| 1 | //===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// This file implements the LoadStoreOpt optimization pass. |
| 10 | //===----------------------------------------------------------------------===// |
| 11 | |
| 12 | #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" |
| 13 | #include "llvm/ADT/STLExtras.h" |
| 14 | #include "llvm/ADT/SmallPtrSet.h" |
| 15 | #include "llvm/ADT/Statistic.h" |
| 16 | #include "llvm/Analysis/AliasAnalysis.h" |
| 17 | #include "llvm/Analysis/MemoryLocation.h" |
| 18 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 19 | #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
| 20 | #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" |
| 21 | #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" |
| 22 | #include "llvm/CodeGen/GlobalISel/Utils.h" |
| 23 | #include "llvm/CodeGen/LowLevelTypeUtils.h" |
| 24 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 25 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 26 | #include "llvm/CodeGen/MachineFunction.h" |
| 27 | #include "llvm/CodeGen/MachineInstr.h" |
| 28 | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
| 29 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 30 | #include "llvm/CodeGen/Register.h" |
| 31 | #include "llvm/CodeGen/TargetLowering.h" |
| 32 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 33 | #include "llvm/InitializePasses.h" |
| 34 | #include "llvm/Support/AtomicOrdering.h" |
| 35 | #include "llvm/Support/Casting.h" |
| 36 | #include "llvm/Support/Debug.h" |
| 37 | #include "llvm/Support/ErrorHandling.h" |
| 38 | #include <algorithm> |
| 39 | |
| 40 | #define DEBUG_TYPE "loadstore-opt" |
| 41 | |
| 42 | using namespace llvm; |
| 43 | using namespace ore; |
| 44 | using namespace MIPatternMatch; |
| 45 | |
| 46 | STATISTIC(NumStoresMerged, "Number of stores merged" ); |
| 47 | |
| 48 | const unsigned MaxStoreSizeToForm = 128; |
| 49 | |
| 50 | char LoadStoreOpt::ID = 0; |
| 51 | INITIALIZE_PASS_BEGIN(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations" , |
| 52 | false, false) |
| 53 | INITIALIZE_PASS_END(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations" , |
| 54 | false, false) |
| 55 | |
| 56 | LoadStoreOpt::LoadStoreOpt(std::function<bool(const MachineFunction &)> F) |
| 57 | : MachineFunctionPass(ID), DoNotRunPass(F) {} |
| 58 | |
| 59 | LoadStoreOpt::LoadStoreOpt() |
| 60 | : LoadStoreOpt([](const MachineFunction &) { return false; }) {} |
| 61 | |
| 62 | void LoadStoreOpt::init(MachineFunction &MF) { |
| 63 | this->MF = &MF; |
| 64 | MRI = &MF.getRegInfo(); |
| 65 | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| 66 | TLI = MF.getSubtarget().getTargetLowering(); |
| 67 | LI = MF.getSubtarget().getLegalizerInfo(); |
| 68 | Builder.setMF(MF); |
| 69 | IsPreLegalizer = !MF.getProperties().hasLegalized(); |
| 70 | InstsToErase.clear(); |
| 71 | } |
| 72 | |
| 73 | void LoadStoreOpt::getAnalysisUsage(AnalysisUsage &AU) const { |
| 74 | AU.addRequired<AAResultsWrapperPass>(); |
| 75 | AU.setPreservesAll(); |
| 76 | getSelectionDAGFallbackAnalysisUsage(AU); |
| 77 | MachineFunctionPass::getAnalysisUsage(AU); |
| 78 | } |
| 79 | |
| 80 | BaseIndexOffset GISelAddressing::getPointerInfo(Register Ptr, |
| 81 | MachineRegisterInfo &MRI) { |
| 82 | BaseIndexOffset Info; |
| 83 | Register PtrAddRHS; |
| 84 | Register BaseReg; |
| 85 | if (!mi_match(R: Ptr, MRI, P: m_GPtrAdd(L: m_Reg(R&: BaseReg), R: m_Reg(R&: PtrAddRHS)))) { |
| 86 | Info.setBase(Ptr); |
| 87 | Info.setOffset(0); |
| 88 | return Info; |
| 89 | } |
| 90 | Info.setBase(BaseReg); |
| 91 | auto RHSCst = getIConstantVRegValWithLookThrough(VReg: PtrAddRHS, MRI); |
| 92 | if (RHSCst) |
| 93 | Info.setOffset(RHSCst->Value.getSExtValue()); |
| 94 | |
| 95 | // Just recognize a simple case for now. In future we'll need to match |
| 96 | // indexing patterns for base + index + constant. |
| 97 | Info.setIndex(PtrAddRHS); |
| 98 | return Info; |
| 99 | } |
| 100 | |
| 101 | bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr &MI1, |
| 102 | const MachineInstr &MI2, |
| 103 | bool &IsAlias, |
| 104 | MachineRegisterInfo &MRI) { |
| 105 | auto *LdSt1 = dyn_cast<GLoadStore>(Val: &MI1); |
| 106 | auto *LdSt2 = dyn_cast<GLoadStore>(Val: &MI2); |
| 107 | if (!LdSt1 || !LdSt2) |
| 108 | return false; |
| 109 | |
| 110 | BaseIndexOffset BasePtr0 = getPointerInfo(Ptr: LdSt1->getPointerReg(), MRI); |
| 111 | BaseIndexOffset BasePtr1 = getPointerInfo(Ptr: LdSt2->getPointerReg(), MRI); |
| 112 | |
| 113 | if (!BasePtr0.getBase().isValid() || !BasePtr1.getBase().isValid()) |
| 114 | return false; |
| 115 | |
| 116 | LocationSize Size1 = LdSt1->getMemSize(); |
| 117 | LocationSize Size2 = LdSt2->getMemSize(); |
| 118 | |
| 119 | int64_t PtrDiff; |
| 120 | if (BasePtr0.getBase() == BasePtr1.getBase() && BasePtr0.hasValidOffset() && |
| 121 | BasePtr1.hasValidOffset()) { |
| 122 | PtrDiff = BasePtr1.getOffset() - BasePtr0.getOffset(); |
| 123 | // If the size of memory access is unknown, do not use it to do analysis. |
| 124 | // One example of unknown size memory access is to load/store scalable |
| 125 | // vector objects on the stack. |
| 126 | // BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the |
| 127 | // following situations arise: |
| 128 | if (PtrDiff >= 0 && Size1.hasValue() && !Size1.isScalable()) { |
