| 1 | //===- SyntheticSections.cpp ----------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains linker-synthesized sections. Currently, |
| 10 | // synthetic sections are created either output sections or input sections, |
| 11 | // but we are rewriting code so that all synthetic sections are created as |
| 12 | // input sections. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "SyntheticSections.h" |
| 17 | #include "Config.h" |
| 18 | #include "DWARF.h" |
| 19 | #include "EhFrame.h" |
| 20 | #include "InputFiles.h" |
| 21 | #include "LinkerScript.h" |
| 22 | #include "OutputSections.h" |
| 23 | #include "SymbolTable.h" |
| 24 | #include "Symbols.h" |
| 25 | #include "Target.h" |
| 26 | #include "Thunks.h" |
| 27 | #include "Writer.h" |
| 28 | #include "lld/Common/Version.h" |
| 29 | #include "llvm/ADT/STLExtras.h" |
| 30 | #include "llvm/ADT/Sequence.h" |
| 31 | #include "llvm/ADT/SetOperations.h" |
| 32 | #include "llvm/ADT/StringExtras.h" |
| 33 | #include "llvm/BinaryFormat/Dwarf.h" |
| 34 | #include "llvm/BinaryFormat/ELF.h" |
| 35 | #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h" |
| 36 | #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" |
| 37 | #include "llvm/Support/DJB.h" |
| 38 | #include "llvm/Support/Endian.h" |
| 39 | #include "llvm/Support/LEB128.h" |
| 40 | #include "llvm/Support/Parallel.h" |
| 41 | #include "llvm/Support/TimeProfiler.h" |
| 42 | #include <cinttypes> |
| 43 | #include <cstdlib> |
| 44 | |
| 45 | using namespace llvm; |
| 46 | using namespace llvm::dwarf; |
| 47 | using namespace llvm::ELF; |
| 48 | using namespace llvm::object; |
| 49 | using namespace llvm::support; |
| 50 | using namespace lld; |
| 51 | using namespace lld::elf; |
| 52 | |
| 53 | using llvm::support::endian::read32le; |
| 54 | using llvm::support::endian::write32le; |
| 55 | using llvm::support::endian::write64le; |
| 56 | |
| 57 | constexpr size_t MergeNoTailSection::numShards; |
| 58 | |
| 59 | static uint64_t readUint(Ctx &ctx, uint8_t *buf) { |
| 60 | return ctx.arg.is64 ? read64(ctx, p: buf) : read32(ctx, p: buf); |
| 61 | } |
| 62 | |
| 63 | static void writeUint(Ctx &ctx, uint8_t *buf, uint64_t val) { |
| 64 | if (ctx.arg.is64) |
| 65 | write64(ctx, p: buf, v: val); |
| 66 | else |
| 67 | write32(ctx, p: buf, v: val); |
| 68 | } |
| 69 | |
| 70 | // Returns an LLD version string. |
| 71 | static ArrayRef<uint8_t> getVersion(Ctx &ctx) { |
| 72 | // Check LLD_VERSION first for ease of testing. |
| 73 | // You can get consistent output by using the environment variable. |
| 74 | // This is only for testing. |
| 75 | StringRef s = getenv(name: "LLD_VERSION" ); |
| 76 | if (s.empty()) |
| 77 | s = ctx.saver.save(S: Twine("Linker: " ) + getLLDVersion()); |
| 78 | |
| 79 | // +1 to include the terminating '\0'. |
| 80 | return {(const uint8_t *)s.data(), s.size() + 1}; |
| 81 | } |
| 82 | |
| 83 | // Creates a .comment section containing LLD version info. |
| 84 | // With this feature, you can identify LLD-generated binaries easily |
| 85 | // by "readelf --string-dump .comment <file>". |
| 86 | // The returned object is a mergeable string section. |
| 87 | MergeInputSection *elf::(Ctx &ctx) { |
| 88 | auto *sec = |
| 89 | make<MergeInputSection>(args&: ctx, args: ".comment" , args: SHT_PROGBITS, |
| 90 | args: SHF_MERGE | SHF_STRINGS, args: 1, args: getVersion(ctx)); |
| 91 | sec->splitIntoPieces(); |
| 92 | return sec; |
| 93 | } |
| 94 | |
| 95 | // .MIPS.abiflags section. |
| 96 | template <class ELFT> |
| 97 | MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Ctx &ctx, |
| 98 | Elf_Mips_ABIFlags flags) |
| 99 | : SyntheticSection(ctx, ".MIPS.abiflags" , SHT_MIPS_ABIFLAGS, SHF_ALLOC, 8), |
| 100 | flags(flags) { |
| 101 | this->entsize = sizeof(Elf_Mips_ABIFlags); |
| 102 | } |
| 103 | |
| 104 | template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) { |
| 105 | memcpy(buf, &flags, sizeof(flags)); |
| 106 | } |
| 107 | |
| 108 | template <class ELFT> |
| 109 | std::unique_ptr<MipsAbiFlagsSection<ELFT>> |
| 110 | MipsAbiFlagsSection<ELFT>::create(Ctx &ctx) { |
| 111 | Elf_Mips_ABIFlags flags = {}; |
| 112 | bool create = false; |
| 113 | |
| 114 | for (InputSectionBase *sec : ctx.inputSections) { |
| 115 | if (sec->type != SHT_MIPS_ABIFLAGS) |
| 116 | continue; |
| 117 | sec->markDead(); |
| 118 | create = true; |
| 119 | |
| 120 | const size_t size = sec->content().size(); |
| 121 | // Older version of BFD (such as the default FreeBSD linker) concatenate |
| 122 | // .MIPS.abiflags instead of merging. To allow for this case (or potential |
| 123 | // zero padding) we ignore everything after the first Elf_Mips_ABIFlags |
| 124 | if (size < sizeof(Elf_Mips_ABIFlags)) { |
| 125 | Err(ctx) << sec->file << ": invalid size of .MIPS.abiflags section: got " |
| 126 | << size << " instead of " << sizeof(Elf_Mips_ABIFlags); |
| 127 | return nullptr; |
| 128 | } |
| 129 | auto *s = |
| 130 | reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->content().data()); |
| 131 | if (s->version != 0) { |
| 132 | Err(ctx) << sec->file << ": unexpected .MIPS.abiflags version " |
| 133 | << s->version; |
| 134 | return nullptr; |
| 135 | } |
| 136 | |
| 137 | // LLD checks ISA compatibility in calcMipsEFlags(). Here we just |
| 138 | // select the highest number of ISA/Rev/Ext. |
| 139 | flags.isa_level = std::max(flags.isa_level, s->isa_level); |
| 140 | flags.isa_rev = std::max(flags.isa_rev, s->isa_rev); |
| 141 | flags.isa_ext = std::max(flags.isa_ext, s->isa_ext); |
| 142 | flags.gpr_size = std::max(flags.gpr_size, s->gpr_size); |
| 143 | flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size); |
| 144 | flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size); |
| 145 | flags.ases |= s->ases; |
| 146 | flags.flags1 |= s->flags1; |
| 147 | flags.flags2 |= s->flags2; |
| 148 | flags.fp_abi = |
| 149 | elf::getMipsFpAbiFlag(ctx, file: sec->file, oldFlag: flags.fp_abi, newFlag: s->fp_abi); |
| 150 | }; |
| 151 | |
| 152 | if (create) |
| 153 | return std::make_unique<MipsAbiFlagsSection<ELFT>>(ctx, flags); |
| 154 | return nullptr; |
| 155 | } |
| 156 | |
| 157 | // .MIPS.options section. |
| 158 | template <class ELFT> |
| 159 | MipsOptionsSection<ELFT>::MipsOptionsSection(Ctx &ctx, Elf_Mips_RegInfo reginfo) |
| 160 | : SyntheticSection(ctx, ".MIPS.options" , SHT_MIPS_OPTIONS, SHF_ALLOC, 8), |
| 161 | reginfo(reginfo) { |
| 162 | this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); |
| 163 | } |
| 164 | |
| 165 | template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) { |
| 166 | auto *options = reinterpret_cast<Elf_Mips_Options *>(buf); |
| 167 | options->kind = ODK_REGINFO; |
| 168 | options->size = getSize(); |
| 169 | |
| 170 | if (!ctx.arg.relocatable) |
| 171 | reginfo.ri_gp_value = ctx.in.mipsGot->getGp(); |
| 172 | memcpy(buf + sizeof(Elf_Mips_Options), ®info, sizeof(reginfo)); |
| 173 | } |
| 174 | |
| 175 | template <class ELFT> |
| 176 | std::unique_ptr<MipsOptionsSection<ELFT>> |
| 177 | MipsOptionsSection<ELFT>::create(Ctx &ctx) { |
| 178 | // N64 ABI only. |
| 179 | if (!ELFT::Is64Bits) |
| 180 | return nullptr; |
| 181 | |
| 182 | SmallVector<InputSectionBase *, 0> sections; |
| 183 | for (InputSectionBase *sec : ctx.inputSections) |
| 184 | if (sec->type == SHT_MIPS_OPTIONS) |
| 185 | sections.push_back(Elt: sec); |
| 186 | |
| 187 | if (sections.empty()) |
| 188 | return nullptr; |
| 189 | |
| 190 | Elf_Mips_RegInfo reginfo = {}; |
| 191 | for (InputSectionBase *sec : sections) { |
| 192 | sec->markDead(); |
| 193 | |
| 194 | ArrayRef<uint8_t> d = sec->content(); |
| 195 | while (!d.empty()) { |
| 196 | if (d.size() < sizeof(Elf_Mips_Options)) { |
| 197 | Err(ctx) << sec->file << ": invalid size of .MIPS.options section" ; |
| 198 | break; |
| 199 | } |
| 200 | |
| 201 | auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data()); |
| 202 | if (opt->kind == ODK_REGINFO) { |
| 203 | reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask; |
| 204 | sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value; |
| 205 | break; |
| 206 | } |
| 207 | |
| 208 | if (!opt->size) { |
| 209 | Err(ctx) << sec->file << ": zero option descriptor size" ; |
| 210 | break; |
| 211 | } |
| 212 | d = d.slice(opt->size); |
| 213 | } |
| 214 | }; |
| 215 | |
| 216 | return std::make_unique<MipsOptionsSection<ELFT>>(ctx, reginfo); |
| 217 | } |
| 218 | |
| 219 | // MIPS .reginfo section. |
| 220 | template <class ELFT> |
| 221 | MipsReginfoSection<ELFT>::MipsReginfoSection(Ctx &ctx, Elf_Mips_RegInfo reginfo) |
| 222 | : SyntheticSection(ctx, ".reginfo" , SHT_MIPS_REGINFO, SHF_ALLOC, 4), |
| 223 | reginfo(reginfo) { |
| 224 | this->entsize = sizeof(Elf_Mips_RegInfo); |
| 225 | } |
| 226 | |
| 227 | template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) { |
| 228 | if (!ctx.arg.relocatable) |
| 229 | reginfo.ri_gp_value = ctx.in.mipsGot->getGp(); |
| 230 | memcpy(buf, ®info, sizeof(reginfo)); |
| 231 | } |
| 232 | |
| 233 | template <class ELFT> |
| 234 | std::unique_ptr<MipsReginfoSection<ELFT>> |
| 235 | MipsReginfoSection<ELFT>::create(Ctx &ctx) { |
| 236 | // Section should be alive for O32 and N32 ABIs only. |
| 237 | if (ELFT::Is64Bits) |
| 238 | return nullptr; |
| 239 | |
| 240 | SmallVector<InputSectionBase *, 0> sections; |
| 241 | for (InputSectionBase *sec : ctx.inputSections) |
| 242 | if (sec->type == SHT_MIPS_REGINFO) |
| 243 | sections.push_back(Elt: sec); |
| 244 | |
| 245 | if (sections.empty()) |
| 246 | return nullptr; |
| 247 | |
| 248 | Elf_Mips_RegInfo reginfo = {}; |
| 249 | for (InputSectionBase *sec : sections) { |
| 250 | sec->markDead(); |
| 251 | |
| 252 | if (sec->content().size() != sizeof(Elf_Mips_RegInfo)) { |
| 253 | Err(ctx) << sec->file << ": invalid size of .reginfo section" ; |
| 254 | return nullptr; |
| 255 | } |
| 256 | |
| 257 | auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->content().data()); |
| 258 | reginfo.ri_gprmask |= r->ri_gprmask; |
| 259 | sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value; |
| 260 | }; |
| 261 | |
| 262 | return std::make_unique<MipsReginfoSection<ELFT>>(ctx, reginfo); |
| 263 | } |
| 264 | |
| 265 | InputSection *elf::createInterpSection(Ctx &ctx) { |
| 266 | // StringSaver guarantees that the returned string ends with '\0'. |
| 267 | StringRef s = ctx.saver.save(S: ctx.arg.dynamicLinker); |
| 268 | ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1}; |
| 269 | |
| 270 | return make<InputSection>(args&: ctx.internalFile, args: ".interp" , args: SHT_PROGBITS, |
| 271 | args: SHF_ALLOC, |
| 272 | /*addralign=*/args: 1, /*entsize=*/args: 0, args&: contents); |
| 273 | } |
| 274 | |
| 275 | Defined *elf::addSyntheticLocal(Ctx &ctx, StringRef name, uint8_t type, |
| 276 | uint64_t value, uint64_t size, |
| 277 | InputSectionBase §ion) { |
| 278 | Defined *s = makeDefined(args&: ctx, args&: section.file, args&: name, args: STB_LOCAL, args: STV_DEFAULT, |
| 279 | args&: type, args&: value, args&: size, args: §ion); |
| 280 | if (ctx.in.symTab) |
| 281 | ctx.in.symTab->addSymbol(sym: s); |
| 282 | |
| 283 | if (ctx.arg.emachine == EM_ARM && !ctx.arg.isLE && ctx.arg.armBe8 && |
| 284 | (section.flags & SHF_EXECINSTR)) |
| 285 | // Adding Linker generated mapping symbols to the arm specific mapping |
| 286 | // symbols list. |
| 287 | addArmSyntheticSectionMappingSymbol(s); |
| 288 | |
| 289 | return s; |
| 290 | } |
| 291 | |
| 292 | static size_t getHashSize(Ctx &ctx) { |
| 293 | switch (ctx.arg.buildId) { |
| 294 | case BuildIdKind::Fast: |
| 295 | return 8; |
| 296 | case BuildIdKind::Md5: |
| 297 | case BuildIdKind::Uuid: |
| 298 | return 16; |
| 299 | case BuildIdKind::Sha1: |
| 300 | return 20; |
| 301 | case BuildIdKind::Hexstring: |
| 302 | return ctx.arg.buildIdVector.size(); |
| 303 | default: |
| 304 | llvm_unreachable("unknown BuildIdKind" ); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | // This class represents a linker-synthesized .note.gnu.property section. |
| 309 | // |
| 310 | // In x86 and AArch64, object files may contain feature flags indicating the |
| 311 | // features that they have used. The flags are stored in a .note.gnu.property |
| 312 | // section. |
| 313 | // |
| 314 | // lld reads the sections from input files and merges them by computing AND of |
| 315 | // the flags. The result is written as a new .note.gnu.property section. |
| 316 | // |
| 317 | // If the flag is zero (which indicates that the intersection of the feature |
| 318 | // sets is empty, or some input files didn't have .note.gnu.property sections), |
| 319 | // we don't create this section. |
| 320 | GnuPropertySection::GnuPropertySection(Ctx &ctx) |
| 321 | : SyntheticSection(ctx, ".note.gnu.property" , SHT_NOTE, SHF_ALLOC, |
| 322 | ctx.arg.wordsize) {} |
| 323 | |
| 324 | void GnuPropertySection::writeTo(uint8_t *buf) { |
| 325 | uint32_t featureAndType; |
| 326 | switch (ctx.arg.emachine) { |
| 327 | case EM_386: |
| 328 | case EM_X86_64: |
| 329 | featureAndType = GNU_PROPERTY_X86_FEATURE_1_AND; |
| 330 | break; |
| 331 | case EM_AARCH64: |
| 332 | featureAndType = GNU_PROPERTY_AARCH64_FEATURE_1_AND; |
| 333 | break; |
| 334 | case EM_RISCV: |
| 335 | featureAndType = GNU_PROPERTY_RISCV_FEATURE_1_AND; |
| 336 | break; |
| 337 | default: |
| 338 | llvm_unreachable( |
| 339 | "target machine does not support .note.gnu.property section" ); |
| 340 | } |
| 341 | |
| 342 | write32(ctx, p: buf, v: 4); // Name size |
| 343 | write32(ctx, p: buf + 4, v: getSize() - 16); // Content size |
| 344 | write32(ctx, p: buf + 8, v: NT_GNU_PROPERTY_TYPE_0); // Type |
| 345 | memcpy(dest: buf + 12, src: "GNU" , n: 4); // Name string |
| 346 | |
| 347 | unsigned offset = 16; |
| 348 | if (ctx.arg.andFeatures != 0) { |
| 349 | write32(ctx, p: buf + offset + 0, v: featureAndType); // Feature type |
| 350 | write32(ctx, p: buf + offset + 4, v: 4); // Feature size |
| 351 | write32(ctx, p: buf + offset + 8, v: ctx.arg.andFeatures); // Feature flags |
| 352 | if (ctx.arg.is64) |
| 353 | write32(ctx, p: buf + offset + 12, v: 0); // Padding |
| 354 | offset += 16; |
| 355 | } |
| 356 | |
| 357 | if (ctx.aarch64PauthAbiCoreInfo) { |
| 358 | write32(ctx, p: buf + offset + 0, v: GNU_PROPERTY_AARCH64_FEATURE_PAUTH); |
| 359 | write32(ctx, p: buf + offset + 4, v: AArch64PauthAbiCoreInfo::size()); |
| 360 | write64(ctx, p: buf + offset + 8, v: ctx.aarch64PauthAbiCoreInfo->platform); |
| 361 | write64(ctx, p: buf + offset + 16, v: ctx.aarch64PauthAbiCoreInfo->version); |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | size_t GnuPropertySection::getSize() const { |
| 366 | uint32_t contentSize = 0; |
| 367 | if (ctx.arg.andFeatures != 0) |
| 368 | contentSize += ctx.arg.is64 ? 16 : 12; |
| 369 | if (ctx.aarch64PauthAbiCoreInfo) |
| 370 | contentSize += 4 + 4 + AArch64PauthAbiCoreInfo::size(); |
| 371 | assert(contentSize != 0); |
| 372 | return contentSize + 16; |
| 373 | } |
| 374 | |
| 375 | BuildIdSection::BuildIdSection(Ctx &ctx) |
| 376 | : SyntheticSection(ctx, ".note.gnu.build-id" , SHT_NOTE, SHF_ALLOC, 4), |
| 377 | hashSize(getHashSize(ctx)) {} |
| 378 | |
| 379 | void BuildIdSection::writeTo(uint8_t *buf) { |
| 380 | write32(ctx, p: buf, v: 4); // Name size |
| 381 | write32(ctx, p: buf + 4, v: hashSize); // Content size |
| 382 | write32(ctx, p: buf + 8, v: NT_GNU_BUILD_ID); // Type |
| 383 | memcpy(dest: buf + 12, src: "GNU" , n: 4); // Name string |
| 384 | hashBuf = buf + 16; |
| 385 | } |
| 386 | |
| 387 | void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) { |
| 388 | assert(buf.size() == hashSize); |
| 389 | memcpy(dest: hashBuf, src: buf.data(), n: hashSize); |
| 390 | } |
| 391 | |
| 392 | BssSection::BssSection(Ctx &ctx, StringRef name, uint64_t size, |
| 393 | uint32_t alignment) |
| 394 | : SyntheticSection(ctx, name, SHT_NOBITS, SHF_ALLOC | SHF_WRITE, |
| 395 | alignment) { |
| 396 | this->bss = true; |
| 397 | this->size = size; |
| 398 | } |
| 399 | |
| 400 | EhFrameSection::EhFrameSection(Ctx &ctx) |
| 401 | : SyntheticSection(ctx, ".eh_frame" , SHT_PROGBITS, SHF_ALLOC, 1) {} |
| 402 | |
| 403 | // Search for an existing CIE record or create a new one. |
| 404 | // CIE records from input object files are uniquified by their contents |
| 405 | // and where their relocations point to. |
| 406 | template <class ELFT, class RelTy> |
| 407 | CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) { |
| 408 | Symbol *personality = nullptr; |
| 409 | unsigned firstRelI = cie.firstRelocation; |
| 410 | if (firstRelI != (unsigned)-1) |
| 411 | personality = &cie.sec->file->getRelocTargetSym(rels[firstRelI]); |
| 412 | |
| 413 | // Search for an existing CIE by CIE contents/relocation target pair. |
| 414 | CieRecord *&rec = cieMap[{cie.data(), personality}]; |
| 415 | |
| 416 | // If not found, create a new one. |
| 417 | if (!rec) { |
| 418 | rec = make<CieRecord>(); |
| 419 | rec->cie = &cie; |
| 420 | cieRecords.push_back(Elt: rec); |
| 421 | } |
| 422 | return rec; |
| 423 | } |
| 424 | |
| 425 | // There is one FDE per function. Returns a non-null pointer to the function |
| 426 | // symbol if the given FDE points to a live function. |
| 427 | template <class ELFT, class RelTy> |
| 428 | Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) { |
| 429 | auto *sec = cast<EhInputSection>(Val: fde.sec); |
| 430 | unsigned firstRelI = fde.firstRelocation; |
| 431 | |
| 432 | // An FDE should point to some function because FDEs are to describe |
| 433 | // functions. That's however not always the case due to an issue of |
| 434 | // ld.gold with -r. ld.gold may discard only functions and leave their |
| 435 | // corresponding FDEs, which results in creating bad .eh_frame sections. |
| 436 | // To deal with that, we ignore such FDEs. |
| 437 | if (firstRelI == (unsigned)-1) |
| 438 | return nullptr; |
| 439 | |
| 440 | const RelTy &rel = rels[firstRelI]; |
| 441 | Symbol &b = sec->file->getRelocTargetSym(rel); |
| 442 | |
| 443 | // FDEs for garbage-collected or merged-by-ICF sections, or sections in |
| 444 | // another partition, are dead. |
| 445 | if (auto *d = dyn_cast<Defined>(Val: &b)) |
| 446 | if (!d->folded && d->section && d->section->partition == partition) |
| 447 | return d; |
| 448 | return nullptr; |
| 449 | } |
| 450 | |
| 451 | // .eh_frame is a sequence of CIE or FDE records. In general, there |
| 452 | // is one CIE record per input object file which is followed by |
| 453 | // a list of FDEs. This function searches an existing CIE or create a new |
| 454 | // one and associates FDEs to the CIE. |
| 455 | template <class ELFT, class RelTy> |
| 456 | void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) { |
| 457 | offsetToCie.clear(); |
| 458 | for (EhSectionPiece &cie : sec->cies) |
| 459 | offsetToCie[cie.inputOff] = addCie<ELFT>(cie, rels); |
| 460 | for (EhSectionPiece &fde : sec->fdes) { |
| 461 | uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4); |
| 462 | CieRecord *rec = offsetToCie[fde.inputOff + 4 - id]; |
| 463 | if (!rec) |
| 464 | Fatal(ctx) << sec << ": invalid CIE reference" ; |
| 465 | |
| 466 | if (!isFdeLive<ELFT>(fde, rels)) |
| 467 | continue; |
| 468 | rec->fdes.push_back(Elt: &fde); |
| 469 | numFdes++; |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | template <class ELFT> |
| 474 | void EhFrameSection::addSectionAux(EhInputSection *sec) { |
| 475 | if (!sec->isLive()) |
| 476 | return; |
| 477 | const RelsOrRelas<ELFT> rels = |
| 478 | sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false); |
| 479 | if (rels.areRelocsRel()) |
| 480 | addRecords<ELFT>(sec, rels.rels); |
| 481 | else |
| 482 | addRecords<ELFT>(sec, rels.relas); |
| 483 | } |
| 484 | |
| 485 | // Used by ICF<ELFT>::handleLSDA(). This function is very similar to |
| 486 | // EhFrameSection::addRecords(). |
| 487 | template <class ELFT, class RelTy> |
| 488 | void EhFrameSection::iterateFDEWithLSDAAux( |
| 489 | EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA, |
| 490 | llvm::function_ref<void(InputSection &)> fn) { |
| 491 | for (EhSectionPiece &cie : sec.cies) |
| 492 | if (hasLSDA(p: cie)) |
| 493 | ciesWithLSDA.insert(V: cie.inputOff); |
| 494 | for (EhSectionPiece &fde : sec.fdes) { |
| 495 | uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4); |
| 496 | if (!ciesWithLSDA.contains(V: fde.inputOff + 4 - id)) |
| 497 | continue; |
| 498 | |
| 499 | // The CIE has a LSDA argument. Call fn with d's section. |
| 500 | if (Defined *d = isFdeLive<ELFT>(fde, rels)) |
| 501 | if (auto *s = dyn_cast_or_null<InputSection>(Val: d->section)) |
| 502 | fn(*s); |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | template <class ELFT> |
| 507 | void EhFrameSection::iterateFDEWithLSDA( |
| 508 | llvm::function_ref<void(InputSection &)> fn) { |
| 509 | DenseSet<size_t> ciesWithLSDA; |
| 510 | for (EhInputSection *sec : sections) { |
| 511 | ciesWithLSDA.clear(); |
| 512 | const RelsOrRelas<ELFT> rels = |
| 513 | sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false); |
| 514 | if (rels.areRelocsRel()) |
| 515 | iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn); |
| 516 | else |
| 517 | iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn); |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | static void writeCieFde(Ctx &ctx, uint8_t *buf, ArrayRef<uint8_t> d) { |
| 522 | memcpy(dest: buf, src: d.data(), n: d.size()); |
| 523 | // Fix the size field. -4 since size does not include the size field itself. |
| 524 | write32(ctx, p: buf, v: d.size() - 4); |
| 525 | } |
| 526 | |
| 527 | void EhFrameSection::finalizeContents() { |
| 528 | assert(!this->size); // Not finalized. |
| 529 | |
| 530 | switch (ctx.arg.ekind) { |
| 531 | case ELFNoneKind: |
| 532 | llvm_unreachable("invalid ekind" ); |
| 533 | case ELF32LEKind: |
| 534 | for (EhInputSection *sec : sections) |
| 535 | addSectionAux<ELF32LE>(sec); |
| 536 | break; |
| 537 | case ELF32BEKind: |
| 538 | for (EhInputSection *sec : sections) |
| 539 | addSectionAux<ELF32BE>(sec); |
| 540 | break; |
| 541 | case ELF64LEKind: |
| 542 | for (EhInputSection *sec : sections) |
| 543 | addSectionAux<ELF64LE>(sec); |
| 544 | break; |
| 545 | case ELF64BEKind: |
| 546 | for (EhInputSection *sec : sections) |
| 547 | addSectionAux<ELF64BE>(sec); |
| 548 | break; |
| 549 | } |
| 550 | |
| 551 | size_t off = 0; |
| 552 | for (CieRecord *rec : cieRecords) { |
| 553 | rec->cie->outputOff = off; |
| 554 | off += rec->cie->size; |
| 555 | |
| 556 | for (EhSectionPiece *fde : rec->fdes) { |
| 557 | fde->outputOff = off; |
| 558 | off += fde->size; |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | // The LSB standard does not allow a .eh_frame section with zero |
| 563 | // Call Frame Information records. glibc unwind-dw2-fde.c |
| 564 | // classify_object_over_fdes expects there is a CIE record length 0 as a |
| 565 | // terminator. Thus we add one unconditionally. |
| 566 | off += 4; |
| 567 | |
| 568 | this->size = off; |
| 569 | } |
| 570 | |
| 571 | // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table |
| 572 | // to get an FDE from an address to which FDE is applied. This function |
| 573 | // returns a list of such pairs. |
| 574 | SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const { |
| 575 | uint8_t *buf = ctx.bufferStart + getParent()->offset + outSecOff; |
| 576 | SmallVector<FdeData, 0> ret; |
| 577 | |
| 578 | uint64_t va = getPartition(ctx).ehFrameHdr->getVA(); |
| 579 | for (CieRecord *rec : cieRecords) { |
| 580 | uint8_t enc = getFdeEncoding(p: rec->cie); |
| 581 | for (EhSectionPiece *fde : rec->fdes) { |
| 582 | uint64_t pc = getFdePc(buf, off: fde->outputOff, enc); |
| 583 | uint64_t fdeVA = getParent()->addr + fde->outputOff; |
| 584 | if (!isInt<32>(x: pc - va)) { |
| 585 | Err(ctx) << fde->sec << ": PC offset is too large: 0x" |
| 586 | << Twine::utohexstr(Val: pc - va); |
| 587 | continue; |
| 588 | } |
| 589 | ret.push_back(Elt: {.pcRel: uint32_t(pc - va), .fdeVARel: uint32_t(fdeVA - va)}); |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | // Sort the FDE list by their PC and uniqueify. Usually there is only |
| 594 | // one FDE for a PC (i.e. function), but if ICF merges two functions |
| 595 | // into one, there can be more than one FDEs pointing to the address. |
| 596 | auto less = [](const FdeData &a, const FdeData &b) { |
| 597 | return a.pcRel < b.pcRel; |
| 598 | }; |
| 599 | llvm::stable_sort(Range&: ret, C: less); |
| 600 | auto eq = [](const FdeData &a, const FdeData &b) { |
| 601 | return a.pcRel == b.pcRel; |
| 602 | }; |
| 603 | ret.erase(CS: llvm::unique(R&: ret, P: eq), CE: ret.end()); |
| 604 | |
| 605 | return ret; |
| 606 | } |
| 607 | |
| 608 | static uint64_t readFdeAddr(Ctx &ctx, uint8_t *buf, int size) { |
| 609 | switch (size) { |
| 610 | case DW_EH_PE_udata2: |
| 611 | return read16(ctx, p: buf); |
| 612 | case DW_EH_PE_sdata2: |
| 613 | return (int16_t)read16(ctx, p: buf); |
| 614 | case DW_EH_PE_udata4: |
| 615 | return read32(ctx, p: buf); |
| 616 | case DW_EH_PE_sdata4: |
| 617 | return (int32_t)read32(ctx, p: buf); |
| 618 | case DW_EH_PE_udata8: |
| 619 | case DW_EH_PE_sdata8: |
| 620 | return read64(ctx, p: buf); |
| 621 | case DW_EH_PE_absptr: |
| 622 | return readUint(ctx, buf); |
| 623 | } |
| 624 | Err(ctx) << "unknown FDE size encoding" ; |
| 625 | return 0; |
| 626 | } |
| 627 | |
| 628 | // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. |
| 629 | // We need it to create .eh_frame_hdr section. |
| 630 | uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff, |
| 631 | uint8_t enc) const { |
| 632 | // The starting address to which this FDE applies is |
| 633 | // stored at FDE + 8 byte. And this offset is within |
| 634 | // the .eh_frame section. |
| 635 | size_t off = fdeOff + 8; |
| 636 | uint64_t addr = readFdeAddr(ctx, buf: buf + off, size: enc & 0xf); |
| 637 | if ((enc & 0x70) == DW_EH_PE_absptr) |
| 638 | return ctx.arg.is64 ? addr : uint32_t(addr); |
| 639 | if ((enc & 0x70) == DW_EH_PE_pcrel) |
| 640 | return addr + getParent()->addr + off + outSecOff; |
| 641 | Err(ctx) << "unknown FDE size relative encoding" ; |
| 642 | return 0; |
| 643 | } |
| 644 | |
| 645 | void EhFrameSection::writeTo(uint8_t *buf) { |
| 646 | // Write CIE and FDE records. |
| 647 | for (CieRecord *rec : cieRecords) { |
| 648 | size_t cieOffset = rec->cie->outputOff; |
| 649 | writeCieFde(ctx, buf: buf + cieOffset, d: rec->cie->data()); |
| 650 | |
| 651 | for (EhSectionPiece *fde : rec->fdes) { |
| 652 | size_t off = fde->outputOff; |
| 653 | writeCieFde(ctx, buf: buf + off, d: fde->data()); |
| 654 | |
| 655 | // FDE's second word should have the offset to an associated CIE. |
| 656 | // Write it. |
| 657 | write32(ctx, p: buf + off + 4, v: off + 4 - cieOffset); |
| 658 | } |
| 659 | } |
| 660 | |
| 661 | // Apply relocations. .eh_frame section contents are not contiguous |
| 662 | // in the output buffer, but relocateAlloc() still works because |
| 663 | // getOffset() takes care of discontiguous section pieces. |
| 664 | for (EhInputSection *s : sections) |
| 665 | ctx.target->relocateAlloc(sec&: *s, buf); |
| 666 | |
| 667 | if (getPartition(ctx).ehFrameHdr && getPartition(ctx).ehFrameHdr->getParent()) |
| 668 | getPartition(ctx).ehFrameHdr->write(); |
| 669 | } |
| 670 | |
| 671 | GotSection::GotSection(Ctx &ctx) |
| 672 | : SyntheticSection(ctx, ".got" , SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, |
| 673 | ctx.target->gotEntrySize) { |
| 674 | numEntries = ctx.target->gotHeaderEntriesNum; |
| 675 | } |
| 676 | |
| 677 | void GotSection::addConstant(const Relocation &r) { relocations.push_back(Elt: r); } |
| 678 | void GotSection::addEntry(const Symbol &sym) { |
| 679 | assert(sym.auxIdx == ctx.symAux.size() - 1); |
| 680 | ctx.symAux.back().gotIdx = numEntries++; |
| 681 | } |
| 682 | |
| 683 | void GotSection::addAuthEntry(const Symbol &sym) { |
| 684 | authEntries.push_back( |
| 685 | Elt: {.offset: (numEntries - 1) * ctx.target->gotEntrySize, .isSymbolFunc: sym.isFunc()}); |
| 686 | } |
| 687 | |
| 688 | bool GotSection::addTlsDescEntry(const Symbol &sym) { |
| 689 | assert(sym.auxIdx == ctx.symAux.size() - 1); |
| 690 | ctx.symAux.back().tlsDescIdx = numEntries; |
| 691 | numEntries += 2; |
| 692 | return true; |
| 693 | } |
| 694 | |
| 695 | void GotSection::addTlsDescAuthEntry() { |
