| 1 | //===- SymbolManager.h - Management of Symbolic Values --------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines SymbolManager, a class that manages symbolic values |
| 10 | // created for use by ExprEngine and related classes. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" |
| 15 | #include "clang/AST/ASTContext.h" |
| 16 | #include "clang/AST/Expr.h" |
| 17 | #include "clang/Analysis/Analyses/LiveVariables.h" |
| 18 | #include "clang/Analysis/AnalysisDeclContext.h" |
| 19 | #include "clang/Basic/LLVM.h" |
| 20 | #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" |
| 21 | #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" |
| 22 | #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" |
| 23 | #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h" |
| 24 | #include "llvm/Support/Compiler.h" |
| 25 | #include "llvm/Support/ErrorHandling.h" |
| 26 | #include "llvm/Support/raw_ostream.h" |
| 27 | #include <cassert> |
| 28 | |
| 29 | using namespace clang; |
| 30 | using namespace ento; |
| 31 | |
| 32 | void SymExpr::anchor() {} |
| 33 | |
| 34 | StringRef SymbolConjured::getKindStr() const { return "conj_$" ; } |
| 35 | StringRef SymbolDerived::getKindStr() const { return "derived_$" ; } |
| 36 | StringRef SymbolExtent::getKindStr() const { return "extent_$" ; } |
| 37 | StringRef SymbolMetadata::getKindStr() const { return "meta_$" ; } |
| 38 | StringRef SymbolRegionValue::getKindStr() const { return "reg_$" ; } |
| 39 | |
| 40 | LLVM_DUMP_METHOD void SymExpr::dump() const { dumpToStream(os&: llvm::errs()); } |
| 41 | |
| 42 | void BinarySymExpr::dumpToStreamImpl(raw_ostream &OS, const SymExpr *Sym) { |
| 43 | OS << '('; |
| 44 | Sym->dumpToStream(os&: OS); |
| 45 | OS << ')'; |
| 46 | } |
| 47 | |
| 48 | void BinarySymExpr::dumpToStreamImpl(raw_ostream &OS, |
| 49 | const llvm::APSInt &Value) { |
| 50 | if (Value.isUnsigned()) |
| 51 | OS << Value.getZExtValue(); |
| 52 | else |
| 53 | OS << Value.getSExtValue(); |
| 54 | if (Value.isUnsigned()) |
| 55 | OS << 'U'; |
| 56 | } |
| 57 | |
| 58 | void BinarySymExpr::dumpToStreamImpl(raw_ostream &OS, |
| 59 | BinaryOperator::Opcode Op) { |
| 60 | OS << ' ' << BinaryOperator::getOpcodeStr(Op) << ' '; |
| 61 | } |
| 62 | |
| 63 | void SymbolCast::dumpToStream(raw_ostream &os) const { |
| 64 | os << '(' << ToTy << ") (" ; |
| 65 | Operand->dumpToStream(os); |
| 66 | os << ')'; |
| 67 | } |
| 68 | |
| 69 | void UnarySymExpr::dumpToStream(raw_ostream &os) const { |
| 70 | os << UnaryOperator::getOpcodeStr(Op); |
| 71 | bool Binary = isa<BinarySymExpr>(Val: Operand); |
| 72 | if (Binary) |
| 73 | os << '('; |
| 74 | Operand->dumpToStream(os); |
| 75 | if (Binary) |
| 76 | os << ')'; |
| 77 | } |
| 78 | |
| 79 | const Stmt *SymbolConjured::getStmt() const { |
| 80 | // Sometimes the CFG element is invalid, avoid dereferencing it. |
| 81 | if (Elem.getParent() == nullptr || |
| 82 | Elem.getIndexInBlock() >= Elem.getParent()->size()) |
| 83 | return nullptr; |
| 84 | switch (Elem->getKind()) { |
| 85 | case CFGElement::Initializer: |
| 86 | if (const auto *Init = Elem->castAs<CFGInitializer>().getInitializer()) { |
| 87 | return Init->getInit(); |
| 88 | } |
| 89 | return nullptr; |
| 90 | case CFGElement::ScopeBegin: |
| 91 | return Elem->castAs<CFGScopeBegin>().getTriggerStmt(); |
| 92 | case CFGElement::ScopeEnd: |
| 93 | return Elem->castAs<CFGScopeEnd>().getTriggerStmt(); |
