| 1 | //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements type-related semantic analysis. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "TypeLocBuilder.h" |
| 14 | #include "clang/AST/ASTConsumer.h" |
| 15 | #include "clang/AST/ASTContext.h" |
| 16 | #include "clang/AST/ASTMutationListener.h" |
| 17 | #include "clang/AST/ASTStructuralEquivalence.h" |
| 18 | #include "clang/AST/CXXInheritance.h" |
| 19 | #include "clang/AST/Decl.h" |
| 20 | #include "clang/AST/DeclObjC.h" |
| 21 | #include "clang/AST/DeclTemplate.h" |
| 22 | #include "clang/AST/Expr.h" |
| 23 | #include "clang/AST/ExprObjC.h" |
| 24 | #include "clang/AST/LocInfoType.h" |
| 25 | #include "clang/AST/Type.h" |
| 26 | #include "clang/AST/TypeLoc.h" |
| 27 | #include "clang/AST/TypeLocVisitor.h" |
| 28 | #include "clang/Basic/LangOptions.h" |
| 29 | #include "clang/Basic/SourceLocation.h" |
| 30 | #include "clang/Basic/Specifiers.h" |
| 31 | #include "clang/Basic/TargetInfo.h" |
| 32 | #include "clang/Lex/Preprocessor.h" |
| 33 | #include "clang/Sema/DeclSpec.h" |
| 34 | #include "clang/Sema/DelayedDiagnostic.h" |
| 35 | #include "clang/Sema/Lookup.h" |
| 36 | #include "clang/Sema/ParsedAttr.h" |
| 37 | #include "clang/Sema/ParsedTemplate.h" |
| 38 | #include "clang/Sema/ScopeInfo.h" |
| 39 | #include "clang/Sema/SemaCUDA.h" |
| 40 | #include "clang/Sema/SemaHLSL.h" |
| 41 | #include "clang/Sema/SemaObjC.h" |
| 42 | #include "clang/Sema/SemaOpenMP.h" |
| 43 | #include "clang/Sema/Template.h" |
| 44 | #include "clang/Sema/TemplateInstCallback.h" |
| 45 | #include "llvm/ADT/ArrayRef.h" |
| 46 | #include "llvm/ADT/STLForwardCompat.h" |
| 47 | #include "llvm/ADT/StringExtras.h" |
| 48 | #include "llvm/IR/DerivedTypes.h" |
| 49 | #include "llvm/Support/ErrorHandling.h" |
| 50 | #include <bitset> |
| 51 | #include <optional> |
| 52 | |
| 53 | using namespace clang; |
| 54 | |
| 55 | enum TypeDiagSelector { |
| 56 | TDS_Function, |
| 57 | TDS_Pointer, |
| 58 | TDS_ObjCObjOrBlock |
| 59 | }; |
| 60 | |
| 61 | /// isOmittedBlockReturnType - Return true if this declarator is missing a |
| 62 | /// return type because this is a omitted return type on a block literal. |
| 63 | static bool isOmittedBlockReturnType(const Declarator &D) { |
| 64 | if (D.getContext() != DeclaratorContext::BlockLiteral || |
| 65 | D.getDeclSpec().hasTypeSpecifier()) |
| 66 | return false; |
| 67 | |
| 68 | if (D.getNumTypeObjects() == 0) |
| 69 | return true; // ^{ ... } |
| 70 | |
| 71 | if (D.getNumTypeObjects() == 1 && |
| 72 | D.getTypeObject(i: 0).Kind == DeclaratorChunk::Function) |
| 73 | return true; // ^(int X, float Y) { ... } |
| 74 | |
| 75 | return false; |
| 76 | } |
| 77 | |
| 78 | /// diagnoseBadTypeAttribute - Diagnoses a type attribute which |
| 79 | /// doesn't apply to the given type. |
| 80 | static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr, |
| 81 | QualType type) { |
| 82 | TypeDiagSelector WhichType; |
| 83 | bool useExpansionLoc = true; |
| 84 | switch (attr.getKind()) { |
| 85 | case ParsedAttr::AT_ObjCGC: |
| 86 | WhichType = TDS_Pointer; |
| 87 | break; |
| 88 | case ParsedAttr::AT_ObjCOwnership: |
| 89 | WhichType = TDS_ObjCObjOrBlock; |
| 90 | break; |
| 91 | default: |
| 92 | // Assume everything else was a function attribute. |
| 93 | WhichType = TDS_Function; |
| 94 | useExpansionLoc = false; |
| 95 | break; |
| 96 | } |
| 97 | |
| 98 | SourceLocation loc = attr.getLoc(); |
| 99 | StringRef name = attr.getAttrName()->getName(); |
| 100 | |
| 101 | // The GC attributes are usually written with macros; special-case them. |
| 102 | IdentifierInfo *II = |
| 103 | attr.isArgIdent(Arg: 0) ? attr.getArgAsIdent(Arg: 0)->getIdentifierInfo() : nullptr; |
| 104 | if (useExpansionLoc && loc.isMacroID() && II) { |
| 105 | if (II->isStr(Str: "strong" )) { |
| 106 | if (S.findMacroSpelling(loc, name: "__strong" )) name = "__strong" ; |
| 107 | } else if (II->isStr(Str: "weak" )) { |
| 108 | if (S.findMacroSpelling(loc, name: "__weak" )) name = "__weak" ; |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | S.Diag(Loc: loc, DiagID: attr.isRegularKeywordAttribute() |
| 113 | ? diag::err_type_attribute_wrong_type |
| 114 | : diag::warn_type_attribute_wrong_type) |
| 115 | << name << WhichType << type; |
| 116 | } |
| 117 | |
| 118 | // objc_gc applies to Objective-C pointers or, otherwise, to the |
| 119 | // smallest available pointer type (i.e. 'void*' in 'void**'). |
| 120 | #define OBJC_POINTER_TYPE_ATTRS_CASELIST \ |
| 121 | case ParsedAttr::AT_ObjCGC: \ |
| 122 | case ParsedAttr::AT_ObjCOwnership |
| 123 | |
| 124 | // Calling convention attributes. |
| 125 | #define CALLING_CONV_ATTRS_CASELIST \ |
| 126 | case ParsedAttr::AT_CDecl: \ |
| 127 | case ParsedAttr::AT_FastCall: \ |
| 128 | case ParsedAttr::AT_StdCall: \ |
| 129 | case ParsedAttr::AT_ThisCall: \ |
| 130 | case ParsedAttr::AT_RegCall: \ |
| 131 | case ParsedAttr::AT_Pascal: \ |
| 132 | case ParsedAttr::AT_SwiftCall: \ |
| 133 | case ParsedAttr::AT_SwiftAsyncCall: \ |
| 134 | case ParsedAttr::AT_VectorCall: \ |
| 135 | case ParsedAttr::AT_AArch64VectorPcs: \ |
| 136 | case ParsedAttr::AT_AArch64SVEPcs: \ |
| 137 | case ParsedAttr::AT_DeviceKernel: \ |
| 138 | case ParsedAttr::AT_MSABI: \ |
| 139 | case ParsedAttr::AT_SysVABI: \ |
| 140 | case ParsedAttr::AT_Pcs: \ |
| 141 | case ParsedAttr::AT_IntelOclBicc: \ |
| 142 | case ParsedAttr::AT_PreserveMost: \ |
| 143 | case ParsedAttr::AT_PreserveAll: \ |
| 144 | case ParsedAttr::AT_M68kRTD: \ |
| 145 | case ParsedAttr::AT_PreserveNone: \ |
| 146 | case ParsedAttr::AT_RISCVVectorCC: \ |
| 147 | case ParsedAttr::AT_RISCVVLSCC |
| 148 | |
| 149 | // Function type attributes. |
| 150 | #define FUNCTION_TYPE_ATTRS_CASELIST \ |
| 151 | case ParsedAttr::AT_NSReturnsRetained: \ |
| 152 | case ParsedAttr::AT_NoReturn: \ |
| 153 | case ParsedAttr::AT_NonBlocking: \ |
| 154 | case ParsedAttr::AT_NonAllocating: \ |
| 155 | case ParsedAttr::AT_Blocking: \ |
| 156 | case ParsedAttr::AT_Allocating: \ |
| 157 | case ParsedAttr::AT_Regparm: \ |
| 158 | case ParsedAttr::AT_CFIUncheckedCallee: \ |
| 159 | case ParsedAttr::AT_CmseNSCall: \ |
| 160 | case ParsedAttr::AT_ArmStreaming: \ |
| 161 | case ParsedAttr::AT_ArmStreamingCompatible: \ |
| 162 | case ParsedAttr::AT_ArmPreserves: \ |
| 163 | case ParsedAttr::AT_ArmIn: \ |
| 164 | case ParsedAttr::AT_ArmOut: \ |
| 165 | case ParsedAttr::AT_ArmInOut: \ |
| 166 | case ParsedAttr::AT_ArmAgnostic: \ |
| 167 | case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \ |
| 168 | case ParsedAttr::AT_AnyX86NoCfCheck: \ |
| 169 | CALLING_CONV_ATTRS_CASELIST |
| 170 | |
| 171 | // Microsoft-specific type qualifiers. |
| 172 | #define MS_TYPE_ATTRS_CASELIST \ |
| 173 | case ParsedAttr::AT_Ptr32: \ |
| 174 | case ParsedAttr::AT_Ptr64: \ |
| 175 | case ParsedAttr::AT_SPtr: \ |
| 176 | case ParsedAttr::AT_UPtr |
| 177 | |
| 178 | // Nullability qualifiers. |
| 179 | #define NULLABILITY_TYPE_ATTRS_CASELIST \ |
| 180 | case ParsedAttr::AT_TypeNonNull: \ |
| 181 | case ParsedAttr::AT_TypeNullable: \ |
| 182 | case ParsedAttr::AT_TypeNullableResult: \ |
| 183 | case ParsedAttr::AT_TypeNullUnspecified |
| 184 | |
| 185 | namespace { |
| 186 | /// An object which stores processing state for the entire |
| 187 | /// GetTypeForDeclarator process. |
| 188 | class TypeProcessingState { |
| 189 | Sema &sema; |
| 190 | |
| 191 | /// The declarator being processed. |
| 192 | Declarator &declarator; |
| 193 | |
| 194 | /// The index of the declarator chunk we're currently processing. |
| 195 | /// May be the total number of valid chunks, indicating the |
| 196 | /// DeclSpec. |
| 197 | unsigned chunkIndex; |
| 198 | |
| 199 | /// The original set of attributes on the DeclSpec. |
| 200 | SmallVector<ParsedAttr *, 2> savedAttrs; |
| 201 | |
| 202 | /// A list of attributes to diagnose the uselessness of when the |
| 203 | /// processing is complete. |
| 204 | SmallVector<ParsedAttr *, 2> ignoredTypeAttrs; |
| 205 | |
| 206 | /// Attributes corresponding to AttributedTypeLocs that we have not yet |
| 207 | /// populated. |
| 208 | // FIXME: The two-phase mechanism by which we construct Types and fill |
| 209 | // their TypeLocs makes it hard to correctly assign these. We keep the |
| 210 | // attributes in creation order as an attempt to make them line up |
| 211 | // properly. |
| 212 | using TypeAttrPair = std::pair<const AttributedType*, const Attr*>; |
| 213 | SmallVector<TypeAttrPair, 8> AttrsForTypes; |
| 214 | bool AttrsForTypesSorted = true; |
| 215 | |
| 216 | /// MacroQualifiedTypes mapping to macro expansion locations that will be |
| 217 | /// stored in a MacroQualifiedTypeLoc. |
| 218 | llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros; |
| 219 | |
| 220 | /// Flag to indicate we parsed a noderef attribute. This is used for |
| 221 | /// validating that noderef was used on a pointer or array. |
| 222 | bool parsedNoDeref; |
| 223 | |
| 224 | // Flag to indicate that we already parsed a HLSL parameter modifier |
| 225 | // attribute. This prevents double-mutating the type. |
| 226 | bool ParsedHLSLParamMod; |
| 227 | |
| 228 | public: |
| 229 | TypeProcessingState(Sema &sema, Declarator &declarator) |
| 230 | : sema(sema), declarator(declarator), |
| 231 | chunkIndex(declarator.getNumTypeObjects()), parsedNoDeref(false), |
| 232 | ParsedHLSLParamMod(false) {} |
| 233 | |
| 234 | Sema &getSema() const { |
| 235 | return sema; |
| 236 | } |
| 237 | |
| 238 | Declarator &getDeclarator() const { |
| 239 | return declarator; |
| 240 | } |
| 241 | |
| 242 | bool isProcessingDeclSpec() const { |
| 243 | return chunkIndex == declarator.getNumTypeObjects(); |
| 244 | } |
| 245 | |
| 246 | unsigned getCurrentChunkIndex() const { |
| 247 | return chunkIndex; |
| 248 | } |
| 249 | |
| 250 | void setCurrentChunkIndex(unsigned idx) { |
| 251 | assert(idx <= declarator.getNumTypeObjects()); |
| 252 | chunkIndex = idx; |
| 253 | } |
| 254 | |
| 255 | ParsedAttributesView &getCurrentAttributes() const { |
| 256 | if (isProcessingDeclSpec()) |
| 257 | return getMutableDeclSpec().getAttributes(); |
| 258 | return declarator.getTypeObject(i: chunkIndex).getAttrs(); |
| 259 | } |
| 260 | |
| 261 | /// Save the current set of attributes on the DeclSpec. |
| 262 | void saveDeclSpecAttrs() { |
| 263 | // Don't try to save them multiple times. |
| 264 | if (!savedAttrs.empty()) |
| 265 | return; |
| 266 | |
| 267 | DeclSpec &spec = getMutableDeclSpec(); |
| 268 | llvm::append_range(C&: savedAttrs, |
| 269 | R: llvm::make_pointer_range(Range&: spec.getAttributes())); |
| 270 | } |
| 271 | |
| 272 | /// Record that we had nowhere to put the given type attribute. |
| 273 | /// We will diagnose such attributes later. |
| 274 | void addIgnoredTypeAttr(ParsedAttr &attr) { |
| 275 | ignoredTypeAttrs.push_back(Elt: &attr); |
| 276 | } |
| 277 | |
| 278 | /// Diagnose all the ignored type attributes, given that the |
| 279 | /// declarator worked out to the given type. |
| 280 | void diagnoseIgnoredTypeAttrs(QualType type) const { |
| 281 | for (auto *Attr : ignoredTypeAttrs) |
| 282 | diagnoseBadTypeAttribute(S&: getSema(), attr: *Attr, type); |
| 283 | } |
| 284 | |
| 285 | /// Get an attributed type for the given attribute, and remember the Attr |
| 286 | /// object so that we can attach it to the AttributedTypeLoc. |
| 287 | QualType getAttributedType(Attr *A, QualType ModifiedType, |
| 288 | QualType EquivType) { |
| 289 | QualType T = |
| 290 | sema.Context.getAttributedType(attr: A, modifiedType: ModifiedType, equivalentType: EquivType); |
| 291 | AttrsForTypes.push_back(Elt: {cast<AttributedType>(Val: T.getTypePtr()), A}); |
| 292 | AttrsForTypesSorted = false; |
| 293 | return T; |
| 294 | } |
| 295 | |
| 296 | /// Get a BTFTagAttributed type for the btf_type_tag attribute. |
| 297 | QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr, |
| 298 | QualType WrappedType) { |
| 299 | return sema.Context.getBTFTagAttributedType(BTFAttr, Wrapped: WrappedType); |
| 300 | } |
| 301 | |
| 302 | /// Completely replace the \c auto in \p TypeWithAuto by |
| 303 | /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if |
| 304 | /// necessary. |
| 305 | QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) { |
| 306 | QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement); |
| 307 | if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) { |
| 308 | // Attributed type still should be an attributed type after replacement. |
| 309 | auto *NewAttrTy = cast<AttributedType>(Val: T.getTypePtr()); |
| 310 | for (TypeAttrPair &A : AttrsForTypes) { |
| 311 | if (A.first == AttrTy) |
| 312 | A.first = NewAttrTy; |
| 313 | } |
| 314 | AttrsForTypesSorted = false; |
| 315 | } |
| 316 | return T; |
| 317 | } |
| 318 | |
| 319 | /// Extract and remove the Attr* for a given attributed type. |
| 320 | const Attr *takeAttrForAttributedType(const AttributedType *AT) { |
| 321 | if (!AttrsForTypesSorted) { |
| 322 | llvm::stable_sort(Range&: AttrsForTypes, C: llvm::less_first()); |
| 323 | AttrsForTypesSorted = true; |
| 324 | } |
| 325 | |
| 326 | // FIXME: This is quadratic if we have lots of reuses of the same |
| 327 | // attributed type. |
| 328 | for (auto It = llvm::partition_point( |
| 329 | Range&: AttrsForTypes, |
| 330 | P: [=](const TypeAttrPair &A) { return A.first < AT; }); |
| 331 | It != AttrsForTypes.end() && It->first == AT; ++It) { |
| 332 | if (It->second) { |
| 333 | const Attr *Result = It->second; |
| 334 | It->second = nullptr; |
| 335 | return Result; |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | llvm_unreachable("no Attr* for AttributedType*" ); |
| 340 | } |
| 341 | |
| 342 | SourceLocation |
| 343 | getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const { |
| 344 | auto FoundLoc = LocsForMacros.find(Val: MQT); |
| 345 | assert(FoundLoc != LocsForMacros.end() && |
| 346 | "Unable to find macro expansion location for MacroQualifedType" ); |
| 347 | return FoundLoc->second; |
| 348 | } |
| 349 | |
| 350 | void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT, |
| 351 | SourceLocation Loc) { |
| 352 | LocsForMacros[MQT] = Loc; |
| 353 | } |
| 354 | |
| 355 | void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; } |
| 356 | |
| 357 | bool didParseNoDeref() const { return parsedNoDeref; } |
| 358 | |
| 359 | void setParsedHLSLParamMod(bool Parsed) { ParsedHLSLParamMod = Parsed; } |
| 360 | |
| 361 | bool didParseHLSLParamMod() const { return ParsedHLSLParamMod; } |
| 362 | |
| 363 | ~TypeProcessingState() { |
| 364 | if (savedAttrs.empty()) |
| 365 | return; |
| 366 | |
| 367 | getMutableDeclSpec().getAttributes().clearListOnly(); |
| 368 | for (ParsedAttr *AL : savedAttrs) |
| 369 | getMutableDeclSpec().getAttributes().addAtEnd(newAttr: AL); |
| 370 | } |
| 371 | |
| 372 | private: |
| 373 | DeclSpec &getMutableDeclSpec() const { |
| 374 | return const_cast<DeclSpec&>(declarator.getDeclSpec()); |
| 375 | } |
| 376 | }; |
| 377 | } // end anonymous namespace |
| 378 | |
| 379 | static void moveAttrFromListToList(ParsedAttr &attr, |
| 380 | ParsedAttributesView &fromList, |
| 381 | ParsedAttributesView &toList) { |
| 382 | fromList.remove(ToBeRemoved: &attr); |
| 383 | toList.addAtEnd(newAttr: &attr); |
| 384 | } |
| 385 | |
| 386 | /// The location of a type attribute. |
| 387 | enum TypeAttrLocation { |
| 388 | /// The attribute is in the decl-specifier-seq. |
| 389 | TAL_DeclSpec, |
| 390 | /// The attribute is part of a DeclaratorChunk. |
| 391 | TAL_DeclChunk, |
| 392 | /// The attribute is immediately after the declaration's name. |
| 393 | TAL_DeclName |
| 394 | }; |
| 395 | |
| 396 | static void |
| 397 | processTypeAttrs(TypeProcessingState &state, QualType &type, |
| 398 | TypeAttrLocation TAL, const ParsedAttributesView &attrs, |
| 399 | CUDAFunctionTarget CFT = CUDAFunctionTarget::HostDevice); |
| 400 | |
| 401 | static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr, |
| 402 | QualType &type, CUDAFunctionTarget CFT); |
| 403 | |
| 404 | static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state, |
| 405 | ParsedAttr &attr, QualType &type); |
| 406 | |
| 407 | static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr, |
| 408 | QualType &type); |
| 409 | |
| 410 | static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state, |
| 411 | ParsedAttr &attr, QualType &type); |
| 412 | |
| 413 | static bool handleObjCPointerTypeAttr(TypeProcessingState &state, |
| 414 | ParsedAttr &attr, QualType &type) { |
| 415 | if (attr.getKind() == ParsedAttr::AT_ObjCGC) |
| 416 | return handleObjCGCTypeAttr(state, attr, type); |
| 417 | assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership); |
| 418 | return handleObjCOwnershipTypeAttr(state, attr, type); |
| 419 | } |
| 420 | |
| 421 | /// Given the index of a declarator chunk, check whether that chunk |
| 422 | /// directly specifies the return type of a function and, if so, find |
| 423 | /// an appropriate place for it. |
| 424 | /// |
| 425 | /// \param i - a notional index which the search will start |
| 426 | /// immediately inside |
| 427 | /// |
| 428 | /// \param onlyBlockPointers Whether we should only look into block |
| 429 | /// pointer types (vs. all pointer types). |
| 430 | static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator, |
| 431 | unsigned i, |
| 432 | bool onlyBlockPointers) { |
| 433 | assert(i <= declarator.getNumTypeObjects()); |
| 434 | |
| 435 | DeclaratorChunk *result = nullptr; |
| 436 | |
| 437 | // First, look inwards past parens for a function declarator. |
| 438 | for (; i != 0; --i) { |
| 439 | DeclaratorChunk &fnChunk = declarator.getTypeObject(i: i-1); |
| 440 | switch (fnChunk.Kind) { |
| 441 | case DeclaratorChunk::Paren: |
| 442 | continue; |
| 443 | |
| 444 | // If we find anything except a function, bail out. |
| 445 | case DeclaratorChunk::Pointer: |
| 446 | case DeclaratorChunk::BlockPointer: |
| 447 | case DeclaratorChunk::Array: |
| 448 | case DeclaratorChunk::Reference: |
| 449 | case DeclaratorChunk::MemberPointer: |
| 450 | case DeclaratorChunk::Pipe: |
| 451 | return result; |
| 452 | |
| 453 | // If we do find a function declarator, scan inwards from that, |
| 454 | // looking for a (block-)pointer declarator. |
| 455 | case DeclaratorChunk::Function: |
| 456 | for (--i; i != 0; --i) { |
| 457 | DeclaratorChunk &ptrChunk = declarator.getTypeObject(i: i-1); |
| 458 | switch (ptrChunk.Kind) { |
| 459 | case DeclaratorChunk::Paren: |
| 460 | case DeclaratorChunk::Array: |
| 461 | case DeclaratorChunk::Function: |
| 462 | case DeclaratorChunk::Reference: |
| 463 | case DeclaratorChunk::Pipe: |
| 464 | continue; |
| 465 | |
| 466 | case DeclaratorChunk::MemberPointer: |
| 467 | case DeclaratorChunk::Pointer: |
| 468 | if (onlyBlockPointers) |
| 469 | continue; |
| 470 | |
| 471 | [[fallthrough]]; |
| 472 | |
| 473 | case DeclaratorChunk::BlockPointer: |
| 474 | result = &ptrChunk; |
| 475 | goto continue_outer; |
| 476 | } |
| 477 | llvm_unreachable("bad declarator chunk kind" ); |
| 478 | } |
| 479 | |
| 480 | // If we run out of declarators doing that, we're done. |
| 481 | return result; |
| 482 | } |
| 483 | llvm_unreachable("bad declarator chunk kind" ); |
| 484 | |
| 485 | // Okay, reconsider from our new point. |
| 486 | continue_outer: ; |
| 487 | } |
| 488 | |
| 489 | // Ran out of chunks, bail out. |
| 490 | return result; |
| 491 | } |
| 492 | |
| 493 | /// Given that an objc_gc attribute was written somewhere on a |
| 494 | /// declaration *other* than on the declarator itself (for which, use |
| 495 | /// distributeObjCPointerTypeAttrFromDeclarator), and given that it |
| 496 | /// didn't apply in whatever position it was written in, try to move |
| 497 | /// it to a more appropriate position. |
| 498 | static void distributeObjCPointerTypeAttr(TypeProcessingState &state, |
| 499 | ParsedAttr &attr, QualType type) { |
| 500 | Declarator &declarator = state.getDeclarator(); |
| 501 | |
| 502 | // Move it to the outermost normal or block pointer declarator. |
| 503 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { |
| 504 | DeclaratorChunk &chunk = declarator.getTypeObject(i: i-1); |
| 505 | switch (chunk.Kind) { |
| 506 | case DeclaratorChunk::Pointer: |
| 507 | case DeclaratorChunk::BlockPointer: { |
| 508 | // But don't move an ARC ownership attribute to the return type |
| 509 | // of a block. |
| 510 | DeclaratorChunk *destChunk = nullptr; |
| 511 | if (state.isProcessingDeclSpec() && |
| 512 | attr.getKind() == ParsedAttr::AT_ObjCOwnership) |
| 513 | destChunk = maybeMovePastReturnType(declarator, i: i - 1, |
| 514 | /*onlyBlockPointers=*/true); |
| 515 | if (!destChunk) destChunk = &chunk; |
| 516 | |
| 517 | moveAttrFromListToList(attr, fromList&: state.getCurrentAttributes(), |
| 518 | toList&: destChunk->getAttrs()); |
| 519 | return; |
| 520 | } |
| 521 | |
| 522 | case DeclaratorChunk::Paren: |
| 523 | case DeclaratorChunk::Array: |
| 524 | continue; |
| 525 | |
| 526 | // We may be starting at the return type of a block. |
| 527 | case DeclaratorChunk::Function: |
| 528 | if (state.isProcessingDeclSpec() && |
| 529 | attr.getKind() == ParsedAttr::AT_ObjCOwnership) { |
| 530 | if (DeclaratorChunk *dest = maybeMovePastReturnType( |
| 531 | declarator, i, |
| 532 | /*onlyBlockPointers=*/true)) { |
| 533 | moveAttrFromListToList(attr, fromList&: state.getCurrentAttributes(), |
| 534 | toList&: dest->getAttrs()); |
| 535 | return; |
| 536 | } |
| 537 | } |
| 538 | goto error; |
| 539 | |
| 540 | // Don't walk through these. |
| 541 | case DeclaratorChunk::Reference: |
| 542 | case DeclaratorChunk::MemberPointer: |
| 543 | case DeclaratorChunk::Pipe: |
| 544 | goto error; |
| 545 | } |
| 546 | } |
| 547 | error: |
| 548 | |
| 549 | diagnoseBadTypeAttribute(S&: state.getSema(), attr, type); |
| 550 | } |
| 551 | |
| 552 | /// Distribute an objc_gc type attribute that was written on the |
| 553 | /// declarator. |
| 554 | static void distributeObjCPointerTypeAttrFromDeclarator( |
| 555 | TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) { |
| 556 | Declarator &declarator = state.getDeclarator(); |
| 557 | |
| 558 | // objc_gc goes on the innermost pointer to something that's not a |
| 559 | // pointer. |
| 560 | unsigned innermost = -1U; |
| 561 | bool considerDeclSpec = true; |
| 562 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { |
| 563 | DeclaratorChunk &chunk = declarator.getTypeObject(i); |
| 564 | switch (chunk.Kind) { |
| 565 | case DeclaratorChunk::Pointer: |
| 566 | case DeclaratorChunk::BlockPointer: |
| 567 | innermost = i; |
| 568 | continue; |
| 569 | |
| 570 | case DeclaratorChunk::Reference: |
| 571 | case DeclaratorChunk::MemberPointer: |
| 572 | case DeclaratorChunk::Paren: |
| 573 | case DeclaratorChunk::Array: |
| 574 | case DeclaratorChunk::Pipe: |
| 575 | continue; |
| 576 | |
| 577 | case DeclaratorChunk::Function: |
| 578 | considerDeclSpec = false; |
| 579 | goto done; |
| 580 | } |
| 581 | } |
| 582 | done: |
| 583 | |
| 584 | // That might actually be the decl spec if we weren't blocked by |
| 585 | // anything in the declarator. |
| 586 | if (considerDeclSpec) { |
| 587 | if (handleObjCPointerTypeAttr(state, attr, type&: declSpecType)) { |
| 588 | // Splice the attribute into the decl spec. Prevents the |
| 589 | // attribute from being applied multiple times and gives |
| 590 | // the source-location-filler something to work with. |
| 591 | state.saveDeclSpecAttrs(); |
| 592 | declarator.getMutableDeclSpec().getAttributes().takeOneFrom( |
| 593 | Other&: declarator.getAttributes(), PA: &attr); |
| 594 | return; |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | // Otherwise, if we found an appropriate chunk, splice the attribute |
| 599 | // into it. |
| 600 | if (innermost != -1U) { |
| 601 | moveAttrFromListToList(attr, fromList&: declarator.getAttributes(), |
| 602 | toList&: declarator.getTypeObject(i: innermost).getAttrs()); |
| 603 | return; |
| 604 | } |
| 605 | |
| 606 | // Otherwise, diagnose when we're done building the type. |
| 607 | declarator.getAttributes().remove(ToBeRemoved: &attr); |
| 608 | state.addIgnoredTypeAttr(attr); |
| 609 | } |
| 610 | |
| 611 | /// A function type attribute was written somewhere in a declaration |
| 612 | /// *other* than on the declarator itself or in the decl spec. Given |
| 613 | /// that it didn't apply in whatever position it was written in, try |
| 614 | /// to move it to a more appropriate position. |
| 615 | static void distributeFunctionTypeAttr(TypeProcessingState &state, |
| 616 | ParsedAttr &attr, QualType type) { |
| 617 | Declarator &declarator = state.getDeclarator(); |
| 618 | |
| 619 | // Try to push the attribute from the return type of a function to |
| 620 | // the function itself. |
| 621 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { |
| 622 | DeclaratorChunk &chunk = declarator.getTypeObject(i: i-1); |
| 623 | switch (chunk.Kind) { |
| 624 | case DeclaratorChunk::Function: |
| 625 | moveAttrFromListToList(attr, fromList&: state.getCurrentAttributes(), |
| 626 | toList&: chunk.getAttrs()); |
| 627 | return; |
| 628 | |
| 629 | case DeclaratorChunk::Paren: |
| 630 | case DeclaratorChunk::Pointer: |
| 631 | case DeclaratorChunk::BlockPointer: |
| 632 | case DeclaratorChunk::Array: |
| 633 | case DeclaratorChunk::Reference: |
| 634 | case DeclaratorChunk::MemberPointer: |
| 635 | case DeclaratorChunk::Pipe: |
| 636 | continue; |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | diagnoseBadTypeAttribute(S&: state.getSema(), attr, type); |
| 641 | } |
| 642 | |
| 643 | /// Try to distribute a function type attribute to the innermost |
| 644 | /// function chunk or type. Returns true if the attribute was |
| 645 | /// distributed, false if no location was found. |
| 646 | static bool distributeFunctionTypeAttrToInnermost( |
| 647 | TypeProcessingState &state, ParsedAttr &attr, |
| 648 | ParsedAttributesView &attrList, QualType &declSpecType, |
| 649 | CUDAFunctionTarget CFT) { |
| 650 | Declarator &declarator = state.getDeclarator(); |
| 651 | |
| 652 | // Put it on the innermost function chunk, if there is one. |
| 653 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { |
| 654 | DeclaratorChunk &chunk = declarator.getTypeObject(i); |
| 655 | if (chunk.Kind != DeclaratorChunk::Function) continue; |
| 656 | |
| 657 | moveAttrFromListToList(attr, fromList&: attrList, toList&: chunk.getAttrs()); |
| 658 | return true; |
| 659 | } |
| 660 | |
| 661 | return handleFunctionTypeAttr(state, attr, type&: declSpecType, CFT); |
| 662 | } |
| 663 | |
| 664 | /// A function type attribute was written in the decl spec. Try to |
| 665 | /// apply it somewhere. |
| 666 | static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state, |
| 667 | ParsedAttr &attr, |
| 668 | QualType &declSpecType, |
| 669 | CUDAFunctionTarget CFT) { |
| 670 | state.saveDeclSpecAttrs(); |
| 671 | |
| 672 | // Try to distribute to the innermost. |
| 673 | if (distributeFunctionTypeAttrToInnermost( |
| 674 | state, attr, attrList&: state.getCurrentAttributes(), declSpecType, CFT)) |
| 675 | return; |
| 676 | |
| 677 | // If that failed, diagnose the bad attribute when the declarator is |
| 678 | // fully built. |
| 679 | state.addIgnoredTypeAttr(attr); |
| 680 | } |
| 681 | |
| 682 | /// A function type attribute was written on the declarator or declaration. |
| 683 | /// Try to apply it somewhere. |
| 684 | /// `Attrs` is the attribute list containing the declaration (either of the |
| 685 | /// declarator or the declaration). |
| 686 | static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state, |
| 687 | ParsedAttr &attr, |
| 688 | QualType &declSpecType, |
| 689 | CUDAFunctionTarget CFT) { |
| 690 | Declarator &declarator = state.getDeclarator(); |
| 691 | |
| 692 | // Try to distribute to the innermost. |
| 693 | if (distributeFunctionTypeAttrToInnermost( |
| 694 | state, attr, attrList&: declarator.getAttributes(), declSpecType, CFT)) |
| 695 | return; |
| 696 | |
| 697 | // If that failed, diagnose the bad attribute when the declarator is |
| 698 | // fully built. |
| 699 | declarator.getAttributes().remove(ToBeRemoved: &attr); |
| 700 | state.addIgnoredTypeAttr(attr); |
| 701 | } |
| 702 | |
| 703 | /// Given that there are attributes written on the declarator or declaration |
| 704 | /// itself, try to distribute any type attributes to the appropriate |
| 705 | /// declarator chunk. |
| 706 | /// |
| 707 | /// These are attributes like the following: |
| 708 | /// int f ATTR; |
| 709 | /// int (f ATTR)(); |
| 710 | /// but not necessarily this: |
| 711 | /// int f() ATTR; |
| 712 | /// |
| 713 | /// `Attrs` is the attribute list containing the declaration (either of the |
| 714 | /// declarator or the declaration). |
| 715 | static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state, |
| 716 | QualType &declSpecType, |
| 717 | CUDAFunctionTarget CFT) { |
| 718 | // The called functions in this loop actually remove things from the current |
| 719 | // list, so iterating over the existing list isn't possible. Instead, make a |
| 720 | // non-owning copy and iterate over that. |
| 721 | ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()}; |
| 722 | for (ParsedAttr &attr : AttrsCopy) { |
| 723 | // Do not distribute [[]] attributes. They have strict rules for what |
| 724 | // they appertain to. |
| 725 | if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute()) |
| 726 | continue; |
| 727 | |
| 728 | switch (attr.getKind()) { |
| 729 | OBJC_POINTER_TYPE_ATTRS_CASELIST: |
| 730 | distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType); |
| 731 | break; |
| 732 | |
| 733 | FUNCTION_TYPE_ATTRS_CASELIST: |
| 734 | distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType, CFT); |
| 735 | break; |
| 736 | |
| 737 | MS_TYPE_ATTRS_CASELIST: |
| 738 | // Microsoft type attributes cannot go after the declarator-id. |
| 739 | continue; |
| 740 | |
| 741 | NULLABILITY_TYPE_ATTRS_CASELIST: |
| 742 | // Nullability specifiers cannot go after the declarator-id. |
| 743 | |
| 744 | // Objective-C __kindof does not get distributed. |
| 745 | case ParsedAttr::AT_ObjCKindOf: |
| 746 | continue; |
| 747 | |
| 748 | default: |
| 749 | break; |
| 750 | } |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | /// Add a synthetic '()' to a block-literal declarator if it is |
| 755 | /// required, given the return type. |
| 756 | static void maybeSynthesizeBlockSignature(TypeProcessingState &state, |
| 757 | QualType declSpecType) { |
| 758 | Declarator &declarator = state.getDeclarator(); |
| 759 | |
| 760 | // First, check whether the declarator would produce a function, |
| 761 | // i.e. whether the innermost semantic chunk is a function. |
| 762 | if (declarator.isFunctionDeclarator()) { |
| 763 | // If so, make that declarator a prototyped declarator. |
| 764 | declarator.getFunctionTypeInfo().hasPrototype = true; |
| 765 | return; |
| 766 | } |
| 767 | |
| 768 | // If there are any type objects, the type as written won't name a |
| 769 | // function, regardless of the decl spec type. This is because a |
| 770 | // block signature declarator is always an abstract-declarator, and |
| 771 | // abstract-declarators can't just be parentheses chunks. Therefore |
| 772 | // we need to build a function chunk unless there are no type |
| 773 | // objects and the decl spec type is a function. |
| 774 | if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType()) |
| 775 | return; |
| 776 | |
| 777 | // Note that there *are* cases with invalid declarators where |
| 778 | // declarators consist solely of parentheses. In general, these |
| 779 | // occur only in failed efforts to make function declarators, so |
| 780 | // faking up the function chunk is still the right thing to do. |
| 781 | |
| 782 | // Otherwise, we need to fake up a function declarator. |
| 783 | SourceLocation loc = declarator.getBeginLoc(); |
| 784 | |
| 785 | // ...and *prepend* it to the declarator. |
| 786 | SourceLocation NoLoc; |
| 787 | declarator.AddInnermostTypeInfo(TI: DeclaratorChunk::getFunction( |
| 788 | /*HasProto=*/true, |
| 789 | /*IsAmbiguous=*/false, |
| 790 | /*LParenLoc=*/NoLoc, |
| 791 | /*ArgInfo=*/Params: nullptr, |
| 792 | /*NumParams=*/0, |
| 793 | /*EllipsisLoc=*/NoLoc, |
| 794 | /*RParenLoc=*/NoLoc, |
| 795 | /*RefQualifierIsLvalueRef=*/true, |
| 796 | /*RefQualifierLoc=*/NoLoc, |
| 797 | /*MutableLoc=*/NoLoc, ESpecType: EST_None, |
| 798 | /*ESpecRange=*/SourceRange(), |
| 799 | /*Exceptions=*/nullptr, |
| 800 | /*ExceptionRanges=*/nullptr, |
| 801 | /*NumExceptions=*/0, |
| 802 | /*NoexceptExpr=*/nullptr, |
| 803 | /*ExceptionSpecTokens=*/nullptr, |
| 804 | /*DeclsInPrototype=*/{}, LocalRangeBegin: loc, LocalRangeEnd: loc, TheDeclarator&: declarator)); |
| 805 | |
| 806 | // For consistency, make sure the state still has us as processing |
| 807 | // the decl spec. |
| 808 | assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1); |
| 809 | state.setCurrentChunkIndex(declarator.getNumTypeObjects()); |
| 810 | } |
| 811 | |
| 812 | static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS, |
| 813 | unsigned &TypeQuals, |
| 814 | QualType TypeSoFar, |
| 815 | unsigned RemoveTQs, |
| 816 | unsigned DiagID) { |
| 817 | // If this occurs outside a template instantiation, warn the user about |
| 818 | // it; they probably didn't mean to specify a redundant qualifier. |
| 819 | typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc; |
| 820 | for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()), |
| 821 | QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()), |
| 822 | QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()), |
| 823 | QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) { |
| 824 | if (!(RemoveTQs & Qual.first)) |
| 825 | continue; |
| 826 | |
| 827 | if (!S.inTemplateInstantiation()) { |
| 828 | if (TypeQuals & Qual.first) |
| 829 | S.Diag(Loc: Qual.second, DiagID) |
| 830 | << DeclSpec::getSpecifierName(Q: Qual.first) << TypeSoFar |
| 831 | << FixItHint::CreateRemoval(RemoveRange: Qual.second); |
| 832 | } |
| 833 | |
| 834 | TypeQuals &= ~Qual.first; |
| 835 | } |
| 836 | } |
| 837 | |
| 838 | /// Return true if this is omitted block return type. Also check type |
| 839 | /// attributes and type qualifiers when returning true. |
| 840 | static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator, |
| 841 | QualType Result) { |
| 842 | if (!isOmittedBlockReturnType(D: declarator)) |
| 843 | return false; |
| 844 | |
| 845 | // Warn if we see type attributes for omitted return type on a block literal. |
| 846 | SmallVector<ParsedAttr *, 2> ToBeRemoved; |
| 847 | for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) { |
| 848 | if (AL.isInvalid() || !AL.isTypeAttr()) |
| 849 | continue; |
| 850 | S.Diag(Loc: AL.getLoc(), |
| 851 | DiagID: diag::warn_block_literal_attributes_on_omitted_return_type) |
| 852 | << AL; |
| 853 | ToBeRemoved.push_back(Elt: &AL); |
| 854 | } |
| 855 | // Remove bad attributes from the list. |
| 856 | for (ParsedAttr *AL : ToBeRemoved) |
| 857 | declarator.getMutableDeclSpec().getAttributes().remove(ToBeRemoved: AL); |
| 858 | |
| 859 | // Warn if we see type qualifiers for omitted return type on a block literal. |
| 860 | const DeclSpec &DS = declarator.getDeclSpec(); |
| 861 | unsigned TypeQuals = DS.getTypeQualifiers(); |
| 862 | diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, TypeSoFar: Result, RemoveTQs: (unsigned)-1, |
| 863 | DiagID: diag::warn_block_literal_qualifiers_on_omitted_return_type); |
| 864 | declarator.getMutableDeclSpec().ClearTypeQualifiers(); |
| 865 | |
| 866 | return true; |
| 867 | } |
| 868 | |
| 869 | static OpenCLAccessAttr::Spelling |
| 870 | getImageAccess(const ParsedAttributesView &Attrs) { |
| 871 | for (const ParsedAttr &AL : Attrs) |
| 872 | if (AL.getKind() == ParsedAttr::AT_OpenCLAccess) |
| 873 | return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling()); |
| 874 | return OpenCLAccessAttr::Keyword_read_only; |
| 875 | } |
| 876 | |
| 877 | static UnaryTransformType::UTTKind |
| 878 | TSTToUnaryTransformType(DeclSpec::TST SwitchTST) { |
| 879 | switch (SwitchTST) { |
| 880 | #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \ |
| 881 | case TST_##Trait: \ |
| 882 | return UnaryTransformType::Enum; |
| 883 | #include "clang/Basic/TransformTypeTraits.def" |
| 884 | default: |
| 885 | llvm_unreachable("attempted to parse a non-unary transform builtin" ); |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | /// Convert the specified declspec to the appropriate type |
| 890 | /// object. |
| 891 | /// \param state Specifies the declarator containing the declaration specifier |
| 892 | /// to be converted, along with other associated processing state. |
| 893 | /// \returns The type described by the declaration specifiers. This function |
| 894 | /// never returns null. |
| 895 | static QualType ConvertDeclSpecToType(TypeProcessingState &state) { |
| 896 | // FIXME: Should move the logic from DeclSpec::Finish to here for validity |
| 897 | // checking. |
| 898 | |
| 899 | Sema &S = state.getSema(); |
| 900 | Declarator &declarator = state.getDeclarator(); |
| 901 | DeclSpec &DS = declarator.getMutableDeclSpec(); |
| 902 | SourceLocation DeclLoc = declarator.getIdentifierLoc(); |
| 903 | if (DeclLoc.isInvalid()) |
| 904 | DeclLoc = DS.getBeginLoc(); |
| 905 | |
| 906 | ASTContext &Context = S.Context; |
| 907 | |
| 908 | QualType Result; |
| 909 | switch (DS.getTypeSpecType()) { |
| 910 | case DeclSpec::TST_void: |
| 911 | Result = Context.VoidTy; |
| 912 | break; |
| 913 | case DeclSpec::TST_char: |
| 914 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified) |
| 915 | Result = Context.CharTy; |
| 916 | else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) |
| 917 | Result = Context.SignedCharTy; |
| 918 | else { |
| 919 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && |
| 920 | "Unknown TSS value" ); |
| 921 | Result = Context.UnsignedCharTy; |
| 922 | } |
| 923 | break; |
| 924 | case DeclSpec::TST_wchar: |
| 925 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified) |
| 926 | Result = Context.WCharTy; |
| 927 | else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) { |
| 928 | S.Diag(Loc: DS.getTypeSpecSignLoc(), DiagID: diag::ext_wchar_t_sign_spec) |
| 929 | << DS.getSpecifierName(T: DS.getTypeSpecType(), |
| 930 | Policy: Context.getPrintingPolicy()); |
| 931 | Result = Context.getSignedWCharType(); |
| 932 | } else { |
| 933 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && |
| 934 | "Unknown TSS value" ); |
| 935 | S.Diag(Loc: DS.getTypeSpecSignLoc(), DiagID: diag::ext_wchar_t_sign_spec) |
| 936 | << DS.getSpecifierName(T: DS.getTypeSpecType(), |
| 937 | Policy: Context.getPrintingPolicy()); |
| 938 | Result = Context.getUnsignedWCharType(); |
| 939 | } |
| 940 | break; |
| 941 | case DeclSpec::TST_char8: |
| 942 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && |
| 943 | "Unknown TSS value" ); |
| 944 | Result = Context.Char8Ty; |
| 945 | break; |
| 946 | case DeclSpec::TST_char16: |
| 947 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && |
| 948 | "Unknown TSS value" ); |
| 949 | Result = Context.Char16Ty; |
| 950 | break; |
| 951 | case DeclSpec::TST_char32: |
| 952 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && |
| 953 | "Unknown TSS value" ); |
| 954 | Result = Context.Char32Ty; |
| 955 | break; |
| 956 | case DeclSpec::TST_unspecified: |
| 957 | // If this is a missing declspec in a block literal return context, then it |
| 958 | // is inferred from the return statements inside the block. |
| 959 | // The declspec is always missing in a lambda expr context; it is either |
| 960 | // specified with a trailing return type or inferred. |
| 961 | if (S.getLangOpts().CPlusPlus14 && |
| 962 | declarator.getContext() == DeclaratorContext::LambdaExpr) { |
| 963 | // In C++1y, a lambda's implicit return type is 'auto'. |
| 964 | Result = Context.getAutoDeductType(); |
| 965 | break; |
| 966 | } else if (declarator.getContext() == DeclaratorContext::LambdaExpr || |
| 967 | checkOmittedBlockReturnType(S, declarator, |
| 968 | Result: Context.DependentTy)) { |
| 969 | Result = Context.DependentTy; |
| 970 | break; |
| 971 | } |
| 972 | |
| 973 | // Unspecified typespec defaults to int in C90. However, the C90 grammar |
| 974 | // [C90 6.5] only allows a decl-spec if there was *some* type-specifier, |
| 975 | // type-qualifier, or storage-class-specifier. If not, emit an extwarn. |
| 976 | // Note that the one exception to this is function definitions, which are |
| 977 | // allowed to be completely missing a declspec. This is handled in the |
| 978 | // parser already though by it pretending to have seen an 'int' in this |
| 979 | // case. |
| 980 | if (S.getLangOpts().isImplicitIntRequired()) { |
| 981 | S.Diag(Loc: DeclLoc, DiagID: diag::warn_missing_type_specifier) |
| 982 | << DS.getSourceRange() |
| 983 | << FixItHint::CreateInsertion(InsertionLoc: DS.getBeginLoc(), Code: "int" ); |
| 984 | } else if (!DS.hasTypeSpecifier()) { |
| 985 | // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says: |
| 986 | // "At least one type specifier shall be given in the declaration |
| 987 | // specifiers in each declaration, and in the specifier-qualifier list in |
| 988 | // each struct declaration and type name." |
| 989 | if (!S.getLangOpts().isImplicitIntAllowed() && !DS.isTypeSpecPipe()) { |
| 990 | S.Diag(Loc: DeclLoc, DiagID: diag::err_missing_type_specifier) |
| 991 | << DS.getSourceRange(); |
| 992 | |
| 993 | // When this occurs, often something is very broken with the value |
| 994 | // being declared, poison it as invalid so we don't get chains of |
| 995 | // errors. |
| 996 | declarator.setInvalidType(true); |
| 997 | } else if (S.getLangOpts().getOpenCLCompatibleVersion() >= 200 && |
| 998 | DS.isTypeSpecPipe()) { |
| 999 | S.Diag(Loc: DeclLoc, DiagID: diag::err_missing_actual_pipe_type) |
| 1000 | << DS.getSourceRange(); |
| 1001 | declarator.setInvalidType(true); |
| 1002 | } else { |
| 1003 | assert(S.getLangOpts().isImplicitIntAllowed() && |
| 1004 | "implicit int is disabled?" ); |
| 1005 | S.Diag(Loc: DeclLoc, DiagID: diag::ext_missing_type_specifier) |
| 1006 | << DS.getSourceRange() |
| 1007 | << FixItHint::CreateInsertion(InsertionLoc: DS.getBeginLoc(), Code: "int" ); |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | [[fallthrough]]; |
| 1012 | case DeclSpec::TST_int: { |
| 1013 | if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) { |
| 1014 | switch (DS.getTypeSpecWidth()) { |
| 1015 | case TypeSpecifierWidth::Unspecified: |
| 1016 | Result = Context.IntTy; |
| 1017 | break; |
| 1018 | case TypeSpecifierWidth::Short: |
| 1019 | Result = Context.ShortTy; |
| 1020 | break; |
| 1021 | case TypeSpecifierWidth::Long: |
| 1022 | Result = Context.LongTy; |
| 1023 | break; |
| 1024 | case TypeSpecifierWidth::LongLong: |
| 1025 | Result = Context.LongLongTy; |
| 1026 | |
| 1027 | // 'long long' is a C99 or C++11 feature. |
| 1028 | if (!S.getLangOpts().C99) { |
| 1029 | if (S.getLangOpts().CPlusPlus) |
| 1030 | S.Diag(Loc: DS.getTypeSpecWidthLoc(), |
| 1031 | DiagID: S.getLangOpts().CPlusPlus11 ? |
| 1032 | diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); |
| 1033 | else |
| 1034 | S.Diag(Loc: DS.getTypeSpecWidthLoc(), DiagID: diag::ext_c99_longlong); |
| 1035 | } |
| 1036 | break; |
| 1037 | } |
| 1038 | } else { |
| 1039 | switch (DS.getTypeSpecWidth()) { |
| 1040 | case TypeSpecifierWidth::Unspecified: |
| 1041 | Result = Context.UnsignedIntTy; |
| 1042 | break; |
| 1043 | case TypeSpecifierWidth::Short: |
| 1044 | Result = Context.UnsignedShortTy; |
| 1045 | break; |
| 1046 | case TypeSpecifierWidth::Long: |
| 1047 | Result = Context.UnsignedLongTy; |
| 1048 | break; |
| 1049 | case TypeSpecifierWidth::LongLong: |
| 1050 | Result = Context.UnsignedLongLongTy; |
| 1051 | |
| 1052 | // 'long long' is a C99 or C++11 feature. |
| 1053 | if (!S.getLangOpts().C99) { |
| 1054 | if (S.getLangOpts().CPlusPlus) |
| 1055 | S.Diag(Loc: DS.getTypeSpecWidthLoc(), |
| 1056 | DiagID: S.getLangOpts().CPlusPlus11 ? |
| 1057 | diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); |
| 1058 | else |
| 1059 | S.Diag(Loc: DS.getTypeSpecWidthLoc(), DiagID: diag::ext_c99_longlong); |
| 1060 | } |
| 1061 | break; |
| 1062 | } |
| 1063 | } |
| 1064 | break; |
| 1065 | } |
| 1066 | case DeclSpec::TST_bitint: { |
| 1067 | if (!S.Context.getTargetInfo().hasBitIntType()) |
| 1068 | S.Diag(Loc: DS.getTypeSpecTypeLoc(), DiagID: diag::err_type_unsupported) << "_BitInt" ; |
| 1069 | Result = |
| 1070 | S.BuildBitIntType(IsUnsigned: DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned, |
| 1071 | BitWidth: DS.getRepAsExpr(), Loc: DS.getBeginLoc()); |
| 1072 | if (Result.isNull()) { |
| 1073 | Result = Context.IntTy; |
| 1074 | declarator.setInvalidType(true); |
| 1075 | } |
| 1076 | break; |
| 1077 | } |
| 1078 | case DeclSpec::TST_accum: { |
| 1079 | switch (DS.getTypeSpecWidth()) { |
| 1080 | case TypeSpecifierWidth::Short: |
| 1081 | Result = Context.ShortAccumTy; |
| 1082 | break; |
| 1083 | case TypeSpecifierWidth::Unspecified: |
| 1084 | Result = Context.AccumTy; |
| 1085 | break; |
| 1086 | case TypeSpecifierWidth::Long: |
| 1087 | Result = Context.LongAccumTy; |
| 1088 | break; |
| 1089 | case TypeSpecifierWidth::LongLong: |
| 1090 | llvm_unreachable("Unable to specify long long as _Accum width" ); |
| 1091 | } |
| 1092 | |
| 1093 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) |
| 1094 | Result = Context.getCorrespondingUnsignedType(T: Result); |
| 1095 | |
| 1096 | if (DS.isTypeSpecSat()) |
| 1097 | Result = Context.getCorrespondingSaturatedType(Ty: Result); |
| 1098 | |
| 1099 | break; |
| 1100 | } |
| 1101 | case DeclSpec::TST_fract: { |
| 1102 | switch (DS.getTypeSpecWidth()) { |
| 1103 | case TypeSpecifierWidth::Short: |
| 1104 | Result = Context.ShortFractTy; |
| 1105 | break; |
| 1106 | case TypeSpecifierWidth::Unspecified: |
| 1107 | Result = Context.FractTy; |
| 1108 | break; |
| 1109 | case TypeSpecifierWidth::Long: |
| 1110 | Result = Context.LongFractTy; |
| 1111 | break; |
| 1112 | case TypeSpecifierWidth::LongLong: |
| 1113 | llvm_unreachable("Unable to specify long long as _Fract width" ); |
| 1114 | } |
| 1115 | |
| 1116 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) |
| 1117 | Result = Context.getCorrespondingUnsignedType(T: Result); |
| 1118 | |
| 1119 | if (DS.isTypeSpecSat()) |
| 1120 | Result = Context.getCorrespondingSaturatedType(Ty: Result); |
| 1121 | |
| 1122 | break; |
| 1123 | } |
| 1124 | case DeclSpec::TST_int128: |
| 1125 | if (!S.Context.getTargetInfo().hasInt128Type() && |
| 1126 | !(S.getLangOpts().isTargetDevice())) |
| 1127 | S.Diag(Loc: DS.getTypeSpecTypeLoc(), DiagID: diag::err_type_unsupported) |
| 1128 | << "__int128" ; |
| 1129 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) |
| 1130 | Result = Context.UnsignedInt128Ty; |
| 1131 | else |
| 1132 | Result = Context.Int128Ty; |
| 1133 | break; |
| 1134 | case DeclSpec::TST_float16: |
| 1135 | // CUDA host and device may have different _Float16 support, therefore |
| 1136 | // do not diagnose _Float16 usage to avoid false alarm. |
| 1137 | // ToDo: more precise diagnostics for CUDA. |
| 1138 | if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA && |
| 1139 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice)) |
| 1140 | S.Diag(Loc: DS.getTypeSpecTypeLoc(), DiagID: diag::err_type_unsupported) |
| 1141 | << "_Float16" ; |
| 1142 | Result = Context.Float16Ty; |
| 1143 | break; |
| 1144 | case DeclSpec::TST_half: Result = Context.HalfTy; break; |
| 1145 | case DeclSpec::TST_BFloat16: |
| 1146 | if (!S.Context.getTargetInfo().hasBFloat16Type() && |
| 1147 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice) && |
| 1148 | !S.getLangOpts().SYCLIsDevice) |
| 1149 | S.Diag(Loc: DS.getTypeSpecTypeLoc(), DiagID: diag::err_type_unsupported) << "__bf16" ; |
| 1150 | Result = Context.BFloat16Ty; |
| 1151 | break; |
| 1152 | case DeclSpec::TST_float: Result = Context.FloatTy; break; |
| 1153 | case DeclSpec::TST_double: |
| 1154 | if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long) |
| 1155 | Result = Context.LongDoubleTy; |
| 1156 | else |
| 1157 | Result = Context.DoubleTy; |
| 1158 | if (S.getLangOpts().OpenCL) { |
| 1159 | if (!S.getOpenCLOptions().isSupported(Ext: "cl_khr_fp64" , LO: S.getLangOpts())) |
| 1160 | S.Diag(Loc: DS.getTypeSpecTypeLoc(), DiagID: diag::err_opencl_requires_extension) |
| 1161 | << 0 << Result |
| 1162 | << (S.getLangOpts().getOpenCLCompatibleVersion() == 300 |
| 1163 | ? "cl_khr_fp64 and __opencl_c_fp64" |
| 1164 | : "cl_khr_fp64" ); |
| 1165 | else if (!S.getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp64" , LO: S.getLangOpts())) |
| 1166 | S.Diag(Loc: DS.getTypeSpecTypeLoc(), DiagID: diag::ext_opencl_double_without_pragma); |
| 1167 | } |
| 1168 | break; |
| 1169 | case DeclSpec::TST_float128: |
| 1170 | if (!S.Context.getTargetInfo().hasFloat128Type() && |
| 1171 | !S.getLangOpts().isTargetDevice()) |
| 1172 | S.Diag(Loc: DS.getTypeSpecTypeLoc(), DiagID: diag::err_type_unsupported) |
| 1173 | << "__float128" ; |
| 1174 | Result = Context.Float128Ty; |
| 1175 | break; |
| 1176 | case DeclSpec::TST_ibm128: |
| 1177 | if (!S.Context.getTargetInfo().hasIbm128Type() && |
| 1178 | !S.getLangOpts().SYCLIsDevice && |
| 1179 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice)) |
| 1180 | S.Diag(Loc: DS.getTypeSpecTypeLoc(), DiagID: diag::err_type_unsupported) << "__ibm128" ; |
| 1181 | Result = Context.Ibm128Ty; |
| 1182 | break; |
| 1183 | case DeclSpec::TST_bool: |
| 1184 | Result = Context.BoolTy; // _Bool or bool |
| 1185 | break; |
| 1186 | case DeclSpec::TST_decimal32: // _Decimal32 |
| 1187 | case DeclSpec::TST_decimal64: // _Decimal64 |
| 1188 | case DeclSpec::TST_decimal128: // _Decimal128 |
| 1189 | S.Diag(Loc: DS.getTypeSpecTypeLoc(), DiagID: diag::err_decimal_unsupported); |
| 1190 | Result = Context.IntTy; |
| 1191 | declarator.setInvalidType(true); |
| 1192 | break; |
| 1193 | case DeclSpec::TST_class: |
| 1194 | case DeclSpec::TST_enum: |
| 1195 | case DeclSpec::TST_union: |
| 1196 | case DeclSpec::TST_struct: |
| 1197 | case DeclSpec::TST_interface: { |
| 1198 | TagDecl *D = dyn_cast_or_null<TagDecl>(Val: DS.getRepAsDecl()); |
| 1199 | if (!D) { |
| 1200 | // This can happen in C++ with ambiguous lookups. |
| 1201 | Result = Context.IntTy; |
| 1202 | declarator.setInvalidType(true); |
| 1203 | break; |
| 1204 | } |
| 1205 | |
| 1206 | // If the type is deprecated or unavailable, diagnose it. |
| 1207 | S.DiagnoseUseOfDecl(D, Locs: DS.getTypeSpecTypeNameLoc()); |
| 1208 | |
| 1209 | assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && |
| 1210 | DS.getTypeSpecComplex() == 0 && |
| 1211 | DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && |
| 1212 | "No qualifiers on tag names!" ); |
| 1213 | |
| 1214 | // TypeQuals handled by caller. |
| 1215 | Result = Context.getTypeDeclType(Decl: D); |
| 1216 | |
| 1217 | // In both C and C++, make an ElaboratedType. |
| 1218 | ElaboratedTypeKeyword Keyword |
| 1219 | = ElaboratedType::getKeywordForTypeSpec(TypeSpec: DS.getTypeSpecType()); |
| 1220 | Result = S.getElaboratedType(Keyword, SS: DS.getTypeSpecScope(), T: Result, |
| 1221 | OwnedTagDecl: DS.isTypeSpecOwned() ? D : nullptr); |
| 1222 | break; |
| 1223 | } |
| 1224 | case DeclSpec::TST_typename: { |
| 1225 | assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && |
| 1226 | DS.getTypeSpecComplex() == 0 && |
| 1227 | DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && |
| 1228 | "Can't handle qualifiers on typedef names yet!" ); |
| 1229 | Result = S.GetTypeFromParser(Ty: DS.getRepAsType()); |
| 1230 | if (Result.isNull()) { |
| 1231 | declarator.setInvalidType(true); |
| 1232 | } |
| 1233 | |
| 1234 | // TypeQuals handled by caller. |
| 1235 | break; |
| 1236 | } |
| 1237 | case DeclSpec::TST_typeof_unqualType: |
| 1238 | case DeclSpec::TST_typeofType: |
| 1239 | // FIXME: Preserve type source info. |
| 1240 | Result = S.GetTypeFromParser(Ty: DS.getRepAsType()); |
| 1241 | assert(!Result.isNull() && "Didn't get a type for typeof?" ); |
| 1242 | if (!Result->isDependentType()) |
| 1243 | if (const TagType *TT = Result->getAs<TagType>()) |
| 1244 | S.DiagnoseUseOfDecl(D: TT->getDecl(), Locs: DS.getTypeSpecTypeLoc()); |
| 1245 | // TypeQuals handled by caller. |
| 1246 | Result = Context.getTypeOfType( |
| 1247 | QT: Result, Kind: DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType |
| 1248 | ? TypeOfKind::Unqualified |
| 1249 | : TypeOfKind::Qualified); |
| 1250 | break; |
| 1251 | case DeclSpec::TST_typeof_unqualExpr: |
| 1252 | case DeclSpec::TST_typeofExpr: { |
| 1253 | Expr *E = DS.getRepAsExpr(); |
| 1254 | assert(E && "Didn't get an expression for typeof?" ); |
| 1255 | // TypeQuals handled by caller. |
| 1256 | Result = S.BuildTypeofExprType(E, Kind: DS.getTypeSpecType() == |
| 1257 | DeclSpec::TST_typeof_unqualExpr |
| 1258 | ? TypeOfKind::Unqualified |
| 1259 | : TypeOfKind::Qualified); |
| 1260 | if (Result.isNull()) { |
| 1261 | Result = Context.IntTy; |
| 1262 | declarator.setInvalidType(true); |
| 1263 | } |
| 1264 | break; |
| 1265 | } |
| 1266 | case DeclSpec::TST_decltype: { |
| 1267 | Expr *E = DS.getRepAsExpr(); |
| 1268 | assert(E && "Didn't get an expression for decltype?" ); |
| 1269 | // TypeQuals handled by caller. |
| 1270 | Result = S.BuildDecltypeType(E); |
| 1271 | if (Result.isNull()) { |
| 1272 | Result = Context.IntTy; |
| 1273 | declarator.setInvalidType(true); |
| 1274 | } |
| 1275 | break; |
| 1276 | } |
| 1277 | case DeclSpec::TST_typename_pack_indexing: { |
| 1278 | Expr *E = DS.getPackIndexingExpr(); |
| 1279 | assert(E && "Didn't get an expression for pack indexing" ); |
| 1280 | QualType Pattern = S.GetTypeFromParser(Ty: DS.getRepAsType()); |
| 1281 | Result = S.BuildPackIndexingType(Pattern, IndexExpr: E, Loc: DS.getBeginLoc(), |
| 1282 | EllipsisLoc: DS.getEllipsisLoc()); |
| 1283 | if (Result.isNull()) { |
| 1284 | declarator.setInvalidType(true); |
| 1285 | Result = Context.IntTy; |
| 1286 | } |
| 1287 | break; |
| 1288 | } |
| 1289 | |
| 1290 | #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait: |
| 1291 | #include "clang/Basic/TransformTypeTraits.def" |
| 1292 | Result = S.GetTypeFromParser(Ty: DS.getRepAsType()); |
| 1293 | assert(!Result.isNull() && "Didn't get a type for the transformation?" ); |
| 1294 | Result = S.BuildUnaryTransformType( |
| 1295 | BaseType: Result, UKind: TSTToUnaryTransformType(SwitchTST: DS.getTypeSpecType()), |
| 1296 | Loc: DS.getTypeSpecTypeLoc()); |
| 1297 | if (Result.isNull()) { |
| 1298 | Result = Context.IntTy; |
| 1299 | declarator.setInvalidType(true); |
| 1300 | } |
| 1301 | break; |
| 1302 | |
| 1303 | case DeclSpec::TST_auto: |
| 1304 | case DeclSpec::TST_decltype_auto: { |
| 1305 | auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto |
| 1306 | ? AutoTypeKeyword::DecltypeAuto |
| 1307 | : AutoTypeKeyword::Auto; |
| 1308 | |
| 1309 | ConceptDecl *TypeConstraintConcept = nullptr; |
| 1310 | llvm::SmallVector<TemplateArgument, 8> TemplateArgs; |
| 1311 | if (DS.isConstrainedAuto()) { |
| 1312 | if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) { |
| 1313 | TypeConstraintConcept = |
| 1314 | cast<ConceptDecl>(Val: TemplateId->Template.get().getAsTemplateDecl()); |
| 1315 | TemplateArgumentListInfo TemplateArgsInfo; |
| 1316 | TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc); |
| 1317 | TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc); |
| 1318 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), |
| 1319 | TemplateId->NumArgs); |
| 1320 | S.translateTemplateArguments(In: TemplateArgsPtr, Out&: TemplateArgsInfo); |
| 1321 | for (const auto &ArgLoc : TemplateArgsInfo.arguments()) |
| 1322 | TemplateArgs.push_back(Elt: ArgLoc.getArgument()); |
| 1323 | } else { |
| 1324 | declarator.setInvalidType(true); |
| 1325 | } |
| 1326 | } |
| 1327 | Result = S.Context.getAutoType(DeducedType: QualType(), Keyword: AutoKW, |
| 1328 | /*IsDependent*/ false, /*IsPack=*/false, |
