| 1 | //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // The inline spiller modifies the machine function directly instead of |
| 10 | // inserting spills and restores in VirtRegMap. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "AllocationOrder.h" |
| 15 | #include "SplitKit.h" |
| 16 | #include "llvm/ADT/ArrayRef.h" |
| 17 | #include "llvm/ADT/DenseMap.h" |
| 18 | #include "llvm/ADT/MapVector.h" |
| 19 | #include "llvm/ADT/STLExtras.h" |
| 20 | #include "llvm/ADT/SetVector.h" |
| 21 | #include "llvm/ADT/SmallPtrSet.h" |
| 22 | #include "llvm/ADT/SmallVector.h" |
| 23 | #include "llvm/ADT/Statistic.h" |
| 24 | #include "llvm/CodeGen/LiveInterval.h" |
| 25 | #include "llvm/CodeGen/LiveIntervals.h" |
| 26 | #include "llvm/CodeGen/LiveRangeEdit.h" |
| 27 | #include "llvm/CodeGen/LiveRegMatrix.h" |
| 28 | #include "llvm/CodeGen/LiveStacks.h" |
| 29 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 30 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| 31 | #include "llvm/CodeGen/MachineDominators.h" |
| 32 | #include "llvm/CodeGen/MachineFunction.h" |
| 33 | #include "llvm/CodeGen/MachineInstr.h" |
| 34 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 35 | #include "llvm/CodeGen/MachineInstrBundle.h" |
| 36 | #include "llvm/CodeGen/MachineOperand.h" |
| 37 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 38 | #include "llvm/CodeGen/SlotIndexes.h" |
| 39 | #include "llvm/CodeGen/Spiller.h" |
| 40 | #include "llvm/CodeGen/StackMaps.h" |
| 41 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 42 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 43 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 44 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 45 | #include "llvm/CodeGen/VirtRegMap.h" |
| 46 | #include "llvm/Config/llvm-config.h" |
| 47 | #include "llvm/Support/BlockFrequency.h" |
| 48 | #include "llvm/Support/BranchProbability.h" |
| 49 | #include "llvm/Support/CommandLine.h" |
| 50 | #include "llvm/Support/Compiler.h" |
| 51 | #include "llvm/Support/Debug.h" |
| 52 | #include "llvm/Support/ErrorHandling.h" |
| 53 | #include "llvm/Support/raw_ostream.h" |
| 54 | #include <cassert> |
| 55 | #include <iterator> |
| 56 | #include <tuple> |
| 57 | #include <utility> |
| 58 | |
| 59 | using namespace llvm; |
| 60 | |
| 61 | #define DEBUG_TYPE "regalloc" |
| 62 | |
| 63 | STATISTIC(NumSpilledRanges, "Number of spilled live ranges" ); |
| 64 | STATISTIC(NumSnippets, "Number of spilled snippets" ); |
| 65 | STATISTIC(NumSpills, "Number of spills inserted" ); |
| 66 | STATISTIC(NumSpillsRemoved, "Number of spills removed" ); |
| 67 | STATISTIC(NumReloads, "Number of reloads inserted" ); |
| 68 | STATISTIC(NumReloadsRemoved, "Number of reloads removed" ); |
| 69 | STATISTIC(NumFolded, "Number of folded stack accesses" ); |
| 70 | STATISTIC(NumFoldedLoads, "Number of folded loads" ); |
| 71 | STATISTIC(NumRemats, "Number of rematerialized defs for spilling" ); |
| 72 | |
| 73 | static cl::opt<bool> |
| 74 | RestrictStatepointRemat("restrict-statepoint-remat" , |
| 75 | cl::init(Val: false), cl::Hidden, |
| 76 | cl::desc("Restrict remat for statepoint operands" )); |
| 77 | |
| 78 | namespace { |
| 79 | class HoistSpillHelper : private LiveRangeEdit::Delegate { |
| 80 | MachineFunction &MF; |
| 81 | LiveIntervals &LIS; |
| 82 | LiveStacks &LSS; |
| 83 | MachineDominatorTree &MDT; |
| 84 | VirtRegMap &VRM; |
| 85 | MachineRegisterInfo &MRI; |
| 86 | const TargetInstrInfo &TII; |
| 87 | const TargetRegisterInfo &TRI; |
| 88 | const MachineBlockFrequencyInfo &MBFI; |
| 89 | |
| 90 | InsertPointAnalysis IPA; |
| 91 | |
| 92 | // Map from StackSlot to the LiveInterval of the original register. |
| 93 | // Note the LiveInterval of the original register may have been deleted |
| 94 | // after it is spilled. We keep a copy here to track the range where |
| 95 | // spills can be moved. |
| 96 | DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; |
| 97 | |
| 98 | // Map from pair of (StackSlot and Original VNI) to a set of spills which |
| 99 | // have the same stackslot and have equal values defined by Original VNI. |
| 100 | // These spills are mergeable and are hoist candidates. |
| 101 | using MergeableSpillsMap = |
| 102 | MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; |
| 103 | MergeableSpillsMap MergeableSpills; |
| 104 | |
| 105 | /// This is the map from original register to a set containing all its |
| 106 | /// siblings. To hoist a spill to another BB, we need to find out a live |
| 107 | /// sibling there and use it as the source of the new spill. |
| 108 | DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap; |
| 109 | |
| 110 | bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, |
| 111 | MachineBasicBlock &BB, Register &LiveReg); |
| 112 | |
| 113 | void rmRedundantSpills( |
| 114 | SmallPtrSet<MachineInstr *, 16> &Spills, |
| 115 | SmallVectorImpl<MachineInstr *> &SpillsToRm, |
| 116 | DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); |
| 117 | |
| 118 | void getVisitOrders( |
| 119 | MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, |
| 120 | SmallVectorImpl<MachineDomTreeNode *> &Orders, |
| 121 | SmallVectorImpl<MachineInstr *> &SpillsToRm, |
| 122 | DenseMap<MachineDomTreeNode *, Register> &SpillsToKeep, |
| 123 | DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); |
| 124 | |
| 125 | void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, |
| 126 | SmallPtrSet<MachineInstr *, 16> &Spills, |
| 127 | SmallVectorImpl<MachineInstr *> &SpillsToRm, |
| 128 | DenseMap<MachineBasicBlock *, Register> &SpillsToIns); |
| 129 | |
| 130 | public: |
| 131 | HoistSpillHelper(const Spiller::RequiredAnalyses &Analyses, |
| 132 | MachineFunction &mf, VirtRegMap &vrm) |
| 133 | : MF(mf), LIS(Analyses.LIS), LSS(Analyses.LSS), MDT(Analyses.MDT), |
| 134 | VRM(vrm), MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), |
| 135 | TRI(*mf.getSubtarget().getRegisterInfo()), MBFI(Analyses.MBFI), |
| 136 | IPA(LIS, mf.getNumBlockIDs()) {} |
| 137 | |
| 138 | void addToMergeableSpills(MachineInstr &Spill, int StackSlot, |
| 139 | Register Original); |
| 140 | bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); |
| 141 | void hoistAllSpills(); |
| 142 | void LRE_DidCloneVirtReg(Register, Register) override; |
| 143 | }; |
| 144 | |
| 145 | class InlineSpiller : public Spiller { |
| 146 | MachineFunction &MF; |
| 147 | LiveIntervals &LIS; |
| 148 | LiveStacks &LSS; |
| 149 | VirtRegMap &VRM; |
| 150 | MachineRegisterInfo &MRI; |
| 151 | const TargetInstrInfo &TII; |
| 152 | const TargetRegisterInfo &TRI; |
| 153 | LiveRegMatrix *Matrix = nullptr; |
| 154 | |
| 155 | // Variables that are valid during spill(), but used by multiple methods. |
| 156 | LiveRangeEdit *Edit = nullptr; |
| 157 | LiveInterval *StackInt = nullptr; |
| 158 | int StackSlot; |
| 159 | Register Original; |
| 160 | AllocationOrder *Order = nullptr; |
| 161 | |
| 162 | // All registers to spill to StackSlot, including the main register. |
| 163 | SmallVector<Register, 8> RegsToSpill; |
| 164 | |
| 165 | // All registers that were replaced by the spiller through some other method, |
| 166 | // e.g. rematerialization. |
| 167 | SmallVector<Register, 8> RegsReplaced; |
| 168 | |
| 169 | // All COPY instructions to/from snippets. |
| 170 | // They are ignored since both operands refer to the same stack slot. |
| 171 | // For bundled copies, this will only include the first header copy. |
| 172 | SmallPtrSet<MachineInstr*, 8> SnippetCopies; |
| 173 | |
| 174 | // Values that failed to remat at some point. |
| 175 | SmallPtrSet<VNInfo*, 8> UsedValues; |
| 176 | |
| 177 | // Dead defs generated during spilling. |
| 178 | SmallVector<MachineInstr*, 8> DeadDefs; |
| 179 | |
| 180 | // Object records spills information and does the hoisting. |
| 181 | HoistSpillHelper HSpiller; |
| 182 | |
| 183 | // Live range weight calculator. |
| 184 | VirtRegAuxInfo &VRAI; |
| 185 | |
| 186 | ~InlineSpiller() override = default; |
| 187 | |
| 188 | public: |
| 189 | InlineSpiller(const Spiller::RequiredAnalyses &Analyses, MachineFunction &MF, |
| 190 | VirtRegMap &VRM, VirtRegAuxInfo &VRAI, LiveRegMatrix *Matrix) |
| 191 | : MF(MF), LIS(Analyses.LIS), LSS(Analyses.LSS), VRM(VRM), |
| 192 | MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()), |
| 193 | TRI(*MF.getSubtarget().getRegisterInfo()), Matrix(Matrix), |
| 194 | HSpiller(Analyses, MF, VRM), VRAI(VRAI) {} |
| 195 | |
| 196 | void spill(LiveRangeEdit &, AllocationOrder *Order = nullptr) override; |
| 197 | ArrayRef<Register> getSpilledRegs() override { return RegsToSpill; } |
| 198 | ArrayRef<Register> getReplacedRegs() override { return RegsReplaced; } |
| 199 | void postOptimization() override; |
| 200 | |
| 201 | private: |
| 202 | bool isSnippet(const LiveInterval &SnipLI); |
| 203 | void collectRegsToSpill(); |
| 204 | |
| 205 | bool isRegToSpill(Register Reg) { return is_contained(Range&: RegsToSpill, Element: Reg); } |
| 206 | |
| 207 | bool isSibling(Register Reg); |
| 208 | bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); |
| 209 | void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); |
| 210 | |
| 211 | void markValueUsed(LiveInterval*, VNInfo*); |
| 212 | bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI); |
| 213 | bool hasPhysRegAvailable(const MachineInstr &MI); |
| 214 | bool reMaterializeFor(LiveInterval &, MachineInstr &MI); |
| 215 | void reMaterializeAll(); |
| 216 | |
| 217 | bool coalesceStackAccess(MachineInstr *MI, Register Reg); |
| 218 | bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, |
| 219 | MachineInstr *LoadMI = nullptr); |
| 220 | void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI); |
| 221 | void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI); |
| 222 | |
| 223 | void spillAroundUses(Register Reg); |
| 224 | void spillAll(); |
| 225 | }; |
| 226 | |
