1 | //===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// This file implements the LoadStoreOpt optimization pass. |
10 | //===----------------------------------------------------------------------===// |
11 | |
12 | #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" |
13 | #include "llvm/ADT/STLExtras.h" |
14 | #include "llvm/ADT/SmallPtrSet.h" |
15 | #include "llvm/ADT/Statistic.h" |
16 | #include "llvm/Analysis/AliasAnalysis.h" |
17 | #include "llvm/Analysis/MemoryLocation.h" |
18 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
19 | #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
20 | #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" |
21 | #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" |
22 | #include "llvm/CodeGen/GlobalISel/Utils.h" |
23 | #include "llvm/CodeGen/LowLevelTypeUtils.h" |
24 | #include "llvm/CodeGen/MachineBasicBlock.h" |
25 | #include "llvm/CodeGen/MachineFrameInfo.h" |
26 | #include "llvm/CodeGen/MachineFunction.h" |
27 | #include "llvm/CodeGen/MachineInstr.h" |
28 | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
29 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
30 | #include "llvm/CodeGen/Register.h" |
31 | #include "llvm/CodeGen/TargetLowering.h" |
32 | #include "llvm/CodeGen/TargetOpcodes.h" |
33 | #include "llvm/InitializePasses.h" |
34 | #include "llvm/Support/AtomicOrdering.h" |
35 | #include "llvm/Support/Casting.h" |
36 | #include "llvm/Support/Debug.h" |
37 | #include "llvm/Support/ErrorHandling.h" |
38 | #include <algorithm> |
39 | |
40 | #define DEBUG_TYPE "loadstore-opt" |
41 | |
42 | using namespace llvm; |
43 | using namespace ore; |
44 | using namespace MIPatternMatch; |
45 | |
46 | STATISTIC(NumStoresMerged, "Number of stores merged" ); |
47 | |
48 | const unsigned MaxStoreSizeToForm = 128; |
49 | |
50 | char LoadStoreOpt::ID = 0; |
51 | INITIALIZE_PASS_BEGIN(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations" , |
52 | false, false) |
53 | INITIALIZE_PASS_END(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations" , |
54 | false, false) |
55 | |
56 | LoadStoreOpt::LoadStoreOpt(std::function<bool(const MachineFunction &)> F) |
57 | : MachineFunctionPass(ID), DoNotRunPass(F) {} |
58 | |
59 | LoadStoreOpt::LoadStoreOpt() |
60 | : LoadStoreOpt([](const MachineFunction &) { return false; }) {} |
61 | |
62 | void LoadStoreOpt::init(MachineFunction &MF) { |
63 | this->MF = &MF; |
64 | MRI = &MF.getRegInfo(); |
65 | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
66 | TLI = MF.getSubtarget().getTargetLowering(); |
67 | LI = MF.getSubtarget().getLegalizerInfo(); |
68 | Builder.setMF(MF); |
69 | IsPreLegalizer = !MF.getProperties().hasLegalized(); |
70 | InstsToErase.clear(); |
71 | } |
72 | |
73 | void LoadStoreOpt::getAnalysisUsage(AnalysisUsage &AU) const { |
74 | AU.addRequired<AAResultsWrapperPass>(); |
75 | AU.setPreservesAll(); |
76 | getSelectionDAGFallbackAnalysisUsage(AU); |
77 | MachineFunctionPass::getAnalysisUsage(AU); |
78 | } |
79 | |
80 | BaseIndexOffset GISelAddressing::getPointerInfo(Register Ptr, |
81 | MachineRegisterInfo &MRI) { |
82 | BaseIndexOffset Info; |
83 | Register PtrAddRHS; |
84 | Register BaseReg; |
85 | if (!mi_match(R: Ptr, MRI, P: m_GPtrAdd(L: m_Reg(R&: BaseReg), R: m_Reg(R&: PtrAddRHS)))) { |
86 | Info.setBase(Ptr); |
87 | Info.setOffset(0); |
88 | return Info; |
89 | } |
90 | Info.setBase(BaseReg); |
91 | auto RHSCst = getIConstantVRegValWithLookThrough(VReg: PtrAddRHS, MRI); |
92 | if (RHSCst) |
93 | Info.setOffset(RHSCst->Value.getSExtValue()); |
94 | |
95 | // Just recognize a simple case for now. In future we'll need to match |
96 | // indexing patterns for base + index + constant. |
97 | Info.setIndex(PtrAddRHS); |
98 | return Info; |
99 | } |
100 | |
101 | bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr &MI1, |
102 | const MachineInstr &MI2, |
103 | bool &IsAlias, |
104 | MachineRegisterInfo &MRI) { |
105 | auto *LdSt1 = dyn_cast<GLoadStore>(Val: &MI1); |
106 | auto *LdSt2 = dyn_cast<GLoadStore>(Val: &MI2); |
107 | if (!LdSt1 || !LdSt2) |
108 | return false; |
109 | |
110 | BaseIndexOffset BasePtr0 = getPointerInfo(Ptr: LdSt1->getPointerReg(), MRI); |
111 | BaseIndexOffset BasePtr1 = getPointerInfo(Ptr: LdSt2->getPointerReg(), MRI); |
112 | |
113 | if (!BasePtr0.getBase().isValid() || !BasePtr1.getBase().isValid()) |
114 | return false; |
115 | |
116 | LocationSize Size1 = LdSt1->getMemSize(); |
117 | LocationSize Size2 = LdSt2->getMemSize(); |
118 | |
119 | int64_t PtrDiff; |
120 | if (BasePtr0.getBase() == BasePtr1.getBase() && BasePtr0.hasValidOffset() && |
121 | BasePtr1.hasValidOffset()) { |
122 | PtrDiff = BasePtr1.getOffset() - BasePtr0.getOffset(); |
123 | // If the size of memory access is unknown, do not use it to do analysis. |
124 | // One example of unknown size memory access is to load/store scalable |
125 | // vector objects on the stack. |
126 | // BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the |
127 | // following situations arise: |
128 | if (PtrDiff >= 0 && Size1.hasValue() && !Size1.isScalable()) { |
