| 1 | //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the implementation of the scalar evolution analysis |
| 10 | // engine, which is used primarily to analyze expressions involving induction |
| 11 | // variables in loops. |
| 12 | // |
| 13 | // There are several aspects to this library. First is the representation of |
| 14 | // scalar expressions, which are represented as subclasses of the SCEV class. |
| 15 | // These classes are used to represent certain types of subexpressions that we |
| 16 | // can handle. We only create one SCEV of a particular shape, so |
| 17 | // pointer-comparisons for equality are legal. |
| 18 | // |
| 19 | // One important aspect of the SCEV objects is that they are never cyclic, even |
| 20 | // if there is a cycle in the dataflow for an expression (ie, a PHI node). If |
| 21 | // the PHI node is one of the idioms that we can represent (e.g., a polynomial |
| 22 | // recurrence) then we represent it directly as a recurrence node, otherwise we |
| 23 | // represent it as a SCEVUnknown node. |
| 24 | // |
| 25 | // In addition to being able to represent expressions of various types, we also |
| 26 | // have folders that are used to build the *canonical* representation for a |
| 27 | // particular expression. These folders are capable of using a variety of |
| 28 | // rewrite rules to simplify the expressions. |
| 29 | // |
| 30 | // Once the folders are defined, we can implement the more interesting |
| 31 | // higher-level code, such as the code that recognizes PHI nodes of various |
| 32 | // types, computes the execution count of a loop, etc. |
| 33 | // |
| 34 | // TODO: We should use these routines and value representations to implement |
| 35 | // dependence analysis! |
| 36 | // |
| 37 | //===----------------------------------------------------------------------===// |
| 38 | // |
| 39 | // There are several good references for the techniques used in this analysis. |
| 40 | // |
| 41 | // Chains of recurrences -- a method to expedite the evaluation |
| 42 | // of closed-form functions |
| 43 | // Olaf Bachmann, Paul S. Wang, Eugene V. Zima |
| 44 | // |
| 45 | // On computational properties of chains of recurrences |
| 46 | // Eugene V. Zima |
| 47 | // |
| 48 | // Symbolic Evaluation of Chains of Recurrences for Loop Optimization |
| 49 | // Robert A. van Engelen |
| 50 | // |
| 51 | // Efficient Symbolic Analysis for Optimizing Compilers |
| 52 | // Robert A. van Engelen |
| 53 | // |
| 54 | // Using the chains of recurrences algebra for data dependence testing and |
| 55 | // induction variable substitution |
| 56 | // MS Thesis, Johnie Birch |
| 57 | // |
| 58 | //===----------------------------------------------------------------------===// |
| 59 | |
| 60 | #include "llvm/Analysis/ScalarEvolution.h" |
| 61 | #include "llvm/ADT/APInt.h" |
| 62 | #include "llvm/ADT/ArrayRef.h" |
| 63 | #include "llvm/ADT/DenseMap.h" |
| 64 | #include "llvm/ADT/DepthFirstIterator.h" |
| 65 | #include "llvm/ADT/FoldingSet.h" |
| 66 | #include "llvm/ADT/STLExtras.h" |
| 67 | #include "llvm/ADT/ScopeExit.h" |
| 68 | #include "llvm/ADT/Sequence.h" |
| 69 | #include "llvm/ADT/SmallPtrSet.h" |
| 70 | #include "llvm/ADT/SmallSet.h" |
| 71 | #include "llvm/ADT/SmallVector.h" |
| 72 | #include "llvm/ADT/Statistic.h" |
| 73 | #include "llvm/ADT/StringExtras.h" |
| 74 | #include "llvm/ADT/StringRef.h" |
| 75 | #include "llvm/Analysis/AssumptionCache.h" |
| 76 | #include "llvm/Analysis/ConstantFolding.h" |
| 77 | #include "llvm/Analysis/InstructionSimplify.h" |
| 78 | #include "llvm/Analysis/LoopInfo.h" |
| 79 | #include "llvm/Analysis/MemoryBuiltins.h" |
| 80 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 81 | #include "llvm/Analysis/ScalarEvolutionPatternMatch.h" |
| 82 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 83 | #include "llvm/Analysis/ValueTracking.h" |
| 84 | #include "llvm/Config/llvm-config.h" |
| 85 | #include "llvm/IR/Argument.h" |
| 86 | #include "llvm/IR/BasicBlock.h" |
| 87 | #include "llvm/IR/CFG.h" |
| 88 | #include "llvm/IR/Constant.h" |
| 89 | #include "llvm/IR/ConstantRange.h" |
| 90 | #include "llvm/IR/Constants.h" |
| 91 | #include "llvm/IR/DataLayout.h" |
| 92 | #include "llvm/IR/DerivedTypes.h" |
| 93 | #include "llvm/IR/Dominators.h" |
| 94 | #include "llvm/IR/Function.h" |
| 95 | #include "llvm/IR/GlobalAlias.h" |
| 96 | #include "llvm/IR/GlobalValue.h" |
| 97 | #include "llvm/IR/InstIterator.h" |
| 98 | #include "llvm/IR/InstrTypes.h" |
| 99 | #include "llvm/IR/Instruction.h" |
| 100 | #include "llvm/IR/Instructions.h" |
| 101 | #include "llvm/IR/IntrinsicInst.h" |
| 102 | #include "llvm/IR/Intrinsics.h" |
| 103 | #include "llvm/IR/LLVMContext.h" |
| 104 | #include "llvm/IR/Operator.h" |
| 105 | #include "llvm/IR/PatternMatch.h" |
| 106 | #include "llvm/IR/Type.h" |
| 107 | #include "llvm/IR/Use.h" |
| 108 | #include "llvm/IR/User.h" |
| 109 | #include "llvm/IR/Value.h" |
| 110 | #include "llvm/IR/Verifier.h" |
| 111 | #include "llvm/InitializePasses.h" |
| 112 | #include "llvm/Pass.h" |
| 113 | #include "llvm/Support/Casting.h" |
| 114 | #include "llvm/Support/CommandLine.h" |
| 115 | #include "llvm/Support/Compiler.h" |
| 116 | #include "llvm/Support/Debug.h" |
| 117 | #include "llvm/Support/ErrorHandling.h" |
| 118 | #include "llvm/Support/InterleavedRange.h" |
| 119 | #include "llvm/Support/KnownBits.h" |
| 120 | #include "llvm/Support/SaveAndRestore.h" |
| 121 | #include "llvm/Support/raw_ostream.h" |
| 122 | #include <algorithm> |
| 123 | #include <cassert> |
| 124 | #include <climits> |
| 125 | #include <cstdint> |
| 126 | #include <cstdlib> |
| 127 | #include <map> |
| 128 | #include <memory> |
| 129 | #include <numeric> |
| 130 | #include <optional> |
| 131 | #include <tuple> |
| 132 | #include <utility> |
| 133 | #include <vector> |
| 134 | |
| 135 | using namespace llvm; |
| 136 | using namespace PatternMatch; |
| 137 | using namespace SCEVPatternMatch; |
| 138 | |
| 139 | #define DEBUG_TYPE "scalar-evolution" |
| 140 | |
| 141 | STATISTIC(NumExitCountsComputed, |
| 142 | "Number of loop exits with predictable exit counts" ); |
| 143 | STATISTIC(NumExitCountsNotComputed, |
| 144 | "Number of loop exits without predictable exit counts" ); |
| 145 | STATISTIC(NumBruteForceTripCountsComputed, |
| 146 | "Number of loops with trip counts computed by force" ); |
| 147 | |
| 148 | #ifdef EXPENSIVE_CHECKS |
| 149 | bool llvm::VerifySCEV = true; |
| 150 | #else |
| 151 | bool llvm::VerifySCEV = false; |
| 152 | #endif |
| 153 | |
| 154 | static cl::opt<unsigned> |
| 155 | MaxBruteForceIterations("scalar-evolution-max-iterations" , cl::ReallyHidden, |
| 156 | cl::desc("Maximum number of iterations SCEV will " |
| 157 | "symbolically execute a constant " |
| 158 | "derived loop" ), |
| 159 | cl::init(Val: 100)); |
| 160 | |
| 161 | static cl::opt<bool, true> VerifySCEVOpt( |
| 162 | "verify-scev" , cl::Hidden, cl::location(L&: VerifySCEV), |
| 163 | cl::desc("Verify ScalarEvolution's backedge taken counts (slow)" )); |
| 164 | static cl::opt<bool> VerifySCEVStrict( |
| 165 | "verify-scev-strict" , cl::Hidden, |
| 166 | cl::desc("Enable stricter verification with -verify-scev is passed" )); |
| 167 | |
| 168 | static cl::opt<bool> VerifyIR( |
| 169 | "scev-verify-ir" , cl::Hidden, |
| 170 | cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)" ), |
| 171 | cl::init(Val: false)); |
| 172 | |
| 173 | static cl::opt<unsigned> MulOpsInlineThreshold( |
| 174 | "scev-mulops-inline-threshold" , cl::Hidden, |
| 175 | cl::desc("Threshold for inlining multiplication operands into a SCEV" ), |
| 176 | cl::init(Val: 32)); |
| 177 | |
| 178 | static cl::opt<unsigned> AddOpsInlineThreshold( |
| 179 | "scev-addops-inline-threshold" , cl::Hidden, |
| 180 | cl::desc("Threshold for inlining addition operands into a SCEV" ), |
| 181 | cl::init(Val: 500)); |
| 182 | |
| 183 | static cl::opt<unsigned> MaxSCEVCompareDepth( |
| 184 | "scalar-evolution-max-scev-compare-depth" , cl::Hidden, |
| 185 | cl::desc("Maximum depth of recursive SCEV complexity comparisons" ), |
| 186 | cl::init(Val: 32)); |
| 187 | |
| 188 | static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( |
| 189 | "scalar-evolution-max-scev-operations-implication-depth" , cl::Hidden, |
| 190 | cl::desc("Maximum depth of recursive SCEV operations implication analysis" ), |
| 191 | cl::init(Val: 2)); |
| 192 | |
| 193 | static cl::opt<unsigned> MaxValueCompareDepth( |
| 194 | "scalar-evolution-max-value-compare-depth" , cl::Hidden, |
| 195 | cl::desc("Maximum depth of recursive value complexity comparisons" ), |
| 196 | cl::init(Val: 2)); |
| 197 | |
| 198 | static cl::opt<unsigned> |
| 199 | MaxArithDepth("scalar-evolution-max-arith-depth" , cl::Hidden, |
| 200 | cl::desc("Maximum depth of recursive arithmetics" ), |
| 201 | cl::init(Val: 32)); |
| 202 | |
| 203 | static cl::opt<unsigned> MaxConstantEvolvingDepth( |
| 204 | "scalar-evolution-max-constant-evolving-depth" , cl::Hidden, |
| 205 | cl::desc("Maximum depth of recursive constant evolving" ), cl::init(Val: 32)); |
| 206 | |
| 207 | static cl::opt<unsigned> |
| 208 | MaxCastDepth("scalar-evolution-max-cast-depth" , cl::Hidden, |
| 209 | cl::desc("Maximum depth of recursive SExt/ZExt/Trunc" ), |
| 210 | cl::init(Val: 8)); |
| 211 | |
| 212 | static cl::opt<unsigned> |
| 213 | MaxAddRecSize("scalar-evolution-max-add-rec-size" , cl::Hidden, |
| 214 | cl::desc("Max coefficients in AddRec during evolving" ), |
| 215 | cl::init(Val: 8)); |
| 216 | |
| 217 | static cl::opt<unsigned> |
| 218 | HugeExprThreshold("scalar-evolution-huge-expr-threshold" , cl::Hidden, |
| 219 | cl::desc("Size of the expression which is considered huge" ), |
| 220 | cl::init(Val: 4096)); |
| 221 | |
| 222 | static cl::opt<unsigned> RangeIterThreshold( |
| 223 | "scev-range-iter-threshold" , cl::Hidden, |
| 224 | cl::desc("Threshold for switching to iteratively computing SCEV ranges" ), |
| 225 | cl::init(Val: 32)); |
| 226 | |
| 227 | static cl::opt<unsigned> MaxLoopGuardCollectionDepth( |
| 228 | "scalar-evolution-max-loop-guard-collection-depth" , cl::Hidden, |
| 229 | cl::desc("Maximum depth for recursive loop guard collection" ), cl::init(Val: 1)); |
| 230 | |
| 231 | static cl::opt<bool> |
| 232 | ClassifyExpressions("scalar-evolution-classify-expressions" , |
| 233 | cl::Hidden, cl::init(Val: true), |
| 234 | cl::desc("When printing analysis, include information on every instruction" )); |
| 235 | |
| 236 | static cl::opt<bool> UseExpensiveRangeSharpening( |
| 237 | "scalar-evolution-use-expensive-range-sharpening" , cl::Hidden, |
| 238 | cl::init(Val: false), |
| 239 | cl::desc("Use more powerful methods of sharpening expression ranges. May " |
| 240 | "be costly in terms of compile time" )); |
| 241 | |
| 242 | static cl::opt<unsigned> MaxPhiSCCAnalysisSize( |
| 243 | "scalar-evolution-max-scc-analysis-depth" , cl::Hidden, |
| 244 | cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " |
| 245 | "Phi strongly connected components" ), |
| 246 | cl::init(Val: 8)); |
| 247 | |
| 248 | static cl::opt<bool> |
| 249 | EnableFiniteLoopControl("scalar-evolution-finite-loop" , cl::Hidden, |
| 250 | cl::desc("Handle <= and >= in finite loops" ), |
| 251 | cl::init(Val: true)); |
| 252 | |
| 253 | static cl::opt<bool> UseContextForNoWrapFlagInference( |
| 254 | "scalar-evolution-use-context-for-no-wrap-flag-strenghening" , cl::Hidden, |
| 255 | cl::desc("Infer nuw/nsw flags using context where suitable" ), |
| 256 | cl::init(Val: true)); |
| 257 | |
| 258 | //===----------------------------------------------------------------------===// |
| 259 | // SCEV class definitions |
| 260 | //===----------------------------------------------------------------------===// |
| 261 | |
| 262 | //===----------------------------------------------------------------------===// |
| 263 | // Implementation of the SCEV class. |
| 264 | // |
| 265 | |
| 266 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 267 | LLVM_DUMP_METHOD void SCEV::dump() const { |
| 268 | print(dbgs()); |
| 269 | dbgs() << '\n'; |
| 270 | } |
| 271 | #endif |
| 272 | |
| 273 | void SCEV::print(raw_ostream &OS) const { |
| 274 | switch (getSCEVType()) { |
| 275 | case scConstant: |
| 276 | cast<SCEVConstant>(Val: this)->getValue()->printAsOperand(O&: OS, PrintType: false); |
| 277 | return; |
| 278 | case scVScale: |
| 279 | OS << "vscale" ; |
| 280 | return; |
| 281 | case scPtrToInt: { |
| 282 | const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(Val: this); |
| 283 | const SCEV *Op = PtrToInt->getOperand(); |
| 284 | OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " |
| 285 | << *PtrToInt->getType() << ")" ; |
| 286 | return; |
| 287 | } |
| 288 | case scTruncate: { |
| 289 | const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Val: this); |
| 290 | const SCEV *Op = Trunc->getOperand(); |
| 291 | OS << "(trunc " << *Op->getType() << " " << *Op << " to " |
| 292 | << *Trunc->getType() << ")" ; |
| 293 | return; |
| 294 | } |
| 295 | case scZeroExtend: { |
| 296 | const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(Val: this); |
| 297 | const SCEV *Op = ZExt->getOperand(); |
| 298 | OS << "(zext " << *Op->getType() << " " << *Op << " to " |
| 299 | << *ZExt->getType() << ")" ; |
| 300 | return; |
| 301 | } |
| 302 | case scSignExtend: { |
| 303 | const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(Val: this); |
| 304 | const SCEV *Op = SExt->getOperand(); |
| 305 | OS << "(sext " << *Op->getType() << " " << *Op << " to " |
| 306 | << *SExt->getType() << ")" ; |
| 307 | return; |
| 308 | } |
| 309 | case scAddRecExpr: { |
| 310 | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(Val: this); |
| 311 | OS << "{" << *AR->getOperand(i: 0); |
| 312 | for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) |
| 313 | OS << ",+," << *AR->getOperand(i); |
| 314 | OS << "}<" ; |
| 315 | if (AR->hasNoUnsignedWrap()) |
| 316 | OS << "nuw><" ; |
| 317 | if (AR->hasNoSignedWrap()) |
| 318 | OS << "nsw><" ; |
| 319 | if (AR->hasNoSelfWrap() && |
| 320 | !AR->getNoWrapFlags(Mask: (NoWrapFlags)(FlagNUW | FlagNSW))) |
| 321 | OS << "nw><" ; |
| 322 | AR->getLoop()->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
| 323 | OS << ">" ; |
| 324 | return; |
| 325 | } |
| 326 | case scAddExpr: |
| 327 | case scMulExpr: |
| 328 | case scUMaxExpr: |
| 329 | case scSMaxExpr: |
| 330 | case scUMinExpr: |
| 331 | case scSMinExpr: |
| 332 | case scSequentialUMinExpr: { |
| 333 | const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(Val: this); |
| 334 | const char *OpStr = nullptr; |
| 335 | switch (NAry->getSCEVType()) { |
| 336 | case scAddExpr: OpStr = " + " ; break; |
| 337 | case scMulExpr: OpStr = " * " ; break; |
| 338 | case scUMaxExpr: OpStr = " umax " ; break; |
| 339 | case scSMaxExpr: OpStr = " smax " ; break; |
| 340 | case scUMinExpr: |
| 341 | OpStr = " umin " ; |
| 342 | break; |
| 343 | case scSMinExpr: |
| 344 | OpStr = " smin " ; |
| 345 | break; |
| 346 | case scSequentialUMinExpr: |
| 347 | OpStr = " umin_seq " ; |
| 348 | break; |
| 349 | default: |
| 350 | llvm_unreachable("There are no other nary expression types." ); |
| 351 | } |
| 352 | OS << "(" |
| 353 | << llvm::interleaved(R: llvm::make_pointee_range(Range: NAry->operands()), Separator: OpStr) |
| 354 | << ")" ; |
| 355 | switch (NAry->getSCEVType()) { |
| 356 | case scAddExpr: |
| 357 | case scMulExpr: |
| 358 | if (NAry->hasNoUnsignedWrap()) |
| 359 | OS << "<nuw>" ; |
| 360 | if (NAry->hasNoSignedWrap()) |
| 361 | OS << "<nsw>" ; |
| 362 | break; |
| 363 | default: |
| 364 | // Nothing to print for other nary expressions. |
| 365 | break; |
| 366 | } |
| 367 | return; |
| 368 | } |
| 369 | case scUDivExpr: { |
| 370 | const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(Val: this); |
| 371 | OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")" ; |
| 372 | return; |
| 373 | } |
| 374 | case scUnknown: |
| 375 | cast<SCEVUnknown>(Val: this)->getValue()->printAsOperand(O&: OS, PrintType: false); |
| 376 | return; |
| 377 | case scCouldNotCompute: |
| 378 | OS << "***COULDNOTCOMPUTE***" ; |
| 379 | return; |
| 380 | } |
| 381 | llvm_unreachable("Unknown SCEV kind!" ); |
| 382 | } |
| 383 | |
| 384 | Type *SCEV::getType() const { |
| 385 | switch (getSCEVType()) { |
| 386 | case scConstant: |
| 387 | return cast<SCEVConstant>(Val: this)->getType(); |
| 388 | case scVScale: |
| 389 | return cast<SCEVVScale>(Val: this)->getType(); |
| 390 | case scPtrToInt: |
| 391 | case scTruncate: |
| 392 | case scZeroExtend: |
| 393 | case scSignExtend: |
| 394 | return cast<SCEVCastExpr>(Val: this)->getType(); |
| 395 | case scAddRecExpr: |
| 396 | return cast<SCEVAddRecExpr>(Val: this)->getType(); |
| 397 | case scMulExpr: |
| 398 | return cast<SCEVMulExpr>(Val: this)->getType(); |
| 399 | case scUMaxExpr: |
| 400 | case scSMaxExpr: |
| 401 | case scUMinExpr: |
| 402 | case scSMinExpr: |
| 403 | return cast<SCEVMinMaxExpr>(Val: this)->getType(); |
| 404 | case scSequentialUMinExpr: |
| 405 | return cast<SCEVSequentialMinMaxExpr>(Val: this)->getType(); |
| 406 | case scAddExpr: |
| 407 | return cast<SCEVAddExpr>(Val: this)->getType(); |
| 408 | case scUDivExpr: |
| 409 | return cast<SCEVUDivExpr>(Val: this)->getType(); |
| 410 | case scUnknown: |
| 411 | return cast<SCEVUnknown>(Val: this)->getType(); |
| 412 | case scCouldNotCompute: |
| 413 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
| 414 | } |
| 415 | llvm_unreachable("Unknown SCEV kind!" ); |
| 416 | } |
| 417 | |
| 418 | ArrayRef<const SCEV *> SCEV::operands() const { |
| 419 | switch (getSCEVType()) { |
| 420 | case scConstant: |
| 421 | case scVScale: |
| 422 | case scUnknown: |
| 423 | return {}; |
| 424 | case scPtrToInt: |
| 425 | case scTruncate: |
| 426 | case scZeroExtend: |
| 427 | case scSignExtend: |
| 428 | return cast<SCEVCastExpr>(Val: this)->operands(); |
| 429 | case scAddRecExpr: |
| 430 | case scAddExpr: |
| 431 | case scMulExpr: |
| 432 | case scUMaxExpr: |
| 433 | case scSMaxExpr: |
| 434 | case scUMinExpr: |
| 435 | case scSMinExpr: |
| 436 | case scSequentialUMinExpr: |
| 437 | return cast<SCEVNAryExpr>(Val: this)->operands(); |
| 438 | case scUDivExpr: |
| 439 | return cast<SCEVUDivExpr>(Val: this)->operands(); |
| 440 | case scCouldNotCompute: |
| 441 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
| 442 | } |
| 443 | llvm_unreachable("Unknown SCEV kind!" ); |
| 444 | } |
| 445 | |
| 446 | bool SCEV::isZero() const { return match(S: this, P: m_scev_Zero()); } |
| 447 | |
| 448 | bool SCEV::isOne() const { return match(S: this, P: m_scev_One()); } |
| 449 | |
| 450 | bool SCEV::isAllOnesValue() const { return match(S: this, P: m_scev_AllOnes()); } |
| 451 | |
| 452 | bool SCEV::isNonConstantNegative() const { |
| 453 | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: this); |
| 454 | if (!Mul) return false; |
| 455 | |
| 456 | // If there is a constant factor, it will be first. |
| 457 | const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: Mul->getOperand(i: 0)); |
| 458 | if (!SC) return false; |
| 459 | |
| 460 | // Return true if the value is negative, this matches things like (-42 * V). |
| 461 | return SC->getAPInt().isNegative(); |
| 462 | } |
| 463 | |
| 464 | SCEVCouldNotCompute::SCEVCouldNotCompute() : |
| 465 | SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} |
| 466 | |
| 467 | bool SCEVCouldNotCompute::classof(const SCEV *S) { |
| 468 | return S->getSCEVType() == scCouldNotCompute; |
| 469 | } |
| 470 | |
| 471 | const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { |
| 472 | FoldingSetNodeID ID; |
| 473 | ID.AddInteger(I: scConstant); |
| 474 | ID.AddPointer(Ptr: V); |
| 475 | void *IP = nullptr; |
| 476 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S; |
| 477 | SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(Allocator&: SCEVAllocator), V); |
| 478 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 479 | return S; |
| 480 | } |
| 481 | |
| 482 | const SCEV *ScalarEvolution::getConstant(const APInt &Val) { |
| 483 | return getConstant(V: ConstantInt::get(Context&: getContext(), V: Val)); |
| 484 | } |
| 485 | |
| 486 | const SCEV * |
| 487 | ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { |
| 488 | IntegerType *ITy = cast<IntegerType>(Val: getEffectiveSCEVType(Ty)); |
| 489 | return getConstant(V: ConstantInt::get(Ty: ITy, V, IsSigned: isSigned)); |
| 490 | } |
| 491 | |
| 492 | const SCEV *ScalarEvolution::getVScale(Type *Ty) { |
| 493 | FoldingSetNodeID ID; |
| 494 | ID.AddInteger(I: scVScale); |
| 495 | ID.AddPointer(Ptr: Ty); |
| 496 | void *IP = nullptr; |
| 497 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) |
| 498 | return S; |
| 499 | SCEV *S = new (SCEVAllocator) SCEVVScale(ID.Intern(Allocator&: SCEVAllocator), Ty); |
| 500 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 501 | return S; |
| 502 | } |
| 503 | |
| 504 | const SCEV *ScalarEvolution::getElementCount(Type *Ty, ElementCount EC) { |
| 505 | const SCEV *Res = getConstant(Ty, V: EC.getKnownMinValue()); |
| 506 | if (EC.isScalable()) |
| 507 | Res = getMulExpr(LHS: Res, RHS: getVScale(Ty)); |
| 508 | return Res; |
| 509 | } |
| 510 | |
| 511 | SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, |
| 512 | const SCEV *op, Type *ty) |
| 513 | : SCEV(ID, SCEVTy, computeExpressionSize(Args: op)), Op(op), Ty(ty) {} |
| 514 | |
| 515 | SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, |
| 516 | Type *ITy) |
| 517 | : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { |
| 518 | assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && |
| 519 | "Must be a non-bit-width-changing pointer-to-integer cast!" ); |
| 520 | } |
| 521 | |
| 522 | SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, |
| 523 | SCEVTypes SCEVTy, const SCEV *op, |
| 524 | Type *ty) |
| 525 | : SCEVCastExpr(ID, SCEVTy, op, ty) {} |
| 526 | |
| 527 | SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, |
| 528 | Type *ty) |
| 529 | : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { |
| 530 | assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| 531 | "Cannot truncate non-integer value!" ); |
| 532 | } |
| 533 | |
| 534 | SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, |
| 535 | const SCEV *op, Type *ty) |
| 536 | : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { |
| 537 | assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| 538 | "Cannot zero extend non-integer value!" ); |
| 539 | } |
| 540 | |
| 541 | SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, |
| 542 | const SCEV *op, Type *ty) |
| 543 | : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { |
| 544 | assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| 545 | "Cannot sign extend non-integer value!" ); |
| 546 | } |
| 547 | |
| 548 | void SCEVUnknown::deleted() { |
| 549 | // Clear this SCEVUnknown from various maps. |
| 550 | SE->forgetMemoizedResults(SCEVs: this); |
| 551 | |
| 552 | // Remove this SCEVUnknown from the uniquing map. |
| 553 | SE->UniqueSCEVs.RemoveNode(N: this); |
| 554 | |
| 555 | // Release the value. |
| 556 | setValPtr(nullptr); |
| 557 | } |
| 558 | |
| 559 | void SCEVUnknown::allUsesReplacedWith(Value *New) { |
| 560 | // Clear this SCEVUnknown from various maps. |
| 561 | SE->forgetMemoizedResults(SCEVs: this); |
| 562 | |
| 563 | // Remove this SCEVUnknown from the uniquing map. |
| 564 | SE->UniqueSCEVs.RemoveNode(N: this); |
| 565 | |
| 566 | // Replace the value pointer in case someone is still using this SCEVUnknown. |
| 567 | setValPtr(New); |
| 568 | } |
| 569 | |
| 570 | //===----------------------------------------------------------------------===// |
| 571 | // SCEV Utilities |
| 572 | //===----------------------------------------------------------------------===// |
| 573 | |
| 574 | /// Compare the two values \p LV and \p RV in terms of their "complexity" where |
| 575 | /// "complexity" is a partial (and somewhat ad-hoc) relation used to order |
| 576 | /// operands in SCEV expressions. |
| 577 | static int CompareValueComplexity(const LoopInfo *const LI, Value *LV, |
| 578 | Value *RV, unsigned Depth) { |
| 579 | if (Depth > MaxValueCompareDepth) |
| 580 | return 0; |
| 581 | |
| 582 | // Order pointer values after integer values. This helps SCEVExpander form |
| 583 | // GEPs. |
| 584 | bool LIsPointer = LV->getType()->isPointerTy(), |
| 585 | RIsPointer = RV->getType()->isPointerTy(); |
| 586 | if (LIsPointer != RIsPointer) |
| 587 | return (int)LIsPointer - (int)RIsPointer; |
| 588 | |
| 589 | // Compare getValueID values. |
| 590 | unsigned LID = LV->getValueID(), RID = RV->getValueID(); |
| 591 | if (LID != RID) |
| 592 | return (int)LID - (int)RID; |
| 593 | |
| 594 | // Sort arguments by their position. |
| 595 | if (const auto *LA = dyn_cast<Argument>(Val: LV)) { |
| 596 | const auto *RA = cast<Argument>(Val: RV); |
| 597 | unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); |
| 598 | return (int)LArgNo - (int)RArgNo; |
| 599 | } |
| 600 | |
| 601 | if (const auto *LGV = dyn_cast<GlobalValue>(Val: LV)) { |
| 602 | const auto *RGV = cast<GlobalValue>(Val: RV); |
| 603 | |
| 604 | const auto IsGVNameSemantic = [&](const GlobalValue *GV) { |
| 605 | auto LT = GV->getLinkage(); |
| 606 | return !(GlobalValue::isPrivateLinkage(Linkage: LT) || |
| 607 | GlobalValue::isInternalLinkage(Linkage: LT)); |
| 608 | }; |
| 609 | |
| 610 | // Use the names to distinguish the two values, but only if the |
| 611 | // names are semantically important. |
| 612 | if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) |
| 613 | return LGV->getName().compare(RHS: RGV->getName()); |
| 614 | } |
| 615 | |
| 616 | // For instructions, compare their loop depth, and their operand count. This |
| 617 | // is pretty loose. |
| 618 | if (const auto *LInst = dyn_cast<Instruction>(Val: LV)) { |
| 619 | const auto *RInst = cast<Instruction>(Val: RV); |
| 620 | |
| 621 | // Compare loop depths. |
| 622 | const BasicBlock *LParent = LInst->getParent(), |
| 623 | *RParent = RInst->getParent(); |
| 624 | if (LParent != RParent) { |
| 625 | unsigned LDepth = LI->getLoopDepth(BB: LParent), |
| 626 | RDepth = LI->getLoopDepth(BB: RParent); |
| 627 | if (LDepth != RDepth) |
| 628 | return (int)LDepth - (int)RDepth; |
| 629 | } |
| 630 | |
| 631 | // Compare the number of operands. |
| 632 | unsigned LNumOps = LInst->getNumOperands(), |
| 633 | RNumOps = RInst->getNumOperands(); |
| 634 | if (LNumOps != RNumOps) |
| 635 | return (int)LNumOps - (int)RNumOps; |
| 636 | |
| 637 | for (unsigned Idx : seq(Size: LNumOps)) { |
| 638 | int Result = CompareValueComplexity(LI, LV: LInst->getOperand(i: Idx), |
| 639 | RV: RInst->getOperand(i: Idx), Depth: Depth + 1); |
| 640 | if (Result != 0) |
| 641 | return Result; |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | return 0; |
| 646 | } |
| 647 | |
| 648 | // Return negative, zero, or positive, if LHS is less than, equal to, or greater |
| 649 | // than RHS, respectively. A three-way result allows recursive comparisons to be |
| 650 | // more efficient. |
| 651 | // If the max analysis depth was reached, return std::nullopt, assuming we do |
| 652 | // not know if they are equivalent for sure. |
| 653 | static std::optional<int> |
| 654 | CompareSCEVComplexity(const LoopInfo *const LI, const SCEV *LHS, |
| 655 | const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { |
| 656 | // Fast-path: SCEVs are uniqued so we can do a quick equality check. |
| 657 | if (LHS == RHS) |
| 658 | return 0; |
| 659 | |
| 660 | // Primarily, sort the SCEVs by their getSCEVType(). |
| 661 | SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); |
| 662 | if (LType != RType) |
| 663 | return (int)LType - (int)RType; |
| 664 | |
| 665 | if (Depth > MaxSCEVCompareDepth) |
| 666 | return std::nullopt; |
| 667 | |
| 668 | // Aside from the getSCEVType() ordering, the particular ordering |
| 669 | // isn't very important except that it's beneficial to be consistent, |
| 670 | // so that (a + b) and (b + a) don't end up as different expressions. |
| 671 | switch (LType) { |
| 672 | case scUnknown: { |
| 673 | const SCEVUnknown *LU = cast<SCEVUnknown>(Val: LHS); |
| 674 | const SCEVUnknown *RU = cast<SCEVUnknown>(Val: RHS); |
| 675 | |
| 676 | int X = |
| 677 | CompareValueComplexity(LI, LV: LU->getValue(), RV: RU->getValue(), Depth: Depth + 1); |
| 678 | return X; |
| 679 | } |
| 680 | |
| 681 | case scConstant: { |
| 682 | const SCEVConstant *LC = cast<SCEVConstant>(Val: LHS); |
| 683 | const SCEVConstant *RC = cast<SCEVConstant>(Val: RHS); |
| 684 | |
| 685 | // Compare constant values. |
| 686 | const APInt &LA = LC->getAPInt(); |
| 687 | const APInt &RA = RC->getAPInt(); |
| 688 | unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); |
| 689 | if (LBitWidth != RBitWidth) |
| 690 | return (int)LBitWidth - (int)RBitWidth; |
| 691 | return LA.ult(RHS: RA) ? -1 : 1; |
| 692 | } |
| 693 | |
| 694 | case scVScale: { |
| 695 | const auto *LTy = cast<IntegerType>(Val: cast<SCEVVScale>(Val: LHS)->getType()); |
| 696 | const auto *RTy = cast<IntegerType>(Val: cast<SCEVVScale>(Val: RHS)->getType()); |
| 697 | return LTy->getBitWidth() - RTy->getBitWidth(); |
| 698 | } |
| 699 | |
| 700 | case scAddRecExpr: { |
| 701 | const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(Val: LHS); |
| 702 | const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(Val: RHS); |
| 703 | |
| 704 | // There is always a dominance between two recs that are used by one SCEV, |
| 705 | // so we can safely sort recs by loop header dominance. We require such |
| 706 | // order in getAddExpr. |
| 707 | const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); |
| 708 | if (LLoop != RLoop) { |
| 709 | const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); |
| 710 | assert(LHead != RHead && "Two loops share the same header?" ); |
| 711 | if (DT.dominates(A: LHead, B: RHead)) |
| 712 | return 1; |
| 713 | assert(DT.dominates(RHead, LHead) && |
| 714 | "No dominance between recurrences used by one SCEV?" ); |
| 715 | return -1; |
| 716 | } |
| 717 | |
| 718 | [[fallthrough]]; |
| 719 | } |
| 720 | |
| 721 | case scTruncate: |
| 722 | case scZeroExtend: |
| 723 | case scSignExtend: |
| 724 | case scPtrToInt: |
| 725 | case scAddExpr: |
| 726 | case scMulExpr: |
| 727 | case scUDivExpr: |
| 728 | case scSMaxExpr: |
| 729 | case scUMaxExpr: |
| 730 | case scSMinExpr: |
| 731 | case scUMinExpr: |
| 732 | case scSequentialUMinExpr: { |
| 733 | ArrayRef<const SCEV *> LOps = LHS->operands(); |
| 734 | ArrayRef<const SCEV *> ROps = RHS->operands(); |
| 735 | |
| 736 | // Lexicographically compare n-ary-like expressions. |
| 737 | unsigned LNumOps = LOps.size(), RNumOps = ROps.size(); |
| 738 | if (LNumOps != RNumOps) |
| 739 | return (int)LNumOps - (int)RNumOps; |
| 740 | |
| 741 | for (unsigned i = 0; i != LNumOps; ++i) { |
| 742 | auto X = CompareSCEVComplexity(LI, LHS: LOps[i], RHS: ROps[i], DT, Depth: Depth + 1); |
| 743 | if (X != 0) |
| 744 | return X; |
| 745 | } |
| 746 | return 0; |
| 747 | } |
| 748 | |
| 749 | case scCouldNotCompute: |
| 750 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
| 751 | } |
| 752 | llvm_unreachable("Unknown SCEV kind!" ); |
| 753 | } |
| 754 | |
| 755 | /// Given a list of SCEV objects, order them by their complexity, and group |
| 756 | /// objects of the same complexity together by value. When this routine is |
| 757 | /// finished, we know that any duplicates in the vector are consecutive and that |
| 758 | /// complexity is monotonically increasing. |
| 759 | /// |
| 760 | /// Note that we go take special precautions to ensure that we get deterministic |
| 761 | /// results from this routine. In other words, we don't want the results of |
| 762 | /// this to depend on where the addresses of various SCEV objects happened to |
| 763 | /// land in memory. |
| 764 | static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, |
| 765 | LoopInfo *LI, DominatorTree &DT) { |
| 766 | if (Ops.size() < 2) return; // Noop |
| 767 | |
| 768 | // Whether LHS has provably less complexity than RHS. |
| 769 | auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { |
| 770 | auto Complexity = CompareSCEVComplexity(LI, LHS, RHS, DT); |
| 771 | return Complexity && *Complexity < 0; |
| 772 | }; |
| 773 | if (Ops.size() == 2) { |
| 774 | // This is the common case, which also happens to be trivially simple. |
| 775 | // Special case it. |
| 776 | const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; |
| 777 | if (IsLessComplex(RHS, LHS)) |
| 778 | std::swap(a&: LHS, b&: RHS); |
| 779 | return; |
| 780 | } |
| 781 | |
| 782 | // Do the rough sort by complexity. |
| 783 | llvm::stable_sort(Range&: Ops, C: [&](const SCEV *LHS, const SCEV *RHS) { |
| 784 | return IsLessComplex(LHS, RHS); |
| 785 | }); |
| 786 | |
| 787 | // Now that we are sorted by complexity, group elements of the same |
| 788 | // complexity. Note that this is, at worst, N^2, but the vector is likely to |
| 789 | // be extremely short in practice. Note that we take this approach because we |
| 790 | // do not want to depend on the addresses of the objects we are grouping. |
| 791 | for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { |
| 792 | const SCEV *S = Ops[i]; |
| 793 | unsigned Complexity = S->getSCEVType(); |
| 794 | |
| 795 | // If there are any objects of the same complexity and same value as this |
| 796 | // one, group them. |
| 797 | for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { |
| 798 | if (Ops[j] == S) { // Found a duplicate. |
| 799 | // Move it to immediately after i'th element. |
| 800 | std::swap(a&: Ops[i+1], b&: Ops[j]); |
| 801 | ++i; // no need to rescan it. |
| 802 | if (i == e-2) return; // Done! |
| 803 | } |
| 804 | } |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at |
| 809 | /// least HugeExprThreshold nodes). |
| 810 | static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { |
| 811 | return any_of(Range&: Ops, P: [](const SCEV *S) { |
| 812 | return S->getExpressionSize() >= HugeExprThreshold; |
| 813 | }); |
| 814 | } |
| 815 | |
| 816 | /// Performs a number of common optimizations on the passed \p Ops. If the |
| 817 | /// whole expression reduces down to a single operand, it will be returned. |
| 818 | /// |
| 819 | /// The following optimizations are performed: |
| 820 | /// * Fold constants using the \p Fold function. |
| 821 | /// * Remove identity constants satisfying \p IsIdentity. |
| 822 | /// * If a constant satisfies \p IsAbsorber, return it. |
| 823 | /// * Sort operands by complexity. |
| 824 | template <typename FoldT, typename IsIdentityT, typename IsAbsorberT> |
| 825 | static const SCEV * |
| 826 | constantFoldAndGroupOps(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, |
| 827 | SmallVectorImpl<const SCEV *> &Ops, FoldT Fold, |
| 828 | IsIdentityT IsIdentity, IsAbsorberT IsAbsorber) { |
| 829 | const SCEVConstant *Folded = nullptr; |
| 830 | for (unsigned Idx = 0; Idx < Ops.size();) { |
| 831 | const SCEV *Op = Ops[Idx]; |
| 832 | if (const auto *C = dyn_cast<SCEVConstant>(Val: Op)) { |
| 833 | if (!Folded) |
| 834 | Folded = C; |
| 835 | else |
| 836 | Folded = cast<SCEVConstant>( |
| 837 | SE.getConstant(Fold(Folded->getAPInt(), C->getAPInt()))); |
| 838 | Ops.erase(CI: Ops.begin() + Idx); |
| 839 | continue; |
| 840 | } |
| 841 | ++Idx; |
| 842 | } |
| 843 | |
| 844 | if (Ops.empty()) { |
| 845 | assert(Folded && "Must have folded value" ); |
| 846 | return Folded; |
| 847 | } |
| 848 | |
| 849 | if (Folded && IsAbsorber(Folded->getAPInt())) |
| 850 | return Folded; |
| 851 | |
| 852 | GroupByComplexity(Ops, LI: &LI, DT); |
| 853 | if (Folded && !IsIdentity(Folded->getAPInt())) |
| 854 | Ops.insert(I: Ops.begin(), Elt: Folded); |
| 855 | |
| 856 | return Ops.size() == 1 ? Ops[0] : nullptr; |
| 857 | } |
| 858 | |
| 859 | //===----------------------------------------------------------------------===// |
| 860 | // Simple SCEV method implementations |
| 861 | //===----------------------------------------------------------------------===// |
| 862 | |
| 863 | /// Compute BC(It, K). The result has width W. Assume, K > 0. |
| 864 | static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, |
| 865 | ScalarEvolution &SE, |
| 866 | Type *ResultTy) { |
| 867 | // Handle the simplest case efficiently. |
| 868 | if (K == 1) |
| 869 | return SE.getTruncateOrZeroExtend(V: It, Ty: ResultTy); |
| 870 | |
| 871 | // We are using the following formula for BC(It, K): |
| 872 | // |
| 873 | // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! |
| 874 | // |
| 875 | // Suppose, W is the bitwidth of the return value. We must be prepared for |
| 876 | // overflow. Hence, we must assure that the result of our computation is |
| 877 | // equal to the accurate one modulo 2^W. Unfortunately, division isn't |
| 878 | // safe in modular arithmetic. |
| 879 | // |
| 880 | // However, this code doesn't use exactly that formula; the formula it uses |
| 881 | // is something like the following, where T is the number of factors of 2 in |
| 882 | // K! (i.e. trailing zeros in the binary representation of K!), and ^ is |
| 883 | // exponentiation: |
| 884 | // |
| 885 | // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) |
| 886 | // |
| 887 | // This formula is trivially equivalent to the previous formula. However, |
| 888 | // this formula can be implemented much more efficiently. The trick is that |
| 889 | // K! / 2^T is odd, and exact division by an odd number *is* safe in modular |
| 890 | // arithmetic. To do exact division in modular arithmetic, all we have |
| 891 | // to do is multiply by the inverse. Therefore, this step can be done at |
| 892 | // width W. |
| 893 | // |
| 894 | // The next issue is how to safely do the division by 2^T. The way this |
| 895 | // is done is by doing the multiplication step at a width of at least W + T |
| 896 | // bits. This way, the bottom W+T bits of the product are accurate. Then, |
| 897 | // when we perform the division by 2^T (which is equivalent to a right shift |
| 898 | // by T), the bottom W bits are accurate. Extra bits are okay; they'll get |
| 899 | // truncated out after the division by 2^T. |
| 900 | // |
| 901 | // In comparison to just directly using the first formula, this technique |
| 902 | // is much more efficient; using the first formula requires W * K bits, |
| 903 | // but this formula less than W + K bits. Also, the first formula requires |
| 904 | // a division step, whereas this formula only requires multiplies and shifts. |
| 905 | // |
| 906 | // It doesn't matter whether the subtraction step is done in the calculation |
| 907 | // width or the input iteration count's width; if the subtraction overflows, |
| 908 | // the result must be zero anyway. We prefer here to do it in the width of |
| 909 | // the induction variable because it helps a lot for certain cases; CodeGen |
| 910 | // isn't smart enough to ignore the overflow, which leads to much less |
| 911 | // efficient code if the width of the subtraction is wider than the native |
| 912 | // register width. |
| 913 | // |
| 914 | // (It's possible to not widen at all by pulling out factors of 2 before |
| 915 | // the multiplication; for example, K=2 can be calculated as |
| 916 | // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires |
| 917 | // extra arithmetic, so it's not an obvious win, and it gets |
| 918 | // much more complicated for K > 3.) |
| 919 | |
| 920 | // Protection from insane SCEVs; this bound is conservative, |
| 921 | // but it probably doesn't matter. |
| 922 | if (K > 1000) |
| 923 | return SE.getCouldNotCompute(); |
| 924 | |
| 925 | unsigned W = SE.getTypeSizeInBits(Ty: ResultTy); |
| 926 | |
| 927 | // Calculate K! / 2^T and T; we divide out the factors of two before |
| 928 | // multiplying for calculating K! / 2^T to avoid overflow. |
| 929 | // Other overflow doesn't matter because we only care about the bottom |
| 930 | // W bits of the result. |
| 931 | APInt OddFactorial(W, 1); |
| 932 | unsigned T = 1; |
| 933 | for (unsigned i = 3; i <= K; ++i) { |
| 934 | unsigned TwoFactors = countr_zero(Val: i); |
| 935 | T += TwoFactors; |
| 936 | OddFactorial *= (i >> TwoFactors); |
| 937 | } |
| 938 | |
| 939 | // We need at least W + T bits for the multiplication step |
| 940 | unsigned CalculationBits = W + T; |
| 941 | |
| 942 | // Calculate 2^T, at width T+W. |
| 943 | APInt DivFactor = APInt::getOneBitSet(numBits: CalculationBits, BitNo: T); |
| 944 | |
| 945 | // Calculate the multiplicative inverse of K! / 2^T; |
| 946 | // this multiplication factor will perform the exact division by |
| 947 | // K! / 2^T. |
| 948 | APInt MultiplyFactor = OddFactorial.multiplicativeInverse(); |
| 949 | |
| 950 | // Calculate the product, at width T+W |
| 951 | IntegerType *CalculationTy = IntegerType::get(C&: SE.getContext(), |
| 952 | NumBits: CalculationBits); |
| 953 | const SCEV *Dividend = SE.getTruncateOrZeroExtend(V: It, Ty: CalculationTy); |
| 954 | for (unsigned i = 1; i != K; ++i) { |
| 955 | const SCEV *S = SE.getMinusSCEV(LHS: It, RHS: SE.getConstant(Ty: It->getType(), V: i)); |
| 956 | Dividend = SE.getMulExpr(LHS: Dividend, |
| 957 | RHS: SE.getTruncateOrZeroExtend(V: S, Ty: CalculationTy)); |
| 958 | } |
| 959 | |
| 960 | // Divide by 2^T |
| 961 | const SCEV *DivResult = SE.getUDivExpr(LHS: Dividend, RHS: SE.getConstant(Val: DivFactor)); |
| 962 | |
| 963 | // Truncate the result, and divide by K! / 2^T. |
| 964 | |
| 965 | return SE.getMulExpr(LHS: SE.getConstant(Val: MultiplyFactor), |
| 966 | RHS: SE.getTruncateOrZeroExtend(V: DivResult, Ty: ResultTy)); |
| 967 | } |
| 968 | |
| 969 | /// Return the value of this chain of recurrences at the specified iteration |
| 970 | /// number. We can evaluate this recurrence by multiplying each element in the |
| 971 | /// chain by the binomial coefficient corresponding to it. In other words, we |
| 972 | /// can evaluate {A,+,B,+,C,+,D} as: |
| 973 | /// |
| 974 | /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) |
| 975 | /// |
| 976 | /// where BC(It, k) stands for binomial coefficient. |
| 977 | const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, |
| 978 | ScalarEvolution &SE) const { |
| 979 | return evaluateAtIteration(Operands: operands(), It, SE); |
| 980 | } |
| 981 | |
| 982 | const SCEV * |
| 983 | SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, |
| 984 | const SCEV *It, ScalarEvolution &SE) { |
| 985 | assert(Operands.size() > 0); |
| 986 | const SCEV *Result = Operands[0]; |
| 987 | for (unsigned i = 1, e = Operands.size(); i != e; ++i) { |
| 988 | // The computation is correct in the face of overflow provided that the |
| 989 | // multiplication is performed _after_ the evaluation of the binomial |
| 990 | // coefficient. |
| 991 | const SCEV *Coeff = BinomialCoefficient(It, K: i, SE, ResultTy: Result->getType()); |
| 992 | if (isa<SCEVCouldNotCompute>(Val: Coeff)) |
| 993 | return Coeff; |
| 994 | |
| 995 | Result = SE.getAddExpr(LHS: Result, RHS: SE.getMulExpr(LHS: Operands[i], RHS: Coeff)); |
| 996 | } |
| 997 | return Result; |
| 998 | } |
| 999 | |
| 1000 | //===----------------------------------------------------------------------===// |
| 1001 | // SCEV Expression folder implementations |
| 1002 | //===----------------------------------------------------------------------===// |
| 1003 | |
| 1004 | const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, |
| 1005 | unsigned Depth) { |
| 1006 | assert(Depth <= 1 && |
| 1007 | "getLosslessPtrToIntExpr() should self-recurse at most once." ); |
| 1008 | |
| 1009 | // We could be called with an integer-typed operands during SCEV rewrites. |
| 1010 | // Since the operand is an integer already, just perform zext/trunc/self cast. |
| 1011 | if (!Op->getType()->isPointerTy()) |
| 1012 | return Op; |
| 1013 | |
| 1014 | // What would be an ID for such a SCEV cast expression? |
| 1015 | FoldingSetNodeID ID; |
| 1016 | ID.AddInteger(I: scPtrToInt); |
| 1017 | ID.AddPointer(Ptr: Op); |
| 1018 | |
| 1019 | void *IP = nullptr; |
| 1020 | |
| 1021 | // Is there already an expression for such a cast? |
| 1022 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) |
| 1023 | return S; |
| 1024 | |
| 1025 | // It isn't legal for optimizations to construct new ptrtoint expressions |
| 1026 | // for non-integral pointers. |
| 1027 | if (getDataLayout().isNonIntegralPointerType(Ty: Op->getType())) |
| 1028 | return getCouldNotCompute(); |
| 1029 | |
| 1030 | Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); |
| 1031 | |
| 1032 | // We can only trivially model ptrtoint if SCEV's effective (integer) type |
| 1033 | // is sufficiently wide to represent all possible pointer values. |
| 1034 | // We could theoretically teach SCEV to truncate wider pointers, but |
| 1035 | // that isn't implemented for now. |
| 1036 | if (getDataLayout().getTypeSizeInBits(Ty: getEffectiveSCEVType(Ty: Op->getType())) != |
| 1037 | getDataLayout().getTypeSizeInBits(Ty: IntPtrTy)) |
| 1038 | return getCouldNotCompute(); |
| 1039 | |
| 1040 | // If not, is this expression something we can't reduce any further? |
| 1041 | if (auto *U = dyn_cast<SCEVUnknown>(Val: Op)) { |
| 1042 | // Perform some basic constant folding. If the operand of the ptr2int cast |
| 1043 | // is a null pointer, don't create a ptr2int SCEV expression (that will be |
| 1044 | // left as-is), but produce a zero constant. |
| 1045 | // NOTE: We could handle a more general case, but lack motivational cases. |
| 1046 | if (isa<ConstantPointerNull>(Val: U->getValue())) |
| 1047 | return getZero(Ty: IntPtrTy); |
| 1048 | |
| 1049 | // Create an explicit cast node. |
| 1050 | // We can reuse the existing insert position since if we get here, |
| 1051 | // we won't have made any changes which would invalidate it. |
| 1052 | SCEV *S = new (SCEVAllocator) |
| 1053 | SCEVPtrToIntExpr(ID.Intern(Allocator&: SCEVAllocator), Op, IntPtrTy); |
| 1054 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 1055 | registerUser(User: S, Ops: Op); |
| 1056 | return S; |
| 1057 | } |
| 1058 | |
| 1059 | assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " |
| 1060 | "non-SCEVUnknown's." ); |
| 1061 | |
| 1062 | // Otherwise, we've got some expression that is more complex than just a |
| 1063 | // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an |
| 1064 | // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown |
| 1065 | // only, and the expressions must otherwise be integer-typed. |
| 1066 | // So sink the cast down to the SCEVUnknown's. |
| 1067 | |
| 1068 | /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, |
| 1069 | /// which computes a pointer-typed value, and rewrites the whole expression |
| 1070 | /// tree so that *all* the computations are done on integers, and the only |
| 1071 | /// pointer-typed operands in the expression are SCEVUnknown. |
| 1072 | class SCEVPtrToIntSinkingRewriter |
| 1073 | : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { |
| 1074 | using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; |
| 1075 | |
| 1076 | public: |
| 1077 | SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} |
| 1078 | |
| 1079 | static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { |
| 1080 | SCEVPtrToIntSinkingRewriter Rewriter(SE); |
| 1081 | return Rewriter.visit(S: Scev); |
| 1082 | } |
| 1083 | |
| 1084 | const SCEV *visit(const SCEV *S) { |
| 1085 | Type *STy = S->getType(); |
| 1086 | // If the expression is not pointer-typed, just keep it as-is. |
| 1087 | if (!STy->isPointerTy()) |
| 1088 | return S; |
| 1089 | // Else, recursively sink the cast down into it. |
| 1090 | return Base::visit(S); |
| 1091 | } |
| 1092 | |
| 1093 | const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { |
| 1094 | SmallVector<const SCEV *, 2> Operands; |
| 1095 | bool Changed = false; |
| 1096 | for (const auto *Op : Expr->operands()) { |
| 1097 | Operands.push_back(Elt: visit(S: Op)); |
| 1098 | Changed |= Op != Operands.back(); |
| 1099 | } |
| 1100 | return !Changed ? Expr : SE.getAddExpr(Ops&: Operands, Flags: Expr->getNoWrapFlags()); |
| 1101 | } |
| 1102 | |
| 1103 | const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { |
| 1104 | SmallVector<const SCEV *, 2> Operands; |
| 1105 | bool Changed = false; |
| 1106 | for (const auto *Op : Expr->operands()) { |
| 1107 | Operands.push_back(Elt: visit(S: Op)); |
| 1108 | Changed |= Op != Operands.back(); |
| 1109 | } |
| 1110 | return !Changed ? Expr : SE.getMulExpr(Ops&: Operands, Flags: Expr->getNoWrapFlags()); |
| 1111 | } |
| 1112 | |
| 1113 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| 1114 | assert(Expr->getType()->isPointerTy() && |
| 1115 | "Should only reach pointer-typed SCEVUnknown's." ); |
| 1116 | return SE.getLosslessPtrToIntExpr(Op: Expr, /*Depth=*/1); |
| 1117 | } |
| 1118 | }; |
| 1119 | |
| 1120 | // And actually perform the cast sinking. |
| 1121 | const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Scev: Op, SE&: *this); |
| 1122 | assert(IntOp->getType()->isIntegerTy() && |
| 1123 | "We must have succeeded in sinking the cast, " |
| 1124 | "and ending up with an integer-typed expression!" ); |
| 1125 | return IntOp; |
| 1126 | } |
| 1127 | |
| 1128 | const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { |
| 1129 | assert(Ty->isIntegerTy() && "Target type must be an integer type!" ); |
| 1130 | |
| 1131 | const SCEV *IntOp = getLosslessPtrToIntExpr(Op); |
| 1132 | if (isa<SCEVCouldNotCompute>(Val: IntOp)) |
| 1133 | return IntOp; |
| 1134 | |
| 1135 | return getTruncateOrZeroExtend(V: IntOp, Ty); |
| 1136 | } |
| 1137 | |
| 1138 | const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, |
| 1139 | unsigned Depth) { |
| 1140 | assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && |
| 1141 | "This is not a truncating conversion!" ); |
| 1142 | assert(isSCEVable(Ty) && |
| 1143 | "This is not a conversion to a SCEVable type!" ); |
| 1144 | assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!" ); |
| 1145 | Ty = getEffectiveSCEVType(Ty); |
| 1146 | |
| 1147 | FoldingSetNodeID ID; |
| 1148 | ID.AddInteger(I: scTruncate); |
| 1149 | ID.AddPointer(Ptr: Op); |
| 1150 | ID.AddPointer(Ptr: Ty); |
| 1151 | void *IP = nullptr; |
| 1152 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S; |
| 1153 | |
| 1154 | // Fold if the operand is constant. |
| 1155 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: Op)) |
| 1156 | return getConstant( |
| 1157 | V: cast<ConstantInt>(Val: ConstantExpr::getTrunc(C: SC->getValue(), Ty))); |
| 1158 | |
| 1159 | // trunc(trunc(x)) --> trunc(x) |
| 1160 | if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Val: Op)) |
| 1161 | return getTruncateExpr(Op: ST->getOperand(), Ty, Depth: Depth + 1); |
| 1162 | |
| 1163 | // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing |
| 1164 | if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Val: Op)) |
| 1165 | return getTruncateOrSignExtend(V: SS->getOperand(), Ty, Depth: Depth + 1); |
| 1166 | |
| 1167 | // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing |
| 1168 | if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Val: Op)) |
| 1169 | return getTruncateOrZeroExtend(V: SZ->getOperand(), Ty, Depth: Depth + 1); |
| 1170 | |
| 1171 | if (Depth > MaxCastDepth) { |
| 1172 | SCEV *S = |
| 1173 | new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(Allocator&: SCEVAllocator), Op, Ty); |
| 1174 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 1175 | registerUser(User: S, Ops: Op); |
| 1176 | return S; |
| 1177 | } |
| 1178 | |
| 1179 | // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and |
| 1180 | // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), |
| 1181 | // if after transforming we have at most one truncate, not counting truncates |
| 1182 | // that replace other casts. |
| 1183 | if (isa<SCEVAddExpr>(Val: Op) || isa<SCEVMulExpr>(Val: Op)) { |
| 1184 | auto *CommOp = cast<SCEVCommutativeExpr>(Val: Op); |
| 1185 | SmallVector<const SCEV *, 4> Operands; |
| 1186 | unsigned numTruncs = 0; |
| 1187 | for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; |
| 1188 | ++i) { |
| 1189 | const SCEV *S = getTruncateExpr(Op: CommOp->getOperand(i), Ty, Depth: Depth + 1); |
| 1190 | if (!isa<SCEVIntegralCastExpr>(Val: CommOp->getOperand(i)) && |
| 1191 | isa<SCEVTruncateExpr>(Val: S)) |
| 1192 | numTruncs++; |
| 1193 | Operands.push_back(Elt: S); |
| 1194 | } |
| 1195 | if (numTruncs < 2) { |
| 1196 | if (isa<SCEVAddExpr>(Val: Op)) |
| 1197 | return getAddExpr(Ops&: Operands); |
| 1198 | if (isa<SCEVMulExpr>(Val: Op)) |
| 1199 | return getMulExpr(Ops&: Operands); |
| 1200 | llvm_unreachable("Unexpected SCEV type for Op." ); |
| 1201 | } |
| 1202 | // Although we checked in the beginning that ID is not in the cache, it is |
| 1203 | // possible that during recursion and different modification ID was inserted |
| 1204 | // into the cache. So if we find it, just return it. |
| 1205 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) |
| 1206 | return S; |
| 1207 | } |
| 1208 | |
| 1209 | // If the input value is a chrec scev, truncate the chrec's operands. |
| 1210 | if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: Op)) { |
| 1211 | SmallVector<const SCEV *, 4> Operands; |
| 1212 | for (const SCEV *Op : AddRec->operands()) |
| 1213 | Operands.push_back(Elt: getTruncateExpr(Op, Ty, Depth: Depth + 1)); |
| 1214 | return getAddRecExpr(Operands, L: AddRec->getLoop(), Flags: SCEV::FlagAnyWrap); |
| 1215 | } |
| 1216 | |
| 1217 | // Return zero if truncating to known zeros. |
| 1218 | uint32_t MinTrailingZeros = getMinTrailingZeros(S: Op); |
| 1219 | if (MinTrailingZeros >= getTypeSizeInBits(Ty)) |
| 1220 | return getZero(Ty); |
| 1221 | |
| 1222 | // The cast wasn't folded; create an explicit cast node. We can reuse |
| 1223 | // the existing insert position since if we get here, we won't have |
| 1224 | // made any changes which would invalidate it. |
| 1225 | SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(Allocator&: SCEVAllocator), |
| 1226 | Op, Ty); |
| 1227 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 1228 | registerUser(User: S, Ops: Op); |
| 1229 | return S; |
| 1230 | } |
| 1231 | |
| 1232 | // Get the limit of a recurrence such that incrementing by Step cannot cause |
| 1233 | // signed overflow as long as the value of the recurrence within the |
| 1234 | // loop does not exceed this limit before incrementing. |
| 1235 | static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, |
| 1236 | ICmpInst::Predicate *Pred, |
| 1237 | ScalarEvolution *SE) { |
| 1238 | unsigned BitWidth = SE->getTypeSizeInBits(Ty: Step->getType()); |
| 1239 | if (SE->isKnownPositive(S: Step)) { |
| 1240 | *Pred = ICmpInst::ICMP_SLT; |
| 1241 | return SE->getConstant(Val: APInt::getSignedMinValue(numBits: BitWidth) - |
| 1242 | SE->getSignedRangeMax(S: Step)); |
| 1243 | } |
| 1244 | if (SE->isKnownNegative(S: Step)) { |
| 1245 | *Pred = ICmpInst::ICMP_SGT; |
| 1246 | return SE->getConstant(Val: APInt::getSignedMaxValue(numBits: BitWidth) - |
| 1247 | SE->getSignedRangeMin(S: Step)); |
| 1248 | } |
| 1249 | return nullptr; |
| 1250 | } |
| 1251 | |
| 1252 | // Get the limit of a recurrence such that incrementing by Step cannot cause |
| 1253 | // unsigned overflow as long as the value of the recurrence within the loop does |
| 1254 | // not exceed this limit before incrementing. |
| 1255 | static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, |
| 1256 | ICmpInst::Predicate *Pred, |
| 1257 | ScalarEvolution *SE) { |
| 1258 | unsigned BitWidth = SE->getTypeSizeInBits(Ty: Step->getType()); |
| 1259 | *Pred = ICmpInst::ICMP_ULT; |
| 1260 | |
| 1261 | return SE->getConstant(Val: APInt::getMinValue(numBits: BitWidth) - |
| 1262 | SE->getUnsignedRangeMax(S: Step)); |
| 1263 | } |
| 1264 | |
| 1265 | namespace { |
| 1266 | |
| 1267 | struct ExtendOpTraitsBase { |
| 1268 | typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, |
| 1269 | unsigned); |
| 1270 | }; |
| 1271 | |
| 1272 | // Used to make code generic over signed and unsigned overflow. |
| 1273 | template <typename ExtendOp> struct ExtendOpTraits { |
| 1274 | // Members present: |
| 1275 | // |
| 1276 | // static const SCEV::NoWrapFlags WrapType; |
| 1277 | // |
| 1278 | // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; |
| 1279 | // |
| 1280 | // static const SCEV *getOverflowLimitForStep(const SCEV *Step, |
| 1281 | // ICmpInst::Predicate *Pred, |
| 1282 | // ScalarEvolution *SE); |
| 1283 | }; |
| 1284 | |
| 1285 | template <> |
| 1286 | struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { |
| 1287 | static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; |
| 1288 | |
| 1289 | static const GetExtendExprTy GetExtendExpr; |
| 1290 | |
| 1291 | static const SCEV *getOverflowLimitForStep(const SCEV *Step, |
| 1292 | ICmpInst::Predicate *Pred, |
| 1293 | ScalarEvolution *SE) { |
| 1294 | return getSignedOverflowLimitForStep(Step, Pred, SE); |
| 1295 | } |
| 1296 | }; |
| 1297 | |
| 1298 | const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< |
| 1299 | SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; |
| 1300 | |
| 1301 | template <> |
| 1302 | struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { |
| 1303 | static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; |
| 1304 | |
| 1305 | static const GetExtendExprTy GetExtendExpr; |
| 1306 | |
| 1307 | static const SCEV *getOverflowLimitForStep(const SCEV *Step, |
| 1308 | ICmpInst::Predicate *Pred, |
| 1309 | ScalarEvolution *SE) { |
| 1310 | return getUnsignedOverflowLimitForStep(Step, Pred, SE); |
| 1311 | } |
| 1312 | }; |
| 1313 | |
| 1314 | const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< |
| 1315 | SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; |
| 1316 | |
| 1317 | } // end anonymous namespace |
| 1318 | |
| 1319 | // The recurrence AR has been shown to have no signed/unsigned wrap or something |
| 1320 | // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as |
| 1321 | // easily prove NSW/NUW for its preincrement or postincrement sibling. This |
| 1322 | // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + |
| 1323 | // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the |
| 1324 | // expression "Step + sext/zext(PreIncAR)" is congruent with |
| 1325 | // "sext/zext(PostIncAR)" |
| 1326 | template <typename ExtendOpTy> |
| 1327 | static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, |
| 1328 | ScalarEvolution *SE, unsigned Depth) { |
| 1329 | auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; |
| 1330 | auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; |
| 1331 | |
| 1332 | const Loop *L = AR->getLoop(); |
| 1333 | const SCEV *Start = AR->getStart(); |
| 1334 | const SCEV *Step = AR->getStepRecurrence(SE&: *SE); |
| 1335 | |
| 1336 | // Check for a simple looking step prior to loop entry. |
| 1337 | const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Val: Start); |
| 1338 | if (!SA) |
| 1339 | return nullptr; |
| 1340 | |
| 1341 | // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV |
| 1342 | // subtraction is expensive. For this purpose, perform a quick and dirty |
| 1343 | // difference, by checking for Step in the operand list. Note, that |
| 1344 | // SA might have repeated ops, like %a + %a + ..., so only remove one. |
| 1345 | SmallVector<const SCEV *, 4> DiffOps(SA->operands()); |
| 1346 | for (auto It = DiffOps.begin(); It != DiffOps.end(); ++It) |
| 1347 | if (*It == Step) { |
| 1348 | DiffOps.erase(CI: It); |
| 1349 | break; |
| 1350 | } |
| 1351 | |
| 1352 | if (DiffOps.size() == SA->getNumOperands()) |
| 1353 | return nullptr; |
| 1354 | |
| 1355 | // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + |
| 1356 | // `Step`: |
| 1357 | |
| 1358 | // 1. NSW/NUW flags on the step increment. |
| 1359 | auto PreStartFlags = |
| 1360 | ScalarEvolution::maskFlags(Flags: SA->getNoWrapFlags(), Mask: SCEV::FlagNUW); |
| 1361 | const SCEV *PreStart = SE->getAddExpr(Ops&: DiffOps, Flags: PreStartFlags); |
| 1362 | const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( |
| 1363 | Val: SE->getAddRecExpr(Start: PreStart, Step, L, Flags: SCEV::FlagAnyWrap)); |
| 1364 | |
| 1365 | // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies |
| 1366 | // "S+X does not sign/unsign-overflow". |
| 1367 | // |
| 1368 | |
| 1369 | const SCEV *BECount = SE->getBackedgeTakenCount(L); |
| 1370 | if (PreAR && PreAR->getNoWrapFlags(Mask: WrapType) && |
| 1371 | !isa<SCEVCouldNotCompute>(Val: BECount) && SE->isKnownPositive(S: BECount)) |
| 1372 | return PreStart; |
| 1373 | |
| 1374 | // 2. Direct overflow check on the step operation's expression. |
| 1375 | unsigned BitWidth = SE->getTypeSizeInBits(Ty: AR->getType()); |
| 1376 | Type *WideTy = IntegerType::get(C&: SE->getContext(), NumBits: BitWidth * 2); |
| 1377 | const SCEV *OperandExtendedStart = |
| 1378 | SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), |
| 1379 | (SE->*GetExtendExpr)(Step, WideTy, Depth)); |
| 1380 | if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { |
| 1381 | if (PreAR && AR->getNoWrapFlags(Mask: WrapType)) { |
| 1382 | // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW |
| 1383 | // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then |
| 1384 | // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. |
| 1385 | SE->setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(PreAR), Flags: WrapType); |
| 1386 | } |
| 1387 | return PreStart; |
| 1388 | } |
| 1389 | |
| 1390 | // 3. Loop precondition. |
| 1391 | ICmpInst::Predicate Pred; |
| 1392 | const SCEV *OverflowLimit = |
| 1393 | ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); |
| 1394 | |
| 1395 | if (OverflowLimit && |
| 1396 | SE->isLoopEntryGuardedByCond(L, Pred, LHS: PreStart, RHS: OverflowLimit)) |
| 1397 | return PreStart; |
| 1398 | |
| 1399 | return nullptr; |
| 1400 | } |
| 1401 | |
| 1402 | // Get the normalized zero or sign extended expression for this AddRec's Start. |
| 1403 | template <typename ExtendOpTy> |
| 1404 | static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, |
| 1405 | ScalarEvolution *SE, |
| 1406 | unsigned Depth) { |
| 1407 | auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; |
| 1408 | |
| 1409 | const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); |
| 1410 | if (!PreStart) |
| 1411 | return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); |
| 1412 | |
| 1413 | return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(SE&: *SE), Ty, |
| 1414 | Depth), |
| 1415 | (SE->*GetExtendExpr)(PreStart, Ty, Depth)); |
| 1416 | } |
| 1417 | |
| 1418 | // Try to prove away overflow by looking at "nearby" add recurrences. A |
| 1419 | // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it |
| 1420 | // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. |
| 1421 | // |
| 1422 | // Formally: |
| 1423 | // |
| 1424 | // {S,+,X} == {S-T,+,X} + T |
| 1425 | // => Ext({S,+,X}) == Ext({S-T,+,X} + T) |
| 1426 | // |
| 1427 | // If ({S-T,+,X} + T) does not overflow ... (1) |
| 1428 | // |
| 1429 | // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) |
| 1430 | // |
| 1431 | // If {S-T,+,X} does not overflow ... (2) |
| 1432 | // |
| 1433 | // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) |
| 1434 | // == {Ext(S-T)+Ext(T),+,Ext(X)} |
| 1435 | // |
| 1436 | // If (S-T)+T does not overflow ... (3) |
| 1437 | // |
| 1438 | // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} |
| 1439 | // == {Ext(S),+,Ext(X)} == LHS |
| 1440 | // |
| 1441 | // Thus, if (1), (2) and (3) are true for some T, then |
| 1442 | // Ext({S,+,X}) == {Ext(S),+,Ext(X)} |
| 1443 | // |
| 1444 | // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) |
| 1445 | // does not overflow" restricted to the 0th iteration. Therefore we only need |
| 1446 | // to check for (1) and (2). |
| 1447 | // |
| 1448 | // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T |
| 1449 | // is `Delta` (defined below). |
| 1450 | template <typename ExtendOpTy> |
| 1451 | bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, |
| 1452 | const SCEV *Step, |
| 1453 | const Loop *L) { |
| 1454 | auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; |
| 1455 | |
| 1456 | // We restrict `Start` to a constant to prevent SCEV from spending too much |
| 1457 | // time here. It is correct (but more expensive) to continue with a |
| 1458 | // non-constant `Start` and do a general SCEV subtraction to compute |
| 1459 | // `PreStart` below. |
| 1460 | const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Val: Start); |
| 1461 | if (!StartC) |
| 1462 | return false; |
| 1463 | |
| 1464 | APInt StartAI = StartC->getAPInt(); |
| 1465 | |
| 1466 | for (unsigned Delta : {-2, -1, 1, 2}) { |
| 1467 | const SCEV *PreStart = getConstant(Val: StartAI - Delta); |
| 1468 | |
| 1469 | FoldingSetNodeID ID; |
| 1470 | ID.AddInteger(I: scAddRecExpr); |
| 1471 | ID.AddPointer(Ptr: PreStart); |
| 1472 | ID.AddPointer(Ptr: Step); |
| 1473 | ID.AddPointer(Ptr: L); |
| 1474 | void *IP = nullptr; |
| 1475 | const auto *PreAR = |
| 1476 | static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)); |
| 1477 | |
| 1478 | // Give up if we don't already have the add recurrence we need because |
| 1479 | // actually constructing an add recurrence is relatively expensive. |
| 1480 | if (PreAR && PreAR->getNoWrapFlags(Mask: WrapType)) { // proves (2) |
| 1481 | const SCEV *DeltaS = getConstant(Ty: StartC->getType(), V: Delta); |
| 1482 | ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; |
| 1483 | const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( |
| 1484 | DeltaS, &Pred, this); |
| 1485 | if (Limit && isKnownPredicate(Pred, LHS: PreAR, RHS: Limit)) // proves (1) |
| 1486 | return true; |
| 1487 | } |
| 1488 | } |
| 1489 | |
| 1490 | return false; |
| 1491 | } |
| 1492 | |
| 1493 | // Finds an integer D for an expression (C + x + y + ...) such that the top |
| 1494 | // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or |
| 1495 | // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is |
| 1496 | // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and |
| 1497 | // the (C + x + y + ...) expression is \p WholeAddExpr. |
| 1498 | static APInt (ScalarEvolution &SE, |
| 1499 | const SCEVConstant *ConstantTerm, |
| 1500 | const SCEVAddExpr *WholeAddExpr) { |
| 1501 | const APInt &C = ConstantTerm->getAPInt(); |
| 1502 | const unsigned BitWidth = C.getBitWidth(); |
| 1503 | // Find number of trailing zeros of (x + y + ...) w/o the C first: |
| 1504 | uint32_t TZ = BitWidth; |
| 1505 | for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) |
| 1506 | TZ = std::min(a: TZ, b: SE.getMinTrailingZeros(S: WholeAddExpr->getOperand(i: I))); |
| 1507 | if (TZ) { |
| 1508 | // Set D to be as many least significant bits of C as possible while still |
| 1509 | // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: |
| 1510 | return TZ < BitWidth ? C.trunc(width: TZ).zext(width: BitWidth) : C; |
| 1511 | } |
| 1512 | return APInt(BitWidth, 0); |
| 1513 | } |
| 1514 | |
| 1515 | // Finds an integer D for an affine AddRec expression {C,+,x} such that the top |
| 1516 | // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the |
| 1517 | // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p |
| 1518 | // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. |
| 1519 | static APInt (ScalarEvolution &SE, |
| 1520 | const APInt &ConstantStart, |
| 1521 | const SCEV *Step) { |
| 1522 | const unsigned BitWidth = ConstantStart.getBitWidth(); |
| 1523 | const uint32_t TZ = SE.getMinTrailingZeros(S: Step); |
| 1524 | if (TZ) |
| 1525 | return TZ < BitWidth ? ConstantStart.trunc(width: TZ).zext(width: BitWidth) |
| 1526 | : ConstantStart; |
| 1527 | return APInt(BitWidth, 0); |
| 1528 | } |
| 1529 | |
| 1530 | static void insertFoldCacheEntry( |
| 1531 | const ScalarEvolution::FoldID &ID, const SCEV *S, |
| 1532 | DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache, |
| 1533 | DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>> |
| 1534 | &FoldCacheUser) { |
| 1535 | auto I = FoldCache.insert(KV: {ID, S}); |
| 1536 | if (!I.second) { |
| 1537 | // Remove FoldCacheUser entry for ID when replacing an existing FoldCache |
| 1538 | // entry. |
| 1539 | auto &UserIDs = FoldCacheUser[I.first->second]; |
| 1540 | assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs" ); |
| 1541 | for (unsigned I = 0; I != UserIDs.size(); ++I) |
| 1542 | if (UserIDs[I] == ID) { |
| 1543 | std::swap(a&: UserIDs[I], b&: UserIDs.back()); |
| 1544 | break; |
| 1545 | } |
| 1546 | UserIDs.pop_back(); |
| 1547 | I.first->second = S; |
| 1548 | } |
| 1549 | FoldCacheUser[S].push_back(Elt: ID); |
| 1550 | } |
| 1551 | |
| 1552 | const SCEV * |
| 1553 | ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { |
| 1554 | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
| 1555 | "This is not an extending conversion!" ); |
| 1556 | assert(isSCEVable(Ty) && |
| 1557 | "This is not a conversion to a SCEVable type!" ); |
| 1558 | assert(!Op->getType()->isPointerTy() && "Can't extend pointer!" ); |
| 1559 | Ty = getEffectiveSCEVType(Ty); |
| 1560 | |
| 1561 | FoldID ID(scZeroExtend, Op, Ty); |
| 1562 | auto Iter = FoldCache.find(Val: ID); |
| 1563 | if (Iter != FoldCache.end()) |
| 1564 | return Iter->second; |
| 1565 | |
| 1566 | const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth); |
| 1567 | if (!isa<SCEVZeroExtendExpr>(Val: S)) |
| 1568 | insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); |
| 1569 | return S; |
| 1570 | } |
| 1571 | |
| 1572 | const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty, |
| 1573 | unsigned Depth) { |
| 1574 | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
| 1575 | "This is not an extending conversion!" ); |
| 1576 | assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!" ); |
| 1577 | assert(!Op->getType()->isPointerTy() && "Can't extend pointer!" ); |
| 1578 | |
| 1579 | // Fold if the operand is constant. |
| 1580 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: Op)) |
| 1581 | return getConstant(Val: SC->getAPInt().zext(width: getTypeSizeInBits(Ty))); |
| 1582 | |
| 1583 | // zext(zext(x)) --> zext(x) |
| 1584 | if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Val: Op)) |
| 1585 | return getZeroExtendExpr(Op: SZ->getOperand(), Ty, Depth: Depth + 1); |
| 1586 | |
| 1587 | // Before doing any expensive analysis, check to see if we've already |
| 1588 | // computed a SCEV for this Op and Ty. |
| 1589 | FoldingSetNodeID ID; |
| 1590 | ID.AddInteger(I: scZeroExtend); |
| 1591 | ID.AddPointer(Ptr: Op); |
| 1592 | ID.AddPointer(Ptr: Ty); |
| 1593 | void *IP = nullptr; |
| 1594 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S; |
| 1595 | if (Depth > MaxCastDepth) { |
| 1596 | SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(Allocator&: SCEVAllocator), |
| 1597 | Op, Ty); |
| 1598 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 1599 | registerUser(User: S, Ops: Op); |
| 1600 | return S; |
| 1601 | } |
| 1602 | |
| 1603 | // zext(trunc(x)) --> zext(x) or x or trunc(x) |
| 1604 | if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Val: Op)) { |
| 1605 | // It's possible the bits taken off by the truncate were all zero bits. If |
| 1606 | // so, we should be able to simplify this further. |
| 1607 | const SCEV *X = ST->getOperand(); |
| 1608 | ConstantRange CR = getUnsignedRange(S: X); |
| 1609 | unsigned TruncBits = getTypeSizeInBits(Ty: ST->getType()); |
| 1610 | unsigned NewBits = getTypeSizeInBits(Ty); |
| 1611 | if (CR.truncate(BitWidth: TruncBits).zeroExtend(BitWidth: NewBits).contains( |
| 1612 | CR: CR.zextOrTrunc(BitWidth: NewBits))) |
| 1613 | return getTruncateOrZeroExtend(V: X, Ty, Depth); |
| 1614 | } |
| 1615 | |
| 1616 | // If the input value is a chrec scev, and we can prove that the value |
| 1617 | // did not overflow the old, smaller, value, we can zero extend all of the |
| 1618 | // operands (often constants). This allows analysis of something like |
| 1619 | // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } |
| 1620 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Op)) |
| 1621 | if (AR->isAffine()) { |
| 1622 | const SCEV *Start = AR->getStart(); |
| 1623 | const SCEV *Step = AR->getStepRecurrence(SE&: *this); |
| 1624 | unsigned BitWidth = getTypeSizeInBits(Ty: AR->getType()); |
| 1625 | const Loop *L = AR->getLoop(); |
| 1626 | |
| 1627 | // If we have special knowledge that this addrec won't overflow, |
| 1628 | // we don't need to do any further analysis. |
| 1629 | if (AR->hasNoUnsignedWrap()) { |
| 1630 | Start = |
| 1631 | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1); |
| 1632 | Step = getZeroExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
| 1633 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
| 1634 | } |
| 1635 | |
| 1636 | // Check whether the backedge-taken count is SCEVCouldNotCompute. |
| 1637 | // Note that this serves two purposes: It filters out loops that are |
| 1638 | // simply not analyzable, and it covers the case where this code is |
| 1639 | // being called from within backedge-taken count analysis, such that |
| 1640 | // attempting to ask for the backedge-taken count would likely result |
| 1641 | // in infinite recursion. In the later case, the analysis code will |
| 1642 | // cope with a conservative value, and it will take care to purge |
| 1643 | // that value once it has finished. |
| 1644 | const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); |
| 1645 | if (!isa<SCEVCouldNotCompute>(Val: MaxBECount)) { |
| 1646 | // Manually compute the final value for AR, checking for overflow. |
| 1647 | |
| 1648 | // Check whether the backedge-taken count can be losslessly casted to |
| 1649 | // the addrec's type. The count is always unsigned. |
| 1650 | const SCEV *CastedMaxBECount = |
| 1651 | getTruncateOrZeroExtend(V: MaxBECount, Ty: Start->getType(), Depth); |
| 1652 | const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( |
| 1653 | V: CastedMaxBECount, Ty: MaxBECount->getType(), Depth); |
| 1654 | if (MaxBECount == RecastedMaxBECount) { |
| 1655 | Type *WideTy = IntegerType::get(C&: getContext(), NumBits: BitWidth * 2); |
| 1656 | // Check whether Start+Step*MaxBECount has no unsigned overflow. |
| 1657 | const SCEV *ZMul = getMulExpr(LHS: CastedMaxBECount, RHS: Step, |
| 1658 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 1659 | const SCEV *ZAdd = getZeroExtendExpr(Op: getAddExpr(LHS: Start, RHS: ZMul, |
| 1660 | Flags: SCEV::FlagAnyWrap, |
| 1661 | Depth: Depth + 1), |
| 1662 | Ty: WideTy, Depth: Depth + 1); |
| 1663 | const SCEV *WideStart = getZeroExtendExpr(Op: Start, Ty: WideTy, Depth: Depth + 1); |
| 1664 | const SCEV *WideMaxBECount = |
| 1665 | getZeroExtendExpr(Op: CastedMaxBECount, Ty: WideTy, Depth: Depth + 1); |
| 1666 | const SCEV *OperandExtendedAdd = |
| 1667 | getAddExpr(LHS: WideStart, |
| 1668 | RHS: getMulExpr(LHS: WideMaxBECount, |
| 1669 | RHS: getZeroExtendExpr(Op: Step, Ty: WideTy, Depth: Depth + 1), |
| 1670 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1), |
| 1671 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 1672 | if (ZAdd == OperandExtendedAdd) { |
| 1673 | // Cache knowledge of AR NUW, which is propagated to this AddRec. |
| 1674 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNUW); |
| 1675 | // Return the expression with the addrec on the outside. |
| 1676 | Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, |
| 1677 | Depth: Depth + 1); |
| 1678 | Step = getZeroExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
| 1679 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
| 1680 | } |
| 1681 | // Similar to above, only this time treat the step value as signed. |
| 1682 | // This covers loops that count down. |
| 1683 | OperandExtendedAdd = |
| 1684 | getAddExpr(LHS: WideStart, |
| 1685 | RHS: getMulExpr(LHS: WideMaxBECount, |
| 1686 | RHS: getSignExtendExpr(Op: Step, Ty: WideTy, Depth: Depth + 1), |
| 1687 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1), |
| 1688 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 1689 | if (ZAdd == OperandExtendedAdd) { |
| 1690 | // Cache knowledge of AR NW, which is propagated to this AddRec. |
| 1691 | // Negative step causes unsigned wrap, but it still can't self-wrap. |
| 1692 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNW); |
| 1693 | // Return the expression with the addrec on the outside. |
| 1694 | Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, |
| 1695 | Depth: Depth + 1); |
| 1696 | Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
| 1697 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
| 1698 | } |
| 1699 | } |
| 1700 | } |
| 1701 | |
| 1702 | // Normally, in the cases we can prove no-overflow via a |
| 1703 | // backedge guarding condition, we can also compute a backedge |
| 1704 | // taken count for the loop. The exceptions are assumptions and |
| 1705 | // guards present in the loop -- SCEV is not great at exploiting |
| 1706 | // these to compute max backedge taken counts, but can still use |
| 1707 | // these to prove lack of overflow. Use this fact to avoid |
| 1708 | // doing extra work that may not pay off. |
| 1709 | if (!isa<SCEVCouldNotCompute>(Val: MaxBECount) || HasGuards || |
| 1710 | !AC.assumptions().empty()) { |
| 1711 | |
| 1712 | auto NewFlags = proveNoUnsignedWrapViaInduction(AR); |
| 1713 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: NewFlags); |
| 1714 | if (AR->hasNoUnsignedWrap()) { |
| 1715 | // Same as nuw case above - duplicated here to avoid a compile time |
| 1716 | // issue. It's not clear that the order of checks does matter, but |
| 1717 | // it's one of two issue possible causes for a change which was |
| 1718 | // reverted. Be conservative for the moment. |
| 1719 | Start = |
| 1720 | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1); |
| 1721 | Step = getZeroExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
| 1722 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
| 1723 | } |
| 1724 | |
| 1725 | // For a negative step, we can extend the operands iff doing so only |
| 1726 | // traverses values in the range zext([0,UINT_MAX]). |
| 1727 | if (isKnownNegative(S: Step)) { |
| 1728 | const SCEV *N = getConstant(Val: APInt::getMaxValue(numBits: BitWidth) - |
| 1729 | getSignedRangeMin(S: Step)); |
| 1730 | if (isLoopBackedgeGuardedByCond(L, Pred: ICmpInst::ICMP_UGT, LHS: AR, RHS: N) || |
| 1731 | isKnownOnEveryIteration(Pred: ICmpInst::ICMP_UGT, LHS: AR, RHS: N)) { |
| 1732 | // Cache knowledge of AR NW, which is propagated to this |
| 1733 | // AddRec. Negative step causes unsigned wrap, but it |
| 1734 | // still can't self-wrap. |
| 1735 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNW); |
| 1736 | // Return the expression with the addrec on the outside. |
| 1737 | Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, |
| 1738 | Depth: Depth + 1); |
| 1739 | Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
| 1740 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
| 1741 | } |
| 1742 | } |
| 1743 | } |
| 1744 | |
| 1745 | // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> |
| 1746 | // if D + (C - D + Step * n) could be proven to not unsigned wrap |
| 1747 | // where D maximizes the number of trailing zeros of (C - D + Step * n) |
| 1748 | if (const auto *SC = dyn_cast<SCEVConstant>(Val: Start)) { |
| 1749 | const APInt &C = SC->getAPInt(); |
| 1750 | const APInt &D = extractConstantWithoutWrapping(SE&: *this, ConstantStart: C, Step); |
| 1751 | if (D != 0) { |
| 1752 | const SCEV *SZExtD = getZeroExtendExpr(Op: getConstant(Val: D), Ty, Depth); |
| 1753 | const SCEV *SResidual = |
| 1754 | getAddRecExpr(Start: getConstant(Val: C - D), Step, L, Flags: AR->getNoWrapFlags()); |
| 1755 | const SCEV *SZExtR = getZeroExtendExpr(Op: SResidual, Ty, Depth: Depth + 1); |
| 1756 | return getAddExpr(LHS: SZExtD, RHS: SZExtR, |
| 1757 | Flags: (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
| 1758 | Depth: Depth + 1); |
| 1759 | } |
| 1760 | } |
| 1761 | |
| 1762 | if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { |
| 1763 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNUW); |
| 1764 | Start = |
| 1765 | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1); |
| 1766 | Step = getZeroExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
| 1767 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
| 1768 | } |
| 1769 | } |
| 1770 | |
| 1771 | // zext(A % B) --> zext(A) % zext(B) |
| 1772 | { |
| 1773 | const SCEV *LHS; |
| 1774 | const SCEV *RHS; |
| 1775 | if (matchURem(Expr: Op, LHS, RHS)) |
| 1776 | return getURemExpr(LHS: getZeroExtendExpr(Op: LHS, Ty, Depth: Depth + 1), |
| 1777 | RHS: getZeroExtendExpr(Op: RHS, Ty, Depth: Depth + 1)); |
| 1778 | } |
| 1779 | |
| 1780 | // zext(A / B) --> zext(A) / zext(B). |
| 1781 | if (auto *Div = dyn_cast<SCEVUDivExpr>(Val: Op)) |
| 1782 | return getUDivExpr(LHS: getZeroExtendExpr(Op: Div->getLHS(), Ty, Depth: Depth + 1), |
| 1783 | RHS: getZeroExtendExpr(Op: Div->getRHS(), Ty, Depth: Depth + 1)); |
| 1784 | |
| 1785 | if (auto *SA = dyn_cast<SCEVAddExpr>(Val: Op)) { |
| 1786 | // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> |
| 1787 | if (SA->hasNoUnsignedWrap()) { |
| 1788 | // If the addition does not unsign overflow then we can, by definition, |
| 1789 | // commute the zero extension with the addition operation. |
| 1790 | SmallVector<const SCEV *, 4> Ops; |
| 1791 | for (const auto *Op : SA->operands()) |
| 1792 | Ops.push_back(Elt: getZeroExtendExpr(Op, Ty, Depth: Depth + 1)); |
| 1793 | return getAddExpr(Ops, Flags: SCEV::FlagNUW, Depth: Depth + 1); |
| 1794 | } |
| 1795 | |
| 1796 | // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) |
| 1797 | // if D + (C - D + x + y + ...) could be proven to not unsigned wrap |
| 1798 | // where D maximizes the number of trailing zeros of (C - D + x + y + ...) |
| 1799 | // |
| 1800 | // Often address arithmetics contain expressions like |
| 1801 | // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). |
| 1802 | // This transformation is useful while proving that such expressions are |
| 1803 | // equal or differ by a small constant amount, see LoadStoreVectorizer pass. |
| 1804 | if (const auto *SC = dyn_cast<SCEVConstant>(Val: SA->getOperand(i: 0))) { |
| 1805 | const APInt &D = extractConstantWithoutWrapping(SE&: *this, ConstantTerm: SC, WholeAddExpr: SA); |
| 1806 | if (D != 0) { |
| 1807 | const SCEV *SZExtD = getZeroExtendExpr(Op: getConstant(Val: D), Ty, Depth); |
| 1808 | const SCEV *SResidual = |
| 1809 | getAddExpr(LHS: getConstant(Val: -D), RHS: SA, Flags: SCEV::FlagAnyWrap, Depth); |
| 1810 | const SCEV *SZExtR = getZeroExtendExpr(Op: SResidual, Ty, Depth: Depth + 1); |
| 1811 | return getAddExpr(LHS: SZExtD, RHS: SZExtR, |
| 1812 | Flags: (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
| 1813 | Depth: Depth + 1); |
| 1814 | } |
| 1815 | } |
| 1816 | } |
| 1817 | |
| 1818 | if (auto *SM = dyn_cast<SCEVMulExpr>(Val: Op)) { |
| 1819 | // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> |
| 1820 | if (SM->hasNoUnsignedWrap()) { |
| 1821 | // If the multiply does not unsign overflow then we can, by definition, |
| 1822 | // commute the zero extension with the multiply operation. |
| 1823 | SmallVector<const SCEV *, 4> Ops; |
| 1824 | for (const auto *Op : SM->operands()) |
| 1825 | Ops.push_back(Elt: getZeroExtendExpr(Op, Ty, Depth: Depth + 1)); |
| 1826 | return getMulExpr(Ops, Flags: SCEV::FlagNUW, Depth: Depth + 1); |
| 1827 | } |
| 1828 | |
| 1829 | // zext(2^K * (trunc X to iN)) to iM -> |
| 1830 | // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> |
| 1831 | // |
| 1832 | // Proof: |
| 1833 | // |
| 1834 | // zext(2^K * (trunc X to iN)) to iM |
| 1835 | // = zext((trunc X to iN) << K) to iM |
| 1836 | // = zext((trunc X to i{N-K}) << K)<nuw> to iM |
| 1837 | // (because shl removes the top K bits) |
| 1838 | // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM |
| 1839 | // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. |
| 1840 | // |
| 1841 | if (SM->getNumOperands() == 2) |
| 1842 | if (auto *MulLHS = dyn_cast<SCEVConstant>(Val: SM->getOperand(i: 0))) |
| 1843 | if (MulLHS->getAPInt().isPowerOf2()) |
| 1844 | if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(Val: SM->getOperand(i: 1))) { |
| 1845 | int NewTruncBits = getTypeSizeInBits(Ty: TruncRHS->getType()) - |
| 1846 | MulLHS->getAPInt().logBase2(); |
| 1847 | Type *NewTruncTy = IntegerType::get(C&: getContext(), NumBits: NewTruncBits); |
| 1848 | return getMulExpr( |
| 1849 | LHS: getZeroExtendExpr(Op: MulLHS, Ty), |
| 1850 | RHS: getZeroExtendExpr( |
| 1851 | Op: getTruncateExpr(Op: TruncRHS->getOperand(), Ty: NewTruncTy), Ty), |
| 1852 | Flags: SCEV::FlagNUW, Depth: Depth + 1); |
| 1853 | } |
| 1854 | } |
| 1855 | |
| 1856 | // zext(umin(x, y)) -> umin(zext(x), zext(y)) |
| 1857 | // zext(umax(x, y)) -> umax(zext(x), zext(y)) |
| 1858 | if (isa<SCEVUMinExpr>(Val: Op) || isa<SCEVUMaxExpr>(Val: Op)) { |
| 1859 | auto *MinMax = cast<SCEVMinMaxExpr>(Val: Op); |
| 1860 | SmallVector<const SCEV *, 4> Operands; |
| 1861 | for (auto *Operand : MinMax->operands()) |
| 1862 | Operands.push_back(Elt: getZeroExtendExpr(Op: Operand, Ty)); |
| 1863 | if (isa<SCEVUMinExpr>(Val: MinMax)) |
| 1864 | return getUMinExpr(Operands); |
| 1865 | return getUMaxExpr(Operands); |
| 1866 | } |
| 1867 | |
| 1868 | // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y)) |
| 1869 | if (auto *MinMax = dyn_cast<SCEVSequentialMinMaxExpr>(Val: Op)) { |
| 1870 | assert(isa<SCEVSequentialUMinExpr>(MinMax) && "Not supported!" ); |
| 1871 | SmallVector<const SCEV *, 4> Operands; |
| 1872 | for (auto *Operand : MinMax->operands()) |
| 1873 | Operands.push_back(Elt: getZeroExtendExpr(Op: Operand, Ty)); |
| 1874 | return getUMinExpr(Operands, /*Sequential*/ true); |
| 1875 | } |
| 1876 | |
| 1877 | // The cast wasn't folded; create an explicit cast node. |
| 1878 | // Recompute the insert position, as it may have been invalidated. |
| 1879 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S; |
| 1880 | SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(Allocator&: SCEVAllocator), |
| 1881 | Op, Ty); |
| 1882 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 1883 | registerUser(User: S, Ops: Op); |
| 1884 | return S; |
| 1885 | } |
| 1886 | |
| 1887 | const SCEV * |
| 1888 | ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { |
| 1889 | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
| 1890 | "This is not an extending conversion!" ); |
| 1891 | assert(isSCEVable(Ty) && |
| 1892 | "This is not a conversion to a SCEVable type!" ); |
| 1893 | assert(!Op->getType()->isPointerTy() && "Can't extend pointer!" ); |
| 1894 | Ty = getEffectiveSCEVType(Ty); |
| 1895 | |
| 1896 | FoldID ID(scSignExtend, Op, Ty); |
| 1897 | auto Iter = FoldCache.find(Val: ID); |
| 1898 | if (Iter != FoldCache.end()) |
| 1899 | return Iter->second; |
| 1900 | |
| 1901 | const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth); |
| 1902 | if (!isa<SCEVSignExtendExpr>(Val: S)) |
| 1903 | insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); |
| 1904 | return S; |
| 1905 | } |
| 1906 | |
| 1907 | const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty, |
| 1908 | unsigned Depth) { |
| 1909 | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
| 1910 | "This is not an extending conversion!" ); |
| 1911 | assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!" ); |
| 1912 | assert(!Op->getType()->isPointerTy() && "Can't extend pointer!" ); |
| 1913 | Ty = getEffectiveSCEVType(Ty); |
| 1914 | |
| 1915 | // Fold if the operand is constant. |
| 1916 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: Op)) |
| 1917 | return getConstant(Val: SC->getAPInt().sext(width: getTypeSizeInBits(Ty))); |
| 1918 | |
| 1919 | // sext(sext(x)) --> sext(x) |
| 1920 | if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Val: Op)) |
| 1921 | return getSignExtendExpr(Op: SS->getOperand(), Ty, Depth: Depth + 1); |
| 1922 | |
| 1923 | // sext(zext(x)) --> zext(x) |
| 1924 | if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Val: Op)) |
| 1925 | return getZeroExtendExpr(Op: SZ->getOperand(), Ty, Depth: Depth + 1); |
| 1926 | |
| 1927 | // Before doing any expensive analysis, check to see if we've already |
| 1928 | // computed a SCEV for this Op and Ty. |
| 1929 | FoldingSetNodeID ID; |
| 1930 | ID.AddInteger(I: scSignExtend); |
| 1931 | ID.AddPointer(Ptr: Op); |
| 1932 | ID.AddPointer(Ptr: Ty); |
| 1933 | void *IP = nullptr; |
| 1934 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S; |
| 1935 | // Limit recursion depth. |
| 1936 | if (Depth > MaxCastDepth) { |
| 1937 | SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(Allocator&: SCEVAllocator), |
| 1938 | Op, Ty); |
| 1939 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 1940 | registerUser(User: S, Ops: Op); |
| 1941 | return S; |
| 1942 | } |
| 1943 | |
| 1944 | // sext(trunc(x)) --> sext(x) or x or trunc(x) |
| 1945 | if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Val: Op)) { |
| 1946 | // It's possible the bits taken off by the truncate were all sign bits. If |
| 1947 | // so, we should be able to simplify this further. |
| 1948 | const SCEV *X = ST->getOperand(); |
| 1949 | ConstantRange CR = getSignedRange(S: X); |
| 1950 | unsigned TruncBits = getTypeSizeInBits(Ty: ST->getType()); |
| 1951 | unsigned NewBits = getTypeSizeInBits(Ty); |
| 1952 | if (CR.truncate(BitWidth: TruncBits).signExtend(BitWidth: NewBits).contains( |
| 1953 | CR: CR.sextOrTrunc(BitWidth: NewBits))) |
| 1954 | return getTruncateOrSignExtend(V: X, Ty, Depth); |
| 1955 | } |
| 1956 | |
| 1957 | if (auto *SA = dyn_cast<SCEVAddExpr>(Val: Op)) { |
| 1958 | // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> |
| 1959 | if (SA->hasNoSignedWrap()) { |
| 1960 | // If the addition does not sign overflow then we can, by definition, |
| 1961 | // commute the sign extension with the addition operation. |
| 1962 | SmallVector<const SCEV *, 4> Ops; |
| 1963 | for (const auto *Op : SA->operands()) |
| 1964 | Ops.push_back(Elt: getSignExtendExpr(Op, Ty, Depth: Depth + 1)); |
| 1965 | return getAddExpr(Ops, Flags: SCEV::FlagNSW, Depth: Depth + 1); |
| 1966 | } |
| 1967 | |
| 1968 | // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) |
| 1969 | // if D + (C - D + x + y + ...) could be proven to not signed wrap |
| 1970 | // where D maximizes the number of trailing zeros of (C - D + x + y + ...) |
| 1971 | // |
| 1972 | // For instance, this will bring two seemingly different expressions: |
| 1973 | // 1 + sext(5 + 20 * %x + 24 * %y) and |
| 1974 | // sext(6 + 20 * %x + 24 * %y) |
| 1975 | // to the same form: |
| 1976 | // 2 + sext(4 + 20 * %x + 24 * %y) |
| 1977 | if (const auto *SC = dyn_cast<SCEVConstant>(Val: SA->getOperand(i: 0))) { |
| 1978 | const APInt &D = extractConstantWithoutWrapping(SE&: *this, ConstantTerm: SC, WholeAddExpr: SA); |
| 1979 | if (D != 0) { |
| 1980 | const SCEV *SSExtD = getSignExtendExpr(Op: getConstant(Val: D), Ty, Depth); |
| 1981 | const SCEV *SResidual = |
| 1982 | getAddExpr(LHS: getConstant(Val: -D), RHS: SA, Flags: SCEV::FlagAnyWrap, Depth); |
| 1983 | const SCEV *SSExtR = getSignExtendExpr(Op: SResidual, Ty, Depth: Depth + 1); |
| 1984 | return getAddExpr(LHS: SSExtD, RHS: SSExtR, |
| 1985 | Flags: (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
| 1986 | Depth: Depth + 1); |
| 1987 | } |
| 1988 | } |
| 1989 | } |
| 1990 | // If the input value is a chrec scev, and we can prove that the value |
| 1991 | // did not overflow the old, smaller, value, we can sign extend all of the |
| 1992 | // operands (often constants). This allows analysis of something like |
| 1993 | // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } |
| 1994 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Op)) |
| 1995 | if (AR->isAffine()) { |
| 1996 | const SCEV *Start = AR->getStart(); |
| 1997 | const SCEV *Step = AR->getStepRecurrence(SE&: *this); |
| 1998 | unsigned BitWidth = getTypeSizeInBits(Ty: AR->getType()); |
| 1999 | const Loop *L = AR->getLoop(); |
| 2000 | |
| 2001 | // If we have special knowledge that this addrec won't overflow, |
| 2002 | // we don't need to do any further analysis. |
| 2003 | if (AR->hasNoSignedWrap()) { |
| 2004 | Start = |
| 2005 | getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1); |
| 2006 | Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
| 2007 | return getAddRecExpr(Start, Step, L, Flags: SCEV::FlagNSW); |
| 2008 | } |
| 2009 | |
| 2010 | // Check whether the backedge-taken count is SCEVCouldNotCompute. |
| 2011 | // Note that this serves two purposes: It filters out loops that are |
| 2012 | // simply not analyzable, and it covers the case where this code is |
