1 | //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains the implementation of the scalar evolution analysis |
10 | // engine, which is used primarily to analyze expressions involving induction |
11 | // variables in loops. |
12 | // |
13 | // There are several aspects to this library. First is the representation of |
14 | // scalar expressions, which are represented as subclasses of the SCEV class. |
15 | // These classes are used to represent certain types of subexpressions that we |
16 | // can handle. We only create one SCEV of a particular shape, so |
17 | // pointer-comparisons for equality are legal. |
18 | // |
19 | // One important aspect of the SCEV objects is that they are never cyclic, even |
20 | // if there is a cycle in the dataflow for an expression (ie, a PHI node). If |
21 | // the PHI node is one of the idioms that we can represent (e.g., a polynomial |
22 | // recurrence) then we represent it directly as a recurrence node, otherwise we |
23 | // represent it as a SCEVUnknown node. |
24 | // |
25 | // In addition to being able to represent expressions of various types, we also |
26 | // have folders that are used to build the *canonical* representation for a |
27 | // particular expression. These folders are capable of using a variety of |
28 | // rewrite rules to simplify the expressions. |
29 | // |
30 | // Once the folders are defined, we can implement the more interesting |
31 | // higher-level code, such as the code that recognizes PHI nodes of various |
32 | // types, computes the execution count of a loop, etc. |
33 | // |
34 | // TODO: We should use these routines and value representations to implement |
35 | // dependence analysis! |
36 | // |
37 | //===----------------------------------------------------------------------===// |
38 | // |
39 | // There are several good references for the techniques used in this analysis. |
40 | // |
41 | // Chains of recurrences -- a method to expedite the evaluation |
42 | // of closed-form functions |
43 | // Olaf Bachmann, Paul S. Wang, Eugene V. Zima |
44 | // |
45 | // On computational properties of chains of recurrences |
46 | // Eugene V. Zima |
47 | // |
48 | // Symbolic Evaluation of Chains of Recurrences for Loop Optimization |
49 | // Robert A. van Engelen |
50 | // |
51 | // Efficient Symbolic Analysis for Optimizing Compilers |
52 | // Robert A. van Engelen |
53 | // |
54 | // Using the chains of recurrences algebra for data dependence testing and |
55 | // induction variable substitution |
56 | // MS Thesis, Johnie Birch |
57 | // |
58 | //===----------------------------------------------------------------------===// |
59 | |
60 | #include "llvm/Analysis/ScalarEvolution.h" |
61 | #include "llvm/ADT/APInt.h" |
62 | #include "llvm/ADT/ArrayRef.h" |
63 | #include "llvm/ADT/DenseMap.h" |
64 | #include "llvm/ADT/DepthFirstIterator.h" |
65 | #include "llvm/ADT/FoldingSet.h" |
66 | #include "llvm/ADT/STLExtras.h" |
67 | #include "llvm/ADT/ScopeExit.h" |
68 | #include "llvm/ADT/Sequence.h" |
69 | #include "llvm/ADT/SmallPtrSet.h" |
70 | #include "llvm/ADT/SmallSet.h" |
71 | #include "llvm/ADT/SmallVector.h" |
72 | #include "llvm/ADT/Statistic.h" |
73 | #include "llvm/ADT/StringExtras.h" |
74 | #include "llvm/ADT/StringRef.h" |
75 | #include "llvm/Analysis/AssumptionCache.h" |
76 | #include "llvm/Analysis/ConstantFolding.h" |
77 | #include "llvm/Analysis/InstructionSimplify.h" |
78 | #include "llvm/Analysis/LoopInfo.h" |
79 | #include "llvm/Analysis/MemoryBuiltins.h" |
80 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
81 | #include "llvm/Analysis/ScalarEvolutionPatternMatch.h" |
82 | #include "llvm/Analysis/TargetLibraryInfo.h" |
83 | #include "llvm/Analysis/ValueTracking.h" |
84 | #include "llvm/Config/llvm-config.h" |
85 | #include "llvm/IR/Argument.h" |
86 | #include "llvm/IR/BasicBlock.h" |
87 | #include "llvm/IR/CFG.h" |
88 | #include "llvm/IR/Constant.h" |
89 | #include "llvm/IR/ConstantRange.h" |
90 | #include "llvm/IR/Constants.h" |
91 | #include "llvm/IR/DataLayout.h" |
92 | #include "llvm/IR/DerivedTypes.h" |
93 | #include "llvm/IR/Dominators.h" |
94 | #include "llvm/IR/Function.h" |
95 | #include "llvm/IR/GlobalAlias.h" |
96 | #include "llvm/IR/GlobalValue.h" |
97 | #include "llvm/IR/InstIterator.h" |
98 | #include "llvm/IR/InstrTypes.h" |
99 | #include "llvm/IR/Instruction.h" |
100 | #include "llvm/IR/Instructions.h" |
101 | #include "llvm/IR/IntrinsicInst.h" |
102 | #include "llvm/IR/Intrinsics.h" |
103 | #include "llvm/IR/LLVMContext.h" |
104 | #include "llvm/IR/Operator.h" |
105 | #include "llvm/IR/PatternMatch.h" |
106 | #include "llvm/IR/Type.h" |
107 | #include "llvm/IR/Use.h" |
108 | #include "llvm/IR/User.h" |
109 | #include "llvm/IR/Value.h" |
110 | #include "llvm/IR/Verifier.h" |
111 | #include "llvm/InitializePasses.h" |
112 | #include "llvm/Pass.h" |
113 | #include "llvm/Support/Casting.h" |
114 | #include "llvm/Support/CommandLine.h" |
115 | #include "llvm/Support/Compiler.h" |
116 | #include "llvm/Support/Debug.h" |
117 | #include "llvm/Support/ErrorHandling.h" |
118 | #include "llvm/Support/InterleavedRange.h" |
119 | #include "llvm/Support/KnownBits.h" |
120 | #include "llvm/Support/SaveAndRestore.h" |
121 | #include "llvm/Support/raw_ostream.h" |
122 | #include <algorithm> |
123 | #include <cassert> |
124 | #include <climits> |
125 | #include <cstdint> |
126 | #include <cstdlib> |
127 | #include <map> |
128 | #include <memory> |
129 | #include <numeric> |
130 | #include <optional> |
131 | #include <tuple> |
132 | #include <utility> |
133 | #include <vector> |
134 | |
135 | using namespace llvm; |
136 | using namespace PatternMatch; |
137 | using namespace SCEVPatternMatch; |
138 | |
139 | #define DEBUG_TYPE "scalar-evolution" |
140 | |
141 | STATISTIC(NumExitCountsComputed, |
142 | "Number of loop exits with predictable exit counts" ); |
143 | STATISTIC(NumExitCountsNotComputed, |
144 | "Number of loop exits without predictable exit counts" ); |
145 | STATISTIC(NumBruteForceTripCountsComputed, |
146 | "Number of loops with trip counts computed by force" ); |
147 | |
148 | #ifdef EXPENSIVE_CHECKS |
149 | bool llvm::VerifySCEV = true; |
150 | #else |
151 | bool llvm::VerifySCEV = false; |
152 | #endif |
153 | |
154 | static cl::opt<unsigned> |
155 | MaxBruteForceIterations("scalar-evolution-max-iterations" , cl::ReallyHidden, |
156 | cl::desc("Maximum number of iterations SCEV will " |
157 | "symbolically execute a constant " |
158 | "derived loop" ), |
159 | cl::init(Val: 100)); |
160 | |
161 | static cl::opt<bool, true> VerifySCEVOpt( |
162 | "verify-scev" , cl::Hidden, cl::location(L&: VerifySCEV), |
163 | cl::desc("Verify ScalarEvolution's backedge taken counts (slow)" )); |
164 | static cl::opt<bool> VerifySCEVStrict( |
165 | "verify-scev-strict" , cl::Hidden, |
166 | cl::desc("Enable stricter verification with -verify-scev is passed" )); |
167 | |
168 | static cl::opt<bool> VerifyIR( |
169 | "scev-verify-ir" , cl::Hidden, |
170 | cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)" ), |
171 | cl::init(Val: false)); |
172 | |
173 | static cl::opt<unsigned> MulOpsInlineThreshold( |
174 | "scev-mulops-inline-threshold" , cl::Hidden, |
175 | cl::desc("Threshold for inlining multiplication operands into a SCEV" ), |
176 | cl::init(Val: 32)); |
177 | |
178 | static cl::opt<unsigned> AddOpsInlineThreshold( |
179 | "scev-addops-inline-threshold" , cl::Hidden, |
180 | cl::desc("Threshold for inlining addition operands into a SCEV" ), |
181 | cl::init(Val: 500)); |
182 | |
183 | static cl::opt<unsigned> MaxSCEVCompareDepth( |
184 | "scalar-evolution-max-scev-compare-depth" , cl::Hidden, |
185 | cl::desc("Maximum depth of recursive SCEV complexity comparisons" ), |
186 | cl::init(Val: 32)); |
187 | |
188 | static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( |
189 | "scalar-evolution-max-scev-operations-implication-depth" , cl::Hidden, |
190 | cl::desc("Maximum depth of recursive SCEV operations implication analysis" ), |
191 | cl::init(Val: 2)); |
192 | |
193 | static cl::opt<unsigned> MaxValueCompareDepth( |
194 | "scalar-evolution-max-value-compare-depth" , cl::Hidden, |
195 | cl::desc("Maximum depth of recursive value complexity comparisons" ), |
196 | cl::init(Val: 2)); |
197 | |
198 | static cl::opt<unsigned> |
199 | MaxArithDepth("scalar-evolution-max-arith-depth" , cl::Hidden, |
200 | cl::desc("Maximum depth of recursive arithmetics" ), |
201 | cl::init(Val: 32)); |
202 | |
203 | static cl::opt<unsigned> MaxConstantEvolvingDepth( |
204 | "scalar-evolution-max-constant-evolving-depth" , cl::Hidden, |
205 | cl::desc("Maximum depth of recursive constant evolving" ), cl::init(Val: 32)); |
206 | |
207 | static cl::opt<unsigned> |
208 | MaxCastDepth("scalar-evolution-max-cast-depth" , cl::Hidden, |
209 | cl::desc("Maximum depth of recursive SExt/ZExt/Trunc" ), |
210 | cl::init(Val: 8)); |
211 | |
212 | static cl::opt<unsigned> |
213 | MaxAddRecSize("scalar-evolution-max-add-rec-size" , cl::Hidden, |
214 | cl::desc("Max coefficients in AddRec during evolving" ), |
215 | cl::init(Val: 8)); |
216 | |
217 | static cl::opt<unsigned> |
218 | HugeExprThreshold("scalar-evolution-huge-expr-threshold" , cl::Hidden, |
219 | cl::desc("Size of the expression which is considered huge" ), |
220 | cl::init(Val: 4096)); |
221 | |
222 | static cl::opt<unsigned> RangeIterThreshold( |
223 | "scev-range-iter-threshold" , cl::Hidden, |
224 | cl::desc("Threshold for switching to iteratively computing SCEV ranges" ), |
225 | cl::init(Val: 32)); |
226 | |
227 | static cl::opt<unsigned> MaxLoopGuardCollectionDepth( |
228 | "scalar-evolution-max-loop-guard-collection-depth" , cl::Hidden, |
229 | cl::desc("Maximum depth for recursive loop guard collection" ), cl::init(Val: 1)); |
230 | |
231 | static cl::opt<bool> |
232 | ClassifyExpressions("scalar-evolution-classify-expressions" , |
233 | cl::Hidden, cl::init(Val: true), |
234 | cl::desc("When printing analysis, include information on every instruction" )); |
235 | |
236 | static cl::opt<bool> UseExpensiveRangeSharpening( |
237 | "scalar-evolution-use-expensive-range-sharpening" , cl::Hidden, |
238 | cl::init(Val: false), |
239 | cl::desc("Use more powerful methods of sharpening expression ranges. May " |
240 | "be costly in terms of compile time" )); |
241 | |
242 | static cl::opt<unsigned> MaxPhiSCCAnalysisSize( |
243 | "scalar-evolution-max-scc-analysis-depth" , cl::Hidden, |
244 | cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " |
245 | "Phi strongly connected components" ), |
246 | cl::init(Val: 8)); |
247 | |
248 | static cl::opt<bool> |
249 | EnableFiniteLoopControl("scalar-evolution-finite-loop" , cl::Hidden, |
250 | cl::desc("Handle <= and >= in finite loops" ), |
251 | cl::init(Val: true)); |
252 | |
253 | static cl::opt<bool> UseContextForNoWrapFlagInference( |
254 | "scalar-evolution-use-context-for-no-wrap-flag-strenghening" , cl::Hidden, |
255 | cl::desc("Infer nuw/nsw flags using context where suitable" ), |
256 | cl::init(Val: true)); |
257 | |
258 | //===----------------------------------------------------------------------===// |
259 | // SCEV class definitions |
260 | //===----------------------------------------------------------------------===// |
261 | |
262 | //===----------------------------------------------------------------------===// |
263 | // Implementation of the SCEV class. |
264 | // |
265 | |
266 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
267 | LLVM_DUMP_METHOD void SCEV::dump() const { |
268 | print(dbgs()); |
269 | dbgs() << '\n'; |
270 | } |
271 | #endif |
272 | |
273 | void SCEV::print(raw_ostream &OS) const { |
274 | switch (getSCEVType()) { |
275 | case scConstant: |
276 | cast<SCEVConstant>(Val: this)->getValue()->printAsOperand(O&: OS, PrintType: false); |
277 | return; |
278 | case scVScale: |
279 | OS << "vscale" ; |
280 | return; |
281 | case scPtrToInt: { |
282 | const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(Val: this); |
283 | const SCEV *Op = PtrToInt->getOperand(); |
284 | OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " |
285 | << *PtrToInt->getType() << ")" ; |
286 | return; |
287 | } |
288 | case scTruncate: { |
289 | const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Val: this); |
290 | const SCEV *Op = Trunc->getOperand(); |
291 | OS << "(trunc " << *Op->getType() << " " << *Op << " to " |
292 | << *Trunc->getType() << ")" ; |
293 | return; |
294 | } |
295 | case scZeroExtend: { |
296 | const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(Val: this); |
297 | const SCEV *Op = ZExt->getOperand(); |
298 | OS << "(zext " << *Op->getType() << " " << *Op << " to " |
299 | << *ZExt->getType() << ")" ; |
300 | return; |
301 | } |
302 | case scSignExtend: { |
303 | const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(Val: this); |
304 | const SCEV *Op = SExt->getOperand(); |
305 | OS << "(sext " << *Op->getType() << " " << *Op << " to " |
306 | << *SExt->getType() << ")" ; |
307 | return; |
308 | } |
309 | case scAddRecExpr: { |
310 | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(Val: this); |
311 | OS << "{" << *AR->getOperand(i: 0); |
312 | for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) |
313 | OS << ",+," << *AR->getOperand(i); |
314 | OS << "}<" ; |
315 | if (AR->hasNoUnsignedWrap()) |
316 | OS << "nuw><" ; |
317 | if (AR->hasNoSignedWrap()) |
318 | OS << "nsw><" ; |
319 | if (AR->hasNoSelfWrap() && |
320 | !AR->getNoWrapFlags(Mask: (NoWrapFlags)(FlagNUW | FlagNSW))) |
321 | OS << "nw><" ; |
322 | AR->getLoop()->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
323 | OS << ">" ; |
324 | return; |
325 | } |
326 | case scAddExpr: |
327 | case scMulExpr: |
328 | case scUMaxExpr: |
329 | case scSMaxExpr: |
330 | case scUMinExpr: |
331 | case scSMinExpr: |
332 | case scSequentialUMinExpr: { |
333 | const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(Val: this); |
334 | const char *OpStr = nullptr; |
335 | switch (NAry->getSCEVType()) { |
336 | case scAddExpr: OpStr = " + " ; break; |
337 | case scMulExpr: OpStr = " * " ; break; |
338 | case scUMaxExpr: OpStr = " umax " ; break; |
339 | case scSMaxExpr: OpStr = " smax " ; break; |
340 | case scUMinExpr: |
341 | OpStr = " umin " ; |
342 | break; |
343 | case scSMinExpr: |
344 | OpStr = " smin " ; |
345 | break; |
346 | case scSequentialUMinExpr: |
347 | OpStr = " umin_seq " ; |
348 | break; |
349 | default: |
350 | llvm_unreachable("There are no other nary expression types." ); |
351 | } |
352 | OS << "(" |
353 | << llvm::interleaved(R: llvm::make_pointee_range(Range: NAry->operands()), Separator: OpStr) |
354 | << ")" ; |
355 | switch (NAry->getSCEVType()) { |
356 | case scAddExpr: |
357 | case scMulExpr: |
358 | if (NAry->hasNoUnsignedWrap()) |
359 | OS << "<nuw>" ; |
360 | if (NAry->hasNoSignedWrap()) |
361 | OS << "<nsw>" ; |
362 | break; |
363 | default: |
364 | // Nothing to print for other nary expressions. |
365 | break; |
366 | } |
367 | return; |
368 | } |
369 | case scUDivExpr: { |
370 | const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(Val: this); |
371 | OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")" ; |
372 | return; |
373 | } |
374 | case scUnknown: |
375 | cast<SCEVUnknown>(Val: this)->getValue()->printAsOperand(O&: OS, PrintType: false); |
376 | return; |
377 | case scCouldNotCompute: |
378 | OS << "***COULDNOTCOMPUTE***" ; |
379 | return; |
380 | } |
381 | llvm_unreachable("Unknown SCEV kind!" ); |
382 | } |
383 | |
384 | Type *SCEV::getType() const { |
385 | switch (getSCEVType()) { |
386 | case scConstant: |
387 | return cast<SCEVConstant>(Val: this)->getType(); |
388 | case scVScale: |
389 | return cast<SCEVVScale>(Val: this)->getType(); |
390 | case scPtrToInt: |
391 | case scTruncate: |
392 | case scZeroExtend: |
393 | case scSignExtend: |
394 | return cast<SCEVCastExpr>(Val: this)->getType(); |
395 | case scAddRecExpr: |
396 | return cast<SCEVAddRecExpr>(Val: this)->getType(); |
397 | case scMulExpr: |
398 | return cast<SCEVMulExpr>(Val: this)->getType(); |
399 | case scUMaxExpr: |
400 | case scSMaxExpr: |
401 | case scUMinExpr: |
402 | case scSMinExpr: |
403 | return cast<SCEVMinMaxExpr>(Val: this)->getType(); |
404 | case scSequentialUMinExpr: |
405 | return cast<SCEVSequentialMinMaxExpr>(Val: this)->getType(); |
406 | case scAddExpr: |
407 | return cast<SCEVAddExpr>(Val: this)->getType(); |
408 | case scUDivExpr: |
409 | return cast<SCEVUDivExpr>(Val: this)->getType(); |
410 | case scUnknown: |
411 | return cast<SCEVUnknown>(Val: this)->getType(); |
412 | case scCouldNotCompute: |
413 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
414 | } |
415 | llvm_unreachable("Unknown SCEV kind!" ); |
416 | } |
417 | |
418 | ArrayRef<const SCEV *> SCEV::operands() const { |
419 | switch (getSCEVType()) { |
420 | case scConstant: |
421 | case scVScale: |
422 | case scUnknown: |
423 | return {}; |
424 | case scPtrToInt: |
425 | case scTruncate: |
426 | case scZeroExtend: |
427 | case scSignExtend: |
428 | return cast<SCEVCastExpr>(Val: this)->operands(); |
429 | case scAddRecExpr: |
430 | case scAddExpr: |
431 | case scMulExpr: |
432 | case scUMaxExpr: |
433 | case scSMaxExpr: |
434 | case scUMinExpr: |
435 | case scSMinExpr: |
436 | case scSequentialUMinExpr: |
437 | return cast<SCEVNAryExpr>(Val: this)->operands(); |
438 | case scUDivExpr: |
439 | return cast<SCEVUDivExpr>(Val: this)->operands(); |
440 | case scCouldNotCompute: |
441 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
442 | } |
443 | llvm_unreachable("Unknown SCEV kind!" ); |
444 | } |
445 | |
446 | bool SCEV::isZero() const { return match(S: this, P: m_scev_Zero()); } |
447 | |
448 | bool SCEV::isOne() const { return match(S: this, P: m_scev_One()); } |
449 | |
450 | bool SCEV::isAllOnesValue() const { return match(S: this, P: m_scev_AllOnes()); } |
451 | |
452 | bool SCEV::isNonConstantNegative() const { |
453 | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: this); |
454 | if (!Mul) return false; |
455 | |
456 | // If there is a constant factor, it will be first. |
457 | const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: Mul->getOperand(i: 0)); |
458 | if (!SC) return false; |
459 | |
460 | // Return true if the value is negative, this matches things like (-42 * V). |
461 | return SC->getAPInt().isNegative(); |
462 | } |
463 | |
464 | SCEVCouldNotCompute::SCEVCouldNotCompute() : |
465 | SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} |
466 | |
467 | bool SCEVCouldNotCompute::classof(const SCEV *S) { |
468 | return S->getSCEVType() == scCouldNotCompute; |
469 | } |
470 | |
471 | const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { |
472 | FoldingSetNodeID ID; |
473 | ID.AddInteger(I: scConstant); |
474 | ID.AddPointer(Ptr: V); |
475 | void *IP = nullptr; |
476 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S; |
477 | SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(Allocator&: SCEVAllocator), V); |
478 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
479 | return S; |
480 | } |
481 | |
482 | const SCEV *ScalarEvolution::getConstant(const APInt &Val) { |
483 | return getConstant(V: ConstantInt::get(Context&: getContext(), V: Val)); |
484 | } |
485 | |
486 | const SCEV * |
487 | ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { |
488 | IntegerType *ITy = cast<IntegerType>(Val: getEffectiveSCEVType(Ty)); |
489 | return getConstant(V: ConstantInt::get(Ty: ITy, V, IsSigned: isSigned)); |
490 | } |
491 | |
492 | const SCEV *ScalarEvolution::getVScale(Type *Ty) { |
493 | FoldingSetNodeID ID; |
494 | ID.AddInteger(I: scVScale); |
495 | ID.AddPointer(Ptr: Ty); |
496 | void *IP = nullptr; |
497 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) |
498 | return S; |
499 | SCEV *S = new (SCEVAllocator) SCEVVScale(ID.Intern(Allocator&: SCEVAllocator), Ty); |
500 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
501 | return S; |
502 | } |
503 | |
504 | const SCEV *ScalarEvolution::getElementCount(Type *Ty, ElementCount EC) { |
505 | const SCEV *Res = getConstant(Ty, V: EC.getKnownMinValue()); |
506 | if (EC.isScalable()) |
507 | Res = getMulExpr(LHS: Res, RHS: getVScale(Ty)); |
508 | return Res; |
509 | } |
510 | |
511 | SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, |
512 | const SCEV *op, Type *ty) |
513 | : SCEV(ID, SCEVTy, computeExpressionSize(Args: op)), Op(op), Ty(ty) {} |
514 | |
515 | SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, |
516 | Type *ITy) |
517 | : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { |
518 | assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && |
519 | "Must be a non-bit-width-changing pointer-to-integer cast!" ); |
520 | } |
521 | |
522 | SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, |
523 | SCEVTypes SCEVTy, const SCEV *op, |
524 | Type *ty) |
525 | : SCEVCastExpr(ID, SCEVTy, op, ty) {} |
526 | |
527 | SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, |
528 | Type *ty) |
529 | : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { |
530 | assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
531 | "Cannot truncate non-integer value!" ); |
532 | } |
533 | |
534 | SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, |
535 | const SCEV *op, Type *ty) |
536 | : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { |
537 | assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
538 | "Cannot zero extend non-integer value!" ); |
539 | } |
540 | |
541 | SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, |
542 | const SCEV *op, Type *ty) |
543 | : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { |
544 | assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
545 | "Cannot sign extend non-integer value!" ); |
546 | } |
547 | |
548 | void SCEVUnknown::deleted() { |
549 | // Clear this SCEVUnknown from various maps. |
550 | SE->forgetMemoizedResults(SCEVs: this); |
551 | |
552 | // Remove this SCEVUnknown from the uniquing map. |
553 | SE->UniqueSCEVs.RemoveNode(N: this); |
554 | |
555 | // Release the value. |
556 | setValPtr(nullptr); |
557 | } |
558 | |
559 | void SCEVUnknown::allUsesReplacedWith(Value *New) { |
560 | // Clear this SCEVUnknown from various maps. |
561 | SE->forgetMemoizedResults(SCEVs: this); |
562 | |
563 | // Remove this SCEVUnknown from the uniquing map. |
564 | SE->UniqueSCEVs.RemoveNode(N: this); |
565 | |
566 | // Replace the value pointer in case someone is still using this SCEVUnknown. |
567 | setValPtr(New); |
568 | } |
569 | |
570 | //===----------------------------------------------------------------------===// |
571 | // SCEV Utilities |
572 | //===----------------------------------------------------------------------===// |
573 | |
574 | /// Compare the two values \p LV and \p RV in terms of their "complexity" where |
575 | /// "complexity" is a partial (and somewhat ad-hoc) relation used to order |
576 | /// operands in SCEV expressions. |
577 | static int CompareValueComplexity(const LoopInfo *const LI, Value *LV, |
578 | Value *RV, unsigned Depth) { |
579 | if (Depth > MaxValueCompareDepth) |
580 | return 0; |
581 | |
582 | // Order pointer values after integer values. This helps SCEVExpander form |
583 | // GEPs. |
584 | bool LIsPointer = LV->getType()->isPointerTy(), |
585 | RIsPointer = RV->getType()->isPointerTy(); |
586 | if (LIsPointer != RIsPointer) |
587 | return (int)LIsPointer - (int)RIsPointer; |
588 | |
589 | // Compare getValueID values. |
590 | unsigned LID = LV->getValueID(), RID = RV->getValueID(); |
591 | if (LID != RID) |
592 | return (int)LID - (int)RID; |
593 | |
594 | // Sort arguments by their position. |
595 | if (const auto *LA = dyn_cast<Argument>(Val: LV)) { |
596 | const auto *RA = cast<Argument>(Val: RV); |
597 | unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); |
598 | return (int)LArgNo - (int)RArgNo; |
599 | } |
600 | |
601 | if (const auto *LGV = dyn_cast<GlobalValue>(Val: LV)) { |
602 | const auto *RGV = cast<GlobalValue>(Val: RV); |
603 | |
604 | const auto IsGVNameSemantic = [&](const GlobalValue *GV) { |
605 | auto LT = GV->getLinkage(); |
606 | return !(GlobalValue::isPrivateLinkage(Linkage: LT) || |
607 | GlobalValue::isInternalLinkage(Linkage: LT)); |
608 | }; |
609 | |
610 | // Use the names to distinguish the two values, but only if the |
611 | // names are semantically important. |
612 | if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) |
613 | return LGV->getName().compare(RHS: RGV->getName()); |
614 | } |
615 | |
616 | // For instructions, compare their loop depth, and their operand count. This |
617 | // is pretty loose. |
618 | if (const auto *LInst = dyn_cast<Instruction>(Val: LV)) { |
619 | const auto *RInst = cast<Instruction>(Val: RV); |
620 | |
621 | // Compare loop depths. |
622 | const BasicBlock *LParent = LInst->getParent(), |
623 | *RParent = RInst->getParent(); |
624 | if (LParent != RParent) { |
625 | unsigned LDepth = LI->getLoopDepth(BB: LParent), |
626 | RDepth = LI->getLoopDepth(BB: RParent); |
627 | if (LDepth != RDepth) |
628 | return (int)LDepth - (int)RDepth; |
629 | } |
630 | |
631 | // Compare the number of operands. |
632 | unsigned LNumOps = LInst->getNumOperands(), |
633 | RNumOps = RInst->getNumOperands(); |
634 | if (LNumOps != RNumOps) |
635 | return (int)LNumOps - (int)RNumOps; |
636 | |
637 | for (unsigned Idx : seq(Size: LNumOps)) { |
638 | int Result = CompareValueComplexity(LI, LV: LInst->getOperand(i: Idx), |
639 | RV: RInst->getOperand(i: Idx), Depth: Depth + 1); |
640 | if (Result != 0) |
641 | return Result; |
642 | } |
643 | } |
644 | |
645 | return 0; |
646 | } |
647 | |
648 | // Return negative, zero, or positive, if LHS is less than, equal to, or greater |
649 | // than RHS, respectively. A three-way result allows recursive comparisons to be |
650 | // more efficient. |
651 | // If the max analysis depth was reached, return std::nullopt, assuming we do |
652 | // not know if they are equivalent for sure. |
653 | static std::optional<int> |
654 | CompareSCEVComplexity(const LoopInfo *const LI, const SCEV *LHS, |
655 | const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { |
656 | // Fast-path: SCEVs are uniqued so we can do a quick equality check. |
657 | if (LHS == RHS) |
658 | return 0; |
659 | |
660 | // Primarily, sort the SCEVs by their getSCEVType(). |
661 | SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); |
662 | if (LType != RType) |
663 | return (int)LType - (int)RType; |
664 | |
665 | if (Depth > MaxSCEVCompareDepth) |
666 | return std::nullopt; |
667 | |
668 | // Aside from the getSCEVType() ordering, the particular ordering |
669 | // isn't very important except that it's beneficial to be consistent, |
670 | // so that (a + b) and (b + a) don't end up as different expressions. |
671 | switch (LType) { |
672 | case scUnknown: { |
673 | const SCEVUnknown *LU = cast<SCEVUnknown>(Val: LHS); |
674 | const SCEVUnknown *RU = cast<SCEVUnknown>(Val: RHS); |
675 | |
676 | int X = |
677 | CompareValueComplexity(LI, LV: LU->getValue(), RV: RU->getValue(), Depth: Depth + 1); |
678 | return X; |
679 | } |
680 | |
681 | case scConstant: { |
682 | const SCEVConstant *LC = cast<SCEVConstant>(Val: LHS); |
683 | const SCEVConstant *RC = cast<SCEVConstant>(Val: RHS); |
684 | |
685 | // Compare constant values. |
686 | const APInt &LA = LC->getAPInt(); |
687 | const APInt &RA = RC->getAPInt(); |
688 | unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); |
689 | if (LBitWidth != RBitWidth) |
690 | return (int)LBitWidth - (int)RBitWidth; |
691 | return LA.ult(RHS: RA) ? -1 : 1; |
692 | } |
693 | |
694 | case scVScale: { |
695 | const auto *LTy = cast<IntegerType>(Val: cast<SCEVVScale>(Val: LHS)->getType()); |
696 | const auto *RTy = cast<IntegerType>(Val: cast<SCEVVScale>(Val: RHS)->getType()); |
697 | return LTy->getBitWidth() - RTy->getBitWidth(); |
698 | } |
699 | |
700 | case scAddRecExpr: { |
701 | const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(Val: LHS); |
702 | const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(Val: RHS); |
703 | |
704 | // There is always a dominance between two recs that are used by one SCEV, |
705 | // so we can safely sort recs by loop header dominance. We require such |
706 | // order in getAddExpr. |
707 | const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); |
708 | if (LLoop != RLoop) { |
709 | const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); |
710 | assert(LHead != RHead && "Two loops share the same header?" ); |
711 | if (DT.dominates(A: LHead, B: RHead)) |
712 | return 1; |
713 | assert(DT.dominates(RHead, LHead) && |
714 | "No dominance between recurrences used by one SCEV?" ); |
715 | return -1; |
716 | } |
717 | |
718 | [[fallthrough]]; |
719 | } |
720 | |
721 | case scTruncate: |
722 | case scZeroExtend: |
723 | case scSignExtend: |
724 | case scPtrToInt: |
725 | case scAddExpr: |
726 | case scMulExpr: |
727 | case scUDivExpr: |
728 | case scSMaxExpr: |
729 | case scUMaxExpr: |
730 | case scSMinExpr: |
731 | case scUMinExpr: |
732 | case scSequentialUMinExpr: { |
733 | ArrayRef<const SCEV *> LOps = LHS->operands(); |
734 | ArrayRef<const SCEV *> ROps = RHS->operands(); |
735 | |
736 | // Lexicographically compare n-ary-like expressions. |
737 | unsigned LNumOps = LOps.size(), RNumOps = ROps.size(); |
738 | if (LNumOps != RNumOps) |
739 | return (int)LNumOps - (int)RNumOps; |
740 | |
741 | for (unsigned i = 0; i != LNumOps; ++i) { |
742 | auto X = CompareSCEVComplexity(LI, LHS: LOps[i], RHS: ROps[i], DT, Depth: Depth + 1); |
743 | if (X != 0) |
744 | return X; |
745 | } |
746 | return 0; |
747 | } |
748 | |
749 | case scCouldNotCompute: |
750 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
751 | } |
752 | llvm_unreachable("Unknown SCEV kind!" ); |
753 | } |
754 | |
755 | /// Given a list of SCEV objects, order them by their complexity, and group |
756 | /// objects of the same complexity together by value. When this routine is |
757 | /// finished, we know that any duplicates in the vector are consecutive and that |
758 | /// complexity is monotonically increasing. |
759 | /// |
760 | /// Note that we go take special precautions to ensure that we get deterministic |
761 | /// results from this routine. In other words, we don't want the results of |
762 | /// this to depend on where the addresses of various SCEV objects happened to |
763 | /// land in memory. |
764 | static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, |
765 | LoopInfo *LI, DominatorTree &DT) { |
766 | if (Ops.size() < 2) return; // Noop |
767 | |
768 | // Whether LHS has provably less complexity than RHS. |
769 | auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { |
770 | auto Complexity = CompareSCEVComplexity(LI, LHS, RHS, DT); |
771 | return Complexity && *Complexity < 0; |
772 | }; |
773 | if (Ops.size() == 2) { |
774 | // This is the common case, which also happens to be trivially simple. |
775 | // Special case it. |
776 | const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; |
777 | if (IsLessComplex(RHS, LHS)) |
778 | std::swap(a&: LHS, b&: RHS); |
779 | return; |
780 | } |
781 | |
782 | // Do the rough sort by complexity. |
783 | llvm::stable_sort(Range&: Ops, C: [&](const SCEV *LHS, const SCEV *RHS) { |
784 | return IsLessComplex(LHS, RHS); |
785 | }); |
786 | |
787 | // Now that we are sorted by complexity, group elements of the same |
788 | // complexity. Note that this is, at worst, N^2, but the vector is likely to |
789 | // be extremely short in practice. Note that we take this approach because we |
790 | // do not want to depend on the addresses of the objects we are grouping. |
791 | for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { |
792 | const SCEV *S = Ops[i]; |
793 | unsigned Complexity = S->getSCEVType(); |
794 | |
795 | // If there are any objects of the same complexity and same value as this |
796 | // one, group them. |
797 | for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { |
798 | if (Ops[j] == S) { // Found a duplicate. |
799 | // Move it to immediately after i'th element. |
800 | std::swap(a&: Ops[i+1], b&: Ops[j]); |
801 | ++i; // no need to rescan it. |
802 | if (i == e-2) return; // Done! |
803 | } |
804 | } |
805 | } |
806 | } |
807 | |
808 | /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at |
809 | /// least HugeExprThreshold nodes). |
810 | static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { |
811 | return any_of(Range&: Ops, P: [](const SCEV *S) { |
812 | return S->getExpressionSize() >= HugeExprThreshold; |
813 | }); |
814 | } |
815 | |
816 | /// Performs a number of common optimizations on the passed \p Ops. If the |
817 | /// whole expression reduces down to a single operand, it will be returned. |
818 | /// |
819 | /// The following optimizations are performed: |
820 | /// * Fold constants using the \p Fold function. |
821 | /// * Remove identity constants satisfying \p IsIdentity. |
822 | /// * If a constant satisfies \p IsAbsorber, return it. |
823 | /// * Sort operands by complexity. |
824 | template <typename FoldT, typename IsIdentityT, typename IsAbsorberT> |
825 | static const SCEV * |
826 | constantFoldAndGroupOps(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, |
827 | SmallVectorImpl<const SCEV *> &Ops, FoldT Fold, |
828 | IsIdentityT IsIdentity, IsAbsorberT IsAbsorber) { |
829 | const SCEVConstant *Folded = nullptr; |
830 | for (unsigned Idx = 0; Idx < Ops.size();) { |
831 | const SCEV *Op = Ops[Idx]; |
832 | if (const auto *C = dyn_cast<SCEVConstant>(Val: Op)) { |
833 | if (!Folded) |
834 | Folded = C; |
835 | else |
836 | Folded = cast<SCEVConstant>( |
837 | SE.getConstant(Fold(Folded->getAPInt(), C->getAPInt()))); |
838 | Ops.erase(CI: Ops.begin() + Idx); |
839 | continue; |
840 | } |
841 | ++Idx; |
842 | } |
843 | |
844 | if (Ops.empty()) { |
845 | assert(Folded && "Must have folded value" ); |
846 | return Folded; |
847 | } |
848 | |
849 | if (Folded && IsAbsorber(Folded->getAPInt())) |
850 | return Folded; |
851 | |
852 | GroupByComplexity(Ops, LI: &LI, DT); |
853 | if (Folded && !IsIdentity(Folded->getAPInt())) |
854 | Ops.insert(I: Ops.begin(), Elt: Folded); |
855 | |
856 | return Ops.size() == 1 ? Ops[0] : nullptr; |
857 | } |
858 | |
859 | //===----------------------------------------------------------------------===// |
860 | // Simple SCEV method implementations |
861 | //===----------------------------------------------------------------------===// |
862 | |
863 | /// Compute BC(It, K). The result has width W. Assume, K > 0. |
864 | static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, |
865 | ScalarEvolution &SE, |
866 | Type *ResultTy) { |
867 | // Handle the simplest case efficiently. |
868 | if (K == 1) |
869 | return SE.getTruncateOrZeroExtend(V: It, Ty: ResultTy); |
870 | |
871 | // We are using the following formula for BC(It, K): |
872 | // |
873 | // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! |
874 | // |
875 | // Suppose, W is the bitwidth of the return value. We must be prepared for |
876 | // overflow. Hence, we must assure that the result of our computation is |
877 | // equal to the accurate one modulo 2^W. Unfortunately, division isn't |
878 | // safe in modular arithmetic. |
879 | // |
880 | // However, this code doesn't use exactly that formula; the formula it uses |
881 | // is something like the following, where T is the number of factors of 2 in |
882 | // K! (i.e. trailing zeros in the binary representation of K!), and ^ is |
883 | // exponentiation: |
884 | // |
885 | // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) |
886 | // |
887 | // This formula is trivially equivalent to the previous formula. However, |
888 | // this formula can be implemented much more efficiently. The trick is that |
889 | // K! / 2^T is odd, and exact division by an odd number *is* safe in modular |
890 | // arithmetic. To do exact division in modular arithmetic, all we have |
891 | // to do is multiply by the inverse. Therefore, this step can be done at |
892 | // width W. |
893 | // |
894 | // The next issue is how to safely do the division by 2^T. The way this |
895 | // is done is by doing the multiplication step at a width of at least W + T |
896 | // bits. This way, the bottom W+T bits of the product are accurate. Then, |
897 | // when we perform the division by 2^T (which is equivalent to a right shift |
898 | // by T), the bottom W bits are accurate. Extra bits are okay; they'll get |
899 | // truncated out after the division by 2^T. |
900 | // |
901 | // In comparison to just directly using the first formula, this technique |
902 | // is much more efficient; using the first formula requires W * K bits, |
903 | // but this formula less than W + K bits. Also, the first formula requires |
904 | // a division step, whereas this formula only requires multiplies and shifts. |
905 | // |
906 | // It doesn't matter whether the subtraction step is done in the calculation |
907 | // width or the input iteration count's width; if the subtraction overflows, |
908 | // the result must be zero anyway. We prefer here to do it in the width of |
909 | // the induction variable because it helps a lot for certain cases; CodeGen |
910 | // isn't smart enough to ignore the overflow, which leads to much less |
911 | // efficient code if the width of the subtraction is wider than the native |
912 | // register width. |
913 | // |
914 | // (It's possible to not widen at all by pulling out factors of 2 before |
915 | // the multiplication; for example, K=2 can be calculated as |
916 | // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires |
917 | // extra arithmetic, so it's not an obvious win, and it gets |
918 | // much more complicated for K > 3.) |
919 | |
920 | // Protection from insane SCEVs; this bound is conservative, |
921 | // but it probably doesn't matter. |
922 | if (K > 1000) |
923 | return SE.getCouldNotCompute(); |
924 | |
925 | unsigned W = SE.getTypeSizeInBits(Ty: ResultTy); |
926 | |
927 | // Calculate K! / 2^T and T; we divide out the factors of two before |
928 | // multiplying for calculating K! / 2^T to avoid overflow. |
929 | // Other overflow doesn't matter because we only care about the bottom |
930 | // W bits of the result. |
931 | APInt OddFactorial(W, 1); |
932 | unsigned T = 1; |
933 | for (unsigned i = 3; i <= K; ++i) { |
934 | unsigned TwoFactors = countr_zero(Val: i); |
935 | T += TwoFactors; |
936 | OddFactorial *= (i >> TwoFactors); |
937 | } |
938 | |
939 | // We need at least W + T bits for the multiplication step |
940 | unsigned CalculationBits = W + T; |
941 | |
942 | // Calculate 2^T, at width T+W. |
943 | APInt DivFactor = APInt::getOneBitSet(numBits: CalculationBits, BitNo: T); |
944 | |
945 | // Calculate the multiplicative inverse of K! / 2^T; |
946 | // this multiplication factor will perform the exact division by |
947 | // K! / 2^T. |
948 | APInt MultiplyFactor = OddFactorial.multiplicativeInverse(); |
949 | |
950 | // Calculate the product, at width T+W |
951 | IntegerType *CalculationTy = IntegerType::get(C&: SE.getContext(), |
952 | NumBits: CalculationBits); |
953 | const SCEV *Dividend = SE.getTruncateOrZeroExtend(V: It, Ty: CalculationTy); |
954 | for (unsigned i = 1; i != K; ++i) { |
955 | const SCEV *S = SE.getMinusSCEV(LHS: It, RHS: SE.getConstant(Ty: It->getType(), V: i)); |
956 | Dividend = SE.getMulExpr(LHS: Dividend, |
957 | RHS: SE.getTruncateOrZeroExtend(V: S, Ty: CalculationTy)); |
958 | } |
959 | |
960 | // Divide by 2^T |
961 | const SCEV *DivResult = SE.getUDivExpr(LHS: Dividend, RHS: SE.getConstant(Val: DivFactor)); |
962 | |
963 | // Truncate the result, and divide by K! / 2^T. |
964 | |
965 | return SE.getMulExpr(LHS: SE.getConstant(Val: MultiplyFactor), |
966 | RHS: SE.getTruncateOrZeroExtend(V: DivResult, Ty: ResultTy)); |
967 | } |
968 | |
969 | /// Return the value of this chain of recurrences at the specified iteration |
970 | /// number. We can evaluate this recurrence by multiplying each element in the |
971 | /// chain by the binomial coefficient corresponding to it. In other words, we |
972 | /// can evaluate {A,+,B,+,C,+,D} as: |
973 | /// |
974 | /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) |
975 | /// |
976 | /// where BC(It, k) stands for binomial coefficient. |
977 | const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, |
978 | ScalarEvolution &SE) const { |
979 | return evaluateAtIteration(Operands: operands(), It, SE); |
980 | } |
981 | |
982 | const SCEV * |
983 | SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, |
984 | const SCEV *It, ScalarEvolution &SE) { |
985 | assert(Operands.size() > 0); |
986 | const SCEV *Result = Operands[0]; |
987 | for (unsigned i = 1, e = Operands.size(); i != e; ++i) { |
988 | // The computation is correct in the face of overflow provided that the |
989 | // multiplication is performed _after_ the evaluation of the binomial |
990 | // coefficient. |
991 | const SCEV *Coeff = BinomialCoefficient(It, K: i, SE, ResultTy: Result->getType()); |
992 | if (isa<SCEVCouldNotCompute>(Val: Coeff)) |
993 | return Coeff; |
994 | |
995 | Result = SE.getAddExpr(LHS: Result, RHS: SE.getMulExpr(LHS: Operands[i], RHS: Coeff)); |
996 | } |
997 | return Result; |
998 | } |
999 | |
1000 | //===----------------------------------------------------------------------===// |
1001 | // SCEV Expression folder implementations |
1002 | //===----------------------------------------------------------------------===// |
1003 | |
1004 | const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, |
1005 | unsigned Depth) { |
1006 | assert(Depth <= 1 && |
1007 | "getLosslessPtrToIntExpr() should self-recurse at most once." ); |
1008 | |
1009 | // We could be called with an integer-typed operands during SCEV rewrites. |
1010 | // Since the operand is an integer already, just perform zext/trunc/self cast. |
1011 | if (!Op->getType()->isPointerTy()) |
1012 | return Op; |
1013 | |
1014 | // What would be an ID for such a SCEV cast expression? |
1015 | FoldingSetNodeID ID; |
1016 | ID.AddInteger(I: scPtrToInt); |
1017 | ID.AddPointer(Ptr: Op); |
1018 | |
1019 | void *IP = nullptr; |
1020 | |
1021 | // Is there already an expression for such a cast? |
1022 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) |
1023 | return S; |
1024 | |
1025 | // It isn't legal for optimizations to construct new ptrtoint expressions |
1026 | // for non-integral pointers. |
1027 | if (getDataLayout().isNonIntegralPointerType(Ty: Op->getType())) |
1028 | return getCouldNotCompute(); |
1029 | |
1030 | Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); |
1031 | |
1032 | // We can only trivially model ptrtoint if SCEV's effective (integer) type |
1033 | // is sufficiently wide to represent all possible pointer values. |
1034 | // We could theoretically teach SCEV to truncate wider pointers, but |
1035 | // that isn't implemented for now. |
1036 | if (getDataLayout().getTypeSizeInBits(Ty: getEffectiveSCEVType(Ty: Op->getType())) != |
1037 | getDataLayout().getTypeSizeInBits(Ty: IntPtrTy)) |
1038 | return getCouldNotCompute(); |
1039 | |
1040 | // If not, is this expression something we can't reduce any further? |
1041 | if (auto *U = dyn_cast<SCEVUnknown>(Val: Op)) { |
1042 | // Perform some basic constant folding. If the operand of the ptr2int cast |
1043 | // is a null pointer, don't create a ptr2int SCEV expression (that will be |
1044 | // left as-is), but produce a zero constant. |
1045 | // NOTE: We could handle a more general case, but lack motivational cases. |
1046 | if (isa<ConstantPointerNull>(Val: U->getValue())) |
1047 | return getZero(Ty: IntPtrTy); |
1048 | |
1049 | // Create an explicit cast node. |
1050 | // We can reuse the existing insert position since if we get here, |
1051 | // we won't have made any changes which would invalidate it. |
1052 | SCEV *S = new (SCEVAllocator) |
1053 | SCEVPtrToIntExpr(ID.Intern(Allocator&: SCEVAllocator), Op, IntPtrTy); |
1054 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
1055 | registerUser(User: S, Ops: Op); |
1056 | return S; |
1057 | } |
1058 | |
1059 | assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " |
1060 | "non-SCEVUnknown's." ); |
1061 | |
1062 | // Otherwise, we've got some expression that is more complex than just a |
1063 | // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an |
1064 | // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown |
1065 | // only, and the expressions must otherwise be integer-typed. |
1066 | // So sink the cast down to the SCEVUnknown's. |
1067 | |
1068 | /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, |
1069 | /// which computes a pointer-typed value, and rewrites the whole expression |
1070 | /// tree so that *all* the computations are done on integers, and the only |
1071 | /// pointer-typed operands in the expression are SCEVUnknown. |
1072 | class SCEVPtrToIntSinkingRewriter |
1073 | : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { |
1074 | using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; |
1075 | |
1076 | public: |
1077 | SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} |
1078 | |
1079 | static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { |
1080 | SCEVPtrToIntSinkingRewriter Rewriter(SE); |
1081 | return Rewriter.visit(S: Scev); |
1082 | } |
1083 | |
1084 | const SCEV *visit(const SCEV *S) { |
1085 | Type *STy = S->getType(); |
1086 | // If the expression is not pointer-typed, just keep it as-is. |
1087 | if (!STy->isPointerTy()) |
1088 | return S; |
1089 | // Else, recursively sink the cast down into it. |
1090 | return Base::visit(S); |
1091 | } |
1092 | |
1093 | const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { |
1094 | SmallVector<const SCEV *, 2> Operands; |
1095 | bool Changed = false; |
1096 | for (const auto *Op : Expr->operands()) { |
1097 | Operands.push_back(Elt: visit(S: Op)); |
1098 | Changed |= Op != Operands.back(); |
1099 | } |
1100 | return !Changed ? Expr : SE.getAddExpr(Ops&: Operands, Flags: Expr->getNoWrapFlags()); |
1101 | } |
1102 | |
1103 | const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { |
1104 | SmallVector<const SCEV *, 2> Operands; |
1105 | bool Changed = false; |
1106 | for (const auto *Op : Expr->operands()) { |
1107 | Operands.push_back(Elt: visit(S: Op)); |
1108 | Changed |= Op != Operands.back(); |
1109 | } |
1110 | return !Changed ? Expr : SE.getMulExpr(Ops&: Operands, Flags: Expr->getNoWrapFlags()); |
1111 | } |
1112 | |
1113 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
1114 | assert(Expr->getType()->isPointerTy() && |
1115 | "Should only reach pointer-typed SCEVUnknown's." ); |
1116 | return SE.getLosslessPtrToIntExpr(Op: Expr, /*Depth=*/1); |
1117 | } |
1118 | }; |
1119 | |
1120 | // And actually perform the cast sinking. |
1121 | const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Scev: Op, SE&: *this); |
1122 | assert(IntOp->getType()->isIntegerTy() && |
1123 | "We must have succeeded in sinking the cast, " |
1124 | "and ending up with an integer-typed expression!" ); |
1125 | return IntOp; |
1126 | } |
1127 | |
1128 | const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { |
1129 | assert(Ty->isIntegerTy() && "Target type must be an integer type!" ); |
1130 | |
1131 | const SCEV *IntOp = getLosslessPtrToIntExpr(Op); |
1132 | if (isa<SCEVCouldNotCompute>(Val: IntOp)) |
1133 | return IntOp; |
1134 | |
1135 | return getTruncateOrZeroExtend(V: IntOp, Ty); |
1136 | } |
1137 | |
1138 | const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, |
1139 | unsigned Depth) { |
1140 | assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && |
1141 | "This is not a truncating conversion!" ); |
1142 | assert(isSCEVable(Ty) && |
1143 | "This is not a conversion to a SCEVable type!" ); |
1144 | assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!" ); |
1145 | Ty = getEffectiveSCEVType(Ty); |
1146 | |
1147 | FoldingSetNodeID ID; |
1148 | ID.AddInteger(I: scTruncate); |
1149 | ID.AddPointer(Ptr: Op); |
1150 | ID.AddPointer(Ptr: Ty); |
1151 | void *IP = nullptr; |
1152 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S; |
1153 | |
1154 | // Fold if the operand is constant. |
1155 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: Op)) |
1156 | return getConstant( |
1157 | V: cast<ConstantInt>(Val: ConstantExpr::getTrunc(C: SC->getValue(), Ty))); |
1158 | |
1159 | // trunc(trunc(x)) --> trunc(x) |
1160 | if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Val: Op)) |
1161 | return getTruncateExpr(Op: ST->getOperand(), Ty, Depth: Depth + 1); |
1162 | |
1163 | // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing |
1164 | if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Val: Op)) |
1165 | return getTruncateOrSignExtend(V: SS->getOperand(), Ty, Depth: Depth + 1); |
1166 | |
1167 | // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing |
1168 | if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Val: Op)) |
1169 | return getTruncateOrZeroExtend(V: SZ->getOperand(), Ty, Depth: Depth + 1); |
1170 | |
1171 | if (Depth > MaxCastDepth) { |
1172 | SCEV *S = |
1173 | new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(Allocator&: SCEVAllocator), Op, Ty); |
1174 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
1175 | registerUser(User: S, Ops: Op); |
1176 | return S; |
1177 | } |
1178 | |
1179 | // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and |
1180 | // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), |
1181 | // if after transforming we have at most one truncate, not counting truncates |
1182 | // that replace other casts. |
1183 | if (isa<SCEVAddExpr>(Val: Op) || isa<SCEVMulExpr>(Val: Op)) { |
1184 | auto *CommOp = cast<SCEVCommutativeExpr>(Val: Op); |
1185 | SmallVector<const SCEV *, 4> Operands; |
1186 | unsigned numTruncs = 0; |
1187 | for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; |
1188 | ++i) { |
1189 | const SCEV *S = getTruncateExpr(Op: CommOp->getOperand(i), Ty, Depth: Depth + 1); |
1190 | if (!isa<SCEVIntegralCastExpr>(Val: CommOp->getOperand(i)) && |
1191 | isa<SCEVTruncateExpr>(Val: S)) |
1192 | numTruncs++; |
1193 | Operands.push_back(Elt: S); |
1194 | } |
1195 | if (numTruncs < 2) { |
1196 | if (isa<SCEVAddExpr>(Val: Op)) |
1197 | return getAddExpr(Ops&: Operands); |
1198 | if (isa<SCEVMulExpr>(Val: Op)) |
1199 | return getMulExpr(Ops&: Operands); |
1200 | llvm_unreachable("Unexpected SCEV type for Op." ); |
1201 | } |
1202 | // Although we checked in the beginning that ID is not in the cache, it is |
1203 | // possible that during recursion and different modification ID was inserted |
1204 | // into the cache. So if we find it, just return it. |
1205 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) |
1206 | return S; |
1207 | } |
1208 | |
1209 | // If the input value is a chrec scev, truncate the chrec's operands. |
1210 | if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: Op)) { |
1211 | SmallVector<const SCEV *, 4> Operands; |
1212 | for (const SCEV *Op : AddRec->operands()) |
1213 | Operands.push_back(Elt: getTruncateExpr(Op, Ty, Depth: Depth + 1)); |
1214 | return getAddRecExpr(Operands, L: AddRec->getLoop(), Flags: SCEV::FlagAnyWrap); |
1215 | } |
1216 | |
1217 | // Return zero if truncating to known zeros. |
1218 | uint32_t MinTrailingZeros = getMinTrailingZeros(S: Op); |
1219 | if (MinTrailingZeros >= getTypeSizeInBits(Ty)) |
1220 | return getZero(Ty); |
1221 | |
1222 | // The cast wasn't folded; create an explicit cast node. We can reuse |
1223 | // the existing insert position since if we get here, we won't have |
1224 | // made any changes which would invalidate it. |
1225 | SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(Allocator&: SCEVAllocator), |
1226 | Op, Ty); |
1227 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
1228 | registerUser(User: S, Ops: Op); |
1229 | return S; |
1230 | } |
1231 | |
1232 | // Get the limit of a recurrence such that incrementing by Step cannot cause |
1233 | // signed overflow as long as the value of the recurrence within the |
1234 | // loop does not exceed this limit before incrementing. |
1235 | static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, |
1236 | ICmpInst::Predicate *Pred, |
1237 | ScalarEvolution *SE) { |
1238 | unsigned BitWidth = SE->getTypeSizeInBits(Ty: Step->getType()); |
1239 | if (SE->isKnownPositive(S: Step)) { |
1240 | *Pred = ICmpInst::ICMP_SLT; |
1241 | return SE->getConstant(Val: APInt::getSignedMinValue(numBits: BitWidth) - |
1242 | SE->getSignedRangeMax(S: Step)); |
1243 | } |
1244 | if (SE->isKnownNegative(S: Step)) { |
1245 | *Pred = ICmpInst::ICMP_SGT; |
1246 | return SE->getConstant(Val: APInt::getSignedMaxValue(numBits: BitWidth) - |
1247 | SE->getSignedRangeMin(S: Step)); |
1248 | } |
1249 | return nullptr; |
1250 | } |
1251 | |
1252 | // Get the limit of a recurrence such that incrementing by Step cannot cause |
1253 | // unsigned overflow as long as the value of the recurrence within the loop does |
1254 | // not exceed this limit before incrementing. |
1255 | static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, |
1256 | ICmpInst::Predicate *Pred, |
1257 | ScalarEvolution *SE) { |
1258 | unsigned BitWidth = SE->getTypeSizeInBits(Ty: Step->getType()); |
1259 | *Pred = ICmpInst::ICMP_ULT; |
1260 | |
1261 | return SE->getConstant(Val: APInt::getMinValue(numBits: BitWidth) - |
1262 | SE->getUnsignedRangeMax(S: Step)); |
1263 | } |
1264 | |
1265 | namespace { |
1266 | |
1267 | struct ExtendOpTraitsBase { |
1268 | typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, |
1269 | unsigned); |
1270 | }; |
1271 | |
1272 | // Used to make code generic over signed and unsigned overflow. |
1273 | template <typename ExtendOp> struct ExtendOpTraits { |
1274 | // Members present: |
1275 | // |
1276 | // static const SCEV::NoWrapFlags WrapType; |
1277 | // |
1278 | // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; |
1279 | // |
1280 | // static const SCEV *getOverflowLimitForStep(const SCEV *Step, |
1281 | // ICmpInst::Predicate *Pred, |
1282 | // ScalarEvolution *SE); |
1283 | }; |
1284 | |
1285 | template <> |
1286 | struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { |
1287 | static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; |
1288 | |
1289 | static const GetExtendExprTy GetExtendExpr; |
1290 | |
1291 | static const SCEV *getOverflowLimitForStep(const SCEV *Step, |
1292 | ICmpInst::Predicate *Pred, |
1293 | ScalarEvolution *SE) { |
1294 | return getSignedOverflowLimitForStep(Step, Pred, SE); |
1295 | } |
1296 | }; |
1297 | |
1298 | const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< |
1299 | SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; |
1300 | |
1301 | template <> |
1302 | struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { |
1303 | static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; |
1304 | |
1305 | static const GetExtendExprTy GetExtendExpr; |
1306 | |
1307 | static const SCEV *getOverflowLimitForStep(const SCEV *Step, |
1308 | ICmpInst::Predicate *Pred, |
1309 | ScalarEvolution *SE) { |
1310 | return getUnsignedOverflowLimitForStep(Step, Pred, SE); |
1311 | } |
1312 | }; |
1313 | |
1314 | const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< |
1315 | SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; |
1316 | |
1317 | } // end anonymous namespace |
1318 | |
1319 | // The recurrence AR has been shown to have no signed/unsigned wrap or something |
1320 | // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as |
1321 | // easily prove NSW/NUW for its preincrement or postincrement sibling. This |
1322 | // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + |
1323 | // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the |
1324 | // expression "Step + sext/zext(PreIncAR)" is congruent with |
1325 | // "sext/zext(PostIncAR)" |
1326 | template <typename ExtendOpTy> |
1327 | static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, |
1328 | ScalarEvolution *SE, unsigned Depth) { |
1329 | auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; |
1330 | auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; |
1331 | |
1332 | const Loop *L = AR->getLoop(); |
1333 | const SCEV *Start = AR->getStart(); |
1334 | const SCEV *Step = AR->getStepRecurrence(SE&: *SE); |
1335 | |
1336 | // Check for a simple looking step prior to loop entry. |
1337 | const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Val: Start); |
1338 | if (!SA) |
1339 | return nullptr; |
1340 | |
1341 | // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV |
1342 | // subtraction is expensive. For this purpose, perform a quick and dirty |
1343 | // difference, by checking for Step in the operand list. Note, that |
1344 | // SA might have repeated ops, like %a + %a + ..., so only remove one. |
1345 | SmallVector<const SCEV *, 4> DiffOps(SA->operands()); |
1346 | for (auto It = DiffOps.begin(); It != DiffOps.end(); ++It) |
1347 | if (*It == Step) { |
1348 | DiffOps.erase(CI: It); |
1349 | break; |
1350 | } |
1351 | |
1352 | if (DiffOps.size() == SA->getNumOperands()) |
1353 | return nullptr; |
1354 | |
1355 | // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + |
1356 | // `Step`: |
1357 | |
1358 | // 1. NSW/NUW flags on the step increment. |
1359 | auto PreStartFlags = |
1360 | ScalarEvolution::maskFlags(Flags: SA->getNoWrapFlags(), Mask: SCEV::FlagNUW); |
1361 | const SCEV *PreStart = SE->getAddExpr(Ops&: DiffOps, Flags: PreStartFlags); |
1362 | const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( |
1363 | Val: SE->getAddRecExpr(Start: PreStart, Step, L, Flags: SCEV::FlagAnyWrap)); |
1364 | |
1365 | // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies |
1366 | // "S+X does not sign/unsign-overflow". |
1367 | // |
1368 | |
1369 | const SCEV *BECount = SE->getBackedgeTakenCount(L); |
1370 | if (PreAR && PreAR->getNoWrapFlags(Mask: WrapType) && |
1371 | !isa<SCEVCouldNotCompute>(Val: BECount) && SE->isKnownPositive(S: BECount)) |
1372 | return PreStart; |
1373 | |
1374 | // 2. Direct overflow check on the step operation's expression. |
1375 | unsigned BitWidth = SE->getTypeSizeInBits(Ty: AR->getType()); |
1376 | Type *WideTy = IntegerType::get(C&: SE->getContext(), NumBits: BitWidth * 2); |
1377 | const SCEV *OperandExtendedStart = |
1378 | SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), |
1379 | (SE->*GetExtendExpr)(Step, WideTy, Depth)); |
1380 | if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { |
1381 | if (PreAR && AR->getNoWrapFlags(Mask: WrapType)) { |
1382 | // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW |
1383 | // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then |
1384 | // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. |
1385 | SE->setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(PreAR), Flags: WrapType); |
1386 | } |
1387 | return PreStart; |
1388 | } |
1389 | |
1390 | // 3. Loop precondition. |
1391 | ICmpInst::Predicate Pred; |
1392 | const SCEV *OverflowLimit = |
1393 | ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); |
1394 | |
1395 | if (OverflowLimit && |
1396 | SE->isLoopEntryGuardedByCond(L, Pred, LHS: PreStart, RHS: OverflowLimit)) |
1397 | return PreStart; |
1398 | |
1399 | return nullptr; |
1400 | } |
1401 | |
1402 | // Get the normalized zero or sign extended expression for this AddRec's Start. |
1403 | template <typename ExtendOpTy> |
1404 | static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, |
1405 | ScalarEvolution *SE, |
1406 | unsigned Depth) { |
1407 | auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; |
1408 | |
1409 | const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); |
1410 | if (!PreStart) |
1411 | return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); |
1412 | |
1413 | return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(SE&: *SE), Ty, |
1414 | Depth), |
1415 | (SE->*GetExtendExpr)(PreStart, Ty, Depth)); |
1416 | } |
1417 | |
1418 | // Try to prove away overflow by looking at "nearby" add recurrences. A |
1419 | // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it |
1420 | // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. |
1421 | // |
1422 | // Formally: |
1423 | // |
1424 | // {S,+,X} == {S-T,+,X} + T |
1425 | // => Ext({S,+,X}) == Ext({S-T,+,X} + T) |
1426 | // |
1427 | // If ({S-T,+,X} + T) does not overflow ... (1) |
1428 | // |
1429 | // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) |
1430 | // |
1431 | // If {S-T,+,X} does not overflow ... (2) |
1432 | // |
1433 | // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) |
1434 | // == {Ext(S-T)+Ext(T),+,Ext(X)} |
1435 | // |
1436 | // If (S-T)+T does not overflow ... (3) |
1437 | // |
1438 | // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} |
1439 | // == {Ext(S),+,Ext(X)} == LHS |
1440 | // |
1441 | // Thus, if (1), (2) and (3) are true for some T, then |
1442 | // Ext({S,+,X}) == {Ext(S),+,Ext(X)} |
1443 | // |
1444 | // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) |
1445 | // does not overflow" restricted to the 0th iteration. Therefore we only need |
1446 | // to check for (1) and (2). |
1447 | // |
1448 | // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T |
1449 | // is `Delta` (defined below). |
1450 | template <typename ExtendOpTy> |
1451 | bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, |
1452 | const SCEV *Step, |
1453 | const Loop *L) { |
1454 | auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; |
1455 | |
1456 | // We restrict `Start` to a constant to prevent SCEV from spending too much |
1457 | // time here. It is correct (but more expensive) to continue with a |
1458 | // non-constant `Start` and do a general SCEV subtraction to compute |
1459 | // `PreStart` below. |
1460 | const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Val: Start); |
1461 | if (!StartC) |
1462 | return false; |
1463 | |
1464 | APInt StartAI = StartC->getAPInt(); |
1465 | |
1466 | for (unsigned Delta : {-2, -1, 1, 2}) { |
1467 | const SCEV *PreStart = getConstant(Val: StartAI - Delta); |
1468 | |
1469 | FoldingSetNodeID ID; |
1470 | ID.AddInteger(I: scAddRecExpr); |
1471 | ID.AddPointer(Ptr: PreStart); |
1472 | ID.AddPointer(Ptr: Step); |
1473 | ID.AddPointer(Ptr: L); |
1474 | void *IP = nullptr; |
1475 | const auto *PreAR = |
1476 | static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)); |
1477 | |
1478 | // Give up if we don't already have the add recurrence we need because |
1479 | // actually constructing an add recurrence is relatively expensive. |
1480 | if (PreAR && PreAR->getNoWrapFlags(Mask: WrapType)) { // proves (2) |
1481 | const SCEV *DeltaS = getConstant(Ty: StartC->getType(), V: Delta); |
1482 | ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; |
1483 | const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( |
1484 | DeltaS, &Pred, this); |
1485 | if (Limit && isKnownPredicate(Pred, LHS: PreAR, RHS: Limit)) // proves (1) |
1486 | return true; |
1487 | } |
1488 | } |
1489 | |
1490 | return false; |
1491 | } |
1492 | |
1493 | // Finds an integer D for an expression (C + x + y + ...) such that the top |
1494 | // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or |
1495 | // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is |
1496 | // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and |
1497 | // the (C + x + y + ...) expression is \p WholeAddExpr. |
1498 | static APInt (ScalarEvolution &SE, |
1499 | const SCEVConstant *ConstantTerm, |
1500 | const SCEVAddExpr *WholeAddExpr) { |
1501 | const APInt &C = ConstantTerm->getAPInt(); |
1502 | const unsigned BitWidth = C.getBitWidth(); |
1503 | // Find number of trailing zeros of (x + y + ...) w/o the C first: |
1504 | uint32_t TZ = BitWidth; |
1505 | for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) |
1506 | TZ = std::min(a: TZ, b: SE.getMinTrailingZeros(S: WholeAddExpr->getOperand(i: I))); |
1507 | if (TZ) { |
1508 | // Set D to be as many least significant bits of C as possible while still |
1509 | // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: |
1510 | return TZ < BitWidth ? C.trunc(width: TZ).zext(width: BitWidth) : C; |
1511 | } |
1512 | return APInt(BitWidth, 0); |
1513 | } |
1514 | |
1515 | // Finds an integer D for an affine AddRec expression {C,+,x} such that the top |
1516 | // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the |
1517 | // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p |
1518 | // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. |
1519 | static APInt (ScalarEvolution &SE, |
1520 | const APInt &ConstantStart, |
1521 | const SCEV *Step) { |
1522 | const unsigned BitWidth = ConstantStart.getBitWidth(); |
1523 | const uint32_t TZ = SE.getMinTrailingZeros(S: Step); |
1524 | if (TZ) |
1525 | return TZ < BitWidth ? ConstantStart.trunc(width: TZ).zext(width: BitWidth) |
1526 | : ConstantStart; |
1527 | return APInt(BitWidth, 0); |
1528 | } |
1529 | |
1530 | static void insertFoldCacheEntry( |
1531 | const ScalarEvolution::FoldID &ID, const SCEV *S, |
1532 | DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache, |
1533 | DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>> |
1534 | &FoldCacheUser) { |
1535 | auto I = FoldCache.insert(KV: {ID, S}); |
1536 | if (!I.second) { |
1537 | // Remove FoldCacheUser entry for ID when replacing an existing FoldCache |
1538 | // entry. |
1539 | auto &UserIDs = FoldCacheUser[I.first->second]; |
1540 | assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs" ); |
1541 | for (unsigned I = 0; I != UserIDs.size(); ++I) |
1542 | if (UserIDs[I] == ID) { |
1543 | std::swap(a&: UserIDs[I], b&: UserIDs.back()); |
1544 | break; |
1545 | } |
1546 | UserIDs.pop_back(); |
1547 | I.first->second = S; |
1548 | } |
1549 | FoldCacheUser[S].push_back(Elt: ID); |
1550 | } |
1551 | |
1552 | const SCEV * |
1553 | ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { |
1554 | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
1555 | "This is not an extending conversion!" ); |
1556 | assert(isSCEVable(Ty) && |
1557 | "This is not a conversion to a SCEVable type!" ); |
1558 | assert(!Op->getType()->isPointerTy() && "Can't extend pointer!" ); |
1559 | Ty = getEffectiveSCEVType(Ty); |
1560 | |
1561 | FoldID ID(scZeroExtend, Op, Ty); |
1562 | auto Iter = FoldCache.find(Val: ID); |
1563 | if (Iter != FoldCache.end()) |
1564 | return Iter->second; |
1565 | |
1566 | const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth); |
1567 | if (!isa<SCEVZeroExtendExpr>(Val: S)) |
1568 | insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); |
1569 | return S; |
1570 | } |
1571 | |
1572 | const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty, |
1573 | unsigned Depth) { |
1574 | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
1575 | "This is not an extending conversion!" ); |
1576 | assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!" ); |
1577 | assert(!Op->getType()->isPointerTy() && "Can't extend pointer!" ); |
1578 | |
1579 | // Fold if the operand is constant. |
1580 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: Op)) |
1581 | return getConstant(Val: SC->getAPInt().zext(width: getTypeSizeInBits(Ty))); |
1582 | |
1583 | // zext(zext(x)) --> zext(x) |
1584 | if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Val: Op)) |
1585 | return getZeroExtendExpr(Op: SZ->getOperand(), Ty, Depth: Depth + 1); |
1586 | |
1587 | // Before doing any expensive analysis, check to see if we've already |
1588 | // computed a SCEV for this Op and Ty. |
1589 | FoldingSetNodeID ID; |
1590 | ID.AddInteger(I: scZeroExtend); |
1591 | ID.AddPointer(Ptr: Op); |
1592 | ID.AddPointer(Ptr: Ty); |
1593 | void *IP = nullptr; |
1594 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S; |
1595 | if (Depth > MaxCastDepth) { |
1596 | SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(Allocator&: SCEVAllocator), |
1597 | Op, Ty); |
1598 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
1599 | registerUser(User: S, Ops: Op); |
1600 | return S; |
1601 | } |
1602 | |
1603 | // zext(trunc(x)) --> zext(x) or x or trunc(x) |
1604 | if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Val: Op)) { |
1605 | // It's possible the bits taken off by the truncate were all zero bits. If |
1606 | // so, we should be able to simplify this further. |
1607 | const SCEV *X = ST->getOperand(); |
1608 | ConstantRange CR = getUnsignedRange(S: X); |
1609 | unsigned TruncBits = getTypeSizeInBits(Ty: ST->getType()); |
1610 | unsigned NewBits = getTypeSizeInBits(Ty); |
1611 | if (CR.truncate(BitWidth: TruncBits).zeroExtend(BitWidth: NewBits).contains( |
1612 | CR: CR.zextOrTrunc(BitWidth: NewBits))) |
1613 | return getTruncateOrZeroExtend(V: X, Ty, Depth); |
1614 | } |
1615 | |
1616 | // If the input value is a chrec scev, and we can prove that the value |
1617 | // did not overflow the old, smaller, value, we can zero extend all of the |
1618 | // operands (often constants). This allows analysis of something like |
1619 | // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } |
1620 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Op)) |
1621 | if (AR->isAffine()) { |
1622 | const SCEV *Start = AR->getStart(); |
1623 | const SCEV *Step = AR->getStepRecurrence(SE&: *this); |
1624 | unsigned BitWidth = getTypeSizeInBits(Ty: AR->getType()); |
1625 | const Loop *L = AR->getLoop(); |
1626 | |
1627 | // If we have special knowledge that this addrec won't overflow, |
1628 | // we don't need to do any further analysis. |
1629 | if (AR->hasNoUnsignedWrap()) { |
1630 | Start = |
1631 | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1); |
1632 | Step = getZeroExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
1633 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
1634 | } |
1635 | |
1636 | // Check whether the backedge-taken count is SCEVCouldNotCompute. |
1637 | // Note that this serves two purposes: It filters out loops that are |
1638 | // simply not analyzable, and it covers the case where this code is |
1639 | // being called from within backedge-taken count analysis, such that |
1640 | // attempting to ask for the backedge-taken count would likely result |
1641 | // in infinite recursion. In the later case, the analysis code will |
1642 | // cope with a conservative value, and it will take care to purge |
1643 | // that value once it has finished. |
1644 | const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); |
1645 | if (!isa<SCEVCouldNotCompute>(Val: MaxBECount)) { |
1646 | // Manually compute the final value for AR, checking for overflow. |
1647 | |
1648 | // Check whether the backedge-taken count can be losslessly casted to |
1649 | // the addrec's type. The count is always unsigned. |
1650 | const SCEV *CastedMaxBECount = |
1651 | getTruncateOrZeroExtend(V: MaxBECount, Ty: Start->getType(), Depth); |
1652 | const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( |
1653 | V: CastedMaxBECount, Ty: MaxBECount->getType(), Depth); |
1654 | if (MaxBECount == RecastedMaxBECount) { |
1655 | Type *WideTy = IntegerType::get(C&: getContext(), NumBits: BitWidth * 2); |
1656 | // Check whether Start+Step*MaxBECount has no unsigned overflow. |
1657 | const SCEV *ZMul = getMulExpr(LHS: CastedMaxBECount, RHS: Step, |
1658 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
1659 | const SCEV *ZAdd = getZeroExtendExpr(Op: getAddExpr(LHS: Start, RHS: ZMul, |
1660 | Flags: SCEV::FlagAnyWrap, |
1661 | Depth: Depth + 1), |
1662 | Ty: WideTy, Depth: Depth + 1); |
1663 | const SCEV *WideStart = getZeroExtendExpr(Op: Start, Ty: WideTy, Depth: Depth + 1); |
1664 | const SCEV *WideMaxBECount = |
1665 | getZeroExtendExpr(Op: CastedMaxBECount, Ty: WideTy, Depth: Depth + 1); |
1666 | const SCEV *OperandExtendedAdd = |
1667 | getAddExpr(LHS: WideStart, |
1668 | RHS: getMulExpr(LHS: WideMaxBECount, |
1669 | RHS: getZeroExtendExpr(Op: Step, Ty: WideTy, Depth: Depth + 1), |
1670 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1), |
1671 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
1672 | if (ZAdd == OperandExtendedAdd) { |
1673 | // Cache knowledge of AR NUW, which is propagated to this AddRec. |
1674 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNUW); |
1675 | // Return the expression with the addrec on the outside. |
1676 | Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, |
1677 | Depth: Depth + 1); |
1678 | Step = getZeroExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
1679 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
1680 | } |
1681 | // Similar to above, only this time treat the step value as signed. |
1682 | // This covers loops that count down. |
1683 | OperandExtendedAdd = |
1684 | getAddExpr(LHS: WideStart, |
1685 | RHS: getMulExpr(LHS: WideMaxBECount, |
1686 | RHS: getSignExtendExpr(Op: Step, Ty: WideTy, Depth: Depth + 1), |
1687 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1), |
1688 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
1689 | if (ZAdd == OperandExtendedAdd) { |
1690 | // Cache knowledge of AR NW, which is propagated to this AddRec. |
1691 | // Negative step causes unsigned wrap, but it still can't self-wrap. |
1692 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNW); |
1693 | // Return the expression with the addrec on the outside. |
1694 | Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, |
1695 | Depth: Depth + 1); |
1696 | Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
1697 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
1698 | } |
1699 | } |
1700 | } |
1701 | |
1702 | // Normally, in the cases we can prove no-overflow via a |
1703 | // backedge guarding condition, we can also compute a backedge |
1704 | // taken count for the loop. The exceptions are assumptions and |
1705 | // guards present in the loop -- SCEV is not great at exploiting |
1706 | // these to compute max backedge taken counts, but can still use |
1707 | // these to prove lack of overflow. Use this fact to avoid |
1708 | // doing extra work that may not pay off. |
1709 | if (!isa<SCEVCouldNotCompute>(Val: MaxBECount) || HasGuards || |
1710 | !AC.assumptions().empty()) { |
1711 | |
1712 | auto NewFlags = proveNoUnsignedWrapViaInduction(AR); |
1713 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: NewFlags); |
1714 | if (AR->hasNoUnsignedWrap()) { |
1715 | // Same as nuw case above - duplicated here to avoid a compile time |
1716 | // issue. It's not clear that the order of checks does matter, but |
1717 | // it's one of two issue possible causes for a change which was |
1718 | // reverted. Be conservative for the moment. |
1719 | Start = |
1720 | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1); |
1721 | Step = getZeroExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
1722 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
1723 | } |
1724 | |
1725 | // For a negative step, we can extend the operands iff doing so only |
1726 | // traverses values in the range zext([0,UINT_MAX]). |
1727 | if (isKnownNegative(S: Step)) { |
1728 | const SCEV *N = getConstant(Val: APInt::getMaxValue(numBits: BitWidth) - |
1729 | getSignedRangeMin(S: Step)); |
1730 | if (isLoopBackedgeGuardedByCond(L, Pred: ICmpInst::ICMP_UGT, LHS: AR, RHS: N) || |
1731 | isKnownOnEveryIteration(Pred: ICmpInst::ICMP_UGT, LHS: AR, RHS: N)) { |
1732 | // Cache knowledge of AR NW, which is propagated to this |
1733 | // AddRec. Negative step causes unsigned wrap, but it |
1734 | // still can't self-wrap. |
1735 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNW); |
1736 | // Return the expression with the addrec on the outside. |
1737 | Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, |
1738 | Depth: Depth + 1); |
1739 | Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
1740 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
1741 | } |
1742 | } |
1743 | } |
1744 | |
1745 | // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> |
1746 | // if D + (C - D + Step * n) could be proven to not unsigned wrap |
1747 | // where D maximizes the number of trailing zeros of (C - D + Step * n) |
1748 | if (const auto *SC = dyn_cast<SCEVConstant>(Val: Start)) { |
1749 | const APInt &C = SC->getAPInt(); |
1750 | const APInt &D = extractConstantWithoutWrapping(SE&: *this, ConstantStart: C, Step); |
1751 | if (D != 0) { |
1752 | const SCEV *SZExtD = getZeroExtendExpr(Op: getConstant(Val: D), Ty, Depth); |
1753 | const SCEV *SResidual = |
1754 | getAddRecExpr(Start: getConstant(Val: C - D), Step, L, Flags: AR->getNoWrapFlags()); |
1755 | const SCEV *SZExtR = getZeroExtendExpr(Op: SResidual, Ty, Depth: Depth + 1); |
1756 | return getAddExpr(LHS: SZExtD, RHS: SZExtR, |
1757 | Flags: (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
1758 | Depth: Depth + 1); |
1759 | } |
1760 | } |
1761 | |
1762 | if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { |
1763 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNUW); |
1764 | Start = |
1765 | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1); |
1766 | Step = getZeroExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
1767 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
1768 | } |
1769 | } |
1770 | |
1771 | // zext(A % B) --> zext(A) % zext(B) |
1772 | { |
1773 | const SCEV *LHS; |
1774 | const SCEV *RHS; |
1775 | if (matchURem(Expr: Op, LHS, RHS)) |
1776 | return getURemExpr(LHS: getZeroExtendExpr(Op: LHS, Ty, Depth: Depth + 1), |
1777 | RHS: getZeroExtendExpr(Op: RHS, Ty, Depth: Depth + 1)); |
1778 | } |
1779 | |
1780 | // zext(A / B) --> zext(A) / zext(B). |
1781 | if (auto *Div = dyn_cast<SCEVUDivExpr>(Val: Op)) |
1782 | return getUDivExpr(LHS: getZeroExtendExpr(Op: Div->getLHS(), Ty, Depth: Depth + 1), |
1783 | RHS: getZeroExtendExpr(Op: Div->getRHS(), Ty, Depth: Depth + 1)); |
1784 | |
1785 | if (auto *SA = dyn_cast<SCEVAddExpr>(Val: Op)) { |
1786 | // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> |
1787 | if (SA->hasNoUnsignedWrap()) { |
1788 | // If the addition does not unsign overflow then we can, by definition, |
1789 | // commute the zero extension with the addition operation. |
1790 | SmallVector<const SCEV *, 4> Ops; |
1791 | for (const auto *Op : SA->operands()) |
1792 | Ops.push_back(Elt: getZeroExtendExpr(Op, Ty, Depth: Depth + 1)); |
1793 | return getAddExpr(Ops, Flags: SCEV::FlagNUW, Depth: Depth + 1); |
1794 | } |
1795 | |
1796 | // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) |
1797 | // if D + (C - D + x + y + ...) could be proven to not unsigned wrap |
1798 | // where D maximizes the number of trailing zeros of (C - D + x + y + ...) |
1799 | // |
1800 | // Often address arithmetics contain expressions like |
1801 | // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). |
1802 | // This transformation is useful while proving that such expressions are |
1803 | // equal or differ by a small constant amount, see LoadStoreVectorizer pass. |
1804 | if (const auto *SC = dyn_cast<SCEVConstant>(Val: SA->getOperand(i: 0))) { |
1805 | const APInt &D = extractConstantWithoutWrapping(SE&: *this, ConstantTerm: SC, WholeAddExpr: SA); |
1806 | if (D != 0) { |
1807 | const SCEV *SZExtD = getZeroExtendExpr(Op: getConstant(Val: D), Ty, Depth); |
1808 | const SCEV *SResidual = |
1809 | getAddExpr(LHS: getConstant(Val: -D), RHS: SA, Flags: SCEV::FlagAnyWrap, Depth); |
1810 | const SCEV *SZExtR = getZeroExtendExpr(Op: SResidual, Ty, Depth: Depth + 1); |
1811 | return getAddExpr(LHS: SZExtD, RHS: SZExtR, |
1812 | Flags: (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
1813 | Depth: Depth + 1); |
1814 | } |
1815 | } |
1816 | } |
1817 | |
1818 | if (auto *SM = dyn_cast<SCEVMulExpr>(Val: Op)) { |
1819 | // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> |
1820 | if (SM->hasNoUnsignedWrap()) { |
1821 | // If the multiply does not unsign overflow then we can, by definition, |
1822 | // commute the zero extension with the multiply operation. |
1823 | SmallVector<const SCEV *, 4> Ops; |
1824 | for (const auto *Op : SM->operands()) |
1825 | Ops.push_back(Elt: getZeroExtendExpr(Op, Ty, Depth: Depth + 1)); |
1826 | return getMulExpr(Ops, Flags: SCEV::FlagNUW, Depth: Depth + 1); |
1827 | } |
1828 | |
1829 | // zext(2^K * (trunc X to iN)) to iM -> |
1830 | // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> |
1831 | // |
1832 | // Proof: |
1833 | // |
1834 | // zext(2^K * (trunc X to iN)) to iM |
1835 | // = zext((trunc X to iN) << K) to iM |
1836 | // = zext((trunc X to i{N-K}) << K)<nuw> to iM |
1837 | // (because shl removes the top K bits) |
1838 | // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM |
1839 | // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. |
1840 | // |
1841 | if (SM->getNumOperands() == 2) |
1842 | if (auto *MulLHS = dyn_cast<SCEVConstant>(Val: SM->getOperand(i: 0))) |
1843 | if (MulLHS->getAPInt().isPowerOf2()) |
1844 | if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(Val: SM->getOperand(i: 1))) { |
1845 | int NewTruncBits = getTypeSizeInBits(Ty: TruncRHS->getType()) - |
1846 | MulLHS->getAPInt().logBase2(); |
1847 | Type *NewTruncTy = IntegerType::get(C&: getContext(), NumBits: NewTruncBits); |
1848 | return getMulExpr( |
1849 | LHS: getZeroExtendExpr(Op: MulLHS, Ty), |
1850 | RHS: getZeroExtendExpr( |
1851 | Op: getTruncateExpr(Op: TruncRHS->getOperand(), Ty: NewTruncTy), Ty), |
1852 | Flags: SCEV::FlagNUW, Depth: Depth + 1); |
1853 | } |
1854 | } |
1855 | |
1856 | // zext(umin(x, y)) -> umin(zext(x), zext(y)) |
1857 | // zext(umax(x, y)) -> umax(zext(x), zext(y)) |
1858 | if (isa<SCEVUMinExpr>(Val: Op) || isa<SCEVUMaxExpr>(Val: Op)) { |
1859 | auto *MinMax = cast<SCEVMinMaxExpr>(Val: Op); |
1860 | SmallVector<const SCEV *, 4> Operands; |
1861 | for (auto *Operand : MinMax->operands()) |
1862 | Operands.push_back(Elt: getZeroExtendExpr(Op: Operand, Ty)); |
1863 | if (isa<SCEVUMinExpr>(Val: MinMax)) |
1864 | return getUMinExpr(Operands); |
1865 | return getUMaxExpr(Operands); |
1866 | } |
1867 | |
1868 | // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y)) |
1869 | if (auto *MinMax = dyn_cast<SCEVSequentialMinMaxExpr>(Val: Op)) { |
1870 | assert(isa<SCEVSequentialUMinExpr>(MinMax) && "Not supported!" ); |
1871 | SmallVector<const SCEV *, 4> Operands; |
1872 | for (auto *Operand : MinMax->operands()) |
1873 | Operands.push_back(Elt: getZeroExtendExpr(Op: Operand, Ty)); |
1874 | return getUMinExpr(Operands, /*Sequential*/ true); |
1875 | } |
1876 | |
1877 | // The cast wasn't folded; create an explicit cast node. |
1878 | // Recompute the insert position, as it may have been invalidated. |
1879 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S; |
1880 | SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(Allocator&: SCEVAllocator), |
1881 | Op, Ty); |
1882 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
1883 | registerUser(User: S, Ops: Op); |
1884 | return S; |
1885 | } |
1886 | |
1887 | const SCEV * |
1888 | ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { |
1889 | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
1890 | "This is not an extending conversion!" ); |
1891 | assert(isSCEVable(Ty) && |
1892 | "This is not a conversion to a SCEVable type!" ); |
1893 | assert(!Op->getType()->isPointerTy() && "Can't extend pointer!" ); |
1894 | Ty = getEffectiveSCEVType(Ty); |
1895 | |
1896 | FoldID ID(scSignExtend, Op, Ty); |
1897 | auto Iter = FoldCache.find(Val: ID); |
1898 | if (Iter != FoldCache.end()) |
1899 | return Iter->second; |
1900 | |
1901 | const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth); |
1902 | if (!isa<SCEVSignExtendExpr>(Val: S)) |
1903 | insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); |
1904 | return S; |
1905 | } |
1906 | |
1907 | const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty, |
1908 | unsigned Depth) { |
1909 | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
1910 | "This is not an extending conversion!" ); |
1911 | assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!" ); |
1912 | assert(!Op->getType()->isPointerTy() && "Can't extend pointer!" ); |
1913 | Ty = getEffectiveSCEVType(Ty); |
1914 | |
1915 | // Fold if the operand is constant. |
1916 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: Op)) |
1917 | return getConstant(Val: SC->getAPInt().sext(width: getTypeSizeInBits(Ty))); |
1918 | |
1919 | // sext(sext(x)) --> sext(x) |
1920 | if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Val: Op)) |
1921 | return getSignExtendExpr(Op: SS->getOperand(), Ty, Depth: Depth + 1); |
1922 | |
1923 | // sext(zext(x)) --> zext(x) |
1924 | if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Val: Op)) |
1925 | return getZeroExtendExpr(Op: SZ->getOperand(), Ty, Depth: Depth + 1); |
1926 | |
1927 | // Before doing any expensive analysis, check to see if we've already |
1928 | // computed a SCEV for this Op and Ty. |
1929 | FoldingSetNodeID ID; |
1930 | ID.AddInteger(I: scSignExtend); |
1931 | ID.AddPointer(Ptr: Op); |
1932 | ID.AddPointer(Ptr: Ty); |
1933 | void *IP = nullptr; |
1934 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S; |
1935 | // Limit recursion depth. |
1936 | if (Depth > MaxCastDepth) { |
1937 | SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(Allocator&: SCEVAllocator), |
1938 | Op, Ty); |
1939 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
1940 | registerUser(User: S, Ops: Op); |
1941 | return S; |
1942 | } |
1943 | |
1944 | // sext(trunc(x)) --> sext(x) or x or trunc(x) |
1945 | if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Val: Op)) { |
1946 | // It's possible the bits taken off by the truncate were all sign bits. If |
1947 | // so, we should be able to simplify this further. |
1948 | const SCEV *X = ST->getOperand(); |
1949 | ConstantRange CR = getSignedRange(S: X); |
1950 | unsigned TruncBits = getTypeSizeInBits(Ty: ST->getType()); |
1951 | unsigned NewBits = getTypeSizeInBits(Ty); |
1952 | if (CR.truncate(BitWidth: TruncBits).signExtend(BitWidth: NewBits).contains( |
1953 | CR: CR.sextOrTrunc(BitWidth: NewBits))) |
1954 | return getTruncateOrSignExtend(V: X, Ty, Depth); |
1955 | } |
1956 | |
1957 | if (auto *SA = dyn_cast<SCEVAddExpr>(Val: Op)) { |
1958 | // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> |
1959 | if (SA->hasNoSignedWrap()) { |
1960 | // If the addition does not sign overflow then we can, by definition, |
1961 | // commute the sign extension with the addition operation. |
1962 | SmallVector<const SCEV *, 4> Ops; |
1963 | for (const auto *Op : SA->operands()) |
1964 | Ops.push_back(Elt: getSignExtendExpr(Op, Ty, Depth: Depth + 1)); |
1965 | return getAddExpr(Ops, Flags: SCEV::FlagNSW, Depth: Depth + 1); |
1966 | } |
1967 | |
1968 | // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) |
1969 | // if D + (C - D + x + y + ...) could be proven to not signed wrap |
1970 | // where D maximizes the number of trailing zeros of (C - D + x + y + ...) |
1971 | // |
1972 | // For instance, this will bring two seemingly different expressions: |
1973 | // 1 + sext(5 + 20 * %x + 24 * %y) and |
1974 | // sext(6 + 20 * %x + 24 * %y) |
1975 | // to the same form: |
1976 | // 2 + sext(4 + 20 * %x + 24 * %y) |
1977 | if (const auto *SC = dyn_cast<SCEVConstant>(Val: SA->getOperand(i: 0))) { |
1978 | const APInt &D = extractConstantWithoutWrapping(SE&: *this, ConstantTerm: SC, WholeAddExpr: SA); |
1979 | if (D != 0) { |
1980 | const SCEV *SSExtD = getSignExtendExpr(Op: getConstant(Val: D), Ty, Depth); |
1981 | const SCEV *SResidual = |
1982 | getAddExpr(LHS: getConstant(Val: -D), RHS: SA, Flags: SCEV::FlagAnyWrap, Depth); |
1983 | const SCEV *SSExtR = getSignExtendExpr(Op: SResidual, Ty, Depth: Depth + 1); |
1984 | return getAddExpr(LHS: SSExtD, RHS: SSExtR, |
1985 | Flags: (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
1986 | Depth: Depth + 1); |
1987 | } |
1988 | } |
1989 | } |
1990 | // If the input value is a chrec scev, and we can prove that the value |
1991 | // did not overflow the old, smaller, value, we can sign extend all of the |
1992 | // operands (often constants). This allows analysis of something like |
1993 | // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } |
1994 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Op)) |
1995 | if (AR->isAffine()) { |
1996 | const SCEV *Start = AR->getStart(); |
1997 | const SCEV *Step = AR->getStepRecurrence(SE&: *this); |
1998 | unsigned BitWidth = getTypeSizeInBits(Ty: AR->getType()); |
1999 | const Loop *L = AR->getLoop(); |
2000 | |
2001 | // If we have special knowledge that this addrec won't overflow, |
2002 | // we don't need to do any further analysis. |
2003 | if (AR->hasNoSignedWrap()) { |
2004 | Start = |
2005 | getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1); |
2006 | Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
2007 | return getAddRecExpr(Start, Step, L, Flags: SCEV::FlagNSW); |
2008 | } |
2009 | |
2010 | // Check whether the backedge-taken count is SCEVCouldNotCompute. |
2011 | // Note that this serves two purposes: It filters out loops that are |
2012 | // simply not analyzable, and it covers the case where this code is |