| 129 | // [----BasePtr0----] |
| 130 | // [---BasePtr1--] |
| 131 | // ========PtrDiff========> |
| 132 | IsAlias = !((int64_t)Size1.getValue() <= PtrDiff); |
| 133 | return true; |
| 134 | } |
| 135 | if (PtrDiff < 0 && Size2.hasValue() && !Size2.isScalable()) { |
| 136 | // [----BasePtr0----] |
| 137 | // [---BasePtr1--] |
| 138 | // =====(-PtrDiff)====> |
| 139 | IsAlias = !((PtrDiff + (int64_t)Size2.getValue()) <= 0); |
| 140 | return true; |
| 141 | } |
| 142 | return false; |
| 143 | } |
| 144 | |
| 145 | // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be |
| 146 | // able to calculate their relative offset if at least one arises |
| 147 | // from an alloca. However, these allocas cannot overlap and we |
| 148 | // can infer there is no alias. |
| 149 | auto *Base0Def = getDefIgnoringCopies(Reg: BasePtr0.getBase(), MRI); |
| 150 | auto *Base1Def = getDefIgnoringCopies(Reg: BasePtr1.getBase(), MRI); |
| 151 | if (!Base0Def || !Base1Def) |
| 152 | return false; // Couldn't tell anything. |
| 153 | |
| 154 | |
| 155 | if (Base0Def->getOpcode() != Base1Def->getOpcode()) |
| 156 | return false; |
| 157 | |
| 158 | if (Base0Def->getOpcode() == TargetOpcode::G_FRAME_INDEX) { |
| 159 | MachineFrameInfo &MFI = Base0Def->getMF()->getFrameInfo(); |
| 160 | // If the bases have the same frame index but we couldn't find a |
| 161 | // constant offset, (indices are different) be conservative. |
| 162 | if (Base0Def != Base1Def && |
| 163 | (!MFI.isFixedObjectIndex(ObjectIdx: Base0Def->getOperand(i: 1).getIndex()) || |
| 164 | !MFI.isFixedObjectIndex(ObjectIdx: Base1Def->getOperand(i: 1).getIndex()))) { |
| 165 | IsAlias = false; |
| 166 | return true; |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | // This implementation is a lot more primitive than the SDAG one for now. |
| 171 | // FIXME: what about constant pools? |
| 172 | if (Base0Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) { |
| 173 | auto GV0 = Base0Def->getOperand(i: 1).getGlobal(); |
| 174 | auto GV1 = Base1Def->getOperand(i: 1).getGlobal(); |
| 175 | if (GV0 != GV1) { |
| 176 | IsAlias = false; |
| 177 | return true; |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | // Can't tell anything about aliasing. |
| 182 | return false; |
| 183 | } |
| 184 | |
| 185 | bool GISelAddressing::instMayAlias(const MachineInstr &MI, |
| 186 | const MachineInstr &Other, |
| 187 | MachineRegisterInfo &MRI, |
| 188 | AliasAnalysis *AA) { |
| 189 | struct MemUseCharacteristics { |
| 190 | bool IsVolatile; |
| 191 | bool IsAtomic; |
| 192 | Register BasePtr; |
| 193 | int64_t Offset; |
| 194 | LocationSize NumBytes; |
| 195 | MachineMemOperand *MMO; |
| 196 | }; |
| 197 | |
| 198 | auto getCharacteristics = |
| 199 | [&](const MachineInstr *MI) -> MemUseCharacteristics { |
| 200 | if (const auto *LS = dyn_cast<GLoadStore>(Val: MI)) { |
| 201 | Register BaseReg; |
| 202 | int64_t Offset = 0; |
| 203 | // No pre/post-inc addressing modes are considered here, unlike in SDAG. |
| 204 | if (!mi_match(R: LS->getPointerReg(), MRI, |
| 205 | P: m_GPtrAdd(L: m_Reg(R&: BaseReg), R: m_ICst(Cst&: Offset)))) { |
| 206 | BaseReg = LS->getPointerReg(); |
| 207 | Offset = 0; |
| 208 | } |
| 209 | |
| 210 | LocationSize Size = LS->getMMO().getSize(); |
| 211 | return {.IsVolatile: LS->isVolatile(), .IsAtomic: LS->isAtomic(), .BasePtr: BaseReg, |
| 212 | .Offset: Offset /*base offset*/, .NumBytes: Size, .MMO: &LS->getMMO()}; |
| 213 | } |
| 214 | // FIXME: support recognizing lifetime instructions. |
| 215 | // Default. |
| 216 | return {.IsVolatile: false /*isvolatile*/, |
| 217 | /*isAtomic*/ .IsAtomic: false, |
| 218 | .BasePtr: Register(), |
| 219 | .Offset: (int64_t)0 /*offset*/, |
| 220 | .NumBytes: LocationSize::beforeOrAfterPointer() /*size*/, |
| 221 | .MMO: (MachineMemOperand *)nullptr}; |
| 222 | }; |
| 223 | MemUseCharacteristics MUC0 = getCharacteristics(&MI), |
| 224 | MUC1 = getCharacteristics(&Other); |
| 225 | |
| 226 | // If they are to the same address, then they must be aliases. |
| 227 | if (MUC0.BasePtr.isValid() && MUC0.BasePtr == MUC1.BasePtr && |
| 228 | MUC0.Offset == MUC1.Offset) |
| 229 | return true; |
| 230 | |
| 231 | // If they are both volatile then they cannot be reordered. |
| 232 | if (MUC0.IsVolatile && MUC1.IsVolatile) |
| 233 | return true; |
| 234 | |
| 235 | // Be conservative about atomics for the moment |
| 236 | // TODO: This is way overconservative for unordered atomics (see D66309) |
| 237 | if (MUC0.IsAtomic && MUC1.IsAtomic) |
| 238 | return true; |
| 239 | |
| 240 | // If one operation reads from invariant memory, and the other may store, they |
| 241 | // cannot alias. |
| 242 | if (MUC0.MMO && MUC1.MMO) { |
| 243 | if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || |
| 244 | (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) |
| 245 | return false; |
| 246 | } |
| 247 | |
| 248 | // If NumBytes is scalable and offset is not 0, conservatively return may |
| 249 | // alias |
| 250 | if ((MUC0.NumBytes.isScalable() && MUC0.Offset != 0) || |
| 251 | (MUC1.NumBytes.isScalable() && MUC1.Offset != 0)) |
| 252 | return true; |
| 253 | |
| 254 | const bool BothNotScalable = |
| 255 | !MUC0.NumBytes.isScalable() && !MUC1.NumBytes.isScalable(); |
| 256 | |
| 257 | // Try to prove that there is aliasing, or that there is no aliasing. Either |