| 696 | authEntries.push_back(Elt: {.offset: (numEntries - 2) * ctx.target->gotEntrySize, .isSymbolFunc: true}); |
| 697 | authEntries.push_back(Elt: {.offset: (numEntries - 1) * ctx.target->gotEntrySize, .isSymbolFunc: false}); |
| 698 | } |
| 699 | |
| 700 | bool GotSection::addDynTlsEntry(const Symbol &sym) { |
| 701 | assert(sym.auxIdx == ctx.symAux.size() - 1); |
| 702 | ctx.symAux.back().tlsGdIdx = numEntries; |
| 703 | // Global Dynamic TLS entries take two GOT slots. |
| 704 | numEntries += 2; |
| 705 | return true; |
| 706 | } |
| 707 | |
| 708 | // Reserves TLS entries for a TLS module ID and a TLS block offset. |
| 709 | // In total it takes two GOT slots. |
| 710 | bool GotSection::addTlsIndex() { |
| 711 | if (tlsIndexOff != uint32_t(-1)) |
| 712 | return false; |
| 713 | tlsIndexOff = numEntries * ctx.target->gotEntrySize; |
| 714 | numEntries += 2; |
| 715 | return true; |
| 716 | } |
| 717 | |
| 718 | uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const { |
| 719 | return sym.getTlsDescIdx(ctx) * ctx.target->gotEntrySize; |
| 720 | } |
| 721 | |
| 722 | uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const { |
| 723 | return getVA() + getTlsDescOffset(sym); |
| 724 | } |
| 725 | |
| 726 | uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const { |
| 727 | return this->getVA() + b.getTlsGdIdx(ctx) * ctx.target->gotEntrySize; |
| 728 | } |
| 729 | |
| 730 | uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const { |
| 731 | return b.getTlsGdIdx(ctx) * ctx.target->gotEntrySize; |
| 732 | } |
| 733 | |
| 734 | void GotSection::finalizeContents() { |
| 735 | if (ctx.arg.emachine == EM_PPC64 && |
| 736 | numEntries <= ctx.target->gotHeaderEntriesNum && |
| 737 | !ctx.sym.globalOffsetTable) |
| 738 | size = 0; |
| 739 | else |
| 740 | size = numEntries * ctx.target->gotEntrySize; |
| 741 | } |
| 742 | |
| 743 | bool GotSection::isNeeded() const { |
| 744 | // Needed if the GOT symbol is used or the number of entries is more than just |
| 745 | // the header. A GOT with just the header may not be needed. |
| 746 | return hasGotOffRel || numEntries > ctx.target->gotHeaderEntriesNum; |
| 747 | } |
| 748 | |
| 749 | void GotSection::writeTo(uint8_t *buf) { |
| 750 | // On PPC64 .got may be needed but empty. Skip the write. |
| 751 | if (size == 0) |
| 752 | return; |
| 753 | ctx.target->writeGotHeader(buf); |
| 754 | ctx.target->relocateAlloc(sec&: *this, buf); |
| 755 | for (const AuthEntryInfo &authEntry : authEntries) { |
| 756 | // https://github.com/ARM-software/abi-aa/blob/2024Q3/pauthabielf64/pauthabielf64.rst#default-signing-schema |
| 757 | // Signed GOT entries use the IA key for symbols of type STT_FUNC and the |
| 758 | // DA key for all other symbol types, with the address of the GOT entry as |
| 759 | // the modifier. The static linker must encode the signing schema into the |
| 760 | // GOT slot. |
| 761 | // |
| 762 | // https://github.com/ARM-software/abi-aa/blob/2024Q3/pauthabielf64/pauthabielf64.rst#encoding-the-signing-schema |
| 763 | // If address diversity is set and the discriminator |
| 764 | // is 0 then modifier = Place |
| 765 | uint8_t *dest = buf + authEntry.offset; |
| 766 | uint64_t key = authEntry.isSymbolFunc ? /*IA=*/0b00 : /*DA=*/0b10; |
| 767 | uint64_t addrDiversity = 1; |
| 768 | write64(ctx, p: dest, v: (addrDiversity << 63) | (key << 60)); |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | static uint64_t getMipsPageAddr(uint64_t addr) { |
| 773 | return (addr + 0x8000) & ~0xffff; |
| 774 | } |
| 775 | |
| 776 | static uint64_t getMipsPageCount(uint64_t size) { |
| 777 | return (size + 0xfffe) / 0xffff + 1; |
| 778 | } |
| 779 | |
| 780 | MipsGotSection::MipsGotSection(Ctx &ctx) |
| 781 | : SyntheticSection(ctx, ".got" , SHT_PROGBITS, |
| 782 | SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, 16) {} |
| 783 | |
| 784 | void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend, |
| 785 | RelExpr expr) { |
| 786 | FileGot &g = getGot(f&: file); |
| 787 | if (expr == RE_MIPS_GOT_LOCAL_PAGE) { |
| 788 | if (const OutputSection *os = sym.getOutputSection()) |
| 789 | g.pagesMap.insert(KV: {os, {}}); |
| 790 | else |
| 791 | g.local16.insert(KV: {{nullptr, getMipsPageAddr(addr: sym.getVA(ctx, addend))}, 0}); |
| 792 | } else if (sym.isTls()) |
| 793 | g.tls.insert(KV: {&sym, 0}); |
| 794 | else if (sym.isPreemptible && expr == R_ABS) |
| 795 | g.relocs.insert(KV: {&sym, 0}); |
| 796 | else if (sym.isPreemptible) |
| 797 | g.global.insert(KV: {&sym, 0}); |
| 798 | else if (expr == RE_MIPS_GOT_OFF32) |
| 799 | g.local32.insert(KV: {{&sym, addend}, 0}); |
| 800 | else |
| 801 | g.local16.insert(KV: {{&sym, addend}, 0}); |
| 802 | } |
| 803 | |
| 804 | void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) { |
| 805 | getGot(f&: file).dynTlsSymbols.insert(KV: {&sym, 0}); |
| 806 | } |
| 807 | |
| 808 | void MipsGotSection::addTlsIndex(InputFile &file) { |
| 809 | getGot(f&: file).dynTlsSymbols.insert(KV: {nullptr, 0}); |
| 810 | } |
| 811 | |
| 812 | size_t MipsGotSection::FileGot::getEntriesNum() const { |
| 813 | return getPageEntriesNum() + local16.size() + global.size() + relocs.size() + |
| 814 | tls.size() + dynTlsSymbols.size() * 2; |
| 815 | } |
| 816 | |
| 817 | size_t MipsGotSection::FileGot::getPageEntriesNum() const { |
| 818 | size_t num = 0; |
| 819 | for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap) |
| 820 | num += p.second.count; |
| 821 | return num; |
| 822 | } |
| 823 | |
| 824 | size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { |
| 825 | size_t count = getPageEntriesNum() + local16.size() + global.size(); |
| 826 | // If there are relocation-only entries in the GOT, TLS entries |
| 827 | // are allocated after them. TLS entries should be addressable |
| 828 | // by 16-bit index so count both reloc-only and TLS entries. |
| 829 | if (!tls.empty() || !dynTlsSymbols.empty()) |
| 830 | count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2; |
| 831 | return count; |
| 832 | } |
| 833 | |
| 834 | MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) { |
| 835 | if (f.mipsGotIndex == uint32_t(-1)) { |
| 836 | gots.emplace_back(); |
| 837 | gots.back().file = &f; |
| 838 | f.mipsGotIndex = gots.size() - 1; |
| 839 | } |
| 840 | return gots[f.mipsGotIndex]; |
| 841 | } |
| 842 | |
| 843 | uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f, |
| 844 | const Symbol &sym, |
| 845 | int64_t addend) const { |
| 846 | const FileGot &g = gots[f->mipsGotIndex]; |
| 847 | uint64_t index = 0; |
| 848 | if (const OutputSection *outSec = sym.getOutputSection()) { |
| 849 | uint64_t secAddr = getMipsPageAddr(addr: outSec->addr); |
| 850 | uint64_t symAddr = getMipsPageAddr(addr: sym.getVA(ctx, addend)); |
| 851 | index = g.pagesMap.lookup(Key: outSec).firstIndex + (symAddr - secAddr) / 0xffff; |
| 852 | } else { |
| 853 | index = |
| 854 | g.local16.lookup(Key: {nullptr, getMipsPageAddr(addr: sym.getVA(ctx, addend))}); |
| 855 | } |
| 856 | return index * ctx.arg.wordsize; |
| 857 | } |
| 858 | |
| 859 | uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s, |
| 860 | int64_t addend) const { |
| 861 | const FileGot &g = gots[f->mipsGotIndex]; |
| 862 | Symbol *sym = const_cast<Symbol *>(&s); |
| 863 | if (sym->isTls()) |
| 864 | return g.tls.lookup(Key: sym) * ctx.arg.wordsize; |
| 865 | if (sym->isPreemptible) |
| 866 | return g.global.lookup(Key: sym) * ctx.arg.wordsize; |
| 867 | return g.local16.lookup(Key: {sym, addend}) * ctx.arg.wordsize; |
| 868 | } |
| 869 | |
| 870 | uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const { |
| 871 | const FileGot &g = gots[f->mipsGotIndex]; |
| 872 | return g.dynTlsSymbols.lookup(Key: nullptr) * ctx.arg.wordsize; |
| 873 | } |
| 874 | |
| 875 | uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f, |
| 876 | const Symbol &s) const { |
| 877 | const FileGot &g = gots[f->mipsGotIndex]; |
| 878 | Symbol *sym = const_cast<Symbol *>(&s); |
| 879 | return g.dynTlsSymbols.lookup(Key: sym) * ctx.arg.wordsize; |
| 880 | } |
| 881 | |
| 882 | const Symbol *MipsGotSection::getFirstGlobalEntry() const { |
| 883 | if (gots.empty()) |
| 884 | return nullptr; |
| 885 | const FileGot &primGot = gots.front(); |
| 886 | if (!primGot.global.empty()) |
| 887 | return primGot.global.front().first; |
| 888 | if (!primGot.relocs.empty()) |
| 889 | return primGot.relocs.front().first; |
| 890 | return nullptr; |
| 891 | } |
| 892 | |
| 893 | unsigned MipsGotSection::getLocalEntriesNum() const { |
| 894 | if (gots.empty()) |
| 895 | return headerEntriesNum; |
| 896 | return headerEntriesNum + gots.front().getPageEntriesNum() + |
| 897 | gots.front().local16.size(); |
| 898 | } |
| 899 | |
| 900 | bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) { |
| 901 | FileGot tmp = dst; |
| 902 | set_union(S1&: tmp.pagesMap, S2: src.pagesMap); |
| 903 | set_union(S1&: tmp.local16, S2: src.local16); |
| 904 | set_union(S1&: tmp.global, S2: src.global); |
| 905 | set_union(S1&: tmp.relocs, S2: src.relocs); |
| 906 | set_union(S1&: tmp.tls, S2: src.tls); |
| 907 | set_union(S1&: tmp.dynTlsSymbols, S2: src.dynTlsSymbols); |
| 908 | |
| 909 | size_t count = isPrimary ? headerEntriesNum : 0; |
| 910 | count += tmp.getIndexedEntriesNum(); |
| 911 | |
| 912 | if (count * ctx.arg.wordsize > ctx.arg.mipsGotSize) |
| 913 | return false; |
| 914 | |
| 915 | std::swap(a&: tmp, b&: dst); |
| 916 | return true; |
| 917 | } |
| 918 | |
| 919 | void MipsGotSection::finalizeContents() { updateAllocSize(ctx); } |
| 920 | |
| 921 | bool MipsGotSection::updateAllocSize(Ctx &ctx) { |
| 922 | size = headerEntriesNum * ctx.arg.wordsize; |
| 923 | for (const FileGot &g : gots) |
| 924 | size += g.getEntriesNum() * ctx.arg.wordsize; |
| 925 | return false; |
| 926 | } |
| 927 | |
| 928 | void MipsGotSection::build() { |
| 929 | if (gots.empty()) |
| 930 | return; |
| 931 | |
| 932 | std::vector<FileGot> mergedGots(1); |
| 933 | |
| 934 | // For each GOT move non-preemptible symbols from the `Global` |
| 935 | // to `Local16` list. Preemptible symbol might become non-preemptible |
| 936 | // one if, for example, it gets a related copy relocation. |
| 937 | for (FileGot &got : gots) { |
| 938 | for (auto &p: got.global) |
| 939 | if (!p.first->isPreemptible) |
| 940 | got.local16.insert(KV: {{p.first, 0}, 0}); |
| 941 | got.global.remove_if(Pred: [&](const std::pair<Symbol *, size_t> &p) { |
| 942 | return !p.first->isPreemptible; |
| 943 | }); |
| 944 | } |
| 945 | |
| 946 | // For each GOT remove "reloc-only" entry if there is "global" |
| 947 | // entry for the same symbol. And add local entries which indexed |
| 948 | // using 32-bit value at the end of 16-bit entries. |
| 949 | for (FileGot &got : gots) { |
| 950 | got.relocs.remove_if(Pred: [&](const std::pair<Symbol *, size_t> &p) { |
| 951 | return got.global.count(Key: p.first); |
| 952 | }); |
| 953 | set_union(S1&: got.local16, S2: got.local32); |
| 954 | got.local32.clear(); |
| 955 | } |
| 956 | |
| 957 | // Evaluate number of "reloc-only" entries in the resulting GOT. |
| 958 | // To do that put all unique "reloc-only" and "global" entries |
| 959 | // from all GOTs to the future primary GOT. |
| 960 | FileGot *primGot = &mergedGots.front(); |
| 961 | for (FileGot &got : gots) { |
| 962 | set_union(S1&: primGot->relocs, S2: got.global); |
| 963 | set_union(S1&: primGot->relocs, S2: got.relocs); |
| 964 | got.relocs.clear(); |
| 965 | } |
| 966 | |
| 967 | // Evaluate number of "page" entries in each GOT. |
| 968 | for (FileGot &got : gots) { |
| 969 | for (std::pair<const OutputSection *, FileGot::PageBlock> &p : |
| 970 | got.pagesMap) { |
| 971 | const OutputSection *os = p.first; |
| 972 | uint64_t secSize = 0; |
| 973 | for (SectionCommand *cmd : os->commands) { |
| 974 | if (auto *isd = dyn_cast<InputSectionDescription>(Val: cmd)) |
| 975 | for (InputSection *isec : isd->sections) { |
| 976 | uint64_t off = alignToPowerOf2(Value: secSize, Align: isec->addralign); |
| 977 | secSize = off + isec->getSize(); |
| 978 | } |
| 979 | } |
| 980 | p.second.count = getMipsPageCount(size: secSize); |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | // Merge GOTs. Try to join as much as possible GOTs but do not exceed |
| 985 | // maximum GOT size. At first, try to fill the primary GOT because |
| 986 | // the primary GOT can be accessed in the most effective way. If it |
| 987 | // is not possible, try to fill the last GOT in the list, and finally |
| 988 | // create a new GOT if both attempts failed. |
| 989 | for (FileGot &srcGot : gots) { |
| 990 | InputFile *file = srcGot.file; |
| 991 | if (tryMergeGots(dst&: mergedGots.front(), src&: srcGot, isPrimary: true)) { |
| 992 | file->mipsGotIndex = 0; |
| 993 | } else { |
| 994 | // If this is the first time we failed to merge with the primary GOT, |
| 995 | // MergedGots.back() will also be the primary GOT. We must make sure not |
| 996 | // to try to merge again with isPrimary=false, as otherwise, if the |
| 997 | // inputs are just right, we could allow the primary GOT to become 1 or 2 |
| 998 | // words bigger due to ignoring the header size. |
| 999 | if (mergedGots.size() == 1 || |
| 1000 | !tryMergeGots(dst&: mergedGots.back(), src&: srcGot, isPrimary: false)) { |
| 1001 | mergedGots.emplace_back(); |
| 1002 | std::swap(a&: mergedGots.back(), b&: srcGot); |
| 1003 | } |
| 1004 | file->mipsGotIndex = mergedGots.size() - 1; |
| 1005 | } |
| 1006 | } |
| 1007 | std::swap(x&: gots, y&: mergedGots); |
| 1008 | |
| 1009 | // Reduce number of "reloc-only" entries in the primary GOT |
| 1010 | // by subtracting "global" entries in the primary GOT. |
| 1011 | primGot = &gots.front(); |
| 1012 | primGot->relocs.remove_if(Pred: [&](const std::pair<Symbol *, size_t> &p) { |
| 1013 | return primGot->global.count(Key: p.first); |
| 1014 | }); |
| 1015 | |
| 1016 | // Calculate indexes for each GOT entry. |
| 1017 | size_t index = headerEntriesNum; |
| 1018 | for (FileGot &got : gots) { |
| 1019 | got.startIndex = &got == primGot ? 0 : index; |
| 1020 | for (std::pair<const OutputSection *, FileGot::PageBlock> &p : |
| 1021 | got.pagesMap) { |
| 1022 | // For each output section referenced by GOT page relocations calculate |
| 1023 | // and save into pagesMap an upper bound of MIPS GOT entries required |
| 1024 | // to store page addresses of local symbols. We assume the worst case - |
| 1025 | // each 64kb page of the output section has at least one GOT relocation |
| 1026 | // against it. And take in account the case when the section intersects |
| 1027 | // page boundaries. |
| 1028 | p.second.firstIndex = index; |
| 1029 | index += p.second.count; |
| 1030 | } |
| 1031 | for (auto &p: got.local16) |
| 1032 | p.second = index++; |
| 1033 | for (auto &p: got.global) |
| 1034 | p.second = index++; |
| 1035 | for (auto &p: got.relocs) |
| 1036 | p.second = index++; |
| 1037 | for (auto &p: got.tls) |
| 1038 | p.second = index++; |
| 1039 | for (auto &p: got.dynTlsSymbols) { |
| 1040 | p.second = index; |
| 1041 | index += 2; |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | // Update SymbolAux::gotIdx field to use this |
| 1046 | // value later in the `sortMipsSymbols` function. |
| 1047 | for (auto &p : primGot->global) { |
| 1048 | if (p.first->auxIdx == 0) |
| 1049 | p.first->allocateAux(ctx); |
| 1050 | ctx.symAux.back().gotIdx = p.second; |
| 1051 | } |
| 1052 | for (auto &p : primGot->relocs) { |
| 1053 | if (p.first->auxIdx == 0) |
| 1054 | p.first->allocateAux(ctx); |
| 1055 | ctx.symAux.back().gotIdx = p.second; |
| 1056 | } |
| 1057 | |
| 1058 | // Create dynamic relocations. |
| 1059 | for (FileGot &got : gots) { |
| 1060 | // Create dynamic relocations for TLS entries. |
| 1061 | for (std::pair<Symbol *, size_t> &p : got.tls) { |
| 1062 | Symbol *s = p.first; |
| 1063 | uint64_t offset = p.second * ctx.arg.wordsize; |
| 1064 | // When building a shared library we still need a dynamic relocation |
| 1065 | // for the TP-relative offset as we don't know how much other data will |
| 1066 | // be allocated before us in the static TLS block. |
| 1067 | if (s->isPreemptible || ctx.arg.shared) |
| 1068 | ctx.mainPart->relaDyn->addReloc( |
| 1069 | reloc: {ctx.target->tlsGotRel, this, offset, |
| 1070 | DynamicReloc::AgainstSymbolWithTargetVA, *s, 0, R_ABS}); |
| 1071 | } |
| 1072 | for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) { |
| 1073 | Symbol *s = p.first; |
| 1074 | uint64_t offset = p.second * ctx.arg.wordsize; |
| 1075 | if (s == nullptr) { |
| 1076 | if (!ctx.arg.shared) |
| 1077 | continue; |
| 1078 | ctx.mainPart->relaDyn->addReloc( |
| 1079 | reloc: {ctx.target->tlsModuleIndexRel, this, offset}); |
| 1080 | } else { |
| 1081 | // When building a shared library we still need a dynamic relocation |
| 1082 | // for the module index. Therefore only checking for |
| 1083 | // S->isPreemptible is not sufficient (this happens e.g. for |
| 1084 | // thread-locals that have been marked as local through a linker script) |
| 1085 | if (!s->isPreemptible && !ctx.arg.shared) |
| 1086 | continue; |
| 1087 | ctx.mainPart->relaDyn->addSymbolReloc(dynType: ctx.target->tlsModuleIndexRel, |
| 1088 | isec&: *this, offsetInSec: offset, sym&: *s); |
| 1089 | // However, we can skip writing the TLS offset reloc for non-preemptible |
| 1090 | // symbols since it is known even in shared libraries |
| 1091 | if (!s->isPreemptible) |
| 1092 | continue; |
| 1093 | offset += ctx.arg.wordsize; |
| 1094 | ctx.mainPart->relaDyn->addSymbolReloc(dynType: ctx.target->tlsOffsetRel, isec&: *this, |
| 1095 | offsetInSec: offset, sym&: *s); |
| 1096 | } |
| 1097 | } |
| 1098 | |
| 1099 | // Do not create dynamic relocations for non-TLS |
| 1100 | // entries in the primary GOT. |
| 1101 | if (&got == primGot) |
| 1102 | continue; |
| 1103 | |
| 1104 | // Dynamic relocations for "global" entries. |
| 1105 | for (const std::pair<Symbol *, size_t> &p : got.global) { |
| 1106 | uint64_t offset = p.second * ctx.arg.wordsize; |
| 1107 | ctx.mainPart->relaDyn->addSymbolReloc(dynType: ctx.target->relativeRel, isec&: *this, |
| 1108 | offsetInSec: offset, sym&: *p.first); |
| 1109 | } |
| 1110 | if (!ctx.arg.isPic) |
| 1111 | continue; |
| 1112 | // Dynamic relocations for "local" entries in case of PIC. |
| 1113 | for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : |
| 1114 | got.pagesMap) { |
| 1115 | size_t pageCount = l.second.count; |
| 1116 | for (size_t pi = 0; pi < pageCount; ++pi) { |
| 1117 | uint64_t offset = (l.second.firstIndex + pi) * ctx.arg.wordsize; |
| 1118 | ctx.mainPart->relaDyn->addReloc(reloc: {ctx.target->relativeRel, this, offset, |
| 1119 | l.first, int64_t(pi * 0x10000)}); |
| 1120 | } |
| 1121 | } |
| 1122 | for (const std::pair<GotEntry, size_t> &p : got.local16) { |
| 1123 | uint64_t offset = p.second * ctx.arg.wordsize; |
| 1124 | ctx.mainPart->relaDyn->addReloc(reloc: {ctx.target->relativeRel, this, offset, |
| 1125 | DynamicReloc::AddendOnlyWithTargetVA, |
| 1126 | *p.first.first, p.first.second, R_ABS}); |
| 1127 | } |
| 1128 | } |
| 1129 | } |
| 1130 | |
| 1131 | bool MipsGotSection::isNeeded() const { |
| 1132 | // We add the .got section to the result for dynamic MIPS target because |
| 1133 | // its address and properties are mentioned in the .dynamic section. |
| 1134 | return !ctx.arg.relocatable; |
| 1135 | } |
| 1136 | |
| 1137 | uint64_t MipsGotSection::getGp(const InputFile *f) const { |
| 1138 | // For files without related GOT or files refer a primary GOT |
| 1139 | // returns "common" _gp value. For secondary GOTs calculate |
| 1140 | // individual _gp values. |
| 1141 | if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0) |
| 1142 | return ctx.sym.mipsGp->getVA(ctx, addend: 0); |
| 1143 | return getVA() + gots[f->mipsGotIndex].startIndex * ctx.arg.wordsize + 0x7ff0; |
| 1144 | } |
| 1145 | |
| 1146 | void MipsGotSection::writeTo(uint8_t *buf) { |
| 1147 | // Set the MSB of the second GOT slot. This is not required by any |
| 1148 | // MIPS ABI documentation, though. |
| 1149 | // |
| 1150 | // There is a comment in glibc saying that "The MSB of got[1] of a |
| 1151 | // gnu object is set to identify gnu objects," and in GNU gold it |
| 1152 | // says "the second entry will be used by some runtime loaders". |
| 1153 | // But how this field is being used is unclear. |
| 1154 | // |
| 1155 | // We are not really willing to mimic other linkers behaviors |
| 1156 | // without understanding why they do that, but because all files |
| 1157 | // generated by GNU tools have this special GOT value, and because |
| 1158 | // we've been doing this for years, it is probably a safe bet to |
| 1159 | // keep doing this for now. We really need to revisit this to see |
| 1160 | // if we had to do this. |
| 1161 | writeUint(ctx, buf: buf + ctx.arg.wordsize, |
| 1162 | val: (uint64_t)1 << (ctx.arg.wordsize * 8 - 1)); |
| 1163 | for (const FileGot &g : gots) { |
| 1164 | auto write = [&](size_t i, const Symbol *s, int64_t a) { |
| 1165 | uint64_t va = a; |
| 1166 | if (s) |
| 1167 | va = s->getVA(ctx, addend: a); |
| 1168 | writeUint(ctx, buf: buf + i * ctx.arg.wordsize, val: va); |
| 1169 | }; |
| 1170 | // Write 'page address' entries to the local part of the GOT. |
| 1171 | for (const std::pair<const OutputSection *, FileGot::PageBlock> &l : |
| 1172 | g.pagesMap) { |
| 1173 | size_t pageCount = l.second.count; |
| 1174 | uint64_t firstPageAddr = getMipsPageAddr(addr: l.first->addr); |
| 1175 | for (size_t pi = 0; pi < pageCount; ++pi) |
| 1176 | write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000); |
| 1177 | } |
| 1178 | // Local, global, TLS, reloc-only entries. |
| 1179 | // If TLS entry has a corresponding dynamic relocations, leave it |
| 1180 | // initialized by zero. Write down adjusted TLS symbol's values otherwise. |
| 1181 | // To calculate the adjustments use offsets for thread-local storage. |
| 1182 | // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL |
| 1183 | for (const std::pair<GotEntry, size_t> &p : g.local16) |
| 1184 | write(p.second, p.first.first, p.first.second); |
| 1185 | // Write VA to the primary GOT only. For secondary GOTs that |
| 1186 | // will be done by REL32 dynamic relocations. |
| 1187 | if (&g == &gots.front()) |
| 1188 | for (const std::pair<Symbol *, size_t> &p : g.global) |
| 1189 | write(p.second, p.first, 0); |
| 1190 | for (const std::pair<Symbol *, size_t> &p : g.relocs) |
| 1191 | write(p.second, p.first, 0); |
| 1192 | for (const std::pair<Symbol *, size_t> &p : g.tls) |
| 1193 | write(p.second, p.first, |
| 1194 | p.first->isPreemptible || ctx.arg.shared ? 0 : -0x7000); |
| 1195 | for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) { |
| 1196 | if (p.first == nullptr && !ctx.arg.shared) |
| 1197 | write(p.second, nullptr, 1); |
| 1198 | else if (p.first && !p.first->isPreemptible) { |
| 1199 | // If we are emitting a shared library with relocations we mustn't write |
| 1200 | // anything to the GOT here. When using Elf_Rel relocations the value |
| 1201 | // one will be treated as an addend and will cause crashes at runtime |
| 1202 | if (!ctx.arg.shared) |
| 1203 | write(p.second, nullptr, 1); |
| 1204 | write(p.second + 1, p.first, -0x8000); |
| 1205 | } |
| 1206 | } |
| 1207 | } |
| 1208 | } |
| 1209 | |
| 1210 | // On PowerPC the .plt section is used to hold the table of function addresses |
| 1211 | // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss |
| 1212 | // section. I don't know why we have a BSS style type for the section but it is |
| 1213 | // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. |
| 1214 | GotPltSection::GotPltSection(Ctx &ctx) |
| 1215 | : SyntheticSection(ctx, ".got.plt" , SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, |
| 1216 | ctx.target->gotEntrySize) { |
| 1217 | if (ctx.arg.emachine == EM_PPC) { |
| 1218 | name = ".plt" ; |
| 1219 | } else if (ctx.arg.emachine == EM_PPC64) { |
| 1220 | type = SHT_NOBITS; |
| 1221 | name = ".plt" ; |
| 1222 | } |
| 1223 | } |
| 1224 | |
| 1225 | void GotPltSection::addEntry(Symbol &sym) { |
| 1226 | assert(sym.auxIdx == ctx.symAux.size() - 1 && |
| 1227 | ctx.symAux.back().pltIdx == entries.size()); |
| 1228 | entries.push_back(Elt: &sym); |
| 1229 | } |
| 1230 | |
| 1231 | size_t GotPltSection::getSize() const { |
| 1232 | return (ctx.target->gotPltHeaderEntriesNum + entries.size()) * |
| 1233 | ctx.target->gotEntrySize; |
| 1234 | } |
| 1235 | |
| 1236 | void GotPltSection::writeTo(uint8_t *buf) { |
| 1237 | ctx.target->writeGotPltHeader(buf); |
| 1238 | buf += ctx.target->gotPltHeaderEntriesNum * ctx.target->gotEntrySize; |
| 1239 | for (const Symbol *b : entries) { |
| 1240 | ctx.target->writeGotPlt(buf, s: *b); |
| 1241 | buf += ctx.target->gotEntrySize; |
| 1242 | } |
| 1243 | } |
| 1244 | |
| 1245 | bool GotPltSection::isNeeded() const { |
| 1246 | // We need to emit GOTPLT even if it's empty if there's a relocation relative |
| 1247 | // to it. |
| 1248 | return !entries.empty() || hasGotPltOffRel; |
| 1249 | } |
| 1250 | |
| 1251 | static StringRef getIgotPltName(Ctx &ctx) { |
| 1252 | // On ARM the IgotPltSection is part of the GotSection. |
| 1253 | if (ctx.arg.emachine == EM_ARM) |
| 1254 | return ".got" ; |
| 1255 | |
| 1256 | // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection |
| 1257 | // needs to be named the same. |
| 1258 | if (ctx.arg.emachine == EM_PPC64) |
| 1259 | return ".plt" ; |
| 1260 | |
| 1261 | return ".got.plt" ; |
| 1262 | } |
| 1263 | |
| 1264 | // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit |
| 1265 | // with the IgotPltSection. |
| 1266 | IgotPltSection::IgotPltSection(Ctx &ctx) |
| 1267 | : SyntheticSection(ctx, getIgotPltName(ctx), |
| 1268 | ctx.arg.emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, |
| 1269 | SHF_ALLOC | SHF_WRITE, ctx.target->gotEntrySize) {} |
| 1270 | |
| 1271 | void IgotPltSection::addEntry(Symbol &sym) { |
| 1272 | assert(ctx.symAux.back().pltIdx == entries.size()); |
| 1273 | entries.push_back(Elt: &sym); |
| 1274 | } |
| 1275 | |
| 1276 | size_t IgotPltSection::getSize() const { |
| 1277 | return entries.size() * ctx.target->gotEntrySize; |
| 1278 | } |
| 1279 | |
| 1280 | void IgotPltSection::writeTo(uint8_t *buf) { |
| 1281 | for (const Symbol *b : entries) { |
| 1282 | ctx.target->writeIgotPlt(buf, s: *b); |
| 1283 | buf += ctx.target->gotEntrySize; |
| 1284 | } |
| 1285 | } |
| 1286 | |
| 1287 | StringTableSection::StringTableSection(Ctx &ctx, StringRef name, bool dynamic) |
| 1288 | : SyntheticSection(ctx, name, SHT_STRTAB, dynamic ? (uint64_t)SHF_ALLOC : 0, |
| 1289 | 1), |
| 1290 | dynamic(dynamic) { |
| 1291 | // ELF string tables start with a NUL byte. |
| 1292 | strings.push_back(Elt: "" ); |
| 1293 | stringMap.try_emplace(Key: CachedHashStringRef("" ), Args: 0); |
| 1294 | size = 1; |
| 1295 | } |
| 1296 | |
| 1297 | // Adds a string to the string table. If `hashIt` is true we hash and check for |
| 1298 | // duplicates. It is optional because the name of global symbols are already |
| 1299 | // uniqued and hashing them again has a big cost for a small value: uniquing |
| 1300 | // them with some other string that happens to be the same. |
| 1301 | unsigned StringTableSection::addString(StringRef s, bool hashIt) { |
| 1302 | if (hashIt) { |
| 1303 | auto r = stringMap.try_emplace(Key: CachedHashStringRef(s), Args&: size); |
| 1304 | if (!r.second) |
| 1305 | return r.first->second; |
| 1306 | } |
| 1307 | if (s.empty()) |
| 1308 | return 0; |
| 1309 | unsigned ret = this->size; |
| 1310 | this->size = this->size + s.size() + 1; |
| 1311 | strings.push_back(Elt: s); |
| 1312 | return ret; |
| 1313 | } |
| 1314 | |
| 1315 | void StringTableSection::writeTo(uint8_t *buf) { |
| 1316 | for (StringRef s : strings) { |
| 1317 | memcpy(dest: buf, src: s.data(), n: s.size()); |
| 1318 | buf[s.size()] = '\0'; |
| 1319 | buf += s.size() + 1; |
| 1320 | } |
| 1321 | } |
| 1322 | |
| 1323 | // Returns the number of entries in .gnu.version_d: the number of |
| 1324 | // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1. |
| 1325 | // Note that we don't support vd_cnt > 1 yet. |
| 1326 | static unsigned getVerDefNum(Ctx &ctx) { |
| 1327 | return namedVersionDefs(ctx).size() + 1; |
| 1328 | } |
| 1329 | |
| 1330 | template <class ELFT> |
| 1331 | DynamicSection<ELFT>::DynamicSection(Ctx &ctx) |