2013 | // being called from within backedge-taken count analysis, such that |
2014 | // attempting to ask for the backedge-taken count would likely result |
2015 | // in infinite recursion. In the later case, the analysis code will |
2016 | // cope with a conservative value, and it will take care to purge |
2017 | // that value once it has finished. |
2018 | const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); |
2019 | if (!isa<SCEVCouldNotCompute>(Val: MaxBECount)) { |
2020 | // Manually compute the final value for AR, checking for |
2021 | // overflow. |
2022 | |
2023 | // Check whether the backedge-taken count can be losslessly casted to |
2024 | // the addrec's type. The count is always unsigned. |
2025 | const SCEV *CastedMaxBECount = |
2026 | getTruncateOrZeroExtend(V: MaxBECount, Ty: Start->getType(), Depth); |
2027 | const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( |
2028 | V: CastedMaxBECount, Ty: MaxBECount->getType(), Depth); |
2029 | if (MaxBECount == RecastedMaxBECount) { |
2030 | Type *WideTy = IntegerType::get(C&: getContext(), NumBits: BitWidth * 2); |
2031 | // Check whether Start+Step*MaxBECount has no signed overflow. |
2032 | const SCEV *SMul = getMulExpr(LHS: CastedMaxBECount, RHS: Step, |
2033 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2034 | const SCEV *SAdd = getSignExtendExpr(Op: getAddExpr(LHS: Start, RHS: SMul, |
2035 | Flags: SCEV::FlagAnyWrap, |
2036 | Depth: Depth + 1), |
2037 | Ty: WideTy, Depth: Depth + 1); |
2038 | const SCEV *WideStart = getSignExtendExpr(Op: Start, Ty: WideTy, Depth: Depth + 1); |
2039 | const SCEV *WideMaxBECount = |
2040 | getZeroExtendExpr(Op: CastedMaxBECount, Ty: WideTy, Depth: Depth + 1); |
2041 | const SCEV *OperandExtendedAdd = |
2042 | getAddExpr(LHS: WideStart, |
2043 | RHS: getMulExpr(LHS: WideMaxBECount, |
2044 | RHS: getSignExtendExpr(Op: Step, Ty: WideTy, Depth: Depth + 1), |
2045 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1), |
2046 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2047 | if (SAdd == OperandExtendedAdd) { |
2048 | // Cache knowledge of AR NSW, which is propagated to this AddRec. |
2049 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNSW); |
2050 | // Return the expression with the addrec on the outside. |
2051 | Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, SE: this, |
2052 | Depth: Depth + 1); |
2053 | Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
2054 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
2055 | } |
2056 | // Similar to above, only this time treat the step value as unsigned. |
2057 | // This covers loops that count up with an unsigned step. |
2058 | OperandExtendedAdd = |
2059 | getAddExpr(LHS: WideStart, |
2060 | RHS: getMulExpr(LHS: WideMaxBECount, |
2061 | RHS: getZeroExtendExpr(Op: Step, Ty: WideTy, Depth: Depth + 1), |
2062 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1), |
2063 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2064 | if (SAdd == OperandExtendedAdd) { |
2065 | // If AR wraps around then |
2066 | // |
2067 | // abs(Step) * MaxBECount > unsigned-max(AR->getType()) |
2068 | // => SAdd != OperandExtendedAdd |
2069 | // |
2070 | // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> |
2071 | // (SAdd == OperandExtendedAdd => AR is NW) |
2072 | |
2073 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNW); |
2074 | |
2075 | // Return the expression with the addrec on the outside. |
2076 | Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, SE: this, |
2077 | Depth: Depth + 1); |
2078 | Step = getZeroExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
2079 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
2080 | } |
2081 | } |
2082 | } |
2083 | |
2084 | auto NewFlags = proveNoSignedWrapViaInduction(AR); |
2085 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: NewFlags); |
2086 | if (AR->hasNoSignedWrap()) { |
2087 | // Same as nsw case above - duplicated here to avoid a compile time |
2088 | // issue. It's not clear that the order of checks does matter, but |
2089 | // it's one of two issue possible causes for a change which was |
2090 | // reverted. Be conservative for the moment. |
2091 | Start = |
2092 | getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1); |
2093 | Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
2094 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
2095 | } |
2096 | |
2097 | // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> |
2098 | // if D + (C - D + Step * n) could be proven to not signed wrap |
2099 | // where D maximizes the number of trailing zeros of (C - D + Step * n) |
2100 | if (const auto *SC = dyn_cast<SCEVConstant>(Val: Start)) { |
2101 | const APInt &C = SC->getAPInt(); |
2102 | const APInt &D = extractConstantWithoutWrapping(SE&: *this, ConstantStart: C, Step); |
2103 | if (D != 0) { |
2104 | const SCEV *SSExtD = getSignExtendExpr(Op: getConstant(Val: D), Ty, Depth); |
2105 | const SCEV *SResidual = |
2106 | getAddRecExpr(Start: getConstant(Val: C - D), Step, L, Flags: AR->getNoWrapFlags()); |
2107 | const SCEV *SSExtR = getSignExtendExpr(Op: SResidual, Ty, Depth: Depth + 1); |
2108 | return getAddExpr(LHS: SSExtD, RHS: SSExtR, |
2109 | Flags: (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), |
2110 | Depth: Depth + 1); |
2111 | } |
2112 | } |
2113 | |
2114 | if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { |
2115 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags: SCEV::FlagNSW); |
2116 | Start = |
2117 | getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, SE: this, Depth: Depth + 1); |
2118 | Step = getSignExtendExpr(Op: Step, Ty, Depth: Depth + 1); |
2119 | return getAddRecExpr(Start, Step, L, Flags: AR->getNoWrapFlags()); |
2120 | } |
2121 | } |
2122 | |
2123 | // If the input value is provably positive and we could not simplify |
2124 | // away the sext build a zext instead. |
2125 | if (isKnownNonNegative(S: Op)) |
2126 | return getZeroExtendExpr(Op, Ty, Depth: Depth + 1); |
2127 | |
2128 | // sext(smin(x, y)) -> smin(sext(x), sext(y)) |
2129 | // sext(smax(x, y)) -> smax(sext(x), sext(y)) |
2130 | if (isa<SCEVSMinExpr>(Val: Op) || isa<SCEVSMaxExpr>(Val: Op)) { |
2131 | auto *MinMax = cast<SCEVMinMaxExpr>(Val: Op); |
2132 | SmallVector<const SCEV *, 4> Operands; |
2133 | for (auto *Operand : MinMax->operands()) |
2134 | Operands.push_back(Elt: getSignExtendExpr(Op: Operand, Ty)); |
2135 | if (isa<SCEVSMinExpr>(Val: MinMax)) |
2136 | return getSMinExpr(Operands); |
2137 | return getSMaxExpr(Operands); |
2138 | } |
2139 | |
2140 | // The cast wasn't folded; create an explicit cast node. |
2141 | // Recompute the insert position, as it may have been invalidated. |
2142 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S; |
2143 | SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(Allocator&: SCEVAllocator), |
2144 | Op, Ty); |
2145 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
2146 | registerUser(User: S, Ops: { Op }); |
2147 | return S; |
2148 | } |
2149 | |
2150 | const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, |
2151 | Type *Ty) { |
2152 | switch (Kind) { |
2153 | case scTruncate: |
2154 | return getTruncateExpr(Op, Ty); |
2155 | case scZeroExtend: |
2156 | return getZeroExtendExpr(Op, Ty); |
2157 | case scSignExtend: |
2158 | return getSignExtendExpr(Op, Ty); |
2159 | case scPtrToInt: |
2160 | return getPtrToIntExpr(Op, Ty); |
2161 | default: |
2162 | llvm_unreachable("Not a SCEV cast expression!" ); |
2163 | } |
2164 | } |
2165 | |
2166 | /// getAnyExtendExpr - Return a SCEV for the given operand extended with |
2167 | /// unspecified bits out to the given type. |
2168 | const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, |
2169 | Type *Ty) { |
2170 | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && |
2171 | "This is not an extending conversion!" ); |
2172 | assert(isSCEVable(Ty) && |
2173 | "This is not a conversion to a SCEVable type!" ); |
2174 | Ty = getEffectiveSCEVType(Ty); |
2175 | |
2176 | // Sign-extend negative constants. |
2177 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: Op)) |
2178 | if (SC->getAPInt().isNegative()) |
2179 | return getSignExtendExpr(Op, Ty); |
2180 | |
2181 | // Peel off a truncate cast. |
2182 | if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Val: Op)) { |
2183 | const SCEV *NewOp = T->getOperand(); |
2184 | if (getTypeSizeInBits(Ty: NewOp->getType()) < getTypeSizeInBits(Ty)) |
2185 | return getAnyExtendExpr(Op: NewOp, Ty); |
2186 | return getTruncateOrNoop(V: NewOp, Ty); |
2187 | } |
2188 | |
2189 | // Next try a zext cast. If the cast is folded, use it. |
2190 | const SCEV *ZExt = getZeroExtendExpr(Op, Ty); |
2191 | if (!isa<SCEVZeroExtendExpr>(Val: ZExt)) |
2192 | return ZExt; |
2193 | |
2194 | // Next try a sext cast. If the cast is folded, use it. |
2195 | const SCEV *SExt = getSignExtendExpr(Op, Ty); |
2196 | if (!isa<SCEVSignExtendExpr>(Val: SExt)) |
2197 | return SExt; |
2198 | |
2199 | // Force the cast to be folded into the operands of an addrec. |
2200 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Op)) { |
2201 | SmallVector<const SCEV *, 4> Ops; |
2202 | for (const SCEV *Op : AR->operands()) |
2203 | Ops.push_back(Elt: getAnyExtendExpr(Op, Ty)); |
2204 | return getAddRecExpr(Operands&: Ops, L: AR->getLoop(), Flags: SCEV::FlagNW); |
2205 | } |
2206 | |
2207 | // If the expression is obviously signed, use the sext cast value. |
2208 | if (isa<SCEVSMaxExpr>(Val: Op)) |
2209 | return SExt; |
2210 | |
2211 | // Absent any other information, use the zext cast value. |
2212 | return ZExt; |
2213 | } |
2214 | |
2215 | /// Process the given Ops list, which is a list of operands to be added under |
2216 | /// the given scale, update the given map. This is a helper function for |
2217 | /// getAddRecExpr. As an example of what it does, given a sequence of operands |
2218 | /// that would form an add expression like this: |
2219 | /// |
2220 | /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) |
2221 | /// |
2222 | /// where A and B are constants, update the map with these values: |
2223 | /// |
2224 | /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) |
2225 | /// |
2226 | /// and add 13 + A*B*29 to AccumulatedConstant. |
2227 | /// This will allow getAddRecExpr to produce this: |
2228 | /// |
2229 | /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) |
2230 | /// |
2231 | /// This form often exposes folding opportunities that are hidden in |
2232 | /// the original operand list. |
2233 | /// |
2234 | /// Return true iff it appears that any interesting folding opportunities |
2235 | /// may be exposed. This helps getAddRecExpr short-circuit extra work in |
2236 | /// the common case where no interesting opportunities are present, and |
2237 | /// is also used as a check to avoid infinite recursion. |
2238 | static bool |
2239 | CollectAddOperandsWithScales(SmallDenseMap<const SCEV *, APInt, 16> &M, |
2240 | SmallVectorImpl<const SCEV *> &NewOps, |
2241 | APInt &AccumulatedConstant, |
2242 | ArrayRef<const SCEV *> Ops, const APInt &Scale, |
2243 | ScalarEvolution &SE) { |
2244 | bool Interesting = false; |
2245 | |
2246 | // Iterate over the add operands. They are sorted, with constants first. |
2247 | unsigned i = 0; |
2248 | while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: Ops[i])) { |
2249 | ++i; |
2250 | // Pull a buried constant out to the outside. |
2251 | if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) |
2252 | Interesting = true; |
2253 | AccumulatedConstant += Scale * C->getAPInt(); |
2254 | } |
2255 | |
2256 | // Next comes everything else. We're especially interested in multiplies |
2257 | // here, but they're in the middle, so just visit the rest with one loop. |
2258 | for (; i != Ops.size(); ++i) { |
2259 | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: Ops[i]); |
2260 | if (Mul && isa<SCEVConstant>(Val: Mul->getOperand(i: 0))) { |
2261 | APInt NewScale = |
2262 | Scale * cast<SCEVConstant>(Val: Mul->getOperand(i: 0))->getAPInt(); |
2263 | if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Val: Mul->getOperand(i: 1))) { |
2264 | // A multiplication of a constant with another add; recurse. |
2265 | const SCEVAddExpr *Add = cast<SCEVAddExpr>(Val: Mul->getOperand(i: 1)); |
2266 | Interesting |= |
2267 | CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, |
2268 | Ops: Add->operands(), Scale: NewScale, SE); |
2269 | } else { |
2270 | // A multiplication of a constant with some other value. Update |
2271 | // the map. |
2272 | SmallVector<const SCEV *, 4> MulOps(drop_begin(RangeOrContainer: Mul->operands())); |
2273 | const SCEV *Key = SE.getMulExpr(Ops&: MulOps); |
2274 | auto Pair = M.insert(KV: {Key, NewScale}); |
2275 | if (Pair.second) { |
2276 | NewOps.push_back(Elt: Pair.first->first); |
2277 | } else { |
2278 | Pair.first->second += NewScale; |
2279 | // The map already had an entry for this value, which may indicate |
2280 | // a folding opportunity. |
2281 | Interesting = true; |
2282 | } |
2283 | } |
2284 | } else { |
2285 | // An ordinary operand. Update the map. |
2286 | std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = |
2287 | M.insert(KV: {Ops[i], Scale}); |
2288 | if (Pair.second) { |
2289 | NewOps.push_back(Elt: Pair.first->first); |
2290 | } else { |
2291 | Pair.first->second += Scale; |
2292 | // The map already had an entry for this value, which may indicate |
2293 | // a folding opportunity. |
2294 | Interesting = true; |
2295 | } |
2296 | } |
2297 | } |
2298 | |
2299 | return Interesting; |
2300 | } |
2301 | |
2302 | bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, |
2303 | const SCEV *LHS, const SCEV *RHS, |
2304 | const Instruction *CtxI) { |
2305 | const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, |
2306 | SCEV::NoWrapFlags, unsigned); |
2307 | switch (BinOp) { |
2308 | default: |
2309 | llvm_unreachable("Unsupported binary op" ); |
2310 | case Instruction::Add: |
2311 | Operation = &ScalarEvolution::getAddExpr; |
2312 | break; |
2313 | case Instruction::Sub: |
2314 | Operation = &ScalarEvolution::getMinusSCEV; |
2315 | break; |
2316 | case Instruction::Mul: |
2317 | Operation = &ScalarEvolution::getMulExpr; |
2318 | break; |
2319 | } |
2320 | |
2321 | const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = |
2322 | Signed ? &ScalarEvolution::getSignExtendExpr |
2323 | : &ScalarEvolution::getZeroExtendExpr; |
2324 | |
2325 | // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) |
2326 | auto *NarrowTy = cast<IntegerType>(Val: LHS->getType()); |
2327 | auto *WideTy = |
2328 | IntegerType::get(C&: NarrowTy->getContext(), NumBits: NarrowTy->getBitWidth() * 2); |
2329 | |
2330 | const SCEV *A = (this->*Extension)( |
2331 | (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); |
2332 | const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0); |
2333 | const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0); |
2334 | const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0); |
2335 | if (A == B) |
2336 | return true; |
2337 | // Can we use context to prove the fact we need? |
2338 | if (!CtxI) |
2339 | return false; |
2340 | // TODO: Support mul. |
2341 | if (BinOp == Instruction::Mul) |
2342 | return false; |
2343 | auto *RHSC = dyn_cast<SCEVConstant>(Val: RHS); |
2344 | // TODO: Lift this limitation. |
2345 | if (!RHSC) |
2346 | return false; |
2347 | APInt C = RHSC->getAPInt(); |
2348 | unsigned NumBits = C.getBitWidth(); |
2349 | bool IsSub = (BinOp == Instruction::Sub); |
2350 | bool IsNegativeConst = (Signed && C.isNegative()); |
2351 | // Compute the direction and magnitude by which we need to check overflow. |
2352 | bool OverflowDown = IsSub ^ IsNegativeConst; |
2353 | APInt Magnitude = C; |
2354 | if (IsNegativeConst) { |
2355 | if (C == APInt::getSignedMinValue(numBits: NumBits)) |
2356 | // TODO: SINT_MIN on inversion gives the same negative value, we don't |
2357 | // want to deal with that. |
2358 | return false; |
2359 | Magnitude = -C; |
2360 | } |
2361 | |
2362 | ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; |
2363 | if (OverflowDown) { |
2364 | // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS. |
2365 | APInt Min = Signed ? APInt::getSignedMinValue(numBits: NumBits) |
2366 | : APInt::getMinValue(numBits: NumBits); |
2367 | APInt Limit = Min + Magnitude; |
2368 | return isKnownPredicateAt(Pred, LHS: getConstant(Val: Limit), RHS: LHS, CtxI); |
2369 | } else { |
2370 | // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude. |
2371 | APInt Max = Signed ? APInt::getSignedMaxValue(numBits: NumBits) |
2372 | : APInt::getMaxValue(numBits: NumBits); |
2373 | APInt Limit = Max - Magnitude; |
2374 | return isKnownPredicateAt(Pred, LHS, RHS: getConstant(Val: Limit), CtxI); |
2375 | } |
2376 | } |
2377 | |
2378 | std::optional<SCEV::NoWrapFlags> |
2379 | ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( |
2380 | const OverflowingBinaryOperator *OBO) { |
2381 | // It cannot be done any better. |
2382 | if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) |
2383 | return std::nullopt; |
2384 | |
2385 | SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; |
2386 | |
2387 | if (OBO->hasNoUnsignedWrap()) |
2388 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW); |
2389 | if (OBO->hasNoSignedWrap()) |
2390 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNSW); |
2391 | |
2392 | bool Deduced = false; |
2393 | |
2394 | if (OBO->getOpcode() != Instruction::Add && |
2395 | OBO->getOpcode() != Instruction::Sub && |
2396 | OBO->getOpcode() != Instruction::Mul) |
2397 | return std::nullopt; |
2398 | |
2399 | const SCEV *LHS = getSCEV(V: OBO->getOperand(i_nocapture: 0)); |
2400 | const SCEV *RHS = getSCEV(V: OBO->getOperand(i_nocapture: 1)); |
2401 | |
2402 | const Instruction *CtxI = |
2403 | UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(Val: OBO) : nullptr; |
2404 | if (!OBO->hasNoUnsignedWrap() && |
2405 | willNotOverflow(BinOp: (Instruction::BinaryOps)OBO->getOpcode(), |
2406 | /* Signed */ false, LHS, RHS, CtxI)) { |
2407 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW); |
2408 | Deduced = true; |
2409 | } |
2410 | |
2411 | if (!OBO->hasNoSignedWrap() && |
2412 | willNotOverflow(BinOp: (Instruction::BinaryOps)OBO->getOpcode(), |
2413 | /* Signed */ true, LHS, RHS, CtxI)) { |
2414 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNSW); |
2415 | Deduced = true; |
2416 | } |
2417 | |
2418 | if (Deduced) |
2419 | return Flags; |
2420 | return std::nullopt; |
2421 | } |
2422 | |
2423 | // We're trying to construct a SCEV of type `Type' with `Ops' as operands and |
2424 | // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of |
2425 | // can't-overflow flags for the operation if possible. |
2426 | static SCEV::NoWrapFlags |
2427 | StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, |
2428 | const ArrayRef<const SCEV *> Ops, |
2429 | SCEV::NoWrapFlags Flags) { |
2430 | using namespace std::placeholders; |
2431 | |
2432 | using OBO = OverflowingBinaryOperator; |
2433 | |
2434 | bool CanAnalyze = |
2435 | Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; |
2436 | (void)CanAnalyze; |
2437 | assert(CanAnalyze && "don't call from other places!" ); |
2438 | |
2439 | int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; |
2440 | SCEV::NoWrapFlags SignOrUnsignWrap = |
2441 | ScalarEvolution::maskFlags(Flags, Mask: SignOrUnsignMask); |
2442 | |
2443 | // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. |
2444 | auto IsKnownNonNegative = [&](const SCEV *S) { |
2445 | return SE->isKnownNonNegative(S); |
2446 | }; |
2447 | |
2448 | if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Range: Ops, P: IsKnownNonNegative)) |
2449 | Flags = |
2450 | ScalarEvolution::setFlags(Flags, OnFlags: (SCEV::NoWrapFlags)SignOrUnsignMask); |
2451 | |
2452 | SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, Mask: SignOrUnsignMask); |
2453 | |
2454 | if (SignOrUnsignWrap != SignOrUnsignMask && |
2455 | (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && |
2456 | isa<SCEVConstant>(Val: Ops[0])) { |
2457 | |
2458 | auto Opcode = [&] { |
2459 | switch (Type) { |
2460 | case scAddExpr: |
2461 | return Instruction::Add; |
2462 | case scMulExpr: |
2463 | return Instruction::Mul; |
2464 | default: |
2465 | llvm_unreachable("Unexpected SCEV op." ); |
2466 | } |
2467 | }(); |
2468 | |
2469 | const APInt &C = cast<SCEVConstant>(Val: Ops[0])->getAPInt(); |
2470 | |
2471 | // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. |
2472 | if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { |
2473 | auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
2474 | BinOp: Opcode, Other: C, NoWrapKind: OBO::NoSignedWrap); |
2475 | if (NSWRegion.contains(CR: SE->getSignedRange(S: Ops[1]))) |
2476 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNSW); |
2477 | } |
2478 | |
2479 | // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. |
2480 | if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { |
2481 | auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
2482 | BinOp: Opcode, Other: C, NoWrapKind: OBO::NoUnsignedWrap); |
2483 | if (NUWRegion.contains(CR: SE->getUnsignedRange(S: Ops[1]))) |
2484 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW); |
2485 | } |
2486 | } |
2487 | |
2488 | // <0,+,nonnegative><nw> is also nuw |
2489 | // TODO: Add corresponding nsw case |
2490 | if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, TestFlags: SCEV::FlagNW) && |
2491 | !ScalarEvolution::hasFlags(Flags, TestFlags: SCEV::FlagNUW) && Ops.size() == 2 && |
2492 | Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) |
2493 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW); |
2494 | |
2495 | // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW |
2496 | if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, TestFlags: SCEV::FlagNUW) && |
2497 | Ops.size() == 2) { |
2498 | if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Val: Ops[0])) |
2499 | if (UDiv->getOperand(i: 1) == Ops[1]) |
2500 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW); |
2501 | if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Val: Ops[1])) |
2502 | if (UDiv->getOperand(i: 1) == Ops[0]) |
2503 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW); |
2504 | } |
2505 | |
2506 | return Flags; |
2507 | } |
2508 | |
2509 | bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { |
2510 | return isLoopInvariant(S, L) && properlyDominates(S, BB: L->getHeader()); |
2511 | } |
2512 | |
2513 | /// Get a canonical add expression, or something simpler if possible. |
2514 | const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, |
2515 | SCEV::NoWrapFlags OrigFlags, |
2516 | unsigned Depth) { |
2517 | assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && |
2518 | "only nuw or nsw allowed" ); |
2519 | assert(!Ops.empty() && "Cannot get empty add!" ); |
2520 | if (Ops.size() == 1) return Ops[0]; |
2521 | #ifndef NDEBUG |
2522 | Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); |
2523 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) |
2524 | assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && |
2525 | "SCEVAddExpr operand types don't match!" ); |
2526 | unsigned NumPtrs = count_if( |
2527 | Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); |
2528 | assert(NumPtrs <= 1 && "add has at most one pointer operand" ); |
2529 | #endif |
2530 | |
2531 | const SCEV *Folded = constantFoldAndGroupOps( |
2532 | SE&: *this, LI, DT, Ops, |
2533 | Fold: [](const APInt &C1, const APInt &C2) { return C1 + C2; }, |
2534 | IsIdentity: [](const APInt &C) { return C.isZero(); }, // identity |
2535 | IsAbsorber: [](const APInt &C) { return false; }); // absorber |
2536 | if (Folded) |
2537 | return Folded; |
2538 | |
2539 | unsigned Idx = isa<SCEVConstant>(Val: Ops[0]) ? 1 : 0; |
2540 | |
2541 | // Delay expensive flag strengthening until necessary. |
2542 | auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { |
2543 | return StrengthenNoWrapFlags(SE: this, Type: scAddExpr, Ops, Flags: OrigFlags); |
2544 | }; |
2545 | |
2546 | // Limit recursion calls depth. |
2547 | if (Depth > MaxArithDepth || hasHugeExpression(Ops)) |
2548 | return getOrCreateAddExpr(Ops, Flags: ComputeFlags(Ops)); |
2549 | |
2550 | if (SCEV *S = findExistingSCEVInCache(SCEVType: scAddExpr, Ops)) { |
2551 | // Don't strengthen flags if we have no new information. |
2552 | SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); |
2553 | if (Add->getNoWrapFlags(Mask: OrigFlags) != OrigFlags) |
2554 | Add->setNoWrapFlags(ComputeFlags(Ops)); |
2555 | return S; |
2556 | } |
2557 | |
2558 | // Okay, check to see if the same value occurs in the operand list more than |
2559 | // once. If so, merge them together into an multiply expression. Since we |
2560 | // sorted the list, these values are required to be adjacent. |
2561 | Type *Ty = Ops[0]->getType(); |
2562 | bool FoundMatch = false; |
2563 | for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) |
2564 | if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 |
2565 | // Scan ahead to count how many equal operands there are. |
2566 | unsigned Count = 2; |
2567 | while (i+Count != e && Ops[i+Count] == Ops[i]) |
2568 | ++Count; |
2569 | // Merge the values into a multiply. |
2570 | const SCEV *Scale = getConstant(Ty, V: Count); |
2571 | const SCEV *Mul = getMulExpr(LHS: Scale, RHS: Ops[i], Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2572 | if (Ops.size() == Count) |
2573 | return Mul; |
2574 | Ops[i] = Mul; |
2575 | Ops.erase(CS: Ops.begin()+i+1, CE: Ops.begin()+i+Count); |
2576 | --i; e -= Count - 1; |
2577 | FoundMatch = true; |
2578 | } |
2579 | if (FoundMatch) |
2580 | return getAddExpr(Ops, OrigFlags, Depth: Depth + 1); |
2581 | |
2582 | // Check for truncates. If all the operands are truncated from the same |
2583 | // type, see if factoring out the truncate would permit the result to be |
2584 | // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) |
2585 | // if the contents of the resulting outer trunc fold to something simple. |
2586 | auto FindTruncSrcType = [&]() -> Type * { |
2587 | // We're ultimately looking to fold an addrec of truncs and muls of only |
2588 | // constants and truncs, so if we find any other types of SCEV |
2589 | // as operands of the addrec then we bail and return nullptr here. |
2590 | // Otherwise, we return the type of the operand of a trunc that we find. |
2591 | if (auto *T = dyn_cast<SCEVTruncateExpr>(Val: Ops[Idx])) |
2592 | return T->getOperand()->getType(); |
2593 | if (const auto *Mul = dyn_cast<SCEVMulExpr>(Val: Ops[Idx])) { |
2594 | const auto *LastOp = Mul->getOperand(i: Mul->getNumOperands() - 1); |
2595 | if (const auto *T = dyn_cast<SCEVTruncateExpr>(Val: LastOp)) |
2596 | return T->getOperand()->getType(); |
2597 | } |
2598 | return nullptr; |
2599 | }; |
2600 | if (auto *SrcType = FindTruncSrcType()) { |
2601 | SmallVector<const SCEV *, 8> LargeOps; |
2602 | bool Ok = true; |
2603 | // Check all the operands to see if they can be represented in the |
2604 | // source type of the truncate. |
2605 | for (const SCEV *Op : Ops) { |
2606 | if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Val: Op)) { |
2607 | if (T->getOperand()->getType() != SrcType) { |
2608 | Ok = false; |
2609 | break; |
2610 | } |
2611 | LargeOps.push_back(Elt: T->getOperand()); |
2612 | } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: Op)) { |
2613 | LargeOps.push_back(Elt: getAnyExtendExpr(Op: C, Ty: SrcType)); |
2614 | } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Val: Op)) { |
2615 | SmallVector<const SCEV *, 8> LargeMulOps; |
2616 | for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { |
2617 | if (const SCEVTruncateExpr *T = |
2618 | dyn_cast<SCEVTruncateExpr>(Val: M->getOperand(i: j))) { |
2619 | if (T->getOperand()->getType() != SrcType) { |
2620 | Ok = false; |
2621 | break; |
2622 | } |
2623 | LargeMulOps.push_back(Elt: T->getOperand()); |
2624 | } else if (const auto *C = dyn_cast<SCEVConstant>(Val: M->getOperand(i: j))) { |
2625 | LargeMulOps.push_back(Elt: getAnyExtendExpr(Op: C, Ty: SrcType)); |
2626 | } else { |
2627 | Ok = false; |
2628 | break; |
2629 | } |
2630 | } |
2631 | if (Ok) |
2632 | LargeOps.push_back(Elt: getMulExpr(Ops&: LargeMulOps, Flags: SCEV::FlagAnyWrap, Depth: Depth + 1)); |
2633 | } else { |
2634 | Ok = false; |
2635 | break; |
2636 | } |
2637 | } |
2638 | if (Ok) { |
2639 | // Evaluate the expression in the larger type. |
2640 | const SCEV *Fold = getAddExpr(Ops&: LargeOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2641 | // If it folds to something simple, use it. Otherwise, don't. |
2642 | if (isa<SCEVConstant>(Val: Fold) || isa<SCEVUnknown>(Val: Fold)) |
2643 | return getTruncateExpr(Op: Fold, Ty); |
2644 | } |
2645 | } |
2646 | |
2647 | if (Ops.size() == 2) { |
2648 | // Check if we have an expression of the form ((X + C1) - C2), where C1 and |
2649 | // C2 can be folded in a way that allows retaining wrapping flags of (X + |
2650 | // C1). |
2651 | const SCEV *A = Ops[0]; |
2652 | const SCEV *B = Ops[1]; |
2653 | auto *AddExpr = dyn_cast<SCEVAddExpr>(Val: B); |
2654 | auto *C = dyn_cast<SCEVConstant>(Val: A); |
2655 | if (AddExpr && C && isa<SCEVConstant>(Val: AddExpr->getOperand(i: 0))) { |
2656 | auto C1 = cast<SCEVConstant>(Val: AddExpr->getOperand(i: 0))->getAPInt(); |
2657 | auto C2 = C->getAPInt(); |
2658 | SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; |
2659 | |
2660 | APInt ConstAdd = C1 + C2; |
2661 | auto AddFlags = AddExpr->getNoWrapFlags(); |
2662 | // Adding a smaller constant is NUW if the original AddExpr was NUW. |
2663 | if (ScalarEvolution::hasFlags(Flags: AddFlags, TestFlags: SCEV::FlagNUW) && |
2664 | ConstAdd.ule(RHS: C1)) { |
2665 | PreservedFlags = |
2666 | ScalarEvolution::setFlags(Flags: PreservedFlags, OnFlags: SCEV::FlagNUW); |
2667 | } |
2668 | |
2669 | // Adding a constant with the same sign and small magnitude is NSW, if the |
2670 | // original AddExpr was NSW. |
2671 | if (ScalarEvolution::hasFlags(Flags: AddFlags, TestFlags: SCEV::FlagNSW) && |
2672 | C1.isSignBitSet() == ConstAdd.isSignBitSet() && |
2673 | ConstAdd.abs().ule(RHS: C1.abs())) { |
2674 | PreservedFlags = |
2675 | ScalarEvolution::setFlags(Flags: PreservedFlags, OnFlags: SCEV::FlagNSW); |
2676 | } |
2677 | |
2678 | if (PreservedFlags != SCEV::FlagAnyWrap) { |
2679 | SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); |
2680 | NewOps[0] = getConstant(Val: ConstAdd); |
2681 | return getAddExpr(Ops&: NewOps, OrigFlags: PreservedFlags); |
2682 | } |
2683 | } |
2684 | } |
2685 | |
2686 | // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) |
2687 | if (Ops.size() == 2) { |
2688 | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: Ops[0]); |
2689 | if (Mul && Mul->getNumOperands() == 2 && |
2690 | Mul->getOperand(i: 0)->isAllOnesValue()) { |
2691 | const SCEV *X; |
2692 | const SCEV *Y; |
2693 | if (matchURem(Expr: Mul->getOperand(i: 1), LHS&: X, RHS&: Y) && X == Ops[1]) { |
2694 | return getMulExpr(LHS: Y, RHS: getUDivExpr(LHS: X, RHS: Y)); |
2695 | } |
2696 | } |
2697 | } |
2698 | |
2699 | // Skip past any other cast SCEVs. |
2700 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) |
2701 | ++Idx; |
2702 | |
2703 | // If there are add operands they would be next. |
2704 | if (Idx < Ops.size()) { |
2705 | bool DeletedAdd = false; |
2706 | // If the original flags and all inlined SCEVAddExprs are NUW, use the |
2707 | // common NUW flag for expression after inlining. Other flags cannot be |
2708 | // preserved, because they may depend on the original order of operations. |
2709 | SCEV::NoWrapFlags CommonFlags = maskFlags(Flags: OrigFlags, Mask: SCEV::FlagNUW); |
2710 | while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: Ops[Idx])) { |
2711 | if (Ops.size() > AddOpsInlineThreshold || |
2712 | Add->getNumOperands() > AddOpsInlineThreshold) |
2713 | break; |
2714 | // If we have an add, expand the add operands onto the end of the operands |
2715 | // list. |
2716 | Ops.erase(CI: Ops.begin()+Idx); |
2717 | append_range(C&: Ops, R: Add->operands()); |
2718 | DeletedAdd = true; |
2719 | CommonFlags = maskFlags(Flags: CommonFlags, Mask: Add->getNoWrapFlags()); |
2720 | } |
2721 | |
2722 | // If we deleted at least one add, we added operands to the end of the list, |
2723 | // and they are not necessarily sorted. Recurse to resort and resimplify |
2724 | // any operands we just acquired. |
2725 | if (DeletedAdd) |
2726 | return getAddExpr(Ops, OrigFlags: CommonFlags, Depth: Depth + 1); |
2727 | } |
2728 | |
2729 | // Skip over the add expression until we get to a multiply. |
2730 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) |
2731 | ++Idx; |
2732 | |
2733 | // Check to see if there are any folding opportunities present with |
2734 | // operands multiplied by constant values. |
2735 | if (Idx < Ops.size() && isa<SCEVMulExpr>(Val: Ops[Idx])) { |
2736 | uint64_t BitWidth = getTypeSizeInBits(Ty); |
2737 | SmallDenseMap<const SCEV *, APInt, 16> M; |
2738 | SmallVector<const SCEV *, 8> NewOps; |
2739 | APInt AccumulatedConstant(BitWidth, 0); |
2740 | if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, |
2741 | Ops, Scale: APInt(BitWidth, 1), SE&: *this)) { |
2742 | struct APIntCompare { |
2743 | bool operator()(const APInt &LHS, const APInt &RHS) const { |
2744 | return LHS.ult(RHS); |
2745 | } |
2746 | }; |
2747 | |
2748 | // Some interesting folding opportunity is present, so its worthwhile to |
2749 | // re-generate the operands list. Group the operands by constant scale, |
2750 | // to avoid multiplying by the same constant scale multiple times. |
2751 | std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; |
2752 | for (const SCEV *NewOp : NewOps) |
2753 | MulOpLists[M.find(Val: NewOp)->second].push_back(Elt: NewOp); |
2754 | // Re-generate the operands list. |
2755 | Ops.clear(); |
2756 | if (AccumulatedConstant != 0) |
2757 | Ops.push_back(Elt: getConstant(Val: AccumulatedConstant)); |
2758 | for (auto &MulOp : MulOpLists) { |
2759 | if (MulOp.first == 1) { |
2760 | Ops.push_back(Elt: getAddExpr(Ops&: MulOp.second, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1)); |
2761 | } else if (MulOp.first != 0) { |
2762 | Ops.push_back(Elt: getMulExpr( |
2763 | LHS: getConstant(Val: MulOp.first), |
2764 | RHS: getAddExpr(Ops&: MulOp.second, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1), |
2765 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1)); |
2766 | } |
2767 | } |
2768 | if (Ops.empty()) |
2769 | return getZero(Ty); |
2770 | if (Ops.size() == 1) |
2771 | return Ops[0]; |
2772 | return getAddExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2773 | } |
2774 | } |
2775 | |
2776 | // If we are adding something to a multiply expression, make sure the |
2777 | // something is not already an operand of the multiply. If so, merge it into |
2778 | // the multiply. |
2779 | for (; Idx < Ops.size() && isa<SCEVMulExpr>(Val: Ops[Idx]); ++Idx) { |
2780 | const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Val: Ops[Idx]); |
2781 | for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { |
2782 | const SCEV *MulOpSCEV = Mul->getOperand(i: MulOp); |
2783 | if (isa<SCEVConstant>(Val: MulOpSCEV)) |
2784 | continue; |
2785 | for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) |
2786 | if (MulOpSCEV == Ops[AddOp]) { |
2787 | // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) |
2788 | const SCEV *InnerMul = Mul->getOperand(i: MulOp == 0); |
2789 | if (Mul->getNumOperands() != 2) { |
2790 | // If the multiply has more than two operands, we must get the |
2791 | // Y*Z term. |
2792 | SmallVector<const SCEV *, 4> MulOps( |
2793 | Mul->operands().take_front(N: MulOp)); |
2794 | append_range(C&: MulOps, R: Mul->operands().drop_front(N: MulOp + 1)); |
2795 | InnerMul = getMulExpr(Ops&: MulOps, Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2796 | } |
2797 | SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; |
2798 | const SCEV *AddOne = getAddExpr(Ops&: TwoOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2799 | const SCEV *OuterMul = getMulExpr(LHS: AddOne, RHS: MulOpSCEV, |
2800 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2801 | if (Ops.size() == 2) return OuterMul; |
2802 | if (AddOp < Idx) { |
2803 | Ops.erase(CI: Ops.begin()+AddOp); |
2804 | Ops.erase(CI: Ops.begin()+Idx-1); |
2805 | } else { |
2806 | Ops.erase(CI: Ops.begin()+Idx); |
2807 | Ops.erase(CI: Ops.begin()+AddOp-1); |
2808 | } |
2809 | Ops.push_back(Elt: OuterMul); |
2810 | return getAddExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2811 | } |
2812 | |
2813 | // Check this multiply against other multiplies being added together. |
2814 | for (unsigned OtherMulIdx = Idx+1; |
2815 | OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Val: Ops[OtherMulIdx]); |
2816 | ++OtherMulIdx) { |
2817 | const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Val: Ops[OtherMulIdx]); |
2818 | // If MulOp occurs in OtherMul, we can fold the two multiplies |
2819 | // together. |
2820 | for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); |
2821 | OMulOp != e; ++OMulOp) |
2822 | if (OtherMul->getOperand(i: OMulOp) == MulOpSCEV) { |
2823 | // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) |
2824 | const SCEV *InnerMul1 = Mul->getOperand(i: MulOp == 0); |
2825 | if (Mul->getNumOperands() != 2) { |
2826 | SmallVector<const SCEV *, 4> MulOps( |
2827 | Mul->operands().take_front(N: MulOp)); |
2828 | append_range(C&: MulOps, R: Mul->operands().drop_front(N: MulOp+1)); |
2829 | InnerMul1 = getMulExpr(Ops&: MulOps, Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2830 | } |
2831 | const SCEV *InnerMul2 = OtherMul->getOperand(i: OMulOp == 0); |
2832 | if (OtherMul->getNumOperands() != 2) { |
2833 | SmallVector<const SCEV *, 4> MulOps( |
2834 | OtherMul->operands().take_front(N: OMulOp)); |
2835 | append_range(C&: MulOps, R: OtherMul->operands().drop_front(N: OMulOp+1)); |
2836 | InnerMul2 = getMulExpr(Ops&: MulOps, Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2837 | } |
2838 | SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; |
2839 | const SCEV *InnerMulSum = |
2840 | getAddExpr(Ops&: TwoOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2841 | const SCEV *OuterMul = getMulExpr(LHS: MulOpSCEV, RHS: InnerMulSum, |
2842 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2843 | if (Ops.size() == 2) return OuterMul; |
2844 | Ops.erase(CI: Ops.begin()+Idx); |
2845 | Ops.erase(CI: Ops.begin()+OtherMulIdx-1); |
2846 | Ops.push_back(Elt: OuterMul); |
2847 | return getAddExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2848 | } |
2849 | } |
2850 | } |
2851 | } |
2852 | |
2853 | // If there are any add recurrences in the operands list, see if any other |
2854 | // added values are loop invariant. If so, we can fold them into the |
2855 | // recurrence. |
2856 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) |
2857 | ++Idx; |
2858 | |
2859 | // Scan over all recurrences, trying to fold loop invariants into them. |
2860 | for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Val: Ops[Idx]); ++Idx) { |
2861 | // Scan all of the other operands to this add and add them to the vector if |
2862 | // they are loop invariant w.r.t. the recurrence. |
2863 | SmallVector<const SCEV *, 8> LIOps; |
2864 | const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Val: Ops[Idx]); |
2865 | const Loop *AddRecLoop = AddRec->getLoop(); |
2866 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
2867 | if (isAvailableAtLoopEntry(S: Ops[i], L: AddRecLoop)) { |
2868 | LIOps.push_back(Elt: Ops[i]); |
2869 | Ops.erase(CI: Ops.begin()+i); |
2870 | --i; --e; |
2871 | } |
2872 | |
2873 | // If we found some loop invariants, fold them into the recurrence. |
2874 | if (!LIOps.empty()) { |
2875 | // Compute nowrap flags for the addition of the loop-invariant ops and |
2876 | // the addrec. Temporarily push it as an operand for that purpose. These |
2877 | // flags are valid in the scope of the addrec only. |
2878 | LIOps.push_back(Elt: AddRec); |
2879 | SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); |
2880 | LIOps.pop_back(); |
2881 | |
2882 | // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} |
2883 | LIOps.push_back(Elt: AddRec->getStart()); |
2884 | |
2885 | SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); |
2886 | |
2887 | // It is not in general safe to propagate flags valid on an add within |
2888 | // the addrec scope to one outside it. We must prove that the inner |
2889 | // scope is guaranteed to execute if the outer one does to be able to |
2890 | // safely propagate. We know the program is undefined if poison is |
2891 | // produced on the inner scoped addrec. We also know that *for this use* |
2892 | // the outer scoped add can't overflow (because of the flags we just |
2893 | // computed for the inner scoped add) without the program being undefined. |
2894 | // Proving that entry to the outer scope neccesitates entry to the inner |
2895 | // scope, thus proves the program undefined if the flags would be violated |
2896 | // in the outer scope. |
2897 | SCEV::NoWrapFlags AddFlags = Flags; |
2898 | if (AddFlags != SCEV::FlagAnyWrap) { |
2899 | auto *DefI = getDefiningScopeBound(Ops: LIOps); |
2900 | auto *ReachI = &*AddRecLoop->getHeader()->begin(); |
2901 | if (!isGuaranteedToTransferExecutionTo(A: DefI, B: ReachI)) |
2902 | AddFlags = SCEV::FlagAnyWrap; |
2903 | } |
2904 | AddRecOps[0] = getAddExpr(Ops&: LIOps, OrigFlags: AddFlags, Depth: Depth + 1); |
2905 | |
2906 | // Build the new addrec. Propagate the NUW and NSW flags if both the |
2907 | // outer add and the inner addrec are guaranteed to have no overflow. |
2908 | // Always propagate NW. |
2909 | Flags = AddRec->getNoWrapFlags(Mask: setFlags(Flags, OnFlags: SCEV::FlagNW)); |
2910 | const SCEV *NewRec = getAddRecExpr(Operands&: AddRecOps, L: AddRecLoop, Flags); |
2911 | |
2912 | // If all of the other operands were loop invariant, we are done. |
2913 | if (Ops.size() == 1) return NewRec; |
2914 | |
2915 | // Otherwise, add the folded AddRec by the non-invariant parts. |
2916 | for (unsigned i = 0;; ++i) |
2917 | if (Ops[i] == AddRec) { |
2918 | Ops[i] = NewRec; |
2919 | break; |
2920 | } |
2921 | return getAddExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2922 | } |
2923 | |
2924 | // Okay, if there weren't any loop invariants to be folded, check to see if |
2925 | // there are multiple AddRec's with the same loop induction variable being |
2926 | // added together. If so, we can fold them. |
2927 | for (unsigned OtherIdx = Idx+1; |
2928 | OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Val: Ops[OtherIdx]); |
2929 | ++OtherIdx) { |
2930 | // We expect the AddRecExpr's to be sorted in reverse dominance order, |
2931 | // so that the 1st found AddRecExpr is dominated by all others. |
2932 | assert(DT.dominates( |
2933 | cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), |
2934 | AddRec->getLoop()->getHeader()) && |
2935 | "AddRecExprs are not sorted in reverse dominance order?" ); |
2936 | if (AddRecLoop == cast<SCEVAddRecExpr>(Val: Ops[OtherIdx])->getLoop()) { |
2937 | // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> |
2938 | SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); |
2939 | for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Val: Ops[OtherIdx]); |
2940 | ++OtherIdx) { |
2941 | const auto *OtherAddRec = cast<SCEVAddRecExpr>(Val: Ops[OtherIdx]); |
2942 | if (OtherAddRec->getLoop() == AddRecLoop) { |
2943 | for (unsigned i = 0, e = OtherAddRec->getNumOperands(); |
2944 | i != e; ++i) { |
2945 | if (i >= AddRecOps.size()) { |
2946 | append_range(C&: AddRecOps, R: OtherAddRec->operands().drop_front(N: i)); |
2947 | break; |
2948 | } |
2949 | SmallVector<const SCEV *, 2> TwoOps = { |
2950 | AddRecOps[i], OtherAddRec->getOperand(i)}; |
2951 | AddRecOps[i] = getAddExpr(Ops&: TwoOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2952 | } |
2953 | Ops.erase(CI: Ops.begin() + OtherIdx); --OtherIdx; |
2954 | } |
2955 | } |
2956 | // Step size has changed, so we cannot guarantee no self-wraparound. |
2957 | Ops[Idx] = getAddRecExpr(Operands&: AddRecOps, L: AddRecLoop, Flags: SCEV::FlagAnyWrap); |
2958 | return getAddExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
2959 | } |
2960 | } |
2961 | |
2962 | // Otherwise couldn't fold anything into this recurrence. Move onto the |
2963 | // next one. |
2964 | } |
2965 | |
2966 | // Okay, it looks like we really DO need an add expr. Check to see if we |
2967 | // already have one, otherwise create a new one. |
2968 | return getOrCreateAddExpr(Ops, Flags: ComputeFlags(Ops)); |
2969 | } |
2970 | |
2971 | const SCEV * |
2972 | ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, |
2973 | SCEV::NoWrapFlags Flags) { |
2974 | FoldingSetNodeID ID; |
2975 | ID.AddInteger(I: scAddExpr); |
2976 | for (const SCEV *Op : Ops) |
2977 | ID.AddPointer(Ptr: Op); |
2978 | void *IP = nullptr; |
2979 | SCEVAddExpr *S = |
2980 | static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)); |
2981 | if (!S) { |
2982 | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Num: Ops.size()); |
2983 | llvm::uninitialized_copy(Src&: Ops, Dst: O); |
2984 | S = new (SCEVAllocator) |
2985 | SCEVAddExpr(ID.Intern(Allocator&: SCEVAllocator), O, Ops.size()); |
2986 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
2987 | registerUser(User: S, Ops); |
2988 | } |
2989 | S->setNoWrapFlags(Flags); |
2990 | return S; |
2991 | } |
2992 | |
2993 | const SCEV * |
2994 | ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, |
2995 | const Loop *L, SCEV::NoWrapFlags Flags) { |
2996 | FoldingSetNodeID ID; |
2997 | ID.AddInteger(I: scAddRecExpr); |
2998 | for (const SCEV *Op : Ops) |
2999 | ID.AddPointer(Ptr: Op); |
3000 | ID.AddPointer(Ptr: L); |
3001 | void *IP = nullptr; |
3002 | SCEVAddRecExpr *S = |
3003 | static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)); |
3004 | if (!S) { |
3005 | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Num: Ops.size()); |
3006 | llvm::uninitialized_copy(Src&: Ops, Dst: O); |
3007 | S = new (SCEVAllocator) |
3008 | SCEVAddRecExpr(ID.Intern(Allocator&: SCEVAllocator), O, Ops.size(), L); |
3009 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
3010 | LoopUsers[L].push_back(Elt: S); |
3011 | registerUser(User: S, Ops); |
3012 | } |
3013 | setNoWrapFlags(AddRec: S, Flags); |
3014 | return S; |
3015 | } |
3016 | |
3017 | const SCEV * |
3018 | ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, |
3019 | SCEV::NoWrapFlags Flags) { |
3020 | FoldingSetNodeID ID; |
3021 | ID.AddInteger(I: scMulExpr); |
3022 | for (const SCEV *Op : Ops) |
3023 | ID.AddPointer(Ptr: Op); |
3024 | void *IP = nullptr; |
3025 | SCEVMulExpr *S = |
3026 | static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)); |
3027 | if (!S) { |
3028 | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Num: Ops.size()); |
3029 | llvm::uninitialized_copy(Src&: Ops, Dst: O); |
3030 | S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(Allocator&: SCEVAllocator), |
3031 | O, Ops.size()); |
3032 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
3033 | registerUser(User: S, Ops); |
3034 | } |
3035 | S->setNoWrapFlags(Flags); |
3036 | return S; |
3037 | } |
3038 | |
3039 | static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { |
3040 | uint64_t k = i*j; |
3041 | if (j > 1 && k / j != i) Overflow = true; |
3042 | return k; |
3043 | } |
3044 | |
3045 | /// Compute the result of "n choose k", the binomial coefficient. If an |
3046 | /// intermediate computation overflows, Overflow will be set and the return will |
3047 | /// be garbage. Overflow is not cleared on absence of overflow. |
3048 | static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { |
3049 | // We use the multiplicative formula: |
3050 | // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . |
3051 | // At each iteration, we take the n-th term of the numeral and divide by the |
3052 | // (k-n)th term of the denominator. This division will always produce an |
3053 | // integral result, and helps reduce the chance of overflow in the |
3054 | // intermediate computations. However, we can still overflow even when the |
3055 | // final result would fit. |
3056 | |
3057 | if (n == 0 || n == k) return 1; |
3058 | if (k > n) return 0; |
3059 | |
3060 | if (k > n/2) |
3061 | k = n-k; |
3062 | |
3063 | uint64_t r = 1; |
3064 | for (uint64_t i = 1; i <= k; ++i) { |
3065 | r = umul_ov(i: r, j: n-(i-1), Overflow); |
3066 | r /= i; |
3067 | } |
3068 | return r; |
3069 | } |
3070 | |
3071 | /// Determine if any of the operands in this SCEV are a constant or if |
3072 | /// any of the add or multiply expressions in this SCEV contain a constant. |
3073 | static bool containsConstantInAddMulChain(const SCEV *StartExpr) { |
3074 | struct FindConstantInAddMulChain { |
3075 | bool FoundConstant = false; |
3076 | |
3077 | bool follow(const SCEV *S) { |
3078 | FoundConstant |= isa<SCEVConstant>(Val: S); |
3079 | return isa<SCEVAddExpr>(Val: S) || isa<SCEVMulExpr>(Val: S); |
3080 | } |
3081 | |
3082 | bool isDone() const { |
3083 | return FoundConstant; |
3084 | } |
3085 | }; |
3086 | |
3087 | FindConstantInAddMulChain F; |
3088 | SCEVTraversal<FindConstantInAddMulChain> ST(F); |
3089 | ST.visitAll(Root: StartExpr); |
3090 | return F.FoundConstant; |
3091 | } |
3092 | |
3093 | /// Get a canonical multiply expression, or something simpler if possible. |
3094 | const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, |
3095 | SCEV::NoWrapFlags OrigFlags, |
3096 | unsigned Depth) { |
3097 | assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && |
3098 | "only nuw or nsw allowed" ); |
3099 | assert(!Ops.empty() && "Cannot get empty mul!" ); |
3100 | if (Ops.size() == 1) return Ops[0]; |
3101 | #ifndef NDEBUG |
3102 | Type *ETy = Ops[0]->getType(); |
3103 | assert(!ETy->isPointerTy()); |
3104 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) |
3105 | assert(Ops[i]->getType() == ETy && |
3106 | "SCEVMulExpr operand types don't match!" ); |
3107 | #endif |
3108 | |
3109 | const SCEV *Folded = constantFoldAndGroupOps( |
3110 | SE&: *this, LI, DT, Ops, |
3111 | Fold: [](const APInt &C1, const APInt &C2) { return C1 * C2; }, |
3112 | IsIdentity: [](const APInt &C) { return C.isOne(); }, // identity |
3113 | IsAbsorber: [](const APInt &C) { return C.isZero(); }); // absorber |
3114 | if (Folded) |
3115 | return Folded; |
3116 | |
3117 | // Delay expensive flag strengthening until necessary. |
3118 | auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { |
3119 | return StrengthenNoWrapFlags(SE: this, Type: scMulExpr, Ops, Flags: OrigFlags); |
3120 | }; |
3121 | |
3122 | // Limit recursion calls depth. |
3123 | if (Depth > MaxArithDepth || hasHugeExpression(Ops)) |
3124 | return getOrCreateMulExpr(Ops, Flags: ComputeFlags(Ops)); |
3125 | |
3126 | if (SCEV *S = findExistingSCEVInCache(SCEVType: scMulExpr, Ops)) { |
3127 | // Don't strengthen flags if we have no new information. |
3128 | SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); |
3129 | if (Mul->getNoWrapFlags(Mask: OrigFlags) != OrigFlags) |
3130 | Mul->setNoWrapFlags(ComputeFlags(Ops)); |
3131 | return S; |
3132 | } |
3133 | |
3134 | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Val: Ops[0])) { |
3135 | if (Ops.size() == 2) { |
3136 | // C1*(C2+V) -> C1*C2 + C1*V |
3137 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: Ops[1])) |
3138 | // If any of Add's ops are Adds or Muls with a constant, apply this |
3139 | // transformation as well. |
3140 | // |
3141 | // TODO: There are some cases where this transformation is not |
3142 | // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of |
3143 | // this transformation should be narrowed down. |
3144 | if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(StartExpr: Add)) { |
3145 | const SCEV *LHS = getMulExpr(LHS: LHSC, RHS: Add->getOperand(i: 0), |
3146 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
3147 | const SCEV *RHS = getMulExpr(LHS: LHSC, RHS: Add->getOperand(i: 1), |
3148 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
3149 | return getAddExpr(LHS, RHS, Flags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
3150 | } |
3151 | |
3152 | if (Ops[0]->isAllOnesValue()) { |
3153 | // If we have a mul by -1 of an add, try distributing the -1 among the |
3154 | // add operands. |
3155 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: Ops[1])) { |
3156 | SmallVector<const SCEV *, 4> NewOps; |
3157 | bool AnyFolded = false; |
3158 | for (const SCEV *AddOp : Add->operands()) { |
3159 | const SCEV *Mul = getMulExpr(LHS: Ops[0], RHS: AddOp, Flags: SCEV::FlagAnyWrap, |
3160 | Depth: Depth + 1); |
3161 | if (!isa<SCEVMulExpr>(Val: Mul)) AnyFolded = true; |
3162 | NewOps.push_back(Elt: Mul); |
3163 | } |
3164 | if (AnyFolded) |
3165 | return getAddExpr(Ops&: NewOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
3166 | } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: Ops[1])) { |
3167 | // Negation preserves a recurrence's no self-wrap property. |
3168 | SmallVector<const SCEV *, 4> Operands; |
3169 | for (const SCEV *AddRecOp : AddRec->operands()) |
3170 | Operands.push_back(Elt: getMulExpr(LHS: Ops[0], RHS: AddRecOp, Flags: SCEV::FlagAnyWrap, |
3171 | Depth: Depth + 1)); |
3172 | // Let M be the minimum representable signed value. AddRec with nsw |
3173 | // multiplied by -1 can have signed overflow if and only if it takes a |
3174 | // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the |
3175 | // maximum signed value. In all other cases signed overflow is |
3176 | // impossible. |
3177 | auto FlagsMask = SCEV::FlagNW; |
3178 | if (hasFlags(Flags: AddRec->getNoWrapFlags(), TestFlags: SCEV::FlagNSW)) { |
3179 | auto MinInt = |
3180 | APInt::getSignedMinValue(numBits: getTypeSizeInBits(Ty: AddRec->getType())); |
3181 | if (getSignedRangeMin(S: AddRec) != MinInt) |
3182 | FlagsMask = setFlags(Flags: FlagsMask, OnFlags: SCEV::FlagNSW); |
3183 | } |
3184 | return getAddRecExpr(Operands, L: AddRec->getLoop(), |
3185 | Flags: AddRec->getNoWrapFlags(Mask: FlagsMask)); |
3186 | } |
3187 | } |
3188 | } |
3189 | } |
3190 | |
3191 | // Skip over the add expression until we get to a multiply. |
3192 | unsigned Idx = 0; |
3193 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) |
3194 | ++Idx; |
3195 | |
3196 | // If there are mul operands inline them all into this expression. |
3197 | if (Idx < Ops.size()) { |
3198 | bool DeletedMul = false; |
3199 | while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: Ops[Idx])) { |
3200 | if (Ops.size() > MulOpsInlineThreshold) |
3201 | break; |
3202 | // If we have an mul, expand the mul operands onto the end of the |
3203 | // operands list. |
3204 | Ops.erase(CI: Ops.begin()+Idx); |
3205 | append_range(C&: Ops, R: Mul->operands()); |
3206 | DeletedMul = true; |
3207 | } |
3208 | |
3209 | // If we deleted at least one mul, we added operands to the end of the |
3210 | // list, and they are not necessarily sorted. Recurse to resort and |
3211 | // resimplify any operands we just acquired. |
3212 | if (DeletedMul) |
3213 | return getMulExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
3214 | } |
3215 | |
3216 | // If there are any add recurrences in the operands list, see if any other |
3217 | // added values are loop invariant. If so, we can fold them into the |
3218 | // recurrence. |
3219 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) |
3220 | ++Idx; |
3221 | |
3222 | // Scan over all recurrences, trying to fold loop invariants into them. |
3223 | for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Val: Ops[Idx]); ++Idx) { |
3224 | // Scan all of the other operands to this mul and add them to the vector |
3225 | // if they are loop invariant w.r.t. the recurrence. |
3226 | SmallVector<const SCEV *, 8> LIOps; |
3227 | const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Val: Ops[Idx]); |
3228 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
3229 | if (isAvailableAtLoopEntry(S: Ops[i], L: AddRec->getLoop())) { |
3230 | LIOps.push_back(Elt: Ops[i]); |
3231 | Ops.erase(CI: Ops.begin()+i); |
3232 | --i; --e; |
3233 | } |
3234 | |
3235 | // If we found some loop invariants, fold them into the recurrence. |
3236 | if (!LIOps.empty()) { |
3237 | // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} |
3238 | SmallVector<const SCEV *, 4> NewOps; |
3239 | NewOps.reserve(N: AddRec->getNumOperands()); |
3240 | const SCEV *Scale = getMulExpr(Ops&: LIOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
3241 | |
3242 | // If both the mul and addrec are nuw, we can preserve nuw. |
3243 | // If both the mul and addrec are nsw, we can only preserve nsw if either |
3244 | // a) they are also nuw, or |
3245 | // b) all multiplications of addrec operands with scale are nsw. |
3246 | SCEV::NoWrapFlags Flags = |
3247 | AddRec->getNoWrapFlags(Mask: ComputeFlags({Scale, AddRec})); |
3248 | |
3249 | for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { |
3250 | NewOps.push_back(Elt: getMulExpr(LHS: Scale, RHS: AddRec->getOperand(i), |
3251 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1)); |
3252 | |
3253 | if (hasFlags(Flags, TestFlags: SCEV::FlagNSW) && !hasFlags(Flags, TestFlags: SCEV::FlagNUW)) { |
3254 | ConstantRange NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
3255 | BinOp: Instruction::Mul, Other: getSignedRange(S: Scale), |
3256 | NoWrapKind: OverflowingBinaryOperator::NoSignedWrap); |
3257 | if (!NSWRegion.contains(CR: getSignedRange(S: AddRec->getOperand(i)))) |
3258 | Flags = clearFlags(Flags, OffFlags: SCEV::FlagNSW); |
3259 | } |
3260 | } |
3261 | |
3262 | const SCEV *NewRec = getAddRecExpr(Operands&: NewOps, L: AddRec->getLoop(), Flags); |
3263 | |
3264 | // If all of the other operands were loop invariant, we are done. |
3265 | if (Ops.size() == 1) return NewRec; |
3266 | |
3267 | // Otherwise, multiply the folded AddRec by the non-invariant parts. |
3268 | for (unsigned i = 0;; ++i) |
3269 | if (Ops[i] == AddRec) { |
3270 | Ops[i] = NewRec; |
3271 | break; |
3272 | } |
3273 | return getMulExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
3274 | } |
3275 | |
3276 | // Okay, if there weren't any loop invariants to be folded, check to see |
3277 | // if there are multiple AddRec's with the same loop induction variable |
3278 | // being multiplied together. If so, we can fold them. |
3279 | |
3280 | // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> |
3281 | // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ |
3282 | // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z |
3283 | // ]]],+,...up to x=2n}. |
3284 | // Note that the arguments to choose() are always integers with values |
3285 | // known at compile time, never SCEV objects. |
3286 | // |
3287 | // The implementation avoids pointless extra computations when the two |
3288 | // addrec's are of different length (mathematically, it's equivalent to |
3289 | // an infinite stream of zeros on the right). |
3290 | bool OpsModified = false; |
3291 | for (unsigned OtherIdx = Idx+1; |
3292 | OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Val: Ops[OtherIdx]); |
3293 | ++OtherIdx) { |
3294 | const SCEVAddRecExpr *OtherAddRec = |
3295 | dyn_cast<SCEVAddRecExpr>(Val: Ops[OtherIdx]); |
3296 | if (!OtherAddRec || OtherAddRec->getLoop() != AddRec->getLoop()) |
3297 | continue; |
3298 | |
3299 | // Limit max number of arguments to avoid creation of unreasonably big |
3300 | // SCEVAddRecs with very complex operands. |
3301 | if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > |
3302 | MaxAddRecSize || hasHugeExpression(Ops: {AddRec, OtherAddRec})) |
3303 | continue; |
3304 | |
3305 | bool Overflow = false; |
3306 | Type *Ty = AddRec->getType(); |
3307 | bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; |
3308 | SmallVector<const SCEV*, 7> AddRecOps; |
3309 | for (int x = 0, xe = AddRec->getNumOperands() + |
3310 | OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { |
3311 | SmallVector <const SCEV *, 7> SumOps; |
3312 | for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { |
3313 | uint64_t Coeff1 = Choose(n: x, k: 2*x - y, Overflow); |
3314 | for (int z = std::max(a: y-x, b: y-(int)AddRec->getNumOperands()+1), |
3315 | ze = std::min(a: x+1, b: (int)OtherAddRec->getNumOperands()); |
3316 | z < ze && !Overflow; ++z) { |
3317 | uint64_t Coeff2 = Choose(n: 2*x - y, k: x-z, Overflow); |
3318 | uint64_t Coeff; |
3319 | if (LargerThan64Bits) |
3320 | Coeff = umul_ov(i: Coeff1, j: Coeff2, Overflow); |
3321 | else |
3322 | Coeff = Coeff1*Coeff2; |
3323 | const SCEV *CoeffTerm = getConstant(Ty, V: Coeff); |
3324 | const SCEV *Term1 = AddRec->getOperand(i: y-z); |
3325 | const SCEV *Term2 = OtherAddRec->getOperand(i: z); |
3326 | SumOps.push_back(Elt: getMulExpr(Op0: CoeffTerm, Op1: Term1, Op2: Term2, |
3327 | Flags: SCEV::FlagAnyWrap, Depth: Depth + 1)); |
3328 | } |
3329 | } |
3330 | if (SumOps.empty()) |
3331 | SumOps.push_back(Elt: getZero(Ty)); |
3332 | AddRecOps.push_back(Elt: getAddExpr(Ops&: SumOps, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1)); |
3333 | } |
3334 | if (!Overflow) { |
3335 | const SCEV *NewAddRec = getAddRecExpr(Operands&: AddRecOps, L: AddRec->getLoop(), |
3336 | Flags: SCEV::FlagAnyWrap); |
3337 | if (Ops.size() == 2) return NewAddRec; |
3338 | Ops[Idx] = NewAddRec; |
3339 | Ops.erase(CI: Ops.begin() + OtherIdx); --OtherIdx; |
3340 | OpsModified = true; |
3341 | AddRec = dyn_cast<SCEVAddRecExpr>(Val: NewAddRec); |
3342 | if (!AddRec) |
3343 | break; |
3344 | } |
3345 | } |
3346 | if (OpsModified) |
3347 | return getMulExpr(Ops, OrigFlags: SCEV::FlagAnyWrap, Depth: Depth + 1); |
3348 | |
3349 | // Otherwise couldn't fold anything into this recurrence. Move onto the |
3350 | // next one. |
3351 | } |
3352 | |
3353 | // Okay, it looks like we really DO need an mul expr. Check to see if we |
3354 | // already have one, otherwise create a new one. |
3355 | return getOrCreateMulExpr(Ops, Flags: ComputeFlags(Ops)); |
3356 | } |
3357 | |
3358 | /// Represents an unsigned remainder expression based on unsigned division. |
3359 | const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, |
3360 | const SCEV *RHS) { |
3361 | assert(getEffectiveSCEVType(LHS->getType()) == |
3362 | getEffectiveSCEVType(RHS->getType()) && |
3363 | "SCEVURemExpr operand types don't match!" ); |
3364 | |
3365 | // Short-circuit easy cases |
3366 | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: RHS)) { |
3367 | // If constant is one, the result is trivial |
3368 | if (RHSC->getValue()->isOne()) |
3369 | return getZero(Ty: LHS->getType()); // X urem 1 --> 0 |
3370 | |
3371 | // If constant is a power of two, fold into a zext(trunc(LHS)). |
3372 | if (RHSC->getAPInt().isPowerOf2()) { |
3373 | Type *FullTy = LHS->getType(); |
3374 | Type *TruncTy = |
3375 | IntegerType::get(C&: getContext(), NumBits: RHSC->getAPInt().logBase2()); |
3376 | return getZeroExtendExpr(Op: getTruncateExpr(Op: LHS, Ty: TruncTy), Ty: FullTy); |
3377 | } |
3378 | } |
3379 | |
3380 | // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) |
3381 | const SCEV *UDiv = getUDivExpr(LHS, RHS); |
3382 | const SCEV *Mult = getMulExpr(LHS: UDiv, RHS, Flags: SCEV::FlagNUW); |
3383 | return getMinusSCEV(LHS, RHS: Mult, Flags: SCEV::FlagNUW); |
3384 | } |
3385 | |
3386 | /// Get a canonical unsigned division expression, or something simpler if |
3387 | /// possible. |
3388 | const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, |
3389 | const SCEV *RHS) { |
3390 | assert(!LHS->getType()->isPointerTy() && |
3391 | "SCEVUDivExpr operand can't be pointer!" ); |
3392 | assert(LHS->getType() == RHS->getType() && |
3393 | "SCEVUDivExpr operand types don't match!" ); |
3394 | |
3395 | FoldingSetNodeID ID; |
3396 | ID.AddInteger(I: scUDivExpr); |
3397 | ID.AddPointer(Ptr: LHS); |
3398 | ID.AddPointer(Ptr: RHS); |
3399 | void *IP = nullptr; |
3400 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) |
3401 | return S; |
3402 | |
3403 | // 0 udiv Y == 0 |
3404 | if (match(S: LHS, P: m_scev_Zero())) |
3405 | return LHS; |
3406 | |
3407 | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: RHS)) { |
3408 | if (RHSC->getValue()->isOne()) |
3409 | return LHS; // X udiv 1 --> x |
3410 | // If the denominator is zero, the result of the udiv is undefined. Don't |
3411 | // try to analyze it, because the resolution chosen here may differ from |
3412 | // the resolution chosen in other parts of the compiler. |
3413 | if (!RHSC->getValue()->isZero()) { |
3414 | // Determine if the division can be folded into the operands of |
3415 | // its operands. |
3416 | // TODO: Generalize this to non-constants by using known-bits information. |
3417 | Type *Ty = LHS->getType(); |
3418 | unsigned LZ = RHSC->getAPInt().countl_zero(); |
3419 | unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; |
3420 | // For non-power-of-two values, effectively round the value up to the |
3421 | // nearest power of two. |
3422 | if (!RHSC->getAPInt().isPowerOf2()) |
3423 | ++MaxShiftAmt; |
3424 | IntegerType *ExtTy = |
3425 | IntegerType::get(C&: getContext(), NumBits: getTypeSizeInBits(Ty) + MaxShiftAmt); |
3426 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: LHS)) |
3427 | if (const SCEVConstant *Step = |
3428 | dyn_cast<SCEVConstant>(Val: AR->getStepRecurrence(SE&: *this))) { |
3429 | // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. |
3430 | const APInt &StepInt = Step->getAPInt(); |
3431 | const APInt &DivInt = RHSC->getAPInt(); |
3432 | if (!StepInt.urem(RHS: DivInt) && |
3433 | getZeroExtendExpr(Op: AR, Ty: ExtTy) == |
3434 | getAddRecExpr(Start: getZeroExtendExpr(Op: AR->getStart(), Ty: ExtTy), |
3435 | Step: getZeroExtendExpr(Op: Step, Ty: ExtTy), |
3436 | L: AR->getLoop(), Flags: SCEV::FlagAnyWrap)) { |
3437 | SmallVector<const SCEV *, 4> Operands; |
3438 | for (const SCEV *Op : AR->operands()) |
3439 | Operands.push_back(Elt: getUDivExpr(LHS: Op, RHS)); |
3440 | return getAddRecExpr(Operands, L: AR->getLoop(), Flags: SCEV::FlagNW); |
3441 | } |
3442 | /// Get a canonical UDivExpr for a recurrence. |
3443 | /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. |
3444 | // We can currently only fold X%N if X is constant. |
3445 | const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Val: AR->getStart()); |
3446 | if (StartC && !DivInt.urem(RHS: StepInt) && |
3447 | getZeroExtendExpr(Op: AR, Ty: ExtTy) == |
3448 | getAddRecExpr(Start: getZeroExtendExpr(Op: AR->getStart(), Ty: ExtTy), |
3449 | Step: getZeroExtendExpr(Op: Step, Ty: ExtTy), |
3450 | L: AR->getLoop(), Flags: SCEV::FlagAnyWrap)) { |
3451 | const APInt &StartInt = StartC->getAPInt(); |
3452 | const APInt &StartRem = StartInt.urem(RHS: StepInt); |
3453 | if (StartRem != 0) { |
3454 | const SCEV *NewLHS = |
3455 | getAddRecExpr(Start: getConstant(Val: StartInt - StartRem), Step, |
3456 | L: AR->getLoop(), Flags: SCEV::FlagNW); |
3457 | if (LHS != NewLHS) { |
3458 | LHS = NewLHS; |
3459 | |
3460 | // Reset the ID to include the new LHS, and check if it is |
3461 | // already cached. |
3462 | ID.clear(); |
3463 | ID.AddInteger(I: scUDivExpr); |
3464 | ID.AddPointer(Ptr: LHS); |
3465 | ID.AddPointer(Ptr: RHS); |
3466 | IP = nullptr; |
3467 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) |
3468 | return S; |
3469 | } |
3470 | } |
3471 | } |
3472 | } |
3473 | // (A*B)/C --> A*(B/C) if safe and B/C can be folded. |
3474 | if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Val: LHS)) { |
3475 | SmallVector<const SCEV *, 4> Operands; |
3476 | for (const SCEV *Op : M->operands()) |
3477 | Operands.push_back(Elt: getZeroExtendExpr(Op, Ty: ExtTy)); |
3478 | if (getZeroExtendExpr(Op: M, Ty: ExtTy) == getMulExpr(Ops&: Operands)) |
3479 | // Find an operand that's safely divisible. |
3480 | for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { |
3481 | const SCEV *Op = M->getOperand(i); |
3482 | const SCEV *Div = getUDivExpr(LHS: Op, RHS: RHSC); |
3483 | if (!isa<SCEVUDivExpr>(Val: Div) && getMulExpr(LHS: Div, RHS: RHSC) == Op) { |
3484 | Operands = SmallVector<const SCEV *, 4>(M->operands()); |
3485 | Operands[i] = Div; |
3486 | return getMulExpr(Ops&: Operands); |
3487 | } |
3488 | } |
3489 | } |
3490 | |
3491 | // (A/B)/C --> A/(B*C) if safe and B*C can be folded. |
3492 | if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(Val: LHS)) { |
3493 | if (auto *DivisorConstant = |
3494 | dyn_cast<SCEVConstant>(Val: OtherDiv->getRHS())) { |
3495 | bool Overflow = false; |
3496 | APInt NewRHS = |
3497 | DivisorConstant->getAPInt().umul_ov(RHS: RHSC->getAPInt(), Overflow); |
3498 | if (Overflow) { |
3499 | return getConstant(Ty: RHSC->getType(), V: 0, isSigned: false); |
3500 | } |
3501 | return getUDivExpr(LHS: OtherDiv->getLHS(), RHS: getConstant(Val: NewRHS)); |
3502 | } |
3503 | } |
3504 | |
3505 | // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. |
3506 | if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Val: LHS)) { |
3507 | SmallVector<const SCEV *, 4> Operands; |
3508 | for (const SCEV *Op : A->operands()) |
3509 | Operands.push_back(Elt: getZeroExtendExpr(Op, Ty: ExtTy)); |
3510 | if (getZeroExtendExpr(Op: A, Ty: ExtTy) == getAddExpr(Ops&: Operands)) { |
3511 | Operands.clear(); |
3512 | for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { |
3513 | const SCEV *Op = getUDivExpr(LHS: A->getOperand(i), RHS); |
3514 | if (isa<SCEVUDivExpr>(Val: Op) || |
3515 | getMulExpr(LHS: Op, RHS) != A->getOperand(i)) |
3516 | break; |
3517 | Operands.push_back(Elt: Op); |
3518 | } |
3519 | if (Operands.size() == A->getNumOperands()) |
3520 | return getAddExpr(Ops&: Operands); |
3521 | } |
3522 | } |
3523 | |
3524 | // Fold if both operands are constant. |
3525 | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Val: LHS)) |
3526 | return getConstant(Val: LHSC->getAPInt().udiv(RHS: RHSC->getAPInt())); |
3527 | } |
3528 | } |
3529 | |
3530 | // ((-C + (C smax %x)) /u %x) evaluates to zero, for any positive constant C. |
3531 | if (const auto *AE = dyn_cast<SCEVAddExpr>(Val: LHS); |
3532 | AE && AE->getNumOperands() == 2) { |
3533 | if (const auto *VC = dyn_cast<SCEVConstant>(Val: AE->getOperand(i: 0))) { |
3534 | const APInt &NegC = VC->getAPInt(); |
3535 | if (NegC.isNegative() && !NegC.isMinSignedValue()) { |
3536 | const auto *MME = dyn_cast<SCEVSMaxExpr>(Val: AE->getOperand(i: 1)); |
3537 | if (MME && MME->getNumOperands() == 2 && |
3538 | isa<SCEVConstant>(Val: MME->getOperand(i: 0)) && |
3539 | cast<SCEVConstant>(Val: MME->getOperand(i: 0))->getAPInt() == -NegC && |
3540 | MME->getOperand(i: 1) == RHS) |
3541 | return getZero(Ty: LHS->getType()); |
3542 | } |
3543 | } |
3544 | } |
3545 | |
3546 | // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs |
3547 | // changes). Make sure we get a new one. |
3548 | IP = nullptr; |
3549 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) return S; |
3550 | SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(Allocator&: SCEVAllocator), |
3551 | LHS, RHS); |
3552 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
3553 | registerUser(User: S, Ops: {LHS, RHS}); |
3554 | return S; |
3555 | } |
3556 | |
3557 | APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { |
3558 | APInt A = C1->getAPInt().abs(); |
3559 | APInt B = C2->getAPInt().abs(); |
3560 | uint32_t ABW = A.getBitWidth(); |
3561 | uint32_t BBW = B.getBitWidth(); |
3562 | |
3563 | if (ABW > BBW) |
3564 | B = B.zext(width: ABW); |
3565 | else if (ABW < BBW) |
3566 | A = A.zext(width: BBW); |
3567 | |
3568 | return APIntOps::GreatestCommonDivisor(A: std::move(A), B: std::move(B)); |
3569 | } |
3570 | |
3571 | /// Get a canonical unsigned division expression, or something simpler if |
3572 | /// possible. There is no representation for an exact udiv in SCEV IR, but we |
3573 | /// can attempt to remove factors from the LHS and RHS. We can't do this when |
3574 | /// it's not exact because the udiv may be clearing bits. |
3575 | const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, |
3576 | const SCEV *RHS) { |
3577 | // TODO: we could try to find factors in all sorts of things, but for now we |
3578 | // just deal with u/exact (multiply, constant). See SCEVDivision towards the |
3579 | // end of this file for inspiration. |
3580 | |
3581 | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Val: LHS); |
3582 | if (!Mul || !Mul->hasNoUnsignedWrap()) |
3583 | return getUDivExpr(LHS, RHS); |
3584 | |
3585 | if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(Val: RHS)) { |
3586 | // If the mulexpr multiplies by a constant, then that constant must be the |
3587 | // first element of the mulexpr. |
3588 | if (const auto *LHSCst = dyn_cast<SCEVConstant>(Val: Mul->getOperand(i: 0))) { |
3589 | if (LHSCst == RHSCst) { |
3590 | SmallVector<const SCEV *, 2> Operands(drop_begin(RangeOrContainer: Mul->operands())); |
3591 | return getMulExpr(Ops&: Operands); |
3592 | } |
3593 | |
3594 | // We can't just assume that LHSCst divides RHSCst cleanly, it could be |
3595 | // that there's a factor provided by one of the other terms. We need to |
3596 | // check. |
3597 | APInt Factor = gcd(C1: LHSCst, C2: RHSCst); |
3598 | if (!Factor.isIntN(N: 1)) { |
3599 | LHSCst = |
3600 | cast<SCEVConstant>(Val: getConstant(Val: LHSCst->getAPInt().udiv(RHS: Factor))); |
3601 | RHSCst = |
3602 | cast<SCEVConstant>(Val: getConstant(Val: RHSCst->getAPInt().udiv(RHS: Factor))); |
3603 | SmallVector<const SCEV *, 2> Operands; |
3604 | Operands.push_back(Elt: LHSCst); |
3605 | append_range(C&: Operands, R: Mul->operands().drop_front()); |
3606 | LHS = getMulExpr(Ops&: Operands); |
3607 | RHS = RHSCst; |
3608 | Mul = dyn_cast<SCEVMulExpr>(Val: LHS); |
3609 | if (!Mul) |
3610 | return getUDivExactExpr(LHS, RHS); |
3611 | } |
3612 | } |
3613 | } |
3614 | |
3615 | for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { |
3616 | if (Mul->getOperand(i) == RHS) { |
3617 | SmallVector<const SCEV *, 2> Operands; |
3618 | append_range(C&: Operands, R: Mul->operands().take_front(N: i)); |
3619 | append_range(C&: Operands, R: Mul->operands().drop_front(N: i + 1)); |
3620 | return getMulExpr(Ops&: Operands); |
3621 | } |
3622 | } |
3623 | |
3624 | return getUDivExpr(LHS, RHS); |
3625 | } |
3626 | |
3627 | /// Get an add recurrence expression for the specified loop. Simplify the |
3628 | /// expression as much as possible. |
3629 | const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, |
3630 | const Loop *L, |
3631 | SCEV::NoWrapFlags Flags) { |
3632 | SmallVector<const SCEV *, 4> Operands; |
3633 | Operands.push_back(Elt: Start); |
3634 | if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Val: Step)) |
3635 | if (StepChrec->getLoop() == L) { |
3636 | append_range(C&: Operands, R: StepChrec->operands()); |
3637 | return getAddRecExpr(Operands, L, Flags: maskFlags(Flags, Mask: SCEV::FlagNW)); |
3638 | } |
3639 | |
3640 | Operands.push_back(Elt: Step); |
3641 | return getAddRecExpr(Operands, L, Flags); |
3642 | } |
3643 | |
3644 | /// Get an add recurrence expression for the specified loop. Simplify the |
3645 | /// expression as much as possible. |
3646 | const SCEV * |
3647 | ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, |
3648 | const Loop *L, SCEV::NoWrapFlags Flags) { |
3649 | if (Operands.size() == 1) return Operands[0]; |
3650 | #ifndef NDEBUG |
3651 | Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); |
3652 | for (const SCEV *Op : llvm::drop_begin(Operands)) { |
3653 | assert(getEffectiveSCEVType(Op->getType()) == ETy && |
3654 | "SCEVAddRecExpr operand types don't match!" ); |
3655 | assert(!Op->getType()->isPointerTy() && "Step must be integer" ); |
3656 | } |
3657 | for (const SCEV *Op : Operands) |
3658 | assert(isAvailableAtLoopEntry(Op, L) && |
3659 | "SCEVAddRecExpr operand is not available at loop entry!" ); |
3660 | #endif |
3661 | |
3662 | if (Operands.back()->isZero()) { |
3663 | Operands.pop_back(); |
3664 | return getAddRecExpr(Operands, L, Flags: SCEV::FlagAnyWrap); // {X,+,0} --> X |
3665 | } |
3666 | |
3667 | // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and |
3668 | // use that information to infer NUW and NSW flags. However, computing a |
3669 | // BE count requires calling getAddRecExpr, so we may not yet have a |
3670 | // meaningful BE count at this point (and if we don't, we'd be stuck |
3671 | // with a SCEVCouldNotCompute as the cached BE count). |
3672 | |
3673 | Flags = StrengthenNoWrapFlags(SE: this, Type: scAddRecExpr, Ops: Operands, Flags); |
3674 | |
3675 | // Canonicalize nested AddRecs in by nesting them in order of loop depth. |
3676 | if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Val: Operands[0])) { |
3677 | const Loop *NestedLoop = NestedAR->getLoop(); |
3678 | if (L->contains(L: NestedLoop) |
3679 | ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) |
3680 | : (!NestedLoop->contains(L) && |
3681 | DT.dominates(A: L->getHeader(), B: NestedLoop->getHeader()))) { |
3682 | SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); |
3683 | Operands[0] = NestedAR->getStart(); |
3684 | // AddRecs require their operands be loop-invariant with respect to their |
3685 | // loops. Don't perform this transformation if it would break this |
3686 | // requirement. |
3687 | bool AllInvariant = all_of( |
3688 | Range&: Operands, P: [&](const SCEV *Op) { return isLoopInvariant(S: Op, L); }); |
3689 | |
3690 | if (AllInvariant) { |
3691 | // Create a recurrence for the outer loop with the same step size. |
3692 | // |
3693 | // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the |
3694 | // inner recurrence has the same property. |
3695 | SCEV::NoWrapFlags OuterFlags = |
3696 | maskFlags(Flags, Mask: SCEV::FlagNW | NestedAR->getNoWrapFlags()); |
3697 | |
3698 | NestedOperands[0] = getAddRecExpr(Operands, L, Flags: OuterFlags); |
3699 | AllInvariant = all_of(Range&: NestedOperands, P: [&](const SCEV *Op) { |
3700 | return isLoopInvariant(S: Op, L: NestedLoop); |
3701 | }); |
3702 | |
3703 | if (AllInvariant) { |
3704 | // Ok, both add recurrences are valid after the transformation. |
3705 | // |
3706 | // The inner recurrence keeps its NW flag but only keeps NUW/NSW if |
3707 | // the outer recurrence has the same property. |
3708 | SCEV::NoWrapFlags InnerFlags = |
3709 | maskFlags(Flags: NestedAR->getNoWrapFlags(), Mask: SCEV::FlagNW | Flags); |
3710 | return getAddRecExpr(Operands&: NestedOperands, L: NestedLoop, Flags: InnerFlags); |
3711 | } |
3712 | } |
3713 | // Reset Operands to its original state. |
3714 | Operands[0] = NestedAR; |
3715 | } |
3716 | } |
3717 | |
3718 | // Okay, it looks like we really DO need an addrec expr. Check to see if we |
3719 | // already have one, otherwise create a new one. |
3720 | return getOrCreateAddRecExpr(Ops: Operands, L, Flags); |
3721 | } |
3722 | |
3723 | const SCEV * |
3724 | ScalarEvolution::getGEPExpr(GEPOperator *GEP, |
3725 | const SmallVectorImpl<const SCEV *> &IndexExprs) { |
3726 | const SCEV *BaseExpr = getSCEV(V: GEP->getPointerOperand()); |
3727 | // getSCEV(Base)->getType() has the same address space as Base->getType() |
3728 | // because SCEV::getType() preserves the address space. |
3729 | Type *IntIdxTy = getEffectiveSCEVType(Ty: BaseExpr->getType()); |
3730 | GEPNoWrapFlags NW = GEP->getNoWrapFlags(); |
3731 | if (NW != GEPNoWrapFlags::none()) { |
3732 | // We'd like to propagate flags from the IR to the corresponding SCEV nodes, |
3733 | // but to do that, we have to ensure that said flag is valid in the entire |
3734 | // defined scope of the SCEV. |
3735 | // TODO: non-instructions have global scope. We might be able to prove |
3736 | // some global scope cases |
3737 | auto *GEPI = dyn_cast<Instruction>(Val: GEP); |
3738 | if (!GEPI || !isSCEVExprNeverPoison(I: GEPI)) |
3739 | NW = GEPNoWrapFlags::none(); |
3740 | } |
3741 | |
3742 | SCEV::NoWrapFlags OffsetWrap = SCEV::FlagAnyWrap; |
3743 | if (NW.hasNoUnsignedSignedWrap()) |
3744 | OffsetWrap = setFlags(Flags: OffsetWrap, OnFlags: SCEV::FlagNSW); |
3745 | if (NW.hasNoUnsignedWrap()) |
3746 | OffsetWrap = setFlags(Flags: OffsetWrap, OnFlags: SCEV::FlagNUW); |
3747 | |
3748 | Type *CurTy = GEP->getType(); |
3749 | bool FirstIter = true; |
3750 | SmallVector<const SCEV *, 4> Offsets; |
3751 | for (const SCEV *IndexExpr : IndexExprs) { |
3752 | // Compute the (potentially symbolic) offset in bytes for this index. |
3753 | if (StructType *STy = dyn_cast<StructType>(Val: CurTy)) { |
3754 | // For a struct, add the member offset. |
3755 | ConstantInt *Index = cast<SCEVConstant>(Val: IndexExpr)->getValue(); |
3756 | unsigned FieldNo = Index->getZExtValue(); |
3757 | const SCEV *FieldOffset = getOffsetOfExpr(IntTy: IntIdxTy, STy, FieldNo); |
3758 | Offsets.push_back(Elt: FieldOffset); |
3759 | |
3760 | // Update CurTy to the type of the field at Index. |
3761 | CurTy = STy->getTypeAtIndex(V: Index); |
3762 | } else { |
3763 | // Update CurTy to its element type. |
3764 | if (FirstIter) { |
3765 | assert(isa<PointerType>(CurTy) && |
3766 | "The first index of a GEP indexes a pointer" ); |
3767 | CurTy = GEP->getSourceElementType(); |
3768 | FirstIter = false; |
3769 | } else { |
3770 | CurTy = GetElementPtrInst::getTypeAtIndex(Ty: CurTy, Idx: (uint64_t)0); |
3771 | } |
3772 | // For an array, add the element offset, explicitly scaled. |
3773 | const SCEV *ElementSize = getSizeOfExpr(IntTy: IntIdxTy, AllocTy: CurTy); |
3774 | // Getelementptr indices are signed. |
3775 | IndexExpr = getTruncateOrSignExtend(V: IndexExpr, Ty: IntIdxTy); |
3776 | |
3777 | // Multiply the index by the element size to compute the element offset. |
3778 | const SCEV *LocalOffset = getMulExpr(LHS: IndexExpr, RHS: ElementSize, Flags: OffsetWrap); |
3779 | Offsets.push_back(Elt: LocalOffset); |
3780 | } |
3781 | } |
3782 | |
3783 | // Handle degenerate case of GEP without offsets. |
3784 | if (Offsets.empty()) |
3785 | return BaseExpr; |
3786 | |
3787 | // Add the offsets together, assuming nsw if inbounds. |
3788 | const SCEV *Offset = getAddExpr(Ops&: Offsets, OrigFlags: OffsetWrap); |
3789 | // Add the base address and the offset. We cannot use the nsw flag, as the |
3790 | // base address is unsigned. However, if we know that the offset is |
3791 | // non-negative, we can use nuw. |
3792 | bool NUW = NW.hasNoUnsignedWrap() || |
3793 | (NW.hasNoUnsignedSignedWrap() && isKnownNonNegative(S: Offset)); |
3794 | SCEV::NoWrapFlags BaseWrap = NUW ? SCEV::FlagNUW : SCEV::FlagAnyWrap; |
3795 | auto *GEPExpr = getAddExpr(LHS: BaseExpr, RHS: Offset, Flags: BaseWrap); |
3796 | assert(BaseExpr->getType() == GEPExpr->getType() && |
3797 | "GEP should not change type mid-flight." ); |
3798 | return GEPExpr; |
3799 | } |
3800 | |
3801 | SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, |
3802 | ArrayRef<const SCEV *> Ops) { |
3803 | FoldingSetNodeID ID; |
3804 | ID.AddInteger(I: SCEVType); |
3805 | for (const SCEV *Op : Ops) |
3806 | ID.AddPointer(Ptr: Op); |
3807 | void *IP = nullptr; |
3808 | return UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP); |
3809 | } |
3810 | |
3811 | const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { |
3812 | SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; |
3813 | return getSMaxExpr(LHS: Op, RHS: getNegativeSCEV(V: Op, Flags)); |
3814 | } |
3815 | |
3816 | const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, |
3817 | SmallVectorImpl<const SCEV *> &Ops) { |
3818 | assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!" ); |
3819 | assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!" ); |
3820 | if (Ops.size() == 1) return Ops[0]; |
3821 | #ifndef NDEBUG |
3822 | Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); |
3823 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) { |
3824 | assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && |
3825 | "Operand types don't match!" ); |
3826 | assert(Ops[0]->getType()->isPointerTy() == |
3827 | Ops[i]->getType()->isPointerTy() && |
3828 | "min/max should be consistently pointerish" ); |
3829 | } |
3830 | #endif |
3831 | |
3832 | bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; |
3833 | bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; |
3834 | |
3835 | const SCEV *Folded = constantFoldAndGroupOps( |
3836 | SE&: *this, LI, DT, Ops, |
3837 | Fold: [&](const APInt &C1, const APInt &C2) { |
3838 | switch (Kind) { |
3839 | case scSMaxExpr: |
3840 | return APIntOps::smax(A: C1, B: C2); |
3841 | case scSMinExpr: |
3842 | return APIntOps::smin(A: C1, B: C2); |
3843 | case scUMaxExpr: |
3844 | return APIntOps::umax(A: C1, B: C2); |
3845 | case scUMinExpr: |
3846 | return APIntOps::umin(A: C1, B: C2); |
3847 | default: |
3848 | llvm_unreachable("Unknown SCEV min/max opcode" ); |
3849 | } |
3850 | }, |
3851 | IsIdentity: [&](const APInt &C) { |
3852 | // identity |
3853 | if (IsMax) |
3854 | return IsSigned ? C.isMinSignedValue() : C.isMinValue(); |
3855 | else |
3856 | return IsSigned ? C.isMaxSignedValue() : C.isMaxValue(); |
3857 | }, |
3858 | IsAbsorber: [&](const APInt &C) { |
3859 | // absorber |
3860 | if (IsMax) |
3861 | return IsSigned ? C.isMaxSignedValue() : C.isMaxValue(); |
3862 | else |
3863 | return IsSigned ? C.isMinSignedValue() : C.isMinValue(); |
3864 | }); |
3865 | if (Folded) |
3866 | return Folded; |
3867 | |
3868 | // Check if we have created the same expression before. |
3869 | if (const SCEV *S = findExistingSCEVInCache(SCEVType: Kind, Ops)) { |
3870 | return S; |
3871 | } |
3872 | |
3873 | // Find the first operation of the same kind |
3874 | unsigned Idx = 0; |
3875 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) |
3876 | ++Idx; |
3877 | |
3878 | // Check to see if one of the operands is of the same kind. If so, expand its |
3879 | // operands onto our operand list, and recurse to simplify. |
3880 | if (Idx < Ops.size()) { |
3881 | bool DeletedAny = false; |
3882 | while (Ops[Idx]->getSCEVType() == Kind) { |
3883 | const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Val: Ops[Idx]); |
3884 | Ops.erase(CI: Ops.begin()+Idx); |
3885 | append_range(C&: Ops, R: SMME->operands()); |
3886 | DeletedAny = true; |
3887 | } |
3888 | |
3889 | if (DeletedAny) |
3890 | return getMinMaxExpr(Kind, Ops); |
3891 | } |
3892 | |
3893 | // Okay, check to see if the same value occurs in the operand list twice. If |
3894 | // so, delete one. Since we sorted the list, these values are required to |
3895 | // be adjacent. |
3896 | llvm::CmpInst::Predicate GEPred = |
3897 | IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; |
3898 | llvm::CmpInst::Predicate LEPred = |
3899 | IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; |
3900 | llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; |
3901 | llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; |
3902 | for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { |
3903 | if (Ops[i] == Ops[i + 1] || |
3904 | isKnownViaNonRecursiveReasoning(Pred: FirstPred, LHS: Ops[i], RHS: Ops[i + 1])) { |
3905 | // X op Y op Y --> X op Y |
3906 | // X op Y --> X, if we know X, Y are ordered appropriately |
3907 | Ops.erase(CS: Ops.begin() + i + 1, CE: Ops.begin() + i + 2); |
3908 | --i; |
3909 | --e; |
3910 | } else if (isKnownViaNonRecursiveReasoning(Pred: SecondPred, LHS: Ops[i], |
3911 | RHS: Ops[i + 1])) { |
3912 | // X op Y --> Y, if we know X, Y are ordered appropriately |
3913 | Ops.erase(CS: Ops.begin() + i, CE: Ops.begin() + i + 1); |
3914 | --i; |
3915 | --e; |
3916 | } |
3917 | } |
3918 | |
3919 | if (Ops.size() == 1) return Ops[0]; |
3920 | |
3921 | assert(!Ops.empty() && "Reduced smax down to nothing!" ); |
3922 | |
3923 | // Okay, it looks like we really DO need an expr. Check to see if we |
3924 | // already have one, otherwise create a new one. |
3925 | FoldingSetNodeID ID; |
3926 | ID.AddInteger(I: Kind); |
3927 | for (const SCEV *Op : Ops) |
3928 | ID.AddPointer(Ptr: Op); |
3929 | void *IP = nullptr; |
3930 | const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP); |
3931 | if (ExistingSCEV) |
3932 | return ExistingSCEV; |
3933 | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Num: Ops.size()); |
3934 | llvm::uninitialized_copy(Src&: Ops, Dst: O); |
3935 | SCEV *S = new (SCEVAllocator) |
3936 | SCEVMinMaxExpr(ID.Intern(Allocator&: SCEVAllocator), Kind, O, Ops.size()); |
3937 | |
3938 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
3939 | registerUser(User: S, Ops); |
3940 | return S; |
3941 | } |
3942 | |
3943 | namespace { |
3944 | |
3945 | class SCEVSequentialMinMaxDeduplicatingVisitor final |
3946 | : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, |
3947 | std::optional<const SCEV *>> { |
3948 | using RetVal = std::optional<const SCEV *>; |
3949 | using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; |
3950 | |
3951 | ScalarEvolution &SE; |
3952 | const SCEVTypes RootKind; // Must be a sequential min/max expression. |
3953 | const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. |
