1 | //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines a basic region store model. In this model, we do have field |
10 | // sensitivity. But we assume nothing about the heap shape. So recursive data |
11 | // structures are largely ignored. Basically we do 1-limiting analysis. |
12 | // Parameter pointers are assumed with no aliasing. Pointee objects of |
13 | // parameters are created lazily. |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #include "clang/AST/Attr.h" |
18 | #include "clang/AST/CharUnits.h" |
19 | #include "clang/ASTMatchers/ASTMatchFinder.h" |
20 | #include "clang/Analysis/AnalysisDeclContext.h" |
21 | #include "clang/Basic/JsonSupport.h" |
22 | #include "clang/Basic/TargetInfo.h" |
23 | #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" |
24 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
25 | #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" |
26 | #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" |
27 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
28 | #include "llvm/ADT/ImmutableMap.h" |
29 | #include "llvm/ADT/STLExtras.h" |
30 | #include "llvm/Support/TimeProfiler.h" |
31 | #include "llvm/Support/raw_ostream.h" |
32 | #include <limits> |
33 | #include <optional> |
34 | #include <utility> |
35 | |
36 | using namespace clang; |
37 | using namespace ento; |
38 | |
39 | //===----------------------------------------------------------------------===// |
40 | // Representation of binding keys. |
41 | //===----------------------------------------------------------------------===// |
42 | |
43 | namespace { |
44 | class BindingKey { |
45 | public: |
46 | enum Kind { Default = 0x0, Direct = 0x1 }; |
47 | private: |
48 | enum { Symbolic = 0x2 }; |
49 | |
50 | llvm::PointerIntPair<const MemRegion *, 2> P; |
51 | uint64_t Data; |
52 | |
53 | /// Create a key for a binding to region \p r, which has a symbolic offset |
54 | /// from region \p Base. |
55 | explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k) |
56 | : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) { |
57 | assert(r && Base && "Must have known regions." ); |
58 | assert(getConcreteOffsetRegion() == Base && "Failed to store base region" ); |
59 | } |
60 | |
61 | /// Create a key for a binding at \p offset from base region \p r. |
62 | explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k) |
63 | : P(r, k), Data(offset) { |
64 | assert(r && "Must have known regions." ); |
65 | assert(getOffset() == offset && "Failed to store offset" ); |
66 | assert((r == r->getBaseRegion() || |
67 | isa<ObjCIvarRegion, CXXDerivedObjectRegion>(r)) && |
68 | "Not a base" ); |
69 | } |
70 | |
71 | public: |
72 | bool isDirect() const { return P.getInt() & Direct; } |
73 | bool isDefault() const { return !isDirect(); } |
74 | bool hasSymbolicOffset() const { return P.getInt() & Symbolic; } |
75 | |
76 | const MemRegion *getRegion() const { return P.getPointer(); } |
77 | uint64_t getOffset() const { |
78 | assert(!hasSymbolicOffset()); |
79 | return Data; |
80 | } |
81 | |
82 | const SubRegion *getConcreteOffsetRegion() const { |
83 | assert(hasSymbolicOffset()); |
84 | return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data)); |
85 | } |
86 | |
87 | const MemRegion *getBaseRegion() const { |
88 | if (hasSymbolicOffset()) |
89 | return getConcreteOffsetRegion()->getBaseRegion(); |
90 | return getRegion()->getBaseRegion(); |
91 | } |
92 | |
93 | void Profile(llvm::FoldingSetNodeID& ID) const { |
94 | ID.AddPointer(Ptr: P.getOpaqueValue()); |
95 | ID.AddInteger(I: Data); |
96 | } |
97 | |
98 | static BindingKey Make(const MemRegion *R, Kind k); |
99 | |
100 | bool operator<(const BindingKey &X) const { |
101 | if (P.getOpaqueValue() < X.P.getOpaqueValue()) |
102 | return true; |
103 | if (P.getOpaqueValue() > X.P.getOpaqueValue()) |
104 | return false; |
105 | return Data < X.Data; |
106 | } |
107 | |
108 | bool operator==(const BindingKey &X) const { |
109 | return P.getOpaqueValue() == X.P.getOpaqueValue() && |
110 | Data == X.Data; |
111 | } |
112 | |
113 | LLVM_DUMP_METHOD void dump() const; |
114 | }; |
115 | |
116 | std::string locDescr(Loc L) { |
117 | std::string S; |
118 | llvm::raw_string_ostream OS(S); |
119 | L.dumpToStream(Out&: OS); |
120 | return OS.str(); |
121 | } |
122 | } // end anonymous namespace |
123 | |
124 | BindingKey BindingKey::Make(const MemRegion *R, Kind k) { |
125 | const RegionOffset &RO = R->getAsOffset(); |
126 | if (RO.hasSymbolicOffset()) |
127 | return BindingKey(cast<SubRegion>(Val: R), cast<SubRegion>(Val: RO.getRegion()), k); |
128 | |
129 | return BindingKey(RO.getRegion(), RO.getOffset(), k); |
130 | } |
131 | |
132 | namespace llvm { |
133 | static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) { |
134 | Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default" ) |
135 | << "\", \"offset\": " ; |
136 | |
137 | if (!K.hasSymbolicOffset()) |
138 | Out << K.getOffset(); |
139 | else |
140 | Out << "null" ; |
141 | |
142 | return Out; |
143 | } |
144 | |
145 | } // namespace llvm |
146 | |
147 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
148 | void BindingKey::dump() const { llvm::errs() << *this; } |
149 | #endif |
150 | |
151 | //===----------------------------------------------------------------------===// |
152 | // Actual Store type. |
153 | //===----------------------------------------------------------------------===// |
154 | |
155 | typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings; |
156 | typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef; |
157 | typedef std::pair<BindingKey, SVal> BindingPair; |
158 | |
159 | typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings> |
160 | RegionBindings; |
161 | |
162 | namespace { |
163 | class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *, |
164 | ClusterBindings> { |
165 | ClusterBindings::Factory *CBFactory; |
166 | |
167 | // This flag indicates whether the current bindings are within the analysis |
168 | // that has started from main(). It affects how we perform loads from |
169 | // global variables that have initializers: if we have observed the |
170 | // program execution from the start and we know that these variables |
171 | // have not been overwritten yet, we can be sure that their initializers |
172 | // are still relevant. This flag never gets changed when the bindings are |
173 | // updated, so it could potentially be moved into RegionStoreManager |
174 | // (as if it's the same bindings but a different loading procedure) |
175 | // however that would have made the manager needlessly stateful. |
176 | bool IsMainAnalysis; |
177 | |
178 | public: |
179 | typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings> |
180 | ParentTy; |
181 | |
182 | RegionBindingsRef(ClusterBindings::Factory &CBFactory, |
183 | const RegionBindings::TreeTy *T, |
184 | RegionBindings::TreeTy::Factory *F, bool IsMainAnalysis) |
185 | : RegionBindingsRef(ParentTy(T, F), CBFactory, IsMainAnalysis) {} |
186 | |
187 | RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory, |
188 | bool IsMainAnalysis) |
189 | : ParentTy(P), CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {} |
190 | |
191 | RegionBindingsRef removeCluster(const MemRegion *BaseRegion) const { |
192 | return RegionBindingsRef(ParentTy::remove(K: BaseRegion), *CBFactory, |
193 | IsMainAnalysis); |
194 | } |
195 | |
196 | RegionBindingsRef addBinding(BindingKey K, SVal V) const; |
197 | |
198 | RegionBindingsRef addBinding(const MemRegion *R, |
199 | BindingKey::Kind k, SVal V) const; |
200 | |
201 | const SVal *lookup(BindingKey K) const; |
202 | const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const; |
203 | using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup; |
204 | |
205 | RegionBindingsRef removeBinding(BindingKey K); |
206 | |
207 | RegionBindingsRef removeBinding(const MemRegion *R, |
208 | BindingKey::Kind k); |
209 | |
210 | RegionBindingsRef removeBinding(const MemRegion *R) { |
211 | return removeBinding(R, k: BindingKey::Direct). |
212 | removeBinding(R, k: BindingKey::Default); |
213 | } |
214 | |
215 | std::optional<SVal> getDirectBinding(const MemRegion *R) const; |
216 | |
217 | /// getDefaultBinding - Returns an SVal* representing an optional default |
218 | /// binding associated with a region and its subregions. |
219 | std::optional<SVal> getDefaultBinding(const MemRegion *R) const; |
220 | |
221 | /// Return the internal tree as a Store. |
222 | Store asStore() const { |
223 | llvm::PointerIntPair<Store, 1, bool> Ptr = { |
224 | asImmutableMap().getRootWithoutRetain(), IsMainAnalysis}; |
225 | return reinterpret_cast<Store>(Ptr.getOpaqueValue()); |
226 | } |
227 | |
228 | bool isMainAnalysis() const { |
229 | return IsMainAnalysis; |
230 | } |
231 | |
232 | void printJson(raw_ostream &Out, const char *NL = "\n" , |
233 | unsigned int Space = 0, bool IsDot = false) const { |
234 | using namespace llvm; |
235 | DenseMap<const MemRegion *, std::string> StringifyCache; |
236 | auto ToString = [&StringifyCache](const MemRegion *R) { |
237 | auto [Place, Inserted] = StringifyCache.try_emplace(Key: R); |
238 | if (!Inserted) |
239 | return Place->second; |
240 | std::string Res; |
241 | raw_string_ostream OS(Res); |
242 | OS << R; |
243 | Place->second = Res; |
244 | return Res; |
245 | }; |
246 | |
247 | using Cluster = |
248 | std::pair<const MemRegion *, ImmutableMap<BindingKey, SVal>>; |
249 | using Binding = std::pair<BindingKey, SVal>; |
250 | |
251 | const auto MemSpaceBeforeRegionName = [&ToString](const Cluster *L, |
252 | const Cluster *R) { |
253 | if (isa<MemSpaceRegion>(Val: L->first) && !isa<MemSpaceRegion>(Val: R->first)) |
254 | return true; |
255 | if (!isa<MemSpaceRegion>(Val: L->first) && isa<MemSpaceRegion>(Val: R->first)) |
256 | return false; |
257 | return ToString(L->first) < ToString(R->first); |
258 | }; |
259 | |
260 | const auto SymbolicBeforeOffset = [&ToString](const BindingKey &L, |
261 | const BindingKey &R) { |
262 | if (L.hasSymbolicOffset() && !R.hasSymbolicOffset()) |
263 | return true; |
264 | if (!L.hasSymbolicOffset() && R.hasSymbolicOffset()) |
265 | return false; |
266 | if (L.hasSymbolicOffset() && R.hasSymbolicOffset()) |
267 | return ToString(L.getRegion()) < ToString(R.getRegion()); |
268 | return L.getOffset() < R.getOffset(); |
269 | }; |
270 | |
271 | const auto DefaultBindingBeforeDirectBindings = |
272 | [&SymbolicBeforeOffset](const Binding *LPtr, const Binding *RPtr) { |
273 | const BindingKey &L = LPtr->first; |
274 | const BindingKey &R = RPtr->first; |
275 | if (L.isDefault() && !R.isDefault()) |
276 | return true; |
277 | if (!L.isDefault() && R.isDefault()) |
278 | return false; |
279 | assert(L.isDefault() == R.isDefault()); |
280 | return SymbolicBeforeOffset(L, R); |
281 | }; |
282 | |
283 | const auto AddrOf = [](const auto &Item) { return &Item; }; |
284 | |
285 | std::vector<const Cluster *> SortedClusters; |
286 | SortedClusters.reserve(n: std::distance(first: begin(), last: end())); |
287 | append_range(C&: SortedClusters, R: map_range(C: *this, F: AddrOf)); |
288 | llvm::sort(C&: SortedClusters, Comp: MemSpaceBeforeRegionName); |
289 | |
290 | for (auto [Idx, C] : llvm::enumerate(First&: SortedClusters)) { |
291 | const auto &[BaseRegion, Bindings] = *C; |
292 | Indent(Out, Space, IsDot) |
293 | << "{ \"cluster\": \"" << BaseRegion << "\", \"pointer\": \"" |
294 | << (const void *)BaseRegion << "\", \"items\": [" << NL; |
295 | |
296 | std::vector<const Binding *> SortedBindings; |
297 | SortedBindings.reserve(n: std::distance(first: Bindings.begin(), last: Bindings.end())); |
298 | append_range(C&: SortedBindings, R: map_range(C: Bindings, F: AddrOf)); |
299 | llvm::sort(C&: SortedBindings, Comp: DefaultBindingBeforeDirectBindings); |
300 | |
301 | ++Space; |
302 | for (auto [Idx, B] : llvm::enumerate(First&: SortedBindings)) { |
303 | const auto &[Key, Value] = *B; |
304 | Indent(Out, Space, IsDot) << "{ " << Key << ", \"value\": " ; |
305 | Value.printJson(Out, /*AddQuotes=*/true); |
306 | Out << " }" ; |
307 | if (Idx != SortedBindings.size() - 1) |
308 | Out << ','; |
309 | Out << NL; |
310 | } |
311 | --Space; |
312 | Indent(Out, Space, IsDot) << "]}" ; |
313 | if (Idx != SortedClusters.size() - 1) |
314 | Out << ','; |
315 | Out << NL; |
316 | } |
317 | } |
318 | |
319 | LLVM_DUMP_METHOD void dump() const { printJson(Out&: llvm::errs()); } |
320 | |
321 | protected: |
322 | RegionBindingsRef |
323 | commitBindingsToCluster(const MemRegion *BaseRegion, |
324 | const ClusterBindings &Bindings) const; |
325 | }; |
326 | } // end anonymous namespace |
327 | |
328 | /// This class represents the same as \c RegionBindingsRef, but with a limit on |
329 | /// the number of bindings that can be added. |
330 | class LimitedRegionBindingsRef : public RegionBindingsRef { |
331 | public: |
332 | LimitedRegionBindingsRef(RegionBindingsRef Base, |
333 | SmallVectorImpl<SVal> &EscapedValuesDuringBind, |
334 | std::optional<unsigned> BindingsLeft) |
335 | : RegionBindingsRef(Base), |
336 | EscapedValuesDuringBind(&EscapedValuesDuringBind), |
337 | BindingsLeft(BindingsLeft) {} |
338 | |
339 | bool hasExhaustedBindingLimit() const { |
340 | return BindingsLeft.has_value() && BindingsLeft.value() == 0; |
341 | } |
342 | |
343 | LimitedRegionBindingsRef withValuesEscaped(SVal V) const { |
344 | EscapedValuesDuringBind->push_back(Elt: V); |
345 | return *this; |
346 | } |
347 | |
348 | LimitedRegionBindingsRef |
349 | withValuesEscaped(nonloc::CompoundVal::iterator Begin, |
350 | nonloc::CompoundVal::iterator End) const { |
351 | for (SVal V : llvm::make_range(x: Begin, y: End)) |
352 | withValuesEscaped(V); |
353 | return *this; |
354 | } |
355 | |
356 | LimitedRegionBindingsRef |
357 | addWithoutDecreasingLimit(const MemRegion *BaseRegion, |
358 | data_type_ref BindingKeyAndValue) const { |
359 | return LimitedRegionBindingsRef{RegionBindingsRef::commitBindingsToCluster( |
360 | BaseRegion, Bindings: BindingKeyAndValue), |
361 | *EscapedValuesDuringBind, BindingsLeft}; |
362 | } |
363 | |
364 | LimitedRegionBindingsRef removeCluster(const MemRegion *BaseRegion) const { |
365 | return LimitedRegionBindingsRef{ |
366 | RegionBindingsRef::removeCluster(BaseRegion), *EscapedValuesDuringBind, |
367 | BindingsLeft}; |
368 | } |
369 | |
370 | LimitedRegionBindingsRef addBinding(BindingKey K, SVal V) const { |
371 | std::optional<unsigned> NewBindingsLeft = BindingsLeft; |
372 | if (NewBindingsLeft.has_value()) { |
373 | assert(NewBindingsLeft.value() != 0); |
374 | NewBindingsLeft.value() -= 1; |
375 | |
376 | // If we just exhausted the binding limit, highjack |
377 | // this bind call for the default binding. |
378 | if (NewBindingsLeft.value() == 0) { |
379 | withValuesEscaped(V); |
380 | K = BindingKey::Make(R: K.getRegion(), k: BindingKey::Default); |
381 | V = UnknownVal(); |
382 | } |
383 | } |
384 | |
385 | return LimitedRegionBindingsRef{RegionBindingsRef::addBinding(K, V), |
386 | *EscapedValuesDuringBind, NewBindingsLeft}; |
387 | } |
388 | |
389 | LimitedRegionBindingsRef addBinding(const MemRegion *R, BindingKey::Kind k, |
390 | SVal V) const { |
391 | return addBinding(K: BindingKey::Make(R, k), V); |
392 | } |
393 | |
394 | private: |
395 | SmallVectorImpl<SVal> *EscapedValuesDuringBind; // nonnull |
396 | std::optional<unsigned> BindingsLeft; |
397 | }; |
398 | |
399 | typedef const RegionBindingsRef& RegionBindingsConstRef; |
400 | typedef const LimitedRegionBindingsRef &LimitedRegionBindingsConstRef; |
401 | |
402 | std::optional<SVal> |
403 | RegionBindingsRef::getDirectBinding(const MemRegion *R) const { |
404 | const SVal *V = lookup(R, k: BindingKey::Direct); |
405 | return V ? std::optional<SVal>(*V) : std::nullopt; |
406 | } |
407 | |
408 | std::optional<SVal> |
409 | RegionBindingsRef::getDefaultBinding(const MemRegion *R) const { |
410 | const SVal *V = lookup(R, k: BindingKey::Default); |
411 | return V ? std::optional<SVal>(*V) : std::nullopt; |
412 | } |
413 | |
414 | RegionBindingsRef RegionBindingsRef::commitBindingsToCluster( |
415 | const MemRegion *BaseRegion, const ClusterBindings &Bindings) const { |
416 | return RegionBindingsRef(ParentTy::add(K: BaseRegion, D: Bindings), *CBFactory, |
417 | IsMainAnalysis); |
418 | } |
419 | |
420 | RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const { |
421 | const MemRegion *Base = K.getBaseRegion(); |
422 | |
423 | const ClusterBindings *ExistingCluster = lookup(K: Base); |
424 | ClusterBindings Bindings = |
425 | (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap()); |
426 | Bindings = CBFactory->add(Old: Bindings, K, D: V); |
427 | return commitBindingsToCluster(BaseRegion: Base, Bindings); |
428 | } |
429 | |
430 | RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R, |
431 | BindingKey::Kind k, |
432 | SVal V) const { |
433 | return addBinding(K: BindingKey::Make(R, k), V); |
434 | } |
435 | |