| 94 | case CFGElement::NewAllocator: |
| 95 | return Elem->castAs<CFGNewAllocator>().getAllocatorExpr(); |
| 96 | case CFGElement::LifetimeEnds: |
| 97 | return Elem->castAs<CFGLifetimeEnds>().getTriggerStmt(); |
| 98 | case CFGElement::LoopExit: |
| 99 | return Elem->castAs<CFGLoopExit>().getLoopStmt(); |
| 100 | case CFGElement::Statement: |
| 101 | return Elem->castAs<CFGStmt>().getStmt(); |
| 102 | case CFGElement::Constructor: |
| 103 | return Elem->castAs<CFGConstructor>().getStmt(); |
| 104 | case CFGElement::CXXRecordTypedCall: |
| 105 | return Elem->castAs<CFGCXXRecordTypedCall>().getStmt(); |
| 106 | case CFGElement::AutomaticObjectDtor: |
| 107 | return Elem->castAs<CFGAutomaticObjDtor>().getTriggerStmt(); |
| 108 | case CFGElement::DeleteDtor: |
| 109 | return Elem->castAs<CFGDeleteDtor>().getDeleteExpr(); |
| 110 | case CFGElement::BaseDtor: |
| 111 | return nullptr; |
| 112 | case CFGElement::MemberDtor: |
| 113 | return nullptr; |
| 114 | case CFGElement::TemporaryDtor: |
| 115 | return Elem->castAs<CFGTemporaryDtor>().getBindTemporaryExpr(); |
| 116 | case CFGElement::CleanupFunction: |
| 117 | return nullptr; |
| 118 | } |
| 119 | return nullptr; |
| 120 | } |
| 121 | |
| 122 | void SymbolConjured::dumpToStream(raw_ostream &os) const { |
| 123 | os << getKindStr() << getSymbolID() << '{' << T << ", LC" << LCtx->getID(); |
| 124 | if (auto *S = getStmt()) |
| 125 | os << ", S" << S->getID(Context: LCtx->getDecl()->getASTContext()); |
| 126 | else |
| 127 | os << ", no stmt" ; |
| 128 | os << ", #" << Count << '}'; |
| 129 | } |
| 130 | |
| 131 | void SymbolDerived::dumpToStream(raw_ostream &os) const { |
| 132 | os << getKindStr() << getSymbolID() << '{' << getParentSymbol() << ',' |
| 133 | << getRegion() << '}'; |
| 134 | } |
| 135 | |
| 136 | void SymbolExtent::dumpToStream(raw_ostream &os) const { |
| 137 | os << getKindStr() << getSymbolID() << '{' << getRegion() << '}'; |
| 138 | } |
| 139 | |
| 140 | void SymbolMetadata::dumpToStream(raw_ostream &os) const { |
| 141 | os << getKindStr() << getSymbolID() << '{' << getRegion() << ',' << T << '}'; |
| 142 | } |
| 143 | |
| 144 | void SymbolData::anchor() {} |
| 145 | |
| 146 | void SymbolRegionValue::dumpToStream(raw_ostream &os) const { |
| 147 | os << getKindStr() << getSymbolID() << '<' << getType() << ' ' << R << '>'; |
| 148 | } |
| 149 | |
| 150 | bool SymExpr::symbol_iterator::operator==(const symbol_iterator &X) const { |
| 151 | return itr == X.itr; |
| 152 | } |
| 153 | |
| 154 | bool SymExpr::symbol_iterator::operator!=(const symbol_iterator &X) const { |
| 155 | return itr != X.itr; |
| 156 | } |
| 157 | |
| 158 | SymExpr::symbol_iterator::symbol_iterator(const SymExpr *SE) { |
| 159 | itr.push_back(Elt: SE); |
| 160 | } |
| 161 | |
| 162 | SymExpr::symbol_iterator &SymExpr::symbol_iterator::operator++() { |
| 163 | assert(!itr.empty() && "attempting to iterate on an 'end' iterator" ); |
| 164 | expand(); |
| 165 | return *this; |
| 166 | } |
| 167 | |
| 168 | SymbolRef SymExpr::symbol_iterator::operator*() { |
| 169 | assert(!itr.empty() && "attempting to dereference an 'end' iterator" ); |
| 170 | return itr.back(); |
| 171 | } |
| 172 | |
| 173 | void SymExpr::symbol_iterator::expand() { |
| 174 | const SymExpr *SE = itr.pop_back_val(); |
| 175 | |
| 176 | switch (SE->getKind()) { |
| 177 | case SymExpr::SymbolRegionValueKind: |
| 178 | case SymExpr::SymbolConjuredKind: |