3954 | SmallPtrSet<const SCEV *, 16> SeenOps; |
3955 | |
3956 | bool canRecurseInto(SCEVTypes Kind) const { |
3957 | // We can only recurse into the SCEV expression of the same effective type |
3958 | // as the type of our root SCEV expression. |
3959 | return RootKind == Kind || NonSequentialRootKind == Kind; |
3960 | }; |
3961 | |
3962 | RetVal visitAnyMinMaxExpr(const SCEV *S) { |
3963 | assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && |
3964 | "Only for min/max expressions." ); |
3965 | SCEVTypes Kind = S->getSCEVType(); |
3966 | |
3967 | if (!canRecurseInto(Kind)) |
3968 | return S; |
3969 | |
3970 | auto *NAry = cast<SCEVNAryExpr>(Val: S); |
3971 | SmallVector<const SCEV *> NewOps; |
3972 | bool Changed = visit(Kind, OrigOps: NAry->operands(), NewOps); |
3973 | |
3974 | if (!Changed) |
3975 | return S; |
3976 | if (NewOps.empty()) |
3977 | return std::nullopt; |
3978 | |
3979 | return isa<SCEVSequentialMinMaxExpr>(Val: S) |
3980 | ? SE.getSequentialMinMaxExpr(Kind, Operands&: NewOps) |
3981 | : SE.getMinMaxExpr(Kind, Ops&: NewOps); |
3982 | } |
3983 | |
3984 | RetVal visit(const SCEV *S) { |
3985 | // Has the whole operand been seen already? |
3986 | if (!SeenOps.insert(Ptr: S).second) |
3987 | return std::nullopt; |
3988 | return Base::visit(S); |
3989 | } |
3990 | |
3991 | public: |
3992 | SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, |
3993 | SCEVTypes RootKind) |
3994 | : SE(SE), RootKind(RootKind), |
3995 | NonSequentialRootKind( |
3996 | SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( |
3997 | Ty: RootKind)) {} |
3998 | |
3999 | bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, |
4000 | SmallVectorImpl<const SCEV *> &NewOps) { |
4001 | bool Changed = false; |
4002 | SmallVector<const SCEV *> Ops; |
4003 | Ops.reserve(N: OrigOps.size()); |
4004 | |
4005 | for (const SCEV *Op : OrigOps) { |
4006 | RetVal NewOp = visit(S: Op); |
4007 | if (NewOp != Op) |
4008 | Changed = true; |
4009 | if (NewOp) |
4010 | Ops.emplace_back(Args&: *NewOp); |
4011 | } |
4012 | |
4013 | if (Changed) |
4014 | NewOps = std::move(Ops); |
4015 | return Changed; |
4016 | } |
4017 | |
4018 | RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } |
4019 | |
4020 | RetVal visitVScale(const SCEVVScale *VScale) { return VScale; } |
4021 | |
4022 | RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } |
4023 | |
4024 | RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } |
4025 | |
4026 | RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } |
4027 | |
4028 | RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } |
4029 | |
4030 | RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } |
4031 | |
4032 | RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } |
4033 | |
4034 | RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } |
4035 | |
4036 | RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } |
4037 | |
4038 | RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { |
4039 | return visitAnyMinMaxExpr(S: Expr); |
4040 | } |
4041 | |
4042 | RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { |
4043 | return visitAnyMinMaxExpr(S: Expr); |
4044 | } |
4045 | |
4046 | RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { |
4047 | return visitAnyMinMaxExpr(S: Expr); |
4048 | } |
4049 | |
4050 | RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { |
4051 | return visitAnyMinMaxExpr(S: Expr); |
4052 | } |
4053 | |
4054 | RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { |
4055 | return visitAnyMinMaxExpr(S: Expr); |
4056 | } |
4057 | |
4058 | RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } |
4059 | |
4060 | RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } |
4061 | }; |
4062 | |
4063 | } // namespace |
4064 | |
4065 | static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) { |
4066 | switch (Kind) { |
4067 | case scConstant: |
4068 | case scVScale: |
4069 | case scTruncate: |
4070 | case scZeroExtend: |
4071 | case scSignExtend: |
4072 | case scPtrToInt: |
4073 | case scAddExpr: |
4074 | case scMulExpr: |
4075 | case scUDivExpr: |
4076 | case scAddRecExpr: |
4077 | case scUMaxExpr: |
4078 | case scSMaxExpr: |
4079 | case scUMinExpr: |
4080 | case scSMinExpr: |
4081 | case scUnknown: |
4082 | // If any operand is poison, the whole expression is poison. |
4083 | return true; |
4084 | case scSequentialUMinExpr: |
4085 | // FIXME: if the *first* operand is poison, the whole expression is poison. |
4086 | return false; // Pessimistically, say that it does not propagate poison. |
4087 | case scCouldNotCompute: |
4088 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
4089 | } |
4090 | llvm_unreachable("Unknown SCEV kind!" ); |
4091 | } |
4092 | |
4093 | namespace { |
4094 | // The only way poison may be introduced in a SCEV expression is from a |
4095 | // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown, |
4096 | // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not* |
4097 | // introduce poison -- they encode guaranteed, non-speculated knowledge. |
4098 | // |
4099 | // Additionally, all SCEV nodes propagate poison from inputs to outputs, |
4100 | // with the notable exception of umin_seq, where only poison from the first |
4101 | // operand is (unconditionally) propagated. |
4102 | struct SCEVPoisonCollector { |
4103 | bool LookThroughMaybePoisonBlocking; |
4104 | SmallPtrSet<const SCEVUnknown *, 4> MaybePoison; |
4105 | SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking) |
4106 | : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking) {} |
4107 | |
4108 | bool follow(const SCEV *S) { |
4109 | if (!LookThroughMaybePoisonBlocking && |
4110 | !scevUnconditionallyPropagatesPoisonFromOperands(Kind: S->getSCEVType())) |
4111 | return false; |
4112 | |
4113 | if (auto *SU = dyn_cast<SCEVUnknown>(Val: S)) { |
4114 | if (!isGuaranteedNotToBePoison(V: SU->getValue())) |
4115 | MaybePoison.insert(Ptr: SU); |
4116 | } |
4117 | return true; |
4118 | } |
4119 | bool isDone() const { return false; } |
4120 | }; |
4121 | } // namespace |
4122 | |
4123 | /// Return true if V is poison given that AssumedPoison is already poison. |
4124 | static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) { |
4125 | // First collect all SCEVs that might result in AssumedPoison to be poison. |
4126 | // We need to look through potentially poison-blocking operations here, |
4127 | // because we want to find all SCEVs that *might* result in poison, not only |
4128 | // those that are *required* to. |
4129 | SCEVPoisonCollector PC1(/* LookThroughMaybePoisonBlocking */ true); |
4130 | visitAll(Root: AssumedPoison, Visitor&: PC1); |
4131 | |
4132 | // AssumedPoison is never poison. As the assumption is false, the implication |
4133 | // is true. Don't bother walking the other SCEV in this case. |
4134 | if (PC1.MaybePoison.empty()) |
4135 | return true; |
4136 | |
4137 | // Collect all SCEVs in S that, if poison, *will* result in S being poison |
4138 | // as well. We cannot look through potentially poison-blocking operations |
4139 | // here, as their arguments only *may* make the result poison. |
4140 | SCEVPoisonCollector PC2(/* LookThroughMaybePoisonBlocking */ false); |
4141 | visitAll(Root: S, Visitor&: PC2); |
4142 | |
4143 | // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison, |
4144 | // it will also make S poison by being part of PC2.MaybePoison. |
4145 | return llvm::set_is_subset(S1: PC1.MaybePoison, S2: PC2.MaybePoison); |
4146 | } |
4147 | |
4148 | void ScalarEvolution::getPoisonGeneratingValues( |
4149 | SmallPtrSetImpl<const Value *> &Result, const SCEV *S) { |
4150 | SCEVPoisonCollector PC(/* LookThroughMaybePoisonBlocking */ false); |
4151 | visitAll(Root: S, Visitor&: PC); |
4152 | for (const SCEVUnknown *SU : PC.MaybePoison) |
4153 | Result.insert(Ptr: SU->getValue()); |
4154 | } |
4155 | |
4156 | bool ScalarEvolution::canReuseInstruction( |
4157 | const SCEV *S, Instruction *I, |
4158 | SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { |
4159 | // If the instruction cannot be poison, it's always safe to reuse. |
4160 | if (programUndefinedIfPoison(Inst: I)) |
4161 | return true; |
4162 | |
4163 | // Otherwise, it is possible that I is more poisonous that S. Collect the |
4164 | // poison-contributors of S, and then check whether I has any additional |
4165 | // poison-contributors. Poison that is contributed through poison-generating |
4166 | // flags is handled by dropping those flags instead. |
4167 | SmallPtrSet<const Value *, 8> PoisonVals; |
4168 | getPoisonGeneratingValues(Result&: PoisonVals, S); |
4169 | |
4170 | SmallVector<Value *> Worklist; |
4171 | SmallPtrSet<Value *, 8> Visited; |
4172 | Worklist.push_back(Elt: I); |
4173 | while (!Worklist.empty()) { |
4174 | Value *V = Worklist.pop_back_val(); |
4175 | if (!Visited.insert(Ptr: V).second) |
4176 | continue; |
4177 | |
4178 | // Avoid walking large instruction graphs. |
4179 | if (Visited.size() > 16) |
4180 | return false; |
4181 | |
4182 | // Either the value can't be poison, or the S would also be poison if it |
4183 | // is. |
4184 | if (PoisonVals.contains(Ptr: V) || ::isGuaranteedNotToBePoison(V)) |
4185 | continue; |
4186 | |
4187 | auto *I = dyn_cast<Instruction>(Val: V); |
4188 | if (!I) |
4189 | return false; |
4190 | |
4191 | // Disjoint or instructions are interpreted as adds by SCEV. However, we |
4192 | // can't replace an arbitrary add with disjoint or, even if we drop the |
4193 | // flag. We would need to convert the or into an add. |
4194 | if (auto *PDI = dyn_cast<PossiblyDisjointInst>(Val: I)) |
4195 | if (PDI->isDisjoint()) |
4196 | return false; |
4197 | |
4198 | // FIXME: Ignore vscale, even though it technically could be poison. Do this |
4199 | // because SCEV currently assumes it can't be poison. Remove this special |
4200 | // case once we proper model when vscale can be poison. |
4201 | if (auto *II = dyn_cast<IntrinsicInst>(Val: I); |
4202 | II && II->getIntrinsicID() == Intrinsic::vscale) |
4203 | continue; |
4204 | |
4205 | if (canCreatePoison(Op: cast<Operator>(Val: I), /*ConsiderFlagsAndMetadata*/ false)) |
4206 | return false; |
4207 | |
4208 | // If the instruction can't create poison, we can recurse to its operands. |
4209 | if (I->hasPoisonGeneratingAnnotations()) |
4210 | DropPoisonGeneratingInsts.push_back(Elt: I); |
4211 | |
4212 | llvm::append_range(C&: Worklist, R: I->operands()); |
4213 | } |
4214 | return true; |
4215 | } |
4216 | |
4217 | const SCEV * |
4218 | ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, |
4219 | SmallVectorImpl<const SCEV *> &Ops) { |
4220 | assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && |
4221 | "Not a SCEVSequentialMinMaxExpr!" ); |
4222 | assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!" ); |
4223 | if (Ops.size() == 1) |
4224 | return Ops[0]; |
4225 | #ifndef NDEBUG |
4226 | Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); |
4227 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) { |
4228 | assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && |
4229 | "Operand types don't match!" ); |
4230 | assert(Ops[0]->getType()->isPointerTy() == |
4231 | Ops[i]->getType()->isPointerTy() && |
4232 | "min/max should be consistently pointerish" ); |
4233 | } |
4234 | #endif |
4235 | |
4236 | // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, |
4237 | // so we can *NOT* do any kind of sorting of the expressions! |
4238 | |
4239 | // Check if we have created the same expression before. |
4240 | if (const SCEV *S = findExistingSCEVInCache(SCEVType: Kind, Ops)) |
4241 | return S; |
4242 | |
4243 | // FIXME: there are *some* simplifications that we can do here. |
4244 | |
4245 | // Keep only the first instance of an operand. |
4246 | { |
4247 | SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); |
4248 | bool Changed = Deduplicator.visit(Kind, OrigOps: Ops, NewOps&: Ops); |
4249 | if (Changed) |
4250 | return getSequentialMinMaxExpr(Kind, Ops); |
4251 | } |
4252 | |
4253 | // Check to see if one of the operands is of the same kind. If so, expand its |
4254 | // operands onto our operand list, and recurse to simplify. |
4255 | { |
4256 | unsigned Idx = 0; |
4257 | bool DeletedAny = false; |
4258 | while (Idx < Ops.size()) { |
4259 | if (Ops[Idx]->getSCEVType() != Kind) { |
4260 | ++Idx; |
4261 | continue; |
4262 | } |
4263 | const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Val: Ops[Idx]); |
4264 | Ops.erase(CI: Ops.begin() + Idx); |
4265 | Ops.insert(I: Ops.begin() + Idx, From: SMME->operands().begin(), |
4266 | To: SMME->operands().end()); |
4267 | DeletedAny = true; |
4268 | } |
4269 | |
4270 | if (DeletedAny) |
4271 | return getSequentialMinMaxExpr(Kind, Ops); |
4272 | } |
4273 | |
4274 | const SCEV *SaturationPoint; |
4275 | ICmpInst::Predicate Pred; |
4276 | switch (Kind) { |
4277 | case scSequentialUMinExpr: |
4278 | SaturationPoint = getZero(Ty: Ops[0]->getType()); |
4279 | Pred = ICmpInst::ICMP_ULE; |
4280 | break; |
4281 | default: |
4282 | llvm_unreachable("Not a sequential min/max type." ); |
4283 | } |
4284 | |
4285 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) { |
4286 | if (!isGuaranteedNotToCauseUB(Op: Ops[i])) |
4287 | continue; |
4288 | // We can replace %x umin_seq %y with %x umin %y if either: |
4289 | // * %y being poison implies %x is also poison. |
4290 | // * %x cannot be the saturating value (e.g. zero for umin). |
4291 | if (::impliesPoison(AssumedPoison: Ops[i], S: Ops[i - 1]) || |
4292 | isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_NE, LHS: Ops[i - 1], |
4293 | RHS: SaturationPoint)) { |
4294 | SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]}; |
4295 | Ops[i - 1] = getMinMaxExpr( |
4296 | Kind: SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Ty: Kind), |
4297 | Ops&: SeqOps); |
4298 | Ops.erase(CI: Ops.begin() + i); |
4299 | return getSequentialMinMaxExpr(Kind, Ops); |
4300 | } |
4301 | // Fold %x umin_seq %y to %x if %x ule %y. |
4302 | // TODO: We might be able to prove the predicate for a later operand. |
4303 | if (isKnownViaNonRecursiveReasoning(Pred, LHS: Ops[i - 1], RHS: Ops[i])) { |
4304 | Ops.erase(CI: Ops.begin() + i); |
4305 | return getSequentialMinMaxExpr(Kind, Ops); |
4306 | } |
4307 | } |
4308 | |
4309 | // Okay, it looks like we really DO need an expr. Check to see if we |
4310 | // already have one, otherwise create a new one. |
4311 | FoldingSetNodeID ID; |
4312 | ID.AddInteger(I: Kind); |
4313 | for (const SCEV *Op : Ops) |
4314 | ID.AddPointer(Ptr: Op); |
4315 | void *IP = nullptr; |
4316 | const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP); |
4317 | if (ExistingSCEV) |
4318 | return ExistingSCEV; |
4319 | |
4320 | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Num: Ops.size()); |
4321 | llvm::uninitialized_copy(Src&: Ops, Dst: O); |
4322 | SCEV *S = new (SCEVAllocator) |
4323 | SCEVSequentialMinMaxExpr(ID.Intern(Allocator&: SCEVAllocator), Kind, O, Ops.size()); |
4324 | |
4325 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
4326 | registerUser(User: S, Ops); |
4327 | return S; |
4328 | } |
4329 | |
4330 | const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { |
4331 | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; |
4332 | return getSMaxExpr(Operands&: Ops); |
4333 | } |
4334 | |
4335 | const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { |
4336 | return getMinMaxExpr(Kind: scSMaxExpr, Ops); |
4337 | } |
4338 | |
4339 | const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { |
4340 | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; |
4341 | return getUMaxExpr(Operands&: Ops); |
4342 | } |
4343 | |
4344 | const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { |
4345 | return getMinMaxExpr(Kind: scUMaxExpr, Ops); |
4346 | } |
4347 | |
4348 | const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, |
4349 | const SCEV *RHS) { |
4350 | SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; |
4351 | return getSMinExpr(Operands&: Ops); |
4352 | } |
4353 | |
4354 | const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { |
4355 | return getMinMaxExpr(Kind: scSMinExpr, Ops); |
4356 | } |
4357 | |
4358 | const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, |
4359 | bool Sequential) { |
4360 | SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; |
4361 | return getUMinExpr(Operands&: Ops, Sequential); |
4362 | } |
4363 | |
4364 | const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, |
4365 | bool Sequential) { |
4366 | return Sequential ? getSequentialMinMaxExpr(Kind: scSequentialUMinExpr, Ops) |
4367 | : getMinMaxExpr(Kind: scUMinExpr, Ops); |
4368 | } |
4369 | |
4370 | const SCEV * |
4371 | ScalarEvolution::getSizeOfExpr(Type *IntTy, TypeSize Size) { |
4372 | const SCEV *Res = getConstant(Ty: IntTy, V: Size.getKnownMinValue()); |
4373 | if (Size.isScalable()) |
4374 | Res = getMulExpr(LHS: Res, RHS: getVScale(Ty: IntTy)); |
4375 | return Res; |
4376 | } |
4377 | |
4378 | const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { |
4379 | return getSizeOfExpr(IntTy, Size: getDataLayout().getTypeAllocSize(Ty: AllocTy)); |
4380 | } |
4381 | |
4382 | const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { |
4383 | return getSizeOfExpr(IntTy, Size: getDataLayout().getTypeStoreSize(Ty: StoreTy)); |
4384 | } |
4385 | |
4386 | const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, |
4387 | StructType *STy, |
4388 | unsigned FieldNo) { |
4389 | // We can bypass creating a target-independent constant expression and then |
4390 | // folding it back into a ConstantInt. This is just a compile-time |
4391 | // optimization. |
4392 | const StructLayout *SL = getDataLayout().getStructLayout(Ty: STy); |
4393 | assert(!SL->getSizeInBits().isScalable() && |
4394 | "Cannot get offset for structure containing scalable vector types" ); |
4395 | return getConstant(Ty: IntTy, V: SL->getElementOffset(Idx: FieldNo)); |
4396 | } |
4397 | |
4398 | const SCEV *ScalarEvolution::getUnknown(Value *V) { |
4399 | // Don't attempt to do anything other than create a SCEVUnknown object |
4400 | // here. createSCEV only calls getUnknown after checking for all other |
4401 | // interesting possibilities, and any other code that calls getUnknown |
4402 | // is doing so in order to hide a value from SCEV canonicalization. |
4403 | |
4404 | FoldingSetNodeID ID; |
4405 | ID.AddInteger(I: scUnknown); |
4406 | ID.AddPointer(Ptr: V); |
4407 | void *IP = nullptr; |
4408 | if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, InsertPos&: IP)) { |
4409 | assert(cast<SCEVUnknown>(S)->getValue() == V && |
4410 | "Stale SCEVUnknown in uniquing map!" ); |
4411 | return S; |
4412 | } |
4413 | SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(Allocator&: SCEVAllocator), V, this, |
4414 | FirstUnknown); |
4415 | FirstUnknown = cast<SCEVUnknown>(Val: S); |
4416 | UniqueSCEVs.InsertNode(N: S, InsertPos: IP); |
4417 | return S; |
4418 | } |
4419 | |
4420 | //===----------------------------------------------------------------------===// |
4421 | // Basic SCEV Analysis and PHI Idiom Recognition Code |
4422 | // |
4423 | |
4424 | /// Test if values of the given type are analyzable within the SCEV |
4425 | /// framework. This primarily includes integer types, and it can optionally |
4426 | /// include pointer types if the ScalarEvolution class has access to |
4427 | /// target-specific information. |
4428 | bool ScalarEvolution::isSCEVable(Type *Ty) const { |
4429 | // Integers and pointers are always SCEVable. |
4430 | return Ty->isIntOrPtrTy(); |
4431 | } |
4432 | |
4433 | /// Return the size in bits of the specified type, for which isSCEVable must |
4434 | /// return true. |
4435 | uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { |
4436 | assert(isSCEVable(Ty) && "Type is not SCEVable!" ); |
4437 | if (Ty->isPointerTy()) |
4438 | return getDataLayout().getIndexTypeSizeInBits(Ty); |
4439 | return getDataLayout().getTypeSizeInBits(Ty); |
4440 | } |
4441 | |
4442 | /// Return a type with the same bitwidth as the given type and which represents |
4443 | /// how SCEV will treat the given type, for which isSCEVable must return |
4444 | /// true. For pointer types, this is the pointer index sized integer type. |
4445 | Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { |
4446 | assert(isSCEVable(Ty) && "Type is not SCEVable!" ); |
4447 | |
4448 | if (Ty->isIntegerTy()) |
4449 | return Ty; |
4450 | |
4451 | // The only other support type is pointer. |
4452 | assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!" ); |
4453 | return getDataLayout().getIndexType(PtrTy: Ty); |
4454 | } |
4455 | |
4456 | Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { |
4457 | return getTypeSizeInBits(Ty: T1) >= getTypeSizeInBits(Ty: T2) ? T1 : T2; |
4458 | } |
4459 | |
4460 | bool ScalarEvolution::instructionCouldExistWithOperands(const SCEV *A, |
4461 | const SCEV *B) { |
4462 | /// For a valid use point to exist, the defining scope of one operand |
4463 | /// must dominate the other. |
4464 | bool PreciseA, PreciseB; |
4465 | auto *ScopeA = getDefiningScopeBound(Ops: {A}, Precise&: PreciseA); |
4466 | auto *ScopeB = getDefiningScopeBound(Ops: {B}, Precise&: PreciseB); |
4467 | if (!PreciseA || !PreciseB) |
4468 | // Can't tell. |
4469 | return false; |
4470 | return (ScopeA == ScopeB) || DT.dominates(Def: ScopeA, User: ScopeB) || |
4471 | DT.dominates(Def: ScopeB, User: ScopeA); |
4472 | } |
4473 | |
4474 | const SCEV *ScalarEvolution::getCouldNotCompute() { |
4475 | return CouldNotCompute.get(); |
4476 | } |
4477 | |
4478 | bool ScalarEvolution::checkValidity(const SCEV *S) const { |
4479 | bool ContainsNulls = SCEVExprContains(Root: S, Pred: [](const SCEV *S) { |
4480 | auto *SU = dyn_cast<SCEVUnknown>(Val: S); |
4481 | return SU && SU->getValue() == nullptr; |
4482 | }); |
4483 | |
4484 | return !ContainsNulls; |
4485 | } |
4486 | |
4487 | bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { |
4488 | HasRecMapType::iterator I = HasRecMap.find(Val: S); |
4489 | if (I != HasRecMap.end()) |
4490 | return I->second; |
4491 | |
4492 | bool FoundAddRec = |
4493 | SCEVExprContains(Root: S, Pred: [](const SCEV *S) { return isa<SCEVAddRecExpr>(Val: S); }); |
4494 | HasRecMap.insert(KV: {S, FoundAddRec}); |
4495 | return FoundAddRec; |
4496 | } |
4497 | |
4498 | /// Return the ValueOffsetPair set for \p S. \p S can be represented |
4499 | /// by the value and offset from any ValueOffsetPair in the set. |
4500 | ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { |
4501 | ExprValueMapType::iterator SI = ExprValueMap.find_as(Val: S); |
4502 | if (SI == ExprValueMap.end()) |
4503 | return {}; |
4504 | return SI->second.getArrayRef(); |
4505 | } |
4506 | |
4507 | /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) |
4508 | /// cannot be used separately. eraseValueFromMap should be used to remove |
4509 | /// V from ValueExprMap and ExprValueMap at the same time. |
4510 | void ScalarEvolution::eraseValueFromMap(Value *V) { |
4511 | ValueExprMapType::iterator I = ValueExprMap.find_as(Val: V); |
4512 | if (I != ValueExprMap.end()) { |
4513 | auto EVIt = ExprValueMap.find(Val: I->second); |
4514 | bool Removed = EVIt->second.remove(X: V); |
4515 | (void) Removed; |
4516 | assert(Removed && "Value not in ExprValueMap?" ); |
4517 | ValueExprMap.erase(I); |
4518 | } |
4519 | } |
4520 | |
4521 | void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { |
4522 | // A recursive query may have already computed the SCEV. It should be |
4523 | // equivalent, but may not necessarily be exactly the same, e.g. due to lazily |
4524 | // inferred nowrap flags. |
4525 | auto It = ValueExprMap.find_as(Val: V); |
4526 | if (It == ValueExprMap.end()) { |
4527 | ValueExprMap.insert(KV: {SCEVCallbackVH(V, this), S}); |
4528 | ExprValueMap[S].insert(X: V); |
4529 | } |
4530 | } |
4531 | |
4532 | /// Return an existing SCEV if it exists, otherwise analyze the expression and |
4533 | /// create a new one. |
4534 | const SCEV *ScalarEvolution::getSCEV(Value *V) { |
4535 | assert(isSCEVable(V->getType()) && "Value is not SCEVable!" ); |
4536 | |
4537 | if (const SCEV *S = getExistingSCEV(V)) |
4538 | return S; |
4539 | return createSCEVIter(V); |
4540 | } |
4541 | |
4542 | const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { |
4543 | assert(isSCEVable(V->getType()) && "Value is not SCEVable!" ); |
4544 | |
4545 | ValueExprMapType::iterator I = ValueExprMap.find_as(Val: V); |
4546 | if (I != ValueExprMap.end()) { |
4547 | const SCEV *S = I->second; |
4548 | assert(checkValidity(S) && |
4549 | "existing SCEV has not been properly invalidated" ); |
4550 | return S; |
4551 | } |
4552 | return nullptr; |
4553 | } |
4554 | |
4555 | /// Return a SCEV corresponding to -V = -1*V |
4556 | const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, |
4557 | SCEV::NoWrapFlags Flags) { |
4558 | if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(Val: V)) |
4559 | return getConstant( |
4560 | V: cast<ConstantInt>(Val: ConstantExpr::getNeg(C: VC->getValue()))); |
4561 | |
4562 | Type *Ty = V->getType(); |
4563 | Ty = getEffectiveSCEVType(Ty); |
4564 | return getMulExpr(LHS: V, RHS: getMinusOne(Ty), Flags); |
4565 | } |
4566 | |
4567 | /// If Expr computes ~A, return A else return nullptr |
4568 | static const SCEV *MatchNotExpr(const SCEV *Expr) { |
4569 | const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: Expr); |
4570 | if (!Add || Add->getNumOperands() != 2 || |
4571 | !Add->getOperand(i: 0)->isAllOnesValue()) |
4572 | return nullptr; |
4573 | |
4574 | const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Val: Add->getOperand(i: 1)); |
4575 | if (!AddRHS || AddRHS->getNumOperands() != 2 || |
4576 | !AddRHS->getOperand(i: 0)->isAllOnesValue()) |
4577 | return nullptr; |
4578 | |
4579 | return AddRHS->getOperand(i: 1); |
4580 | } |
4581 | |
4582 | /// Return a SCEV corresponding to ~V = -1-V |
4583 | const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { |
4584 | assert(!V->getType()->isPointerTy() && "Can't negate pointer" ); |
4585 | |
4586 | if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(Val: V)) |
4587 | return getConstant( |
4588 | V: cast<ConstantInt>(Val: ConstantExpr::getNot(C: VC->getValue()))); |
4589 | |
4590 | // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) |
4591 | if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(Val: V)) { |
4592 | auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { |
4593 | SmallVector<const SCEV *, 2> MatchedOperands; |
4594 | for (const SCEV *Operand : MME->operands()) { |
4595 | const SCEV *Matched = MatchNotExpr(Expr: Operand); |
4596 | if (!Matched) |
4597 | return (const SCEV *)nullptr; |
4598 | MatchedOperands.push_back(Elt: Matched); |
4599 | } |
4600 | return getMinMaxExpr(Kind: SCEVMinMaxExpr::negate(T: MME->getSCEVType()), |
4601 | Ops&: MatchedOperands); |
4602 | }; |
4603 | if (const SCEV *Replaced = MatchMinMaxNegation(MME)) |
4604 | return Replaced; |
4605 | } |
4606 | |
4607 | Type *Ty = V->getType(); |
4608 | Ty = getEffectiveSCEVType(Ty); |
4609 | return getMinusSCEV(LHS: getMinusOne(Ty), RHS: V); |
4610 | } |
4611 | |
4612 | const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { |
4613 | assert(P->getType()->isPointerTy()); |
4614 | |
4615 | if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: P)) { |
4616 | // The base of an AddRec is the first operand. |
4617 | SmallVector<const SCEV *> Ops{AddRec->operands()}; |
4618 | Ops[0] = removePointerBase(P: Ops[0]); |
4619 | // Don't try to transfer nowrap flags for now. We could in some cases |
4620 | // (for example, if pointer operand of the AddRec is a SCEVUnknown). |
4621 | return getAddRecExpr(Operands&: Ops, L: AddRec->getLoop(), Flags: SCEV::FlagAnyWrap); |
4622 | } |
4623 | if (auto *Add = dyn_cast<SCEVAddExpr>(Val: P)) { |
4624 | // The base of an Add is the pointer operand. |
4625 | SmallVector<const SCEV *> Ops{Add->operands()}; |
4626 | const SCEV **PtrOp = nullptr; |
4627 | for (const SCEV *&AddOp : Ops) { |
4628 | if (AddOp->getType()->isPointerTy()) { |
4629 | assert(!PtrOp && "Cannot have multiple pointer ops" ); |
4630 | PtrOp = &AddOp; |
4631 | } |
4632 | } |
4633 | *PtrOp = removePointerBase(P: *PtrOp); |
4634 | // Don't try to transfer nowrap flags for now. We could in some cases |
4635 | // (for example, if the pointer operand of the Add is a SCEVUnknown). |
4636 | return getAddExpr(Ops); |
4637 | } |
4638 | // Any other expression must be a pointer base. |
4639 | return getZero(Ty: P->getType()); |
4640 | } |
4641 | |
4642 | const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, |
4643 | SCEV::NoWrapFlags Flags, |
4644 | unsigned Depth) { |
4645 | // Fast path: X - X --> 0. |
4646 | if (LHS == RHS) |
4647 | return getZero(Ty: LHS->getType()); |
4648 | |
4649 | // If we subtract two pointers with different pointer bases, bail. |
4650 | // Eventually, we're going to add an assertion to getMulExpr that we |
4651 | // can't multiply by a pointer. |
4652 | if (RHS->getType()->isPointerTy()) { |
4653 | if (!LHS->getType()->isPointerTy() || |
4654 | getPointerBase(V: LHS) != getPointerBase(V: RHS)) |
4655 | return getCouldNotCompute(); |
4656 | LHS = removePointerBase(P: LHS); |
4657 | RHS = removePointerBase(P: RHS); |
4658 | } |
4659 | |
4660 | // We represent LHS - RHS as LHS + (-1)*RHS. This transformation |
4661 | // makes it so that we cannot make much use of NUW. |
4662 | auto AddFlags = SCEV::FlagAnyWrap; |
4663 | const bool RHSIsNotMinSigned = |
4664 | !getSignedRangeMin(S: RHS).isMinSignedValue(); |
4665 | if (hasFlags(Flags, TestFlags: SCEV::FlagNSW)) { |
4666 | // Let M be the minimum representable signed value. Then (-1)*RHS |
4667 | // signed-wraps if and only if RHS is M. That can happen even for |
4668 | // a NSW subtraction because e.g. (-1)*M signed-wraps even though |
4669 | // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + |
4670 | // (-1)*RHS, we need to prove that RHS != M. |
4671 | // |
4672 | // If LHS is non-negative and we know that LHS - RHS does not |
4673 | // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap |
4674 | // either by proving that RHS > M or that LHS >= 0. |
4675 | if (RHSIsNotMinSigned || isKnownNonNegative(S: LHS)) { |
4676 | AddFlags = SCEV::FlagNSW; |
4677 | } |
4678 | } |
4679 | |
4680 | // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - |
4681 | // RHS is NSW and LHS >= 0. |
4682 | // |
4683 | // The difficulty here is that the NSW flag may have been proven |
4684 | // relative to a loop that is to be found in a recurrence in LHS and |
4685 | // not in RHS. Applying NSW to (-1)*M may then let the NSW have a |
4686 | // larger scope than intended. |
4687 | auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; |
4688 | |
4689 | return getAddExpr(LHS, RHS: getNegativeSCEV(V: RHS, Flags: NegFlags), Flags: AddFlags, Depth); |
4690 | } |
4691 | |
4692 | const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, |
4693 | unsigned Depth) { |
4694 | Type *SrcTy = V->getType(); |
4695 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
4696 | "Cannot truncate or zero extend with non-integer arguments!" ); |
4697 | if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty)) |
4698 | return V; // No conversion |
4699 | if (getTypeSizeInBits(Ty: SrcTy) > getTypeSizeInBits(Ty)) |
4700 | return getTruncateExpr(Op: V, Ty, Depth); |
4701 | return getZeroExtendExpr(Op: V, Ty, Depth); |
4702 | } |
4703 | |
4704 | const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, |
4705 | unsigned Depth) { |
4706 | Type *SrcTy = V->getType(); |
4707 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
4708 | "Cannot truncate or zero extend with non-integer arguments!" ); |
4709 | if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty)) |
4710 | return V; // No conversion |
4711 | if (getTypeSizeInBits(Ty: SrcTy) > getTypeSizeInBits(Ty)) |
4712 | return getTruncateExpr(Op: V, Ty, Depth); |
4713 | return getSignExtendExpr(Op: V, Ty, Depth); |
4714 | } |
4715 | |
4716 | const SCEV * |
4717 | ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { |
4718 | Type *SrcTy = V->getType(); |
4719 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
4720 | "Cannot noop or zero extend with non-integer arguments!" ); |
4721 | assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && |
4722 | "getNoopOrZeroExtend cannot truncate!" ); |
4723 | if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty)) |
4724 | return V; // No conversion |
4725 | return getZeroExtendExpr(Op: V, Ty); |
4726 | } |
4727 | |
4728 | const SCEV * |
4729 | ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { |
4730 | Type *SrcTy = V->getType(); |
4731 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
4732 | "Cannot noop or sign extend with non-integer arguments!" ); |
4733 | assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && |
4734 | "getNoopOrSignExtend cannot truncate!" ); |
4735 | if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty)) |
4736 | return V; // No conversion |
4737 | return getSignExtendExpr(Op: V, Ty); |
4738 | } |
4739 | |
4740 | const SCEV * |
4741 | ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { |
4742 | Type *SrcTy = V->getType(); |
4743 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
4744 | "Cannot noop or any extend with non-integer arguments!" ); |
4745 | assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && |
4746 | "getNoopOrAnyExtend cannot truncate!" ); |
4747 | if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty)) |
4748 | return V; // No conversion |
4749 | return getAnyExtendExpr(Op: V, Ty); |
4750 | } |
4751 | |
4752 | const SCEV * |
4753 | ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { |
4754 | Type *SrcTy = V->getType(); |
4755 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && |
4756 | "Cannot truncate or noop with non-integer arguments!" ); |
4757 | assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && |
4758 | "getTruncateOrNoop cannot extend!" ); |
4759 | if (getTypeSizeInBits(Ty: SrcTy) == getTypeSizeInBits(Ty)) |
4760 | return V; // No conversion |
4761 | return getTruncateExpr(Op: V, Ty); |
4762 | } |
4763 | |
4764 | const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, |
4765 | const SCEV *RHS) { |
4766 | const SCEV *PromotedLHS = LHS; |
4767 | const SCEV *PromotedRHS = RHS; |
4768 | |
4769 | if (getTypeSizeInBits(Ty: LHS->getType()) > getTypeSizeInBits(Ty: RHS->getType())) |
4770 | PromotedRHS = getZeroExtendExpr(Op: RHS, Ty: LHS->getType()); |
4771 | else |
4772 | PromotedLHS = getNoopOrZeroExtend(V: LHS, Ty: RHS->getType()); |
4773 | |
4774 | return getUMaxExpr(LHS: PromotedLHS, RHS: PromotedRHS); |
4775 | } |
4776 | |
4777 | const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, |
4778 | const SCEV *RHS, |
4779 | bool Sequential) { |
4780 | SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; |
4781 | return getUMinFromMismatchedTypes(Ops, Sequential); |
4782 | } |
4783 | |
4784 | const SCEV * |
4785 | ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, |
4786 | bool Sequential) { |
4787 | assert(!Ops.empty() && "At least one operand must be!" ); |
4788 | // Trivial case. |
4789 | if (Ops.size() == 1) |
4790 | return Ops[0]; |
4791 | |
4792 | // Find the max type first. |
4793 | Type *MaxType = nullptr; |
4794 | for (const auto *S : Ops) |
4795 | if (MaxType) |
4796 | MaxType = getWiderType(T1: MaxType, T2: S->getType()); |
4797 | else |
4798 | MaxType = S->getType(); |
4799 | assert(MaxType && "Failed to find maximum type!" ); |
4800 | |
4801 | // Extend all ops to max type. |
4802 | SmallVector<const SCEV *, 2> PromotedOps; |
4803 | for (const auto *S : Ops) |
4804 | PromotedOps.push_back(Elt: getNoopOrZeroExtend(V: S, Ty: MaxType)); |
4805 | |
4806 | // Generate umin. |
4807 | return getUMinExpr(Ops&: PromotedOps, Sequential); |
4808 | } |
4809 | |
4810 | const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { |
4811 | // A pointer operand may evaluate to a nonpointer expression, such as null. |
4812 | if (!V->getType()->isPointerTy()) |
4813 | return V; |
4814 | |
4815 | while (true) { |
4816 | if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: V)) { |
4817 | V = AddRec->getStart(); |
4818 | } else if (auto *Add = dyn_cast<SCEVAddExpr>(Val: V)) { |
4819 | const SCEV *PtrOp = nullptr; |
4820 | for (const SCEV *AddOp : Add->operands()) { |
4821 | if (AddOp->getType()->isPointerTy()) { |
4822 | assert(!PtrOp && "Cannot have multiple pointer ops" ); |
4823 | PtrOp = AddOp; |
4824 | } |
4825 | } |
4826 | assert(PtrOp && "Must have pointer op" ); |
4827 | V = PtrOp; |
4828 | } else // Not something we can look further into. |
4829 | return V; |
4830 | } |
4831 | } |
4832 | |
4833 | /// Push users of the given Instruction onto the given Worklist. |
4834 | static void PushDefUseChildren(Instruction *I, |
4835 | SmallVectorImpl<Instruction *> &Worklist, |
4836 | SmallPtrSetImpl<Instruction *> &Visited) { |
4837 | // Push the def-use children onto the Worklist stack. |
4838 | for (User *U : I->users()) { |
4839 | auto *UserInsn = cast<Instruction>(Val: U); |
4840 | if (Visited.insert(Ptr: UserInsn).second) |
4841 | Worklist.push_back(Elt: UserInsn); |
4842 | } |
4843 | } |
4844 | |
4845 | namespace { |
4846 | |
4847 | /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start |
4848 | /// expression in case its Loop is L. If it is not L then |
4849 | /// if IgnoreOtherLoops is true then use AddRec itself |
4850 | /// otherwise rewrite cannot be done. |
4851 | /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. |
4852 | class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { |
4853 | public: |
4854 | static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, |
4855 | bool IgnoreOtherLoops = true) { |
4856 | SCEVInitRewriter Rewriter(L, SE); |
4857 | const SCEV *Result = Rewriter.visit(S); |
4858 | if (Rewriter.hasSeenLoopVariantSCEVUnknown()) |
4859 | return SE.getCouldNotCompute(); |
4860 | return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops |
4861 | ? SE.getCouldNotCompute() |
4862 | : Result; |
4863 | } |
4864 | |
4865 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
4866 | if (!SE.isLoopInvariant(S: Expr, L)) |
4867 | SeenLoopVariantSCEVUnknown = true; |
4868 | return Expr; |
4869 | } |
4870 | |
4871 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
4872 | // Only re-write AddRecExprs for this loop. |
4873 | if (Expr->getLoop() == L) |
4874 | return Expr->getStart(); |
4875 | SeenOtherLoops = true; |
4876 | return Expr; |
4877 | } |
4878 | |
4879 | bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } |
4880 | |
4881 | bool hasSeenOtherLoops() { return SeenOtherLoops; } |
4882 | |
4883 | private: |
4884 | explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) |
4885 | : SCEVRewriteVisitor(SE), L(L) {} |
4886 | |
4887 | const Loop *L; |
4888 | bool SeenLoopVariantSCEVUnknown = false; |
4889 | bool SeenOtherLoops = false; |
4890 | }; |
4891 | |
4892 | /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post |
4893 | /// increment expression in case its Loop is L. If it is not L then |
4894 | /// use AddRec itself. |
4895 | /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. |
4896 | class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { |
4897 | public: |
4898 | static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { |
4899 | SCEVPostIncRewriter Rewriter(L, SE); |
4900 | const SCEV *Result = Rewriter.visit(S); |
4901 | return Rewriter.hasSeenLoopVariantSCEVUnknown() |
4902 | ? SE.getCouldNotCompute() |
4903 | : Result; |
4904 | } |
4905 | |
4906 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
4907 | if (!SE.isLoopInvariant(S: Expr, L)) |
4908 | SeenLoopVariantSCEVUnknown = true; |
4909 | return Expr; |
4910 | } |
4911 | |
4912 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
4913 | // Only re-write AddRecExprs for this loop. |
4914 | if (Expr->getLoop() == L) |
4915 | return Expr->getPostIncExpr(SE); |
4916 | SeenOtherLoops = true; |
4917 | return Expr; |
4918 | } |
4919 | |
4920 | bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } |
4921 | |
4922 | bool hasSeenOtherLoops() { return SeenOtherLoops; } |
4923 | |
4924 | private: |
4925 | explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) |
4926 | : SCEVRewriteVisitor(SE), L(L) {} |
4927 | |
4928 | const Loop *L; |
4929 | bool SeenLoopVariantSCEVUnknown = false; |
4930 | bool SeenOtherLoops = false; |
4931 | }; |
4932 | |
4933 | /// This class evaluates the compare condition by matching it against the |
4934 | /// condition of loop latch. If there is a match we assume a true value |
4935 | /// for the condition while building SCEV nodes. |
4936 | class SCEVBackedgeConditionFolder |
4937 | : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { |
4938 | public: |
4939 | static const SCEV *rewrite(const SCEV *S, const Loop *L, |
4940 | ScalarEvolution &SE) { |
4941 | bool IsPosBECond = false; |
4942 | Value *BECond = nullptr; |
4943 | if (BasicBlock *Latch = L->getLoopLatch()) { |
4944 | BranchInst *BI = dyn_cast<BranchInst>(Val: Latch->getTerminator()); |
4945 | if (BI && BI->isConditional()) { |
4946 | assert(BI->getSuccessor(0) != BI->getSuccessor(1) && |
4947 | "Both outgoing branches should not target same header!" ); |
4948 | BECond = BI->getCondition(); |
4949 | IsPosBECond = BI->getSuccessor(i: 0) == L->getHeader(); |
4950 | } else { |
4951 | return S; |
4952 | } |
4953 | } |
4954 | SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); |
4955 | return Rewriter.visit(S); |
4956 | } |
4957 | |
4958 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
4959 | const SCEV *Result = Expr; |
4960 | bool InvariantF = SE.isLoopInvariant(S: Expr, L); |
4961 | |
4962 | if (!InvariantF) { |
4963 | Instruction *I = cast<Instruction>(Val: Expr->getValue()); |
4964 | switch (I->getOpcode()) { |
4965 | case Instruction::Select: { |
4966 | SelectInst *SI = cast<SelectInst>(Val: I); |
4967 | std::optional<const SCEV *> Res = |
4968 | compareWithBackedgeCondition(IC: SI->getCondition()); |
4969 | if (Res) { |
4970 | bool IsOne = cast<SCEVConstant>(Val: *Res)->getValue()->isOne(); |
4971 | Result = SE.getSCEV(V: IsOne ? SI->getTrueValue() : SI->getFalseValue()); |
4972 | } |
4973 | break; |
4974 | } |
4975 | default: { |
4976 | std::optional<const SCEV *> Res = compareWithBackedgeCondition(IC: I); |
4977 | if (Res) |
4978 | Result = *Res; |
4979 | break; |
4980 | } |
4981 | } |
4982 | } |
4983 | return Result; |
4984 | } |
4985 | |
4986 | private: |
4987 | explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, |
4988 | bool IsPosBECond, ScalarEvolution &SE) |
4989 | : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), |
4990 | IsPositiveBECond(IsPosBECond) {} |
4991 | |
4992 | std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC); |
4993 | |
4994 | const Loop *L; |
4995 | /// Loop back condition. |
4996 | Value *BackedgeCond = nullptr; |
4997 | /// Set to true if loop back is on positive branch condition. |
4998 | bool IsPositiveBECond; |
4999 | }; |
5000 | |
5001 | std::optional<const SCEV *> |
5002 | SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { |
5003 | |
5004 | // If value matches the backedge condition for loop latch, |
5005 | // then return a constant evolution node based on loopback |
5006 | // branch taken. |
5007 | if (BackedgeCond == IC) |
5008 | return IsPositiveBECond ? SE.getOne(Ty: Type::getInt1Ty(C&: SE.getContext())) |
5009 | : SE.getZero(Ty: Type::getInt1Ty(C&: SE.getContext())); |
5010 | return std::nullopt; |
5011 | } |
5012 | |
5013 | class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { |
5014 | public: |
5015 | static const SCEV *rewrite(const SCEV *S, const Loop *L, |
5016 | ScalarEvolution &SE) { |
5017 | SCEVShiftRewriter Rewriter(L, SE); |
5018 | const SCEV *Result = Rewriter.visit(S); |
5019 | return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); |
5020 | } |
5021 | |
5022 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
5023 | // Only allow AddRecExprs for this loop. |
5024 | if (!SE.isLoopInvariant(S: Expr, L)) |
5025 | Valid = false; |
5026 | return Expr; |
5027 | } |
5028 | |
5029 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { |
5030 | if (Expr->getLoop() == L && Expr->isAffine()) |
5031 | return SE.getMinusSCEV(LHS: Expr, RHS: Expr->getStepRecurrence(SE)); |
5032 | Valid = false; |
5033 | return Expr; |
5034 | } |
5035 | |
5036 | bool isValid() { return Valid; } |
5037 | |
5038 | private: |
5039 | explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) |
5040 | : SCEVRewriteVisitor(SE), L(L) {} |
5041 | |
5042 | const Loop *L; |
5043 | bool Valid = true; |
5044 | }; |
5045 | |
5046 | } // end anonymous namespace |
5047 | |
5048 | SCEV::NoWrapFlags |
5049 | ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { |
5050 | if (!AR->isAffine()) |
5051 | return SCEV::FlagAnyWrap; |
5052 | |
5053 | using OBO = OverflowingBinaryOperator; |
5054 | |
5055 | SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; |
5056 | |
5057 | if (!AR->hasNoSelfWrap()) { |
5058 | const SCEV *BECount = getConstantMaxBackedgeTakenCount(L: AR->getLoop()); |
5059 | if (const SCEVConstant *BECountMax = dyn_cast<SCEVConstant>(Val: BECount)) { |
5060 | ConstantRange StepCR = getSignedRange(S: AR->getStepRecurrence(SE&: *this)); |
5061 | const APInt &BECountAP = BECountMax->getAPInt(); |
5062 | unsigned NoOverflowBitWidth = |
5063 | BECountAP.getActiveBits() + StepCR.getMinSignedBits(); |
5064 | if (NoOverflowBitWidth <= getTypeSizeInBits(Ty: AR->getType())) |
5065 | Result = ScalarEvolution::setFlags(Flags: Result, OnFlags: SCEV::FlagNW); |
5066 | } |
5067 | } |
5068 | |
5069 | if (!AR->hasNoSignedWrap()) { |
5070 | ConstantRange AddRecRange = getSignedRange(S: AR); |
5071 | ConstantRange IncRange = getSignedRange(S: AR->getStepRecurrence(SE&: *this)); |
5072 | |
5073 | auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
5074 | BinOp: Instruction::Add, Other: IncRange, NoWrapKind: OBO::NoSignedWrap); |
5075 | if (NSWRegion.contains(CR: AddRecRange)) |
5076 | Result = ScalarEvolution::setFlags(Flags: Result, OnFlags: SCEV::FlagNSW); |
5077 | } |
5078 | |
5079 | if (!AR->hasNoUnsignedWrap()) { |
5080 | ConstantRange AddRecRange = getUnsignedRange(S: AR); |
5081 | ConstantRange IncRange = getUnsignedRange(S: AR->getStepRecurrence(SE&: *this)); |
5082 | |
5083 | auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
5084 | BinOp: Instruction::Add, Other: IncRange, NoWrapKind: OBO::NoUnsignedWrap); |
5085 | if (NUWRegion.contains(CR: AddRecRange)) |
5086 | Result = ScalarEvolution::setFlags(Flags: Result, OnFlags: SCEV::FlagNUW); |
5087 | } |
5088 | |
5089 | return Result; |
5090 | } |
5091 | |
5092 | SCEV::NoWrapFlags |
5093 | ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { |
5094 | SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); |
5095 | |
5096 | if (AR->hasNoSignedWrap()) |
5097 | return Result; |
5098 | |
5099 | if (!AR->isAffine()) |
5100 | return Result; |
5101 | |
5102 | // This function can be expensive, only try to prove NSW once per AddRec. |
5103 | if (!SignedWrapViaInductionTried.insert(Ptr: AR).second) |
5104 | return Result; |
5105 | |
5106 | const SCEV *Step = AR->getStepRecurrence(SE&: *this); |
5107 | const Loop *L = AR->getLoop(); |
5108 | |
5109 | // Check whether the backedge-taken count is SCEVCouldNotCompute. |
5110 | // Note that this serves two purposes: It filters out loops that are |
5111 | // simply not analyzable, and it covers the case where this code is |
5112 | // being called from within backedge-taken count analysis, such that |
5113 | // attempting to ask for the backedge-taken count would likely result |
5114 | // in infinite recursion. In the later case, the analysis code will |
5115 | // cope with a conservative value, and it will take care to purge |
5116 | // that value once it has finished. |
5117 | const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); |
5118 | |
5119 | // Normally, in the cases we can prove no-overflow via a |
5120 | // backedge guarding condition, we can also compute a backedge |
5121 | // taken count for the loop. The exceptions are assumptions and |
5122 | // guards present in the loop -- SCEV is not great at exploiting |
5123 | // these to compute max backedge taken counts, but can still use |
5124 | // these to prove lack of overflow. Use this fact to avoid |
5125 | // doing extra work that may not pay off. |
5126 | |
5127 | if (isa<SCEVCouldNotCompute>(Val: MaxBECount) && !HasGuards && |
5128 | AC.assumptions().empty()) |
5129 | return Result; |
5130 | |
5131 | // If the backedge is guarded by a comparison with the pre-inc value the |
5132 | // addrec is safe. Also, if the entry is guarded by a comparison with the |
5133 | // start value and the backedge is guarded by a comparison with the post-inc |
5134 | // value, the addrec is safe. |
5135 | ICmpInst::Predicate Pred; |
5136 | const SCEV *OverflowLimit = |
5137 | getSignedOverflowLimitForStep(Step, Pred: &Pred, SE: this); |
5138 | if (OverflowLimit && |
5139 | (isLoopBackedgeGuardedByCond(L, Pred, LHS: AR, RHS: OverflowLimit) || |
5140 | isKnownOnEveryIteration(Pred, LHS: AR, RHS: OverflowLimit))) { |
5141 | Result = setFlags(Flags: Result, OnFlags: SCEV::FlagNSW); |
5142 | } |
5143 | return Result; |
5144 | } |
5145 | SCEV::NoWrapFlags |
5146 | ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { |
5147 | SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); |
5148 | |
5149 | if (AR->hasNoUnsignedWrap()) |
5150 | return Result; |
5151 | |
5152 | if (!AR->isAffine()) |
5153 | return Result; |
5154 | |
5155 | // This function can be expensive, only try to prove NUW once per AddRec. |
5156 | if (!UnsignedWrapViaInductionTried.insert(Ptr: AR).second) |
5157 | return Result; |
5158 | |
5159 | const SCEV *Step = AR->getStepRecurrence(SE&: *this); |
5160 | unsigned BitWidth = getTypeSizeInBits(Ty: AR->getType()); |
5161 | const Loop *L = AR->getLoop(); |
5162 | |
5163 | // Check whether the backedge-taken count is SCEVCouldNotCompute. |
5164 | // Note that this serves two purposes: It filters out loops that are |
5165 | // simply not analyzable, and it covers the case where this code is |
5166 | // being called from within backedge-taken count analysis, such that |
5167 | // attempting to ask for the backedge-taken count would likely result |
5168 | // in infinite recursion. In the later case, the analysis code will |
5169 | // cope with a conservative value, and it will take care to purge |
5170 | // that value once it has finished. |
5171 | const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); |
5172 | |
5173 | // Normally, in the cases we can prove no-overflow via a |
5174 | // backedge guarding condition, we can also compute a backedge |
5175 | // taken count for the loop. The exceptions are assumptions and |
5176 | // guards present in the loop -- SCEV is not great at exploiting |
5177 | // these to compute max backedge taken counts, but can still use |
5178 | // these to prove lack of overflow. Use this fact to avoid |
5179 | // doing extra work that may not pay off. |
5180 | |
5181 | if (isa<SCEVCouldNotCompute>(Val: MaxBECount) && !HasGuards && |
5182 | AC.assumptions().empty()) |
5183 | return Result; |
5184 | |
5185 | // If the backedge is guarded by a comparison with the pre-inc value the |
5186 | // addrec is safe. Also, if the entry is guarded by a comparison with the |
5187 | // start value and the backedge is guarded by a comparison with the post-inc |
5188 | // value, the addrec is safe. |
5189 | if (isKnownPositive(S: Step)) { |
5190 | const SCEV *N = getConstant(Val: APInt::getMinValue(numBits: BitWidth) - |
5191 | getUnsignedRangeMax(S: Step)); |
5192 | if (isLoopBackedgeGuardedByCond(L, Pred: ICmpInst::ICMP_ULT, LHS: AR, RHS: N) || |
5193 | isKnownOnEveryIteration(Pred: ICmpInst::ICMP_ULT, LHS: AR, RHS: N)) { |
5194 | Result = setFlags(Flags: Result, OnFlags: SCEV::FlagNUW); |
5195 | } |
5196 | } |
5197 | |
5198 | return Result; |
5199 | } |
5200 | |
5201 | namespace { |
5202 | |
5203 | /// Represents an abstract binary operation. This may exist as a |
5204 | /// normal instruction or constant expression, or may have been |
5205 | /// derived from an expression tree. |
5206 | struct BinaryOp { |
5207 | unsigned Opcode; |
5208 | Value *LHS; |
5209 | Value *RHS; |
5210 | bool IsNSW = false; |
5211 | bool IsNUW = false; |
5212 | |
5213 | /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or |
5214 | /// constant expression. |
5215 | Operator *Op = nullptr; |
5216 | |
5217 | explicit BinaryOp(Operator *Op) |
5218 | : Opcode(Op->getOpcode()), LHS(Op->getOperand(i: 0)), RHS(Op->getOperand(i: 1)), |
5219 | Op(Op) { |
5220 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Val: Op)) { |
5221 | IsNSW = OBO->hasNoSignedWrap(); |
5222 | IsNUW = OBO->hasNoUnsignedWrap(); |
5223 | } |
5224 | } |
5225 | |
5226 | explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, |
5227 | bool IsNUW = false) |
5228 | : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} |
5229 | }; |
5230 | |
5231 | } // end anonymous namespace |
5232 | |
5233 | /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure. |
5234 | static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL, |
5235 | AssumptionCache &AC, |
5236 | const DominatorTree &DT, |
5237 | const Instruction *CxtI) { |
5238 | auto *Op = dyn_cast<Operator>(Val: V); |
5239 | if (!Op) |
5240 | return std::nullopt; |
5241 | |
5242 | // Implementation detail: all the cleverness here should happen without |
5243 | // creating new SCEV expressions -- our caller knowns tricks to avoid creating |
5244 | // SCEV expressions when possible, and we should not break that. |
5245 | |
5246 | switch (Op->getOpcode()) { |
5247 | case Instruction::Add: |
5248 | case Instruction::Sub: |
5249 | case Instruction::Mul: |
5250 | case Instruction::UDiv: |
5251 | case Instruction::URem: |
5252 | case Instruction::And: |
5253 | case Instruction::AShr: |
5254 | case Instruction::Shl: |
5255 | return BinaryOp(Op); |
5256 | |
5257 | case Instruction::Or: { |
5258 | // Convert or disjoint into add nuw nsw. |
5259 | if (cast<PossiblyDisjointInst>(Val: Op)->isDisjoint()) |
5260 | return BinaryOp(Instruction::Add, Op->getOperand(i: 0), Op->getOperand(i: 1), |
5261 | /*IsNSW=*/true, /*IsNUW=*/true); |
5262 | return BinaryOp(Op); |
5263 | } |
5264 | |
5265 | case Instruction::Xor: |
5266 | if (auto *RHSC = dyn_cast<ConstantInt>(Val: Op->getOperand(i: 1))) |
5267 | // If the RHS of the xor is a signmask, then this is just an add. |
5268 | // Instcombine turns add of signmask into xor as a strength reduction step. |
5269 | if (RHSC->getValue().isSignMask()) |
5270 | return BinaryOp(Instruction::Add, Op->getOperand(i: 0), Op->getOperand(i: 1)); |
5271 | // Binary `xor` is a bit-wise `add`. |
5272 | if (V->getType()->isIntegerTy(Bitwidth: 1)) |
5273 | return BinaryOp(Instruction::Add, Op->getOperand(i: 0), Op->getOperand(i: 1)); |
5274 | return BinaryOp(Op); |
5275 | |
5276 | case Instruction::LShr: |
5277 | // Turn logical shift right of a constant into a unsigned divide. |
5278 | if (ConstantInt *SA = dyn_cast<ConstantInt>(Val: Op->getOperand(i: 1))) { |
5279 | uint32_t BitWidth = cast<IntegerType>(Val: Op->getType())->getBitWidth(); |
5280 | |
5281 | // If the shift count is not less than the bitwidth, the result of |
5282 | // the shift is undefined. Don't try to analyze it, because the |
5283 | // resolution chosen here may differ from the resolution chosen in |
5284 | // other parts of the compiler. |
5285 | if (SA->getValue().ult(RHS: BitWidth)) { |
5286 | Constant *X = |
5287 | ConstantInt::get(Context&: SA->getContext(), |
5288 | V: APInt::getOneBitSet(numBits: BitWidth, BitNo: SA->getZExtValue())); |
5289 | return BinaryOp(Instruction::UDiv, Op->getOperand(i: 0), X); |
5290 | } |
5291 | } |
5292 | return BinaryOp(Op); |
5293 | |
5294 | case Instruction::ExtractValue: { |
5295 | auto *EVI = cast<ExtractValueInst>(Val: Op); |
5296 | if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) |
5297 | break; |
5298 | |
5299 | auto *WO = dyn_cast<WithOverflowInst>(Val: EVI->getAggregateOperand()); |
5300 | if (!WO) |
5301 | break; |
5302 | |
5303 | Instruction::BinaryOps BinOp = WO->getBinaryOp(); |
5304 | bool Signed = WO->isSigned(); |
5305 | // TODO: Should add nuw/nsw flags for mul as well. |
5306 | if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) |
5307 | return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); |
5308 | |
5309 | // Now that we know that all uses of the arithmetic-result component of |
5310 | // CI are guarded by the overflow check, we can go ahead and pretend |
5311 | // that the arithmetic is non-overflowing. |
5312 | return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), |
5313 | /* IsNSW = */ Signed, /* IsNUW = */ !Signed); |
5314 | } |
5315 | |
5316 | default: |
5317 | break; |
5318 | } |
5319 | |
5320 | // Recognise intrinsic loop.decrement.reg, and as this has exactly the same |
5321 | // semantics as a Sub, return a binary sub expression. |
5322 | if (auto *II = dyn_cast<IntrinsicInst>(Val: V)) |
5323 | if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) |
5324 | return BinaryOp(Instruction::Sub, II->getOperand(i_nocapture: 0), II->getOperand(i_nocapture: 1)); |
5325 | |
5326 | return std::nullopt; |
5327 | } |
5328 | |
5329 | /// Helper function to createAddRecFromPHIWithCasts. We have a phi |
5330 | /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via |
5331 | /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the |
5332 | /// way. This function checks if \p Op, an operand of this SCEVAddExpr, |
5333 | /// follows one of the following patterns: |
5334 | /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) |
5335 | /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) |
5336 | /// If the SCEV expression of \p Op conforms with one of the expected patterns |
5337 | /// we return the type of the truncation operation, and indicate whether the |
5338 | /// truncated type should be treated as signed/unsigned by setting |
5339 | /// \p Signed to true/false, respectively. |
5340 | static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, |
5341 | bool &Signed, ScalarEvolution &SE) { |
5342 | // The case where Op == SymbolicPHI (that is, with no type conversions on |
5343 | // the way) is handled by the regular add recurrence creating logic and |
5344 | // would have already been triggered in createAddRecForPHI. Reaching it here |
5345 | // means that createAddRecFromPHI had failed for this PHI before (e.g., |
5346 | // because one of the other operands of the SCEVAddExpr updating this PHI is |
5347 | // not invariant). |
5348 | // |
5349 | // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in |
5350 | // this case predicates that allow us to prove that Op == SymbolicPHI will |
5351 | // be added. |
5352 | if (Op == SymbolicPHI) |
5353 | return nullptr; |
5354 | |
5355 | unsigned SourceBits = SE.getTypeSizeInBits(Ty: SymbolicPHI->getType()); |
5356 | unsigned NewBits = SE.getTypeSizeInBits(Ty: Op->getType()); |
5357 | if (SourceBits != NewBits) |
5358 | return nullptr; |
5359 | |
5360 | const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Val: Op); |
5361 | const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: Op); |
5362 | if (!SExt && !ZExt) |
5363 | return nullptr; |
5364 | const SCEVTruncateExpr *Trunc = |
5365 | SExt ? dyn_cast<SCEVTruncateExpr>(Val: SExt->getOperand()) |
5366 | : dyn_cast<SCEVTruncateExpr>(Val: ZExt->getOperand()); |
5367 | if (!Trunc) |
5368 | return nullptr; |
5369 | const SCEV *X = Trunc->getOperand(); |
5370 | if (X != SymbolicPHI) |
5371 | return nullptr; |
5372 | Signed = SExt != nullptr; |
5373 | return Trunc->getType(); |
5374 | } |
5375 | |
5376 | static const Loop *(const PHINode *PN, LoopInfo &LI) { |
5377 | if (!PN->getType()->isIntegerTy()) |
5378 | return nullptr; |
5379 | const Loop *L = LI.getLoopFor(BB: PN->getParent()); |
5380 | if (!L || L->getHeader() != PN->getParent()) |
5381 | return nullptr; |
5382 | return L; |
5383 | } |
5384 | |
5385 | // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the |
5386 | // computation that updates the phi follows the following pattern: |
5387 | // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum |
5388 | // which correspond to a phi->trunc->sext/zext->add->phi update chain. |
5389 | // If so, try to see if it can be rewritten as an AddRecExpr under some |
5390 | // Predicates. If successful, return them as a pair. Also cache the results |
5391 | // of the analysis. |
5392 | // |
5393 | // Example usage scenario: |
5394 | // Say the Rewriter is called for the following SCEV: |
5395 | // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) |
5396 | // where: |
5397 | // %X = phi i64 (%Start, %BEValue) |
5398 | // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), |
5399 | // and call this function with %SymbolicPHI = %X. |
5400 | // |
5401 | // The analysis will find that the value coming around the backedge has |
5402 | // the following SCEV: |
5403 | // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) |
5404 | // Upon concluding that this matches the desired pattern, the function |
5405 | // will return the pair {NewAddRec, SmallPredsVec} where: |
5406 | // NewAddRec = {%Start,+,%Step} |
5407 | // SmallPredsVec = {P1, P2, P3} as follows: |
5408 | // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> |
5409 | // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) |
5410 | // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) |
5411 | // The returned pair means that SymbolicPHI can be rewritten into NewAddRec |
5412 | // under the predicates {P1,P2,P3}. |
5413 | // This predicated rewrite will be cached in PredicatedSCEVRewrites: |
5414 | // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} |
5415 | // |
5416 | // TODO's: |
5417 | // |
5418 | // 1) Extend the Induction descriptor to also support inductions that involve |
5419 | // casts: When needed (namely, when we are called in the context of the |
5420 | // vectorizer induction analysis), a Set of cast instructions will be |
5421 | // populated by this method, and provided back to isInductionPHI. This is |
5422 | // needed to allow the vectorizer to properly record them to be ignored by |
5423 | // the cost model and to avoid vectorizing them (otherwise these casts, |
5424 | // which are redundant under the runtime overflow checks, will be |
5425 | // vectorized, which can be costly). |
5426 | // |
5427 | // 2) Support additional induction/PHISCEV patterns: We also want to support |
5428 | // inductions where the sext-trunc / zext-trunc operations (partly) occur |
5429 | // after the induction update operation (the induction increment): |
5430 | // |
5431 | // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) |
5432 | // which correspond to a phi->add->trunc->sext/zext->phi update chain. |
5433 | // |
5434 | // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) |
5435 | // which correspond to a phi->trunc->add->sext/zext->phi update chain. |
5436 | // |
5437 | // 3) Outline common code with createAddRecFromPHI to avoid duplication. |
5438 | std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
5439 | ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { |
5440 | SmallVector<const SCEVPredicate *, 3> Predicates; |
5441 | |
5442 | // *** Part1: Analyze if we have a phi-with-cast pattern for which we can |
5443 | // return an AddRec expression under some predicate. |
5444 | |
5445 | auto *PN = cast<PHINode>(Val: SymbolicPHI->getValue()); |
5446 | const Loop *L = isIntegerLoopHeaderPHI(PN, LI); |
5447 | assert(L && "Expecting an integer loop header phi" ); |
5448 | |
5449 | // The loop may have multiple entrances or multiple exits; we can analyze |
5450 | // this phi as an addrec if it has a unique entry value and a unique |
5451 | // backedge value. |
5452 | Value *BEValueV = nullptr, *StartValueV = nullptr; |
5453 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
5454 | Value *V = PN->getIncomingValue(i); |
5455 | if (L->contains(BB: PN->getIncomingBlock(i))) { |
5456 | if (!BEValueV) { |
5457 | BEValueV = V; |
5458 | } else if (BEValueV != V) { |
5459 | BEValueV = nullptr; |
5460 | break; |
5461 | } |
5462 | } else if (!StartValueV) { |
5463 | StartValueV = V; |
5464 | } else if (StartValueV != V) { |
5465 | StartValueV = nullptr; |
5466 | break; |
5467 | } |
5468 | } |
5469 | if (!BEValueV || !StartValueV) |
5470 | return std::nullopt; |
5471 | |
5472 | const SCEV *BEValue = getSCEV(V: BEValueV); |
5473 | |
5474 | // If the value coming around the backedge is an add with the symbolic |
5475 | // value we just inserted, possibly with casts that we can ignore under |
5476 | // an appropriate runtime guard, then we found a simple induction variable! |
5477 | const auto *Add = dyn_cast<SCEVAddExpr>(Val: BEValue); |
5478 | if (!Add) |
5479 | return std::nullopt; |
5480 | |
5481 | // If there is a single occurrence of the symbolic value, possibly |
5482 | // casted, replace it with a recurrence. |
5483 | unsigned FoundIndex = Add->getNumOperands(); |
5484 | Type *TruncTy = nullptr; |
5485 | bool Signed; |
5486 | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
5487 | if ((TruncTy = |
5488 | isSimpleCastedPHI(Op: Add->getOperand(i), SymbolicPHI, Signed, SE&: *this))) |
5489 | if (FoundIndex == e) { |
5490 | FoundIndex = i; |
5491 | break; |
5492 | } |
5493 | |
5494 | if (FoundIndex == Add->getNumOperands()) |
5495 | return std::nullopt; |
5496 | |
5497 | // Create an add with everything but the specified operand. |
5498 | SmallVector<const SCEV *, 8> Ops; |
5499 | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
5500 | if (i != FoundIndex) |
5501 | Ops.push_back(Elt: Add->getOperand(i)); |
5502 | const SCEV *Accum = getAddExpr(Ops); |
5503 | |
5504 | // The runtime checks will not be valid if the step amount is |
5505 | // varying inside the loop. |
5506 | if (!isLoopInvariant(S: Accum, L)) |
5507 | return std::nullopt; |
5508 | |
5509 | // *** Part2: Create the predicates |
5510 | |
5511 | // Analysis was successful: we have a phi-with-cast pattern for which we |
5512 | // can return an AddRec expression under the following predicates: |
5513 | // |
5514 | // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) |
5515 | // fits within the truncated type (does not overflow) for i = 0 to n-1. |
5516 | // P2: An Equal predicate that guarantees that |
5517 | // Start = (Ext ix (Trunc iy (Start) to ix) to iy) |
5518 | // P3: An Equal predicate that guarantees that |
5519 | // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) |
5520 | // |
5521 | // As we next prove, the above predicates guarantee that: |
5522 | // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) |
5523 | // |
5524 | // |
5525 | // More formally, we want to prove that: |
5526 | // Expr(i+1) = Start + (i+1) * Accum |
5527 | // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum |
5528 | // |
5529 | // Given that: |
5530 | // 1) Expr(0) = Start |
5531 | // 2) Expr(1) = Start + Accum |
5532 | // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 |
5533 | // 3) Induction hypothesis (step i): |
5534 | // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum |
5535 | // |
5536 | // Proof: |
5537 | // Expr(i+1) = |
5538 | // = Start + (i+1)*Accum |
5539 | // = (Start + i*Accum) + Accum |
5540 | // = Expr(i) + Accum |
5541 | // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum |
5542 | // :: from step i |
5543 | // |
5544 | // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum |
5545 | // |
5546 | // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) |
5547 | // + (Ext ix (Trunc iy (Accum) to ix) to iy) |
5548 | // + Accum :: from P3 |
5549 | // |
5550 | // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) |
5551 | // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) |
5552 | // |
5553 | // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum |
5554 | // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum |
5555 | // |
5556 | // By induction, the same applies to all iterations 1<=i<n: |
5557 | // |
5558 | |
5559 | // Create a truncated addrec for which we will add a no overflow check (P1). |
5560 | const SCEV *StartVal = getSCEV(V: StartValueV); |
5561 | const SCEV *PHISCEV = |
5562 | getAddRecExpr(Start: getTruncateExpr(Op: StartVal, Ty: TruncTy), |
5563 | Step: getTruncateExpr(Op: Accum, Ty: TruncTy), L, Flags: SCEV::FlagAnyWrap); |
5564 | |
5565 | // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. |
5566 | // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV |
5567 | // will be constant. |
5568 | // |
5569 | // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't |
5570 | // add P1. |
5571 | if (const auto *AR = dyn_cast<SCEVAddRecExpr>(Val: PHISCEV)) { |
5572 | SCEVWrapPredicate::IncrementWrapFlags AddedFlags = |
5573 | Signed ? SCEVWrapPredicate::IncrementNSSW |
5574 | : SCEVWrapPredicate::IncrementNUSW; |
5575 | const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); |
5576 | Predicates.push_back(Elt: AddRecPred); |
5577 | } |
5578 | |
5579 | // Create the Equal Predicates P2,P3: |
5580 | |
5581 | // It is possible that the predicates P2 and/or P3 are computable at |
5582 | // compile time due to StartVal and/or Accum being constants. |
5583 | // If either one is, then we can check that now and escape if either P2 |
5584 | // or P3 is false. |
5585 | |
5586 | // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) |
5587 | // for each of StartVal and Accum |
5588 | auto getExtendedExpr = [&](const SCEV *Expr, |
5589 | bool CreateSignExtend) -> const SCEV * { |
5590 | assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant" ); |
5591 | const SCEV *TruncatedExpr = getTruncateExpr(Op: Expr, Ty: TruncTy); |
5592 | const SCEV *ExtendedExpr = |
5593 | CreateSignExtend ? getSignExtendExpr(Op: TruncatedExpr, Ty: Expr->getType()) |
5594 | : getZeroExtendExpr(Op: TruncatedExpr, Ty: Expr->getType()); |
5595 | return ExtendedExpr; |
5596 | }; |
5597 | |
5598 | // Given: |
5599 | // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy |
5600 | // = getExtendedExpr(Expr) |
5601 | // Determine whether the predicate P: Expr == ExtendedExpr |
5602 | // is known to be false at compile time |
5603 | auto PredIsKnownFalse = [&](const SCEV *Expr, |
5604 | const SCEV *ExtendedExpr) -> bool { |
5605 | return Expr != ExtendedExpr && |
5606 | isKnownPredicate(Pred: ICmpInst::ICMP_NE, LHS: Expr, RHS: ExtendedExpr); |
5607 | }; |
5608 | |
5609 | const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); |
5610 | if (PredIsKnownFalse(StartVal, StartExtended)) { |
5611 | LLVM_DEBUG(dbgs() << "P2 is compile-time false\n" ;); |
5612 | return std::nullopt; |
5613 | } |
5614 | |
5615 | // The Step is always Signed (because the overflow checks are either |
5616 | // NSSW or NUSW) |
5617 | const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); |
5618 | if (PredIsKnownFalse(Accum, AccumExtended)) { |
5619 | LLVM_DEBUG(dbgs() << "P3 is compile-time false\n" ;); |
5620 | return std::nullopt; |
5621 | } |
5622 | |
5623 | auto AppendPredicate = [&](const SCEV *Expr, |
5624 | const SCEV *ExtendedExpr) -> void { |
5625 | if (Expr != ExtendedExpr && |
5626 | !isKnownPredicate(Pred: ICmpInst::ICMP_EQ, LHS: Expr, RHS: ExtendedExpr)) { |
5627 | const SCEVPredicate *Pred = getEqualPredicate(LHS: Expr, RHS: ExtendedExpr); |
5628 | LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); |
5629 | Predicates.push_back(Elt: Pred); |
5630 | } |
5631 | }; |
5632 | |
5633 | AppendPredicate(StartVal, StartExtended); |
5634 | AppendPredicate(Accum, AccumExtended); |
5635 | |
5636 | // *** Part3: Predicates are ready. Now go ahead and create the new addrec in |
5637 | // which the casts had been folded away. The caller can rewrite SymbolicPHI |
5638 | // into NewAR if it will also add the runtime overflow checks specified in |
5639 | // Predicates. |
5640 | auto *NewAR = getAddRecExpr(Start: StartVal, Step: Accum, L, Flags: SCEV::FlagAnyWrap); |
5641 | |
5642 | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = |
5643 | std::make_pair(x&: NewAR, y&: Predicates); |
5644 | // Remember the result of the analysis for this SCEV at this locayyytion. |
5645 | PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; |
5646 | return PredRewrite; |
5647 | } |
5648 | |
5649 | std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
5650 | ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { |
5651 | auto *PN = cast<PHINode>(Val: SymbolicPHI->getValue()); |
5652 | const Loop *L = isIntegerLoopHeaderPHI(PN, LI); |
5653 | if (!L) |
5654 | return std::nullopt; |
5655 | |
5656 | // Check to see if we already analyzed this PHI. |
5657 | auto I = PredicatedSCEVRewrites.find(Val: {SymbolicPHI, L}); |
5658 | if (I != PredicatedSCEVRewrites.end()) { |
5659 | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = |
5660 | I->second; |
5661 | // Analysis was done before and failed to create an AddRec: |
5662 | if (Rewrite.first == SymbolicPHI) |
5663 | return std::nullopt; |
5664 | // Analysis was done before and succeeded to create an AddRec under |
5665 | // a predicate: |
5666 | assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec" ); |
5667 | assert(!(Rewrite.second).empty() && "Expected to find Predicates" ); |
5668 | return Rewrite; |
5669 | } |
5670 | |
5671 | std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
5672 | Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); |
5673 | |
5674 | // Record in the cache that the analysis failed |
5675 | if (!Rewrite) { |
5676 | SmallVector<const SCEVPredicate *, 3> Predicates; |
5677 | PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; |
5678 | return std::nullopt; |
5679 | } |
5680 | |
5681 | return Rewrite; |
5682 | } |
5683 | |
5684 | // FIXME: This utility is currently required because the Rewriter currently |
5685 | // does not rewrite this expression: |
5686 | // {0, +, (sext ix (trunc iy to ix) to iy)} |
5687 | // into {0, +, %step}, |
5688 | // even when the following Equal predicate exists: |
5689 | // "%step == (sext ix (trunc iy to ix) to iy)". |
5690 | bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( |
5691 | const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { |
5692 | if (AR1 == AR2) |
5693 | return true; |
5694 | |
5695 | auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { |
5696 | if (Expr1 != Expr2 && |
5697 | !Preds->implies(N: SE.getEqualPredicate(LHS: Expr1, RHS: Expr2), SE) && |
5698 | !Preds->implies(N: SE.getEqualPredicate(LHS: Expr2, RHS: Expr1), SE)) |
5699 | return false; |
5700 | return true; |
5701 | }; |
5702 | |
5703 | if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || |
5704 | !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) |
5705 | return false; |
5706 | return true; |
5707 | } |
5708 | |
5709 | /// A helper function for createAddRecFromPHI to handle simple cases. |
5710 | /// |
5711 | /// This function tries to find an AddRec expression for the simplest (yet most |
5712 | /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). |
5713 | /// If it fails, createAddRecFromPHI will use a more general, but slow, |
5714 | /// technique for finding the AddRec expression. |
5715 | const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, |
5716 | Value *BEValueV, |
5717 | Value *StartValueV) { |
5718 | const Loop *L = LI.getLoopFor(BB: PN->getParent()); |
5719 | assert(L && L->getHeader() == PN->getParent()); |
5720 | assert(BEValueV && StartValueV); |
5721 | |
5722 | auto BO = MatchBinaryOp(V: BEValueV, DL: getDataLayout(), AC, DT, CxtI: PN); |
5723 | if (!BO) |
5724 | return nullptr; |
5725 | |
5726 | if (BO->Opcode != Instruction::Add) |
5727 | return nullptr; |
5728 | |
5729 | const SCEV *Accum = nullptr; |
5730 | if (BO->LHS == PN && L->isLoopInvariant(V: BO->RHS)) |
5731 | Accum = getSCEV(V: BO->RHS); |
5732 | else if (BO->RHS == PN && L->isLoopInvariant(V: BO->LHS)) |
5733 | Accum = getSCEV(V: BO->LHS); |
5734 | |
5735 | if (!Accum) |
5736 | return nullptr; |
5737 | |
5738 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; |
5739 | if (BO->IsNUW) |
5740 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNUW); |
5741 | if (BO->IsNSW) |
5742 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNSW); |
5743 | |
5744 | const SCEV *StartVal = getSCEV(V: StartValueV); |
5745 | const SCEV *PHISCEV = getAddRecExpr(Start: StartVal, Step: Accum, L, Flags); |
5746 | insertValueToMap(V: PN, S: PHISCEV); |
5747 | |
5748 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: PHISCEV)) { |
5749 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), |
5750 | Flags: (SCEV::NoWrapFlags)(AR->getNoWrapFlags() | |
5751 | proveNoWrapViaConstantRanges(AR))); |
5752 | } |
5753 | |
5754 | // We can add Flags to the post-inc expression only if we |
5755 | // know that it is *undefined behavior* for BEValueV to |
5756 | // overflow. |
5757 | if (auto *BEInst = dyn_cast<Instruction>(Val: BEValueV)) { |
5758 | assert(isLoopInvariant(Accum, L) && |
5759 | "Accum is defined outside L, but is not invariant?" ); |
5760 | if (isAddRecNeverPoison(I: BEInst, L)) |
5761 | (void)getAddRecExpr(Start: getAddExpr(LHS: StartVal, RHS: Accum), Step: Accum, L, Flags); |
5762 | } |
5763 | |
5764 | return PHISCEV; |
5765 | } |
5766 | |
5767 | const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { |
5768 | const Loop *L = LI.getLoopFor(BB: PN->getParent()); |
5769 | if (!L || L->getHeader() != PN->getParent()) |
5770 | return nullptr; |
5771 | |
5772 | // The loop may have multiple entrances or multiple exits; we can analyze |
5773 | // this phi as an addrec if it has a unique entry value and a unique |
5774 | // backedge value. |
5775 | Value *BEValueV = nullptr, *StartValueV = nullptr; |
5776 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
5777 | Value *V = PN->getIncomingValue(i); |
5778 | if (L->contains(BB: PN->getIncomingBlock(i))) { |
5779 | if (!BEValueV) { |
5780 | BEValueV = V; |
5781 | } else if (BEValueV != V) { |
5782 | BEValueV = nullptr; |
5783 | break; |
5784 | } |
5785 | } else if (!StartValueV) { |
5786 | StartValueV = V; |
5787 | } else if (StartValueV != V) { |
5788 | StartValueV = nullptr; |
5789 | break; |
5790 | } |
5791 | } |
5792 | if (!BEValueV || !StartValueV) |
5793 | return nullptr; |
5794 | |
5795 | assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && |
5796 | "PHI node already processed?" ); |
5797 | |
5798 | // First, try to find AddRec expression without creating a fictituos symbolic |
5799 | // value for PN. |
5800 | if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) |
5801 | return S; |
5802 | |
5803 | // Handle PHI node value symbolically. |
5804 | const SCEV *SymbolicName = getUnknown(V: PN); |
5805 | insertValueToMap(V: PN, S: SymbolicName); |
5806 | |
5807 | // Using this symbolic name for the PHI, analyze the value coming around |
5808 | // the back-edge. |
5809 | const SCEV *BEValue = getSCEV(V: BEValueV); |
5810 | |
5811 | // NOTE: If BEValue is loop invariant, we know that the PHI node just |
5812 | // has a special value for the first iteration of the loop. |
5813 | |
5814 | // If the value coming around the backedge is an add with the symbolic |
5815 | // value we just inserted, then we found a simple induction variable! |
5816 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: BEValue)) { |
5817 | // If there is a single occurrence of the symbolic value, replace it |
5818 | // with a recurrence. |
5819 | unsigned FoundIndex = Add->getNumOperands(); |
5820 | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
5821 | if (Add->getOperand(i) == SymbolicName) |
5822 | if (FoundIndex == e) { |
5823 | FoundIndex = i; |
5824 | break; |
5825 | } |
5826 | |
5827 | if (FoundIndex != Add->getNumOperands()) { |
5828 | // Create an add with everything but the specified operand. |
5829 | SmallVector<const SCEV *, 8> Ops; |
5830 | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) |
5831 | if (i != FoundIndex) |
5832 | Ops.push_back(Elt: SCEVBackedgeConditionFolder::rewrite(S: Add->getOperand(i), |
5833 | L, SE&: *this)); |
5834 | const SCEV *Accum = getAddExpr(Ops); |
5835 | |
5836 | // This is not a valid addrec if the step amount is varying each |
5837 | // loop iteration, but is not itself an addrec in this loop. |
5838 | if (isLoopInvariant(S: Accum, L) || |
5839 | (isa<SCEVAddRecExpr>(Val: Accum) && |
5840 | cast<SCEVAddRecExpr>(Val: Accum)->getLoop() == L)) { |
5841 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; |
5842 | |
5843 | if (auto BO = MatchBinaryOp(V: BEValueV, DL: getDataLayout(), AC, DT, CxtI: PN)) { |
5844 | if (BO->Opcode == Instruction::Add && BO->LHS == PN) { |
5845 | if (BO->IsNUW) |
5846 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNUW); |
5847 | if (BO->IsNSW) |
5848 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNSW); |
5849 | } |
5850 | } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(Val: BEValueV)) { |
5851 | if (GEP->getOperand(i_nocapture: 0) == PN) { |
5852 | GEPNoWrapFlags NW = GEP->getNoWrapFlags(); |
5853 | // If the increment has any nowrap flags, then we know the address |
5854 | // space cannot be wrapped around. |
5855 | if (NW != GEPNoWrapFlags::none()) |
5856 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNW); |
5857 | // If the GEP is nuw or nusw with non-negative offset, we know that |
5858 | // no unsigned wrap occurs. We cannot set the nsw flag as only the |
5859 | // offset is treated as signed, while the base is unsigned. |
5860 | if (NW.hasNoUnsignedWrap() || |
5861 | (NW.hasNoUnsignedSignedWrap() && isKnownNonNegative(S: Accum))) |
5862 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNUW); |
5863 | } |
5864 | |
5865 | // We cannot transfer nuw and nsw flags from subtraction |
5866 | // operations -- sub nuw X, Y is not the same as add nuw X, -Y |
5867 | // for instance. |
5868 | } |
5869 | |
5870 | const SCEV *StartVal = getSCEV(V: StartValueV); |
5871 | const SCEV *PHISCEV = getAddRecExpr(Start: StartVal, Step: Accum, L, Flags); |
5872 | |
5873 | // Okay, for the entire analysis of this edge we assumed the PHI |
5874 | // to be symbolic. We now need to go back and purge all of the |
5875 | // entries for the scalars that use the symbolic expression. |
5876 | forgetMemoizedResults(SCEVs: SymbolicName); |
5877 | insertValueToMap(V: PN, S: PHISCEV); |
5878 | |
5879 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: PHISCEV)) { |
5880 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), |
5881 | Flags: (SCEV::NoWrapFlags)(AR->getNoWrapFlags() | |
5882 | proveNoWrapViaConstantRanges(AR))); |
5883 | } |
5884 | |
5885 | // We can add Flags to the post-inc expression only if we |
5886 | // know that it is *undefined behavior* for BEValueV to |
5887 | // overflow. |
5888 | if (auto *BEInst = dyn_cast<Instruction>(Val: BEValueV)) |
5889 | if (isLoopInvariant(S: Accum, L) && isAddRecNeverPoison(I: BEInst, L)) |
5890 | (void)getAddRecExpr(Start: getAddExpr(LHS: StartVal, RHS: Accum), Step: Accum, L, Flags); |
5891 | |
5892 | return PHISCEV; |
5893 | } |
5894 | } |
5895 | } else { |
5896 | // Otherwise, this could be a loop like this: |
5897 | // i = 0; for (j = 1; ..; ++j) { .... i = j; } |
5898 | // In this case, j = {1,+,1} and BEValue is j. |
5899 | // Because the other in-value of i (0) fits the evolution of BEValue |
5900 | // i really is an addrec evolution. |
5901 | // |
5902 | // We can generalize this saying that i is the shifted value of BEValue |
5903 | // by one iteration: |
5904 | // PHI(f(0), f({1,+,1})) --> f({0,+,1}) |
5905 | |
5906 | // Do not allow refinement in rewriting of BEValue. |
5907 | const SCEV *Shifted = SCEVShiftRewriter::rewrite(S: BEValue, L, SE&: *this); |
5908 | const SCEV *Start = SCEVInitRewriter::rewrite(S: Shifted, L, SE&: *this, IgnoreOtherLoops: false); |
5909 | if (Shifted != getCouldNotCompute() && Start != getCouldNotCompute() && |
5910 | isGuaranteedNotToCauseUB(Op: Shifted) && ::impliesPoison(AssumedPoison: Shifted, S: Start)) { |
5911 | const SCEV *StartVal = getSCEV(V: StartValueV); |
5912 | if (Start == StartVal) { |
5913 | // Okay, for the entire analysis of this edge we assumed the PHI |
5914 | // to be symbolic. We now need to go back and purge all of the |
5915 | // entries for the scalars that use the symbolic expression. |
5916 | forgetMemoizedResults(SCEVs: SymbolicName); |
5917 | insertValueToMap(V: PN, S: Shifted); |
5918 | return Shifted; |
5919 | } |
5920 | } |
5921 | } |
5922 | |
5923 | // Remove the temporary PHI node SCEV that has been inserted while intending |
5924 | // to create an AddRecExpr for this PHI node. We can not keep this temporary |
5925 | // as it will prevent later (possibly simpler) SCEV expressions to be added |
5926 | // to the ValueExprMap. |
5927 | eraseValueFromMap(V: PN); |
5928 | |
5929 | return nullptr; |
5930 | } |
5931 | |
5932 | // Try to match a control flow sequence that branches out at BI and merges back |
5933 | // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful |
5934 | // match. |
5935 | static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, |
5936 | Value *&C, Value *&LHS, Value *&RHS) { |
5937 | C = BI->getCondition(); |
5938 | |
5939 | BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(i: 0)); |
5940 | BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(i: 1)); |
5941 | |
5942 | if (!LeftEdge.isSingleEdge()) |
5943 | return false; |
5944 | |
5945 | assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()" ); |
5946 | |
5947 | Use &LeftUse = Merge->getOperandUse(i: 0); |
5948 | Use &RightUse = Merge->getOperandUse(i: 1); |
5949 | |
5950 | if (DT.dominates(BBE: LeftEdge, U: LeftUse) && DT.dominates(BBE: RightEdge, U: RightUse)) { |
5951 | LHS = LeftUse; |
5952 | RHS = RightUse; |
5953 | return true; |
5954 | } |
5955 | |
5956 | if (DT.dominates(BBE: LeftEdge, U: RightUse) && DT.dominates(BBE: RightEdge, U: LeftUse)) { |
5957 | LHS = RightUse; |
5958 | RHS = LeftUse; |
5959 | return true; |
5960 | } |
5961 | |
5962 | return false; |
5963 | } |
5964 | |
5965 | const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { |
5966 | auto IsReachable = |
5967 | [&](BasicBlock *BB) { return DT.isReachableFromEntry(A: BB); }; |
5968 | if (PN->getNumIncomingValues() == 2 && all_of(Range: PN->blocks(), P: IsReachable)) { |
5969 | // Try to match |
5970 | // |
5971 | // br %cond, label %left, label %right |
5972 | // left: |
5973 | // br label %merge |
5974 | // right: |
5975 | // br label %merge |
5976 | // merge: |
5977 | // V = phi [ %x, %left ], [ %y, %right ] |
5978 | // |
5979 | // as "select %cond, %x, %y" |
5980 | |
5981 | BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); |
5982 | assert(IDom && "At least the entry block should dominate PN" ); |
5983 | |
5984 | auto *BI = dyn_cast<BranchInst>(Val: IDom->getTerminator()); |
5985 | Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; |
5986 | |
5987 | if (BI && BI->isConditional() && |
5988 | BrPHIToSelect(DT, BI, Merge: PN, C&: Cond, LHS, RHS) && |
5989 | properlyDominates(S: getSCEV(V: LHS), BB: PN->getParent()) && |
5990 | properlyDominates(S: getSCEV(V: RHS), BB: PN->getParent())) |
5991 | return createNodeForSelectOrPHI(V: PN, Cond, TrueVal: LHS, FalseVal: RHS); |
5992 | } |
5993 | |
5994 | return nullptr; |
5995 | } |
5996 | |
5997 | /// Returns SCEV for the first operand of a phi if all phi operands have |
5998 | /// identical opcodes and operands |
5999 | /// eg. |
6000 | /// a: %add = %a + %b |
6001 | /// br %c |
6002 | /// b: %add1 = %a + %b |
6003 | /// br %c |
6004 | /// c: %phi = phi [%add, a], [%add1, b] |
6005 | /// scev(%phi) => scev(%add) |
6006 | const SCEV * |
6007 | ScalarEvolution::createNodeForPHIWithIdenticalOperands(PHINode *PN) { |
6008 | BinaryOperator *CommonInst = nullptr; |
6009 | // Check if instructions are identical. |
6010 | for (Value *Incoming : PN->incoming_values()) { |
6011 | auto *IncomingInst = dyn_cast<BinaryOperator>(Val: Incoming); |
6012 | if (!IncomingInst) |
6013 | return nullptr; |
6014 | if (CommonInst) { |
6015 | if (!CommonInst->isIdenticalToWhenDefined(I: IncomingInst)) |
6016 | return nullptr; // Not identical, give up |
6017 | } else { |
6018 | // Remember binary operator |
6019 | CommonInst = IncomingInst; |
6020 | } |
6021 | } |
6022 | if (!CommonInst) |
6023 | return nullptr; |
6024 | |
6025 | // Check if SCEV exprs for instructions are identical. |
6026 | const SCEV *CommonSCEV = getSCEV(V: CommonInst); |
6027 | bool SCEVExprsIdentical = |
6028 | all_of(Range: drop_begin(RangeOrContainer: PN->incoming_values()), |
6029 | P: [this, CommonSCEV](Value *V) { return CommonSCEV == getSCEV(V); }); |
6030 | return SCEVExprsIdentical ? CommonSCEV : nullptr; |
6031 | } |
6032 | |
6033 | const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { |
6034 | if (const SCEV *S = createAddRecFromPHI(PN)) |
6035 | return S; |
6036 | |