436 | const SVal *RegionBindingsRef::lookup(BindingKey K) const { |
437 | const ClusterBindings *Cluster = lookup(K: K.getBaseRegion()); |
438 | if (!Cluster) |
439 | return nullptr; |
440 | return Cluster->lookup(K); |
441 | } |
442 | |
443 | const SVal *RegionBindingsRef::lookup(const MemRegion *R, |
444 | BindingKey::Kind k) const { |
445 | return lookup(K: BindingKey::Make(R, k)); |
446 | } |
447 | |
448 | RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) { |
449 | const MemRegion *Base = K.getBaseRegion(); |
450 | const ClusterBindings *Cluster = lookup(K: Base); |
451 | if (!Cluster) |
452 | return *this; |
453 | |
454 | ClusterBindings NewCluster = CBFactory->remove(Old: *Cluster, K); |
455 | if (NewCluster.isEmpty()) |
456 | return removeCluster(BaseRegion: Base); |
457 | return commitBindingsToCluster(BaseRegion: Base, Bindings: NewCluster); |
458 | } |
459 | |
460 | RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R, |
461 | BindingKey::Kind k){ |
462 | return removeBinding(K: BindingKey::Make(R, k)); |
463 | } |
464 | |
465 | //===----------------------------------------------------------------------===// |
466 | // Main RegionStore logic. |
467 | //===----------------------------------------------------------------------===// |
468 | |
469 | namespace { |
470 | class InvalidateRegionsWorker; |
471 | |
472 | class RegionStoreManager : public StoreManager { |
473 | public: |
474 | RegionBindings::Factory RBFactory; |
475 | mutable ClusterBindings::Factory CBFactory; |
476 | |
477 | typedef std::vector<SVal> SValListTy; |
478 | private: |
479 | typedef llvm::DenseMap<const LazyCompoundValData *, |
480 | SValListTy> LazyBindingsMapTy; |
481 | LazyBindingsMapTy LazyBindingsMap; |
482 | |
483 | /// The largest number of fields a struct can have and still be |
484 | /// considered "small". |
485 | /// |
486 | /// This is currently used to decide whether or not it is worth "forcing" a |
487 | /// LazyCompoundVal on bind. |
488 | /// |
489 | /// This is controlled by 'region-store-small-struct-limit' option. |
490 | /// To disable all small-struct-dependent behavior, set the option to "0". |
491 | const unsigned SmallStructLimit; |
492 | |
493 | /// The largest number of element an array can have and still be |
494 | /// considered "small". |
495 | /// |
496 | /// This is currently used to decide whether or not it is worth "forcing" a |
497 | /// LazyCompoundVal on bind. |
498 | /// |
499 | /// This is controlled by 'region-store-small-struct-limit' option. |
500 | /// To disable all small-struct-dependent behavior, set the option to "0". |
501 | const unsigned SmallArrayLimit; |
502 | |
503 | /// The number of bindings a single bind operation can scatter into. |
504 | /// For example, binding the initializer-list of an array would recurse and |
505 | /// bind all the individual array elements, potentially causing scalability |
506 | /// issues. Nullopt if the limit is disabled. |
507 | const std::optional<unsigned> RegionStoreMaxBindingFanOutPlusOne; |
508 | |
509 | /// A helper used to populate the work list with the given set of |
510 | /// regions. |
511 | void populateWorkList(InvalidateRegionsWorker &W, |
512 | ArrayRef<SVal> Values, |
513 | InvalidatedRegions *TopLevelRegions); |
514 | |
515 | const AnalyzerOptions &getOptions() { |
516 | return StateMgr.getOwningEngine().getAnalysisManager().options; |
517 | } |
518 | |
519 | public: |
520 | RegionStoreManager(ProgramStateManager &mgr) |
521 | : StoreManager(mgr), RBFactory(mgr.getAllocator()), |
522 | CBFactory(mgr.getAllocator()), |
523 | SmallStructLimit(getOptions().RegionStoreSmallStructLimit), |
524 | SmallArrayLimit(getOptions().RegionStoreSmallArrayLimit), |
525 | RegionStoreMaxBindingFanOutPlusOne([&]() -> std::optional<unsigned> { |
526 | unsigned FanOut = getOptions().RegionStoreMaxBindingFanOut; |
527 | assert(FanOut != std::numeric_limits<unsigned>::max()); |
528 | if (FanOut == 0) |
529 | return std::nullopt; |
530 | return FanOut + 1 /*for the default binding*/; |
531 | }()) {} |
532 | |
533 | /// setImplicitDefaultValue - Set the default binding for the provided |
534 | /// MemRegion to the value implicitly defined for compound literals when |
535 | /// the value is not specified. |
536 | LimitedRegionBindingsRef |
537 | setImplicitDefaultValue(LimitedRegionBindingsConstRef B, const MemRegion *R, |
538 | QualType T); |
539 | |
540 | /// ArrayToPointer - Emulates the "decay" of an array to a pointer |
541 | /// type. 'Array' represents the lvalue of the array being decayed |
542 | /// to a pointer, and the returned SVal represents the decayed |
543 | /// version of that lvalue (i.e., a pointer to the first element of |
544 | /// the array). This is called by ExprEngine when evaluating |
545 | /// casts from arrays to pointers. |
546 | SVal ArrayToPointer(Loc Array, QualType ElementTy) override; |
547 | |
548 | /// Creates the Store that correctly represents memory contents before |
549 | /// the beginning of the analysis of the given top-level stack frame. |
550 | StoreRef getInitialStore(const LocationContext *InitLoc) override { |
551 | bool IsMainAnalysis = false; |
552 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: InitLoc->getDecl())) |
553 | IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus; |
554 | return StoreRef(RegionBindingsRef(RegionBindingsRef::ParentTy( |
555 | RBFactory.getEmptyMap(), RBFactory), |
556 | CBFactory, IsMainAnalysis) |
557 | .asStore(), |
558 | *this); |
559 | } |
560 | |
561 | //===-------------------------------------------------------------------===// |
562 | // Binding values to regions. |
563 | //===-------------------------------------------------------------------===// |
564 | RegionBindingsRef |
565 | invalidateGlobalRegion(MemRegion::Kind K, ConstCFGElementRef Elem, |
566 | unsigned Count, const LocationContext *LCtx, |
567 | RegionBindingsRef B, InvalidatedRegions *Invalidated); |
568 | |
569 | StoreRef invalidateRegions(Store store, ArrayRef<SVal> Values, |
570 | ConstCFGElementRef Elem, unsigned Count, |
571 | const LocationContext *LCtx, const CallEvent *Call, |
572 | InvalidatedSymbols &IS, |
573 | RegionAndSymbolInvalidationTraits &ITraits, |
574 | InvalidatedRegions *Invalidated, |
575 | InvalidatedRegions *InvalidatedTopLevel) override; |
576 | |
577 | bool scanReachableSymbols(Store S, const MemRegion *R, |
578 | ScanReachableSymbols &Callbacks) override; |
579 | |
580 | LimitedRegionBindingsRef |
581 | removeSubRegionBindings(LimitedRegionBindingsConstRef B, const SubRegion *R); |
582 | std::optional<SVal> |
583 | getConstantValFromConstArrayInitializer(RegionBindingsConstRef B, |
584 | const ElementRegion *R); |
585 | std::optional<SVal> |
586 | getSValFromInitListExpr(const InitListExpr *ILE, |
587 | const SmallVector<uint64_t, 2> &ConcreteOffsets, |
588 | QualType ElemT); |
589 | SVal getSValFromStringLiteral(const StringLiteral *SL, uint64_t Offset, |
590 | QualType ElemT); |
591 | |
592 | public: // Part of public interface to class. |
593 | BindResult Bind(Store store, Loc LV, SVal V) override { |
594 | llvm::SmallVector<SVal, 0> EscapedValuesDuringBind; |
595 | LimitedRegionBindingsRef BoundedBindings = |
596 | getRegionBindings(store, EscapedValuesDuringBind); |
597 | return BindResult{.ResultingStore: StoreRef(bind(B: BoundedBindings, LV, V).asStore(), *this), |
598 | .FailedToBindValues: std::move(EscapedValuesDuringBind)}; |
599 | } |
600 | |
601 | LimitedRegionBindingsRef bind(LimitedRegionBindingsConstRef B, Loc LV, |
602 | SVal V); |
603 | |
604 | // BindDefaultInitial is only used to initialize a region with |
605 | // a default value. |
606 | BindResult BindDefaultInitial(Store store, const MemRegion *R, |
607 | SVal V) override { |
608 | RegionBindingsRef B = getRegionBindings(store); |
609 | // Use other APIs when you have to wipe the region that was initialized |
610 | // earlier. |
611 | assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) && |
612 | "Double initialization!" ); |
613 | B = B.addBinding(K: BindingKey::Make(R, k: BindingKey::Default), V); |
614 | return BindResult{ |
615 | .ResultingStore: StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this), .FailedToBindValues: {}}; |
616 | } |
617 | |
618 | // BindDefaultZero is used for zeroing constructors that may accidentally |
619 | // overwrite existing bindings. |
620 | BindResult BindDefaultZero(Store store, const MemRegion *R) override { |
621 | // FIXME: The offsets of empty bases can be tricky because of |
622 | // of the so called "empty base class optimization". |
623 | // If a base class has been optimized out |
624 | // we should not try to create a binding, otherwise we should. |
625 | // Unfortunately, at the moment ASTRecordLayout doesn't expose |
626 | // the actual sizes of the empty bases |
627 | // and trying to infer them from offsets/alignments |
628 | // seems to be error-prone and non-trivial because of the trailing padding. |
629 | // As a temporary mitigation we don't create bindings for empty bases. |
630 | if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(Val: R)) |
631 | if (BR->getDecl()->isEmpty()) |
632 | return BindResult{.ResultingStore: StoreRef(store, *this), .FailedToBindValues: {}}; |
633 | |
634 | llvm::SmallVector<SVal, 0> EscapedValuesDuringBind; |
635 | LimitedRegionBindingsRef B = |
636 | getRegionBindings(store, EscapedValuesDuringBind); |
637 | SVal V = svalBuilder.makeZeroVal(type: Ctx.CharTy); |
638 | B = removeSubRegionBindings(B, R: cast<SubRegion>(Val: R)); |
639 | B = B.addBinding(K: BindingKey::Make(R, k: BindingKey::Default), V); |
640 | return BindResult{ |
641 | .ResultingStore: StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this), |
642 | .FailedToBindValues: std::move(EscapedValuesDuringBind)}; |
643 | } |
644 | |
645 | /// Attempt to extract the fields of \p LCV and bind them to the struct region |
646 | /// \p R. |
647 | /// |
648 | /// This path is used when it seems advantageous to "force" loading the values |
649 | /// within a LazyCompoundVal to bind memberwise to the struct region, rather |
650 | /// than using a Default binding at the base of the entire region. This is a |
651 | /// heuristic attempting to avoid building long chains of LazyCompoundVals. |
652 | /// |
653 | /// \returns The updated store bindings, or \c std::nullopt if binding |
654 | /// non-lazily would be too expensive. |
655 | std::optional<LimitedRegionBindingsRef> |
656 | tryBindSmallStruct(LimitedRegionBindingsConstRef B, const TypedValueRegion *R, |
657 | const RecordDecl *RD, nonloc::LazyCompoundVal LCV); |
658 | |
659 | /// BindStruct - Bind a compound value to a structure. |
660 | LimitedRegionBindingsRef bindStruct(LimitedRegionBindingsConstRef B, |
661 | const TypedValueRegion *R, SVal V); |
662 | |
663 | /// BindVector - Bind a compound value to a vector. |
664 | LimitedRegionBindingsRef bindVector(LimitedRegionBindingsConstRef B, |
665 | const TypedValueRegion *R, SVal V); |
666 | |
667 | std::optional<LimitedRegionBindingsRef> |
668 | tryBindSmallArray(LimitedRegionBindingsConstRef B, const TypedValueRegion *R, |
669 | const ArrayType *AT, nonloc::LazyCompoundVal LCV); |
670 | |
671 | LimitedRegionBindingsRef bindArray(LimitedRegionBindingsConstRef B, |
672 | const TypedValueRegion *R, SVal V); |
673 | |
674 | /// Clears out all bindings in the given region and assigns a new value |
675 | /// as a Default binding. |
676 | LimitedRegionBindingsRef bindAggregate(LimitedRegionBindingsConstRef B, |
677 | const TypedRegion *R, SVal DefaultVal); |
678 | |
679 | /// Create a new store with the specified binding removed. |
680 | /// \param ST the original store, that is the basis for the new store. |
681 | /// \param L the location whose binding should be removed. |
682 | StoreRef killBinding(Store ST, Loc L) override; |
683 | |
684 | void incrementReferenceCount(Store store) override { |
685 | getRegionBindings(store).manualRetain(); |
686 | } |
687 | |
688 | /// If the StoreManager supports it, decrement the reference count of |
689 | /// the specified Store object. If the reference count hits 0, the memory |
690 | /// associated with the object is recycled. |
691 | void decrementReferenceCount(Store store) override { |
692 | getRegionBindings(store).manualRelease(); |
693 | } |
694 | |
695 | bool includedInBindings(Store store, const MemRegion *region) const override; |
696 | |
697 | /// Return the value bound to specified location in a given state. |
698 | /// |
699 | /// The high level logic for this method is this: |
700 | /// getBinding (L) |
701 | /// if L has binding |
702 | /// return L's binding |
703 | /// else if L is in killset |
704 | /// return unknown |
705 | /// else |
706 | /// if L is on stack or heap |
707 | /// return undefined |
708 | /// else |
709 | /// return symbolic |
710 | SVal getBinding(Store S, Loc L, QualType T) override { |
711 | return getBinding(B: getRegionBindings(store: S), L, T); |
712 | } |
713 | |
714 | std::optional<SVal> getUniqueDefaultBinding(RegionBindingsConstRef B, |
715 | const TypedValueRegion *R) const; |
716 | std::optional<SVal> |
717 | getUniqueDefaultBinding(nonloc::LazyCompoundVal LCV) const; |
718 | |
719 | std::optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override { |
720 | RegionBindingsRef B = getRegionBindings(store: S); |
721 | // Default bindings are always applied over a base region so look up the |
722 | // base region's default binding, otherwise the lookup will fail when R |
723 | // is at an offset from R->getBaseRegion(). |
724 | return B.getDefaultBinding(R: R->getBaseRegion()); |
725 | } |
726 | |
727 | SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType()); |
728 | |
729 | SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R); |
730 | |
731 | SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R); |
732 | |
733 | SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R); |
734 | |
735 | SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R); |
736 | |
737 | SVal getBindingForLazySymbol(const TypedValueRegion *R); |
738 | |
739 | SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B, |
740 | const TypedValueRegion *R, |
741 | QualType Ty); |
742 | |
743 | SVal getLazyBinding(const SubRegion *LazyBindingRegion, |
744 | RegionBindingsRef LazyBinding); |
745 | |
746 | /// Get bindings for the values in a struct and return a CompoundVal, used |
747 | /// when doing struct copy: |
748 | /// struct s x, y; |
749 | /// x = y; |
750 | /// y's value is retrieved by this method. |
751 | SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R); |
752 | SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R); |
753 | NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R); |
754 | |
755 | /// Used to lazily generate derived symbols for bindings that are defined |
756 | /// implicitly by default bindings in a super region. |
757 | /// |
758 | /// Note that callers may need to specially handle LazyCompoundVals, which |
759 | /// are returned as is in case the caller needs to treat them differently. |
760 | std::optional<SVal> |
761 | getBindingForDerivedDefaultValue(RegionBindingsConstRef B, |
762 | const MemRegion *superR, |
763 | const TypedValueRegion *R, QualType Ty); |
764 | |
765 | /// Get the state and region whose binding this region \p R corresponds to. |
766 | /// |
767 | /// If there is no lazy binding for \p R, the returned value will have a null |
768 | /// \c second. Note that a null pointer can represents a valid Store. |
769 | std::pair<Store, const SubRegion *> |
770 | findLazyBinding(RegionBindingsConstRef B, const SubRegion *R, |
771 | const SubRegion *originalRegion); |
772 | |
773 | /// Returns the cached set of interesting SVals contained within a lazy |
774 | /// binding. |
775 | /// |
776 | /// The precise value of "interesting" is determined for the purposes of |
777 | /// RegionStore's internal analysis. It must always contain all regions and |
778 | /// symbols, but may omit constants and other kinds of SVal. |
779 | /// |
780 | /// In contrast to compound values, LazyCompoundVals are also added |
781 | /// to the 'interesting values' list in addition to the child interesting |
782 | /// values. |
783 | const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV); |
784 | |
785 | //===------------------------------------------------------------------===// |
786 | // State pruning. |
787 | //===------------------------------------------------------------------===// |
788 | |
789 | /// removeDeadBindings - Scans the RegionStore of 'state' for dead values. |
790 | /// It returns a new Store with these values removed. |
791 | StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx, |
792 | SymbolReaper& SymReaper) override; |
793 | |
794 | //===------------------------------------------------------------------===// |
795 | // Utility methods. |
796 | //===------------------------------------------------------------------===// |
