters(); |
| 5980 | TemplateParameterList *TPL2 = FT2->getTemplateParameters(); |
| 5981 | if (TPL1->size() != TPL2->size() || NumParams1 != NumParams2) |
| 5982 | return nullptr; |
| 5983 | |
| 5984 | // C++20 [temp.func.order]p6.2.2: |
| 5985 | // Otherwise, if the corresponding template-parameters of the |
| 5986 | // template-parameter-lists are not equivalent ([temp.over.link]) or if the |
| 5987 | // function parameters that positionally correspond between the two |
| 5988 | // templates are not of the same type, neither template is more specialized |
| 5989 | // than the other. |
| 5990 | if (!TemplateParameterListsAreEqual(New: TPL1, Old: TPL2, Complain: false, |
| 5991 | Kind: Sema::TPL_TemplateParamsEquivalent)) |
| 5992 | return nullptr; |
| 5993 | |
| 5994 | // [dcl.fct]p5: |
| 5995 | // Any top-level cv-qualifiers modifying a parameter type are deleted when |
| 5996 | // forming the function type. |
| 5997 | for (unsigned i = 0; i < NumParams1; ++i) |
| 5998 | if (!Context.hasSameUnqualifiedType(T1: Param1[i], T2: Param2[i])) |
| 5999 | return nullptr; |
| 6000 | |
| 6001 | // C++20 [temp.func.order]p6.3: |
| 6002 | // Otherwise, if the context in which the partial ordering is done is |
| 6003 | // that of a call to a conversion function and the return types of the |
| 6004 | // templates are not the same, then neither template is more specialized |
| 6005 | // than the other. |
| 6006 | if (TPOC == TPOC_Conversion && |
| 6007 | !Context.hasSameType(T1: FD1->getReturnType(), T2: FD2->getReturnType())) |
| 6008 | return nullptr; |
| 6009 | |
| 6010 | llvm::SmallVector<AssociatedConstraint, 3> AC1, AC2; |
| 6011 | FT1->getAssociatedConstraints(AC&: AC1); |
| 6012 | FT2->getAssociatedConstraints(AC&: AC2); |
| 6013 | bool AtLeastAsConstrained1, AtLeastAsConstrained2; |
| 6014 | if (IsAtLeastAsConstrained(D1: FT1, AC1, D2: FT2, AC2, Result&: AtLeastAsConstrained1)) |
| 6015 | return nullptr; |
| 6016 | if (IsAtLeastAsConstrained(D1: FT2, AC1: AC2, D2: FT1, AC2: AC1, Result&: AtLeastAsConstrained2)) |
| 6017 | return nullptr; |
| 6018 | if (AtLeastAsConstrained1 == AtLeastAsConstrained2) |
| 6019 | return nullptr; |
| 6020 | return AtLeastAsConstrained1 ? FT1 : FT2; |
| 6021 | } |
| 6022 | |
| 6023 | UnresolvedSetIterator Sema::getMostSpecialized( |
| 6024 | UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd, |
| 6025 | TemplateSpecCandidateSet &FailedCandidates, |
| 6026 | SourceLocation Loc, const PartialDiagnostic &NoneDiag, |
| 6027 | const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, |
| 6028 | bool Complain, QualType TargetType) { |
| 6029 | if (SpecBegin == SpecEnd) { |
| 6030 | if (Complain) { |
| 6031 | Diag(Loc, PD: NoneDiag); |
| 6032 | FailedCandidates.NoteCandidates(S&: *this, Loc); |
| 6033 | } |
| 6034 | return SpecEnd; |
| 6035 | } |
| 6036 | |
| 6037 | if (SpecBegin + 1 == SpecEnd) |
| 6038 | return SpecBegin; |
| 6039 | |
| 6040 | // Find the function template that is better than all of the templates it |
| 6041 | // has been compared to. |
| 6042 | UnresolvedSetIterator Best = SpecBegin; |
| 6043 | FunctionTemplateDecl *BestTemplate |
| 6044 | = cast<FunctionDecl>(Val: *Best)->getPrimaryTemplate(); |
| 6045 | assert(BestTemplate && "Not a function template specialization?" ); |
| 6046 | for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) { |
| 6047 | FunctionTemplateDecl *Challenger |
| 6048 | = cast<FunctionDecl>(Val: *I)->getPrimaryTemplate(); |
| 6049 | assert(Challenger && "Not a function template specialization?" ); |
| 6050 | if (declaresSameEntity(D1: getMoreSpecializedTemplate(FT1: BestTemplate, FT2: Challenger, |
| 6051 | Loc, TPOC: TPOC_Other, NumCallArguments1: 0), |
| 6052 | D2: Challenger)) { |
| 6053 | Best = I; |
| 6054 | BestTemplate = Challenger; |
| 6055 | } |
| 6056 | } |
| 6057 | |
| 6058 | // Make sure that the "best" function template is more specialized than all |
| 6059 | // of the others. |
| 6060 | bool Ambiguous = false; |
| 6061 | for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { |
| 6062 | FunctionTemplateDecl *Challenger |
| 6063 | = cast<FunctionDecl>(Val: *I)->getPrimaryTemplate(); |
| 6064 | if (I != Best && |
| 6065 | !declaresSameEntity(D1: getMoreSpecializedTemplate(FT1: BestTemplate, FT2: Challenger, |
| 6066 | Loc, TPOC: TPOC_Other, NumCallArguments1: 0), |
| 6067 | D2: BestTemplate)) { |
| 6068 | Ambiguous = true; |
| 6069 | break; |
| 6070 | } |
| 6071 | } |
| 6072 | |
| 6073 | if (!Ambiguous) { |
| 6074 | // We found an answer. Return it. |
| 6075 | return Best; |
| 6076 | } |
| 6077 | |
| 6078 | // Diagnose the ambiguity. |
| 6079 | if (Complain) { |
| 6080 | Diag(Loc, PD: AmbigDiag); |
| 6081 | |
| 6082 | // FIXME: Can we order the candidates in some sane way? |
| 6083 | for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { |
| 6084 | PartialDiagnostic PD = CandidateDiag; |
| 6085 | const auto *FD = cast<FunctionDecl>(Val: *I); |
| 6086 | PD << FD << getTemplateArgumentBindingsText( |
| 6087 | Params: FD->getPrimaryTemplate()->getTemplateParameters(), |
| 6088 | Args: *FD->getTemplateSpecializationArgs()); |
| 6089 | if (!TargetType.isNull()) |
| 6090 | HandleFunctionTypeMismatch(PDiag&: PD, FromType: FD->getType(), ToType: TargetType); |
| 6091 | Diag(Loc: (*I)->getLocation(), PD); |
| 6092 | } |
| 6093 | } |
| 6094 | |
| 6095 | return SpecEnd; |
| 6096 | } |
| 6097 | |
| 6098 | FunctionDecl *Sema::getMoreConstrainedFunction(FunctionDecl *FD1, |
| 6099 | FunctionDecl *FD2) { |
| 6100 | assert(!FD1->getDescribedTemplate() && !FD2->getDescribedTemplate() && |
| 6101 | "not for function templates" ); |
| 6102 | assert(!FD1->isFunctionTemplateSpecialization() || |
| 6103 | (isa<CXXConversionDecl, CXXConstructorDecl>(FD1))); |
| 6104 | assert(!FD2->isFunctionTemplateSpecialization() || |
| 6105 | (isa<CXXConversionDecl, CXXConstructorDecl>(FD2))); |
| 6106 | |
| 6107 | FunctionDecl *F1 = FD1; |
| 6108 | if (FunctionDecl *P = FD1->getTemplateInstantiationPattern(ForDefinition: false)) |
| 6109 | F1 = P; |
| 6110 | |
| 6111 | FunctionDecl *F2 = FD2; |
| 6112 | if (FunctionDecl *P = FD2->getTemplateInstantiationPattern(ForDefinition: false)) |
| 6113 | F2 = P; |
| 6114 | |
| 6115 | llvm::SmallVector<AssociatedConstraint, 1> AC1, AC2; |
| 6116 | F1->getAssociatedConstraints(ACs&: AC1); |
| 6117 | F2->getAssociatedConstraints(ACs&: AC2); |
| 6118 | bool AtLeastAsConstrained1, AtLeastAsConstrained2; |
| 6119 | if (IsAtLeastAsConstrained(D1: F1, AC1, D2: F2, AC2, Result&: AtLeastAsConstrained1)) |