| 1329 | TypeConstraintConcept, TypeConstraintArgs: TemplateArgs); |
| 1330 | break; |
| 1331 | } |
| 1332 | |
| 1333 | case DeclSpec::TST_auto_type: |
| 1334 | Result = Context.getAutoType(DeducedType: QualType(), Keyword: AutoTypeKeyword::GNUAutoType, IsDependent: false); |
| 1335 | break; |
| 1336 | |
| 1337 | case DeclSpec::TST_unknown_anytype: |
| 1338 | Result = Context.UnknownAnyTy; |
| 1339 | break; |
| 1340 | |
| 1341 | case DeclSpec::TST_atomic: |
| 1342 | Result = S.GetTypeFromParser(Ty: DS.getRepAsType()); |
| 1343 | assert(!Result.isNull() && "Didn't get a type for _Atomic?" ); |
| 1344 | Result = S.BuildAtomicType(T: Result, Loc: DS.getTypeSpecTypeLoc()); |
| 1345 | if (Result.isNull()) { |
| 1346 | Result = Context.IntTy; |
| 1347 | declarator.setInvalidType(true); |
| 1348 | } |
| 1349 | break; |
| 1350 | |
| 1351 | #define GENERIC_IMAGE_TYPE(ImgType, Id) \ |
| 1352 | case DeclSpec::TST_##ImgType##_t: \ |
| 1353 | switch (getImageAccess(DS.getAttributes())) { \ |
| 1354 | case OpenCLAccessAttr::Keyword_write_only: \ |
| 1355 | Result = Context.Id##WOTy; \ |
| 1356 | break; \ |
| 1357 | case OpenCLAccessAttr::Keyword_read_write: \ |
| 1358 | Result = Context.Id##RWTy; \ |
| 1359 | break; \ |
| 1360 | case OpenCLAccessAttr::Keyword_read_only: \ |
| 1361 | Result = Context.Id##ROTy; \ |
| 1362 | break; \ |
| 1363 | case OpenCLAccessAttr::SpellingNotCalculated: \ |
| 1364 | llvm_unreachable("Spelling not yet calculated"); \ |
| 1365 | } \ |
| 1366 | break; |
| 1367 | #include "clang/Basic/OpenCLImageTypes.def" |
| 1368 | |
| 1369 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) \ |
| 1370 | case DeclSpec::TST_##Name: \ |
| 1371 | Result = Context.SingletonId; \ |
| 1372 | break; |
| 1373 | #include "clang/Basic/HLSLIntangibleTypes.def" |
| 1374 | |
| 1375 | case DeclSpec::TST_error: |
| 1376 | Result = Context.IntTy; |
| 1377 | declarator.setInvalidType(true); |
| 1378 | break; |
| 1379 | } |
| 1380 | |
| 1381 | // FIXME: we want resulting declarations to be marked invalid, but claiming |
| 1382 | // the type is invalid is too strong - e.g. it causes ActOnTypeName to return |
| 1383 | // a null type. |
| 1384 | if (Result->containsErrors()) |
| 1385 | declarator.setInvalidType(); |
| 1386 | |
| 1387 | if (S.getLangOpts().OpenCL) { |
| 1388 | const auto &OpenCLOptions = S.getOpenCLOptions(); |
| 1389 | bool IsOpenCLC30Compatible = |
| 1390 | S.getLangOpts().getOpenCLCompatibleVersion() == 300; |
| 1391 | // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images |
| 1392 | // support. |
| 1393 | // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support |
| 1394 | // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the |
| 1395 | // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices |
| 1396 | // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and |
| 1397 | // only when the optional feature is supported |
| 1398 | if ((Result->isImageType() || Result->isSamplerT()) && |
| 1399 | (IsOpenCLC30Compatible && |
| 1400 | !OpenCLOptions.isSupported(Ext: "__opencl_c_images" , LO: S.getLangOpts()))) { |
| 1401 | S.Diag(Loc: DS.getTypeSpecTypeLoc(), DiagID: diag::err_opencl_requires_extension) |
| 1402 | << 0 << Result << "__opencl_c_images" ; |
| 1403 | declarator.setInvalidType(); |
| 1404 | } else if (Result->isOCLImage3dWOType() && |
| 1405 | !OpenCLOptions.isSupported(Ext: "cl_khr_3d_image_writes" , |
| 1406 | LO: S.getLangOpts())) { |
| 1407 | S.Diag(Loc: DS.getTypeSpecTypeLoc(), DiagID: diag::err_opencl_requires_extension) |
| 1408 | << 0 << Result |
| 1409 | << (IsOpenCLC30Compatible |
| 1410 | ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes" |
| 1411 | : "cl_khr_3d_image_writes" ); |
| 1412 | declarator.setInvalidType(); |
| 1413 | } |
| 1414 | } |
| 1415 | |
| 1416 | bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum || |
| 1417 | DS.getTypeSpecType() == DeclSpec::TST_fract; |
| 1418 | |
| 1419 | // Only fixed point types can be saturated |
| 1420 | if (DS.isTypeSpecSat() && !IsFixedPointType) |
| 1421 | S.Diag(Loc: DS.getTypeSpecSatLoc(), DiagID: diag::err_invalid_saturation_spec) |
| 1422 | << DS.getSpecifierName(T: DS.getTypeSpecType(), |
| 1423 | Policy: Context.getPrintingPolicy()); |
| 1424 | |
| 1425 | // Handle complex types. |
| 1426 | if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) { |
| 1427 | if (S.getLangOpts().Freestanding) |
| 1428 | S.Diag(Loc: DS.getTypeSpecComplexLoc(), DiagID: diag::ext_freestanding_complex); |
| 1429 | Result = Context.getComplexType(T: Result); |
| 1430 | } else if (DS.isTypeAltiVecVector()) { |
| 1431 | unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(T: Result)); |
| 1432 | assert(typeSize > 0 && "type size for vector must be greater than 0 bits" ); |
| 1433 | VectorKind VecKind = VectorKind::AltiVecVector; |
| 1434 | if (DS.isTypeAltiVecPixel()) |
| 1435 | VecKind = VectorKind::AltiVecPixel; |
| 1436 | else if (DS.isTypeAltiVecBool()) |
| 1437 | VecKind = VectorKind::AltiVecBool; |
| 1438 | Result = Context.getVectorType(VectorType: Result, NumElts: 128/typeSize, VecKind); |
| 1439 | } |
| 1440 | |
| 1441 | // _Imaginary was a feature of C99 through C23 but was never supported in |
| 1442 | // Clang. The feature was removed in C2y, but we retain the unsupported |
| 1443 | // diagnostic for an improved user experience. |
| 1444 | if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary) |
| 1445 | S.Diag(Loc: DS.getTypeSpecComplexLoc(), DiagID: diag::err_imaginary_not_supported); |
| 1446 | |
| 1447 | // Before we process any type attributes, synthesize a block literal |
| 1448 | // function declarator if necessary. |
| 1449 | if (declarator.getContext() == DeclaratorContext::BlockLiteral) |
| 1450 | maybeSynthesizeBlockSignature(state, declSpecType: Result); |
| 1451 | |
| 1452 | // Apply any type attributes from the decl spec. This may cause the |
| 1453 | // list of type attributes to be temporarily saved while the type |
| 1454 | // attributes are pushed around. |
| 1455 | // pipe attributes will be handled later ( at GetFullTypeForDeclarator ) |
| 1456 | if (!DS.isTypeSpecPipe()) { |
| 1457 | // We also apply declaration attributes that "slide" to the decl spec. |
| 1458 | // Ordering can be important for attributes. The decalaration attributes |
| 1459 | // come syntactically before the decl spec attributes, so we process them |
| 1460 | // in that order. |
| 1461 | ParsedAttributesView SlidingAttrs; |
| 1462 | for (ParsedAttr &AL : declarator.getDeclarationAttributes()) { |
| 1463 | if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) { |
| 1464 | SlidingAttrs.addAtEnd(newAttr: &AL); |
| 1465 | |
| 1466 | // For standard syntax attributes, which would normally appertain to the |
| 1467 | // declaration here, suggest moving them to the type instead. But only |
| 1468 | // do this for our own vendor attributes; moving other vendors' |
| 1469 | // attributes might hurt portability. |
| 1470 | // There's one special case that we need to deal with here: The |
| 1471 | // `MatrixType` attribute may only be used in a typedef declaration. If |
| 1472 | // it's being used anywhere else, don't output the warning as |
| 1473 | // ProcessDeclAttributes() will output an error anyway. |
| 1474 | if (AL.isStandardAttributeSyntax() && AL.isClangScope() && |
| 1475 | !(AL.getKind() == ParsedAttr::AT_MatrixType && |
| 1476 | DS.getStorageClassSpec() != DeclSpec::SCS_typedef)) { |
| 1477 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_type_attribute_deprecated_on_decl) |
| 1478 | << AL; |
| 1479 | } |
| 1480 | } |
| 1481 | } |
| 1482 | // During this call to processTypeAttrs(), |
| 1483 | // TypeProcessingState::getCurrentAttributes() will erroneously return a |
| 1484 | // reference to the DeclSpec attributes, rather than the declaration |
| 1485 | // attributes. However, this doesn't matter, as getCurrentAttributes() |
| 1486 | // is only called when distributing attributes from one attribute list |
| 1487 | // to another. Declaration attributes are always C++11 attributes, and these |
| 1488 | // are never distributed. |
| 1489 | processTypeAttrs(state, type&: Result, TAL: TAL_DeclSpec, attrs: SlidingAttrs); |
| 1490 | processTypeAttrs(state, type&: Result, TAL: TAL_DeclSpec, attrs: DS.getAttributes()); |
| 1491 | } |
| 1492 | |
| 1493 | // Apply const/volatile/restrict qualifiers to T. |
| 1494 | if (unsigned TypeQuals = DS.getTypeQualifiers()) { |
| 1495 | // Warn about CV qualifiers on function types. |
| 1496 | // C99 6.7.3p8: |
| 1497 | // If the specification of a function type includes any type qualifiers, |
| 1498 | // the behavior is undefined. |
| 1499 | // C2y changed this behavior to be implementation-defined. Clang defines |
| 1500 | // the behavior in all cases to ignore the qualifier, as in C++. |
| 1501 | // C++11 [dcl.fct]p7: |
| 1502 | // The effect of a cv-qualifier-seq in a function declarator is not the |
| 1503 | // same as adding cv-qualification on top of the function type. In the |
| 1504 | // latter case, the cv-qualifiers are ignored. |
| 1505 | if (Result->isFunctionType()) { |
| 1506 | unsigned DiagId = diag::warn_typecheck_function_qualifiers_ignored; |
| 1507 | if (!S.getLangOpts().CPlusPlus && !S.getLangOpts().C2y) |
| 1508 | DiagId = diag::ext_typecheck_function_qualifiers_unspecified; |
| 1509 | diagnoseAndRemoveTypeQualifiers( |
| 1510 | S, DS, TypeQuals, TypeSoFar: Result, RemoveTQs: DeclSpec::TQ_const | DeclSpec::TQ_volatile, |
| 1511 | DiagID: DiagId); |
| 1512 | // No diagnostic for 'restrict' or '_Atomic' applied to a |
| 1513 | // function type; we'll diagnose those later, in BuildQualifiedType. |
| 1514 | } |
| 1515 | |
| 1516 | // C++11 [dcl.ref]p1: |
| 1517 | // Cv-qualified references are ill-formed except when the |
| 1518 | // cv-qualifiers are introduced through the use of a typedef-name |
| 1519 | // or decltype-specifier, in which case the cv-qualifiers are ignored. |
| 1520 | // |
| 1521 | // There don't appear to be any other contexts in which a cv-qualified |
| 1522 | // reference type could be formed, so the 'ill-formed' clause here appears |
| 1523 | // to never happen. |
| 1524 | if (TypeQuals && Result->isReferenceType()) { |
| 1525 | diagnoseAndRemoveTypeQualifiers( |
| 1526 | S, DS, TypeQuals, TypeSoFar: Result, |
| 1527 | RemoveTQs: DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic, |
| 1528 | DiagID: diag::warn_typecheck_reference_qualifiers); |
| 1529 | } |
| 1530 | |
| 1531 | // C90 6.5.3 constraints: "The same type qualifier shall not appear more |
| 1532 | // than once in the same specifier-list or qualifier-list, either directly |
| 1533 | // or via one or more typedefs." |
| 1534 | if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus |
| 1535 | && TypeQuals & Result.getCVRQualifiers()) { |
| 1536 | if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) { |
| 1537 | S.Diag(Loc: DS.getConstSpecLoc(), DiagID: diag::ext_duplicate_declspec) |
| 1538 | << "const" ; |
| 1539 | } |
| 1540 | |
| 1541 | if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) { |
| 1542 | S.Diag(Loc: DS.getVolatileSpecLoc(), DiagID: diag::ext_duplicate_declspec) |
| 1543 | << "volatile" ; |
| 1544 | } |
| 1545 | |
| 1546 | // C90 doesn't have restrict nor _Atomic, so it doesn't force us to |
| 1547 | // produce a warning in this case. |
| 1548 | } |
| 1549 | |
| 1550 | QualType Qualified = S.BuildQualifiedType(T: Result, Loc: DeclLoc, CVRA: TypeQuals, DS: &DS); |
| 1551 | |
| 1552 | // If adding qualifiers fails, just use the unqualified type. |
| 1553 | if (Qualified.isNull()) |
| 1554 | declarator.setInvalidType(true); |
| 1555 | else |
| 1556 | Result = Qualified; |
| 1557 | } |
| 1558 | |
| 1559 | if (S.getLangOpts().HLSL) |
| 1560 | Result = S.HLSL().ProcessResourceTypeAttributes(Wrapped: Result); |
| 1561 | |
| 1562 | assert(!Result.isNull() && "This function should not return a null type" ); |
| 1563 | return Result; |
| 1564 | } |
| 1565 | |
| 1566 | static std::string getPrintableNameForEntity(DeclarationName Entity) { |
| 1567 | if (Entity) |
| 1568 | return Entity.getAsString(); |
| 1569 | |
| 1570 | return "type name" ; |
| 1571 | } |
| 1572 | |
| 1573 | static bool isDependentOrGNUAutoType(QualType T) { |
| 1574 | if (T->isDependentType()) |
| 1575 | return true; |
| 1576 | |
| 1577 | const auto *AT = dyn_cast<AutoType>(Val&: T); |
| 1578 | return AT && AT->isGNUAutoType(); |
| 1579 | } |
| 1580 | |
| 1581 | QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc, |
| 1582 | Qualifiers Qs, const DeclSpec *DS) { |
| 1583 | if (T.isNull()) |
| 1584 | return QualType(); |
| 1585 | |
| 1586 | // Ignore any attempt to form a cv-qualified reference. |
| 1587 | if (T->isReferenceType()) { |
| 1588 | Qs.removeConst(); |
| 1589 | Qs.removeVolatile(); |
| 1590 | } |
| 1591 | |
| 1592 | // Enforce C99 6.7.3p2: "Types other than pointer types derived from |
| 1593 | // object or incomplete types shall not be restrict-qualified." |
| 1594 | if (Qs.hasRestrict()) { |
| 1595 | unsigned DiagID = 0; |
| 1596 | QualType EltTy = Context.getBaseElementType(QT: T); |
| 1597 | |
| 1598 | if (EltTy->isAnyPointerType() || EltTy->isReferenceType() || |
| 1599 | EltTy->isMemberPointerType()) { |
| 1600 | |
| 1601 | if (const auto *PTy = EltTy->getAs<MemberPointerType>()) |
| 1602 | EltTy = PTy->getPointeeType(); |
| 1603 | else |
| 1604 | EltTy = EltTy->getPointeeType(); |
| 1605 | |
| 1606 | // If we have a pointer or reference, the pointee must have an object |
| 1607 | // incomplete type. |
| 1608 | if (!EltTy->isIncompleteOrObjectType()) |
| 1609 | DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee; |
| 1610 | |
| 1611 | } else if (!isDependentOrGNUAutoType(T)) { |
| 1612 | // For an __auto_type variable, we may not have seen the initializer yet |
| 1613 | // and so have no idea whether the underlying type is a pointer type or |
| 1614 | // not. |
| 1615 | DiagID = diag::err_typecheck_invalid_restrict_not_pointer; |
| 1616 | EltTy = T; |
| 1617 | } |
| 1618 | |
| 1619 | Loc = DS ? DS->getRestrictSpecLoc() : Loc; |
| 1620 | if (DiagID) { |
| 1621 | Diag(Loc, DiagID) << EltTy; |
| 1622 | Qs.removeRestrict(); |
| 1623 | } else { |
| 1624 | if (T->isArrayType()) |
| 1625 | Diag(Loc, DiagID: getLangOpts().C23 |
| 1626 | ? diag::warn_c23_compat_restrict_on_array_of_pointers |
| 1627 | : diag::ext_restrict_on_array_of_pointers_c23); |
| 1628 | } |
| 1629 | } |
| 1630 | |
| 1631 | return Context.getQualifiedType(T, Qs); |
| 1632 | } |
| 1633 | |
| 1634 | QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc, |
| 1635 | unsigned CVRAU, const DeclSpec *DS) { |
| 1636 | if (T.isNull()) |
| 1637 | return QualType(); |
| 1638 | |
| 1639 | // Ignore any attempt to form a cv-qualified reference. |
| 1640 | if (T->isReferenceType()) |
| 1641 | CVRAU &= |
| 1642 | ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic); |
| 1643 | |
| 1644 | // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and |
| 1645 | // TQ_unaligned; |
| 1646 | unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned); |
| 1647 | |
| 1648 | // C11 6.7.3/5: |
| 1649 | // If the same qualifier appears more than once in the same |
| 1650 | // specifier-qualifier-list, either directly or via one or more typedefs, |
| 1651 | // the behavior is the same as if it appeared only once. |
| 1652 | // |
| 1653 | // It's not specified what happens when the _Atomic qualifier is applied to |
| 1654 | // a type specified with the _Atomic specifier, but we assume that this |
| 1655 | // should be treated as if the _Atomic qualifier appeared multiple times. |
| 1656 | if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) { |
| 1657 | // C11 6.7.3/5: |
| 1658 | // If other qualifiers appear along with the _Atomic qualifier in a |
| 1659 | // specifier-qualifier-list, the resulting type is the so-qualified |
| 1660 | // atomic type. |
| 1661 | // |
| 1662 | // Don't need to worry about array types here, since _Atomic can't be |
| 1663 | // applied to such types. |
| 1664 | SplitQualType Split = T.getSplitUnqualifiedType(); |
| 1665 | T = BuildAtomicType(T: QualType(Split.Ty, 0), |
| 1666 | Loc: DS ? DS->getAtomicSpecLoc() : Loc); |
| 1667 | if (T.isNull()) |
| 1668 | return T; |
| 1669 | Split.Quals.addCVRQualifiers(mask: CVR); |
| 1670 | return BuildQualifiedType(T, Loc, Qs: Split.Quals); |
| 1671 | } |
| 1672 | |
| 1673 | Qualifiers Q = Qualifiers::fromCVRMask(CVR); |
| 1674 | Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned); |
| 1675 | return BuildQualifiedType(T, Loc, Qs: Q, DS); |
| 1676 | } |
| 1677 | |
| 1678 | QualType Sema::BuildParenType(QualType T) { |
| 1679 | return Context.getParenType(NamedType: T); |
| 1680 | } |
| 1681 | |
| 1682 | /// Given that we're building a pointer or reference to the given |
| 1683 | static QualType inferARCLifetimeForPointee(Sema &S, QualType type, |
| 1684 | SourceLocation loc, |
| 1685 | bool isReference) { |
| 1686 | // Bail out if retention is unrequired or already specified. |
| 1687 | if (!type->isObjCLifetimeType() || |
| 1688 | type.getObjCLifetime() != Qualifiers::OCL_None) |
| 1689 | return type; |
| 1690 | |
| 1691 | Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None; |
| 1692 | |
| 1693 | // If the object type is const-qualified, we can safely use |
| 1694 | // __unsafe_unretained. This is safe (because there are no read |
| 1695 | // barriers), and it'll be safe to coerce anything but __weak* to |
| 1696 | // the resulting type. |
| 1697 | if (type.isConstQualified()) { |
| 1698 | implicitLifetime = Qualifiers::OCL_ExplicitNone; |
| 1699 | |
| 1700 | // Otherwise, check whether the static type does not require |
| 1701 | // retaining. This currently only triggers for Class (possibly |
| 1702 | // protocol-qualifed, and arrays thereof). |
| 1703 | } else if (type->isObjCARCImplicitlyUnretainedType()) { |
| 1704 | implicitLifetime = Qualifiers::OCL_ExplicitNone; |
| 1705 | |
| 1706 | // If we are in an unevaluated context, like sizeof, skip adding a |
| 1707 | // qualification. |
| 1708 | } else if (S.isUnevaluatedContext()) { |
| 1709 | return type; |
| 1710 | |
| 1711 | // If that failed, give an error and recover using __strong. __strong |
| 1712 | // is the option most likely to prevent spurious second-order diagnostics, |
| 1713 | // like when binding a reference to a field. |
| 1714 | } else { |
| 1715 | // These types can show up in private ivars in system headers, so |
| 1716 | // we need this to not be an error in those cases. Instead we |
| 1717 | // want to delay. |
| 1718 | if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { |
| 1719 | S.DelayedDiagnostics.add( |
| 1720 | diag: sema::DelayedDiagnostic::makeForbiddenType(loc, |
| 1721 | diagnostic: diag::err_arc_indirect_no_ownership, type, argument: isReference)); |
| 1722 | } else { |
| 1723 | S.Diag(Loc: loc, DiagID: diag::err_arc_indirect_no_ownership) << type << isReference; |
| 1724 | } |
| 1725 | implicitLifetime = Qualifiers::OCL_Strong; |
| 1726 | } |
| 1727 | assert(implicitLifetime && "didn't infer any lifetime!" ); |
| 1728 | |
| 1729 | Qualifiers qs; |
| 1730 | qs.addObjCLifetime(type: implicitLifetime); |
| 1731 | return S.Context.getQualifiedType(T: type, Qs: qs); |
| 1732 | } |
| 1733 | |
| 1734 | static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){ |
| 1735 | std::string Quals = FnTy->getMethodQuals().getAsString(); |
| 1736 | |
| 1737 | switch (FnTy->getRefQualifier()) { |
| 1738 | case RQ_None: |
| 1739 | break; |
| 1740 | |
| 1741 | case RQ_LValue: |
| 1742 | if (!Quals.empty()) |
| 1743 | Quals += ' '; |
| 1744 | Quals += '&'; |
| 1745 | break; |
| 1746 | |
| 1747 | case RQ_RValue: |
| 1748 | if (!Quals.empty()) |
| 1749 | Quals += ' '; |
| 1750 | Quals += "&&" ; |
| 1751 | break; |
| 1752 | } |
| 1753 | |
| 1754 | return Quals; |
| 1755 | } |
| 1756 | |
| 1757 | namespace { |
| 1758 | /// Kinds of declarator that cannot contain a qualified function type. |
| 1759 | /// |
| 1760 | /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: |
| 1761 | /// a function type with a cv-qualifier or a ref-qualifier can only appear |
| 1762 | /// at the topmost level of a type. |
| 1763 | /// |
| 1764 | /// Parens and member pointers are permitted. We don't diagnose array and |
| 1765 | /// function declarators, because they don't allow function types at all. |
| 1766 | /// |
| 1767 | /// The values of this enum are used in diagnostics. |
| 1768 | enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference }; |
| 1769 | } // end anonymous namespace |
| 1770 | |
| 1771 | /// Check whether the type T is a qualified function type, and if it is, |
| 1772 | /// diagnose that it cannot be contained within the given kind of declarator. |
| 1773 | static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc, |
| 1774 | QualifiedFunctionKind QFK) { |
| 1775 | // Does T refer to a function type with a cv-qualifier or a ref-qualifier? |
| 1776 | const FunctionProtoType *FPT = T->getAs<FunctionProtoType>(); |
| 1777 | if (!FPT || |
| 1778 | (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None)) |
| 1779 | return false; |
| 1780 | |
| 1781 | S.Diag(Loc, DiagID: diag::err_compound_qualified_function_type) |
| 1782 | << QFK << isa<FunctionType>(Val: T.IgnoreParens()) << T |
| 1783 | << getFunctionQualifiersAsString(FnTy: FPT); |
| 1784 | return true; |
| 1785 | } |
| 1786 | |
| 1787 | bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) { |
| 1788 | const FunctionProtoType *FPT = T->getAs<FunctionProtoType>(); |
| 1789 | if (!FPT || |
| 1790 | (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None)) |
| 1791 | return false; |
| 1792 | |
| 1793 | Diag(Loc, DiagID: diag::err_qualified_function_typeid) |
| 1794 | << T << getFunctionQualifiersAsString(FnTy: FPT); |
| 1795 | return true; |
| 1796 | } |
| 1797 | |
| 1798 | // Helper to deduce addr space of a pointee type in OpenCL mode. |
| 1799 | static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) { |
| 1800 | if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() && |
| 1801 | !PointeeType->isSamplerT() && |
| 1802 | !PointeeType.hasAddressSpace()) |
| 1803 | PointeeType = S.getASTContext().getAddrSpaceQualType( |
| 1804 | T: PointeeType, AddressSpace: S.getASTContext().getDefaultOpenCLPointeeAddrSpace()); |
| 1805 | return PointeeType; |
| 1806 | } |
| 1807 | |
| 1808 | QualType Sema::BuildPointerType(QualType T, |
| 1809 | SourceLocation Loc, DeclarationName Entity) { |
| 1810 | if (T->isReferenceType()) { |
| 1811 | // C++ 8.3.2p4: There shall be no ... pointers to references ... |
| 1812 | Diag(Loc, DiagID: diag::err_illegal_decl_pointer_to_reference) |
| 1813 | << getPrintableNameForEntity(Entity) << T; |
| 1814 | return QualType(); |
| 1815 | } |
| 1816 | |
| 1817 | if (T->isFunctionType() && getLangOpts().OpenCL && |
| 1818 | !getOpenCLOptions().isAvailableOption(Ext: "__cl_clang_function_pointers" , |
| 1819 | LO: getLangOpts())) { |
| 1820 | Diag(Loc, DiagID: diag::err_opencl_function_pointer) << /*pointer*/ 0; |
| 1821 | return QualType(); |
| 1822 | } |
| 1823 | |
| 1824 | if (getLangOpts().HLSL && Loc.isValid()) { |
| 1825 | Diag(Loc, DiagID: diag::err_hlsl_pointers_unsupported) << 0; |
| 1826 | return QualType(); |
| 1827 | } |
| 1828 | |
| 1829 | if (checkQualifiedFunction(S&: *this, T, Loc, QFK: QFK_Pointer)) |
| 1830 | return QualType(); |
| 1831 | |
| 1832 | if (T->isObjCObjectType()) |
| 1833 | return Context.getObjCObjectPointerType(OIT: T); |
| 1834 | |
| 1835 | // In ARC, it is forbidden to build pointers to unqualified pointers. |
| 1836 | if (getLangOpts().ObjCAutoRefCount) |
| 1837 | T = inferARCLifetimeForPointee(S&: *this, type: T, loc: Loc, /*reference*/ isReference: false); |
| 1838 | |
| 1839 | if (getLangOpts().OpenCL) |
| 1840 | T = deduceOpenCLPointeeAddrSpace(S&: *this, PointeeType: T); |
| 1841 | |
| 1842 | // In WebAssembly, pointers to reference types and pointers to tables are |
| 1843 | // illegal. |
| 1844 | if (getASTContext().getTargetInfo().getTriple().isWasm()) { |
| 1845 | if (T.isWebAssemblyReferenceType()) { |
| 1846 | Diag(Loc, DiagID: diag::err_wasm_reference_pr) << 0; |
| 1847 | return QualType(); |
| 1848 | } |
| 1849 | |
| 1850 | // We need to desugar the type here in case T is a ParenType. |
| 1851 | if (T->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) { |
| 1852 | Diag(Loc, DiagID: diag::err_wasm_table_pr) << 0; |
| 1853 | return QualType(); |
| 1854 | } |
| 1855 | } |
| 1856 | |
| 1857 | // Build the pointer type. |
| 1858 | return Context.getPointerType(T); |
| 1859 | } |
| 1860 | |
| 1861 | QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue, |
| 1862 | SourceLocation Loc, |
| 1863 | DeclarationName Entity) { |
| 1864 | assert(Context.getCanonicalType(T) != Context.OverloadTy && |
| 1865 | "Unresolved overloaded function type" ); |
| 1866 | |
| 1867 | // C++0x [dcl.ref]p6: |
| 1868 | // If a typedef (7.1.3), a type template-parameter (14.3.1), or a |
| 1869 | // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a |
| 1870 | // type T, an attempt to create the type "lvalue reference to cv TR" creates |
| 1871 | // the type "lvalue reference to T", while an attempt to create the type |
| 1872 | // "rvalue reference to cv TR" creates the type TR. |
| 1873 | bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>(); |
| 1874 | |
| 1875 | // C++ [dcl.ref]p4: There shall be no references to references. |
| 1876 | // |
| 1877 | // According to C++ DR 106, references to references are only |
| 1878 | // diagnosed when they are written directly (e.g., "int & &"), |
| 1879 | // but not when they happen via a typedef: |
| 1880 | // |
| 1881 | // typedef int& intref; |
| 1882 | // typedef intref& intref2; |
| 1883 | // |
| 1884 | // Parser::ParseDeclaratorInternal diagnoses the case where |
| 1885 | // references are written directly; here, we handle the |
| 1886 | // collapsing of references-to-references as described in C++0x. |
| 1887 | // DR 106 and 540 introduce reference-collapsing into C++98/03. |
| 1888 | |
| 1889 | // C++ [dcl.ref]p1: |
| 1890 | // A declarator that specifies the type "reference to cv void" |
| 1891 | // is ill-formed. |
| 1892 | if (T->isVoidType()) { |
| 1893 | Diag(Loc, DiagID: diag::err_reference_to_void); |
| 1894 | return QualType(); |
| 1895 | } |
| 1896 | |
| 1897 | if (getLangOpts().HLSL && Loc.isValid()) { |
| 1898 | Diag(Loc, DiagID: diag::err_hlsl_pointers_unsupported) << 1; |
| 1899 | return QualType(); |
| 1900 | } |
| 1901 | |
| 1902 | if (checkQualifiedFunction(S&: *this, T, Loc, QFK: QFK_Reference)) |
| 1903 | return QualType(); |
| 1904 | |
| 1905 | if (T->isFunctionType() && getLangOpts().OpenCL && |
| 1906 | !getOpenCLOptions().isAvailableOption(Ext: "__cl_clang_function_pointers" , |
| 1907 | LO: getLangOpts())) { |
| 1908 | Diag(Loc, DiagID: diag::err_opencl_function_pointer) << /*reference*/ 1; |
| 1909 | return QualType(); |
| 1910 | } |
| 1911 | |
| 1912 | // In ARC, it is forbidden to build references to unqualified pointers. |
| 1913 | if (getLangOpts().ObjCAutoRefCount) |
| 1914 | T = inferARCLifetimeForPointee(S&: *this, type: T, loc: Loc, /*reference*/ isReference: true); |
| 1915 | |
| 1916 | if (getLangOpts().OpenCL) |
| 1917 | T = deduceOpenCLPointeeAddrSpace(S&: *this, PointeeType: T); |
| 1918 | |
| 1919 | // In WebAssembly, references to reference types and tables are illegal. |
| 1920 | if (getASTContext().getTargetInfo().getTriple().isWasm() && |
| 1921 | T.isWebAssemblyReferenceType()) { |
| 1922 | Diag(Loc, DiagID: diag::err_wasm_reference_pr) << 1; |
| 1923 | return QualType(); |
| 1924 | } |
| 1925 | if (T->isWebAssemblyTableType()) { |
| 1926 | Diag(Loc, DiagID: diag::err_wasm_table_pr) << 1; |
| 1927 | return QualType(); |
| 1928 | } |
| 1929 | |
| 1930 | // Handle restrict on references. |
| 1931 | if (LValueRef) |
| 1932 | return Context.getLValueReferenceType(T, SpelledAsLValue); |
| 1933 | return Context.getRValueReferenceType(T); |
| 1934 | } |
| 1935 | |
| 1936 | QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) { |
| 1937 | return Context.getReadPipeType(T); |
| 1938 | } |
| 1939 | |
| 1940 | QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) { |
| 1941 | return Context.getWritePipeType(T); |
| 1942 | } |
| 1943 | |
| 1944 | QualType Sema::BuildBitIntType(bool IsUnsigned, Expr *BitWidth, |
| 1945 | SourceLocation Loc) { |
| 1946 | if (BitWidth->isInstantiationDependent()) |
| 1947 | return Context.getDependentBitIntType(Unsigned: IsUnsigned, BitsExpr: BitWidth); |
| 1948 | |
| 1949 | llvm::APSInt Bits(32); |
| 1950 | ExprResult ICE = VerifyIntegerConstantExpression( |
| 1951 | E: BitWidth, Result: &Bits, /*FIXME*/ CanFold: AllowFoldKind::Allow); |
| 1952 | |
| 1953 | if (ICE.isInvalid()) |
| 1954 | return QualType(); |
| 1955 | |
| 1956 | size_t NumBits = Bits.getZExtValue(); |
| 1957 | if (!IsUnsigned && NumBits < 2) { |
| 1958 | Diag(Loc, DiagID: diag::err_bit_int_bad_size) << 0; |
| 1959 | return QualType(); |
| 1960 | } |
| 1961 | |
| 1962 | if (IsUnsigned && NumBits < 1) { |
| 1963 | Diag(Loc, DiagID: diag::err_bit_int_bad_size) << 1; |
| 1964 | return QualType(); |
| 1965 | } |
| 1966 | |
| 1967 | const TargetInfo &TI = getASTContext().getTargetInfo(); |
| 1968 | if (NumBits > TI.getMaxBitIntWidth()) { |
| 1969 | Diag(Loc, DiagID: diag::err_bit_int_max_size) |
| 1970 | << IsUnsigned << static_cast<uint64_t>(TI.getMaxBitIntWidth()); |
| 1971 | return QualType(); |
| 1972 | } |
| 1973 | |
| 1974 | return Context.getBitIntType(Unsigned: IsUnsigned, NumBits); |
| 1975 | } |
| 1976 | |
| 1977 | /// Check whether the specified array bound can be evaluated using the relevant |
| 1978 | /// language rules. If so, returns the possibly-converted expression and sets |
| 1979 | /// SizeVal to the size. If not, but the expression might be a VLA bound, |
| 1980 | /// returns ExprResult(). Otherwise, produces a diagnostic and returns |
| 1981 | /// ExprError(). |
| 1982 | static ExprResult checkArraySize(Sema &S, Expr *&ArraySize, |
| 1983 | llvm::APSInt &SizeVal, unsigned VLADiag, |
| 1984 | bool VLAIsError) { |
| 1985 | if (S.getLangOpts().CPlusPlus14 && |
| 1986 | (VLAIsError || |
| 1987 | !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) { |
| 1988 | // C++14 [dcl.array]p1: |
| 1989 | // The constant-expression shall be a converted constant expression of |
| 1990 | // type std::size_t. |
| 1991 | // |
| 1992 | // Don't apply this rule if we might be forming a VLA: in that case, we |
| 1993 | // allow non-constant expressions and constant-folding. We only need to use |
| 1994 | // the converted constant expression rules (to properly convert the source) |
| 1995 | // when the source expression is of class type. |
| 1996 | return S.CheckConvertedConstantExpression( |
| 1997 | From: ArraySize, T: S.Context.getSizeType(), Value&: SizeVal, CCE: CCEKind::ArrayBound); |
| 1998 | } |
| 1999 | |
| 2000 | // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode |
| 2001 | // (like gnu99, but not c99) accept any evaluatable value as an extension. |
| 2002 | class VLADiagnoser : public Sema::VerifyICEDiagnoser { |
| 2003 | public: |
| 2004 | unsigned VLADiag; |
| 2005 | bool VLAIsError; |
| 2006 | bool IsVLA = false; |
| 2007 | |
| 2008 | VLADiagnoser(unsigned VLADiag, bool VLAIsError) |
| 2009 | : VLADiag(VLADiag), VLAIsError(VLAIsError) {} |
| 2010 | |
| 2011 | Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc, |
| 2012 | QualType T) override { |
| 2013 | return S.Diag(Loc, DiagID: diag::err_array_size_non_int) << T; |
| 2014 | } |
| 2015 | |
| 2016 | Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, |
| 2017 | SourceLocation Loc) override { |
| 2018 | IsVLA = !VLAIsError; |
| 2019 | return S.Diag(Loc, DiagID: VLADiag); |
| 2020 | } |
| 2021 | |
| 2022 | Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S, |
| 2023 | SourceLocation Loc) override { |
| 2024 | return S.Diag(Loc, DiagID: diag::ext_vla_folded_to_constant); |
| 2025 | } |
| 2026 | } Diagnoser(VLADiag, VLAIsError); |
| 2027 | |
| 2028 | ExprResult R = |
| 2029 | S.VerifyIntegerConstantExpression(E: ArraySize, Result: &SizeVal, Diagnoser); |
| 2030 | if (Diagnoser.IsVLA) |
| 2031 | return ExprResult(); |
| 2032 | return R; |
| 2033 | } |
| 2034 | |
| 2035 | bool Sema::checkArrayElementAlignment(QualType EltTy, SourceLocation Loc) { |
| 2036 | EltTy = Context.getBaseElementType(QT: EltTy); |
| 2037 | if (EltTy->isIncompleteType() || EltTy->isDependentType() || |
| 2038 | EltTy->isUndeducedType()) |
| 2039 | return true; |
| 2040 | |
| 2041 | CharUnits Size = Context.getTypeSizeInChars(T: EltTy); |
| 2042 | CharUnits Alignment = Context.getTypeAlignInChars(T: EltTy); |
| 2043 | |
| 2044 | if (Size.isMultipleOf(N: Alignment)) |
| 2045 | return true; |
| 2046 | |
| 2047 | Diag(Loc, DiagID: diag::err_array_element_alignment) |
| 2048 | << EltTy << Size.getQuantity() << Alignment.getQuantity(); |
| 2049 | return false; |
| 2050 | } |
| 2051 | |
| 2052 | QualType Sema::BuildArrayType(QualType T, ArraySizeModifier ASM, |
| 2053 | Expr *ArraySize, unsigned Quals, |
| 2054 | SourceRange Brackets, DeclarationName Entity) { |
| 2055 | |
| 2056 | SourceLocation Loc = Brackets.getBegin(); |
| 2057 | if (getLangOpts().CPlusPlus) { |
| 2058 | // C++ [dcl.array]p1: |
| 2059 | // T is called the array element type; this type shall not be a reference |
| 2060 | // type, the (possibly cv-qualified) type void, a function type or an |
| 2061 | // abstract class type. |
| 2062 | // |
| 2063 | // C++ [dcl.array]p3: |
| 2064 | // When several "array of" specifications are adjacent, [...] only the |
| 2065 | // first of the constant expressions that specify the bounds of the arrays |
| 2066 | // may be omitted. |
| 2067 | // |
| 2068 | // Note: function types are handled in the common path with C. |
| 2069 | if (T->isReferenceType()) { |
| 2070 | Diag(Loc, DiagID: diag::err_illegal_decl_array_of_references) |
| 2071 | << getPrintableNameForEntity(Entity) << T; |
| 2072 | return QualType(); |
| 2073 | } |
| 2074 | |
| 2075 | if (T->isVoidType() || T->isIncompleteArrayType()) { |
| 2076 | Diag(Loc, DiagID: diag::err_array_incomplete_or_sizeless_type) << 0 << T; |
| 2077 | return QualType(); |
| 2078 | } |
| 2079 | |
| 2080 | if (RequireNonAbstractType(Loc: Brackets.getBegin(), T, |
| 2081 | DiagID: diag::err_array_of_abstract_type)) |
| 2082 | return QualType(); |
| 2083 | |
| 2084 | // Mentioning a member pointer type for an array type causes us to lock in |
| 2085 | // an inheritance model, even if it's inside an unused typedef. |
| 2086 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) |
| 2087 | if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) |
| 2088 | if (!MPTy->getQualifier()->isDependent()) |
| 2089 | (void)isCompleteType(Loc, T); |
| 2090 | |
| 2091 | } else { |
| 2092 | // C99 6.7.5.2p1: If the element type is an incomplete or function type, |
| 2093 | // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]()) |
| 2094 | if (!T.isWebAssemblyReferenceType() && |
| 2095 | RequireCompleteSizedType(Loc, T, |
| 2096 | DiagID: diag::err_array_incomplete_or_sizeless_type)) |
| 2097 | return QualType(); |
| 2098 | } |
| 2099 | |
| 2100 | // Multi-dimensional arrays of WebAssembly references are not allowed. |
| 2101 | if (Context.getTargetInfo().getTriple().isWasm() && T->isArrayType()) { |
| 2102 | const auto *ATy = dyn_cast<ArrayType>(Val&: T); |
| 2103 | if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) { |
| 2104 | Diag(Loc, DiagID: diag::err_wasm_reftype_multidimensional_array); |
| 2105 | return QualType(); |
| 2106 | } |
| 2107 | } |
| 2108 | |
| 2109 | if (T->isSizelessType() && !T.isWebAssemblyReferenceType()) { |
| 2110 | Diag(Loc, DiagID: diag::err_array_incomplete_or_sizeless_type) << 1 << T; |
| 2111 | return QualType(); |
| 2112 | } |
| 2113 | |
| 2114 | if (T->isFunctionType()) { |
| 2115 | Diag(Loc, DiagID: diag::err_illegal_decl_array_of_functions) |
| 2116 | << getPrintableNameForEntity(Entity) << T; |
| 2117 | return QualType(); |
| 2118 | } |
| 2119 | |
| 2120 | if (const RecordType *EltTy = T->getAs<RecordType>()) { |
| 2121 | // If the element type is a struct or union that contains a variadic |
| 2122 | // array, accept it as a GNU extension: C99 6.7.2.1p2. |
| 2123 | if (EltTy->getDecl()->hasFlexibleArrayMember()) |
| 2124 | Diag(Loc, DiagID: diag::ext_flexible_array_in_array) << T; |
| 2125 | } else if (T->isObjCObjectType()) { |
| 2126 | Diag(Loc, DiagID: diag::err_objc_array_of_interfaces) << T; |
| 2127 | return QualType(); |
| 2128 | } |
| 2129 | |
| 2130 | if (!checkArrayElementAlignment(EltTy: T, Loc)) |
| 2131 | return QualType(); |
| 2132 | |
| 2133 | // Do placeholder conversions on the array size expression. |
| 2134 | if (ArraySize && ArraySize->hasPlaceholderType()) { |
| 2135 | ExprResult Result = CheckPlaceholderExpr(E: ArraySize); |
| 2136 | if (Result.isInvalid()) return QualType(); |
| 2137 | ArraySize = Result.get(); |
| 2138 | } |
| 2139 | |
| 2140 | // Do lvalue-to-rvalue conversions on the array size expression. |
| 2141 | if (ArraySize && !ArraySize->isPRValue()) { |
| 2142 | ExprResult Result = DefaultLvalueConversion(E: ArraySize); |
| 2143 | if (Result.isInvalid()) |
| 2144 | return QualType(); |
| 2145 | |
| 2146 | ArraySize = Result.get(); |
| 2147 | } |
| 2148 | |
| 2149 | // C99 6.7.5.2p1: The size expression shall have integer type. |
| 2150 | // C++11 allows contextual conversions to such types. |
| 2151 | if (!getLangOpts().CPlusPlus11 && |
| 2152 | ArraySize && !ArraySize->isTypeDependent() && |
| 2153 | !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) { |
| 2154 | Diag(Loc: ArraySize->getBeginLoc(), DiagID: diag::err_array_size_non_int) |
| 2155 | << ArraySize->getType() << ArraySize->getSourceRange(); |
| 2156 | return QualType(); |
| 2157 | } |
| 2158 | |
| 2159 | auto IsStaticAssertLike = [](const Expr *ArraySize, ASTContext &Context) { |
| 2160 | if (!ArraySize) |
| 2161 | return false; |
| 2162 | |
| 2163 | // If the array size expression is a conditional expression whose branches |
| 2164 | // are both integer constant expressions, one negative and one positive, |
| 2165 | // then it's assumed to be like an old-style static assertion. e.g., |
| 2166 | // int old_style_assert[expr ? 1 : -1]; |
| 2167 | // We will accept any integer constant expressions instead of assuming the |
| 2168 | // values 1 and -1 are always used. |
| 2169 | if (const auto *CondExpr = dyn_cast_if_present<ConditionalOperator>( |
| 2170 | Val: ArraySize->IgnoreParenImpCasts())) { |
| 2171 | std::optional<llvm::APSInt> LHS = |
| 2172 | CondExpr->getLHS()->getIntegerConstantExpr(Ctx: Context); |
| 2173 | std::optional<llvm::APSInt> RHS = |
| 2174 | CondExpr->getRHS()->getIntegerConstantExpr(Ctx: Context); |
| 2175 | return LHS && RHS && LHS->isNegative() != RHS->isNegative(); |
| 2176 | } |
| 2177 | return false; |
| 2178 | }; |
| 2179 | |
| 2180 | // VLAs always produce at least a -Wvla diagnostic, sometimes an error. |
| 2181 | unsigned VLADiag; |
| 2182 | bool VLAIsError; |
| 2183 | if (getLangOpts().OpenCL) { |
| 2184 | // OpenCL v1.2 s6.9.d: variable length arrays are not supported. |
| 2185 | VLADiag = diag::err_opencl_vla; |
| 2186 | VLAIsError = true; |
| 2187 | } else if (getLangOpts().C99) { |
| 2188 | VLADiag = diag::warn_vla_used; |
| 2189 | VLAIsError = false; |
| 2190 | } else if (isSFINAEContext()) { |
| 2191 | VLADiag = diag::err_vla_in_sfinae; |
| 2192 | VLAIsError = true; |
| 2193 | } else if (getLangOpts().OpenMP && OpenMP().isInOpenMPTaskUntiedContext()) { |
| 2194 | VLADiag = diag::err_openmp_vla_in_task_untied; |
| 2195 | VLAIsError = true; |
| 2196 | } else if (getLangOpts().CPlusPlus) { |
| 2197 | if (getLangOpts().CPlusPlus11 && IsStaticAssertLike(ArraySize, Context)) |
| 2198 | VLADiag = getLangOpts().GNUMode |
| 2199 | ? diag::ext_vla_cxx_in_gnu_mode_static_assert |
| 2200 | : diag::ext_vla_cxx_static_assert; |
| 2201 | else |
| 2202 | VLADiag = getLangOpts().GNUMode ? diag::ext_vla_cxx_in_gnu_mode |
| 2203 | : diag::ext_vla_cxx; |
| 2204 | VLAIsError = false; |
| 2205 | } else { |
| 2206 | VLADiag = diag::ext_vla; |
| 2207 | VLAIsError = false; |
| 2208 | } |
| 2209 | |
| 2210 | llvm::APSInt ConstVal(Context.getTypeSize(T: Context.getSizeType())); |
| 2211 | if (!ArraySize) { |
| 2212 | if (ASM == ArraySizeModifier::Star) { |
| 2213 | Diag(Loc, DiagID: VLADiag); |
| 2214 | if (VLAIsError) |
| 2215 | return QualType(); |
| 2216 | |
| 2217 | T = Context.getVariableArrayType(EltTy: T, NumElts: nullptr, ASM, IndexTypeQuals: Quals); |
| 2218 | } else { |
| 2219 | T = Context.getIncompleteArrayType(EltTy: T, ASM, IndexTypeQuals: Quals); |
| 2220 | } |
| 2221 | } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) { |
| 2222 | T = Context.getDependentSizedArrayType(EltTy: T, NumElts: ArraySize, ASM, IndexTypeQuals: Quals); |
| 2223 | } else { |
| 2224 | ExprResult R = |
| 2225 | checkArraySize(S&: *this, ArraySize, SizeVal&: ConstVal, VLADiag, VLAIsError); |
| 2226 | if (R.isInvalid()) |
| 2227 | return QualType(); |
| 2228 | |
| 2229 | if (!R.isUsable()) { |
| 2230 | // C99: an array with a non-ICE size is a VLA. We accept any expression |
| 2231 | // that we can fold to a non-zero positive value as a non-VLA as an |
| 2232 | // extension. |
| 2233 | T = Context.getVariableArrayType(EltTy: T, NumElts: ArraySize, ASM, IndexTypeQuals: Quals); |
| 2234 | } else if (!T->isDependentType() && !T->isIncompleteType() && |
| 2235 | !T->isConstantSizeType()) { |
| 2236 | // C99: an array with an element type that has a non-constant-size is a |
| 2237 | // VLA. |
| 2238 | // FIXME: Add a note to explain why this isn't a VLA. |
| 2239 | Diag(Loc, DiagID: VLADiag); |
| 2240 | if (VLAIsError) |
| 2241 | return QualType(); |
| 2242 | T = Context.getVariableArrayType(EltTy: T, NumElts: ArraySize, ASM, IndexTypeQuals: Quals); |
| 2243 | } else { |
| 2244 | // C99 6.7.5.2p1: If the expression is a constant expression, it shall |
| 2245 | // have a value greater than zero. |
| 2246 | // In C++, this follows from narrowing conversions being disallowed. |
| 2247 | if (ConstVal.isSigned() && ConstVal.isNegative()) { |
| 2248 | if (Entity) |
| 2249 | Diag(Loc: ArraySize->getBeginLoc(), DiagID: diag::err_decl_negative_array_size) |
| 2250 | << getPrintableNameForEntity(Entity) |
| 2251 | << ArraySize->getSourceRange(); |
| 2252 | else |
| 2253 | Diag(Loc: ArraySize->getBeginLoc(), |
| 2254 | DiagID: diag::err_typecheck_negative_array_size) |
| 2255 | << ArraySize->getSourceRange(); |
| 2256 | return QualType(); |
| 2257 | } |
| 2258 | if (ConstVal == 0 && !T.isWebAssemblyReferenceType()) { |
| 2259 | // GCC accepts zero sized static arrays. We allow them when |
| 2260 | // we're not in a SFINAE context. |
| 2261 | Diag(Loc: ArraySize->getBeginLoc(), |
| 2262 | DiagID: isSFINAEContext() ? diag::err_typecheck_zero_array_size |
| 2263 | : diag::ext_typecheck_zero_array_size) |
| 2264 | << 0 << ArraySize->getSourceRange(); |
| 2265 | } |
| 2266 | |
| 2267 | // Is the array too large? |
| 2268 | unsigned ActiveSizeBits = |
| 2269 | (!T->isDependentType() && !T->isVariablyModifiedType() && |
| 2270 | !T->isIncompleteType() && !T->isUndeducedType()) |
| 2271 | ? ConstantArrayType::getNumAddressingBits(Context, ElementType: T, NumElements: ConstVal) |
| 2272 | : ConstVal.getActiveBits(); |
| 2273 | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { |
| 2274 | Diag(Loc: ArraySize->getBeginLoc(), DiagID: diag::err_array_too_large) |
| 2275 | << toString(I: ConstVal, Radix: 10) << ArraySize->getSourceRange(); |
| 2276 | return QualType(); |
| 2277 | } |
| 2278 | |
| 2279 | T = Context.getConstantArrayType(EltTy: T, ArySize: ConstVal, SizeExpr: ArraySize, ASM, IndexTypeQuals: Quals); |
| 2280 | } |
| 2281 | } |
| 2282 | |
| 2283 | if (T->isVariableArrayType()) { |
| 2284 | if (!Context.getTargetInfo().isVLASupported()) { |
| 2285 | // CUDA device code and some other targets don't support VLAs. |
| 2286 | bool IsCUDADevice = (getLangOpts().CUDA && getLangOpts().CUDAIsDevice); |
| 2287 | targetDiag(Loc, |
| 2288 | DiagID: IsCUDADevice ? diag::err_cuda_vla : diag::err_vla_unsupported) |
| 2289 | << (IsCUDADevice ? llvm::to_underlying(E: CUDA().CurrentTarget()) : 0); |
| 2290 | } else if (sema::FunctionScopeInfo *FSI = getCurFunction()) { |
| 2291 | // VLAs are supported on this target, but we may need to do delayed |
| 2292 | // checking that the VLA is not being used within a coroutine. |
| 2293 | FSI->setHasVLA(Loc); |
| 2294 | } |
| 2295 | } |
| 2296 | |
| 2297 | // If this is not C99, diagnose array size modifiers on non-VLAs. |
| 2298 | if (!getLangOpts().C99 && !T->isVariableArrayType() && |
| 2299 | (ASM != ArraySizeModifier::Normal || Quals != 0)) { |
| 2300 | Diag(Loc, DiagID: getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx |
| 2301 | : diag::ext_c99_array_usage) |
| 2302 | << ASM; |
| 2303 | } |
| 2304 | |
| 2305 | // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported. |
| 2306 | // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported. |
| 2307 | // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported. |
| 2308 | if (getLangOpts().OpenCL) { |
| 2309 | const QualType ArrType = Context.getBaseElementType(QT: T); |
| 2310 | if (ArrType->isBlockPointerType() || ArrType->isPipeType() || |
| 2311 | ArrType->isSamplerT() || ArrType->isImageType()) { |
| 2312 | Diag(Loc, DiagID: diag::err_opencl_invalid_type_array) << ArrType; |
| 2313 | return QualType(); |
| 2314 | } |
| 2315 | } |
| 2316 | |
| 2317 | return T; |
| 2318 | } |
| 2319 | |
| 2320 | static bool CheckBitIntElementType(Sema &S, SourceLocation AttrLoc, |
| 2321 | const BitIntType *BIT, |
| 2322 | bool ForMatrixType = false) { |
| 2323 | // Only support _BitInt elements with byte-sized power of 2 NumBits. |
| 2324 | unsigned NumBits = BIT->getNumBits(); |
| 2325 | if (!llvm::isPowerOf2_32(Value: NumBits)) |
| 2326 | return S.Diag(Loc: AttrLoc, DiagID: diag::err_attribute_invalid_bitint_vector_type) |
| 2327 | << ForMatrixType; |
| 2328 | return false; |
| 2329 | } |
| 2330 | |
| 2331 | QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr, |
| 2332 | SourceLocation AttrLoc) { |
| 2333 | // The base type must be integer (not Boolean or enumeration) or float, and |
| 2334 | // can't already be a vector. |
| 2335 | if ((!CurType->isDependentType() && |
| 2336 | (!CurType->isBuiltinType() || CurType->isBooleanType() || |
| 2337 | (!CurType->isIntegerType() && !CurType->isRealFloatingType())) && |
| 2338 | !CurType->isBitIntType()) || |
| 2339 | CurType->isArrayType()) { |
| 2340 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_invalid_vector_type) << CurType; |
| 2341 | return QualType(); |
| 2342 | } |
| 2343 | |
| 2344 | if (const auto *BIT = CurType->getAs<BitIntType>(); |
| 2345 | BIT && CheckBitIntElementType(S&: *this, AttrLoc, BIT)) |
| 2346 | return QualType(); |
| 2347 | |
| 2348 | if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent()) |
| 2349 | return Context.getDependentVectorType(VectorType: CurType, SizeExpr, AttrLoc, |
| 2350 | VecKind: VectorKind::Generic); |
| 2351 | |
| 2352 | std::optional<llvm::APSInt> VecSize = |
| 2353 | SizeExpr->getIntegerConstantExpr(Ctx: Context); |
| 2354 | if (!VecSize) { |
| 2355 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_argument_type) |
| 2356 | << "vector_size" << AANT_ArgumentIntegerConstant |
| 2357 | << SizeExpr->getSourceRange(); |
| 2358 | return QualType(); |
| 2359 | } |
| 2360 | |
| 2361 | if (CurType->isDependentType()) |
| 2362 | return Context.getDependentVectorType(VectorType: CurType, SizeExpr, AttrLoc, |
| 2363 | VecKind: VectorKind::Generic); |
| 2364 | |
| 2365 | // vecSize is specified in bytes - convert to bits. |
| 2366 | if (!VecSize->isIntN(N: 61)) { |
| 2367 | // Bit size will overflow uint64. |
| 2368 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_size_too_large) |
| 2369 | << SizeExpr->getSourceRange() << "vector" ; |
| 2370 | return QualType(); |
| 2371 | } |
| 2372 | uint64_t VectorSizeBits = VecSize->getZExtValue() * 8; |
| 2373 | unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(T: CurType)); |
| 2374 | |
| 2375 | if (VectorSizeBits == 0) { |
| 2376 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_zero_size) |
| 2377 | << SizeExpr->getSourceRange() << "vector" ; |
| 2378 | return QualType(); |
| 2379 | } |
| 2380 | |
| 2381 | if (!TypeSize || VectorSizeBits % TypeSize) { |
| 2382 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_invalid_size) |
| 2383 | << SizeExpr->getSourceRange(); |
| 2384 | return QualType(); |
| 2385 | } |
| 2386 | |
| 2387 | if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) { |
| 2388 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_size_too_large) |
| 2389 | << SizeExpr->getSourceRange() << "vector" ; |
| 2390 | return QualType(); |
| 2391 | } |
| 2392 | |
| 2393 | return Context.getVectorType(VectorType: CurType, NumElts: VectorSizeBits / TypeSize, |
| 2394 | VecKind: VectorKind::Generic); |
| 2395 | } |
| 2396 | |
| 2397 | QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize, |
| 2398 | SourceLocation AttrLoc) { |
| 2399 | // Unlike gcc's vector_size attribute, we do not allow vectors to be defined |
| 2400 | // in conjunction with complex types (pointers, arrays, functions, etc.). |
| 2401 | // |
| 2402 | // Additionally, OpenCL prohibits vectors of booleans (they're considered a |
| 2403 | // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects |
| 2404 | // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors |
| 2405 | // of bool aren't allowed. |
| 2406 | // |
| 2407 | // We explicitly allow bool elements in ext_vector_type for C/C++. |
| 2408 | bool IsNoBoolVecLang = getLangOpts().OpenCL || getLangOpts().OpenCLCPlusPlus; |
| 2409 | if ((!T->isDependentType() && !T->isIntegerType() && |
| 2410 | !T->isRealFloatingType()) || |
| 2411 | (IsNoBoolVecLang && T->isBooleanType())) { |
| 2412 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_invalid_vector_type) << T; |
| 2413 | return QualType(); |
| 2414 | } |
| 2415 | |
| 2416 | if (const auto *BIT = T->getAs<BitIntType>(); |
| 2417 | BIT && CheckBitIntElementType(S&: *this, AttrLoc, BIT)) |
| 2418 | return QualType(); |
| 2419 | |
| 2420 | if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) { |
| 2421 | std::optional<llvm::APSInt> vecSize = |
| 2422 | ArraySize->getIntegerConstantExpr(Ctx: Context); |
| 2423 | if (!vecSize) { |
| 2424 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_argument_type) |
| 2425 | << "ext_vector_type" << AANT_ArgumentIntegerConstant |
| 2426 | << ArraySize->getSourceRange(); |
| 2427 | return QualType(); |
| 2428 | } |
| 2429 | |
| 2430 | if (!vecSize->isIntN(N: 32)) { |
| 2431 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_size_too_large) |
| 2432 | << ArraySize->getSourceRange() << "vector" ; |
| 2433 | return QualType(); |
| 2434 | } |
| 2435 | // Unlike gcc's vector_size attribute, the size is specified as the |
| 2436 | // number of elements, not the number of bytes. |
| 2437 | unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue()); |
| 2438 | |
| 2439 | if (vectorSize == 0) { |
| 2440 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_zero_size) |
| 2441 | << ArraySize->getSourceRange() << "vector" ; |
| 2442 | return QualType(); |
| 2443 | } |
| 2444 | |
| 2445 | return Context.getExtVectorType(VectorType: T, NumElts: vectorSize); |
| 2446 | } |
| 2447 | |
| 2448 | return Context.getDependentSizedExtVectorType(VectorType: T, SizeExpr: ArraySize, AttrLoc); |
| 2449 | } |
| 2450 | |
| 2451 | QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols, |
| 2452 | SourceLocation AttrLoc) { |
| 2453 | assert(Context.getLangOpts().MatrixTypes && |
| 2454 | "Should never build a matrix type when it is disabled" ); |
| 2455 | |
| 2456 | // Check element type, if it is not dependent. |
| 2457 | if (!ElementTy->isDependentType() && |
| 2458 | !MatrixType::isValidElementType(T: ElementTy)) { |
| 2459 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_invalid_matrix_type) << ElementTy; |
| 2460 | return QualType(); |
| 2461 | } |
| 2462 | |
| 2463 | if (const auto *BIT = ElementTy->getAs<BitIntType>(); |
| 2464 | BIT && |
| 2465 | CheckBitIntElementType(S&: *this, AttrLoc, BIT, /*ForMatrixType=*/true)) |
| 2466 | return QualType(); |
| 2467 | |
| 2468 | if (NumRows->isTypeDependent() || NumCols->isTypeDependent() || |
| 2469 | NumRows->isValueDependent() || NumCols->isValueDependent()) |
| 2470 | return Context.getDependentSizedMatrixType(ElementType: ElementTy, RowExpr: NumRows, ColumnExpr: NumCols, |
| 2471 | AttrLoc); |
| 2472 | |
| 2473 | std::optional<llvm::APSInt> ValueRows = |
| 2474 | NumRows->getIntegerConstantExpr(Ctx: Context); |
| 2475 | std::optional<llvm::APSInt> ValueColumns = |
| 2476 | NumCols->getIntegerConstantExpr(Ctx: Context); |
| 2477 | |
| 2478 | auto const RowRange = NumRows->getSourceRange(); |
| 2479 | auto const ColRange = NumCols->getSourceRange(); |
| 2480 | |
| 2481 | // Both are row and column expressions are invalid. |
| 2482 | if (!ValueRows && !ValueColumns) { |
| 2483 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_argument_type) |
| 2484 | << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange |
| 2485 | << ColRange; |
| 2486 | return QualType(); |
| 2487 | } |
| 2488 | |
| 2489 | // Only the row expression is invalid. |
| 2490 | if (!ValueRows) { |
| 2491 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_argument_type) |
| 2492 | << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange; |
| 2493 | return QualType(); |
| 2494 | } |
| 2495 | |
| 2496 | // Only the column expression is invalid. |
| 2497 | if (!ValueColumns) { |
| 2498 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_argument_type) |
| 2499 | << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange; |
| 2500 | return QualType(); |
| 2501 | } |
| 2502 | |
| 2503 | // Check the matrix dimensions. |
| 2504 | unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue()); |
| 2505 | unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue()); |
| 2506 | if (MatrixRows == 0 && MatrixColumns == 0) { |
| 2507 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_zero_size) |
| 2508 | << "matrix" << RowRange << ColRange; |
| 2509 | return QualType(); |
| 2510 | } |
| 2511 | if (MatrixRows == 0) { |
| 2512 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_zero_size) << "matrix" << RowRange; |
| 2513 | return QualType(); |
| 2514 | } |
| 2515 | if (MatrixColumns == 0) { |
| 2516 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_zero_size) << "matrix" << ColRange; |
| 2517 | return QualType(); |
| 2518 | } |
| 2519 | if (!ConstantMatrixType::isDimensionValid(NumElements: MatrixRows)) { |
| 2520 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_size_too_large) |
| 2521 | << RowRange << "matrix row" ; |
| 2522 | return QualType(); |
| 2523 | } |
| 2524 | if (!ConstantMatrixType::isDimensionValid(NumElements: MatrixColumns)) { |
| 2525 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_size_too_large) |
| 2526 | << ColRange << "matrix column" ; |
| 2527 | return QualType(); |
| 2528 | } |
| 2529 | return Context.getConstantMatrixType(ElementType: ElementTy, NumRows: MatrixRows, NumColumns: MatrixColumns); |
| 2530 | } |
| 2531 | |
| 2532 | bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) { |
| 2533 | if ((T->isArrayType() && !getLangOpts().allowArrayReturnTypes()) || |
| 2534 | T->isFunctionType()) { |
| 2535 | Diag(Loc, DiagID: diag::err_func_returning_array_function) |
| 2536 | << T->isFunctionType() << T; |
| 2537 | return true; |
| 2538 | } |
| 2539 | |
| 2540 | // Functions cannot return half FP. |
| 2541 | if (T->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns && |
| 2542 | !Context.getTargetInfo().allowHalfArgsAndReturns()) { |
| 2543 | Diag(Loc, DiagID: diag::err_parameters_retval_cannot_have_fp16_type) << 1 << |
| 2544 | FixItHint::CreateInsertion(InsertionLoc: Loc, Code: "*" ); |
| 2545 | return true; |
| 2546 | } |
| 2547 | |
| 2548 | // Methods cannot return interface types. All ObjC objects are |
| 2549 | // passed by reference. |