| 179 | case SymExpr::SymbolDerivedKind: |
| 180 | case SymExpr::SymbolExtentKind: |
| 181 | case SymExpr::SymbolMetadataKind: |
| 182 | return; |
| 183 | case SymExpr::SymbolCastKind: |
| 184 | itr.push_back(Elt: cast<SymbolCast>(Val: SE)->getOperand()); |
| 185 | return; |
| 186 | case SymExpr::UnarySymExprKind: |
| 187 | itr.push_back(Elt: cast<UnarySymExpr>(Val: SE)->getOperand()); |
| 188 | return; |
| 189 | case SymExpr::SymIntExprKind: |
| 190 | itr.push_back(Elt: cast<SymIntExpr>(Val: SE)->getLHS()); |
| 191 | return; |
| 192 | case SymExpr::IntSymExprKind: |
| 193 | itr.push_back(Elt: cast<IntSymExpr>(Val: SE)->getRHS()); |
| 194 | return; |
| 195 | case SymExpr::SymSymExprKind: { |
| 196 | const auto *x = cast<SymSymExpr>(Val: SE); |
| 197 | itr.push_back(Elt: x->getLHS()); |
| 198 | itr.push_back(Elt: x->getRHS()); |
| 199 | return; |
| 200 | } |
| 201 | } |
| 202 | llvm_unreachable("unhandled expansion case" ); |
| 203 | } |
| 204 | |
| 205 | QualType SymbolConjured::getType() const { |
| 206 | return T; |
| 207 | } |
| 208 | |
| 209 | QualType SymbolDerived::getType() const { |
| 210 | return R->getValueType(); |
| 211 | } |
| 212 | |
| 213 | QualType SymbolExtent::getType() const { |
| 214 | ASTContext &Ctx = R->getMemRegionManager().getContext(); |
| 215 | return Ctx.getSizeType(); |
| 216 | } |
| 217 | |
| 218 | QualType SymbolMetadata::getType() const { |
| 219 | return T; |
| 220 | } |
| 221 | |
| 222 | QualType SymbolRegionValue::getType() const { |
| 223 | return R->getValueType(); |
| 224 | } |
| 225 | |
| 226 | bool SymbolManager::canSymbolicate(QualType T) { |
| 227 | T = T.getCanonicalType(); |
| 228 | |
| 229 | if (Loc::isLocType(T)) |
| 230 | return true; |
| 231 | |
| 232 | if (T->isIntegralOrEnumerationType()) |
| 233 | return true; |
| 234 | |
| 235 | if (T->isRecordType() && !T->isUnionType()) |
| 236 | return true; |
| 237 | |
| 238 | return false; |
| 239 | } |
| 240 | |
| 241 | void SymbolManager::addSymbolDependency(const SymbolRef Primary, |
| 242 | const SymbolRef Dependent) { |
| 243 | auto &dependencies = SymbolDependencies[Primary]; |
| 244 | if (!dependencies) { |
| 245 | dependencies = std::make_unique<SymbolRefSmallVectorTy>(); |
| 246 | } |
| 247 | dependencies->push_back(Elt: Dependent); |
| 248 | } |
| 249 | |
| 250 | const SymbolRefSmallVectorTy *SymbolManager::getDependentSymbols( |
| 251 | const SymbolRef Primary) { |
| 252 | SymbolDependTy::const_iterator I = SymbolDependencies.find(Val: Primary); |
| 253 | if (I == SymbolDependencies.end()) |
| 254 | return nullptr; |
| 255 | return I->second.get(); |
| 256 | } |
| 257 | |
| 258 | void SymbolReaper::markDependentsLive(SymbolRef sym) { |
| 259 | // Do not mark dependents more then once. |
| 260 | SymbolMapTy::iterator LI = TheLiving.find(Val: sym); |
| 261 | assert(LI != TheLiving.end() && "The primary symbol is not live." ); |
| 262 | if (LI->second == HaveMarkedDependents) |
| 263 | return; |
| 264 | LI->second = HaveMarkedDependents; |
| 265 | |
| 266 | if (const SymbolRefSmallVectorTy *Deps = SymMgr.getDependentSymbols(Primary: sym)) { |
| 267 | for (const auto I : *Deps) { |
| 268 | if (TheLiving.contains(Val: I)) |
| 269 | continue; |
| 270 | markLive(sym: I); |
| 271 | } |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | void SymbolReaper::markLive(SymbolRef sym) { |
| 276 | TheLiving[sym] = NotProcessed; |