129 | // [----BasePtr0----] |
130 | // [---BasePtr1--] |
131 | // ========PtrDiff========> |
132 | IsAlias = !((int64_t)Size1.getValue() <= PtrDiff); |
133 | return true; |
134 | } |
135 | if (PtrDiff < 0 && Size2.hasValue() && !Size2.isScalable()) { |
136 | // [----BasePtr0----] |
137 | // [---BasePtr1--] |
138 | // =====(-PtrDiff)====> |
139 | IsAlias = !((PtrDiff + (int64_t)Size2.getValue()) <= 0); |
140 | return true; |
141 | } |
142 | return false; |
143 | } |
144 | |
145 | // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be |
146 | // able to calculate their relative offset if at least one arises |
147 | // from an alloca. However, these allocas cannot overlap and we |
148 | // can infer there is no alias. |
149 | auto *Base0Def = getDefIgnoringCopies(Reg: BasePtr0.getBase(), MRI); |
150 | auto *Base1Def = getDefIgnoringCopies(Reg: BasePtr1.getBase(), MRI); |
151 | if (!Base0Def || !Base1Def) |
152 | return false; // Couldn't tell anything. |
153 | |
154 | |
155 | if (Base0Def->getOpcode() != Base1Def->getOpcode()) |
156 | return false; |
157 | |
158 | if (Base0Def->getOpcode() == TargetOpcode::G_FRAME_INDEX) { |
159 | MachineFrameInfo &MFI = Base0Def->getMF()->getFrameInfo(); |
160 | // If the bases have the same frame index but we couldn't find a |
161 | // constant offset, (indices are different) be conservative. |
162 | if (Base0Def != Base1Def && |
163 | (!MFI.isFixedObjectIndex(ObjectIdx: Base0Def->getOperand(i: 1).getIndex()) || |
164 | !MFI.isFixedObjectIndex(ObjectIdx: Base1Def->getOperand(i: 1).getIndex()))) { |
165 | IsAlias = false; |
166 | return true; |
167 | } |
168 | } |
169 | |
170 | // This implementation is a lot more primitive than the SDAG one for now. |
171 | // FIXME: what about constant pools? |
172 | if (Base0Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) { |
173 | auto GV0 = Base0Def->getOperand(i: 1).getGlobal(); |
174 | auto GV1 = Base1Def->getOperand(i: 1).getGlobal(); |
175 | if (GV0 != GV1) { |
176 | IsAlias = false; |
177 | return true; |
178 | } |
179 | } |
180 | |
181 | // Can't tell anything about aliasing. |
182 | return false; |
183 | } |
184 | |
185 | bool GISelAddressing::instMayAlias(const MachineInstr &MI, |
186 | const MachineInstr &Other, |
187 | MachineRegisterInfo &MRI, |
188 | AliasAnalysis *AA) { |
189 | struct MemUseCharacteristics { |
190 | bool IsVolatile; |
191 | bool IsAtomic; |
192 | Register BasePtr; |
193 | int64_t Offset; |
194 | LocationSize NumBytes; |
195 | MachineMemOperand *MMO; |
196 | }; |
197 | |
198 | auto getCharacteristics = |
199 | [&](const MachineInstr *MI) -> MemUseCharacteristics { |
200 | if (const auto *LS = dyn_cast<GLoadStore>(Val: MI)) { |
201 | Register BaseReg; |
202 | int64_t Offset = 0; |
203 | // No pre/post-inc addressing modes are considered here, unlike in SDAG. |
204 | if (!mi_match(R: LS->getPointerReg(), MRI, |
205 | P: m_GPtrAdd(L: m_Reg(R&: BaseReg), R: m_ICst(Cst&: Offset)))) { |
206 | BaseReg = LS->getPointerReg(); |
207 | Offset = 0; |
208 | } |
209 | |
210 | LocationSize Size = LS->getMMO().getSize(); |
211 | return {.IsVolatile: LS->isVolatile(), .IsAtomic: LS->isAtomic(), .BasePtr: BaseReg, |
212 | .Offset: Offset /*base offset*/, .NumBytes: Size, .MMO: &LS->getMMO()}; |
213 | } |
214 | // FIXME: support recognizing lifetime instructions. |
215 | // Default. |
216 | return {.IsVolatile: false /*isvolatile*/, |
217 | /*isAtomic*/ .IsAtomic: false, |
218 | .BasePtr: Register(), |
219 | .Offset: (int64_t)0 /*offset*/, |
220 | .NumBytes: LocationSize::beforeOrAfterPointer() /*size*/, |
221 | .MMO: (MachineMemOperand *)nullptr}; |
222 | }; |
223 | MemUseCharacteristics MUC0 = getCharacteristics(&MI), |
224 | MUC1 = getCharacteristics(&Other); |
225 | |
226 | // If they are to the same address, then they must be aliases. |
227 | if (MUC0.BasePtr.isValid() && MUC0.BasePtr == MUC1.BasePtr && |
228 | MUC0.Offset == MUC1.Offset) |
229 | return true; |
230 | |
231 | // If they are both volatile then they cannot be reordered. |
232 | if (MUC0.IsVolatile && MUC1.IsVolatile) |
233 | return true; |
234 | |
235 | // Be conservative about atomics for the moment |
236 | // TODO: This is way overconservative for unordered atomics (see D66309) |
237 | if (MUC0.IsAtomic && MUC1.IsAtomic) |
238 | return true; |
239 | |
240 | // If one operation reads from invariant memory, and the other may store, they |
241 | // cannot alias. |
242 | if (MUC0.MMO && MUC1.MMO) { |
243 | if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || |
244 | (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) |
245 | return false; |
246 | } |
247 | |
248 | // If NumBytes is scalable and offset is not 0, conservatively return may |
249 | // alias |
250 | if ((MUC0.NumBytes.isScalable() && MUC0.Offset != 0) || |
251 | (MUC1.NumBytes.isScalable() && MUC1.Offset != 0)) |
252 | return true; |
253 | |
254 | const bool BothNotScalable = |
255 | !MUC0.NumBytes.isScalable() && !MUC1.NumBytes.isScalable(); |
256 | |
257 | // Try to prove that there is aliasing, or that there is no aliasing. Either |