| 2550 | if (T->isObjCObjectType()) { |
| 2551 | Diag(Loc, DiagID: diag::err_object_cannot_be_passed_returned_by_value) |
| 2552 | << 0 << T << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: "*" ); |
| 2553 | return true; |
| 2554 | } |
| 2555 | |
| 2556 | // __ptrauth is illegal on a function return type. |
| 2557 | if (T.getPointerAuth()) { |
| 2558 | Diag(Loc, DiagID: diag::err_ptrauth_qualifier_invalid) << T << 0; |
| 2559 | return true; |
| 2560 | } |
| 2561 | |
| 2562 | if (T.hasNonTrivialToPrimitiveDestructCUnion() || |
| 2563 | T.hasNonTrivialToPrimitiveCopyCUnion()) |
| 2564 | checkNonTrivialCUnion(QT: T, Loc, UseContext: NonTrivialCUnionContext::FunctionReturn, |
| 2565 | NonTrivialKind: NTCUK_Destruct | NTCUK_Copy); |
| 2566 | |
| 2567 | // C++2a [dcl.fct]p12: |
| 2568 | // A volatile-qualified return type is deprecated |
| 2569 | if (T.isVolatileQualified() && getLangOpts().CPlusPlus20) |
| 2570 | Diag(Loc, DiagID: diag::warn_deprecated_volatile_return) << T; |
| 2571 | |
| 2572 | if (T.getAddressSpace() != LangAS::Default && getLangOpts().HLSL) |
| 2573 | return true; |
| 2574 | return false; |
| 2575 | } |
| 2576 | |
| 2577 | /// Check the extended parameter information. Most of the necessary |
| 2578 | /// checking should occur when applying the parameter attribute; the |
| 2579 | /// only other checks required are positional restrictions. |
| 2580 | static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes, |
| 2581 | const FunctionProtoType::ExtProtoInfo &EPI, |
| 2582 | llvm::function_ref<SourceLocation(unsigned)> getParamLoc) { |
| 2583 | assert(EPI.ExtParameterInfos && "shouldn't get here without param infos" ); |
| 2584 | |
| 2585 | bool emittedError = false; |
| 2586 | auto actualCC = EPI.ExtInfo.getCC(); |
| 2587 | enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync }; |
| 2588 | auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) { |
| 2589 | bool isCompatible = |
| 2590 | (required == RequiredCC::OnlySwift) |
| 2591 | ? (actualCC == CC_Swift) |
| 2592 | : (actualCC == CC_Swift || actualCC == CC_SwiftAsync); |
| 2593 | if (isCompatible || emittedError) |
| 2594 | return; |
| 2595 | S.Diag(Loc: getParamLoc(paramIndex), DiagID: diag::err_swift_param_attr_not_swiftcall) |
| 2596 | << getParameterABISpelling(kind: EPI.ExtParameterInfos[paramIndex].getABI()) |
| 2597 | << (required == RequiredCC::OnlySwift); |
| 2598 | emittedError = true; |
| 2599 | }; |
| 2600 | for (size_t paramIndex = 0, numParams = paramTypes.size(); |
| 2601 | paramIndex != numParams; ++paramIndex) { |
| 2602 | switch (EPI.ExtParameterInfos[paramIndex].getABI()) { |
| 2603 | // Nothing interesting to check for orindary-ABI parameters. |
| 2604 | case ParameterABI::Ordinary: |
| 2605 | case ParameterABI::HLSLOut: |
| 2606 | case ParameterABI::HLSLInOut: |
| 2607 | continue; |
| 2608 | |
| 2609 | // swift_indirect_result parameters must be a prefix of the function |
| 2610 | // arguments. |
| 2611 | case ParameterABI::SwiftIndirectResult: |
| 2612 | checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync); |
| 2613 | if (paramIndex != 0 && |
| 2614 | EPI.ExtParameterInfos[paramIndex - 1].getABI() |
| 2615 | != ParameterABI::SwiftIndirectResult) { |
| 2616 | S.Diag(Loc: getParamLoc(paramIndex), |
| 2617 | DiagID: diag::err_swift_indirect_result_not_first); |
| 2618 | } |
| 2619 | continue; |
| 2620 | |
| 2621 | case ParameterABI::SwiftContext: |
| 2622 | checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync); |
| 2623 | continue; |
| 2624 | |
| 2625 | // SwiftAsyncContext is not limited to swiftasynccall functions. |
| 2626 | case ParameterABI::SwiftAsyncContext: |
| 2627 | continue; |
| 2628 | |
| 2629 | // swift_error parameters must be preceded by a swift_context parameter. |
| 2630 | case ParameterABI::SwiftErrorResult: |
| 2631 | checkCompatible(paramIndex, RequiredCC::OnlySwift); |
| 2632 | if (paramIndex == 0 || |
| 2633 | EPI.ExtParameterInfos[paramIndex - 1].getABI() != |
| 2634 | ParameterABI::SwiftContext) { |
| 2635 | S.Diag(Loc: getParamLoc(paramIndex), |
| 2636 | DiagID: diag::err_swift_error_result_not_after_swift_context); |
| 2637 | } |
| 2638 | continue; |
| 2639 | } |
| 2640 | llvm_unreachable("bad ABI kind" ); |
| 2641 | } |
| 2642 | } |
| 2643 | |
| 2644 | QualType Sema::BuildFunctionType(QualType T, |
| 2645 | MutableArrayRef<QualType> ParamTypes, |
| 2646 | SourceLocation Loc, DeclarationName Entity, |
| 2647 | const FunctionProtoType::ExtProtoInfo &EPI) { |
| 2648 | bool Invalid = false; |
| 2649 | |
| 2650 | Invalid |= CheckFunctionReturnType(T, Loc); |
| 2651 | |
| 2652 | for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) { |
| 2653 | // FIXME: Loc is too inprecise here, should use proper locations for args. |
| 2654 | QualType ParamType = Context.getAdjustedParameterType(T: ParamTypes[Idx]); |
| 2655 | if (ParamType->isVoidType()) { |
| 2656 | Diag(Loc, DiagID: diag::err_param_with_void_type); |
| 2657 | Invalid = true; |
| 2658 | } else if (ParamType->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns && |
| 2659 | !Context.getTargetInfo().allowHalfArgsAndReturns()) { |
| 2660 | // Disallow half FP arguments. |
| 2661 | Diag(Loc, DiagID: diag::err_parameters_retval_cannot_have_fp16_type) << 0 << |
| 2662 | FixItHint::CreateInsertion(InsertionLoc: Loc, Code: "*" ); |
| 2663 | Invalid = true; |
| 2664 | } else if (ParamType->isWebAssemblyTableType()) { |
| 2665 | Diag(Loc, DiagID: diag::err_wasm_table_as_function_parameter); |
| 2666 | Invalid = true; |
| 2667 | } else if (ParamType.getPointerAuth()) { |
| 2668 | // __ptrauth is illegal on a function return type. |
| 2669 | Diag(Loc, DiagID: diag::err_ptrauth_qualifier_invalid) << T << 1; |
| 2670 | Invalid = true; |
| 2671 | } |
| 2672 | |
| 2673 | // C++2a [dcl.fct]p4: |
| 2674 | // A parameter with volatile-qualified type is deprecated |
| 2675 | if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20) |
| 2676 | Diag(Loc, DiagID: diag::warn_deprecated_volatile_param) << ParamType; |
| 2677 | |
| 2678 | ParamTypes[Idx] = ParamType; |
| 2679 | } |
| 2680 | |
| 2681 | if (EPI.ExtParameterInfos) { |
| 2682 | checkExtParameterInfos(S&: *this, paramTypes: ParamTypes, EPI, |
| 2683 | getParamLoc: [=](unsigned i) { return Loc; }); |
| 2684 | } |
| 2685 | |
| 2686 | if (EPI.ExtInfo.getProducesResult()) { |
| 2687 | // This is just a warning, so we can't fail to build if we see it. |
| 2688 | ObjC().checkNSReturnsRetainedReturnType(loc: Loc, type: T); |
| 2689 | } |
| 2690 | |
| 2691 | if (Invalid) |
| 2692 | return QualType(); |
| 2693 | |
| 2694 | return Context.getFunctionType(ResultTy: T, Args: ParamTypes, EPI); |
| 2695 | } |
| 2696 | |
| 2697 | QualType Sema::BuildMemberPointerType(QualType T, const CXXScopeSpec &SS, |
| 2698 | CXXRecordDecl *Cls, SourceLocation Loc, |
| 2699 | DeclarationName Entity) { |
| 2700 | if (!Cls && !isDependentScopeSpecifier(SS)) { |
| 2701 | Cls = dyn_cast_or_null<CXXRecordDecl>(Val: computeDeclContext(SS)); |
| 2702 | if (!Cls) { |
| 2703 | auto D = |
| 2704 | Diag(Loc: SS.getBeginLoc(), DiagID: diag::err_illegal_decl_mempointer_in_nonclass) |
| 2705 | << SS.getRange(); |
| 2706 | if (const IdentifierInfo *II = Entity.getAsIdentifierInfo()) |
| 2707 | D << II; |
| 2708 | else |
| 2709 | D << "member pointer" ; |
| 2710 | return QualType(); |
| 2711 | } |
| 2712 | } |
| 2713 | |
| 2714 | // Verify that we're not building a pointer to pointer to function with |
| 2715 | // exception specification. |
| 2716 | if (CheckDistantExceptionSpec(T)) { |
| 2717 | Diag(Loc, DiagID: diag::err_distant_exception_spec); |
| 2718 | return QualType(); |
| 2719 | } |
| 2720 | |
| 2721 | // C++ 8.3.3p3: A pointer to member shall not point to ... a member |
| 2722 | // with reference type, or "cv void." |
| 2723 | if (T->isReferenceType()) { |
| 2724 | Diag(Loc, DiagID: diag::err_illegal_decl_mempointer_to_reference) |
| 2725 | << getPrintableNameForEntity(Entity) << T; |
| 2726 | return QualType(); |
| 2727 | } |
| 2728 | |
| 2729 | if (T->isVoidType()) { |
| 2730 | Diag(Loc, DiagID: diag::err_illegal_decl_mempointer_to_void) |
| 2731 | << getPrintableNameForEntity(Entity); |
| 2732 | return QualType(); |
| 2733 | } |
| 2734 | |
| 2735 | if (T->isFunctionType() && getLangOpts().OpenCL && |
| 2736 | !getOpenCLOptions().isAvailableOption(Ext: "__cl_clang_function_pointers" , |
| 2737 | LO: getLangOpts())) { |
| 2738 | Diag(Loc, DiagID: diag::err_opencl_function_pointer) << /*pointer*/ 0; |
| 2739 | return QualType(); |
| 2740 | } |
| 2741 | |
| 2742 | if (getLangOpts().HLSL && Loc.isValid()) { |
| 2743 | Diag(Loc, DiagID: diag::err_hlsl_pointers_unsupported) << 0; |
| 2744 | return QualType(); |
| 2745 | } |
| 2746 | |
| 2747 | // Adjust the default free function calling convention to the default method |
| 2748 | // calling convention. |
| 2749 | bool IsCtorOrDtor = |
| 2750 | (Entity.getNameKind() == DeclarationName::CXXConstructorName) || |
| 2751 | (Entity.getNameKind() == DeclarationName::CXXDestructorName); |
| 2752 | if (T->isFunctionType()) |
| 2753 | adjustMemberFunctionCC(T, /*HasThisPointer=*/true, IsCtorOrDtor, Loc); |
| 2754 | |
| 2755 | return Context.getMemberPointerType(T, Qualifier: SS.getScopeRep(), Cls); |
| 2756 | } |
| 2757 | |
| 2758 | QualType Sema::BuildBlockPointerType(QualType T, |
| 2759 | SourceLocation Loc, |
| 2760 | DeclarationName Entity) { |
| 2761 | if (!T->isFunctionType()) { |
| 2762 | Diag(Loc, DiagID: diag::err_nonfunction_block_type); |
| 2763 | return QualType(); |
| 2764 | } |
| 2765 | |
| 2766 | if (checkQualifiedFunction(S&: *this, T, Loc, QFK: QFK_BlockPointer)) |
| 2767 | return QualType(); |
| 2768 | |
| 2769 | if (getLangOpts().OpenCL) |
| 2770 | T = deduceOpenCLPointeeAddrSpace(S&: *this, PointeeType: T); |
| 2771 | |
| 2772 | return Context.getBlockPointerType(T); |
| 2773 | } |
| 2774 | |
| 2775 | QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) { |
| 2776 | QualType QT = Ty.get(); |
| 2777 | if (QT.isNull()) { |
| 2778 | if (TInfo) *TInfo = nullptr; |
| 2779 | return QualType(); |
| 2780 | } |
| 2781 | |
| 2782 | TypeSourceInfo *DI = nullptr; |
| 2783 | if (const LocInfoType *LIT = dyn_cast<LocInfoType>(Val&: QT)) { |
| 2784 | QT = LIT->getType(); |
| 2785 | DI = LIT->getTypeSourceInfo(); |
| 2786 | } |
| 2787 | |
| 2788 | if (TInfo) *TInfo = DI; |
| 2789 | return QT; |
| 2790 | } |
| 2791 | |
| 2792 | static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state, |
| 2793 | Qualifiers::ObjCLifetime ownership, |
| 2794 | unsigned chunkIndex); |
| 2795 | |
| 2796 | /// Given that this is the declaration of a parameter under ARC, |
| 2797 | /// attempt to infer attributes and such for pointer-to-whatever |
| 2798 | /// types. |
| 2799 | static void inferARCWriteback(TypeProcessingState &state, |
| 2800 | QualType &declSpecType) { |
| 2801 | Sema &S = state.getSema(); |
| 2802 | Declarator &declarator = state.getDeclarator(); |
| 2803 | |
| 2804 | // TODO: should we care about decl qualifiers? |
| 2805 | |
| 2806 | // Check whether the declarator has the expected form. We walk |
| 2807 | // from the inside out in order to make the block logic work. |
| 2808 | unsigned outermostPointerIndex = 0; |
| 2809 | bool isBlockPointer = false; |
| 2810 | unsigned numPointers = 0; |
| 2811 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { |
| 2812 | unsigned chunkIndex = i; |
| 2813 | DeclaratorChunk &chunk = declarator.getTypeObject(i: chunkIndex); |
| 2814 | switch (chunk.Kind) { |
| 2815 | case DeclaratorChunk::Paren: |
| 2816 | // Ignore parens. |
| 2817 | break; |
| 2818 | |
| 2819 | case DeclaratorChunk::Reference: |
| 2820 | case DeclaratorChunk::Pointer: |
| 2821 | // Count the number of pointers. Treat references |
| 2822 | // interchangeably as pointers; if they're mis-ordered, normal |
| 2823 | // type building will discover that. |
| 2824 | outermostPointerIndex = chunkIndex; |
| 2825 | numPointers++; |
| 2826 | break; |
| 2827 | |
| 2828 | case DeclaratorChunk::BlockPointer: |
| 2829 | // If we have a pointer to block pointer, that's an acceptable |
| 2830 | // indirect reference; anything else is not an application of |
| 2831 | // the rules. |
| 2832 | if (numPointers != 1) return; |
| 2833 | numPointers++; |
| 2834 | outermostPointerIndex = chunkIndex; |
| 2835 | isBlockPointer = true; |
| 2836 | |
| 2837 | // We don't care about pointer structure in return values here. |
| 2838 | goto done; |
| 2839 | |
| 2840 | case DeclaratorChunk::Array: // suppress if written (id[])? |
| 2841 | case DeclaratorChunk::Function: |
| 2842 | case DeclaratorChunk::MemberPointer: |
| 2843 | case DeclaratorChunk::Pipe: |
| 2844 | return; |
| 2845 | } |
| 2846 | } |
| 2847 | done: |
| 2848 | |
| 2849 | // If we have *one* pointer, then we want to throw the qualifier on |
| 2850 | // the declaration-specifiers, which means that it needs to be a |
| 2851 | // retainable object type. |
| 2852 | if (numPointers == 1) { |
| 2853 | // If it's not a retainable object type, the rule doesn't apply. |
| 2854 | if (!declSpecType->isObjCRetainableType()) return; |
| 2855 | |
| 2856 | // If it already has lifetime, don't do anything. |
| 2857 | if (declSpecType.getObjCLifetime()) return; |
| 2858 | |
| 2859 | // Otherwise, modify the type in-place. |
| 2860 | Qualifiers qs; |
| 2861 | |
| 2862 | if (declSpecType->isObjCARCImplicitlyUnretainedType()) |
| 2863 | qs.addObjCLifetime(type: Qualifiers::OCL_ExplicitNone); |
| 2864 | else |
| 2865 | qs.addObjCLifetime(type: Qualifiers::OCL_Autoreleasing); |
| 2866 | declSpecType = S.Context.getQualifiedType(T: declSpecType, Qs: qs); |
| 2867 | |
| 2868 | // If we have *two* pointers, then we want to throw the qualifier on |
| 2869 | // the outermost pointer. |
| 2870 | } else if (numPointers == 2) { |
| 2871 | // If we don't have a block pointer, we need to check whether the |
| 2872 | // declaration-specifiers gave us something that will turn into a |
| 2873 | // retainable object pointer after we slap the first pointer on it. |
| 2874 | if (!isBlockPointer && !declSpecType->isObjCObjectType()) |
| 2875 | return; |
| 2876 | |
| 2877 | // Look for an explicit lifetime attribute there. |
| 2878 | DeclaratorChunk &chunk = declarator.getTypeObject(i: outermostPointerIndex); |
| 2879 | if (chunk.Kind != DeclaratorChunk::Pointer && |
| 2880 | chunk.Kind != DeclaratorChunk::BlockPointer) |
| 2881 | return; |
| 2882 | for (const ParsedAttr &AL : chunk.getAttrs()) |
| 2883 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) |
| 2884 | return; |
| 2885 | |
| 2886 | transferARCOwnershipToDeclaratorChunk(state, ownership: Qualifiers::OCL_Autoreleasing, |
| 2887 | chunkIndex: outermostPointerIndex); |
| 2888 | |
| 2889 | // Any other number of pointers/references does not trigger the rule. |
| 2890 | } else return; |
| 2891 | |
| 2892 | // TODO: mark whether we did this inference? |
| 2893 | } |
| 2894 | |
| 2895 | void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals, |
| 2896 | SourceLocation FallbackLoc, |
| 2897 | SourceLocation ConstQualLoc, |
| 2898 | SourceLocation VolatileQualLoc, |
| 2899 | SourceLocation RestrictQualLoc, |
| 2900 | SourceLocation AtomicQualLoc, |
| 2901 | SourceLocation UnalignedQualLoc) { |
| 2902 | if (!Quals) |
| 2903 | return; |
| 2904 | |
| 2905 | struct Qual { |
| 2906 | const char *Name; |
| 2907 | unsigned Mask; |
| 2908 | SourceLocation Loc; |
| 2909 | } const QualKinds[5] = { |
| 2910 | { .Name: "const" , .Mask: DeclSpec::TQ_const, .Loc: ConstQualLoc }, |
| 2911 | { .Name: "volatile" , .Mask: DeclSpec::TQ_volatile, .Loc: VolatileQualLoc }, |
| 2912 | { .Name: "restrict" , .Mask: DeclSpec::TQ_restrict, .Loc: RestrictQualLoc }, |
| 2913 | { .Name: "__unaligned" , .Mask: DeclSpec::TQ_unaligned, .Loc: UnalignedQualLoc }, |
| 2914 | { .Name: "_Atomic" , .Mask: DeclSpec::TQ_atomic, .Loc: AtomicQualLoc } |
| 2915 | }; |
| 2916 | |
| 2917 | SmallString<32> QualStr; |
| 2918 | unsigned NumQuals = 0; |
| 2919 | SourceLocation Loc; |
| 2920 | FixItHint FixIts[5]; |
| 2921 | |
| 2922 | // Build a string naming the redundant qualifiers. |
| 2923 | for (auto &E : QualKinds) { |
| 2924 | if (Quals & E.Mask) { |
| 2925 | if (!QualStr.empty()) QualStr += ' '; |
| 2926 | QualStr += E.Name; |
| 2927 | |
| 2928 | // If we have a location for the qualifier, offer a fixit. |
| 2929 | SourceLocation QualLoc = E.Loc; |
| 2930 | if (QualLoc.isValid()) { |
| 2931 | FixIts[NumQuals] = FixItHint::CreateRemoval(RemoveRange: QualLoc); |
| 2932 | if (Loc.isInvalid() || |
| 2933 | getSourceManager().isBeforeInTranslationUnit(LHS: QualLoc, RHS: Loc)) |
| 2934 | Loc = QualLoc; |
| 2935 | } |
| 2936 | |
| 2937 | ++NumQuals; |
| 2938 | } |
| 2939 | } |
| 2940 | |
| 2941 | Diag(Loc: Loc.isInvalid() ? FallbackLoc : Loc, DiagID) |
| 2942 | << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3]; |
| 2943 | } |
| 2944 | |
| 2945 | // Diagnose pointless type qualifiers on the return type of a function. |
| 2946 | static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy, |
| 2947 | Declarator &D, |
| 2948 | unsigned FunctionChunkIndex) { |
| 2949 | const DeclaratorChunk::FunctionTypeInfo &FTI = |
| 2950 | D.getTypeObject(i: FunctionChunkIndex).Fun; |
| 2951 | if (FTI.hasTrailingReturnType()) { |
| 2952 | S.diagnoseIgnoredQualifiers(DiagID: diag::warn_qual_return_type, |
| 2953 | Quals: RetTy.getLocalCVRQualifiers(), |
| 2954 | FallbackLoc: FTI.getTrailingReturnTypeLoc()); |
| 2955 | return; |
| 2956 | } |
| 2957 | |
| 2958 | for (unsigned OuterChunkIndex = FunctionChunkIndex + 1, |
| 2959 | End = D.getNumTypeObjects(); |
| 2960 | OuterChunkIndex != End; ++OuterChunkIndex) { |
| 2961 | DeclaratorChunk &OuterChunk = D.getTypeObject(i: OuterChunkIndex); |
| 2962 | switch (OuterChunk.Kind) { |
| 2963 | case DeclaratorChunk::Paren: |
| 2964 | continue; |
| 2965 | |
| 2966 | case DeclaratorChunk::Pointer: { |
| 2967 | DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr; |
| 2968 | S.diagnoseIgnoredQualifiers( |
| 2969 | DiagID: diag::warn_qual_return_type, |
| 2970 | Quals: PTI.TypeQuals, |
| 2971 | FallbackLoc: SourceLocation(), |
| 2972 | ConstQualLoc: PTI.ConstQualLoc, |
| 2973 | VolatileQualLoc: PTI.VolatileQualLoc, |
| 2974 | RestrictQualLoc: PTI.RestrictQualLoc, |
| 2975 | AtomicQualLoc: PTI.AtomicQualLoc, |
| 2976 | UnalignedQualLoc: PTI.UnalignedQualLoc); |
| 2977 | return; |
| 2978 | } |
| 2979 | |
| 2980 | case DeclaratorChunk::Function: |
| 2981 | case DeclaratorChunk::BlockPointer: |
| 2982 | case DeclaratorChunk::Reference: |
| 2983 | case DeclaratorChunk::Array: |
| 2984 | case DeclaratorChunk::MemberPointer: |
| 2985 | case DeclaratorChunk::Pipe: |
| 2986 | // FIXME: We can't currently provide an accurate source location and a |
| 2987 | // fix-it hint for these. |
| 2988 | unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0; |
| 2989 | S.diagnoseIgnoredQualifiers(DiagID: diag::warn_qual_return_type, |
| 2990 | Quals: RetTy.getCVRQualifiers() | AtomicQual, |
| 2991 | FallbackLoc: D.getIdentifierLoc()); |
| 2992 | return; |
| 2993 | } |
| 2994 | |
| 2995 | llvm_unreachable("unknown declarator chunk kind" ); |
| 2996 | } |
| 2997 | |
| 2998 | // If the qualifiers come from a conversion function type, don't diagnose |
| 2999 | // them -- they're not necessarily redundant, since such a conversion |
| 3000 | // operator can be explicitly called as "x.operator const int()". |
| 3001 | if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId) |
| 3002 | return; |
| 3003 | |
| 3004 | // Just parens all the way out to the decl specifiers. Diagnose any qualifiers |
| 3005 | // which are present there. |
| 3006 | S.diagnoseIgnoredQualifiers(DiagID: diag::warn_qual_return_type, |
| 3007 | Quals: D.getDeclSpec().getTypeQualifiers(), |
| 3008 | FallbackLoc: D.getIdentifierLoc(), |
| 3009 | ConstQualLoc: D.getDeclSpec().getConstSpecLoc(), |
| 3010 | VolatileQualLoc: D.getDeclSpec().getVolatileSpecLoc(), |
| 3011 | RestrictQualLoc: D.getDeclSpec().getRestrictSpecLoc(), |
| 3012 | AtomicQualLoc: D.getDeclSpec().getAtomicSpecLoc(), |
| 3013 | UnalignedQualLoc: D.getDeclSpec().getUnalignedSpecLoc()); |
| 3014 | } |
| 3015 | |
| 3016 | static std::pair<QualType, TypeSourceInfo *> |
| 3017 | InventTemplateParameter(TypeProcessingState &state, QualType T, |
| 3018 | TypeSourceInfo *TrailingTSI, AutoType *Auto, |
| 3019 | InventedTemplateParameterInfo &Info) { |
| 3020 | Sema &S = state.getSema(); |
| 3021 | Declarator &D = state.getDeclarator(); |
| 3022 | |
| 3023 | const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth; |
| 3024 | const unsigned AutoParameterPosition = Info.TemplateParams.size(); |
| 3025 | const bool IsParameterPack = D.hasEllipsis(); |
| 3026 | |
| 3027 | // If auto is mentioned in a lambda parameter or abbreviated function |
| 3028 | // template context, convert it to a template parameter type. |
| 3029 | |
| 3030 | // Create the TemplateTypeParmDecl here to retrieve the corresponding |
| 3031 | // template parameter type. Template parameters are temporarily added |
| 3032 | // to the TU until the associated TemplateDecl is created. |
| 3033 | TemplateTypeParmDecl *InventedTemplateParam = |
| 3034 | TemplateTypeParmDecl::Create( |
| 3035 | C: S.Context, DC: S.Context.getTranslationUnitDecl(), |
| 3036 | /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(), |
| 3037 | /*NameLoc=*/D.getIdentifierLoc(), |
| 3038 | D: TemplateParameterDepth, P: AutoParameterPosition, |
| 3039 | Id: S.InventAbbreviatedTemplateParameterTypeName( |
| 3040 | ParamName: D.getIdentifier(), Index: AutoParameterPosition), Typename: false, |
| 3041 | ParameterPack: IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained()); |
| 3042 | InventedTemplateParam->setImplicit(); |
| 3043 | Info.TemplateParams.push_back(Elt: InventedTemplateParam); |
| 3044 | |
| 3045 | // Attach type constraints to the new parameter. |
| 3046 | if (Auto->isConstrained()) { |
| 3047 | if (TrailingTSI) { |
| 3048 | // The 'auto' appears in a trailing return type we've already built; |
| 3049 | // extract its type constraints to attach to the template parameter. |
| 3050 | AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc(); |
| 3051 | TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc()); |
| 3052 | bool Invalid = false; |
| 3053 | for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) { |
| 3054 | if (D.getEllipsisLoc().isInvalid() && !Invalid && |
| 3055 | S.DiagnoseUnexpandedParameterPack(Arg: AutoLoc.getArgLoc(i: Idx), |
| 3056 | UPPC: Sema::UPPC_TypeConstraint)) |
| 3057 | Invalid = true; |
| 3058 | TAL.addArgument(Loc: AutoLoc.getArgLoc(i: Idx)); |
| 3059 | } |
| 3060 | |
| 3061 | if (!Invalid) { |
| 3062 | S.AttachTypeConstraint( |
| 3063 | NS: AutoLoc.getNestedNameSpecifierLoc(), NameInfo: AutoLoc.getConceptNameInfo(), |
| 3064 | NamedConcept: AutoLoc.getNamedConcept(), /*FoundDecl=*/AutoLoc.getFoundDecl(), |
| 3065 | TemplateArgs: AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr, |
| 3066 | ConstrainedParameter: InventedTemplateParam, EllipsisLoc: D.getEllipsisLoc()); |
| 3067 | } |
| 3068 | } else { |
| 3069 | // The 'auto' appears in the decl-specifiers; we've not finished forming |
| 3070 | // TypeSourceInfo for it yet. |
| 3071 | TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId(); |
| 3072 | TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc, |
| 3073 | TemplateId->RAngleLoc); |
| 3074 | bool Invalid = false; |
| 3075 | if (TemplateId->LAngleLoc.isValid()) { |
| 3076 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), |
| 3077 | TemplateId->NumArgs); |
| 3078 | S.translateTemplateArguments(In: TemplateArgsPtr, Out&: TemplateArgsInfo); |
| 3079 | |
| 3080 | if (D.getEllipsisLoc().isInvalid()) { |
| 3081 | for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) { |
| 3082 | if (S.DiagnoseUnexpandedParameterPack(Arg, |
| 3083 | UPPC: Sema::UPPC_TypeConstraint)) { |
| 3084 | Invalid = true; |
| 3085 | break; |
| 3086 | } |
| 3087 | } |
| 3088 | } |
| 3089 | } |
| 3090 | if (!Invalid) { |
| 3091 | UsingShadowDecl *USD = |
| 3092 | TemplateId->Template.get().getAsUsingShadowDecl(); |
| 3093 | auto *CD = |
| 3094 | cast<ConceptDecl>(Val: TemplateId->Template.get().getAsTemplateDecl()); |
| 3095 | S.AttachTypeConstraint( |
| 3096 | NS: D.getDeclSpec().getTypeSpecScope().getWithLocInContext(Context&: S.Context), |
| 3097 | NameInfo: DeclarationNameInfo(DeclarationName(TemplateId->Name), |
| 3098 | TemplateId->TemplateNameLoc), |
| 3099 | NamedConcept: CD, |
| 3100 | /*FoundDecl=*/ |
| 3101 | USD ? cast<NamedDecl>(Val: USD) : CD, |
| 3102 | TemplateArgs: TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr, |
| 3103 | ConstrainedParameter: InventedTemplateParam, EllipsisLoc: D.getEllipsisLoc()); |
| 3104 | } |
| 3105 | } |
| 3106 | } |
| 3107 | |
| 3108 | // Replace the 'auto' in the function parameter with this invented |
| 3109 | // template type parameter. |
| 3110 | // FIXME: Retain some type sugar to indicate that this was written |
| 3111 | // as 'auto'? |
| 3112 | QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0); |
| 3113 | QualType NewT = state.ReplaceAutoType(TypeWithAuto: T, Replacement); |
| 3114 | TypeSourceInfo *NewTSI = |
| 3115 | TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TypeWithAuto: TrailingTSI, Replacement) |
| 3116 | : nullptr; |
| 3117 | return {NewT, NewTSI}; |
| 3118 | } |
| 3119 | |
| 3120 | static TypeSourceInfo * |
| 3121 | GetTypeSourceInfoForDeclarator(TypeProcessingState &State, |
| 3122 | QualType T, TypeSourceInfo *ReturnTypeInfo); |
| 3123 | |
| 3124 | static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state, |
| 3125 | TypeSourceInfo *&ReturnTypeInfo) { |
| 3126 | Sema &SemaRef = state.getSema(); |
| 3127 | Declarator &D = state.getDeclarator(); |
| 3128 | QualType T; |
| 3129 | ReturnTypeInfo = nullptr; |
| 3130 | |
| 3131 | // The TagDecl owned by the DeclSpec. |
| 3132 | TagDecl *OwnedTagDecl = nullptr; |
| 3133 | |
| 3134 | switch (D.getName().getKind()) { |
| 3135 | case UnqualifiedIdKind::IK_ImplicitSelfParam: |
| 3136 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
| 3137 | case UnqualifiedIdKind::IK_Identifier: |
| 3138 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
| 3139 | case UnqualifiedIdKind::IK_TemplateId: |
| 3140 | T = ConvertDeclSpecToType(state); |
| 3141 | |
| 3142 | if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) { |
| 3143 | OwnedTagDecl = cast<TagDecl>(Val: D.getDeclSpec().getRepAsDecl()); |
| 3144 | // Owned declaration is embedded in declarator. |
| 3145 | OwnedTagDecl->setEmbeddedInDeclarator(true); |
| 3146 | } |
| 3147 | break; |
| 3148 | |
| 3149 | case UnqualifiedIdKind::IK_ConstructorName: |
| 3150 | case UnqualifiedIdKind::IK_ConstructorTemplateId: |
| 3151 | case UnqualifiedIdKind::IK_DestructorName: |
| 3152 | // Constructors and destructors don't have return types. Use |
| 3153 | // "void" instead. |
| 3154 | T = SemaRef.Context.VoidTy; |
| 3155 | processTypeAttrs(state, type&: T, TAL: TAL_DeclSpec, |
| 3156 | attrs: D.getMutableDeclSpec().getAttributes()); |
| 3157 | break; |
| 3158 | |
| 3159 | case UnqualifiedIdKind::IK_DeductionGuideName: |
| 3160 | // Deduction guides have a trailing return type and no type in their |
| 3161 | // decl-specifier sequence. Use a placeholder return type for now. |
| 3162 | T = SemaRef.Context.DependentTy; |
| 3163 | break; |
| 3164 | |
| 3165 | case UnqualifiedIdKind::IK_ConversionFunctionId: |
| 3166 | // The result type of a conversion function is the type that it |
| 3167 | // converts to. |
| 3168 | T = SemaRef.GetTypeFromParser(Ty: D.getName().ConversionFunctionId, |
| 3169 | TInfo: &ReturnTypeInfo); |
| 3170 | break; |
| 3171 | } |
| 3172 | |
| 3173 | // Note: We don't need to distribute declaration attributes (i.e. |
| 3174 | // D.getDeclarationAttributes()) because those are always C++11 attributes, |
| 3175 | // and those don't get distributed. |
| 3176 | distributeTypeAttrsFromDeclarator( |
| 3177 | state, declSpecType&: T, CFT: SemaRef.CUDA().IdentifyTarget(Attrs: D.getAttributes())); |
| 3178 | |
| 3179 | // Find the deduced type in this type. Look in the trailing return type if we |
| 3180 | // have one, otherwise in the DeclSpec type. |
| 3181 | // FIXME: The standard wording doesn't currently describe this. |
| 3182 | DeducedType *Deduced = T->getContainedDeducedType(); |
| 3183 | bool DeducedIsTrailingReturnType = false; |
| 3184 | if (Deduced && isa<AutoType>(Val: Deduced) && D.hasTrailingReturnType()) { |
| 3185 | QualType T = SemaRef.GetTypeFromParser(Ty: D.getTrailingReturnType()); |
| 3186 | Deduced = T.isNull() ? nullptr : T->getContainedDeducedType(); |
| 3187 | DeducedIsTrailingReturnType = true; |
| 3188 | } |
| 3189 | |
| 3190 | // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context. |
| 3191 | if (Deduced) { |
| 3192 | AutoType *Auto = dyn_cast<AutoType>(Val: Deduced); |
| 3193 | int Error = -1; |
| 3194 | |
| 3195 | // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or |
| 3196 | // class template argument deduction)? |
| 3197 | bool IsCXXAutoType = |
| 3198 | (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType); |
| 3199 | bool IsDeducedReturnType = false; |
| 3200 | |
| 3201 | switch (D.getContext()) { |
| 3202 | case DeclaratorContext::LambdaExpr: |
| 3203 | // Declared return type of a lambda-declarator is implicit and is always |
| 3204 | // 'auto'. |
| 3205 | break; |
| 3206 | case DeclaratorContext::ObjCParameter: |
| 3207 | case DeclaratorContext::ObjCResult: |
| 3208 | Error = 0; |
| 3209 | break; |
| 3210 | case DeclaratorContext::RequiresExpr: |
| 3211 | Error = 22; |
| 3212 | break; |
| 3213 | case DeclaratorContext::Prototype: |
| 3214 | case DeclaratorContext::LambdaExprParameter: { |
| 3215 | InventedTemplateParameterInfo *Info = nullptr; |
| 3216 | if (D.getContext() == DeclaratorContext::Prototype) { |
| 3217 | // With concepts we allow 'auto' in function parameters. |
| 3218 | if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto || |
| 3219 | Auto->getKeyword() != AutoTypeKeyword::Auto) { |
| 3220 | Error = 0; |
| 3221 | break; |
| 3222 | } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) { |
| 3223 | Error = 21; |
| 3224 | break; |
| 3225 | } |
| 3226 | |
| 3227 | Info = &SemaRef.InventedParameterInfos.back(); |
| 3228 | } else { |
| 3229 | // In C++14, generic lambdas allow 'auto' in their parameters. |
| 3230 | if (!SemaRef.getLangOpts().CPlusPlus14 && Auto && |
| 3231 | Auto->getKeyword() == AutoTypeKeyword::Auto) { |
| 3232 | Error = 25; // auto not allowed in lambda parameter (before C++14) |
| 3233 | break; |
| 3234 | } else if (!Auto || Auto->getKeyword() != AutoTypeKeyword::Auto) { |
| 3235 | Error = 16; // __auto_type or decltype(auto) not allowed in lambda |
| 3236 | // parameter |
| 3237 | break; |
| 3238 | } |
| 3239 | Info = SemaRef.getCurLambda(); |
| 3240 | assert(Info && "No LambdaScopeInfo on the stack!" ); |
| 3241 | } |
| 3242 | |
| 3243 | // We'll deal with inventing template parameters for 'auto' in trailing |
| 3244 | // return types when we pick up the trailing return type when processing |
| 3245 | // the function chunk. |
| 3246 | if (!DeducedIsTrailingReturnType) |
| 3247 | T = InventTemplateParameter(state, T, TrailingTSI: nullptr, Auto, Info&: *Info).first; |
| 3248 | break; |
| 3249 | } |
| 3250 | case DeclaratorContext::Member: { |
| 3251 | if (D.isStaticMember() || D.isFunctionDeclarator()) |
| 3252 | break; |
| 3253 | bool Cxx = SemaRef.getLangOpts().CPlusPlus; |
| 3254 | if (isa<ObjCContainerDecl>(Val: SemaRef.CurContext)) { |
| 3255 | Error = 6; // Interface member. |
| 3256 | } else { |
| 3257 | switch (cast<TagDecl>(Val: SemaRef.CurContext)->getTagKind()) { |
| 3258 | case TagTypeKind::Enum: |
| 3259 | llvm_unreachable("unhandled tag kind" ); |
| 3260 | case TagTypeKind::Struct: |
| 3261 | Error = Cxx ? 1 : 2; /* Struct member */ |
| 3262 | break; |
| 3263 | case TagTypeKind::Union: |
| 3264 | Error = Cxx ? 3 : 4; /* Union member */ |
| 3265 | break; |
| 3266 | case TagTypeKind::Class: |
| 3267 | Error = 5; /* Class member */ |
| 3268 | break; |
| 3269 | case TagTypeKind::Interface: |
| 3270 | Error = 6; /* Interface member */ |
| 3271 | break; |
| 3272 | } |
| 3273 | } |
| 3274 | if (D.getDeclSpec().isFriendSpecified()) |
| 3275 | Error = 20; // Friend type |
| 3276 | break; |
| 3277 | } |
| 3278 | case DeclaratorContext::CXXCatch: |
| 3279 | case DeclaratorContext::ObjCCatch: |
| 3280 | Error = 7; // Exception declaration |
| 3281 | break; |
| 3282 | case DeclaratorContext::TemplateParam: |
| 3283 | if (isa<DeducedTemplateSpecializationType>(Val: Deduced) && |
| 3284 | !SemaRef.getLangOpts().CPlusPlus20) |
| 3285 | Error = 19; // Template parameter (until C++20) |
| 3286 | else if (!SemaRef.getLangOpts().CPlusPlus17) |
| 3287 | Error = 8; // Template parameter (until C++17) |
| 3288 | break; |
| 3289 | case DeclaratorContext::BlockLiteral: |
| 3290 | Error = 9; // Block literal |
| 3291 | break; |
| 3292 | case DeclaratorContext::TemplateArg: |
| 3293 | // Within a template argument list, a deduced template specialization |
| 3294 | // type will be reinterpreted as a template template argument. |
| 3295 | if (isa<DeducedTemplateSpecializationType>(Val: Deduced) && |
| 3296 | !D.getNumTypeObjects() && |
| 3297 | D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier) |
| 3298 | break; |
| 3299 | [[fallthrough]]; |
| 3300 | case DeclaratorContext::TemplateTypeArg: |
| 3301 | Error = 10; // Template type argument |
| 3302 | break; |
| 3303 | case DeclaratorContext::AliasDecl: |
| 3304 | case DeclaratorContext::AliasTemplate: |
| 3305 | Error = 12; // Type alias |
| 3306 | break; |
| 3307 | case DeclaratorContext::TrailingReturn: |
| 3308 | case DeclaratorContext::TrailingReturnVar: |
| 3309 | if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType) |
| 3310 | Error = 13; // Function return type |
| 3311 | IsDeducedReturnType = true; |
| 3312 | break; |
| 3313 | case DeclaratorContext::ConversionId: |
| 3314 | if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType) |
| 3315 | Error = 14; // conversion-type-id |
| 3316 | IsDeducedReturnType = true; |
| 3317 | break; |
| 3318 | case DeclaratorContext::FunctionalCast: |
| 3319 | if (isa<DeducedTemplateSpecializationType>(Val: Deduced)) |
| 3320 | break; |
| 3321 | if (SemaRef.getLangOpts().CPlusPlus23 && IsCXXAutoType && |
| 3322 | !Auto->isDecltypeAuto()) |
| 3323 | break; // auto(x) |
| 3324 | [[fallthrough]]; |
| 3325 | case DeclaratorContext::TypeName: |
| 3326 | case DeclaratorContext::Association: |
| 3327 | Error = 15; // Generic |
| 3328 | break; |
| 3329 | case DeclaratorContext::File: |
| 3330 | case DeclaratorContext::Block: |
| 3331 | case DeclaratorContext::ForInit: |
| 3332 | case DeclaratorContext::SelectionInit: |
| 3333 | case DeclaratorContext::Condition: |
| 3334 | // FIXME: P0091R3 (erroneously) does not permit class template argument |
| 3335 | // deduction in conditions, for-init-statements, and other declarations |
| 3336 | // that are not simple-declarations. |
| 3337 | break; |
| 3338 | case DeclaratorContext::CXXNew: |
| 3339 | // FIXME: P0091R3 does not permit class template argument deduction here, |
| 3340 | // but we follow GCC and allow it anyway. |
| 3341 | if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Val: Deduced)) |
| 3342 | Error = 17; // 'new' type |
| 3343 | break; |
| 3344 | case DeclaratorContext::KNRTypeList: |
| 3345 | Error = 18; // K&R function parameter |
| 3346 | break; |
| 3347 | } |
| 3348 | |
| 3349 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) |
| 3350 | Error = 11; |
| 3351 | |
| 3352 | // In Objective-C it is an error to use 'auto' on a function declarator |
| 3353 | // (and everywhere for '__auto_type'). |
| 3354 | if (D.isFunctionDeclarator() && |
| 3355 | (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType)) |
| 3356 | Error = 13; |
| 3357 | |
| 3358 | SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc(); |
| 3359 | if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId) |
| 3360 | AutoRange = D.getName().getSourceRange(); |
| 3361 | |
| 3362 | if (Error != -1) { |
| 3363 | unsigned Kind; |
| 3364 | if (Auto) { |
| 3365 | switch (Auto->getKeyword()) { |
| 3366 | case AutoTypeKeyword::Auto: Kind = 0; break; |
| 3367 | case AutoTypeKeyword::DecltypeAuto: Kind = 1; break; |
| 3368 | case AutoTypeKeyword::GNUAutoType: Kind = 2; break; |
| 3369 | } |
| 3370 | } else { |
| 3371 | assert(isa<DeducedTemplateSpecializationType>(Deduced) && |
| 3372 | "unknown auto type" ); |
| 3373 | Kind = 3; |
| 3374 | } |
| 3375 | |
| 3376 | auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Val: Deduced); |
| 3377 | TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName(); |
| 3378 | |
| 3379 | SemaRef.Diag(Loc: AutoRange.getBegin(), DiagID: diag::err_auto_not_allowed) |
| 3380 | << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(Name: TN) |
| 3381 | << QualType(Deduced, 0) << AutoRange; |
| 3382 | if (auto *TD = TN.getAsTemplateDecl()) |
| 3383 | SemaRef.NoteTemplateLocation(Decl: *TD); |
| 3384 | |
| 3385 | T = SemaRef.Context.IntTy; |
| 3386 | D.setInvalidType(true); |
| 3387 | } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) { |
| 3388 | // If there was a trailing return type, we already got |
| 3389 | // warn_cxx98_compat_trailing_return_type in the parser. |
| 3390 | // If there was a decltype(auto), we already got |
| 3391 | // warn_cxx11_compat_decltype_auto_type_specifier. |
| 3392 | unsigned DiagId = 0; |
| 3393 | if (D.getContext() == DeclaratorContext::LambdaExprParameter) |
| 3394 | DiagId = diag::warn_cxx11_compat_generic_lambda; |
| 3395 | else if (IsDeducedReturnType) |
| 3396 | DiagId = diag::warn_cxx11_compat_deduced_return_type; |
| 3397 | else if (Auto->getKeyword() == AutoTypeKeyword::Auto) |
| 3398 | DiagId = diag::warn_cxx98_compat_auto_type_specifier; |
| 3399 | |
| 3400 | if (DiagId) |
| 3401 | SemaRef.Diag(Loc: AutoRange.getBegin(), DiagID: DiagId) << AutoRange; |
| 3402 | } |
| 3403 | } |
| 3404 | |
| 3405 | if (SemaRef.getLangOpts().CPlusPlus && |
| 3406 | OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) { |
| 3407 | // Check the contexts where C++ forbids the declaration of a new class |
| 3408 | // or enumeration in a type-specifier-seq. |
| 3409 | unsigned DiagID = 0; |
| 3410 | switch (D.getContext()) { |
| 3411 | case DeclaratorContext::TrailingReturn: |
| 3412 | case DeclaratorContext::TrailingReturnVar: |
| 3413 | // Class and enumeration definitions are syntactically not allowed in |
| 3414 | // trailing return types. |
| 3415 | llvm_unreachable("parser should not have allowed this" ); |
| 3416 | break; |
| 3417 | case DeclaratorContext::File: |
| 3418 | case DeclaratorContext::Member: |
| 3419 | case DeclaratorContext::Block: |
| 3420 | case DeclaratorContext::ForInit: |
| 3421 | case DeclaratorContext::SelectionInit: |
| 3422 | case DeclaratorContext::BlockLiteral: |
| 3423 | case DeclaratorContext::LambdaExpr: |
| 3424 | // C++11 [dcl.type]p3: |
| 3425 | // A type-specifier-seq shall not define a class or enumeration unless |
| 3426 | // it appears in the type-id of an alias-declaration (7.1.3) that is not |
| 3427 | // the declaration of a template-declaration. |
| 3428 | case DeclaratorContext::AliasDecl: |
| 3429 | break; |
| 3430 | case DeclaratorContext::AliasTemplate: |
| 3431 | DiagID = diag::err_type_defined_in_alias_template; |
| 3432 | break; |
| 3433 | case DeclaratorContext::TypeName: |
| 3434 | case DeclaratorContext::FunctionalCast: |
| 3435 | case DeclaratorContext::ConversionId: |
| 3436 | case DeclaratorContext::TemplateParam: |
| 3437 | case DeclaratorContext::CXXNew: |
| 3438 | case DeclaratorContext::CXXCatch: |
| 3439 | case DeclaratorContext::ObjCCatch: |
| 3440 | case DeclaratorContext::TemplateArg: |
| 3441 | case DeclaratorContext::TemplateTypeArg: |
| 3442 | case DeclaratorContext::Association: |
| 3443 | DiagID = diag::err_type_defined_in_type_specifier; |
| 3444 | break; |
| 3445 | case DeclaratorContext::Prototype: |
| 3446 | case DeclaratorContext::LambdaExprParameter: |
| 3447 | case DeclaratorContext::ObjCParameter: |
| 3448 | case DeclaratorContext::ObjCResult: |
| 3449 | case DeclaratorContext::KNRTypeList: |
| 3450 | case DeclaratorContext::RequiresExpr: |
| 3451 | // C++ [dcl.fct]p6: |
| 3452 | // Types shall not be defined in return or parameter types. |
| 3453 | DiagID = diag::err_type_defined_in_param_type; |
| 3454 | break; |
| 3455 | case DeclaratorContext::Condition: |
| 3456 | // C++ 6.4p2: |
| 3457 | // The type-specifier-seq shall not contain typedef and shall not declare |
| 3458 | // a new class or enumeration. |
| 3459 | DiagID = diag::err_type_defined_in_condition; |
| 3460 | break; |
| 3461 | } |
| 3462 | |
| 3463 | if (DiagID != 0) { |
| 3464 | SemaRef.Diag(Loc: OwnedTagDecl->getLocation(), DiagID) |
| 3465 | << SemaRef.Context.getTypeDeclType(Decl: OwnedTagDecl); |
| 3466 | D.setInvalidType(true); |
| 3467 | } |
| 3468 | } |
| 3469 | |
| 3470 | assert(!T.isNull() && "This function should not return a null type" ); |
| 3471 | return T; |
| 3472 | } |
| 3473 | |
| 3474 | /// Produce an appropriate diagnostic for an ambiguity between a function |
| 3475 | /// declarator and a C++ direct-initializer. |
| 3476 | static void warnAboutAmbiguousFunction(Sema &S, Declarator &D, |
| 3477 | DeclaratorChunk &DeclType, QualType RT) { |
| 3478 | const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; |
| 3479 | assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity" ); |
| 3480 | |
| 3481 | // If the return type is void there is no ambiguity. |
| 3482 | if (RT->isVoidType()) |
| 3483 | return; |
| 3484 | |
| 3485 | // An initializer for a non-class type can have at most one argument. |
| 3486 | if (!RT->isRecordType() && FTI.NumParams > 1) |
| 3487 | return; |
| 3488 | |
| 3489 | // An initializer for a reference must have exactly one argument. |
| 3490 | if (RT->isReferenceType() && FTI.NumParams != 1) |
| 3491 | return; |
| 3492 | |
| 3493 | // Only warn if this declarator is declaring a function at block scope, and |
| 3494 | // doesn't have a storage class (such as 'extern') specified. |
| 3495 | if (!D.isFunctionDeclarator() || |
| 3496 | D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration || |
| 3497 | !S.CurContext->isFunctionOrMethod() || |
| 3498 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified) |
| 3499 | return; |
| 3500 | |
| 3501 | // Inside a condition, a direct initializer is not permitted. We allow one to |
| 3502 | // be parsed in order to give better diagnostics in condition parsing. |
| 3503 | if (D.getContext() == DeclaratorContext::Condition) |
| 3504 | return; |
| 3505 | |
| 3506 | SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc); |
| 3507 | |
| 3508 | S.Diag(Loc: DeclType.Loc, |
| 3509 | DiagID: FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration |
| 3510 | : diag::warn_empty_parens_are_function_decl) |
| 3511 | << ParenRange; |
| 3512 | |
| 3513 | // If the declaration looks like: |
| 3514 | // T var1, |
| 3515 | // f(); |
| 3516 | // and name lookup finds a function named 'f', then the ',' was |
| 3517 | // probably intended to be a ';'. |
| 3518 | if (!D.isFirstDeclarator() && D.getIdentifier()) { |
| 3519 | FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr); |
| 3520 | FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr); |
| 3521 | if (Comma.getFileID() != Name.getFileID() || |
| 3522 | Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) { |
| 3523 | LookupResult Result(S, D.getIdentifier(), SourceLocation(), |
| 3524 | Sema::LookupOrdinaryName); |
| 3525 | if (S.LookupName(R&: Result, S: S.getCurScope())) |
| 3526 | S.Diag(Loc: D.getCommaLoc(), DiagID: diag::note_empty_parens_function_call) |
| 3527 | << FixItHint::CreateReplacement(RemoveRange: D.getCommaLoc(), Code: ";" ) |
| 3528 | << D.getIdentifier(); |
| 3529 | Result.suppressDiagnostics(); |
| 3530 | } |
| 3531 | } |
| 3532 | |
| 3533 | if (FTI.NumParams > 0) { |
| 3534 | // For a declaration with parameters, eg. "T var(T());", suggest adding |
| 3535 | // parens around the first parameter to turn the declaration into a |
| 3536 | // variable declaration. |
| 3537 | SourceRange Range = FTI.Params[0].Param->getSourceRange(); |
| 3538 | SourceLocation B = Range.getBegin(); |
| 3539 | SourceLocation E = S.getLocForEndOfToken(Loc: Range.getEnd()); |
| 3540 | // FIXME: Maybe we should suggest adding braces instead of parens |
| 3541 | // in C++11 for classes that don't have an initializer_list constructor. |
| 3542 | S.Diag(Loc: B, DiagID: diag::note_additional_parens_for_variable_declaration) |
| 3543 | << FixItHint::CreateInsertion(InsertionLoc: B, Code: "(" ) |
| 3544 | << FixItHint::CreateInsertion(InsertionLoc: E, Code: ")" ); |
| 3545 | } else { |
| 3546 | // For a declaration without parameters, eg. "T var();", suggest replacing |
| 3547 | // the parens with an initializer to turn the declaration into a variable |
| 3548 | // declaration. |
| 3549 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); |
| 3550 | |
| 3551 | // Empty parens mean value-initialization, and no parens mean |
| 3552 | // default initialization. These are equivalent if the default |
| 3553 | // constructor is user-provided or if zero-initialization is a |
| 3554 | // no-op. |
| 3555 | if (RD && RD->hasDefinition() && |
| 3556 | (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor())) |
| 3557 | S.Diag(Loc: DeclType.Loc, DiagID: diag::note_empty_parens_default_ctor) |
| 3558 | << FixItHint::CreateRemoval(RemoveRange: ParenRange); |
| 3559 | else { |
| 3560 | std::string Init = |
| 3561 | S.getFixItZeroInitializerForType(T: RT, Loc: ParenRange.getBegin()); |
| 3562 | if (Init.empty() && S.LangOpts.CPlusPlus11) |
| 3563 | Init = "{}" ; |
| 3564 | if (!Init.empty()) |
| 3565 | S.Diag(Loc: DeclType.Loc, DiagID: diag::note_empty_parens_zero_initialize) |
| 3566 | << FixItHint::CreateReplacement(RemoveRange: ParenRange, Code: Init); |
| 3567 | } |
| 3568 | } |
| 3569 | } |
| 3570 | |
| 3571 | /// Produce an appropriate diagnostic for a declarator with top-level |
| 3572 | /// parentheses. |
| 3573 | static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) { |
| 3574 | DeclaratorChunk &Paren = D.getTypeObject(i: D.getNumTypeObjects() - 1); |
| 3575 | assert(Paren.Kind == DeclaratorChunk::Paren && |
| 3576 | "do not have redundant top-level parentheses" ); |
| 3577 | |
| 3578 | // This is a syntactic check; we're not interested in cases that arise |
| 3579 | // during template instantiation. |
| 3580 | if (S.inTemplateInstantiation()) |
| 3581 | return; |
| 3582 | |
| 3583 | // Check whether this could be intended to be a construction of a temporary |
| 3584 | // object in C++ via a function-style cast. |
| 3585 | bool CouldBeTemporaryObject = |
| 3586 | S.getLangOpts().CPlusPlus && D.isExpressionContext() && |
| 3587 | !D.isInvalidType() && D.getIdentifier() && |
| 3588 | D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier && |
| 3589 | (T->isRecordType() || T->isDependentType()) && |
| 3590 | D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator(); |
| 3591 | |
| 3592 | bool StartsWithDeclaratorId = true; |
| 3593 | for (auto &C : D.type_objects()) { |
| 3594 | switch (C.Kind) { |
| 3595 | case DeclaratorChunk::Paren: |
| 3596 | if (&C == &Paren) |
| 3597 | continue; |
| 3598 | [[fallthrough]]; |
| 3599 | case DeclaratorChunk::Pointer: |
| 3600 | StartsWithDeclaratorId = false; |
| 3601 | continue; |
| 3602 | |
| 3603 | case DeclaratorChunk::Array: |
| 3604 | if (!C.Arr.NumElts) |
| 3605 | CouldBeTemporaryObject = false; |
| 3606 | continue; |
| 3607 | |
| 3608 | case DeclaratorChunk::Reference: |
| 3609 | // FIXME: Suppress the warning here if there is no initializer; we're |
| 3610 | // going to give an error anyway. |
| 3611 | // We assume that something like 'T (&x) = y;' is highly likely to not |
| 3612 | // be intended to be a temporary object. |
| 3613 | CouldBeTemporaryObject = false; |
| 3614 | StartsWithDeclaratorId = false; |
| 3615 | continue; |
| 3616 | |
| 3617 | case DeclaratorChunk::Function: |
| 3618 | // In a new-type-id, function chunks require parentheses. |
| 3619 | if (D.getContext() == DeclaratorContext::CXXNew) |
| 3620 | return; |
| 3621 | // FIXME: "A(f())" deserves a vexing-parse warning, not just a |
| 3622 | // redundant-parens warning, but we don't know whether the function |
| 3623 | // chunk was syntactically valid as an expression here. |
| 3624 | CouldBeTemporaryObject = false; |
| 3625 | continue; |
| 3626 | |
| 3627 | case DeclaratorChunk::BlockPointer: |
| 3628 | case DeclaratorChunk::MemberPointer: |
| 3629 | case DeclaratorChunk::Pipe: |
| 3630 | // These cannot appear in expressions. |
| 3631 | CouldBeTemporaryObject = false; |
| 3632 | StartsWithDeclaratorId = false; |
| 3633 | continue; |
| 3634 | } |
| 3635 | } |
| 3636 | |
| 3637 | // FIXME: If there is an initializer, assume that this is not intended to be |
| 3638 | // a construction of a temporary object. |
| 3639 | |
| 3640 | // Check whether the name has already been declared; if not, this is not a |
| 3641 | // function-style cast. |
| 3642 | if (CouldBeTemporaryObject) { |
| 3643 | LookupResult Result(S, D.getIdentifier(), SourceLocation(), |
| 3644 | Sema::LookupOrdinaryName); |
| 3645 | if (!S.LookupName(R&: Result, S: S.getCurScope())) |
| 3646 | CouldBeTemporaryObject = false; |
| 3647 | Result.suppressDiagnostics(); |
| 3648 | } |
| 3649 | |
| 3650 | SourceRange ParenRange(Paren.Loc, Paren.EndLoc); |
| 3651 | |
| 3652 | if (!CouldBeTemporaryObject) { |
| 3653 | // If we have A (::B), the parentheses affect the meaning of the program. |
| 3654 | // Suppress the warning in that case. Don't bother looking at the DeclSpec |
| 3655 | // here: even (e.g.) "int ::x" is visually ambiguous even though it's |
| 3656 | // formally unambiguous. |
| 3657 | if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) { |
| 3658 | for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS; |
| 3659 | NNS = NNS->getPrefix()) { |
| 3660 | if (NNS->getKind() == NestedNameSpecifier::Global) |
| 3661 | return; |
| 3662 | } |
| 3663 | } |
| 3664 | |
| 3665 | S.Diag(Loc: Paren.Loc, DiagID: diag::warn_redundant_parens_around_declarator) |
| 3666 | << ParenRange << FixItHint::CreateRemoval(RemoveRange: Paren.Loc) |
| 3667 | << FixItHint::CreateRemoval(RemoveRange: Paren.EndLoc); |
| 3668 | return; |
| 3669 | } |
| 3670 | |
| 3671 | S.Diag(Loc: Paren.Loc, DiagID: diag::warn_parens_disambiguated_as_variable_declaration) |
| 3672 | << ParenRange << D.getIdentifier(); |
| 3673 | auto *RD = T->getAsCXXRecordDecl(); |
| 3674 | if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor()) |
| 3675 | S.Diag(Loc: Paren.Loc, DiagID: diag::note_raii_guard_add_name) |
| 3676 | << FixItHint::CreateInsertion(InsertionLoc: Paren.Loc, Code: " varname" ) << T |
| 3677 | << D.getIdentifier(); |
| 3678 | // FIXME: A cast to void is probably a better suggestion in cases where it's |
| 3679 | // valid (when there is no initializer and we're not in a condition). |
| 3680 | S.Diag(Loc: D.getBeginLoc(), DiagID: diag::note_function_style_cast_add_parentheses) |
| 3681 | << FixItHint::CreateInsertion(InsertionLoc: D.getBeginLoc(), Code: "(" ) |
| 3682 | << FixItHint::CreateInsertion(InsertionLoc: S.getLocForEndOfToken(Loc: D.getEndLoc()), Code: ")" ); |
| 3683 | S.Diag(Loc: Paren.Loc, DiagID: diag::note_remove_parens_for_variable_declaration) |
| 3684 | << FixItHint::CreateRemoval(RemoveRange: Paren.Loc) |
| 3685 | << FixItHint::CreateRemoval(RemoveRange: Paren.EndLoc); |
| 3686 | } |
| 3687 | |
| 3688 | /// Helper for figuring out the default CC for a function declarator type. If |
| 3689 | /// this is the outermost chunk, then we can determine the CC from the |
| 3690 | /// declarator context. If not, then this could be either a member function |
| 3691 | /// type or normal function type. |
| 3692 | static CallingConv getCCForDeclaratorChunk( |
| 3693 | Sema &S, Declarator &D, const ParsedAttributesView &AttrList, |
| 3694 | const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) { |
| 3695 | assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function); |
| 3696 | |
| 3697 | // Check for an explicit CC attribute. |
| 3698 | for (const ParsedAttr &AL : AttrList) { |
| 3699 | switch (AL.getKind()) { |
| 3700 | CALLING_CONV_ATTRS_CASELIST : { |
| 3701 | // Ignore attributes that don't validate or can't apply to the |
| 3702 | // function type. We'll diagnose the failure to apply them in |
| 3703 | // handleFunctionTypeAttr. |
| 3704 | CallingConv CC; |
| 3705 | if (!S.CheckCallingConvAttr(attr: AL, CC, /*FunctionDecl=*/FD: nullptr, |
| 3706 | CFT: S.CUDA().IdentifyTarget(Attrs: D.getAttributes())) && |
| 3707 | (!FTI.isVariadic || supportsVariadicCall(CC))) { |
| 3708 | return CC; |
| 3709 | } |
| 3710 | break; |
| 3711 | } |
| 3712 | |
| 3713 | default: |
| 3714 | break; |
| 3715 | } |
| 3716 | } |
| 3717 | |
| 3718 | bool IsCXXInstanceMethod = false; |
| 3719 | |
| 3720 | if (S.getLangOpts().CPlusPlus) { |
| 3721 | // Look inwards through parentheses to see if this chunk will form a |
| 3722 | // member pointer type or if we're the declarator. Any type attributes |
| 3723 | // between here and there will override the CC we choose here. |
| 3724 | unsigned I = ChunkIndex; |
| 3725 | bool FoundNonParen = false; |
| 3726 | while (I && !FoundNonParen) { |
| 3727 | --I; |
| 3728 | if (D.getTypeObject(i: I).Kind != DeclaratorChunk::Paren) |
| 3729 | FoundNonParen = true; |
| 3730 | } |
| 3731 | |
| 3732 | if (FoundNonParen) { |
| 3733 | // If we're not the declarator, we're a regular function type unless we're |
| 3734 | // in a member pointer. |
| 3735 | IsCXXInstanceMethod = |
| 3736 | D.getTypeObject(i: I).Kind == DeclaratorChunk::MemberPointer; |
| 3737 | } else if (D.getContext() == DeclaratorContext::LambdaExpr) { |
| 3738 | // This can only be a call operator for a lambda, which is an instance |
| 3739 | // method, unless explicitly specified as 'static'. |
| 3740 | IsCXXInstanceMethod = |
| 3741 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static; |
| 3742 | } else { |
| 3743 | // We're the innermost decl chunk, so must be a function declarator. |
| 3744 | assert(D.isFunctionDeclarator()); |
| 3745 | |
| 3746 | // If we're inside a record, we're declaring a method, but it could be |
| 3747 | // explicitly or implicitly static. |
| 3748 | IsCXXInstanceMethod = |
| 3749 | D.isFirstDeclarationOfMember() && |
| 3750 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && |
| 3751 | !D.isStaticMember(); |
| 3752 | } |
| 3753 | } |
| 3754 | |
| 3755 | CallingConv CC = S.Context.getDefaultCallingConvention(IsVariadic: FTI.isVariadic, |
| 3756 | IsCXXMethod: IsCXXInstanceMethod); |
| 3757 | |
| 3758 | if (S.getLangOpts().CUDA) { |
| 3759 | // If we're compiling CUDA/HIP code and targeting HIPSPV we need to make |
| 3760 | // sure the kernels will be marked with the right calling convention so that |
| 3761 | // they will be visible by the APIs that ingest SPIR-V. We do not do this |
| 3762 | // when targeting AMDGCNSPIRV, as it does not rely on OpenCL. |
| 3763 | llvm::Triple Triple = S.Context.getTargetInfo().getTriple(); |
| 3764 | if (Triple.isSPIRV() && Triple.getVendor() != llvm::Triple::AMD) { |
| 3765 | for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) { |
| 3766 | if (AL.getKind() == ParsedAttr::AT_CUDAGlobal) { |
| 3767 | CC = CC_DeviceKernel; |
| 3768 | break; |
| 3769 | } |
| 3770 | } |
| 3771 | } |
| 3772 | } |
| 3773 | if (!S.getLangOpts().isSYCL()) { |
| 3774 | for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) { |
| 3775 | if (AL.getKind() == ParsedAttr::AT_DeviceKernel) { |
| 3776 | CC = CC_DeviceKernel; |
| 3777 | break; |
| 3778 | } |
| 3779 | } |
| 3780 | } |
| 3781 | return CC; |
| 3782 | } |
| 3783 | |
| 3784 | namespace { |
| 3785 | /// A simple notion of pointer kinds, which matches up with the various |
| 3786 | /// pointer declarators. |
| 3787 | enum class SimplePointerKind { |
| 3788 | Pointer, |
| 3789 | BlockPointer, |
| 3790 | MemberPointer, |
| 3791 | Array, |
| 3792 | }; |