| 6120 | return nullptr; |
| 6121 | if (IsAtLeastAsConstrained(D1: F2, AC1: AC2, D2: F1, AC2: AC1, Result&: AtLeastAsConstrained2)) |
| 6122 | return nullptr; |
| 6123 | if (AtLeastAsConstrained1 == AtLeastAsConstrained2) |
| 6124 | return nullptr; |
| 6125 | return AtLeastAsConstrained1 ? FD1 : FD2; |
| 6126 | } |
| 6127 | |
| 6128 | /// Determine whether one template specialization, P1, is at least as |
| 6129 | /// specialized than another, P2. |
| 6130 | /// |
| 6131 | /// \tparam TemplateLikeDecl The kind of P2, which must be a |
| 6132 | /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl. |
| 6133 | /// \param T1 The injected-class-name of P1 (faked for a variable template). |
| 6134 | /// \param T2 The injected-class-name of P2 (faked for a variable template). |
| 6135 | /// \param Template The primary template of P2, in case it is a partial |
| 6136 | /// specialization, the same as P2 otherwise. |
| 6137 | template <typename TemplateLikeDecl> |
| 6138 | static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2, |
| 6139 | TemplateLikeDecl *P2, |
| 6140 | TemplateDecl *Template, |
| 6141 | TemplateDeductionInfo &Info) { |
| 6142 | // C++ [temp.class.order]p1: |
| 6143 | // For two class template partial specializations, the first is at least as |
| 6144 | // specialized as the second if, given the following rewrite to two |
| 6145 | // function templates, the first function template is at least as |
| 6146 | // specialized as the second according to the ordering rules for function |
| 6147 | // templates (14.6.6.2): |
| 6148 | // - the first function template has the same template parameters as the |
| 6149 | // first partial specialization and has a single function parameter |
| 6150 | // whose type is a class template specialization with the template |
| 6151 | // arguments of the first partial specialization, and |
| 6152 | // - the second function template has the same template parameters as the |
| 6153 | // second partial specialization and has a single function parameter |
| 6154 | // whose type is a class template specialization with the template |
| 6155 | // arguments of the second partial specialization. |
| 6156 | // |
| 6157 | // Rather than synthesize function templates, we merely perform the |
| 6158 | // equivalent partial ordering by performing deduction directly on |
| 6159 | // the template arguments of the class template partial |
| 6160 | // specializations. This computation is slightly simpler than the |
| 6161 | // general problem of function template partial ordering, because |
| 6162 | // class template partial specializations are more constrained. We |
| 6163 | // know that every template parameter is deducible from the class |
| 6164 | // template partial specialization's template arguments, for |
| 6165 | // example. |
| 6166 | SmallVector<DeducedTemplateArgument, 4> Deduced; |
| 6167 | |
| 6168 | // Determine whether P1 is at least as specialized as P2. |
| 6169 | Deduced.resize(P2->getTemplateParameters()->size()); |
| 6170 | if (DeduceTemplateArgumentsByTypeMatch( |
| 6171 | S, P2->getTemplateParameters(), T2, T1, Info, Deduced, TDF_None, |
| 6172 | PartialOrderingKind::Call, /*DeducedFromArrayBound=*/false, |
| 6173 | /*HasDeducedAnyParam=*/nullptr) != TemplateDeductionResult::Success) |
| 6174 | return false; |
| 6175 | |
| 6176 | SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), |
| 6177 | Deduced.end()); |
| 6178 | Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs, |
| 6179 | Info); |
| 6180 | if (Inst.isInvalid()) |
| 6181 | return false; |
| 6182 | |
| 6183 | ArrayRef<TemplateArgument> |
| 6184 | Ps = cast<TemplateSpecializationType>(Val&: T2)->template_arguments(), |
| 6185 | As = cast<TemplateSpecializationType>(Val&: T1)->template_arguments(); |
| 6186 | |
| 6187 | Sema::SFINAETrap Trap(S); |
| 6188 | |
| 6189 | TemplateDeductionResult Result; |
| 6190 | S.runWithSufficientStackSpace(Loc: Info.getLocation(), Fn: [&] { |
| 6191 | Result = ::FinishTemplateArgumentDeduction( |
| 6192 | S, P2, P2->getTemplateParameters(), Template, |
| 6193 | /*IsPartialOrdering=*/true, Ps, As, Deduced, Info, |
| 6194 | /*CopyDeducedArgs=*/false); |
| 6195 | }); |
| 6196 | |
| 6197 | if (Result != TemplateDeductionResult::Success) |
| 6198 | return false; |
| 6199 | |
| 6200 | if (Trap.hasErrorOccurred()) |
| 6201 | return false; |
| 6202 | |
| 6203 | return true; |
| 6204 | } |
| 6205 | |
| 6206 | namespace { |
| 6207 | // A dummy class to return nullptr instead of P2 when performing "more |
| 6208 | // specialized than primary" check. |
| 6209 | struct GetP2 { |
| 6210 | template <typename T1, typename T2, |
| 6211 | std::enable_if_t<std::is_same_v<T1, T2>, bool> = true> |
| 6212 | T2 *operator()(T1 *, T2 *P2) { |
| 6213 | return P2; |
| 6214 | } |
| 6215 | template <typename T1, typename T2, |
| 6216 | std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true> |
| 6217 | T1 *operator()(T1 *, T2 *) { |
| 6218 | return nullptr; |
| 6219 | } |
| 6220 | }; |
| 6221 | |
| 6222 | // The assumption is that two template argument lists have the same size. |
| 6223 | struct TemplateArgumentListAreEqual { |
| 6224 | ASTContext &Ctx; |
| 6225 | TemplateArgumentListAreEqual(ASTContext &Ctx) : Ctx(Ctx) {} |
| 6226 | |
| 6227 | template <typename T1, typename T2, |
| 6228 | std::enable_if_t<std::is_same_v<T1, T2>, bool> = true> |
| 6229 | bool operator()(T1 *PS1, T2 *PS2) { |
| 6230 | ArrayRef<TemplateArgument> Args1 = PS1->getTemplateArgs().asArray(), |
| 6231 | Args2 = PS2->getTemplateArgs().asArray(); |
| 6232 | |
| 6233 | for (unsigned I = 0, E = Args1.size(); I < E; ++I) { |
| 6234 | // We use profile, instead of structural comparison of the arguments, |
| 6235 | // because canonicalization can't do the right thing for dependent |
| 6236 | // expressions. |
| 6237 | llvm::FoldingSetNodeID IDA, IDB; |
| 6238 | Args1[I].Profile(ID&: IDA, Context: Ctx); |
| 6239 | Args2[I].Profile(ID&: IDB, Context: Ctx); |
| 6240 | if (IDA != IDB) |
| 6241 | return false; |
| 6242 | } |
| 6243 | return true; |
| 6244 | } |
| 6245 | |
| 6246 | template <typename T1, typename T2, |
| 6247 | std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true> |
| 6248 | bool operator()(T1 *Spec, T2 *Primary) { |
| 6249 | ArrayRef<TemplateArgument> Args1 = Spec->getTemplateArgs().asArray(), |
| 6250 | Args2 = Primary->getInjectedTemplateArgs(Ctx); |
| 6251 | |
| 6252 | for (unsigned I = 0, E = Args1.size(); I < E; ++I) { |