258 | // way, we can return now. If nothing can be proved, proceed with more tests. |
259 | bool IsAlias; |
260 | if (BothNotScalable && |
261 | GISelAddressing::aliasIsKnownForLoadStore(MI1: MI, MI2: Other, IsAlias, MRI)) |
262 | return IsAlias; |
263 | |
264 | // The following all rely on MMO0 and MMO1 being valid. |
265 | if (!MUC0.MMO || !MUC1.MMO) |
266 | return true; |
267 | |
268 | // FIXME: port the alignment based alias analysis from SDAG's isAlias(). |
269 | int64_t SrcValOffset0 = MUC0.MMO->getOffset(); |
270 | int64_t SrcValOffset1 = MUC1.MMO->getOffset(); |
271 | LocationSize Size0 = MUC0.NumBytes; |
272 | LocationSize Size1 = MUC1.NumBytes; |
273 | if (AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && Size0.hasValue() && |
274 | Size1.hasValue()) { |
275 | // Use alias analysis information. |
276 | int64_t MinOffset = std::min(a: SrcValOffset0, b: SrcValOffset1); |
277 | int64_t Overlap0 = |
278 | Size0.getValue().getKnownMinValue() + SrcValOffset0 - MinOffset; |
279 | int64_t Overlap1 = |
280 | Size1.getValue().getKnownMinValue() + SrcValOffset1 - MinOffset; |
281 | LocationSize Loc0 = |
282 | Size0.isScalable() ? Size0 : LocationSize::precise(Value: Overlap0); |
283 | LocationSize Loc1 = |
284 | Size1.isScalable() ? Size1 : LocationSize::precise(Value: Overlap1); |
285 | |
286 | if (AA->isNoAlias( |
287 | LocA: MemoryLocation(MUC0.MMO->getValue(), Loc0, MUC0.MMO->getAAInfo()), |
288 | LocB: MemoryLocation(MUC1.MMO->getValue(), Loc1, MUC1.MMO->getAAInfo()))) |
289 | return false; |
290 | } |
291 | |
292 | // Otherwise we have to assume they alias. |
293 | return true; |
294 | } |
295 | |
296 | /// Returns true if the instruction creates an unavoidable hazard that |
297 | /// forces a boundary between store merge candidates. |
298 | static bool isInstHardMergeHazard(MachineInstr &MI) { |
299 | return MI.hasUnmodeledSideEffects() || MI.hasOrderedMemoryRef(); |
300 | } |
301 | |
302 | bool LoadStoreOpt::mergeStores(SmallVectorImpl<GStore *> &StoresToMerge) { |
303 | // Try to merge all the stores in the vector, splitting into separate segments |
304 | // as necessary. |
305 | assert(StoresToMerge.size() > 1 && "Expected multiple stores to merge" ); |
306 | LLT OrigTy = MRI->getType(Reg: StoresToMerge[0]->getValueReg()); |
307 | LLT PtrTy = MRI->getType(Reg: StoresToMerge[0]->getPointerReg()); |
308 | unsigned AS = PtrTy.getAddressSpace(); |
309 | // Ensure the legal store info is computed for this address space. |
310 | initializeStoreMergeTargetInfo(AddrSpace: AS); |
311 | const auto &LegalSizes = LegalStoreSizes[AS]; |
312 | |
313 | #ifndef NDEBUG |
314 | for (auto *StoreMI : StoresToMerge) |
315 | assert(MRI->getType(StoreMI->getValueReg()) == OrigTy); |
316 | #endif |
317 | |
318 | bool AnyMerged = false; |
319 | do { |
320 | unsigned NumPow2 = llvm::bit_floor(Value: StoresToMerge.size()); |
321 | unsigned MaxSizeBits = NumPow2 * OrigTy.getSizeInBits().getFixedValue(); |
322 | // Compute the biggest store we can generate to handle the number of stores. |
323 | unsigned MergeSizeBits; |
324 | for (MergeSizeBits = MaxSizeBits; MergeSizeBits > 1; MergeSizeBits /= 2) { |
325 | LLT StoreTy = LLT::scalar(SizeInBits: MergeSizeBits); |
326 | EVT StoreEVT = |
327 | getApproximateEVTForLLT(Ty: StoreTy, Ctx&: MF->getFunction().getContext()); |
328 | if (LegalSizes.size() > MergeSizeBits && LegalSizes[MergeSizeBits] && |
329 | TLI->canMergeStoresTo(AS, MemVT: StoreEVT, MF: *MF) && |
330 | (TLI->isTypeLegal(VT: StoreEVT))) |
331 | break; // We can generate a MergeSize bits store. |
332 | } |
333 | if (MergeSizeBits <= OrigTy.getSizeInBits()) |
334 | return AnyMerged; // No greater merge. |
335 | |
336 | unsigned NumStoresToMerge = MergeSizeBits / OrigTy.getSizeInBits(); |
337 | // Perform the actual merging. |
338 | SmallVector<GStore *, 8> SingleMergeStores( |
339 | StoresToMerge.begin(), StoresToMerge.begin() + NumStoresToMerge); |
340 | AnyMerged |= doSingleStoreMerge(Stores&: SingleMergeStores); |
341 | StoresToMerge.erase(CS: StoresToMerge.begin(), |
342 | CE: StoresToMerge.begin() + NumStoresToMerge); |
343 | } while (StoresToMerge.size() > 1); |
344 | return AnyMerged; |
345 | } |
346 | |
347 | bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery &Query, |
348 | MachineFunction &MF) const { |
349 | auto Action = LI->getAction(Query).Action; |
350 | // If the instruction is unsupported, it can't be legalized at all. |
351 | if (Action == LegalizeActions::Unsupported) |
352 | return false; |
353 | return IsPreLegalizer || Action == LegalizeAction::Legal; |
354 | } |
355 | |
356 | bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl<GStore *> &Stores) { |
357 | assert(Stores.size() > 1); |
358 | // We know that all the stores are consecutive and there are no aliasing |
359 | // operations in the range. However, the values that are being stored may be |
360 | // generated anywhere before each store. To ensure we have the values |
361 | // available, we materialize the wide value and new store at the place of the |
362 | // final store in the merge sequence. |