6037 | // We do not allow simplifying phi (undef, X) to X here, to avoid reusing the |
6038 | // phi node for X. |
6039 | if (Value *V = simplifyInstruction( |
6040 | I: PN, Q: {getDataLayout(), &TLI, &DT, &AC, /*CtxI=*/nullptr, |
6041 | /*UseInstrInfo=*/true, /*CanUseUndef=*/false})) |
6042 | return getSCEV(V); |
6043 | |
6044 | if (const SCEV *S = createNodeForPHIWithIdenticalOperands(PN)) |
6045 | return S; |
6046 | |
6047 | if (const SCEV *S = createNodeFromSelectLikePHI(PN)) |
6048 | return S; |
6049 | |
6050 | // If it's not a loop phi, we can't handle it yet. |
6051 | return getUnknown(V: PN); |
6052 | } |
6053 | |
6054 | bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, |
6055 | SCEVTypes RootKind) { |
6056 | struct FindClosure { |
6057 | const SCEV *OperandToFind; |
6058 | const SCEVTypes RootKind; // Must be a sequential min/max expression. |
6059 | const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. |
6060 | |
6061 | bool Found = false; |
6062 | |
6063 | bool canRecurseInto(SCEVTypes Kind) const { |
6064 | // We can only recurse into the SCEV expression of the same effective type |
6065 | // as the type of our root SCEV expression, and into zero-extensions. |
6066 | return RootKind == Kind || NonSequentialRootKind == Kind || |
6067 | scZeroExtend == Kind; |
6068 | }; |
6069 | |
6070 | FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) |
6071 | : OperandToFind(OperandToFind), RootKind(RootKind), |
6072 | NonSequentialRootKind( |
6073 | SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( |
6074 | Ty: RootKind)) {} |
6075 | |
6076 | bool follow(const SCEV *S) { |
6077 | Found = S == OperandToFind; |
6078 | |
6079 | return !isDone() && canRecurseInto(Kind: S->getSCEVType()); |
6080 | } |
6081 | |
6082 | bool isDone() const { return Found; } |
6083 | }; |
6084 | |
6085 | FindClosure FC(OperandToFind, RootKind); |
6086 | visitAll(Root, Visitor&: FC); |
6087 | return FC.Found; |
6088 | } |
6089 | |
6090 | std::optional<const SCEV *> |
6091 | ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, |
6092 | ICmpInst *Cond, |
6093 | Value *TrueVal, |
6094 | Value *FalseVal) { |
6095 | // Try to match some simple smax or umax patterns. |
6096 | auto *ICI = Cond; |
6097 | |
6098 | Value *LHS = ICI->getOperand(i_nocapture: 0); |
6099 | Value *RHS = ICI->getOperand(i_nocapture: 1); |
6100 | |
6101 | switch (ICI->getPredicate()) { |
6102 | case ICmpInst::ICMP_SLT: |
6103 | case ICmpInst::ICMP_SLE: |
6104 | case ICmpInst::ICMP_ULT: |
6105 | case ICmpInst::ICMP_ULE: |
6106 | std::swap(a&: LHS, b&: RHS); |
6107 | [[fallthrough]]; |
6108 | case ICmpInst::ICMP_SGT: |
6109 | case ICmpInst::ICMP_SGE: |
6110 | case ICmpInst::ICMP_UGT: |
6111 | case ICmpInst::ICMP_UGE: |
6112 | // a > b ? a+x : b+x -> max(a, b)+x |
6113 | // a > b ? b+x : a+x -> min(a, b)+x |
6114 | if (getTypeSizeInBits(Ty: LHS->getType()) <= getTypeSizeInBits(Ty)) { |
6115 | bool Signed = ICI->isSigned(); |
6116 | const SCEV *LA = getSCEV(V: TrueVal); |
6117 | const SCEV *RA = getSCEV(V: FalseVal); |
6118 | const SCEV *LS = getSCEV(V: LHS); |
6119 | const SCEV *RS = getSCEV(V: RHS); |
6120 | if (LA->getType()->isPointerTy()) { |
6121 | // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. |
6122 | // Need to make sure we can't produce weird expressions involving |
6123 | // negated pointers. |
6124 | if (LA == LS && RA == RS) |
6125 | return Signed ? getSMaxExpr(LHS: LS, RHS: RS) : getUMaxExpr(LHS: LS, RHS: RS); |
6126 | if (LA == RS && RA == LS) |
6127 | return Signed ? getSMinExpr(LHS: LS, RHS: RS) : getUMinExpr(LHS: LS, RHS: RS); |
6128 | } |
6129 | auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { |
6130 | if (Op->getType()->isPointerTy()) { |
6131 | Op = getLosslessPtrToIntExpr(Op); |
6132 | if (isa<SCEVCouldNotCompute>(Val: Op)) |
6133 | return Op; |
6134 | } |
6135 | if (Signed) |
6136 | Op = getNoopOrSignExtend(V: Op, Ty); |
6137 | else |
6138 | Op = getNoopOrZeroExtend(V: Op, Ty); |
6139 | return Op; |
6140 | }; |
6141 | LS = CoerceOperand(LS); |
6142 | RS = CoerceOperand(RS); |
6143 | if (isa<SCEVCouldNotCompute>(Val: LS) || isa<SCEVCouldNotCompute>(Val: RS)) |
6144 | break; |
6145 | const SCEV *LDiff = getMinusSCEV(LHS: LA, RHS: LS); |
6146 | const SCEV *RDiff = getMinusSCEV(LHS: RA, RHS: RS); |
6147 | if (LDiff == RDiff) |
6148 | return getAddExpr(LHS: Signed ? getSMaxExpr(LHS: LS, RHS: RS) : getUMaxExpr(LHS: LS, RHS: RS), |
6149 | RHS: LDiff); |
6150 | LDiff = getMinusSCEV(LHS: LA, RHS: RS); |
6151 | RDiff = getMinusSCEV(LHS: RA, RHS: LS); |
6152 | if (LDiff == RDiff) |
6153 | return getAddExpr(LHS: Signed ? getSMinExpr(LHS: LS, RHS: RS) : getUMinExpr(LHS: LS, RHS: RS), |
6154 | RHS: LDiff); |
6155 | } |
6156 | break; |
6157 | case ICmpInst::ICMP_NE: |
6158 | // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y |
6159 | std::swap(a&: TrueVal, b&: FalseVal); |
6160 | [[fallthrough]]; |
6161 | case ICmpInst::ICMP_EQ: |
6162 | // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 |
6163 | if (getTypeSizeInBits(Ty: LHS->getType()) <= getTypeSizeInBits(Ty) && |
6164 | isa<ConstantInt>(Val: RHS) && cast<ConstantInt>(Val: RHS)->isZero()) { |
6165 | const SCEV *X = getNoopOrZeroExtend(V: getSCEV(V: LHS), Ty); |
6166 | const SCEV *TrueValExpr = getSCEV(V: TrueVal); // C+y |
6167 | const SCEV *FalseValExpr = getSCEV(V: FalseVal); // x+y |
6168 | const SCEV *Y = getMinusSCEV(LHS: FalseValExpr, RHS: X); // y = (x+y)-x |
6169 | const SCEV *C = getMinusSCEV(LHS: TrueValExpr, RHS: Y); // C = (C+y)-y |
6170 | if (isa<SCEVConstant>(Val: C) && cast<SCEVConstant>(Val: C)->getAPInt().ule(RHS: 1)) |
6171 | return getAddExpr(LHS: getUMaxExpr(LHS: X, RHS: C), RHS: Y); |
6172 | } |
6173 | // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) |
6174 | // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) |
6175 | // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) |
6176 | // -> umin_seq(x, umin (..., umin_seq(...), ...)) |
6177 | if (isa<ConstantInt>(Val: RHS) && cast<ConstantInt>(Val: RHS)->isZero() && |
6178 | isa<ConstantInt>(Val: TrueVal) && cast<ConstantInt>(Val: TrueVal)->isZero()) { |
6179 | const SCEV *X = getSCEV(V: LHS); |
6180 | while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: X)) |
6181 | X = ZExt->getOperand(); |
6182 | if (getTypeSizeInBits(Ty: X->getType()) <= getTypeSizeInBits(Ty)) { |
6183 | const SCEV *FalseValExpr = getSCEV(V: FalseVal); |
6184 | if (SCEVMinMaxExprContains(Root: FalseValExpr, OperandToFind: X, RootKind: scSequentialUMinExpr)) |
6185 | return getUMinExpr(LHS: getNoopOrZeroExtend(V: X, Ty), RHS: FalseValExpr, |
6186 | /*Sequential=*/true); |
6187 | } |
6188 | } |
6189 | break; |
6190 | default: |
6191 | break; |
6192 | } |
6193 | |
6194 | return std::nullopt; |
6195 | } |
6196 | |
6197 | static std::optional<const SCEV *> |
6198 | createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr, |
6199 | const SCEV *TrueExpr, const SCEV *FalseExpr) { |
6200 | assert(CondExpr->getType()->isIntegerTy(1) && |
6201 | TrueExpr->getType() == FalseExpr->getType() && |
6202 | TrueExpr->getType()->isIntegerTy(1) && |
6203 | "Unexpected operands of a select." ); |
6204 | |
6205 | // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) |
6206 | // --> C + (umin_seq cond, x - C) |
6207 | // |
6208 | // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) |
6209 | // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) |
6210 | // --> C + (umin_seq ~cond, x - C) |
6211 | |
6212 | // FIXME: while we can't legally model the case where both of the hands |
6213 | // are fully variable, we only require that the *difference* is constant. |
6214 | if (!isa<SCEVConstant>(Val: TrueExpr) && !isa<SCEVConstant>(Val: FalseExpr)) |
6215 | return std::nullopt; |
6216 | |
6217 | const SCEV *X, *C; |
6218 | if (isa<SCEVConstant>(Val: TrueExpr)) { |
6219 | CondExpr = SE->getNotSCEV(V: CondExpr); |
6220 | X = FalseExpr; |
6221 | C = TrueExpr; |
6222 | } else { |
6223 | X = TrueExpr; |
6224 | C = FalseExpr; |
6225 | } |
6226 | return SE->getAddExpr(LHS: C, RHS: SE->getUMinExpr(LHS: CondExpr, RHS: SE->getMinusSCEV(LHS: X, RHS: C), |
6227 | /*Sequential=*/true)); |
6228 | } |
6229 | |
6230 | static std::optional<const SCEV *> |
6231 | createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal, |
6232 | Value *FalseVal) { |
6233 | if (!isa<ConstantInt>(Val: TrueVal) && !isa<ConstantInt>(Val: FalseVal)) |
6234 | return std::nullopt; |
6235 | |
6236 | const auto *SECond = SE->getSCEV(V: Cond); |
6237 | const auto *SETrue = SE->getSCEV(V: TrueVal); |
6238 | const auto *SEFalse = SE->getSCEV(V: FalseVal); |
6239 | return createNodeForSelectViaUMinSeq(SE, CondExpr: SECond, TrueExpr: SETrue, FalseExpr: SEFalse); |
6240 | } |
6241 | |
6242 | const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( |
6243 | Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { |
6244 | assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?" ); |
6245 | assert(TrueVal->getType() == FalseVal->getType() && |
6246 | V->getType() == TrueVal->getType() && |
6247 | "Types of select hands and of the result must match." ); |
6248 | |
6249 | // For now, only deal with i1-typed `select`s. |
6250 | if (!V->getType()->isIntegerTy(Bitwidth: 1)) |
6251 | return getUnknown(V); |
6252 | |
6253 | if (std::optional<const SCEV *> S = |
6254 | createNodeForSelectViaUMinSeq(SE: this, Cond, TrueVal, FalseVal)) |
6255 | return *S; |
6256 | |
6257 | return getUnknown(V); |
6258 | } |
6259 | |
6260 | const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, |
6261 | Value *TrueVal, |
6262 | Value *FalseVal) { |
6263 | // Handle "constant" branch or select. This can occur for instance when a |
6264 | // loop pass transforms an inner loop and moves on to process the outer loop. |
6265 | if (auto *CI = dyn_cast<ConstantInt>(Val: Cond)) |
6266 | return getSCEV(V: CI->isOne() ? TrueVal : FalseVal); |
6267 | |
6268 | if (auto *I = dyn_cast<Instruction>(Val: V)) { |
6269 | if (auto *ICI = dyn_cast<ICmpInst>(Val: Cond)) { |
6270 | if (std::optional<const SCEV *> S = |
6271 | createNodeForSelectOrPHIInstWithICmpInstCond(Ty: I->getType(), Cond: ICI, |
6272 | TrueVal, FalseVal)) |
6273 | return *S; |
6274 | } |
6275 | } |
6276 | |
6277 | return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); |
6278 | } |
6279 | |
6280 | /// Expand GEP instructions into add and multiply operations. This allows them |
6281 | /// to be analyzed by regular SCEV code. |
6282 | const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { |
6283 | assert(GEP->getSourceElementType()->isSized() && |
6284 | "GEP source element type must be sized" ); |
6285 | |
6286 | SmallVector<const SCEV *, 4> IndexExprs; |
6287 | for (Value *Index : GEP->indices()) |
6288 | IndexExprs.push_back(Elt: getSCEV(V: Index)); |
6289 | return getGEPExpr(GEP, IndexExprs); |
6290 | } |
6291 | |
6292 | APInt ScalarEvolution::getConstantMultipleImpl(const SCEV *S) { |
6293 | uint64_t BitWidth = getTypeSizeInBits(Ty: S->getType()); |
6294 | auto GetShiftedByZeros = [BitWidth](uint32_t TrailingZeros) { |
6295 | return TrailingZeros >= BitWidth |
6296 | ? APInt::getZero(numBits: BitWidth) |
6297 | : APInt::getOneBitSet(numBits: BitWidth, BitNo: TrailingZeros); |
6298 | }; |
6299 | auto GetGCDMultiple = [this](const SCEVNAryExpr *N) { |
6300 | // The result is GCD of all operands results. |
6301 | APInt Res = getConstantMultiple(S: N->getOperand(i: 0)); |
6302 | for (unsigned I = 1, E = N->getNumOperands(); I < E && Res != 1; ++I) |
6303 | Res = APIntOps::GreatestCommonDivisor( |
6304 | A: Res, B: getConstantMultiple(S: N->getOperand(i: I))); |
6305 | return Res; |
6306 | }; |
6307 | |
6308 | switch (S->getSCEVType()) { |
6309 | case scConstant: |
6310 | return cast<SCEVConstant>(Val: S)->getAPInt(); |
6311 | case scPtrToInt: |
6312 | return getConstantMultiple(S: cast<SCEVPtrToIntExpr>(Val: S)->getOperand()); |
6313 | case scUDivExpr: |
6314 | case scVScale: |
6315 | return APInt(BitWidth, 1); |
6316 | case scTruncate: { |
6317 | // Only multiples that are a power of 2 will hold after truncation. |
6318 | const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(Val: S); |
6319 | uint32_t TZ = getMinTrailingZeros(S: T->getOperand()); |
6320 | return GetShiftedByZeros(TZ); |
6321 | } |
6322 | case scZeroExtend: { |
6323 | const SCEVZeroExtendExpr *Z = cast<SCEVZeroExtendExpr>(Val: S); |
6324 | return getConstantMultiple(S: Z->getOperand()).zext(width: BitWidth); |
6325 | } |
6326 | case scSignExtend: { |
6327 | // Only multiples that are a power of 2 will hold after sext. |
6328 | const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(Val: S); |
6329 | uint32_t TZ = getMinTrailingZeros(S: E->getOperand()); |
6330 | return GetShiftedByZeros(TZ); |
6331 | } |
6332 | case scMulExpr: { |
6333 | const SCEVMulExpr *M = cast<SCEVMulExpr>(Val: S); |
6334 | if (M->hasNoUnsignedWrap()) { |
6335 | // The result is the product of all operand results. |
6336 | APInt Res = getConstantMultiple(S: M->getOperand(i: 0)); |
6337 | for (const SCEV *Operand : M->operands().drop_front()) |
6338 | Res = Res * getConstantMultiple(S: Operand); |
6339 | return Res; |
6340 | } |
6341 | |
6342 | // If there are no wrap guarentees, find the trailing zeros, which is the |
6343 | // sum of trailing zeros for all its operands. |
6344 | uint32_t TZ = 0; |
6345 | for (const SCEV *Operand : M->operands()) |
6346 | TZ += getMinTrailingZeros(S: Operand); |
6347 | return GetShiftedByZeros(TZ); |
6348 | } |
6349 | case scAddExpr: |
6350 | case scAddRecExpr: { |
6351 | const SCEVNAryExpr *N = cast<SCEVNAryExpr>(Val: S); |
6352 | if (N->hasNoUnsignedWrap()) |
6353 | return GetGCDMultiple(N); |
6354 | // Find the trailing bits, which is the minimum of its operands. |
6355 | uint32_t TZ = getMinTrailingZeros(S: N->getOperand(i: 0)); |
6356 | for (const SCEV *Operand : N->operands().drop_front()) |
6357 | TZ = std::min(a: TZ, b: getMinTrailingZeros(S: Operand)); |
6358 | return GetShiftedByZeros(TZ); |
6359 | } |
6360 | case scUMaxExpr: |
6361 | case scSMaxExpr: |
6362 | case scUMinExpr: |
6363 | case scSMinExpr: |
6364 | case scSequentialUMinExpr: |
6365 | return GetGCDMultiple(cast<SCEVNAryExpr>(Val: S)); |
6366 | case scUnknown: { |
6367 | // ask ValueTracking for known bits |
6368 | const SCEVUnknown *U = cast<SCEVUnknown>(Val: S); |
6369 | unsigned Known = |
6370 | computeKnownBits(V: U->getValue(), DL: getDataLayout(), AC: &AC, CxtI: nullptr, DT: &DT) |
6371 | .countMinTrailingZeros(); |
6372 | return GetShiftedByZeros(Known); |
6373 | } |
6374 | case scCouldNotCompute: |
6375 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
6376 | } |
6377 | llvm_unreachable("Unknown SCEV kind!" ); |
6378 | } |
6379 | |
6380 | APInt ScalarEvolution::getConstantMultiple(const SCEV *S) { |
6381 | auto I = ConstantMultipleCache.find(Val: S); |
6382 | if (I != ConstantMultipleCache.end()) |
6383 | return I->second; |
6384 | |
6385 | APInt Result = getConstantMultipleImpl(S); |
6386 | auto InsertPair = ConstantMultipleCache.insert(KV: {S, Result}); |
6387 | assert(InsertPair.second && "Should insert a new key" ); |
6388 | return InsertPair.first->second; |
6389 | } |
6390 | |
6391 | APInt ScalarEvolution::getNonZeroConstantMultiple(const SCEV *S) { |
6392 | APInt Multiple = getConstantMultiple(S); |
6393 | return Multiple == 0 ? APInt(Multiple.getBitWidth(), 1) : Multiple; |
6394 | } |
6395 | |
6396 | uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV *S) { |
6397 | return std::min(a: getConstantMultiple(S).countTrailingZeros(), |
6398 | b: (unsigned)getTypeSizeInBits(Ty: S->getType())); |
6399 | } |
6400 | |
6401 | /// Helper method to assign a range to V from metadata present in the IR. |
6402 | static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) { |
6403 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) { |
6404 | if (MDNode *MD = I->getMetadata(KindID: LLVMContext::MD_range)) |
6405 | return getConstantRangeFromMetadata(RangeMD: *MD); |
6406 | if (const auto *CB = dyn_cast<CallBase>(Val: V)) |
6407 | if (std::optional<ConstantRange> Range = CB->getRange()) |
6408 | return Range; |
6409 | } |
6410 | if (auto *A = dyn_cast<Argument>(Val: V)) |
6411 | if (std::optional<ConstantRange> Range = A->getRange()) |
6412 | return Range; |
6413 | |
6414 | return std::nullopt; |
6415 | } |
6416 | |
6417 | void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, |
6418 | SCEV::NoWrapFlags Flags) { |
6419 | if (AddRec->getNoWrapFlags(Mask: Flags) != Flags) { |
6420 | AddRec->setNoWrapFlags(Flags); |
6421 | UnsignedRanges.erase(Val: AddRec); |
6422 | SignedRanges.erase(Val: AddRec); |
6423 | ConstantMultipleCache.erase(Val: AddRec); |
6424 | } |
6425 | } |
6426 | |
6427 | ConstantRange ScalarEvolution:: |
6428 | getRangeForUnknownRecurrence(const SCEVUnknown *U) { |
6429 | const DataLayout &DL = getDataLayout(); |
6430 | |
6431 | unsigned BitWidth = getTypeSizeInBits(Ty: U->getType()); |
6432 | const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); |
6433 | |
6434 | // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then |
6435 | // use information about the trip count to improve our available range. Note |
6436 | // that the trip count independent cases are already handled by known bits. |
6437 | // WARNING: The definition of recurrence used here is subtly different than |
6438 | // the one used by AddRec (and thus most of this file). Step is allowed to |
6439 | // be arbitrarily loop varying here, where AddRec allows only loop invariant |
6440 | // and other addrecs in the same loop (for non-affine addrecs). The code |
6441 | // below intentionally handles the case where step is not loop invariant. |
6442 | auto *P = dyn_cast<PHINode>(Val: U->getValue()); |
6443 | if (!P) |
6444 | return FullSet; |
6445 | |
6446 | // Make sure that no Phi input comes from an unreachable block. Otherwise, |
6447 | // even the values that are not available in these blocks may come from them, |
6448 | // and this leads to false-positive recurrence test. |
6449 | for (auto *Pred : predecessors(BB: P->getParent())) |
6450 | if (!DT.isReachableFromEntry(A: Pred)) |
6451 | return FullSet; |
6452 | |
6453 | BinaryOperator *BO; |
6454 | Value *Start, *Step; |
6455 | if (!matchSimpleRecurrence(P, BO, Start, Step)) |
6456 | return FullSet; |
6457 | |
6458 | // If we found a recurrence in reachable code, we must be in a loop. Note |
6459 | // that BO might be in some subloop of L, and that's completely okay. |
6460 | auto *L = LI.getLoopFor(BB: P->getParent()); |
6461 | assert(L && L->getHeader() == P->getParent()); |
6462 | if (!L->contains(BB: BO->getParent())) |
6463 | // NOTE: This bailout should be an assert instead. However, asserting |
6464 | // the condition here exposes a case where LoopFusion is querying SCEV |
6465 | // with malformed loop information during the midst of the transform. |
6466 | // There doesn't appear to be an obvious fix, so for the moment bailout |
6467 | // until the caller issue can be fixed. PR49566 tracks the bug. |
6468 | return FullSet; |
6469 | |
6470 | // TODO: Extend to other opcodes such as mul, and div |
6471 | switch (BO->getOpcode()) { |
6472 | default: |
6473 | return FullSet; |
6474 | case Instruction::AShr: |
6475 | case Instruction::LShr: |
6476 | case Instruction::Shl: |
6477 | break; |
6478 | }; |
6479 | |
6480 | if (BO->getOperand(i_nocapture: 0) != P) |
6481 | // TODO: Handle the power function forms some day. |
6482 | return FullSet; |
6483 | |
6484 | unsigned TC = getSmallConstantMaxTripCount(L); |
6485 | if (!TC || TC >= BitWidth) |
6486 | return FullSet; |
6487 | |
6488 | auto KnownStart = computeKnownBits(V: Start, DL, AC: &AC, CxtI: nullptr, DT: &DT); |
6489 | auto KnownStep = computeKnownBits(V: Step, DL, AC: &AC, CxtI: nullptr, DT: &DT); |
6490 | assert(KnownStart.getBitWidth() == BitWidth && |
6491 | KnownStep.getBitWidth() == BitWidth); |
6492 | |
6493 | // Compute total shift amount, being careful of overflow and bitwidths. |
6494 | auto MaxShiftAmt = KnownStep.getMaxValue(); |
6495 | APInt TCAP(BitWidth, TC-1); |
6496 | bool Overflow = false; |
6497 | auto TotalShift = MaxShiftAmt.umul_ov(RHS: TCAP, Overflow); |
6498 | if (Overflow) |
6499 | return FullSet; |
6500 | |
6501 | switch (BO->getOpcode()) { |
6502 | default: |
6503 | llvm_unreachable("filtered out above" ); |
6504 | case Instruction::AShr: { |
6505 | // For each ashr, three cases: |
6506 | // shift = 0 => unchanged value |
6507 | // saturation => 0 or -1 |
6508 | // other => a value closer to zero (of the same sign) |
6509 | // Thus, the end value is closer to zero than the start. |
6510 | auto KnownEnd = KnownBits::ashr(LHS: KnownStart, |
6511 | RHS: KnownBits::makeConstant(C: TotalShift)); |
6512 | if (KnownStart.isNonNegative()) |
6513 | // Analogous to lshr (simply not yet canonicalized) |
6514 | return ConstantRange::getNonEmpty(Lower: KnownEnd.getMinValue(), |
6515 | Upper: KnownStart.getMaxValue() + 1); |
6516 | if (KnownStart.isNegative()) |
6517 | // End >=u Start && End <=s Start |
6518 | return ConstantRange::getNonEmpty(Lower: KnownStart.getMinValue(), |
6519 | Upper: KnownEnd.getMaxValue() + 1); |
6520 | break; |
6521 | } |
6522 | case Instruction::LShr: { |
6523 | // For each lshr, three cases: |
6524 | // shift = 0 => unchanged value |
6525 | // saturation => 0 |
6526 | // other => a smaller positive number |
6527 | // Thus, the low end of the unsigned range is the last value produced. |
6528 | auto KnownEnd = KnownBits::lshr(LHS: KnownStart, |
6529 | RHS: KnownBits::makeConstant(C: TotalShift)); |
6530 | return ConstantRange::getNonEmpty(Lower: KnownEnd.getMinValue(), |
6531 | Upper: KnownStart.getMaxValue() + 1); |
6532 | } |
6533 | case Instruction::Shl: { |
6534 | // Iff no bits are shifted out, value increases on every shift. |
6535 | auto KnownEnd = KnownBits::shl(LHS: KnownStart, |
6536 | RHS: KnownBits::makeConstant(C: TotalShift)); |
6537 | if (TotalShift.ult(RHS: KnownStart.countMinLeadingZeros())) |
6538 | return ConstantRange(KnownStart.getMinValue(), |
6539 | KnownEnd.getMaxValue() + 1); |
6540 | break; |
6541 | } |
6542 | }; |
6543 | return FullSet; |
6544 | } |
6545 | |
6546 | const ConstantRange & |
6547 | ScalarEvolution::getRangeRefIter(const SCEV *S, |
6548 | ScalarEvolution::RangeSignHint SignHint) { |
6549 | DenseMap<const SCEV *, ConstantRange> &Cache = |
6550 | SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges |
6551 | : SignedRanges; |
6552 | SmallVector<const SCEV *> WorkList; |
6553 | SmallPtrSet<const SCEV *, 8> Seen; |
6554 | |
6555 | // Add Expr to the worklist, if Expr is either an N-ary expression or a |
6556 | // SCEVUnknown PHI node. |
6557 | auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) { |
6558 | if (!Seen.insert(Ptr: Expr).second) |
6559 | return; |
6560 | if (Cache.contains(Val: Expr)) |
6561 | return; |
6562 | switch (Expr->getSCEVType()) { |
6563 | case scUnknown: |
6564 | if (!isa<PHINode>(Val: cast<SCEVUnknown>(Val: Expr)->getValue())) |
6565 | break; |
6566 | [[fallthrough]]; |
6567 | case scConstant: |
6568 | case scVScale: |
6569 | case scTruncate: |
6570 | case scZeroExtend: |
6571 | case scSignExtend: |
6572 | case scPtrToInt: |
6573 | case scAddExpr: |
6574 | case scMulExpr: |
6575 | case scUDivExpr: |
6576 | case scAddRecExpr: |
6577 | case scUMaxExpr: |
6578 | case scSMaxExpr: |
6579 | case scUMinExpr: |
6580 | case scSMinExpr: |
6581 | case scSequentialUMinExpr: |
6582 | WorkList.push_back(Elt: Expr); |
6583 | break; |
6584 | case scCouldNotCompute: |
6585 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
6586 | } |
6587 | }; |
6588 | AddToWorklist(S); |
6589 | |
6590 | // Build worklist by queuing operands of N-ary expressions and phi nodes. |
6591 | for (unsigned I = 0; I != WorkList.size(); ++I) { |
6592 | const SCEV *P = WorkList[I]; |
6593 | auto *UnknownS = dyn_cast<SCEVUnknown>(Val: P); |
6594 | // If it is not a `SCEVUnknown`, just recurse into operands. |
6595 | if (!UnknownS) { |
6596 | for (const SCEV *Op : P->operands()) |
6597 | AddToWorklist(Op); |
6598 | continue; |
6599 | } |
6600 | // `SCEVUnknown`'s require special treatment. |
6601 | if (const PHINode *P = dyn_cast<PHINode>(Val: UnknownS->getValue())) { |
6602 | if (!PendingPhiRangesIter.insert(Ptr: P).second) |
6603 | continue; |
6604 | for (auto &Op : reverse(C: P->operands())) |
6605 | AddToWorklist(getSCEV(V: Op)); |
6606 | } |
6607 | } |
6608 | |
6609 | if (!WorkList.empty()) { |
6610 | // Use getRangeRef to compute ranges for items in the worklist in reverse |
6611 | // order. This will force ranges for earlier operands to be computed before |
6612 | // their users in most cases. |
6613 | for (const SCEV *P : reverse(C: drop_begin(RangeOrContainer&: WorkList))) { |
6614 | getRangeRef(S: P, Hint: SignHint); |
6615 | |
6616 | if (auto *UnknownS = dyn_cast<SCEVUnknown>(Val: P)) |
6617 | if (const PHINode *P = dyn_cast<PHINode>(Val: UnknownS->getValue())) |
6618 | PendingPhiRangesIter.erase(Ptr: P); |
6619 | } |
6620 | } |
6621 | |
6622 | return getRangeRef(S, Hint: SignHint, Depth: 0); |
6623 | } |
6624 | |
6625 | /// Determine the range for a particular SCEV. If SignHint is |
6626 | /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges |
6627 | /// with a "cleaner" unsigned (resp. signed) representation. |
6628 | const ConstantRange &ScalarEvolution::getRangeRef( |
6629 | const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) { |
6630 | DenseMap<const SCEV *, ConstantRange> &Cache = |
6631 | SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges |
6632 | : SignedRanges; |
6633 | ConstantRange::PreferredRangeType RangeType = |
6634 | SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned |
6635 | : ConstantRange::Signed; |
6636 | |
6637 | // See if we've computed this range already. |
6638 | DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(Val: S); |
6639 | if (I != Cache.end()) |
6640 | return I->second; |
6641 | |
6642 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: S)) |
6643 | return setRange(S: C, Hint: SignHint, CR: ConstantRange(C->getAPInt())); |
6644 | |
6645 | // Switch to iteratively computing the range for S, if it is part of a deeply |
6646 | // nested expression. |
6647 | if (Depth > RangeIterThreshold) |
6648 | return getRangeRefIter(S, SignHint); |
6649 | |
6650 | unsigned BitWidth = getTypeSizeInBits(Ty: S->getType()); |
6651 | ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); |
6652 | using OBO = OverflowingBinaryOperator; |
6653 | |
6654 | // If the value has known zeros, the maximum value will have those known zeros |
6655 | // as well. |
6656 | if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { |
6657 | APInt Multiple = getNonZeroConstantMultiple(S); |
6658 | APInt Remainder = APInt::getMaxValue(numBits: BitWidth).urem(RHS: Multiple); |
6659 | if (!Remainder.isZero()) |
6660 | ConservativeResult = |
6661 | ConstantRange(APInt::getMinValue(numBits: BitWidth), |
6662 | APInt::getMaxValue(numBits: BitWidth) - Remainder + 1); |
6663 | } |
6664 | else { |
6665 | uint32_t TZ = getMinTrailingZeros(S); |
6666 | if (TZ != 0) { |
6667 | ConservativeResult = ConstantRange( |
6668 | APInt::getSignedMinValue(numBits: BitWidth), |
6669 | APInt::getSignedMaxValue(numBits: BitWidth).ashr(ShiftAmt: TZ).shl(shiftAmt: TZ) + 1); |
6670 | } |
6671 | } |
6672 | |
6673 | switch (S->getSCEVType()) { |
6674 | case scConstant: |
6675 | llvm_unreachable("Already handled above." ); |
6676 | case scVScale: |
6677 | return setRange(S, Hint: SignHint, CR: getVScaleRange(F: &F, BitWidth)); |
6678 | case scTruncate: { |
6679 | const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Val: S); |
6680 | ConstantRange X = getRangeRef(S: Trunc->getOperand(), SignHint, Depth: Depth + 1); |
6681 | return setRange( |
6682 | S: Trunc, Hint: SignHint, |
6683 | CR: ConservativeResult.intersectWith(CR: X.truncate(BitWidth), Type: RangeType)); |
6684 | } |
6685 | case scZeroExtend: { |
6686 | const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(Val: S); |
6687 | ConstantRange X = getRangeRef(S: ZExt->getOperand(), SignHint, Depth: Depth + 1); |
6688 | return setRange( |
6689 | S: ZExt, Hint: SignHint, |
6690 | CR: ConservativeResult.intersectWith(CR: X.zeroExtend(BitWidth), Type: RangeType)); |
6691 | } |
6692 | case scSignExtend: { |
6693 | const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(Val: S); |
6694 | ConstantRange X = getRangeRef(S: SExt->getOperand(), SignHint, Depth: Depth + 1); |
6695 | return setRange( |
6696 | S: SExt, Hint: SignHint, |
6697 | CR: ConservativeResult.intersectWith(CR: X.signExtend(BitWidth), Type: RangeType)); |
6698 | } |
6699 | case scPtrToInt: { |
6700 | const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(Val: S); |
6701 | ConstantRange X = getRangeRef(S: PtrToInt->getOperand(), SignHint, Depth: Depth + 1); |
6702 | return setRange(S: PtrToInt, Hint: SignHint, CR: X); |
6703 | } |
6704 | case scAddExpr: { |
6705 | const SCEVAddExpr *Add = cast<SCEVAddExpr>(Val: S); |
6706 | ConstantRange X = getRangeRef(S: Add->getOperand(i: 0), SignHint, Depth: Depth + 1); |
6707 | unsigned WrapType = OBO::AnyWrap; |
6708 | if (Add->hasNoSignedWrap()) |
6709 | WrapType |= OBO::NoSignedWrap; |
6710 | if (Add->hasNoUnsignedWrap()) |
6711 | WrapType |= OBO::NoUnsignedWrap; |
6712 | for (const SCEV *Op : drop_begin(RangeOrContainer: Add->operands())) |
6713 | X = X.addWithNoWrap(Other: getRangeRef(S: Op, SignHint, Depth: Depth + 1), NoWrapKind: WrapType, |
6714 | RangeType); |
6715 | return setRange(S: Add, Hint: SignHint, |
6716 | CR: ConservativeResult.intersectWith(CR: X, Type: RangeType)); |
6717 | } |
6718 | case scMulExpr: { |
6719 | const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Val: S); |
6720 | ConstantRange X = getRangeRef(S: Mul->getOperand(i: 0), SignHint, Depth: Depth + 1); |
6721 | for (const SCEV *Op : drop_begin(RangeOrContainer: Mul->operands())) |
6722 | X = X.multiply(Other: getRangeRef(S: Op, SignHint, Depth: Depth + 1)); |
6723 | return setRange(S: Mul, Hint: SignHint, |
6724 | CR: ConservativeResult.intersectWith(CR: X, Type: RangeType)); |
6725 | } |
6726 | case scUDivExpr: { |
6727 | const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(Val: S); |
6728 | ConstantRange X = getRangeRef(S: UDiv->getLHS(), SignHint, Depth: Depth + 1); |
6729 | ConstantRange Y = getRangeRef(S: UDiv->getRHS(), SignHint, Depth: Depth + 1); |
6730 | return setRange(S: UDiv, Hint: SignHint, |
6731 | CR: ConservativeResult.intersectWith(CR: X.udiv(Other: Y), Type: RangeType)); |
6732 | } |
6733 | case scAddRecExpr: { |
6734 | const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Val: S); |
6735 | // If there's no unsigned wrap, the value will never be less than its |
6736 | // initial value. |
6737 | if (AddRec->hasNoUnsignedWrap()) { |
6738 | APInt UnsignedMinValue = getUnsignedRangeMin(S: AddRec->getStart()); |
6739 | if (!UnsignedMinValue.isZero()) |
6740 | ConservativeResult = ConservativeResult.intersectWith( |
6741 | CR: ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), Type: RangeType); |
6742 | } |
6743 | |
6744 | // If there's no signed wrap, and all the operands except initial value have |
6745 | // the same sign or zero, the value won't ever be: |
6746 | // 1: smaller than initial value if operands are non negative, |
6747 | // 2: bigger than initial value if operands are non positive. |
6748 | // For both cases, value can not cross signed min/max boundary. |
6749 | if (AddRec->hasNoSignedWrap()) { |
6750 | bool AllNonNeg = true; |
6751 | bool AllNonPos = true; |
6752 | for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { |
6753 | if (!isKnownNonNegative(S: AddRec->getOperand(i))) |
6754 | AllNonNeg = false; |
6755 | if (!isKnownNonPositive(S: AddRec->getOperand(i))) |
6756 | AllNonPos = false; |
6757 | } |
6758 | if (AllNonNeg) |
6759 | ConservativeResult = ConservativeResult.intersectWith( |
6760 | CR: ConstantRange::getNonEmpty(Lower: getSignedRangeMin(S: AddRec->getStart()), |
6761 | Upper: APInt::getSignedMinValue(numBits: BitWidth)), |
6762 | Type: RangeType); |
6763 | else if (AllNonPos) |
6764 | ConservativeResult = ConservativeResult.intersectWith( |
6765 | CR: ConstantRange::getNonEmpty(Lower: APInt::getSignedMinValue(numBits: BitWidth), |
6766 | Upper: getSignedRangeMax(S: AddRec->getStart()) + |
6767 | 1), |
6768 | Type: RangeType); |
6769 | } |
6770 | |
6771 | // TODO: non-affine addrec |
6772 | if (AddRec->isAffine()) { |
6773 | const SCEV *MaxBEScev = |
6774 | getConstantMaxBackedgeTakenCount(L: AddRec->getLoop()); |
6775 | if (!isa<SCEVCouldNotCompute>(Val: MaxBEScev)) { |
6776 | APInt MaxBECount = cast<SCEVConstant>(Val: MaxBEScev)->getAPInt(); |
6777 | |
6778 | // Adjust MaxBECount to the same bitwidth as AddRec. We can truncate if |
6779 | // MaxBECount's active bits are all <= AddRec's bit width. |
6780 | if (MaxBECount.getBitWidth() > BitWidth && |
6781 | MaxBECount.getActiveBits() <= BitWidth) |
6782 | MaxBECount = MaxBECount.trunc(width: BitWidth); |
6783 | else if (MaxBECount.getBitWidth() < BitWidth) |
6784 | MaxBECount = MaxBECount.zext(width: BitWidth); |
6785 | |
6786 | if (MaxBECount.getBitWidth() == BitWidth) { |
6787 | auto RangeFromAffine = getRangeForAffineAR( |
6788 | Start: AddRec->getStart(), Step: AddRec->getStepRecurrence(SE&: *this), MaxBECount); |
6789 | ConservativeResult = |
6790 | ConservativeResult.intersectWith(CR: RangeFromAffine, Type: RangeType); |
6791 | |
6792 | auto RangeFromFactoring = getRangeViaFactoring( |
6793 | Start: AddRec->getStart(), Step: AddRec->getStepRecurrence(SE&: *this), MaxBECount); |
6794 | ConservativeResult = |
6795 | ConservativeResult.intersectWith(CR: RangeFromFactoring, Type: RangeType); |
6796 | } |
6797 | } |
6798 | |
6799 | // Now try symbolic BE count and more powerful methods. |
6800 | if (UseExpensiveRangeSharpening) { |
6801 | const SCEV *SymbolicMaxBECount = |
6802 | getSymbolicMaxBackedgeTakenCount(L: AddRec->getLoop()); |
6803 | if (!isa<SCEVCouldNotCompute>(Val: SymbolicMaxBECount) && |
6804 | getTypeSizeInBits(Ty: MaxBEScev->getType()) <= BitWidth && |
6805 | AddRec->hasNoSelfWrap()) { |
6806 | auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( |
6807 | AddRec, MaxBECount: SymbolicMaxBECount, BitWidth, SignHint); |
6808 | ConservativeResult = |
6809 | ConservativeResult.intersectWith(CR: RangeFromAffineNew, Type: RangeType); |
6810 | } |
6811 | } |
6812 | } |
6813 | |
6814 | return setRange(S: AddRec, Hint: SignHint, CR: std::move(ConservativeResult)); |
6815 | } |
6816 | case scUMaxExpr: |
6817 | case scSMaxExpr: |
6818 | case scUMinExpr: |
6819 | case scSMinExpr: |
6820 | case scSequentialUMinExpr: { |
6821 | Intrinsic::ID ID; |
6822 | switch (S->getSCEVType()) { |
6823 | case scUMaxExpr: |
6824 | ID = Intrinsic::umax; |
6825 | break; |
6826 | case scSMaxExpr: |
6827 | ID = Intrinsic::smax; |
6828 | break; |
6829 | case scUMinExpr: |
6830 | case scSequentialUMinExpr: |
6831 | ID = Intrinsic::umin; |
6832 | break; |
6833 | case scSMinExpr: |
6834 | ID = Intrinsic::smin; |
6835 | break; |
6836 | default: |
6837 | llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr." ); |
6838 | } |
6839 | |
6840 | const auto *NAry = cast<SCEVNAryExpr>(Val: S); |
6841 | ConstantRange X = getRangeRef(S: NAry->getOperand(i: 0), SignHint, Depth: Depth + 1); |
6842 | for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) |
6843 | X = X.intrinsic( |
6844 | IntrinsicID: ID, Ops: {X, getRangeRef(S: NAry->getOperand(i), SignHint, Depth: Depth + 1)}); |
6845 | return setRange(S, Hint: SignHint, |
6846 | CR: ConservativeResult.intersectWith(CR: X, Type: RangeType)); |
6847 | } |
6848 | case scUnknown: { |
6849 | const SCEVUnknown *U = cast<SCEVUnknown>(Val: S); |
6850 | Value *V = U->getValue(); |
6851 | |
6852 | // Check if the IR explicitly contains !range metadata. |
6853 | std::optional<ConstantRange> MDRange = GetRangeFromMetadata(V); |
6854 | if (MDRange) |
6855 | ConservativeResult = |
6856 | ConservativeResult.intersectWith(CR: *MDRange, Type: RangeType); |
6857 | |
6858 | // Use facts about recurrences in the underlying IR. Note that add |
6859 | // recurrences are AddRecExprs and thus don't hit this path. This |
6860 | // primarily handles shift recurrences. |
6861 | auto CR = getRangeForUnknownRecurrence(U); |
6862 | ConservativeResult = ConservativeResult.intersectWith(CR); |
6863 | |
6864 | // See if ValueTracking can give us a useful range. |
6865 | const DataLayout &DL = getDataLayout(); |
6866 | KnownBits Known = computeKnownBits(V, DL, AC: &AC, CxtI: nullptr, DT: &DT); |
6867 | if (Known.getBitWidth() != BitWidth) |
6868 | Known = Known.zextOrTrunc(BitWidth); |
6869 | |
6870 | // ValueTracking may be able to compute a tighter result for the number of |
6871 | // sign bits than for the value of those sign bits. |
6872 | unsigned NS = ComputeNumSignBits(Op: V, DL, AC: &AC, CxtI: nullptr, DT: &DT); |
6873 | if (U->getType()->isPointerTy()) { |
6874 | // If the pointer size is larger than the index size type, this can cause |
6875 | // NS to be larger than BitWidth. So compensate for this. |
6876 | unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); |
6877 | int ptrIdxDiff = ptrSize - BitWidth; |
6878 | if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) |
6879 | NS -= ptrIdxDiff; |
6880 | } |
6881 | |
6882 | if (NS > 1) { |
6883 | // If we know any of the sign bits, we know all of the sign bits. |
6884 | if (!Known.Zero.getHiBits(numBits: NS).isZero()) |
6885 | Known.Zero.setHighBits(NS); |
6886 | if (!Known.One.getHiBits(numBits: NS).isZero()) |
6887 | Known.One.setHighBits(NS); |
6888 | } |
6889 | |
6890 | if (Known.getMinValue() != Known.getMaxValue() + 1) |
6891 | ConservativeResult = ConservativeResult.intersectWith( |
6892 | CR: ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), |
6893 | Type: RangeType); |
6894 | if (NS > 1) |
6895 | ConservativeResult = ConservativeResult.intersectWith( |
6896 | CR: ConstantRange(APInt::getSignedMinValue(numBits: BitWidth).ashr(ShiftAmt: NS - 1), |
6897 | APInt::getSignedMaxValue(numBits: BitWidth).ashr(ShiftAmt: NS - 1) + 1), |
6898 | Type: RangeType); |
6899 | |
6900 | if (U->getType()->isPointerTy() && SignHint == HINT_RANGE_UNSIGNED) { |
6901 | // Strengthen the range if the underlying IR value is a |
6902 | // global/alloca/heap allocation using the size of the object. |
6903 | bool CanBeNull, CanBeFreed; |
6904 | uint64_t DerefBytes = |
6905 | V->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); |
6906 | if (DerefBytes > 1 && isUIntN(N: BitWidth, x: DerefBytes)) { |
6907 | // The highest address the object can start is DerefBytes bytes before |
6908 | // the end (unsigned max value). If this value is not a multiple of the |
6909 | // alignment, the last possible start value is the next lowest multiple |
6910 | // of the alignment. Note: The computations below cannot overflow, |
6911 | // because if they would there's no possible start address for the |
6912 | // object. |
6913 | APInt MaxVal = |
6914 | APInt::getMaxValue(numBits: BitWidth) - APInt(BitWidth, DerefBytes); |
6915 | uint64_t Align = U->getValue()->getPointerAlignment(DL).value(); |
6916 | uint64_t Rem = MaxVal.urem(RHS: Align); |
6917 | MaxVal -= APInt(BitWidth, Rem); |
6918 | APInt MinVal = APInt::getZero(numBits: BitWidth); |
6919 | if (llvm::isKnownNonZero(V, Q: DL)) |
6920 | MinVal = Align; |
6921 | ConservativeResult = ConservativeResult.intersectWith( |
6922 | CR: ConstantRange::getNonEmpty(Lower: MinVal, Upper: MaxVal + 1), Type: RangeType); |
6923 | } |
6924 | } |
6925 | |
6926 | // A range of Phi is a subset of union of all ranges of its input. |
6927 | if (PHINode *Phi = dyn_cast<PHINode>(Val: V)) { |
6928 | // Make sure that we do not run over cycled Phis. |
6929 | if (PendingPhiRanges.insert(Ptr: Phi).second) { |
6930 | ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); |
6931 | |
6932 | for (const auto &Op : Phi->operands()) { |
6933 | auto OpRange = getRangeRef(S: getSCEV(V: Op), SignHint, Depth: Depth + 1); |
6934 | RangeFromOps = RangeFromOps.unionWith(CR: OpRange); |
6935 | // No point to continue if we already have a full set. |
6936 | if (RangeFromOps.isFullSet()) |
6937 | break; |
6938 | } |
6939 | ConservativeResult = |
6940 | ConservativeResult.intersectWith(CR: RangeFromOps, Type: RangeType); |
6941 | bool Erased = PendingPhiRanges.erase(Ptr: Phi); |
6942 | assert(Erased && "Failed to erase Phi properly?" ); |
6943 | (void)Erased; |
6944 | } |
6945 | } |
6946 | |
6947 | // vscale can't be equal to zero |
6948 | if (const auto *II = dyn_cast<IntrinsicInst>(Val: V)) |
6949 | if (II->getIntrinsicID() == Intrinsic::vscale) { |
6950 | ConstantRange Disallowed = APInt::getZero(numBits: BitWidth); |
6951 | ConservativeResult = ConservativeResult.difference(CR: Disallowed); |
6952 | } |
6953 | |
6954 | return setRange(S: U, Hint: SignHint, CR: std::move(ConservativeResult)); |
6955 | } |
6956 | case scCouldNotCompute: |
6957 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
6958 | } |
6959 | |
6960 | return setRange(S, Hint: SignHint, CR: std::move(ConservativeResult)); |
6961 | } |
6962 | |
6963 | // Given a StartRange, Step and MaxBECount for an expression compute a range of |
6964 | // values that the expression can take. Initially, the expression has a value |
6965 | // from StartRange and then is changed by Step up to MaxBECount times. Signed |
6966 | // argument defines if we treat Step as signed or unsigned. |
6967 | static ConstantRange getRangeForAffineARHelper(APInt Step, |
6968 | const ConstantRange &StartRange, |
6969 | const APInt &MaxBECount, |
6970 | bool Signed) { |
6971 | unsigned BitWidth = Step.getBitWidth(); |
6972 | assert(BitWidth == StartRange.getBitWidth() && |
6973 | BitWidth == MaxBECount.getBitWidth() && "mismatched bit widths" ); |
6974 | // If either Step or MaxBECount is 0, then the expression won't change, and we |
6975 | // just need to return the initial range. |
6976 | if (Step == 0 || MaxBECount == 0) |
6977 | return StartRange; |
6978 | |
6979 | // If we don't know anything about the initial value (i.e. StartRange is |
6980 | // FullRange), then we don't know anything about the final range either. |
6981 | // Return FullRange. |
6982 | if (StartRange.isFullSet()) |
6983 | return ConstantRange::getFull(BitWidth); |
6984 | |
6985 | // If Step is signed and negative, then we use its absolute value, but we also |
6986 | // note that we're moving in the opposite direction. |
6987 | bool Descending = Signed && Step.isNegative(); |
6988 | |
6989 | if (Signed) |
6990 | // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: |
6991 | // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. |
6992 | // This equations hold true due to the well-defined wrap-around behavior of |
6993 | // APInt. |
6994 | Step = Step.abs(); |
6995 | |
6996 | // Check if Offset is more than full span of BitWidth. If it is, the |
6997 | // expression is guaranteed to overflow. |
6998 | if (APInt::getMaxValue(numBits: StartRange.getBitWidth()).udiv(RHS: Step).ult(RHS: MaxBECount)) |
6999 | return ConstantRange::getFull(BitWidth); |
7000 | |
7001 | // Offset is by how much the expression can change. Checks above guarantee no |
7002 | // overflow here. |
7003 | APInt Offset = Step * MaxBECount; |
7004 | |
7005 | // Minimum value of the final range will match the minimal value of StartRange |
7006 | // if the expression is increasing and will be decreased by Offset otherwise. |
7007 | // Maximum value of the final range will match the maximal value of StartRange |
7008 | // if the expression is decreasing and will be increased by Offset otherwise. |
7009 | APInt StartLower = StartRange.getLower(); |
7010 | APInt StartUpper = StartRange.getUpper() - 1; |
7011 | APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) |
7012 | : (StartUpper + std::move(Offset)); |
7013 | |
7014 | // It's possible that the new minimum/maximum value will fall into the initial |
7015 | // range (due to wrap around). This means that the expression can take any |
7016 | // value in this bitwidth, and we have to return full range. |
7017 | if (StartRange.contains(Val: MovedBoundary)) |
7018 | return ConstantRange::getFull(BitWidth); |
7019 | |
7020 | APInt NewLower = |
7021 | Descending ? std::move(MovedBoundary) : std::move(StartLower); |
7022 | APInt NewUpper = |
7023 | Descending ? std::move(StartUpper) : std::move(MovedBoundary); |
7024 | NewUpper += 1; |
7025 | |
7026 | // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. |
7027 | return ConstantRange::getNonEmpty(Lower: std::move(NewLower), Upper: std::move(NewUpper)); |
7028 | } |
7029 | |
7030 | ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, |
7031 | const SCEV *Step, |
7032 | const APInt &MaxBECount) { |
7033 | assert(getTypeSizeInBits(Start->getType()) == |
7034 | getTypeSizeInBits(Step->getType()) && |
7035 | getTypeSizeInBits(Start->getType()) == MaxBECount.getBitWidth() && |
7036 | "mismatched bit widths" ); |
7037 | |
7038 | // First, consider step signed. |
7039 | ConstantRange StartSRange = getSignedRange(S: Start); |
7040 | ConstantRange StepSRange = getSignedRange(S: Step); |
7041 | |
7042 | // If Step can be both positive and negative, we need to find ranges for the |
7043 | // maximum absolute step values in both directions and union them. |
7044 | ConstantRange SR = getRangeForAffineARHelper( |
7045 | Step: StepSRange.getSignedMin(), StartRange: StartSRange, MaxBECount, /* Signed = */ true); |
7046 | SR = SR.unionWith(CR: getRangeForAffineARHelper(Step: StepSRange.getSignedMax(), |
7047 | StartRange: StartSRange, MaxBECount, |
7048 | /* Signed = */ true)); |
7049 | |
7050 | // Next, consider step unsigned. |
7051 | ConstantRange UR = getRangeForAffineARHelper( |
7052 | Step: getUnsignedRangeMax(S: Step), StartRange: getUnsignedRange(S: Start), MaxBECount, |
7053 | /* Signed = */ false); |
7054 | |
7055 | // Finally, intersect signed and unsigned ranges. |
7056 | return SR.intersectWith(CR: UR, Type: ConstantRange::Smallest); |
7057 | } |
7058 | |
7059 | ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( |
7060 | const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, |
7061 | ScalarEvolution::RangeSignHint SignHint) { |
7062 | assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n" ); |
7063 | assert(AddRec->hasNoSelfWrap() && |
7064 | "This only works for non-self-wrapping AddRecs!" ); |
7065 | const bool IsSigned = SignHint == HINT_RANGE_SIGNED; |
7066 | const SCEV *Step = AddRec->getStepRecurrence(SE&: *this); |
7067 | // Only deal with constant step to save compile time. |
7068 | if (!isa<SCEVConstant>(Val: Step)) |
7069 | return ConstantRange::getFull(BitWidth); |
7070 | // Let's make sure that we can prove that we do not self-wrap during |
7071 | // MaxBECount iterations. We need this because MaxBECount is a maximum |
7072 | // iteration count estimate, and we might infer nw from some exit for which we |
7073 | // do not know max exit count (or any other side reasoning). |
7074 | // TODO: Turn into assert at some point. |
7075 | if (getTypeSizeInBits(Ty: MaxBECount->getType()) > |
7076 | getTypeSizeInBits(Ty: AddRec->getType())) |
7077 | return ConstantRange::getFull(BitWidth); |
7078 | MaxBECount = getNoopOrZeroExtend(V: MaxBECount, Ty: AddRec->getType()); |
7079 | const SCEV *RangeWidth = getMinusOne(Ty: AddRec->getType()); |
7080 | const SCEV *StepAbs = getUMinExpr(LHS: Step, RHS: getNegativeSCEV(V: Step)); |
7081 | const SCEV *MaxItersWithoutWrap = getUDivExpr(LHS: RangeWidth, RHS: StepAbs); |
7082 | if (!isKnownPredicateViaConstantRanges(Pred: ICmpInst::ICMP_ULE, LHS: MaxBECount, |
7083 | RHS: MaxItersWithoutWrap)) |
7084 | return ConstantRange::getFull(BitWidth); |
7085 | |
7086 | ICmpInst::Predicate LEPred = |
7087 | IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; |
7088 | ICmpInst::Predicate GEPred = |
7089 | IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; |
7090 | const SCEV *End = AddRec->evaluateAtIteration(It: MaxBECount, SE&: *this); |
7091 | |
7092 | // We know that there is no self-wrap. Let's take Start and End values and |
7093 | // look at all intermediate values V1, V2, ..., Vn that IndVar takes during |
7094 | // the iteration. They either lie inside the range [Min(Start, End), |
7095 | // Max(Start, End)] or outside it: |
7096 | // |
7097 | // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; |
7098 | // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; |
7099 | // |
7100 | // No self wrap flag guarantees that the intermediate values cannot be BOTH |
7101 | // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that |
7102 | // knowledge, let's try to prove that we are dealing with Case 1. It is so if |
7103 | // Start <= End and step is positive, or Start >= End and step is negative. |
7104 | const SCEV *Start = applyLoopGuards(Expr: AddRec->getStart(), L: AddRec->getLoop()); |
7105 | ConstantRange StartRange = getRangeRef(S: Start, SignHint); |
7106 | ConstantRange EndRange = getRangeRef(S: End, SignHint); |
7107 | ConstantRange RangeBetween = StartRange.unionWith(CR: EndRange); |
7108 | // If they already cover full iteration space, we will know nothing useful |
7109 | // even if we prove what we want to prove. |
7110 | if (RangeBetween.isFullSet()) |
7111 | return RangeBetween; |
7112 | // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). |
7113 | bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() |
7114 | : RangeBetween.isWrappedSet(); |
7115 | if (IsWrappedSet) |
7116 | return ConstantRange::getFull(BitWidth); |
7117 | |
7118 | if (isKnownPositive(S: Step) && |
7119 | isKnownPredicateViaConstantRanges(Pred: LEPred, LHS: Start, RHS: End)) |
7120 | return RangeBetween; |
7121 | if (isKnownNegative(S: Step) && |
7122 | isKnownPredicateViaConstantRanges(Pred: GEPred, LHS: Start, RHS: End)) |
7123 | return RangeBetween; |
7124 | return ConstantRange::getFull(BitWidth); |
7125 | } |
7126 | |
7127 | ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, |
7128 | const SCEV *Step, |
7129 | const APInt &MaxBECount) { |
7130 | // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) |
7131 | // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) |
7132 | |
7133 | unsigned BitWidth = MaxBECount.getBitWidth(); |
7134 | assert(getTypeSizeInBits(Start->getType()) == BitWidth && |
7135 | getTypeSizeInBits(Step->getType()) == BitWidth && |
7136 | "mismatched bit widths" ); |
7137 | |
7138 | struct SelectPattern { |
7139 | Value *Condition = nullptr; |
7140 | APInt TrueValue; |
7141 | APInt FalseValue; |
7142 | |
7143 | explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, |
7144 | const SCEV *S) { |
7145 | std::optional<unsigned> CastOp; |
7146 | APInt Offset(BitWidth, 0); |
7147 | |
7148 | assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && |
7149 | "Should be!" ); |
7150 | |
7151 | // Peel off a constant offset. In the future we could consider being |
7152 | // smarter here and handle {Start+Step,+,Step} too. |
7153 | const APInt *Off; |
7154 | if (match(S, P: m_scev_Add(Op0: m_scev_APInt(C&: Off), Op1: m_SCEV(V&: S)))) |
7155 | Offset = *Off; |
7156 | |
7157 | // Peel off a cast operation |
7158 | if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(Val: S)) { |
7159 | CastOp = SCast->getSCEVType(); |
7160 | S = SCast->getOperand(); |
7161 | } |
7162 | |
7163 | using namespace llvm::PatternMatch; |
7164 | |
7165 | auto *SU = dyn_cast<SCEVUnknown>(Val: S); |
7166 | const APInt *TrueVal, *FalseVal; |
7167 | if (!SU || |
7168 | !match(V: SU->getValue(), P: m_Select(C: m_Value(V&: Condition), L: m_APInt(Res&: TrueVal), |
7169 | R: m_APInt(Res&: FalseVal)))) { |
7170 | Condition = nullptr; |
7171 | return; |
7172 | } |
7173 | |
7174 | TrueValue = *TrueVal; |
7175 | FalseValue = *FalseVal; |
7176 | |
7177 | // Re-apply the cast we peeled off earlier |
7178 | if (CastOp) |
7179 | switch (*CastOp) { |
7180 | default: |
7181 | llvm_unreachable("Unknown SCEV cast type!" ); |
7182 | |
7183 | case scTruncate: |
7184 | TrueValue = TrueValue.trunc(width: BitWidth); |
7185 | FalseValue = FalseValue.trunc(width: BitWidth); |
7186 | break; |
7187 | case scZeroExtend: |
7188 | TrueValue = TrueValue.zext(width: BitWidth); |
7189 | FalseValue = FalseValue.zext(width: BitWidth); |
7190 | break; |
7191 | case scSignExtend: |
7192 | TrueValue = TrueValue.sext(width: BitWidth); |
7193 | FalseValue = FalseValue.sext(width: BitWidth); |
7194 | break; |
7195 | } |
7196 | |
7197 | // Re-apply the constant offset we peeled off earlier |
7198 | TrueValue += Offset; |
7199 | FalseValue += Offset; |
7200 | } |
7201 | |
7202 | bool isRecognized() { return Condition != nullptr; } |
7203 | }; |
7204 | |
7205 | SelectPattern StartPattern(*this, BitWidth, Start); |
7206 | if (!StartPattern.isRecognized()) |
7207 | return ConstantRange::getFull(BitWidth); |
7208 | |
7209 | SelectPattern StepPattern(*this, BitWidth, Step); |
7210 | if (!StepPattern.isRecognized()) |
7211 | return ConstantRange::getFull(BitWidth); |
7212 | |
7213 | if (StartPattern.Condition != StepPattern.Condition) { |
7214 | // We don't handle this case today; but we could, by considering four |
7215 | // possibilities below instead of two. I'm not sure if there are cases where |
7216 | // that will help over what getRange already does, though. |
7217 | return ConstantRange::getFull(BitWidth); |
7218 | } |
7219 | |
7220 | // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to |
7221 | // construct arbitrary general SCEV expressions here. This function is called |
7222 | // from deep in the call stack, and calling getSCEV (on a sext instruction, |
7223 | // say) can end up caching a suboptimal value. |
7224 | |
7225 | // FIXME: without the explicit `this` receiver below, MSVC errors out with |
7226 | // C2352 and C2512 (otherwise it isn't needed). |
7227 | |
7228 | const SCEV *TrueStart = this->getConstant(Val: StartPattern.TrueValue); |
7229 | const SCEV *TrueStep = this->getConstant(Val: StepPattern.TrueValue); |
7230 | const SCEV *FalseStart = this->getConstant(Val: StartPattern.FalseValue); |
7231 | const SCEV *FalseStep = this->getConstant(Val: StepPattern.FalseValue); |
7232 | |
7233 | ConstantRange TrueRange = |
7234 | this->getRangeForAffineAR(Start: TrueStart, Step: TrueStep, MaxBECount); |
7235 | ConstantRange FalseRange = |
7236 | this->getRangeForAffineAR(Start: FalseStart, Step: FalseStep, MaxBECount); |
7237 | |
7238 | return TrueRange.unionWith(CR: FalseRange); |
7239 | } |
7240 | |
7241 | SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { |
7242 | if (isa<ConstantExpr>(Val: V)) return SCEV::FlagAnyWrap; |
7243 | const BinaryOperator *BinOp = cast<BinaryOperator>(Val: V); |
7244 | |
7245 | // Return early if there are no flags to propagate to the SCEV. |
7246 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; |
7247 | if (BinOp->hasNoUnsignedWrap()) |
7248 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNUW); |
7249 | if (BinOp->hasNoSignedWrap()) |
7250 | Flags = ScalarEvolution::setFlags(Flags, OnFlags: SCEV::FlagNSW); |
7251 | if (Flags == SCEV::FlagAnyWrap) |
7252 | return SCEV::FlagAnyWrap; |
7253 | |
7254 | return isSCEVExprNeverPoison(I: BinOp) ? Flags : SCEV::FlagAnyWrap; |
7255 | } |
7256 | |
7257 | const Instruction * |
7258 | ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { |
7259 | if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: S)) |
7260 | return &*AddRec->getLoop()->getHeader()->begin(); |
7261 | if (auto *U = dyn_cast<SCEVUnknown>(Val: S)) |
7262 | if (auto *I = dyn_cast<Instruction>(Val: U->getValue())) |
7263 | return I; |
7264 | return nullptr; |
7265 | } |
7266 | |
7267 | const Instruction * |
7268 | ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, |
7269 | bool &Precise) { |
7270 | Precise = true; |
7271 | // Do a bounded search of the def relation of the requested SCEVs. |
7272 | SmallSet<const SCEV *, 16> Visited; |
7273 | SmallVector<const SCEV *> Worklist; |
7274 | auto pushOp = [&](const SCEV *S) { |
7275 | if (!Visited.insert(Ptr: S).second) |
7276 | return; |
7277 | // Threshold of 30 here is arbitrary. |
7278 | if (Visited.size() > 30) { |
7279 | Precise = false; |
7280 | return; |
7281 | } |
7282 | Worklist.push_back(Elt: S); |
7283 | }; |
7284 | |
7285 | for (const auto *S : Ops) |
7286 | pushOp(S); |
7287 | |
7288 | const Instruction *Bound = nullptr; |
7289 | while (!Worklist.empty()) { |
7290 | auto *S = Worklist.pop_back_val(); |
7291 | if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { |
7292 | if (!Bound || DT.dominates(Def: Bound, User: DefI)) |
7293 | Bound = DefI; |
7294 | } else { |
7295 | for (const auto *Op : S->operands()) |
7296 | pushOp(Op); |
7297 | } |
7298 | } |
7299 | return Bound ? Bound : &*F.getEntryBlock().begin(); |
7300 | } |
7301 | |
7302 | const Instruction * |
7303 | ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { |
7304 | bool Discard; |
7305 | return getDefiningScopeBound(Ops, Precise&: Discard); |
7306 | } |
7307 | |
7308 | bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, |
7309 | const Instruction *B) { |
7310 | if (A->getParent() == B->getParent() && |
7311 | isGuaranteedToTransferExecutionToSuccessor(Begin: A->getIterator(), |
7312 | End: B->getIterator())) |
7313 | return true; |
7314 | |
7315 | auto *BLoop = LI.getLoopFor(BB: B->getParent()); |
7316 | if (BLoop && BLoop->getHeader() == B->getParent() && |
7317 | BLoop->getLoopPreheader() == A->getParent() && |
7318 | isGuaranteedToTransferExecutionToSuccessor(Begin: A->getIterator(), |
7319 | End: A->getParent()->end()) && |
7320 | isGuaranteedToTransferExecutionToSuccessor(Begin: B->getParent()->begin(), |
7321 | End: B->getIterator())) |
7322 | return true; |
7323 | return false; |
7324 | } |
7325 | |
7326 | bool ScalarEvolution::isGuaranteedNotToBePoison(const SCEV *Op) { |
7327 | SCEVPoisonCollector PC(/* LookThroughMaybePoisonBlocking */ true); |
7328 | visitAll(Root: Op, Visitor&: PC); |
7329 | return PC.MaybePoison.empty(); |
7330 | } |
7331 | |
7332 | bool ScalarEvolution::isGuaranteedNotToCauseUB(const SCEV *Op) { |
7333 | return !SCEVExprContains(Root: Op, Pred: [this](const SCEV *S) { |
7334 | const SCEV *Op1; |
7335 | bool M = match(S, P: m_scev_UDiv(Op0: m_SCEV(), Op1: m_SCEV(V&: Op1))); |
7336 | // The UDiv may be UB if the divisor is poison or zero. Unless the divisor |
7337 | // is a non-zero constant, we have to assume the UDiv may be UB. |
7338 | return M && (!isKnownNonZero(S: Op1) || !isGuaranteedNotToBePoison(Op: Op1)); |
7339 | }); |
7340 | } |
7341 | |
7342 | bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { |
7343 | // Only proceed if we can prove that I does not yield poison. |
7344 | if (!programUndefinedIfPoison(Inst: I)) |
7345 | return false; |
7346 | |
7347 | // At this point we know that if I is executed, then it does not wrap |
7348 | // according to at least one of NSW or NUW. If I is not executed, then we do |
7349 | // not know if the calculation that I represents would wrap. Multiple |
7350 | // instructions can map to the same SCEV. If we apply NSW or NUW from I to |
7351 | // the SCEV, we must guarantee no wrapping for that SCEV also when it is |
7352 | // derived from other instructions that map to the same SCEV. We cannot make |
7353 | // that guarantee for cases where I is not executed. So we need to find a |
7354 | // upper bound on the defining scope for the SCEV, and prove that I is |
7355 | // executed every time we enter that scope. When the bounding scope is a |
7356 | // loop (the common case), this is equivalent to proving I executes on every |
7357 | // iteration of that loop. |
7358 | SmallVector<const SCEV *> SCEVOps; |
7359 | for (const Use &Op : I->operands()) { |
7360 | // I could be an extractvalue from a call to an overflow intrinsic. |
7361 | // TODO: We can do better here in some cases. |
7362 | if (isSCEVable(Ty: Op->getType())) |
7363 | SCEVOps.push_back(Elt: getSCEV(V: Op)); |
7364 | } |
7365 | auto *DefI = getDefiningScopeBound(Ops: SCEVOps); |
7366 | return isGuaranteedToTransferExecutionTo(A: DefI, B: I); |
7367 | } |
7368 | |
7369 | bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { |
7370 | // If we know that \c I can never be poison period, then that's enough. |
7371 | if (isSCEVExprNeverPoison(I)) |
7372 | return true; |
7373 | |
7374 | // If the loop only has one exit, then we know that, if the loop is entered, |
7375 | // any instruction dominating that exit will be executed. If any such |
7376 | // instruction would result in UB, the addrec cannot be poison. |
7377 | // |
7378 | // This is basically the same reasoning as in isSCEVExprNeverPoison(), but |
7379 | // also handles uses outside the loop header (they just need to dominate the |
7380 | // single exit). |
7381 | |
7382 | auto *ExitingBB = L->getExitingBlock(); |
7383 | if (!ExitingBB || !loopHasNoAbnormalExits(L)) |
7384 | return false; |
7385 | |
7386 | SmallPtrSet<const Value *, 16> KnownPoison; |
7387 | SmallVector<const Instruction *, 8> Worklist; |
7388 | |
7389 | // We start by assuming \c I, the post-inc add recurrence, is poison. Only |
7390 | // things that are known to be poison under that assumption go on the |
7391 | // Worklist. |
7392 | KnownPoison.insert(Ptr: I); |
7393 | Worklist.push_back(Elt: I); |
7394 | |
7395 | while (!Worklist.empty()) { |
7396 | const Instruction *Poison = Worklist.pop_back_val(); |
7397 | |
7398 | for (const Use &U : Poison->uses()) { |
7399 | const Instruction *PoisonUser = cast<Instruction>(Val: U.getUser()); |
7400 | if (mustTriggerUB(I: PoisonUser, KnownPoison) && |
7401 | DT.dominates(A: PoisonUser->getParent(), B: ExitingBB)) |
7402 | return true; |
7403 | |
7404 | if (propagatesPoison(PoisonOp: U) && L->contains(Inst: PoisonUser)) |
7405 | if (KnownPoison.insert(Ptr: PoisonUser).second) |
7406 | Worklist.push_back(Elt: PoisonUser); |
7407 | } |
7408 | } |
7409 | |
7410 | return false; |
7411 | } |
7412 | |
7413 | ScalarEvolution::LoopProperties |
7414 | ScalarEvolution::getLoopProperties(const Loop *L) { |
7415 | using LoopProperties = ScalarEvolution::LoopProperties; |
7416 | |
7417 | auto Itr = LoopPropertiesCache.find(Val: L); |
7418 | if (Itr == LoopPropertiesCache.end()) { |
7419 | auto HasSideEffects = [](Instruction *I) { |
7420 | if (auto *SI = dyn_cast<StoreInst>(Val: I)) |
7421 | return !SI->isSimple(); |
7422 | |
7423 | return I->mayThrow() || I->mayWriteToMemory(); |
7424 | }; |
7425 | |
7426 | LoopProperties LP = {/* HasNoAbnormalExits */ true, |
7427 | /*HasNoSideEffects*/ true}; |
7428 | |
7429 | for (auto *BB : L->getBlocks()) |
7430 | for (auto &I : *BB) { |
7431 | if (!isGuaranteedToTransferExecutionToSuccessor(I: &I)) |
7432 | LP.HasNoAbnormalExits = false; |
7433 | if (HasSideEffects(&I)) |
7434 | LP.HasNoSideEffects = false; |
7435 | if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) |
7436 | break; // We're already as pessimistic as we can get. |
7437 | } |
7438 | |
7439 | auto InsertPair = LoopPropertiesCache.insert(KV: {L, LP}); |
7440 | assert(InsertPair.second && "We just checked!" ); |
7441 | Itr = InsertPair.first; |
7442 | } |
7443 | |
7444 | return Itr->second; |
7445 | } |
7446 | |
7447 | bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { |
7448 | // A mustprogress loop without side effects must be finite. |
7449 | // TODO: The check used here is very conservative. It's only *specific* |
7450 | // side effects which are well defined in infinite loops. |
7451 | return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); |
7452 | } |
7453 | |
7454 | const SCEV *ScalarEvolution::createSCEVIter(Value *V) { |
7455 | // Worklist item with a Value and a bool indicating whether all operands have |
7456 | // been visited already. |
7457 | using PointerTy = PointerIntPair<Value *, 1, bool>; |
7458 | SmallVector<PointerTy> Stack; |
7459 | |
7460 | Stack.emplace_back(Args&: V, Args: true); |
7461 | Stack.emplace_back(Args&: V, Args: false); |
7462 | while (!Stack.empty()) { |
7463 | auto E = Stack.pop_back_val(); |
7464 | Value *CurV = E.getPointer(); |
7465 | |
7466 | if (getExistingSCEV(V: CurV)) |
7467 | continue; |
7468 | |
7469 | SmallVector<Value *> Ops; |
7470 | const SCEV *CreatedSCEV = nullptr; |
7471 | // If all operands have been visited already, create the SCEV. |
7472 | if (E.getInt()) { |
7473 | CreatedSCEV = createSCEV(V: CurV); |
7474 | } else { |
7475 | // Otherwise get the operands we need to create SCEV's for before creating |
7476 | // the SCEV for CurV. If the SCEV for CurV can be constructed trivially, |
7477 | // just use it. |
7478 | CreatedSCEV = getOperandsToCreate(V: CurV, Ops); |
7479 | } |
7480 | |
7481 | if (CreatedSCEV) { |
7482 | insertValueToMap(V: CurV, S: CreatedSCEV); |
7483 | } else { |
7484 | // Queue CurV for SCEV creation, followed by its's operands which need to |
7485 | // be constructed first. |
7486 | Stack.emplace_back(Args&: CurV, Args: true); |
7487 | for (Value *Op : Ops) |
7488 | Stack.emplace_back(Args&: Op, Args: false); |
7489 | } |
7490 | } |
7491 | |
7492 | return getExistingSCEV(V); |
7493 | } |
7494 | |
7495 | const SCEV * |
7496 | ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) { |
7497 | if (!isSCEVable(Ty: V->getType())) |
7498 | return getUnknown(V); |
7499 | |
7500 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) { |
7501 | // Don't attempt to analyze instructions in blocks that aren't |
7502 | // reachable. Such instructions don't matter, and they aren't required |
7503 | // to obey basic rules for definitions dominating uses which this |
7504 | // analysis depends on. |
7505 | if (!DT.isReachableFromEntry(A: I->getParent())) |
7506 | return getUnknown(V: PoisonValue::get(T: V->getType())); |
7507 | } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) |
7508 | return getConstant(V: CI); |
7509 | else if (isa<GlobalAlias>(Val: V)) |
7510 | return getUnknown(V); |
7511 | else if (!isa<ConstantExpr>(Val: V)) |
7512 | return getUnknown(V); |
7513 | |
7514 | Operator *U = cast<Operator>(Val: V); |
7515 | if (auto BO = |
7516 | MatchBinaryOp(V: U, DL: getDataLayout(), AC, DT, CxtI: dyn_cast<Instruction>(Val: V))) { |
7517 | bool IsConstArg = isa<ConstantInt>(Val: BO->RHS); |
7518 | switch (BO->Opcode) { |
7519 | case Instruction::Add: |
7520 | case Instruction::Mul: { |
7521 | // For additions and multiplications, traverse add/mul chains for which we |
7522 | // can potentially create a single SCEV, to reduce the number of |
7523 | // get{Add,Mul}Expr calls. |
7524 | do { |
7525 | if (BO->Op) { |
7526 | if (BO->Op != V && getExistingSCEV(V: BO->Op)) { |
7527 | Ops.push_back(Elt: BO->Op); |
7528 | break; |
7529 | } |
7530 | } |
7531 | Ops.push_back(Elt: BO->RHS); |
7532 | auto NewBO = MatchBinaryOp(V: BO->LHS, DL: getDataLayout(), AC, DT, |
7533 | CxtI: dyn_cast<Instruction>(Val: V)); |
7534 | if (!NewBO || |
7535 | (BO->Opcode == Instruction::Add && |
7536 | (NewBO->Opcode != Instruction::Add && |
7537 | NewBO->Opcode != Instruction::Sub)) || |
7538 | (BO->Opcode == Instruction::Mul && |
7539 | NewBO->Opcode != Instruction::Mul)) { |
7540 | Ops.push_back(Elt: BO->LHS); |
7541 | break; |
7542 | } |
7543 | // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions |
7544 | // requires a SCEV for the LHS. |
7545 | if (BO->Op && (BO->IsNSW || BO->IsNUW)) { |
7546 | auto *I = dyn_cast<Instruction>(Val: BO->Op); |
7547 | if (I && programUndefinedIfPoison(Inst: I)) { |
7548 | Ops.push_back(Elt: BO->LHS); |
7549 | break; |
7550 | } |
7551 | } |
7552 | BO = NewBO; |
7553 | } while (true); |
7554 | return nullptr; |
7555 | } |
7556 | case Instruction::Sub: |
7557 | case Instruction::UDiv: |
7558 | case Instruction::URem: |
7559 | break; |
7560 | case Instruction::AShr: |
7561 | case Instruction::Shl: |
7562 | case Instruction::Xor: |
7563 | if (!IsConstArg) |
7564 | return nullptr; |
7565 | break; |
7566 | case Instruction::And: |
7567 | case Instruction::Or: |
7568 | if (!IsConstArg && !BO->LHS->getType()->isIntegerTy(Bitwidth: 1)) |
7569 | return nullptr; |
7570 | break; |
7571 | case Instruction::LShr: |
7572 | return getUnknown(V); |
7573 | default: |
7574 | llvm_unreachable("Unhandled binop" ); |
7575 | break; |
7576 | } |
7577 | |
7578 | Ops.push_back(Elt: BO->LHS); |
7579 | Ops.push_back(Elt: BO->RHS); |
7580 | return nullptr; |
7581 | } |
7582 | |
7583 | switch (U->getOpcode()) { |
7584 | case Instruction::Trunc: |
7585 | case Instruction::ZExt: |
7586 | case Instruction::SExt: |
7587 | case Instruction::PtrToInt: |
7588 | Ops.push_back(Elt: U->getOperand(i: 0)); |
7589 | return nullptr; |
7590 | |
7591 | case Instruction::BitCast: |
7592 | if (isSCEVable(Ty: U->getType()) && isSCEVable(Ty: U->getOperand(i: 0)->getType())) { |
7593 | Ops.push_back(Elt: U->getOperand(i: 0)); |
7594 | return nullptr; |
7595 | } |
7596 | return getUnknown(V); |
7597 | |
7598 | case Instruction::SDiv: |
7599 | case Instruction::SRem: |
7600 | Ops.push_back(Elt: U->getOperand(i: 0)); |
7601 | Ops.push_back(Elt: U->getOperand(i: 1)); |
7602 | return nullptr; |
7603 | |
7604 | case Instruction::GetElementPtr: |
7605 | assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() && |
7606 | "GEP source element type must be sized" ); |
7607 | llvm::append_range(C&: Ops, R: U->operands()); |
7608 | return nullptr; |
7609 | |
7610 | case Instruction::IntToPtr: |
7611 | return getUnknown(V); |
7612 | |
7613 | case Instruction::PHI: |
7614 | // Keep constructing SCEVs' for phis recursively for now. |
7615 | return nullptr; |
7616 | |
7617 | case Instruction::Select: { |
7618 | // Check if U is a select that can be simplified to a SCEVUnknown. |
7619 | auto CanSimplifyToUnknown = [this, U]() { |
7620 | if (U->getType()->isIntegerTy(Bitwidth: 1) || isa<ConstantInt>(Val: U->getOperand(i: 0))) |
7621 | return false; |
7622 | |
7623 | auto *ICI = dyn_cast<ICmpInst>(Val: U->getOperand(i: 0)); |
7624 | if (!ICI) |
7625 | return false; |
7626 | Value *LHS = ICI->getOperand(i_nocapture: 0); |
7627 | Value *RHS = ICI->getOperand(i_nocapture: 1); |
7628 | if (ICI->getPredicate() == CmpInst::ICMP_EQ || |
7629 | ICI->getPredicate() == CmpInst::ICMP_NE) { |
7630 | if (!(isa<ConstantInt>(Val: RHS) && cast<ConstantInt>(Val: RHS)->isZero())) |
7631 | return true; |
7632 | } else if (getTypeSizeInBits(Ty: LHS->getType()) > |
7633 | getTypeSizeInBits(Ty: U->getType())) |
7634 | return true; |
7635 | return false; |
7636 | }; |
7637 | if (CanSimplifyToUnknown()) |
7638 | return getUnknown(V: U); |
7639 | |
7640 | llvm::append_range(C&: Ops, R: U->operands()); |
7641 | return nullptr; |
7642 | break; |
7643 | } |
7644 | case Instruction::Call: |
7645 | case Instruction::Invoke: |
7646 | if (Value *RV = cast<CallBase>(Val: U)->getReturnedArgOperand()) { |
7647 | Ops.push_back(Elt: RV); |
7648 | return nullptr; |
7649 | } |
7650 | |
7651 | if (auto *II = dyn_cast<IntrinsicInst>(Val: U)) { |
7652 | switch (II->getIntrinsicID()) { |
7653 | case Intrinsic::abs: |
7654 | Ops.push_back(Elt: II->getArgOperand(i: 0)); |
7655 | return nullptr; |
7656 | case Intrinsic::umax: |
7657 | case Intrinsic::umin: |
7658 | case Intrinsic::smax: |
7659 | case Intrinsic::smin: |
7660 | case Intrinsic::usub_sat: |
7661 | case Intrinsic::uadd_sat: |
7662 | Ops.push_back(Elt: II->getArgOperand(i: 0)); |
7663 | Ops.push_back(Elt: II->getArgOperand(i: 1)); |
7664 | return nullptr; |
7665 | case Intrinsic::start_loop_iterations: |
7666 | case Intrinsic::annotation: |
7667 | case Intrinsic::ptr_annotation: |
7668 | Ops.push_back(Elt: II->getArgOperand(i: 0)); |
7669 | return nullptr; |
7670 | default: |
7671 | break; |
7672 | } |
7673 | } |
7674 | break; |
7675 | } |
7676 | |
7677 | return nullptr; |
7678 | } |
7679 | |
7680 | const SCEV *ScalarEvolution::createSCEV(Value *V) { |
7681 | if (!isSCEVable(Ty: V->getType())) |
7682 | return getUnknown(V); |
7683 | |
7684 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) { |
7685 | // Don't attempt to analyze instructions in blocks that aren't |
7686 | // reachable. Such instructions don't matter, and they aren't required |
7687 | // to obey basic rules for definitions dominating uses which this |
7688 | // analysis depends on. |
7689 | if (!DT.isReachableFromEntry(A: I->getParent())) |
7690 | return getUnknown(V: PoisonValue::get(T: V->getType())); |
7691 | } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) |
7692 | return getConstant(V: CI); |
7693 | else if (isa<GlobalAlias>(Val: V)) |
7694 | return getUnknown(V); |
7695 | else if (!isa<ConstantExpr>(Val: V)) |
7696 | return getUnknown(V); |
7697 | |
7698 | const SCEV *LHS; |
7699 | const SCEV *RHS; |
7700 | |
7701 | Operator *U = cast<Operator>(Val: V); |
7702 | if (auto BO = |
7703 | MatchBinaryOp(V: U, DL: getDataLayout(), AC, DT, CxtI: dyn_cast<Instruction>(Val: V))) { |
7704 | switch (BO->Opcode) { |
7705 | case Instruction::Add: { |
7706 | // The simple thing to do would be to just call getSCEV on both operands |
7707 | // and call getAddExpr with the result. However if we're looking at a |
7708 | // bunch of things all added together, this can be quite inefficient, |
7709 | // because it leads to N-1 getAddExpr calls for N ultimate operands. |
7710 | // Instead, gather up all the operands and make a single getAddExpr call. |
7711 | // LLVM IR canonical form means we need only traverse the left operands. |
7712 | SmallVector<const SCEV *, 4> AddOps; |
7713 | do { |
7714 | if (BO->Op) { |
7715 | if (auto *OpSCEV = getExistingSCEV(V: BO->Op)) { |
7716 | AddOps.push_back(Elt: OpSCEV); |
7717 | break; |
7718 | } |
7719 | |
7720 | // If a NUW or NSW flag can be applied to the SCEV for this |
7721 | // addition, then compute the SCEV for this addition by itself |
7722 | // with a separate call to getAddExpr. We need to do that |
7723 | // instead of pushing the operands of the addition onto AddOps, |
7724 | // since the flags are only known to apply to this particular |
7725 | // addition - they may not apply to other additions that can be |
7726 | // formed with operands from AddOps. |
7727 | const SCEV *RHS = getSCEV(V: BO->RHS); |
7728 | SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(V: BO->Op); |
7729 | if (Flags != SCEV::FlagAnyWrap) { |
7730 | const SCEV *LHS = getSCEV(V: BO->LHS); |
7731 | if (BO->Opcode == Instruction::Sub) |
7732 | AddOps.push_back(Elt: getMinusSCEV(LHS, RHS, Flags)); |
7733 | else |
7734 | AddOps.push_back(Elt: getAddExpr(LHS, RHS, Flags)); |
7735 | break; |
7736 | } |
7737 | } |
7738 | |
7739 | if (BO->Opcode == Instruction::Sub) |
7740 | AddOps.push_back(Elt: getNegativeSCEV(V: getSCEV(V: BO->RHS))); |
7741 | else |
7742 | AddOps.push_back(Elt: getSCEV(V: BO->RHS)); |
7743 | |
7744 | auto NewBO = MatchBinaryOp(V: BO->LHS, DL: getDataLayout(), AC, DT, |
7745 | CxtI: dyn_cast<Instruction>(Val: V)); |
7746 | if (!NewBO || (NewBO->Opcode != Instruction::Add && |
7747 | NewBO->Opcode != Instruction::Sub)) { |
7748 | AddOps.push_back(Elt: getSCEV(V: BO->LHS)); |
7749 | break; |
7750 | } |
7751 | BO = NewBO; |
7752 | } while (true); |
7753 | |
7754 | return getAddExpr(Ops&: AddOps); |
7755 | } |
7756 | |
7757 | case Instruction::Mul: { |
7758 | SmallVector<const SCEV *, 4> MulOps; |
7759 | do { |
7760 | if (BO->Op) { |
7761 | if (auto *OpSCEV = getExistingSCEV(V: BO->Op)) { |
7762 | MulOps.push_back(Elt: OpSCEV); |
7763 | break; |
7764 | } |
7765 | |
7766 | SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(V: BO->Op); |
7767 | if (Flags != SCEV::FlagAnyWrap) { |
7768 | LHS = getSCEV(V: BO->LHS); |
7769 | RHS = getSCEV(V: BO->RHS); |
7770 | MulOps.push_back(Elt: getMulExpr(LHS, RHS, Flags)); |
7771 | break; |
7772 | } |
7773 | } |
7774 | |
7775 | MulOps.push_back(Elt: getSCEV(V: BO->RHS)); |
7776 | auto NewBO = MatchBinaryOp(V: BO->LHS, DL: getDataLayout(), AC, DT, |
7777 | CxtI: dyn_cast<Instruction>(Val: V)); |
7778 | if (!NewBO || NewBO->Opcode != Instruction::Mul) { |
7779 | MulOps.push_back(Elt: getSCEV(V: BO->LHS)); |
7780 | break; |
7781 | } |
7782 | BO = NewBO; |
7783 | } while (true); |
7784 | |
7785 | return getMulExpr(Ops&: MulOps); |
7786 | } |
7787 | case Instruction::UDiv: |
7788 | LHS = getSCEV(V: BO->LHS); |
7789 | RHS = getSCEV(V: BO->RHS); |
7790 | return getUDivExpr(LHS, RHS); |
7791 | case Instruction::URem: |
7792 | LHS = getSCEV(V: BO->LHS); |
7793 | RHS = getSCEV(V: BO->RHS); |
7794 | return getURemExpr(LHS, RHS); |
7795 | case Instruction::Sub: { |
7796 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; |
7797 | if (BO->Op) |
7798 | Flags = getNoWrapFlagsFromUB(V: BO->Op); |
7799 | LHS = getSCEV(V: BO->LHS); |
7800 | RHS = getSCEV(V: BO->RHS); |
7801 | return getMinusSCEV(LHS, RHS, Flags); |
7802 | } |
7803 | case Instruction::And: |
7804 | // For an expression like x&255 that merely masks off the high bits, |
7805 | // use zext(trunc(x)) as the SCEV expression. |
7806 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: BO->RHS)) { |
7807 | if (CI->isZero()) |
7808 | return getSCEV(V: BO->RHS); |
7809 | if (CI->isMinusOne()) |
7810 | return getSCEV(V: BO->LHS); |
7811 | const APInt &A = CI->getValue(); |
7812 | |
7813 | // Instcombine's ShrinkDemandedConstant may strip bits out of |
7814 | // constants, obscuring what would otherwise be a low-bits mask. |
7815 | // Use computeKnownBits to compute what ShrinkDemandedConstant |
7816 | // knew about to reconstruct a low-bits mask value. |
7817 | unsigned LZ = A.countl_zero(); |
7818 | unsigned TZ = A.countr_zero(); |
7819 | unsigned BitWidth = A.getBitWidth(); |
7820 | KnownBits Known(BitWidth); |
7821 | computeKnownBits(V: BO->LHS, Known, DL: getDataLayout(), AC: &AC, CxtI: nullptr, DT: &DT); |
7822 | |
7823 | APInt EffectiveMask = |
7824 | APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: BitWidth - LZ - TZ).shl(shiftAmt: TZ); |
7825 | if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { |
7826 | const SCEV *MulCount = getConstant(Val: APInt::getOneBitSet(numBits: BitWidth, BitNo: TZ)); |
7827 | const SCEV *LHS = getSCEV(V: BO->LHS); |
7828 | const SCEV *ShiftedLHS = nullptr; |
7829 | if (auto *LHSMul = dyn_cast<SCEVMulExpr>(Val: LHS)) { |
7830 | if (auto *OpC = dyn_cast<SCEVConstant>(Val: LHSMul->getOperand(i: 0))) { |
7831 | // For an expression like (x * 8) & 8, simplify the multiply. |
7832 | unsigned MulZeros = OpC->getAPInt().countr_zero(); |
7833 | unsigned GCD = std::min(a: MulZeros, b: TZ); |
7834 | APInt DivAmt = APInt::getOneBitSet(numBits: BitWidth, BitNo: TZ - GCD); |
7835 | SmallVector<const SCEV*, 4> MulOps; |
7836 | MulOps.push_back(Elt: getConstant(Val: OpC->getAPInt().ashr(ShiftAmt: GCD))); |
7837 | append_range(C&: MulOps, R: LHSMul->operands().drop_front()); |
7838 | auto *NewMul = getMulExpr(Ops&: MulOps, OrigFlags: LHSMul->getNoWrapFlags()); |
7839 | ShiftedLHS = getUDivExpr(LHS: NewMul, RHS: getConstant(Val: DivAmt)); |
7840 | } |
7841 | } |
7842 | if (!ShiftedLHS) |
7843 | ShiftedLHS = getUDivExpr(LHS, RHS: MulCount); |
7844 | return getMulExpr( |
7845 | LHS: getZeroExtendExpr( |
7846 | Op: getTruncateExpr(Op: ShiftedLHS, |
7847 | Ty: IntegerType::get(C&: getContext(), NumBits: BitWidth - LZ - TZ)), |
7848 | Ty: BO->LHS->getType()), |
7849 | RHS: MulCount); |
7850 | } |
7851 | } |
7852 | // Binary `and` is a bit-wise `umin`. |
7853 | if (BO->LHS->getType()->isIntegerTy(Bitwidth: 1)) { |
7854 | LHS = getSCEV(V: BO->LHS); |
7855 | RHS = getSCEV(V: BO->RHS); |
7856 | return getUMinExpr(LHS, RHS); |
7857 | } |
7858 | break; |
7859 | |
7860 | case Instruction::Or: |
7861 | // Binary `or` is a bit-wise `umax`. |
7862 | if (BO->LHS->getType()->isIntegerTy(Bitwidth: 1)) { |
7863 | LHS = getSCEV(V: BO->LHS); |
7864 | RHS = getSCEV(V: BO->RHS); |
7865 | return getUMaxExpr(LHS, RHS); |
7866 | } |
7867 | break; |
7868 | |
7869 | case Instruction::Xor: |
7870 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: BO->RHS)) { |
7871 | // If the RHS of xor is -1, then this is a not operation. |
7872 | if (CI->isMinusOne()) |
7873 | return getNotSCEV(V: getSCEV(V: BO->LHS)); |
7874 | |
7875 | // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. |
7876 | // This is a variant of the check for xor with -1, and it handles |
7877 | // the case where instcombine has trimmed non-demanded bits out |
7878 | // of an xor with -1. |
7879 | if (auto *LBO = dyn_cast<BinaryOperator>(Val: BO->LHS)) |
7880 | if (ConstantInt *LCI = dyn_cast<ConstantInt>(Val: LBO->getOperand(i_nocapture: 1))) |
7881 | if (LBO->getOpcode() == Instruction::And && |
7882 | LCI->getValue() == CI->getValue()) |
7883 | if (const SCEVZeroExtendExpr *Z = |
7884 | dyn_cast<SCEVZeroExtendExpr>(Val: getSCEV(V: BO->LHS))) { |
7885 | Type *UTy = BO->LHS->getType(); |
7886 | const SCEV *Z0 = Z->getOperand(); |
7887 | Type *Z0Ty = Z0->getType(); |
7888 | unsigned Z0TySize = getTypeSizeInBits(Ty: Z0Ty); |
7889 | |
7890 | // If C is a low-bits mask, the zero extend is serving to |
7891 | // mask off the high bits. Complement the operand and |
7892 | // re-apply the zext. |
7893 | if (CI->getValue().isMask(numBits: Z0TySize)) |
7894 | return getZeroExtendExpr(Op: getNotSCEV(V: Z0), Ty: UTy); |
7895 | |
7896 | // If C is a single bit, it may be in the sign-bit position |
7897 | // before the zero-extend. In this case, represent the xor |
7898 | // using an add, which is equivalent, and re-apply the zext. |
7899 | APInt Trunc = CI->getValue().trunc(width: Z0TySize); |
7900 | if (Trunc.zext(width: getTypeSizeInBits(Ty: UTy)) == CI->getValue() && |
7901 | Trunc.isSignMask()) |
7902 | return getZeroExtendExpr(Op: getAddExpr(LHS: Z0, RHS: getConstant(Val: Trunc)), |
7903 | Ty: UTy); |
7904 | } |
7905 | } |
7906 | break; |
7907 | |
7908 | case Instruction::Shl: |
7909 | // Turn shift left of a constant amount into a multiply. |
7910 | if (ConstantInt *SA = dyn_cast<ConstantInt>(Val: BO->RHS)) { |
7911 | uint32_t BitWidth = cast<IntegerType>(Val: SA->getType())->getBitWidth(); |
7912 | |
7913 | // If the shift count is not less than the bitwidth, the result of |
7914 | // the shift is undefined. Don't try to analyze it, because the |
7915 | // resolution chosen here may differ from the resolution chosen in |
7916 | // other parts of the compiler. |
7917 | if (SA->getValue().uge(RHS: BitWidth)) |
7918 | break; |
7919 | |
7920 | // We can safely preserve the nuw flag in all cases. It's also safe to |
7921 | // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation |
7922 | // requires special handling. It can be preserved as long as we're not |
7923 | // left shifting by bitwidth - 1. |
7924 | auto Flags = SCEV::FlagAnyWrap; |
7925 | if (BO->Op) { |
7926 | auto MulFlags = getNoWrapFlagsFromUB(V: BO->Op); |
7927 | if ((MulFlags & SCEV::FlagNSW) && |
7928 | ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(RHS: BitWidth - 1))) |
7929 | Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); |
7930 | if (MulFlags & SCEV::FlagNUW) |
7931 | Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); |
7932 | } |
7933 | |
7934 | ConstantInt *X = ConstantInt::get( |
7935 | Context&: getContext(), V: APInt::getOneBitSet(numBits: BitWidth, BitNo: SA->getZExtValue())); |
7936 | return getMulExpr(LHS: getSCEV(V: BO->LHS), RHS: getConstant(V: X), Flags); |
7937 | } |
7938 | break; |
7939 | |
7940 | case Instruction::AShr: |
7941 | // AShr X, C, where C is a constant. |
7942 | ConstantInt *CI = dyn_cast<ConstantInt>(Val: BO->RHS); |
7943 | if (!CI) |
7944 | break; |
7945 | |
7946 | Type *OuterTy = BO->LHS->getType(); |
7947 | uint64_t BitWidth = getTypeSizeInBits(Ty: OuterTy); |
7948 | // If the shift count is not less than the bitwidth, the result of |
7949 | // the shift is undefined. Don't try to analyze it, because the |
7950 | // resolution chosen here may differ from the resolution chosen in |
7951 | // other parts of the compiler. |
7952 | if (CI->getValue().uge(RHS: BitWidth)) |
7953 | break; |
7954 | |
7955 | if (CI->isZero()) |
7956 | return getSCEV(V: BO->LHS); // shift by zero --> noop |
7957 | |
7958 | uint64_t AShrAmt = CI->getZExtValue(); |
7959 | Type *TruncTy = IntegerType::get(C&: getContext(), NumBits: BitWidth - AShrAmt); |
7960 | |
7961 | Operator *L = dyn_cast<Operator>(Val: BO->LHS); |
7962 | const SCEV *AddTruncateExpr = nullptr; |
7963 | ConstantInt *ShlAmtCI = nullptr; |
7964 | const SCEV *AddConstant = nullptr; |
7965 | |
7966 | if (L && L->getOpcode() == Instruction::Add) { |
7967 | // X = Shl A, n |
7968 | // Y = Add X, c |
7969 | // Z = AShr Y, m |
7970 | // n, c and m are constants. |
7971 | |
7972 | Operator *LShift = dyn_cast<Operator>(Val: L->getOperand(i: 0)); |
7973 | ConstantInt *AddOperandCI = dyn_cast<ConstantInt>(Val: L->getOperand(i: 1)); |
7974 | if (LShift && LShift->getOpcode() == Instruction::Shl) { |
7975 | if (AddOperandCI) { |
7976 | const SCEV *ShlOp0SCEV = getSCEV(V: LShift->getOperand(i: 0)); |
7977 | ShlAmtCI = dyn_cast<ConstantInt>(Val: LShift->getOperand(i: 1)); |
7978 | // since we truncate to TruncTy, the AddConstant should be of the |
7979 | // same type, so create a new Constant with type same as TruncTy. |
7980 | // Also, the Add constant should be shifted right by AShr amount. |
7981 | APInt AddOperand = AddOperandCI->getValue().ashr(ShiftAmt: AShrAmt); |
7982 | AddConstant = getConstant(Val: AddOperand.trunc(width: BitWidth - AShrAmt)); |
7983 | // we model the expression as sext(add(trunc(A), c << n)), since the |
7984 | // sext(trunc) part is already handled below, we create a |
7985 | // AddExpr(TruncExp) which will be used later. |
7986 | AddTruncateExpr = getTruncateExpr(Op: ShlOp0SCEV, Ty: TruncTy); |
7987 | } |
7988 | } |
7989 | } else if (L && L->getOpcode() == Instruction::Shl) { |
7990 | // X = Shl A, n |
7991 | // Y = AShr X, m |
7992 | // Both n and m are constant. |
7993 | |
7994 | const SCEV *ShlOp0SCEV = getSCEV(V: L->getOperand(i: 0)); |
7995 | ShlAmtCI = dyn_cast<ConstantInt>(Val: L->getOperand(i: 1)); |
7996 | AddTruncateExpr = getTruncateExpr(Op: ShlOp0SCEV, Ty: TruncTy); |
7997 | } |
7998 | |
7999 | if (AddTruncateExpr && ShlAmtCI) { |
8000 | // We can merge the two given cases into a single SCEV statement, |
8001 | // incase n = m, the mul expression will be 2^0, so it gets resolved to |
8002 | // a simpler case. The following code handles the two cases: |
8003 | // |
8004 | // 1) For a two-shift sext-inreg, i.e. n = m, |
8005 | // use sext(trunc(x)) as the SCEV expression. |
8006 | // |
8007 | // 2) When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV |
8008 | // expression. We already checked that ShlAmt < BitWidth, so |
8009 | // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as |
8010 | // ShlAmt - AShrAmt < Amt. |
8011 | const APInt &ShlAmt = ShlAmtCI->getValue(); |
8012 | if (ShlAmt.ult(RHS: BitWidth) && ShlAmt.uge(RHS: AShrAmt)) { |
8013 | APInt Mul = APInt::getOneBitSet(numBits: BitWidth - AShrAmt, |
8014 | BitNo: ShlAmtCI->getZExtValue() - AShrAmt); |
8015 | const SCEV *CompositeExpr = |
8016 | getMulExpr(LHS: AddTruncateExpr, RHS: getConstant(Val: Mul)); |
8017 | if (L->getOpcode() != Instruction::Shl) |
8018 | CompositeExpr = getAddExpr(LHS: CompositeExpr, RHS: AddConstant); |
8019 | |
8020 | return getSignExtendExpr(Op: CompositeExpr, Ty: OuterTy); |
8021 | } |
8022 | } |
8023 | break; |
8024 | } |
8025 | } |
8026 | |
8027 | switch (U->getOpcode()) { |
8028 | case Instruction::Trunc: |
8029 | return getTruncateExpr(Op: getSCEV(V: U->getOperand(i: 0)), Ty: U->getType()); |
8030 | |
8031 | case Instruction::ZExt: |
8032 | return getZeroExtendExpr(Op: getSCEV(V: U->getOperand(i: 0)), Ty: U->getType()); |
8033 | |
8034 | case Instruction::SExt: |
8035 | if (auto BO = MatchBinaryOp(V: U->getOperand(i: 0), DL: getDataLayout(), AC, DT, |
8036 | CxtI: dyn_cast<Instruction>(Val: V))) { |
8037 | // The NSW flag of a subtract does not always survive the conversion to |
8038 | // A + (-1)*B. By pushing sign extension onto its operands we are much |
8039 | // more likely to preserve NSW and allow later AddRec optimisations. |
8040 | // |
8041 | // NOTE: This is effectively duplicating this logic from getSignExtend: |
8042 | // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> |
8043 | // but by that point the NSW information has potentially been lost. |
8044 | if (BO->Opcode == Instruction::Sub && BO->IsNSW) { |
8045 | Type *Ty = U->getType(); |
8046 | auto *V1 = getSignExtendExpr(Op: getSCEV(V: BO->LHS), Ty); |
8047 | auto *V2 = getSignExtendExpr(Op: getSCEV(V: BO->RHS), Ty); |
8048 | return getMinusSCEV(LHS: V1, RHS: V2, Flags: SCEV::FlagNSW); |
8049 | } |
8050 | } |
8051 | return getSignExtendExpr(Op: getSCEV(V: U->getOperand(i: 0)), Ty: U->getType()); |
8052 | |
8053 | case Instruction::BitCast: |
8054 | // BitCasts are no-op casts so we just eliminate the cast. |
8055 | if (isSCEVable(Ty: U->getType()) && isSCEVable(Ty: U->getOperand(i: 0)->getType())) |
8056 | return getSCEV(V: U->getOperand(i: 0)); |
8057 | break; |
8058 | |
8059 | case Instruction::PtrToInt: { |
8060 | // Pointer to integer cast is straight-forward, so do model it. |
8061 | const SCEV *Op = getSCEV(V: U->getOperand(i: 0)); |
8062 | Type *DstIntTy = U->getType(); |