| 277 | markDependentsLive(sym); |
| 278 | } |
| 279 | |
| 280 | void SymbolReaper::markLive(const MemRegion *region) { |
| 281 | LiveRegionRoots.insert(V: region->getBaseRegion()); |
| 282 | markElementIndicesLive(region); |
| 283 | } |
| 284 | |
| 285 | void SymbolReaper::markLazilyCopied(const clang::ento::MemRegion *region) { |
| 286 | LazilyCopiedRegionRoots.insert(V: region->getBaseRegion()); |
| 287 | } |
| 288 | |
| 289 | void SymbolReaper::markElementIndicesLive(const MemRegion *region) { |
| 290 | for (auto SR = dyn_cast<SubRegion>(Val: region); SR; |
| 291 | SR = dyn_cast<SubRegion>(Val: SR->getSuperRegion())) { |
| 292 | if (const auto ER = dyn_cast<ElementRegion>(Val: SR)) { |
| 293 | SVal Idx = ER->getIndex(); |
| 294 | for (SymbolRef Sym : Idx.symbols()) |
| 295 | markLive(sym: Sym); |
| 296 | } |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | void SymbolReaper::markInUse(SymbolRef sym) { |
| 301 | if (isa<SymbolMetadata>(Val: sym)) |
| 302 | MetadataInUse.insert(V: sym); |
| 303 | } |
| 304 | |
| 305 | bool SymbolReaper::isLiveRegion(const MemRegion *MR) { |
| 306 | // TODO: For now, liveness of a memory region is equivalent to liveness of its |
| 307 | // base region. In fact we can do a bit better: say, if a particular FieldDecl |
| 308 | // is not used later in the path, we can diagnose a leak of a value within |
| 309 | // that field earlier than, say, the variable that contains the field dies. |
| 310 | MR = MR->getBaseRegion(); |
| 311 | if (LiveRegionRoots.count(V: MR)) |
| 312 | return true; |
| 313 | |
| 314 | if (const auto *SR = dyn_cast<SymbolicRegion>(Val: MR)) |
| 315 | return isLive(sym: SR->getSymbol()); |
| 316 | |
| 317 | if (const auto *VR = dyn_cast<VarRegion>(Val: MR)) |
| 318 | return isLive(VR, includeStoreBindings: true); |
| 319 | |
| 320 | // FIXME: This is a gross over-approximation. What we really need is a way to |
| 321 | // tell if anything still refers to this region. Unlike SymbolicRegions, |
| 322 | // AllocaRegions don't have associated symbols, though, so we don't actually |
| 323 | // have a way to track their liveness. |
| 324 | return isa<AllocaRegion, CXXThisRegion, MemSpaceRegion, CodeTextRegion>(Val: MR); |
| 325 | } |
| 326 | |
| 327 | bool SymbolReaper::isLazilyCopiedRegion(const MemRegion *MR) const { |
| 328 | // TODO: See comment in isLiveRegion. |
| 329 | return LazilyCopiedRegionRoots.count(V: MR->getBaseRegion()); |
| 330 | } |
| 331 | |
| 332 | bool SymbolReaper::isReadableRegion(const MemRegion *MR) { |
| 333 | return isLiveRegion(MR) || isLazilyCopiedRegion(MR); |
| 334 | } |
| 335 | |
| 336 | bool SymbolReaper::isLive(SymbolRef sym) { |
| 337 | if (TheLiving.count(Val: sym)) { |
| 338 | markDependentsLive(sym); |
| 339 | return true; |
| 340 | } |
| 341 | |
| 342 | bool KnownLive; |
| 343 | |
| 344 | switch (sym->getKind()) { |
| 345 | case SymExpr::SymbolRegionValueKind: |
| 346 | KnownLive = isReadableRegion(MR: cast<SymbolRegionValue>(Val: sym)->getRegion()); |
| 347 | break; |
| 348 | case SymExpr::SymbolConjuredKind: |
| 349 | KnownLive = false; |
| 350 | break; |
| 351 | case SymExpr::SymbolDerivedKind: |
| 352 | KnownLive = isLive(sym: cast<SymbolDerived>(Val: sym)->getParentSymbol()); |
| 353 | break; |
| 354 | case SymExpr::SymbolExtentKind: |
| 355 | KnownLive = isLiveRegion(MR: cast<SymbolExtent>(Val: sym)->getRegion()); |
| 356 | break; |
| 357 | case SymExpr::SymbolMetadataKind: |