363 | GStore *FirstStore = Stores[0]; |
364 | const unsigned NumStores = Stores.size(); |
365 | LLT SmallTy = MRI->getType(Reg: FirstStore->getValueReg()); |
366 | LLT WideValueTy = |
367 | LLT::scalar(SizeInBits: NumStores * SmallTy.getSizeInBits().getFixedValue()); |
368 | |
369 | // For each store, compute pairwise merged debug locs. |
370 | DebugLoc MergedLoc = Stores.front()->getDebugLoc(); |
371 | for (auto *Store : drop_begin(RangeOrContainer&: Stores)) |
372 | MergedLoc = DebugLoc::getMergedLocation(LocA: MergedLoc, LocB: Store->getDebugLoc()); |
373 | |
374 | Builder.setInstr(*Stores.back()); |
375 | Builder.setDebugLoc(MergedLoc); |
376 | |
377 | // If all of the store values are constants, then create a wide constant |
378 | // directly. Otherwise, we need to generate some instructions to merge the |
379 | // existing values together into a wider type. |
380 | SmallVector<APInt, 8> ConstantVals; |
381 | for (auto *Store : Stores) { |
382 | auto MaybeCst = |
383 | getIConstantVRegValWithLookThrough(VReg: Store->getValueReg(), MRI: *MRI); |
384 | if (!MaybeCst) { |
385 | ConstantVals.clear(); |
386 | break; |
387 | } |
388 | ConstantVals.emplace_back(Args&: MaybeCst->Value); |
389 | } |
390 | |
391 | Register WideReg; |
392 | auto *WideMMO = |
393 | MF->getMachineMemOperand(MMO: &FirstStore->getMMO(), Offset: 0, Ty: WideValueTy); |
394 | if (ConstantVals.empty()) { |
395 | // Mimic the SDAG behaviour here and don't try to do anything for unknown |
396 | // values. In future, we should also support the cases of loads and |
397 | // extracted vector elements. |
398 | return false; |
399 | } |
400 | |
401 | assert(ConstantVals.size() == NumStores); |
402 | // Check if our wide constant is legal. |
403 | if (!isLegalOrBeforeLegalizer(Query: {TargetOpcode::G_CONSTANT, {WideValueTy}}, MF&: *MF)) |
404 | return false; |
405 | APInt WideConst(WideValueTy.getSizeInBits(), 0); |
406 | for (unsigned Idx = 0; Idx < ConstantVals.size(); ++Idx) { |
407 | // Insert the smaller constant into the corresponding position in the |
408 | // wider one. |
409 | WideConst.insertBits(SubBits: ConstantVals[Idx], bitPosition: Idx * SmallTy.getSizeInBits()); |
410 | } |
411 | WideReg = Builder.buildConstant(Res: WideValueTy, Val: WideConst).getReg(Idx: 0); |
412 | auto NewStore = |
413 | Builder.buildStore(Val: WideReg, Addr: FirstStore->getPointerReg(), MMO&: *WideMMO); |
414 | (void) NewStore; |
415 | LLVM_DEBUG(dbgs() << "Merged " << Stores.size() |
416 | << " stores into merged store: " << *NewStore); |
417 | LLVM_DEBUG(for (auto *MI : Stores) dbgs() << " " << *MI;); |
418 | NumStoresMerged += Stores.size(); |
419 | |
420 | MachineOptimizationRemarkEmitter MORE(*MF, nullptr); |
421 | MORE.emit(RemarkBuilder: [&]() { |
422 | MachineOptimizationRemark R(DEBUG_TYPE, "MergedStore" , |
423 | FirstStore->getDebugLoc(), |
424 | FirstStore->getParent()); |
425 | R << "Merged " << NV("NumMerged" , Stores.size()) << " stores of " |
426 | << NV("OrigWidth" , SmallTy.getSizeInBytes()) |
427 | << " bytes into a single store of " |
428 | << NV("NewWidth" , WideValueTy.getSizeInBytes()) << " bytes" ; |
429 | return R; |
430 | }); |
431 | |
432 | InstsToErase.insert_range(R&: Stores); |
433 | return true; |
434 | } |
435 | |
436 | bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate &C) { |
437 | if (C.Stores.size() < 2) { |
438 | C.reset(); |
439 | return false; |
440 | } |
441 | |
442 | LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C.Stores.size() |
443 | << " stores, starting with " << *C.Stores[0]); |
444 | // We know that the stores in the candidate are adjacent. |
445 | // Now we need to check if any potential aliasing instructions recorded |
446 | // during the search alias with load/stores added to the candidate after. |
447 | // For example, if we have the candidate: |
448 | // C.Stores = [ST1, ST2, ST3, ST4] |
449 | // and after seeing ST2 we saw a load LD1, which did not alias with ST1 or |
450 | // ST2, then we would have recorded it into the PotentialAliases structure |
451 | // with the associated index value of "1". Then we see ST3 and ST4 and add |
452 | // them to the candidate group. We know that LD1 does not alias with ST1 or |
453 | // ST2, since we already did that check. However we don't yet know if it |
454 | // may alias ST3 and ST4, so we perform those checks now. |
455 | SmallVector<GStore *> StoresToMerge; |
456 | |
457 | auto DoesStoreAliasWithPotential = [&](unsigned Idx, GStore &CheckStore) { |
458 | for (auto AliasInfo : reverse(C&: C.PotentialAliases)) { |
459 | MachineInstr *PotentialAliasOp = AliasInfo.first; |
460 | unsigned PreCheckedIdx = AliasInfo.second; |
461 | if (Idx < PreCheckedIdx) { |
462 | // Once our store index is lower than the index associated with the |
463 | // potential alias, we know that we've already checked for this alias |
464 | // and all of the earlier potential aliases too. |
465 | return false; |
466 | } |
467 | // Need to check this alias. |
468 | if (GISelAddressing::instMayAlias(MI: CheckStore, Other: *PotentialAliasOp, MRI&: *MRI, |