797 | |
798 | RegionBindingsRef getRegionBindings(Store store) const { |
799 | llvm::PointerIntPair<Store, 1, bool> Ptr; |
800 | Ptr.setFromOpaqueValue(const_cast<void *>(store)); |
801 | return {CBFactory, |
802 | static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()), |
803 | RBFactory.getTreeFactory(), Ptr.getInt()}; |
804 | } |
805 | |
806 | LimitedRegionBindingsRef |
807 | getRegionBindings(Store store, |
808 | SmallVectorImpl<SVal> &EscapedValuesDuringBind) const { |
809 | return LimitedRegionBindingsRef( |
810 | getRegionBindings(store), EscapedValuesDuringBind, |
811 | /*BindingsLeft=*/RegionStoreMaxBindingFanOutPlusOne); |
812 | } |
813 | |
814 | void printJson(raw_ostream &Out, Store S, const char *NL = "\n" , |
815 | unsigned int Space = 0, bool IsDot = false) const override; |
816 | |
817 | void iterBindings(Store store, BindingsHandler& f) override { |
818 | RegionBindingsRef B = getRegionBindings(store); |
819 | for (const auto &[Region, Cluster] : B) { |
820 | for (const auto &[Key, Value] : Cluster) { |
821 | if (!Key.isDirect()) |
822 | continue; |
823 | if (const SubRegion *R = dyn_cast<SubRegion>(Val: Key.getRegion())) { |
824 | // FIXME: Possibly incorporate the offset? |
825 | if (!f.HandleBinding(SMgr&: *this, store, region: R, val: Value)) |
826 | return; |
827 | } |
828 | } |
829 | } |
830 | } |
831 | }; |
832 | |
833 | } // end anonymous namespace |
834 | |
835 | //===----------------------------------------------------------------------===// |
836 | // RegionStore creation. |
837 | //===----------------------------------------------------------------------===// |
838 | |
839 | std::unique_ptr<StoreManager> |
840 | ento::CreateRegionStoreManager(ProgramStateManager &StMgr) { |
841 | return std::make_unique<RegionStoreManager>(args&: StMgr); |
842 | } |
843 | |
844 | //===----------------------------------------------------------------------===// |
845 | // Region Cluster analysis. |
846 | //===----------------------------------------------------------------------===// |
847 | |
848 | namespace { |
849 | /// Used to determine which global regions are automatically included in the |
850 | /// initial worklist of a ClusterAnalysis. |
851 | enum GlobalsFilterKind { |
852 | /// Don't include any global regions. |
853 | GFK_None, |
854 | /// Only include system globals. |
855 | GFK_SystemOnly, |
856 | /// Include all global regions. |
857 | GFK_All |
858 | }; |
859 | |
860 | template <typename DERIVED> |
861 | class ClusterAnalysis { |
862 | protected: |
863 | typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap; |
864 | typedef const MemRegion * WorkListElement; |
865 | typedef SmallVector<WorkListElement, 10> WorkList; |
866 | |
867 | llvm::SmallPtrSet<const ClusterBindings *, 16> Visited; |
868 | |
869 | WorkList WL; |
870 | |
871 | RegionStoreManager &RM; |
872 | ASTContext &Ctx; |
873 | SValBuilder &svalBuilder; |
874 | |
875 | RegionBindingsRef B; |
876 | |
877 | |
878 | protected: |
879 | const ClusterBindings *getCluster(const MemRegion *R) { |
880 | return B.lookup(K: R); |
881 | } |
882 | |
883 | /// Returns true if all clusters in the given memspace should be initially |
884 | /// included in the cluster analysis. Subclasses may provide their |
885 | /// own implementation. |
886 | bool includeEntireMemorySpace(const MemRegion *Base) { |
887 | return false; |
888 | } |
889 | |
890 | public: |
891 | ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr, |
892 | RegionBindingsRef b) |
893 | : RM(rm), Ctx(StateMgr.getContext()), |
894 | svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {} |
895 | |
896 | RegionBindingsRef getRegionBindings() const { return B; } |
897 | |
898 | bool isVisited(const MemRegion *R) { |
899 | return Visited.count(Ptr: getCluster(R)); |
900 | } |
901 | |
902 | void GenerateClusters() { |
903 | // Scan the entire set of bindings and record the region clusters. |
904 | for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); |
905 | RI != RE; ++RI){ |
906 | const MemRegion *Base = RI.getKey(); |
907 | |
908 | const ClusterBindings &Cluster = RI.getData(); |
909 | assert(!Cluster.isEmpty() && "Empty clusters should be removed" ); |
910 | static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster); |
911 | |
912 | // If the base's memspace should be entirely invalidated, add the cluster |
913 | // to the workspace up front. |
914 | if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base)) |
915 | AddToWorkList(WorkListElement(Base), &Cluster); |
916 | } |
917 | } |
918 | |
919 | bool AddToWorkList(WorkListElement E, const ClusterBindings *C) { |
920 | if (C && !Visited.insert(Ptr: C).second) |
921 | return false; |
922 | WL.push_back(Elt: E); |
923 | return true; |
924 | } |
925 | |
926 | bool AddToWorkList(const MemRegion *R) { |
927 | return static_cast<DERIVED*>(this)->AddToWorkList(R); |
928 | } |
929 | |
930 | void RunWorkList() { |
931 | while (!WL.empty()) { |
932 | WorkListElement E = WL.pop_back_val(); |
933 | const MemRegion *BaseR = E; |
934 | |
935 | static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(R: BaseR)); |
936 | } |
937 | } |
938 | |
939 | void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {} |
940 | void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {} |
941 | |
942 | void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C, |
943 | bool Flag) { |
944 | static_cast<DERIVED*>(this)->VisitCluster(BaseR, C); |
945 | } |
946 | }; |
947 | } |
948 | |
949 | //===----------------------------------------------------------------------===// |
950 | // Binding invalidation. |
951 | //===----------------------------------------------------------------------===// |
952 | |
953 | bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R, |
954 | ScanReachableSymbols &Callbacks) { |
955 | assert(R == R->getBaseRegion() && "Should only be called for base regions" ); |
956 | RegionBindingsRef B = getRegionBindings(store: S); |
957 | const ClusterBindings *Cluster = B.lookup(K: R); |
958 | |
959 | if (!Cluster) |
960 | return true; |
961 | |
962 | for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end(); |
963 | RI != RE; ++RI) { |
964 | if (!Callbacks.scan(val: RI.getData())) |
965 | return false; |
966 | } |
967 | |
968 | return true; |
969 | } |
970 | |
971 | static inline bool isUnionField(const FieldRegion *FR) { |
972 | return FR->getDecl()->getParent()->isUnion(); |
973 | } |
974 | |
975 | typedef SmallVector<const FieldDecl *, 8> FieldVector; |
976 | |
977 | static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) { |
978 | assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys" ); |
979 | |
980 | const MemRegion *Base = K.getConcreteOffsetRegion(); |
981 | const MemRegion *R = K.getRegion(); |
982 | |
983 | while (R != Base) { |
984 | if (const FieldRegion *FR = dyn_cast<FieldRegion>(Val: R)) |
985 | if (!isUnionField(FR)) |
986 | Fields.push_back(Elt: FR->getDecl()); |
987 | |
988 | R = cast<SubRegion>(Val: R)->getSuperRegion(); |
989 | } |
990 | } |
991 | |
992 | static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) { |
993 | assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys" ); |
994 | |
995 | if (Fields.empty()) |
996 | return true; |
997 | |
998 | FieldVector FieldsInBindingKey; |
999 | getSymbolicOffsetFields(K, Fields&: FieldsInBindingKey); |
1000 | |
1001 | ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size(); |
1002 | if (Delta >= 0) |
1003 | return std::equal(first1: FieldsInBindingKey.begin() + Delta, |
1004 | last1: FieldsInBindingKey.end(), |
1005 | first2: Fields.begin()); |
1006 | else |
1007 | return std::equal(first1: FieldsInBindingKey.begin(), last1: FieldsInBindingKey.end(), |
1008 | first2: Fields.begin() - Delta); |
1009 | } |
1010 | |
1011 | /// Collects all bindings in \p Cluster that may refer to bindings within |
1012 | /// \p Top. |
1013 | /// |
1014 | /// Each binding is a pair whose \c first is the key (a BindingKey) and whose |
1015 | /// \c second is the value (an SVal). |
1016 | /// |
1017 | /// The \p IncludeAllDefaultBindings parameter specifies whether to include |
1018 | /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is |
1019 | /// an aggregate within a larger aggregate with a default binding. |
1020 | static void |
1021 | collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, |
1022 | SValBuilder &SVB, const ClusterBindings &Cluster, |
1023 | const SubRegion *Top, BindingKey TopKey, |
1024 | bool IncludeAllDefaultBindings) { |
1025 | FieldVector FieldsInSymbolicSubregions; |
1026 | if (TopKey.hasSymbolicOffset()) { |
1027 | getSymbolicOffsetFields(K: TopKey, Fields&: FieldsInSymbolicSubregions); |
1028 | Top = TopKey.getConcreteOffsetRegion(); |
1029 | TopKey = BindingKey::Make(R: Top, k: BindingKey::Default); |
1030 | } |
1031 | |
1032 | // Find the length (in bits) of the region being invalidated. |
1033 | uint64_t Length = UINT64_MAX; |
1034 | SVal Extent = Top->getMemRegionManager().getStaticSize(MR: Top, SVB); |
1035 | if (std::optional<nonloc::ConcreteInt> ExtentCI = |
1036 | Extent.getAs<nonloc::ConcreteInt>()) { |
1037 | const llvm::APSInt &ExtentInt = ExtentCI->getValue(); |
1038 | assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned()); |
1039 | // Extents are in bytes but region offsets are in bits. Be careful! |
1040 | Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth(); |
1041 | } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Val: Top)) { |
1042 | if (FR->getDecl()->isBitField()) |
1043 | Length = FR->getDecl()->getBitWidthValue(); |
1044 | } |
1045 | |
1046 | for (const auto &StoreEntry : Cluster) { |
1047 | BindingKey NextKey = StoreEntry.first; |
1048 | if (NextKey.getRegion() == TopKey.getRegion()) { |
1049 | // FIXME: This doesn't catch the case where we're really invalidating a |
1050 | // region with a symbolic offset. Example: |
1051 | // R: points[i].y |
1052 | // Next: points[0].x |
1053 | |
1054 | if (NextKey.getOffset() > TopKey.getOffset() && |
1055 | NextKey.getOffset() - TopKey.getOffset() < Length) { |
1056 | // Case 1: The next binding is inside the region we're invalidating. |
1057 | // Include it. |
1058 | Bindings.push_back(Elt: StoreEntry); |
1059 | |
1060 | } else if (NextKey.getOffset() == TopKey.getOffset()) { |
1061 | // Case 2: The next binding is at the same offset as the region we're |
1062 | // invalidating. In this case, we need to leave default bindings alone, |
1063 | // since they may be providing a default value for a regions beyond what |
1064 | // we're invalidating. |
1065 | // FIXME: This is probably incorrect; consider invalidating an outer |
1066 | // struct whose first field is bound to a LazyCompoundVal. |
1067 | if (IncludeAllDefaultBindings || NextKey.isDirect()) |
1068 | Bindings.push_back(Elt: StoreEntry); |
1069 | } |
1070 | |
1071 | } else if (NextKey.hasSymbolicOffset()) { |
1072 | const MemRegion *Base = NextKey.getConcreteOffsetRegion(); |
1073 | if (Top->isSubRegionOf(R: Base) && Top != Base) { |
1074 | // Case 3: The next key is symbolic and we just changed something within |
1075 | // its concrete region. We don't know if the binding is still valid, so |
1076 | // we'll be conservative and include it. |
1077 | if (IncludeAllDefaultBindings || NextKey.isDirect()) |
1078 | if (isCompatibleWithFields(K: NextKey, Fields: FieldsInSymbolicSubregions)) |
1079 | Bindings.push_back(Elt: StoreEntry); |
1080 | } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Val: Base)) { |
1081 | // Case 4: The next key is symbolic, but we changed a known |
1082 | // super-region. In this case the binding is certainly included. |
1083 | if (BaseSR->isSubRegionOf(R: Top)) |
1084 | if (isCompatibleWithFields(K: NextKey, Fields: FieldsInSymbolicSubregions)) |
1085 | Bindings.push_back(Elt: StoreEntry); |
1086 | } |
1087 | } |
1088 | } |
1089 | } |
1090 | |
1091 | static void |
1092 | collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings, |
1093 | SValBuilder &SVB, const ClusterBindings &Cluster, |
1094 | const SubRegion *Top, bool IncludeAllDefaultBindings) { |
1095 | collectSubRegionBindings(Bindings, SVB, Cluster, Top, |
1096 | TopKey: BindingKey::Make(R: Top, k: BindingKey::Default), |
1097 | IncludeAllDefaultBindings); |
1098 | } |
1099 | |
1100 | LimitedRegionBindingsRef |
1101 | RegionStoreManager::removeSubRegionBindings(LimitedRegionBindingsConstRef B, |
1102 | const SubRegion *Top) { |
1103 | BindingKey TopKey = BindingKey::Make(R: Top, k: BindingKey::Default); |
1104 | const MemRegion *ClusterHead = TopKey.getBaseRegion(); |
1105 | |
1106 | if (Top == ClusterHead) { |
1107 | // We can remove an entire cluster's bindings all in one go. |
1108 | return B.removeCluster(BaseRegion: Top); |
1109 | } |
1110 | |
1111 | const ClusterBindings *Cluster = B.lookup(K: ClusterHead); |
1112 | if (!Cluster) { |
1113 | // If we're invalidating a region with a symbolic offset, we need to make |
1114 | // sure we don't treat the base region as uninitialized anymore. |
1115 | if (TopKey.hasSymbolicOffset()) { |
1116 | const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); |
1117 | return B.addBinding(R: Concrete, k: BindingKey::Default, V: UnknownVal()); |
1118 | } |
1119 | return B; |
1120 | } |
1121 | |
1122 | SmallVector<BindingPair, 32> Bindings; |
1123 | collectSubRegionBindings(Bindings, SVB&: svalBuilder, Cluster: *Cluster, Top, TopKey, |
1124 | /*IncludeAllDefaultBindings=*/false); |
1125 | |
1126 | ClusterBindingsRef Result(*Cluster, CBFactory); |
1127 | for (BindingKey Key : llvm::make_first_range(c&: Bindings)) |
1128 | Result = Result.remove(K: Key); |
1129 | |
1130 | // If we're invalidating a region with a symbolic offset, we need to make sure |
1131 | // we don't treat the base region as uninitialized anymore. |
1132 | // FIXME: This isn't very precise; see the example in |
1133 | // collectSubRegionBindings. |
1134 | if (TopKey.hasSymbolicOffset()) { |
1135 | const SubRegion *Concrete = TopKey.getConcreteOffsetRegion(); |
1136 | Result = Result.add(K: BindingKey::Make(R: Concrete, k: BindingKey::Default), |
1137 | D: UnknownVal()); |
1138 | } |
1139 | |
1140 | if (Result.isEmpty()) |
1141 | return B.removeCluster(BaseRegion: ClusterHead); |
1142 | return B.addWithoutDecreasingLimit(BaseRegion: ClusterHead, BindingKeyAndValue: Result.asImmutableMap()); |
1143 | } |
1144 | |
1145 | namespace { |
1146 | class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker> |
1147 | { |
1148 | ConstCFGElementRef Elem; |
1149 | unsigned Count; |
1150 | const LocationContext *LCtx; |
1151 | InvalidatedSymbols &IS; |
1152 | RegionAndSymbolInvalidationTraits &ITraits; |
1153 | StoreManager::InvalidatedRegions *Regions; |
1154 | GlobalsFilterKind GlobalsFilter; |
1155 | public: |
1156 | InvalidateRegionsWorker(RegionStoreManager &rm, ProgramStateManager &stateMgr, |
1157 | RegionBindingsRef b, ConstCFGElementRef elem, |
1158 | unsigned count, const LocationContext *lctx, |
1159 | InvalidatedSymbols &is, |
1160 | RegionAndSymbolInvalidationTraits &ITraitsIn, |
1161 | StoreManager::InvalidatedRegions *r, |
1162 | GlobalsFilterKind GFK) |
1163 | : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b), Elem(elem), |
1164 | Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r), |
1165 | GlobalsFilter(GFK) {} |
1166 | |
1167 | void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); |
1168 | void VisitBinding(SVal V); |
1169 | |
1170 | using ClusterAnalysis::AddToWorkList; |
1171 | |
1172 | bool AddToWorkList(const MemRegion *R); |
1173 | |
1174 | /// Returns true if all clusters in the memory space for \p Base should be |
1175 | /// be invalidated. |
1176 | bool includeEntireMemorySpace(const MemRegion *Base); |
1177 | |
1178 | /// Returns true if the memory space of the given region is one of the global |
1179 | /// regions specially included at the start of invalidation. |
1180 | bool isInitiallyIncludedGlobalRegion(const MemRegion *R); |
1181 | }; |
1182 | } |
1183 | |
1184 | bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) { |
1185 | bool doNotInvalidateSuperRegion = ITraits.hasTrait( |
1186 | MR: R, IK: RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); |
1187 | const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion(); |
1188 | return AddToWorkList(E: WorkListElement(BaseR), C: getCluster(R: BaseR)); |
1189 | } |
1190 | |
1191 | void InvalidateRegionsWorker::VisitBinding(SVal V) { |
1192 | // A symbol? Mark it touched by the invalidation. |
1193 | if (SymbolRef Sym = V.getAsSymbol()) |
1194 | IS.insert(V: Sym); |
1195 | |
1196 | if (const MemRegion *R = V.getAsRegion()) { |
1197 | AddToWorkList(R); |
1198 | return; |
1199 | } |
1200 | |
1201 | // Is it a LazyCompoundVal? All references get invalidated as well. |
1202 | if (std::optional<nonloc::LazyCompoundVal> LCS = |
1203 | V.getAs<nonloc::LazyCompoundVal>()) { |
1204 | |
1205 | // `getInterestingValues()` returns SVals contained within LazyCompoundVals, |