| 227 | } // end anonymous namespace |
| 228 | |
| 229 | Spiller::~Spiller() = default; |
| 230 | |
| 231 | void Spiller::anchor() {} |
| 232 | |
| 233 | Spiller * |
| 234 | llvm::createInlineSpiller(const InlineSpiller::RequiredAnalyses &Analyses, |
| 235 | MachineFunction &MF, VirtRegMap &VRM, |
| 236 | VirtRegAuxInfo &VRAI, LiveRegMatrix *Matrix) { |
| 237 | return new InlineSpiller(Analyses, MF, VRM, VRAI, Matrix); |
| 238 | } |
| 239 | |
| 240 | //===----------------------------------------------------------------------===// |
| 241 | // Snippets |
| 242 | //===----------------------------------------------------------------------===// |
| 243 | |
| 244 | // When spilling a virtual register, we also spill any snippets it is connected |
| 245 | // to. The snippets are small live ranges that only have a single real use, |
| 246 | // leftovers from live range splitting. Spilling them enables memory operand |
| 247 | // folding or tightens the live range around the single use. |
| 248 | // |
| 249 | // This minimizes register pressure and maximizes the store-to-load distance for |
| 250 | // spill slots which can be important in tight loops. |
| 251 | |
| 252 | /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, |
| 253 | /// otherwise return 0. |
| 254 | static Register isCopyOf(const MachineInstr &MI, Register Reg, |
| 255 | const TargetInstrInfo &TII) { |
| 256 | if (!TII.isCopyInstr(MI)) |
| 257 | return Register(); |
| 258 | |
| 259 | const MachineOperand &DstOp = MI.getOperand(i: 0); |
| 260 | const MachineOperand &SrcOp = MI.getOperand(i: 1); |
| 261 | |
| 262 | // TODO: Probably only worth allowing subreg copies with undef dests. |
| 263 | if (DstOp.getSubReg() != SrcOp.getSubReg()) |
| 264 | return Register(); |
| 265 | if (DstOp.getReg() == Reg) |
| 266 | return SrcOp.getReg(); |
| 267 | if (SrcOp.getReg() == Reg) |
| 268 | return DstOp.getReg(); |
| 269 | return Register(); |
| 270 | } |
| 271 | |
| 272 | /// Check for a copy bundle as formed by SplitKit. |
| 273 | static Register isCopyOfBundle(const MachineInstr &FirstMI, Register Reg, |
| 274 | const TargetInstrInfo &TII) { |
| 275 | if (!FirstMI.isBundled()) |
| 276 | return isCopyOf(MI: FirstMI, Reg, TII); |
| 277 | |
| 278 | assert(!FirstMI.isBundledWithPred() && FirstMI.isBundledWithSucc() && |
| 279 | "expected to see first instruction in bundle" ); |
| 280 | |
| 281 | Register SnipReg; |
| 282 | MachineBasicBlock::const_instr_iterator I = FirstMI.getIterator(); |
| 283 | while (I->isBundledWithSucc()) { |
| 284 | const MachineInstr &MI = *I; |
| 285 | auto CopyInst = TII.isCopyInstr(MI); |
| 286 | if (!CopyInst) |
| 287 | return Register(); |
| 288 | |
| 289 | const MachineOperand &DstOp = *CopyInst->Destination; |
| 290 | const MachineOperand &SrcOp = *CopyInst->Source; |
| 291 | if (DstOp.getReg() == Reg) { |
| 292 | if (!SnipReg) |
| 293 | SnipReg = SrcOp.getReg(); |
| 294 | else if (SnipReg != SrcOp.getReg()) |
| 295 | return Register(); |
| 296 | } else if (SrcOp.getReg() == Reg) { |
| 297 | if (!SnipReg) |
| 298 | SnipReg = DstOp.getReg(); |
| 299 | else if (SnipReg != DstOp.getReg()) |
| 300 | return Register(); |
| 301 | } |
| 302 | |
| 303 | ++I; |
| 304 | } |
| 305 | |
| 306 | return Register(); |
| 307 | } |
| 308 | |
| 309 | static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) { |
| 310 | for (const MachineOperand &MO : MI.all_defs()) |
| 311 | if (MO.getReg().isVirtual()) |
| 312 | LIS.getInterval(Reg: MO.getReg()); |
| 313 | } |
| 314 | |
| 315 | /// isSnippet - Identify if a live interval is a snippet that should be spilled. |
| 316 | /// It is assumed that SnipLI is a virtual register with the same original as |
| 317 | /// Edit->getReg(). |
| 318 | bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { |
| 319 | Register Reg = Edit->getReg(); |
| 320 | |
| 321 | // A snippet is a tiny live range with only a single instruction using it |
| 322 | // besides copies to/from Reg or spills/fills. |
| 323 | // Exception is done for statepoint instructions which will fold fills |
| 324 | // into their operands. |
| 325 | // We accept: |
| 326 | // |
| 327 | // %snip = COPY %Reg / FILL fi# |
| 328 | // %snip = USE %snip |
| 329 | // %snip = STATEPOINT %snip in var arg area |
| 330 | // %Reg = COPY %snip / SPILL %snip, fi# |
| 331 | // |
| 332 | if (!LIS.intervalIsInOneMBB(LI: SnipLI)) |
| 333 | return false; |
| 334 | |
| 335 | // Number of defs should not exceed 2 not accounting defs coming from |
| 336 | // statepoint instructions. |
| 337 | unsigned NumValNums = SnipLI.getNumValNums(); |
| 338 | for (auto *VNI : SnipLI.vnis()) { |
| 339 | MachineInstr *MI = LIS.getInstructionFromIndex(index: VNI->def); |
| 340 | if (MI->getOpcode() == TargetOpcode::STATEPOINT) |
| 341 | --NumValNums; |
| 342 | } |
| 343 | if (NumValNums > 2) |
| 344 | return false; |
| 345 | |
| 346 | MachineInstr *UseMI = nullptr; |
| 347 | |
| 348 | // Check that all uses satisfy our criteria. |
| 349 | for (MachineRegisterInfo::reg_bundle_nodbg_iterator |
| 350 | RI = MRI.reg_bundle_nodbg_begin(RegNo: SnipLI.reg()), |
| 351 | E = MRI.reg_bundle_nodbg_end(); |
| 352 | RI != E;) { |
| 353 | MachineInstr &MI = *RI++; |
| 354 | |
| 355 | // Allow copies to/from Reg. |
| 356 | if (isCopyOfBundle(FirstMI: MI, Reg, TII)) |
| 357 | continue; |
| 358 | |
| 359 | // Allow stack slot loads. |
| 360 | int FI; |
| 361 | if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FrameIndex&: FI) && FI == StackSlot) |
| 362 | continue; |
| 363 | |
| 364 | // Allow stack slot stores. |
| 365 | if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FrameIndex&: FI) && FI == StackSlot) |
| 366 | continue; |
| 367 | |
| 368 | if (StatepointOpers::isFoldableReg(MI: &MI, Reg: SnipLI.reg())) |
| 369 | continue; |
| 370 | |
| 371 | // Allow a single additional instruction. |
| 372 | if (UseMI && &MI != UseMI) |
| 373 | return false; |
| 374 | UseMI = &MI; |
| 375 | } |
| 376 | return true; |
| 377 | } |
| 378 | |
| 379 | /// collectRegsToSpill - Collect live range snippets that only have a single |
| 380 | /// real use. |
| 381 | void InlineSpiller::collectRegsToSpill() { |
| 382 | Register Reg = Edit->getReg(); |
| 383 | |
| 384 | // Main register always spills. |
| 385 | RegsToSpill.assign(NumElts: 1, Elt: Reg); |
| 386 | SnippetCopies.clear(); |
| 387 | RegsReplaced.clear(); |
| 388 | |
| 389 | // Snippets all have the same original, so there can't be any for an original |
| 390 | // register. |
| 391 | if (Original == Reg) |
| 392 | return; |
| 393 | |
| 394 | for (MachineInstr &MI : llvm::make_early_inc_range(Range: MRI.reg_bundles(Reg))) { |
| 395 | Register SnipReg = isCopyOfBundle(FirstMI: MI, Reg, TII); |
| 396 | if (!isSibling(Reg: SnipReg)) |
| 397 | continue; |
| 398 | LiveInterval &SnipLI = LIS.getInterval(Reg: SnipReg); |
| 399 | if (!isSnippet(SnipLI)) |
| 400 | continue; |
| 401 | SnippetCopies.insert(Ptr: &MI); |
| 402 | if (isRegToSpill(Reg: SnipReg)) |
| 403 | continue; |
| 404 | RegsToSpill.push_back(Elt: SnipReg); |
| 405 | LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); |
| 406 | ++NumSnippets; |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | bool InlineSpiller::isSibling(Register Reg) { |
| 411 | return Reg.isVirtual() && VRM.getOriginal(VirtReg: Reg) == Original; |
| 412 | } |
| 413 | |
| 414 | /// It is beneficial to spill to earlier place in the same BB in case |
| 415 | /// as follows: |
| 416 | /// There is an alternative def earlier in the same MBB. |
| 417 | /// Hoist the spill as far as possible in SpillMBB. This can ease |
| 418 | /// register pressure: |
| 419 | /// |
| 420 | /// x = def |
| 421 | /// y = use x |
| 422 | /// s = copy x |
| 423 | /// |
| 424 | /// Hoisting the spill of s to immediately after the def removes the |
| 425 | /// interference between x and y: |
| 426 | /// |
| 427 | /// x = def |
| 428 | /// spill x |
| 429 | /// y = use killed x |
| 430 | /// |
| 431 | /// This hoist only helps when the copy kills its source. |
| 432 | /// |
| 433 | bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, |
| 434 | MachineInstr &CopyMI) { |
| 435 | SlotIndex Idx = LIS.getInstructionIndex(Instr: CopyMI); |
| 436 | #ifndef NDEBUG |
| 437 | VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); |
| 438 | assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy" ); |
| 439 | #endif |
| 440 | |
| 441 | Register SrcReg = CopyMI.getOperand(i: 1).getReg(); |
| 442 | LiveInterval &SrcLI = LIS.getInterval(Reg: SrcReg); |
| 443 | VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); |
| 444 | LiveQueryResult SrcQ = SrcLI.Query(Idx); |
| 445 | MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(index: SrcVNI->def); |
| 446 | if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) |
| 447 | return false; |
| 448 | |
| 449 | // Conservatively extend the stack slot range to the range of the original |
| 450 | // value. We may be able to do better with stack slot coloring by being more |
| 451 | // careful here. |
| 452 | assert(StackInt && "No stack slot assigned yet." ); |
| 453 | LiveInterval &OrigLI = LIS.getInterval(Reg: Original); |
| 454 | VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); |
| 455 | StackInt->MergeValueInAsValue(RHS: OrigLI, RHSValNo: OrigVNI, LHSValNo: StackInt->getValNumInfo(ValNo: 0)); |
| 456 | LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " |
| 457 | << *StackInt << '\n'); |
| 458 | |
| 459 | // We are going to spill SrcVNI immediately after its def, so clear out |
| 460 | // any later spills of the same value. |
| 461 | eliminateRedundantSpills(LI&: SrcLI, VNI: SrcVNI); |
| 462 | |
| 463 | MachineBasicBlock *MBB = LIS.getMBBFromIndex(index: SrcVNI->def); |
| 464 | MachineBasicBlock::iterator MII; |
| 465 | if (SrcVNI->isPHIDef()) |
| 466 | MII = MBB->SkipPHIsLabelsAndDebug(I: MBB->begin(), Reg: SrcReg); |
| 467 | else { |
| 468 | MachineInstr *DefMI = LIS.getInstructionFromIndex(index: SrcVNI->def); |