469 | AA)) { |
470 | LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp |
471 | << " detected\n" ); |
472 | return true; |
473 | } |
474 | } |
475 | return false; |
476 | }; |
477 | // Start from the last store in the group, and check if it aliases with any |
478 | // of the potential aliasing operations in the list. |
479 | for (int StoreIdx = C.Stores.size() - 1; StoreIdx >= 0; --StoreIdx) { |
480 | auto *CheckStore = C.Stores[StoreIdx]; |
481 | if (DoesStoreAliasWithPotential(StoreIdx, *CheckStore)) |
482 | continue; |
483 | StoresToMerge.emplace_back(Args&: CheckStore); |
484 | } |
485 | |
486 | LLVM_DEBUG(dbgs() << StoresToMerge.size() |
487 | << " stores remaining after alias checks. Merging...\n" ); |
488 | |
489 | // Now we've checked for aliasing hazards, merge any stores left. |
490 | C.reset(); |
491 | if (StoresToMerge.size() < 2) |
492 | return false; |
493 | return mergeStores(StoresToMerge); |
494 | } |
495 | |
496 | bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr &MI, |
497 | StoreMergeCandidate &C) { |
498 | if (C.Stores.empty()) |
499 | return false; |
500 | return llvm::any_of(Range&: C.Stores, P: [&](MachineInstr *OtherMI) { |
501 | return instMayAlias(MI, Other: *OtherMI, MRI&: *MRI, AA); |
502 | }); |
503 | } |
504 | |
505 | void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr &MI) { |
506 | PotentialAliases.emplace_back(Args: std::make_pair(x: &MI, y: Stores.size() - 1)); |
507 | } |
508 | |
509 | bool LoadStoreOpt::addStoreToCandidate(GStore &StoreMI, |
510 | StoreMergeCandidate &C) { |
511 | // Check if the given store writes to an adjacent address, and other |
512 | // requirements. |
513 | LLT ValueTy = MRI->getType(Reg: StoreMI.getValueReg()); |
514 | LLT PtrTy = MRI->getType(Reg: StoreMI.getPointerReg()); |
515 | |
516 | // Only handle scalars. |
517 | if (!ValueTy.isScalar()) |
518 | return false; |
519 | |
520 | // Don't allow truncating stores for now. |
521 | if (StoreMI.getMemSizeInBits() != ValueTy.getSizeInBits()) |
522 | return false; |
523 | |
524 | // Avoid adding volatile or ordered stores to the candidate. We already have a |
525 | // check for this in instMayAlias() but that only get's called later between |
526 | // potential aliasing hazards. |
527 | if (!StoreMI.isSimple()) |
528 | return false; |
529 | |
530 | Register StoreAddr = StoreMI.getPointerReg(); |
531 | auto BIO = getPointerInfo(Ptr: StoreAddr, MRI&: *MRI); |
532 | Register StoreBase = BIO.getBase(); |
533 | if (C.Stores.empty()) { |
534 | C.BasePtr = StoreBase; |
535 | if (!BIO.hasValidOffset()) { |
536 | C.CurrentLowestOffset = 0; |
537 | } else { |
538 | C.CurrentLowestOffset = BIO.getOffset(); |
539 | } |
540 | // This is the first store of the candidate. |
541 | // If the offset can't possibly allow for a lower addressed store with the |
542 | // same base, don't bother adding it. |
543 | if (BIO.hasValidOffset() && |
544 | BIO.getOffset() < static_cast<int64_t>(ValueTy.getSizeInBytes())) |
545 | return false; |
546 | C.Stores.emplace_back(Args: &StoreMI); |
547 | LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: " |
548 | << StoreMI); |
549 | return true; |
550 | } |
551 | |
552 | // Check the store is the same size as the existing ones in the candidate. |
553 | if (MRI->getType(Reg: C.Stores[0]->getValueReg()).getSizeInBits() != |
554 | ValueTy.getSizeInBits()) |
555 | return false; |
556 | |
557 | if (MRI->getType(Reg: C.Stores[0]->getPointerReg()).getAddressSpace() != |
558 | PtrTy.getAddressSpace()) |
559 | return false; |
560 | |
561 | // There are other stores in the candidate. Check that the store address |
562 | // writes to the next lowest adjacent address. |
563 | if (C.BasePtr != StoreBase) |
564 | return false; |
565 | // If we don't have a valid offset, we can't guarantee to be an adjacent |
566 | // offset. |
567 | if (!BIO.hasValidOffset()) |
568 | return false; |
569 | if ((C.CurrentLowestOffset - |
570 | static_cast<int64_t>(ValueTy.getSizeInBytes())) != BIO.getOffset()) |
571 | return false; |
572 | |
573 | // This writes to an adjacent address. Allow it. |
574 | C.Stores.emplace_back(Args: &StoreMI); |
575 | C.CurrentLowestOffset = C.CurrentLowestOffset - ValueTy.getSizeInBytes(); |
576 | LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI); |
577 | return true; |
578 | } |
579 | |
580 | bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock &MBB) { |
581 | bool Changed = false; |
582 | // Walk through the block bottom-up, looking for merging candidates. |
583 | StoreMergeCandidate Candidate; |
584 | for (MachineInstr &MI : llvm::reverse(C&: MBB)) { |
585 | if (InstsToErase.contains(Ptr: &MI)) |
586 | continue; |
587 | |
588 | if (auto *StoreMI = dyn_cast<GStore>(Val: &MI)) { |
589 | // We have a G_STORE. Add it to the candidate if it writes to an adjacent |
590 | // address. |
591 | if (!addStoreToCandidate(StoreMI&: *StoreMI, C&: Candidate)) { |
592 | // Store wasn't eligible to be added. May need to record it as a |
593 | // potential alias. |
594 | if (operationAliasesWithCandidate(MI&: *StoreMI, C&: Candidate)) { |