1206 | // so there is no need to visit them. |
1207 | for (SVal V : RM.getInterestingValues(LCV: *LCS)) |
1208 | if (!isa<nonloc::LazyCompoundVal>(Val: V)) |
1209 | VisitBinding(V); |
1210 | |
1211 | return; |
1212 | } |
1213 | } |
1214 | |
1215 | void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR, |
1216 | const ClusterBindings *C) { |
1217 | |
1218 | bool PreserveRegionsContents = |
1219 | ITraits.hasTrait(MR: baseR, |
1220 | IK: RegionAndSymbolInvalidationTraits::TK_PreserveContents); |
1221 | |
1222 | if (C) { |
1223 | for (SVal Val : llvm::make_second_range(c: *C)) |
1224 | VisitBinding(V: Val); |
1225 | |
1226 | // Invalidate regions contents. |
1227 | if (!PreserveRegionsContents) |
1228 | B = B.removeCluster(BaseRegion: baseR); |
1229 | } |
1230 | |
1231 | if (const auto *TO = dyn_cast<TypedValueRegion>(Val: baseR)) { |
1232 | if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) { |
1233 | |
1234 | // Lambdas can affect all static local variables without explicitly |
1235 | // capturing those. |
1236 | // We invalidate all static locals referenced inside the lambda body. |
1237 | if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) { |
1238 | using namespace ast_matchers; |
1239 | |
1240 | const char *DeclBind = "DeclBind" ; |
1241 | StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr( |
1242 | to(InnerMatcher: varDecl(hasStaticStorageDuration()).bind(ID: DeclBind))))); |
1243 | auto Matches = |
1244 | match(Matcher: RefToStatic, Node: *RD->getLambdaCallOperator()->getBody(), |
1245 | Context&: RD->getASTContext()); |
1246 | |
1247 | for (BoundNodes &Match : Matches) { |
1248 | auto *VD = Match.getNodeAs<VarDecl>(ID: DeclBind); |
1249 | const VarRegion *ToInvalidate = |
1250 | RM.getRegionManager().getVarRegion(VD, LC: LCtx); |
1251 | AddToWorkList(R: ToInvalidate); |
1252 | } |
1253 | } |
1254 | } |
1255 | } |
1256 | |
1257 | // BlockDataRegion? If so, invalidate captured variables that are passed |
1258 | // by reference. |
1259 | if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(Val: baseR)) { |
1260 | for (auto Var : BR->referenced_vars()) { |
1261 | const VarRegion *VR = Var.getCapturedRegion(); |
1262 | const VarDecl *VD = VR->getDecl(); |
1263 | if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) { |
1264 | AddToWorkList(R: VR); |
1265 | } |
1266 | else if (Loc::isLocType(T: VR->getValueType())) { |
1267 | // Map the current bindings to a Store to retrieve the value |
1268 | // of the binding. If that binding itself is a region, we should |
1269 | // invalidate that region. This is because a block may capture |
1270 | // a pointer value, but the thing pointed by that pointer may |
1271 | // get invalidated. |
1272 | SVal V = RM.getBinding(B, L: loc::MemRegionVal(VR)); |
1273 | if (std::optional<Loc> L = V.getAs<Loc>()) { |
1274 | if (const MemRegion *LR = L->getAsRegion()) |
1275 | AddToWorkList(R: LR); |
1276 | } |
1277 | } |
1278 | } |
1279 | return; |
1280 | } |
1281 | |
1282 | // Symbolic region? |
1283 | if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Val: baseR)) |
1284 | IS.insert(V: SR->getSymbol()); |
1285 | |
1286 | // Nothing else should be done in the case when we preserve regions context. |
1287 | if (PreserveRegionsContents) |
1288 | return; |
1289 | |
1290 | // Otherwise, we have a normal data region. Record that we touched the region. |
1291 | if (Regions) |
1292 | Regions->push_back(Elt: baseR); |
1293 | |
1294 | if (isa<AllocaRegion, SymbolicRegion>(Val: baseR)) { |
1295 | // Invalidate the region by setting its default value to |
1296 | // conjured symbol. The type of the symbol is irrelevant. |
1297 | DefinedOrUnknownSVal V = |
1298 | svalBuilder.conjureSymbolVal(symbolTag: baseR, elem: Elem, LCtx, type: Ctx.IntTy, count: Count); |
1299 | B = B.addBinding(R: baseR, k: BindingKey::Default, V); |
1300 | return; |
1301 | } |
1302 | |
1303 | if (!baseR->isBoundable()) |
1304 | return; |
1305 | |
1306 | const TypedValueRegion *TR = cast<TypedValueRegion>(Val: baseR); |
1307 | QualType T = TR->getValueType(); |
1308 | |
1309 | if (isInitiallyIncludedGlobalRegion(R: baseR)) { |
1310 | // If the region is a global and we are invalidating all globals, |
1311 | // erasing the entry is good enough. This causes all globals to be lazily |
1312 | // symbolicated from the same base symbol. |
1313 | return; |
1314 | } |
1315 | |
1316 | if (T->isRecordType()) { |
1317 | // Invalidate the region by setting its default value to |
1318 | // conjured symbol. The type of the symbol is irrelevant. |
1319 | DefinedOrUnknownSVal V = |
1320 | svalBuilder.conjureSymbolVal(symbolTag: baseR, elem: Elem, LCtx, type: Ctx.IntTy, count: Count); |
1321 | B = B.addBinding(R: baseR, k: BindingKey::Default, V); |
1322 | return; |
1323 | } |
1324 | |
1325 | if (const ArrayType *AT = Ctx.getAsArrayType(T)) { |
1326 | bool doNotInvalidateSuperRegion = ITraits.hasTrait( |
1327 | MR: baseR, |
1328 | IK: RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); |
1329 | |
1330 | if (doNotInvalidateSuperRegion) { |
1331 | // We are not doing blank invalidation of the whole array region so we |
1332 | // have to manually invalidate each elements. |
1333 | std::optional<uint64_t> NumElements; |
1334 | |
1335 | // Compute lower and upper offsets for region within array. |
1336 | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(Val: AT)) |
1337 | NumElements = CAT->getZExtSize(); |
1338 | if (!NumElements) // We are not dealing with a constant size array |
1339 | goto conjure_default; |
1340 | QualType ElementTy = AT->getElementType(); |
1341 | uint64_t ElemSize = Ctx.getTypeSize(T: ElementTy); |
1342 | const RegionOffset &RO = baseR->getAsOffset(); |
1343 | const MemRegion *SuperR = baseR->getBaseRegion(); |
1344 | if (RO.hasSymbolicOffset()) { |
1345 | // If base region has a symbolic offset, |
1346 | // we revert to invalidating the super region. |
1347 | if (SuperR) |
1348 | AddToWorkList(R: SuperR); |
1349 | goto conjure_default; |
1350 | } |
1351 | |
1352 | uint64_t LowerOffset = RO.getOffset(); |
1353 | uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize; |
1354 | bool UpperOverflow = UpperOffset < LowerOffset; |
1355 | |
1356 | // Invalidate regions which are within array boundaries, |
1357 | // or have a symbolic offset. |
1358 | if (!SuperR) |
1359 | goto conjure_default; |
1360 | |
1361 | const ClusterBindings *C = B.lookup(K: SuperR); |
1362 | if (!C) |
1363 | goto conjure_default; |
1364 | |
1365 | for (const auto &[BK, V] : *C) { |
1366 | std::optional<uint64_t> ROffset = |
1367 | BK.hasSymbolicOffset() ? std::optional<uint64_t>() : BK.getOffset(); |
1368 | |
1369 | // Check offset is not symbolic and within array's boundaries. |
1370 | // Handles arrays of 0 elements and of 0-sized elements as well. |
1371 | if (!ROffset || |
1372 | ((*ROffset >= LowerOffset && *ROffset < UpperOffset) || |
1373 | (UpperOverflow && |
1374 | (*ROffset >= LowerOffset || *ROffset < UpperOffset)) || |
1375 | (LowerOffset == UpperOffset && *ROffset == LowerOffset))) { |
1376 | B = B.removeBinding(K: BK); |
1377 | // Bound symbolic regions need to be invalidated for dead symbol |
1378 | // detection. |
1379 | const MemRegion *R = V.getAsRegion(); |
1380 | if (isa_and_nonnull<SymbolicRegion>(Val: R)) |
1381 | VisitBinding(V); |
1382 | } |
1383 | } |
1384 | } |
1385 | conjure_default: |
1386 | // Set the default value of the array to conjured symbol. |
1387 | DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal( |
1388 | symbolTag: baseR, elem: Elem, LCtx, type: AT->getElementType(), count: Count); |
1389 | B = B.addBinding(R: baseR, k: BindingKey::Default, V); |
1390 | return; |
1391 | } |
1392 | |
1393 | DefinedOrUnknownSVal V = |
1394 | svalBuilder.conjureSymbolVal(symbolTag: baseR, elem: Elem, LCtx, type: T, count: Count); |
1395 | assert(SymbolManager::canSymbolicate(T) || V.isUnknown()); |
1396 | B = B.addBinding(R: baseR, k: BindingKey::Direct, V); |
1397 | } |
1398 | |
1399 | bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion( |
1400 | const MemRegion *R) { |
1401 | switch (GlobalsFilter) { |
1402 | case GFK_None: |
1403 | return false; |
1404 | case GFK_SystemOnly: |
1405 | return isa<GlobalSystemSpaceRegion>(Val: R->getRawMemorySpace()); |
1406 | case GFK_All: |
1407 | return isa<NonStaticGlobalSpaceRegion>(Val: R->getRawMemorySpace()); |
1408 | } |
1409 | |
1410 | llvm_unreachable("unknown globals filter" ); |
1411 | } |
1412 | |
1413 | bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) { |
1414 | if (isInitiallyIncludedGlobalRegion(R: Base)) |
1415 | return true; |
1416 | |
1417 | const MemSpaceRegion *MemSpace = Base->getRawMemorySpace(); |
1418 | return ITraits.hasTrait(MR: MemSpace, |
1419 | IK: RegionAndSymbolInvalidationTraits::TK_EntireMemSpace); |
1420 | } |
1421 | |
1422 | RegionBindingsRef RegionStoreManager::invalidateGlobalRegion( |
1423 | MemRegion::Kind K, ConstCFGElementRef Elem, unsigned Count, |
1424 | const LocationContext *LCtx, RegionBindingsRef B, |
1425 | InvalidatedRegions *Invalidated) { |
1426 | // Bind the globals memory space to a new symbol that we will use to derive |
1427 | // the bindings for all globals. |
1428 | const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K); |
1429 | SVal V = svalBuilder.conjureSymbolVal( |
1430 | /* symbolTag = */ (const void *)GS, elem: Elem, LCtx, |
1431 | /* type does not matter */ type: Ctx.IntTy, count: Count); |
1432 | |
1433 | B = B.removeBinding(R: GS) |
1434 | .addBinding(K: BindingKey::Make(R: GS, k: BindingKey::Default), V); |
1435 | |
1436 | // Even if there are no bindings in the global scope, we still need to |
1437 | // record that we touched it. |
1438 | if (Invalidated) |
1439 | Invalidated->push_back(Elt: GS); |
1440 | |
1441 | return B; |
1442 | } |
1443 | |
1444 | void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W, |
1445 | ArrayRef<SVal> Values, |
1446 | InvalidatedRegions *TopLevelRegions) { |
1447 | for (SVal V : Values) { |
1448 | if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) { |
1449 | for (SVal S : getInterestingValues(LCV: *LCS)) |
1450 | if (const MemRegion *R = S.getAsRegion()) |
1451 | W.AddToWorkList(R); |
1452 | |
1453 | continue; |
1454 | } |
1455 | |
1456 | if (const MemRegion *R = V.getAsRegion()) { |
1457 | if (TopLevelRegions) |
1458 | TopLevelRegions->push_back(Elt: R); |
1459 | W.AddToWorkList(R); |
1460 | continue; |
1461 | } |
1462 | } |
1463 | } |
1464 | |
1465 | StoreRef RegionStoreManager::invalidateRegions( |
1466 | Store store, ArrayRef<SVal> Values, ConstCFGElementRef Elem, unsigned Count, |
1467 | const LocationContext *LCtx, const CallEvent *Call, InvalidatedSymbols &IS, |
1468 | RegionAndSymbolInvalidationTraits &ITraits, |
1469 | InvalidatedRegions *TopLevelRegions, InvalidatedRegions *Invalidated) { |
1470 | GlobalsFilterKind GlobalsFilter; |
1471 | if (Call) { |
1472 | if (Call->isInSystemHeader()) |
1473 | GlobalsFilter = GFK_SystemOnly; |
1474 | else |
1475 | GlobalsFilter = GFK_All; |
1476 | } else { |
1477 | GlobalsFilter = GFK_None; |
1478 | } |
1479 | |
1480 | RegionBindingsRef B = getRegionBindings(store); |
1481 | InvalidateRegionsWorker W(*this, StateMgr, B, Elem, Count, LCtx, IS, ITraits, |
1482 | Invalidated, GlobalsFilter); |
1483 | |
1484 | // Scan the bindings and generate the clusters. |
1485 | W.GenerateClusters(); |
1486 | |
1487 | // Add the regions to the worklist. |
1488 | populateWorkList(W, Values, TopLevelRegions); |
1489 | |
1490 | W.RunWorkList(); |
1491 | |
1492 | // Return the new bindings. |
1493 | B = W.getRegionBindings(); |
1494 | |
1495 | // For calls, determine which global regions should be invalidated and |
1496 | // invalidate them. (Note that function-static and immutable globals are never |
1497 | // invalidated by this.) |
1498 | // TODO: This could possibly be more precise with modules. |
1499 | switch (GlobalsFilter) { |
1500 | case GFK_All: |
1501 | B = invalidateGlobalRegion(K: MemRegion::GlobalInternalSpaceRegionKind, Elem, |
1502 | Count, LCtx, B, Invalidated); |
1503 | [[fallthrough]]; |
1504 | case GFK_SystemOnly: |
1505 | B = invalidateGlobalRegion(K: MemRegion::GlobalSystemSpaceRegionKind, Elem, |
1506 | Count, LCtx, B, Invalidated); |
1507 | [[fallthrough]]; |
1508 | case GFK_None: |
1509 | break; |
1510 | } |
1511 | |
1512 | return StoreRef(B.asStore(), *this); |
1513 | } |
1514 | |
1515 | //===----------------------------------------------------------------------===// |
1516 | // Location and region casting. |
1517 | //===----------------------------------------------------------------------===// |
1518 | |
1519 | /// ArrayToPointer - Emulates the "decay" of an array to a pointer |
1520 | /// type. 'Array' represents the lvalue of the array being decayed |
1521 | /// to a pointer, and the returned SVal represents the decayed |
1522 | /// version of that lvalue (i.e., a pointer to the first element of |
1523 | /// the array). This is called by ExprEngine when evaluating casts |
1524 | /// from arrays to pointers. |
1525 | SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) { |
1526 | if (isa<loc::ConcreteInt>(Val: Array)) |
1527 | return Array; |
1528 | |
1529 | if (!isa<loc::MemRegionVal>(Val: Array)) |
1530 | return UnknownVal(); |
1531 | |
1532 | const SubRegion *R = |
1533 | cast<SubRegion>(Val: Array.castAs<loc::MemRegionVal>().getRegion()); |
1534 | NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex(); |
1535 | return loc::MemRegionVal(MRMgr.getElementRegion(elementType: T, Idx: ZeroIdx, superRegion: R, Ctx)); |
1536 | } |
1537 | |
1538 | //===----------------------------------------------------------------------===// |
1539 | // Loading values from regions. |
1540 | //===----------------------------------------------------------------------===// |
1541 | |
1542 | SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) { |
1543 | assert(!isa<UnknownVal>(L) && "location unknown" ); |
1544 | assert(!isa<UndefinedVal>(L) && "location undefined" ); |
1545 | |
1546 | // For access to concrete addresses, return UnknownVal. Checks |
1547 | // for null dereferences (and similar errors) are done by checkers, not |
1548 | // the Store. |
1549 | // FIXME: We can consider lazily symbolicating such memory, but we really |
1550 | // should defer this when we can reason easily about symbolicating arrays |
1551 | // of bytes. |
1552 | if (L.getAs<loc::ConcreteInt>()) { |
1553 | return UnknownVal(); |
1554 | } |
1555 | if (!L.getAs<loc::MemRegionVal>()) { |
1556 | return UnknownVal(); |
1557 | } |
1558 | |
1559 | const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion(); |
1560 | |
1561 | if (isa<BlockDataRegion>(Val: MR)) { |
1562 | return UnknownVal(); |
1563 | } |
1564 | |
1565 | // Auto-detect the binding type. |
1566 | if (T.isNull()) { |
1567 | if (const auto *TVR = dyn_cast<TypedValueRegion>(Val: MR)) |
1568 | T = TVR->getValueType(); |
1569 | else if (const auto *TR = dyn_cast<TypedRegion>(Val: MR)) |
1570 | T = TR->getLocationType()->getPointeeType(); |
1571 | else if (const auto *SR = dyn_cast<SymbolicRegion>(Val: MR)) |
1572 | T = SR->getPointeeStaticType(); |
1573 | } |
1574 | assert(!T.isNull() && "Unable to auto-detect binding type!" ); |
1575 | assert(!T->isVoidType() && "Attempting to dereference a void pointer!" ); |
1576 | |
1577 | if (!isa<TypedValueRegion>(Val: MR)) |
1578 | MR = GetElementZeroRegion(R: cast<SubRegion>(Val: MR), T); |
1579 | |
1580 | // FIXME: Perhaps this method should just take a 'const MemRegion*' argument |
1581 | // instead of 'Loc', and have the other Loc cases handled at a higher level. |
1582 | const TypedValueRegion *R = cast<TypedValueRegion>(Val: MR); |
1583 | QualType RTy = R->getValueType(); |
1584 | |
1585 | // FIXME: we do not yet model the parts of a complex type, so treat the |
1586 | // whole thing as "unknown". |
1587 | if (RTy->isAnyComplexType()) |
1588 | return UnknownVal(); |
1589 | |
1590 | // FIXME: We should eventually handle funny addressing. e.g.: |
1591 | // |
1592 | // int x = ...; |
1593 | // int *p = &x; |
1594 | // char *q = (char*) p; |
1595 | // char c = *q; // returns the first byte of 'x'. |
1596 | // |
1597 | // Such funny addressing will occur due to layering of regions. |
1598 | if (RTy->isStructureOrClassType()) |
1599 | return getBindingForStruct(B, R); |
1600 | |
1601 | // FIXME: Handle unions. |
1602 | if (RTy->isUnionType()) |
1603 | return createLazyBinding(B, R); |
1604 | |
1605 | if (RTy->isArrayType()) { |
1606 | if (RTy->isConstantArrayType()) |
1607 | return getBindingForArray(B, R); |
1608 | else |
1609 | return UnknownVal(); |
1610 | } |
1611 | |
1612 | // FIXME: handle Vector types. |
1613 | if (RTy->isVectorType()) |
1614 | return UnknownVal(); |
1615 | |
1616 | if (const FieldRegion* FR = dyn_cast<FieldRegion>(Val: R)) |
1617 | return svalBuilder.evalCast(V: getBindingForField(B, R: FR), CastTy: T, OriginalTy: QualType{}); |