| 1332 | : SyntheticSection(ctx, ".dynamic" , SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE, |
| 1333 | ctx.arg.wordsize) { |
| 1334 | this->entsize = ELFT::Is64Bits ? 16 : 8; |
| 1335 | |
| 1336 | // .dynamic section is not writable on MIPS and on Fuchsia OS |
| 1337 | // which passes -z rodynamic. |
| 1338 | // See "Special Section" in Chapter 4 in the following document: |
| 1339 | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| 1340 | if (ctx.arg.emachine == EM_MIPS || ctx.arg.zRodynamic) |
| 1341 | this->flags = SHF_ALLOC; |
| 1342 | } |
| 1343 | |
| 1344 | // The output section .rela.dyn may include these synthetic sections: |
| 1345 | // |
| 1346 | // - part.relaDyn |
| 1347 | // - ctx.in.relaPlt: this is included if a linker script places .rela.plt inside |
| 1348 | // .rela.dyn |
| 1349 | // |
| 1350 | // DT_RELASZ is the total size of the included sections. |
| 1351 | static uint64_t addRelaSz(Ctx &ctx, const RelocationBaseSection &relaDyn) { |
| 1352 | size_t size = relaDyn.getSize(); |
| 1353 | if (ctx.in.relaPlt->getParent() == relaDyn.getParent()) |
| 1354 | size += ctx.in.relaPlt->getSize(); |
| 1355 | return size; |
| 1356 | } |
| 1357 | |
| 1358 | // A Linker script may assign the RELA relocation sections to the same |
| 1359 | // output section. When this occurs we cannot just use the OutputSection |
| 1360 | // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to |
| 1361 | // overlap with the [DT_RELA, DT_RELA + DT_RELASZ). |
| 1362 | static uint64_t addPltRelSz(Ctx &ctx) { return ctx.in.relaPlt->getSize(); } |
| 1363 | |
| 1364 | // Add remaining entries to complete .dynamic contents. |
| 1365 | template <class ELFT> |
| 1366 | std::vector<std::pair<int32_t, uint64_t>> |
| 1367 | DynamicSection<ELFT>::computeContents() { |
| 1368 | elf::Partition &part = getPartition(ctx); |
| 1369 | bool isMain = part.name.empty(); |
| 1370 | std::vector<std::pair<int32_t, uint64_t>> entries; |
| 1371 | |
| 1372 | auto addInt = [&](int32_t tag, uint64_t val) { |
| 1373 | entries.emplace_back(args&: tag, args&: val); |
| 1374 | }; |
| 1375 | auto addInSec = [&](int32_t tag, const InputSection &sec) { |
| 1376 | entries.emplace_back(args&: tag, args: sec.getVA()); |
| 1377 | }; |
| 1378 | |
| 1379 | for (StringRef s : ctx.arg.filterList) |
| 1380 | addInt(DT_FILTER, part.dynStrTab->addString(s)); |
| 1381 | for (StringRef s : ctx.arg.auxiliaryList) |
| 1382 | addInt(DT_AUXILIARY, part.dynStrTab->addString(s)); |
| 1383 | |
| 1384 | if (!ctx.arg.rpath.empty()) |
| 1385 | addInt(ctx.arg.enableNewDtags ? DT_RUNPATH : DT_RPATH, |
| 1386 | part.dynStrTab->addString(s: ctx.arg.rpath)); |
| 1387 | |
| 1388 | for (SharedFile *file : ctx.sharedFiles) |
| 1389 | if (file->isNeeded) |
| 1390 | addInt(DT_NEEDED, part.dynStrTab->addString(s: file->soName)); |
| 1391 | |
| 1392 | if (isMain) { |
| 1393 | if (!ctx.arg.soName.empty()) |
| 1394 | addInt(DT_SONAME, part.dynStrTab->addString(s: ctx.arg.soName)); |
| 1395 | } else { |
| 1396 | if (!ctx.arg.soName.empty()) |
| 1397 | addInt(DT_NEEDED, part.dynStrTab->addString(s: ctx.arg.soName)); |
| 1398 | addInt(DT_SONAME, part.dynStrTab->addString(s: part.name)); |
| 1399 | } |
| 1400 | |
| 1401 | // Set DT_FLAGS and DT_FLAGS_1. |
| 1402 | uint32_t dtFlags = 0; |
| 1403 | uint32_t dtFlags1 = 0; |
| 1404 | if (ctx.arg.bsymbolic == BsymbolicKind::All) |
| 1405 | dtFlags |= DF_SYMBOLIC; |
| 1406 | if (ctx.arg.zGlobal) |
| 1407 | dtFlags1 |= DF_1_GLOBAL; |
| 1408 | if (ctx.arg.zInitfirst) |
| 1409 | dtFlags1 |= DF_1_INITFIRST; |
| 1410 | if (ctx.arg.zInterpose) |
| 1411 | dtFlags1 |= DF_1_INTERPOSE; |
| 1412 | if (ctx.arg.zNodefaultlib) |
| 1413 | dtFlags1 |= DF_1_NODEFLIB; |
| 1414 | if (ctx.arg.zNodelete) |
| 1415 | dtFlags1 |= DF_1_NODELETE; |
| 1416 | if (ctx.arg.zNodlopen) |
| 1417 | dtFlags1 |= DF_1_NOOPEN; |
| 1418 | if (ctx.arg.pie) |
| 1419 | dtFlags1 |= DF_1_PIE; |
| 1420 | if (ctx.arg.zNow) { |
| 1421 | dtFlags |= DF_BIND_NOW; |
| 1422 | dtFlags1 |= DF_1_NOW; |
| 1423 | } |
| 1424 | if (ctx.arg.zOrigin) { |
| 1425 | dtFlags |= DF_ORIGIN; |
| 1426 | dtFlags1 |= DF_1_ORIGIN; |
| 1427 | } |
| 1428 | if (!ctx.arg.zText) |
| 1429 | dtFlags |= DF_TEXTREL; |
| 1430 | if (ctx.hasTlsIe && ctx.arg.shared) |
| 1431 | dtFlags |= DF_STATIC_TLS; |
| 1432 | |
| 1433 | if (dtFlags) |
| 1434 | addInt(DT_FLAGS, dtFlags); |
| 1435 | if (dtFlags1) |
| 1436 | addInt(DT_FLAGS_1, dtFlags1); |
| 1437 | |
| 1438 | // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We |
| 1439 | // need it for each process, so we don't write it for DSOs. The loader writes |
| 1440 | // the pointer into this entry. |
| 1441 | // |
| 1442 | // DT_DEBUG is the only .dynamic entry that needs to be written to. Some |
| 1443 | // systems (currently only Fuchsia OS) provide other means to give the |
| 1444 | // debugger this information. Such systems may choose make .dynamic read-only. |
| 1445 | // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. |
| 1446 | if (!ctx.arg.shared && !ctx.arg.relocatable && !ctx.arg.zRodynamic) |
| 1447 | addInt(DT_DEBUG, 0); |
| 1448 | |
| 1449 | if (part.relaDyn->isNeeded()) { |
| 1450 | addInSec(part.relaDyn->dynamicTag, *part.relaDyn); |
| 1451 | entries.emplace_back(part.relaDyn->sizeDynamicTag, |
| 1452 | addRelaSz(ctx, *part.relaDyn)); |
| 1453 | |
| 1454 | bool isRela = ctx.arg.isRela; |
| 1455 | addInt(isRela ? DT_RELAENT : DT_RELENT, |
| 1456 | isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); |
| 1457 | |
| 1458 | // MIPS dynamic loader does not support RELCOUNT tag. |
| 1459 | // The problem is in the tight relation between dynamic |
| 1460 | // relocations and GOT. So do not emit this tag on MIPS. |
| 1461 | if (ctx.arg.emachine != EM_MIPS) { |
| 1462 | size_t numRelativeRels = part.relaDyn->getRelativeRelocCount(); |
| 1463 | if (ctx.arg.zCombreloc && numRelativeRels) |
| 1464 | addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels); |
| 1465 | } |
| 1466 | } |
| 1467 | if (part.relrDyn && part.relrDyn->getParent() && |
| 1468 | !part.relrDyn->relocs.empty()) { |
| 1469 | addInSec(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, |
| 1470 | *part.relrDyn); |
| 1471 | addInt(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, |
| 1472 | part.relrDyn->getParent()->size); |
| 1473 | addInt(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, |
| 1474 | sizeof(Elf_Relr)); |
| 1475 | } |
| 1476 | if (part.relrAuthDyn && part.relrAuthDyn->getParent() && |
| 1477 | !part.relrAuthDyn->relocs.empty()) { |
| 1478 | addInSec(DT_AARCH64_AUTH_RELR, *part.relrAuthDyn); |
| 1479 | addInt(DT_AARCH64_AUTH_RELRSZ, part.relrAuthDyn->getParent()->size); |
| 1480 | addInt(DT_AARCH64_AUTH_RELRENT, sizeof(Elf_Relr)); |
| 1481 | } |
| 1482 | if (isMain && ctx.in.relaPlt->isNeeded()) { |
| 1483 | addInSec(DT_JMPREL, *ctx.in.relaPlt); |
| 1484 | entries.emplace_back(DT_PLTRELSZ, addPltRelSz(ctx)); |
| 1485 | switch (ctx.arg.emachine) { |
| 1486 | case EM_MIPS: |
| 1487 | addInSec(DT_MIPS_PLTGOT, *ctx.in.gotPlt); |
| 1488 | break; |
| 1489 | case EM_S390: |
| 1490 | addInSec(DT_PLTGOT, *ctx.in.got); |
| 1491 | break; |
| 1492 | case EM_SPARCV9: |
| 1493 | addInSec(DT_PLTGOT, *ctx.in.plt); |
| 1494 | break; |
| 1495 | case EM_AARCH64: |
| 1496 | if (llvm::find_if(ctx.in.relaPlt->relocs, [&ctx = ctx]( |
| 1497 | const DynamicReloc &r) { |
| 1498 | return r.type == ctx.target->pltRel && |
| 1499 | r.sym->stOther & STO_AARCH64_VARIANT_PCS; |
| 1500 | }) != ctx.in.relaPlt->relocs.end()) |
| 1501 | addInt(DT_AARCH64_VARIANT_PCS, 0); |
| 1502 | addInSec(DT_PLTGOT, *ctx.in.gotPlt); |
| 1503 | break; |
| 1504 | case EM_RISCV: |
| 1505 | if (llvm::any_of(ctx.in.relaPlt->relocs, [&ctx = ctx]( |
| 1506 | const DynamicReloc &r) { |
| 1507 | return r.type == ctx.target->pltRel && |
| 1508 | (r.sym->stOther & STO_RISCV_VARIANT_CC); |
| 1509 | })) |
| 1510 | addInt(DT_RISCV_VARIANT_CC, 0); |
| 1511 | [[fallthrough]]; |
| 1512 | default: |
| 1513 | addInSec(DT_PLTGOT, *ctx.in.gotPlt); |
| 1514 | break; |
| 1515 | } |
| 1516 | addInt(DT_PLTREL, ctx.arg.isRela ? DT_RELA : DT_REL); |
| 1517 | } |
| 1518 | |
| 1519 | if (ctx.arg.emachine == EM_AARCH64) { |
| 1520 | if (ctx.arg.andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) |
| 1521 | addInt(DT_AARCH64_BTI_PLT, 0); |
| 1522 | if (ctx.arg.zPacPlt) |
| 1523 | addInt(DT_AARCH64_PAC_PLT, 0); |
| 1524 | |
| 1525 | if (hasMemtag(ctx)) { |
| 1526 | addInt(DT_AARCH64_MEMTAG_MODE, ctx.arg.androidMemtagMode == NT_MEMTAG_LEVEL_ASYNC); |
| 1527 | addInt(DT_AARCH64_MEMTAG_HEAP, ctx.arg.androidMemtagHeap); |
| 1528 | addInt(DT_AARCH64_MEMTAG_STACK, ctx.arg.androidMemtagStack); |
| 1529 | if (ctx.mainPart->memtagGlobalDescriptors->isNeeded()) { |
| 1530 | addInSec(DT_AARCH64_MEMTAG_GLOBALS, |
| 1531 | *ctx.mainPart->memtagGlobalDescriptors); |
| 1532 | addInt(DT_AARCH64_MEMTAG_GLOBALSSZ, |
| 1533 | ctx.mainPart->memtagGlobalDescriptors->getSize()); |
| 1534 | } |
| 1535 | } |
| 1536 | } |
| 1537 | |
| 1538 | addInSec(DT_SYMTAB, *part.dynSymTab); |
| 1539 | addInt(DT_SYMENT, sizeof(Elf_Sym)); |
| 1540 | addInSec(DT_STRTAB, *part.dynStrTab); |
| 1541 | addInt(DT_STRSZ, part.dynStrTab->getSize()); |
| 1542 | if (!ctx.arg.zText) |
| 1543 | addInt(DT_TEXTREL, 0); |
| 1544 | if (part.gnuHashTab && part.gnuHashTab->getParent()) |
| 1545 | addInSec(DT_GNU_HASH, *part.gnuHashTab); |
| 1546 | if (part.hashTab && part.hashTab->getParent()) |
| 1547 | addInSec(DT_HASH, *part.hashTab); |
| 1548 | |
| 1549 | if (isMain) { |
| 1550 | if (ctx.out.preinitArray) { |
| 1551 | addInt(DT_PREINIT_ARRAY, ctx.out.preinitArray->addr); |
| 1552 | addInt(DT_PREINIT_ARRAYSZ, ctx.out.preinitArray->size); |
| 1553 | } |
| 1554 | if (ctx.out.initArray) { |
| 1555 | addInt(DT_INIT_ARRAY, ctx.out.initArray->addr); |
| 1556 | addInt(DT_INIT_ARRAYSZ, ctx.out.initArray->size); |
| 1557 | } |
| 1558 | if (ctx.out.finiArray) { |
| 1559 | addInt(DT_FINI_ARRAY, ctx.out.finiArray->addr); |
| 1560 | addInt(DT_FINI_ARRAYSZ, ctx.out.finiArray->size); |
| 1561 | } |
| 1562 | |
| 1563 | if (Symbol *b = ctx.symtab->find(name: ctx.arg.init)) |
| 1564 | if (b->isDefined()) |
| 1565 | addInt(DT_INIT, b->getVA(ctx)); |
| 1566 | if (Symbol *b = ctx.symtab->find(name: ctx.arg.fini)) |
| 1567 | if (b->isDefined()) |
| 1568 | addInt(DT_FINI, b->getVA(ctx)); |
| 1569 | } |
| 1570 | |
| 1571 | if (part.verSym && part.verSym->isNeeded()) |
| 1572 | addInSec(DT_VERSYM, *part.verSym); |
| 1573 | if (part.verDef && part.verDef->isLive()) { |
| 1574 | addInSec(DT_VERDEF, *part.verDef); |
| 1575 | addInt(DT_VERDEFNUM, getVerDefNum(ctx)); |
| 1576 | } |
| 1577 | if (part.verNeed && part.verNeed->isNeeded()) { |
| 1578 | addInSec(DT_VERNEED, *part.verNeed); |
| 1579 | unsigned needNum = 0; |
| 1580 | for (SharedFile *f : ctx.sharedFiles) |
| 1581 | if (!f->vernauxs.empty()) |
| 1582 | ++needNum; |
| 1583 | addInt(DT_VERNEEDNUM, needNum); |
| 1584 | } |
| 1585 | |
| 1586 | if (ctx.arg.emachine == EM_MIPS) { |
| 1587 | addInt(DT_MIPS_RLD_VERSION, 1); |
| 1588 | addInt(DT_MIPS_FLAGS, RHF_NOTPOT); |
| 1589 | addInt(DT_MIPS_BASE_ADDRESS, ctx.target->getImageBase()); |
| 1590 | addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols()); |
| 1591 | addInt(DT_MIPS_LOCAL_GOTNO, ctx.in.mipsGot->getLocalEntriesNum()); |
| 1592 | |
| 1593 | if (const Symbol *b = ctx.in.mipsGot->getFirstGlobalEntry()) |
| 1594 | addInt(DT_MIPS_GOTSYM, b->dynsymIndex); |
| 1595 | else |
| 1596 | addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols()); |
| 1597 | addInSec(DT_PLTGOT, *ctx.in.mipsGot); |
| 1598 | if (ctx.in.mipsRldMap) { |
| 1599 | if (!ctx.arg.pie) |
| 1600 | addInSec(DT_MIPS_RLD_MAP, *ctx.in.mipsRldMap); |
| 1601 | // Store the offset to the .rld_map section |
| 1602 | // relative to the address of the tag. |
| 1603 | addInt(DT_MIPS_RLD_MAP_REL, |
| 1604 | ctx.in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize)); |
| 1605 | } |
| 1606 | } |
| 1607 | |
| 1608 | // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent, |
| 1609 | // glibc assumes the old-style BSS PLT layout which we don't support. |
| 1610 | if (ctx.arg.emachine == EM_PPC) |
| 1611 | addInSec(DT_PPC_GOT, *ctx.in.got); |
| 1612 | |
| 1613 | // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. |
| 1614 | if (ctx.arg.emachine == EM_PPC64 && ctx.in.plt->isNeeded()) { |
| 1615 | // The Glink tag points to 32 bytes before the first lazy symbol resolution |
| 1616 | // stub, which starts directly after the header. |
| 1617 | addInt(DT_PPC64_GLINK, |
| 1618 | ctx.in.plt->getVA() + ctx.target->pltHeaderSize - 32); |
| 1619 | } |
| 1620 | |
| 1621 | if (ctx.arg.emachine == EM_PPC64) |
| 1622 | addInt(DT_PPC64_OPT, ctx.target->ppc64DynamicSectionOpt); |
| 1623 | |
| 1624 | addInt(DT_NULL, 0); |
| 1625 | return entries; |
| 1626 | } |
| 1627 | |
| 1628 | template <class ELFT> void DynamicSection<ELFT>::finalizeContents() { |
| 1629 | if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent()) |
| 1630 | getParent()->link = sec->sectionIndex; |
| 1631 | this->size = computeContents().size() * this->entsize; |
| 1632 | } |
| 1633 | |
| 1634 | template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) { |
| 1635 | auto *p = reinterpret_cast<Elf_Dyn *>(buf); |
| 1636 | |
| 1637 | for (std::pair<int32_t, uint64_t> kv : computeContents()) { |
| 1638 | p->d_tag = kv.first; |
| 1639 | p->d_un.d_val = kv.second; |
| 1640 | ++p; |
| 1641 | } |
| 1642 | } |
| 1643 | |
| 1644 | uint64_t DynamicReloc::getOffset() const { |
| 1645 | return inputSec->getVA(offset: offsetInSec); |
| 1646 | } |
| 1647 | |
| 1648 | int64_t DynamicReloc::computeAddend(Ctx &ctx) const { |
| 1649 | switch (kind) { |
| 1650 | case AddendOnly: |
| 1651 | assert(sym == nullptr); |
| 1652 | return addend; |
| 1653 | case AgainstSymbol: |
| 1654 | assert(sym != nullptr); |
| 1655 | return addend; |
| 1656 | case AddendOnlyWithTargetVA: |
| 1657 | case AgainstSymbolWithTargetVA: { |
| 1658 | uint64_t ca = inputSec->getRelocTargetVA( |
| 1659 | ctx, r: Relocation{.expr: expr, .type: type, .offset: 0, .addend: addend, .sym: sym}, p: getOffset()); |
| 1660 | return ctx.arg.is64 ? ca : SignExtend64<32>(x: ca); |
| 1661 | } |
| 1662 | case MipsMultiGotPage: |
| 1663 | assert(sym == nullptr); |
| 1664 | return getMipsPageAddr(addr: outputSec->addr) + addend; |
| 1665 | } |
| 1666 | llvm_unreachable("Unknown DynamicReloc::Kind enum" ); |
| 1667 | } |
| 1668 | |
| 1669 | uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const { |
| 1670 | if (!needsDynSymIndex()) |
| 1671 | return 0; |
| 1672 | |
| 1673 | size_t index = symTab->getSymbolIndex(sym: *sym); |
| 1674 | assert((index != 0 || |
| 1675 | (type != symTab->ctx.target->gotRel && |
| 1676 | type != symTab->ctx.target->pltRel) || |
| 1677 | !symTab->ctx.mainPart->dynSymTab->getParent()) && |
| 1678 | "GOT or PLT relocation must refer to symbol in dynamic symbol table" ); |
| 1679 | return index; |
| 1680 | } |
| 1681 | |
| 1682 | RelocationBaseSection::RelocationBaseSection(Ctx &ctx, StringRef name, |
| 1683 | uint32_t type, int32_t dynamicTag, |
| 1684 | int32_t sizeDynamicTag, |
| 1685 | bool combreloc, |
| 1686 | unsigned concurrency) |
| 1687 | : SyntheticSection(ctx, name, type, SHF_ALLOC, ctx.arg.wordsize), |
| 1688 | dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag), |
| 1689 | relocsVec(concurrency), combreloc(combreloc) {} |
| 1690 | |
| 1691 | void RelocationBaseSection::addSymbolReloc( |
| 1692 | RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, |
| 1693 | int64_t addend, std::optional<RelType> addendRelType) { |
| 1694 | addReloc(kind: DynamicReloc::AgainstSymbol, dynType, sec&: isec, offsetInSec, sym, addend, |
| 1695 | expr: R_ADDEND, addendRelType: addendRelType ? *addendRelType : ctx.target->noneRel); |
| 1696 | } |
| 1697 | |
| 1698 | void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible( |
| 1699 | RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym, |
| 1700 | RelType addendRelType) { |
| 1701 | // No need to write an addend to the section for preemptible symbols. |
| 1702 | if (sym.isPreemptible) |
| 1703 | addReloc(reloc: {dynType, &isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0, |
| 1704 | R_ABS}); |
| 1705 | else |
| 1706 | addReloc(kind: DynamicReloc::AddendOnlyWithTargetVA, dynType, sec&: isec, offsetInSec, |
| 1707 | sym, addend: 0, expr: R_ABS, addendRelType); |
| 1708 | } |
| 1709 | |
| 1710 | void RelocationBaseSection::mergeRels() { |
| 1711 | size_t newSize = relocs.size(); |
| 1712 | for (const auto &v : relocsVec) |
| 1713 | newSize += v.size(); |
| 1714 | relocs.reserve(N: newSize); |
| 1715 | for (const auto &v : relocsVec) |
| 1716 | llvm::append_range(C&: relocs, R: v); |
| 1717 | relocsVec.clear(); |
| 1718 | } |
| 1719 | |
| 1720 | void RelocationBaseSection::partitionRels() { |
| 1721 | if (!combreloc) |
| 1722 | return; |
| 1723 | const RelType relativeRel = ctx.target->relativeRel; |
| 1724 | numRelativeRelocs = |
| 1725 | std::stable_partition(first: relocs.begin(), last: relocs.end(), |
| 1726 | pred: [=](auto &r) { return r.type == relativeRel; }) - |
| 1727 | relocs.begin(); |
| 1728 | } |
| 1729 | |
| 1730 | void RelocationBaseSection::finalizeContents() { |
| 1731 | SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get(); |
| 1732 | |
| 1733 | // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE |
| 1734 | // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that |
| 1735 | // case. |
| 1736 | if (symTab && symTab->getParent()) |
| 1737 | getParent()->link = symTab->getParent()->sectionIndex; |
| 1738 | else |
| 1739 | getParent()->link = 0; |
| 1740 | |
| 1741 | if (ctx.in.relaPlt.get() == this && ctx.in.gotPlt->getParent()) { |
| 1742 | getParent()->flags |= ELF::SHF_INFO_LINK; |
| 1743 | getParent()->info = ctx.in.gotPlt->getParent()->sectionIndex; |
| 1744 | } |
| 1745 | } |
| 1746 | |
| 1747 | void DynamicReloc::computeRaw(Ctx &ctx, SymbolTableBaseSection *symt) { |
| 1748 | r_offset = getOffset(); |
| 1749 | r_sym = getSymIndex(symTab: symt); |
| 1750 | addend = computeAddend(ctx); |
| 1751 | kind = AddendOnly; // Catch errors |
| 1752 | } |
| 1753 | |
| 1754 | void RelocationBaseSection::computeRels() { |
| 1755 | SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get(); |
| 1756 | parallelForEach(R&: relocs, Fn: [&ctx = ctx, symTab](DynamicReloc &rel) { |
| 1757 | rel.computeRaw(ctx, symt: symTab); |
| 1758 | }); |
| 1759 | |
| 1760 | auto irelative = std::stable_partition( |
| 1761 | first: relocs.begin() + numRelativeRelocs, last: relocs.end(), |
| 1762 | pred: [t = ctx.target->iRelativeRel](auto &r) { return r.type != t; }); |
| 1763 | |
| 1764 | // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to |
| 1765 | // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset |
| 1766 | // is to make results easier to read. |
| 1767 | if (combreloc) { |
| 1768 | auto nonRelative = relocs.begin() + numRelativeRelocs; |
| 1769 | parallelSort(Start: relocs.begin(), End: nonRelative, |
| 1770 | Comp: [&](auto &a, auto &b) { return a.r_offset < b.r_offset; }); |
| 1771 | // Non-relative relocations are few, so don't bother with parallelSort. |
| 1772 | llvm::sort(Start: nonRelative, End: irelative, Comp: [&](auto &a, auto &b) { |
| 1773 | return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset); |
| 1774 | }); |
| 1775 | } |
| 1776 | } |
| 1777 | |
| 1778 | template <class ELFT> |
| 1779 | RelocationSection<ELFT>::RelocationSection(Ctx &ctx, StringRef name, |
| 1780 | bool combreloc, unsigned concurrency) |
| 1781 | : RelocationBaseSection(ctx, name, ctx.arg.isRela ? SHT_RELA : SHT_REL, |
| 1782 | ctx.arg.isRela ? DT_RELA : DT_REL, |
| 1783 | ctx.arg.isRela ? DT_RELASZ : DT_RELSZ, combreloc, |
| 1784 | concurrency) { |
| 1785 | this->entsize = ctx.arg.isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| 1786 | } |
| 1787 | |
| 1788 | template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) { |
| 1789 | computeRels(); |
| 1790 | for (const DynamicReloc &rel : relocs) { |
| 1791 | auto *p = reinterpret_cast<Elf_Rela *>(buf); |
| 1792 | p->r_offset = rel.r_offset; |
| 1793 | p->setSymbolAndType(rel.r_sym, rel.type, ctx.arg.isMips64EL); |
| 1794 | if (ctx.arg.isRela) |
| 1795 | p->r_addend = rel.addend; |
| 1796 | buf += ctx.arg.isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| 1797 | } |
| 1798 | } |
| 1799 | |
| 1800 | RelrBaseSection::RelrBaseSection(Ctx &ctx, unsigned concurrency, |
| 1801 | bool isAArch64Auth) |
| 1802 | : SyntheticSection( |
| 1803 | ctx, isAArch64Auth ? ".relr.auth.dyn" : ".relr.dyn" , |
| 1804 | isAArch64Auth |
| 1805 | ? SHT_AARCH64_AUTH_RELR |
| 1806 | : (ctx.arg.useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR), |
| 1807 | SHF_ALLOC, ctx.arg.wordsize), |
| 1808 | relocsVec(concurrency) {} |
| 1809 | |
| 1810 | void RelrBaseSection::mergeRels() { |
| 1811 | size_t newSize = relocs.size(); |
| 1812 | for (const auto &v : relocsVec) |
| 1813 | newSize += v.size(); |
| 1814 | relocs.reserve(N: newSize); |
| 1815 | for (const auto &v : relocsVec) |
| 1816 | llvm::append_range(C&: relocs, R: v); |
| 1817 | relocsVec.clear(); |
| 1818 | } |
| 1819 | |
| 1820 | template <class ELFT> |
| 1821 | AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection( |
| 1822 | Ctx &ctx, StringRef name, unsigned concurrency) |
| 1823 | : RelocationBaseSection( |
| 1824 | ctx, name, ctx.arg.isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, |
| 1825 | ctx.arg.isRela ? DT_ANDROID_RELA : DT_ANDROID_REL, |
| 1826 | ctx.arg.isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ, |
| 1827 | /*combreloc=*/false, concurrency) { |
| 1828 | this->entsize = 1; |
| 1829 | } |
| 1830 | |
| 1831 | template <class ELFT> |
| 1832 | bool AndroidPackedRelocationSection<ELFT>::updateAllocSize(Ctx &ctx) { |
| 1833 | // This function computes the contents of an Android-format packed relocation |
| 1834 | // section. |
| 1835 | // |
| 1836 | // This format compresses relocations by using relocation groups to factor out |
| 1837 | // fields that are common between relocations and storing deltas from previous |
| 1838 | // relocations in SLEB128 format (which has a short representation for small |
| 1839 | // numbers). A good example of a relocation type with common fields is |
| 1840 | // R_*_RELATIVE, which is normally used to represent function pointers in |
| 1841 | // vtables. In the REL format, each relative relocation has the same r_info |
| 1842 | // field, and is only different from other relative relocations in terms of |
| 1843 | // the r_offset field. By sorting relocations by offset, grouping them by |
| 1844 | // r_info and representing each relocation with only the delta from the |
| 1845 | // previous offset, each 8-byte relocation can be compressed to as little as 1 |
| 1846 | // byte (or less with run-length encoding). This relocation packer was able to |
| 1847 | // reduce the size of the relocation section in an Android Chromium DSO from |
| 1848 | // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. |
| 1849 | // |
| 1850 | // A relocation section consists of a header containing the literal bytes |
| 1851 | // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two |
| 1852 | // elements are the total number of relocations in the section and an initial |
| 1853 | // r_offset value. The remaining elements define a sequence of relocation |
| 1854 | // groups. Each relocation group starts with a header consisting of the |
| 1855 | // following elements: |
| 1856 | // |
| 1857 | // - the number of relocations in the relocation group |
| 1858 | // - flags for the relocation group |
| 1859 | // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta |
| 1860 | // for each relocation in the group. |
| 1861 | // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info |
| 1862 | // field for each relocation in the group. |
| 1863 | // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and |
| 1864 | // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for |
| 1865 | // each relocation in the group. |
| 1866 | // |
| 1867 | // Following the relocation group header are descriptions of each of the |
| 1868 | // relocations in the group. They consist of the following elements: |
| 1869 | // |
| 1870 | // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset |
| 1871 | // delta for this relocation. |
| 1872 | // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info |
| 1873 | // field for this relocation. |
| 1874 | // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and |
| 1875 | // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for |
| 1876 | // this relocation. |
| 1877 | |
| 1878 | size_t oldSize = relocData.size(); |
| 1879 | |
| 1880 | relocData = {'A', 'P', 'S', '2'}; |
| 1881 | raw_svector_ostream os(relocData); |
| 1882 | auto add = [&](int64_t v) { encodeSLEB128(Value: v, OS&: os); }; |
| 1883 | |
| 1884 | // The format header includes the number of relocations and the initial |
| 1885 | // offset (we set this to zero because the first relocation group will |
| 1886 | // perform the initial adjustment). |
| 1887 | add(relocs.size()); |
| 1888 | add(0); |
| 1889 | |
| 1890 | std::vector<Elf_Rela> relatives, nonRelatives; |
| 1891 | |
| 1892 | for (const DynamicReloc &rel : relocs) { |
| 1893 | Elf_Rela r; |
| 1894 | r.r_offset = rel.getOffset(); |
| 1895 | r.setSymbolAndType(rel.getSymIndex(symTab: getPartition(ctx).dynSymTab.get()), |
| 1896 | rel.type, false); |
| 1897 | r.r_addend = ctx.arg.isRela ? rel.computeAddend(ctx) : 0; |
| 1898 | |
| 1899 | if (r.getType(ctx.arg.isMips64EL) == ctx.target->relativeRel) |
| 1900 | relatives.push_back(r); |
| 1901 | else |
| 1902 | nonRelatives.push_back(r); |
| 1903 | } |
| 1904 | |
| 1905 | llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) { |
| 1906 | return a.r_offset < b.r_offset; |
| 1907 | }); |
| 1908 | |
| 1909 | // Try to find groups of relative relocations which are spaced one word |
| 1910 | // apart from one another. These generally correspond to vtable entries. The |
| 1911 | // format allows these groups to be encoded using a sort of run-length |
| 1912 | // encoding, but each group will cost 7 bytes in addition to the offset from |
| 1913 | // the previous group, so it is only profitable to do this for groups of |
| 1914 | // size 8 or larger. |
| 1915 | std::vector<Elf_Rela> ungroupedRelatives; |
| 1916 | std::vector<std::vector<Elf_Rela>> relativeGroups; |
| 1917 | for (auto i = relatives.begin(), e = relatives.end(); i != e;) { |
| 1918 | std::vector<Elf_Rela> group; |
| 1919 | do { |
| 1920 | group.push_back(*i++); |
| 1921 | } while (i != e && (i - 1)->r_offset + ctx.arg.wordsize == i->r_offset); |
| 1922 | |
| 1923 | if (group.size() < 8) |
| 1924 | ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(), |
| 1925 | group.end()); |
| 1926 | else |
| 1927 | relativeGroups.emplace_back(std::move(group)); |
| 1928 | } |
| 1929 | |
| 1930 | // For non-relative relocations, we would like to: |
| 1931 | // 1. Have relocations with the same symbol offset to be consecutive, so |
| 1932 | // that the runtime linker can speed-up symbol lookup by implementing an |
| 1933 | // 1-entry cache. |
| 1934 | // 2. Group relocations by r_info to reduce the size of the relocation |
| 1935 | // section. |
| 1936 | // Since the symbol offset is the high bits in r_info, sorting by r_info |
| 1937 | // allows us to do both. |
| 1938 | // |
| 1939 | // For Rela, we also want to sort by r_addend when r_info is the same. This |
| 1940 | // enables us to group by r_addend as well. |
| 1941 | llvm::sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { |
| 1942 | return std::tie(a.r_info, a.r_addend, a.r_offset) < |
| 1943 | std::tie(b.r_info, b.r_addend, b.r_offset); |
| 1944 | }); |
| 1945 | |
| 1946 | // Group relocations with the same r_info. Note that each group emits a group |
| 1947 | // header and that may make the relocation section larger. It is hard to |
| 1948 | // estimate the size of a group header as the encoded size of that varies |
| 1949 | // based on r_info. However, we can approximate this trade-off by the number |
| 1950 | // of values encoded. Each group header contains 3 values, and each relocation |
| 1951 | // in a group encodes one less value, as compared to when it is not grouped. |
| 1952 | // Therefore, we only group relocations if there are 3 or more of them with |
| 1953 | // the same r_info. |