| 2013 | // being called from within backedge-taken count analysis, such that |
| 2014 | // attempting to ask for the backedge-taken count would likely result |
| 2015 | // in infinite recursion. In the later case, the analysis code will |
| 2016 | // cope with a conservative value, and it will take care to purge |
| 2017 | // that value once it has finished. |
| 2018 | const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); |
| 2019 | if (!isa<SCEVCouldNotCompute>(Val: MaxBECount)) { |
| 2020 | // Manually compute the final value for AR, checking for |
| 2021 | // overflow. |
| 2022 | |
| 2023 | // Check whether the backedge-taken count can be losslessly casted to |
| 2024 | // the addrec's type. The count is always unsigned. |
| 2025 | const SCEV *CastedMaxBECount = |
| 2026 | getTruncateOrZeroExtend(V: MaxBECount, Ty: Start->getType(), Depth); |
| 2027 | const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( |
| 2028 | V: CastedMaxBECount, Ty: MaxBECount->getType(), Depth); |
| 2029 | if (MaxBECount == RecastedMaxBECount) { |
| 2030 | Type *WideTy = IntegerType::get(C&: getContext(), NumBits: BitWidth * 2); |
| 2031 | // Check whether Start+Step*MaxBECount has no signed overflow. |
| 2032 | const SCEV *SMul = getMulExpr(LHS: CastedMaxBECount, RHS: Step, |
| 2033 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2034 | const SCEV *SAdd = getSignExtendExpr(Op: getAddExpr(LHS: Start, RHS: SMul, |
| 2035 | Flags: SCEV::FlagAnyWrap, |
| 2036 | Depth: Depth + 1), |
| 2037 | Ty: WideTy, Depth: Depth + 1); |
| 2038 | const SCEV *WideStart = getSignExtendExpr(Op: Start, Ty: WideTy, Depth: Depth + 1); |
| 2039 | const SCEV *WideMaxBECount = |
| 2040 | getZeroExtendExpr(Op: CastedMaxBECount, Ty: WideTy, Depth: Depth + 1); |
| 2041 | const SCEV *OperandExtendedAdd = |
| 2042 | getAddExpr(LHS: WideStart, |
| 2043 | RHS: getMulExpr(LHS: WideMaxBECount, |
| 2044 | RHS: getSignExtendExpr(Op: Step, Ty: WideTy, Depth: Depth + 1), |
| 2045 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1), |
| 2046 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2047 | if (SAdd == OperandExtendedAdd) { |
| 2048 | // Cache knowledge of AR NSW, which is propagated to this AddRec. |
| 2049 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNSW); |
| 2050 | // Return the expression with the addrec on the outside. |
| 2051 | Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, SE: this, |
| 2052 | Depth: Depth + 1); |
| 2053 | Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
| 2054 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
| 2055 | } |
| 2056 | // Similar to above, only this time treat the step value as unsigned. |
| 2057 | // This covers loops that count up with an unsigned step. |
| 2058 | OperandExtendedAdd = |
| 2059 | getAddExpr(LHS: WideStart, |
| 2060 | RHS: getMulExpr(LHS: WideMaxBECount, |
| 2061 | RHS: getZeroExtendExpr(Op: Step, Ty: WideTy, Depth: Depth + 1), |
| 2062 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1), |
| 2063 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2064 | if (SAdd == OperandExtendedAdd) { |
| 2065 | // If AR wraps around then |
| 2066 | // |
| 2067 | // abs(Step) * MaxBECount > unsigned-max(AR->getType()) |
| 2068 | // => SAdd != OperandExtendedAdd |
| 2069 | // |
| 2070 | // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> |
| 2071 | // (SAdd == OperandExtendedAdd => AR is NW) |
| 2072 | |
| 2073 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNW); |
| 2074 | |
| 2075 | // Return the expression with the addrec on the outside. |
| 2076 | Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, SE: this, |
| 2077 | Depth: Depth + 1); |
| 2078 | Step = getZeroExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
| 2079 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
| 2080 | } |
| 2081 | } |
| 2082 | } |
| 2083 | |
| 2084 | auto NewFlags = proveNoSignedWrapViaInduction(AR); |
| 2085 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: NewFlags); |
| 2086 | if (AR->hasNoSignedWrap()) { |
| 2087 | // Same as nsw case above - duplicated here to avoid a compile time |
| 2088 | // issue. It's not clear that the order of checks does matter, but |
| 2089 | // it's one of two issue possible causes for a change which was |
| 2090 | // reverted. Be conservative for the moment. |
| 2091 | Start = |
| 2092 | getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1); |
| 2093 | Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
| 2094 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
| 2095 | } |
| 2096 | |
| 2097 | // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> |
| 2098 | // if D + (C - D + Step * n) could be proven to not signed wrap |
| 2099 | // where D maximizes the number of trailing zeros of (C - D + Step * n) |
| 2100 | if (const auto *SC = dyn_cast<SCEVConstant>(Val: Start)) { |
| 2101 | const APInt &C = SC->getAPInt(); |
| 2102 | const APInt &D = extractConstantWithoutWrapping(SE&: *this, ConstantStart: C, Step); |
| 2103 | if (D != 0) { |
| 2104 | const SCEV *SSExtD = getSignExtendExpr(Op: getConstant(Val: D), Ty, Depth); |
| 2105 | const SCEV *SResidual = |
| 2106 | getAddRecExpr(Start: getConstant(Val: C - D), Step, L, Flags: AR->getNoWrapFlags()); |
| 2107 | const SCEV *SSExtR = getSignExtendExpr(Op: SResidual, Ty, Depth: Depth + 1); |
| 2108 | return getAddExpr(LHS: SSExtD, RHS: SSExtR, |
| 2109 | Flags: (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
| 2110 | Depth: Depth + 1); |
| 2111 | } |
| 2112 | } |
| 2113 | |
| 2114 | if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { |
| 2115 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNSW); |
| 2116 | Start = |
| 2117 | getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1); |
| 2118 | Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
| 2119 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
| 2120 | } |
| 2121 | } |
| 2122 | |
| 2123 | // If the input value is provably positive and we could not simplify |
| 2124 | // away the sext build a zext instead. |
| 2125 | if (isKnownNonNegative(S: Op)) |
| 2126 | return getZeroExtendExpr(Op, Ty, Depth: Depth + 1); |
| 2127 | |
| 2128 | // sext(smin(x, y)) -> smin(sext(x), sext(y)) |
| 2129 | // sext(smax(x, y)) -> smax(sext(x), sext(y)) |
| 2130 | if (isa<SCEVSMinExpr>(Val: Op) || isa<SCEVSMaxExpr>(Val: Op)) { |
| 2131 | auto *MinMax = cast<SCEVMinMaxExpr>(Val: Op); |
| 2132 | SmallVector<const SCEV *, 4> Operands; |
| 2133 | for (auto *Operand : MinMax->operands()) |
| 2134 | Operands.push_back(Elt: getSignExtendExpr(Op: Operand, Ty)); |
| 2135 | if (isa<SCEVSMinExpr>(Val: MinMax)) |
| 2136 | return getSMinExpr(Operands); |
| 2137 | return getSMaxExpr(Operands); |
| 2138 | } |
| 2139 | |
| 2140 | // The cast wasn't folded; create an explicit cast node. |
| 2141 | // Recompute the insert position, as it may have been invalidated. |
| 2142 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S; |
| 2143 | SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(Allocator&: SCEVAllocator), |
| 2144 | Op, Ty); |
| 2145 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 2146 | registerUser(User: S, Ops: { Op }); |
| 2147 | return S; |
| 2148 | } |
| 2149 | |
| 2150 | const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, |
| 2151 | Type *Ty) { |
| 2152 | switch (Kind) { |
| 2153 | case scTruncate: |
| 2154 | return getTruncateExpr(Op, Ty); |
| 2155 | case scZeroExtend: |
| 2156 | return getZeroExtendExpr(Op, Ty); |
| 2157 | case scSignExtend: |
| 2158 | return getSignExtendExpr(Op, Ty); |
| 2159 | case scPtrToInt: |
| 2160 | return getPtrToIntExpr(Op, Ty); |
| 2161 | default: |
| 2162 | llvm_unreachable("Not a SCEV cast expression!" ); |
| 2163 | } |
| 2164 | } |
| 2165 | |
| 2166 | /// getAnyExtendExpr - Return a SCEV for the given operand extended with |
| 2167 | /// unspecified bits out to the given type. |
| 2168 | const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, |
| 2169 | Type *Ty) { |
| 2170 | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
| 2171 | "This is not an extending conversion!" ); |
| 2172 | assert(isSCEVable(Ty) && |
| 2173 | "This is not a conversion to a SCEVable type!" ); |
| 2174 | Ty = getEffectiveSCEVType(Ty); |
| 2175 | |
| 2176 | // Sign-extend negative constants. |
| 2177 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: Op)) |
| 2178 | if (SC->getAPInt().isNegative()) |
| 2179 | return getSignExtendExpr(Op, Ty); |
| 2180 | |
| 2181 | // Peel off a truncate cast. |
| 2182 | if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Val: Op)) { |
| 2183 | const SCEV *NewOp = T->getOperand(); |
| 2184 | if (getTypeSizeInBits(Ty: NewOp->getType()) < getTypeSizeInBits(Ty)) |
| 2185 | return getAnyExtendExpr(Op: NewOp, Ty); |
| 2186 | return getTruncateOrNoop(V: NewOp, Ty); |
| 2187 | } |
| 2188 | |
| 2189 | // Next try a zext cast. If the cast is folded, use it. |
| 2190 | const SCEV *ZExt = getZeroExtendExpr(Op, Ty); |
| 2191 | if (!isa<SCEVZeroExtendExpr>(Val: ZExt)) |
| 2192 | return ZExt; |
| 2193 | |
| 2194 | // Next try a sext cast. If the cast is folded, use it. |
| 2195 | const SCEV *SExt = getSignExtendExpr(Op, Ty); |
| 2196 | if (!isa<SCEVSignExtendExpr>(Val: SExt)) |
| 2197 | return SExt; |
| 2198 | |
| 2199 | // Force the cast to be folded into the operands of an addrec. |
| 2200 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Op)) { |
| 2201 | SmallVector<const SCEV *, 4> Ops; |
| 2202 | for (const SCEV *Op : AR->operands()) |
| 2203 | Ops.push_back(Elt: getAnyExtendExpr(Op, Ty)); |
| 2204 | return getAddRecExpr(Operands&: Ops, L: AR->getLoop(), Flags: SCEV::FlagNW); |
| 2205 | } |
| 2206 | |
| 2207 | // If the expression is obviously signed, use the sext cast value. |
| 2208 | if (isa<SCEVSMaxExpr>(Val: Op)) |
| 2209 | return SExt; |
| 2210 | |
| 2211 | // Absent any other information, use the zext cast value. |
| 2212 | return ZExt; |
| 2213 | } |
| 2214 | |
| 2215 | /// Process the given Ops list, which is a list of operands to be added under |
| 2216 | /// the given scale, update the given map. This is a helper function for |
| 2217 | /// getAddRecExpr. As an example of what it does, given a sequence of operands |
| 2218 | /// that would form an add expression like this: |
| 2219 | /// |
| 2220 | /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) |
| 2221 | /// |
| 2222 | /// where A and B are constants, update the map with these values: |
| 2223 | /// |
| 2224 | /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) |
| 2225 | /// |
| 2226 | /// and add 13 + A*B*29 to AccumulatedConstant. |
| 2227 | /// This will allow getAddRecExpr to produce this: |
| 2228 | /// |
| 2229 | /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) |
| 2230 | /// |
| 2231 | /// This form often exposes folding opportunities that are hidden in |
| 2232 | /// the original operand list. |
| 2233 | /// |
| 2234 | /// Return true iff it appears that any interesting folding opportunities |
| 2235 | /// may be exposed. This helps getAddRecExpr short-circuit extra work in |
| 2236 | /// the common case where no interesting opportunities are present, and |
| 2237 | /// is also used as a check to avoid infinite recursion. |
| 2238 | static bool |
| 2239 | CollectAddOperandsWithScales(SmallDenseMap<const SCEV *, APInt, 16> &M, |
| 2240 | SmallVectorImpl<const SCEV *> &NewOps, |
| 2241 | APInt &AccumulatedConstant, |
| 2242 | ArrayRef<const SCEV *> Ops, const APInt &Scale, |
| 2243 | ScalarEvolution &SE) { |
| 2244 | bool Interesting = false; |
| 2245 | |
| 2246 | // Iterate over the add operands. They are sorted, with constants first. |
| 2247 | unsigned i = 0; |
| 2248 | while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: Ops[i])) { |
| 2249 | ++i; |
| 2250 | // Pull a buried constant out to the outside. |
| 2251 | if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) |
| 2252 | Interesting = true; |
| 2253 | AccumulatedConstant += Scale * C->getAPInt(); |
| 2254 | } |
| 2255 | |
| 2256 | // Next comes everything else. We're especially interested in multiplies |
| 2257 | // here, but they're in the middle, so just visit the rest with one loop. |
| 2258 | for (; i != Ops.size(); ++i) { |
| 2259 | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: Ops[i]); |
| 2260 | if (Mul && isa<SCEVConstant>(Val: Mul->getOperand(i: 0))) { |
| 2261 | APInt NewScale = |
| 2262 | Scale * cast<SCEVConstant>(Val: Mul->getOperand(i: 0))->getAPInt(); |
| 2263 | if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Val: Mul->getOperand(i: 1))) { |
| 2264 | // A multiplication of a constant with another add; recurse. |
| 2265 | const SCEVAddExpr *Add = cast<SCEVAddExpr>(Val: Mul->getOperand(i: 1)); |
| 2266 | Interesting |= |
| 2267 | CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, |
| 2268 | Ops: Add->operands(), Scale: NewScale, SE); |
| 2269 | } else { |
| 2270 | // A multiplication of a constant with some other value. Update |
| 2271 | // the map. |
| 2272 | SmallVector<const SCEV *, 4> MulOps(drop_begin(RangeOrContainer: Mul->operands())); |
| 2273 | const SCEV *Key = SE.getMulExpr(Ops&: MulOps); |
| 2274 | auto Pair = M.insert(KV: {Key, NewScale}); |
| 2275 | if (Pair.second) { |
| 2276 | NewOps.push_back(Elt: Pair.first->first); |
| 2277 | } else { |
| 2278 | Pair.first->second += NewScale; |
| 2279 | // The map already had an entry for this value, which may indicate |
| 2280 | // a folding opportunity. |
| 2281 | Interesting = true; |
| 2282 | } |
| 2283 | } |
| 2284 | } else { |
| 2285 | // An ordinary operand. Update the map. |
| 2286 | std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = |
| 2287 | M.insert(KV: {Ops[i], Scale}); |
| 2288 | if (Pair.second) { |
| 2289 | NewOps.push_back(Elt: Pair.first->first); |
| 2290 | } else { |
| 2291 | Pair.first->second += Scale; |
| 2292 | // The map already had an entry for this value, which may indicate |
| 2293 | // a folding opportunity. |
| 2294 | Interesting = true; |
| 2295 | } |
| 2296 | } |
| 2297 | } |
| 2298 | |
| 2299 | return Interesting; |
| 2300 | } |
| 2301 | |
| 2302 | bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, |
| 2303 | const SCEV *LHS, const SCEV *RHS, |
| 2304 | const Instruction *CtxI) { |
| 2305 | const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, |
| 2306 | SCEV::NoWrapFlags, unsigned); |
| 2307 | switch (BinOp) { |
| 2308 | default: |
| 2309 | llvm_unreachable("Unsupported binary op" ); |
| 2310 | case Instruction::Add: |
| 2311 | Operation = &ScalarEvolution::getAddExpr; |
| 2312 | break; |
| 2313 | case Instruction::Sub: |
| 2314 | Operation = &ScalarEvolution::getMinusSCEV; |
| 2315 | break; |
| 2316 | case Instruction::Mul: |
| 2317 | Operation = &ScalarEvolution::getMulExpr; |
| 2318 | break; |
| 2319 | } |
| 2320 | |
| 2321 | const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = |
| 2322 | Signed ? &ScalarEvolution::getSignExtendExpr |
| 2323 | : &ScalarEvolution::getZeroExtendExpr; |
| 2324 | |
| 2325 | // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) |
| 2326 | auto *NarrowTy = cast<IntegerType>(Val: LHS->getType()); |
| 2327 | auto *WideTy = |
| 2328 | IntegerType::get(C&: NarrowTy->getContext(), NumBits: NarrowTy->getBitWidth() * 2); |
| 2329 | |
| 2330 | const SCEV *A = (this->*Extension)( |
| 2331 | (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); |
| 2332 | const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0); |
| 2333 | const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0); |
| 2334 | const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0); |
| 2335 | if (A == B) |
| 2336 | return true; |
| 2337 | // Can we use context to prove the fact we need? |
| 2338 | if (!CtxI) |
| 2339 | return false; |
| 2340 | // TODO: Support mul. |
| 2341 | if (BinOp == Instruction::Mul) |
| 2342 | return false; |
| 2343 | auto *RHSC = dyn_cast<SCEVConstant>(Val: RHS); |
| 2344 | // TODO: Lift this limitation. |
| 2345 | if (!RHSC) |
| 2346 | return false; |
| 2347 | APInt C = RHSC->getAPInt(); |
| 2348 | unsigned NumBits = C.getBitWidth(); |
| 2349 | bool IsSub = (BinOp == Instruction::Sub); |
| 2350 | bool IsNegativeConst = (Signed && C.isNegative()); |
| 2351 | // Compute the direction and magnitude by which we need to check overflow. |
| 2352 | bool OverflowDown = IsSub ^ IsNegativeConst; |
| 2353 | APInt Magnitude = C; |
| 2354 | if (IsNegativeConst) { |
| 2355 | if (C == APInt::getSignedMinValue(numBits: NumBits)) |
| 2356 | // TODO: SINT_MIN on inversion gives the same negative value, we don't |
| 2357 | // want to deal with that. |
| 2358 | return false; |
| 2359 | Magnitude = -C; |
| 2360 | } |
| 2361 | |
| 2362 | ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; |
| 2363 | if (OverflowDown) { |
| 2364 | // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS. |
| 2365 | APInt Min = Signed ? APInt::getSignedMinValue(numBits: NumBits) |
| 2366 | : APInt::getMinValue(numBits: NumBits); |
| 2367 | APInt Limit = Min + Magnitude; |
| 2368 | return isKnownPredicateAt(Pred, LHS: getConstant(Val: Limit), RHS: LHS, CtxI); |
| 2369 | } else { |
| 2370 | // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude. |
| 2371 | APInt Max = Signed ? APInt::getSignedMaxValue(numBits: NumBits) |
| 2372 | : APInt::getMaxValue(numBits: NumBits); |
| 2373 | APInt Limit = Max - Magnitude; |
| 2374 | return isKnownPredicateAt(Pred, LHS, RHS: getConstant(Val: Limit), CtxI); |
| 2375 | } |
| 2376 | } |
| 2377 | |
| 2378 | std::optional<SCEV::NoWrapFlags> |
| 2379 | ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( |
| 2380 | const OverflowingBinaryOperator *OBO) { |
| 2381 | // It cannot be done any better. |
| 2382 | if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) |
| 2383 | return std::nullopt; |
| 2384 | |
| 2385 | SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; |
| 2386 | |
| 2387 | if (OBO->hasNoUnsignedWrap()) |
| 2388 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW); |
| 2389 | if (OBO->hasNoSignedWrap()) |
| 2390 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNSW); |
| 2391 | |
| 2392 | bool Deduced = false; |
| 2393 | |
| 2394 | if (OBO->getOpcode() != Instruction::Add && |
| 2395 | OBO->getOpcode() != Instruction::Sub && |
| 2396 | OBO->getOpcode() != Instruction::Mul) |
| 2397 | return std::nullopt; |
| 2398 | |
| 2399 | const SCEV *LHS = getSCEV(V: OBO->getOperand(i_nocapture: 0)); |
| 2400 | const SCEV *RHS = getSCEV(V: OBO->getOperand(i_nocapture: 1)); |
| 2401 | |
| 2402 | const Instruction *CtxI = |
| 2403 | UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(Val: OBO) : nullptr; |
| 2404 | if (!OBO->hasNoUnsignedWrap() && |
| 2405 | willNotOverflow(BinOp: (Instruction::BinaryOps)OBO->getOpcode(), |
| 2406 | /* Signed */ false, LHS, RHS, CtxI)) { |
| 2407 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW); |
| 2408 | Deduced = true; |
| 2409 | } |
| 2410 | |
| 2411 | if (!OBO->hasNoSignedWrap() && |
| 2412 | willNotOverflow(BinOp: (Instruction::BinaryOps)OBO->getOpcode(), |
| 2413 | /* Signed */ true, LHS, RHS, CtxI)) { |
| 2414 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNSW); |
| 2415 | Deduced = true; |
| 2416 | } |
| 2417 | |
| 2418 | if (Deduced) |
| 2419 | return Flags; |
| 2420 | return std::nullopt; |
| 2421 | } |
| 2422 | |
| 2423 | // We're trying to construct a SCEV of type `Type' with `Ops' as operands and |
| 2424 | // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of |
| 2425 | // can't-overflow flags for the operation if possible. |
| 2426 | static SCEV::NoWrapFlags |
| 2427 | StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, |
| 2428 | const ArrayRef<const SCEV *> Ops, |
| 2429 | SCEV::NoWrapFlags Flags) { |
| 2430 | using namespace std::placeholders; |
| 2431 | |
| 2432 | using OBO = OverflowingBinaryOperator; |
| 2433 | |
| 2434 | bool CanAnalyze = |
| 2435 | Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; |
| 2436 | (void)CanAnalyze; |
| 2437 | assert(CanAnalyze && "don't call from other places!" ); |
| 2438 | |
| 2439 | int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; |
| 2440 | SCEV::NoWrapFlags SignOrUnsignWrap = |
| 2441 | ScalarEvolution::maskFlags(Flags, Mask: SignOrUnsignMask); |
| 2442 | |
| 2443 | // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. |
| 2444 | auto IsKnownNonNegative = [&](const SCEV *S) { |
| 2445 | return SE->isKnownNonNegative(S); |
| 2446 | }; |
| 2447 | |
| 2448 | if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Range: Ops, P: IsKnownNonNegative)) |
| 2449 | Flags = |
| 2450 | ScalarEvolution::setFlags(Flags, OnFlags: (SCEV::NoWrapFlags)SignOrUnsignMask); |
| 2451 | |
| 2452 | SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, Mask: SignOrUnsignMask); |
| 2453 | |
| 2454 | if (SignOrUnsignWrap != SignOrUnsignMask && |
| 2455 | (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && |
| 2456 | isa<SCEVConstant>(Val: Ops[0])) { |
| 2457 | |
| 2458 | auto Opcode = [&] { |
| 2459 | switch (Type) { |
| 2460 | case scAddExpr: |
| 2461 | return Instruction::Add; |
| 2462 | case scMulExpr: |
| 2463 | return Instruction::Mul; |
| 2464 | default: |
| 2465 | llvm_unreachable("Unexpected SCEV op." ); |
| 2466 | } |
| 2467 | }(); |
| 2468 | |
| 2469 | const APInt &C = cast<SCEVConstant>(Val: Ops[0])->getAPInt(); |
| 2470 | |
| 2471 | // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. |
| 2472 | if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { |
| 2473 | auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| 2474 | BinOp: Opcode, Other: C, NoWrapKind: OBO::NoSignedWrap); |
| 2475 | if (NSWRegion.contains(CR: SE->getSignedRange(S: Ops[1]))) |
| 2476 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNSW); |
| 2477 | } |
| 2478 | |
| 2479 | // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. |
| 2480 | if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { |
| 2481 | auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| 2482 | BinOp: Opcode, Other: C, NoWrapKind: OBO::NoUnsignedWrap); |
| 2483 | if (NUWRegion.contains(CR: SE->getUnsignedRange(S: Ops[1]))) |
| 2484 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW); |
| 2485 | } |
| 2486 | } |
| 2487 | |
| 2488 | // <0,+,nonnegative><nw> is also nuw |
| 2489 | // TODO: Add corresponding nsw case |
| 2490 | if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, TestFlags: SCEV::FlagNW) && |
| 2491 | !ScalarEvolution::hasFlags(Flags, TestFlags: SCEV::FlagNUW) && Ops.size() == 2 && |
| 2492 | Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) |
| 2493 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW); |
| 2494 | |
| 2495 | // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW |
| 2496 | if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, TestFlags: SCEV::FlagNUW) && |
| 2497 | Ops.size() == 2) { |
| 2498 | if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Val: Ops[0])) |
| 2499 | if (UDiv->getOperand(i: 1) == Ops[1]) |
| 2500 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW); |
| 2501 | if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Val: Ops[1])) |
| 2502 | if (UDiv->getOperand(i: 1) == Ops[0]) |
| 2503 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW); |
| 2504 | } |
| 2505 | |
| 2506 | return Flags; |
| 2507 | } |
| 2508 | |
| 2509 | bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { |
| 2510 | return isLoopInvariant(S, L) && properlyDominates(S, BB: L->getHeader()); |
| 2511 | } |
| 2512 | |
| 2513 | /// Get a canonical add expression, or something simpler if possible. |
| 2514 | const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, |
| 2515 | SCEV::NoWrapFlags OrigFlags, |
| 2516 | unsigned Depth) { |
| 2517 | assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && |
| 2518 | "only nuw or nsw allowed" ); |
| 2519 | assert(!Ops.empty() && "Cannot get empty add!" ); |
| 2520 | if (Ops.size() == 1) return Ops[0]; |
| 2521 | #ifndef NDEBUG |
| 2522 | Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); |
| 2523 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) |
| 2524 | assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && |
| 2525 | "SCEVAddExpr operand types don't match!" ); |
| 2526 | unsigned NumPtrs = count_if( |
| 2527 | Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); |
| 2528 | assert(NumPtrs <= 1 && "add has at most one pointer operand" ); |
| 2529 | #endif |
| 2530 | |
| 2531 | const SCEV *Folded = constantFoldAndGroupOps( |
| 2532 | SE&: *this, LI, DT, Ops, |
| 2533 | Fold: [](const APInt &C1, const APInt &C2) { return C1 + C2; }, |
| 2534 | IsIdentity: [](const APInt &C) { return C.isZero(); }, // identity |
| 2535 | IsAbsorber: [](const APInt &C) { return false; }); // absorber |
| 2536 | if (Folded) |
| 2537 | return Folded; |
| 2538 | |
| 2539 | unsigned Idx = isa<SCEVConstant>(Val: Ops[0]) ? 1 : 0; |
| 2540 | |
| 2541 | // Delay expensive flag strengthening until necessary. |
| 2542 | auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { |
| 2543 | return StrengthenNoWrapFlags(SE: this, Type: scAddExpr, Ops, Flags: OrigFlags); |
| 2544 | }; |
| 2545 | |
| 2546 | // Limit recursion calls depth. |
| 2547 | if (Depth > MaxArithDepth || hasHugeExpression(Ops)) |
| 2548 | return getOrCreateAddExpr(Ops, Flags: ComputeFlags(Ops)); |
| 2549 | |
| 2550 | if (SCEV *S = findExistingSCEVInCache(SCEVType: scAddExpr, Ops)) { |
| 2551 | // Don't strengthen flags if we have no new information. |
| 2552 | SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); |
| 2553 | if (Add->getNoWrapFlags(Mask: OrigFlags) != OrigFlags) |
| 2554 | Add->setNoWrapFlags(ComputeFlags(Ops)); |
| 2555 | return S; |
| 2556 | } |
| 2557 | |
| 2558 | // Okay, check to see if the same value occurs in the operand list more than |
| 2559 | // once. If so, merge them together into an multiply expression. Since we |
| 2560 | // sorted the list, these values are required to be adjacent. |
| 2561 | Type *Ty = Ops[0]->getType(); |
| 2562 | bool FoundMatch = false; |
| 2563 | for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) |
| 2564 | if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 |
| 2565 | // Scan ahead to count how many equal operands there are. |
| 2566 | unsigned Count = 2; |
| 2567 | while (i+Count != e && Ops[i+Count] == Ops[i]) |
| 2568 | ++Count; |
| 2569 | // Merge the values into a multiply. |
| 2570 | const SCEV *Scale = getConstant(Ty, V: Count); |
| 2571 | const SCEV *Mul = getMulExpr(LHS: Scale, RHS: Ops[i], Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2572 | if (Ops.size() == Count) |
| 2573 | return Mul; |
| 2574 | Ops[i] = Mul; |
| 2575 | Ops.erase(CS: Ops.begin()+i+1, CE: Ops.begin()+i+Count); |
| 2576 | --i; e -= Count - 1; |
| 2577 | FoundMatch = true; |
| 2578 | } |
| 2579 | if (FoundMatch) |
| 2580 | return getAddExpr(Ops, OrigFlags, Depth: Depth + 1); |
| 2581 | |
| 2582 | // Check for truncates. If all the operands are truncated from the same |
| 2583 | // type, see if factoring out the truncate would permit the result to be |
| 2584 | // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) |
| 2585 | // if the contents of the resulting outer trunc fold to something simple. |
| 2586 | auto FindTruncSrcType = [&]() -> Type * { |
| 2587 | // We're ultimately looking to fold an addrec of truncs and muls of only |
| 2588 | // constants and truncs, so if we find any other types of SCEV |
| 2589 | // as operands of the addrec then we bail and return nullptr here. |
| 2590 | // Otherwise, we return the type of the operand of a trunc that we find. |
| 2591 | if (auto *T = dyn_cast<SCEVTruncateExpr>(Val: Ops[Idx])) |
| 2592 | return T->getOperand()->getType(); |
| 2593 | if (const auto *Mul = dyn_cast<SCEVMulExpr>(Val: Ops[Idx])) { |
| 2594 | const auto *LastOp = Mul->getOperand(i: Mul->getNumOperands() - 1); |
| 2595 | if (const auto *T = dyn_cast<SCEVTruncateExpr>(Val: LastOp)) |
| 2596 | return T->getOperand()->getType(); |
| 2597 | } |
| 2598 | return nullptr; |
| 2599 | }; |
| 2600 | if (auto *SrcType = FindTruncSrcType()) { |
| 2601 | SmallVector<const SCEV *, 8> LargeOps; |
| 2602 | bool Ok = true; |
| 2603 | // Check all the operands to see if they can be represented in the |
| 2604 | // source type of the truncate. |
| 2605 | for (const SCEV *Op : Ops) { |
| 2606 | if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Val: Op)) { |
| 2607 | if (T->getOperand()->getType() != SrcType) { |
| 2608 | Ok = false; |
| 2609 | break; |
| 2610 | } |
| 2611 | LargeOps.push_back(Elt: T->getOperand()); |
| 2612 | } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: Op)) { |
| 2613 | LargeOps.push_back(Elt: getAnyExtendExpr(Op: C, Ty: SrcType)); |
| 2614 | } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Val: Op)) { |
| 2615 | SmallVector<const SCEV *, 8> LargeMulOps; |
| 2616 | for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { |
| 2617 | if (const SCEVTruncateExpr *T = |
| 2618 | dyn_cast<SCEVTruncateExpr>(Val: M->getOperand(i: j))) { |
| 2619 | if (T->getOperand()->getType() != SrcType) { |
| 2620 | Ok = false; |
| 2621 | break; |
| 2622 | } |
| 2623 | LargeMulOps.push_back(Elt: T->getOperand()); |
| 2624 | } else if (const auto *C = dyn_cast<SCEVConstant>(Val: M->getOperand(i: j))) { |
| 2625 | LargeMulOps.push_back(Elt: getAnyExtendExpr(Op: C, Ty: SrcType)); |
| 2626 | } else { |
| 2627 | Ok = false; |
| 2628 | break; |
| 2629 | } |
| 2630 | } |
| 2631 | if (Ok) |
| 2632 | LargeOps.push_back(Elt: getMulExpr(Ops&: LargeMulOps, Flags: SCEV::FlagAnyWrap, Depth: Depth + 1)); |
| 2633 | } else { |
| 2634 | Ok = false; |
| 2635 | break; |
| 2636 | } |
| 2637 | } |
| 2638 | if (Ok) { |
| 2639 | // Evaluate the expression in the larger type. |
| 2640 | const SCEV *Fold = getAddExpr(Ops&: LargeOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2641 | // If it folds to something simple, use it. Otherwise, don't. |
| 2642 | if (isa<SCEVConstant>(Val: Fold) || isa<SCEVUnknown>(Val: Fold)) |
| 2643 | return getTruncateExpr(Op: Fold, Ty); |
| 2644 | } |
| 2645 | } |
| 2646 | |
| 2647 | if (Ops.size() == 2) { |
| 2648 | // Check if we have an expression of the form ((X + C1) - C2), where C1 and |
| 2649 | // C2 can be folded in a way that allows retaining wrapping flags of (X + |
| 2650 | // C1). |
| 2651 | const SCEV *A = Ops[0]; |
| 2652 | const SCEV *B = Ops[1]; |
| 2653 | auto *AddExpr = dyn_cast<SCEVAddExpr>(Val: B); |
| 2654 | auto *C = dyn_cast<SCEVConstant>(Val: A); |
| 2655 | if (AddExpr && C && isa<SCEVConstant>(Val: AddExpr->getOperand(i: 0))) { |
| 2656 | auto C1 = cast<SCEVConstant>(Val: AddExpr->getOperand(i: 0))->getAPInt(); |
| 2657 | auto C2 = C->getAPInt(); |
| 2658 | SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; |
| 2659 | |
| 2660 | APInt ConstAdd = C1 + C2; |
| 2661 | auto AddFlags = AddExpr->getNoWrapFlags(); |
| 2662 | // Adding a smaller constant is NUW if the original AddExpr was NUW. |
| 2663 | if (ScalarEvolution::hasFlags(Flags: AddFlags, TestFlags: SCEV::FlagNUW) && |
| 2664 | ConstAdd.ule(RHS: C1)) { |
| 2665 | PreservedFlags = |
| 2666 | ScalarEvolution::setFlags(Flags: PreservedFlags, OnFlags: SCEV::FlagNUW); |
| 2667 | } |
| 2668 | |
| 2669 | // Adding a constant with the same sign and small magnitude is NSW, if the |
| 2670 | // original AddExpr was NSW. |
| 2671 | if (ScalarEvolution::hasFlags(Flags: AddFlags, TestFlags: SCEV::FlagNSW) && |
| 2672 | C1.isSignBitSet() == ConstAdd.isSignBitSet() && |
| 2673 | ConstAdd.abs().ule(RHS: C1.abs())) { |
| 2674 | PreservedFlags = |
| 2675 | ScalarEvolution::setFlags(Flags: PreservedFlags, OnFlags: SCEV::FlagNSW); |
| 2676 | } |
| 2677 | |
| 2678 | if (PreservedFlags != SCEV::FlagAnyWrap) { |
| 2679 | SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); |
| 2680 | NewOps[0] = getConstant(Val: ConstAdd); |
| 2681 | return getAddExpr(Ops&: NewOps, OrigFlags: PreservedFlags); |
| 2682 | } |
| 2683 | } |
| 2684 | } |
| 2685 | |
| 2686 | // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) |
| 2687 | if (Ops.size() == 2) { |
| 2688 | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: Ops[0]); |
| 2689 | if (Mul && Mul->getNumOperands() == 2 && |
| 2690 | Mul->getOperand(i: 0)->isAllOnesValue()) { |
| 2691 | const SCEV *X; |
| 2692 | const SCEV *Y; |
| 2693 | if (matchURem(Expr: Mul->getOperand(i: 1), LHS&: X, RHS&: Y) && X == Ops[1]) { |
| 2694 | return getMulExpr(LHS: Y, RHS: getUDivExpr(LHS: X, RHS: Y)); |
| 2695 | } |
| 2696 | } |
| 2697 | } |
| 2698 | |
| 2699 | // Skip past any other cast SCEVs. |
| 2700 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) |
| 2701 | ++Idx; |
| 2702 | |
| 2703 | // If there are add operands they would be next. |
| 2704 | if (Idx < Ops.size()) { |
| 2705 | bool DeletedAdd = false; |
| 2706 | // If the original flags and all inlined SCEVAddExprs are NUW, use the |
| 2707 | // common NUW flag for expression after inlining. Other flags cannot be |
| 2708 | // preserved, because they may depend on the original order of operations. |
| 2709 | SCEV::NoWrapFlags CommonFlags = maskFlags(Flags: OrigFlags, Mask: SCEV::FlagNUW); |
| 2710 | while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: Ops[Idx])) { |
| 2711 | if (Ops.size() > AddOpsInlineThreshold || |
| 2712 | Add->getNumOperands() > AddOpsInlineThreshold) |
| 2713 | break; |
| 2714 | // If we have an add, expand the add operands onto the end of the operands |
| 2715 | // list. |
| 2716 | Ops.erase(CI: Ops.begin()+Idx); |
| 2717 | append_range(C&: Ops, R: Add->operands()); |
| 2718 | DeletedAdd = true; |
| 2719 | CommonFlags = maskFlags(Flags: CommonFlags, Mask: Add->getNoWrapFlags()); |
| 2720 | } |
| 2721 | |
| 2722 | // If we deleted at least one add, we added operands to the end of the list, |
| 2723 | // and they are not necessarily sorted. Recurse to resort and resimplify |
| 2724 | // any operands we just acquired. |
| 2725 | if (DeletedAdd) |
| 2726 | return getAddExpr(Ops, OrigFlags: CommonFlags, Depth: Depth + 1); |
| 2727 | } |
| 2728 | |
| 2729 | // Skip over the add expression until we get to a multiply. |
| 2730 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) |
| 2731 | ++Idx; |
| 2732 | |
| 2733 | // Check to see if there are any folding opportunities present with |
| 2734 | // operands multiplied by constant values. |
| 2735 | if (Idx < Ops.size() && isa<SCEVMulExpr>(Val: Ops[Idx])) { |
| 2736 | uint64_t BitWidth = getTypeSizeInBits(Ty); |
| 2737 | SmallDenseMap<const SCEV *, APInt, 16> M; |
| 2738 | SmallVector<const SCEV *, 8> NewOps; |
| 2739 | APInt AccumulatedConstant(BitWidth, 0); |
| 2740 | if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, |
| 2741 | Ops, Scale: APInt(BitWidth, 1), SE&: *this)) { |
| 2742 | struct APIntCompare { |
| 2743 | bool operator()(const APInt &LHS, const APInt &RHS) const { |
| 2744 | return LHS.ult(RHS); |
| 2745 | } |
| 2746 | }; |
| 2747 | |
| 2748 | // Some interesting folding opportunity is present, so its worthwhile to |
| 2749 | // re-generate the operands list. Group the operands by constant scale, |
| 2750 | // to avoid multiplying by the same constant scale multiple times. |
| 2751 | std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; |
| 2752 | for (const SCEV *NewOp : NewOps) |
| 2753 | MulOpLists[M.find(Val: NewOp)->second].push_back(Elt: NewOp); |
| 2754 | // Re-generate the operands list. |
| 2755 | Ops.clear(); |
| 2756 | if (AccumulatedConstant != 0) |
| 2757 | Ops.push_back(Elt: getConstant(Val: AccumulatedConstant)); |
| 2758 | for (auto &MulOp : MulOpLists) { |
| 2759 | if (MulOp.first == 1) { |
| 2760 | Ops.push_back(Elt: getAddExpr(Ops&: MulOp.second, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1)); |
| 2761 | } else if (MulOp.first != 0) { |
| 2762 | Ops.push_back(Elt: getMulExpr( |
| 2763 | LHS: getConstant(Val: MulOp.first), |
| 2764 | RHS: getAddExpr(Ops&: MulOp.second, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1), |
| 2765 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1)); |
| 2766 | } |
| 2767 | } |
| 2768 | if (Ops.empty()) |
| 2769 | return getZero(Ty); |
| 2770 | if (Ops.size() == 1) |
| 2771 | return Ops[0]; |
| 2772 | return getAddExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2773 | } |
| 2774 | } |
| 2775 | |
| 2776 | // If we are adding something to a multiply expression, make sure the |
| 2777 | // something is not already an operand of the multiply. If so, merge it into |
| 2778 | // the multiply. |
| 2779 | for (; Idx < Ops.size() && isa<SCEVMulExpr>(Val: Ops[Idx]); ++Idx) { |
| 2780 | const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Val: Ops[Idx]); |
| 2781 | for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { |
| 2782 | const SCEV *MulOpSCEV = Mul->getOperand(i: MulOp); |
| 2783 | if (isa<SCEVConstant>(Val: MulOpSCEV)) |
| 2784 | continue; |
| 2785 | for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) |
| 2786 | if (MulOpSCEV == Ops[AddOp]) { |
| 2787 | // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) |
| 2788 | const SCEV *InnerMul = Mul->getOperand(i: MulOp == 0); |
| 2789 | if (Mul->getNumOperands() != 2) { |
| 2790 | // If the multiply has more than two operands, we must get the |
| 2791 | // Y*Z term. |
| 2792 | SmallVector<const SCEV *, 4> MulOps( |
| 2793 | Mul->operands().take_front(N: MulOp)); |
| 2794 | append_range(C&: MulOps, R: Mul->operands().drop_front(N: MulOp + 1)); |
| 2795 | InnerMul = getMulExpr(Ops&: MulOps, Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2796 | } |
| 2797 | SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; |
| 2798 | const SCEV *AddOne = getAddExpr(Ops&: TwoOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2799 | const SCEV *OuterMul = getMulExpr(LHS: AddOne, RHS: MulOpSCEV, |
| 2800 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2801 | if (Ops.size() == 2) return OuterMul; |
| 2802 | if (AddOp < Idx) { |
| 2803 | Ops.erase(CI: Ops.begin()+AddOp); |
| 2804 | Ops.erase(CI: Ops.begin()+Idx-1); |
| 2805 | } else { |
| 2806 | Ops.erase(CI: Ops.begin()+Idx); |
| 2807 | Ops.erase(CI: Ops.begin()+AddOp-1); |
| 2808 | } |
| 2809 | Ops.push_back(Elt: OuterMul); |
| 2810 | return getAddExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2811 | } |
| 2812 | |
| 2813 | // Check this multiply against other multiplies being added together. |
| 2814 | for (unsigned OtherMulIdx = Idx+1; |
| 2815 | OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Val: Ops[OtherMulIdx]); |
| 2816 | ++OtherMulIdx) { |
| 2817 | const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Val: Ops[OtherMulIdx]); |
| 2818 | // If MulOp occurs in OtherMul, we can fold the two multiplies |
| 2819 | // together. |
| 2820 | for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); |
| 2821 | OMulOp != e; ++OMulOp) |
| 2822 | if (OtherMul->getOperand(i: OMulOp) == MulOpSCEV) { |
| 2823 | // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) |
| 2824 | const SCEV *InnerMul1 = Mul->getOperand(i: MulOp == 0); |
| 2825 | if (Mul->getNumOperands() != 2) { |
| 2826 | SmallVector<const SCEV *, 4> MulOps( |
| 2827 | Mul->operands().take_front(N: MulOp)); |
| 2828 | append_range(C&: MulOps, R: Mul->operands().drop_front(N: MulOp+1)); |
| 2829 | InnerMul1 = getMulExpr(Ops&: MulOps, Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2830 | } |
| 2831 | const SCEV *InnerMul2 = OtherMul->getOperand(i: OMulOp == 0); |
| 2832 | if (OtherMul->getNumOperands() != 2) { |
| 2833 | SmallVector<const SCEV *, 4> MulOps( |
| 2834 | OtherMul->operands().take_front(N: OMulOp)); |
| 2835 | append_range(C&: MulOps, R: OtherMul->operands().drop_front(N: OMulOp+1)); |
| 2836 | InnerMul2 = getMulExpr(Ops&: MulOps, Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2837 | } |
| 2838 | SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; |
| 2839 | const SCEV *InnerMulSum = |
| 2840 | getAddExpr(Ops&: TwoOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2841 | const SCEV *OuterMul = getMulExpr(LHS: MulOpSCEV, RHS: InnerMulSum, |
| 2842 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2843 | if (Ops.size() == 2) return OuterMul; |
| 2844 | Ops.erase(CI: Ops.begin()+Idx); |
| 2845 | Ops.erase(CI: Ops.begin()+OtherMulIdx-1); |
| 2846 | Ops.push_back(Elt: OuterMul); |
| 2847 | return getAddExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2848 | } |
| 2849 | } |
| 2850 | } |
| 2851 | } |
| 2852 | |
| 2853 | // If there are any add recurrences in the operands list, see if any other |
| 2854 | // added values are loop invariant. If so, we can fold them into the |
| 2855 | // recurrence. |
| 2856 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) |
| 2857 | ++Idx; |
| 2858 | |
| 2859 | // Scan over all recurrences, trying to fold loop invariants into them. |
| 2860 | for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Val: Ops[Idx]); ++Idx) { |
| 2861 | // Scan all of the other operands to this add and add them to the vector if |
| 2862 | // they are loop invariant w.r.t. the recurrence. |
| 2863 | SmallVector<const SCEV *, 8> LIOps; |
| 2864 | const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Val: Ops[Idx]); |
| 2865 | const Loop *AddRecLoop = AddRec->getLoop(); |
| 2866 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| 2867 | if (isAvailableAtLoopEntry(S: Ops[i], L: AddRecLoop)) { |
| 2868 | LIOps.push_back(Elt: Ops[i]); |
| 2869 | Ops.erase(CI: Ops.begin()+i); |
| 2870 | --i; --e; |
| 2871 | } |
| 2872 | |
| 2873 | // If we found some loop invariants, fold them into the recurrence. |
| 2874 | if (!LIOps.empty()) { |
| 2875 | // Compute nowrap flags for the addition of the loop-invariant ops and |
| 2876 | // the addrec. Temporarily push it as an operand for that purpose. These |
| 2877 | // flags are valid in the scope of the addrec only. |
| 2878 | LIOps.push_back(Elt: AddRec); |
| 2879 | SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); |
| 2880 | LIOps.pop_back(); |
| 2881 | |
| 2882 | // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} |
| 2883 | LIOps.push_back(Elt: AddRec->getStart()); |
| 2884 | |
| 2885 | SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); |
| 2886 | |
| 2887 | // It is not in general safe to propagate flags valid on an add within |
| 2888 | // the addrec scope to one outside it. We must prove that the inner |
| 2889 | // scope is guaranteed to execute if the outer one does to be able to |
| 2890 | // safely propagate. We know the program is undefined if poison is |
| 2891 | // produced on the inner scoped addrec. We also know that *for this use* |
| 2892 | // the outer scoped add can't overflow (because of the flags we just |
| 2893 | // computed for the inner scoped add) without the program being undefined. |
| 2894 | // Proving that entry to the outer scope neccesitates entry to the inner |
| 2895 | // scope, thus proves the program undefined if the flags would be violated |
| 2896 | // in the outer scope. |
| 2897 | SCEV::NoWrapFlags AddFlags = Flags; |
| 2898 | if (AddFlags != SCEV::FlagAnyWrap) { |
| 2899 | auto *DefI = getDefiningScopeBound(Ops: LIOps); |
| 2900 | auto *ReachI = &*AddRecLoop->getHeader()->begin(); |
| 2901 | if (!isGuaranteedToTransferExecutionTo(A: DefI, B: ReachI)) |
| 2902 | AddFlags = SCEV::FlagAnyWrap; |
| 2903 | } |
| 2904 | AddRecOps[0] = getAddExpr(Ops&: LIOps, OrigFlags: AddFlags, Depth: Depth + 1); |
| 2905 | |
| 2906 | // Build the new addrec. Propagate the NUW and NSW flags if both the |
| 2907 | // outer add and the inner addrec are guaranteed to have no overflow. |
| 2908 | // Always propagate NW. |
| 2909 | Flags = AddRec->getNoWrapFlags(Mask: setFlags(Flags, OnFlags: SCEV::FlagNW)); |
| 2910 | const SCEV *NewRec = getAddRecExpr(Operands&: AddRecOps, L: AddRecLoop, Flags); |
| 2911 | |
| 2912 | // If all of the other operands were loop invariant, we are done. |
| 2913 | if (Ops.size() == 1) return NewRec; |
| 2914 | |
| 2915 | // Otherwise, add the folded AddRec by the non-invariant parts. |
| 2916 | for (unsigned i = 0;; ++i) |
| 2917 | if (Ops[i] == AddRec) { |
| 2918 | Ops[i] = NewRec; |
| 2919 | break; |
| 2920 | } |
| 2921 | return getAddExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2922 | } |
| 2923 | |
| 2924 | // Okay, if there weren't any loop invariants to be folded, check to see if |
| 2925 | // there are multiple AddRec's with the same loop induction variable being |
| 2926 | // added together. If so, we can fold them. |
| 2927 | for (unsigned OtherIdx = Idx+1; |
| 2928 | OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Val: Ops[OtherIdx]); |
| 2929 | ++OtherIdx) { |
| 2930 | // We expect the AddRecExpr's to be sorted in reverse dominance order, |
| 2931 | // so that the 1st found AddRecExpr is dominated by all others. |
| 2932 | assert(DT.dominates( |
| 2933 | cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), |
| 2934 | AddRec->getLoop()->getHeader()) && |
| 2935 | "AddRecExprs are not sorted in reverse dominance order?" ); |
| 2936 | if (AddRecLoop == cast<SCEVAddRecExpr>(Val: Ops[OtherIdx])->getLoop()) { |
| 2937 | // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> |
| 2938 | SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); |
| 2939 | for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Val: Ops[OtherIdx]); |
| 2940 | ++OtherIdx) { |
| 2941 | const auto *OtherAddRec = cast<SCEVAddRecExpr>(Val: Ops[OtherIdx]); |
| 2942 | if (OtherAddRec->getLoop() == AddRecLoop) { |
| 2943 | for (unsigned i = 0, e = OtherAddRec->getNumOperands(); |
| 2944 | i != e; ++i) { |
| 2945 | if (i >= AddRecOps.size()) { |
| 2946 | append_range(C&: AddRecOps, R: OtherAddRec->operands().drop_front(N: i)); |
| 2947 | break; |
| 2948 | } |
| 2949 | SmallVector<const SCEV *, 2> TwoOps = { |
| 2950 | AddRecOps[i], OtherAddRec->getOperand(i)}; |
| 2951 | AddRecOps[i] = getAddExpr(Ops&: TwoOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2952 | } |
| 2953 | Ops.erase(CI: Ops.begin() + OtherIdx); --OtherIdx; |
| 2954 | } |
| 2955 | } |
| 2956 | // Step size has changed, so we cannot guarantee no self-wraparound. |
| 2957 | Ops[Idx] = getAddRecExpr(Operands&: AddRecOps, L: AddRecLoop, Flags: SCEV::FlagAnyWrap); |
| 2958 | return getAddExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 2959 | } |
| 2960 | } |
| 2961 | |
| 2962 | // Otherwise couldn't fold anything into this recurrence. Move onto the |
| 2963 | // next one. |
| 2964 | } |
| 2965 | |
| 2966 | // Okay, it looks like we really DO need an add expr. Check to see if we |
| 2967 | // already have one, otherwise create a new one. |
| 2968 | return getOrCreateAddExpr(Ops, Flags: ComputeFlags(Ops)); |
| 2969 | } |
| 2970 | |
| 2971 | const SCEV * |
| 2972 | ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, |
| 2973 | SCEV::NoWrapFlags Flags) { |
| 2974 | FoldingSetNodeID ID; |
| 2975 | ID.AddInteger(I: scAddExpr); |
| 2976 | for (const SCEV *Op : Ops) |
| 2977 | ID.AddPointer(Ptr: Op); |
| 2978 | void *IP = nullptr; |
| 2979 | SCEVAddExpr *S = |
| 2980 | static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)); |
| 2981 | if (!S) { |
| 2982 | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Num: Ops.size()); |
| 2983 | llvm::uninitialized_copy(Src&: Ops, Dst: O); |
| 2984 | S = new (SCEVAllocator) |
| 2985 | SCEVAddExpr(ID.Intern(Allocator&: SCEVAllocator), O, Ops.size()); |
| 2986 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 2987 | registerUser(User: S, Ops); |
| 2988 | } |
| 2989 | S->setNoWrapFlags(Flags); |
| 2990 | return S; |
| 2991 | } |
| 2992 | |
| 2993 | const SCEV * |
| 2994 | ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, |
| 2995 | const Loop *L, SCEV::NoWrapFlags Flags) { |
| 2996 | FoldingSetNodeID ID; |
| 2997 | ID.AddInteger(I: scAddRecExpr); |
| 2998 | for (const SCEV *Op : Ops) |
| 2999 | ID.AddPointer(Ptr: Op); |
| 3000 | ID.AddPointer(Ptr: L); |
| 3001 | void *IP = nullptr; |
| 3002 | SCEVAddRecExpr *S = |
| 3003 | static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)); |
| 3004 | if (!S) { |
| 3005 | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Num: Ops.size()); |
| 3006 | llvm::uninitialized_copy(Src&: Ops, Dst: O); |
| 3007 | S = new (SCEVAllocator) |
| 3008 | SCEVAddRecExpr(ID.Intern(Allocator&: SCEVAllocator), O, Ops.size(), L); |
| 3009 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 3010 | LoopUsers[L].push_back(Elt: S); |
| 3011 | registerUser(User: S, Ops); |
| 3012 | } |
| 3013 | setNoWrapFlags(AddRec: S, Flags); |
| 3014 | return S; |
| 3015 | } |
| 3016 | |
| 3017 | const SCEV * |
| 3018 | ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, |
| 3019 | SCEV::NoWrapFlags Flags) { |
| 3020 | FoldingSetNodeID ID; |
| 3021 | ID.AddInteger(I: scMulExpr); |
| 3022 | for (const SCEV *Op : Ops) |
| 3023 | ID.AddPointer(Ptr: Op); |
| 3024 | void *IP = nullptr; |
| 3025 | SCEVMulExpr *S = |
| 3026 | static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)); |
| 3027 | if (!S) { |
| 3028 | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Num: Ops.size()); |
| 3029 | llvm::uninitialized_copy(Src&: Ops, Dst: O); |
| 3030 | S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(Allocator&: SCEVAllocator), |
| 3031 | O, Ops.size()); |
| 3032 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 3033 | registerUser(User: S, Ops); |
| 3034 | } |
| 3035 | S->setNoWrapFlags(Flags); |
| 3036 | return S; |
| 3037 | } |
| 3038 | |
| 3039 | static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { |
| 3040 | uint64_t k = i*j; |
| 3041 | if (j > 1 && k / j != i) Overflow = true; |
| 3042 | return k; |
| 3043 | } |
| 3044 | |
| 3045 | /// Compute the result of "n choose k", the binomial coefficient. If an |
| 3046 | /// intermediate computation overflows, Overflow will be set and the return will |
| 3047 | /// be garbage. Overflow is not cleared on absence of overflow. |
| 3048 | static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { |
| 3049 | // We use the multiplicative formula: |
| 3050 | // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . |
| 3051 | // At each iteration, we take the n-th term of the numeral and divide by the |
| 3052 | // (k-n)th term of the denominator. This division will always produce an |
| 3053 | // integral result, and helps reduce the chance of overflow in the |
| 3054 | // intermediate computations. However, we can still overflow even when the |
| 3055 | // final result would fit. |
| 3056 | |
| 3057 | if (n == 0 || n == k) return 1; |
| 3058 | if (k > n) return 0; |
| 3059 | |
| 3060 | if (k > n/2) |
| 3061 | k = n-k; |
| 3062 | |
| 3063 | uint64_t r = 1; |
| 3064 | for (uint64_t i = 1; i <= k; ++i) { |
| 3065 | r = umul_ov(i: r, j: n-(i-1), Overflow); |
| 3066 | r /= i; |
| 3067 | } |
| 3068 | return r; |
| 3069 | } |
| 3070 | |
| 3071 | /// Determine if any of the operands in this SCEV are a constant or if |
| 3072 | /// any of the add or multiply expressions in this SCEV contain a constant. |
| 3073 | static bool containsConstantInAddMulChain(const SCEV *StartExpr) { |
| 3074 | struct FindConstantInAddMulChain { |
| 3075 | bool FoundConstant = false; |
| 3076 | |
| 3077 | bool follow(const SCEV *S) { |
| 3078 | FoundConstant |= isa<SCEVConstant>(Val: S); |
| 3079 | return isa<SCEVAddExpr>(Val: S) || isa<SCEVMulExpr>(Val: S); |
| 3080 | } |
| 3081 | |
| 3082 | bool isDone() const { |
| 3083 | return FoundConstant; |
| 3084 | } |
| 3085 | }; |
| 3086 | |
| 3087 | FindConstantInAddMulChain F; |
| 3088 | SCEVTraversal<FindConstantInAddMulChain> ST(F); |
| 3089 | ST.visitAll(Root: StartExpr); |
| 3090 | return F.FoundConstant; |
| 3091 | } |
| 3092 | |
| 3093 | /// Get a canonical multiply expression, or something simpler if possible. |
| 3094 | const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, |
| 3095 | SCEV::NoWrapFlags OrigFlags, |
| 3096 | unsigned Depth) { |
| 3097 | assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && |
| 3098 | "only nuw or nsw allowed" ); |
| 3099 | assert(!Ops.empty() && "Cannot get empty mul!" ); |
| 3100 | if (Ops.size() == 1) return Ops[0]; |
| 3101 | #ifndef NDEBUG |
| 3102 | Type *ETy = Ops[0]->getType(); |
| 3103 | assert(!ETy->isPointerTy()); |
| 3104 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) |
| 3105 | assert(Ops[i]->getType() == ETy && |
| 3106 | "SCEVMulExpr operand types don't match!" ); |
| 3107 | #endif |
| 3108 | |
| 3109 | const SCEV *Folded = constantFoldAndGroupOps( |
| 3110 | SE&: *this, LI, DT, Ops, |
| 3111 | Fold: [](const APInt &C1, const APInt &C2) { return C1 * C2; }, |
| 3112 | IsIdentity: [](const APInt &C) { return C.isOne(); }, // identity |
| 3113 | IsAbsorber: [](const APInt &C) { return C.isZero(); }); // absorber |
| 3114 | if (Folded) |
| 3115 | return Folded; |
| 3116 | |
| 3117 | // Delay expensive flag strengthening until necessary. |
| 3118 | auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { |
| 3119 | return StrengthenNoWrapFlags(SE: this, Type: scMulExpr, Ops, Flags: OrigFlags); |
| 3120 | }; |
| 3121 | |
| 3122 | // Limit recursion calls depth. |
| 3123 | if (Depth > MaxArithDepth || hasHugeExpression(Ops)) |
| 3124 | return getOrCreateMulExpr(Ops, Flags: ComputeFlags(Ops)); |
| 3125 | |
| 3126 | if (SCEV *S = findExistingSCEVInCache(SCEVType: scMulExpr, Ops)) { |
| 3127 | // Don't strengthen flags if we have no new information. |
| 3128 | SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); |
| 3129 | if (Mul->getNoWrapFlags(Mask: OrigFlags) != OrigFlags) |
| 3130 | Mul->setNoWrapFlags(ComputeFlags(Ops)); |
| 3131 | return S; |
| 3132 | } |
| 3133 | |
| 3134 | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Val: Ops[0])) { |
| 3135 | if (Ops.size() == 2) { |
| 3136 | // C1*(C2+V) -> C1*C2 + C1*V |
| 3137 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: Ops[1])) |
| 3138 | // If any of Add's ops are Adds or Muls with a constant, apply this |
| 3139 | // transformation as well. |
| 3140 | // |
| 3141 | // TODO: There are some cases where this transformation is not |
| 3142 | // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of |
| 3143 | // this transformation should be narrowed down. |
| 3144 | if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(StartExpr: Add)) { |
| 3145 | const SCEV *LHS = getMulExpr(LHS: LHSC, RHS: Add->getOperand(i: 0), |
| 3146 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 3147 | const SCEV *RHS = getMulExpr(LHS: LHSC, RHS: Add->getOperand(i: 1), |
| 3148 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 3149 | return getAddExpr(LHS, RHS, Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 3150 | } |
| 3151 | |
| 3152 | if (Ops[0]->isAllOnesValue()) { |
| 3153 | // If we have a mul by -1 of an add, try distributing the -1 among the |
| 3154 | // add operands. |
| 3155 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: Ops[1])) { |
| 3156 | SmallVector<const SCEV *, 4> NewOps; |
| 3157 | bool AnyFolded = false; |
| 3158 | for (const SCEV *AddOp : Add->operands()) { |
| 3159 | const SCEV *Mul = getMulExpr(LHS: Ops[0], RHS: AddOp, Flags: SCEV::FlagAnyWrap, |
| 3160 | Depth: Depth + 1); |
| 3161 | if (!isa<SCEVMulExpr>(Val: Mul)) AnyFolded = true; |
| 3162 | NewOps.push_back(Elt: Mul); |
| 3163 | } |
| 3164 | if (AnyFolded) |
| 3165 | return getAddExpr(Ops&: NewOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 3166 | } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: Ops[1])) { |
| 3167 | // Negation preserves a recurrence's no self-wrap property. |
| 3168 | SmallVector<const SCEV *, 4> Operands; |
| 3169 | for (const SCEV *AddRecOp : AddRec->operands()) |
| 3170 | Operands.push_back(Elt: getMulExpr(LHS: Ops[0], RHS: AddRecOp, Flags: SCEV::FlagAnyWrap, |
| 3171 | Depth: Depth + 1)); |
| 3172 | // Let M be the minimum representable signed value. AddRec with nsw |
| 3173 | // multiplied by -1 can have signed overflow if and only if it takes a |
| 3174 | // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the |
| 3175 | // maximum signed value. In all other cases signed overflow is |
| 3176 | // impossible. |
| 3177 | auto FlagsMask = SCEV::FlagNW; |
| 3178 | if (hasFlags(Flags: AddRec->getNoWrapFlags(), TestFlags: SCEV::FlagNSW)) { |
| 3179 | auto MinInt = |
| 3180 | APInt::getSignedMinValue(numBits: getTypeSizeInBits(Ty: AddRec->getType())); |
| 3181 | if (getSignedRangeMin(S: AddRec) != MinInt) |
| 3182 | FlagsMask = setFlags(Flags: FlagsMask, OnFlags: SCEV::FlagNSW); |
| 3183 | } |
| 3184 | return getAddRecExpr(Operands, L: AddRec->getLoop(), |
| 3185 | Flags: AddRec->getNoWrapFlags(Mask: FlagsMask)); |
| 3186 | } |
| 3187 | } |
| 3188 | } |
| 3189 | } |
| 3190 | |
| 3191 | // Skip over the add expression until we get to a multiply. |
| 3192 | unsigned Idx = 0; |
| 3193 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) |
| 3194 | ++Idx; |
| 3195 | |
| 3196 | // If there are mul operands inline them all into this expression. |
| 3197 | if (Idx < Ops.size()) { |
| 3198 | bool DeletedMul = false; |
| 3199 | while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: Ops[Idx])) { |
| 3200 | if (Ops.size() > MulOpsInlineThreshold) |
| 3201 | break; |
| 3202 | // If we have an mul, expand the mul operands onto the end of the |
| 3203 | // operands list. |
| 3204 | Ops.erase(CI: Ops.begin()+Idx); |
| 3205 | append_range(C&: Ops, R: Mul->operands()); |
| 3206 | DeletedMul = true; |
| 3207 | } |
| 3208 | |
| 3209 | // If we deleted at least one mul, we added operands to the end of the |
| 3210 | // list, and they are not necessarily sorted. Recurse to resort and |
| 3211 | // resimplify any operands we just acquired. |
| 3212 | if (DeletedMul) |
| 3213 | return getMulExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 3214 | } |
| 3215 | |
| 3216 | // If there are any add recurrences in the operands list, see if any other |
| 3217 | // added values are loop invariant. If so, we can fold them into the |
| 3218 | // recurrence. |
| 3219 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) |
| 3220 | ++Idx; |
| 3221 | |
| 3222 | // Scan over all recurrences, trying to fold loop invariants into them. |
| 3223 | for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Val: Ops[Idx]); ++Idx) { |
| 3224 | // Scan all of the other operands to this mul and add them to the vector |
| 3225 | // if they are loop invariant w.r.t. the recurrence. |
| 3226 | SmallVector<const SCEV *, 8> LIOps; |
| 3227 | const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Val: Ops[Idx]); |
| 3228 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| 3229 | if (isAvailableAtLoopEntry(S: Ops[i], L: AddRec->getLoop())) { |
| 3230 | LIOps.push_back(Elt: Ops[i]); |
| 3231 | Ops.erase(CI: Ops.begin()+i); |
| 3232 | --i; --e; |
| 3233 | } |
| 3234 | |
| 3235 | // If we found some loop invariants, fold them into the recurrence. |
| 3236 | if (!LIOps.empty()) { |
| 3237 | // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} |
| 3238 | SmallVector<const SCEV *, 4> NewOps; |
| 3239 | NewOps.reserve(N: AddRec->getNumOperands()); |
| 3240 | const SCEV *Scale = getMulExpr(Ops&: LIOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 3241 | |
| 3242 | // If both the mul and addrec are nuw, we can preserve nuw. |
| 3243 | // If both the mul and addrec are nsw, we can only preserve nsw if either |
| 3244 | // a) they are also nuw, or |
| 3245 | // b) all multiplications of addrec operands with scale are nsw. |
| 3246 | SCEV::NoWrapFlags Flags = |
| 3247 | AddRec->getNoWrapFlags(Mask: ComputeFlags({Scale, AddRec})); |
| 3248 | |
| 3249 | for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { |
| 3250 | NewOps.push_back(Elt: getMulExpr(LHS: Scale, RHS: AddRec->getOperand(i), |
| 3251 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1)); |
| 3252 | |
| 3253 | if (hasFlags(Flags, TestFlags: SCEV::FlagNSW) && !hasFlags(Flags, TestFlags: SCEV::FlagNUW)) { |
| 3254 | ConstantRange NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| 3255 | BinOp: Instruction::Mul, Other: getSignedRange(S: Scale), |
| 3256 | NoWrapKind: OverflowingBinaryOperator::NoSignedWrap); |
| 3257 | if (!NSWRegion.contains(CR: getSignedRange(S: AddRec->getOperand(i)))) |
| 3258 | Flags = clearFlags(Flags, OffFlags: SCEV::FlagNSW); |
| 3259 | } |
| 3260 | } |
| 3261 | |
| 3262 | const SCEV *NewRec = getAddRecExpr(Operands&: NewOps, L: AddRec->getLoop(), Flags); |
| 3263 | |
| 3264 | // If all of the other operands were loop invariant, we are done. |
| 3265 | if (Ops.size() == 1) return NewRec; |
| 3266 | |
| 3267 | // Otherwise, multiply the folded AddRec by the non-invariant parts. |
| 3268 | for (unsigned i = 0;; ++i) |
| 3269 | if (Ops[i] == AddRec) { |
| 3270 | Ops[i] = NewRec; |
| 3271 | break; |
| 3272 | } |
| 3273 | return getMulExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 3274 | } |
| 3275 | |
| 3276 | // Okay, if there weren't any loop invariants to be folded, check to see |
| 3277 | // if there are multiple AddRec's with the same loop induction variable |
| 3278 | // being multiplied together. If so, we can fold them. |
| 3279 | |
| 3280 | // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> |
| 3281 | // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ |
| 3282 | // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z |
| 3283 | // ]]],+,...up to x=2n}. |
| 3284 | // Note that the arguments to choose() are always integers with values |
| 3285 | // known at compile time, never SCEV objects. |
| 3286 | // |
| 3287 | // The implementation avoids pointless extra computations when the two |
| 3288 | // addrec's are of different length (mathematically, it's equivalent to |
| 3289 | // an infinite stream of zeros on the right). |
| 3290 | bool OpsModified = false; |
| 3291 | for (unsigned OtherIdx = Idx+1; |
| 3292 | OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Val: Ops[OtherIdx]); |
| 3293 | ++OtherIdx) { |
| 3294 | const SCEVAddRecExpr *OtherAddRec = |
| 3295 | dyn_cast<SCEVAddRecExpr>(Val: Ops[OtherIdx]); |
| 3296 | if (!OtherAddRec || OtherAddRec->getLoop() != AddRec->getLoop()) |
| 3297 | continue; |
| 3298 | |
| 3299 | // Limit max number of arguments to avoid creation of unreasonably big |
| 3300 | // SCEVAddRecs with very complex operands. |
| 3301 | if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > |
| 3302 | MaxAddRecSize || hasHugeExpression(Ops: {AddRec, OtherAddRec})) |
| 3303 | continue; |
| 3304 | |
| 3305 | bool Overflow = false; |
| 3306 | Type *Ty = AddRec->getType(); |
| 3307 | bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; |
| 3308 | SmallVector<const SCEV*, 7> AddRecOps; |
| 3309 | for (int x = 0, xe = AddRec->getNumOperands() + |
| 3310 | OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { |
| 3311 | SmallVector <const SCEV *, 7> SumOps; |
| 3312 | for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { |
| 3313 | uint64_t Coeff1 = Choose(n: x, k: 2*x - y, Overflow); |
| 3314 | for (int z = std::max(a: y-x, b: y-(int)AddRec->getNumOperands()+1), |
| 3315 | ze = std::min(a: x+1, b: (int)OtherAddRec->getNumOperands()); |
| 3316 | z < ze && !Overflow; ++z) { |
| 3317 | uint64_t Coeff2 = Choose(n: 2*x - y, k: x-z, Overflow); |
| 3318 | uint64_t Coeff; |
| 3319 | if (LargerThan64Bits) |
| 3320 | Coeff = umul_ov(i: Coeff1, j: Coeff2, Overflow); |
| 3321 | else |
| 3322 | Coeff = Coeff1*Coeff2; |
| 3323 | const SCEV *CoeffTerm = getConstant(Ty, V: Coeff); |
| 3324 | const SCEV *Term1 = AddRec->getOperand(i: y-z); |
| 3325 | const SCEV *Term2 = OtherAddRec->getOperand(i: z); |
| 3326 | SumOps.push_back(Elt: getMulExpr(Op0: CoeffTerm, Op1: Term1, Op2: Term2, |
| 3327 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1)); |
| 3328 | } |
| 3329 | } |
| 3330 | if (SumOps.empty()) |
| 3331 | SumOps.push_back(Elt: getZero(Ty)); |
| 3332 | AddRecOps.push_back(Elt: getAddExpr(Ops&: SumOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1)); |
| 3333 | } |
| 3334 | if (!Overflow) { |
| 3335 | const SCEV *NewAddRec = getAddRecExpr(Operands&: AddRecOps, L: AddRec->getLoop(), |
| 3336 | Flags: SCEV::FlagAnyWrap); |
| 3337 | if (Ops.size() == 2) return NewAddRec; |
| 3338 | Ops[Idx] = NewAddRec; |
| 3339 | Ops.erase(CI: Ops.begin() + OtherIdx); --OtherIdx; |
| 3340 | OpsModified = true; |
| 3341 | AddRec = dyn_cast<SCEVAddRecExpr>(Val: NewAddRec); |
| 3342 | if (!AddRec) |
| 3343 | break; |
| 3344 | } |
| 3345 | } |
| 3346 | if (OpsModified) |
| 3347 | return getMulExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
| 3348 | |
| 3349 | // Otherwise couldn't fold anything into this recurrence. Move onto the |
| 3350 | // next one. |
| 3351 | } |
| 3352 | |
| 3353 | // Okay, it looks like we really DO need an mul expr. Check to see if we |
| 3354 | // already have one, otherwise create a new one. |
| 3355 | return getOrCreateMulExpr(Ops, Flags: ComputeFlags(Ops)); |
| 3356 | } |
| 3357 | |
| 3358 | /// Represents an unsigned remainder expression based on unsigned division. |
| 3359 | const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, |
| 3360 | const SCEV *RHS) { |
| 3361 | assert(getEffectiveSCEVType(LHS->getType()) == |
| 3362 | getEffectiveSCEVType(RHS->getType()) && |
| 3363 | "SCEVURemExpr operand types don't match!" ); |
| 3364 | |
| 3365 | // Short-circuit easy cases |
| 3366 | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: RHS)) { |
| 3367 | // If constant is one, the result is trivial |
| 3368 | if (RHSC->getValue()->isOne()) |
| 3369 | return getZero(Ty: LHS->getType()); // X urem 1 --> 0 |
| 3370 | |
| 3371 | // If constant is a power of two, fold into a zext(trunc(LHS)). |
| 3372 | if (RHSC->getAPInt().isPowerOf2()) { |
| 3373 | Type *FullTy = LHS->getType(); |
| 3374 | Type *TruncTy = |
| 3375 | IntegerType::get(C&: getContext(), NumBits: RHSC->getAPInt().logBase2()); |
| 3376 | return getZeroExtendExpr(Op: getTruncateExpr(Op: LHS, Ty: TruncTy), Ty: FullTy); |
| 3377 | } |
| 3378 | } |
| 3379 | |
| 3380 | // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) |
| 3381 | const SCEV *UDiv = getUDivExpr(LHS, RHS); |
| 3382 | const SCEV *Mult = getMulExpr(LHS: UDiv, RHS, Flags: SCEV::FlagNUW); |
| 3383 | return getMinusSCEV(LHS, RHS: Mult, Flags: SCEV::FlagNUW); |
| 3384 | } |
| 3385 | |
| 3386 | /// Get a canonical unsigned division expression, or something simpler if |
| 3387 | /// possible. |
| 3388 | const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, |
| 3389 | const SCEV *RHS) { |
| 3390 | assert(!LHS->getType()->isPointerTy() && |
| 3391 | "SCEVUDivExpr operand can't be pointer!" ); |
| 3392 | assert(LHS->getType() == RHS->getType() && |
| 3393 | "SCEVUDivExpr operand types don't match!" ); |
| 3394 | |
| 3395 | FoldingSetNodeID ID; |
| 3396 | ID.AddInteger(I: scUDivExpr); |
| 3397 | ID.AddPointer(Ptr: LHS); |
| 3398 | ID.AddPointer(Ptr: RHS); |
| 3399 | void *IP = nullptr; |
| 3400 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) |
| 3401 | return S; |
| 3402 | |
| 3403 | // 0 udiv Y == 0 |
| 3404 | if (match(S: LHS, P: m_scev_Zero())) |
| 3405 | return LHS; |
| 3406 | |
| 3407 | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: RHS)) { |
| 3408 | if (RHSC->getValue()->isOne()) |
| 3409 | return LHS; // X udiv 1 --> x |
| 3410 | // If the denominator is zero, the result of the udiv is undefined. Don't |
| 3411 | // try to analyze it, because the resolution chosen here may differ from |
| 3412 | // the resolution chosen in other parts of the compiler. |
| 3413 | if (!RHSC->getValue()->isZero()) { |
| 3414 | // Determine if the division can be folded into the operands of |
| 3415 | // its operands. |
| 3416 | // TODO: Generalize this to non-constants by using known-bits information. |
| 3417 | Type *Ty = LHS->getType(); |
| 3418 | unsigned LZ = RHSC->getAPInt().countl_zero(); |
| 3419 | unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; |
| 3420 | // For non-power-of-two values, effectively round the value up to the |
| 3421 | // nearest power of two. |
| 3422 | if (!RHSC->getAPInt().isPowerOf2()) |
| 3423 | ++MaxShiftAmt; |
| 3424 | IntegerType *ExtTy = |
| 3425 | IntegerType::get(C&: getContext(), NumBits: getTypeSizeInBits(Ty) + MaxShiftAmt); |
| 3426 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: LHS)) |
| 3427 | if (const SCEVConstant *Step = |
| 3428 | dyn_cast<SCEVConstant>(Val: AR->getStepRecurrence(SE&: *this))) { |
| 3429 | // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. |
| 3430 | const APInt &StepInt = Step->getAPInt(); |
| 3431 | const APInt &DivInt = RHSC->getAPInt(); |
| 3432 | if (!StepInt.urem(RHS: DivInt) && |
| 3433 | getZeroExtendExpr(Op: AR, Ty: ExtTy) == |
| 3434 | getAddRecExpr(Start: getZeroExtendExpr(Op: AR->getStart(), Ty: ExtTy), |
| 3435 | Step: getZeroExtendExpr(Op: Step, Ty: ExtTy), |
| 3436 | L: AR->getLoop(), Flags: SCEV::FlagAnyWrap)) { |
| 3437 | SmallVector<const SCEV *, 4> Operands; |
| 3438 | for (const SCEV *Op : AR->operands()) |
| 3439 | Operands.push_back(Elt: getUDivExpr(LHS: Op, RHS)); |
| 3440 | return getAddRecExpr(Operands, L: AR->getLoop(), Flags: SCEV::FlagNW); |
| 3441 | } |
| 3442 | /// Get a canonical UDivExpr for a recurrence. |
| 3443 | /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. |
| 3444 | // We can currently only fold X%N if X is constant. |
| 3445 | const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Val: AR->getStart()); |
| 3446 | if (StartC && !DivInt.urem(RHS: StepInt) && |
| 3447 | getZeroExtendExpr(Op: AR, Ty: ExtTy) == |
| 3448 | getAddRecExpr(Start: getZeroExtendExpr(Op: AR->getStart(), Ty: ExtTy), |
| 3449 | Step: getZeroExtendExpr(Op: Step, Ty: ExtTy), |
| 3450 | L: AR->getLoop(), Flags: SCEV::FlagAnyWrap)) { |
| 3451 | const APInt &StartInt = StartC->getAPInt(); |
| 3452 | const APInt &StartRem = StartInt.urem(RHS: StepInt); |
| 3453 | if (StartRem != 0) { |
| 3454 | const SCEV *NewLHS = |
| 3455 | getAddRecExpr(Start: getConstant(Val: StartInt - StartRem), Step, |
| 3456 | L: AR->getLoop(), Flags: SCEV::FlagNW); |
| 3457 | if (LHS != NewLHS) { |
| 3458 | LHS = NewLHS; |
| 3459 | |
| 3460 | // Reset the ID to include the new LHS, and check if it is |
| 3461 | // already cached. |
| 3462 | ID.clear(); |
| 3463 | ID.AddInteger(I: scUDivExpr); |
| 3464 | ID.AddPointer(Ptr: LHS); |
| 3465 | ID.AddPointer(Ptr: RHS); |
| 3466 | IP = nullptr; |
| 3467 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) |
| 3468 | return S; |
| 3469 | } |
| 3470 | } |
| 3471 | } |
| 3472 | } |
| 3473 | // (A*B)/C --> A*(B/C) if safe and B/C can be folded. |
| 3474 | if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Val: LHS)) { |
| 3475 | SmallVector<const SCEV *, 4> Operands; |
| 3476 | for (const SCEV *Op : M->operands()) |
| 3477 | Operands.push_back(Elt: getZeroExtendExpr(Op, Ty: ExtTy)); |
| 3478 | if (getZeroExtendExpr(Op: M, Ty: ExtTy) == getMulExpr(Ops&: Operands)) |
| 3479 | // Find an operand that's safely divisible. |
| 3480 | for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { |
| 3481 | const SCEV *Op = M->getOperand(i); |
| 3482 | const SCEV *Div = getUDivExpr(LHS: Op, RHS: RHSC); |
| 3483 | if (!isa<SCEVUDivExpr>(Val: Div) && getMulExpr(LHS: Div, RHS: RHSC) == Op) { |
| 3484 | Operands = SmallVector<const SCEV *, 4>(M->operands()); |
| 3485 | Operands[i] = Div; |
| 3486 | return getMulExpr(Ops&: Operands); |
| 3487 | } |
| 3488 | } |
| 3489 | } |
| 3490 | |
| 3491 | // (A/B)/C --> A/(B*C) if safe and B*C can be folded. |
| 3492 | if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(Val: LHS)) { |
| 3493 | if (auto *DivisorConstant = |
| 3494 | dyn_cast<SCEVConstant>(Val: OtherDiv->getRHS())) { |
| 3495 | bool Overflow = false; |
| 3496 | APInt NewRHS = |
| 3497 | DivisorConstant->getAPInt().umul_ov(RHS: RHSC->getAPInt(), Overflow); |
| 3498 | if (Overflow) { |
| 3499 | return getConstant(Ty: RHSC->getType(), V: 0, isSigned: false); |
| 3500 | } |
| 3501 | return getUDivExpr(LHS: OtherDiv->getLHS(), RHS: getConstant(Val: NewRHS)); |
| 3502 | } |
| 3503 | } |
| 3504 | |
| 3505 | // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. |
| 3506 | if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Val: LHS)) { |
| 3507 | SmallVector<const SCEV *, 4> Operands; |
| 3508 | for (const SCEV *Op : A->operands()) |
| 3509 | Operands.push_back(Elt: getZeroExtendExpr(Op, Ty: ExtTy)); |
| 3510 | if (getZeroExtendExpr(Op: A, Ty: ExtTy) == getAddExpr(Ops&: Operands)) { |
| 3511 | Operands.clear(); |
| 3512 | for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { |
| 3513 | const SCEV *Op = getUDivExpr(LHS: A->getOperand(i), RHS); |
| 3514 | if (isa<SCEVUDivExpr>(Val: Op) || |
| 3515 | getMulExpr(LHS: Op, RHS) != A->getOperand(i)) |
| 3516 | break; |
| 3517 | Operands.push_back(Elt: Op); |
| 3518 | } |
| 3519 | if (Operands.size() == A->getNumOperands()) |
| 3520 | return getAddExpr(Ops&: Operands); |
| 3521 | } |
| 3522 | } |
| 3523 | |
| 3524 | // Fold if both operands are constant. |
| 3525 | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Val: LHS)) |
| 3526 | return getConstant(Val: LHSC->getAPInt().udiv(RHS: RHSC->getAPInt())); |
| 3527 | } |
| 3528 | } |
| 3529 | |
| 3530 | // ((-C + (C smax %x)) /u %x) evaluates to zero, for any positive constant C. |
| 3531 | if (const auto *AE = dyn_cast<SCEVAddExpr>(Val: LHS); |
| 3532 | AE && AE->getNumOperands() == 2) { |
| 3533 | if (const auto *VC = dyn_cast<SCEVConstant>(Val: AE->getOperand(i: 0))) { |
| 3534 | const APInt &NegC = VC->getAPInt(); |
| 3535 | if (NegC.isNegative() && !NegC.isMinSignedValue()) { |
| 3536 | const auto *MME = dyn_cast<SCEVSMaxExpr>(Val: AE->getOperand(i: 1)); |
| 3537 | if (MME && MME->getNumOperands() == 2 && |
| 3538 | isa<SCEVConstant>(Val: MME->getOperand(i: 0)) && |
| 3539 | cast<SCEVConstant>(Val: MME->getOperand(i: 0))->getAPInt() == -NegC && |
| 3540 | MME->getOperand(i: 1) == RHS) |
| 3541 | return getZero(Ty: LHS->getType()); |
| 3542 | } |
| 3543 | } |
| 3544 | } |
| 3545 | |
| 3546 | // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs |
| 3547 | // changes). Make sure we get a new one. |
| 3548 | IP = nullptr; |
| 3549 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S; |
| 3550 | SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(Allocator&: SCEVAllocator), |
| 3551 | LHS, RHS); |
| 3552 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 3553 | registerUser(User: S, Ops: {LHS, RHS}); |
| 3554 | return S; |
| 3555 | } |
| 3556 | |
| 3557 | APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { |
| 3558 | APInt A = C1->getAPInt().abs(); |
| 3559 | APInt B = C2->getAPInt().abs(); |
| 3560 | uint32_t ABW = A.getBitWidth(); |
| 3561 | uint32_t BBW = B.getBitWidth(); |
| 3562 | |
| 3563 | if (ABW > BBW) |
| 3564 | B = B.zext(width: ABW); |
| 3565 | else if (ABW < BBW) |
| 3566 | A = A.zext(width: BBW); |
| 3567 | |
| 3568 | return APIntOps::GreatestCommonDivisor(A: std::move(A), B: std::move(B)); |
| 3569 | } |
| 3570 | |
| 3571 | /// Get a canonical unsigned division expression, or something simpler if |
| 3572 | /// possible. There is no representation for an exact udiv in SCEV IR, but we |
| 3573 | /// can attempt to remove factors from the LHS and RHS. We can't do this when |
| 3574 | /// it's not exact because the udiv may be clearing bits. |
| 3575 | const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, |
| 3576 | const SCEV *RHS) { |
| 3577 | // TODO: we could try to find factors in all sorts of things, but for now we |
| 3578 | // just deal with u/exact (multiply, constant). See SCEVDivision towards the |
| 3579 | // end of this file for inspiration. |
| 3580 | |
| 3581 | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: LHS); |
| 3582 | if (!Mul || !Mul->hasNoUnsignedWrap()) |
| 3583 | return getUDivExpr(LHS, RHS); |
| 3584 | |
| 3585 | if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(Val: RHS)) { |
| 3586 | // If the mulexpr multiplies by a constant, then that constant must be the |
| 3587 | // first element of the mulexpr. |
| 3588 | if (const auto *LHSCst = dyn_cast<SCEVConstant>(Val: Mul->getOperand(i: 0))) { |
| 3589 | if (LHSCst == RHSCst) { |
| 3590 | SmallVector<const SCEV *, 2> Operands(drop_begin(RangeOrContainer: Mul->operands())); |
| 3591 | return getMulExpr(Ops&: Operands); |
| 3592 | } |
| 3593 | |
| 3594 | // We can't just assume that LHSCst divides RHSCst cleanly, it could be |
| 3595 | // that there's a factor provided by one of the other terms. We need to |
| 3596 | // check. |
| 3597 | APInt Factor = gcd(C1: LHSCst, C2: RHSCst); |
| 3598 | if (!Factor.isIntN(N: 1)) { |
| 3599 | LHSCst = |
| 3600 | cast<SCEVConstant>(Val: getConstant(Val: LHSCst->getAPInt().udiv(RHS: Factor))); |
| 3601 | RHSCst = |
| 3602 | cast<SCEVConstant>(Val: getConstant(Val: RHSCst->getAPInt().udiv(RHS: Factor))); |
| 3603 | SmallVector<const SCEV *, 2> Operands; |
| 3604 | Operands.push_back(Elt: LHSCst); |
| 3605 | append_range(C&: Operands, R: Mul->operands().drop_front()); |
| 3606 | LHS = getMulExpr(Ops&: Operands); |
| 3607 | RHS = RHSCst; |
| 3608 | Mul = dyn_cast<SCEVMulExpr>(Val: LHS); |
| 3609 | if (!Mul) |
| 3610 | return getUDivExactExpr(LHS, RHS); |
| 3611 | } |
| 3612 | } |
| 3613 | } |
| 3614 | |
| 3615 | for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { |
| 3616 | if (Mul->getOperand(i) == RHS) { |
| 3617 | SmallVector<const SCEV *, 2> Operands; |
| 3618 | append_range(C&: Operands, R: Mul->operands().take_front(N: i)); |
| 3619 | append_range(C&: Operands, R: Mul->operands().drop_front(N: i + 1)); |
| 3620 | return getMulExpr(Ops&: Operands); |
| 3621 | } |
| 3622 | } |
| 3623 | |
| 3624 | return getUDivExpr(LHS, RHS); |
| 3625 | } |
| 3626 | |
| 3627 | /// Get an add recurrence expression for the specified loop. Simplify the |
| 3628 | /// expression as much as possible. |
| 3629 | const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, |
| 3630 | const Loop *L, |
| 3631 | SCEV::NoWrapFlags Flags) { |
| 3632 | SmallVector<const SCEV *, 4> Operands; |
| 3633 | Operands.push_back(Elt: Start); |
| 3634 | if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Val: Step)) |
| 3635 | if (StepChrec->getLoop() == L) { |
| 3636 | append_range(C&: Operands, R: StepChrec->operands()); |
| 3637 | return getAddRecExpr(Operands, L, Flags: maskFlags(Flags, Mask: SCEV::FlagNW)); |
| 3638 | } |
| 3639 | |
| 3640 | Operands.push_back(Elt: Step); |
| 3641 | return getAddRecExpr(Operands, L, Flags); |
| 3642 | } |
| 3643 | |
| 3644 | /// Get an add recurrence expression for the specified loop. Simplify the |
| 3645 | /// expression as much as possible. |
| 3646 | const SCEV * |
| 3647 | ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, |
| 3648 | const Loop *L, SCEV::NoWrapFlags Flags) { |
| 3649 | if (Operands.size() == 1) return Operands[0]; |
| 3650 | #ifndef NDEBUG |
| 3651 | Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); |
| 3652 | for (const SCEV *Op : llvm::drop_begin(Operands)) { |
| 3653 | assert(getEffectiveSCEVType(Op->getType()) == ETy && |
| 3654 | "SCEVAddRecExpr operand types don't match!" ); |
| 3655 | assert(!Op->getType()->isPointerTy() && "Step must be integer" ); |
| 3656 | } |
| 3657 | for (const SCEV *Op : Operands) |
| 3658 | assert(isAvailableAtLoopEntry(Op, L) && |
| 3659 | "SCEVAddRecExpr operand is not available at loop entry!" ); |
| 3660 | #endif |
| 3661 | |
| 3662 | if (Operands.back()->isZero()) { |
| 3663 | Operands.pop_back(); |
| 3664 | return getAddRecExpr(Operands, L, Flags: SCEV::FlagAnyWrap); // {X,+,0} --> X |
| 3665 | } |
| 3666 | |
| 3667 | // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and |
| 3668 | // use that information to infer NUW and NSW flags. However, computing a |
| 3669 | // BE count requires calling getAddRecExpr, so we may not yet have a |
| 3670 | // meaningful BE count at this point (and if we don't, we'd be stuck |
| 3671 | // with a SCEVCouldNotCompute as the cached BE count). |
| 3672 | |
| 3673 | Flags = StrengthenNoWrapFlags(SE: this, Type: scAddRecExpr, Ops: Operands, Flags); |
| 3674 | |
| 3675 | // Canonicalize nested AddRecs in by nesting them in order of loop depth. |
| 3676 | if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Val: Operands[0])) { |
| 3677 | const Loop *NestedLoop = NestedAR->getLoop(); |
| 3678 | if (L->contains(L: NestedLoop) |
| 3679 | ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) |
| 3680 | : (!NestedLoop->contains(L) && |
| 3681 | DT.dominates(A: L->getHeader(), B: NestedLoop->getHeader()))) { |
| 3682 | SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); |
| 3683 | Operands[0] = NestedAR->getStart(); |
| 3684 | // AddRecs require their operands be loop-invariant with respect to their |
| 3685 | // loops. Don't perform this transformation if it would break this |
| 3686 | // requirement. |
| 3687 | bool AllInvariant = all_of( |
| 3688 | Range&: Operands, P: [&](const SCEV *Op) { return isLoopInvariant(S: Op, L); }); |
| 3689 | |
| 3690 | if (AllInvariant) { |
| 3691 | // Create a recurrence for the outer loop with the same step size. |
| 3692 | // |
| 3693 | // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the |
| 3694 | // inner recurrence has the same property. |
| 3695 | SCEV::NoWrapFlags OuterFlags = |
| 3696 | maskFlags(Flags, Mask: SCEV::FlagNW | NestedAR->getNoWrapFlags()); |
| 3697 | |
| 3698 | NestedOperands[0] = getAddRecExpr(Operands, L, Flags: OuterFlags); |
| 3699 | AllInvariant = all_of(Range&: NestedOperands, P: [&](const SCEV *Op) { |
| 3700 | return isLoopInvariant(S: Op, L: NestedLoop); |
| 3701 | }); |
| 3702 | |
| 3703 | if (AllInvariant) { |
| 3704 | // Ok, both add recurrences are valid after the transformation. |
| 3705 | // |
| 3706 | // The inner recurrence keeps its NW flag but only keeps NUW/NSW if |
| 3707 | // the outer recurrence has the same property. |
| 3708 | SCEV::NoWrapFlags InnerFlags = |
| 3709 | maskFlags(Flags: NestedAR->getNoWrapFlags(), Mask: SCEV::FlagNW | Flags); |
| 3710 | return getAddRecExpr(Operands&: NestedOperands, L: NestedLoop, Flags: InnerFlags); |
| 3711 | } |
| 3712 | } |
| 3713 | // Reset Operands to its original state. |
| 3714 | Operands[0] = NestedAR; |
| 3715 | } |
| 3716 | } |
| 3717 | |
| 3718 | // Okay, it looks like we really DO need an addrec expr. Check to see if we |
| 3719 | // already have one, otherwise create a new one. |
| 3720 | return getOrCreateAddRecExpr(Ops: Operands, L, Flags); |
| 3721 | } |
| 3722 | |
| 3723 | const SCEV * |
| 3724 | ScalarEvolution::getGEPExpr(GEPOperator *GEP, |
| 3725 | const SmallVectorImpl<const SCEV *> &IndexExprs) { |
| 3726 | const SCEV *BaseExpr = getSCEV(V: GEP->getPointerOperand()); |
| 3727 | // getSCEV(Base)->getType() has the same address space as Base->getType() |
| 3728 | // because SCEV::getType() preserves the address space. |
| 3729 | Type *IntIdxTy = getEffectiveSCEVType(Ty: BaseExpr->getType()); |
| 3730 | GEPNoWrapFlags NW = GEP->getNoWrapFlags(); |
| 3731 | if (NW != GEPNoWrapFlags::none()) { |
| 3732 | // We'd like to propagate flags from the IR to the corresponding SCEV nodes, |
| 3733 | // but to do that, we have to ensure that said flag is valid in the entire |
| 3734 | // defined scope of the SCEV. |
| 3735 | // TODO: non-instructions have global scope. We might be able to prove |
| 3736 | // some global scope cases |
| 3737 | auto *GEPI = dyn_cast<Instruction>(Val: GEP); |
| 3738 | if (!GEPI || !isSCEVExprNeverPoison(I: GEPI)) |
| 3739 | NW = GEPNoWrapFlags::none(); |
| 3740 | } |
| 3741 | |
| 3742 | SCEV::NoWrapFlags OffsetWrap = SCEV::FlagAnyWrap; |
| 3743 | if (NW.hasNoUnsignedSignedWrap()) |
| 3744 | OffsetWrap = setFlags(Flags: OffsetWrap, OnFlags: SCEV::FlagNSW); |
| 3745 | if (NW.hasNoUnsignedWrap()) |
| 3746 | OffsetWrap = setFlags(Flags: OffsetWrap, OnFlags: SCEV::FlagNUW); |
| 3747 | |
| 3748 | Type *CurTy = GEP->getType(); |
| 3749 | bool FirstIter = true; |
| 3750 | SmallVector<const SCEV *, 4> Offsets; |
| 3751 | for (const SCEV *IndexExpr : IndexExprs) { |
| 3752 | // Compute the (potentially symbolic) offset in bytes for this index. |
| 3753 | if (StructType *STy = dyn_cast<StructType>(Val: CurTy)) { |
| 3754 | // For a struct, add the member offset. |
| 3755 | ConstantInt *Index = cast<SCEVConstant>(Val: IndexExpr)->getValue(); |
| 3756 | unsigned FieldNo = Index->getZExtValue(); |
| 3757 | const SCEV *FieldOffset = getOffsetOfExpr(IntTy: IntIdxTy, STy, FieldNo); |
| 3758 | Offsets.push_back(Elt: FieldOffset); |
| 3759 | |
| 3760 | // Update CurTy to the type of the field at Index. |
| 3761 | CurTy = STy->getTypeAtIndex(V: Index); |
| 3762 | } else { |
| 3763 | // Update CurTy to its element type. |
| 3764 | if (FirstIter) { |
| 3765 | assert(isa<PointerType>(CurTy) && |
| 3766 | "The first index of a GEP indexes a pointer" ); |
| 3767 | CurTy = GEP->getSourceElementType(); |
| 3768 | FirstIter = false; |
| 3769 | } else { |
| 3770 | CurTy = GetElementPtrInst::getTypeAtIndex(Ty: CurTy, Idx: (uint64_t)0); |
| 3771 | } |
| 3772 | // For an array, add the element offset, explicitly scaled. |
| 3773 | const SCEV *ElementSize = getSizeOfExpr(IntTy: IntIdxTy, AllocTy: CurTy); |
| 3774 | // Getelementptr indices are signed. |
| 3775 | IndexExpr = getTruncateOrSignExtend(V: IndexExpr, Ty: IntIdxTy); |
| 3776 | |
| 3777 | // Multiply the index by the element size to compute the element offset. |
| 3778 | const SCEV *LocalOffset = getMulExpr(LHS: IndexExpr, RHS: ElementSize, Flags: OffsetWrap); |
| 3779 | Offsets.push_back(Elt: LocalOffset); |
| 3780 | } |
| 3781 | } |
| 3782 | |
| 3783 | // Handle degenerate case of GEP without offsets. |
| 3784 | if (Offsets.empty()) |
| 3785 | return BaseExpr; |
| 3786 | |
| 3787 | // Add the offsets together, assuming nsw if inbounds. |
| 3788 | const SCEV *Offset = getAddExpr(Ops&: Offsets, OrigFlags: OffsetWrap); |
| 3789 | // Add the base address and the offset. We cannot use the nsw flag, as the |
| 3790 | // base address is unsigned. However, if we know that the offset is |
| 3791 | // non-negative, we can use nuw. |
| 3792 | bool NUW = NW.hasNoUnsignedWrap() || |
| 3793 | (NW.hasNoUnsignedSignedWrap() && isKnownNonNegative(S: Offset)); |
| 3794 | SCEV::NoWrapFlags BaseWrap = NUW ? SCEV::FlagNUW : SCEV::FlagAnyWrap; |
| 3795 | auto *GEPExpr = getAddExpr(LHS: BaseExpr, RHS: Offset, Flags: BaseWrap); |
| 3796 | assert(BaseExpr->getType() == GEPExpr->getType() && |
| 3797 | "GEP should not change type mid-flight." ); |
| 3798 | return GEPExpr; |
| 3799 | } |
| 3800 | |
| 3801 | SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, |
| 3802 | ArrayRef<const SCEV *> Ops) { |
| 3803 | FoldingSetNodeID ID; |
| 3804 | ID.AddInteger(I: SCEVType); |
| 3805 | for (const SCEV *Op : Ops) |
| 3806 | ID.AddPointer(Ptr: Op); |
| 3807 | void *IP = nullptr; |
| 3808 | return UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP); |
| 3809 | } |
| 3810 | |
| 3811 | const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { |
| 3812 | SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; |
| 3813 | return getSMaxExpr(LHS: Op, RHS: getNegativeSCEV(V: Op, Flags)); |
| 3814 | } |
| 3815 | |
| 3816 | const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, |
| 3817 | SmallVectorImpl<const SCEV *> &Ops) { |
| 3818 | assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!" ); |
| 3819 | assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!" ); |
| 3820 | if (Ops.size() == 1) return Ops[0]; |
| 3821 | #ifndef NDEBUG |
| 3822 | Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); |
| 3823 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) { |
| 3824 | assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && |
| 3825 | "Operand types don't match!" ); |
| 3826 | assert(Ops[0]->getType()->isPointerTy() == |
| 3827 | Ops[i]->getType()->isPointerTy() && |
| 3828 | "min/max should be consistently pointerish" ); |
| 3829 | } |
| 3830 | #endif |
| 3831 | |
| 3832 | bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; |
| 3833 | bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; |
| 3834 | |
| 3835 | const SCEV *Folded = constantFoldAndGroupOps( |
| 3836 | SE&: *this, LI, DT, Ops, |
| 3837 | Fold: [&](const APInt &C1, const APInt &C2) { |
| 3838 | switch (Kind) { |
| 3839 | case scSMaxExpr: |
| 3840 | return APIntOps::smax(A: C1, B: C2); |
| 3841 | case scSMinExpr: |
| 3842 | return APIntOps::smin(A: C1, B: C2); |
| 3843 | case scUMaxExpr: |
| 3844 | return APIntOps::umax(A: C1, B: C2); |
| 3845 | case scUMinExpr: |
| 3846 | return APIntOps::umin(A: C1, B: C2); |
| 3847 | default: |
| 3848 | llvm_unreachable("Unknown SCEV min/max opcode" ); |
| 3849 | } |
| 3850 | }, |
| 3851 | IsIdentity: [&](const APInt &C) { |
| 3852 | // identity |
| 3853 | if (IsMax) |
| 3854 | return IsSigned ? C.isMinSignedValue() : C.isMinValue(); |
| 3855 | else |
| 3856 | return IsSigned ? C.isMaxSignedValue() : C.isMaxValue(); |
| 3857 | }, |
| 3858 | IsAbsorber: [&](const APInt &C) { |
| 3859 | // absorber |
| 3860 | if (IsMax) |
| 3861 | return IsSigned ? C.isMaxSignedValue() : C.isMaxValue(); |
| 3862 | else |
| 3863 | return IsSigned ? C.isMinSignedValue() : C.isMinValue(); |
| 3864 | }); |
| 3865 | if (Folded) |
| 3866 | return Folded; |
| 3867 | |
| 3868 | // Check if we have created the same expression before. |
| 3869 | if (const SCEV *S = findExistingSCEVInCache(SCEVType: Kind, Ops)) { |
| 3870 | return S; |
| 3871 | } |
| 3872 | |
| 3873 | // Find the first operation of the same kind |
| 3874 | unsigned Idx = 0; |
| 3875 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) |
| 3876 | ++Idx; |
| 3877 | |
| 3878 | // Check to see if one of the operands is of the same kind. If so, expand its |
| 3879 | // operands onto our operand list, and recurse to simplify. |
| 3880 | if (Idx < Ops.size()) { |
| 3881 | bool DeletedAny = false; |
| 3882 | while (Ops[Idx]->getSCEVType() == Kind) { |
| 3883 | const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Val: Ops[Idx]); |
| 3884 | Ops.erase(CI: Ops.begin()+Idx); |
| 3885 | append_range(C&: Ops, R: SMME->operands()); |
| 3886 | DeletedAny = true; |
| 3887 | } |
| 3888 | |
| 3889 | if (DeletedAny) |
| 3890 | return getMinMaxExpr(Kind, Ops); |
| 3891 | } |
| 3892 | |
| 3893 | // Okay, check to see if the same value occurs in the operand list twice. If |
| 3894 | // so, delete one. Since we sorted the list, these values are required to |
| 3895 | // be adjacent. |
| 3896 | llvm::CmpInst::Predicate GEPred = |
| 3897 | IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; |
| 3898 | llvm::CmpInst::Predicate LEPred = |
| 3899 | IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; |
| 3900 | llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; |
| 3901 | llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; |
| 3902 | for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { |
| 3903 | if (Ops[i] == Ops[i + 1] || |
| 3904 | isKnownViaNonRecursiveReasoning(Pred: FirstPred, LHS: Ops[i], RHS: Ops[i + 1])) { |
| 3905 | // X op Y op Y --> X op Y |
| 3906 | // X op Y --> X, if we know X, Y are ordered appropriately |
| 3907 | Ops.erase(CS: Ops.begin() + i + 1, CE: Ops.begin() + i + 2); |
| 3908 | --i; |
| 3909 | --e; |
| 3910 | } else if (isKnownViaNonRecursiveReasoning(Pred: SecondPred, LHS: Ops[i], |
| 3911 | RHS: Ops[i + 1])) { |
| 3912 | // X op Y --> Y, if we know X, Y are ordered appropriately |
| 3913 | Ops.erase(CS: Ops.begin() + i, CE: Ops.begin() + i + 1); |
| 3914 | --i; |
| 3915 | --e; |
| 3916 | } |
| 3917 | } |
| 3918 | |
| 3919 | if (Ops.size() == 1) return Ops[0]; |
| 3920 | |
| 3921 | assert(!Ops.empty() && "Reduced smax down to nothing!" ); |
| 3922 | |
| 3923 | // Okay, it looks like we really DO need an expr. Check to see if we |
| 3924 | // already have one, otherwise create a new one. |
| 3925 | FoldingSetNodeID ID; |
| 3926 | ID.AddInteger(I: Kind); |
| 3927 | for (const SCEV *Op : Ops) |
| 3928 | ID.AddPointer(Ptr: Op); |
| 3929 | void *IP = nullptr; |
| 3930 | const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP); |
| 3931 | if (ExistingSCEV) |
| 3932 | return ExistingSCEV; |
| 3933 | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Num: Ops.size()); |
| 3934 | llvm::uninitialized_copy(Src&: Ops, Dst: O); |
| 3935 | SCEV *S = new (SCEVAllocator) |
| 3936 | SCEVMinMaxExpr(ID.Intern(Allocator&: SCEVAllocator), Kind, O, Ops.size()); |
| 3937 | |
| 3938 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 3939 | registerUser(User: S, Ops); |
| 3940 | return S; |
| 3941 | } |
| 3942 | |
| 3943 | namespace { |
| 3944 | |
| 3945 | class SCEVSequentialMinMaxDeduplicatingVisitor final |
| 3946 | : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, |
| 3947 | std::optional<const SCEV *>> { |
| 3948 | using RetVal = std::optional<const SCEV *>; |
| 3949 | using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; |
| 3950 | |
| 3951 | ScalarEvolution &SE; |
| 3952 | const SCEVTypes RootKind; // Must be a sequential min/max expression. |
| 3953 | const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. |
| 3954 | SmallPtrSet<const SCEV *, 16> SeenOps; |
| 3955 | |
| 3956 | bool canRecurseInto(SCEVTypes Kind) const { |
| 3957 | // We can only recurse into the SCEV expression of the same effective type |