| 6253 | // We use profile, instead of structural comparison of the arguments, |
| 6254 | // because canonicalization can't do the right thing for dependent |
| 6255 | // expressions. |
| 6256 | llvm::FoldingSetNodeID IDA, IDB; |
| 6257 | Args1[I].Profile(ID&: IDA, Context: Ctx); |
| 6258 | // Unlike the specialization arguments, the injected arguments are not |
| 6259 | // always canonical. |
| 6260 | Ctx.getCanonicalTemplateArgument(Arg: Args2[I]).Profile(ID&: IDB, Context: Ctx); |
| 6261 | if (IDA != IDB) |
| 6262 | return false; |
| 6263 | } |
| 6264 | return true; |
| 6265 | } |
| 6266 | }; |
| 6267 | } // namespace |
| 6268 | |
| 6269 | /// Returns the more specialized template specialization between T1/P1 and |
| 6270 | /// T2/P2. |
| 6271 | /// - If IsMoreSpecialThanPrimaryCheck is true, T1/P1 is the partial |
| 6272 | /// specialization and T2/P2 is the primary template. |
| 6273 | /// - otherwise, both T1/P1 and T2/P2 are the partial specialization. |
| 6274 | /// |
| 6275 | /// \param T1 the type of the first template partial specialization |
| 6276 | /// |
| 6277 | /// \param T2 if IsMoreSpecialThanPrimaryCheck is true, the type of the second |
| 6278 | /// template partial specialization; otherwise, the type of the |
| 6279 | /// primary template. |
| 6280 | /// |
| 6281 | /// \param P1 the first template partial specialization |
| 6282 | /// |
| 6283 | /// \param P2 if IsMoreSpecialThanPrimaryCheck is true, the second template |
| 6284 | /// partial specialization; otherwise, the primary template. |
| 6285 | /// |
| 6286 | /// \returns - If IsMoreSpecialThanPrimaryCheck is true, returns P1 if P1 is |
| 6287 | /// more specialized, returns nullptr if P1 is not more specialized. |
| 6288 | /// - otherwise, returns the more specialized template partial |
| 6289 | /// specialization. If neither partial specialization is more |
| 6290 | /// specialized, returns NULL. |
| 6291 | template <typename TemplateLikeDecl, typename PrimaryDel> |
| 6292 | static TemplateLikeDecl * |
| 6293 | getMoreSpecialized(Sema &S, QualType T1, QualType T2, TemplateLikeDecl *P1, |
| 6294 | PrimaryDel *P2, TemplateDeductionInfo &Info) { |
| 6295 | constexpr bool IsMoreSpecialThanPrimaryCheck = |
| 6296 | !std::is_same_v<TemplateLikeDecl, PrimaryDel>; |
| 6297 | |
| 6298 | TemplateDecl *P2T; |
| 6299 | if constexpr (IsMoreSpecialThanPrimaryCheck) |
| 6300 | P2T = P2; |
| 6301 | else |
| 6302 | P2T = P2->getSpecializedTemplate(); |
| 6303 | |
| 6304 | bool Better1 = isAtLeastAsSpecializedAs(S, T1, T2, P2, P2T, Info); |
| 6305 | if (IsMoreSpecialThanPrimaryCheck && !Better1) |
| 6306 | return nullptr; |
| 6307 | |
| 6308 | bool Better2 = isAtLeastAsSpecializedAs(S, T2, T1, P1, |
| 6309 | P1->getSpecializedTemplate(), Info); |
| 6310 | if (IsMoreSpecialThanPrimaryCheck && !Better2) |
| 6311 | return P1; |
| 6312 | |
| 6313 | // C++ [temp.deduct.partial]p10: |
| 6314 | // F is more specialized than G if F is at least as specialized as G and G |
| 6315 | // is not at least as specialized as F. |
| 6316 | if (Better1 != Better2) // We have a clear winner |
| 6317 | return Better1 ? P1 : GetP2()(P1, P2); |
| 6318 | |
| 6319 | if (!Better1 && !Better2) |
| 6320 | return nullptr; |
| 6321 | |
| 6322 | switch (getMoreSpecializedTrailingPackTieBreaker( |
| 6323 | TST1: cast<TemplateSpecializationType>(Val&: T1), |
| 6324 | TST2: cast<TemplateSpecializationType>(Val&: T2))) { |
| 6325 | case MoreSpecializedTrailingPackTieBreakerResult::Less: |
| 6326 | return P1; |
| 6327 | case MoreSpecializedTrailingPackTieBreakerResult::More: |
| 6328 | return GetP2()(P1, P2); |
| 6329 | case MoreSpecializedTrailingPackTieBreakerResult::Equal: |
| 6330 | break; |
| 6331 | } |
| 6332 | |
| 6333 | if (!S.Context.getLangOpts().CPlusPlus20) |
| 6334 | return nullptr; |
| 6335 | |
| 6336 | // Match GCC on not implementing [temp.func.order]p6.2.1. |
| 6337 | |
| 6338 | // C++20 [temp.func.order]p6: |
| 6339 | // If deduction against the other template succeeds for both transformed |
| 6340 | // templates, constraints can be considered as follows: |
| 6341 | |
| 6342 | TemplateParameterList *TPL1 = P1->getTemplateParameters(); |
| 6343 | TemplateParameterList *TPL2 = P2->getTemplateParameters(); |
| 6344 | if (TPL1->size() != TPL2->size()) |
| 6345 | return nullptr; |
| 6346 | |
| 6347 | // C++20 [temp.func.order]p6.2.2: |
| 6348 | // Otherwise, if the corresponding template-parameters of the |
| 6349 | // template-parameter-lists are not equivalent ([temp.over.link]) or if the |
| 6350 | // function parameters that positionally correspond between the two |
| 6351 | // templates are not of the same type, neither template is more specialized |
| 6352 | // than the other. |
| 6353 | if (!S.TemplateParameterListsAreEqual(New: TPL1, Old: TPL2, Complain: false, |
| 6354 | Kind: Sema::TPL_TemplateParamsEquivalent)) |
| 6355 | return nullptr; |
| 6356 | |
| 6357 | if (!TemplateArgumentListAreEqual(S.getASTContext())(P1, P2)) |
| 6358 | return nullptr; |
| 6359 | |
| 6360 | llvm::SmallVector<AssociatedConstraint, 3> AC1, AC2; |
| 6361 | P1->getAssociatedConstraints(AC1); |
| 6362 | P2->getAssociatedConstraints(AC2); |
| 6363 | bool AtLeastAsConstrained1, AtLeastAsConstrained2; |
| 6364 | if (S.IsAtLeastAsConstrained(D1: P1, AC1, D2: P2, AC2, Result&: AtLeastAsConstrained1) || |
| 6365 | (IsMoreSpecialThanPrimaryCheck && !AtLeastAsConstrained1)) |
| 6366 | return nullptr; |
| 6367 | if (S.IsAtLeastAsConstrained(D1: P2, AC1: AC2, D2: P1, AC2: AC1, Result&: AtLeastAsConstrained2)) |
| 6368 | return nullptr; |
| 6369 | if (AtLeastAsConstrained1 == AtLeastAsConstrained2) |
| 6370 | return nullptr; |
| 6371 | return AtLeastAsConstrained1 ? P1 : GetP2()(P1, P2); |
| 6372 | } |
| 6373 | |
| 6374 | ClassTemplatePartialSpecializationDecl * |
| 6375 | Sema::getMoreSpecializedPartialSpecialization( |
| 6376 | ClassTemplatePartialSpecializationDecl *PS1, |
| 6377 | ClassTemplatePartialSpecializationDecl *PS2, |
| 6378 | SourceLocation Loc) { |
| 6379 | QualType PT1 = PS1->getInjectedSpecializationType().getCanonicalType(); |
| 6380 | QualType PT2 = PS2->getInjectedSpecializationType().getCanonicalType(); |
| 6381 | |
| 6382 | TemplateDeductionInfo Info(Loc); |
| 6383 | return getMoreSpecialized(S&: *this, T1: PT1, T2: PT2, P1: PS1, P2: PS2, Info); |
| 6384 | } |
| 6385 | |
| 6386 | bool Sema::isMoreSpecializedThanPrimary( |
| 6387 | ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { |
| 6388 | ClassTemplateDecl *Primary = Spec->getSpecializedTemplate(); |