| 469 | assert(DefMI && "Defining instruction disappeared" ); |
| 470 | MII = DefMI; |
| 471 | ++MII; |
| 472 | } |
| 473 | MachineInstrSpan MIS(MII, MBB); |
| 474 | // Insert spill without kill flag immediately after def. |
| 475 | TII.storeRegToStackSlot(MBB&: *MBB, MI: MII, SrcReg, isKill: false, FrameIndex: StackSlot, |
| 476 | RC: MRI.getRegClass(Reg: SrcReg), TRI: &TRI, VReg: Register()); |
| 477 | LIS.InsertMachineInstrRangeInMaps(B: MIS.begin(), E: MII); |
| 478 | for (const MachineInstr &MI : make_range(x: MIS.begin(), y: MII)) |
| 479 | getVDefInterval(MI, LIS); |
| 480 | --MII; // Point to store instruction. |
| 481 | LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); |
| 482 | |
| 483 | // If there is only 1 store instruction is required for spill, add it |
| 484 | // to mergeable list. In X86 AMX, 2 intructions are required to store. |
| 485 | // We disable the merge for this case. |
| 486 | if (MIS.begin() == MII) |
| 487 | HSpiller.addToMergeableSpills(Spill&: *MII, StackSlot, Original); |
| 488 | ++NumSpills; |
| 489 | return true; |
| 490 | } |
| 491 | |
| 492 | /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any |
| 493 | /// redundant spills of this value in SLI.reg and sibling copies. |
| 494 | void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { |
| 495 | assert(VNI && "Missing value" ); |
| 496 | SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; |
| 497 | WorkList.push_back(Elt: std::make_pair(x: &SLI, y&: VNI)); |
| 498 | assert(StackInt && "No stack slot assigned yet." ); |
| 499 | |
| 500 | do { |
| 501 | LiveInterval *LI; |
| 502 | std::tie(args&: LI, args&: VNI) = WorkList.pop_back_val(); |
| 503 | Register Reg = LI->reg(); |
| 504 | LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' |
| 505 | << VNI->def << " in " << *LI << '\n'); |
| 506 | |
| 507 | // Regs to spill are taken care of. |
| 508 | if (isRegToSpill(Reg)) |
| 509 | continue; |
| 510 | |
| 511 | // Add all of VNI's live range to StackInt. |
| 512 | StackInt->MergeValueInAsValue(RHS: *LI, RHSValNo: VNI, LHSValNo: StackInt->getValNumInfo(ValNo: 0)); |
| 513 | LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); |
| 514 | |
| 515 | // Find all spills and copies of VNI. |
| 516 | for (MachineInstr &MI : |
| 517 | llvm::make_early_inc_range(Range: MRI.use_nodbg_bundles(Reg))) { |
| 518 | if (!MI.mayStore() && !TII.isCopyInstr(MI)) |
| 519 | continue; |
| 520 | SlotIndex Idx = LIS.getInstructionIndex(Instr: MI); |
| 521 | if (LI->getVNInfoAt(Idx) != VNI) |
| 522 | continue; |
| 523 | |
| 524 | // Follow sibling copies down the dominator tree. |
| 525 | if (Register DstReg = isCopyOfBundle(FirstMI: MI, Reg, TII)) { |
| 526 | if (isSibling(Reg: DstReg)) { |
| 527 | LiveInterval &DstLI = LIS.getInterval(Reg: DstReg); |
| 528 | VNInfo *DstVNI = DstLI.getVNInfoAt(Idx: Idx.getRegSlot()); |
| 529 | assert(DstVNI && "Missing defined value" ); |
| 530 | assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot" ); |
| 531 | |
| 532 | WorkList.push_back(Elt: std::make_pair(x: &DstLI, y&: DstVNI)); |
| 533 | } |
| 534 | continue; |
| 535 | } |
| 536 | |
| 537 | // Erase spills. |
| 538 | int FI; |
| 539 | if (Reg == TII.isStoreToStackSlot(MI, FrameIndex&: FI) && FI == StackSlot) { |
| 540 | LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); |
| 541 | // eliminateDeadDefs won't normally remove stores, so switch opcode. |
| 542 | MI.setDesc(TII.get(Opcode: TargetOpcode::KILL)); |
| 543 | DeadDefs.push_back(Elt: &MI); |
| 544 | ++NumSpillsRemoved; |
| 545 | if (HSpiller.rmFromMergeableSpills(Spill&: MI, StackSlot)) |
| 546 | --NumSpills; |
| 547 | } |
| 548 | } |
| 549 | } while (!WorkList.empty()); |
| 550 | } |
| 551 | |
| 552 | //===----------------------------------------------------------------------===// |
| 553 | // Rematerialization |
| 554 | //===----------------------------------------------------------------------===// |
| 555 | |
| 556 | /// markValueUsed - Remember that VNI failed to rematerialize, so its defining |
| 557 | /// instruction cannot be eliminated. See through snippet copies |
| 558 | void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { |
| 559 | SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; |
| 560 | WorkList.push_back(Elt: std::make_pair(x&: LI, y&: VNI)); |
| 561 | do { |
| 562 | std::tie(args&: LI, args&: VNI) = WorkList.pop_back_val(); |
| 563 | if (!UsedValues.insert(Ptr: VNI).second) |
| 564 | continue; |
| 565 | |
| 566 | if (VNI->isPHIDef()) { |
| 567 | MachineBasicBlock *MBB = LIS.getMBBFromIndex(index: VNI->def); |
| 568 | for (MachineBasicBlock *P : MBB->predecessors()) { |
| 569 | VNInfo *PVNI = LI->getVNInfoBefore(Idx: LIS.getMBBEndIdx(mbb: P)); |
| 570 | if (PVNI) |
| 571 | WorkList.push_back(Elt: std::make_pair(x&: LI, y&: PVNI)); |
| 572 | } |
| 573 | continue; |
| 574 | } |
| 575 | |
| 576 | // Follow snippet copies. |
| 577 | MachineInstr *MI = LIS.getInstructionFromIndex(index: VNI->def); |
| 578 | if (!SnippetCopies.count(Ptr: MI)) |
| 579 | continue; |
| 580 | LiveInterval &SnipLI = LIS.getInterval(Reg: MI->getOperand(i: 1).getReg()); |
| 581 | assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy" ); |
| 582 | VNInfo *SnipVNI = SnipLI.getVNInfoAt(Idx: VNI->def.getRegSlot(EC: true)); |
| 583 | assert(SnipVNI && "Snippet undefined before copy" ); |
| 584 | WorkList.push_back(Elt: std::make_pair(x: &SnipLI, y&: SnipVNI)); |
| 585 | } while (!WorkList.empty()); |
| 586 | } |
| 587 | |
| 588 | bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg, |
| 589 | MachineInstr &MI) { |
| 590 | if (!RestrictStatepointRemat) |
| 591 | return true; |
| 592 | // Here's a quick explanation of the problem we're trying to handle here: |
| 593 | // * There are some pseudo instructions with more vreg uses than there are |
| 594 | // physical registers on the machine. |
| 595 | // * This is normally handled by spilling the vreg, and folding the reload |
| 596 | // into the user instruction. (Thus decreasing the number of used vregs |
| 597 | // until the remainder can be assigned to physregs.) |
| 598 | // * However, since we may try to spill vregs in any order, we can end up |
| 599 | // trying to spill each operand to the instruction, and then rematting it |
| 600 | // instead. When that happens, the new live intervals (for the remats) are |
| 601 | // expected to be trivially assignable (i.e. RS_Done). However, since we |
| 602 | // may have more remats than physregs, we're guaranteed to fail to assign |
| 603 | // one. |
| 604 | // At the moment, we only handle this for STATEPOINTs since they're the only |
| 605 | // pseudo op where we've seen this. If we start seeing other instructions |
| 606 | // with the same problem, we need to revisit this. |
| 607 | if (MI.getOpcode() != TargetOpcode::STATEPOINT) |
| 608 | return true; |
| 609 | // For STATEPOINTs we allow re-materialization for fixed arguments only hoping |
| 610 | // that number of physical registers is enough to cover all fixed arguments. |
| 611 | // If it is not true we need to revisit it. |
| 612 | for (unsigned Idx = StatepointOpers(&MI).getVarIdx(), |
| 613 | EndIdx = MI.getNumOperands(); |
| 614 | Idx < EndIdx; ++Idx) { |
| 615 | MachineOperand &MO = MI.getOperand(i: Idx); |
| 616 | if (MO.isReg() && MO.getReg() == VReg) |
| 617 | return false; |
| 618 | } |
| 619 | return true; |
| 620 | } |
| 621 | |
| 622 | /// hasPhysRegAvailable - Check if there is an available physical register for |
| 623 | /// rematerialization. |
| 624 | bool InlineSpiller::hasPhysRegAvailable(const MachineInstr &MI) { |
| 625 | if (!Order || !Matrix) |
| 626 | return false; |
| 627 | |
| 628 | SlotIndex UseIdx = LIS.getInstructionIndex(Instr: MI).getRegSlot(EC: true); |
| 629 | SlotIndex PrevIdx = UseIdx.getPrevSlot(); |
| 630 | |
| 631 | for (MCPhysReg PhysReg : *Order) { |
| 632 | if (!Matrix->checkInterference(Start: PrevIdx, End: UseIdx, PhysReg)) |
| 633 | return true; |
| 634 | } |
| 635 | |
| 636 | return false; |
| 637 | } |
| 638 | |
| 639 | /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. |
| 640 | bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { |
| 641 | // Analyze instruction |
| 642 | SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; |
| 643 | VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg: VirtReg.reg(), Ops: &Ops); |
| 644 | |
| 645 | if (!RI.Reads) |
| 646 | return false; |
| 647 | |
| 648 | SlotIndex UseIdx = LIS.getInstructionIndex(Instr: MI).getRegSlot(EC: true); |
| 649 | VNInfo *ParentVNI = VirtReg.getVNInfoAt(Idx: UseIdx.getBaseIndex()); |
| 650 | |
| 651 | if (!ParentVNI) { |
| 652 | LLVM_DEBUG(dbgs() << "\tadding <undef> flags: " ); |
| 653 | for (MachineOperand &MO : MI.all_uses()) |
| 654 | if (MO.getReg() == VirtReg.reg()) |
| 655 | MO.setIsUndef(); |
| 656 | LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); |
| 657 | return true; |
| 658 | } |
| 659 | |
| 660 | if (SnippetCopies.count(Ptr: &MI)) |
| 661 | return false; |
| 662 | |
| 663 | LiveInterval &OrigLI = LIS.getInterval(Reg: Original); |
| 664 | VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx: UseIdx); |
| 665 | LiveRangeEdit::Remat RM(ParentVNI); |
| 666 | RM.OrigMI = LIS.getInstructionFromIndex(index: OrigVNI->def); |
| 667 | |
| 668 | if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx)) { |
| 669 | markValueUsed(LI: &VirtReg, VNI: ParentVNI); |
| 670 | LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); |
| 671 | return false; |
| 672 | } |
| 673 | |
| 674 | // If the instruction also writes VirtReg.reg, it had better not require the |
| 675 | // same register for uses and defs. |
| 676 | if (RI.Tied) { |
| 677 | markValueUsed(LI: &VirtReg, VNI: ParentVNI); |
| 678 | LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); |
| 679 | return false; |
| 680 | } |
| 681 | |
| 682 | // Before rematerializing into a register for a single instruction, try to |