| 3958 | // as the type of our root SCEV expression. |
| 3959 | return RootKind == Kind || NonSequentialRootKind == Kind; |
| 3960 | }; |
| 3961 | |
| 3962 | RetVal visitAnyMinMaxExpr(const SCEV *S) { |
| 3963 | assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && |
| 3964 | "Only for min/max expressions." ); |
| 3965 | SCEVTypes Kind = S->getSCEVType(); |
| 3966 | |
| 3967 | if (!canRecurseInto(Kind)) |
| 3968 | return S; |
| 3969 | |
| 3970 | auto *NAry = cast<SCEVNAryExpr>(Val: S); |
| 3971 | SmallVector<const SCEV *> NewOps; |
| 3972 | bool Changed = visit(Kind, OrigOps: NAry->operands(), NewOps); |
| 3973 | |
| 3974 | if (!Changed) |
| 3975 | return S; |
| 3976 | if (NewOps.empty()) |
| 3977 | return std::nullopt; |
| 3978 | |
| 3979 | return isa<SCEVSequentialMinMaxExpr>(Val: S) |
| 3980 | ? SE.getSequentialMinMaxExpr(Kind, Operands&: NewOps) |
| 3981 | : SE.getMinMaxExpr(Kind, Ops&: NewOps); |
| 3982 | } |
| 3983 | |
| 3984 | RetVal visit(const SCEV *S) { |
| 3985 | // Has the whole operand been seen already? |
| 3986 | if (!SeenOps.insert(Ptr: S).second) |
| 3987 | return std::nullopt; |
| 3988 | return Base::visit(S); |
| 3989 | } |
| 3990 | |
| 3991 | public: |
| 3992 | SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, |
| 3993 | SCEVTypes RootKind) |
| 3994 | : SE(SE), RootKind(RootKind), |
| 3995 | NonSequentialRootKind( |
| 3996 | SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( |
| 3997 | Ty: RootKind)) {} |
| 3998 | |
| 3999 | bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, |
| 4000 | SmallVectorImpl<const SCEV *> &NewOps) { |
| 4001 | bool Changed = false; |
| 4002 | SmallVector<const SCEV *> Ops; |
| 4003 | Ops.reserve(N: OrigOps.size()); |
| 4004 | |
| 4005 | for (const SCEV *Op : OrigOps) { |
| 4006 | RetVal NewOp = visit(S: Op); |
| 4007 | if (NewOp != Op) |
| 4008 | Changed = true; |
| 4009 | if (NewOp) |
| 4010 | Ops.emplace_back(Args&: *NewOp); |
| 4011 | } |
| 4012 | |
| 4013 | if (Changed) |
| 4014 | NewOps = std::move(Ops); |
| 4015 | return Changed; |
| 4016 | } |
| 4017 | |
| 4018 | RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } |
| 4019 | |
| 4020 | RetVal visitVScale(const SCEVVScale *VScale) { return VScale; } |
| 4021 | |
| 4022 | RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } |
| 4023 | |
| 4024 | RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } |
| 4025 | |
| 4026 | RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } |
| 4027 | |
| 4028 | RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } |
| 4029 | |
| 4030 | RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } |
| 4031 | |
| 4032 | RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } |
| 4033 | |
| 4034 | RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } |
| 4035 | |
| 4036 | RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } |
| 4037 | |
| 4038 | RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { |
| 4039 | return visitAnyMinMaxExpr(S: Expr); |
| 4040 | } |
| 4041 | |
| 4042 | RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { |
| 4043 | return visitAnyMinMaxExpr(S: Expr); |
| 4044 | } |
| 4045 | |
| 4046 | RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { |
| 4047 | return visitAnyMinMaxExpr(S: Expr); |
| 4048 | } |
| 4049 | |
| 4050 | RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { |
| 4051 | return visitAnyMinMaxExpr(S: Expr); |
| 4052 | } |
| 4053 | |
| 4054 | RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { |
| 4055 | return visitAnyMinMaxExpr(S: Expr); |
| 4056 | } |
| 4057 | |
| 4058 | RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } |
| 4059 | |
| 4060 | RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } |
| 4061 | }; |
| 4062 | |
| 4063 | } // namespace |
| 4064 | |
| 4065 | static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) { |
| 4066 | switch (Kind) { |
| 4067 | case scConstant: |
| 4068 | case scVScale: |
| 4069 | case scTruncate: |
| 4070 | case scZeroExtend: |
| 4071 | case scSignExtend: |
| 4072 | case scPtrToInt: |
| 4073 | case scAddExpr: |
| 4074 | case scMulExpr: |
| 4075 | case scUDivExpr: |
| 4076 | case scAddRecExpr: |
| 4077 | case scUMaxExpr: |
| 4078 | case scSMaxExpr: |
| 4079 | case scUMinExpr: |
| 4080 | case scSMinExpr: |
| 4081 | case scUnknown: |
| 4082 | // If any operand is poison, the whole expression is poison. |
| 4083 | return true; |
| 4084 | case scSequentialUMinExpr: |
| 4085 | // FIXME: if the *first* operand is poison, the whole expression is poison. |
| 4086 | return false; // Pessimistically, say that it does not propagate poison. |
| 4087 | case scCouldNotCompute: |
| 4088 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
| 4089 | } |
| 4090 | llvm_unreachable("Unknown SCEV kind!" ); |
| 4091 | } |
| 4092 | |
| 4093 | namespace { |
| 4094 | // The only way poison may be introduced in a SCEV expression is from a |
| 4095 | // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown, |
| 4096 | // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not* |
| 4097 | // introduce poison -- they encode guaranteed, non-speculated knowledge. |
| 4098 | // |
| 4099 | // Additionally, all SCEV nodes propagate poison from inputs to outputs, |
| 4100 | // with the notable exception of umin_seq, where only poison from the first |
| 4101 | // operand is (unconditionally) propagated. |
| 4102 | struct SCEVPoisonCollector { |
| 4103 | bool LookThroughMaybePoisonBlocking; |
| 4104 | SmallPtrSet<const SCEVUnknown *, 4> MaybePoison; |
| 4105 | SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking) |
| 4106 | : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking) {} |
| 4107 | |
| 4108 | bool follow(const SCEV *S) { |
| 4109 | if (!LookThroughMaybePoisonBlocking && |
| 4110 | !scevUnconditionallyPropagatesPoisonFromOperands(Kind: S->getSCEVType())) |
| 4111 | return false; |
| 4112 | |
| 4113 | if (auto *SU = dyn_cast<SCEVUnknown>(Val: S)) { |
| 4114 | if (!isGuaranteedNotToBePoison(V: SU->getValue())) |
| 4115 | MaybePoison.insert(Ptr: SU); |
| 4116 | } |
| 4117 | return true; |
| 4118 | } |
| 4119 | bool isDone() const { return false; } |
| 4120 | }; |
| 4121 | } // namespace |
| 4122 | |
| 4123 | /// Return true if V is poison given that AssumedPoison is already poison. |
| 4124 | static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) { |
| 4125 | // First collect all SCEVs that might result in AssumedPoison to be poison. |
| 4126 | // We need to look through potentially poison-blocking operations here, |
| 4127 | // because we want to find all SCEVs that *might* result in poison, not only |
| 4128 | // those that are *required* to. |
| 4129 | SCEVPoisonCollector PC1(/* LookThroughMaybePoisonBlocking */ true); |
| 4130 | visitAll(Root: AssumedPoison, Visitor&: PC1); |
| 4131 | |
| 4132 | // AssumedPoison is never poison. As the assumption is false, the implication |
| 4133 | // is true. Don't bother walking the other SCEV in this case. |
| 4134 | if (PC1.MaybePoison.empty()) |
| 4135 | return true; |
| 4136 | |
| 4137 | // Collect all SCEVs in S that, if poison, *will* result in S being poison |
| 4138 | // as well. We cannot look through potentially poison-blocking operations |
| 4139 | // here, as their arguments only *may* make the result poison. |
| 4140 | SCEVPoisonCollector PC2(/* LookThroughMaybePoisonBlocking */ false); |
| 4141 | visitAll(Root: S, Visitor&: PC2); |
| 4142 | |
| 4143 | // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison, |
| 4144 | // it will also make S poison by being part of PC2.MaybePoison. |
| 4145 | return llvm::set_is_subset(S1: PC1.MaybePoison, S2: PC2.MaybePoison); |
| 4146 | } |
| 4147 | |
| 4148 | void ScalarEvolution::getPoisonGeneratingValues( |
| 4149 | SmallPtrSetImpl<const Value *> &Result, const SCEV *S) { |
| 4150 | SCEVPoisonCollector PC(/* LookThroughMaybePoisonBlocking */ false); |
| 4151 | visitAll(Root: S, Visitor&: PC); |
| 4152 | for (const SCEVUnknown *SU : PC.MaybePoison) |
| 4153 | Result.insert(Ptr: SU->getValue()); |
| 4154 | } |
| 4155 | |
| 4156 | bool ScalarEvolution::canReuseInstruction( |
| 4157 | const SCEV *S, Instruction *I, |
| 4158 | SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { |
| 4159 | // If the instruction cannot be poison, it's always safe to reuse. |
| 4160 | if (programUndefinedIfPoison(Inst: I)) |
| 4161 | return true; |
| 4162 | |
| 4163 | // Otherwise, it is possible that I is more poisonous that S. Collect the |
| 4164 | // poison-contributors of S, and then check whether I has any additional |
| 4165 | // poison-contributors. Poison that is contributed through poison-generating |
| 4166 | // flags is handled by dropping those flags instead. |
| 4167 | SmallPtrSet<const Value *, 8> PoisonVals; |
| 4168 | getPoisonGeneratingValues(Result&: PoisonVals, S); |
| 4169 | |
| 4170 | SmallVector<Value *> Worklist; |
| 4171 | SmallPtrSet<Value *, 8> Visited; |
| 4172 | Worklist.push_back(Elt: I); |
| 4173 | while (!Worklist.empty()) { |
| 4174 | Value *V = Worklist.pop_back_val(); |
| 4175 | if (!Visited.insert(Ptr: V).second) |
| 4176 | continue; |
| 4177 | |
| 4178 | // Avoid walking large instruction graphs. |
| 4179 | if (Visited.size() > 16) |
| 4180 | return false; |
| 4181 | |
| 4182 | // Either the value can't be poison, or the S would also be poison if it |
| 4183 | // is. |
| 4184 | if (PoisonVals.contains(Ptr: V) || ::isGuaranteedNotToBePoison(V)) |
| 4185 | continue; |
| 4186 | |
| 4187 | auto *I = dyn_cast<Instruction>(Val: V); |
| 4188 | if (!I) |
| 4189 | return false; |
| 4190 | |
| 4191 | // Disjoint or instructions are interpreted as adds by SCEV. However, we |
| 4192 | // can't replace an arbitrary add with disjoint or, even if we drop the |
| 4193 | // flag. We would need to convert the or into an add. |
| 4194 | if (auto *PDI = dyn_cast<PossiblyDisjointInst>(Val: I)) |
| 4195 | if (PDI->isDisjoint()) |
| 4196 | return false; |
| 4197 | |
| 4198 | // FIXME: Ignore vscale, even though it technically could be poison. Do this |
| 4199 | // because SCEV currently assumes it can't be poison. Remove this special |
| 4200 | // case once we proper model when vscale can be poison. |
| 4201 | if (auto *II = dyn_cast<IntrinsicInst>(Val: I); |
| 4202 | II && II->getIntrinsicID() == Intrinsic::vscale) |
| 4203 | continue; |
| 4204 | |
| 4205 | if (canCreatePoison(Op: cast<Operator>(Val: I), /*ConsiderFlagsAndMetadata*/ false)) |
| 4206 | return false; |
| 4207 | |
| 4208 | // If the instruction can't create poison, we can recurse to its operands. |
| 4209 | if (I->hasPoisonGeneratingAnnotations()) |
| 4210 | DropPoisonGeneratingInsts.push_back(Elt: I); |
| 4211 | |
| 4212 | llvm::append_range(C&: Worklist, R: I->operands()); |
| 4213 | } |
| 4214 | return true; |
| 4215 | } |
| 4216 | |
| 4217 | const SCEV * |
| 4218 | ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, |
| 4219 | SmallVectorImpl<const SCEV *> &Ops) { |
| 4220 | assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && |
| 4221 | "Not a SCEVSequentialMinMaxExpr!" ); |
| 4222 | assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!" ); |
| 4223 | if (Ops.size() == 1) |
| 4224 | return Ops[0]; |
| 4225 | #ifndef NDEBUG |
| 4226 | Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); |
| 4227 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) { |
| 4228 | assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && |
| 4229 | "Operand types don't match!" ); |
| 4230 | assert(Ops[0]->getType()->isPointerTy() == |
| 4231 | Ops[i]->getType()->isPointerTy() && |
| 4232 | "min/max should be consistently pointerish" ); |
| 4233 | } |
| 4234 | #endif |
| 4235 | |
| 4236 | // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, |
| 4237 | // so we can *NOT* do any kind of sorting of the expressions! |
| 4238 | |
| 4239 | // Check if we have created the same expression before. |
| 4240 | if (const SCEV *S = findExistingSCEVInCache(SCEVType: Kind, Ops)) |
| 4241 | return S; |
| 4242 | |
| 4243 | // FIXME: there are *some* simplifications that we can do here. |
| 4244 | |
| 4245 | // Keep only the first instance of an operand. |
| 4246 | { |
| 4247 | SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); |
| 4248 | bool Changed = Deduplicator.visit(Kind, OrigOps: Ops, NewOps&: Ops); |
| 4249 | if (Changed) |
| 4250 | return getSequentialMinMaxExpr(Kind, Ops); |
| 4251 | } |
| 4252 | |
| 4253 | // Check to see if one of the operands is of the same kind. If so, expand its |
| 4254 | // operands onto our operand list, and recurse to simplify. |
| 4255 | { |
| 4256 | unsigned Idx = 0; |
| 4257 | bool DeletedAny = false; |
| 4258 | while (Idx < Ops.size()) { |
| 4259 | if (Ops[Idx]->getSCEVType() != Kind) { |
| 4260 | ++Idx; |
| 4261 | continue; |
| 4262 | } |
| 4263 | const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Val: Ops[Idx]); |
| 4264 | Ops.erase(CI: Ops.begin() + Idx); |
| 4265 | Ops.insert(I: Ops.begin() + Idx, From: SMME->operands().begin(), |
| 4266 | To: SMME->operands().end()); |
| 4267 | DeletedAny = true; |
| 4268 | } |
| 4269 | |
| 4270 | if (DeletedAny) |
| 4271 | return getSequentialMinMaxExpr(Kind, Ops); |
| 4272 | } |
| 4273 | |
| 4274 | const SCEV *SaturationPoint; |
| 4275 | ICmpInst::Predicate Pred; |
| 4276 | switch (Kind) { |
| 4277 | case scSequentialUMinExpr: |
| 4278 | SaturationPoint = getZero(Ty: Ops[0]->getType()); |
| 4279 | Pred = ICmpInst::ICMP_ULE; |
| 4280 | break; |
| 4281 | default: |
| 4282 | llvm_unreachable("Not a sequential min/max type." ); |
| 4283 | } |
| 4284 | |
| 4285 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) { |
| 4286 | if (!isGuaranteedNotToCauseUB(Op: Ops[i])) |
| 4287 | continue; |
| 4288 | // We can replace %x umin_seq %y with %x umin %y if either: |
| 4289 | // * %y being poison implies %x is also poison. |
| 4290 | // * %x cannot be the saturating value (e.g. zero for umin). |
| 4291 | if (::impliesPoison(AssumedPoison: Ops[i], S: Ops[i - 1]) || |
| 4292 | isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_NE, LHS: Ops[i - 1], |
| 4293 | RHS: SaturationPoint)) { |
| 4294 | SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]}; |
| 4295 | Ops[i - 1] = getMinMaxExpr( |
| 4296 | Kind: SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Ty: Kind), |
| 4297 | Ops&: SeqOps); |
| 4298 | Ops.erase(CI: Ops.begin() + i); |
| 4299 | return getSequentialMinMaxExpr(Kind, Ops); |
| 4300 | } |
| 4301 | // Fold %x umin_seq %y to %x if %x ule %y. |
| 4302 | // TODO: We might be able to prove the predicate for a later operand. |
| 4303 | if (isKnownViaNonRecursiveReasoning(Pred, LHS: Ops[i - 1], RHS: Ops[i])) { |
| 4304 | Ops.erase(CI: Ops.begin() + i); |
| 4305 | return getSequentialMinMaxExpr(Kind, Ops); |
| 4306 | } |
| 4307 | } |
| 4308 | |
| 4309 | // Okay, it looks like we really DO need an expr. Check to see if we |
| 4310 | // already have one, otherwise create a new one. |
| 4311 | FoldingSetNodeID ID; |
| 4312 | ID.AddInteger(I: Kind); |
| 4313 | for (const SCEV *Op : Ops) |
| 4314 | ID.AddPointer(Ptr: Op); |
| 4315 | void *IP = nullptr; |
| 4316 | const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP); |
| 4317 | if (ExistingSCEV) |
| 4318 | return ExistingSCEV; |
| 4319 | |
| 4320 | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Num: Ops.size()); |
| 4321 | llvm::uninitialized_copy(Src&: Ops, Dst: O); |
| 4322 | SCEV *S = new (SCEVAllocator) |
| 4323 | SCEVSequentialMinMaxExpr(ID.Intern(Allocator&: SCEVAllocator), Kind, O, Ops.size()); |
| 4324 | |
| 4325 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 4326 | registerUser(User: S, Ops); |
| 4327 | return S; |
| 4328 | } |
| 4329 | |
| 4330 | const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { |
| 4331 | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; |
| 4332 | return getSMaxExpr(Operands&: Ops); |
| 4333 | } |
| 4334 | |
| 4335 | const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { |
| 4336 | return getMinMaxExpr(Kind: scSMaxExpr, Ops); |
| 4337 | } |
| 4338 | |
| 4339 | const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { |
| 4340 | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; |
| 4341 | return getUMaxExpr(Operands&: Ops); |
| 4342 | } |
| 4343 | |
| 4344 | const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { |
| 4345 | return getMinMaxExpr(Kind: scUMaxExpr, Ops); |
| 4346 | } |
| 4347 | |
| 4348 | const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, |
| 4349 | const SCEV *RHS) { |
| 4350 | SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; |
| 4351 | return getSMinExpr(Operands&: Ops); |
| 4352 | } |
| 4353 | |
| 4354 | const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { |
| 4355 | return getMinMaxExpr(Kind: scSMinExpr, Ops); |
| 4356 | } |
| 4357 | |
| 4358 | const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, |
| 4359 | bool Sequential) { |
| 4360 | SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; |
| 4361 | return getUMinExpr(Operands&: Ops, Sequential); |
| 4362 | } |
| 4363 | |
| 4364 | const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, |
| 4365 | bool Sequential) { |
| 4366 | return Sequential ? getSequentialMinMaxExpr(Kind: scSequentialUMinExpr, Ops) |
| 4367 | : getMinMaxExpr(Kind: scUMinExpr, Ops); |
| 4368 | } |
| 4369 | |
| 4370 | const SCEV * |
| 4371 | ScalarEvolution::getSizeOfExpr(Type *IntTy, TypeSize Size) { |
| 4372 | const SCEV *Res = getConstant(Ty: IntTy, V: Size.getKnownMinValue()); |
| 4373 | if (Size.isScalable()) |
| 4374 | Res = getMulExpr(LHS: Res, RHS: getVScale(Ty: IntTy)); |
| 4375 | return Res; |
| 4376 | } |
| 4377 | |
| 4378 | const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { |
| 4379 | return getSizeOfExpr(IntTy, Size: getDataLayout().getTypeAllocSize(Ty: AllocTy)); |
| 4380 | } |
| 4381 | |
| 4382 | const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { |
| 4383 | return getSizeOfExpr(IntTy, Size: getDataLayout().getTypeStoreSize(Ty: StoreTy)); |
| 4384 | } |
| 4385 | |
| 4386 | const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, |
| 4387 | StructType *STy, |
| 4388 | unsigned FieldNo) { |
| 4389 | // We can bypass creating a target-independent constant expression and then |
| 4390 | // folding it back into a ConstantInt. This is just a compile-time |
| 4391 | // optimization. |
| 4392 | const StructLayout *SL = getDataLayout().getStructLayout(Ty: STy); |
| 4393 | assert(!SL->getSizeInBits().isScalable() && |
| 4394 | "Cannot get offset for structure containing scalable vector types" ); |
| 4395 | return getConstant(Ty: IntTy, V: SL->getElementOffset(Idx: FieldNo)); |
| 4396 | } |
| 4397 | |
| 4398 | const SCEV *ScalarEvolution::getUnknown(Value *V) { |
| 4399 | // Don't attempt to do anything other than create a SCEVUnknown object |
| 4400 | // here. createSCEV only calls getUnknown after checking for all other |
| 4401 | // interesting possibilities, and any other code that calls getUnknown |
| 4402 | // is doing so in order to hide a value from SCEV canonicalization. |
| 4403 | |
| 4404 | FoldingSetNodeID ID; |
| 4405 | ID.AddInteger(I: scUnknown); |
| 4406 | ID.AddPointer(Ptr: V); |
| 4407 | void *IP = nullptr; |
| 4408 | if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) { |
| 4409 | assert(cast<SCEVUnknown>(S)->getValue() == V && |
| 4410 | "Stale SCEVUnknown in uniquing map!" ); |
| 4411 | return S; |
| 4412 | } |
| 4413 | SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(Allocator&: SCEVAllocator), V, this, |
| 4414 | FirstUnknown); |
| 4415 | FirstUnknown = cast<SCEVUnknown>(Val: S); |
| 4416 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
| 4417 | return S; |
| 4418 | } |
| 4419 | |
| 4420 | //===----------------------------------------------------------------------===// |
| 4421 | // Basic SCEV Analysis and PHI Idiom Recognition Code |
| 4422 | // |
| 4423 | |
| 4424 | /// Test if values of the given type are analyzable within the SCEV |
| 4425 | /// framework. This primarily includes integer types, and it can optionally |
| 4426 | /// include pointer types if the ScalarEvolution class has access to |
| 4427 | /// target-specific information. |
| 4428 | bool ScalarEvolution::isSCEVable(Type *Ty) const { |
| 4429 | // Integers and pointers are always SCEVable. |
| 4430 | return Ty->isIntOrPtrTy(); |
| 4431 | } |
| 4432 | |
| 4433 | /// Return the size in bits of the specified type, for which isSCEVable must |
| 4434 | /// return true. |
| 4435 | uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { |
| 4436 | assert(isSCEVable(Ty) && "Type is not SCEVable!" ); |
| 4437 | if (Ty->isPointerTy()) |
| 4438 | return getDataLayout().getIndexTypeSizeInBits(Ty); |
| 4439 | return getDataLayout().getTypeSizeInBits(Ty); |
| 4440 | } |
| 4441 | |
| 4442 | /// Return a type with the same bitwidth as the given type and which represents |
| 4443 | /// how SCEV will treat the given type, for which isSCEVable must return |
| 4444 | /// true. For pointer types, this is the pointer index sized integer type. |
| 4445 | Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { |
| 4446 | assert(isSCEVable(Ty) && "Type is not SCEVable!" ); |
| 4447 | |
| 4448 | if (Ty->isIntegerTy()) |
| 4449 | return Ty; |
| 4450 | |
| 4451 | // The only other support type is pointer. |
| 4452 | assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!" ); |
| 4453 | return getDataLayout().getIndexType(PtrTy: Ty); |
| 4454 | } |
| 4455 | |
| 4456 | Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { |
| 4457 | return getTypeSizeInBits(Ty: T1) >= getTypeSizeInBits(Ty: T2) ? T1 : T2; |
| 4458 | } |
| 4459 | |
| 4460 | bool ScalarEvolution::instructionCouldExistWithOperands(const SCEV *A, |
| 4461 | const SCEV *B) { |
| 4462 | /// For a valid use point to exist, the defining scope of one operand |
| 4463 | /// must dominate the other. |
| 4464 | bool PreciseA, PreciseB; |
| 4465 | auto *ScopeA = getDefiningScopeBound(Ops: {A}, Precise&: PreciseA); |
| 4466 | auto *ScopeB = getDefiningScopeBound(Ops: {B}, Precise&: PreciseB); |
| 4467 | if (!PreciseA || !PreciseB) |
| 4468 | // Can't tell. |
| 4469 | return false; |
| 4470 | return (ScopeA == ScopeB) || DT.dominates(Def: ScopeA, User: ScopeB) || |
| 4471 | DT.dominates(Def: ScopeB, User: ScopeA); |
| 4472 | } |
| 4473 | |
| 4474 | const SCEV *ScalarEvolution::getCouldNotCompute() { |
| 4475 | return CouldNotCompute.get(); |
| 4476 | } |
| 4477 | |
| 4478 | bool ScalarEvolution::checkValidity(const SCEV *S) const { |
| 4479 | bool ContainsNulls = SCEVExprContains(Root: S, Pred: [](const SCEV *S) { |
| 4480 | auto *SU = dyn_cast<SCEVUnknown>(Val: S); |
| 4481 | return SU && SU->getValue() == nullptr; |
| 4482 | }); |
| 4483 | |
| 4484 | return !ContainsNulls; |
| 4485 | } |
| 4486 | |
| 4487 | bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { |
| 4488 | HasRecMapType::iterator I = HasRecMap.find(Val: S); |
| 4489 | if (I != HasRecMap.end()) |
| 4490 | return I->second; |
| 4491 | |
| 4492 | bool FoundAddRec = |
| 4493 | SCEVExprContains(Root: S, Pred: [](const SCEV *S) { return isa<SCEVAddRecExpr>(Val: S); }); |
| 4494 | HasRecMap.insert(KV: {S, FoundAddRec}); |
| 4495 | return FoundAddRec; |
| 4496 | } |
| 4497 | |
| 4498 | /// Return the ValueOffsetPair set for \p S. \p S can be represented |
| 4499 | /// by the value and offset from any ValueOffsetPair in the set. |
| 4500 | ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { |
| 4501 | ExprValueMapType::iterator SI = ExprValueMap.find_as(Val: S); |
| 4502 | if (SI == ExprValueMap.end()) |
| 4503 | return {}; |
| 4504 | return SI->second.getArrayRef(); |
| 4505 | } |
| 4506 | |
| 4507 | /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) |
| 4508 | /// cannot be used separately. eraseValueFromMap should be used to remove |
| 4509 | /// V from ValueExprMap and ExprValueMap at the same time. |
| 4510 | void ScalarEvolution::eraseValueFromMap(Value *V) { |
| 4511 | ValueExprMapType::iterator I = ValueExprMap.find_as(Val: V); |
| 4512 | if (I != ValueExprMap.end()) { |
| 4513 | auto EVIt = ExprValueMap.find(Val: I->second); |
| 4514 | bool Removed = EVIt->second.remove(X: V); |
| 4515 | (void) Removed; |
| 4516 | assert(Removed && "Value not in ExprValueMap?" ); |
| 4517 | ValueExprMap.erase(I); |
| 4518 | } |
| 4519 | } |
| 4520 | |
| 4521 | void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { |
| 4522 | // A recursive query may have already computed the SCEV. It should be |
| 4523 | // equivalent, but may not necessarily be exactly the same, e.g. due to lazily |
| 4524 | // inferred nowrap flags. |
| 4525 | auto It = ValueExprMap.find_as(Val: V); |
| 4526 | if (It == ValueExprMap.end()) { |
| 4527 | ValueExprMap.insert(KV: {SCEVCallbackVH(V, this), S}); |
| 4528 | ExprValueMap[S].insert(X: V); |
| 4529 | } |
| 4530 | } |
| 4531 | |
| 4532 | /// Return an existing SCEV if it exists, otherwise analyze the expression and |
| 4533 | /// create a new one. |
| 4534 | const SCEV *ScalarEvolution::getSCEV(Value *V) { |
| 4535 | assert(isSCEVable(V->getType()) && "Value is not SCEVable!" ); |
| 4536 | |
| 4537 | if (const SCEV *S = getExistingSCEV(V)) |
| 4538 | return S; |
| 4539 | return createSCEVIter(V); |
| 4540 | } |
| 4541 | |
| 4542 | const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { |
| 4543 | assert(isSCEVable(V->getType()) && "Value is not SCEVable!" ); |
| 4544 | |
| 4545 | ValueExprMapType::iterator I = ValueExprMap.find_as(Val: V); |
| 4546 | if (I != ValueExprMap.end()) { |
| 4547 | const SCEV *S = I->second; |
| 4548 | assert(checkValidity(S) && |
| 4549 | "existing SCEV has not been properly invalidated" ); |
| 4550 | return S; |
| 4551 | } |
| 4552 | return nullptr; |
| 4553 | } |
| 4554 | |
| 4555 | /// Return a SCEV corresponding to -V = -1*V |
| 4556 | const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, |
| 4557 | SCEV::NoWrapFlags Flags) { |
| 4558 | if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(Val: V)) |
| 4559 | return getConstant( |
| 4560 | V: cast<ConstantInt>(Val: ConstantExpr::getNeg(C: VC->getValue()))); |
| 4561 | |
| 4562 | Type *Ty = V->getType(); |
| 4563 | Ty = getEffectiveSCEVType(Ty); |
| 4564 | return getMulExpr(LHS: V, RHS: getMinusOne(Ty), Flags); |
| 4565 | } |
| 4566 | |
| 4567 | /// If Expr computes ~A, return A else return nullptr |
| 4568 | static const SCEV *MatchNotExpr(const SCEV *Expr) { |
| 4569 | const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: Expr); |
| 4570 | if (!Add || Add->getNumOperands() != 2 || |
| 4571 | !Add->getOperand(i: 0)->isAllOnesValue()) |
| 4572 | return nullptr; |
| 4573 | |
| 4574 | const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Val: Add->getOperand(i: 1)); |
| 4575 | if (!AddRHS || AddRHS->getNumOperands() != 2 || |
| 4576 | !AddRHS->getOperand(i: 0)->isAllOnesValue()) |
| 4577 | return nullptr; |
| 4578 | |
| 4579 | return AddRHS->getOperand(i: 1); |
| 4580 | } |
| 4581 | |
| 4582 | /// Return a SCEV corresponding to ~V = -1-V |
| 4583 | const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { |
| 4584 | assert(!V->getType()->isPointerTy() && "Can't negate pointer" ); |
| 4585 | |
| 4586 | if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(Val: V)) |
| 4587 | return getConstant( |
| 4588 | V: cast<ConstantInt>(Val: ConstantExpr::getNot(C: VC->getValue()))); |
| 4589 | |
| 4590 | // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) |
| 4591 | if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(Val: V)) { |
| 4592 | auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { |
| 4593 | SmallVector<const SCEV *, 2> MatchedOperands; |
| 4594 | for (const SCEV *Operand : MME->operands()) { |
| 4595 | const SCEV *Matched = MatchNotExpr(Expr: Operand); |
| 4596 | if (!Matched) |
| 4597 | return (const SCEV *)nullptr; |
| 4598 | MatchedOperands.push_back(Elt: Matched); |
| 4599 | } |
| 4600 | return getMinMaxExpr(Kind: SCEVMinMaxExpr::negate(T: MME->getSCEVType()), |
| 4601 | Ops&: MatchedOperands); |
| 4602 | }; |
| 4603 | if (const SCEV *Replaced = MatchMinMaxNegation(MME)) |
| 4604 | return Replaced; |
| 4605 | } |
| 4606 | |
| 4607 | Type *Ty = V->getType(); |
| 4608 | Ty = getEffectiveSCEVType(Ty); |
| 4609 | return getMinusSCEV(LHS: getMinusOne(Ty), RHS: V); |
| 4610 | } |
| 4611 | |
| 4612 | const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { |
| 4613 | assert(P->getType()->isPointerTy()); |
| 4614 | |
| 4615 | if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: P)) { |
| 4616 | // The base of an AddRec is the first operand. |
| 4617 | SmallVector<const SCEV *> Ops{AddRec->operands()}; |
| 4618 | Ops[0] = removePointerBase(P: Ops[0]); |
| 4619 | // Don't try to transfer nowrap flags for now. We could in some cases |
| 4620 | // (for example, if pointer operand of the AddRec is a SCEVUnknown). |
| 4621 | return getAddRecExpr(Operands&: Ops, L: AddRec->getLoop(), Flags: SCEV::FlagAnyWrap); |
| 4622 | } |
| 4623 | if (auto *Add = dyn_cast<SCEVAddExpr>(Val: P)) { |
| 4624 | // The base of an Add is the pointer operand. |
| 4625 | SmallVector<const SCEV *> Ops{Add->operands()}; |
| 4626 | const SCEV **PtrOp = nullptr; |
| 4627 | for (const SCEV *&AddOp : Ops) { |
| 4628 | if (AddOp->getType()->isPointerTy()) { |
| 4629 | assert(!PtrOp && "Cannot have multiple pointer ops" ); |
| 4630 | PtrOp = &AddOp; |
| 4631 | } |
| 4632 | } |
| 4633 | *PtrOp = removePointerBase(P: *PtrOp); |
| 4634 | // Don't try to transfer nowrap flags for now. We could in some cases |
| 4635 | // (for example, if the pointer operand of the Add is a SCEVUnknown). |
| 4636 | return getAddExpr(Ops); |
| 4637 | } |
| 4638 | // Any other expression must be a pointer base. |
| 4639 | return getZero(Ty: P->getType()); |
| 4640 | } |
| 4641 | |
| 4642 | const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, |
| 4643 | SCEV::NoWrapFlags Flags, |
| 4644 | unsigned Depth) { |
| 4645 | // Fast path: X - X --> 0. |
| 4646 | if (LHS == RHS) |
| 4647 | return getZero(Ty: LHS->getType()); |
| 4648 | |
| 4649 | // If we subtract two pointers with different pointer bases, bail. |
| 4650 | // Eventually, we're going to add an assertion to getMulExpr that we |
| 4651 | // can't multiply by a pointer. |
| 4652 | if (RHS->getType()->isPointerTy()) { |
| 4653 | if (!LHS->getType()->isPointerTy() || |
| 4654 | getPointerBase(V: LHS) != getPointerBase(V: RHS)) |
| 4655 | return getCouldNotCompute(); |
| 4656 | LHS = removePointerBase(P: LHS); |
| 4657 | RHS = removePointerBase(P: RHS); |
| 4658 | } |
| 4659 | |
| 4660 | // We represent LHS - RHS as LHS + (-1)*RHS. This transformation |
| 4661 | // makes it so that we cannot make much use of NUW. |
| 4662 | auto AddFlags = SCEV::FlagAnyWrap; |
| 4663 | const bool RHSIsNotMinSigned = |
| 4664 | !getSignedRangeMin(S: RHS).isMinSignedValue(); |
| 4665 | if (hasFlags(Flags, TestFlags: SCEV::FlagNSW)) { |
| 4666 | // Let M be the minimum representable signed value. Then (-1)*RHS |
| 4667 | // signed-wraps if and only if RHS is M. That can happen even for |
| 4668 | // a NSW subtraction because e.g. (-1)*M signed-wraps even though |
| 4669 | // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + |
| 4670 | // (-1)*RHS, we need to prove that RHS != M. |
| 4671 | // |
| 4672 | // If LHS is non-negative and we know that LHS - RHS does not |
| 4673 | // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap |
| 4674 | // either by proving that RHS > M or that LHS >= 0. |
| 4675 | if (RHSIsNotMinSigned || isKnownNonNegative(S: LHS)) { |
| 4676 | AddFlags = SCEV::FlagNSW; |
| 4677 | } |
| 4678 | } |
| 4679 | |
| 4680 | // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - |
| 4681 | // RHS is NSW and LHS >= 0. |
| 4682 | // |
| 4683 | // The difficulty here is that the NSW flag may have been proven |
| 4684 | // relative to a loop that is to be found in a recurrence in LHS and |
| 4685 | // not in RHS. Applying NSW to (-1)*M may then let the NSW have a |
| 4686 | // larger scope than intended. |
| 4687 | auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; |
| 4688 | |
| 4689 | return getAddExpr(LHS, RHS: getNegativeSCEV(V: RHS, Flags: NegFlags), Flags: AddFlags, Depth); |
| 4690 | } |
| 4691 | |
| 4692 | const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, |
| 4693 | unsigned Depth) { |
| 4694 | Type *SrcTy = V->getType(); |
| 4695 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| 4696 | "Cannot truncate or zero extend with non-integer arguments!" ); |
| 4697 | if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty)) |
| 4698 | return V; // No conversion |
| 4699 | if (getTypeSizeInBits(Ty: SrcTy) > getTypeSizeInBits(Ty)) |
| 4700 | return getTruncateExpr(Op: V, Ty, Depth); |
| 4701 | return getZeroExtendExpr(Op: V, Ty, Depth); |
| 4702 | } |
| 4703 | |
| 4704 | const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, |
| 4705 | unsigned Depth) { |
| 4706 | Type *SrcTy = V->getType(); |
| 4707 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| 4708 | "Cannot truncate or zero extend with non-integer arguments!" ); |
| 4709 | if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty)) |
| 4710 | return V; // No conversion |
| 4711 | if (getTypeSizeInBits(Ty: SrcTy) > getTypeSizeInBits(Ty)) |
| 4712 | return getTruncateExpr(Op: V, Ty, Depth); |
| 4713 | return getSignExtendExpr(Op: V, Ty, Depth); |
| 4714 | } |
| 4715 | |
| 4716 | const SCEV * |
| 4717 | ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { |
| 4718 | Type *SrcTy = V->getType(); |
| 4719 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| 4720 | "Cannot noop or zero extend with non-integer arguments!" ); |
| 4721 | assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && |
| 4722 | "getNoopOrZeroExtend cannot truncate!" ); |
| 4723 | if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty)) |
| 4724 | return V; // No conversion |
| 4725 | return getZeroExtendExpr(Op: V, Ty); |
| 4726 | } |
| 4727 | |
| 4728 | const SCEV * |
| 4729 | ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { |
| 4730 | Type *SrcTy = V->getType(); |
| 4731 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| 4732 | "Cannot noop or sign extend with non-integer arguments!" ); |
| 4733 | assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && |
| 4734 | "getNoopOrSignExtend cannot truncate!" ); |
| 4735 | if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty)) |
| 4736 | return V; // No conversion |
| 4737 | return getSignExtendExpr(Op: V, Ty); |
| 4738 | } |
| 4739 | |
| 4740 | const SCEV * |
| 4741 | ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { |
| 4742 | Type *SrcTy = V->getType(); |
| 4743 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| 4744 | "Cannot noop or any extend with non-integer arguments!" ); |
| 4745 | assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && |
| 4746 | "getNoopOrAnyExtend cannot truncate!" ); |
| 4747 | if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty)) |
| 4748 | return V; // No conversion |
| 4749 | return getAnyExtendExpr(Op: V, Ty); |
| 4750 | } |
| 4751 | |
| 4752 | const SCEV * |
| 4753 | ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { |
| 4754 | Type *SrcTy = V->getType(); |
| 4755 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
| 4756 | "Cannot truncate or noop with non-integer arguments!" ); |
| 4757 | assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && |
| 4758 | "getTruncateOrNoop cannot extend!" ); |
| 4759 | if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty)) |
| 4760 | return V; // No conversion |
| 4761 | return getTruncateExpr(Op: V, Ty); |
| 4762 | } |
| 4763 | |
| 4764 | const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, |
| 4765 | const SCEV *RHS) { |
| 4766 | const SCEV *PromotedLHS = LHS; |
| 4767 | const SCEV *PromotedRHS = RHS; |
| 4768 | |
| 4769 | if (getTypeSizeInBits(Ty: LHS->getType()) > getTypeSizeInBits(Ty: RHS->getType())) |
| 4770 | PromotedRHS = getZeroExtendExpr(Op: RHS, Ty: LHS->getType()); |
| 4771 | else |
| 4772 | PromotedLHS = getNoopOrZeroExtend(V: LHS, Ty: RHS->getType()); |
| 4773 | |
| 4774 | return getUMaxExpr(LHS: PromotedLHS, RHS: PromotedRHS); |
| 4775 | } |
| 4776 | |
| 4777 | const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, |
| 4778 | const SCEV *RHS, |
| 4779 | bool Sequential) { |
| 4780 | SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; |
| 4781 | return getUMinFromMismatchedTypes(Ops, Sequential); |
| 4782 | } |
| 4783 | |
| 4784 | const SCEV * |
| 4785 | ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, |
| 4786 | bool Sequential) { |
| 4787 | assert(!Ops.empty() && "At least one operand must be!" ); |
| 4788 | // Trivial case. |
| 4789 | if (Ops.size() == 1) |
| 4790 | return Ops[0]; |
| 4791 | |
| 4792 | // Find the max type first. |
| 4793 | Type *MaxType = nullptr; |
| 4794 | for (const auto *S : Ops) |
| 4795 | if (MaxType) |
| 4796 | MaxType = getWiderType(T1: MaxType, T2: S->getType()); |
| 4797 | else |
| 4798 | MaxType = S->getType(); |
| 4799 | assert(MaxType && "Failed to find maximum type!" ); |
| 4800 | |
| 4801 | // Extend all ops to max type. |
| 4802 | SmallVector<const SCEV *, 2> PromotedOps; |
| 4803 | for (const auto *S : Ops) |
| 4804 | PromotedOps.push_back(Elt: getNoopOrZeroExtend(V: S, Ty: MaxType)); |
| 4805 | |
| 4806 | // Generate umin. |
| 4807 | return getUMinExpr(Ops&: PromotedOps, Sequential); |
| 4808 | } |
| 4809 | |
| 4810 | const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { |
| 4811 | // A pointer operand may evaluate to a nonpointer expression, such as null. |
| 4812 | if (!V->getType()->isPointerTy()) |
| 4813 | return V; |
| 4814 | |
| 4815 | while (true) { |
| 4816 | if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: V)) { |
| 4817 | V = AddRec->getStart(); |
| 4818 | } else if (auto *Add = dyn_cast<SCEVAddExpr>(Val: V)) { |
| 4819 | const SCEV *PtrOp = nullptr; |
| 4820 | for (const SCEV *AddOp : Add->operands()) { |
| 4821 | if (AddOp->getType()->isPointerTy()) { |
| 4822 | assert(!PtrOp && "Cannot have multiple pointer ops" ); |
| 4823 | PtrOp = AddOp; |
| 4824 | } |
| 4825 | } |
| 4826 | assert(PtrOp && "Must have pointer op" ); |
| 4827 | V = PtrOp; |
| 4828 | } else // Not something we can look further into. |
| 4829 | return V; |
| 4830 | } |
| 4831 | } |
| 4832 | |
| 4833 | /// Push users of the given Instruction onto the given Worklist. |
| 4834 | static void PushDefUseChildren(Instruction *I, |
| 4835 | SmallVectorImpl<Instruction *> &Worklist, |
| 4836 | SmallPtrSetImpl<Instruction *> &Visited) { |
| 4837 | // Push the def-use children onto the Worklist stack. |
| 4838 | for (User *U : I->users()) { |
| 4839 | auto *UserInsn = cast<Instruction>(Val: U); |
| 4840 | if (Visited.insert(Ptr: UserInsn).second) |
| 4841 | Worklist.push_back(Elt: UserInsn); |
| 4842 | } |
| 4843 | } |
| 4844 | |
| 4845 | namespace { |
| 4846 | |
| 4847 | /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start |
| 4848 | /// expression in case its Loop is L. If it is not L then |
| 4849 | /// if IgnoreOtherLoops is true then use AddRec itself |
| 4850 | /// otherwise rewrite cannot be done. |
| 4851 | /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. |
| 4852 | class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { |
| 4853 | public: |
| 4854 | static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, |
| 4855 | bool IgnoreOtherLoops = true) { |
| 4856 | SCEVInitRewriter Rewriter(L, SE); |
| 4857 | const SCEV *Result = Rewriter.visit(S); |
| 4858 | if (Rewriter.hasSeenLoopVariantSCEVUnknown()) |
| 4859 | return SE.getCouldNotCompute(); |
| 4860 | return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops |
| 4861 | ? SE.getCouldNotCompute() |
| 4862 | : Result; |
| 4863 | } |
| 4864 | |
| 4865 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| 4866 | if (!SE.isLoopInvariant(S: Expr, L)) |
| 4867 | SeenLoopVariantSCEVUnknown = true; |
| 4868 | return Expr; |
| 4869 | } |
| 4870 | |
| 4871 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
| 4872 | // Only re-write AddRecExprs for this loop. |
| 4873 | if (Expr->getLoop() == L) |
| 4874 | return Expr->getStart(); |
| 4875 | SeenOtherLoops = true; |
| 4876 | return Expr; |
| 4877 | } |
| 4878 | |
| 4879 | bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } |
| 4880 | |
| 4881 | bool hasSeenOtherLoops() { return SeenOtherLoops; } |
| 4882 | |
| 4883 | private: |
| 4884 | explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) |
| 4885 | : SCEVRewriteVisitor(SE), L(L) {} |
| 4886 | |
| 4887 | const Loop *L; |
| 4888 | bool SeenLoopVariantSCEVUnknown = false; |
| 4889 | bool SeenOtherLoops = false; |
| 4890 | }; |
| 4891 | |
| 4892 | /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post |
| 4893 | /// increment expression in case its Loop is L. If it is not L then |
| 4894 | /// use AddRec itself. |
| 4895 | /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. |
| 4896 | class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { |
| 4897 | public: |
| 4898 | static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { |
| 4899 | SCEVPostIncRewriter Rewriter(L, SE); |
| 4900 | const SCEV *Result = Rewriter.visit(S); |
| 4901 | return Rewriter.hasSeenLoopVariantSCEVUnknown() |
| 4902 | ? SE.getCouldNotCompute() |
| 4903 | : Result; |
| 4904 | } |
| 4905 | |
| 4906 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| 4907 | if (!SE.isLoopInvariant(S: Expr, L)) |
| 4908 | SeenLoopVariantSCEVUnknown = true; |
| 4909 | return Expr; |
| 4910 | } |
| 4911 | |
| 4912 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
| 4913 | // Only re-write AddRecExprs for this loop. |
| 4914 | if (Expr->getLoop() == L) |
| 4915 | return Expr->getPostIncExpr(SE); |
| 4916 | SeenOtherLoops = true; |
| 4917 | return Expr; |
| 4918 | } |
| 4919 | |
| 4920 | bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } |
| 4921 | |
| 4922 | bool hasSeenOtherLoops() { return SeenOtherLoops; } |
| 4923 | |
| 4924 | private: |
| 4925 | explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) |
| 4926 | : SCEVRewriteVisitor(SE), L(L) {} |
| 4927 | |
| 4928 | const Loop *L; |
| 4929 | bool SeenLoopVariantSCEVUnknown = false; |
| 4930 | bool SeenOtherLoops = false; |
| 4931 | }; |
| 4932 | |
| 4933 | /// This class evaluates the compare condition by matching it against the |
| 4934 | /// condition of loop latch. If there is a match we assume a true value |
| 4935 | /// for the condition while building SCEV nodes. |
| 4936 | class SCEVBackedgeConditionFolder |
| 4937 | : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { |
| 4938 | public: |
| 4939 | static const SCEV *rewrite(const SCEV *S, const Loop *L, |
| 4940 | ScalarEvolution &SE) { |
| 4941 | bool IsPosBECond = false; |
| 4942 | Value *BECond = nullptr; |
| 4943 | if (BasicBlock *Latch = L->getLoopLatch()) { |
| 4944 | BranchInst *BI = dyn_cast<BranchInst>(Val: Latch->getTerminator()); |
| 4945 | if (BI && BI->isConditional()) { |
| 4946 | assert(BI->getSuccessor(0) != BI->getSuccessor(1) && |
| 4947 | "Both outgoing branches should not target same header!" ); |
| 4948 | BECond = BI->getCondition(); |
| 4949 | IsPosBECond = BI->getSuccessor(i: 0) == L->getHeader(); |
| 4950 | } else { |
| 4951 | return S; |
| 4952 | } |
| 4953 | } |
| 4954 | SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); |
| 4955 | return Rewriter.visit(S); |
| 4956 | } |
| 4957 | |
| 4958 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| 4959 | const SCEV *Result = Expr; |
| 4960 | bool InvariantF = SE.isLoopInvariant(S: Expr, L); |
| 4961 | |
| 4962 | if (!InvariantF) { |
| 4963 | Instruction *I = cast<Instruction>(Val: Expr->getValue()); |
| 4964 | switch (I->getOpcode()) { |
| 4965 | case Instruction::Select: { |
| 4966 | SelectInst *SI = cast<SelectInst>(Val: I); |
| 4967 | std::optional<const SCEV *> Res = |
| 4968 | compareWithBackedgeCondition(IC: SI->getCondition()); |
| 4969 | if (Res) { |
| 4970 | bool IsOne = cast<SCEVConstant>(Val: *Res)->getValue()->isOne(); |
| 4971 | Result = SE.getSCEV(V: IsOne ? SI->getTrueValue() : SI->getFalseValue()); |
| 4972 | } |
| 4973 | break; |
| 4974 | } |
| 4975 | default: { |
| 4976 | std::optional<const SCEV *> Res = compareWithBackedgeCondition(IC: I); |
| 4977 | if (Res) |
| 4978 | Result = *Res; |
| 4979 | break; |
| 4980 | } |
| 4981 | } |
| 4982 | } |
| 4983 | return Result; |
| 4984 | } |
| 4985 | |
| 4986 | private: |
| 4987 | explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, |
| 4988 | bool IsPosBECond, ScalarEvolution &SE) |
| 4989 | : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), |
| 4990 | IsPositiveBECond(IsPosBECond) {} |
| 4991 | |
| 4992 | std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC); |
| 4993 | |
| 4994 | const Loop *L; |
| 4995 | /// Loop back condition. |
| 4996 | Value *BackedgeCond = nullptr; |
| 4997 | /// Set to true if loop back is on positive branch condition. |
| 4998 | bool IsPositiveBECond; |
| 4999 | }; |
| 5000 | |
| 5001 | std::optional<const SCEV *> |
| 5002 | SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { |
| 5003 | |
| 5004 | // If value matches the backedge condition for loop latch, |
| 5005 | // then return a constant evolution node based on loopback |
| 5006 | // branch taken. |
| 5007 | if (BackedgeCond == IC) |
| 5008 | return IsPositiveBECond ? SE.getOne(Ty: Type::getInt1Ty(C&: SE.getContext())) |
| 5009 | : SE.getZero(Ty: Type::getInt1Ty(C&: SE.getContext())); |
| 5010 | return std::nullopt; |
| 5011 | } |
| 5012 | |
| 5013 | class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { |
| 5014 | public: |
| 5015 | static const SCEV *rewrite(const SCEV *S, const Loop *L, |
| 5016 | ScalarEvolution &SE) { |
| 5017 | SCEVShiftRewriter Rewriter(L, SE); |
| 5018 | const SCEV *Result = Rewriter.visit(S); |
| 5019 | return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); |
| 5020 | } |
| 5021 | |
| 5022 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| 5023 | // Only allow AddRecExprs for this loop. |
| 5024 | if (!SE.isLoopInvariant(S: Expr, L)) |
| 5025 | Valid = false; |
| 5026 | return Expr; |
| 5027 | } |
| 5028 | |
| 5029 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
| 5030 | if (Expr->getLoop() == L && Expr->isAffine()) |
| 5031 | return SE.getMinusSCEV(LHS: Expr, RHS: Expr->getStepRecurrence(SE)); |
| 5032 | Valid = false; |
| 5033 | return Expr; |
| 5034 | } |
| 5035 | |
| 5036 | bool isValid() { return Valid; } |
| 5037 | |
| 5038 | private: |
| 5039 | explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) |
| 5040 | : SCEVRewriteVisitor(SE), L(L) {} |
| 5041 | |
| 5042 | const Loop *L; |
| 5043 | bool Valid = true; |
| 5044 | }; |
| 5045 | |
| 5046 | } // end anonymous namespace |
| 5047 | |
| 5048 | SCEV::NoWrapFlags |
| 5049 | ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { |
| 5050 | if (!AR->isAffine()) |
| 5051 | return SCEV::FlagAnyWrap; |
| 5052 | |
| 5053 | using OBO = OverflowingBinaryOperator; |
| 5054 | |
| 5055 | SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; |
| 5056 | |
| 5057 | if (!AR->hasNoSelfWrap()) { |
| 5058 | const SCEV *BECount = getConstantMaxBackedgeTakenCount(L: AR->getLoop()); |
| 5059 | if (const SCEVConstant *BECountMax = dyn_cast<SCEVConstant>(Val: BECount)) { |
| 5060 | ConstantRange StepCR = getSignedRange(S: AR->getStepRecurrence(SE&: *this)); |
| 5061 | const APInt &BECountAP = BECountMax->getAPInt(); |
| 5062 | unsigned NoOverflowBitWidth = |
| 5063 | BECountAP.getActiveBits() + StepCR.getMinSignedBits(); |
| 5064 | if (NoOverflowBitWidth <= getTypeSizeInBits(Ty: AR->getType())) |
| 5065 | Result = ScalarEvolution::setFlags(Flags: Result, OnFlags: SCEV::FlagNW); |
| 5066 | } |
| 5067 | } |
| 5068 | |
| 5069 | if (!AR->hasNoSignedWrap()) { |
| 5070 | ConstantRange AddRecRange = getSignedRange(S: AR); |
| 5071 | ConstantRange IncRange = getSignedRange(S: AR->getStepRecurrence(SE&: *this)); |
| 5072 | |
| 5073 | auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| 5074 | BinOp: Instruction::Add, Other: IncRange, NoWrapKind: OBO::NoSignedWrap); |
| 5075 | if (NSWRegion.contains(CR: AddRecRange)) |
| 5076 | Result = ScalarEvolution::setFlags(Flags: Result, OnFlags: SCEV::FlagNSW); |
| 5077 | } |
| 5078 | |
| 5079 | if (!AR->hasNoUnsignedWrap()) { |
| 5080 | ConstantRange AddRecRange = getUnsignedRange(S: AR); |
| 5081 | ConstantRange IncRange = getUnsignedRange(S: AR->getStepRecurrence(SE&: *this)); |
| 5082 | |
| 5083 | auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| 5084 | BinOp: Instruction::Add, Other: IncRange, NoWrapKind: OBO::NoUnsignedWrap); |
| 5085 | if (NUWRegion.contains(CR: AddRecRange)) |
| 5086 | Result = ScalarEvolution::setFlags(Flags: Result, OnFlags: SCEV::FlagNUW); |
| 5087 | } |
| 5088 | |
| 5089 | return Result; |
| 5090 | } |
| 5091 | |
| 5092 | SCEV::NoWrapFlags |
| 5093 | ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { |
| 5094 | SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); |
| 5095 | |
| 5096 | if (AR->hasNoSignedWrap()) |
| 5097 | return Result; |
| 5098 | |
| 5099 | if (!AR->isAffine()) |
| 5100 | return Result; |
| 5101 | |
| 5102 | // This function can be expensive, only try to prove NSW once per AddRec. |
| 5103 | if (!SignedWrapViaInductionTried.insert(Ptr: AR).second) |
| 5104 | return Result; |
| 5105 | |
| 5106 | const SCEV *Step = AR->getStepRecurrence(SE&: *this); |
| 5107 | const Loop *L = AR->getLoop(); |
| 5108 | |
| 5109 | // Check whether the backedge-taken count is SCEVCouldNotCompute. |
| 5110 | // Note that this serves two purposes: It filters out loops that are |
| 5111 | // simply not analyzable, and it covers the case where this code is |
| 5112 | // being called from within backedge-taken count analysis, such that |
| 5113 | // attempting to ask for the backedge-taken count would likely result |
| 5114 | // in infinite recursion. In the later case, the analysis code will |
| 5115 | // cope with a conservative value, and it will take care to purge |
| 5116 | // that value once it has finished. |
| 5117 | const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); |
| 5118 | |
| 5119 | // Normally, in the cases we can prove no-overflow via a |
| 5120 | // backedge guarding condition, we can also compute a backedge |
| 5121 | // taken count for the loop. The exceptions are assumptions and |
| 5122 | // guards present in the loop -- SCEV is not great at exploiting |
| 5123 | // these to compute max backedge taken counts, but can still use |
| 5124 | // these to prove lack of overflow. Use this fact to avoid |
| 5125 | // doing extra work that may not pay off. |
| 5126 | |
| 5127 | if (isa<SCEVCouldNotCompute>(Val: MaxBECount) && !HasGuards && |
| 5128 | AC.assumptions().empty()) |
| 5129 | return Result; |
| 5130 | |
| 5131 | // If the backedge is guarded by a comparison with the pre-inc value the |
| 5132 | // addrec is safe. Also, if the entry is guarded by a comparison with the |
| 5133 | // start value and the backedge is guarded by a comparison with the post-inc |
| 5134 | // value, the addrec is safe. |
| 5135 | ICmpInst::Predicate Pred; |
| 5136 | const SCEV *OverflowLimit = |
| 5137 | getSignedOverflowLimitForStep(Step, Pred: &Pred, SE: this); |
| 5138 | if (OverflowLimit && |
| 5139 | (isLoopBackedgeGuardedByCond(L, Pred, LHS: AR, RHS: OverflowLimit) || |
| 5140 | isKnownOnEveryIteration(Pred, LHS: AR, RHS: OverflowLimit))) { |
| 5141 | Result = setFlags(Flags: Result, OnFlags: SCEV::FlagNSW); |
| 5142 | } |
| 5143 | return Result; |
| 5144 | } |
| 5145 | SCEV::NoWrapFlags |
| 5146 | ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { |
| 5147 | SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); |
| 5148 | |
| 5149 | if (AR->hasNoUnsignedWrap()) |
| 5150 | return Result; |
| 5151 | |
| 5152 | if (!AR->isAffine()) |
| 5153 | return Result; |
| 5154 | |
| 5155 | // This function can be expensive, only try to prove NUW once per AddRec. |
| 5156 | if (!UnsignedWrapViaInductionTried.insert(Ptr: AR).second) |
| 5157 | return Result; |
| 5158 | |
| 5159 | const SCEV *Step = AR->getStepRecurrence(SE&: *this); |
| 5160 | unsigned BitWidth = getTypeSizeInBits(Ty: AR->getType()); |
| 5161 | const Loop *L = AR->getLoop(); |
| 5162 | |
| 5163 | // Check whether the backedge-taken count is SCEVCouldNotCompute. |
| 5164 | // Note that this serves two purposes: It filters out loops that are |
| 5165 | // simply not analyzable, and it covers the case where this code is |
| 5166 | // being called from within backedge-taken count analysis, such that |
| 5167 | // attempting to ask for the backedge-taken count would likely result |
| 5168 | // in infinite recursion. In the later case, the analysis code will |
| 5169 | // cope with a conservative value, and it will take care to purge |
| 5170 | // that value once it has finished. |
| 5171 | const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); |
| 5172 | |
| 5173 | // Normally, in the cases we can prove no-overflow via a |
| 5174 | // backedge guarding condition, we can also compute a backedge |
| 5175 | // taken count for the loop. The exceptions are assumptions and |
| 5176 | // guards present in the loop -- SCEV is not great at exploiting |
| 5177 | // these to compute max backedge taken counts, but can still use |
| 5178 | // these to prove lack of overflow. Use this fact to avoid |
| 5179 | // doing extra work that may not pay off. |
| 5180 | |
| 5181 | if (isa<SCEVCouldNotCompute>(Val: MaxBECount) && !HasGuards && |
| 5182 | AC.assumptions().empty()) |
| 5183 | return Result; |
| 5184 | |
| 5185 | // If the backedge is guarded by a comparison with the pre-inc value the |
| 5186 | // addrec is safe. Also, if the entry is guarded by a comparison with the |
| 5187 | // start value and the backedge is guarded by a comparison with the post-inc |
| 5188 | // value, the addrec is safe. |
| 5189 | if (isKnownPositive(S: Step)) { |
| 5190 | const SCEV *N = getConstant(Val: APInt::getMinValue(numBits: BitWidth) - |
| 5191 | getUnsignedRangeMax(S: Step)); |
| 5192 | if (isLoopBackedgeGuardedByCond(L, Pred: ICmpInst::ICMP_ULT, LHS: AR, RHS: N) || |
| 5193 | isKnownOnEveryIteration(Pred: ICmpInst::ICMP_ULT, LHS: AR, RHS: N)) { |
| 5194 | Result = setFlags(Flags: Result, OnFlags: SCEV::FlagNUW); |
| 5195 | } |
| 5196 | } |
| 5197 | |
| 5198 | return Result; |
| 5199 | } |
| 5200 | |
| 5201 | namespace { |
| 5202 | |
| 5203 | /// Represents an abstract binary operation. This may exist as a |
| 5204 | /// normal instruction or constant expression, or may have been |
| 5205 | /// derived from an expression tree. |
| 5206 | struct BinaryOp { |
| 5207 | unsigned Opcode; |
| 5208 | Value *LHS; |
| 5209 | Value *RHS; |
| 5210 | bool IsNSW = false; |
| 5211 | bool IsNUW = false; |
| 5212 | |
| 5213 | /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or |
| 5214 | /// constant expression. |
| 5215 | Operator *Op = nullptr; |
| 5216 | |
| 5217 | explicit BinaryOp(Operator *Op) |
| 5218 | : Opcode(Op->getOpcode()), LHS(Op->getOperand(i: 0)), RHS(Op->getOperand(i: 1)), |
| 5219 | Op(Op) { |
| 5220 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Val: Op)) { |
| 5221 | IsNSW = OBO->hasNoSignedWrap(); |
| 5222 | IsNUW = OBO->hasNoUnsignedWrap(); |
| 5223 | } |
| 5224 | } |
| 5225 | |
| 5226 | explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, |
| 5227 | bool IsNUW = false) |
| 5228 | : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} |
| 5229 | }; |
| 5230 | |
| 5231 | } // end anonymous namespace |
| 5232 | |
| 5233 | /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure. |
| 5234 | static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL, |
| 5235 | AssumptionCache &AC, |
| 5236 | const DominatorTree &DT, |
| 5237 | const Instruction *CxtI) { |
| 5238 | auto *Op = dyn_cast<Operator>(Val: V); |
| 5239 | if (!Op) |
| 5240 | return std::nullopt; |
| 5241 | |
| 5242 | // Implementation detail: all the cleverness here should happen without |
| 5243 | // creating new SCEV expressions -- our caller knowns tricks to avoid creating |
| 5244 | // SCEV expressions when possible, and we should not break that. |
| 5245 | |
| 5246 | switch (Op->getOpcode()) { |
| 5247 | case Instruction::Add: |
| 5248 | case Instruction::Sub: |
| 5249 | case Instruction::Mul: |
| 5250 | case Instruction::UDiv: |
| 5251 | case Instruction::URem: |
| 5252 | case Instruction::And: |
| 5253 | case Instruction::AShr: |
| 5254 | case Instruction::Shl: |
| 5255 | return BinaryOp(Op); |
| 5256 | |
| 5257 | case Instruction::Or: { |
| 5258 | // Convert or disjoint into add nuw nsw. |
| 5259 | if (cast<PossiblyDisjointInst>(Val: Op)->isDisjoint()) |
| 5260 | return BinaryOp(Instruction::Add, Op->getOperand(i: 0), Op->getOperand(i: 1), |
| 5261 | /*IsNSW=*/true, /*IsNUW=*/true); |
| 5262 | return BinaryOp(Op); |
| 5263 | } |
| 5264 | |
| 5265 | case Instruction::Xor: |
| 5266 | if (auto *RHSC = dyn_cast<ConstantInt>(Val: Op->getOperand(i: 1))) |
| 5267 | // If the RHS of the xor is a signmask, then this is just an add. |
| 5268 | // Instcombine turns add of signmask into xor as a strength reduction step. |
| 5269 | if (RHSC->getValue().isSignMask()) |
| 5270 | return BinaryOp(Instruction::Add, Op->getOperand(i: 0), Op->getOperand(i: 1)); |
| 5271 | // Binary `xor` is a bit-wise `add`. |
| 5272 | if (V->getType()->isIntegerTy(Bitwidth: 1)) |
| 5273 | return BinaryOp(Instruction::Add, Op->getOperand(i: 0), Op->getOperand(i: 1)); |
| 5274 | return BinaryOp(Op); |
| 5275 | |
| 5276 | case Instruction::LShr: |
| 5277 | // Turn logical shift right of a constant into a unsigned divide. |
| 5278 | if (ConstantInt *SA = dyn_cast<ConstantInt>(Val: Op->getOperand(i: 1))) { |
| 5279 | uint32_t BitWidth = cast<IntegerType>(Val: Op->getType())->getBitWidth(); |
| 5280 | |
| 5281 | // If the shift count is not less than the bitwidth, the result of |
| 5282 | // the shift is undefined. Don't try to analyze it, because the |
| 5283 | // resolution chosen here may differ from the resolution chosen in |
| 5284 | // other parts of the compiler. |
| 5285 | if (SA->getValue().ult(RHS: BitWidth)) { |
| 5286 | Constant *X = |
| 5287 | ConstantInt::get(Context&: SA->getContext(), |
| 5288 | V: APInt::getOneBitSet(numBits: BitWidth, BitNo: SA->getZExtValue())); |
| 5289 | return BinaryOp(Instruction::UDiv, Op->getOperand(i: 0), X); |
| 5290 | } |
| 5291 | } |
| 5292 | return BinaryOp(Op); |
| 5293 | |
| 5294 | case Instruction::ExtractValue: { |
| 5295 | auto *EVI = cast<ExtractValueInst>(Val: Op); |
| 5296 | if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) |
| 5297 | break; |
| 5298 | |
| 5299 | auto *WO = dyn_cast<WithOverflowInst>(Val: EVI->getAggregateOperand()); |
| 5300 | if (!WO) |
| 5301 | break; |
| 5302 | |
| 5303 | Instruction::BinaryOps BinOp = WO->getBinaryOp(); |
| 5304 | bool Signed = WO->isSigned(); |
| 5305 | // TODO: Should add nuw/nsw flags for mul as well. |
| 5306 | if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) |
| 5307 | return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); |
| 5308 | |
| 5309 | // Now that we know that all uses of the arithmetic-result component of |
| 5310 | // CI are guarded by the overflow check, we can go ahead and pretend |
| 5311 | // that the arithmetic is non-overflowing. |
| 5312 | return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), |
| 5313 | /* IsNSW = */ Signed, /* IsNUW = */ !Signed); |
| 5314 | } |
| 5315 | |
| 5316 | default: |
| 5317 | break; |
| 5318 | } |
| 5319 | |
| 5320 | // Recognise intrinsic loop.decrement.reg, and as this has exactly the same |
| 5321 | // semantics as a Sub, return a binary sub expression. |
| 5322 | if (auto *II = dyn_cast<IntrinsicInst>(Val: V)) |
| 5323 | if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) |
| 5324 | return BinaryOp(Instruction::Sub, II->getOperand(i_nocapture: 0), II->getOperand(i_nocapture: 1)); |
| 5325 | |
| 5326 | return std::nullopt; |
| 5327 | } |
| 5328 | |
| 5329 | /// Helper function to createAddRecFromPHIWithCasts. We have a phi |
| 5330 | /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via |
| 5331 | /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the |
| 5332 | /// way. This function checks if \p Op, an operand of this SCEVAddExpr, |
| 5333 | /// follows one of the following patterns: |
| 5334 | /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) |
| 5335 | /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) |
| 5336 | /// If the SCEV expression of \p Op conforms with one of the expected patterns |
| 5337 | /// we return the type of the truncation operation, and indicate whether the |
| 5338 | /// truncated type should be treated as signed/unsigned by setting |
| 5339 | /// \p Signed to true/false, respectively. |
| 5340 | static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, |
| 5341 | bool &Signed, ScalarEvolution &SE) { |
| 5342 | // The case where Op == SymbolicPHI (that is, with no type conversions on |
| 5343 | // the way) is handled by the regular add recurrence creating logic and |
| 5344 | // would have already been triggered in createAddRecForPHI. Reaching it here |
| 5345 | // means that createAddRecFromPHI had failed for this PHI before (e.g., |
| 5346 | // because one of the other operands of the SCEVAddExpr updating this PHI is |
| 5347 | // not invariant). |
| 5348 | // |
| 5349 | // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in |
| 5350 | // this case predicates that allow us to prove that Op == SymbolicPHI will |
| 5351 | // be added. |
| 5352 | if (Op == SymbolicPHI) |
| 5353 | return nullptr; |
| 5354 | |
| 5355 | unsigned SourceBits = SE.getTypeSizeInBits(Ty: SymbolicPHI->getType()); |
| 5356 | unsigned NewBits = SE.getTypeSizeInBits(Ty: Op->getType()); |
| 5357 | if (SourceBits != NewBits) |
| 5358 | return nullptr; |
| 5359 | |
| 5360 | const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Val: Op); |
| 5361 | const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: Op); |
| 5362 | if (!SExt && !ZExt) |
| 5363 | return nullptr; |
| 5364 | const SCEVTruncateExpr *Trunc = |
| 5365 | SExt ? dyn_cast<SCEVTruncateExpr>(Val: SExt->getOperand()) |
| 5366 | : dyn_cast<SCEVTruncateExpr>(Val: ZExt->getOperand()); |
| 5367 | if (!Trunc) |
| 5368 | return nullptr; |
| 5369 | const SCEV *X = Trunc->getOperand(); |
| 5370 | if (X != SymbolicPHI) |
| 5371 | return nullptr; |
| 5372 | Signed = SExt != nullptr; |
| 5373 | return Trunc->getType(); |
| 5374 | } |
| 5375 | |
| 5376 | static const Loop *(const PHINode *PN, LoopInfo &LI) { |
| 5377 | if (!PN->getType()->isIntegerTy()) |
| 5378 | return nullptr; |
| 5379 | const Loop *L = LI.getLoopFor(BB: PN->getParent()); |
| 5380 | if (!L || L->getHeader() != PN->getParent()) |
| 5381 | return nullptr; |
| 5382 | return L; |
| 5383 | } |
| 5384 | |
| 5385 | // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the |
| 5386 | // computation that updates the phi follows the following pattern: |
| 5387 | // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum |
| 5388 | // which correspond to a phi->trunc->sext/zext->add->phi update chain. |
| 5389 | // If so, try to see if it can be rewritten as an AddRecExpr under some |
| 5390 | // Predicates. If successful, return them as a pair. Also cache the results |
| 5391 | // of the analysis. |
| 5392 | // |
| 5393 | // Example usage scenario: |
| 5394 | // Say the Rewriter is called for the following SCEV: |
| 5395 | // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) |
| 5396 | // where: |
| 5397 | // %X = phi i64 (%Start, %BEValue) |
| 5398 | // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), |
| 5399 | // and call this function with %SymbolicPHI = %X. |
| 5400 | // |
| 5401 | // The analysis will find that the value coming around the backedge has |
| 5402 | // the following SCEV: |
| 5403 | // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) |
| 5404 | // Upon concluding that this matches the desired pattern, the function |
| 5405 | // will return the pair {NewAddRec, SmallPredsVec} where: |
| 5406 | // NewAddRec = {%Start,+,%Step} |
| 5407 | // SmallPredsVec = {P1, P2, P3} as follows: |
| 5408 | // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> |
| 5409 | // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) |
| 5410 | // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) |
| 5411 | // The returned pair means that SymbolicPHI can be rewritten into NewAddRec |
| 5412 | // under the predicates {P1,P2,P3}. |
| 5413 | // This predicated rewrite will be cached in PredicatedSCEVRewrites: |
| 5414 | // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} |
| 5415 | // |
| 5416 | // TODO's: |
| 5417 | // |
| 5418 | // 1) Extend the Induction descriptor to also support inductions that involve |
| 5419 | // casts: When needed (namely, when we are called in the context of the |
| 5420 | // vectorizer induction analysis), a Set of cast instructions will be |
| 5421 | // populated by this method, and provided back to isInductionPHI. This is |
| 5422 | // needed to allow the vectorizer to properly record them to be ignored by |
| 5423 | // the cost model and to avoid vectorizing them (otherwise these casts, |
| 5424 | // which are redundant under the runtime overflow checks, will be |
| 5425 | // vectorized, which can be costly). |
| 5426 | // |
| 5427 | // 2) Support additional induction/PHISCEV patterns: We also want to support |
| 5428 | // inductions where the sext-trunc / zext-trunc operations (partly) occur |
| 5429 | // after the induction update operation (the induction increment): |
| 5430 | // |
| 5431 | // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) |
| 5432 | // which correspond to a phi->add->trunc->sext/zext->phi update chain. |
| 5433 | // |
| 5434 | // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) |
| 5435 | // which correspond to a phi->trunc->add->sext/zext->phi update chain. |
| 5436 | // |
| 5437 | // 3) Outline common code with createAddRecFromPHI to avoid duplication. |
| 5438 | std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
| 5439 | ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { |
| 5440 | SmallVector<const SCEVPredicate *, 3> Predicates; |
| 5441 | |
| 5442 | // *** Part1: Analyze if we have a phi-with-cast pattern for which we can |
| 5443 | // return an AddRec expression under some predicate. |
| 5444 | |
| 5445 | auto *PN = cast<PHINode>(Val: SymbolicPHI->getValue()); |
| 5446 | const Loop *L = isIntegerLoopHeaderPHI(PN, LI); |
| 5447 | assert(L && "Expecting an integer loop header phi" ); |
| 5448 | |
| 5449 | // The loop may have multiple entrances or multiple exits; we can analyze |
| 5450 | // this phi as an addrec if it has a unique entry value and a unique |
| 5451 | // backedge value. |
| 5452 | Value *BEValueV = nullptr, *StartValueV = nullptr; |
| 5453 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 5454 | Value *V = PN->getIncomingValue(i); |
| 5455 | if (L->contains(BB: PN->getIncomingBlock(i))) { |
| 5456 | if (!BEValueV) { |
| 5457 | BEValueV = V; |
| 5458 | } else if (BEValueV != V) { |
| 5459 | BEValueV = nullptr; |
| 5460 | break; |
| 5461 | } |
| 5462 | } else if (!StartValueV) { |
| 5463 | StartValueV = V; |
| 5464 | } else if (StartValueV != V) { |
| 5465 | StartValueV = nullptr; |
| 5466 | break; |
| 5467 | } |
| 5468 | } |
| 5469 | if (!BEValueV || !StartValueV) |
| 5470 | return std::nullopt; |
| 5471 | |
| 5472 | const SCEV *BEValue = getSCEV(V: BEValueV); |
| 5473 | |
| 5474 | // If the value coming around the backedge is an add with the symbolic |
| 5475 | // value we just inserted, possibly with casts that we can ignore under |
| 5476 | // an appropriate runtime guard, then we found a simple induction variable! |
| 5477 | const auto *Add = dyn_cast<SCEVAddExpr>(Val: BEValue); |
| 5478 | if (!Add) |
| 5479 | return std::nullopt; |
| 5480 | |
| 5481 | // If there is a single occurrence of the symbolic value, possibly |
| 5482 | // casted, replace it with a recurrence. |
| 5483 | unsigned FoundIndex = Add->getNumOperands(); |
| 5484 | Type *TruncTy = nullptr; |
| 5485 | bool Signed; |
| 5486 | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
| 5487 | if ((TruncTy = |
| 5488 | isSimpleCastedPHI(Op: Add->getOperand(i), SymbolicPHI, Signed, SE&: *this))) |
| 5489 | if (FoundIndex == e) { |
| 5490 | FoundIndex = i; |
| 5491 | break; |
| 5492 | } |
| 5493 | |
| 5494 | if (FoundIndex == Add->getNumOperands()) |
| 5495 | return std::nullopt; |
| 5496 | |
| 5497 | // Create an add with everything but the specified operand. |
| 5498 | SmallVector<const SCEV *, 8> Ops; |
| 5499 | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
| 5500 | if (i != FoundIndex) |
| 5501 | Ops.push_back(Elt: Add->getOperand(i)); |
| 5502 | const SCEV *Accum = getAddExpr(Ops); |
| 5503 | |
| 5504 | // The runtime checks will not be valid if the step amount is |
| 5505 | // varying inside the loop. |
| 5506 | if (!isLoopInvariant(S: Accum, L)) |
| 5507 | return std::nullopt; |
| 5508 | |
| 5509 | // *** Part2: Create the predicates |
| 5510 | |
| 5511 | // Analysis was successful: we have a phi-with-cast pattern for which we |
| 5512 | // can return an AddRec expression under the following predicates: |
| 5513 | // |
| 5514 | // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) |
| 5515 | // fits within the truncated type (does not overflow) for i = 0 to n-1. |
| 5516 | // P2: An Equal predicate that guarantees that |
| 5517 | // Start = (Ext ix (Trunc iy (Start) to ix) to iy) |
| 5518 | // P3: An Equal predicate that guarantees that |
| 5519 | // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) |
| 5520 | // |
| 5521 | // As we next prove, the above predicates guarantee that: |
| 5522 | // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) |
| 5523 | // |
| 5524 | // |
| 5525 | // More formally, we want to prove that: |
| 5526 | // Expr(i+1) = Start + (i+1) * Accum |
| 5527 | // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum |
| 5528 | // |
| 5529 | // Given that: |
| 5530 | // 1) Expr(0) = Start |
| 5531 | // 2) Expr(1) = Start + Accum |
| 5532 | // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 |
| 5533 | // 3) Induction hypothesis (step i): |
| 5534 | // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum |
| 5535 | // |
| 5536 | // Proof: |
| 5537 | // Expr(i+1) = |
| 5538 | // = Start + (i+1)*Accum |
| 5539 | // = (Start + i*Accum) + Accum |
| 5540 | // = Expr(i) + Accum |
| 5541 | // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum |
| 5542 | // :: from step i |
| 5543 | // |
| 5544 | // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum |
| 5545 | // |
| 5546 | // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) |
| 5547 | // + (Ext ix (Trunc iy (Accum) to ix) to iy) |
| 5548 | // + Accum :: from P3 |
| 5549 | // |
| 5550 | // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) |
| 5551 | // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) |
| 5552 | // |
| 5553 | // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum |
| 5554 | // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum |
| 5555 | // |
| 5556 | // By induction, the same applies to all iterations 1<=i<n: |
| 5557 | // |
| 5558 | |
| 5559 | // Create a truncated addrec for which we will add a no overflow check (P1). |
| 5560 | const SCEV *StartVal = getSCEV(V: StartValueV); |
| 5561 | const SCEV *PHISCEV = |
| 5562 | getAddRecExpr(Start: getTruncateExpr(Op: StartVal, Ty: TruncTy), |
| 5563 | Step: getTruncateExpr(Op: Accum, Ty: TruncTy), L, Flags: SCEV::FlagAnyWrap); |
| 5564 | |
| 5565 | // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. |
| 5566 | // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV |
| 5567 | // will be constant. |
| 5568 | // |
| 5569 | // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't |
| 5570 | // add P1. |
| 5571 | if (const auto *AR = dyn_cast<SCEVAddRecExpr>(Val: PHISCEV)) { |
| 5572 | SCEVWrapPredicate::IncrementWrapFlags AddedFlags = |
| 5573 | Signed ? SCEVWrapPredicate::IncrementNSSW |
| 5574 | : SCEVWrapPredicate::IncrementNUSW; |
| 5575 | const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); |
| 5576 | Predicates.push_back(Elt: AddRecPred); |
| 5577 | } |
| 5578 | |
| 5579 | // Create the Equal Predicates P2,P3: |
| 5580 | |
| 5581 | // It is possible that the predicates P2 and/or P3 are computable at |
| 5582 | // compile time due to StartVal and/or Accum being constants. |
| 5583 | // If either one is, then we can check that now and escape if either P2 |
| 5584 | // or P3 is false. |
| 5585 | |
| 5586 | // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) |
| 5587 | // for each of StartVal and Accum |
| 5588 | auto getExtendedExpr = [&](const SCEV *Expr, |
| 5589 | bool CreateSignExtend) -> const SCEV * { |
| 5590 | assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant" ); |
| 5591 | const SCEV *TruncatedExpr = getTruncateExpr(Op: Expr, Ty: TruncTy); |
| 5592 | const SCEV *ExtendedExpr = |
| 5593 | CreateSignExtend ? getSignExtendExpr(Op: TruncatedExpr, Ty: Expr->getType()) |
| 5594 | : getZeroExtendExpr(Op: TruncatedExpr, Ty: Expr->getType()); |
| 5595 | return ExtendedExpr; |
| 5596 | }; |
| 5597 | |
| 5598 | // Given: |
| 5599 | // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy |
| 5600 | // = getExtendedExpr(Expr) |
| 5601 | // Determine whether the predicate P: Expr == ExtendedExpr |
| 5602 | // is known to be false at compile time |
| 5603 | auto PredIsKnownFalse = [&](const SCEV *Expr, |
| 5604 | const SCEV *ExtendedExpr) -> bool { |
| 5605 | return Expr != ExtendedExpr && |
| 5606 | isKnownPredicate(Pred: ICmpInst::ICMP_NE, LHS: Expr, RHS: ExtendedExpr); |
| 5607 | }; |
| 5608 | |
| 5609 | const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); |
| 5610 | if (PredIsKnownFalse(StartVal, StartExtended)) { |
| 5611 | LLVM_DEBUG(dbgs() << "P2 is compile-time false\n" ;); |
| 5612 | return std::nullopt; |
| 5613 | } |
| 5614 | |
| 5615 | // The Step is always Signed (because the overflow checks are either |
| 5616 | // NSSW or NUSW) |
| 5617 | const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); |
| 5618 | if (PredIsKnownFalse(Accum, AccumExtended)) { |
| 5619 | LLVM_DEBUG(dbgs() << "P3 is compile-time false\n" ;); |
| 5620 | return std::nullopt; |
| 5621 | } |
| 5622 | |
| 5623 | auto AppendPredicate = [&](const SCEV *Expr, |
| 5624 | const SCEV *ExtendedExpr) -> void { |
| 5625 | if (Expr != ExtendedExpr && |
| 5626 | !isKnownPredicate(Pred: ICmpInst::ICMP_EQ, LHS: Expr, RHS: ExtendedExpr)) { |
| 5627 | const SCEVPredicate *Pred = getEqualPredicate(LHS: Expr, RHS: ExtendedExpr); |
| 5628 | LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); |
| 5629 | Predicates.push_back(Elt: Pred); |
| 5630 | } |
| 5631 | }; |
| 5632 | |
| 5633 | AppendPredicate(StartVal, StartExtended); |
| 5634 | AppendPredicate(Accum, AccumExtended); |
| 5635 | |
| 5636 | // *** Part3: Predicates are ready. Now go ahead and create the new addrec in |
| 5637 | // which the casts had been folded away. The caller can rewrite SymbolicPHI |
| 5638 | // into NewAR if it will also add the runtime overflow checks specified in |
| 5639 | // Predicates. |
| 5640 | auto *NewAR = getAddRecExpr(Start: StartVal, Step: Accum, L, Flags: SCEV::FlagAnyWrap); |
| 5641 | |
| 5642 | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = |
| 5643 | std::make_pair(x&: NewAR, y&: Predicates); |
| 5644 | // Remember the result of the analysis for this SCEV at this locayyytion. |
| 5645 | PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; |
| 5646 | return PredRewrite; |
| 5647 | } |
| 5648 | |
| 5649 | std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
| 5650 | ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { |
| 5651 | auto *PN = cast<PHINode>(Val: SymbolicPHI->getValue()); |
| 5652 | const Loop *L = isIntegerLoopHeaderPHI(PN, LI); |
| 5653 | if (!L) |
| 5654 | return std::nullopt; |
| 5655 | |
| 5656 | // Check to see if we already analyzed this PHI. |
| 5657 | auto I = PredicatedSCEVRewrites.find(Val: {SymbolicPHI, L}); |
| 5658 | if (I != PredicatedSCEVRewrites.end()) { |
| 5659 | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = |
| 5660 | I->second; |
| 5661 | // Analysis was done before and failed to create an AddRec: |
| 5662 | if (Rewrite.first == SymbolicPHI) |
| 5663 | return std::nullopt; |
| 5664 | // Analysis was done before and succeeded to create an AddRec under |
| 5665 | // a predicate: |
| 5666 | assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec" ); |
| 5667 | assert(!(Rewrite.second).empty() && "Expected to find Predicates" ); |
| 5668 | return Rewrite; |
| 5669 | } |
| 5670 | |
| 5671 | std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
| 5672 | Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); |
| 5673 | |
| 5674 | // Record in the cache that the analysis failed |
| 5675 | if (!Rewrite) { |
| 5676 | SmallVector<const SCEVPredicate *, 3> Predicates; |
| 5677 | PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; |
| 5678 | return std::nullopt; |
| 5679 | } |
| 5680 | |
| 5681 | return Rewrite; |
| 5682 | } |
| 5683 | |
| 5684 | // FIXME: This utility is currently required because the Rewriter currently |
| 5685 | // does not rewrite this expression: |
| 5686 | // {0, +, (sext ix (trunc iy to ix) to iy)} |
| 5687 | // into {0, +, %step}, |
| 5688 | // even when the following Equal predicate exists: |
| 5689 | // "%step == (sext ix (trunc iy to ix) to iy)". |
| 5690 | bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( |
| 5691 | const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { |
| 5692 | if (AR1 == AR2) |
| 5693 | return true; |
| 5694 | |
| 5695 | auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { |
| 5696 | if (Expr1 != Expr2 && |
| 5697 | !Preds->implies(N: SE.getEqualPredicate(LHS: Expr1, RHS: Expr2), SE) && |
| 5698 | !Preds->implies(N: SE.getEqualPredicate(LHS: Expr2, RHS: Expr1), SE)) |
| 5699 | return false; |
| 5700 | return true; |
| 5701 | }; |
| 5702 | |
| 5703 | if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || |
| 5704 | !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) |
| 5705 | return false; |
| 5706 | return true; |
| 5707 | } |
| 5708 | |
| 5709 | /// A helper function for createAddRecFromPHI to handle simple cases. |
| 5710 | /// |
| 5711 | /// This function tries to find an AddRec expression for the simplest (yet most |
| 5712 | /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). |
| 5713 | /// If it fails, createAddRecFromPHI will use a more general, but slow, |
| 5714 | /// technique for finding the AddRec expression. |
| 5715 | const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, |
| 5716 | Value *BEValueV, |
| 5717 | Value *StartValueV) { |
| 5718 | const Loop *L = LI.getLoopFor(BB: PN->getParent()); |
| 5719 | assert(L && L->getHeader() == PN->getParent()); |
| 5720 | assert(BEValueV && StartValueV); |
| 5721 | |
| 5722 | auto BO = MatchBinaryOp(V: BEValueV, DL: getDataLayout(), AC, DT, CxtI: PN); |
| 5723 | if (!BO) |
| 5724 | return nullptr; |
| 5725 | |
| 5726 | if (BO->Opcode != Instruction::Add) |
| 5727 | return nullptr; |
| 5728 | |
| 5729 | const SCEV *Accum = nullptr; |
| 5730 | if (BO->LHS == PN && L->isLoopInvariant(V: BO->RHS)) |
| 5731 | Accum = getSCEV(V: BO->RHS); |
| 5732 | else if (BO->RHS == PN && L->isLoopInvariant(V: BO->LHS)) |
| 5733 | Accum = getSCEV(V: BO->LHS); |
| 5734 | |
| 5735 | if (!Accum) |
| 5736 | return nullptr; |
| 5737 | |
| 5738 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; |
| 5739 | if (BO->IsNUW) |
| 5740 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNUW); |
| 5741 | if (BO->IsNSW) |
| 5742 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNSW); |
| 5743 | |
| 5744 | const SCEV *StartVal = getSCEV(V: StartValueV); |
| 5745 | const SCEV *PHISCEV = getAddRecExpr(Start: StartVal, Step: Accum, L, Flags); |
| 5746 | insertValueToMap(V: PN, S: PHISCEV); |
| 5747 | |
| 5748 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: PHISCEV)) { |
| 5749 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), |
| 5750 | Flags: (SCEV::NoWrapFlags)(AR->getNoWrapFlags() | |
| 5751 | proveNoWrapViaConstantRanges(AR))); |
| 5752 | } |
| 5753 | |
| 5754 | // We can add Flags to the post-inc expression only if we |
| 5755 | // know that it is *undefined behavior* for BEValueV to |
| 5756 | // overflow. |
| 5757 | if (auto *BEInst = dyn_cast<Instruction>(Val: BEValueV)) { |
| 5758 | assert(isLoopInvariant(Accum, L) && |
| 5759 | "Accum is defined outside L, but is not invariant?" ); |
| 5760 | if (isAddRecNeverPoison(I: BEInst, L)) |
| 5761 | (void)getAddRecExpr(Start: getAddExpr(LHS: StartVal, RHS: Accum), Step: Accum, L, Flags); |
| 5762 | } |
| 5763 | |
| 5764 | return PHISCEV; |
| 5765 | } |
| 5766 | |
| 5767 | const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { |
| 5768 | const Loop *L = LI.getLoopFor(BB: PN->getParent()); |
| 5769 | if (!L || L->getHeader() != PN->getParent()) |
| 5770 | return nullptr; |
| 5771 | |
| 5772 | // The loop may have multiple entrances or multiple exits; we can analyze |
| 5773 | // this phi as an addrec if it has a unique entry value and a unique |
| 5774 | // backedge value. |
| 5775 | Value *BEValueV = nullptr, *StartValueV = nullptr; |
| 5776 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 5777 | Value *V = PN->getIncomingValue(i); |
| 5778 | if (L->contains(BB: PN->getIncomingBlock(i))) { |
| 5779 | if (!BEValueV) { |
| 5780 | BEValueV = V; |
| 5781 | } else if (BEValueV != V) { |
| 5782 | BEValueV = nullptr; |
| 5783 | break; |
| 5784 | } |
| 5785 | } else if (!StartValueV) { |
| 5786 | StartValueV = V; |
| 5787 | } else if (StartValueV != V) { |
| 5788 | StartValueV = nullptr; |
| 5789 | break; |
| 5790 | } |
| 5791 | } |
| 5792 | if (!BEValueV || !StartValueV) |
| 5793 | return nullptr; |
| 5794 | |
| 5795 | assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && |
| 5796 | "PHI node already processed?" ); |
| 5797 | |
| 5798 | // First, try to find AddRec expression without creating a fictituos symbolic |
| 5799 | // value for PN. |
| 5800 | if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) |
| 5801 | return S; |
| 5802 | |
| 5803 | // Handle PHI node value symbolically. |
| 5804 | const SCEV *SymbolicName = getUnknown(V: PN); |
| 5805 | insertValueToMap(V: PN, S: SymbolicName); |
| 5806 | |
| 5807 | // Using this symbolic name for the PHI, analyze the value coming around |
| 5808 | // the back-edge. |
| 5809 | const SCEV *BEValue = getSCEV(V: BEValueV); |
| 5810 | |
| 5811 | // NOTE: If BEValue is loop invariant, we know that the PHI node just |
| 5812 | // has a special value for the first iteration of the loop. |
| 5813 | |
| 5814 | // If the value coming around the backedge is an add with the symbolic |
| 5815 | // value we just inserted, then we found a simple induction variable! |
| 5816 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: BEValue)) { |
| 5817 | // If there is a single occurrence of the symbolic value, replace it |
| 5818 | // with a recurrence. |
| 5819 | unsigned FoundIndex = Add->getNumOperands(); |
| 5820 | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
| 5821 | if (Add->getOperand(i) == SymbolicName) |
| 5822 | if (FoundIndex == e) { |
| 5823 | FoundIndex = i; |
| 5824 | break; |
| 5825 | } |
| 5826 | |
| 5827 | if (FoundIndex != Add->getNumOperands()) { |
| 5828 | // Create an add with everything but the specified operand. |
| 5829 | SmallVector<const SCEV *, 8> Ops; |
| 5830 | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
| 5831 | if (i != FoundIndex) |
| 5832 | Ops.push_back(Elt: SCEVBackedgeConditionFolder::rewrite(S: Add->getOperand(i), |
| 5833 | L, SE&: *this)); |
| 5834 | const SCEV *Accum = getAddExpr(Ops); |
| 5835 | |
| 5836 | // This is not a valid addrec if the step amount is varying each |
| 5837 | // loop iteration, but is not itself an addrec in this loop. |
| 5838 | if (isLoopInvariant(S: Accum, L) || |
| 5839 | (isa<SCEVAddRecExpr>(Val: Accum) && |
| 5840 | cast<SCEVAddRecExpr>(Val: Accum)->getLoop() == L)) { |
| 5841 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; |
| 5842 | |
| 5843 | if (auto BO = MatchBinaryOp(V: BEValueV, DL: getDataLayout(), AC, DT, CxtI: PN)) { |
| 5844 | if (BO->Opcode == Instruction::Add && BO->LHS == PN) { |
| 5845 | if (BO->IsNUW) |
| 5846 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNUW); |
| 5847 | if (BO->IsNSW) |
| 5848 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNSW); |
| 5849 | } |
| 5850 | } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(Val: BEValueV)) { |
| 5851 | if (GEP->getOperand(i_nocapture: 0) == PN) { |
| 5852 | GEPNoWrapFlags NW = GEP->getNoWrapFlags(); |
| 5853 | // If the increment has any nowrap flags, then we know the address |
| 5854 | // space cannot be wrapped around. |
| 5855 | if (NW != GEPNoWrapFlags::none()) |
| 5856 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNW); |
| 5857 | // If the GEP is nuw or nusw with non-negative offset, we know that |
| 5858 | // no unsigned wrap occurs. We cannot set the nsw flag as only the |
| 5859 | // offset is treated as signed, while the base is unsigned. |
| 5860 | if (NW.hasNoUnsignedWrap() || |
| 5861 | (NW.hasNoUnsignedSignedWrap() && isKnownNonNegative(S: Accum))) |
| 5862 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNUW); |
| 5863 | } |
| 5864 | |
| 5865 | // We cannot transfer nuw and nsw flags from subtraction |
| 5866 | // operations -- sub nuw X, Y is not the same as add nuw X, -Y |
| 5867 | // for instance. |
| 5868 | } |
| 5869 | |
| 5870 | const SCEV *StartVal = getSCEV(V: StartValueV); |
| 5871 | const SCEV *PHISCEV = getAddRecExpr(Start: StartVal, Step: Accum, L, Flags); |
| 5872 | |
| 5873 | // Okay, for the entire analysis of this edge we assumed the PHI |
| 5874 | // to be symbolic. We now need to go back and purge all of the |
| 5875 | // entries for the scalars that use the symbolic expression. |
| 5876 | forgetMemoizedResults(SCEVs: SymbolicName); |
| 5877 | insertValueToMap(V: PN, S: PHISCEV); |
| 5878 | |
| 5879 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: PHISCEV)) { |
| 5880 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), |
| 5881 | Flags: (SCEV::NoWrapFlags)(AR->getNoWrapFlags() | |
| 5882 | proveNoWrapViaConstantRanges(AR))); |
| 5883 | } |
| 5884 | |
| 5885 | // We can add Flags to the post-inc expression only if we |
| 5886 | // know that it is *undefined behavior* for BEValueV to |
| 5887 | // overflow. |
| 5888 | if (auto *BEInst = dyn_cast<Instruction>(Val: BEValueV)) |
| 5889 | if (isLoopInvariant(S: Accum, L) && isAddRecNeverPoison(I: BEInst, L)) |
| 5890 | (void)getAddRecExpr(Start: getAddExpr(LHS: StartVal, RHS: Accum), Step: Accum, L, Flags); |
| 5891 | |
| 5892 | return PHISCEV; |
| 5893 | } |
| 5894 | } |
| 5895 | } else { |
| 5896 | // Otherwise, this could be a loop like this: |
| 5897 | // i = 0; for (j = 1; ..; ++j) { .... i = j; } |
| 5898 | // In this case, j = {1,+,1} and BEValue is j. |
| 5899 | // Because the other in-value of i (0) fits the evolution of BEValue |
| 5900 | // i really is an addrec evolution. |
| 5901 | // |
| 5902 | // We can generalize this saying that i is the shifted value of BEValue |
| 5903 | // by one iteration: |
| 5904 | // PHI(f(0), f({1,+,1})) --> f({0,+,1}) |
| 5905 | |
| 5906 | // Do not allow refinement in rewriting of BEValue. |
| 5907 | const SCEV *Shifted = SCEVShiftRewriter::rewrite(S: BEValue, L, SE&: *this); |
| 5908 | const SCEV *Start = SCEVInitRewriter::rewrite(S: Shifted, L, SE&: *this, IgnoreOtherLoops: false); |
| 5909 | if (Shifted != getCouldNotCompute() && Start != getCouldNotCompute() && |
| 5910 | isGuaranteedNotToCauseUB(Op: Shifted) && ::impliesPoison(AssumedPoison: Shifted, S: Start)) { |
| 5911 | const SCEV *StartVal = getSCEV(V: StartValueV); |
| 5912 | if (Start == StartVal) { |
| 5913 | // Okay, for the entire analysis of this edge we assumed the PHI |
| 5914 | // to be symbolic. We now need to go back and purge all of the |
| 5915 | // entries for the scalars that use the symbolic expression. |
| 5916 | forgetMemoizedResults(SCEVs: SymbolicName); |
| 5917 | insertValueToMap(V: PN, S: Shifted); |
| 5918 | return Shifted; |
| 5919 | } |
| 5920 | } |
| 5921 | } |
| 5922 | |
| 5923 | // Remove the temporary PHI node SCEV that has been inserted while intending |
| 5924 | // to create an AddRecExpr for this PHI node. We can not keep this temporary |
| 5925 | // as it will prevent later (possibly simpler) SCEV expressions to be added |
| 5926 | // to the ValueExprMap. |
| 5927 | eraseValueFromMap(V: PN); |
| 5928 | |
| 5929 | return nullptr; |
| 5930 | } |
| 5931 | |
| 5932 | // Try to match a control flow sequence that branches out at BI and merges back |
| 5933 | // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful |
| 5934 | // match. |
| 5935 | static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, |
| 5936 | Value *&C, Value *&LHS, Value *&RHS) { |
| 5937 | C = BI->getCondition(); |
| 5938 | |
| 5939 | BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(i: 0)); |
| 5940 | BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(i: 1)); |
| 5941 | |
| 5942 | if (!LeftEdge.isSingleEdge()) |
| 5943 | return false; |
| 5944 | |
| 5945 | assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()" ); |
| 5946 | |
| 5947 | Use &LeftUse = Merge->getOperandUse(i: 0); |
| 5948 | Use &RightUse = Merge->getOperandUse(i: 1); |
| 5949 | |
| 5950 | if (DT.dominates(BBE: LeftEdge, U: LeftUse) && DT.dominates(BBE: RightEdge, U: RightUse)) { |
| 5951 | LHS = LeftUse; |
| 5952 | RHS = RightUse; |
| 5953 | return true; |
| 5954 | } |
| 5955 | |
| 5956 | if (DT.dominates(BBE: LeftEdge, U: RightUse) && DT.dominates(BBE: RightEdge, U: LeftUse)) { |
| 5957 | LHS = RightUse; |
| 5958 | RHS = LeftUse; |
| 5959 | return true; |
| 5960 | } |
| 5961 | |
| 5962 | return false; |
| 5963 | } |
| 5964 | |
| 5965 | const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { |
| 5966 | auto IsReachable = |
| 5967 | [&](BasicBlock *BB) { return DT.isReachableFromEntry(A: BB); }; |
| 5968 | if (PN->getNumIncomingValues() == 2 && all_of(Range: PN->blocks(), P: IsReachable)) { |
| 5969 | // Try to match |
| 5970 | // |
| 5971 | // br %cond, label %left, label %right |
| 5972 | // left: |
| 5973 | // br label %merge |
| 5974 | // right: |
| 5975 | // br label %merge |
| 5976 | // merge: |
| 5977 | // V = phi [ %x, %left ], [ %y, %right ] |
| 5978 | // |
| 5979 | // as "select %cond, %x, %y" |
| 5980 | |
| 5981 | BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); |
| 5982 | assert(IDom && "At least the entry block should dominate PN" ); |
| 5983 | |
| 5984 | auto *BI = dyn_cast<BranchInst>(Val: IDom->getTerminator()); |
| 5985 | Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; |
| 5986 | |
| 5987 | if (BI && BI->isConditional() && |
| 5988 | BrPHIToSelect(DT, BI, Merge: PN, C&: Cond, LHS, RHS) && |
| 5989 | properlyDominates(S: getSCEV(V: LHS), BB: PN->getParent()) && |
| 5990 | properlyDominates(S: getSCEV(V: RHS), BB: PN->getParent())) |
| 5991 | return createNodeForSelectOrPHI(V: PN, Cond, TrueVal: LHS, FalseVal: RHS); |
| 5992 | } |
| 5993 | |
| 5994 | return nullptr; |
| 5995 | } |
| 5996 | |
| 5997 | /// Returns SCEV for the first operand of a phi if all phi operands have |
| 5998 | /// identical opcodes and operands |
| 5999 | /// eg. |
| 6000 | /// a: %add = %a + %b |
| 6001 | /// br %c |
| 6002 | /// b: %add1 = %a + %b |
| 6003 | /// br %c |
| 6004 | /// c: %phi = phi [%add, a], [%add1, b] |
| 6005 | /// scev(%phi) => scev(%add) |
| 6006 | const SCEV * |
| 6007 | ScalarEvolution::createNodeForPHIWithIdenticalOperands(PHINode *PN) { |
| 6008 | BinaryOperator *CommonInst = nullptr; |
| 6009 | // Check if instructions are identical. |
| 6010 | for (Value *Incoming : PN->incoming_values()) { |
| 6011 | auto *IncomingInst = dyn_cast<BinaryOperator>(Val: Incoming); |
| 6012 | if (!IncomingInst) |
| 6013 | return nullptr; |
| 6014 | if (CommonInst) { |
| 6015 | if (!CommonInst->isIdenticalToWhenDefined(I: IncomingInst)) |
| 6016 | return nullptr; // Not identical, give up |
| 6017 | } else { |
| 6018 | // Remember binary operator |
| 6019 | CommonInst = IncomingInst; |
| 6020 | } |
| 6021 | } |
| 6022 | if (!CommonInst) |
| 6023 | return nullptr; |
| 6024 | |
| 6025 | // Check if SCEV exprs for instructions are identical. |
| 6026 | const SCEV *CommonSCEV = getSCEV(V: CommonInst); |
| 6027 | bool SCEVExprsIdentical = |
| 6028 | all_of(Range: drop_begin(RangeOrContainer: PN->incoming_values()), |
| 6029 | P: [this, CommonSCEV](Value *V) { return CommonSCEV == getSCEV(V); }); |
| 6030 | return SCEVExprsIdentical ? CommonSCEV : nullptr; |
| 6031 | } |
| 6032 | |
| 6033 | const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { |
| 6034 | if (const SCEV *S = createAddRecFromPHI(PN)) |
| 6035 | return S; |
| 6036 | |
| 6037 | // We do not allow simplifying phi (undef, X) to X here, to avoid reusing the |
| 6038 | // phi node for X. |