1618 | |
1619 | if (const ElementRegion* ER = dyn_cast<ElementRegion>(Val: R)) { |
1620 | // FIXME: Here we actually perform an implicit conversion from the loaded |
1621 | // value to the element type. Eventually we want to compose these values |
1622 | // more intelligently. For example, an 'element' can encompass multiple |
1623 | // bound regions (e.g., several bound bytes), or could be a subset of |
1624 | // a larger value. |
1625 | return svalBuilder.evalCast(V: getBindingForElement(B, R: ER), CastTy: T, OriginalTy: QualType{}); |
1626 | } |
1627 | |
1628 | if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(Val: R)) { |
1629 | // FIXME: Here we actually perform an implicit conversion from the loaded |
1630 | // value to the ivar type. What we should model is stores to ivars |
1631 | // that blow past the extent of the ivar. If the address of the ivar is |
1632 | // reinterpretted, it is possible we stored a different value that could |
1633 | // fit within the ivar. Either we need to cast these when storing them |
1634 | // or reinterpret them lazily (as we do here). |
1635 | return svalBuilder.evalCast(V: getBindingForObjCIvar(B, R: IVR), CastTy: T, OriginalTy: QualType{}); |
1636 | } |
1637 | |
1638 | if (const VarRegion *VR = dyn_cast<VarRegion>(Val: R)) { |
1639 | // FIXME: Here we actually perform an implicit conversion from the loaded |
1640 | // value to the variable type. What we should model is stores to variables |
1641 | // that blow past the extent of the variable. If the address of the |
1642 | // variable is reinterpretted, it is possible we stored a different value |
1643 | // that could fit within the variable. Either we need to cast these when |
1644 | // storing them or reinterpret them lazily (as we do here). |
1645 | return svalBuilder.evalCast(V: getBindingForVar(B, R: VR), CastTy: T, OriginalTy: QualType{}); |
1646 | } |
1647 | |
1648 | const SVal *V = B.lookup(R, k: BindingKey::Direct); |
1649 | |
1650 | // Check if the region has a binding. |
1651 | if (V) |
1652 | return *V; |
1653 | |
1654 | // The location does not have a bound value. This means that it has |
1655 | // the value it had upon its creation and/or entry to the analyzed |
1656 | // function/method. These are either symbolic values or 'undefined'. |
1657 | if (isa<StackLocalsSpaceRegion>(Val: R->getRawMemorySpace())) { |
1658 | // All stack variables are considered to have undefined values |
1659 | // upon creation. All heap allocated blocks are considered to |
1660 | // have undefined values as well unless they are explicitly bound |
1661 | // to specific values. |
1662 | return UndefinedVal(); |
1663 | } |
1664 | |
1665 | // All other values are symbolic. |
1666 | return svalBuilder.getRegionValueSymbolVal(region: R); |
1667 | } |
1668 | |
1669 | static QualType getUnderlyingType(const SubRegion *R) { |
1670 | QualType RegionTy; |
1671 | if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(Val: R)) |
1672 | RegionTy = TVR->getValueType(); |
1673 | |
1674 | if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Val: R)) |
1675 | RegionTy = SR->getSymbol()->getType(); |
1676 | |
1677 | return RegionTy; |
1678 | } |
1679 | |
1680 | /// Checks to see if store \p B has a lazy binding for region \p R. |
1681 | /// |
1682 | /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected |
1683 | /// if there are additional bindings within \p R. |
1684 | /// |
1685 | /// Note that unlike RegionStoreManager::findLazyBinding, this will not search |
1686 | /// for lazy bindings for super-regions of \p R. |
1687 | static std::optional<nonloc::LazyCompoundVal> |
1688 | getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B, |
1689 | const SubRegion *R, bool AllowSubregionBindings) { |
1690 | std::optional<SVal> V = B.getDefaultBinding(R); |
1691 | if (!V) |
1692 | return std::nullopt; |
1693 | |
1694 | std::optional<nonloc::LazyCompoundVal> LCV = |
1695 | V->getAs<nonloc::LazyCompoundVal>(); |
1696 | if (!LCV) |
1697 | return std::nullopt; |
1698 | |
1699 | // If the LCV is for a subregion, the types might not match, and we shouldn't |
1700 | // reuse the binding. |
1701 | QualType RegionTy = getUnderlyingType(R); |
1702 | if (!RegionTy.isNull() && |
1703 | !RegionTy->isVoidPointerType()) { |
1704 | QualType SourceRegionTy = LCV->getRegion()->getValueType(); |
1705 | if (!SVB.getContext().hasSameUnqualifiedType(T1: RegionTy, T2: SourceRegionTy)) |
1706 | return std::nullopt; |
1707 | } |
1708 | |
1709 | if (!AllowSubregionBindings) { |
1710 | // If there are any other bindings within this region, we shouldn't reuse |
1711 | // the top-level binding. |
1712 | SmallVector<BindingPair, 16> Bindings; |
1713 | collectSubRegionBindings(Bindings, SVB, Cluster: *B.lookup(K: R->getBaseRegion()), Top: R, |
1714 | /*IncludeAllDefaultBindings=*/true); |
1715 | if (Bindings.size() > 1) |
1716 | return std::nullopt; |
1717 | } |
1718 | |
1719 | return *LCV; |
1720 | } |
1721 | |
1722 | std::pair<Store, const SubRegion *> |
1723 | RegionStoreManager::findLazyBinding(RegionBindingsConstRef B, |
1724 | const SubRegion *R, |
1725 | const SubRegion *originalRegion) { |
1726 | if (originalRegion != R) { |
1727 | if (std::optional<nonloc::LazyCompoundVal> V = |
1728 | getExistingLazyBinding(SVB&: svalBuilder, B, R, AllowSubregionBindings: true)) |
1729 | return std::make_pair(x: V->getStore(), y: V->getRegion()); |
1730 | } |
1731 | |
1732 | typedef std::pair<Store, const SubRegion *> StoreRegionPair; |
1733 | StoreRegionPair Result = StoreRegionPair(); |
1734 | |
1735 | if (const ElementRegion *ER = dyn_cast<ElementRegion>(Val: R)) { |
1736 | Result = findLazyBinding(B, R: cast<SubRegion>(Val: ER->getSuperRegion()), |
1737 | originalRegion); |
1738 | |
1739 | if (Result.second) |
1740 | Result.second = MRMgr.getElementRegionWithSuper(ER, superRegion: Result.second); |
1741 | |
1742 | } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Val: R)) { |
1743 | Result = findLazyBinding(B, R: cast<SubRegion>(Val: FR->getSuperRegion()), |
1744 | originalRegion); |
1745 | |
1746 | if (Result.second) |
1747 | Result.second = MRMgr.getFieldRegionWithSuper(FR, superRegion: Result.second); |
1748 | |
1749 | } else if (const CXXBaseObjectRegion *BaseReg = |
1750 | dyn_cast<CXXBaseObjectRegion>(Val: R)) { |
1751 | // C++ base object region is another kind of region that we should blast |
1752 | // through to look for lazy compound value. It is like a field region. |
1753 | Result = findLazyBinding(B, R: cast<SubRegion>(Val: BaseReg->getSuperRegion()), |
1754 | originalRegion); |
1755 | |
1756 | if (Result.second) |
1757 | Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(baseReg: BaseReg, |
1758 | superRegion: Result.second); |
1759 | } |
1760 | |
1761 | return Result; |
1762 | } |
1763 | |
1764 | /// This is a helper function for `getConstantValFromConstArrayInitializer`. |
1765 | /// |
1766 | /// Return an array of extents of the declared array type. |
1767 | /// |
1768 | /// E.g. for `int x[1][2][3];` returns { 1, 2, 3 }. |
1769 | static SmallVector<uint64_t, 2> |
1770 | getConstantArrayExtents(const ConstantArrayType *CAT) { |
1771 | assert(CAT && "ConstantArrayType should not be null" ); |
1772 | CAT = cast<ConstantArrayType>(Val: CAT->getCanonicalTypeInternal()); |
1773 | SmallVector<uint64_t, 2> Extents; |
1774 | do { |
1775 | Extents.push_back(Elt: CAT->getZExtSize()); |
1776 | } while ((CAT = dyn_cast<ConstantArrayType>(Val: CAT->getElementType()))); |
1777 | return Extents; |
1778 | } |
1779 | |
1780 | /// This is a helper function for `getConstantValFromConstArrayInitializer`. |
1781 | /// |
1782 | /// Return an array of offsets from nested ElementRegions and a root base |
1783 | /// region. The array is never empty and a base region is never null. |
1784 | /// |
1785 | /// E.g. for `Element{Element{Element{VarRegion},1},2},3}` returns { 3, 2, 1 }. |
1786 | /// This represents an access through indirection: `arr[1][2][3];` |
1787 | /// |
1788 | /// \param ER The given (possibly nested) ElementRegion. |
1789 | /// |
1790 | /// \note The result array is in the reverse order of indirection expression: |
1791 | /// arr[1][2][3] -> { 3, 2, 1 }. This helps to provide complexity O(n), where n |
1792 | /// is a number of indirections. It may not affect performance in real-life |
1793 | /// code, though. |
1794 | static std::pair<SmallVector<SVal, 2>, const MemRegion *> |
1795 | getElementRegionOffsetsWithBase(const ElementRegion *ER) { |
1796 | assert(ER && "ConstantArrayType should not be null" ); |
1797 | const MemRegion *Base; |
1798 | SmallVector<SVal, 2> SValOffsets; |
1799 | do { |
1800 | SValOffsets.push_back(Elt: ER->getIndex()); |
1801 | Base = ER->getSuperRegion(); |
1802 | ER = dyn_cast<ElementRegion>(Val: Base); |
1803 | } while (ER); |
1804 | return {SValOffsets, Base}; |
1805 | } |
1806 | |
1807 | /// This is a helper function for `getConstantValFromConstArrayInitializer`. |
1808 | /// |
1809 | /// Convert array of offsets from `SVal` to `uint64_t` in consideration of |
1810 | /// respective array extents. |
1811 | /// \param SrcOffsets [in] The array of offsets of type `SVal` in reversed |
1812 | /// order (expectedly received from `getElementRegionOffsetsWithBase`). |
1813 | /// \param ArrayExtents [in] The array of extents. |
1814 | /// \param DstOffsets [out] The array of offsets of type `uint64_t`. |
1815 | /// \returns: |
1816 | /// - `std::nullopt` for successful convertion. |
1817 | /// - `UndefinedVal` or `UnknownVal` otherwise. It's expected that this SVal |
1818 | /// will be returned as a suitable value of the access operation. |
1819 | /// which should be returned as a correct |
1820 | /// |
1821 | /// \example: |
1822 | /// const int arr[10][20][30] = {}; // ArrayExtents { 10, 20, 30 } |
1823 | /// int x1 = arr[4][5][6]; // SrcOffsets { NonLoc(6), NonLoc(5), NonLoc(4) } |
1824 | /// // DstOffsets { 4, 5, 6 } |
1825 | /// // returns std::nullopt |
1826 | /// int x2 = arr[42][5][-6]; // returns UndefinedVal |
1827 | /// int x3 = arr[4][5][x2]; // returns UnknownVal |
1828 | static std::optional<SVal> |
1829 | convertOffsetsFromSvalToUnsigneds(const SmallVector<SVal, 2> &SrcOffsets, |
1830 | const SmallVector<uint64_t, 2> ArrayExtents, |
1831 | SmallVector<uint64_t, 2> &DstOffsets) { |
1832 | // Check offsets for being out of bounds. |
1833 | // C++20 [expr.add] 7.6.6.4 (excerpt): |
1834 | // If P points to an array element i of an array object x with n |
1835 | // elements, where i < 0 or i > n, the behavior is undefined. |
1836 | // Dereferencing is not allowed on the "one past the last |
1837 | // element", when i == n. |
1838 | // Example: |
1839 | // const int arr[3][2] = {{1, 2}, {3, 4}}; |
1840 | // arr[0][0]; // 1 |
1841 | // arr[0][1]; // 2 |
1842 | // arr[0][2]; // UB |
1843 | // arr[1][0]; // 3 |
1844 | // arr[1][1]; // 4 |
1845 | // arr[1][-1]; // UB |
1846 | // arr[2][0]; // 0 |
1847 | // arr[2][1]; // 0 |
1848 | // arr[-2][0]; // UB |
1849 | DstOffsets.resize(N: SrcOffsets.size()); |
1850 | auto ExtentIt = ArrayExtents.begin(); |
1851 | auto OffsetIt = DstOffsets.begin(); |
1852 | // Reverse `SValOffsets` to make it consistent with `ArrayExtents`. |
1853 | for (SVal V : llvm::reverse(C: SrcOffsets)) { |
1854 | if (auto CI = V.getAs<nonloc::ConcreteInt>()) { |
1855 | // When offset is out of array's bounds, result is UB. |
1856 | const llvm::APSInt &Offset = CI->getValue(); |
1857 | if (Offset.isNegative() || Offset.uge(RHS: *(ExtentIt++))) |
1858 | return UndefinedVal(); |
1859 | // Store index in a reversive order. |
1860 | *(OffsetIt++) = Offset.getZExtValue(); |
1861 | continue; |
1862 | } |
1863 | // Symbolic index presented. Return Unknown value. |
1864 | // FIXME: We also need to take ElementRegions with symbolic indexes into |
1865 | // account. |
1866 | return UnknownVal(); |
1867 | } |
1868 | return std::nullopt; |
1869 | } |
1870 | |
1871 | std::optional<SVal> RegionStoreManager::getConstantValFromConstArrayInitializer( |
1872 | RegionBindingsConstRef B, const ElementRegion *R) { |
1873 | assert(R && "ElementRegion should not be null" ); |
1874 | |
1875 | // Treat an n-dimensional array. |
1876 | SmallVector<SVal, 2> SValOffsets; |
1877 | const MemRegion *Base; |
1878 | std::tie(args&: SValOffsets, args&: Base) = getElementRegionOffsetsWithBase(ER: R); |
1879 | const VarRegion *VR = dyn_cast<VarRegion>(Val: Base); |
1880 | if (!VR) |
1881 | return std::nullopt; |
1882 | |
1883 | assert(!SValOffsets.empty() && "getElementRegionOffsets guarantees the " |
1884 | "offsets vector is not empty." ); |
1885 | |
1886 | // Check if the containing array has an initialized value that we can trust. |
1887 | // We can trust a const value or a value of a global initializer in main(). |
1888 | const VarDecl *VD = VR->getDecl(); |
1889 | if (!VD->getType().isConstQualified() && |
1890 | !R->getElementType().isConstQualified() && |
1891 | (!B.isMainAnalysis() || !VD->hasGlobalStorage())) |
1892 | return std::nullopt; |
1893 | |
1894 | // Array's declaration should have `ConstantArrayType` type, because only this |
1895 | // type contains an array extent. It may happen that array type can be of |
1896 | // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType` |
1897 | // type, we should find the declaration in the redeclarations chain that has |
1898 | // the initialization expression. |
1899 | // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD` |
1900 | // from which an initializer is obtained. We replace current `VD` with the new |
1901 | // `VD`. If the return value of the function is null than `VD` won't be |
1902 | // replaced. |
1903 | const Expr *Init = VD->getAnyInitializer(D&: VD); |
1904 | // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check |
1905 | // `Init` for null only and don't worry about the replaced `VD`. |
1906 | if (!Init) |
1907 | return std::nullopt; |
1908 | |
1909 | // Array's declaration should have ConstantArrayType type, because only this |
1910 | // type contains an array extent. |
1911 | const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T: VD->getType()); |
1912 | if (!CAT) |
1913 | return std::nullopt; |
1914 | |
1915 | // Get array extents. |
1916 | SmallVector<uint64_t, 2> Extents = getConstantArrayExtents(CAT); |
1917 | |
1918 | // The number of offsets should equal to the numbers of extents, |
1919 | // otherwise wrong type punning occurred. For instance: |
1920 | // int arr[1][2][3]; |
1921 | // auto ptr = (int(*)[42])arr; |
1922 | // auto x = ptr[4][2]; // UB |
1923 | // FIXME: Should return UndefinedVal. |
1924 | if (SValOffsets.size() != Extents.size()) |
1925 | return std::nullopt; |
1926 | |
1927 | SmallVector<uint64_t, 2> ConcreteOffsets; |
1928 | if (std::optional<SVal> V = convertOffsetsFromSvalToUnsigneds( |
1929 | SrcOffsets: SValOffsets, ArrayExtents: Extents, DstOffsets&: ConcreteOffsets)) |
1930 | return *V; |
1931 | |
1932 | // Handle InitListExpr. |
1933 | // Example: |
1934 | // const char arr[4][2] = { { 1, 2 }, { 3 }, 4, 5 }; |
1935 | if (const auto *ILE = dyn_cast<InitListExpr>(Val: Init)) |
1936 | return getSValFromInitListExpr(ILE, ConcreteOffsets, ElemT: R->getElementType()); |
1937 | |
1938 | // Handle StringLiteral. |
1939 | // Example: |
1940 | // const char arr[] = "abc"; |
1941 | if (const auto *SL = dyn_cast<StringLiteral>(Val: Init)) |
1942 | return getSValFromStringLiteral(SL, Offset: ConcreteOffsets.front(), |
1943 | ElemT: R->getElementType()); |
1944 | |
1945 | // FIXME: Handle CompoundLiteralExpr. |
1946 | |
1947 | return std::nullopt; |
1948 | } |
1949 | |
1950 | /// Returns an SVal, if possible, for the specified position of an |
1951 | /// initialization list. |
1952 | /// |
1953 | /// \param ILE The given initialization list. |
1954 | /// \param Offsets The array of unsigned offsets. E.g. for the expression |
1955 | /// `int x = arr[1][2][3];` an array should be { 1, 2, 3 }. |
1956 | /// \param ElemT The type of the result SVal expression. |
1957 | /// \return Optional SVal for the particular position in the initialization |
1958 | /// list. E.g. for the list `{{1, 2},[3, 4],{5, 6}, {}}` offsets: |
1959 | /// - {1, 1} returns SVal{4}, because it's the second position in the second |
1960 | /// sublist; |
1961 | /// - {3, 0} returns SVal{0}, because there's no explicit value at this |
1962 | /// position in the sublist. |
1963 | /// |
1964 | /// NOTE: Inorder to get a valid SVal, a caller shall guarantee valid offsets |
1965 | /// for the given initialization list. Otherwise SVal can be an equivalent to 0 |
1966 | /// or lead to assertion. |
1967 | std::optional<SVal> RegionStoreManager::getSValFromInitListExpr( |
1968 | const InitListExpr *ILE, const SmallVector<uint64_t, 2> &Offsets, |
1969 | QualType ElemT) { |
1970 | assert(ILE && "InitListExpr should not be null" ); |
1971 | |
1972 | for (uint64_t Offset : Offsets) { |
1973 | // C++20 [dcl.init.string] 9.4.2.1: |