595 | Changed |= processMergeCandidate(C&: Candidate); |
596 | continue; |
597 | } |
598 | Candidate.addPotentialAlias(MI&: *StoreMI); |
599 | } |
600 | continue; |
601 | } |
602 | |
603 | // If we don't have any stores yet, this instruction can't pose a problem. |
604 | if (Candidate.Stores.empty()) |
605 | continue; |
606 | |
607 | // We're dealing with some other kind of instruction. |
608 | if (isInstHardMergeHazard(MI)) { |
609 | Changed |= processMergeCandidate(C&: Candidate); |
610 | Candidate.Stores.clear(); |
611 | continue; |
612 | } |
613 | |
614 | if (!MI.mayLoadOrStore()) |
615 | continue; |
616 | |
617 | if (operationAliasesWithCandidate(MI, C&: Candidate)) { |
618 | // We have a potential alias, so process the current candidate if we can |
619 | // and then continue looking for a new candidate. |
620 | Changed |= processMergeCandidate(C&: Candidate); |
621 | continue; |
622 | } |
623 | |
624 | // Record this instruction as a potential alias for future stores that are |
625 | // added to the candidate. |
626 | Candidate.addPotentialAlias(MI); |
627 | } |
628 | |
629 | // Process any candidate left after finishing searching the entire block. |
630 | Changed |= processMergeCandidate(C&: Candidate); |
631 | |
632 | // Erase instructions now that we're no longer iterating over the block. |
633 | for (auto *MI : InstsToErase) |
634 | MI->eraseFromParent(); |
635 | InstsToErase.clear(); |
636 | return Changed; |
637 | } |
638 | |
639 | /// Check if the store \p Store is a truncstore that can be merged. That is, |
640 | /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty |
641 | /// Register then it does not need to match and SrcVal is set to the source |
642 | /// value found. |
643 | /// On match, returns the start byte offset of the \p SrcVal that is being |
644 | /// stored. |
645 | static std::optional<int64_t> |
646 | getTruncStoreByteOffset(GStore &Store, Register &SrcVal, |
647 | MachineRegisterInfo &MRI) { |
648 | Register TruncVal; |
649 | if (!mi_match(R: Store.getValueReg(), MRI, P: m_GTrunc(Src: m_Reg(R&: TruncVal)))) |
650 | return std::nullopt; |
651 | |
652 | // The shift amount must be a constant multiple of the narrow type. |
653 | // It is translated to the offset address in the wide source value "y". |
654 | // |
655 | // x = G_LSHR y, ShiftAmtC |
656 | // s8 z = G_TRUNC x |
657 | // store z, ... |
658 | Register FoundSrcVal; |
659 | int64_t ShiftAmt; |
660 | if (!mi_match(R: TruncVal, MRI, |
661 | P: m_any_of(preds: m_GLShr(L: m_Reg(R&: FoundSrcVal), R: m_ICst(Cst&: ShiftAmt)), |
662 | preds: m_GAShr(L: m_Reg(R&: FoundSrcVal), R: m_ICst(Cst&: ShiftAmt))))) { |
663 | if (!SrcVal.isValid() || TruncVal == SrcVal) { |
664 | if (!SrcVal.isValid()) |
665 | SrcVal = TruncVal; |
666 | return 0; // If it's the lowest index store. |
667 | } |
668 | return std::nullopt; |
669 | } |
670 | |
671 | unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); |
672 | if (ShiftAmt % NarrowBits != 0) |
673 | return std::nullopt; |
674 | const unsigned Offset = ShiftAmt / NarrowBits; |
675 | |
676 | if (SrcVal.isValid() && FoundSrcVal != SrcVal) |
677 | return std::nullopt; |
678 | |
679 | if (!SrcVal.isValid()) |
680 | SrcVal = FoundSrcVal; |
681 | else if (MRI.getType(Reg: SrcVal) != MRI.getType(Reg: FoundSrcVal)) |
682 | return std::nullopt; |
683 | return Offset; |
684 | } |
685 | |
686 | /// Match a pattern where a wide type scalar value is stored by several narrow |
687 | /// stores. Fold it into a single store or a BSWAP and a store if the targets |
688 | /// supports it. |
689 | /// |
690 | /// Assuming little endian target: |
691 | /// i8 *p = ... |
692 | /// i32 val = ... |
693 | /// p[0] = (val >> 0) & 0xFF; |
694 | /// p[1] = (val >> 8) & 0xFF; |
695 | /// p[2] = (val >> 16) & 0xFF; |
696 | /// p[3] = (val >> 24) & 0xFF; |
697 | /// => |
698 | /// *((i32)p) = val; |
699 | /// |
700 | /// i8 *p = ... |
701 | /// i32 val = ... |
702 | /// p[0] = (val >> 24) & 0xFF; |
703 | /// p[1] = (val >> 16) & 0xFF; |
704 | /// p[2] = (val >> 8) & 0xFF; |
705 | /// p[3] = (val >> 0) & 0xFF; |
706 | /// => |
707 | /// *((i32)p) = BSWAP(val); |
708 | bool LoadStoreOpt::mergeTruncStore(GStore &StoreMI, |
709 | SmallPtrSetImpl<GStore *> &DeletedStores) { |
710 | LLT MemTy = StoreMI.getMMO().getMemoryType(); |
711 | |
712 | // We only handle merging simple stores of 1-4 bytes. |
713 | if (!MemTy.isScalar()) |
714 | return false; |
715 | switch (MemTy.getSizeInBits()) { |
716 | case 8: |
717 | case 16: |
718 | case 32: |
719 | break; |
720 | default: |
721 | return false; |
722 | } |
723 | if (!StoreMI.isSimple()) |
724 | return false; |
725 | |
726 | // We do a simple search for mergeable stores prior to this one. |
727 | // Any potential alias hazard along the way terminates the search. |
728 | SmallVector<GStore *> FoundStores; |
729 | |
730 | // We're looking for: |
731 | // 1) a (store(trunc(...))) |
732 | // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get |
733 | // the partial value stored. |