| 3793 | } // end anonymous namespace |
| 3794 | |
| 3795 | IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) { |
| 3796 | switch (nullability) { |
| 3797 | case NullabilityKind::NonNull: |
| 3798 | if (!Ident__Nonnull) |
| 3799 | Ident__Nonnull = PP.getIdentifierInfo(Name: "_Nonnull" ); |
| 3800 | return Ident__Nonnull; |
| 3801 | |
| 3802 | case NullabilityKind::Nullable: |
| 3803 | if (!Ident__Nullable) |
| 3804 | Ident__Nullable = PP.getIdentifierInfo(Name: "_Nullable" ); |
| 3805 | return Ident__Nullable; |
| 3806 | |
| 3807 | case NullabilityKind::NullableResult: |
| 3808 | if (!Ident__Nullable_result) |
| 3809 | Ident__Nullable_result = PP.getIdentifierInfo(Name: "_Nullable_result" ); |
| 3810 | return Ident__Nullable_result; |
| 3811 | |
| 3812 | case NullabilityKind::Unspecified: |
| 3813 | if (!Ident__Null_unspecified) |
| 3814 | Ident__Null_unspecified = PP.getIdentifierInfo(Name: "_Null_unspecified" ); |
| 3815 | return Ident__Null_unspecified; |
| 3816 | } |
| 3817 | llvm_unreachable("Unknown nullability kind." ); |
| 3818 | } |
| 3819 | |
| 3820 | /// Check whether there is a nullability attribute of any kind in the given |
| 3821 | /// attribute list. |
| 3822 | static bool hasNullabilityAttr(const ParsedAttributesView &attrs) { |
| 3823 | for (const ParsedAttr &AL : attrs) { |
| 3824 | if (AL.getKind() == ParsedAttr::AT_TypeNonNull || |
| 3825 | AL.getKind() == ParsedAttr::AT_TypeNullable || |
| 3826 | AL.getKind() == ParsedAttr::AT_TypeNullableResult || |
| 3827 | AL.getKind() == ParsedAttr::AT_TypeNullUnspecified) |
| 3828 | return true; |
| 3829 | } |
| 3830 | |
| 3831 | return false; |
| 3832 | } |
| 3833 | |
| 3834 | namespace { |
| 3835 | /// Describes the kind of a pointer a declarator describes. |
| 3836 | enum class PointerDeclaratorKind { |
| 3837 | // Not a pointer. |
| 3838 | NonPointer, |
| 3839 | // Single-level pointer. |
| 3840 | SingleLevelPointer, |
| 3841 | // Multi-level pointer (of any pointer kind). |
| 3842 | MultiLevelPointer, |
| 3843 | // CFFooRef* |
| 3844 | MaybePointerToCFRef, |
| 3845 | // CFErrorRef* |
| 3846 | CFErrorRefPointer, |
| 3847 | // NSError** |
| 3848 | NSErrorPointerPointer, |
| 3849 | }; |
| 3850 | |
| 3851 | /// Describes a declarator chunk wrapping a pointer that marks inference as |
| 3852 | /// unexpected. |
| 3853 | // These values must be kept in sync with diagnostics. |
| 3854 | enum class PointerWrappingDeclaratorKind { |
| 3855 | /// Pointer is top-level. |
| 3856 | None = -1, |
| 3857 | /// Pointer is an array element. |
| 3858 | Array = 0, |
| 3859 | /// Pointer is the referent type of a C++ reference. |
| 3860 | Reference = 1 |
| 3861 | }; |
| 3862 | } // end anonymous namespace |
| 3863 | |
| 3864 | /// Classify the given declarator, whose type-specified is \c type, based on |
| 3865 | /// what kind of pointer it refers to. |
| 3866 | /// |
| 3867 | /// This is used to determine the default nullability. |
| 3868 | static PointerDeclaratorKind |
| 3869 | classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator, |
| 3870 | PointerWrappingDeclaratorKind &wrappingKind) { |
| 3871 | unsigned numNormalPointers = 0; |
| 3872 | |
| 3873 | // For any dependent type, we consider it a non-pointer. |
| 3874 | if (type->isDependentType()) |
| 3875 | return PointerDeclaratorKind::NonPointer; |
| 3876 | |
| 3877 | // Look through the declarator chunks to identify pointers. |
| 3878 | for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) { |
| 3879 | DeclaratorChunk &chunk = declarator.getTypeObject(i); |
| 3880 | switch (chunk.Kind) { |
| 3881 | case DeclaratorChunk::Array: |
| 3882 | if (numNormalPointers == 0) |
| 3883 | wrappingKind = PointerWrappingDeclaratorKind::Array; |
| 3884 | break; |
| 3885 | |
| 3886 | case DeclaratorChunk::Function: |
| 3887 | case DeclaratorChunk::Pipe: |
| 3888 | break; |
| 3889 | |
| 3890 | case DeclaratorChunk::BlockPointer: |
| 3891 | case DeclaratorChunk::MemberPointer: |
| 3892 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer |
| 3893 | : PointerDeclaratorKind::SingleLevelPointer; |
| 3894 | |
| 3895 | case DeclaratorChunk::Paren: |
| 3896 | break; |
| 3897 | |
| 3898 | case DeclaratorChunk::Reference: |
| 3899 | if (numNormalPointers == 0) |
| 3900 | wrappingKind = PointerWrappingDeclaratorKind::Reference; |
| 3901 | break; |
| 3902 | |
| 3903 | case DeclaratorChunk::Pointer: |
| 3904 | ++numNormalPointers; |
| 3905 | if (numNormalPointers > 2) |
| 3906 | return PointerDeclaratorKind::MultiLevelPointer; |
| 3907 | break; |
| 3908 | } |
| 3909 | } |
| 3910 | |
| 3911 | // Then, dig into the type specifier itself. |
| 3912 | unsigned numTypeSpecifierPointers = 0; |
| 3913 | do { |
| 3914 | // Decompose normal pointers. |
| 3915 | if (auto ptrType = type->getAs<PointerType>()) { |
| 3916 | ++numNormalPointers; |
| 3917 | |
| 3918 | if (numNormalPointers > 2) |
| 3919 | return PointerDeclaratorKind::MultiLevelPointer; |
| 3920 | |
| 3921 | type = ptrType->getPointeeType(); |
| 3922 | ++numTypeSpecifierPointers; |
| 3923 | continue; |
| 3924 | } |
| 3925 | |
| 3926 | // Decompose block pointers. |
| 3927 | if (type->getAs<BlockPointerType>()) { |
| 3928 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer |
| 3929 | : PointerDeclaratorKind::SingleLevelPointer; |
| 3930 | } |
| 3931 | |
| 3932 | // Decompose member pointers. |
| 3933 | if (type->getAs<MemberPointerType>()) { |
| 3934 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer |
| 3935 | : PointerDeclaratorKind::SingleLevelPointer; |
| 3936 | } |
| 3937 | |
| 3938 | // Look at Objective-C object pointers. |
| 3939 | if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) { |
| 3940 | ++numNormalPointers; |
| 3941 | ++numTypeSpecifierPointers; |
| 3942 | |
| 3943 | // If this is NSError**, report that. |
| 3944 | if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) { |
| 3945 | if (objcClassDecl->getIdentifier() == S.ObjC().getNSErrorIdent() && |
| 3946 | numNormalPointers == 2 && numTypeSpecifierPointers < 2) { |
| 3947 | return PointerDeclaratorKind::NSErrorPointerPointer; |
| 3948 | } |
| 3949 | } |
| 3950 | |
| 3951 | break; |
| 3952 | } |
| 3953 | |
| 3954 | // Look at Objective-C class types. |
| 3955 | if (auto objcClass = type->getAs<ObjCInterfaceType>()) { |
| 3956 | if (objcClass->getInterface()->getIdentifier() == |
| 3957 | S.ObjC().getNSErrorIdent()) { |
| 3958 | if (numNormalPointers == 2 && numTypeSpecifierPointers < 2) |
| 3959 | return PointerDeclaratorKind::NSErrorPointerPointer; |
| 3960 | } |
| 3961 | |
| 3962 | break; |
| 3963 | } |
| 3964 | |
| 3965 | // If at this point we haven't seen a pointer, we won't see one. |
| 3966 | if (numNormalPointers == 0) |
| 3967 | return PointerDeclaratorKind::NonPointer; |
| 3968 | |
| 3969 | if (auto recordType = type->getAs<RecordType>()) { |
| 3970 | RecordDecl *recordDecl = recordType->getDecl(); |
| 3971 | |
| 3972 | // If this is CFErrorRef*, report it as such. |
| 3973 | if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 && |
| 3974 | S.ObjC().isCFError(D: recordDecl)) { |
| 3975 | return PointerDeclaratorKind::CFErrorRefPointer; |
| 3976 | } |
| 3977 | break; |
| 3978 | } |
| 3979 | |
| 3980 | break; |
| 3981 | } while (true); |
| 3982 | |
| 3983 | switch (numNormalPointers) { |
| 3984 | case 0: |
| 3985 | return PointerDeclaratorKind::NonPointer; |
| 3986 | |
| 3987 | case 1: |
| 3988 | return PointerDeclaratorKind::SingleLevelPointer; |
| 3989 | |
| 3990 | case 2: |
| 3991 | return PointerDeclaratorKind::MaybePointerToCFRef; |
| 3992 | |
| 3993 | default: |
| 3994 | return PointerDeclaratorKind::MultiLevelPointer; |
| 3995 | } |
| 3996 | } |
| 3997 | |
| 3998 | static FileID getNullabilityCompletenessCheckFileID(Sema &S, |
| 3999 | SourceLocation loc) { |
| 4000 | // If we're anywhere in a function, method, or closure context, don't perform |
| 4001 | // completeness checks. |
| 4002 | for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) { |
| 4003 | if (ctx->isFunctionOrMethod()) |
| 4004 | return FileID(); |
| 4005 | |
| 4006 | if (ctx->isFileContext()) |
| 4007 | break; |
| 4008 | } |
| 4009 | |
| 4010 | // We only care about the expansion location. |
| 4011 | loc = S.SourceMgr.getExpansionLoc(Loc: loc); |
| 4012 | FileID file = S.SourceMgr.getFileID(SpellingLoc: loc); |
| 4013 | if (file.isInvalid()) |
| 4014 | return FileID(); |
| 4015 | |
| 4016 | // Retrieve file information. |
| 4017 | bool invalid = false; |
| 4018 | const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(FID: file, Invalid: &invalid); |
| 4019 | if (invalid || !sloc.isFile()) |
| 4020 | return FileID(); |
| 4021 | |
| 4022 | // We don't want to perform completeness checks on the main file or in |
| 4023 | // system headers. |
| 4024 | const SrcMgr::FileInfo &fileInfo = sloc.getFile(); |
| 4025 | if (fileInfo.getIncludeLoc().isInvalid()) |
| 4026 | return FileID(); |
| 4027 | if (fileInfo.getFileCharacteristic() != SrcMgr::C_User && |
| 4028 | S.Diags.getSuppressSystemWarnings()) { |
| 4029 | return FileID(); |
| 4030 | } |
| 4031 | |
| 4032 | return file; |
| 4033 | } |
| 4034 | |
| 4035 | /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc, |
| 4036 | /// taking into account whitespace before and after. |
| 4037 | template <typename DiagBuilderT> |
| 4038 | static void fixItNullability(Sema &S, DiagBuilderT &Diag, |
| 4039 | SourceLocation PointerLoc, |
| 4040 | NullabilityKind Nullability) { |
| 4041 | assert(PointerLoc.isValid()); |
| 4042 | if (PointerLoc.isMacroID()) |
| 4043 | return; |
| 4044 | |
| 4045 | SourceLocation FixItLoc = S.getLocForEndOfToken(Loc: PointerLoc); |
| 4046 | if (!FixItLoc.isValid() || FixItLoc == PointerLoc) |
| 4047 | return; |
| 4048 | |
| 4049 | const char *NextChar = S.SourceMgr.getCharacterData(SL: FixItLoc); |
| 4050 | if (!NextChar) |
| 4051 | return; |
| 4052 | |
| 4053 | SmallString<32> InsertionTextBuf{" " }; |
| 4054 | InsertionTextBuf += getNullabilitySpelling(kind: Nullability); |
| 4055 | InsertionTextBuf += " " ; |
| 4056 | StringRef InsertionText = InsertionTextBuf.str(); |
| 4057 | |
| 4058 | if (isWhitespace(c: *NextChar)) { |
| 4059 | InsertionText = InsertionText.drop_back(); |
| 4060 | } else if (NextChar[-1] == '[') { |
| 4061 | if (NextChar[0] == ']') |
| 4062 | InsertionText = InsertionText.drop_back().drop_front(); |
| 4063 | else |
| 4064 | InsertionText = InsertionText.drop_front(); |
| 4065 | } else if (!isAsciiIdentifierContinue(c: NextChar[0], /*allow dollar*/ AllowDollar: true) && |
| 4066 | !isAsciiIdentifierContinue(c: NextChar[-1], /*allow dollar*/ AllowDollar: true)) { |
| 4067 | InsertionText = InsertionText.drop_back().drop_front(); |
| 4068 | } |
| 4069 | |
| 4070 | Diag << FixItHint::CreateInsertion(InsertionLoc: FixItLoc, Code: InsertionText); |
| 4071 | } |
| 4072 | |
| 4073 | static void emitNullabilityConsistencyWarning(Sema &S, |
| 4074 | SimplePointerKind PointerKind, |
| 4075 | SourceLocation PointerLoc, |
| 4076 | SourceLocation PointerEndLoc) { |
| 4077 | assert(PointerLoc.isValid()); |
| 4078 | |
| 4079 | if (PointerKind == SimplePointerKind::Array) { |
| 4080 | S.Diag(Loc: PointerLoc, DiagID: diag::warn_nullability_missing_array); |
| 4081 | } else { |
| 4082 | S.Diag(Loc: PointerLoc, DiagID: diag::warn_nullability_missing) |
| 4083 | << static_cast<unsigned>(PointerKind); |
| 4084 | } |
| 4085 | |
| 4086 | auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc; |
| 4087 | if (FixItLoc.isMacroID()) |
| 4088 | return; |
| 4089 | |
| 4090 | auto addFixIt = [&](NullabilityKind Nullability) { |
| 4091 | auto Diag = S.Diag(Loc: FixItLoc, DiagID: diag::note_nullability_fix_it); |
| 4092 | Diag << static_cast<unsigned>(Nullability); |
| 4093 | Diag << static_cast<unsigned>(PointerKind); |
| 4094 | fixItNullability(S, Diag, PointerLoc: FixItLoc, Nullability); |
| 4095 | }; |
| 4096 | addFixIt(NullabilityKind::Nullable); |
| 4097 | addFixIt(NullabilityKind::NonNull); |
| 4098 | } |
| 4099 | |
| 4100 | /// Complains about missing nullability if the file containing \p pointerLoc |
| 4101 | /// has other uses of nullability (either the keywords or the \c assume_nonnull |
| 4102 | /// pragma). |
| 4103 | /// |
| 4104 | /// If the file has \e not seen other uses of nullability, this particular |
| 4105 | /// pointer is saved for possible later diagnosis. See recordNullabilitySeen(). |
| 4106 | static void |
| 4107 | checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind, |
| 4108 | SourceLocation pointerLoc, |
| 4109 | SourceLocation pointerEndLoc = SourceLocation()) { |
| 4110 | // Determine which file we're performing consistency checking for. |
| 4111 | FileID file = getNullabilityCompletenessCheckFileID(S, loc: pointerLoc); |
| 4112 | if (file.isInvalid()) |
| 4113 | return; |
| 4114 | |
| 4115 | // If we haven't seen any type nullability in this file, we won't warn now |
| 4116 | // about anything. |
| 4117 | FileNullability &fileNullability = S.NullabilityMap[file]; |
| 4118 | if (!fileNullability.SawTypeNullability) { |
| 4119 | // If this is the first pointer declarator in the file, and the appropriate |
| 4120 | // warning is on, record it in case we need to diagnose it retroactively. |
| 4121 | diag::kind diagKind; |
| 4122 | if (pointerKind == SimplePointerKind::Array) |
| 4123 | diagKind = diag::warn_nullability_missing_array; |
| 4124 | else |
| 4125 | diagKind = diag::warn_nullability_missing; |
| 4126 | |
| 4127 | if (fileNullability.PointerLoc.isInvalid() && |
| 4128 | !S.Context.getDiagnostics().isIgnored(DiagID: diagKind, Loc: pointerLoc)) { |
| 4129 | fileNullability.PointerLoc = pointerLoc; |
| 4130 | fileNullability.PointerEndLoc = pointerEndLoc; |
| 4131 | fileNullability.PointerKind = static_cast<unsigned>(pointerKind); |
| 4132 | } |
| 4133 | |
| 4134 | return; |
| 4135 | } |
| 4136 | |
| 4137 | // Complain about missing nullability. |
| 4138 | emitNullabilityConsistencyWarning(S, PointerKind: pointerKind, PointerLoc: pointerLoc, PointerEndLoc: pointerEndLoc); |
| 4139 | } |
| 4140 | |
| 4141 | /// Marks that a nullability feature has been used in the file containing |
| 4142 | /// \p loc. |
| 4143 | /// |
| 4144 | /// If this file already had pointer types in it that were missing nullability, |
| 4145 | /// the first such instance is retroactively diagnosed. |
| 4146 | /// |
| 4147 | /// \sa checkNullabilityConsistency |
| 4148 | static void recordNullabilitySeen(Sema &S, SourceLocation loc) { |
| 4149 | FileID file = getNullabilityCompletenessCheckFileID(S, loc); |
| 4150 | if (file.isInvalid()) |
| 4151 | return; |
| 4152 | |
| 4153 | FileNullability &fileNullability = S.NullabilityMap[file]; |
| 4154 | if (fileNullability.SawTypeNullability) |
| 4155 | return; |
| 4156 | fileNullability.SawTypeNullability = true; |
| 4157 | |
| 4158 | // If we haven't seen any type nullability before, now we have. Retroactively |
| 4159 | // diagnose the first unannotated pointer, if there was one. |
| 4160 | if (fileNullability.PointerLoc.isInvalid()) |
| 4161 | return; |
| 4162 | |
| 4163 | auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind); |
| 4164 | emitNullabilityConsistencyWarning(S, PointerKind: kind, PointerLoc: fileNullability.PointerLoc, |
| 4165 | PointerEndLoc: fileNullability.PointerEndLoc); |
| 4166 | } |
| 4167 | |
| 4168 | /// Returns true if any of the declarator chunks before \p endIndex include a |
| 4169 | /// level of indirection: array, pointer, reference, or pointer-to-member. |
| 4170 | /// |
| 4171 | /// Because declarator chunks are stored in outer-to-inner order, testing |
| 4172 | /// every chunk before \p endIndex is testing all chunks that embed the current |
| 4173 | /// chunk as part of their type. |
| 4174 | /// |
| 4175 | /// It is legal to pass the result of Declarator::getNumTypeObjects() as the |
| 4176 | /// end index, in which case all chunks are tested. |
| 4177 | static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) { |
| 4178 | unsigned i = endIndex; |
| 4179 | while (i != 0) { |
| 4180 | // Walk outwards along the declarator chunks. |
| 4181 | --i; |
| 4182 | const DeclaratorChunk &DC = D.getTypeObject(i); |
| 4183 | switch (DC.Kind) { |
| 4184 | case DeclaratorChunk::Paren: |
| 4185 | break; |
| 4186 | case DeclaratorChunk::Array: |
| 4187 | case DeclaratorChunk::Pointer: |
| 4188 | case DeclaratorChunk::Reference: |
| 4189 | case DeclaratorChunk::MemberPointer: |
| 4190 | return true; |
| 4191 | case DeclaratorChunk::Function: |
| 4192 | case DeclaratorChunk::BlockPointer: |
| 4193 | case DeclaratorChunk::Pipe: |
| 4194 | // These are invalid anyway, so just ignore. |
| 4195 | break; |
| 4196 | } |
| 4197 | } |
| 4198 | return false; |
| 4199 | } |
| 4200 | |
| 4201 | static bool IsNoDerefableChunk(const DeclaratorChunk &Chunk) { |
| 4202 | return (Chunk.Kind == DeclaratorChunk::Pointer || |
| 4203 | Chunk.Kind == DeclaratorChunk::Array); |
| 4204 | } |
| 4205 | |
| 4206 | template<typename AttrT> |
| 4207 | static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) { |
| 4208 | AL.setUsedAsTypeAttr(); |
| 4209 | return ::new (Ctx) AttrT(Ctx, AL); |
| 4210 | } |
| 4211 | |
| 4212 | static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr, |
| 4213 | NullabilityKind NK) { |
| 4214 | switch (NK) { |
| 4215 | case NullabilityKind::NonNull: |
| 4216 | return createSimpleAttr<TypeNonNullAttr>(Ctx, AL&: Attr); |
| 4217 | |
| 4218 | case NullabilityKind::Nullable: |
| 4219 | return createSimpleAttr<TypeNullableAttr>(Ctx, AL&: Attr); |
| 4220 | |
| 4221 | case NullabilityKind::NullableResult: |
| 4222 | return createSimpleAttr<TypeNullableResultAttr>(Ctx, AL&: Attr); |
| 4223 | |
| 4224 | case NullabilityKind::Unspecified: |
| 4225 | return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, AL&: Attr); |
| 4226 | } |
| 4227 | llvm_unreachable("unknown NullabilityKind" ); |
| 4228 | } |
| 4229 | |
| 4230 | // Diagnose whether this is a case with the multiple addr spaces. |
| 4231 | // Returns true if this is an invalid case. |
| 4232 | // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified |
| 4233 | // by qualifiers for two or more different address spaces." |
| 4234 | static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld, |
| 4235 | LangAS ASNew, |
| 4236 | SourceLocation AttrLoc) { |
| 4237 | if (ASOld != LangAS::Default) { |
| 4238 | if (ASOld != ASNew) { |
| 4239 | S.Diag(Loc: AttrLoc, DiagID: diag::err_attribute_address_multiple_qualifiers); |
| 4240 | return true; |
| 4241 | } |
| 4242 | // Emit a warning if they are identical; it's likely unintended. |
| 4243 | S.Diag(Loc: AttrLoc, |
| 4244 | DiagID: diag::warn_attribute_address_multiple_identical_qualifiers); |
| 4245 | } |
| 4246 | return false; |
| 4247 | } |
| 4248 | |
| 4249 | // Whether this is a type broadly expected to have nullability attached. |
| 4250 | // These types are affected by `#pragma assume_nonnull`, and missing nullability |
| 4251 | // will be diagnosed with -Wnullability-completeness. |
| 4252 | static bool shouldHaveNullability(QualType T) { |
| 4253 | return T->canHaveNullability(/*ResultIfUnknown=*/false) && |
| 4254 | // For now, do not infer/require nullability on C++ smart pointers. |
| 4255 | // It's unclear whether the pragma's behavior is useful for C++. |
| 4256 | // e.g. treating type-aliases and template-type-parameters differently |
| 4257 | // from types of declarations can be surprising. |
| 4258 | !isa<RecordType, TemplateSpecializationType>( |
| 4259 | Val: T->getCanonicalTypeInternal()); |
| 4260 | } |
| 4261 | |
| 4262 | static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state, |
| 4263 | QualType declSpecType, |
| 4264 | TypeSourceInfo *TInfo) { |
| 4265 | // The TypeSourceInfo that this function returns will not be a null type. |
| 4266 | // If there is an error, this function will fill in a dummy type as fallback. |
| 4267 | QualType T = declSpecType; |
| 4268 | Declarator &D = state.getDeclarator(); |
| 4269 | Sema &S = state.getSema(); |
| 4270 | ASTContext &Context = S.Context; |
| 4271 | const LangOptions &LangOpts = S.getLangOpts(); |
| 4272 | |
| 4273 | // The name we're declaring, if any. |
| 4274 | DeclarationName Name; |
| 4275 | if (D.getIdentifier()) |
| 4276 | Name = D.getIdentifier(); |
| 4277 | |
| 4278 | // Does this declaration declare a typedef-name? |
| 4279 | bool IsTypedefName = |
| 4280 | D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef || |
| 4281 | D.getContext() == DeclaratorContext::AliasDecl || |
| 4282 | D.getContext() == DeclaratorContext::AliasTemplate; |
| 4283 | |
| 4284 | // Does T refer to a function type with a cv-qualifier or a ref-qualifier? |
| 4285 | bool IsQualifiedFunction = T->isFunctionProtoType() && |
| 4286 | (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() || |
| 4287 | T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None); |
| 4288 | |
| 4289 | // If T is 'decltype(auto)', the only declarators we can have are parens |
| 4290 | // and at most one function declarator if this is a function declaration. |
| 4291 | // If T is a deduced class template specialization type, only parentheses |
| 4292 | // are allowed. |
| 4293 | if (auto *DT = T->getAs<DeducedType>()) { |
| 4294 | const AutoType *AT = T->getAs<AutoType>(); |
| 4295 | bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(Val: DT); |
| 4296 | if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) { |
| 4297 | for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { |
| 4298 | unsigned Index = E - I - 1; |
| 4299 | DeclaratorChunk &DeclChunk = D.getTypeObject(i: Index); |
| 4300 | unsigned DiagId = IsClassTemplateDeduction |
| 4301 | ? diag::err_deduced_class_template_compound_type |
| 4302 | : diag::err_decltype_auto_compound_type; |
| 4303 | unsigned DiagKind = 0; |
| 4304 | switch (DeclChunk.Kind) { |
| 4305 | case DeclaratorChunk::Paren: |
| 4306 | continue; |
| 4307 | case DeclaratorChunk::Function: { |
| 4308 | if (IsClassTemplateDeduction) { |
| 4309 | DiagKind = 3; |
| 4310 | break; |
| 4311 | } |
| 4312 | unsigned FnIndex; |
| 4313 | if (D.isFunctionDeclarationContext() && |
| 4314 | D.isFunctionDeclarator(idx&: FnIndex) && FnIndex == Index) |
| 4315 | continue; |
| 4316 | DiagId = diag::err_decltype_auto_function_declarator_not_declaration; |
| 4317 | break; |
| 4318 | } |
| 4319 | case DeclaratorChunk::Pointer: |
| 4320 | case DeclaratorChunk::BlockPointer: |
| 4321 | case DeclaratorChunk::MemberPointer: |
| 4322 | DiagKind = 0; |
| 4323 | break; |
| 4324 | case DeclaratorChunk::Reference: |
| 4325 | DiagKind = 1; |
| 4326 | break; |
| 4327 | case DeclaratorChunk::Array: |
| 4328 | DiagKind = 2; |
| 4329 | break; |
| 4330 | case DeclaratorChunk::Pipe: |
| 4331 | break; |
| 4332 | } |
| 4333 | |
| 4334 | S.Diag(Loc: DeclChunk.Loc, DiagID: DiagId) << DiagKind; |
| 4335 | D.setInvalidType(true); |
| 4336 | break; |
| 4337 | } |
| 4338 | } |
| 4339 | } |
| 4340 | |
| 4341 | // Determine whether we should infer _Nonnull on pointer types. |
| 4342 | std::optional<NullabilityKind> inferNullability; |
| 4343 | bool inferNullabilityCS = false; |
| 4344 | bool inferNullabilityInnerOnly = false; |
| 4345 | bool inferNullabilityInnerOnlyComplete = false; |
| 4346 | |
| 4347 | // Are we in an assume-nonnull region? |
| 4348 | bool inAssumeNonNullRegion = false; |
| 4349 | SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc(); |
| 4350 | if (assumeNonNullLoc.isValid()) { |
| 4351 | inAssumeNonNullRegion = true; |
| 4352 | recordNullabilitySeen(S, loc: assumeNonNullLoc); |
| 4353 | } |
| 4354 | |
| 4355 | // Whether to complain about missing nullability specifiers or not. |
| 4356 | enum { |
| 4357 | /// Never complain. |
| 4358 | CAMN_No, |
| 4359 | /// Complain on the inner pointers (but not the outermost |
| 4360 | /// pointer). |
| 4361 | CAMN_InnerPointers, |
| 4362 | /// Complain about any pointers that don't have nullability |
| 4363 | /// specified or inferred. |
| 4364 | CAMN_Yes |
| 4365 | } complainAboutMissingNullability = CAMN_No; |
| 4366 | unsigned NumPointersRemaining = 0; |
| 4367 | auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None; |
| 4368 | |
| 4369 | if (IsTypedefName) { |
| 4370 | // For typedefs, we do not infer any nullability (the default), |
| 4371 | // and we only complain about missing nullability specifiers on |
| 4372 | // inner pointers. |
| 4373 | complainAboutMissingNullability = CAMN_InnerPointers; |
| 4374 | |
| 4375 | if (shouldHaveNullability(T) && !T->getNullability()) { |
| 4376 | // Note that we allow but don't require nullability on dependent types. |
| 4377 | ++NumPointersRemaining; |
| 4378 | } |
| 4379 | |
| 4380 | for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) { |
| 4381 | DeclaratorChunk &chunk = D.getTypeObject(i); |
| 4382 | switch (chunk.Kind) { |
| 4383 | case DeclaratorChunk::Array: |
| 4384 | case DeclaratorChunk::Function: |
| 4385 | case DeclaratorChunk::Pipe: |
| 4386 | break; |
| 4387 | |
| 4388 | case DeclaratorChunk::BlockPointer: |
| 4389 | case DeclaratorChunk::MemberPointer: |
| 4390 | ++NumPointersRemaining; |
| 4391 | break; |
| 4392 | |
| 4393 | case DeclaratorChunk::Paren: |
| 4394 | case DeclaratorChunk::Reference: |
| 4395 | continue; |
| 4396 | |
| 4397 | case DeclaratorChunk::Pointer: |
| 4398 | ++NumPointersRemaining; |
| 4399 | continue; |
| 4400 | } |
| 4401 | } |
| 4402 | } else { |
| 4403 | bool isFunctionOrMethod = false; |
| 4404 | switch (auto context = state.getDeclarator().getContext()) { |
| 4405 | case DeclaratorContext::ObjCParameter: |
| 4406 | case DeclaratorContext::ObjCResult: |
| 4407 | case DeclaratorContext::Prototype: |
| 4408 | case DeclaratorContext::TrailingReturn: |
| 4409 | case DeclaratorContext::TrailingReturnVar: |
| 4410 | isFunctionOrMethod = true; |
| 4411 | [[fallthrough]]; |
| 4412 | |
| 4413 | case DeclaratorContext::Member: |
| 4414 | if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) { |
| 4415 | complainAboutMissingNullability = CAMN_No; |
| 4416 | break; |
| 4417 | } |
| 4418 | |
| 4419 | // Weak properties are inferred to be nullable. |
| 4420 | if (state.getDeclarator().isObjCWeakProperty()) { |
| 4421 | // Weak properties cannot be nonnull, and should not complain about |
| 4422 | // missing nullable attributes during completeness checks. |
| 4423 | complainAboutMissingNullability = CAMN_No; |
| 4424 | if (inAssumeNonNullRegion) { |
| 4425 | inferNullability = NullabilityKind::Nullable; |
| 4426 | } |
| 4427 | break; |
| 4428 | } |
| 4429 | |
| 4430 | [[fallthrough]]; |
| 4431 | |
| 4432 | case DeclaratorContext::File: |
| 4433 | case DeclaratorContext::KNRTypeList: { |
| 4434 | complainAboutMissingNullability = CAMN_Yes; |
| 4435 | |
| 4436 | // Nullability inference depends on the type and declarator. |
| 4437 | auto wrappingKind = PointerWrappingDeclaratorKind::None; |
| 4438 | switch (classifyPointerDeclarator(S, type: T, declarator&: D, wrappingKind)) { |
| 4439 | case PointerDeclaratorKind::NonPointer: |
| 4440 | case PointerDeclaratorKind::MultiLevelPointer: |
| 4441 | // Cannot infer nullability. |
| 4442 | break; |
| 4443 | |
| 4444 | case PointerDeclaratorKind::SingleLevelPointer: |
| 4445 | // Infer _Nonnull if we are in an assumes-nonnull region. |
| 4446 | if (inAssumeNonNullRegion) { |
| 4447 | complainAboutInferringWithinChunk = wrappingKind; |
| 4448 | inferNullability = NullabilityKind::NonNull; |
| 4449 | inferNullabilityCS = (context == DeclaratorContext::ObjCParameter || |
| 4450 | context == DeclaratorContext::ObjCResult); |
| 4451 | } |
| 4452 | break; |
| 4453 | |
| 4454 | case PointerDeclaratorKind::CFErrorRefPointer: |
| 4455 | case PointerDeclaratorKind::NSErrorPointerPointer: |
| 4456 | // Within a function or method signature, infer _Nullable at both |
| 4457 | // levels. |
| 4458 | if (isFunctionOrMethod && inAssumeNonNullRegion) |
| 4459 | inferNullability = NullabilityKind::Nullable; |
| 4460 | break; |
| 4461 | |
| 4462 | case PointerDeclaratorKind::MaybePointerToCFRef: |
| 4463 | if (isFunctionOrMethod) { |
| 4464 | // On pointer-to-pointer parameters marked cf_returns_retained or |
| 4465 | // cf_returns_not_retained, if the outer pointer is explicit then |
| 4466 | // infer the inner pointer as _Nullable. |
| 4467 | auto hasCFReturnsAttr = |
| 4468 | [](const ParsedAttributesView &AttrList) -> bool { |
| 4469 | return AttrList.hasAttribute(K: ParsedAttr::AT_CFReturnsRetained) || |
| 4470 | AttrList.hasAttribute(K: ParsedAttr::AT_CFReturnsNotRetained); |
| 4471 | }; |
| 4472 | if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) { |
| 4473 | if (hasCFReturnsAttr(D.getDeclarationAttributes()) || |
| 4474 | hasCFReturnsAttr(D.getAttributes()) || |
| 4475 | hasCFReturnsAttr(InnermostChunk->getAttrs()) || |
| 4476 | hasCFReturnsAttr(D.getDeclSpec().getAttributes())) { |
| 4477 | inferNullability = NullabilityKind::Nullable; |
| 4478 | inferNullabilityInnerOnly = true; |
| 4479 | } |
| 4480 | } |
| 4481 | } |
| 4482 | break; |
| 4483 | } |
| 4484 | break; |
| 4485 | } |
| 4486 | |
| 4487 | case DeclaratorContext::ConversionId: |
| 4488 | complainAboutMissingNullability = CAMN_Yes; |
| 4489 | break; |
| 4490 | |
| 4491 | case DeclaratorContext::AliasDecl: |
| 4492 | case DeclaratorContext::AliasTemplate: |
| 4493 | case DeclaratorContext::Block: |
| 4494 | case DeclaratorContext::BlockLiteral: |
| 4495 | case DeclaratorContext::Condition: |
| 4496 | case DeclaratorContext::CXXCatch: |
| 4497 | case DeclaratorContext::CXXNew: |
| 4498 | case DeclaratorContext::ForInit: |
| 4499 | case DeclaratorContext::SelectionInit: |
| 4500 | case DeclaratorContext::LambdaExpr: |
| 4501 | case DeclaratorContext::LambdaExprParameter: |
| 4502 | case DeclaratorContext::ObjCCatch: |
| 4503 | case DeclaratorContext::TemplateParam: |
| 4504 | case DeclaratorContext::TemplateArg: |
| 4505 | case DeclaratorContext::TemplateTypeArg: |
| 4506 | case DeclaratorContext::TypeName: |
| 4507 | case DeclaratorContext::FunctionalCast: |
| 4508 | case DeclaratorContext::RequiresExpr: |
| 4509 | case DeclaratorContext::Association: |
| 4510 | // Don't infer in these contexts. |
| 4511 | break; |
| 4512 | } |
| 4513 | } |
| 4514 | |
| 4515 | // Local function that returns true if its argument looks like a va_list. |
| 4516 | auto isVaList = [&S](QualType T) -> bool { |
| 4517 | auto *typedefTy = T->getAs<TypedefType>(); |
| 4518 | if (!typedefTy) |
| 4519 | return false; |
| 4520 | TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl(); |
| 4521 | do { |
| 4522 | if (typedefTy->getDecl() == vaListTypedef) |
| 4523 | return true; |
| 4524 | if (auto *name = typedefTy->getDecl()->getIdentifier()) |
| 4525 | if (name->isStr(Str: "va_list" )) |
| 4526 | return true; |
| 4527 | typedefTy = typedefTy->desugar()->getAs<TypedefType>(); |
| 4528 | } while (typedefTy); |
| 4529 | return false; |
| 4530 | }; |
| 4531 | |
| 4532 | // Local function that checks the nullability for a given pointer declarator. |
| 4533 | // Returns true if _Nonnull was inferred. |
| 4534 | auto inferPointerNullability = |
| 4535 | [&](SimplePointerKind pointerKind, SourceLocation pointerLoc, |
| 4536 | SourceLocation pointerEndLoc, |
| 4537 | ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * { |
| 4538 | // We've seen a pointer. |
| 4539 | if (NumPointersRemaining > 0) |
| 4540 | --NumPointersRemaining; |
| 4541 | |
| 4542 | // If a nullability attribute is present, there's nothing to do. |
| 4543 | if (hasNullabilityAttr(attrs)) |
| 4544 | return nullptr; |
| 4545 | |
| 4546 | // If we're supposed to infer nullability, do so now. |
| 4547 | if (inferNullability && !inferNullabilityInnerOnlyComplete) { |
| 4548 | ParsedAttr::Form form = |
| 4549 | inferNullabilityCS |
| 4550 | ? ParsedAttr::Form::ContextSensitiveKeyword() |
| 4551 | : ParsedAttr::Form::Keyword(IsAlignas: false /*IsAlignAs*/, |
| 4552 | IsRegularKeywordAttribute: false /*IsRegularKeywordAttribute*/); |
| 4553 | ParsedAttr *nullabilityAttr = Pool.create( |
| 4554 | attrName: S.getNullabilityKeyword(nullability: *inferNullability), attrRange: SourceRange(pointerLoc), |
| 4555 | scope: AttributeScopeInfo(), args: nullptr, numArgs: 0, form); |
| 4556 | |
| 4557 | attrs.addAtEnd(newAttr: nullabilityAttr); |
| 4558 | |
| 4559 | if (inferNullabilityCS) { |
| 4560 | state.getDeclarator().getMutableDeclSpec().getObjCQualifiers() |
| 4561 | ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability); |
| 4562 | } |
| 4563 | |
| 4564 | if (pointerLoc.isValid() && |
| 4565 | complainAboutInferringWithinChunk != |
| 4566 | PointerWrappingDeclaratorKind::None) { |
| 4567 | auto Diag = |
| 4568 | S.Diag(Loc: pointerLoc, DiagID: diag::warn_nullability_inferred_on_nested_type); |
| 4569 | Diag << static_cast<int>(complainAboutInferringWithinChunk); |
| 4570 | fixItNullability(S, Diag, PointerLoc: pointerLoc, Nullability: NullabilityKind::NonNull); |
| 4571 | } |
| 4572 | |
| 4573 | if (inferNullabilityInnerOnly) |
| 4574 | inferNullabilityInnerOnlyComplete = true; |
| 4575 | return nullabilityAttr; |
| 4576 | } |
| 4577 | |
| 4578 | // If we're supposed to complain about missing nullability, do so |
| 4579 | // now if it's truly missing. |
| 4580 | switch (complainAboutMissingNullability) { |
| 4581 | case CAMN_No: |
| 4582 | break; |
| 4583 | |
| 4584 | case CAMN_InnerPointers: |
| 4585 | if (NumPointersRemaining == 0) |
| 4586 | break; |
| 4587 | [[fallthrough]]; |
| 4588 | |
| 4589 | case CAMN_Yes: |
| 4590 | checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc); |
| 4591 | } |
| 4592 | return nullptr; |
| 4593 | }; |
| 4594 | |
| 4595 | // If the type itself could have nullability but does not, infer pointer |
| 4596 | // nullability and perform consistency checking. |
| 4597 | if (S.CodeSynthesisContexts.empty()) { |
| 4598 | if (shouldHaveNullability(T) && !T->getNullability()) { |
| 4599 | if (isVaList(T)) { |
| 4600 | // Record that we've seen a pointer, but do nothing else. |
| 4601 | if (NumPointersRemaining > 0) |
| 4602 | --NumPointersRemaining; |
| 4603 | } else { |
| 4604 | SimplePointerKind pointerKind = SimplePointerKind::Pointer; |
| 4605 | if (T->isBlockPointerType()) |
| 4606 | pointerKind = SimplePointerKind::BlockPointer; |
| 4607 | else if (T->isMemberPointerType()) |
| 4608 | pointerKind = SimplePointerKind::MemberPointer; |
| 4609 | |
| 4610 | if (auto *attr = inferPointerNullability( |
| 4611 | pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(), |
| 4612 | D.getDeclSpec().getEndLoc(), |
| 4613 | D.getMutableDeclSpec().getAttributes(), |
| 4614 | D.getMutableDeclSpec().getAttributePool())) { |
| 4615 | T = state.getAttributedType( |
| 4616 | A: createNullabilityAttr(Ctx&: Context, Attr&: *attr, NK: *inferNullability), ModifiedType: T, EquivType: T); |
| 4617 | } |
| 4618 | } |
| 4619 | } |
| 4620 | |
| 4621 | if (complainAboutMissingNullability == CAMN_Yes && T->isArrayType() && |
| 4622 | !T->getNullability() && !isVaList(T) && D.isPrototypeContext() && |
| 4623 | !hasOuterPointerLikeChunk(D, endIndex: D.getNumTypeObjects())) { |
| 4624 | checkNullabilityConsistency(S, pointerKind: SimplePointerKind::Array, |
| 4625 | pointerLoc: D.getDeclSpec().getTypeSpecTypeLoc()); |
| 4626 | } |
| 4627 | } |
| 4628 | |
| 4629 | bool ExpectNoDerefChunk = |
| 4630 | state.getCurrentAttributes().hasAttribute(K: ParsedAttr::AT_NoDeref); |
| 4631 | |
| 4632 | // Walk the DeclTypeInfo, building the recursive type as we go. |
| 4633 | // DeclTypeInfos are ordered from the identifier out, which is |
| 4634 | // opposite of what we want :). |
| 4635 | |
| 4636 | // Track if the produced type matches the structure of the declarator. |
| 4637 | // This is used later to decide if we can fill `TypeLoc` from |
| 4638 | // `DeclaratorChunk`s. E.g. it must be false if Clang recovers from |
| 4639 | // an error by replacing the type with `int`. |
| 4640 | bool AreDeclaratorChunksValid = true; |
| 4641 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { |
| 4642 | unsigned chunkIndex = e - i - 1; |
| 4643 | state.setCurrentChunkIndex(chunkIndex); |
| 4644 | DeclaratorChunk &DeclType = D.getTypeObject(i: chunkIndex); |
| 4645 | IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren; |
| 4646 | switch (DeclType.Kind) { |
| 4647 | case DeclaratorChunk::Paren: |
| 4648 | if (i == 0) |
| 4649 | warnAboutRedundantParens(S, D, T); |
| 4650 | T = S.BuildParenType(T); |
| 4651 | break; |
| 4652 | case DeclaratorChunk::BlockPointer: |
| 4653 | // If blocks are disabled, emit an error. |
| 4654 | if (!LangOpts.Blocks) |
| 4655 | S.Diag(Loc: DeclType.Loc, DiagID: diag::err_blocks_disable) << LangOpts.OpenCL; |
| 4656 | |
| 4657 | // Handle pointer nullability. |
| 4658 | inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc, |
| 4659 | DeclType.EndLoc, DeclType.getAttrs(), |
| 4660 | state.getDeclarator().getAttributePool()); |
| 4661 | |
| 4662 | T = S.BuildBlockPointerType(T, Loc: D.getIdentifierLoc(), Entity: Name); |
| 4663 | if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) { |
| 4664 | // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly |
| 4665 | // qualified with const. |
| 4666 | if (LangOpts.OpenCL) |
| 4667 | DeclType.Cls.TypeQuals |= DeclSpec::TQ_const; |
| 4668 | T = S.BuildQualifiedType(T, Loc: DeclType.Loc, CVRAU: DeclType.Cls.TypeQuals); |
| 4669 | } |
| 4670 | break; |
| 4671 | case DeclaratorChunk::Pointer: |
| 4672 | // Verify that we're not building a pointer to pointer to function with |
| 4673 | // exception specification. |
| 4674 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { |
| 4675 | S.Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_distant_exception_spec); |
| 4676 | D.setInvalidType(true); |
| 4677 | // Build the type anyway. |
| 4678 | } |
| 4679 | |
| 4680 | // Handle pointer nullability |
| 4681 | inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc, |
| 4682 | DeclType.EndLoc, DeclType.getAttrs(), |
| 4683 | state.getDeclarator().getAttributePool()); |
| 4684 | |
| 4685 | if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) { |
| 4686 | T = Context.getObjCObjectPointerType(OIT: T); |
| 4687 | if (DeclType.Ptr.TypeQuals) |
| 4688 | T = S.BuildQualifiedType(T, Loc: DeclType.Loc, CVRAU: DeclType.Ptr.TypeQuals); |
| 4689 | break; |
| 4690 | } |
| 4691 | |
| 4692 | // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used. |
| 4693 | // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used. |
| 4694 | // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed. |
| 4695 | if (LangOpts.OpenCL) { |
| 4696 | if (T->isImageType() || T->isSamplerT() || T->isPipeType() || |
| 4697 | T->isBlockPointerType()) { |
| 4698 | S.Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_opencl_pointer_to_type) << T; |
| 4699 | D.setInvalidType(true); |
| 4700 | } |
| 4701 | } |
| 4702 | |
| 4703 | T = S.BuildPointerType(T, Loc: DeclType.Loc, Entity: Name); |
| 4704 | if (DeclType.Ptr.TypeQuals) |
| 4705 | T = S.BuildQualifiedType(T, Loc: DeclType.Loc, CVRAU: DeclType.Ptr.TypeQuals); |
| 4706 | break; |
| 4707 | case DeclaratorChunk::Reference: { |
| 4708 | // Verify that we're not building a reference to pointer to function with |
| 4709 | // exception specification. |
| 4710 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { |
| 4711 | S.Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_distant_exception_spec); |
| 4712 | D.setInvalidType(true); |
| 4713 | // Build the type anyway. |
| 4714 | } |
| 4715 | T = S.BuildReferenceType(T, SpelledAsLValue: DeclType.Ref.LValueRef, Loc: DeclType.Loc, Entity: Name); |
| 4716 | |
| 4717 | if (DeclType.Ref.HasRestrict) |
| 4718 | T = S.BuildQualifiedType(T, Loc: DeclType.Loc, CVRAU: Qualifiers::Restrict); |
| 4719 | break; |
| 4720 | } |
| 4721 | case DeclaratorChunk::Array: { |
| 4722 | // Verify that we're not building an array of pointers to function with |
| 4723 | // exception specification. |
| 4724 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { |
| 4725 | S.Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_distant_exception_spec); |
| 4726 | D.setInvalidType(true); |
| 4727 | // Build the type anyway. |
| 4728 | } |
| 4729 | DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr; |
| 4730 | Expr *ArraySize = static_cast<Expr*>(ATI.NumElts); |
| 4731 | ArraySizeModifier ASM; |
| 4732 | |
| 4733 | // Microsoft property fields can have multiple sizeless array chunks |
| 4734 | // (i.e. int x[][][]). Skip all of these except one to avoid creating |
| 4735 | // bad incomplete array types. |
| 4736 | if (chunkIndex != 0 && !ArraySize && |
| 4737 | D.getDeclSpec().getAttributes().hasMSPropertyAttr()) { |
| 4738 | // This is a sizeless chunk. If the next is also, skip this one. |
| 4739 | DeclaratorChunk &NextDeclType = D.getTypeObject(i: chunkIndex - 1); |
| 4740 | if (NextDeclType.Kind == DeclaratorChunk::Array && |
| 4741 | !NextDeclType.Arr.NumElts) |
| 4742 | break; |
| 4743 | } |
| 4744 | |
| 4745 | if (ATI.isStar) |
| 4746 | ASM = ArraySizeModifier::Star; |
| 4747 | else if (ATI.hasStatic) |
| 4748 | ASM = ArraySizeModifier::Static; |
| 4749 | else |
| 4750 | ASM = ArraySizeModifier::Normal; |
| 4751 | if (ASM == ArraySizeModifier::Star && !D.isPrototypeContext()) { |
| 4752 | // FIXME: This check isn't quite right: it allows star in prototypes |
| 4753 | // for function definitions, and disallows some edge cases detailed |
| 4754 | // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html |
| 4755 | S.Diag(Loc: DeclType.Loc, DiagID: diag::err_array_star_outside_prototype); |
| 4756 | ASM = ArraySizeModifier::Normal; |
| 4757 | D.setInvalidType(true); |
| 4758 | } |
| 4759 | |
| 4760 | // C99 6.7.5.2p1: The optional type qualifiers and the keyword static |
| 4761 | // shall appear only in a declaration of a function parameter with an |
| 4762 | // array type, ... |
| 4763 | if (ASM == ArraySizeModifier::Static || ATI.TypeQuals) { |
| 4764 | if (!(D.isPrototypeContext() || |
| 4765 | D.getContext() == DeclaratorContext::KNRTypeList)) { |
| 4766 | S.Diag(Loc: DeclType.Loc, DiagID: diag::err_array_static_outside_prototype) |
| 4767 | << (ASM == ArraySizeModifier::Static ? "'static'" |
| 4768 | : "type qualifier" ); |
| 4769 | // Remove the 'static' and the type qualifiers. |
| 4770 | if (ASM == ArraySizeModifier::Static) |
| 4771 | ASM = ArraySizeModifier::Normal; |
| 4772 | ATI.TypeQuals = 0; |
| 4773 | D.setInvalidType(true); |
| 4774 | } |
| 4775 | |
| 4776 | // C99 6.7.5.2p1: ... and then only in the outermost array type |
| 4777 | // derivation. |
| 4778 | if (hasOuterPointerLikeChunk(D, endIndex: chunkIndex)) { |
| 4779 | S.Diag(Loc: DeclType.Loc, DiagID: diag::err_array_static_not_outermost) |
| 4780 | << (ASM == ArraySizeModifier::Static ? "'static'" |
| 4781 | : "type qualifier" ); |
| 4782 | if (ASM == ArraySizeModifier::Static) |
| 4783 | ASM = ArraySizeModifier::Normal; |
| 4784 | ATI.TypeQuals = 0; |
| 4785 | D.setInvalidType(true); |
| 4786 | } |
| 4787 | } |
| 4788 | |
| 4789 | // Array parameters can be marked nullable as well, although it's not |
| 4790 | // necessary if they're marked 'static'. |
| 4791 | if (complainAboutMissingNullability == CAMN_Yes && |
| 4792 | !hasNullabilityAttr(attrs: DeclType.getAttrs()) && |
| 4793 | ASM != ArraySizeModifier::Static && D.isPrototypeContext() && |
| 4794 | !hasOuterPointerLikeChunk(D, endIndex: chunkIndex)) { |
| 4795 | checkNullabilityConsistency(S, pointerKind: SimplePointerKind::Array, pointerLoc: DeclType.Loc); |
| 4796 | } |
| 4797 | |
| 4798 | T = S.BuildArrayType(T, ASM, ArraySize, Quals: ATI.TypeQuals, |
| 4799 | Brackets: SourceRange(DeclType.Loc, DeclType.EndLoc), Entity: Name); |
| 4800 | break; |
| 4801 | } |
| 4802 | case DeclaratorChunk::Function: { |
| 4803 | // If the function declarator has a prototype (i.e. it is not () and |
| 4804 | // does not have a K&R-style identifier list), then the arguments are part |
| 4805 | // of the type, otherwise the argument list is (). |
| 4806 | DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; |
| 4807 | IsQualifiedFunction = |
| 4808 | FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier(); |
| 4809 | |
| 4810 | // Check for auto functions and trailing return type and adjust the |
| 4811 | // return type accordingly. |
| 4812 | if (!D.isInvalidType()) { |
| 4813 | auto IsClassType = [&](CXXScopeSpec &SS) { |
| 4814 | // If there already was an problem with the scope, don’t issue another |
| 4815 | // error about the explicit object parameter. |
| 4816 | return SS.isInvalid() || |
| 4817 | isa_and_present<CXXRecordDecl>(Val: S.computeDeclContext(SS)); |
| 4818 | }; |
| 4819 | |
| 4820 | // C++23 [dcl.fct]p6: |
| 4821 | // |
| 4822 | // An explicit-object-parameter-declaration is a parameter-declaration |
| 4823 | // with a this specifier. An explicit-object-parameter-declaration shall |
| 4824 | // appear only as the first parameter-declaration of a |
| 4825 | // parameter-declaration-list of one of: |
| 4826 | // |
| 4827 | // - a declaration of a member function or member function template |
| 4828 | // ([class.mem]), or |
| 4829 | // |
| 4830 | // - an explicit instantiation ([temp.explicit]) or explicit |
| 4831 | // specialization ([temp.expl.spec]) of a templated member function, |
| 4832 | // or |
| 4833 | // |
| 4834 | // - a lambda-declarator [expr.prim.lambda]. |
| 4835 | DeclaratorContext C = D.getContext(); |
| 4836 | ParmVarDecl *First = |
| 4837 | FTI.NumParams |
| 4838 | ? dyn_cast_if_present<ParmVarDecl>(Val: FTI.Params[0].Param) |
| 4839 | : nullptr; |
| 4840 | |
| 4841 | bool IsFunctionDecl = D.getInnermostNonParenChunk() == &DeclType; |
| 4842 | if (First && First->isExplicitObjectParameter() && |
| 4843 | C != DeclaratorContext::LambdaExpr && |
| 4844 | |
| 4845 | // Either not a member or nested declarator in a member. |
| 4846 | // |
| 4847 | // Note that e.g. 'static' or 'friend' declarations are accepted |
| 4848 | // here; we diagnose them later when we build the member function |
| 4849 | // because it's easier that way. |
| 4850 | (C != DeclaratorContext::Member || !IsFunctionDecl) && |
| 4851 | |
| 4852 | // Allow out-of-line definitions of member functions. |
| 4853 | !IsClassType(D.getCXXScopeSpec())) { |
| 4854 | if (IsFunctionDecl) |
| 4855 | S.Diag(Loc: First->getBeginLoc(), |
| 4856 | DiagID: diag::err_explicit_object_parameter_nonmember) |
| 4857 | << /*non-member*/ 2 << /*function*/ 0 |
| 4858 | << First->getSourceRange(); |
| 4859 | else |
| 4860 | S.Diag(Loc: First->getBeginLoc(), |
| 4861 | DiagID: diag::err_explicit_object_parameter_invalid) |
| 4862 | << First->getSourceRange(); |
| 4863 | |
| 4864 | D.setInvalidType(); |
| 4865 | AreDeclaratorChunksValid = false; |
| 4866 | } |
| 4867 | |
| 4868 | // trailing-return-type is only required if we're declaring a function, |
| 4869 | // and not, for instance, a pointer to a function. |
| 4870 | if (D.getDeclSpec().hasAutoTypeSpec() && |
| 4871 | !FTI.hasTrailingReturnType() && chunkIndex == 0) { |
| 4872 | if (!S.getLangOpts().CPlusPlus14) { |
| 4873 | S.Diag(Loc: D.getDeclSpec().getTypeSpecTypeLoc(), |
| 4874 | DiagID: D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto |
| 4875 | ? diag::err_auto_missing_trailing_return |
| 4876 | : diag::err_deduced_return_type); |
| 4877 | T = Context.IntTy; |
| 4878 | D.setInvalidType(true); |
| 4879 | AreDeclaratorChunksValid = false; |
| 4880 | } else { |
| 4881 | S.Diag(Loc: D.getDeclSpec().getTypeSpecTypeLoc(), |
| 4882 | DiagID: diag::warn_cxx11_compat_deduced_return_type); |
| 4883 | } |
| 4884 | } else if (FTI.hasTrailingReturnType()) { |
| 4885 | // T must be exactly 'auto' at this point. See CWG issue 681. |
| 4886 | if (isa<ParenType>(Val: T)) { |
| 4887 | S.Diag(Loc: D.getBeginLoc(), DiagID: diag::err_trailing_return_in_parens) |
| 4888 | << T << D.getSourceRange(); |
| 4889 | D.setInvalidType(true); |
| 4890 | // FIXME: recover and fill decls in `TypeLoc`s. |
| 4891 | AreDeclaratorChunksValid = false; |
| 4892 | } else if (D.getName().getKind() == |
| 4893 | UnqualifiedIdKind::IK_DeductionGuideName) { |
| 4894 | if (T != Context.DependentTy) { |
| 4895 | S.Diag(Loc: D.getDeclSpec().getBeginLoc(), |
| 4896 | DiagID: diag::err_deduction_guide_with_complex_decl) |
| 4897 | << D.getSourceRange(); |
| 4898 | D.setInvalidType(true); |
| 4899 | // FIXME: recover and fill decls in `TypeLoc`s. |
| 4900 | AreDeclaratorChunksValid = false; |
| 4901 | } |
| 4902 | } else if (D.getContext() != DeclaratorContext::LambdaExpr && |
| 4903 | (T.hasQualifiers() || !isa<AutoType>(Val: T) || |
| 4904 | cast<AutoType>(Val&: T)->getKeyword() != |
| 4905 | AutoTypeKeyword::Auto || |
| 4906 | cast<AutoType>(Val&: T)->isConstrained())) { |
| 4907 | // Attach a valid source location for diagnostics on functions with |
| 4908 | // trailing return types missing 'auto'. Attempt to get the location |
| 4909 | // from the declared type; if invalid, fall back to the trailing |
| 4910 | // return type's location. |
| 4911 | SourceLocation Loc = D.getDeclSpec().getTypeSpecTypeLoc(); |
| 4912 | SourceRange SR = D.getDeclSpec().getSourceRange(); |
| 4913 | if (Loc.isInvalid()) { |
| 4914 | Loc = FTI.getTrailingReturnTypeLoc(); |
| 4915 | SR = D.getSourceRange(); |
| 4916 | } |
| 4917 | S.Diag(Loc, DiagID: diag::err_trailing_return_without_auto) << T << SR; |
| 4918 | D.setInvalidType(true); |
| 4919 | // FIXME: recover and fill decls in `TypeLoc`s. |
| 4920 | AreDeclaratorChunksValid = false; |
| 4921 | } |
| 4922 | T = S.GetTypeFromParser(Ty: FTI.getTrailingReturnType(), TInfo: &TInfo); |
| 4923 | if (T.isNull()) { |
| 4924 | // An error occurred parsing the trailing return type. |
| 4925 | T = Context.IntTy; |
| 4926 | D.setInvalidType(true); |
| 4927 | } else if (AutoType *Auto = T->getContainedAutoType()) { |
| 4928 | // If the trailing return type contains an `auto`, we may need to |
| 4929 | // invent a template parameter for it, for cases like |
| 4930 | // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`. |
| 4931 | InventedTemplateParameterInfo *InventedParamInfo = nullptr; |
| 4932 | if (D.getContext() == DeclaratorContext::Prototype) |
| 4933 | InventedParamInfo = &S.InventedParameterInfos.back(); |
| 4934 | else if (D.getContext() == DeclaratorContext::LambdaExprParameter) |
| 4935 | InventedParamInfo = S.getCurLambda(); |
| 4936 | if (InventedParamInfo) { |
| 4937 | std::tie(args&: T, args&: TInfo) = InventTemplateParameter( |
| 4938 | state, T, TrailingTSI: TInfo, Auto, Info&: *InventedParamInfo); |
| 4939 | } |
| 4940 | } |
| 4941 | } else { |
| 4942 | // This function type is not the type of the entity being declared, |
| 4943 | // so checking the 'auto' is not the responsibility of this chunk. |
| 4944 | } |
| 4945 | } |
| 4946 | |
| 4947 | // C99 6.7.5.3p1: The return type may not be a function or array type. |
| 4948 | // For conversion functions, we'll diagnose this particular error later. |
| 4949 | if (!D.isInvalidType() && |
| 4950 | ((T->isArrayType() && !S.getLangOpts().allowArrayReturnTypes()) || |
| 4951 | T->isFunctionType()) && |
| 4952 | (D.getName().getKind() != |
| 4953 | UnqualifiedIdKind::IK_ConversionFunctionId)) { |
| 4954 | unsigned diagID = diag::err_func_returning_array_function; |
| 4955 | // Last processing chunk in block context means this function chunk |
| 4956 | // represents the block. |
| 4957 | if (chunkIndex == 0 && |
| 4958 | D.getContext() == DeclaratorContext::BlockLiteral) |
| 4959 | diagID = diag::err_block_returning_array_function; |
| 4960 | S.Diag(Loc: DeclType.Loc, DiagID: diagID) << T->isFunctionType() << T; |
| 4961 | T = Context.IntTy; |
| 4962 | D.setInvalidType(true); |
| 4963 | AreDeclaratorChunksValid = false; |
| 4964 | } |
| 4965 | |
| 4966 | // Do not allow returning half FP value. |
| 4967 | // FIXME: This really should be in BuildFunctionType. |
| 4968 | if (T->isHalfType()) { |
| 4969 | if (S.getLangOpts().OpenCL) { |
| 4970 | if (!S.getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16" , |
| 4971 | LO: S.getLangOpts())) { |
| 4972 | S.Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_opencl_invalid_return) |
| 4973 | << T << 0 /*pointer hint*/; |
| 4974 | D.setInvalidType(true); |
| 4975 | } |
| 4976 | } else if (!S.getLangOpts().NativeHalfArgsAndReturns && |
| 4977 | !S.Context.getTargetInfo().allowHalfArgsAndReturns()) { |
| 4978 | S.Diag(Loc: D.getIdentifierLoc(), |
| 4979 | DiagID: diag::err_parameters_retval_cannot_have_fp16_type) << 1; |
| 4980 | D.setInvalidType(true); |
| 4981 | } |
| 4982 | } |
| 4983 | |
| 4984 | // __ptrauth is illegal on a function return type. |
| 4985 | if (T.getPointerAuth()) { |
| 4986 | S.Diag(Loc: DeclType.Loc, DiagID: diag::err_ptrauth_qualifier_invalid) << T << 0; |
| 4987 | } |
| 4988 | |
| 4989 | if (LangOpts.OpenCL) { |
| 4990 | // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a |
| 4991 | // function. |
| 4992 | if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() || |
| 4993 | T->isPipeType()) { |
| 4994 | S.Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_opencl_invalid_return) |
| 4995 | << T << 1 /*hint off*/; |
| 4996 | D.setInvalidType(true); |
| 4997 | } |
| 4998 | // OpenCL doesn't support variadic functions and blocks |
| 4999 | // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf. |
| 5000 | // We also allow here any toolchain reserved identifiers. |
| 5001 | if (FTI.isVariadic && |
| 5002 | !S.getOpenCLOptions().isAvailableOption( |
| 5003 | Ext: "__cl_clang_variadic_functions" , LO: S.getLangOpts()) && |
| 5004 | !(D.getIdentifier() && |
| 5005 | ((D.getIdentifier()->getName() == "printf" && |
| 5006 | LangOpts.getOpenCLCompatibleVersion() >= 120) || |
| 5007 | D.getIdentifier()->getName().starts_with(Prefix: "__" )))) { |
| 5008 | S.Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_opencl_variadic_function); |
| 5009 | D.setInvalidType(true); |
| 5010 | } |
| 5011 | } |
| 5012 | |
| 5013 | // Methods cannot return interface types. All ObjC objects are |
| 5014 | // passed by reference. |
| 5015 | if (T->isObjCObjectType()) { |
| 5016 | SourceLocation DiagLoc, FixitLoc; |
| 5017 | if (TInfo) { |
| 5018 | DiagLoc = TInfo->getTypeLoc().getBeginLoc(); |
| 5019 | FixitLoc = S.getLocForEndOfToken(Loc: TInfo->getTypeLoc().getEndLoc()); |
| 5020 | } else { |
| 5021 | DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc(); |
| 5022 | FixitLoc = S.getLocForEndOfToken(Loc: D.getDeclSpec().getEndLoc()); |
| 5023 | } |
| 5024 | S.Diag(Loc: DiagLoc, DiagID: diag::err_object_cannot_be_passed_returned_by_value) |
| 5025 | << 0 << T |
| 5026 | << FixItHint::CreateInsertion(InsertionLoc: FixitLoc, Code: "*" ); |
| 5027 | |
| 5028 | T = Context.getObjCObjectPointerType(OIT: T); |
| 5029 | if (TInfo) { |
| 5030 | TypeLocBuilder TLB; |
| 5031 | TLB.pushFullCopy(L: TInfo->getTypeLoc()); |
| 5032 | ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T); |
| 5033 | TLoc.setStarLoc(FixitLoc); |
| 5034 | TInfo = TLB.getTypeSourceInfo(Context, T); |
| 5035 | } else { |
| 5036 | AreDeclaratorChunksValid = false; |
| 5037 | } |
| 5038 | |
| 5039 | D.setInvalidType(true); |
| 5040 | } |
| 5041 | |
| 5042 | // cv-qualifiers on return types are pointless except when the type is a |
| 5043 | // class type in C++. |
| 5044 | if ((T.getCVRQualifiers() || T->isAtomicType()) && |
| 5045 | !(S.getLangOpts().CPlusPlus && |
| 5046 | (T->isDependentType() || T->isRecordType()))) { |
| 5047 | if (T->isVoidType() && !S.getLangOpts().CPlusPlus && |
| 5048 | D.getFunctionDefinitionKind() == |
| 5049 | FunctionDefinitionKind::Definition) { |
| 5050 | // [6.9.1/3] qualified void return is invalid on a C |
| 5051 | // function definition. Apparently ok on declarations and |
| 5052 | // in C++ though (!) |
| 5053 | S.Diag(Loc: DeclType.Loc, DiagID: diag::err_func_returning_qualified_void) << T; |
| 5054 | } else |
| 5055 | diagnoseRedundantReturnTypeQualifiers(S, RetTy: T, D, FunctionChunkIndex: chunkIndex); |
| 5056 | } |
| 5057 | |
| 5058 | // C++2a [dcl.fct]p12: |
| 5059 | // A volatile-qualified return type is deprecated |
| 5060 | if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20) |
| 5061 | S.Diag(Loc: DeclType.Loc, DiagID: diag::warn_deprecated_volatile_return) << T; |
| 5062 | |
| 5063 | // Objective-C ARC ownership qualifiers are ignored on the function |