| 6039 | if (Value *V = simplifyInstruction( |
| 6040 | I: PN, Q: {getDataLayout(), &TLI, &DT, &AC, /*CtxI=*/nullptr, |
| 6041 | /*UseInstrInfo=*/true, /*CanUseUndef=*/false})) |
| 6042 | return getSCEV(V); |
| 6043 | |
| 6044 | if (const SCEV *S = createNodeForPHIWithIdenticalOperands(PN)) |
| 6045 | return S; |
| 6046 | |
| 6047 | if (const SCEV *S = createNodeFromSelectLikePHI(PN)) |
| 6048 | return S; |
| 6049 | |
| 6050 | // If it's not a loop phi, we can't handle it yet. |
| 6051 | return getUnknown(V: PN); |
| 6052 | } |
| 6053 | |
| 6054 | bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, |
| 6055 | SCEVTypes RootKind) { |
| 6056 | struct FindClosure { |
| 6057 | const SCEV *OperandToFind; |
| 6058 | const SCEVTypes RootKind; // Must be a sequential min/max expression. |
| 6059 | const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. |
| 6060 | |
| 6061 | bool Found = false; |
| 6062 | |
| 6063 | bool canRecurseInto(SCEVTypes Kind) const { |
| 6064 | // We can only recurse into the SCEV expression of the same effective type |
| 6065 | // as the type of our root SCEV expression, and into zero-extensions. |
| 6066 | return RootKind == Kind || NonSequentialRootKind == Kind || |
| 6067 | scZeroExtend == Kind; |
| 6068 | }; |
| 6069 | |
| 6070 | FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) |
| 6071 | : OperandToFind(OperandToFind), RootKind(RootKind), |
| 6072 | NonSequentialRootKind( |
| 6073 | SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( |
| 6074 | Ty: RootKind)) {} |
| 6075 | |
| 6076 | bool follow(const SCEV *S) { |
| 6077 | Found = S == OperandToFind; |
| 6078 | |
| 6079 | return !isDone() && canRecurseInto(Kind: S->getSCEVType()); |
| 6080 | } |
| 6081 | |
| 6082 | bool isDone() const { return Found; } |
| 6083 | }; |
| 6084 | |
| 6085 | FindClosure FC(OperandToFind, RootKind); |
| 6086 | visitAll(Root, Visitor&: FC); |
| 6087 | return FC.Found; |
| 6088 | } |
| 6089 | |
| 6090 | std::optional<const SCEV *> |
| 6091 | ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, |
| 6092 | ICmpInst *Cond, |
| 6093 | Value *TrueVal, |
| 6094 | Value *FalseVal) { |
| 6095 | // Try to match some simple smax or umax patterns. |
| 6096 | auto *ICI = Cond; |
| 6097 | |
| 6098 | Value *LHS = ICI->getOperand(i_nocapture: 0); |
| 6099 | Value *RHS = ICI->getOperand(i_nocapture: 1); |
| 6100 | |
| 6101 | switch (ICI->getPredicate()) { |
| 6102 | case ICmpInst::ICMP_SLT: |
| 6103 | case ICmpInst::ICMP_SLE: |
| 6104 | case ICmpInst::ICMP_ULT: |
| 6105 | case ICmpInst::ICMP_ULE: |
| 6106 | std::swap(a&: LHS, b&: RHS); |
| 6107 | [[fallthrough]]; |
| 6108 | case ICmpInst::ICMP_SGT: |
| 6109 | case ICmpInst::ICMP_SGE: |
| 6110 | case ICmpInst::ICMP_UGT: |
| 6111 | case ICmpInst::ICMP_UGE: |
| 6112 | // a > b ? a+x : b+x -> max(a, b)+x |
| 6113 | // a > b ? b+x : a+x -> min(a, b)+x |
| 6114 | if (getTypeSizeInBits(Ty: LHS->getType()) <= getTypeSizeInBits(Ty)) { |
| 6115 | bool Signed = ICI->isSigned(); |
| 6116 | const SCEV *LA = getSCEV(V: TrueVal); |
| 6117 | const SCEV *RA = getSCEV(V: FalseVal); |
| 6118 | const SCEV *LS = getSCEV(V: LHS); |
| 6119 | const SCEV *RS = getSCEV(V: RHS); |
| 6120 | if (LA->getType()->isPointerTy()) { |
| 6121 | // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. |
| 6122 | // Need to make sure we can't produce weird expressions involving |
| 6123 | // negated pointers. |
| 6124 | if (LA == LS && RA == RS) |
| 6125 | return Signed ? getSMaxExpr(LHS: LS, RHS: RS) : getUMaxExpr(LHS: LS, RHS: RS); |
| 6126 | if (LA == RS && RA == LS) |
| 6127 | return Signed ? getSMinExpr(LHS: LS, RHS: RS) : getUMinExpr(LHS: LS, RHS: RS); |
| 6128 | } |
| 6129 | auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { |
| 6130 | if (Op->getType()->isPointerTy()) { |
| 6131 | Op = getLosslessPtrToIntExpr(Op); |
| 6132 | if (isa<SCEVCouldNotCompute>(Val: Op)) |
| 6133 | return Op; |
| 6134 | } |
| 6135 | if (Signed) |
| 6136 | Op = getNoopOrSignExtend(V: Op, Ty); |
| 6137 | else |
| 6138 | Op = getNoopOrZeroExtend(V: Op, Ty); |
| 6139 | return Op; |
| 6140 | }; |
| 6141 | LS = CoerceOperand(LS); |
| 6142 | RS = CoerceOperand(RS); |
| 6143 | if (isa<SCEVCouldNotCompute>(Val: LS) || isa<SCEVCouldNotCompute>(Val: RS)) |
| 6144 | break; |
| 6145 | const SCEV *LDiff = getMinusSCEV(LHS: LA, RHS: LS); |
| 6146 | const SCEV *RDiff = getMinusSCEV(LHS: RA, RHS: RS); |
| 6147 | if (LDiff == RDiff) |
| 6148 | return getAddExpr(LHS: Signed ? getSMaxExpr(LHS: LS, RHS: RS) : getUMaxExpr(LHS: LS, RHS: RS), |
| 6149 | RHS: LDiff); |
| 6150 | LDiff = getMinusSCEV(LHS: LA, RHS: RS); |
| 6151 | RDiff = getMinusSCEV(LHS: RA, RHS: LS); |
| 6152 | if (LDiff == RDiff) |
| 6153 | return getAddExpr(LHS: Signed ? getSMinExpr(LHS: LS, RHS: RS) : getUMinExpr(LHS: LS, RHS: RS), |
| 6154 | RHS: LDiff); |
| 6155 | } |
| 6156 | break; |
| 6157 | case ICmpInst::ICMP_NE: |
| 6158 | // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y |
| 6159 | std::swap(a&: TrueVal, b&: FalseVal); |
| 6160 | [[fallthrough]]; |
| 6161 | case ICmpInst::ICMP_EQ: |
| 6162 | // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 |
| 6163 | if (getTypeSizeInBits(Ty: LHS->getType()) <= getTypeSizeInBits(Ty) && |
| 6164 | isa<ConstantInt>(Val: RHS) && cast<ConstantInt>(Val: RHS)->isZero()) { |
| 6165 | const SCEV *X = getNoopOrZeroExtend(V: getSCEV(V: LHS), Ty); |
| 6166 | const SCEV *TrueValExpr = getSCEV(V: TrueVal); // C+y |
| 6167 | const SCEV *FalseValExpr = getSCEV(V: FalseVal); // x+y |
| 6168 | const SCEV *Y = getMinusSCEV(LHS: FalseValExpr, RHS: X); // y = (x+y)-x |
| 6169 | const SCEV *C = getMinusSCEV(LHS: TrueValExpr, RHS: Y); // C = (C+y)-y |
| 6170 | if (isa<SCEVConstant>(Val: C) && cast<SCEVConstant>(Val: C)->getAPInt().ule(RHS: 1)) |
| 6171 | return getAddExpr(LHS: getUMaxExpr(LHS: X, RHS: C), RHS: Y); |
| 6172 | } |
| 6173 | // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) |
| 6174 | // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) |
| 6175 | // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) |
| 6176 | // -> umin_seq(x, umin (..., umin_seq(...), ...)) |
| 6177 | if (isa<ConstantInt>(Val: RHS) && cast<ConstantInt>(Val: RHS)->isZero() && |
| 6178 | isa<ConstantInt>(Val: TrueVal) && cast<ConstantInt>(Val: TrueVal)->isZero()) { |
| 6179 | const SCEV *X = getSCEV(V: LHS); |
| 6180 | while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: X)) |
| 6181 | X = ZExt->getOperand(); |
| 6182 | if (getTypeSizeInBits(Ty: X->getType()) <= getTypeSizeInBits(Ty)) { |
| 6183 | const SCEV *FalseValExpr = getSCEV(V: FalseVal); |
| 6184 | if (SCEVMinMaxExprContains(Root: FalseValExpr, OperandToFind: X, RootKind: scSequentialUMinExpr)) |
| 6185 | return getUMinExpr(LHS: getNoopOrZeroExtend(V: X, Ty), RHS: FalseValExpr, |
| 6186 | /*Sequential=*/true); |
| 6187 | } |
| 6188 | } |
| 6189 | break; |
| 6190 | default: |
| 6191 | break; |
| 6192 | } |
| 6193 | |
| 6194 | return std::nullopt; |
| 6195 | } |
| 6196 | |
| 6197 | static std::optional<const SCEV *> |
| 6198 | createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr, |
| 6199 | const SCEV *TrueExpr, const SCEV *FalseExpr) { |
| 6200 | assert(CondExpr->getType()->isIntegerTy(1) && |
| 6201 | TrueExpr->getType() == FalseExpr->getType() && |
| 6202 | TrueExpr->getType()->isIntegerTy(1) && |
| 6203 | "Unexpected operands of a select." ); |
| 6204 | |
| 6205 | // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) |
| 6206 | // --> C + (umin_seq cond, x - C) |
| 6207 | // |
| 6208 | // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) |
| 6209 | // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) |
| 6210 | // --> C + (umin_seq ~cond, x - C) |
| 6211 | |
| 6212 | // FIXME: while we can't legally model the case where both of the hands |
| 6213 | // are fully variable, we only require that the *difference* is constant. |
| 6214 | if (!isa<SCEVConstant>(Val: TrueExpr) && !isa<SCEVConstant>(Val: FalseExpr)) |
| 6215 | return std::nullopt; |
| 6216 | |
| 6217 | const SCEV *X, *C; |
| 6218 | if (isa<SCEVConstant>(Val: TrueExpr)) { |
| 6219 | CondExpr = SE->getNotSCEV(V: CondExpr); |
| 6220 | X = FalseExpr; |
| 6221 | C = TrueExpr; |
| 6222 | } else { |
| 6223 | X = TrueExpr; |
| 6224 | C = FalseExpr; |
| 6225 | } |
| 6226 | return SE->getAddExpr(LHS: C, RHS: SE->getUMinExpr(LHS: CondExpr, RHS: SE->getMinusSCEV(LHS: X, RHS: C), |
| 6227 | /*Sequential=*/true)); |
| 6228 | } |
| 6229 | |
| 6230 | static std::optional<const SCEV *> |
| 6231 | createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal, |
| 6232 | Value *FalseVal) { |
| 6233 | if (!isa<ConstantInt>(Val: TrueVal) && !isa<ConstantInt>(Val: FalseVal)) |
| 6234 | return std::nullopt; |
| 6235 | |
| 6236 | const auto *SECond = SE->getSCEV(V: Cond); |
| 6237 | const auto *SETrue = SE->getSCEV(V: TrueVal); |
| 6238 | const auto *SEFalse = SE->getSCEV(V: FalseVal); |
| 6239 | return createNodeForSelectViaUMinSeq(SE, CondExpr: SECond, TrueExpr: SETrue, FalseExpr: SEFalse); |
| 6240 | } |
| 6241 | |
| 6242 | const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( |
| 6243 | Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { |
| 6244 | assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?" ); |
| 6245 | assert(TrueVal->getType() == FalseVal->getType() && |
| 6246 | V->getType() == TrueVal->getType() && |
| 6247 | "Types of select hands and of the result must match." ); |
| 6248 | |
| 6249 | // For now, only deal with i1-typed `select`s. |
| 6250 | if (!V->getType()->isIntegerTy(Bitwidth: 1)) |
| 6251 | return getUnknown(V); |
| 6252 | |
| 6253 | if (std::optional<const SCEV *> S = |
| 6254 | createNodeForSelectViaUMinSeq(SE: this, Cond, TrueVal, FalseVal)) |
| 6255 | return *S; |
| 6256 | |
| 6257 | return getUnknown(V); |
| 6258 | } |
| 6259 | |
| 6260 | const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, |
| 6261 | Value *TrueVal, |
| 6262 | Value *FalseVal) { |
| 6263 | // Handle "constant" branch or select. This can occur for instance when a |
| 6264 | // loop pass transforms an inner loop and moves on to process the outer loop. |
| 6265 | if (auto *CI = dyn_cast<ConstantInt>(Val: Cond)) |
| 6266 | return getSCEV(V: CI->isOne() ? TrueVal : FalseVal); |
| 6267 | |
| 6268 | if (auto *I = dyn_cast<Instruction>(Val: V)) { |
| 6269 | if (auto *ICI = dyn_cast<ICmpInst>(Val: Cond)) { |
| 6270 | if (std::optional<const SCEV *> S = |
| 6271 | createNodeForSelectOrPHIInstWithICmpInstCond(Ty: I->getType(), Cond: ICI, |
| 6272 | TrueVal, FalseVal)) |
| 6273 | return *S; |
| 6274 | } |
| 6275 | } |
| 6276 | |
| 6277 | return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); |
| 6278 | } |
| 6279 | |
| 6280 | /// Expand GEP instructions into add and multiply operations. This allows them |
| 6281 | /// to be analyzed by regular SCEV code. |
| 6282 | const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { |
| 6283 | assert(GEP->getSourceElementType()->isSized() && |
| 6284 | "GEP source element type must be sized" ); |
| 6285 | |
| 6286 | SmallVector<const SCEV *, 4> IndexExprs; |
| 6287 | for (Value *Index : GEP->indices()) |
| 6288 | IndexExprs.push_back(Elt: getSCEV(V: Index)); |
| 6289 | return getGEPExpr(GEP, IndexExprs); |
| 6290 | } |
| 6291 | |
| 6292 | APInt ScalarEvolution::getConstantMultipleImpl(const SCEV *S) { |
| 6293 | uint64_t BitWidth = getTypeSizeInBits(Ty: S->getType()); |
| 6294 | auto GetShiftedByZeros = [BitWidth](uint32_t TrailingZeros) { |
| 6295 | return TrailingZeros >= BitWidth |
| 6296 | ? APInt::getZero(numBits: BitWidth) |
| 6297 | : APInt::getOneBitSet(numBits: BitWidth, BitNo: TrailingZeros); |
| 6298 | }; |
| 6299 | auto GetGCDMultiple = [this](const SCEVNAryExpr *N) { |
| 6300 | // The result is GCD of all operands results. |
| 6301 | APInt Res = getConstantMultiple(S: N->getOperand(i: 0)); |
| 6302 | for (unsigned I = 1, E = N->getNumOperands(); I < E && Res != 1; ++I) |
| 6303 | Res = APIntOps::GreatestCommonDivisor( |
| 6304 | A: Res, B: getConstantMultiple(S: N->getOperand(i: I))); |
| 6305 | return Res; |
| 6306 | }; |
| 6307 | |
| 6308 | switch (S->getSCEVType()) { |
| 6309 | case scConstant: |
| 6310 | return cast<SCEVConstant>(Val: S)->getAPInt(); |
| 6311 | case scPtrToInt: |
| 6312 | return getConstantMultiple(S: cast<SCEVPtrToIntExpr>(Val: S)->getOperand()); |
| 6313 | case scUDivExpr: |
| 6314 | case scVScale: |
| 6315 | return APInt(BitWidth, 1); |
| 6316 | case scTruncate: { |
| 6317 | // Only multiples that are a power of 2 will hold after truncation. |
| 6318 | const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(Val: S); |
| 6319 | uint32_t TZ = getMinTrailingZeros(S: T->getOperand()); |
| 6320 | return GetShiftedByZeros(TZ); |
| 6321 | } |
| 6322 | case scZeroExtend: { |
| 6323 | const SCEVZeroExtendExpr *Z = cast<SCEVZeroExtendExpr>(Val: S); |
| 6324 | return getConstantMultiple(S: Z->getOperand()).zext(width: BitWidth); |
| 6325 | } |
| 6326 | case scSignExtend: { |
| 6327 | // Only multiples that are a power of 2 will hold after sext. |
| 6328 | const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(Val: S); |
| 6329 | uint32_t TZ = getMinTrailingZeros(S: E->getOperand()); |
| 6330 | return GetShiftedByZeros(TZ); |
| 6331 | } |
| 6332 | case scMulExpr: { |
| 6333 | const SCEVMulExpr *M = cast<SCEVMulExpr>(Val: S); |
| 6334 | if (M->hasNoUnsignedWrap()) { |
| 6335 | // The result is the product of all operand results. |
| 6336 | APInt Res = getConstantMultiple(S: M->getOperand(i: 0)); |
| 6337 | for (const SCEV *Operand : M->operands().drop_front()) |
| 6338 | Res = Res * getConstantMultiple(S: Operand); |
| 6339 | return Res; |
| 6340 | } |
| 6341 | |
| 6342 | // If there are no wrap guarentees, find the trailing zeros, which is the |
| 6343 | // sum of trailing zeros for all its operands. |
| 6344 | uint32_t TZ = 0; |
| 6345 | for (const SCEV *Operand : M->operands()) |
| 6346 | TZ += getMinTrailingZeros(S: Operand); |
| 6347 | return GetShiftedByZeros(TZ); |
| 6348 | } |
| 6349 | case scAddExpr: |
| 6350 | case scAddRecExpr: { |
| 6351 | const SCEVNAryExpr *N = cast<SCEVNAryExpr>(Val: S); |
| 6352 | if (N->hasNoUnsignedWrap()) |
| 6353 | return GetGCDMultiple(N); |
| 6354 | // Find the trailing bits, which is the minimum of its operands. |
| 6355 | uint32_t TZ = getMinTrailingZeros(S: N->getOperand(i: 0)); |
| 6356 | for (const SCEV *Operand : N->operands().drop_front()) |
| 6357 | TZ = std::min(a: TZ, b: getMinTrailingZeros(S: Operand)); |
| 6358 | return GetShiftedByZeros(TZ); |
| 6359 | } |
| 6360 | case scUMaxExpr: |
| 6361 | case scSMaxExpr: |
| 6362 | case scUMinExpr: |
| 6363 | case scSMinExpr: |
| 6364 | case scSequentialUMinExpr: |
| 6365 | return GetGCDMultiple(cast<SCEVNAryExpr>(Val: S)); |
| 6366 | case scUnknown: { |
| 6367 | // ask ValueTracking for known bits |
| 6368 | const SCEVUnknown *U = cast<SCEVUnknown>(Val: S); |
| 6369 | unsigned Known = |
| 6370 | computeKnownBits(V: U->getValue(), DL: getDataLayout(), AC: &AC, CxtI: nullptr, DT: &DT) |
| 6371 | .countMinTrailingZeros(); |
| 6372 | return GetShiftedByZeros(Known); |
| 6373 | } |
| 6374 | case scCouldNotCompute: |
| 6375 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
| 6376 | } |
| 6377 | llvm_unreachable("Unknown SCEV kind!" ); |
| 6378 | } |
| 6379 | |
| 6380 | APInt ScalarEvolution::getConstantMultiple(const SCEV *S) { |
| 6381 | auto I = ConstantMultipleCache.find(Val: S); |
| 6382 | if (I != ConstantMultipleCache.end()) |
| 6383 | return I->second; |
| 6384 | |
| 6385 | APInt Result = getConstantMultipleImpl(S); |
| 6386 | auto InsertPair = ConstantMultipleCache.insert(KV: {S, Result}); |
| 6387 | assert(InsertPair.second && "Should insert a new key" ); |
| 6388 | return InsertPair.first->second; |
| 6389 | } |
| 6390 | |
| 6391 | APInt ScalarEvolution::getNonZeroConstantMultiple(const SCEV *S) { |
| 6392 | APInt Multiple = getConstantMultiple(S); |
| 6393 | return Multiple == 0 ? APInt(Multiple.getBitWidth(), 1) : Multiple; |
| 6394 | } |
| 6395 | |
| 6396 | uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV *S) { |
| 6397 | return std::min(a: getConstantMultiple(S).countTrailingZeros(), |
| 6398 | b: (unsigned)getTypeSizeInBits(Ty: S->getType())); |
| 6399 | } |
| 6400 | |
| 6401 | /// Helper method to assign a range to V from metadata present in the IR. |
| 6402 | static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) { |
| 6403 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) { |
| 6404 | if (MDNode *MD = I->getMetadata(KindID: LLVMContext::MD_range)) |
| 6405 | return getConstantRangeFromMetadata(RangeMD: *MD); |
| 6406 | if (const auto *CB = dyn_cast<CallBase>(Val: V)) |
| 6407 | if (std::optional<ConstantRange> Range = CB->getRange()) |
| 6408 | return Range; |
| 6409 | } |
| 6410 | if (auto *A = dyn_cast<Argument>(Val: V)) |
| 6411 | if (std::optional<ConstantRange> Range = A->getRange()) |
| 6412 | return Range; |
| 6413 | |
| 6414 | return std::nullopt; |
| 6415 | } |
| 6416 | |
| 6417 | void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, |
| 6418 | SCEV::NoWrapFlags Flags) { |
| 6419 | if (AddRec->getNoWrapFlags(Mask: Flags) != Flags) { |
| 6420 | AddRec->setNoWrapFlags(Flags); |
| 6421 | UnsignedRanges.erase(Val: AddRec); |
| 6422 | SignedRanges.erase(Val: AddRec); |
| 6423 | ConstantMultipleCache.erase(Val: AddRec); |
| 6424 | } |
| 6425 | } |
| 6426 | |
| 6427 | ConstantRange ScalarEvolution:: |
| 6428 | getRangeForUnknownRecurrence(const SCEVUnknown *U) { |
| 6429 | const DataLayout &DL = getDataLayout(); |
| 6430 | |
| 6431 | unsigned BitWidth = getTypeSizeInBits(Ty: U->getType()); |
| 6432 | const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); |
| 6433 | |
| 6434 | // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then |
| 6435 | // use information about the trip count to improve our available range. Note |
| 6436 | // that the trip count independent cases are already handled by known bits. |
| 6437 | // WARNING: The definition of recurrence used here is subtly different than |
| 6438 | // the one used by AddRec (and thus most of this file). Step is allowed to |
| 6439 | // be arbitrarily loop varying here, where AddRec allows only loop invariant |
| 6440 | // and other addrecs in the same loop (for non-affine addrecs). The code |
| 6441 | // below intentionally handles the case where step is not loop invariant. |
| 6442 | auto *P = dyn_cast<PHINode>(Val: U->getValue()); |
| 6443 | if (!P) |
| 6444 | return FullSet; |
| 6445 | |
| 6446 | // Make sure that no Phi input comes from an unreachable block. Otherwise, |
| 6447 | // even the values that are not available in these blocks may come from them, |
| 6448 | // and this leads to false-positive recurrence test. |
| 6449 | for (auto *Pred : predecessors(BB: P->getParent())) |
| 6450 | if (!DT.isReachableFromEntry(A: Pred)) |
| 6451 | return FullSet; |
| 6452 | |
| 6453 | BinaryOperator *BO; |
| 6454 | Value *Start, *Step; |
| 6455 | if (!matchSimpleRecurrence(P, BO, Start, Step)) |
| 6456 | return FullSet; |
| 6457 | |
| 6458 | // If we found a recurrence in reachable code, we must be in a loop. Note |
| 6459 | // that BO might be in some subloop of L, and that's completely okay. |
| 6460 | auto *L = LI.getLoopFor(BB: P->getParent()); |
| 6461 | assert(L && L->getHeader() == P->getParent()); |
| 6462 | if (!L->contains(BB: BO->getParent())) |
| 6463 | // NOTE: This bailout should be an assert instead. However, asserting |
| 6464 | // the condition here exposes a case where LoopFusion is querying SCEV |
| 6465 | // with malformed loop information during the midst of the transform. |
| 6466 | // There doesn't appear to be an obvious fix, so for the moment bailout |
| 6467 | // until the caller issue can be fixed. PR49566 tracks the bug. |
| 6468 | return FullSet; |
| 6469 | |
| 6470 | // TODO: Extend to other opcodes such as mul, and div |
| 6471 | switch (BO->getOpcode()) { |
| 6472 | default: |
| 6473 | return FullSet; |
| 6474 | case Instruction::AShr: |
| 6475 | case Instruction::LShr: |
| 6476 | case Instruction::Shl: |
| 6477 | break; |
| 6478 | }; |
| 6479 | |
| 6480 | if (BO->getOperand(i_nocapture: 0) != P) |
| 6481 | // TODO: Handle the power function forms some day. |
| 6482 | return FullSet; |
| 6483 | |
| 6484 | unsigned TC = getSmallConstantMaxTripCount(L); |
| 6485 | if (!TC || TC >= BitWidth) |
| 6486 | return FullSet; |
| 6487 | |
| 6488 | auto KnownStart = computeKnownBits(V: Start, DL, AC: &AC, CxtI: nullptr, DT: &DT); |
| 6489 | auto KnownStep = computeKnownBits(V: Step, DL, AC: &AC, CxtI: nullptr, DT: &DT); |
| 6490 | assert(KnownStart.getBitWidth() == BitWidth && |
| 6491 | KnownStep.getBitWidth() == BitWidth); |
| 6492 | |
| 6493 | // Compute total shift amount, being careful of overflow and bitwidths. |
| 6494 | auto MaxShiftAmt = KnownStep.getMaxValue(); |
| 6495 | APInt TCAP(BitWidth, TC-1); |
| 6496 | bool Overflow = false; |
| 6497 | auto TotalShift = MaxShiftAmt.umul_ov(RHS: TCAP, Overflow); |
| 6498 | if (Overflow) |
| 6499 | return FullSet; |
| 6500 | |
| 6501 | switch (BO->getOpcode()) { |
| 6502 | default: |
| 6503 | llvm_unreachable("filtered out above" ); |
| 6504 | case Instruction::AShr: { |
| 6505 | // For each ashr, three cases: |
| 6506 | // shift = 0 => unchanged value |
| 6507 | // saturation => 0 or -1 |
| 6508 | // other => a value closer to zero (of the same sign) |
| 6509 | // Thus, the end value is closer to zero than the start. |
| 6510 | auto KnownEnd = KnownBits::ashr(LHS: KnownStart, |
| 6511 | RHS: KnownBits::makeConstant(C: TotalShift)); |
| 6512 | if (KnownStart.isNonNegative()) |
| 6513 | // Analogous to lshr (simply not yet canonicalized) |
| 6514 | return ConstantRange::getNonEmpty(Lower: KnownEnd.getMinValue(), |
| 6515 | Upper: KnownStart.getMaxValue() + 1); |
| 6516 | if (KnownStart.isNegative()) |
| 6517 | // End >=u Start && End <=s Start |
| 6518 | return ConstantRange::getNonEmpty(Lower: KnownStart.getMinValue(), |
| 6519 | Upper: KnownEnd.getMaxValue() + 1); |
| 6520 | break; |
| 6521 | } |
| 6522 | case Instruction::LShr: { |
| 6523 | // For each lshr, three cases: |
| 6524 | // shift = 0 => unchanged value |
| 6525 | // saturation => 0 |
| 6526 | // other => a smaller positive number |
| 6527 | // Thus, the low end of the unsigned range is the last value produced. |
| 6528 | auto KnownEnd = KnownBits::lshr(LHS: KnownStart, |
| 6529 | RHS: KnownBits::makeConstant(C: TotalShift)); |
| 6530 | return ConstantRange::getNonEmpty(Lower: KnownEnd.getMinValue(), |
| 6531 | Upper: KnownStart.getMaxValue() + 1); |
| 6532 | } |
| 6533 | case Instruction::Shl: { |
| 6534 | // Iff no bits are shifted out, value increases on every shift. |
| 6535 | auto KnownEnd = KnownBits::shl(LHS: KnownStart, |
| 6536 | RHS: KnownBits::makeConstant(C: TotalShift)); |
| 6537 | if (TotalShift.ult(RHS: KnownStart.countMinLeadingZeros())) |
| 6538 | return ConstantRange(KnownStart.getMinValue(), |
| 6539 | KnownEnd.getMaxValue() + 1); |
| 6540 | break; |
| 6541 | } |
| 6542 | }; |
| 6543 | return FullSet; |
| 6544 | } |
| 6545 | |
| 6546 | const ConstantRange & |
| 6547 | ScalarEvolution::getRangeRefIter(const SCEV *S, |
| 6548 | ScalarEvolution::RangeSignHint SignHint) { |
| 6549 | DenseMap<const SCEV *, ConstantRange> &Cache = |
| 6550 | SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges |
| 6551 | : SignedRanges; |
| 6552 | SmallVector<const SCEV *> WorkList; |
| 6553 | SmallPtrSet<const SCEV *, 8> Seen; |
| 6554 | |
| 6555 | // Add Expr to the worklist, if Expr is either an N-ary expression or a |
| 6556 | // SCEVUnknown PHI node. |
| 6557 | auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) { |
| 6558 | if (!Seen.insert(Ptr: Expr).second) |
| 6559 | return; |
| 6560 | if (Cache.contains(Val: Expr)) |
| 6561 | return; |
| 6562 | switch (Expr->getSCEVType()) { |
| 6563 | case scUnknown: |
| 6564 | if (!isa<PHINode>(Val: cast<SCEVUnknown>(Val: Expr)->getValue())) |
| 6565 | break; |
| 6566 | [[fallthrough]]; |
| 6567 | case scConstant: |
| 6568 | case scVScale: |
| 6569 | case scTruncate: |
| 6570 | case scZeroExtend: |
| 6571 | case scSignExtend: |
| 6572 | case scPtrToInt: |
| 6573 | case scAddExpr: |
| 6574 | case scMulExpr: |
| 6575 | case scUDivExpr: |
| 6576 | case scAddRecExpr: |
| 6577 | case scUMaxExpr: |
| 6578 | case scSMaxExpr: |
| 6579 | case scUMinExpr: |
| 6580 | case scSMinExpr: |
| 6581 | case scSequentialUMinExpr: |
| 6582 | WorkList.push_back(Elt: Expr); |
| 6583 | break; |
| 6584 | case scCouldNotCompute: |
| 6585 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
| 6586 | } |
| 6587 | }; |
| 6588 | AddToWorklist(S); |
| 6589 | |
| 6590 | // Build worklist by queuing operands of N-ary expressions and phi nodes. |
| 6591 | for (unsigned I = 0; I != WorkList.size(); ++I) { |
| 6592 | const SCEV *P = WorkList[I]; |
| 6593 | auto *UnknownS = dyn_cast<SCEVUnknown>(Val: P); |
| 6594 | // If it is not a `SCEVUnknown`, just recurse into operands. |
| 6595 | if (!UnknownS) { |
| 6596 | for (const SCEV *Op : P->operands()) |
| 6597 | AddToWorklist(Op); |
| 6598 | continue; |
| 6599 | } |
| 6600 | // `SCEVUnknown`'s require special treatment. |
| 6601 | if (const PHINode *P = dyn_cast<PHINode>(Val: UnknownS->getValue())) { |
| 6602 | if (!PendingPhiRangesIter.insert(Ptr: P).second) |
| 6603 | continue; |
| 6604 | for (auto &Op : reverse(C: P->operands())) |
| 6605 | AddToWorklist(getSCEV(V: Op)); |
| 6606 | } |
| 6607 | } |
| 6608 | |
| 6609 | if (!WorkList.empty()) { |
| 6610 | // Use getRangeRef to compute ranges for items in the worklist in reverse |
| 6611 | // order. This will force ranges for earlier operands to be computed before |
| 6612 | // their users in most cases. |
| 6613 | for (const SCEV *P : reverse(C: drop_begin(RangeOrContainer&: WorkList))) { |
| 6614 | getRangeRef(S: P, Hint: SignHint); |
| 6615 | |
| 6616 | if (auto *UnknownS = dyn_cast<SCEVUnknown>(Val: P)) |
| 6617 | if (const PHINode *P = dyn_cast<PHINode>(Val: UnknownS->getValue())) |
| 6618 | PendingPhiRangesIter.erase(Ptr: P); |
| 6619 | } |
| 6620 | } |
| 6621 | |
| 6622 | return getRangeRef(S, Hint: SignHint, Depth: 0); |
| 6623 | } |
| 6624 | |
| 6625 | /// Determine the range for a particular SCEV. If SignHint is |
| 6626 | /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges |
| 6627 | /// with a "cleaner" unsigned (resp. signed) representation. |
| 6628 | const ConstantRange &ScalarEvolution::getRangeRef( |
| 6629 | const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) { |
| 6630 | DenseMap<const SCEV *, ConstantRange> &Cache = |
| 6631 | SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges |
| 6632 | : SignedRanges; |
| 6633 | ConstantRange::PreferredRangeType RangeType = |
| 6634 | SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned |
| 6635 | : ConstantRange::Signed; |
| 6636 | |
| 6637 | // See if we've computed this range already. |
| 6638 | DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(Val: S); |
| 6639 | if (I != Cache.end()) |
| 6640 | return I->second; |
| 6641 | |
| 6642 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: S)) |
| 6643 | return setRange(S: C, Hint: SignHint, CR: ConstantRange(C->getAPInt())); |
| 6644 | |
| 6645 | // Switch to iteratively computing the range for S, if it is part of a deeply |
| 6646 | // nested expression. |
| 6647 | if (Depth > RangeIterThreshold) |
| 6648 | return getRangeRefIter(S, SignHint); |
| 6649 | |
| 6650 | unsigned BitWidth = getTypeSizeInBits(Ty: S->getType()); |
| 6651 | ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); |
| 6652 | using OBO = OverflowingBinaryOperator; |
| 6653 | |
| 6654 | // If the value has known zeros, the maximum value will have those known zeros |
| 6655 | // as well. |
| 6656 | if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { |
| 6657 | APInt Multiple = getNonZeroConstantMultiple(S); |
| 6658 | APInt Remainder = APInt::getMaxValue(numBits: BitWidth).urem(RHS: Multiple); |
| 6659 | if (!Remainder.isZero()) |
| 6660 | ConservativeResult = |
| 6661 | ConstantRange(APInt::getMinValue(numBits: BitWidth), |
| 6662 | APInt::getMaxValue(numBits: BitWidth) - Remainder + 1); |
| 6663 | } |
| 6664 | else { |
| 6665 | uint32_t TZ = getMinTrailingZeros(S); |
| 6666 | if (TZ != 0) { |
| 6667 | ConservativeResult = ConstantRange( |
| 6668 | APInt::getSignedMinValue(numBits: BitWidth), |
| 6669 | APInt::getSignedMaxValue(numBits: BitWidth).ashr(ShiftAmt: TZ).shl(shiftAmt: TZ) + 1); |
| 6670 | } |
| 6671 | } |
| 6672 | |
| 6673 | switch (S->getSCEVType()) { |
| 6674 | case scConstant: |
| 6675 | llvm_unreachable("Already handled above." ); |
| 6676 | case scVScale: |
| 6677 | return setRange(S, Hint: SignHint, CR: getVScaleRange(F: &F, BitWidth)); |
| 6678 | case scTruncate: { |
| 6679 | const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Val: S); |
| 6680 | ConstantRange X = getRangeRef(S: Trunc->getOperand(), SignHint, Depth: Depth + 1); |
| 6681 | return setRange( |
| 6682 | S: Trunc, Hint: SignHint, |
| 6683 | CR: ConservativeResult.intersectWith(CR: X.truncate(BitWidth), Type: RangeType)); |
| 6684 | } |
| 6685 | case scZeroExtend: { |
| 6686 | const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(Val: S); |
| 6687 | ConstantRange X = getRangeRef(S: ZExt->getOperand(), SignHint, Depth: Depth + 1); |
| 6688 | return setRange( |
| 6689 | S: ZExt, Hint: SignHint, |
| 6690 | CR: ConservativeResult.intersectWith(CR: X.zeroExtend(BitWidth), Type: RangeType)); |
| 6691 | } |
| 6692 | case scSignExtend: { |
| 6693 | const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(Val: S); |
| 6694 | ConstantRange X = getRangeRef(S: SExt->getOperand(), SignHint, Depth: Depth + 1); |
| 6695 | return setRange( |
| 6696 | S: SExt, Hint: SignHint, |
| 6697 | CR: ConservativeResult.intersectWith(CR: X.signExtend(BitWidth), Type: RangeType)); |
| 6698 | } |
| 6699 | case scPtrToInt: { |
| 6700 | const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(Val: S); |
| 6701 | ConstantRange X = getRangeRef(S: PtrToInt->getOperand(), SignHint, Depth: Depth + 1); |
| 6702 | return setRange(S: PtrToInt, Hint: SignHint, CR: X); |
| 6703 | } |
| 6704 | case scAddExpr: { |
| 6705 | const SCEVAddExpr *Add = cast<SCEVAddExpr>(Val: S); |
| 6706 | ConstantRange X = getRangeRef(S: Add->getOperand(i: 0), SignHint, Depth: Depth + 1); |
| 6707 | unsigned WrapType = OBO::AnyWrap; |
| 6708 | if (Add->hasNoSignedWrap()) |
| 6709 | WrapType |= OBO::NoSignedWrap; |
| 6710 | if (Add->hasNoUnsignedWrap()) |
| 6711 | WrapType |= OBO::NoUnsignedWrap; |
| 6712 | for (const SCEV *Op : drop_begin(RangeOrContainer: Add->operands())) |
| 6713 | X = X.addWithNoWrap(Other: getRangeRef(S: Op, SignHint, Depth: Depth + 1), NoWrapKind: WrapType, |
| 6714 | RangeType); |
| 6715 | return setRange(S: Add, Hint: SignHint, |
| 6716 | CR: ConservativeResult.intersectWith(CR: X, Type: RangeType)); |
| 6717 | } |
| 6718 | case scMulExpr: { |
| 6719 | const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Val: S); |
| 6720 | ConstantRange X = getRangeRef(S: Mul->getOperand(i: 0), SignHint, Depth: Depth + 1); |
| 6721 | for (const SCEV *Op : drop_begin(RangeOrContainer: Mul->operands())) |
| 6722 | X = X.multiply(Other: getRangeRef(S: Op, SignHint, Depth: Depth + 1)); |
| 6723 | return setRange(S: Mul, Hint: SignHint, |
| 6724 | CR: ConservativeResult.intersectWith(CR: X, Type: RangeType)); |
| 6725 | } |
| 6726 | case scUDivExpr: { |
| 6727 | const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(Val: S); |
| 6728 | ConstantRange X = getRangeRef(S: UDiv->getLHS(), SignHint, Depth: Depth + 1); |
| 6729 | ConstantRange Y = getRangeRef(S: UDiv->getRHS(), SignHint, Depth: Depth + 1); |
| 6730 | return setRange(S: UDiv, Hint: SignHint, |
| 6731 | CR: ConservativeResult.intersectWith(CR: X.udiv(Other: Y), Type: RangeType)); |
| 6732 | } |
| 6733 | case scAddRecExpr: { |
| 6734 | const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Val: S); |
| 6735 | // If there's no unsigned wrap, the value will never be less than its |
| 6736 | // initial value. |
| 6737 | if (AddRec->hasNoUnsignedWrap()) { |
| 6738 | APInt UnsignedMinValue = getUnsignedRangeMin(S: AddRec->getStart()); |
| 6739 | if (!UnsignedMinValue.isZero()) |
| 6740 | ConservativeResult = ConservativeResult.intersectWith( |
| 6741 | CR: ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), Type: RangeType); |
| 6742 | } |
| 6743 | |
| 6744 | // If there's no signed wrap, and all the operands except initial value have |
| 6745 | // the same sign or zero, the value won't ever be: |
| 6746 | // 1: smaller than initial value if operands are non negative, |
| 6747 | // 2: bigger than initial value if operands are non positive. |
| 6748 | // For both cases, value can not cross signed min/max boundary. |
| 6749 | if (AddRec->hasNoSignedWrap()) { |
| 6750 | bool AllNonNeg = true; |
| 6751 | bool AllNonPos = true; |
| 6752 | for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { |
| 6753 | if (!isKnownNonNegative(S: AddRec->getOperand(i))) |
| 6754 | AllNonNeg = false; |
| 6755 | if (!isKnownNonPositive(S: AddRec->getOperand(i))) |
| 6756 | AllNonPos = false; |
| 6757 | } |
| 6758 | if (AllNonNeg) |
| 6759 | ConservativeResult = ConservativeResult.intersectWith( |
| 6760 | CR: ConstantRange::getNonEmpty(Lower: getSignedRangeMin(S: AddRec->getStart()), |
| 6761 | Upper: APInt::getSignedMinValue(numBits: BitWidth)), |
| 6762 | Type: RangeType); |
| 6763 | else if (AllNonPos) |
| 6764 | ConservativeResult = ConservativeResult.intersectWith( |
| 6765 | CR: ConstantRange::getNonEmpty(Lower: APInt::getSignedMinValue(numBits: BitWidth), |
| 6766 | Upper: getSignedRangeMax(S: AddRec->getStart()) + |
| 6767 | 1), |
| 6768 | Type: RangeType); |
| 6769 | } |
| 6770 | |
| 6771 | // TODO: non-affine addrec |
| 6772 | if (AddRec->isAffine()) { |
| 6773 | const SCEV *MaxBEScev = |
| 6774 | getConstantMaxBackedgeTakenCount(L: AddRec->getLoop()); |
| 6775 | if (!isa<SCEVCouldNotCompute>(Val: MaxBEScev)) { |
| 6776 | APInt MaxBECount = cast<SCEVConstant>(Val: MaxBEScev)->getAPInt(); |
| 6777 | |
| 6778 | // Adjust MaxBECount to the same bitwidth as AddRec. We can truncate if |
| 6779 | // MaxBECount's active bits are all <= AddRec's bit width. |
| 6780 | if (MaxBECount.getBitWidth() > BitWidth && |
| 6781 | MaxBECount.getActiveBits() <= BitWidth) |
| 6782 | MaxBECount = MaxBECount.trunc(width: BitWidth); |
| 6783 | else if (MaxBECount.getBitWidth() < BitWidth) |
| 6784 | MaxBECount = MaxBECount.zext(width: BitWidth); |
| 6785 | |
| 6786 | if (MaxBECount.getBitWidth() == BitWidth) { |
| 6787 | auto RangeFromAffine = getRangeForAffineAR( |
| 6788 | Start: AddRec->getStart(), Step: AddRec->getStepRecurrence(SE&: *this), MaxBECount); |
| 6789 | ConservativeResult = |
| 6790 | ConservativeResult.intersectWith(CR: RangeFromAffine, Type: RangeType); |
| 6791 | |
| 6792 | auto RangeFromFactoring = getRangeViaFactoring( |
| 6793 | Start: AddRec->getStart(), Step: AddRec->getStepRecurrence(SE&: *this), MaxBECount); |
| 6794 | ConservativeResult = |
| 6795 | ConservativeResult.intersectWith(CR: RangeFromFactoring, Type: RangeType); |
| 6796 | } |
| 6797 | } |
| 6798 | |
| 6799 | // Now try symbolic BE count and more powerful methods. |
| 6800 | if (UseExpensiveRangeSharpening) { |
| 6801 | const SCEV *SymbolicMaxBECount = |
| 6802 | getSymbolicMaxBackedgeTakenCount(L: AddRec->getLoop()); |
| 6803 | if (!isa<SCEVCouldNotCompute>(Val: SymbolicMaxBECount) && |
| 6804 | getTypeSizeInBits(Ty: MaxBEScev->getType()) <= BitWidth && |
| 6805 | AddRec->hasNoSelfWrap()) { |
| 6806 | auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( |
| 6807 | AddRec, MaxBECount: SymbolicMaxBECount, BitWidth, SignHint); |
| 6808 | ConservativeResult = |
| 6809 | ConservativeResult.intersectWith(CR: RangeFromAffineNew, Type: RangeType); |
| 6810 | } |
| 6811 | } |
| 6812 | } |
| 6813 | |
| 6814 | return setRange(S: AddRec, Hint: SignHint, CR: std::move(ConservativeResult)); |
| 6815 | } |
| 6816 | case scUMaxExpr: |
| 6817 | case scSMaxExpr: |
| 6818 | case scUMinExpr: |
| 6819 | case scSMinExpr: |
| 6820 | case scSequentialUMinExpr: { |
| 6821 | Intrinsic::ID ID; |
| 6822 | switch (S->getSCEVType()) { |
| 6823 | case scUMaxExpr: |
| 6824 | ID = Intrinsic::umax; |
| 6825 | break; |
| 6826 | case scSMaxExpr: |
| 6827 | ID = Intrinsic::smax; |
| 6828 | break; |
| 6829 | case scUMinExpr: |
| 6830 | case scSequentialUMinExpr: |
| 6831 | ID = Intrinsic::umin; |
| 6832 | break; |
| 6833 | case scSMinExpr: |
| 6834 | ID = Intrinsic::smin; |
| 6835 | break; |
| 6836 | default: |
| 6837 | llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr." ); |
| 6838 | } |
| 6839 | |
| 6840 | const auto *NAry = cast<SCEVNAryExpr>(Val: S); |
| 6841 | ConstantRange X = getRangeRef(S: NAry->getOperand(i: 0), SignHint, Depth: Depth + 1); |
| 6842 | for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) |
| 6843 | X = X.intrinsic( |
| 6844 | IntrinsicID: ID, Ops: {X, getRangeRef(S: NAry->getOperand(i), SignHint, Depth: Depth + 1)}); |
| 6845 | return setRange(S, Hint: SignHint, |
| 6846 | CR: ConservativeResult.intersectWith(CR: X, Type: RangeType)); |
| 6847 | } |
| 6848 | case scUnknown: { |
| 6849 | const SCEVUnknown *U = cast<SCEVUnknown>(Val: S); |
| 6850 | Value *V = U->getValue(); |
| 6851 | |
| 6852 | // Check if the IR explicitly contains !range metadata. |
| 6853 | std::optional<ConstantRange> MDRange = GetRangeFromMetadata(V); |
| 6854 | if (MDRange) |
| 6855 | ConservativeResult = |
| 6856 | ConservativeResult.intersectWith(CR: *MDRange, Type: RangeType); |
| 6857 | |
| 6858 | // Use facts about recurrences in the underlying IR. Note that add |
| 6859 | // recurrences are AddRecExprs and thus don't hit this path. This |
| 6860 | // primarily handles shift recurrences. |
| 6861 | auto CR = getRangeForUnknownRecurrence(U); |
| 6862 | ConservativeResult = ConservativeResult.intersectWith(CR); |
| 6863 | |
| 6864 | // See if ValueTracking can give us a useful range. |
| 6865 | const DataLayout &DL = getDataLayout(); |
| 6866 | KnownBits Known = computeKnownBits(V, DL, AC: &AC, CxtI: nullptr, DT: &DT); |
| 6867 | if (Known.getBitWidth() != BitWidth) |
| 6868 | Known = Known.zextOrTrunc(BitWidth); |
| 6869 | |
| 6870 | // ValueTracking may be able to compute a tighter result for the number of |
| 6871 | // sign bits than for the value of those sign bits. |
| 6872 | unsigned NS = ComputeNumSignBits(Op: V, DL, AC: &AC, CxtI: nullptr, DT: &DT); |
| 6873 | if (U->getType()->isPointerTy()) { |
| 6874 | // If the pointer size is larger than the index size type, this can cause |
| 6875 | // NS to be larger than BitWidth. So compensate for this. |
| 6876 | unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); |
| 6877 | int ptrIdxDiff = ptrSize - BitWidth; |
| 6878 | if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) |
| 6879 | NS -= ptrIdxDiff; |
| 6880 | } |
| 6881 | |
| 6882 | if (NS > 1) { |
| 6883 | // If we know any of the sign bits, we know all of the sign bits. |
| 6884 | if (!Known.Zero.getHiBits(numBits: NS).isZero()) |
| 6885 | Known.Zero.setHighBits(NS); |
| 6886 | if (!Known.One.getHiBits(numBits: NS).isZero()) |
| 6887 | Known.One.setHighBits(NS); |
| 6888 | } |
| 6889 | |
| 6890 | if (Known.getMinValue() != Known.getMaxValue() + 1) |
| 6891 | ConservativeResult = ConservativeResult.intersectWith( |
| 6892 | CR: ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), |
| 6893 | Type: RangeType); |
| 6894 | if (NS > 1) |
| 6895 | ConservativeResult = ConservativeResult.intersectWith( |
| 6896 | CR: ConstantRange(APInt::getSignedMinValue(numBits: BitWidth).ashr(ShiftAmt: NS - 1), |
| 6897 | APInt::getSignedMaxValue(numBits: BitWidth).ashr(ShiftAmt: NS - 1) + 1), |
| 6898 | Type: RangeType); |
| 6899 | |
| 6900 | if (U->getType()->isPointerTy() && SignHint == HINT_RANGE_UNSIGNED) { |
| 6901 | // Strengthen the range if the underlying IR value is a |
| 6902 | // global/alloca/heap allocation using the size of the object. |
| 6903 | bool CanBeNull, CanBeFreed; |
| 6904 | uint64_t DerefBytes = |
| 6905 | V->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); |
| 6906 | if (DerefBytes > 1 && isUIntN(N: BitWidth, x: DerefBytes)) { |
| 6907 | // The highest address the object can start is DerefBytes bytes before |
| 6908 | // the end (unsigned max value). If this value is not a multiple of the |
| 6909 | // alignment, the last possible start value is the next lowest multiple |
| 6910 | // of the alignment. Note: The computations below cannot overflow, |
| 6911 | // because if they would there's no possible start address for the |
| 6912 | // object. |
| 6913 | APInt MaxVal = |
| 6914 | APInt::getMaxValue(numBits: BitWidth) - APInt(BitWidth, DerefBytes); |
| 6915 | uint64_t Align = U->getValue()->getPointerAlignment(DL).value(); |
| 6916 | uint64_t Rem = MaxVal.urem(RHS: Align); |
| 6917 | MaxVal -= APInt(BitWidth, Rem); |
| 6918 | APInt MinVal = APInt::getZero(numBits: BitWidth); |
| 6919 | if (llvm::isKnownNonZero(V, Q: DL)) |
| 6920 | MinVal = Align; |
| 6921 | ConservativeResult = ConservativeResult.intersectWith( |
| 6922 | CR: ConstantRange::getNonEmpty(Lower: MinVal, Upper: MaxVal + 1), Type: RangeType); |
| 6923 | } |
| 6924 | } |
| 6925 | |
| 6926 | // A range of Phi is a subset of union of all ranges of its input. |
| 6927 | if (PHINode *Phi = dyn_cast<PHINode>(Val: V)) { |
| 6928 | // Make sure that we do not run over cycled Phis. |
| 6929 | if (PendingPhiRanges.insert(Ptr: Phi).second) { |
| 6930 | ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); |
| 6931 | |
| 6932 | for (const auto &Op : Phi->operands()) { |
| 6933 | auto OpRange = getRangeRef(S: getSCEV(V: Op), SignHint, Depth: Depth + 1); |
| 6934 | RangeFromOps = RangeFromOps.unionWith(CR: OpRange); |
| 6935 | // No point to continue if we already have a full set. |
| 6936 | if (RangeFromOps.isFullSet()) |
| 6937 | break; |
| 6938 | } |
| 6939 | ConservativeResult = |
| 6940 | ConservativeResult.intersectWith(CR: RangeFromOps, Type: RangeType); |
| 6941 | bool Erased = PendingPhiRanges.erase(Ptr: Phi); |
| 6942 | assert(Erased && "Failed to erase Phi properly?" ); |
| 6943 | (void)Erased; |
| 6944 | } |
| 6945 | } |
| 6946 | |
| 6947 | // vscale can't be equal to zero |
| 6948 | if (const auto *II = dyn_cast<IntrinsicInst>(Val: V)) |
| 6949 | if (II->getIntrinsicID() == Intrinsic::vscale) { |
| 6950 | ConstantRange Disallowed = APInt::getZero(numBits: BitWidth); |
| 6951 | ConservativeResult = ConservativeResult.difference(CR: Disallowed); |
| 6952 | } |
| 6953 | |
| 6954 | return setRange(S: U, Hint: SignHint, CR: std::move(ConservativeResult)); |
| 6955 | } |
| 6956 | case scCouldNotCompute: |
| 6957 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
| 6958 | } |
| 6959 | |
| 6960 | return setRange(S, Hint: SignHint, CR: std::move(ConservativeResult)); |
| 6961 | } |
| 6962 | |
| 6963 | // Given a StartRange, Step and MaxBECount for an expression compute a range of |
| 6964 | // values that the expression can take. Initially, the expression has a value |
| 6965 | // from StartRange and then is changed by Step up to MaxBECount times. Signed |
| 6966 | // argument defines if we treat Step as signed or unsigned. |
| 6967 | static ConstantRange getRangeForAffineARHelper(APInt Step, |
| 6968 | const ConstantRange &StartRange, |
| 6969 | const APInt &MaxBECount, |
| 6970 | bool Signed) { |
| 6971 | unsigned BitWidth = Step.getBitWidth(); |
| 6972 | assert(BitWidth == StartRange.getBitWidth() && |
| 6973 | BitWidth == MaxBECount.getBitWidth() && "mismatched bit widths" ); |
| 6974 | // If either Step or MaxBECount is 0, then the expression won't change, and we |
| 6975 | // just need to return the initial range. |
| 6976 | if (Step == 0 || MaxBECount == 0) |
| 6977 | return StartRange; |
| 6978 | |
| 6979 | // If we don't know anything about the initial value (i.e. StartRange is |
| 6980 | // FullRange), then we don't know anything about the final range either. |
| 6981 | // Return FullRange. |
| 6982 | if (StartRange.isFullSet()) |
| 6983 | return ConstantRange::getFull(BitWidth); |
| 6984 | |
| 6985 | // If Step is signed and negative, then we use its absolute value, but we also |
| 6986 | // note that we're moving in the opposite direction. |
| 6987 | bool Descending = Signed && Step.isNegative(); |
| 6988 | |
| 6989 | if (Signed) |
| 6990 | // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: |
| 6991 | // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. |
| 6992 | // This equations hold true due to the well-defined wrap-around behavior of |
| 6993 | // APInt. |
| 6994 | Step = Step.abs(); |
| 6995 | |
| 6996 | // Check if Offset is more than full span of BitWidth. If it is, the |
| 6997 | // expression is guaranteed to overflow. |
| 6998 | if (APInt::getMaxValue(numBits: StartRange.getBitWidth()).udiv(RHS: Step).ult(RHS: MaxBECount)) |
| 6999 | return ConstantRange::getFull(BitWidth); |
| 7000 | |
| 7001 | // Offset is by how much the expression can change. Checks above guarantee no |
| 7002 | // overflow here. |
| 7003 | APInt Offset = Step * MaxBECount; |
| 7004 | |
| 7005 | // Minimum value of the final range will match the minimal value of StartRange |
| 7006 | // if the expression is increasing and will be decreased by Offset otherwise. |
| 7007 | // Maximum value of the final range will match the maximal value of StartRange |
| 7008 | // if the expression is decreasing and will be increased by Offset otherwise. |
| 7009 | APInt StartLower = StartRange.getLower(); |
| 7010 | APInt StartUpper = StartRange.getUpper() - 1; |
| 7011 | APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) |
| 7012 | : (StartUpper + std::move(Offset)); |
| 7013 | |
| 7014 | // It's possible that the new minimum/maximum value will fall into the initial |
| 7015 | // range (due to wrap around). This means that the expression can take any |
| 7016 | // value in this bitwidth, and we have to return full range. |
| 7017 | if (StartRange.contains(Val: MovedBoundary)) |
| 7018 | return ConstantRange::getFull(BitWidth); |
| 7019 | |
| 7020 | APInt NewLower = |
| 7021 | Descending ? std::move(MovedBoundary) : std::move(StartLower); |
| 7022 | APInt NewUpper = |
| 7023 | Descending ? std::move(StartUpper) : std::move(MovedBoundary); |
| 7024 | NewUpper += 1; |
| 7025 | |
| 7026 | // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. |
| 7027 | return ConstantRange::getNonEmpty(Lower: std::move(NewLower), Upper: std::move(NewUpper)); |
| 7028 | } |
| 7029 | |
| 7030 | ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, |
| 7031 | const SCEV *Step, |
| 7032 | const APInt &MaxBECount) { |
| 7033 | assert(getTypeSizeInBits(Start->getType()) == |
| 7034 | getTypeSizeInBits(Step->getType()) && |
| 7035 | getTypeSizeInBits(Start->getType()) == MaxBECount.getBitWidth() && |
| 7036 | "mismatched bit widths" ); |
| 7037 | |
| 7038 | // First, consider step signed. |
| 7039 | ConstantRange StartSRange = getSignedRange(S: Start); |
| 7040 | ConstantRange StepSRange = getSignedRange(S: Step); |
| 7041 | |
| 7042 | // If Step can be both positive and negative, we need to find ranges for the |
| 7043 | // maximum absolute step values in both directions and union them. |
| 7044 | ConstantRange SR = getRangeForAffineARHelper( |
| 7045 | Step: StepSRange.getSignedMin(), StartRange: StartSRange, MaxBECount, /* Signed = */ true); |
| 7046 | SR = SR.unionWith(CR: getRangeForAffineARHelper(Step: StepSRange.getSignedMax(), |
| 7047 | StartRange: StartSRange, MaxBECount, |
| 7048 | /* Signed = */ true)); |
| 7049 | |
| 7050 | // Next, consider step unsigned. |
| 7051 | ConstantRange UR = getRangeForAffineARHelper( |
| 7052 | Step: getUnsignedRangeMax(S: Step), StartRange: getUnsignedRange(S: Start), MaxBECount, |
| 7053 | /* Signed = */ false); |
| 7054 | |
| 7055 | // Finally, intersect signed and unsigned ranges. |
| 7056 | return SR.intersectWith(CR: UR, Type: ConstantRange::Smallest); |
| 7057 | } |
| 7058 | |
| 7059 | ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( |
| 7060 | const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, |
| 7061 | ScalarEvolution::RangeSignHint SignHint) { |
| 7062 | assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n" ); |
| 7063 | assert(AddRec->hasNoSelfWrap() && |
| 7064 | "This only works for non-self-wrapping AddRecs!" ); |
| 7065 | const bool IsSigned = SignHint == HINT_RANGE_SIGNED; |
| 7066 | const SCEV *Step = AddRec->getStepRecurrence(SE&: *this); |
| 7067 | // Only deal with constant step to save compile time. |
| 7068 | if (!isa<SCEVConstant>(Val: Step)) |
| 7069 | return ConstantRange::getFull(BitWidth); |
| 7070 | // Let's make sure that we can prove that we do not self-wrap during |
| 7071 | // MaxBECount iterations. We need this because MaxBECount is a maximum |
| 7072 | // iteration count estimate, and we might infer nw from some exit for which we |
| 7073 | // do not know max exit count (or any other side reasoning). |
| 7074 | // TODO: Turn into assert at some point. |
| 7075 | if (getTypeSizeInBits(Ty: MaxBECount->getType()) > |
| 7076 | getTypeSizeInBits(Ty: AddRec->getType())) |
| 7077 | return ConstantRange::getFull(BitWidth); |
| 7078 | MaxBECount = getNoopOrZeroExtend(V: MaxBECount, Ty: AddRec->getType()); |
| 7079 | const SCEV *RangeWidth = getMinusOne(Ty: AddRec->getType()); |
| 7080 | const SCEV *StepAbs = getUMinExpr(LHS: Step, RHS: getNegativeSCEV(V: Step)); |
| 7081 | const SCEV *MaxItersWithoutWrap = getUDivExpr(LHS: RangeWidth, RHS: StepAbs); |
| 7082 | if (!isKnownPredicateViaConstantRanges(Pred: ICmpInst::ICMP_ULE, LHS: MaxBECount, |
| 7083 | RHS: MaxItersWithoutWrap)) |
| 7084 | return ConstantRange::getFull(BitWidth); |
| 7085 | |
| 7086 | ICmpInst::Predicate LEPred = |
| 7087 | IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; |
| 7088 | ICmpInst::Predicate GEPred = |
| 7089 | IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; |
| 7090 | const SCEV *End = AddRec->evaluateAtIteration(It: MaxBECount, SE&: *this); |
| 7091 | |
| 7092 | // We know that there is no self-wrap. Let's take Start and End values and |
| 7093 | // look at all intermediate values V1, V2, ..., Vn that IndVar takes during |
| 7094 | // the iteration. They either lie inside the range [Min(Start, End), |
| 7095 | // Max(Start, End)] or outside it: |
| 7096 | // |
| 7097 | // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; |
| 7098 | // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; |
| 7099 | // |
| 7100 | // No self wrap flag guarantees that the intermediate values cannot be BOTH |
| 7101 | // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that |
| 7102 | // knowledge, let's try to prove that we are dealing with Case 1. It is so if |
| 7103 | // Start <= End and step is positive, or Start >= End and step is negative. |
| 7104 | const SCEV *Start = applyLoopGuards(Expr: AddRec->getStart(), L: AddRec->getLoop()); |
| 7105 | ConstantRange StartRange = getRangeRef(S: Start, SignHint); |
| 7106 | ConstantRange EndRange = getRangeRef(S: End, SignHint); |
| 7107 | ConstantRange RangeBetween = StartRange.unionWith(CR: EndRange); |
| 7108 | // If they already cover full iteration space, we will know nothing useful |
| 7109 | // even if we prove what we want to prove. |
| 7110 | if (RangeBetween.isFullSet()) |
| 7111 | return RangeBetween; |
| 7112 | // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). |
| 7113 | bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() |
| 7114 | : RangeBetween.isWrappedSet(); |
| 7115 | if (IsWrappedSet) |
| 7116 | return ConstantRange::getFull(BitWidth); |
| 7117 | |
| 7118 | if (isKnownPositive(S: Step) && |
| 7119 | isKnownPredicateViaConstantRanges(Pred: LEPred, LHS: Start, RHS: End)) |
| 7120 | return RangeBetween; |
| 7121 | if (isKnownNegative(S: Step) && |
| 7122 | isKnownPredicateViaConstantRanges(Pred: GEPred, LHS: Start, RHS: End)) |
| 7123 | return RangeBetween; |
| 7124 | return ConstantRange::getFull(BitWidth); |
| 7125 | } |
| 7126 | |
| 7127 | ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, |
| 7128 | const SCEV *Step, |
| 7129 | const APInt &MaxBECount) { |
| 7130 | // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) |
| 7131 | // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) |
| 7132 | |
| 7133 | unsigned BitWidth = MaxBECount.getBitWidth(); |
| 7134 | assert(getTypeSizeInBits(Start->getType()) == BitWidth && |
| 7135 | getTypeSizeInBits(Step->getType()) == BitWidth && |
| 7136 | "mismatched bit widths" ); |
| 7137 | |
| 7138 | struct SelectPattern { |
| 7139 | Value *Condition = nullptr; |
| 7140 | APInt TrueValue; |
| 7141 | APInt FalseValue; |
| 7142 | |
| 7143 | explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, |
| 7144 | const SCEV *S) { |
| 7145 | std::optional<unsigned> CastOp; |
| 7146 | APInt Offset(BitWidth, 0); |
| 7147 | |
| 7148 | assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && |
| 7149 | "Should be!" ); |
| 7150 | |
| 7151 | // Peel off a constant offset. In the future we could consider being |
| 7152 | // smarter here and handle {Start+Step,+,Step} too. |
| 7153 | const APInt *Off; |
| 7154 | if (match(S, P: m_scev_Add(Op0: m_scev_APInt(C&: Off), Op1: m_SCEV(V&: S)))) |
| 7155 | Offset = *Off; |
| 7156 | |
| 7157 | // Peel off a cast operation |
| 7158 | if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(Val: S)) { |
| 7159 | CastOp = SCast->getSCEVType(); |
| 7160 | S = SCast->getOperand(); |
| 7161 | } |
| 7162 | |
| 7163 | using namespace llvm::PatternMatch; |
| 7164 | |
| 7165 | auto *SU = dyn_cast<SCEVUnknown>(Val: S); |
| 7166 | const APInt *TrueVal, *FalseVal; |
| 7167 | if (!SU || |
| 7168 | !match(V: SU->getValue(), P: m_Select(C: m_Value(V&: Condition), L: m_APInt(Res&: TrueVal), |
| 7169 | R: m_APInt(Res&: FalseVal)))) { |
| 7170 | Condition = nullptr; |
| 7171 | return; |
| 7172 | } |
| 7173 | |
| 7174 | TrueValue = *TrueVal; |
| 7175 | FalseValue = *FalseVal; |
| 7176 | |
| 7177 | // Re-apply the cast we peeled off earlier |
| 7178 | if (CastOp) |
| 7179 | switch (*CastOp) { |
| 7180 | default: |
| 7181 | llvm_unreachable("Unknown SCEV cast type!" ); |
| 7182 | |
| 7183 | case scTruncate: |
| 7184 | TrueValue = TrueValue.trunc(width: BitWidth); |
| 7185 | FalseValue = FalseValue.trunc(width: BitWidth); |
| 7186 | break; |
| 7187 | case scZeroExtend: |
| 7188 | TrueValue = TrueValue.zext(width: BitWidth); |
| 7189 | FalseValue = FalseValue.zext(width: BitWidth); |
| 7190 | break; |
| 7191 | case scSignExtend: |
| 7192 | TrueValue = TrueValue.sext(width: BitWidth); |
| 7193 | FalseValue = FalseValue.sext(width: BitWidth); |
| 7194 | break; |
| 7195 | } |
| 7196 | |
| 7197 | // Re-apply the constant offset we peeled off earlier |
| 7198 | TrueValue += Offset; |
| 7199 | FalseValue += Offset; |
| 7200 | } |
| 7201 | |
| 7202 | bool isRecognized() { return Condition != nullptr; } |
| 7203 | }; |
| 7204 | |
| 7205 | SelectPattern StartPattern(*this, BitWidth, Start); |
| 7206 | if (!StartPattern.isRecognized()) |
| 7207 | return ConstantRange::getFull(BitWidth); |
| 7208 | |
| 7209 | SelectPattern StepPattern(*this, BitWidth, Step); |
| 7210 | if (!StepPattern.isRecognized()) |
| 7211 | return ConstantRange::getFull(BitWidth); |
| 7212 | |
| 7213 | if (StartPattern.Condition != StepPattern.Condition) { |
| 7214 | // We don't handle this case today; but we could, by considering four |
| 7215 | // possibilities below instead of two. I'm not sure if there are cases where |
| 7216 | // that will help over what getRange already does, though. |
| 7217 | return ConstantRange::getFull(BitWidth); |
| 7218 | } |
| 7219 | |
| 7220 | // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to |
| 7221 | // construct arbitrary general SCEV expressions here. This function is called |
| 7222 | // from deep in the call stack, and calling getSCEV (on a sext instruction, |
| 7223 | // say) can end up caching a suboptimal value. |
| 7224 | |
| 7225 | // FIXME: without the explicit `this` receiver below, MSVC errors out with |
| 7226 | // C2352 and C2512 (otherwise it isn't needed). |
| 7227 | |
| 7228 | const SCEV *TrueStart = this->getConstant(Val: StartPattern.TrueValue); |
| 7229 | const SCEV *TrueStep = this->getConstant(Val: StepPattern.TrueValue); |
| 7230 | const SCEV *FalseStart = this->getConstant(Val: StartPattern.FalseValue); |
| 7231 | const SCEV *FalseStep = this->getConstant(Val: StepPattern.FalseValue); |
| 7232 | |
| 7233 | ConstantRange TrueRange = |
| 7234 | this->getRangeForAffineAR(Start: TrueStart, Step: TrueStep, MaxBECount); |
| 7235 | ConstantRange FalseRange = |
| 7236 | this->getRangeForAffineAR(Start: FalseStart, Step: FalseStep, MaxBECount); |
| 7237 | |
| 7238 | return TrueRange.unionWith(CR: FalseRange); |
| 7239 | } |
| 7240 | |
| 7241 | SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { |
| 7242 | if (isa<ConstantExpr>(Val: V)) return SCEV::FlagAnyWrap; |
| 7243 | const BinaryOperator *BinOp = cast<BinaryOperator>(Val: V); |
| 7244 | |
| 7245 | // Return early if there are no flags to propagate to the SCEV. |
| 7246 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; |
| 7247 | if (BinOp->hasNoUnsignedWrap()) |
| 7248 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW); |
| 7249 | if (BinOp->hasNoSignedWrap()) |
| 7250 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNSW); |
| 7251 | if (Flags == SCEV::FlagAnyWrap) |
| 7252 | return SCEV::FlagAnyWrap; |
| 7253 | |
| 7254 | return isSCEVExprNeverPoison(I: BinOp) ? Flags : SCEV::FlagAnyWrap; |
| 7255 | } |
| 7256 | |
| 7257 | const Instruction * |
| 7258 | ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { |
| 7259 | if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: S)) |
| 7260 | return &*AddRec->getLoop()->getHeader()->begin(); |
| 7261 | if (auto *U = dyn_cast<SCEVUnknown>(Val: S)) |
| 7262 | if (auto *I = dyn_cast<Instruction>(Val: U->getValue())) |
| 7263 | return I; |
| 7264 | return nullptr; |
| 7265 | } |
| 7266 | |
| 7267 | const Instruction * |
| 7268 | ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, |
| 7269 | bool &Precise) { |
| 7270 | Precise = true; |
| 7271 | // Do a bounded search of the def relation of the requested SCEVs. |
| 7272 | SmallSet<const SCEV *, 16> Visited; |
| 7273 | SmallVector<const SCEV *> Worklist; |
| 7274 | auto pushOp = [&](const SCEV *S) { |
| 7275 | if (!Visited.insert(Ptr: S).second) |
| 7276 | return; |
| 7277 | // Threshold of 30 here is arbitrary. |
| 7278 | if (Visited.size() > 30) { |
| 7279 | Precise = false; |
| 7280 | return; |
| 7281 | } |
| 7282 | Worklist.push_back(Elt: S); |
| 7283 | }; |
| 7284 | |
| 7285 | for (const auto *S : Ops) |
| 7286 | pushOp(S); |
| 7287 | |
| 7288 | const Instruction *Bound = nullptr; |
| 7289 | while (!Worklist.empty()) { |
| 7290 | auto *S = Worklist.pop_back_val(); |
| 7291 | if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { |
| 7292 | if (!Bound || DT.dominates(Def: Bound, User: DefI)) |
| 7293 | Bound = DefI; |
| 7294 | } else { |
| 7295 | for (const auto *Op : S->operands()) |
| 7296 | pushOp(Op); |
| 7297 | } |
| 7298 | } |
| 7299 | return Bound ? Bound : &*F.getEntryBlock().begin(); |
| 7300 | } |
| 7301 | |
| 7302 | const Instruction * |
| 7303 | ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { |
| 7304 | bool Discard; |
| 7305 | return getDefiningScopeBound(Ops, Precise&: Discard); |
| 7306 | } |
| 7307 | |
| 7308 | bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, |
| 7309 | const Instruction *B) { |
| 7310 | if (A->getParent() == B->getParent() && |
| 7311 | isGuaranteedToTransferExecutionToSuccessor(Begin: A->getIterator(), |
| 7312 | End: B->getIterator())) |
| 7313 | return true; |
| 7314 | |
| 7315 | auto *BLoop = LI.getLoopFor(BB: B->getParent()); |
| 7316 | if (BLoop && BLoop->getHeader() == B->getParent() && |
| 7317 | BLoop->getLoopPreheader() == A->getParent() && |
| 7318 | isGuaranteedToTransferExecutionToSuccessor(Begin: A->getIterator(), |
| 7319 | End: A->getParent()->end()) && |
| 7320 | isGuaranteedToTransferExecutionToSuccessor(Begin: B->getParent()->begin(), |
| 7321 | End: B->getIterator())) |
| 7322 | return true; |
| 7323 | return false; |
| 7324 | } |
| 7325 | |
| 7326 | bool ScalarEvolution::isGuaranteedNotToBePoison(const SCEV *Op) { |
| 7327 | SCEVPoisonCollector PC(/* LookThroughMaybePoisonBlocking */ true); |
| 7328 | visitAll(Root: Op, Visitor&: PC); |
| 7329 | return PC.MaybePoison.empty(); |
| 7330 | } |
| 7331 | |
| 7332 | bool ScalarEvolution::isGuaranteedNotToCauseUB(const SCEV *Op) { |
| 7333 | return !SCEVExprContains(Root: Op, Pred: [this](const SCEV *S) { |
| 7334 | const SCEV *Op1; |
| 7335 | bool M = match(S, P: m_scev_UDiv(Op0: m_SCEV(), Op1: m_SCEV(V&: Op1))); |
| 7336 | // The UDiv may be UB if the divisor is poison or zero. Unless the divisor |
| 7337 | // is a non-zero constant, we have to assume the UDiv may be UB. |
| 7338 | return M && (!isKnownNonZero(S: Op1) || !isGuaranteedNotToBePoison(Op: Op1)); |
| 7339 | }); |
| 7340 | } |
| 7341 | |
| 7342 | bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { |
| 7343 | // Only proceed if we can prove that I does not yield poison. |
| 7344 | if (!programUndefinedIfPoison(Inst: I)) |
| 7345 | return false; |
| 7346 | |
| 7347 | // At this point we know that if I is executed, then it does not wrap |
| 7348 | // according to at least one of NSW or NUW. If I is not executed, then we do |
| 7349 | // not know if the calculation that I represents would wrap. Multiple |
| 7350 | // instructions can map to the same SCEV. If we apply NSW or NUW from I to |
| 7351 | // the SCEV, we must guarantee no wrapping for that SCEV also when it is |
| 7352 | // derived from other instructions that map to the same SCEV. We cannot make |
| 7353 | // that guarantee for cases where I is not executed. So we need to find a |
| 7354 | // upper bound on the defining scope for the SCEV, and prove that I is |
| 7355 | // executed every time we enter that scope. When the bounding scope is a |
| 7356 | // loop (the common case), this is equivalent to proving I executes on every |
| 7357 | // iteration of that loop. |
| 7358 | SmallVector<const SCEV *> SCEVOps; |
| 7359 | for (const Use &Op : I->operands()) { |
| 7360 | // I could be an extractvalue from a call to an overflow intrinsic. |
| 7361 | // TODO: We can do better here in some cases. |
| 7362 | if (isSCEVable(Ty: Op->getType())) |
| 7363 | SCEVOps.push_back(Elt: getSCEV(V: Op)); |
| 7364 | } |
| 7365 | auto *DefI = getDefiningScopeBound(Ops: SCEVOps); |
| 7366 | return isGuaranteedToTransferExecutionTo(A: DefI, B: I); |
| 7367 | } |
| 7368 | |
| 7369 | bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { |
| 7370 | // If we know that \c I can never be poison period, then that's enough. |
| 7371 | if (isSCEVExprNeverPoison(I)) |
| 7372 | return true; |
| 7373 | |
| 7374 | // If the loop only has one exit, then we know that, if the loop is entered, |
| 7375 | // any instruction dominating that exit will be executed. If any such |
| 7376 | // instruction would result in UB, the addrec cannot be poison. |
| 7377 | // |
| 7378 | // This is basically the same reasoning as in isSCEVExprNeverPoison(), but |
| 7379 | // also handles uses outside the loop header (they just need to dominate the |
| 7380 | // single exit). |
| 7381 | |
| 7382 | auto *ExitingBB = L->getExitingBlock(); |
| 7383 | if (!ExitingBB || !loopHasNoAbnormalExits(L)) |
| 7384 | return false; |
| 7385 | |
| 7386 | SmallPtrSet<const Value *, 16> KnownPoison; |
| 7387 | SmallVector<const Instruction *, 8> Worklist; |
| 7388 | |
| 7389 | // We start by assuming \c I, the post-inc add recurrence, is poison. Only |
| 7390 | // things that are known to be poison under that assumption go on the |
| 7391 | // Worklist. |
| 7392 | KnownPoison.insert(Ptr: I); |
| 7393 | Worklist.push_back(Elt: I); |
| 7394 | |
| 7395 | while (!Worklist.empty()) { |
| 7396 | const Instruction *Poison = Worklist.pop_back_val(); |
| 7397 | |
| 7398 | for (const Use &U : Poison->uses()) { |
| 7399 | const Instruction *PoisonUser = cast<Instruction>(Val: U.getUser()); |
| 7400 | if (mustTriggerUB(I: PoisonUser, KnownPoison) && |
| 7401 | DT.dominates(A: PoisonUser->getParent(), B: ExitingBB)) |
| 7402 | return true; |
| 7403 | |
| 7404 | if (propagatesPoison(PoisonOp: U) && L->contains(Inst: PoisonUser)) |
| 7405 | if (KnownPoison.insert(Ptr: PoisonUser).second) |
| 7406 | Worklist.push_back(Elt: PoisonUser); |
| 7407 | } |
| 7408 | } |
| 7409 | |
| 7410 | return false; |
| 7411 | } |
| 7412 | |
| 7413 | ScalarEvolution::LoopProperties |
| 7414 | ScalarEvolution::getLoopProperties(const Loop *L) { |
| 7415 | using LoopProperties = ScalarEvolution::LoopProperties; |
| 7416 | |
| 7417 | auto Itr = LoopPropertiesCache.find(Val: L); |
| 7418 | if (Itr == LoopPropertiesCache.end()) { |
| 7419 | auto HasSideEffects = [](Instruction *I) { |
| 7420 | if (auto *SI = dyn_cast<StoreInst>(Val: I)) |
| 7421 | return !SI->isSimple(); |
| 7422 | |
| 7423 | return I->mayThrow() || I->mayWriteToMemory(); |
| 7424 | }; |
| 7425 | |
| 7426 | LoopProperties LP = {/* HasNoAbnormalExits */ true, |
| 7427 | /*HasNoSideEffects*/ true}; |
| 7428 | |
| 7429 | for (auto *BB : L->getBlocks()) |
| 7430 | for (auto &I : *BB) { |
| 7431 | if (!isGuaranteedToTransferExecutionToSuccessor(I: &I)) |
| 7432 | LP.HasNoAbnormalExits = false; |
| 7433 | if (HasSideEffects(&I)) |
| 7434 | LP.HasNoSideEffects = false; |
| 7435 | if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) |
| 7436 | break; // We're already as pessimistic as we can get. |
| 7437 | } |
| 7438 | |
| 7439 | auto InsertPair = LoopPropertiesCache.insert(KV: {L, LP}); |
| 7440 | assert(InsertPair.second && "We just checked!" ); |
| 7441 | Itr = InsertPair.first; |
| 7442 | } |
| 7443 | |
| 7444 | return Itr->second; |
| 7445 | } |
| 7446 | |
| 7447 | bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { |
| 7448 | // A mustprogress loop without side effects must be finite. |
| 7449 | // TODO: The check used here is very conservative. It's only *specific* |
| 7450 | // side effects which are well defined in infinite loops. |
| 7451 | return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); |
| 7452 | } |
| 7453 | |
| 7454 | const SCEV *ScalarEvolution::createSCEVIter(Value *V) { |
| 7455 | // Worklist item with a Value and a bool indicating whether all operands have |
| 7456 | // been visited already. |
| 7457 | using PointerTy = PointerIntPair<Value *, 1, bool>; |
| 7458 | SmallVector<PointerTy> Stack; |
| 7459 | |
| 7460 | Stack.emplace_back(Args&: V, Args: true); |
| 7461 | Stack.emplace_back(Args&: V, Args: false); |
| 7462 | while (!Stack.empty()) { |
| 7463 | auto E = Stack.pop_back_val(); |
| 7464 | Value *CurV = E.getPointer(); |
| 7465 | |
| 7466 | if (getExistingSCEV(V: CurV)) |
| 7467 | continue; |
| 7468 | |
| 7469 | SmallVector<Value *> Ops; |
| 7470 | const SCEV *CreatedSCEV = nullptr; |
| 7471 | // If all operands have been visited already, create the SCEV. |
| 7472 | if (E.getInt()) { |
| 7473 | CreatedSCEV = createSCEV(V: CurV); |
| 7474 | } else { |
| 7475 | // Otherwise get the operands we need to create SCEV's for before creating |
| 7476 | // the SCEV for CurV. If the SCEV for CurV can be constructed trivially, |
| 7477 | // just use it. |
| 7478 | CreatedSCEV = getOperandsToCreate(V: CurV, Ops); |
| 7479 | } |
| 7480 | |
| 7481 | if (CreatedSCEV) { |
| 7482 | insertValueToMap(V: CurV, S: CreatedSCEV); |
| 7483 | } else { |
| 7484 | // Queue CurV for SCEV creation, followed by its's operands which need to |
| 7485 | // be constructed first. |
| 7486 | Stack.emplace_back(Args&: CurV, Args: true); |
| 7487 | for (Value *Op : Ops) |
| 7488 | Stack.emplace_back(Args&: Op, Args: false); |
| 7489 | } |
| 7490 | } |
| 7491 | |
| 7492 | return getExistingSCEV(V); |
| 7493 | } |
| 7494 | |
| 7495 | const SCEV * |
| 7496 | ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) { |
| 7497 | if (!isSCEVable(Ty: V->getType())) |
| 7498 | return getUnknown(V); |
| 7499 | |
| 7500 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) { |
| 7501 | // Don't attempt to analyze instructions in blocks that aren't |
| 7502 | // reachable. Such instructions don't matter, and they aren't required |
| 7503 | // to obey basic rules for definitions dominating uses which this |
| 7504 | // analysis depends on. |
| 7505 | if (!DT.isReachableFromEntry(A: I->getParent())) |
| 7506 | return getUnknown(V: PoisonValue::get(T: V->getType())); |
| 7507 | } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) |
| 7508 | return getConstant(V: CI); |
| 7509 | else if (isa<GlobalAlias>(Val: V)) |
| 7510 | return getUnknown(V); |
| 7511 | else if (!isa<ConstantExpr>(Val: V)) |
| 7512 | return getUnknown(V); |
| 7513 | |
| 7514 | Operator *U = cast<Operator>(Val: V); |
| 7515 | if (auto BO = |
| 7516 | MatchBinaryOp(V: U, DL: getDataLayout(), AC, DT, CxtI: dyn_cast<Instruction>(Val: V))) { |
| 7517 | bool IsConstArg = isa<ConstantInt>(Val: BO->RHS); |
| 7518 | switch (BO->Opcode) { |
| 7519 | case Instruction::Add: |
| 7520 | case Instruction::Mul: { |
| 7521 | // For additions and multiplications, traverse add/mul chains for which we |
| 7522 | // can potentially create a single SCEV, to reduce the number of |
| 7523 | // get{Add,Mul}Expr calls. |
| 7524 | do { |
| 7525 | if (BO->Op) { |
| 7526 | if (BO->Op != V && getExistingSCEV(V: BO->Op)) { |
| 7527 | Ops.push_back(Elt: BO->Op); |
| 7528 | break; |
| 7529 | } |
| 7530 | } |
| 7531 | Ops.push_back(Elt: BO->RHS); |
| 7532 | auto NewBO = MatchBinaryOp(V: BO->LHS, DL: getDataLayout(), AC, DT, |
| 7533 | CxtI: dyn_cast<Instruction>(Val: V)); |
| 7534 | if (!NewBO || |
| 7535 | (BO->Opcode == Instruction::Add && |
| 7536 | (NewBO->Opcode != Instruction::Add && |
| 7537 | NewBO->Opcode != Instruction::Sub)) || |
| 7538 | (BO->Opcode == Instruction::Mul && |
| 7539 | NewBO->Opcode != Instruction::Mul)) { |
| 7540 | Ops.push_back(Elt: BO->LHS); |
| 7541 | break; |
| 7542 | } |
| 7543 | // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions |
| 7544 | // requires a SCEV for the LHS. |
| 7545 | if (BO->Op && (BO->IsNSW || BO->IsNUW)) { |
| 7546 | auto *I = dyn_cast<Instruction>(Val: BO->Op); |
| 7547 | if (I && programUndefinedIfPoison(Inst: I)) { |
| 7548 | Ops.push_back(Elt: BO->LHS); |
| 7549 | break; |
| 7550 | } |
| 7551 | } |
| 7552 | BO = NewBO; |
| 7553 | } while (true); |
| 7554 | return nullptr; |
| 7555 | } |
| 7556 | case Instruction::Sub: |
| 7557 | case Instruction::UDiv: |
| 7558 | case Instruction::URem: |
| 7559 | break; |
| 7560 | case Instruction::AShr: |
| 7561 | case Instruction::Shl: |
| 7562 | case Instruction::Xor: |
| 7563 | if (!IsConstArg) |
| 7564 | return nullptr; |
| 7565 | break; |
| 7566 | case Instruction::And: |
| 7567 | case Instruction::Or: |
| 7568 | if (!IsConstArg && !BO->LHS->getType()->isIntegerTy(Bitwidth: 1)) |
| 7569 | return nullptr; |
| 7570 | break; |
| 7571 | case Instruction::LShr: |
| 7572 | return getUnknown(V); |
| 7573 | default: |
| 7574 | llvm_unreachable("Unhandled binop" ); |
| 7575 | break; |
| 7576 | } |
| 7577 | |
| 7578 | Ops.push_back(Elt: BO->LHS); |
| 7579 | Ops.push_back(Elt: BO->RHS); |
| 7580 | return nullptr; |
| 7581 | } |
| 7582 | |
| 7583 | switch (U->getOpcode()) { |
| 7584 | case Instruction::Trunc: |
| 7585 | case Instruction::ZExt: |
| 7586 | case Instruction::SExt: |
| 7587 | case Instruction::PtrToInt: |
| 7588 | Ops.push_back(Elt: U->getOperand(i: 0)); |
| 7589 | return nullptr; |
| 7590 | |
| 7591 | case Instruction::BitCast: |
| 7592 | if (isSCEVable(Ty: U->getType()) && isSCEVable(Ty: U->getOperand(i: 0)->getType())) { |
| 7593 | Ops.push_back(Elt: U->getOperand(i: 0)); |
| 7594 | return nullptr; |
| 7595 | } |
| 7596 | return getUnknown(V); |
| 7597 | |
| 7598 | case Instruction::SDiv: |
| 7599 | case Instruction::SRem: |
| 7600 | Ops.push_back(Elt: U->getOperand(i: 0)); |
| 7601 | Ops.push_back(Elt: U->getOperand(i: 1)); |
| 7602 | return nullptr; |
| 7603 | |
| 7604 | case Instruction::GetElementPtr: |
| 7605 | assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() && |
| 7606 | "GEP source element type must be sized" ); |
| 7607 | llvm::append_range(C&: Ops, R: U->operands()); |
| 7608 | return nullptr; |
| 7609 | |
| 7610 | case Instruction::IntToPtr: |
| 7611 | return getUnknown(V); |
| 7612 | |
| 7613 | case Instruction::PHI: |
| 7614 | // Keep constructing SCEVs' for phis recursively for now. |
| 7615 | return nullptr; |
| 7616 | |
| 7617 | case Instruction::Select: { |
| 7618 | // Check if U is a select that can be simplified to a SCEVUnknown. |
| 7619 | auto CanSimplifyToUnknown = [this, U]() { |
| 7620 | if (U->getType()->isIntegerTy(Bitwidth: 1) || isa<ConstantInt>(Val: U->getOperand(i: 0))) |
| 7621 | return false; |
| 7622 | |
| 7623 | auto *ICI = dyn_cast<ICmpInst>(Val: U->getOperand(i: 0)); |
| 7624 | if (!ICI) |
| 7625 | return false; |
| 7626 | Value *LHS = ICI->getOperand(i_nocapture: 0); |
| 7627 | Value *RHS = ICI->getOperand(i_nocapture: 1); |
| 7628 | if (ICI->getPredicate() == CmpInst::ICMP_EQ || |
| 7629 | ICI->getPredicate() == CmpInst::ICMP_NE) { |
| 7630 | if (!(isa<ConstantInt>(Val: RHS) && cast<ConstantInt>(Val: RHS)->isZero())) |
| 7631 | return true; |
| 7632 | } else if (getTypeSizeInBits(Ty: LHS->getType()) > |
| 7633 | getTypeSizeInBits(Ty: U->getType())) |
| 7634 | return true; |
| 7635 | return false; |
| 7636 | }; |
| 7637 | if (CanSimplifyToUnknown()) |
| 7638 | return getUnknown(V: U); |
| 7639 | |
| 7640 | llvm::append_range(C&: Ops, R: U->operands()); |
| 7641 | return nullptr; |
| 7642 | break; |
| 7643 | } |
| 7644 | case Instruction::Call: |
| 7645 | case Instruction::Invoke: |
| 7646 | if (Value *RV = cast<CallBase>(Val: U)->getReturnedArgOperand()) { |
| 7647 | Ops.push_back(Elt: RV); |
| 7648 | return nullptr; |
| 7649 | } |
| 7650 | |
| 7651 | if (auto *II = dyn_cast<IntrinsicInst>(Val: U)) { |
| 7652 | switch (II->getIntrinsicID()) { |
| 7653 | case Intrinsic::abs: |
| 7654 | Ops.push_back(Elt: II->getArgOperand(i: 0)); |
| 7655 | return nullptr; |
| 7656 | case Intrinsic::umax: |
| 7657 | case Intrinsic::umin: |
| 7658 | case Intrinsic::smax: |
| 7659 | case Intrinsic::smin: |
| 7660 | case Intrinsic::usub_sat: |
| 7661 | case Intrinsic::uadd_sat: |
| 7662 | Ops.push_back(Elt: II->getArgOperand(i: 0)); |
| 7663 | Ops.push_back(Elt: II->getArgOperand(i: 1)); |
| 7664 | return nullptr; |
| 7665 | case Intrinsic::start_loop_iterations: |
| 7666 | case Intrinsic::annotation: |
| 7667 | case Intrinsic::ptr_annotation: |
| 7668 | Ops.push_back(Elt: II->getArgOperand(i: 0)); |
| 7669 | return nullptr; |
| 7670 | default: |
| 7671 | break; |
| 7672 | } |
| 7673 | } |
| 7674 | break; |
| 7675 | } |
| 7676 | |
| 7677 | return nullptr; |
| 7678 | } |
| 7679 | |
| 7680 | const SCEV *ScalarEvolution::createSCEV(Value *V) { |
| 7681 | if (!isSCEVable(Ty: V->getType())) |
| 7682 | return getUnknown(V); |
| 7683 | |
| 7684 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) { |
| 7685 | // Don't attempt to analyze instructions in blocks that aren't |
| 7686 | // reachable. Such instructions don't matter, and they aren't required |
| 7687 | // to obey basic rules for definitions dominating uses which this |
| 7688 | // analysis depends on. |
| 7689 | if (!DT.isReachableFromEntry(A: I->getParent())) |
| 7690 | return getUnknown(V: PoisonValue::get(T: V->getType())); |
| 7691 | } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) |
| 7692 | return getConstant(V: CI); |
| 7693 | else if (isa<GlobalAlias>(Val: V)) |
| 7694 | return getUnknown(V); |
| 7695 | else if (!isa<ConstantExpr>(Val: V)) |
| 7696 | return getUnknown(V); |
| 7697 | |
| 7698 | const SCEV *LHS; |
| 7699 | const SCEV *RHS; |
| 7700 | |
| 7701 | Operator *U = cast<Operator>(Val: V); |
| 7702 | if (auto BO = |
| 7703 | MatchBinaryOp(V: U, DL: getDataLayout(), AC, DT, CxtI: dyn_cast<Instruction>(Val: V))) { |
| 7704 | switch (BO->Opcode) { |
| 7705 | case Instruction::Add: { |
| 7706 | // The simple thing to do would be to just call getSCEV on both operands |
| 7707 | // and call getAddExpr with the result. However if we're looking at a |
| 7708 | // bunch of things all added together, this can be quite inefficient, |
| 7709 | // because it leads to N-1 getAddExpr calls for N ultimate operands. |
| 7710 | // Instead, gather up all the operands and make a single getAddExpr call. |
| 7711 | // LLVM IR canonical form means we need only traverse the left operands. |
| 7712 | SmallVector<const SCEV *, 4> AddOps; |
| 7713 | do { |
| 7714 | if (BO->Op) { |
| 7715 | if (auto *OpSCEV = getExistingSCEV(V: BO->Op)) { |
| 7716 | AddOps.push_back(Elt: OpSCEV); |
| 7717 | break; |
| 7718 | } |
| 7719 | |
| 7720 | // If a NUW or NSW flag can be applied to the SCEV for this |
| 7721 | // addition, then compute the SCEV for this addition by itself |
| 7722 | // with a separate call to getAddExpr. We need to do that |
| 7723 | // instead of pushing the operands of the addition onto AddOps, |
| 7724 | // since the flags are only known to apply to this particular |
| 7725 | // addition - they may not apply to other additions that can be |
| 7726 | // formed with operands from AddOps. |
| 7727 | const SCEV *RHS = getSCEV(V: BO->RHS); |
| 7728 | SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(V: BO->Op); |
| 7729 | if (Flags != SCEV::FlagAnyWrap) { |
| 7730 | const SCEV *LHS = getSCEV(V: BO->LHS); |
| 7731 | if (BO->Opcode == Instruction::Sub) |
| 7732 | AddOps.push_back(Elt: getMinusSCEV(LHS, RHS, Flags)); |
| 7733 | else |
| 7734 | AddOps.push_back(Elt: getAddExpr(LHS, RHS, Flags)); |
| 7735 | break; |
| 7736 | } |
| 7737 | } |
| 7738 | |
| 7739 | if (BO->Opcode == Instruction::Sub) |
| 7740 | AddOps.push_back(Elt: getNegativeSCEV(V: getSCEV(V: BO->RHS))); |
| 7741 | else |
| 7742 | AddOps.push_back(Elt: getSCEV(V: BO->RHS)); |
| 7743 | |
| 7744 | auto NewBO = MatchBinaryOp(V: BO->LHS, DL: getDataLayout(), AC, DT, |
| 7745 | CxtI: dyn_cast<Instruction>(Val: V)); |
| 7746 | if (!NewBO || (NewBO->Opcode != Instruction::Add && |
| 7747 | NewBO->Opcode != Instruction::Sub)) { |
| 7748 | AddOps.push_back(Elt: getSCEV(V: BO->LHS)); |
| 7749 | break; |
| 7750 | } |
| 7751 | BO = NewBO; |
| 7752 | } while (true); |
| 7753 | |
| 7754 | return getAddExpr(Ops&: AddOps); |
| 7755 | } |
| 7756 | |
| 7757 | case Instruction::Mul: { |
| 7758 | SmallVector<const SCEV *, 4> MulOps; |
| 7759 | do { |
| 7760 | if (BO->Op) { |
| 7761 | if (auto *OpSCEV = getExistingSCEV(V: BO->Op)) { |
| 7762 | MulOps.push_back(Elt: OpSCEV); |
| 7763 | break; |
| 7764 | } |
| 7765 | |
| 7766 | SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(V: BO->Op); |
| 7767 | if (Flags != SCEV::FlagAnyWrap) { |
| 7768 | LHS = getSCEV(V: BO->LHS); |
| 7769 | RHS = getSCEV(V: BO->RHS); |
| 7770 | MulOps.push_back(Elt: getMulExpr(LHS, RHS, Flags)); |
| 7771 | break; |
| 7772 | } |
| 7773 | } |
| 7774 | |
| 7775 | MulOps.push_back(Elt: getSCEV(V: BO->RHS)); |
| 7776 | auto NewBO = MatchBinaryOp(V: BO->LHS, DL: getDataLayout(), AC, DT, |
| 7777 | CxtI: dyn_cast<Instruction>(Val: V)); |
| 7778 | if (!NewBO || NewBO->Opcode != Instruction::Mul) { |
| 7779 | MulOps.push_back(Elt: getSCEV(V: BO->LHS)); |
| 7780 | break; |
| 7781 | } |
| 7782 | BO = NewBO; |
| 7783 | } while (true); |
| 7784 | |
| 7785 | return getMulExpr(Ops&: MulOps); |
| 7786 | } |
| 7787 | case Instruction::UDiv: |
| 7788 | LHS = getSCEV(V: BO->LHS); |
| 7789 | RHS = getSCEV(V: BO->RHS); |
| 7790 | return getUDivExpr(LHS, RHS); |
| 7791 | case Instruction::URem: |
| 7792 | LHS = getSCEV(V: BO->LHS); |
| 7793 | RHS = getSCEV(V: BO->RHS); |
| 7794 | return getURemExpr(LHS, RHS); |
| 7795 | case Instruction::Sub: { |
| 7796 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; |
| 7797 | if (BO->Op) |
| 7798 | Flags = getNoWrapFlagsFromUB(V: BO->Op); |
| 7799 | LHS = getSCEV(V: BO->LHS); |
| 7800 | RHS = getSCEV(V: BO->RHS); |
| 7801 | return getMinusSCEV(LHS, RHS, Flags); |
| 7802 | } |
| 7803 | case Instruction::And: |
| 7804 | // For an expression like x&255 that merely masks off the high bits, |
| 7805 | // use zext(trunc(x)) as the SCEV expression. |
| 7806 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: BO->RHS)) { |
| 7807 | if (CI->isZero()) |
| 7808 | return getSCEV(V: BO->RHS); |
| 7809 | if (CI->isMinusOne()) |
| 7810 | return getSCEV(V: BO->LHS); |
| 7811 | const APInt &A = CI->getValue(); |
| 7812 | |
| 7813 | // Instcombine's ShrinkDemandedConstant may strip bits out of |
| 7814 | // constants, obscuring what would otherwise be a low-bits mask. |
| 7815 | // Use computeKnownBits to compute what ShrinkDemandedConstant |
| 7816 | // knew about to reconstruct a low-bits mask value. |
| 7817 | unsigned LZ = A.countl_zero(); |
| 7818 | unsigned TZ = A.countr_zero(); |
| 7819 | unsigned BitWidth = A.getBitWidth(); |
| 7820 | KnownBits Known(BitWidth); |
| 7821 | computeKnownBits(V: BO->LHS, Known, DL: getDataLayout(), AC: &AC, CxtI: nullptr, DT: &DT); |
| 7822 | |
| 7823 | APInt EffectiveMask = |
| 7824 | APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: BitWidth - LZ - TZ).shl(shiftAmt: TZ); |
| 7825 | if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { |
| 7826 | const SCEV *MulCount = getConstant(Val: APInt::getOneBitSet(numBits: BitWidth, BitNo: TZ)); |
| 7827 | const SCEV *LHS = getSCEV(V: BO->LHS); |
| 7828 | const SCEV *ShiftedLHS = nullptr; |
| 7829 | if (auto *LHSMul = dyn_cast<SCEVMulExpr>(Val: LHS)) { |
| 7830 | if (auto *OpC = dyn_cast<SCEVConstant>(Val: LHSMul->getOperand(i: 0))) { |
| 7831 | // For an expression like (x * 8) & 8, simplify the multiply. |
| 7832 | unsigned MulZeros = OpC->getAPInt().countr_zero(); |
| 7833 | unsigned GCD = std::min(a: MulZeros, b: TZ); |
| 7834 | APInt DivAmt = APInt::getOneBitSet(numBits: BitWidth, BitNo: TZ - GCD); |
| 7835 | SmallVector<const SCEV*, 4> MulOps; |
| 7836 | MulOps.push_back(Elt: getConstant(Val: OpC->getAPInt().ashr(ShiftAmt: GCD))); |
| 7837 | append_range(C&: MulOps, R: LHSMul->operands().drop_front()); |
| 7838 | auto *NewMul = getMulExpr(Ops&: MulOps, OrigFlags: LHSMul->getNoWrapFlags()); |
| 7839 | ShiftedLHS = getUDivExpr(LHS: NewMul, RHS: getConstant(Val: DivAmt)); |
| 7840 | } |
| 7841 | } |
| 7842 | if (!ShiftedLHS) |
| 7843 | ShiftedLHS = getUDivExpr(LHS, RHS: MulCount); |
| 7844 | return getMulExpr( |
| 7845 | LHS: getZeroExtendExpr( |
| 7846 | Op: getTruncateExpr(Op: ShiftedLHS, |
| 7847 | Ty: IntegerType::get(C&: getContext(), NumBits: BitWidth - LZ - TZ)), |
| 7848 | Ty: BO->LHS->getType()), |
| 7849 | RHS: MulCount); |
| 7850 | } |
| 7851 | } |
| 7852 | // Binary `and` is a bit-wise `umin`. |
| 7853 | if (BO->LHS->getType()->isIntegerTy(Bitwidth: 1)) { |
| 7854 | LHS = getSCEV(V: BO->LHS); |
| 7855 | RHS = getSCEV(V: BO->RHS); |
| 7856 | return getUMinExpr(LHS, RHS); |
| 7857 | } |
| 7858 | break; |
| 7859 | |
| 7860 | case Instruction::Or: |
| 7861 | // Binary `or` is a bit-wise `umax`. |
| 7862 | if (BO->LHS->getType()->isIntegerTy(Bitwidth: 1)) { |
| 7863 | LHS = getSCEV(V: BO->LHS); |
| 7864 | RHS = getSCEV(V: BO->RHS); |
| 7865 | return getUMaxExpr(LHS, RHS); |
| 7866 | } |
| 7867 | break; |
| 7868 | |
| 7869 | case Instruction::Xor: |
| 7870 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: BO->RHS)) { |
| 7871 | // If the RHS of xor is -1, then this is a not operation. |
| 7872 | if (CI->isMinusOne()) |
| 7873 | return getNotSCEV(V: getSCEV(V: BO->LHS)); |
| 7874 | |
| 7875 | // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. |
| 7876 | // This is a variant of the check for xor with -1, and it handles |
| 7877 | // the case where instcombine has trimmed non-demanded bits out |
| 7878 | // of an xor with -1. |
| 7879 | if (auto *LBO = dyn_cast<BinaryOperator>(Val: BO->LHS)) |
| 7880 | if (ConstantInt *LCI = dyn_cast<ConstantInt>(Val: LBO->getOperand(i_nocapture: 1))) |
| 7881 | if (LBO->getOpcode() == Instruction::And && |
| 7882 | LCI->getValue() == CI->getValue()) |
| 7883 | if (const SCEVZeroExtendExpr *Z = |
| 7884 | dyn_cast<SCEVZeroExtendExpr>(Val: getSCEV(V: BO->LHS))) { |
| 7885 | Type *UTy = BO->LHS->getType(); |
| 7886 | const SCEV *Z0 = Z->getOperand(); |
| 7887 | Type *Z0Ty = Z0->getType(); |
| 7888 | unsigned Z0TySize = getTypeSizeInBits(Ty: Z0Ty); |
| 7889 | |
| 7890 | // If C is a low-bits mask, the zero extend is serving to |
| 7891 | // mask off the high bits. Complement the operand and |
| 7892 | // re-apply the zext. |
| 7893 | if (CI->getValue().isMask(numBits: Z0TySize)) |
| 7894 | return getZeroExtendExpr(Op: getNotSCEV(V: Z0), Ty: UTy); |
| 7895 | |
| 7896 | // If C is a single bit, it may be in the sign-bit position |
| 7897 | // before the zero-extend. In this case, represent the xor |
| 7898 | // using an add, which is equivalent, and re-apply the zext. |
| 7899 | APInt Trunc = CI->getValue().trunc(width: Z0TySize); |
| 7900 | if (Trunc.zext(width: getTypeSizeInBits(Ty: UTy)) == CI->getValue() && |
| 7901 | Trunc.isSignMask()) |
| 7902 | return getZeroExtendExpr(Op: getAddExpr(LHS: Z0, RHS: getConstant(Val: Trunc)), |
| 7903 | Ty: UTy); |
| 7904 | } |
| 7905 | } |
| 7906 | break; |
| 7907 | |
| 7908 | case Instruction::Shl: |
| 7909 | // Turn shift left of a constant amount into a multiply. |
| 7910 | if (ConstantInt *SA = dyn_cast<ConstantInt>(Val: BO->RHS)) { |
| 7911 | uint32_t BitWidth = cast<IntegerType>(Val: SA->getType())->getBitWidth(); |
| 7912 | |
| 7913 | // If the shift count is not less than the bitwidth, the result of |
| 7914 | // the shift is undefined. Don't try to analyze it, because the |
| 7915 | // resolution chosen here may differ from the resolution chosen in |
| 7916 | // other parts of the compiler. |
| 7917 | if (SA->getValue().uge(RHS: BitWidth)) |
| 7918 | break; |
| 7919 | |
| 7920 | // We can safely preserve the nuw flag in all cases. It's also safe to |
| 7921 | // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation |
| 7922 | // requires special handling. It can be preserved as long as we're not |
| 7923 | // left shifting by bitwidth - 1. |
| 7924 | auto Flags = SCEV::FlagAnyWrap; |
| 7925 | if (BO->Op) { |
| 7926 | auto MulFlags = getNoWrapFlagsFromUB(V: BO->Op); |
| 7927 | if ((MulFlags & SCEV::FlagNSW) && |
| 7928 | ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(RHS: BitWidth - 1))) |
| 7929 | Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); |
| 7930 | if (MulFlags & SCEV::FlagNUW) |
| 7931 | Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); |
| 7932 | } |
| 7933 | |
| 7934 | ConstantInt *X = ConstantInt::get( |
| 7935 | Context&: getContext(), V: APInt::getOneBitSet(numBits: BitWidth, BitNo: SA->getZExtValue())); |
| 7936 | return getMulExpr(LHS: getSCEV(V: BO->LHS), RHS: getConstant(V: X), Flags); |
| 7937 | } |
| 7938 | break; |
| 7939 | |
| 7940 | case Instruction::AShr: |
| 7941 | // AShr X, C, where C is a constant. |
| 7942 | ConstantInt *CI = dyn_cast<ConstantInt>(Val: BO->RHS); |
| 7943 | if (!CI) |
| 7944 | break; |
| 7945 | |
| 7946 | Type *OuterTy = BO->LHS->getType(); |
| 7947 | uint64_t BitWidth = getTypeSizeInBits(Ty: OuterTy); |
| 7948 | // If the shift count is not less than the bitwidth, the result of |
| 7949 | // the shift is undefined. Don't try to analyze it, because the |
| 7950 | // resolution chosen here may differ from the resolution chosen in |
| 7951 | // other parts of the compiler. |
| 7952 | if (CI->getValue().uge(RHS: BitWidth)) |
| 7953 | break; |
| 7954 | |
| 7955 | if (CI->isZero()) |
| 7956 | return getSCEV(V: BO->LHS); // shift by zero --> noop |
| 7957 | |
| 7958 | uint64_t AShrAmt = CI->getZExtValue(); |
| 7959 | Type *TruncTy = IntegerType::get(C&: getContext(), NumBits: BitWidth - AShrAmt); |
| 7960 | |
| 7961 | Operator *L = dyn_cast<Operator>(Val: BO->LHS); |
| 7962 | const SCEV *AddTruncateExpr = nullptr; |
| 7963 | ConstantInt *ShlAmtCI = nullptr; |
| 7964 | const SCEV *AddConstant = nullptr; |
| 7965 | |
| 7966 | if (L && L->getOpcode() == Instruction::Add) { |
| 7967 | // X = Shl A, n |
| 7968 | // Y = Add X, c |
| 7969 | // Z = AShr Y, m |
| 7970 | // n, c and m are constants. |
| 7971 | |
| 7972 | Operator *LShift = dyn_cast<Operator>(Val: L->getOperand(i: 0)); |
| 7973 | ConstantInt *AddOperandCI = dyn_cast<ConstantInt>(Val: L->getOperand(i: 1)); |
| 7974 | if (LShift && LShift->getOpcode() == Instruction::Shl) { |
| 7975 | if (AddOperandCI) { |
| 7976 | const SCEV *ShlOp0SCEV = getSCEV(V: LShift->getOperand(i: 0)); |
| 7977 | ShlAmtCI = dyn_cast<ConstantInt>(Val: LShift->getOperand(i: 1)); |
| 7978 | // since we truncate to TruncTy, the AddConstant should be of the |
| 7979 | // same type, so create a new Constant with type same as TruncTy. |
| 7980 | // Also, the Add constant should be shifted right by AShr amount. |
| 7981 | APInt AddOperand = AddOperandCI->getValue().ashr(ShiftAmt: AShrAmt); |
| 7982 | AddConstant = getConstant(Val: AddOperand.trunc(width: BitWidth - AShrAmt)); |
| 7983 | // we model the expression as sext(add(trunc(A), c << n)), since the |
| 7984 | // sext(trunc) part is already handled below, we create a |
| 7985 | // AddExpr(TruncExp) which will be used later. |
| 7986 | AddTruncateExpr = getTruncateExpr(Op: ShlOp0SCEV, Ty: TruncTy); |
| 7987 | } |
| 7988 | } |
| 7989 | } else if (L && L->getOpcode() == Instruction::Shl) { |
| 7990 | // X = Shl A, n |
| 7991 | // Y = AShr X, m |
| 7992 | // Both n and m are constant. |
| 7993 | |
| 7994 | const SCEV *ShlOp0SCEV = getSCEV(V: L->getOperand(i: 0)); |
| 7995 | ShlAmtCI = dyn_cast<ConstantInt>(Val: L->getOperand(i: 1)); |
| 7996 | AddTruncateExpr = getTruncateExpr(Op: ShlOp0SCEV, Ty: TruncTy); |
| 7997 | } |
| 7998 | |
| 7999 | if (AddTruncateExpr && ShlAmtCI) { |
| 8000 | // We can merge the two given cases into a single SCEV statement, |
| 8001 | // incase n = m, the mul expression will be 2^0, so it gets resolved to |
| 8002 | // a simpler case. The following code handles the two cases: |
| 8003 | // |
| 8004 | // 1) For a two-shift sext-inreg, i.e. n = m, |
| 8005 | // use sext(trunc(x)) as the SCEV expression. |
| 8006 | // |
| 8007 | // 2) When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV |
| 8008 | // expression. We already checked that ShlAmt < BitWidth, so |
| 8009 | // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as |
| 8010 | // ShlAmt - AShrAmt < Amt. |
| 8011 | const APInt &ShlAmt = ShlAmtCI->getValue(); |
| 8012 | if (ShlAmt.ult(RHS: BitWidth) && ShlAmt.uge(RHS: AShrAmt)) { |
| 8013 | APInt Mul = APInt::getOneBitSet(numBits: BitWidth - AShrAmt, |
| 8014 | BitNo: ShlAmtCI->getZExtValue() - AShrAmt); |
| 8015 | const SCEV *CompositeExpr = |
| 8016 | getMulExpr(LHS: AddTruncateExpr, RHS: getConstant(Val: Mul)); |
| 8017 | if (L->getOpcode() != Instruction::Shl) |
| 8018 | CompositeExpr = getAddExpr(LHS: CompositeExpr, RHS: AddConstant); |
| 8019 | |
| 8020 | return getSignExtendExpr(Op: CompositeExpr, Ty: OuterTy); |
| 8021 | } |
| 8022 | } |
| 8023 | break; |
| 8024 | } |
| 8025 | } |
| 8026 | |
| 8027 | switch (U->getOpcode()) { |
| 8028 | case Instruction::Trunc: |
| 8029 | return getTruncateExpr(Op: getSCEV(V: U->getOperand(i: 0)), Ty: U->getType()); |
| 8030 | |
| 8031 | case Instruction::ZExt: |
| 8032 | return getZeroExtendExpr(Op: getSCEV(V: U->getOperand(i: 0)), Ty: U->getType()); |
| 8033 | |
| 8034 | case Instruction::SExt: |
| 8035 | if (auto BO = MatchBinaryOp(V: U->getOperand(i: 0), DL: getDataLayout(), AC, DT, |
| 8036 | CxtI: dyn_cast<Instruction>(Val: V))) { |
| 8037 | // The NSW flag of a subtract does not always survive the conversion to |
| 8038 | // A + (-1)*B. By pushing sign extension onto its operands we are much |
| 8039 | // more likely to preserve NSW and allow later AddRec optimisations. |
| 8040 | // |
| 8041 | // NOTE: This is effectively duplicating this logic from getSignExtend: |
| 8042 | // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> |
| 8043 | // but by that point the NSW information has potentially been lost. |
| 8044 | if (BO->Opcode == Instruction::Sub && BO->IsNSW) { |
| 8045 | Type *Ty = U->getType(); |
| 8046 | auto *V1 = getSignExtendExpr(Op: getSCEV(V: BO->LHS), Ty); |
| 8047 | auto *V2 = getSignExtendExpr(Op: getSCEV(V: BO->RHS), Ty); |
| 8048 | return getMinusSCEV(LHS: V1, RHS: V2, Flags: SCEV::FlagNSW); |
| 8049 | } |
| 8050 | } |
| 8051 | return getSignExtendExpr(Op: getSCEV(V: U->getOperand(i: 0)), Ty: U->getType()); |
| 8052 | |
| 8053 | case Instruction::BitCast: |
| 8054 | // BitCasts are no-op casts so we just eliminate the cast. |
| 8055 | if (isSCEVable(Ty: U->getType()) && isSCEVable(Ty: U->getOperand(i: 0)->getType())) |
| 8056 | return getSCEV(V: U->getOperand(i: 0)); |
| 8057 | break; |
| 8058 | |
| 8059 | case Instruction::PtrToInt: { |
| 8060 | // Pointer to integer cast is straight-forward, so do model it. |
| 8061 | const SCEV *Op = getSCEV(V: U->getOperand(i: 0)); |
| 8062 | Type *DstIntTy = U->getType(); |