| 1954 | // |
| 1955 | // For Rela, the addend for most non-relative relocations is zero, and thus we |
| 1956 | // can usually get a smaller relocation section if we group relocations with 0 |
| 1957 | // addend as well. |
| 1958 | std::vector<Elf_Rela> ungroupedNonRelatives; |
| 1959 | std::vector<std::vector<Elf_Rela>> nonRelativeGroups; |
| 1960 | for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) { |
| 1961 | auto j = i + 1; |
| 1962 | while (j != e && i->r_info == j->r_info && |
| 1963 | (!ctx.arg.isRela || i->r_addend == j->r_addend)) |
| 1964 | ++j; |
| 1965 | if (j - i < 3 || (ctx.arg.isRela && i->r_addend != 0)) |
| 1966 | ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j); |
| 1967 | else |
| 1968 | nonRelativeGroups.emplace_back(i, j); |
| 1969 | i = j; |
| 1970 | } |
| 1971 | |
| 1972 | // Sort ungrouped relocations by offset to minimize the encoded length. |
| 1973 | llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) { |
| 1974 | return a.r_offset < b.r_offset; |
| 1975 | }); |
| 1976 | |
| 1977 | unsigned hasAddendIfRela = |
| 1978 | ctx.arg.isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; |
| 1979 | |
| 1980 | uint64_t offset = 0; |
| 1981 | uint64_t addend = 0; |
| 1982 | |
| 1983 | // Emit the run-length encoding for the groups of adjacent relative |
| 1984 | // relocations. Each group is represented using two groups in the packed |
| 1985 | // format. The first is used to set the current offset to the start of the |
| 1986 | // group (and also encodes the first relocation), and the second encodes the |
| 1987 | // remaining relocations. |
| 1988 | for (std::vector<Elf_Rela> &g : relativeGroups) { |
| 1989 | // The first relocation in the group. |
| 1990 | add(1); |
| 1991 | add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | |
| 1992 | RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); |
| 1993 | add(g[0].r_offset - offset); |
| 1994 | add(ctx.target->relativeRel); |
| 1995 | if (ctx.arg.isRela) { |
| 1996 | add(g[0].r_addend - addend); |
| 1997 | addend = g[0].r_addend; |
| 1998 | } |
| 1999 | |
| 2000 | // The remaining relocations. |
| 2001 | add(g.size() - 1); |
| 2002 | add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | |
| 2003 | RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); |
| 2004 | add(ctx.arg.wordsize); |
| 2005 | add(ctx.target->relativeRel); |
| 2006 | if (ctx.arg.isRela) { |
| 2007 | for (const auto &i : llvm::drop_begin(g)) { |
| 2008 | add(i.r_addend - addend); |
| 2009 | addend = i.r_addend; |
| 2010 | } |
| 2011 | } |
| 2012 | |
| 2013 | offset = g.back().r_offset; |
| 2014 | } |
| 2015 | |
| 2016 | // Now the ungrouped relatives. |
| 2017 | if (!ungroupedRelatives.empty()) { |
| 2018 | add(ungroupedRelatives.size()); |
| 2019 | add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela); |
| 2020 | add(ctx.target->relativeRel); |
| 2021 | for (Elf_Rela &r : ungroupedRelatives) { |
| 2022 | add(r.r_offset - offset); |
| 2023 | offset = r.r_offset; |
| 2024 | if (ctx.arg.isRela) { |
| 2025 | add(r.r_addend - addend); |
| 2026 | addend = r.r_addend; |
| 2027 | } |
| 2028 | } |
| 2029 | } |
| 2030 | |
| 2031 | // Grouped non-relatives. |
| 2032 | for (ArrayRef<Elf_Rela> g : nonRelativeGroups) { |
| 2033 | add(g.size()); |
| 2034 | add(RELOCATION_GROUPED_BY_INFO_FLAG); |
| 2035 | add(g[0].r_info); |
| 2036 | for (const Elf_Rela &r : g) { |
| 2037 | add(r.r_offset - offset); |
| 2038 | offset = r.r_offset; |
| 2039 | } |
| 2040 | addend = 0; |
| 2041 | } |
| 2042 | |
| 2043 | // Finally the ungrouped non-relative relocations. |
| 2044 | if (!ungroupedNonRelatives.empty()) { |
| 2045 | add(ungroupedNonRelatives.size()); |
| 2046 | add(hasAddendIfRela); |
| 2047 | for (Elf_Rela &r : ungroupedNonRelatives) { |
| 2048 | add(r.r_offset - offset); |
| 2049 | offset = r.r_offset; |
| 2050 | add(r.r_info); |
| 2051 | if (ctx.arg.isRela) { |
| 2052 | add(r.r_addend - addend); |
| 2053 | addend = r.r_addend; |
| 2054 | } |
| 2055 | } |
| 2056 | } |
| 2057 | |
| 2058 | // Don't allow the section to shrink; otherwise the size of the section can |
| 2059 | // oscillate infinitely. |
| 2060 | if (relocData.size() < oldSize) |
| 2061 | relocData.append(NumInputs: oldSize - relocData.size(), Elt: 0); |
| 2062 | |
| 2063 | // Returns whether the section size changed. We need to keep recomputing both |
| 2064 | // section layout and the contents of this section until the size converges |
| 2065 | // because changing this section's size can affect section layout, which in |
| 2066 | // turn can affect the sizes of the LEB-encoded integers stored in this |
| 2067 | // section. |
| 2068 | return relocData.size() != oldSize; |
| 2069 | } |
| 2070 | |
| 2071 | template <class ELFT> |
| 2072 | RelrSection<ELFT>::RelrSection(Ctx &ctx, unsigned concurrency, |
| 2073 | bool isAArch64Auth) |
| 2074 | : RelrBaseSection(ctx, concurrency, isAArch64Auth) { |
| 2075 | this->entsize = ctx.arg.wordsize; |
| 2076 | } |
| 2077 | |
| 2078 | template <class ELFT> bool RelrSection<ELFT>::updateAllocSize(Ctx &ctx) { |
| 2079 | // This function computes the contents of an SHT_RELR packed relocation |
| 2080 | // section. |
| 2081 | // |
| 2082 | // Proposal for adding SHT_RELR sections to generic-abi is here: |
| 2083 | // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg |
| 2084 | // |
| 2085 | // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks |
| 2086 | // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] |
| 2087 | // |
| 2088 | // i.e. start with an address, followed by any number of bitmaps. The address |
| 2089 | // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 |
| 2090 | // relocations each, at subsequent offsets following the last address entry. |
| 2091 | // |
| 2092 | // The bitmap entries must have 1 in the least significant bit. The assumption |
| 2093 | // here is that an address cannot have 1 in lsb. Odd addresses are not |
| 2094 | // supported. |
| 2095 | // |
| 2096 | // Excluding the least significant bit in the bitmap, each non-zero bit in |
| 2097 | // the bitmap represents a relocation to be applied to a corresponding machine |
| 2098 | // word that follows the base address word. The second least significant bit |
| 2099 | // represents the machine word immediately following the initial address, and |
| 2100 | // each bit that follows represents the next word, in linear order. As such, |
| 2101 | // a single bitmap can encode up to 31 relocations in a 32-bit object, and |
| 2102 | // 63 relocations in a 64-bit object. |
| 2103 | // |
| 2104 | // This encoding has a couple of interesting properties: |
| 2105 | // 1. Looking at any entry, it is clear whether it's an address or a bitmap: |
| 2106 | // even means address, odd means bitmap. |
| 2107 | // 2. Just a simple list of addresses is a valid encoding. |
| 2108 | |
| 2109 | size_t oldSize = relrRelocs.size(); |
| 2110 | relrRelocs.clear(); |
| 2111 | |
| 2112 | const size_t wordsize = sizeof(typename ELFT::uint); |
| 2113 | |
| 2114 | // Number of bits to use for the relocation offsets bitmap. |
| 2115 | // Must be either 63 or 31. |
| 2116 | const size_t nBits = wordsize * 8 - 1; |
| 2117 | |
| 2118 | // Get offsets for all relative relocations and sort them. |
| 2119 | std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]); |
| 2120 | for (auto [i, r] : llvm::enumerate(relocs)) |
| 2121 | offsets[i] = r.getOffset(); |
| 2122 | llvm::sort(offsets.get(), offsets.get() + relocs.size()); |
| 2123 | |
| 2124 | // For each leading relocation, find following ones that can be folded |
| 2125 | // as a bitmap and fold them. |
| 2126 | for (size_t i = 0, e = relocs.size(); i != e;) { |
| 2127 | // Add a leading relocation. |
| 2128 | relrRelocs.push_back(Elf_Relr(offsets[i])); |
| 2129 | uint64_t base = offsets[i] + wordsize; |
| 2130 | ++i; |
| 2131 | |
| 2132 | // Find foldable relocations to construct bitmaps. |
| 2133 | for (;;) { |
| 2134 | uint64_t bitmap = 0; |
| 2135 | for (; i != e; ++i) { |
| 2136 | uint64_t d = offsets[i] - base; |
| 2137 | if (d >= nBits * wordsize || d % wordsize) |
| 2138 | break; |
| 2139 | bitmap |= uint64_t(1) << (d / wordsize); |
| 2140 | } |
| 2141 | if (!bitmap) |
| 2142 | break; |
| 2143 | relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1)); |
| 2144 | base += nBits * wordsize; |
| 2145 | } |
| 2146 | } |
| 2147 | |
| 2148 | // Don't allow the section to shrink; otherwise the size of the section can |
| 2149 | // oscillate infinitely. Trailing 1s do not decode to more relocations. |
| 2150 | if (relrRelocs.size() < oldSize) { |
| 2151 | Log(ctx) << ".relr.dyn needs " << (oldSize - relrRelocs.size()) |
| 2152 | << " padding word(s)" ; |
| 2153 | relrRelocs.resize(oldSize, Elf_Relr(1)); |
| 2154 | } |
| 2155 | |
| 2156 | return relrRelocs.size() != oldSize; |
| 2157 | } |
| 2158 | |
| 2159 | SymbolTableBaseSection::SymbolTableBaseSection(Ctx &ctx, |
| 2160 | StringTableSection &strTabSec) |
| 2161 | : SyntheticSection(ctx, strTabSec.isDynamic() ? ".dynsym" : ".symtab" , |
| 2162 | strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, |
| 2163 | strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, |
| 2164 | ctx.arg.wordsize), |
| 2165 | strTabSec(strTabSec) {} |
| 2166 | |
| 2167 | // Orders symbols according to their positions in the GOT, |
| 2168 | // in compliance with MIPS ABI rules. |
| 2169 | // See "Global Offset Table" in Chapter 5 in the following document |
| 2170 | // for detailed description: |
| 2171 | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| 2172 | static void sortMipsSymbols(Ctx &ctx, SmallVector<SymbolTableEntry, 0> &syms) { |
| 2173 | llvm::stable_sort(Range&: syms, |
| 2174 | C: [&](const SymbolTableEntry &l, const SymbolTableEntry &r) { |
| 2175 | // Sort entries related to non-local preemptible symbols |
| 2176 | // by GOT indexes. All other entries go to the beginning |
| 2177 | // of a dynsym in arbitrary order. |
| 2178 | if (l.sym->isInGot(ctx) && r.sym->isInGot(ctx)) |
| 2179 | return l.sym->getGotIdx(ctx) < r.sym->getGotIdx(ctx); |
| 2180 | if (!l.sym->isInGot(ctx) && !r.sym->isInGot(ctx)) |
| 2181 | return false; |
| 2182 | return !l.sym->isInGot(ctx); |
| 2183 | }); |
| 2184 | } |
| 2185 | |
| 2186 | void SymbolTableBaseSection::finalizeContents() { |
| 2187 | if (OutputSection *sec = strTabSec.getParent()) |
| 2188 | getParent()->link = sec->sectionIndex; |
| 2189 | |
| 2190 | if (this->type != SHT_DYNSYM) { |
| 2191 | sortSymTabSymbols(); |
| 2192 | return; |
| 2193 | } |
| 2194 | |
| 2195 | // If it is a .dynsym, there should be no local symbols, but we need |
| 2196 | // to do a few things for the dynamic linker. |
| 2197 | |
| 2198 | // Section's Info field has the index of the first non-local symbol. |
| 2199 | // Because the first symbol entry is a null entry, 1 is the first. |
| 2200 | getParent()->info = 1; |
| 2201 | |
| 2202 | if (getPartition(ctx).gnuHashTab) { |
| 2203 | // NB: It also sorts Symbols to meet the GNU hash table requirements. |
| 2204 | getPartition(ctx).gnuHashTab->addSymbols(symbols); |
| 2205 | } else if (ctx.arg.emachine == EM_MIPS) { |
| 2206 | sortMipsSymbols(ctx, syms&: symbols); |
| 2207 | } |
| 2208 | |
| 2209 | // Only the main partition's dynsym indexes are stored in the symbols |
| 2210 | // themselves. All other partitions use a lookup table. |
| 2211 | if (this == ctx.mainPart->dynSymTab.get()) { |
| 2212 | size_t i = 0; |
| 2213 | for (const SymbolTableEntry &s : symbols) |
| 2214 | s.sym->dynsymIndex = ++i; |
| 2215 | } |
| 2216 | } |
| 2217 | |
| 2218 | // The ELF spec requires that all local symbols precede global symbols, so we |
| 2219 | // sort symbol entries in this function. (For .dynsym, we don't do that because |
| 2220 | // symbols for dynamic linking are inherently all globals.) |
| 2221 | // |
| 2222 | // Aside from above, we put local symbols in groups starting with the STT_FILE |
| 2223 | // symbol. That is convenient for purpose of identifying where are local symbols |
| 2224 | // coming from. |
| 2225 | void SymbolTableBaseSection::sortSymTabSymbols() { |
| 2226 | // Move all local symbols before global symbols. |
| 2227 | auto e = std::stable_partition( |
| 2228 | first: symbols.begin(), last: symbols.end(), |
| 2229 | pred: [](const SymbolTableEntry &s) { return s.sym->isLocal(); }); |
| 2230 | size_t numLocals = e - symbols.begin(); |
| 2231 | getParent()->info = numLocals + 1; |
| 2232 | |
| 2233 | // We want to group the local symbols by file. For that we rebuild the local |
| 2234 | // part of the symbols vector. We do not need to care about the STT_FILE |
| 2235 | // symbols, they are already naturally placed first in each group. That |
| 2236 | // happens because STT_FILE is always the first symbol in the object and hence |
| 2237 | // precede all other local symbols we add for a file. |
| 2238 | MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr; |
| 2239 | for (const SymbolTableEntry &s : llvm::make_range(x: symbols.begin(), y: e)) |
| 2240 | arr[s.sym->file].push_back(Elt: s); |
| 2241 | |
| 2242 | auto i = symbols.begin(); |
| 2243 | for (auto &p : arr) |
| 2244 | for (SymbolTableEntry &entry : p.second) |
| 2245 | *i++ = entry; |
| 2246 | } |
| 2247 | |
| 2248 | void SymbolTableBaseSection::addSymbol(Symbol *b) { |
| 2249 | // Adding a local symbol to a .dynsym is a bug. |
| 2250 | assert(this->type != SHT_DYNSYM || !b->isLocal()); |
| 2251 | symbols.push_back(Elt: {.sym: b, .strTabOffset: strTabSec.addString(s: b->getName(), hashIt: false)}); |
| 2252 | } |
| 2253 | |
| 2254 | size_t SymbolTableBaseSection::getSymbolIndex(const Symbol &sym) { |
| 2255 | if (this == ctx.mainPart->dynSymTab.get()) |
| 2256 | return sym.dynsymIndex; |
| 2257 | |
| 2258 | // Initializes symbol lookup tables lazily. This is used only for -r, |
| 2259 | // --emit-relocs and dynsyms in partitions other than the main one. |
| 2260 | llvm::call_once(flag&: onceFlag, F: [&] { |
| 2261 | symbolIndexMap.reserve(NumEntries: symbols.size()); |
| 2262 | size_t i = 0; |
| 2263 | for (const SymbolTableEntry &e : symbols) { |
| 2264 | if (e.sym->type == STT_SECTION) |
| 2265 | sectionIndexMap[e.sym->getOutputSection()] = ++i; |
| 2266 | else |
| 2267 | symbolIndexMap[e.sym] = ++i; |
| 2268 | } |
| 2269 | }); |
| 2270 | |
| 2271 | // Section symbols are mapped based on their output sections |
| 2272 | // to maintain their semantics. |
| 2273 | if (sym.type == STT_SECTION) |
| 2274 | return sectionIndexMap.lookup(Val: sym.getOutputSection()); |
| 2275 | return symbolIndexMap.lookup(Val: &sym); |
| 2276 | } |
| 2277 | |
| 2278 | template <class ELFT> |
| 2279 | SymbolTableSection<ELFT>::SymbolTableSection(Ctx &ctx, |
| 2280 | StringTableSection &strTabSec) |
| 2281 | : SymbolTableBaseSection(ctx, strTabSec) { |
| 2282 | this->entsize = sizeof(Elf_Sym); |
| 2283 | } |
| 2284 | |
| 2285 | static BssSection *getCommonSec(bool relocatable, Symbol *sym) { |
| 2286 | if (relocatable) |
| 2287 | if (auto *d = dyn_cast<Defined>(Val: sym)) |
| 2288 | return dyn_cast_or_null<BssSection>(Val: d->section); |
| 2289 | return nullptr; |
| 2290 | } |
| 2291 | |
| 2292 | static uint32_t getSymSectionIndex(Symbol *sym) { |
| 2293 | assert(!(sym->hasFlag(NEEDS_COPY) && sym->isObject())); |
| 2294 | if (!isa<Defined>(Val: sym) || sym->hasFlag(bit: NEEDS_COPY)) |
| 2295 | return SHN_UNDEF; |
| 2296 | if (const OutputSection *os = sym->getOutputSection()) |
| 2297 | return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX |
| 2298 | : os->sectionIndex; |
| 2299 | return SHN_ABS; |
| 2300 | } |
| 2301 | |
| 2302 | // Write the internal symbol table contents to the output symbol table. |
| 2303 | template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) { |
| 2304 | // The first entry is a null entry as per the ELF spec. |
| 2305 | buf += sizeof(Elf_Sym); |
| 2306 | |
| 2307 | auto *eSym = reinterpret_cast<Elf_Sym *>(buf); |
| 2308 | bool relocatable = ctx.arg.relocatable; |
| 2309 | for (SymbolTableEntry &ent : symbols) { |
| 2310 | Symbol *sym = ent.sym; |
| 2311 | bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition; |
| 2312 | |
| 2313 | // Set st_name, st_info and st_other. |
| 2314 | eSym->st_name = ent.strTabOffset; |
| 2315 | eSym->setBindingAndType(sym->binding, sym->type); |
| 2316 | eSym->st_other = sym->stOther; |
| 2317 | |
| 2318 | if (BssSection *commonSec = getCommonSec(relocatable, sym)) { |
| 2319 | // When -r is specified, a COMMON symbol is not allocated. Its st_shndx |
| 2320 | // holds SHN_COMMON and st_value holds the alignment. |
| 2321 | eSym->st_shndx = SHN_COMMON; |
| 2322 | eSym->st_value = commonSec->addralign; |
| 2323 | eSym->st_size = cast<Defined>(Val: sym)->size; |
| 2324 | } else { |
| 2325 | const uint32_t shndx = getSymSectionIndex(sym); |
| 2326 | if (isDefinedHere) { |
| 2327 | eSym->st_shndx = shndx; |
| 2328 | eSym->st_value = sym->getVA(ctx); |
| 2329 | // Copy symbol size if it is a defined symbol. st_size is not |
| 2330 | // significant for undefined symbols, so whether copying it or not is up |
| 2331 | // to us if that's the case. We'll leave it as zero because by not |
| 2332 | // setting a value, we can get the exact same outputs for two sets of |
| 2333 | // input files that differ only in undefined symbol size in DSOs. |
| 2334 | eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(Val: sym)->size : 0; |
| 2335 | } else { |
| 2336 | eSym->st_shndx = 0; |
| 2337 | eSym->st_value = 0; |
| 2338 | eSym->st_size = 0; |
| 2339 | } |
| 2340 | } |
| 2341 | |
| 2342 | ++eSym; |
| 2343 | } |
| 2344 | |
| 2345 | // On MIPS we need to mark symbol which has a PLT entry and requires |
| 2346 | // pointer equality by STO_MIPS_PLT flag. That is necessary to help |
| 2347 | // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. |
| 2348 | // https://sourceware.org/ml/binutils/2008-07/txt00000.txt |
| 2349 | if (ctx.arg.emachine == EM_MIPS) { |
| 2350 | auto *eSym = reinterpret_cast<Elf_Sym *>(buf); |
| 2351 | |
| 2352 | for (SymbolTableEntry &ent : symbols) { |
| 2353 | Symbol *sym = ent.sym; |
| 2354 | if (sym->isInPlt(ctx) && sym->hasFlag(bit: NEEDS_COPY)) |
| 2355 | eSym->st_other |= STO_MIPS_PLT; |
| 2356 | if (isMicroMips(ctx)) { |
| 2357 | // We already set the less-significant bit for symbols |
| 2358 | // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT |
| 2359 | // records. That allows us to distinguish such symbols in |
| 2360 | // the `MIPS<ELFT>::relocate()` routine. Now we should |
| 2361 | // clear that bit for non-dynamic symbol table, so tools |
| 2362 | // like `objdump` will be able to deal with a correct |
| 2363 | // symbol position. |
| 2364 | if (sym->isDefined() && |
| 2365 | ((sym->stOther & STO_MIPS_MICROMIPS) || sym->hasFlag(bit: NEEDS_COPY))) { |
| 2366 | if (!strTabSec.isDynamic()) |
| 2367 | eSym->st_value &= ~1; |
| 2368 | eSym->st_other |= STO_MIPS_MICROMIPS; |
| 2369 | } |
| 2370 | } |
| 2371 | if (ctx.arg.relocatable) |
| 2372 | if (auto *d = dyn_cast<Defined>(Val: sym)) |
| 2373 | if (isMipsPIC<ELFT>(d)) |
| 2374 | eSym->st_other |= STO_MIPS_PIC; |
| 2375 | ++eSym; |
| 2376 | } |
| 2377 | } |
| 2378 | } |
| 2379 | |
| 2380 | SymtabShndxSection::SymtabShndxSection(Ctx &ctx) |
| 2381 | : SyntheticSection(ctx, ".symtab_shndx" , SHT_SYMTAB_SHNDX, 0, 4) { |
| 2382 | this->entsize = 4; |
| 2383 | } |
| 2384 | |
| 2385 | void SymtabShndxSection::writeTo(uint8_t *buf) { |
| 2386 | // We write an array of 32 bit values, where each value has 1:1 association |
| 2387 | // with an entry in ctx.in.symTab if the corresponding entry contains |
| 2388 | // SHN_XINDEX, we need to write actual index, otherwise, we must write |
| 2389 | // SHN_UNDEF(0). |
| 2390 | buf += 4; // Ignore .symtab[0] entry. |
| 2391 | bool relocatable = ctx.arg.relocatable; |
| 2392 | for (const SymbolTableEntry &entry : ctx.in.symTab->getSymbols()) { |
| 2393 | if (!getCommonSec(relocatable, sym: entry.sym) && |
| 2394 | getSymSectionIndex(sym: entry.sym) == SHN_XINDEX) |
| 2395 | write32(ctx, p: buf, v: entry.sym->getOutputSection()->sectionIndex); |
| 2396 | buf += 4; |
| 2397 | } |
| 2398 | } |
| 2399 | |
| 2400 | bool SymtabShndxSection::isNeeded() const { |
| 2401 | // SHT_SYMTAB can hold symbols with section indices values up to |
| 2402 | // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX |
| 2403 | // section. Problem is that we reveal the final section indices a bit too |
| 2404 | // late, and we do not know them here. For simplicity, we just always create |
| 2405 | // a .symtab_shndx section when the amount of output sections is huge. |
| 2406 | size_t size = 0; |
| 2407 | for (SectionCommand *cmd : ctx.script->sectionCommands) |
| 2408 | if (isa<OutputDesc>(Val: cmd)) |
| 2409 | ++size; |
| 2410 | return size >= SHN_LORESERVE; |
| 2411 | } |
| 2412 | |
| 2413 | void SymtabShndxSection::finalizeContents() { |
| 2414 | getParent()->link = ctx.in.symTab->getParent()->sectionIndex; |
| 2415 | } |
| 2416 | |
| 2417 | size_t SymtabShndxSection::getSize() const { |
| 2418 | return ctx.in.symTab->getNumSymbols() * 4; |
| 2419 | } |
| 2420 | |
| 2421 | // .hash and .gnu.hash sections contain on-disk hash tables that map |
| 2422 | // symbol names to their dynamic symbol table indices. Their purpose |
| 2423 | // is to help the dynamic linker resolve symbols quickly. If ELF files |
| 2424 | // don't have them, the dynamic linker has to do linear search on all |
| 2425 | // dynamic symbols, which makes programs slower. Therefore, a .hash |
| 2426 | // section is added to a DSO by default. |
| 2427 | // |
| 2428 | // The Unix semantics of resolving dynamic symbols is somewhat expensive. |
| 2429 | // Each ELF file has a list of DSOs that the ELF file depends on and a |
| 2430 | // list of dynamic symbols that need to be resolved from any of the |
| 2431 | // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) |
| 2432 | // where m is the number of DSOs and n is the number of dynamic |
| 2433 | // symbols. For modern large programs, both m and n are large. So |
| 2434 | // making each step faster by using hash tables substantially |
| 2435 | // improves time to load programs. |
| 2436 | // |
| 2437 | // (Note that this is not the only way to design the shared library. |
| 2438 | // For instance, the Windows DLL takes a different approach. On |
| 2439 | // Windows, each dynamic symbol has a name of DLL from which the symbol |
| 2440 | // has to be resolved. That makes the cost of symbol resolution O(n). |
| 2441 | // This disables some hacky techniques you can use on Unix such as |
| 2442 | // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) |
| 2443 | // |
| 2444 | // Due to historical reasons, we have two different hash tables, .hash |
| 2445 | // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new |
| 2446 | // and better version of .hash. .hash is just an on-disk hash table, but |
| 2447 | // .gnu.hash has a bloom filter in addition to a hash table to skip |
| 2448 | // DSOs very quickly. If you are sure that your dynamic linker knows |
| 2449 | // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a |
| 2450 | // safe bet is to specify --hash-style=both for backward compatibility. |
| 2451 | GnuHashTableSection::GnuHashTableSection(Ctx &ctx) |
| 2452 | : SyntheticSection(ctx, ".gnu.hash" , SHT_GNU_HASH, SHF_ALLOC, |
| 2453 | ctx.arg.wordsize) {} |
| 2454 | |
| 2455 | void GnuHashTableSection::finalizeContents() { |
| 2456 | if (OutputSection *sec = getPartition(ctx).dynSymTab->getParent()) |
| 2457 | getParent()->link = sec->sectionIndex; |
| 2458 | |
| 2459 | // Computes bloom filter size in word size. We want to allocate 12 |
| 2460 | // bits for each symbol. It must be a power of two. |
| 2461 | if (symbols.empty()) { |
| 2462 | maskWords = 1; |
| 2463 | } else { |
| 2464 | uint64_t numBits = symbols.size() * 12; |
| 2465 | maskWords = NextPowerOf2(A: numBits / (ctx.arg.wordsize * 8)); |
| 2466 | } |
| 2467 | |
| 2468 | size = 16; // Header |
| 2469 | size += ctx.arg.wordsize * maskWords; // Bloom filter |
| 2470 | size += nBuckets * 4; // Hash buckets |
| 2471 | size += symbols.size() * 4; // Hash values |
| 2472 | } |
| 2473 | |
| 2474 | void GnuHashTableSection::writeTo(uint8_t *buf) { |
| 2475 | // Write a header. |
| 2476 | write32(ctx, p: buf, v: nBuckets); |
| 2477 | write32(ctx, p: buf + 4, |
| 2478 | v: getPartition(ctx).dynSymTab->getNumSymbols() - symbols.size()); |
| 2479 | write32(ctx, p: buf + 8, v: maskWords); |
| 2480 | write32(ctx, p: buf + 12, v: Shift2); |
| 2481 | buf += 16; |
| 2482 | |
| 2483 | // Write the 2-bit bloom filter. |
| 2484 | const unsigned c = ctx.arg.is64 ? 64 : 32; |
| 2485 | for (const Entry &sym : symbols) { |
| 2486 | // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in |
| 2487 | // the word using bits [0:5] and [26:31]. |
| 2488 | size_t i = (sym.hash / c) & (maskWords - 1); |
| 2489 | uint64_t val = readUint(ctx, buf: buf + i * ctx.arg.wordsize); |
| 2490 | val |= uint64_t(1) << (sym.hash % c); |
| 2491 | val |= uint64_t(1) << ((sym.hash >> Shift2) % c); |
| 2492 | writeUint(ctx, buf: buf + i * ctx.arg.wordsize, val); |
| 2493 | } |
| 2494 | buf += ctx.arg.wordsize * maskWords; |
| 2495 | |
| 2496 | // Write the hash table. |
| 2497 | uint32_t *buckets = reinterpret_cast<uint32_t *>(buf); |
| 2498 | uint32_t oldBucket = -1; |
| 2499 | uint32_t *values = buckets + nBuckets; |
| 2500 | for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) { |
| 2501 | // Write a hash value. It represents a sequence of chains that share the |
| 2502 | // same hash modulo value. The last element of each chain is terminated by |
| 2503 | // LSB 1. |
| 2504 | uint32_t hash = i->hash; |
| 2505 | bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx; |
| 2506 | hash = isLastInChain ? hash | 1 : hash & ~1; |
| 2507 | write32(ctx, p: values++, v: hash); |
| 2508 | |
| 2509 | if (i->bucketIdx == oldBucket) |
| 2510 | continue; |
| 2511 | // Write a hash bucket. Hash buckets contain indices in the following hash |
| 2512 | // value table. |
| 2513 | write32(ctx, p: buckets + i->bucketIdx, |
| 2514 | v: getPartition(ctx).dynSymTab->getSymbolIndex(sym: *i->sym)); |
| 2515 | oldBucket = i->bucketIdx; |
| 2516 | } |
| 2517 | } |
| 2518 | |
| 2519 | // Add symbols to this symbol hash table. Note that this function |
| 2520 | // destructively sort a given vector -- which is needed because |
| 2521 | // GNU-style hash table places some sorting requirements. |
| 2522 | void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) { |
| 2523 | // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce |
| 2524 | // its type correctly. |
| 2525 | auto mid = |
| 2526 | std::stable_partition(first: v.begin(), last: v.end(), pred: [&](const SymbolTableEntry &s) { |
| 2527 | return !s.sym->isDefined() || s.sym->partition != partition; |
| 2528 | }); |
| 2529 | |
| 2530 | // We chose load factor 4 for the on-disk hash table. For each hash |
| 2531 | // collision, the dynamic linker will compare a uint32_t hash value. |
| 2532 | // Since the integer comparison is quite fast, we believe we can |
| 2533 | // make the load factor even larger. 4 is just a conservative choice. |
| 2534 | // |
| 2535 | // Note that we don't want to create a zero-sized hash table because |
| 2536 | // Android loader as of 2018 doesn't like a .gnu.hash containing such |
| 2537 | // table. If that's the case, we create a hash table with one unused |
| 2538 | // dummy slot. |
| 2539 | nBuckets = std::max<size_t>(a: (v.end() - mid) / 4, b: 1); |
| 2540 | |
| 2541 | if (mid == v.end()) |
| 2542 | return; |
| 2543 | |
| 2544 | for (SymbolTableEntry &ent : llvm::make_range(x: mid, y: v.end())) { |
| 2545 | Symbol *b = ent.sym; |
| 2546 | uint32_t hash = hashGnu(Name: b->getName()); |
| 2547 | uint32_t bucketIdx = hash % nBuckets; |
| 2548 | symbols.push_back(Elt: {.sym: b, .strTabOffset: ent.strTabOffset, .hash: hash, .bucketIdx: bucketIdx}); |
| 2549 | } |
| 2550 | |
| 2551 | llvm::sort(C&: symbols, Comp: [](const Entry &l, const Entry &r) { |
| 2552 | return std::tie(args: l.bucketIdx, args: l.strTabOffset) < |
| 2553 | std::tie(args: r.bucketIdx, args: r.strTabOffset); |
| 2554 | }); |
| 2555 | |
| 2556 | v.erase(CS: mid, CE: v.end()); |
| 2557 | for (const Entry &ent : symbols) |
| 2558 | v.push_back(Elt: {.sym: ent.sym, .strTabOffset: ent.strTabOffset}); |