| 5064 | // return type (by type canonicalization). Complain if this attribute |
| 5065 | // was written here. |
| 5066 | if (T.getQualifiers().hasObjCLifetime()) { |
| 5067 | SourceLocation AttrLoc; |
| 5068 | if (chunkIndex + 1 < D.getNumTypeObjects()) { |
| 5069 | DeclaratorChunk ReturnTypeChunk = D.getTypeObject(i: chunkIndex + 1); |
| 5070 | for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) { |
| 5071 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) { |
| 5072 | AttrLoc = AL.getLoc(); |
| 5073 | break; |
| 5074 | } |
| 5075 | } |
| 5076 | } |
| 5077 | if (AttrLoc.isInvalid()) { |
| 5078 | for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) { |
| 5079 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) { |
| 5080 | AttrLoc = AL.getLoc(); |
| 5081 | break; |
| 5082 | } |
| 5083 | } |
| 5084 | } |
| 5085 | |
| 5086 | if (AttrLoc.isValid()) { |
| 5087 | // The ownership attributes are almost always written via |
| 5088 | // the predefined |
| 5089 | // __strong/__weak/__autoreleasing/__unsafe_unretained. |
| 5090 | if (AttrLoc.isMacroID()) |
| 5091 | AttrLoc = |
| 5092 | S.SourceMgr.getImmediateExpansionRange(Loc: AttrLoc).getBegin(); |
| 5093 | |
| 5094 | S.Diag(Loc: AttrLoc, DiagID: diag::warn_arc_lifetime_result_type) |
| 5095 | << T.getQualifiers().getObjCLifetime(); |
| 5096 | } |
| 5097 | } |
| 5098 | |
| 5099 | if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) { |
| 5100 | // C++ [dcl.fct]p6: |
| 5101 | // Types shall not be defined in return or parameter types. |
| 5102 | TagDecl *Tag = cast<TagDecl>(Val: D.getDeclSpec().getRepAsDecl()); |
| 5103 | S.Diag(Loc: Tag->getLocation(), DiagID: diag::err_type_defined_in_result_type) |
| 5104 | << Context.getTypeDeclType(Decl: Tag); |
| 5105 | } |
| 5106 | |
| 5107 | // Exception specs are not allowed in typedefs. Complain, but add it |
| 5108 | // anyway. |
| 5109 | if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17) |
| 5110 | S.Diag(Loc: FTI.getExceptionSpecLocBeg(), |
| 5111 | DiagID: diag::err_exception_spec_in_typedef) |
| 5112 | << (D.getContext() == DeclaratorContext::AliasDecl || |
| 5113 | D.getContext() == DeclaratorContext::AliasTemplate); |
| 5114 | |
| 5115 | // If we see "T var();" or "T var(T());" at block scope, it is probably |
| 5116 | // an attempt to initialize a variable, not a function declaration. |
| 5117 | if (FTI.isAmbiguous) |
| 5118 | warnAboutAmbiguousFunction(S, D, DeclType, RT: T); |
| 5119 | |
| 5120 | FunctionType::ExtInfo EI( |
| 5121 | getCCForDeclaratorChunk(S, D, AttrList: DeclType.getAttrs(), FTI, ChunkIndex: chunkIndex)); |
| 5122 | |
| 5123 | // OpenCL disallows functions without a prototype, but it doesn't enforce |
| 5124 | // strict prototypes as in C23 because it allows a function definition to |
| 5125 | // have an identifier list. See OpenCL 3.0 6.11/g for more details. |
| 5126 | if (!FTI.NumParams && !FTI.isVariadic && |
| 5127 | !LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL) { |
| 5128 | // Simple void foo(), where the incoming T is the result type. |
| 5129 | T = Context.getFunctionNoProtoType(ResultTy: T, Info: EI); |
| 5130 | } else { |
| 5131 | // We allow a zero-parameter variadic function in C if the |
| 5132 | // function is marked with the "overloadable" attribute. Scan |
| 5133 | // for this attribute now. We also allow it in C23 per WG14 N2975. |
| 5134 | if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) { |
| 5135 | if (LangOpts.C23) |
| 5136 | S.Diag(Loc: FTI.getEllipsisLoc(), |
| 5137 | DiagID: diag::warn_c17_compat_ellipsis_only_parameter); |
| 5138 | else if (!D.getDeclarationAttributes().hasAttribute( |
| 5139 | K: ParsedAttr::AT_Overloadable) && |
| 5140 | !D.getAttributes().hasAttribute( |
| 5141 | K: ParsedAttr::AT_Overloadable) && |
| 5142 | !D.getDeclSpec().getAttributes().hasAttribute( |
| 5143 | K: ParsedAttr::AT_Overloadable)) |
| 5144 | S.Diag(Loc: FTI.getEllipsisLoc(), DiagID: diag::err_ellipsis_first_param); |
| 5145 | } |
| 5146 | |
| 5147 | if (FTI.NumParams && FTI.Params[0].Param == nullptr) { |
| 5148 | // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function |
| 5149 | // definition. |
| 5150 | S.Diag(Loc: FTI.Params[0].IdentLoc, |
| 5151 | DiagID: diag::err_ident_list_in_fn_declaration); |
| 5152 | D.setInvalidType(true); |
| 5153 | // Recover by creating a K&R-style function type, if possible. |
| 5154 | T = (!LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL) |
| 5155 | ? Context.getFunctionNoProtoType(ResultTy: T, Info: EI) |
| 5156 | : Context.IntTy; |
| 5157 | AreDeclaratorChunksValid = false; |
| 5158 | break; |
| 5159 | } |
| 5160 | |
| 5161 | FunctionProtoType::ExtProtoInfo EPI; |
| 5162 | EPI.ExtInfo = EI; |
| 5163 | EPI.Variadic = FTI.isVariadic; |
| 5164 | EPI.EllipsisLoc = FTI.getEllipsisLoc(); |
| 5165 | EPI.HasTrailingReturn = FTI.hasTrailingReturnType(); |
| 5166 | EPI.TypeQuals.addCVRUQualifiers( |
| 5167 | mask: FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers() |
| 5168 | : 0); |
| 5169 | EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None |
| 5170 | : FTI.RefQualifierIsLValueRef? RQ_LValue |
| 5171 | : RQ_RValue; |
| 5172 | |
| 5173 | // Otherwise, we have a function with a parameter list that is |
| 5174 | // potentially variadic. |
| 5175 | SmallVector<QualType, 16> ParamTys; |
| 5176 | ParamTys.reserve(N: FTI.NumParams); |
| 5177 | |
| 5178 | SmallVector<FunctionProtoType::ExtParameterInfo, 16> |
| 5179 | ExtParameterInfos(FTI.NumParams); |
| 5180 | bool HasAnyInterestingExtParameterInfos = false; |
| 5181 | |
| 5182 | for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { |
| 5183 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: FTI.Params[i].Param); |
| 5184 | QualType ParamTy = Param->getType(); |
| 5185 | assert(!ParamTy.isNull() && "Couldn't parse type?" ); |
| 5186 | |
| 5187 | // Look for 'void'. void is allowed only as a single parameter to a |
| 5188 | // function with no other parameters (C99 6.7.5.3p10). We record |
| 5189 | // int(void) as a FunctionProtoType with an empty parameter list. |
| 5190 | if (ParamTy->isVoidType()) { |
| 5191 | // If this is something like 'float(int, void)', reject it. 'void' |
| 5192 | // is an incomplete type (C99 6.2.5p19) and function decls cannot |
| 5193 | // have parameters of incomplete type. |
| 5194 | if (FTI.NumParams != 1 || FTI.isVariadic) { |
| 5195 | S.Diag(Loc: FTI.Params[i].IdentLoc, DiagID: diag::err_void_only_param); |
| 5196 | ParamTy = Context.IntTy; |
| 5197 | Param->setType(ParamTy); |
| 5198 | } else if (FTI.Params[i].Ident) { |
| 5199 | // Reject, but continue to parse 'int(void abc)'. |
| 5200 | S.Diag(Loc: FTI.Params[i].IdentLoc, DiagID: diag::err_param_with_void_type); |
| 5201 | ParamTy = Context.IntTy; |
| 5202 | Param->setType(ParamTy); |
| 5203 | } else { |
| 5204 | // Reject, but continue to parse 'float(const void)'. |
| 5205 | if (ParamTy.hasQualifiers()) |
| 5206 | S.Diag(Loc: DeclType.Loc, DiagID: diag::err_void_param_qualified); |
| 5207 | |
| 5208 | for (const auto *A : Param->attrs()) { |
| 5209 | S.Diag(Loc: A->getLoc(), DiagID: diag::warn_attribute_on_void_param) |
| 5210 | << A << A->getRange(); |
| 5211 | } |
| 5212 | |
| 5213 | // Reject, but continue to parse 'float(this void)' as |
| 5214 | // 'float(void)'. |
| 5215 | if (Param->isExplicitObjectParameter()) { |
| 5216 | S.Diag(Loc: Param->getLocation(), |
| 5217 | DiagID: diag::err_void_explicit_object_param); |
| 5218 | Param->setExplicitObjectParameterLoc(SourceLocation()); |
| 5219 | } |
| 5220 | |
| 5221 | // Do not add 'void' to the list. |
| 5222 | break; |
| 5223 | } |
| 5224 | } else if (ParamTy->isHalfType()) { |
| 5225 | // Disallow half FP parameters. |
| 5226 | // FIXME: This really should be in BuildFunctionType. |
| 5227 | if (S.getLangOpts().OpenCL) { |
| 5228 | if (!S.getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16" , |
| 5229 | LO: S.getLangOpts())) { |
| 5230 | S.Diag(Loc: Param->getLocation(), DiagID: diag::err_opencl_invalid_param) |
| 5231 | << ParamTy << 0; |
| 5232 | D.setInvalidType(); |
| 5233 | Param->setInvalidDecl(); |
| 5234 | } |
| 5235 | } else if (!S.getLangOpts().NativeHalfArgsAndReturns && |
| 5236 | !S.Context.getTargetInfo().allowHalfArgsAndReturns()) { |
| 5237 | S.Diag(Loc: Param->getLocation(), |
| 5238 | DiagID: diag::err_parameters_retval_cannot_have_fp16_type) << 0; |
| 5239 | D.setInvalidType(); |
| 5240 | } |
| 5241 | } else if (!FTI.hasPrototype) { |
| 5242 | if (Context.isPromotableIntegerType(T: ParamTy)) { |
| 5243 | ParamTy = Context.getPromotedIntegerType(PromotableType: ParamTy); |
| 5244 | Param->setKNRPromoted(true); |
| 5245 | } else if (const BuiltinType *BTy = ParamTy->getAs<BuiltinType>()) { |
| 5246 | if (BTy->getKind() == BuiltinType::Float) { |
| 5247 | ParamTy = Context.DoubleTy; |
| 5248 | Param->setKNRPromoted(true); |
| 5249 | } |
| 5250 | } |
| 5251 | } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) { |
| 5252 | // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function. |
| 5253 | S.Diag(Loc: Param->getLocation(), DiagID: diag::err_opencl_invalid_param) |
| 5254 | << ParamTy << 1 /*hint off*/; |
| 5255 | D.setInvalidType(); |
| 5256 | } |
| 5257 | |
| 5258 | if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) { |
| 5259 | ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(consumed: true); |
| 5260 | HasAnyInterestingExtParameterInfos = true; |
| 5261 | } |
| 5262 | |
| 5263 | if (auto attr = Param->getAttr<ParameterABIAttr>()) { |
| 5264 | ExtParameterInfos[i] = |
| 5265 | ExtParameterInfos[i].withABI(kind: attr->getABI()); |
| 5266 | HasAnyInterestingExtParameterInfos = true; |
| 5267 | } |
| 5268 | |
| 5269 | if (Param->hasAttr<PassObjectSizeAttr>()) { |
| 5270 | ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize(); |
| 5271 | HasAnyInterestingExtParameterInfos = true; |
| 5272 | } |
| 5273 | |
| 5274 | if (Param->hasAttr<NoEscapeAttr>()) { |
| 5275 | ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(NoEscape: true); |
| 5276 | HasAnyInterestingExtParameterInfos = true; |
| 5277 | } |
| 5278 | |
| 5279 | ParamTys.push_back(Elt: ParamTy); |
| 5280 | } |
| 5281 | |
| 5282 | if (HasAnyInterestingExtParameterInfos) { |
| 5283 | EPI.ExtParameterInfos = ExtParameterInfos.data(); |
| 5284 | checkExtParameterInfos(S, paramTypes: ParamTys, EPI, |
| 5285 | getParamLoc: [&](unsigned i) { return FTI.Params[i].Param->getLocation(); }); |
| 5286 | } |
| 5287 | |
| 5288 | SmallVector<QualType, 4> Exceptions; |
| 5289 | SmallVector<ParsedType, 2> DynamicExceptions; |
| 5290 | SmallVector<SourceRange, 2> DynamicExceptionRanges; |
| 5291 | Expr *NoexceptExpr = nullptr; |
| 5292 | |
| 5293 | if (FTI.getExceptionSpecType() == EST_Dynamic) { |
| 5294 | // FIXME: It's rather inefficient to have to split into two vectors |
| 5295 | // here. |
| 5296 | unsigned N = FTI.getNumExceptions(); |
| 5297 | DynamicExceptions.reserve(N); |
| 5298 | DynamicExceptionRanges.reserve(N); |
| 5299 | for (unsigned I = 0; I != N; ++I) { |
| 5300 | DynamicExceptions.push_back(Elt: FTI.Exceptions[I].Ty); |
| 5301 | DynamicExceptionRanges.push_back(Elt: FTI.Exceptions[I].Range); |
| 5302 | } |
| 5303 | } else if (isComputedNoexcept(ESpecType: FTI.getExceptionSpecType())) { |
| 5304 | NoexceptExpr = FTI.NoexceptExpr; |
| 5305 | } |
| 5306 | |
| 5307 | S.checkExceptionSpecification(IsTopLevel: D.isFunctionDeclarationContext(), |
| 5308 | EST: FTI.getExceptionSpecType(), |
| 5309 | DynamicExceptions, |
| 5310 | DynamicExceptionRanges, |
| 5311 | NoexceptExpr, |
| 5312 | Exceptions, |
| 5313 | ESI&: EPI.ExceptionSpec); |
| 5314 | |
| 5315 | // FIXME: Set address space from attrs for C++ mode here. |
| 5316 | // OpenCLCPlusPlus: A class member function has an address space. |
| 5317 | auto IsClassMember = [&]() { |
| 5318 | return (!state.getDeclarator().getCXXScopeSpec().isEmpty() && |
| 5319 | state.getDeclarator() |
| 5320 | .getCXXScopeSpec() |
| 5321 | .getScopeRep() |
| 5322 | ->getKind() == NestedNameSpecifier::TypeSpec) || |
| 5323 | state.getDeclarator().getContext() == |
| 5324 | DeclaratorContext::Member || |
| 5325 | state.getDeclarator().getContext() == |
| 5326 | DeclaratorContext::LambdaExpr; |
| 5327 | }; |
| 5328 | |
| 5329 | if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) { |
| 5330 | LangAS ASIdx = LangAS::Default; |
| 5331 | // Take address space attr if any and mark as invalid to avoid adding |
| 5332 | // them later while creating QualType. |
| 5333 | if (FTI.MethodQualifiers) |
| 5334 | for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) { |
| 5335 | LangAS ASIdxNew = attr.asOpenCLLangAS(); |
| 5336 | if (DiagnoseMultipleAddrSpaceAttributes(S, ASOld: ASIdx, ASNew: ASIdxNew, |
| 5337 | AttrLoc: attr.getLoc())) |
| 5338 | D.setInvalidType(true); |
| 5339 | else |
| 5340 | ASIdx = ASIdxNew; |
| 5341 | } |
| 5342 | // If a class member function's address space is not set, set it to |
| 5343 | // __generic. |
| 5344 | LangAS AS = |
| 5345 | (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace() |
| 5346 | : ASIdx); |
| 5347 | EPI.TypeQuals.addAddressSpace(space: AS); |
| 5348 | } |
| 5349 | T = Context.getFunctionType(ResultTy: T, Args: ParamTys, EPI); |
| 5350 | } |
| 5351 | break; |
| 5352 | } |
| 5353 | case DeclaratorChunk::MemberPointer: { |
| 5354 | // The scope spec must refer to a class, or be dependent. |
| 5355 | CXXScopeSpec &SS = DeclType.Mem.Scope(); |
| 5356 | |
| 5357 | // Handle pointer nullability. |
| 5358 | inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc, |
| 5359 | DeclType.EndLoc, DeclType.getAttrs(), |
| 5360 | state.getDeclarator().getAttributePool()); |
| 5361 | |
| 5362 | if (SS.isInvalid()) { |
| 5363 | // Avoid emitting extra errors if we already errored on the scope. |
| 5364 | D.setInvalidType(true); |
| 5365 | AreDeclaratorChunksValid = false; |
| 5366 | } else { |
| 5367 | T = S.BuildMemberPointerType(T, SS, /*Cls=*/nullptr, Loc: DeclType.Loc, |
| 5368 | Entity: D.getIdentifier()); |
| 5369 | } |
| 5370 | |
| 5371 | if (T.isNull()) { |
| 5372 | T = Context.IntTy; |
| 5373 | D.setInvalidType(true); |
| 5374 | AreDeclaratorChunksValid = false; |
| 5375 | } else if (DeclType.Mem.TypeQuals) { |
| 5376 | T = S.BuildQualifiedType(T, Loc: DeclType.Loc, CVRAU: DeclType.Mem.TypeQuals); |
| 5377 | } |
| 5378 | break; |
| 5379 | } |
| 5380 | |
| 5381 | case DeclaratorChunk::Pipe: { |
| 5382 | T = S.BuildReadPipeType(T, Loc: DeclType.Loc); |
| 5383 | processTypeAttrs(state, type&: T, TAL: TAL_DeclSpec, |
| 5384 | attrs: D.getMutableDeclSpec().getAttributes()); |
| 5385 | break; |
| 5386 | } |
| 5387 | } |
| 5388 | |
| 5389 | if (T.isNull()) { |
| 5390 | D.setInvalidType(true); |
| 5391 | T = Context.IntTy; |
| 5392 | AreDeclaratorChunksValid = false; |
| 5393 | } |
| 5394 | |
| 5395 | // See if there are any attributes on this declarator chunk. |
| 5396 | processTypeAttrs(state, type&: T, TAL: TAL_DeclChunk, attrs: DeclType.getAttrs(), |
| 5397 | CFT: S.CUDA().IdentifyTarget(Attrs: D.getAttributes())); |
| 5398 | |
| 5399 | if (DeclType.Kind != DeclaratorChunk::Paren) { |
| 5400 | if (ExpectNoDerefChunk && !IsNoDerefableChunk(Chunk: DeclType)) |
| 5401 | S.Diag(Loc: DeclType.Loc, DiagID: diag::warn_noderef_on_non_pointer_or_array); |
| 5402 | |
| 5403 | ExpectNoDerefChunk = state.didParseNoDeref(); |
| 5404 | } |
| 5405 | } |
| 5406 | |
| 5407 | if (ExpectNoDerefChunk) |
| 5408 | S.Diag(Loc: state.getDeclarator().getBeginLoc(), |
| 5409 | DiagID: diag::warn_noderef_on_non_pointer_or_array); |
| 5410 | |
| 5411 | // GNU warning -Wstrict-prototypes |
| 5412 | // Warn if a function declaration or definition is without a prototype. |
| 5413 | // This warning is issued for all kinds of unprototyped function |
| 5414 | // declarations (i.e. function type typedef, function pointer etc.) |
| 5415 | // C99 6.7.5.3p14: |
| 5416 | // The empty list in a function declarator that is not part of a definition |
| 5417 | // of that function specifies that no information about the number or types |
| 5418 | // of the parameters is supplied. |
| 5419 | // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of |
| 5420 | // function declarations whose behavior changes in C23. |
| 5421 | if (!LangOpts.requiresStrictPrototypes()) { |
| 5422 | bool IsBlock = false; |
| 5423 | for (const DeclaratorChunk &DeclType : D.type_objects()) { |
| 5424 | switch (DeclType.Kind) { |
| 5425 | case DeclaratorChunk::BlockPointer: |
| 5426 | IsBlock = true; |
| 5427 | break; |
| 5428 | case DeclaratorChunk::Function: { |
| 5429 | const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; |
| 5430 | // We suppress the warning when there's no LParen location, as this |
| 5431 | // indicates the declaration was an implicit declaration, which gets |
| 5432 | // warned about separately via -Wimplicit-function-declaration. We also |
| 5433 | // suppress the warning when we know the function has a prototype. |
| 5434 | if (!FTI.hasPrototype && FTI.NumParams == 0 && !FTI.isVariadic && |
| 5435 | FTI.getLParenLoc().isValid()) |
| 5436 | S.Diag(Loc: DeclType.Loc, DiagID: diag::warn_strict_prototypes) |
| 5437 | << IsBlock |
| 5438 | << FixItHint::CreateInsertion(InsertionLoc: FTI.getRParenLoc(), Code: "void" ); |
| 5439 | IsBlock = false; |
| 5440 | break; |
| 5441 | } |
| 5442 | default: |
| 5443 | break; |
| 5444 | } |
| 5445 | } |
| 5446 | } |
| 5447 | |
| 5448 | assert(!T.isNull() && "T must not be null after this point" ); |
| 5449 | |
| 5450 | if (LangOpts.CPlusPlus && T->isFunctionType()) { |
| 5451 | const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>(); |
| 5452 | assert(FnTy && "Why oh why is there not a FunctionProtoType here?" ); |
| 5453 | |
| 5454 | // C++ 8.3.5p4: |
| 5455 | // A cv-qualifier-seq shall only be part of the function type |
| 5456 | // for a nonstatic member function, the function type to which a pointer |
| 5457 | // to member refers, or the top-level function type of a function typedef |
| 5458 | // declaration. |
| 5459 | // |
| 5460 | // Core issue 547 also allows cv-qualifiers on function types that are |
| 5461 | // top-level template type arguments. |
| 5462 | enum { |
| 5463 | NonMember, |
| 5464 | Member, |
| 5465 | ExplicitObjectMember, |
| 5466 | DeductionGuide |
| 5467 | } Kind = NonMember; |
| 5468 | if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName) |
| 5469 | Kind = DeductionGuide; |
| 5470 | else if (!D.getCXXScopeSpec().isSet()) { |
| 5471 | if ((D.getContext() == DeclaratorContext::Member || |
| 5472 | D.getContext() == DeclaratorContext::LambdaExpr) && |
| 5473 | !D.getDeclSpec().isFriendSpecified()) |
| 5474 | Kind = Member; |
| 5475 | } else { |
| 5476 | DeclContext *DC = S.computeDeclContext(SS: D.getCXXScopeSpec()); |
| 5477 | if (!DC || DC->isRecord()) |
| 5478 | Kind = Member; |
| 5479 | } |
| 5480 | |
| 5481 | if (Kind == Member) { |
| 5482 | unsigned I; |
| 5483 | if (D.isFunctionDeclarator(idx&: I)) { |
| 5484 | const DeclaratorChunk &Chunk = D.getTypeObject(i: I); |
| 5485 | if (Chunk.Fun.NumParams) { |
| 5486 | auto *P = dyn_cast_or_null<ParmVarDecl>(Val: Chunk.Fun.Params->Param); |
| 5487 | if (P && P->isExplicitObjectParameter()) |
| 5488 | Kind = ExplicitObjectMember; |
| 5489 | } |
| 5490 | } |
| 5491 | } |
| 5492 | |
| 5493 | // C++11 [dcl.fct]p6 (w/DR1417): |
| 5494 | // An attempt to specify a function type with a cv-qualifier-seq or a |
| 5495 | // ref-qualifier (including by typedef-name) is ill-formed unless it is: |
| 5496 | // - the function type for a non-static member function, |
| 5497 | // - the function type to which a pointer to member refers, |
| 5498 | // - the top-level function type of a function typedef declaration or |
| 5499 | // alias-declaration, |
| 5500 | // - the type-id in the default argument of a type-parameter, or |
| 5501 | // - the type-id of a template-argument for a type-parameter |
| 5502 | // |
| 5503 | // C++23 [dcl.fct]p6 (P0847R7) |
| 5504 | // ... A member-declarator with an explicit-object-parameter-declaration |
| 5505 | // shall not include a ref-qualifier or a cv-qualifier-seq and shall not be |
| 5506 | // declared static or virtual ... |
| 5507 | // |
| 5508 | // FIXME: Checking this here is insufficient. We accept-invalid on: |
| 5509 | // |
| 5510 | // template<typename T> struct S { void f(T); }; |
| 5511 | // S<int() const> s; |
| 5512 | // |
| 5513 | // ... for instance. |
| 5514 | if (IsQualifiedFunction && |
| 5515 | // Check for non-static member function and not and |
| 5516 | // explicit-object-parameter-declaration |
| 5517 | (Kind != Member || D.isExplicitObjectMemberFunction() || |
| 5518 | D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static || |
| 5519 | (D.getContext() == clang::DeclaratorContext::Member && |
| 5520 | D.isStaticMember())) && |
| 5521 | !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg && |
| 5522 | D.getContext() != DeclaratorContext::TemplateTypeArg) { |
| 5523 | SourceLocation Loc = D.getBeginLoc(); |
| 5524 | SourceRange RemovalRange; |
| 5525 | unsigned I; |
| 5526 | if (D.isFunctionDeclarator(idx&: I)) { |
| 5527 | SmallVector<SourceLocation, 4> RemovalLocs; |
| 5528 | const DeclaratorChunk &Chunk = D.getTypeObject(i: I); |
| 5529 | assert(Chunk.Kind == DeclaratorChunk::Function); |
| 5530 | |
| 5531 | if (Chunk.Fun.hasRefQualifier()) |
| 5532 | RemovalLocs.push_back(Elt: Chunk.Fun.getRefQualifierLoc()); |
| 5533 | |
| 5534 | if (Chunk.Fun.hasMethodTypeQualifiers()) |
| 5535 | Chunk.Fun.MethodQualifiers->forEachQualifier( |
| 5536 | Handle: [&](DeclSpec::TQ TypeQual, StringRef QualName, |
| 5537 | SourceLocation SL) { RemovalLocs.push_back(Elt: SL); }); |
| 5538 | |
| 5539 | if (!RemovalLocs.empty()) { |
| 5540 | llvm::sort(C&: RemovalLocs, |
| 5541 | Comp: BeforeThanCompare<SourceLocation>(S.getSourceManager())); |
| 5542 | RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back()); |
| 5543 | Loc = RemovalLocs.front(); |
| 5544 | } |
| 5545 | } |
| 5546 | |
| 5547 | S.Diag(Loc, DiagID: diag::err_invalid_qualified_function_type) |
| 5548 | << Kind << D.isFunctionDeclarator() << T |
| 5549 | << getFunctionQualifiersAsString(FnTy) |
| 5550 | << FixItHint::CreateRemoval(RemoveRange: RemovalRange); |
| 5551 | |
| 5552 | // Strip the cv-qualifiers and ref-qualifiers from the type. |
| 5553 | FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo(); |
| 5554 | EPI.TypeQuals.removeCVRQualifiers(); |
| 5555 | EPI.RefQualifier = RQ_None; |
| 5556 | |
| 5557 | T = Context.getFunctionType(ResultTy: FnTy->getReturnType(), Args: FnTy->getParamTypes(), |
| 5558 | EPI); |
| 5559 | // Rebuild any parens around the identifier in the function type. |
| 5560 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { |
| 5561 | if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren) |
| 5562 | break; |
| 5563 | T = S.BuildParenType(T); |
| 5564 | } |
| 5565 | } |
| 5566 | } |
| 5567 | |
| 5568 | // Apply any undistributed attributes from the declaration or declarator. |
| 5569 | ParsedAttributesView NonSlidingAttrs; |
| 5570 | for (ParsedAttr &AL : D.getDeclarationAttributes()) { |
| 5571 | if (!AL.slidesFromDeclToDeclSpecLegacyBehavior()) { |
| 5572 | NonSlidingAttrs.addAtEnd(newAttr: &AL); |
| 5573 | } |
| 5574 | } |
| 5575 | processTypeAttrs(state, type&: T, TAL: TAL_DeclName, attrs: NonSlidingAttrs); |
| 5576 | processTypeAttrs(state, type&: T, TAL: TAL_DeclName, attrs: D.getAttributes()); |
| 5577 | |
| 5578 | // Diagnose any ignored type attributes. |
| 5579 | state.diagnoseIgnoredTypeAttrs(type: T); |
| 5580 | |
| 5581 | // C++0x [dcl.constexpr]p9: |
| 5582 | // A constexpr specifier used in an object declaration declares the object |
| 5583 | // as const. |
| 5584 | if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr && |
| 5585 | T->isObjectType()) |
| 5586 | T.addConst(); |
| 5587 | |
| 5588 | // C++2a [dcl.fct]p4: |
| 5589 | // A parameter with volatile-qualified type is deprecated |
| 5590 | if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 && |
| 5591 | (D.getContext() == DeclaratorContext::Prototype || |
| 5592 | D.getContext() == DeclaratorContext::LambdaExprParameter)) |
| 5593 | S.Diag(Loc: D.getIdentifierLoc(), DiagID: diag::warn_deprecated_volatile_param) << T; |
| 5594 | |
| 5595 | // If there was an ellipsis in the declarator, the declaration declares a |
| 5596 | // parameter pack whose type may be a pack expansion type. |
| 5597 | if (D.hasEllipsis()) { |
| 5598 | // C++0x [dcl.fct]p13: |
| 5599 | // A declarator-id or abstract-declarator containing an ellipsis shall |
| 5600 | // only be used in a parameter-declaration. Such a parameter-declaration |
| 5601 | // is a parameter pack (14.5.3). [...] |
| 5602 | switch (D.getContext()) { |
| 5603 | case DeclaratorContext::Prototype: |
| 5604 | case DeclaratorContext::LambdaExprParameter: |
| 5605 | case DeclaratorContext::RequiresExpr: |
| 5606 | // C++0x [dcl.fct]p13: |
| 5607 | // [...] When it is part of a parameter-declaration-clause, the |
| 5608 | // parameter pack is a function parameter pack (14.5.3). The type T |
| 5609 | // of the declarator-id of the function parameter pack shall contain |
| 5610 | // a template parameter pack; each template parameter pack in T is |
| 5611 | // expanded by the function parameter pack. |
| 5612 | // |
| 5613 | // We represent function parameter packs as function parameters whose |
| 5614 | // type is a pack expansion. |
| 5615 | if (!T->containsUnexpandedParameterPack() && |
| 5616 | (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) { |
| 5617 | S.Diag(Loc: D.getEllipsisLoc(), |
| 5618 | DiagID: diag::err_function_parameter_pack_without_parameter_packs) |
| 5619 | << T << D.getSourceRange(); |
| 5620 | D.setEllipsisLoc(SourceLocation()); |
| 5621 | } else { |
| 5622 | T = Context.getPackExpansionType(Pattern: T, NumExpansions: std::nullopt, |
| 5623 | /*ExpectPackInType=*/false); |
| 5624 | } |
| 5625 | break; |
| 5626 | case DeclaratorContext::TemplateParam: |
| 5627 | // C++0x [temp.param]p15: |
| 5628 | // If a template-parameter is a [...] is a parameter-declaration that |
| 5629 | // declares a parameter pack (8.3.5), then the template-parameter is a |
| 5630 | // template parameter pack (14.5.3). |
| 5631 | // |
| 5632 | // Note: core issue 778 clarifies that, if there are any unexpanded |
| 5633 | // parameter packs in the type of the non-type template parameter, then |
| 5634 | // it expands those parameter packs. |
| 5635 | if (T->containsUnexpandedParameterPack()) |
| 5636 | T = Context.getPackExpansionType(Pattern: T, NumExpansions: std::nullopt); |
| 5637 | else |
| 5638 | S.Diag(Loc: D.getEllipsisLoc(), |
| 5639 | DiagID: LangOpts.CPlusPlus11 |
| 5640 | ? diag::warn_cxx98_compat_variadic_templates |
| 5641 | : diag::ext_variadic_templates); |
| 5642 | break; |
| 5643 | |
| 5644 | case DeclaratorContext::File: |
| 5645 | case DeclaratorContext::KNRTypeList: |
| 5646 | case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here? |
| 5647 | case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here? |
| 5648 | case DeclaratorContext::TypeName: |
| 5649 | case DeclaratorContext::FunctionalCast: |
| 5650 | case DeclaratorContext::CXXNew: |
| 5651 | case DeclaratorContext::AliasDecl: |
| 5652 | case DeclaratorContext::AliasTemplate: |
| 5653 | case DeclaratorContext::Member: |
| 5654 | case DeclaratorContext::Block: |
| 5655 | case DeclaratorContext::ForInit: |
| 5656 | case DeclaratorContext::SelectionInit: |
| 5657 | case DeclaratorContext::Condition: |
| 5658 | case DeclaratorContext::CXXCatch: |
| 5659 | case DeclaratorContext::ObjCCatch: |
| 5660 | case DeclaratorContext::BlockLiteral: |
| 5661 | case DeclaratorContext::LambdaExpr: |
| 5662 | case DeclaratorContext::ConversionId: |
| 5663 | case DeclaratorContext::TrailingReturn: |
| 5664 | case DeclaratorContext::TrailingReturnVar: |
| 5665 | case DeclaratorContext::TemplateArg: |
| 5666 | case DeclaratorContext::TemplateTypeArg: |
| 5667 | case DeclaratorContext::Association: |
| 5668 | // FIXME: We may want to allow parameter packs in block-literal contexts |
| 5669 | // in the future. |
| 5670 | S.Diag(Loc: D.getEllipsisLoc(), |
| 5671 | DiagID: diag::err_ellipsis_in_declarator_not_parameter); |
| 5672 | D.setEllipsisLoc(SourceLocation()); |
| 5673 | break; |
| 5674 | } |
| 5675 | } |
| 5676 | |
| 5677 | assert(!T.isNull() && "T must not be null at the end of this function" ); |
| 5678 | if (!AreDeclaratorChunksValid) |
| 5679 | return Context.getTrivialTypeSourceInfo(T); |
| 5680 | |
| 5681 | if (state.didParseHLSLParamMod() && !T->isConstantArrayType()) |
| 5682 | T = S.HLSL().getInoutParameterType(Ty: T); |
| 5683 | return GetTypeSourceInfoForDeclarator(State&: state, T, ReturnTypeInfo: TInfo); |
| 5684 | } |
| 5685 | |
| 5686 | TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D) { |
| 5687 | // Determine the type of the declarator. Not all forms of declarator |
| 5688 | // have a type. |
| 5689 | |
| 5690 | TypeProcessingState state(*this, D); |
| 5691 | |
| 5692 | TypeSourceInfo *ReturnTypeInfo = nullptr; |
| 5693 | QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo); |
| 5694 | if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount) |
| 5695 | inferARCWriteback(state, declSpecType&: T); |
| 5696 | |
| 5697 | return GetFullTypeForDeclarator(state, declSpecType: T, TInfo: ReturnTypeInfo); |
| 5698 | } |
| 5699 | |
| 5700 | static void transferARCOwnershipToDeclSpec(Sema &S, |
| 5701 | QualType &declSpecTy, |
| 5702 | Qualifiers::ObjCLifetime ownership) { |
| 5703 | if (declSpecTy->isObjCRetainableType() && |
| 5704 | declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) { |
| 5705 | Qualifiers qs; |
| 5706 | qs.addObjCLifetime(type: ownership); |
| 5707 | declSpecTy = S.Context.getQualifiedType(T: declSpecTy, Qs: qs); |
| 5708 | } |
| 5709 | } |
| 5710 | |
| 5711 | static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state, |
| 5712 | Qualifiers::ObjCLifetime ownership, |
| 5713 | unsigned chunkIndex) { |
| 5714 | Sema &S = state.getSema(); |
| 5715 | Declarator &D = state.getDeclarator(); |
| 5716 | |
| 5717 | // Look for an explicit lifetime attribute. |
| 5718 | DeclaratorChunk &chunk = D.getTypeObject(i: chunkIndex); |
| 5719 | if (chunk.getAttrs().hasAttribute(K: ParsedAttr::AT_ObjCOwnership)) |
| 5720 | return; |
| 5721 | |
| 5722 | const char *attrStr = nullptr; |
| 5723 | switch (ownership) { |
| 5724 | case Qualifiers::OCL_None: llvm_unreachable("no ownership!" ); |
| 5725 | case Qualifiers::OCL_ExplicitNone: attrStr = "none" ; break; |
| 5726 | case Qualifiers::OCL_Strong: attrStr = "strong" ; break; |
| 5727 | case Qualifiers::OCL_Weak: attrStr = "weak" ; break; |
| 5728 | case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing" ; break; |
| 5729 | } |
| 5730 | |
| 5731 | IdentifierLoc *Arg = new (S.Context) IdentifierLoc; |
| 5732 | Arg->setIdentifierInfo(&S.Context.Idents.get(Name: attrStr)); |
| 5733 | |
| 5734 | ArgsUnion Args(Arg); |
| 5735 | |
| 5736 | // If there wasn't one, add one (with an invalid source location |
| 5737 | // so that we don't make an AttributedType for it). |
| 5738 | ParsedAttr *attr = |
| 5739 | D.getAttributePool().create(attrName: &S.Context.Idents.get(Name: "objc_ownership" ), |
| 5740 | attrRange: SourceLocation(), scope: AttributeScopeInfo(), |
| 5741 | /*args*/ &Args, numArgs: 1, form: ParsedAttr::Form::GNU()); |
| 5742 | chunk.getAttrs().addAtEnd(newAttr: attr); |
| 5743 | // TODO: mark whether we did this inference? |
| 5744 | } |
| 5745 | |
| 5746 | /// Used for transferring ownership in casts resulting in l-values. |
| 5747 | static void transferARCOwnership(TypeProcessingState &state, |
| 5748 | QualType &declSpecTy, |
| 5749 | Qualifiers::ObjCLifetime ownership) { |
| 5750 | Sema &S = state.getSema(); |
| 5751 | Declarator &D = state.getDeclarator(); |
| 5752 | |
| 5753 | int inner = -1; |
| 5754 | bool hasIndirection = false; |
| 5755 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { |
| 5756 | DeclaratorChunk &chunk = D.getTypeObject(i); |
| 5757 | switch (chunk.Kind) { |
| 5758 | case DeclaratorChunk::Paren: |
| 5759 | // Ignore parens. |
| 5760 | break; |
| 5761 | |
| 5762 | case DeclaratorChunk::Array: |
| 5763 | case DeclaratorChunk::Reference: |
| 5764 | case DeclaratorChunk::Pointer: |
| 5765 | if (inner != -1) |
| 5766 | hasIndirection = true; |
| 5767 | inner = i; |
| 5768 | break; |
| 5769 | |
| 5770 | case DeclaratorChunk::BlockPointer: |
| 5771 | if (inner != -1) |
| 5772 | transferARCOwnershipToDeclaratorChunk(state, ownership, chunkIndex: i); |
| 5773 | return; |
| 5774 | |
| 5775 | case DeclaratorChunk::Function: |
| 5776 | case DeclaratorChunk::MemberPointer: |
| 5777 | case DeclaratorChunk::Pipe: |
| 5778 | return; |
| 5779 | } |
| 5780 | } |
| 5781 | |
| 5782 | if (inner == -1) |
| 5783 | return; |
| 5784 | |
| 5785 | DeclaratorChunk &chunk = D.getTypeObject(i: inner); |
| 5786 | if (chunk.Kind == DeclaratorChunk::Pointer) { |
| 5787 | if (declSpecTy->isObjCRetainableType()) |
| 5788 | return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership); |
| 5789 | if (declSpecTy->isObjCObjectType() && hasIndirection) |
| 5790 | return transferARCOwnershipToDeclaratorChunk(state, ownership, chunkIndex: inner); |
| 5791 | } else { |
| 5792 | assert(chunk.Kind == DeclaratorChunk::Array || |
| 5793 | chunk.Kind == DeclaratorChunk::Reference); |
| 5794 | return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership); |
| 5795 | } |
| 5796 | } |
| 5797 | |
| 5798 | TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) { |
| 5799 | TypeProcessingState state(*this, D); |
| 5800 | |
| 5801 | TypeSourceInfo *ReturnTypeInfo = nullptr; |
| 5802 | QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo); |
| 5803 | |
| 5804 | if (getLangOpts().ObjC) { |
| 5805 | Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(T: FromTy); |
| 5806 | if (ownership != Qualifiers::OCL_None) |
| 5807 | transferARCOwnership(state, declSpecTy, ownership); |
| 5808 | } |
| 5809 | |
| 5810 | return GetFullTypeForDeclarator(state, declSpecType: declSpecTy, TInfo: ReturnTypeInfo); |
| 5811 | } |
| 5812 | |
| 5813 | static void fillAttributedTypeLoc(AttributedTypeLoc TL, |
| 5814 | TypeProcessingState &State) { |
| 5815 | TL.setAttr(State.takeAttrForAttributedType(AT: TL.getTypePtr())); |
| 5816 | } |
| 5817 | |
| 5818 | static void fillHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL, |
| 5819 | TypeProcessingState &State) { |
| 5820 | HLSLAttributedResourceLocInfo LocInfo = |
| 5821 | State.getSema().HLSL().TakeLocForHLSLAttribute(RT: TL.getTypePtr()); |
| 5822 | TL.setSourceRange(LocInfo.Range); |
| 5823 | TL.setContainedTypeSourceInfo(LocInfo.ContainedTyInfo); |
| 5824 | } |
| 5825 | |
| 5826 | static void fillMatrixTypeLoc(MatrixTypeLoc MTL, |
| 5827 | const ParsedAttributesView &Attrs) { |
| 5828 | for (const ParsedAttr &AL : Attrs) { |
| 5829 | if (AL.getKind() == ParsedAttr::AT_MatrixType) { |
| 5830 | MTL.setAttrNameLoc(AL.getLoc()); |
| 5831 | MTL.setAttrRowOperand(AL.getArgAsExpr(Arg: 0)); |
| 5832 | MTL.setAttrColumnOperand(AL.getArgAsExpr(Arg: 1)); |
| 5833 | MTL.setAttrOperandParensRange(SourceRange()); |
| 5834 | return; |
| 5835 | } |
| 5836 | } |
| 5837 | |
| 5838 | llvm_unreachable("no matrix_type attribute found at the expected location!" ); |
| 5839 | } |
| 5840 | |
| 5841 | static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) { |
| 5842 | SourceLocation Loc; |
| 5843 | switch (Chunk.Kind) { |
| 5844 | case DeclaratorChunk::Function: |
| 5845 | case DeclaratorChunk::Array: |
| 5846 | case DeclaratorChunk::Paren: |
| 5847 | case DeclaratorChunk::Pipe: |
| 5848 | llvm_unreachable("cannot be _Atomic qualified" ); |
| 5849 | |
| 5850 | case DeclaratorChunk::Pointer: |
| 5851 | Loc = Chunk.Ptr.AtomicQualLoc; |
| 5852 | break; |
| 5853 | |
| 5854 | case DeclaratorChunk::BlockPointer: |
| 5855 | case DeclaratorChunk::Reference: |
| 5856 | case DeclaratorChunk::MemberPointer: |
| 5857 | // FIXME: Provide a source location for the _Atomic keyword. |
| 5858 | break; |
| 5859 | } |
| 5860 | |
| 5861 | ATL.setKWLoc(Loc); |
| 5862 | ATL.setParensRange(SourceRange()); |
| 5863 | } |
| 5864 | |
| 5865 | namespace { |
| 5866 | class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> { |
| 5867 | Sema &SemaRef; |
| 5868 | ASTContext &Context; |
| 5869 | TypeProcessingState &State; |
| 5870 | const DeclSpec &DS; |
| 5871 | |
| 5872 | public: |
| 5873 | TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State, |
| 5874 | const DeclSpec &DS) |
| 5875 | : SemaRef(S), Context(Context), State(State), DS(DS) {} |
| 5876 | |
| 5877 | void VisitAttributedTypeLoc(AttributedTypeLoc TL) { |
| 5878 | Visit(TyLoc: TL.getModifiedLoc()); |
| 5879 | fillAttributedTypeLoc(TL, State); |
| 5880 | } |
| 5881 | void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) { |
| 5882 | Visit(TyLoc: TL.getWrappedLoc()); |
| 5883 | } |
| 5884 | void VisitHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL) { |
| 5885 | Visit(TyLoc: TL.getWrappedLoc()); |
| 5886 | fillHLSLAttributedResourceTypeLoc(TL, State); |
| 5887 | } |
| 5888 | void VisitHLSLInlineSpirvTypeLoc(HLSLInlineSpirvTypeLoc TL) {} |
| 5889 | void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) { |
| 5890 | Visit(TyLoc: TL.getInnerLoc()); |
| 5891 | TL.setExpansionLoc( |
| 5892 | State.getExpansionLocForMacroQualifiedType(MQT: TL.getTypePtr())); |
| 5893 | } |
| 5894 | void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { |
| 5895 | Visit(TyLoc: TL.getUnqualifiedLoc()); |
| 5896 | } |
| 5897 | // Allow to fill pointee's type locations, e.g., |
| 5898 | // int __attr * __attr * __attr *p; |
| 5899 | void VisitPointerTypeLoc(PointerTypeLoc TL) { Visit(TyLoc: TL.getNextTypeLoc()); } |
| 5900 | void VisitTypedefTypeLoc(TypedefTypeLoc TL) { |
| 5901 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); |
| 5902 | } |
| 5903 | void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { |
| 5904 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); |
| 5905 | // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires |
| 5906 | // addition field. What we have is good enough for display of location |
| 5907 | // of 'fixit' on interface name. |
| 5908 | TL.setNameEndLoc(DS.getEndLoc()); |
| 5909 | } |
| 5910 | void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { |
| 5911 | TypeSourceInfo *RepTInfo = nullptr; |
| 5912 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &RepTInfo); |
| 5913 | TL.copy(other: RepTInfo->getTypeLoc()); |
| 5914 | } |
| 5915 | void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { |
| 5916 | TypeSourceInfo *RepTInfo = nullptr; |
| 5917 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &RepTInfo); |
| 5918 | TL.copy(other: RepTInfo->getTypeLoc()); |
| 5919 | } |
| 5920 | void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) { |
| 5921 | TypeSourceInfo *TInfo = nullptr; |
| 5922 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
| 5923 | |
| 5924 | // If we got no declarator info from previous Sema routines, |
| 5925 | // just fill with the typespec loc. |
| 5926 | if (!TInfo) { |
| 5927 | TL.initialize(Context, Loc: DS.getTypeSpecTypeNameLoc()); |
| 5928 | return; |
| 5929 | } |
| 5930 | |
| 5931 | TypeLoc OldTL = TInfo->getTypeLoc(); |
| 5932 | if (TInfo->getType()->getAs<ElaboratedType>()) { |
| 5933 | ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>(); |
| 5934 | TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc() |
| 5935 | .castAs<TemplateSpecializationTypeLoc>(); |
| 5936 | TL.copy(Loc: NamedTL); |
| 5937 | } else { |
| 5938 | TL.copy(Loc: OldTL.castAs<TemplateSpecializationTypeLoc>()); |
| 5939 | assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc()); |
| 5940 | } |
| 5941 | |
| 5942 | } |
| 5943 | void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { |
| 5944 | assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr || |
| 5945 | DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr); |
| 5946 | TL.setTypeofLoc(DS.getTypeSpecTypeLoc()); |
| 5947 | TL.setParensRange(DS.getTypeofParensRange()); |
| 5948 | } |
| 5949 | void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { |
| 5950 | assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType || |
| 5951 | DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType); |
| 5952 | TL.setTypeofLoc(DS.getTypeSpecTypeLoc()); |
| 5953 | TL.setParensRange(DS.getTypeofParensRange()); |
| 5954 | assert(DS.getRepAsType()); |
| 5955 | TypeSourceInfo *TInfo = nullptr; |
| 5956 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
| 5957 | TL.setUnmodifiedTInfo(TInfo); |
| 5958 | } |
| 5959 | void VisitDecltypeTypeLoc(DecltypeTypeLoc TL) { |
| 5960 | assert(DS.getTypeSpecType() == DeclSpec::TST_decltype); |
| 5961 | TL.setDecltypeLoc(DS.getTypeSpecTypeLoc()); |
| 5962 | TL.setRParenLoc(DS.getTypeofParensRange().getEnd()); |
| 5963 | } |
| 5964 | void VisitPackIndexingTypeLoc(PackIndexingTypeLoc TL) { |
| 5965 | assert(DS.getTypeSpecType() == DeclSpec::TST_typename_pack_indexing); |
| 5966 | TL.setEllipsisLoc(DS.getEllipsisLoc()); |
| 5967 | } |
| 5968 | void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) { |
| 5969 | assert(DS.isTransformTypeTrait(DS.getTypeSpecType())); |
| 5970 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); |
| 5971 | TL.setParensRange(DS.getTypeofParensRange()); |
| 5972 | assert(DS.getRepAsType()); |
| 5973 | TypeSourceInfo *TInfo = nullptr; |
| 5974 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
| 5975 | TL.setUnderlyingTInfo(TInfo); |
| 5976 | } |
| 5977 | void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { |
| 5978 | // By default, use the source location of the type specifier. |
| 5979 | TL.setBuiltinLoc(DS.getTypeSpecTypeLoc()); |
| 5980 | if (TL.needsExtraLocalData()) { |
| 5981 | // Set info for the written builtin specifiers. |
| 5982 | TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs(); |
| 5983 | // Try to have a meaningful source location. |
| 5984 | if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified) |
| 5985 | TL.expandBuiltinRange(Range: DS.getTypeSpecSignLoc()); |
| 5986 | if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified) |
| 5987 | TL.expandBuiltinRange(Range: DS.getTypeSpecWidthRange()); |
| 5988 | } |
| 5989 | } |
| 5990 | void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { |
| 5991 | if (DS.getTypeSpecType() == TST_typename) { |
| 5992 | TypeSourceInfo *TInfo = nullptr; |
| 5993 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
| 5994 | if (TInfo) |
| 5995 | if (auto ETL = TInfo->getTypeLoc().getAs<ElaboratedTypeLoc>()) { |
| 5996 | TL.copy(Loc: ETL); |
| 5997 | return; |
| 5998 | } |
| 5999 | } |
| 6000 | const ElaboratedType *T = TL.getTypePtr(); |
| 6001 | TL.setElaboratedKeywordLoc(T->getKeyword() != ElaboratedTypeKeyword::None |
| 6002 | ? DS.getTypeSpecTypeLoc() |
| 6003 | : SourceLocation()); |
| 6004 | const CXXScopeSpec& SS = DS.getTypeSpecScope(); |
| 6005 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| 6006 | Visit(TyLoc: TL.getNextTypeLoc().getUnqualifiedLoc()); |
| 6007 | } |
| 6008 | void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { |
| 6009 | assert(DS.getTypeSpecType() == TST_typename); |
| 6010 | TypeSourceInfo *TInfo = nullptr; |
| 6011 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
| 6012 | assert(TInfo); |
| 6013 | TL.copy(Loc: TInfo->getTypeLoc().castAs<DependentNameTypeLoc>()); |
| 6014 | } |
| 6015 | void VisitDependentTemplateSpecializationTypeLoc( |
| 6016 | DependentTemplateSpecializationTypeLoc TL) { |
| 6017 | assert(DS.getTypeSpecType() == TST_typename); |
| 6018 | TypeSourceInfo *TInfo = nullptr; |
| 6019 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
| 6020 | assert(TInfo); |
| 6021 | TL.copy( |
| 6022 | Loc: TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>()); |
| 6023 | } |
| 6024 | void VisitAutoTypeLoc(AutoTypeLoc TL) { |
| 6025 | assert(DS.getTypeSpecType() == TST_auto || |
| 6026 | DS.getTypeSpecType() == TST_decltype_auto || |
| 6027 | DS.getTypeSpecType() == TST_auto_type || |
| 6028 | DS.getTypeSpecType() == TST_unspecified); |
| 6029 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); |
| 6030 | if (DS.getTypeSpecType() == TST_decltype_auto) |
| 6031 | TL.setRParenLoc(DS.getTypeofParensRange().getEnd()); |
| 6032 | if (!DS.isConstrainedAuto()) |
| 6033 | return; |
| 6034 | TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId(); |
| 6035 | if (!TemplateId) |
| 6036 | return; |
| 6037 | |
| 6038 | NestedNameSpecifierLoc NNS = |
| 6039 | (DS.getTypeSpecScope().isNotEmpty() |
| 6040 | ? DS.getTypeSpecScope().getWithLocInContext(Context) |
| 6041 | : NestedNameSpecifierLoc()); |
| 6042 | TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc, |
| 6043 | TemplateId->RAngleLoc); |
| 6044 | if (TemplateId->NumArgs > 0) { |
| 6045 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), |
| 6046 | TemplateId->NumArgs); |
| 6047 | SemaRef.translateTemplateArguments(In: TemplateArgsPtr, Out&: TemplateArgsInfo); |
| 6048 | } |
| 6049 | DeclarationNameInfo DNI = DeclarationNameInfo( |
| 6050 | TL.getTypePtr()->getTypeConstraintConcept()->getDeclName(), |
| 6051 | TemplateId->TemplateNameLoc); |
| 6052 | |
| 6053 | NamedDecl *FoundDecl; |
| 6054 | if (auto TN = TemplateId->Template.get(); |
| 6055 | UsingShadowDecl *USD = TN.getAsUsingShadowDecl()) |
| 6056 | FoundDecl = cast<NamedDecl>(Val: USD); |
| 6057 | else |
| 6058 | FoundDecl = cast_if_present<NamedDecl>(Val: TN.getAsTemplateDecl()); |
| 6059 | |
| 6060 | auto *CR = ConceptReference::Create( |
| 6061 | C: Context, NNS, TemplateKWLoc: TemplateId->TemplateKWLoc, ConceptNameInfo: DNI, FoundDecl, |
| 6062 | /*NamedDecl=*/NamedConcept: TL.getTypePtr()->getTypeConstraintConcept(), |
| 6063 | ArgsAsWritten: ASTTemplateArgumentListInfo::Create(C: Context, List: TemplateArgsInfo)); |
| 6064 | TL.setConceptReference(CR); |
| 6065 | } |
| 6066 | void VisitTagTypeLoc(TagTypeLoc TL) { |
| 6067 | TL.setNameLoc(DS.getTypeSpecTypeNameLoc()); |
| 6068 | } |
| 6069 | void VisitAtomicTypeLoc(AtomicTypeLoc TL) { |
| 6070 | // An AtomicTypeLoc can come from either an _Atomic(...) type specifier |
| 6071 | // or an _Atomic qualifier. |
| 6072 | if (DS.getTypeSpecType() == DeclSpec::TST_atomic) { |
| 6073 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); |
| 6074 | TL.setParensRange(DS.getTypeofParensRange()); |
| 6075 | |
| 6076 | TypeSourceInfo *TInfo = nullptr; |
| 6077 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
| 6078 | assert(TInfo); |
| 6079 | TL.getValueLoc().initializeFullCopy(Other: TInfo->getTypeLoc()); |
| 6080 | } else { |
| 6081 | TL.setKWLoc(DS.getAtomicSpecLoc()); |
| 6082 | // No parens, to indicate this was spelled as an _Atomic qualifier. |
| 6083 | TL.setParensRange(SourceRange()); |
| 6084 | Visit(TyLoc: TL.getValueLoc()); |
| 6085 | } |
| 6086 | } |
| 6087 | |
| 6088 | void VisitPipeTypeLoc(PipeTypeLoc TL) { |
| 6089 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); |
| 6090 | |
| 6091 | TypeSourceInfo *TInfo = nullptr; |
| 6092 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
| 6093 | TL.getValueLoc().initializeFullCopy(Other: TInfo->getTypeLoc()); |
| 6094 | } |
| 6095 | |
| 6096 | void VisitExtIntTypeLoc(BitIntTypeLoc TL) { |
| 6097 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); |
| 6098 | } |
| 6099 | |
| 6100 | void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL) { |
| 6101 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); |
| 6102 | } |
| 6103 | |
| 6104 | void VisitTypeLoc(TypeLoc TL) { |
| 6105 | // FIXME: add other typespec types and change this to an assert. |
| 6106 | TL.initialize(Context, Loc: DS.getTypeSpecTypeLoc()); |
| 6107 | } |
| 6108 | }; |
| 6109 | |
| 6110 | class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> { |
| 6111 | ASTContext &Context; |
| 6112 | TypeProcessingState &State; |
| 6113 | const DeclaratorChunk &Chunk; |
| 6114 | |
| 6115 | public: |
| 6116 | DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State, |
| 6117 | const DeclaratorChunk &Chunk) |
| 6118 | : Context(Context), State(State), Chunk(Chunk) {} |
| 6119 | |
| 6120 | void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { |
| 6121 | llvm_unreachable("qualified type locs not expected here!" ); |
| 6122 | } |
| 6123 | void VisitDecayedTypeLoc(DecayedTypeLoc TL) { |
| 6124 | llvm_unreachable("decayed type locs not expected here!" ); |
| 6125 | } |
| 6126 | void VisitArrayParameterTypeLoc(ArrayParameterTypeLoc TL) { |
| 6127 | llvm_unreachable("array parameter type locs not expected here!" ); |
| 6128 | } |
| 6129 | |
| 6130 | void VisitAttributedTypeLoc(AttributedTypeLoc TL) { |
| 6131 | fillAttributedTypeLoc(TL, State); |
| 6132 | } |
| 6133 | void VisitCountAttributedTypeLoc(CountAttributedTypeLoc TL) { |
| 6134 | // nothing |
| 6135 | } |
| 6136 | void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) { |
| 6137 | // nothing |
| 6138 | } |
| 6139 | void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) { |
| 6140 | // nothing |
| 6141 | } |
| 6142 | void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { |
| 6143 | assert(Chunk.Kind == DeclaratorChunk::BlockPointer); |
| 6144 | TL.setCaretLoc(Chunk.Loc); |
| 6145 | } |
| 6146 | void VisitPointerTypeLoc(PointerTypeLoc TL) { |
| 6147 | assert(Chunk.Kind == DeclaratorChunk::Pointer); |
| 6148 | TL.setStarLoc(Chunk.Loc); |
| 6149 | } |
| 6150 | void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { |
| 6151 | assert(Chunk.Kind == DeclaratorChunk::Pointer); |
| 6152 | TL.setStarLoc(Chunk.Loc); |
| 6153 | } |
| 6154 | void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { |
| 6155 | assert(Chunk.Kind == DeclaratorChunk::MemberPointer); |
| 6156 | TL.setStarLoc(Chunk.Mem.StarLoc); |
| 6157 | TL.setQualifierLoc(Chunk.Mem.Scope().getWithLocInContext(Context)); |
| 6158 | } |
| 6159 | void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { |
| 6160 | assert(Chunk.Kind == DeclaratorChunk::Reference); |
| 6161 | // 'Amp' is misleading: this might have been originally |
| 6162 | /// spelled with AmpAmp. |
| 6163 | TL.setAmpLoc(Chunk.Loc); |
| 6164 | } |
| 6165 | void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { |
| 6166 | assert(Chunk.Kind == DeclaratorChunk::Reference); |
| 6167 | assert(!Chunk.Ref.LValueRef); |
| 6168 | TL.setAmpAmpLoc(Chunk.Loc); |
| 6169 | } |
| 6170 | void VisitArrayTypeLoc(ArrayTypeLoc TL) { |
| 6171 | assert(Chunk.Kind == DeclaratorChunk::Array); |
| 6172 | TL.setLBracketLoc(Chunk.Loc); |
| 6173 | TL.setRBracketLoc(Chunk.EndLoc); |
| 6174 | TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts)); |
| 6175 | } |
| 6176 | void VisitFunctionTypeLoc(FunctionTypeLoc TL) { |
| 6177 | assert(Chunk.Kind == DeclaratorChunk::Function); |
| 6178 | TL.setLocalRangeBegin(Chunk.Loc); |
| 6179 | TL.setLocalRangeEnd(Chunk.EndLoc); |
| 6180 | |
| 6181 | const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun; |
| 6182 | TL.setLParenLoc(FTI.getLParenLoc()); |
| 6183 | TL.setRParenLoc(FTI.getRParenLoc()); |
| 6184 | for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) { |
| 6185 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: FTI.Params[i].Param); |
| 6186 | TL.setParam(i: tpi++, VD: Param); |
| 6187 | } |
| 6188 | TL.setExceptionSpecRange(FTI.getExceptionSpecRange()); |
| 6189 | } |
| 6190 | void VisitParenTypeLoc(ParenTypeLoc TL) { |
| 6191 | assert(Chunk.Kind == DeclaratorChunk::Paren); |
| 6192 | TL.setLParenLoc(Chunk.Loc); |
| 6193 | TL.setRParenLoc(Chunk.EndLoc); |
| 6194 | } |
| 6195 | void VisitPipeTypeLoc(PipeTypeLoc TL) { |
| 6196 | assert(Chunk.Kind == DeclaratorChunk::Pipe); |
| 6197 | TL.setKWLoc(Chunk.Loc); |
| 6198 | } |
| 6199 | void VisitBitIntTypeLoc(BitIntTypeLoc TL) { |
| 6200 | TL.setNameLoc(Chunk.Loc); |
| 6201 | } |
| 6202 | void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) { |
| 6203 | TL.setExpansionLoc(Chunk.Loc); |
| 6204 | } |
| 6205 | void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); } |
| 6206 | void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) { |
| 6207 | TL.setNameLoc(Chunk.Loc); |
| 6208 | } |
| 6209 | void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) { |
| 6210 | TL.setNameLoc(Chunk.Loc); |
| 6211 | } |
| 6212 | void VisitAtomicTypeLoc(AtomicTypeLoc TL) { |
| 6213 | fillAtomicQualLoc(ATL: TL, Chunk); |
| 6214 | } |
| 6215 | void |
| 6216 | VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) { |
| 6217 | TL.setNameLoc(Chunk.Loc); |
| 6218 | } |
| 6219 | void VisitMatrixTypeLoc(MatrixTypeLoc TL) { |
| 6220 | fillMatrixTypeLoc(MTL: TL, Attrs: Chunk.getAttrs()); |
| 6221 | } |
| 6222 | |
| 6223 | void VisitTypeLoc(TypeLoc TL) { |
| 6224 | llvm_unreachable("unsupported TypeLoc kind in declarator!" ); |
| 6225 | } |
| 6226 | }; |
| 6227 | } // end anonymous namespace |
| 6228 | |
| 6229 | static void |
| 6230 | fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL, |
| 6231 | const ParsedAttributesView &Attrs) { |
| 6232 | for (const ParsedAttr &AL : Attrs) { |
| 6233 | if (AL.getKind() == ParsedAttr::AT_AddressSpace) { |
| 6234 | DASTL.setAttrNameLoc(AL.getLoc()); |
| 6235 | DASTL.setAttrExprOperand(AL.getArgAsExpr(Arg: 0)); |
| 6236 | DASTL.setAttrOperandParensRange(SourceRange()); |
| 6237 | return; |
| 6238 | } |
| 6239 | } |
| 6240 | |
| 6241 | llvm_unreachable( |
| 6242 | "no address_space attribute found at the expected location!" ); |
| 6243 | } |
| 6244 | |
| 6245 | /// Create and instantiate a TypeSourceInfo with type source information. |
| 6246 | /// |
| 6247 | /// \param T QualType referring to the type as written in source code. |
| 6248 | /// |
| 6249 | /// \param ReturnTypeInfo For declarators whose return type does not show |
| 6250 | /// up in the normal place in the declaration specifiers (such as a C++ |
| 6251 | /// conversion function), this pointer will refer to a type source information |
| 6252 | /// for that return type. |
| 6253 | static TypeSourceInfo * |
| 6254 | GetTypeSourceInfoForDeclarator(TypeProcessingState &State, |
| 6255 | QualType T, TypeSourceInfo *ReturnTypeInfo) { |
| 6256 | Sema &S = State.getSema(); |
| 6257 | Declarator &D = State.getDeclarator(); |
| 6258 | |
| 6259 | TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T); |
| 6260 | UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc(); |
| 6261 | |
| 6262 | // Handle parameter packs whose type is a pack expansion. |
| 6263 | if (isa<PackExpansionType>(Val: T)) { |
| 6264 | CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc()); |
| 6265 | CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc(); |
| 6266 | } |
| 6267 | |
| 6268 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { |
| 6269 | // Microsoft property fields can have multiple sizeless array chunks |
| 6270 | // (i.e. int x[][][]). Don't create more than one level of incomplete array. |
| 6271 | if (CurrTL.getTypeLocClass() == TypeLoc::IncompleteArray && e != 1 && |
| 6272 | D.getDeclSpec().getAttributes().hasMSPropertyAttr()) |
| 6273 | continue; |
| 6274 | |
| 6275 | // An AtomicTypeLoc might be produced by an atomic qualifier in this |
| 6276 | // declarator chunk. |
| 6277 | if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) { |
| 6278 | fillAtomicQualLoc(ATL, Chunk: D.getTypeObject(i)); |
| 6279 | CurrTL = ATL.getValueLoc().getUnqualifiedLoc(); |
| 6280 | } |
| 6281 | |
| 6282 | bool HasDesugaredTypeLoc = true; |
| 6283 | while (HasDesugaredTypeLoc) { |
| 6284 | switch (CurrTL.getTypeLocClass()) { |
| 6285 | case TypeLoc::MacroQualified: { |
| 6286 | auto TL = CurrTL.castAs<MacroQualifiedTypeLoc>(); |
| 6287 | TL.setExpansionLoc( |
| 6288 | State.getExpansionLocForMacroQualifiedType(MQT: TL.getTypePtr())); |
| 6289 | CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc(); |
| 6290 | break; |
| 6291 | } |
| 6292 | |
| 6293 | case TypeLoc::Attributed: { |
| 6294 | auto TL = CurrTL.castAs<AttributedTypeLoc>(); |
| 6295 | fillAttributedTypeLoc(TL, State); |
| 6296 | CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc(); |
| 6297 | break; |
| 6298 | } |
| 6299 | |
| 6300 | case TypeLoc::Adjusted: |
| 6301 | case TypeLoc::BTFTagAttributed: { |
| 6302 | CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc(); |