| 8063 | // But only if effective SCEV (integer) type is wide enough to represent |
| 8064 | // all possible pointer values. |
| 8065 | const SCEV *IntOp = getPtrToIntExpr(Op, Ty: DstIntTy); |
| 8066 | if (isa<SCEVCouldNotCompute>(Val: IntOp)) |
| 8067 | return getUnknown(V); |
| 8068 | return IntOp; |
| 8069 | } |
| 8070 | case Instruction::IntToPtr: |
| 8071 | // Just don't deal with inttoptr casts. |
| 8072 | return getUnknown(V); |
| 8073 | |
| 8074 | case Instruction::SDiv: |
| 8075 | // If both operands are non-negative, this is just an udiv. |
| 8076 | if (isKnownNonNegative(S: getSCEV(V: U->getOperand(i: 0))) && |
| 8077 | isKnownNonNegative(S: getSCEV(V: U->getOperand(i: 1)))) |
| 8078 | return getUDivExpr(LHS: getSCEV(V: U->getOperand(i: 0)), RHS: getSCEV(V: U->getOperand(i: 1))); |
| 8079 | break; |
| 8080 | |
| 8081 | case Instruction::SRem: |
| 8082 | // If both operands are non-negative, this is just an urem. |
| 8083 | if (isKnownNonNegative(S: getSCEV(V: U->getOperand(i: 0))) && |
| 8084 | isKnownNonNegative(S: getSCEV(V: U->getOperand(i: 1)))) |
| 8085 | return getURemExpr(LHS: getSCEV(V: U->getOperand(i: 0)), RHS: getSCEV(V: U->getOperand(i: 1))); |
| 8086 | break; |
| 8087 | |
| 8088 | case Instruction::GetElementPtr: |
| 8089 | return createNodeForGEP(GEP: cast<GEPOperator>(Val: U)); |
| 8090 | |
| 8091 | case Instruction::PHI: |
| 8092 | return createNodeForPHI(PN: cast<PHINode>(Val: U)); |
| 8093 | |
| 8094 | case Instruction::Select: |
| 8095 | return createNodeForSelectOrPHI(V: U, Cond: U->getOperand(i: 0), TrueVal: U->getOperand(i: 1), |
| 8096 | FalseVal: U->getOperand(i: 2)); |
| 8097 | |
| 8098 | case Instruction::Call: |
| 8099 | case Instruction::Invoke: |
| 8100 | if (Value *RV = cast<CallBase>(Val: U)->getReturnedArgOperand()) |
| 8101 | return getSCEV(V: RV); |
| 8102 | |
| 8103 | if (auto *II = dyn_cast<IntrinsicInst>(Val: U)) { |
| 8104 | switch (II->getIntrinsicID()) { |
| 8105 | case Intrinsic::abs: |
| 8106 | return getAbsExpr( |
| 8107 | Op: getSCEV(V: II->getArgOperand(i: 0)), |
| 8108 | /*IsNSW=*/cast<ConstantInt>(Val: II->getArgOperand(i: 1))->isOne()); |
| 8109 | case Intrinsic::umax: |
| 8110 | LHS = getSCEV(V: II->getArgOperand(i: 0)); |
| 8111 | RHS = getSCEV(V: II->getArgOperand(i: 1)); |
| 8112 | return getUMaxExpr(LHS, RHS); |
| 8113 | case Intrinsic::umin: |
| 8114 | LHS = getSCEV(V: II->getArgOperand(i: 0)); |
| 8115 | RHS = getSCEV(V: II->getArgOperand(i: 1)); |
| 8116 | return getUMinExpr(LHS, RHS); |
| 8117 | case Intrinsic::smax: |
| 8118 | LHS = getSCEV(V: II->getArgOperand(i: 0)); |
| 8119 | RHS = getSCEV(V: II->getArgOperand(i: 1)); |
| 8120 | return getSMaxExpr(LHS, RHS); |
| 8121 | case Intrinsic::smin: |
| 8122 | LHS = getSCEV(V: II->getArgOperand(i: 0)); |
| 8123 | RHS = getSCEV(V: II->getArgOperand(i: 1)); |
| 8124 | return getSMinExpr(LHS, RHS); |
| 8125 | case Intrinsic::usub_sat: { |
| 8126 | const SCEV *X = getSCEV(V: II->getArgOperand(i: 0)); |
| 8127 | const SCEV *Y = getSCEV(V: II->getArgOperand(i: 1)); |
| 8128 | const SCEV *ClampedY = getUMinExpr(LHS: X, RHS: Y); |
| 8129 | return getMinusSCEV(LHS: X, RHS: ClampedY, Flags: SCEV::FlagNUW); |
| 8130 | } |
| 8131 | case Intrinsic::uadd_sat: { |
| 8132 | const SCEV *X = getSCEV(V: II->getArgOperand(i: 0)); |
| 8133 | const SCEV *Y = getSCEV(V: II->getArgOperand(i: 1)); |
| 8134 | const SCEV *ClampedX = getUMinExpr(LHS: X, RHS: getNotSCEV(V: Y)); |
| 8135 | return getAddExpr(LHS: ClampedX, RHS: Y, Flags: SCEV::FlagNUW); |
| 8136 | } |
| 8137 | case Intrinsic::start_loop_iterations: |
| 8138 | case Intrinsic::annotation: |
| 8139 | case Intrinsic::ptr_annotation: |
| 8140 | // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is |
| 8141 | // just eqivalent to the first operand for SCEV purposes. |
| 8142 | return getSCEV(V: II->getArgOperand(i: 0)); |
| 8143 | case Intrinsic::vscale: |
| 8144 | return getVScale(Ty: II->getType()); |
| 8145 | default: |
| 8146 | break; |
| 8147 | } |
| 8148 | } |
| 8149 | break; |
| 8150 | } |
| 8151 | |
| 8152 | return getUnknown(V); |
| 8153 | } |
| 8154 | |
| 8155 | //===----------------------------------------------------------------------===// |
| 8156 | // Iteration Count Computation Code |
| 8157 | // |
| 8158 | |
| 8159 | const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) { |
| 8160 | if (isa<SCEVCouldNotCompute>(Val: ExitCount)) |
| 8161 | return getCouldNotCompute(); |
| 8162 | |
| 8163 | auto *ExitCountType = ExitCount->getType(); |
| 8164 | assert(ExitCountType->isIntegerTy()); |
| 8165 | auto *EvalTy = Type::getIntNTy(C&: ExitCountType->getContext(), |
| 8166 | N: 1 + ExitCountType->getScalarSizeInBits()); |
| 8167 | return getTripCountFromExitCount(ExitCount, EvalTy, L: nullptr); |
| 8168 | } |
| 8169 | |
| 8170 | const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, |
| 8171 | Type *EvalTy, |
| 8172 | const Loop *L) { |
| 8173 | if (isa<SCEVCouldNotCompute>(Val: ExitCount)) |
| 8174 | return getCouldNotCompute(); |
| 8175 | |
| 8176 | unsigned ExitCountSize = getTypeSizeInBits(Ty: ExitCount->getType()); |
| 8177 | unsigned EvalSize = EvalTy->getPrimitiveSizeInBits(); |
| 8178 | |
| 8179 | auto CanAddOneWithoutOverflow = [&]() { |
| 8180 | ConstantRange ExitCountRange = |
| 8181 | getRangeRef(S: ExitCount, SignHint: RangeSignHint::HINT_RANGE_UNSIGNED); |
| 8182 | if (!ExitCountRange.contains(Val: APInt::getMaxValue(numBits: ExitCountSize))) |
| 8183 | return true; |
| 8184 | |
| 8185 | return L && isLoopEntryGuardedByCond(L, Pred: ICmpInst::ICMP_NE, LHS: ExitCount, |
| 8186 | RHS: getMinusOne(Ty: ExitCount->getType())); |
| 8187 | }; |
| 8188 | |
| 8189 | // If we need to zero extend the backedge count, check if we can add one to |
| 8190 | // it prior to zero extending without overflow. Provided this is safe, it |
| 8191 | // allows better simplification of the +1. |
| 8192 | if (EvalSize > ExitCountSize && CanAddOneWithoutOverflow()) |
| 8193 | return getZeroExtendExpr( |
| 8194 | Op: getAddExpr(LHS: ExitCount, RHS: getOne(Ty: ExitCount->getType())), Ty: EvalTy); |
| 8195 | |
| 8196 | // Get the total trip count from the count by adding 1. This may wrap. |
| 8197 | return getAddExpr(LHS: getTruncateOrZeroExtend(V: ExitCount, Ty: EvalTy), RHS: getOne(Ty: EvalTy)); |
| 8198 | } |
| 8199 | |
| 8200 | static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { |
| 8201 | if (!ExitCount) |
| 8202 | return 0; |
| 8203 | |
| 8204 | ConstantInt *ExitConst = ExitCount->getValue(); |
| 8205 | |
| 8206 | // Guard against huge trip counts. |
| 8207 | if (ExitConst->getValue().getActiveBits() > 32) |
| 8208 | return 0; |
| 8209 | |
| 8210 | // In case of integer overflow, this returns 0, which is correct. |
| 8211 | return ((unsigned)ExitConst->getZExtValue()) + 1; |
| 8212 | } |
| 8213 | |
| 8214 | unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { |
| 8215 | auto *ExitCount = dyn_cast<SCEVConstant>(Val: getBackedgeTakenCount(L, Kind: Exact)); |
| 8216 | return getConstantTripCount(ExitCount); |
| 8217 | } |
| 8218 | |
| 8219 | unsigned |
| 8220 | ScalarEvolution::getSmallConstantTripCount(const Loop *L, |
| 8221 | const BasicBlock *ExitingBlock) { |
| 8222 | assert(ExitingBlock && "Must pass a non-null exiting block!" ); |
| 8223 | assert(L->isLoopExiting(ExitingBlock) && |
| 8224 | "Exiting block must actually branch out of the loop!" ); |
| 8225 | const SCEVConstant *ExitCount = |
| 8226 | dyn_cast<SCEVConstant>(Val: getExitCount(L, ExitingBlock)); |
| 8227 | return getConstantTripCount(ExitCount); |
| 8228 | } |
| 8229 | |
| 8230 | unsigned ScalarEvolution::getSmallConstantMaxTripCount( |
| 8231 | const Loop *L, SmallVectorImpl<const SCEVPredicate *> *Predicates) { |
| 8232 | |
| 8233 | const auto *MaxExitCount = |
| 8234 | Predicates ? getPredicatedConstantMaxBackedgeTakenCount(L, Predicates&: *Predicates) |
| 8235 | : getConstantMaxBackedgeTakenCount(L); |
| 8236 | return getConstantTripCount(ExitCount: dyn_cast<SCEVConstant>(Val: MaxExitCount)); |
| 8237 | } |
| 8238 | |
| 8239 | unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { |
| 8240 | SmallVector<BasicBlock *, 8> ExitingBlocks; |
| 8241 | L->getExitingBlocks(ExitingBlocks); |
| 8242 | |
| 8243 | std::optional<unsigned> Res; |
| 8244 | for (auto *ExitingBB : ExitingBlocks) { |
| 8245 | unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBlock: ExitingBB); |
| 8246 | if (!Res) |
| 8247 | Res = Multiple; |
| 8248 | Res = std::gcd(m: *Res, n: Multiple); |
| 8249 | } |
| 8250 | return Res.value_or(u: 1); |
| 8251 | } |
| 8252 | |
| 8253 | unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, |
| 8254 | const SCEV *ExitCount) { |
| 8255 | if (isa<SCEVCouldNotCompute>(Val: ExitCount)) |
| 8256 | return 1; |
| 8257 | |
| 8258 | // Get the trip count |
| 8259 | const SCEV *TCExpr = getTripCountFromExitCount(ExitCount: applyLoopGuards(Expr: ExitCount, L)); |
| 8260 | |
| 8261 | APInt Multiple = getNonZeroConstantMultiple(S: TCExpr); |
| 8262 | // If a trip multiple is huge (>=2^32), the trip count is still divisible by |
| 8263 | // the greatest power of 2 divisor less than 2^32. |
| 8264 | return Multiple.getActiveBits() > 32 |
| 8265 | ? 1U << std::min(a: 31U, b: Multiple.countTrailingZeros()) |
| 8266 | : (unsigned)Multiple.getZExtValue(); |
| 8267 | } |
| 8268 | |
| 8269 | /// Returns the largest constant divisor of the trip count of this loop as a |
| 8270 | /// normal unsigned value, if possible. This means that the actual trip count is |
| 8271 | /// always a multiple of the returned value (don't forget the trip count could |
| 8272 | /// very well be zero as well!). |
| 8273 | /// |
| 8274 | /// Returns 1 if the trip count is unknown or not guaranteed to be the |
| 8275 | /// multiple of a constant (which is also the case if the trip count is simply |
| 8276 | /// constant, use getSmallConstantTripCount for that case), Will also return 1 |
| 8277 | /// if the trip count is very large (>= 2^32). |
| 8278 | /// |
| 8279 | /// As explained in the comments for getSmallConstantTripCount, this assumes |
| 8280 | /// that control exits the loop via ExitingBlock. |
| 8281 | unsigned |
| 8282 | ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, |
| 8283 | const BasicBlock *ExitingBlock) { |
| 8284 | assert(ExitingBlock && "Must pass a non-null exiting block!" ); |
| 8285 | assert(L->isLoopExiting(ExitingBlock) && |
| 8286 | "Exiting block must actually branch out of the loop!" ); |
| 8287 | const SCEV *ExitCount = getExitCount(L, ExitingBlock); |
| 8288 | return getSmallConstantTripMultiple(L, ExitCount); |
| 8289 | } |
| 8290 | |
| 8291 | const SCEV *ScalarEvolution::getExitCount(const Loop *L, |
| 8292 | const BasicBlock *ExitingBlock, |
| 8293 | ExitCountKind Kind) { |
| 8294 | switch (Kind) { |
| 8295 | case Exact: |
| 8296 | return getBackedgeTakenInfo(L).getExact(ExitingBlock, SE: this); |
| 8297 | case SymbolicMaximum: |
| 8298 | return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, SE: this); |
| 8299 | case ConstantMaximum: |
| 8300 | return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, SE: this); |
| 8301 | }; |
| 8302 | llvm_unreachable("Invalid ExitCountKind!" ); |
| 8303 | } |
| 8304 | |
| 8305 | const SCEV *ScalarEvolution::getPredicatedExitCount( |
| 8306 | const Loop *L, const BasicBlock *ExitingBlock, |
| 8307 | SmallVectorImpl<const SCEVPredicate *> *Predicates, ExitCountKind Kind) { |
| 8308 | switch (Kind) { |
| 8309 | case Exact: |
| 8310 | return getPredicatedBackedgeTakenInfo(L).getExact(ExitingBlock, SE: this, |
| 8311 | Predicates); |
| 8312 | case SymbolicMaximum: |
| 8313 | return getPredicatedBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, SE: this, |
| 8314 | Predicates); |
| 8315 | case ConstantMaximum: |
| 8316 | return getPredicatedBackedgeTakenInfo(L).getConstantMax(ExitingBlock, SE: this, |
| 8317 | Predicates); |
| 8318 | }; |
| 8319 | llvm_unreachable("Invalid ExitCountKind!" ); |
| 8320 | } |
| 8321 | |
| 8322 | const SCEV *ScalarEvolution::getPredicatedBackedgeTakenCount( |
| 8323 | const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Preds) { |
| 8324 | return getPredicatedBackedgeTakenInfo(L).getExact(L, SE: this, Predicates: &Preds); |
| 8325 | } |
| 8326 | |
| 8327 | const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, |
| 8328 | ExitCountKind Kind) { |
| 8329 | switch (Kind) { |
| 8330 | case Exact: |
| 8331 | return getBackedgeTakenInfo(L).getExact(L, SE: this); |
| 8332 | case ConstantMaximum: |
| 8333 | return getBackedgeTakenInfo(L).getConstantMax(SE: this); |
| 8334 | case SymbolicMaximum: |
| 8335 | return getBackedgeTakenInfo(L).getSymbolicMax(L, SE: this); |
| 8336 | }; |
| 8337 | llvm_unreachable("Invalid ExitCountKind!" ); |
| 8338 | } |
| 8339 | |
| 8340 | const SCEV *ScalarEvolution::getPredicatedSymbolicMaxBackedgeTakenCount( |
| 8341 | const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Preds) { |
| 8342 | return getPredicatedBackedgeTakenInfo(L).getSymbolicMax(L, SE: this, Predicates: &Preds); |
| 8343 | } |
| 8344 | |
| 8345 | const SCEV *ScalarEvolution::getPredicatedConstantMaxBackedgeTakenCount( |
| 8346 | const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Preds) { |
| 8347 | return getPredicatedBackedgeTakenInfo(L).getConstantMax(SE: this, Predicates: &Preds); |
| 8348 | } |
| 8349 | |
| 8350 | bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { |
| 8351 | return getBackedgeTakenInfo(L).isConstantMaxOrZero(SE: this); |
| 8352 | } |
| 8353 | |
| 8354 | /// Push PHI nodes in the header of the given loop onto the given Worklist. |
| 8355 | static void PushLoopPHIs(const Loop *L, |
| 8356 | SmallVectorImpl<Instruction *> &Worklist, |
| 8357 | SmallPtrSetImpl<Instruction *> &Visited) { |
| 8358 | BasicBlock * = L->getHeader(); |
| 8359 | |
| 8360 | // Push all Loop-header PHIs onto the Worklist stack. |
| 8361 | for (PHINode &PN : Header->phis()) |
| 8362 | if (Visited.insert(Ptr: &PN).second) |
| 8363 | Worklist.push_back(Elt: &PN); |
| 8364 | } |
| 8365 | |
| 8366 | ScalarEvolution::BackedgeTakenInfo & |
| 8367 | ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { |
| 8368 | auto &BTI = getBackedgeTakenInfo(L); |
| 8369 | if (BTI.hasFullInfo()) |
| 8370 | return BTI; |
| 8371 | |
| 8372 | auto Pair = PredicatedBackedgeTakenCounts.try_emplace(Key: L); |
| 8373 | |
| 8374 | if (!Pair.second) |
| 8375 | return Pair.first->second; |
| 8376 | |
| 8377 | BackedgeTakenInfo Result = |
| 8378 | computeBackedgeTakenCount(L, /*AllowPredicates=*/true); |
| 8379 | |
| 8380 | return PredicatedBackedgeTakenCounts.find(Val: L)->second = std::move(Result); |
| 8381 | } |
| 8382 | |
| 8383 | ScalarEvolution::BackedgeTakenInfo & |
| 8384 | ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { |
| 8385 | // Initially insert an invalid entry for this loop. If the insertion |
| 8386 | // succeeds, proceed to actually compute a backedge-taken count and |
| 8387 | // update the value. The temporary CouldNotCompute value tells SCEV |
| 8388 | // code elsewhere that it shouldn't attempt to request a new |
| 8389 | // backedge-taken count, which could result in infinite recursion. |
| 8390 | std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = |
| 8391 | BackedgeTakenCounts.try_emplace(Key: L); |
| 8392 | if (!Pair.second) |
| 8393 | return Pair.first->second; |
| 8394 | |
| 8395 | // computeBackedgeTakenCount may allocate memory for its result. Inserting it |
| 8396 | // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result |
| 8397 | // must be cleared in this scope. |
| 8398 | BackedgeTakenInfo Result = computeBackedgeTakenCount(L); |
| 8399 | |
| 8400 | // Now that we know more about the trip count for this loop, forget any |
| 8401 | // existing SCEV values for PHI nodes in this loop since they are only |
| 8402 | // conservative estimates made without the benefit of trip count |
| 8403 | // information. This invalidation is not necessary for correctness, and is |
| 8404 | // only done to produce more precise results. |
| 8405 | if (Result.hasAnyInfo()) { |
| 8406 | // Invalidate any expression using an addrec in this loop. |
| 8407 | SmallVector<const SCEV *, 8> ToForget; |
| 8408 | auto LoopUsersIt = LoopUsers.find(Val: L); |
| 8409 | if (LoopUsersIt != LoopUsers.end()) |
| 8410 | append_range(C&: ToForget, R&: LoopUsersIt->second); |
| 8411 | forgetMemoizedResults(SCEVs: ToForget); |
| 8412 | |
| 8413 | // Invalidate constant-evolved loop header phis. |
| 8414 | for (PHINode &PN : L->getHeader()->phis()) |
| 8415 | ConstantEvolutionLoopExitValue.erase(Val: &PN); |
| 8416 | } |
| 8417 | |
| 8418 | // Re-lookup the insert position, since the call to |
| 8419 | // computeBackedgeTakenCount above could result in a |
| 8420 | // recusive call to getBackedgeTakenInfo (on a different |
| 8421 | // loop), which would invalidate the iterator computed |
| 8422 | // earlier. |
| 8423 | return BackedgeTakenCounts.find(Val: L)->second = std::move(Result); |
| 8424 | } |
| 8425 | |
| 8426 | void ScalarEvolution::forgetAllLoops() { |
| 8427 | // This method is intended to forget all info about loops. It should |
| 8428 | // invalidate caches as if the following happened: |
| 8429 | // - The trip counts of all loops have changed arbitrarily |
| 8430 | // - Every llvm::Value has been updated in place to produce a different |
| 8431 | // result. |
| 8432 | BackedgeTakenCounts.clear(); |
| 8433 | PredicatedBackedgeTakenCounts.clear(); |
| 8434 | BECountUsers.clear(); |
| 8435 | LoopPropertiesCache.clear(); |
| 8436 | ConstantEvolutionLoopExitValue.clear(); |
| 8437 | ValueExprMap.clear(); |
| 8438 | ValuesAtScopes.clear(); |
| 8439 | ValuesAtScopesUsers.clear(); |
| 8440 | LoopDispositions.clear(); |
| 8441 | BlockDispositions.clear(); |
| 8442 | UnsignedRanges.clear(); |
| 8443 | SignedRanges.clear(); |
| 8444 | ExprValueMap.clear(); |
| 8445 | HasRecMap.clear(); |
| 8446 | ConstantMultipleCache.clear(); |
| 8447 | PredicatedSCEVRewrites.clear(); |
| 8448 | FoldCache.clear(); |
| 8449 | FoldCacheUser.clear(); |
| 8450 | } |
| 8451 | void ScalarEvolution::visitAndClearUsers( |
| 8452 | SmallVectorImpl<Instruction *> &Worklist, |
| 8453 | SmallPtrSetImpl<Instruction *> &Visited, |
| 8454 | SmallVectorImpl<const SCEV *> &ToForget) { |
| 8455 | while (!Worklist.empty()) { |
| 8456 | Instruction *I = Worklist.pop_back_val(); |
| 8457 | if (!isSCEVable(Ty: I->getType()) && !isa<WithOverflowInst>(Val: I)) |
| 8458 | continue; |
| 8459 | |
| 8460 | ValueExprMapType::iterator It = |
| 8461 | ValueExprMap.find_as(Val: static_cast<Value *>(I)); |
| 8462 | if (It != ValueExprMap.end()) { |
| 8463 | eraseValueFromMap(V: It->first); |
| 8464 | ToForget.push_back(Elt: It->second); |
| 8465 | if (PHINode *PN = dyn_cast<PHINode>(Val: I)) |
| 8466 | ConstantEvolutionLoopExitValue.erase(Val: PN); |
| 8467 | } |
| 8468 | |
| 8469 | PushDefUseChildren(I, Worklist, Visited); |
| 8470 | } |
| 8471 | } |
| 8472 | |
| 8473 | void ScalarEvolution::forgetLoop(const Loop *L) { |
| 8474 | SmallVector<const Loop *, 16> LoopWorklist(1, L); |
| 8475 | SmallVector<Instruction *, 32> Worklist; |
| 8476 | SmallPtrSet<Instruction *, 16> Visited; |
| 8477 | SmallVector<const SCEV *, 16> ToForget; |
| 8478 | |
| 8479 | // Iterate over all the loops and sub-loops to drop SCEV information. |
| 8480 | while (!LoopWorklist.empty()) { |
| 8481 | auto *CurrL = LoopWorklist.pop_back_val(); |
| 8482 | |
| 8483 | // Drop any stored trip count value. |
| 8484 | forgetBackedgeTakenCounts(L: CurrL, /* Predicated */ false); |
| 8485 | forgetBackedgeTakenCounts(L: CurrL, /* Predicated */ true); |
| 8486 | |
| 8487 | // Drop information about predicated SCEV rewrites for this loop. |
| 8488 | for (auto I = PredicatedSCEVRewrites.begin(); |
| 8489 | I != PredicatedSCEVRewrites.end();) { |
| 8490 | std::pair<const SCEV *, const Loop *> Entry = I->first; |
| 8491 | if (Entry.second == CurrL) |
| 8492 | PredicatedSCEVRewrites.erase(I: I++); |
| 8493 | else |
| 8494 | ++I; |
| 8495 | } |
| 8496 | |
| 8497 | auto LoopUsersItr = LoopUsers.find(Val: CurrL); |
| 8498 | if (LoopUsersItr != LoopUsers.end()) |
| 8499 | llvm::append_range(C&: ToForget, R&: LoopUsersItr->second); |
| 8500 | |
| 8501 | // Drop information about expressions based on loop-header PHIs. |
| 8502 | PushLoopPHIs(L: CurrL, Worklist, Visited); |
| 8503 | visitAndClearUsers(Worklist, Visited, ToForget); |
| 8504 | |
| 8505 | LoopPropertiesCache.erase(Val: CurrL); |
| 8506 | // Forget all contained loops too, to avoid dangling entries in the |
| 8507 | // ValuesAtScopes map. |
| 8508 | LoopWorklist.append(in_start: CurrL->begin(), in_end: CurrL->end()); |
| 8509 | } |
| 8510 | forgetMemoizedResults(SCEVs: ToForget); |
| 8511 | } |
| 8512 | |
| 8513 | void ScalarEvolution::forgetTopmostLoop(const Loop *L) { |
| 8514 | forgetLoop(L: L->getOutermostLoop()); |
| 8515 | } |
| 8516 | |
| 8517 | void ScalarEvolution::forgetValue(Value *V) { |
| 8518 | Instruction *I = dyn_cast<Instruction>(Val: V); |
| 8519 | if (!I) return; |
| 8520 | |
| 8521 | // Drop information about expressions based on loop-header PHIs. |
| 8522 | SmallVector<Instruction *, 16> Worklist; |
| 8523 | SmallPtrSet<Instruction *, 8> Visited; |
| 8524 | SmallVector<const SCEV *, 8> ToForget; |
| 8525 | Worklist.push_back(Elt: I); |
| 8526 | Visited.insert(Ptr: I); |
| 8527 | visitAndClearUsers(Worklist, Visited, ToForget); |
| 8528 | |
| 8529 | forgetMemoizedResults(SCEVs: ToForget); |
| 8530 | } |
| 8531 | |
| 8532 | void ScalarEvolution::forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V) { |
| 8533 | if (!isSCEVable(Ty: V->getType())) |
| 8534 | return; |
| 8535 | |
| 8536 | // If SCEV looked through a trivial LCSSA phi node, we might have SCEV's |
| 8537 | // directly using a SCEVUnknown/SCEVAddRec defined in the loop. After an |
| 8538 | // extra predecessor is added, this is no longer valid. Find all Unknowns and |
| 8539 | // AddRecs defined in the loop and invalidate any SCEV's making use of them. |
| 8540 | if (const SCEV *S = getExistingSCEV(V)) { |
| 8541 | struct InvalidationRootCollector { |
| 8542 | Loop *L; |
| 8543 | SmallVector<const SCEV *, 8> Roots; |
| 8544 | |
| 8545 | InvalidationRootCollector(Loop *L) : L(L) {} |
| 8546 | |
| 8547 | bool follow(const SCEV *S) { |
| 8548 | if (auto *SU = dyn_cast<SCEVUnknown>(Val: S)) { |
| 8549 | if (auto *I = dyn_cast<Instruction>(Val: SU->getValue())) |
| 8550 | if (L->contains(Inst: I)) |
| 8551 | Roots.push_back(Elt: S); |
| 8552 | } else if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: S)) { |
| 8553 | if (L->contains(L: AddRec->getLoop())) |
| 8554 | Roots.push_back(Elt: S); |
| 8555 | } |
| 8556 | return true; |
| 8557 | } |
| 8558 | bool isDone() const { return false; } |
| 8559 | }; |
| 8560 | |
| 8561 | InvalidationRootCollector C(L); |
| 8562 | visitAll(Root: S, Visitor&: C); |
| 8563 | forgetMemoizedResults(SCEVs: C.Roots); |
| 8564 | } |
| 8565 | |
| 8566 | // Also perform the normal invalidation. |
| 8567 | forgetValue(V); |
| 8568 | } |
| 8569 | |
| 8570 | void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); } |
| 8571 | |
| 8572 | void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) { |
| 8573 | // Unless a specific value is passed to invalidation, completely clear both |
| 8574 | // caches. |
| 8575 | if (!V) { |
| 8576 | BlockDispositions.clear(); |
| 8577 | LoopDispositions.clear(); |
| 8578 | return; |
| 8579 | } |
| 8580 | |
| 8581 | if (!isSCEVable(Ty: V->getType())) |
| 8582 | return; |
| 8583 | |
| 8584 | const SCEV *S = getExistingSCEV(V); |
| 8585 | if (!S) |
| 8586 | return; |
| 8587 | |
| 8588 | // Invalidate the block and loop dispositions cached for S. Dispositions of |
| 8589 | // S's users may change if S's disposition changes (i.e. a user may change to |
| 8590 | // loop-invariant, if S changes to loop invariant), so also invalidate |
| 8591 | // dispositions of S's users recursively. |
| 8592 | SmallVector<const SCEV *, 8> Worklist = {S}; |
| 8593 | SmallPtrSet<const SCEV *, 8> Seen = {S}; |
| 8594 | while (!Worklist.empty()) { |
| 8595 | const SCEV *Curr = Worklist.pop_back_val(); |
| 8596 | bool LoopDispoRemoved = LoopDispositions.erase(Val: Curr); |
| 8597 | bool BlockDispoRemoved = BlockDispositions.erase(Val: Curr); |
| 8598 | if (!LoopDispoRemoved && !BlockDispoRemoved) |
| 8599 | continue; |
| 8600 | auto Users = SCEVUsers.find(Val: Curr); |
| 8601 | if (Users != SCEVUsers.end()) |
| 8602 | for (const auto *User : Users->second) |
| 8603 | if (Seen.insert(Ptr: User).second) |
| 8604 | Worklist.push_back(Elt: User); |
| 8605 | } |
| 8606 | } |
| 8607 | |
| 8608 | /// Get the exact loop backedge taken count considering all loop exits. A |
| 8609 | /// computable result can only be returned for loops with all exiting blocks |
| 8610 | /// dominating the latch. howFarToZero assumes that the limit of each loop test |
| 8611 | /// is never skipped. This is a valid assumption as long as the loop exits via |
| 8612 | /// that test. For precise results, it is the caller's responsibility to specify |
| 8613 | /// the relevant loop exiting block using getExact(ExitingBlock, SE). |
| 8614 | const SCEV *ScalarEvolution::BackedgeTakenInfo::getExact( |
| 8615 | const Loop *L, ScalarEvolution *SE, |
| 8616 | SmallVectorImpl<const SCEVPredicate *> *Preds) const { |
| 8617 | // If any exits were not computable, the loop is not computable. |
| 8618 | if (!isComplete() || ExitNotTaken.empty()) |
| 8619 | return SE->getCouldNotCompute(); |
| 8620 | |
| 8621 | const BasicBlock *Latch = L->getLoopLatch(); |
| 8622 | // All exiting blocks we have collected must dominate the only backedge. |
| 8623 | if (!Latch) |
| 8624 | return SE->getCouldNotCompute(); |
| 8625 | |
| 8626 | // All exiting blocks we have gathered dominate loop's latch, so exact trip |
| 8627 | // count is simply a minimum out of all these calculated exit counts. |
| 8628 | SmallVector<const SCEV *, 2> Ops; |
| 8629 | for (const auto &ENT : ExitNotTaken) { |
| 8630 | const SCEV *BECount = ENT.ExactNotTaken; |
| 8631 | assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!" ); |
| 8632 | assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && |
| 8633 | "We should only have known counts for exiting blocks that dominate " |
| 8634 | "latch!" ); |
| 8635 | |
| 8636 | Ops.push_back(Elt: BECount); |
| 8637 | |
| 8638 | if (Preds) |
| 8639 | append_range(C&: *Preds, R: ENT.Predicates); |
| 8640 | |
| 8641 | assert((Preds || ENT.hasAlwaysTruePredicate()) && |
| 8642 | "Predicate should be always true!" ); |
| 8643 | } |
| 8644 | |
| 8645 | // If an earlier exit exits on the first iteration (exit count zero), then |
| 8646 | // a later poison exit count should not propagate into the result. This are |
| 8647 | // exactly the semantics provided by umin_seq. |
| 8648 | return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true); |
| 8649 | } |
| 8650 | |
| 8651 | const ScalarEvolution::ExitNotTakenInfo * |
| 8652 | ScalarEvolution::BackedgeTakenInfo::getExitNotTaken( |
| 8653 | const BasicBlock *ExitingBlock, |
| 8654 | SmallVectorImpl<const SCEVPredicate *> *Predicates) const { |
| 8655 | for (const auto &ENT : ExitNotTaken) |
| 8656 | if (ENT.ExitingBlock == ExitingBlock) { |
| 8657 | if (ENT.hasAlwaysTruePredicate()) |
| 8658 | return &ENT; |
| 8659 | else if (Predicates) { |
| 8660 | append_range(C&: *Predicates, R: ENT.Predicates); |
| 8661 | return &ENT; |
| 8662 | } |
| 8663 | } |
| 8664 | |
| 8665 | return nullptr; |
| 8666 | } |
| 8667 | |
| 8668 | /// getConstantMax - Get the constant max backedge taken count for the loop. |
| 8669 | const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( |
| 8670 | ScalarEvolution *SE, |
| 8671 | SmallVectorImpl<const SCEVPredicate *> *Predicates) const { |
| 8672 | if (!getConstantMax()) |
| 8673 | return SE->getCouldNotCompute(); |
| 8674 | |
| 8675 | for (const auto &ENT : ExitNotTaken) |
| 8676 | if (!ENT.hasAlwaysTruePredicate()) { |
| 8677 | if (!Predicates) |
| 8678 | return SE->getCouldNotCompute(); |
| 8679 | append_range(C&: *Predicates, R: ENT.Predicates); |
| 8680 | } |
| 8681 | |
| 8682 | assert((isa<SCEVCouldNotCompute>(getConstantMax()) || |
| 8683 | isa<SCEVConstant>(getConstantMax())) && |
| 8684 | "No point in having a non-constant max backedge taken count!" ); |
| 8685 | return getConstantMax(); |
| 8686 | } |
| 8687 | |
| 8688 | const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax( |
| 8689 | const Loop *L, ScalarEvolution *SE, |
| 8690 | SmallVectorImpl<const SCEVPredicate *> *Predicates) { |
| 8691 | if (!SymbolicMax) { |
| 8692 | // Form an expression for the maximum exit count possible for this loop. We |
| 8693 | // merge the max and exact information to approximate a version of |
| 8694 | // getConstantMaxBackedgeTakenCount which isn't restricted to just |
| 8695 | // constants. |
| 8696 | SmallVector<const SCEV *, 4> ExitCounts; |
| 8697 | |
| 8698 | for (const auto &ENT : ExitNotTaken) { |
| 8699 | const SCEV *ExitCount = ENT.SymbolicMaxNotTaken; |
| 8700 | if (!isa<SCEVCouldNotCompute>(Val: ExitCount)) { |
| 8701 | assert(SE->DT.dominates(ENT.ExitingBlock, L->getLoopLatch()) && |
| 8702 | "We should only have known counts for exiting blocks that " |
| 8703 | "dominate latch!" ); |
| 8704 | ExitCounts.push_back(Elt: ExitCount); |
| 8705 | if (Predicates) |
| 8706 | append_range(C&: *Predicates, R: ENT.Predicates); |
| 8707 | |
| 8708 | assert((Predicates || ENT.hasAlwaysTruePredicate()) && |
| 8709 | "Predicate should be always true!" ); |
| 8710 | } |
| 8711 | } |
| 8712 | if (ExitCounts.empty()) |
| 8713 | SymbolicMax = SE->getCouldNotCompute(); |
| 8714 | else |
| 8715 | SymbolicMax = |
| 8716 | SE->getUMinFromMismatchedTypes(Ops&: ExitCounts, /*Sequential*/ true); |
| 8717 | } |
| 8718 | return SymbolicMax; |
| 8719 | } |
| 8720 | |
| 8721 | bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( |
| 8722 | ScalarEvolution *SE) const { |
| 8723 | auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { |
| 8724 | return !ENT.hasAlwaysTruePredicate(); |
| 8725 | }; |
| 8726 | return MaxOrZero && !any_of(Range: ExitNotTaken, P: PredicateNotAlwaysTrue); |
| 8727 | } |
| 8728 | |
| 8729 | ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) |
| 8730 | : ExitLimit(E, E, E, false) {} |
| 8731 | |
| 8732 | ScalarEvolution::ExitLimit::ExitLimit( |
| 8733 | const SCEV *E, const SCEV *ConstantMaxNotTaken, |
| 8734 | const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, |
| 8735 | ArrayRef<ArrayRef<const SCEVPredicate *>> PredLists) |
| 8736 | : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken), |
| 8737 | SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) { |
| 8738 | // If we prove the max count is zero, so is the symbolic bound. This happens |
| 8739 | // in practice due to differences in a) how context sensitive we've chosen |
| 8740 | // to be and b) how we reason about bounds implied by UB. |
| 8741 | if (ConstantMaxNotTaken->isZero()) { |
| 8742 | this->ExactNotTaken = E = ConstantMaxNotTaken; |
| 8743 | this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken; |
| 8744 | } |
| 8745 | |
| 8746 | assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || |
| 8747 | !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && |
| 8748 | "Exact is not allowed to be less precise than Constant Max" ); |
| 8749 | assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || |
| 8750 | !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) && |
| 8751 | "Exact is not allowed to be less precise than Symbolic Max" ); |
| 8752 | assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) || |
| 8753 | !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && |
| 8754 | "Symbolic Max is not allowed to be less precise than Constant Max" ); |
| 8755 | assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || |
| 8756 | isa<SCEVConstant>(ConstantMaxNotTaken)) && |
| 8757 | "No point in having a non-constant max backedge taken count!" ); |
| 8758 | SmallPtrSet<const SCEVPredicate *, 4> SeenPreds; |
| 8759 | for (const auto PredList : PredLists) |
| 8760 | for (const auto *P : PredList) { |
| 8761 | if (SeenPreds.contains(Ptr: P)) |
| 8762 | continue; |
| 8763 | assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!" ); |
| 8764 | SeenPreds.insert(Ptr: P); |
| 8765 | Predicates.push_back(Elt: P); |
| 8766 | } |
| 8767 | assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && |
| 8768 | "Backedge count should be int" ); |
| 8769 | assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || |
| 8770 | !ConstantMaxNotTaken->getType()->isPointerTy()) && |
| 8771 | "Max backedge count should be int" ); |
| 8772 | } |
| 8773 | |
| 8774 | ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, |
| 8775 | const SCEV *ConstantMaxNotTaken, |
| 8776 | const SCEV *SymbolicMaxNotTaken, |
| 8777 | bool MaxOrZero, |
| 8778 | ArrayRef<const SCEVPredicate *> PredList) |
| 8779 | : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero, |
| 8780 | ArrayRef({PredList})) {} |
| 8781 | |
| 8782 | /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each |
| 8783 | /// computable exit into a persistent ExitNotTakenInfo array. |
| 8784 | ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( |
| 8785 | ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, |
| 8786 | bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) |
| 8787 | : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { |
| 8788 | using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; |
| 8789 | |
| 8790 | ExitNotTaken.reserve(N: ExitCounts.size()); |
| 8791 | std::transform(first: ExitCounts.begin(), last: ExitCounts.end(), |
| 8792 | result: std::back_inserter(x&: ExitNotTaken), |
| 8793 | unary_op: [&](const EdgeExitInfo &EEI) { |
| 8794 | BasicBlock *ExitBB = EEI.first; |
| 8795 | const ExitLimit &EL = EEI.second; |
| 8796 | return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, |
| 8797 | EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken, |
| 8798 | EL.Predicates); |
| 8799 | }); |
| 8800 | assert((isa<SCEVCouldNotCompute>(ConstantMax) || |
| 8801 | isa<SCEVConstant>(ConstantMax)) && |
| 8802 | "No point in having a non-constant max backedge taken count!" ); |
| 8803 | } |
| 8804 | |
| 8805 | /// Compute the number of times the backedge of the specified loop will execute. |
| 8806 | ScalarEvolution::BackedgeTakenInfo |
| 8807 | ScalarEvolution::computeBackedgeTakenCount(const Loop *L, |
| 8808 | bool AllowPredicates) { |
| 8809 | SmallVector<BasicBlock *, 8> ExitingBlocks; |
| 8810 | L->getExitingBlocks(ExitingBlocks); |
| 8811 | |
| 8812 | using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; |
| 8813 | |
| 8814 | SmallVector<EdgeExitInfo, 4> ExitCounts; |
| 8815 | bool CouldComputeBECount = true; |
| 8816 | BasicBlock *Latch = L->getLoopLatch(); // may be NULL. |
| 8817 | const SCEV *MustExitMaxBECount = nullptr; |
| 8818 | const SCEV *MayExitMaxBECount = nullptr; |
| 8819 | bool MustExitMaxOrZero = false; |
| 8820 | bool IsOnlyExit = ExitingBlocks.size() == 1; |
| 8821 | |
| 8822 | // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts |
| 8823 | // and compute maxBECount. |
| 8824 | // Do a union of all the predicates here. |
| 8825 | for (BasicBlock *ExitBB : ExitingBlocks) { |
| 8826 | // We canonicalize untaken exits to br (constant), ignore them so that |
| 8827 | // proving an exit untaken doesn't negatively impact our ability to reason |
| 8828 | // about the loop as whole. |
| 8829 | if (auto *BI = dyn_cast<BranchInst>(Val: ExitBB->getTerminator())) |
| 8830 | if (auto *CI = dyn_cast<ConstantInt>(Val: BI->getCondition())) { |
| 8831 | bool ExitIfTrue = !L->contains(BB: BI->getSuccessor(i: 0)); |
| 8832 | if (ExitIfTrue == CI->isZero()) |
| 8833 | continue; |
| 8834 | } |
| 8835 | |
| 8836 | ExitLimit EL = computeExitLimit(L, ExitingBlock: ExitBB, IsOnlyExit, AllowPredicates); |
| 8837 | |
| 8838 | assert((AllowPredicates || EL.Predicates.empty()) && |
| 8839 | "Predicated exit limit when predicates are not allowed!" ); |
| 8840 | |
| 8841 | // 1. For each exit that can be computed, add an entry to ExitCounts. |
| 8842 | // CouldComputeBECount is true only if all exits can be computed. |
| 8843 | if (EL.ExactNotTaken != getCouldNotCompute()) |
| 8844 | ++NumExitCountsComputed; |
| 8845 | else |
| 8846 | // We couldn't compute an exact value for this exit, so |
| 8847 | // we won't be able to compute an exact value for the loop. |
| 8848 | CouldComputeBECount = false; |
| 8849 | // Remember exit count if either exact or symbolic is known. Because |
| 8850 | // Exact always implies symbolic, only check symbolic. |
| 8851 | if (EL.SymbolicMaxNotTaken != getCouldNotCompute()) |
| 8852 | ExitCounts.emplace_back(Args&: ExitBB, Args&: EL); |
| 8853 | else { |
| 8854 | assert(EL.ExactNotTaken == getCouldNotCompute() && |
| 8855 | "Exact is known but symbolic isn't?" ); |
| 8856 | ++NumExitCountsNotComputed; |
| 8857 | } |
| 8858 | |
| 8859 | // 2. Derive the loop's MaxBECount from each exit's max number of |
| 8860 | // non-exiting iterations. Partition the loop exits into two kinds: |
| 8861 | // LoopMustExits and LoopMayExits. |
| 8862 | // |
| 8863 | // If the exit dominates the loop latch, it is a LoopMustExit otherwise it |
| 8864 | // is a LoopMayExit. If any computable LoopMustExit is found, then |
| 8865 | // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable |
| 8866 | // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum |
| 8867 | // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than |
| 8868 | // any |
| 8869 | // computable EL.ConstantMaxNotTaken. |
| 8870 | if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch && |
| 8871 | DT.dominates(A: ExitBB, B: Latch)) { |
| 8872 | if (!MustExitMaxBECount) { |
| 8873 | MustExitMaxBECount = EL.ConstantMaxNotTaken; |
| 8874 | MustExitMaxOrZero = EL.MaxOrZero; |
| 8875 | } else { |
| 8876 | MustExitMaxBECount = getUMinFromMismatchedTypes(LHS: MustExitMaxBECount, |
| 8877 | RHS: EL.ConstantMaxNotTaken); |
| 8878 | } |
| 8879 | } else if (MayExitMaxBECount != getCouldNotCompute()) { |
| 8880 | if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute()) |
| 8881 | MayExitMaxBECount = EL.ConstantMaxNotTaken; |
| 8882 | else { |
| 8883 | MayExitMaxBECount = getUMaxFromMismatchedTypes(LHS: MayExitMaxBECount, |
| 8884 | RHS: EL.ConstantMaxNotTaken); |
| 8885 | } |
| 8886 | } |
| 8887 | } |
| 8888 | const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : |
| 8889 | (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); |
| 8890 | // The loop backedge will be taken the maximum or zero times if there's |
| 8891 | // a single exit that must be taken the maximum or zero times. |
| 8892 | bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); |
| 8893 | |
| 8894 | // Remember which SCEVs are used in exit limits for invalidation purposes. |
| 8895 | // We only care about non-constant SCEVs here, so we can ignore |
| 8896 | // EL.ConstantMaxNotTaken |
| 8897 | // and MaxBECount, which must be SCEVConstant. |
| 8898 | for (const auto &Pair : ExitCounts) { |
| 8899 | if (!isa<SCEVConstant>(Val: Pair.second.ExactNotTaken)) |
| 8900 | BECountUsers[Pair.second.ExactNotTaken].insert(Ptr: {L, AllowPredicates}); |
| 8901 | if (!isa<SCEVConstant>(Val: Pair.second.SymbolicMaxNotTaken)) |
| 8902 | BECountUsers[Pair.second.SymbolicMaxNotTaken].insert( |
| 8903 | Ptr: {L, AllowPredicates}); |
| 8904 | } |
| 8905 | return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, |
| 8906 | MaxBECount, MaxOrZero); |
| 8907 | } |
| 8908 | |
| 8909 | ScalarEvolution::ExitLimit |
| 8910 | ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, |
| 8911 | bool IsOnlyExit, bool AllowPredicates) { |
| 8912 | assert(L->contains(ExitingBlock) && "Exit count for non-loop block?" ); |
| 8913 | // If our exiting block does not dominate the latch, then its connection with |
| 8914 | // loop's exit limit may be far from trivial. |
| 8915 | const BasicBlock *Latch = L->getLoopLatch(); |
| 8916 | if (!Latch || !DT.dominates(A: ExitingBlock, B: Latch)) |
| 8917 | return getCouldNotCompute(); |
| 8918 | |
| 8919 | Instruction *Term = ExitingBlock->getTerminator(); |
| 8920 | if (BranchInst *BI = dyn_cast<BranchInst>(Val: Term)) { |
| 8921 | assert(BI->isConditional() && "If unconditional, it can't be in loop!" ); |
| 8922 | bool ExitIfTrue = !L->contains(BB: BI->getSuccessor(i: 0)); |
| 8923 | assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && |
| 8924 | "It should have one successor in loop and one exit block!" ); |
| 8925 | // Proceed to the next level to examine the exit condition expression. |
| 8926 | return computeExitLimitFromCond(L, ExitCond: BI->getCondition(), ExitIfTrue, |
| 8927 | /*ControlsOnlyExit=*/IsOnlyExit, |
| 8928 | AllowPredicates); |
| 8929 | } |
| 8930 | |
| 8931 | if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: Term)) { |
| 8932 | // For switch, make sure that there is a single exit from the loop. |
| 8933 | BasicBlock *Exit = nullptr; |
| 8934 | for (auto *SBB : successors(BB: ExitingBlock)) |
| 8935 | if (!L->contains(BB: SBB)) { |
| 8936 | if (Exit) // Multiple exit successors. |
| 8937 | return getCouldNotCompute(); |
| 8938 | Exit = SBB; |
| 8939 | } |
| 8940 | assert(Exit && "Exiting block must have at least one exit" ); |
| 8941 | return computeExitLimitFromSingleExitSwitch( |
| 8942 | L, Switch: SI, ExitingBB: Exit, /*ControlsOnlyExit=*/IsSubExpr: IsOnlyExit); |
| 8943 | } |
| 8944 | |
| 8945 | return getCouldNotCompute(); |
| 8946 | } |
| 8947 | |
| 8948 | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( |
| 8949 | const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, |
| 8950 | bool AllowPredicates) { |
| 8951 | ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); |
| 8952 | return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, |
| 8953 | ControlsOnlyExit, AllowPredicates); |
| 8954 | } |
| 8955 | |
| 8956 | std::optional<ScalarEvolution::ExitLimit> |
| 8957 | ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, |
| 8958 | bool ExitIfTrue, bool ControlsOnlyExit, |
| 8959 | bool AllowPredicates) { |
| 8960 | (void)this->L; |
| 8961 | (void)this->ExitIfTrue; |
| 8962 | (void)this->AllowPredicates; |
| 8963 | |
| 8964 | assert(this->L == L && this->ExitIfTrue == ExitIfTrue && |
| 8965 | this->AllowPredicates == AllowPredicates && |
| 8966 | "Variance in assumed invariant key components!" ); |
| 8967 | auto Itr = TripCountMap.find(Val: {ExitCond, ControlsOnlyExit}); |
| 8968 | if (Itr == TripCountMap.end()) |
| 8969 | return std::nullopt; |
| 8970 | return Itr->second; |
| 8971 | } |
| 8972 | |
| 8973 | void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, |
| 8974 | bool ExitIfTrue, |
| 8975 | bool ControlsOnlyExit, |
| 8976 | bool AllowPredicates, |
| 8977 | const ExitLimit &EL) { |
| 8978 | assert(this->L == L && this->ExitIfTrue == ExitIfTrue && |
| 8979 | this->AllowPredicates == AllowPredicates && |
| 8980 | "Variance in assumed invariant key components!" ); |
| 8981 | |
| 8982 | auto InsertResult = TripCountMap.insert(KV: {{ExitCond, ControlsOnlyExit}, EL}); |
| 8983 | assert(InsertResult.second && "Expected successful insertion!" ); |
| 8984 | (void)InsertResult; |
| 8985 | (void)ExitIfTrue; |
| 8986 | } |
| 8987 | |
| 8988 | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( |
| 8989 | ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, |
| 8990 | bool ControlsOnlyExit, bool AllowPredicates) { |
| 8991 | |
| 8992 | if (auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit, |
| 8993 | AllowPredicates)) |
| 8994 | return *MaybeEL; |
| 8995 | |
| 8996 | ExitLimit EL = computeExitLimitFromCondImpl( |
| 8997 | Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates); |
| 8998 | Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL); |
| 8999 | return EL; |
| 9000 | } |
| 9001 | |
| 9002 | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( |
| 9003 | ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, |
| 9004 | bool ControlsOnlyExit, bool AllowPredicates) { |
| 9005 | // Handle BinOp conditions (And, Or). |
| 9006 | if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( |
| 9007 | Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates)) |
| 9008 | return *LimitFromBinOp; |
| 9009 | |
| 9010 | // With an icmp, it may be feasible to compute an exact backedge-taken count. |
| 9011 | // Proceed to the next level to examine the icmp. |
| 9012 | if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(Val: ExitCond)) { |
| 9013 | ExitLimit EL = |
| 9014 | computeExitLimitFromICmp(L, ExitCond: ExitCondICmp, ExitIfTrue, IsSubExpr: ControlsOnlyExit); |
| 9015 | if (EL.hasFullInfo() || !AllowPredicates) |
| 9016 | return EL; |
| 9017 | |
| 9018 | // Try again, but use SCEV predicates this time. |
| 9019 | return computeExitLimitFromICmp(L, ExitCond: ExitCondICmp, ExitIfTrue, |
| 9020 | IsSubExpr: ControlsOnlyExit, |
| 9021 | /*AllowPredicates=*/true); |
| 9022 | } |
| 9023 | |
| 9024 | // Check for a constant condition. These are normally stripped out by |
| 9025 | // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to |
| 9026 | // preserve the CFG and is temporarily leaving constant conditions |
| 9027 | // in place. |
| 9028 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: ExitCond)) { |
| 9029 | if (ExitIfTrue == !CI->getZExtValue()) |
| 9030 | // The backedge is always taken. |
| 9031 | return getCouldNotCompute(); |
| 9032 | // The backedge is never taken. |
| 9033 | return getZero(Ty: CI->getType()); |
| 9034 | } |
| 9035 | |
| 9036 | // If we're exiting based on the overflow flag of an x.with.overflow intrinsic |
| 9037 | // with a constant step, we can form an equivalent icmp predicate and figure |
| 9038 | // out how many iterations will be taken before we exit. |
| 9039 | const WithOverflowInst *WO; |
| 9040 | const APInt *C; |
| 9041 | if (match(V: ExitCond, P: m_ExtractValue<1>(V: m_WithOverflowInst(I&: WO))) && |
| 9042 | match(V: WO->getRHS(), P: m_APInt(Res&: C))) { |
| 9043 | ConstantRange NWR = |
| 9044 | ConstantRange::makeExactNoWrapRegion(BinOp: WO->getBinaryOp(), Other: *C, |
| 9045 | NoWrapKind: WO->getNoWrapKind()); |
| 9046 | CmpInst::Predicate Pred; |
| 9047 | APInt NewRHSC, Offset; |
| 9048 | NWR.getEquivalentICmp(Pred, RHS&: NewRHSC, Offset); |
| 9049 | if (!ExitIfTrue) |
| 9050 | Pred = ICmpInst::getInversePredicate(pred: Pred); |
| 9051 | auto *LHS = getSCEV(V: WO->getLHS()); |
| 9052 | if (Offset != 0) |
| 9053 | LHS = getAddExpr(LHS, RHS: getConstant(Val: Offset)); |
| 9054 | auto EL = computeExitLimitFromICmp(L, Pred, LHS, RHS: getConstant(Val: NewRHSC), |
| 9055 | IsSubExpr: ControlsOnlyExit, AllowPredicates); |
| 9056 | if (EL.hasAnyInfo()) |
| 9057 | return EL; |
| 9058 | } |
| 9059 | |
| 9060 | // If it's not an integer or pointer comparison then compute it the hard way. |
| 9061 | return computeExitCountExhaustively(L, Cond: ExitCond, ExitWhen: ExitIfTrue); |
| 9062 | } |
| 9063 | |
| 9064 | std::optional<ScalarEvolution::ExitLimit> |
| 9065 | ScalarEvolution::computeExitLimitFromCondFromBinOp( |
| 9066 | ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, |
| 9067 | bool ControlsOnlyExit, bool AllowPredicates) { |
| 9068 | // Check if the controlling expression for this loop is an And or Or. |
| 9069 | Value *Op0, *Op1; |
| 9070 | bool IsAnd = false; |
| 9071 | if (match(V: ExitCond, P: m_LogicalAnd(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) |
| 9072 | IsAnd = true; |
| 9073 | else if (match(V: ExitCond, P: m_LogicalOr(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) |
| 9074 | IsAnd = false; |
| 9075 | else |
| 9076 | return std::nullopt; |
| 9077 | |
| 9078 | // EitherMayExit is true in these two cases: |
| 9079 | // br (and Op0 Op1), loop, exit |
| 9080 | // br (or Op0 Op1), exit, loop |
| 9081 | bool EitherMayExit = IsAnd ^ ExitIfTrue; |
| 9082 | ExitLimit EL0 = computeExitLimitFromCondCached( |
| 9083 | Cache, L, ExitCond: Op0, ExitIfTrue, ControlsOnlyExit: ControlsOnlyExit && !EitherMayExit, |
| 9084 | AllowPredicates); |
| 9085 | ExitLimit EL1 = computeExitLimitFromCondCached( |
| 9086 | Cache, L, ExitCond: Op1, ExitIfTrue, ControlsOnlyExit: ControlsOnlyExit && !EitherMayExit, |
| 9087 | AllowPredicates); |
| 9088 | |
| 9089 | // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" |
| 9090 | const Constant *NeutralElement = ConstantInt::get(Ty: ExitCond->getType(), V: IsAnd); |
| 9091 | if (isa<ConstantInt>(Val: Op1)) |
| 9092 | return Op1 == NeutralElement ? EL0 : EL1; |
| 9093 | if (isa<ConstantInt>(Val: Op0)) |
| 9094 | return Op0 == NeutralElement ? EL1 : EL0; |
| 9095 | |
| 9096 | const SCEV *BECount = getCouldNotCompute(); |
| 9097 | const SCEV *ConstantMaxBECount = getCouldNotCompute(); |
| 9098 | const SCEV *SymbolicMaxBECount = getCouldNotCompute(); |
| 9099 | if (EitherMayExit) { |
| 9100 | bool UseSequentialUMin = !isa<BinaryOperator>(Val: ExitCond); |
| 9101 | // Both conditions must be same for the loop to continue executing. |
| 9102 | // Choose the less conservative count. |
| 9103 | if (EL0.ExactNotTaken != getCouldNotCompute() && |
| 9104 | EL1.ExactNotTaken != getCouldNotCompute()) { |
| 9105 | BECount = getUMinFromMismatchedTypes(LHS: EL0.ExactNotTaken, RHS: EL1.ExactNotTaken, |
| 9106 | Sequential: UseSequentialUMin); |
| 9107 | } |
| 9108 | if (EL0.ConstantMaxNotTaken == getCouldNotCompute()) |
| 9109 | ConstantMaxBECount = EL1.ConstantMaxNotTaken; |
| 9110 | else if (EL1.ConstantMaxNotTaken == getCouldNotCompute()) |
| 9111 | ConstantMaxBECount = EL0.ConstantMaxNotTaken; |
| 9112 | else |
| 9113 | ConstantMaxBECount = getUMinFromMismatchedTypes(LHS: EL0.ConstantMaxNotTaken, |
| 9114 | RHS: EL1.ConstantMaxNotTaken); |
| 9115 | if (EL0.SymbolicMaxNotTaken == getCouldNotCompute()) |
| 9116 | SymbolicMaxBECount = EL1.SymbolicMaxNotTaken; |
| 9117 | else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute()) |
| 9118 | SymbolicMaxBECount = EL0.SymbolicMaxNotTaken; |
| 9119 | else |
| 9120 | SymbolicMaxBECount = getUMinFromMismatchedTypes( |
| 9121 | LHS: EL0.SymbolicMaxNotTaken, RHS: EL1.SymbolicMaxNotTaken, Sequential: UseSequentialUMin); |
| 9122 | } else { |
| 9123 | // Both conditions must be same at the same time for the loop to exit. |
| 9124 | // For now, be conservative. |
| 9125 | if (EL0.ExactNotTaken == EL1.ExactNotTaken) |
| 9126 | BECount = EL0.ExactNotTaken; |
| 9127 | } |
| 9128 | |
| 9129 | // There are cases (e.g. PR26207) where computeExitLimitFromCond is able |
| 9130 | // to be more aggressive when computing BECount than when computing |
| 9131 | // ConstantMaxBECount. In these cases it is possible for EL0.ExactNotTaken |
| 9132 | // and |
| 9133 | // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and |
| 9134 | // EL1.ConstantMaxNotTaken to not. |
| 9135 | if (isa<SCEVCouldNotCompute>(Val: ConstantMaxBECount) && |
| 9136 | !isa<SCEVCouldNotCompute>(Val: BECount)) |
| 9137 | ConstantMaxBECount = getConstant(Val: getUnsignedRangeMax(S: BECount)); |
| 9138 | if (isa<SCEVCouldNotCompute>(Val: SymbolicMaxBECount)) |
| 9139 | SymbolicMaxBECount = |
| 9140 | isa<SCEVCouldNotCompute>(Val: BECount) ? ConstantMaxBECount : BECount; |
| 9141 | return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, |
| 9142 | {ArrayRef(EL0.Predicates), ArrayRef(EL1.Predicates)}); |
| 9143 | } |
| 9144 | |
| 9145 | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp( |
| 9146 | const Loop *L, ICmpInst *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, |
| 9147 | bool AllowPredicates) { |
| 9148 | // If the condition was exit on true, convert the condition to exit on false |
| 9149 | CmpPredicate Pred; |
| 9150 | if (!ExitIfTrue) |
| 9151 | Pred = ExitCond->getCmpPredicate(); |
| 9152 | else |
| 9153 | Pred = ExitCond->getInverseCmpPredicate(); |
| 9154 | const ICmpInst::Predicate OriginalPred = Pred; |
| 9155 | |
| 9156 | const SCEV *LHS = getSCEV(V: ExitCond->getOperand(i_nocapture: 0)); |
| 9157 | const SCEV *RHS = getSCEV(V: ExitCond->getOperand(i_nocapture: 1)); |
| 9158 | |
| 9159 | ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, IsSubExpr: ControlsOnlyExit, |
| 9160 | AllowPredicates); |
| 9161 | if (EL.hasAnyInfo()) |
| 9162 | return EL; |
| 9163 | |
| 9164 | auto *ExhaustiveCount = |
| 9165 | computeExitCountExhaustively(L, Cond: ExitCond, ExitWhen: ExitIfTrue); |
| 9166 | |
| 9167 | if (!isa<SCEVCouldNotCompute>(Val: ExhaustiveCount)) |
| 9168 | return ExhaustiveCount; |
| 9169 | |
| 9170 | return computeShiftCompareExitLimit(LHS: ExitCond->getOperand(i_nocapture: 0), |
| 9171 | RHS: ExitCond->getOperand(i_nocapture: 1), L, Pred: OriginalPred); |
| 9172 | } |
| 9173 | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp( |
| 9174 | const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, |
| 9175 | bool ControlsOnlyExit, bool AllowPredicates) { |
| 9176 | |
| 9177 | // Try to evaluate any dependencies out of the loop. |
| 9178 | LHS = getSCEVAtScope(S: LHS, L); |
| 9179 | RHS = getSCEVAtScope(S: RHS, L); |
| 9180 | |
| 9181 | // At this point, we would like to compute how many iterations of the |
| 9182 | // loop the predicate will return true for these inputs. |
| 9183 | if (isLoopInvariant(S: LHS, L) && !isLoopInvariant(S: RHS, L)) { |
| 9184 | // If there is a loop-invariant, force it into the RHS. |
| 9185 | std::swap(a&: LHS, b&: RHS); |
| 9186 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
| 9187 | } |
| 9188 | |
| 9189 | bool ControllingFiniteLoop = ControlsOnlyExit && loopHasNoAbnormalExits(L) && |
| 9190 | loopIsFiniteByAssumption(L); |
| 9191 | // Simplify the operands before analyzing them. |
| 9192 | (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0); |
| 9193 | |
| 9194 | // If we have a comparison of a chrec against a constant, try to use value |
| 9195 | // ranges to answer this query. |
| 9196 | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: RHS)) |
| 9197 | if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: LHS)) |
| 9198 | if (AddRec->getLoop() == L) { |
| 9199 | // Form the constant range. |
| 9200 | ConstantRange CompRange = |
| 9201 | ConstantRange::makeExactICmpRegion(Pred, Other: RHSC->getAPInt()); |
| 9202 | |
| 9203 | const SCEV *Ret = AddRec->getNumIterationsInRange(Range: CompRange, SE&: *this); |
| 9204 | if (!isa<SCEVCouldNotCompute>(Val: Ret)) return Ret; |
| 9205 | } |
| 9206 | |
| 9207 | // If this loop must exit based on this condition (or execute undefined |
| 9208 | // behaviour), see if we can improve wrap flags. This is essentially |
| 9209 | // a must execute style proof. |
| 9210 | if (ControllingFiniteLoop && isLoopInvariant(S: RHS, L)) { |
| 9211 | // If we can prove the test sequence produced must repeat the same values |
| 9212 | // on self-wrap of the IV, then we can infer that IV doesn't self wrap |
| 9213 | // because if it did, we'd have an infinite (undefined) loop. |
| 9214 | // TODO: We can peel off any functions which are invertible *in L*. Loop |
| 9215 | // invariant terms are effectively constants for our purposes here. |
| 9216 | auto *InnerLHS = LHS; |
| 9217 | if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: LHS)) |
| 9218 | InnerLHS = ZExt->getOperand(); |
| 9219 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: InnerLHS); |
| 9220 | AR && !AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && |
| 9221 | isKnownToBeAPowerOfTwo(S: AR->getStepRecurrence(SE&: *this), /*OrZero=*/true, |
| 9222 | /*OrNegative=*/true)) { |
| 9223 | auto Flags = AR->getNoWrapFlags(); |
| 9224 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNW); |
| 9225 | SmallVector<const SCEV *> Operands{AR->operands()}; |
| 9226 | Flags = StrengthenNoWrapFlags(SE: this, Type: scAddRecExpr, Ops: Operands, Flags); |
| 9227 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags); |
| 9228 | } |
| 9229 | |
| 9230 | // For a slt/ult condition with a positive step, can we prove nsw/nuw? |
| 9231 | // From no-self-wrap, this follows trivially from the fact that every |
| 9232 | // (un)signed-wrapped, but not self-wrapped value must be LT than the |
| 9233 | // last value before (un)signed wrap. Since we know that last value |
| 9234 | // didn't exit, nor will any smaller one. |
| 9235 | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT) { |
| 9236 | auto WrapType = Pred == ICmpInst::ICMP_SLT ? SCEV::FlagNSW : SCEV::FlagNUW; |
| 9237 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: LHS); |
| 9238 | AR && AR->getLoop() == L && AR->isAffine() && |
| 9239 | !AR->getNoWrapFlags(Mask: WrapType) && AR->hasNoSelfWrap() && |
| 9240 | isKnownPositive(S: AR->getStepRecurrence(SE&: *this))) { |
| 9241 | auto Flags = AR->getNoWrapFlags(); |
| 9242 | Flags = setFlags(Flags, OnFlags: WrapType); |
| 9243 | SmallVector<const SCEV*> Operands{AR->operands()}; |
| 9244 | Flags = StrengthenNoWrapFlags(SE: this, Type: scAddRecExpr, Ops: Operands, Flags); |
| 9245 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags); |
| 9246 | } |
| 9247 | } |
| 9248 | } |
| 9249 | |
| 9250 | switch (Pred) { |
| 9251 | case ICmpInst::ICMP_NE: { // while (X != Y) |
| 9252 | // Convert to: while (X-Y != 0) |
| 9253 | if (LHS->getType()->isPointerTy()) { |
| 9254 | LHS = getLosslessPtrToIntExpr(Op: LHS); |
| 9255 | if (isa<SCEVCouldNotCompute>(Val: LHS)) |
| 9256 | return LHS; |
| 9257 | } |
| 9258 | if (RHS->getType()->isPointerTy()) { |
| 9259 | RHS = getLosslessPtrToIntExpr(Op: RHS); |
| 9260 | if (isa<SCEVCouldNotCompute>(Val: RHS)) |
| 9261 | return RHS; |
| 9262 | } |
| 9263 | ExitLimit EL = howFarToZero(V: getMinusSCEV(LHS, RHS), L, IsSubExpr: ControlsOnlyExit, |
| 9264 | AllowPredicates); |
| 9265 | if (EL.hasAnyInfo()) |
| 9266 | return EL; |
| 9267 | break; |
| 9268 | } |
| 9269 | case ICmpInst::ICMP_EQ: { // while (X == Y) |
| 9270 | // Convert to: while (X-Y == 0) |
| 9271 | if (LHS->getType()->isPointerTy()) { |
| 9272 | LHS = getLosslessPtrToIntExpr(Op: LHS); |
| 9273 | if (isa<SCEVCouldNotCompute>(Val: LHS)) |
| 9274 | return LHS; |
| 9275 | } |
| 9276 | if (RHS->getType()->isPointerTy()) { |
| 9277 | RHS = getLosslessPtrToIntExpr(Op: RHS); |
| 9278 | if (isa<SCEVCouldNotCompute>(Val: RHS)) |
| 9279 | return RHS; |
| 9280 | } |
| 9281 | ExitLimit EL = howFarToNonZero(V: getMinusSCEV(LHS, RHS), L); |
| 9282 | if (EL.hasAnyInfo()) return EL; |
| 9283 | break; |
| 9284 | } |
| 9285 | case ICmpInst::ICMP_SLE: |
| 9286 | case ICmpInst::ICMP_ULE: |
| 9287 | // Since the loop is finite, an invariant RHS cannot include the boundary |
| 9288 | // value, otherwise it would loop forever. |
| 9289 | if (!EnableFiniteLoopControl || !ControllingFiniteLoop || |
| 9290 | !isLoopInvariant(S: RHS, L)) { |
| 9291 | // Otherwise, perform the addition in a wider type, to avoid overflow. |
| 9292 | // If the LHS is an addrec with the appropriate nowrap flag, the |
| 9293 | // extension will be sunk into it and the exit count can be analyzed. |
| 9294 | auto *OldType = dyn_cast<IntegerType>(Val: LHS->getType()); |
| 9295 | if (!OldType) |
| 9296 | break; |
| 9297 | // Prefer doubling the bitwidth over adding a single bit to make it more |
| 9298 | // likely that we use a legal type. |
| 9299 | auto *NewType = |
| 9300 | Type::getIntNTy(C&: OldType->getContext(), N: OldType->getBitWidth() * 2); |
| 9301 | if (ICmpInst::isSigned(predicate: Pred)) { |
| 9302 | LHS = getSignExtendExpr(Op: LHS, Ty: NewType); |
| 9303 | RHS = getSignExtendExpr(Op: RHS, Ty: NewType); |
| 9304 | } else { |
| 9305 | LHS = getZeroExtendExpr(Op: LHS, Ty: NewType); |
| 9306 | RHS = getZeroExtendExpr(Op: RHS, Ty: NewType); |
| 9307 | } |
| 9308 | } |
| 9309 | RHS = getAddExpr(LHS: getOne(Ty: RHS->getType()), RHS); |
| 9310 | [[fallthrough]]; |
| 9311 | case ICmpInst::ICMP_SLT: |
| 9312 | case ICmpInst::ICMP_ULT: { // while (X < Y) |
| 9313 | bool IsSigned = ICmpInst::isSigned(predicate: Pred); |
| 9314 | ExitLimit EL = howManyLessThans(LHS, RHS, L, isSigned: IsSigned, ControlsOnlyExit, |
| 9315 | AllowPredicates); |
| 9316 | if (EL.hasAnyInfo()) |
| 9317 | return EL; |
| 9318 | break; |
| 9319 | } |
| 9320 | case ICmpInst::ICMP_SGE: |
| 9321 | case ICmpInst::ICMP_UGE: |
| 9322 | // Since the loop is finite, an invariant RHS cannot include the boundary |
| 9323 | // value, otherwise it would loop forever. |
| 9324 | if (!EnableFiniteLoopControl || !ControllingFiniteLoop || |
| 9325 | !isLoopInvariant(S: RHS, L)) |
| 9326 | break; |
| 9327 | RHS = getAddExpr(LHS: getMinusOne(Ty: RHS->getType()), RHS); |
| 9328 | [[fallthrough]]; |
| 9329 | case ICmpInst::ICMP_SGT: |
| 9330 | case ICmpInst::ICMP_UGT: { // while (X > Y) |
| 9331 | bool IsSigned = ICmpInst::isSigned(predicate: Pred); |
| 9332 | ExitLimit EL = howManyGreaterThans(LHS, RHS, L, isSigned: IsSigned, IsSubExpr: ControlsOnlyExit, |
| 9333 | AllowPredicates); |
| 9334 | if (EL.hasAnyInfo()) |
| 9335 | return EL; |
| 9336 | break; |
| 9337 | } |
| 9338 | default: |
| 9339 | break; |
| 9340 | } |
| 9341 | |
| 9342 | return getCouldNotCompute(); |
| 9343 | } |
| 9344 | |
| 9345 | ScalarEvolution::ExitLimit |
| 9346 | ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, |
| 9347 | SwitchInst *Switch, |
| 9348 | BasicBlock *ExitingBlock, |
| 9349 | bool ControlsOnlyExit) { |
| 9350 | assert(!L->contains(ExitingBlock) && "Not an exiting block!" ); |
| 9351 | |
| 9352 | // Give up if the exit is the default dest of a switch. |
| 9353 | if (Switch->getDefaultDest() == ExitingBlock) |
| 9354 | return getCouldNotCompute(); |
| 9355 | |
| 9356 | assert(L->contains(Switch->getDefaultDest()) && |
| 9357 | "Default case must not exit the loop!" ); |
| 9358 | const SCEV *LHS = getSCEVAtScope(V: Switch->getCondition(), L); |
| 9359 | const SCEV *RHS = getConstant(V: Switch->findCaseDest(BB: ExitingBlock)); |
| 9360 | |
| 9361 | // while (X != Y) --> while (X-Y != 0) |
| 9362 | ExitLimit EL = howFarToZero(V: getMinusSCEV(LHS, RHS), L, IsSubExpr: ControlsOnlyExit); |
| 9363 | if (EL.hasAnyInfo()) |
| 9364 | return EL; |
| 9365 | |
| 9366 | return getCouldNotCompute(); |
| 9367 | } |
| 9368 | |
| 9369 | static ConstantInt * |
| 9370 | EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, |
| 9371 | ScalarEvolution &SE) { |
| 9372 | const SCEV *InVal = SE.getConstant(V: C); |
| 9373 | const SCEV *Val = AddRec->evaluateAtIteration(It: InVal, SE); |
| 9374 | assert(isa<SCEVConstant>(Val) && |
| 9375 | "Evaluation of SCEV at constant didn't fold correctly?" ); |
| 9376 | return cast<SCEVConstant>(Val)->getValue(); |
| 9377 | } |
| 9378 | |
| 9379 | ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( |
| 9380 | Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { |
| 9381 | ConstantInt *RHS = dyn_cast<ConstantInt>(Val: RHSV); |
| 9382 | if (!RHS) |
| 9383 | return getCouldNotCompute(); |
| 9384 | |
| 9385 | const BasicBlock *Latch = L->getLoopLatch(); |
| 9386 | if (!Latch) |
| 9387 | return getCouldNotCompute(); |
| 9388 | |
| 9389 | const BasicBlock *Predecessor = L->getLoopPredecessor(); |
| 9390 | if (!Predecessor) |
| 9391 | return getCouldNotCompute(); |
| 9392 | |
| 9393 | // Return true if V is of the form "LHS `shift_op` <positive constant>". |
| 9394 | // Return LHS in OutLHS and shift_opt in OutOpCode. |
| 9395 | auto MatchPositiveShift = |
| 9396 | [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { |
| 9397 | |
| 9398 | using namespace PatternMatch; |
| 9399 | |
| 9400 | ConstantInt *ShiftAmt; |
| 9401 | if (match(V, P: m_LShr(L: m_Value(V&: OutLHS), R: m_ConstantInt(CI&: ShiftAmt)))) |
| 9402 | OutOpCode = Instruction::LShr; |
| 9403 | else if (match(V, P: m_AShr(L: m_Value(V&: OutLHS), R: m_ConstantInt(CI&: ShiftAmt)))) |
| 9404 | OutOpCode = Instruction::AShr; |
| 9405 | else if (match(V, P: m_Shl(L: m_Value(V&: OutLHS), R: m_ConstantInt(CI&: ShiftAmt)))) |
| 9406 | OutOpCode = Instruction::Shl; |
| 9407 | else |
| 9408 | return false; |
| 9409 | |
| 9410 | return ShiftAmt->getValue().isStrictlyPositive(); |
| 9411 | }; |
| 9412 | |
| 9413 | // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in |
| 9414 | // |
| 9415 | // loop: |
| 9416 | // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] |
| 9417 | // %iv.shifted = lshr i32 %iv, <positive constant> |
| 9418 | // |
| 9419 | // Return true on a successful match. Return the corresponding PHI node (%iv |
| 9420 | // above) in PNOut and the opcode of the shift operation in OpCodeOut. |
| 9421 | auto MatchShiftRecurrence = |
| 9422 | [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { |
| 9423 | std::optional<Instruction::BinaryOps> PostShiftOpCode; |
| 9424 | |
| 9425 | { |
| 9426 | Instruction::BinaryOps OpC; |
| 9427 | Value *V; |
| 9428 | |
| 9429 | // If we encounter a shift instruction, "peel off" the shift operation, |
| 9430 | // and remember that we did so. Later when we inspect %iv's backedge |
| 9431 | // value, we will make sure that the backedge value uses the same |
| 9432 | // operation. |
| 9433 | // |
| 9434 | // Note: the peeled shift operation does not have to be the same |
| 9435 | // instruction as the one feeding into the PHI's backedge value. We only |
| 9436 | // really care about it being the same *kind* of shift instruction -- |
| 9437 | // that's all that is required for our later inferences to hold. |
| 9438 | if (MatchPositiveShift(LHS, V, OpC)) { |
| 9439 | PostShiftOpCode = OpC; |
| 9440 | LHS = V; |
| 9441 | } |
| 9442 | } |
| 9443 | |
| 9444 | PNOut = dyn_cast<PHINode>(Val: LHS); |
| 9445 | if (!PNOut || PNOut->getParent() != L->getHeader()) |
| 9446 | return false; |
| 9447 | |
| 9448 | Value *BEValue = PNOut->getIncomingValueForBlock(BB: Latch); |
| 9449 | Value *OpLHS; |
| 9450 | |
| 9451 | return |
| 9452 | // The backedge value for the PHI node must be a shift by a positive |
| 9453 | // amount |
| 9454 | MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && |
| 9455 | |
| 9456 | // of the PHI node itself |
| 9457 | OpLHS == PNOut && |
| 9458 | |
| 9459 | // and the kind of shift should be match the kind of shift we peeled |
| 9460 | // off, if any. |
| 9461 | (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut); |
| 9462 | }; |
| 9463 | |
| 9464 | PHINode *PN; |
| 9465 | Instruction::BinaryOps OpCode; |
| 9466 | if (!MatchShiftRecurrence(LHS, PN, OpCode)) |
| 9467 | return getCouldNotCompute(); |
| 9468 | |
| 9469 | const DataLayout &DL = getDataLayout(); |
| 9470 | |
| 9471 | // The key rationale for this optimization is that for some kinds of shift |
| 9472 | // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 |
| 9473 | // within a finite number of iterations. If the condition guarding the |
| 9474 | // backedge (in the sense that the backedge is taken if the condition is true) |
| 9475 | // is false for the value the shift recurrence stabilizes to, then we know |
| 9476 | // that the backedge is taken only a finite number of times. |
| 9477 | |
| 9478 | ConstantInt *StableValue = nullptr; |
| 9479 | switch (OpCode) { |
| 9480 | default: |
| 9481 | llvm_unreachable("Impossible case!" ); |
| 9482 | |
| 9483 | case Instruction::AShr: { |
| 9484 | // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most |
| 9485 | // bitwidth(K) iterations. |
| 9486 | Value *FirstValue = PN->getIncomingValueForBlock(BB: Predecessor); |
| 9487 | KnownBits Known = computeKnownBits(V: FirstValue, DL, AC: &AC, |
| 9488 | CxtI: Predecessor->getTerminator(), DT: &DT); |
| 9489 | auto *Ty = cast<IntegerType>(Val: RHS->getType()); |
| 9490 | if (Known.isNonNegative()) |
| 9491 | StableValue = ConstantInt::get(Ty, V: 0); |
| 9492 | else if (Known.isNegative()) |
| 9493 | StableValue = ConstantInt::get(Ty, V: -1, IsSigned: true); |
| 9494 | else |
| 9495 | return getCouldNotCompute(); |
| 9496 | |
| 9497 | break; |
| 9498 | } |
| 9499 | case Instruction::LShr: |
| 9500 | case Instruction::Shl: |
| 9501 | // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} |
| 9502 | // stabilize to 0 in at most bitwidth(K) iterations. |
| 9503 | StableValue = ConstantInt::get(Ty: cast<IntegerType>(Val: RHS->getType()), V: 0); |
| 9504 | break; |
| 9505 | } |
| 9506 | |
| 9507 | auto *Result = |
| 9508 | ConstantFoldCompareInstOperands(Predicate: Pred, LHS: StableValue, RHS, DL, TLI: &TLI); |
| 9509 | assert(Result->getType()->isIntegerTy(1) && |
| 9510 | "Otherwise cannot be an operand to a branch instruction" ); |
| 9511 | |
| 9512 | if (Result->isZeroValue()) { |
| 9513 | unsigned BitWidth = getTypeSizeInBits(Ty: RHS->getType()); |
| 9514 | const SCEV *UpperBound = |
| 9515 | getConstant(Ty: getEffectiveSCEVType(Ty: RHS->getType()), V: BitWidth); |
| 9516 | return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false); |
| 9517 | } |
| 9518 | |
| 9519 | return getCouldNotCompute(); |
| 9520 | } |
| 9521 | |
| 9522 | /// Return true if we can constant fold an instruction of the specified type, |
| 9523 | /// assuming that all operands were constants. |
| 9524 | static bool CanConstantFold(const Instruction *I) { |
| 9525 | if (isa<BinaryOperator>(Val: I) || isa<CmpInst>(Val: I) || |
| 9526 | isa<SelectInst>(Val: I) || isa<CastInst>(Val: I) || isa<GetElementPtrInst>(Val: I) || |
| 9527 | isa<LoadInst>(Val: I) || isa<ExtractValueInst>(Val: I)) |
| 9528 | return true; |
| 9529 | |
| 9530 | if (const CallInst *CI = dyn_cast<CallInst>(Val: I)) |
| 9531 | if (const Function *F = CI->getCalledFunction()) |
| 9532 | return canConstantFoldCallTo(Call: CI, F); |
| 9533 | return false; |
| 9534 | } |
| 9535 | |
| 9536 | /// Determine whether this instruction can constant evolve within this loop |
| 9537 | /// assuming its operands can all constant evolve. |
| 9538 | static bool canConstantEvolve(Instruction *I, const Loop *L) { |
| 9539 | // An instruction outside of the loop can't be derived from a loop PHI. |
| 9540 | if (!L->contains(Inst: I)) return false; |
| 9541 | |
| 9542 | if (isa<PHINode>(Val: I)) { |
| 9543 | // We don't currently keep track of the control flow needed to evaluate |
| 9544 | // PHIs, so we cannot handle PHIs inside of loops. |
| 9545 | return L->getHeader() == I->getParent(); |
| 9546 | } |
| 9547 | |
| 9548 | // If we won't be able to constant fold this expression even if the operands |
| 9549 | // are constants, bail early. |
| 9550 | return CanConstantFold(I); |
| 9551 | } |
| 9552 | |
| 9553 | /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by |
| 9554 | /// recursing through each instruction operand until reaching a loop header phi. |
| 9555 | static PHINode * |
| 9556 | getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, |
| 9557 | DenseMap<Instruction *, PHINode *> &PHIMap, |
| 9558 | unsigned Depth) { |
| 9559 | if (Depth > MaxConstantEvolvingDepth) |
| 9560 | return nullptr; |
| 9561 | |
| 9562 | // Otherwise, we can evaluate this instruction if all of its operands are |
| 9563 | // constant or derived from a PHI node themselves. |
| 9564 | PHINode *PHI = nullptr; |
| 9565 | for (Value *Op : UseInst->operands()) { |
| 9566 | if (isa<Constant>(Val: Op)) continue; |
| 9567 | |
| 9568 | Instruction *OpInst = dyn_cast<Instruction>(Val: Op); |
| 9569 | if (!OpInst || !canConstantEvolve(I: OpInst, L)) return nullptr; |
| 9570 | |
| 9571 | PHINode *P = dyn_cast<PHINode>(Val: OpInst); |
| 9572 | if (!P) |
| 9573 | // If this operand is already visited, reuse the prior result. |
| 9574 | // We may have P != PHI if this is the deepest point at which the |
| 9575 | // inconsistent paths meet. |
| 9576 | P = PHIMap.lookup(Val: OpInst); |
| 9577 | if (!P) { |
| 9578 | // Recurse and memoize the results, whether a phi is found or not. |
| 9579 | // This recursive call invalidates pointers into PHIMap. |
| 9580 | P = getConstantEvolvingPHIOperands(UseInst: OpInst, L, PHIMap, Depth: Depth + 1); |
| 9581 | PHIMap[OpInst] = P; |
| 9582 | } |
| 9583 | if (!P) |
| 9584 | return nullptr; // Not evolving from PHI |
| 9585 | if (PHI && PHI != P) |
| 9586 | return nullptr; // Evolving from multiple different PHIs. |
| 9587 | PHI = P; |
| 9588 | } |
| 9589 | // This is a expression evolving from a constant PHI! |
| 9590 | return PHI; |
| 9591 | } |
| 9592 | |
| 9593 | /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node |
| 9594 | /// in the loop that V is derived from. We allow arbitrary operations along the |
| 9595 | /// way, but the operands of an operation must either be constants or a value |
| 9596 | /// derived from a constant PHI. If this expression does not fit with these |
| 9597 | /// constraints, return null. |
| 9598 | static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { |
| 9599 | Instruction *I = dyn_cast<Instruction>(Val: V); |
| 9600 | if (!I || !canConstantEvolve(I, L)) return nullptr; |
| 9601 | |
| 9602 | if (PHINode *PN = dyn_cast<PHINode>(Val: I)) |
| 9603 | return PN; |
| 9604 | |
| 9605 | // Record non-constant instructions contained by the loop. |
| 9606 | DenseMap<Instruction *, PHINode *> PHIMap; |
| 9607 | return getConstantEvolvingPHIOperands(UseInst: I, L, PHIMap, Depth: 0); |
| 9608 | } |
| 9609 | |
| 9610 | /// EvaluateExpression - Given an expression that passes the |
| 9611 | /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node |
| 9612 | /// in the loop has the value PHIVal. If we can't fold this expression for some |
| 9613 | /// reason, return null. |
| 9614 | static Constant *EvaluateExpression(Value *V, const Loop *L, |
| 9615 | DenseMap<Instruction *, Constant *> &Vals, |
| 9616 | const DataLayout &DL, |
| 9617 | const TargetLibraryInfo *TLI) { |
| 9618 | // Convenient constant check, but redundant for recursive calls. |
| 9619 | if (Constant *C = dyn_cast<Constant>(Val: V)) return C; |
| 9620 | Instruction *I = dyn_cast<Instruction>(Val: V); |
| 9621 | if (!I) return nullptr; |
| 9622 | |
| 9623 | if (Constant *C = Vals.lookup(Val: I)) return C; |
| 9624 | |
| 9625 | // An instruction inside the loop depends on a value outside the loop that we |
| 9626 | // weren't given a mapping for, or a value such as a call inside the loop. |
| 9627 | if (!canConstantEvolve(I, L)) return nullptr; |
| 9628 | |
| 9629 | // An unmapped PHI can be due to a branch or another loop inside this loop, |
| 9630 | // or due to this not being the initial iteration through a loop where we |
| 9631 | // couldn't compute the evolution of this particular PHI last time. |
| 9632 | if (isa<PHINode>(Val: I)) return nullptr; |
| 9633 | |
| 9634 | std::vector<Constant*> Operands(I->getNumOperands()); |
| 9635 | |
| 9636 | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| 9637 | Instruction *Operand = dyn_cast<Instruction>(Val: I->getOperand(i)); |
| 9638 | if (!Operand) { |
| 9639 | Operands[i] = dyn_cast<Constant>(Val: I->getOperand(i)); |
| 9640 | if (!Operands[i]) return nullptr; |
| 9641 | continue; |
| 9642 | } |
| 9643 | Constant *C = EvaluateExpression(V: Operand, L, Vals, DL, TLI); |
| 9644 | Vals[Operand] = C; |
| 9645 | if (!C) return nullptr; |
| 9646 | Operands[i] = C; |
| 9647 | } |
| 9648 | |
| 9649 | return ConstantFoldInstOperands(I, Ops: Operands, DL, TLI, |
| 9650 | /*AllowNonDeterministic=*/false); |
| 9651 | } |
| 9652 | |
| 9653 | |
| 9654 | // If every incoming value to PN except the one for BB is a specific Constant, |
| 9655 | // return that, else return nullptr. |
| 9656 | static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { |
| 9657 | Constant *IncomingVal = nullptr; |
| 9658 | |
| 9659 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 9660 | if (PN->getIncomingBlock(i) == BB) |
| 9661 | continue; |
| 9662 | |
| 9663 | auto *CurrentVal = dyn_cast<Constant>(Val: PN->getIncomingValue(i)); |
| 9664 | if (!CurrentVal) |
| 9665 | return nullptr; |
| 9666 | |
| 9667 | if (IncomingVal != CurrentVal) { |
| 9668 | if (IncomingVal) |
| 9669 | return nullptr; |
| 9670 | IncomingVal = CurrentVal; |
| 9671 | } |
| 9672 | } |
| 9673 | |
| 9674 | return IncomingVal; |
| 9675 | } |
| 9676 | |
| 9677 | /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is |
| 9678 | /// in the header of its containing loop, we know the loop executes a |
| 9679 | /// constant number of times, and the PHI node is just a recurrence |
| 9680 | /// involving constants, fold it. |
| 9681 | Constant * |
| 9682 | ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, |
| 9683 | const APInt &BEs, |
| 9684 | const Loop *L) { |
| 9685 | auto [I, Inserted] = ConstantEvolutionLoopExitValue.try_emplace(Key: PN); |
| 9686 | if (!Inserted) |
| 9687 | return I->second; |
| 9688 | |
| 9689 | if (BEs.ugt(RHS: MaxBruteForceIterations)) |
| 9690 | return nullptr; // Not going to evaluate it. |
| 9691 | |
| 9692 | Constant *&RetVal = I->second; |
| 9693 | |
| 9694 | DenseMap<Instruction *, Constant *> CurrentIterVals; |
| 9695 | BasicBlock * = L->getHeader(); |
| 9696 | assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!" ); |
| 9697 | |
| 9698 | BasicBlock *Latch = L->getLoopLatch(); |
| 9699 | if (!Latch) |
| 9700 | return nullptr; |
| 9701 | |
| 9702 | for (PHINode &PHI : Header->phis()) { |
| 9703 | if (auto *StartCST = getOtherIncomingValue(PN: &PHI, BB: Latch)) |
| 9704 | CurrentIterVals[&PHI] = StartCST; |
| 9705 | } |
| 9706 | if (!CurrentIterVals.count(Val: PN)) |
| 9707 | return RetVal = nullptr; |
| 9708 | |
| 9709 | Value *BEValue = PN->getIncomingValueForBlock(BB: Latch); |
| 9710 | |
| 9711 | // Execute the loop symbolically to determine the exit value. |
| 9712 | assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && |
| 9713 | "BEs is <= MaxBruteForceIterations which is an 'unsigned'!" ); |
| 9714 | |
| 9715 | unsigned NumIterations = BEs.getZExtValue(); // must be in range |
| 9716 | unsigned IterationNum = 0; |
| 9717 | const DataLayout &DL = getDataLayout(); |
| 9718 | for (; ; ++IterationNum) { |
| 9719 | if (IterationNum == NumIterations) |
| 9720 | return RetVal = CurrentIterVals[PN]; // Got exit value! |
| 9721 | |
| 9722 | // Compute the value of the PHIs for the next iteration. |
| 9723 | // EvaluateExpression adds non-phi values to the CurrentIterVals map. |
| 9724 | DenseMap<Instruction *, Constant *> NextIterVals; |
| 9725 | Constant *NextPHI = |
| 9726 | EvaluateExpression(V: BEValue, L, Vals&: CurrentIterVals, DL, TLI: &TLI); |
| 9727 | if (!NextPHI) |
| 9728 | return nullptr; // Couldn't evaluate! |
| 9729 | NextIterVals[PN] = NextPHI; |
| 9730 | |
| 9731 | bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; |
| 9732 | |
| 9733 | // Also evaluate the other PHI nodes. However, we don't get to stop if we |
| 9734 | // cease to be able to evaluate one of them or if they stop evolving, |
| 9735 | // because that doesn't necessarily prevent us from computing PN. |
| 9736 | SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; |
| 9737 | for (const auto &I : CurrentIterVals) { |
| 9738 | PHINode *PHI = dyn_cast<PHINode>(Val: I.first); |
| 9739 | if (!PHI || PHI == PN || PHI->getParent() != Header) continue; |
| 9740 | PHIsToCompute.emplace_back(Args&: PHI, Args: I.second); |
| 9741 | } |
| 9742 | // We use two distinct loops because EvaluateExpression may invalidate any |
| 9743 | // iterators into CurrentIterVals. |
| 9744 | for (const auto &I : PHIsToCompute) { |
| 9745 | PHINode *PHI = I.first; |
| 9746 | Constant *&NextPHI = NextIterVals[PHI]; |
| 9747 | if (!NextPHI) { // Not already computed. |
| 9748 | Value *BEValue = PHI->getIncomingValueForBlock(BB: Latch); |
| 9749 | NextPHI = EvaluateExpression(V: BEValue, L, Vals&: CurrentIterVals, DL, TLI: &TLI); |
| 9750 | } |
| 9751 | if (NextPHI != I.second) |
| 9752 | StoppedEvolving = false; |
| 9753 | } |
| 9754 | |
| 9755 | // If all entries in CurrentIterVals == NextIterVals then we can stop |
| 9756 | // iterating, the loop can't continue to change. |
| 9757 | if (StoppedEvolving) |
| 9758 | return RetVal = CurrentIterVals[PN]; |
| 9759 | |
| 9760 | CurrentIterVals.swap(RHS&: NextIterVals); |
| 9761 | } |
| 9762 | } |
| 9763 | |
| 9764 | const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, |
| 9765 | Value *Cond, |
| 9766 | bool ExitWhen) { |
| 9767 | PHINode *PN = getConstantEvolvingPHI(V: Cond, L); |
| 9768 | if (!PN) return getCouldNotCompute(); |
| 9769 | |
| 9770 | // If the loop is canonicalized, the PHI will have exactly two entries. |
| 9771 | // That's the only form we support here. |
| 9772 | if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); |
| 9773 | |
| 9774 | DenseMap<Instruction *, Constant *> CurrentIterVals; |
| 9775 | BasicBlock * = L->getHeader(); |
| 9776 | assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!" ); |
| 9777 | |
| 9778 | BasicBlock *Latch = L->getLoopLatch(); |
| 9779 | assert(Latch && "Should follow from NumIncomingValues == 2!" ); |
| 9780 | |
| 9781 | for (PHINode &PHI : Header->phis()) { |
| 9782 | if (auto *StartCST = getOtherIncomingValue(PN: &PHI, BB: Latch)) |
| 9783 | CurrentIterVals[&PHI] = StartCST; |
| 9784 | } |
| 9785 | if (!CurrentIterVals.count(Val: PN)) |
| 9786 | return getCouldNotCompute(); |
| 9787 | |
| 9788 | // Okay, we find a PHI node that defines the trip count of this loop. Execute |
| 9789 | // the loop symbolically to determine when the condition gets a value of |
| 9790 | // "ExitWhen". |
| 9791 | unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. |
| 9792 | const DataLayout &DL = getDataLayout(); |
| 9793 | for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ |
| 9794 | auto *CondVal = dyn_cast_or_null<ConstantInt>( |
| 9795 | Val: EvaluateExpression(V: Cond, L, Vals&: CurrentIterVals, DL, TLI: &TLI)); |
| 9796 | |
| 9797 | // Couldn't symbolically evaluate. |
| 9798 | if (!CondVal) return getCouldNotCompute(); |
| 9799 | |
| 9800 | if (CondVal->getValue() == uint64_t(ExitWhen)) { |
| 9801 | ++NumBruteForceTripCountsComputed; |
| 9802 | return getConstant(Ty: Type::getInt32Ty(C&: getContext()), V: IterationNum); |
| 9803 | } |
| 9804 | |
| 9805 | // Update all the PHI nodes for the next iteration. |
| 9806 | DenseMap<Instruction *, Constant *> NextIterVals; |
| 9807 | |
| 9808 | // Create a list of which PHIs we need to compute. We want to do this before |
| 9809 | // calling EvaluateExpression on them because that may invalidate iterators |
| 9810 | // into CurrentIterVals. |
| 9811 | SmallVector<PHINode *, 8> PHIsToCompute; |
| 9812 | for (const auto &I : CurrentIterVals) { |
| 9813 | PHINode *PHI = dyn_cast<PHINode>(Val: I.first); |
| 9814 | if (!PHI || PHI->getParent() != Header) continue; |
| 9815 | PHIsToCompute.push_back(Elt: PHI); |
| 9816 | } |
| 9817 | for (PHINode *PHI : PHIsToCompute) { |
| 9818 | Constant *&NextPHI = NextIterVals[PHI]; |
| 9819 | if (NextPHI) continue; // Already computed! |
| 9820 | |
| 9821 | Value *BEValue = PHI->getIncomingValueForBlock(BB: Latch); |
| 9822 | NextPHI = EvaluateExpression(V: BEValue, L, Vals&: CurrentIterVals, DL, TLI: &TLI); |
| 9823 | } |
| 9824 | CurrentIterVals.swap(RHS&: NextIterVals); |
| 9825 | } |
| 9826 | |
| 9827 | // Too many iterations were needed to evaluate. |
| 9828 | return getCouldNotCompute(); |
| 9829 | } |
| 9830 | |
| 9831 | const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { |
| 9832 | SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = |
| 9833 | ValuesAtScopes[V]; |
| 9834 | // Check to see if we've folded this expression at this loop before. |
| 9835 | for (auto &LS : Values) |
| 9836 | if (LS.first == L) |
| 9837 | return LS.second ? LS.second : V; |
| 9838 | |
| 9839 | Values.emplace_back(Args&: L, Args: nullptr); |
| 9840 | |
| 9841 | // Otherwise compute it. |
| 9842 | const SCEV *C = computeSCEVAtScope(S: V, L); |
| 9843 | for (auto &LS : reverse(C&: ValuesAtScopes[V])) |
| 9844 | if (LS.first == L) { |
| 9845 | LS.second = C; |
| 9846 | if (!isa<SCEVConstant>(Val: C)) |
| 9847 | ValuesAtScopesUsers[C].push_back(Elt: {L, V}); |
| 9848 | break; |
| 9849 | } |
| 9850 | return C; |
| 9851 | } |
| 9852 | |
| 9853 | /// This builds up a Constant using the ConstantExpr interface. That way, we |
| 9854 | /// will return Constants for objects which aren't represented by a |
| 9855 | /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. |
| 9856 | /// Returns NULL if the SCEV isn't representable as a Constant. |
| 9857 | static Constant *BuildConstantFromSCEV(const SCEV *V) { |
| 9858 | switch (V->getSCEVType()) { |
| 9859 | case scCouldNotCompute: |
| 9860 | case scAddRecExpr: |
| 9861 | case scVScale: |
| 9862 | return nullptr; |
| 9863 | case scConstant: |
| 9864 | return cast<SCEVConstant>(Val: V)->getValue(); |
| 9865 | case scUnknown: |
| 9866 | return dyn_cast<Constant>(Val: cast<SCEVUnknown>(Val: V)->getValue()); |
| 9867 | case scPtrToInt: { |
| 9868 | const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(Val: V); |
| 9869 | if (Constant *CastOp = BuildConstantFromSCEV(V: P2I->getOperand())) |
| 9870 | return ConstantExpr::getPtrToInt(C: CastOp, Ty: P2I->getType()); |
| 9871 | |
| 9872 | return nullptr; |
| 9873 | } |
| 9874 | case scTruncate: { |
| 9875 | const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(Val: V); |
| 9876 | if (Constant *CastOp = BuildConstantFromSCEV(V: ST->getOperand())) |
| 9877 | return ConstantExpr::getTrunc(C: CastOp, Ty: ST->getType()); |
| 9878 | return nullptr; |
| 9879 | } |
| 9880 | case scAddExpr: { |
| 9881 | const SCEVAddExpr *SA = cast<SCEVAddExpr>(Val: V); |
| 9882 | Constant *C = nullptr; |
| 9883 | for (const SCEV *Op : SA->operands()) { |
| 9884 | Constant *OpC = BuildConstantFromSCEV(V: Op); |
| 9885 | if (!OpC) |
| 9886 | return nullptr; |
| 9887 | if (!C) { |
| 9888 | C = OpC; |
| 9889 | continue; |
| 9890 | } |
| 9891 | assert(!C->getType()->isPointerTy() && |
| 9892 | "Can only have one pointer, and it must be last" ); |
| 9893 | if (OpC->getType()->isPointerTy()) { |
| 9894 | // The offsets have been converted to bytes. We can add bytes using |
| 9895 | // an i8 GEP. |
| 9896 | C = ConstantExpr::getGetElementPtr(Ty: Type::getInt8Ty(C&: C->getContext()), |
| 9897 | C: OpC, Idx: C); |
| 9898 | } else { |
| 9899 | C = ConstantExpr::getAdd(C1: C, C2: OpC); |
| 9900 | } |
| 9901 | } |
| 9902 | return C; |
| 9903 | } |
| 9904 | case scMulExpr: |
| 9905 | case scSignExtend: |
| 9906 | case scZeroExtend: |
| 9907 | case scUDivExpr: |
| 9908 | case scSMaxExpr: |
| 9909 | case scUMaxExpr: |
| 9910 | case scSMinExpr: |
| 9911 | case scUMinExpr: |
| 9912 | case scSequentialUMinExpr: |
| 9913 | return nullptr; |
| 9914 | } |
| 9915 | llvm_unreachable("Unknown SCEV kind!" ); |
| 9916 | } |
| 9917 | |
| 9918 | const SCEV * |
| 9919 | ScalarEvolution::getWithOperands(const SCEV *S, |
| 9920 | SmallVectorImpl<const SCEV *> &NewOps) { |
| 9921 | switch (S->getSCEVType()) { |
| 9922 | case scTruncate: |
| 9923 | case scZeroExtend: |
| 9924 | case scSignExtend: |
| 9925 | case scPtrToInt: |
| 9926 | return getCastExpr(Kind: S->getSCEVType(), Op: NewOps[0], Ty: S->getType()); |
| 9927 | case scAddRecExpr: { |
| 9928 | auto *AddRec = cast<SCEVAddRecExpr>(Val: S); |
| 9929 | return getAddRecExpr(Operands&: NewOps, L: AddRec->getLoop(), Flags: AddRec->getNoWrapFlags()); |
| 9930 | } |
| 9931 | case scAddExpr: |
| 9932 | return getAddExpr(Ops&: NewOps, OrigFlags: cast<SCEVAddExpr>(Val: S)->getNoWrapFlags()); |
| 9933 | case scMulExpr: |
| 9934 | return getMulExpr(Ops&: NewOps, OrigFlags: cast<SCEVMulExpr>(Val: S)->getNoWrapFlags()); |
| 9935 | case scUDivExpr: |
| 9936 | return getUDivExpr(LHS: NewOps[0], RHS: NewOps[1]); |
| 9937 | case scUMaxExpr: |
| 9938 | case scSMaxExpr: |
| 9939 | case scUMinExpr: |
| 9940 | case scSMinExpr: |
| 9941 | return getMinMaxExpr(Kind: S->getSCEVType(), Ops&: NewOps); |
| 9942 | case scSequentialUMinExpr: |
| 9943 | return getSequentialMinMaxExpr(Kind: S->getSCEVType(), Ops&: NewOps); |
| 9944 | case scConstant: |
| 9945 | case scVScale: |
| 9946 | case scUnknown: |
| 9947 | return S; |
| 9948 | case scCouldNotCompute: |
| 9949 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
| 9950 | } |
| 9951 | llvm_unreachable("Unknown SCEV kind!" ); |
| 9952 | } |
| 9953 | |
| 9954 | const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { |
| 9955 | switch (V->getSCEVType()) { |
| 9956 | case scConstant: |
| 9957 | case scVScale: |
| 9958 | return V; |
| 9959 | case scAddRecExpr: { |
| 9960 | // If this is a loop recurrence for a loop that does not contain L, then we |
| 9961 | // are dealing with the final value computed by the loop. |
| 9962 | const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Val: V); |
| 9963 | // First, attempt to evaluate each operand. |
| 9964 | // Avoid performing the look-up in the common case where the specified |
| 9965 | // expression has no loop-variant portions. |
| 9966 | for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { |
| 9967 | const SCEV *OpAtScope = getSCEVAtScope(V: AddRec->getOperand(i), L); |
| 9968 | if (OpAtScope == AddRec->getOperand(i)) |
| 9969 | continue; |
| 9970 | |
| 9971 | // Okay, at least one of these operands is loop variant but might be |
| 9972 | // foldable. Build a new instance of the folded commutative expression. |
| 9973 | SmallVector<const SCEV *, 8> NewOps; |
| 9974 | NewOps.reserve(N: AddRec->getNumOperands()); |
| 9975 | append_range(C&: NewOps, R: AddRec->operands().take_front(N: i)); |
| 9976 | NewOps.push_back(Elt: OpAtScope); |
| 9977 | for (++i; i != e; ++i) |
| 9978 | NewOps.push_back(Elt: getSCEVAtScope(V: AddRec->getOperand(i), L)); |
| 9979 | |
| 9980 | const SCEV *FoldedRec = getAddRecExpr( |
| 9981 | Operands&: NewOps, L: AddRec->getLoop(), Flags: AddRec->getNoWrapFlags(Mask: SCEV::FlagNW)); |
| 9982 | AddRec = dyn_cast<SCEVAddRecExpr>(Val: FoldedRec); |
| 9983 | // The addrec may be folded to a nonrecurrence, for example, if the |
| 9984 | // induction variable is multiplied by zero after constant folding. Go |
| 9985 | // ahead and return the folded value. |
| 9986 | if (!AddRec) |
| 9987 | return FoldedRec; |
| 9988 | break; |
| 9989 | } |
| 9990 | |
| 9991 | // If the scope is outside the addrec's loop, evaluate it by using the |
| 9992 | // loop exit value of the addrec. |
| 9993 | if (!AddRec->getLoop()->contains(L)) { |
| 9994 | // To evaluate this recurrence, we need to know how many times the AddRec |
| 9995 | // loop iterates. Compute this now. |
| 9996 | const SCEV *BackedgeTakenCount = getBackedgeTakenCount(L: AddRec->getLoop()); |
| 9997 | if (BackedgeTakenCount == getCouldNotCompute()) |
| 9998 | return AddRec; |
| 9999 | |
| 10000 | // Then, evaluate the AddRec. |
| 10001 | return AddRec->evaluateAtIteration(It: BackedgeTakenCount, SE&: *this); |
| 10002 | } |
| 10003 | |
| 10004 | return AddRec; |
| 10005 | } |
| 10006 | case scTruncate: |
| 10007 | case scZeroExtend: |
| 10008 | case scSignExtend: |
| 10009 | case scPtrToInt: |
| 10010 | case scAddExpr: |
| 10011 | case scMulExpr: |
| 10012 | case scUDivExpr: |
| 10013 | case scUMaxExpr: |
| 10014 | case scSMaxExpr: |
| 10015 | case scUMinExpr: |
| 10016 | case scSMinExpr: |
| 10017 | case scSequentialUMinExpr: { |
| 10018 | ArrayRef<const SCEV *> Ops = V->operands(); |
| 10019 | // Avoid performing the look-up in the common case where the specified |
| 10020 | // expression has no loop-variant portions. |
| 10021 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| 10022 | const SCEV *OpAtScope = getSCEVAtScope(V: Ops[i], L); |
| 10023 | if (OpAtScope != Ops[i]) { |
| 10024 | // Okay, at least one of these operands is loop variant but might be |
| 10025 | // foldable. Build a new instance of the folded commutative expression. |
| 10026 | SmallVector<const SCEV *, 8> NewOps; |
| 10027 | NewOps.reserve(N: Ops.size()); |
| 10028 | append_range(C&: NewOps, R: Ops.take_front(N: i)); |
| 10029 | NewOps.push_back(Elt: OpAtScope); |
| 10030 | |
| 10031 | for (++i; i != e; ++i) { |
| 10032 | OpAtScope = getSCEVAtScope(V: Ops[i], L); |
| 10033 | NewOps.push_back(Elt: OpAtScope); |
| 10034 | } |
| 10035 | |
| 10036 | return getWithOperands(S: V, NewOps); |
| 10037 | } |
| 10038 | } |
| 10039 | // If we got here, all operands are loop invariant. |
| 10040 | return V; |
| 10041 | } |
| 10042 | case scUnknown: { |
| 10043 | // If this instruction is evolved from a constant-evolving PHI, compute the |
| 10044 | // exit value from the loop without using SCEVs. |
| 10045 | const SCEVUnknown *SU = cast<SCEVUnknown>(Val: V); |
| 10046 | Instruction *I = dyn_cast<Instruction>(Val: SU->getValue()); |
| 10047 | if (!I) |
| 10048 | return V; // This is some other type of SCEVUnknown, just return it. |
| 10049 | |
| 10050 | if (PHINode *PN = dyn_cast<PHINode>(Val: I)) { |
| 10051 | const Loop *CurrLoop = this->LI[I->getParent()]; |
| 10052 | // Looking for loop exit value. |
| 10053 | if (CurrLoop && CurrLoop->getParentLoop() == L && |
| 10054 | PN->getParent() == CurrLoop->getHeader()) { |
| 10055 | // Okay, there is no closed form solution for the PHI node. Check |
| 10056 | // to see if the loop that contains it has a known backedge-taken |
| 10057 | // count. If so, we may be able to force computation of the exit |
| 10058 | // value. |
| 10059 | const SCEV *BackedgeTakenCount = getBackedgeTakenCount(L: CurrLoop); |
| 10060 | // This trivial case can show up in some degenerate cases where |