| 6389 | QualType PrimaryT = |
| 6390 | Primary->getInjectedClassNameSpecialization().getCanonicalType(); |
| 6391 | QualType PartialT = Spec->getInjectedSpecializationType().getCanonicalType(); |
| 6392 | |
| 6393 | ClassTemplatePartialSpecializationDecl *MaybeSpec = |
| 6394 | getMoreSpecialized(S&: *this, T1: PartialT, T2: PrimaryT, P1: Spec, P2: Primary, Info); |
| 6395 | if (MaybeSpec) |
| 6396 | Info.clearSFINAEDiagnostic(); |
| 6397 | return MaybeSpec; |
| 6398 | } |
| 6399 | |
| 6400 | VarTemplatePartialSpecializationDecl * |
| 6401 | Sema::getMoreSpecializedPartialSpecialization( |
| 6402 | VarTemplatePartialSpecializationDecl *PS1, |
| 6403 | VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) { |
| 6404 | // Pretend the variable template specializations are class template |
| 6405 | // specializations and form a fake injected class name type for comparison. |
| 6406 | assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() && |
| 6407 | "the partial specializations being compared should specialize" |
| 6408 | " the same template." ); |
| 6409 | TemplateName Name(PS1->getSpecializedTemplate()->getCanonicalDecl()); |
| 6410 | QualType PT1 = Context.getCanonicalTemplateSpecializationType( |
| 6411 | T: Name, CanonicalArgs: PS1->getTemplateArgs().asArray()); |
| 6412 | QualType PT2 = Context.getCanonicalTemplateSpecializationType( |
| 6413 | T: Name, CanonicalArgs: PS2->getTemplateArgs().asArray()); |
| 6414 | |
| 6415 | TemplateDeductionInfo Info(Loc); |
| 6416 | return getMoreSpecialized(S&: *this, T1: PT1, T2: PT2, P1: PS1, P2: PS2, Info); |
| 6417 | } |
| 6418 | |
| 6419 | bool Sema::isMoreSpecializedThanPrimary( |
| 6420 | VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { |
| 6421 | VarTemplateDecl *Primary = Spec->getSpecializedTemplate(); |
| 6422 | TemplateName Name(Primary->getCanonicalDecl()); |
| 6423 | |
| 6424 | SmallVector<TemplateArgument, 8> PrimaryCanonArgs( |
| 6425 | Primary->getInjectedTemplateArgs(Context)); |
| 6426 | Context.canonicalizeTemplateArguments(Args: PrimaryCanonArgs); |
| 6427 | |
| 6428 | QualType PrimaryT = |
| 6429 | Context.getCanonicalTemplateSpecializationType(T: Name, CanonicalArgs: PrimaryCanonArgs); |
| 6430 | QualType PartialT = Context.getCanonicalTemplateSpecializationType( |
| 6431 | T: Name, CanonicalArgs: Spec->getTemplateArgs().asArray()); |
| 6432 | |
| 6433 | VarTemplatePartialSpecializationDecl *MaybeSpec = |
| 6434 | getMoreSpecialized(S&: *this, T1: PartialT, T2: PrimaryT, P1: Spec, P2: Primary, Info); |
| 6435 | if (MaybeSpec) |
| 6436 | Info.clearSFINAEDiagnostic(); |
| 6437 | return MaybeSpec; |
| 6438 | } |
| 6439 | |
| 6440 | bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs( |
| 6441 | TemplateParameterList *P, TemplateDecl *PArg, TemplateDecl *AArg, |
| 6442 | const DefaultArguments &DefaultArgs, SourceLocation ArgLoc, |
| 6443 | bool PartialOrdering, bool *StrictPackMatch) { |
| 6444 | // C++1z [temp.arg.template]p4: (DR 150) |
| 6445 | // A template template-parameter P is at least as specialized as a |
| 6446 | // template template-argument A if, given the following rewrite to two |
| 6447 | // function templates... |
| 6448 | |
| 6449 | // Rather than synthesize function templates, we merely perform the |
| 6450 | // equivalent partial ordering by performing deduction directly on |
| 6451 | // the template parameter lists of the template template parameters. |
| 6452 | // |
| 6453 | TemplateParameterList *A = AArg->getTemplateParameters(); |
| 6454 | |
| 6455 | Sema::InstantiatingTemplate Inst( |
| 6456 | *this, ArgLoc, Sema::InstantiatingTemplate::PartialOrderingTTP(), PArg, |
| 6457 | SourceRange(P->getTemplateLoc(), P->getRAngleLoc())); |
| 6458 | if (Inst.isInvalid()) |
| 6459 | return false; |
| 6460 | |
| 6461 | // Given an invented class template X with the template parameter list of |
| 6462 | // A (including default arguments): |
| 6463 | // - Each function template has a single function parameter whose type is |
| 6464 | // a specialization of X with template arguments corresponding to the |
| 6465 | // template parameters from the respective function template |
| 6466 | SmallVector<TemplateArgument, 8> AArgs(A->getInjectedTemplateArgs(Context)); |
| 6467 | |
| 6468 | // Check P's arguments against A's parameter list. This will fill in default |
| 6469 | // template arguments as needed. AArgs are already correct by construction. |
| 6470 | // We can't just use CheckTemplateIdType because that will expand alias |
| 6471 | // templates. |
| 6472 | SmallVector<TemplateArgument, 4> PArgs(P->getInjectedTemplateArgs(Context)); |
| 6473 | { |
| 6474 | TemplateArgumentListInfo PArgList(P->getLAngleLoc(), |
| 6475 | P->getRAngleLoc()); |
| 6476 | for (unsigned I = 0, N = P->size(); I != N; ++I) { |
| 6477 | // Unwrap packs that getInjectedTemplateArgs wrapped around pack |
| 6478 | // expansions, to form an "as written" argument list. |
| 6479 | TemplateArgument Arg = PArgs[I]; |
| 6480 | if (Arg.getKind() == TemplateArgument::Pack) { |
| 6481 | assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion()); |
| 6482 | Arg = *Arg.pack_begin(); |
| 6483 | } |
| 6484 | PArgList.addArgument(Loc: getTrivialTemplateArgumentLoc( |
| 6485 | Arg, NTTPType: QualType(), Loc: P->getParam(Idx: I)->getLocation())); |
| 6486 | } |
| 6487 | PArgs.clear(); |
| 6488 | |
| 6489 | // C++1z [temp.arg.template]p3: |
| 6490 | // If the rewrite produces an invalid type, then P is not at least as |
| 6491 | // specialized as A. |
| 6492 | CheckTemplateArgumentInfo CTAI( |
| 6493 | /*PartialOrdering=*/false, /*MatchingTTP=*/true); |
| 6494 | CTAI.SugaredConverted = std::move(PArgs); |
| 6495 | if (CheckTemplateArgumentList(Template: AArg, TemplateLoc: ArgLoc, TemplateArgs&: PArgList, DefaultArgs, |
| 6496 | /*PartialTemplateArgs=*/false, CTAI, |
| 6497 | /*UpdateArgsWithConversions=*/true, |
| 6498 | /*ConstraintsNotSatisfied=*/nullptr)) |
| 6499 | return false; |
| 6500 | PArgs = std::move(CTAI.SugaredConverted); |
| 6501 | if (StrictPackMatch) |
| 6502 | *StrictPackMatch |= CTAI.StrictPackMatch; |
| 6503 | } |
| 6504 | |
| 6505 | // Determine whether P1 is at least as specialized as P2. |
| 6506 | TemplateDeductionInfo Info(ArgLoc, A->getDepth()); |
| 6507 | SmallVector<DeducedTemplateArgument, 4> Deduced; |
| 6508 | Deduced.resize(N: A->size()); |
| 6509 | |
| 6510 | // ... the function template corresponding to P is at least as specialized |