| 258 | // way, we can return now. If nothing can be proved, proceed with more tests. |
| 259 | bool IsAlias; |
| 260 | if (BothNotScalable && |
| 261 | GISelAddressing::aliasIsKnownForLoadStore(MI1: MI, MI2: Other, IsAlias, MRI)) |
| 262 | return IsAlias; |
| 263 | |
| 264 | // The following all rely on MMO0 and MMO1 being valid. |
| 265 | if (!MUC0.MMO || !MUC1.MMO) |
| 266 | return true; |
| 267 | |
| 268 | // FIXME: port the alignment based alias analysis from SDAG's isAlias(). |
| 269 | int64_t SrcValOffset0 = MUC0.MMO->getOffset(); |
| 270 | int64_t SrcValOffset1 = MUC1.MMO->getOffset(); |
| 271 | LocationSize Size0 = MUC0.NumBytes; |
| 272 | LocationSize Size1 = MUC1.NumBytes; |
| 273 | if (AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && Size0.hasValue() && |
| 274 | Size1.hasValue()) { |
| 275 | // Use alias analysis information. |
| 276 | int64_t MinOffset = std::min(a: SrcValOffset0, b: SrcValOffset1); |
| 277 | int64_t Overlap0 = |
| 278 | Size0.getValue().getKnownMinValue() + SrcValOffset0 - MinOffset; |
| 279 | int64_t Overlap1 = |
| 280 | Size1.getValue().getKnownMinValue() + SrcValOffset1 - MinOffset; |
| 281 | LocationSize Loc0 = |
| 282 | Size0.isScalable() ? Size0 : LocationSize::precise(Value: Overlap0); |
| 283 | LocationSize Loc1 = |
| 284 | Size1.isScalable() ? Size1 : LocationSize::precise(Value: Overlap1); |
| 285 | |
| 286 | if (AA->isNoAlias( |
| 287 | LocA: MemoryLocation(MUC0.MMO->getValue(), Loc0, MUC0.MMO->getAAInfo()), |
| 288 | LocB: MemoryLocation(MUC1.MMO->getValue(), Loc1, MUC1.MMO->getAAInfo()))) |
| 289 | return false; |
| 290 | } |
| 291 | |
| 292 | // Otherwise we have to assume they alias. |
| 293 | return true; |
| 294 | } |
| 295 | |
| 296 | /// Returns true if the instruction creates an unavoidable hazard that |
| 297 | /// forces a boundary between store merge candidates. |
| 298 | static bool isInstHardMergeHazard(MachineInstr &MI) { |
| 299 | return MI.hasUnmodeledSideEffects() || MI.hasOrderedMemoryRef(); |
| 300 | } |
| 301 | |
| 302 | bool LoadStoreOpt::mergeStores(SmallVectorImpl<GStore *> &StoresToMerge) { |
| 303 | // Try to merge all the stores in the vector, splitting into separate segments |
| 304 | // as necessary. |
| 305 | assert(StoresToMerge.size() > 1 && "Expected multiple stores to merge" ); |
| 306 | LLT OrigTy = MRI->getType(Reg: StoresToMerge[0]->getValueReg()); |
| 307 | LLT PtrTy = MRI->getType(Reg: StoresToMerge[0]->getPointerReg()); |
| 308 | unsigned AS = PtrTy.getAddressSpace(); |
| 309 | // Ensure the legal store info is computed for this address space. |
| 310 | initializeStoreMergeTargetInfo(AddrSpace: AS); |
| 311 | const auto &LegalSizes = LegalStoreSizes[AS]; |
| 312 | |
| 313 | #ifndef NDEBUG |
| 314 | for (auto *StoreMI : StoresToMerge) |
| 315 | assert(MRI->getType(StoreMI->getValueReg()) == OrigTy); |
| 316 | #endif |
| 317 | |
| 318 | bool AnyMerged = false; |
| 319 | do { |
| 320 | unsigned NumPow2 = llvm::bit_floor(Value: StoresToMerge.size()); |
| 321 | unsigned MaxSizeBits = NumPow2 * OrigTy.getSizeInBits().getFixedValue(); |
| 322 | // Compute the biggest store we can generate to handle the number of stores. |
| 323 | unsigned MergeSizeBits; |
| 324 | for (MergeSizeBits = MaxSizeBits; MergeSizeBits > 1; MergeSizeBits /= 2) { |
| 325 | LLT StoreTy = LLT::scalar(SizeInBits: MergeSizeBits); |
| 326 | EVT StoreEVT = |
| 327 | getApproximateEVTForLLT(Ty: StoreTy, Ctx&: MF->getFunction().getContext()); |
| 328 | if (LegalSizes.size() > MergeSizeBits && LegalSizes[MergeSizeBits] && |
| 329 | TLI->canMergeStoresTo(AS, MemVT: StoreEVT, MF: *MF) && |
| 330 | (TLI->isTypeLegal(VT: StoreEVT))) |
| 331 | break; // We can generate a MergeSize bits store. |
| 332 | } |
| 333 | if (MergeSizeBits <= OrigTy.getSizeInBits()) |
| 334 | return AnyMerged; // No greater merge. |
| 335 | |
| 336 | unsigned NumStoresToMerge = MergeSizeBits / OrigTy.getSizeInBits(); |
| 337 | // Perform the actual merging. |
| 338 | SmallVector<GStore *, 8> SingleMergeStores( |
| 339 | StoresToMerge.begin(), StoresToMerge.begin() + NumStoresToMerge); |
| 340 | AnyMerged |= doSingleStoreMerge(Stores&: SingleMergeStores); |
| 341 | StoresToMerge.erase(CS: StoresToMerge.begin(), |
| 342 | CE: StoresToMerge.begin() + NumStoresToMerge); |
| 343 | } while (StoresToMerge.size() > 1); |
| 344 | return AnyMerged; |
| 345 | } |
| 346 | |
| 347 | bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery &Query, |
| 348 | MachineFunction &MF) const { |
| 349 | auto Action = LI->getAction(Query).Action; |
| 350 | // If the instruction is unsupported, it can't be legalized at all. |
| 351 | if (Action == LegalizeActions::Unsupported) |
| 352 | return false; |
| 353 | return IsPreLegalizer || Action == LegalizeAction::Legal; |
| 354 | } |
| 355 | |
| 356 | bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl<GStore *> &Stores) { |
| 357 | assert(Stores.size() > 1); |
| 358 | // We know that all the stores are consecutive and there are no aliasing |
| 359 | // operations in the range. However, the values that are being stored may be |
| 360 | // generated anywhere before each store. To ensure we have the values |
| 361 | // available, we materialize the wide value and new store at the place of the |
| 362 | // final store in the merge sequence. |