1974 | // An array of ordinary character type [...] can be initialized by [...] |
1975 | // an appropriately-typed string-literal enclosed in braces. |
1976 | // Example: |
1977 | // const char arr[] = { "abc" }; |
1978 | if (ILE->isStringLiteralInit()) |
1979 | if (const auto *SL = dyn_cast<StringLiteral>(Val: ILE->getInit(Init: 0))) |
1980 | return getSValFromStringLiteral(SL, Offset, ElemT); |
1981 | |
1982 | // C++20 [expr.add] 9.4.17.5 (excerpt): |
1983 | // i-th array element is value-initialized for each k < i ≤ n, |
1984 | // where k is an expression-list size and n is an array extent. |
1985 | if (Offset >= ILE->getNumInits()) |
1986 | return svalBuilder.makeZeroVal(type: ElemT); |
1987 | |
1988 | const Expr *E = ILE->getInit(Init: Offset); |
1989 | const auto *IL = dyn_cast<InitListExpr>(Val: E); |
1990 | if (!IL) |
1991 | // Return a constant value, if it is presented. |
1992 | // FIXME: Support other SVals. |
1993 | return svalBuilder.getConstantVal(E); |
1994 | |
1995 | // Go to the nested initializer list. |
1996 | ILE = IL; |
1997 | } |
1998 | |
1999 | assert(ILE); |
2000 | |
2001 | // FIXME: Unhandeled InitListExpr sub-expression, possibly constructing an |
2002 | // enum? |
2003 | return std::nullopt; |
2004 | } |
2005 | |
2006 | /// Returns an SVal, if possible, for the specified position in a string |
2007 | /// literal. |
2008 | /// |
2009 | /// \param SL The given string literal. |
2010 | /// \param Offset The unsigned offset. E.g. for the expression |
2011 | /// `char x = str[42];` an offset should be 42. |
2012 | /// E.g. for the string "abc" offset: |
2013 | /// - 1 returns SVal{b}, because it's the second position in the string. |
2014 | /// - 42 returns SVal{0}, because there's no explicit value at this |
2015 | /// position in the string. |
2016 | /// \param ElemT The type of the result SVal expression. |
2017 | /// |
2018 | /// NOTE: We return `0` for every offset >= the literal length for array |
2019 | /// declarations, like: |
2020 | /// const char str[42] = "123"; // Literal length is 4. |
2021 | /// char c = str[41]; // Offset is 41. |
2022 | /// FIXME: Nevertheless, we can't do the same for pointer declaraions, like: |
2023 | /// const char * const str = "123"; // Literal length is 4. |
2024 | /// char c = str[41]; // Offset is 41. Returns `0`, but Undef |
2025 | /// // expected. |
2026 | /// It should be properly handled before reaching this point. |
2027 | /// The main problem is that we can't distinguish between these declarations, |
2028 | /// because in case of array we can get the Decl from VarRegion, but in case |
2029 | /// of pointer the region is a StringRegion, which doesn't contain a Decl. |
2030 | /// Possible solution could be passing an array extent along with the offset. |
2031 | SVal RegionStoreManager::getSValFromStringLiteral(const StringLiteral *SL, |
2032 | uint64_t Offset, |
2033 | QualType ElemT) { |
2034 | assert(SL && "StringLiteral should not be null" ); |
2035 | // C++20 [dcl.init.string] 9.4.2.3: |
2036 | // If there are fewer initializers than there are array elements, each |
2037 | // element not explicitly initialized shall be zero-initialized [dcl.init]. |
2038 | uint32_t Code = (Offset >= SL->getLength()) ? 0 : SL->getCodeUnit(i: Offset); |
2039 | return svalBuilder.makeIntVal(integer: Code, type: ElemT); |
2040 | } |
2041 | |
2042 | static std::optional<SVal> getDerivedSymbolForBinding( |
2043 | RegionBindingsConstRef B, const TypedValueRegion *BaseRegion, |
2044 | const TypedValueRegion *SubReg, const ASTContext &Ctx, SValBuilder &SVB) { |
2045 | assert(BaseRegion); |
2046 | QualType BaseTy = BaseRegion->getValueType(); |
2047 | QualType Ty = SubReg->getValueType(); |
2048 | if (BaseTy->isScalarType() && Ty->isScalarType()) { |
2049 | if (Ctx.getTypeSizeInChars(T: BaseTy) >= Ctx.getTypeSizeInChars(T: Ty)) { |
2050 | if (const std::optional<SVal> &ParentValue = |
2051 | B.getDirectBinding(R: BaseRegion)) { |
2052 | if (SymbolRef ParentValueAsSym = ParentValue->getAsSymbol()) |
2053 | return SVB.getDerivedRegionValueSymbolVal(parentSymbol: ParentValueAsSym, region: SubReg); |
2054 | |
2055 | if (ParentValue->isUndef()) |
2056 | return UndefinedVal(); |
2057 | |
2058 | // Other cases: give up. We are indexing into a larger object |
2059 | // that has some value, but we don't know how to handle that yet. |
2060 | return UnknownVal(); |
2061 | } |
2062 | } |
2063 | } |
2064 | return std::nullopt; |
2065 | } |
2066 | |
2067 | SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B, |
2068 | const ElementRegion* R) { |
2069 | // Check if the region has a binding. |
2070 | if (const std::optional<SVal> &V = B.getDirectBinding(R)) |
2071 | return *V; |
2072 | |
2073 | const MemRegion* superR = R->getSuperRegion(); |
2074 | |
2075 | // Check if the region is an element region of a string literal. |
2076 | if (const StringRegion *StrR = dyn_cast<StringRegion>(Val: superR)) { |
2077 | // FIXME: Handle loads from strings where the literal is treated as |
2078 | // an integer, e.g., *((unsigned int*)"hello"). Such loads are UB according |
2079 | // to C++20 7.2.1.11 [basic.lval]. |
2080 | QualType T = Ctx.getAsArrayType(T: StrR->getValueType())->getElementType(); |
2081 | if (!Ctx.hasSameUnqualifiedType(T1: T, T2: R->getElementType())) |
2082 | return UnknownVal(); |
2083 | if (const auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) { |
2084 | const llvm::APSInt &Idx = CI->getValue(); |
2085 | if (Idx < 0) |
2086 | return UndefinedVal(); |
2087 | const StringLiteral *SL = StrR->getStringLiteral(); |
2088 | return getSValFromStringLiteral(SL, Offset: Idx.getZExtValue(), ElemT: T); |
2089 | } |
2090 | } else if (isa<ElementRegion, VarRegion>(Val: superR)) { |
2091 | if (std::optional<SVal> V = getConstantValFromConstArrayInitializer(B, R)) |
2092 | return *V; |
2093 | } |
2094 | |
2095 | // Check for loads from a code text region. For such loads, just give up. |
2096 | if (isa<CodeTextRegion>(Val: superR)) |
2097 | return UnknownVal(); |
2098 | |
2099 | // Handle the case where we are indexing into a larger scalar object. |
2100 | // For example, this handles: |
2101 | // int x = ... |
2102 | // char *y = &x; |
2103 | // return *y; |
2104 | // FIXME: This is a hack, and doesn't do anything really intelligent yet. |
2105 | const RegionRawOffset &O = R->getAsArrayOffset(); |
2106 | |
2107 | // If we cannot reason about the offset, return an unknown value. |
2108 | if (!O.getRegion()) |
2109 | return UnknownVal(); |
2110 | |
2111 | if (const TypedValueRegion *baseR = dyn_cast<TypedValueRegion>(Val: O.getRegion())) |
2112 | if (auto V = getDerivedSymbolForBinding(B, BaseRegion: baseR, SubReg: R, Ctx, SVB&: svalBuilder)) |
2113 | return *V; |
2114 | |
2115 | return getBindingForFieldOrElementCommon(B, R, Ty: R->getElementType()); |
2116 | } |
2117 | |
2118 | SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B, |
2119 | const FieldRegion* R) { |
2120 | |
2121 | // Check if the region has a binding. |
2122 | if (const std::optional<SVal> &V = B.getDirectBinding(R)) |
2123 | return *V; |
2124 | |
2125 | // If the containing record was initialized, try to get its constant value. |
2126 | const FieldDecl *FD = R->getDecl(); |
2127 | QualType Ty = FD->getType(); |
2128 | const MemRegion* superR = R->getSuperRegion(); |
2129 | if (const auto *VR = dyn_cast<VarRegion>(Val: superR)) { |
2130 | const VarDecl *VD = VR->getDecl(); |
2131 | QualType RecordVarTy = VD->getType(); |
2132 | unsigned Index = FD->getFieldIndex(); |
2133 | // Either the record variable or the field has an initializer that we can |
2134 | // trust. We trust initializers of constants and, additionally, respect |
2135 | // initializers of globals when analyzing main(). |
2136 | if (RecordVarTy.isConstQualified() || Ty.isConstQualified() || |
2137 | (B.isMainAnalysis() && VD->hasGlobalStorage())) |
2138 | if (const Expr *Init = VD->getAnyInitializer()) |
2139 | if (const auto *InitList = dyn_cast<InitListExpr>(Val: Init)) { |
2140 | if (Index < InitList->getNumInits()) { |
2141 | if (const Expr *FieldInit = InitList->getInit(Init: Index)) |
2142 | if (std::optional<SVal> V = svalBuilder.getConstantVal(E: FieldInit)) |
2143 | return *V; |
2144 | } else { |
2145 | return svalBuilder.makeZeroVal(type: Ty); |
2146 | } |
2147 | } |
2148 | } |
2149 | |
2150 | // Handle the case where we are accessing into a larger scalar object. |
2151 | // For example, this handles: |
2152 | // struct header { |
2153 | // unsigned a : 1; |
2154 | // unsigned b : 1; |
2155 | // }; |
2156 | // struct parse_t { |
2157 | // unsigned bits0 : 1; |
2158 | // unsigned bits2 : 2; // <-- header |
2159 | // unsigned bits4 : 4; |
2160 | // }; |
2161 | // int parse(parse_t *p) { |
2162 | // unsigned copy = p->bits2; |
2163 | // header *bits = (header *)© |
2164 | // return bits->b; <-- here |
2165 | // } |
2166 | if (const auto *Base = dyn_cast<TypedValueRegion>(Val: R->getBaseRegion())) |
2167 | if (auto V = getDerivedSymbolForBinding(B, BaseRegion: Base, SubReg: R, Ctx, SVB&: svalBuilder)) |
2168 | return *V; |
2169 | |
2170 | return getBindingForFieldOrElementCommon(B, R, Ty); |
2171 | } |
2172 | |
2173 | std::optional<SVal> RegionStoreManager::getBindingForDerivedDefaultValue( |
2174 | RegionBindingsConstRef B, const MemRegion *superR, |
2175 | const TypedValueRegion *R, QualType Ty) { |
2176 | |
2177 | if (const std::optional<SVal> &D = B.getDefaultBinding(R: superR)) { |
2178 | SVal val = *D; |
2179 | if (SymbolRef parentSym = val.getAsSymbol()) |
2180 | return svalBuilder.getDerivedRegionValueSymbolVal(parentSymbol: parentSym, region: R); |
2181 | |
2182 | if (val.isZeroConstant()) |
2183 | return svalBuilder.makeZeroVal(type: Ty); |
2184 | |
2185 | if (val.isUnknownOrUndef()) |
2186 | return val; |
2187 | |
2188 | // Lazy bindings are usually handled through getExistingLazyBinding(). |
2189 | // We should unify these two code paths at some point. |
2190 | if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(Val: val)) |
2191 | return val; |
2192 | |
2193 | llvm_unreachable("Unknown default value" ); |
2194 | } |
2195 | |
2196 | return std::nullopt; |
2197 | } |
2198 | |
2199 | SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion, |
2200 | RegionBindingsRef LazyBinding) { |
2201 | SVal Result; |
2202 | if (const ElementRegion *ER = dyn_cast<ElementRegion>(Val: LazyBindingRegion)) |
2203 | Result = getBindingForElement(B: LazyBinding, R: ER); |
2204 | else |
2205 | Result = getBindingForField(B: LazyBinding, |
2206 | R: cast<FieldRegion>(Val: LazyBindingRegion)); |
2207 | |
2208 | // FIXME: This is a hack to deal with RegionStore's inability to distinguish a |
2209 | // default value for /part/ of an aggregate from a default value for the |
2210 | // /entire/ aggregate. The most common case of this is when struct Outer |
2211 | // has as its first member a struct Inner, which is copied in from a stack |
2212 | // variable. In this case, even if the Outer's default value is symbolic, 0, |
2213 | // or unknown, it gets overridden by the Inner's default value of undefined. |
2214 | // |
2215 | // This is a general problem -- if the Inner is zero-initialized, the Outer |
2216 | // will now look zero-initialized. The proper way to solve this is with a |
2217 | // new version of RegionStore that tracks the extent of a binding as well |
2218 | // as the offset. |
2219 | // |
2220 | // This hack only takes care of the undefined case because that can very |
2221 | // quickly result in a warning. |
2222 | if (Result.isUndef()) |
2223 | Result = UnknownVal(); |
2224 | |
2225 | return Result; |
2226 | } |
2227 | |
2228 | SVal |
2229 | RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B, |
2230 | const TypedValueRegion *R, |
2231 | QualType Ty) { |
2232 | |
2233 | // At this point we have already checked in either getBindingForElement or |
2234 | // getBindingForField if 'R' has a direct binding. |
2235 | |
2236 | // Lazy binding? |
2237 | Store lazyBindingStore = nullptr; |
2238 | const SubRegion *lazyBindingRegion = nullptr; |
2239 | std::tie(args&: lazyBindingStore, args&: lazyBindingRegion) = findLazyBinding(B, R, originalRegion: R); |
2240 | if (lazyBindingRegion) |
2241 | return getLazyBinding(LazyBindingRegion: lazyBindingRegion, |
2242 | LazyBinding: getRegionBindings(store: lazyBindingStore)); |
2243 | |
2244 | // Record whether or not we see a symbolic index. That can completely |
2245 | // be out of scope of our lookup. |
2246 | bool hasSymbolicIndex = false; |
2247 | |
2248 | // FIXME: This is a hack to deal with RegionStore's inability to distinguish a |
2249 | // default value for /part/ of an aggregate from a default value for the |
2250 | // /entire/ aggregate. The most common case of this is when struct Outer |
2251 | // has as its first member a struct Inner, which is copied in from a stack |
2252 | // variable. In this case, even if the Outer's default value is symbolic, 0, |
2253 | // or unknown, it gets overridden by the Inner's default value of undefined. |
2254 | // |
2255 | // This is a general problem -- if the Inner is zero-initialized, the Outer |
2256 | // will now look zero-initialized. The proper way to solve this is with a |
2257 | // new version of RegionStore that tracks the extent of a binding as well |
2258 | // as the offset. |
2259 | // |
2260 | // This hack only takes care of the undefined case because that can very |
2261 | // quickly result in a warning. |
2262 | bool hasPartialLazyBinding = false; |
2263 | |
2264 | const SubRegion *SR = R; |
2265 | while (SR) { |
2266 | const MemRegion *Base = SR->getSuperRegion(); |
2267 | if (std::optional<SVal> D = |
2268 | getBindingForDerivedDefaultValue(B, superR: Base, R, Ty)) { |
2269 | if (D->getAs<nonloc::LazyCompoundVal>()) { |
2270 | hasPartialLazyBinding = true; |
2271 | break; |
2272 | } |
2273 | |
2274 | return *D; |
2275 | } |
2276 | |
2277 | if (const ElementRegion *ER = dyn_cast<ElementRegion>(Val: Base)) { |
2278 | NonLoc index = ER->getIndex(); |
2279 | if (!index.isConstant()) |
2280 | hasSymbolicIndex = true; |
2281 | } |
2282 | |
2283 | // If our super region is a field or element itself, walk up the region |
2284 | // hierarchy to see if there is a default value installed in an ancestor. |
2285 | SR = dyn_cast<SubRegion>(Val: Base); |
2286 | } |
2287 | |
2288 | if (isa<StackLocalsSpaceRegion>(Val: R->getRawMemorySpace())) { |
2289 | if (isa<ElementRegion>(Val: R)) { |
2290 | // Currently we don't reason specially about Clang-style vectors. Check |
2291 | // if superR is a vector and if so return Unknown. |
2292 | if (const TypedValueRegion *typedSuperR = |
2293 | dyn_cast<TypedValueRegion>(Val: R->getSuperRegion())) { |
2294 | if (typedSuperR->getValueType()->isVectorType()) |
2295 | return UnknownVal(); |
2296 | } |
2297 | } |
2298 | |
2299 | // FIXME: We also need to take ElementRegions with symbolic indexes into |
2300 | // account. This case handles both directly accessing an ElementRegion |
2301 | // with a symbolic offset, but also fields within an element with |
2302 | // a symbolic offset. |
2303 | if (hasSymbolicIndex) |
2304 | return UnknownVal(); |
2305 | |
2306 | // Additionally allow introspection of a block's internal layout. |
2307 | // Try to get direct binding if all other attempts failed thus far. |
2308 | // Else, return UndefinedVal() |
2309 | if (!hasPartialLazyBinding && !isa<BlockDataRegion>(Val: R->getBaseRegion())) { |
2310 | if (const std::optional<SVal> &V = B.getDefaultBinding(R)) |
2311 | return *V; |
2312 | return UndefinedVal(); |
2313 | } |
2314 | } |
2315 | |
2316 | // All other values are symbolic. |
2317 | return svalBuilder.getRegionValueSymbolVal(region: R); |
2318 | } |
2319 | |
2320 | SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B, |
2321 | const ObjCIvarRegion* R) { |
2322 | // Check if the region has a binding. |
2323 | if (const std::optional<SVal> &V = B.getDirectBinding(R)) |
2324 | return *V; |
2325 | |
2326 | const MemRegion *superR = R->getSuperRegion(); |
2327 | |
2328 | // Check if the super region has a default binding. |
2329 | if (const std::optional<SVal> &V = B.getDefaultBinding(R: superR)) { |
2330 | if (SymbolRef parentSym = V->getAsSymbol()) |
2331 | return svalBuilder.getDerivedRegionValueSymbolVal(parentSymbol: parentSym, region: R); |
2332 | |
2333 | // Other cases: give up. |
2334 | return UnknownVal(); |
2335 | } |
2336 | |
2337 | return getBindingForLazySymbol(R); |
2338 | } |
2339 | |
2340 | SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B, |
2341 | const VarRegion *R) { |
2342 | |
2343 | // Check if the region has a binding. |
2344 | if (std::optional<SVal> V = B.getDirectBinding(R)) |
2345 | return *V; |
2346 | |
2347 | if (std::optional<SVal> V = B.getDefaultBinding(R)) |
2348 | return *V; |
2349 | |
2350 | // Lazily derive a value for the VarRegion. |
2351 | const VarDecl *VD = R->getDecl(); |
2352 | const MemSpaceRegion *MS = R->getRawMemorySpace(); |