| 6511 | // as the function template corresponding to A according to the partial |
| 6512 | // ordering rules for function templates. |
| 6513 | |
| 6514 | // Provisional resolution for CWG2398: Regarding temp.arg.template]p4, when |
| 6515 | // applying the partial ordering rules for function templates on |
| 6516 | // the rewritten template template parameters: |
| 6517 | // - In a deduced context, the matching of packs versus fixed-size needs to |
| 6518 | // be inverted between Ps and As. On non-deduced context, matching needs to |
| 6519 | // happen both ways, according to [temp.arg.template]p3, but this is |
| 6520 | // currently implemented as a special case elsewhere. |
| 6521 | switch (::DeduceTemplateArguments( |
| 6522 | S&: *this, TemplateParams: A, Ps: AArgs, As: PArgs, Info, Deduced, |
| 6523 | /*NumberOfArgumentsMustMatch=*/false, /*PartialOrdering=*/true, |
| 6524 | PackFold: PartialOrdering ? PackFold::ArgumentToParameter : PackFold::Both, |
| 6525 | /*HasDeducedAnyParam=*/nullptr)) { |
| 6526 | case clang::TemplateDeductionResult::Success: |
| 6527 | if (StrictPackMatch && Info.hasStrictPackMatch()) |
| 6528 | *StrictPackMatch = true; |
| 6529 | break; |
| 6530 | |
| 6531 | case TemplateDeductionResult::MiscellaneousDeductionFailure: |
| 6532 | Diag(Loc: AArg->getLocation(), DiagID: diag::err_template_param_list_different_arity) |
| 6533 | << (A->size() > P->size()) << /*isTemplateTemplateParameter=*/true |
| 6534 | << SourceRange(A->getTemplateLoc(), P->getRAngleLoc()); |
| 6535 | return false; |
| 6536 | case TemplateDeductionResult::NonDeducedMismatch: |
| 6537 | Diag(Loc: AArg->getLocation(), DiagID: diag::err_non_deduced_mismatch) |
| 6538 | << Info.FirstArg << Info.SecondArg; |
| 6539 | return false; |
| 6540 | case TemplateDeductionResult::Inconsistent: |
| 6541 | Diag(Loc: getAsNamedDecl(P: Info.Param)->getLocation(), |
| 6542 | DiagID: diag::err_inconsistent_deduction) |
| 6543 | << Info.FirstArg << Info.SecondArg; |
| 6544 | return false; |
| 6545 | case TemplateDeductionResult::AlreadyDiagnosed: |
| 6546 | return false; |
| 6547 | |
| 6548 | // None of these should happen for a plain deduction. |
| 6549 | case TemplateDeductionResult::Invalid: |
| 6550 | case TemplateDeductionResult::InstantiationDepth: |
| 6551 | case TemplateDeductionResult::Incomplete: |
| 6552 | case TemplateDeductionResult::IncompletePack: |
| 6553 | case TemplateDeductionResult::Underqualified: |
| 6554 | case TemplateDeductionResult::SubstitutionFailure: |
| 6555 | case TemplateDeductionResult::DeducedMismatch: |
| 6556 | case TemplateDeductionResult::DeducedMismatchNested: |
| 6557 | case TemplateDeductionResult::TooManyArguments: |
| 6558 | case TemplateDeductionResult::TooFewArguments: |
| 6559 | case TemplateDeductionResult::InvalidExplicitArguments: |
| 6560 | case TemplateDeductionResult::NonDependentConversionFailure: |
| 6561 | case TemplateDeductionResult::ConstraintsNotSatisfied: |
| 6562 | case TemplateDeductionResult::CUDATargetMismatch: |
| 6563 | llvm_unreachable("Unexpected Result" ); |
| 6564 | } |
| 6565 | |
| 6566 | TemplateDeductionResult TDK; |
| 6567 | runWithSufficientStackSpace(Loc: Info.getLocation(), Fn: [&] { |
| 6568 | TDK = ::FinishTemplateArgumentDeduction( |
| 6569 | S&: *this, Entity: AArg, EntityTPL: AArg->getTemplateParameters(), Template: AArg, PartialOrdering, |
| 6570 | Ps: AArgs, As: PArgs, Deduced, Info, /*CopyDeducedArgs=*/false); |
| 6571 | }); |
| 6572 | switch (TDK) { |
| 6573 | case TemplateDeductionResult::Success: |
| 6574 | return true; |
| 6575 | |
| 6576 | // It doesn't seem possible to get a non-deduced mismatch when partial |
| 6577 | // ordering TTPs, except with an invalid template parameter list which has |
| 6578 | // a parameter after a pack. |
| 6579 | case TemplateDeductionResult::NonDeducedMismatch: |
| 6580 | assert(PArg->isInvalidDecl() && "Unexpected NonDeducedMismatch" ); |
| 6581 | return false; |
| 6582 | |
| 6583 | // Substitution failures should have already been diagnosed. |
| 6584 | case TemplateDeductionResult::AlreadyDiagnosed: |
| 6585 | case TemplateDeductionResult::SubstitutionFailure: |
| 6586 | case TemplateDeductionResult::InstantiationDepth: |
| 6587 | return false; |
| 6588 | |
| 6589 | // None of these should happen when just converting deduced arguments. |
| 6590 | case TemplateDeductionResult::Invalid: |
| 6591 | case TemplateDeductionResult::Incomplete: |
| 6592 | case TemplateDeductionResult::IncompletePack: |
| 6593 | case TemplateDeductionResult::Inconsistent: |
| 6594 | case TemplateDeductionResult::Underqualified: |
| 6595 | case TemplateDeductionResult::DeducedMismatch: |
| 6596 | case TemplateDeductionResult::DeducedMismatchNested: |
| 6597 | case TemplateDeductionResult::TooManyArguments: |
| 6598 | case TemplateDeductionResult::TooFewArguments: |
| 6599 | case TemplateDeductionResult::InvalidExplicitArguments: |
| 6600 | case TemplateDeductionResult::NonDependentConversionFailure: |
| 6601 | case TemplateDeductionResult::ConstraintsNotSatisfied: |
| 6602 | case TemplateDeductionResult::MiscellaneousDeductionFailure: |
| 6603 | case TemplateDeductionResult::CUDATargetMismatch: |
| 6604 | llvm_unreachable("Unexpected Result" ); |
| 6605 | } |
| 6606 | llvm_unreachable("Unexpected TDK" ); |
| 6607 | } |
| 6608 | |
| 6609 | namespace { |
| 6610 | struct MarkUsedTemplateParameterVisitor : DynamicRecursiveASTVisitor { |
| 6611 | llvm::SmallBitVector &Used; |
| 6612 | unsigned Depth; |
| 6613 | |
| 6614 | MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used, |
| 6615 | unsigned Depth) |
| 6616 | : Used(Used), Depth(Depth) { } |
| 6617 | |
| 6618 | bool VisitTemplateTypeParmType(TemplateTypeParmType *T) override { |
| 6619 | if (T->getDepth() == Depth) |
| 6620 | Used[T->getIndex()] = true; |
| 6621 | return true; |
| 6622 | } |
| 6623 | |
| 6624 | bool TraverseTemplateName(TemplateName Template) override { |
| 6625 | if (auto *TTP = llvm::dyn_cast_or_null<TemplateTemplateParmDecl>( |
| 6626 | Val: Template.getAsTemplateDecl())) |
| 6627 | if (TTP->getDepth() == Depth) |
| 6628 | Used[TTP->getIndex()] = true; |
| 6629 | DynamicRecursiveASTVisitor::TraverseTemplateName(Template); |
| 6630 | return true; |
| 6631 | } |
| 6632 | |
| 6633 | bool VisitDeclRefExpr(DeclRefExpr *E) override { |
| 6634 | if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: E->getDecl())) |
| 6635 | if (NTTP->getDepth() == Depth) |
| 6636 | Used[NTTP->getIndex()] = true; |
| 6637 | return true; |
| 6638 | } |