| 2559 | } |
| 2560 | |
| 2561 | HashTableSection::HashTableSection(Ctx &ctx) |
| 2562 | : SyntheticSection(ctx, ".hash" , SHT_HASH, SHF_ALLOC, 4) { |
| 2563 | this->entsize = 4; |
| 2564 | } |
| 2565 | |
| 2566 | void HashTableSection::finalizeContents() { |
| 2567 | SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get(); |
| 2568 | |
| 2569 | if (OutputSection *sec = symTab->getParent()) |
| 2570 | getParent()->link = sec->sectionIndex; |
| 2571 | |
| 2572 | unsigned numEntries = 2; // nbucket and nchain. |
| 2573 | numEntries += symTab->getNumSymbols(); // The chain entries. |
| 2574 | |
| 2575 | // Create as many buckets as there are symbols. |
| 2576 | numEntries += symTab->getNumSymbols(); |
| 2577 | this->size = numEntries * 4; |
| 2578 | } |
| 2579 | |
| 2580 | void HashTableSection::writeTo(uint8_t *buf) { |
| 2581 | SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get(); |
| 2582 | unsigned numSymbols = symTab->getNumSymbols(); |
| 2583 | |
| 2584 | uint32_t *p = reinterpret_cast<uint32_t *>(buf); |
| 2585 | write32(ctx, p: p++, v: numSymbols); // nbucket |
| 2586 | write32(ctx, p: p++, v: numSymbols); // nchain |
| 2587 | |
| 2588 | uint32_t *buckets = p; |
| 2589 | uint32_t *chains = p + numSymbols; |
| 2590 | |
| 2591 | for (const SymbolTableEntry &s : symTab->getSymbols()) { |
| 2592 | Symbol *sym = s.sym; |
| 2593 | StringRef name = sym->getName(); |
| 2594 | unsigned i = sym->dynsymIndex; |
| 2595 | uint32_t hash = hashSysV(SymbolName: name) % numSymbols; |
| 2596 | chains[i] = buckets[hash]; |
| 2597 | write32(ctx, p: buckets + hash, v: i); |
| 2598 | } |
| 2599 | } |
| 2600 | |
| 2601 | PltSection::PltSection(Ctx &ctx) |
| 2602 | : SyntheticSection(ctx, ".plt" , SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, |
| 2603 | 16), |
| 2604 | headerSize(ctx.target->pltHeaderSize) { |
| 2605 | // On AArch64, PLT entries only do loads from the .got.plt section, so the |
| 2606 | // .plt section can be marked with the SHF_AARCH64_PURECODE section flag. |
| 2607 | if (ctx.arg.emachine == EM_AARCH64) |
| 2608 | this->flags |= SHF_AARCH64_PURECODE; |
| 2609 | |
| 2610 | // On PowerPC, this section contains lazy symbol resolvers. |
| 2611 | if (ctx.arg.emachine == EM_PPC64) { |
| 2612 | name = ".glink" ; |
| 2613 | addralign = 4; |
| 2614 | } |
| 2615 | |
| 2616 | // On x86 when IBT is enabled, this section contains the second PLT (lazy |
| 2617 | // symbol resolvers). |
| 2618 | if ((ctx.arg.emachine == EM_386 || ctx.arg.emachine == EM_X86_64) && |
| 2619 | (ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) |
| 2620 | name = ".plt.sec" ; |
| 2621 | |
| 2622 | // The PLT needs to be writable on SPARC as the dynamic linker will |
| 2623 | // modify the instructions in the PLT entries. |
| 2624 | if (ctx.arg.emachine == EM_SPARCV9) |
| 2625 | this->flags |= SHF_WRITE; |
| 2626 | } |
| 2627 | |
| 2628 | void PltSection::writeTo(uint8_t *buf) { |
| 2629 | // At beginning of PLT, we have code to call the dynamic |
| 2630 | // linker to resolve dynsyms at runtime. Write such code. |
| 2631 | ctx.target->writePltHeader(buf); |
| 2632 | size_t off = headerSize; |
| 2633 | |
| 2634 | for (const Symbol *sym : entries) { |
| 2635 | ctx.target->writePlt(buf: buf + off, sym: *sym, pltEntryAddr: getVA() + off); |
| 2636 | off += ctx.target->pltEntrySize; |
| 2637 | } |
| 2638 | } |
| 2639 | |
| 2640 | void PltSection::addEntry(Symbol &sym) { |
| 2641 | assert(sym.auxIdx == ctx.symAux.size() - 1); |
| 2642 | ctx.symAux.back().pltIdx = entries.size(); |
| 2643 | entries.push_back(Elt: &sym); |
| 2644 | } |
| 2645 | |
| 2646 | size_t PltSection::getSize() const { |
| 2647 | return headerSize + entries.size() * ctx.target->pltEntrySize; |
| 2648 | } |
| 2649 | |
| 2650 | bool PltSection::isNeeded() const { |
| 2651 | // For -z retpolineplt, .iplt needs the .plt header. |
| 2652 | return !entries.empty() || (ctx.arg.zRetpolineplt && ctx.in.iplt->isNeeded()); |
| 2653 | } |
| 2654 | |
| 2655 | // Used by ARM to add mapping symbols in the PLT section, which aid |
| 2656 | // disassembly. |
| 2657 | void PltSection::addSymbols() { |
| 2658 | ctx.target->addPltHeaderSymbols(isec&: *this); |
| 2659 | |
| 2660 | size_t off = headerSize; |
| 2661 | for (size_t i = 0; i < entries.size(); ++i) { |
| 2662 | ctx.target->addPltSymbols(isec&: *this, off); |
| 2663 | off += ctx.target->pltEntrySize; |
| 2664 | } |
| 2665 | } |
| 2666 | |
| 2667 | IpltSection::IpltSection(Ctx &ctx) |
| 2668 | : SyntheticSection(ctx, ".iplt" , SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, |
| 2669 | 16) { |
| 2670 | // On AArch64, PLT entries only do loads from the .got.plt section, so the |
| 2671 | // .iplt section can be marked with the SHF_AARCH64_PURECODE section flag. |
| 2672 | if (ctx.arg.emachine == EM_AARCH64) |
| 2673 | this->flags |= SHF_AARCH64_PURECODE; |
| 2674 | |
| 2675 | if (ctx.arg.emachine == EM_PPC || ctx.arg.emachine == EM_PPC64) { |
| 2676 | name = ".glink" ; |
| 2677 | addralign = 4; |
| 2678 | } |
| 2679 | } |
| 2680 | |
| 2681 | void IpltSection::writeTo(uint8_t *buf) { |
| 2682 | uint32_t off = 0; |
| 2683 | for (const Symbol *sym : entries) { |
| 2684 | ctx.target->writeIplt(buf: buf + off, sym: *sym, pltEntryAddr: getVA() + off); |
| 2685 | off += ctx.target->ipltEntrySize; |
| 2686 | } |
| 2687 | } |
| 2688 | |
| 2689 | size_t IpltSection::getSize() const { |
| 2690 | return entries.size() * ctx.target->ipltEntrySize; |
| 2691 | } |
| 2692 | |
| 2693 | void IpltSection::addEntry(Symbol &sym) { |
| 2694 | assert(sym.auxIdx == ctx.symAux.size() - 1); |
| 2695 | ctx.symAux.back().pltIdx = entries.size(); |
| 2696 | entries.push_back(Elt: &sym); |
| 2697 | } |
| 2698 | |
| 2699 | // ARM uses mapping symbols to aid disassembly. |
| 2700 | void IpltSection::addSymbols() { |
| 2701 | size_t off = 0; |
| 2702 | for (size_t i = 0, e = entries.size(); i != e; ++i) { |
| 2703 | ctx.target->addPltSymbols(isec&: *this, off); |
| 2704 | off += ctx.target->pltEntrySize; |
| 2705 | } |
| 2706 | } |
| 2707 | |
| 2708 | PPC32GlinkSection::PPC32GlinkSection(Ctx &ctx) : PltSection(ctx) { |
| 2709 | name = ".glink" ; |
| 2710 | addralign = 4; |
| 2711 | } |
| 2712 | |
| 2713 | void PPC32GlinkSection::writeTo(uint8_t *buf) { |
| 2714 | writePPC32GlinkSection(ctx, buf, numEntries: entries.size()); |
| 2715 | } |
| 2716 | |
| 2717 | size_t PPC32GlinkSection::getSize() const { |
| 2718 | return headerSize + entries.size() * ctx.target->pltEntrySize + footerSize; |
| 2719 | } |
| 2720 | |
| 2721 | // This is an x86-only extra PLT section and used only when a security |
| 2722 | // enhancement feature called CET is enabled. In this comment, I'll explain what |
| 2723 | // the feature is and why we have two PLT sections if CET is enabled. |
| 2724 | // |
| 2725 | // So, what does CET do? CET introduces a new restriction to indirect jump |
| 2726 | // instructions. CET works this way. Assume that CET is enabled. Then, if you |
| 2727 | // execute an indirect jump instruction, the processor verifies that a special |
| 2728 | // "landing pad" instruction (which is actually a repurposed NOP instruction and |
| 2729 | // now called "endbr32" or "endbr64") is at the jump target. If the jump target |
| 2730 | // does not start with that instruction, the processor raises an exception |
| 2731 | // instead of continuing executing code. |
| 2732 | // |
| 2733 | // If CET is enabled, the compiler emits endbr to all locations where indirect |
| 2734 | // jumps may jump to. |
| 2735 | // |
| 2736 | // This mechanism makes it extremely hard to transfer the control to a middle of |
| 2737 | // a function that is not supporsed to be a indirect jump target, preventing |
| 2738 | // certain types of attacks such as ROP or JOP. |
| 2739 | // |
| 2740 | // Note that the processors in the market as of 2019 don't actually support the |
| 2741 | // feature. Only the spec is available at the moment. |
| 2742 | // |
| 2743 | // Now, I'll explain why we have this extra PLT section for CET. |
| 2744 | // |
| 2745 | // Since you can indirectly jump to a PLT entry, we have to make PLT entries |
| 2746 | // start with endbr. The problem is there's no extra space for endbr (which is 4 |
| 2747 | // bytes long), as the PLT entry is only 16 bytes long and all bytes are already |
| 2748 | // used. |
| 2749 | // |
| 2750 | // In order to deal with the issue, we split a PLT entry into two PLT entries. |
| 2751 | // Remember that each PLT entry contains code to jump to an address read from |
| 2752 | // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme, |
| 2753 | // the former code is written to .plt.sec, and the latter code is written to |
| 2754 | // .plt. |
| 2755 | // |
| 2756 | // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except |
| 2757 | // that the regular .plt is now called .plt.sec and .plt is repurposed to |
| 2758 | // contain only code for lazy symbol resolution. |
| 2759 | // |
| 2760 | // In other words, this is how the 2-PLT scheme works. Application code is |
| 2761 | // supposed to jump to .plt.sec to call an external function. Each .plt.sec |
| 2762 | // entry contains code to read an address from a corresponding .got.plt entry |
| 2763 | // and jump to that address. Addresses in .got.plt initially point to .plt, so |
| 2764 | // when an application calls an external function for the first time, the |
| 2765 | // control is transferred to a function that resolves a symbol name from |
| 2766 | // external shared object files. That function then rewrites a .got.plt entry |
| 2767 | // with a resolved address, so that the subsequent function calls directly jump |
| 2768 | // to a desired location from .plt.sec. |
| 2769 | // |
| 2770 | // There is an open question as to whether the 2-PLT scheme was desirable or |
| 2771 | // not. We could have simply extended the PLT entry size to 32-bytes to |
| 2772 | // accommodate endbr, and that scheme would have been much simpler than the |
| 2773 | // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot |
| 2774 | // code (.plt.sec) from cold code (.plt). But as far as I know no one proved |
| 2775 | // that the optimization actually makes a difference. |
| 2776 | // |
| 2777 | // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools |
| 2778 | // depend on it, so we implement the ABI. |
| 2779 | IBTPltSection::IBTPltSection(Ctx &ctx) |
| 2780 | : SyntheticSection(ctx, ".plt" , SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, |
| 2781 | 16) {} |
| 2782 | |
| 2783 | void IBTPltSection::writeTo(uint8_t *buf) { |
| 2784 | ctx.target->writeIBTPlt(buf, numEntries: ctx.in.plt->getNumEntries()); |
| 2785 | } |
| 2786 | |
| 2787 | size_t IBTPltSection::getSize() const { |
| 2788 | // 16 is the header size of .plt. |
| 2789 | return 16 + ctx.in.plt->getNumEntries() * ctx.target->pltEntrySize; |
| 2790 | } |
| 2791 | |
| 2792 | bool IBTPltSection::isNeeded() const { return ctx.in.plt->getNumEntries() > 0; } |
| 2793 | |
| 2794 | RelroPaddingSection::RelroPaddingSection(Ctx &ctx) |
| 2795 | : SyntheticSection(ctx, ".relro_padding" , SHT_NOBITS, SHF_ALLOC | SHF_WRITE, |
| 2796 | 1) {} |
| 2797 | |
| 2798 | RandomizePaddingSection::RandomizePaddingSection(Ctx &ctx, uint64_t size, |
| 2799 | OutputSection *parent) |
| 2800 | : SyntheticSection(ctx, ".randomize_padding" , SHT_PROGBITS, SHF_ALLOC, 1), |
| 2801 | size(size) { |
| 2802 | this->parent = parent; |
| 2803 | } |
| 2804 | |
| 2805 | void RandomizePaddingSection::writeTo(uint8_t *buf) { |
| 2806 | std::array<uint8_t, 4> filler = getParent()->getFiller(ctx); |
| 2807 | uint8_t *end = buf + size; |
| 2808 | for (; buf + 4 <= end; buf += 4) |
| 2809 | memcpy(dest: buf, src: &filler[0], n: 4); |
| 2810 | memcpy(dest: buf, src: &filler[0], n: end - buf); |
| 2811 | } |
| 2812 | |
| 2813 | // The string hash function for .gdb_index. |
| 2814 | static uint32_t computeGdbHash(StringRef s) { |
| 2815 | uint32_t h = 0; |
| 2816 | for (uint8_t c : s) |
| 2817 | h = h * 67 + toLower(x: c) - 113; |
| 2818 | return h; |
| 2819 | } |
| 2820 | |
| 2821 | // 4-byte alignment ensures that values in the hash lookup table and the name |
| 2822 | // table are aligned. |
| 2823 | DebugNamesBaseSection::DebugNamesBaseSection(Ctx &ctx) |
| 2824 | : SyntheticSection(ctx, ".debug_names" , SHT_PROGBITS, 0, 4) {} |
| 2825 | |
| 2826 | // Get the size of the .debug_names section header in bytes for DWARF32: |
| 2827 | static uint32_t (uint32_t augmentationStringSize) { |
| 2828 | return /* unit length */ 4 + |
| 2829 | /* version */ 2 + |
| 2830 | /* padding */ 2 + |
| 2831 | /* CU count */ 4 + |
| 2832 | /* TU count */ 4 + |
| 2833 | /* Foreign TU count */ 4 + |
| 2834 | /* Bucket Count */ 4 + |
| 2835 | /* Name Count */ 4 + |
| 2836 | /* Abbrev table size */ 4 + |
| 2837 | /* Augmentation string size */ 4 + |
| 2838 | /* Augmentation string */ augmentationStringSize; |
| 2839 | } |
| 2840 | |
| 2841 | static Expected<DebugNamesBaseSection::IndexEntry *> |
| 2842 | (uint64_t &offset, const DWARFDebugNames::NameIndex &ni, |
| 2843 | uint64_t entriesBase, DWARFDataExtractor &, |
| 2844 | const LLDDWARFSection &namesSec) { |
| 2845 | auto ie = makeThreadLocal<DebugNamesBaseSection::IndexEntry>(); |
| 2846 | ie->poolOffset = offset; |
| 2847 | Error err = Error::success(); |
| 2848 | uint64_t ulebVal = namesExtractor.getULEB128(offset_ptr: &offset, Err: &err); |
| 2849 | if (err) |
| 2850 | return createStringError(EC: inconvertibleErrorCode(), |
| 2851 | Fmt: "invalid abbrev code: %s" , |
| 2852 | Vals: llvm::toString(E: std::move(err)).c_str()); |
| 2853 | if (!isUInt<32>(x: ulebVal)) |
| 2854 | return createStringError(EC: inconvertibleErrorCode(), |
| 2855 | Fmt: "abbrev code too large for DWARF32: %" PRIu64, |
| 2856 | Vals: ulebVal); |
| 2857 | ie->abbrevCode = static_cast<uint32_t>(ulebVal); |
| 2858 | auto it = ni.getAbbrevs().find_as(Val: ie->abbrevCode); |
| 2859 | if (it == ni.getAbbrevs().end()) |
| 2860 | return createStringError(EC: inconvertibleErrorCode(), |
| 2861 | Fmt: "abbrev code not found in abbrev table: %" PRIu32, |
| 2862 | Vals: ie->abbrevCode); |
| 2863 | |
| 2864 | DebugNamesBaseSection::AttrValue attr, cuAttr = {.attrValue: 0, .attrSize: 0}; |
| 2865 | for (DWARFDebugNames::AttributeEncoding a : it->Attributes) { |
| 2866 | if (a.Index == dwarf::DW_IDX_parent) { |
| 2867 | if (a.Form == dwarf::DW_FORM_ref4) { |
| 2868 | attr.attrValue = namesExtractor.getU32(offset_ptr: &offset, Err: &err); |
| 2869 | attr.attrSize = 4; |
| 2870 | ie->parentOffset = entriesBase + attr.attrValue; |
| 2871 | } else if (a.Form != DW_FORM_flag_present) |
| 2872 | return createStringError(EC: inconvertibleErrorCode(), |
| 2873 | S: "invalid form for DW_IDX_parent" ); |
| 2874 | } else { |
| 2875 | switch (a.Form) { |
| 2876 | case DW_FORM_data1: |
| 2877 | case DW_FORM_ref1: { |
| 2878 | attr.attrValue = namesExtractor.getU8(offset_ptr: &offset, Err: &err); |
| 2879 | attr.attrSize = 1; |
| 2880 | break; |
| 2881 | } |
| 2882 | case DW_FORM_data2: |
| 2883 | case DW_FORM_ref2: { |
| 2884 | attr.attrValue = namesExtractor.getU16(offset_ptr: &offset, Err: &err); |
| 2885 | attr.attrSize = 2; |
| 2886 | break; |
| 2887 | } |
| 2888 | case DW_FORM_data4: |
| 2889 | case DW_FORM_ref4: { |
| 2890 | attr.attrValue = namesExtractor.getU32(offset_ptr: &offset, Err: &err); |
| 2891 | attr.attrSize = 4; |
| 2892 | break; |
| 2893 | } |
| 2894 | default: |
| 2895 | return createStringError( |
| 2896 | EC: inconvertibleErrorCode(), |
| 2897 | Fmt: "unrecognized form encoding %d in abbrev table" , Vals: a.Form); |
| 2898 | } |
| 2899 | } |
| 2900 | if (err) |
| 2901 | return createStringError(EC: inconvertibleErrorCode(), |
| 2902 | Fmt: "error while reading attributes: %s" , |
| 2903 | Vals: llvm::toString(E: std::move(err)).c_str()); |
| 2904 | if (a.Index == DW_IDX_compile_unit) |
| 2905 | cuAttr = attr; |
| 2906 | else if (a.Form != DW_FORM_flag_present) |
| 2907 | ie->attrValues.push_back(Elt: attr); |
| 2908 | } |
| 2909 | // Canonicalize abbrev by placing the CU/TU index at the end. |
| 2910 | ie->attrValues.push_back(Elt: cuAttr); |
| 2911 | return ie; |
| 2912 | } |
| 2913 | |
| 2914 | void DebugNamesBaseSection::( |
| 2915 | Ctx &ctx, InputChunk &inputChunk, OutputChunk &chunk, |
| 2916 | DWARFDataExtractor &, DataExtractor &, |
| 2917 | function_ref<SmallVector<uint32_t, 0>( |
| 2918 | uint32_t numCus, const DWARFDebugNames::Header &, |
| 2919 | const DWARFDebugNames::DWARFDebugNamesOffsets &)> |
| 2920 | readOffsets) { |
| 2921 | const LLDDWARFSection &namesSec = inputChunk.section; |
| 2922 | DenseMap<uint32_t, IndexEntry *> offsetMap; |
| 2923 | // Number of CUs seen in previous NameIndex sections within current chunk. |
| 2924 | uint32_t numCus = 0; |
| 2925 | for (const DWARFDebugNames::NameIndex &ni : *inputChunk.llvmDebugNames) { |
| 2926 | NameData &nd = inputChunk.nameData.emplace_back(); |
| 2927 | nd.hdr = ni.getHeader(); |
| 2928 | if (nd.hdr.Format != DwarfFormat::DWARF32) { |
| 2929 | Err(ctx) << namesSec.sec |
| 2930 | << ": found DWARF64, which is currently unsupported" ; |
| 2931 | return; |
| 2932 | } |
| 2933 | if (nd.hdr.Version != 5) { |
| 2934 | Err(ctx) << namesSec.sec << ": unsupported version: " << nd.hdr.Version; |
| 2935 | return; |
| 2936 | } |
| 2937 | uint32_t dwarfSize = dwarf::getDwarfOffsetByteSize(Format: DwarfFormat::DWARF32); |
| 2938 | DWARFDebugNames::DWARFDebugNamesOffsets locs = ni.getOffsets(); |
| 2939 | if (locs.EntriesBase > namesExtractor.getData().size()) { |
| 2940 | Err(ctx) << namesSec.sec << ": entry pool start is beyond end of section" ; |
| 2941 | return; |
| 2942 | } |
| 2943 | |
| 2944 | SmallVector<uint32_t, 0> entryOffsets = readOffsets(numCus, nd.hdr, locs); |
| 2945 | |
| 2946 | // Read the entry pool. |
| 2947 | offsetMap.clear(); |
| 2948 | nd.nameEntries.resize(N: nd.hdr.NameCount); |
| 2949 | for (auto i : seq(Size: nd.hdr.NameCount)) { |
| 2950 | NameEntry &ne = nd.nameEntries[i]; |
| 2951 | uint64_t strOffset = locs.StringOffsetsBase + i * dwarfSize; |
| 2952 | ne.stringOffset = strOffset; |
| 2953 | uint64_t strp = namesExtractor.getRelocatedValue(Size: dwarfSize, Off: &strOffset); |
| 2954 | StringRef name = strExtractor.getCStrRef(OffsetPtr: &strp); |
| 2955 | ne.name = name.data(); |
| 2956 | ne.hashValue = caseFoldingDjbHash(Buffer: name); |
| 2957 | |
| 2958 | // Read a series of index entries that end with abbreviation code 0. |
| 2959 | uint64_t offset = locs.EntriesBase + entryOffsets[i]; |
| 2960 | while (offset < namesSec.Data.size() && namesSec.Data[offset] != 0) { |
| 2961 | // Read & store all entries (for the same string). |
| 2962 | Expected<IndexEntry *> ieOrErr = |
| 2963 | readEntry(offset, ni, entriesBase: locs.EntriesBase, namesExtractor, namesSec); |
| 2964 | if (!ieOrErr) { |
| 2965 | Err(ctx) << namesSec.sec << ": " << ieOrErr.takeError(); |
| 2966 | return; |
| 2967 | } |
| 2968 | ne.indexEntries.push_back(Elt: std::move(*ieOrErr)); |
| 2969 | } |
| 2970 | if (offset >= namesSec.Data.size()) |
| 2971 | Err(ctx) << namesSec.sec << ": index entry is out of bounds" ; |
| 2972 | |
| 2973 | for (IndexEntry &ie : ne.entries()) |
| 2974 | offsetMap[ie.poolOffset] = &ie; |
| 2975 | } |
| 2976 | |
| 2977 | // Assign parent pointers, which will be used to update DW_IDX_parent index |
| 2978 | // attributes. Note: offsetMap[0] does not exist, so parentOffset == 0 will |
| 2979 | // get parentEntry == null as well. |
| 2980 | for (NameEntry &ne : nd.nameEntries) |
| 2981 | for (IndexEntry &ie : ne.entries()) |
| 2982 | ie.parentEntry = offsetMap.lookup(Val: ie.parentOffset); |
| 2983 | numCus += nd.hdr.CompUnitCount; |
| 2984 | } |
| 2985 | } |
| 2986 | |
| 2987 | // Compute the form for output DW_IDX_compile_unit attributes, similar to |
| 2988 | // DIEInteger::BestForm. The input form (often DW_FORM_data1) may not hold all |
| 2989 | // the merged CU indices. |
| 2990 | std::pair<uint8_t, dwarf::Form> static getMergedCuCountForm( |
| 2991 | uint32_t compUnitCount) { |
| 2992 | if (compUnitCount > UINT16_MAX) |
| 2993 | return {4, DW_FORM_data4}; |
| 2994 | if (compUnitCount > UINT8_MAX) |
| 2995 | return {2, DW_FORM_data2}; |
| 2996 | return {1, DW_FORM_data1}; |
| 2997 | } |
| 2998 | |
| 2999 | void DebugNamesBaseSection::computeHdrAndAbbrevTable( |
| 3000 | MutableArrayRef<InputChunk> inputChunks) { |
| 3001 | TimeTraceScope timeScope("Merge .debug_names" , "hdr and abbrev table" ); |
| 3002 | size_t numCu = 0; |
| 3003 | hdr.Format = DwarfFormat::DWARF32; |
| 3004 | hdr.Version = 5; |
| 3005 | hdr.CompUnitCount = 0; |
| 3006 | hdr.LocalTypeUnitCount = 0; |
| 3007 | hdr.ForeignTypeUnitCount = 0; |
| 3008 | hdr.AugmentationStringSize = 0; |
| 3009 | |
| 3010 | // Compute CU and TU counts. |
| 3011 | for (auto i : seq(Size: numChunks)) { |
| 3012 | InputChunk &inputChunk = inputChunks[i]; |
| 3013 | inputChunk.baseCuIdx = numCu; |
| 3014 | numCu += chunks[i].compUnits.size(); |
| 3015 | for (const NameData &nd : inputChunk.nameData) { |
| 3016 | hdr.CompUnitCount += nd.hdr.CompUnitCount; |
| 3017 | // TODO: We don't handle type units yet, so LocalTypeUnitCount & |
| 3018 | // ForeignTypeUnitCount are left as 0. |
| 3019 | if (nd.hdr.LocalTypeUnitCount || nd.hdr.ForeignTypeUnitCount) |
| 3020 | Warn(ctx) << inputChunk.section.sec |
| 3021 | << ": type units are not implemented" ; |
| 3022 | // If augmentation strings are not identical, use an empty string. |
| 3023 | if (i == 0) { |
| 3024 | hdr.AugmentationStringSize = nd.hdr.AugmentationStringSize; |
| 3025 | hdr.AugmentationString = nd.hdr.AugmentationString; |
| 3026 | } else if (hdr.AugmentationString != nd.hdr.AugmentationString) { |
| 3027 | // There are conflicting augmentation strings, so it's best for the |
| 3028 | // merged index to not use an augmentation string. |
| 3029 | hdr.AugmentationStringSize = 0; |
| 3030 | hdr.AugmentationString.clear(); |
| 3031 | } |
| 3032 | } |
| 3033 | } |
| 3034 | |
| 3035 | // Create the merged abbrev table, uniquifyinng the input abbrev tables and |
| 3036 | // computing mapping from old (per-cu) abbrev codes to new (merged) abbrev |
| 3037 | // codes. |
| 3038 | FoldingSet<Abbrev> abbrevSet; |
| 3039 | // Determine the form for the DW_IDX_compile_unit attributes in the merged |
| 3040 | // index. The input form may not be big enough for all CU indices. |
| 3041 | dwarf::Form cuAttrForm = getMergedCuCountForm(compUnitCount: hdr.CompUnitCount).second; |
| 3042 | for (InputChunk &inputChunk : inputChunks) { |
| 3043 | for (auto [i, ni] : enumerate(First&: *inputChunk.llvmDebugNames)) { |
| 3044 | for (const DWARFDebugNames::Abbrev &oldAbbrev : ni.getAbbrevs()) { |
| 3045 | // Canonicalize abbrev by placing the CU/TU index at the end, |
| 3046 | // similar to 'parseDebugNames'. |
| 3047 | Abbrev abbrev; |
| 3048 | DWARFDebugNames::AttributeEncoding cuAttr(DW_IDX_compile_unit, |
| 3049 | cuAttrForm); |
| 3050 | abbrev.code = oldAbbrev.Code; |
| 3051 | abbrev.tag = oldAbbrev.Tag; |
| 3052 | for (DWARFDebugNames::AttributeEncoding a : oldAbbrev.Attributes) { |
| 3053 | if (a.Index == DW_IDX_compile_unit) |
| 3054 | cuAttr.Index = a.Index; |
| 3055 | else |
| 3056 | abbrev.attributes.push_back(Elt: {a.Index, a.Form}); |
| 3057 | } |
| 3058 | // Put the CU/TU index at the end of the attributes list. |
| 3059 | abbrev.attributes.push_back(Elt: cuAttr); |
| 3060 | |
| 3061 | // Profile the abbrev, get or assign a new code, then record the abbrev |
| 3062 | // code mapping. |
| 3063 | FoldingSetNodeID id; |
| 3064 | abbrev.Profile(id); |
| 3065 | uint32_t newCode; |
| 3066 | void *insertPos; |
| 3067 | if (Abbrev *existing = abbrevSet.FindNodeOrInsertPos(ID: id, InsertPos&: insertPos)) { |
| 3068 | // Found it; we've already seen an identical abbreviation. |
| 3069 | newCode = existing->code; |
| 3070 | } else { |
| 3071 | Abbrev *abbrev2 = |
| 3072 | new (abbrevAlloc.Allocate()) Abbrev(std::move(abbrev)); |
| 3073 | abbrevSet.InsertNode(N: abbrev2, InsertPos: insertPos); |
| 3074 | abbrevTable.push_back(Elt: abbrev2); |
| 3075 | newCode = abbrevTable.size(); |
| 3076 | abbrev2->code = newCode; |
| 3077 | } |
| 3078 | inputChunk.nameData[i].abbrevCodeMap[oldAbbrev.Code] = newCode; |
| 3079 | } |
| 3080 | } |
| 3081 | } |
| 3082 | |
| 3083 | // Compute the merged abbrev table. |
| 3084 | raw_svector_ostream os(abbrevTableBuf); |
| 3085 | for (Abbrev *abbrev : abbrevTable) { |
| 3086 | encodeULEB128(Value: abbrev->code, OS&: os); |
| 3087 | encodeULEB128(Value: abbrev->tag, OS&: os); |
| 3088 | for (DWARFDebugNames::AttributeEncoding a : abbrev->attributes) { |
| 3089 | encodeULEB128(Value: a.Index, OS&: os); |
| 3090 | encodeULEB128(Value: a.Form, OS&: os); |
| 3091 | } |
| 3092 | os.write(Ptr: "\0" , Size: 2); // attribute specification end |
| 3093 | } |
| 3094 | os.write(C: 0); // abbrev table end |
| 3095 | hdr.AbbrevTableSize = abbrevTableBuf.size(); |
| 3096 | } |
| 3097 | |
| 3098 | void DebugNamesBaseSection::Abbrev::Profile(FoldingSetNodeID &id) const { |
| 3099 | id.AddInteger(I: tag); |
| 3100 | for (const DWARFDebugNames::AttributeEncoding &attr : attributes) { |
| 3101 | id.AddInteger(I: attr.Index); |
| 3102 | id.AddInteger(I: attr.Form); |
| 3103 | } |
| 3104 | } |
| 3105 | |
| 3106 | std::pair<uint32_t, uint32_t> DebugNamesBaseSection::computeEntryPool( |
| 3107 | MutableArrayRef<InputChunk> inputChunks) { |
| 3108 | TimeTraceScope timeScope("Merge .debug_names" , "entry pool" ); |
| 3109 | // Collect and de-duplicate all the names (preserving all the entries). |
| 3110 | // Speed it up using multithreading, as the number of symbols can be in the |
| 3111 | // order of millions. |
| 3112 | const size_t concurrency = |
| 3113 | bit_floor(Value: std::min<size_t>(a: ctx.arg.threadCount, b: numShards)); |
| 3114 | const size_t shift = 32 - countr_zero(Val: numShards); |
| 3115 | const uint8_t cuAttrSize = getMergedCuCountForm(compUnitCount: hdr.CompUnitCount).first; |
| 3116 | DenseMap<CachedHashStringRef, size_t> maps[numShards]; |
| 3117 | |
| 3118 | parallelFor(Begin: 0, End: concurrency, Fn: [&](size_t threadId) { |
| 3119 | for (auto i : seq(Size: numChunks)) { |
| 3120 | InputChunk &inputChunk = inputChunks[i]; |
| 3121 | for (auto j : seq(Size: inputChunk.nameData.size())) { |
| 3122 | NameData &nd = inputChunk.nameData[j]; |
| 3123 | // Deduplicate the NameEntry records (based on the string/name), |
| 3124 | // appending all IndexEntries from duplicate NameEntry records to |
| 3125 | // the single preserved copy. |
| 3126 | for (NameEntry &ne : nd.nameEntries) { |
| 3127 | auto shardId = ne.hashValue >> shift; |
| 3128 | if ((shardId & (concurrency - 1)) != threadId) |
| 3129 | continue; |
| 3130 | |
| 3131 | ne.chunkIdx = i; |
| 3132 | for (IndexEntry &ie : ne.entries()) { |
| 3133 | // Update the IndexEntry's abbrev code to match the merged |
| 3134 | // abbreviations. |
| 3135 | ie.abbrevCode = nd.abbrevCodeMap[ie.abbrevCode]; |
| 3136 | // Update the DW_IDX_compile_unit attribute (the last one after |
| 3137 | // canonicalization) to have correct merged offset value and size. |
| 3138 | auto &back = ie.attrValues.back(); |
| 3139 | back.attrValue += inputChunk.baseCuIdx + j; |
| 3140 | back.attrSize = cuAttrSize; |
| 3141 | } |
| 3142 | |
| 3143 | auto &nameVec = nameVecs[shardId]; |
| 3144 | auto [it, inserted] = maps[shardId].try_emplace( |
| 3145 | Key: CachedHashStringRef(ne.name, ne.hashValue), Args: nameVec.size()); |
| 3146 | if (inserted) |
| 3147 | nameVec.push_back(Elt: std::move(ne)); |
| 3148 | else |
| 3149 | nameVec[it->second].indexEntries.append(RHS: std::move(ne.indexEntries)); |
| 3150 | } |
| 3151 | } |
| 3152 | } |
| 3153 | }); |
| 3154 | |
| 3155 | // Compute entry offsets in parallel. First, compute offsets relative to the |
| 3156 | // current shard. |
| 3157 | uint32_t offsets[numShards]; |
| 3158 | parallelFor(Begin: 0, End: numShards, Fn: [&](size_t shard) { |
| 3159 | uint32_t offset = 0; |
| 3160 | for (NameEntry &ne : nameVecs[shard]) { |
| 3161 | ne.entryOffset = offset; |
| 3162 | for (IndexEntry &ie : ne.entries()) { |
| 3163 | ie.poolOffset = offset; |
| 3164 | offset += getULEB128Size(Value: ie.abbrevCode); |
| 3165 | for (AttrValue value : ie.attrValues) |
| 3166 | offset += value.attrSize; |
| 3167 | } |
| 3168 | ++offset; // index entry sentinel |
| 3169 | } |
| 3170 | offsets[shard] = offset; |