| 683 | // fold a load into the instruction. That avoids allocating a new register. |
| 684 | if (RM.OrigMI->canFoldAsLoad() && |
| 685 | (RM.OrigMI->mayLoad() || !hasPhysRegAvailable(MI)) && |
| 686 | foldMemoryOperand(Ops, LoadMI: RM.OrigMI)) { |
| 687 | Edit->markRematerialized(ParentVNI: RM.ParentVNI); |
| 688 | ++NumFoldedLoads; |
| 689 | return true; |
| 690 | } |
| 691 | |
| 692 | // If we can't guarantee that we'll be able to actually assign the new vreg, |
| 693 | // we can't remat. |
| 694 | if (!canGuaranteeAssignmentAfterRemat(VReg: VirtReg.reg(), MI)) { |
| 695 | markValueUsed(LI: &VirtReg, VNI: ParentVNI); |
| 696 | LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); |
| 697 | return false; |
| 698 | } |
| 699 | |
| 700 | // Allocate a new register for the remat. |
| 701 | Register NewVReg = Edit->createFrom(OldReg: Original); |
| 702 | |
| 703 | // Finally we can rematerialize OrigMI before MI. |
| 704 | SlotIndex DefIdx = |
| 705 | Edit->rematerializeAt(MBB&: *MI.getParent(), MI, DestReg: NewVReg, RM, TRI); |
| 706 | |
| 707 | // We take the DebugLoc from MI, since OrigMI may be attributed to a |
| 708 | // different source location. |
| 709 | auto *NewMI = LIS.getInstructionFromIndex(index: DefIdx); |
| 710 | NewMI->setDebugLoc(MI.getDebugLoc()); |
| 711 | |
| 712 | (void)DefIdx; |
| 713 | LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' |
| 714 | << *LIS.getInstructionFromIndex(DefIdx)); |
| 715 | |
| 716 | // Replace operands |
| 717 | for (const auto &OpPair : Ops) { |
| 718 | MachineOperand &MO = OpPair.first->getOperand(i: OpPair.second); |
| 719 | if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) { |
| 720 | MO.setReg(NewVReg); |
| 721 | MO.setIsKill(); |
| 722 | } |
| 723 | } |
| 724 | LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); |
| 725 | |
| 726 | ++NumRemats; |
| 727 | return true; |
| 728 | } |
| 729 | |
| 730 | /// reMaterializeAll - Try to rematerialize as many uses as possible, |
| 731 | /// and trim the live ranges after. |
| 732 | void InlineSpiller::reMaterializeAll() { |
| 733 | if (!Edit->anyRematerializable()) |
| 734 | return; |
| 735 | |
| 736 | UsedValues.clear(); |
| 737 | |
| 738 | // Try to remat before all uses of snippets. |
| 739 | bool anyRemat = false; |
| 740 | for (Register Reg : RegsToSpill) { |
| 741 | LiveInterval &LI = LIS.getInterval(Reg); |
| 742 | for (MachineInstr &MI : llvm::make_early_inc_range(Range: MRI.reg_bundles(Reg))) { |
| 743 | // Debug values are not allowed to affect codegen. |
| 744 | if (MI.isDebugValue()) |
| 745 | continue; |
| 746 | |
| 747 | assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " |
| 748 | "instruction that isn't a DBG_VALUE" ); |
| 749 | |
| 750 | anyRemat |= reMaterializeFor(VirtReg&: LI, MI); |
| 751 | } |
| 752 | } |
| 753 | if (!anyRemat) |
| 754 | return; |
| 755 | |
| 756 | // Remove any values that were completely rematted. |
| 757 | for (Register Reg : RegsToSpill) { |
| 758 | LiveInterval &LI = LIS.getInterval(Reg); |
| 759 | for (VNInfo *VNI : LI.vnis()) { |
| 760 | if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(Ptr: VNI)) |
| 761 | continue; |
| 762 | MachineInstr *MI = LIS.getInstructionFromIndex(index: VNI->def); |
| 763 | MI->addRegisterDead(Reg, RegInfo: &TRI); |
| 764 | if (!MI->allDefsAreDead()) |
| 765 | continue; |
| 766 | LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); |
| 767 | DeadDefs.push_back(Elt: MI); |
| 768 | // If MI is a bundle header, also try removing copies inside the bundle, |
| 769 | // otherwise the verifier would complain "live range continues after dead |
| 770 | // def flag". |
| 771 | if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) { |
| 772 | MachineBasicBlock::instr_iterator BeginIt = MI->getIterator(), |
| 773 | EndIt = MI->getParent()->instr_end(); |
| 774 | ++BeginIt; // Skip MI that was already handled. |
| 775 | |
| 776 | bool OnlyDeadCopies = true; |
| 777 | for (MachineBasicBlock::instr_iterator It = BeginIt; |
| 778 | It != EndIt && It->isBundledWithPred(); ++It) { |
| 779 | |
| 780 | auto DestSrc = TII.isCopyInstr(MI: *It); |
| 781 | bool IsCopyToDeadReg = |
| 782 | DestSrc && DestSrc->Destination->getReg() == Reg; |
| 783 | if (!IsCopyToDeadReg) { |
| 784 | OnlyDeadCopies = false; |
| 785 | break; |
| 786 | } |
| 787 | } |
| 788 | if (OnlyDeadCopies) { |
| 789 | for (MachineBasicBlock::instr_iterator It = BeginIt; |
| 790 | It != EndIt && It->isBundledWithPred(); ++It) { |
| 791 | It->addRegisterDead(Reg, RegInfo: &TRI); |
| 792 | LLVM_DEBUG(dbgs() << "All defs dead: " << *It); |
| 793 | DeadDefs.push_back(Elt: &*It); |
| 794 | } |
| 795 | } |
| 796 | } |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | // Eliminate dead code after remat. Note that some snippet copies may be |
| 801 | // deleted here. |
| 802 | if (DeadDefs.empty()) |
| 803 | return; |
| 804 | LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n" ); |
| 805 | Edit->eliminateDeadDefs(Dead&: DeadDefs, RegsBeingSpilled: RegsToSpill); |
| 806 | |
| 807 | // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions |
| 808 | // after rematerialization. To remove a VNI for a vreg from its LiveInterval, |
| 809 | // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all |
| 810 | // removed, PHI VNI are still left in the LiveInterval. |
| 811 | // So to get rid of unused reg, we need to check whether it has non-dbg |
| 812 | // reference instead of whether it has non-empty interval. |
| 813 | unsigned ResultPos = 0; |
| 814 | for (Register Reg : RegsToSpill) { |
| 815 | if (MRI.reg_nodbg_empty(RegNo: Reg)) { |
| 816 | Edit->eraseVirtReg(Reg); |
| 817 | RegsReplaced.push_back(Elt: Reg); |
| 818 | continue; |
| 819 | } |
| 820 | |
| 821 | assert(LIS.hasInterval(Reg) && |
| 822 | (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && |
| 823 | "Empty and not used live-range?!" ); |
| 824 | |
| 825 | RegsToSpill[ResultPos++] = Reg; |
| 826 | } |
| 827 | RegsToSpill.erase(CS: RegsToSpill.begin() + ResultPos, CE: RegsToSpill.end()); |
| 828 | LLVM_DEBUG(dbgs() << RegsToSpill.size() |
| 829 | << " registers to spill after remat.\n" ); |
| 830 | } |
| 831 | |
| 832 | //===----------------------------------------------------------------------===// |
| 833 | // Spilling |
| 834 | //===----------------------------------------------------------------------===// |
| 835 | |
| 836 | /// If MI is a load or store of StackSlot, it can be removed. |
| 837 | bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) { |
| 838 | int FI = 0; |
| 839 | Register InstrReg = TII.isLoadFromStackSlot(MI: *MI, FrameIndex&: FI); |
| 840 | bool IsLoad = InstrReg.isValid(); |
| 841 | if (!IsLoad) |
| 842 | InstrReg = TII.isStoreToStackSlot(MI: *MI, FrameIndex&: FI); |
| 843 | |
| 844 | // We have a stack access. Is it the right register and slot? |
| 845 | if (InstrReg != Reg || FI != StackSlot) |
| 846 | return false; |
| 847 | |
| 848 | if (!IsLoad) |
| 849 | HSpiller.rmFromMergeableSpills(Spill&: *MI, StackSlot); |
| 850 | |
| 851 | LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); |
| 852 | LIS.RemoveMachineInstrFromMaps(MI&: *MI); |
| 853 | MI->eraseFromParent(); |
| 854 | |
| 855 | if (IsLoad) { |
| 856 | ++NumReloadsRemoved; |
| 857 | --NumReloads; |
| 858 | } else { |
| 859 | ++NumSpillsRemoved; |
| 860 | --NumSpills; |
| 861 | } |
| 862 | |
| 863 | return true; |
| 864 | } |
| 865 | |
| 866 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 867 | LLVM_DUMP_METHOD |
| 868 | // Dump the range of instructions from B to E with their slot indexes. |
| 869 | static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, |
| 870 | MachineBasicBlock::iterator E, |
| 871 | LiveIntervals const &LIS, |
| 872 | const char *const header, |
| 873 | Register VReg = Register()) { |
| 874 | char NextLine = '\n'; |
| 875 | char SlotIndent = '\t'; |
| 876 | |
| 877 | if (std::next(B) == E) { |
| 878 | NextLine = ' '; |
| 879 | SlotIndent = ' '; |
| 880 | } |
| 881 | |
| 882 | dbgs() << '\t' << header << ": " << NextLine; |
| 883 | |
| 884 | for (MachineBasicBlock::iterator I = B; I != E; ++I) { |
| 885 | SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); |
| 886 | |
| 887 | // If a register was passed in and this instruction has it as a |
| 888 | // destination that is marked as an early clobber, print the |
| 889 | // early-clobber slot index. |
| 890 | if (VReg) { |
| 891 | MachineOperand *MO = I->findRegisterDefOperand(VReg, /*TRI=*/nullptr); |
| 892 | if (MO && MO->isEarlyClobber()) |
| 893 | Idx = Idx.getRegSlot(true); |
| 894 | } |
| 895 | |
| 896 | dbgs() << SlotIndent << Idx << '\t' << *I; |
| 897 | } |
| 898 | } |
| 899 | #endif |
| 900 | |
| 901 | /// foldMemoryOperand - Try folding stack slot references in Ops into their |
| 902 | /// instructions. |
| 903 | /// |
| 904 | /// @param Ops Operand indices from AnalyzeVirtRegInBundle(). |
| 905 | /// @param LoadMI Load instruction to use instead of stack slot when non-null. |
| 906 | /// @return True on success. |
| 907 | bool InlineSpiller:: |
| 908 | foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, |
| 909 | MachineInstr *LoadMI) { |
| 910 | if (Ops.empty()) |
| 911 | return false; |
| 912 | // Don't attempt folding in bundles. |
| 913 | MachineInstr *MI = Ops.front().first; |
| 914 | if (Ops.back().first != MI || MI->isBundled()) |
| 915 | return false; |
| 916 | |
| 917 | bool WasCopy = TII.isCopyInstr(MI: *MI).has_value(); |
| 918 | Register ImpReg; |
| 919 | |
| 920 | // TII::foldMemoryOperand will do what we need here for statepoint |
| 921 | // (fold load into use and remove corresponding def). We will replace |
| 922 | // uses of removed def with loads (spillAroundUses). |
| 923 | // For that to work we need to untie def and use to pass it through |
| 924 | // foldMemoryOperand and signal foldPatchpoint that it is allowed to |
| 925 | // fold them. |
| 926 | bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT; |