| 10061 | // the incoming IR has not yet been fully simplified. |
| 10062 | if (BackedgeTakenCount->isZero()) { |
| 10063 | Value *InitValue = nullptr; |
| 10064 | bool MultipleInitValues = false; |
| 10065 | for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { |
| 10066 | if (!CurrLoop->contains(BB: PN->getIncomingBlock(i))) { |
| 10067 | if (!InitValue) |
| 10068 | InitValue = PN->getIncomingValue(i); |
| 10069 | else if (InitValue != PN->getIncomingValue(i)) { |
| 10070 | MultipleInitValues = true; |
| 10071 | break; |
| 10072 | } |
| 10073 | } |
| 10074 | } |
| 10075 | if (!MultipleInitValues && InitValue) |
| 10076 | return getSCEV(V: InitValue); |
| 10077 | } |
| 10078 | // Do we have a loop invariant value flowing around the backedge |
| 10079 | // for a loop which must execute the backedge? |
| 10080 | if (!isa<SCEVCouldNotCompute>(Val: BackedgeTakenCount) && |
| 10081 | isKnownNonZero(S: BackedgeTakenCount) && |
| 10082 | PN->getNumIncomingValues() == 2) { |
| 10083 | |
| 10084 | unsigned InLoopPred = |
| 10085 | CurrLoop->contains(BB: PN->getIncomingBlock(i: 0)) ? 0 : 1; |
| 10086 | Value *BackedgeVal = PN->getIncomingValue(i: InLoopPred); |
| 10087 | if (CurrLoop->isLoopInvariant(V: BackedgeVal)) |
| 10088 | return getSCEV(V: BackedgeVal); |
| 10089 | } |
| 10090 | if (auto *BTCC = dyn_cast<SCEVConstant>(Val: BackedgeTakenCount)) { |
| 10091 | // Okay, we know how many times the containing loop executes. If |
| 10092 | // this is a constant evolving PHI node, get the final value at |
| 10093 | // the specified iteration number. |
| 10094 | Constant *RV = |
| 10095 | getConstantEvolutionLoopExitValue(PN, BEs: BTCC->getAPInt(), L: CurrLoop); |
| 10096 | if (RV) |
| 10097 | return getSCEV(V: RV); |
| 10098 | } |
| 10099 | } |
| 10100 | } |
| 10101 | |
| 10102 | // Okay, this is an expression that we cannot symbolically evaluate |
| 10103 | // into a SCEV. Check to see if it's possible to symbolically evaluate |
| 10104 | // the arguments into constants, and if so, try to constant propagate the |
| 10105 | // result. This is particularly useful for computing loop exit values. |
| 10106 | if (!CanConstantFold(I)) |
| 10107 | return V; // This is some other type of SCEVUnknown, just return it. |
| 10108 | |
| 10109 | SmallVector<Constant *, 4> Operands; |
| 10110 | Operands.reserve(N: I->getNumOperands()); |
| 10111 | bool MadeImprovement = false; |
| 10112 | for (Value *Op : I->operands()) { |
| 10113 | if (Constant *C = dyn_cast<Constant>(Val: Op)) { |
| 10114 | Operands.push_back(Elt: C); |
| 10115 | continue; |
| 10116 | } |
| 10117 | |
| 10118 | // If any of the operands is non-constant and if they are |
| 10119 | // non-integer and non-pointer, don't even try to analyze them |
| 10120 | // with scev techniques. |
| 10121 | if (!isSCEVable(Ty: Op->getType())) |
| 10122 | return V; |
| 10123 | |
| 10124 | const SCEV *OrigV = getSCEV(V: Op); |
| 10125 | const SCEV *OpV = getSCEVAtScope(V: OrigV, L); |
| 10126 | MadeImprovement |= OrigV != OpV; |
| 10127 | |
| 10128 | Constant *C = BuildConstantFromSCEV(V: OpV); |
| 10129 | if (!C) |
| 10130 | return V; |
| 10131 | assert(C->getType() == Op->getType() && "Type mismatch" ); |
| 10132 | Operands.push_back(Elt: C); |
| 10133 | } |
| 10134 | |
| 10135 | // Check to see if getSCEVAtScope actually made an improvement. |
| 10136 | if (!MadeImprovement) |
| 10137 | return V; // This is some other type of SCEVUnknown, just return it. |
| 10138 | |
| 10139 | Constant *C = nullptr; |
| 10140 | const DataLayout &DL = getDataLayout(); |
| 10141 | C = ConstantFoldInstOperands(I, Ops: Operands, DL, TLI: &TLI, |
| 10142 | /*AllowNonDeterministic=*/false); |
| 10143 | if (!C) |
| 10144 | return V; |
| 10145 | return getSCEV(V: C); |
| 10146 | } |
| 10147 | case scCouldNotCompute: |
| 10148 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
| 10149 | } |
| 10150 | llvm_unreachable("Unknown SCEV type!" ); |
| 10151 | } |
| 10152 | |
| 10153 | const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { |
| 10154 | return getSCEVAtScope(V: getSCEV(V), L); |
| 10155 | } |
| 10156 | |
| 10157 | const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { |
| 10158 | if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: S)) |
| 10159 | return stripInjectiveFunctions(S: ZExt->getOperand()); |
| 10160 | if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Val: S)) |
| 10161 | return stripInjectiveFunctions(S: SExt->getOperand()); |
| 10162 | return S; |
| 10163 | } |
| 10164 | |
| 10165 | /// Finds the minimum unsigned root of the following equation: |
| 10166 | /// |
| 10167 | /// A * X = B (mod N) |
| 10168 | /// |
| 10169 | /// where N = 2^BW and BW is the common bit width of A and B. The signedness of |
| 10170 | /// A and B isn't important. |
| 10171 | /// |
| 10172 | /// If the equation does not have a solution, SCEVCouldNotCompute is returned. |
| 10173 | static const SCEV * |
| 10174 | SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, |
| 10175 | SmallVectorImpl<const SCEVPredicate *> *Predicates, |
| 10176 | |
| 10177 | ScalarEvolution &SE) { |
| 10178 | uint32_t BW = A.getBitWidth(); |
| 10179 | assert(BW == SE.getTypeSizeInBits(B->getType())); |
| 10180 | assert(A != 0 && "A must be non-zero." ); |
| 10181 | |
| 10182 | // 1. D = gcd(A, N) |
| 10183 | // |
| 10184 | // The gcd of A and N may have only one prime factor: 2. The number of |
| 10185 | // trailing zeros in A is its multiplicity |
| 10186 | uint32_t Mult2 = A.countr_zero(); |
| 10187 | // D = 2^Mult2 |
| 10188 | |
| 10189 | // 2. Check if B is divisible by D. |
| 10190 | // |
| 10191 | // B is divisible by D if and only if the multiplicity of prime factor 2 for B |
| 10192 | // is not less than multiplicity of this prime factor for D. |
| 10193 | if (SE.getMinTrailingZeros(S: B) < Mult2) { |
| 10194 | // Check if we can prove there's no remainder using URem. |
| 10195 | const SCEV *URem = |
| 10196 | SE.getURemExpr(LHS: B, RHS: SE.getConstant(Val: APInt::getOneBitSet(numBits: BW, BitNo: Mult2))); |
| 10197 | const SCEV *Zero = SE.getZero(Ty: B->getType()); |
| 10198 | if (!SE.isKnownPredicate(Pred: CmpInst::ICMP_EQ, LHS: URem, RHS: Zero)) { |
| 10199 | // Try to add a predicate ensuring B is a multiple of 1 << Mult2. |
| 10200 | if (!Predicates) |
| 10201 | return SE.getCouldNotCompute(); |
| 10202 | |
| 10203 | // Avoid adding a predicate that is known to be false. |
| 10204 | if (SE.isKnownPredicate(Pred: CmpInst::ICMP_NE, LHS: URem, RHS: Zero)) |
| 10205 | return SE.getCouldNotCompute(); |
| 10206 | Predicates->push_back(Elt: SE.getEqualPredicate(LHS: URem, RHS: Zero)); |
| 10207 | } |
| 10208 | } |
| 10209 | |
| 10210 | // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic |
| 10211 | // modulo (N / D). |
| 10212 | // |
| 10213 | // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent |
| 10214 | // (N / D) in general. The inverse itself always fits into BW bits, though, |
| 10215 | // so we immediately truncate it. |
| 10216 | APInt AD = A.lshr(shiftAmt: Mult2).trunc(width: BW - Mult2); // AD = A / D |
| 10217 | APInt I = AD.multiplicativeInverse().zext(width: BW); |
| 10218 | |
| 10219 | // 4. Compute the minimum unsigned root of the equation: |
| 10220 | // I * (B / D) mod (N / D) |
| 10221 | // To simplify the computation, we factor out the divide by D: |
| 10222 | // (I * B mod N) / D |
| 10223 | const SCEV *D = SE.getConstant(Val: APInt::getOneBitSet(numBits: BW, BitNo: Mult2)); |
| 10224 | return SE.getUDivExactExpr(LHS: SE.getMulExpr(LHS: B, RHS: SE.getConstant(Val: I)), RHS: D); |
| 10225 | } |
| 10226 | |
| 10227 | /// For a given quadratic addrec, generate coefficients of the corresponding |
| 10228 | /// quadratic equation, multiplied by a common value to ensure that they are |
| 10229 | /// integers. |
| 10230 | /// The returned value is a tuple { A, B, C, M, BitWidth }, where |
| 10231 | /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C |
| 10232 | /// were multiplied by, and BitWidth is the bit width of the original addrec |
| 10233 | /// coefficients. |
| 10234 | /// This function returns std::nullopt if the addrec coefficients are not |
| 10235 | /// compile- time constants. |
| 10236 | static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> |
| 10237 | GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { |
| 10238 | assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!" ); |
| 10239 | const SCEVConstant *LC = dyn_cast<SCEVConstant>(Val: AddRec->getOperand(i: 0)); |
| 10240 | const SCEVConstant *MC = dyn_cast<SCEVConstant>(Val: AddRec->getOperand(i: 1)); |
| 10241 | const SCEVConstant *NC = dyn_cast<SCEVConstant>(Val: AddRec->getOperand(i: 2)); |
| 10242 | LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " |
| 10243 | << *AddRec << '\n'); |
| 10244 | |
| 10245 | // We currently can only solve this if the coefficients are constants. |
| 10246 | if (!LC || !MC || !NC) { |
| 10247 | LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n" ); |
| 10248 | return std::nullopt; |
| 10249 | } |
| 10250 | |
| 10251 | APInt L = LC->getAPInt(); |
| 10252 | APInt M = MC->getAPInt(); |
| 10253 | APInt N = NC->getAPInt(); |
| 10254 | assert(!N.isZero() && "This is not a quadratic addrec" ); |
| 10255 | |
| 10256 | unsigned BitWidth = LC->getAPInt().getBitWidth(); |
| 10257 | unsigned NewWidth = BitWidth + 1; |
| 10258 | LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " |
| 10259 | << BitWidth << '\n'); |
| 10260 | // The sign-extension (as opposed to a zero-extension) here matches the |
| 10261 | // extension used in SolveQuadraticEquationWrap (with the same motivation). |
| 10262 | N = N.sext(width: NewWidth); |
| 10263 | M = M.sext(width: NewWidth); |
| 10264 | L = L.sext(width: NewWidth); |
| 10265 | |
| 10266 | // The increments are M, M+N, M+2N, ..., so the accumulated values are |
| 10267 | // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, |
| 10268 | // L+M, L+2M+N, L+3M+3N, ... |
| 10269 | // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. |
| 10270 | // |
| 10271 | // The equation Acc = 0 is then |
| 10272 | // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. |
| 10273 | // In a quadratic form it becomes: |
| 10274 | // N n^2 + (2M-N) n + 2L = 0. |
| 10275 | |
| 10276 | APInt A = N; |
| 10277 | APInt B = 2 * M - A; |
| 10278 | APInt C = 2 * L; |
| 10279 | APInt T = APInt(NewWidth, 2); |
| 10280 | LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B |
| 10281 | << "x + " << C << ", coeff bw: " << NewWidth |
| 10282 | << ", multiplied by " << T << '\n'); |
| 10283 | return std::make_tuple(args&: A, args&: B, args&: C, args&: T, args&: BitWidth); |
| 10284 | } |
| 10285 | |
| 10286 | /// Helper function to compare optional APInts: |
| 10287 | /// (a) if X and Y both exist, return min(X, Y), |
| 10288 | /// (b) if neither X nor Y exist, return std::nullopt, |
| 10289 | /// (c) if exactly one of X and Y exists, return that value. |
| 10290 | static std::optional<APInt> MinOptional(std::optional<APInt> X, |
| 10291 | std::optional<APInt> Y) { |
| 10292 | if (X && Y) { |
| 10293 | unsigned W = std::max(a: X->getBitWidth(), b: Y->getBitWidth()); |
| 10294 | APInt XW = X->sext(width: W); |
| 10295 | APInt YW = Y->sext(width: W); |
| 10296 | return XW.slt(RHS: YW) ? *X : *Y; |
| 10297 | } |
| 10298 | if (!X && !Y) |
| 10299 | return std::nullopt; |
| 10300 | return X ? *X : *Y; |
| 10301 | } |
| 10302 | |
| 10303 | /// Helper function to truncate an optional APInt to a given BitWidth. |
| 10304 | /// When solving addrec-related equations, it is preferable to return a value |
| 10305 | /// that has the same bit width as the original addrec's coefficients. If the |
| 10306 | /// solution fits in the original bit width, truncate it (except for i1). |
| 10307 | /// Returning a value of a different bit width may inhibit some optimizations. |
| 10308 | /// |
| 10309 | /// In general, a solution to a quadratic equation generated from an addrec |
| 10310 | /// may require BW+1 bits, where BW is the bit width of the addrec's |
| 10311 | /// coefficients. The reason is that the coefficients of the quadratic |
| 10312 | /// equation are BW+1 bits wide (to avoid truncation when converting from |
| 10313 | /// the addrec to the equation). |
| 10314 | static std::optional<APInt> TruncIfPossible(std::optional<APInt> X, |
| 10315 | unsigned BitWidth) { |
| 10316 | if (!X) |
| 10317 | return std::nullopt; |
| 10318 | unsigned W = X->getBitWidth(); |
| 10319 | if (BitWidth > 1 && BitWidth < W && X->isIntN(N: BitWidth)) |
| 10320 | return X->trunc(width: BitWidth); |
| 10321 | return X; |
| 10322 | } |
| 10323 | |
| 10324 | /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n |
| 10325 | /// iterations. The values L, M, N are assumed to be signed, and they |
| 10326 | /// should all have the same bit widths. |
| 10327 | /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, |
| 10328 | /// where BW is the bit width of the addrec's coefficients. |
| 10329 | /// If the calculated value is a BW-bit integer (for BW > 1), it will be |
| 10330 | /// returned as such, otherwise the bit width of the returned value may |
| 10331 | /// be greater than BW. |
| 10332 | /// |
| 10333 | /// This function returns std::nullopt if |
| 10334 | /// (a) the addrec coefficients are not constant, or |
| 10335 | /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases |
| 10336 | /// like x^2 = 5, no integer solutions exist, in other cases an integer |
| 10337 | /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. |
| 10338 | static std::optional<APInt> |
| 10339 | SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { |
| 10340 | APInt A, B, C, M; |
| 10341 | unsigned BitWidth; |
| 10342 | auto T = GetQuadraticEquation(AddRec); |
| 10343 | if (!T) |
| 10344 | return std::nullopt; |
| 10345 | |
| 10346 | std::tie(args&: A, args&: B, args&: C, args&: M, args&: BitWidth) = *T; |
| 10347 | LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n" ); |
| 10348 | std::optional<APInt> X = |
| 10349 | APIntOps::SolveQuadraticEquationWrap(A, B, C, RangeWidth: BitWidth + 1); |
| 10350 | if (!X) |
| 10351 | return std::nullopt; |
| 10352 | |
| 10353 | ConstantInt *CX = ConstantInt::get(Context&: SE.getContext(), V: *X); |
| 10354 | ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, C: CX, SE); |
| 10355 | if (!V->isZero()) |
| 10356 | return std::nullopt; |
| 10357 | |
| 10358 | return TruncIfPossible(X, BitWidth); |
| 10359 | } |
| 10360 | |
| 10361 | /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n |
| 10362 | /// iterations. The values M, N are assumed to be signed, and they |
| 10363 | /// should all have the same bit widths. |
| 10364 | /// Find the least n such that c(n) does not belong to the given range, |
| 10365 | /// while c(n-1) does. |
| 10366 | /// |
| 10367 | /// This function returns std::nullopt if |
| 10368 | /// (a) the addrec coefficients are not constant, or |
| 10369 | /// (b) SolveQuadraticEquationWrap was unable to find a solution for the |
| 10370 | /// bounds of the range. |
| 10371 | static std::optional<APInt> |
| 10372 | SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, |
| 10373 | const ConstantRange &Range, ScalarEvolution &SE) { |
| 10374 | assert(AddRec->getOperand(0)->isZero() && |
| 10375 | "Starting value of addrec should be 0" ); |
| 10376 | LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " |
| 10377 | << Range << ", addrec " << *AddRec << '\n'); |
| 10378 | // This case is handled in getNumIterationsInRange. Here we can assume that |
| 10379 | // we start in the range. |
| 10380 | assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && |
| 10381 | "Addrec's initial value should be in range" ); |
| 10382 | |
| 10383 | APInt A, B, C, M; |
| 10384 | unsigned BitWidth; |
| 10385 | auto T = GetQuadraticEquation(AddRec); |
| 10386 | if (!T) |
| 10387 | return std::nullopt; |
| 10388 | |
| 10389 | // Be careful about the return value: there can be two reasons for not |
| 10390 | // returning an actual number. First, if no solutions to the equations |
| 10391 | // were found, and second, if the solutions don't leave the given range. |
| 10392 | // The first case means that the actual solution is "unknown", the second |
| 10393 | // means that it's known, but not valid. If the solution is unknown, we |
| 10394 | // cannot make any conclusions. |
| 10395 | // Return a pair: the optional solution and a flag indicating if the |
| 10396 | // solution was found. |
| 10397 | auto SolveForBoundary = |
| 10398 | [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> { |
| 10399 | // Solve for signed overflow and unsigned overflow, pick the lower |
| 10400 | // solution. |
| 10401 | LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " |
| 10402 | << Bound << " (before multiplying by " << M << ")\n" ); |
| 10403 | Bound *= M; // The quadratic equation multiplier. |
| 10404 | |
| 10405 | std::optional<APInt> SO; |
| 10406 | if (BitWidth > 1) { |
| 10407 | LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " |
| 10408 | "signed overflow\n" ); |
| 10409 | SO = APIntOps::SolveQuadraticEquationWrap(A, B, C: -Bound, RangeWidth: BitWidth); |
| 10410 | } |
| 10411 | LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " |
| 10412 | "unsigned overflow\n" ); |
| 10413 | std::optional<APInt> UO = |
| 10414 | APIntOps::SolveQuadraticEquationWrap(A, B, C: -Bound, RangeWidth: BitWidth + 1); |
| 10415 | |
| 10416 | auto LeavesRange = [&] (const APInt &X) { |
| 10417 | ConstantInt *C0 = ConstantInt::get(Context&: SE.getContext(), V: X); |
| 10418 | ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C: C0, SE); |
| 10419 | if (Range.contains(Val: V0->getValue())) |
| 10420 | return false; |
| 10421 | // X should be at least 1, so X-1 is non-negative. |
| 10422 | ConstantInt *C1 = ConstantInt::get(Context&: SE.getContext(), V: X-1); |
| 10423 | ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C: C1, SE); |
| 10424 | if (Range.contains(Val: V1->getValue())) |
| 10425 | return true; |
| 10426 | return false; |
| 10427 | }; |
| 10428 | |
| 10429 | // If SolveQuadraticEquationWrap returns std::nullopt, it means that there |
| 10430 | // can be a solution, but the function failed to find it. We cannot treat it |
| 10431 | // as "no solution". |
| 10432 | if (!SO || !UO) |
| 10433 | return {std::nullopt, false}; |
| 10434 | |
| 10435 | // Check the smaller value first to see if it leaves the range. |
| 10436 | // At this point, both SO and UO must have values. |
| 10437 | std::optional<APInt> Min = MinOptional(X: SO, Y: UO); |
| 10438 | if (LeavesRange(*Min)) |
| 10439 | return { Min, true }; |
| 10440 | std::optional<APInt> Max = Min == SO ? UO : SO; |
| 10441 | if (LeavesRange(*Max)) |
| 10442 | return { Max, true }; |
| 10443 | |
| 10444 | // Solutions were found, but were eliminated, hence the "true". |
| 10445 | return {std::nullopt, true}; |
| 10446 | }; |
| 10447 | |
| 10448 | std::tie(args&: A, args&: B, args&: C, args&: M, args&: BitWidth) = *T; |
| 10449 | // Lower bound is inclusive, subtract 1 to represent the exiting value. |
| 10450 | APInt Lower = Range.getLower().sext(width: A.getBitWidth()) - 1; |
| 10451 | APInt Upper = Range.getUpper().sext(width: A.getBitWidth()); |
| 10452 | auto SL = SolveForBoundary(Lower); |
| 10453 | auto SU = SolveForBoundary(Upper); |
| 10454 | // If any of the solutions was unknown, no meaninigful conclusions can |
| 10455 | // be made. |
| 10456 | if (!SL.second || !SU.second) |
| 10457 | return std::nullopt; |
| 10458 | |
| 10459 | // Claim: The correct solution is not some value between Min and Max. |
| 10460 | // |
| 10461 | // Justification: Assuming that Min and Max are different values, one of |
| 10462 | // them is when the first signed overflow happens, the other is when the |
| 10463 | // first unsigned overflow happens. Crossing the range boundary is only |
| 10464 | // possible via an overflow (treating 0 as a special case of it, modeling |
| 10465 | // an overflow as crossing k*2^W for some k). |
| 10466 | // |
| 10467 | // The interesting case here is when Min was eliminated as an invalid |
| 10468 | // solution, but Max was not. The argument is that if there was another |
| 10469 | // overflow between Min and Max, it would also have been eliminated if |
| 10470 | // it was considered. |
| 10471 | // |
| 10472 | // For a given boundary, it is possible to have two overflows of the same |
| 10473 | // type (signed/unsigned) without having the other type in between: this |
| 10474 | // can happen when the vertex of the parabola is between the iterations |
| 10475 | // corresponding to the overflows. This is only possible when the two |
| 10476 | // overflows cross k*2^W for the same k. In such case, if the second one |
| 10477 | // left the range (and was the first one to do so), the first overflow |
| 10478 | // would have to enter the range, which would mean that either we had left |
| 10479 | // the range before or that we started outside of it. Both of these cases |
| 10480 | // are contradictions. |
| 10481 | // |
| 10482 | // Claim: In the case where SolveForBoundary returns std::nullopt, the correct |
| 10483 | // solution is not some value between the Max for this boundary and the |
| 10484 | // Min of the other boundary. |
| 10485 | // |
| 10486 | // Justification: Assume that we had such Max_A and Min_B corresponding |
| 10487 | // to range boundaries A and B and such that Max_A < Min_B. If there was |
| 10488 | // a solution between Max_A and Min_B, it would have to be caused by an |
| 10489 | // overflow corresponding to either A or B. It cannot correspond to B, |
| 10490 | // since Min_B is the first occurrence of such an overflow. If it |
| 10491 | // corresponded to A, it would have to be either a signed or an unsigned |
| 10492 | // overflow that is larger than both eliminated overflows for A. But |
| 10493 | // between the eliminated overflows and this overflow, the values would |
| 10494 | // cover the entire value space, thus crossing the other boundary, which |
| 10495 | // is a contradiction. |
| 10496 | |
| 10497 | return TruncIfPossible(X: MinOptional(X: SL.first, Y: SU.first), BitWidth); |
| 10498 | } |
| 10499 | |
| 10500 | ScalarEvolution::ExitLimit ScalarEvolution::howFarToZero(const SCEV *V, |
| 10501 | const Loop *L, |
| 10502 | bool ControlsOnlyExit, |
| 10503 | bool AllowPredicates) { |
| 10504 | |
| 10505 | // This is only used for loops with a "x != y" exit test. The exit condition |
| 10506 | // is now expressed as a single expression, V = x-y. So the exit test is |
| 10507 | // effectively V != 0. We know and take advantage of the fact that this |
| 10508 | // expression only being used in a comparison by zero context. |
| 10509 | |
| 10510 | SmallVector<const SCEVPredicate *> Predicates; |
| 10511 | // If the value is a constant |
| 10512 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: V)) { |
| 10513 | // If the value is already zero, the branch will execute zero times. |
| 10514 | if (C->getValue()->isZero()) return C; |
| 10515 | return getCouldNotCompute(); // Otherwise it will loop infinitely. |
| 10516 | } |
| 10517 | |
| 10518 | const SCEVAddRecExpr *AddRec = |
| 10519 | dyn_cast<SCEVAddRecExpr>(Val: stripInjectiveFunctions(S: V)); |
| 10520 | |
| 10521 | if (!AddRec && AllowPredicates) |
| 10522 | // Try to make this an AddRec using runtime tests, in the first X |
| 10523 | // iterations of this loop, where X is the SCEV expression found by the |
| 10524 | // algorithm below. |
| 10525 | AddRec = convertSCEVToAddRecWithPredicates(S: V, L, Preds&: Predicates); |
| 10526 | |
| 10527 | if (!AddRec || AddRec->getLoop() != L) |
| 10528 | return getCouldNotCompute(); |
| 10529 | |
| 10530 | // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of |
| 10531 | // the quadratic equation to solve it. |
| 10532 | if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { |
| 10533 | // We can only use this value if the chrec ends up with an exact zero |
| 10534 | // value at this index. When solving for "X*X != 5", for example, we |
| 10535 | // should not accept a root of 2. |
| 10536 | if (auto S = SolveQuadraticAddRecExact(AddRec, SE&: *this)) { |
| 10537 | const auto *R = cast<SCEVConstant>(Val: getConstant(Val: *S)); |
| 10538 | return ExitLimit(R, R, R, false, Predicates); |
| 10539 | } |
| 10540 | return getCouldNotCompute(); |
| 10541 | } |
| 10542 | |
| 10543 | // Otherwise we can only handle this if it is affine. |
| 10544 | if (!AddRec->isAffine()) |
| 10545 | return getCouldNotCompute(); |
| 10546 | |
| 10547 | // If this is an affine expression, the execution count of this branch is |
| 10548 | // the minimum unsigned root of the following equation: |
| 10549 | // |
| 10550 | // Start + Step*N = 0 (mod 2^BW) |
| 10551 | // |
| 10552 | // equivalent to: |
| 10553 | // |
| 10554 | // Step*N = -Start (mod 2^BW) |
| 10555 | // |
| 10556 | // where BW is the common bit width of Start and Step. |
| 10557 | |
| 10558 | // Get the initial value for the loop. |
| 10559 | const SCEV *Start = getSCEVAtScope(V: AddRec->getStart(), L: L->getParentLoop()); |
| 10560 | const SCEV *Step = getSCEVAtScope(V: AddRec->getOperand(i: 1), L: L->getParentLoop()); |
| 10561 | |
| 10562 | if (!isLoopInvariant(S: Step, L)) |
| 10563 | return getCouldNotCompute(); |
| 10564 | |
| 10565 | LoopGuards Guards = LoopGuards::collect(L, SE&: *this); |
| 10566 | // Specialize step for this loop so we get context sensitive facts below. |
| 10567 | const SCEV *StepWLG = applyLoopGuards(Expr: Step, Guards); |
| 10568 | |
| 10569 | // For positive steps (counting up until unsigned overflow): |
| 10570 | // N = -Start/Step (as unsigned) |
| 10571 | // For negative steps (counting down to zero): |
| 10572 | // N = Start/-Step |
| 10573 | // First compute the unsigned distance from zero in the direction of Step. |
| 10574 | bool CountDown = isKnownNegative(S: StepWLG); |
| 10575 | if (!CountDown && !isKnownNonNegative(S: StepWLG)) |
| 10576 | return getCouldNotCompute(); |
| 10577 | |
| 10578 | const SCEV *Distance = CountDown ? Start : getNegativeSCEV(V: Start); |
| 10579 | // Handle unitary steps, which cannot wraparound. |
| 10580 | // 1*N = -Start; -1*N = Start (mod 2^BW), so: |
| 10581 | // N = Distance (as unsigned) |
| 10582 | |
| 10583 | if (match(S: Step, P: m_CombineOr(L: m_scev_One(), R: m_scev_AllOnes()))) { |
| 10584 | APInt MaxBECount = getUnsignedRangeMax(S: applyLoopGuards(Expr: Distance, Guards)); |
| 10585 | MaxBECount = APIntOps::umin(A: MaxBECount, B: getUnsignedRangeMax(S: Distance)); |
| 10586 | |
| 10587 | // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, |
| 10588 | // we end up with a loop whose backedge-taken count is n - 1. Detect this |
| 10589 | // case, and see if we can improve the bound. |
| 10590 | // |
| 10591 | // Explicitly handling this here is necessary because getUnsignedRange |
| 10592 | // isn't context-sensitive; it doesn't know that we only care about the |
| 10593 | // range inside the loop. |
| 10594 | const SCEV *Zero = getZero(Ty: Distance->getType()); |
| 10595 | const SCEV *One = getOne(Ty: Distance->getType()); |
| 10596 | const SCEV *DistancePlusOne = getAddExpr(LHS: Distance, RHS: One); |
| 10597 | if (isLoopEntryGuardedByCond(L, Pred: ICmpInst::ICMP_NE, LHS: DistancePlusOne, RHS: Zero)) { |
| 10598 | // If Distance + 1 doesn't overflow, we can compute the maximum distance |
| 10599 | // as "unsigned_max(Distance + 1) - 1". |
| 10600 | ConstantRange CR = getUnsignedRange(S: DistancePlusOne); |
| 10601 | MaxBECount = APIntOps::umin(A: MaxBECount, B: CR.getUnsignedMax() - 1); |
| 10602 | } |
| 10603 | return ExitLimit(Distance, getConstant(Val: MaxBECount), Distance, false, |
| 10604 | Predicates); |
| 10605 | } |
| 10606 | |
| 10607 | // If the condition controls loop exit (the loop exits only if the expression |
| 10608 | // is true) and the addition is no-wrap we can use unsigned divide to |
| 10609 | // compute the backedge count. In this case, the step may not divide the |
| 10610 | // distance, but we don't care because if the condition is "missed" the loop |
| 10611 | // will have undefined behavior due to wrapping. |
| 10612 | if (ControlsOnlyExit && AddRec->hasNoSelfWrap() && |
| 10613 | loopHasNoAbnormalExits(L: AddRec->getLoop())) { |
| 10614 | |
| 10615 | // If the stride is zero and the start is non-zero, the loop must be |
| 10616 | // infinite. In C++, most loops are finite by assumption, in which case the |
| 10617 | // step being zero implies UB must execute if the loop is entered. |
| 10618 | if (!(loopIsFiniteByAssumption(L) && isKnownNonZero(S: Start)) && |
| 10619 | !isKnownNonZero(S: StepWLG)) |
| 10620 | return getCouldNotCompute(); |
| 10621 | |
| 10622 | const SCEV *Exact = |
| 10623 | getUDivExpr(LHS: Distance, RHS: CountDown ? getNegativeSCEV(V: Step) : Step); |
| 10624 | const SCEV *ConstantMax = getCouldNotCompute(); |
| 10625 | if (Exact != getCouldNotCompute()) { |
| 10626 | APInt MaxInt = getUnsignedRangeMax(S: applyLoopGuards(Expr: Exact, Guards)); |
| 10627 | ConstantMax = |
| 10628 | getConstant(Val: APIntOps::umin(A: MaxInt, B: getUnsignedRangeMax(S: Exact))); |
| 10629 | } |
| 10630 | const SCEV *SymbolicMax = |
| 10631 | isa<SCEVCouldNotCompute>(Val: Exact) ? ConstantMax : Exact; |
| 10632 | return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates); |
| 10633 | } |
| 10634 | |
| 10635 | // Solve the general equation. |
| 10636 | const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Val: Step); |
| 10637 | if (!StepC || StepC->getValue()->isZero()) |
| 10638 | return getCouldNotCompute(); |
| 10639 | const SCEV *E = SolveLinEquationWithOverflow( |
| 10640 | A: StepC->getAPInt(), B: getNegativeSCEV(V: Start), |
| 10641 | Predicates: AllowPredicates ? &Predicates : nullptr, SE&: *this); |
| 10642 | |
| 10643 | const SCEV *M = E; |
| 10644 | if (E != getCouldNotCompute()) { |
| 10645 | APInt MaxWithGuards = getUnsignedRangeMax(S: applyLoopGuards(Expr: E, Guards)); |
| 10646 | M = getConstant(Val: APIntOps::umin(A: MaxWithGuards, B: getUnsignedRangeMax(S: E))); |
| 10647 | } |
| 10648 | auto *S = isa<SCEVCouldNotCompute>(Val: E) ? M : E; |
| 10649 | return ExitLimit(E, M, S, false, Predicates); |
| 10650 | } |
| 10651 | |
| 10652 | ScalarEvolution::ExitLimit |
| 10653 | ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { |
| 10654 | // Loops that look like: while (X == 0) are very strange indeed. We don't |
| 10655 | // handle them yet except for the trivial case. This could be expanded in the |
| 10656 | // future as needed. |
| 10657 | |
| 10658 | // If the value is a constant, check to see if it is known to be non-zero |
| 10659 | // already. If so, the backedge will execute zero times. |
| 10660 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: V)) { |
| 10661 | if (!C->getValue()->isZero()) |
| 10662 | return getZero(Ty: C->getType()); |
| 10663 | return getCouldNotCompute(); // Otherwise it will loop infinitely. |
| 10664 | } |
| 10665 | |
| 10666 | // We could implement others, but I really doubt anyone writes loops like |
| 10667 | // this, and if they did, they would already be constant folded. |
| 10668 | return getCouldNotCompute(); |
| 10669 | } |
| 10670 | |
| 10671 | std::pair<const BasicBlock *, const BasicBlock *> |
| 10672 | ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) |
| 10673 | const { |
| 10674 | // If the block has a unique predecessor, then there is no path from the |
| 10675 | // predecessor to the block that does not go through the direct edge |
| 10676 | // from the predecessor to the block. |
| 10677 | if (const BasicBlock *Pred = BB->getSinglePredecessor()) |
| 10678 | return {Pred, BB}; |
| 10679 | |
| 10680 | // A loop's header is defined to be a block that dominates the loop. |
| 10681 | // If the header has a unique predecessor outside the loop, it must be |
| 10682 | // a block that has exactly one successor that can reach the loop. |
| 10683 | if (const Loop *L = LI.getLoopFor(BB)) |
| 10684 | return {L->getLoopPredecessor(), L->getHeader()}; |
| 10685 | |
| 10686 | return {nullptr, BB}; |
| 10687 | } |
| 10688 | |
| 10689 | /// SCEV structural equivalence is usually sufficient for testing whether two |
| 10690 | /// expressions are equal, however for the purposes of looking for a condition |
| 10691 | /// guarding a loop, it can be useful to be a little more general, since a |
| 10692 | /// front-end may have replicated the controlling expression. |
| 10693 | static bool HasSameValue(const SCEV *A, const SCEV *B) { |
| 10694 | // Quick check to see if they are the same SCEV. |
| 10695 | if (A == B) return true; |
| 10696 | |
| 10697 | auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { |
| 10698 | // Not all instructions that are "identical" compute the same value. For |
| 10699 | // instance, two distinct alloca instructions allocating the same type are |
| 10700 | // identical and do not read memory; but compute distinct values. |
| 10701 | return A->isIdenticalTo(I: B) && (isa<BinaryOperator>(Val: A) || isa<GetElementPtrInst>(Val: A)); |
| 10702 | }; |
| 10703 | |
| 10704 | // Otherwise, if they're both SCEVUnknown, it's possible that they hold |
| 10705 | // two different instructions with the same value. Check for this case. |
| 10706 | if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(Val: A)) |
| 10707 | if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(Val: B)) |
| 10708 | if (const Instruction *AI = dyn_cast<Instruction>(Val: AU->getValue())) |
| 10709 | if (const Instruction *BI = dyn_cast<Instruction>(Val: BU->getValue())) |
| 10710 | if (ComputesEqualValues(AI, BI)) |
| 10711 | return true; |
| 10712 | |
| 10713 | // Otherwise assume they may have a different value. |
| 10714 | return false; |
| 10715 | } |
| 10716 | |
| 10717 | static bool MatchBinarySub(const SCEV *S, const SCEV *&LHS, const SCEV *&RHS) { |
| 10718 | const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: S); |
| 10719 | if (!Add || Add->getNumOperands() != 2) |
| 10720 | return false; |
| 10721 | if (auto *ME = dyn_cast<SCEVMulExpr>(Val: Add->getOperand(i: 0)); |
| 10722 | ME && ME->getNumOperands() == 2 && ME->getOperand(i: 0)->isAllOnesValue()) { |
| 10723 | LHS = Add->getOperand(i: 1); |
| 10724 | RHS = ME->getOperand(i: 1); |
| 10725 | return true; |
| 10726 | } |
| 10727 | if (auto *ME = dyn_cast<SCEVMulExpr>(Val: Add->getOperand(i: 1)); |
| 10728 | ME && ME->getNumOperands() == 2 && ME->getOperand(i: 0)->isAllOnesValue()) { |
| 10729 | LHS = Add->getOperand(i: 0); |
| 10730 | RHS = ME->getOperand(i: 1); |
| 10731 | return true; |
| 10732 | } |
| 10733 | return false; |
| 10734 | } |
| 10735 | |
| 10736 | bool ScalarEvolution::SimplifyICmpOperands(CmpPredicate &Pred, const SCEV *&LHS, |
| 10737 | const SCEV *&RHS, unsigned Depth) { |
| 10738 | bool Changed = false; |
| 10739 | // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or |
| 10740 | // '0 != 0'. |
| 10741 | auto TrivialCase = [&](bool TriviallyTrue) { |
| 10742 | LHS = RHS = getConstant(V: ConstantInt::getFalse(Context&: getContext())); |
| 10743 | Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; |
| 10744 | return true; |
| 10745 | }; |
| 10746 | // If we hit the max recursion limit bail out. |
| 10747 | if (Depth >= 3) |
| 10748 | return false; |
| 10749 | |
| 10750 | // Canonicalize a constant to the right side. |
| 10751 | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Val: LHS)) { |
| 10752 | // Check for both operands constant. |
| 10753 | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: RHS)) { |
| 10754 | if (!ICmpInst::compare(LHS: LHSC->getAPInt(), RHS: RHSC->getAPInt(), Pred)) |
| 10755 | return TrivialCase(false); |
| 10756 | return TrivialCase(true); |
| 10757 | } |
| 10758 | // Otherwise swap the operands to put the constant on the right. |
| 10759 | std::swap(a&: LHS, b&: RHS); |
| 10760 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
| 10761 | Changed = true; |
| 10762 | } |
| 10763 | |
| 10764 | // If we're comparing an addrec with a value which is loop-invariant in the |
| 10765 | // addrec's loop, put the addrec on the left. Also make a dominance check, |
| 10766 | // as both operands could be addrecs loop-invariant in each other's loop. |
| 10767 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: RHS)) { |
| 10768 | const Loop *L = AR->getLoop(); |
| 10769 | if (isLoopInvariant(S: LHS, L) && properlyDominates(S: LHS, BB: L->getHeader())) { |
| 10770 | std::swap(a&: LHS, b&: RHS); |
| 10771 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
| 10772 | Changed = true; |
| 10773 | } |
| 10774 | } |
| 10775 | |
| 10776 | // If there's a constant operand, canonicalize comparisons with boundary |
| 10777 | // cases, and canonicalize *-or-equal comparisons to regular comparisons. |
| 10778 | if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(Val: RHS)) { |
| 10779 | const APInt &RA = RC->getAPInt(); |
| 10780 | |
| 10781 | bool SimplifiedByConstantRange = false; |
| 10782 | |
| 10783 | if (!ICmpInst::isEquality(P: Pred)) { |
| 10784 | ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, Other: RA); |
| 10785 | if (ExactCR.isFullSet()) |
| 10786 | return TrivialCase(true); |
| 10787 | if (ExactCR.isEmptySet()) |
| 10788 | return TrivialCase(false); |
| 10789 | |
| 10790 | APInt NewRHS; |
| 10791 | CmpInst::Predicate NewPred; |
| 10792 | if (ExactCR.getEquivalentICmp(Pred&: NewPred, RHS&: NewRHS) && |
| 10793 | ICmpInst::isEquality(P: NewPred)) { |
| 10794 | // We were able to convert an inequality to an equality. |
| 10795 | Pred = NewPred; |
| 10796 | RHS = getConstant(Val: NewRHS); |
| 10797 | Changed = SimplifiedByConstantRange = true; |
| 10798 | } |
| 10799 | } |
| 10800 | |
| 10801 | if (!SimplifiedByConstantRange) { |
| 10802 | switch (Pred) { |
| 10803 | default: |
| 10804 | break; |
| 10805 | case ICmpInst::ICMP_EQ: |
| 10806 | case ICmpInst::ICMP_NE: |
| 10807 | // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. |
| 10808 | if (RA.isZero() && MatchBinarySub(S: LHS, LHS, RHS)) |
| 10809 | Changed = true; |
| 10810 | break; |
| 10811 | |
| 10812 | // The "Should have been caught earlier!" messages refer to the fact |
| 10813 | // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above |
| 10814 | // should have fired on the corresponding cases, and canonicalized the |
| 10815 | // check to trivial case. |
| 10816 | |
| 10817 | case ICmpInst::ICMP_UGE: |
| 10818 | assert(!RA.isMinValue() && "Should have been caught earlier!" ); |
| 10819 | Pred = ICmpInst::ICMP_UGT; |
| 10820 | RHS = getConstant(Val: RA - 1); |
| 10821 | Changed = true; |
| 10822 | break; |
| 10823 | case ICmpInst::ICMP_ULE: |
| 10824 | assert(!RA.isMaxValue() && "Should have been caught earlier!" ); |
| 10825 | Pred = ICmpInst::ICMP_ULT; |
| 10826 | RHS = getConstant(Val: RA + 1); |
| 10827 | Changed = true; |
| 10828 | break; |
| 10829 | case ICmpInst::ICMP_SGE: |
| 10830 | assert(!RA.isMinSignedValue() && "Should have been caught earlier!" ); |
| 10831 | Pred = ICmpInst::ICMP_SGT; |
| 10832 | RHS = getConstant(Val: RA - 1); |
| 10833 | Changed = true; |
| 10834 | break; |
| 10835 | case ICmpInst::ICMP_SLE: |
| 10836 | assert(!RA.isMaxSignedValue() && "Should have been caught earlier!" ); |
| 10837 | Pred = ICmpInst::ICMP_SLT; |
| 10838 | RHS = getConstant(Val: RA + 1); |
| 10839 | Changed = true; |
| 10840 | break; |
| 10841 | } |
| 10842 | } |
| 10843 | } |
| 10844 | |
| 10845 | // Check for obvious equality. |
| 10846 | if (HasSameValue(A: LHS, B: RHS)) { |
| 10847 | if (ICmpInst::isTrueWhenEqual(predicate: Pred)) |
| 10848 | return TrivialCase(true); |
| 10849 | if (ICmpInst::isFalseWhenEqual(predicate: Pred)) |
| 10850 | return TrivialCase(false); |
| 10851 | } |
| 10852 | |
| 10853 | // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by |
| 10854 | // adding or subtracting 1 from one of the operands. |
| 10855 | switch (Pred) { |
| 10856 | case ICmpInst::ICMP_SLE: |
| 10857 | if (!getSignedRangeMax(S: RHS).isMaxSignedValue()) { |
| 10858 | RHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: 1, isSigned: true), RHS, |
| 10859 | Flags: SCEV::FlagNSW); |
| 10860 | Pred = ICmpInst::ICMP_SLT; |
| 10861 | Changed = true; |
| 10862 | } else if (!getSignedRangeMin(S: LHS).isMinSignedValue()) { |
| 10863 | LHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: (uint64_t)-1, isSigned: true), RHS: LHS, |
| 10864 | Flags: SCEV::FlagNSW); |
| 10865 | Pred = ICmpInst::ICMP_SLT; |
| 10866 | Changed = true; |
| 10867 | } |
| 10868 | break; |
| 10869 | case ICmpInst::ICMP_SGE: |
| 10870 | if (!getSignedRangeMin(S: RHS).isMinSignedValue()) { |
| 10871 | RHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: (uint64_t)-1, isSigned: true), RHS, |
| 10872 | Flags: SCEV::FlagNSW); |
| 10873 | Pred = ICmpInst::ICMP_SGT; |
| 10874 | Changed = true; |
| 10875 | } else if (!getSignedRangeMax(S: LHS).isMaxSignedValue()) { |
| 10876 | LHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: 1, isSigned: true), RHS: LHS, |
| 10877 | Flags: SCEV::FlagNSW); |
| 10878 | Pred = ICmpInst::ICMP_SGT; |
| 10879 | Changed = true; |
| 10880 | } |
| 10881 | break; |
| 10882 | case ICmpInst::ICMP_ULE: |
| 10883 | if (!getUnsignedRangeMax(S: RHS).isMaxValue()) { |
| 10884 | RHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: 1, isSigned: true), RHS, |
| 10885 | Flags: SCEV::FlagNUW); |
| 10886 | Pred = ICmpInst::ICMP_ULT; |
| 10887 | Changed = true; |
| 10888 | } else if (!getUnsignedRangeMin(S: LHS).isMinValue()) { |
| 10889 | LHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: (uint64_t)-1, isSigned: true), RHS: LHS); |
| 10890 | Pred = ICmpInst::ICMP_ULT; |
| 10891 | Changed = true; |
| 10892 | } |
| 10893 | break; |
| 10894 | case ICmpInst::ICMP_UGE: |
| 10895 | // If RHS is an op we can fold the -1, try that first. |
| 10896 | // Otherwise prefer LHS to preserve the nuw flag. |
| 10897 | if ((isa<SCEVConstant>(Val: RHS) || |
| 10898 | (isa<SCEVAddExpr, SCEVAddRecExpr>(Val: RHS) && |
| 10899 | isa<SCEVConstant>(Val: cast<SCEVNAryExpr>(Val: RHS)->getOperand(i: 0)))) && |
| 10900 | !getUnsignedRangeMin(S: RHS).isMinValue()) { |
| 10901 | RHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: (uint64_t)-1, isSigned: true), RHS); |
| 10902 | Pred = ICmpInst::ICMP_UGT; |
| 10903 | Changed = true; |
| 10904 | } else if (!getUnsignedRangeMax(S: LHS).isMaxValue()) { |
| 10905 | LHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: 1, isSigned: true), RHS: LHS, |
| 10906 | Flags: SCEV::FlagNUW); |
| 10907 | Pred = ICmpInst::ICMP_UGT; |
| 10908 | Changed = true; |
| 10909 | } else if (!getUnsignedRangeMin(S: RHS).isMinValue()) { |
| 10910 | RHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: (uint64_t)-1, isSigned: true), RHS); |
| 10911 | Pred = ICmpInst::ICMP_UGT; |
| 10912 | Changed = true; |
| 10913 | } |
| 10914 | break; |
| 10915 | default: |
| 10916 | break; |
| 10917 | } |
| 10918 | |
| 10919 | // TODO: More simplifications are possible here. |
| 10920 | |
| 10921 | // Recursively simplify until we either hit a recursion limit or nothing |
| 10922 | // changes. |
| 10923 | if (Changed) |
| 10924 | return SimplifyICmpOperands(Pred, LHS, RHS, Depth: Depth + 1); |
| 10925 | |
| 10926 | return Changed; |
| 10927 | } |
| 10928 | |
| 10929 | bool ScalarEvolution::isKnownNegative(const SCEV *S) { |
| 10930 | return getSignedRangeMax(S).isNegative(); |
| 10931 | } |
| 10932 | |
| 10933 | bool ScalarEvolution::isKnownPositive(const SCEV *S) { |
| 10934 | return getSignedRangeMin(S).isStrictlyPositive(); |
| 10935 | } |
| 10936 | |
| 10937 | bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { |
| 10938 | return !getSignedRangeMin(S).isNegative(); |
| 10939 | } |
| 10940 | |
| 10941 | bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { |
| 10942 | return !getSignedRangeMax(S).isStrictlyPositive(); |
| 10943 | } |
| 10944 | |
| 10945 | bool ScalarEvolution::isKnownNonZero(const SCEV *S) { |
| 10946 | // Query push down for cases where the unsigned range is |
| 10947 | // less than sufficient. |
| 10948 | if (const auto *SExt = dyn_cast<SCEVSignExtendExpr>(Val: S)) |
| 10949 | return isKnownNonZero(S: SExt->getOperand(i: 0)); |
| 10950 | return getUnsignedRangeMin(S) != 0; |
| 10951 | } |
| 10952 | |
| 10953 | bool ScalarEvolution::isKnownToBeAPowerOfTwo(const SCEV *S, bool OrZero, |
| 10954 | bool OrNegative) { |
| 10955 | auto NonRecursive = [this, OrNegative](const SCEV *S) { |
| 10956 | if (auto *C = dyn_cast<SCEVConstant>(Val: S)) |
| 10957 | return C->getAPInt().isPowerOf2() || |
| 10958 | (OrNegative && C->getAPInt().isNegatedPowerOf2()); |
| 10959 | |
| 10960 | // The vscale_range indicates vscale is a power-of-two. |
| 10961 | return isa<SCEVVScale>(Val: S) && F.hasFnAttribute(Kind: Attribute::VScaleRange); |
| 10962 | }; |
| 10963 | |
| 10964 | if (NonRecursive(S)) |
| 10965 | return true; |
| 10966 | |
| 10967 | auto *Mul = dyn_cast<SCEVMulExpr>(Val: S); |
| 10968 | if (!Mul) |
| 10969 | return false; |
| 10970 | return all_of(Range: Mul->operands(), P: NonRecursive) && (OrZero || isKnownNonZero(S)); |
| 10971 | } |
| 10972 | |
| 10973 | bool ScalarEvolution::isKnownMultipleOf( |
| 10974 | const SCEV *S, uint64_t M, |
| 10975 | SmallVectorImpl<const SCEVPredicate *> &Assumptions) { |
| 10976 | if (M == 0) |
| 10977 | return false; |
| 10978 | if (M == 1) |
| 10979 | return true; |
| 10980 | |
| 10981 | // Recursively check AddRec operands. An AddRecExpr S is a multiple of M if S |
| 10982 | // starts with a multiple of M and at every iteration step S only adds |
| 10983 | // multiples of M. |
| 10984 | if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: S)) |
| 10985 | return isKnownMultipleOf(S: AddRec->getStart(), M, Assumptions) && |
| 10986 | isKnownMultipleOf(S: AddRec->getStepRecurrence(SE&: *this), M, Assumptions); |
| 10987 | |
| 10988 | // For a constant, check that "S % M == 0". |
| 10989 | if (auto *Cst = dyn_cast<SCEVConstant>(Val: S)) { |
| 10990 | APInt C = Cst->getAPInt(); |
| 10991 | return C.urem(RHS: M) == 0; |
| 10992 | } |
| 10993 | |
| 10994 | // TODO: Also check other SCEV expressions, i.e., SCEVAddRecExpr, etc. |
| 10995 | |
| 10996 | // Basic tests have failed. |
| 10997 | // Check "S % M == 0" at compile time and record runtime Assumptions. |
| 10998 | auto *STy = dyn_cast<IntegerType>(Val: S->getType()); |
| 10999 | const SCEV *SmodM = |
| 11000 | getURemExpr(LHS: S, RHS: getConstant(V: ConstantInt::get(Ty: STy, V: M, IsSigned: false))); |
| 11001 | const SCEV *Zero = getZero(Ty: STy); |
| 11002 | |
| 11003 | // Check whether "S % M == 0" is known at compile time. |
| 11004 | if (isKnownPredicate(Pred: ICmpInst::ICMP_EQ, LHS: SmodM, RHS: Zero)) |
| 11005 | return true; |
| 11006 | |
| 11007 | // Check whether "S % M != 0" is known at compile time. |
| 11008 | if (isKnownPredicate(Pred: ICmpInst::ICMP_NE, LHS: SmodM, RHS: Zero)) |
| 11009 | return false; |
| 11010 | |
| 11011 | const SCEVPredicate *P = getComparePredicate(Pred: ICmpInst::ICMP_EQ, LHS: SmodM, RHS: Zero); |
| 11012 | |
| 11013 | // Detect redundant predicates. |
| 11014 | for (auto *A : Assumptions) |
| 11015 | if (A->implies(N: P, SE&: *this)) |
| 11016 | return true; |
| 11017 | |
| 11018 | // Only record non-redundant predicates. |
| 11019 | Assumptions.push_back(Elt: P); |
| 11020 | return true; |
| 11021 | } |
| 11022 | |
| 11023 | std::pair<const SCEV *, const SCEV *> |
| 11024 | ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { |
| 11025 | // Compute SCEV on entry of loop L. |
| 11026 | const SCEV *Start = SCEVInitRewriter::rewrite(S, L, SE&: *this); |
| 11027 | if (Start == getCouldNotCompute()) |
| 11028 | return { Start, Start }; |
| 11029 | // Compute post increment SCEV for loop L. |
| 11030 | const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, SE&: *this); |
| 11031 | assert(PostInc != getCouldNotCompute() && "Unexpected could not compute" ); |
| 11032 | return { Start, PostInc }; |
| 11033 | } |
| 11034 | |
| 11035 | bool ScalarEvolution::isKnownViaInduction(CmpPredicate Pred, const SCEV *LHS, |
| 11036 | const SCEV *RHS) { |
| 11037 | // First collect all loops. |
| 11038 | SmallPtrSet<const Loop *, 8> LoopsUsed; |
| 11039 | getUsedLoops(S: LHS, LoopsUsed); |
| 11040 | getUsedLoops(S: RHS, LoopsUsed); |
| 11041 | |
| 11042 | if (LoopsUsed.empty()) |
| 11043 | return false; |
| 11044 | |
| 11045 | // Domination relationship must be a linear order on collected loops. |
| 11046 | #ifndef NDEBUG |
| 11047 | for (const auto *L1 : LoopsUsed) |
| 11048 | for (const auto *L2 : LoopsUsed) |
| 11049 | assert((DT.dominates(L1->getHeader(), L2->getHeader()) || |
| 11050 | DT.dominates(L2->getHeader(), L1->getHeader())) && |
| 11051 | "Domination relationship is not a linear order" ); |
| 11052 | #endif |
| 11053 | |
| 11054 | const Loop *MDL = |
| 11055 | *llvm::max_element(Range&: LoopsUsed, C: [&](const Loop *L1, const Loop *L2) { |
| 11056 | return DT.properlyDominates(A: L1->getHeader(), B: L2->getHeader()); |
| 11057 | }); |
| 11058 | |
| 11059 | // Get init and post increment value for LHS. |
| 11060 | auto SplitLHS = SplitIntoInitAndPostInc(L: MDL, S: LHS); |
| 11061 | // if LHS contains unknown non-invariant SCEV then bail out. |
| 11062 | if (SplitLHS.first == getCouldNotCompute()) |
| 11063 | return false; |
| 11064 | assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC" ); |
| 11065 | // Get init and post increment value for RHS. |
| 11066 | auto SplitRHS = SplitIntoInitAndPostInc(L: MDL, S: RHS); |
| 11067 | // if RHS contains unknown non-invariant SCEV then bail out. |
| 11068 | if (SplitRHS.first == getCouldNotCompute()) |
| 11069 | return false; |
| 11070 | assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC" ); |
| 11071 | // It is possible that init SCEV contains an invariant load but it does |
| 11072 | // not dominate MDL and is not available at MDL loop entry, so we should |
| 11073 | // check it here. |
| 11074 | if (!isAvailableAtLoopEntry(S: SplitLHS.first, L: MDL) || |
| 11075 | !isAvailableAtLoopEntry(S: SplitRHS.first, L: MDL)) |
| 11076 | return false; |
| 11077 | |
| 11078 | // It seems backedge guard check is faster than entry one so in some cases |
| 11079 | // it can speed up whole estimation by short circuit |
| 11080 | return isLoopBackedgeGuardedByCond(L: MDL, Pred, LHS: SplitLHS.second, |
| 11081 | RHS: SplitRHS.second) && |
| 11082 | isLoopEntryGuardedByCond(L: MDL, Pred, LHS: SplitLHS.first, RHS: SplitRHS.first); |
| 11083 | } |
| 11084 | |
| 11085 | bool ScalarEvolution::isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, |
| 11086 | const SCEV *RHS) { |
| 11087 | // Canonicalize the inputs first. |
| 11088 | (void)SimplifyICmpOperands(Pred, LHS, RHS); |
| 11089 | |
| 11090 | if (isKnownViaInduction(Pred, LHS, RHS)) |
| 11091 | return true; |
| 11092 | |
| 11093 | if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) |
| 11094 | return true; |
| 11095 | |
| 11096 | // Otherwise see what can be done with some simple reasoning. |
| 11097 | return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); |
| 11098 | } |
| 11099 | |
| 11100 | std::optional<bool> ScalarEvolution::evaluatePredicate(CmpPredicate Pred, |
| 11101 | const SCEV *LHS, |
| 11102 | const SCEV *RHS) { |
| 11103 | if (isKnownPredicate(Pred, LHS, RHS)) |
| 11104 | return true; |
| 11105 | if (isKnownPredicate(Pred: ICmpInst::getInverseCmpPredicate(Pred), LHS, RHS)) |
| 11106 | return false; |
| 11107 | return std::nullopt; |
| 11108 | } |
| 11109 | |
| 11110 | bool ScalarEvolution::isKnownPredicateAt(CmpPredicate Pred, const SCEV *LHS, |
| 11111 | const SCEV *RHS, |
| 11112 | const Instruction *CtxI) { |
| 11113 | // TODO: Analyze guards and assumes from Context's block. |
| 11114 | return isKnownPredicate(Pred, LHS, RHS) || |
| 11115 | isBasicBlockEntryGuardedByCond(BB: CtxI->getParent(), Pred, LHS, RHS); |
| 11116 | } |
| 11117 | |
| 11118 | std::optional<bool> |
| 11119 | ScalarEvolution::evaluatePredicateAt(CmpPredicate Pred, const SCEV *LHS, |
| 11120 | const SCEV *RHS, const Instruction *CtxI) { |
| 11121 | std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); |
| 11122 | if (KnownWithoutContext) |
| 11123 | return KnownWithoutContext; |
| 11124 | |
| 11125 | if (isBasicBlockEntryGuardedByCond(BB: CtxI->getParent(), Pred, LHS, RHS)) |
| 11126 | return true; |
| 11127 | if (isBasicBlockEntryGuardedByCond( |
| 11128 | BB: CtxI->getParent(), Pred: ICmpInst::getInverseCmpPredicate(Pred), LHS, RHS)) |
| 11129 | return false; |
| 11130 | return std::nullopt; |
| 11131 | } |
| 11132 | |
| 11133 | bool ScalarEvolution::isKnownOnEveryIteration(CmpPredicate Pred, |
| 11134 | const SCEVAddRecExpr *LHS, |
| 11135 | const SCEV *RHS) { |
| 11136 | const Loop *L = LHS->getLoop(); |
| 11137 | return isLoopEntryGuardedByCond(L, Pred, LHS: LHS->getStart(), RHS) && |
| 11138 | isLoopBackedgeGuardedByCond(L, Pred, LHS: LHS->getPostIncExpr(SE&: *this), RHS); |
| 11139 | } |
| 11140 | |
| 11141 | std::optional<ScalarEvolution::MonotonicPredicateType> |
| 11142 | ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, |
| 11143 | ICmpInst::Predicate Pred) { |
| 11144 | auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); |
| 11145 | |
| 11146 | #ifndef NDEBUG |
| 11147 | // Verify an invariant: inverting the predicate should turn a monotonically |
| 11148 | // increasing change to a monotonically decreasing one, and vice versa. |
| 11149 | if (Result) { |
| 11150 | auto ResultSwapped = |
| 11151 | getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); |
| 11152 | |
| 11153 | assert(*ResultSwapped != *Result && |
| 11154 | "monotonicity should flip as we flip the predicate" ); |
| 11155 | } |
| 11156 | #endif |
| 11157 | |
| 11158 | return Result; |
| 11159 | } |
| 11160 | |
| 11161 | std::optional<ScalarEvolution::MonotonicPredicateType> |
| 11162 | ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, |
| 11163 | ICmpInst::Predicate Pred) { |
| 11164 | // A zero step value for LHS means the induction variable is essentially a |
| 11165 | // loop invariant value. We don't really depend on the predicate actually |
| 11166 | // flipping from false to true (for increasing predicates, and the other way |
| 11167 | // around for decreasing predicates), all we care about is that *if* the |
| 11168 | // predicate changes then it only changes from false to true. |
| 11169 | // |
| 11170 | // A zero step value in itself is not very useful, but there may be places |
| 11171 | // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be |
| 11172 | // as general as possible. |
| 11173 | |
| 11174 | // Only handle LE/LT/GE/GT predicates. |
| 11175 | if (!ICmpInst::isRelational(P: Pred)) |
| 11176 | return std::nullopt; |
| 11177 | |
| 11178 | bool IsGreater = ICmpInst::isGE(P: Pred) || ICmpInst::isGT(P: Pred); |
| 11179 | assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && |
| 11180 | "Should be greater or less!" ); |
| 11181 | |
| 11182 | // Check that AR does not wrap. |
| 11183 | if (ICmpInst::isUnsigned(predicate: Pred)) { |
| 11184 | if (!LHS->hasNoUnsignedWrap()) |
| 11185 | return std::nullopt; |
| 11186 | return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; |
| 11187 | } |
| 11188 | assert(ICmpInst::isSigned(Pred) && |
| 11189 | "Relational predicate is either signed or unsigned!" ); |
| 11190 | if (!LHS->hasNoSignedWrap()) |
| 11191 | return std::nullopt; |
| 11192 | |
| 11193 | const SCEV *Step = LHS->getStepRecurrence(SE&: *this); |
| 11194 | |
| 11195 | if (isKnownNonNegative(S: Step)) |
| 11196 | return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; |
| 11197 | |
| 11198 | if (isKnownNonPositive(S: Step)) |
| 11199 | return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; |
| 11200 | |
| 11201 | return std::nullopt; |
| 11202 | } |
| 11203 | |
| 11204 | std::optional<ScalarEvolution::LoopInvariantPredicate> |
| 11205 | ScalarEvolution::getLoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, |
| 11206 | const SCEV *RHS, const Loop *L, |
| 11207 | const Instruction *CtxI) { |
| 11208 | // If there is a loop-invariant, force it into the RHS, otherwise bail out. |
| 11209 | if (!isLoopInvariant(S: RHS, L)) { |
| 11210 | if (!isLoopInvariant(S: LHS, L)) |
| 11211 | return std::nullopt; |
| 11212 | |
| 11213 | std::swap(a&: LHS, b&: RHS); |
| 11214 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
| 11215 | } |
| 11216 | |
| 11217 | const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(Val: LHS); |
| 11218 | if (!ArLHS || ArLHS->getLoop() != L) |
| 11219 | return std::nullopt; |
| 11220 | |
| 11221 | auto MonotonicType = getMonotonicPredicateType(LHS: ArLHS, Pred); |
| 11222 | if (!MonotonicType) |
| 11223 | return std::nullopt; |
| 11224 | // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to |
| 11225 | // true as the loop iterates, and the backedge is control dependent on |
| 11226 | // "ArLHS `Pred` RHS" == true then we can reason as follows: |
| 11227 | // |
| 11228 | // * if the predicate was false in the first iteration then the predicate |
| 11229 | // is never evaluated again, since the loop exits without taking the |
| 11230 | // backedge. |
| 11231 | // * if the predicate was true in the first iteration then it will |
| 11232 | // continue to be true for all future iterations since it is |
| 11233 | // monotonically increasing. |
| 11234 | // |
| 11235 | // For both the above possibilities, we can replace the loop varying |
| 11236 | // predicate with its value on the first iteration of the loop (which is |
| 11237 | // loop invariant). |
| 11238 | // |
| 11239 | // A similar reasoning applies for a monotonically decreasing predicate, by |
| 11240 | // replacing true with false and false with true in the above two bullets. |
| 11241 | bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; |
| 11242 | auto P = Increasing ? Pred : ICmpInst::getInverseCmpPredicate(Pred); |
| 11243 | |
| 11244 | if (isLoopBackedgeGuardedByCond(L, Pred: P, LHS, RHS)) |
| 11245 | return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), |
| 11246 | RHS); |
| 11247 | |
| 11248 | if (!CtxI) |
| 11249 | return std::nullopt; |
| 11250 | // Try to prove via context. |
| 11251 | // TODO: Support other cases. |
| 11252 | switch (Pred) { |
| 11253 | default: |
| 11254 | break; |
| 11255 | case ICmpInst::ICMP_ULE: |
| 11256 | case ICmpInst::ICMP_ULT: { |
| 11257 | assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!" ); |
| 11258 | // Given preconditions |
| 11259 | // (1) ArLHS does not cross the border of positive and negative parts of |
| 11260 | // range because of: |
| 11261 | // - Positive step; (TODO: lift this limitation) |
| 11262 | // - nuw - does not cross zero boundary; |
| 11263 | // - nsw - does not cross SINT_MAX boundary; |
| 11264 | // (2) ArLHS <s RHS |
| 11265 | // (3) RHS >=s 0 |
| 11266 | // we can replace the loop variant ArLHS <u RHS condition with loop |
| 11267 | // invariant Start(ArLHS) <u RHS. |
| 11268 | // |
| 11269 | // Because of (1) there are two options: |
| 11270 | // - ArLHS is always negative. It means that ArLHS <u RHS is always false; |
| 11271 | // - ArLHS is always non-negative. Because of (3) RHS is also non-negative. |
| 11272 | // It means that ArLHS <s RHS <=> ArLHS <u RHS. |
| 11273 | // Because of (2) ArLHS <u RHS is trivially true. |
| 11274 | // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0. |
| 11275 | // We can strengthen this to Start(ArLHS) <u RHS. |
| 11276 | auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(Pred); |
| 11277 | if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() && |
| 11278 | isKnownPositive(S: ArLHS->getStepRecurrence(SE&: *this)) && |
| 11279 | isKnownNonNegative(S: RHS) && |
| 11280 | isKnownPredicateAt(Pred: SignFlippedPred, LHS: ArLHS, RHS, CtxI)) |
| 11281 | return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), |
| 11282 | RHS); |
| 11283 | } |
| 11284 | } |
| 11285 | |
| 11286 | return std::nullopt; |
| 11287 | } |
| 11288 | |
| 11289 | std::optional<ScalarEvolution::LoopInvariantPredicate> |
| 11290 | ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( |
| 11291 | CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, |
| 11292 | const Instruction *CtxI, const SCEV *MaxIter) { |
| 11293 | if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( |
| 11294 | Pred, LHS, RHS, L, CtxI, MaxIter)) |
| 11295 | return LIP; |
| 11296 | if (auto *UMin = dyn_cast<SCEVUMinExpr>(Val: MaxIter)) |
| 11297 | // Number of iterations expressed as UMIN isn't always great for expressing |
| 11298 | // the value on the last iteration. If the straightforward approach didn't |
| 11299 | // work, try the following trick: if the a predicate is invariant for X, it |
| 11300 | // is also invariant for umin(X, ...). So try to find something that works |
| 11301 | // among subexpressions of MaxIter expressed as umin. |
| 11302 | for (auto *Op : UMin->operands()) |
| 11303 | if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( |
| 11304 | Pred, LHS, RHS, L, CtxI, MaxIter: Op)) |
| 11305 | return LIP; |
| 11306 | return std::nullopt; |
| 11307 | } |
| 11308 | |
| 11309 | std::optional<ScalarEvolution::LoopInvariantPredicate> |
| 11310 | ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl( |
| 11311 | CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, |
| 11312 | const Instruction *CtxI, const SCEV *MaxIter) { |
| 11313 | // Try to prove the following set of facts: |
| 11314 | // - The predicate is monotonic in the iteration space. |
| 11315 | // - If the check does not fail on the 1st iteration: |
| 11316 | // - No overflow will happen during first MaxIter iterations; |
| 11317 | // - It will not fail on the MaxIter'th iteration. |
| 11318 | // If the check does fail on the 1st iteration, we leave the loop and no |
| 11319 | // other checks matter. |
| 11320 | |
| 11321 | // If there is a loop-invariant, force it into the RHS, otherwise bail out. |
| 11322 | if (!isLoopInvariant(S: RHS, L)) { |
| 11323 | if (!isLoopInvariant(S: LHS, L)) |
| 11324 | return std::nullopt; |
| 11325 | |
| 11326 | std::swap(a&: LHS, b&: RHS); |
| 11327 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
| 11328 | } |
| 11329 | |
| 11330 | auto *AR = dyn_cast<SCEVAddRecExpr>(Val: LHS); |
| 11331 | if (!AR || AR->getLoop() != L) |
| 11332 | return std::nullopt; |
| 11333 | |
| 11334 | // The predicate must be relational (i.e. <, <=, >=, >). |
| 11335 | if (!ICmpInst::isRelational(P: Pred)) |
| 11336 | return std::nullopt; |
| 11337 | |
| 11338 | // TODO: Support steps other than +/- 1. |
| 11339 | const SCEV *Step = AR->getStepRecurrence(SE&: *this); |
| 11340 | auto *One = getOne(Ty: Step->getType()); |
| 11341 | auto *MinusOne = getNegativeSCEV(V: One); |
| 11342 | if (Step != One && Step != MinusOne) |
| 11343 | return std::nullopt; |
| 11344 | |
| 11345 | // Type mismatch here means that MaxIter is potentially larger than max |
| 11346 | // unsigned value in start type, which mean we cannot prove no wrap for the |
| 11347 | // indvar. |
| 11348 | if (AR->getType() != MaxIter->getType()) |
| 11349 | return std::nullopt; |
| 11350 | |
| 11351 | // Value of IV on suggested last iteration. |
| 11352 | const SCEV *Last = AR->evaluateAtIteration(It: MaxIter, SE&: *this); |
| 11353 | // Does it still meet the requirement? |
| 11354 | if (!isLoopBackedgeGuardedByCond(L, Pred, LHS: Last, RHS)) |
| 11355 | return std::nullopt; |
| 11356 | // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does |
| 11357 | // not exceed max unsigned value of this type), this effectively proves |
| 11358 | // that there is no wrap during the iteration. To prove that there is no |
| 11359 | // signed/unsigned wrap, we need to check that |
| 11360 | // Start <= Last for step = 1 or Start >= Last for step = -1. |
| 11361 | ICmpInst::Predicate NoOverflowPred = |
| 11362 | CmpInst::isSigned(predicate: Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; |
| 11363 | if (Step == MinusOne) |
| 11364 | NoOverflowPred = ICmpInst::getSwappedCmpPredicate(Pred: NoOverflowPred); |
| 11365 | const SCEV *Start = AR->getStart(); |
| 11366 | if (!isKnownPredicateAt(Pred: NoOverflowPred, LHS: Start, RHS: Last, CtxI)) |
| 11367 | return std::nullopt; |
| 11368 | |
| 11369 | // Everything is fine. |
| 11370 | return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); |
| 11371 | } |
| 11372 | |
| 11373 | bool ScalarEvolution::isKnownPredicateViaConstantRanges(CmpPredicate Pred, |
| 11374 | const SCEV *LHS, |
| 11375 | const SCEV *RHS) { |
| 11376 | if (HasSameValue(A: LHS, B: RHS)) |
| 11377 | return ICmpInst::isTrueWhenEqual(predicate: Pred); |
| 11378 | |
| 11379 | // This code is split out from isKnownPredicate because it is called from |
| 11380 | // within isLoopEntryGuardedByCond. |
| 11381 | |
| 11382 | auto CheckRanges = [&](const ConstantRange &RangeLHS, |
| 11383 | const ConstantRange &RangeRHS) { |
| 11384 | return RangeLHS.icmp(Pred, Other: RangeRHS); |
| 11385 | }; |
| 11386 | |
| 11387 | // The check at the top of the function catches the case where the values are |
| 11388 | // known to be equal. |
| 11389 | if (Pred == CmpInst::ICMP_EQ) |
| 11390 | return false; |
| 11391 | |
| 11392 | if (Pred == CmpInst::ICMP_NE) { |
| 11393 | auto SL = getSignedRange(S: LHS); |
| 11394 | auto SR = getSignedRange(S: RHS); |
| 11395 | if (CheckRanges(SL, SR)) |
| 11396 | return true; |
| 11397 | auto UL = getUnsignedRange(S: LHS); |
| 11398 | auto UR = getUnsignedRange(S: RHS); |
| 11399 | if (CheckRanges(UL, UR)) |
| 11400 | return true; |
| 11401 | auto *Diff = getMinusSCEV(LHS, RHS); |
| 11402 | return !isa<SCEVCouldNotCompute>(Val: Diff) && isKnownNonZero(S: Diff); |
| 11403 | } |
| 11404 | |
| 11405 | if (CmpInst::isSigned(predicate: Pred)) { |
| 11406 | auto SL = getSignedRange(S: LHS); |
| 11407 | auto SR = getSignedRange(S: RHS); |
| 11408 | return CheckRanges(SL, SR); |
| 11409 | } |
| 11410 | |
| 11411 | auto UL = getUnsignedRange(S: LHS); |
| 11412 | auto UR = getUnsignedRange(S: RHS); |
| 11413 | return CheckRanges(UL, UR); |
| 11414 | } |
| 11415 | |
| 11416 | bool ScalarEvolution::isKnownPredicateViaNoOverflow(CmpPredicate Pred, |
| 11417 | const SCEV *LHS, |
| 11418 | const SCEV *RHS) { |
| 11419 | // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where |
| 11420 | // C1 and C2 are constant integers. If either X or Y are not add expressions, |
| 11421 | // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via |
| 11422 | // OutC1 and OutC2. |
| 11423 | auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, |
| 11424 | APInt &OutC1, APInt &OutC2, |
| 11425 | SCEV::NoWrapFlags ExpectedFlags) { |
| 11426 | const SCEV *XNonConstOp, *XConstOp; |
| 11427 | const SCEV *YNonConstOp, *YConstOp; |
| 11428 | SCEV::NoWrapFlags XFlagsPresent; |
| 11429 | SCEV::NoWrapFlags YFlagsPresent; |
| 11430 | |
| 11431 | if (!splitBinaryAdd(Expr: X, L&: XConstOp, R&: XNonConstOp, Flags&: XFlagsPresent)) { |
| 11432 | XConstOp = getZero(Ty: X->getType()); |
| 11433 | XNonConstOp = X; |
| 11434 | XFlagsPresent = ExpectedFlags; |
| 11435 | } |
| 11436 | if (!isa<SCEVConstant>(Val: XConstOp) || |
| 11437 | (XFlagsPresent & ExpectedFlags) != ExpectedFlags) |
| 11438 | return false; |
| 11439 | |
| 11440 | if (!splitBinaryAdd(Expr: Y, L&: YConstOp, R&: YNonConstOp, Flags&: YFlagsPresent)) { |
| 11441 | YConstOp = getZero(Ty: Y->getType()); |
| 11442 | YNonConstOp = Y; |
| 11443 | YFlagsPresent = ExpectedFlags; |
| 11444 | } |
| 11445 | |
| 11446 | if (!isa<SCEVConstant>(Val: YConstOp) || |
| 11447 | (YFlagsPresent & ExpectedFlags) != ExpectedFlags) |
| 11448 | return false; |
| 11449 | |
| 11450 | if (YNonConstOp != XNonConstOp) |
| 11451 | return false; |
| 11452 | |
| 11453 | OutC1 = cast<SCEVConstant>(Val: XConstOp)->getAPInt(); |
| 11454 | OutC2 = cast<SCEVConstant>(Val: YConstOp)->getAPInt(); |
| 11455 | |
| 11456 | return true; |
| 11457 | }; |
| 11458 | |
| 11459 | APInt C1; |
| 11460 | APInt C2; |
| 11461 | |
| 11462 | switch (Pred) { |
| 11463 | default: |
| 11464 | break; |
| 11465 | |
| 11466 | case ICmpInst::ICMP_SGE: |
| 11467 | std::swap(a&: LHS, b&: RHS); |
| 11468 | [[fallthrough]]; |
| 11469 | case ICmpInst::ICMP_SLE: |
| 11470 | // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. |
| 11471 | if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(RHS: C2)) |
| 11472 | return true; |
| 11473 | |
| 11474 | break; |
| 11475 | |
| 11476 | case ICmpInst::ICMP_SGT: |
| 11477 | std::swap(a&: LHS, b&: RHS); |
| 11478 | [[fallthrough]]; |
| 11479 | case ICmpInst::ICMP_SLT: |
| 11480 | // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. |
| 11481 | if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(RHS: C2)) |
| 11482 | return true; |
| 11483 | |
| 11484 | break; |
| 11485 | |
| 11486 | case ICmpInst::ICMP_UGE: |
| 11487 | std::swap(a&: LHS, b&: RHS); |
| 11488 | [[fallthrough]]; |
| 11489 | case ICmpInst::ICMP_ULE: |
| 11490 | // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. |
| 11491 | if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNUW) && C1.ule(RHS: C2)) |
| 11492 | return true; |
| 11493 | |
| 11494 | break; |
| 11495 | |
| 11496 | case ICmpInst::ICMP_UGT: |
| 11497 | std::swap(a&: LHS, b&: RHS); |
| 11498 | [[fallthrough]]; |
| 11499 | case ICmpInst::ICMP_ULT: |
| 11500 | // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. |
| 11501 | if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNUW) && C1.ult(RHS: C2)) |
| 11502 | return true; |
| 11503 | break; |
| 11504 | } |
| 11505 | |
| 11506 | return false; |
| 11507 | } |
| 11508 | |
| 11509 | bool ScalarEvolution::isKnownPredicateViaSplitting(CmpPredicate Pred, |
| 11510 | const SCEV *LHS, |
| 11511 | const SCEV *RHS) { |
| 11512 | if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) |
| 11513 | return false; |
| 11514 | |
| 11515 | // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on |
| 11516 | // the stack can result in exponential time complexity. |
| 11517 | SaveAndRestore Restore(ProvingSplitPredicate, true); |
| 11518 | |
| 11519 | // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L |
| 11520 | // |
| 11521 | // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use |
| 11522 | // isKnownPredicate. isKnownPredicate is more powerful, but also more |
| 11523 | // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the |
| 11524 | // interesting cases seen in practice. We can consider "upgrading" L >= 0 to |
| 11525 | // use isKnownPredicate later if needed. |
| 11526 | return isKnownNonNegative(S: RHS) && |
| 11527 | isKnownPredicate(Pred: CmpInst::ICMP_SGE, LHS, RHS: getZero(Ty: LHS->getType())) && |
| 11528 | isKnownPredicate(Pred: CmpInst::ICMP_SLT, LHS, RHS); |
| 11529 | } |
| 11530 | |
| 11531 | bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, CmpPredicate Pred, |
| 11532 | const SCEV *LHS, const SCEV *RHS) { |
| 11533 | // No need to even try if we know the module has no guards. |
| 11534 | if (!HasGuards) |
| 11535 | return false; |
| 11536 | |
| 11537 | return any_of(Range: *BB, P: [&](const Instruction &I) { |
| 11538 | using namespace llvm::PatternMatch; |
| 11539 | |
| 11540 | Value *Condition; |
| 11541 | return match(V: &I, P: m_Intrinsic<Intrinsic::experimental_guard>( |
| 11542 | Op0: m_Value(V&: Condition))) && |
| 11543 | isImpliedCond(Pred, LHS, RHS, FoundCondValue: Condition, Inverse: false); |
| 11544 | }); |
| 11545 | } |
| 11546 | |
| 11547 | /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is |
| 11548 | /// protected by a conditional between LHS and RHS. This is used to |
| 11549 | /// to eliminate casts. |
| 11550 | bool ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, |
| 11551 | CmpPredicate Pred, |
| 11552 | const SCEV *LHS, |
| 11553 | const SCEV *RHS) { |
| 11554 | // Interpret a null as meaning no loop, where there is obviously no guard |
| 11555 | // (interprocedural conditions notwithstanding). Do not bother about |
| 11556 | // unreachable loops. |
| 11557 | if (!L || !DT.isReachableFromEntry(A: L->getHeader())) |
| 11558 | return true; |
| 11559 | |
| 11560 | if (VerifyIR) |
| 11561 | assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && |
| 11562 | "This cannot be done on broken IR!" ); |
| 11563 | |
| 11564 | |
| 11565 | if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) |
| 11566 | return true; |
| 11567 | |
| 11568 | BasicBlock *Latch = L->getLoopLatch(); |
| 11569 | if (!Latch) |
| 11570 | return false; |
| 11571 | |
| 11572 | BranchInst *LoopContinuePredicate = |
| 11573 | dyn_cast<BranchInst>(Val: Latch->getTerminator()); |
| 11574 | if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && |
| 11575 | isImpliedCond(Pred, LHS, RHS, |
| 11576 | FoundCondValue: LoopContinuePredicate->getCondition(), |
| 11577 | Inverse: LoopContinuePredicate->getSuccessor(i: 0) != L->getHeader())) |
| 11578 | return true; |
| 11579 | |
| 11580 | // We don't want more than one activation of the following loops on the stack |
| 11581 | // -- that can lead to O(n!) time complexity. |
| 11582 | if (WalkingBEDominatingConds) |
| 11583 | return false; |
| 11584 | |
| 11585 | SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true); |
| 11586 | |
| 11587 | // See if we can exploit a trip count to prove the predicate. |
| 11588 | const auto &BETakenInfo = getBackedgeTakenInfo(L); |
| 11589 | const SCEV *LatchBECount = BETakenInfo.getExact(ExitingBlock: Latch, SE: this); |
| 11590 | if (LatchBECount != getCouldNotCompute()) { |
| 11591 | // We know that Latch branches back to the loop header exactly |
| 11592 | // LatchBECount times. This means the backdege condition at Latch is |
| 11593 | // equivalent to "{0,+,1} u< LatchBECount". |
| 11594 | Type *Ty = LatchBECount->getType(); |
| 11595 | auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); |
| 11596 | const SCEV *LoopCounter = |
| 11597 | getAddRecExpr(Start: getZero(Ty), Step: getOne(Ty), L, Flags: NoWrapFlags); |
| 11598 | if (isImpliedCond(Pred, LHS, RHS, FoundPred: ICmpInst::ICMP_ULT, FoundLHS: LoopCounter, |
| 11599 | FoundRHS: LatchBECount)) |
| 11600 | return true; |
| 11601 | } |
| 11602 | |
| 11603 | // Check conditions due to any @llvm.assume intrinsics. |
| 11604 | for (auto &AssumeVH : AC.assumptions()) { |
| 11605 | if (!AssumeVH) |
| 11606 | continue; |
| 11607 | auto *CI = cast<CallInst>(Val&: AssumeVH); |
| 11608 | if (!DT.dominates(Def: CI, User: Latch->getTerminator())) |
| 11609 | continue; |
| 11610 | |
| 11611 | if (isImpliedCond(Pred, LHS, RHS, FoundCondValue: CI->getArgOperand(i: 0), Inverse: false)) |
| 11612 | return true; |
| 11613 | } |
| 11614 | |
| 11615 | if (isImpliedViaGuard(BB: Latch, Pred, LHS, RHS)) |
| 11616 | return true; |
| 11617 | |
| 11618 | for (DomTreeNode *DTN = DT[Latch], * = DT[L->getHeader()]; |
| 11619 | DTN != HeaderDTN; DTN = DTN->getIDom()) { |
| 11620 | assert(DTN && "should reach the loop header before reaching the root!" ); |
| 11621 | |
| 11622 | BasicBlock *BB = DTN->getBlock(); |
| 11623 | if (isImpliedViaGuard(BB, Pred, LHS, RHS)) |
| 11624 | return true; |
| 11625 | |
| 11626 | BasicBlock *PBB = BB->getSinglePredecessor(); |
| 11627 | if (!PBB) |
| 11628 | continue; |
| 11629 | |
| 11630 | BranchInst *ContinuePredicate = dyn_cast<BranchInst>(Val: PBB->getTerminator()); |
| 11631 | if (!ContinuePredicate || !ContinuePredicate->isConditional()) |
| 11632 | continue; |
| 11633 | |
| 11634 | Value *Condition = ContinuePredicate->getCondition(); |
| 11635 | |
| 11636 | // If we have an edge `E` within the loop body that dominates the only |
| 11637 | // latch, the condition guarding `E` also guards the backedge. This |
| 11638 | // reasoning works only for loops with a single latch. |
| 11639 | |
| 11640 | BasicBlockEdge DominatingEdge(PBB, BB); |
| 11641 | if (DominatingEdge.isSingleEdge()) { |
| 11642 | // We're constructively (and conservatively) enumerating edges within the |
| 11643 | // loop body that dominate the latch. The dominator tree better agree |
| 11644 | // with us on this: |
| 11645 | assert(DT.dominates(DominatingEdge, Latch) && "should be!" ); |
| 11646 | |
| 11647 | if (isImpliedCond(Pred, LHS, RHS, FoundCondValue: Condition, |
| 11648 | Inverse: BB != ContinuePredicate->getSuccessor(i: 0))) |
| 11649 | return true; |
| 11650 | } |
| 11651 | } |
| 11652 | |
| 11653 | return false; |
| 11654 | } |
| 11655 | |
| 11656 | bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, |
| 11657 | CmpPredicate Pred, |
| 11658 | const SCEV *LHS, |
| 11659 | const SCEV *RHS) { |
| 11660 | // Do not bother proving facts for unreachable code. |
| 11661 | if (!DT.isReachableFromEntry(A: BB)) |
| 11662 | return true; |
| 11663 | if (VerifyIR) |
| 11664 | assert(!verifyFunction(*BB->getParent(), &dbgs()) && |
| 11665 | "This cannot be done on broken IR!" ); |
| 11666 | |
| 11667 | // If we cannot prove strict comparison (e.g. a > b), maybe we can prove |
| 11668 | // the facts (a >= b && a != b) separately. A typical situation is when the |
| 11669 | // non-strict comparison is known from ranges and non-equality is known from |
| 11670 | // dominating predicates. If we are proving strict comparison, we always try |
| 11671 | // to prove non-equality and non-strict comparison separately. |
| 11672 | CmpPredicate NonStrictPredicate = ICmpInst::getNonStrictCmpPredicate(Pred); |
| 11673 | const bool ProvingStrictComparison = |
| 11674 | Pred != NonStrictPredicate.dropSameSign(); |
| 11675 | bool ProvedNonStrictComparison = false; |
| 11676 | bool ProvedNonEquality = false; |
| 11677 | |
| 11678 | auto SplitAndProve = [&](std::function<bool(CmpPredicate)> Fn) -> bool { |
| 11679 | if (!ProvedNonStrictComparison) |
| 11680 | ProvedNonStrictComparison = Fn(NonStrictPredicate); |
| 11681 | if (!ProvedNonEquality) |
| 11682 | ProvedNonEquality = Fn(ICmpInst::ICMP_NE); |
| 11683 | if (ProvedNonStrictComparison && ProvedNonEquality) |
| 11684 | return true; |
| 11685 | return false; |
| 11686 | }; |
| 11687 | |
| 11688 | if (ProvingStrictComparison) { |
| 11689 | auto ProofFn = [&](CmpPredicate P) { |
| 11690 | return isKnownViaNonRecursiveReasoning(Pred: P, LHS, RHS); |
| 11691 | }; |
| 11692 | if (SplitAndProve(ProofFn)) |
| 11693 | return true; |
| 11694 | } |
| 11695 | |
| 11696 | // Try to prove (Pred, LHS, RHS) using isImpliedCond. |
| 11697 | auto ProveViaCond = [&](const Value *Condition, bool Inverse) { |
| 11698 | const Instruction *CtxI = &BB->front(); |
| 11699 | if (isImpliedCond(Pred, LHS, RHS, FoundCondValue: Condition, Inverse, Context: CtxI)) |
| 11700 | return true; |
| 11701 | if (ProvingStrictComparison) { |
| 11702 | auto ProofFn = [&](CmpPredicate P) { |
| 11703 | return isImpliedCond(Pred: P, LHS, RHS, FoundCondValue: Condition, Inverse, Context: CtxI); |
| 11704 | }; |
| 11705 | if (SplitAndProve(ProofFn)) |
| 11706 | return true; |
| 11707 | } |
| 11708 | return false; |
| 11709 | }; |
| 11710 | |
| 11711 | // Starting at the block's predecessor, climb up the predecessor chain, as long |
| 11712 | // as there are predecessors that can be found that have unique successors |
| 11713 | // leading to the original block. |
| 11714 | const Loop *ContainingLoop = LI.getLoopFor(BB); |
| 11715 | const BasicBlock *PredBB; |
| 11716 | if (ContainingLoop && ContainingLoop->getHeader() == BB) |
| 11717 | PredBB = ContainingLoop->getLoopPredecessor(); |
| 11718 | else |
| 11719 | PredBB = BB->getSinglePredecessor(); |
| 11720 | for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); |
| 11721 | Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(BB: Pair.first)) { |
| 11722 | const BranchInst *BlockEntryPredicate = |
| 11723 | dyn_cast<BranchInst>(Val: Pair.first->getTerminator()); |
| 11724 | if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional()) |
| 11725 | continue; |
| 11726 | |
| 11727 | if (ProveViaCond(BlockEntryPredicate->getCondition(), |
| 11728 | BlockEntryPredicate->getSuccessor(i: 0) != Pair.second)) |
| 11729 | return true; |
| 11730 | } |
| 11731 | |
| 11732 | // Check conditions due to any @llvm.assume intrinsics. |
| 11733 | for (auto &AssumeVH : AC.assumptions()) { |
| 11734 | if (!AssumeVH) |
| 11735 | continue; |
| 11736 | auto *CI = cast<CallInst>(Val&: AssumeVH); |
| 11737 | if (!DT.dominates(Def: CI, BB)) |
| 11738 | continue; |
| 11739 | |
| 11740 | if (ProveViaCond(CI->getArgOperand(i: 0), false)) |
| 11741 | return true; |
| 11742 | } |
| 11743 | |
| 11744 | // Check conditions due to any @llvm.experimental.guard intrinsics. |
| 11745 | auto *GuardDecl = Intrinsic::getDeclarationIfExists( |
| 11746 | M: F.getParent(), id: Intrinsic::experimental_guard); |
| 11747 | if (GuardDecl) |
| 11748 | for (const auto *GU : GuardDecl->users()) |
| 11749 | if (const auto *Guard = dyn_cast<IntrinsicInst>(Val: GU)) |
| 11750 | if (Guard->getFunction() == BB->getParent() && DT.dominates(Def: Guard, BB)) |
| 11751 | if (ProveViaCond(Guard->getArgOperand(i: 0), false)) |
| 11752 | return true; |
| 11753 | return false; |
| 11754 | } |
| 11755 | |
| 11756 | bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, |
| 11757 | const SCEV *LHS, |
| 11758 | const SCEV *RHS) { |
| 11759 | // Interpret a null as meaning no loop, where there is obviously no guard |
| 11760 | // (interprocedural conditions notwithstanding). |
| 11761 | if (!L) |
| 11762 | return false; |
| 11763 | |
| 11764 | // Both LHS and RHS must be available at loop entry. |
| 11765 | assert(isAvailableAtLoopEntry(LHS, L) && |
| 11766 | "LHS is not available at Loop Entry" ); |
| 11767 | assert(isAvailableAtLoopEntry(RHS, L) && |
| 11768 | "RHS is not available at Loop Entry" ); |
| 11769 | |
| 11770 | if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) |
| 11771 | return true; |
| 11772 | |
| 11773 | return isBasicBlockEntryGuardedByCond(BB: L->getHeader(), Pred, LHS, RHS); |
| 11774 | } |
| 11775 | |
| 11776 | bool ScalarEvolution::isImpliedCond(CmpPredicate Pred, const SCEV *LHS, |
| 11777 | const SCEV *RHS, |
| 11778 | const Value *FoundCondValue, bool Inverse, |
| 11779 | const Instruction *CtxI) { |
| 11780 | // False conditions implies anything. Do not bother analyzing it further. |
| 11781 | if (FoundCondValue == |
| 11782 | ConstantInt::getBool(Context&: FoundCondValue->getContext(), V: Inverse)) |
| 11783 | return true; |
| 11784 | |
| 11785 | if (!PendingLoopPredicates.insert(Ptr: FoundCondValue).second) |
| 11786 | return false; |
| 11787 | |
| 11788 | auto ClearOnExit = |
| 11789 | make_scope_exit(F: [&]() { PendingLoopPredicates.erase(Ptr: FoundCondValue); }); |
| 11790 | |
| 11791 | // Recursively handle And and Or conditions. |
| 11792 | const Value *Op0, *Op1; |
| 11793 | if (match(V: FoundCondValue, P: m_LogicalAnd(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) { |
| 11794 | if (!Inverse) |
| 11795 | return isImpliedCond(Pred, LHS, RHS, FoundCondValue: Op0, Inverse, CtxI) || |
| 11796 | isImpliedCond(Pred, LHS, RHS, FoundCondValue: Op1, Inverse, CtxI); |
| 11797 | } else if (match(V: FoundCondValue, P: m_LogicalOr(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) { |
| 11798 | if (Inverse) |
| 11799 | return isImpliedCond(Pred, LHS, RHS, FoundCondValue: Op0, Inverse, CtxI) || |
| 11800 | isImpliedCond(Pred, LHS, RHS, FoundCondValue: Op1, Inverse, CtxI); |
| 11801 | } |
| 11802 | |
| 11803 | const ICmpInst *ICI = dyn_cast<ICmpInst>(Val: FoundCondValue); |
| 11804 | if (!ICI) return false; |
| 11805 | |
| 11806 | // Now that we found a conditional branch that dominates the loop or controls |
| 11807 | // the loop latch. Check to see if it is the comparison we are looking for. |
| 11808 | CmpPredicate FoundPred; |
| 11809 | if (Inverse) |
| 11810 | FoundPred = ICI->getInverseCmpPredicate(); |
| 11811 | else |
| 11812 | FoundPred = ICI->getCmpPredicate(); |
| 11813 | |
| 11814 | const SCEV *FoundLHS = getSCEV(V: ICI->getOperand(i_nocapture: 0)); |
| 11815 | const SCEV *FoundRHS = getSCEV(V: ICI->getOperand(i_nocapture: 1)); |
| 11816 | |
| 11817 | return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context: CtxI); |
| 11818 | } |
| 11819 | |
| 11820 | bool ScalarEvolution::isImpliedCond(CmpPredicate Pred, const SCEV *LHS, |
| 11821 | const SCEV *RHS, CmpPredicate FoundPred, |
| 11822 | const SCEV *FoundLHS, const SCEV *FoundRHS, |
| 11823 | const Instruction *CtxI) { |
| 11824 | // Balance the types. |
| 11825 | if (getTypeSizeInBits(Ty: LHS->getType()) < |
| 11826 | getTypeSizeInBits(Ty: FoundLHS->getType())) { |
| 11827 | // For unsigned and equality predicates, try to prove that both found |
| 11828 | // operands fit into narrow unsigned range. If so, try to prove facts in |
| 11829 | // narrow types. |
| 11830 | if (!CmpInst::isSigned(predicate: FoundPred) && !FoundLHS->getType()->isPointerTy() && |
| 11831 | !FoundRHS->getType()->isPointerTy()) { |
| 11832 | auto *NarrowType = LHS->getType(); |
| 11833 | auto *WideType = FoundLHS->getType(); |
| 11834 | auto BitWidth = getTypeSizeInBits(Ty: NarrowType); |
| 11835 | const SCEV *MaxValue = getZeroExtendExpr( |
| 11836 | Op: getConstant(Val: APInt::getMaxValue(numBits: BitWidth)), Ty: WideType); |
| 11837 | if (isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_ULE, LHS: FoundLHS, |
| 11838 | RHS: MaxValue) && |
| 11839 | isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_ULE, LHS: FoundRHS, |
| 11840 | RHS: MaxValue)) { |
| 11841 | const SCEV *TruncFoundLHS = getTruncateExpr(Op: FoundLHS, Ty: NarrowType); |
| 11842 | const SCEV *TruncFoundRHS = getTruncateExpr(Op: FoundRHS, Ty: NarrowType); |
| 11843 | // We cannot preserve samesign after truncation. |
| 11844 | if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred: FoundPred.dropSameSign(), |
| 11845 | FoundLHS: TruncFoundLHS, FoundRHS: TruncFoundRHS, CtxI)) |
| 11846 | return true; |
| 11847 | } |
| 11848 | } |
| 11849 | |
| 11850 | if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) |
| 11851 | return false; |
| 11852 | if (CmpInst::isSigned(predicate: Pred)) { |
| 11853 | LHS = getSignExtendExpr(Op: LHS, Ty: FoundLHS->getType()); |
| 11854 | RHS = getSignExtendExpr(Op: RHS, Ty: FoundLHS->getType()); |
| 11855 | } else { |
| 11856 | LHS = getZeroExtendExpr(Op: LHS, Ty: FoundLHS->getType()); |
| 11857 | RHS = getZeroExtendExpr(Op: RHS, Ty: FoundLHS->getType()); |
| 11858 | } |
| 11859 | } else if (getTypeSizeInBits(Ty: LHS->getType()) > |
| 11860 | getTypeSizeInBits(Ty: FoundLHS->getType())) { |
| 11861 | if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) |
| 11862 | return false; |
| 11863 | if (CmpInst::isSigned(predicate: FoundPred)) { |
| 11864 | FoundLHS = getSignExtendExpr(Op: FoundLHS, Ty: LHS->getType()); |
| 11865 | FoundRHS = getSignExtendExpr(Op: FoundRHS, Ty: LHS->getType()); |
| 11866 | } else { |
| 11867 | FoundLHS = getZeroExtendExpr(Op: FoundLHS, Ty: LHS->getType()); |
| 11868 | FoundRHS = getZeroExtendExpr(Op: FoundRHS, Ty: LHS->getType()); |
| 11869 | } |
| 11870 | } |
| 11871 | return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, |
| 11872 | FoundRHS, CtxI); |
| 11873 | } |
| 11874 | |
| 11875 | bool ScalarEvolution::isImpliedCondBalancedTypes( |
| 11876 | CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, CmpPredicate FoundPred, |
| 11877 | const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { |
| 11878 | assert(getTypeSizeInBits(LHS->getType()) == |
| 11879 | getTypeSizeInBits(FoundLHS->getType()) && |
| 11880 | "Types should be balanced!" ); |
| 11881 | // Canonicalize the query to match the way instcombine will have |
| 11882 | // canonicalized the comparison. |
| 11883 | if (SimplifyICmpOperands(Pred, LHS, RHS)) |
| 11884 | if (LHS == RHS) |
| 11885 | return CmpInst::isTrueWhenEqual(predicate: Pred); |
| 11886 | if (SimplifyICmpOperands(Pred&: FoundPred, LHS&: FoundLHS, RHS&: FoundRHS)) |
| 11887 | if (FoundLHS == FoundRHS) |
| 11888 | return CmpInst::isFalseWhenEqual(predicate: FoundPred); |
| 11889 | |
| 11890 | // Check to see if we can make the LHS or RHS match. |
| 11891 | if (LHS == FoundRHS || RHS == FoundLHS) { |
| 11892 | if (isa<SCEVConstant>(Val: RHS)) { |
| 11893 | std::swap(a&: FoundLHS, b&: FoundRHS); |
| 11894 | FoundPred = ICmpInst::getSwappedCmpPredicate(Pred: FoundPred); |
| 11895 | } else { |
| 11896 | std::swap(a&: LHS, b&: RHS); |
| 11897 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
| 11898 | } |
| 11899 | } |
| 11900 | |
| 11901 | // Check whether the found predicate is the same as the desired predicate. |
| 11902 | if (auto P = CmpPredicate::getMatching(A: FoundPred, B: Pred)) |
| 11903 | return isImpliedCondOperands(Pred: *P, LHS, RHS, FoundLHS, FoundRHS, Context: CtxI); |
| 11904 | |
| 11905 | // Check whether swapping the found predicate makes it the same as the |
| 11906 | // desired predicate. |
| 11907 | if (auto P = CmpPredicate::getMatching( |
| 11908 | A: ICmpInst::getSwappedCmpPredicate(Pred: FoundPred), B: Pred)) { |
| 11909 | // We can write the implication |
| 11910 | // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS |
| 11911 | // using one of the following ways: |
| 11912 | // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS |
| 11913 | // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS |
| 11914 | // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS |
| 11915 | // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS |
| 11916 | // Forms 1. and 2. require swapping the operands of one condition. Don't |
| 11917 | // do this if it would break canonical constant/addrec ordering. |
| 11918 | if (!isa<SCEVConstant>(Val: RHS) && !isa<SCEVAddRecExpr>(Val: LHS)) |
| 11919 | return isImpliedCondOperands(Pred: ICmpInst::getSwappedCmpPredicate(Pred: *P), LHS: RHS, |
| 11920 | RHS: LHS, FoundLHS, FoundRHS, Context: CtxI); |
| 11921 | if (!isa<SCEVConstant>(Val: FoundRHS) && !isa<SCEVAddRecExpr>(Val: FoundLHS)) |
| 11922 | return isImpliedCondOperands(Pred: *P, LHS, RHS, FoundLHS: FoundRHS, FoundRHS: FoundLHS, Context: CtxI); |
| 11923 | |
| 11924 | // There's no clear preference between forms 3. and 4., try both. Avoid |
| 11925 | // forming getNotSCEV of pointer values as the resulting subtract is |
| 11926 | // not legal. |
| 11927 | if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && |
| 11928 | isImpliedCondOperands(Pred: ICmpInst::getSwappedCmpPredicate(Pred: *P), |
| 11929 | LHS: getNotSCEV(V: LHS), RHS: getNotSCEV(V: RHS), FoundLHS, |
| 11930 | FoundRHS, Context: CtxI)) |
| 11931 | return true; |
| 11932 | |
| 11933 | if (!FoundLHS->getType()->isPointerTy() && |
| 11934 | !FoundRHS->getType()->isPointerTy() && |
| 11935 | isImpliedCondOperands(Pred: *P, LHS, RHS, FoundLHS: getNotSCEV(V: FoundLHS), |
| 11936 | FoundRHS: getNotSCEV(V: FoundRHS), Context: CtxI)) |
| 11937 | return true; |
| 11938 | |
| 11939 | return false; |
| 11940 | } |
| 11941 | |
| 11942 | auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, |
| 11943 | CmpInst::Predicate P2) { |
| 11944 | assert(P1 != P2 && "Handled earlier!" ); |
| 11945 | return CmpInst::isRelational(P: P2) && |
| 11946 | P1 == ICmpInst::getFlippedSignednessPredicate(Pred: P2); |
| 11947 | }; |
| 11948 | if (IsSignFlippedPredicate(Pred, FoundPred)) { |
| 11949 | // Unsigned comparison is the same as signed comparison when both the |
| 11950 | // operands are non-negative or negative. |
| 11951 | if ((isKnownNonNegative(S: FoundLHS) && isKnownNonNegative(S: FoundRHS)) || |
| 11952 | (isKnownNegative(S: FoundLHS) && isKnownNegative(S: FoundRHS))) |
| 11953 | return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context: CtxI); |
| 11954 | // Create local copies that we can freely swap and canonicalize our |
| 11955 | // conditions to "le/lt". |
| 11956 | CmpPredicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; |
| 11957 | const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, |
| 11958 | *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; |
| 11959 | if (ICmpInst::isGT(P: CanonicalPred) || ICmpInst::isGE(P: CanonicalPred)) { |
| 11960 | CanonicalPred = ICmpInst::getSwappedCmpPredicate(Pred: CanonicalPred); |
| 11961 | CanonicalFoundPred = ICmpInst::getSwappedCmpPredicate(Pred: CanonicalFoundPred); |
| 11962 | std::swap(a&: CanonicalLHS, b&: CanonicalRHS); |
| 11963 | std::swap(a&: CanonicalFoundLHS, b&: CanonicalFoundRHS); |
| 11964 | } |
| 11965 | assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && |
| 11966 | "Must be!" ); |
| 11967 | assert((ICmpInst::isLT(CanonicalFoundPred) || |
| 11968 | ICmpInst::isLE(CanonicalFoundPred)) && |
| 11969 | "Must be!" ); |
| 11970 | if (ICmpInst::isSigned(predicate: CanonicalPred) && isKnownNonNegative(S: CanonicalRHS)) |
| 11971 | // Use implication: |
| 11972 | // x <u y && y >=s 0 --> x <s y. |
| 11973 | // If we can prove the left part, the right part is also proven. |
| 11974 | return isImpliedCondOperands(Pred: CanonicalFoundPred, LHS: CanonicalLHS, |
| 11975 | RHS: CanonicalRHS, FoundLHS: CanonicalFoundLHS, |
| 11976 | FoundRHS: CanonicalFoundRHS); |