| 6303 | break; |
| 6304 | } |
| 6305 | |
| 6306 | case TypeLoc::DependentAddressSpace: { |
| 6307 | auto TL = CurrTL.castAs<DependentAddressSpaceTypeLoc>(); |
| 6308 | fillDependentAddressSpaceTypeLoc(DASTL: TL, Attrs: D.getTypeObject(i).getAttrs()); |
| 6309 | CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc(); |
| 6310 | break; |
| 6311 | } |
| 6312 | |
| 6313 | default: |
| 6314 | HasDesugaredTypeLoc = false; |
| 6315 | break; |
| 6316 | } |
| 6317 | } |
| 6318 | |
| 6319 | DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(TyLoc: CurrTL); |
| 6320 | CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc(); |
| 6321 | } |
| 6322 | |
| 6323 | // If we have different source information for the return type, use |
| 6324 | // that. This really only applies to C++ conversion functions. |
| 6325 | if (ReturnTypeInfo) { |
| 6326 | TypeLoc TL = ReturnTypeInfo->getTypeLoc(); |
| 6327 | assert(TL.getFullDataSize() == CurrTL.getFullDataSize()); |
| 6328 | memcpy(dest: CurrTL.getOpaqueData(), src: TL.getOpaqueData(), n: TL.getFullDataSize()); |
| 6329 | } else { |
| 6330 | TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(TyLoc: CurrTL); |
| 6331 | } |
| 6332 | |
| 6333 | return TInfo; |
| 6334 | } |
| 6335 | |
| 6336 | /// Create a LocInfoType to hold the given QualType and TypeSourceInfo. |
| 6337 | ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) { |
| 6338 | // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser |
| 6339 | // and Sema during declaration parsing. Try deallocating/caching them when |
| 6340 | // it's appropriate, instead of allocating them and keeping them around. |
| 6341 | LocInfoType *LocT = (LocInfoType *)BumpAlloc.Allocate(Size: sizeof(LocInfoType), |
| 6342 | Alignment: alignof(LocInfoType)); |
| 6343 | new (LocT) LocInfoType(T, TInfo); |
| 6344 | assert(LocT->getTypeClass() != T->getTypeClass() && |
| 6345 | "LocInfoType's TypeClass conflicts with an existing Type class" ); |
| 6346 | return ParsedType::make(P: QualType(LocT, 0)); |
| 6347 | } |
| 6348 | |
| 6349 | void LocInfoType::getAsStringInternal(std::string &Str, |
| 6350 | const PrintingPolicy &Policy) const { |
| 6351 | llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*" |
| 6352 | " was used directly instead of getting the QualType through" |
| 6353 | " GetTypeFromParser" ); |
| 6354 | } |
| 6355 | |
| 6356 | TypeResult Sema::ActOnTypeName(Declarator &D) { |
| 6357 | // C99 6.7.6: Type names have no identifier. This is already validated by |
| 6358 | // the parser. |
| 6359 | assert(D.getIdentifier() == nullptr && |
| 6360 | "Type name should have no identifier!" ); |
| 6361 | |
| 6362 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
| 6363 | QualType T = TInfo->getType(); |
| 6364 | if (D.isInvalidType()) |
| 6365 | return true; |
| 6366 | |
| 6367 | // Make sure there are no unused decl attributes on the declarator. |
| 6368 | // We don't want to do this for ObjC parameters because we're going |
| 6369 | // to apply them to the actual parameter declaration. |
| 6370 | // Likewise, we don't want to do this for alias declarations, because |
| 6371 | // we are actually going to build a declaration from this eventually. |
| 6372 | if (D.getContext() != DeclaratorContext::ObjCParameter && |
| 6373 | D.getContext() != DeclaratorContext::AliasDecl && |
| 6374 | D.getContext() != DeclaratorContext::AliasTemplate) |
| 6375 | checkUnusedDeclAttributes(D); |
| 6376 | |
| 6377 | if (getLangOpts().CPlusPlus) { |
| 6378 | // Check that there are no default arguments (C++ only). |
| 6379 | CheckExtraCXXDefaultArguments(D); |
| 6380 | } |
| 6381 | |
| 6382 | if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) { |
| 6383 | const AutoType *AT = TL.getTypePtr(); |
| 6384 | CheckConstrainedAuto(AutoT: AT, Loc: TL.getConceptNameLoc()); |
| 6385 | } |
| 6386 | return CreateParsedType(T, TInfo); |
| 6387 | } |
| 6388 | |
| 6389 | //===----------------------------------------------------------------------===// |
| 6390 | // Type Attribute Processing |
| 6391 | //===----------------------------------------------------------------------===// |
| 6392 | |
| 6393 | /// Build an AddressSpace index from a constant expression and diagnose any |
| 6394 | /// errors related to invalid address_spaces. Returns true on successfully |
| 6395 | /// building an AddressSpace index. |
| 6396 | static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx, |
| 6397 | const Expr *AddrSpace, |
| 6398 | SourceLocation AttrLoc) { |
| 6399 | if (!AddrSpace->isValueDependent()) { |
| 6400 | std::optional<llvm::APSInt> OptAddrSpace = |
| 6401 | AddrSpace->getIntegerConstantExpr(Ctx: S.Context); |
| 6402 | if (!OptAddrSpace) { |
| 6403 | S.Diag(Loc: AttrLoc, DiagID: diag::err_attribute_argument_type) |
| 6404 | << "'address_space'" << AANT_ArgumentIntegerConstant |
| 6405 | << AddrSpace->getSourceRange(); |
| 6406 | return false; |
| 6407 | } |
| 6408 | llvm::APSInt &addrSpace = *OptAddrSpace; |
| 6409 | |
| 6410 | // Bounds checking. |
| 6411 | if (addrSpace.isSigned()) { |
| 6412 | if (addrSpace.isNegative()) { |
| 6413 | S.Diag(Loc: AttrLoc, DiagID: diag::err_attribute_address_space_negative) |
| 6414 | << AddrSpace->getSourceRange(); |
| 6415 | return false; |
| 6416 | } |
| 6417 | addrSpace.setIsSigned(false); |
| 6418 | } |
| 6419 | |
| 6420 | llvm::APSInt max(addrSpace.getBitWidth()); |
| 6421 | max = |
| 6422 | Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace; |
| 6423 | |
| 6424 | if (addrSpace > max) { |
| 6425 | S.Diag(Loc: AttrLoc, DiagID: diag::err_attribute_address_space_too_high) |
| 6426 | << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange(); |
| 6427 | return false; |
| 6428 | } |
| 6429 | |
| 6430 | ASIdx = |
| 6431 | getLangASFromTargetAS(TargetAS: static_cast<unsigned>(addrSpace.getZExtValue())); |
| 6432 | return true; |
| 6433 | } |
| 6434 | |
| 6435 | // Default value for DependentAddressSpaceTypes |
| 6436 | ASIdx = LangAS::Default; |
| 6437 | return true; |
| 6438 | } |
| 6439 | |
| 6440 | QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace, |
| 6441 | SourceLocation AttrLoc) { |
| 6442 | if (!AddrSpace->isValueDependent()) { |
| 6443 | if (DiagnoseMultipleAddrSpaceAttributes(S&: *this, ASOld: T.getAddressSpace(), ASNew: ASIdx, |
| 6444 | AttrLoc)) |
| 6445 | return QualType(); |
| 6446 | |
| 6447 | return Context.getAddrSpaceQualType(T, AddressSpace: ASIdx); |
| 6448 | } |
| 6449 | |
| 6450 | // A check with similar intentions as checking if a type already has an |
| 6451 | // address space except for on a dependent types, basically if the |
| 6452 | // current type is already a DependentAddressSpaceType then its already |
| 6453 | // lined up to have another address space on it and we can't have |
| 6454 | // multiple address spaces on the one pointer indirection |
| 6455 | if (T->getAs<DependentAddressSpaceType>()) { |
| 6456 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_address_multiple_qualifiers); |
| 6457 | return QualType(); |
| 6458 | } |
| 6459 | |
| 6460 | return Context.getDependentAddressSpaceType(PointeeType: T, AddrSpaceExpr: AddrSpace, AttrLoc); |
| 6461 | } |
| 6462 | |
| 6463 | QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace, |
| 6464 | SourceLocation AttrLoc) { |
| 6465 | LangAS ASIdx; |
| 6466 | if (!BuildAddressSpaceIndex(S&: *this, ASIdx, AddrSpace, AttrLoc)) |
| 6467 | return QualType(); |
| 6468 | return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc); |
| 6469 | } |
| 6470 | |
| 6471 | static void HandleBTFTypeTagAttribute(QualType &Type, const ParsedAttr &Attr, |
| 6472 | TypeProcessingState &State) { |
| 6473 | Sema &S = State.getSema(); |
| 6474 | |
| 6475 | // This attribute is only supported in C. |
| 6476 | // FIXME: we should implement checkCommonAttributeFeatures() in SemaAttr.cpp |
| 6477 | // such that it handles type attributes, and then call that from |
| 6478 | // processTypeAttrs() instead of one-off checks like this. |
| 6479 | if (!Attr.diagnoseLangOpts(S)) { |
| 6480 | Attr.setInvalid(); |
| 6481 | return; |
| 6482 | } |
| 6483 | |
| 6484 | // Check the number of attribute arguments. |
| 6485 | if (Attr.getNumArgs() != 1) { |
| 6486 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) |
| 6487 | << Attr << 1; |
| 6488 | Attr.setInvalid(); |
| 6489 | return; |
| 6490 | } |
| 6491 | |
| 6492 | // Ensure the argument is a string. |
| 6493 | auto *StrLiteral = dyn_cast<StringLiteral>(Val: Attr.getArgAsExpr(Arg: 0)); |
| 6494 | if (!StrLiteral) { |
| 6495 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_argument_type) |
| 6496 | << Attr << AANT_ArgumentString; |
| 6497 | Attr.setInvalid(); |
| 6498 | return; |
| 6499 | } |
| 6500 | |
| 6501 | ASTContext &Ctx = S.Context; |
| 6502 | StringRef BTFTypeTag = StrLiteral->getString(); |
| 6503 | Type = State.getBTFTagAttributedType( |
| 6504 | BTFAttr: ::new (Ctx) BTFTypeTagAttr(Ctx, Attr, BTFTypeTag), WrappedType: Type); |
| 6505 | } |
| 6506 | |
| 6507 | /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the |
| 6508 | /// specified type. The attribute contains 1 argument, the id of the address |
| 6509 | /// space for the type. |
| 6510 | static void HandleAddressSpaceTypeAttribute(QualType &Type, |
| 6511 | const ParsedAttr &Attr, |
| 6512 | TypeProcessingState &State) { |
| 6513 | Sema &S = State.getSema(); |
| 6514 | |
| 6515 | // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be |
| 6516 | // qualified by an address-space qualifier." |
| 6517 | if (Type->isFunctionType()) { |
| 6518 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_address_function_type); |
| 6519 | Attr.setInvalid(); |
| 6520 | return; |
| 6521 | } |
| 6522 | |
| 6523 | LangAS ASIdx; |
| 6524 | if (Attr.getKind() == ParsedAttr::AT_AddressSpace) { |
| 6525 | |
| 6526 | // Check the attribute arguments. |
| 6527 | if (Attr.getNumArgs() != 1) { |
| 6528 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << Attr |
| 6529 | << 1; |
| 6530 | Attr.setInvalid(); |
| 6531 | return; |
| 6532 | } |
| 6533 | |
| 6534 | Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(Arg: 0)); |
| 6535 | LangAS ASIdx; |
| 6536 | if (!BuildAddressSpaceIndex(S, ASIdx, AddrSpace: ASArgExpr, AttrLoc: Attr.getLoc())) { |
| 6537 | Attr.setInvalid(); |
| 6538 | return; |
| 6539 | } |
| 6540 | |
| 6541 | ASTContext &Ctx = S.Context; |
| 6542 | auto *ASAttr = |
| 6543 | ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx)); |
| 6544 | |
| 6545 | // If the expression is not value dependent (not templated), then we can |
| 6546 | // apply the address space qualifiers just to the equivalent type. |
| 6547 | // Otherwise, we make an AttributedType with the modified and equivalent |
| 6548 | // type the same, and wrap it in a DependentAddressSpaceType. When this |
| 6549 | // dependent type is resolved, the qualifier is added to the equivalent type |
| 6550 | // later. |
| 6551 | QualType T; |
| 6552 | if (!ASArgExpr->isValueDependent()) { |
| 6553 | QualType EquivType = |
| 6554 | S.BuildAddressSpaceAttr(T&: Type, ASIdx, AddrSpace: ASArgExpr, AttrLoc: Attr.getLoc()); |
| 6555 | if (EquivType.isNull()) { |
| 6556 | Attr.setInvalid(); |
| 6557 | return; |
| 6558 | } |
| 6559 | T = State.getAttributedType(A: ASAttr, ModifiedType: Type, EquivType); |
| 6560 | } else { |
| 6561 | T = State.getAttributedType(A: ASAttr, ModifiedType: Type, EquivType: Type); |
| 6562 | T = S.BuildAddressSpaceAttr(T, ASIdx, AddrSpace: ASArgExpr, AttrLoc: Attr.getLoc()); |
| 6563 | } |
| 6564 | |
| 6565 | if (!T.isNull()) |
| 6566 | Type = T; |
| 6567 | else |
| 6568 | Attr.setInvalid(); |
| 6569 | } else { |
| 6570 | // The keyword-based type attributes imply which address space to use. |
| 6571 | ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS() |
| 6572 | : Attr.asOpenCLLangAS(); |
| 6573 | if (S.getLangOpts().HLSL) |
| 6574 | ASIdx = Attr.asHLSLLangAS(); |
| 6575 | |
| 6576 | if (ASIdx == LangAS::Default) |
| 6577 | llvm_unreachable("Invalid address space" ); |
| 6578 | |
| 6579 | if (DiagnoseMultipleAddrSpaceAttributes(S, ASOld: Type.getAddressSpace(), ASNew: ASIdx, |
| 6580 | AttrLoc: Attr.getLoc())) { |
| 6581 | Attr.setInvalid(); |
| 6582 | return; |
| 6583 | } |
| 6584 | |
| 6585 | Type = S.Context.getAddrSpaceQualType(T: Type, AddressSpace: ASIdx); |
| 6586 | } |
| 6587 | } |
| 6588 | |
| 6589 | /// handleObjCOwnershipTypeAttr - Process an objc_ownership |
| 6590 | /// attribute on the specified type. |
| 6591 | /// |
| 6592 | /// Returns 'true' if the attribute was handled. |
| 6593 | static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state, |
| 6594 | ParsedAttr &attr, QualType &type) { |
| 6595 | bool NonObjCPointer = false; |
| 6596 | |
| 6597 | if (!type->isDependentType() && !type->isUndeducedType()) { |
| 6598 | if (const PointerType *ptr = type->getAs<PointerType>()) { |
| 6599 | QualType pointee = ptr->getPointeeType(); |
| 6600 | if (pointee->isObjCRetainableType() || pointee->isPointerType()) |
| 6601 | return false; |
| 6602 | // It is important not to lose the source info that there was an attribute |
| 6603 | // applied to non-objc pointer. We will create an attributed type but |
| 6604 | // its type will be the same as the original type. |
| 6605 | NonObjCPointer = true; |
| 6606 | } else if (!type->isObjCRetainableType()) { |
| 6607 | return false; |
| 6608 | } |
| 6609 | |
| 6610 | // Don't accept an ownership attribute in the declspec if it would |
| 6611 | // just be the return type of a block pointer. |
| 6612 | if (state.isProcessingDeclSpec()) { |
| 6613 | Declarator &D = state.getDeclarator(); |
| 6614 | if (maybeMovePastReturnType(declarator&: D, i: D.getNumTypeObjects(), |
| 6615 | /*onlyBlockPointers=*/true)) |
| 6616 | return false; |
| 6617 | } |
| 6618 | } |
| 6619 | |
| 6620 | Sema &S = state.getSema(); |
| 6621 | SourceLocation AttrLoc = attr.getLoc(); |
| 6622 | if (AttrLoc.isMacroID()) |
| 6623 | AttrLoc = |
| 6624 | S.getSourceManager().getImmediateExpansionRange(Loc: AttrLoc).getBegin(); |
| 6625 | |
| 6626 | if (!attr.isArgIdent(Arg: 0)) { |
| 6627 | S.Diag(Loc: AttrLoc, DiagID: diag::err_attribute_argument_type) << attr |
| 6628 | << AANT_ArgumentString; |
| 6629 | attr.setInvalid(); |
| 6630 | return true; |
| 6631 | } |
| 6632 | |
| 6633 | IdentifierInfo *II = attr.getArgAsIdent(Arg: 0)->getIdentifierInfo(); |
| 6634 | Qualifiers::ObjCLifetime lifetime; |
| 6635 | if (II->isStr(Str: "none" )) |
| 6636 | lifetime = Qualifiers::OCL_ExplicitNone; |
| 6637 | else if (II->isStr(Str: "strong" )) |
| 6638 | lifetime = Qualifiers::OCL_Strong; |
| 6639 | else if (II->isStr(Str: "weak" )) |
| 6640 | lifetime = Qualifiers::OCL_Weak; |
| 6641 | else if (II->isStr(Str: "autoreleasing" )) |
| 6642 | lifetime = Qualifiers::OCL_Autoreleasing; |
| 6643 | else { |
| 6644 | S.Diag(Loc: AttrLoc, DiagID: diag::warn_attribute_type_not_supported) << attr << II; |
| 6645 | attr.setInvalid(); |
| 6646 | return true; |
| 6647 | } |
| 6648 | |
| 6649 | // Just ignore lifetime attributes other than __weak and __unsafe_unretained |
| 6650 | // outside of ARC mode. |
| 6651 | if (!S.getLangOpts().ObjCAutoRefCount && |
| 6652 | lifetime != Qualifiers::OCL_Weak && |
| 6653 | lifetime != Qualifiers::OCL_ExplicitNone) { |
| 6654 | return true; |
| 6655 | } |
| 6656 | |
| 6657 | SplitQualType underlyingType = type.split(); |
| 6658 | |
| 6659 | // Check for redundant/conflicting ownership qualifiers. |
| 6660 | if (Qualifiers::ObjCLifetime previousLifetime |
| 6661 | = type.getQualifiers().getObjCLifetime()) { |
| 6662 | // If it's written directly, that's an error. |
| 6663 | if (S.Context.hasDirectOwnershipQualifier(Ty: type)) { |
| 6664 | S.Diag(Loc: AttrLoc, DiagID: diag::err_attr_objc_ownership_redundant) |
| 6665 | << type; |
| 6666 | return true; |
| 6667 | } |
| 6668 | |
| 6669 | // Otherwise, if the qualifiers actually conflict, pull sugar off |
| 6670 | // and remove the ObjCLifetime qualifiers. |
| 6671 | if (previousLifetime != lifetime) { |
| 6672 | // It's possible to have multiple local ObjCLifetime qualifiers. We |
| 6673 | // can't stop after we reach a type that is directly qualified. |
| 6674 | const Type *prevTy = nullptr; |
| 6675 | while (!prevTy || prevTy != underlyingType.Ty) { |
| 6676 | prevTy = underlyingType.Ty; |
| 6677 | underlyingType = underlyingType.getSingleStepDesugaredType(); |
| 6678 | } |
| 6679 | underlyingType.Quals.removeObjCLifetime(); |
| 6680 | } |
| 6681 | } |
| 6682 | |
| 6683 | underlyingType.Quals.addObjCLifetime(type: lifetime); |
| 6684 | |
| 6685 | if (NonObjCPointer) { |
| 6686 | StringRef name = attr.getAttrName()->getName(); |
| 6687 | switch (lifetime) { |
| 6688 | case Qualifiers::OCL_None: |
| 6689 | case Qualifiers::OCL_ExplicitNone: |
| 6690 | break; |
| 6691 | case Qualifiers::OCL_Strong: name = "__strong" ; break; |
| 6692 | case Qualifiers::OCL_Weak: name = "__weak" ; break; |
| 6693 | case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing" ; break; |
| 6694 | } |
| 6695 | S.Diag(Loc: AttrLoc, DiagID: diag::warn_type_attribute_wrong_type) << name |
| 6696 | << TDS_ObjCObjOrBlock << type; |
| 6697 | } |
| 6698 | |
| 6699 | // Don't actually add the __unsafe_unretained qualifier in non-ARC files, |
| 6700 | // because having both 'T' and '__unsafe_unretained T' exist in the type |
| 6701 | // system causes unfortunate widespread consistency problems. (For example, |
| 6702 | // they're not considered compatible types, and we mangle them identicially |
| 6703 | // as template arguments.) These problems are all individually fixable, |
| 6704 | // but it's easier to just not add the qualifier and instead sniff it out |
| 6705 | // in specific places using isObjCInertUnsafeUnretainedType(). |
| 6706 | // |
| 6707 | // Doing this does means we miss some trivial consistency checks that |
| 6708 | // would've triggered in ARC, but that's better than trying to solve all |
| 6709 | // the coexistence problems with __unsafe_unretained. |
| 6710 | if (!S.getLangOpts().ObjCAutoRefCount && |
| 6711 | lifetime == Qualifiers::OCL_ExplicitNone) { |
| 6712 | type = state.getAttributedType( |
| 6713 | A: createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(Ctx&: S.Context, AL&: attr), |
| 6714 | ModifiedType: type, EquivType: type); |
| 6715 | return true; |
| 6716 | } |
| 6717 | |
| 6718 | QualType origType = type; |
| 6719 | if (!NonObjCPointer) |
| 6720 | type = S.Context.getQualifiedType(split: underlyingType); |
| 6721 | |
| 6722 | // If we have a valid source location for the attribute, use an |
| 6723 | // AttributedType instead. |
| 6724 | if (AttrLoc.isValid()) { |
| 6725 | type = state.getAttributedType(A: ::new (S.Context) |
| 6726 | ObjCOwnershipAttr(S.Context, attr, II), |
| 6727 | ModifiedType: origType, EquivType: type); |
| 6728 | } |
| 6729 | |
| 6730 | auto diagnoseOrDelay = [](Sema &S, SourceLocation loc, |
| 6731 | unsigned diagnostic, QualType type) { |
| 6732 | if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { |
| 6733 | S.DelayedDiagnostics.add( |
| 6734 | diag: sema::DelayedDiagnostic::makeForbiddenType( |
| 6735 | loc: S.getSourceManager().getExpansionLoc(Loc: loc), |
| 6736 | diagnostic, type, /*ignored*/ argument: 0)); |
| 6737 | } else { |
| 6738 | S.Diag(Loc: loc, DiagID: diagnostic); |
| 6739 | } |
| 6740 | }; |
| 6741 | |
| 6742 | // Sometimes, __weak isn't allowed. |
| 6743 | if (lifetime == Qualifiers::OCL_Weak && |
| 6744 | !S.getLangOpts().ObjCWeak && !NonObjCPointer) { |
| 6745 | |
| 6746 | // Use a specialized diagnostic if the runtime just doesn't support them. |
| 6747 | unsigned diagnostic = |
| 6748 | (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled |
| 6749 | : diag::err_arc_weak_no_runtime); |
| 6750 | |
| 6751 | // In any case, delay the diagnostic until we know what we're parsing. |
| 6752 | diagnoseOrDelay(S, AttrLoc, diagnostic, type); |
| 6753 | |
| 6754 | attr.setInvalid(); |
| 6755 | return true; |
| 6756 | } |
| 6757 | |
| 6758 | // Forbid __weak for class objects marked as |
| 6759 | // objc_arc_weak_reference_unavailable |
| 6760 | if (lifetime == Qualifiers::OCL_Weak) { |
| 6761 | if (const ObjCObjectPointerType *ObjT = |
| 6762 | type->getAs<ObjCObjectPointerType>()) { |
| 6763 | if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) { |
| 6764 | if (Class->isArcWeakrefUnavailable()) { |
| 6765 | S.Diag(Loc: AttrLoc, DiagID: diag::err_arc_unsupported_weak_class); |
| 6766 | S.Diag(Loc: ObjT->getInterfaceDecl()->getLocation(), |
| 6767 | DiagID: diag::note_class_declared); |
| 6768 | } |
| 6769 | } |
| 6770 | } |
| 6771 | } |
| 6772 | |
| 6773 | return true; |
| 6774 | } |
| 6775 | |
| 6776 | /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type |
| 6777 | /// attribute on the specified type. Returns true to indicate that |
| 6778 | /// the attribute was handled, false to indicate that the type does |
| 6779 | /// not permit the attribute. |
| 6780 | static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr, |
| 6781 | QualType &type) { |
| 6782 | Sema &S = state.getSema(); |
| 6783 | |
| 6784 | // Delay if this isn't some kind of pointer. |
| 6785 | if (!type->isPointerType() && |
| 6786 | !type->isObjCObjectPointerType() && |
| 6787 | !type->isBlockPointerType()) |
| 6788 | return false; |
| 6789 | |
| 6790 | if (type.getObjCGCAttr() != Qualifiers::GCNone) { |
| 6791 | S.Diag(Loc: attr.getLoc(), DiagID: diag::err_attribute_multiple_objc_gc); |
| 6792 | attr.setInvalid(); |
| 6793 | return true; |
| 6794 | } |
| 6795 | |
| 6796 | // Check the attribute arguments. |
| 6797 | if (!attr.isArgIdent(Arg: 0)) { |
| 6798 | S.Diag(Loc: attr.getLoc(), DiagID: diag::err_attribute_argument_type) |
| 6799 | << attr << AANT_ArgumentString; |
| 6800 | attr.setInvalid(); |
| 6801 | return true; |
| 6802 | } |
| 6803 | Qualifiers::GC GCAttr; |
| 6804 | if (attr.getNumArgs() > 1) { |
| 6805 | S.Diag(Loc: attr.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << attr |
| 6806 | << 1; |
| 6807 | attr.setInvalid(); |
| 6808 | return true; |
| 6809 | } |
| 6810 | |
| 6811 | IdentifierInfo *II = attr.getArgAsIdent(Arg: 0)->getIdentifierInfo(); |
| 6812 | if (II->isStr(Str: "weak" )) |
| 6813 | GCAttr = Qualifiers::Weak; |
| 6814 | else if (II->isStr(Str: "strong" )) |
| 6815 | GCAttr = Qualifiers::Strong; |
| 6816 | else { |
| 6817 | S.Diag(Loc: attr.getLoc(), DiagID: diag::warn_attribute_type_not_supported) |
| 6818 | << attr << II; |
| 6819 | attr.setInvalid(); |
| 6820 | return true; |
| 6821 | } |
| 6822 | |
| 6823 | QualType origType = type; |
| 6824 | type = S.Context.getObjCGCQualType(T: origType, gcAttr: GCAttr); |
| 6825 | |
| 6826 | // Make an attributed type to preserve the source information. |
| 6827 | if (attr.getLoc().isValid()) |
| 6828 | type = state.getAttributedType( |
| 6829 | A: ::new (S.Context) ObjCGCAttr(S.Context, attr, II), ModifiedType: origType, EquivType: type); |
| 6830 | |
| 6831 | return true; |
| 6832 | } |
| 6833 | |
| 6834 | namespace { |
| 6835 | /// A helper class to unwrap a type down to a function for the |
| 6836 | /// purposes of applying attributes there. |
| 6837 | /// |
| 6838 | /// Use: |
| 6839 | /// FunctionTypeUnwrapper unwrapped(SemaRef, T); |
| 6840 | /// if (unwrapped.isFunctionType()) { |
| 6841 | /// const FunctionType *fn = unwrapped.get(); |
| 6842 | /// // change fn somehow |
| 6843 | /// T = unwrapped.wrap(fn); |
| 6844 | /// } |
| 6845 | struct FunctionTypeUnwrapper { |
| 6846 | enum WrapKind { |
| 6847 | Desugar, |
| 6848 | Attributed, |
| 6849 | Parens, |
| 6850 | Array, |
| 6851 | Pointer, |
| 6852 | BlockPointer, |
| 6853 | Reference, |
| 6854 | MemberPointer, |
| 6855 | MacroQualified, |
| 6856 | }; |
| 6857 | |
| 6858 | QualType Original; |
| 6859 | const FunctionType *Fn; |
| 6860 | SmallVector<unsigned char /*WrapKind*/, 8> Stack; |
| 6861 | |
| 6862 | FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) { |
| 6863 | while (true) { |
| 6864 | const Type *Ty = T.getTypePtr(); |
| 6865 | if (isa<FunctionType>(Val: Ty)) { |
| 6866 | Fn = cast<FunctionType>(Val: Ty); |
| 6867 | return; |
| 6868 | } else if (isa<ParenType>(Val: Ty)) { |
| 6869 | T = cast<ParenType>(Val: Ty)->getInnerType(); |
| 6870 | Stack.push_back(Elt: Parens); |
| 6871 | } else if (isa<ConstantArrayType>(Val: Ty) || isa<VariableArrayType>(Val: Ty) || |
| 6872 | isa<IncompleteArrayType>(Val: Ty)) { |
| 6873 | T = cast<ArrayType>(Val: Ty)->getElementType(); |
| 6874 | Stack.push_back(Elt: Array); |
| 6875 | } else if (isa<PointerType>(Val: Ty)) { |
| 6876 | T = cast<PointerType>(Val: Ty)->getPointeeType(); |
| 6877 | Stack.push_back(Elt: Pointer); |
| 6878 | } else if (isa<BlockPointerType>(Val: Ty)) { |
| 6879 | T = cast<BlockPointerType>(Val: Ty)->getPointeeType(); |
| 6880 | Stack.push_back(Elt: BlockPointer); |
| 6881 | } else if (isa<MemberPointerType>(Val: Ty)) { |
| 6882 | T = cast<MemberPointerType>(Val: Ty)->getPointeeType(); |
| 6883 | Stack.push_back(Elt: MemberPointer); |
| 6884 | } else if (isa<ReferenceType>(Val: Ty)) { |
| 6885 | T = cast<ReferenceType>(Val: Ty)->getPointeeType(); |
| 6886 | Stack.push_back(Elt: Reference); |
| 6887 | } else if (isa<AttributedType>(Val: Ty)) { |
| 6888 | T = cast<AttributedType>(Val: Ty)->getEquivalentType(); |
| 6889 | Stack.push_back(Elt: Attributed); |
| 6890 | } else if (isa<MacroQualifiedType>(Val: Ty)) { |
| 6891 | T = cast<MacroQualifiedType>(Val: Ty)->getUnderlyingType(); |
| 6892 | Stack.push_back(Elt: MacroQualified); |
| 6893 | } else { |
| 6894 | const Type *DTy = Ty->getUnqualifiedDesugaredType(); |
| 6895 | if (Ty == DTy) { |
| 6896 | Fn = nullptr; |
| 6897 | return; |
| 6898 | } |
| 6899 | |
| 6900 | T = QualType(DTy, 0); |
| 6901 | Stack.push_back(Elt: Desugar); |
| 6902 | } |
| 6903 | } |
| 6904 | } |
| 6905 | |
| 6906 | bool isFunctionType() const { return (Fn != nullptr); } |
| 6907 | const FunctionType *get() const { return Fn; } |
| 6908 | |
| 6909 | QualType wrap(Sema &S, const FunctionType *New) { |
| 6910 | // If T wasn't modified from the unwrapped type, do nothing. |
| 6911 | if (New == get()) return Original; |
| 6912 | |
| 6913 | Fn = New; |
| 6914 | return wrap(C&: S.Context, Old: Original, I: 0); |
| 6915 | } |
| 6916 | |
| 6917 | private: |
| 6918 | QualType wrap(ASTContext &C, QualType Old, unsigned I) { |
| 6919 | if (I == Stack.size()) |
| 6920 | return C.getQualifiedType(T: Fn, Qs: Old.getQualifiers()); |
| 6921 | |
| 6922 | // Build up the inner type, applying the qualifiers from the old |
| 6923 | // type to the new type. |
| 6924 | SplitQualType SplitOld = Old.split(); |
| 6925 | |
| 6926 | // As a special case, tail-recurse if there are no qualifiers. |
| 6927 | if (SplitOld.Quals.empty()) |
| 6928 | return wrap(C, Old: SplitOld.Ty, I); |
| 6929 | return C.getQualifiedType(T: wrap(C, Old: SplitOld.Ty, I), Qs: SplitOld.Quals); |
| 6930 | } |
| 6931 | |
| 6932 | QualType wrap(ASTContext &C, const Type *Old, unsigned I) { |
| 6933 | if (I == Stack.size()) return QualType(Fn, 0); |
| 6934 | |
| 6935 | switch (static_cast<WrapKind>(Stack[I++])) { |
| 6936 | case Desugar: |
| 6937 | // This is the point at which we potentially lose source |
| 6938 | // information. |
| 6939 | return wrap(C, Old: Old->getUnqualifiedDesugaredType(), I); |
| 6940 | |
| 6941 | case Attributed: |
| 6942 | return wrap(C, Old: cast<AttributedType>(Val: Old)->getEquivalentType(), I); |
| 6943 | |
| 6944 | case Parens: { |
| 6945 | QualType New = wrap(C, Old: cast<ParenType>(Val: Old)->getInnerType(), I); |
| 6946 | return C.getParenType(NamedType: New); |
| 6947 | } |
| 6948 | |
| 6949 | case MacroQualified: |
| 6950 | return wrap(C, Old: cast<MacroQualifiedType>(Val: Old)->getUnderlyingType(), I); |
| 6951 | |
| 6952 | case Array: { |
| 6953 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: Old)) { |
| 6954 | QualType New = wrap(C, Old: CAT->getElementType(), I); |
| 6955 | return C.getConstantArrayType(EltTy: New, ArySize: CAT->getSize(), SizeExpr: CAT->getSizeExpr(), |
| 6956 | ASM: CAT->getSizeModifier(), |
| 6957 | IndexTypeQuals: CAT->getIndexTypeCVRQualifiers()); |
| 6958 | } |
| 6959 | |
| 6960 | if (const auto *VAT = dyn_cast<VariableArrayType>(Val: Old)) { |
| 6961 | QualType New = wrap(C, Old: VAT->getElementType(), I); |
| 6962 | return C.getVariableArrayType(EltTy: New, NumElts: VAT->getSizeExpr(), |
| 6963 | ASM: VAT->getSizeModifier(), |
| 6964 | IndexTypeQuals: VAT->getIndexTypeCVRQualifiers()); |
| 6965 | } |
| 6966 | |
| 6967 | const auto *IAT = cast<IncompleteArrayType>(Val: Old); |
| 6968 | QualType New = wrap(C, Old: IAT->getElementType(), I); |
| 6969 | return C.getIncompleteArrayType(EltTy: New, ASM: IAT->getSizeModifier(), |
| 6970 | IndexTypeQuals: IAT->getIndexTypeCVRQualifiers()); |
| 6971 | } |
| 6972 | |
| 6973 | case Pointer: { |
| 6974 | QualType New = wrap(C, Old: cast<PointerType>(Val: Old)->getPointeeType(), I); |
| 6975 | return C.getPointerType(T: New); |
| 6976 | } |
| 6977 | |
| 6978 | case BlockPointer: { |
| 6979 | QualType New = wrap(C, Old: cast<BlockPointerType>(Val: Old)->getPointeeType(),I); |
| 6980 | return C.getBlockPointerType(T: New); |
| 6981 | } |
| 6982 | |
| 6983 | case MemberPointer: { |
| 6984 | const MemberPointerType *OldMPT = cast<MemberPointerType>(Val: Old); |
| 6985 | QualType New = wrap(C, Old: OldMPT->getPointeeType(), I); |
| 6986 | return C.getMemberPointerType(T: New, Qualifier: OldMPT->getQualifier(), |
| 6987 | Cls: OldMPT->getMostRecentCXXRecordDecl()); |
| 6988 | } |
| 6989 | |
| 6990 | case Reference: { |
| 6991 | const ReferenceType *OldRef = cast<ReferenceType>(Val: Old); |
| 6992 | QualType New = wrap(C, Old: OldRef->getPointeeType(), I); |
| 6993 | if (isa<LValueReferenceType>(Val: OldRef)) |
| 6994 | return C.getLValueReferenceType(T: New, SpelledAsLValue: OldRef->isSpelledAsLValue()); |
| 6995 | else |
| 6996 | return C.getRValueReferenceType(T: New); |
| 6997 | } |
| 6998 | } |
| 6999 | |
| 7000 | llvm_unreachable("unknown wrapping kind" ); |
| 7001 | } |
| 7002 | }; |
| 7003 | } // end anonymous namespace |
| 7004 | |
| 7005 | static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State, |
| 7006 | ParsedAttr &PAttr, QualType &Type) { |
| 7007 | Sema &S = State.getSema(); |
| 7008 | |
| 7009 | Attr *A; |
| 7010 | switch (PAttr.getKind()) { |
| 7011 | default: llvm_unreachable("Unknown attribute kind" ); |
| 7012 | case ParsedAttr::AT_Ptr32: |
| 7013 | A = createSimpleAttr<Ptr32Attr>(Ctx&: S.Context, AL&: PAttr); |
| 7014 | break; |
| 7015 | case ParsedAttr::AT_Ptr64: |
| 7016 | A = createSimpleAttr<Ptr64Attr>(Ctx&: S.Context, AL&: PAttr); |
| 7017 | break; |
| 7018 | case ParsedAttr::AT_SPtr: |
| 7019 | A = createSimpleAttr<SPtrAttr>(Ctx&: S.Context, AL&: PAttr); |
| 7020 | break; |
| 7021 | case ParsedAttr::AT_UPtr: |
| 7022 | A = createSimpleAttr<UPtrAttr>(Ctx&: S.Context, AL&: PAttr); |
| 7023 | break; |
| 7024 | } |
| 7025 | |
| 7026 | std::bitset<attr::LastAttr> Attrs; |
| 7027 | QualType Desugared = Type; |
| 7028 | for (;;) { |
| 7029 | if (const TypedefType *TT = dyn_cast<TypedefType>(Val&: Desugared)) { |
| 7030 | Desugared = TT->desugar(); |
| 7031 | continue; |
| 7032 | } else if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Val&: Desugared)) { |
| 7033 | Desugared = ET->desugar(); |
| 7034 | continue; |
| 7035 | } |
| 7036 | const AttributedType *AT = dyn_cast<AttributedType>(Val&: Desugared); |
| 7037 | if (!AT) |
| 7038 | break; |
| 7039 | Attrs[AT->getAttrKind()] = true; |
| 7040 | Desugared = AT->getModifiedType(); |
| 7041 | } |
| 7042 | |
| 7043 | // You cannot specify duplicate type attributes, so if the attribute has |
| 7044 | // already been applied, flag it. |
| 7045 | attr::Kind NewAttrKind = A->getKind(); |
| 7046 | if (Attrs[NewAttrKind]) { |
| 7047 | S.Diag(Loc: PAttr.getLoc(), DiagID: diag::warn_duplicate_attribute_exact) << PAttr; |
| 7048 | return true; |
| 7049 | } |
| 7050 | Attrs[NewAttrKind] = true; |
| 7051 | |
| 7052 | // You cannot have both __sptr and __uptr on the same type, nor can you |
| 7053 | // have __ptr32 and __ptr64. |
| 7054 | if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) { |
| 7055 | S.Diag(Loc: PAttr.getLoc(), DiagID: diag::err_attributes_are_not_compatible) |
| 7056 | << "'__ptr32'" |
| 7057 | << "'__ptr64'" << /*isRegularKeyword=*/0; |
| 7058 | return true; |
| 7059 | } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) { |
| 7060 | S.Diag(Loc: PAttr.getLoc(), DiagID: diag::err_attributes_are_not_compatible) |
| 7061 | << "'__sptr'" |
| 7062 | << "'__uptr'" << /*isRegularKeyword=*/0; |
| 7063 | return true; |
| 7064 | } |
| 7065 | |
| 7066 | // Check the raw (i.e., desugared) Canonical type to see if it |
| 7067 | // is a pointer type. |
| 7068 | if (!isa<PointerType>(Val: Desugared)) { |
| 7069 | // Pointer type qualifiers can only operate on pointer types, but not |
| 7070 | // pointer-to-member types. |
| 7071 | if (Type->isMemberPointerType()) |
| 7072 | S.Diag(Loc: PAttr.getLoc(), DiagID: diag::err_attribute_no_member_pointers) << PAttr; |
| 7073 | else |
| 7074 | S.Diag(Loc: PAttr.getLoc(), DiagID: diag::err_attribute_pointers_only) << PAttr << 0; |
| 7075 | return true; |
| 7076 | } |
| 7077 | |
| 7078 | // Add address space to type based on its attributes. |
| 7079 | LangAS ASIdx = LangAS::Default; |
| 7080 | uint64_t PtrWidth = |
| 7081 | S.Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default); |
| 7082 | if (PtrWidth == 32) { |
| 7083 | if (Attrs[attr::Ptr64]) |
| 7084 | ASIdx = LangAS::ptr64; |
| 7085 | else if (Attrs[attr::UPtr]) |
| 7086 | ASIdx = LangAS::ptr32_uptr; |
| 7087 | } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) { |
| 7088 | if (S.Context.getTargetInfo().getTriple().isOSzOS() || Attrs[attr::UPtr]) |
| 7089 | ASIdx = LangAS::ptr32_uptr; |
| 7090 | else |
| 7091 | ASIdx = LangAS::ptr32_sptr; |
| 7092 | } |
| 7093 | |
| 7094 | QualType Pointee = Type->getPointeeType(); |
| 7095 | if (ASIdx != LangAS::Default) |
| 7096 | Pointee = S.Context.getAddrSpaceQualType( |
| 7097 | T: S.Context.removeAddrSpaceQualType(T: Pointee), AddressSpace: ASIdx); |
| 7098 | Type = State.getAttributedType(A, ModifiedType: Type, EquivType: S.Context.getPointerType(T: Pointee)); |
| 7099 | return false; |
| 7100 | } |
| 7101 | |
| 7102 | static bool HandleWebAssemblyFuncrefAttr(TypeProcessingState &State, |
| 7103 | QualType &QT, ParsedAttr &PAttr) { |
| 7104 | assert(PAttr.getKind() == ParsedAttr::AT_WebAssemblyFuncref); |
| 7105 | |
| 7106 | Sema &S = State.getSema(); |
| 7107 | Attr *A = createSimpleAttr<WebAssemblyFuncrefAttr>(Ctx&: S.Context, AL&: PAttr); |
| 7108 | |
| 7109 | std::bitset<attr::LastAttr> Attrs; |
| 7110 | attr::Kind NewAttrKind = A->getKind(); |
| 7111 | const auto *AT = dyn_cast<AttributedType>(Val&: QT); |
| 7112 | while (AT) { |
| 7113 | Attrs[AT->getAttrKind()] = true; |
| 7114 | AT = dyn_cast<AttributedType>(Val: AT->getModifiedType()); |
| 7115 | } |
| 7116 | |
| 7117 | // You cannot specify duplicate type attributes, so if the attribute has |
| 7118 | // already been applied, flag it. |
| 7119 | if (Attrs[NewAttrKind]) { |
| 7120 | S.Diag(Loc: PAttr.getLoc(), DiagID: diag::warn_duplicate_attribute_exact) << PAttr; |
| 7121 | return true; |
| 7122 | } |
| 7123 | |
| 7124 | // Add address space to type based on its attributes. |
| 7125 | LangAS ASIdx = LangAS::wasm_funcref; |
| 7126 | QualType Pointee = QT->getPointeeType(); |
| 7127 | Pointee = S.Context.getAddrSpaceQualType( |
| 7128 | T: S.Context.removeAddrSpaceQualType(T: Pointee), AddressSpace: ASIdx); |
| 7129 | QT = State.getAttributedType(A, ModifiedType: QT, EquivType: S.Context.getPointerType(T: Pointee)); |
| 7130 | return false; |
| 7131 | } |
| 7132 | |
| 7133 | static void HandleSwiftAttr(TypeProcessingState &State, TypeAttrLocation TAL, |
| 7134 | QualType &QT, ParsedAttr &PAttr) { |
| 7135 | if (TAL == TAL_DeclName) |
| 7136 | return; |
| 7137 | |
| 7138 | Sema &S = State.getSema(); |
| 7139 | auto &D = State.getDeclarator(); |
| 7140 | |
| 7141 | // If the attribute appears in declaration specifiers |
| 7142 | // it should be handled as a declaration attribute, |
| 7143 | // unless it's associated with a type or a function |
| 7144 | // prototype (i.e. appears on a parameter or result type). |
| 7145 | if (State.isProcessingDeclSpec()) { |
| 7146 | if (!(D.isPrototypeContext() || |
| 7147 | D.getContext() == DeclaratorContext::TypeName)) |
| 7148 | return; |
| 7149 | |
| 7150 | if (auto *chunk = D.getInnermostNonParenChunk()) { |
| 7151 | moveAttrFromListToList(attr&: PAttr, fromList&: State.getCurrentAttributes(), |
| 7152 | toList&: const_cast<DeclaratorChunk *>(chunk)->getAttrs()); |
| 7153 | return; |
| 7154 | } |
| 7155 | } |
| 7156 | |
| 7157 | StringRef Str; |
| 7158 | if (!S.checkStringLiteralArgumentAttr(Attr: PAttr, ArgNum: 0, Str)) { |
| 7159 | PAttr.setInvalid(); |
| 7160 | return; |
| 7161 | } |
| 7162 | |
| 7163 | // If the attribute as attached to a paren move it closer to |
| 7164 | // the declarator. This can happen in block declarations when |
| 7165 | // an attribute is placed before `^` i.e. `(__attribute__((...)) ^)`. |
| 7166 | // |
| 7167 | // Note that it's actually invalid to use GNU style attributes |
| 7168 | // in a block but such cases are currently handled gracefully |
| 7169 | // but the parser and behavior should be consistent between |
| 7170 | // cases when attribute appears before/after block's result |
| 7171 | // type and inside (^). |
| 7172 | if (TAL == TAL_DeclChunk) { |
| 7173 | auto chunkIdx = State.getCurrentChunkIndex(); |
| 7174 | if (chunkIdx >= 1 && |
| 7175 | D.getTypeObject(i: chunkIdx).Kind == DeclaratorChunk::Paren) { |
| 7176 | moveAttrFromListToList(attr&: PAttr, fromList&: State.getCurrentAttributes(), |
| 7177 | toList&: D.getTypeObject(i: chunkIdx - 1).getAttrs()); |
| 7178 | return; |
| 7179 | } |
| 7180 | } |
| 7181 | |
| 7182 | auto *A = ::new (S.Context) SwiftAttrAttr(S.Context, PAttr, Str); |
| 7183 | QT = State.getAttributedType(A, ModifiedType: QT, EquivType: QT); |
| 7184 | PAttr.setUsedAsTypeAttr(); |
| 7185 | } |
| 7186 | |
| 7187 | /// Rebuild an attributed type without the nullability attribute on it. |
| 7188 | static QualType rebuildAttributedTypeWithoutNullability(ASTContext &Ctx, |
| 7189 | QualType Type) { |
| 7190 | auto Attributed = dyn_cast<AttributedType>(Val: Type.getTypePtr()); |
| 7191 | if (!Attributed) |
| 7192 | return Type; |
| 7193 | |
| 7194 | // Skip the nullability attribute; we're done. |
| 7195 | if (Attributed->getImmediateNullability()) |
| 7196 | return Attributed->getModifiedType(); |
| 7197 | |
| 7198 | // Build the modified type. |
| 7199 | QualType Modified = rebuildAttributedTypeWithoutNullability( |
| 7200 | Ctx, Type: Attributed->getModifiedType()); |
| 7201 | assert(Modified.getTypePtr() != Attributed->getModifiedType().getTypePtr()); |
| 7202 | return Ctx.getAttributedType(attrKind: Attributed->getAttrKind(), modifiedType: Modified, |
| 7203 | equivalentType: Attributed->getEquivalentType(), |
| 7204 | attr: Attributed->getAttr()); |
| 7205 | } |
| 7206 | |
| 7207 | /// Map a nullability attribute kind to a nullability kind. |
| 7208 | static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) { |
| 7209 | switch (kind) { |
| 7210 | case ParsedAttr::AT_TypeNonNull: |
| 7211 | return NullabilityKind::NonNull; |
| 7212 | |
| 7213 | case ParsedAttr::AT_TypeNullable: |
| 7214 | return NullabilityKind::Nullable; |
| 7215 | |
| 7216 | case ParsedAttr::AT_TypeNullableResult: |
| 7217 | return NullabilityKind::NullableResult; |
| 7218 | |
| 7219 | case ParsedAttr::AT_TypeNullUnspecified: |
| 7220 | return NullabilityKind::Unspecified; |
| 7221 | |
| 7222 | default: |
| 7223 | llvm_unreachable("not a nullability attribute kind" ); |
| 7224 | } |
| 7225 | } |
| 7226 | |
| 7227 | static bool CheckNullabilityTypeSpecifier( |
| 7228 | Sema &S, TypeProcessingState *State, ParsedAttr *PAttr, QualType &QT, |
| 7229 | NullabilityKind Nullability, SourceLocation NullabilityLoc, |
| 7230 | bool IsContextSensitive, bool AllowOnArrayType, bool OverrideExisting) { |
| 7231 | bool Implicit = (State == nullptr); |
| 7232 | if (!Implicit) |
| 7233 | recordNullabilitySeen(S, loc: NullabilityLoc); |
| 7234 | |
| 7235 | // Check for existing nullability attributes on the type. |
| 7236 | QualType Desugared = QT; |
| 7237 | while (auto *Attributed = dyn_cast<AttributedType>(Val: Desugared.getTypePtr())) { |
| 7238 | // Check whether there is already a null |
| 7239 | if (auto ExistingNullability = Attributed->getImmediateNullability()) { |
| 7240 | // Duplicated nullability. |
| 7241 | if (Nullability == *ExistingNullability) { |
| 7242 | if (Implicit) |
| 7243 | break; |
| 7244 | |
| 7245 | S.Diag(Loc: NullabilityLoc, DiagID: diag::warn_nullability_duplicate) |
| 7246 | << DiagNullabilityKind(Nullability, IsContextSensitive) |
| 7247 | << FixItHint::CreateRemoval(RemoveRange: NullabilityLoc); |
| 7248 | |
| 7249 | break; |
| 7250 | } |
| 7251 | |
| 7252 | if (!OverrideExisting) { |
| 7253 | // Conflicting nullability. |
| 7254 | S.Diag(Loc: NullabilityLoc, DiagID: diag::err_nullability_conflicting) |
| 7255 | << DiagNullabilityKind(Nullability, IsContextSensitive) |
| 7256 | << DiagNullabilityKind(*ExistingNullability, false); |
| 7257 | return true; |
| 7258 | } |
| 7259 | |
| 7260 | // Rebuild the attributed type, dropping the existing nullability. |
| 7261 | QT = rebuildAttributedTypeWithoutNullability(Ctx&: S.Context, Type: QT); |
| 7262 | } |
| 7263 | |
| 7264 | Desugared = Attributed->getModifiedType(); |
| 7265 | } |
| 7266 | |
| 7267 | // If there is already a different nullability specifier, complain. |
| 7268 | // This (unlike the code above) looks through typedefs that might |
| 7269 | // have nullability specifiers on them, which means we cannot |
| 7270 | // provide a useful Fix-It. |
| 7271 | if (auto ExistingNullability = Desugared->getNullability()) { |
| 7272 | if (Nullability != *ExistingNullability && !Implicit) { |
| 7273 | S.Diag(Loc: NullabilityLoc, DiagID: diag::err_nullability_conflicting) |
| 7274 | << DiagNullabilityKind(Nullability, IsContextSensitive) |
| 7275 | << DiagNullabilityKind(*ExistingNullability, false); |
| 7276 | |
| 7277 | // Try to find the typedef with the existing nullability specifier. |
| 7278 | if (auto TT = Desugared->getAs<TypedefType>()) { |
| 7279 | TypedefNameDecl *typedefDecl = TT->getDecl(); |
| 7280 | QualType underlyingType = typedefDecl->getUnderlyingType(); |
| 7281 | if (auto typedefNullability = |
| 7282 | AttributedType::stripOuterNullability(T&: underlyingType)) { |
| 7283 | if (*typedefNullability == *ExistingNullability) { |
| 7284 | S.Diag(Loc: typedefDecl->getLocation(), DiagID: diag::note_nullability_here) |
| 7285 | << DiagNullabilityKind(*ExistingNullability, false); |
| 7286 | } |
| 7287 | } |
| 7288 | } |
| 7289 | |
| 7290 | return true; |
| 7291 | } |
| 7292 | } |
| 7293 | |
| 7294 | // If this definitely isn't a pointer type, reject the specifier. |
| 7295 | if (!Desugared->canHaveNullability() && |
| 7296 | !(AllowOnArrayType && Desugared->isArrayType())) { |
| 7297 | if (!Implicit) |
| 7298 | S.Diag(Loc: NullabilityLoc, DiagID: diag::err_nullability_nonpointer) |
| 7299 | << DiagNullabilityKind(Nullability, IsContextSensitive) << QT; |
| 7300 | |
| 7301 | return true; |
| 7302 | } |
| 7303 | |
| 7304 | // For the context-sensitive keywords/Objective-C property |
| 7305 | // attributes, require that the type be a single-level pointer. |
| 7306 | if (IsContextSensitive) { |
| 7307 | // Make sure that the pointee isn't itself a pointer type. |
| 7308 | const Type *pointeeType = nullptr; |
| 7309 | if (Desugared->isArrayType()) |
| 7310 | pointeeType = Desugared->getArrayElementTypeNoTypeQual(); |
| 7311 | else if (Desugared->isAnyPointerType()) |
| 7312 | pointeeType = Desugared->getPointeeType().getTypePtr(); |
| 7313 | |
| 7314 | if (pointeeType && (pointeeType->isAnyPointerType() || |
| 7315 | pointeeType->isObjCObjectPointerType() || |
| 7316 | pointeeType->isMemberPointerType())) { |
| 7317 | S.Diag(Loc: NullabilityLoc, DiagID: diag::err_nullability_cs_multilevel) |
| 7318 | << DiagNullabilityKind(Nullability, true) << QT; |
| 7319 | S.Diag(Loc: NullabilityLoc, DiagID: diag::note_nullability_type_specifier) |
| 7320 | << DiagNullabilityKind(Nullability, false) << QT |
| 7321 | << FixItHint::CreateReplacement(RemoveRange: NullabilityLoc, |
| 7322 | Code: getNullabilitySpelling(kind: Nullability)); |
| 7323 | return true; |
| 7324 | } |
| 7325 | } |
| 7326 | |
| 7327 | // Form the attributed type. |
| 7328 | if (State) { |
| 7329 | assert(PAttr); |
| 7330 | Attr *A = createNullabilityAttr(Ctx&: S.Context, Attr&: *PAttr, NK: Nullability); |
| 7331 | QT = State->getAttributedType(A, ModifiedType: QT, EquivType: QT); |
| 7332 | } else { |
| 7333 | QT = S.Context.getAttributedType(nullability: Nullability, modifiedType: QT, equivalentType: QT); |
| 7334 | } |
| 7335 | return false; |
| 7336 | } |
| 7337 | |
| 7338 | static bool CheckNullabilityTypeSpecifier(TypeProcessingState &State, |
| 7339 | QualType &Type, ParsedAttr &Attr, |
| 7340 | bool AllowOnArrayType) { |
| 7341 | NullabilityKind Nullability = mapNullabilityAttrKind(kind: Attr.getKind()); |
| 7342 | SourceLocation NullabilityLoc = Attr.getLoc(); |
| 7343 | bool IsContextSensitive = Attr.isContextSensitiveKeywordAttribute(); |
| 7344 | |
| 7345 | return CheckNullabilityTypeSpecifier(S&: State.getSema(), State: &State, PAttr: &Attr, QT&: Type, |
| 7346 | Nullability, NullabilityLoc, |
| 7347 | IsContextSensitive, AllowOnArrayType, |
| 7348 | /*overrideExisting*/ OverrideExisting: false); |
| 7349 | } |
| 7350 | |
| 7351 | bool Sema::CheckImplicitNullabilityTypeSpecifier(QualType &Type, |
| 7352 | NullabilityKind Nullability, |
| 7353 | SourceLocation DiagLoc, |
| 7354 | bool AllowArrayTypes, |
| 7355 | bool OverrideExisting) { |
| 7356 | return CheckNullabilityTypeSpecifier( |
| 7357 | S&: *this, State: nullptr, PAttr: nullptr, QT&: Type, Nullability, NullabilityLoc: DiagLoc, |
| 7358 | /*isContextSensitive*/ IsContextSensitive: false, AllowOnArrayType: AllowArrayTypes, OverrideExisting); |
| 7359 | } |
| 7360 | |
| 7361 | /// Check the application of the Objective-C '__kindof' qualifier to |
| 7362 | /// the given type. |
| 7363 | static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type, |
| 7364 | ParsedAttr &attr) { |
| 7365 | Sema &S = state.getSema(); |
| 7366 | |
| 7367 | if (isa<ObjCTypeParamType>(Val: type)) { |
| 7368 | // Build the attributed type to record where __kindof occurred. |
| 7369 | type = state.getAttributedType( |
| 7370 | A: createSimpleAttr<ObjCKindOfAttr>(Ctx&: S.Context, AL&: attr), ModifiedType: type, EquivType: type); |
| 7371 | return false; |
| 7372 | } |
| 7373 | |
| 7374 | // Find out if it's an Objective-C object or object pointer type; |
| 7375 | const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>(); |
| 7376 | const ObjCObjectType *objType = ptrType ? ptrType->getObjectType() |
| 7377 | : type->getAs<ObjCObjectType>(); |
| 7378 | |
| 7379 | // If not, we can't apply __kindof. |
| 7380 | if (!objType) { |
| 7381 | // FIXME: Handle dependent types that aren't yet object types. |
| 7382 | S.Diag(Loc: attr.getLoc(), DiagID: diag::err_objc_kindof_nonobject) |
| 7383 | << type; |
| 7384 | return true; |
| 7385 | } |
| 7386 | |
| 7387 | // Rebuild the "equivalent" type, which pushes __kindof down into |
| 7388 | // the object type. |
| 7389 | // There is no need to apply kindof on an unqualified id type. |
| 7390 | QualType equivType = S.Context.getObjCObjectType( |
| 7391 | Base: objType->getBaseType(), typeArgs: objType->getTypeArgsAsWritten(), |
| 7392 | protocols: objType->getProtocols(), |
| 7393 | /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true); |
| 7394 | |
| 7395 | // If we started with an object pointer type, rebuild it. |
| 7396 | if (ptrType) { |
| 7397 | equivType = S.Context.getObjCObjectPointerType(OIT: equivType); |
| 7398 | if (auto nullability = type->getNullability()) { |
| 7399 | // We create a nullability attribute from the __kindof attribute. |
| 7400 | // Make sure that will make sense. |
| 7401 | assert(attr.getAttributeSpellingListIndex() == 0 && |
| 7402 | "multiple spellings for __kindof?" ); |
| 7403 | Attr *A = createNullabilityAttr(Ctx&: S.Context, Attr&: attr, NK: *nullability); |
| 7404 | A->setImplicit(true); |
| 7405 | equivType = state.getAttributedType(A, ModifiedType: equivType, EquivType: equivType); |
| 7406 | } |
| 7407 | } |
| 7408 | |
| 7409 | // Build the attributed type to record where __kindof occurred. |
| 7410 | type = state.getAttributedType( |
| 7411 | A: createSimpleAttr<ObjCKindOfAttr>(Ctx&: S.Context, AL&: attr), ModifiedType: type, EquivType: equivType); |
| 7412 | return false; |
| 7413 | } |
| 7414 | |
| 7415 | /// Distribute a nullability type attribute that cannot be applied to |
| 7416 | /// the type specifier to a pointer, block pointer, or member pointer |
| 7417 | /// declarator, complaining if necessary. |
| 7418 | /// |
| 7419 | /// \returns true if the nullability annotation was distributed, false |
| 7420 | /// otherwise. |
| 7421 | static bool distributeNullabilityTypeAttr(TypeProcessingState &state, |
| 7422 | QualType type, ParsedAttr &attr) { |
| 7423 | Declarator &declarator = state.getDeclarator(); |
| 7424 | |
| 7425 | /// Attempt to move the attribute to the specified chunk. |
| 7426 | auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool { |
| 7427 | // If there is already a nullability attribute there, don't add |
| 7428 | // one. |
| 7429 | if (hasNullabilityAttr(attrs: chunk.getAttrs())) |
| 7430 | return false; |
| 7431 | |
| 7432 | // Complain about the nullability qualifier being in the wrong |
| 7433 | // place. |
| 7434 | enum { |
| 7435 | PK_Pointer, |
| 7436 | PK_BlockPointer, |
| 7437 | PK_MemberPointer, |
| 7438 | PK_FunctionPointer, |
| 7439 | PK_MemberFunctionPointer, |
| 7440 | } pointerKind |
| 7441 | = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer |
| 7442 | : PK_Pointer) |
| 7443 | : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer |
| 7444 | : inFunction? PK_MemberFunctionPointer : PK_MemberPointer; |
| 7445 | |
| 7446 | auto diag = state.getSema().Diag(Loc: attr.getLoc(), |
| 7447 | DiagID: diag::warn_nullability_declspec) |
| 7448 | << DiagNullabilityKind(mapNullabilityAttrKind(kind: attr.getKind()), |
| 7449 | attr.isContextSensitiveKeywordAttribute()) |
| 7450 | << type |
| 7451 | << static_cast<unsigned>(pointerKind); |
| 7452 | |
| 7453 | // FIXME: MemberPointer chunks don't carry the location of the *. |
| 7454 | if (chunk.Kind != DeclaratorChunk::MemberPointer) { |
| 7455 | diag << FixItHint::CreateRemoval(RemoveRange: attr.getLoc()) |
| 7456 | << FixItHint::CreateInsertion( |
| 7457 | InsertionLoc: state.getSema().getPreprocessor().getLocForEndOfToken( |
| 7458 | Loc: chunk.Loc), |
| 7459 | Code: " " + attr.getAttrName()->getName().str() + " " ); |
| 7460 | } |
| 7461 | |
| 7462 | moveAttrFromListToList(attr, fromList&: state.getCurrentAttributes(), |
| 7463 | toList&: chunk.getAttrs()); |
| 7464 | return true; |
| 7465 | }; |
| 7466 | |
| 7467 | // Move it to the outermost pointer, member pointer, or block |
| 7468 | // pointer declarator. |
| 7469 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { |
| 7470 | DeclaratorChunk &chunk = declarator.getTypeObject(i: i-1); |
| 7471 | switch (chunk.Kind) { |
| 7472 | case DeclaratorChunk::Pointer: |
| 7473 | case DeclaratorChunk::BlockPointer: |
| 7474 | case DeclaratorChunk::MemberPointer: |
| 7475 | return moveToChunk(chunk, false); |
| 7476 | |
| 7477 | case DeclaratorChunk::Paren: |
| 7478 | case DeclaratorChunk::Array: |
| 7479 | continue; |
| 7480 | |
| 7481 | case DeclaratorChunk::Function: |
| 7482 | // Try to move past the return type to a function/block/member |
| 7483 | // function pointer. |
| 7484 | if (DeclaratorChunk *dest = maybeMovePastReturnType( |
| 7485 | declarator, i, |
| 7486 | /*onlyBlockPointers=*/false)) { |
| 7487 | return moveToChunk(*dest, true); |
| 7488 | } |
| 7489 | |
| 7490 | return false; |
| 7491 | |
| 7492 | // Don't walk through these. |
| 7493 | case DeclaratorChunk::Reference: |
| 7494 | case DeclaratorChunk::Pipe: |
| 7495 | return false; |
| 7496 | } |
| 7497 | } |
| 7498 | |
| 7499 | return false; |
| 7500 | } |
| 7501 | |
| 7502 | static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) { |
| 7503 | assert(!Attr.isInvalid()); |
| 7504 | switch (Attr.getKind()) { |
| 7505 | default: |
| 7506 | llvm_unreachable("not a calling convention attribute" ); |
| 7507 | case ParsedAttr::AT_CDecl: |
| 7508 | return createSimpleAttr<CDeclAttr>(Ctx, AL&: Attr); |
| 7509 | case ParsedAttr::AT_FastCall: |
| 7510 | return createSimpleAttr<FastCallAttr>(Ctx, AL&: Attr); |
| 7511 | case ParsedAttr::AT_StdCall: |
| 7512 | return createSimpleAttr<StdCallAttr>(Ctx, AL&: Attr); |
| 7513 | case ParsedAttr::AT_ThisCall: |
| 7514 | return createSimpleAttr<ThisCallAttr>(Ctx, AL&: Attr); |
| 7515 | case ParsedAttr::AT_RegCall: |
| 7516 | return createSimpleAttr<RegCallAttr>(Ctx, AL&: Attr); |
| 7517 | case ParsedAttr::AT_Pascal: |
| 7518 | return createSimpleAttr<PascalAttr>(Ctx, AL&: Attr); |
| 7519 | case ParsedAttr::AT_SwiftCall: |
| 7520 | return createSimpleAttr<SwiftCallAttr>(Ctx, AL&: Attr); |
| 7521 | case ParsedAttr::AT_SwiftAsyncCall: |
| 7522 | return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, AL&: Attr); |
| 7523 | case ParsedAttr::AT_VectorCall: |
| 7524 | return createSimpleAttr<VectorCallAttr>(Ctx, AL&: Attr); |
| 7525 | case ParsedAttr::AT_AArch64VectorPcs: |
| 7526 | return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, AL&: Attr); |
| 7527 | case ParsedAttr::AT_AArch64SVEPcs: |
| 7528 | return createSimpleAttr<AArch64SVEPcsAttr>(Ctx, AL&: Attr); |
| 7529 | case ParsedAttr::AT_ArmStreaming: |
| 7530 | return createSimpleAttr<ArmStreamingAttr>(Ctx, AL&: Attr); |
| 7531 | case ParsedAttr::AT_DeviceKernel: |
| 7532 | return createSimpleAttr<DeviceKernelAttr>(Ctx, AL&: Attr); |
| 7533 | case ParsedAttr::AT_Pcs: { |
| 7534 | // The attribute may have had a fixit applied where we treated an |
| 7535 | // identifier as a string literal. The contents of the string are valid, |
| 7536 | // but the form may not be. |
| 7537 | StringRef Str; |
| 7538 | if (Attr.isArgExpr(Arg: 0)) |
| 7539 | Str = cast<StringLiteral>(Val: Attr.getArgAsExpr(Arg: 0))->getString(); |
| 7540 | else |
| 7541 | Str = Attr.getArgAsIdent(Arg: 0)->getIdentifierInfo()->getName(); |
| 7542 | PcsAttr::PCSType Type; |
| 7543 | if (!PcsAttr::ConvertStrToPCSType(Val: Str, Out&: Type)) |
| 7544 | llvm_unreachable("already validated the attribute" ); |
| 7545 | return ::new (Ctx) PcsAttr(Ctx, Attr, Type); |
| 7546 | } |
| 7547 | case ParsedAttr::AT_IntelOclBicc: |
| 7548 | return createSimpleAttr<IntelOclBiccAttr>(Ctx, AL&: Attr); |
| 7549 | case ParsedAttr::AT_MSABI: |
| 7550 | return createSimpleAttr<MSABIAttr>(Ctx, AL&: Attr); |
| 7551 | case ParsedAttr::AT_SysVABI: |
| 7552 | return createSimpleAttr<SysVABIAttr>(Ctx, AL&: Attr); |
| 7553 | case ParsedAttr::AT_PreserveMost: |
| 7554 | return createSimpleAttr<PreserveMostAttr>(Ctx, AL&: Attr); |
| 7555 | case ParsedAttr::AT_PreserveAll: |
| 7556 | return createSimpleAttr<PreserveAllAttr>(Ctx, AL&: Attr); |
| 7557 | case ParsedAttr::AT_M68kRTD: |
| 7558 | return createSimpleAttr<M68kRTDAttr>(Ctx, AL&: Attr); |
| 7559 | case ParsedAttr::AT_PreserveNone: |
| 7560 | return createSimpleAttr<PreserveNoneAttr>(Ctx, AL&: Attr); |
| 7561 | case ParsedAttr::AT_RISCVVectorCC: |
| 7562 | return createSimpleAttr<RISCVVectorCCAttr>(Ctx, AL&: Attr); |
| 7563 | case ParsedAttr::AT_RISCVVLSCC: { |
| 7564 | // If the riscv_abi_vlen doesn't have any argument, we set set it to default |
| 7565 | // value 128. |
| 7566 | unsigned ABIVLen = 128; |
| 7567 | if (Attr.getNumArgs()) { |
| 7568 | std::optional<llvm::APSInt> MaybeABIVLen = |
| 7569 | Attr.getArgAsExpr(Arg: 0)->getIntegerConstantExpr(Ctx); |
| 7570 | if (!MaybeABIVLen) |
| 7571 | llvm_unreachable("Invalid RISC-V ABI VLEN" ); |
| 7572 | ABIVLen = MaybeABIVLen->getZExtValue(); |
| 7573 | } |
| 7574 | |