| 927 | |
| 928 | // Spill subregs if the target allows it. |
| 929 | // We always want to spill subregs for stackmap/patchpoint pseudos. |
| 930 | bool SpillSubRegs = TII.isSubregFoldable() || |
| 931 | MI->getOpcode() == TargetOpcode::STATEPOINT || |
| 932 | MI->getOpcode() == TargetOpcode::PATCHPOINT || |
| 933 | MI->getOpcode() == TargetOpcode::STACKMAP; |
| 934 | |
| 935 | // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied |
| 936 | // operands. |
| 937 | SmallVector<unsigned, 8> FoldOps; |
| 938 | for (const auto &OpPair : Ops) { |
| 939 | unsigned Idx = OpPair.second; |
| 940 | assert(MI == OpPair.first && "Instruction conflict during operand folding" ); |
| 941 | MachineOperand &MO = MI->getOperand(i: Idx); |
| 942 | |
| 943 | // No point restoring an undef read, and we'll produce an invalid live |
| 944 | // interval. |
| 945 | // TODO: Is this really the correct way to handle undef tied uses? |
| 946 | if (MO.isUse() && !MO.readsReg() && !MO.isTied()) |
| 947 | continue; |
| 948 | |
| 949 | if (MO.isImplicit()) { |
| 950 | ImpReg = MO.getReg(); |
| 951 | continue; |
| 952 | } |
| 953 | |
| 954 | if (!SpillSubRegs && MO.getSubReg()) |
| 955 | return false; |
| 956 | // We cannot fold a load instruction into a def. |
| 957 | if (LoadMI && MO.isDef()) |
| 958 | return false; |
| 959 | // Tied use operands should not be passed to foldMemoryOperand. |
| 960 | if (UntieRegs || !MI->isRegTiedToDefOperand(UseOpIdx: Idx)) |
| 961 | FoldOps.push_back(Elt: Idx); |
| 962 | } |
| 963 | |
| 964 | // If we only have implicit uses, we won't be able to fold that. |
| 965 | // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! |
| 966 | if (FoldOps.empty()) |
| 967 | return false; |
| 968 | |
| 969 | MachineInstrSpan MIS(MI, MI->getParent()); |
| 970 | |
| 971 | SmallVector<std::pair<unsigned, unsigned> > TiedOps; |
| 972 | if (UntieRegs) |
| 973 | for (unsigned Idx : FoldOps) { |
| 974 | MachineOperand &MO = MI->getOperand(i: Idx); |
| 975 | if (!MO.isTied()) |
| 976 | continue; |
| 977 | unsigned Tied = MI->findTiedOperandIdx(OpIdx: Idx); |
| 978 | if (MO.isUse()) |
| 979 | TiedOps.emplace_back(Args&: Tied, Args&: Idx); |
| 980 | else { |
| 981 | assert(MO.isDef() && "Tied to not use and def?" ); |
| 982 | TiedOps.emplace_back(Args&: Idx, Args&: Tied); |
| 983 | } |
| 984 | MI->untieRegOperand(OpIdx: Idx); |
| 985 | } |
| 986 | |
| 987 | MachineInstr *FoldMI = |
| 988 | LoadMI ? TII.foldMemoryOperand(MI&: *MI, Ops: FoldOps, LoadMI&: *LoadMI, LIS: &LIS) |
| 989 | : TII.foldMemoryOperand(MI&: *MI, Ops: FoldOps, FI: StackSlot, LIS: &LIS, VRM: &VRM); |
| 990 | if (!FoldMI) { |
| 991 | // Re-tie operands. |
| 992 | for (auto Tied : TiedOps) |
| 993 | MI->tieOperands(DefIdx: Tied.first, UseIdx: Tied.second); |
| 994 | return false; |
| 995 | } |
| 996 | |
| 997 | // Remove LIS for any dead defs in the original MI not in FoldMI. |
| 998 | for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { |
| 999 | if (!MO->isReg()) |
| 1000 | continue; |
| 1001 | Register Reg = MO->getReg(); |
| 1002 | if (!Reg || Reg.isVirtual() || MRI.isReserved(PhysReg: Reg)) { |
| 1003 | continue; |
| 1004 | } |
| 1005 | // Skip non-Defs, including undef uses and internal reads. |
| 1006 | if (MO->isUse()) |
| 1007 | continue; |
| 1008 | PhysRegInfo RI = AnalyzePhysRegInBundle(MI: *FoldMI, Reg, TRI: &TRI); |
| 1009 | if (RI.FullyDefined) |
| 1010 | continue; |
| 1011 | // FoldMI does not define this physreg. Remove the LI segment. |
| 1012 | assert(MO->isDead() && "Cannot fold physreg def" ); |
| 1013 | SlotIndex Idx = LIS.getInstructionIndex(Instr: *MI).getRegSlot(); |
| 1014 | LIS.removePhysRegDefAt(Reg: Reg.asMCReg(), Pos: Idx); |
| 1015 | } |
| 1016 | |
| 1017 | int FI; |
| 1018 | if (TII.isStoreToStackSlot(MI: *MI, FrameIndex&: FI) && |
| 1019 | HSpiller.rmFromMergeableSpills(Spill&: *MI, StackSlot: FI)) |
| 1020 | --NumSpills; |
| 1021 | LIS.ReplaceMachineInstrInMaps(MI&: *MI, NewMI&: *FoldMI); |
| 1022 | // Update the call info. |
| 1023 | if (MI->isCandidateForAdditionalCallInfo()) |
| 1024 | MI->getMF()->moveAdditionalCallInfo(Old: MI, New: FoldMI); |
| 1025 | |
| 1026 | // If we've folded a store into an instruction labelled with debug-info, |
| 1027 | // record a substitution from the old operand to the memory operand. Handle |
| 1028 | // the simple common case where operand 0 is the one being folded, plus when |
| 1029 | // the destination operand is also a tied def. More values could be |
| 1030 | // substituted / preserved with more analysis. |
| 1031 | if (MI->peekDebugInstrNum() && Ops[0].second == 0) { |
| 1032 | // Helper lambda. |
| 1033 | auto MakeSubstitution = [this,FoldMI,MI,&Ops]() { |
| 1034 | // Substitute old operand zero to the new instructions memory operand. |
| 1035 | unsigned OldOperandNum = Ops[0].second; |
| 1036 | unsigned NewNum = FoldMI->getDebugInstrNum(); |
| 1037 | unsigned OldNum = MI->getDebugInstrNum(); |
| 1038 | MF.makeDebugValueSubstitution({OldNum, OldOperandNum}, |
| 1039 | {NewNum, MachineFunction::DebugOperandMemNumber}); |
| 1040 | }; |
| 1041 | |
| 1042 | const MachineOperand &Op0 = MI->getOperand(i: Ops[0].second); |
| 1043 | if (Ops.size() == 1 && Op0.isDef()) { |
| 1044 | MakeSubstitution(); |
| 1045 | } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(i: 1).isTied() && |
| 1046 | Op0.getReg() == MI->getOperand(i: 1).getReg()) { |
| 1047 | MakeSubstitution(); |
| 1048 | } |
| 1049 | } else if (MI->peekDebugInstrNum()) { |
| 1050 | // This is a debug-labelled instruction, but the operand being folded isn't |
| 1051 | // at operand zero. Most likely this means it's a load being folded in. |
| 1052 | // Substitute any register defs from operand zero up to the one being |
| 1053 | // folded -- past that point, we don't know what the new operand indexes |
| 1054 | // will be. |
| 1055 | MF.substituteDebugValuesForInst(Old: *MI, New&: *FoldMI, MaxOperand: Ops[0].second); |
| 1056 | } |
| 1057 | |
| 1058 | MI->eraseFromParent(); |
| 1059 | |
| 1060 | // Insert any new instructions other than FoldMI into the LIS maps. |
| 1061 | assert(!MIS.empty() && "Unexpected empty span of instructions!" ); |
| 1062 | for (MachineInstr &MI : MIS) |
| 1063 | if (&MI != FoldMI) |
| 1064 | LIS.InsertMachineInstrInMaps(MI); |
| 1065 | |
| 1066 | // TII.foldMemoryOperand may have left some implicit operands on the |
| 1067 | // instruction. Strip them. |
| 1068 | if (ImpReg) |
| 1069 | for (unsigned i = FoldMI->getNumOperands(); i; --i) { |
| 1070 | MachineOperand &MO = FoldMI->getOperand(i: i - 1); |
| 1071 | if (!MO.isReg() || !MO.isImplicit()) |
| 1072 | break; |
| 1073 | if (MO.getReg() == ImpReg) |
| 1074 | FoldMI->removeOperand(OpNo: i - 1); |
| 1075 | } |
| 1076 | |
| 1077 | LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, |
| 1078 | "folded" )); |
| 1079 | |
| 1080 | if (!WasCopy) |
| 1081 | ++NumFolded; |
| 1082 | else if (Ops.front().second == 0) { |
| 1083 | ++NumSpills; |
| 1084 | // If there is only 1 store instruction is required for spill, add it |
| 1085 | // to mergeable list. In X86 AMX, 2 intructions are required to store. |
| 1086 | // We disable the merge for this case. |
| 1087 | if (std::distance(first: MIS.begin(), last: MIS.end()) <= 1) |
| 1088 | HSpiller.addToMergeableSpills(Spill&: *FoldMI, StackSlot, Original); |
| 1089 | } else |
| 1090 | ++NumReloads; |
| 1091 | return true; |
| 1092 | } |
| 1093 | |
| 1094 | void InlineSpiller::insertReload(Register NewVReg, |
| 1095 | SlotIndex Idx, |
| 1096 | MachineBasicBlock::iterator MI) { |
| 1097 | MachineBasicBlock &MBB = *MI->getParent(); |
| 1098 | |
| 1099 | MachineInstrSpan MIS(MI, &MBB); |
| 1100 | TII.loadRegFromStackSlot(MBB, MI, DestReg: NewVReg, FrameIndex: StackSlot, |
| 1101 | RC: MRI.getRegClass(Reg: NewVReg), TRI: &TRI, VReg: Register()); |
| 1102 | |
| 1103 | LIS.InsertMachineInstrRangeInMaps(B: MIS.begin(), E: MI); |
| 1104 | |
| 1105 | LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload" , |
| 1106 | NewVReg)); |
| 1107 | ++NumReloads; |
| 1108 | } |
| 1109 | |
| 1110 | /// Check if \p Def fully defines a VReg with an undefined value. |
| 1111 | /// If that's the case, that means the value of VReg is actually |
| 1112 | /// not relevant. |
| 1113 | static bool isRealSpill(const MachineInstr &Def) { |
| 1114 | if (!Def.isImplicitDef()) |
| 1115 | return true; |
| 1116 | |
| 1117 | // We can say that the VReg defined by Def is undef, only if it is |
| 1118 | // fully defined by Def. Otherwise, some of the lanes may not be |
| 1119 | // undef and the value of the VReg matters. |
| 1120 | return Def.getOperand(i: 0).getSubReg(); |
| 1121 | } |
| 1122 | |
| 1123 | /// insertSpill - Insert a spill of NewVReg after MI. |
| 1124 | void InlineSpiller::insertSpill(Register NewVReg, bool isKill, |
| 1125 | MachineBasicBlock::iterator MI) { |
| 1126 | // Spill are not terminators, so inserting spills after terminators will |
| 1127 | // violate invariants in MachineVerifier. |
| 1128 | assert(!MI->isTerminator() && "Inserting a spill after a terminator" ); |
| 1129 | MachineBasicBlock &MBB = *MI->getParent(); |
| 1130 | |
| 1131 | MachineInstrSpan MIS(MI, &MBB); |
| 1132 | MachineBasicBlock::iterator SpillBefore = std::next(x: MI); |
| 1133 | bool IsRealSpill = isRealSpill(Def: *MI); |
| 1134 | |
| 1135 | if (IsRealSpill) |
| 1136 | TII.storeRegToStackSlot(MBB, MI: SpillBefore, SrcReg: NewVReg, isKill, FrameIndex: StackSlot, |
| 1137 | RC: MRI.getRegClass(Reg: NewVReg), TRI: &TRI, VReg: Register()); |
| 1138 | else |
| 1139 | // Don't spill undef value. |
| 1140 | // Anything works for undef, in particular keeping the memory |
| 1141 | // uninitialized is a viable option and it saves code size and |
| 1142 | // run time. |
| 1143 | BuildMI(BB&: MBB, I: SpillBefore, MIMD: MI->getDebugLoc(), MCID: TII.get(Opcode: TargetOpcode::KILL)) |
| 1144 | .addReg(RegNo: NewVReg, flags: getKillRegState(B: isKill)); |