| 11977 | if (ICmpInst::isUnsigned(predicate: CanonicalPred) && isKnownNegative(S: CanonicalRHS)) |
| 11978 | // Use implication: |
| 11979 | // x <s y && y <s 0 --> x <u y. |
| 11980 | // If we can prove the left part, the right part is also proven. |
| 11981 | return isImpliedCondOperands(Pred: CanonicalFoundPred, LHS: CanonicalLHS, |
| 11982 | RHS: CanonicalRHS, FoundLHS: CanonicalFoundLHS, |
| 11983 | FoundRHS: CanonicalFoundRHS); |
| 11984 | } |
| 11985 | |
| 11986 | // Check if we can make progress by sharpening ranges. |
| 11987 | if (FoundPred == ICmpInst::ICMP_NE && |
| 11988 | (isa<SCEVConstant>(Val: FoundLHS) || isa<SCEVConstant>(Val: FoundRHS))) { |
| 11989 | |
| 11990 | const SCEVConstant *C = nullptr; |
| 11991 | const SCEV *V = nullptr; |
| 11992 | |
| 11993 | if (isa<SCEVConstant>(Val: FoundLHS)) { |
| 11994 | C = cast<SCEVConstant>(Val: FoundLHS); |
| 11995 | V = FoundRHS; |
| 11996 | } else { |
| 11997 | C = cast<SCEVConstant>(Val: FoundRHS); |
| 11998 | V = FoundLHS; |
| 11999 | } |
| 12000 | |
| 12001 | // The guarding predicate tells us that C != V. If the known range |
| 12002 | // of V is [C, t), we can sharpen the range to [C + 1, t). The |
| 12003 | // range we consider has to correspond to same signedness as the |
| 12004 | // predicate we're interested in folding. |
| 12005 | |
| 12006 | APInt Min = ICmpInst::isSigned(predicate: Pred) ? |
| 12007 | getSignedRangeMin(S: V) : getUnsignedRangeMin(S: V); |
| 12008 | |
| 12009 | if (Min == C->getAPInt()) { |
| 12010 | // Given (V >= Min && V != Min) we conclude V >= (Min + 1). |
| 12011 | // This is true even if (Min + 1) wraps around -- in case of |
| 12012 | // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). |
| 12013 | |
| 12014 | APInt SharperMin = Min + 1; |
| 12015 | |
| 12016 | switch (Pred) { |
| 12017 | case ICmpInst::ICMP_SGE: |
| 12018 | case ICmpInst::ICMP_UGE: |
| 12019 | // We know V `Pred` SharperMin. If this implies LHS `Pred` |
| 12020 | // RHS, we're done. |
| 12021 | if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS: V, FoundRHS: getConstant(Val: SharperMin), |
| 12022 | Context: CtxI)) |
| 12023 | return true; |
| 12024 | [[fallthrough]]; |
| 12025 | |
| 12026 | case ICmpInst::ICMP_SGT: |
| 12027 | case ICmpInst::ICMP_UGT: |
| 12028 | // We know from the range information that (V `Pred` Min || |
| 12029 | // V == Min). We know from the guarding condition that !(V |
| 12030 | // == Min). This gives us |
| 12031 | // |
| 12032 | // V `Pred` Min || V == Min && !(V == Min) |
| 12033 | // => V `Pred` Min |
| 12034 | // |
| 12035 | // If V `Pred` Min implies LHS `Pred` RHS, we're done. |
| 12036 | |
| 12037 | if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS: V, FoundRHS: getConstant(Val: Min), Context: CtxI)) |
| 12038 | return true; |
| 12039 | break; |
| 12040 | |
| 12041 | // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. |
| 12042 | case ICmpInst::ICMP_SLE: |
| 12043 | case ICmpInst::ICMP_ULE: |
| 12044 | if (isImpliedCondOperands(Pred: ICmpInst::getSwappedCmpPredicate(Pred), LHS: RHS, |
| 12045 | RHS: LHS, FoundLHS: V, FoundRHS: getConstant(Val: SharperMin), Context: CtxI)) |
| 12046 | return true; |
| 12047 | [[fallthrough]]; |
| 12048 | |
| 12049 | case ICmpInst::ICMP_SLT: |
| 12050 | case ICmpInst::ICMP_ULT: |
| 12051 | if (isImpliedCondOperands(Pred: ICmpInst::getSwappedCmpPredicate(Pred), LHS: RHS, |
| 12052 | RHS: LHS, FoundLHS: V, FoundRHS: getConstant(Val: Min), Context: CtxI)) |
| 12053 | return true; |
| 12054 | break; |
| 12055 | |
| 12056 | default: |
| 12057 | // No change |
| 12058 | break; |
| 12059 | } |
| 12060 | } |
| 12061 | } |
| 12062 | |
| 12063 | // Check whether the actual condition is beyond sufficient. |
| 12064 | if (FoundPred == ICmpInst::ICMP_EQ) |
| 12065 | if (ICmpInst::isTrueWhenEqual(predicate: Pred)) |
| 12066 | if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context: CtxI)) |
| 12067 | return true; |
| 12068 | if (Pred == ICmpInst::ICMP_NE) |
| 12069 | if (!ICmpInst::isTrueWhenEqual(predicate: FoundPred)) |
| 12070 | if (isImpliedCondOperands(Pred: FoundPred, LHS, RHS, FoundLHS, FoundRHS, Context: CtxI)) |
| 12071 | return true; |
| 12072 | |
| 12073 | if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS)) |
| 12074 | return true; |
| 12075 | |
| 12076 | // Otherwise assume the worst. |
| 12077 | return false; |
| 12078 | } |
| 12079 | |
| 12080 | bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, |
| 12081 | const SCEV *&L, const SCEV *&R, |
| 12082 | SCEV::NoWrapFlags &Flags) { |
| 12083 | const auto *AE = dyn_cast<SCEVAddExpr>(Val: Expr); |
| 12084 | if (!AE || AE->getNumOperands() != 2) |
| 12085 | return false; |
| 12086 | |
| 12087 | L = AE->getOperand(i: 0); |
| 12088 | R = AE->getOperand(i: 1); |
| 12089 | Flags = AE->getNoWrapFlags(); |
| 12090 | return true; |
| 12091 | } |
| 12092 | |
| 12093 | std::optional<APInt> |
| 12094 | ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) { |
| 12095 | // We avoid subtracting expressions here because this function is usually |
| 12096 | // fairly deep in the call stack (i.e. is called many times). |
| 12097 | |
| 12098 | unsigned BW = getTypeSizeInBits(Ty: More->getType()); |
| 12099 | APInt Diff(BW, 0); |
| 12100 | APInt DiffMul(BW, 1); |
| 12101 | // Try various simplifications to reduce the difference to a constant. Limit |
| 12102 | // the number of allowed simplifications to keep compile-time low. |
| 12103 | for (unsigned I = 0; I < 8; ++I) { |
| 12104 | if (More == Less) |
| 12105 | return Diff; |
| 12106 | |
| 12107 | // Reduce addrecs with identical steps to their start value. |
| 12108 | if (isa<SCEVAddRecExpr>(Val: Less) && isa<SCEVAddRecExpr>(Val: More)) { |
| 12109 | const auto *LAR = cast<SCEVAddRecExpr>(Val: Less); |
| 12110 | const auto *MAR = cast<SCEVAddRecExpr>(Val: More); |
| 12111 | |
| 12112 | if (LAR->getLoop() != MAR->getLoop()) |
| 12113 | return std::nullopt; |
| 12114 | |
| 12115 | // We look at affine expressions only; not for correctness but to keep |
| 12116 | // getStepRecurrence cheap. |
| 12117 | if (!LAR->isAffine() || !MAR->isAffine()) |
| 12118 | return std::nullopt; |
| 12119 | |
| 12120 | if (LAR->getStepRecurrence(SE&: *this) != MAR->getStepRecurrence(SE&: *this)) |
| 12121 | return std::nullopt; |
| 12122 | |
| 12123 | Less = LAR->getStart(); |
| 12124 | More = MAR->getStart(); |
| 12125 | continue; |
| 12126 | } |
| 12127 | |
| 12128 | // Try to match a common constant multiply. |
| 12129 | auto MatchConstMul = |
| 12130 | [](const SCEV *S) -> std::optional<std::pair<const SCEV *, APInt>> { |
| 12131 | auto *M = dyn_cast<SCEVMulExpr>(Val: S); |
| 12132 | if (!M || M->getNumOperands() != 2 || |
| 12133 | !isa<SCEVConstant>(Val: M->getOperand(i: 0))) |
| 12134 | return std::nullopt; |
| 12135 | return { |
| 12136 | {M->getOperand(i: 1), cast<SCEVConstant>(Val: M->getOperand(i: 0))->getAPInt()}}; |
| 12137 | }; |
| 12138 | if (auto MatchedMore = MatchConstMul(More)) { |
| 12139 | if (auto MatchedLess = MatchConstMul(Less)) { |
| 12140 | if (MatchedMore->second == MatchedLess->second) { |
| 12141 | More = MatchedMore->first; |
| 12142 | Less = MatchedLess->first; |
| 12143 | DiffMul *= MatchedMore->second; |
| 12144 | continue; |
| 12145 | } |
| 12146 | } |
| 12147 | } |
| 12148 | |
| 12149 | // Try to cancel out common factors in two add expressions. |
| 12150 | SmallDenseMap<const SCEV *, int, 8> Multiplicity; |
| 12151 | auto Add = [&](const SCEV *S, int Mul) { |
| 12152 | if (auto *C = dyn_cast<SCEVConstant>(Val: S)) { |
| 12153 | if (Mul == 1) { |
| 12154 | Diff += C->getAPInt() * DiffMul; |
| 12155 | } else { |
| 12156 | assert(Mul == -1); |
| 12157 | Diff -= C->getAPInt() * DiffMul; |
| 12158 | } |
| 12159 | } else |
| 12160 | Multiplicity[S] += Mul; |
| 12161 | }; |
| 12162 | auto Decompose = [&](const SCEV *S, int Mul) { |
| 12163 | if (isa<SCEVAddExpr>(Val: S)) { |
| 12164 | for (const SCEV *Op : S->operands()) |
| 12165 | Add(Op, Mul); |
| 12166 | } else |
| 12167 | Add(S, Mul); |
| 12168 | }; |
| 12169 | Decompose(More, 1); |
| 12170 | Decompose(Less, -1); |
| 12171 | |
| 12172 | // Check whether all the non-constants cancel out, or reduce to new |
| 12173 | // More/Less values. |
| 12174 | const SCEV *NewMore = nullptr, *NewLess = nullptr; |
| 12175 | for (const auto &[S, Mul] : Multiplicity) { |
| 12176 | if (Mul == 0) |
| 12177 | continue; |
| 12178 | if (Mul == 1) { |
| 12179 | if (NewMore) |
| 12180 | return std::nullopt; |
| 12181 | NewMore = S; |
| 12182 | } else if (Mul == -1) { |
| 12183 | if (NewLess) |
| 12184 | return std::nullopt; |
| 12185 | NewLess = S; |
| 12186 | } else |
| 12187 | return std::nullopt; |
| 12188 | } |
| 12189 | |
| 12190 | // Values stayed the same, no point in trying further. |
| 12191 | if (NewMore == More || NewLess == Less) |
| 12192 | return std::nullopt; |
| 12193 | |
| 12194 | More = NewMore; |
| 12195 | Less = NewLess; |
| 12196 | |
| 12197 | // Reduced to constant. |
| 12198 | if (!More && !Less) |
| 12199 | return Diff; |
| 12200 | |
| 12201 | // Left with variable on only one side, bail out. |
| 12202 | if (!More || !Less) |
| 12203 | return std::nullopt; |
| 12204 | } |
| 12205 | |
| 12206 | // Did not reduce to constant. |
| 12207 | return std::nullopt; |
| 12208 | } |
| 12209 | |
| 12210 | bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( |
| 12211 | CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, |
| 12212 | const SCEV *FoundRHS, const Instruction *CtxI) { |
| 12213 | // Try to recognize the following pattern: |
| 12214 | // |
| 12215 | // FoundRHS = ... |
| 12216 | // ... |
| 12217 | // loop: |
| 12218 | // FoundLHS = {Start,+,W} |
| 12219 | // context_bb: // Basic block from the same loop |
| 12220 | // known(Pred, FoundLHS, FoundRHS) |
| 12221 | // |
| 12222 | // If some predicate is known in the context of a loop, it is also known on |
| 12223 | // each iteration of this loop, including the first iteration. Therefore, in |
| 12224 | // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to |
| 12225 | // prove the original pred using this fact. |
| 12226 | if (!CtxI) |
| 12227 | return false; |
| 12228 | const BasicBlock *ContextBB = CtxI->getParent(); |
| 12229 | // Make sure AR varies in the context block. |
| 12230 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: FoundLHS)) { |
| 12231 | const Loop *L = AR->getLoop(); |
| 12232 | // Make sure that context belongs to the loop and executes on 1st iteration |
| 12233 | // (if it ever executes at all). |
| 12234 | if (!L->contains(BB: ContextBB) || !DT.dominates(A: ContextBB, B: L->getLoopLatch())) |
| 12235 | return false; |
| 12236 | if (!isAvailableAtLoopEntry(S: FoundRHS, L: AR->getLoop())) |
| 12237 | return false; |
| 12238 | return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS: AR->getStart(), FoundRHS); |
| 12239 | } |
| 12240 | |
| 12241 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: FoundRHS)) { |
| 12242 | const Loop *L = AR->getLoop(); |
| 12243 | // Make sure that context belongs to the loop and executes on 1st iteration |
| 12244 | // (if it ever executes at all). |
| 12245 | if (!L->contains(BB: ContextBB) || !DT.dominates(A: ContextBB, B: L->getLoopLatch())) |
| 12246 | return false; |
| 12247 | if (!isAvailableAtLoopEntry(S: FoundLHS, L: AR->getLoop())) |
| 12248 | return false; |
| 12249 | return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS: AR->getStart()); |
| 12250 | } |
| 12251 | |
| 12252 | return false; |
| 12253 | } |
| 12254 | |
| 12255 | bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(CmpPredicate Pred, |
| 12256 | const SCEV *LHS, |
| 12257 | const SCEV *RHS, |
| 12258 | const SCEV *FoundLHS, |
| 12259 | const SCEV *FoundRHS) { |
| 12260 | if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) |
| 12261 | return false; |
| 12262 | |
| 12263 | const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(Val: LHS); |
| 12264 | if (!AddRecLHS) |
| 12265 | return false; |
| 12266 | |
| 12267 | const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(Val: FoundLHS); |
| 12268 | if (!AddRecFoundLHS) |
| 12269 | return false; |
| 12270 | |
| 12271 | // We'd like to let SCEV reason about control dependencies, so we constrain |
| 12272 | // both the inequalities to be about add recurrences on the same loop. This |
| 12273 | // way we can use isLoopEntryGuardedByCond later. |
| 12274 | |
| 12275 | const Loop *L = AddRecFoundLHS->getLoop(); |
| 12276 | if (L != AddRecLHS->getLoop()) |
| 12277 | return false; |
| 12278 | |
| 12279 | // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) |
| 12280 | // |
| 12281 | // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) |
| 12282 | // ... (2) |
| 12283 | // |
| 12284 | // Informal proof for (2), assuming (1) [*]: |
| 12285 | // |
| 12286 | // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] |
| 12287 | // |
| 12288 | // Then |
| 12289 | // |
| 12290 | // FoundLHS s< FoundRHS s< INT_MIN - C |
| 12291 | // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] |
| 12292 | // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] |
| 12293 | // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< |
| 12294 | // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] |
| 12295 | // <=> FoundLHS + C s< FoundRHS + C |
| 12296 | // |
| 12297 | // [*]: (1) can be proved by ruling out overflow. |
| 12298 | // |
| 12299 | // [**]: This can be proved by analyzing all the four possibilities: |
| 12300 | // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and |
| 12301 | // (A s>= 0, B s>= 0). |
| 12302 | // |
| 12303 | // Note: |
| 12304 | // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" |
| 12305 | // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS |
| 12306 | // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS |
| 12307 | // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is |
| 12308 | // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + |
| 12309 | // C)". |
| 12310 | |
| 12311 | std::optional<APInt> LDiff = computeConstantDifference(More: LHS, Less: FoundLHS); |
| 12312 | if (!LDiff) |
| 12313 | return false; |
| 12314 | std::optional<APInt> RDiff = computeConstantDifference(More: RHS, Less: FoundRHS); |
| 12315 | if (!RDiff || *LDiff != *RDiff) |
| 12316 | return false; |
| 12317 | |
| 12318 | if (LDiff->isMinValue()) |
| 12319 | return true; |
| 12320 | |
| 12321 | APInt FoundRHSLimit; |
| 12322 | |
| 12323 | if (Pred == CmpInst::ICMP_ULT) { |
| 12324 | FoundRHSLimit = -(*RDiff); |
| 12325 | } else { |
| 12326 | assert(Pred == CmpInst::ICMP_SLT && "Checked above!" ); |
| 12327 | FoundRHSLimit = APInt::getSignedMinValue(numBits: getTypeSizeInBits(Ty: RHS->getType())) - *RDiff; |
| 12328 | } |
| 12329 | |
| 12330 | // Try to prove (1) or (2), as needed. |
| 12331 | return isAvailableAtLoopEntry(S: FoundRHS, L) && |
| 12332 | isLoopEntryGuardedByCond(L, Pred, LHS: FoundRHS, |
| 12333 | RHS: getConstant(Val: FoundRHSLimit)); |
| 12334 | } |
| 12335 | |
| 12336 | bool ScalarEvolution::isImpliedViaMerge(CmpPredicate Pred, const SCEV *LHS, |
| 12337 | const SCEV *RHS, const SCEV *FoundLHS, |
| 12338 | const SCEV *FoundRHS, unsigned Depth) { |
| 12339 | const PHINode *LPhi = nullptr, *RPhi = nullptr; |
| 12340 | |
| 12341 | auto ClearOnExit = make_scope_exit(F: [&]() { |
| 12342 | if (LPhi) { |
| 12343 | bool Erased = PendingMerges.erase(Ptr: LPhi); |
| 12344 | assert(Erased && "Failed to erase LPhi!" ); |
| 12345 | (void)Erased; |
| 12346 | } |
| 12347 | if (RPhi) { |
| 12348 | bool Erased = PendingMerges.erase(Ptr: RPhi); |
| 12349 | assert(Erased && "Failed to erase RPhi!" ); |
| 12350 | (void)Erased; |
| 12351 | } |
| 12352 | }); |
| 12353 | |
| 12354 | // Find respective Phis and check that they are not being pending. |
| 12355 | if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(Val: LHS)) |
| 12356 | if (auto *Phi = dyn_cast<PHINode>(Val: LU->getValue())) { |
| 12357 | if (!PendingMerges.insert(Ptr: Phi).second) |
| 12358 | return false; |
| 12359 | LPhi = Phi; |
| 12360 | } |
| 12361 | if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(Val: RHS)) |
| 12362 | if (auto *Phi = dyn_cast<PHINode>(Val: RU->getValue())) { |
| 12363 | // If we detect a loop of Phi nodes being processed by this method, for |
| 12364 | // example: |
| 12365 | // |
| 12366 | // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] |
| 12367 | // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] |
| 12368 | // |
| 12369 | // we don't want to deal with a case that complex, so return conservative |
| 12370 | // answer false. |
| 12371 | if (!PendingMerges.insert(Ptr: Phi).second) |
| 12372 | return false; |
| 12373 | RPhi = Phi; |
| 12374 | } |
| 12375 | |
| 12376 | // If none of LHS, RHS is a Phi, nothing to do here. |
| 12377 | if (!LPhi && !RPhi) |
| 12378 | return false; |
| 12379 | |
| 12380 | // If there is a SCEVUnknown Phi we are interested in, make it left. |
| 12381 | if (!LPhi) { |
| 12382 | std::swap(a&: LHS, b&: RHS); |
| 12383 | std::swap(a&: FoundLHS, b&: FoundRHS); |
| 12384 | std::swap(a&: LPhi, b&: RPhi); |
| 12385 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
| 12386 | } |
| 12387 | |
| 12388 | assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!" ); |
| 12389 | const BasicBlock *LBB = LPhi->getParent(); |
| 12390 | const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(Val: RHS); |
| 12391 | |
| 12392 | auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { |
| 12393 | return isKnownViaNonRecursiveReasoning(Pred, LHS: S1, RHS: S2) || |
| 12394 | isImpliedCondOperandsViaRanges(Pred, LHS: S1, RHS: S2, FoundPred: Pred, FoundLHS, FoundRHS) || |
| 12395 | isImpliedViaOperations(Pred, LHS: S1, RHS: S2, FoundLHS, FoundRHS, Depth); |
| 12396 | }; |
| 12397 | |
| 12398 | if (RPhi && RPhi->getParent() == LBB) { |
| 12399 | // Case one: RHS is also a SCEVUnknown Phi from the same basic block. |
| 12400 | // If we compare two Phis from the same block, and for each entry block |
| 12401 | // the predicate is true for incoming values from this block, then the |
| 12402 | // predicate is also true for the Phis. |
| 12403 | for (const BasicBlock *IncBB : predecessors(BB: LBB)) { |
| 12404 | const SCEV *L = getSCEV(V: LPhi->getIncomingValueForBlock(BB: IncBB)); |
| 12405 | const SCEV *R = getSCEV(V: RPhi->getIncomingValueForBlock(BB: IncBB)); |
| 12406 | if (!ProvedEasily(L, R)) |
| 12407 | return false; |
| 12408 | } |
| 12409 | } else if (RAR && RAR->getLoop()->getHeader() == LBB) { |
| 12410 | // Case two: RHS is also a Phi from the same basic block, and it is an |
| 12411 | // AddRec. It means that there is a loop which has both AddRec and Unknown |
| 12412 | // PHIs, for it we can compare incoming values of AddRec from above the loop |
| 12413 | // and latch with their respective incoming values of LPhi. |
| 12414 | // TODO: Generalize to handle loops with many inputs in a header. |
| 12415 | if (LPhi->getNumIncomingValues() != 2) return false; |
| 12416 | |
| 12417 | auto *RLoop = RAR->getLoop(); |
| 12418 | auto *Predecessor = RLoop->getLoopPredecessor(); |
| 12419 | assert(Predecessor && "Loop with AddRec with no predecessor?" ); |
| 12420 | const SCEV *L1 = getSCEV(V: LPhi->getIncomingValueForBlock(BB: Predecessor)); |
| 12421 | if (!ProvedEasily(L1, RAR->getStart())) |
| 12422 | return false; |
| 12423 | auto *Latch = RLoop->getLoopLatch(); |
| 12424 | assert(Latch && "Loop with AddRec with no latch?" ); |
| 12425 | const SCEV *L2 = getSCEV(V: LPhi->getIncomingValueForBlock(BB: Latch)); |
| 12426 | if (!ProvedEasily(L2, RAR->getPostIncExpr(SE&: *this))) |
| 12427 | return false; |
| 12428 | } else { |
| 12429 | // In all other cases go over inputs of LHS and compare each of them to RHS, |
| 12430 | // the predicate is true for (LHS, RHS) if it is true for all such pairs. |
| 12431 | // At this point RHS is either a non-Phi, or it is a Phi from some block |
| 12432 | // different from LBB. |
| 12433 | for (const BasicBlock *IncBB : predecessors(BB: LBB)) { |
| 12434 | // Check that RHS is available in this block. |
| 12435 | if (!dominates(S: RHS, BB: IncBB)) |
| 12436 | return false; |
| 12437 | const SCEV *L = getSCEV(V: LPhi->getIncomingValueForBlock(BB: IncBB)); |
| 12438 | // Make sure L does not refer to a value from a potentially previous |
| 12439 | // iteration of a loop. |
| 12440 | if (!properlyDominates(S: L, BB: LBB)) |
| 12441 | return false; |
| 12442 | // Addrecs are considered to properly dominate their loop, so are missed |
| 12443 | // by the previous check. Discard any values that have computable |
| 12444 | // evolution in this loop. |
| 12445 | if (auto *Loop = LI.getLoopFor(BB: LBB)) |
| 12446 | if (hasComputableLoopEvolution(S: L, L: Loop)) |
| 12447 | return false; |
| 12448 | if (!ProvedEasily(L, RHS)) |
| 12449 | return false; |
| 12450 | } |
| 12451 | } |
| 12452 | return true; |
| 12453 | } |
| 12454 | |
| 12455 | bool ScalarEvolution::isImpliedCondOperandsViaShift(CmpPredicate Pred, |
| 12456 | const SCEV *LHS, |
| 12457 | const SCEV *RHS, |
| 12458 | const SCEV *FoundLHS, |
| 12459 | const SCEV *FoundRHS) { |
| 12460 | // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make |
| 12461 | // sure that we are dealing with same LHS. |
| 12462 | if (RHS == FoundRHS) { |
| 12463 | std::swap(a&: LHS, b&: RHS); |
| 12464 | std::swap(a&: FoundLHS, b&: FoundRHS); |
| 12465 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
| 12466 | } |
| 12467 | if (LHS != FoundLHS) |
| 12468 | return false; |
| 12469 | |
| 12470 | auto *SUFoundRHS = dyn_cast<SCEVUnknown>(Val: FoundRHS); |
| 12471 | if (!SUFoundRHS) |
| 12472 | return false; |
| 12473 | |
| 12474 | Value *Shiftee, *ShiftValue; |
| 12475 | |
| 12476 | using namespace PatternMatch; |
| 12477 | if (match(V: SUFoundRHS->getValue(), |
| 12478 | P: m_LShr(L: m_Value(V&: Shiftee), R: m_Value(V&: ShiftValue)))) { |
| 12479 | auto *ShifteeS = getSCEV(V: Shiftee); |
| 12480 | // Prove one of the following: |
| 12481 | // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS |
| 12482 | // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS |
| 12483 | // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 |
| 12484 | // ---> LHS <s RHS |
| 12485 | // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 |
| 12486 | // ---> LHS <=s RHS |
| 12487 | if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) |
| 12488 | return isKnownPredicate(Pred: ICmpInst::ICMP_ULE, LHS: ShifteeS, RHS); |
| 12489 | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) |
| 12490 | if (isKnownNonNegative(S: ShifteeS)) |
| 12491 | return isKnownPredicate(Pred: ICmpInst::ICMP_SLE, LHS: ShifteeS, RHS); |
| 12492 | } |
| 12493 | |
| 12494 | return false; |
| 12495 | } |
| 12496 | |
| 12497 | bool ScalarEvolution::isImpliedCondOperands(CmpPredicate Pred, const SCEV *LHS, |
| 12498 | const SCEV *RHS, |
| 12499 | const SCEV *FoundLHS, |
| 12500 | const SCEV *FoundRHS, |
| 12501 | const Instruction *CtxI) { |
| 12502 | if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundPred: Pred, FoundLHS, FoundRHS)) |
| 12503 | return true; |
| 12504 | |
| 12505 | if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) |
| 12506 | return true; |
| 12507 | |
| 12508 | if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) |
| 12509 | return true; |
| 12510 | |
| 12511 | if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, |
| 12512 | CtxI)) |
| 12513 | return true; |
| 12514 | |
| 12515 | return isImpliedCondOperandsHelper(Pred, LHS, RHS, |
| 12516 | FoundLHS, FoundRHS); |
| 12517 | } |
| 12518 | |
| 12519 | /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? |
| 12520 | template <typename MinMaxExprType> |
| 12521 | static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, |
| 12522 | const SCEV *Candidate) { |
| 12523 | const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); |
| 12524 | if (!MinMaxExpr) |
| 12525 | return false; |
| 12526 | |
| 12527 | return is_contained(MinMaxExpr->operands(), Candidate); |
| 12528 | } |
| 12529 | |
| 12530 | static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, |
| 12531 | CmpPredicate Pred, const SCEV *LHS, |
| 12532 | const SCEV *RHS) { |
| 12533 | // If both sides are affine addrecs for the same loop, with equal |
| 12534 | // steps, and we know the recurrences don't wrap, then we only |
| 12535 | // need to check the predicate on the starting values. |
| 12536 | |
| 12537 | if (!ICmpInst::isRelational(P: Pred)) |
| 12538 | return false; |
| 12539 | |
| 12540 | const SCEV *LStart, *RStart, *Step; |
| 12541 | const Loop *L; |
| 12542 | if (!match(S: LHS, |
| 12543 | P: m_scev_AffineAddRec(Op0: m_SCEV(V&: LStart), Op1: m_SCEV(V&: Step), L: m_Loop(L))) || |
| 12544 | !match(S: RHS, P: m_scev_AffineAddRec(Op0: m_SCEV(V&: RStart), Op1: m_scev_Specific(S: Step), |
| 12545 | L: m_SpecificLoop(L)))) |
| 12546 | return false; |
| 12547 | const SCEVAddRecExpr *LAR = cast<SCEVAddRecExpr>(Val: LHS); |
| 12548 | const SCEVAddRecExpr *RAR = cast<SCEVAddRecExpr>(Val: RHS); |
| 12549 | SCEV::NoWrapFlags NW = ICmpInst::isSigned(predicate: Pred) ? |
| 12550 | SCEV::FlagNSW : SCEV::FlagNUW; |
| 12551 | if (!LAR->getNoWrapFlags(Mask: NW) || !RAR->getNoWrapFlags(Mask: NW)) |
| 12552 | return false; |
| 12553 | |
| 12554 | return SE.isKnownPredicate(Pred, LHS: LStart, RHS: RStart); |
| 12555 | } |
| 12556 | |
| 12557 | /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max |
| 12558 | /// expression? |
| 12559 | static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, CmpPredicate Pred, |
| 12560 | const SCEV *LHS, const SCEV *RHS) { |
| 12561 | switch (Pred) { |
| 12562 | default: |
| 12563 | return false; |
| 12564 | |
| 12565 | case ICmpInst::ICMP_SGE: |
| 12566 | std::swap(a&: LHS, b&: RHS); |
| 12567 | [[fallthrough]]; |
| 12568 | case ICmpInst::ICMP_SLE: |
| 12569 | return |
| 12570 | // min(A, ...) <= A |
| 12571 | IsMinMaxConsistingOf<SCEVSMinExpr>(MaybeMinMaxExpr: LHS, Candidate: RHS) || |
| 12572 | // A <= max(A, ...) |
| 12573 | IsMinMaxConsistingOf<SCEVSMaxExpr>(MaybeMinMaxExpr: RHS, Candidate: LHS); |
| 12574 | |
| 12575 | case ICmpInst::ICMP_UGE: |
| 12576 | std::swap(a&: LHS, b&: RHS); |
| 12577 | [[fallthrough]]; |
| 12578 | case ICmpInst::ICMP_ULE: |
| 12579 | return |
| 12580 | // min(A, ...) <= A |
| 12581 | // FIXME: what about umin_seq? |
| 12582 | IsMinMaxConsistingOf<SCEVUMinExpr>(MaybeMinMaxExpr: LHS, Candidate: RHS) || |
| 12583 | // A <= max(A, ...) |
| 12584 | IsMinMaxConsistingOf<SCEVUMaxExpr>(MaybeMinMaxExpr: RHS, Candidate: LHS); |
| 12585 | } |
| 12586 | |
| 12587 | llvm_unreachable("covered switch fell through?!" ); |
| 12588 | } |
| 12589 | |
| 12590 | bool ScalarEvolution::isImpliedViaOperations(CmpPredicate Pred, const SCEV *LHS, |
| 12591 | const SCEV *RHS, |
| 12592 | const SCEV *FoundLHS, |
| 12593 | const SCEV *FoundRHS, |
| 12594 | unsigned Depth) { |
| 12595 | assert(getTypeSizeInBits(LHS->getType()) == |
| 12596 | getTypeSizeInBits(RHS->getType()) && |
| 12597 | "LHS and RHS have different sizes?" ); |
| 12598 | assert(getTypeSizeInBits(FoundLHS->getType()) == |
| 12599 | getTypeSizeInBits(FoundRHS->getType()) && |
| 12600 | "FoundLHS and FoundRHS have different sizes?" ); |
| 12601 | // We want to avoid hurting the compile time with analysis of too big trees. |
| 12602 | if (Depth > MaxSCEVOperationsImplicationDepth) |
| 12603 | return false; |
| 12604 | |
| 12605 | // We only want to work with GT comparison so far. |
| 12606 | if (ICmpInst::isLT(P: Pred)) { |
| 12607 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
| 12608 | std::swap(a&: LHS, b&: RHS); |
| 12609 | std::swap(a&: FoundLHS, b&: FoundRHS); |
| 12610 | } |
| 12611 | |
| 12612 | CmpInst::Predicate P = Pred.getPreferredSignedPredicate(); |
| 12613 | |
| 12614 | // For unsigned, try to reduce it to corresponding signed comparison. |
| 12615 | if (P == ICmpInst::ICMP_UGT) |
| 12616 | // We can replace unsigned predicate with its signed counterpart if all |
| 12617 | // involved values are non-negative. |
| 12618 | // TODO: We could have better support for unsigned. |
| 12619 | if (isKnownNonNegative(S: FoundLHS) && isKnownNonNegative(S: FoundRHS)) { |
| 12620 | // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing |
| 12621 | // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us |
| 12622 | // use this fact to prove that LHS and RHS are non-negative. |
| 12623 | const SCEV *MinusOne = getMinusOne(Ty: LHS->getType()); |
| 12624 | if (isImpliedCondOperands(Pred: ICmpInst::ICMP_SGT, LHS, RHS: MinusOne, FoundLHS, |
| 12625 | FoundRHS) && |
| 12626 | isImpliedCondOperands(Pred: ICmpInst::ICMP_SGT, LHS: RHS, RHS: MinusOne, FoundLHS, |
| 12627 | FoundRHS)) |
| 12628 | P = ICmpInst::ICMP_SGT; |
| 12629 | } |
| 12630 | |
| 12631 | if (P != ICmpInst::ICMP_SGT) |
| 12632 | return false; |
| 12633 | |
| 12634 | auto GetOpFromSExt = [&](const SCEV *S) { |
| 12635 | if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(Val: S)) |
| 12636 | return Ext->getOperand(); |
| 12637 | // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off |
| 12638 | // the constant in some cases. |
| 12639 | return S; |
| 12640 | }; |
| 12641 | |
| 12642 | // Acquire values from extensions. |
| 12643 | auto *OrigLHS = LHS; |
| 12644 | auto *OrigFoundLHS = FoundLHS; |
| 12645 | LHS = GetOpFromSExt(LHS); |
| 12646 | FoundLHS = GetOpFromSExt(FoundLHS); |
| 12647 | |
| 12648 | // Is the SGT predicate can be proved trivially or using the found context. |
| 12649 | auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { |
| 12650 | return isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_SGT, LHS: S1, RHS: S2) || |
| 12651 | isImpliedViaOperations(Pred: ICmpInst::ICMP_SGT, LHS: S1, RHS: S2, FoundLHS: OrigFoundLHS, |
| 12652 | FoundRHS, Depth: Depth + 1); |
| 12653 | }; |
| 12654 | |
| 12655 | if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(Val: LHS)) { |
| 12656 | // We want to avoid creation of any new non-constant SCEV. Since we are |
| 12657 | // going to compare the operands to RHS, we should be certain that we don't |
| 12658 | // need any size extensions for this. So let's decline all cases when the |
| 12659 | // sizes of types of LHS and RHS do not match. |
| 12660 | // TODO: Maybe try to get RHS from sext to catch more cases? |
| 12661 | if (getTypeSizeInBits(Ty: LHS->getType()) != getTypeSizeInBits(Ty: RHS->getType())) |
| 12662 | return false; |
| 12663 | |
| 12664 | // Should not overflow. |
| 12665 | if (!LHSAddExpr->hasNoSignedWrap()) |
| 12666 | return false; |
| 12667 | |
| 12668 | auto *LL = LHSAddExpr->getOperand(i: 0); |
| 12669 | auto *LR = LHSAddExpr->getOperand(i: 1); |
| 12670 | auto *MinusOne = getMinusOne(Ty: RHS->getType()); |
| 12671 | |
| 12672 | // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. |
| 12673 | auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { |
| 12674 | return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); |
| 12675 | }; |
| 12676 | // Try to prove the following rule: |
| 12677 | // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). |
| 12678 | // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). |
| 12679 | if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) |
| 12680 | return true; |
| 12681 | } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(Val: LHS)) { |
| 12682 | Value *LL, *LR; |
| 12683 | // FIXME: Once we have SDiv implemented, we can get rid of this matching. |
| 12684 | |
| 12685 | using namespace llvm::PatternMatch; |
| 12686 | |
| 12687 | if (match(V: LHSUnknownExpr->getValue(), P: m_SDiv(L: m_Value(V&: LL), R: m_Value(V&: LR)))) { |
| 12688 | // Rules for division. |
| 12689 | // We are going to perform some comparisons with Denominator and its |
| 12690 | // derivative expressions. In general case, creating a SCEV for it may |
| 12691 | // lead to a complex analysis of the entire graph, and in particular it |
| 12692 | // can request trip count recalculation for the same loop. This would |
| 12693 | // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid |
| 12694 | // this, we only want to create SCEVs that are constants in this section. |
| 12695 | // So we bail if Denominator is not a constant. |
| 12696 | if (!isa<ConstantInt>(Val: LR)) |
| 12697 | return false; |
| 12698 | |
| 12699 | auto *Denominator = cast<SCEVConstant>(Val: getSCEV(V: LR)); |
| 12700 | |
| 12701 | // We want to make sure that LHS = FoundLHS / Denominator. If it is so, |
| 12702 | // then a SCEV for the numerator already exists and matches with FoundLHS. |
| 12703 | auto *Numerator = getExistingSCEV(V: LL); |
| 12704 | if (!Numerator || Numerator->getType() != FoundLHS->getType()) |
| 12705 | return false; |
| 12706 | |
| 12707 | // Make sure that the numerator matches with FoundLHS and the denominator |
| 12708 | // is positive. |
| 12709 | if (!HasSameValue(A: Numerator, B: FoundLHS) || !isKnownPositive(S: Denominator)) |
| 12710 | return false; |
| 12711 | |
| 12712 | auto *DTy = Denominator->getType(); |
| 12713 | auto *FRHSTy = FoundRHS->getType(); |
| 12714 | if (DTy->isPointerTy() != FRHSTy->isPointerTy()) |
| 12715 | // One of types is a pointer and another one is not. We cannot extend |
| 12716 | // them properly to a wider type, so let us just reject this case. |
| 12717 | // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help |
| 12718 | // to avoid this check. |
| 12719 | return false; |
| 12720 | |
| 12721 | // Given that: |
| 12722 | // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. |
| 12723 | auto *WTy = getWiderType(T1: DTy, T2: FRHSTy); |
| 12724 | auto *DenominatorExt = getNoopOrSignExtend(V: Denominator, Ty: WTy); |
| 12725 | auto *FoundRHSExt = getNoopOrSignExtend(V: FoundRHS, Ty: WTy); |
| 12726 | |
| 12727 | // Try to prove the following rule: |
| 12728 | // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). |
| 12729 | // For example, given that FoundLHS > 2. It means that FoundLHS is at |
| 12730 | // least 3. If we divide it by Denominator < 4, we will have at least 1. |
| 12731 | auto *DenomMinusTwo = getMinusSCEV(LHS: DenominatorExt, RHS: getConstant(Ty: WTy, V: 2)); |
| 12732 | if (isKnownNonPositive(S: RHS) && |
| 12733 | IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) |
| 12734 | return true; |
| 12735 | |
| 12736 | // Try to prove the following rule: |
| 12737 | // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). |
| 12738 | // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. |
| 12739 | // If we divide it by Denominator > 2, then: |
| 12740 | // 1. If FoundLHS is negative, then the result is 0. |
| 12741 | // 2. If FoundLHS is non-negative, then the result is non-negative. |
| 12742 | // Anyways, the result is non-negative. |
| 12743 | auto *MinusOne = getMinusOne(Ty: WTy); |
| 12744 | auto *NegDenomMinusOne = getMinusSCEV(LHS: MinusOne, RHS: DenominatorExt); |
| 12745 | if (isKnownNegative(S: RHS) && |
| 12746 | IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) |
| 12747 | return true; |
| 12748 | } |
| 12749 | } |
| 12750 | |
| 12751 | // If our expression contained SCEVUnknown Phis, and we split it down and now |
| 12752 | // need to prove something for them, try to prove the predicate for every |
| 12753 | // possible incoming values of those Phis. |
| 12754 | if (isImpliedViaMerge(Pred, LHS: OrigLHS, RHS, FoundLHS: OrigFoundLHS, FoundRHS, Depth: Depth + 1)) |
| 12755 | return true; |
| 12756 | |
| 12757 | return false; |
| 12758 | } |
| 12759 | |
| 12760 | static bool isKnownPredicateExtendIdiom(CmpPredicate Pred, const SCEV *LHS, |
| 12761 | const SCEV *RHS) { |
| 12762 | // zext x u<= sext x, sext x s<= zext x |
| 12763 | const SCEV *Op; |
| 12764 | switch (Pred) { |
| 12765 | case ICmpInst::ICMP_SGE: |
| 12766 | std::swap(a&: LHS, b&: RHS); |
| 12767 | [[fallthrough]]; |
| 12768 | case ICmpInst::ICMP_SLE: { |
| 12769 | // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. |
| 12770 | return match(S: LHS, P: m_scev_SExt(Op0: m_SCEV(V&: Op))) && |
| 12771 | match(S: RHS, P: m_scev_ZExt(Op0: m_scev_Specific(S: Op))); |
| 12772 | } |
| 12773 | case ICmpInst::ICMP_UGE: |
| 12774 | std::swap(a&: LHS, b&: RHS); |
| 12775 | [[fallthrough]]; |
| 12776 | case ICmpInst::ICMP_ULE: { |
| 12777 | // If operand >=u 0 then ZExt == SExt. If operand <u 0 then ZExt <u SExt. |
| 12778 | return match(S: LHS, P: m_scev_ZExt(Op0: m_SCEV(V&: Op))) && |
| 12779 | match(S: RHS, P: m_scev_SExt(Op0: m_scev_Specific(S: Op))); |
| 12780 | } |
| 12781 | default: |
| 12782 | return false; |
| 12783 | }; |
| 12784 | llvm_unreachable("unhandled case" ); |
| 12785 | } |
| 12786 | |
| 12787 | bool ScalarEvolution::isKnownViaNonRecursiveReasoning(CmpPredicate Pred, |
| 12788 | const SCEV *LHS, |
| 12789 | const SCEV *RHS) { |
| 12790 | return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || |
| 12791 | isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || |
| 12792 | IsKnownPredicateViaMinOrMax(SE&: *this, Pred, LHS, RHS) || |
| 12793 | IsKnownPredicateViaAddRecStart(SE&: *this, Pred, LHS, RHS) || |
| 12794 | isKnownPredicateViaNoOverflow(Pred, LHS, RHS); |
| 12795 | } |
| 12796 | |
| 12797 | bool ScalarEvolution::isImpliedCondOperandsHelper(CmpPredicate Pred, |
| 12798 | const SCEV *LHS, |
| 12799 | const SCEV *RHS, |
| 12800 | const SCEV *FoundLHS, |
| 12801 | const SCEV *FoundRHS) { |
| 12802 | switch (Pred) { |
| 12803 | default: |
| 12804 | llvm_unreachable("Unexpected CmpPredicate value!" ); |
| 12805 | case ICmpInst::ICMP_EQ: |
| 12806 | case ICmpInst::ICMP_NE: |
| 12807 | if (HasSameValue(A: LHS, B: FoundLHS) && HasSameValue(A: RHS, B: FoundRHS)) |
| 12808 | return true; |
| 12809 | break; |
| 12810 | case ICmpInst::ICMP_SLT: |
| 12811 | case ICmpInst::ICMP_SLE: |
| 12812 | if (isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_SLE, LHS, RHS: FoundLHS) && |
| 12813 | isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_SGE, LHS: RHS, RHS: FoundRHS)) |
| 12814 | return true; |
| 12815 | break; |
| 12816 | case ICmpInst::ICMP_SGT: |
| 12817 | case ICmpInst::ICMP_SGE: |
| 12818 | if (isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_SGE, LHS, RHS: FoundLHS) && |
| 12819 | isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_SLE, LHS: RHS, RHS: FoundRHS)) |
| 12820 | return true; |
| 12821 | break; |
| 12822 | case ICmpInst::ICMP_ULT: |
| 12823 | case ICmpInst::ICMP_ULE: |
| 12824 | if (isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_ULE, LHS, RHS: FoundLHS) && |
| 12825 | isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_UGE, LHS: RHS, RHS: FoundRHS)) |
| 12826 | return true; |
| 12827 | break; |
| 12828 | case ICmpInst::ICMP_UGT: |
| 12829 | case ICmpInst::ICMP_UGE: |
| 12830 | if (isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_UGE, LHS, RHS: FoundLHS) && |
| 12831 | isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_ULE, LHS: RHS, RHS: FoundRHS)) |
| 12832 | return true; |
| 12833 | break; |
| 12834 | } |
| 12835 | |
| 12836 | // Maybe it can be proved via operations? |
| 12837 | if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) |
| 12838 | return true; |
| 12839 | |
| 12840 | return false; |
| 12841 | } |
| 12842 | |
| 12843 | bool ScalarEvolution::isImpliedCondOperandsViaRanges( |
| 12844 | CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, CmpPredicate FoundPred, |
| 12845 | const SCEV *FoundLHS, const SCEV *FoundRHS) { |
| 12846 | if (!isa<SCEVConstant>(Val: RHS) || !isa<SCEVConstant>(Val: FoundRHS)) |
| 12847 | // The restriction on `FoundRHS` be lifted easily -- it exists only to |
| 12848 | // reduce the compile time impact of this optimization. |
| 12849 | return false; |
| 12850 | |
| 12851 | std::optional<APInt> Addend = computeConstantDifference(More: LHS, Less: FoundLHS); |
| 12852 | if (!Addend) |
| 12853 | return false; |
| 12854 | |
| 12855 | const APInt &ConstFoundRHS = cast<SCEVConstant>(Val: FoundRHS)->getAPInt(); |
| 12856 | |
| 12857 | // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the |
| 12858 | // antecedent "`FoundLHS` `FoundPred` `FoundRHS`". |
| 12859 | ConstantRange FoundLHSRange = |
| 12860 | ConstantRange::makeExactICmpRegion(Pred: FoundPred, Other: ConstFoundRHS); |
| 12861 | |
| 12862 | // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: |
| 12863 | ConstantRange LHSRange = FoundLHSRange.add(Other: ConstantRange(*Addend)); |
| 12864 | |
| 12865 | // We can also compute the range of values for `LHS` that satisfy the |
| 12866 | // consequent, "`LHS` `Pred` `RHS`": |
| 12867 | const APInt &ConstRHS = cast<SCEVConstant>(Val: RHS)->getAPInt(); |
| 12868 | // The antecedent implies the consequent if every value of `LHS` that |
| 12869 | // satisfies the antecedent also satisfies the consequent. |
| 12870 | return LHSRange.icmp(Pred, Other: ConstRHS); |
| 12871 | } |
| 12872 | |
| 12873 | bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, |
| 12874 | bool IsSigned) { |
| 12875 | assert(isKnownPositive(Stride) && "Positive stride expected!" ); |
| 12876 | |
| 12877 | unsigned BitWidth = getTypeSizeInBits(Ty: RHS->getType()); |
| 12878 | const SCEV *One = getOne(Ty: Stride->getType()); |
| 12879 | |
| 12880 | if (IsSigned) { |
| 12881 | APInt MaxRHS = getSignedRangeMax(S: RHS); |
| 12882 | APInt MaxValue = APInt::getSignedMaxValue(numBits: BitWidth); |
| 12883 | APInt MaxStrideMinusOne = getSignedRangeMax(S: getMinusSCEV(LHS: Stride, RHS: One)); |
| 12884 | |
| 12885 | // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! |
| 12886 | return (std::move(MaxValue) - MaxStrideMinusOne).slt(RHS: MaxRHS); |
| 12887 | } |
| 12888 | |
| 12889 | APInt MaxRHS = getUnsignedRangeMax(S: RHS); |
| 12890 | APInt MaxValue = APInt::getMaxValue(numBits: BitWidth); |
| 12891 | APInt MaxStrideMinusOne = getUnsignedRangeMax(S: getMinusSCEV(LHS: Stride, RHS: One)); |
| 12892 | |
| 12893 | // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! |
| 12894 | return (std::move(MaxValue) - MaxStrideMinusOne).ult(RHS: MaxRHS); |
| 12895 | } |
| 12896 | |
| 12897 | bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, |
| 12898 | bool IsSigned) { |
| 12899 | |
| 12900 | unsigned BitWidth = getTypeSizeInBits(Ty: RHS->getType()); |
| 12901 | const SCEV *One = getOne(Ty: Stride->getType()); |
| 12902 | |
| 12903 | if (IsSigned) { |
| 12904 | APInt MinRHS = getSignedRangeMin(S: RHS); |
| 12905 | APInt MinValue = APInt::getSignedMinValue(numBits: BitWidth); |
| 12906 | APInt MaxStrideMinusOne = getSignedRangeMax(S: getMinusSCEV(LHS: Stride, RHS: One)); |
| 12907 | |
| 12908 | // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! |
| 12909 | return (std::move(MinValue) + MaxStrideMinusOne).sgt(RHS: MinRHS); |
| 12910 | } |
| 12911 | |
| 12912 | APInt MinRHS = getUnsignedRangeMin(S: RHS); |
| 12913 | APInt MinValue = APInt::getMinValue(numBits: BitWidth); |
| 12914 | APInt MaxStrideMinusOne = getUnsignedRangeMax(S: getMinusSCEV(LHS: Stride, RHS: One)); |
| 12915 | |
| 12916 | // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! |
| 12917 | return (std::move(MinValue) + MaxStrideMinusOne).ugt(RHS: MinRHS); |
| 12918 | } |
| 12919 | |
| 12920 | const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { |
| 12921 | // umin(N, 1) + floor((N - umin(N, 1)) / D) |
| 12922 | // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin |
| 12923 | // expression fixes the case of N=0. |
| 12924 | const SCEV *MinNOne = getUMinExpr(LHS: N, RHS: getOne(Ty: N->getType())); |
| 12925 | const SCEV *NMinusOne = getMinusSCEV(LHS: N, RHS: MinNOne); |
| 12926 | return getAddExpr(LHS: MinNOne, RHS: getUDivExpr(LHS: NMinusOne, RHS: D)); |
| 12927 | } |
| 12928 | |
| 12929 | const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, |
| 12930 | const SCEV *Stride, |
| 12931 | const SCEV *End, |
| 12932 | unsigned BitWidth, |
| 12933 | bool IsSigned) { |
| 12934 | // The logic in this function assumes we can represent a positive stride. |
| 12935 | // If we can't, the backedge-taken count must be zero. |
| 12936 | if (IsSigned && BitWidth == 1) |
| 12937 | return getZero(Ty: Stride->getType()); |
| 12938 | |
| 12939 | // This code below only been closely audited for negative strides in the |
| 12940 | // unsigned comparison case, it may be correct for signed comparison, but |
| 12941 | // that needs to be established. |
| 12942 | if (IsSigned && isKnownNegative(S: Stride)) |
| 12943 | return getCouldNotCompute(); |
| 12944 | |
| 12945 | // Calculate the maximum backedge count based on the range of values |
| 12946 | // permitted by Start, End, and Stride. |
| 12947 | APInt MinStart = |
| 12948 | IsSigned ? getSignedRangeMin(S: Start) : getUnsignedRangeMin(S: Start); |
| 12949 | |
| 12950 | APInt MinStride = |
| 12951 | IsSigned ? getSignedRangeMin(S: Stride) : getUnsignedRangeMin(S: Stride); |
| 12952 | |
| 12953 | // We assume either the stride is positive, or the backedge-taken count |
| 12954 | // is zero. So force StrideForMaxBECount to be at least one. |
| 12955 | APInt One(BitWidth, 1); |
| 12956 | APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(A: One, B: MinStride) |
| 12957 | : APIntOps::umax(A: One, B: MinStride); |
| 12958 | |
| 12959 | APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(numBits: BitWidth) |
| 12960 | : APInt::getMaxValue(numBits: BitWidth); |
| 12961 | APInt Limit = MaxValue - (StrideForMaxBECount - 1); |
| 12962 | |
| 12963 | // Although End can be a MAX expression we estimate MaxEnd considering only |
| 12964 | // the case End = RHS of the loop termination condition. This is safe because |
| 12965 | // in the other case (End - Start) is zero, leading to a zero maximum backedge |
| 12966 | // taken count. |
| 12967 | APInt MaxEnd = IsSigned ? APIntOps::smin(A: getSignedRangeMax(S: End), B: Limit) |
| 12968 | : APIntOps::umin(A: getUnsignedRangeMax(S: End), B: Limit); |
| 12969 | |
| 12970 | // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) |
| 12971 | MaxEnd = IsSigned ? APIntOps::smax(A: MaxEnd, B: MinStart) |
| 12972 | : APIntOps::umax(A: MaxEnd, B: MinStart); |
| 12973 | |
| 12974 | return getUDivCeilSCEV(N: getConstant(Val: MaxEnd - MinStart) /* Delta */, |
| 12975 | D: getConstant(Val: StrideForMaxBECount) /* Step */); |
| 12976 | } |
| 12977 | |
| 12978 | ScalarEvolution::ExitLimit |
| 12979 | ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, |
| 12980 | const Loop *L, bool IsSigned, |
| 12981 | bool ControlsOnlyExit, bool AllowPredicates) { |
| 12982 | SmallVector<const SCEVPredicate *> Predicates; |
| 12983 | |
| 12984 | const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(Val: LHS); |
| 12985 | bool PredicatedIV = false; |
| 12986 | if (!IV) { |
| 12987 | if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: LHS)) { |
| 12988 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: ZExt->getOperand()); |
| 12989 | if (AR && AR->getLoop() == L && AR->isAffine()) { |
| 12990 | auto canProveNUW = [&]() { |
| 12991 | // We can use the comparison to infer no-wrap flags only if it fully |
| 12992 | // controls the loop exit. |
| 12993 | if (!ControlsOnlyExit) |
| 12994 | return false; |
| 12995 | |
| 12996 | if (!isLoopInvariant(S: RHS, L)) |
| 12997 | return false; |
| 12998 | |
| 12999 | if (!isKnownNonZero(S: AR->getStepRecurrence(SE&: *this))) |
| 13000 | // We need the sequence defined by AR to strictly increase in the |
| 13001 | // unsigned integer domain for the logic below to hold. |
| 13002 | return false; |
| 13003 | |
| 13004 | const unsigned InnerBitWidth = getTypeSizeInBits(Ty: AR->getType()); |
| 13005 | const unsigned OuterBitWidth = getTypeSizeInBits(Ty: RHS->getType()); |
| 13006 | // If RHS <=u Limit, then there must exist a value V in the sequence |
| 13007 | // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and |
| 13008 | // V <=u UINT_MAX. Thus, we must exit the loop before unsigned |
| 13009 | // overflow occurs. This limit also implies that a signed comparison |
| 13010 | // (in the wide bitwidth) is equivalent to an unsigned comparison as |
| 13011 | // the high bits on both sides must be zero. |
| 13012 | APInt StrideMax = getUnsignedRangeMax(S: AR->getStepRecurrence(SE&: *this)); |
| 13013 | APInt Limit = APInt::getMaxValue(numBits: InnerBitWidth) - (StrideMax - 1); |
| 13014 | Limit = Limit.zext(width: OuterBitWidth); |
| 13015 | return getUnsignedRangeMax(S: applyLoopGuards(Expr: RHS, L)).ule(RHS: Limit); |
| 13016 | }; |
| 13017 | auto Flags = AR->getNoWrapFlags(); |
| 13018 | if (!hasFlags(Flags, TestFlags: SCEV::FlagNUW) && canProveNUW()) |
| 13019 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNUW); |
| 13020 | |
| 13021 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags); |
| 13022 | if (AR->hasNoUnsignedWrap()) { |
| 13023 | // Emulate what getZeroExtendExpr would have done during construction |
| 13024 | // if we'd been able to infer the fact just above at that time. |
| 13025 | const SCEV *Step = AR->getStepRecurrence(SE&: *this); |
| 13026 | Type *Ty = ZExt->getType(); |
| 13027 | auto *S = getAddRecExpr( |
| 13028 | Start: getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, Depth: 0), |
| 13029 | Step: getZeroExtendExpr(Op: Step, Ty, Depth: 0), L, Flags: AR->getNoWrapFlags()); |
| 13030 | IV = dyn_cast<SCEVAddRecExpr>(Val: S); |
| 13031 | } |
| 13032 | } |
| 13033 | } |
| 13034 | } |
| 13035 | |
| 13036 | |
| 13037 | if (!IV && AllowPredicates) { |
| 13038 | // Try to make this an AddRec using runtime tests, in the first X |
| 13039 | // iterations of this loop, where X is the SCEV expression found by the |
| 13040 | // algorithm below. |
| 13041 | IV = convertSCEVToAddRecWithPredicates(S: LHS, L, Preds&: Predicates); |
| 13042 | PredicatedIV = true; |
| 13043 | } |
| 13044 | |
| 13045 | // Avoid weird loops |
| 13046 | if (!IV || IV->getLoop() != L || !IV->isAffine()) |
| 13047 | return getCouldNotCompute(); |
| 13048 | |
| 13049 | // A precondition of this method is that the condition being analyzed |
| 13050 | // reaches an exiting branch which dominates the latch. Given that, we can |
| 13051 | // assume that an increment which violates the nowrap specification and |
| 13052 | // produces poison must cause undefined behavior when the resulting poison |
| 13053 | // value is branched upon and thus we can conclude that the backedge is |
| 13054 | // taken no more often than would be required to produce that poison value. |
| 13055 | // Note that a well defined loop can exit on the iteration which violates |
| 13056 | // the nowrap specification if there is another exit (either explicit or |
| 13057 | // implicit/exceptional) which causes the loop to execute before the |
| 13058 | // exiting instruction we're analyzing would trigger UB. |
| 13059 | auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; |
| 13060 | bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(Mask: WrapType); |
| 13061 | ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; |
| 13062 | |
| 13063 | const SCEV *Stride = IV->getStepRecurrence(SE&: *this); |
| 13064 | |
| 13065 | bool PositiveStride = isKnownPositive(S: Stride); |
| 13066 | |
| 13067 | // Avoid negative or zero stride values. |
| 13068 | if (!PositiveStride) { |
| 13069 | // We can compute the correct backedge taken count for loops with unknown |
| 13070 | // strides if we can prove that the loop is not an infinite loop with side |
| 13071 | // effects. Here's the loop structure we are trying to handle - |
| 13072 | // |
| 13073 | // i = start |
| 13074 | // do { |
| 13075 | // A[i] = i; |
| 13076 | // i += s; |
| 13077 | // } while (i < end); |
| 13078 | // |
| 13079 | // The backedge taken count for such loops is evaluated as - |
| 13080 | // (max(end, start + stride) - start - 1) /u stride |
| 13081 | // |
| 13082 | // The additional preconditions that we need to check to prove correctness |
| 13083 | // of the above formula is as follows - |
| 13084 | // |
| 13085 | // a) IV is either nuw or nsw depending upon signedness (indicated by the |
| 13086 | // NoWrap flag). |
| 13087 | // b) the loop is guaranteed to be finite (e.g. is mustprogress and has |
| 13088 | // no side effects within the loop) |
| 13089 | // c) loop has a single static exit (with no abnormal exits) |
| 13090 | // |
| 13091 | // Precondition a) implies that if the stride is negative, this is a single |
| 13092 | // trip loop. The backedge taken count formula reduces to zero in this case. |
| 13093 | // |
| 13094 | // Precondition b) and c) combine to imply that if rhs is invariant in L, |
| 13095 | // then a zero stride means the backedge can't be taken without executing |
| 13096 | // undefined behavior. |
| 13097 | // |
| 13098 | // The positive stride case is the same as isKnownPositive(Stride) returning |
| 13099 | // true (original behavior of the function). |
| 13100 | // |
| 13101 | if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || |
| 13102 | !loopHasNoAbnormalExits(L)) |
| 13103 | return getCouldNotCompute(); |
| 13104 | |
| 13105 | if (!isKnownNonZero(S: Stride)) { |
| 13106 | // If we have a step of zero, and RHS isn't invariant in L, we don't know |
| 13107 | // if it might eventually be greater than start and if so, on which |
| 13108 | // iteration. We can't even produce a useful upper bound. |
| 13109 | if (!isLoopInvariant(S: RHS, L)) |
| 13110 | return getCouldNotCompute(); |
| 13111 | |
| 13112 | // We allow a potentially zero stride, but we need to divide by stride |
| 13113 | // below. Since the loop can't be infinite and this check must control |
| 13114 | // the sole exit, we can infer the exit must be taken on the first |
| 13115 | // iteration (e.g. backedge count = 0) if the stride is zero. Given that, |
| 13116 | // we know the numerator in the divides below must be zero, so we can |
| 13117 | // pick an arbitrary non-zero value for the denominator (e.g. stride) |
| 13118 | // and produce the right result. |
| 13119 | // FIXME: Handle the case where Stride is poison? |
| 13120 | auto wouldZeroStrideBeUB = [&]() { |
| 13121 | // Proof by contradiction. Suppose the stride were zero. If we can |
| 13122 | // prove that the backedge *is* taken on the first iteration, then since |
| 13123 | // we know this condition controls the sole exit, we must have an |
| 13124 | // infinite loop. We can't have a (well defined) infinite loop per |
| 13125 | // check just above. |
| 13126 | // Note: The (Start - Stride) term is used to get the start' term from |
| 13127 | // (start' + stride,+,stride). Remember that we only care about the |
| 13128 | // result of this expression when stride == 0 at runtime. |
| 13129 | auto *StartIfZero = getMinusSCEV(LHS: IV->getStart(), RHS: Stride); |
| 13130 | return isLoopEntryGuardedByCond(L, Pred: Cond, LHS: StartIfZero, RHS); |
| 13131 | }; |
| 13132 | if (!wouldZeroStrideBeUB()) { |
| 13133 | Stride = getUMaxExpr(LHS: Stride, RHS: getOne(Ty: Stride->getType())); |
| 13134 | } |
| 13135 | } |
| 13136 | } else if (!NoWrap) { |
| 13137 | // Avoid proven overflow cases: this will ensure that the backedge taken |
| 13138 | // count will not generate any unsigned overflow. |
| 13139 | if (canIVOverflowOnLT(RHS, Stride, IsSigned)) |
| 13140 | return getCouldNotCompute(); |
| 13141 | } |
| 13142 | |
| 13143 | // On all paths just preceeding, we established the following invariant: |
| 13144 | // IV can be assumed not to overflow up to and including the exiting |
| 13145 | // iteration. We proved this in one of two ways: |
| 13146 | // 1) We can show overflow doesn't occur before the exiting iteration |
| 13147 | // 1a) canIVOverflowOnLT, and b) step of one |
| 13148 | // 2) We can show that if overflow occurs, the loop must execute UB |
| 13149 | // before any possible exit. |
| 13150 | // Note that we have not yet proved RHS invariant (in general). |
| 13151 | |
| 13152 | const SCEV *Start = IV->getStart(); |
| 13153 | |
| 13154 | // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. |
| 13155 | // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. |
| 13156 | // Use integer-typed versions for actual computation; we can't subtract |
| 13157 | // pointers in general. |
| 13158 | const SCEV *OrigStart = Start; |
| 13159 | const SCEV *OrigRHS = RHS; |
| 13160 | if (Start->getType()->isPointerTy()) { |
| 13161 | Start = getLosslessPtrToIntExpr(Op: Start); |
| 13162 | if (isa<SCEVCouldNotCompute>(Val: Start)) |
| 13163 | return Start; |
| 13164 | } |
| 13165 | if (RHS->getType()->isPointerTy()) { |
| 13166 | RHS = getLosslessPtrToIntExpr(Op: RHS); |
| 13167 | if (isa<SCEVCouldNotCompute>(Val: RHS)) |
| 13168 | return RHS; |
| 13169 | } |
| 13170 | |
| 13171 | const SCEV *End = nullptr, *BECount = nullptr, |
| 13172 | *BECountIfBackedgeTaken = nullptr; |
| 13173 | if (!isLoopInvariant(S: RHS, L)) { |
| 13174 | const auto *RHSAddRec = dyn_cast<SCEVAddRecExpr>(Val: RHS); |
| 13175 | if (PositiveStride && RHSAddRec != nullptr && RHSAddRec->getLoop() == L && |
| 13176 | RHSAddRec->getNoWrapFlags()) { |
| 13177 | // The structure of loop we are trying to calculate backedge count of: |
| 13178 | // |
| 13179 | // left = left_start |
| 13180 | // right = right_start |
| 13181 | // |
| 13182 | // while(left < right){ |
| 13183 | // ... do something here ... |
| 13184 | // left += s1; // stride of left is s1 (s1 > 0) |
| 13185 | // right += s2; // stride of right is s2 (s2 < 0) |
| 13186 | // } |
| 13187 | // |
| 13188 | |
| 13189 | const SCEV *RHSStart = RHSAddRec->getStart(); |
| 13190 | const SCEV *RHSStride = RHSAddRec->getStepRecurrence(SE&: *this); |
| 13191 | |
| 13192 | // If Stride - RHSStride is positive and does not overflow, we can write |
| 13193 | // backedge count as -> |
| 13194 | // ceil((End - Start) /u (Stride - RHSStride)) |
| 13195 | // Where, End = max(RHSStart, Start) |
| 13196 | |
| 13197 | // Check if RHSStride < 0 and Stride - RHSStride will not overflow. |
| 13198 | if (isKnownNegative(S: RHSStride) && |
| 13199 | willNotOverflow(BinOp: Instruction::Sub, /*Signed=*/true, LHS: Stride, |
| 13200 | RHS: RHSStride)) { |
| 13201 | |
| 13202 | const SCEV *Denominator = getMinusSCEV(LHS: Stride, RHS: RHSStride); |
| 13203 | if (isKnownPositive(S: Denominator)) { |
| 13204 | End = IsSigned ? getSMaxExpr(LHS: RHSStart, RHS: Start) |
| 13205 | : getUMaxExpr(LHS: RHSStart, RHS: Start); |
| 13206 | |
| 13207 | // We can do this because End >= Start, as End = max(RHSStart, Start) |
| 13208 | const SCEV *Delta = getMinusSCEV(LHS: End, RHS: Start); |
| 13209 | |
| 13210 | BECount = getUDivCeilSCEV(N: Delta, D: Denominator); |
| 13211 | BECountIfBackedgeTaken = |
| 13212 | getUDivCeilSCEV(N: getMinusSCEV(LHS: RHSStart, RHS: Start), D: Denominator); |
| 13213 | } |
| 13214 | } |
| 13215 | } |
| 13216 | if (BECount == nullptr) { |
| 13217 | // If we cannot calculate ExactBECount, we can calculate the MaxBECount, |
| 13218 | // given the start, stride and max value for the end bound of the |
| 13219 | // loop (RHS), and the fact that IV does not overflow (which is |
| 13220 | // checked above). |
| 13221 | const SCEV *MaxBECount = computeMaxBECountForLT( |
| 13222 | Start, Stride, End: RHS, BitWidth: getTypeSizeInBits(Ty: LHS->getType()), IsSigned); |
| 13223 | return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, |
| 13224 | MaxBECount, false /*MaxOrZero*/, Predicates); |
| 13225 | } |
| 13226 | } else { |
| 13227 | // We use the expression (max(End,Start)-Start)/Stride to describe the |
| 13228 | // backedge count, as if the backedge is taken at least once |
| 13229 | // max(End,Start) is End and so the result is as above, and if not |
| 13230 | // max(End,Start) is Start so we get a backedge count of zero. |
| 13231 | auto *OrigStartMinusStride = getMinusSCEV(LHS: OrigStart, RHS: Stride); |
| 13232 | assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!" ); |
| 13233 | assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!" ); |
| 13234 | assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!" ); |
| 13235 | // Can we prove (max(RHS,Start) > Start - Stride? |
| 13236 | if (isLoopEntryGuardedByCond(L, Pred: Cond, LHS: OrigStartMinusStride, RHS: OrigStart) && |
| 13237 | isLoopEntryGuardedByCond(L, Pred: Cond, LHS: OrigStartMinusStride, RHS: OrigRHS)) { |
| 13238 | // In this case, we can use a refined formula for computing backedge |
| 13239 | // taken count. The general formula remains: |
| 13240 | // "End-Start /uceiling Stride" where "End = max(RHS,Start)" |
| 13241 | // We want to use the alternate formula: |
| 13242 | // "((End - 1) - (Start - Stride)) /u Stride" |
| 13243 | // Let's do a quick case analysis to show these are equivalent under |
| 13244 | // our precondition that max(RHS,Start) > Start - Stride. |
| 13245 | // * For RHS <= Start, the backedge-taken count must be zero. |
| 13246 | // "((End - 1) - (Start - Stride)) /u Stride" reduces to |
| 13247 | // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to |
| 13248 | // "Stride - 1 /u Stride" which is indeed zero for all non-zero values |
| 13249 | // of Stride. For 0 stride, we've use umin(1,Stride) above, |
| 13250 | // reducing this to the stride of 1 case. |
| 13251 | // * For RHS >= Start, the backedge count must be "RHS-Start /uceil |
| 13252 | // Stride". |
| 13253 | // "((End - 1) - (Start - Stride)) /u Stride" reduces to |
| 13254 | // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to |
| 13255 | // "((RHS - (Start - Stride) - 1) /u Stride". |
| 13256 | // Our preconditions trivially imply no overflow in that form. |
| 13257 | const SCEV *MinusOne = getMinusOne(Ty: Stride->getType()); |
| 13258 | const SCEV *Numerator = |
| 13259 | getMinusSCEV(LHS: getAddExpr(LHS: RHS, RHS: MinusOne), RHS: getMinusSCEV(LHS: Start, RHS: Stride)); |
| 13260 | BECount = getUDivExpr(LHS: Numerator, RHS: Stride); |
| 13261 | } |
| 13262 | |
| 13263 | if (!BECount) { |
| 13264 | auto canProveRHSGreaterThanEqualStart = [&]() { |
| 13265 | auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; |
| 13266 | const SCEV *GuardedRHS = applyLoopGuards(Expr: OrigRHS, L); |
| 13267 | const SCEV *GuardedStart = applyLoopGuards(Expr: OrigStart, L); |
| 13268 | |
| 13269 | if (isLoopEntryGuardedByCond(L, Pred: CondGE, LHS: OrigRHS, RHS: OrigStart) || |
| 13270 | isKnownPredicate(Pred: CondGE, LHS: GuardedRHS, RHS: GuardedStart)) |
| 13271 | return true; |
| 13272 | |
| 13273 | // (RHS > Start - 1) implies RHS >= Start. |
| 13274 | // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if |
| 13275 | // "Start - 1" doesn't overflow. |
| 13276 | // * For signed comparison, if Start - 1 does overflow, it's equal |
| 13277 | // to INT_MAX, and "RHS >s INT_MAX" is trivially false. |
| 13278 | // * For unsigned comparison, if Start - 1 does overflow, it's equal |
| 13279 | // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. |
| 13280 | // |
| 13281 | // FIXME: Should isLoopEntryGuardedByCond do this for us? |
| 13282 | auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; |
| 13283 | auto *StartMinusOne = |
| 13284 | getAddExpr(LHS: OrigStart, RHS: getMinusOne(Ty: OrigStart->getType())); |
| 13285 | return isLoopEntryGuardedByCond(L, Pred: CondGT, LHS: OrigRHS, RHS: StartMinusOne); |
| 13286 | }; |
| 13287 | |
| 13288 | // If we know that RHS >= Start in the context of loop, then we know |
| 13289 | // that max(RHS, Start) = RHS at this point. |
| 13290 | if (canProveRHSGreaterThanEqualStart()) { |
| 13291 | End = RHS; |
| 13292 | } else { |
| 13293 | // If RHS < Start, the backedge will be taken zero times. So in |
| 13294 | // general, we can write the backedge-taken count as: |
| 13295 | // |
| 13296 | // RHS >= Start ? ceil(RHS - Start) / Stride : 0 |
| 13297 | // |
| 13298 | // We convert it to the following to make it more convenient for SCEV: |
| 13299 | // |
| 13300 | // ceil(max(RHS, Start) - Start) / Stride |
| 13301 | End = IsSigned ? getSMaxExpr(LHS: RHS, RHS: Start) : getUMaxExpr(LHS: RHS, RHS: Start); |
| 13302 | |
| 13303 | // See what would happen if we assume the backedge is taken. This is |
| 13304 | // used to compute MaxBECount. |
| 13305 | BECountIfBackedgeTaken = |
| 13306 | getUDivCeilSCEV(N: getMinusSCEV(LHS: RHS, RHS: Start), D: Stride); |
| 13307 | } |
| 13308 | |
| 13309 | // At this point, we know: |
| 13310 | // |
| 13311 | // 1. If IsSigned, Start <=s End; otherwise, Start <=u End |
| 13312 | // 2. The index variable doesn't overflow. |
| 13313 | // |
| 13314 | // Therefore, we know N exists such that |
| 13315 | // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" |
| 13316 | // doesn't overflow. |
| 13317 | // |
| 13318 | // Using this information, try to prove whether the addition in |
| 13319 | // "(Start - End) + (Stride - 1)" has unsigned overflow. |
| 13320 | const SCEV *One = getOne(Ty: Stride->getType()); |
| 13321 | bool MayAddOverflow = [&] { |
| 13322 | if (isKnownToBeAPowerOfTwo(S: Stride)) { |
| 13323 | // Suppose Stride is a power of two, and Start/End are unsigned |
| 13324 | // integers. Let UMAX be the largest representable unsigned |
| 13325 | // integer. |
| 13326 | // |
| 13327 | // By the preconditions of this function, we know |
| 13328 | // "(Start + Stride * N) >= End", and this doesn't overflow. |
| 13329 | // As a formula: |
| 13330 | // |
| 13331 | // End <= (Start + Stride * N) <= UMAX |
| 13332 | // |
| 13333 | // Subtracting Start from all the terms: |
| 13334 | // |
| 13335 | // End - Start <= Stride * N <= UMAX - Start |
| 13336 | // |
| 13337 | // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: |
| 13338 | // |
| 13339 | // End - Start <= Stride * N <= UMAX |
| 13340 | // |
| 13341 | // Stride * N is a multiple of Stride. Therefore, |
| 13342 | // |
| 13343 | // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) |
| 13344 | // |
| 13345 | // Since Stride is a power of two, UMAX + 1 is divisible by |
| 13346 | // Stride. Therefore, UMAX mod Stride == Stride - 1. So we can |
| 13347 | // write: |
| 13348 | // |
| 13349 | // End - Start <= Stride * N <= UMAX - Stride - 1 |
| 13350 | // |
| 13351 | // Dropping the middle term: |
| 13352 | // |
| 13353 | // End - Start <= UMAX - Stride - 1 |
| 13354 | // |
| 13355 | // Adding Stride - 1 to both sides: |
| 13356 | // |
| 13357 | // (End - Start) + (Stride - 1) <= UMAX |
| 13358 | // |
| 13359 | // In other words, the addition doesn't have unsigned overflow. |
| 13360 | // |
| 13361 | // A similar proof works if we treat Start/End as signed values. |
| 13362 | // Just rewrite steps before "End - Start <= Stride * N <= UMAX" |
| 13363 | // to use signed max instead of unsigned max. Note that we're |
| 13364 | // trying to prove a lack of unsigned overflow in either case. |
| 13365 | return false; |
| 13366 | } |
| 13367 | if (Start == Stride || Start == getMinusSCEV(LHS: Stride, RHS: One)) { |
| 13368 | // If Start is equal to Stride, (End - Start) + (Stride - 1) == End |
| 13369 | // - 1. If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 |
| 13370 | // <u End. If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - |
| 13371 | // 1 <s End. |
| 13372 | // |
| 13373 | // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == |
| 13374 | // End. |
| 13375 | return false; |
| 13376 | } |
| 13377 | return true; |
| 13378 | }(); |
| 13379 | |
| 13380 | const SCEV *Delta = getMinusSCEV(LHS: End, RHS: Start); |
| 13381 | if (!MayAddOverflow) { |
| 13382 | // floor((D + (S - 1)) / S) |
| 13383 | // We prefer this formulation if it's legal because it's fewer |
| 13384 | // operations. |
| 13385 | BECount = |
| 13386 | getUDivExpr(LHS: getAddExpr(LHS: Delta, RHS: getMinusSCEV(LHS: Stride, RHS: One)), RHS: Stride); |
| 13387 | } else { |
| 13388 | BECount = getUDivCeilSCEV(N: Delta, D: Stride); |
| 13389 | } |
| 13390 | } |
| 13391 | } |
| 13392 | |
| 13393 | const SCEV *ConstantMaxBECount; |
| 13394 | bool MaxOrZero = false; |
| 13395 | if (isa<SCEVConstant>(Val: BECount)) { |
| 13396 | ConstantMaxBECount = BECount; |
| 13397 | } else if (BECountIfBackedgeTaken && |
| 13398 | isa<SCEVConstant>(Val: BECountIfBackedgeTaken)) { |
| 13399 | // If we know exactly how many times the backedge will be taken if it's |
| 13400 | // taken at least once, then the backedge count will either be that or |
| 13401 | // zero. |
| 13402 | ConstantMaxBECount = BECountIfBackedgeTaken; |
| 13403 | MaxOrZero = true; |
| 13404 | } else { |
| 13405 | ConstantMaxBECount = computeMaxBECountForLT( |
| 13406 | Start, Stride, End: RHS, BitWidth: getTypeSizeInBits(Ty: LHS->getType()), IsSigned); |
| 13407 | } |
| 13408 | |
| 13409 | if (isa<SCEVCouldNotCompute>(Val: ConstantMaxBECount) && |
| 13410 | !isa<SCEVCouldNotCompute>(Val: BECount)) |
| 13411 | ConstantMaxBECount = getConstant(Val: getUnsignedRangeMax(S: BECount)); |
| 13412 | |
| 13413 | const SCEV *SymbolicMaxBECount = |
| 13414 | isa<SCEVCouldNotCompute>(Val: BECount) ? ConstantMaxBECount : BECount; |
| 13415 | return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero, |
| 13416 | Predicates); |
| 13417 | } |
| 13418 | |
| 13419 | ScalarEvolution::ExitLimit ScalarEvolution::howManyGreaterThans( |
| 13420 | const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned, |
| 13421 | bool ControlsOnlyExit, bool AllowPredicates) { |
| 13422 | SmallVector<const SCEVPredicate *> Predicates; |
| 13423 | // We handle only IV > Invariant |
| 13424 | if (!isLoopInvariant(S: RHS, L)) |
| 13425 | return getCouldNotCompute(); |
| 13426 | |
| 13427 | const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(Val: LHS); |
| 13428 | if (!IV && AllowPredicates) |
| 13429 | // Try to make this an AddRec using runtime tests, in the first X |
| 13430 | // iterations of this loop, where X is the SCEV expression found by the |
| 13431 | // algorithm below. |
| 13432 | IV = convertSCEVToAddRecWithPredicates(S: LHS, L, Preds&: Predicates); |
| 13433 | |
| 13434 | // Avoid weird loops |
| 13435 | if (!IV || IV->getLoop() != L || !IV->isAffine()) |
| 13436 | return getCouldNotCompute(); |
| 13437 | |
| 13438 | auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; |
| 13439 | bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(Mask: WrapType); |
| 13440 | ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; |
| 13441 | |
| 13442 | const SCEV *Stride = getNegativeSCEV(V: IV->getStepRecurrence(SE&: *this)); |
| 13443 | |
| 13444 | // Avoid negative or zero stride values |
| 13445 | if (!isKnownPositive(S: Stride)) |
| 13446 | return getCouldNotCompute(); |
| 13447 | |
| 13448 | // Avoid proven overflow cases: this will ensure that the backedge taken count |
| 13449 | // will not generate any unsigned overflow. Relaxed no-overflow conditions |
| 13450 | // exploit NoWrapFlags, allowing to optimize in presence of undefined |
| 13451 | // behaviors like the case of C language. |
| 13452 | if (!Stride->isOne() && !NoWrap) |
| 13453 | if (canIVOverflowOnGT(RHS, Stride, IsSigned)) |
| 13454 | return getCouldNotCompute(); |
| 13455 | |
| 13456 | const SCEV *Start = IV->getStart(); |
| 13457 | const SCEV *End = RHS; |
| 13458 | if (!isLoopEntryGuardedByCond(L, Pred: Cond, LHS: getAddExpr(LHS: Start, RHS: Stride), RHS)) { |
| 13459 | // If we know that Start >= RHS in the context of loop, then we know that |
| 13460 | // min(RHS, Start) = RHS at this point. |
| 13461 | if (isLoopEntryGuardedByCond( |
| 13462 | L, Pred: IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, LHS: Start, RHS)) |
| 13463 | End = RHS; |
| 13464 | else |
| 13465 | End = IsSigned ? getSMinExpr(LHS: RHS, RHS: Start) : getUMinExpr(LHS: RHS, RHS: Start); |
| 13466 | } |
| 13467 | |
| 13468 | if (Start->getType()->isPointerTy()) { |
| 13469 | Start = getLosslessPtrToIntExpr(Op: Start); |
| 13470 | if (isa<SCEVCouldNotCompute>(Val: Start)) |
| 13471 | return Start; |
| 13472 | } |
| 13473 | if (End->getType()->isPointerTy()) { |
| 13474 | End = getLosslessPtrToIntExpr(Op: End); |
| 13475 | if (isa<SCEVCouldNotCompute>(Val: End)) |
| 13476 | return End; |
| 13477 | } |
| 13478 | |
| 13479 | // Compute ((Start - End) + (Stride - 1)) / Stride. |
| 13480 | // FIXME: This can overflow. Holding off on fixing this for now; |
| 13481 | // howManyGreaterThans will hopefully be gone soon. |
| 13482 | const SCEV *One = getOne(Ty: Stride->getType()); |
| 13483 | const SCEV *BECount = getUDivExpr( |
| 13484 | LHS: getAddExpr(LHS: getMinusSCEV(LHS: Start, RHS: End), RHS: getMinusSCEV(LHS: Stride, RHS: One)), RHS: Stride); |
| 13485 | |
| 13486 | APInt MaxStart = IsSigned ? getSignedRangeMax(S: Start) |
| 13487 | : getUnsignedRangeMax(S: Start); |
| 13488 | |
| 13489 | APInt MinStride = IsSigned ? getSignedRangeMin(S: Stride) |
| 13490 | : getUnsignedRangeMin(S: Stride); |
| 13491 | |
| 13492 | unsigned BitWidth = getTypeSizeInBits(Ty: LHS->getType()); |
| 13493 | APInt Limit = IsSigned ? APInt::getSignedMinValue(numBits: BitWidth) + (MinStride - 1) |
| 13494 | : APInt::getMinValue(numBits: BitWidth) + (MinStride - 1); |
| 13495 | |
| 13496 | // Although End can be a MIN expression we estimate MinEnd considering only |
| 13497 | // the case End = RHS. This is safe because in the other case (Start - End) |
| 13498 | // is zero, leading to a zero maximum backedge taken count. |
| 13499 | APInt MinEnd = |
| 13500 | IsSigned ? APIntOps::smax(A: getSignedRangeMin(S: RHS), B: Limit) |
| 13501 | : APIntOps::umax(A: getUnsignedRangeMin(S: RHS), B: Limit); |
| 13502 | |
| 13503 | const SCEV *ConstantMaxBECount = |
| 13504 | isa<SCEVConstant>(Val: BECount) |
| 13505 | ? BECount |
| 13506 | : getUDivCeilSCEV(N: getConstant(Val: MaxStart - MinEnd), |
| 13507 | D: getConstant(Val: MinStride)); |
| 13508 | |
| 13509 | if (isa<SCEVCouldNotCompute>(Val: ConstantMaxBECount)) |
| 13510 | ConstantMaxBECount = BECount; |
| 13511 | const SCEV *SymbolicMaxBECount = |
| 13512 | isa<SCEVCouldNotCompute>(Val: BECount) ? ConstantMaxBECount : BECount; |
| 13513 | |
| 13514 | return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, |
| 13515 | Predicates); |
| 13516 | } |
| 13517 | |
| 13518 | const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, |
| 13519 | ScalarEvolution &SE) const { |
| 13520 | if (Range.isFullSet()) // Infinite loop. |
| 13521 | return SE.getCouldNotCompute(); |
| 13522 | |
| 13523 | // If the start is a non-zero constant, shift the range to simplify things. |
| 13524 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: getStart())) |
| 13525 | if (!SC->getValue()->isZero()) { |
| 13526 | SmallVector<const SCEV *, 4> Operands(operands()); |
| 13527 | Operands[0] = SE.getZero(Ty: SC->getType()); |
| 13528 | const SCEV *Shifted = SE.getAddRecExpr(Operands, L: getLoop(), |
| 13529 | Flags: getNoWrapFlags(Mask: FlagNW)); |
| 13530 | if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Val: Shifted)) |
| 13531 | return ShiftedAddRec->getNumIterationsInRange( |
| 13532 | Range: Range.subtract(CI: SC->getAPInt()), SE); |
| 13533 | // This is strange and shouldn't happen. |
| 13534 | return SE.getCouldNotCompute(); |
| 13535 | } |
| 13536 | |
| 13537 | // The only time we can solve this is when we have all constant indices. |
| 13538 | // Otherwise, we cannot determine the overflow conditions. |
| 13539 | if (any_of(Range: operands(), P: [](const SCEV *Op) { return !isa<SCEVConstant>(Val: Op); })) |
| 13540 | return SE.getCouldNotCompute(); |
| 13541 | |
| 13542 | // Okay at this point we know that all elements of the chrec are constants and |
| 13543 | // that the start element is zero. |
| 13544 | |
| 13545 | // First check to see if the range contains zero. If not, the first |
| 13546 | // iteration exits. |
| 13547 | unsigned BitWidth = SE.getTypeSizeInBits(Ty: getType()); |
| 13548 | if (!Range.contains(Val: APInt(BitWidth, 0))) |
| 13549 | return SE.getZero(Ty: getType()); |
| 13550 | |
| 13551 | if (isAffine()) { |
| 13552 | // If this is an affine expression then we have this situation: |
| 13553 | // Solve {0,+,A} in Range === Ax in Range |
| 13554 | |
| 13555 | // We know that zero is in the range. If A is positive then we know that |
| 13556 | // the upper value of the range must be the first possible exit value. |
| 13557 | // If A is negative then the lower of the range is the last possible loop |
| 13558 | // value. Also note that we already checked for a full range. |
| 13559 | APInt A = cast<SCEVConstant>(Val: getOperand(i: 1))->getAPInt(); |
| 13560 | APInt End = A.sge(RHS: 1) ? (Range.getUpper() - 1) : Range.getLower(); |
| 13561 | |
| 13562 | // The exit value should be (End+A)/A. |
| 13563 | APInt ExitVal = (End + A).udiv(RHS: A); |
| 13564 | ConstantInt *ExitValue = ConstantInt::get(Context&: SE.getContext(), V: ExitVal); |
| 13565 | |
| 13566 | // Evaluate at the exit value. If we really did fall out of the valid |
| 13567 | // range, then we computed our trip count, otherwise wrap around or other |
| 13568 | // things must have happened. |
| 13569 | ConstantInt *Val = EvaluateConstantChrecAtConstant(AddRec: this, C: ExitValue, SE); |
| 13570 | if (Range.contains(Val: Val->getValue())) |
| 13571 | return SE.getCouldNotCompute(); // Something strange happened |
| 13572 | |
| 13573 | // Ensure that the previous value is in the range. |
| 13574 | assert(Range.contains( |
| 13575 | EvaluateConstantChrecAtConstant(this, |
| 13576 | ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && |
| 13577 | "Linear scev computation is off in a bad way!" ); |
| 13578 | return SE.getConstant(V: ExitValue); |
| 13579 | } |
| 13580 | |
| 13581 | if (isQuadratic()) { |
| 13582 | if (auto S = SolveQuadraticAddRecRange(AddRec: this, Range, SE)) |
| 13583 | return SE.getConstant(Val: *S); |
| 13584 | } |
| 13585 | |
| 13586 | return SE.getCouldNotCompute(); |
| 13587 | } |
| 13588 | |
| 13589 | const SCEVAddRecExpr * |
| 13590 | SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { |
| 13591 | assert(getNumOperands() > 1 && "AddRec with zero step?" ); |
| 13592 | // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), |
| 13593 | // but in this case we cannot guarantee that the value returned will be an |
| 13594 | // AddRec because SCEV does not have a fixed point where it stops |
| 13595 | // simplification: it is legal to return ({rec1} + {rec2}). For example, it |
| 13596 | // may happen if we reach arithmetic depth limit while simplifying. So we |
| 13597 | // construct the returned value explicitly. |
| 13598 | SmallVector<const SCEV *, 3> Ops; |
| 13599 | // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and |
| 13600 | // (this + Step) is {A+B,+,B+C,+...,+,N}. |
| 13601 | for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) |
| 13602 | Ops.push_back(Elt: SE.getAddExpr(LHS: getOperand(i), RHS: getOperand(i: i + 1))); |
| 13603 | // We know that the last operand is not a constant zero (otherwise it would |
| 13604 | // have been popped out earlier). This guarantees us that if the result has |
| 13605 | // the same last operand, then it will also not be popped out, meaning that |
| 13606 | // the returned value will be an AddRec. |
| 13607 | const SCEV *Last = getOperand(i: getNumOperands() - 1); |
| 13608 | assert(!Last->isZero() && "Recurrency with zero step?" ); |
| 13609 | Ops.push_back(Elt: Last); |
| 13610 | return cast<SCEVAddRecExpr>(Val: SE.getAddRecExpr(Operands&: Ops, L: getLoop(), |
| 13611 | Flags: SCEV::FlagAnyWrap)); |
| 13612 | } |
| 13613 | |
| 13614 | // Return true when S contains at least an undef value. |
| 13615 | bool ScalarEvolution::containsUndefs(const SCEV *S) const { |
| 13616 | return SCEVExprContains(Root: S, Pred: [](const SCEV *S) { |
| 13617 | if (const auto *SU = dyn_cast<SCEVUnknown>(Val: S)) |
| 13618 | return isa<UndefValue>(Val: SU->getValue()); |
| 13619 | return false; |
| 13620 | }); |
| 13621 | } |
| 13622 | |
| 13623 | // Return true when S contains a value that is a nullptr. |
| 13624 | bool ScalarEvolution::containsErasedValue(const SCEV *S) const { |
| 13625 | return SCEVExprContains(Root: S, Pred: [](const SCEV *S) { |
| 13626 | if (const auto *SU = dyn_cast<SCEVUnknown>(Val: S)) |
| 13627 | return SU->getValue() == nullptr; |
| 13628 | return false; |
| 13629 | }); |
| 13630 | } |
| 13631 | |
| 13632 | /// Return the size of an element read or written by Inst. |
| 13633 | const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { |
| 13634 | Type *Ty; |
| 13635 | if (StoreInst *Store = dyn_cast<StoreInst>(Val: Inst)) |
| 13636 | Ty = Store->getValueOperand()->getType(); |
| 13637 | else if (LoadInst *Load = dyn_cast<LoadInst>(Val: Inst)) |
| 13638 | Ty = Load->getType(); |
| 13639 | else |
| 13640 | return nullptr; |
| 13641 | |
| 13642 | Type *ETy = getEffectiveSCEVType(Ty: PointerType::getUnqual(C&: Inst->getContext())); |
| 13643 | return getSizeOfExpr(IntTy: ETy, AllocTy: Ty); |
| 13644 | } |
| 13645 | |
| 13646 | //===----------------------------------------------------------------------===// |
| 13647 | // SCEVCallbackVH Class Implementation |
| 13648 | //===----------------------------------------------------------------------===// |
| 13649 | |
| 13650 | void ScalarEvolution::SCEVCallbackVH::deleted() { |
| 13651 | assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!" ); |
| 13652 | if (PHINode *PN = dyn_cast<PHINode>(Val: getValPtr())) |
| 13653 | SE->ConstantEvolutionLoopExitValue.erase(Val: PN); |
| 13654 | SE->eraseValueFromMap(V: getValPtr()); |
| 13655 | // this now dangles! |
| 13656 | } |
| 13657 | |
| 13658 | void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { |
| 13659 | assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!" ); |
| 13660 | |
| 13661 | // Forget all the expressions associated with users of the old value, |
| 13662 | // so that future queries will recompute the expressions using the new |
| 13663 | // value. |
| 13664 | SE->forgetValue(V: getValPtr()); |
| 13665 | // this now dangles! |
| 13666 | } |
| 13667 | |
| 13668 | ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) |
| 13669 | : CallbackVH(V), SE(se) {} |
| 13670 | |
| 13671 | //===----------------------------------------------------------------------===// |
| 13672 | // ScalarEvolution Class Implementation |
| 13673 | //===----------------------------------------------------------------------===// |
| 13674 | |
| 13675 | ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, |
| 13676 | AssumptionCache &AC, DominatorTree &DT, |
| 13677 | LoopInfo &LI) |
| 13678 | : F(F), DL(F.getDataLayout()), TLI(TLI), AC(AC), DT(DT), LI(LI), |
| 13679 | CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), |
| 13680 | LoopDispositions(64), BlockDispositions(64) { |
| 13681 | // To use guards for proving predicates, we need to scan every instruction in |
| 13682 | // relevant basic blocks, and not just terminators. Doing this is a waste of |
| 13683 | // time if the IR does not actually contain any calls to |
| 13684 | // @llvm.experimental.guard, so do a quick check and remember this beforehand. |
| 13685 | // |
| 13686 | // This pessimizes the case where a pass that preserves ScalarEvolution wants |
| 13687 | // to _add_ guards to the module when there weren't any before, and wants |
| 13688 | // ScalarEvolution to optimize based on those guards. For now we prefer to be |
| 13689 | // efficient in lieu of being smart in that rather obscure case. |
| 13690 | |
| 13691 | auto *GuardDecl = Intrinsic::getDeclarationIfExists( |
| 13692 | M: F.getParent(), id: Intrinsic::experimental_guard); |
| 13693 | HasGuards = GuardDecl && !GuardDecl->use_empty(); |
| 13694 | } |
| 13695 | |
| 13696 | ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) |
| 13697 | : F(Arg.F), DL(Arg.DL), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), |
| 13698 | DT(Arg.DT), LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), |
| 13699 | ValueExprMap(std::move(Arg.ValueExprMap)), |
| 13700 | PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), |
| 13701 | PendingPhiRanges(std::move(Arg.PendingPhiRanges)), |
| 13702 | PendingMerges(std::move(Arg.PendingMerges)), |
| 13703 | ConstantMultipleCache(std::move(Arg.ConstantMultipleCache)), |
| 13704 | BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), |
| 13705 | PredicatedBackedgeTakenCounts( |
| 13706 | std::move(Arg.PredicatedBackedgeTakenCounts)), |
| 13707 | BECountUsers(std::move(Arg.BECountUsers)), |
| 13708 | ConstantEvolutionLoopExitValue( |
| 13709 | std::move(Arg.ConstantEvolutionLoopExitValue)), |
| 13710 | ValuesAtScopes(std::move(Arg.ValuesAtScopes)), |
| 13711 | ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), |
| 13712 | LoopDispositions(std::move(Arg.LoopDispositions)), |
| 13713 | LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), |
| 13714 | BlockDispositions(std::move(Arg.BlockDispositions)), |
| 13715 | SCEVUsers(std::move(Arg.SCEVUsers)), |
| 13716 | UnsignedRanges(std::move(Arg.UnsignedRanges)), |
| 13717 | SignedRanges(std::move(Arg.SignedRanges)), |
| 13718 | UniqueSCEVs(std::move(Arg.UniqueSCEVs)), |
| 13719 | UniquePreds(std::move(Arg.UniquePreds)), |
| 13720 | SCEVAllocator(std::move(Arg.SCEVAllocator)), |
| 13721 | LoopUsers(std::move(Arg.LoopUsers)), |
| 13722 | PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), |
| 13723 | FirstUnknown(Arg.FirstUnknown) { |
| 13724 | Arg.FirstUnknown = nullptr; |
| 13725 | } |
| 13726 | |
| 13727 | ScalarEvolution::~ScalarEvolution() { |
| 13728 | // Iterate through all the SCEVUnknown instances and call their |
| 13729 | // destructors, so that they release their references to their values. |
| 13730 | for (SCEVUnknown *U = FirstUnknown; U;) { |
| 13731 | SCEVUnknown *Tmp = U; |
| 13732 | U = U->Next; |
| 13733 | Tmp->~SCEVUnknown(); |
| 13734 | } |
| 13735 | FirstUnknown = nullptr; |
| 13736 | |
| 13737 | ExprValueMap.clear(); |
| 13738 | ValueExprMap.clear(); |
| 13739 | HasRecMap.clear(); |
| 13740 | BackedgeTakenCounts.clear(); |
| 13741 | PredicatedBackedgeTakenCounts.clear(); |
| 13742 | |
| 13743 | assert(PendingLoopPredicates.empty() && "isImpliedCond garbage" ); |
| 13744 | assert(PendingPhiRanges.empty() && "getRangeRef garbage" ); |
| 13745 | assert(PendingMerges.empty() && "isImpliedViaMerge garbage" ); |
| 13746 | assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!" ); |
| 13747 | assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!" ); |
| 13748 | } |
| 13749 | |
| 13750 | bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { |
| 13751 | return !isa<SCEVCouldNotCompute>(Val: getBackedgeTakenCount(L)); |
| 13752 | } |
| 13753 | |
| 13754 | /// When printing a top-level SCEV for trip counts, it's helpful to include |
| 13755 | /// a type for constants which are otherwise hard to disambiguate. |
| 13756 | static void PrintSCEVWithTypeHint(raw_ostream &OS, const SCEV* S) { |
| 13757 | if (isa<SCEVConstant>(Val: S)) |
| 13758 | OS << *S->getType() << " " ; |
| 13759 | OS << *S; |
| 13760 | } |
| 13761 | |
| 13762 | static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, |
| 13763 | const Loop *L) { |
| 13764 | // Print all inner loops first |
| 13765 | for (Loop *I : *L) |
| 13766 | PrintLoopInfo(OS, SE, L: I); |
| 13767 | |
| 13768 | OS << "Loop " ; |
| 13769 | L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
| 13770 | OS << ": " ; |
| 13771 | |
| 13772 | SmallVector<BasicBlock *, 8> ExitingBlocks; |
| 13773 | L->getExitingBlocks(ExitingBlocks); |
| 13774 | if (ExitingBlocks.size() != 1) |
| 13775 | OS << "<multiple exits> " ; |
| 13776 | |
| 13777 | auto *BTC = SE->getBackedgeTakenCount(L); |
| 13778 | if (!isa<SCEVCouldNotCompute>(Val: BTC)) { |
| 13779 | OS << "backedge-taken count is " ; |
| 13780 | PrintSCEVWithTypeHint(OS, S: BTC); |
| 13781 | } else |
| 13782 | OS << "Unpredictable backedge-taken count." ; |
| 13783 | OS << "\n" ; |
| 13784 | |
| 13785 | if (ExitingBlocks.size() > 1) |
| 13786 | for (BasicBlock *ExitingBlock : ExitingBlocks) { |
| 13787 | OS << " exit count for " << ExitingBlock->getName() << ": " ; |
| 13788 | const SCEV *EC = SE->getExitCount(L, ExitingBlock); |
| 13789 | PrintSCEVWithTypeHint(OS, S: EC); |
| 13790 | if (isa<SCEVCouldNotCompute>(Val: EC)) { |
| 13791 | // Retry with predicates. |
| 13792 | SmallVector<const SCEVPredicate *> Predicates; |
| 13793 | EC = SE->getPredicatedExitCount(L, ExitingBlock, Predicates: &Predicates); |
| 13794 | if (!isa<SCEVCouldNotCompute>(Val: EC)) { |
| 13795 | OS << "\n predicated exit count for " << ExitingBlock->getName() |
| 13796 | << ": " ; |
| 13797 | PrintSCEVWithTypeHint(OS, S: EC); |
| 13798 | OS << "\n Predicates:\n" ; |
| 13799 | for (const auto *P : Predicates) |
| 13800 | P->print(OS, Depth: 4); |
| 13801 | } |
| 13802 | } |
| 13803 | OS << "\n" ; |
| 13804 | } |
| 13805 | |
| 13806 | OS << "Loop " ; |
| 13807 | L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
| 13808 | OS << ": " ; |
| 13809 | |
| 13810 | auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L); |
| 13811 | if (!isa<SCEVCouldNotCompute>(Val: ConstantBTC)) { |
| 13812 | OS << "constant max backedge-taken count is " ; |
| 13813 | PrintSCEVWithTypeHint(OS, S: ConstantBTC); |
| 13814 | if (SE->isBackedgeTakenCountMaxOrZero(L)) |
| 13815 | OS << ", actual taken count either this or zero." ; |
| 13816 | } else { |
| 13817 | OS << "Unpredictable constant max backedge-taken count. " ; |
| 13818 | } |
| 13819 | |
| 13820 | OS << "\n" |
| 13821 | "Loop " ; |
| 13822 | L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
| 13823 | OS << ": " ; |
| 13824 | |
| 13825 | auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L); |
| 13826 | if (!isa<SCEVCouldNotCompute>(Val: SymbolicBTC)) { |
| 13827 | OS << "symbolic max backedge-taken count is " ; |
| 13828 | PrintSCEVWithTypeHint(OS, S: SymbolicBTC); |
| 13829 | if (SE->isBackedgeTakenCountMaxOrZero(L)) |
| 13830 | OS << ", actual taken count either this or zero." ; |
| 13831 | } else { |
| 13832 | OS << "Unpredictable symbolic max backedge-taken count. " ; |
| 13833 | } |
| 13834 | OS << "\n" ; |
| 13835 | |
| 13836 | if (ExitingBlocks.size() > 1) |
| 13837 | for (BasicBlock *ExitingBlock : ExitingBlocks) { |
| 13838 | OS << " symbolic max exit count for " << ExitingBlock->getName() << ": " ; |
| 13839 | auto *ExitBTC = SE->getExitCount(L, ExitingBlock, |
| 13840 | Kind: ScalarEvolution::SymbolicMaximum); |
| 13841 | PrintSCEVWithTypeHint(OS, S: ExitBTC); |
| 13842 | if (isa<SCEVCouldNotCompute>(Val: ExitBTC)) { |
| 13843 | // Retry with predicates. |
| 13844 | SmallVector<const SCEVPredicate *> Predicates; |
| 13845 | ExitBTC = SE->getPredicatedExitCount(L, ExitingBlock, Predicates: &Predicates, |
| 13846 | Kind: ScalarEvolution::SymbolicMaximum); |
| 13847 | if (!isa<SCEVCouldNotCompute>(Val: ExitBTC)) { |
| 13848 | OS << "\n predicated symbolic max exit count for " |
| 13849 | << ExitingBlock->getName() << ": " ; |
| 13850 | PrintSCEVWithTypeHint(OS, S: ExitBTC); |
| 13851 | OS << "\n Predicates:\n" ; |
| 13852 | for (const auto *P : Predicates) |
| 13853 | P->print(OS, Depth: 4); |
| 13854 | } |
| 13855 | } |
| 13856 | OS << "\n" ; |
| 13857 | } |
| 13858 | |
| 13859 | SmallVector<const SCEVPredicate *, 4> Preds; |
| 13860 | auto *PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); |
| 13861 | if (PBT != BTC) { |
| 13862 | assert(!Preds.empty() && "Different predicated BTC, but no predicates" ); |
| 13863 | OS << "Loop " ; |
| 13864 | L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
| 13865 | OS << ": " ; |
| 13866 | if (!isa<SCEVCouldNotCompute>(Val: PBT)) { |
| 13867 | OS << "Predicated backedge-taken count is " ; |
| 13868 | PrintSCEVWithTypeHint(OS, S: PBT); |
| 13869 | } else |
| 13870 | OS << "Unpredictable predicated backedge-taken count." ; |
| 13871 | OS << "\n" ; |
| 13872 | OS << " Predicates:\n" ; |
| 13873 | for (const auto *P : Preds) |
| 13874 | P->print(OS, Depth: 4); |
| 13875 | } |
| 13876 | Preds.clear(); |
| 13877 | |
| 13878 | auto *PredConstantMax = |
| 13879 | SE->getPredicatedConstantMaxBackedgeTakenCount(L, Preds); |
| 13880 | if (PredConstantMax != ConstantBTC) { |
| 13881 | assert(!Preds.empty() && |
| 13882 | "different predicated constant max BTC but no predicates" ); |
| 13883 | OS << "Loop " ; |
| 13884 | L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
| 13885 | OS << ": " ; |
| 13886 | if (!isa<SCEVCouldNotCompute>(Val: PredConstantMax)) { |
| 13887 | OS << "Predicated constant max backedge-taken count is " ; |
| 13888 | PrintSCEVWithTypeHint(OS, S: PredConstantMax); |
| 13889 | } else |
| 13890 | OS << "Unpredictable predicated constant max backedge-taken count." ; |
| 13891 | OS << "\n" ; |
| 13892 | OS << " Predicates:\n" ; |
| 13893 | for (const auto *P : Preds) |
| 13894 | P->print(OS, Depth: 4); |
| 13895 | } |
| 13896 | Preds.clear(); |
| 13897 | |
| 13898 | auto *PredSymbolicMax = |
| 13899 | SE->getPredicatedSymbolicMaxBackedgeTakenCount(L, Preds); |
| 13900 | if (SymbolicBTC != PredSymbolicMax) { |
| 13901 | assert(!Preds.empty() && |
| 13902 | "Different predicated symbolic max BTC, but no predicates" ); |
| 13903 | OS << "Loop " ; |
| 13904 | L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
| 13905 | OS << ": " ; |
| 13906 | if (!isa<SCEVCouldNotCompute>(Val: PredSymbolicMax)) { |