| 7575 | return ::new (Ctx) RISCVVLSCCAttr(Ctx, Attr, ABIVLen); |
| 7576 | } |
| 7577 | } |
| 7578 | llvm_unreachable("unexpected attribute kind!" ); |
| 7579 | } |
| 7580 | |
| 7581 | std::optional<FunctionEffectMode> |
| 7582 | Sema::ActOnEffectExpression(Expr *CondExpr, StringRef AttributeName) { |
| 7583 | if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) |
| 7584 | return FunctionEffectMode::Dependent; |
| 7585 | |
| 7586 | std::optional<llvm::APSInt> ConditionValue = |
| 7587 | CondExpr->getIntegerConstantExpr(Ctx: Context); |
| 7588 | if (!ConditionValue) { |
| 7589 | // FIXME: err_attribute_argument_type doesn't quote the attribute |
| 7590 | // name but needs to; users are inconsistent. |
| 7591 | Diag(Loc: CondExpr->getExprLoc(), DiagID: diag::err_attribute_argument_type) |
| 7592 | << AttributeName << AANT_ArgumentIntegerConstant |
| 7593 | << CondExpr->getSourceRange(); |
| 7594 | return std::nullopt; |
| 7595 | } |
| 7596 | return !ConditionValue->isZero() ? FunctionEffectMode::True |
| 7597 | : FunctionEffectMode::False; |
| 7598 | } |
| 7599 | |
| 7600 | static bool |
| 7601 | handleNonBlockingNonAllocatingTypeAttr(TypeProcessingState &TPState, |
| 7602 | ParsedAttr &PAttr, QualType &QT, |
| 7603 | FunctionTypeUnwrapper &Unwrapped) { |
| 7604 | // Delay if this is not a function type. |
| 7605 | if (!Unwrapped.isFunctionType()) |
| 7606 | return false; |
| 7607 | |
| 7608 | Sema &S = TPState.getSema(); |
| 7609 | |
| 7610 | // Require FunctionProtoType. |
| 7611 | auto *FPT = Unwrapped.get()->getAs<FunctionProtoType>(); |
| 7612 | if (FPT == nullptr) { |
| 7613 | S.Diag(Loc: PAttr.getLoc(), DiagID: diag::err_func_with_effects_no_prototype) |
| 7614 | << PAttr.getAttrName()->getName(); |
| 7615 | return true; |
| 7616 | } |
| 7617 | |
| 7618 | // Parse the new attribute. |
| 7619 | // non/blocking or non/allocating? Or conditional (computed)? |
| 7620 | bool IsNonBlocking = PAttr.getKind() == ParsedAttr::AT_NonBlocking || |
| 7621 | PAttr.getKind() == ParsedAttr::AT_Blocking; |
| 7622 | |
| 7623 | FunctionEffectMode NewMode = FunctionEffectMode::None; |
| 7624 | Expr *CondExpr = nullptr; // only valid if dependent |
| 7625 | |
| 7626 | if (PAttr.getKind() == ParsedAttr::AT_NonBlocking || |
| 7627 | PAttr.getKind() == ParsedAttr::AT_NonAllocating) { |
| 7628 | if (!PAttr.checkAtMostNumArgs(S, Num: 1)) { |
| 7629 | PAttr.setInvalid(); |
| 7630 | return true; |
| 7631 | } |
| 7632 | |
| 7633 | // Parse the condition, if any. |
| 7634 | if (PAttr.getNumArgs() == 1) { |
| 7635 | CondExpr = PAttr.getArgAsExpr(Arg: 0); |
| 7636 | std::optional<FunctionEffectMode> MaybeMode = |
| 7637 | S.ActOnEffectExpression(CondExpr, AttributeName: PAttr.getAttrName()->getName()); |
| 7638 | if (!MaybeMode) { |
| 7639 | PAttr.setInvalid(); |
| 7640 | return true; |
| 7641 | } |
| 7642 | NewMode = *MaybeMode; |
| 7643 | if (NewMode != FunctionEffectMode::Dependent) |
| 7644 | CondExpr = nullptr; |
| 7645 | } else { |
| 7646 | NewMode = FunctionEffectMode::True; |
| 7647 | } |
| 7648 | } else { |
| 7649 | // This is the `blocking` or `allocating` attribute. |
| 7650 | if (S.CheckAttrNoArgs(CurrAttr: PAttr)) { |
| 7651 | // The attribute has been marked invalid. |
| 7652 | return true; |
| 7653 | } |
| 7654 | NewMode = FunctionEffectMode::False; |
| 7655 | } |
| 7656 | |
| 7657 | const FunctionEffect::Kind FEKind = |
| 7658 | (NewMode == FunctionEffectMode::False) |
| 7659 | ? (IsNonBlocking ? FunctionEffect::Kind::Blocking |
| 7660 | : FunctionEffect::Kind::Allocating) |
| 7661 | : (IsNonBlocking ? FunctionEffect::Kind::NonBlocking |
| 7662 | : FunctionEffect::Kind::NonAllocating); |
| 7663 | const FunctionEffectWithCondition NewEC{FunctionEffect(FEKind), |
| 7664 | EffectConditionExpr(CondExpr)}; |
| 7665 | |
| 7666 | if (S.diagnoseConflictingFunctionEffect(FX: FPT->getFunctionEffects(), EC: NewEC, |
| 7667 | NewAttrLoc: PAttr.getLoc())) { |
| 7668 | PAttr.setInvalid(); |
| 7669 | return true; |
| 7670 | } |
| 7671 | |
| 7672 | // Add the effect to the FunctionProtoType. |
| 7673 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| 7674 | FunctionEffectSet FX(EPI.FunctionEffects); |
| 7675 | FunctionEffectSet::Conflicts Errs; |
| 7676 | [[maybe_unused]] bool Success = FX.insert(NewEC, Errs); |
| 7677 | assert(Success && "effect conflicts should have been diagnosed above" ); |
| 7678 | EPI.FunctionEffects = FunctionEffectsRef(FX); |
| 7679 | |
| 7680 | QualType NewType = S.Context.getFunctionType(ResultTy: FPT->getReturnType(), |
| 7681 | Args: FPT->getParamTypes(), EPI); |
| 7682 | QT = Unwrapped.wrap(S, New: NewType->getAs<FunctionType>()); |
| 7683 | return true; |
| 7684 | } |
| 7685 | |
| 7686 | static bool checkMutualExclusion(TypeProcessingState &state, |
| 7687 | const FunctionProtoType::ExtProtoInfo &EPI, |
| 7688 | ParsedAttr &Attr, |
| 7689 | AttributeCommonInfo::Kind OtherKind) { |
| 7690 | auto OtherAttr = llvm::find_if( |
| 7691 | Range&: state.getCurrentAttributes(), |
| 7692 | P: [OtherKind](const ParsedAttr &A) { return A.getKind() == OtherKind; }); |
| 7693 | if (OtherAttr == state.getCurrentAttributes().end() || OtherAttr->isInvalid()) |
| 7694 | return false; |
| 7695 | |
| 7696 | Sema &S = state.getSema(); |
| 7697 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attributes_are_not_compatible) |
| 7698 | << *OtherAttr << Attr |
| 7699 | << (OtherAttr->isRegularKeywordAttribute() || |
| 7700 | Attr.isRegularKeywordAttribute()); |
| 7701 | S.Diag(Loc: OtherAttr->getLoc(), DiagID: diag::note_conflicting_attribute); |
| 7702 | Attr.setInvalid(); |
| 7703 | return true; |
| 7704 | } |
| 7705 | |
| 7706 | static bool handleArmAgnosticAttribute(Sema &S, |
| 7707 | FunctionProtoType::ExtProtoInfo &EPI, |
| 7708 | ParsedAttr &Attr) { |
| 7709 | if (!Attr.getNumArgs()) { |
| 7710 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_missing_arm_state) << Attr; |
| 7711 | Attr.setInvalid(); |
| 7712 | return true; |
| 7713 | } |
| 7714 | |
| 7715 | for (unsigned I = 0; I < Attr.getNumArgs(); ++I) { |
| 7716 | StringRef StateName; |
| 7717 | SourceLocation LiteralLoc; |
| 7718 | if (!S.checkStringLiteralArgumentAttr(Attr, ArgNum: I, Str&: StateName, ArgLocation: &LiteralLoc)) |
| 7719 | return true; |
| 7720 | |
| 7721 | if (StateName != "sme_za_state" ) { |
| 7722 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_unknown_arm_state) << StateName; |
| 7723 | Attr.setInvalid(); |
| 7724 | return true; |
| 7725 | } |
| 7726 | |
| 7727 | if (EPI.AArch64SMEAttributes & |
| 7728 | (FunctionType::SME_ZAMask | FunctionType::SME_ZT0Mask)) { |
| 7729 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_conflicting_attributes_arm_agnostic); |
| 7730 | Attr.setInvalid(); |
| 7731 | return true; |
| 7732 | } |
| 7733 | |
| 7734 | EPI.setArmSMEAttribute(Kind: FunctionType::SME_AgnosticZAStateMask); |
| 7735 | } |
| 7736 | |
| 7737 | return false; |
| 7738 | } |
| 7739 | |
| 7740 | static bool handleArmStateAttribute(Sema &S, |
| 7741 | FunctionProtoType::ExtProtoInfo &EPI, |
| 7742 | ParsedAttr &Attr, |
| 7743 | FunctionType::ArmStateValue State) { |
| 7744 | if (!Attr.getNumArgs()) { |
| 7745 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_missing_arm_state) << Attr; |
| 7746 | Attr.setInvalid(); |
| 7747 | return true; |
| 7748 | } |
| 7749 | |
| 7750 | for (unsigned I = 0; I < Attr.getNumArgs(); ++I) { |
| 7751 | StringRef StateName; |
| 7752 | SourceLocation LiteralLoc; |
| 7753 | if (!S.checkStringLiteralArgumentAttr(Attr, ArgNum: I, Str&: StateName, ArgLocation: &LiteralLoc)) |
| 7754 | return true; |
| 7755 | |
| 7756 | unsigned Shift; |
| 7757 | FunctionType::ArmStateValue ExistingState; |
| 7758 | if (StateName == "za" ) { |
| 7759 | Shift = FunctionType::SME_ZAShift; |
| 7760 | ExistingState = FunctionType::getArmZAState(AttrBits: EPI.AArch64SMEAttributes); |
| 7761 | } else if (StateName == "zt0" ) { |
| 7762 | Shift = FunctionType::SME_ZT0Shift; |
| 7763 | ExistingState = FunctionType::getArmZT0State(AttrBits: EPI.AArch64SMEAttributes); |
| 7764 | } else { |
| 7765 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_unknown_arm_state) << StateName; |
| 7766 | Attr.setInvalid(); |
| 7767 | return true; |
| 7768 | } |
| 7769 | |
| 7770 | if (EPI.AArch64SMEAttributes & FunctionType::SME_AgnosticZAStateMask) { |
| 7771 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_conflicting_attributes_arm_agnostic); |
| 7772 | Attr.setInvalid(); |
| 7773 | return true; |
| 7774 | } |
| 7775 | |
| 7776 | // __arm_in(S), __arm_out(S), __arm_inout(S) and __arm_preserves(S) |
| 7777 | // are all mutually exclusive for the same S, so check if there are |
| 7778 | // conflicting attributes. |
| 7779 | if (ExistingState != FunctionType::ARM_None && ExistingState != State) { |
| 7780 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_conflicting_attributes_arm_state) |
| 7781 | << StateName; |
| 7782 | Attr.setInvalid(); |
| 7783 | return true; |
| 7784 | } |
| 7785 | |
| 7786 | EPI.setArmSMEAttribute( |
| 7787 | Kind: (FunctionType::AArch64SMETypeAttributes)((State << Shift))); |
| 7788 | } |
| 7789 | return false; |
| 7790 | } |
| 7791 | |
| 7792 | /// Process an individual function attribute. Returns true to |
| 7793 | /// indicate that the attribute was handled, false if it wasn't. |
| 7794 | static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr, |
| 7795 | QualType &type, CUDAFunctionTarget CFT) { |
| 7796 | Sema &S = state.getSema(); |
| 7797 | |
| 7798 | FunctionTypeUnwrapper unwrapped(S, type); |
| 7799 | |
| 7800 | if (attr.getKind() == ParsedAttr::AT_NoReturn) { |
| 7801 | if (S.CheckAttrNoArgs(CurrAttr: attr)) |
| 7802 | return true; |
| 7803 | |
| 7804 | // Delay if this is not a function type. |
| 7805 | if (!unwrapped.isFunctionType()) |
| 7806 | return false; |
| 7807 | |
| 7808 | // Otherwise we can process right away. |
| 7809 | FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(noReturn: true); |
| 7810 | type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI)); |
| 7811 | return true; |
| 7812 | } |
| 7813 | |
| 7814 | if (attr.getKind() == ParsedAttr::AT_CFIUncheckedCallee) { |
| 7815 | // Delay if this is not a prototyped function type. |
| 7816 | if (!unwrapped.isFunctionType()) |
| 7817 | return false; |
| 7818 | |
| 7819 | if (!unwrapped.get()->isFunctionProtoType()) { |
| 7820 | S.Diag(Loc: attr.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
| 7821 | << attr << attr.isRegularKeywordAttribute() |
| 7822 | << ExpectedFunctionWithProtoType; |
| 7823 | attr.setInvalid(); |
| 7824 | return true; |
| 7825 | } |
| 7826 | |
| 7827 | const auto *FPT = unwrapped.get()->getAs<FunctionProtoType>(); |
| 7828 | type = S.Context.getFunctionType( |
| 7829 | ResultTy: FPT->getReturnType(), Args: FPT->getParamTypes(), |
| 7830 | EPI: FPT->getExtProtoInfo().withCFIUncheckedCallee(CFIUncheckedCallee: true)); |
| 7831 | type = unwrapped.wrap(S, New: cast<FunctionType>(Val: type.getTypePtr())); |
| 7832 | return true; |
| 7833 | } |
| 7834 | |
| 7835 | if (attr.getKind() == ParsedAttr::AT_CmseNSCall) { |
| 7836 | // Delay if this is not a function type. |
| 7837 | if (!unwrapped.isFunctionType()) |
| 7838 | return false; |
| 7839 | |
| 7840 | // Ignore if we don't have CMSE enabled. |
| 7841 | if (!S.getLangOpts().Cmse) { |
| 7842 | S.Diag(Loc: attr.getLoc(), DiagID: diag::warn_attribute_ignored) << attr; |
| 7843 | attr.setInvalid(); |
| 7844 | return true; |
| 7845 | } |
| 7846 | |
| 7847 | // Otherwise we can process right away. |
| 7848 | FunctionType::ExtInfo EI = |
| 7849 | unwrapped.get()->getExtInfo().withCmseNSCall(cmseNSCall: true); |
| 7850 | type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI)); |
| 7851 | return true; |
| 7852 | } |
| 7853 | |
| 7854 | // ns_returns_retained is not always a type attribute, but if we got |
| 7855 | // here, we're treating it as one right now. |
| 7856 | if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) { |
| 7857 | if (attr.getNumArgs()) return true; |
| 7858 | |
| 7859 | // Delay if this is not a function type. |
| 7860 | if (!unwrapped.isFunctionType()) |
| 7861 | return false; |
| 7862 | |
| 7863 | // Check whether the return type is reasonable. |
| 7864 | if (S.ObjC().checkNSReturnsRetainedReturnType( |
| 7865 | loc: attr.getLoc(), type: unwrapped.get()->getReturnType())) |
| 7866 | return true; |
| 7867 | |
| 7868 | // Only actually change the underlying type in ARC builds. |
| 7869 | QualType origType = type; |
| 7870 | if (state.getSema().getLangOpts().ObjCAutoRefCount) { |
| 7871 | FunctionType::ExtInfo EI |
| 7872 | = unwrapped.get()->getExtInfo().withProducesResult(producesResult: true); |
| 7873 | type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI)); |
| 7874 | } |
| 7875 | type = state.getAttributedType( |
| 7876 | A: createSimpleAttr<NSReturnsRetainedAttr>(Ctx&: S.Context, AL&: attr), |
| 7877 | ModifiedType: origType, EquivType: type); |
| 7878 | return true; |
| 7879 | } |
| 7880 | |
| 7881 | if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) { |
| 7882 | if (S.CheckAttrTarget(CurrAttr: attr) || S.CheckAttrNoArgs(CurrAttr: attr)) |
| 7883 | return true; |
| 7884 | |
| 7885 | // Delay if this is not a function type. |
| 7886 | if (!unwrapped.isFunctionType()) |
| 7887 | return false; |
| 7888 | |
| 7889 | FunctionType::ExtInfo EI = |
| 7890 | unwrapped.get()->getExtInfo().withNoCallerSavedRegs(noCallerSavedRegs: true); |
| 7891 | type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI)); |
| 7892 | return true; |
| 7893 | } |
| 7894 | |
| 7895 | if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) { |
| 7896 | if (!S.getLangOpts().CFProtectionBranch) { |
| 7897 | S.Diag(Loc: attr.getLoc(), DiagID: diag::warn_nocf_check_attribute_ignored); |
| 7898 | attr.setInvalid(); |
| 7899 | return true; |
| 7900 | } |
| 7901 | |
| 7902 | if (S.CheckAttrTarget(CurrAttr: attr) || S.CheckAttrNoArgs(CurrAttr: attr)) |
| 7903 | return true; |
| 7904 | |
| 7905 | // If this is not a function type, warning will be asserted by subject |
| 7906 | // check. |
| 7907 | if (!unwrapped.isFunctionType()) |
| 7908 | return true; |
| 7909 | |
| 7910 | FunctionType::ExtInfo EI = |
| 7911 | unwrapped.get()->getExtInfo().withNoCfCheck(noCfCheck: true); |
| 7912 | type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI)); |
| 7913 | return true; |
| 7914 | } |
| 7915 | |
| 7916 | if (attr.getKind() == ParsedAttr::AT_Regparm) { |
| 7917 | unsigned value; |
| 7918 | if (S.CheckRegparmAttr(attr, value)) |
| 7919 | return true; |
| 7920 | |
| 7921 | // Delay if this is not a function type. |
| 7922 | if (!unwrapped.isFunctionType()) |
| 7923 | return false; |
| 7924 | |
| 7925 | // Diagnose regparm with fastcall. |
| 7926 | const FunctionType *fn = unwrapped.get(); |
| 7927 | CallingConv CC = fn->getCallConv(); |
| 7928 | if (CC == CC_X86FastCall) { |
| 7929 | S.Diag(Loc: attr.getLoc(), DiagID: diag::err_attributes_are_not_compatible) |
| 7930 | << FunctionType::getNameForCallConv(CC) << "regparm" |
| 7931 | << attr.isRegularKeywordAttribute(); |
| 7932 | attr.setInvalid(); |
| 7933 | return true; |
| 7934 | } |
| 7935 | |
| 7936 | FunctionType::ExtInfo EI = |
| 7937 | unwrapped.get()->getExtInfo().withRegParm(RegParm: value); |
| 7938 | type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI)); |
| 7939 | return true; |
| 7940 | } |
| 7941 | |
| 7942 | if (attr.getKind() == ParsedAttr::AT_ArmStreaming || |
| 7943 | attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible || |
| 7944 | attr.getKind() == ParsedAttr::AT_ArmPreserves || |
| 7945 | attr.getKind() == ParsedAttr::AT_ArmIn || |
| 7946 | attr.getKind() == ParsedAttr::AT_ArmOut || |
| 7947 | attr.getKind() == ParsedAttr::AT_ArmInOut || |
| 7948 | attr.getKind() == ParsedAttr::AT_ArmAgnostic) { |
| 7949 | if (S.CheckAttrTarget(CurrAttr: attr)) |
| 7950 | return true; |
| 7951 | |
| 7952 | if (attr.getKind() == ParsedAttr::AT_ArmStreaming || |
| 7953 | attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible) |
| 7954 | if (S.CheckAttrNoArgs(CurrAttr: attr)) |
| 7955 | return true; |
| 7956 | |
| 7957 | if (!unwrapped.isFunctionType()) |
| 7958 | return false; |
| 7959 | |
| 7960 | const auto *FnTy = unwrapped.get()->getAs<FunctionProtoType>(); |
| 7961 | if (!FnTy) { |
| 7962 | // SME ACLE attributes are not supported on K&R-style unprototyped C |
| 7963 | // functions. |
| 7964 | S.Diag(Loc: attr.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
| 7965 | << attr << attr.isRegularKeywordAttribute() |
| 7966 | << ExpectedFunctionWithProtoType; |
| 7967 | attr.setInvalid(); |
| 7968 | return false; |
| 7969 | } |
| 7970 | |
| 7971 | FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo(); |
| 7972 | switch (attr.getKind()) { |
| 7973 | case ParsedAttr::AT_ArmStreaming: |
| 7974 | if (checkMutualExclusion(state, EPI, Attr&: attr, |
| 7975 | OtherKind: ParsedAttr::AT_ArmStreamingCompatible)) |
| 7976 | return true; |
| 7977 | EPI.setArmSMEAttribute(Kind: FunctionType::SME_PStateSMEnabledMask); |
| 7978 | break; |
| 7979 | case ParsedAttr::AT_ArmStreamingCompatible: |
| 7980 | if (checkMutualExclusion(state, EPI, Attr&: attr, OtherKind: ParsedAttr::AT_ArmStreaming)) |
| 7981 | return true; |
| 7982 | EPI.setArmSMEAttribute(Kind: FunctionType::SME_PStateSMCompatibleMask); |
| 7983 | break; |
| 7984 | case ParsedAttr::AT_ArmPreserves: |
| 7985 | if (handleArmStateAttribute(S, EPI, Attr&: attr, State: FunctionType::ARM_Preserves)) |
| 7986 | return true; |
| 7987 | break; |
| 7988 | case ParsedAttr::AT_ArmIn: |
| 7989 | if (handleArmStateAttribute(S, EPI, Attr&: attr, State: FunctionType::ARM_In)) |
| 7990 | return true; |
| 7991 | break; |
| 7992 | case ParsedAttr::AT_ArmOut: |
| 7993 | if (handleArmStateAttribute(S, EPI, Attr&: attr, State: FunctionType::ARM_Out)) |
| 7994 | return true; |
| 7995 | break; |
| 7996 | case ParsedAttr::AT_ArmInOut: |
| 7997 | if (handleArmStateAttribute(S, EPI, Attr&: attr, State: FunctionType::ARM_InOut)) |
| 7998 | return true; |
| 7999 | break; |
| 8000 | case ParsedAttr::AT_ArmAgnostic: |
| 8001 | if (handleArmAgnosticAttribute(S, EPI, Attr&: attr)) |
| 8002 | return true; |
| 8003 | break; |
| 8004 | default: |
| 8005 | llvm_unreachable("Unsupported attribute" ); |
| 8006 | } |
| 8007 | |
| 8008 | QualType newtype = S.Context.getFunctionType(ResultTy: FnTy->getReturnType(), |
| 8009 | Args: FnTy->getParamTypes(), EPI); |
| 8010 | type = unwrapped.wrap(S, New: newtype->getAs<FunctionType>()); |
| 8011 | return true; |
| 8012 | } |
| 8013 | |
| 8014 | if (attr.getKind() == ParsedAttr::AT_NoThrow) { |
| 8015 | // Delay if this is not a function type. |
| 8016 | if (!unwrapped.isFunctionType()) |
| 8017 | return false; |
| 8018 | |
| 8019 | if (S.CheckAttrNoArgs(CurrAttr: attr)) { |
| 8020 | attr.setInvalid(); |
| 8021 | return true; |
| 8022 | } |
| 8023 | |
| 8024 | // Otherwise we can process right away. |
| 8025 | auto *Proto = unwrapped.get()->castAs<FunctionProtoType>(); |
| 8026 | |
| 8027 | // MSVC ignores nothrow if it is in conflict with an explicit exception |
| 8028 | // specification. |
| 8029 | if (Proto->hasExceptionSpec()) { |
| 8030 | switch (Proto->getExceptionSpecType()) { |
| 8031 | case EST_None: |
| 8032 | llvm_unreachable("This doesn't have an exception spec!" ); |
| 8033 | |
| 8034 | case EST_DynamicNone: |
| 8035 | case EST_BasicNoexcept: |
| 8036 | case EST_NoexceptTrue: |
| 8037 | case EST_NoThrow: |
| 8038 | // Exception spec doesn't conflict with nothrow, so don't warn. |
| 8039 | [[fallthrough]]; |
| 8040 | case EST_Unparsed: |
| 8041 | case EST_Uninstantiated: |
| 8042 | case EST_DependentNoexcept: |
| 8043 | case EST_Unevaluated: |
| 8044 | // We don't have enough information to properly determine if there is a |
| 8045 | // conflict, so suppress the warning. |
| 8046 | break; |
| 8047 | case EST_Dynamic: |
| 8048 | case EST_MSAny: |
| 8049 | case EST_NoexceptFalse: |
| 8050 | S.Diag(Loc: attr.getLoc(), DiagID: diag::warn_nothrow_attribute_ignored); |
| 8051 | break; |
| 8052 | } |
| 8053 | return true; |
| 8054 | } |
| 8055 | |
| 8056 | type = unwrapped.wrap( |
| 8057 | S, New: S.Context |
| 8058 | .getFunctionTypeWithExceptionSpec( |
| 8059 | Orig: QualType{Proto, 0}, |
| 8060 | ESI: FunctionProtoType::ExceptionSpecInfo{EST_NoThrow}) |
| 8061 | ->getAs<FunctionType>()); |
| 8062 | return true; |
| 8063 | } |
| 8064 | |
| 8065 | if (attr.getKind() == ParsedAttr::AT_NonBlocking || |
| 8066 | attr.getKind() == ParsedAttr::AT_NonAllocating || |
| 8067 | attr.getKind() == ParsedAttr::AT_Blocking || |
| 8068 | attr.getKind() == ParsedAttr::AT_Allocating) { |
| 8069 | return handleNonBlockingNonAllocatingTypeAttr(TPState&: state, PAttr&: attr, QT&: type, Unwrapped&: unwrapped); |
| 8070 | } |
| 8071 | |
| 8072 | // Delay if the type didn't work out to a function. |
| 8073 | if (!unwrapped.isFunctionType()) return false; |
| 8074 | |
| 8075 | // Otherwise, a calling convention. |
| 8076 | CallingConv CC; |
| 8077 | if (S.CheckCallingConvAttr(attr, CC, /*FunctionDecl=*/FD: nullptr, CFT)) |
| 8078 | return true; |
| 8079 | |
| 8080 | const FunctionType *fn = unwrapped.get(); |
| 8081 | CallingConv CCOld = fn->getCallConv(); |
| 8082 | Attr *CCAttr = getCCTypeAttr(Ctx&: S.Context, Attr&: attr); |
| 8083 | |
| 8084 | if (CCOld != CC) { |
| 8085 | // Error out on when there's already an attribute on the type |
| 8086 | // and the CCs don't match. |
| 8087 | if (S.getCallingConvAttributedType(T: type)) { |
| 8088 | S.Diag(Loc: attr.getLoc(), DiagID: diag::err_attributes_are_not_compatible) |
| 8089 | << FunctionType::getNameForCallConv(CC) |
| 8090 | << FunctionType::getNameForCallConv(CC: CCOld) |
| 8091 | << attr.isRegularKeywordAttribute(); |
| 8092 | attr.setInvalid(); |
| 8093 | return true; |
| 8094 | } |
| 8095 | } |
| 8096 | |
| 8097 | // Diagnose use of variadic functions with calling conventions that |
| 8098 | // don't support them (e.g. because they're callee-cleanup). |
| 8099 | // We delay warning about this on unprototyped function declarations |
| 8100 | // until after redeclaration checking, just in case we pick up a |
| 8101 | // prototype that way. And apparently we also "delay" warning about |
| 8102 | // unprototyped function types in general, despite not necessarily having |
| 8103 | // much ability to diagnose it later. |
| 8104 | if (!supportsVariadicCall(CC)) { |
| 8105 | const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(Val: fn); |
| 8106 | if (FnP && FnP->isVariadic()) { |
| 8107 | // stdcall and fastcall are ignored with a warning for GCC and MS |
| 8108 | // compatibility. |
| 8109 | if (CC == CC_X86StdCall || CC == CC_X86FastCall) |
| 8110 | return S.Diag(Loc: attr.getLoc(), DiagID: diag::warn_cconv_unsupported) |
| 8111 | << FunctionType::getNameForCallConv(CC) |
| 8112 | << (int)Sema::CallingConventionIgnoredReason::VariadicFunction; |
| 8113 | |
| 8114 | attr.setInvalid(); |
| 8115 | return S.Diag(Loc: attr.getLoc(), DiagID: diag::err_cconv_varargs) |
| 8116 | << FunctionType::getNameForCallConv(CC); |
| 8117 | } |
| 8118 | } |
| 8119 | |
| 8120 | // Also diagnose fastcall with regparm. |
| 8121 | if (CC == CC_X86FastCall && fn->getHasRegParm()) { |
| 8122 | S.Diag(Loc: attr.getLoc(), DiagID: diag::err_attributes_are_not_compatible) |
| 8123 | << "regparm" << FunctionType::getNameForCallConv(CC: CC_X86FastCall) |
| 8124 | << attr.isRegularKeywordAttribute(); |
| 8125 | attr.setInvalid(); |
| 8126 | return true; |
| 8127 | } |
| 8128 | |
| 8129 | // Modify the CC from the wrapped function type, wrap it all back, and then |
| 8130 | // wrap the whole thing in an AttributedType as written. The modified type |
| 8131 | // might have a different CC if we ignored the attribute. |
| 8132 | QualType Equivalent; |
| 8133 | if (CCOld == CC) { |
| 8134 | Equivalent = type; |
| 8135 | } else { |
| 8136 | auto EI = unwrapped.get()->getExtInfo().withCallingConv(cc: CC); |
| 8137 | Equivalent = |
| 8138 | unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI)); |
| 8139 | } |
| 8140 | type = state.getAttributedType(A: CCAttr, ModifiedType: type, EquivType: Equivalent); |
| 8141 | return true; |
| 8142 | } |
| 8143 | |
| 8144 | bool Sema::hasExplicitCallingConv(QualType T) { |
| 8145 | const AttributedType *AT; |
| 8146 | |
| 8147 | // Stop if we'd be stripping off a typedef sugar node to reach the |
| 8148 | // AttributedType. |
| 8149 | while ((AT = T->getAs<AttributedType>()) && |
| 8150 | AT->getAs<TypedefType>() == T->getAs<TypedefType>()) { |
| 8151 | if (AT->isCallingConv()) |
| 8152 | return true; |
| 8153 | T = AT->getModifiedType(); |
| 8154 | } |
| 8155 | return false; |
| 8156 | } |
| 8157 | |
| 8158 | void Sema::adjustMemberFunctionCC(QualType &T, bool HasThisPointer, |
| 8159 | bool IsCtorOrDtor, SourceLocation Loc) { |
| 8160 | FunctionTypeUnwrapper Unwrapped(*this, T); |
| 8161 | const FunctionType *FT = Unwrapped.get(); |
| 8162 | bool IsVariadic = (isa<FunctionProtoType>(Val: FT) && |
| 8163 | cast<FunctionProtoType>(Val: FT)->isVariadic()); |
| 8164 | CallingConv CurCC = FT->getCallConv(); |
| 8165 | CallingConv ToCC = |
| 8166 | Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod: HasThisPointer); |
| 8167 | |
| 8168 | if (CurCC == ToCC) |
| 8169 | return; |
| 8170 | |
| 8171 | // MS compiler ignores explicit calling convention attributes on structors. We |
| 8172 | // should do the same. |
| 8173 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) { |
| 8174 | // Issue a warning on ignored calling convention -- except of __stdcall. |
| 8175 | // Again, this is what MS compiler does. |
| 8176 | if (CurCC != CC_X86StdCall) |
| 8177 | Diag(Loc, DiagID: diag::warn_cconv_unsupported) |
| 8178 | << FunctionType::getNameForCallConv(CC: CurCC) |
| 8179 | << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor; |
| 8180 | // Default adjustment. |
| 8181 | } else { |
| 8182 | // Only adjust types with the default convention. For example, on Windows |
| 8183 | // we should adjust a __cdecl type to __thiscall for instance methods, and a |
| 8184 | // __thiscall type to __cdecl for static methods. |
| 8185 | CallingConv DefaultCC = |
| 8186 | Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod: !HasThisPointer); |
| 8187 | |
| 8188 | if (CurCC != DefaultCC) |
| 8189 | return; |
| 8190 | |
| 8191 | if (hasExplicitCallingConv(T)) |
| 8192 | return; |
| 8193 | } |
| 8194 | |
| 8195 | FT = Context.adjustFunctionType(Fn: FT, EInfo: FT->getExtInfo().withCallingConv(cc: ToCC)); |
| 8196 | QualType Wrapped = Unwrapped.wrap(S&: *this, New: FT); |
| 8197 | T = Context.getAdjustedType(Orig: T, New: Wrapped); |
| 8198 | } |
| 8199 | |
| 8200 | /// HandleVectorSizeAttribute - this attribute is only applicable to integral |
| 8201 | /// and float scalars, although arrays, pointers, and function return values are |
| 8202 | /// allowed in conjunction with this construct. Aggregates with this attribute |
| 8203 | /// are invalid, even if they are of the same size as a corresponding scalar. |
| 8204 | /// The raw attribute should contain precisely 1 argument, the vector size for |
| 8205 | /// the variable, measured in bytes. If curType and rawAttr are well formed, |
| 8206 | /// this routine will return a new vector type. |
| 8207 | static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr, |
| 8208 | Sema &S) { |
| 8209 | // Check the attribute arguments. |
| 8210 | if (Attr.getNumArgs() != 1) { |
| 8211 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << Attr |
| 8212 | << 1; |
| 8213 | Attr.setInvalid(); |
| 8214 | return; |
| 8215 | } |
| 8216 | |
| 8217 | Expr *SizeExpr = Attr.getArgAsExpr(Arg: 0); |
| 8218 | QualType T = S.BuildVectorType(CurType, SizeExpr, AttrLoc: Attr.getLoc()); |
| 8219 | if (!T.isNull()) |
| 8220 | CurType = T; |
| 8221 | else |
| 8222 | Attr.setInvalid(); |
| 8223 | } |
| 8224 | |
| 8225 | /// Process the OpenCL-like ext_vector_type attribute when it occurs on |
| 8226 | /// a type. |
| 8227 | static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr, |
| 8228 | Sema &S) { |
| 8229 | // check the attribute arguments. |
| 8230 | if (Attr.getNumArgs() != 1) { |
| 8231 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << Attr |
| 8232 | << 1; |
| 8233 | return; |
| 8234 | } |
| 8235 | |
| 8236 | Expr *SizeExpr = Attr.getArgAsExpr(Arg: 0); |
| 8237 | QualType T = S.BuildExtVectorType(T: CurType, ArraySize: SizeExpr, AttrLoc: Attr.getLoc()); |
| 8238 | if (!T.isNull()) |
| 8239 | CurType = T; |
| 8240 | } |
| 8241 | |
| 8242 | static bool isPermittedNeonBaseType(QualType &Ty, VectorKind VecKind, Sema &S) { |
| 8243 | const BuiltinType *BTy = Ty->getAs<BuiltinType>(); |
| 8244 | if (!BTy) |
| 8245 | return false; |
| 8246 | |
| 8247 | llvm::Triple Triple = S.Context.getTargetInfo().getTriple(); |
| 8248 | |
| 8249 | // Signed poly is mathematically wrong, but has been baked into some ABIs by |
| 8250 | // now. |
| 8251 | bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 || |
| 8252 | Triple.getArch() == llvm::Triple::aarch64_32 || |
| 8253 | Triple.getArch() == llvm::Triple::aarch64_be; |
| 8254 | if (VecKind == VectorKind::NeonPoly) { |
| 8255 | if (IsPolyUnsigned) { |
| 8256 | // AArch64 polynomial vectors are unsigned. |
| 8257 | return BTy->getKind() == BuiltinType::UChar || |
| 8258 | BTy->getKind() == BuiltinType::UShort || |
| 8259 | BTy->getKind() == BuiltinType::ULong || |
| 8260 | BTy->getKind() == BuiltinType::ULongLong; |
| 8261 | } else { |
| 8262 | // AArch32 polynomial vectors are signed. |
| 8263 | return BTy->getKind() == BuiltinType::SChar || |
| 8264 | BTy->getKind() == BuiltinType::Short || |
| 8265 | BTy->getKind() == BuiltinType::LongLong; |
| 8266 | } |
| 8267 | } |
| 8268 | |
| 8269 | // Non-polynomial vector types: the usual suspects are allowed, as well as |
| 8270 | // float64_t on AArch64. |
| 8271 | if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) && |
| 8272 | BTy->getKind() == BuiltinType::Double) |
| 8273 | return true; |
| 8274 | |
| 8275 | return BTy->getKind() == BuiltinType::SChar || |
| 8276 | BTy->getKind() == BuiltinType::UChar || |
| 8277 | BTy->getKind() == BuiltinType::Short || |
| 8278 | BTy->getKind() == BuiltinType::UShort || |
| 8279 | BTy->getKind() == BuiltinType::Int || |
| 8280 | BTy->getKind() == BuiltinType::UInt || |
| 8281 | BTy->getKind() == BuiltinType::Long || |
| 8282 | BTy->getKind() == BuiltinType::ULong || |
| 8283 | BTy->getKind() == BuiltinType::LongLong || |
| 8284 | BTy->getKind() == BuiltinType::ULongLong || |
| 8285 | BTy->getKind() == BuiltinType::Float || |
| 8286 | BTy->getKind() == BuiltinType::Half || |
| 8287 | BTy->getKind() == BuiltinType::BFloat16 || |
| 8288 | BTy->getKind() == BuiltinType::MFloat8; |
| 8289 | } |
| 8290 | |
| 8291 | static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr, |
| 8292 | llvm::APSInt &Result) { |
| 8293 | const auto *AttrExpr = Attr.getArgAsExpr(Arg: 0); |
| 8294 | if (!AttrExpr->isTypeDependent()) { |
| 8295 | if (std::optional<llvm::APSInt> Res = |
| 8296 | AttrExpr->getIntegerConstantExpr(Ctx: S.Context)) { |
| 8297 | Result = *Res; |
| 8298 | return true; |
| 8299 | } |
| 8300 | } |
| 8301 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_argument_type) |
| 8302 | << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange(); |
| 8303 | Attr.setInvalid(); |
| 8304 | return false; |
| 8305 | } |
| 8306 | |
| 8307 | /// HandleNeonVectorTypeAttr - The "neon_vector_type" and |
| 8308 | /// "neon_polyvector_type" attributes are used to create vector types that |
| 8309 | /// are mangled according to ARM's ABI. Otherwise, these types are identical |
| 8310 | /// to those created with the "vector_size" attribute. Unlike "vector_size" |
| 8311 | /// the argument to these Neon attributes is the number of vector elements, |
| 8312 | /// not the vector size in bytes. The vector width and element type must |
| 8313 | /// match one of the standard Neon vector types. |
| 8314 | static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr, |
| 8315 | Sema &S, VectorKind VecKind) { |
| 8316 | bool IsTargetOffloading = S.getLangOpts().isTargetDevice(); |
| 8317 | |
| 8318 | // Target must have NEON (or MVE, whose vectors are similar enough |
| 8319 | // not to need a separate attribute) |
| 8320 | if (!S.Context.getTargetInfo().hasFeature(Feature: "mve" ) && |
| 8321 | VecKind == VectorKind::Neon && |
| 8322 | S.Context.getTargetInfo().getTriple().isArmMClass()) { |
| 8323 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_unsupported_m_profile) |
| 8324 | << Attr << "'mve'" ; |
| 8325 | Attr.setInvalid(); |
| 8326 | return; |
| 8327 | } |
| 8328 | if (!S.Context.getTargetInfo().hasFeature(Feature: "mve" ) && |
| 8329 | VecKind == VectorKind::NeonPoly && |
| 8330 | S.Context.getTargetInfo().getTriple().isArmMClass()) { |
| 8331 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_unsupported_m_profile) |
| 8332 | << Attr << "'mve'" ; |
| 8333 | Attr.setInvalid(); |
| 8334 | return; |
| 8335 | } |
| 8336 | |
| 8337 | // Check the attribute arguments. |
| 8338 | if (Attr.getNumArgs() != 1) { |
| 8339 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) |
| 8340 | << Attr << 1; |
| 8341 | Attr.setInvalid(); |
| 8342 | return; |
| 8343 | } |
| 8344 | // The number of elements must be an ICE. |
| 8345 | llvm::APSInt numEltsInt(32); |
| 8346 | if (!verifyValidIntegerConstantExpr(S, Attr, Result&: numEltsInt)) |
| 8347 | return; |
| 8348 | |
| 8349 | // Only certain element types are supported for Neon vectors. |
| 8350 | if (!isPermittedNeonBaseType(Ty&: CurType, VecKind, S) && !IsTargetOffloading) { |
| 8351 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_invalid_vector_type) << CurType; |
| 8352 | Attr.setInvalid(); |
| 8353 | return; |
| 8354 | } |
| 8355 | |
| 8356 | // The total size of the vector must be 64 or 128 bits. |
| 8357 | unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(T: CurType)); |
| 8358 | unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue()); |
| 8359 | unsigned vecSize = typeSize * numElts; |
| 8360 | if (vecSize != 64 && vecSize != 128) { |
| 8361 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_bad_neon_vector_size) << CurType; |
| 8362 | Attr.setInvalid(); |
| 8363 | return; |
| 8364 | } |
| 8365 | |
| 8366 | CurType = S.Context.getVectorType(VectorType: CurType, NumElts: numElts, VecKind); |
| 8367 | } |
| 8368 | |
| 8369 | /// Handle the __ptrauth qualifier. |
| 8370 | static void HandlePtrAuthQualifier(ASTContext &Ctx, QualType &T, |
| 8371 | const ParsedAttr &Attr, Sema &S) { |
| 8372 | |
| 8373 | assert((Attr.getNumArgs() > 0 && Attr.getNumArgs() <= 3) && |
| 8374 | "__ptrauth qualifier takes between 1 and 3 arguments" ); |
| 8375 | Expr *KeyArg = Attr.getArgAsExpr(Arg: 0); |
| 8376 | Expr *IsAddressDiscriminatedArg = |
| 8377 | Attr.getNumArgs() >= 2 ? Attr.getArgAsExpr(Arg: 1) : nullptr; |
| 8378 | Expr * = |
| 8379 | Attr.getNumArgs() >= 3 ? Attr.getArgAsExpr(Arg: 2) : nullptr; |
| 8380 | |
| 8381 | unsigned Key; |
| 8382 | if (S.checkConstantPointerAuthKey(keyExpr: KeyArg, key&: Key)) { |
| 8383 | Attr.setInvalid(); |
| 8384 | return; |
| 8385 | } |
| 8386 | assert(Key <= PointerAuthQualifier::MaxKey && "ptrauth key is out of range" ); |
| 8387 | |
| 8388 | bool IsInvalid = false; |
| 8389 | unsigned IsAddressDiscriminated, ; |
| 8390 | IsInvalid |= !S.checkPointerAuthDiscriminatorArg(Arg: IsAddressDiscriminatedArg, |
| 8391 | Kind: PointerAuthDiscArgKind::Addr, |
| 8392 | IntVal&: IsAddressDiscriminated); |
| 8393 | IsInvalid |= !S.checkPointerAuthDiscriminatorArg( |
| 8394 | Arg: ExtraDiscriminatorArg, Kind: PointerAuthDiscArgKind::Extra, IntVal&: ExtraDiscriminator); |
| 8395 | |
| 8396 | if (IsInvalid) { |
| 8397 | Attr.setInvalid(); |
| 8398 | return; |
| 8399 | } |
| 8400 | |
| 8401 | if (!T->isSignableType(Ctx) && !T->isDependentType()) { |
| 8402 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_ptrauth_qualifier_invalid_target) << T; |
| 8403 | Attr.setInvalid(); |
| 8404 | return; |
| 8405 | } |
| 8406 | |
| 8407 | if (T.getPointerAuth()) { |
| 8408 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_ptrauth_qualifier_redundant) << T; |
| 8409 | Attr.setInvalid(); |
| 8410 | return; |
| 8411 | } |
| 8412 | |
| 8413 | if (!S.getLangOpts().PointerAuthIntrinsics) { |
| 8414 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_ptrauth_disabled) << Attr.getRange(); |
| 8415 | Attr.setInvalid(); |
| 8416 | return; |
| 8417 | } |
| 8418 | |
| 8419 | assert((!IsAddressDiscriminatedArg || IsAddressDiscriminated <= 1) && |
| 8420 | "address discriminator arg should be either 0 or 1" ); |
| 8421 | PointerAuthQualifier Qual = PointerAuthQualifier::Create( |
| 8422 | Key, IsAddressDiscriminated, ExtraDiscriminator, |
| 8423 | AuthenticationMode: PointerAuthenticationMode::SignAndAuth, /*IsIsaPointer=*/false, |
| 8424 | /*AuthenticatesNullValues=*/false); |
| 8425 | T = S.Context.getPointerAuthType(Ty: T, PointerAuth: Qual); |
| 8426 | } |
| 8427 | |
| 8428 | /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is |
| 8429 | /// used to create fixed-length versions of sizeless SVE types defined by |
| 8430 | /// the ACLE, such as svint32_t and svbool_t. |
| 8431 | static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr, |
| 8432 | Sema &S) { |
| 8433 | // Target must have SVE. |
| 8434 | if (!S.Context.getTargetInfo().hasFeature(Feature: "sve" )) { |
| 8435 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_unsupported) << Attr << "'sve'" ; |
| 8436 | Attr.setInvalid(); |
| 8437 | return; |
| 8438 | } |
| 8439 | |
| 8440 | // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or |
| 8441 | // if <bits>+ syntax is used. |
| 8442 | if (!S.getLangOpts().VScaleMin || |
| 8443 | S.getLangOpts().VScaleMin != S.getLangOpts().VScaleMax) { |
| 8444 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_arm_feature_sve_bits_unsupported) |
| 8445 | << Attr; |
| 8446 | Attr.setInvalid(); |
| 8447 | return; |
| 8448 | } |
| 8449 | |
| 8450 | // Check the attribute arguments. |
| 8451 | if (Attr.getNumArgs() != 1) { |
| 8452 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) |
| 8453 | << Attr << 1; |
| 8454 | Attr.setInvalid(); |
| 8455 | return; |
| 8456 | } |
| 8457 | |
| 8458 | // The vector size must be an integer constant expression. |
| 8459 | llvm::APSInt SveVectorSizeInBits(32); |
| 8460 | if (!verifyValidIntegerConstantExpr(S, Attr, Result&: SveVectorSizeInBits)) |
| 8461 | return; |
| 8462 | |
| 8463 | unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue()); |
| 8464 | |
| 8465 | // The attribute vector size must match -msve-vector-bits. |
| 8466 | if (VecSize != S.getLangOpts().VScaleMin * 128) { |
| 8467 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_bad_sve_vector_size) |
| 8468 | << VecSize << S.getLangOpts().VScaleMin * 128; |
| 8469 | Attr.setInvalid(); |
| 8470 | return; |
| 8471 | } |
| 8472 | |
| 8473 | // Attribute can only be attached to a single SVE vector or predicate type. |
| 8474 | if (!CurType->isSveVLSBuiltinType()) { |
| 8475 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_invalid_sve_type) |
| 8476 | << Attr << CurType; |
| 8477 | Attr.setInvalid(); |
| 8478 | return; |
| 8479 | } |
| 8480 | |
| 8481 | const auto *BT = CurType->castAs<BuiltinType>(); |
| 8482 | |
| 8483 | QualType EltType = CurType->getSveEltType(Ctx: S.Context); |
| 8484 | unsigned TypeSize = S.Context.getTypeSize(T: EltType); |
| 8485 | VectorKind VecKind = VectorKind::SveFixedLengthData; |
| 8486 | if (BT->getKind() == BuiltinType::SveBool) { |
| 8487 | // Predicates are represented as i8. |
| 8488 | VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth(); |
| 8489 | VecKind = VectorKind::SveFixedLengthPredicate; |
| 8490 | } else |
| 8491 | VecSize /= TypeSize; |
| 8492 | CurType = S.Context.getVectorType(VectorType: EltType, NumElts: VecSize, VecKind); |
| 8493 | } |
| 8494 | |
| 8495 | static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State, |
| 8496 | QualType &CurType, |
| 8497 | ParsedAttr &Attr) { |
| 8498 | const VectorType *VT = dyn_cast<VectorType>(Val&: CurType); |
| 8499 | if (!VT || VT->getVectorKind() != VectorKind::Neon) { |
| 8500 | State.getSema().Diag(Loc: Attr.getLoc(), |
| 8501 | DiagID: diag::err_attribute_arm_mve_polymorphism); |
| 8502 | Attr.setInvalid(); |
| 8503 | return; |
| 8504 | } |
| 8505 | |
| 8506 | CurType = |
| 8507 | State.getAttributedType(A: createSimpleAttr<ArmMveStrictPolymorphismAttr>( |
| 8508 | Ctx&: State.getSema().Context, AL&: Attr), |
| 8509 | ModifiedType: CurType, EquivType: CurType); |
| 8510 | } |
| 8511 | |
| 8512 | /// HandleRISCVRVVVectorBitsTypeAttr - The "riscv_rvv_vector_bits" attribute is |
| 8513 | /// used to create fixed-length versions of sizeless RVV types such as |
| 8514 | /// vint8m1_t_t. |
| 8515 | static void HandleRISCVRVVVectorBitsTypeAttr(QualType &CurType, |
| 8516 | ParsedAttr &Attr, Sema &S) { |
| 8517 | // Target must have vector extension. |
| 8518 | if (!S.Context.getTargetInfo().hasFeature(Feature: "zve32x" )) { |
| 8519 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_unsupported) |
| 8520 | << Attr << "'zve32x'" ; |
| 8521 | Attr.setInvalid(); |
| 8522 | return; |
| 8523 | } |
| 8524 | |
| 8525 | auto VScale = S.Context.getTargetInfo().getVScaleRange( |
| 8526 | LangOpts: S.getLangOpts(), Mode: TargetInfo::ArmStreamingKind::NotStreaming); |
| 8527 | if (!VScale || !VScale->first || VScale->first != VScale->second) { |
| 8528 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_riscv_rvv_bits_unsupported) |
| 8529 | << Attr; |
| 8530 | Attr.setInvalid(); |
| 8531 | return; |
| 8532 | } |
| 8533 | |
| 8534 | // Check the attribute arguments. |
| 8535 | if (Attr.getNumArgs() != 1) { |
| 8536 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) |
| 8537 | << Attr << 1; |
| 8538 | Attr.setInvalid(); |
| 8539 | return; |
| 8540 | } |
| 8541 | |
| 8542 | // The vector size must be an integer constant expression. |
| 8543 | llvm::APSInt RVVVectorSizeInBits(32); |
| 8544 | if (!verifyValidIntegerConstantExpr(S, Attr, Result&: RVVVectorSizeInBits)) |
| 8545 | return; |
| 8546 | |
| 8547 | // Attribute can only be attached to a single RVV vector type. |
| 8548 | if (!CurType->isRVVVLSBuiltinType()) { |
| 8549 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_invalid_rvv_type) |
| 8550 | << Attr << CurType; |
| 8551 | Attr.setInvalid(); |
| 8552 | return; |
| 8553 | } |
| 8554 | |
| 8555 | unsigned VecSize = static_cast<unsigned>(RVVVectorSizeInBits.getZExtValue()); |
| 8556 | |
| 8557 | ASTContext::BuiltinVectorTypeInfo Info = |
| 8558 | S.Context.getBuiltinVectorTypeInfo(VecTy: CurType->castAs<BuiltinType>()); |
| 8559 | unsigned MinElts = Info.EC.getKnownMinValue(); |
| 8560 | |
| 8561 | VectorKind VecKind = VectorKind::RVVFixedLengthData; |
| 8562 | unsigned ExpectedSize = VScale->first * MinElts; |
| 8563 | QualType EltType = CurType->getRVVEltType(Ctx: S.Context); |
| 8564 | unsigned EltSize = S.Context.getTypeSize(T: EltType); |
| 8565 | unsigned NumElts; |
| 8566 | if (Info.ElementType == S.Context.BoolTy) { |
| 8567 | NumElts = VecSize / S.Context.getCharWidth(); |
| 8568 | if (!NumElts) { |
| 8569 | NumElts = 1; |
| 8570 | switch (VecSize) { |
| 8571 | case 1: |
| 8572 | VecKind = VectorKind::RVVFixedLengthMask_1; |
| 8573 | break; |
| 8574 | case 2: |
| 8575 | VecKind = VectorKind::RVVFixedLengthMask_2; |
| 8576 | break; |
| 8577 | case 4: |
| 8578 | VecKind = VectorKind::RVVFixedLengthMask_4; |
| 8579 | break; |
| 8580 | } |
| 8581 | } else |
| 8582 | VecKind = VectorKind::RVVFixedLengthMask; |
| 8583 | } else { |
| 8584 | ExpectedSize *= EltSize; |
| 8585 | NumElts = VecSize / EltSize; |
| 8586 | } |
| 8587 | |
| 8588 | // The attribute vector size must match -mrvv-vector-bits. |
| 8589 | if (VecSize != ExpectedSize) { |
| 8590 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_bad_rvv_vector_size) |
| 8591 | << VecSize << ExpectedSize; |
| 8592 | Attr.setInvalid(); |
| 8593 | return; |
| 8594 | } |
| 8595 | |
| 8596 | CurType = S.Context.getVectorType(VectorType: EltType, NumElts, VecKind); |
| 8597 | } |
| 8598 | |
| 8599 | /// Handle OpenCL Access Qualifier Attribute. |
| 8600 | static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr, |
| 8601 | Sema &S) { |
| 8602 | // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type. |
| 8603 | if (!(CurType->isImageType() || CurType->isPipeType())) { |
| 8604 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_opencl_invalid_access_qualifier); |
| 8605 | Attr.setInvalid(); |
| 8606 | return; |
| 8607 | } |
| 8608 | |
| 8609 | if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) { |
| 8610 | QualType BaseTy = TypedefTy->desugar(); |
| 8611 | |
| 8612 | std::string PrevAccessQual; |
| 8613 | if (BaseTy->isPipeType()) { |
| 8614 | if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) { |
| 8615 | OpenCLAccessAttr *Attr = |
| 8616 | TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>(); |
| 8617 | PrevAccessQual = Attr->getSpelling(); |
| 8618 | } else { |
| 8619 | PrevAccessQual = "read_only" ; |
| 8620 | } |
| 8621 | } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) { |
| 8622 | |
| 8623 | switch (ImgType->getKind()) { |
| 8624 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| 8625 | case BuiltinType::Id: \ |
| 8626 | PrevAccessQual = #Access; \ |
| 8627 | break; |
| 8628 | #include "clang/Basic/OpenCLImageTypes.def" |
| 8629 | default: |
| 8630 | llvm_unreachable("Unable to find corresponding image type." ); |
| 8631 | } |
| 8632 | } else { |
| 8633 | llvm_unreachable("unexpected type" ); |
| 8634 | } |
| 8635 | StringRef AttrName = Attr.getAttrName()->getName(); |
| 8636 | if (PrevAccessQual == AttrName.ltrim(Chars: "_" )) { |
| 8637 | // Duplicated qualifiers |
| 8638 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::warn_duplicate_declspec) |
| 8639 | << AttrName << Attr.getRange(); |
| 8640 | } else { |
| 8641 | // Contradicting qualifiers |
| 8642 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_opencl_multiple_access_qualifiers); |
| 8643 | } |
| 8644 | |
| 8645 | S.Diag(Loc: TypedefTy->getDecl()->getBeginLoc(), |
| 8646 | DiagID: diag::note_opencl_typedef_access_qualifier) << PrevAccessQual; |
| 8647 | } else if (CurType->isPipeType()) { |
| 8648 | if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) { |
| 8649 | QualType ElemType = CurType->castAs<PipeType>()->getElementType(); |
| 8650 | CurType = S.Context.getWritePipeType(T: ElemType); |
| 8651 | } |
| 8652 | } |
| 8653 | } |
| 8654 | |
| 8655 | /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type |
| 8656 | static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr, |
| 8657 | Sema &S) { |
| 8658 | if (!S.getLangOpts().MatrixTypes) { |
| 8659 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_builtin_matrix_disabled); |
| 8660 | return; |
| 8661 | } |
| 8662 | |
| 8663 | if (Attr.getNumArgs() != 2) { |
| 8664 | S.Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) |
| 8665 | << Attr << 2; |
| 8666 | return; |
| 8667 | } |
| 8668 | |
| 8669 | Expr *RowsExpr = Attr.getArgAsExpr(Arg: 0); |
| 8670 | Expr *ColsExpr = Attr.getArgAsExpr(Arg: 1); |
| 8671 | QualType T = S.BuildMatrixType(ElementTy: CurType, NumRows: RowsExpr, NumCols: ColsExpr, AttrLoc: Attr.getLoc()); |
| 8672 | if (!T.isNull()) |
| 8673 | CurType = T; |
| 8674 | } |
| 8675 | |
| 8676 | static void HandleAnnotateTypeAttr(TypeProcessingState &State, |
| 8677 | QualType &CurType, const ParsedAttr &PA) { |
| 8678 | Sema &S = State.getSema(); |
| 8679 | |
| 8680 | if (PA.getNumArgs() < 1) { |
| 8681 | S.Diag(Loc: PA.getLoc(), DiagID: diag::err_attribute_too_few_arguments) << PA << 1; |
| 8682 | return; |
| 8683 | } |
| 8684 | |
| 8685 | // Make sure that there is a string literal as the annotation's first |
| 8686 | // argument. |
| 8687 | StringRef Str; |
| 8688 | if (!S.checkStringLiteralArgumentAttr(Attr: PA, ArgNum: 0, Str)) |
| 8689 | return; |
| 8690 | |
| 8691 | llvm::SmallVector<Expr *, 4> Args; |
| 8692 | Args.reserve(N: PA.getNumArgs() - 1); |
| 8693 | for (unsigned Idx = 1; Idx < PA.getNumArgs(); Idx++) { |
| 8694 | assert(!PA.isArgIdent(Idx)); |
| 8695 | Args.push_back(Elt: PA.getArgAsExpr(Arg: Idx)); |
| 8696 | } |
| 8697 | if (!S.ConstantFoldAttrArgs(CI: PA, Args)) |
| 8698 | return; |
| 8699 | auto *AnnotateTypeAttr = |
| 8700 | AnnotateTypeAttr::Create(Ctx&: S.Context, Annotation: Str, Args: Args.data(), ArgsSize: Args.size(), CommonInfo: PA); |
| 8701 | CurType = State.getAttributedType(A: AnnotateTypeAttr, ModifiedType: CurType, EquivType: CurType); |
| 8702 | } |
| 8703 | |
| 8704 | static void HandleLifetimeBoundAttr(TypeProcessingState &State, |
| 8705 | QualType &CurType, |
| 8706 | ParsedAttr &Attr) { |
| 8707 | if (State.getDeclarator().isDeclarationOfFunction()) { |
| 8708 | CurType = State.getAttributedType( |
| 8709 | A: createSimpleAttr<LifetimeBoundAttr>(Ctx&: State.getSema().Context, AL&: Attr), |
| 8710 | ModifiedType: CurType, EquivType: CurType); |
| 8711 | return; |
| 8712 | } |
| 8713 | State.getSema().Diag(Loc: Attr.getLoc(), DiagID: diag::err_attribute_wrong_decl_type) |
| 8714 | << Attr << Attr.isRegularKeywordAttribute() |
| 8715 | << ExpectedParameterOrImplicitObjectParameter; |
| 8716 | } |
| 8717 | |
| 8718 | static void HandleLifetimeCaptureByAttr(TypeProcessingState &State, |
| 8719 | QualType &CurType, ParsedAttr &PA) { |
| 8720 | if (State.getDeclarator().isDeclarationOfFunction()) { |
| 8721 | auto *Attr = State.getSema().ParseLifetimeCaptureByAttr(AL: PA, ParamName: "this" ); |
| 8722 | if (Attr) |
| 8723 | CurType = State.getAttributedType(A: Attr, ModifiedType: CurType, EquivType: CurType); |
| 8724 | } |
| 8725 | } |
| 8726 | |
| 8727 | static void HandleHLSLParamModifierAttr(TypeProcessingState &State, |
| 8728 | QualType &CurType, |
| 8729 | const ParsedAttr &Attr, Sema &S) { |
| 8730 | // Don't apply this attribute to template dependent types. It is applied on |
| 8731 | // substitution during template instantiation. Also skip parsing this if we've |
| 8732 | // already modified the type based on an earlier attribute. |
| 8733 | if (CurType->isDependentType() || State.didParseHLSLParamMod()) |
| 8734 | return; |
| 8735 | if (Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_inout || |
| 8736 | Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_out) { |
| 8737 | State.setParsedHLSLParamMod(true); |
| 8738 | } |
| 8739 | } |
| 8740 | |
| 8741 | static bool isMultiSubjectAttrAllowedOnType(const ParsedAttr &Attr) { |
| 8742 | // The DeviceKernel attribute is shared for many targets, and |
| 8743 | // it is only allowed to be a type attribute with the AMDGPU |
| 8744 | // spelling, so skip processing the attr as a type attr |
| 8745 | // unless it has that spelling. |
| 8746 | if (Attr.getKind() != ParsedAttr::AT_DeviceKernel) |
| 8747 | return true; |
| 8748 | return DeviceKernelAttr::isAMDGPUSpelling(A: Attr); |
| 8749 | } |
| 8750 | |
| 8751 | static void processTypeAttrs(TypeProcessingState &state, QualType &type, |
| 8752 | TypeAttrLocation TAL, |
| 8753 | const ParsedAttributesView &attrs, |
| 8754 | CUDAFunctionTarget CFT) { |
| 8755 | |
| 8756 | state.setParsedNoDeref(false); |
| 8757 | if (attrs.empty()) |
| 8758 | return; |
| 8759 | |
| 8760 | // Scan through and apply attributes to this type where it makes sense. Some |
| 8761 | // attributes (such as __address_space__, __vector_size__, etc) apply to the |
| 8762 | // type, but others can be present in the type specifiers even though they |
| 8763 | // apply to the decl. Here we apply type attributes and ignore the rest. |
| 8764 | |
| 8765 | // This loop modifies the list pretty frequently, but we still need to make |
| 8766 | // sure we visit every element once. Copy the attributes list, and iterate |
| 8767 | // over that. |
| 8768 | ParsedAttributesView AttrsCopy{attrs}; |
| 8769 | for (ParsedAttr &attr : AttrsCopy) { |
| 8770 | |
| 8771 | // Skip attributes that were marked to be invalid. |
| 8772 | if (attr.isInvalid()) |
| 8773 | continue; |
| 8774 | |
| 8775 | if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute()) { |
| 8776 | // [[gnu::...]] attributes are treated as declaration attributes, so may |
| 8777 | // not appertain to a DeclaratorChunk. If we handle them as type |
| 8778 | // attributes, accept them in that position and diagnose the GCC |
| 8779 | // incompatibility. |
| 8780 | if (attr.isGNUScope()) { |
| 8781 | assert(attr.isStandardAttributeSyntax()); |
| 8782 | bool IsTypeAttr = attr.isTypeAttr(); |
| 8783 | if (TAL == TAL_DeclChunk) { |
| 8784 | state.getSema().Diag(Loc: attr.getLoc(), |
| 8785 | DiagID: IsTypeAttr |
| 8786 | ? diag::warn_gcc_ignores_type_attr |
| 8787 | : diag::warn_cxx11_gnu_attribute_on_type) |
| 8788 | << attr; |
| 8789 | if (!IsTypeAttr) |
| 8790 | continue; |
| 8791 | } |
| 8792 | } else if (TAL != TAL_DeclSpec && TAL != TAL_DeclChunk && |
| 8793 | !attr.isTypeAttr()) { |
| 8794 | // Otherwise, only consider type processing for a C++11 attribute if |
| 8795 | // - it has actually been applied to a type (decl-specifier-seq or |
| 8796 | // declarator chunk), or |
| 8797 | // - it is a type attribute, irrespective of where it was applied (so |
| 8798 | // that we can support the legacy behavior of some type attributes |
| 8799 | // that can be applied to the declaration name). |
| 8800 | continue; |
| 8801 | } |
| 8802 | } |
| 8803 | |
| 8804 | // If this is an attribute we can handle, do so now, |
| 8805 | // otherwise, add it to the FnAttrs list for rechaining. |
| 8806 | switch (attr.getKind()) { |
| 8807 | default: |
| 8808 | // A [[]] attribute on a declarator chunk must appertain to a type. |
| 8809 | if ((attr.isStandardAttributeSyntax() || |
| 8810 | attr.isRegularKeywordAttribute()) && |
| 8811 | TAL == TAL_DeclChunk) { |
| 8812 | state.getSema().Diag(Loc: attr.getLoc(), DiagID: diag::err_attribute_not_type_attr) |
| 8813 | << attr << attr.isRegularKeywordAttribute(); |
| 8814 | attr.setUsedAsTypeAttr(); |
| 8815 | } |
| 8816 | break; |
| 8817 | |
| 8818 | case ParsedAttr::UnknownAttribute: |
| 8819 | if (attr.isStandardAttributeSyntax()) { |
| 8820 | state.getSema().DiagnoseUnknownAttribute(AL: attr); |
| 8821 | // Mark the attribute as invalid so we don't emit the same diagnostic |
| 8822 | // multiple times. |
| 8823 | attr.setInvalid(); |
| 8824 | } |
| 8825 | break; |
| 8826 | |
| 8827 | case ParsedAttr::IgnoredAttribute: |
| 8828 | break; |
| 8829 | |
| 8830 | case ParsedAttr::AT_BTFTypeTag: |
| 8831 | HandleBTFTypeTagAttribute(Type&: type, Attr: attr, State&: state); |
| 8832 | attr.setUsedAsTypeAttr(); |
| 8833 | break; |
| 8834 | |
| 8835 | case ParsedAttr::AT_MayAlias: |
| 8836 | // FIXME: This attribute needs to actually be handled, but if we ignore |
| 8837 | // it it breaks large amounts of Linux software. |
| 8838 | attr.setUsedAsTypeAttr(); |
| 8839 | break; |
| 8840 | case ParsedAttr::AT_OpenCLPrivateAddressSpace: |
| 8841 | case ParsedAttr::AT_OpenCLGlobalAddressSpace: |
| 8842 | case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace: |
| 8843 | case ParsedAttr::AT_OpenCLGlobalHostAddressSpace: |
| 8844 | case ParsedAttr::AT_OpenCLLocalAddressSpace: |
| 8845 | case ParsedAttr::AT_OpenCLConstantAddressSpace: |
| 8846 | case ParsedAttr::AT_OpenCLGenericAddressSpace: |
| 8847 | case ParsedAttr::AT_HLSLGroupSharedAddressSpace: |
| 8848 | case ParsedAttr::AT_AddressSpace: |
| 8849 | HandleAddressSpaceTypeAttribute(Type&: type, Attr: attr, State&: state); |
| 8850 | attr.setUsedAsTypeAttr(); |
| 8851 | break; |
| 8852 | OBJC_POINTER_TYPE_ATTRS_CASELIST: |
| 8853 | if (!handleObjCPointerTypeAttr(state, attr, type)) |
| 8854 | distributeObjCPointerTypeAttr(state, attr, type); |
| 8855 | attr.setUsedAsTypeAttr(); |
| 8856 | break; |
| 8857 | case ParsedAttr::AT_VectorSize: |
| 8858 | HandleVectorSizeAttr(CurType&: type, Attr: attr, S&: state.getSema()); |
| 8859 | attr.setUsedAsTypeAttr(); |
| 8860 | break; |
| 8861 | case ParsedAttr::AT_ExtVectorType: |
| 8862 | HandleExtVectorTypeAttr(CurType&: type, Attr: attr, S&: state.getSema()); |
| 8863 | attr.setUsedAsTypeAttr(); |
| 8864 | break; |
| 8865 | case ParsedAttr::AT_NeonVectorType: |