2353 | |
2354 | // Arguments are always symbolic. |
2355 | if (isa<StackArgumentsSpaceRegion>(Val: MS)) |
2356 | return svalBuilder.getRegionValueSymbolVal(region: R); |
2357 | |
2358 | // Is 'VD' declared constant? If so, retrieve the constant value. |
2359 | if (VD->getType().isConstQualified()) { |
2360 | if (const Expr *Init = VD->getAnyInitializer()) { |
2361 | if (std::optional<SVal> V = svalBuilder.getConstantVal(E: Init)) |
2362 | return *V; |
2363 | |
2364 | // If the variable is const qualified and has an initializer but |
2365 | // we couldn't evaluate initializer to a value, treat the value as |
2366 | // unknown. |
2367 | return UnknownVal(); |
2368 | } |
2369 | } |
2370 | |
2371 | // This must come after the check for constants because closure-captured |
2372 | // constant variables may appear in UnknownSpaceRegion. |
2373 | if (isa<UnknownSpaceRegion>(Val: MS)) |
2374 | return svalBuilder.getRegionValueSymbolVal(region: R); |
2375 | |
2376 | if (isa<GlobalsSpaceRegion>(Val: MS)) { |
2377 | QualType T = VD->getType(); |
2378 | |
2379 | // If we're in main(), then global initializers have not become stale yet. |
2380 | if (B.isMainAnalysis()) |
2381 | if (const Expr *Init = VD->getAnyInitializer()) |
2382 | if (std::optional<SVal> V = svalBuilder.getConstantVal(E: Init)) |
2383 | return *V; |
2384 | |
2385 | // Function-scoped static variables are default-initialized to 0; if they |
2386 | // have an initializer, it would have been processed by now. |
2387 | // FIXME: This is only true when we're starting analysis from main(). |
2388 | // We're losing a lot of coverage here. |
2389 | if (isa<StaticGlobalSpaceRegion>(Val: MS)) |
2390 | return svalBuilder.makeZeroVal(type: T); |
2391 | |
2392 | if (std::optional<SVal> V = getBindingForDerivedDefaultValue(B, superR: MS, R, Ty: T)) { |
2393 | assert(!V->getAs<nonloc::LazyCompoundVal>()); |
2394 | return *V; |
2395 | } |
2396 | |
2397 | return svalBuilder.getRegionValueSymbolVal(region: R); |
2398 | } |
2399 | |
2400 | return UndefinedVal(); |
2401 | } |
2402 | |
2403 | SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) { |
2404 | // All other values are symbolic. |
2405 | return svalBuilder.getRegionValueSymbolVal(region: R); |
2406 | } |
2407 | |
2408 | const RegionStoreManager::SValListTy & |
2409 | RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) { |
2410 | // First, check the cache. |
2411 | LazyBindingsMapTy::iterator I = LazyBindingsMap.find(Val: LCV.getCVData()); |
2412 | if (I != LazyBindingsMap.end()) |
2413 | return I->second; |
2414 | |
2415 | // If we don't have a list of values cached, start constructing it. |
2416 | SValListTy List; |
2417 | |
2418 | const SubRegion *LazyR = LCV.getRegion(); |
2419 | RegionBindingsRef B = getRegionBindings(store: LCV.getStore()); |
2420 | |
2421 | // If this region had /no/ bindings at the time, there are no interesting |
2422 | // values to return. |
2423 | const ClusterBindings *Cluster = B.lookup(K: LazyR->getBaseRegion()); |
2424 | if (!Cluster) |
2425 | return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); |
2426 | |
2427 | SmallVector<BindingPair, 32> Bindings; |
2428 | collectSubRegionBindings(Bindings, SVB&: svalBuilder, Cluster: *Cluster, Top: LazyR, |
2429 | /*IncludeAllDefaultBindings=*/true); |
2430 | for (SVal V : llvm::make_second_range(c&: Bindings)) { |
2431 | if (V.isUnknownOrUndef() || V.isConstant()) |
2432 | continue; |
2433 | |
2434 | if (auto InnerLCV = V.getAs<nonloc::LazyCompoundVal>()) { |
2435 | const SValListTy &InnerList = getInterestingValues(LCV: *InnerLCV); |
2436 | llvm::append_range(C&: List, R: InnerList); |
2437 | } |
2438 | |
2439 | List.push_back(x: V); |
2440 | } |
2441 | |
2442 | return (LazyBindingsMap[LCV.getCVData()] = std::move(List)); |
2443 | } |
2444 | |
2445 | NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B, |
2446 | const TypedValueRegion *R) { |
2447 | if (std::optional<nonloc::LazyCompoundVal> V = |
2448 | getExistingLazyBinding(SVB&: svalBuilder, B, R, AllowSubregionBindings: false)) |
2449 | return *V; |
2450 | |
2451 | return svalBuilder.makeLazyCompoundVal(store: StoreRef(B.asStore(), *this), region: R); |
2452 | } |
2453 | |
2454 | SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B, |
2455 | const TypedValueRegion *R) { |
2456 | const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl(); |
2457 | if (!RD->getDefinition()) |
2458 | return UnknownVal(); |
2459 | |
2460 | // We also create a LCV for copying empty structs because then the store |
2461 | // behavior doesn't depend on the struct layout. |
2462 | // This way even an empty struct can carry taint, no matter if creduce drops |
2463 | // the last field member or not. |
2464 | |
2465 | // Try to avoid creating a LCV if it would anyways just refer to a single |
2466 | // default binding. |
2467 | if (std::optional<SVal> Val = getUniqueDefaultBinding(B, R)) |
2468 | return *Val; |
2469 | return createLazyBinding(B, R); |
2470 | } |
2471 | |
2472 | SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B, |
2473 | const TypedValueRegion *R) { |
2474 | assert(Ctx.getAsConstantArrayType(R->getValueType()) && |
2475 | "Only constant array types can have compound bindings." ); |
2476 | |
2477 | return createLazyBinding(B, R); |
2478 | } |
2479 | |
2480 | bool RegionStoreManager::includedInBindings(Store store, |
2481 | const MemRegion *region) const { |
2482 | RegionBindingsRef B = getRegionBindings(store); |
2483 | region = region->getBaseRegion(); |
2484 | |
2485 | // Quick path: if the base is the head of a cluster, the region is live. |
2486 | if (B.lookup(K: region)) |
2487 | return true; |
2488 | |
2489 | // Slow path: if the region is the VALUE of any binding, it is live. |
2490 | for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) { |
2491 | const ClusterBindings &Cluster = RI.getData(); |
2492 | for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end(); |
2493 | CI != CE; ++CI) { |
2494 | SVal D = CI.getData(); |
2495 | if (const MemRegion *R = D.getAsRegion()) |
2496 | if (R->getBaseRegion() == region) |
2497 | return true; |
2498 | } |
2499 | } |
2500 | |
2501 | return false; |
2502 | } |
2503 | |
2504 | //===----------------------------------------------------------------------===// |
2505 | // Binding values to regions. |
2506 | //===----------------------------------------------------------------------===// |
2507 | |
2508 | StoreRef RegionStoreManager::killBinding(Store ST, Loc L) { |
2509 | if (std::optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>()) |
2510 | if (const MemRegion* R = LV->getRegion()) |
2511 | return StoreRef(getRegionBindings(store: ST) |
2512 | .removeBinding(R) |
2513 | .asImmutableMap() |
2514 | .getRootWithoutRetain(), |
2515 | *this); |
2516 | |
2517 | return StoreRef(ST, *this); |
2518 | } |
2519 | |
2520 | LimitedRegionBindingsRef |
2521 | RegionStoreManager::bind(LimitedRegionBindingsConstRef B, Loc L, SVal V) { |
2522 | llvm::TimeTraceScope TimeScope("RegionStoreManager::bind" , |
2523 | [&L]() { return locDescr(L); }); |
2524 | |
2525 | if (B.hasExhaustedBindingLimit()) |
2526 | return B.withValuesEscaped(V); |
2527 | |
2528 | // We only care about region locations. |
2529 | auto MemRegVal = L.getAs<loc::MemRegionVal>(); |
2530 | if (!MemRegVal) |
2531 | return B; |
2532 | |
2533 | const MemRegion *R = MemRegVal->getRegion(); |
2534 | |
2535 | // Binding directly to a symbolic region should be treated as binding |
2536 | // to element 0. |
2537 | if (const auto *SymReg = dyn_cast<SymbolicRegion>(Val: R)) { |
2538 | QualType Ty = SymReg->getPointeeStaticType(); |
2539 | if (Ty->isVoidType()) |
2540 | Ty = StateMgr.getContext().CharTy; |
2541 | R = GetElementZeroRegion(R: SymReg, T: Ty); |
2542 | } |
2543 | |
2544 | // Check if the region is a struct region. |
2545 | if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(Val: R)) { |
2546 | QualType Ty = TR->getValueType(); |
2547 | if (Ty->isArrayType()) |
2548 | return bindArray(B, R: TR, V); |
2549 | if (Ty->isStructureOrClassType()) |
2550 | return bindStruct(B, R: TR, V); |
2551 | if (Ty->isVectorType()) |
2552 | return bindVector(B, R: TR, V); |
2553 | if (Ty->isUnionType()) |
2554 | return bindAggregate(B, R: TR, DefaultVal: V); |
2555 | } |
2556 | |
2557 | assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) && |
2558 | "'this' pointer is not an l-value and is not assignable" ); |
2559 | |
2560 | // Clear out bindings that may overlap with this binding. |
2561 | auto NewB = removeSubRegionBindings(B, Top: cast<SubRegion>(Val: R)); |
2562 | |
2563 | // LazyCompoundVals should be always bound as 'default' bindings. |
2564 | auto KeyKind = isa<nonloc::LazyCompoundVal>(Val: V) ? BindingKey::Default |
2565 | : BindingKey::Direct; |
2566 | return NewB.addBinding(K: BindingKey::Make(R, k: KeyKind), V); |
2567 | } |
2568 | |
2569 | LimitedRegionBindingsRef |
2570 | RegionStoreManager::setImplicitDefaultValue(LimitedRegionBindingsConstRef B, |
2571 | const MemRegion *R, QualType T) { |
2572 | if (B.hasExhaustedBindingLimit()) |
2573 | return B; |
2574 | |
2575 | SVal V; |
2576 | |
2577 | if (Loc::isLocType(T)) |
2578 | V = svalBuilder.makeNullWithType(type: T); |
2579 | else if (T->isIntegralOrEnumerationType()) |
2580 | V = svalBuilder.makeZeroVal(type: T); |
2581 | else if (T->isStructureOrClassType() || T->isArrayType()) { |
2582 | // Set the default value to a zero constant when it is a structure |
2583 | // or array. The type doesn't really matter. |
2584 | V = svalBuilder.makeZeroVal(type: Ctx.IntTy); |
2585 | } |
2586 | else { |
2587 | // We can't represent values of this type, but we still need to set a value |
2588 | // to record that the region has been initialized. |
2589 | // If this assertion ever fires, a new case should be added above -- we |
2590 | // should know how to default-initialize any value we can symbolicate. |
2591 | assert(!SymbolManager::canSymbolicate(T) && "This type is representable" ); |
2592 | V = UnknownVal(); |
2593 | } |
2594 | |
2595 | return B.addBinding(R, k: BindingKey::Default, V); |
2596 | } |
2597 | |
2598 | std::optional<LimitedRegionBindingsRef> RegionStoreManager::tryBindSmallArray( |
2599 | LimitedRegionBindingsConstRef B, const TypedValueRegion *R, |
2600 | const ArrayType *AT, nonloc::LazyCompoundVal LCV) { |
2601 | if (B.hasExhaustedBindingLimit()) |
2602 | return B.withValuesEscaped(V: LCV); |
2603 | |
2604 | auto CAT = dyn_cast<ConstantArrayType>(Val: AT); |
2605 | |
2606 | // If we don't know the size, create a lazyCompoundVal instead. |
2607 | if (!CAT) |
2608 | return std::nullopt; |
2609 | |
2610 | QualType Ty = CAT->getElementType(); |
2611 | if (!(Ty->isScalarType() || Ty->isReferenceType())) |
2612 | return std::nullopt; |
2613 | |
2614 | // If the array is too big, create a LCV instead. |
2615 | uint64_t ArrSize = CAT->getLimitedSize(); |
2616 | if (ArrSize > SmallArrayLimit) |
2617 | return std::nullopt; |
2618 | |
2619 | LimitedRegionBindingsRef NewB = B; |
2620 | |
2621 | for (uint64_t i = 0; i < ArrSize; ++i) { |
2622 | auto Idx = svalBuilder.makeArrayIndex(idx: i); |
2623 | const ElementRegion *SrcER = |
2624 | MRMgr.getElementRegion(elementType: Ty, Idx, superRegion: LCV.getRegion(), Ctx); |
2625 | SVal V = getBindingForElement(B: getRegionBindings(store: LCV.getStore()), R: SrcER); |
2626 | |
2627 | const ElementRegion *DstER = MRMgr.getElementRegion(elementType: Ty, Idx, superRegion: R, Ctx); |
2628 | NewB = bind(B: NewB, L: loc::MemRegionVal(DstER), V); |
2629 | } |
2630 | |
2631 | return NewB; |
2632 | } |
2633 | |
2634 | LimitedRegionBindingsRef |
2635 | RegionStoreManager::bindArray(LimitedRegionBindingsConstRef B, |
2636 | const TypedValueRegion *R, SVal Init) { |
2637 | llvm::TimeTraceScope TimeScope("RegionStoreManager::bindArray" , |
2638 | [R]() { return R->getDescriptiveName(); }); |
2639 | if (B.hasExhaustedBindingLimit()) |
2640 | return B.withValuesEscaped(V: Init); |
2641 | |
2642 | const ArrayType *AT =cast<ArrayType>(Val: Ctx.getCanonicalType(T: R->getValueType())); |
2643 | QualType ElementTy = AT->getElementType(); |
2644 | std::optional<uint64_t> Size; |
2645 | |
2646 | if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(Val: AT)) |
2647 | Size = CAT->getZExtSize(); |
2648 | |
2649 | // Check if the init expr is a literal. If so, bind the rvalue instead. |
2650 | // FIXME: It's not responsibility of the Store to transform this lvalue |
2651 | // to rvalue. ExprEngine or maybe even CFG should do this before binding. |
2652 | if (std::optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) { |
2653 | SVal V = getBinding(S: B.asStore(), L: *MRV, T: R->getValueType()); |
2654 | return bindAggregate(B, R, DefaultVal: V); |
2655 | } |
2656 | |
2657 | // Handle lazy compound values. |
2658 | if (std::optional LCV = Init.getAs<nonloc::LazyCompoundVal>()) { |
2659 | if (std::optional NewB = tryBindSmallArray(B, R, AT, LCV: *LCV)) |
2660 | return *NewB; |
2661 | |
2662 | return bindAggregate(B, R, DefaultVal: Init); |
2663 | } |
2664 | |
2665 | if (Init.isUnknown()) |
2666 | return bindAggregate(B, R, DefaultVal: UnknownVal()); |
2667 | |
2668 | // Remaining case: explicit compound values. |
2669 | const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>(); |
2670 | nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); |
2671 | uint64_t i = 0; |
2672 | |
2673 | LimitedRegionBindingsRef NewB = B; |
2674 | |
2675 | for (; Size ? i < *Size : true; ++i, ++VI) { |
2676 | // The init list might be shorter than the array length. |
2677 | if (VI == VE) |
2678 | break; |
2679 | if (NewB.hasExhaustedBindingLimit()) |
2680 | return NewB.withValuesEscaped(Begin: VI, End: VE); |
2681 | |
2682 | NonLoc Idx = svalBuilder.makeArrayIndex(idx: i); |
2683 | const ElementRegion *ER = MRMgr.getElementRegion(elementType: ElementTy, Idx, superRegion: R, Ctx); |
2684 | |
2685 | if (ElementTy->isStructureOrClassType()) |
2686 | NewB = bindStruct(B: NewB, R: ER, V: *VI); |
2687 | else if (ElementTy->isArrayType()) |
2688 | NewB = bindArray(B: NewB, R: ER, Init: *VI); |
2689 | else |
2690 | NewB = bind(B: NewB, L: loc::MemRegionVal(ER), V: *VI); |
2691 | } |
2692 | |
2693 | // If the init list is shorter than the array length (or the array has |
2694 | // variable length), set the array default value. Values that are already set |
2695 | // are not overwritten. |
2696 | if (!Size || i < *Size) |
2697 | NewB = setImplicitDefaultValue(B: NewB, R, T: ElementTy); |
2698 | |
2699 | return NewB; |
2700 | } |
2701 | |
2702 | LimitedRegionBindingsRef |
2703 | RegionStoreManager::bindVector(LimitedRegionBindingsConstRef B, |
2704 | const TypedValueRegion *R, SVal V) { |
2705 | llvm::TimeTraceScope TimeScope("RegionStoreManager::bindVector" , |
2706 | [R]() { return R->getDescriptiveName(); }); |
2707 | if (B.hasExhaustedBindingLimit()) |
2708 | return B.withValuesEscaped(V); |
2709 | |
2710 | QualType T = R->getValueType(); |
2711 | const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs. |
2712 | |
2713 | // Handle lazy compound values and symbolic values. |
2714 | if (isa<nonloc::LazyCompoundVal, nonloc::SymbolVal>(Val: V)) |
2715 | return bindAggregate(B, R, DefaultVal: V); |
2716 | |
2717 | // We may get non-CompoundVal accidentally due to imprecise cast logic or |
2718 | // that we are binding symbolic struct value. Kill the field values, and if |
2719 | // the value is symbolic go and bind it as a "default" binding. |
2720 | if (!isa<nonloc::CompoundVal>(Val: V)) { |
2721 | return bindAggregate(B, R, DefaultVal: UnknownVal()); |
2722 | } |
2723 | |
2724 | QualType ElemType = VT->getElementType(); |
2725 | nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>(); |
2726 | nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); |
2727 | unsigned index = 0, numElements = VT->getNumElements(); |
2728 | LimitedRegionBindingsRef NewB = B; |
2729 | |
2730 | for ( ; index != numElements ; ++index) { |
2731 | if (VI == VE) |
2732 | break; |
2733 | |
2734 | if (NewB.hasExhaustedBindingLimit()) |
2735 | return NewB.withValuesEscaped(Begin: VI, End: VE); |
2736 | |
2737 | NonLoc Idx = svalBuilder.makeArrayIndex(idx: index); |
2738 | const ElementRegion *ER = MRMgr.getElementRegion(elementType: ElemType, Idx, superRegion: R, Ctx); |
2739 | |
2740 | if (ElemType->isArrayType()) |
2741 | NewB = bindArray(B: NewB, R: ER, Init: *VI); |
2742 | else if (ElemType->isStructureOrClassType()) |
2743 | NewB = bindStruct(B: NewB, R: ER, V: *VI); |
2744 | else |
2745 | NewB = bind(B: NewB, L: loc::MemRegionVal(ER), V: *VI); |
2746 | } |
2747 | return NewB; |
2748 | } |
2749 | |
2750 | std::optional<SVal> |
2751 | RegionStoreManager::getUniqueDefaultBinding(RegionBindingsConstRef B, |
2752 | const TypedValueRegion *R) const { |
2753 | if (R != R->getBaseRegion()) |
2754 | return std::nullopt; |
2755 | |
2756 | const auto *Cluster = B.lookup(K: R); |
2757 | if (!Cluster || !llvm::hasSingleElement(C: *Cluster)) |