| 6639 | }; |
| 6640 | } |
| 6641 | |
| 6642 | /// Mark the template parameters that are used by the given |
| 6643 | /// expression. |
| 6644 | static void |
| 6645 | MarkUsedTemplateParameters(ASTContext &Ctx, |
| 6646 | const Expr *E, |
| 6647 | bool OnlyDeduced, |
| 6648 | unsigned Depth, |
| 6649 | llvm::SmallBitVector &Used) { |
| 6650 | if (!OnlyDeduced) { |
| 6651 | MarkUsedTemplateParameterVisitor(Used, Depth) |
| 6652 | .TraverseStmt(S: const_cast<Expr *>(E)); |
| 6653 | return; |
| 6654 | } |
| 6655 | |
| 6656 | // We can deduce from a pack expansion. |
| 6657 | if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Val: E)) |
| 6658 | E = Expansion->getPattern(); |
| 6659 | |
| 6660 | const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(E, Depth); |
| 6661 | if (!NTTP) |
| 6662 | return; |
| 6663 | |
| 6664 | if (NTTP->getDepth() == Depth) |
| 6665 | Used[NTTP->getIndex()] = true; |
| 6666 | |
| 6667 | // In C++17 mode, additional arguments may be deduced from the type of a |
| 6668 | // non-type argument. |
| 6669 | if (Ctx.getLangOpts().CPlusPlus17) |
| 6670 | MarkUsedTemplateParameters(Ctx, T: NTTP->getType(), OnlyDeduced, Level: Depth, Deduced&: Used); |
| 6671 | } |
| 6672 | |
| 6673 | /// Mark the template parameters that are used by the given |
| 6674 | /// nested name specifier. |
| 6675 | static void |
| 6676 | MarkUsedTemplateParameters(ASTContext &Ctx, |
| 6677 | NestedNameSpecifier *NNS, |
| 6678 | bool OnlyDeduced, |
| 6679 | unsigned Depth, |
| 6680 | llvm::SmallBitVector &Used) { |
| 6681 | if (!NNS) |
| 6682 | return; |
| 6683 | |
| 6684 | MarkUsedTemplateParameters(Ctx, NNS: NNS->getPrefix(), OnlyDeduced, Depth, |
| 6685 | Used); |
| 6686 | MarkUsedTemplateParameters(Ctx, T: QualType(NNS->getAsType(), 0), |
| 6687 | OnlyDeduced, Level: Depth, Deduced&: Used); |
| 6688 | } |
| 6689 | |
| 6690 | /// Mark the template parameters that are used by the given |
| 6691 | /// template name. |
| 6692 | static void |
| 6693 | MarkUsedTemplateParameters(ASTContext &Ctx, |
| 6694 | TemplateName Name, |
| 6695 | bool OnlyDeduced, |
| 6696 | unsigned Depth, |
| 6697 | llvm::SmallBitVector &Used) { |
| 6698 | if (TemplateDecl *Template = Name.getAsTemplateDecl()) { |
| 6699 | if (TemplateTemplateParmDecl *TTP |
| 6700 | = dyn_cast<TemplateTemplateParmDecl>(Val: Template)) { |
| 6701 | if (TTP->getDepth() == Depth) |
| 6702 | Used[TTP->getIndex()] = true; |
| 6703 | } |
| 6704 | return; |
| 6705 | } |
| 6706 | |
| 6707 | if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) |
| 6708 | MarkUsedTemplateParameters(Ctx, NNS: QTN->getQualifier(), OnlyDeduced, |
| 6709 | Depth, Used); |
| 6710 | if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) |
| 6711 | MarkUsedTemplateParameters(Ctx, NNS: DTN->getQualifier(), OnlyDeduced, |
| 6712 | Depth, Used); |
| 6713 | } |
| 6714 | |
| 6715 | /// Mark the template parameters that are used by the given |
| 6716 | /// type. |
| 6717 | static void |
| 6718 | MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, |
| 6719 | bool OnlyDeduced, |
| 6720 | unsigned Depth, |
| 6721 | llvm::SmallBitVector &Used) { |
| 6722 | if (T.isNull()) |
| 6723 | return; |
| 6724 | |
| 6725 | // Non-dependent types have nothing deducible |
| 6726 | if (!T->isDependentType()) |
| 6727 | return; |
| 6728 | |
| 6729 | T = Ctx.getCanonicalType(T); |
| 6730 | switch (T->getTypeClass()) { |
| 6731 | case Type::Pointer: |
| 6732 | MarkUsedTemplateParameters(Ctx, |
| 6733 | T: cast<PointerType>(Val&: T)->getPointeeType(), |
| 6734 | OnlyDeduced, |
| 6735 | Depth, |
| 6736 | Used); |
| 6737 | break; |
| 6738 | |
| 6739 | case Type::BlockPointer: |
| 6740 | MarkUsedTemplateParameters(Ctx, |
| 6741 | T: cast<BlockPointerType>(Val&: T)->getPointeeType(), |
| 6742 | OnlyDeduced, |
| 6743 | Depth, |
| 6744 | Used); |
| 6745 | break; |
| 6746 | |
| 6747 | case Type::LValueReference: |
| 6748 | case Type::RValueReference: |
| 6749 | MarkUsedTemplateParameters(Ctx, |
| 6750 | T: cast<ReferenceType>(Val&: T)->getPointeeType(), |
| 6751 | OnlyDeduced, |
| 6752 | Depth, |
| 6753 | Used); |
| 6754 | break; |
| 6755 | |
| 6756 | case Type::MemberPointer: { |
| 6757 | const MemberPointerType *MemPtr = cast<MemberPointerType>(Val: T.getTypePtr()); |
| 6758 | MarkUsedTemplateParameters(Ctx, T: MemPtr->getPointeeType(), OnlyDeduced, |
| 6759 | Depth, Used); |
| 6760 | MarkUsedTemplateParameters(Ctx, |
| 6761 | T: QualType(MemPtr->getQualifier()->getAsType(), 0), |
| 6762 | OnlyDeduced, Depth, Used); |
| 6763 | break; |
| 6764 | } |
| 6765 | |
| 6766 | case Type::DependentSizedArray: |
| 6767 | MarkUsedTemplateParameters(Ctx, |
| 6768 | E: cast<DependentSizedArrayType>(Val&: T)->getSizeExpr(), |
| 6769 | OnlyDeduced, Depth, Used); |
| 6770 | // Fall through to check the element type |
| 6771 | [[fallthrough]]; |
| 6772 | |
| 6773 | case Type::ConstantArray: |
| 6774 | case Type::IncompleteArray: |
| 6775 | case Type::ArrayParameter: |
| 6776 | MarkUsedTemplateParameters(Ctx, |
| 6777 | T: cast<ArrayType>(Val&: T)->getElementType(), |
| 6778 | OnlyDeduced, Depth, Used); |
| 6779 | break; |
| 6780 | case Type::Vector: |
| 6781 | case Type::ExtVector: |
| 6782 | MarkUsedTemplateParameters(Ctx, |
| 6783 | T: cast<VectorType>(Val&: T)->getElementType(), |
| 6784 | OnlyDeduced, Depth, Used); |
| 6785 | break; |
| 6786 | |
| 6787 | case Type::DependentVector: { |
| 6788 | const auto *VecType = cast<DependentVectorType>(Val&: T); |
| 6789 | MarkUsedTemplateParameters(Ctx, T: VecType->getElementType(), OnlyDeduced, |
| 6790 | Depth, Used); |
| 6791 | MarkUsedTemplateParameters(Ctx, E: VecType->getSizeExpr(), OnlyDeduced, Depth, |
| 6792 | Used); |
| 6793 | break; |
| 6794 | } |
| 6795 | case Type::DependentSizedExtVector: { |
| 6796 | const DependentSizedExtVectorType *VecType |
| 6797 | = cast<DependentSizedExtVectorType>(Val&: T); |
| 6798 | MarkUsedTemplateParameters(Ctx, T: VecType->getElementType(), OnlyDeduced, |
| 6799 | Depth, Used); |
| 6800 | MarkUsedTemplateParameters(Ctx, E: VecType->getSizeExpr(), OnlyDeduced, |
| 6801 | Depth, Used); |
| 6802 | break; |
| 6803 | } |
| 6804 | |
| 6805 | case Type::DependentAddressSpace: { |
| 6806 | const DependentAddressSpaceType *DependentASType = |
| 6807 | cast<DependentAddressSpaceType>(Val&: T); |
| 6808 | MarkUsedTemplateParameters(Ctx, T: DependentASType->getPointeeType(), |
| 6809 | OnlyDeduced, Depth, Used); |
| 6810 | MarkUsedTemplateParameters(Ctx, |
| 6811 | E: DependentASType->getAddrSpaceExpr(), |