| 3171 | }); |
| 3172 | // Then add shard offsets. |
| 3173 | std::partial_sum(first: offsets, last: std::end(arr&: offsets), result: offsets); |
| 3174 | parallelFor(Begin: 1, End: numShards, Fn: [&](size_t shard) { |
| 3175 | uint32_t offset = offsets[shard - 1]; |
| 3176 | for (NameEntry &ne : nameVecs[shard]) { |
| 3177 | ne.entryOffset += offset; |
| 3178 | for (IndexEntry &ie : ne.entries()) |
| 3179 | ie.poolOffset += offset; |
| 3180 | } |
| 3181 | }); |
| 3182 | |
| 3183 | // Update the DW_IDX_parent entries that refer to real parents (have |
| 3184 | // DW_FORM_ref4). |
| 3185 | parallelFor(Begin: 0, End: numShards, Fn: [&](size_t shard) { |
| 3186 | for (NameEntry &ne : nameVecs[shard]) { |
| 3187 | for (IndexEntry &ie : ne.entries()) { |
| 3188 | if (!ie.parentEntry) |
| 3189 | continue; |
| 3190 | // Abbrevs are indexed starting at 1; vector starts at 0. (abbrevCode |
| 3191 | // corresponds to position in the merged table vector). |
| 3192 | const Abbrev *abbrev = abbrevTable[ie.abbrevCode - 1]; |
| 3193 | for (const auto &[a, v] : zip_equal(t: abbrev->attributes, u&: ie.attrValues)) |
| 3194 | if (a.Index == DW_IDX_parent && a.Form == DW_FORM_ref4) |
| 3195 | v.attrValue = ie.parentEntry->poolOffset; |
| 3196 | } |
| 3197 | } |
| 3198 | }); |
| 3199 | |
| 3200 | // Return (entry pool size, number of entries). |
| 3201 | uint32_t num = 0; |
| 3202 | for (auto &map : maps) |
| 3203 | num += map.size(); |
| 3204 | return {offsets[numShards - 1], num}; |
| 3205 | } |
| 3206 | |
| 3207 | void DebugNamesBaseSection::init( |
| 3208 | function_ref<void(InputFile *, InputChunk &, OutputChunk &)> parseFile) { |
| 3209 | TimeTraceScope timeScope("Merge .debug_names" ); |
| 3210 | // Collect and remove input .debug_names sections. Save InputSection pointers |
| 3211 | // to relocate string offsets in `writeTo`. |
| 3212 | SetVector<InputFile *> files; |
| 3213 | for (InputSectionBase *s : ctx.inputSections) { |
| 3214 | InputSection *isec = dyn_cast<InputSection>(Val: s); |
| 3215 | if (!isec) |
| 3216 | continue; |
| 3217 | if (!(s->flags & SHF_ALLOC) && s->name == ".debug_names" ) { |
| 3218 | s->markDead(); |
| 3219 | inputSections.push_back(Elt: isec); |
| 3220 | files.insert(X: isec->file); |
| 3221 | } |
| 3222 | } |
| 3223 | |
| 3224 | // Parse input .debug_names sections and extract InputChunk and OutputChunk |
| 3225 | // data. OutputChunk contains CU information, which will be needed by |
| 3226 | // `writeTo`. |
| 3227 | auto inputChunksPtr = std::make_unique<InputChunk[]>(num: files.size()); |
| 3228 | MutableArrayRef<InputChunk> inputChunks(inputChunksPtr.get(), files.size()); |
| 3229 | numChunks = files.size(); |
| 3230 | chunks = std::make_unique<OutputChunk[]>(num: files.size()); |
| 3231 | { |
| 3232 | TimeTraceScope timeScope("Merge .debug_names" , "parse" ); |
| 3233 | parallelFor(Begin: 0, End: files.size(), Fn: [&](size_t i) { |
| 3234 | parseFile(files[i], inputChunks[i], chunks[i]); |
| 3235 | }); |
| 3236 | } |
| 3237 | |
| 3238 | // Compute section header (except unit_length), abbrev table, and entry pool. |
| 3239 | computeHdrAndAbbrevTable(inputChunks); |
| 3240 | uint32_t entryPoolSize; |
| 3241 | std::tie(args&: entryPoolSize, args&: hdr.NameCount) = computeEntryPool(inputChunks); |
| 3242 | hdr.BucketCount = dwarf::getDebugNamesBucketCount(UniqueHashCount: hdr.NameCount); |
| 3243 | |
| 3244 | // Compute the section size. Subtract 4 to get the unit_length for DWARF32. |
| 3245 | uint32_t hdrSize = getDebugNamesHeaderSize(augmentationStringSize: hdr.AugmentationStringSize); |
| 3246 | size = findDebugNamesOffsets(EndOfHeaderOffset: hdrSize, Hdr: hdr).EntriesBase + entryPoolSize; |
| 3247 | hdr.UnitLength = size - 4; |
| 3248 | } |
| 3249 | |
| 3250 | template <class ELFT> |
| 3251 | DebugNamesSection<ELFT>::DebugNamesSection(Ctx &ctx) |
| 3252 | : DebugNamesBaseSection(ctx) { |
| 3253 | init(parseFile: [&](InputFile *f, InputChunk &inputChunk, OutputChunk &chunk) { |
| 3254 | auto *file = cast<ObjFile<ELFT>>(f); |
| 3255 | DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); |
| 3256 | auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); |
| 3257 | chunk.infoSec = dobj.getInfoSection(); |
| 3258 | DWARFDataExtractor (dobj, dobj.getNamesSection(), |
| 3259 | ELFT::Endianness == endianness::little, |
| 3260 | ELFT::Is64Bits ? 8 : 4); |
| 3261 | // .debug_str is needed to get symbol names from string offsets. |
| 3262 | DataExtractor (dobj.getStrSection(), |
| 3263 | ELFT::Endianness == endianness::little, |
| 3264 | ELFT::Is64Bits ? 8 : 4); |
| 3265 | inputChunk.section = dobj.getNamesSection(); |
| 3266 | |
| 3267 | inputChunk.llvmDebugNames.emplace(args&: namesExtractor, args&: strExtractor); |
| 3268 | if (Error e = inputChunk.llvmDebugNames->extract()) { |
| 3269 | Err(ctx) << dobj.getNamesSection().sec << ": " << std::move(e); |
| 3270 | } |
| 3271 | parseDebugNames( |
| 3272 | ctx, inputChunk, chunk, namesExtractor, strExtractor, |
| 3273 | readOffsets: [&chunk, namesData = dobj.getNamesSection().Data.data()]( |
| 3274 | uint32_t numCus, const DWARFDebugNames::Header &hdr, |
| 3275 | const DWARFDebugNames::DWARFDebugNamesOffsets &locs) { |
| 3276 | // Read CU offsets, which are relocated by .debug_info + X |
| 3277 | // relocations. Record the section offset to be relocated by |
| 3278 | // `finalizeContents`. |
| 3279 | chunk.compUnits.resize_for_overwrite(N: numCus + hdr.CompUnitCount); |
| 3280 | for (auto i : seq(Size: hdr.CompUnitCount)) |
| 3281 | chunk.compUnits[numCus + i] = locs.CUsBase + i * 4; |
| 3282 | |
| 3283 | // Read entry offsets. |
| 3284 | const char *p = namesData + locs.EntryOffsetsBase; |
| 3285 | SmallVector<uint32_t, 0> entryOffsets; |
| 3286 | entryOffsets.resize_for_overwrite(N: hdr.NameCount); |
| 3287 | for (uint32_t &offset : entryOffsets) |
| 3288 | offset = endian::readNext<uint32_t, ELFT::Endianness, unaligned>(p); |
| 3289 | return entryOffsets; |
| 3290 | }); |
| 3291 | }); |
| 3292 | } |
| 3293 | |
| 3294 | template <class ELFT> |
| 3295 | template <class RelTy> |
| 3296 | void DebugNamesSection<ELFT>::getNameRelocs( |
| 3297 | const InputFile &file, DenseMap<uint32_t, uint32_t> &relocs, |
| 3298 | Relocs<RelTy> rels) { |
| 3299 | for (const RelTy &rel : rels) { |
| 3300 | Symbol &sym = file.getRelocTargetSym(rel); |
| 3301 | relocs[rel.r_offset] = sym.getVA(ctx, addend: getAddend<ELFT>(rel)); |
| 3302 | } |
| 3303 | } |
| 3304 | |
| 3305 | template <class ELFT> void DebugNamesSection<ELFT>::finalizeContents() { |
| 3306 | // Get relocations of .debug_names sections. |
| 3307 | auto relocs = std::make_unique<DenseMap<uint32_t, uint32_t>[]>(numChunks); |
| 3308 | parallelFor(0, numChunks, [&](size_t i) { |
| 3309 | InputSection *sec = inputSections[i]; |
| 3310 | invokeOnRelocs(*sec, getNameRelocs, *sec->file, relocs.get()[i]); |
| 3311 | |
| 3312 | // Relocate CU offsets with .debug_info + X relocations. |
| 3313 | OutputChunk &chunk = chunks.get()[i]; |
| 3314 | for (auto [j, cuOffset] : enumerate(First&: chunk.compUnits)) |
| 3315 | cuOffset = relocs.get()[i].lookup(cuOffset); |
| 3316 | }); |
| 3317 | |
| 3318 | // Relocate string offsets in the name table with .debug_str + X relocations. |
| 3319 | parallelForEach(nameVecs, [&](auto &nameVec) { |
| 3320 | for (NameEntry &ne : nameVec) |
| 3321 | ne.stringOffset = relocs.get()[ne.chunkIdx].lookup(ne.stringOffset); |
| 3322 | }); |
| 3323 | } |
| 3324 | |
| 3325 | template <class ELFT> void DebugNamesSection<ELFT>::writeTo(uint8_t *buf) { |
| 3326 | [[maybe_unused]] const uint8_t *const beginBuf = buf; |
| 3327 | // Write the header. |
| 3328 | endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.UnitLength); |
| 3329 | endian::writeNext<uint16_t, ELFT::Endianness>(buf, hdr.Version); |
| 3330 | buf += 2; // padding |
| 3331 | endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.CompUnitCount); |
| 3332 | endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.LocalTypeUnitCount); |
| 3333 | endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.ForeignTypeUnitCount); |
| 3334 | endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.BucketCount); |
| 3335 | endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.NameCount); |
| 3336 | endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.AbbrevTableSize); |
| 3337 | endian::writeNext<uint32_t, ELFT::Endianness>(buf, |
| 3338 | hdr.AugmentationStringSize); |
| 3339 | memcpy(buf, hdr.AugmentationString.c_str(), hdr.AugmentationString.size()); |
| 3340 | buf += hdr.AugmentationStringSize; |
| 3341 | |
| 3342 | // Write the CU list. |
| 3343 | for (auto &chunk : getChunks()) |
| 3344 | for (uint32_t cuOffset : chunk.compUnits) |
| 3345 | endian::writeNext<uint32_t, ELFT::Endianness>(buf, cuOffset); |
| 3346 | |
| 3347 | // TODO: Write the local TU list, then the foreign TU list.. |
| 3348 | |
| 3349 | // Write the hash lookup table. |
| 3350 | SmallVector<SmallVector<NameEntry *, 0>, 0> buckets(hdr.BucketCount); |
| 3351 | // Symbols enter into a bucket whose index is the hash modulo bucket_count. |
| 3352 | for (auto &nameVec : nameVecs) |
| 3353 | for (NameEntry &ne : nameVec) |
| 3354 | buckets[ne.hashValue % hdr.BucketCount].push_back(&ne); |
| 3355 | |
| 3356 | // Write buckets (accumulated bucket counts). |
| 3357 | uint32_t bucketIdx = 1; |
| 3358 | for (const SmallVector<NameEntry *, 0> &bucket : buckets) { |
| 3359 | if (!bucket.empty()) |
| 3360 | endian::write32<ELFT::Endianness>(buf, bucketIdx); |
| 3361 | buf += 4; |
| 3362 | bucketIdx += bucket.size(); |
| 3363 | } |
| 3364 | // Write the hashes. |
| 3365 | for (const SmallVector<NameEntry *, 0> &bucket : buckets) |
| 3366 | for (const NameEntry *e : bucket) |
| 3367 | endian::writeNext<uint32_t, ELFT::Endianness>(buf, e->hashValue); |
| 3368 | |
| 3369 | // Write the name table. The name entries are ordered by bucket_idx and |
| 3370 | // correspond one-to-one with the hash lookup table. |
| 3371 | // |
| 3372 | // First, write the relocated string offsets. |
| 3373 | for (const SmallVector<NameEntry *, 0> &bucket : buckets) |
| 3374 | for (const NameEntry *ne : bucket) |
| 3375 | endian::writeNext<uint32_t, ELFT::Endianness>(buf, ne->stringOffset); |
| 3376 | |
| 3377 | // Then write the entry offsets. |
| 3378 | for (const SmallVector<NameEntry *, 0> &bucket : buckets) |
| 3379 | for (const NameEntry *ne : bucket) |
| 3380 | endian::writeNext<uint32_t, ELFT::Endianness>(buf, ne->entryOffset); |
| 3381 | |
| 3382 | // Write the abbrev table. |
| 3383 | buf = llvm::copy(abbrevTableBuf, buf); |
| 3384 | |
| 3385 | // Write the entry pool. Unlike the name table, the name entries follow the |
| 3386 | // nameVecs order computed by `computeEntryPool`. |
| 3387 | for (auto &nameVec : nameVecs) { |
| 3388 | for (NameEntry &ne : nameVec) { |
| 3389 | // Write all the entries for the string. |
| 3390 | for (const IndexEntry &ie : ne.entries()) { |
| 3391 | buf += encodeULEB128(Value: ie.abbrevCode, p: buf); |
| 3392 | for (AttrValue value : ie.attrValues) { |
| 3393 | switch (value.attrSize) { |
| 3394 | case 1: |
| 3395 | *buf++ = value.attrValue; |
| 3396 | break; |
| 3397 | case 2: |
| 3398 | endian::writeNext<uint16_t, ELFT::Endianness>(buf, value.attrValue); |
| 3399 | break; |
| 3400 | case 4: |
| 3401 | endian::writeNext<uint32_t, ELFT::Endianness>(buf, value.attrValue); |
| 3402 | break; |
| 3403 | default: |
| 3404 | llvm_unreachable("invalid attrSize" ); |
| 3405 | } |
| 3406 | } |
| 3407 | } |
| 3408 | ++buf; // index entry sentinel |
| 3409 | } |
| 3410 | } |
| 3411 | assert(uint64_t(buf - beginBuf) == size); |
| 3412 | } |
| 3413 | |
| 3414 | GdbIndexSection::GdbIndexSection(Ctx &ctx) |
| 3415 | : SyntheticSection(ctx, ".gdb_index" , SHT_PROGBITS, 0, 1) {} |
| 3416 | |
| 3417 | // Returns the desired size of an on-disk hash table for a .gdb_index section. |
| 3418 | // There's a tradeoff between size and collision rate. We aim 75% utilization. |
| 3419 | size_t GdbIndexSection::computeSymtabSize() const { |
| 3420 | return std::max<size_t>(a: NextPowerOf2(A: symbols.size() * 4 / 3), b: 1024); |
| 3421 | } |
| 3422 | |
| 3423 | static SmallVector<GdbIndexSection::CuEntry, 0> |
| 3424 | readCuList(DWARFContext &dwarf) { |
| 3425 | SmallVector<GdbIndexSection::CuEntry, 0> ret; |
| 3426 | for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) |
| 3427 | ret.push_back(Elt: {.cuOffset: cu->getOffset(), .cuLength: cu->getLength() + 4}); |
| 3428 | return ret; |
| 3429 | } |
| 3430 | |
| 3431 | static SmallVector<GdbIndexSection::AddressEntry, 0> |
| 3432 | readAddressAreas(Ctx &ctx, DWARFContext &dwarf, InputSection *sec) { |
| 3433 | SmallVector<GdbIndexSection::AddressEntry, 0> ret; |
| 3434 | |
| 3435 | uint32_t cuIdx = 0; |
| 3436 | for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) { |
| 3437 | if (Error e = cu->tryExtractDIEsIfNeeded(CUDieOnly: false)) { |
| 3438 | Warn(ctx) << sec << ": " << std::move(e); |
| 3439 | return {}; |
| 3440 | } |
| 3441 | Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges(); |
| 3442 | if (!ranges) { |
| 3443 | Warn(ctx) << sec << ": " << ranges.takeError(); |
| 3444 | return {}; |
| 3445 | } |
| 3446 | |
| 3447 | ArrayRef<InputSectionBase *> sections = sec->file->getSections(); |
| 3448 | for (DWARFAddressRange &r : *ranges) { |
| 3449 | if (r.SectionIndex == -1ULL) |
| 3450 | continue; |
| 3451 | // Range list with zero size has no effect. |
| 3452 | InputSectionBase *s = sections[r.SectionIndex]; |
| 3453 | if (s && s != &InputSection::discarded && s->isLive()) |
| 3454 | if (r.LowPC != r.HighPC) |
| 3455 | ret.push_back(Elt: {.section: cast<InputSection>(Val: s), .lowAddress: r.LowPC, .highAddress: r.HighPC, .cuIndex: cuIdx}); |
| 3456 | } |
| 3457 | ++cuIdx; |
| 3458 | } |
| 3459 | |
| 3460 | return ret; |
| 3461 | } |
| 3462 | |
| 3463 | template <class ELFT> |
| 3464 | static SmallVector<GdbIndexSection::NameAttrEntry, 0> |
| 3465 | readPubNamesAndTypes(Ctx &ctx, const LLDDwarfObj<ELFT> &obj, |
| 3466 | const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) { |
| 3467 | const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection(); |
| 3468 | const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection(); |
| 3469 | |
| 3470 | SmallVector<GdbIndexSection::NameAttrEntry, 0> ret; |
| 3471 | for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) { |
| 3472 | DWARFDataExtractor data(obj, *pub, ELFT::Endianness == endianness::little, |
| 3473 | ELFT::Is64Bits ? 8 : 4); |
| 3474 | DWARFDebugPubTable table; |
| 3475 | table.extract(Data: data, /*GnuStyle=*/true, RecoverableErrorHandler: [&](Error e) { |
| 3476 | Warn(ctx) << pub->sec << ": " << std::move(e); |
| 3477 | }); |
| 3478 | for (const DWARFDebugPubTable::Set &set : table.getData()) { |
| 3479 | // The value written into the constant pool is kind << 24 | cuIndex. As we |
| 3480 | // don't know how many compilation units precede this object to compute |
| 3481 | // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add |
| 3482 | // the number of preceding compilation units later. |
| 3483 | uint32_t i = llvm::partition_point(cus, |
| 3484 | [&](GdbIndexSection::CuEntry cu) { |
| 3485 | return cu.cuOffset < set.Offset; |
| 3486 | }) - |
| 3487 | cus.begin(); |
| 3488 | for (const DWARFDebugPubTable::Entry &ent : set.Entries) |
| 3489 | ret.push_back(Elt: {.name: {ent.Name, computeGdbHash(s: ent.Name)}, |
| 3490 | .cuIndexAndAttrs: (ent.Descriptor.toBits() << 24) | i}); |
| 3491 | } |
| 3492 | } |
| 3493 | return ret; |
| 3494 | } |
| 3495 | |
| 3496 | // Create a list of symbols from a given list of symbol names and types |
| 3497 | // by uniquifying them by name. |
| 3498 | static std::pair<SmallVector<GdbIndexSection::GdbSymbol, 0>, size_t> |
| 3499 | createSymbols( |
| 3500 | Ctx &ctx, |
| 3501 | ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs, |
| 3502 | const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) { |
| 3503 | using GdbSymbol = GdbIndexSection::GdbSymbol; |
| 3504 | using NameAttrEntry = GdbIndexSection::NameAttrEntry; |
| 3505 | |
| 3506 | // For each chunk, compute the number of compilation units preceding it. |
| 3507 | uint32_t cuIdx = 0; |
| 3508 | std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]); |
| 3509 | for (uint32_t i = 0, e = chunks.size(); i != e; ++i) { |
| 3510 | cuIdxs[i] = cuIdx; |
| 3511 | cuIdx += chunks[i].compilationUnits.size(); |
| 3512 | } |
| 3513 | |
| 3514 | // Collect the compilation unitss for each unique name. Speed it up using |
| 3515 | // multi-threading as the number of symbols can be in the order of millions. |
| 3516 | // Shard GdbSymbols by hash's high bits. |
| 3517 | constexpr size_t numShards = 32; |
| 3518 | const size_t concurrency = |
| 3519 | llvm::bit_floor(Value: std::min<size_t>(a: ctx.arg.threadCount, b: numShards)); |
| 3520 | const size_t shift = 32 - llvm::countr_zero(Val: numShards); |
| 3521 | auto map = |
| 3522 | std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(num: numShards); |
| 3523 | auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(num: numShards); |
| 3524 | parallelFor(Begin: 0, End: concurrency, Fn: [&](size_t threadId) { |
| 3525 | uint32_t i = 0; |
| 3526 | for (ArrayRef<NameAttrEntry> entries : nameAttrs) { |
| 3527 | for (const NameAttrEntry &ent : entries) { |
| 3528 | size_t shardId = ent.name.hash() >> shift; |
| 3529 | if ((shardId & (concurrency - 1)) != threadId) |
| 3530 | continue; |
| 3531 | |
| 3532 | uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i]; |
| 3533 | auto [it, inserted] = |
| 3534 | map[shardId].try_emplace(Key: ent.name, Args: symbols[shardId].size()); |
| 3535 | if (inserted) |
| 3536 | symbols[shardId].push_back(Elt: {.name: ent.name, .cuVector: {v}, .nameOff: 0, .cuVectorOff: 0}); |
| 3537 | else |
| 3538 | symbols[shardId][it->second].cuVector.push_back(Elt: v); |
| 3539 | } |
| 3540 | ++i; |
| 3541 | } |
| 3542 | }); |
| 3543 | |
| 3544 | size_t numSymbols = 0; |
| 3545 | for (ArrayRef<GdbSymbol> v : ArrayRef(symbols.get(), numShards)) |
| 3546 | numSymbols += v.size(); |
| 3547 | |
| 3548 | // The return type is a flattened vector, so we'll copy each vector |
| 3549 | // contents to Ret. |
| 3550 | SmallVector<GdbSymbol, 0> ret; |
| 3551 | ret.reserve(N: numSymbols); |
| 3552 | for (SmallVector<GdbSymbol, 0> &vec : |
| 3553 | MutableArrayRef(symbols.get(), numShards)) |
| 3554 | for (GdbSymbol &sym : vec) |
| 3555 | ret.push_back(Elt: std::move(sym)); |
| 3556 | |
| 3557 | // CU vectors and symbol names are adjacent in the output file. |
| 3558 | // We can compute their offsets in the output file now. |
| 3559 | size_t off = 0; |
| 3560 | for (GdbSymbol &sym : ret) { |
| 3561 | sym.cuVectorOff = off; |
| 3562 | off += (sym.cuVector.size() + 1) * 4; |
| 3563 | } |
| 3564 | for (GdbSymbol &sym : ret) { |
| 3565 | sym.nameOff = off; |
| 3566 | off += sym.name.size() + 1; |
| 3567 | } |
| 3568 | // If off overflows, the last symbol's nameOff likely overflows. |
| 3569 | if (!isUInt<32>(x: off)) |
| 3570 | Err(ctx) << "--gdb-index: constant pool size (" << off |
| 3571 | << ") exceeds UINT32_MAX" ; |
| 3572 | |
| 3573 | return {ret, off}; |
| 3574 | } |
| 3575 | |
| 3576 | // Returns a newly-created .gdb_index section. |
| 3577 | template <class ELFT> |
| 3578 | std::unique_ptr<GdbIndexSection> GdbIndexSection::create(Ctx &ctx) { |
| 3579 | llvm::TimeTraceScope timeScope("Create gdb index" ); |
| 3580 | |
| 3581 | // Collect InputFiles with .debug_info. See the comment in |
| 3582 | // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future, |
| 3583 | // note that isec->data() may uncompress the full content, which should be |
| 3584 | // parallelized. |
| 3585 | SetVector<InputFile *> files; |
| 3586 | for (InputSectionBase *s : ctx.inputSections) { |
| 3587 | InputSection *isec = dyn_cast<InputSection>(Val: s); |
| 3588 | if (!isec) |
| 3589 | continue; |
| 3590 | // .debug_gnu_pub{names,types} are useless in executables. |
| 3591 | // They are present in input object files solely for creating |
| 3592 | // a .gdb_index. So we can remove them from the output. |
| 3593 | if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes" ) |
| 3594 | s->markDead(); |
| 3595 | else if (isec->name == ".debug_info" ) |
| 3596 | files.insert(X: isec->file); |
| 3597 | } |
| 3598 | // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs. |
| 3599 | llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) { |
| 3600 | if (auto *isec = dyn_cast<InputSection>(Val: s)) |
| 3601 | if (InputSectionBase *rel = isec->getRelocatedSection()) |
| 3602 | return !rel->isLive(); |
| 3603 | return !s->isLive(); |
| 3604 | }); |
| 3605 | |
| 3606 | SmallVector<GdbChunk, 0> chunks(files.size()); |
| 3607 | SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size()); |
| 3608 | |
| 3609 | parallelFor(0, files.size(), [&](size_t i) { |
| 3610 | // To keep memory usage low, we don't want to keep cached DWARFContext, so |
| 3611 | // avoid getDwarf() here. |
| 3612 | ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]); |
| 3613 | DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file)); |
| 3614 | auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()); |
| 3615 | |
| 3616 | // If the are multiple compile units .debug_info (very rare ld -r --unique), |
| 3617 | // this only picks the last one. Other address ranges are lost. |
| 3618 | chunks[i].sec = dobj.getInfoSection(); |
| 3619 | chunks[i].compilationUnits = readCuList(dwarf); |
| 3620 | chunks[i].addressAreas = readAddressAreas(ctx, dwarf, sec: chunks[i].sec); |
| 3621 | nameAttrs[i] = |
| 3622 | readPubNamesAndTypes<ELFT>(ctx, dobj, chunks[i].compilationUnits); |
| 3623 | }); |
| 3624 | |
| 3625 | auto ret = std::make_unique<GdbIndexSection>(args&: ctx); |
| 3626 | ret->chunks = std::move(chunks); |
| 3627 | std::tie(args&: ret->symbols, args&: ret->size) = |
| 3628 | createSymbols(ctx, nameAttrs, chunks: ret->chunks); |
| 3629 | |
| 3630 | // Count the areas other than the constant pool. |
| 3631 | ret->size += sizeof(GdbIndexHeader) + ret->computeSymtabSize() * 8; |
| 3632 | for (GdbChunk &chunk : ret->chunks) |
| 3633 | ret->size += |
| 3634 | chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20; |
| 3635 | |
| 3636 | return ret; |
| 3637 | } |
| 3638 | |
| 3639 | void GdbIndexSection::writeTo(uint8_t *buf) { |
| 3640 | // Write the header. |
| 3641 | auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf); |
| 3642 | uint8_t *start = buf; |
| 3643 | hdr->version = 7; |
| 3644 | buf += sizeof(*hdr); |
| 3645 | |
| 3646 | // Write the CU list. |
| 3647 | hdr->cuListOff = buf - start; |
| 3648 | for (GdbChunk &chunk : chunks) { |
| 3649 | for (CuEntry &cu : chunk.compilationUnits) { |
| 3650 | write64le(P: buf, V: chunk.sec->outSecOff + cu.cuOffset); |
| 3651 | write64le(P: buf + 8, V: cu.cuLength); |
| 3652 | buf += 16; |
| 3653 | } |
| 3654 | } |
| 3655 | |
| 3656 | // Write the address area. |
| 3657 | hdr->cuTypesOff = buf - start; |
| 3658 | hdr->addressAreaOff = buf - start; |
| 3659 | uint32_t cuOff = 0; |
| 3660 | for (GdbChunk &chunk : chunks) { |
| 3661 | for (AddressEntry &e : chunk.addressAreas) { |
| 3662 | // In the case of ICF there may be duplicate address range entries. |
| 3663 | const uint64_t baseAddr = e.section->repl->getVA(offset: 0); |
| 3664 | write64le(P: buf, V: baseAddr + e.lowAddress); |
| 3665 | write64le(P: buf + 8, V: baseAddr + e.highAddress); |
| 3666 | write32le(P: buf + 16, V: e.cuIndex + cuOff); |
| 3667 | buf += 20; |
| 3668 | } |
| 3669 | cuOff += chunk.compilationUnits.size(); |
| 3670 | } |
| 3671 | |
| 3672 | // Write the on-disk open-addressing hash table containing symbols. |
| 3673 | hdr->symtabOff = buf - start; |
| 3674 | size_t symtabSize = computeSymtabSize(); |
| 3675 | uint32_t mask = symtabSize - 1; |
| 3676 | |
| 3677 | for (GdbSymbol &sym : symbols) { |
| 3678 | uint32_t h = sym.name.hash(); |
| 3679 | uint32_t i = h & mask; |
| 3680 | uint32_t step = ((h * 17) & mask) | 1; |
| 3681 | |
| 3682 | while (read32le(P: buf + i * 8)) |
| 3683 | i = (i + step) & mask; |
| 3684 | |
| 3685 | write32le(P: buf + i * 8, V: sym.nameOff); |
| 3686 | write32le(P: buf + i * 8 + 4, V: sym.cuVectorOff); |
| 3687 | } |
| 3688 | |
| 3689 | buf += symtabSize * 8; |
| 3690 | |
| 3691 | // Write the string pool. |
| 3692 | hdr->constantPoolOff = buf - start; |
| 3693 | parallelForEach(R&: symbols, Fn: [&](GdbSymbol &sym) { |
| 3694 | memcpy(dest: buf + sym.nameOff, src: sym.name.data(), n: sym.name.size()); |
| 3695 | }); |
| 3696 | |
| 3697 | // Write the CU vectors. |
| 3698 | for (GdbSymbol &sym : symbols) { |
| 3699 | write32le(P: buf, V: sym.cuVector.size()); |
| 3700 | buf += 4; |
| 3701 | for (uint32_t val : sym.cuVector) { |
| 3702 | write32le(P: buf, V: val); |
| 3703 | buf += 4; |
| 3704 | } |
| 3705 | } |
| 3706 | } |
| 3707 | |
| 3708 | bool GdbIndexSection::isNeeded() const { return !chunks.empty(); } |
| 3709 | |
| 3710 | EhFrameHeader::(Ctx &ctx) |
| 3711 | : SyntheticSection(ctx, ".eh_frame_hdr" , SHT_PROGBITS, SHF_ALLOC, 4) {} |
| 3712 | |
| 3713 | void EhFrameHeader::(uint8_t *buf) { |
| 3714 | // Unlike most sections, the EhFrameHeader section is written while writing |
| 3715 | // another section, namely EhFrameSection, which calls the write() function |
| 3716 | // below from its writeTo() function. This is necessary because the contents |
| 3717 | // of EhFrameHeader depend on the relocated contents of EhFrameSection and we |
| 3718 | // don't know which order the sections will be written in. |
| 3719 | } |
| 3720 | |
| 3721 | // .eh_frame_hdr contains a binary search table of pointers to FDEs. |
| 3722 | // Each entry of the search table consists of two values, |
| 3723 | // the starting PC from where FDEs covers, and the FDE's address. |
| 3724 | // It is sorted by PC. |
| 3725 | void EhFrameHeader::() { |
| 3726 | uint8_t *buf = ctx.bufferStart + getParent()->offset + outSecOff; |
| 3727 | using FdeData = EhFrameSection::FdeData; |
| 3728 | SmallVector<FdeData, 0> fdes = getPartition(ctx).ehFrame->getFdeData(); |
| 3729 | |
| 3730 | buf[0] = 1; |
| 3731 | buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; |
| 3732 | buf[2] = DW_EH_PE_udata4; |
| 3733 | buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; |
| 3734 | write32(ctx, p: buf + 4, |
| 3735 | v: getPartition(ctx).ehFrame->getParent()->addr - this->getVA() - 4); |
| 3736 | write32(ctx, p: buf + 8, v: fdes.size()); |
| 3737 | buf += 12; |
| 3738 | |
| 3739 | for (FdeData &fde : fdes) { |
| 3740 | write32(ctx, p: buf, v: fde.pcRel); |
| 3741 | write32(ctx, p: buf + 4, v: fde.fdeVARel); |
| 3742 | buf += 8; |
| 3743 | } |
| 3744 | } |
| 3745 | |
| 3746 | size_t EhFrameHeader::() const { |
| 3747 | // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. |
| 3748 | return 12 + getPartition(ctx).ehFrame->numFdes * 8; |
| 3749 | } |
| 3750 | |
| 3751 | bool EhFrameHeader::() const { |
| 3752 | return isLive() && getPartition(ctx).ehFrame->isNeeded(); |
| 3753 | } |
| 3754 | |
| 3755 | VersionDefinitionSection::VersionDefinitionSection(Ctx &ctx) |
| 3756 | : SyntheticSection(ctx, ".gnu.version_d" , SHT_GNU_verdef, SHF_ALLOC, |
| 3757 | sizeof(uint32_t)) {} |
| 3758 | |
| 3759 | StringRef VersionDefinitionSection::getFileDefName() { |
| 3760 | if (!getPartition(ctx).name.empty()) |
| 3761 | return getPartition(ctx).name; |
| 3762 | if (!ctx.arg.soName.empty()) |
| 3763 | return ctx.arg.soName; |
| 3764 | return ctx.arg.outputFile; |
| 3765 | } |
| 3766 | |
| 3767 | void VersionDefinitionSection::finalizeContents() { |
| 3768 | fileDefNameOff = getPartition(ctx).dynStrTab->addString(s: getFileDefName()); |
| 3769 | for (const VersionDefinition &v : namedVersionDefs(ctx)) |
| 3770 | verDefNameOffs.push_back(Elt: getPartition(ctx).dynStrTab->addString(s: v.name)); |
| 3771 | |
| 3772 | if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent()) |
| 3773 | getParent()->link = sec->sectionIndex; |
| 3774 | |
| 3775 | // sh_info should be set to the number of definitions. This fact is missed in |
| 3776 | // documentation, but confirmed by binutils community: |
| 3777 | // https://sourceware.org/ml/binutils/2014-11/msg00355.html |
| 3778 | getParent()->info = getVerDefNum(ctx); |
| 3779 | } |
| 3780 | |
| 3781 | void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index, |