2758 | return std::nullopt; |
2759 | |
2760 | const auto [Key, Value] = *Cluster->begin(); |
2761 | return Key.isDirect() ? std::optional<SVal>{} : Value; |
2762 | } |
2763 | |
2764 | std::optional<SVal> |
2765 | RegionStoreManager::getUniqueDefaultBinding(nonloc::LazyCompoundVal LCV) const { |
2766 | auto B = getRegionBindings(store: LCV.getStore()); |
2767 | return getUniqueDefaultBinding(B, R: LCV.getRegion()); |
2768 | } |
2769 | |
2770 | std::optional<LimitedRegionBindingsRef> RegionStoreManager::tryBindSmallStruct( |
2771 | LimitedRegionBindingsConstRef B, const TypedValueRegion *R, |
2772 | const RecordDecl *RD, nonloc::LazyCompoundVal LCV) { |
2773 | if (B.hasExhaustedBindingLimit()) |
2774 | return B.withValuesEscaped(V: LCV); |
2775 | |
2776 | // If we try to copy a Conjured value representing the value of the whole |
2777 | // struct, don't try to element-wise copy each field. |
2778 | // That would unnecessarily bind Derived symbols slicing off the subregion for |
2779 | // the field from the whole Conjured symbol. |
2780 | // |
2781 | // struct Window { int width; int height; }; |
2782 | // Window getWindow(); <-- opaque fn. |
2783 | // Window w = getWindow(); <-- conjures a new Window. |
2784 | // Window w2 = w; <-- trivial copy "w", calling "tryBindSmallStruct" |
2785 | // |
2786 | // We should not end up with a new Store for "w2" like this: |
2787 | // Direct [ 0..31]: Derived{Conj{}, w.width} |
2788 | // Direct [32..63]: Derived{Conj{}, w.height} |
2789 | // Instead, we should just bind that Conjured value instead. |
2790 | if (std::optional<SVal> Val = getUniqueDefaultBinding(LCV)) { |
2791 | return B.addBinding(K: BindingKey::Make(R, k: BindingKey::Default), V: Val.value()); |
2792 | } |
2793 | |
2794 | FieldVector Fields; |
2795 | |
2796 | if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Val: RD)) |
2797 | if (Class->getNumBases() != 0 || Class->getNumVBases() != 0) |
2798 | return std::nullopt; |
2799 | |
2800 | for (const auto *FD : RD->fields()) { |
2801 | if (FD->isUnnamedBitField()) |
2802 | continue; |
2803 | |
2804 | // If there are too many fields, or if any of the fields are aggregates, |
2805 | // just use the LCV as a default binding. |
2806 | if (Fields.size() == SmallStructLimit) |
2807 | return std::nullopt; |
2808 | |
2809 | QualType Ty = FD->getType(); |
2810 | |
2811 | // Zero length arrays are basically no-ops, so we also ignore them here. |
2812 | if (Ty->isConstantArrayType() && |
2813 | Ctx.getConstantArrayElementCount(CA: Ctx.getAsConstantArrayType(T: Ty)) == 0) |
2814 | continue; |
2815 | |
2816 | if (!(Ty->isScalarType() || Ty->isReferenceType())) |
2817 | return std::nullopt; |
2818 | |
2819 | Fields.push_back(Elt: FD); |
2820 | } |
2821 | |
2822 | LimitedRegionBindingsRef NewB = B; |
2823 | |
2824 | for (const FieldDecl *Field : Fields) { |
2825 | const FieldRegion *SourceFR = MRMgr.getFieldRegion(fd: Field, superRegion: LCV.getRegion()); |
2826 | SVal V = getBindingForField(B: getRegionBindings(store: LCV.getStore()), R: SourceFR); |
2827 | |
2828 | const FieldRegion *DestFR = MRMgr.getFieldRegion(fd: Field, superRegion: R); |
2829 | NewB = bind(B: NewB, L: loc::MemRegionVal(DestFR), V); |
2830 | } |
2831 | |
2832 | return NewB; |
2833 | } |
2834 | |
2835 | LimitedRegionBindingsRef |
2836 | RegionStoreManager::bindStruct(LimitedRegionBindingsConstRef B, |
2837 | const TypedValueRegion *R, SVal V) { |
2838 | llvm::TimeTraceScope TimeScope("RegionStoreManager::bindStruct" , |
2839 | [R]() { return R->getDescriptiveName(); }); |
2840 | if (B.hasExhaustedBindingLimit()) |
2841 | return B.withValuesEscaped(V); |
2842 | |
2843 | QualType T = R->getValueType(); |
2844 | assert(T->isStructureOrClassType()); |
2845 | |
2846 | const RecordType* RT = T->castAs<RecordType>(); |
2847 | const RecordDecl *RD = RT->getDecl(); |
2848 | |
2849 | if (!RD->isCompleteDefinition()) |
2850 | return B; |
2851 | |
2852 | // Handle lazy compound values and symbolic values. |
2853 | if (std::optional<nonloc::LazyCompoundVal> LCV = |
2854 | V.getAs<nonloc::LazyCompoundVal>()) { |
2855 | if (std::optional NewB = tryBindSmallStruct(B, R, RD, LCV: *LCV)) |
2856 | return *NewB; |
2857 | return bindAggregate(B, R, DefaultVal: V); |
2858 | } |
2859 | if (isa<nonloc::SymbolVal>(Val: V)) |
2860 | return bindAggregate(B, R, DefaultVal: V); |
2861 | |
2862 | // We may get non-CompoundVal accidentally due to imprecise cast logic or |
2863 | // that we are binding symbolic struct value. Kill the field values, and if |
2864 | // the value is symbolic go and bind it as a "default" binding. |
2865 | if (V.isUnknown() || !isa<nonloc::CompoundVal>(Val: V)) |
2866 | return bindAggregate(B, R, DefaultVal: UnknownVal()); |
2867 | |
2868 | // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable) |
2869 | // list of other values. It appears pretty much only when there's an actual |
2870 | // initializer list expression in the program, and the analyzer tries to |
2871 | // unwrap it as soon as possible. |
2872 | // This code is where such unwrap happens: when the compound value is put into |
2873 | // the object that it was supposed to initialize (it's an *initializer* list, |
2874 | // after all), instead of binding the whole value to the whole object, we bind |
2875 | // sub-values to sub-objects. Sub-values may themselves be compound values, |
2876 | // and in this case the procedure becomes recursive. |
2877 | // FIXME: The annoying part about compound values is that they don't carry |
2878 | // any sort of information about which value corresponds to which sub-object. |
2879 | // It's simply a list of values in the middle of nowhere; we expect to match |
2880 | // them to sub-objects, essentially, "by index": first value binds to |
2881 | // the first field, second value binds to the second field, etc. |
2882 | // It would have been much safer to organize non-lazy compound values as |
2883 | // a mapping from fields/bases to values. |
2884 | const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>(); |
2885 | nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); |
2886 | |
2887 | LimitedRegionBindingsRef NewB = B; |
2888 | |
2889 | // In C++17 aggregates may have base classes, handle those as well. |
2890 | // They appear before fields in the initializer list / compound value. |
2891 | if (const auto *CRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
2892 | // If the object was constructed with a constructor, its value is a |
2893 | // LazyCompoundVal. If it's a raw CompoundVal, it means that we're |
2894 | // performing aggregate initialization. The only exception from this |
2895 | // rule is sending an Objective-C++ message that returns a C++ object |
2896 | // to a nil receiver; in this case the semantics is to return a |
2897 | // zero-initialized object even if it's a C++ object that doesn't have |
2898 | // this sort of constructor; the CompoundVal is empty in this case. |
2899 | assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) && |
2900 | "Non-aggregates are constructed with a constructor!" ); |
2901 | |
2902 | for (const auto &B : CRD->bases()) { |
2903 | // (Multiple inheritance is fine though.) |
2904 | assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!" ); |
2905 | |
2906 | if (VI == VE) |
2907 | break; |
2908 | if (NewB.hasExhaustedBindingLimit()) |
2909 | return NewB.withValuesEscaped(Begin: VI, End: VE); |
2910 | |
2911 | QualType BTy = B.getType(); |
2912 | assert(BTy->isStructureOrClassType() && "Base classes must be classes!" ); |
2913 | |
2914 | const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl(); |
2915 | assert(BRD && "Base classes must be C++ classes!" ); |
2916 | |
2917 | const CXXBaseObjectRegion *BR = |
2918 | MRMgr.getCXXBaseObjectRegion(BaseClass: BRD, Super: R, /*IsVirtual=*/false); |
2919 | |
2920 | NewB = bindStruct(B: NewB, R: BR, V: *VI); |
2921 | |
2922 | ++VI; |
2923 | } |
2924 | } |
2925 | |
2926 | RecordDecl::field_iterator FI, FE; |
2927 | |
2928 | for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) { |
2929 | |
2930 | if (VI == VE) |
2931 | break; |
2932 | |
2933 | if (NewB.hasExhaustedBindingLimit()) |
2934 | return NewB.withValuesEscaped(Begin: VI, End: VE); |
2935 | |
2936 | // Skip any unnamed bitfields to stay in sync with the initializers. |
2937 | if (FI->isUnnamedBitField()) |
2938 | continue; |
2939 | |
2940 | QualType FTy = FI->getType(); |
2941 | const FieldRegion* FR = MRMgr.getFieldRegion(fd: *FI, superRegion: R); |
2942 | |
2943 | if (FTy->isArrayType()) |
2944 | NewB = bindArray(B: NewB, R: FR, Init: *VI); |
2945 | else if (FTy->isStructureOrClassType()) |
2946 | NewB = bindStruct(B: NewB, R: FR, V: *VI); |
2947 | else |
2948 | NewB = bind(B: NewB, L: loc::MemRegionVal(FR), V: *VI); |
2949 | ++VI; |
2950 | } |
2951 | |
2952 | if (NewB.hasExhaustedBindingLimit()) |
2953 | return NewB.withValuesEscaped(Begin: VI, End: VE); |
2954 | |
2955 | // There may be fewer values in the initialize list than the fields of struct. |
2956 | if (FI != FE) { |
2957 | NewB = NewB.addBinding(R, k: BindingKey::Default, |
2958 | V: svalBuilder.makeIntVal(integer: 0, isUnsigned: false)); |
2959 | } |
2960 | |
2961 | return NewB; |
2962 | } |
2963 | |
2964 | LimitedRegionBindingsRef |
2965 | RegionStoreManager::bindAggregate(LimitedRegionBindingsConstRef B, |
2966 | const TypedRegion *R, SVal Val) { |
2967 | llvm::TimeTraceScope TimeScope("RegionStoreManager::bindAggregate" , |
2968 | [R]() { return R->getDescriptiveName(); }); |
2969 | if (B.hasExhaustedBindingLimit()) |
2970 | return B.withValuesEscaped(V: Val); |
2971 | |
2972 | // Remove the old bindings, using 'R' as the root of all regions |
2973 | // we will invalidate. Then add the new binding. |
2974 | return removeSubRegionBindings(B, Top: R).addBinding(R, k: BindingKey::Default, V: Val); |
2975 | } |
2976 | |
2977 | //===----------------------------------------------------------------------===// |
2978 | // State pruning. |
2979 | //===----------------------------------------------------------------------===// |
2980 | |
2981 | namespace { |
2982 | class RemoveDeadBindingsWorker |
2983 | : public ClusterAnalysis<RemoveDeadBindingsWorker> { |
2984 | SmallVector<const SymbolicRegion *, 12> Postponed; |
2985 | SymbolReaper &SymReaper; |
2986 | const StackFrameContext *CurrentLCtx; |
2987 | |
2988 | public: |
2989 | RemoveDeadBindingsWorker(RegionStoreManager &rm, |
2990 | ProgramStateManager &stateMgr, |
2991 | RegionBindingsRef b, SymbolReaper &symReaper, |
2992 | const StackFrameContext *LCtx) |
2993 | : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b), |
2994 | SymReaper(symReaper), CurrentLCtx(LCtx) {} |
2995 | |
2996 | // Called by ClusterAnalysis. |
2997 | void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C); |
2998 | void VisitCluster(const MemRegion *baseR, const ClusterBindings *C); |
2999 | using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster; |
3000 | |
3001 | using ClusterAnalysis::AddToWorkList; |
3002 | |
3003 | bool AddToWorkList(const MemRegion *R); |
3004 | |
3005 | bool UpdatePostponed(); |
3006 | void VisitBinding(SVal V); |
3007 | }; |
3008 | } |
3009 | |
3010 | bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) { |
3011 | const MemRegion *BaseR = R->getBaseRegion(); |
3012 | return AddToWorkList(E: WorkListElement(BaseR), C: getCluster(R: BaseR)); |
3013 | } |
3014 | |
3015 | void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR, |
3016 | const ClusterBindings &C) { |
3017 | |
3018 | if (const VarRegion *VR = dyn_cast<VarRegion>(Val: baseR)) { |
3019 | if (SymReaper.isLive(VR)) |
3020 | AddToWorkList(E: baseR, C: &C); |
3021 | |
3022 | return; |
3023 | } |
3024 | |
3025 | if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Val: baseR)) { |
3026 | if (SymReaper.isLive(sym: SR->getSymbol())) |
3027 | AddToWorkList(E: SR, C: &C); |
3028 | else |
3029 | Postponed.push_back(Elt: SR); |
3030 | |
3031 | return; |
3032 | } |
3033 | |
3034 | if (isa<NonStaticGlobalSpaceRegion>(Val: baseR)) { |
3035 | AddToWorkList(E: baseR, C: &C); |
3036 | return; |
3037 | } |
3038 | |
3039 | // CXXThisRegion in the current or parent location context is live. |
3040 | if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(Val: baseR)) { |
3041 | const auto *StackReg = |
3042 | cast<StackArgumentsSpaceRegion>(Val: TR->getSuperRegion()); |
3043 | const StackFrameContext *RegCtx = StackReg->getStackFrame(); |
3044 | if (CurrentLCtx && |
3045 | (RegCtx == CurrentLCtx || RegCtx->isParentOf(LC: CurrentLCtx))) |
3046 | AddToWorkList(E: TR, C: &C); |
3047 | } |
3048 | } |
3049 | |
3050 | void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR, |
3051 | const ClusterBindings *C) { |
3052 | if (!C) |
3053 | return; |
3054 | |
3055 | // Mark the symbol for any SymbolicRegion with live bindings as live itself. |
3056 | // This means we should continue to track that symbol. |
3057 | if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Val: baseR)) |
3058 | SymReaper.markLive(sym: SymR->getSymbol()); |
3059 | |
3060 | for (const auto &[Key, Val] : *C) { |
3061 | // Element index of a binding key is live. |
3062 | SymReaper.markElementIndicesLive(region: Key.getRegion()); |
3063 | |
3064 | VisitBinding(V: Val); |
3065 | } |
3066 | } |
3067 | |
3068 | void RemoveDeadBindingsWorker::VisitBinding(SVal V) { |
3069 | // Is it a LazyCompoundVal? All referenced regions are live as well. |
3070 | // The LazyCompoundVal itself is not live but should be readable. |
3071 | if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) { |
3072 | SymReaper.markLazilyCopied(region: LCS->getRegion()); |
3073 | |
3074 | for (SVal V : RM.getInterestingValues(LCV: *LCS)) { |
3075 | if (auto DepLCS = V.getAs<nonloc::LazyCompoundVal>()) |
3076 | SymReaper.markLazilyCopied(region: DepLCS->getRegion()); |
3077 | else |
3078 | VisitBinding(V); |
3079 | } |
3080 | |
3081 | return; |
3082 | } |
3083 | |
3084 | // If V is a region, then add it to the worklist. |
3085 | if (const MemRegion *R = V.getAsRegion()) { |
3086 | AddToWorkList(R); |
3087 | SymReaper.markLive(region: R); |
3088 | |
3089 | // All regions captured by a block are also live. |
3090 | if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(Val: R)) { |
3091 | for (auto Var : BR->referenced_vars()) |
3092 | AddToWorkList(R: Var.getCapturedRegion()); |
3093 | } |
3094 | } |
3095 | |
3096 | |
3097 | // Update the set of live symbols. |
3098 | for (SymbolRef Sym : V.symbols()) |
3099 | SymReaper.markLive(sym: Sym); |
3100 | } |
3101 | |
3102 | bool RemoveDeadBindingsWorker::UpdatePostponed() { |
3103 | // See if any postponed SymbolicRegions are actually live now, after |
3104 | // having done a scan. |
3105 | bool Changed = false; |
3106 | |
3107 | for (const SymbolicRegion *SR : Postponed) { |
3108 | if (SymReaper.isLive(sym: SR->getSymbol())) { |
3109 | Changed |= AddToWorkList(R: SR); |
3110 | SR = nullptr; |
3111 | } |
3112 | } |
3113 | |
3114 | return Changed; |
3115 | } |
3116 | |
3117 | StoreRef RegionStoreManager::removeDeadBindings(Store store, |
3118 | const StackFrameContext *LCtx, |
3119 | SymbolReaper& SymReaper) { |
3120 | RegionBindingsRef B = getRegionBindings(store); |
3121 | RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx); |
3122 | W.GenerateClusters(); |
3123 | |
3124 | // Enqueue the region roots onto the worklist. |
3125 | for (const MemRegion *Reg : SymReaper.regions()) { |
3126 | W.AddToWorkList(R: Reg); |
3127 | } |
3128 | |
3129 | do W.RunWorkList(); while (W.UpdatePostponed()); |
3130 | |
3131 | // We have now scanned the store, marking reachable regions and symbols |
3132 | // as live. We now remove all the regions that are dead from the store |
3133 | // as well as update DSymbols with the set symbols that are now dead. |
3134 | for (const MemRegion *Base : llvm::make_first_range(c&: B)) { |
3135 | // If the cluster has been visited, we know the region has been marked. |
3136 | // Otherwise, remove the dead entry. |
3137 | if (!W.isVisited(R: Base)) |
3138 | B = B.removeCluster(BaseRegion: Base); |
3139 | } |
3140 | |
3141 | return StoreRef(B.asStore(), *this); |
3142 | } |
3143 | |
3144 | //===----------------------------------------------------------------------===// |
3145 | // Utility methods. |
3146 | //===----------------------------------------------------------------------===// |
3147 | |
3148 | void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL, |
3149 | unsigned int Space, bool IsDot) const { |
3150 | RegionBindingsRef Bindings = getRegionBindings(store: S); |
3151 | |
3152 | Indent(Out, Space, IsDot) << "\"store\": " ; |
3153 | |
3154 | if (Bindings.isEmpty()) { |
3155 | Out << "null," << NL; |
3156 | return; |
3157 | } |
3158 | |
3159 | Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL; |
3160 | Bindings.printJson(Out, NL, Space: Space + 1, IsDot); |
3161 | Indent(Out, Space, IsDot) << "]}," << NL; |
3162 | } |
3163 | |