| 6812 | OnlyDeduced, Depth, Used); |
| 6813 | break; |
| 6814 | } |
| 6815 | |
| 6816 | case Type::ConstantMatrix: { |
| 6817 | const ConstantMatrixType *MatType = cast<ConstantMatrixType>(Val&: T); |
| 6818 | MarkUsedTemplateParameters(Ctx, T: MatType->getElementType(), OnlyDeduced, |
| 6819 | Depth, Used); |
| 6820 | break; |
| 6821 | } |
| 6822 | |
| 6823 | case Type::DependentSizedMatrix: { |
| 6824 | const DependentSizedMatrixType *MatType = cast<DependentSizedMatrixType>(Val&: T); |
| 6825 | MarkUsedTemplateParameters(Ctx, T: MatType->getElementType(), OnlyDeduced, |
| 6826 | Depth, Used); |
| 6827 | MarkUsedTemplateParameters(Ctx, E: MatType->getRowExpr(), OnlyDeduced, Depth, |
| 6828 | Used); |
| 6829 | MarkUsedTemplateParameters(Ctx, E: MatType->getColumnExpr(), OnlyDeduced, |
| 6830 | Depth, Used); |
| 6831 | break; |
| 6832 | } |
| 6833 | |
| 6834 | case Type::FunctionProto: { |
| 6835 | const FunctionProtoType *Proto = cast<FunctionProtoType>(Val&: T); |
| 6836 | MarkUsedTemplateParameters(Ctx, T: Proto->getReturnType(), OnlyDeduced, Depth, |
| 6837 | Used); |
| 6838 | for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) { |
| 6839 | // C++17 [temp.deduct.type]p5: |
| 6840 | // The non-deduced contexts are: [...] |
| 6841 | // -- A function parameter pack that does not occur at the end of the |
| 6842 | // parameter-declaration-list. |
| 6843 | if (!OnlyDeduced || I + 1 == N || |
| 6844 | !Proto->getParamType(i: I)->getAs<PackExpansionType>()) { |
| 6845 | MarkUsedTemplateParameters(Ctx, T: Proto->getParamType(i: I), OnlyDeduced, |
| 6846 | Depth, Used); |
| 6847 | } else { |
| 6848 | // FIXME: C++17 [temp.deduct.call]p1: |
| 6849 | // When a function parameter pack appears in a non-deduced context, |
| 6850 | // the type of that pack is never deduced. |
| 6851 | // |
| 6852 | // We should also track a set of "never deduced" parameters, and |
| 6853 | // subtract that from the list of deduced parameters after marking. |
| 6854 | } |
| 6855 | } |
| 6856 | if (auto *E = Proto->getNoexceptExpr()) |
| 6857 | MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used); |
| 6858 | break; |
| 6859 | } |
| 6860 | |
| 6861 | case Type::TemplateTypeParm: { |
| 6862 | const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(Val&: T); |
| 6863 | if (TTP->getDepth() == Depth) |
| 6864 | Used[TTP->getIndex()] = true; |
| 6865 | break; |
| 6866 | } |
| 6867 | |
| 6868 | case Type::SubstTemplateTypeParmPack: { |
| 6869 | const SubstTemplateTypeParmPackType *Subst |
| 6870 | = cast<SubstTemplateTypeParmPackType>(Val&: T); |
| 6871 | if (Subst->getReplacedParameter()->getDepth() == Depth) |
| 6872 | Used[Subst->getIndex()] = true; |
| 6873 | MarkUsedTemplateParameters(Ctx, TemplateArg: Subst->getArgumentPack(), |
| 6874 | OnlyDeduced, Depth, Used); |
| 6875 | break; |
| 6876 | } |
| 6877 | |
| 6878 | case Type::InjectedClassName: |
| 6879 | T = cast<InjectedClassNameType>(Val&: T)->getInjectedSpecializationType(); |
| 6880 | [[fallthrough]]; |
| 6881 | |
| 6882 | case Type::TemplateSpecialization: { |
| 6883 | const TemplateSpecializationType *Spec |
| 6884 | = cast<TemplateSpecializationType>(Val&: T); |
| 6885 | MarkUsedTemplateParameters(Ctx, Name: Spec->getTemplateName(), OnlyDeduced, |
| 6886 | Depth, Used); |
| 6887 | |
| 6888 | // C++0x [temp.deduct.type]p9: |
| 6889 | // If the template argument list of P contains a pack expansion that is |
| 6890 | // not the last template argument, the entire template argument list is a |
| 6891 | // non-deduced context. |
| 6892 | if (OnlyDeduced && |
| 6893 | hasPackExpansionBeforeEnd(Args: Spec->template_arguments())) |
| 6894 | break; |
| 6895 | |
| 6896 | for (const auto &Arg : Spec->template_arguments()) |
| 6897 | MarkUsedTemplateParameters(Ctx, TemplateArg: Arg, OnlyDeduced, Depth, Used); |
| 6898 | break; |
| 6899 | } |
| 6900 | |
| 6901 | case Type::Complex: |
| 6902 | if (!OnlyDeduced) |
| 6903 | MarkUsedTemplateParameters(Ctx, |
| 6904 | T: cast<ComplexType>(Val&: T)->getElementType(), |
| 6905 | OnlyDeduced, Depth, Used); |
| 6906 | break; |
| 6907 | |
| 6908 | case Type::Atomic: |
| 6909 | if (!OnlyDeduced) |
| 6910 | MarkUsedTemplateParameters(Ctx, |
| 6911 | T: cast<AtomicType>(Val&: T)->getValueType(), |
| 6912 | OnlyDeduced, Depth, Used); |
| 6913 | break; |
| 6914 | |
| 6915 | case Type::DependentName: |
| 6916 | if (!OnlyDeduced) |
| 6917 | MarkUsedTemplateParameters(Ctx, |
| 6918 | NNS: cast<DependentNameType>(Val&: T)->getQualifier(), |
| 6919 | OnlyDeduced, Depth, Used); |
| 6920 | break; |
| 6921 | |
| 6922 | case Type::DependentTemplateSpecialization: { |
| 6923 | // C++14 [temp.deduct.type]p5: |
| 6924 | // The non-deduced contexts are: |
| 6925 | // -- The nested-name-specifier of a type that was specified using a |
| 6926 | // qualified-id |
| 6927 | // |
| 6928 | // C++14 [temp.deduct.type]p6: |
| 6929 | // When a type name is specified in a way that includes a non-deduced |
| 6930 | // context, all of the types that comprise that type name are also |
| 6931 | // non-deduced. |
| 6932 | if (OnlyDeduced) |
| 6933 | break; |
| 6934 | |
| 6935 | const DependentTemplateSpecializationType *Spec |
| 6936 | = cast<DependentTemplateSpecializationType>(Val&: T); |
| 6937 | |
| 6938 | MarkUsedTemplateParameters(Ctx, |
| 6939 | NNS: Spec->getDependentTemplateName().getQualifier(), |
| 6940 | OnlyDeduced, Depth, Used); |
| 6941 | |
| 6942 | for (const auto &Arg : Spec->template_arguments()) |
| 6943 | MarkUsedTemplateParameters(Ctx, TemplateArg: Arg, OnlyDeduced, Depth, Used); |
| 6944 | break; |
| 6945 | } |
| 6946 | |
| 6947 | case Type::TypeOf: |
| 6948 | if (!OnlyDeduced) |
| 6949 | MarkUsedTemplateParameters(Ctx, T: cast<TypeOfType>(Val&: T)->getUnmodifiedType(), |
| 6950 | OnlyDeduced, Depth, Used); |
| 6951 | break; |
| 6952 | |
| 6953 | case Type::TypeOfExpr: |
| 6954 | if (!OnlyDeduced) |
| 6955 | MarkUsedTemplateParameters(Ctx, |
| 6956 | E: cast<TypeOfExprType>(Val&: T)->getUnderlyingExpr(), |
| 6957 | OnlyDeduced, Depth, Used); |
| 6958 | break; |
| 6959 | |
| 6960 | case Type::Decltype: |
| 6961 | if (!OnlyDeduced) |
| 6962 | MarkUsedTemplateParameters(Ctx, |
| 6963 | E: cast<DecltypeType>(Val&: T)->getUnderlyingExpr(), |
| 6964 | OnlyDeduced, Depth, Used); |
| 6965 | break; |
| 6966 | |
| 6967 | case Type::PackIndexing: |
| 6968 | if (!OnlyDeduced) { |
| 6969 | MarkUsedTemplateParameters(Ctx, T: cast<PackIndexingType>(Val&: T)->getPattern(), |
| 6970 | OnlyDeduced, Depth, Used); |