| 363 | GStore *FirstStore = Stores[0]; |
| 364 | const unsigned NumStores = Stores.size(); |
| 365 | LLT SmallTy = MRI->getType(Reg: FirstStore->getValueReg()); |
| 366 | LLT WideValueTy = |
| 367 | LLT::scalar(SizeInBits: NumStores * SmallTy.getSizeInBits().getFixedValue()); |
| 368 | |
| 369 | // For each store, compute pairwise merged debug locs. |
| 370 | DebugLoc MergedLoc = Stores.front()->getDebugLoc(); |
| 371 | for (auto *Store : drop_begin(RangeOrContainer&: Stores)) |
| 372 | MergedLoc = DebugLoc::getMergedLocation(LocA: MergedLoc, LocB: Store->getDebugLoc()); |
| 373 | |
| 374 | Builder.setInstr(*Stores.back()); |
| 375 | Builder.setDebugLoc(MergedLoc); |
| 376 | |
| 377 | // If all of the store values are constants, then create a wide constant |
| 378 | // directly. Otherwise, we need to generate some instructions to merge the |
| 379 | // existing values together into a wider type. |
| 380 | SmallVector<APInt, 8> ConstantVals; |
| 381 | for (auto *Store : Stores) { |
| 382 | auto MaybeCst = |
| 383 | getIConstantVRegValWithLookThrough(VReg: Store->getValueReg(), MRI: *MRI); |
| 384 | if (!MaybeCst) { |
| 385 | ConstantVals.clear(); |
| 386 | break; |
| 387 | } |
| 388 | ConstantVals.emplace_back(Args&: MaybeCst->Value); |
| 389 | } |
| 390 | |
| 391 | Register WideReg; |
| 392 | auto *WideMMO = |
| 393 | MF->getMachineMemOperand(MMO: &FirstStore->getMMO(), Offset: 0, Ty: WideValueTy); |
| 394 | if (ConstantVals.empty()) { |
| 395 | // Mimic the SDAG behaviour here and don't try to do anything for unknown |
| 396 | // values. In future, we should also support the cases of loads and |
| 397 | // extracted vector elements. |
| 398 | return false; |
| 399 | } |
| 400 | |
| 401 | assert(ConstantVals.size() == NumStores); |
| 402 | // Check if our wide constant is legal. |
| 403 | if (!isLegalOrBeforeLegalizer(Query: {TargetOpcode::G_CONSTANT, {WideValueTy}}, MF&: *MF)) |
| 404 | return false; |
| 405 | APInt WideConst(WideValueTy.getSizeInBits(), 0); |
| 406 | for (unsigned Idx = 0; Idx < ConstantVals.size(); ++Idx) { |
| 407 | // Insert the smaller constant into the corresponding position in the |
| 408 | // wider one. |
| 409 | WideConst.insertBits(SubBits: ConstantVals[Idx], bitPosition: Idx * SmallTy.getSizeInBits()); |
| 410 | } |
| 411 | WideReg = Builder.buildConstant(Res: WideValueTy, Val: WideConst).getReg(Idx: 0); |
| 412 | auto NewStore = |
| 413 | Builder.buildStore(Val: WideReg, Addr: FirstStore->getPointerReg(), MMO&: *WideMMO); |
| 414 | (void) NewStore; |
| 415 | LLVM_DEBUG(dbgs() << "Merged " << Stores.size() |
| 416 | << " stores into merged store: " << *NewStore); |
| 417 | LLVM_DEBUG(for (auto *MI : Stores) dbgs() << " " << *MI;); |
| 418 | NumStoresMerged += Stores.size(); |
| 419 | |
| 420 | MachineOptimizationRemarkEmitter MORE(*MF, nullptr); |
| 421 | MORE.emit(RemarkBuilder: [&]() { |
| 422 | MachineOptimizationRemark R(DEBUG_TYPE, "MergedStore" , |
| 423 | FirstStore->getDebugLoc(), |
| 424 | FirstStore->getParent()); |
| 425 | R << "Merged " << NV("NumMerged" , Stores.size()) << " stores of " |
| 426 | << NV("OrigWidth" , SmallTy.getSizeInBytes()) |
| 427 | << " bytes into a single store of " |
| 428 | << NV("NewWidth" , WideValueTy.getSizeInBytes()) << " bytes" ; |
| 429 | return R; |
| 430 | }); |
| 431 | |
| 432 | InstsToErase.insert_range(R&: Stores); |
| 433 | return true; |
| 434 | } |
| 435 | |
| 436 | bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate &C) { |
| 437 | if (C.Stores.size() < 2) { |
| 438 | C.reset(); |
| 439 | return false; |
| 440 | } |
| 441 | |
| 442 | LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C.Stores.size() |
| 443 | << " stores, starting with " << *C.Stores[0]); |
| 444 | // We know that the stores in the candidate are adjacent. |
| 445 | // Now we need to check if any potential aliasing instructions recorded |
| 446 | // during the search alias with load/stores added to the candidate after. |
| 447 | // For example, if we have the candidate: |
| 448 | // C.Stores = [ST1, ST2, ST3, ST4] |
| 449 | // and after seeing ST2 we saw a load LD1, which did not alias with ST1 or |
| 450 | // ST2, then we would have recorded it into the PotentialAliases structure |
| 451 | // with the associated index value of "1". Then we see ST3 and ST4 and add |
| 452 | // them to the candidate group. We know that LD1 does not alias with ST1 or |
| 453 | // ST2, since we already did that check. However we don't yet know if it |
| 454 | // may alias ST3 and ST4, so we perform those checks now. |
| 455 | SmallVector<GStore *> StoresToMerge; |
| 456 | |
| 457 | auto DoesStoreAliasWithPotential = [&](unsigned Idx, GStore &CheckStore) { |
| 458 | for (auto AliasInfo : reverse(C&: C.PotentialAliases)) { |
| 459 | MachineInstr *PotentialAliasOp = AliasInfo.first; |
| 460 | unsigned PreCheckedIdx = AliasInfo.second; |
| 461 | if (Idx < PreCheckedIdx) { |
| 462 | // Once our store index is lower than the index associated with the |
| 463 | // potential alias, we know that we've already checked for this alias |
| 464 | // and all of the earlier potential aliases too. |
| 465 | return false; |
| 466 | } |
| 467 | // Need to check this alias. |
| 468 | if (GISelAddressing::instMayAlias(MI: CheckStore, Other: *PotentialAliasOp, MRI&: *MRI, |
| 469 | AA)) { |