8063 | // But only if effective SCEV (integer) type is wide enough to represent |
8064 | // all possible pointer values. |
8065 | const SCEV *IntOp = getPtrToIntExpr(Op, Ty: DstIntTy); |
8066 | if (isa<SCEVCouldNotCompute>(Val: IntOp)) |
8067 | return getUnknown(V); |
8068 | return IntOp; |
8069 | } |
8070 | case Instruction::IntToPtr: |
8071 | // Just don't deal with inttoptr casts. |
8072 | return getUnknown(V); |
8073 | |
8074 | case Instruction::SDiv: |
8075 | // If both operands are non-negative, this is just an udiv. |
8076 | if (isKnownNonNegative(S: getSCEV(V: U->getOperand(i: 0))) && |
8077 | isKnownNonNegative(S: getSCEV(V: U->getOperand(i: 1)))) |
8078 | return getUDivExpr(LHS: getSCEV(V: U->getOperand(i: 0)), RHS: getSCEV(V: U->getOperand(i: 1))); |
8079 | break; |
8080 | |
8081 | case Instruction::SRem: |
8082 | // If both operands are non-negative, this is just an urem. |
8083 | if (isKnownNonNegative(S: getSCEV(V: U->getOperand(i: 0))) && |
8084 | isKnownNonNegative(S: getSCEV(V: U->getOperand(i: 1)))) |
8085 | return getURemExpr(LHS: getSCEV(V: U->getOperand(i: 0)), RHS: getSCEV(V: U->getOperand(i: 1))); |
8086 | break; |
8087 | |
8088 | case Instruction::GetElementPtr: |
8089 | return createNodeForGEP(GEP: cast<GEPOperator>(Val: U)); |
8090 | |
8091 | case Instruction::PHI: |
8092 | return createNodeForPHI(PN: cast<PHINode>(Val: U)); |
8093 | |
8094 | case Instruction::Select: |
8095 | return createNodeForSelectOrPHI(V: U, Cond: U->getOperand(i: 0), TrueVal: U->getOperand(i: 1), |
8096 | FalseVal: U->getOperand(i: 2)); |
8097 | |
8098 | case Instruction::Call: |
8099 | case Instruction::Invoke: |
8100 | if (Value *RV = cast<CallBase>(Val: U)->getReturnedArgOperand()) |
8101 | return getSCEV(V: RV); |
8102 | |
8103 | if (auto *II = dyn_cast<IntrinsicInst>(Val: U)) { |
8104 | switch (II->getIntrinsicID()) { |
8105 | case Intrinsic::abs: |
8106 | return getAbsExpr( |
8107 | Op: getSCEV(V: II->getArgOperand(i: 0)), |
8108 | /*IsNSW=*/cast<ConstantInt>(Val: II->getArgOperand(i: 1))->isOne()); |
8109 | case Intrinsic::umax: |
8110 | LHS = getSCEV(V: II->getArgOperand(i: 0)); |
8111 | RHS = getSCEV(V: II->getArgOperand(i: 1)); |
8112 | return getUMaxExpr(LHS, RHS); |
8113 | case Intrinsic::umin: |
8114 | LHS = getSCEV(V: II->getArgOperand(i: 0)); |
8115 | RHS = getSCEV(V: II->getArgOperand(i: 1)); |
8116 | return getUMinExpr(LHS, RHS); |
8117 | case Intrinsic::smax: |
8118 | LHS = getSCEV(V: II->getArgOperand(i: 0)); |
8119 | RHS = getSCEV(V: II->getArgOperand(i: 1)); |
8120 | return getSMaxExpr(LHS, RHS); |
8121 | case Intrinsic::smin: |
8122 | LHS = getSCEV(V: II->getArgOperand(i: 0)); |
8123 | RHS = getSCEV(V: II->getArgOperand(i: 1)); |
8124 | return getSMinExpr(LHS, RHS); |
8125 | case Intrinsic::usub_sat: { |
8126 | const SCEV *X = getSCEV(V: II->getArgOperand(i: 0)); |
8127 | const SCEV *Y = getSCEV(V: II->getArgOperand(i: 1)); |
8128 | const SCEV *ClampedY = getUMinExpr(LHS: X, RHS: Y); |
8129 | return getMinusSCEV(LHS: X, RHS: ClampedY, Flags: SCEV::FlagNUW); |
8130 | } |
8131 | case Intrinsic::uadd_sat: { |
8132 | const SCEV *X = getSCEV(V: II->getArgOperand(i: 0)); |
8133 | const SCEV *Y = getSCEV(V: II->getArgOperand(i: 1)); |
8134 | const SCEV *ClampedX = getUMinExpr(LHS: X, RHS: getNotSCEV(V: Y)); |
8135 | return getAddExpr(LHS: ClampedX, RHS: Y, Flags: SCEV::FlagNUW); |
8136 | } |
8137 | case Intrinsic::start_loop_iterations: |
8138 | case Intrinsic::annotation: |
8139 | case Intrinsic::ptr_annotation: |
8140 | // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is |
8141 | // just eqivalent to the first operand for SCEV purposes. |
8142 | return getSCEV(V: II->getArgOperand(i: 0)); |
8143 | case Intrinsic::vscale: |
8144 | return getVScale(Ty: II->getType()); |
8145 | default: |
8146 | break; |
8147 | } |
8148 | } |
8149 | break; |
8150 | } |
8151 | |
8152 | return getUnknown(V); |
8153 | } |
8154 | |
8155 | //===----------------------------------------------------------------------===// |
8156 | // Iteration Count Computation Code |
8157 | // |
8158 | |
8159 | const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) { |
8160 | if (isa<SCEVCouldNotCompute>(Val: ExitCount)) |
8161 | return getCouldNotCompute(); |
8162 | |
8163 | auto *ExitCountType = ExitCount->getType(); |
8164 | assert(ExitCountType->isIntegerTy()); |
8165 | auto *EvalTy = Type::getIntNTy(C&: ExitCountType->getContext(), |
8166 | N: 1 + ExitCountType->getScalarSizeInBits()); |
8167 | return getTripCountFromExitCount(ExitCount, EvalTy, L: nullptr); |
8168 | } |
8169 | |
8170 | const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, |
8171 | Type *EvalTy, |
8172 | const Loop *L) { |
8173 | if (isa<SCEVCouldNotCompute>(Val: ExitCount)) |
8174 | return getCouldNotCompute(); |
8175 | |
8176 | unsigned ExitCountSize = getTypeSizeInBits(Ty: ExitCount->getType()); |
8177 | unsigned EvalSize = EvalTy->getPrimitiveSizeInBits(); |
8178 | |
8179 | auto CanAddOneWithoutOverflow = [&]() { |
8180 | ConstantRange ExitCountRange = |
8181 | getRangeRef(S: ExitCount, SignHint: RangeSignHint::HINT_RANGE_UNSIGNED); |
8182 | if (!ExitCountRange.contains(Val: APInt::getMaxValue(numBits: ExitCountSize))) |
8183 | return true; |
8184 | |
8185 | return L && isLoopEntryGuardedByCond(L, Pred: ICmpInst::ICMP_NE, LHS: ExitCount, |
8186 | RHS: getMinusOne(Ty: ExitCount->getType())); |
8187 | }; |
8188 | |
8189 | // If we need to zero extend the backedge count, check if we can add one to |
8190 | // it prior to zero extending without overflow. Provided this is safe, it |
8191 | // allows better simplification of the +1. |
8192 | if (EvalSize > ExitCountSize && CanAddOneWithoutOverflow()) |
8193 | return getZeroExtendExpr( |
8194 | Op: getAddExpr(LHS: ExitCount, RHS: getOne(Ty: ExitCount->getType())), Ty: EvalTy); |
8195 | |
8196 | // Get the total trip count from the count by adding 1. This may wrap. |
8197 | return getAddExpr(LHS: getTruncateOrZeroExtend(V: ExitCount, Ty: EvalTy), RHS: getOne(Ty: EvalTy)); |
8198 | } |
8199 | |
8200 | static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { |
8201 | if (!ExitCount) |
8202 | return 0; |
8203 | |
8204 | ConstantInt *ExitConst = ExitCount->getValue(); |
8205 | |
8206 | // Guard against huge trip counts. |
8207 | if (ExitConst->getValue().getActiveBits() > 32) |
8208 | return 0; |
8209 | |
8210 | // In case of integer overflow, this returns 0, which is correct. |
8211 | return ((unsigned)ExitConst->getZExtValue()) + 1; |
8212 | } |
8213 | |
8214 | unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { |
8215 | auto *ExitCount = dyn_cast<SCEVConstant>(Val: getBackedgeTakenCount(L, Kind: Exact)); |
8216 | return getConstantTripCount(ExitCount); |
8217 | } |
8218 | |
8219 | unsigned |
8220 | ScalarEvolution::getSmallConstantTripCount(const Loop *L, |
8221 | const BasicBlock *ExitingBlock) { |
8222 | assert(ExitingBlock && "Must pass a non-null exiting block!" ); |
8223 | assert(L->isLoopExiting(ExitingBlock) && |
8224 | "Exiting block must actually branch out of the loop!" ); |
8225 | const SCEVConstant *ExitCount = |
8226 | dyn_cast<SCEVConstant>(Val: getExitCount(L, ExitingBlock)); |
8227 | return getConstantTripCount(ExitCount); |
8228 | } |
8229 | |
8230 | unsigned ScalarEvolution::getSmallConstantMaxTripCount( |
8231 | const Loop *L, SmallVectorImpl<const SCEVPredicate *> *Predicates) { |
8232 | |
8233 | const auto *MaxExitCount = |
8234 | Predicates ? getPredicatedConstantMaxBackedgeTakenCount(L, Predicates&: *Predicates) |
8235 | : getConstantMaxBackedgeTakenCount(L); |
8236 | return getConstantTripCount(ExitCount: dyn_cast<SCEVConstant>(Val: MaxExitCount)); |
8237 | } |
8238 | |
8239 | unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { |
8240 | SmallVector<BasicBlock *, 8> ExitingBlocks; |
8241 | L->getExitingBlocks(ExitingBlocks); |
8242 | |
8243 | std::optional<unsigned> Res; |
8244 | for (auto *ExitingBB : ExitingBlocks) { |
8245 | unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBlock: ExitingBB); |
8246 | if (!Res) |
8247 | Res = Multiple; |
8248 | Res = std::gcd(m: *Res, n: Multiple); |
8249 | } |
8250 | return Res.value_or(u: 1); |
8251 | } |
8252 | |
8253 | unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, |
8254 | const SCEV *ExitCount) { |
8255 | if (isa<SCEVCouldNotCompute>(Val: ExitCount)) |
8256 | return 1; |
8257 | |
8258 | // Get the trip count |
8259 | const SCEV *TCExpr = getTripCountFromExitCount(ExitCount: applyLoopGuards(Expr: ExitCount, L)); |
8260 | |
8261 | APInt Multiple = getNonZeroConstantMultiple(S: TCExpr); |
8262 | // If a trip multiple is huge (>=2^32), the trip count is still divisible by |
8263 | // the greatest power of 2 divisor less than 2^32. |
8264 | return Multiple.getActiveBits() > 32 |
8265 | ? 1U << std::min(a: 31U, b: Multiple.countTrailingZeros()) |
8266 | : (unsigned)Multiple.getZExtValue(); |
8267 | } |
8268 | |
8269 | /// Returns the largest constant divisor of the trip count of this loop as a |
8270 | /// normal unsigned value, if possible. This means that the actual trip count is |
8271 | /// always a multiple of the returned value (don't forget the trip count could |
8272 | /// very well be zero as well!). |
8273 | /// |
8274 | /// Returns 1 if the trip count is unknown or not guaranteed to be the |
8275 | /// multiple of a constant (which is also the case if the trip count is simply |
8276 | /// constant, use getSmallConstantTripCount for that case), Will also return 1 |
8277 | /// if the trip count is very large (>= 2^32). |
8278 | /// |
8279 | /// As explained in the comments for getSmallConstantTripCount, this assumes |
8280 | /// that control exits the loop via ExitingBlock. |
8281 | unsigned |
8282 | ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, |
8283 | const BasicBlock *ExitingBlock) { |
8284 | assert(ExitingBlock && "Must pass a non-null exiting block!" ); |
8285 | assert(L->isLoopExiting(ExitingBlock) && |
8286 | "Exiting block must actually branch out of the loop!" ); |
8287 | const SCEV *ExitCount = getExitCount(L, ExitingBlock); |
8288 | return getSmallConstantTripMultiple(L, ExitCount); |
8289 | } |
8290 | |
8291 | const SCEV *ScalarEvolution::getExitCount(const Loop *L, |
8292 | const BasicBlock *ExitingBlock, |
8293 | ExitCountKind Kind) { |
8294 | switch (Kind) { |
8295 | case Exact: |
8296 | return getBackedgeTakenInfo(L).getExact(ExitingBlock, SE: this); |
8297 | case SymbolicMaximum: |
8298 | return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, SE: this); |
8299 | case ConstantMaximum: |
8300 | return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, SE: this); |
8301 | }; |
8302 | llvm_unreachable("Invalid ExitCountKind!" ); |
8303 | } |
8304 | |
8305 | const SCEV *ScalarEvolution::getPredicatedExitCount( |
8306 | const Loop *L, const BasicBlock *ExitingBlock, |
8307 | SmallVectorImpl<const SCEVPredicate *> *Predicates, ExitCountKind Kind) { |
8308 | switch (Kind) { |
8309 | case Exact: |
8310 | return getPredicatedBackedgeTakenInfo(L).getExact(ExitingBlock, SE: this, |
8311 | Predicates); |
8312 | case SymbolicMaximum: |
8313 | return getPredicatedBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, SE: this, |
8314 | Predicates); |
8315 | case ConstantMaximum: |
8316 | return getPredicatedBackedgeTakenInfo(L).getConstantMax(ExitingBlock, SE: this, |
8317 | Predicates); |
8318 | }; |
8319 | llvm_unreachable("Invalid ExitCountKind!" ); |
8320 | } |
8321 | |
8322 | const SCEV *ScalarEvolution::getPredicatedBackedgeTakenCount( |
8323 | const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Preds) { |
8324 | return getPredicatedBackedgeTakenInfo(L).getExact(L, SE: this, Predicates: &Preds); |
8325 | } |
8326 | |
8327 | const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, |
8328 | ExitCountKind Kind) { |
8329 | switch (Kind) { |
8330 | case Exact: |
8331 | return getBackedgeTakenInfo(L).getExact(L, SE: this); |
8332 | case ConstantMaximum: |
8333 | return getBackedgeTakenInfo(L).getConstantMax(SE: this); |
8334 | case SymbolicMaximum: |
8335 | return getBackedgeTakenInfo(L).getSymbolicMax(L, SE: this); |
8336 | }; |
8337 | llvm_unreachable("Invalid ExitCountKind!" ); |
8338 | } |
8339 | |
8340 | const SCEV *ScalarEvolution::getPredicatedSymbolicMaxBackedgeTakenCount( |
8341 | const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Preds) { |
8342 | return getPredicatedBackedgeTakenInfo(L).getSymbolicMax(L, SE: this, Predicates: &Preds); |
8343 | } |
8344 | |
8345 | const SCEV *ScalarEvolution::getPredicatedConstantMaxBackedgeTakenCount( |
8346 | const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Preds) { |
8347 | return getPredicatedBackedgeTakenInfo(L).getConstantMax(SE: this, Predicates: &Preds); |
8348 | } |
8349 | |
8350 | bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { |
8351 | return getBackedgeTakenInfo(L).isConstantMaxOrZero(SE: this); |
8352 | } |
8353 | |
8354 | /// Push PHI nodes in the header of the given loop onto the given Worklist. |
8355 | static void PushLoopPHIs(const Loop *L, |
8356 | SmallVectorImpl<Instruction *> &Worklist, |
8357 | SmallPtrSetImpl<Instruction *> &Visited) { |
8358 | BasicBlock * = L->getHeader(); |
8359 | |
8360 | // Push all Loop-header PHIs onto the Worklist stack. |
8361 | for (PHINode &PN : Header->phis()) |
8362 | if (Visited.insert(Ptr: &PN).second) |
8363 | Worklist.push_back(Elt: &PN); |
8364 | } |
8365 | |
8366 | ScalarEvolution::BackedgeTakenInfo & |
8367 | ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { |
8368 | auto &BTI = getBackedgeTakenInfo(L); |
8369 | if (BTI.hasFullInfo()) |
8370 | return BTI; |
8371 | |
8372 | auto Pair = PredicatedBackedgeTakenCounts.try_emplace(Key: L); |
8373 | |
8374 | if (!Pair.second) |
8375 | return Pair.first->second; |
8376 | |
8377 | BackedgeTakenInfo Result = |
8378 | computeBackedgeTakenCount(L, /*AllowPredicates=*/true); |
8379 | |
8380 | return PredicatedBackedgeTakenCounts.find(Val: L)->second = std::move(Result); |
8381 | } |
8382 | |
8383 | ScalarEvolution::BackedgeTakenInfo & |
8384 | ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { |
8385 | // Initially insert an invalid entry for this loop. If the insertion |
8386 | // succeeds, proceed to actually compute a backedge-taken count and |
8387 | // update the value. The temporary CouldNotCompute value tells SCEV |
8388 | // code elsewhere that it shouldn't attempt to request a new |
8389 | // backedge-taken count, which could result in infinite recursion. |
8390 | std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = |
8391 | BackedgeTakenCounts.try_emplace(Key: L); |
8392 | if (!Pair.second) |
8393 | return Pair.first->second; |
8394 | |
8395 | // computeBackedgeTakenCount may allocate memory for its result. Inserting it |
8396 | // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result |
8397 | // must be cleared in this scope. |
8398 | BackedgeTakenInfo Result = computeBackedgeTakenCount(L); |
8399 | |
8400 | // Now that we know more about the trip count for this loop, forget any |
8401 | // existing SCEV values for PHI nodes in this loop since they are only |
8402 | // conservative estimates made without the benefit of trip count |
8403 | // information. This invalidation is not necessary for correctness, and is |
8404 | // only done to produce more precise results. |
8405 | if (Result.hasAnyInfo()) { |
8406 | // Invalidate any expression using an addrec in this loop. |
8407 | SmallVector<const SCEV *, 8> ToForget; |
8408 | auto LoopUsersIt = LoopUsers.find(Val: L); |
8409 | if (LoopUsersIt != LoopUsers.end()) |
8410 | append_range(C&: ToForget, R&: LoopUsersIt->second); |
8411 | forgetMemoizedResults(SCEVs: ToForget); |
8412 | |
8413 | // Invalidate constant-evolved loop header phis. |
8414 | for (PHINode &PN : L->getHeader()->phis()) |
8415 | ConstantEvolutionLoopExitValue.erase(Val: &PN); |
8416 | } |
8417 | |
8418 | // Re-lookup the insert position, since the call to |
8419 | // computeBackedgeTakenCount above could result in a |
8420 | // recusive call to getBackedgeTakenInfo (on a different |
8421 | // loop), which would invalidate the iterator computed |
8422 | // earlier. |
8423 | return BackedgeTakenCounts.find(Val: L)->second = std::move(Result); |
8424 | } |
8425 | |
8426 | void ScalarEvolution::forgetAllLoops() { |
8427 | // This method is intended to forget all info about loops. It should |
8428 | // invalidate caches as if the following happened: |
8429 | // - The trip counts of all loops have changed arbitrarily |
8430 | // - Every llvm::Value has been updated in place to produce a different |
8431 | // result. |
8432 | BackedgeTakenCounts.clear(); |
8433 | PredicatedBackedgeTakenCounts.clear(); |
8434 | BECountUsers.clear(); |
8435 | LoopPropertiesCache.clear(); |
8436 | ConstantEvolutionLoopExitValue.clear(); |
8437 | ValueExprMap.clear(); |
8438 | ValuesAtScopes.clear(); |
8439 | ValuesAtScopesUsers.clear(); |
8440 | LoopDispositions.clear(); |
8441 | BlockDispositions.clear(); |
8442 | UnsignedRanges.clear(); |
8443 | SignedRanges.clear(); |
8444 | ExprValueMap.clear(); |
8445 | HasRecMap.clear(); |
8446 | ConstantMultipleCache.clear(); |
8447 | PredicatedSCEVRewrites.clear(); |
8448 | FoldCache.clear(); |
8449 | FoldCacheUser.clear(); |
8450 | } |
8451 | void ScalarEvolution::visitAndClearUsers( |
8452 | SmallVectorImpl<Instruction *> &Worklist, |
8453 | SmallPtrSetImpl<Instruction *> &Visited, |
8454 | SmallVectorImpl<const SCEV *> &ToForget) { |
8455 | while (!Worklist.empty()) { |
8456 | Instruction *I = Worklist.pop_back_val(); |
8457 | if (!isSCEVable(Ty: I->getType()) && !isa<WithOverflowInst>(Val: I)) |
8458 | continue; |
8459 | |
8460 | ValueExprMapType::iterator It = |
8461 | ValueExprMap.find_as(Val: static_cast<Value *>(I)); |
8462 | if (It != ValueExprMap.end()) { |
8463 | eraseValueFromMap(V: It->first); |
8464 | ToForget.push_back(Elt: It->second); |
8465 | if (PHINode *PN = dyn_cast<PHINode>(Val: I)) |
8466 | ConstantEvolutionLoopExitValue.erase(Val: PN); |
8467 | } |
8468 | |
8469 | PushDefUseChildren(I, Worklist, Visited); |
8470 | } |
8471 | } |
8472 | |
8473 | void ScalarEvolution::forgetLoop(const Loop *L) { |
8474 | SmallVector<const Loop *, 16> LoopWorklist(1, L); |
8475 | SmallVector<Instruction *, 32> Worklist; |
8476 | SmallPtrSet<Instruction *, 16> Visited; |
8477 | SmallVector<const SCEV *, 16> ToForget; |
8478 | |
8479 | // Iterate over all the loops and sub-loops to drop SCEV information. |
8480 | while (!LoopWorklist.empty()) { |
8481 | auto *CurrL = LoopWorklist.pop_back_val(); |
8482 | |
8483 | // Drop any stored trip count value. |
8484 | forgetBackedgeTakenCounts(L: CurrL, /* Predicated */ false); |
8485 | forgetBackedgeTakenCounts(L: CurrL, /* Predicated */ true); |
8486 | |
8487 | // Drop information about predicated SCEV rewrites for this loop. |
8488 | for (auto I = PredicatedSCEVRewrites.begin(); |
8489 | I != PredicatedSCEVRewrites.end();) { |
8490 | std::pair<const SCEV *, const Loop *> Entry = I->first; |
8491 | if (Entry.second == CurrL) |
8492 | PredicatedSCEVRewrites.erase(I: I++); |
8493 | else |
8494 | ++I; |
8495 | } |
8496 | |
8497 | auto LoopUsersItr = LoopUsers.find(Val: CurrL); |
8498 | if (LoopUsersItr != LoopUsers.end()) |
8499 | llvm::append_range(C&: ToForget, R&: LoopUsersItr->second); |
8500 | |
8501 | // Drop information about expressions based on loop-header PHIs. |
8502 | PushLoopPHIs(L: CurrL, Worklist, Visited); |
8503 | visitAndClearUsers(Worklist, Visited, ToForget); |
8504 | |
8505 | LoopPropertiesCache.erase(Val: CurrL); |
8506 | // Forget all contained loops too, to avoid dangling entries in the |
8507 | // ValuesAtScopes map. |
8508 | LoopWorklist.append(in_start: CurrL->begin(), in_end: CurrL->end()); |
8509 | } |
8510 | forgetMemoizedResults(SCEVs: ToForget); |
8511 | } |
8512 | |
8513 | void ScalarEvolution::forgetTopmostLoop(const Loop *L) { |
8514 | forgetLoop(L: L->getOutermostLoop()); |
8515 | } |
8516 | |
8517 | void ScalarEvolution::forgetValue(Value *V) { |
8518 | Instruction *I = dyn_cast<Instruction>(Val: V); |
8519 | if (!I) return; |
8520 | |
8521 | // Drop information about expressions based on loop-header PHIs. |
8522 | SmallVector<Instruction *, 16> Worklist; |
8523 | SmallPtrSet<Instruction *, 8> Visited; |
8524 | SmallVector<const SCEV *, 8> ToForget; |
8525 | Worklist.push_back(Elt: I); |
8526 | Visited.insert(Ptr: I); |
8527 | visitAndClearUsers(Worklist, Visited, ToForget); |
8528 | |
8529 | forgetMemoizedResults(SCEVs: ToForget); |
8530 | } |
8531 | |
8532 | void ScalarEvolution::forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V) { |
8533 | if (!isSCEVable(Ty: V->getType())) |
8534 | return; |
8535 | |
8536 | // If SCEV looked through a trivial LCSSA phi node, we might have SCEV's |
8537 | // directly using a SCEVUnknown/SCEVAddRec defined in the loop. After an |
8538 | // extra predecessor is added, this is no longer valid. Find all Unknowns and |
8539 | // AddRecs defined in the loop and invalidate any SCEV's making use of them. |
8540 | if (const SCEV *S = getExistingSCEV(V)) { |
8541 | struct InvalidationRootCollector { |
8542 | Loop *L; |
8543 | SmallVector<const SCEV *, 8> Roots; |
8544 | |
8545 | InvalidationRootCollector(Loop *L) : L(L) {} |
8546 | |
8547 | bool follow(const SCEV *S) { |
8548 | if (auto *SU = dyn_cast<SCEVUnknown>(Val: S)) { |
8549 | if (auto *I = dyn_cast<Instruction>(Val: SU->getValue())) |
8550 | if (L->contains(Inst: I)) |
8551 | Roots.push_back(Elt: S); |
8552 | } else if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: S)) { |
8553 | if (L->contains(L: AddRec->getLoop())) |
8554 | Roots.push_back(Elt: S); |
8555 | } |
8556 | return true; |
8557 | } |
8558 | bool isDone() const { return false; } |
8559 | }; |
8560 | |
8561 | InvalidationRootCollector C(L); |
8562 | visitAll(Root: S, Visitor&: C); |
8563 | forgetMemoizedResults(SCEVs: C.Roots); |
8564 | } |
8565 | |
8566 | // Also perform the normal invalidation. |
8567 | forgetValue(V); |
8568 | } |
8569 | |
8570 | void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); } |
8571 | |
8572 | void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) { |
8573 | // Unless a specific value is passed to invalidation, completely clear both |
8574 | // caches. |
8575 | if (!V) { |
8576 | BlockDispositions.clear(); |
8577 | LoopDispositions.clear(); |
8578 | return; |
8579 | } |
8580 | |
8581 | if (!isSCEVable(Ty: V->getType())) |
8582 | return; |
8583 | |
8584 | const SCEV *S = getExistingSCEV(V); |
8585 | if (!S) |
8586 | return; |
8587 | |
8588 | // Invalidate the block and loop dispositions cached for S. Dispositions of |
8589 | // S's users may change if S's disposition changes (i.e. a user may change to |
8590 | // loop-invariant, if S changes to loop invariant), so also invalidate |
8591 | // dispositions of S's users recursively. |
8592 | SmallVector<const SCEV *, 8> Worklist = {S}; |
8593 | SmallPtrSet<const SCEV *, 8> Seen = {S}; |
8594 | while (!Worklist.empty()) { |
8595 | const SCEV *Curr = Worklist.pop_back_val(); |
8596 | bool LoopDispoRemoved = LoopDispositions.erase(Val: Curr); |
8597 | bool BlockDispoRemoved = BlockDispositions.erase(Val: Curr); |
8598 | if (!LoopDispoRemoved && !BlockDispoRemoved) |
8599 | continue; |
8600 | auto Users = SCEVUsers.find(Val: Curr); |
8601 | if (Users != SCEVUsers.end()) |
8602 | for (const auto *User : Users->second) |
8603 | if (Seen.insert(Ptr: User).second) |
8604 | Worklist.push_back(Elt: User); |
8605 | } |
8606 | } |
8607 | |
8608 | /// Get the exact loop backedge taken count considering all loop exits. A |
8609 | /// computable result can only be returned for loops with all exiting blocks |
8610 | /// dominating the latch. howFarToZero assumes that the limit of each loop test |
8611 | /// is never skipped. This is a valid assumption as long as the loop exits via |
8612 | /// that test. For precise results, it is the caller's responsibility to specify |
8613 | /// the relevant loop exiting block using getExact(ExitingBlock, SE). |
8614 | const SCEV *ScalarEvolution::BackedgeTakenInfo::getExact( |
8615 | const Loop *L, ScalarEvolution *SE, |
8616 | SmallVectorImpl<const SCEVPredicate *> *Preds) const { |
8617 | // If any exits were not computable, the loop is not computable. |
8618 | if (!isComplete() || ExitNotTaken.empty()) |
8619 | return SE->getCouldNotCompute(); |
8620 | |
8621 | const BasicBlock *Latch = L->getLoopLatch(); |
8622 | // All exiting blocks we have collected must dominate the only backedge. |
8623 | if (!Latch) |
8624 | return SE->getCouldNotCompute(); |
8625 | |
8626 | // All exiting blocks we have gathered dominate loop's latch, so exact trip |
8627 | // count is simply a minimum out of all these calculated exit counts. |
8628 | SmallVector<const SCEV *, 2> Ops; |
8629 | for (const auto &ENT : ExitNotTaken) { |
8630 | const SCEV *BECount = ENT.ExactNotTaken; |
8631 | assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!" ); |
8632 | assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && |
8633 | "We should only have known counts for exiting blocks that dominate " |
8634 | "latch!" ); |
8635 | |
8636 | Ops.push_back(Elt: BECount); |
8637 | |
8638 | if (Preds) |
8639 | append_range(C&: *Preds, R: ENT.Predicates); |
8640 | |
8641 | assert((Preds || ENT.hasAlwaysTruePredicate()) && |
8642 | "Predicate should be always true!" ); |
8643 | } |
8644 | |
8645 | // If an earlier exit exits on the first iteration (exit count zero), then |
8646 | // a later poison exit count should not propagate into the result. This are |
8647 | // exactly the semantics provided by umin_seq. |
8648 | return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true); |
8649 | } |
8650 | |
8651 | const ScalarEvolution::ExitNotTakenInfo * |
8652 | ScalarEvolution::BackedgeTakenInfo::getExitNotTaken( |
8653 | const BasicBlock *ExitingBlock, |
8654 | SmallVectorImpl<const SCEVPredicate *> *Predicates) const { |
8655 | for (const auto &ENT : ExitNotTaken) |
8656 | if (ENT.ExitingBlock == ExitingBlock) { |
8657 | if (ENT.hasAlwaysTruePredicate()) |
8658 | return &ENT; |
8659 | else if (Predicates) { |
8660 | append_range(C&: *Predicates, R: ENT.Predicates); |
8661 | return &ENT; |
8662 | } |
8663 | } |
8664 | |
8665 | return nullptr; |
8666 | } |
8667 | |
8668 | /// getConstantMax - Get the constant max backedge taken count for the loop. |
8669 | const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( |
8670 | ScalarEvolution *SE, |
8671 | SmallVectorImpl<const SCEVPredicate *> *Predicates) const { |
8672 | if (!getConstantMax()) |
8673 | return SE->getCouldNotCompute(); |
8674 | |
8675 | for (const auto &ENT : ExitNotTaken) |
8676 | if (!ENT.hasAlwaysTruePredicate()) { |
8677 | if (!Predicates) |
8678 | return SE->getCouldNotCompute(); |
8679 | append_range(C&: *Predicates, R: ENT.Predicates); |
8680 | } |
8681 | |
8682 | assert((isa<SCEVCouldNotCompute>(getConstantMax()) || |
8683 | isa<SCEVConstant>(getConstantMax())) && |
8684 | "No point in having a non-constant max backedge taken count!" ); |
8685 | return getConstantMax(); |
8686 | } |
8687 | |
8688 | const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax( |
8689 | const Loop *L, ScalarEvolution *SE, |
8690 | SmallVectorImpl<const SCEVPredicate *> *Predicates) { |
8691 | if (!SymbolicMax) { |
8692 | // Form an expression for the maximum exit count possible for this loop. We |
8693 | // merge the max and exact information to approximate a version of |
8694 | // getConstantMaxBackedgeTakenCount which isn't restricted to just |
8695 | // constants. |
8696 | SmallVector<const SCEV *, 4> ExitCounts; |
8697 | |
8698 | for (const auto &ENT : ExitNotTaken) { |
8699 | const SCEV *ExitCount = ENT.SymbolicMaxNotTaken; |
8700 | if (!isa<SCEVCouldNotCompute>(Val: ExitCount)) { |
8701 | assert(SE->DT.dominates(ENT.ExitingBlock, L->getLoopLatch()) && |
8702 | "We should only have known counts for exiting blocks that " |
8703 | "dominate latch!" ); |
8704 | ExitCounts.push_back(Elt: ExitCount); |
8705 | if (Predicates) |
8706 | append_range(C&: *Predicates, R: ENT.Predicates); |
8707 | |
8708 | assert((Predicates || ENT.hasAlwaysTruePredicate()) && |
8709 | "Predicate should be always true!" ); |
8710 | } |
8711 | } |
8712 | if (ExitCounts.empty()) |
8713 | SymbolicMax = SE->getCouldNotCompute(); |
8714 | else |
8715 | SymbolicMax = |
8716 | SE->getUMinFromMismatchedTypes(Ops&: ExitCounts, /*Sequential*/ true); |
8717 | } |
8718 | return SymbolicMax; |
8719 | } |
8720 | |
8721 | bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( |
8722 | ScalarEvolution *SE) const { |
8723 | auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { |
8724 | return !ENT.hasAlwaysTruePredicate(); |
8725 | }; |
8726 | return MaxOrZero && !any_of(Range: ExitNotTaken, P: PredicateNotAlwaysTrue); |
8727 | } |
8728 | |
8729 | ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) |
8730 | : ExitLimit(E, E, E, false) {} |
8731 | |
8732 | ScalarEvolution::ExitLimit::ExitLimit( |
8733 | const SCEV *E, const SCEV *ConstantMaxNotTaken, |
8734 | const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, |
8735 | ArrayRef<ArrayRef<const SCEVPredicate *>> PredLists) |
8736 | : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken), |
8737 | SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) { |
8738 | // If we prove the max count is zero, so is the symbolic bound. This happens |
8739 | // in practice due to differences in a) how context sensitive we've chosen |
8740 | // to be and b) how we reason about bounds implied by UB. |
8741 | if (ConstantMaxNotTaken->isZero()) { |
8742 | this->ExactNotTaken = E = ConstantMaxNotTaken; |
8743 | this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken; |
8744 | } |
8745 | |
8746 | assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || |
8747 | !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && |
8748 | "Exact is not allowed to be less precise than Constant Max" ); |
8749 | assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || |
8750 | !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) && |
8751 | "Exact is not allowed to be less precise than Symbolic Max" ); |
8752 | assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) || |
8753 | !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && |
8754 | "Symbolic Max is not allowed to be less precise than Constant Max" ); |
8755 | assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || |
8756 | isa<SCEVConstant>(ConstantMaxNotTaken)) && |
8757 | "No point in having a non-constant max backedge taken count!" ); |
8758 | SmallPtrSet<const SCEVPredicate *, 4> SeenPreds; |
8759 | for (const auto PredList : PredLists) |
8760 | for (const auto *P : PredList) { |
8761 | if (SeenPreds.contains(Ptr: P)) |
8762 | continue; |
8763 | assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!" ); |
8764 | SeenPreds.insert(Ptr: P); |
8765 | Predicates.push_back(Elt: P); |
8766 | } |
8767 | assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && |
8768 | "Backedge count should be int" ); |
8769 | assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || |
8770 | !ConstantMaxNotTaken->getType()->isPointerTy()) && |
8771 | "Max backedge count should be int" ); |
8772 | } |
8773 | |
8774 | ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, |
8775 | const SCEV *ConstantMaxNotTaken, |
8776 | const SCEV *SymbolicMaxNotTaken, |
8777 | bool MaxOrZero, |
8778 | ArrayRef<const SCEVPredicate *> PredList) |
8779 | : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero, |
8780 | ArrayRef({PredList})) {} |
8781 | |
8782 | /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each |
8783 | /// computable exit into a persistent ExitNotTakenInfo array. |
8784 | ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( |
8785 | ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, |
8786 | bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) |
8787 | : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { |
8788 | using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; |
8789 | |
8790 | ExitNotTaken.reserve(N: ExitCounts.size()); |
8791 | std::transform(first: ExitCounts.begin(), last: ExitCounts.end(), |
8792 | result: std::back_inserter(x&: ExitNotTaken), |
8793 | unary_op: [&](const EdgeExitInfo &EEI) { |
8794 | BasicBlock *ExitBB = EEI.first; |
8795 | const ExitLimit &EL = EEI.second; |
8796 | return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, |
8797 | EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken, |
8798 | EL.Predicates); |
8799 | }); |
8800 | assert((isa<SCEVCouldNotCompute>(ConstantMax) || |
8801 | isa<SCEVConstant>(ConstantMax)) && |
8802 | "No point in having a non-constant max backedge taken count!" ); |
8803 | } |
8804 | |
8805 | /// Compute the number of times the backedge of the specified loop will execute. |
8806 | ScalarEvolution::BackedgeTakenInfo |
8807 | ScalarEvolution::computeBackedgeTakenCount(const Loop *L, |
8808 | bool AllowPredicates) { |
8809 | SmallVector<BasicBlock *, 8> ExitingBlocks; |
8810 | L->getExitingBlocks(ExitingBlocks); |
8811 | |
8812 | using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; |
8813 | |
8814 | SmallVector<EdgeExitInfo, 4> ExitCounts; |
8815 | bool CouldComputeBECount = true; |
8816 | BasicBlock *Latch = L->getLoopLatch(); // may be NULL. |
8817 | const SCEV *MustExitMaxBECount = nullptr; |
8818 | const SCEV *MayExitMaxBECount = nullptr; |
8819 | bool MustExitMaxOrZero = false; |
8820 | bool IsOnlyExit = ExitingBlocks.size() == 1; |
8821 | |
8822 | // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts |
8823 | // and compute maxBECount. |
8824 | // Do a union of all the predicates here. |
8825 | for (BasicBlock *ExitBB : ExitingBlocks) { |
8826 | // We canonicalize untaken exits to br (constant), ignore them so that |
8827 | // proving an exit untaken doesn't negatively impact our ability to reason |
8828 | // about the loop as whole. |
8829 | if (auto *BI = dyn_cast<BranchInst>(Val: ExitBB->getTerminator())) |
8830 | if (auto *CI = dyn_cast<ConstantInt>(Val: BI->getCondition())) { |
8831 | bool ExitIfTrue = !L->contains(BB: BI->getSuccessor(i: 0)); |
8832 | if (ExitIfTrue == CI->isZero()) |
8833 | continue; |
8834 | } |
8835 | |
8836 | ExitLimit EL = computeExitLimit(L, ExitingBlock: ExitBB, IsOnlyExit, AllowPredicates); |
8837 | |
8838 | assert((AllowPredicates || EL.Predicates.empty()) && |
8839 | "Predicated exit limit when predicates are not allowed!" ); |
8840 | |
8841 | // 1. For each exit that can be computed, add an entry to ExitCounts. |
8842 | // CouldComputeBECount is true only if all exits can be computed. |
8843 | if (EL.ExactNotTaken != getCouldNotCompute()) |
8844 | ++NumExitCountsComputed; |
8845 | else |
8846 | // We couldn't compute an exact value for this exit, so |
8847 | // we won't be able to compute an exact value for the loop. |
8848 | CouldComputeBECount = false; |
8849 | // Remember exit count if either exact or symbolic is known. Because |
8850 | // Exact always implies symbolic, only check symbolic. |
8851 | if (EL.SymbolicMaxNotTaken != getCouldNotCompute()) |
8852 | ExitCounts.emplace_back(Args&: ExitBB, Args&: EL); |
8853 | else { |
8854 | assert(EL.ExactNotTaken == getCouldNotCompute() && |
8855 | "Exact is known but symbolic isn't?" ); |
8856 | ++NumExitCountsNotComputed; |
8857 | } |
8858 | |
8859 | // 2. Derive the loop's MaxBECount from each exit's max number of |
8860 | // non-exiting iterations. Partition the loop exits into two kinds: |
8861 | // LoopMustExits and LoopMayExits. |
8862 | // |
8863 | // If the exit dominates the loop latch, it is a LoopMustExit otherwise it |
8864 | // is a LoopMayExit. If any computable LoopMustExit is found, then |
8865 | // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable |
8866 | // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum |
8867 | // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than |
8868 | // any |
8869 | // computable EL.ConstantMaxNotTaken. |
8870 | if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch && |
8871 | DT.dominates(A: ExitBB, B: Latch)) { |
8872 | if (!MustExitMaxBECount) { |
8873 | MustExitMaxBECount = EL.ConstantMaxNotTaken; |
8874 | MustExitMaxOrZero = EL.MaxOrZero; |
8875 | } else { |
8876 | MustExitMaxBECount = getUMinFromMismatchedTypes(LHS: MustExitMaxBECount, |
8877 | RHS: EL.ConstantMaxNotTaken); |
8878 | } |
8879 | } else if (MayExitMaxBECount != getCouldNotCompute()) { |
8880 | if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute()) |
8881 | MayExitMaxBECount = EL.ConstantMaxNotTaken; |
8882 | else { |
8883 | MayExitMaxBECount = getUMaxFromMismatchedTypes(LHS: MayExitMaxBECount, |
8884 | RHS: EL.ConstantMaxNotTaken); |
8885 | } |
8886 | } |
8887 | } |
8888 | const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : |
8889 | (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); |
8890 | // The loop backedge will be taken the maximum or zero times if there's |
8891 | // a single exit that must be taken the maximum or zero times. |
8892 | bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); |
8893 | |
8894 | // Remember which SCEVs are used in exit limits for invalidation purposes. |
8895 | // We only care about non-constant SCEVs here, so we can ignore |
8896 | // EL.ConstantMaxNotTaken |
8897 | // and MaxBECount, which must be SCEVConstant. |
8898 | for (const auto &Pair : ExitCounts) { |
8899 | if (!isa<SCEVConstant>(Val: Pair.second.ExactNotTaken)) |
8900 | BECountUsers[Pair.second.ExactNotTaken].insert(Ptr: {L, AllowPredicates}); |
8901 | if (!isa<SCEVConstant>(Val: Pair.second.SymbolicMaxNotTaken)) |
8902 | BECountUsers[Pair.second.SymbolicMaxNotTaken].insert( |
8903 | Ptr: {L, AllowPredicates}); |
8904 | } |
8905 | return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, |
8906 | MaxBECount, MaxOrZero); |
8907 | } |
8908 | |
8909 | ScalarEvolution::ExitLimit |
8910 | ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, |
8911 | bool IsOnlyExit, bool AllowPredicates) { |
8912 | assert(L->contains(ExitingBlock) && "Exit count for non-loop block?" ); |
8913 | // If our exiting block does not dominate the latch, then its connection with |
8914 | // loop's exit limit may be far from trivial. |
8915 | const BasicBlock *Latch = L->getLoopLatch(); |
8916 | if (!Latch || !DT.dominates(A: ExitingBlock, B: Latch)) |
8917 | return getCouldNotCompute(); |
8918 | |
8919 | Instruction *Term = ExitingBlock->getTerminator(); |
8920 | if (BranchInst *BI = dyn_cast<BranchInst>(Val: Term)) { |
8921 | assert(BI->isConditional() && "If unconditional, it can't be in loop!" ); |
8922 | bool ExitIfTrue = !L->contains(BB: BI->getSuccessor(i: 0)); |
8923 | assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && |
8924 | "It should have one successor in loop and one exit block!" ); |
8925 | // Proceed to the next level to examine the exit condition expression. |
8926 | return computeExitLimitFromCond(L, ExitCond: BI->getCondition(), ExitIfTrue, |
8927 | /*ControlsOnlyExit=*/IsOnlyExit, |
8928 | AllowPredicates); |
8929 | } |
8930 | |
8931 | if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: Term)) { |
8932 | // For switch, make sure that there is a single exit from the loop. |
8933 | BasicBlock *Exit = nullptr; |
8934 | for (auto *SBB : successors(BB: ExitingBlock)) |
8935 | if (!L->contains(BB: SBB)) { |
8936 | if (Exit) // Multiple exit successors. |
8937 | return getCouldNotCompute(); |
8938 | Exit = SBB; |
8939 | } |
8940 | assert(Exit && "Exiting block must have at least one exit" ); |
8941 | return computeExitLimitFromSingleExitSwitch( |
8942 | L, Switch: SI, ExitingBB: Exit, /*ControlsOnlyExit=*/IsSubExpr: IsOnlyExit); |
8943 | } |
8944 | |
8945 | return getCouldNotCompute(); |
8946 | } |
8947 | |
8948 | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( |
8949 | const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, |
8950 | bool AllowPredicates) { |
8951 | ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); |
8952 | return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, |
8953 | ControlsOnlyExit, AllowPredicates); |
8954 | } |
8955 | |
8956 | std::optional<ScalarEvolution::ExitLimit> |
8957 | ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, |
8958 | bool ExitIfTrue, bool ControlsOnlyExit, |
8959 | bool AllowPredicates) { |
8960 | (void)this->L; |
8961 | (void)this->ExitIfTrue; |
8962 | (void)this->AllowPredicates; |
8963 | |
8964 | assert(this->L == L && this->ExitIfTrue == ExitIfTrue && |
8965 | this->AllowPredicates == AllowPredicates && |
8966 | "Variance in assumed invariant key components!" ); |
8967 | auto Itr = TripCountMap.find(Val: {ExitCond, ControlsOnlyExit}); |
8968 | if (Itr == TripCountMap.end()) |
8969 | return std::nullopt; |
8970 | return Itr->second; |
8971 | } |
8972 | |
8973 | void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, |
8974 | bool ExitIfTrue, |
8975 | bool ControlsOnlyExit, |
8976 | bool AllowPredicates, |
8977 | const ExitLimit &EL) { |
8978 | assert(this->L == L && this->ExitIfTrue == ExitIfTrue && |
8979 | this->AllowPredicates == AllowPredicates && |
8980 | "Variance in assumed invariant key components!" ); |
8981 | |
8982 | auto InsertResult = TripCountMap.insert(KV: {{ExitCond, ControlsOnlyExit}, EL}); |
8983 | assert(InsertResult.second && "Expected successful insertion!" ); |
8984 | (void)InsertResult; |
8985 | (void)ExitIfTrue; |
8986 | } |
8987 | |
8988 | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( |
8989 | ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, |
8990 | bool ControlsOnlyExit, bool AllowPredicates) { |
8991 | |
8992 | if (auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit, |
8993 | AllowPredicates)) |
8994 | return *MaybeEL; |
8995 | |
8996 | ExitLimit EL = computeExitLimitFromCondImpl( |
8997 | Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates); |
8998 | Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL); |
8999 | return EL; |
9000 | } |
9001 | |
9002 | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( |
9003 | ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, |
9004 | bool ControlsOnlyExit, bool AllowPredicates) { |
9005 | // Handle BinOp conditions (And, Or). |
9006 | if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( |
9007 | Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates)) |
9008 | return *LimitFromBinOp; |
9009 | |
9010 | // With an icmp, it may be feasible to compute an exact backedge-taken count. |
9011 | // Proceed to the next level to examine the icmp. |
9012 | if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(Val: ExitCond)) { |
9013 | ExitLimit EL = |
9014 | computeExitLimitFromICmp(L, ExitCond: ExitCondICmp, ExitIfTrue, IsSubExpr: ControlsOnlyExit); |
9015 | if (EL.hasFullInfo() || !AllowPredicates) |
9016 | return EL; |
9017 | |
9018 | // Try again, but use SCEV predicates this time. |
9019 | return computeExitLimitFromICmp(L, ExitCond: ExitCondICmp, ExitIfTrue, |
9020 | IsSubExpr: ControlsOnlyExit, |
9021 | /*AllowPredicates=*/true); |
9022 | } |
9023 | |
9024 | // Check for a constant condition. These are normally stripped out by |
9025 | // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to |
9026 | // preserve the CFG and is temporarily leaving constant conditions |
9027 | // in place. |
9028 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: ExitCond)) { |
9029 | if (ExitIfTrue == !CI->getZExtValue()) |
9030 | // The backedge is always taken. |
9031 | return getCouldNotCompute(); |
9032 | // The backedge is never taken. |
9033 | return getZero(Ty: CI->getType()); |
9034 | } |
9035 | |
9036 | // If we're exiting based on the overflow flag of an x.with.overflow intrinsic |
9037 | // with a constant step, we can form an equivalent icmp predicate and figure |
9038 | // out how many iterations will be taken before we exit. |
9039 | const WithOverflowInst *WO; |
9040 | const APInt *C; |
9041 | if (match(V: ExitCond, P: m_ExtractValue<1>(V: m_WithOverflowInst(I&: WO))) && |
9042 | match(V: WO->getRHS(), P: m_APInt(Res&: C))) { |
9043 | ConstantRange NWR = |
9044 | ConstantRange::makeExactNoWrapRegion(BinOp: WO->getBinaryOp(), Other: *C, |
9045 | NoWrapKind: WO->getNoWrapKind()); |
9046 | CmpInst::Predicate Pred; |
9047 | APInt NewRHSC, Offset; |
9048 | NWR.getEquivalentICmp(Pred, RHS&: NewRHSC, Offset); |
9049 | if (!ExitIfTrue) |
9050 | Pred = ICmpInst::getInversePredicate(pred: Pred); |
9051 | auto *LHS = getSCEV(V: WO->getLHS()); |
9052 | if (Offset != 0) |
9053 | LHS = getAddExpr(LHS, RHS: getConstant(Val: Offset)); |
9054 | auto EL = computeExitLimitFromICmp(L, Pred, LHS, RHS: getConstant(Val: NewRHSC), |
9055 | IsSubExpr: ControlsOnlyExit, AllowPredicates); |
9056 | if (EL.hasAnyInfo()) |
9057 | return EL; |
9058 | } |
9059 | |
9060 | // If it's not an integer or pointer comparison then compute it the hard way. |
9061 | return computeExitCountExhaustively(L, Cond: ExitCond, ExitWhen: ExitIfTrue); |
9062 | } |
9063 | |
9064 | std::optional<ScalarEvolution::ExitLimit> |
9065 | ScalarEvolution::computeExitLimitFromCondFromBinOp( |
9066 | ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, |
9067 | bool ControlsOnlyExit, bool AllowPredicates) { |
9068 | // Check if the controlling expression for this loop is an And or Or. |
9069 | Value *Op0, *Op1; |
9070 | bool IsAnd = false; |
9071 | if (match(V: ExitCond, P: m_LogicalAnd(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) |
9072 | IsAnd = true; |
9073 | else if (match(V: ExitCond, P: m_LogicalOr(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) |
9074 | IsAnd = false; |
9075 | else |
9076 | return std::nullopt; |
9077 | |
9078 | // EitherMayExit is true in these two cases: |
9079 | // br (and Op0 Op1), loop, exit |
9080 | // br (or Op0 Op1), exit, loop |
9081 | bool EitherMayExit = IsAnd ^ ExitIfTrue; |
9082 | ExitLimit EL0 = computeExitLimitFromCondCached( |
9083 | Cache, L, ExitCond: Op0, ExitIfTrue, ControlsOnlyExit: ControlsOnlyExit && !EitherMayExit, |
9084 | AllowPredicates); |
9085 | ExitLimit EL1 = computeExitLimitFromCondCached( |
9086 | Cache, L, ExitCond: Op1, ExitIfTrue, ControlsOnlyExit: ControlsOnlyExit && !EitherMayExit, |
9087 | AllowPredicates); |
9088 | |
9089 | // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" |
9090 | const Constant *NeutralElement = ConstantInt::get(Ty: ExitCond->getType(), V: IsAnd); |
9091 | if (isa<ConstantInt>(Val: Op1)) |
9092 | return Op1 == NeutralElement ? EL0 : EL1; |
9093 | if (isa<ConstantInt>(Val: Op0)) |
9094 | return Op0 == NeutralElement ? EL1 : EL0; |
9095 | |
9096 | const SCEV *BECount = getCouldNotCompute(); |
9097 | const SCEV *ConstantMaxBECount = getCouldNotCompute(); |
9098 | const SCEV *SymbolicMaxBECount = getCouldNotCompute(); |
9099 | if (EitherMayExit) { |
9100 | bool UseSequentialUMin = !isa<BinaryOperator>(Val: ExitCond); |
9101 | // Both conditions must be same for the loop to continue executing. |
9102 | // Choose the less conservative count. |
9103 | if (EL0.ExactNotTaken != getCouldNotCompute() && |
9104 | EL1.ExactNotTaken != getCouldNotCompute()) { |
9105 | BECount = getUMinFromMismatchedTypes(LHS: EL0.ExactNotTaken, RHS: EL1.ExactNotTaken, |
9106 | Sequential: UseSequentialUMin); |
9107 | } |
9108 | if (EL0.ConstantMaxNotTaken == getCouldNotCompute()) |
9109 | ConstantMaxBECount = EL1.ConstantMaxNotTaken; |
9110 | else if (EL1.ConstantMaxNotTaken == getCouldNotCompute()) |
9111 | ConstantMaxBECount = EL0.ConstantMaxNotTaken; |
9112 | else |
9113 | ConstantMaxBECount = getUMinFromMismatchedTypes(LHS: EL0.ConstantMaxNotTaken, |
9114 | RHS: EL1.ConstantMaxNotTaken); |
9115 | if (EL0.SymbolicMaxNotTaken == getCouldNotCompute()) |
9116 | SymbolicMaxBECount = EL1.SymbolicMaxNotTaken; |
9117 | else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute()) |
9118 | SymbolicMaxBECount = EL0.SymbolicMaxNotTaken; |
9119 | else |
9120 | SymbolicMaxBECount = getUMinFromMismatchedTypes( |
9121 | LHS: EL0.SymbolicMaxNotTaken, RHS: EL1.SymbolicMaxNotTaken, Sequential: UseSequentialUMin); |
9122 | } else { |
9123 | // Both conditions must be same at the same time for the loop to exit. |
9124 | // For now, be conservative. |
9125 | if (EL0.ExactNotTaken == EL1.ExactNotTaken) |
9126 | BECount = EL0.ExactNotTaken; |
9127 | } |
9128 | |
9129 | // There are cases (e.g. PR26207) where computeExitLimitFromCond is able |
9130 | // to be more aggressive when computing BECount than when computing |
9131 | // ConstantMaxBECount. In these cases it is possible for EL0.ExactNotTaken |
9132 | // and |
9133 | // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and |
9134 | // EL1.ConstantMaxNotTaken to not. |
9135 | if (isa<SCEVCouldNotCompute>(Val: ConstantMaxBECount) && |
9136 | !isa<SCEVCouldNotCompute>(Val: BECount)) |
9137 | ConstantMaxBECount = getConstant(Val: getUnsignedRangeMax(S: BECount)); |
9138 | if (isa<SCEVCouldNotCompute>(Val: SymbolicMaxBECount)) |
9139 | SymbolicMaxBECount = |
9140 | isa<SCEVCouldNotCompute>(Val: BECount) ? ConstantMaxBECount : BECount; |
9141 | return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, |
9142 | {ArrayRef(EL0.Predicates), ArrayRef(EL1.Predicates)}); |
9143 | } |
9144 | |
9145 | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp( |
9146 | const Loop *L, ICmpInst *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, |
9147 | bool AllowPredicates) { |
9148 | // If the condition was exit on true, convert the condition to exit on false |
9149 | CmpPredicate Pred; |
9150 | if (!ExitIfTrue) |
9151 | Pred = ExitCond->getCmpPredicate(); |
9152 | else |
9153 | Pred = ExitCond->getInverseCmpPredicate(); |
9154 | const ICmpInst::Predicate OriginalPred = Pred; |
9155 | |
9156 | const SCEV *LHS = getSCEV(V: ExitCond->getOperand(i_nocapture: 0)); |
9157 | const SCEV *RHS = getSCEV(V: ExitCond->getOperand(i_nocapture: 1)); |
9158 | |
9159 | ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, IsSubExpr: ControlsOnlyExit, |
9160 | AllowPredicates); |
9161 | if (EL.hasAnyInfo()) |
9162 | return EL; |
9163 | |
9164 | auto *ExhaustiveCount = |
9165 | computeExitCountExhaustively(L, Cond: ExitCond, ExitWhen: ExitIfTrue); |
9166 | |
9167 | if (!isa<SCEVCouldNotCompute>(Val: ExhaustiveCount)) |
9168 | return ExhaustiveCount; |
9169 | |
9170 | return computeShiftCompareExitLimit(LHS: ExitCond->getOperand(i_nocapture: 0), |
9171 | RHS: ExitCond->getOperand(i_nocapture: 1), L, Pred: OriginalPred); |
9172 | } |
9173 | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp( |
9174 | const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, |
9175 | bool ControlsOnlyExit, bool AllowPredicates) { |
9176 | |
9177 | // Try to evaluate any dependencies out of the loop. |
9178 | LHS = getSCEVAtScope(S: LHS, L); |
9179 | RHS = getSCEVAtScope(S: RHS, L); |
9180 | |
9181 | // At this point, we would like to compute how many iterations of the |
9182 | // loop the predicate will return true for these inputs. |
9183 | if (isLoopInvariant(S: LHS, L) && !isLoopInvariant(S: RHS, L)) { |
9184 | // If there is a loop-invariant, force it into the RHS. |
9185 | std::swap(a&: LHS, b&: RHS); |
9186 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
9187 | } |
9188 | |
9189 | bool ControllingFiniteLoop = ControlsOnlyExit && loopHasNoAbnormalExits(L) && |
9190 | loopIsFiniteByAssumption(L); |
9191 | // Simplify the operands before analyzing them. |
9192 | (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0); |
9193 | |
9194 | // If we have a comparison of a chrec against a constant, try to use value |
9195 | // ranges to answer this query. |
9196 | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: RHS)) |
9197 | if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: LHS)) |
9198 | if (AddRec->getLoop() == L) { |
9199 | // Form the constant range. |
9200 | ConstantRange CompRange = |
9201 | ConstantRange::makeExactICmpRegion(Pred, Other: RHSC->getAPInt()); |
9202 | |
9203 | const SCEV *Ret = AddRec->getNumIterationsInRange(Range: CompRange, SE&: *this); |
9204 | if (!isa<SCEVCouldNotCompute>(Val: Ret)) return Ret; |
9205 | } |
9206 | |
9207 | // If this loop must exit based on this condition (or execute undefined |
9208 | // behaviour), see if we can improve wrap flags. This is essentially |
9209 | // a must execute style proof. |
9210 | if (ControllingFiniteLoop && isLoopInvariant(S: RHS, L)) { |
9211 | // If we can prove the test sequence produced must repeat the same values |
9212 | // on self-wrap of the IV, then we can infer that IV doesn't self wrap |
9213 | // because if it did, we'd have an infinite (undefined) loop. |
9214 | // TODO: We can peel off any functions which are invertible *in L*. Loop |
9215 | // invariant terms are effectively constants for our purposes here. |
9216 | auto *InnerLHS = LHS; |
9217 | if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: LHS)) |
9218 | InnerLHS = ZExt->getOperand(); |
9219 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: InnerLHS); |
9220 | AR && !AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && |
9221 | isKnownToBeAPowerOfTwo(S: AR->getStepRecurrence(SE&: *this), /*OrZero=*/true, |
9222 | /*OrNegative=*/true)) { |
9223 | auto Flags = AR->getNoWrapFlags(); |
9224 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNW); |
9225 | SmallVector<const SCEV *> Operands{AR->operands()}; |
9226 | Flags = StrengthenNoWrapFlags(SE: this, Type: scAddRecExpr, Ops: Operands, Flags); |
9227 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags); |
9228 | } |
9229 | |
9230 | // For a slt/ult condition with a positive step, can we prove nsw/nuw? |
9231 | // From no-self-wrap, this follows trivially from the fact that every |
9232 | // (un)signed-wrapped, but not self-wrapped value must be LT than the |
9233 | // last value before (un)signed wrap. Since we know that last value |
9234 | // didn't exit, nor will any smaller one. |
9235 | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT) { |
9236 | auto WrapType = Pred == ICmpInst::ICMP_SLT ? SCEV::FlagNSW : SCEV::FlagNUW; |
9237 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: LHS); |
9238 | AR && AR->getLoop() == L && AR->isAffine() && |
9239 | !AR->getNoWrapFlags(Mask: WrapType) && AR->hasNoSelfWrap() && |
9240 | isKnownPositive(S: AR->getStepRecurrence(SE&: *this))) { |
9241 | auto Flags = AR->getNoWrapFlags(); |
9242 | Flags = setFlags(Flags, OnFlags: WrapType); |
9243 | SmallVector<const SCEV*> Operands{AR->operands()}; |
9244 | Flags = StrengthenNoWrapFlags(SE: this, Type: scAddRecExpr, Ops: Operands, Flags); |
9245 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags); |
9246 | } |
9247 | } |
9248 | } |
9249 | |
9250 | switch (Pred) { |
9251 | case ICmpInst::ICMP_NE: { // while (X != Y) |
9252 | // Convert to: while (X-Y != 0) |
9253 | if (LHS->getType()->isPointerTy()) { |
9254 | LHS = getLosslessPtrToIntExpr(Op: LHS); |
9255 | if (isa<SCEVCouldNotCompute>(Val: LHS)) |
9256 | return LHS; |
9257 | } |
9258 | if (RHS->getType()->isPointerTy()) { |
9259 | RHS = getLosslessPtrToIntExpr(Op: RHS); |
9260 | if (isa<SCEVCouldNotCompute>(Val: RHS)) |
9261 | return RHS; |
9262 | } |
9263 | ExitLimit EL = howFarToZero(V: getMinusSCEV(LHS, RHS), L, IsSubExpr: ControlsOnlyExit, |
9264 | AllowPredicates); |
9265 | if (EL.hasAnyInfo()) |
9266 | return EL; |
9267 | break; |
9268 | } |
9269 | case ICmpInst::ICMP_EQ: { // while (X == Y) |
9270 | // Convert to: while (X-Y == 0) |
9271 | if (LHS->getType()->isPointerTy()) { |
9272 | LHS = getLosslessPtrToIntExpr(Op: LHS); |
9273 | if (isa<SCEVCouldNotCompute>(Val: LHS)) |
9274 | return LHS; |
9275 | } |
9276 | if (RHS->getType()->isPointerTy()) { |
9277 | RHS = getLosslessPtrToIntExpr(Op: RHS); |
9278 | if (isa<SCEVCouldNotCompute>(Val: RHS)) |
9279 | return RHS; |
9280 | } |
9281 | ExitLimit EL = howFarToNonZero(V: getMinusSCEV(LHS, RHS), L); |
9282 | if (EL.hasAnyInfo()) return EL; |
9283 | break; |
9284 | } |
9285 | case ICmpInst::ICMP_SLE: |
9286 | case ICmpInst::ICMP_ULE: |
9287 | // Since the loop is finite, an invariant RHS cannot include the boundary |
9288 | // value, otherwise it would loop forever. |
9289 | if (!EnableFiniteLoopControl || !ControllingFiniteLoop || |
9290 | !isLoopInvariant(S: RHS, L)) { |
9291 | // Otherwise, perform the addition in a wider type, to avoid overflow. |
9292 | // If the LHS is an addrec with the appropriate nowrap flag, the |
9293 | // extension will be sunk into it and the exit count can be analyzed. |
9294 | auto *OldType = dyn_cast<IntegerType>(Val: LHS->getType()); |
9295 | if (!OldType) |
9296 | break; |
9297 | // Prefer doubling the bitwidth over adding a single bit to make it more |
9298 | // likely that we use a legal type. |
9299 | auto *NewType = |
9300 | Type::getIntNTy(C&: OldType->getContext(), N: OldType->getBitWidth() * 2); |
9301 | if (ICmpInst::isSigned(predicate: Pred)) { |
9302 | LHS = getSignExtendExpr(Op: LHS, Ty: NewType); |
9303 | RHS = getSignExtendExpr(Op: RHS, Ty: NewType); |
9304 | } else { |
9305 | LHS = getZeroExtendExpr(Op: LHS, Ty: NewType); |
9306 | RHS = getZeroExtendExpr(Op: RHS, Ty: NewType); |
9307 | } |
9308 | } |
9309 | RHS = getAddExpr(LHS: getOne(Ty: RHS->getType()), RHS); |
9310 | [[fallthrough]]; |
9311 | case ICmpInst::ICMP_SLT: |
9312 | case ICmpInst::ICMP_ULT: { // while (X < Y) |
9313 | bool IsSigned = ICmpInst::isSigned(predicate: Pred); |
9314 | ExitLimit EL = howManyLessThans(LHS, RHS, L, isSigned: IsSigned, ControlsOnlyExit, |
9315 | AllowPredicates); |
9316 | if (EL.hasAnyInfo()) |
9317 | return EL; |
9318 | break; |
9319 | } |
9320 | case ICmpInst::ICMP_SGE: |
9321 | case ICmpInst::ICMP_UGE: |
9322 | // Since the loop is finite, an invariant RHS cannot include the boundary |
9323 | // value, otherwise it would loop forever. |
9324 | if (!EnableFiniteLoopControl || !ControllingFiniteLoop || |
9325 | !isLoopInvariant(S: RHS, L)) |
9326 | break; |
9327 | RHS = getAddExpr(LHS: getMinusOne(Ty: RHS->getType()), RHS); |
9328 | [[fallthrough]]; |
9329 | case ICmpInst::ICMP_SGT: |
9330 | case ICmpInst::ICMP_UGT: { // while (X > Y) |
9331 | bool IsSigned = ICmpInst::isSigned(predicate: Pred); |
9332 | ExitLimit EL = howManyGreaterThans(LHS, RHS, L, isSigned: IsSigned, IsSubExpr: ControlsOnlyExit, |
9333 | AllowPredicates); |
9334 | if (EL.hasAnyInfo()) |
9335 | return EL; |
9336 | break; |
9337 | } |
9338 | default: |
9339 | break; |
9340 | } |
9341 | |
9342 | return getCouldNotCompute(); |
9343 | } |
9344 | |
9345 | ScalarEvolution::ExitLimit |
9346 | ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, |
9347 | SwitchInst *Switch, |
9348 | BasicBlock *ExitingBlock, |
9349 | bool ControlsOnlyExit) { |
9350 | assert(!L->contains(ExitingBlock) && "Not an exiting block!" ); |
9351 | |
9352 | // Give up if the exit is the default dest of a switch. |
9353 | if (Switch->getDefaultDest() == ExitingBlock) |
9354 | return getCouldNotCompute(); |
9355 | |
9356 | assert(L->contains(Switch->getDefaultDest()) && |
9357 | "Default case must not exit the loop!" ); |
9358 | const SCEV *LHS = getSCEVAtScope(V: Switch->getCondition(), L); |
9359 | const SCEV *RHS = getConstant(V: Switch->findCaseDest(BB: ExitingBlock)); |
9360 | |
9361 | // while (X != Y) --> while (X-Y != 0) |
9362 | ExitLimit EL = howFarToZero(V: getMinusSCEV(LHS, RHS), L, IsSubExpr: ControlsOnlyExit); |
9363 | if (EL.hasAnyInfo()) |
9364 | return EL; |
9365 | |
9366 | return getCouldNotCompute(); |
9367 | } |
9368 | |
9369 | static ConstantInt * |
9370 | EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, |
9371 | ScalarEvolution &SE) { |
9372 | const SCEV *InVal = SE.getConstant(V: C); |
9373 | const SCEV *Val = AddRec->evaluateAtIteration(It: InVal, SE); |
9374 | assert(isa<SCEVConstant>(Val) && |
9375 | "Evaluation of SCEV at constant didn't fold correctly?" ); |
9376 | return cast<SCEVConstant>(Val)->getValue(); |
9377 | } |
9378 | |
9379 | ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( |
9380 | Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { |
9381 | ConstantInt *RHS = dyn_cast<ConstantInt>(Val: RHSV); |
9382 | if (!RHS) |
9383 | return getCouldNotCompute(); |
9384 | |
9385 | const BasicBlock *Latch = L->getLoopLatch(); |
9386 | if (!Latch) |
9387 | return getCouldNotCompute(); |
9388 | |
9389 | const BasicBlock *Predecessor = L->getLoopPredecessor(); |
9390 | if (!Predecessor) |
9391 | return getCouldNotCompute(); |
9392 | |
9393 | // Return true if V is of the form "LHS `shift_op` <positive constant>". |
9394 | // Return LHS in OutLHS and shift_opt in OutOpCode. |
9395 | auto MatchPositiveShift = |
9396 | [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { |
9397 | |
9398 | using namespace PatternMatch; |
9399 | |
9400 | ConstantInt *ShiftAmt; |
9401 | if (match(V, P: m_LShr(L: m_Value(V&: OutLHS), R: m_ConstantInt(CI&: ShiftAmt)))) |
9402 | OutOpCode = Instruction::LShr; |
9403 | else if (match(V, P: m_AShr(L: m_Value(V&: OutLHS), R: m_ConstantInt(CI&: ShiftAmt)))) |
9404 | OutOpCode = Instruction::AShr; |
9405 | else if (match(V, P: m_Shl(L: m_Value(V&: OutLHS), R: m_ConstantInt(CI&: ShiftAmt)))) |
9406 | OutOpCode = Instruction::Shl; |
9407 | else |
9408 | return false; |
9409 | |
9410 | return ShiftAmt->getValue().isStrictlyPositive(); |
9411 | }; |
9412 | |
9413 | // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in |
9414 | // |
9415 | // loop: |
9416 | // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] |
9417 | // %iv.shifted = lshr i32 %iv, <positive constant> |
9418 | // |
9419 | // Return true on a successful match. Return the corresponding PHI node (%iv |
9420 | // above) in PNOut and the opcode of the shift operation in OpCodeOut. |
9421 | auto MatchShiftRecurrence = |
9422 | [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { |
9423 | std::optional<Instruction::BinaryOps> PostShiftOpCode; |
9424 | |
9425 | { |
9426 | Instruction::BinaryOps OpC; |
9427 | Value *V; |
9428 | |
9429 | // If we encounter a shift instruction, "peel off" the shift operation, |
9430 | // and remember that we did so. Later when we inspect %iv's backedge |
9431 | // value, we will make sure that the backedge value uses the same |
9432 | // operation. |
9433 | // |
9434 | // Note: the peeled shift operation does not have to be the same |
9435 | // instruction as the one feeding into the PHI's backedge value. We only |
9436 | // really care about it being the same *kind* of shift instruction -- |
9437 | // that's all that is required for our later inferences to hold. |
9438 | if (MatchPositiveShift(LHS, V, OpC)) { |
9439 | PostShiftOpCode = OpC; |
9440 | LHS = V; |
9441 | } |
9442 | } |
9443 | |
9444 | PNOut = dyn_cast<PHINode>(Val: LHS); |
9445 | if (!PNOut || PNOut->getParent() != L->getHeader()) |
9446 | return false; |
9447 | |
9448 | Value *BEValue = PNOut->getIncomingValueForBlock(BB: Latch); |
9449 | Value *OpLHS; |
9450 | |
9451 | return |
9452 | // The backedge value for the PHI node must be a shift by a positive |
9453 | // amount |
9454 | MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && |
9455 | |
9456 | // of the PHI node itself |
9457 | OpLHS == PNOut && |
9458 | |
9459 | // and the kind of shift should be match the kind of shift we peeled |
9460 | // off, if any. |
9461 | (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut); |
9462 | }; |
9463 | |
9464 | PHINode *PN; |
9465 | Instruction::BinaryOps OpCode; |
9466 | if (!MatchShiftRecurrence(LHS, PN, OpCode)) |
9467 | return getCouldNotCompute(); |
9468 | |
9469 | const DataLayout &DL = getDataLayout(); |
9470 | |
9471 | // The key rationale for this optimization is that for some kinds of shift |
9472 | // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 |
9473 | // within a finite number of iterations. If the condition guarding the |
9474 | // backedge (in the sense that the backedge is taken if the condition is true) |
9475 | // is false for the value the shift recurrence stabilizes to, then we know |
9476 | // that the backedge is taken only a finite number of times. |
9477 | |
9478 | ConstantInt *StableValue = nullptr; |
9479 | switch (OpCode) { |
9480 | default: |
9481 | llvm_unreachable("Impossible case!" ); |
9482 | |
9483 | case Instruction::AShr: { |
9484 | // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most |
9485 | // bitwidth(K) iterations. |
9486 | Value *FirstValue = PN->getIncomingValueForBlock(BB: Predecessor); |
9487 | KnownBits Known = computeKnownBits(V: FirstValue, DL, AC: &AC, |
9488 | CxtI: Predecessor->getTerminator(), DT: &DT); |
9489 | auto *Ty = cast<IntegerType>(Val: RHS->getType()); |
9490 | if (Known.isNonNegative()) |
9491 | StableValue = ConstantInt::get(Ty, V: 0); |
9492 | else if (Known.isNegative()) |
9493 | StableValue = ConstantInt::get(Ty, V: -1, IsSigned: true); |
9494 | else |
9495 | return getCouldNotCompute(); |
9496 | |
9497 | break; |
9498 | } |
9499 | case Instruction::LShr: |
9500 | case Instruction::Shl: |
9501 | // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} |
9502 | // stabilize to 0 in at most bitwidth(K) iterations. |
9503 | StableValue = ConstantInt::get(Ty: cast<IntegerType>(Val: RHS->getType()), V: 0); |
9504 | break; |
9505 | } |
9506 | |
9507 | auto *Result = |
9508 | ConstantFoldCompareInstOperands(Predicate: Pred, LHS: StableValue, RHS, DL, TLI: &TLI); |
9509 | assert(Result->getType()->isIntegerTy(1) && |
9510 | "Otherwise cannot be an operand to a branch instruction" ); |
9511 | |
9512 | if (Result->isZeroValue()) { |
9513 | unsigned BitWidth = getTypeSizeInBits(Ty: RHS->getType()); |
9514 | const SCEV *UpperBound = |
9515 | getConstant(Ty: getEffectiveSCEVType(Ty: RHS->getType()), V: BitWidth); |
9516 | return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false); |
9517 | } |
9518 | |
9519 | return getCouldNotCompute(); |
9520 | } |
9521 | |
9522 | /// Return true if we can constant fold an instruction of the specified type, |
9523 | /// assuming that all operands were constants. |
9524 | static bool CanConstantFold(const Instruction *I) { |
9525 | if (isa<BinaryOperator>(Val: I) || isa<CmpInst>(Val: I) || |
9526 | isa<SelectInst>(Val: I) || isa<CastInst>(Val: I) || isa<GetElementPtrInst>(Val: I) || |
9527 | isa<LoadInst>(Val: I) || isa<ExtractValueInst>(Val: I)) |
9528 | return true; |
9529 | |
9530 | if (const CallInst *CI = dyn_cast<CallInst>(Val: I)) |
9531 | if (const Function *F = CI->getCalledFunction()) |
9532 | return canConstantFoldCallTo(Call: CI, F); |
9533 | return false; |
9534 | } |
9535 | |
9536 | /// Determine whether this instruction can constant evolve within this loop |
9537 | /// assuming its operands can all constant evolve. |
9538 | static bool canConstantEvolve(Instruction *I, const Loop *L) { |
9539 | // An instruction outside of the loop can't be derived from a loop PHI. |
9540 | if (!L->contains(Inst: I)) return false; |
9541 | |
9542 | if (isa<PHINode>(Val: I)) { |
9543 | // We don't currently keep track of the control flow needed to evaluate |
9544 | // PHIs, so we cannot handle PHIs inside of loops. |
9545 | return L->getHeader() == I->getParent(); |
9546 | } |
9547 | |
9548 | // If we won't be able to constant fold this expression even if the operands |
9549 | // are constants, bail early. |
9550 | return CanConstantFold(I); |
9551 | } |
9552 | |
9553 | /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by |
9554 | /// recursing through each instruction operand until reaching a loop header phi. |
9555 | static PHINode * |
9556 | getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, |
9557 | DenseMap<Instruction *, PHINode *> &PHIMap, |
9558 | unsigned Depth) { |
9559 | if (Depth > MaxConstantEvolvingDepth) |
9560 | return nullptr; |
9561 | |
9562 | // Otherwise, we can evaluate this instruction if all of its operands are |
9563 | // constant or derived from a PHI node themselves. |
9564 | PHINode *PHI = nullptr; |
9565 | for (Value *Op : UseInst->operands()) { |
9566 | if (isa<Constant>(Val: Op)) continue; |
9567 | |
9568 | Instruction *OpInst = dyn_cast<Instruction>(Val: Op); |
9569 | if (!OpInst || !canConstantEvolve(I: OpInst, L)) return nullptr; |
9570 | |
9571 | PHINode *P = dyn_cast<PHINode>(Val: OpInst); |
9572 | if (!P) |
9573 | // If this operand is already visited, reuse the prior result. |
9574 | // We may have P != PHI if this is the deepest point at which the |
9575 | // inconsistent paths meet. |
9576 | P = PHIMap.lookup(Val: OpInst); |
9577 | if (!P) { |
9578 | // Recurse and memoize the results, whether a phi is found or not. |
9579 | // This recursive call invalidates pointers into PHIMap. |
9580 | P = getConstantEvolvingPHIOperands(UseInst: OpInst, L, PHIMap, Depth: Depth + 1); |
9581 | PHIMap[OpInst] = P; |
9582 | } |
9583 | if (!P) |
9584 | return nullptr; // Not evolving from PHI |
9585 | if (PHI && PHI != P) |
9586 | return nullptr; // Evolving from multiple different PHIs. |
9587 | PHI = P; |
9588 | } |
9589 | // This is a expression evolving from a constant PHI! |
9590 | return PHI; |
9591 | } |
9592 | |
9593 | /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node |
9594 | /// in the loop that V is derived from. We allow arbitrary operations along the |
9595 | /// way, but the operands of an operation must either be constants or a value |
9596 | /// derived from a constant PHI. If this expression does not fit with these |
9597 | /// constraints, return null. |
9598 | static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { |
9599 | Instruction *I = dyn_cast<Instruction>(Val: V); |
9600 | if (!I || !canConstantEvolve(I, L)) return nullptr; |
9601 | |
9602 | if (PHINode *PN = dyn_cast<PHINode>(Val: I)) |
9603 | return PN; |
9604 | |
9605 | // Record non-constant instructions contained by the loop. |
9606 | DenseMap<Instruction *, PHINode *> PHIMap; |
9607 | return getConstantEvolvingPHIOperands(UseInst: I, L, PHIMap, Depth: 0); |
9608 | } |
9609 | |
9610 | /// EvaluateExpression - Given an expression that passes the |
9611 | /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node |
9612 | /// in the loop has the value PHIVal. If we can't fold this expression for some |
9613 | /// reason, return null. |
9614 | static Constant *EvaluateExpression(Value *V, const Loop *L, |
9615 | DenseMap<Instruction *, Constant *> &Vals, |
9616 | const DataLayout &DL, |
9617 | const TargetLibraryInfo *TLI) { |
9618 | // Convenient constant check, but redundant for recursive calls. |
9619 | if (Constant *C = dyn_cast<Constant>(Val: V)) return C; |
9620 | Instruction *I = dyn_cast<Instruction>(Val: V); |
9621 | if (!I) return nullptr; |
9622 | |
9623 | if (Constant *C = Vals.lookup(Val: I)) return C; |
9624 | |
9625 | // An instruction inside the loop depends on a value outside the loop that we |
9626 | // weren't given a mapping for, or a value such as a call inside the loop. |
9627 | if (!canConstantEvolve(I, L)) return nullptr; |
9628 | |
9629 | // An unmapped PHI can be due to a branch or another loop inside this loop, |
9630 | // or due to this not being the initial iteration through a loop where we |
9631 | // couldn't compute the evolution of this particular PHI last time. |
9632 | if (isa<PHINode>(Val: I)) return nullptr; |
9633 | |
9634 | std::vector<Constant*> Operands(I->getNumOperands()); |
9635 | |
9636 | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
9637 | Instruction *Operand = dyn_cast<Instruction>(Val: I->getOperand(i)); |
9638 | if (!Operand) { |
9639 | Operands[i] = dyn_cast<Constant>(Val: I->getOperand(i)); |
9640 | if (!Operands[i]) return nullptr; |
9641 | continue; |
9642 | } |
9643 | Constant *C = EvaluateExpression(V: Operand, L, Vals, DL, TLI); |
9644 | Vals[Operand] = C; |
9645 | if (!C) return nullptr; |
9646 | Operands[i] = C; |
9647 | } |
9648 | |
9649 | return ConstantFoldInstOperands(I, Ops: Operands, DL, TLI, |
9650 | /*AllowNonDeterministic=*/false); |
9651 | } |
9652 | |
9653 | |
9654 | // If every incoming value to PN except the one for BB is a specific Constant, |
9655 | // return that, else return nullptr. |
9656 | static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { |
9657 | Constant *IncomingVal = nullptr; |
9658 | |
9659 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
9660 | if (PN->getIncomingBlock(i) == BB) |
9661 | continue; |
9662 | |
9663 | auto *CurrentVal = dyn_cast<Constant>(Val: PN->getIncomingValue(i)); |
9664 | if (!CurrentVal) |
9665 | return nullptr; |
9666 | |
9667 | if (IncomingVal != CurrentVal) { |
9668 | if (IncomingVal) |
9669 | return nullptr; |
9670 | IncomingVal = CurrentVal; |
9671 | } |
9672 | } |
9673 | |
9674 | return IncomingVal; |
9675 | } |
9676 | |
9677 | /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is |
9678 | /// in the header of its containing loop, we know the loop executes a |
9679 | /// constant number of times, and the PHI node is just a recurrence |
9680 | /// involving constants, fold it. |
9681 | Constant * |
9682 | ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, |
9683 | const APInt &BEs, |
9684 | const Loop *L) { |
9685 | auto [I, Inserted] = ConstantEvolutionLoopExitValue.try_emplace(Key: PN); |
9686 | if (!Inserted) |
9687 | return I->second; |
9688 | |
9689 | if (BEs.ugt(RHS: MaxBruteForceIterations)) |
9690 | return nullptr; // Not going to evaluate it. |
9691 | |
9692 | Constant *&RetVal = I->second; |
9693 | |
9694 | DenseMap<Instruction *, Constant *> CurrentIterVals; |
9695 | BasicBlock * = L->getHeader(); |
9696 | assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!" ); |
9697 | |
9698 | BasicBlock *Latch = L->getLoopLatch(); |
9699 | if (!Latch) |
9700 | return nullptr; |
9701 | |
9702 | for (PHINode &PHI : Header->phis()) { |
9703 | if (auto *StartCST = getOtherIncomingValue(PN: &PHI, BB: Latch)) |
9704 | CurrentIterVals[&PHI] = StartCST; |
9705 | } |
9706 | if (!CurrentIterVals.count(Val: PN)) |
9707 | return RetVal = nullptr; |
9708 | |
9709 | Value *BEValue = PN->getIncomingValueForBlock(BB: Latch); |
9710 | |
9711 | // Execute the loop symbolically to determine the exit value. |
9712 | assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && |
9713 | "BEs is <= MaxBruteForceIterations which is an 'unsigned'!" ); |
9714 | |
9715 | unsigned NumIterations = BEs.getZExtValue(); // must be in range |
9716 | unsigned IterationNum = 0; |
9717 | const DataLayout &DL = getDataLayout(); |
9718 | for (; ; ++IterationNum) { |
9719 | if (IterationNum == NumIterations) |
9720 | return RetVal = CurrentIterVals[PN]; // Got exit value! |
9721 | |
9722 | // Compute the value of the PHIs for the next iteration. |
9723 | // EvaluateExpression adds non-phi values to the CurrentIterVals map. |
9724 | DenseMap<Instruction *, Constant *> NextIterVals; |
9725 | Constant *NextPHI = |
9726 | EvaluateExpression(V: BEValue, L, Vals&: CurrentIterVals, DL, TLI: &TLI); |
9727 | if (!NextPHI) |
9728 | return nullptr; // Couldn't evaluate! |
9729 | NextIterVals[PN] = NextPHI; |
9730 | |
9731 | bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; |
9732 | |
9733 | // Also evaluate the other PHI nodes. However, we don't get to stop if we |
9734 | // cease to be able to evaluate one of them or if they stop evolving, |
9735 | // because that doesn't necessarily prevent us from computing PN. |
9736 | SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; |
9737 | for (const auto &I : CurrentIterVals) { |
9738 | PHINode *PHI = dyn_cast<PHINode>(Val: I.first); |
9739 | if (!PHI || PHI == PN || PHI->getParent() != Header) continue; |
9740 | PHIsToCompute.emplace_back(Args&: PHI, Args: I.second); |
9741 | } |
9742 | // We use two distinct loops because EvaluateExpression may invalidate any |
9743 | // iterators into CurrentIterVals. |
9744 | for (const auto &I : PHIsToCompute) { |
9745 | PHINode *PHI = I.first; |
9746 | Constant *&NextPHI = NextIterVals[PHI]; |
9747 | if (!NextPHI) { // Not already computed. |
9748 | Value *BEValue = PHI->getIncomingValueForBlock(BB: Latch); |
9749 | NextPHI = EvaluateExpression(V: BEValue, L, Vals&: CurrentIterVals, DL, TLI: &TLI); |
9750 | } |
9751 | if (NextPHI != I.second) |
9752 | StoppedEvolving = false; |
9753 | } |
9754 | |
9755 | // If all entries in CurrentIterVals == NextIterVals then we can stop |
9756 | // iterating, the loop can't continue to change. |
9757 | if (StoppedEvolving) |
9758 | return RetVal = CurrentIterVals[PN]; |
9759 | |
9760 | CurrentIterVals.swap(RHS&: NextIterVals); |
9761 | } |
9762 | } |
9763 | |
9764 | const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, |
9765 | Value *Cond, |
9766 | bool ExitWhen) { |
9767 | PHINode *PN = getConstantEvolvingPHI(V: Cond, L); |
9768 | if (!PN) return getCouldNotCompute(); |
9769 | |
9770 | // If the loop is canonicalized, the PHI will have exactly two entries. |
9771 | // That's the only form we support here. |
9772 | if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); |
9773 | |
9774 | DenseMap<Instruction *, Constant *> CurrentIterVals; |
9775 | BasicBlock * = L->getHeader(); |
9776 | assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!" ); |
9777 | |
9778 | BasicBlock *Latch = L->getLoopLatch(); |
9779 | assert(Latch && "Should follow from NumIncomingValues == 2!" ); |
9780 | |
9781 | for (PHINode &PHI : Header->phis()) { |
9782 | if (auto *StartCST = getOtherIncomingValue(PN: &PHI, BB: Latch)) |
9783 | CurrentIterVals[&PHI] = StartCST; |
9784 | } |
9785 | if (!CurrentIterVals.count(Val: PN)) |
9786 | return getCouldNotCompute(); |
9787 | |
9788 | // Okay, we find a PHI node that defines the trip count of this loop. Execute |
9789 | // the loop symbolically to determine when the condition gets a value of |
9790 | // "ExitWhen". |
9791 | unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. |
9792 | const DataLayout &DL = getDataLayout(); |
9793 | for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ |
9794 | auto *CondVal = dyn_cast_or_null<ConstantInt>( |
9795 | Val: EvaluateExpression(V: Cond, L, Vals&: CurrentIterVals, DL, TLI: &TLI)); |
9796 | |
9797 | // Couldn't symbolically evaluate. |
9798 | if (!CondVal) return getCouldNotCompute(); |
9799 | |
9800 | if (CondVal->getValue() == uint64_t(ExitWhen)) { |
9801 | ++NumBruteForceTripCountsComputed; |
9802 | return getConstant(Ty: Type::getInt32Ty(C&: getContext()), V: IterationNum); |
9803 | } |
9804 | |
9805 | // Update all the PHI nodes for the next iteration. |
9806 | DenseMap<Instruction *, Constant *> NextIterVals; |
9807 | |
9808 | // Create a list of which PHIs we need to compute. We want to do this before |
9809 | // calling EvaluateExpression on them because that may invalidate iterators |
9810 | // into CurrentIterVals. |
9811 | SmallVector<PHINode *, 8> PHIsToCompute; |
9812 | for (const auto &I : CurrentIterVals) { |
9813 | PHINode *PHI = dyn_cast<PHINode>(Val: I.first); |
9814 | if (!PHI || PHI->getParent() != Header) continue; |
9815 | PHIsToCompute.push_back(Elt: PHI); |
9816 | } |
9817 | for (PHINode *PHI : PHIsToCompute) { |
9818 | Constant *&NextPHI = NextIterVals[PHI]; |
9819 | if (NextPHI) continue; // Already computed! |
9820 | |
9821 | Value *BEValue = PHI->getIncomingValueForBlock(BB: Latch); |
9822 | NextPHI = EvaluateExpression(V: BEValue, L, Vals&: CurrentIterVals, DL, TLI: &TLI); |
9823 | } |
9824 | CurrentIterVals.swap(RHS&: NextIterVals); |
9825 | } |
9826 | |
9827 | // Too many iterations were needed to evaluate. |
9828 | return getCouldNotCompute(); |
9829 | } |
9830 | |
9831 | const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { |
9832 | SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = |
9833 | ValuesAtScopes[V]; |
9834 | // Check to see if we've folded this expression at this loop before. |
9835 | for (auto &LS : Values) |
9836 | if (LS.first == L) |
9837 | return LS.second ? LS.second : V; |
9838 | |
9839 | Values.emplace_back(Args&: L, Args: nullptr); |
9840 | |
9841 | // Otherwise compute it. |
9842 | const SCEV *C = computeSCEVAtScope(S: V, L); |
9843 | for (auto &LS : reverse(C&: ValuesAtScopes[V])) |
9844 | if (LS.first == L) { |
9845 | LS.second = C; |
9846 | if (!isa<SCEVConstant>(Val: C)) |
9847 | ValuesAtScopesUsers[C].push_back(Elt: {L, V}); |
9848 | break; |
9849 | } |
9850 | return C; |
9851 | } |
9852 | |
9853 | /// This builds up a Constant using the ConstantExpr interface. That way, we |
9854 | /// will return Constants for objects which aren't represented by a |
9855 | /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. |
9856 | /// Returns NULL if the SCEV isn't representable as a Constant. |
9857 | static Constant *BuildConstantFromSCEV(const SCEV *V) { |
9858 | switch (V->getSCEVType()) { |
9859 | case scCouldNotCompute: |
9860 | case scAddRecExpr: |
9861 | case scVScale: |
9862 | return nullptr; |
9863 | case scConstant: |
9864 | return cast<SCEVConstant>(Val: V)->getValue(); |
9865 | case scUnknown: |
9866 | return dyn_cast<Constant>(Val: cast<SCEVUnknown>(Val: V)->getValue()); |
9867 | case scPtrToInt: { |
9868 | const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(Val: V); |
9869 | if (Constant *CastOp = BuildConstantFromSCEV(V: P2I->getOperand())) |
9870 | return ConstantExpr::getPtrToInt(C: CastOp, Ty: P2I->getType()); |
9871 | |
9872 | return nullptr; |
9873 | } |
9874 | case scTruncate: { |
9875 | const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(Val: V); |
9876 | if (Constant *CastOp = BuildConstantFromSCEV(V: ST->getOperand())) |
9877 | return ConstantExpr::getTrunc(C: CastOp, Ty: ST->getType()); |
9878 | return nullptr; |
9879 | } |
9880 | case scAddExpr: { |
9881 | const SCEVAddExpr *SA = cast<SCEVAddExpr>(Val: V); |
9882 | Constant *C = nullptr; |
9883 | for (const SCEV *Op : SA->operands()) { |
9884 | Constant *OpC = BuildConstantFromSCEV(V: Op); |
9885 | if (!OpC) |
9886 | return nullptr; |
9887 | if (!C) { |
9888 | C = OpC; |
9889 | continue; |
9890 | } |
9891 | assert(!C->getType()->isPointerTy() && |
9892 | "Can only have one pointer, and it must be last" ); |
9893 | if (OpC->getType()->isPointerTy()) { |
9894 | // The offsets have been converted to bytes. We can add bytes using |
9895 | // an i8 GEP. |
9896 | C = ConstantExpr::getGetElementPtr(Ty: Type::getInt8Ty(C&: C->getContext()), |
9897 | C: OpC, Idx: C); |
9898 | } else { |
9899 | C = ConstantExpr::getAdd(C1: C, C2: OpC); |
9900 | } |
9901 | } |
9902 | return C; |
9903 | } |
9904 | case scMulExpr: |
9905 | case scSignExtend: |
9906 | case scZeroExtend: |
9907 | case scUDivExpr: |
9908 | case scSMaxExpr: |
9909 | case scUMaxExpr: |
9910 | case scSMinExpr: |
9911 | case scUMinExpr: |
9912 | case scSequentialUMinExpr: |
9913 | return nullptr; |
9914 | } |
9915 | llvm_unreachable("Unknown SCEV kind!" ); |
9916 | } |
9917 | |
9918 | const SCEV * |
9919 | ScalarEvolution::getWithOperands(const SCEV *S, |
9920 | SmallVectorImpl<const SCEV *> &NewOps) { |
9921 | switch (S->getSCEVType()) { |
9922 | case scTruncate: |
9923 | case scZeroExtend: |
9924 | case scSignExtend: |
9925 | case scPtrToInt: |
9926 | return getCastExpr(Kind: S->getSCEVType(), Op: NewOps[0], Ty: S->getType()); |
9927 | case scAddRecExpr: { |
9928 | auto *AddRec = cast<SCEVAddRecExpr>(Val: S); |
9929 | return getAddRecExpr(Operands&: NewOps, L: AddRec->getLoop(), Flags: AddRec->getNoWrapFlags()); |
9930 | } |
9931 | case scAddExpr: |
9932 | return getAddExpr(Ops&: NewOps, OrigFlags: cast<SCEVAddExpr>(Val: S)->getNoWrapFlags()); |
9933 | case scMulExpr: |
9934 | return getMulExpr(Ops&: NewOps, OrigFlags: cast<SCEVMulExpr>(Val: S)->getNoWrapFlags()); |
9935 | case scUDivExpr: |
9936 | return getUDivExpr(LHS: NewOps[0], RHS: NewOps[1]); |
9937 | case scUMaxExpr: |
9938 | case scSMaxExpr: |
9939 | case scUMinExpr: |
9940 | case scSMinExpr: |
9941 | return getMinMaxExpr(Kind: S->getSCEVType(), Ops&: NewOps); |
9942 | case scSequentialUMinExpr: |
9943 | return getSequentialMinMaxExpr(Kind: S->getSCEVType(), Ops&: NewOps); |
9944 | case scConstant: |
9945 | case scVScale: |
9946 | case scUnknown: |
9947 | return S; |
9948 | case scCouldNotCompute: |
9949 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
9950 | } |
9951 | llvm_unreachable("Unknown SCEV kind!" ); |
9952 | } |
9953 | |
9954 | const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { |
9955 | switch (V->getSCEVType()) { |
9956 | case scConstant: |
9957 | case scVScale: |
9958 | return V; |
9959 | case scAddRecExpr: { |
9960 | // If this is a loop recurrence for a loop that does not contain L, then we |
9961 | // are dealing with the final value computed by the loop. |
9962 | const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Val: V); |
9963 | // First, attempt to evaluate each operand. |
9964 | // Avoid performing the look-up in the common case where the specified |
9965 | // expression has no loop-variant portions. |
9966 | for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { |
9967 | const SCEV *OpAtScope = getSCEVAtScope(V: AddRec->getOperand(i), L); |
9968 | if (OpAtScope == AddRec->getOperand(i)) |
9969 | continue; |
9970 | |
9971 | // Okay, at least one of these operands is loop variant but might be |
9972 | // foldable. Build a new instance of the folded commutative expression. |
9973 | SmallVector<const SCEV *, 8> NewOps; |
9974 | NewOps.reserve(N: AddRec->getNumOperands()); |
9975 | append_range(C&: NewOps, R: AddRec->operands().take_front(N: i)); |
9976 | NewOps.push_back(Elt: OpAtScope); |
9977 | for (++i; i != e; ++i) |
9978 | NewOps.push_back(Elt: getSCEVAtScope(V: AddRec->getOperand(i), L)); |
9979 | |
9980 | const SCEV *FoldedRec = getAddRecExpr( |
9981 | Operands&: NewOps, L: AddRec->getLoop(), Flags: AddRec->getNoWrapFlags(Mask: SCEV::FlagNW)); |
9982 | AddRec = dyn_cast<SCEVAddRecExpr>(Val: FoldedRec); |
9983 | // The addrec may be folded to a nonrecurrence, for example, if the |
9984 | // induction variable is multiplied by zero after constant folding. Go |
9985 | // ahead and return the folded value. |
9986 | if (!AddRec) |
9987 | return FoldedRec; |
9988 | break; |
9989 | } |
9990 | |
9991 | // If the scope is outside the addrec's loop, evaluate it by using the |
9992 | // loop exit value of the addrec. |
9993 | if (!AddRec->getLoop()->contains(L)) { |
9994 | // To evaluate this recurrence, we need to know how many times the AddRec |
9995 | // loop iterates. Compute this now. |
9996 | const SCEV *BackedgeTakenCount = getBackedgeTakenCount(L: AddRec->getLoop()); |
9997 | if (BackedgeTakenCount == getCouldNotCompute()) |
9998 | return AddRec; |
9999 | |
10000 | // Then, evaluate the AddRec. |
10001 | return AddRec->evaluateAtIteration(It: BackedgeTakenCount, SE&: *this); |
10002 | } |
10003 | |
10004 | return AddRec; |
10005 | } |
10006 | case scTruncate: |
10007 | case scZeroExtend: |
10008 | case scSignExtend: |
10009 | case scPtrToInt: |
10010 | case scAddExpr: |
10011 | case scMulExpr: |
10012 | case scUDivExpr: |
10013 | case scUMaxExpr: |
10014 | case scSMaxExpr: |
10015 | case scUMinExpr: |
10016 | case scSMinExpr: |
10017 | case scSequentialUMinExpr: { |
10018 | ArrayRef<const SCEV *> Ops = V->operands(); |
10019 | // Avoid performing the look-up in the common case where the specified |
10020 | // expression has no loop-variant portions. |
10021 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
10022 | const SCEV *OpAtScope = getSCEVAtScope(V: Ops[i], L); |
10023 | if (OpAtScope != Ops[i]) { |
10024 | // Okay, at least one of these operands is loop variant but might be |
10025 | // foldable. Build a new instance of the folded commutative expression. |
10026 | SmallVector<const SCEV *, 8> NewOps; |
10027 | NewOps.reserve(N: Ops.size()); |
10028 | append_range(C&: NewOps, R: Ops.take_front(N: i)); |
10029 | NewOps.push_back(Elt: OpAtScope); |
10030 | |
10031 | for (++i; i != e; ++i) { |
10032 | OpAtScope = getSCEVAtScope(V: Ops[i], L); |
10033 | NewOps.push_back(Elt: OpAtScope); |
10034 | } |
10035 | |
10036 | return getWithOperands(S: V, NewOps); |
10037 | } |
10038 | } |
10039 | // If we got here, all operands are loop invariant. |
10040 | return V; |
10041 | } |
10042 | case scUnknown: { |
10043 | // If this instruction is evolved from a constant-evolving PHI, compute the |
10044 | // exit value from the loop without using SCEVs. |
10045 | const SCEVUnknown *SU = cast<SCEVUnknown>(Val: V); |
10046 | Instruction *I = dyn_cast<Instruction>(Val: SU->getValue()); |
10047 | if (!I) |
10048 | return V; // This is some other type of SCEVUnknown, just return it. |
10049 | |
10050 | if (PHINode *PN = dyn_cast<PHINode>(Val: I)) { |
10051 | const Loop *CurrLoop = this->LI[I->getParent()]; |
10052 | // Looking for loop exit value. |
10053 | if (CurrLoop && CurrLoop->getParentLoop() == L && |
10054 | PN->getParent() == CurrLoop->getHeader()) { |
10055 | // Okay, there is no closed form solution for the PHI node. Check |
10056 | // to see if the loop that contains it has a known backedge-taken |
10057 | // count. If so, we may be able to force computation of the exit |
10058 | // value. |
10059 | const SCEV *BackedgeTakenCount = getBackedgeTakenCount(L: CurrLoop); |
10060 | // This trivial case can show up in some degenerate cases where |