734 | // 3) where the offsets form either a little or big-endian sequence. |
735 | |
736 | auto &LastStore = StoreMI; |
737 | |
738 | // The single base pointer that all stores must use. |
739 | Register BaseReg; |
740 | int64_t LastOffset; |
741 | if (!mi_match(R: LastStore.getPointerReg(), MRI: *MRI, |
742 | P: m_GPtrAdd(L: m_Reg(R&: BaseReg), R: m_ICst(Cst&: LastOffset)))) { |
743 | BaseReg = LastStore.getPointerReg(); |
744 | LastOffset = 0; |
745 | } |
746 | |
747 | GStore *LowestIdxStore = &LastStore; |
748 | int64_t LowestIdxOffset = LastOffset; |
749 | |
750 | Register WideSrcVal; |
751 | auto LowestShiftAmt = getTruncStoreByteOffset(Store&: LastStore, SrcVal&: WideSrcVal, MRI&: *MRI); |
752 | if (!LowestShiftAmt) |
753 | return false; // Didn't match a trunc. |
754 | assert(WideSrcVal.isValid()); |
755 | |
756 | LLT WideStoreTy = MRI->getType(Reg: WideSrcVal); |
757 | // The wide type might not be a multiple of the memory type, e.g. s48 and s32. |
758 | if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) |
759 | return false; |
760 | const unsigned NumStoresRequired = |
761 | WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); |
762 | |
763 | SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); |
764 | OffsetMap[*LowestShiftAmt] = LastOffset; |
765 | FoundStores.emplace_back(Args: &LastStore); |
766 | |
767 | const int MaxInstsToCheck = 10; |
768 | int NumInstsChecked = 0; |
769 | for (auto II = ++LastStore.getReverseIterator(); |
770 | II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; |
771 | ++II) { |
772 | NumInstsChecked++; |
773 | GStore *NewStore; |
774 | if ((NewStore = dyn_cast<GStore>(Val: &*II))) { |
775 | if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) |
776 | break; |
777 | } else if (II->isLoadFoldBarrier() || II->mayLoad()) { |
778 | break; |
779 | } else { |
780 | continue; // This is a safe instruction we can look past. |
781 | } |
782 | |
783 | Register NewBaseReg; |
784 | int64_t MemOffset; |
785 | // Check we're storing to the same base + some offset. |
786 | if (!mi_match(R: NewStore->getPointerReg(), MRI: *MRI, |
787 | P: m_GPtrAdd(L: m_Reg(R&: NewBaseReg), R: m_ICst(Cst&: MemOffset)))) { |
788 | NewBaseReg = NewStore->getPointerReg(); |
789 | MemOffset = 0; |
790 | } |
791 | if (BaseReg != NewBaseReg) |
792 | break; |
793 | |
794 | auto ShiftByteOffset = getTruncStoreByteOffset(Store&: *NewStore, SrcVal&: WideSrcVal, MRI&: *MRI); |
795 | if (!ShiftByteOffset) |
796 | break; |
797 | if (MemOffset < LowestIdxOffset) { |
798 | LowestIdxOffset = MemOffset; |
799 | LowestIdxStore = NewStore; |
800 | } |
801 | |
802 | // Map the offset in the store and the offset in the combined value, and |
803 | // early return if it has been set before. |
804 | if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || |
805 | OffsetMap[*ShiftByteOffset] != INT64_MAX) |
806 | break; |
807 | OffsetMap[*ShiftByteOffset] = MemOffset; |
808 | |
809 | FoundStores.emplace_back(Args&: NewStore); |
810 | // Reset counter since we've found a matching inst. |
811 | NumInstsChecked = 0; |
812 | if (FoundStores.size() == NumStoresRequired) |
813 | break; |
814 | } |
815 | |
816 | if (FoundStores.size() != NumStoresRequired) { |
817 | if (FoundStores.size() == 1) |
818 | return false; |
819 | // We didn't find enough stores to merge into the size of the original |
820 | // source value, but we may be able to generate a smaller store if we |
821 | // truncate the source value. |
822 | WideStoreTy = LLT::scalar(SizeInBits: FoundStores.size() * MemTy.getScalarSizeInBits()); |
823 | } |
824 | |
825 | unsigned NumStoresFound = FoundStores.size(); |
826 | |
827 | const auto &DL = LastStore.getMF()->getDataLayout(); |
828 | auto &C = LastStore.getMF()->getFunction().getContext(); |
829 | // Check that a store of the wide type is both allowed and fast on the target |
830 | unsigned Fast = 0; |
831 | bool Allowed = TLI->allowsMemoryAccess( |
832 | Context&: C, DL, Ty: WideStoreTy, MMO: LowestIdxStore->getMMO(), Fast: &Fast); |
833 | if (!Allowed || !Fast) |
834 | return false; |
835 | |
836 | // Check if the pieces of the value are going to the expected places in memory |
837 | // to merge the stores. |
838 | unsigned NarrowBits = MemTy.getScalarSizeInBits(); |
839 | auto checkOffsets = [&](bool MatchLittleEndian) { |
840 | if (MatchLittleEndian) { |
841 | for (unsigned i = 0; i != NumStoresFound; ++i) |
842 | if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) |
843 | return false; |
844 | } else { // MatchBigEndian by reversing loop counter. |
845 | for (unsigned i = 0, j = NumStoresFound - 1; i != NumStoresFound; |
846 | ++i, --j) |
847 | if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) |
848 | return false; |
849 | } |
850 | return true; |
851 | }; |
852 | |
853 | // Check if the offsets line up for the native data layout of this target. |
854 | bool NeedBswap = false; |
855 | bool NeedRotate = false; |
856 | if (!checkOffsets(DL.isLittleEndian())) { |
857 | // Special-case: check if byte offsets line up for the opposite endian. |