| 13907 | OS << "Predicated symbolic max backedge-taken count is " ; |
| 13908 | PrintSCEVWithTypeHint(OS, S: PredSymbolicMax); |
| 13909 | } else |
| 13910 | OS << "Unpredictable predicated symbolic max backedge-taken count." ; |
| 13911 | OS << "\n" ; |
| 13912 | OS << " Predicates:\n" ; |
| 13913 | for (const auto *P : Preds) |
| 13914 | P->print(OS, Depth: 4); |
| 13915 | } |
| 13916 | |
| 13917 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) { |
| 13918 | OS << "Loop " ; |
| 13919 | L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
| 13920 | OS << ": " ; |
| 13921 | OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n" ; |
| 13922 | } |
| 13923 | } |
| 13924 | |
| 13925 | namespace llvm { |
| 13926 | raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::LoopDisposition LD) { |
| 13927 | switch (LD) { |
| 13928 | case ScalarEvolution::LoopVariant: |
| 13929 | OS << "Variant" ; |
| 13930 | break; |
| 13931 | case ScalarEvolution::LoopInvariant: |
| 13932 | OS << "Invariant" ; |
| 13933 | break; |
| 13934 | case ScalarEvolution::LoopComputable: |
| 13935 | OS << "Computable" ; |
| 13936 | break; |
| 13937 | } |
| 13938 | return OS; |
| 13939 | } |
| 13940 | |
| 13941 | raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::BlockDisposition BD) { |
| 13942 | switch (BD) { |
| 13943 | case ScalarEvolution::DoesNotDominateBlock: |
| 13944 | OS << "DoesNotDominate" ; |
| 13945 | break; |
| 13946 | case ScalarEvolution::DominatesBlock: |
| 13947 | OS << "Dominates" ; |
| 13948 | break; |
| 13949 | case ScalarEvolution::ProperlyDominatesBlock: |
| 13950 | OS << "ProperlyDominates" ; |
| 13951 | break; |
| 13952 | } |
| 13953 | return OS; |
| 13954 | } |
| 13955 | } // namespace llvm |
| 13956 | |
| 13957 | void ScalarEvolution::print(raw_ostream &OS) const { |
| 13958 | // ScalarEvolution's implementation of the print method is to print |
| 13959 | // out SCEV values of all instructions that are interesting. Doing |
| 13960 | // this potentially causes it to create new SCEV objects though, |
| 13961 | // which technically conflicts with the const qualifier. This isn't |
| 13962 | // observable from outside the class though, so casting away the |
| 13963 | // const isn't dangerous. |
| 13964 | ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); |
| 13965 | |
| 13966 | if (ClassifyExpressions) { |
| 13967 | OS << "Classifying expressions for: " ; |
| 13968 | F.printAsOperand(O&: OS, /*PrintType=*/false); |
| 13969 | OS << "\n" ; |
| 13970 | for (Instruction &I : instructions(F)) |
| 13971 | if (isSCEVable(Ty: I.getType()) && !isa<CmpInst>(Val: I)) { |
| 13972 | OS << I << '\n'; |
| 13973 | OS << " --> " ; |
| 13974 | const SCEV *SV = SE.getSCEV(V: &I); |
| 13975 | SV->print(OS); |
| 13976 | if (!isa<SCEVCouldNotCompute>(Val: SV)) { |
| 13977 | OS << " U: " ; |
| 13978 | SE.getUnsignedRange(S: SV).print(OS); |
| 13979 | OS << " S: " ; |
| 13980 | SE.getSignedRange(S: SV).print(OS); |
| 13981 | } |
| 13982 | |
| 13983 | const Loop *L = LI.getLoopFor(BB: I.getParent()); |
| 13984 | |
| 13985 | const SCEV *AtUse = SE.getSCEVAtScope(V: SV, L); |
| 13986 | if (AtUse != SV) { |
| 13987 | OS << " --> " ; |
| 13988 | AtUse->print(OS); |
| 13989 | if (!isa<SCEVCouldNotCompute>(Val: AtUse)) { |
| 13990 | OS << " U: " ; |
| 13991 | SE.getUnsignedRange(S: AtUse).print(OS); |
| 13992 | OS << " S: " ; |
| 13993 | SE.getSignedRange(S: AtUse).print(OS); |
| 13994 | } |
| 13995 | } |
| 13996 | |
| 13997 | if (L) { |
| 13998 | OS << "\t\t" "Exits: " ; |
| 13999 | const SCEV *ExitValue = SE.getSCEVAtScope(V: SV, L: L->getParentLoop()); |
| 14000 | if (!SE.isLoopInvariant(S: ExitValue, L)) { |
| 14001 | OS << "<<Unknown>>" ; |
| 14002 | } else { |
| 14003 | OS << *ExitValue; |
| 14004 | } |
| 14005 | |
| 14006 | bool First = true; |
| 14007 | for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { |
| 14008 | if (First) { |
| 14009 | OS << "\t\t" "LoopDispositions: { " ; |
| 14010 | First = false; |
| 14011 | } else { |
| 14012 | OS << ", " ; |
| 14013 | } |
| 14014 | |
| 14015 | Iter->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
| 14016 | OS << ": " << SE.getLoopDisposition(S: SV, L: Iter); |
| 14017 | } |
| 14018 | |
| 14019 | for (const auto *InnerL : depth_first(G: L)) { |
| 14020 | if (InnerL == L) |
| 14021 | continue; |
| 14022 | if (First) { |
| 14023 | OS << "\t\t" "LoopDispositions: { " ; |
| 14024 | First = false; |
| 14025 | } else { |
| 14026 | OS << ", " ; |
| 14027 | } |
| 14028 | |
| 14029 | InnerL->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
| 14030 | OS << ": " << SE.getLoopDisposition(S: SV, L: InnerL); |
| 14031 | } |
| 14032 | |
| 14033 | OS << " }" ; |
| 14034 | } |
| 14035 | |
| 14036 | OS << "\n" ; |
| 14037 | } |
| 14038 | } |
| 14039 | |
| 14040 | OS << "Determining loop execution counts for: " ; |
| 14041 | F.printAsOperand(O&: OS, /*PrintType=*/false); |
| 14042 | OS << "\n" ; |
| 14043 | for (Loop *I : LI) |
| 14044 | PrintLoopInfo(OS, SE: &SE, L: I); |
| 14045 | } |
| 14046 | |
| 14047 | ScalarEvolution::LoopDisposition |
| 14048 | ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { |
| 14049 | auto &Values = LoopDispositions[S]; |
| 14050 | for (auto &V : Values) { |
| 14051 | if (V.getPointer() == L) |
| 14052 | return V.getInt(); |
| 14053 | } |
| 14054 | Values.emplace_back(Args&: L, Args: LoopVariant); |
| 14055 | LoopDisposition D = computeLoopDisposition(S, L); |
| 14056 | auto &Values2 = LoopDispositions[S]; |
| 14057 | for (auto &V : llvm::reverse(C&: Values2)) { |
| 14058 | if (V.getPointer() == L) { |
| 14059 | V.setInt(D); |
| 14060 | break; |
| 14061 | } |
| 14062 | } |
| 14063 | return D; |
| 14064 | } |
| 14065 | |
| 14066 | ScalarEvolution::LoopDisposition |
| 14067 | ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { |
| 14068 | switch (S->getSCEVType()) { |
| 14069 | case scConstant: |
| 14070 | case scVScale: |
| 14071 | return LoopInvariant; |
| 14072 | case scAddRecExpr: { |
| 14073 | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(Val: S); |
| 14074 | |
| 14075 | // If L is the addrec's loop, it's computable. |
| 14076 | if (AR->getLoop() == L) |
| 14077 | return LoopComputable; |
| 14078 | |
| 14079 | // Add recurrences are never invariant in the function-body (null loop). |
| 14080 | if (!L) |
| 14081 | return LoopVariant; |
| 14082 | |
| 14083 | // Everything that is not defined at loop entry is variant. |
| 14084 | if (DT.dominates(A: L->getHeader(), B: AR->getLoop()->getHeader())) |
| 14085 | return LoopVariant; |
| 14086 | assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" |
| 14087 | " dominate the contained loop's header?" ); |
| 14088 | |
| 14089 | // This recurrence is invariant w.r.t. L if AR's loop contains L. |
| 14090 | if (AR->getLoop()->contains(L)) |
| 14091 | return LoopInvariant; |
| 14092 | |
| 14093 | // This recurrence is variant w.r.t. L if any of its operands |
| 14094 | // are variant. |
| 14095 | for (const auto *Op : AR->operands()) |
| 14096 | if (!isLoopInvariant(S: Op, L)) |
| 14097 | return LoopVariant; |
| 14098 | |
| 14099 | // Otherwise it's loop-invariant. |
| 14100 | return LoopInvariant; |
| 14101 | } |
| 14102 | case scTruncate: |
| 14103 | case scZeroExtend: |
| 14104 | case scSignExtend: |
| 14105 | case scPtrToInt: |
| 14106 | case scAddExpr: |
| 14107 | case scMulExpr: |
| 14108 | case scUDivExpr: |
| 14109 | case scUMaxExpr: |
| 14110 | case scSMaxExpr: |
| 14111 | case scUMinExpr: |
| 14112 | case scSMinExpr: |
| 14113 | case scSequentialUMinExpr: { |
| 14114 | bool HasVarying = false; |
| 14115 | for (const auto *Op : S->operands()) { |
| 14116 | LoopDisposition D = getLoopDisposition(S: Op, L); |
| 14117 | if (D == LoopVariant) |
| 14118 | return LoopVariant; |
| 14119 | if (D == LoopComputable) |
| 14120 | HasVarying = true; |
| 14121 | } |
| 14122 | return HasVarying ? LoopComputable : LoopInvariant; |
| 14123 | } |
| 14124 | case scUnknown: |
| 14125 | // All non-instruction values are loop invariant. All instructions are loop |
| 14126 | // invariant if they are not contained in the specified loop. |
| 14127 | // Instructions are never considered invariant in the function body |
| 14128 | // (null loop) because they are defined within the "loop". |
| 14129 | if (auto *I = dyn_cast<Instruction>(Val: cast<SCEVUnknown>(Val: S)->getValue())) |
| 14130 | return (L && !L->contains(Inst: I)) ? LoopInvariant : LoopVariant; |
| 14131 | return LoopInvariant; |
| 14132 | case scCouldNotCompute: |
| 14133 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
| 14134 | } |
| 14135 | llvm_unreachable("Unknown SCEV kind!" ); |
| 14136 | } |
| 14137 | |
| 14138 | bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { |
| 14139 | return getLoopDisposition(S, L) == LoopInvariant; |
| 14140 | } |
| 14141 | |
| 14142 | bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { |
| 14143 | return getLoopDisposition(S, L) == LoopComputable; |
| 14144 | } |
| 14145 | |
| 14146 | ScalarEvolution::BlockDisposition |
| 14147 | ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { |
| 14148 | auto &Values = BlockDispositions[S]; |
| 14149 | for (auto &V : Values) { |
| 14150 | if (V.getPointer() == BB) |
| 14151 | return V.getInt(); |
| 14152 | } |
| 14153 | Values.emplace_back(Args&: BB, Args: DoesNotDominateBlock); |
| 14154 | BlockDisposition D = computeBlockDisposition(S, BB); |
| 14155 | auto &Values2 = BlockDispositions[S]; |
| 14156 | for (auto &V : llvm::reverse(C&: Values2)) { |
| 14157 | if (V.getPointer() == BB) { |
| 14158 | V.setInt(D); |
| 14159 | break; |
| 14160 | } |
| 14161 | } |
| 14162 | return D; |
| 14163 | } |
| 14164 | |
| 14165 | ScalarEvolution::BlockDisposition |
| 14166 | ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { |
| 14167 | switch (S->getSCEVType()) { |
| 14168 | case scConstant: |
| 14169 | case scVScale: |
| 14170 | return ProperlyDominatesBlock; |
| 14171 | case scAddRecExpr: { |
| 14172 | // This uses a "dominates" query instead of "properly dominates" query |
| 14173 | // to test for proper dominance too, because the instruction which |
| 14174 | // produces the addrec's value is a PHI, and a PHI effectively properly |
| 14175 | // dominates its entire containing block. |
| 14176 | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(Val: S); |
| 14177 | if (!DT.dominates(A: AR->getLoop()->getHeader(), B: BB)) |
| 14178 | return DoesNotDominateBlock; |
| 14179 | |
| 14180 | // Fall through into SCEVNAryExpr handling. |
| 14181 | [[fallthrough]]; |
| 14182 | } |
| 14183 | case scTruncate: |
| 14184 | case scZeroExtend: |
| 14185 | case scSignExtend: |
| 14186 | case scPtrToInt: |
| 14187 | case scAddExpr: |
| 14188 | case scMulExpr: |
| 14189 | case scUDivExpr: |
| 14190 | case scUMaxExpr: |
| 14191 | case scSMaxExpr: |
| 14192 | case scUMinExpr: |
| 14193 | case scSMinExpr: |
| 14194 | case scSequentialUMinExpr: { |
| 14195 | bool Proper = true; |
| 14196 | for (const SCEV *NAryOp : S->operands()) { |
| 14197 | BlockDisposition D = getBlockDisposition(S: NAryOp, BB); |
| 14198 | if (D == DoesNotDominateBlock) |
| 14199 | return DoesNotDominateBlock; |
| 14200 | if (D == DominatesBlock) |
| 14201 | Proper = false; |
| 14202 | } |
| 14203 | return Proper ? ProperlyDominatesBlock : DominatesBlock; |
| 14204 | } |
| 14205 | case scUnknown: |
| 14206 | if (Instruction *I = |
| 14207 | dyn_cast<Instruction>(Val: cast<SCEVUnknown>(Val: S)->getValue())) { |
| 14208 | if (I->getParent() == BB) |
| 14209 | return DominatesBlock; |
| 14210 | if (DT.properlyDominates(A: I->getParent(), B: BB)) |
| 14211 | return ProperlyDominatesBlock; |
| 14212 | return DoesNotDominateBlock; |
| 14213 | } |
| 14214 | return ProperlyDominatesBlock; |
| 14215 | case scCouldNotCompute: |
| 14216 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
| 14217 | } |
| 14218 | llvm_unreachable("Unknown SCEV kind!" ); |
| 14219 | } |
| 14220 | |
| 14221 | bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { |
| 14222 | return getBlockDisposition(S, BB) >= DominatesBlock; |
| 14223 | } |
| 14224 | |
| 14225 | bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { |
| 14226 | return getBlockDisposition(S, BB) == ProperlyDominatesBlock; |
| 14227 | } |
| 14228 | |
| 14229 | bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { |
| 14230 | return SCEVExprContains(Root: S, Pred: [&](const SCEV *Expr) { return Expr == Op; }); |
| 14231 | } |
| 14232 | |
| 14233 | void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, |
| 14234 | bool Predicated) { |
| 14235 | auto &BECounts = |
| 14236 | Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; |
| 14237 | auto It = BECounts.find(Val: L); |
| 14238 | if (It != BECounts.end()) { |
| 14239 | for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { |
| 14240 | for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { |
| 14241 | if (!isa<SCEVConstant>(Val: S)) { |
| 14242 | auto UserIt = BECountUsers.find(Val: S); |
| 14243 | assert(UserIt != BECountUsers.end()); |
| 14244 | UserIt->second.erase(Ptr: {L, Predicated}); |
| 14245 | } |
| 14246 | } |
| 14247 | } |
| 14248 | BECounts.erase(I: It); |
| 14249 | } |
| 14250 | } |
| 14251 | |
| 14252 | void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { |
| 14253 | SmallPtrSet<const SCEV *, 8> ToForget(llvm::from_range, SCEVs); |
| 14254 | SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); |
| 14255 | |
| 14256 | while (!Worklist.empty()) { |
| 14257 | const SCEV *Curr = Worklist.pop_back_val(); |
| 14258 | auto Users = SCEVUsers.find(Val: Curr); |
| 14259 | if (Users != SCEVUsers.end()) |
| 14260 | for (const auto *User : Users->second) |
| 14261 | if (ToForget.insert(Ptr: User).second) |
| 14262 | Worklist.push_back(Elt: User); |
| 14263 | } |
| 14264 | |
| 14265 | for (const auto *S : ToForget) |
| 14266 | forgetMemoizedResultsImpl(S); |
| 14267 | |
| 14268 | for (auto I = PredicatedSCEVRewrites.begin(); |
| 14269 | I != PredicatedSCEVRewrites.end();) { |
| 14270 | std::pair<const SCEV *, const Loop *> Entry = I->first; |
| 14271 | if (ToForget.count(Ptr: Entry.first)) |
| 14272 | PredicatedSCEVRewrites.erase(I: I++); |
| 14273 | else |
| 14274 | ++I; |
| 14275 | } |
| 14276 | } |
| 14277 | |
| 14278 | void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { |
| 14279 | LoopDispositions.erase(Val: S); |
| 14280 | BlockDispositions.erase(Val: S); |
| 14281 | UnsignedRanges.erase(Val: S); |
| 14282 | SignedRanges.erase(Val: S); |
| 14283 | HasRecMap.erase(Val: S); |
| 14284 | ConstantMultipleCache.erase(Val: S); |
| 14285 | |
| 14286 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: S)) { |
| 14287 | UnsignedWrapViaInductionTried.erase(Ptr: AR); |
| 14288 | SignedWrapViaInductionTried.erase(Ptr: AR); |
| 14289 | } |
| 14290 | |
| 14291 | auto ExprIt = ExprValueMap.find(Val: S); |
| 14292 | if (ExprIt != ExprValueMap.end()) { |
| 14293 | for (Value *V : ExprIt->second) { |
| 14294 | auto ValueIt = ValueExprMap.find_as(Val: V); |
| 14295 | if (ValueIt != ValueExprMap.end()) |
| 14296 | ValueExprMap.erase(I: ValueIt); |
| 14297 | } |
| 14298 | ExprValueMap.erase(I: ExprIt); |
| 14299 | } |
| 14300 | |
| 14301 | auto ScopeIt = ValuesAtScopes.find(Val: S); |
| 14302 | if (ScopeIt != ValuesAtScopes.end()) { |
| 14303 | for (const auto &Pair : ScopeIt->second) |
| 14304 | if (!isa_and_nonnull<SCEVConstant>(Val: Pair.second)) |
| 14305 | llvm::erase(C&: ValuesAtScopesUsers[Pair.second], |
| 14306 | V: std::make_pair(x: Pair.first, y&: S)); |
| 14307 | ValuesAtScopes.erase(I: ScopeIt); |
| 14308 | } |
| 14309 | |
| 14310 | auto ScopeUserIt = ValuesAtScopesUsers.find(Val: S); |
| 14311 | if (ScopeUserIt != ValuesAtScopesUsers.end()) { |
| 14312 | for (const auto &Pair : ScopeUserIt->second) |
| 14313 | llvm::erase(C&: ValuesAtScopes[Pair.second], V: std::make_pair(x: Pair.first, y&: S)); |
| 14314 | ValuesAtScopesUsers.erase(I: ScopeUserIt); |
| 14315 | } |
| 14316 | |
| 14317 | auto BEUsersIt = BECountUsers.find(Val: S); |
| 14318 | if (BEUsersIt != BECountUsers.end()) { |
| 14319 | // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. |
| 14320 | auto Copy = BEUsersIt->second; |
| 14321 | for (const auto &Pair : Copy) |
| 14322 | forgetBackedgeTakenCounts(L: Pair.getPointer(), Predicated: Pair.getInt()); |
| 14323 | BECountUsers.erase(I: BEUsersIt); |
| 14324 | } |
| 14325 | |
| 14326 | auto FoldUser = FoldCacheUser.find(Val: S); |
| 14327 | if (FoldUser != FoldCacheUser.end()) |
| 14328 | for (auto &KV : FoldUser->second) |
| 14329 | FoldCache.erase(Val: KV); |
| 14330 | FoldCacheUser.erase(Val: S); |
| 14331 | } |
| 14332 | |
| 14333 | void |
| 14334 | ScalarEvolution::getUsedLoops(const SCEV *S, |
| 14335 | SmallPtrSetImpl<const Loop *> &LoopsUsed) { |
| 14336 | struct FindUsedLoops { |
| 14337 | FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) |
| 14338 | : LoopsUsed(LoopsUsed) {} |
| 14339 | SmallPtrSetImpl<const Loop *> &LoopsUsed; |
| 14340 | bool follow(const SCEV *S) { |
| 14341 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: S)) |
| 14342 | LoopsUsed.insert(Ptr: AR->getLoop()); |
| 14343 | return true; |
| 14344 | } |
| 14345 | |
| 14346 | bool isDone() const { return false; } |
| 14347 | }; |
| 14348 | |
| 14349 | FindUsedLoops F(LoopsUsed); |
| 14350 | SCEVTraversal<FindUsedLoops>(F).visitAll(Root: S); |
| 14351 | } |
| 14352 | |
| 14353 | void ScalarEvolution::getReachableBlocks( |
| 14354 | SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) { |
| 14355 | SmallVector<BasicBlock *> Worklist; |
| 14356 | Worklist.push_back(Elt: &F.getEntryBlock()); |
| 14357 | while (!Worklist.empty()) { |
| 14358 | BasicBlock *BB = Worklist.pop_back_val(); |
| 14359 | if (!Reachable.insert(Ptr: BB).second) |
| 14360 | continue; |
| 14361 | |
| 14362 | Value *Cond; |
| 14363 | BasicBlock *TrueBB, *FalseBB; |
| 14364 | if (match(V: BB->getTerminator(), P: m_Br(C: m_Value(V&: Cond), T: m_BasicBlock(V&: TrueBB), |
| 14365 | F: m_BasicBlock(V&: FalseBB)))) { |
| 14366 | if (auto *C = dyn_cast<ConstantInt>(Val: Cond)) { |
| 14367 | Worklist.push_back(Elt: C->isOne() ? TrueBB : FalseBB); |
| 14368 | continue; |
| 14369 | } |
| 14370 | |
| 14371 | if (auto *Cmp = dyn_cast<ICmpInst>(Val: Cond)) { |
| 14372 | const SCEV *L = getSCEV(V: Cmp->getOperand(i_nocapture: 0)); |
| 14373 | const SCEV *R = getSCEV(V: Cmp->getOperand(i_nocapture: 1)); |
| 14374 | if (isKnownPredicateViaConstantRanges(Pred: Cmp->getCmpPredicate(), LHS: L, RHS: R)) { |
| 14375 | Worklist.push_back(Elt: TrueBB); |
| 14376 | continue; |
| 14377 | } |
| 14378 | if (isKnownPredicateViaConstantRanges(Pred: Cmp->getInverseCmpPredicate(), LHS: L, |
| 14379 | RHS: R)) { |
| 14380 | Worklist.push_back(Elt: FalseBB); |
| 14381 | continue; |
| 14382 | } |
| 14383 | } |
| 14384 | } |
| 14385 | |
| 14386 | append_range(C&: Worklist, R: successors(BB)); |
| 14387 | } |
| 14388 | } |
| 14389 | |
| 14390 | void ScalarEvolution::verify() const { |
| 14391 | ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); |
| 14392 | ScalarEvolution SE2(F, TLI, AC, DT, LI); |
| 14393 | |
| 14394 | SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); |
| 14395 | |
| 14396 | // Map's SCEV expressions from one ScalarEvolution "universe" to another. |
| 14397 | struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { |
| 14398 | SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} |
| 14399 | |
| 14400 | const SCEV *visitConstant(const SCEVConstant *Constant) { |
| 14401 | return SE.getConstant(Val: Constant->getAPInt()); |
| 14402 | } |
| 14403 | |
| 14404 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| 14405 | return SE.getUnknown(V: Expr->getValue()); |
| 14406 | } |
| 14407 | |
| 14408 | const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { |
| 14409 | return SE.getCouldNotCompute(); |
| 14410 | } |
| 14411 | }; |
| 14412 | |
| 14413 | SCEVMapper SCM(SE2); |
| 14414 | SmallPtrSet<BasicBlock *, 16> ReachableBlocks; |
| 14415 | SE2.getReachableBlocks(Reachable&: ReachableBlocks, F); |
| 14416 | |
| 14417 | auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * { |
| 14418 | if (containsUndefs(S: Old) || containsUndefs(S: New)) { |
| 14419 | // SCEV treats "undef" as an unknown but consistent value (i.e. it does |
| 14420 | // not propagate undef aggressively). This means we can (and do) fail |
| 14421 | // verification in cases where a transform makes a value go from "undef" |
| 14422 | // to "undef+1" (say). The transform is fine, since in both cases the |
| 14423 | // result is "undef", but SCEV thinks the value increased by 1. |
| 14424 | return nullptr; |
| 14425 | } |
| 14426 | |
| 14427 | // Unless VerifySCEVStrict is set, we only compare constant deltas. |
| 14428 | const SCEV *Delta = SE2.getMinusSCEV(LHS: Old, RHS: New); |
| 14429 | if (!VerifySCEVStrict && !isa<SCEVConstant>(Val: Delta)) |
| 14430 | return nullptr; |
| 14431 | |
| 14432 | return Delta; |
| 14433 | }; |
| 14434 | |
| 14435 | while (!LoopStack.empty()) { |
| 14436 | auto *L = LoopStack.pop_back_val(); |
| 14437 | llvm::append_range(C&: LoopStack, R&: *L); |
| 14438 | |
| 14439 | // Only verify BECounts in reachable loops. For an unreachable loop, |
| 14440 | // any BECount is legal. |
| 14441 | if (!ReachableBlocks.contains(Ptr: L->getHeader())) |
| 14442 | continue; |
| 14443 | |
| 14444 | // Only verify cached BECounts. Computing new BECounts may change the |
| 14445 | // results of subsequent SCEV uses. |
| 14446 | auto It = BackedgeTakenCounts.find(Val: L); |
| 14447 | if (It == BackedgeTakenCounts.end()) |
| 14448 | continue; |
| 14449 | |
| 14450 | auto *CurBECount = |
| 14451 | SCM.visit(S: It->second.getExact(L, SE: const_cast<ScalarEvolution *>(this))); |
| 14452 | auto *NewBECount = SE2.getBackedgeTakenCount(L); |
| 14453 | |
| 14454 | if (CurBECount == SE2.getCouldNotCompute() || |
| 14455 | NewBECount == SE2.getCouldNotCompute()) { |
| 14456 | // NB! This situation is legal, but is very suspicious -- whatever pass |
| 14457 | // change the loop to make a trip count go from could not compute to |
| 14458 | // computable or vice-versa *should have* invalidated SCEV. However, we |
| 14459 | // choose not to assert here (for now) since we don't want false |
| 14460 | // positives. |
| 14461 | continue; |
| 14462 | } |
| 14463 | |
| 14464 | if (SE.getTypeSizeInBits(Ty: CurBECount->getType()) > |
| 14465 | SE.getTypeSizeInBits(Ty: NewBECount->getType())) |
| 14466 | NewBECount = SE2.getZeroExtendExpr(Op: NewBECount, Ty: CurBECount->getType()); |
| 14467 | else if (SE.getTypeSizeInBits(Ty: CurBECount->getType()) < |
| 14468 | SE.getTypeSizeInBits(Ty: NewBECount->getType())) |
| 14469 | CurBECount = SE2.getZeroExtendExpr(Op: CurBECount, Ty: NewBECount->getType()); |
| 14470 | |
| 14471 | const SCEV *Delta = GetDelta(CurBECount, NewBECount); |
| 14472 | if (Delta && !Delta->isZero()) { |
| 14473 | dbgs() << "Trip Count for " << *L << " Changed!\n" ; |
| 14474 | dbgs() << "Old: " << *CurBECount << "\n" ; |
| 14475 | dbgs() << "New: " << *NewBECount << "\n" ; |
| 14476 | dbgs() << "Delta: " << *Delta << "\n" ; |
| 14477 | std::abort(); |
| 14478 | } |
| 14479 | } |
| 14480 | |
| 14481 | // Collect all valid loops currently in LoopInfo. |
| 14482 | SmallPtrSet<Loop *, 32> ValidLoops; |
| 14483 | SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); |
| 14484 | while (!Worklist.empty()) { |
| 14485 | Loop *L = Worklist.pop_back_val(); |
| 14486 | if (ValidLoops.insert(Ptr: L).second) |
| 14487 | Worklist.append(in_start: L->begin(), in_end: L->end()); |
| 14488 | } |
| 14489 | for (const auto &KV : ValueExprMap) { |
| 14490 | #ifndef NDEBUG |
| 14491 | // Check for SCEV expressions referencing invalid/deleted loops. |
| 14492 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { |
| 14493 | assert(ValidLoops.contains(AR->getLoop()) && |
| 14494 | "AddRec references invalid loop" ); |
| 14495 | } |
| 14496 | #endif |
| 14497 | |
| 14498 | // Check that the value is also part of the reverse map. |
| 14499 | auto It = ExprValueMap.find(Val: KV.second); |
| 14500 | if (It == ExprValueMap.end() || !It->second.contains(key: KV.first)) { |
| 14501 | dbgs() << "Value " << *KV.first |
| 14502 | << " is in ValueExprMap but not in ExprValueMap\n" ; |
| 14503 | std::abort(); |
| 14504 | } |
| 14505 | |
| 14506 | if (auto *I = dyn_cast<Instruction>(Val: &*KV.first)) { |
| 14507 | if (!ReachableBlocks.contains(Ptr: I->getParent())) |
| 14508 | continue; |
| 14509 | const SCEV *OldSCEV = SCM.visit(S: KV.second); |
| 14510 | const SCEV *NewSCEV = SE2.getSCEV(V: I); |
| 14511 | const SCEV *Delta = GetDelta(OldSCEV, NewSCEV); |
| 14512 | if (Delta && !Delta->isZero()) { |
| 14513 | dbgs() << "SCEV for value " << *I << " changed!\n" |
| 14514 | << "Old: " << *OldSCEV << "\n" |
| 14515 | << "New: " << *NewSCEV << "\n" |
| 14516 | << "Delta: " << *Delta << "\n" ; |
| 14517 | std::abort(); |
| 14518 | } |
| 14519 | } |
| 14520 | } |
| 14521 | |
| 14522 | for (const auto &KV : ExprValueMap) { |
| 14523 | for (Value *V : KV.second) { |
| 14524 | auto It = ValueExprMap.find_as(Val: V); |
| 14525 | if (It == ValueExprMap.end()) { |
| 14526 | dbgs() << "Value " << *V |
| 14527 | << " is in ExprValueMap but not in ValueExprMap\n" ; |
| 14528 | std::abort(); |
| 14529 | } |
| 14530 | if (It->second != KV.first) { |
| 14531 | dbgs() << "Value " << *V << " mapped to " << *It->second |
| 14532 | << " rather than " << *KV.first << "\n" ; |
| 14533 | std::abort(); |
| 14534 | } |
| 14535 | } |
| 14536 | } |
| 14537 | |
| 14538 | // Verify integrity of SCEV users. |
| 14539 | for (const auto &S : UniqueSCEVs) { |
| 14540 | for (const auto *Op : S.operands()) { |
| 14541 | // We do not store dependencies of constants. |
| 14542 | if (isa<SCEVConstant>(Val: Op)) |
| 14543 | continue; |
| 14544 | auto It = SCEVUsers.find(Val: Op); |
| 14545 | if (It != SCEVUsers.end() && It->second.count(Ptr: &S)) |
| 14546 | continue; |
| 14547 | dbgs() << "Use of operand " << *Op << " by user " << S |
| 14548 | << " is not being tracked!\n" ; |
| 14549 | std::abort(); |
| 14550 | } |
| 14551 | } |
| 14552 | |
| 14553 | // Verify integrity of ValuesAtScopes users. |
| 14554 | for (const auto &ValueAndVec : ValuesAtScopes) { |
| 14555 | const SCEV *Value = ValueAndVec.first; |
| 14556 | for (const auto &LoopAndValueAtScope : ValueAndVec.second) { |
| 14557 | const Loop *L = LoopAndValueAtScope.first; |
| 14558 | const SCEV *ValueAtScope = LoopAndValueAtScope.second; |
| 14559 | if (!isa<SCEVConstant>(Val: ValueAtScope)) { |
| 14560 | auto It = ValuesAtScopesUsers.find(Val: ValueAtScope); |
| 14561 | if (It != ValuesAtScopesUsers.end() && |
| 14562 | is_contained(Range: It->second, Element: std::make_pair(x&: L, y&: Value))) |
| 14563 | continue; |
| 14564 | dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " |
| 14565 | << *ValueAtScope << " missing in ValuesAtScopesUsers\n" ; |
| 14566 | std::abort(); |
| 14567 | } |
| 14568 | } |
| 14569 | } |
| 14570 | |
| 14571 | for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { |
| 14572 | const SCEV *ValueAtScope = ValueAtScopeAndVec.first; |
| 14573 | for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { |
| 14574 | const Loop *L = LoopAndValue.first; |
| 14575 | const SCEV *Value = LoopAndValue.second; |
| 14576 | assert(!isa<SCEVConstant>(Value)); |
| 14577 | auto It = ValuesAtScopes.find(Val: Value); |
| 14578 | if (It != ValuesAtScopes.end() && |
| 14579 | is_contained(Range: It->second, Element: std::make_pair(x&: L, y&: ValueAtScope))) |
| 14580 | continue; |
| 14581 | dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " |
| 14582 | << *ValueAtScope << " missing in ValuesAtScopes\n" ; |
| 14583 | std::abort(); |
| 14584 | } |
| 14585 | } |
| 14586 | |
| 14587 | // Verify integrity of BECountUsers. |
| 14588 | auto VerifyBECountUsers = [&](bool Predicated) { |
| 14589 | auto &BECounts = |
| 14590 | Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; |
| 14591 | for (const auto &LoopAndBEInfo : BECounts) { |
| 14592 | for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { |
| 14593 | for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { |
| 14594 | if (!isa<SCEVConstant>(Val: S)) { |
| 14595 | auto UserIt = BECountUsers.find(Val: S); |
| 14596 | if (UserIt != BECountUsers.end() && |
| 14597 | UserIt->second.contains(Ptr: { LoopAndBEInfo.first, Predicated })) |
| 14598 | continue; |
| 14599 | dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first |
| 14600 | << " missing from BECountUsers\n" ; |
| 14601 | std::abort(); |
| 14602 | } |
| 14603 | } |
| 14604 | } |
| 14605 | } |
| 14606 | }; |
| 14607 | VerifyBECountUsers(/* Predicated */ false); |
| 14608 | VerifyBECountUsers(/* Predicated */ true); |
| 14609 | |
| 14610 | // Verify intergity of loop disposition cache. |
| 14611 | for (auto &[S, Values] : LoopDispositions) { |
| 14612 | for (auto [Loop, CachedDisposition] : Values) { |
| 14613 | const auto RecomputedDisposition = SE2.getLoopDisposition(S, L: Loop); |
| 14614 | if (CachedDisposition != RecomputedDisposition) { |
| 14615 | dbgs() << "Cached disposition of " << *S << " for loop " << *Loop |
| 14616 | << " is incorrect: cached " << CachedDisposition << ", actual " |
| 14617 | << RecomputedDisposition << "\n" ; |
| 14618 | std::abort(); |
| 14619 | } |
| 14620 | } |
| 14621 | } |
| 14622 | |
| 14623 | // Verify integrity of the block disposition cache. |
| 14624 | for (auto &[S, Values] : BlockDispositions) { |
| 14625 | for (auto [BB, CachedDisposition] : Values) { |
| 14626 | const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB); |
| 14627 | if (CachedDisposition != RecomputedDisposition) { |
| 14628 | dbgs() << "Cached disposition of " << *S << " for block %" |
| 14629 | << BB->getName() << " is incorrect: cached " << CachedDisposition |
| 14630 | << ", actual " << RecomputedDisposition << "\n" ; |
| 14631 | std::abort(); |
| 14632 | } |
| 14633 | } |
| 14634 | } |
| 14635 | |
| 14636 | // Verify FoldCache/FoldCacheUser caches. |
| 14637 | for (auto [FoldID, Expr] : FoldCache) { |
| 14638 | auto I = FoldCacheUser.find(Val: Expr); |
| 14639 | if (I == FoldCacheUser.end()) { |
| 14640 | dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr |
| 14641 | << "!\n" ; |
| 14642 | std::abort(); |
| 14643 | } |
| 14644 | if (!is_contained(Range: I->second, Element: FoldID)) { |
| 14645 | dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n" ; |
| 14646 | std::abort(); |
| 14647 | } |
| 14648 | } |
| 14649 | for (auto [Expr, IDs] : FoldCacheUser) { |
| 14650 | for (auto &FoldID : IDs) { |
| 14651 | auto I = FoldCache.find(Val: FoldID); |
| 14652 | if (I == FoldCache.end()) { |
| 14653 | dbgs() << "Missing entry in FoldCache for expression " << *Expr |
| 14654 | << "!\n" ; |
| 14655 | std::abort(); |
| 14656 | } |
| 14657 | if (I->second != Expr) { |
| 14658 | dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: " |
| 14659 | << *I->second << " != " << *Expr << "!\n" ; |
| 14660 | std::abort(); |
| 14661 | } |
| 14662 | } |
| 14663 | } |
| 14664 | |
| 14665 | // Verify that ConstantMultipleCache computations are correct. We check that |
| 14666 | // cached multiples and recomputed multiples are multiples of each other to |
| 14667 | // verify correctness. It is possible that a recomputed multiple is different |
| 14668 | // from the cached multiple due to strengthened no wrap flags or changes in |
| 14669 | // KnownBits computations. |
| 14670 | for (auto [S, Multiple] : ConstantMultipleCache) { |
| 14671 | APInt RecomputedMultiple = SE2.getConstantMultiple(S); |
| 14672 | if ((Multiple != 0 && RecomputedMultiple != 0 && |
| 14673 | Multiple.urem(RHS: RecomputedMultiple) != 0 && |
| 14674 | RecomputedMultiple.urem(RHS: Multiple) != 0)) { |
| 14675 | dbgs() << "Incorrect cached computation in ConstantMultipleCache for " |
| 14676 | << *S << " : Computed " << RecomputedMultiple |
| 14677 | << " but cache contains " << Multiple << "!\n" ; |
| 14678 | std::abort(); |
| 14679 | } |
| 14680 | } |
| 14681 | } |
| 14682 | |
| 14683 | bool ScalarEvolution::invalidate( |
| 14684 | Function &F, const PreservedAnalyses &PA, |
| 14685 | FunctionAnalysisManager::Invalidator &Inv) { |
| 14686 | // Invalidate the ScalarEvolution object whenever it isn't preserved or one |
| 14687 | // of its dependencies is invalidated. |
| 14688 | auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); |
| 14689 | return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || |
| 14690 | Inv.invalidate<AssumptionAnalysis>(IR&: F, PA) || |
| 14691 | Inv.invalidate<DominatorTreeAnalysis>(IR&: F, PA) || |
| 14692 | Inv.invalidate<LoopAnalysis>(IR&: F, PA); |
| 14693 | } |
| 14694 | |
| 14695 | AnalysisKey ScalarEvolutionAnalysis::Key; |
| 14696 | |
| 14697 | ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, |
| 14698 | FunctionAnalysisManager &AM) { |
| 14699 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 14700 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
| 14701 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 14702 | auto &LI = AM.getResult<LoopAnalysis>(IR&: F); |
| 14703 | return ScalarEvolution(F, TLI, AC, DT, LI); |
| 14704 | } |
| 14705 | |
| 14706 | PreservedAnalyses |
| 14707 | ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { |
| 14708 | AM.getResult<ScalarEvolutionAnalysis>(IR&: F).verify(); |
| 14709 | return PreservedAnalyses::all(); |
| 14710 | } |
| 14711 | |
| 14712 | PreservedAnalyses |
| 14713 | ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { |
| 14714 | // For compatibility with opt's -analyze feature under legacy pass manager |
| 14715 | // which was not ported to NPM. This keeps tests using |
| 14716 | // update_analyze_test_checks.py working. |
| 14717 | OS << "Printing analysis 'Scalar Evolution Analysis' for function '" |
| 14718 | << F.getName() << "':\n" ; |
| 14719 | AM.getResult<ScalarEvolutionAnalysis>(IR&: F).print(OS); |
| 14720 | return PreservedAnalyses::all(); |
| 14721 | } |
| 14722 | |
| 14723 | INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution" , |
| 14724 | "Scalar Evolution Analysis" , false, true) |
| 14725 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| 14726 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| 14727 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 14728 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| 14729 | INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution" , |
| 14730 | "Scalar Evolution Analysis" , false, true) |
| 14731 | |
| 14732 | char ScalarEvolutionWrapperPass::ID = 0; |
| 14733 | |
| 14734 | ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {} |
| 14735 | |
| 14736 | bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { |
| 14737 | SE.reset(p: new ScalarEvolution( |
| 14738 | F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), |
| 14739 | getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), |
| 14740 | getAnalysis<DominatorTreeWrapperPass>().getDomTree(), |
| 14741 | getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); |
| 14742 | return false; |
| 14743 | } |
| 14744 | |
| 14745 | void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } |
| 14746 | |
| 14747 | void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { |
| 14748 | SE->print(OS); |
| 14749 | } |
| 14750 | |
| 14751 | void ScalarEvolutionWrapperPass::verifyAnalysis() const { |
| 14752 | if (!VerifySCEV) |
| 14753 | return; |
| 14754 | |
| 14755 | SE->verify(); |
| 14756 | } |
| 14757 | |
| 14758 | void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| 14759 | AU.setPreservesAll(); |
| 14760 | AU.addRequiredTransitive<AssumptionCacheTracker>(); |
| 14761 | AU.addRequiredTransitive<LoopInfoWrapperPass>(); |
| 14762 | AU.addRequiredTransitive<DominatorTreeWrapperPass>(); |
| 14763 | AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); |
| 14764 | } |
| 14765 | |
| 14766 | const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, |
| 14767 | const SCEV *RHS) { |
| 14768 | return getComparePredicate(Pred: ICmpInst::ICMP_EQ, LHS, RHS); |
| 14769 | } |
| 14770 | |
| 14771 | const SCEVPredicate * |
| 14772 | ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, |
| 14773 | const SCEV *LHS, const SCEV *RHS) { |
| 14774 | FoldingSetNodeID ID; |
| 14775 | assert(LHS->getType() == RHS->getType() && |
| 14776 | "Type mismatch between LHS and RHS" ); |
| 14777 | // Unique this node based on the arguments |
| 14778 | ID.AddInteger(I: SCEVPredicate::P_Compare); |
| 14779 | ID.AddInteger(I: Pred); |
| 14780 | ID.AddPointer(Ptr: LHS); |
| 14781 | ID.AddPointer(Ptr: RHS); |
| 14782 | void *IP = nullptr; |
| 14783 | if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, InsertPos&: IP)) |
| 14784 | return S; |
| 14785 | SCEVComparePredicate *Eq = new (SCEVAllocator) |
| 14786 | SCEVComparePredicate(ID.Intern(Allocator&: SCEVAllocator), Pred, LHS, RHS); |
| 14787 | UniquePreds.InsertNode(N: Eq, InsertPos: IP); |
| 14788 | return Eq; |
| 14789 | } |
| 14790 | |
| 14791 | const SCEVPredicate *ScalarEvolution::getWrapPredicate( |
| 14792 | const SCEVAddRecExpr *AR, |
| 14793 | SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { |
| 14794 | FoldingSetNodeID ID; |
| 14795 | // Unique this node based on the arguments |
| 14796 | ID.AddInteger(I: SCEVPredicate::P_Wrap); |
| 14797 | ID.AddPointer(Ptr: AR); |
| 14798 | ID.AddInteger(I: AddedFlags); |
| 14799 | void *IP = nullptr; |
| 14800 | if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, InsertPos&: IP)) |
| 14801 | return S; |
| 14802 | auto *OF = new (SCEVAllocator) |
| 14803 | SCEVWrapPredicate(ID.Intern(Allocator&: SCEVAllocator), AR, AddedFlags); |
| 14804 | UniquePreds.InsertNode(N: OF, InsertPos: IP); |
| 14805 | return OF; |
| 14806 | } |
| 14807 | |
| 14808 | namespace { |
| 14809 | |
| 14810 | class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { |
| 14811 | public: |
| 14812 | |
| 14813 | /// Rewrites \p S in the context of a loop L and the SCEV predication |
| 14814 | /// infrastructure. |
| 14815 | /// |
| 14816 | /// If \p Pred is non-null, the SCEV expression is rewritten to respect the |
| 14817 | /// equivalences present in \p Pred. |
| 14818 | /// |
| 14819 | /// If \p NewPreds is non-null, rewrite is free to add further predicates to |
| 14820 | /// \p NewPreds such that the result will be an AddRecExpr. |
| 14821 | static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, |
| 14822 | SmallVectorImpl<const SCEVPredicate *> *NewPreds, |
| 14823 | const SCEVPredicate *Pred) { |
| 14824 | SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); |
| 14825 | return Rewriter.visit(S); |
| 14826 | } |
| 14827 | |
| 14828 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| 14829 | if (Pred) { |
| 14830 | if (auto *U = dyn_cast<SCEVUnionPredicate>(Val: Pred)) { |
| 14831 | for (const auto *Pred : U->getPredicates()) |
| 14832 | if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Val: Pred)) |
| 14833 | if (IPred->getLHS() == Expr && |
| 14834 | IPred->getPredicate() == ICmpInst::ICMP_EQ) |
| 14835 | return IPred->getRHS(); |
| 14836 | } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Val: Pred)) { |
| 14837 | if (IPred->getLHS() == Expr && |
| 14838 | IPred->getPredicate() == ICmpInst::ICMP_EQ) |
| 14839 | return IPred->getRHS(); |
| 14840 | } |
| 14841 | } |
| 14842 | return convertToAddRecWithPreds(Expr); |
| 14843 | } |
| 14844 | |
| 14845 | const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { |
| 14846 | const SCEV *Operand = visit(S: Expr->getOperand()); |
| 14847 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Operand); |
| 14848 | if (AR && AR->getLoop() == L && AR->isAffine()) { |
| 14849 | // This couldn't be folded because the operand didn't have the nuw |
| 14850 | // flag. Add the nusw flag as an assumption that we could make. |
| 14851 | const SCEV *Step = AR->getStepRecurrence(SE); |
| 14852 | Type *Ty = Expr->getType(); |
| 14853 | if (addOverflowAssumption(AR, AddedFlags: SCEVWrapPredicate::IncrementNUSW)) |
| 14854 | return SE.getAddRecExpr(Start: SE.getZeroExtendExpr(Op: AR->getStart(), Ty), |
| 14855 | Step: SE.getSignExtendExpr(Op: Step, Ty), L, |
| 14856 | Flags: AR->getNoWrapFlags()); |
| 14857 | } |
| 14858 | return SE.getZeroExtendExpr(Op: Operand, Ty: Expr->getType()); |
| 14859 | } |
| 14860 | |
| 14861 | const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { |
| 14862 | const SCEV *Operand = visit(S: Expr->getOperand()); |
| 14863 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Operand); |
| 14864 | if (AR && AR->getLoop() == L && AR->isAffine()) { |
| 14865 | // This couldn't be folded because the operand didn't have the nsw |
| 14866 | // flag. Add the nssw flag as an assumption that we could make. |
| 14867 | const SCEV *Step = AR->getStepRecurrence(SE); |
| 14868 | Type *Ty = Expr->getType(); |
| 14869 | if (addOverflowAssumption(AR, AddedFlags: SCEVWrapPredicate::IncrementNSSW)) |
| 14870 | return SE.getAddRecExpr(Start: SE.getSignExtendExpr(Op: AR->getStart(), Ty), |
| 14871 | Step: SE.getSignExtendExpr(Op: Step, Ty), L, |
| 14872 | Flags: AR->getNoWrapFlags()); |
| 14873 | } |
| 14874 | return SE.getSignExtendExpr(Op: Operand, Ty: Expr->getType()); |
| 14875 | } |
| 14876 | |
| 14877 | private: |
| 14878 | explicit SCEVPredicateRewriter( |
| 14879 | const Loop *L, ScalarEvolution &SE, |
| 14880 | SmallVectorImpl<const SCEVPredicate *> *NewPreds, |
| 14881 | const SCEVPredicate *Pred) |
| 14882 | : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} |
| 14883 | |
| 14884 | bool addOverflowAssumption(const SCEVPredicate *P) { |
| 14885 | if (!NewPreds) { |
| 14886 | // Check if we've already made this assumption. |
| 14887 | return Pred && Pred->implies(N: P, SE); |
| 14888 | } |
| 14889 | NewPreds->push_back(Elt: P); |
| 14890 | return true; |
| 14891 | } |
| 14892 | |
| 14893 | bool addOverflowAssumption(const SCEVAddRecExpr *AR, |
| 14894 | SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { |
| 14895 | auto *A = SE.getWrapPredicate(AR, AddedFlags); |
| 14896 | return addOverflowAssumption(P: A); |
| 14897 | } |
| 14898 | |
| 14899 | // If \p Expr represents a PHINode, we try to see if it can be represented |
| 14900 | // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible |
| 14901 | // to add this predicate as a runtime overflow check, we return the AddRec. |
| 14902 | // If \p Expr does not meet these conditions (is not a PHI node, or we |
| 14903 | // couldn't create an AddRec for it, or couldn't add the predicate), we just |
| 14904 | // return \p Expr. |
| 14905 | const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { |
| 14906 | if (!isa<PHINode>(Val: Expr->getValue())) |
| 14907 | return Expr; |
| 14908 | std::optional< |
| 14909 | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
| 14910 | PredicatedRewrite = SE.createAddRecFromPHIWithCasts(SymbolicPHI: Expr); |
| 14911 | if (!PredicatedRewrite) |
| 14912 | return Expr; |
| 14913 | for (const auto *P : PredicatedRewrite->second){ |
| 14914 | // Wrap predicates from outer loops are not supported. |
| 14915 | if (auto *WP = dyn_cast<const SCEVWrapPredicate>(Val: P)) { |
| 14916 | if (L != WP->getExpr()->getLoop()) |
| 14917 | return Expr; |
| 14918 | } |
| 14919 | if (!addOverflowAssumption(P)) |
| 14920 | return Expr; |
| 14921 | } |
| 14922 | return PredicatedRewrite->first; |
| 14923 | } |
| 14924 | |
| 14925 | SmallVectorImpl<const SCEVPredicate *> *NewPreds; |
| 14926 | const SCEVPredicate *Pred; |
| 14927 | const Loop *L; |
| 14928 | }; |
| 14929 | |
| 14930 | } // end anonymous namespace |
| 14931 | |
| 14932 | const SCEV * |
| 14933 | ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, |
| 14934 | const SCEVPredicate &Preds) { |
| 14935 | return SCEVPredicateRewriter::rewrite(S, L, SE&: *this, NewPreds: nullptr, Pred: &Preds); |
| 14936 | } |
| 14937 | |
| 14938 | const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( |
| 14939 | const SCEV *S, const Loop *L, |
| 14940 | SmallVectorImpl<const SCEVPredicate *> &Preds) { |
| 14941 | SmallVector<const SCEVPredicate *> TransformPreds; |
| 14942 | S = SCEVPredicateRewriter::rewrite(S, L, SE&: *this, NewPreds: &TransformPreds, Pred: nullptr); |
| 14943 | auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: S); |
| 14944 | |
| 14945 | if (!AddRec) |
| 14946 | return nullptr; |
| 14947 | |
| 14948 | // Since the transformation was successful, we can now transfer the SCEV |
| 14949 | // predicates. |
| 14950 | Preds.append(in_start: TransformPreds.begin(), in_end: TransformPreds.end()); |
| 14951 | |
| 14952 | return AddRec; |
| 14953 | } |
| 14954 | |
| 14955 | /// SCEV predicates |
| 14956 | SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, |
| 14957 | SCEVPredicateKind Kind) |
| 14958 | : FastID(ID), Kind(Kind) {} |
| 14959 | |
| 14960 | SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, |
| 14961 | const ICmpInst::Predicate Pred, |
| 14962 | const SCEV *LHS, const SCEV *RHS) |
| 14963 | : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { |
| 14964 | assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match" ); |
| 14965 | assert(LHS != RHS && "LHS and RHS are the same SCEV" ); |
| 14966 | } |
| 14967 | |
| 14968 | bool SCEVComparePredicate::implies(const SCEVPredicate *N, |
| 14969 | ScalarEvolution &SE) const { |
| 14970 | const auto *Op = dyn_cast<SCEVComparePredicate>(Val: N); |
| 14971 | |
| 14972 | if (!Op) |
| 14973 | return false; |
| 14974 | |
| 14975 | if (Pred != ICmpInst::ICMP_EQ) |
| 14976 | return false; |
| 14977 | |
| 14978 | return Op->LHS == LHS && Op->RHS == RHS; |
| 14979 | } |
| 14980 | |
| 14981 | bool SCEVComparePredicate::isAlwaysTrue() const { return false; } |
| 14982 | |
| 14983 | void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { |
| 14984 | if (Pred == ICmpInst::ICMP_EQ) |
| 14985 | OS.indent(NumSpaces: Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n" ; |
| 14986 | else |
| 14987 | OS.indent(NumSpaces: Depth) << "Compare predicate: " << *LHS << " " << Pred << ") " |
| 14988 | << *RHS << "\n" ; |
| 14989 | |
| 14990 | } |
| 14991 | |
| 14992 | SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, |
| 14993 | const SCEVAddRecExpr *AR, |
| 14994 | IncrementWrapFlags Flags) |
| 14995 | : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} |
| 14996 | |
| 14997 | const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } |
| 14998 | |
| 14999 | bool SCEVWrapPredicate::implies(const SCEVPredicate *N, |
| 15000 | ScalarEvolution &SE) const { |
| 15001 | const auto *Op = dyn_cast<SCEVWrapPredicate>(Val: N); |
| 15002 | if (!Op || setFlags(Flags, OnFlags: Op->Flags) != Flags) |
| 15003 | return false; |
| 15004 | |
| 15005 | if (Op->AR == AR) |
| 15006 | return true; |
| 15007 | |
| 15008 | if (Flags != SCEVWrapPredicate::IncrementNSSW && |
| 15009 | Flags != SCEVWrapPredicate::IncrementNUSW) |
| 15010 | return false; |
| 15011 | |
| 15012 | const SCEV *Start = AR->getStart(); |
| 15013 | const SCEV *OpStart = Op->AR->getStart(); |
| 15014 | if (Start->getType()->isPointerTy() != OpStart->getType()->isPointerTy()) |
| 15015 | return false; |
| 15016 | |
| 15017 | // Reject pointers to different address spaces. |
| 15018 | if (Start->getType()->isPointerTy() && Start->getType() != OpStart->getType()) |
| 15019 | return false; |
| 15020 | |
| 15021 | const SCEV *Step = AR->getStepRecurrence(SE); |
| 15022 | const SCEV *OpStep = Op->AR->getStepRecurrence(SE); |
| 15023 | if (!SE.isKnownPositive(S: Step) || !SE.isKnownPositive(S: OpStep)) |
| 15024 | return false; |
| 15025 | |
| 15026 | // If both steps are positive, this implies N, if N's start and step are |
| 15027 | // ULE/SLE (for NSUW/NSSW) than this'. |
| 15028 | Type *WiderTy = SE.getWiderType(T1: Step->getType(), T2: OpStep->getType()); |
| 15029 | Step = SE.getNoopOrZeroExtend(V: Step, Ty: WiderTy); |
| 15030 | OpStep = SE.getNoopOrZeroExtend(V: OpStep, Ty: WiderTy); |
| 15031 | |
| 15032 | bool IsNUW = Flags == SCEVWrapPredicate::IncrementNUSW; |
| 15033 | OpStart = IsNUW ? SE.getNoopOrZeroExtend(V: OpStart, Ty: WiderTy) |
| 15034 | : SE.getNoopOrSignExtend(V: OpStart, Ty: WiderTy); |
| 15035 | Start = IsNUW ? SE.getNoopOrZeroExtend(V: Start, Ty: WiderTy) |
| 15036 | : SE.getNoopOrSignExtend(V: Start, Ty: WiderTy); |
| 15037 | CmpInst::Predicate Pred = IsNUW ? CmpInst::ICMP_ULE : CmpInst::ICMP_SLE; |
| 15038 | return SE.isKnownPredicate(Pred, LHS: OpStep, RHS: Step) && |
| 15039 | SE.isKnownPredicate(Pred, LHS: OpStart, RHS: Start); |
| 15040 | } |
| 15041 | |
| 15042 | bool SCEVWrapPredicate::isAlwaysTrue() const { |
| 15043 | SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); |
| 15044 | IncrementWrapFlags IFlags = Flags; |
| 15045 | |
| 15046 | if (ScalarEvolution::setFlags(Flags: ScevFlags, OnFlags: SCEV::FlagNSW) == ScevFlags) |
| 15047 | IFlags = clearFlags(Flags: IFlags, OffFlags: IncrementNSSW); |
| 15048 | |
| 15049 | return IFlags == IncrementAnyWrap; |
| 15050 | } |
| 15051 | |
| 15052 | void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { |
| 15053 | OS.indent(NumSpaces: Depth) << *getExpr() << " Added Flags: " ; |
| 15054 | if (SCEVWrapPredicate::IncrementNUSW & getFlags()) |
| 15055 | OS << "<nusw>" ; |
| 15056 | if (SCEVWrapPredicate::IncrementNSSW & getFlags()) |
| 15057 | OS << "<nssw>" ; |
| 15058 | OS << "\n" ; |
| 15059 | } |
| 15060 | |
| 15061 | SCEVWrapPredicate::IncrementWrapFlags |
| 15062 | SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, |
| 15063 | ScalarEvolution &SE) { |
| 15064 | IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; |
| 15065 | SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); |
| 15066 | |
| 15067 | // We can safely transfer the NSW flag as NSSW. |
| 15068 | if (ScalarEvolution::setFlags(Flags: StaticFlags, OnFlags: SCEV::FlagNSW) == StaticFlags) |
| 15069 | ImpliedFlags = IncrementNSSW; |
| 15070 | |
| 15071 | if (ScalarEvolution::setFlags(Flags: StaticFlags, OnFlags: SCEV::FlagNUW) == StaticFlags) { |
| 15072 | // If the increment is positive, the SCEV NUW flag will also imply the |
| 15073 | // WrapPredicate NUSW flag. |
| 15074 | if (const auto *Step = dyn_cast<SCEVConstant>(Val: AR->getStepRecurrence(SE))) |
| 15075 | if (Step->getValue()->getValue().isNonNegative()) |
| 15076 | ImpliedFlags = setFlags(Flags: ImpliedFlags, OnFlags: IncrementNUSW); |
| 15077 | } |
| 15078 | |
| 15079 | return ImpliedFlags; |
| 15080 | } |
| 15081 | |
| 15082 | /// Union predicates don't get cached so create a dummy set ID for it. |
| 15083 | SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds, |
| 15084 | ScalarEvolution &SE) |
| 15085 | : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { |
| 15086 | for (const auto *P : Preds) |
| 15087 | add(N: P, SE); |
| 15088 | } |
| 15089 | |
| 15090 | bool SCEVUnionPredicate::isAlwaysTrue() const { |
| 15091 | return all_of(Range: Preds, |
| 15092 | P: [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); |
| 15093 | } |
| 15094 | |
| 15095 | bool SCEVUnionPredicate::implies(const SCEVPredicate *N, |
| 15096 | ScalarEvolution &SE) const { |
| 15097 | if (const auto *Set = dyn_cast<SCEVUnionPredicate>(Val: N)) |
| 15098 | return all_of(Range: Set->Preds, P: [this, &SE](const SCEVPredicate *I) { |
| 15099 | return this->implies(N: I, SE); |
| 15100 | }); |
| 15101 | |
| 15102 | return any_of(Range: Preds, |
| 15103 | P: [N, &SE](const SCEVPredicate *I) { return I->implies(N, SE); }); |
| 15104 | } |
| 15105 | |
| 15106 | void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { |
| 15107 | for (const auto *Pred : Preds) |
| 15108 | Pred->print(OS, Depth); |
| 15109 | } |
| 15110 | |
| 15111 | void SCEVUnionPredicate::add(const SCEVPredicate *N, ScalarEvolution &SE) { |
| 15112 | if (const auto *Set = dyn_cast<SCEVUnionPredicate>(Val: N)) { |
| 15113 | for (const auto *Pred : Set->Preds) |
| 15114 | add(N: Pred, SE); |
| 15115 | return; |
| 15116 | } |
| 15117 | |
| 15118 | // Only add predicate if it is not already implied by this union predicate. |
| 15119 | if (implies(N, SE)) |
| 15120 | return; |
| 15121 | |
| 15122 | // Build a new vector containing the current predicates, except the ones that |
| 15123 | // are implied by the new predicate N. |
| 15124 | SmallVector<const SCEVPredicate *> PrunedPreds; |
| 15125 | for (auto *P : Preds) { |
| 15126 | if (N->implies(N: P, SE)) |
| 15127 | continue; |
| 15128 | PrunedPreds.push_back(Elt: P); |
| 15129 | } |
| 15130 | Preds = std::move(PrunedPreds); |
| 15131 | Preds.push_back(Elt: N); |
| 15132 | } |
| 15133 | |
| 15134 | PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, |
| 15135 | Loop &L) |
| 15136 | : SE(SE), L(L) { |
| 15137 | SmallVector<const SCEVPredicate*, 4> Empty; |
| 15138 | Preds = std::make_unique<SCEVUnionPredicate>(args&: Empty, args&: SE); |
| 15139 | } |
| 15140 | |
| 15141 | void ScalarEvolution::registerUser(const SCEV *User, |
| 15142 | ArrayRef<const SCEV *> Ops) { |
| 15143 | for (const auto *Op : Ops) |
| 15144 | // We do not expect that forgetting cached data for SCEVConstants will ever |
| 15145 | // open any prospects for sharpening or introduce any correctness issues, |
| 15146 | // so we don't bother storing their dependencies. |
| 15147 | if (!isa<SCEVConstant>(Val: Op)) |
| 15148 | SCEVUsers[Op].insert(Ptr: User); |
| 15149 | } |
| 15150 | |
| 15151 | const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { |
| 15152 | const SCEV *Expr = SE.getSCEV(V); |
| 15153 | RewriteEntry &Entry = RewriteMap[Expr]; |
| 15154 | |
| 15155 | // If we already have an entry and the version matches, return it. |
| 15156 | if (Entry.second && Generation == Entry.first) |
| 15157 | return Entry.second; |
| 15158 | |
| 15159 | // We found an entry but it's stale. Rewrite the stale entry |
| 15160 | // according to the current predicate. |
| 15161 | if (Entry.second) |
| 15162 | Expr = Entry.second; |
| 15163 | |
| 15164 | const SCEV *NewSCEV = SE.rewriteUsingPredicate(S: Expr, L: &L, Preds: *Preds); |
| 15165 | Entry = {Generation, NewSCEV}; |
| 15166 | |
| 15167 | return NewSCEV; |
| 15168 | } |
| 15169 | |
| 15170 | const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { |
| 15171 | if (!BackedgeCount) { |
| 15172 | SmallVector<const SCEVPredicate *, 4> Preds; |
| 15173 | BackedgeCount = SE.getPredicatedBackedgeTakenCount(L: &L, Preds); |
| 15174 | for (const auto *P : Preds) |
| 15175 | addPredicate(Pred: *P); |
| 15176 | } |
| 15177 | return BackedgeCount; |
| 15178 | } |
| 15179 | |
| 15180 | const SCEV *PredicatedScalarEvolution::getSymbolicMaxBackedgeTakenCount() { |
| 15181 | if (!SymbolicMaxBackedgeCount) { |
| 15182 | SmallVector<const SCEVPredicate *, 4> Preds; |
| 15183 | SymbolicMaxBackedgeCount = |
| 15184 | SE.getPredicatedSymbolicMaxBackedgeTakenCount(L: &L, Preds); |
| 15185 | for (const auto *P : Preds) |
| 15186 | addPredicate(Pred: *P); |
| 15187 | } |
| 15188 | return SymbolicMaxBackedgeCount; |
| 15189 | } |
| 15190 | |
| 15191 | unsigned PredicatedScalarEvolution::getSmallConstantMaxTripCount() { |
| 15192 | if (!SmallConstantMaxTripCount) { |
| 15193 | SmallVector<const SCEVPredicate *, 4> Preds; |
| 15194 | SmallConstantMaxTripCount = SE.getSmallConstantMaxTripCount(L: &L, Predicates: &Preds); |
| 15195 | for (const auto *P : Preds) |
| 15196 | addPredicate(Pred: *P); |
| 15197 | } |
| 15198 | return *SmallConstantMaxTripCount; |
| 15199 | } |
| 15200 | |
| 15201 | void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { |
| 15202 | if (Preds->implies(N: &Pred, SE)) |
| 15203 | return; |
| 15204 | |
| 15205 | SmallVector<const SCEVPredicate *, 4> NewPreds(Preds->getPredicates()); |
| 15206 | NewPreds.push_back(Elt: &Pred); |
| 15207 | Preds = std::make_unique<SCEVUnionPredicate>(args&: NewPreds, args&: SE); |
| 15208 | updateGeneration(); |
| 15209 | } |
| 15210 | |
| 15211 | const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { |
| 15212 | return *Preds; |
| 15213 | } |
| 15214 | |
| 15215 | void PredicatedScalarEvolution::updateGeneration() { |
| 15216 | // If the generation number wrapped recompute everything. |
| 15217 | if (++Generation == 0) { |
| 15218 | for (auto &II : RewriteMap) { |
| 15219 | const SCEV *Rewritten = II.second.second; |
| 15220 | II.second = {Generation, SE.rewriteUsingPredicate(S: Rewritten, L: &L, Preds: *Preds)}; |
| 15221 | } |
| 15222 | } |
| 15223 | } |
| 15224 | |
| 15225 | void PredicatedScalarEvolution::setNoOverflow( |
| 15226 | Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { |
| 15227 | const SCEV *Expr = getSCEV(V); |
| 15228 | const auto *AR = cast<SCEVAddRecExpr>(Val: Expr); |
| 15229 | |
| 15230 | auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); |
| 15231 | |
| 15232 | // Clear the statically implied flags. |
| 15233 | Flags = SCEVWrapPredicate::clearFlags(Flags, OffFlags: ImpliedFlags); |
| 15234 | addPredicate(Pred: *SE.getWrapPredicate(AR, AddedFlags: Flags)); |
| 15235 | |
| 15236 | auto II = FlagsMap.insert(KV: {V, Flags}); |
| 15237 | if (!II.second) |
| 15238 | II.first->second = SCEVWrapPredicate::setFlags(Flags, OnFlags: II.first->second); |
| 15239 | } |
| 15240 | |
| 15241 | bool PredicatedScalarEvolution::hasNoOverflow( |
| 15242 | Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { |
| 15243 | const SCEV *Expr = getSCEV(V); |
| 15244 | const auto *AR = cast<SCEVAddRecExpr>(Val: Expr); |
| 15245 | |
| 15246 | Flags = SCEVWrapPredicate::clearFlags( |
| 15247 | Flags, OffFlags: SCEVWrapPredicate::getImpliedFlags(AR, SE)); |
| 15248 | |
| 15249 | auto II = FlagsMap.find(Val: V); |
| 15250 | |
| 15251 | if (II != FlagsMap.end()) |
| 15252 | Flags = SCEVWrapPredicate::clearFlags(Flags, OffFlags: II->second); |
| 15253 | |
| 15254 | return Flags == SCEVWrapPredicate::IncrementAnyWrap; |
| 15255 | } |
| 15256 | |
| 15257 | const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { |
| 15258 | const SCEV *Expr = this->getSCEV(V); |
| 15259 | SmallVector<const SCEVPredicate *, 4> NewPreds; |
| 15260 | auto *New = SE.convertSCEVToAddRecWithPredicates(S: Expr, L: &L, Preds&: NewPreds); |
| 15261 | |
| 15262 | if (!New) |
| 15263 | return nullptr; |
| 15264 | |
| 15265 | for (const auto *P : NewPreds) |
| 15266 | addPredicate(Pred: *P); |
| 15267 | |
| 15268 | RewriteMap[SE.getSCEV(V)] = {Generation, New}; |
| 15269 | return New; |
| 15270 | } |
| 15271 | |
| 15272 | PredicatedScalarEvolution::PredicatedScalarEvolution( |
| 15273 | const PredicatedScalarEvolution &Init) |
| 15274 | : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), |
| 15275 | Preds(std::make_unique<SCEVUnionPredicate>(args: Init.Preds->getPredicates(), |
| 15276 | args&: SE)), |
| 15277 | Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { |
| 15278 | for (auto I : Init.FlagsMap) |
| 15279 | FlagsMap.insert(KV: I); |
| 15280 | } |
| 15281 | |
| 15282 | void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { |
| 15283 | // For each block. |
| 15284 | for (auto *BB : L.getBlocks()) |
| 15285 | for (auto &I : *BB) { |
| 15286 | if (!SE.isSCEVable(Ty: I.getType())) |
| 15287 | continue; |
| 15288 | |
| 15289 | auto *Expr = SE.getSCEV(V: &I); |
| 15290 | auto II = RewriteMap.find(Val: Expr); |
| 15291 | |
| 15292 | if (II == RewriteMap.end()) |
| 15293 | continue; |
| 15294 | |
| 15295 | // Don't print things that are not interesting. |
| 15296 | if (II->second.second == Expr) |
| 15297 | continue; |
| 15298 | |
| 15299 | OS.indent(NumSpaces: Depth) << "[PSE]" << I << ":\n" ; |
| 15300 | OS.indent(NumSpaces: Depth + 2) << *Expr << "\n" ; |
| 15301 | OS.indent(NumSpaces: Depth + 2) << "--> " << *II->second.second << "\n" ; |
| 15302 | } |
| 15303 | } |
| 15304 | |
| 15305 | // Match the mathematical pattern A - (A / B) * B, where A and B can be |
| 15306 | // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used |
| 15307 | // for URem with constant power-of-2 second operands. |
| 15308 | // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is |
| 15309 | // 4, A / B becomes X / 8). |
| 15310 | bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, |
| 15311 | const SCEV *&RHS) { |
| 15312 | if (Expr->getType()->isPointerTy()) |
| 15313 | return false; |
| 15314 | |
| 15315 | // Try to match 'zext (trunc A to iB) to iY', which is used |
| 15316 | // for URem with constant power-of-2 second operands. Make sure the size of |
| 15317 | // the operand A matches the size of the whole expressions. |
| 15318 | if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: Expr)) |
| 15319 | if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(Val: ZExt->getOperand(i: 0))) { |
| 15320 | LHS = Trunc->getOperand(); |
| 15321 | // Bail out if the type of the LHS is larger than the type of the |
| 15322 | // expression for now. |
| 15323 | if (getTypeSizeInBits(Ty: LHS->getType()) > |
| 15324 | getTypeSizeInBits(Ty: Expr->getType())) |
| 15325 | return false; |
| 15326 | if (LHS->getType() != Expr->getType()) |
| 15327 | LHS = getZeroExtendExpr(Op: LHS, Ty: Expr->getType()); |
| 15328 | RHS = getConstant(Val: APInt(getTypeSizeInBits(Ty: Expr->getType()), 1) |
| 15329 | << getTypeSizeInBits(Ty: Trunc->getType())); |
| 15330 | return true; |
| 15331 | } |
| 15332 | const auto *Add = dyn_cast<SCEVAddExpr>(Val: Expr); |
| 15333 | if (Add == nullptr || Add->getNumOperands() != 2) |
| 15334 | return false; |
| 15335 | |
| 15336 | const SCEV *A = Add->getOperand(i: 1); |
| 15337 | const auto *Mul = dyn_cast<SCEVMulExpr>(Val: Add->getOperand(i: 0)); |
| 15338 | |
| 15339 | if (Mul == nullptr) |
| 15340 | return false; |
| 15341 | |
| 15342 | const auto MatchURemWithDivisor = [&](const SCEV *B) { |
| 15343 | // (SomeExpr + (-(SomeExpr / B) * B)). |
| 15344 | if (Expr == getURemExpr(LHS: A, RHS: B)) { |
| 15345 | LHS = A; |
| 15346 | RHS = B; |
| 15347 | return true; |
| 15348 | } |
| 15349 | return false; |
| 15350 | }; |
| 15351 | |
| 15352 | // (SomeExpr + (-1 * (SomeExpr / B) * B)). |
| 15353 | if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Val: Mul->getOperand(i: 0))) |
| 15354 | return MatchURemWithDivisor(Mul->getOperand(i: 1)) || |
| 15355 | MatchURemWithDivisor(Mul->getOperand(i: 2)); |
| 15356 | |
| 15357 | // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). |
| 15358 | if (Mul->getNumOperands() == 2) |
| 15359 | return MatchURemWithDivisor(Mul->getOperand(i: 1)) || |
| 15360 | MatchURemWithDivisor(Mul->getOperand(i: 0)) || |
| 15361 | MatchURemWithDivisor(getNegativeSCEV(V: Mul->getOperand(i: 1))) || |
| 15362 | MatchURemWithDivisor(getNegativeSCEV(V: Mul->getOperand(i: 0))); |
| 15363 | return false; |
| 15364 | } |
| 15365 | |
| 15366 | ScalarEvolution::LoopGuards |
| 15367 | ScalarEvolution::LoopGuards::collect(const Loop *L, ScalarEvolution &SE) { |
| 15368 | BasicBlock * = L->getHeader(); |
| 15369 | BasicBlock *Pred = L->getLoopPredecessor(); |
| 15370 | LoopGuards Guards(SE); |
| 15371 | if (!Pred) |
| 15372 | return Guards; |
| 15373 | SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; |
| 15374 | collectFromBlock(SE, Guards, Block: Header, Pred, VisitedBlocks); |
| 15375 | return Guards; |
| 15376 | } |
| 15377 | |
| 15378 | void ScalarEvolution::LoopGuards::collectFromPHI( |
| 15379 | ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards, |
| 15380 | const PHINode &Phi, SmallPtrSetImpl<const BasicBlock *> &VisitedBlocks, |
| 15381 | SmallDenseMap<const BasicBlock *, LoopGuards> &IncomingGuards, |
| 15382 | unsigned Depth) { |
| 15383 | if (!SE.isSCEVable(Ty: Phi.getType())) |
| 15384 | return; |
| 15385 | |
| 15386 | using MinMaxPattern = std::pair<const SCEVConstant *, SCEVTypes>; |
| 15387 | auto GetMinMaxConst = [&](unsigned IncomingIdx) -> MinMaxPattern { |
| 15388 | const BasicBlock *InBlock = Phi.getIncomingBlock(i: IncomingIdx); |
| 15389 | if (!VisitedBlocks.insert(Ptr: InBlock).second) |
| 15390 | return {nullptr, scCouldNotCompute}; |
| 15391 | auto [G, Inserted] = IncomingGuards.try_emplace(Key: InBlock, Args: LoopGuards(SE)); |
| 15392 | if (Inserted) |
| 15393 | collectFromBlock(SE, Guards&: G->second, Block: Phi.getParent(), Pred: InBlock, VisitedBlocks, |
| 15394 | Depth: Depth + 1); |
| 15395 | auto &RewriteMap = G->second.RewriteMap; |
| 15396 | if (RewriteMap.empty()) |
| 15397 | return {nullptr, scCouldNotCompute}; |
| 15398 | auto S = RewriteMap.find(Val: SE.getSCEV(V: Phi.getIncomingValue(i: IncomingIdx))); |
| 15399 | if (S == RewriteMap.end()) |
| 15400 | return {nullptr, scCouldNotCompute}; |
| 15401 | auto *SM = dyn_cast_if_present<SCEVMinMaxExpr>(Val: S->second); |
| 15402 | if (!SM) |
| 15403 | return {nullptr, scCouldNotCompute}; |
| 15404 | if (const SCEVConstant *C0 = dyn_cast<SCEVConstant>(Val: SM->getOperand(i: 0))) |
| 15405 | return {C0, SM->getSCEVType()}; |
| 15406 | return {nullptr, scCouldNotCompute}; |
| 15407 | }; |
| 15408 | auto MergeMinMaxConst = [](MinMaxPattern P1, |
| 15409 | MinMaxPattern P2) -> MinMaxPattern { |
| 15410 | auto [C1, T1] = P1; |
| 15411 | auto [C2, T2] = P2; |
| 15412 | if (!C1 || !C2 || T1 != T2) |
| 15413 | return {nullptr, scCouldNotCompute}; |
| 15414 | switch (T1) { |
| 15415 | case scUMaxExpr: |
| 15416 | return {C1->getAPInt().ult(RHS: C2->getAPInt()) ? C1 : C2, T1}; |
| 15417 | case scSMaxExpr: |
| 15418 | return {C1->getAPInt().slt(RHS: C2->getAPInt()) ? C1 : C2, T1}; |
| 15419 | case scUMinExpr: |
| 15420 | return {C1->getAPInt().ugt(RHS: C2->getAPInt()) ? C1 : C2, T1}; |
| 15421 | case scSMinExpr: |
| 15422 | return {C1->getAPInt().sgt(RHS: C2->getAPInt()) ? C1 : C2, T1}; |
| 15423 | default: |
| 15424 | llvm_unreachable("Trying to merge non-MinMaxExpr SCEVs." ); |
| 15425 | } |
| 15426 | }; |
| 15427 | auto P = GetMinMaxConst(0); |
| 15428 | for (unsigned int In = 1; In < Phi.getNumIncomingValues(); In++) { |
| 15429 | if (!P.first) |
| 15430 | break; |
| 15431 | P = MergeMinMaxConst(P, GetMinMaxConst(In)); |
| 15432 | } |
| 15433 | if (P.first) { |
| 15434 | const SCEV *LHS = SE.getSCEV(V: const_cast<PHINode *>(&Phi)); |
| 15435 | SmallVector<const SCEV *, 2> Ops({P.first, LHS}); |
| 15436 | const SCEV *RHS = SE.getMinMaxExpr(Kind: P.second, Ops); |
| 15437 | Guards.RewriteMap.insert(KV: {LHS, RHS}); |
| 15438 | } |
| 15439 | } |
| 15440 | |
| 15441 | void ScalarEvolution::LoopGuards::collectFromBlock( |
| 15442 | ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards, |
| 15443 | const BasicBlock *Block, const BasicBlock *Pred, |
| 15444 | SmallPtrSetImpl<const BasicBlock *> &VisitedBlocks, unsigned Depth) { |
| 15445 | SmallVector<const SCEV *> ExprsToRewrite; |
| 15446 | auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, |
| 15447 | const SCEV *RHS, |
| 15448 | DenseMap<const SCEV *, const SCEV *> |
| 15449 | &RewriteMap) { |
| 15450 | // WARNING: It is generally unsound to apply any wrap flags to the proposed |
| 15451 | // replacement SCEV which isn't directly implied by the structure of that |
| 15452 | // SCEV. In particular, using contextual facts to imply flags is *NOT* |
| 15453 | // legal. See the scoping rules for flags in the header to understand why. |
| 15454 | |
| 15455 | // If LHS is a constant, apply information to the other expression. |
| 15456 | if (isa<SCEVConstant>(Val: LHS)) { |
| 15457 | std::swap(a&: LHS, b&: RHS); |
| 15458 | Predicate = CmpInst::getSwappedPredicate(pred: Predicate); |
| 15459 | } |
| 15460 | |
| 15461 | // Check for a condition of the form (-C1 + X < C2). InstCombine will |
| 15462 | // create this form when combining two checks of the form (X u< C2 + C1) and |
| 15463 | // (X >=u C1). |
| 15464 | auto MatchRangeCheckIdiom = [&SE, Predicate, LHS, RHS, &RewriteMap, |
| 15465 | &ExprsToRewrite]() { |
| 15466 | const SCEVConstant *C1; |
| 15467 | const SCEVUnknown *LHSUnknown; |
| 15468 | auto *C2 = dyn_cast<SCEVConstant>(Val: RHS); |
| 15469 | if (!match(S: LHS, |
| 15470 | P: m_scev_Add(Op0: m_SCEVConstant(V&: C1), Op1: m_SCEVUnknown(V&: LHSUnknown))) || |
| 15471 | !C2) |
| 15472 | return false; |
| 15473 | |
| 15474 | auto ExactRegion = |
| 15475 | ConstantRange::makeExactICmpRegion(Pred: Predicate, Other: C2->getAPInt()) |
| 15476 | .sub(Other: C1->getAPInt()); |
| 15477 | |
| 15478 | // Bail out, unless we have a non-wrapping, monotonic range. |
| 15479 | if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) |
| 15480 | return false; |
| 15481 | auto [I, Inserted] = RewriteMap.try_emplace(Key: LHSUnknown); |
| 15482 | const SCEV *RewrittenLHS = Inserted ? LHSUnknown : I->second; |
| 15483 | I->second = SE.getUMaxExpr( |
| 15484 | LHS: SE.getConstant(Val: ExactRegion.getUnsignedMin()), |
| 15485 | RHS: SE.getUMinExpr(LHS: RewrittenLHS, |
| 15486 | RHS: SE.getConstant(Val: ExactRegion.getUnsignedMax()))); |
| 15487 | ExprsToRewrite.push_back(Elt: LHSUnknown); |
| 15488 | return true; |
| 15489 | }; |
| 15490 | if (MatchRangeCheckIdiom()) |
| 15491 | return; |
| 15492 | |
| 15493 | // Return true if \p Expr is a MinMax SCEV expression with a non-negative |
| 15494 | // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS |
| 15495 | // the non-constant operand and in \p LHS the constant operand. |
| 15496 | auto IsMinMaxSCEVWithNonNegativeConstant = |
| 15497 | [&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS, |
| 15498 | const SCEV *&RHS) { |
| 15499 | if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Val: Expr)) { |
| 15500 | if (MinMax->getNumOperands() != 2) |
| 15501 | return false; |
| 15502 | if (auto *C = dyn_cast<SCEVConstant>(Val: MinMax->getOperand(i: 0))) { |
| 15503 | if (C->getAPInt().isNegative()) |
| 15504 | return false; |
| 15505 | SCTy = MinMax->getSCEVType(); |
| 15506 | LHS = MinMax->getOperand(i: 0); |
| 15507 | RHS = MinMax->getOperand(i: 1); |
| 15508 | return true; |
| 15509 | } |
| 15510 | } |
| 15511 | return false; |
| 15512 | }; |
| 15513 | |
| 15514 | // Checks whether Expr is a non-negative constant, and Divisor is a positive |
| 15515 | // constant, and returns their APInt in ExprVal and in DivisorVal. |
| 15516 | auto GetNonNegExprAndPosDivisor = [&](const SCEV *Expr, const SCEV *Divisor, |
| 15517 | APInt &ExprVal, APInt &DivisorVal) { |
| 15518 | auto *ConstExpr = dyn_cast<SCEVConstant>(Val: Expr); |
| 15519 | auto *ConstDivisor = dyn_cast<SCEVConstant>(Val: Divisor); |
| 15520 | if (!ConstExpr || !ConstDivisor) |
| 15521 | return false; |
| 15522 | ExprVal = ConstExpr->getAPInt(); |
| 15523 | DivisorVal = ConstDivisor->getAPInt(); |
| 15524 | return ExprVal.isNonNegative() && !DivisorVal.isNonPositive(); |
| 15525 | }; |
| 15526 | |
| 15527 | // Return a new SCEV that modifies \p Expr to the closest number divides by |
| 15528 | // \p Divisor and greater or equal than Expr. |
| 15529 | // For now, only handle constant Expr and Divisor. |
| 15530 | auto GetNextSCEVDividesByDivisor = [&](const SCEV *Expr, |
| 15531 | const SCEV *Divisor) { |
| 15532 | APInt ExprVal; |
| 15533 | APInt DivisorVal; |
| 15534 | if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal)) |
| 15535 | return Expr; |
| 15536 | APInt Rem = ExprVal.urem(RHS: DivisorVal); |
| 15537 | if (!Rem.isZero()) |
| 15538 | // return the SCEV: Expr + Divisor - Expr % Divisor |
| 15539 | return SE.getConstant(Val: ExprVal + DivisorVal - Rem); |
| 15540 | return Expr; |
| 15541 | }; |
| 15542 | |
| 15543 | // Return a new SCEV that modifies \p Expr to the closest number divides by |
| 15544 | // \p Divisor and less or equal than Expr. |
| 15545 | // For now, only handle constant Expr and Divisor. |
| 15546 | auto GetPreviousSCEVDividesByDivisor = [&](const SCEV *Expr, |
| 15547 | const SCEV *Divisor) { |
| 15548 | APInt ExprVal; |
| 15549 | APInt DivisorVal; |
| 15550 | if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal)) |
| 15551 | return Expr; |
| 15552 | APInt Rem = ExprVal.urem(RHS: DivisorVal); |
| 15553 | // return the SCEV: Expr - Expr % Divisor |
| 15554 | return SE.getConstant(Val: ExprVal - Rem); |
| 15555 | }; |
| 15556 | |
| 15557 | // Apply divisibilty by \p Divisor on MinMaxExpr with constant values, |
| 15558 | // recursively. This is done by aligning up/down the constant value to the |
| 15559 | // Divisor. |
| 15560 | std::function<const SCEV *(const SCEV *, const SCEV *)> |
| 15561 | ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr, |
| 15562 | const SCEV *Divisor) { |
| 15563 | const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr; |
| 15564 | SCEVTypes SCTy; |
| 15565 | if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS, |
| 15566 | MinMaxRHS)) |
| 15567 | return MinMaxExpr; |
| 15568 | auto IsMin = |
| 15569 | isa<SCEVSMinExpr>(Val: MinMaxExpr) || isa<SCEVUMinExpr>(Val: MinMaxExpr); |
| 15570 | assert(SE.isKnownNonNegative(MinMaxLHS) && |
| 15571 | "Expected non-negative operand!" ); |
| 15572 | auto *DivisibleExpr = |
| 15573 | IsMin ? GetPreviousSCEVDividesByDivisor(MinMaxLHS, Divisor) |
| 15574 | : GetNextSCEVDividesByDivisor(MinMaxLHS, Divisor); |
| 15575 | SmallVector<const SCEV *> Ops = { |
| 15576 | ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr}; |
| 15577 | return SE.getMinMaxExpr(Kind: SCTy, Ops); |
| 15578 | }; |
| 15579 | |
| 15580 | // If we have LHS == 0, check if LHS is computing a property of some unknown |
| 15581 | // SCEV %v which we can rewrite %v to express explicitly. |
| 15582 | if (Predicate == CmpInst::ICMP_EQ && match(S: RHS, P: m_scev_Zero())) { |
| 15583 | // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to |
| 15584 | // explicitly express that. |
| 15585 | const SCEV *URemLHS = nullptr; |
| 15586 | const SCEV *URemRHS = nullptr; |
| 15587 | if (SE.matchURem(Expr: LHS, LHS&: URemLHS, RHS&: URemRHS)) { |
| 15588 | if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(Val: URemLHS)) { |
| 15589 | auto I = RewriteMap.find(Val: LHSUnknown); |
| 15590 | const SCEV *RewrittenLHS = |
| 15591 | I != RewriteMap.end() ? I->second : LHSUnknown; |
| 15592 | RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS); |
| 15593 | const auto *Multiple = |
| 15594 | SE.getMulExpr(LHS: SE.getUDivExpr(LHS: RewrittenLHS, RHS: URemRHS), RHS: URemRHS); |
| 15595 | RewriteMap[LHSUnknown] = Multiple; |
| 15596 | ExprsToRewrite.push_back(Elt: LHSUnknown); |
| 15597 | return; |
| 15598 | } |
| 15599 | } |
| 15600 | } |
| 15601 | |
| 15602 | // Do not apply information for constants or if RHS contains an AddRec. |
| 15603 | if (isa<SCEVConstant>(Val: LHS) || SE.containsAddRecurrence(S: RHS)) |
| 15604 | return; |
| 15605 | |
| 15606 | // If RHS is SCEVUnknown, make sure the information is applied to it. |
| 15607 | if (!isa<SCEVUnknown>(Val: LHS) && isa<SCEVUnknown>(Val: RHS)) { |
| 15608 | std::swap(a&: LHS, b&: RHS); |
| 15609 | Predicate = CmpInst::getSwappedPredicate(pred: Predicate); |
| 15610 | } |
| 15611 | |
| 15612 | // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From |
| 15613 | // and \p FromRewritten are the same (i.e. there has been no rewrite |
| 15614 | // registered for \p From), then puts this value in the list of rewritten |
| 15615 | // expressions. |
| 15616 | auto AddRewrite = [&](const SCEV *From, const SCEV *FromRewritten, |
| 15617 | const SCEV *To) { |
| 15618 | if (From == FromRewritten) |
| 15619 | ExprsToRewrite.push_back(Elt: From); |
| 15620 | RewriteMap[From] = To; |
| 15621 | }; |
| 15622 | |
| 15623 | // Checks whether \p S has already been rewritten. In that case returns the |
| 15624 | // existing rewrite because we want to chain further rewrites onto the |
| 15625 | // already rewritten value. Otherwise returns \p S. |
| 15626 | auto GetMaybeRewritten = [&](const SCEV *S) { |
| 15627 | auto I = RewriteMap.find(Val: S); |
| 15628 | return I != RewriteMap.end() ? I->second : S; |
| 15629 | }; |
| 15630 | |
| 15631 | // Check for the SCEV expression (A /u B) * B while B is a constant, inside |
| 15632 | // \p Expr. The check is done recuresively on \p Expr, which is assumed to |
| 15633 | // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A |
| 15634 | // /u B) * B was found, and return the divisor B in \p DividesBy. For |
| 15635 | // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since |
| 15636 | // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p |
| 15637 | // DividesBy. |
| 15638 | std::function<bool(const SCEV *, const SCEV *&)> HasDivisibiltyInfo = |
| 15639 | [&](const SCEV *Expr, const SCEV *&DividesBy) { |
| 15640 | if (auto *Mul = dyn_cast<SCEVMulExpr>(Val: Expr)) { |
| 15641 | if (Mul->getNumOperands() != 2) |
| 15642 | return false; |
| 15643 | auto *MulLHS = Mul->getOperand(i: 0); |
| 15644 | auto *MulRHS = Mul->getOperand(i: 1); |
| 15645 | if (isa<SCEVConstant>(Val: MulLHS)) |
| 15646 | std::swap(a&: MulLHS, b&: MulRHS); |
| 15647 | if (auto *Div = dyn_cast<SCEVUDivExpr>(Val: MulLHS)) |
| 15648 | if (Div->getOperand(i: 1) == MulRHS) { |
| 15649 | DividesBy = MulRHS; |
| 15650 | return true; |
| 15651 | } |
| 15652 | } |
| 15653 | if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Val: Expr)) |
| 15654 | return HasDivisibiltyInfo(MinMax->getOperand(i: 0), DividesBy) || |
| 15655 | HasDivisibiltyInfo(MinMax->getOperand(i: 1), DividesBy); |
| 15656 | return false; |
| 15657 | }; |
| 15658 | |
| 15659 | // Return true if Expr known to divide by \p DividesBy. |
| 15660 | std::function<bool(const SCEV *, const SCEV *&)> IsKnownToDivideBy = |
| 15661 | [&](const SCEV *Expr, const SCEV *DividesBy) { |
| 15662 | if (SE.getURemExpr(LHS: Expr, RHS: DividesBy)->isZero()) |
| 15663 | return true; |
| 15664 | if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Val: Expr)) |
| 15665 | return IsKnownToDivideBy(MinMax->getOperand(i: 0), DividesBy) && |
| 15666 | IsKnownToDivideBy(MinMax->getOperand(i: 1), DividesBy); |
| 15667 | return false; |
| 15668 | }; |
| 15669 | |
| 15670 | const SCEV *RewrittenLHS = GetMaybeRewritten(LHS); |
| 15671 | const SCEV *DividesBy = nullptr; |
| 15672 | if (HasDivisibiltyInfo(RewrittenLHS, DividesBy)) |
| 15673 | // Check that the whole expression is divided by DividesBy |
| 15674 | DividesBy = |
| 15675 | IsKnownToDivideBy(RewrittenLHS, DividesBy) ? DividesBy : nullptr; |
| 15676 | |
| 15677 | // Collect rewrites for LHS and its transitive operands based on the |
| 15678 | // condition. |
| 15679 | // For min/max expressions, also apply the guard to its operands: |
| 15680 | // 'min(a, b) >= c' -> '(a >= c) and (b >= c)', |
| 15681 | // 'min(a, b) > c' -> '(a > c) and (b > c)', |
| 15682 | // 'max(a, b) <= c' -> '(a <= c) and (b <= c)', |
| 15683 | // 'max(a, b) < c' -> '(a < c) and (b < c)'. |
| 15684 | |
| 15685 | // We cannot express strict predicates in SCEV, so instead we replace them |
| 15686 | // with non-strict ones against plus or minus one of RHS depending on the |
| 15687 | // predicate. |
| 15688 | const SCEV *One = SE.getOne(Ty: RHS->getType()); |
| 15689 | switch (Predicate) { |
| 15690 | case CmpInst::ICMP_ULT: |
| 15691 | if (RHS->getType()->isPointerTy()) |
| 15692 | return; |
| 15693 | RHS = SE.getUMaxExpr(LHS: RHS, RHS: One); |
| 15694 | [[fallthrough]]; |
| 15695 | case CmpInst::ICMP_SLT: { |
| 15696 | RHS = SE.getMinusSCEV(LHS: RHS, RHS: One); |
| 15697 | RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS; |
| 15698 | break; |
| 15699 | } |
| 15700 | case CmpInst::ICMP_UGT: |
| 15701 | case CmpInst::ICMP_SGT: |
| 15702 | RHS = SE.getAddExpr(LHS: RHS, RHS: One); |
| 15703 | RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS; |
| 15704 | break; |
| 15705 | case CmpInst::ICMP_ULE: |
| 15706 | case CmpInst::ICMP_SLE: |
| 15707 | RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS; |
| 15708 | break; |
| 15709 | case CmpInst::ICMP_UGE: |
| 15710 | case CmpInst::ICMP_SGE: |
| 15711 | RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS; |
| 15712 | break; |
| 15713 | default: |
| 15714 | break; |
| 15715 | } |
| 15716 | |
| 15717 | SmallVector<const SCEV *, 16> Worklist(1, LHS); |
| 15718 | SmallPtrSet<const SCEV *, 16> Visited; |
| 15719 | |
| 15720 | auto EnqueueOperands = [&Worklist](const SCEVNAryExpr *S) { |
| 15721 | append_range(C&: Worklist, R: S->operands()); |
| 15722 | }; |
| 15723 | |
| 15724 | while (!Worklist.empty()) { |
| 15725 | const SCEV *From = Worklist.pop_back_val(); |
| 15726 | if (isa<SCEVConstant>(Val: From)) |
| 15727 | continue; |
| 15728 | if (!Visited.insert(Ptr: From).second) |
| 15729 | continue; |
| 15730 | const SCEV *FromRewritten = GetMaybeRewritten(From); |
| 15731 | const SCEV *To = nullptr; |
| 15732 | |
| 15733 | switch (Predicate) { |
| 15734 | case CmpInst::ICMP_ULT: |
| 15735 | case CmpInst::ICMP_ULE: |
| 15736 | To = SE.getUMinExpr(LHS: FromRewritten, RHS); |
| 15737 | if (auto *UMax = dyn_cast<SCEVUMaxExpr>(Val: FromRewritten)) |
| 15738 | EnqueueOperands(UMax); |
| 15739 | break; |
| 15740 | case CmpInst::ICMP_SLT: |
| 15741 | case CmpInst::ICMP_SLE: |
| 15742 | To = SE.getSMinExpr(LHS: FromRewritten, RHS); |
| 15743 | if (auto *SMax = dyn_cast<SCEVSMaxExpr>(Val: FromRewritten)) |
| 15744 | EnqueueOperands(SMax); |
| 15745 | break; |
| 15746 | case CmpInst::ICMP_UGT: |
| 15747 | case CmpInst::ICMP_UGE: |
| 15748 | To = SE.getUMaxExpr(LHS: FromRewritten, RHS); |
| 15749 | if (auto *UMin = dyn_cast<SCEVUMinExpr>(Val: FromRewritten)) |
| 15750 | EnqueueOperands(UMin); |
| 15751 | break; |
| 15752 | case CmpInst::ICMP_SGT: |
| 15753 | case CmpInst::ICMP_SGE: |
| 15754 | To = SE.getSMaxExpr(LHS: FromRewritten, RHS); |
| 15755 | if (auto *SMin = dyn_cast<SCEVSMinExpr>(Val: FromRewritten)) |
| 15756 | EnqueueOperands(SMin); |
| 15757 | break; |
| 15758 | case CmpInst::ICMP_EQ: |
| 15759 | if (isa<SCEVConstant>(Val: RHS)) |
| 15760 | To = RHS; |
| 15761 | break; |
| 15762 | case CmpInst::ICMP_NE: |
| 15763 | if (match(S: RHS, P: m_scev_Zero())) { |
| 15764 | const SCEV *OneAlignedUp = |
| 15765 | DividesBy ? GetNextSCEVDividesByDivisor(One, DividesBy) : One; |
| 15766 | To = SE.getUMaxExpr(LHS: FromRewritten, RHS: OneAlignedUp); |
| 15767 | } |
| 15768 | break; |
| 15769 | default: |
| 15770 | break; |
| 15771 | } |
| 15772 | |
| 15773 | if (To) |
| 15774 | AddRewrite(From, FromRewritten, To); |
| 15775 | } |
| 15776 | }; |
| 15777 | |
| 15778 | SmallVector<PointerIntPair<Value *, 1, bool>> Terms; |
| 15779 | // First, collect information from assumptions dominating the loop. |
| 15780 | for (auto &AssumeVH : SE.AC.assumptions()) { |
| 15781 | if (!AssumeVH) |
| 15782 | continue; |
| 15783 | auto *AssumeI = cast<CallInst>(Val&: AssumeVH); |
| 15784 | if (!SE.DT.dominates(Def: AssumeI, BB: Block)) |
| 15785 | continue; |
| 15786 | Terms.emplace_back(Args: AssumeI->getOperand(i_nocapture: 0), Args: true); |
| 15787 | } |
| 15788 | |
| 15789 | // Second, collect information from llvm.experimental.guards dominating the loop. |
| 15790 | auto *GuardDecl = Intrinsic::getDeclarationIfExists( |
| 15791 | M: SE.F.getParent(), id: Intrinsic::experimental_guard); |
| 15792 | if (GuardDecl) |
| 15793 | for (const auto *GU : GuardDecl->users()) |
| 15794 | if (const auto *Guard = dyn_cast<IntrinsicInst>(Val: GU)) |
| 15795 | if (Guard->getFunction() == Block->getParent() && |
| 15796 | SE.DT.dominates(Def: Guard, BB: Block)) |
| 15797 | Terms.emplace_back(Args: Guard->getArgOperand(i: 0), Args: true); |
| 15798 | |
| 15799 | // Third, collect conditions from dominating branches. Starting at the loop |
| 15800 | // predecessor, climb up the predecessor chain, as long as there are |
| 15801 | // predecessors that can be found that have unique successors leading to the |
| 15802 | // original header. |
| 15803 | // TODO: share this logic with isLoopEntryGuardedByCond. |
| 15804 | unsigned NumCollectedConditions = 0; |
| 15805 | VisitedBlocks.insert(Ptr: Block); |
| 15806 | std::pair<const BasicBlock *, const BasicBlock *> Pair(Pred, Block); |
| 15807 | for (; Pair.first; |
| 15808 | Pair = SE.getPredecessorWithUniqueSuccessorForBB(BB: Pair.first)) { |
| 15809 | VisitedBlocks.insert(Ptr: Pair.second); |
| 15810 | const BranchInst *LoopEntryPredicate = |
| 15811 | dyn_cast<BranchInst>(Val: Pair.first->getTerminator()); |
| 15812 | if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) |
| 15813 | continue; |
| 15814 | |
| 15815 | Terms.emplace_back(Args: LoopEntryPredicate->getCondition(), |
| 15816 | Args: LoopEntryPredicate->getSuccessor(i: 0) == Pair.second); |
| 15817 | NumCollectedConditions++; |
| 15818 | |
| 15819 | // If we are recursively collecting guards stop after 2 |
| 15820 | // conditions to limit compile-time impact for now. |
| 15821 | if (Depth > 0 && NumCollectedConditions == 2) |
| 15822 | break; |
| 15823 | } |
| 15824 | // Finally, if we stopped climbing the predecessor chain because |
| 15825 | // there wasn't a unique one to continue, try to collect conditions |
| 15826 | // for PHINodes by recursively following all of their incoming |
| 15827 | // blocks and try to merge the found conditions to build a new one |
| 15828 | // for the Phi. |
| 15829 | if (Pair.second->hasNPredecessorsOrMore(N: 2) && |
| 15830 | Depth < MaxLoopGuardCollectionDepth) { |
| 15831 | SmallDenseMap<const BasicBlock *, LoopGuards> IncomingGuards; |
| 15832 | for (auto &Phi : Pair.second->phis()) |
| 15833 | collectFromPHI(SE, Guards, Phi, VisitedBlocks, IncomingGuards, Depth); |
| 15834 | } |
| 15835 | |
| 15836 | // Now apply the information from the collected conditions to |
| 15837 | // Guards.RewriteMap. Conditions are processed in reverse order, so the |
| 15838 | // earliest conditions is processed first. This ensures the SCEVs with the |
| 15839 | // shortest dependency chains are constructed first. |
| 15840 | for (auto [Term, EnterIfTrue] : reverse(C&: Terms)) { |
| 15841 | SmallVector<Value *, 8> Worklist; |
| 15842 | SmallPtrSet<Value *, 8> Visited; |
| 15843 | Worklist.push_back(Elt: Term); |
| 15844 | while (!Worklist.empty()) { |
| 15845 | Value *Cond = Worklist.pop_back_val(); |
| 15846 | if (!Visited.insert(Ptr: Cond).second) |
| 15847 | continue; |
| 15848 | |
| 15849 | if (auto *Cmp = dyn_cast<ICmpInst>(Val: Cond)) { |
| 15850 | auto Predicate = |
| 15851 | EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); |
| 15852 | const auto *LHS = SE.getSCEV(V: Cmp->getOperand(i_nocapture: 0)); |
| 15853 | const auto *RHS = SE.getSCEV(V: Cmp->getOperand(i_nocapture: 1)); |
| 15854 | CollectCondition(Predicate, LHS, RHS, Guards.RewriteMap); |
| 15855 | continue; |
| 15856 | } |
| 15857 | |
| 15858 | Value *L, *R; |
| 15859 | if (EnterIfTrue ? match(V: Cond, P: m_LogicalAnd(L: m_Value(V&: L), R: m_Value(V&: R))) |
| 15860 | : match(V: Cond, P: m_LogicalOr(L: m_Value(V&: L), R: m_Value(V&: R)))) { |
| 15861 | Worklist.push_back(Elt: L); |
| 15862 | Worklist.push_back(Elt: R); |
| 15863 | } |
| 15864 | } |
| 15865 | } |
| 15866 | |
| 15867 | // Let the rewriter preserve NUW/NSW flags if the unsigned/signed ranges of |
| 15868 | // the replacement expressions are contained in the ranges of the replaced |
| 15869 | // expressions. |
| 15870 | Guards.PreserveNUW = true; |
| 15871 | Guards.PreserveNSW = true; |
| 15872 | for (const SCEV *Expr : ExprsToRewrite) { |
| 15873 | const SCEV *RewriteTo = Guards.RewriteMap[Expr]; |
| 15874 | Guards.PreserveNUW &= |
| 15875 | SE.getUnsignedRange(S: Expr).contains(CR: SE.getUnsignedRange(S: RewriteTo)); |
| 15876 | Guards.PreserveNSW &= |
| 15877 | SE.getSignedRange(S: Expr).contains(CR: SE.getSignedRange(S: RewriteTo)); |
| 15878 | } |
| 15879 | |
| 15880 | // Now that all rewrite information is collect, rewrite the collected |
| 15881 | // expressions with the information in the map. This applies information to |
| 15882 | // sub-expressions. |
| 15883 | if (ExprsToRewrite.size() > 1) { |
| 15884 | for (const SCEV *Expr : ExprsToRewrite) { |
| 15885 | const SCEV *RewriteTo = Guards.RewriteMap[Expr]; |
| 15886 | Guards.RewriteMap.erase(Val: Expr); |
| 15887 | Guards.RewriteMap.insert(KV: {Expr, Guards.rewrite(Expr: RewriteTo)}); |
| 15888 | } |
| 15889 | } |
| 15890 | } |
| 15891 | |
| 15892 | const SCEV *ScalarEvolution::LoopGuards::rewrite(const SCEV *Expr) const { |
| 15893 | /// A rewriter to replace SCEV expressions in Map with the corresponding entry |
| 15894 | /// in the map. It skips AddRecExpr because we cannot guarantee that the |
| 15895 | /// replacement is loop invariant in the loop of the AddRec. |
| 15896 | class SCEVLoopGuardRewriter |
| 15897 | : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { |
| 15898 | const DenseMap<const SCEV *, const SCEV *> ⤅ |
| 15899 | |
| 15900 | SCEV::NoWrapFlags FlagMask = SCEV::FlagAnyWrap; |
| 15901 | |
| 15902 | public: |
| 15903 | SCEVLoopGuardRewriter(ScalarEvolution &SE, |
| 15904 | const ScalarEvolution::LoopGuards &Guards) |
| 15905 | : SCEVRewriteVisitor(SE), Map(Guards.RewriteMap) { |
| 15906 | if (Guards.PreserveNUW) |
| 15907 | FlagMask = ScalarEvolution::setFlags(Flags: FlagMask, OnFlags: SCEV::FlagNUW); |
| 15908 | if (Guards.PreserveNSW) |
| 15909 | FlagMask = ScalarEvolution::setFlags(Flags: FlagMask, OnFlags: SCEV::FlagNSW); |
| 15910 | } |
| 15911 | |
| 15912 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } |
| 15913 | |
| 15914 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
| 15915 | return Map.lookup_or(Val: Expr, Default&: Expr); |
| 15916 | } |
| 15917 | |
| 15918 | const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { |
| 15919 | if (const SCEV *S = Map.lookup(Val: Expr)) |
| 15920 | return S; |
| 15921 | |
| 15922 | // If we didn't find the extact ZExt expr in the map, check if there's |
| 15923 | // an entry for a smaller ZExt we can use instead. |
| 15924 | Type *Ty = Expr->getType(); |
| 15925 | const SCEV *Op = Expr->getOperand(i: 0); |
| 15926 | unsigned Bitwidth = Ty->getScalarSizeInBits() / 2; |
| 15927 | while (Bitwidth % 8 == 0 && Bitwidth >= 8 && |
| 15928 | Bitwidth > Op->getType()->getScalarSizeInBits()) { |
| 15929 | Type *NarrowTy = IntegerType::get(C&: SE.getContext(), NumBits: Bitwidth); |
| 15930 | auto *NarrowExt = SE.getZeroExtendExpr(Op, Ty: NarrowTy); |
| 15931 | auto I = Map.find(Val: NarrowExt); |
| 15932 | if (I != Map.end()) |
| 15933 | return SE.getZeroExtendExpr(Op: I->second, Ty); |
| 15934 | Bitwidth = Bitwidth / 2; |
| 15935 | } |
| 15936 | |
| 15937 | return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( |
| 15938 | Expr); |
| 15939 | } |
| 15940 | |
| 15941 | const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { |
| 15942 | if (const SCEV *S = Map.lookup(Val: Expr)) |
| 15943 | return S; |
| 15944 | return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSignExtendExpr( |
| 15945 | Expr); |
| 15946 | } |
| 15947 | |
| 15948 | const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) { |
| 15949 | if (const SCEV *S = Map.lookup(Val: Expr)) |
| 15950 | return S; |
| 15951 | return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitUMinExpr(Expr); |
| 15952 | } |
| 15953 | |
| 15954 | const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) { |
| 15955 | if (const SCEV *S = Map.lookup(Val: Expr)) |
| 15956 | return S; |
| 15957 | return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSMinExpr(Expr); |
| 15958 | } |
| 15959 | |
| 15960 | const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { |
| 15961 | SmallVector<const SCEV *, 2> Operands; |
| 15962 | bool Changed = false; |
| 15963 | for (const auto *Op : Expr->operands()) { |
| 15964 | Operands.push_back( |
| 15965 | Elt: SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visit(S: Op)); |
| 15966 | Changed |= Op != Operands.back(); |
| 15967 | } |
| 15968 | // We are only replacing operands with equivalent values, so transfer the |
| 15969 | // flags from the original expression. |
| 15970 | return !Changed ? Expr |
| 15971 | : SE.getAddExpr(Ops&: Operands, |
| 15972 | OrigFlags: ScalarEvolution::maskFlags( |
| 15973 | Flags: Expr->getNoWrapFlags(), Mask: FlagMask)); |
| 15974 | } |
| 15975 | |
| 15976 | const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { |
| 15977 | SmallVector<const SCEV *, 2> Operands; |
| 15978 | bool Changed = false; |
| 15979 | for (const auto *Op : Expr->operands()) { |
| 15980 | Operands.push_back( |
| 15981 | Elt: SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visit(S: Op)); |
| 15982 | Changed |= Op != Operands.back(); |
| 15983 | } |
| 15984 | // We are only replacing operands with equivalent values, so transfer the |
| 15985 | // flags from the original expression. |
| 15986 | return !Changed ? Expr |
| 15987 | : SE.getMulExpr(Ops&: Operands, |
| 15988 | OrigFlags: ScalarEvolution::maskFlags( |
| 15989 | Flags: Expr->getNoWrapFlags(), Mask: FlagMask)); |
| 15990 | } |
| 15991 | }; |
| 15992 | |
| 15993 | if (RewriteMap.empty()) |
| 15994 | return Expr; |
| 15995 | |
| 15996 | SCEVLoopGuardRewriter Rewriter(SE, *this); |
| 15997 | return Rewriter.visit(S: Expr); |
| 15998 | } |
| 15999 | |
| 16000 | const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { |
| 16001 | return applyLoopGuards(Expr, Guards: LoopGuards::collect(L, SE&: *this)); |
| 16002 | } |
| 16003 | |
| 16004 | const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, |
| 16005 | const LoopGuards &Guards) { |
| 16006 | return Guards.rewrite(Expr); |
| 16007 | } |
| 16008 | |