| 1145 | |
| 1146 | MachineBasicBlock::iterator Spill = std::next(x: MI); |
| 1147 | LIS.InsertMachineInstrRangeInMaps(B: Spill, E: MIS.end()); |
| 1148 | for (const MachineInstr &MI : make_range(x: Spill, y: MIS.end())) |
| 1149 | getVDefInterval(MI, LIS); |
| 1150 | |
| 1151 | LLVM_DEBUG( |
| 1152 | dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill" )); |
| 1153 | ++NumSpills; |
| 1154 | // If there is only 1 store instruction is required for spill, add it |
| 1155 | // to mergeable list. In X86 AMX, 2 intructions are required to store. |
| 1156 | // We disable the merge for this case. |
| 1157 | if (IsRealSpill && std::distance(first: Spill, last: MIS.end()) <= 1) |
| 1158 | HSpiller.addToMergeableSpills(Spill&: *Spill, StackSlot, Original); |
| 1159 | } |
| 1160 | |
| 1161 | /// spillAroundUses - insert spill code around each use of Reg. |
| 1162 | void InlineSpiller::spillAroundUses(Register Reg) { |
| 1163 | LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); |
| 1164 | LiveInterval &OldLI = LIS.getInterval(Reg); |
| 1165 | |
| 1166 | // Iterate over instructions using Reg. |
| 1167 | for (MachineInstr &MI : llvm::make_early_inc_range(Range: MRI.reg_bundles(Reg))) { |
| 1168 | // Debug values are not allowed to affect codegen. |
| 1169 | if (MI.isDebugValue()) { |
| 1170 | // Modify DBG_VALUE now that the value is in a spill slot. |
| 1171 | MachineBasicBlock *MBB = MI.getParent(); |
| 1172 | LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI); |
| 1173 | buildDbgValueForSpill(BB&: *MBB, I: &MI, Orig: MI, FrameIndex: StackSlot, SpillReg: Reg); |
| 1174 | MBB->erase(I: MI); |
| 1175 | continue; |
| 1176 | } |
| 1177 | |
| 1178 | assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " |
| 1179 | "instruction that isn't a DBG_VALUE" ); |
| 1180 | |
| 1181 | // Ignore copies to/from snippets. We'll delete them. |
| 1182 | if (SnippetCopies.count(Ptr: &MI)) |
| 1183 | continue; |
| 1184 | |
| 1185 | // Stack slot accesses may coalesce away. |
| 1186 | if (coalesceStackAccess(MI: &MI, Reg)) |
| 1187 | continue; |
| 1188 | |
| 1189 | // Analyze instruction. |
| 1190 | SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; |
| 1191 | VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, Ops: &Ops); |
| 1192 | |
| 1193 | // Find the slot index where this instruction reads and writes OldLI. |
| 1194 | // This is usually the def slot, except for tied early clobbers. |
| 1195 | SlotIndex Idx = LIS.getInstructionIndex(Instr: MI).getRegSlot(); |
| 1196 | if (VNInfo *VNI = OldLI.getVNInfoAt(Idx: Idx.getRegSlot(EC: true))) |
| 1197 | if (SlotIndex::isSameInstr(A: Idx, B: VNI->def)) |
| 1198 | Idx = VNI->def; |
| 1199 | |
| 1200 | // Check for a sibling copy. |
| 1201 | Register SibReg = isCopyOfBundle(FirstMI: MI, Reg, TII); |
| 1202 | if (SibReg && isSibling(Reg: SibReg)) { |
| 1203 | // This may actually be a copy between snippets. |
| 1204 | if (isRegToSpill(Reg: SibReg)) { |
| 1205 | LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI); |
| 1206 | SnippetCopies.insert(Ptr: &MI); |
| 1207 | continue; |
| 1208 | } |
| 1209 | if (RI.Writes) { |
| 1210 | if (hoistSpillInsideBB(SpillLI&: OldLI, CopyMI&: MI)) { |
| 1211 | // This COPY is now dead, the value is already in the stack slot. |
| 1212 | MI.getOperand(i: 0).setIsDead(); |
| 1213 | DeadDefs.push_back(Elt: &MI); |
| 1214 | continue; |
| 1215 | } |
| 1216 | } else { |
| 1217 | // This is a reload for a sib-reg copy. Drop spills downstream. |
| 1218 | LiveInterval &SibLI = LIS.getInterval(Reg: SibReg); |
| 1219 | eliminateRedundantSpills(SLI&: SibLI, VNI: SibLI.getVNInfoAt(Idx)); |
| 1220 | // The COPY will fold to a reload below. |
| 1221 | } |
| 1222 | } |
| 1223 | |
| 1224 | // Attempt to fold memory ops. |
| 1225 | if (foldMemoryOperand(Ops)) |
| 1226 | continue; |
| 1227 | |
| 1228 | // Create a new virtual register for spill/fill. |
| 1229 | // FIXME: Infer regclass from instruction alone. |
| 1230 | Register NewVReg = Edit->createFrom(OldReg: Reg); |
| 1231 | |
| 1232 | if (RI.Reads) |
| 1233 | insertReload(NewVReg, Idx, MI: &MI); |
| 1234 | |
| 1235 | // Rewrite instruction operands. |
| 1236 | bool hasLiveDef = false; |
| 1237 | for (const auto &OpPair : Ops) { |
| 1238 | MachineOperand &MO = OpPair.first->getOperand(i: OpPair.second); |
| 1239 | MO.setReg(NewVReg); |
| 1240 | if (MO.isUse()) { |
| 1241 | if (!OpPair.first->isRegTiedToDefOperand(UseOpIdx: OpPair.second)) |
| 1242 | MO.setIsKill(); |
| 1243 | } else { |
| 1244 | if (!MO.isDead()) |
| 1245 | hasLiveDef = true; |
| 1246 | } |
| 1247 | } |
| 1248 | LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n'); |
| 1249 | |
| 1250 | // FIXME: Use a second vreg if instruction has no tied ops. |
| 1251 | if (RI.Writes) |
| 1252 | if (hasLiveDef) |
| 1253 | insertSpill(NewVReg, isKill: true, MI: &MI); |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | /// spillAll - Spill all registers remaining after rematerialization. |
| 1258 | void InlineSpiller::spillAll() { |
| 1259 | // Update LiveStacks now that we are committed to spilling. |
| 1260 | if (StackSlot == VirtRegMap::NO_STACK_SLOT) { |
| 1261 | StackSlot = VRM.assignVirt2StackSlot(virtReg: Original); |
| 1262 | StackInt = &LSS.getOrCreateInterval(Slot: StackSlot, RC: MRI.getRegClass(Reg: Original)); |
| 1263 | StackInt->getNextValue(Def: SlotIndex(), VNInfoAllocator&: LSS.getVNInfoAllocator()); |
| 1264 | } else |
| 1265 | StackInt = &LSS.getInterval(Slot: StackSlot); |
| 1266 | |
| 1267 | if (Original != Edit->getReg()) |
| 1268 | VRM.assignVirt2StackSlot(virtReg: Edit->getReg(), SS: StackSlot); |
| 1269 | |
| 1270 | assert(StackInt->getNumValNums() == 1 && "Bad stack interval values" ); |
| 1271 | for (Register Reg : RegsToSpill) |
| 1272 | StackInt->MergeSegmentsInAsValue(RHS: LIS.getInterval(Reg), |
| 1273 | LHSValNo: StackInt->getValNumInfo(ValNo: 0)); |
| 1274 | LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); |
| 1275 | |
| 1276 | // Spill around uses of all RegsToSpill. |
| 1277 | for (Register Reg : RegsToSpill) { |
| 1278 | spillAroundUses(Reg); |
| 1279 | // Assign all of the spilled registers to the slot so that |
| 1280 | // LiveDebugVariables knows about these locations later on. |
| 1281 | if (VRM.getStackSlot(virtReg: Reg) == VirtRegMap::NO_STACK_SLOT) |
| 1282 | VRM.assignVirt2StackSlot(virtReg: Reg, SS: StackSlot); |
| 1283 | } |
| 1284 | |
| 1285 | // Hoisted spills may cause dead code. |
| 1286 | if (!DeadDefs.empty()) { |
| 1287 | LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n" ); |
| 1288 | Edit->eliminateDeadDefs(Dead&: DeadDefs, RegsBeingSpilled: RegsToSpill); |
| 1289 | } |
| 1290 | |
| 1291 | // Finally delete the SnippetCopies. |
| 1292 | for (Register Reg : RegsToSpill) { |
| 1293 | for (MachineInstr &MI : |
| 1294 | llvm::make_early_inc_range(Range: MRI.reg_instructions(Reg))) { |
| 1295 | assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy" ); |
| 1296 | // FIXME: Do this with a LiveRangeEdit callback. |
| 1297 | LIS.getSlotIndexes()->removeSingleMachineInstrFromMaps(MI); |
| 1298 | MI.eraseFromBundle(); |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | // Delete all spilled registers. |
| 1303 | for (Register Reg : RegsToSpill) |
| 1304 | Edit->eraseVirtReg(Reg); |
| 1305 | } |
| 1306 | |
| 1307 | void InlineSpiller::spill(LiveRangeEdit &edit, AllocationOrder *order) { |
| 1308 | ++NumSpilledRanges; |
| 1309 | Edit = &edit; |
| 1310 | Order = order; |
| 1311 | assert(!edit.getReg().isStack() && "Trying to spill a stack slot." ); |
| 1312 | // Share a stack slot among all descendants of Original. |
| 1313 | Original = VRM.getOriginal(VirtReg: edit.getReg()); |
| 1314 | StackSlot = VRM.getStackSlot(virtReg: Original); |
| 1315 | StackInt = nullptr; |
| 1316 | |
| 1317 | LLVM_DEBUG(dbgs() << "Inline spilling " |
| 1318 | << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) |
| 1319 | << ':' << edit.getParent() << "\nFrom original " |
| 1320 | << printReg(Original) << '\n'); |
| 1321 | assert(edit.getParent().isSpillable() && |
| 1322 | "Attempting to spill already spilled value." ); |
| 1323 | assert(DeadDefs.empty() && "Previous spill didn't remove dead defs" ); |
| 1324 | |
| 1325 | collectRegsToSpill(); |
| 1326 | reMaterializeAll(); |
| 1327 | |
| 1328 | // Remat may handle everything. |
| 1329 | if (!RegsToSpill.empty()) |
| 1330 | spillAll(); |
| 1331 | |
| 1332 | Edit->calculateRegClassAndHint(MF, VRAI); |
| 1333 | } |
| 1334 | |
| 1335 | /// Optimizations after all the reg selections and spills are done. |
| 1336 | void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } |
| 1337 | |
| 1338 | /// When a spill is inserted, add the spill to MergeableSpills map. |
| 1339 | void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, |
| 1340 | Register Original) { |
| 1341 | BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); |
| 1342 | LiveInterval &OrigLI = LIS.getInterval(Reg: Original); |
| 1343 | // save a copy of LiveInterval in StackSlotToOrigLI because the original |
| 1344 | // LiveInterval may be cleared after all its references are spilled. |
| 1345 | |
| 1346 | auto [Place, Inserted] = StackSlotToOrigLI.try_emplace(Key: StackSlot); |
| 1347 | if (Inserted) { |
| 1348 | auto LI = std::make_unique<LiveInterval>(args: OrigLI.reg(), args: OrigLI.weight()); |
| 1349 | LI->assign(Other: OrigLI, Allocator); |
| 1350 | Place->second = std::move(LI); |
| 1351 | } |
| 1352 | |
| 1353 | SlotIndex Idx = LIS.getInstructionIndex(Instr: Spill); |
| 1354 | VNInfo *OrigVNI = Place->second->getVNInfoAt(Idx: Idx.getRegSlot()); |
| 1355 | std::pair<int, VNInfo *> MIdx = std::make_pair(x&: StackSlot, y&: OrigVNI); |
| 1356 | MergeableSpills[MIdx].insert(Ptr: &Spill); |
| 1357 | } |
| 1358 | |
| 1359 | /// When a spill is removed, remove the spill from MergeableSpills map. |
| 1360 | /// Return true if the spill is removed successfully. |