10061 | // the incoming IR has not yet been fully simplified. |
10062 | if (BackedgeTakenCount->isZero()) { |
10063 | Value *InitValue = nullptr; |
10064 | bool MultipleInitValues = false; |
10065 | for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { |
10066 | if (!CurrLoop->contains(BB: PN->getIncomingBlock(i))) { |
10067 | if (!InitValue) |
10068 | InitValue = PN->getIncomingValue(i); |
10069 | else if (InitValue != PN->getIncomingValue(i)) { |
10070 | MultipleInitValues = true; |
10071 | break; |
10072 | } |
10073 | } |
10074 | } |
10075 | if (!MultipleInitValues && InitValue) |
10076 | return getSCEV(V: InitValue); |
10077 | } |
10078 | // Do we have a loop invariant value flowing around the backedge |
10079 | // for a loop which must execute the backedge? |
10080 | if (!isa<SCEVCouldNotCompute>(Val: BackedgeTakenCount) && |
10081 | isKnownNonZero(S: BackedgeTakenCount) && |
10082 | PN->getNumIncomingValues() == 2) { |
10083 | |
10084 | unsigned InLoopPred = |
10085 | CurrLoop->contains(BB: PN->getIncomingBlock(i: 0)) ? 0 : 1; |
10086 | Value *BackedgeVal = PN->getIncomingValue(i: InLoopPred); |
10087 | if (CurrLoop->isLoopInvariant(V: BackedgeVal)) |
10088 | return getSCEV(V: BackedgeVal); |
10089 | } |
10090 | if (auto *BTCC = dyn_cast<SCEVConstant>(Val: BackedgeTakenCount)) { |
10091 | // Okay, we know how many times the containing loop executes. If |
10092 | // this is a constant evolving PHI node, get the final value at |
10093 | // the specified iteration number. |
10094 | Constant *RV = |
10095 | getConstantEvolutionLoopExitValue(PN, BEs: BTCC->getAPInt(), L: CurrLoop); |
10096 | if (RV) |
10097 | return getSCEV(V: RV); |
10098 | } |
10099 | } |
10100 | } |
10101 | |
10102 | // Okay, this is an expression that we cannot symbolically evaluate |
10103 | // into a SCEV. Check to see if it's possible to symbolically evaluate |
10104 | // the arguments into constants, and if so, try to constant propagate the |
10105 | // result. This is particularly useful for computing loop exit values. |
10106 | if (!CanConstantFold(I)) |
10107 | return V; // This is some other type of SCEVUnknown, just return it. |
10108 | |
10109 | SmallVector<Constant *, 4> Operands; |
10110 | Operands.reserve(N: I->getNumOperands()); |
10111 | bool MadeImprovement = false; |
10112 | for (Value *Op : I->operands()) { |
10113 | if (Constant *C = dyn_cast<Constant>(Val: Op)) { |
10114 | Operands.push_back(Elt: C); |
10115 | continue; |
10116 | } |
10117 | |
10118 | // If any of the operands is non-constant and if they are |
10119 | // non-integer and non-pointer, don't even try to analyze them |
10120 | // with scev techniques. |
10121 | if (!isSCEVable(Ty: Op->getType())) |
10122 | return V; |
10123 | |
10124 | const SCEV *OrigV = getSCEV(V: Op); |
10125 | const SCEV *OpV = getSCEVAtScope(V: OrigV, L); |
10126 | MadeImprovement |= OrigV != OpV; |
10127 | |
10128 | Constant *C = BuildConstantFromSCEV(V: OpV); |
10129 | if (!C) |
10130 | return V; |
10131 | assert(C->getType() == Op->getType() && "Type mismatch" ); |
10132 | Operands.push_back(Elt: C); |
10133 | } |
10134 | |
10135 | // Check to see if getSCEVAtScope actually made an improvement. |
10136 | if (!MadeImprovement) |
10137 | return V; // This is some other type of SCEVUnknown, just return it. |
10138 | |
10139 | Constant *C = nullptr; |
10140 | const DataLayout &DL = getDataLayout(); |
10141 | C = ConstantFoldInstOperands(I, Ops: Operands, DL, TLI: &TLI, |
10142 | /*AllowNonDeterministic=*/false); |
10143 | if (!C) |
10144 | return V; |
10145 | return getSCEV(V: C); |
10146 | } |
10147 | case scCouldNotCompute: |
10148 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
10149 | } |
10150 | llvm_unreachable("Unknown SCEV type!" ); |
10151 | } |
10152 | |
10153 | const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { |
10154 | return getSCEVAtScope(V: getSCEV(V), L); |
10155 | } |
10156 | |
10157 | const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { |
10158 | if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: S)) |
10159 | return stripInjectiveFunctions(S: ZExt->getOperand()); |
10160 | if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Val: S)) |
10161 | return stripInjectiveFunctions(S: SExt->getOperand()); |
10162 | return S; |
10163 | } |
10164 | |
10165 | /// Finds the minimum unsigned root of the following equation: |
10166 | /// |
10167 | /// A * X = B (mod N) |
10168 | /// |
10169 | /// where N = 2^BW and BW is the common bit width of A and B. The signedness of |
10170 | /// A and B isn't important. |
10171 | /// |
10172 | /// If the equation does not have a solution, SCEVCouldNotCompute is returned. |
10173 | static const SCEV * |
10174 | SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, |
10175 | SmallVectorImpl<const SCEVPredicate *> *Predicates, |
10176 | |
10177 | ScalarEvolution &SE) { |
10178 | uint32_t BW = A.getBitWidth(); |
10179 | assert(BW == SE.getTypeSizeInBits(B->getType())); |
10180 | assert(A != 0 && "A must be non-zero." ); |
10181 | |
10182 | // 1. D = gcd(A, N) |
10183 | // |
10184 | // The gcd of A and N may have only one prime factor: 2. The number of |
10185 | // trailing zeros in A is its multiplicity |
10186 | uint32_t Mult2 = A.countr_zero(); |
10187 | // D = 2^Mult2 |
10188 | |
10189 | // 2. Check if B is divisible by D. |
10190 | // |
10191 | // B is divisible by D if and only if the multiplicity of prime factor 2 for B |
10192 | // is not less than multiplicity of this prime factor for D. |
10193 | if (SE.getMinTrailingZeros(S: B) < Mult2) { |
10194 | // Check if we can prove there's no remainder using URem. |
10195 | const SCEV *URem = |
10196 | SE.getURemExpr(LHS: B, RHS: SE.getConstant(Val: APInt::getOneBitSet(numBits: BW, BitNo: Mult2))); |
10197 | const SCEV *Zero = SE.getZero(Ty: B->getType()); |
10198 | if (!SE.isKnownPredicate(Pred: CmpInst::ICMP_EQ, LHS: URem, RHS: Zero)) { |
10199 | // Try to add a predicate ensuring B is a multiple of 1 << Mult2. |
10200 | if (!Predicates) |
10201 | return SE.getCouldNotCompute(); |
10202 | |
10203 | // Avoid adding a predicate that is known to be false. |
10204 | if (SE.isKnownPredicate(Pred: CmpInst::ICMP_NE, LHS: URem, RHS: Zero)) |
10205 | return SE.getCouldNotCompute(); |
10206 | Predicates->push_back(Elt: SE.getEqualPredicate(LHS: URem, RHS: Zero)); |
10207 | } |
10208 | } |
10209 | |
10210 | // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic |
10211 | // modulo (N / D). |
10212 | // |
10213 | // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent |
10214 | // (N / D) in general. The inverse itself always fits into BW bits, though, |
10215 | // so we immediately truncate it. |
10216 | APInt AD = A.lshr(shiftAmt: Mult2).trunc(width: BW - Mult2); // AD = A / D |
10217 | APInt I = AD.multiplicativeInverse().zext(width: BW); |
10218 | |
10219 | // 4. Compute the minimum unsigned root of the equation: |
10220 | // I * (B / D) mod (N / D) |
10221 | // To simplify the computation, we factor out the divide by D: |
10222 | // (I * B mod N) / D |
10223 | const SCEV *D = SE.getConstant(Val: APInt::getOneBitSet(numBits: BW, BitNo: Mult2)); |
10224 | return SE.getUDivExactExpr(LHS: SE.getMulExpr(LHS: B, RHS: SE.getConstant(Val: I)), RHS: D); |
10225 | } |
10226 | |
10227 | /// For a given quadratic addrec, generate coefficients of the corresponding |
10228 | /// quadratic equation, multiplied by a common value to ensure that they are |
10229 | /// integers. |
10230 | /// The returned value is a tuple { A, B, C, M, BitWidth }, where |
10231 | /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C |
10232 | /// were multiplied by, and BitWidth is the bit width of the original addrec |
10233 | /// coefficients. |
10234 | /// This function returns std::nullopt if the addrec coefficients are not |
10235 | /// compile- time constants. |
10236 | static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> |
10237 | GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { |
10238 | assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!" ); |
10239 | const SCEVConstant *LC = dyn_cast<SCEVConstant>(Val: AddRec->getOperand(i: 0)); |
10240 | const SCEVConstant *MC = dyn_cast<SCEVConstant>(Val: AddRec->getOperand(i: 1)); |
10241 | const SCEVConstant *NC = dyn_cast<SCEVConstant>(Val: AddRec->getOperand(i: 2)); |
10242 | LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " |
10243 | << *AddRec << '\n'); |
10244 | |
10245 | // We currently can only solve this if the coefficients are constants. |
10246 | if (!LC || !MC || !NC) { |
10247 | LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n" ); |
10248 | return std::nullopt; |
10249 | } |
10250 | |
10251 | APInt L = LC->getAPInt(); |
10252 | APInt M = MC->getAPInt(); |
10253 | APInt N = NC->getAPInt(); |
10254 | assert(!N.isZero() && "This is not a quadratic addrec" ); |
10255 | |
10256 | unsigned BitWidth = LC->getAPInt().getBitWidth(); |
10257 | unsigned NewWidth = BitWidth + 1; |
10258 | LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " |
10259 | << BitWidth << '\n'); |
10260 | // The sign-extension (as opposed to a zero-extension) here matches the |
10261 | // extension used in SolveQuadraticEquationWrap (with the same motivation). |
10262 | N = N.sext(width: NewWidth); |
10263 | M = M.sext(width: NewWidth); |
10264 | L = L.sext(width: NewWidth); |
10265 | |
10266 | // The increments are M, M+N, M+2N, ..., so the accumulated values are |
10267 | // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, |
10268 | // L+M, L+2M+N, L+3M+3N, ... |
10269 | // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. |
10270 | // |
10271 | // The equation Acc = 0 is then |
10272 | // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. |
10273 | // In a quadratic form it becomes: |
10274 | // N n^2 + (2M-N) n + 2L = 0. |
10275 | |
10276 | APInt A = N; |
10277 | APInt B = 2 * M - A; |
10278 | APInt C = 2 * L; |
10279 | APInt T = APInt(NewWidth, 2); |
10280 | LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B |
10281 | << "x + " << C << ", coeff bw: " << NewWidth |
10282 | << ", multiplied by " << T << '\n'); |
10283 | return std::make_tuple(args&: A, args&: B, args&: C, args&: T, args&: BitWidth); |
10284 | } |
10285 | |
10286 | /// Helper function to compare optional APInts: |
10287 | /// (a) if X and Y both exist, return min(X, Y), |
10288 | /// (b) if neither X nor Y exist, return std::nullopt, |
10289 | /// (c) if exactly one of X and Y exists, return that value. |
10290 | static std::optional<APInt> MinOptional(std::optional<APInt> X, |
10291 | std::optional<APInt> Y) { |
10292 | if (X && Y) { |
10293 | unsigned W = std::max(a: X->getBitWidth(), b: Y->getBitWidth()); |
10294 | APInt XW = X->sext(width: W); |
10295 | APInt YW = Y->sext(width: W); |
10296 | return XW.slt(RHS: YW) ? *X : *Y; |
10297 | } |
10298 | if (!X && !Y) |
10299 | return std::nullopt; |
10300 | return X ? *X : *Y; |
10301 | } |
10302 | |
10303 | /// Helper function to truncate an optional APInt to a given BitWidth. |
10304 | /// When solving addrec-related equations, it is preferable to return a value |
10305 | /// that has the same bit width as the original addrec's coefficients. If the |
10306 | /// solution fits in the original bit width, truncate it (except for i1). |
10307 | /// Returning a value of a different bit width may inhibit some optimizations. |
10308 | /// |
10309 | /// In general, a solution to a quadratic equation generated from an addrec |
10310 | /// may require BW+1 bits, where BW is the bit width of the addrec's |
10311 | /// coefficients. The reason is that the coefficients of the quadratic |
10312 | /// equation are BW+1 bits wide (to avoid truncation when converting from |
10313 | /// the addrec to the equation). |
10314 | static std::optional<APInt> TruncIfPossible(std::optional<APInt> X, |
10315 | unsigned BitWidth) { |
10316 | if (!X) |
10317 | return std::nullopt; |
10318 | unsigned W = X->getBitWidth(); |
10319 | if (BitWidth > 1 && BitWidth < W && X->isIntN(N: BitWidth)) |
10320 | return X->trunc(width: BitWidth); |
10321 | return X; |
10322 | } |
10323 | |
10324 | /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n |
10325 | /// iterations. The values L, M, N are assumed to be signed, and they |
10326 | /// should all have the same bit widths. |
10327 | /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, |
10328 | /// where BW is the bit width of the addrec's coefficients. |
10329 | /// If the calculated value is a BW-bit integer (for BW > 1), it will be |
10330 | /// returned as such, otherwise the bit width of the returned value may |
10331 | /// be greater than BW. |
10332 | /// |
10333 | /// This function returns std::nullopt if |
10334 | /// (a) the addrec coefficients are not constant, or |
10335 | /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases |
10336 | /// like x^2 = 5, no integer solutions exist, in other cases an integer |
10337 | /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. |
10338 | static std::optional<APInt> |
10339 | SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { |
10340 | APInt A, B, C, M; |
10341 | unsigned BitWidth; |
10342 | auto T = GetQuadraticEquation(AddRec); |
10343 | if (!T) |
10344 | return std::nullopt; |
10345 | |
10346 | std::tie(args&: A, args&: B, args&: C, args&: M, args&: BitWidth) = *T; |
10347 | LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n" ); |
10348 | std::optional<APInt> X = |
10349 | APIntOps::SolveQuadraticEquationWrap(A, B, C, RangeWidth: BitWidth + 1); |
10350 | if (!X) |
10351 | return std::nullopt; |
10352 | |
10353 | ConstantInt *CX = ConstantInt::get(Context&: SE.getContext(), V: *X); |
10354 | ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, C: CX, SE); |
10355 | if (!V->isZero()) |
10356 | return std::nullopt; |
10357 | |
10358 | return TruncIfPossible(X, BitWidth); |
10359 | } |
10360 | |
10361 | /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n |
10362 | /// iterations. The values M, N are assumed to be signed, and they |
10363 | /// should all have the same bit widths. |
10364 | /// Find the least n such that c(n) does not belong to the given range, |
10365 | /// while c(n-1) does. |
10366 | /// |
10367 | /// This function returns std::nullopt if |
10368 | /// (a) the addrec coefficients are not constant, or |
10369 | /// (b) SolveQuadraticEquationWrap was unable to find a solution for the |
10370 | /// bounds of the range. |
10371 | static std::optional<APInt> |
10372 | SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, |
10373 | const ConstantRange &Range, ScalarEvolution &SE) { |
10374 | assert(AddRec->getOperand(0)->isZero() && |
10375 | "Starting value of addrec should be 0" ); |
10376 | LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " |
10377 | << Range << ", addrec " << *AddRec << '\n'); |
10378 | // This case is handled in getNumIterationsInRange. Here we can assume that |
10379 | // we start in the range. |
10380 | assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && |
10381 | "Addrec's initial value should be in range" ); |
10382 | |
10383 | APInt A, B, C, M; |
10384 | unsigned BitWidth; |
10385 | auto T = GetQuadraticEquation(AddRec); |
10386 | if (!T) |
10387 | return std::nullopt; |
10388 | |
10389 | // Be careful about the return value: there can be two reasons for not |
10390 | // returning an actual number. First, if no solutions to the equations |
10391 | // were found, and second, if the solutions don't leave the given range. |
10392 | // The first case means that the actual solution is "unknown", the second |
10393 | // means that it's known, but not valid. If the solution is unknown, we |
10394 | // cannot make any conclusions. |
10395 | // Return a pair: the optional solution and a flag indicating if the |
10396 | // solution was found. |
10397 | auto SolveForBoundary = |
10398 | [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> { |
10399 | // Solve for signed overflow and unsigned overflow, pick the lower |
10400 | // solution. |
10401 | LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " |
10402 | << Bound << " (before multiplying by " << M << ")\n" ); |
10403 | Bound *= M; // The quadratic equation multiplier. |
10404 | |
10405 | std::optional<APInt> SO; |
10406 | if (BitWidth > 1) { |
10407 | LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " |
10408 | "signed overflow\n" ); |
10409 | SO = APIntOps::SolveQuadraticEquationWrap(A, B, C: -Bound, RangeWidth: BitWidth); |
10410 | } |
10411 | LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " |
10412 | "unsigned overflow\n" ); |
10413 | std::optional<APInt> UO = |
10414 | APIntOps::SolveQuadraticEquationWrap(A, B, C: -Bound, RangeWidth: BitWidth + 1); |
10415 | |
10416 | auto LeavesRange = [&] (const APInt &X) { |
10417 | ConstantInt *C0 = ConstantInt::get(Context&: SE.getContext(), V: X); |
10418 | ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C: C0, SE); |
10419 | if (Range.contains(Val: V0->getValue())) |
10420 | return false; |
10421 | // X should be at least 1, so X-1 is non-negative. |
10422 | ConstantInt *C1 = ConstantInt::get(Context&: SE.getContext(), V: X-1); |
10423 | ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C: C1, SE); |
10424 | if (Range.contains(Val: V1->getValue())) |
10425 | return true; |
10426 | return false; |
10427 | }; |
10428 | |
10429 | // If SolveQuadraticEquationWrap returns std::nullopt, it means that there |
10430 | // can be a solution, but the function failed to find it. We cannot treat it |
10431 | // as "no solution". |
10432 | if (!SO || !UO) |
10433 | return {std::nullopt, false}; |
10434 | |
10435 | // Check the smaller value first to see if it leaves the range. |
10436 | // At this point, both SO and UO must have values. |
10437 | std::optional<APInt> Min = MinOptional(X: SO, Y: UO); |
10438 | if (LeavesRange(*Min)) |
10439 | return { Min, true }; |
10440 | std::optional<APInt> Max = Min == SO ? UO : SO; |
10441 | if (LeavesRange(*Max)) |
10442 | return { Max, true }; |
10443 | |
10444 | // Solutions were found, but were eliminated, hence the "true". |
10445 | return {std::nullopt, true}; |
10446 | }; |
10447 | |
10448 | std::tie(args&: A, args&: B, args&: C, args&: M, args&: BitWidth) = *T; |
10449 | // Lower bound is inclusive, subtract 1 to represent the exiting value. |
10450 | APInt Lower = Range.getLower().sext(width: A.getBitWidth()) - 1; |
10451 | APInt Upper = Range.getUpper().sext(width: A.getBitWidth()); |
10452 | auto SL = SolveForBoundary(Lower); |
10453 | auto SU = SolveForBoundary(Upper); |
10454 | // If any of the solutions was unknown, no meaninigful conclusions can |
10455 | // be made. |
10456 | if (!SL.second || !SU.second) |
10457 | return std::nullopt; |
10458 | |
10459 | // Claim: The correct solution is not some value between Min and Max. |
10460 | // |
10461 | // Justification: Assuming that Min and Max are different values, one of |
10462 | // them is when the first signed overflow happens, the other is when the |
10463 | // first unsigned overflow happens. Crossing the range boundary is only |
10464 | // possible via an overflow (treating 0 as a special case of it, modeling |
10465 | // an overflow as crossing k*2^W for some k). |
10466 | // |
10467 | // The interesting case here is when Min was eliminated as an invalid |
10468 | // solution, but Max was not. The argument is that if there was another |
10469 | // overflow between Min and Max, it would also have been eliminated if |
10470 | // it was considered. |
10471 | // |
10472 | // For a given boundary, it is possible to have two overflows of the same |
10473 | // type (signed/unsigned) without having the other type in between: this |
10474 | // can happen when the vertex of the parabola is between the iterations |
10475 | // corresponding to the overflows. This is only possible when the two |
10476 | // overflows cross k*2^W for the same k. In such case, if the second one |
10477 | // left the range (and was the first one to do so), the first overflow |
10478 | // would have to enter the range, which would mean that either we had left |
10479 | // the range before or that we started outside of it. Both of these cases |
10480 | // are contradictions. |
10481 | // |
10482 | // Claim: In the case where SolveForBoundary returns std::nullopt, the correct |
10483 | // solution is not some value between the Max for this boundary and the |
10484 | // Min of the other boundary. |
10485 | // |
10486 | // Justification: Assume that we had such Max_A and Min_B corresponding |
10487 | // to range boundaries A and B and such that Max_A < Min_B. If there was |
10488 | // a solution between Max_A and Min_B, it would have to be caused by an |
10489 | // overflow corresponding to either A or B. It cannot correspond to B, |
10490 | // since Min_B is the first occurrence of such an overflow. If it |
10491 | // corresponded to A, it would have to be either a signed or an unsigned |
10492 | // overflow that is larger than both eliminated overflows for A. But |
10493 | // between the eliminated overflows and this overflow, the values would |
10494 | // cover the entire value space, thus crossing the other boundary, which |
10495 | // is a contradiction. |
10496 | |
10497 | return TruncIfPossible(X: MinOptional(X: SL.first, Y: SU.first), BitWidth); |
10498 | } |
10499 | |
10500 | ScalarEvolution::ExitLimit ScalarEvolution::howFarToZero(const SCEV *V, |
10501 | const Loop *L, |
10502 | bool ControlsOnlyExit, |
10503 | bool AllowPredicates) { |
10504 | |
10505 | // This is only used for loops with a "x != y" exit test. The exit condition |
10506 | // is now expressed as a single expression, V = x-y. So the exit test is |
10507 | // effectively V != 0. We know and take advantage of the fact that this |
10508 | // expression only being used in a comparison by zero context. |
10509 | |
10510 | SmallVector<const SCEVPredicate *> Predicates; |
10511 | // If the value is a constant |
10512 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: V)) { |
10513 | // If the value is already zero, the branch will execute zero times. |
10514 | if (C->getValue()->isZero()) return C; |
10515 | return getCouldNotCompute(); // Otherwise it will loop infinitely. |
10516 | } |
10517 | |
10518 | const SCEVAddRecExpr *AddRec = |
10519 | dyn_cast<SCEVAddRecExpr>(Val: stripInjectiveFunctions(S: V)); |
10520 | |
10521 | if (!AddRec && AllowPredicates) |
10522 | // Try to make this an AddRec using runtime tests, in the first X |
10523 | // iterations of this loop, where X is the SCEV expression found by the |
10524 | // algorithm below. |
10525 | AddRec = convertSCEVToAddRecWithPredicates(S: V, L, Preds&: Predicates); |
10526 | |
10527 | if (!AddRec || AddRec->getLoop() != L) |
10528 | return getCouldNotCompute(); |
10529 | |
10530 | // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of |
10531 | // the quadratic equation to solve it. |
10532 | if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { |
10533 | // We can only use this value if the chrec ends up with an exact zero |
10534 | // value at this index. When solving for "X*X != 5", for example, we |
10535 | // should not accept a root of 2. |
10536 | if (auto S = SolveQuadraticAddRecExact(AddRec, SE&: *this)) { |
10537 | const auto *R = cast<SCEVConstant>(Val: getConstant(Val: *S)); |
10538 | return ExitLimit(R, R, R, false, Predicates); |
10539 | } |
10540 | return getCouldNotCompute(); |
10541 | } |
10542 | |
10543 | // Otherwise we can only handle this if it is affine. |
10544 | if (!AddRec->isAffine()) |
10545 | return getCouldNotCompute(); |
10546 | |
10547 | // If this is an affine expression, the execution count of this branch is |
10548 | // the minimum unsigned root of the following equation: |
10549 | // |
10550 | // Start + Step*N = 0 (mod 2^BW) |
10551 | // |
10552 | // equivalent to: |
10553 | // |
10554 | // Step*N = -Start (mod 2^BW) |
10555 | // |
10556 | // where BW is the common bit width of Start and Step. |
10557 | |
10558 | // Get the initial value for the loop. |
10559 | const SCEV *Start = getSCEVAtScope(V: AddRec->getStart(), L: L->getParentLoop()); |
10560 | const SCEV *Step = getSCEVAtScope(V: AddRec->getOperand(i: 1), L: L->getParentLoop()); |
10561 | |
10562 | if (!isLoopInvariant(S: Step, L)) |
10563 | return getCouldNotCompute(); |
10564 | |
10565 | LoopGuards Guards = LoopGuards::collect(L, SE&: *this); |
10566 | // Specialize step for this loop so we get context sensitive facts below. |
10567 | const SCEV *StepWLG = applyLoopGuards(Expr: Step, Guards); |
10568 | |
10569 | // For positive steps (counting up until unsigned overflow): |
10570 | // N = -Start/Step (as unsigned) |
10571 | // For negative steps (counting down to zero): |
10572 | // N = Start/-Step |
10573 | // First compute the unsigned distance from zero in the direction of Step. |
10574 | bool CountDown = isKnownNegative(S: StepWLG); |
10575 | if (!CountDown && !isKnownNonNegative(S: StepWLG)) |
10576 | return getCouldNotCompute(); |
10577 | |
10578 | const SCEV *Distance = CountDown ? Start : getNegativeSCEV(V: Start); |
10579 | // Handle unitary steps, which cannot wraparound. |
10580 | // 1*N = -Start; -1*N = Start (mod 2^BW), so: |
10581 | // N = Distance (as unsigned) |
10582 | |
10583 | if (match(S: Step, P: m_CombineOr(L: m_scev_One(), R: m_scev_AllOnes()))) { |
10584 | APInt MaxBECount = getUnsignedRangeMax(S: applyLoopGuards(Expr: Distance, Guards)); |
10585 | MaxBECount = APIntOps::umin(A: MaxBECount, B: getUnsignedRangeMax(S: Distance)); |
10586 | |
10587 | // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, |
10588 | // we end up with a loop whose backedge-taken count is n - 1. Detect this |
10589 | // case, and see if we can improve the bound. |
10590 | // |
10591 | // Explicitly handling this here is necessary because getUnsignedRange |
10592 | // isn't context-sensitive; it doesn't know that we only care about the |
10593 | // range inside the loop. |
10594 | const SCEV *Zero = getZero(Ty: Distance->getType()); |
10595 | const SCEV *One = getOne(Ty: Distance->getType()); |
10596 | const SCEV *DistancePlusOne = getAddExpr(LHS: Distance, RHS: One); |
10597 | if (isLoopEntryGuardedByCond(L, Pred: ICmpInst::ICMP_NE, LHS: DistancePlusOne, RHS: Zero)) { |
10598 | // If Distance + 1 doesn't overflow, we can compute the maximum distance |
10599 | // as "unsigned_max(Distance + 1) - 1". |
10600 | ConstantRange CR = getUnsignedRange(S: DistancePlusOne); |
10601 | MaxBECount = APIntOps::umin(A: MaxBECount, B: CR.getUnsignedMax() - 1); |
10602 | } |
10603 | return ExitLimit(Distance, getConstant(Val: MaxBECount), Distance, false, |
10604 | Predicates); |
10605 | } |
10606 | |
10607 | // If the condition controls loop exit (the loop exits only if the expression |
10608 | // is true) and the addition is no-wrap we can use unsigned divide to |
10609 | // compute the backedge count. In this case, the step may not divide the |
10610 | // distance, but we don't care because if the condition is "missed" the loop |
10611 | // will have undefined behavior due to wrapping. |
10612 | if (ControlsOnlyExit && AddRec->hasNoSelfWrap() && |
10613 | loopHasNoAbnormalExits(L: AddRec->getLoop())) { |
10614 | |
10615 | // If the stride is zero and the start is non-zero, the loop must be |
10616 | // infinite. In C++, most loops are finite by assumption, in which case the |
10617 | // step being zero implies UB must execute if the loop is entered. |
10618 | if (!(loopIsFiniteByAssumption(L) && isKnownNonZero(S: Start)) && |
10619 | !isKnownNonZero(S: StepWLG)) |
10620 | return getCouldNotCompute(); |
10621 | |
10622 | const SCEV *Exact = |
10623 | getUDivExpr(LHS: Distance, RHS: CountDown ? getNegativeSCEV(V: Step) : Step); |
10624 | const SCEV *ConstantMax = getCouldNotCompute(); |
10625 | if (Exact != getCouldNotCompute()) { |
10626 | APInt MaxInt = getUnsignedRangeMax(S: applyLoopGuards(Expr: Exact, Guards)); |
10627 | ConstantMax = |
10628 | getConstant(Val: APIntOps::umin(A: MaxInt, B: getUnsignedRangeMax(S: Exact))); |
10629 | } |
10630 | const SCEV *SymbolicMax = |
10631 | isa<SCEVCouldNotCompute>(Val: Exact) ? ConstantMax : Exact; |
10632 | return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates); |
10633 | } |
10634 | |
10635 | // Solve the general equation. |
10636 | const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Val: Step); |
10637 | if (!StepC || StepC->getValue()->isZero()) |
10638 | return getCouldNotCompute(); |
10639 | const SCEV *E = SolveLinEquationWithOverflow( |
10640 | A: StepC->getAPInt(), B: getNegativeSCEV(V: Start), |
10641 | Predicates: AllowPredicates ? &Predicates : nullptr, SE&: *this); |
10642 | |
10643 | const SCEV *M = E; |
10644 | if (E != getCouldNotCompute()) { |
10645 | APInt MaxWithGuards = getUnsignedRangeMax(S: applyLoopGuards(Expr: E, Guards)); |
10646 | M = getConstant(Val: APIntOps::umin(A: MaxWithGuards, B: getUnsignedRangeMax(S: E))); |
10647 | } |
10648 | auto *S = isa<SCEVCouldNotCompute>(Val: E) ? M : E; |
10649 | return ExitLimit(E, M, S, false, Predicates); |
10650 | } |
10651 | |
10652 | ScalarEvolution::ExitLimit |
10653 | ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { |
10654 | // Loops that look like: while (X == 0) are very strange indeed. We don't |
10655 | // handle them yet except for the trivial case. This could be expanded in the |
10656 | // future as needed. |
10657 | |
10658 | // If the value is a constant, check to see if it is known to be non-zero |
10659 | // already. If so, the backedge will execute zero times. |
10660 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Val: V)) { |
10661 | if (!C->getValue()->isZero()) |
10662 | return getZero(Ty: C->getType()); |
10663 | return getCouldNotCompute(); // Otherwise it will loop infinitely. |
10664 | } |
10665 | |
10666 | // We could implement others, but I really doubt anyone writes loops like |
10667 | // this, and if they did, they would already be constant folded. |
10668 | return getCouldNotCompute(); |
10669 | } |
10670 | |
10671 | std::pair<const BasicBlock *, const BasicBlock *> |
10672 | ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) |
10673 | const { |
10674 | // If the block has a unique predecessor, then there is no path from the |
10675 | // predecessor to the block that does not go through the direct edge |
10676 | // from the predecessor to the block. |
10677 | if (const BasicBlock *Pred = BB->getSinglePredecessor()) |
10678 | return {Pred, BB}; |
10679 | |
10680 | // A loop's header is defined to be a block that dominates the loop. |
10681 | // If the header has a unique predecessor outside the loop, it must be |
10682 | // a block that has exactly one successor that can reach the loop. |
10683 | if (const Loop *L = LI.getLoopFor(BB)) |
10684 | return {L->getLoopPredecessor(), L->getHeader()}; |
10685 | |
10686 | return {nullptr, BB}; |
10687 | } |
10688 | |
10689 | /// SCEV structural equivalence is usually sufficient for testing whether two |
10690 | /// expressions are equal, however for the purposes of looking for a condition |
10691 | /// guarding a loop, it can be useful to be a little more general, since a |
10692 | /// front-end may have replicated the controlling expression. |
10693 | static bool HasSameValue(const SCEV *A, const SCEV *B) { |
10694 | // Quick check to see if they are the same SCEV. |
10695 | if (A == B) return true; |
10696 | |
10697 | auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { |
10698 | // Not all instructions that are "identical" compute the same value. For |
10699 | // instance, two distinct alloca instructions allocating the same type are |
10700 | // identical and do not read memory; but compute distinct values. |
10701 | return A->isIdenticalTo(I: B) && (isa<BinaryOperator>(Val: A) || isa<GetElementPtrInst>(Val: A)); |
10702 | }; |
10703 | |
10704 | // Otherwise, if they're both SCEVUnknown, it's possible that they hold |
10705 | // two different instructions with the same value. Check for this case. |
10706 | if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(Val: A)) |
10707 | if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(Val: B)) |
10708 | if (const Instruction *AI = dyn_cast<Instruction>(Val: AU->getValue())) |
10709 | if (const Instruction *BI = dyn_cast<Instruction>(Val: BU->getValue())) |
10710 | if (ComputesEqualValues(AI, BI)) |
10711 | return true; |
10712 | |
10713 | // Otherwise assume they may have a different value. |
10714 | return false; |
10715 | } |
10716 | |
10717 | static bool MatchBinarySub(const SCEV *S, const SCEV *&LHS, const SCEV *&RHS) { |
10718 | const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: S); |
10719 | if (!Add || Add->getNumOperands() != 2) |
10720 | return false; |
10721 | if (auto *ME = dyn_cast<SCEVMulExpr>(Val: Add->getOperand(i: 0)); |
10722 | ME && ME->getNumOperands() == 2 && ME->getOperand(i: 0)->isAllOnesValue()) { |
10723 | LHS = Add->getOperand(i: 1); |
10724 | RHS = ME->getOperand(i: 1); |
10725 | return true; |
10726 | } |
10727 | if (auto *ME = dyn_cast<SCEVMulExpr>(Val: Add->getOperand(i: 1)); |
10728 | ME && ME->getNumOperands() == 2 && ME->getOperand(i: 0)->isAllOnesValue()) { |
10729 | LHS = Add->getOperand(i: 0); |
10730 | RHS = ME->getOperand(i: 1); |
10731 | return true; |
10732 | } |
10733 | return false; |
10734 | } |
10735 | |
10736 | bool ScalarEvolution::SimplifyICmpOperands(CmpPredicate &Pred, const SCEV *&LHS, |
10737 | const SCEV *&RHS, unsigned Depth) { |
10738 | bool Changed = false; |
10739 | // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or |
10740 | // '0 != 0'. |
10741 | auto TrivialCase = [&](bool TriviallyTrue) { |
10742 | LHS = RHS = getConstant(V: ConstantInt::getFalse(Context&: getContext())); |
10743 | Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; |
10744 | return true; |
10745 | }; |
10746 | // If we hit the max recursion limit bail out. |
10747 | if (Depth >= 3) |
10748 | return false; |
10749 | |
10750 | // Canonicalize a constant to the right side. |
10751 | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Val: LHS)) { |
10752 | // Check for both operands constant. |
10753 | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Val: RHS)) { |
10754 | if (!ICmpInst::compare(LHS: LHSC->getAPInt(), RHS: RHSC->getAPInt(), Pred)) |
10755 | return TrivialCase(false); |
10756 | return TrivialCase(true); |
10757 | } |
10758 | // Otherwise swap the operands to put the constant on the right. |
10759 | std::swap(a&: LHS, b&: RHS); |
10760 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
10761 | Changed = true; |
10762 | } |
10763 | |
10764 | // If we're comparing an addrec with a value which is loop-invariant in the |
10765 | // addrec's loop, put the addrec on the left. Also make a dominance check, |
10766 | // as both operands could be addrecs loop-invariant in each other's loop. |
10767 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: RHS)) { |
10768 | const Loop *L = AR->getLoop(); |
10769 | if (isLoopInvariant(S: LHS, L) && properlyDominates(S: LHS, BB: L->getHeader())) { |
10770 | std::swap(a&: LHS, b&: RHS); |
10771 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
10772 | Changed = true; |
10773 | } |
10774 | } |
10775 | |
10776 | // If there's a constant operand, canonicalize comparisons with boundary |
10777 | // cases, and canonicalize *-or-equal comparisons to regular comparisons. |
10778 | if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(Val: RHS)) { |
10779 | const APInt &RA = RC->getAPInt(); |
10780 | |
10781 | bool SimplifiedByConstantRange = false; |
10782 | |
10783 | if (!ICmpInst::isEquality(P: Pred)) { |
10784 | ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, Other: RA); |
10785 | if (ExactCR.isFullSet()) |
10786 | return TrivialCase(true); |
10787 | if (ExactCR.isEmptySet()) |
10788 | return TrivialCase(false); |
10789 | |
10790 | APInt NewRHS; |
10791 | CmpInst::Predicate NewPred; |
10792 | if (ExactCR.getEquivalentICmp(Pred&: NewPred, RHS&: NewRHS) && |
10793 | ICmpInst::isEquality(P: NewPred)) { |
10794 | // We were able to convert an inequality to an equality. |
10795 | Pred = NewPred; |
10796 | RHS = getConstant(Val: NewRHS); |
10797 | Changed = SimplifiedByConstantRange = true; |
10798 | } |
10799 | } |
10800 | |
10801 | if (!SimplifiedByConstantRange) { |
10802 | switch (Pred) { |
10803 | default: |
10804 | break; |
10805 | case ICmpInst::ICMP_EQ: |
10806 | case ICmpInst::ICMP_NE: |
10807 | // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. |
10808 | if (RA.isZero() && MatchBinarySub(S: LHS, LHS, RHS)) |
10809 | Changed = true; |
10810 | break; |
10811 | |
10812 | // The "Should have been caught earlier!" messages refer to the fact |
10813 | // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above |
10814 | // should have fired on the corresponding cases, and canonicalized the |
10815 | // check to trivial case. |
10816 | |
10817 | case ICmpInst::ICMP_UGE: |
10818 | assert(!RA.isMinValue() && "Should have been caught earlier!" ); |
10819 | Pred = ICmpInst::ICMP_UGT; |
10820 | RHS = getConstant(Val: RA - 1); |
10821 | Changed = true; |
10822 | break; |
10823 | case ICmpInst::ICMP_ULE: |
10824 | assert(!RA.isMaxValue() && "Should have been caught earlier!" ); |
10825 | Pred = ICmpInst::ICMP_ULT; |
10826 | RHS = getConstant(Val: RA + 1); |
10827 | Changed = true; |
10828 | break; |
10829 | case ICmpInst::ICMP_SGE: |
10830 | assert(!RA.isMinSignedValue() && "Should have been caught earlier!" ); |
10831 | Pred = ICmpInst::ICMP_SGT; |
10832 | RHS = getConstant(Val: RA - 1); |
10833 | Changed = true; |
10834 | break; |
10835 | case ICmpInst::ICMP_SLE: |
10836 | assert(!RA.isMaxSignedValue() && "Should have been caught earlier!" ); |
10837 | Pred = ICmpInst::ICMP_SLT; |
10838 | RHS = getConstant(Val: RA + 1); |
10839 | Changed = true; |
10840 | break; |
10841 | } |
10842 | } |
10843 | } |
10844 | |
10845 | // Check for obvious equality. |
10846 | if (HasSameValue(A: LHS, B: RHS)) { |
10847 | if (ICmpInst::isTrueWhenEqual(predicate: Pred)) |
10848 | return TrivialCase(true); |
10849 | if (ICmpInst::isFalseWhenEqual(predicate: Pred)) |
10850 | return TrivialCase(false); |
10851 | } |
10852 | |
10853 | // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by |
10854 | // adding or subtracting 1 from one of the operands. |
10855 | switch (Pred) { |
10856 | case ICmpInst::ICMP_SLE: |
10857 | if (!getSignedRangeMax(S: RHS).isMaxSignedValue()) { |
10858 | RHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: 1, isSigned: true), RHS, |
10859 | Flags: SCEV::FlagNSW); |
10860 | Pred = ICmpInst::ICMP_SLT; |
10861 | Changed = true; |
10862 | } else if (!getSignedRangeMin(S: LHS).isMinSignedValue()) { |
10863 | LHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: (uint64_t)-1, isSigned: true), RHS: LHS, |
10864 | Flags: SCEV::FlagNSW); |
10865 | Pred = ICmpInst::ICMP_SLT; |
10866 | Changed = true; |
10867 | } |
10868 | break; |
10869 | case ICmpInst::ICMP_SGE: |
10870 | if (!getSignedRangeMin(S: RHS).isMinSignedValue()) { |
10871 | RHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: (uint64_t)-1, isSigned: true), RHS, |
10872 | Flags: SCEV::FlagNSW); |
10873 | Pred = ICmpInst::ICMP_SGT; |
10874 | Changed = true; |
10875 | } else if (!getSignedRangeMax(S: LHS).isMaxSignedValue()) { |
10876 | LHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: 1, isSigned: true), RHS: LHS, |
10877 | Flags: SCEV::FlagNSW); |
10878 | Pred = ICmpInst::ICMP_SGT; |
10879 | Changed = true; |
10880 | } |
10881 | break; |
10882 | case ICmpInst::ICMP_ULE: |
10883 | if (!getUnsignedRangeMax(S: RHS).isMaxValue()) { |
10884 | RHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: 1, isSigned: true), RHS, |
10885 | Flags: SCEV::FlagNUW); |
10886 | Pred = ICmpInst::ICMP_ULT; |
10887 | Changed = true; |
10888 | } else if (!getUnsignedRangeMin(S: LHS).isMinValue()) { |
10889 | LHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: (uint64_t)-1, isSigned: true), RHS: LHS); |
10890 | Pred = ICmpInst::ICMP_ULT; |
10891 | Changed = true; |
10892 | } |
10893 | break; |
10894 | case ICmpInst::ICMP_UGE: |
10895 | // If RHS is an op we can fold the -1, try that first. |
10896 | // Otherwise prefer LHS to preserve the nuw flag. |
10897 | if ((isa<SCEVConstant>(Val: RHS) || |
10898 | (isa<SCEVAddExpr, SCEVAddRecExpr>(Val: RHS) && |
10899 | isa<SCEVConstant>(Val: cast<SCEVNAryExpr>(Val: RHS)->getOperand(i: 0)))) && |
10900 | !getUnsignedRangeMin(S: RHS).isMinValue()) { |
10901 | RHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: (uint64_t)-1, isSigned: true), RHS); |
10902 | Pred = ICmpInst::ICMP_UGT; |
10903 | Changed = true; |
10904 | } else if (!getUnsignedRangeMax(S: LHS).isMaxValue()) { |
10905 | LHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: 1, isSigned: true), RHS: LHS, |
10906 | Flags: SCEV::FlagNUW); |
10907 | Pred = ICmpInst::ICMP_UGT; |
10908 | Changed = true; |
10909 | } else if (!getUnsignedRangeMin(S: RHS).isMinValue()) { |
10910 | RHS = getAddExpr(LHS: getConstant(Ty: RHS->getType(), V: (uint64_t)-1, isSigned: true), RHS); |
10911 | Pred = ICmpInst::ICMP_UGT; |
10912 | Changed = true; |
10913 | } |
10914 | break; |
10915 | default: |
10916 | break; |
10917 | } |
10918 | |
10919 | // TODO: More simplifications are possible here. |
10920 | |
10921 | // Recursively simplify until we either hit a recursion limit or nothing |
10922 | // changes. |
10923 | if (Changed) |
10924 | return SimplifyICmpOperands(Pred, LHS, RHS, Depth: Depth + 1); |
10925 | |
10926 | return Changed; |
10927 | } |
10928 | |
10929 | bool ScalarEvolution::isKnownNegative(const SCEV *S) { |
10930 | return getSignedRangeMax(S).isNegative(); |
10931 | } |
10932 | |
10933 | bool ScalarEvolution::isKnownPositive(const SCEV *S) { |
10934 | return getSignedRangeMin(S).isStrictlyPositive(); |
10935 | } |
10936 | |
10937 | bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { |
10938 | return !getSignedRangeMin(S).isNegative(); |
10939 | } |
10940 | |
10941 | bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { |
10942 | return !getSignedRangeMax(S).isStrictlyPositive(); |
10943 | } |
10944 | |
10945 | bool ScalarEvolution::isKnownNonZero(const SCEV *S) { |
10946 | // Query push down for cases where the unsigned range is |
10947 | // less than sufficient. |
10948 | if (const auto *SExt = dyn_cast<SCEVSignExtendExpr>(Val: S)) |
10949 | return isKnownNonZero(S: SExt->getOperand(i: 0)); |
10950 | return getUnsignedRangeMin(S) != 0; |
10951 | } |
10952 | |
10953 | bool ScalarEvolution::isKnownToBeAPowerOfTwo(const SCEV *S, bool OrZero, |
10954 | bool OrNegative) { |
10955 | auto NonRecursive = [this, OrNegative](const SCEV *S) { |
10956 | if (auto *C = dyn_cast<SCEVConstant>(Val: S)) |
10957 | return C->getAPInt().isPowerOf2() || |
10958 | (OrNegative && C->getAPInt().isNegatedPowerOf2()); |
10959 | |
10960 | // The vscale_range indicates vscale is a power-of-two. |
10961 | return isa<SCEVVScale>(Val: S) && F.hasFnAttribute(Kind: Attribute::VScaleRange); |
10962 | }; |
10963 | |
10964 | if (NonRecursive(S)) |
10965 | return true; |
10966 | |
10967 | auto *Mul = dyn_cast<SCEVMulExpr>(Val: S); |
10968 | if (!Mul) |
10969 | return false; |
10970 | return all_of(Range: Mul->operands(), P: NonRecursive) && (OrZero || isKnownNonZero(S)); |
10971 | } |
10972 | |
10973 | bool ScalarEvolution::isKnownMultipleOf( |
10974 | const SCEV *S, uint64_t M, |
10975 | SmallVectorImpl<const SCEVPredicate *> &Assumptions) { |
10976 | if (M == 0) |
10977 | return false; |
10978 | if (M == 1) |
10979 | return true; |
10980 | |
10981 | // Recursively check AddRec operands. An AddRecExpr S is a multiple of M if S |
10982 | // starts with a multiple of M and at every iteration step S only adds |
10983 | // multiples of M. |
10984 | if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: S)) |
10985 | return isKnownMultipleOf(S: AddRec->getStart(), M, Assumptions) && |
10986 | isKnownMultipleOf(S: AddRec->getStepRecurrence(SE&: *this), M, Assumptions); |
10987 | |
10988 | // For a constant, check that "S % M == 0". |
10989 | if (auto *Cst = dyn_cast<SCEVConstant>(Val: S)) { |
10990 | APInt C = Cst->getAPInt(); |
10991 | return C.urem(RHS: M) == 0; |
10992 | } |
10993 | |
10994 | // TODO: Also check other SCEV expressions, i.e., SCEVAddRecExpr, etc. |
10995 | |
10996 | // Basic tests have failed. |
10997 | // Check "S % M == 0" at compile time and record runtime Assumptions. |
10998 | auto *STy = dyn_cast<IntegerType>(Val: S->getType()); |
10999 | const SCEV *SmodM = |
11000 | getURemExpr(LHS: S, RHS: getConstant(V: ConstantInt::get(Ty: STy, V: M, IsSigned: false))); |
11001 | const SCEV *Zero = getZero(Ty: STy); |
11002 | |
11003 | // Check whether "S % M == 0" is known at compile time. |
11004 | if (isKnownPredicate(Pred: ICmpInst::ICMP_EQ, LHS: SmodM, RHS: Zero)) |
11005 | return true; |
11006 | |
11007 | // Check whether "S % M != 0" is known at compile time. |
11008 | if (isKnownPredicate(Pred: ICmpInst::ICMP_NE, LHS: SmodM, RHS: Zero)) |
11009 | return false; |
11010 | |
11011 | const SCEVPredicate *P = getComparePredicate(Pred: ICmpInst::ICMP_EQ, LHS: SmodM, RHS: Zero); |
11012 | |
11013 | // Detect redundant predicates. |
11014 | for (auto *A : Assumptions) |
11015 | if (A->implies(N: P, SE&: *this)) |
11016 | return true; |
11017 | |
11018 | // Only record non-redundant predicates. |
11019 | Assumptions.push_back(Elt: P); |
11020 | return true; |
11021 | } |
11022 | |
11023 | std::pair<const SCEV *, const SCEV *> |
11024 | ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { |
11025 | // Compute SCEV on entry of loop L. |
11026 | const SCEV *Start = SCEVInitRewriter::rewrite(S, L, SE&: *this); |
11027 | if (Start == getCouldNotCompute()) |
11028 | return { Start, Start }; |
11029 | // Compute post increment SCEV for loop L. |
11030 | const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, SE&: *this); |
11031 | assert(PostInc != getCouldNotCompute() && "Unexpected could not compute" ); |
11032 | return { Start, PostInc }; |
11033 | } |
11034 | |
11035 | bool ScalarEvolution::isKnownViaInduction(CmpPredicate Pred, const SCEV *LHS, |
11036 | const SCEV *RHS) { |
11037 | // First collect all loops. |
11038 | SmallPtrSet<const Loop *, 8> LoopsUsed; |
11039 | getUsedLoops(S: LHS, LoopsUsed); |
11040 | getUsedLoops(S: RHS, LoopsUsed); |
11041 | |
11042 | if (LoopsUsed.empty()) |
11043 | return false; |
11044 | |
11045 | // Domination relationship must be a linear order on collected loops. |
11046 | #ifndef NDEBUG |
11047 | for (const auto *L1 : LoopsUsed) |
11048 | for (const auto *L2 : LoopsUsed) |
11049 | assert((DT.dominates(L1->getHeader(), L2->getHeader()) || |
11050 | DT.dominates(L2->getHeader(), L1->getHeader())) && |
11051 | "Domination relationship is not a linear order" ); |
11052 | #endif |
11053 | |
11054 | const Loop *MDL = |
11055 | *llvm::max_element(Range&: LoopsUsed, C: [&](const Loop *L1, const Loop *L2) { |
11056 | return DT.properlyDominates(A: L1->getHeader(), B: L2->getHeader()); |
11057 | }); |
11058 | |
11059 | // Get init and post increment value for LHS. |
11060 | auto SplitLHS = SplitIntoInitAndPostInc(L: MDL, S: LHS); |
11061 | // if LHS contains unknown non-invariant SCEV then bail out. |
11062 | if (SplitLHS.first == getCouldNotCompute()) |
11063 | return false; |
11064 | assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC" ); |
11065 | // Get init and post increment value for RHS. |
11066 | auto SplitRHS = SplitIntoInitAndPostInc(L: MDL, S: RHS); |
11067 | // if RHS contains unknown non-invariant SCEV then bail out. |
11068 | if (SplitRHS.first == getCouldNotCompute()) |
11069 | return false; |
11070 | assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC" ); |
11071 | // It is possible that init SCEV contains an invariant load but it does |
11072 | // not dominate MDL and is not available at MDL loop entry, so we should |
11073 | // check it here. |
11074 | if (!isAvailableAtLoopEntry(S: SplitLHS.first, L: MDL) || |
11075 | !isAvailableAtLoopEntry(S: SplitRHS.first, L: MDL)) |
11076 | return false; |
11077 | |
11078 | // It seems backedge guard check is faster than entry one so in some cases |
11079 | // it can speed up whole estimation by short circuit |
11080 | return isLoopBackedgeGuardedByCond(L: MDL, Pred, LHS: SplitLHS.second, |
11081 | RHS: SplitRHS.second) && |
11082 | isLoopEntryGuardedByCond(L: MDL, Pred, LHS: SplitLHS.first, RHS: SplitRHS.first); |
11083 | } |
11084 | |
11085 | bool ScalarEvolution::isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, |
11086 | const SCEV *RHS) { |
11087 | // Canonicalize the inputs first. |
11088 | (void)SimplifyICmpOperands(Pred, LHS, RHS); |
11089 | |
11090 | if (isKnownViaInduction(Pred, LHS, RHS)) |
11091 | return true; |
11092 | |
11093 | if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) |
11094 | return true; |
11095 | |
11096 | // Otherwise see what can be done with some simple reasoning. |
11097 | return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); |
11098 | } |
11099 | |
11100 | std::optional<bool> ScalarEvolution::evaluatePredicate(CmpPredicate Pred, |
11101 | const SCEV *LHS, |
11102 | const SCEV *RHS) { |
11103 | if (isKnownPredicate(Pred, LHS, RHS)) |
11104 | return true; |
11105 | if (isKnownPredicate(Pred: ICmpInst::getInverseCmpPredicate(Pred), LHS, RHS)) |
11106 | return false; |
11107 | return std::nullopt; |
11108 | } |
11109 | |
11110 | bool ScalarEvolution::isKnownPredicateAt(CmpPredicate Pred, const SCEV *LHS, |
11111 | const SCEV *RHS, |
11112 | const Instruction *CtxI) { |
11113 | // TODO: Analyze guards and assumes from Context's block. |
11114 | return isKnownPredicate(Pred, LHS, RHS) || |
11115 | isBasicBlockEntryGuardedByCond(BB: CtxI->getParent(), Pred, LHS, RHS); |
11116 | } |
11117 | |
11118 | std::optional<bool> |
11119 | ScalarEvolution::evaluatePredicateAt(CmpPredicate Pred, const SCEV *LHS, |
11120 | const SCEV *RHS, const Instruction *CtxI) { |
11121 | std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); |
11122 | if (KnownWithoutContext) |
11123 | return KnownWithoutContext; |
11124 | |
11125 | if (isBasicBlockEntryGuardedByCond(BB: CtxI->getParent(), Pred, LHS, RHS)) |
11126 | return true; |
11127 | if (isBasicBlockEntryGuardedByCond( |
11128 | BB: CtxI->getParent(), Pred: ICmpInst::getInverseCmpPredicate(Pred), LHS, RHS)) |
11129 | return false; |
11130 | return std::nullopt; |
11131 | } |
11132 | |
11133 | bool ScalarEvolution::isKnownOnEveryIteration(CmpPredicate Pred, |
11134 | const SCEVAddRecExpr *LHS, |
11135 | const SCEV *RHS) { |
11136 | const Loop *L = LHS->getLoop(); |
11137 | return isLoopEntryGuardedByCond(L, Pred, LHS: LHS->getStart(), RHS) && |
11138 | isLoopBackedgeGuardedByCond(L, Pred, LHS: LHS->getPostIncExpr(SE&: *this), RHS); |
11139 | } |
11140 | |
11141 | std::optional<ScalarEvolution::MonotonicPredicateType> |
11142 | ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, |
11143 | ICmpInst::Predicate Pred) { |
11144 | auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); |
11145 | |
11146 | #ifndef NDEBUG |
11147 | // Verify an invariant: inverting the predicate should turn a monotonically |
11148 | // increasing change to a monotonically decreasing one, and vice versa. |
11149 | if (Result) { |
11150 | auto ResultSwapped = |
11151 | getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); |
11152 | |
11153 | assert(*ResultSwapped != *Result && |
11154 | "monotonicity should flip as we flip the predicate" ); |
11155 | } |
11156 | #endif |
11157 | |
11158 | return Result; |
11159 | } |
11160 | |
11161 | std::optional<ScalarEvolution::MonotonicPredicateType> |
11162 | ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, |
11163 | ICmpInst::Predicate Pred) { |
11164 | // A zero step value for LHS means the induction variable is essentially a |
11165 | // loop invariant value. We don't really depend on the predicate actually |
11166 | // flipping from false to true (for increasing predicates, and the other way |
11167 | // around for decreasing predicates), all we care about is that *if* the |
11168 | // predicate changes then it only changes from false to true. |
11169 | // |
11170 | // A zero step value in itself is not very useful, but there may be places |
11171 | // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be |
11172 | // as general as possible. |
11173 | |
11174 | // Only handle LE/LT/GE/GT predicates. |
11175 | if (!ICmpInst::isRelational(P: Pred)) |
11176 | return std::nullopt; |
11177 | |
11178 | bool IsGreater = ICmpInst::isGE(P: Pred) || ICmpInst::isGT(P: Pred); |
11179 | assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && |
11180 | "Should be greater or less!" ); |
11181 | |
11182 | // Check that AR does not wrap. |
11183 | if (ICmpInst::isUnsigned(predicate: Pred)) { |
11184 | if (!LHS->hasNoUnsignedWrap()) |
11185 | return std::nullopt; |
11186 | return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; |
11187 | } |
11188 | assert(ICmpInst::isSigned(Pred) && |
11189 | "Relational predicate is either signed or unsigned!" ); |
11190 | if (!LHS->hasNoSignedWrap()) |
11191 | return std::nullopt; |
11192 | |
11193 | const SCEV *Step = LHS->getStepRecurrence(SE&: *this); |
11194 | |
11195 | if (isKnownNonNegative(S: Step)) |
11196 | return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; |
11197 | |
11198 | if (isKnownNonPositive(S: Step)) |
11199 | return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; |
11200 | |
11201 | return std::nullopt; |
11202 | } |
11203 | |
11204 | std::optional<ScalarEvolution::LoopInvariantPredicate> |
11205 | ScalarEvolution::getLoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, |
11206 | const SCEV *RHS, const Loop *L, |
11207 | const Instruction *CtxI) { |
11208 | // If there is a loop-invariant, force it into the RHS, otherwise bail out. |
11209 | if (!isLoopInvariant(S: RHS, L)) { |
11210 | if (!isLoopInvariant(S: LHS, L)) |
11211 | return std::nullopt; |
11212 | |
11213 | std::swap(a&: LHS, b&: RHS); |
11214 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
11215 | } |
11216 | |
11217 | const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(Val: LHS); |
11218 | if (!ArLHS || ArLHS->getLoop() != L) |
11219 | return std::nullopt; |
11220 | |
11221 | auto MonotonicType = getMonotonicPredicateType(LHS: ArLHS, Pred); |
11222 | if (!MonotonicType) |
11223 | return std::nullopt; |
11224 | // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to |
11225 | // true as the loop iterates, and the backedge is control dependent on |
11226 | // "ArLHS `Pred` RHS" == true then we can reason as follows: |
11227 | // |
11228 | // * if the predicate was false in the first iteration then the predicate |
11229 | // is never evaluated again, since the loop exits without taking the |
11230 | // backedge. |
11231 | // * if the predicate was true in the first iteration then it will |
11232 | // continue to be true for all future iterations since it is |
11233 | // monotonically increasing. |
11234 | // |
11235 | // For both the above possibilities, we can replace the loop varying |
11236 | // predicate with its value on the first iteration of the loop (which is |
11237 | // loop invariant). |
11238 | // |
11239 | // A similar reasoning applies for a monotonically decreasing predicate, by |
11240 | // replacing true with false and false with true in the above two bullets. |
11241 | bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; |
11242 | auto P = Increasing ? Pred : ICmpInst::getInverseCmpPredicate(Pred); |
11243 | |
11244 | if (isLoopBackedgeGuardedByCond(L, Pred: P, LHS, RHS)) |
11245 | return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), |
11246 | RHS); |
11247 | |
11248 | if (!CtxI) |
11249 | return std::nullopt; |
11250 | // Try to prove via context. |
11251 | // TODO: Support other cases. |
11252 | switch (Pred) { |
11253 | default: |
11254 | break; |
11255 | case ICmpInst::ICMP_ULE: |
11256 | case ICmpInst::ICMP_ULT: { |
11257 | assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!" ); |
11258 | // Given preconditions |
11259 | // (1) ArLHS does not cross the border of positive and negative parts of |
11260 | // range because of: |
11261 | // - Positive step; (TODO: lift this limitation) |
11262 | // - nuw - does not cross zero boundary; |
11263 | // - nsw - does not cross SINT_MAX boundary; |
11264 | // (2) ArLHS <s RHS |
11265 | // (3) RHS >=s 0 |
11266 | // we can replace the loop variant ArLHS <u RHS condition with loop |
11267 | // invariant Start(ArLHS) <u RHS. |
11268 | // |
11269 | // Because of (1) there are two options: |
11270 | // - ArLHS is always negative. It means that ArLHS <u RHS is always false; |
11271 | // - ArLHS is always non-negative. Because of (3) RHS is also non-negative. |
11272 | // It means that ArLHS <s RHS <=> ArLHS <u RHS. |
11273 | // Because of (2) ArLHS <u RHS is trivially true. |
11274 | // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0. |
11275 | // We can strengthen this to Start(ArLHS) <u RHS. |
11276 | auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(Pred); |
11277 | if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() && |
11278 | isKnownPositive(S: ArLHS->getStepRecurrence(SE&: *this)) && |
11279 | isKnownNonNegative(S: RHS) && |
11280 | isKnownPredicateAt(Pred: SignFlippedPred, LHS: ArLHS, RHS, CtxI)) |
11281 | return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), |
11282 | RHS); |
11283 | } |
11284 | } |
11285 | |
11286 | return std::nullopt; |
11287 | } |
11288 | |
11289 | std::optional<ScalarEvolution::LoopInvariantPredicate> |
11290 | ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( |
11291 | CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, |
11292 | const Instruction *CtxI, const SCEV *MaxIter) { |
11293 | if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( |
11294 | Pred, LHS, RHS, L, CtxI, MaxIter)) |
11295 | return LIP; |
11296 | if (auto *UMin = dyn_cast<SCEVUMinExpr>(Val: MaxIter)) |
11297 | // Number of iterations expressed as UMIN isn't always great for expressing |
11298 | // the value on the last iteration. If the straightforward approach didn't |
11299 | // work, try the following trick: if the a predicate is invariant for X, it |
11300 | // is also invariant for umin(X, ...). So try to find something that works |
11301 | // among subexpressions of MaxIter expressed as umin. |
11302 | for (auto *Op : UMin->operands()) |
11303 | if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( |
11304 | Pred, LHS, RHS, L, CtxI, MaxIter: Op)) |
11305 | return LIP; |
11306 | return std::nullopt; |
11307 | } |
11308 | |
11309 | std::optional<ScalarEvolution::LoopInvariantPredicate> |
11310 | ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl( |
11311 | CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, |
11312 | const Instruction *CtxI, const SCEV *MaxIter) { |
11313 | // Try to prove the following set of facts: |
11314 | // - The predicate is monotonic in the iteration space. |
11315 | // - If the check does not fail on the 1st iteration: |
11316 | // - No overflow will happen during first MaxIter iterations; |
11317 | // - It will not fail on the MaxIter'th iteration. |
11318 | // If the check does fail on the 1st iteration, we leave the loop and no |
11319 | // other checks matter. |
11320 | |
11321 | // If there is a loop-invariant, force it into the RHS, otherwise bail out. |
11322 | if (!isLoopInvariant(S: RHS, L)) { |
11323 | if (!isLoopInvariant(S: LHS, L)) |
11324 | return std::nullopt; |
11325 | |
11326 | std::swap(a&: LHS, b&: RHS); |
11327 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
11328 | } |
11329 | |
11330 | auto *AR = dyn_cast<SCEVAddRecExpr>(Val: LHS); |
11331 | if (!AR || AR->getLoop() != L) |
11332 | return std::nullopt; |
11333 | |
11334 | // The predicate must be relational (i.e. <, <=, >=, >). |
11335 | if (!ICmpInst::isRelational(P: Pred)) |
11336 | return std::nullopt; |
11337 | |
11338 | // TODO: Support steps other than +/- 1. |
11339 | const SCEV *Step = AR->getStepRecurrence(SE&: *this); |
11340 | auto *One = getOne(Ty: Step->getType()); |
11341 | auto *MinusOne = getNegativeSCEV(V: One); |
11342 | if (Step != One && Step != MinusOne) |
11343 | return std::nullopt; |
11344 | |
11345 | // Type mismatch here means that MaxIter is potentially larger than max |
11346 | // unsigned value in start type, which mean we cannot prove no wrap for the |
11347 | // indvar. |
11348 | if (AR->getType() != MaxIter->getType()) |
11349 | return std::nullopt; |
11350 | |
11351 | // Value of IV on suggested last iteration. |
11352 | const SCEV *Last = AR->evaluateAtIteration(It: MaxIter, SE&: *this); |
11353 | // Does it still meet the requirement? |
11354 | if (!isLoopBackedgeGuardedByCond(L, Pred, LHS: Last, RHS)) |
11355 | return std::nullopt; |
11356 | // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does |
11357 | // not exceed max unsigned value of this type), this effectively proves |
11358 | // that there is no wrap during the iteration. To prove that there is no |
11359 | // signed/unsigned wrap, we need to check that |
11360 | // Start <= Last for step = 1 or Start >= Last for step = -1. |
11361 | ICmpInst::Predicate NoOverflowPred = |
11362 | CmpInst::isSigned(predicate: Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; |
11363 | if (Step == MinusOne) |
11364 | NoOverflowPred = ICmpInst::getSwappedCmpPredicate(Pred: NoOverflowPred); |
11365 | const SCEV *Start = AR->getStart(); |
11366 | if (!isKnownPredicateAt(Pred: NoOverflowPred, LHS: Start, RHS: Last, CtxI)) |
11367 | return std::nullopt; |
11368 | |
11369 | // Everything is fine. |
11370 | return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); |
11371 | } |
11372 | |
11373 | bool ScalarEvolution::isKnownPredicateViaConstantRanges(CmpPredicate Pred, |
11374 | const SCEV *LHS, |
11375 | const SCEV *RHS) { |
11376 | if (HasSameValue(A: LHS, B: RHS)) |
11377 | return ICmpInst::isTrueWhenEqual(predicate: Pred); |
11378 | |
11379 | // This code is split out from isKnownPredicate because it is called from |
11380 | // within isLoopEntryGuardedByCond. |
11381 | |
11382 | auto CheckRanges = [&](const ConstantRange &RangeLHS, |
11383 | const ConstantRange &RangeRHS) { |
11384 | return RangeLHS.icmp(Pred, Other: RangeRHS); |
11385 | }; |
11386 | |
11387 | // The check at the top of the function catches the case where the values are |
11388 | // known to be equal. |
11389 | if (Pred == CmpInst::ICMP_EQ) |
11390 | return false; |
11391 | |
11392 | if (Pred == CmpInst::ICMP_NE) { |
11393 | auto SL = getSignedRange(S: LHS); |
11394 | auto SR = getSignedRange(S: RHS); |
11395 | if (CheckRanges(SL, SR)) |
11396 | return true; |
11397 | auto UL = getUnsignedRange(S: LHS); |
11398 | auto UR = getUnsignedRange(S: RHS); |
11399 | if (CheckRanges(UL, UR)) |
11400 | return true; |
11401 | auto *Diff = getMinusSCEV(LHS, RHS); |
11402 | return !isa<SCEVCouldNotCompute>(Val: Diff) && isKnownNonZero(S: Diff); |
11403 | } |
11404 | |
11405 | if (CmpInst::isSigned(predicate: Pred)) { |
11406 | auto SL = getSignedRange(S: LHS); |
11407 | auto SR = getSignedRange(S: RHS); |
11408 | return CheckRanges(SL, SR); |
11409 | } |
11410 | |
11411 | auto UL = getUnsignedRange(S: LHS); |
11412 | auto UR = getUnsignedRange(S: RHS); |
11413 | return CheckRanges(UL, UR); |
11414 | } |
11415 | |
11416 | bool ScalarEvolution::isKnownPredicateViaNoOverflow(CmpPredicate Pred, |
11417 | const SCEV *LHS, |
11418 | const SCEV *RHS) { |
11419 | // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where |
11420 | // C1 and C2 are constant integers. If either X or Y are not add expressions, |
11421 | // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via |
11422 | // OutC1 and OutC2. |
11423 | auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, |
11424 | APInt &OutC1, APInt &OutC2, |
11425 | SCEV::NoWrapFlags ExpectedFlags) { |
11426 | const SCEV *XNonConstOp, *XConstOp; |
11427 | const SCEV *YNonConstOp, *YConstOp; |
11428 | SCEV::NoWrapFlags XFlagsPresent; |
11429 | SCEV::NoWrapFlags YFlagsPresent; |
11430 | |
11431 | if (!splitBinaryAdd(Expr: X, L&: XConstOp, R&: XNonConstOp, Flags&: XFlagsPresent)) { |
11432 | XConstOp = getZero(Ty: X->getType()); |
11433 | XNonConstOp = X; |
11434 | XFlagsPresent = ExpectedFlags; |
11435 | } |
11436 | if (!isa<SCEVConstant>(Val: XConstOp) || |
11437 | (XFlagsPresent & ExpectedFlags) != ExpectedFlags) |
11438 | return false; |
11439 | |
11440 | if (!splitBinaryAdd(Expr: Y, L&: YConstOp, R&: YNonConstOp, Flags&: YFlagsPresent)) { |
11441 | YConstOp = getZero(Ty: Y->getType()); |
11442 | YNonConstOp = Y; |
11443 | YFlagsPresent = ExpectedFlags; |
11444 | } |
11445 | |
11446 | if (!isa<SCEVConstant>(Val: YConstOp) || |
11447 | (YFlagsPresent & ExpectedFlags) != ExpectedFlags) |
11448 | return false; |
11449 | |
11450 | if (YNonConstOp != XNonConstOp) |
11451 | return false; |
11452 | |
11453 | OutC1 = cast<SCEVConstant>(Val: XConstOp)->getAPInt(); |
11454 | OutC2 = cast<SCEVConstant>(Val: YConstOp)->getAPInt(); |
11455 | |
11456 | return true; |
11457 | }; |
11458 | |
11459 | APInt C1; |
11460 | APInt C2; |
11461 | |
11462 | switch (Pred) { |
11463 | default: |
11464 | break; |
11465 | |
11466 | case ICmpInst::ICMP_SGE: |
11467 | std::swap(a&: LHS, b&: RHS); |
11468 | [[fallthrough]]; |
11469 | case ICmpInst::ICMP_SLE: |
11470 | // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. |
11471 | if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(RHS: C2)) |
11472 | return true; |
11473 | |
11474 | break; |
11475 | |
11476 | case ICmpInst::ICMP_SGT: |
11477 | std::swap(a&: LHS, b&: RHS); |
11478 | [[fallthrough]]; |
11479 | case ICmpInst::ICMP_SLT: |
11480 | // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. |
11481 | if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(RHS: C2)) |
11482 | return true; |
11483 | |
11484 | break; |
11485 | |
11486 | case ICmpInst::ICMP_UGE: |
11487 | std::swap(a&: LHS, b&: RHS); |
11488 | [[fallthrough]]; |
11489 | case ICmpInst::ICMP_ULE: |
11490 | // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. |
11491 | if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNUW) && C1.ule(RHS: C2)) |
11492 | return true; |
11493 | |
11494 | break; |
11495 | |
11496 | case ICmpInst::ICMP_UGT: |
11497 | std::swap(a&: LHS, b&: RHS); |
11498 | [[fallthrough]]; |
11499 | case ICmpInst::ICMP_ULT: |
11500 | // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. |
11501 | if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNUW) && C1.ult(RHS: C2)) |
11502 | return true; |
11503 | break; |
11504 | } |
11505 | |
11506 | return false; |
11507 | } |
11508 | |
11509 | bool ScalarEvolution::isKnownPredicateViaSplitting(CmpPredicate Pred, |
11510 | const SCEV *LHS, |
11511 | const SCEV *RHS) { |
11512 | if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) |
11513 | return false; |
11514 | |
11515 | // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on |
11516 | // the stack can result in exponential time complexity. |
11517 | SaveAndRestore Restore(ProvingSplitPredicate, true); |
11518 | |
11519 | // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L |
11520 | // |
11521 | // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use |
11522 | // isKnownPredicate. isKnownPredicate is more powerful, but also more |
11523 | // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the |
11524 | // interesting cases seen in practice. We can consider "upgrading" L >= 0 to |
11525 | // use isKnownPredicate later if needed. |
11526 | return isKnownNonNegative(S: RHS) && |
11527 | isKnownPredicate(Pred: CmpInst::ICMP_SGE, LHS, RHS: getZero(Ty: LHS->getType())) && |
11528 | isKnownPredicate(Pred: CmpInst::ICMP_SLT, LHS, RHS); |
11529 | } |
11530 | |
11531 | bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, CmpPredicate Pred, |
11532 | const SCEV *LHS, const SCEV *RHS) { |
11533 | // No need to even try if we know the module has no guards. |
11534 | if (!HasGuards) |
11535 | return false; |
11536 | |
11537 | return any_of(Range: *BB, P: [&](const Instruction &I) { |
11538 | using namespace llvm::PatternMatch; |
11539 | |
11540 | Value *Condition; |
11541 | return match(V: &I, P: m_Intrinsic<Intrinsic::experimental_guard>( |
11542 | Op0: m_Value(V&: Condition))) && |
11543 | isImpliedCond(Pred, LHS, RHS, FoundCondValue: Condition, Inverse: false); |
11544 | }); |
11545 | } |
11546 | |
11547 | /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is |
11548 | /// protected by a conditional between LHS and RHS. This is used to |
11549 | /// to eliminate casts. |
11550 | bool ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, |
11551 | CmpPredicate Pred, |
11552 | const SCEV *LHS, |
11553 | const SCEV *RHS) { |
11554 | // Interpret a null as meaning no loop, where there is obviously no guard |
11555 | // (interprocedural conditions notwithstanding). Do not bother about |
11556 | // unreachable loops. |
11557 | if (!L || !DT.isReachableFromEntry(A: L->getHeader())) |
11558 | return true; |
11559 | |
11560 | if (VerifyIR) |
11561 | assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && |
11562 | "This cannot be done on broken IR!" ); |
11563 | |
11564 | |
11565 | if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) |
11566 | return true; |
11567 | |
11568 | BasicBlock *Latch = L->getLoopLatch(); |
11569 | if (!Latch) |
11570 | return false; |
11571 | |
11572 | BranchInst *LoopContinuePredicate = |
11573 | dyn_cast<BranchInst>(Val: Latch->getTerminator()); |
11574 | if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && |
11575 | isImpliedCond(Pred, LHS, RHS, |
11576 | FoundCondValue: LoopContinuePredicate->getCondition(), |
11577 | Inverse: LoopContinuePredicate->getSuccessor(i: 0) != L->getHeader())) |
11578 | return true; |
11579 | |
11580 | // We don't want more than one activation of the following loops on the stack |
11581 | // -- that can lead to O(n!) time complexity. |
11582 | if (WalkingBEDominatingConds) |
11583 | return false; |
11584 | |
11585 | SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true); |
11586 | |
11587 | // See if we can exploit a trip count to prove the predicate. |
11588 | const auto &BETakenInfo = getBackedgeTakenInfo(L); |
11589 | const SCEV *LatchBECount = BETakenInfo.getExact(ExitingBlock: Latch, SE: this); |
11590 | if (LatchBECount != getCouldNotCompute()) { |
11591 | // We know that Latch branches back to the loop header exactly |
11592 | // LatchBECount times. This means the backdege condition at Latch is |
11593 | // equivalent to "{0,+,1} u< LatchBECount". |
11594 | Type *Ty = LatchBECount->getType(); |
11595 | auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); |
11596 | const SCEV *LoopCounter = |
11597 | getAddRecExpr(Start: getZero(Ty), Step: getOne(Ty), L, Flags: NoWrapFlags); |
11598 | if (isImpliedCond(Pred, LHS, RHS, FoundPred: ICmpInst::ICMP_ULT, FoundLHS: LoopCounter, |
11599 | FoundRHS: LatchBECount)) |
11600 | return true; |
11601 | } |
11602 | |
11603 | // Check conditions due to any @llvm.assume intrinsics. |
11604 | for (auto &AssumeVH : AC.assumptions()) { |
11605 | if (!AssumeVH) |
11606 | continue; |
11607 | auto *CI = cast<CallInst>(Val&: AssumeVH); |
11608 | if (!DT.dominates(Def: CI, User: Latch->getTerminator())) |
11609 | continue; |
11610 | |
11611 | if (isImpliedCond(Pred, LHS, RHS, FoundCondValue: CI->getArgOperand(i: 0), Inverse: false)) |
11612 | return true; |
11613 | } |
11614 | |
11615 | if (isImpliedViaGuard(BB: Latch, Pred, LHS, RHS)) |
11616 | return true; |
11617 | |
11618 | for (DomTreeNode *DTN = DT[Latch], * = DT[L->getHeader()]; |
11619 | DTN != HeaderDTN; DTN = DTN->getIDom()) { |
11620 | assert(DTN && "should reach the loop header before reaching the root!" ); |
11621 | |
11622 | BasicBlock *BB = DTN->getBlock(); |
11623 | if (isImpliedViaGuard(BB, Pred, LHS, RHS)) |
11624 | return true; |
11625 | |
11626 | BasicBlock *PBB = BB->getSinglePredecessor(); |
11627 | if (!PBB) |
11628 | continue; |
11629 | |
11630 | BranchInst *ContinuePredicate = dyn_cast<BranchInst>(Val: PBB->getTerminator()); |
11631 | if (!ContinuePredicate || !ContinuePredicate->isConditional()) |
11632 | continue; |
11633 | |
11634 | Value *Condition = ContinuePredicate->getCondition(); |
11635 | |
11636 | // If we have an edge `E` within the loop body that dominates the only |
11637 | // latch, the condition guarding `E` also guards the backedge. This |
11638 | // reasoning works only for loops with a single latch. |
11639 | |
11640 | BasicBlockEdge DominatingEdge(PBB, BB); |
11641 | if (DominatingEdge.isSingleEdge()) { |
11642 | // We're constructively (and conservatively) enumerating edges within the |
11643 | // loop body that dominate the latch. The dominator tree better agree |
11644 | // with us on this: |
11645 | assert(DT.dominates(DominatingEdge, Latch) && "should be!" ); |
11646 | |
11647 | if (isImpliedCond(Pred, LHS, RHS, FoundCondValue: Condition, |
11648 | Inverse: BB != ContinuePredicate->getSuccessor(i: 0))) |
11649 | return true; |
11650 | } |
11651 | } |
11652 | |
11653 | return false; |
11654 | } |
11655 | |
11656 | bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, |
11657 | CmpPredicate Pred, |
11658 | const SCEV *LHS, |
11659 | const SCEV *RHS) { |
11660 | // Do not bother proving facts for unreachable code. |
11661 | if (!DT.isReachableFromEntry(A: BB)) |
11662 | return true; |
11663 | if (VerifyIR) |
11664 | assert(!verifyFunction(*BB->getParent(), &dbgs()) && |
11665 | "This cannot be done on broken IR!" ); |
11666 | |
11667 | // If we cannot prove strict comparison (e.g. a > b), maybe we can prove |
11668 | // the facts (a >= b && a != b) separately. A typical situation is when the |
11669 | // non-strict comparison is known from ranges and non-equality is known from |
11670 | // dominating predicates. If we are proving strict comparison, we always try |
11671 | // to prove non-equality and non-strict comparison separately. |
11672 | CmpPredicate NonStrictPredicate = ICmpInst::getNonStrictCmpPredicate(Pred); |
11673 | const bool ProvingStrictComparison = |
11674 | Pred != NonStrictPredicate.dropSameSign(); |
11675 | bool ProvedNonStrictComparison = false; |
11676 | bool ProvedNonEquality = false; |
11677 | |
11678 | auto SplitAndProve = [&](std::function<bool(CmpPredicate)> Fn) -> bool { |
11679 | if (!ProvedNonStrictComparison) |
11680 | ProvedNonStrictComparison = Fn(NonStrictPredicate); |
11681 | if (!ProvedNonEquality) |
11682 | ProvedNonEquality = Fn(ICmpInst::ICMP_NE); |
11683 | if (ProvedNonStrictComparison && ProvedNonEquality) |
11684 | return true; |
11685 | return false; |
11686 | }; |
11687 | |
11688 | if (ProvingStrictComparison) { |
11689 | auto ProofFn = [&](CmpPredicate P) { |
11690 | return isKnownViaNonRecursiveReasoning(Pred: P, LHS, RHS); |
11691 | }; |
11692 | if (SplitAndProve(ProofFn)) |
11693 | return true; |
11694 | } |
11695 | |
11696 | // Try to prove (Pred, LHS, RHS) using isImpliedCond. |
11697 | auto ProveViaCond = [&](const Value *Condition, bool Inverse) { |
11698 | const Instruction *CtxI = &BB->front(); |
11699 | if (isImpliedCond(Pred, LHS, RHS, FoundCondValue: Condition, Inverse, Context: CtxI)) |
11700 | return true; |
11701 | if (ProvingStrictComparison) { |
11702 | auto ProofFn = [&](CmpPredicate P) { |
11703 | return isImpliedCond(Pred: P, LHS, RHS, FoundCondValue: Condition, Inverse, Context: CtxI); |
11704 | }; |
11705 | if (SplitAndProve(ProofFn)) |
11706 | return true; |
11707 | } |
11708 | return false; |
11709 | }; |
11710 | |
11711 | // Starting at the block's predecessor, climb up the predecessor chain, as long |
11712 | // as there are predecessors that can be found that have unique successors |
11713 | // leading to the original block. |
11714 | const Loop *ContainingLoop = LI.getLoopFor(BB); |
11715 | const BasicBlock *PredBB; |
11716 | if (ContainingLoop && ContainingLoop->getHeader() == BB) |
11717 | PredBB = ContainingLoop->getLoopPredecessor(); |
11718 | else |
11719 | PredBB = BB->getSinglePredecessor(); |
11720 | for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); |
11721 | Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(BB: Pair.first)) { |
11722 | const BranchInst *BlockEntryPredicate = |
11723 | dyn_cast<BranchInst>(Val: Pair.first->getTerminator()); |
11724 | if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional()) |
11725 | continue; |
11726 | |
11727 | if (ProveViaCond(BlockEntryPredicate->getCondition(), |
11728 | BlockEntryPredicate->getSuccessor(i: 0) != Pair.second)) |
11729 | return true; |
11730 | } |
11731 | |
11732 | // Check conditions due to any @llvm.assume intrinsics. |
11733 | for (auto &AssumeVH : AC.assumptions()) { |
11734 | if (!AssumeVH) |
11735 | continue; |
11736 | auto *CI = cast<CallInst>(Val&: AssumeVH); |
11737 | if (!DT.dominates(Def: CI, BB)) |
11738 | continue; |
11739 | |
11740 | if (ProveViaCond(CI->getArgOperand(i: 0), false)) |
11741 | return true; |
11742 | } |
11743 | |
11744 | // Check conditions due to any @llvm.experimental.guard intrinsics. |
11745 | auto *GuardDecl = Intrinsic::getDeclarationIfExists( |
11746 | M: F.getParent(), id: Intrinsic::experimental_guard); |
11747 | if (GuardDecl) |
11748 | for (const auto *GU : GuardDecl->users()) |
11749 | if (const auto *Guard = dyn_cast<IntrinsicInst>(Val: GU)) |
11750 | if (Guard->getFunction() == BB->getParent() && DT.dominates(Def: Guard, BB)) |
11751 | if (ProveViaCond(Guard->getArgOperand(i: 0), false)) |
11752 | return true; |
11753 | return false; |
11754 | } |
11755 | |
11756 | bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, |
11757 | const SCEV *LHS, |
11758 | const SCEV *RHS) { |
11759 | // Interpret a null as meaning no loop, where there is obviously no guard |
11760 | // (interprocedural conditions notwithstanding). |
11761 | if (!L) |
11762 | return false; |
11763 | |
11764 | // Both LHS and RHS must be available at loop entry. |
11765 | assert(isAvailableAtLoopEntry(LHS, L) && |
11766 | "LHS is not available at Loop Entry" ); |
11767 | assert(isAvailableAtLoopEntry(RHS, L) && |
11768 | "RHS is not available at Loop Entry" ); |
11769 | |
11770 | if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) |
11771 | return true; |
11772 | |
11773 | return isBasicBlockEntryGuardedByCond(BB: L->getHeader(), Pred, LHS, RHS); |
11774 | } |
11775 | |
11776 | bool ScalarEvolution::isImpliedCond(CmpPredicate Pred, const SCEV *LHS, |
11777 | const SCEV *RHS, |
11778 | const Value *FoundCondValue, bool Inverse, |
11779 | const Instruction *CtxI) { |
11780 | // False conditions implies anything. Do not bother analyzing it further. |
11781 | if (FoundCondValue == |
11782 | ConstantInt::getBool(Context&: FoundCondValue->getContext(), V: Inverse)) |
11783 | return true; |
11784 | |
11785 | if (!PendingLoopPredicates.insert(Ptr: FoundCondValue).second) |
11786 | return false; |
11787 | |
11788 | auto ClearOnExit = |
11789 | make_scope_exit(F: [&]() { PendingLoopPredicates.erase(Ptr: FoundCondValue); }); |
11790 | |
11791 | // Recursively handle And and Or conditions. |
11792 | const Value *Op0, *Op1; |
11793 | if (match(V: FoundCondValue, P: m_LogicalAnd(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) { |
11794 | if (!Inverse) |
11795 | return isImpliedCond(Pred, LHS, RHS, FoundCondValue: Op0, Inverse, CtxI) || |
11796 | isImpliedCond(Pred, LHS, RHS, FoundCondValue: Op1, Inverse, CtxI); |
11797 | } else if (match(V: FoundCondValue, P: m_LogicalOr(L: m_Value(V&: Op0), R: m_Value(V&: Op1)))) { |
11798 | if (Inverse) |
11799 | return isImpliedCond(Pred, LHS, RHS, FoundCondValue: Op0, Inverse, CtxI) || |
11800 | isImpliedCond(Pred, LHS, RHS, FoundCondValue: Op1, Inverse, CtxI); |
11801 | } |
11802 | |
11803 | const ICmpInst *ICI = dyn_cast<ICmpInst>(Val: FoundCondValue); |
11804 | if (!ICI) return false; |
11805 | |
11806 | // Now that we found a conditional branch that dominates the loop or controls |
11807 | // the loop latch. Check to see if it is the comparison we are looking for. |
11808 | CmpPredicate FoundPred; |
11809 | if (Inverse) |
11810 | FoundPred = ICI->getInverseCmpPredicate(); |
11811 | else |
11812 | FoundPred = ICI->getCmpPredicate(); |
11813 | |
11814 | const SCEV *FoundLHS = getSCEV(V: ICI->getOperand(i_nocapture: 0)); |
11815 | const SCEV *FoundRHS = getSCEV(V: ICI->getOperand(i_nocapture: 1)); |
11816 | |
11817 | return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context: CtxI); |
11818 | } |
11819 | |
11820 | bool ScalarEvolution::isImpliedCond(CmpPredicate Pred, const SCEV *LHS, |
11821 | const SCEV *RHS, CmpPredicate FoundPred, |
11822 | const SCEV *FoundLHS, const SCEV *FoundRHS, |
11823 | const Instruction *CtxI) { |
11824 | // Balance the types. |
11825 | if (getTypeSizeInBits(Ty: LHS->getType()) < |
11826 | getTypeSizeInBits(Ty: FoundLHS->getType())) { |
11827 | // For unsigned and equality predicates, try to prove that both found |
11828 | // operands fit into narrow unsigned range. If so, try to prove facts in |
11829 | // narrow types. |
11830 | if (!CmpInst::isSigned(predicate: FoundPred) && !FoundLHS->getType()->isPointerTy() && |
11831 | !FoundRHS->getType()->isPointerTy()) { |
11832 | auto *NarrowType = LHS->getType(); |
11833 | auto *WideType = FoundLHS->getType(); |
11834 | auto BitWidth = getTypeSizeInBits(Ty: NarrowType); |
11835 | const SCEV *MaxValue = getZeroExtendExpr( |
11836 | Op: getConstant(Val: APInt::getMaxValue(numBits: BitWidth)), Ty: WideType); |
11837 | if (isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_ULE, LHS: FoundLHS, |
11838 | RHS: MaxValue) && |
11839 | isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_ULE, LHS: FoundRHS, |
11840 | RHS: MaxValue)) { |
11841 | const SCEV *TruncFoundLHS = getTruncateExpr(Op: FoundLHS, Ty: NarrowType); |
11842 | const SCEV *TruncFoundRHS = getTruncateExpr(Op: FoundRHS, Ty: NarrowType); |
11843 | // We cannot preserve samesign after truncation. |
11844 | if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred: FoundPred.dropSameSign(), |
11845 | FoundLHS: TruncFoundLHS, FoundRHS: TruncFoundRHS, CtxI)) |
11846 | return true; |
11847 | } |
11848 | } |
11849 | |
11850 | if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) |
11851 | return false; |
11852 | if (CmpInst::isSigned(predicate: Pred)) { |
11853 | LHS = getSignExtendExpr(Op: LHS, Ty: FoundLHS->getType()); |
11854 | RHS = getSignExtendExpr(Op: RHS, Ty: FoundLHS->getType()); |
11855 | } else { |
11856 | LHS = getZeroExtendExpr(Op: LHS, Ty: FoundLHS->getType()); |
11857 | RHS = getZeroExtendExpr(Op: RHS, Ty: FoundLHS->getType()); |
11858 | } |
11859 | } else if (getTypeSizeInBits(Ty: LHS->getType()) > |
11860 | getTypeSizeInBits(Ty: FoundLHS->getType())) { |
11861 | if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) |
11862 | return false; |
11863 | if (CmpInst::isSigned(predicate: FoundPred)) { |
11864 | FoundLHS = getSignExtendExpr(Op: FoundLHS, Ty: LHS->getType()); |
11865 | FoundRHS = getSignExtendExpr(Op: FoundRHS, Ty: LHS->getType()); |
11866 | } else { |
11867 | FoundLHS = getZeroExtendExpr(Op: FoundLHS, Ty: LHS->getType()); |
11868 | FoundRHS = getZeroExtendExpr(Op: FoundRHS, Ty: LHS->getType()); |
11869 | } |
11870 | } |
11871 | return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, |
11872 | FoundRHS, CtxI); |
11873 | } |
11874 | |
11875 | bool ScalarEvolution::isImpliedCondBalancedTypes( |
11876 | CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, CmpPredicate FoundPred, |
11877 | const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { |
11878 | assert(getTypeSizeInBits(LHS->getType()) == |
11879 | getTypeSizeInBits(FoundLHS->getType()) && |
11880 | "Types should be balanced!" ); |
11881 | // Canonicalize the query to match the way instcombine will have |
11882 | // canonicalized the comparison. |
11883 | if (SimplifyICmpOperands(Pred, LHS, RHS)) |
11884 | if (LHS == RHS) |
11885 | return CmpInst::isTrueWhenEqual(predicate: Pred); |
11886 | if (SimplifyICmpOperands(Pred&: FoundPred, LHS&: FoundLHS, RHS&: FoundRHS)) |
11887 | if (FoundLHS == FoundRHS) |
11888 | return CmpInst::isFalseWhenEqual(predicate: FoundPred); |
11889 | |
11890 | // Check to see if we can make the LHS or RHS match. |
11891 | if (LHS == FoundRHS || RHS == FoundLHS) { |
11892 | if (isa<SCEVConstant>(Val: RHS)) { |
11893 | std::swap(a&: FoundLHS, b&: FoundRHS); |
11894 | FoundPred = ICmpInst::getSwappedCmpPredicate(Pred: FoundPred); |
11895 | } else { |
11896 | std::swap(a&: LHS, b&: RHS); |
11897 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
11898 | } |
11899 | } |
11900 | |
11901 | // Check whether the found predicate is the same as the desired predicate. |
11902 | if (auto P = CmpPredicate::getMatching(A: FoundPred, B: Pred)) |
11903 | return isImpliedCondOperands(Pred: *P, LHS, RHS, FoundLHS, FoundRHS, Context: CtxI); |
11904 | |
11905 | // Check whether swapping the found predicate makes it the same as the |
11906 | // desired predicate. |
11907 | if (auto P = CmpPredicate::getMatching( |
11908 | A: ICmpInst::getSwappedCmpPredicate(Pred: FoundPred), B: Pred)) { |
11909 | // We can write the implication |
11910 | // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS |
11911 | // using one of the following ways: |
11912 | // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS |
11913 | // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS |
11914 | // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS |
11915 | // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS |
11916 | // Forms 1. and 2. require swapping the operands of one condition. Don't |
11917 | // do this if it would break canonical constant/addrec ordering. |
11918 | if (!isa<SCEVConstant>(Val: RHS) && !isa<SCEVAddRecExpr>(Val: LHS)) |
11919 | return isImpliedCondOperands(Pred: ICmpInst::getSwappedCmpPredicate(Pred: *P), LHS: RHS, |
11920 | RHS: LHS, FoundLHS, FoundRHS, Context: CtxI); |
11921 | if (!isa<SCEVConstant>(Val: FoundRHS) && !isa<SCEVAddRecExpr>(Val: FoundLHS)) |
11922 | return isImpliedCondOperands(Pred: *P, LHS, RHS, FoundLHS: FoundRHS, FoundRHS: FoundLHS, Context: CtxI); |
11923 | |
11924 | // There's no clear preference between forms 3. and 4., try both. Avoid |
11925 | // forming getNotSCEV of pointer values as the resulting subtract is |
11926 | // not legal. |
11927 | if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && |
11928 | isImpliedCondOperands(Pred: ICmpInst::getSwappedCmpPredicate(Pred: *P), |
11929 | LHS: getNotSCEV(V: LHS), RHS: getNotSCEV(V: RHS), FoundLHS, |
11930 | FoundRHS, Context: CtxI)) |
11931 | return true; |
11932 | |
11933 | if (!FoundLHS->getType()->isPointerTy() && |
11934 | !FoundRHS->getType()->isPointerTy() && |
11935 | isImpliedCondOperands(Pred: *P, LHS, RHS, FoundLHS: getNotSCEV(V: FoundLHS), |
11936 | FoundRHS: getNotSCEV(V: FoundRHS), Context: CtxI)) |
11937 | return true; |
11938 | |
11939 | return false; |
11940 | } |
11941 | |
11942 | auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, |
11943 | CmpInst::Predicate P2) { |
11944 | assert(P1 != P2 && "Handled earlier!" ); |
11945 | return CmpInst::isRelational(P: P2) && |
11946 | P1 == ICmpInst::getFlippedSignednessPredicate(Pred: P2); |
11947 | }; |
11948 | if (IsSignFlippedPredicate(Pred, FoundPred)) { |
11949 | // Unsigned comparison is the same as signed comparison when both the |
11950 | // operands are non-negative or negative. |
11951 | if ((isKnownNonNegative(S: FoundLHS) && isKnownNonNegative(S: FoundRHS)) || |
11952 | (isKnownNegative(S: FoundLHS) && isKnownNegative(S: FoundRHS))) |
11953 | return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context: CtxI); |
11954 | // Create local copies that we can freely swap and canonicalize our |
11955 | // conditions to "le/lt". |
11956 | CmpPredicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; |
11957 | const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, |
11958 | *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; |
11959 | if (ICmpInst::isGT(P: CanonicalPred) || ICmpInst::isGE(P: CanonicalPred)) { |
11960 | CanonicalPred = ICmpInst::getSwappedCmpPredicate(Pred: CanonicalPred); |
11961 | CanonicalFoundPred = ICmpInst::getSwappedCmpPredicate(Pred: CanonicalFoundPred); |
11962 | std::swap(a&: CanonicalLHS, b&: CanonicalRHS); |
11963 | std::swap(a&: CanonicalFoundLHS, b&: CanonicalFoundRHS); |
11964 | } |
11965 | assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && |
11966 | "Must be!" ); |
11967 | assert((ICmpInst::isLT(CanonicalFoundPred) || |
11968 | ICmpInst::isLE(CanonicalFoundPred)) && |
11969 | "Must be!" ); |
11970 | if (ICmpInst::isSigned(predicate: CanonicalPred) && isKnownNonNegative(S: CanonicalRHS)) |
11971 | // Use implication: |
11972 | // x <u y && y >=s 0 --> x <s y. |
11973 | // If we can prove the left part, the right part is also proven. |
11974 | return isImpliedCondOperands(Pred: CanonicalFoundPred, LHS: CanonicalLHS, |