| 6971 | MarkUsedTemplateParameters(Ctx, E: cast<PackIndexingType>(Val&: T)->getIndexExpr(), |
| 6972 | OnlyDeduced, Depth, Used); |
| 6973 | } |
| 6974 | break; |
| 6975 | |
| 6976 | case Type::UnaryTransform: |
| 6977 | if (!OnlyDeduced) |
| 6978 | MarkUsedTemplateParameters(Ctx, |
| 6979 | T: cast<UnaryTransformType>(Val&: T)->getUnderlyingType(), |
| 6980 | OnlyDeduced, Depth, Used); |
| 6981 | break; |
| 6982 | |
| 6983 | case Type::PackExpansion: |
| 6984 | MarkUsedTemplateParameters(Ctx, |
| 6985 | T: cast<PackExpansionType>(Val&: T)->getPattern(), |
| 6986 | OnlyDeduced, Depth, Used); |
| 6987 | break; |
| 6988 | |
| 6989 | case Type::Auto: |
| 6990 | case Type::DeducedTemplateSpecialization: |
| 6991 | MarkUsedTemplateParameters(Ctx, |
| 6992 | T: cast<DeducedType>(Val&: T)->getDeducedType(), |
| 6993 | OnlyDeduced, Depth, Used); |
| 6994 | break; |
| 6995 | case Type::DependentBitInt: |
| 6996 | MarkUsedTemplateParameters(Ctx, |
| 6997 | E: cast<DependentBitIntType>(Val&: T)->getNumBitsExpr(), |
| 6998 | OnlyDeduced, Depth, Used); |
| 6999 | break; |
| 7000 | |
| 7001 | case Type::HLSLAttributedResource: |
| 7002 | MarkUsedTemplateParameters( |
| 7003 | Ctx, T: cast<HLSLAttributedResourceType>(Val&: T)->getWrappedType(), OnlyDeduced, |
| 7004 | Depth, Used); |
| 7005 | if (cast<HLSLAttributedResourceType>(Val&: T)->hasContainedType()) |
| 7006 | MarkUsedTemplateParameters( |
| 7007 | Ctx, T: cast<HLSLAttributedResourceType>(Val&: T)->getContainedType(), |
| 7008 | OnlyDeduced, Depth, Used); |
| 7009 | break; |
| 7010 | |
| 7011 | // None of these types have any template parameters in them. |
| 7012 | case Type::Builtin: |
| 7013 | case Type::VariableArray: |
| 7014 | case Type::FunctionNoProto: |
| 7015 | case Type::Record: |
| 7016 | case Type::Enum: |
| 7017 | case Type::ObjCInterface: |
| 7018 | case Type::ObjCObject: |
| 7019 | case Type::ObjCObjectPointer: |
| 7020 | case Type::UnresolvedUsing: |
| 7021 | case Type::Pipe: |
| 7022 | case Type::BitInt: |
| 7023 | case Type::HLSLInlineSpirv: |
| 7024 | #define TYPE(Class, Base) |
| 7025 | #define ABSTRACT_TYPE(Class, Base) |
| 7026 | #define DEPENDENT_TYPE(Class, Base) |
| 7027 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| 7028 | #include "clang/AST/TypeNodes.inc" |
| 7029 | break; |
| 7030 | } |
| 7031 | } |
| 7032 | |
| 7033 | /// Mark the template parameters that are used by this |
| 7034 | /// template argument. |
| 7035 | static void |
| 7036 | MarkUsedTemplateParameters(ASTContext &Ctx, |
| 7037 | const TemplateArgument &TemplateArg, |
| 7038 | bool OnlyDeduced, |
| 7039 | unsigned Depth, |
| 7040 | llvm::SmallBitVector &Used) { |
| 7041 | switch (TemplateArg.getKind()) { |
| 7042 | case TemplateArgument::Null: |
| 7043 | case TemplateArgument::Integral: |
| 7044 | case TemplateArgument::Declaration: |
| 7045 | case TemplateArgument::NullPtr: |
| 7046 | case TemplateArgument::StructuralValue: |
| 7047 | break; |
| 7048 | |
| 7049 | case TemplateArgument::Type: |
| 7050 | MarkUsedTemplateParameters(Ctx, T: TemplateArg.getAsType(), OnlyDeduced, |
| 7051 | Depth, Used); |
| 7052 | break; |
| 7053 | |
| 7054 | case TemplateArgument::Template: |
| 7055 | case TemplateArgument::TemplateExpansion: |
| 7056 | MarkUsedTemplateParameters(Ctx, |
| 7057 | Name: TemplateArg.getAsTemplateOrTemplatePattern(), |
| 7058 | OnlyDeduced, Depth, Used); |
| 7059 | break; |
| 7060 | |
| 7061 | case TemplateArgument::Expression: |
| 7062 | MarkUsedTemplateParameters(Ctx, E: TemplateArg.getAsExpr(), OnlyDeduced, |
| 7063 | Depth, Used); |
| 7064 | break; |
| 7065 | |
| 7066 | case TemplateArgument::Pack: |
| 7067 | for (const auto &P : TemplateArg.pack_elements()) |
| 7068 | MarkUsedTemplateParameters(Ctx, TemplateArg: P, OnlyDeduced, Depth, Used); |
| 7069 | break; |
| 7070 | } |
| 7071 | } |
| 7072 | |
| 7073 | void |
| 7074 | Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced, |
| 7075 | unsigned Depth, |
| 7076 | llvm::SmallBitVector &Used) { |
| 7077 | ::MarkUsedTemplateParameters(Ctx&: Context, E, OnlyDeduced, Depth, Used); |
| 7078 | } |
| 7079 | |
| 7080 | void |
| 7081 | Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, |
| 7082 | bool OnlyDeduced, unsigned Depth, |
| 7083 | llvm::SmallBitVector &Used) { |
| 7084 | // C++0x [temp.deduct.type]p9: |
| 7085 | // If the template argument list of P contains a pack expansion that is not |
| 7086 | // the last template argument, the entire template argument list is a |
| 7087 | // non-deduced context. |
| 7088 | if (OnlyDeduced && |
| 7089 | hasPackExpansionBeforeEnd(Args: TemplateArgs.asArray())) |
| 7090 | return; |
| 7091 | |
| 7092 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
| 7093 | ::MarkUsedTemplateParameters(Ctx&: Context, TemplateArg: TemplateArgs[I], OnlyDeduced, |
| 7094 | Depth, Used); |
| 7095 | } |
| 7096 | |
| 7097 | void Sema::MarkUsedTemplateParameters(ArrayRef<TemplateArgument> TemplateArgs, |
| 7098 | unsigned Depth, |
| 7099 | llvm::SmallBitVector &Used) { |
| 7100 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
| 7101 | ::MarkUsedTemplateParameters(Ctx&: Context, TemplateArg: TemplateArgs[I], |
| 7102 | /*OnlyDeduced=*/false, Depth, Used); |
| 7103 | } |
| 7104 | |
| 7105 | void Sema::MarkDeducedTemplateParameters( |
| 7106 | ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, |
| 7107 | llvm::SmallBitVector &Deduced) { |
| 7108 | TemplateParameterList *TemplateParams |
| 7109 | = FunctionTemplate->getTemplateParameters(); |
| 7110 | Deduced.clear(); |
| 7111 | Deduced.resize(N: TemplateParams->size()); |
| 7112 | |
| 7113 | FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| 7114 | for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) |
| 7115 | ::MarkUsedTemplateParameters(Ctx, T: Function->getParamDecl(i: I)->getType(), |
| 7116 | OnlyDeduced: true, Depth: TemplateParams->getDepth(), Used&: Deduced); |
| 7117 | } |
| 7118 | |
| 7119 | bool hasDeducibleTemplateParameters(Sema &S, |
| 7120 | FunctionTemplateDecl *FunctionTemplate, |
| 7121 | QualType T) { |
| 7122 | if (!T->isDependentType()) |
| 7123 | return false; |
| 7124 | |
| 7125 | TemplateParameterList *TemplateParams |
| 7126 | = FunctionTemplate->getTemplateParameters(); |
| 7127 | llvm::SmallBitVector Deduced(TemplateParams->size()); |
| 7128 | ::MarkUsedTemplateParameters(Ctx&: S.Context, T, OnlyDeduced: true, Depth: TemplateParams->getDepth(), |
| 7129 | Used&: Deduced); |
| 7130 | |
| 7131 | return Deduced.any(); |
| 7132 | } |
| 7133 | |