858 | if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) |
859 | NeedBswap = true; |
860 | else if (NumStoresFound == 2 && checkOffsets(DL.isBigEndian())) |
861 | NeedRotate = true; |
862 | else |
863 | return false; |
864 | } |
865 | |
866 | if (NeedBswap && |
867 | !isLegalOrBeforeLegalizer(Query: {TargetOpcode::G_BSWAP, {WideStoreTy}}, MF&: *MF)) |
868 | return false; |
869 | if (NeedRotate && |
870 | !isLegalOrBeforeLegalizer( |
871 | Query: {TargetOpcode::G_ROTR, {WideStoreTy, WideStoreTy}}, MF&: *MF)) |
872 | return false; |
873 | |
874 | Builder.setInstrAndDebugLoc(StoreMI); |
875 | |
876 | if (WideStoreTy != MRI->getType(Reg: WideSrcVal)) |
877 | WideSrcVal = Builder.buildTrunc(Res: WideStoreTy, Op: WideSrcVal).getReg(Idx: 0); |
878 | |
879 | if (NeedBswap) { |
880 | WideSrcVal = Builder.buildBSwap(Dst: WideStoreTy, Src0: WideSrcVal).getReg(Idx: 0); |
881 | } else if (NeedRotate) { |
882 | assert(WideStoreTy.getSizeInBits() % 2 == 0 && |
883 | "Unexpected type for rotate" ); |
884 | auto RotAmt = |
885 | Builder.buildConstant(Res: WideStoreTy, Val: WideStoreTy.getSizeInBits() / 2); |
886 | WideSrcVal = |
887 | Builder.buildRotateRight(Dst: WideStoreTy, Src: WideSrcVal, Amt: RotAmt).getReg(Idx: 0); |
888 | } |
889 | |
890 | Builder.buildStore(Val: WideSrcVal, Addr: LowestIdxStore->getPointerReg(), |
891 | PtrInfo: LowestIdxStore->getMMO().getPointerInfo(), |
892 | Alignment: LowestIdxStore->getMMO().getAlign()); |
893 | |
894 | // Erase the old stores. |
895 | for (auto *ST : FoundStores) { |
896 | ST->eraseFromParent(); |
897 | DeletedStores.insert(Ptr: ST); |
898 | } |
899 | return true; |
900 | } |
901 | |
902 | bool LoadStoreOpt::mergeTruncStoresBlock(MachineBasicBlock &BB) { |
903 | bool Changed = false; |
904 | SmallVector<GStore *, 16> Stores; |
905 | SmallPtrSet<GStore *, 8> DeletedStores; |
906 | // Walk up the block so we can see the most eligible stores. |
907 | for (MachineInstr &MI : llvm::reverse(C&: BB)) |
908 | if (auto *StoreMI = dyn_cast<GStore>(Val: &MI)) |
909 | Stores.emplace_back(Args&: StoreMI); |
910 | |
911 | for (auto *StoreMI : Stores) { |
912 | if (DeletedStores.count(Ptr: StoreMI)) |
913 | continue; |
914 | if (mergeTruncStore(StoreMI&: *StoreMI, DeletedStores)) |
915 | Changed = true; |
916 | } |
917 | return Changed; |
918 | } |
919 | |
920 | bool LoadStoreOpt::mergeFunctionStores(MachineFunction &MF) { |
921 | bool Changed = false; |
922 | for (auto &BB : MF){ |
923 | Changed |= mergeBlockStores(MBB&: BB); |
924 | Changed |= mergeTruncStoresBlock(BB); |
925 | } |
926 | |
927 | // Erase all dead instructions left over by the merging. |
928 | if (Changed) { |
929 | for (auto &BB : MF) { |
930 | for (auto &I : make_early_inc_range(Range: reverse(C&: BB))) { |
931 | if (isTriviallyDead(MI: I, MRI: *MRI)) |
932 | I.eraseFromParent(); |
933 | } |
934 | } |
935 | } |
936 | |
937 | return Changed; |
938 | } |
939 | |
940 | void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace) { |
941 | // Query the legalizer info to record what store types are legal. |
942 | // We record this because we don't want to bother trying to merge stores into |
943 | // illegal ones, which would just result in being split again. |
944 | |
945 | if (LegalStoreSizes.count(Val: AddrSpace)) { |
946 | assert(LegalStoreSizes[AddrSpace].any()); |
947 | return; // Already cached sizes for this address space. |
948 | } |
949 | |
950 | // Need to reserve at least MaxStoreSizeToForm + 1 bits. |
951 | BitVector LegalSizes(MaxStoreSizeToForm * 2); |
952 | const auto &LI = *MF->getSubtarget().getLegalizerInfo(); |
953 | const auto &DL = MF->getFunction().getDataLayout(); |
954 | Type *IRPtrTy = PointerType::get(C&: MF->getFunction().getContext(), AddressSpace: AddrSpace); |
955 | LLT PtrTy = getLLTForType(Ty&: *IRPtrTy, DL); |
956 | // We assume that we're not going to be generating any stores wider than |
957 | // MaxStoreSizeToForm bits for now. |
958 | for (unsigned Size = 2; Size <= MaxStoreSizeToForm; Size *= 2) { |
959 | LLT Ty = LLT::scalar(SizeInBits: Size); |
960 | SmallVector<LegalityQuery::MemDesc, 2> MemDescrs( |
961 | {{Ty, Ty.getSizeInBits(), AtomicOrdering::NotAtomic}}); |
962 | SmallVector<LLT> StoreTys({Ty, PtrTy}); |
963 | LegalityQuery Q(TargetOpcode::G_STORE, StoreTys, MemDescrs); |
964 | LegalizeActionStep ActionStep = LI.getAction(Query: Q); |
965 | if (ActionStep.Action == LegalizeActions::Legal) |
966 | LegalSizes.set(Size); |
967 | } |
968 | assert(LegalSizes.any() && "Expected some store sizes to be legal!" ); |
969 | LegalStoreSizes[AddrSpace] = LegalSizes; |
970 | } |
971 | |
972 | bool LoadStoreOpt::runOnMachineFunction(MachineFunction &MF) { |
973 | // If the ISel pipeline failed, do not bother running that pass. |
974 | if (MF.getProperties().hasFailedISel()) |
975 | return false; |
976 | |
977 | LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF.getName() |
978 | << '\n'); |
979 | |
980 | init(MF); |
981 | bool Changed = false; |
982 | Changed |= mergeFunctionStores(MF); |
983 | |
984 | LegalStoreSizes.clear(); |
985 | return Changed; |
986 | } |
987 | |