11975 | RHS: CanonicalRHS, FoundLHS: CanonicalFoundLHS, |
11976 | FoundRHS: CanonicalFoundRHS); |
11977 | if (ICmpInst::isUnsigned(predicate: CanonicalPred) && isKnownNegative(S: CanonicalRHS)) |
11978 | // Use implication: |
11979 | // x <s y && y <s 0 --> x <u y. |
11980 | // If we can prove the left part, the right part is also proven. |
11981 | return isImpliedCondOperands(Pred: CanonicalFoundPred, LHS: CanonicalLHS, |
11982 | RHS: CanonicalRHS, FoundLHS: CanonicalFoundLHS, |
11983 | FoundRHS: CanonicalFoundRHS); |
11984 | } |
11985 | |
11986 | // Check if we can make progress by sharpening ranges. |
11987 | if (FoundPred == ICmpInst::ICMP_NE && |
11988 | (isa<SCEVConstant>(Val: FoundLHS) || isa<SCEVConstant>(Val: FoundRHS))) { |
11989 | |
11990 | const SCEVConstant *C = nullptr; |
11991 | const SCEV *V = nullptr; |
11992 | |
11993 | if (isa<SCEVConstant>(Val: FoundLHS)) { |
11994 | C = cast<SCEVConstant>(Val: FoundLHS); |
11995 | V = FoundRHS; |
11996 | } else { |
11997 | C = cast<SCEVConstant>(Val: FoundRHS); |
11998 | V = FoundLHS; |
11999 | } |
12000 | |
12001 | // The guarding predicate tells us that C != V. If the known range |
12002 | // of V is [C, t), we can sharpen the range to [C + 1, t). The |
12003 | // range we consider has to correspond to same signedness as the |
12004 | // predicate we're interested in folding. |
12005 | |
12006 | APInt Min = ICmpInst::isSigned(predicate: Pred) ? |
12007 | getSignedRangeMin(S: V) : getUnsignedRangeMin(S: V); |
12008 | |
12009 | if (Min == C->getAPInt()) { |
12010 | // Given (V >= Min && V != Min) we conclude V >= (Min + 1). |
12011 | // This is true even if (Min + 1) wraps around -- in case of |
12012 | // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). |
12013 | |
12014 | APInt SharperMin = Min + 1; |
12015 | |
12016 | switch (Pred) { |
12017 | case ICmpInst::ICMP_SGE: |
12018 | case ICmpInst::ICMP_UGE: |
12019 | // We know V `Pred` SharperMin. If this implies LHS `Pred` |
12020 | // RHS, we're done. |
12021 | if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS: V, FoundRHS: getConstant(Val: SharperMin), |
12022 | Context: CtxI)) |
12023 | return true; |
12024 | [[fallthrough]]; |
12025 | |
12026 | case ICmpInst::ICMP_SGT: |
12027 | case ICmpInst::ICMP_UGT: |
12028 | // We know from the range information that (V `Pred` Min || |
12029 | // V == Min). We know from the guarding condition that !(V |
12030 | // == Min). This gives us |
12031 | // |
12032 | // V `Pred` Min || V == Min && !(V == Min) |
12033 | // => V `Pred` Min |
12034 | // |
12035 | // If V `Pred` Min implies LHS `Pred` RHS, we're done. |
12036 | |
12037 | if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS: V, FoundRHS: getConstant(Val: Min), Context: CtxI)) |
12038 | return true; |
12039 | break; |
12040 | |
12041 | // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. |
12042 | case ICmpInst::ICMP_SLE: |
12043 | case ICmpInst::ICMP_ULE: |
12044 | if (isImpliedCondOperands(Pred: ICmpInst::getSwappedCmpPredicate(Pred), LHS: RHS, |
12045 | RHS: LHS, FoundLHS: V, FoundRHS: getConstant(Val: SharperMin), Context: CtxI)) |
12046 | return true; |
12047 | [[fallthrough]]; |
12048 | |
12049 | case ICmpInst::ICMP_SLT: |
12050 | case ICmpInst::ICMP_ULT: |
12051 | if (isImpliedCondOperands(Pred: ICmpInst::getSwappedCmpPredicate(Pred), LHS: RHS, |
12052 | RHS: LHS, FoundLHS: V, FoundRHS: getConstant(Val: Min), Context: CtxI)) |
12053 | return true; |
12054 | break; |
12055 | |
12056 | default: |
12057 | // No change |
12058 | break; |
12059 | } |
12060 | } |
12061 | } |
12062 | |
12063 | // Check whether the actual condition is beyond sufficient. |
12064 | if (FoundPred == ICmpInst::ICMP_EQ) |
12065 | if (ICmpInst::isTrueWhenEqual(predicate: Pred)) |
12066 | if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context: CtxI)) |
12067 | return true; |
12068 | if (Pred == ICmpInst::ICMP_NE) |
12069 | if (!ICmpInst::isTrueWhenEqual(predicate: FoundPred)) |
12070 | if (isImpliedCondOperands(Pred: FoundPred, LHS, RHS, FoundLHS, FoundRHS, Context: CtxI)) |
12071 | return true; |
12072 | |
12073 | if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS)) |
12074 | return true; |
12075 | |
12076 | // Otherwise assume the worst. |
12077 | return false; |
12078 | } |
12079 | |
12080 | bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, |
12081 | const SCEV *&L, const SCEV *&R, |
12082 | SCEV::NoWrapFlags &Flags) { |
12083 | const auto *AE = dyn_cast<SCEVAddExpr>(Val: Expr); |
12084 | if (!AE || AE->getNumOperands() != 2) |
12085 | return false; |
12086 | |
12087 | L = AE->getOperand(i: 0); |
12088 | R = AE->getOperand(i: 1); |
12089 | Flags = AE->getNoWrapFlags(); |
12090 | return true; |
12091 | } |
12092 | |
12093 | std::optional<APInt> |
12094 | ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) { |
12095 | // We avoid subtracting expressions here because this function is usually |
12096 | // fairly deep in the call stack (i.e. is called many times). |
12097 | |
12098 | unsigned BW = getTypeSizeInBits(Ty: More->getType()); |
12099 | APInt Diff(BW, 0); |
12100 | APInt DiffMul(BW, 1); |
12101 | // Try various simplifications to reduce the difference to a constant. Limit |
12102 | // the number of allowed simplifications to keep compile-time low. |
12103 | for (unsigned I = 0; I < 8; ++I) { |
12104 | if (More == Less) |
12105 | return Diff; |
12106 | |
12107 | // Reduce addrecs with identical steps to their start value. |
12108 | if (isa<SCEVAddRecExpr>(Val: Less) && isa<SCEVAddRecExpr>(Val: More)) { |
12109 | const auto *LAR = cast<SCEVAddRecExpr>(Val: Less); |
12110 | const auto *MAR = cast<SCEVAddRecExpr>(Val: More); |
12111 | |
12112 | if (LAR->getLoop() != MAR->getLoop()) |
12113 | return std::nullopt; |
12114 | |
12115 | // We look at affine expressions only; not for correctness but to keep |
12116 | // getStepRecurrence cheap. |
12117 | if (!LAR->isAffine() || !MAR->isAffine()) |
12118 | return std::nullopt; |
12119 | |
12120 | if (LAR->getStepRecurrence(SE&: *this) != MAR->getStepRecurrence(SE&: *this)) |
12121 | return std::nullopt; |
12122 | |
12123 | Less = LAR->getStart(); |
12124 | More = MAR->getStart(); |
12125 | continue; |
12126 | } |
12127 | |
12128 | // Try to match a common constant multiply. |
12129 | auto MatchConstMul = |
12130 | [](const SCEV *S) -> std::optional<std::pair<const SCEV *, APInt>> { |
12131 | auto *M = dyn_cast<SCEVMulExpr>(Val: S); |
12132 | if (!M || M->getNumOperands() != 2 || |
12133 | !isa<SCEVConstant>(Val: M->getOperand(i: 0))) |
12134 | return std::nullopt; |
12135 | return { |
12136 | {M->getOperand(i: 1), cast<SCEVConstant>(Val: M->getOperand(i: 0))->getAPInt()}}; |
12137 | }; |
12138 | if (auto MatchedMore = MatchConstMul(More)) { |
12139 | if (auto MatchedLess = MatchConstMul(Less)) { |
12140 | if (MatchedMore->second == MatchedLess->second) { |
12141 | More = MatchedMore->first; |
12142 | Less = MatchedLess->first; |
12143 | DiffMul *= MatchedMore->second; |
12144 | continue; |
12145 | } |
12146 | } |
12147 | } |
12148 | |
12149 | // Try to cancel out common factors in two add expressions. |
12150 | SmallDenseMap<const SCEV *, int, 8> Multiplicity; |
12151 | auto Add = [&](const SCEV *S, int Mul) { |
12152 | if (auto *C = dyn_cast<SCEVConstant>(Val: S)) { |
12153 | if (Mul == 1) { |
12154 | Diff += C->getAPInt() * DiffMul; |
12155 | } else { |
12156 | assert(Mul == -1); |
12157 | Diff -= C->getAPInt() * DiffMul; |
12158 | } |
12159 | } else |
12160 | Multiplicity[S] += Mul; |
12161 | }; |
12162 | auto Decompose = [&](const SCEV *S, int Mul) { |
12163 | if (isa<SCEVAddExpr>(Val: S)) { |
12164 | for (const SCEV *Op : S->operands()) |
12165 | Add(Op, Mul); |
12166 | } else |
12167 | Add(S, Mul); |
12168 | }; |
12169 | Decompose(More, 1); |
12170 | Decompose(Less, -1); |
12171 | |
12172 | // Check whether all the non-constants cancel out, or reduce to new |
12173 | // More/Less values. |
12174 | const SCEV *NewMore = nullptr, *NewLess = nullptr; |
12175 | for (const auto &[S, Mul] : Multiplicity) { |
12176 | if (Mul == 0) |
12177 | continue; |
12178 | if (Mul == 1) { |
12179 | if (NewMore) |
12180 | return std::nullopt; |
12181 | NewMore = S; |
12182 | } else if (Mul == -1) { |
12183 | if (NewLess) |
12184 | return std::nullopt; |
12185 | NewLess = S; |
12186 | } else |
12187 | return std::nullopt; |
12188 | } |
12189 | |
12190 | // Values stayed the same, no point in trying further. |
12191 | if (NewMore == More || NewLess == Less) |
12192 | return std::nullopt; |
12193 | |
12194 | More = NewMore; |
12195 | Less = NewLess; |
12196 | |
12197 | // Reduced to constant. |
12198 | if (!More && !Less) |
12199 | return Diff; |
12200 | |
12201 | // Left with variable on only one side, bail out. |
12202 | if (!More || !Less) |
12203 | return std::nullopt; |
12204 | } |
12205 | |
12206 | // Did not reduce to constant. |
12207 | return std::nullopt; |
12208 | } |
12209 | |
12210 | bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( |
12211 | CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const SCEV *FoundLHS, |
12212 | const SCEV *FoundRHS, const Instruction *CtxI) { |
12213 | // Try to recognize the following pattern: |
12214 | // |
12215 | // FoundRHS = ... |
12216 | // ... |
12217 | // loop: |
12218 | // FoundLHS = {Start,+,W} |
12219 | // context_bb: // Basic block from the same loop |
12220 | // known(Pred, FoundLHS, FoundRHS) |
12221 | // |
12222 | // If some predicate is known in the context of a loop, it is also known on |
12223 | // each iteration of this loop, including the first iteration. Therefore, in |
12224 | // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to |
12225 | // prove the original pred using this fact. |
12226 | if (!CtxI) |
12227 | return false; |
12228 | const BasicBlock *ContextBB = CtxI->getParent(); |
12229 | // Make sure AR varies in the context block. |
12230 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: FoundLHS)) { |
12231 | const Loop *L = AR->getLoop(); |
12232 | // Make sure that context belongs to the loop and executes on 1st iteration |
12233 | // (if it ever executes at all). |
12234 | if (!L->contains(BB: ContextBB) || !DT.dominates(A: ContextBB, B: L->getLoopLatch())) |
12235 | return false; |
12236 | if (!isAvailableAtLoopEntry(S: FoundRHS, L: AR->getLoop())) |
12237 | return false; |
12238 | return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS: AR->getStart(), FoundRHS); |
12239 | } |
12240 | |
12241 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: FoundRHS)) { |
12242 | const Loop *L = AR->getLoop(); |
12243 | // Make sure that context belongs to the loop and executes on 1st iteration |
12244 | // (if it ever executes at all). |
12245 | if (!L->contains(BB: ContextBB) || !DT.dominates(A: ContextBB, B: L->getLoopLatch())) |
12246 | return false; |
12247 | if (!isAvailableAtLoopEntry(S: FoundLHS, L: AR->getLoop())) |
12248 | return false; |
12249 | return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS: AR->getStart()); |
12250 | } |
12251 | |
12252 | return false; |
12253 | } |
12254 | |
12255 | bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(CmpPredicate Pred, |
12256 | const SCEV *LHS, |
12257 | const SCEV *RHS, |
12258 | const SCEV *FoundLHS, |
12259 | const SCEV *FoundRHS) { |
12260 | if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) |
12261 | return false; |
12262 | |
12263 | const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(Val: LHS); |
12264 | if (!AddRecLHS) |
12265 | return false; |
12266 | |
12267 | const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(Val: FoundLHS); |
12268 | if (!AddRecFoundLHS) |
12269 | return false; |
12270 | |
12271 | // We'd like to let SCEV reason about control dependencies, so we constrain |
12272 | // both the inequalities to be about add recurrences on the same loop. This |
12273 | // way we can use isLoopEntryGuardedByCond later. |
12274 | |
12275 | const Loop *L = AddRecFoundLHS->getLoop(); |
12276 | if (L != AddRecLHS->getLoop()) |
12277 | return false; |
12278 | |
12279 | // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) |
12280 | // |
12281 | // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) |
12282 | // ... (2) |
12283 | // |
12284 | // Informal proof for (2), assuming (1) [*]: |
12285 | // |
12286 | // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] |
12287 | // |
12288 | // Then |
12289 | // |
12290 | // FoundLHS s< FoundRHS s< INT_MIN - C |
12291 | // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] |
12292 | // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] |
12293 | // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< |
12294 | // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] |
12295 | // <=> FoundLHS + C s< FoundRHS + C |
12296 | // |
12297 | // [*]: (1) can be proved by ruling out overflow. |
12298 | // |
12299 | // [**]: This can be proved by analyzing all the four possibilities: |
12300 | // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and |
12301 | // (A s>= 0, B s>= 0). |
12302 | // |
12303 | // Note: |
12304 | // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" |
12305 | // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS |
12306 | // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS |
12307 | // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is |
12308 | // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + |
12309 | // C)". |
12310 | |
12311 | std::optional<APInt> LDiff = computeConstantDifference(More: LHS, Less: FoundLHS); |
12312 | if (!LDiff) |
12313 | return false; |
12314 | std::optional<APInt> RDiff = computeConstantDifference(More: RHS, Less: FoundRHS); |
12315 | if (!RDiff || *LDiff != *RDiff) |
12316 | return false; |
12317 | |
12318 | if (LDiff->isMinValue()) |
12319 | return true; |
12320 | |
12321 | APInt FoundRHSLimit; |
12322 | |
12323 | if (Pred == CmpInst::ICMP_ULT) { |
12324 | FoundRHSLimit = -(*RDiff); |
12325 | } else { |
12326 | assert(Pred == CmpInst::ICMP_SLT && "Checked above!" ); |
12327 | FoundRHSLimit = APInt::getSignedMinValue(numBits: getTypeSizeInBits(Ty: RHS->getType())) - *RDiff; |
12328 | } |
12329 | |
12330 | // Try to prove (1) or (2), as needed. |
12331 | return isAvailableAtLoopEntry(S: FoundRHS, L) && |
12332 | isLoopEntryGuardedByCond(L, Pred, LHS: FoundRHS, |
12333 | RHS: getConstant(Val: FoundRHSLimit)); |
12334 | } |
12335 | |
12336 | bool ScalarEvolution::isImpliedViaMerge(CmpPredicate Pred, const SCEV *LHS, |
12337 | const SCEV *RHS, const SCEV *FoundLHS, |
12338 | const SCEV *FoundRHS, unsigned Depth) { |
12339 | const PHINode *LPhi = nullptr, *RPhi = nullptr; |
12340 | |
12341 | auto ClearOnExit = make_scope_exit(F: [&]() { |
12342 | if (LPhi) { |
12343 | bool Erased = PendingMerges.erase(Ptr: LPhi); |
12344 | assert(Erased && "Failed to erase LPhi!" ); |
12345 | (void)Erased; |
12346 | } |
12347 | if (RPhi) { |
12348 | bool Erased = PendingMerges.erase(Ptr: RPhi); |
12349 | assert(Erased && "Failed to erase RPhi!" ); |
12350 | (void)Erased; |
12351 | } |
12352 | }); |
12353 | |
12354 | // Find respective Phis and check that they are not being pending. |
12355 | if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(Val: LHS)) |
12356 | if (auto *Phi = dyn_cast<PHINode>(Val: LU->getValue())) { |
12357 | if (!PendingMerges.insert(Ptr: Phi).second) |
12358 | return false; |
12359 | LPhi = Phi; |
12360 | } |
12361 | if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(Val: RHS)) |
12362 | if (auto *Phi = dyn_cast<PHINode>(Val: RU->getValue())) { |
12363 | // If we detect a loop of Phi nodes being processed by this method, for |
12364 | // example: |
12365 | // |
12366 | // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] |
12367 | // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] |
12368 | // |
12369 | // we don't want to deal with a case that complex, so return conservative |
12370 | // answer false. |
12371 | if (!PendingMerges.insert(Ptr: Phi).second) |
12372 | return false; |
12373 | RPhi = Phi; |
12374 | } |
12375 | |
12376 | // If none of LHS, RHS is a Phi, nothing to do here. |
12377 | if (!LPhi && !RPhi) |
12378 | return false; |
12379 | |
12380 | // If there is a SCEVUnknown Phi we are interested in, make it left. |
12381 | if (!LPhi) { |
12382 | std::swap(a&: LHS, b&: RHS); |
12383 | std::swap(a&: FoundLHS, b&: FoundRHS); |
12384 | std::swap(a&: LPhi, b&: RPhi); |
12385 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
12386 | } |
12387 | |
12388 | assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!" ); |
12389 | const BasicBlock *LBB = LPhi->getParent(); |
12390 | const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(Val: RHS); |
12391 | |
12392 | auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { |
12393 | return isKnownViaNonRecursiveReasoning(Pred, LHS: S1, RHS: S2) || |
12394 | isImpliedCondOperandsViaRanges(Pred, LHS: S1, RHS: S2, FoundPred: Pred, FoundLHS, FoundRHS) || |
12395 | isImpliedViaOperations(Pred, LHS: S1, RHS: S2, FoundLHS, FoundRHS, Depth); |
12396 | }; |
12397 | |
12398 | if (RPhi && RPhi->getParent() == LBB) { |
12399 | // Case one: RHS is also a SCEVUnknown Phi from the same basic block. |
12400 | // If we compare two Phis from the same block, and for each entry block |
12401 | // the predicate is true for incoming values from this block, then the |
12402 | // predicate is also true for the Phis. |
12403 | for (const BasicBlock *IncBB : predecessors(BB: LBB)) { |
12404 | const SCEV *L = getSCEV(V: LPhi->getIncomingValueForBlock(BB: IncBB)); |
12405 | const SCEV *R = getSCEV(V: RPhi->getIncomingValueForBlock(BB: IncBB)); |
12406 | if (!ProvedEasily(L, R)) |
12407 | return false; |
12408 | } |
12409 | } else if (RAR && RAR->getLoop()->getHeader() == LBB) { |
12410 | // Case two: RHS is also a Phi from the same basic block, and it is an |
12411 | // AddRec. It means that there is a loop which has both AddRec and Unknown |
12412 | // PHIs, for it we can compare incoming values of AddRec from above the loop |
12413 | // and latch with their respective incoming values of LPhi. |
12414 | // TODO: Generalize to handle loops with many inputs in a header. |
12415 | if (LPhi->getNumIncomingValues() != 2) return false; |
12416 | |
12417 | auto *RLoop = RAR->getLoop(); |
12418 | auto *Predecessor = RLoop->getLoopPredecessor(); |
12419 | assert(Predecessor && "Loop with AddRec with no predecessor?" ); |
12420 | const SCEV *L1 = getSCEV(V: LPhi->getIncomingValueForBlock(BB: Predecessor)); |
12421 | if (!ProvedEasily(L1, RAR->getStart())) |
12422 | return false; |
12423 | auto *Latch = RLoop->getLoopLatch(); |
12424 | assert(Latch && "Loop with AddRec with no latch?" ); |
12425 | const SCEV *L2 = getSCEV(V: LPhi->getIncomingValueForBlock(BB: Latch)); |
12426 | if (!ProvedEasily(L2, RAR->getPostIncExpr(SE&: *this))) |
12427 | return false; |
12428 | } else { |
12429 | // In all other cases go over inputs of LHS and compare each of them to RHS, |
12430 | // the predicate is true for (LHS, RHS) if it is true for all such pairs. |
12431 | // At this point RHS is either a non-Phi, or it is a Phi from some block |
12432 | // different from LBB. |
12433 | for (const BasicBlock *IncBB : predecessors(BB: LBB)) { |
12434 | // Check that RHS is available in this block. |
12435 | if (!dominates(S: RHS, BB: IncBB)) |
12436 | return false; |
12437 | const SCEV *L = getSCEV(V: LPhi->getIncomingValueForBlock(BB: IncBB)); |
12438 | // Make sure L does not refer to a value from a potentially previous |
12439 | // iteration of a loop. |
12440 | if (!properlyDominates(S: L, BB: LBB)) |
12441 | return false; |
12442 | // Addrecs are considered to properly dominate their loop, so are missed |
12443 | // by the previous check. Discard any values that have computable |
12444 | // evolution in this loop. |
12445 | if (auto *Loop = LI.getLoopFor(BB: LBB)) |
12446 | if (hasComputableLoopEvolution(S: L, L: Loop)) |
12447 | return false; |
12448 | if (!ProvedEasily(L, RHS)) |
12449 | return false; |
12450 | } |
12451 | } |
12452 | return true; |
12453 | } |
12454 | |
12455 | bool ScalarEvolution::isImpliedCondOperandsViaShift(CmpPredicate Pred, |
12456 | const SCEV *LHS, |
12457 | const SCEV *RHS, |
12458 | const SCEV *FoundLHS, |
12459 | const SCEV *FoundRHS) { |
12460 | // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make |
12461 | // sure that we are dealing with same LHS. |
12462 | if (RHS == FoundRHS) { |
12463 | std::swap(a&: LHS, b&: RHS); |
12464 | std::swap(a&: FoundLHS, b&: FoundRHS); |
12465 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
12466 | } |
12467 | if (LHS != FoundLHS) |
12468 | return false; |
12469 | |
12470 | auto *SUFoundRHS = dyn_cast<SCEVUnknown>(Val: FoundRHS); |
12471 | if (!SUFoundRHS) |
12472 | return false; |
12473 | |
12474 | Value *Shiftee, *ShiftValue; |
12475 | |
12476 | using namespace PatternMatch; |
12477 | if (match(V: SUFoundRHS->getValue(), |
12478 | P: m_LShr(L: m_Value(V&: Shiftee), R: m_Value(V&: ShiftValue)))) { |
12479 | auto *ShifteeS = getSCEV(V: Shiftee); |
12480 | // Prove one of the following: |
12481 | // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS |
12482 | // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS |
12483 | // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 |
12484 | // ---> LHS <s RHS |
12485 | // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 |
12486 | // ---> LHS <=s RHS |
12487 | if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) |
12488 | return isKnownPredicate(Pred: ICmpInst::ICMP_ULE, LHS: ShifteeS, RHS); |
12489 | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) |
12490 | if (isKnownNonNegative(S: ShifteeS)) |
12491 | return isKnownPredicate(Pred: ICmpInst::ICMP_SLE, LHS: ShifteeS, RHS); |
12492 | } |
12493 | |
12494 | return false; |
12495 | } |
12496 | |
12497 | bool ScalarEvolution::isImpliedCondOperands(CmpPredicate Pred, const SCEV *LHS, |
12498 | const SCEV *RHS, |
12499 | const SCEV *FoundLHS, |
12500 | const SCEV *FoundRHS, |
12501 | const Instruction *CtxI) { |
12502 | if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundPred: Pred, FoundLHS, FoundRHS)) |
12503 | return true; |
12504 | |
12505 | if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) |
12506 | return true; |
12507 | |
12508 | if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) |
12509 | return true; |
12510 | |
12511 | if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, |
12512 | CtxI)) |
12513 | return true; |
12514 | |
12515 | return isImpliedCondOperandsHelper(Pred, LHS, RHS, |
12516 | FoundLHS, FoundRHS); |
12517 | } |
12518 | |
12519 | /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? |
12520 | template <typename MinMaxExprType> |
12521 | static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, |
12522 | const SCEV *Candidate) { |
12523 | const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); |
12524 | if (!MinMaxExpr) |
12525 | return false; |
12526 | |
12527 | return is_contained(MinMaxExpr->operands(), Candidate); |
12528 | } |
12529 | |
12530 | static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, |
12531 | CmpPredicate Pred, const SCEV *LHS, |
12532 | const SCEV *RHS) { |
12533 | // If both sides are affine addrecs for the same loop, with equal |
12534 | // steps, and we know the recurrences don't wrap, then we only |
12535 | // need to check the predicate on the starting values. |
12536 | |
12537 | if (!ICmpInst::isRelational(P: Pred)) |
12538 | return false; |
12539 | |
12540 | const SCEV *LStart, *RStart, *Step; |
12541 | const Loop *L; |
12542 | if (!match(S: LHS, |
12543 | P: m_scev_AffineAddRec(Op0: m_SCEV(V&: LStart), Op1: m_SCEV(V&: Step), L: m_Loop(L))) || |
12544 | !match(S: RHS, P: m_scev_AffineAddRec(Op0: m_SCEV(V&: RStart), Op1: m_scev_Specific(S: Step), |
12545 | L: m_SpecificLoop(L)))) |
12546 | return false; |
12547 | const SCEVAddRecExpr *LAR = cast<SCEVAddRecExpr>(Val: LHS); |
12548 | const SCEVAddRecExpr *RAR = cast<SCEVAddRecExpr>(Val: RHS); |
12549 | SCEV::NoWrapFlags NW = ICmpInst::isSigned(predicate: Pred) ? |
12550 | SCEV::FlagNSW : SCEV::FlagNUW; |
12551 | if (!LAR->getNoWrapFlags(Mask: NW) || !RAR->getNoWrapFlags(Mask: NW)) |
12552 | return false; |
12553 | |
12554 | return SE.isKnownPredicate(Pred, LHS: LStart, RHS: RStart); |
12555 | } |
12556 | |
12557 | /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max |
12558 | /// expression? |
12559 | static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, CmpPredicate Pred, |
12560 | const SCEV *LHS, const SCEV *RHS) { |
12561 | switch (Pred) { |
12562 | default: |
12563 | return false; |
12564 | |
12565 | case ICmpInst::ICMP_SGE: |
12566 | std::swap(a&: LHS, b&: RHS); |
12567 | [[fallthrough]]; |
12568 | case ICmpInst::ICMP_SLE: |
12569 | return |
12570 | // min(A, ...) <= A |
12571 | IsMinMaxConsistingOf<SCEVSMinExpr>(MaybeMinMaxExpr: LHS, Candidate: RHS) || |
12572 | // A <= max(A, ...) |
12573 | IsMinMaxConsistingOf<SCEVSMaxExpr>(MaybeMinMaxExpr: RHS, Candidate: LHS); |
12574 | |
12575 | case ICmpInst::ICMP_UGE: |
12576 | std::swap(a&: LHS, b&: RHS); |
12577 | [[fallthrough]]; |
12578 | case ICmpInst::ICMP_ULE: |
12579 | return |
12580 | // min(A, ...) <= A |
12581 | // FIXME: what about umin_seq? |
12582 | IsMinMaxConsistingOf<SCEVUMinExpr>(MaybeMinMaxExpr: LHS, Candidate: RHS) || |
12583 | // A <= max(A, ...) |
12584 | IsMinMaxConsistingOf<SCEVUMaxExpr>(MaybeMinMaxExpr: RHS, Candidate: LHS); |
12585 | } |
12586 | |
12587 | llvm_unreachable("covered switch fell through?!" ); |
12588 | } |
12589 | |
12590 | bool ScalarEvolution::isImpliedViaOperations(CmpPredicate Pred, const SCEV *LHS, |
12591 | const SCEV *RHS, |
12592 | const SCEV *FoundLHS, |
12593 | const SCEV *FoundRHS, |
12594 | unsigned Depth) { |
12595 | assert(getTypeSizeInBits(LHS->getType()) == |
12596 | getTypeSizeInBits(RHS->getType()) && |
12597 | "LHS and RHS have different sizes?" ); |
12598 | assert(getTypeSizeInBits(FoundLHS->getType()) == |
12599 | getTypeSizeInBits(FoundRHS->getType()) && |
12600 | "FoundLHS and FoundRHS have different sizes?" ); |
12601 | // We want to avoid hurting the compile time with analysis of too big trees. |
12602 | if (Depth > MaxSCEVOperationsImplicationDepth) |
12603 | return false; |
12604 | |
12605 | // We only want to work with GT comparison so far. |
12606 | if (ICmpInst::isLT(P: Pred)) { |
12607 | Pred = ICmpInst::getSwappedCmpPredicate(Pred); |
12608 | std::swap(a&: LHS, b&: RHS); |
12609 | std::swap(a&: FoundLHS, b&: FoundRHS); |
12610 | } |
12611 | |
12612 | CmpInst::Predicate P = Pred.getPreferredSignedPredicate(); |
12613 | |
12614 | // For unsigned, try to reduce it to corresponding signed comparison. |
12615 | if (P == ICmpInst::ICMP_UGT) |
12616 | // We can replace unsigned predicate with its signed counterpart if all |
12617 | // involved values are non-negative. |
12618 | // TODO: We could have better support for unsigned. |
12619 | if (isKnownNonNegative(S: FoundLHS) && isKnownNonNegative(S: FoundRHS)) { |
12620 | // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing |
12621 | // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us |
12622 | // use this fact to prove that LHS and RHS are non-negative. |
12623 | const SCEV *MinusOne = getMinusOne(Ty: LHS->getType()); |
12624 | if (isImpliedCondOperands(Pred: ICmpInst::ICMP_SGT, LHS, RHS: MinusOne, FoundLHS, |
12625 | FoundRHS) && |
12626 | isImpliedCondOperands(Pred: ICmpInst::ICMP_SGT, LHS: RHS, RHS: MinusOne, FoundLHS, |
12627 | FoundRHS)) |
12628 | P = ICmpInst::ICMP_SGT; |
12629 | } |
12630 | |
12631 | if (P != ICmpInst::ICMP_SGT) |
12632 | return false; |
12633 | |
12634 | auto GetOpFromSExt = [&](const SCEV *S) { |
12635 | if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(Val: S)) |
12636 | return Ext->getOperand(); |
12637 | // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off |
12638 | // the constant in some cases. |
12639 | return S; |
12640 | }; |
12641 | |
12642 | // Acquire values from extensions. |
12643 | auto *OrigLHS = LHS; |
12644 | auto *OrigFoundLHS = FoundLHS; |
12645 | LHS = GetOpFromSExt(LHS); |
12646 | FoundLHS = GetOpFromSExt(FoundLHS); |
12647 | |
12648 | // Is the SGT predicate can be proved trivially or using the found context. |
12649 | auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { |
12650 | return isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_SGT, LHS: S1, RHS: S2) || |
12651 | isImpliedViaOperations(Pred: ICmpInst::ICMP_SGT, LHS: S1, RHS: S2, FoundLHS: OrigFoundLHS, |
12652 | FoundRHS, Depth: Depth + 1); |
12653 | }; |
12654 | |
12655 | if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(Val: LHS)) { |
12656 | // We want to avoid creation of any new non-constant SCEV. Since we are |
12657 | // going to compare the operands to RHS, we should be certain that we don't |
12658 | // need any size extensions for this. So let's decline all cases when the |
12659 | // sizes of types of LHS and RHS do not match. |
12660 | // TODO: Maybe try to get RHS from sext to catch more cases? |
12661 | if (getTypeSizeInBits(Ty: LHS->getType()) != getTypeSizeInBits(Ty: RHS->getType())) |
12662 | return false; |
12663 | |
12664 | // Should not overflow. |
12665 | if (!LHSAddExpr->hasNoSignedWrap()) |
12666 | return false; |
12667 | |
12668 | auto *LL = LHSAddExpr->getOperand(i: 0); |
12669 | auto *LR = LHSAddExpr->getOperand(i: 1); |
12670 | auto *MinusOne = getMinusOne(Ty: RHS->getType()); |
12671 | |
12672 | // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. |
12673 | auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { |
12674 | return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); |
12675 | }; |
12676 | // Try to prove the following rule: |
12677 | // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). |
12678 | // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). |
12679 | if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) |
12680 | return true; |
12681 | } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(Val: LHS)) { |
12682 | Value *LL, *LR; |
12683 | // FIXME: Once we have SDiv implemented, we can get rid of this matching. |
12684 | |
12685 | using namespace llvm::PatternMatch; |
12686 | |
12687 | if (match(V: LHSUnknownExpr->getValue(), P: m_SDiv(L: m_Value(V&: LL), R: m_Value(V&: LR)))) { |
12688 | // Rules for division. |
12689 | // We are going to perform some comparisons with Denominator and its |
12690 | // derivative expressions. In general case, creating a SCEV for it may |
12691 | // lead to a complex analysis of the entire graph, and in particular it |
12692 | // can request trip count recalculation for the same loop. This would |
12693 | // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid |
12694 | // this, we only want to create SCEVs that are constants in this section. |
12695 | // So we bail if Denominator is not a constant. |
12696 | if (!isa<ConstantInt>(Val: LR)) |
12697 | return false; |
12698 | |
12699 | auto *Denominator = cast<SCEVConstant>(Val: getSCEV(V: LR)); |
12700 | |
12701 | // We want to make sure that LHS = FoundLHS / Denominator. If it is so, |
12702 | // then a SCEV for the numerator already exists and matches with FoundLHS. |
12703 | auto *Numerator = getExistingSCEV(V: LL); |
12704 | if (!Numerator || Numerator->getType() != FoundLHS->getType()) |
12705 | return false; |
12706 | |
12707 | // Make sure that the numerator matches with FoundLHS and the denominator |
12708 | // is positive. |
12709 | if (!HasSameValue(A: Numerator, B: FoundLHS) || !isKnownPositive(S: Denominator)) |
12710 | return false; |
12711 | |
12712 | auto *DTy = Denominator->getType(); |
12713 | auto *FRHSTy = FoundRHS->getType(); |
12714 | if (DTy->isPointerTy() != FRHSTy->isPointerTy()) |
12715 | // One of types is a pointer and another one is not. We cannot extend |
12716 | // them properly to a wider type, so let us just reject this case. |
12717 | // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help |
12718 | // to avoid this check. |
12719 | return false; |
12720 | |
12721 | // Given that: |
12722 | // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. |
12723 | auto *WTy = getWiderType(T1: DTy, T2: FRHSTy); |
12724 | auto *DenominatorExt = getNoopOrSignExtend(V: Denominator, Ty: WTy); |
12725 | auto *FoundRHSExt = getNoopOrSignExtend(V: FoundRHS, Ty: WTy); |
12726 | |
12727 | // Try to prove the following rule: |
12728 | // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). |
12729 | // For example, given that FoundLHS > 2. It means that FoundLHS is at |
12730 | // least 3. If we divide it by Denominator < 4, we will have at least 1. |
12731 | auto *DenomMinusTwo = getMinusSCEV(LHS: DenominatorExt, RHS: getConstant(Ty: WTy, V: 2)); |
12732 | if (isKnownNonPositive(S: RHS) && |
12733 | IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) |
12734 | return true; |
12735 | |
12736 | // Try to prove the following rule: |
12737 | // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). |
12738 | // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. |
12739 | // If we divide it by Denominator > 2, then: |
12740 | // 1. If FoundLHS is negative, then the result is 0. |
12741 | // 2. If FoundLHS is non-negative, then the result is non-negative. |
12742 | // Anyways, the result is non-negative. |
12743 | auto *MinusOne = getMinusOne(Ty: WTy); |
12744 | auto *NegDenomMinusOne = getMinusSCEV(LHS: MinusOne, RHS: DenominatorExt); |
12745 | if (isKnownNegative(S: RHS) && |
12746 | IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) |
12747 | return true; |
12748 | } |
12749 | } |
12750 | |
12751 | // If our expression contained SCEVUnknown Phis, and we split it down and now |
12752 | // need to prove something for them, try to prove the predicate for every |
12753 | // possible incoming values of those Phis. |
12754 | if (isImpliedViaMerge(Pred, LHS: OrigLHS, RHS, FoundLHS: OrigFoundLHS, FoundRHS, Depth: Depth + 1)) |
12755 | return true; |
12756 | |
12757 | return false; |
12758 | } |
12759 | |
12760 | static bool isKnownPredicateExtendIdiom(CmpPredicate Pred, const SCEV *LHS, |
12761 | const SCEV *RHS) { |
12762 | // zext x u<= sext x, sext x s<= zext x |
12763 | const SCEV *Op; |
12764 | switch (Pred) { |
12765 | case ICmpInst::ICMP_SGE: |
12766 | std::swap(a&: LHS, b&: RHS); |
12767 | [[fallthrough]]; |
12768 | case ICmpInst::ICMP_SLE: { |
12769 | // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. |
12770 | return match(S: LHS, P: m_scev_SExt(Op0: m_SCEV(V&: Op))) && |
12771 | match(S: RHS, P: m_scev_ZExt(Op0: m_scev_Specific(S: Op))); |
12772 | } |
12773 | case ICmpInst::ICMP_UGE: |
12774 | std::swap(a&: LHS, b&: RHS); |
12775 | [[fallthrough]]; |
12776 | case ICmpInst::ICMP_ULE: { |
12777 | // If operand >=u 0 then ZExt == SExt. If operand <u 0 then ZExt <u SExt. |
12778 | return match(S: LHS, P: m_scev_ZExt(Op0: m_SCEV(V&: Op))) && |
12779 | match(S: RHS, P: m_scev_SExt(Op0: m_scev_Specific(S: Op))); |
12780 | } |
12781 | default: |
12782 | return false; |
12783 | }; |
12784 | llvm_unreachable("unhandled case" ); |
12785 | } |
12786 | |
12787 | bool ScalarEvolution::isKnownViaNonRecursiveReasoning(CmpPredicate Pred, |
12788 | const SCEV *LHS, |
12789 | const SCEV *RHS) { |
12790 | return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || |
12791 | isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || |
12792 | IsKnownPredicateViaMinOrMax(SE&: *this, Pred, LHS, RHS) || |
12793 | IsKnownPredicateViaAddRecStart(SE&: *this, Pred, LHS, RHS) || |
12794 | isKnownPredicateViaNoOverflow(Pred, LHS, RHS); |
12795 | } |
12796 | |
12797 | bool ScalarEvolution::isImpliedCondOperandsHelper(CmpPredicate Pred, |
12798 | const SCEV *LHS, |
12799 | const SCEV *RHS, |
12800 | const SCEV *FoundLHS, |
12801 | const SCEV *FoundRHS) { |
12802 | switch (Pred) { |
12803 | default: |
12804 | llvm_unreachable("Unexpected CmpPredicate value!" ); |
12805 | case ICmpInst::ICMP_EQ: |
12806 | case ICmpInst::ICMP_NE: |
12807 | if (HasSameValue(A: LHS, B: FoundLHS) && HasSameValue(A: RHS, B: FoundRHS)) |
12808 | return true; |
12809 | break; |
12810 | case ICmpInst::ICMP_SLT: |
12811 | case ICmpInst::ICMP_SLE: |
12812 | if (isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_SLE, LHS, RHS: FoundLHS) && |
12813 | isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_SGE, LHS: RHS, RHS: FoundRHS)) |
12814 | return true; |
12815 | break; |
12816 | case ICmpInst::ICMP_SGT: |
12817 | case ICmpInst::ICMP_SGE: |
12818 | if (isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_SGE, LHS, RHS: FoundLHS) && |
12819 | isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_SLE, LHS: RHS, RHS: FoundRHS)) |
12820 | return true; |
12821 | break; |
12822 | case ICmpInst::ICMP_ULT: |
12823 | case ICmpInst::ICMP_ULE: |
12824 | if (isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_ULE, LHS, RHS: FoundLHS) && |
12825 | isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_UGE, LHS: RHS, RHS: FoundRHS)) |
12826 | return true; |
12827 | break; |
12828 | case ICmpInst::ICMP_UGT: |
12829 | case ICmpInst::ICMP_UGE: |
12830 | if (isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_UGE, LHS, RHS: FoundLHS) && |
12831 | isKnownViaNonRecursiveReasoning(Pred: ICmpInst::ICMP_ULE, LHS: RHS, RHS: FoundRHS)) |
12832 | return true; |
12833 | break; |
12834 | } |
12835 | |
12836 | // Maybe it can be proved via operations? |
12837 | if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) |
12838 | return true; |
12839 | |
12840 | return false; |
12841 | } |
12842 | |
12843 | bool ScalarEvolution::isImpliedCondOperandsViaRanges( |
12844 | CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, CmpPredicate FoundPred, |
12845 | const SCEV *FoundLHS, const SCEV *FoundRHS) { |
12846 | if (!isa<SCEVConstant>(Val: RHS) || !isa<SCEVConstant>(Val: FoundRHS)) |
12847 | // The restriction on `FoundRHS` be lifted easily -- it exists only to |
12848 | // reduce the compile time impact of this optimization. |
12849 | return false; |
12850 | |
12851 | std::optional<APInt> Addend = computeConstantDifference(More: LHS, Less: FoundLHS); |
12852 | if (!Addend) |
12853 | return false; |
12854 | |
12855 | const APInt &ConstFoundRHS = cast<SCEVConstant>(Val: FoundRHS)->getAPInt(); |
12856 | |
12857 | // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the |
12858 | // antecedent "`FoundLHS` `FoundPred` `FoundRHS`". |
12859 | ConstantRange FoundLHSRange = |
12860 | ConstantRange::makeExactICmpRegion(Pred: FoundPred, Other: ConstFoundRHS); |
12861 | |
12862 | // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: |
12863 | ConstantRange LHSRange = FoundLHSRange.add(Other: ConstantRange(*Addend)); |
12864 | |
12865 | // We can also compute the range of values for `LHS` that satisfy the |
12866 | // consequent, "`LHS` `Pred` `RHS`": |
12867 | const APInt &ConstRHS = cast<SCEVConstant>(Val: RHS)->getAPInt(); |
12868 | // The antecedent implies the consequent if every value of `LHS` that |
12869 | // satisfies the antecedent also satisfies the consequent. |
12870 | return LHSRange.icmp(Pred, Other: ConstRHS); |
12871 | } |
12872 | |
12873 | bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, |
12874 | bool IsSigned) { |
12875 | assert(isKnownPositive(Stride) && "Positive stride expected!" ); |
12876 | |
12877 | unsigned BitWidth = getTypeSizeInBits(Ty: RHS->getType()); |
12878 | const SCEV *One = getOne(Ty: Stride->getType()); |
12879 | |
12880 | if (IsSigned) { |
12881 | APInt MaxRHS = getSignedRangeMax(S: RHS); |
12882 | APInt MaxValue = APInt::getSignedMaxValue(numBits: BitWidth); |
12883 | APInt MaxStrideMinusOne = getSignedRangeMax(S: getMinusSCEV(LHS: Stride, RHS: One)); |
12884 | |
12885 | // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! |
12886 | return (std::move(MaxValue) - MaxStrideMinusOne).slt(RHS: MaxRHS); |
12887 | } |
12888 | |
12889 | APInt MaxRHS = getUnsignedRangeMax(S: RHS); |
12890 | APInt MaxValue = APInt::getMaxValue(numBits: BitWidth); |
12891 | APInt MaxStrideMinusOne = getUnsignedRangeMax(S: getMinusSCEV(LHS: Stride, RHS: One)); |
12892 | |
12893 | // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! |
12894 | return (std::move(MaxValue) - MaxStrideMinusOne).ult(RHS: MaxRHS); |
12895 | } |
12896 | |
12897 | bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, |
12898 | bool IsSigned) { |
12899 | |
12900 | unsigned BitWidth = getTypeSizeInBits(Ty: RHS->getType()); |
12901 | const SCEV *One = getOne(Ty: Stride->getType()); |
12902 | |
12903 | if (IsSigned) { |
12904 | APInt MinRHS = getSignedRangeMin(S: RHS); |
12905 | APInt MinValue = APInt::getSignedMinValue(numBits: BitWidth); |
12906 | APInt MaxStrideMinusOne = getSignedRangeMax(S: getMinusSCEV(LHS: Stride, RHS: One)); |
12907 | |
12908 | // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! |
12909 | return (std::move(MinValue) + MaxStrideMinusOne).sgt(RHS: MinRHS); |
12910 | } |
12911 | |
12912 | APInt MinRHS = getUnsignedRangeMin(S: RHS); |
12913 | APInt MinValue = APInt::getMinValue(numBits: BitWidth); |
12914 | APInt MaxStrideMinusOne = getUnsignedRangeMax(S: getMinusSCEV(LHS: Stride, RHS: One)); |
12915 | |
12916 | // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! |
12917 | return (std::move(MinValue) + MaxStrideMinusOne).ugt(RHS: MinRHS); |
12918 | } |
12919 | |
12920 | const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { |
12921 | // umin(N, 1) + floor((N - umin(N, 1)) / D) |
12922 | // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin |
12923 | // expression fixes the case of N=0. |
12924 | const SCEV *MinNOne = getUMinExpr(LHS: N, RHS: getOne(Ty: N->getType())); |
12925 | const SCEV *NMinusOne = getMinusSCEV(LHS: N, RHS: MinNOne); |
12926 | return getAddExpr(LHS: MinNOne, RHS: getUDivExpr(LHS: NMinusOne, RHS: D)); |
12927 | } |
12928 | |
12929 | const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, |
12930 | const SCEV *Stride, |
12931 | const SCEV *End, |
12932 | unsigned BitWidth, |
12933 | bool IsSigned) { |
12934 | // The logic in this function assumes we can represent a positive stride. |
12935 | // If we can't, the backedge-taken count must be zero. |
12936 | if (IsSigned && BitWidth == 1) |
12937 | return getZero(Ty: Stride->getType()); |
12938 | |
12939 | // This code below only been closely audited for negative strides in the |
12940 | // unsigned comparison case, it may be correct for signed comparison, but |
12941 | // that needs to be established. |
12942 | if (IsSigned && isKnownNegative(S: Stride)) |
12943 | return getCouldNotCompute(); |
12944 | |
12945 | // Calculate the maximum backedge count based on the range of values |
12946 | // permitted by Start, End, and Stride. |
12947 | APInt MinStart = |
12948 | IsSigned ? getSignedRangeMin(S: Start) : getUnsignedRangeMin(S: Start); |
12949 | |
12950 | APInt MinStride = |
12951 | IsSigned ? getSignedRangeMin(S: Stride) : getUnsignedRangeMin(S: Stride); |
12952 | |
12953 | // We assume either the stride is positive, or the backedge-taken count |
12954 | // is zero. So force StrideForMaxBECount to be at least one. |
12955 | APInt One(BitWidth, 1); |
12956 | APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(A: One, B: MinStride) |
12957 | : APIntOps::umax(A: One, B: MinStride); |
12958 | |
12959 | APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(numBits: BitWidth) |
12960 | : APInt::getMaxValue(numBits: BitWidth); |
12961 | APInt Limit = MaxValue - (StrideForMaxBECount - 1); |
12962 | |
12963 | // Although End can be a MAX expression we estimate MaxEnd considering only |
12964 | // the case End = RHS of the loop termination condition. This is safe because |
12965 | // in the other case (End - Start) is zero, leading to a zero maximum backedge |
12966 | // taken count. |
12967 | APInt MaxEnd = IsSigned ? APIntOps::smin(A: getSignedRangeMax(S: End), B: Limit) |
12968 | : APIntOps::umin(A: getUnsignedRangeMax(S: End), B: Limit); |
12969 | |
12970 | // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) |
12971 | MaxEnd = IsSigned ? APIntOps::smax(A: MaxEnd, B: MinStart) |
12972 | : APIntOps::umax(A: MaxEnd, B: MinStart); |
12973 | |
12974 | return getUDivCeilSCEV(N: getConstant(Val: MaxEnd - MinStart) /* Delta */, |
12975 | D: getConstant(Val: StrideForMaxBECount) /* Step */); |
12976 | } |
12977 | |
12978 | ScalarEvolution::ExitLimit |
12979 | ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, |
12980 | const Loop *L, bool IsSigned, |
12981 | bool ControlsOnlyExit, bool AllowPredicates) { |
12982 | SmallVector<const SCEVPredicate *> Predicates; |
12983 | |
12984 | const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(Val: LHS); |
12985 | bool PredicatedIV = false; |
12986 | if (!IV) { |
12987 | if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: LHS)) { |
12988 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: ZExt->getOperand()); |
12989 | if (AR && AR->getLoop() == L && AR->isAffine()) { |
12990 | auto canProveNUW = [&]() { |
12991 | // We can use the comparison to infer no-wrap flags only if it fully |
12992 | // controls the loop exit. |
12993 | if (!ControlsOnlyExit) |
12994 | return false; |
12995 | |
12996 | if (!isLoopInvariant(S: RHS, L)) |
12997 | return false; |
12998 | |
12999 | if (!isKnownNonZero(S: AR->getStepRecurrence(SE&: *this))) |
13000 | // We need the sequence defined by AR to strictly increase in the |
13001 | // unsigned integer domain for the logic below to hold. |
13002 | return false; |
13003 | |
13004 | const unsigned InnerBitWidth = getTypeSizeInBits(Ty: AR->getType()); |
13005 | const unsigned OuterBitWidth = getTypeSizeInBits(Ty: RHS->getType()); |
13006 | // If RHS <=u Limit, then there must exist a value V in the sequence |
13007 | // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and |
13008 | // V <=u UINT_MAX. Thus, we must exit the loop before unsigned |
13009 | // overflow occurs. This limit also implies that a signed comparison |
13010 | // (in the wide bitwidth) is equivalent to an unsigned comparison as |
13011 | // the high bits on both sides must be zero. |
13012 | APInt StrideMax = getUnsignedRangeMax(S: AR->getStepRecurrence(SE&: *this)); |
13013 | APInt Limit = APInt::getMaxValue(numBits: InnerBitWidth) - (StrideMax - 1); |
13014 | Limit = Limit.zext(width: OuterBitWidth); |
13015 | return getUnsignedRangeMax(S: applyLoopGuards(Expr: RHS, L)).ule(RHS: Limit); |
13016 | }; |
13017 | auto Flags = AR->getNoWrapFlags(); |
13018 | if (!hasFlags(Flags, TestFlags: SCEV::FlagNUW) && canProveNUW()) |
13019 | Flags = setFlags(Flags, OnFlags: SCEV::FlagNUW); |
13020 | |
13021 | setNoWrapFlags(AddRec: const_cast<SCEVAddRecExpr *>(AR), Flags); |
13022 | if (AR->hasNoUnsignedWrap()) { |
13023 | // Emulate what getZeroExtendExpr would have done during construction |
13024 | // if we'd been able to infer the fact just above at that time. |
13025 | const SCEV *Step = AR->getStepRecurrence(SE&: *this); |
13026 | Type *Ty = ZExt->getType(); |
13027 | auto *S = getAddRecExpr( |
13028 | Start: getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, SE: this, Depth: 0), |
13029 | Step: getZeroExtendExpr(Op: Step, Ty, Depth: 0), L, Flags: AR->getNoWrapFlags()); |
13030 | IV = dyn_cast<SCEVAddRecExpr>(Val: S); |
13031 | } |
13032 | } |
13033 | } |
13034 | } |
13035 | |
13036 | |
13037 | if (!IV && AllowPredicates) { |
13038 | // Try to make this an AddRec using runtime tests, in the first X |
13039 | // iterations of this loop, where X is the SCEV expression found by the |
13040 | // algorithm below. |
13041 | IV = convertSCEVToAddRecWithPredicates(S: LHS, L, Preds&: Predicates); |
13042 | PredicatedIV = true; |
13043 | } |
13044 | |
13045 | // Avoid weird loops |
13046 | if (!IV || IV->getLoop() != L || !IV->isAffine()) |
13047 | return getCouldNotCompute(); |
13048 | |
13049 | // A precondition of this method is that the condition being analyzed |
13050 | // reaches an exiting branch which dominates the latch. Given that, we can |
13051 | // assume that an increment which violates the nowrap specification and |
13052 | // produces poison must cause undefined behavior when the resulting poison |
13053 | // value is branched upon and thus we can conclude that the backedge is |
13054 | // taken no more often than would be required to produce that poison value. |
13055 | // Note that a well defined loop can exit on the iteration which violates |
13056 | // the nowrap specification if there is another exit (either explicit or |
13057 | // implicit/exceptional) which causes the loop to execute before the |
13058 | // exiting instruction we're analyzing would trigger UB. |
13059 | auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; |
13060 | bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(Mask: WrapType); |
13061 | ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; |
13062 | |
13063 | const SCEV *Stride = IV->getStepRecurrence(SE&: *this); |
13064 | |
13065 | bool PositiveStride = isKnownPositive(S: Stride); |
13066 | |
13067 | // Avoid negative or zero stride values. |
13068 | if (!PositiveStride) { |
13069 | // We can compute the correct backedge taken count for loops with unknown |
13070 | // strides if we can prove that the loop is not an infinite loop with side |
13071 | // effects. Here's the loop structure we are trying to handle - |
13072 | // |
13073 | // i = start |
13074 | // do { |
13075 | // A[i] = i; |
13076 | // i += s; |
13077 | // } while (i < end); |
13078 | // |
13079 | // The backedge taken count for such loops is evaluated as - |
13080 | // (max(end, start + stride) - start - 1) /u stride |
13081 | // |
13082 | // The additional preconditions that we need to check to prove correctness |
13083 | // of the above formula is as follows - |
13084 | // |
13085 | // a) IV is either nuw or nsw depending upon signedness (indicated by the |
13086 | // NoWrap flag). |
13087 | // b) the loop is guaranteed to be finite (e.g. is mustprogress and has |
13088 | // no side effects within the loop) |
13089 | // c) loop has a single static exit (with no abnormal exits) |
13090 | // |
13091 | // Precondition a) implies that if the stride is negative, this is a single |
13092 | // trip loop. The backedge taken count formula reduces to zero in this case. |
13093 | // |
13094 | // Precondition b) and c) combine to imply that if rhs is invariant in L, |
13095 | // then a zero stride means the backedge can't be taken without executing |
13096 | // undefined behavior. |
13097 | // |
13098 | // The positive stride case is the same as isKnownPositive(Stride) returning |
13099 | // true (original behavior of the function). |
13100 | // |
13101 | if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || |
13102 | !loopHasNoAbnormalExits(L)) |
13103 | return getCouldNotCompute(); |
13104 | |
13105 | if (!isKnownNonZero(S: Stride)) { |
13106 | // If we have a step of zero, and RHS isn't invariant in L, we don't know |
13107 | // if it might eventually be greater than start and if so, on which |
13108 | // iteration. We can't even produce a useful upper bound. |
13109 | if (!isLoopInvariant(S: RHS, L)) |
13110 | return getCouldNotCompute(); |
13111 | |
13112 | // We allow a potentially zero stride, but we need to divide by stride |
13113 | // below. Since the loop can't be infinite and this check must control |
13114 | // the sole exit, we can infer the exit must be taken on the first |
13115 | // iteration (e.g. backedge count = 0) if the stride is zero. Given that, |
13116 | // we know the numerator in the divides below must be zero, so we can |
13117 | // pick an arbitrary non-zero value for the denominator (e.g. stride) |
13118 | // and produce the right result. |
13119 | // FIXME: Handle the case where Stride is poison? |
13120 | auto wouldZeroStrideBeUB = [&]() { |
13121 | // Proof by contradiction. Suppose the stride were zero. If we can |
13122 | // prove that the backedge *is* taken on the first iteration, then since |
13123 | // we know this condition controls the sole exit, we must have an |
13124 | // infinite loop. We can't have a (well defined) infinite loop per |
13125 | // check just above. |
13126 | // Note: The (Start - Stride) term is used to get the start' term from |
13127 | // (start' + stride,+,stride). Remember that we only care about the |
13128 | // result of this expression when stride == 0 at runtime. |
13129 | auto *StartIfZero = getMinusSCEV(LHS: IV->getStart(), RHS: Stride); |
13130 | return isLoopEntryGuardedByCond(L, Pred: Cond, LHS: StartIfZero, RHS); |
13131 | }; |
13132 | if (!wouldZeroStrideBeUB()) { |
13133 | Stride = getUMaxExpr(LHS: Stride, RHS: getOne(Ty: Stride->getType())); |
13134 | } |
13135 | } |
13136 | } else if (!NoWrap) { |
13137 | // Avoid proven overflow cases: this will ensure that the backedge taken |
13138 | // count will not generate any unsigned overflow. |
13139 | if (canIVOverflowOnLT(RHS, Stride, IsSigned)) |
13140 | return getCouldNotCompute(); |
13141 | } |
13142 | |
13143 | // On all paths just preceeding, we established the following invariant: |
13144 | // IV can be assumed not to overflow up to and including the exiting |
13145 | // iteration. We proved this in one of two ways: |
13146 | // 1) We can show overflow doesn't occur before the exiting iteration |
13147 | // 1a) canIVOverflowOnLT, and b) step of one |
13148 | // 2) We can show that if overflow occurs, the loop must execute UB |
13149 | // before any possible exit. |
13150 | // Note that we have not yet proved RHS invariant (in general). |
13151 | |
13152 | const SCEV *Start = IV->getStart(); |
13153 | |
13154 | // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. |
13155 | // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. |
13156 | // Use integer-typed versions for actual computation; we can't subtract |
13157 | // pointers in general. |
13158 | const SCEV *OrigStart = Start; |
13159 | const SCEV *OrigRHS = RHS; |
13160 | if (Start->getType()->isPointerTy()) { |
13161 | Start = getLosslessPtrToIntExpr(Op: Start); |
13162 | if (isa<SCEVCouldNotCompute>(Val: Start)) |
13163 | return Start; |
13164 | } |
13165 | if (RHS->getType()->isPointerTy()) { |
13166 | RHS = getLosslessPtrToIntExpr(Op: RHS); |
13167 | if (isa<SCEVCouldNotCompute>(Val: RHS)) |
13168 | return RHS; |
13169 | } |
13170 | |
13171 | const SCEV *End = nullptr, *BECount = nullptr, |
13172 | *BECountIfBackedgeTaken = nullptr; |
13173 | if (!isLoopInvariant(S: RHS, L)) { |
13174 | const auto *RHSAddRec = dyn_cast<SCEVAddRecExpr>(Val: RHS); |
13175 | if (PositiveStride && RHSAddRec != nullptr && RHSAddRec->getLoop() == L && |
13176 | RHSAddRec->getNoWrapFlags()) { |
13177 | // The structure of loop we are trying to calculate backedge count of: |
13178 | // |
13179 | // left = left_start |
13180 | // right = right_start |
13181 | // |
13182 | // while(left < right){ |
13183 | // ... do something here ... |
13184 | // left += s1; // stride of left is s1 (s1 > 0) |
13185 | // right += s2; // stride of right is s2 (s2 < 0) |
13186 | // } |
13187 | // |
13188 | |
13189 | const SCEV *RHSStart = RHSAddRec->getStart(); |
13190 | const SCEV *RHSStride = RHSAddRec->getStepRecurrence(SE&: *this); |
13191 | |
13192 | // If Stride - RHSStride is positive and does not overflow, we can write |
13193 | // backedge count as -> |
13194 | // ceil((End - Start) /u (Stride - RHSStride)) |
13195 | // Where, End = max(RHSStart, Start) |
13196 | |
13197 | // Check if RHSStride < 0 and Stride - RHSStride will not overflow. |
13198 | if (isKnownNegative(S: RHSStride) && |
13199 | willNotOverflow(BinOp: Instruction::Sub, /*Signed=*/true, LHS: Stride, |
13200 | RHS: RHSStride)) { |
13201 | |
13202 | const SCEV *Denominator = getMinusSCEV(LHS: Stride, RHS: RHSStride); |
13203 | if (isKnownPositive(S: Denominator)) { |
13204 | End = IsSigned ? getSMaxExpr(LHS: RHSStart, RHS: Start) |
13205 | : getUMaxExpr(LHS: RHSStart, RHS: Start); |
13206 | |
13207 | // We can do this because End >= Start, as End = max(RHSStart, Start) |
13208 | const SCEV *Delta = getMinusSCEV(LHS: End, RHS: Start); |
13209 | |
13210 | BECount = getUDivCeilSCEV(N: Delta, D: Denominator); |
13211 | BECountIfBackedgeTaken = |
13212 | getUDivCeilSCEV(N: getMinusSCEV(LHS: RHSStart, RHS: Start), D: Denominator); |
13213 | } |
13214 | } |
13215 | } |
13216 | if (BECount == nullptr) { |
13217 | // If we cannot calculate ExactBECount, we can calculate the MaxBECount, |
13218 | // given the start, stride and max value for the end bound of the |
13219 | // loop (RHS), and the fact that IV does not overflow (which is |
13220 | // checked above). |
13221 | const SCEV *MaxBECount = computeMaxBECountForLT( |
13222 | Start, Stride, End: RHS, BitWidth: getTypeSizeInBits(Ty: LHS->getType()), IsSigned); |
13223 | return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, |
13224 | MaxBECount, false /*MaxOrZero*/, Predicates); |
13225 | } |
13226 | } else { |
13227 | // We use the expression (max(End,Start)-Start)/Stride to describe the |
13228 | // backedge count, as if the backedge is taken at least once |
13229 | // max(End,Start) is End and so the result is as above, and if not |
13230 | // max(End,Start) is Start so we get a backedge count of zero. |
13231 | auto *OrigStartMinusStride = getMinusSCEV(LHS: OrigStart, RHS: Stride); |
13232 | assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!" ); |
13233 | assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!" ); |
13234 | assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!" ); |
13235 | // Can we prove (max(RHS,Start) > Start - Stride? |
13236 | if (isLoopEntryGuardedByCond(L, Pred: Cond, LHS: OrigStartMinusStride, RHS: OrigStart) && |
13237 | isLoopEntryGuardedByCond(L, Pred: Cond, LHS: OrigStartMinusStride, RHS: OrigRHS)) { |
13238 | // In this case, we can use a refined formula for computing backedge |
13239 | // taken count. The general formula remains: |
13240 | // "End-Start /uceiling Stride" where "End = max(RHS,Start)" |
13241 | // We want to use the alternate formula: |
13242 | // "((End - 1) - (Start - Stride)) /u Stride" |
13243 | // Let's do a quick case analysis to show these are equivalent under |
13244 | // our precondition that max(RHS,Start) > Start - Stride. |
13245 | // * For RHS <= Start, the backedge-taken count must be zero. |
13246 | // "((End - 1) - (Start - Stride)) /u Stride" reduces to |
13247 | // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to |
13248 | // "Stride - 1 /u Stride" which is indeed zero for all non-zero values |
13249 | // of Stride. For 0 stride, we've use umin(1,Stride) above, |
13250 | // reducing this to the stride of 1 case. |
13251 | // * For RHS >= Start, the backedge count must be "RHS-Start /uceil |
13252 | // Stride". |
13253 | // "((End - 1) - (Start - Stride)) /u Stride" reduces to |
13254 | // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to |
13255 | // "((RHS - (Start - Stride) - 1) /u Stride". |
13256 | // Our preconditions trivially imply no overflow in that form. |
13257 | const SCEV *MinusOne = getMinusOne(Ty: Stride->getType()); |
13258 | const SCEV *Numerator = |
13259 | getMinusSCEV(LHS: getAddExpr(LHS: RHS, RHS: MinusOne), RHS: getMinusSCEV(LHS: Start, RHS: Stride)); |
13260 | BECount = getUDivExpr(LHS: Numerator, RHS: Stride); |
13261 | } |
13262 | |
13263 | if (!BECount) { |
13264 | auto canProveRHSGreaterThanEqualStart = [&]() { |
13265 | auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; |
13266 | const SCEV *GuardedRHS = applyLoopGuards(Expr: OrigRHS, L); |
13267 | const SCEV *GuardedStart = applyLoopGuards(Expr: OrigStart, L); |
13268 | |
13269 | if (isLoopEntryGuardedByCond(L, Pred: CondGE, LHS: OrigRHS, RHS: OrigStart) || |
13270 | isKnownPredicate(Pred: CondGE, LHS: GuardedRHS, RHS: GuardedStart)) |
13271 | return true; |
13272 | |
13273 | // (RHS > Start - 1) implies RHS >= Start. |
13274 | // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if |
13275 | // "Start - 1" doesn't overflow. |
13276 | // * For signed comparison, if Start - 1 does overflow, it's equal |
13277 | // to INT_MAX, and "RHS >s INT_MAX" is trivially false. |
13278 | // * For unsigned comparison, if Start - 1 does overflow, it's equal |
13279 | // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. |
13280 | // |
13281 | // FIXME: Should isLoopEntryGuardedByCond do this for us? |
13282 | auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; |
13283 | auto *StartMinusOne = |
13284 | getAddExpr(LHS: OrigStart, RHS: getMinusOne(Ty: OrigStart->getType())); |
13285 | return isLoopEntryGuardedByCond(L, Pred: CondGT, LHS: OrigRHS, RHS: StartMinusOne); |
13286 | }; |
13287 | |
13288 | // If we know that RHS >= Start in the context of loop, then we know |
13289 | // that max(RHS, Start) = RHS at this point. |
13290 | if (canProveRHSGreaterThanEqualStart()) { |
13291 | End = RHS; |
13292 | } else { |
13293 | // If RHS < Start, the backedge will be taken zero times. So in |
13294 | // general, we can write the backedge-taken count as: |
13295 | // |
13296 | // RHS >= Start ? ceil(RHS - Start) / Stride : 0 |
13297 | // |
13298 | // We convert it to the following to make it more convenient for SCEV: |
13299 | // |
13300 | // ceil(max(RHS, Start) - Start) / Stride |
13301 | End = IsSigned ? getSMaxExpr(LHS: RHS, RHS: Start) : getUMaxExpr(LHS: RHS, RHS: Start); |
13302 | |
13303 | // See what would happen if we assume the backedge is taken. This is |
13304 | // used to compute MaxBECount. |
13305 | BECountIfBackedgeTaken = |
13306 | getUDivCeilSCEV(N: getMinusSCEV(LHS: RHS, RHS: Start), D: Stride); |
13307 | } |
13308 | |
13309 | // At this point, we know: |
13310 | // |
13311 | // 1. If IsSigned, Start <=s End; otherwise, Start <=u End |
13312 | // 2. The index variable doesn't overflow. |
13313 | // |
13314 | // Therefore, we know N exists such that |
13315 | // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" |
13316 | // doesn't overflow. |
13317 | // |
13318 | // Using this information, try to prove whether the addition in |
13319 | // "(Start - End) + (Stride - 1)" has unsigned overflow. |
13320 | const SCEV *One = getOne(Ty: Stride->getType()); |
13321 | bool MayAddOverflow = [&] { |
13322 | if (isKnownToBeAPowerOfTwo(S: Stride)) { |
13323 | // Suppose Stride is a power of two, and Start/End are unsigned |
13324 | // integers. Let UMAX be the largest representable unsigned |
13325 | // integer. |
13326 | // |
13327 | // By the preconditions of this function, we know |
13328 | // "(Start + Stride * N) >= End", and this doesn't overflow. |
13329 | // As a formula: |
13330 | // |
13331 | // End <= (Start + Stride * N) <= UMAX |
13332 | // |
13333 | // Subtracting Start from all the terms: |
13334 | // |
13335 | // End - Start <= Stride * N <= UMAX - Start |
13336 | // |
13337 | // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: |
13338 | // |
13339 | // End - Start <= Stride * N <= UMAX |
13340 | // |
13341 | // Stride * N is a multiple of Stride. Therefore, |
13342 | // |
13343 | // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) |
13344 | // |
13345 | // Since Stride is a power of two, UMAX + 1 is divisible by |
13346 | // Stride. Therefore, UMAX mod Stride == Stride - 1. So we can |
13347 | // write: |
13348 | // |
13349 | // End - Start <= Stride * N <= UMAX - Stride - 1 |
13350 | // |
13351 | // Dropping the middle term: |
13352 | // |
13353 | // End - Start <= UMAX - Stride - 1 |
13354 | // |
13355 | // Adding Stride - 1 to both sides: |
13356 | // |
13357 | // (End - Start) + (Stride - 1) <= UMAX |
13358 | // |
13359 | // In other words, the addition doesn't have unsigned overflow. |
13360 | // |
13361 | // A similar proof works if we treat Start/End as signed values. |
13362 | // Just rewrite steps before "End - Start <= Stride * N <= UMAX" |
13363 | // to use signed max instead of unsigned max. Note that we're |
13364 | // trying to prove a lack of unsigned overflow in either case. |
13365 | return false; |
13366 | } |
13367 | if (Start == Stride || Start == getMinusSCEV(LHS: Stride, RHS: One)) { |
13368 | // If Start is equal to Stride, (End - Start) + (Stride - 1) == End |
13369 | // - 1. If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 |
13370 | // <u End. If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - |
13371 | // 1 <s End. |
13372 | // |
13373 | // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == |
13374 | // End. |
13375 | return false; |
13376 | } |
13377 | return true; |
13378 | }(); |
13379 | |
13380 | const SCEV *Delta = getMinusSCEV(LHS: End, RHS: Start); |
13381 | if (!MayAddOverflow) { |
13382 | // floor((D + (S - 1)) / S) |
13383 | // We prefer this formulation if it's legal because it's fewer |
13384 | // operations. |
13385 | BECount = |
13386 | getUDivExpr(LHS: getAddExpr(LHS: Delta, RHS: getMinusSCEV(LHS: Stride, RHS: One)), RHS: Stride); |
13387 | } else { |
13388 | BECount = getUDivCeilSCEV(N: Delta, D: Stride); |
13389 | } |
13390 | } |
13391 | } |
13392 | |
13393 | const SCEV *ConstantMaxBECount; |
13394 | bool MaxOrZero = false; |
13395 | if (isa<SCEVConstant>(Val: BECount)) { |
13396 | ConstantMaxBECount = BECount; |
13397 | } else if (BECountIfBackedgeTaken && |
13398 | isa<SCEVConstant>(Val: BECountIfBackedgeTaken)) { |
13399 | // If we know exactly how many times the backedge will be taken if it's |
13400 | // taken at least once, then the backedge count will either be that or |
13401 | // zero. |
13402 | ConstantMaxBECount = BECountIfBackedgeTaken; |
13403 | MaxOrZero = true; |
13404 | } else { |
13405 | ConstantMaxBECount = computeMaxBECountForLT( |
13406 | Start, Stride, End: RHS, BitWidth: getTypeSizeInBits(Ty: LHS->getType()), IsSigned); |
13407 | } |
13408 | |
13409 | if (isa<SCEVCouldNotCompute>(Val: ConstantMaxBECount) && |
13410 | !isa<SCEVCouldNotCompute>(Val: BECount)) |
13411 | ConstantMaxBECount = getConstant(Val: getUnsignedRangeMax(S: BECount)); |
13412 | |
13413 | const SCEV *SymbolicMaxBECount = |
13414 | isa<SCEVCouldNotCompute>(Val: BECount) ? ConstantMaxBECount : BECount; |
13415 | return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero, |
13416 | Predicates); |
13417 | } |
13418 | |
13419 | ScalarEvolution::ExitLimit ScalarEvolution::howManyGreaterThans( |
13420 | const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned, |
13421 | bool ControlsOnlyExit, bool AllowPredicates) { |
13422 | SmallVector<const SCEVPredicate *> Predicates; |
13423 | // We handle only IV > Invariant |
13424 | if (!isLoopInvariant(S: RHS, L)) |
13425 | return getCouldNotCompute(); |
13426 | |
13427 | const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(Val: LHS); |
13428 | if (!IV && AllowPredicates) |
13429 | // Try to make this an AddRec using runtime tests, in the first X |
13430 | // iterations of this loop, where X is the SCEV expression found by the |
13431 | // algorithm below. |
13432 | IV = convertSCEVToAddRecWithPredicates(S: LHS, L, Preds&: Predicates); |
13433 | |
13434 | // Avoid weird loops |
13435 | if (!IV || IV->getLoop() != L || !IV->isAffine()) |
13436 | return getCouldNotCompute(); |
13437 | |
13438 | auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; |
13439 | bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(Mask: WrapType); |
13440 | ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; |
13441 | |
13442 | const SCEV *Stride = getNegativeSCEV(V: IV->getStepRecurrence(SE&: *this)); |
13443 | |
13444 | // Avoid negative or zero stride values |
13445 | if (!isKnownPositive(S: Stride)) |
13446 | return getCouldNotCompute(); |
13447 | |
13448 | // Avoid proven overflow cases: this will ensure that the backedge taken count |
13449 | // will not generate any unsigned overflow. Relaxed no-overflow conditions |
13450 | // exploit NoWrapFlags, allowing to optimize in presence of undefined |
13451 | // behaviors like the case of C language. |
13452 | if (!Stride->isOne() && !NoWrap) |
13453 | if (canIVOverflowOnGT(RHS, Stride, IsSigned)) |
13454 | return getCouldNotCompute(); |
13455 | |
13456 | const SCEV *Start = IV->getStart(); |
13457 | const SCEV *End = RHS; |
13458 | if (!isLoopEntryGuardedByCond(L, Pred: Cond, LHS: getAddExpr(LHS: Start, RHS: Stride), RHS)) { |
13459 | // If we know that Start >= RHS in the context of loop, then we know that |
13460 | // min(RHS, Start) = RHS at this point. |
13461 | if (isLoopEntryGuardedByCond( |
13462 | L, Pred: IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, LHS: Start, RHS)) |
13463 | End = RHS; |
13464 | else |
13465 | End = IsSigned ? getSMinExpr(LHS: RHS, RHS: Start) : getUMinExpr(LHS: RHS, RHS: Start); |
13466 | } |
13467 | |
13468 | if (Start->getType()->isPointerTy()) { |
13469 | Start = getLosslessPtrToIntExpr(Op: Start); |
13470 | if (isa<SCEVCouldNotCompute>(Val: Start)) |
13471 | return Start; |
13472 | } |
13473 | if (End->getType()->isPointerTy()) { |
13474 | End = getLosslessPtrToIntExpr(Op: End); |
13475 | if (isa<SCEVCouldNotCompute>(Val: End)) |
13476 | return End; |
13477 | } |
13478 | |
13479 | // Compute ((Start - End) + (Stride - 1)) / Stride. |
13480 | // FIXME: This can overflow. Holding off on fixing this for now; |
13481 | // howManyGreaterThans will hopefully be gone soon. |
13482 | const SCEV *One = getOne(Ty: Stride->getType()); |
13483 | const SCEV *BECount = getUDivExpr( |
13484 | LHS: getAddExpr(LHS: getMinusSCEV(LHS: Start, RHS: End), RHS: getMinusSCEV(LHS: Stride, RHS: One)), RHS: Stride); |
13485 | |
13486 | APInt MaxStart = IsSigned ? getSignedRangeMax(S: Start) |
13487 | : getUnsignedRangeMax(S: Start); |
13488 | |
13489 | APInt MinStride = IsSigned ? getSignedRangeMin(S: Stride) |
13490 | : getUnsignedRangeMin(S: Stride); |
13491 | |
13492 | unsigned BitWidth = getTypeSizeInBits(Ty: LHS->getType()); |
13493 | APInt Limit = IsSigned ? APInt::getSignedMinValue(numBits: BitWidth) + (MinStride - 1) |
13494 | : APInt::getMinValue(numBits: BitWidth) + (MinStride - 1); |
13495 | |
13496 | // Although End can be a MIN expression we estimate MinEnd considering only |
13497 | // the case End = RHS. This is safe because in the other case (Start - End) |
13498 | // is zero, leading to a zero maximum backedge taken count. |
13499 | APInt MinEnd = |
13500 | IsSigned ? APIntOps::smax(A: getSignedRangeMin(S: RHS), B: Limit) |
13501 | : APIntOps::umax(A: getUnsignedRangeMin(S: RHS), B: Limit); |
13502 | |
13503 | const SCEV *ConstantMaxBECount = |
13504 | isa<SCEVConstant>(Val: BECount) |
13505 | ? BECount |
13506 | : getUDivCeilSCEV(N: getConstant(Val: MaxStart - MinEnd), |
13507 | D: getConstant(Val: MinStride)); |
13508 | |
13509 | if (isa<SCEVCouldNotCompute>(Val: ConstantMaxBECount)) |
13510 | ConstantMaxBECount = BECount; |
13511 | const SCEV *SymbolicMaxBECount = |
13512 | isa<SCEVCouldNotCompute>(Val: BECount) ? ConstantMaxBECount : BECount; |
13513 | |
13514 | return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, |
13515 | Predicates); |
13516 | } |
13517 | |
13518 | const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, |
13519 | ScalarEvolution &SE) const { |
13520 | if (Range.isFullSet()) // Infinite loop. |
13521 | return SE.getCouldNotCompute(); |
13522 | |
13523 | // If the start is a non-zero constant, shift the range to simplify things. |
13524 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Val: getStart())) |
13525 | if (!SC->getValue()->isZero()) { |
13526 | SmallVector<const SCEV *, 4> Operands(operands()); |
13527 | Operands[0] = SE.getZero(Ty: SC->getType()); |
13528 | const SCEV *Shifted = SE.getAddRecExpr(Operands, L: getLoop(), |
13529 | Flags: getNoWrapFlags(Mask: FlagNW)); |
13530 | if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Val: Shifted)) |
13531 | return ShiftedAddRec->getNumIterationsInRange( |
13532 | Range: Range.subtract(CI: SC->getAPInt()), SE); |
13533 | // This is strange and shouldn't happen. |
13534 | return SE.getCouldNotCompute(); |
13535 | } |
13536 | |
13537 | // The only time we can solve this is when we have all constant indices. |
13538 | // Otherwise, we cannot determine the overflow conditions. |
13539 | if (any_of(Range: operands(), P: [](const SCEV *Op) { return !isa<SCEVConstant>(Val: Op); })) |
13540 | return SE.getCouldNotCompute(); |
13541 | |
13542 | // Okay at this point we know that all elements of the chrec are constants and |
13543 | // that the start element is zero. |
13544 | |
13545 | // First check to see if the range contains zero. If not, the first |
13546 | // iteration exits. |
13547 | unsigned BitWidth = SE.getTypeSizeInBits(Ty: getType()); |
13548 | if (!Range.contains(Val: APInt(BitWidth, 0))) |
13549 | return SE.getZero(Ty: getType()); |
13550 | |
13551 | if (isAffine()) { |
13552 | // If this is an affine expression then we have this situation: |
13553 | // Solve {0,+,A} in Range === Ax in Range |
13554 | |
13555 | // We know that zero is in the range. If A is positive then we know that |
13556 | // the upper value of the range must be the first possible exit value. |
13557 | // If A is negative then the lower of the range is the last possible loop |
13558 | // value. Also note that we already checked for a full range. |
13559 | APInt A = cast<SCEVConstant>(Val: getOperand(i: 1))->getAPInt(); |
13560 | APInt End = A.sge(RHS: 1) ? (Range.getUpper() - 1) : Range.getLower(); |
13561 | |
13562 | // The exit value should be (End+A)/A. |
13563 | APInt ExitVal = (End + A).udiv(RHS: A); |
13564 | ConstantInt *ExitValue = ConstantInt::get(Context&: SE.getContext(), V: ExitVal); |
13565 | |
13566 | // Evaluate at the exit value. If we really did fall out of the valid |
13567 | // range, then we computed our trip count, otherwise wrap around or other |
13568 | // things must have happened. |
13569 | ConstantInt *Val = EvaluateConstantChrecAtConstant(AddRec: this, C: ExitValue, SE); |
13570 | if (Range.contains(Val: Val->getValue())) |
13571 | return SE.getCouldNotCompute(); // Something strange happened |
13572 | |
13573 | // Ensure that the previous value is in the range. |
13574 | assert(Range.contains( |
13575 | EvaluateConstantChrecAtConstant(this, |
13576 | ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && |
13577 | "Linear scev computation is off in a bad way!" ); |
13578 | return SE.getConstant(V: ExitValue); |
13579 | } |
13580 | |
13581 | if (isQuadratic()) { |
13582 | if (auto S = SolveQuadraticAddRecRange(AddRec: this, Range, SE)) |
13583 | return SE.getConstant(Val: *S); |
13584 | } |
13585 | |
13586 | return SE.getCouldNotCompute(); |
13587 | } |
13588 | |
13589 | const SCEVAddRecExpr * |
13590 | SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { |
13591 | assert(getNumOperands() > 1 && "AddRec with zero step?" ); |
13592 | // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), |
13593 | // but in this case we cannot guarantee that the value returned will be an |
13594 | // AddRec because SCEV does not have a fixed point where it stops |
13595 | // simplification: it is legal to return ({rec1} + {rec2}). For example, it |
13596 | // may happen if we reach arithmetic depth limit while simplifying. So we |
13597 | // construct the returned value explicitly. |
13598 | SmallVector<const SCEV *, 3> Ops; |
13599 | // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and |
13600 | // (this + Step) is {A+B,+,B+C,+...,+,N}. |
13601 | for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) |
13602 | Ops.push_back(Elt: SE.getAddExpr(LHS: getOperand(i), RHS: getOperand(i: i + 1))); |
13603 | // We know that the last operand is not a constant zero (otherwise it would |
13604 | // have been popped out earlier). This guarantees us that if the result has |
13605 | // the same last operand, then it will also not be popped out, meaning that |
13606 | // the returned value will be an AddRec. |
13607 | const SCEV *Last = getOperand(i: getNumOperands() - 1); |
13608 | assert(!Last->isZero() && "Recurrency with zero step?" ); |
13609 | Ops.push_back(Elt: Last); |
13610 | return cast<SCEVAddRecExpr>(Val: SE.getAddRecExpr(Operands&: Ops, L: getLoop(), |
13611 | Flags: SCEV::FlagAnyWrap)); |
13612 | } |
13613 | |
13614 | // Return true when S contains at least an undef value. |
13615 | bool ScalarEvolution::containsUndefs(const SCEV *S) const { |
13616 | return SCEVExprContains(Root: S, Pred: [](const SCEV *S) { |
13617 | if (const auto *SU = dyn_cast<SCEVUnknown>(Val: S)) |
13618 | return isa<UndefValue>(Val: SU->getValue()); |
13619 | return false; |
13620 | }); |
13621 | } |
13622 | |
13623 | // Return true when S contains a value that is a nullptr. |
13624 | bool ScalarEvolution::containsErasedValue(const SCEV *S) const { |
13625 | return SCEVExprContains(Root: S, Pred: [](const SCEV *S) { |
13626 | if (const auto *SU = dyn_cast<SCEVUnknown>(Val: S)) |
13627 | return SU->getValue() == nullptr; |
13628 | return false; |
13629 | }); |
13630 | } |
13631 | |
13632 | /// Return the size of an element read or written by Inst. |
13633 | const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { |
13634 | Type *Ty; |
13635 | if (StoreInst *Store = dyn_cast<StoreInst>(Val: Inst)) |
13636 | Ty = Store->getValueOperand()->getType(); |
13637 | else if (LoadInst *Load = dyn_cast<LoadInst>(Val: Inst)) |
13638 | Ty = Load->getType(); |
13639 | else |
13640 | return nullptr; |
13641 | |
13642 | Type *ETy = getEffectiveSCEVType(Ty: PointerType::getUnqual(C&: Inst->getContext())); |
13643 | return getSizeOfExpr(IntTy: ETy, AllocTy: Ty); |
13644 | } |
13645 | |
13646 | //===----------------------------------------------------------------------===// |
13647 | // SCEVCallbackVH Class Implementation |
13648 | //===----------------------------------------------------------------------===// |
13649 | |
13650 | void ScalarEvolution::SCEVCallbackVH::deleted() { |
13651 | assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!" ); |
13652 | if (PHINode *PN = dyn_cast<PHINode>(Val: getValPtr())) |
13653 | SE->ConstantEvolutionLoopExitValue.erase(Val: PN); |
13654 | SE->eraseValueFromMap(V: getValPtr()); |
13655 | // this now dangles! |
13656 | } |
13657 | |
13658 | void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { |
13659 | assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!" ); |
13660 | |
13661 | // Forget all the expressions associated with users of the old value, |
13662 | // so that future queries will recompute the expressions using the new |
13663 | // value. |
13664 | SE->forgetValue(V: getValPtr()); |
13665 | // this now dangles! |
13666 | } |
13667 | |
13668 | ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) |
13669 | : CallbackVH(V), SE(se) {} |
13670 | |
13671 | //===----------------------------------------------------------------------===// |
13672 | // ScalarEvolution Class Implementation |
13673 | //===----------------------------------------------------------------------===// |
13674 | |
13675 | ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, |
13676 | AssumptionCache &AC, DominatorTree &DT, |
13677 | LoopInfo &LI) |
13678 | : F(F), DL(F.getDataLayout()), TLI(TLI), AC(AC), DT(DT), LI(LI), |
13679 | CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), |
13680 | LoopDispositions(64), BlockDispositions(64) { |
13681 | // To use guards for proving predicates, we need to scan every instruction in |
13682 | // relevant basic blocks, and not just terminators. Doing this is a waste of |
13683 | // time if the IR does not actually contain any calls to |
13684 | // @llvm.experimental.guard, so do a quick check and remember this beforehand. |
13685 | // |
13686 | // This pessimizes the case where a pass that preserves ScalarEvolution wants |
13687 | // to _add_ guards to the module when there weren't any before, and wants |
13688 | // ScalarEvolution to optimize based on those guards. For now we prefer to be |
13689 | // efficient in lieu of being smart in that rather obscure case. |
13690 | |
13691 | auto *GuardDecl = Intrinsic::getDeclarationIfExists( |
13692 | M: F.getParent(), id: Intrinsic::experimental_guard); |
13693 | HasGuards = GuardDecl && !GuardDecl->use_empty(); |
13694 | } |
13695 | |
13696 | ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) |
13697 | : F(Arg.F), DL(Arg.DL), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), |
13698 | DT(Arg.DT), LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), |
13699 | ValueExprMap(std::move(Arg.ValueExprMap)), |
13700 | PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), |
13701 | PendingPhiRanges(std::move(Arg.PendingPhiRanges)), |
13702 | PendingMerges(std::move(Arg.PendingMerges)), |
13703 | ConstantMultipleCache(std::move(Arg.ConstantMultipleCache)), |
13704 | BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), |
13705 | PredicatedBackedgeTakenCounts( |
13706 | std::move(Arg.PredicatedBackedgeTakenCounts)), |
13707 | BECountUsers(std::move(Arg.BECountUsers)), |
13708 | ConstantEvolutionLoopExitValue( |
13709 | std::move(Arg.ConstantEvolutionLoopExitValue)), |
13710 | ValuesAtScopes(std::move(Arg.ValuesAtScopes)), |
13711 | ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), |
13712 | LoopDispositions(std::move(Arg.LoopDispositions)), |
13713 | LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), |
13714 | BlockDispositions(std::move(Arg.BlockDispositions)), |
13715 | SCEVUsers(std::move(Arg.SCEVUsers)), |
13716 | UnsignedRanges(std::move(Arg.UnsignedRanges)), |
13717 | SignedRanges(std::move(Arg.SignedRanges)), |
13718 | UniqueSCEVs(std::move(Arg.UniqueSCEVs)), |
13719 | UniquePreds(std::move(Arg.UniquePreds)), |
13720 | SCEVAllocator(std::move(Arg.SCEVAllocator)), |
13721 | LoopUsers(std::move(Arg.LoopUsers)), |
13722 | PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), |
13723 | FirstUnknown(Arg.FirstUnknown) { |
13724 | Arg.FirstUnknown = nullptr; |
13725 | } |
13726 | |
13727 | ScalarEvolution::~ScalarEvolution() { |
13728 | // Iterate through all the SCEVUnknown instances and call their |
13729 | // destructors, so that they release their references to their values. |
13730 | for (SCEVUnknown *U = FirstUnknown; U;) { |
13731 | SCEVUnknown *Tmp = U; |
13732 | U = U->Next; |
13733 | Tmp->~SCEVUnknown(); |
13734 | } |
13735 | FirstUnknown = nullptr; |
13736 | |
13737 | ExprValueMap.clear(); |
13738 | ValueExprMap.clear(); |
13739 | HasRecMap.clear(); |
13740 | BackedgeTakenCounts.clear(); |
13741 | PredicatedBackedgeTakenCounts.clear(); |
13742 | |
13743 | assert(PendingLoopPredicates.empty() && "isImpliedCond garbage" ); |
13744 | assert(PendingPhiRanges.empty() && "getRangeRef garbage" ); |
13745 | assert(PendingMerges.empty() && "isImpliedViaMerge garbage" ); |
13746 | assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!" ); |
13747 | assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!" ); |
13748 | } |
13749 | |
13750 | bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { |
13751 | return !isa<SCEVCouldNotCompute>(Val: getBackedgeTakenCount(L)); |
13752 | } |
13753 | |
13754 | /// When printing a top-level SCEV for trip counts, it's helpful to include |
13755 | /// a type for constants which are otherwise hard to disambiguate. |
13756 | static void PrintSCEVWithTypeHint(raw_ostream &OS, const SCEV* S) { |
13757 | if (isa<SCEVConstant>(Val: S)) |
13758 | OS << *S->getType() << " " ; |
13759 | OS << *S; |
13760 | } |
13761 | |
13762 | static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, |
13763 | const Loop *L) { |
13764 | // Print all inner loops first |
13765 | for (Loop *I : *L) |
13766 | PrintLoopInfo(OS, SE, L: I); |
13767 | |
13768 | OS << "Loop " ; |
13769 | L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
13770 | OS << ": " ; |
13771 | |
13772 | SmallVector<BasicBlock *, 8> ExitingBlocks; |
13773 | L->getExitingBlocks(ExitingBlocks); |
13774 | if (ExitingBlocks.size() != 1) |
13775 | OS << "<multiple exits> " ; |
13776 | |
13777 | auto *BTC = SE->getBackedgeTakenCount(L); |
13778 | if (!isa<SCEVCouldNotCompute>(Val: BTC)) { |
13779 | OS << "backedge-taken count is " ; |
13780 | PrintSCEVWithTypeHint(OS, S: BTC); |
13781 | } else |
13782 | OS << "Unpredictable backedge-taken count." ; |
13783 | OS << "\n" ; |
13784 | |
13785 | if (ExitingBlocks.size() > 1) |
13786 | for (BasicBlock *ExitingBlock : ExitingBlocks) { |
13787 | OS << " exit count for " << ExitingBlock->getName() << ": " ; |
13788 | const SCEV *EC = SE->getExitCount(L, ExitingBlock); |
13789 | PrintSCEVWithTypeHint(OS, S: EC); |
13790 | if (isa<SCEVCouldNotCompute>(Val: EC)) { |
13791 | // Retry with predicates. |
13792 | SmallVector<const SCEVPredicate *> Predicates; |
13793 | EC = SE->getPredicatedExitCount(L, ExitingBlock, Predicates: &Predicates); |
13794 | if (!isa<SCEVCouldNotCompute>(Val: EC)) { |
13795 | OS << "\n predicated exit count for " << ExitingBlock->getName() |
13796 | << ": " ; |
13797 | PrintSCEVWithTypeHint(OS, S: EC); |
13798 | OS << "\n Predicates:\n" ; |
13799 | for (const auto *P : Predicates) |
13800 | P->print(OS, Depth: 4); |
13801 | } |
13802 | } |
13803 | OS << "\n" ; |
13804 | } |
13805 | |
13806 | OS << "Loop " ; |
13807 | L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
13808 | OS << ": " ; |
13809 | |
13810 | auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L); |
13811 | if (!isa<SCEVCouldNotCompute>(Val: ConstantBTC)) { |
13812 | OS << "constant max backedge-taken count is " ; |
13813 | PrintSCEVWithTypeHint(OS, S: ConstantBTC); |
13814 | if (SE->isBackedgeTakenCountMaxOrZero(L)) |
13815 | OS << ", actual taken count either this or zero." ; |
13816 | } else { |
13817 | OS << "Unpredictable constant max backedge-taken count. " ; |
13818 | } |
13819 | |
13820 | OS << "\n" |
13821 | "Loop " ; |
13822 | L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
13823 | OS << ": " ; |
13824 | |
13825 | auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L); |
13826 | if (!isa<SCEVCouldNotCompute>(Val: SymbolicBTC)) { |
13827 | OS << "symbolic max backedge-taken count is " ; |
13828 | PrintSCEVWithTypeHint(OS, S: SymbolicBTC); |
13829 | if (SE->isBackedgeTakenCountMaxOrZero(L)) |
13830 | OS << ", actual taken count either this or zero." ; |
13831 | } else { |
13832 | OS << "Unpredictable symbolic max backedge-taken count. " ; |
13833 | } |
13834 | OS << "\n" ; |
13835 | |
13836 | if (ExitingBlocks.size() > 1) |
13837 | for (BasicBlock *ExitingBlock : ExitingBlocks) { |
13838 | OS << " symbolic max exit count for " << ExitingBlock->getName() << ": " ; |
13839 | auto *ExitBTC = SE->getExitCount(L, ExitingBlock, |
13840 | Kind: ScalarEvolution::SymbolicMaximum); |
13841 | PrintSCEVWithTypeHint(OS, S: ExitBTC); |
13842 | if (isa<SCEVCouldNotCompute>(Val: ExitBTC)) { |
13843 | // Retry with predicates. |
13844 | SmallVector<const SCEVPredicate *> Predicates; |
13845 | ExitBTC = SE->getPredicatedExitCount(L, ExitingBlock, Predicates: &Predicates, |
13846 | Kind: ScalarEvolution::SymbolicMaximum); |
13847 | if (!isa<SCEVCouldNotCompute>(Val: ExitBTC)) { |
13848 | OS << "\n predicated symbolic max exit count for " |
13849 | << ExitingBlock->getName() << ": " ; |
13850 | PrintSCEVWithTypeHint(OS, S: ExitBTC); |
13851 | OS << "\n Predicates:\n" ; |
13852 | for (const auto *P : Predicates) |
13853 | P->print(OS, Depth: 4); |
13854 | } |
13855 | } |
13856 | OS << "\n" ; |
13857 | } |
13858 | |
13859 | SmallVector<const SCEVPredicate *, 4> Preds; |
13860 | auto *PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); |
13861 | if (PBT != BTC) { |
13862 | assert(!Preds.empty() && "Different predicated BTC, but no predicates" ); |
13863 | OS << "Loop " ; |
13864 | L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
13865 | OS << ": " ; |
13866 | if (!isa<SCEVCouldNotCompute>(Val: PBT)) { |
13867 | OS << "Predicated backedge-taken count is " ; |
13868 | PrintSCEVWithTypeHint(OS, S: PBT); |
13869 | } else |
13870 | OS << "Unpredictable predicated backedge-taken count." ; |
13871 | OS << "\n" ; |
13872 | OS << " Predicates:\n" ; |
13873 | for (const auto *P : Preds) |
13874 | P->print(OS, Depth: 4); |
13875 | } |
13876 | Preds.clear(); |
13877 | |
13878 | auto *PredConstantMax = |
13879 | SE->getPredicatedConstantMaxBackedgeTakenCount(L, Preds); |
13880 | if (PredConstantMax != ConstantBTC) { |
13881 | assert(!Preds.empty() && |
13882 | "different predicated constant max BTC but no predicates" ); |
13883 | OS << "Loop " ; |
13884 | L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
13885 | OS << ": " ; |
13886 | if (!isa<SCEVCouldNotCompute>(Val: PredConstantMax)) { |
13887 | OS << "Predicated constant max backedge-taken count is " ; |
13888 | PrintSCEVWithTypeHint(OS, S: PredConstantMax); |
13889 | } else |
13890 | OS << "Unpredictable predicated constant max backedge-taken count." ; |
13891 | OS << "\n" ; |
13892 | OS << " Predicates:\n" ; |
13893 | for (const auto *P : Preds) |
13894 | P->print(OS, Depth: 4); |
13895 | } |
13896 | Preds.clear(); |
13897 | |
13898 | auto *PredSymbolicMax = |
13899 | SE->getPredicatedSymbolicMaxBackedgeTakenCount(L, Preds); |
13900 | if (SymbolicBTC != PredSymbolicMax) { |
13901 | assert(!Preds.empty() && |