| 358 | KnownLive = MetadataInUse.count(V: sym) && |
| 359 | isLiveRegion(MR: cast<SymbolMetadata>(Val: sym)->getRegion()); |
| 360 | if (KnownLive) |
| 361 | MetadataInUse.erase(V: sym); |
| 362 | break; |
| 363 | case SymExpr::SymIntExprKind: |
| 364 | KnownLive = isLive(sym: cast<SymIntExpr>(Val: sym)->getLHS()); |
| 365 | break; |
| 366 | case SymExpr::IntSymExprKind: |
| 367 | KnownLive = isLive(sym: cast<IntSymExpr>(Val: sym)->getRHS()); |
| 368 | break; |
| 369 | case SymExpr::SymSymExprKind: |
| 370 | KnownLive = isLive(sym: cast<SymSymExpr>(Val: sym)->getLHS()) && |
| 371 | isLive(sym: cast<SymSymExpr>(Val: sym)->getRHS()); |
| 372 | break; |
| 373 | case SymExpr::SymbolCastKind: |
| 374 | KnownLive = isLive(sym: cast<SymbolCast>(Val: sym)->getOperand()); |
| 375 | break; |
| 376 | case SymExpr::UnarySymExprKind: |
| 377 | KnownLive = isLive(sym: cast<UnarySymExpr>(Val: sym)->getOperand()); |
| 378 | break; |
| 379 | } |
| 380 | |
| 381 | if (KnownLive) |
| 382 | markLive(sym); |
| 383 | |
| 384 | return KnownLive; |
| 385 | } |
| 386 | |
| 387 | bool |
| 388 | SymbolReaper::isLive(const Expr *ExprVal, const LocationContext *ELCtx) const { |
| 389 | if (LCtx == nullptr) |
| 390 | return false; |
| 391 | |
| 392 | if (LCtx != ELCtx) { |
| 393 | // If the reaper's location context is a parent of the expression's |
| 394 | // location context, then the expression value is now "out of scope". |
| 395 | if (LCtx->isParentOf(LC: ELCtx)) |
| 396 | return false; |
| 397 | return true; |
| 398 | } |
| 399 | |
| 400 | // If no statement is provided, everything in this and parent contexts is |
| 401 | // live. |
| 402 | if (!Loc) |
| 403 | return true; |
| 404 | |
| 405 | return LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, Val: ExprVal); |
| 406 | } |
| 407 | |
| 408 | bool SymbolReaper::isLive(const VarRegion *VR, bool includeStoreBindings) const{ |
| 409 | const StackFrameContext *VarContext = VR->getStackFrame(); |
| 410 | |
| 411 | if (!VarContext) |
| 412 | return true; |
| 413 | |
| 414 | if (!LCtx) |
| 415 | return false; |
| 416 | const StackFrameContext *CurrentContext = LCtx->getStackFrame(); |
| 417 | |
| 418 | if (VarContext == CurrentContext) { |
| 419 | // If no statement is provided, everything is live. |
| 420 | if (!Loc) |
| 421 | return true; |
| 422 | |
| 423 | // Anonymous parameters of an inheriting constructor are live for the entire |
| 424 | // duration of the constructor. |
| 425 | if (isa<CXXInheritedCtorInitExpr>(Val: Loc)) |
| 426 | return true; |
| 427 | |
| 428 | if (LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(S: Loc, D: VR->getDecl())) |
| 429 | return true; |
| 430 | |
| 431 | if (!includeStoreBindings) |
| 432 | return false; |
| 433 | |
| 434 | unsigned &cachedQuery = |
| 435 | const_cast<SymbolReaper *>(this)->includedRegionCache[VR]; |
| 436 | |
| 437 | if (cachedQuery) { |
| 438 | return cachedQuery == 1; |
| 439 | } |
| 440 | |
| 441 | // Query the store to see if the region occurs in any live bindings. |
| 442 | if (Store store = reapedStore.getStore()) { |
| 443 | bool hasRegion = |
| 444 | reapedStore.getStoreManager().includedInBindings(store, region: VR); |
| 445 | cachedQuery = hasRegion ? 1 : 2; |
| 446 | return hasRegion; |
| 447 | } |
| 448 | |
| 449 | return false; |
| 450 | } |
| 451 | |
| 452 | return VarContext->isParentOf(LC: CurrentContext); |
| 453 | } |
| 454 | |