| 470 | LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp |
| 471 | << " detected\n" ); |
| 472 | return true; |
| 473 | } |
| 474 | } |
| 475 | return false; |
| 476 | }; |
| 477 | // Start from the last store in the group, and check if it aliases with any |
| 478 | // of the potential aliasing operations in the list. |
| 479 | for (int StoreIdx = C.Stores.size() - 1; StoreIdx >= 0; --StoreIdx) { |
| 480 | auto *CheckStore = C.Stores[StoreIdx]; |
| 481 | if (DoesStoreAliasWithPotential(StoreIdx, *CheckStore)) |
| 482 | continue; |
| 483 | StoresToMerge.emplace_back(Args&: CheckStore); |
| 484 | } |
| 485 | |
| 486 | LLVM_DEBUG(dbgs() << StoresToMerge.size() |
| 487 | << " stores remaining after alias checks. Merging...\n" ); |
| 488 | |
| 489 | // Now we've checked for aliasing hazards, merge any stores left. |
| 490 | C.reset(); |
| 491 | if (StoresToMerge.size() < 2) |
| 492 | return false; |
| 493 | return mergeStores(StoresToMerge); |
| 494 | } |
| 495 | |
| 496 | bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr &MI, |
| 497 | StoreMergeCandidate &C) { |
| 498 | if (C.Stores.empty()) |
| 499 | return false; |
| 500 | return llvm::any_of(Range&: C.Stores, P: [&](MachineInstr *OtherMI) { |
| 501 | return instMayAlias(MI, Other: *OtherMI, MRI&: *MRI, AA); |
| 502 | }); |
| 503 | } |
| 504 | |
| 505 | void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr &MI) { |
| 506 | PotentialAliases.emplace_back(Args: std::make_pair(x: &MI, y: Stores.size() - 1)); |
| 507 | } |
| 508 | |
| 509 | bool LoadStoreOpt::addStoreToCandidate(GStore &StoreMI, |
| 510 | StoreMergeCandidate &C) { |
| 511 | // Check if the given store writes to an adjacent address, and other |
| 512 | // requirements. |
| 513 | LLT ValueTy = MRI->getType(Reg: StoreMI.getValueReg()); |
| 514 | LLT PtrTy = MRI->getType(Reg: StoreMI.getPointerReg()); |
| 515 | |
| 516 | // Only handle scalars. |
| 517 | if (!ValueTy.isScalar()) |
| 518 | return false; |
| 519 | |
| 520 | // Don't allow truncating stores for now. |
| 521 | if (StoreMI.getMemSizeInBits() != ValueTy.getSizeInBits()) |
| 522 | return false; |
| 523 | |
| 524 | // Avoid adding volatile or ordered stores to the candidate. We already have a |
| 525 | // check for this in instMayAlias() but that only get's called later between |
| 526 | // potential aliasing hazards. |
| 527 | if (!StoreMI.isSimple()) |
| 528 | return false; |
| 529 | |
| 530 | Register StoreAddr = StoreMI.getPointerReg(); |
| 531 | auto BIO = getPointerInfo(Ptr: StoreAddr, MRI&: *MRI); |
| 532 | Register StoreBase = BIO.getBase(); |
| 533 | if (C.Stores.empty()) { |
| 534 | C.BasePtr = StoreBase; |
| 535 | if (!BIO.hasValidOffset()) { |
| 536 | C.CurrentLowestOffset = 0; |
| 537 | } else { |
| 538 | C.CurrentLowestOffset = BIO.getOffset(); |
| 539 | } |
| 540 | // This is the first store of the candidate. |
| 541 | // If the offset can't possibly allow for a lower addressed store with the |
| 542 | // same base, don't bother adding it. |
| 543 | if (BIO.hasValidOffset() && |
| 544 | BIO.getOffset() < static_cast<int64_t>(ValueTy.getSizeInBytes())) |
| 545 | return false; |
| 546 | C.Stores.emplace_back(Args: &StoreMI); |
| 547 | LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: " |
| 548 | << StoreMI); |
| 549 | return true; |
| 550 | } |
| 551 | |
| 552 | // Check the store is the same size as the existing ones in the candidate. |
| 553 | if (MRI->getType(Reg: C.Stores[0]->getValueReg()).getSizeInBits() != |
| 554 | ValueTy.getSizeInBits()) |
| 555 | return false; |
| 556 | |
| 557 | if (MRI->getType(Reg: C.Stores[0]->getPointerReg()).getAddressSpace() != |
| 558 | PtrTy.getAddressSpace()) |
| 559 | return false; |
| 560 | |
| 561 | // There are other stores in the candidate. Check that the store address |
| 562 | // writes to the next lowest adjacent address. |
| 563 | if (C.BasePtr != StoreBase) |
| 564 | return false; |
| 565 | // If we don't have a valid offset, we can't guarantee to be an adjacent |
| 566 | // offset. |
| 567 | if (!BIO.hasValidOffset()) |
| 568 | return false; |
| 569 | if ((C.CurrentLowestOffset - |
| 570 | static_cast<int64_t>(ValueTy.getSizeInBytes())) != BIO.getOffset()) |
| 571 | return false; |
| 572 | |
| 573 | // This writes to an adjacent address. Allow it. |
| 574 | C.Stores.emplace_back(Args: &StoreMI); |
| 575 | C.CurrentLowestOffset = C.CurrentLowestOffset - ValueTy.getSizeInBytes(); |
| 576 | LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI); |
| 577 | return true; |
| 578 | } |
| 579 | |
| 580 | bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock &MBB) { |
| 581 | bool Changed = false; |
| 582 | // Walk through the block bottom-up, looking for merging candidates. |
| 583 | StoreMergeCandidate Candidate; |
| 584 | for (MachineInstr &MI : llvm::reverse(C&: MBB)) { |
| 585 | if (InstsToErase.contains(Ptr: &MI)) |
| 586 | continue; |
| 587 | |
| 588 | if (auto *StoreMI = dyn_cast<GStore>(Val: &MI)) { |
| 589 | // We have a G_STORE. Add it to the candidate if it writes to an adjacent |
| 590 | // address. |
| 591 | if (!addStoreToCandidate(StoreMI&: *StoreMI, C&: Candidate)) { |
| 592 | // Store wasn't eligible to be added. May need to record it as a |
| 593 | // potential alias. |
| 594 | if (operationAliasesWithCandidate(MI&: *StoreMI, C&: Candidate)) { |