| 3782 | StringRef name, size_t nameOff) { |
| 3783 | uint16_t flags = index == 1 ? VER_FLG_BASE : 0; |
| 3784 | |
| 3785 | // Write a verdef. |
| 3786 | write16(ctx, p: buf, v: 1); // vd_version |
| 3787 | write16(ctx, p: buf + 2, v: flags); // vd_flags |
| 3788 | write16(ctx, p: buf + 4, v: index); // vd_ndx |
| 3789 | write16(ctx, p: buf + 6, v: 1); // vd_cnt |
| 3790 | write32(ctx, p: buf + 8, v: hashSysV(SymbolName: name)); // vd_hash |
| 3791 | write32(ctx, p: buf + 12, v: 20); // vd_aux |
| 3792 | write32(ctx, p: buf + 16, v: 28); // vd_next |
| 3793 | |
| 3794 | // Write a veraux. |
| 3795 | write32(ctx, p: buf + 20, v: nameOff); // vda_name |
| 3796 | write32(ctx, p: buf + 24, v: 0); // vda_next |
| 3797 | } |
| 3798 | |
| 3799 | void VersionDefinitionSection::writeTo(uint8_t *buf) { |
| 3800 | writeOne(buf, index: 1, name: getFileDefName(), nameOff: fileDefNameOff); |
| 3801 | |
| 3802 | auto nameOffIt = verDefNameOffs.begin(); |
| 3803 | for (const VersionDefinition &v : namedVersionDefs(ctx)) { |
| 3804 | buf += EntrySize; |
| 3805 | writeOne(buf, index: v.id, name: v.name, nameOff: *nameOffIt++); |
| 3806 | } |
| 3807 | |
| 3808 | // Need to terminate the last version definition. |
| 3809 | write32(ctx, p: buf + 16, v: 0); // vd_next |
| 3810 | } |
| 3811 | |
| 3812 | size_t VersionDefinitionSection::getSize() const { |
| 3813 | return EntrySize * getVerDefNum(ctx); |
| 3814 | } |
| 3815 | |
| 3816 | // .gnu.version is a table where each entry is 2 byte long. |
| 3817 | VersionTableSection::VersionTableSection(Ctx &ctx) |
| 3818 | : SyntheticSection(ctx, ".gnu.version" , SHT_GNU_versym, SHF_ALLOC, |
| 3819 | sizeof(uint16_t)) { |
| 3820 | this->entsize = 2; |
| 3821 | } |
| 3822 | |
| 3823 | void VersionTableSection::finalizeContents() { |
| 3824 | if (OutputSection *osec = getPartition(ctx).dynSymTab->getParent()) |
| 3825 | getParent()->link = osec->sectionIndex; |
| 3826 | } |
| 3827 | |
| 3828 | size_t VersionTableSection::getSize() const { |
| 3829 | return (getPartition(ctx).dynSymTab->getSymbols().size() + 1) * 2; |
| 3830 | } |
| 3831 | |
| 3832 | void VersionTableSection::writeTo(uint8_t *buf) { |
| 3833 | buf += 2; |
| 3834 | for (const SymbolTableEntry &s : getPartition(ctx).dynSymTab->getSymbols()) { |
| 3835 | // For an unextracted lazy symbol (undefined weak), it must have been |
| 3836 | // converted to Undefined and have VER_NDX_GLOBAL version here. |
| 3837 | assert(!s.sym->isLazy()); |
| 3838 | write16(ctx, p: buf, v: s.sym->versionId); |
| 3839 | buf += 2; |
| 3840 | } |
| 3841 | } |
| 3842 | |
| 3843 | bool VersionTableSection::isNeeded() const { |
| 3844 | return isLive() && |
| 3845 | (getPartition(ctx).verDef || getPartition(ctx).verNeed->isNeeded()); |
| 3846 | } |
| 3847 | |
| 3848 | void elf::addVerneed(Ctx &ctx, Symbol &ss) { |
| 3849 | auto &file = cast<SharedFile>(Val&: *ss.file); |
| 3850 | if (ss.versionId == VER_NDX_GLOBAL) |
| 3851 | return; |
| 3852 | |
| 3853 | if (file.vernauxs.empty()) |
| 3854 | file.vernauxs.resize(N: file.verdefs.size()); |
| 3855 | |
| 3856 | // Select a version identifier for the vernaux data structure, if we haven't |
| 3857 | // already allocated one. The verdef identifiers cover the range |
| 3858 | // [1..getVerDefNum(ctx)]; this causes the vernaux identifiers to start from |
| 3859 | // getVerDefNum(ctx)+1. |
| 3860 | if (file.vernauxs[ss.versionId] == 0) |
| 3861 | file.vernauxs[ss.versionId] = ++ctx.vernauxNum + getVerDefNum(ctx); |
| 3862 | |
| 3863 | ss.versionId = file.vernauxs[ss.versionId]; |
| 3864 | } |
| 3865 | |
| 3866 | template <class ELFT> |
| 3867 | VersionNeedSection<ELFT>::VersionNeedSection(Ctx &ctx) |
| 3868 | : SyntheticSection(ctx, ".gnu.version_r" , SHT_GNU_verneed, SHF_ALLOC, |
| 3869 | sizeof(uint32_t)) {} |
| 3870 | |
| 3871 | template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() { |
| 3872 | for (SharedFile *f : ctx.sharedFiles) { |
| 3873 | if (f->vernauxs.empty()) |
| 3874 | continue; |
| 3875 | verneeds.emplace_back(); |
| 3876 | Verneed &vn = verneeds.back(); |
| 3877 | vn.nameStrTab = getPartition(ctx).dynStrTab->addString(f->soName); |
| 3878 | bool isLibc = ctx.arg.relrGlibc && f->soName.starts_with(Prefix: "libc.so." ); |
| 3879 | bool isGlibc2 = false; |
| 3880 | for (unsigned i = 0; i != f->vernauxs.size(); ++i) { |
| 3881 | if (f->vernauxs[i] == 0) |
| 3882 | continue; |
| 3883 | auto *verdef = |
| 3884 | reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]); |
| 3885 | StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name); |
| 3886 | if (isLibc && ver.starts_with(Prefix: "GLIBC_2." )) |
| 3887 | isGlibc2 = true; |
| 3888 | vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i], |
| 3889 | getPartition(ctx).dynStrTab->addString(ver)}); |
| 3890 | } |
| 3891 | if (isGlibc2) { |
| 3892 | const char *ver = "GLIBC_ABI_DT_RELR" ; |
| 3893 | vn.vernauxs.push_back({hashSysV(SymbolName: ver), |
| 3894 | ++ctx.vernauxNum + getVerDefNum(ctx), |
| 3895 | getPartition(ctx).dynStrTab->addString(ver)}); |
| 3896 | } |
| 3897 | } |
| 3898 | |
| 3899 | if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent()) |
| 3900 | getParent()->link = sec->sectionIndex; |
| 3901 | getParent()->info = verneeds.size(); |
| 3902 | } |
| 3903 | |
| 3904 | template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) { |
| 3905 | // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. |
| 3906 | auto *verneed = reinterpret_cast<Elf_Verneed *>(buf); |
| 3907 | auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size()); |
| 3908 | |
| 3909 | for (auto &vn : verneeds) { |
| 3910 | // Create an Elf_Verneed for this DSO. |
| 3911 | verneed->vn_version = 1; |
| 3912 | verneed->vn_cnt = vn.vernauxs.size(); |
| 3913 | verneed->vn_file = vn.nameStrTab; |
| 3914 | verneed->vn_aux = |
| 3915 | reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed); |
| 3916 | verneed->vn_next = sizeof(Elf_Verneed); |
| 3917 | ++verneed; |
| 3918 | |
| 3919 | // Create the Elf_Vernauxs for this Elf_Verneed. |
| 3920 | for (auto &vna : vn.vernauxs) { |
| 3921 | vernaux->vna_hash = vna.hash; |
| 3922 | vernaux->vna_flags = 0; |
| 3923 | vernaux->vna_other = vna.verneedIndex; |
| 3924 | vernaux->vna_name = vna.nameStrTab; |
| 3925 | vernaux->vna_next = sizeof(Elf_Vernaux); |
| 3926 | ++vernaux; |
| 3927 | } |
| 3928 | |
| 3929 | vernaux[-1].vna_next = 0; |
| 3930 | } |
| 3931 | verneed[-1].vn_next = 0; |
| 3932 | } |
| 3933 | |
| 3934 | template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const { |
| 3935 | return verneeds.size() * sizeof(Elf_Verneed) + |
| 3936 | ctx.vernauxNum * sizeof(Elf_Vernaux); |
| 3937 | } |
| 3938 | |
| 3939 | template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const { |
| 3940 | return isLive() && ctx.vernauxNum != 0; |
| 3941 | } |
| 3942 | |
| 3943 | void MergeSyntheticSection::addSection(MergeInputSection *ms) { |
| 3944 | ms->parent = this; |
| 3945 | sections.push_back(Elt: ms); |
| 3946 | assert(addralign == ms->addralign || !(ms->flags & SHF_STRINGS)); |
| 3947 | addralign = std::max(a: addralign, b: ms->addralign); |
| 3948 | } |
| 3949 | |
| 3950 | MergeTailSection::MergeTailSection(Ctx &ctx, StringRef name, uint32_t type, |
| 3951 | uint64_t flags, uint32_t alignment) |
| 3952 | : MergeSyntheticSection(ctx, name, type, flags, alignment), |
| 3953 | builder(StringTableBuilder::RAW, llvm::Align(alignment)) {} |
| 3954 | |
| 3955 | size_t MergeTailSection::getSize() const { return builder.getSize(); } |
| 3956 | |
| 3957 | void MergeTailSection::writeTo(uint8_t *buf) { builder.write(Buf: buf); } |
| 3958 | |
| 3959 | void MergeTailSection::finalizeContents() { |
| 3960 | // Add all string pieces to the string table builder to create section |
| 3961 | // contents. |
| 3962 | for (MergeInputSection *sec : sections) |
| 3963 | for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) |
| 3964 | if (sec->pieces[i].live) |
| 3965 | builder.add(S: sec->getData(i)); |
| 3966 | |
| 3967 | // Fix the string table content. After this, the contents will never change. |
| 3968 | builder.finalize(); |
| 3969 | |
| 3970 | // finalize() fixed tail-optimized strings, so we can now get |
| 3971 | // offsets of strings. Get an offset for each string and save it |
| 3972 | // to a corresponding SectionPiece for easy access. |
| 3973 | for (MergeInputSection *sec : sections) |
| 3974 | for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) |
| 3975 | if (sec->pieces[i].live) |
| 3976 | sec->pieces[i].outputOff = builder.getOffset(S: sec->getData(i)); |
| 3977 | } |
| 3978 | |
| 3979 | void MergeNoTailSection::writeTo(uint8_t *buf) { |
| 3980 | parallelFor(Begin: 0, End: numShards, |
| 3981 | Fn: [&](size_t i) { shards[i].write(Buf: buf + shardOffsets[i]); }); |
| 3982 | } |
| 3983 | |
| 3984 | // This function is very hot (i.e. it can take several seconds to finish) |
| 3985 | // because sometimes the number of inputs is in an order of magnitude of |
| 3986 | // millions. So, we use multi-threading. |
| 3987 | // |
| 3988 | // For any strings S and T, we know S is not mergeable with T if S's hash |
| 3989 | // value is different from T's. If that's the case, we can safely put S and |
| 3990 | // T into different string builders without worrying about merge misses. |
| 3991 | // We do it in parallel. |
| 3992 | void MergeNoTailSection::finalizeContents() { |
| 3993 | // Initializes string table builders. |
| 3994 | for (size_t i = 0; i < numShards; ++i) |
| 3995 | shards.emplace_back(Args: StringTableBuilder::RAW, Args: llvm::Align(addralign)); |
| 3996 | |
| 3997 | // Concurrency level. Must be a power of 2 to avoid expensive modulo |
| 3998 | // operations in the following tight loop. |
| 3999 | const size_t concurrency = |
| 4000 | llvm::bit_floor(Value: std::min<size_t>(a: ctx.arg.threadCount, b: numShards)); |
| 4001 | |
| 4002 | // Add section pieces to the builders. |
| 4003 | parallelFor(Begin: 0, End: concurrency, Fn: [&](size_t threadId) { |
| 4004 | for (MergeInputSection *sec : sections) { |
| 4005 | for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) { |
| 4006 | if (!sec->pieces[i].live) |
| 4007 | continue; |
| 4008 | size_t shardId = getShardId(hash: sec->pieces[i].hash); |
| 4009 | if ((shardId & (concurrency - 1)) == threadId) |
| 4010 | sec->pieces[i].outputOff = shards[shardId].add(S: sec->getData(i)); |
| 4011 | } |
| 4012 | } |
| 4013 | }); |
| 4014 | |
| 4015 | // Compute an in-section offset for each shard. |
| 4016 | size_t off = 0; |
| 4017 | for (size_t i = 0; i < numShards; ++i) { |
| 4018 | shards[i].finalizeInOrder(); |
| 4019 | if (shards[i].getSize() > 0) |
| 4020 | off = alignToPowerOf2(Value: off, Align: addralign); |
| 4021 | shardOffsets[i] = off; |
| 4022 | off += shards[i].getSize(); |
| 4023 | } |
| 4024 | size = off; |
| 4025 | |
| 4026 | // So far, section pieces have offsets from beginning of shards, but |
| 4027 | // we want offsets from beginning of the whole section. Fix them. |
| 4028 | parallelForEach(R&: sections, Fn: [&](MergeInputSection *sec) { |
| 4029 | for (SectionPiece &piece : sec->pieces) |
| 4030 | if (piece.live) |
| 4031 | piece.outputOff += shardOffsets[getShardId(hash: piece.hash)]; |
| 4032 | }); |
| 4033 | } |
| 4034 | |
| 4035 | template <class ELFT> void elf::splitSections(Ctx &ctx) { |
| 4036 | llvm::TimeTraceScope timeScope("Split sections" ); |
| 4037 | // splitIntoPieces needs to be called on each MergeInputSection |
| 4038 | // before calling finalizeContents(). |
| 4039 | parallelForEach(ctx.objectFiles, [](ELFFileBase *file) { |
| 4040 | for (InputSectionBase *sec : file->getSections()) { |
| 4041 | if (!sec) |
| 4042 | continue; |
| 4043 | if (auto *s = dyn_cast<MergeInputSection>(Val: sec)) |
| 4044 | s->splitIntoPieces(); |
| 4045 | else if (auto *eh = dyn_cast<EhInputSection>(Val: sec)) |
| 4046 | eh->split<ELFT>(); |
| 4047 | } |
| 4048 | }); |
| 4049 | } |
| 4050 | |
| 4051 | void elf::combineEhSections(Ctx &ctx) { |
| 4052 | llvm::TimeTraceScope timeScope("Combine EH sections" ); |
| 4053 | for (EhInputSection *sec : ctx.ehInputSections) { |
| 4054 | EhFrameSection &eh = *sec->getPartition(ctx).ehFrame; |
| 4055 | sec->parent = &eh; |
| 4056 | eh.addralign = std::max(a: eh.addralign, b: sec->addralign); |
| 4057 | eh.sections.push_back(Elt: sec); |
| 4058 | llvm::append_range(C&: eh.dependentSections, R&: sec->dependentSections); |
| 4059 | } |
| 4060 | |
| 4061 | if (!ctx.mainPart->armExidx) |
| 4062 | return; |
| 4063 | llvm::erase_if(C&: ctx.inputSections, P: [&](InputSectionBase *s) { |
| 4064 | // Ignore dead sections and the partition end marker (.part.end), |
| 4065 | // whose partition number is out of bounds. |
| 4066 | if (!s->isLive() || s->partition == 255) |
| 4067 | return false; |
| 4068 | Partition &part = s->getPartition(ctx); |
| 4069 | return s->kind() == SectionBase::Regular && part.armExidx && |
| 4070 | part.armExidx->addSection(isec: cast<InputSection>(Val: s)); |
| 4071 | }); |
| 4072 | } |
| 4073 | |
| 4074 | MipsRldMapSection::MipsRldMapSection(Ctx &ctx) |
| 4075 | : SyntheticSection(ctx, ".rld_map" , SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, |
| 4076 | ctx.arg.wordsize) {} |
| 4077 | |
| 4078 | ARMExidxSyntheticSection::ARMExidxSyntheticSection(Ctx &ctx) |
| 4079 | : SyntheticSection(ctx, ".ARM.exidx" , SHT_ARM_EXIDX, |
| 4080 | SHF_ALLOC | SHF_LINK_ORDER, ctx.arg.wordsize) {} |
| 4081 | |
| 4082 | static InputSection *findExidxSection(InputSection *isec) { |
| 4083 | for (InputSection *d : isec->dependentSections) |
| 4084 | if (d->type == SHT_ARM_EXIDX && d->isLive()) |
| 4085 | return d; |
| 4086 | return nullptr; |
| 4087 | } |
| 4088 | |
| 4089 | static bool isValidExidxSectionDep(InputSection *isec) { |
| 4090 | return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) && |
| 4091 | isec->getSize() > 0; |
| 4092 | } |
| 4093 | |
| 4094 | bool ARMExidxSyntheticSection::addSection(InputSection *isec) { |
| 4095 | if (isec->type == SHT_ARM_EXIDX) { |
| 4096 | if (InputSection *dep = isec->getLinkOrderDep()) |
| 4097 | if (isValidExidxSectionDep(isec: dep)) { |
| 4098 | exidxSections.push_back(Elt: isec); |
| 4099 | // Every exidxSection is 8 bytes, we need an estimate of |
| 4100 | // size before assignAddresses can be called. Final size |
| 4101 | // will only be known after finalize is called. |
| 4102 | size += 8; |
| 4103 | } |
| 4104 | return true; |
| 4105 | } |
| 4106 | |
| 4107 | if (isValidExidxSectionDep(isec)) { |
| 4108 | executableSections.push_back(Elt: isec); |
| 4109 | return false; |
| 4110 | } |
| 4111 | |
| 4112 | // FIXME: we do not output a relocation section when --emit-relocs is used |
| 4113 | // as we do not have relocation sections for linker generated table entries |
| 4114 | // and we would have to erase at a late stage relocations from merged entries. |
| 4115 | // Given that exception tables are already position independent and a binary |
| 4116 | // analyzer could derive the relocations we choose to erase the relocations. |
| 4117 | if (ctx.arg.emitRelocs && isec->type == SHT_REL) |
| 4118 | if (InputSectionBase *ex = isec->getRelocatedSection()) |
| 4119 | if (isa<InputSection>(Val: ex) && ex->type == SHT_ARM_EXIDX) |
| 4120 | return true; |
| 4121 | |
| 4122 | return false; |
| 4123 | } |
| 4124 | |
| 4125 | // References to .ARM.Extab Sections have bit 31 clear and are not the |
| 4126 | // special EXIDX_CANTUNWIND bit-pattern. |
| 4127 | static bool isExtabRef(uint32_t unwind) { |
| 4128 | return (unwind & 0x80000000) == 0 && unwind != 0x1; |
| 4129 | } |
| 4130 | |
| 4131 | // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx |
| 4132 | // section Prev, where Cur follows Prev in the table. This can be done if the |
| 4133 | // unwinding instructions in Cur are identical to Prev. Linker generated |
| 4134 | // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an |
| 4135 | // InputSection. |
| 4136 | static bool isDuplicateArmExidxSec(Ctx &ctx, InputSection *prev, |
| 4137 | InputSection *cur) { |
| 4138 | // Get the last table Entry from the previous .ARM.exidx section. If Prev is |
| 4139 | // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry. |
| 4140 | uint32_t prevUnwind = 1; |
| 4141 | if (prev) |
| 4142 | prevUnwind = |
| 4143 | read32(ctx, p: prev->content().data() + prev->content().size() - 4); |
| 4144 | if (isExtabRef(unwind: prevUnwind)) |
| 4145 | return false; |
| 4146 | |
| 4147 | // We consider the unwind instructions of an .ARM.exidx table entry |
| 4148 | // a duplicate if the previous unwind instructions if: |
| 4149 | // - Both are the special EXIDX_CANTUNWIND. |
| 4150 | // - Both are the same inline unwind instructions. |
| 4151 | // We do not attempt to follow and check links into .ARM.extab tables as |
| 4152 | // consecutive identical entries are rare and the effort to check that they |
| 4153 | // are identical is high. |
| 4154 | |
| 4155 | // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry. |
| 4156 | if (cur == nullptr) |
| 4157 | return prevUnwind == 1; |
| 4158 | |
| 4159 | for (uint32_t offset = 4; offset < (uint32_t)cur->content().size(); offset +=8) { |
| 4160 | uint32_t curUnwind = read32(ctx, p: cur->content().data() + offset); |
| 4161 | if (isExtabRef(unwind: curUnwind) || curUnwind != prevUnwind) |
| 4162 | return false; |
| 4163 | } |
| 4164 | // All table entries in this .ARM.exidx Section can be merged into the |
| 4165 | // previous Section. |
| 4166 | return true; |
| 4167 | } |
| 4168 | |
| 4169 | // The .ARM.exidx table must be sorted in ascending order of the address of the |
| 4170 | // functions the table describes. std::optionally duplicate adjacent table |
| 4171 | // entries can be removed. At the end of the function the executableSections |
| 4172 | // must be sorted in ascending order of address, Sentinel is set to the |
| 4173 | // InputSection with the highest address and any InputSections that have |
| 4174 | // mergeable .ARM.exidx table entries are removed from it. |
| 4175 | void ARMExidxSyntheticSection::finalizeContents() { |
| 4176 | // Ensure that any fixed-point iterations after the first see the original set |
| 4177 | // of sections. |
| 4178 | if (!originalExecutableSections.empty()) |
| 4179 | executableSections = originalExecutableSections; |
| 4180 | else if (ctx.arg.enableNonContiguousRegions) |
| 4181 | originalExecutableSections = executableSections; |
| 4182 | |
| 4183 | // The executableSections and exidxSections that we use to derive the final |
| 4184 | // contents of this SyntheticSection are populated before |
| 4185 | // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or |
| 4186 | // ICF may remove executable InputSections and their dependent .ARM.exidx |
| 4187 | // section that we recorded earlier. |
| 4188 | auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); }; |
| 4189 | llvm::erase_if(C&: exidxSections, P: isDiscarded); |
| 4190 | // We need to remove discarded InputSections and InputSections without |
| 4191 | // .ARM.exidx sections that if we generated the .ARM.exidx it would be out |
| 4192 | // of range. |
| 4193 | auto isDiscardedOrOutOfRange = [this](InputSection *isec) { |
| 4194 | if (!isec->isLive()) |
| 4195 | return true; |
| 4196 | if (findExidxSection(isec)) |
| 4197 | return false; |
| 4198 | int64_t off = static_cast<int64_t>(isec->getVA() - getVA()); |
| 4199 | return off != llvm::SignExtend64(X: off, B: 31); |
| 4200 | }; |
| 4201 | llvm::erase_if(C&: executableSections, P: isDiscardedOrOutOfRange); |
| 4202 | |
| 4203 | // Sort the executable sections that may or may not have associated |
| 4204 | // .ARM.exidx sections by order of ascending address. This requires the |
| 4205 | // relative positions of InputSections and OutputSections to be known. |
| 4206 | auto compareByFilePosition = [](const InputSection *a, |
| 4207 | const InputSection *b) { |
| 4208 | OutputSection *aOut = a->getParent(); |
| 4209 | OutputSection *bOut = b->getParent(); |
| 4210 | |
| 4211 | if (aOut != bOut) |
| 4212 | return aOut->addr < bOut->addr; |
| 4213 | return a->outSecOff < b->outSecOff; |
| 4214 | }; |
| 4215 | llvm::stable_sort(Range&: executableSections, C: compareByFilePosition); |
| 4216 | sentinel = executableSections.back(); |
| 4217 | // std::optionally merge adjacent duplicate entries. |
| 4218 | if (ctx.arg.mergeArmExidx) { |
| 4219 | SmallVector<InputSection *, 0> selectedSections; |
| 4220 | selectedSections.reserve(N: executableSections.size()); |
| 4221 | selectedSections.push_back(Elt: executableSections[0]); |
| 4222 | size_t prev = 0; |
| 4223 | for (size_t i = 1; i < executableSections.size(); ++i) { |
| 4224 | InputSection *ex1 = findExidxSection(isec: executableSections[prev]); |
| 4225 | InputSection *ex2 = findExidxSection(isec: executableSections[i]); |
| 4226 | if (!isDuplicateArmExidxSec(ctx, prev: ex1, cur: ex2)) { |
| 4227 | selectedSections.push_back(Elt: executableSections[i]); |
| 4228 | prev = i; |
| 4229 | } |
| 4230 | } |
| 4231 | executableSections = std::move(selectedSections); |
| 4232 | } |
| 4233 | // offset is within the SyntheticSection. |
| 4234 | size_t offset = 0; |
| 4235 | size = 0; |
| 4236 | for (InputSection *isec : executableSections) { |
| 4237 | if (InputSection *d = findExidxSection(isec)) { |
| 4238 | d->outSecOff = offset; |
| 4239 | d->parent = getParent(); |
| 4240 | offset += d->getSize(); |
| 4241 | } else { |
| 4242 | offset += 8; |
| 4243 | } |
| 4244 | } |
| 4245 | // Size includes Sentinel. |
| 4246 | size = offset + 8; |
| 4247 | } |
| 4248 | |
| 4249 | InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const { |
| 4250 | return executableSections.front(); |
| 4251 | } |
| 4252 | |
| 4253 | // To write the .ARM.exidx table from the ExecutableSections we have three cases |
| 4254 | // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections. |
| 4255 | // We write the .ARM.exidx section contents and apply its relocations. |
| 4256 | // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We |
| 4257 | // must write the contents of an EXIDX_CANTUNWIND directly. We use the |
| 4258 | // start of the InputSection as the purpose of the linker generated |
| 4259 | // section is to terminate the address range of the previous entry. |
| 4260 | // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of |
| 4261 | // the table to terminate the address range of the final entry. |
| 4262 | void ARMExidxSyntheticSection::writeTo(uint8_t *buf) { |
| 4263 | |
| 4264 | // A linker generated CANTUNWIND entry is made up of two words: |
| 4265 | // 0x0 with R_ARM_PREL31 relocation to target. |
| 4266 | // 0x1 with EXIDX_CANTUNWIND. |
| 4267 | uint64_t offset = 0; |
| 4268 | for (InputSection *isec : executableSections) { |
| 4269 | assert(isec->getParent() != nullptr); |
| 4270 | if (InputSection *d = findExidxSection(isec)) { |
| 4271 | for (int dataOffset = 0; dataOffset != (int)d->content().size(); |
| 4272 | dataOffset += 4) |
| 4273 | write32(ctx, p: buf + offset + dataOffset, |
| 4274 | v: read32(ctx, p: d->content().data() + dataOffset)); |
| 4275 | // Recalculate outSecOff as finalizeAddressDependentContent() |
| 4276 | // may have altered syntheticSection outSecOff. |
| 4277 | d->outSecOff = offset + outSecOff; |
| 4278 | ctx.target->relocateAlloc(sec&: *d, buf: buf + offset); |
| 4279 | offset += d->getSize(); |
| 4280 | } else { |
| 4281 | // A Linker generated CANTUNWIND section. |
| 4282 | write32(ctx, p: buf + offset + 0, v: 0x0); |
| 4283 | write32(ctx, p: buf + offset + 4, v: 0x1); |
| 4284 | uint64_t s = isec->getVA(); |
| 4285 | uint64_t p = getVA() + offset; |
| 4286 | ctx.target->relocateNoSym(loc: buf + offset, type: R_ARM_PREL31, val: s - p); |
| 4287 | offset += 8; |
| 4288 | } |
| 4289 | } |
| 4290 | // Write Sentinel CANTUNWIND entry. |
| 4291 | write32(ctx, p: buf + offset + 0, v: 0x0); |
| 4292 | write32(ctx, p: buf + offset + 4, v: 0x1); |
| 4293 | uint64_t s = sentinel->getVA(offset: sentinel->getSize()); |
| 4294 | uint64_t p = getVA() + offset; |
| 4295 | ctx.target->relocateNoSym(loc: buf + offset, type: R_ARM_PREL31, val: s - p); |
| 4296 | assert(size == offset + 8); |
| 4297 | } |
| 4298 | |
| 4299 | bool ARMExidxSyntheticSection::isNeeded() const { |
| 4300 | return llvm::any_of(Range: exidxSections, |
| 4301 | P: [](InputSection *isec) { return isec->isLive(); }); |
| 4302 | } |
| 4303 | |
| 4304 | ThunkSection::ThunkSection(Ctx &ctx, OutputSection *os, uint64_t off) |
| 4305 | : SyntheticSection(ctx, ".text.thunk" , SHT_PROGBITS, |
| 4306 | SHF_ALLOC | SHF_EXECINSTR, |
| 4307 | ctx.arg.emachine == EM_PPC64 ? 16 : 4) { |
| 4308 | this->parent = os; |
| 4309 | this->outSecOff = off; |
| 4310 | } |
| 4311 | |
| 4312 | size_t ThunkSection::getSize() const { |
| 4313 | if (roundUpSizeForErrata) |
| 4314 | return alignTo(Value: size, Align: 4096); |
| 4315 | return size; |
| 4316 | } |
| 4317 | |
| 4318 | void ThunkSection::addThunk(Thunk *t) { |
| 4319 | thunks.push_back(Elt: t); |
| 4320 | t->addSymbols(isec&: *this); |
| 4321 | } |
| 4322 | |
| 4323 | void ThunkSection::writeTo(uint8_t *buf) { |
| 4324 | for (Thunk *t : thunks) |
| 4325 | t->writeTo(buf: buf + t->offset); |
| 4326 | } |
| 4327 | |
| 4328 | InputSection *ThunkSection::getTargetInputSection() const { |
| 4329 | if (thunks.empty()) |
| 4330 | return nullptr; |
| 4331 | const Thunk *t = thunks.front(); |
| 4332 | return t->getTargetInputSection(); |
| 4333 | } |
| 4334 | |
| 4335 | bool ThunkSection::assignOffsets() { |
| 4336 | uint64_t off = 0; |
| 4337 | bool changed = false; |
| 4338 | for (Thunk *t : thunks) { |
| 4339 | if (t->alignment > addralign) { |
| 4340 | addralign = t->alignment; |
| 4341 | changed = true; |
| 4342 | } |
| 4343 | off = alignToPowerOf2(Value: off, Align: t->alignment); |
| 4344 | t->setOffset(off); |
| 4345 | uint32_t size = t->size(); |
| 4346 | t->getThunkTargetSym()->size = size; |
| 4347 | off += size; |
| 4348 | } |
| 4349 | if (off != size) |
| 4350 | changed = true; |
| 4351 | size = off; |
| 4352 | return changed; |
| 4353 | } |
| 4354 | |
| 4355 | PPC32Got2Section::PPC32Got2Section(Ctx &ctx) |
| 4356 | : SyntheticSection(ctx, ".got2" , SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, 4) {} |
| 4357 | |
| 4358 | bool PPC32Got2Section::isNeeded() const { |
| 4359 | // See the comment below. This is not needed if there is no other |
| 4360 | // InputSection. |
| 4361 | for (SectionCommand *cmd : getParent()->commands) |
| 4362 | if (auto *isd = dyn_cast<InputSectionDescription>(Val: cmd)) |
| 4363 | for (InputSection *isec : isd->sections) |
| 4364 | if (isec != this) |
| 4365 | return true; |
| 4366 | return false; |
| 4367 | } |
| 4368 | |
| 4369 | void PPC32Got2Section::finalizeContents() { |
| 4370 | // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in |
| 4371 | // .got2 . This function computes outSecOff of each .got2 to be used in |
| 4372 | // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is |
| 4373 | // to collect input sections named ".got2". |
| 4374 | for (SectionCommand *cmd : getParent()->commands) |
| 4375 | if (auto *isd = dyn_cast<InputSectionDescription>(Val: cmd)) { |
| 4376 | for (InputSection *isec : isd->sections) { |
| 4377 | // isec->file may be nullptr for MergeSyntheticSection. |
| 4378 | if (isec != this && isec->file) |
| 4379 | isec->file->ppc32Got2 = isec; |
| 4380 | } |
| 4381 | } |
| 4382 | } |
| 4383 | |
| 4384 | // If linking position-dependent code then the table will store the addresses |
| 4385 | // directly in the binary so the section has type SHT_PROGBITS. If linking |
| 4386 | // position-independent code the section has type SHT_NOBITS since it will be |
| 4387 | // allocated and filled in by the dynamic linker. |
| 4388 | PPC64LongBranchTargetSection::PPC64LongBranchTargetSection(Ctx &ctx) |
| 4389 | : SyntheticSection(ctx, ".branch_lt" , |
| 4390 | ctx.arg.isPic ? SHT_NOBITS : SHT_PROGBITS, |
| 4391 | SHF_ALLOC | SHF_WRITE, 8) {} |
| 4392 | |
| 4393 | uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym, |
| 4394 | int64_t addend) { |
| 4395 | return getVA() + entry_index.find(Val: {sym, addend})->second * 8; |
| 4396 | } |
| 4397 | |
| 4398 | std::optional<uint32_t> |
| 4399 | PPC64LongBranchTargetSection::addEntry(const Symbol *sym, int64_t addend) { |
| 4400 | auto res = |
| 4401 | entry_index.try_emplace(Key: std::make_pair(x&: sym, y&: addend), Args: entries.size()); |