| 1361 | bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, |
| 1362 | int StackSlot) { |
| 1363 | auto It = StackSlotToOrigLI.find(Val: StackSlot); |
| 1364 | if (It == StackSlotToOrigLI.end()) |
| 1365 | return false; |
| 1366 | SlotIndex Idx = LIS.getInstructionIndex(Instr: Spill); |
| 1367 | VNInfo *OrigVNI = It->second->getVNInfoAt(Idx: Idx.getRegSlot()); |
| 1368 | std::pair<int, VNInfo *> MIdx = std::make_pair(x&: StackSlot, y&: OrigVNI); |
| 1369 | return MergeableSpills[MIdx].erase(Ptr: &Spill); |
| 1370 | } |
| 1371 | |
| 1372 | /// Check BB to see if it is a possible target BB to place a hoisted spill, |
| 1373 | /// i.e., there should be a living sibling of OrigReg at the insert point. |
| 1374 | bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, |
| 1375 | MachineBasicBlock &BB, Register &LiveReg) { |
| 1376 | SlotIndex Idx = IPA.getLastInsertPoint(CurLI: OrigLI, MBB: BB); |
| 1377 | // The original def could be after the last insert point in the root block, |
| 1378 | // we can't hoist to here. |
| 1379 | if (Idx < OrigVNI.def) { |
| 1380 | // TODO: We could be better here. If LI is not alive in landing pad |
| 1381 | // we could hoist spill after LIP. |
| 1382 | LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n" ); |
| 1383 | return false; |
| 1384 | } |
| 1385 | Register OrigReg = OrigLI.reg(); |
| 1386 | SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg]; |
| 1387 | assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI" ); |
| 1388 | |
| 1389 | for (const Register &SibReg : Siblings) { |
| 1390 | LiveInterval &LI = LIS.getInterval(Reg: SibReg); |
| 1391 | VNInfo *VNI = LI.getVNInfoAt(Idx); |
| 1392 | if (VNI) { |
| 1393 | LiveReg = SibReg; |
| 1394 | return true; |
| 1395 | } |
| 1396 | } |
| 1397 | return false; |
| 1398 | } |
| 1399 | |
| 1400 | /// Remove redundant spills in the same BB. Save those redundant spills in |
| 1401 | /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. |
| 1402 | void HoistSpillHelper::rmRedundantSpills( |
| 1403 | SmallPtrSet<MachineInstr *, 16> &Spills, |
| 1404 | SmallVectorImpl<MachineInstr *> &SpillsToRm, |
| 1405 | DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { |
| 1406 | // For each spill saw, check SpillBBToSpill[] and see if its BB already has |
| 1407 | // another spill inside. If a BB contains more than one spill, only keep the |
| 1408 | // earlier spill with smaller SlotIndex. |
| 1409 | for (auto *const CurrentSpill : Spills) { |
| 1410 | MachineBasicBlock *Block = CurrentSpill->getParent(); |
| 1411 | MachineDomTreeNode *Node = MDT.getNode(BB: Block); |
| 1412 | MachineInstr *PrevSpill = SpillBBToSpill[Node]; |
| 1413 | if (PrevSpill) { |
| 1414 | SlotIndex PIdx = LIS.getInstructionIndex(Instr: *PrevSpill); |
| 1415 | SlotIndex CIdx = LIS.getInstructionIndex(Instr: *CurrentSpill); |
| 1416 | MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; |
| 1417 | MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; |
| 1418 | SpillsToRm.push_back(Elt: SpillToRm); |
| 1419 | SpillBBToSpill[MDT.getNode(BB: Block)] = SpillToKeep; |
| 1420 | } else { |
| 1421 | SpillBBToSpill[MDT.getNode(BB: Block)] = CurrentSpill; |
| 1422 | } |
| 1423 | } |
| 1424 | for (auto *const SpillToRm : SpillsToRm) |
| 1425 | Spills.erase(Ptr: SpillToRm); |
| 1426 | } |
| 1427 | |
| 1428 | /// Starting from \p Root find a top-down traversal order of the dominator |
| 1429 | /// tree to visit all basic blocks containing the elements of \p Spills. |
| 1430 | /// Redundant spills will be found and put into \p SpillsToRm at the same |
| 1431 | /// time. \p SpillBBToSpill will be populated as part of the process and |
| 1432 | /// maps a basic block to the first store occurring in the basic block. |
| 1433 | /// \post SpillsToRm.union(Spills\@post) == Spills\@pre |
| 1434 | void HoistSpillHelper::getVisitOrders( |
| 1435 | MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, |
| 1436 | SmallVectorImpl<MachineDomTreeNode *> &Orders, |
| 1437 | SmallVectorImpl<MachineInstr *> &SpillsToRm, |
| 1438 | DenseMap<MachineDomTreeNode *, Register> &SpillsToKeep, |
| 1439 | DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { |
| 1440 | // The set contains all the possible BB nodes to which we may hoist |
| 1441 | // original spills. |
| 1442 | SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; |
| 1443 | // Save the BB nodes on the path from the first BB node containing |
| 1444 | // non-redundant spill to the Root node. |
| 1445 | SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; |
| 1446 | // All the spills to be hoisted must originate from a single def instruction |
| 1447 | // to the OrigReg. It means the def instruction should dominate all the spills |
| 1448 | // to be hoisted. We choose the BB where the def instruction is located as |
| 1449 | // the Root. |
| 1450 | MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); |
| 1451 | // For every node on the dominator tree with spill, walk up on the dominator |
| 1452 | // tree towards the Root node until it is reached. If there is other node |
| 1453 | // containing spill in the middle of the path, the previous spill saw will |
| 1454 | // be redundant and the node containing it will be removed. All the nodes on |
| 1455 | // the path starting from the first node with non-redundant spill to the Root |
| 1456 | // node will be added to the WorkSet, which will contain all the possible |
| 1457 | // locations where spills may be hoisted to after the loop below is done. |
| 1458 | for (auto *const Spill : Spills) { |
| 1459 | MachineBasicBlock *Block = Spill->getParent(); |
| 1460 | MachineDomTreeNode *Node = MDT[Block]; |
| 1461 | MachineInstr *SpillToRm = nullptr; |
| 1462 | while (Node != RootIDomNode) { |
| 1463 | // If Node dominates Block, and it already contains a spill, the spill in |
| 1464 | // Block will be redundant. |
| 1465 | if (Node != MDT[Block] && SpillBBToSpill[Node]) { |
| 1466 | SpillToRm = SpillBBToSpill[MDT[Block]]; |
| 1467 | break; |
| 1468 | /// If we see the Node already in WorkSet, the path from the Node to |
| 1469 | /// the Root node must already be traversed by another spill. |
| 1470 | /// Then no need to repeat. |
| 1471 | } else if (WorkSet.count(Ptr: Node)) { |
| 1472 | break; |
| 1473 | } else { |
| 1474 | NodesOnPath.insert(Ptr: Node); |
| 1475 | } |
| 1476 | Node = Node->getIDom(); |
| 1477 | } |
| 1478 | if (SpillToRm) { |
| 1479 | SpillsToRm.push_back(Elt: SpillToRm); |
| 1480 | } else { |
| 1481 | // Add a BB containing the original spills to SpillsToKeep -- i.e., |
| 1482 | // set the initial status before hoisting start. The value of BBs |
| 1483 | // containing original spills is set to 0, in order to descriminate |
| 1484 | // with BBs containing hoisted spills which will be inserted to |
| 1485 | // SpillsToKeep later during hoisting. |
| 1486 | SpillsToKeep[MDT[Block]] = Register(); |
| 1487 | WorkSet.insert_range(R&: NodesOnPath); |
| 1488 | } |
| 1489 | NodesOnPath.clear(); |
| 1490 | } |
| 1491 | |
| 1492 | // Sort the nodes in WorkSet in top-down order and save the nodes |
| 1493 | // in Orders. Orders will be used for hoisting in runHoistSpills. |
| 1494 | unsigned idx = 0; |
| 1495 | Orders.push_back(Elt: MDT.getNode(BB: Root)); |
| 1496 | do { |
| 1497 | MachineDomTreeNode *Node = Orders[idx++]; |
| 1498 | for (MachineDomTreeNode *Child : Node->children()) { |
| 1499 | if (WorkSet.count(Ptr: Child)) |
| 1500 | Orders.push_back(Elt: Child); |
| 1501 | } |
| 1502 | } while (idx != Orders.size()); |
| 1503 | assert(Orders.size() == WorkSet.size() && |
| 1504 | "Orders have different size with WorkSet" ); |
| 1505 | |
| 1506 | #ifndef NDEBUG |
| 1507 | LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n" ); |
| 1508 | SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); |
| 1509 | for (; RIt != Orders.rend(); RIt++) |
| 1510 | LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << "," ); |
| 1511 | LLVM_DEBUG(dbgs() << "\n" ); |
| 1512 | #endif |
| 1513 | } |
| 1514 | |
| 1515 | /// Try to hoist spills according to BB hotness. The spills to removed will |
| 1516 | /// be saved in \p SpillsToRm. The spills to be inserted will be saved in |
| 1517 | /// \p SpillsToIns. |
| 1518 | void HoistSpillHelper::runHoistSpills( |
| 1519 | LiveInterval &OrigLI, VNInfo &OrigVNI, |
| 1520 | SmallPtrSet<MachineInstr *, 16> &Spills, |
| 1521 | SmallVectorImpl<MachineInstr *> &SpillsToRm, |
| 1522 | DenseMap<MachineBasicBlock *, Register> &SpillsToIns) { |
| 1523 | // Visit order of dominator tree nodes. |
| 1524 | SmallVector<MachineDomTreeNode *, 32> Orders; |
| 1525 | // SpillsToKeep contains all the nodes where spills are to be inserted |
| 1526 | // during hoisting. If the spill to be inserted is an original spill |
| 1527 | // (not a hoisted one), the value of the map entry is 0. If the spill |
| 1528 | // is a hoisted spill, the value of the map entry is the VReg to be used |
| 1529 | // as the source of the spill. |
| 1530 | DenseMap<MachineDomTreeNode *, Register> SpillsToKeep; |
| 1531 | // Map from BB to the first spill inside of it. |
| 1532 | DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; |
| 1533 | |
| 1534 | rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); |
| 1535 | |
| 1536 | MachineBasicBlock *Root = LIS.getMBBFromIndex(index: OrigVNI.def); |
| 1537 | getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, |
| 1538 | SpillBBToSpill); |
| 1539 | |
| 1540 | // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of |
| 1541 | // nodes set and the cost of all the spills inside those nodes. |
| 1542 | // The nodes set are the locations where spills are to be inserted |
| 1543 | // in the subtree of current node. |
| 1544 | using NodesCostPair = |
| 1545 | std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; |
| 1546 | DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; |
| 1547 | |