| 595 | Changed |= processMergeCandidate(C&: Candidate); |
| 596 | continue; |
| 597 | } |
| 598 | Candidate.addPotentialAlias(MI&: *StoreMI); |
| 599 | } |
| 600 | continue; |
| 601 | } |
| 602 | |
| 603 | // If we don't have any stores yet, this instruction can't pose a problem. |
| 604 | if (Candidate.Stores.empty()) |
| 605 | continue; |
| 606 | |
| 607 | // We're dealing with some other kind of instruction. |
| 608 | if (isInstHardMergeHazard(MI)) { |
| 609 | Changed |= processMergeCandidate(C&: Candidate); |
| 610 | Candidate.Stores.clear(); |
| 611 | continue; |
| 612 | } |
| 613 | |
| 614 | if (!MI.mayLoadOrStore()) |
| 615 | continue; |
| 616 | |
| 617 | if (operationAliasesWithCandidate(MI, C&: Candidate)) { |
| 618 | // We have a potential alias, so process the current candidate if we can |
| 619 | // and then continue looking for a new candidate. |
| 620 | Changed |= processMergeCandidate(C&: Candidate); |
| 621 | continue; |
| 622 | } |
| 623 | |
| 624 | // Record this instruction as a potential alias for future stores that are |
| 625 | // added to the candidate. |
| 626 | Candidate.addPotentialAlias(MI); |
| 627 | } |
| 628 | |
| 629 | // Process any candidate left after finishing searching the entire block. |
| 630 | Changed |= processMergeCandidate(C&: Candidate); |
| 631 | |
| 632 | // Erase instructions now that we're no longer iterating over the block. |
| 633 | for (auto *MI : InstsToErase) |
| 634 | MI->eraseFromParent(); |
| 635 | InstsToErase.clear(); |
| 636 | return Changed; |
| 637 | } |
| 638 | |
| 639 | /// Check if the store \p Store is a truncstore that can be merged. That is, |
| 640 | /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty |
| 641 | /// Register then it does not need to match and SrcVal is set to the source |
| 642 | /// value found. |
| 643 | /// On match, returns the start byte offset of the \p SrcVal that is being |
| 644 | /// stored. |
| 645 | static std::optional<int64_t> |
| 646 | getTruncStoreByteOffset(GStore &Store, Register &SrcVal, |
| 647 | MachineRegisterInfo &MRI) { |
| 648 | Register TruncVal; |
| 649 | if (!mi_match(R: Store.getValueReg(), MRI, P: m_GTrunc(Src: m_Reg(R&: TruncVal)))) |
| 650 | return std::nullopt; |
| 651 | |
| 652 | // The shift amount must be a constant multiple of the narrow type. |
| 653 | // It is translated to the offset address in the wide source value "y". |
| 654 | // |
| 655 | // x = G_LSHR y, ShiftAmtC |
| 656 | // s8 z = G_TRUNC x |
| 657 | // store z, ... |
| 658 | Register FoundSrcVal; |
| 659 | int64_t ShiftAmt; |
| 660 | if (!mi_match(R: TruncVal, MRI, |
| 661 | P: m_any_of(preds: m_GLShr(L: m_Reg(R&: FoundSrcVal), R: m_ICst(Cst&: ShiftAmt)), |
| 662 | preds: m_GAShr(L: m_Reg(R&: FoundSrcVal), R: m_ICst(Cst&: ShiftAmt))))) { |
| 663 | if (!SrcVal.isValid() || TruncVal == SrcVal) { |
| 664 | if (!SrcVal.isValid()) |
| 665 | SrcVal = TruncVal; |
| 666 | return 0; // If it's the lowest index store. |
| 667 | } |
| 668 | return std::nullopt; |
| 669 | } |
| 670 | |
| 671 | unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); |
| 672 | if (ShiftAmt % NarrowBits != 0) |
| 673 | return std::nullopt; |
| 674 | const unsigned Offset = ShiftAmt / NarrowBits; |
| 675 | |
| 676 | if (SrcVal.isValid() && FoundSrcVal != SrcVal) |
| 677 | return std::nullopt; |
| 678 | |
| 679 | if (!SrcVal.isValid()) |
| 680 | SrcVal = FoundSrcVal; |
| 681 | else if (MRI.getType(Reg: SrcVal) != MRI.getType(Reg: FoundSrcVal)) |
| 682 | return std::nullopt; |
| 683 | return Offset; |
| 684 | } |
| 685 | |
| 686 | /// Match a pattern where a wide type scalar value is stored by several narrow |
| 687 | /// stores. Fold it into a single store or a BSWAP and a store if the targets |
| 688 | /// supports it. |
| 689 | /// |
| 690 | /// Assuming little endian target: |
| 691 | /// i8 *p = ... |
| 692 | /// i32 val = ... |
| 693 | /// p[0] = (val >> 0) & 0xFF; |
| 694 | /// p[1] = (val >> 8) & 0xFF; |
| 695 | /// p[2] = (val >> 16) & 0xFF; |
| 696 | /// p[3] = (val >> 24) & 0xFF; |
| 697 | /// => |
| 698 | /// *((i32)p) = val; |
| 699 | /// |
| 700 | /// i8 *p = ... |
| 701 | /// i32 val = ... |
| 702 | /// p[0] = (val >> 24) & 0xFF; |
| 703 | /// p[1] = (val >> 16) & 0xFF; |
| 704 | /// p[2] = (val >> 8) & 0xFF; |
| 705 | /// p[3] = (val >> 0) & 0xFF; |
| 706 | /// => |
| 707 | /// *((i32)p) = BSWAP(val); |
| 708 | bool LoadStoreOpt::mergeTruncStore(GStore &StoreMI, |
| 709 | SmallPtrSetImpl<GStore *> &DeletedStores) { |
| 710 | LLT MemTy = StoreMI.getMMO().getMemoryType(); |
| 711 | |
| 712 | // We only handle merging simple stores of 1-4 bytes. |
| 713 | if (!MemTy.isScalar()) |
| 714 | return false; |
| 715 | switch (MemTy.getSizeInBits()) { |
| 716 | case 8: |
| 717 | case 16: |
| 718 | case 32: |
| 719 | break; |
| 720 | default: |
| 721 | return false; |
| 722 | } |
| 723 | if (!StoreMI.isSimple()) |
| 724 | return false; |
| 725 | |
| 726 | // We do a simple search for mergeable stores prior to this one. |
| 727 | // Any potential alias hazard along the way terminates the search. |
| 728 | SmallVector<GStore *> FoundStores; |
| 729 | |
| 730 | // We're looking for: |
| 731 | // 1) a (store(trunc(...))) |
| 732 | // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get |
| 733 | // the partial value stored. |