13902 | "Different predicated symbolic max BTC, but no predicates" ); |
13903 | OS << "Loop " ; |
13904 | L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
13905 | OS << ": " ; |
13906 | if (!isa<SCEVCouldNotCompute>(Val: PredSymbolicMax)) { |
13907 | OS << "Predicated symbolic max backedge-taken count is " ; |
13908 | PrintSCEVWithTypeHint(OS, S: PredSymbolicMax); |
13909 | } else |
13910 | OS << "Unpredictable predicated symbolic max backedge-taken count." ; |
13911 | OS << "\n" ; |
13912 | OS << " Predicates:\n" ; |
13913 | for (const auto *P : Preds) |
13914 | P->print(OS, Depth: 4); |
13915 | } |
13916 | |
13917 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) { |
13918 | OS << "Loop " ; |
13919 | L->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
13920 | OS << ": " ; |
13921 | OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n" ; |
13922 | } |
13923 | } |
13924 | |
13925 | namespace llvm { |
13926 | raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::LoopDisposition LD) { |
13927 | switch (LD) { |
13928 | case ScalarEvolution::LoopVariant: |
13929 | OS << "Variant" ; |
13930 | break; |
13931 | case ScalarEvolution::LoopInvariant: |
13932 | OS << "Invariant" ; |
13933 | break; |
13934 | case ScalarEvolution::LoopComputable: |
13935 | OS << "Computable" ; |
13936 | break; |
13937 | } |
13938 | return OS; |
13939 | } |
13940 | |
13941 | raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::BlockDisposition BD) { |
13942 | switch (BD) { |
13943 | case ScalarEvolution::DoesNotDominateBlock: |
13944 | OS << "DoesNotDominate" ; |
13945 | break; |
13946 | case ScalarEvolution::DominatesBlock: |
13947 | OS << "Dominates" ; |
13948 | break; |
13949 | case ScalarEvolution::ProperlyDominatesBlock: |
13950 | OS << "ProperlyDominates" ; |
13951 | break; |
13952 | } |
13953 | return OS; |
13954 | } |
13955 | } // namespace llvm |
13956 | |
13957 | void ScalarEvolution::print(raw_ostream &OS) const { |
13958 | // ScalarEvolution's implementation of the print method is to print |
13959 | // out SCEV values of all instructions that are interesting. Doing |
13960 | // this potentially causes it to create new SCEV objects though, |
13961 | // which technically conflicts with the const qualifier. This isn't |
13962 | // observable from outside the class though, so casting away the |
13963 | // const isn't dangerous. |
13964 | ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); |
13965 | |
13966 | if (ClassifyExpressions) { |
13967 | OS << "Classifying expressions for: " ; |
13968 | F.printAsOperand(O&: OS, /*PrintType=*/false); |
13969 | OS << "\n" ; |
13970 | for (Instruction &I : instructions(F)) |
13971 | if (isSCEVable(Ty: I.getType()) && !isa<CmpInst>(Val: I)) { |
13972 | OS << I << '\n'; |
13973 | OS << " --> " ; |
13974 | const SCEV *SV = SE.getSCEV(V: &I); |
13975 | SV->print(OS); |
13976 | if (!isa<SCEVCouldNotCompute>(Val: SV)) { |
13977 | OS << " U: " ; |
13978 | SE.getUnsignedRange(S: SV).print(OS); |
13979 | OS << " S: " ; |
13980 | SE.getSignedRange(S: SV).print(OS); |
13981 | } |
13982 | |
13983 | const Loop *L = LI.getLoopFor(BB: I.getParent()); |
13984 | |
13985 | const SCEV *AtUse = SE.getSCEVAtScope(V: SV, L); |
13986 | if (AtUse != SV) { |
13987 | OS << " --> " ; |
13988 | AtUse->print(OS); |
13989 | if (!isa<SCEVCouldNotCompute>(Val: AtUse)) { |
13990 | OS << " U: " ; |
13991 | SE.getUnsignedRange(S: AtUse).print(OS); |
13992 | OS << " S: " ; |
13993 | SE.getSignedRange(S: AtUse).print(OS); |
13994 | } |
13995 | } |
13996 | |
13997 | if (L) { |
13998 | OS << "\t\t" "Exits: " ; |
13999 | const SCEV *ExitValue = SE.getSCEVAtScope(V: SV, L: L->getParentLoop()); |
14000 | if (!SE.isLoopInvariant(S: ExitValue, L)) { |
14001 | OS << "<<Unknown>>" ; |
14002 | } else { |
14003 | OS << *ExitValue; |
14004 | } |
14005 | |
14006 | bool First = true; |
14007 | for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { |
14008 | if (First) { |
14009 | OS << "\t\t" "LoopDispositions: { " ; |
14010 | First = false; |
14011 | } else { |
14012 | OS << ", " ; |
14013 | } |
14014 | |
14015 | Iter->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
14016 | OS << ": " << SE.getLoopDisposition(S: SV, L: Iter); |
14017 | } |
14018 | |
14019 | for (const auto *InnerL : depth_first(G: L)) { |
14020 | if (InnerL == L) |
14021 | continue; |
14022 | if (First) { |
14023 | OS << "\t\t" "LoopDispositions: { " ; |
14024 | First = false; |
14025 | } else { |
14026 | OS << ", " ; |
14027 | } |
14028 | |
14029 | InnerL->getHeader()->printAsOperand(O&: OS, /*PrintType=*/false); |
14030 | OS << ": " << SE.getLoopDisposition(S: SV, L: InnerL); |
14031 | } |
14032 | |
14033 | OS << " }" ; |
14034 | } |
14035 | |
14036 | OS << "\n" ; |
14037 | } |
14038 | } |
14039 | |
14040 | OS << "Determining loop execution counts for: " ; |
14041 | F.printAsOperand(O&: OS, /*PrintType=*/false); |
14042 | OS << "\n" ; |
14043 | for (Loop *I : LI) |
14044 | PrintLoopInfo(OS, SE: &SE, L: I); |
14045 | } |
14046 | |
14047 | ScalarEvolution::LoopDisposition |
14048 | ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { |
14049 | auto &Values = LoopDispositions[S]; |
14050 | for (auto &V : Values) { |
14051 | if (V.getPointer() == L) |
14052 | return V.getInt(); |
14053 | } |
14054 | Values.emplace_back(Args&: L, Args: LoopVariant); |
14055 | LoopDisposition D = computeLoopDisposition(S, L); |
14056 | auto &Values2 = LoopDispositions[S]; |
14057 | for (auto &V : llvm::reverse(C&: Values2)) { |
14058 | if (V.getPointer() == L) { |
14059 | V.setInt(D); |
14060 | break; |
14061 | } |
14062 | } |
14063 | return D; |
14064 | } |
14065 | |
14066 | ScalarEvolution::LoopDisposition |
14067 | ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { |
14068 | switch (S->getSCEVType()) { |
14069 | case scConstant: |
14070 | case scVScale: |
14071 | return LoopInvariant; |
14072 | case scAddRecExpr: { |
14073 | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(Val: S); |
14074 | |
14075 | // If L is the addrec's loop, it's computable. |
14076 | if (AR->getLoop() == L) |
14077 | return LoopComputable; |
14078 | |
14079 | // Add recurrences are never invariant in the function-body (null loop). |
14080 | if (!L) |
14081 | return LoopVariant; |
14082 | |
14083 | // Everything that is not defined at loop entry is variant. |
14084 | if (DT.dominates(A: L->getHeader(), B: AR->getLoop()->getHeader())) |
14085 | return LoopVariant; |
14086 | assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" |
14087 | " dominate the contained loop's header?" ); |
14088 | |
14089 | // This recurrence is invariant w.r.t. L if AR's loop contains L. |
14090 | if (AR->getLoop()->contains(L)) |
14091 | return LoopInvariant; |
14092 | |
14093 | // This recurrence is variant w.r.t. L if any of its operands |
14094 | // are variant. |
14095 | for (const auto *Op : AR->operands()) |
14096 | if (!isLoopInvariant(S: Op, L)) |
14097 | return LoopVariant; |
14098 | |
14099 | // Otherwise it's loop-invariant. |
14100 | return LoopInvariant; |
14101 | } |
14102 | case scTruncate: |
14103 | case scZeroExtend: |
14104 | case scSignExtend: |
14105 | case scPtrToInt: |
14106 | case scAddExpr: |
14107 | case scMulExpr: |
14108 | case scUDivExpr: |
14109 | case scUMaxExpr: |
14110 | case scSMaxExpr: |
14111 | case scUMinExpr: |
14112 | case scSMinExpr: |
14113 | case scSequentialUMinExpr: { |
14114 | bool HasVarying = false; |
14115 | for (const auto *Op : S->operands()) { |
14116 | LoopDisposition D = getLoopDisposition(S: Op, L); |
14117 | if (D == LoopVariant) |
14118 | return LoopVariant; |
14119 | if (D == LoopComputable) |
14120 | HasVarying = true; |
14121 | } |
14122 | return HasVarying ? LoopComputable : LoopInvariant; |
14123 | } |
14124 | case scUnknown: |
14125 | // All non-instruction values are loop invariant. All instructions are loop |
14126 | // invariant if they are not contained in the specified loop. |
14127 | // Instructions are never considered invariant in the function body |
14128 | // (null loop) because they are defined within the "loop". |
14129 | if (auto *I = dyn_cast<Instruction>(Val: cast<SCEVUnknown>(Val: S)->getValue())) |
14130 | return (L && !L->contains(Inst: I)) ? LoopInvariant : LoopVariant; |
14131 | return LoopInvariant; |
14132 | case scCouldNotCompute: |
14133 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
14134 | } |
14135 | llvm_unreachable("Unknown SCEV kind!" ); |
14136 | } |
14137 | |
14138 | bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { |
14139 | return getLoopDisposition(S, L) == LoopInvariant; |
14140 | } |
14141 | |
14142 | bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { |
14143 | return getLoopDisposition(S, L) == LoopComputable; |
14144 | } |
14145 | |
14146 | ScalarEvolution::BlockDisposition |
14147 | ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { |
14148 | auto &Values = BlockDispositions[S]; |
14149 | for (auto &V : Values) { |
14150 | if (V.getPointer() == BB) |
14151 | return V.getInt(); |
14152 | } |
14153 | Values.emplace_back(Args&: BB, Args: DoesNotDominateBlock); |
14154 | BlockDisposition D = computeBlockDisposition(S, BB); |
14155 | auto &Values2 = BlockDispositions[S]; |
14156 | for (auto &V : llvm::reverse(C&: Values2)) { |
14157 | if (V.getPointer() == BB) { |
14158 | V.setInt(D); |
14159 | break; |
14160 | } |
14161 | } |
14162 | return D; |
14163 | } |
14164 | |
14165 | ScalarEvolution::BlockDisposition |
14166 | ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { |
14167 | switch (S->getSCEVType()) { |
14168 | case scConstant: |
14169 | case scVScale: |
14170 | return ProperlyDominatesBlock; |
14171 | case scAddRecExpr: { |
14172 | // This uses a "dominates" query instead of "properly dominates" query |
14173 | // to test for proper dominance too, because the instruction which |
14174 | // produces the addrec's value is a PHI, and a PHI effectively properly |
14175 | // dominates its entire containing block. |
14176 | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(Val: S); |
14177 | if (!DT.dominates(A: AR->getLoop()->getHeader(), B: BB)) |
14178 | return DoesNotDominateBlock; |
14179 | |
14180 | // Fall through into SCEVNAryExpr handling. |
14181 | [[fallthrough]]; |
14182 | } |
14183 | case scTruncate: |
14184 | case scZeroExtend: |
14185 | case scSignExtend: |
14186 | case scPtrToInt: |
14187 | case scAddExpr: |
14188 | case scMulExpr: |
14189 | case scUDivExpr: |
14190 | case scUMaxExpr: |
14191 | case scSMaxExpr: |
14192 | case scUMinExpr: |
14193 | case scSMinExpr: |
14194 | case scSequentialUMinExpr: { |
14195 | bool Proper = true; |
14196 | for (const SCEV *NAryOp : S->operands()) { |
14197 | BlockDisposition D = getBlockDisposition(S: NAryOp, BB); |
14198 | if (D == DoesNotDominateBlock) |
14199 | return DoesNotDominateBlock; |
14200 | if (D == DominatesBlock) |
14201 | Proper = false; |
14202 | } |
14203 | return Proper ? ProperlyDominatesBlock : DominatesBlock; |
14204 | } |
14205 | case scUnknown: |
14206 | if (Instruction *I = |
14207 | dyn_cast<Instruction>(Val: cast<SCEVUnknown>(Val: S)->getValue())) { |
14208 | if (I->getParent() == BB) |
14209 | return DominatesBlock; |
14210 | if (DT.properlyDominates(A: I->getParent(), B: BB)) |
14211 | return ProperlyDominatesBlock; |
14212 | return DoesNotDominateBlock; |
14213 | } |
14214 | return ProperlyDominatesBlock; |
14215 | case scCouldNotCompute: |
14216 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!" ); |
14217 | } |
14218 | llvm_unreachable("Unknown SCEV kind!" ); |
14219 | } |
14220 | |
14221 | bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { |
14222 | return getBlockDisposition(S, BB) >= DominatesBlock; |
14223 | } |
14224 | |
14225 | bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { |
14226 | return getBlockDisposition(S, BB) == ProperlyDominatesBlock; |
14227 | } |
14228 | |
14229 | bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { |
14230 | return SCEVExprContains(Root: S, Pred: [&](const SCEV *Expr) { return Expr == Op; }); |
14231 | } |
14232 | |
14233 | void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, |
14234 | bool Predicated) { |
14235 | auto &BECounts = |
14236 | Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; |
14237 | auto It = BECounts.find(Val: L); |
14238 | if (It != BECounts.end()) { |
14239 | for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { |
14240 | for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { |
14241 | if (!isa<SCEVConstant>(Val: S)) { |
14242 | auto UserIt = BECountUsers.find(Val: S); |
14243 | assert(UserIt != BECountUsers.end()); |
14244 | UserIt->second.erase(Ptr: {L, Predicated}); |
14245 | } |
14246 | } |
14247 | } |
14248 | BECounts.erase(I: It); |
14249 | } |
14250 | } |
14251 | |
14252 | void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { |
14253 | SmallPtrSet<const SCEV *, 8> ToForget(llvm::from_range, SCEVs); |
14254 | SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); |
14255 | |
14256 | while (!Worklist.empty()) { |
14257 | const SCEV *Curr = Worklist.pop_back_val(); |
14258 | auto Users = SCEVUsers.find(Val: Curr); |
14259 | if (Users != SCEVUsers.end()) |
14260 | for (const auto *User : Users->second) |
14261 | if (ToForget.insert(Ptr: User).second) |
14262 | Worklist.push_back(Elt: User); |
14263 | } |
14264 | |
14265 | for (const auto *S : ToForget) |
14266 | forgetMemoizedResultsImpl(S); |
14267 | |
14268 | for (auto I = PredicatedSCEVRewrites.begin(); |
14269 | I != PredicatedSCEVRewrites.end();) { |
14270 | std::pair<const SCEV *, const Loop *> Entry = I->first; |
14271 | if (ToForget.count(Ptr: Entry.first)) |
14272 | PredicatedSCEVRewrites.erase(I: I++); |
14273 | else |
14274 | ++I; |
14275 | } |
14276 | } |
14277 | |
14278 | void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { |
14279 | LoopDispositions.erase(Val: S); |
14280 | BlockDispositions.erase(Val: S); |
14281 | UnsignedRanges.erase(Val: S); |
14282 | SignedRanges.erase(Val: S); |
14283 | HasRecMap.erase(Val: S); |
14284 | ConstantMultipleCache.erase(Val: S); |
14285 | |
14286 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: S)) { |
14287 | UnsignedWrapViaInductionTried.erase(Ptr: AR); |
14288 | SignedWrapViaInductionTried.erase(Ptr: AR); |
14289 | } |
14290 | |
14291 | auto ExprIt = ExprValueMap.find(Val: S); |
14292 | if (ExprIt != ExprValueMap.end()) { |
14293 | for (Value *V : ExprIt->second) { |
14294 | auto ValueIt = ValueExprMap.find_as(Val: V); |
14295 | if (ValueIt != ValueExprMap.end()) |
14296 | ValueExprMap.erase(I: ValueIt); |
14297 | } |
14298 | ExprValueMap.erase(I: ExprIt); |
14299 | } |
14300 | |
14301 | auto ScopeIt = ValuesAtScopes.find(Val: S); |
14302 | if (ScopeIt != ValuesAtScopes.end()) { |
14303 | for (const auto &Pair : ScopeIt->second) |
14304 | if (!isa_and_nonnull<SCEVConstant>(Val: Pair.second)) |
14305 | llvm::erase(C&: ValuesAtScopesUsers[Pair.second], |
14306 | V: std::make_pair(x: Pair.first, y&: S)); |
14307 | ValuesAtScopes.erase(I: ScopeIt); |
14308 | } |
14309 | |
14310 | auto ScopeUserIt = ValuesAtScopesUsers.find(Val: S); |
14311 | if (ScopeUserIt != ValuesAtScopesUsers.end()) { |
14312 | for (const auto &Pair : ScopeUserIt->second) |
14313 | llvm::erase(C&: ValuesAtScopes[Pair.second], V: std::make_pair(x: Pair.first, y&: S)); |
14314 | ValuesAtScopesUsers.erase(I: ScopeUserIt); |
14315 | } |
14316 | |
14317 | auto BEUsersIt = BECountUsers.find(Val: S); |
14318 | if (BEUsersIt != BECountUsers.end()) { |
14319 | // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. |
14320 | auto Copy = BEUsersIt->second; |
14321 | for (const auto &Pair : Copy) |
14322 | forgetBackedgeTakenCounts(L: Pair.getPointer(), Predicated: Pair.getInt()); |
14323 | BECountUsers.erase(I: BEUsersIt); |
14324 | } |
14325 | |
14326 | auto FoldUser = FoldCacheUser.find(Val: S); |
14327 | if (FoldUser != FoldCacheUser.end()) |
14328 | for (auto &KV : FoldUser->second) |
14329 | FoldCache.erase(Val: KV); |
14330 | FoldCacheUser.erase(Val: S); |
14331 | } |
14332 | |
14333 | void |
14334 | ScalarEvolution::getUsedLoops(const SCEV *S, |
14335 | SmallPtrSetImpl<const Loop *> &LoopsUsed) { |
14336 | struct FindUsedLoops { |
14337 | FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) |
14338 | : LoopsUsed(LoopsUsed) {} |
14339 | SmallPtrSetImpl<const Loop *> &LoopsUsed; |
14340 | bool follow(const SCEV *S) { |
14341 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(Val: S)) |
14342 | LoopsUsed.insert(Ptr: AR->getLoop()); |
14343 | return true; |
14344 | } |
14345 | |
14346 | bool isDone() const { return false; } |
14347 | }; |
14348 | |
14349 | FindUsedLoops F(LoopsUsed); |
14350 | SCEVTraversal<FindUsedLoops>(F).visitAll(Root: S); |
14351 | } |
14352 | |
14353 | void ScalarEvolution::getReachableBlocks( |
14354 | SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) { |
14355 | SmallVector<BasicBlock *> Worklist; |
14356 | Worklist.push_back(Elt: &F.getEntryBlock()); |
14357 | while (!Worklist.empty()) { |
14358 | BasicBlock *BB = Worklist.pop_back_val(); |
14359 | if (!Reachable.insert(Ptr: BB).second) |
14360 | continue; |
14361 | |
14362 | Value *Cond; |
14363 | BasicBlock *TrueBB, *FalseBB; |
14364 | if (match(V: BB->getTerminator(), P: m_Br(C: m_Value(V&: Cond), T: m_BasicBlock(V&: TrueBB), |
14365 | F: m_BasicBlock(V&: FalseBB)))) { |
14366 | if (auto *C = dyn_cast<ConstantInt>(Val: Cond)) { |
14367 | Worklist.push_back(Elt: C->isOne() ? TrueBB : FalseBB); |
14368 | continue; |
14369 | } |
14370 | |
14371 | if (auto *Cmp = dyn_cast<ICmpInst>(Val: Cond)) { |
14372 | const SCEV *L = getSCEV(V: Cmp->getOperand(i_nocapture: 0)); |
14373 | const SCEV *R = getSCEV(V: Cmp->getOperand(i_nocapture: 1)); |
14374 | if (isKnownPredicateViaConstantRanges(Pred: Cmp->getCmpPredicate(), LHS: L, RHS: R)) { |
14375 | Worklist.push_back(Elt: TrueBB); |
14376 | continue; |
14377 | } |
14378 | if (isKnownPredicateViaConstantRanges(Pred: Cmp->getInverseCmpPredicate(), LHS: L, |
14379 | RHS: R)) { |
14380 | Worklist.push_back(Elt: FalseBB); |
14381 | continue; |
14382 | } |
14383 | } |
14384 | } |
14385 | |
14386 | append_range(C&: Worklist, R: successors(BB)); |
14387 | } |
14388 | } |
14389 | |
14390 | void ScalarEvolution::verify() const { |
14391 | ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); |
14392 | ScalarEvolution SE2(F, TLI, AC, DT, LI); |
14393 | |
14394 | SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); |
14395 | |
14396 | // Map's SCEV expressions from one ScalarEvolution "universe" to another. |
14397 | struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { |
14398 | SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} |
14399 | |
14400 | const SCEV *visitConstant(const SCEVConstant *Constant) { |
14401 | return SE.getConstant(Val: Constant->getAPInt()); |
14402 | } |
14403 | |
14404 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
14405 | return SE.getUnknown(V: Expr->getValue()); |
14406 | } |
14407 | |
14408 | const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { |
14409 | return SE.getCouldNotCompute(); |
14410 | } |
14411 | }; |
14412 | |
14413 | SCEVMapper SCM(SE2); |
14414 | SmallPtrSet<BasicBlock *, 16> ReachableBlocks; |
14415 | SE2.getReachableBlocks(Reachable&: ReachableBlocks, F); |
14416 | |
14417 | auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * { |
14418 | if (containsUndefs(S: Old) || containsUndefs(S: New)) { |
14419 | // SCEV treats "undef" as an unknown but consistent value (i.e. it does |
14420 | // not propagate undef aggressively). This means we can (and do) fail |
14421 | // verification in cases where a transform makes a value go from "undef" |
14422 | // to "undef+1" (say). The transform is fine, since in both cases the |
14423 | // result is "undef", but SCEV thinks the value increased by 1. |
14424 | return nullptr; |
14425 | } |
14426 | |
14427 | // Unless VerifySCEVStrict is set, we only compare constant deltas. |
14428 | const SCEV *Delta = SE2.getMinusSCEV(LHS: Old, RHS: New); |
14429 | if (!VerifySCEVStrict && !isa<SCEVConstant>(Val: Delta)) |
14430 | return nullptr; |
14431 | |
14432 | return Delta; |
14433 | }; |
14434 | |
14435 | while (!LoopStack.empty()) { |
14436 | auto *L = LoopStack.pop_back_val(); |
14437 | llvm::append_range(C&: LoopStack, R&: *L); |
14438 | |
14439 | // Only verify BECounts in reachable loops. For an unreachable loop, |
14440 | // any BECount is legal. |
14441 | if (!ReachableBlocks.contains(Ptr: L->getHeader())) |
14442 | continue; |
14443 | |
14444 | // Only verify cached BECounts. Computing new BECounts may change the |
14445 | // results of subsequent SCEV uses. |
14446 | auto It = BackedgeTakenCounts.find(Val: L); |
14447 | if (It == BackedgeTakenCounts.end()) |
14448 | continue; |
14449 | |
14450 | auto *CurBECount = |
14451 | SCM.visit(S: It->second.getExact(L, SE: const_cast<ScalarEvolution *>(this))); |
14452 | auto *NewBECount = SE2.getBackedgeTakenCount(L); |
14453 | |
14454 | if (CurBECount == SE2.getCouldNotCompute() || |
14455 | NewBECount == SE2.getCouldNotCompute()) { |
14456 | // NB! This situation is legal, but is very suspicious -- whatever pass |
14457 | // change the loop to make a trip count go from could not compute to |
14458 | // computable or vice-versa *should have* invalidated SCEV. However, we |
14459 | // choose not to assert here (for now) since we don't want false |
14460 | // positives. |
14461 | continue; |
14462 | } |
14463 | |
14464 | if (SE.getTypeSizeInBits(Ty: CurBECount->getType()) > |
14465 | SE.getTypeSizeInBits(Ty: NewBECount->getType())) |
14466 | NewBECount = SE2.getZeroExtendExpr(Op: NewBECount, Ty: CurBECount->getType()); |
14467 | else if (SE.getTypeSizeInBits(Ty: CurBECount->getType()) < |
14468 | SE.getTypeSizeInBits(Ty: NewBECount->getType())) |
14469 | CurBECount = SE2.getZeroExtendExpr(Op: CurBECount, Ty: NewBECount->getType()); |
14470 | |
14471 | const SCEV *Delta = GetDelta(CurBECount, NewBECount); |
14472 | if (Delta && !Delta->isZero()) { |
14473 | dbgs() << "Trip Count for " << *L << " Changed!\n" ; |
14474 | dbgs() << "Old: " << *CurBECount << "\n" ; |
14475 | dbgs() << "New: " << *NewBECount << "\n" ; |
14476 | dbgs() << "Delta: " << *Delta << "\n" ; |
14477 | std::abort(); |
14478 | } |
14479 | } |
14480 | |
14481 | // Collect all valid loops currently in LoopInfo. |
14482 | SmallPtrSet<Loop *, 32> ValidLoops; |
14483 | SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); |
14484 | while (!Worklist.empty()) { |
14485 | Loop *L = Worklist.pop_back_val(); |
14486 | if (ValidLoops.insert(Ptr: L).second) |
14487 | Worklist.append(in_start: L->begin(), in_end: L->end()); |
14488 | } |
14489 | for (const auto &KV : ValueExprMap) { |
14490 | #ifndef NDEBUG |
14491 | // Check for SCEV expressions referencing invalid/deleted loops. |
14492 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { |
14493 | assert(ValidLoops.contains(AR->getLoop()) && |
14494 | "AddRec references invalid loop" ); |
14495 | } |
14496 | #endif |
14497 | |
14498 | // Check that the value is also part of the reverse map. |
14499 | auto It = ExprValueMap.find(Val: KV.second); |
14500 | if (It == ExprValueMap.end() || !It->second.contains(key: KV.first)) { |
14501 | dbgs() << "Value " << *KV.first |
14502 | << " is in ValueExprMap but not in ExprValueMap\n" ; |
14503 | std::abort(); |
14504 | } |
14505 | |
14506 | if (auto *I = dyn_cast<Instruction>(Val: &*KV.first)) { |
14507 | if (!ReachableBlocks.contains(Ptr: I->getParent())) |
14508 | continue; |
14509 | const SCEV *OldSCEV = SCM.visit(S: KV.second); |
14510 | const SCEV *NewSCEV = SE2.getSCEV(V: I); |
14511 | const SCEV *Delta = GetDelta(OldSCEV, NewSCEV); |
14512 | if (Delta && !Delta->isZero()) { |
14513 | dbgs() << "SCEV for value " << *I << " changed!\n" |
14514 | << "Old: " << *OldSCEV << "\n" |
14515 | << "New: " << *NewSCEV << "\n" |
14516 | << "Delta: " << *Delta << "\n" ; |
14517 | std::abort(); |
14518 | } |
14519 | } |
14520 | } |
14521 | |
14522 | for (const auto &KV : ExprValueMap) { |
14523 | for (Value *V : KV.second) { |
14524 | auto It = ValueExprMap.find_as(Val: V); |
14525 | if (It == ValueExprMap.end()) { |
14526 | dbgs() << "Value " << *V |
14527 | << " is in ExprValueMap but not in ValueExprMap\n" ; |
14528 | std::abort(); |
14529 | } |
14530 | if (It->second != KV.first) { |
14531 | dbgs() << "Value " << *V << " mapped to " << *It->second |
14532 | << " rather than " << *KV.first << "\n" ; |
14533 | std::abort(); |
14534 | } |
14535 | } |
14536 | } |
14537 | |
14538 | // Verify integrity of SCEV users. |
14539 | for (const auto &S : UniqueSCEVs) { |
14540 | for (const auto *Op : S.operands()) { |
14541 | // We do not store dependencies of constants. |
14542 | if (isa<SCEVConstant>(Val: Op)) |
14543 | continue; |
14544 | auto It = SCEVUsers.find(Val: Op); |
14545 | if (It != SCEVUsers.end() && It->second.count(Ptr: &S)) |
14546 | continue; |
14547 | dbgs() << "Use of operand " << *Op << " by user " << S |
14548 | << " is not being tracked!\n" ; |
14549 | std::abort(); |
14550 | } |
14551 | } |
14552 | |
14553 | // Verify integrity of ValuesAtScopes users. |
14554 | for (const auto &ValueAndVec : ValuesAtScopes) { |
14555 | const SCEV *Value = ValueAndVec.first; |
14556 | for (const auto &LoopAndValueAtScope : ValueAndVec.second) { |
14557 | const Loop *L = LoopAndValueAtScope.first; |
14558 | const SCEV *ValueAtScope = LoopAndValueAtScope.second; |
14559 | if (!isa<SCEVConstant>(Val: ValueAtScope)) { |
14560 | auto It = ValuesAtScopesUsers.find(Val: ValueAtScope); |
14561 | if (It != ValuesAtScopesUsers.end() && |
14562 | is_contained(Range: It->second, Element: std::make_pair(x&: L, y&: Value))) |
14563 | continue; |
14564 | dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " |
14565 | << *ValueAtScope << " missing in ValuesAtScopesUsers\n" ; |
14566 | std::abort(); |
14567 | } |
14568 | } |
14569 | } |
14570 | |
14571 | for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { |
14572 | const SCEV *ValueAtScope = ValueAtScopeAndVec.first; |
14573 | for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { |
14574 | const Loop *L = LoopAndValue.first; |
14575 | const SCEV *Value = LoopAndValue.second; |
14576 | assert(!isa<SCEVConstant>(Value)); |
14577 | auto It = ValuesAtScopes.find(Val: Value); |
14578 | if (It != ValuesAtScopes.end() && |
14579 | is_contained(Range: It->second, Element: std::make_pair(x&: L, y&: ValueAtScope))) |
14580 | continue; |
14581 | dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " |
14582 | << *ValueAtScope << " missing in ValuesAtScopes\n" ; |
14583 | std::abort(); |
14584 | } |
14585 | } |
14586 | |
14587 | // Verify integrity of BECountUsers. |
14588 | auto VerifyBECountUsers = [&](bool Predicated) { |
14589 | auto &BECounts = |
14590 | Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; |
14591 | for (const auto &LoopAndBEInfo : BECounts) { |
14592 | for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { |
14593 | for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { |
14594 | if (!isa<SCEVConstant>(Val: S)) { |
14595 | auto UserIt = BECountUsers.find(Val: S); |
14596 | if (UserIt != BECountUsers.end() && |
14597 | UserIt->second.contains(Ptr: { LoopAndBEInfo.first, Predicated })) |
14598 | continue; |
14599 | dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first |
14600 | << " missing from BECountUsers\n" ; |
14601 | std::abort(); |
14602 | } |
14603 | } |
14604 | } |
14605 | } |
14606 | }; |
14607 | VerifyBECountUsers(/* Predicated */ false); |
14608 | VerifyBECountUsers(/* Predicated */ true); |
14609 | |
14610 | // Verify intergity of loop disposition cache. |
14611 | for (auto &[S, Values] : LoopDispositions) { |
14612 | for (auto [Loop, CachedDisposition] : Values) { |
14613 | const auto RecomputedDisposition = SE2.getLoopDisposition(S, L: Loop); |
14614 | if (CachedDisposition != RecomputedDisposition) { |
14615 | dbgs() << "Cached disposition of " << *S << " for loop " << *Loop |
14616 | << " is incorrect: cached " << CachedDisposition << ", actual " |
14617 | << RecomputedDisposition << "\n" ; |
14618 | std::abort(); |
14619 | } |
14620 | } |
14621 | } |
14622 | |
14623 | // Verify integrity of the block disposition cache. |
14624 | for (auto &[S, Values] : BlockDispositions) { |
14625 | for (auto [BB, CachedDisposition] : Values) { |
14626 | const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB); |
14627 | if (CachedDisposition != RecomputedDisposition) { |
14628 | dbgs() << "Cached disposition of " << *S << " for block %" |
14629 | << BB->getName() << " is incorrect: cached " << CachedDisposition |
14630 | << ", actual " << RecomputedDisposition << "\n" ; |
14631 | std::abort(); |
14632 | } |
14633 | } |
14634 | } |
14635 | |
14636 | // Verify FoldCache/FoldCacheUser caches. |
14637 | for (auto [FoldID, Expr] : FoldCache) { |
14638 | auto I = FoldCacheUser.find(Val: Expr); |
14639 | if (I == FoldCacheUser.end()) { |
14640 | dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr |
14641 | << "!\n" ; |
14642 | std::abort(); |
14643 | } |
14644 | if (!is_contained(Range: I->second, Element: FoldID)) { |
14645 | dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n" ; |
14646 | std::abort(); |
14647 | } |
14648 | } |
14649 | for (auto [Expr, IDs] : FoldCacheUser) { |
14650 | for (auto &FoldID : IDs) { |
14651 | auto I = FoldCache.find(Val: FoldID); |
14652 | if (I == FoldCache.end()) { |
14653 | dbgs() << "Missing entry in FoldCache for expression " << *Expr |
14654 | << "!\n" ; |
14655 | std::abort(); |
14656 | } |
14657 | if (I->second != Expr) { |
14658 | dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: " |
14659 | << *I->second << " != " << *Expr << "!\n" ; |
14660 | std::abort(); |
14661 | } |
14662 | } |
14663 | } |
14664 | |
14665 | // Verify that ConstantMultipleCache computations are correct. We check that |
14666 | // cached multiples and recomputed multiples are multiples of each other to |
14667 | // verify correctness. It is possible that a recomputed multiple is different |
14668 | // from the cached multiple due to strengthened no wrap flags or changes in |
14669 | // KnownBits computations. |
14670 | for (auto [S, Multiple] : ConstantMultipleCache) { |
14671 | APInt RecomputedMultiple = SE2.getConstantMultiple(S); |
14672 | if ((Multiple != 0 && RecomputedMultiple != 0 && |
14673 | Multiple.urem(RHS: RecomputedMultiple) != 0 && |
14674 | RecomputedMultiple.urem(RHS: Multiple) != 0)) { |
14675 | dbgs() << "Incorrect cached computation in ConstantMultipleCache for " |
14676 | << *S << " : Computed " << RecomputedMultiple |
14677 | << " but cache contains " << Multiple << "!\n" ; |
14678 | std::abort(); |
14679 | } |
14680 | } |
14681 | } |
14682 | |
14683 | bool ScalarEvolution::invalidate( |
14684 | Function &F, const PreservedAnalyses &PA, |
14685 | FunctionAnalysisManager::Invalidator &Inv) { |
14686 | // Invalidate the ScalarEvolution object whenever it isn't preserved or one |
14687 | // of its dependencies is invalidated. |
14688 | auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); |
14689 | return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || |
14690 | Inv.invalidate<AssumptionAnalysis>(IR&: F, PA) || |
14691 | Inv.invalidate<DominatorTreeAnalysis>(IR&: F, PA) || |
14692 | Inv.invalidate<LoopAnalysis>(IR&: F, PA); |
14693 | } |
14694 | |
14695 | AnalysisKey ScalarEvolutionAnalysis::Key; |
14696 | |
14697 | ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, |
14698 | FunctionAnalysisManager &AM) { |
14699 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(IR&: F); |
14700 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
14701 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
14702 | auto &LI = AM.getResult<LoopAnalysis>(IR&: F); |
14703 | return ScalarEvolution(F, TLI, AC, DT, LI); |
14704 | } |
14705 | |
14706 | PreservedAnalyses |
14707 | ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { |
14708 | AM.getResult<ScalarEvolutionAnalysis>(IR&: F).verify(); |
14709 | return PreservedAnalyses::all(); |
14710 | } |
14711 | |
14712 | PreservedAnalyses |
14713 | ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { |
14714 | // For compatibility with opt's -analyze feature under legacy pass manager |
14715 | // which was not ported to NPM. This keeps tests using |
14716 | // update_analyze_test_checks.py working. |
14717 | OS << "Printing analysis 'Scalar Evolution Analysis' for function '" |
14718 | << F.getName() << "':\n" ; |
14719 | AM.getResult<ScalarEvolutionAnalysis>(IR&: F).print(OS); |
14720 | return PreservedAnalyses::all(); |
14721 | } |
14722 | |
14723 | INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution" , |
14724 | "Scalar Evolution Analysis" , false, true) |
14725 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
14726 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
14727 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
14728 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
14729 | INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution" , |
14730 | "Scalar Evolution Analysis" , false, true) |
14731 | |
14732 | char ScalarEvolutionWrapperPass::ID = 0; |
14733 | |
14734 | ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {} |
14735 | |
14736 | bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { |
14737 | SE.reset(p: new ScalarEvolution( |
14738 | F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), |
14739 | getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), |
14740 | getAnalysis<DominatorTreeWrapperPass>().getDomTree(), |
14741 | getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); |
14742 | return false; |
14743 | } |
14744 | |
14745 | void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } |
14746 | |
14747 | void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { |
14748 | SE->print(OS); |
14749 | } |
14750 | |
14751 | void ScalarEvolutionWrapperPass::verifyAnalysis() const { |
14752 | if (!VerifySCEV) |
14753 | return; |
14754 | |
14755 | SE->verify(); |
14756 | } |
14757 | |
14758 | void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
14759 | AU.setPreservesAll(); |
14760 | AU.addRequiredTransitive<AssumptionCacheTracker>(); |
14761 | AU.addRequiredTransitive<LoopInfoWrapperPass>(); |
14762 | AU.addRequiredTransitive<DominatorTreeWrapperPass>(); |
14763 | AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); |
14764 | } |
14765 | |
14766 | const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, |
14767 | const SCEV *RHS) { |
14768 | return getComparePredicate(Pred: ICmpInst::ICMP_EQ, LHS, RHS); |
14769 | } |
14770 | |
14771 | const SCEVPredicate * |
14772 | ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, |
14773 | const SCEV *LHS, const SCEV *RHS) { |
14774 | FoldingSetNodeID ID; |
14775 | assert(LHS->getType() == RHS->getType() && |
14776 | "Type mismatch between LHS and RHS" ); |
14777 | // Unique this node based on the arguments |
14778 | ID.AddInteger(I: SCEVPredicate::P_Compare); |
14779 | ID.AddInteger(I: Pred); |
14780 | ID.AddPointer(Ptr: LHS); |
14781 | ID.AddPointer(Ptr: RHS); |
14782 | void *IP = nullptr; |
14783 | if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, InsertPos&: IP)) |
14784 | return S; |
14785 | SCEVComparePredicate *Eq = new (SCEVAllocator) |
14786 | SCEVComparePredicate(ID.Intern(Allocator&: SCEVAllocator), Pred, LHS, RHS); |
14787 | UniquePreds.InsertNode(N: Eq, InsertPos: IP); |
14788 | return Eq; |
14789 | } |
14790 | |
14791 | const SCEVPredicate *ScalarEvolution::getWrapPredicate( |
14792 | const SCEVAddRecExpr *AR, |
14793 | SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { |
14794 | FoldingSetNodeID ID; |
14795 | // Unique this node based on the arguments |
14796 | ID.AddInteger(I: SCEVPredicate::P_Wrap); |
14797 | ID.AddPointer(Ptr: AR); |
14798 | ID.AddInteger(I: AddedFlags); |
14799 | void *IP = nullptr; |
14800 | if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, InsertPos&: IP)) |
14801 | return S; |
14802 | auto *OF = new (SCEVAllocator) |
14803 | SCEVWrapPredicate(ID.Intern(Allocator&: SCEVAllocator), AR, AddedFlags); |
14804 | UniquePreds.InsertNode(N: OF, InsertPos: IP); |
14805 | return OF; |
14806 | } |
14807 | |
14808 | namespace { |
14809 | |
14810 | class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { |
14811 | public: |
14812 | |
14813 | /// Rewrites \p S in the context of a loop L and the SCEV predication |
14814 | /// infrastructure. |
14815 | /// |
14816 | /// If \p Pred is non-null, the SCEV expression is rewritten to respect the |
14817 | /// equivalences present in \p Pred. |
14818 | /// |
14819 | /// If \p NewPreds is non-null, rewrite is free to add further predicates to |
14820 | /// \p NewPreds such that the result will be an AddRecExpr. |
14821 | static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, |
14822 | SmallVectorImpl<const SCEVPredicate *> *NewPreds, |
14823 | const SCEVPredicate *Pred) { |
14824 | SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); |
14825 | return Rewriter.visit(S); |
14826 | } |
14827 | |
14828 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
14829 | if (Pred) { |
14830 | if (auto *U = dyn_cast<SCEVUnionPredicate>(Val: Pred)) { |
14831 | for (const auto *Pred : U->getPredicates()) |
14832 | if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Val: Pred)) |
14833 | if (IPred->getLHS() == Expr && |
14834 | IPred->getPredicate() == ICmpInst::ICMP_EQ) |
14835 | return IPred->getRHS(); |
14836 | } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Val: Pred)) { |
14837 | if (IPred->getLHS() == Expr && |
14838 | IPred->getPredicate() == ICmpInst::ICMP_EQ) |
14839 | return IPred->getRHS(); |
14840 | } |
14841 | } |
14842 | return convertToAddRecWithPreds(Expr); |
14843 | } |
14844 | |
14845 | const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { |
14846 | const SCEV *Operand = visit(S: Expr->getOperand()); |
14847 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Operand); |
14848 | if (AR && AR->getLoop() == L && AR->isAffine()) { |
14849 | // This couldn't be folded because the operand didn't have the nuw |
14850 | // flag. Add the nusw flag as an assumption that we could make. |
14851 | const SCEV *Step = AR->getStepRecurrence(SE); |
14852 | Type *Ty = Expr->getType(); |
14853 | if (addOverflowAssumption(AR, AddedFlags: SCEVWrapPredicate::IncrementNUSW)) |
14854 | return SE.getAddRecExpr(Start: SE.getZeroExtendExpr(Op: AR->getStart(), Ty), |
14855 | Step: SE.getSignExtendExpr(Op: Step, Ty), L, |
14856 | Flags: AR->getNoWrapFlags()); |
14857 | } |
14858 | return SE.getZeroExtendExpr(Op: Operand, Ty: Expr->getType()); |
14859 | } |
14860 | |
14861 | const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { |
14862 | const SCEV *Operand = visit(S: Expr->getOperand()); |
14863 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: Operand); |
14864 | if (AR && AR->getLoop() == L && AR->isAffine()) { |
14865 | // This couldn't be folded because the operand didn't have the nsw |
14866 | // flag. Add the nssw flag as an assumption that we could make. |
14867 | const SCEV *Step = AR->getStepRecurrence(SE); |
14868 | Type *Ty = Expr->getType(); |
14869 | if (addOverflowAssumption(AR, AddedFlags: SCEVWrapPredicate::IncrementNSSW)) |
14870 | return SE.getAddRecExpr(Start: SE.getSignExtendExpr(Op: AR->getStart(), Ty), |
14871 | Step: SE.getSignExtendExpr(Op: Step, Ty), L, |
14872 | Flags: AR->getNoWrapFlags()); |
14873 | } |
14874 | return SE.getSignExtendExpr(Op: Operand, Ty: Expr->getType()); |
14875 | } |
14876 | |
14877 | private: |
14878 | explicit SCEVPredicateRewriter( |
14879 | const Loop *L, ScalarEvolution &SE, |
14880 | SmallVectorImpl<const SCEVPredicate *> *NewPreds, |
14881 | const SCEVPredicate *Pred) |
14882 | : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} |
14883 | |
14884 | bool addOverflowAssumption(const SCEVPredicate *P) { |
14885 | if (!NewPreds) { |
14886 | // Check if we've already made this assumption. |
14887 | return Pred && Pred->implies(N: P, SE); |
14888 | } |
14889 | NewPreds->push_back(Elt: P); |
14890 | return true; |
14891 | } |
14892 | |
14893 | bool addOverflowAssumption(const SCEVAddRecExpr *AR, |
14894 | SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { |
14895 | auto *A = SE.getWrapPredicate(AR, AddedFlags); |
14896 | return addOverflowAssumption(P: A); |
14897 | } |
14898 | |
14899 | // If \p Expr represents a PHINode, we try to see if it can be represented |
14900 | // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible |
14901 | // to add this predicate as a runtime overflow check, we return the AddRec. |
14902 | // If \p Expr does not meet these conditions (is not a PHI node, or we |
14903 | // couldn't create an AddRec for it, or couldn't add the predicate), we just |
14904 | // return \p Expr. |
14905 | const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { |
14906 | if (!isa<PHINode>(Val: Expr->getValue())) |
14907 | return Expr; |
14908 | std::optional< |
14909 | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
14910 | PredicatedRewrite = SE.createAddRecFromPHIWithCasts(SymbolicPHI: Expr); |
14911 | if (!PredicatedRewrite) |
14912 | return Expr; |
14913 | for (const auto *P : PredicatedRewrite->second){ |
14914 | // Wrap predicates from outer loops are not supported. |
14915 | if (auto *WP = dyn_cast<const SCEVWrapPredicate>(Val: P)) { |
14916 | if (L != WP->getExpr()->getLoop()) |
14917 | return Expr; |
14918 | } |
14919 | if (!addOverflowAssumption(P)) |
14920 | return Expr; |
14921 | } |
14922 | return PredicatedRewrite->first; |
14923 | } |
14924 | |
14925 | SmallVectorImpl<const SCEVPredicate *> *NewPreds; |
14926 | const SCEVPredicate *Pred; |
14927 | const Loop *L; |
14928 | }; |
14929 | |
14930 | } // end anonymous namespace |
14931 | |
14932 | const SCEV * |
14933 | ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, |
14934 | const SCEVPredicate &Preds) { |
14935 | return SCEVPredicateRewriter::rewrite(S, L, SE&: *this, NewPreds: nullptr, Pred: &Preds); |
14936 | } |
14937 | |
14938 | const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( |
14939 | const SCEV *S, const Loop *L, |
14940 | SmallVectorImpl<const SCEVPredicate *> &Preds) { |
14941 | SmallVector<const SCEVPredicate *> TransformPreds; |
14942 | S = SCEVPredicateRewriter::rewrite(S, L, SE&: *this, NewPreds: &TransformPreds, Pred: nullptr); |
14943 | auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: S); |
14944 | |
14945 | if (!AddRec) |
14946 | return nullptr; |
14947 | |
14948 | // Since the transformation was successful, we can now transfer the SCEV |
14949 | // predicates. |
14950 | Preds.append(in_start: TransformPreds.begin(), in_end: TransformPreds.end()); |
14951 | |
14952 | return AddRec; |
14953 | } |
14954 | |
14955 | /// SCEV predicates |
14956 | SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, |
14957 | SCEVPredicateKind Kind) |
14958 | : FastID(ID), Kind(Kind) {} |
14959 | |
14960 | SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, |
14961 | const ICmpInst::Predicate Pred, |
14962 | const SCEV *LHS, const SCEV *RHS) |
14963 | : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { |
14964 | assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match" ); |
14965 | assert(LHS != RHS && "LHS and RHS are the same SCEV" ); |
14966 | } |
14967 | |
14968 | bool SCEVComparePredicate::implies(const SCEVPredicate *N, |
14969 | ScalarEvolution &SE) const { |
14970 | const auto *Op = dyn_cast<SCEVComparePredicate>(Val: N); |
14971 | |
14972 | if (!Op) |
14973 | return false; |
14974 | |
14975 | if (Pred != ICmpInst::ICMP_EQ) |
14976 | return false; |
14977 | |
14978 | return Op->LHS == LHS && Op->RHS == RHS; |
14979 | } |
14980 | |
14981 | bool SCEVComparePredicate::isAlwaysTrue() const { return false; } |
14982 | |
14983 | void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { |
14984 | if (Pred == ICmpInst::ICMP_EQ) |
14985 | OS.indent(NumSpaces: Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n" ; |
14986 | else |
14987 | OS.indent(NumSpaces: Depth) << "Compare predicate: " << *LHS << " " << Pred << ") " |
14988 | << *RHS << "\n" ; |
14989 | |
14990 | } |
14991 | |
14992 | SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, |
14993 | const SCEVAddRecExpr *AR, |
14994 | IncrementWrapFlags Flags) |
14995 | : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} |
14996 | |
14997 | const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } |
14998 | |
14999 | bool SCEVWrapPredicate::implies(const SCEVPredicate *N, |
15000 | ScalarEvolution &SE) const { |
15001 | const auto *Op = dyn_cast<SCEVWrapPredicate>(Val: N); |
15002 | if (!Op || setFlags(Flags, OnFlags: Op->Flags) != Flags) |
15003 | return false; |
15004 | |
15005 | if (Op->AR == AR) |
15006 | return true; |
15007 | |
15008 | if (Flags != SCEVWrapPredicate::IncrementNSSW && |
15009 | Flags != SCEVWrapPredicate::IncrementNUSW) |
15010 | return false; |
15011 | |
15012 | const SCEV *Start = AR->getStart(); |
15013 | const SCEV *OpStart = Op->AR->getStart(); |
15014 | if (Start->getType()->isPointerTy() != OpStart->getType()->isPointerTy()) |
15015 | return false; |
15016 | |
15017 | // Reject pointers to different address spaces. |
15018 | if (Start->getType()->isPointerTy() && Start->getType() != OpStart->getType()) |
15019 | return false; |
15020 | |
15021 | const SCEV *Step = AR->getStepRecurrence(SE); |
15022 | const SCEV *OpStep = Op->AR->getStepRecurrence(SE); |
15023 | if (!SE.isKnownPositive(S: Step) || !SE.isKnownPositive(S: OpStep)) |
15024 | return false; |
15025 | |
15026 | // If both steps are positive, this implies N, if N's start and step are |
15027 | // ULE/SLE (for NSUW/NSSW) than this'. |
15028 | Type *WiderTy = SE.getWiderType(T1: Step->getType(), T2: OpStep->getType()); |
15029 | Step = SE.getNoopOrZeroExtend(V: Step, Ty: WiderTy); |
15030 | OpStep = SE.getNoopOrZeroExtend(V: OpStep, Ty: WiderTy); |
15031 | |
15032 | bool IsNUW = Flags == SCEVWrapPredicate::IncrementNUSW; |
15033 | OpStart = IsNUW ? SE.getNoopOrZeroExtend(V: OpStart, Ty: WiderTy) |
15034 | : SE.getNoopOrSignExtend(V: OpStart, Ty: WiderTy); |
15035 | Start = IsNUW ? SE.getNoopOrZeroExtend(V: Start, Ty: WiderTy) |
15036 | : SE.getNoopOrSignExtend(V: Start, Ty: WiderTy); |
15037 | CmpInst::Predicate Pred = IsNUW ? CmpInst::ICMP_ULE : CmpInst::ICMP_SLE; |
15038 | return SE.isKnownPredicate(Pred, LHS: OpStep, RHS: Step) && |
15039 | SE.isKnownPredicate(Pred, LHS: OpStart, RHS: Start); |
15040 | } |
15041 | |
15042 | bool SCEVWrapPredicate::isAlwaysTrue() const { |
15043 | SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); |
15044 | IncrementWrapFlags IFlags = Flags; |
15045 | |
15046 | if (ScalarEvolution::setFlags(Flags: ScevFlags, OnFlags: SCEV::FlagNSW) == ScevFlags) |
15047 | IFlags = clearFlags(Flags: IFlags, OffFlags: IncrementNSSW); |
15048 | |
15049 | return IFlags == IncrementAnyWrap; |
15050 | } |
15051 | |
15052 | void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { |
15053 | OS.indent(NumSpaces: Depth) << *getExpr() << " Added Flags: " ; |
15054 | if (SCEVWrapPredicate::IncrementNUSW & getFlags()) |
15055 | OS << "<nusw>" ; |
15056 | if (SCEVWrapPredicate::IncrementNSSW & getFlags()) |
15057 | OS << "<nssw>" ; |
15058 | OS << "\n" ; |
15059 | } |
15060 | |
15061 | SCEVWrapPredicate::IncrementWrapFlags |
15062 | SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, |
15063 | ScalarEvolution &SE) { |
15064 | IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; |
15065 | SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); |
15066 | |
15067 | // We can safely transfer the NSW flag as NSSW. |
15068 | if (ScalarEvolution::setFlags(Flags: StaticFlags, OnFlags: SCEV::FlagNSW) == StaticFlags) |
15069 | ImpliedFlags = IncrementNSSW; |
15070 | |
15071 | if (ScalarEvolution::setFlags(Flags: StaticFlags, OnFlags: SCEV::FlagNUW) == StaticFlags) { |
15072 | // If the increment is positive, the SCEV NUW flag will also imply the |
15073 | // WrapPredicate NUSW flag. |
15074 | if (const auto *Step = dyn_cast<SCEVConstant>(Val: AR->getStepRecurrence(SE))) |
15075 | if (Step->getValue()->getValue().isNonNegative()) |
15076 | ImpliedFlags = setFlags(Flags: ImpliedFlags, OnFlags: IncrementNUSW); |
15077 | } |
15078 | |
15079 | return ImpliedFlags; |
15080 | } |
15081 | |
15082 | /// Union predicates don't get cached so create a dummy set ID for it. |
15083 | SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds, |
15084 | ScalarEvolution &SE) |
15085 | : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { |
15086 | for (const auto *P : Preds) |
15087 | add(N: P, SE); |
15088 | } |
15089 | |
15090 | bool SCEVUnionPredicate::isAlwaysTrue() const { |
15091 | return all_of(Range: Preds, |
15092 | P: [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); |
15093 | } |
15094 | |
15095 | bool SCEVUnionPredicate::implies(const SCEVPredicate *N, |
15096 | ScalarEvolution &SE) const { |
15097 | if (const auto *Set = dyn_cast<SCEVUnionPredicate>(Val: N)) |
15098 | return all_of(Range: Set->Preds, P: [this, &SE](const SCEVPredicate *I) { |
15099 | return this->implies(N: I, SE); |
15100 | }); |
15101 | |
15102 | return any_of(Range: Preds, |
15103 | P: [N, &SE](const SCEVPredicate *I) { return I->implies(N, SE); }); |
15104 | } |
15105 | |
15106 | void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { |
15107 | for (const auto *Pred : Preds) |
15108 | Pred->print(OS, Depth); |
15109 | } |
15110 | |
15111 | void SCEVUnionPredicate::add(const SCEVPredicate *N, ScalarEvolution &SE) { |
15112 | if (const auto *Set = dyn_cast<SCEVUnionPredicate>(Val: N)) { |
15113 | for (const auto *Pred : Set->Preds) |
15114 | add(N: Pred, SE); |
15115 | return; |
15116 | } |
15117 | |
15118 | // Only add predicate if it is not already implied by this union predicate. |
15119 | if (implies(N, SE)) |
15120 | return; |
15121 | |
15122 | // Build a new vector containing the current predicates, except the ones that |
15123 | // are implied by the new predicate N. |
15124 | SmallVector<const SCEVPredicate *> PrunedPreds; |
15125 | for (auto *P : Preds) { |
15126 | if (N->implies(N: P, SE)) |
15127 | continue; |
15128 | PrunedPreds.push_back(Elt: P); |
15129 | } |
15130 | Preds = std::move(PrunedPreds); |
15131 | Preds.push_back(Elt: N); |
15132 | } |
15133 | |
15134 | PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, |
15135 | Loop &L) |
15136 | : SE(SE), L(L) { |
15137 | SmallVector<const SCEVPredicate*, 4> Empty; |
15138 | Preds = std::make_unique<SCEVUnionPredicate>(args&: Empty, args&: SE); |
15139 | } |
15140 | |
15141 | void ScalarEvolution::registerUser(const SCEV *User, |
15142 | ArrayRef<const SCEV *> Ops) { |
15143 | for (const auto *Op : Ops) |
15144 | // We do not expect that forgetting cached data for SCEVConstants will ever |
15145 | // open any prospects for sharpening or introduce any correctness issues, |
15146 | // so we don't bother storing their dependencies. |
15147 | if (!isa<SCEVConstant>(Val: Op)) |
15148 | SCEVUsers[Op].insert(Ptr: User); |
15149 | } |
15150 | |
15151 | const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { |
15152 | const SCEV *Expr = SE.getSCEV(V); |
15153 | RewriteEntry &Entry = RewriteMap[Expr]; |
15154 | |
15155 | // If we already have an entry and the version matches, return it. |
15156 | if (Entry.second && Generation == Entry.first) |
15157 | return Entry.second; |
15158 | |
15159 | // We found an entry but it's stale. Rewrite the stale entry |
15160 | // according to the current predicate. |
15161 | if (Entry.second) |
15162 | Expr = Entry.second; |
15163 | |
15164 | const SCEV *NewSCEV = SE.rewriteUsingPredicate(S: Expr, L: &L, Preds: *Preds); |
15165 | Entry = {Generation, NewSCEV}; |
15166 | |
15167 | return NewSCEV; |
15168 | } |
15169 | |
15170 | const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { |
15171 | if (!BackedgeCount) { |
15172 | SmallVector<const SCEVPredicate *, 4> Preds; |
15173 | BackedgeCount = SE.getPredicatedBackedgeTakenCount(L: &L, Preds); |
15174 | for (const auto *P : Preds) |
15175 | addPredicate(Pred: *P); |
15176 | } |
15177 | return BackedgeCount; |
15178 | } |
15179 | |
15180 | const SCEV *PredicatedScalarEvolution::getSymbolicMaxBackedgeTakenCount() { |
15181 | if (!SymbolicMaxBackedgeCount) { |
15182 | SmallVector<const SCEVPredicate *, 4> Preds; |
15183 | SymbolicMaxBackedgeCount = |
15184 | SE.getPredicatedSymbolicMaxBackedgeTakenCount(L: &L, Preds); |
15185 | for (const auto *P : Preds) |
15186 | addPredicate(Pred: *P); |
15187 | } |
15188 | return SymbolicMaxBackedgeCount; |
15189 | } |
15190 | |
15191 | unsigned PredicatedScalarEvolution::getSmallConstantMaxTripCount() { |
15192 | if (!SmallConstantMaxTripCount) { |
15193 | SmallVector<const SCEVPredicate *, 4> Preds; |
15194 | SmallConstantMaxTripCount = SE.getSmallConstantMaxTripCount(L: &L, Predicates: &Preds); |
15195 | for (const auto *P : Preds) |
15196 | addPredicate(Pred: *P); |
15197 | } |
15198 | return *SmallConstantMaxTripCount; |
15199 | } |
15200 | |
15201 | void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { |
15202 | if (Preds->implies(N: &Pred, SE)) |
15203 | return; |
15204 | |
15205 | SmallVector<const SCEVPredicate *, 4> NewPreds(Preds->getPredicates()); |
15206 | NewPreds.push_back(Elt: &Pred); |
15207 | Preds = std::make_unique<SCEVUnionPredicate>(args&: NewPreds, args&: SE); |
15208 | updateGeneration(); |
15209 | } |
15210 | |
15211 | const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { |
15212 | return *Preds; |
15213 | } |
15214 | |
15215 | void PredicatedScalarEvolution::updateGeneration() { |
15216 | // If the generation number wrapped recompute everything. |
15217 | if (++Generation == 0) { |
15218 | for (auto &II : RewriteMap) { |
15219 | const SCEV *Rewritten = II.second.second; |
15220 | II.second = {Generation, SE.rewriteUsingPredicate(S: Rewritten, L: &L, Preds: *Preds)}; |
15221 | } |
15222 | } |
15223 | } |
15224 | |
15225 | void PredicatedScalarEvolution::setNoOverflow( |
15226 | Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { |
15227 | const SCEV *Expr = getSCEV(V); |
15228 | const auto *AR = cast<SCEVAddRecExpr>(Val: Expr); |
15229 | |
15230 | auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); |
15231 | |
15232 | // Clear the statically implied flags. |
15233 | Flags = SCEVWrapPredicate::clearFlags(Flags, OffFlags: ImpliedFlags); |
15234 | addPredicate(Pred: *SE.getWrapPredicate(AR, AddedFlags: Flags)); |
15235 | |
15236 | auto II = FlagsMap.insert(KV: {V, Flags}); |
15237 | if (!II.second) |
15238 | II.first->second = SCEVWrapPredicate::setFlags(Flags, OnFlags: II.first->second); |
15239 | } |
15240 | |
15241 | bool PredicatedScalarEvolution::hasNoOverflow( |
15242 | Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { |
15243 | const SCEV *Expr = getSCEV(V); |
15244 | const auto *AR = cast<SCEVAddRecExpr>(Val: Expr); |
15245 | |
15246 | Flags = SCEVWrapPredicate::clearFlags( |
15247 | Flags, OffFlags: SCEVWrapPredicate::getImpliedFlags(AR, SE)); |
15248 | |
15249 | auto II = FlagsMap.find(Val: V); |
15250 | |
15251 | if (II != FlagsMap.end()) |
15252 | Flags = SCEVWrapPredicate::clearFlags(Flags, OffFlags: II->second); |
15253 | |
15254 | return Flags == SCEVWrapPredicate::IncrementAnyWrap; |
15255 | } |
15256 | |
15257 | const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { |
15258 | const SCEV *Expr = this->getSCEV(V); |
15259 | SmallVector<const SCEVPredicate *, 4> NewPreds; |
15260 | auto *New = SE.convertSCEVToAddRecWithPredicates(S: Expr, L: &L, Preds&: NewPreds); |
15261 | |
15262 | if (!New) |
15263 | return nullptr; |
15264 | |
15265 | for (const auto *P : NewPreds) |
15266 | addPredicate(Pred: *P); |
15267 | |
15268 | RewriteMap[SE.getSCEV(V)] = {Generation, New}; |
15269 | return New; |
15270 | } |
15271 | |
15272 | PredicatedScalarEvolution::PredicatedScalarEvolution( |
15273 | const PredicatedScalarEvolution &Init) |
15274 | : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), |
15275 | Preds(std::make_unique<SCEVUnionPredicate>(args: Init.Preds->getPredicates(), |
15276 | args&: SE)), |
15277 | Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { |
15278 | for (auto I : Init.FlagsMap) |
15279 | FlagsMap.insert(KV: I); |
15280 | } |
15281 | |
15282 | void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { |
15283 | // For each block. |
15284 | for (auto *BB : L.getBlocks()) |
15285 | for (auto &I : *BB) { |
15286 | if (!SE.isSCEVable(Ty: I.getType())) |
15287 | continue; |
15288 | |
15289 | auto *Expr = SE.getSCEV(V: &I); |
15290 | auto II = RewriteMap.find(Val: Expr); |
15291 | |
15292 | if (II == RewriteMap.end()) |
15293 | continue; |
15294 | |
15295 | // Don't print things that are not interesting. |
15296 | if (II->second.second == Expr) |
15297 | continue; |
15298 | |
15299 | OS.indent(NumSpaces: Depth) << "[PSE]" << I << ":\n" ; |
15300 | OS.indent(NumSpaces: Depth + 2) << *Expr << "\n" ; |
15301 | OS.indent(NumSpaces: Depth + 2) << "--> " << *II->second.second << "\n" ; |
15302 | } |
15303 | } |
15304 | |
15305 | // Match the mathematical pattern A - (A / B) * B, where A and B can be |
15306 | // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used |
15307 | // for URem with constant power-of-2 second operands. |
15308 | // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is |
15309 | // 4, A / B becomes X / 8). |
15310 | bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, |
15311 | const SCEV *&RHS) { |
15312 | if (Expr->getType()->isPointerTy()) |
15313 | return false; |
15314 | |
15315 | // Try to match 'zext (trunc A to iB) to iY', which is used |
15316 | // for URem with constant power-of-2 second operands. Make sure the size of |
15317 | // the operand A matches the size of the whole expressions. |
15318 | if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Val: Expr)) |
15319 | if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(Val: ZExt->getOperand(i: 0))) { |
15320 | LHS = Trunc->getOperand(); |
15321 | // Bail out if the type of the LHS is larger than the type of the |
15322 | // expression for now. |
15323 | if (getTypeSizeInBits(Ty: LHS->getType()) > |
15324 | getTypeSizeInBits(Ty: Expr->getType())) |
15325 | return false; |
15326 | if (LHS->getType() != Expr->getType()) |
15327 | LHS = getZeroExtendExpr(Op: LHS, Ty: Expr->getType()); |
15328 | RHS = getConstant(Val: APInt(getTypeSizeInBits(Ty: Expr->getType()), 1) |
15329 | << getTypeSizeInBits(Ty: Trunc->getType())); |
15330 | return true; |
15331 | } |
15332 | const auto *Add = dyn_cast<SCEVAddExpr>(Val: Expr); |
15333 | if (Add == nullptr || Add->getNumOperands() != 2) |
15334 | return false; |
15335 | |
15336 | const SCEV *A = Add->getOperand(i: 1); |
15337 | const auto *Mul = dyn_cast<SCEVMulExpr>(Val: Add->getOperand(i: 0)); |
15338 | |
15339 | if (Mul == nullptr) |
15340 | return false; |
15341 | |
15342 | const auto MatchURemWithDivisor = [&](const SCEV *B) { |
15343 | // (SomeExpr + (-(SomeExpr / B) * B)). |
15344 | if (Expr == getURemExpr(LHS: A, RHS: B)) { |
15345 | LHS = A; |
15346 | RHS = B; |
15347 | return true; |
15348 | } |
15349 | return false; |
15350 | }; |
15351 | |
15352 | // (SomeExpr + (-1 * (SomeExpr / B) * B)). |
15353 | if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Val: Mul->getOperand(i: 0))) |
15354 | return MatchURemWithDivisor(Mul->getOperand(i: 1)) || |
15355 | MatchURemWithDivisor(Mul->getOperand(i: 2)); |
15356 | |
15357 | // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). |
15358 | if (Mul->getNumOperands() == 2) |
15359 | return MatchURemWithDivisor(Mul->getOperand(i: 1)) || |
15360 | MatchURemWithDivisor(Mul->getOperand(i: 0)) || |
15361 | MatchURemWithDivisor(getNegativeSCEV(V: Mul->getOperand(i: 1))) || |
15362 | MatchURemWithDivisor(getNegativeSCEV(V: Mul->getOperand(i: 0))); |
15363 | return false; |
15364 | } |
15365 | |
15366 | ScalarEvolution::LoopGuards |
15367 | ScalarEvolution::LoopGuards::collect(const Loop *L, ScalarEvolution &SE) { |
15368 | BasicBlock * = L->getHeader(); |
15369 | BasicBlock *Pred = L->getLoopPredecessor(); |
15370 | LoopGuards Guards(SE); |
15371 | if (!Pred) |
15372 | return Guards; |
15373 | SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; |
15374 | collectFromBlock(SE, Guards, Block: Header, Pred, VisitedBlocks); |
15375 | return Guards; |
15376 | } |
15377 | |
15378 | void ScalarEvolution::LoopGuards::collectFromPHI( |
15379 | ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards, |
15380 | const PHINode &Phi, SmallPtrSetImpl<const BasicBlock *> &VisitedBlocks, |
15381 | SmallDenseMap<const BasicBlock *, LoopGuards> &IncomingGuards, |
15382 | unsigned Depth) { |
15383 | if (!SE.isSCEVable(Ty: Phi.getType())) |
15384 | return; |
15385 | |
15386 | using MinMaxPattern = std::pair<const SCEVConstant *, SCEVTypes>; |
15387 | auto GetMinMaxConst = [&](unsigned IncomingIdx) -> MinMaxPattern { |
15388 | const BasicBlock *InBlock = Phi.getIncomingBlock(i: IncomingIdx); |
15389 | if (!VisitedBlocks.insert(Ptr: InBlock).second) |
15390 | return {nullptr, scCouldNotCompute}; |
15391 | auto [G, Inserted] = IncomingGuards.try_emplace(Key: InBlock, Args: LoopGuards(SE)); |
15392 | if (Inserted) |
15393 | collectFromBlock(SE, Guards&: G->second, Block: Phi.getParent(), Pred: InBlock, VisitedBlocks, |
15394 | Depth: Depth + 1); |
15395 | auto &RewriteMap = G->second.RewriteMap; |
15396 | if (RewriteMap.empty()) |
15397 | return {nullptr, scCouldNotCompute}; |
15398 | auto S = RewriteMap.find(Val: SE.getSCEV(V: Phi.getIncomingValue(i: IncomingIdx))); |
15399 | if (S == RewriteMap.end()) |
15400 | return {nullptr, scCouldNotCompute}; |
15401 | auto *SM = dyn_cast_if_present<SCEVMinMaxExpr>(Val: S->second); |
15402 | if (!SM) |
15403 | return {nullptr, scCouldNotCompute}; |
15404 | if (const SCEVConstant *C0 = dyn_cast<SCEVConstant>(Val: SM->getOperand(i: 0))) |
15405 | return {C0, SM->getSCEVType()}; |
15406 | return {nullptr, scCouldNotCompute}; |
15407 | }; |
15408 | auto MergeMinMaxConst = [](MinMaxPattern P1, |
15409 | MinMaxPattern P2) -> MinMaxPattern { |
15410 | auto [C1, T1] = P1; |
15411 | auto [C2, T2] = P2; |
15412 | if (!C1 || !C2 || T1 != T2) |
15413 | return {nullptr, scCouldNotCompute}; |
15414 | switch (T1) { |
15415 | case scUMaxExpr: |
15416 | return {C1->getAPInt().ult(RHS: C2->getAPInt()) ? C1 : C2, T1}; |
15417 | case scSMaxExpr: |
15418 | return {C1->getAPInt().slt(RHS: C2->getAPInt()) ? C1 : C2, T1}; |
15419 | case scUMinExpr: |
15420 | return {C1->getAPInt().ugt(RHS: C2->getAPInt()) ? C1 : C2, T1}; |
15421 | case scSMinExpr: |
15422 | return {C1->getAPInt().sgt(RHS: C2->getAPInt()) ? C1 : C2, T1}; |
15423 | default: |
15424 | llvm_unreachable("Trying to merge non-MinMaxExpr SCEVs." ); |
15425 | } |
15426 | }; |
15427 | auto P = GetMinMaxConst(0); |
15428 | for (unsigned int In = 1; In < Phi.getNumIncomingValues(); In++) { |
15429 | if (!P.first) |
15430 | break; |
15431 | P = MergeMinMaxConst(P, GetMinMaxConst(In)); |
15432 | } |
15433 | if (P.first) { |
15434 | const SCEV *LHS = SE.getSCEV(V: const_cast<PHINode *>(&Phi)); |
15435 | SmallVector<const SCEV *, 2> Ops({P.first, LHS}); |
15436 | const SCEV *RHS = SE.getMinMaxExpr(Kind: P.second, Ops); |
15437 | Guards.RewriteMap.insert(KV: {LHS, RHS}); |
15438 | } |
15439 | } |
15440 | |
15441 | void ScalarEvolution::LoopGuards::collectFromBlock( |
15442 | ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards, |
15443 | const BasicBlock *Block, const BasicBlock *Pred, |
15444 | SmallPtrSetImpl<const BasicBlock *> &VisitedBlocks, unsigned Depth) { |
15445 | SmallVector<const SCEV *> ExprsToRewrite; |
15446 | auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, |
15447 | const SCEV *RHS, |
15448 | DenseMap<const SCEV *, const SCEV *> |
15449 | &RewriteMap) { |
15450 | // WARNING: It is generally unsound to apply any wrap flags to the proposed |
15451 | // replacement SCEV which isn't directly implied by the structure of that |
15452 | // SCEV. In particular, using contextual facts to imply flags is *NOT* |
15453 | // legal. See the scoping rules for flags in the header to understand why. |
15454 | |
15455 | // If LHS is a constant, apply information to the other expression. |
15456 | if (isa<SCEVConstant>(Val: LHS)) { |
15457 | std::swap(a&: LHS, b&: RHS); |
15458 | Predicate = CmpInst::getSwappedPredicate(pred: Predicate); |
15459 | } |
15460 | |
15461 | // Check for a condition of the form (-C1 + X < C2). InstCombine will |
15462 | // create this form when combining two checks of the form (X u< C2 + C1) and |
15463 | // (X >=u C1). |
15464 | auto MatchRangeCheckIdiom = [&SE, Predicate, LHS, RHS, &RewriteMap, |
15465 | &ExprsToRewrite]() { |
15466 | const SCEVConstant *C1; |
15467 | const SCEVUnknown *LHSUnknown; |
15468 | auto *C2 = dyn_cast<SCEVConstant>(Val: RHS); |
15469 | if (!match(S: LHS, |
15470 | P: m_scev_Add(Op0: m_SCEVConstant(V&: C1), Op1: m_SCEVUnknown(V&: LHSUnknown))) || |
15471 | !C2) |
15472 | return false; |
15473 | |
15474 | auto ExactRegion = |
15475 | ConstantRange::makeExactICmpRegion(Pred: Predicate, Other: C2->getAPInt()) |
15476 | .sub(Other: C1->getAPInt()); |
15477 | |
15478 | // Bail out, unless we have a non-wrapping, monotonic range. |
15479 | if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) |
15480 | return false; |
15481 | auto [I, Inserted] = RewriteMap.try_emplace(Key: LHSUnknown); |
15482 | const SCEV *RewrittenLHS = Inserted ? LHSUnknown : I->second; |
15483 | I->second = SE.getUMaxExpr( |
15484 | LHS: SE.getConstant(Val: ExactRegion.getUnsignedMin()), |
15485 | RHS: SE.getUMinExpr(LHS: RewrittenLHS, |
15486 | RHS: SE.getConstant(Val: ExactRegion.getUnsignedMax()))); |
15487 | ExprsToRewrite.push_back(Elt: LHSUnknown); |
15488 | return true; |
15489 | }; |
15490 | if (MatchRangeCheckIdiom()) |
15491 | return; |
15492 | |
15493 | // Return true if \p Expr is a MinMax SCEV expression with a non-negative |
15494 | // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS |
15495 | // the non-constant operand and in \p LHS the constant operand. |
15496 | auto IsMinMaxSCEVWithNonNegativeConstant = |
15497 | [&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS, |
15498 | const SCEV *&RHS) { |
15499 | if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Val: Expr)) { |
15500 | if (MinMax->getNumOperands() != 2) |
15501 | return false; |
15502 | if (auto *C = dyn_cast<SCEVConstant>(Val: MinMax->getOperand(i: 0))) { |
15503 | if (C->getAPInt().isNegative()) |
15504 | return false; |
15505 | SCTy = MinMax->getSCEVType(); |
15506 | LHS = MinMax->getOperand(i: 0); |
15507 | RHS = MinMax->getOperand(i: 1); |
15508 | return true; |
15509 | } |
15510 | } |
15511 | return false; |
15512 | }; |
15513 | |
15514 | // Checks whether Expr is a non-negative constant, and Divisor is a positive |
15515 | // constant, and returns their APInt in ExprVal and in DivisorVal. |
15516 | auto GetNonNegExprAndPosDivisor = [&](const SCEV *Expr, const SCEV *Divisor, |
15517 | APInt &ExprVal, APInt &DivisorVal) { |
15518 | auto *ConstExpr = dyn_cast<SCEVConstant>(Val: Expr); |
15519 | auto *ConstDivisor = dyn_cast<SCEVConstant>(Val: Divisor); |
15520 | if (!ConstExpr || !ConstDivisor) |
15521 | return false; |
15522 | ExprVal = ConstExpr->getAPInt(); |
15523 | DivisorVal = ConstDivisor->getAPInt(); |
15524 | return ExprVal.isNonNegative() && !DivisorVal.isNonPositive(); |
15525 | }; |
15526 | |
15527 | // Return a new SCEV that modifies \p Expr to the closest number divides by |
15528 | // \p Divisor and greater or equal than Expr. |
15529 | // For now, only handle constant Expr and Divisor. |
15530 | auto GetNextSCEVDividesByDivisor = [&](const SCEV *Expr, |
15531 | const SCEV *Divisor) { |
15532 | APInt ExprVal; |
15533 | APInt DivisorVal; |
15534 | if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal)) |
15535 | return Expr; |
15536 | APInt Rem = ExprVal.urem(RHS: DivisorVal); |
15537 | if (!Rem.isZero()) |
15538 | // return the SCEV: Expr + Divisor - Expr % Divisor |
15539 | return SE.getConstant(Val: ExprVal + DivisorVal - Rem); |
15540 | return Expr; |
15541 | }; |
15542 | |
15543 | // Return a new SCEV that modifies \p Expr to the closest number divides by |
15544 | // \p Divisor and less or equal than Expr. |
15545 | // For now, only handle constant Expr and Divisor. |
15546 | auto GetPreviousSCEVDividesByDivisor = [&](const SCEV *Expr, |
15547 | const SCEV *Divisor) { |
15548 | APInt ExprVal; |
15549 | APInt DivisorVal; |
15550 | if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal)) |
15551 | return Expr; |
15552 | APInt Rem = ExprVal.urem(RHS: DivisorVal); |
15553 | // return the SCEV: Expr - Expr % Divisor |
15554 | return SE.getConstant(Val: ExprVal - Rem); |
15555 | }; |
15556 | |
15557 | // Apply divisibilty by \p Divisor on MinMaxExpr with constant values, |
15558 | // recursively. This is done by aligning up/down the constant value to the |
15559 | // Divisor. |
15560 | std::function<const SCEV *(const SCEV *, const SCEV *)> |
15561 | ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr, |
15562 | const SCEV *Divisor) { |
15563 | const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr; |
15564 | SCEVTypes SCTy; |
15565 | if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS, |
15566 | MinMaxRHS)) |
15567 | return MinMaxExpr; |
15568 | auto IsMin = |
15569 | isa<SCEVSMinExpr>(Val: MinMaxExpr) || isa<SCEVUMinExpr>(Val: MinMaxExpr); |
15570 | assert(SE.isKnownNonNegative(MinMaxLHS) && |
15571 | "Expected non-negative operand!" ); |
15572 | auto *DivisibleExpr = |
15573 | IsMin ? GetPreviousSCEVDividesByDivisor(MinMaxLHS, Divisor) |
15574 | : GetNextSCEVDividesByDivisor(MinMaxLHS, Divisor); |
15575 | SmallVector<const SCEV *> Ops = { |
15576 | ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr}; |
15577 | return SE.getMinMaxExpr(Kind: SCTy, Ops); |
15578 | }; |
15579 | |
15580 | // If we have LHS == 0, check if LHS is computing a property of some unknown |
15581 | // SCEV %v which we can rewrite %v to express explicitly. |
15582 | if (Predicate == CmpInst::ICMP_EQ && match(S: RHS, P: m_scev_Zero())) { |
15583 | // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to |
15584 | // explicitly express that. |
15585 | const SCEV *URemLHS = nullptr; |
15586 | const SCEV *URemRHS = nullptr; |
15587 | if (SE.matchURem(Expr: LHS, LHS&: URemLHS, RHS&: URemRHS)) { |
15588 | if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(Val: URemLHS)) { |
15589 | auto I = RewriteMap.find(Val: LHSUnknown); |
15590 | const SCEV *RewrittenLHS = |
15591 | I != RewriteMap.end() ? I->second : LHSUnknown; |
15592 | RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS); |
15593 | const auto *Multiple = |
15594 | SE.getMulExpr(LHS: SE.getUDivExpr(LHS: RewrittenLHS, RHS: URemRHS), RHS: URemRHS); |
15595 | RewriteMap[LHSUnknown] = Multiple; |
15596 | ExprsToRewrite.push_back(Elt: LHSUnknown); |
15597 | return; |
15598 | } |
15599 | } |
15600 | } |
15601 | |
15602 | // Do not apply information for constants or if RHS contains an AddRec. |
15603 | if (isa<SCEVConstant>(Val: LHS) || SE.containsAddRecurrence(S: RHS)) |
15604 | return; |
15605 | |
15606 | // If RHS is SCEVUnknown, make sure the information is applied to it. |
15607 | if (!isa<SCEVUnknown>(Val: LHS) && isa<SCEVUnknown>(Val: RHS)) { |
15608 | std::swap(a&: LHS, b&: RHS); |
15609 | Predicate = CmpInst::getSwappedPredicate(pred: Predicate); |
15610 | } |
15611 | |
15612 | // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From |
15613 | // and \p FromRewritten are the same (i.e. there has been no rewrite |
15614 | // registered for \p From), then puts this value in the list of rewritten |
15615 | // expressions. |
15616 | auto AddRewrite = [&](const SCEV *From, const SCEV *FromRewritten, |
15617 | const SCEV *To) { |
15618 | if (From == FromRewritten) |
15619 | ExprsToRewrite.push_back(Elt: From); |
15620 | RewriteMap[From] = To; |
15621 | }; |
15622 | |
15623 | // Checks whether \p S has already been rewritten. In that case returns the |
15624 | // existing rewrite because we want to chain further rewrites onto the |
15625 | // already rewritten value. Otherwise returns \p S. |
15626 | auto GetMaybeRewritten = [&](const SCEV *S) { |
15627 | auto I = RewriteMap.find(Val: S); |
15628 | return I != RewriteMap.end() ? I->second : S; |
15629 | }; |
15630 | |
15631 | // Check for the SCEV expression (A /u B) * B while B is a constant, inside |
15632 | // \p Expr. The check is done recuresively on \p Expr, which is assumed to |
15633 | // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A |
15634 | // /u B) * B was found, and return the divisor B in \p DividesBy. For |
15635 | // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since |
15636 | // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p |
15637 | // DividesBy. |
15638 | std::function<bool(const SCEV *, const SCEV *&)> HasDivisibiltyInfo = |
15639 | [&](const SCEV *Expr, const SCEV *&DividesBy) { |
15640 | if (auto *Mul = dyn_cast<SCEVMulExpr>(Val: Expr)) { |
15641 | if (Mul->getNumOperands() != 2) |
15642 | return false; |
15643 | auto *MulLHS = Mul->getOperand(i: 0); |
15644 | auto *MulRHS = Mul->getOperand(i: 1); |
15645 | if (isa<SCEVConstant>(Val: MulLHS)) |
15646 | std::swap(a&: MulLHS, b&: MulRHS); |
15647 | if (auto *Div = dyn_cast<SCEVUDivExpr>(Val: MulLHS)) |
15648 | if (Div->getOperand(i: 1) == MulRHS) { |
15649 | DividesBy = MulRHS; |
15650 | return true; |
15651 | } |
15652 | } |
15653 | if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Val: Expr)) |
15654 | return HasDivisibiltyInfo(MinMax->getOperand(i: 0), DividesBy) || |
15655 | HasDivisibiltyInfo(MinMax->getOperand(i: 1), DividesBy); |
15656 | return false; |
15657 | }; |
15658 | |
15659 | // Return true if Expr known to divide by \p DividesBy. |
15660 | std::function<bool(const SCEV *, const SCEV *&)> IsKnownToDivideBy = |
15661 | [&](const SCEV *Expr, const SCEV *DividesBy) { |
15662 | if (SE.getURemExpr(LHS: Expr, RHS: DividesBy)->isZero()) |
15663 | return true; |
15664 | if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Val: Expr)) |
15665 | return IsKnownToDivideBy(MinMax->getOperand(i: 0), DividesBy) && |
15666 | IsKnownToDivideBy(MinMax->getOperand(i: 1), DividesBy); |
15667 | return false; |
15668 | }; |
15669 | |
15670 | const SCEV *RewrittenLHS = GetMaybeRewritten(LHS); |
15671 | const SCEV *DividesBy = nullptr; |
15672 | if (HasDivisibiltyInfo(RewrittenLHS, DividesBy)) |
15673 | // Check that the whole expression is divided by DividesBy |
15674 | DividesBy = |
15675 | IsKnownToDivideBy(RewrittenLHS, DividesBy) ? DividesBy : nullptr; |
15676 | |
15677 | // Collect rewrites for LHS and its transitive operands based on the |
15678 | // condition. |
15679 | // For min/max expressions, also apply the guard to its operands: |
15680 | // 'min(a, b) >= c' -> '(a >= c) and (b >= c)', |
15681 | // 'min(a, b) > c' -> '(a > c) and (b > c)', |
15682 | // 'max(a, b) <= c' -> '(a <= c) and (b <= c)', |
15683 | // 'max(a, b) < c' -> '(a < c) and (b < c)'. |
15684 | |
15685 | // We cannot express strict predicates in SCEV, so instead we replace them |
15686 | // with non-strict ones against plus or minus one of RHS depending on the |
15687 | // predicate. |
15688 | const SCEV *One = SE.getOne(Ty: RHS->getType()); |
15689 | switch (Predicate) { |
15690 | case CmpInst::ICMP_ULT: |
15691 | if (RHS->getType()->isPointerTy()) |
15692 | return; |
15693 | RHS = SE.getUMaxExpr(LHS: RHS, RHS: One); |
15694 | [[fallthrough]]; |
15695 | case CmpInst::ICMP_SLT: { |
15696 | RHS = SE.getMinusSCEV(LHS: RHS, RHS: One); |
15697 | RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS; |
15698 | break; |
15699 | } |
15700 | case CmpInst::ICMP_UGT: |
15701 | case CmpInst::ICMP_SGT: |
15702 | RHS = SE.getAddExpr(LHS: RHS, RHS: One); |
15703 | RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS; |
15704 | break; |
15705 | case CmpInst::ICMP_ULE: |
15706 | case CmpInst::ICMP_SLE: |
15707 | RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS; |
15708 | break; |
15709 | case CmpInst::ICMP_UGE: |
15710 | case CmpInst::ICMP_SGE: |
15711 | RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS; |
15712 | break; |
15713 | default: |
15714 | break; |
15715 | } |
15716 | |
15717 | SmallVector<const SCEV *, 16> Worklist(1, LHS); |
15718 | SmallPtrSet<const SCEV *, 16> Visited; |
15719 | |
15720 | auto EnqueueOperands = [&Worklist](const SCEVNAryExpr *S) { |
15721 | append_range(C&: Worklist, R: S->operands()); |
15722 | }; |
15723 | |
15724 | while (!Worklist.empty()) { |
15725 | const SCEV *From = Worklist.pop_back_val(); |
15726 | if (isa<SCEVConstant>(Val: From)) |
15727 | continue; |
15728 | if (!Visited.insert(Ptr: From).second) |
15729 | continue; |
15730 | const SCEV *FromRewritten = GetMaybeRewritten(From); |
15731 | const SCEV *To = nullptr; |
15732 | |
15733 | switch (Predicate) { |
15734 | case CmpInst::ICMP_ULT: |
15735 | case CmpInst::ICMP_ULE: |
15736 | To = SE.getUMinExpr(LHS: FromRewritten, RHS); |
15737 | if (auto *UMax = dyn_cast<SCEVUMaxExpr>(Val: FromRewritten)) |
15738 | EnqueueOperands(UMax); |
15739 | break; |
15740 | case CmpInst::ICMP_SLT: |
15741 | case CmpInst::ICMP_SLE: |
15742 | To = SE.getSMinExpr(LHS: FromRewritten, RHS); |
15743 | if (auto *SMax = dyn_cast<SCEVSMaxExpr>(Val: FromRewritten)) |
15744 | EnqueueOperands(SMax); |
15745 | break; |
15746 | case CmpInst::ICMP_UGT: |
15747 | case CmpInst::ICMP_UGE: |
15748 | To = SE.getUMaxExpr(LHS: FromRewritten, RHS); |
15749 | if (auto *UMin = dyn_cast<SCEVUMinExpr>(Val: FromRewritten)) |
15750 | EnqueueOperands(UMin); |
15751 | break; |
15752 | case CmpInst::ICMP_SGT: |
15753 | case CmpInst::ICMP_SGE: |
15754 | To = SE.getSMaxExpr(LHS: FromRewritten, RHS); |
15755 | if (auto *SMin = dyn_cast<SCEVSMinExpr>(Val: FromRewritten)) |
15756 | EnqueueOperands(SMin); |
15757 | break; |
15758 | case CmpInst::ICMP_EQ: |
15759 | if (isa<SCEVConstant>(Val: RHS)) |
15760 | To = RHS; |
15761 | break; |
15762 | case CmpInst::ICMP_NE: |
15763 | if (match(S: RHS, P: m_scev_Zero())) { |
15764 | const SCEV *OneAlignedUp = |
15765 | DividesBy ? GetNextSCEVDividesByDivisor(One, DividesBy) : One; |
15766 | To = SE.getUMaxExpr(LHS: FromRewritten, RHS: OneAlignedUp); |
15767 | } |
15768 | break; |
15769 | default: |
15770 | break; |
15771 | } |
15772 | |
15773 | if (To) |
15774 | AddRewrite(From, FromRewritten, To); |
15775 | } |
15776 | }; |
15777 | |
15778 | SmallVector<PointerIntPair<Value *, 1, bool>> Terms; |
15779 | // First, collect information from assumptions dominating the loop. |
15780 | for (auto &AssumeVH : SE.AC.assumptions()) { |
15781 | if (!AssumeVH) |
15782 | continue; |
15783 | auto *AssumeI = cast<CallInst>(Val&: AssumeVH); |
15784 | if (!SE.DT.dominates(Def: AssumeI, BB: Block)) |
15785 | continue; |
15786 | Terms.emplace_back(Args: AssumeI->getOperand(i_nocapture: 0), Args: true); |
15787 | } |
15788 | |
15789 | // Second, collect information from llvm.experimental.guards dominating the loop. |
15790 | auto *GuardDecl = Intrinsic::getDeclarationIfExists( |
15791 | M: SE.F.getParent(), id: Intrinsic::experimental_guard); |
15792 | if (GuardDecl) |
15793 | for (const auto *GU : GuardDecl->users()) |
15794 | if (const auto *Guard = dyn_cast<IntrinsicInst>(Val: GU)) |
15795 | if (Guard->getFunction() == Block->getParent() && |
15796 | SE.DT.dominates(Def: Guard, BB: Block)) |
15797 | Terms.emplace_back(Args: Guard->getArgOperand(i: 0), Args: true); |
15798 | |
15799 | // Third, collect conditions from dominating branches. Starting at the loop |
15800 | // predecessor, climb up the predecessor chain, as long as there are |
15801 | // predecessors that can be found that have unique successors leading to the |
15802 | // original header. |
15803 | // TODO: share this logic with isLoopEntryGuardedByCond. |
15804 | unsigned NumCollectedConditions = 0; |
15805 | VisitedBlocks.insert(Ptr: Block); |
15806 | std::pair<const BasicBlock *, const BasicBlock *> Pair(Pred, Block); |
15807 | for (; Pair.first; |
15808 | Pair = SE.getPredecessorWithUniqueSuccessorForBB(BB: Pair.first)) { |
15809 | VisitedBlocks.insert(Ptr: Pair.second); |
15810 | const BranchInst *LoopEntryPredicate = |
15811 | dyn_cast<BranchInst>(Val: Pair.first->getTerminator()); |
15812 | if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) |
15813 | continue; |
15814 | |
15815 | Terms.emplace_back(Args: LoopEntryPredicate->getCondition(), |
15816 | Args: LoopEntryPredicate->getSuccessor(i: 0) == Pair.second); |
15817 | NumCollectedConditions++; |
15818 | |
15819 | // If we are recursively collecting guards stop after 2 |
15820 | // conditions to limit compile-time impact for now. |
15821 | if (Depth > 0 && NumCollectedConditions == 2) |
15822 | break; |
15823 | } |
15824 | // Finally, if we stopped climbing the predecessor chain because |
15825 | // there wasn't a unique one to continue, try to collect conditions |
15826 | // for PHINodes by recursively following all of their incoming |
15827 | // blocks and try to merge the found conditions to build a new one |
15828 | // for the Phi. |
15829 | if (Pair.second->hasNPredecessorsOrMore(N: 2) && |
15830 | Depth < MaxLoopGuardCollectionDepth) { |
15831 | SmallDenseMap<const BasicBlock *, LoopGuards> IncomingGuards; |
15832 | for (auto &Phi : Pair.second->phis()) |
15833 | collectFromPHI(SE, Guards, Phi, VisitedBlocks, IncomingGuards, Depth); |
15834 | } |
15835 | |
15836 | // Now apply the information from the collected conditions to |
15837 | // Guards.RewriteMap. Conditions are processed in reverse order, so the |
15838 | // earliest conditions is processed first. This ensures the SCEVs with the |
15839 | // shortest dependency chains are constructed first. |
15840 | for (auto [Term, EnterIfTrue] : reverse(C&: Terms)) { |
15841 | SmallVector<Value *, 8> Worklist; |
15842 | SmallPtrSet<Value *, 8> Visited; |
15843 | Worklist.push_back(Elt: Term); |
15844 | while (!Worklist.empty()) { |
15845 | Value *Cond = Worklist.pop_back_val(); |
15846 | if (!Visited.insert(Ptr: Cond).second) |
15847 | continue; |
15848 | |
15849 | if (auto *Cmp = dyn_cast<ICmpInst>(Val: Cond)) { |
15850 | auto Predicate = |
15851 | EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); |
15852 | const auto *LHS = SE.getSCEV(V: Cmp->getOperand(i_nocapture: 0)); |
15853 | const auto *RHS = SE.getSCEV(V: Cmp->getOperand(i_nocapture: 1)); |
15854 | CollectCondition(Predicate, LHS, RHS, Guards.RewriteMap); |
15855 | continue; |
15856 | } |
15857 | |
15858 | Value *L, *R; |
15859 | if (EnterIfTrue ? match(V: Cond, P: m_LogicalAnd(L: m_Value(V&: L), R: m_Value(V&: R))) |
15860 | : match(V: Cond, P: m_LogicalOr(L: m_Value(V&: L), R: m_Value(V&: R)))) { |
15861 | Worklist.push_back(Elt: L); |
15862 | Worklist.push_back(Elt: R); |
15863 | } |
15864 | } |
15865 | } |
15866 | |
15867 | // Let the rewriter preserve NUW/NSW flags if the unsigned/signed ranges of |
15868 | // the replacement expressions are contained in the ranges of the replaced |
15869 | // expressions. |
15870 | Guards.PreserveNUW = true; |
15871 | Guards.PreserveNSW = true; |
15872 | for (const SCEV *Expr : ExprsToRewrite) { |
15873 | const SCEV *RewriteTo = Guards.RewriteMap[Expr]; |
15874 | Guards.PreserveNUW &= |
15875 | SE.getUnsignedRange(S: Expr).contains(CR: SE.getUnsignedRange(S: RewriteTo)); |
15876 | Guards.PreserveNSW &= |
15877 | SE.getSignedRange(S: Expr).contains(CR: SE.getSignedRange(S: RewriteTo)); |
15878 | } |
15879 | |
15880 | // Now that all rewrite information is collect, rewrite the collected |
15881 | // expressions with the information in the map. This applies information to |
15882 | // sub-expressions. |
15883 | if (ExprsToRewrite.size() > 1) { |
15884 | for (const SCEV *Expr : ExprsToRewrite) { |
15885 | const SCEV *RewriteTo = Guards.RewriteMap[Expr]; |
15886 | Guards.RewriteMap.erase(Val: Expr); |
15887 | Guards.RewriteMap.insert(KV: {Expr, Guards.rewrite(Expr: RewriteTo)}); |
15888 | } |
15889 | } |
15890 | } |
15891 | |
15892 | const SCEV *ScalarEvolution::LoopGuards::rewrite(const SCEV *Expr) const { |
15893 | /// A rewriter to replace SCEV expressions in Map with the corresponding entry |
15894 | /// in the map. It skips AddRecExpr because we cannot guarantee that the |
15895 | /// replacement is loop invariant in the loop of the AddRec. |
15896 | class SCEVLoopGuardRewriter |
15897 | : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { |
15898 | const DenseMap<const SCEV *, const SCEV *> ⤅ |
15899 | |
15900 | SCEV::NoWrapFlags FlagMask = SCEV::FlagAnyWrap; |
15901 | |
15902 | public: |
15903 | SCEVLoopGuardRewriter(ScalarEvolution &SE, |
15904 | const ScalarEvolution::LoopGuards &Guards) |
15905 | : SCEVRewriteVisitor(SE), Map(Guards.RewriteMap) { |
15906 | if (Guards.PreserveNUW) |
15907 | FlagMask = ScalarEvolution::setFlags(Flags: FlagMask, OnFlags: SCEV::FlagNUW); |
15908 | if (Guards.PreserveNSW) |
15909 | FlagMask = ScalarEvolution::setFlags(Flags: FlagMask, OnFlags: SCEV::FlagNSW); |
15910 | } |
15911 | |
15912 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } |
15913 | |
15914 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { |
15915 | return Map.lookup_or(Val: Expr, Default&: Expr); |
15916 | } |
15917 | |
15918 | const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { |
15919 | if (const SCEV *S = Map.lookup(Val: Expr)) |
15920 | return S; |
15921 | |
15922 | // If we didn't find the extact ZExt expr in the map, check if there's |
15923 | // an entry for a smaller ZExt we can use instead. |
15924 | Type *Ty = Expr->getType(); |
15925 | const SCEV *Op = Expr->getOperand(i: 0); |
15926 | unsigned Bitwidth = Ty->getScalarSizeInBits() / 2; |
15927 | while (Bitwidth % 8 == 0 && Bitwidth >= 8 && |
15928 | Bitwidth > Op->getType()->getScalarSizeInBits()) { |
15929 | Type *NarrowTy = IntegerType::get(C&: SE.getContext(), NumBits: Bitwidth); |
15930 | auto *NarrowExt = SE.getZeroExtendExpr(Op, Ty: NarrowTy); |
15931 | auto I = Map.find(Val: NarrowExt); |
15932 | if (I != Map.end()) |
15933 | return SE.getZeroExtendExpr(Op: I->second, Ty); |
15934 | Bitwidth = Bitwidth / 2; |
15935 | } |
15936 | |
15937 | return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( |
15938 | Expr); |
15939 | } |
15940 | |
15941 | const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { |
15942 | if (const SCEV *S = Map.lookup(Val: Expr)) |
15943 | return S; |
15944 | return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSignExtendExpr( |
15945 | Expr); |
15946 | } |
15947 | |
15948 | const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) { |
15949 | if (const SCEV *S = Map.lookup(Val: Expr)) |
15950 | return S; |
15951 | return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitUMinExpr(Expr); |
15952 | } |
15953 | |
15954 | const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) { |
15955 | if (const SCEV *S = Map.lookup(Val: Expr)) |
15956 | return S; |
15957 | return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSMinExpr(Expr); |
15958 | } |
15959 | |
15960 | const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { |
15961 | SmallVector<const SCEV *, 2> Operands; |
15962 | bool Changed = false; |
15963 | for (const auto *Op : Expr->operands()) { |
15964 | Operands.push_back( |
15965 | Elt: SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visit(S: Op)); |
15966 | Changed |= Op != Operands.back(); |
15967 | } |
15968 | // We are only replacing operands with equivalent values, so transfer the |
15969 | // flags from the original expression. |
15970 | return !Changed ? Expr |
15971 | : SE.getAddExpr(Ops&: Operands, |
15972 | OrigFlags: ScalarEvolution::maskFlags( |
15973 | Flags: Expr->getNoWrapFlags(), Mask: FlagMask)); |
15974 | } |
15975 | |
15976 | const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { |
15977 | SmallVector<const SCEV *, 2> Operands; |
15978 | bool Changed = false; |
15979 | for (const auto *Op : Expr->operands()) { |
15980 | Operands.push_back( |
15981 | Elt: SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visit(S: Op)); |
15982 | Changed |= Op != Operands.back(); |
15983 | } |
15984 | // We are only replacing operands with equivalent values, so transfer the |
15985 | // flags from the original expression. |
15986 | return !Changed ? Expr |
15987 | : SE.getMulExpr(Ops&: Operands, |
15988 | OrigFlags: ScalarEvolution::maskFlags( |
15989 | Flags: Expr->getNoWrapFlags(), Mask: FlagMask)); |
15990 | } |
15991 | }; |
15992 | |
15993 | if (RewriteMap.empty()) |
15994 | return Expr; |
15995 | |
15996 | SCEVLoopGuardRewriter Rewriter(SE, *this); |
15997 | return Rewriter.visit(S: Expr); |
15998 | } |
15999 | |
16000 | const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { |
16001 | return applyLoopGuards(Expr, Guards: LoopGuards::collect(L, SE&: *this)); |
16002 | } |
16003 | |
16004 | const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, |
16005 | const LoopGuards &Guards) { |
16006 | return Guards.rewrite(Expr); |
16007 | } |
16008 | |