| 4402 | if (!res.second) |
| 4403 | return std::nullopt; |
| 4404 | entries.emplace_back(Args&: sym, Args&: addend); |
| 4405 | return res.first->second; |
| 4406 | } |
| 4407 | |
| 4408 | size_t PPC64LongBranchTargetSection::getSize() const { |
| 4409 | return entries.size() * 8; |
| 4410 | } |
| 4411 | |
| 4412 | void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) { |
| 4413 | // If linking non-pic we have the final addresses of the targets and they get |
| 4414 | // written to the table directly. For pic the dynamic linker will allocate |
| 4415 | // the section and fill it. |
| 4416 | if (ctx.arg.isPic) |
| 4417 | return; |
| 4418 | |
| 4419 | for (auto entry : entries) { |
| 4420 | const Symbol *sym = entry.first; |
| 4421 | int64_t addend = entry.second; |
| 4422 | assert(sym->getVA(ctx)); |
| 4423 | // Need calls to branch to the local entry-point since a long-branch |
| 4424 | // must be a local-call. |
| 4425 | write64(ctx, p: buf, |
| 4426 | v: sym->getVA(ctx, addend) + |
| 4427 | getPPC64GlobalEntryToLocalEntryOffset(ctx, stOther: sym->stOther)); |
| 4428 | buf += 8; |
| 4429 | } |
| 4430 | } |
| 4431 | |
| 4432 | bool PPC64LongBranchTargetSection::isNeeded() const { |
| 4433 | // `removeUnusedSyntheticSections()` is called before thunk allocation which |
| 4434 | // is too early to determine if this section will be empty or not. We need |
| 4435 | // Finalized to keep the section alive until after thunk creation. Finalized |
| 4436 | // only gets set to true once `finalizeSections()` is called after thunk |
| 4437 | // creation. Because of this, if we don't create any long-branch thunks we end |
| 4438 | // up with an empty .branch_lt section in the binary. |
| 4439 | return !finalized || !entries.empty(); |
| 4440 | } |
| 4441 | |
| 4442 | static uint8_t getAbiVersion(Ctx &ctx) { |
| 4443 | // MIPS non-PIC executable gets ABI version 1. |
| 4444 | if (ctx.arg.emachine == EM_MIPS) { |
| 4445 | if (!ctx.arg.isPic && !ctx.arg.relocatable && |
| 4446 | (ctx.arg.eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) |
| 4447 | return 1; |
| 4448 | return 0; |
| 4449 | } |
| 4450 | |
| 4451 | if (ctx.arg.emachine == EM_AMDGPU && !ctx.objectFiles.empty()) { |
| 4452 | uint8_t ver = ctx.objectFiles[0]->abiVersion; |
| 4453 | for (InputFile *file : ArrayRef(ctx.objectFiles).slice(N: 1)) |
| 4454 | if (file->abiVersion != ver) |
| 4455 | Err(ctx) << "incompatible ABI version: " << file; |
| 4456 | return ver; |
| 4457 | } |
| 4458 | |
| 4459 | return 0; |
| 4460 | } |
| 4461 | |
| 4462 | template <typename ELFT> |
| 4463 | void elf::writeEhdr(Ctx &ctx, uint8_t *buf, Partition &part) { |
| 4464 | memcpy(dest: buf, src: "\177ELF" , n: 4); |
| 4465 | |
| 4466 | auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); |
| 4467 | eHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; |
| 4468 | eHdr->e_ident[EI_DATA] = |
| 4469 | ELFT::Endianness == endianness::little ? ELFDATA2LSB : ELFDATA2MSB; |
| 4470 | eHdr->e_ident[EI_VERSION] = EV_CURRENT; |
| 4471 | eHdr->e_ident[EI_OSABI] = ctx.arg.osabi; |
| 4472 | eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(ctx); |
| 4473 | eHdr->e_machine = ctx.arg.emachine; |
| 4474 | eHdr->e_version = EV_CURRENT; |
| 4475 | eHdr->e_flags = ctx.arg.eflags; |
| 4476 | eHdr->e_ehsize = sizeof(typename ELFT::Ehdr); |
| 4477 | eHdr->e_phnum = part.phdrs.size(); |
| 4478 | eHdr->e_shentsize = sizeof(typename ELFT::Shdr); |
| 4479 | |
| 4480 | if (!ctx.arg.relocatable) { |
| 4481 | eHdr->e_phoff = sizeof(typename ELFT::Ehdr); |
| 4482 | eHdr->e_phentsize = sizeof(typename ELFT::Phdr); |
| 4483 | } |
| 4484 | } |
| 4485 | |
| 4486 | template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) { |
| 4487 | // Write the program header table. |
| 4488 | auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf); |
| 4489 | for (std::unique_ptr<PhdrEntry> &p : part.phdrs) { |
| 4490 | hBuf->p_type = p->p_type; |
| 4491 | hBuf->p_flags = p->p_flags; |
| 4492 | hBuf->p_offset = p->p_offset; |
| 4493 | hBuf->p_vaddr = p->p_vaddr; |
| 4494 | hBuf->p_paddr = p->p_paddr; |
| 4495 | hBuf->p_filesz = p->p_filesz; |
| 4496 | hBuf->p_memsz = p->p_memsz; |
| 4497 | hBuf->p_align = p->p_align; |
| 4498 | ++hBuf; |
| 4499 | } |
| 4500 | } |
| 4501 | |
| 4502 | template <typename ELFT> |
| 4503 | PartitionElfHeaderSection<ELFT>::(Ctx &ctx) |
| 4504 | : SyntheticSection(ctx, "" , SHT_LLVM_PART_EHDR, SHF_ALLOC, 1) {} |
| 4505 | |
| 4506 | template <typename ELFT> |
| 4507 | size_t PartitionElfHeaderSection<ELFT>::() const { |
| 4508 | return sizeof(typename ELFT::Ehdr); |
| 4509 | } |
| 4510 | |
| 4511 | template <typename ELFT> |
| 4512 | void PartitionElfHeaderSection<ELFT>::(uint8_t *buf) { |
| 4513 | writeEhdr<ELFT>(ctx, buf, getPartition(ctx)); |
| 4514 | |
| 4515 | // Loadable partitions are always ET_DYN. |
| 4516 | auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf); |
| 4517 | eHdr->e_type = ET_DYN; |
| 4518 | } |
| 4519 | |
| 4520 | template <typename ELFT> |
| 4521 | PartitionProgramHeadersSection<ELFT>::(Ctx &ctx) |
| 4522 | : SyntheticSection(ctx, ".phdrs" , SHT_LLVM_PART_PHDR, SHF_ALLOC, 1) {} |
| 4523 | |
| 4524 | template <typename ELFT> |
| 4525 | size_t PartitionProgramHeadersSection<ELFT>::() const { |
| 4526 | return sizeof(typename ELFT::Phdr) * getPartition(ctx).phdrs.size(); |
| 4527 | } |
| 4528 | |
| 4529 | template <typename ELFT> |
| 4530 | void PartitionProgramHeadersSection<ELFT>::(uint8_t *buf) { |
| 4531 | writePhdrs<ELFT>(buf, getPartition(ctx)); |
| 4532 | } |
| 4533 | |
| 4534 | PartitionIndexSection::PartitionIndexSection(Ctx &ctx) |
| 4535 | : SyntheticSection(ctx, ".rodata" , SHT_PROGBITS, SHF_ALLOC, 4) {} |
| 4536 | |
| 4537 | size_t PartitionIndexSection::getSize() const { |
| 4538 | return 12 * (ctx.partitions.size() - 1); |
| 4539 | } |
| 4540 | |
| 4541 | void PartitionIndexSection::finalizeContents() { |
| 4542 | for (size_t i = 1; i != ctx.partitions.size(); ++i) |
| 4543 | ctx.partitions[i].nameStrTab = |
| 4544 | ctx.mainPart->dynStrTab->addString(s: ctx.partitions[i].name); |
| 4545 | } |
| 4546 | |
| 4547 | void PartitionIndexSection::writeTo(uint8_t *buf) { |
| 4548 | uint64_t va = getVA(); |
| 4549 | for (size_t i = 1; i != ctx.partitions.size(); ++i) { |
| 4550 | write32(ctx, p: buf, |
| 4551 | v: ctx.mainPart->dynStrTab->getVA() + ctx.partitions[i].nameStrTab - |
| 4552 | va); |
| 4553 | write32(ctx, p: buf + 4, v: ctx.partitions[i].elfHeader->getVA() - (va + 4)); |
| 4554 | |
| 4555 | SyntheticSection *next = i == ctx.partitions.size() - 1 |
| 4556 | ? ctx.in.partEnd.get() |
| 4557 | : ctx.partitions[i + 1].elfHeader.get(); |
| 4558 | write32(ctx, p: buf + 8, v: next->getVA() - ctx.partitions[i].elfHeader->getVA()); |
| 4559 | |
| 4560 | va += 12; |
| 4561 | buf += 12; |
| 4562 | } |
| 4563 | } |
| 4564 | |
| 4565 | static bool needsInterpSection(Ctx &ctx) { |
| 4566 | return !ctx.arg.relocatable && !ctx.arg.shared && |
| 4567 | !ctx.arg.dynamicLinker.empty() && ctx.script->needsInterpSection(); |
| 4568 | } |
| 4569 | |
| 4570 | bool elf::hasMemtag(Ctx &ctx) { |
| 4571 | return ctx.arg.emachine == EM_AARCH64 && |
| 4572 | ctx.arg.androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE; |
| 4573 | } |
| 4574 | |
| 4575 | // Fully static executables don't support MTE globals at this point in time, as |
| 4576 | // we currently rely on: |
| 4577 | // - A dynamic loader to process relocations, and |
| 4578 | // - Dynamic entries. |
| 4579 | // This restriction could be removed in future by re-using some of the ideas |
| 4580 | // that ifuncs use in fully static executables. |
| 4581 | bool elf::canHaveMemtagGlobals(Ctx &ctx) { |
| 4582 | return hasMemtag(ctx) && |
| 4583 | (ctx.arg.relocatable || ctx.arg.shared || needsInterpSection(ctx)); |
| 4584 | } |
| 4585 | |
| 4586 | constexpr char kMemtagAndroidNoteName[] = "Android" ; |
| 4587 | void MemtagAndroidNote::writeTo(uint8_t *buf) { |
| 4588 | static_assert( |
| 4589 | sizeof(kMemtagAndroidNoteName) == 8, |
| 4590 | "Android 11 & 12 have an ABI that the note name is 8 bytes long. Keep it " |
| 4591 | "that way for backwards compatibility." ); |
| 4592 | |
| 4593 | write32(ctx, p: buf, v: sizeof(kMemtagAndroidNoteName)); |
| 4594 | write32(ctx, p: buf + 4, v: sizeof(uint32_t)); |
| 4595 | write32(ctx, p: buf + 8, v: ELF::NT_ANDROID_TYPE_MEMTAG); |
| 4596 | memcpy(dest: buf + 12, src: kMemtagAndroidNoteName, n: sizeof(kMemtagAndroidNoteName)); |
| 4597 | buf += 12 + alignTo(Value: sizeof(kMemtagAndroidNoteName), Align: 4); |
| 4598 | |
| 4599 | uint32_t value = 0; |
| 4600 | value |= ctx.arg.androidMemtagMode; |
| 4601 | if (ctx.arg.androidMemtagHeap) |
| 4602 | value |= ELF::NT_MEMTAG_HEAP; |
| 4603 | // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled |
| 4604 | // binary on Android 11 or 12 will result in a checkfail in the loader. |
| 4605 | if (ctx.arg.androidMemtagStack) |
| 4606 | value |= ELF::NT_MEMTAG_STACK; |
| 4607 | write32(ctx, p: buf, v: value); // note value |
| 4608 | } |
| 4609 | |
| 4610 | size_t MemtagAndroidNote::getSize() const { |
| 4611 | return sizeof(llvm::ELF::Elf64_Nhdr) + |
| 4612 | /*namesz=*/alignTo(Value: sizeof(kMemtagAndroidNoteName), Align: 4) + |
| 4613 | /*descsz=*/sizeof(uint32_t); |
| 4614 | } |
| 4615 | |
| 4616 | void PackageMetadataNote::writeTo(uint8_t *buf) { |
| 4617 | write32(ctx, p: buf, v: 4); |
| 4618 | write32(ctx, p: buf + 4, v: ctx.arg.packageMetadata.size() + 1); |
| 4619 | write32(ctx, p: buf + 8, v: FDO_PACKAGING_METADATA); |
| 4620 | memcpy(dest: buf + 12, src: "FDO" , n: 4); |
| 4621 | memcpy(dest: buf + 16, src: ctx.arg.packageMetadata.data(), |
| 4622 | n: ctx.arg.packageMetadata.size()); |
| 4623 | } |
| 4624 | |
| 4625 | size_t PackageMetadataNote::getSize() const { |
| 4626 | return sizeof(llvm::ELF::Elf64_Nhdr) + 4 + |
| 4627 | alignTo(Value: ctx.arg.packageMetadata.size() + 1, Align: 4); |
| 4628 | } |
| 4629 | |
| 4630 | // Helper function, return the size of the ULEB128 for 'v', optionally writing |
| 4631 | // it to `*(buf + offset)` if `buf` is non-null. |
| 4632 | static size_t computeOrWriteULEB128(uint64_t v, uint8_t *buf, size_t offset) { |
| 4633 | if (buf) |
| 4634 | return encodeULEB128(Value: v, p: buf + offset); |
| 4635 | return getULEB128Size(Value: v); |
| 4636 | } |
| 4637 | |
| 4638 | // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic |
| 4639 | constexpr uint64_t kMemtagStepSizeBits = 3; |
| 4640 | constexpr uint64_t kMemtagGranuleSize = 16; |
| 4641 | static size_t |
| 4642 | createMemtagGlobalDescriptors(Ctx &ctx, |
| 4643 | const SmallVector<const Symbol *, 0> &symbols, |
| 4644 | uint8_t *buf = nullptr) { |
| 4645 | size_t sectionSize = 0; |
| 4646 | uint64_t lastGlobalEnd = 0; |
| 4647 | |
| 4648 | for (const Symbol *sym : symbols) { |
| 4649 | if (!includeInSymtab(ctx, *sym)) |
| 4650 | continue; |
| 4651 | const uint64_t addr = sym->getVA(ctx); |
| 4652 | const uint64_t size = sym->getSize(); |
| 4653 | |
| 4654 | if (addr <= kMemtagGranuleSize && buf != nullptr) |
| 4655 | Err(ctx) << "address of the tagged symbol \"" << sym->getName() |
| 4656 | << "\" falls in the ELF header. This is indicative of a " |
| 4657 | "compiler/linker bug" ; |
| 4658 | if (addr % kMemtagGranuleSize != 0) |
| 4659 | Err(ctx) << "address of the tagged symbol \"" << sym->getName() |
| 4660 | << "\" at 0x" << Twine::utohexstr(Val: addr) |
| 4661 | << "\" is not granule (16-byte) aligned" ; |
| 4662 | if (size == 0) |
| 4663 | Err(ctx) << "size of the tagged symbol \"" << sym->getName() |
| 4664 | << "\" is not allowed to be zero" ; |
| 4665 | if (size % kMemtagGranuleSize != 0) |
| 4666 | Err(ctx) << "size of the tagged symbol \"" << sym->getName() |
| 4667 | << "\" (size 0x" << Twine::utohexstr(Val: size) |
| 4668 | << ") is not granule (16-byte) aligned" ; |
| 4669 | |
| 4670 | const uint64_t sizeToEncode = size / kMemtagGranuleSize; |
| 4671 | const uint64_t stepToEncode = ((addr - lastGlobalEnd) / kMemtagGranuleSize) |
| 4672 | << kMemtagStepSizeBits; |
| 4673 | if (sizeToEncode < (1 << kMemtagStepSizeBits)) { |
| 4674 | sectionSize += computeOrWriteULEB128(v: stepToEncode | sizeToEncode, buf, offset: sectionSize); |
| 4675 | } else { |
| 4676 | sectionSize += computeOrWriteULEB128(v: stepToEncode, buf, offset: sectionSize); |
| 4677 | sectionSize += computeOrWriteULEB128(v: sizeToEncode - 1, buf, offset: sectionSize); |
| 4678 | } |
| 4679 | lastGlobalEnd = addr + size; |
| 4680 | } |
| 4681 | |
| 4682 | return sectionSize; |
| 4683 | } |
| 4684 | |
| 4685 | bool MemtagGlobalDescriptors::updateAllocSize(Ctx &ctx) { |
| 4686 | size_t oldSize = getSize(); |
| 4687 | llvm::stable_sort(Range&: symbols, C: [&ctx = ctx](const Symbol *s1, const Symbol *s2) { |
| 4688 | return s1->getVA(ctx) < s2->getVA(ctx); |
| 4689 | }); |
| 4690 | return oldSize != getSize(); |
| 4691 | } |
| 4692 | |
| 4693 | void MemtagGlobalDescriptors::writeTo(uint8_t *buf) { |
| 4694 | createMemtagGlobalDescriptors(ctx, symbols, buf); |
| 4695 | } |
| 4696 | |
| 4697 | size_t MemtagGlobalDescriptors::getSize() const { |
| 4698 | return createMemtagGlobalDescriptors(ctx, symbols); |
| 4699 | } |
| 4700 | |
| 4701 | static OutputSection *findSection(Ctx &ctx, StringRef name) { |
| 4702 | for (SectionCommand *cmd : ctx.script->sectionCommands) |
| 4703 | if (auto *osd = dyn_cast<OutputDesc>(Val: cmd)) |
| 4704 | if (osd->osec.name == name) |
| 4705 | return &osd->osec; |
| 4706 | return nullptr; |
| 4707 | } |
| 4708 | |
| 4709 | static Defined *addOptionalRegular(Ctx &ctx, StringRef name, SectionBase *sec, |
| 4710 | uint64_t val, uint8_t stOther = STV_HIDDEN) { |
| 4711 | Symbol *s = ctx.symtab->find(name); |
| 4712 | if (!s || s->isDefined() || s->isCommon()) |
| 4713 | return nullptr; |
| 4714 | |
| 4715 | s->resolve(ctx, other: Defined{ctx, ctx.internalFile, StringRef(), STB_GLOBAL, |
| 4716 | stOther, STT_NOTYPE, val, |
| 4717 | /*size=*/0, sec}); |
| 4718 | s->isUsedInRegularObj = true; |
| 4719 | return cast<Defined>(Val: s); |
| 4720 | } |
| 4721 | |
| 4722 | template <class ELFT> void elf::createSyntheticSections(Ctx &ctx) { |
| 4723 | // Add the .interp section first because it is not a SyntheticSection. |
| 4724 | // The removeUnusedSyntheticSections() function relies on the |
| 4725 | // SyntheticSections coming last. |
| 4726 | if (needsInterpSection(ctx)) { |
| 4727 | for (size_t i = 1; i <= ctx.partitions.size(); ++i) { |
| 4728 | InputSection *sec = createInterpSection(ctx); |
| 4729 | sec->partition = i; |
| 4730 | ctx.inputSections.push_back(Elt: sec); |
| 4731 | } |
| 4732 | } |
| 4733 | |
| 4734 | auto add = [&](SyntheticSection &sec) { ctx.inputSections.push_back(Elt: &sec); }; |
| 4735 | |
| 4736 | if (ctx.arg.zSectionHeader) |
| 4737 | ctx.in.shStrTab = |
| 4738 | std::make_unique<StringTableSection>(args&: ctx, args: ".shstrtab" , args: false); |
| 4739 | |
| 4740 | ctx.out.programHeaders = |
| 4741 | std::make_unique<OutputSection>(args&: ctx, args: "" , args: 0, args: SHF_ALLOC); |
| 4742 | ctx.out.programHeaders->addralign = ctx.arg.wordsize; |
| 4743 | |
| 4744 | if (ctx.arg.strip != StripPolicy::All) { |
| 4745 | ctx.in.strTab = std::make_unique<StringTableSection>(args&: ctx, args: ".strtab" , args: false); |
| 4746 | ctx.in.symTab = |
| 4747 | std::make_unique<SymbolTableSection<ELFT>>(ctx, *ctx.in.strTab); |
| 4748 | ctx.in.symTabShndx = std::make_unique<SymtabShndxSection>(args&: ctx); |
| 4749 | } |
| 4750 | |
| 4751 | ctx.in.bss = std::make_unique<BssSection>(args&: ctx, args: ".bss" , args: 0, args: 1); |
| 4752 | add(*ctx.in.bss); |
| 4753 | |
| 4754 | // If there is a SECTIONS command and a .data.rel.ro section name use name |
| 4755 | // .data.rel.ro.bss so that we match in the .data.rel.ro output section. |
| 4756 | // This makes sure our relro is contiguous. |
| 4757 | bool hasDataRelRo = |
| 4758 | ctx.script->hasSectionsCommand && findSection(ctx, name: ".data.rel.ro" ); |
| 4759 | ctx.in.bssRelRo = std::make_unique<BssSection>( |
| 4760 | args&: ctx, args: hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro" , args: 0, args: 1); |
| 4761 | add(*ctx.in.bssRelRo); |
| 4762 | |
| 4763 | // Add MIPS-specific sections. |
| 4764 | if (ctx.arg.emachine == EM_MIPS) { |
| 4765 | if (!ctx.arg.shared && ctx.hasDynsym) { |
| 4766 | ctx.in.mipsRldMap = std::make_unique<MipsRldMapSection>(args&: ctx); |
| 4767 | add(*ctx.in.mipsRldMap); |
| 4768 | } |
| 4769 | if ((ctx.in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create(ctx))) |
| 4770 | add(*ctx.in.mipsAbiFlags); |
| 4771 | if ((ctx.in.mipsOptions = MipsOptionsSection<ELFT>::create(ctx))) |
| 4772 | add(*ctx.in.mipsOptions); |
| 4773 | if ((ctx.in.mipsReginfo = MipsReginfoSection<ELFT>::create(ctx))) |
| 4774 | add(*ctx.in.mipsReginfo); |
| 4775 | } |
| 4776 | |
| 4777 | StringRef relaDynName = ctx.arg.isRela ? ".rela.dyn" : ".rel.dyn" ; |
| 4778 | |
| 4779 | const unsigned threadCount = ctx.arg.threadCount; |
| 4780 | for (Partition &part : ctx.partitions) { |
| 4781 | auto add = [&](SyntheticSection &sec) { |
| 4782 | sec.partition = part.getNumber(ctx); |
| 4783 | ctx.inputSections.push_back(Elt: &sec); |
| 4784 | }; |
| 4785 | |
| 4786 | if (!part.name.empty()) { |
| 4787 | part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(ctx); |
| 4788 | part.elfHeader->name = part.name; |
| 4789 | add(*part.elfHeader); |
| 4790 | |
| 4791 | part.programHeaders = |
| 4792 | std::make_unique<PartitionProgramHeadersSection<ELFT>>(ctx); |
| 4793 | add(*part.programHeaders); |
| 4794 | } |
| 4795 | |
| 4796 | if (ctx.arg.buildId != BuildIdKind::None) { |
| 4797 | part.buildId = std::make_unique<BuildIdSection>(args&: ctx); |
| 4798 | add(*part.buildId); |
| 4799 | } |
| 4800 | |
| 4801 | // dynSymTab is always present to simplify several finalizeSections |
| 4802 | // functions. |
| 4803 | part.dynStrTab = std::make_unique<StringTableSection>(args&: ctx, args: ".dynstr" , args: true); |
| 4804 | part.dynSymTab = |
| 4805 | std::make_unique<SymbolTableSection<ELFT>>(ctx, *part.dynStrTab); |
| 4806 | |
| 4807 | if (ctx.arg.relocatable) |
| 4808 | continue; |
| 4809 | part.dynamic = std::make_unique<DynamicSection<ELFT>>(ctx); |
| 4810 | |
| 4811 | if (hasMemtag(ctx)) { |
| 4812 | part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>(args&: ctx); |
| 4813 | add(*part.memtagAndroidNote); |
| 4814 | if (canHaveMemtagGlobals(ctx)) { |
| 4815 | part.memtagGlobalDescriptors = |
| 4816 | std::make_unique<MemtagGlobalDescriptors>(args&: ctx); |
| 4817 | add(*part.memtagGlobalDescriptors); |
| 4818 | } |
| 4819 | } |
| 4820 | |
| 4821 | if (ctx.arg.androidPackDynRelocs) |
| 4822 | part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>( |
| 4823 | ctx, relaDynName, threadCount); |
| 4824 | else |
| 4825 | part.relaDyn = std::make_unique<RelocationSection<ELFT>>( |
| 4826 | ctx, relaDynName, ctx.arg.zCombreloc, threadCount); |
| 4827 | |
| 4828 | if (ctx.hasDynsym) { |
| 4829 | add(*part.dynSymTab); |
| 4830 | |
| 4831 | part.verSym = std::make_unique<VersionTableSection>(args&: ctx); |
| 4832 | add(*part.verSym); |
| 4833 | |
| 4834 | if (!namedVersionDefs(ctx).empty()) { |
| 4835 | part.verDef = std::make_unique<VersionDefinitionSection>(args&: ctx); |
| 4836 | add(*part.verDef); |
| 4837 | } |
| 4838 | |
| 4839 | part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(ctx); |
| 4840 | add(*part.verNeed); |
| 4841 | |
| 4842 | if (ctx.arg.gnuHash) { |
| 4843 | part.gnuHashTab = std::make_unique<GnuHashTableSection>(args&: ctx); |
| 4844 | add(*part.gnuHashTab); |
| 4845 | } |
| 4846 | |
| 4847 | if (ctx.arg.sysvHash) { |
| 4848 | part.hashTab = std::make_unique<HashTableSection>(args&: ctx); |
| 4849 | add(*part.hashTab); |
| 4850 | } |
| 4851 | |
| 4852 | add(*part.dynamic); |
| 4853 | add(*part.dynStrTab); |
| 4854 | } |
| 4855 | add(*part.relaDyn); |
| 4856 | |
| 4857 | if (ctx.arg.relrPackDynRelocs) { |
| 4858 | part.relrDyn = std::make_unique<RelrSection<ELFT>>(ctx, threadCount); |
| 4859 | add(*part.relrDyn); |
| 4860 | part.relrAuthDyn = std::make_unique<RelrSection<ELFT>>( |
| 4861 | ctx, threadCount, /*isAArch64Auth=*/true); |
| 4862 | add(*part.relrAuthDyn); |
| 4863 | } |
| 4864 | |
| 4865 | if (ctx.arg.ehFrameHdr) { |
| 4866 | part.ehFrameHdr = std::make_unique<EhFrameHeader>(args&: ctx); |
| 4867 | add(*part.ehFrameHdr); |
| 4868 | } |
| 4869 | part.ehFrame = std::make_unique<EhFrameSection>(args&: ctx); |
| 4870 | add(*part.ehFrame); |
| 4871 | |
| 4872 | if (ctx.arg.emachine == EM_ARM) { |
| 4873 | // This section replaces all the individual .ARM.exidx InputSections. |
| 4874 | part.armExidx = std::make_unique<ARMExidxSyntheticSection>(args&: ctx); |
| 4875 | add(*part.armExidx); |
| 4876 | } |
| 4877 | |
| 4878 | if (!ctx.arg.packageMetadata.empty()) { |
| 4879 | part.packageMetadataNote = std::make_unique<PackageMetadataNote>(args&: ctx); |
| 4880 | add(*part.packageMetadataNote); |
| 4881 | } |
| 4882 | } |
| 4883 | |
| 4884 | if (ctx.partitions.size() != 1) { |
| 4885 | // Create the partition end marker. This needs to be in partition number 255 |
| 4886 | // so that it is sorted after all other partitions. It also has other |
| 4887 | // special handling (see createPhdrs() and combineEhSections()). |
| 4888 | ctx.in.partEnd = |
| 4889 | std::make_unique<BssSection>(args&: ctx, args: ".part.end" , args&: ctx.arg.maxPageSize, args: 1); |
| 4890 | ctx.in.partEnd->partition = 255; |
| 4891 | add(*ctx.in.partEnd); |
| 4892 | |
| 4893 | ctx.in.partIndex = std::make_unique<PartitionIndexSection>(args&: ctx); |
| 4894 | addOptionalRegular(ctx, name: "__part_index_begin" , sec: ctx.in.partIndex.get(), val: 0); |
| 4895 | addOptionalRegular(ctx, name: "__part_index_end" , sec: ctx.in.partIndex.get(), |
| 4896 | val: ctx.in.partIndex->getSize()); |
| 4897 | add(*ctx.in.partIndex); |
| 4898 | } |
| 4899 | |
| 4900 | // Add .got. MIPS' .got is so different from the other archs, |
| 4901 | // it has its own class. |
| 4902 | if (ctx.arg.emachine == EM_MIPS) { |
| 4903 | ctx.in.mipsGot = std::make_unique<MipsGotSection>(args&: ctx); |
| 4904 | add(*ctx.in.mipsGot); |
| 4905 | } else { |
| 4906 | ctx.in.got = std::make_unique<GotSection>(args&: ctx); |
| 4907 | add(*ctx.in.got); |
| 4908 | } |
| 4909 | |
| 4910 | if (ctx.arg.emachine == EM_PPC) { |
| 4911 | ctx.in.ppc32Got2 = std::make_unique<PPC32Got2Section>(args&: ctx); |
| 4912 | add(*ctx.in.ppc32Got2); |
| 4913 | } |
| 4914 | |
| 4915 | if (ctx.arg.emachine == EM_PPC64) { |
| 4916 | ctx.in.ppc64LongBranchTarget = |
| 4917 | std::make_unique<PPC64LongBranchTargetSection>(args&: ctx); |
| 4918 | add(*ctx.in.ppc64LongBranchTarget); |
| 4919 | } |
| 4920 | |
| 4921 | ctx.in.gotPlt = std::make_unique<GotPltSection>(args&: ctx); |
| 4922 | add(*ctx.in.gotPlt); |
| 4923 | ctx.in.igotPlt = std::make_unique<IgotPltSection>(args&: ctx); |
| 4924 | add(*ctx.in.igotPlt); |
| 4925 | // Add .relro_padding if DATA_SEGMENT_RELRO_END is used; otherwise, add the |
| 4926 | // section in the absence of PHDRS/SECTIONS commands. |
| 4927 | if (ctx.arg.zRelro && |
| 4928 | ((ctx.script->phdrsCommands.empty() && !ctx.script->hasSectionsCommand) || |
| 4929 | ctx.script->seenRelroEnd)) { |
| 4930 | ctx.in.relroPadding = std::make_unique<RelroPaddingSection>(args&: ctx); |
| 4931 | add(*ctx.in.relroPadding); |
| 4932 | } |
| 4933 | |
| 4934 | if (ctx.arg.emachine == EM_ARM) { |
| 4935 | ctx.in.armCmseSGSection = std::make_unique<ArmCmseSGSection>(args&: ctx); |
| 4936 | add(*ctx.in.armCmseSGSection); |
| 4937 | } |
| 4938 | |
| 4939 | // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat |
| 4940 | // it as a relocation and ensure the referenced section is created. |
| 4941 | if (ctx.sym.globalOffsetTable && ctx.arg.emachine != EM_MIPS) { |
| 4942 | if (ctx.target->gotBaseSymInGotPlt) |
| 4943 | ctx.in.gotPlt->hasGotPltOffRel = true; |
| 4944 | else |
| 4945 | ctx.in.got->hasGotOffRel = true; |
| 4946 | } |
| 4947 | |
| 4948 | // We always need to add rel[a].plt to output if it has entries. |
| 4949 | // Even for static linking it can contain R_[*]_IRELATIVE relocations. |
| 4950 | ctx.in.relaPlt = std::make_unique<RelocationSection<ELFT>>( |
| 4951 | ctx, ctx.arg.isRela ? ".rela.plt" : ".rel.plt" , /*sort=*/false, |
| 4952 | /*threadCount=*/1); |
| 4953 | add(*ctx.in.relaPlt); |
| 4954 | |
| 4955 | if ((ctx.arg.emachine == EM_386 || ctx.arg.emachine == EM_X86_64) && |
| 4956 | (ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { |
| 4957 | ctx.in.ibtPlt = std::make_unique<IBTPltSection>(args&: ctx); |
| 4958 | add(*ctx.in.ibtPlt); |
| 4959 | } |
| 4960 | |
| 4961 | if (ctx.arg.emachine == EM_PPC) |
| 4962 | ctx.in.plt = std::make_unique<PPC32GlinkSection>(args&: ctx); |
| 4963 | else |
| 4964 | ctx.in.plt = std::make_unique<PltSection>(args&: ctx); |
| 4965 | add(*ctx.in.plt); |
| 4966 | ctx.in.iplt = std::make_unique<IpltSection>(args&: ctx); |
| 4967 | add(*ctx.in.iplt); |
| 4968 | |
| 4969 | if (ctx.arg.andFeatures || ctx.aarch64PauthAbiCoreInfo) { |
| 4970 | ctx.in.gnuProperty = std::make_unique<GnuPropertySection>(args&: ctx); |
| 4971 | add(*ctx.in.gnuProperty); |
| 4972 | } |
| 4973 | |
| 4974 | if (ctx.arg.debugNames) { |
| 4975 | ctx.in.debugNames = std::make_unique<DebugNamesSection<ELFT>>(ctx); |
| 4976 | add(*ctx.in.debugNames); |
| 4977 | } |
| 4978 | |
| 4979 | if (ctx.arg.gdbIndex) { |
| 4980 | ctx.in.gdbIndex = GdbIndexSection::create<ELFT>(ctx); |
| 4981 | add(*ctx.in.gdbIndex); |
| 4982 | } |
| 4983 | |
| 4984 | // .note.GNU-stack is always added when we are creating a re-linkable |
| 4985 | // object file. Other linkers are using the presence of this marker |
| 4986 | // section to control the executable-ness of the stack area, but that |
| 4987 | // is irrelevant these days. Stack area should always be non-executable |
| 4988 | // by default. So we emit this section unconditionally. |
| 4989 | if (ctx.arg.relocatable) { |
| 4990 | ctx.in.gnuStack = std::make_unique<GnuStackSection>(args&: ctx); |
| 4991 | add(*ctx.in.gnuStack); |
| 4992 | } |
| 4993 | |
| 4994 | if (ctx.in.symTab) |
| 4995 | add(*ctx.in.symTab); |
| 4996 | if (ctx.in.symTabShndx) |
| 4997 | add(*ctx.in.symTabShndx); |
| 4998 | if (ctx.in.shStrTab) |
| 4999 | add(*ctx.in.shStrTab); |
| 5000 | if (ctx.in.strTab) |
| 5001 | add(*ctx.in.strTab); |
| 5002 | } |
| 5003 | |
| 5004 | template void elf::splitSections<ELF32LE>(Ctx &); |
| 5005 | template void elf::splitSections<ELF32BE>(Ctx &); |
| 5006 | template void elf::splitSections<ELF64LE>(Ctx &); |
| 5007 | template void elf::splitSections<ELF64BE>(Ctx &); |
| 5008 | |
| 5009 | template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>( |
| 5010 | function_ref<void(InputSection &)>); |
| 5011 | template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>( |
| 5012 | function_ref<void(InputSection &)>); |
| 5013 | template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>( |
| 5014 | function_ref<void(InputSection &)>); |
| 5015 | template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>( |
| 5016 | function_ref<void(InputSection &)>); |
| 5017 | |
| 5018 | template class elf::SymbolTableSection<ELF32LE>; |
| 5019 | template class elf::SymbolTableSection<ELF32BE>; |
| 5020 | template class elf::SymbolTableSection<ELF64LE>; |
| 5021 | template class elf::SymbolTableSection<ELF64BE>; |
| 5022 | |
| 5023 | template void elf::writeEhdr<ELF32LE>(Ctx &, uint8_t *Buf, Partition &Part); |
| 5024 | template void elf::writeEhdr<ELF32BE>(Ctx &, uint8_t *Buf, Partition &Part); |
| 5025 | template void elf::writeEhdr<ELF64LE>(Ctx &, uint8_t *Buf, Partition &Part); |
| 5026 | template void elf::writeEhdr<ELF64BE>(Ctx &, uint8_t *Buf, Partition &Part); |
| 5027 | |
| 5028 | template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part); |
| 5029 | template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part); |
| 5030 | template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part); |
| 5031 | template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part); |
| 5032 | |
| 5033 | template void elf::createSyntheticSections<ELF32LE>(Ctx &); |
| 5034 | template void elf::createSyntheticSections<ELF32BE>(Ctx &); |
| 5035 | template void elf::createSyntheticSections<ELF64LE>(Ctx &); |
| 5036 | template void elf::createSyntheticSections<ELF64BE>(Ctx &); |
| 5037 | |