| 734 | // 3) where the offsets form either a little or big-endian sequence. |
| 735 | |
| 736 | auto &LastStore = StoreMI; |
| 737 | |
| 738 | // The single base pointer that all stores must use. |
| 739 | Register BaseReg; |
| 740 | int64_t LastOffset; |
| 741 | if (!mi_match(R: LastStore.getPointerReg(), MRI: *MRI, |
| 742 | P: m_GPtrAdd(L: m_Reg(R&: BaseReg), R: m_ICst(Cst&: LastOffset)))) { |
| 743 | BaseReg = LastStore.getPointerReg(); |
| 744 | LastOffset = 0; |
| 745 | } |
| 746 | |
| 747 | GStore *LowestIdxStore = &LastStore; |
| 748 | int64_t LowestIdxOffset = LastOffset; |
| 749 | |
| 750 | Register WideSrcVal; |
| 751 | auto LowestShiftAmt = getTruncStoreByteOffset(Store&: LastStore, SrcVal&: WideSrcVal, MRI&: *MRI); |
| 752 | if (!LowestShiftAmt) |
| 753 | return false; // Didn't match a trunc. |
| 754 | assert(WideSrcVal.isValid()); |
| 755 | |
| 756 | LLT WideStoreTy = MRI->getType(Reg: WideSrcVal); |
| 757 | // The wide type might not be a multiple of the memory type, e.g. s48 and s32. |
| 758 | if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) |
| 759 | return false; |
| 760 | const unsigned NumStoresRequired = |
| 761 | WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); |
| 762 | |
| 763 | SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); |
| 764 | OffsetMap[*LowestShiftAmt] = LastOffset; |
| 765 | FoundStores.emplace_back(Args: &LastStore); |
| 766 | |
| 767 | const int MaxInstsToCheck = 10; |
| 768 | int NumInstsChecked = 0; |
| 769 | for (auto II = ++LastStore.getReverseIterator(); |
| 770 | II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; |
| 771 | ++II) { |
| 772 | NumInstsChecked++; |
| 773 | GStore *NewStore; |
| 774 | if ((NewStore = dyn_cast<GStore>(Val: &*II))) { |
| 775 | if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) |
| 776 | break; |
| 777 | } else if (II->isLoadFoldBarrier() || II->mayLoad()) { |
| 778 | break; |
| 779 | } else { |
| 780 | continue; // This is a safe instruction we can look past. |
| 781 | } |
| 782 | |
| 783 | Register NewBaseReg; |
| 784 | int64_t MemOffset; |
| 785 | // Check we're storing to the same base + some offset. |
| 786 | if (!mi_match(R: NewStore->getPointerReg(), MRI: *MRI, |
| 787 | P: m_GPtrAdd(L: m_Reg(R&: NewBaseReg), R: m_ICst(Cst&: MemOffset)))) { |
| 788 | NewBaseReg = NewStore->getPointerReg(); |
| 789 | MemOffset = 0; |
| 790 | } |
| 791 | if (BaseReg != NewBaseReg) |
| 792 | break; |
| 793 | |
| 794 | auto ShiftByteOffset = getTruncStoreByteOffset(Store&: *NewStore, SrcVal&: WideSrcVal, MRI&: *MRI); |
| 795 | if (!ShiftByteOffset) |
| 796 | break; |
| 797 | if (MemOffset < LowestIdxOffset) { |
| 798 | LowestIdxOffset = MemOffset; |
| 799 | LowestIdxStore = NewStore; |
| 800 | } |
| 801 | |
| 802 | // Map the offset in the store and the offset in the combined value, and |
| 803 | // early return if it has been set before. |
| 804 | if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || |
| 805 | OffsetMap[*ShiftByteOffset] != INT64_MAX) |
| 806 | break; |
| 807 | OffsetMap[*ShiftByteOffset] = MemOffset; |
| 808 | |
| 809 | FoundStores.emplace_back(Args&: NewStore); |
| 810 | // Reset counter since we've found a matching inst. |
| 811 | NumInstsChecked = 0; |
| 812 | if (FoundStores.size() == NumStoresRequired) |
| 813 | break; |
| 814 | } |
| 815 | |
| 816 | if (FoundStores.size() != NumStoresRequired) { |
| 817 | if (FoundStores.size() == 1) |
| 818 | return false; |
| 819 | // We didn't find enough stores to merge into the size of the original |
| 820 | // source value, but we may be able to generate a smaller store if we |
| 821 | // truncate the source value. |
| 822 | WideStoreTy = LLT::scalar(SizeInBits: FoundStores.size() * MemTy.getScalarSizeInBits()); |
| 823 | } |
| 824 | |
| 825 | unsigned NumStoresFound = FoundStores.size(); |
| 826 | |
| 827 | const auto &DL = LastStore.getMF()->getDataLayout(); |
| 828 | auto &C = LastStore.getMF()->getFunction().getContext(); |
| 829 | // Check that a store of the wide type is both allowed and fast on the target |
| 830 | unsigned Fast = 0; |
| 831 | bool Allowed = TLI->allowsMemoryAccess( |
| 832 | Context&: C, DL, Ty: WideStoreTy, MMO: LowestIdxStore->getMMO(), Fast: &Fast); |
| 833 | if (!Allowed || !Fast) |
| 834 | return false; |
| 835 | |
| 836 | // Check if the pieces of the value are going to the expected places in memory |
| 837 | // to merge the stores. |
| 838 | unsigned NarrowBits = MemTy.getScalarSizeInBits(); |
| 839 | auto checkOffsets = [&](bool MatchLittleEndian) { |
| 840 | if (MatchLittleEndian) { |
| 841 | for (unsigned i = 0; i != NumStoresFound; ++i) |
| 842 | if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) |
| 843 | return false; |
| 844 | } else { // MatchBigEndian by reversing loop counter. |
| 845 | for (unsigned i = 0, j = NumStoresFound - 1; i != NumStoresFound; |
| 846 | ++i, --j) |
| 847 | if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) |
| 848 | return false; |
| 849 | } |
| 850 | return true; |
| 851 | }; |
| 852 | |
| 853 | // Check if the offsets line up for the native data layout of this target. |
| 854 | bool NeedBswap = false; |
| 855 | bool NeedRotate = false; |
| 856 | if (!checkOffsets(DL.isLittleEndian())) { |
| 857 | // Special-case: check if byte offsets line up for the opposite endian. |
| 858 | if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) |