| 1548 | // Iterate Orders set in reverse order, which will be a bottom-up order |
| 1549 | // in the dominator tree. Once we visit a dom tree node, we know its |
| 1550 | // children have already been visited and the spill locations in the |
| 1551 | // subtrees of all the children have been determined. |
| 1552 | SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); |
| 1553 | for (; RIt != Orders.rend(); RIt++) { |
| 1554 | MachineBasicBlock *Block = (*RIt)->getBlock(); |
| 1555 | |
| 1556 | // If Block contains an original spill, simply continue. |
| 1557 | if (auto It = SpillsToKeep.find(Val: *RIt); |
| 1558 | It != SpillsToKeep.end() && !It->second) { |
| 1559 | auto &SIt = SpillsInSubTreeMap[*RIt]; |
| 1560 | SIt.first.insert(Ptr: *RIt); |
| 1561 | // Sit.second contains the cost of spill. |
| 1562 | SIt.second = MBFI.getBlockFreq(MBB: Block); |
| 1563 | continue; |
| 1564 | } |
| 1565 | |
| 1566 | // Collect spills in subtree of current node (*RIt) to |
| 1567 | // SpillsInSubTreeMap[*RIt].first. |
| 1568 | for (MachineDomTreeNode *Child : (*RIt)->children()) { |
| 1569 | if (!SpillsInSubTreeMap.contains(Val: Child)) |
| 1570 | continue; |
| 1571 | // The stmt: |
| 1572 | // "auto &[SpillsInSubTree, SubTreeCost] = SpillsInSubTreeMap[*RIt]" |
| 1573 | // below should be placed before getting the begin and end iterators of |
| 1574 | // SpillsInSubTreeMap[Child].first, or else the iterators may be |
| 1575 | // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time |
| 1576 | // and the map grows and then the original buckets in the map are moved. |
| 1577 | auto &[SpillsInSubTree, SubTreeCost] = SpillsInSubTreeMap[*RIt]; |
| 1578 | auto ChildIt = SpillsInSubTreeMap.find(Val: Child); |
| 1579 | SubTreeCost += ChildIt->second.second; |
| 1580 | auto BI = ChildIt->second.first.begin(); |
| 1581 | auto EI = ChildIt->second.first.end(); |
| 1582 | SpillsInSubTree.insert(I: BI, E: EI); |
| 1583 | SpillsInSubTreeMap.erase(I: ChildIt); |
| 1584 | } |
| 1585 | |
| 1586 | auto &[SpillsInSubTree, SubTreeCost] = SpillsInSubTreeMap[*RIt]; |
| 1587 | // No spills in subtree, simply continue. |
| 1588 | if (SpillsInSubTree.empty()) |
| 1589 | continue; |
| 1590 | |
| 1591 | // Check whether Block is a possible candidate to insert spill. |
| 1592 | Register LiveReg; |
| 1593 | if (!isSpillCandBB(OrigLI, OrigVNI, BB&: *Block, LiveReg)) |
| 1594 | continue; |
| 1595 | |
| 1596 | // If there are multiple spills that could be merged, bias a little |
| 1597 | // to hoist the spill. |
| 1598 | BranchProbability MarginProb = (SpillsInSubTree.size() > 1) |
| 1599 | ? BranchProbability(9, 10) |
| 1600 | : BranchProbability(1, 1); |
| 1601 | if (SubTreeCost > MBFI.getBlockFreq(MBB: Block) * MarginProb) { |
| 1602 | // Hoist: Move spills to current Block. |
| 1603 | for (auto *const SpillBB : SpillsInSubTree) { |
| 1604 | // When SpillBB is a BB contains original spill, insert the spill |
| 1605 | // to SpillsToRm. |
| 1606 | if (auto It = SpillsToKeep.find(Val: SpillBB); |
| 1607 | It != SpillsToKeep.end() && !It->second) { |
| 1608 | MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; |
| 1609 | SpillsToRm.push_back(Elt: SpillToRm); |
| 1610 | } |
| 1611 | // SpillBB will not contain spill anymore, remove it from SpillsToKeep. |
| 1612 | SpillsToKeep.erase(Val: SpillBB); |
| 1613 | } |
| 1614 | // Current Block is the BB containing the new hoisted spill. Add it to |
| 1615 | // SpillsToKeep. LiveReg is the source of the new spill. |
| 1616 | SpillsToKeep[*RIt] = LiveReg; |
| 1617 | LLVM_DEBUG({ |
| 1618 | dbgs() << "spills in BB: " ; |
| 1619 | for (const auto Rspill : SpillsInSubTree) |
| 1620 | dbgs() << Rspill->getBlock()->getNumber() << " " ; |
| 1621 | dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() |
| 1622 | << "\n" ; |
| 1623 | }); |
| 1624 | SpillsInSubTree.clear(); |
| 1625 | SpillsInSubTree.insert(Ptr: *RIt); |
| 1626 | SubTreeCost = MBFI.getBlockFreq(MBB: Block); |
| 1627 | } |
| 1628 | } |
| 1629 | // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), |
| 1630 | // save them to SpillsToIns. |
| 1631 | for (const auto &Ent : SpillsToKeep) { |
| 1632 | if (Ent.second) |
| 1633 | SpillsToIns[Ent.first->getBlock()] = Ent.second; |
| 1634 | } |
| 1635 | } |
| 1636 | |
| 1637 | /// For spills with equal values, remove redundant spills and hoist those left |
| 1638 | /// to less hot spots. |
| 1639 | /// |
| 1640 | /// Spills with equal values will be collected into the same set in |
| 1641 | /// MergeableSpills when spill is inserted. These equal spills are originated |
| 1642 | /// from the same defining instruction and are dominated by the instruction. |
| 1643 | /// Before hoisting all the equal spills, redundant spills inside in the same |
| 1644 | /// BB are first marked to be deleted. Then starting from the spills left, walk |
| 1645 | /// up on the dominator tree towards the Root node where the define instruction |
| 1646 | /// is located, mark the dominated spills to be deleted along the way and |
| 1647 | /// collect the BB nodes on the path from non-dominated spills to the define |
| 1648 | /// instruction into a WorkSet. The nodes in WorkSet are the candidate places |
| 1649 | /// where we are considering to hoist the spills. We iterate the WorkSet in |
| 1650 | /// bottom-up order, and for each node, we will decide whether to hoist spills |
| 1651 | /// inside its subtree to that node. In this way, we can get benefit locally |
| 1652 | /// even if hoisting all the equal spills to one cold place is impossible. |
| 1653 | void HoistSpillHelper::hoistAllSpills() { |
| 1654 | SmallVector<Register, 4> NewVRegs; |
| 1655 | LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); |
| 1656 | |
| 1657 | for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { |
| 1658 | Register Reg = Register::index2VirtReg(Index: i); |
| 1659 | Register Original = VRM.getPreSplitReg(virtReg: Reg); |
| 1660 | if (!MRI.def_empty(RegNo: Reg)) |
| 1661 | Virt2SiblingsMap[Original].insert(X: Reg); |
| 1662 | } |
| 1663 | |
| 1664 | // Each entry in MergeableSpills contains a spill set with equal values. |
| 1665 | for (auto &Ent : MergeableSpills) { |
| 1666 | int Slot = Ent.first.first; |
| 1667 | LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; |
| 1668 | VNInfo *OrigVNI = Ent.first.second; |
| 1669 | SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; |
| 1670 | if (Ent.second.empty()) |
| 1671 | continue; |
| 1672 | |
| 1673 | LLVM_DEBUG({ |
| 1674 | dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" |
| 1675 | << "Equal spills in BB: " ; |
| 1676 | for (const auto spill : EqValSpills) |
| 1677 | dbgs() << spill->getParent()->getNumber() << " " ; |
| 1678 | dbgs() << "\n" ; |
| 1679 | }); |
| 1680 | |
| 1681 | // SpillsToRm is the spill set to be removed from EqValSpills. |
| 1682 | SmallVector<MachineInstr *, 16> SpillsToRm; |
| 1683 | // SpillsToIns is the spill set to be newly inserted after hoisting. |
| 1684 | DenseMap<MachineBasicBlock *, Register> SpillsToIns; |
| 1685 | |
| 1686 | runHoistSpills(OrigLI, OrigVNI&: *OrigVNI, Spills&: EqValSpills, SpillsToRm, SpillsToIns); |
| 1687 | |
| 1688 | LLVM_DEBUG({ |
| 1689 | dbgs() << "Finally inserted spills in BB: " ; |
| 1690 | for (const auto &Ispill : SpillsToIns) |
| 1691 | dbgs() << Ispill.first->getNumber() << " " ; |
| 1692 | dbgs() << "\nFinally removed spills in BB: " ; |
| 1693 | for (const auto Rspill : SpillsToRm) |
| 1694 | dbgs() << Rspill->getParent()->getNumber() << " " ; |
| 1695 | dbgs() << "\n" ; |
| 1696 | }); |
| 1697 | |
| 1698 | // Stack live range update. |
| 1699 | LiveInterval &StackIntvl = LSS.getInterval(Slot); |
| 1700 | if (!SpillsToIns.empty() || !SpillsToRm.empty()) |
| 1701 | StackIntvl.MergeValueInAsValue(RHS: OrigLI, RHSValNo: OrigVNI, |
| 1702 | LHSValNo: StackIntvl.getValNumInfo(ValNo: 0)); |
| 1703 | |
| 1704 | // Insert hoisted spills. |
| 1705 | for (auto const &Insert : SpillsToIns) { |
| 1706 | MachineBasicBlock *BB = Insert.first; |
| 1707 | Register LiveReg = Insert.second; |
| 1708 | MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(CurLI: OrigLI, MBB&: *BB); |
| 1709 | MachineInstrSpan MIS(MII, BB); |
| 1710 | TII.storeRegToStackSlot(MBB&: *BB, MI: MII, SrcReg: LiveReg, isKill: false, FrameIndex: Slot, |
| 1711 | RC: MRI.getRegClass(Reg: LiveReg), TRI: &TRI, VReg: Register()); |
| 1712 | LIS.InsertMachineInstrRangeInMaps(B: MIS.begin(), E: MII); |
| 1713 | for (const MachineInstr &MI : make_range(x: MIS.begin(), y: MII)) |
| 1714 | getVDefInterval(MI, LIS); |
| 1715 | ++NumSpills; |
| 1716 | } |
| 1717 | |
| 1718 | // Remove redundant spills or change them to dead instructions. |
| 1719 | NumSpills -= SpillsToRm.size(); |
| 1720 | for (auto *const RMEnt : SpillsToRm) { |
| 1721 | RMEnt->setDesc(TII.get(Opcode: TargetOpcode::KILL)); |
| 1722 | for (unsigned i = RMEnt->getNumOperands(); i; --i) { |
| 1723 | MachineOperand &MO = RMEnt->getOperand(i: i - 1); |
| 1724 | if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) |
| 1725 | RMEnt->removeOperand(OpNo: i - 1); |
| 1726 | } |
| 1727 | } |
| 1728 | Edit.eliminateDeadDefs(Dead&: SpillsToRm, RegsBeingSpilled: {}); |
| 1729 | } |
| 1730 | } |
| 1731 | |
| 1732 | /// For VirtReg clone, the \p New register should have the same physreg or |
| 1733 | /// stackslot as the \p old register. |
| 1734 | void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) { |
| 1735 | if (VRM.hasPhys(virtReg: Old)) |
| 1736 | VRM.assignVirt2Phys(virtReg: New, physReg: VRM.getPhys(virtReg: Old)); |
| 1737 | else if (VRM.getStackSlot(virtReg: Old) != VirtRegMap::NO_STACK_SLOT) |
| 1738 | VRM.assignVirt2StackSlot(virtReg: New, SS: VRM.getStackSlot(virtReg: Old)); |
| 1739 | else |
| 1740 | llvm_unreachable("VReg should be assigned either physreg or stackslot" ); |
| 1741 | if (VRM.hasShape(virtReg: Old)) |
| 1742 | VRM.assignVirt2Shape(virtReg: New, shape: VRM.getShape(virtReg: Old)); |
| 1743 | } |
| 1744 | |