| 8866 | HandleNeonVectorTypeAttr(CurType&: type, Attr: attr, S&: state.getSema(), VecKind: VectorKind::Neon); |
| 8867 | attr.setUsedAsTypeAttr(); |
| 8868 | break; |
| 8869 | case ParsedAttr::AT_NeonPolyVectorType: |
| 8870 | HandleNeonVectorTypeAttr(CurType&: type, Attr: attr, S&: state.getSema(), |
| 8871 | VecKind: VectorKind::NeonPoly); |
| 8872 | attr.setUsedAsTypeAttr(); |
| 8873 | break; |
| 8874 | case ParsedAttr::AT_ArmSveVectorBits: |
| 8875 | HandleArmSveVectorBitsTypeAttr(CurType&: type, Attr&: attr, S&: state.getSema()); |
| 8876 | attr.setUsedAsTypeAttr(); |
| 8877 | break; |
| 8878 | case ParsedAttr::AT_ArmMveStrictPolymorphism: { |
| 8879 | HandleArmMveStrictPolymorphismAttr(State&: state, CurType&: type, Attr&: attr); |
| 8880 | attr.setUsedAsTypeAttr(); |
| 8881 | break; |
| 8882 | } |
| 8883 | case ParsedAttr::AT_RISCVRVVVectorBits: |
| 8884 | HandleRISCVRVVVectorBitsTypeAttr(CurType&: type, Attr&: attr, S&: state.getSema()); |
| 8885 | attr.setUsedAsTypeAttr(); |
| 8886 | break; |
| 8887 | case ParsedAttr::AT_OpenCLAccess: |
| 8888 | HandleOpenCLAccessAttr(CurType&: type, Attr: attr, S&: state.getSema()); |
| 8889 | attr.setUsedAsTypeAttr(); |
| 8890 | break; |
| 8891 | case ParsedAttr::AT_PointerAuth: |
| 8892 | HandlePtrAuthQualifier(Ctx&: state.getSema().Context, T&: type, Attr: attr, |
| 8893 | S&: state.getSema()); |
| 8894 | attr.setUsedAsTypeAttr(); |
| 8895 | break; |
| 8896 | case ParsedAttr::AT_LifetimeBound: |
| 8897 | if (TAL == TAL_DeclChunk) |
| 8898 | HandleLifetimeBoundAttr(State&: state, CurType&: type, Attr&: attr); |
| 8899 | break; |
| 8900 | case ParsedAttr::AT_LifetimeCaptureBy: |
| 8901 | if (TAL == TAL_DeclChunk) |
| 8902 | HandleLifetimeCaptureByAttr(State&: state, CurType&: type, PA&: attr); |
| 8903 | break; |
| 8904 | |
| 8905 | case ParsedAttr::AT_NoDeref: { |
| 8906 | // FIXME: `noderef` currently doesn't work correctly in [[]] syntax. |
| 8907 | // See https://github.com/llvm/llvm-project/issues/55790 for details. |
| 8908 | // For the time being, we simply emit a warning that the attribute is |
| 8909 | // ignored. |
| 8910 | if (attr.isStandardAttributeSyntax()) { |
| 8911 | state.getSema().Diag(Loc: attr.getLoc(), DiagID: diag::warn_attribute_ignored) |
| 8912 | << attr; |
| 8913 | break; |
| 8914 | } |
| 8915 | ASTContext &Ctx = state.getSema().Context; |
| 8916 | type = state.getAttributedType(A: createSimpleAttr<NoDerefAttr>(Ctx, AL&: attr), |
| 8917 | ModifiedType: type, EquivType: type); |
| 8918 | attr.setUsedAsTypeAttr(); |
| 8919 | state.setParsedNoDeref(true); |
| 8920 | break; |
| 8921 | } |
| 8922 | |
| 8923 | case ParsedAttr::AT_MatrixType: |
| 8924 | HandleMatrixTypeAttr(CurType&: type, Attr: attr, S&: state.getSema()); |
| 8925 | attr.setUsedAsTypeAttr(); |
| 8926 | break; |
| 8927 | |
| 8928 | case ParsedAttr::AT_WebAssemblyFuncref: { |
| 8929 | if (!HandleWebAssemblyFuncrefAttr(State&: state, QT&: type, PAttr&: attr)) |
| 8930 | attr.setUsedAsTypeAttr(); |
| 8931 | break; |
| 8932 | } |
| 8933 | |
| 8934 | case ParsedAttr::AT_HLSLParamModifier: { |
| 8935 | HandleHLSLParamModifierAttr(State&: state, CurType&: type, Attr: attr, S&: state.getSema()); |
| 8936 | attr.setUsedAsTypeAttr(); |
| 8937 | break; |
| 8938 | } |
| 8939 | |
| 8940 | case ParsedAttr::AT_SwiftAttr: { |
| 8941 | HandleSwiftAttr(State&: state, TAL, QT&: type, PAttr&: attr); |
| 8942 | break; |
| 8943 | } |
| 8944 | |
| 8945 | MS_TYPE_ATTRS_CASELIST: |
| 8946 | if (!handleMSPointerTypeQualifierAttr(State&: state, PAttr&: attr, Type&: type)) |
| 8947 | attr.setUsedAsTypeAttr(); |
| 8948 | break; |
| 8949 | |
| 8950 | |
| 8951 | NULLABILITY_TYPE_ATTRS_CASELIST: |
| 8952 | // Either add nullability here or try to distribute it. We |
| 8953 | // don't want to distribute the nullability specifier past any |
| 8954 | // dependent type, because that complicates the user model. |
| 8955 | if (type->canHaveNullability() || type->isDependentType() || |
| 8956 | type->isArrayType() || |
| 8957 | !distributeNullabilityTypeAttr(state, type, attr)) { |
| 8958 | unsigned endIndex; |
| 8959 | if (TAL == TAL_DeclChunk) |
| 8960 | endIndex = state.getCurrentChunkIndex(); |
| 8961 | else |
| 8962 | endIndex = state.getDeclarator().getNumTypeObjects(); |
| 8963 | bool allowOnArrayType = |
| 8964 | state.getDeclarator().isPrototypeContext() && |
| 8965 | !hasOuterPointerLikeChunk(D: state.getDeclarator(), endIndex); |
| 8966 | if (CheckNullabilityTypeSpecifier(State&: state, Type&: type, Attr&: attr, |
| 8967 | AllowOnArrayType: allowOnArrayType)) { |
| 8968 | attr.setInvalid(); |
| 8969 | } |
| 8970 | |
| 8971 | attr.setUsedAsTypeAttr(); |
| 8972 | } |
| 8973 | break; |
| 8974 | |
| 8975 | case ParsedAttr::AT_ObjCKindOf: |
| 8976 | // '__kindof' must be part of the decl-specifiers. |
| 8977 | switch (TAL) { |
| 8978 | case TAL_DeclSpec: |
| 8979 | break; |
| 8980 | |
| 8981 | case TAL_DeclChunk: |
| 8982 | case TAL_DeclName: |
| 8983 | state.getSema().Diag(Loc: attr.getLoc(), |
| 8984 | DiagID: diag::err_objc_kindof_wrong_position) |
| 8985 | << FixItHint::CreateRemoval(RemoveRange: attr.getLoc()) |
| 8986 | << FixItHint::CreateInsertion( |
| 8987 | InsertionLoc: state.getDeclarator().getDeclSpec().getBeginLoc(), |
| 8988 | Code: "__kindof " ); |
| 8989 | break; |
| 8990 | } |
| 8991 | |
| 8992 | // Apply it regardless. |
| 8993 | if (checkObjCKindOfType(state, type, attr)) |
| 8994 | attr.setInvalid(); |
| 8995 | break; |
| 8996 | |
| 8997 | case ParsedAttr::AT_NoThrow: |
| 8998 | // Exception Specifications aren't generally supported in C mode throughout |
| 8999 | // clang, so revert to attribute-based handling for C. |
| 9000 | if (!state.getSema().getLangOpts().CPlusPlus) |
| 9001 | break; |
| 9002 | [[fallthrough]]; |
| 9003 | FUNCTION_TYPE_ATTRS_CASELIST: |
| 9004 | if (!isMultiSubjectAttrAllowedOnType(Attr: attr)) |
| 9005 | break; |
| 9006 | |
| 9007 | attr.setUsedAsTypeAttr(); |
| 9008 | |
| 9009 | // Attributes with standard syntax have strict rules for what they |
| 9010 | // appertain to and hence should not use the "distribution" logic below. |
| 9011 | if (attr.isStandardAttributeSyntax() || |
| 9012 | attr.isRegularKeywordAttribute()) { |
| 9013 | if (!handleFunctionTypeAttr(state, attr, type, CFT)) { |
| 9014 | diagnoseBadTypeAttribute(S&: state.getSema(), attr, type); |
| 9015 | attr.setInvalid(); |
| 9016 | } |
| 9017 | break; |
| 9018 | } |
| 9019 | |
| 9020 | // Never process function type attributes as part of the |
| 9021 | // declaration-specifiers. |
| 9022 | if (TAL == TAL_DeclSpec) |
| 9023 | distributeFunctionTypeAttrFromDeclSpec(state, attr, declSpecType&: type, CFT); |
| 9024 | |
| 9025 | // Otherwise, handle the possible delays. |
| 9026 | else if (!handleFunctionTypeAttr(state, attr, type, CFT)) |
| 9027 | distributeFunctionTypeAttr(state, attr, type); |
| 9028 | break; |
| 9029 | case ParsedAttr::AT_AcquireHandle: { |
| 9030 | if (!type->isFunctionType()) |
| 9031 | return; |
| 9032 | |
| 9033 | if (attr.getNumArgs() != 1) { |
| 9034 | state.getSema().Diag(Loc: attr.getLoc(), |
| 9035 | DiagID: diag::err_attribute_wrong_number_arguments) |
| 9036 | << attr << 1; |
| 9037 | attr.setInvalid(); |
| 9038 | return; |
| 9039 | } |
| 9040 | |
| 9041 | StringRef HandleType; |
| 9042 | if (!state.getSema().checkStringLiteralArgumentAttr(Attr: attr, ArgNum: 0, Str&: HandleType)) |
| 9043 | return; |
| 9044 | type = state.getAttributedType( |
| 9045 | A: AcquireHandleAttr::Create(Ctx&: state.getSema().Context, HandleType, CommonInfo: attr), |
| 9046 | ModifiedType: type, EquivType: type); |
| 9047 | attr.setUsedAsTypeAttr(); |
| 9048 | break; |
| 9049 | } |
| 9050 | case ParsedAttr::AT_AnnotateType: { |
| 9051 | HandleAnnotateTypeAttr(State&: state, CurType&: type, PA: attr); |
| 9052 | attr.setUsedAsTypeAttr(); |
| 9053 | break; |
| 9054 | } |
| 9055 | case ParsedAttr::AT_HLSLResourceClass: |
| 9056 | case ParsedAttr::AT_HLSLROV: |
| 9057 | case ParsedAttr::AT_HLSLRawBuffer: |
| 9058 | case ParsedAttr::AT_HLSLContainedType: { |
| 9059 | // Only collect HLSL resource type attributes that are in |
| 9060 | // decl-specifier-seq; do not collect attributes on declarations or those |
| 9061 | // that get to slide after declaration name. |
| 9062 | if (TAL == TAL_DeclSpec && |
| 9063 | state.getSema().HLSL().handleResourceTypeAttr(T: type, AL: attr)) |
| 9064 | attr.setUsedAsTypeAttr(); |
| 9065 | break; |
| 9066 | } |
| 9067 | } |
| 9068 | |
| 9069 | // Handle attributes that are defined in a macro. We do not want this to be |
| 9070 | // applied to ObjC builtin attributes. |
| 9071 | if (isa<AttributedType>(Val: type) && attr.hasMacroIdentifier() && |
| 9072 | !type.getQualifiers().hasObjCLifetime() && |
| 9073 | !type.getQualifiers().hasObjCGCAttr() && |
| 9074 | attr.getKind() != ParsedAttr::AT_ObjCGC && |
| 9075 | attr.getKind() != ParsedAttr::AT_ObjCOwnership) { |
| 9076 | const IdentifierInfo *MacroII = attr.getMacroIdentifier(); |
| 9077 | type = state.getSema().Context.getMacroQualifiedType(UnderlyingTy: type, MacroII); |
| 9078 | state.setExpansionLocForMacroQualifiedType( |
| 9079 | MQT: cast<MacroQualifiedType>(Val: type.getTypePtr()), |
| 9080 | Loc: attr.getMacroExpansionLoc()); |
| 9081 | } |
| 9082 | } |
| 9083 | } |
| 9084 | |
| 9085 | void Sema::completeExprArrayBound(Expr *E) { |
| 9086 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E->IgnoreParens())) { |
| 9087 | if (VarDecl *Var = dyn_cast<VarDecl>(Val: DRE->getDecl())) { |
| 9088 | if (isTemplateInstantiation(Kind: Var->getTemplateSpecializationKind())) { |
| 9089 | auto *Def = Var->getDefinition(); |
| 9090 | if (!Def) { |
| 9091 | SourceLocation PointOfInstantiation = E->getExprLoc(); |
| 9092 | runWithSufficientStackSpace(Loc: PointOfInstantiation, Fn: [&] { |
| 9093 | InstantiateVariableDefinition(PointOfInstantiation, Var); |
| 9094 | }); |
| 9095 | Def = Var->getDefinition(); |
| 9096 | |
| 9097 | // If we don't already have a point of instantiation, and we managed |
| 9098 | // to instantiate a definition, this is the point of instantiation. |
| 9099 | // Otherwise, we don't request an end-of-TU instantiation, so this is |
| 9100 | // not a point of instantiation. |
| 9101 | // FIXME: Is this really the right behavior? |
| 9102 | if (Var->getPointOfInstantiation().isInvalid() && Def) { |
| 9103 | assert(Var->getTemplateSpecializationKind() == |
| 9104 | TSK_ImplicitInstantiation && |
| 9105 | "explicit instantiation with no point of instantiation" ); |
| 9106 | Var->setTemplateSpecializationKind( |
| 9107 | TSK: Var->getTemplateSpecializationKind(), PointOfInstantiation); |
| 9108 | } |
| 9109 | } |
| 9110 | |
| 9111 | // Update the type to the definition's type both here and within the |
| 9112 | // expression. |
| 9113 | if (Def) { |
| 9114 | DRE->setDecl(Def); |
| 9115 | QualType T = Def->getType(); |
| 9116 | DRE->setType(T); |
| 9117 | // FIXME: Update the type on all intervening expressions. |
| 9118 | E->setType(T); |
| 9119 | } |
| 9120 | |
| 9121 | // We still go on to try to complete the type independently, as it |
| 9122 | // may also require instantiations or diagnostics if it remains |
| 9123 | // incomplete. |
| 9124 | } |
| 9125 | } |
| 9126 | } |
| 9127 | if (const auto CastE = dyn_cast<ExplicitCastExpr>(Val: E)) { |
| 9128 | QualType DestType = CastE->getTypeAsWritten(); |
| 9129 | if (const auto *IAT = Context.getAsIncompleteArrayType(T: DestType)) { |
| 9130 | // C++20 [expr.static.cast]p.4: ... If T is array of unknown bound, |
| 9131 | // this direct-initialization defines the type of the expression |
| 9132 | // as U[1] |
| 9133 | QualType ResultType = Context.getConstantArrayType( |
| 9134 | EltTy: IAT->getElementType(), |
| 9135 | ArySize: llvm::APInt(Context.getTypeSize(T: Context.getSizeType()), 1), |
| 9136 | /*SizeExpr=*/nullptr, ASM: ArraySizeModifier::Normal, |
| 9137 | /*IndexTypeQuals=*/0); |
| 9138 | E->setType(ResultType); |
| 9139 | } |
| 9140 | } |
| 9141 | } |
| 9142 | |
| 9143 | QualType Sema::getCompletedType(Expr *E) { |
| 9144 | // Incomplete array types may be completed by the initializer attached to |
| 9145 | // their definitions. For static data members of class templates and for |
| 9146 | // variable templates, we need to instantiate the definition to get this |
| 9147 | // initializer and complete the type. |
| 9148 | if (E->getType()->isIncompleteArrayType()) |
| 9149 | completeExprArrayBound(E); |
| 9150 | |
| 9151 | // FIXME: Are there other cases which require instantiating something other |
| 9152 | // than the type to complete the type of an expression? |
| 9153 | |
| 9154 | return E->getType(); |
| 9155 | } |
| 9156 | |
| 9157 | bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind, |
| 9158 | TypeDiagnoser &Diagnoser) { |
| 9159 | return RequireCompleteType(Loc: E->getExprLoc(), T: getCompletedType(E), Kind, |
| 9160 | Diagnoser); |
| 9161 | } |
| 9162 | |
| 9163 | bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) { |
| 9164 | BoundTypeDiagnoser<> Diagnoser(DiagID); |
| 9165 | return RequireCompleteExprType(E, Kind: CompleteTypeKind::Default, Diagnoser); |
| 9166 | } |
| 9167 | |
| 9168 | bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, |
| 9169 | CompleteTypeKind Kind, |
| 9170 | TypeDiagnoser &Diagnoser) { |
| 9171 | if (RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser: &Diagnoser)) |
| 9172 | return true; |
| 9173 | if (const TagType *Tag = T->getAs<TagType>()) { |
| 9174 | if (!Tag->getDecl()->isCompleteDefinitionRequired()) { |
| 9175 | Tag->getDecl()->setCompleteDefinitionRequired(); |
| 9176 | Consumer.HandleTagDeclRequiredDefinition(D: Tag->getDecl()); |
| 9177 | } |
| 9178 | } |
| 9179 | return false; |
| 9180 | } |
| 9181 | |
| 9182 | bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) { |
| 9183 | StructuralEquivalenceContext::NonEquivalentDeclSet NonEquivalentDecls; |
| 9184 | if (!Suggested) |
| 9185 | return false; |
| 9186 | |
| 9187 | // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext |
| 9188 | // and isolate from other C++ specific checks. |
| 9189 | StructuralEquivalenceContext Ctx( |
| 9190 | getLangOpts(), D->getASTContext(), Suggested->getASTContext(), |
| 9191 | NonEquivalentDecls, StructuralEquivalenceKind::Default, |
| 9192 | /*StrictTypeSpelling=*/false, /*Complain=*/true, |
| 9193 | /*ErrorOnTagTypeMismatch=*/true); |
| 9194 | return Ctx.IsEquivalent(D1: D, D2: Suggested); |
| 9195 | } |
| 9196 | |
| 9197 | bool Sema::hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested, |
| 9198 | AcceptableKind Kind, bool OnlyNeedComplete) { |
| 9199 | // Easy case: if we don't have modules, all declarations are visible. |
| 9200 | if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility) |
| 9201 | return true; |
| 9202 | |
| 9203 | // If this definition was instantiated from a template, map back to the |
| 9204 | // pattern from which it was instantiated. |
| 9205 | if (isa<TagDecl>(Val: D) && cast<TagDecl>(Val: D)->isBeingDefined()) { |
| 9206 | // We're in the middle of defining it; this definition should be treated |
| 9207 | // as visible. |
| 9208 | return true; |
| 9209 | } else if (auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
| 9210 | if (auto *Pattern = RD->getTemplateInstantiationPattern()) |
| 9211 | RD = Pattern; |
| 9212 | D = RD->getDefinition(); |
| 9213 | } else if (auto *ED = dyn_cast<EnumDecl>(Val: D)) { |
| 9214 | if (auto *Pattern = ED->getTemplateInstantiationPattern()) |
| 9215 | ED = Pattern; |
| 9216 | if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) { |
| 9217 | // If the enum has a fixed underlying type, it may have been forward |
| 9218 | // declared. In -fms-compatibility, `enum Foo;` will also forward declare |
| 9219 | // the enum and assign it the underlying type of `int`. Since we're only |
| 9220 | // looking for a complete type (not a definition), any visible declaration |
| 9221 | // of it will do. |
| 9222 | *Suggested = nullptr; |
| 9223 | for (auto *Redecl : ED->redecls()) { |
| 9224 | if (isAcceptable(D: Redecl, Kind)) |
| 9225 | return true; |
| 9226 | if (Redecl->isThisDeclarationADefinition() || |
| 9227 | (Redecl->isCanonicalDecl() && !*Suggested)) |
| 9228 | *Suggested = Redecl; |
| 9229 | } |
| 9230 | |
| 9231 | return false; |
| 9232 | } |
| 9233 | D = ED->getDefinition(); |
| 9234 | } else if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 9235 | if (auto *Pattern = FD->getTemplateInstantiationPattern()) |
| 9236 | FD = Pattern; |
| 9237 | D = FD->getDefinition(); |
| 9238 | } else if (auto *VD = dyn_cast<VarDecl>(Val: D)) { |
| 9239 | if (auto *Pattern = VD->getTemplateInstantiationPattern()) |
| 9240 | VD = Pattern; |
| 9241 | D = VD->getDefinition(); |
| 9242 | } |
| 9243 | |
| 9244 | assert(D && "missing definition for pattern of instantiated definition" ); |
| 9245 | |
| 9246 | *Suggested = D; |
| 9247 | |
| 9248 | auto DefinitionIsAcceptable = [&] { |
| 9249 | // The (primary) definition might be in a visible module. |
| 9250 | if (isAcceptable(D, Kind)) |
| 9251 | return true; |
| 9252 | |
| 9253 | // A visible module might have a merged definition instead. |
| 9254 | if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(Def: D) |
| 9255 | : hasVisibleMergedDefinition(Def: D)) { |
| 9256 | if (CodeSynthesisContexts.empty() && |
| 9257 | !getLangOpts().ModulesLocalVisibility) { |
| 9258 | // Cache the fact that this definition is implicitly visible because |
| 9259 | // there is a visible merged definition. |
| 9260 | D->setVisibleDespiteOwningModule(); |
| 9261 | } |
| 9262 | return true; |
| 9263 | } |
| 9264 | |
| 9265 | return false; |
| 9266 | }; |
| 9267 | |
| 9268 | if (DefinitionIsAcceptable()) |
| 9269 | return true; |
| 9270 | |
| 9271 | // The external source may have additional definitions of this entity that are |
| 9272 | // visible, so complete the redeclaration chain now and ask again. |
| 9273 | if (auto *Source = Context.getExternalSource()) { |
| 9274 | Source->CompleteRedeclChain(D); |
| 9275 | return DefinitionIsAcceptable(); |
| 9276 | } |
| 9277 | |
| 9278 | return false; |
| 9279 | } |
| 9280 | |
| 9281 | /// Determine whether there is any declaration of \p D that was ever a |
| 9282 | /// definition (perhaps before module merging) and is currently visible. |
| 9283 | /// \param D The definition of the entity. |
| 9284 | /// \param Suggested Filled in with the declaration that should be made visible |
| 9285 | /// in order to provide a definition of this entity. |
| 9286 | /// \param OnlyNeedComplete If \c true, we only need the type to be complete, |
| 9287 | /// not defined. This only matters for enums with a fixed underlying |
| 9288 | /// type, since in all other cases, a type is complete if and only if it |
| 9289 | /// is defined. |
| 9290 | bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested, |
| 9291 | bool OnlyNeedComplete) { |
| 9292 | return hasAcceptableDefinition(D, Suggested, Kind: Sema::AcceptableKind::Visible, |
| 9293 | OnlyNeedComplete); |
| 9294 | } |
| 9295 | |
| 9296 | /// Determine whether there is any declaration of \p D that was ever a |
| 9297 | /// definition (perhaps before module merging) and is currently |
| 9298 | /// reachable. |
| 9299 | /// \param D The definition of the entity. |
| 9300 | /// \param Suggested Filled in with the declaration that should be made |
| 9301 | /// reachable |
| 9302 | /// in order to provide a definition of this entity. |
| 9303 | /// \param OnlyNeedComplete If \c true, we only need the type to be complete, |
| 9304 | /// not defined. This only matters for enums with a fixed underlying |
| 9305 | /// type, since in all other cases, a type is complete if and only if it |
| 9306 | /// is defined. |
| 9307 | bool Sema::hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested, |
| 9308 | bool OnlyNeedComplete) { |
| 9309 | return hasAcceptableDefinition(D, Suggested, Kind: Sema::AcceptableKind::Reachable, |
| 9310 | OnlyNeedComplete); |
| 9311 | } |
| 9312 | |
| 9313 | /// Locks in the inheritance model for the given class and all of its bases. |
| 9314 | static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) { |
| 9315 | RD = RD->getMostRecentNonInjectedDecl(); |
| 9316 | if (!RD->hasAttr<MSInheritanceAttr>()) { |
| 9317 | MSInheritanceModel IM; |
| 9318 | bool BestCase = false; |
| 9319 | switch (S.MSPointerToMemberRepresentationMethod) { |
| 9320 | case LangOptions::PPTMK_BestCase: |
| 9321 | BestCase = true; |
| 9322 | IM = RD->calculateInheritanceModel(); |
| 9323 | break; |
| 9324 | case LangOptions::PPTMK_FullGeneralitySingleInheritance: |
| 9325 | IM = MSInheritanceModel::Single; |
| 9326 | break; |
| 9327 | case LangOptions::PPTMK_FullGeneralityMultipleInheritance: |
| 9328 | IM = MSInheritanceModel::Multiple; |
| 9329 | break; |
| 9330 | case LangOptions::PPTMK_FullGeneralityVirtualInheritance: |
| 9331 | IM = MSInheritanceModel::Unspecified; |
| 9332 | break; |
| 9333 | } |
| 9334 | |
| 9335 | SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid() |
| 9336 | ? S.ImplicitMSInheritanceAttrLoc |
| 9337 | : RD->getSourceRange(); |
| 9338 | RD->addAttr(A: MSInheritanceAttr::CreateImplicit( |
| 9339 | Ctx&: S.getASTContext(), BestCase, Range: Loc, S: MSInheritanceAttr::Spelling(IM))); |
| 9340 | S.Consumer.AssignInheritanceModel(RD); |
| 9341 | } |
| 9342 | } |
| 9343 | |
| 9344 | bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T, |
| 9345 | CompleteTypeKind Kind, |
| 9346 | TypeDiagnoser *Diagnoser) { |
| 9347 | // FIXME: Add this assertion to make sure we always get instantiation points. |
| 9348 | // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType"); |
| 9349 | // FIXME: Add this assertion to help us flush out problems with |
| 9350 | // checking for dependent types and type-dependent expressions. |
| 9351 | // |
| 9352 | // assert(!T->isDependentType() && |
| 9353 | // "Can't ask whether a dependent type is complete"); |
| 9354 | |
| 9355 | if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) { |
| 9356 | if (CXXRecordDecl *RD = MPTy->getMostRecentCXXRecordDecl(); |
| 9357 | RD && !RD->isDependentType()) { |
| 9358 | QualType T = Context.getTypeDeclType(Decl: RD); |
| 9359 | if (getLangOpts().CompleteMemberPointers && !RD->isBeingDefined() && |
| 9360 | RequireCompleteType(Loc, T, Kind, DiagID: diag::err_memptr_incomplete)) |
| 9361 | return true; |
| 9362 | |
| 9363 | // We lock in the inheritance model once somebody has asked us to ensure |
| 9364 | // that a pointer-to-member type is complete. |
| 9365 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
| 9366 | (void)isCompleteType(Loc, T); |
| 9367 | assignInheritanceModel(S&: *this, RD: MPTy->getMostRecentCXXRecordDecl()); |
| 9368 | } |
| 9369 | } |
| 9370 | } |
| 9371 | |
| 9372 | NamedDecl *Def = nullptr; |
| 9373 | bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless); |
| 9374 | bool Incomplete = (T->isIncompleteType(Def: &Def) || |
| 9375 | (!AcceptSizeless && T->isSizelessBuiltinType())); |
| 9376 | |
| 9377 | // Check that any necessary explicit specializations are visible. For an |
| 9378 | // enum, we just need the declaration, so don't check this. |
| 9379 | if (Def && !isa<EnumDecl>(Val: Def)) |
| 9380 | checkSpecializationReachability(Loc, Spec: Def); |
| 9381 | |
| 9382 | // If we have a complete type, we're done. |
| 9383 | if (!Incomplete) { |
| 9384 | NamedDecl *Suggested = nullptr; |
| 9385 | if (Def && |
| 9386 | !hasReachableDefinition(D: Def, Suggested: &Suggested, /*OnlyNeedComplete=*/true)) { |
| 9387 | // If the user is going to see an error here, recover by making the |
| 9388 | // definition visible. |
| 9389 | bool TreatAsComplete = Diagnoser && !isSFINAEContext(); |
| 9390 | if (Diagnoser && Suggested) |
| 9391 | diagnoseMissingImport(Loc, Decl: Suggested, MIK: MissingImportKind::Definition, |
| 9392 | /*Recover*/ TreatAsComplete); |
| 9393 | return !TreatAsComplete; |
| 9394 | } else if (Def && !TemplateInstCallbacks.empty()) { |
| 9395 | CodeSynthesisContext TempInst; |
| 9396 | TempInst.Kind = CodeSynthesisContext::Memoization; |
| 9397 | TempInst.Template = Def; |
| 9398 | TempInst.Entity = Def; |
| 9399 | TempInst.PointOfInstantiation = Loc; |
| 9400 | atTemplateBegin(Callbacks&: TemplateInstCallbacks, TheSema: *this, Inst: TempInst); |
| 9401 | atTemplateEnd(Callbacks&: TemplateInstCallbacks, TheSema: *this, Inst: TempInst); |
| 9402 | } |
| 9403 | |
| 9404 | return false; |
| 9405 | } |
| 9406 | |
| 9407 | TagDecl *Tag = dyn_cast_or_null<TagDecl>(Val: Def); |
| 9408 | ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Val: Def); |
| 9409 | |
| 9410 | // Give the external source a chance to provide a definition of the type. |
| 9411 | // This is kept separate from completing the redeclaration chain so that |
| 9412 | // external sources such as LLDB can avoid synthesizing a type definition |
| 9413 | // unless it's actually needed. |
| 9414 | if (Tag || IFace) { |
| 9415 | // Avoid diagnosing invalid decls as incomplete. |
| 9416 | if (Def->isInvalidDecl()) |
| 9417 | return true; |
| 9418 | |
| 9419 | // Give the external AST source a chance to complete the type. |
| 9420 | if (auto *Source = Context.getExternalSource()) { |
| 9421 | if (Tag && Tag->hasExternalLexicalStorage()) |
| 9422 | Source->CompleteType(Tag); |
| 9423 | if (IFace && IFace->hasExternalLexicalStorage()) |
| 9424 | Source->CompleteType(Class: IFace); |
| 9425 | // If the external source completed the type, go through the motions |
| 9426 | // again to ensure we're allowed to use the completed type. |
| 9427 | if (!T->isIncompleteType()) |
| 9428 | return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser); |
| 9429 | } |
| 9430 | } |
| 9431 | |
| 9432 | // If we have a class template specialization or a class member of a |
| 9433 | // class template specialization, or an array with known size of such, |
| 9434 | // try to instantiate it. |
| 9435 | if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Val: Tag)) { |
| 9436 | bool Instantiated = false; |
| 9437 | bool Diagnosed = false; |
| 9438 | if (RD->isDependentContext()) { |
| 9439 | // Don't try to instantiate a dependent class (eg, a member template of |
| 9440 | // an instantiated class template specialization). |
| 9441 | // FIXME: Can this ever happen? |
| 9442 | } else if (auto *ClassTemplateSpec = |
| 9443 | dyn_cast<ClassTemplateSpecializationDecl>(Val: RD)) { |
| 9444 | if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) { |
| 9445 | runWithSufficientStackSpace(Loc, Fn: [&] { |
| 9446 | Diagnosed = InstantiateClassTemplateSpecialization( |
| 9447 | PointOfInstantiation: Loc, ClassTemplateSpec, TSK: TSK_ImplicitInstantiation, |
| 9448 | /*Complain=*/Diagnoser, PrimaryStrictPackMatch: ClassTemplateSpec->hasStrictPackMatch()); |
| 9449 | }); |
| 9450 | Instantiated = true; |
| 9451 | } |
| 9452 | } else { |
| 9453 | CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass(); |
| 9454 | if (!RD->isBeingDefined() && Pattern) { |
| 9455 | MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo(); |
| 9456 | assert(MSI && "Missing member specialization information?" ); |
| 9457 | // This record was instantiated from a class within a template. |
| 9458 | if (MSI->getTemplateSpecializationKind() != |
| 9459 | TSK_ExplicitSpecialization) { |
| 9460 | runWithSufficientStackSpace(Loc, Fn: [&] { |
| 9461 | Diagnosed = InstantiateClass(PointOfInstantiation: Loc, Instantiation: RD, Pattern, |
| 9462 | TemplateArgs: getTemplateInstantiationArgs(D: RD), |
| 9463 | TSK: TSK_ImplicitInstantiation, |
| 9464 | /*Complain=*/Diagnoser); |
| 9465 | }); |
| 9466 | Instantiated = true; |
| 9467 | } |
| 9468 | } |
| 9469 | } |
| 9470 | |
| 9471 | if (Instantiated) { |
| 9472 | // Instantiate* might have already complained that the template is not |
| 9473 | // defined, if we asked it to. |
| 9474 | if (Diagnoser && Diagnosed) |
| 9475 | return true; |
| 9476 | // If we instantiated a definition, check that it's usable, even if |
| 9477 | // instantiation produced an error, so that repeated calls to this |
| 9478 | // function give consistent answers. |
| 9479 | if (!T->isIncompleteType()) |
| 9480 | return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser); |
| 9481 | } |
| 9482 | } |
| 9483 | |
| 9484 | // FIXME: If we didn't instantiate a definition because of an explicit |
| 9485 | // specialization declaration, check that it's visible. |
| 9486 | |
| 9487 | if (!Diagnoser) |
| 9488 | return true; |
| 9489 | |
| 9490 | Diagnoser->diagnose(S&: *this, Loc, T); |
| 9491 | |
| 9492 | // If the type was a forward declaration of a class/struct/union |
| 9493 | // type, produce a note. |
| 9494 | if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid()) |
| 9495 | Diag(Loc: Tag->getLocation(), |
| 9496 | DiagID: Tag->isBeingDefined() ? diag::note_type_being_defined |
| 9497 | : diag::note_forward_declaration) |
| 9498 | << Context.getTagDeclType(Decl: Tag); |
| 9499 | |
| 9500 | // If the Objective-C class was a forward declaration, produce a note. |
| 9501 | if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid()) |
| 9502 | Diag(Loc: IFace->getLocation(), DiagID: diag::note_forward_class); |
| 9503 | |
| 9504 | // If we have external information that we can use to suggest a fix, |
| 9505 | // produce a note. |
| 9506 | if (ExternalSource) |
| 9507 | ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T); |
| 9508 | |
| 9509 | return true; |
| 9510 | } |
| 9511 | |
| 9512 | bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, |
| 9513 | CompleteTypeKind Kind, unsigned DiagID) { |
| 9514 | BoundTypeDiagnoser<> Diagnoser(DiagID); |
| 9515 | return RequireCompleteType(Loc, T, Kind, Diagnoser); |
| 9516 | } |
| 9517 | |
| 9518 | /// Get diagnostic %select index for tag kind for |
| 9519 | /// literal type diagnostic message. |
| 9520 | /// WARNING: Indexes apply to particular diagnostics only! |
| 9521 | /// |
| 9522 | /// \returns diagnostic %select index. |
| 9523 | static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) { |
| 9524 | switch (Tag) { |
| 9525 | case TagTypeKind::Struct: |
| 9526 | return 0; |
| 9527 | case TagTypeKind::Interface: |
| 9528 | return 1; |
| 9529 | case TagTypeKind::Class: |
| 9530 | return 2; |
| 9531 | default: llvm_unreachable("Invalid tag kind for literal type diagnostic!" ); |
| 9532 | } |
| 9533 | } |
| 9534 | |
| 9535 | bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, |
| 9536 | TypeDiagnoser &Diagnoser) { |
| 9537 | assert(!T->isDependentType() && "type should not be dependent" ); |
| 9538 | |
| 9539 | QualType ElemType = Context.getBaseElementType(QT: T); |
| 9540 | if ((isCompleteType(Loc, T: ElemType) || ElemType->isVoidType()) && |
| 9541 | T->isLiteralType(Ctx: Context)) |
| 9542 | return false; |
| 9543 | |
| 9544 | Diagnoser.diagnose(S&: *this, Loc, T); |
| 9545 | |
| 9546 | if (T->isVariableArrayType()) |
| 9547 | return true; |
| 9548 | |
| 9549 | const RecordType *RT = ElemType->getAs<RecordType>(); |
| 9550 | if (!RT) |
| 9551 | return true; |
| 9552 | |
| 9553 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 9554 | |
| 9555 | // A partially-defined class type can't be a literal type, because a literal |
| 9556 | // class type must have a trivial destructor (which can't be checked until |
| 9557 | // the class definition is complete). |
| 9558 | if (RequireCompleteType(Loc, T: ElemType, DiagID: diag::note_non_literal_incomplete, Args: T)) |
| 9559 | return true; |
| 9560 | |
| 9561 | // [expr.prim.lambda]p3: |
| 9562 | // This class type is [not] a literal type. |
| 9563 | if (RD->isLambda() && !getLangOpts().CPlusPlus17) { |
| 9564 | Diag(Loc: RD->getLocation(), DiagID: diag::note_non_literal_lambda); |
| 9565 | return true; |
| 9566 | } |
| 9567 | |
| 9568 | // If the class has virtual base classes, then it's not an aggregate, and |
| 9569 | // cannot have any constexpr constructors or a trivial default constructor, |
| 9570 | // so is non-literal. This is better to diagnose than the resulting absence |
| 9571 | // of constexpr constructors. |
| 9572 | if (RD->getNumVBases()) { |
| 9573 | Diag(Loc: RD->getLocation(), DiagID: diag::note_non_literal_virtual_base) |
| 9574 | << getLiteralDiagFromTagKind(Tag: RD->getTagKind()) << RD->getNumVBases(); |
| 9575 | for (const auto &I : RD->vbases()) |
| 9576 | Diag(Loc: I.getBeginLoc(), DiagID: diag::note_constexpr_virtual_base_here) |
| 9577 | << I.getSourceRange(); |
| 9578 | } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() && |
| 9579 | !RD->hasTrivialDefaultConstructor()) { |
| 9580 | Diag(Loc: RD->getLocation(), DiagID: diag::note_non_literal_no_constexpr_ctors) << RD; |
| 9581 | } else if (RD->hasNonLiteralTypeFieldsOrBases()) { |
| 9582 | for (const auto &I : RD->bases()) { |
| 9583 | if (!I.getType()->isLiteralType(Ctx: Context)) { |
| 9584 | Diag(Loc: I.getBeginLoc(), DiagID: diag::note_non_literal_base_class) |
| 9585 | << RD << I.getType() << I.getSourceRange(); |
| 9586 | return true; |
| 9587 | } |
| 9588 | } |
| 9589 | for (const auto *I : RD->fields()) { |
| 9590 | if (!I->getType()->isLiteralType(Ctx: Context) || |
| 9591 | I->getType().isVolatileQualified()) { |
| 9592 | Diag(Loc: I->getLocation(), DiagID: diag::note_non_literal_field) |
| 9593 | << RD << I << I->getType() |
| 9594 | << I->getType().isVolatileQualified(); |
| 9595 | return true; |
| 9596 | } |
| 9597 | } |
| 9598 | } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor() |
| 9599 | : !RD->hasTrivialDestructor()) { |
| 9600 | // All fields and bases are of literal types, so have trivial or constexpr |
| 9601 | // destructors. If this class's destructor is non-trivial / non-constexpr, |
| 9602 | // it must be user-declared. |
| 9603 | CXXDestructorDecl *Dtor = RD->getDestructor(); |
| 9604 | assert(Dtor && "class has literal fields and bases but no dtor?" ); |
| 9605 | if (!Dtor) |
| 9606 | return true; |
| 9607 | |
| 9608 | if (getLangOpts().CPlusPlus20) { |
| 9609 | Diag(Loc: Dtor->getLocation(), DiagID: diag::note_non_literal_non_constexpr_dtor) |
| 9610 | << RD; |
| 9611 | } else { |
| 9612 | Diag(Loc: Dtor->getLocation(), DiagID: Dtor->isUserProvided() |
| 9613 | ? diag::note_non_literal_user_provided_dtor |
| 9614 | : diag::note_non_literal_nontrivial_dtor) |
| 9615 | << RD; |
| 9616 | if (!Dtor->isUserProvided()) |
| 9617 | SpecialMemberIsTrivial(MD: Dtor, CSM: CXXSpecialMemberKind::Destructor, |
| 9618 | TAH: TrivialABIHandling::IgnoreTrivialABI, |
| 9619 | /*Diagnose*/ true); |
| 9620 | } |
| 9621 | } |
| 9622 | |
| 9623 | return true; |
| 9624 | } |
| 9625 | |
| 9626 | bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) { |
| 9627 | BoundTypeDiagnoser<> Diagnoser(DiagID); |
| 9628 | return RequireLiteralType(Loc, T, Diagnoser); |
| 9629 | } |
| 9630 | |
| 9631 | QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword, |
| 9632 | const CXXScopeSpec &SS, QualType T, |
| 9633 | TagDecl *OwnedTagDecl) { |
| 9634 | if (T.isNull()) |
| 9635 | return T; |
| 9636 | return Context.getElaboratedType( |
| 9637 | Keyword, NNS: SS.isValid() ? SS.getScopeRep() : nullptr, NamedType: T, OwnedTagDecl); |
| 9638 | } |
| 9639 | |
| 9640 | QualType Sema::BuildTypeofExprType(Expr *E, TypeOfKind Kind) { |
| 9641 | assert(!E->hasPlaceholderType() && "unexpected placeholder" ); |
| 9642 | |
| 9643 | if (!getLangOpts().CPlusPlus && E->refersToBitField()) |
| 9644 | Diag(Loc: E->getExprLoc(), DiagID: diag::err_sizeof_alignof_typeof_bitfield) |
| 9645 | << (Kind == TypeOfKind::Unqualified ? 3 : 2); |
| 9646 | |
| 9647 | if (!E->isTypeDependent()) { |
| 9648 | QualType T = E->getType(); |
| 9649 | if (const TagType *TT = T->getAs<TagType>()) |
| 9650 | DiagnoseUseOfDecl(D: TT->getDecl(), Locs: E->getExprLoc()); |
| 9651 | } |
| 9652 | return Context.getTypeOfExprType(E, Kind); |
| 9653 | } |
| 9654 | |
| 9655 | static void |
| 9656 | BuildTypeCoupledDecls(Expr *E, |
| 9657 | llvm::SmallVectorImpl<TypeCoupledDeclRefInfo> &Decls) { |
| 9658 | // Currently, 'counted_by' only allows direct DeclRefExpr to FieldDecl. |
| 9659 | auto *CountDecl = cast<DeclRefExpr>(Val: E)->getDecl(); |
| 9660 | Decls.push_back(Elt: TypeCoupledDeclRefInfo(CountDecl, /*IsDref*/ false)); |
| 9661 | } |
| 9662 | |
| 9663 | QualType Sema::BuildCountAttributedArrayOrPointerType(QualType WrappedTy, |
| 9664 | Expr *CountExpr, |
| 9665 | bool CountInBytes, |
| 9666 | bool OrNull) { |
| 9667 | assert(WrappedTy->isIncompleteArrayType() || WrappedTy->isPointerType()); |
| 9668 | |
| 9669 | llvm::SmallVector<TypeCoupledDeclRefInfo, 1> Decls; |
| 9670 | BuildTypeCoupledDecls(E: CountExpr, Decls); |
| 9671 | /// When the resulting expression is invalid, we still create the AST using |
| 9672 | /// the original count expression for the sake of AST dump. |
| 9673 | return Context.getCountAttributedType(T: WrappedTy, CountExpr, CountInBytes, |
| 9674 | OrNull, DependentDecls: Decls); |
| 9675 | } |
| 9676 | |
| 9677 | /// getDecltypeForExpr - Given an expr, will return the decltype for |
| 9678 | /// that expression, according to the rules in C++11 |
| 9679 | /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18. |
| 9680 | QualType Sema::getDecltypeForExpr(Expr *E) { |
| 9681 | |
| 9682 | Expr *IDExpr = E; |
| 9683 | if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(Val: E)) |
| 9684 | IDExpr = ImplCastExpr->getSubExpr(); |
| 9685 | |
| 9686 | if (auto *PackExpr = dyn_cast<PackIndexingExpr>(Val: E)) { |
| 9687 | if (E->isInstantiationDependent()) |
| 9688 | IDExpr = PackExpr->getPackIdExpression(); |
| 9689 | else |
| 9690 | IDExpr = PackExpr->getSelectedExpr(); |
| 9691 | } |
| 9692 | |
| 9693 | if (E->isTypeDependent()) |
| 9694 | return Context.DependentTy; |
| 9695 | |
| 9696 | // C++11 [dcl.type.simple]p4: |
| 9697 | // The type denoted by decltype(e) is defined as follows: |
| 9698 | |
| 9699 | // C++20: |
| 9700 | // - if E is an unparenthesized id-expression naming a non-type |
| 9701 | // template-parameter (13.2), decltype(E) is the type of the |
| 9702 | // template-parameter after performing any necessary type deduction |
| 9703 | // Note that this does not pick up the implicit 'const' for a template |
| 9704 | // parameter object. This rule makes no difference before C++20 so we apply |
| 9705 | // it unconditionally. |
| 9706 | if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: IDExpr)) |
| 9707 | return SNTTPE->getParameterType(Ctx: Context); |
| 9708 | |
| 9709 | // - if e is an unparenthesized id-expression or an unparenthesized class |
| 9710 | // member access (5.2.5), decltype(e) is the type of the entity named |
| 9711 | // by e. If there is no such entity, or if e names a set of overloaded |
| 9712 | // functions, the program is ill-formed; |
| 9713 | // |
| 9714 | // We apply the same rules for Objective-C ivar and property references. |
| 9715 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: IDExpr)) { |
| 9716 | const ValueDecl *VD = DRE->getDecl(); |
| 9717 | QualType T = VD->getType(); |
| 9718 | return isa<TemplateParamObjectDecl>(Val: VD) ? T.getUnqualifiedType() : T; |
| 9719 | } |
| 9720 | if (const auto *ME = dyn_cast<MemberExpr>(Val: IDExpr)) { |
| 9721 | if (const auto *VD = ME->getMemberDecl()) |
| 9722 | if (isa<FieldDecl>(Val: VD) || isa<VarDecl>(Val: VD)) |
| 9723 | return VD->getType(); |
| 9724 | } else if (const auto *IR = dyn_cast<ObjCIvarRefExpr>(Val: IDExpr)) { |
| 9725 | return IR->getDecl()->getType(); |
| 9726 | } else if (const auto *PR = dyn_cast<ObjCPropertyRefExpr>(Val: IDExpr)) { |
| 9727 | if (PR->isExplicitProperty()) |
| 9728 | return PR->getExplicitProperty()->getType(); |
| 9729 | } else if (const auto *PE = dyn_cast<PredefinedExpr>(Val: IDExpr)) { |
| 9730 | return PE->getType(); |
| 9731 | } |
| 9732 | |
| 9733 | // C++11 [expr.lambda.prim]p18: |
| 9734 | // Every occurrence of decltype((x)) where x is a possibly |
| 9735 | // parenthesized id-expression that names an entity of automatic |
| 9736 | // storage duration is treated as if x were transformed into an |
| 9737 | // access to a corresponding data member of the closure type that |
| 9738 | // would have been declared if x were an odr-use of the denoted |
| 9739 | // entity. |
| 9740 | if (getCurLambda() && isa<ParenExpr>(Val: IDExpr)) { |
| 9741 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: IDExpr->IgnoreParens())) { |
| 9742 | if (auto *Var = dyn_cast<VarDecl>(Val: DRE->getDecl())) { |
| 9743 | QualType T = getCapturedDeclRefType(Var, Loc: DRE->getLocation()); |
| 9744 | if (!T.isNull()) |
| 9745 | return Context.getLValueReferenceType(T); |
| 9746 | } |
| 9747 | } |
| 9748 | } |
| 9749 | |
| 9750 | return Context.getReferenceQualifiedType(e: E); |
| 9751 | } |
| 9752 | |
| 9753 | QualType Sema::BuildDecltypeType(Expr *E, bool AsUnevaluated) { |
| 9754 | assert(!E->hasPlaceholderType() && "unexpected placeholder" ); |
| 9755 | |
| 9756 | if (AsUnevaluated && CodeSynthesisContexts.empty() && |
| 9757 | !E->isInstantiationDependent() && E->HasSideEffects(Ctx: Context, IncludePossibleEffects: false)) { |
| 9758 | // The expression operand for decltype is in an unevaluated expression |
| 9759 | // context, so side effects could result in unintended consequences. |
| 9760 | // Exclude instantiation-dependent expressions, because 'decltype' is often |
| 9761 | // used to build SFINAE gadgets. |
| 9762 | Diag(Loc: E->getExprLoc(), DiagID: diag::warn_side_effects_unevaluated_context); |
| 9763 | } |
| 9764 | return Context.getDecltypeType(e: E, UnderlyingType: getDecltypeForExpr(E)); |
| 9765 | } |
| 9766 | |
| 9767 | QualType Sema::ActOnPackIndexingType(QualType Pattern, Expr *IndexExpr, |
| 9768 | SourceLocation Loc, |
| 9769 | SourceLocation EllipsisLoc) { |
| 9770 | if (!IndexExpr) |
| 9771 | return QualType(); |
| 9772 | |
| 9773 | // Diagnose unexpanded packs but continue to improve recovery. |
| 9774 | if (!Pattern->containsUnexpandedParameterPack()) |
| 9775 | Diag(Loc, DiagID: diag::err_expected_name_of_pack) << Pattern; |
| 9776 | |
| 9777 | QualType Type = BuildPackIndexingType(Pattern, IndexExpr, Loc, EllipsisLoc); |
| 9778 | |
| 9779 | if (!Type.isNull()) |
| 9780 | Diag(Loc, DiagID: getLangOpts().CPlusPlus26 ? diag::warn_cxx23_pack_indexing |
| 9781 | : diag::ext_pack_indexing); |
| 9782 | return Type; |
| 9783 | } |
| 9784 | |
| 9785 | QualType Sema::BuildPackIndexingType(QualType Pattern, Expr *IndexExpr, |
| 9786 | SourceLocation Loc, |
| 9787 | SourceLocation EllipsisLoc, |
| 9788 | bool FullySubstituted, |
| 9789 | ArrayRef<QualType> Expansions) { |
| 9790 | |
| 9791 | UnsignedOrNone Index = std::nullopt; |
| 9792 | if (FullySubstituted && !IndexExpr->isValueDependent() && |
| 9793 | !IndexExpr->isTypeDependent()) { |
| 9794 | llvm::APSInt Value(Context.getIntWidth(T: Context.getSizeType())); |
| 9795 | ExprResult Res = CheckConvertedConstantExpression( |
| 9796 | From: IndexExpr, T: Context.getSizeType(), Value, CCE: CCEKind::ArrayBound); |
| 9797 | if (!Res.isUsable()) |
| 9798 | return QualType(); |
| 9799 | IndexExpr = Res.get(); |
| 9800 | int64_t V = Value.getExtValue(); |
| 9801 | if (FullySubstituted && (V < 0 || V >= int64_t(Expansions.size()))) { |
| 9802 | Diag(Loc: IndexExpr->getBeginLoc(), DiagID: diag::err_pack_index_out_of_bound) |
| 9803 | << V << Pattern << Expansions.size(); |
| 9804 | return QualType(); |
| 9805 | } |
| 9806 | Index = static_cast<unsigned>(V); |
| 9807 | } |
| 9808 | |
| 9809 | return Context.getPackIndexingType(Pattern, IndexExpr, FullySubstituted, |
| 9810 | Expansions, Index); |
| 9811 | } |
| 9812 | |
| 9813 | static QualType GetEnumUnderlyingType(Sema &S, QualType BaseType, |
| 9814 | SourceLocation Loc) { |
| 9815 | assert(BaseType->isEnumeralType()); |
| 9816 | EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl(); |
| 9817 | assert(ED && "EnumType has no EnumDecl" ); |
| 9818 | |
| 9819 | S.DiagnoseUseOfDecl(D: ED, Locs: Loc); |
| 9820 | |
| 9821 | QualType Underlying = ED->getIntegerType(); |
| 9822 | assert(!Underlying.isNull()); |
| 9823 | |
| 9824 | return Underlying; |
| 9825 | } |
| 9826 | |
| 9827 | QualType Sema::BuiltinEnumUnderlyingType(QualType BaseType, |
| 9828 | SourceLocation Loc) { |
| 9829 | if (!BaseType->isEnumeralType()) { |
| 9830 | Diag(Loc, DiagID: diag::err_only_enums_have_underlying_types); |
| 9831 | return QualType(); |
| 9832 | } |
| 9833 | |
| 9834 | // The enum could be incomplete if we're parsing its definition or |
| 9835 | // recovering from an error. |
| 9836 | NamedDecl *FwdDecl = nullptr; |
| 9837 | if (BaseType->isIncompleteType(Def: &FwdDecl)) { |
| 9838 | Diag(Loc, DiagID: diag::err_underlying_type_of_incomplete_enum) << BaseType; |
| 9839 | Diag(Loc: FwdDecl->getLocation(), DiagID: diag::note_forward_declaration) << FwdDecl; |
| 9840 | return QualType(); |
| 9841 | } |
| 9842 | |
| 9843 | return GetEnumUnderlyingType(S&: *this, BaseType, Loc); |
| 9844 | } |
| 9845 | |
| 9846 | QualType Sema::BuiltinAddPointer(QualType BaseType, SourceLocation Loc) { |
| 9847 | QualType Pointer = BaseType.isReferenceable() || BaseType->isVoidType() |
| 9848 | ? BuildPointerType(T: BaseType.getNonReferenceType(), Loc, |
| 9849 | Entity: DeclarationName()) |
| 9850 | : BaseType; |
| 9851 | |
| 9852 | return Pointer.isNull() ? QualType() : Pointer; |
| 9853 | } |
| 9854 | |
| 9855 | QualType Sema::BuiltinRemovePointer(QualType BaseType, SourceLocation Loc) { |
| 9856 | if (!BaseType->isAnyPointerType()) |
| 9857 | return BaseType; |
| 9858 | |
| 9859 | return BaseType->getPointeeType(); |
| 9860 | } |
| 9861 | |
| 9862 | QualType Sema::BuiltinDecay(QualType BaseType, SourceLocation Loc) { |
| 9863 | QualType Underlying = BaseType.getNonReferenceType(); |
| 9864 | if (Underlying->isArrayType()) |
| 9865 | return Context.getDecayedType(T: Underlying); |
| 9866 | |
| 9867 | if (Underlying->isFunctionType()) |
| 9868 | return BuiltinAddPointer(BaseType, Loc); |
| 9869 | |
| 9870 | SplitQualType Split = Underlying.getSplitUnqualifiedType(); |
| 9871 | // std::decay is supposed to produce 'std::remove_cv', but since 'restrict' is |
| 9872 | // in the same group of qualifiers as 'const' and 'volatile', we're extending |
| 9873 | // '__decay(T)' so that it removes all qualifiers. |
| 9874 | Split.Quals.removeCVRQualifiers(); |
| 9875 | return Context.getQualifiedType(split: Split); |
| 9876 | } |
| 9877 | |
| 9878 | QualType Sema::BuiltinAddReference(QualType BaseType, UTTKind UKind, |
| 9879 | SourceLocation Loc) { |
| 9880 | assert(LangOpts.CPlusPlus); |
| 9881 | QualType Reference = |
| 9882 | BaseType.isReferenceable() |
| 9883 | ? BuildReferenceType(T: BaseType, |
| 9884 | SpelledAsLValue: UKind == UnaryTransformType::AddLvalueReference, |
| 9885 | Loc, Entity: DeclarationName()) |
| 9886 | : BaseType; |
| 9887 | return Reference.isNull() ? QualType() : Reference; |
| 9888 | } |
| 9889 | |
| 9890 | QualType Sema::BuiltinRemoveExtent(QualType BaseType, UTTKind UKind, |
| 9891 | SourceLocation Loc) { |
| 9892 | if (UKind == UnaryTransformType::RemoveAllExtents) |
| 9893 | return Context.getBaseElementType(QT: BaseType); |
| 9894 | |
| 9895 | if (const auto *AT = Context.getAsArrayType(T: BaseType)) |
| 9896 | return AT->getElementType(); |
| 9897 | |
| 9898 | return BaseType; |
| 9899 | } |
| 9900 | |
| 9901 | QualType Sema::BuiltinRemoveReference(QualType BaseType, UTTKind UKind, |
| 9902 | SourceLocation Loc) { |
| 9903 | assert(LangOpts.CPlusPlus); |
| 9904 | QualType T = BaseType.getNonReferenceType(); |
| 9905 | if (UKind == UTTKind::RemoveCVRef && |
| 9906 | (T.isConstQualified() || T.isVolatileQualified())) { |
| 9907 | Qualifiers Quals; |
| 9908 | QualType Unqual = Context.getUnqualifiedArrayType(T, Quals); |
| 9909 | Quals.removeConst(); |
| 9910 | Quals.removeVolatile(); |
| 9911 | T = Context.getQualifiedType(T: Unqual, Qs: Quals); |
| 9912 | } |
| 9913 | return T; |
| 9914 | } |
| 9915 | |
| 9916 | QualType Sema::BuiltinChangeCVRQualifiers(QualType BaseType, UTTKind UKind, |
| 9917 | SourceLocation Loc) { |
| 9918 | if ((BaseType->isReferenceType() && UKind != UTTKind::RemoveRestrict) || |
| 9919 | BaseType->isFunctionType()) |
| 9920 | return BaseType; |
| 9921 | |
| 9922 | Qualifiers Quals; |
| 9923 | QualType Unqual = Context.getUnqualifiedArrayType(T: BaseType, Quals); |
| 9924 | |
| 9925 | if (UKind == UTTKind::RemoveConst || UKind == UTTKind::RemoveCV) |
| 9926 | Quals.removeConst(); |
| 9927 | if (UKind == UTTKind::RemoveVolatile || UKind == UTTKind::RemoveCV) |
| 9928 | Quals.removeVolatile(); |
| 9929 | if (UKind == UTTKind::RemoveRestrict) |
| 9930 | Quals.removeRestrict(); |
| 9931 | |
| 9932 | return Context.getQualifiedType(T: Unqual, Qs: Quals); |
| 9933 | } |
| 9934 | |
| 9935 | static QualType ChangeIntegralSignedness(Sema &S, QualType BaseType, |
| 9936 | bool IsMakeSigned, |
| 9937 | SourceLocation Loc) { |
| 9938 | if (BaseType->isEnumeralType()) { |
| 9939 | QualType Underlying = GetEnumUnderlyingType(S, BaseType, Loc); |
| 9940 | if (auto *BitInt = dyn_cast<BitIntType>(Val&: Underlying)) { |
| 9941 | unsigned int Bits = BitInt->getNumBits(); |
| 9942 | if (Bits > 1) |
| 9943 | return S.Context.getBitIntType(Unsigned: !IsMakeSigned, NumBits: Bits); |
| 9944 | |
| 9945 | S.Diag(Loc, DiagID: diag::err_make_signed_integral_only) |
| 9946 | << IsMakeSigned << /*_BitInt(1)*/ true << BaseType << 1 << Underlying; |
| 9947 | return QualType(); |
| 9948 | } |
| 9949 | if (Underlying->isBooleanType()) { |
| 9950 | S.Diag(Loc, DiagID: diag::err_make_signed_integral_only) |
| 9951 | << IsMakeSigned << /*_BitInt(1)*/ false << BaseType << 1 |
| 9952 | << Underlying; |
| 9953 | return QualType(); |
| 9954 | } |
| 9955 | } |
| 9956 | |
| 9957 | bool Int128Unsupported = !S.Context.getTargetInfo().hasInt128Type(); |
| 9958 | std::array<CanQualType *, 6> AllSignedIntegers = { |
| 9959 | &S.Context.SignedCharTy, &S.Context.ShortTy, &S.Context.IntTy, |
| 9960 | &S.Context.LongTy, &S.Context.LongLongTy, &S.Context.Int128Ty}; |
| 9961 | ArrayRef<CanQualType *> AvailableSignedIntegers( |
| 9962 | AllSignedIntegers.data(), AllSignedIntegers.size() - Int128Unsupported); |
| 9963 | std::array<CanQualType *, 6> AllUnsignedIntegers = { |
| 9964 | &S.Context.UnsignedCharTy, &S.Context.UnsignedShortTy, |
| 9965 | &S.Context.UnsignedIntTy, &S.Context.UnsignedLongTy, |
| 9966 | &S.Context.UnsignedLongLongTy, &S.Context.UnsignedInt128Ty}; |
| 9967 | ArrayRef<CanQualType *> AvailableUnsignedIntegers(AllUnsignedIntegers.data(), |
| 9968 | AllUnsignedIntegers.size() - |
| 9969 | Int128Unsupported); |
| 9970 | ArrayRef<CanQualType *> *Consider = |
| 9971 | IsMakeSigned ? &AvailableSignedIntegers : &AvailableUnsignedIntegers; |
| 9972 | |
| 9973 | uint64_t BaseSize = S.Context.getTypeSize(T: BaseType); |
| 9974 | auto *Result = |
| 9975 | llvm::find_if(Range&: *Consider, P: [&S, BaseSize](const CanQual<Type> *T) { |
| 9976 | return BaseSize == S.Context.getTypeSize(T: T->getTypePtr()); |
| 9977 | }); |
| 9978 | |
| 9979 | assert(Result != Consider->end()); |
| 9980 | return QualType((*Result)->getTypePtr(), 0); |
| 9981 | } |
| 9982 | |
| 9983 | QualType Sema::BuiltinChangeSignedness(QualType BaseType, UTTKind UKind, |
| 9984 | SourceLocation Loc) { |
| 9985 | bool IsMakeSigned = UKind == UnaryTransformType::MakeSigned; |
| 9986 | if ((!BaseType->isIntegerType() && !BaseType->isEnumeralType()) || |
| 9987 | BaseType->isBooleanType() || |
| 9988 | (BaseType->isBitIntType() && |
| 9989 | BaseType->getAs<BitIntType>()->getNumBits() < 2)) { |
| 9990 | Diag(Loc, DiagID: diag::err_make_signed_integral_only) |
| 9991 | << IsMakeSigned << BaseType->isBitIntType() << BaseType << 0; |
| 9992 | return QualType(); |
| 9993 | } |
| 9994 | |
| 9995 | bool IsNonIntIntegral = |
| 9996 | BaseType->isChar16Type() || BaseType->isChar32Type() || |
| 9997 | BaseType->isWideCharType() || BaseType->isEnumeralType(); |
| 9998 | |
| 9999 | QualType Underlying = |
| 10000 | IsNonIntIntegral |
| 10001 | ? ChangeIntegralSignedness(S&: *this, BaseType, IsMakeSigned, Loc) |
| 10002 | : IsMakeSigned ? Context.getCorrespondingSignedType(T: BaseType) |
| 10003 | : Context.getCorrespondingUnsignedType(T: BaseType); |
| 10004 | if (Underlying.isNull()) |
| 10005 | return Underlying; |
| 10006 | return Context.getQualifiedType(T: Underlying, Qs: BaseType.getQualifiers()); |
| 10007 | } |
| 10008 | |
| 10009 | QualType Sema::BuildUnaryTransformType(QualType BaseType, UTTKind UKind, |
| 10010 | SourceLocation Loc) { |
| 10011 | if (BaseType->isDependentType()) |
| 10012 | return Context.getUnaryTransformType(BaseType, UnderlyingType: BaseType, UKind); |
| 10013 | QualType Result; |
| 10014 | switch (UKind) { |
| 10015 | case UnaryTransformType::EnumUnderlyingType: { |
| 10016 | Result = BuiltinEnumUnderlyingType(BaseType, Loc); |
| 10017 | break; |
| 10018 | } |
| 10019 | case UnaryTransformType::AddPointer: { |
| 10020 | Result = BuiltinAddPointer(BaseType, Loc); |
| 10021 | break; |
| 10022 | } |
| 10023 | case UnaryTransformType::RemovePointer: { |
| 10024 | Result = BuiltinRemovePointer(BaseType, Loc); |
| 10025 | break; |
| 10026 | } |
| 10027 | case UnaryTransformType::Decay: { |
| 10028 | Result = BuiltinDecay(BaseType, Loc); |
| 10029 | break; |
| 10030 | } |
| 10031 | case UnaryTransformType::AddLvalueReference: |
| 10032 | case UnaryTransformType::AddRvalueReference: { |
| 10033 | Result = BuiltinAddReference(BaseType, UKind, Loc); |
| 10034 | break; |
| 10035 | } |
| 10036 | case UnaryTransformType::RemoveAllExtents: |
| 10037 | case UnaryTransformType::RemoveExtent: { |
| 10038 | Result = BuiltinRemoveExtent(BaseType, UKind, Loc); |
| 10039 | break; |
| 10040 | } |
| 10041 | case UnaryTransformType::RemoveCVRef: |
| 10042 | case UnaryTransformType::RemoveReference: { |
| 10043 | Result = BuiltinRemoveReference(BaseType, UKind, Loc); |
| 10044 | break; |
| 10045 | } |
| 10046 | case UnaryTransformType::RemoveConst: |
| 10047 | case UnaryTransformType::RemoveCV: |
| 10048 | case UnaryTransformType::RemoveRestrict: |
| 10049 | case UnaryTransformType::RemoveVolatile: { |
| 10050 | Result = BuiltinChangeCVRQualifiers(BaseType, UKind, Loc); |
| 10051 | break; |
| 10052 | } |
| 10053 | case UnaryTransformType::MakeSigned: |
| 10054 | case UnaryTransformType::MakeUnsigned: { |
| 10055 | Result = BuiltinChangeSignedness(BaseType, UKind, Loc); |
| 10056 | break; |
| 10057 | } |
| 10058 | } |
| 10059 | |
| 10060 | return !Result.isNull() |
| 10061 | ? Context.getUnaryTransformType(BaseType, UnderlyingType: Result, UKind) |
| 10062 | : Result; |
| 10063 | } |
| 10064 | |
| 10065 | QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) { |
| 10066 | if (!isDependentOrGNUAutoType(T)) { |
| 10067 | // FIXME: It isn't entirely clear whether incomplete atomic types |
| 10068 | // are allowed or not; for simplicity, ban them for the moment. |
| 10069 | if (RequireCompleteType(Loc, T, DiagID: diag::err_atomic_specifier_bad_type, Args: 0)) |
| 10070 | return QualType(); |
| 10071 | |
| 10072 | int DisallowedKind = -1; |
| 10073 | if (T->isArrayType()) |
| 10074 | DisallowedKind = 1; |
| 10075 | else if (T->isFunctionType()) |
| 10076 | DisallowedKind = 2; |
| 10077 | else if (T->isReferenceType()) |
| 10078 | DisallowedKind = 3; |
| 10079 | else if (T->isAtomicType()) |
| 10080 | DisallowedKind = 4; |
| 10081 | else if (T.hasQualifiers()) |
| 10082 | DisallowedKind = 5; |
| 10083 | else if (T->isSizelessType()) |
| 10084 | DisallowedKind = 6; |
| 10085 | else if (!T.isTriviallyCopyableType(Context) && getLangOpts().CPlusPlus) |
| 10086 | // Some other non-trivially-copyable type (probably a C++ class) |
| 10087 | DisallowedKind = 7; |
| 10088 | else if (T->isBitIntType()) |
| 10089 | DisallowedKind = 8; |
| 10090 | else if (getLangOpts().C23 && T->isUndeducedAutoType()) |
| 10091 | // _Atomic auto is prohibited in C23 |
| 10092 | DisallowedKind = 9; |
| 10093 | |
| 10094 | if (DisallowedKind != -1) { |
| 10095 | Diag(Loc, DiagID: diag::err_atomic_specifier_bad_type) << DisallowedKind << T; |
| 10096 | return QualType(); |
| 10097 | } |
| 10098 | |
| 10099 | // FIXME: Do we need any handling for ARC here? |
| 10100 | } |
| 10101 | |
| 10102 | // Build the pointer type. |
| 10103 | return Context.getAtomicType(T); |
| 10104 | } |
| 10105 | |