| 859 | NeedBswap = true; |
| 860 | else if (NumStoresFound == 2 && checkOffsets(DL.isBigEndian())) |
| 861 | NeedRotate = true; |
| 862 | else |
| 863 | return false; |
| 864 | } |
| 865 | |
| 866 | if (NeedBswap && |
| 867 | !isLegalOrBeforeLegalizer(Query: {TargetOpcode::G_BSWAP, {WideStoreTy}}, MF&: *MF)) |
| 868 | return false; |
| 869 | if (NeedRotate && |
| 870 | !isLegalOrBeforeLegalizer( |
| 871 | Query: {TargetOpcode::G_ROTR, {WideStoreTy, WideStoreTy}}, MF&: *MF)) |
| 872 | return false; |
| 873 | |
| 874 | Builder.setInstrAndDebugLoc(StoreMI); |
| 875 | |
| 876 | if (WideStoreTy != MRI->getType(Reg: WideSrcVal)) |
| 877 | WideSrcVal = Builder.buildTrunc(Res: WideStoreTy, Op: WideSrcVal).getReg(Idx: 0); |
| 878 | |
| 879 | if (NeedBswap) { |
| 880 | WideSrcVal = Builder.buildBSwap(Dst: WideStoreTy, Src0: WideSrcVal).getReg(Idx: 0); |
| 881 | } else if (NeedRotate) { |
| 882 | assert(WideStoreTy.getSizeInBits() % 2 == 0 && |
| 883 | "Unexpected type for rotate" ); |
| 884 | auto RotAmt = |
| 885 | Builder.buildConstant(Res: WideStoreTy, Val: WideStoreTy.getSizeInBits() / 2); |
| 886 | WideSrcVal = |
| 887 | Builder.buildRotateRight(Dst: WideStoreTy, Src: WideSrcVal, Amt: RotAmt).getReg(Idx: 0); |
| 888 | } |
| 889 | |
| 890 | Builder.buildStore(Val: WideSrcVal, Addr: LowestIdxStore->getPointerReg(), |
| 891 | PtrInfo: LowestIdxStore->getMMO().getPointerInfo(), |
| 892 | Alignment: LowestIdxStore->getMMO().getAlign()); |
| 893 | |
| 894 | // Erase the old stores. |
| 895 | for (auto *ST : FoundStores) { |
| 896 | ST->eraseFromParent(); |
| 897 | DeletedStores.insert(Ptr: ST); |
| 898 | } |
| 899 | return true; |
| 900 | } |
| 901 | |
| 902 | bool LoadStoreOpt::mergeTruncStoresBlock(MachineBasicBlock &BB) { |
| 903 | bool Changed = false; |
| 904 | SmallVector<GStore *, 16> Stores; |
| 905 | SmallPtrSet<GStore *, 8> DeletedStores; |
| 906 | // Walk up the block so we can see the most eligible stores. |
| 907 | for (MachineInstr &MI : llvm::reverse(C&: BB)) |
| 908 | if (auto *StoreMI = dyn_cast<GStore>(Val: &MI)) |
| 909 | Stores.emplace_back(Args&: StoreMI); |
| 910 | |
| 911 | for (auto *StoreMI : Stores) { |
| 912 | if (DeletedStores.count(Ptr: StoreMI)) |
| 913 | continue; |
| 914 | if (mergeTruncStore(StoreMI&: *StoreMI, DeletedStores)) |
| 915 | Changed = true; |
| 916 | } |
| 917 | return Changed; |
| 918 | } |
| 919 | |
| 920 | bool LoadStoreOpt::mergeFunctionStores(MachineFunction &MF) { |
| 921 | bool Changed = false; |
| 922 | for (auto &BB : MF){ |
| 923 | Changed |= mergeBlockStores(MBB&: BB); |
| 924 | Changed |= mergeTruncStoresBlock(BB); |
| 925 | } |
| 926 | |
| 927 | // Erase all dead instructions left over by the merging. |
| 928 | if (Changed) { |
| 929 | for (auto &BB : MF) { |
| 930 | for (auto &I : make_early_inc_range(Range: reverse(C&: BB))) { |
| 931 | if (isTriviallyDead(MI: I, MRI: *MRI)) |
| 932 | I.eraseFromParent(); |
| 933 | } |
| 934 | } |
| 935 | } |
| 936 | |
| 937 | return Changed; |
| 938 | } |
| 939 | |
| 940 | void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace) { |
| 941 | // Query the legalizer info to record what store types are legal. |
| 942 | // We record this because we don't want to bother trying to merge stores into |
| 943 | // illegal ones, which would just result in being split again. |
| 944 | |
| 945 | if (LegalStoreSizes.count(Val: AddrSpace)) { |
| 946 | assert(LegalStoreSizes[AddrSpace].any()); |
| 947 | return; // Already cached sizes for this address space. |
| 948 | } |
| 949 | |
| 950 | // Need to reserve at least MaxStoreSizeToForm + 1 bits. |
| 951 | BitVector LegalSizes(MaxStoreSizeToForm * 2); |
| 952 | const auto &LI = *MF->getSubtarget().getLegalizerInfo(); |
| 953 | const auto &DL = MF->getFunction().getDataLayout(); |
| 954 | Type *IRPtrTy = PointerType::get(C&: MF->getFunction().getContext(), AddressSpace: AddrSpace); |
| 955 | LLT PtrTy = getLLTForType(Ty&: *IRPtrTy, DL); |
| 956 | // We assume that we're not going to be generating any stores wider than |
| 957 | // MaxStoreSizeToForm bits for now. |
| 958 | for (unsigned Size = 2; Size <= MaxStoreSizeToForm; Size *= 2) { |
| 959 | LLT Ty = LLT::scalar(SizeInBits: Size); |
| 960 | SmallVector<LegalityQuery::MemDesc, 2> MemDescrs( |
| 961 | {{Ty, Ty.getSizeInBits(), AtomicOrdering::NotAtomic}}); |
| 962 | SmallVector<LLT> StoreTys({Ty, PtrTy}); |
| 963 | LegalityQuery Q(TargetOpcode::G_STORE, StoreTys, MemDescrs); |
| 964 | LegalizeActionStep ActionStep = LI.getAction(Query: Q); |
| 965 | if (ActionStep.Action == LegalizeActions::Legal) |
| 966 | LegalSizes.set(Size); |
| 967 | } |
| 968 | assert(LegalSizes.any() && "Expected some store sizes to be legal!" ); |
| 969 | LegalStoreSizes[AddrSpace] = LegalSizes; |
| 970 | } |
| 971 | |
| 972 | bool LoadStoreOpt::runOnMachineFunction(MachineFunction &MF) { |
| 973 | // If the ISel pipeline failed, do not bother running that pass. |
| 974 | if (MF.getProperties().hasFailedISel()) |
| 975 | return false; |
| 976 | |
| 977 | LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF.getName() |
| 978 | << '\n'); |
| 979 | |
| 980 | init(MF); |
| 981 | bool Changed = false; |
| 982 | Changed |= mergeFunctionStores(MF); |
| 983 | |
| 984 | LegalStoreSizes.clear(); |
| 985 | return Changed; |
| 986 | } |
| 987 | |