| 1 | //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Pass to verify generated machine code. The following is checked: |
| 10 | // |
| 11 | // Operand counts: All explicit operands must be present. |
| 12 | // |
| 13 | // Register classes: All physical and virtual register operands must be |
| 14 | // compatible with the register class required by the instruction descriptor. |
| 15 | // |
| 16 | // Register live intervals: Registers must be defined only once, and must be |
| 17 | // defined before use. |
| 18 | // |
| 19 | // The machine code verifier is enabled with the command-line option |
| 20 | // -verify-machineinstrs. |
| 21 | //===----------------------------------------------------------------------===// |
| 22 | |
| 23 | #include "llvm/CodeGen/MachineVerifier.h" |
| 24 | #include "llvm/ADT/BitVector.h" |
| 25 | #include "llvm/ADT/DenseMap.h" |
| 26 | #include "llvm/ADT/DenseSet.h" |
| 27 | #include "llvm/ADT/DepthFirstIterator.h" |
| 28 | #include "llvm/ADT/PostOrderIterator.h" |
| 29 | #include "llvm/ADT/STLExtras.h" |
| 30 | #include "llvm/ADT/SetOperations.h" |
| 31 | #include "llvm/ADT/SmallPtrSet.h" |
| 32 | #include "llvm/ADT/SmallVector.h" |
| 33 | #include "llvm/ADT/StringRef.h" |
| 34 | #include "llvm/ADT/Twine.h" |
| 35 | #include "llvm/CodeGen/CodeGenCommonISel.h" |
| 36 | #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
| 37 | #include "llvm/CodeGen/LiveInterval.h" |
| 38 | #include "llvm/CodeGen/LiveIntervals.h" |
| 39 | #include "llvm/CodeGen/LiveRangeCalc.h" |
| 40 | #include "llvm/CodeGen/LiveStacks.h" |
| 41 | #include "llvm/CodeGen/LiveVariables.h" |
| 42 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 43 | #include "llvm/CodeGen/MachineConvergenceVerifier.h" |
| 44 | #include "llvm/CodeGen/MachineDominators.h" |
| 45 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 46 | #include "llvm/CodeGen/MachineFunction.h" |
| 47 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 48 | #include "llvm/CodeGen/MachineInstr.h" |
| 49 | #include "llvm/CodeGen/MachineInstrBundle.h" |
| 50 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 51 | #include "llvm/CodeGen/MachineOperand.h" |
| 52 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 53 | #include "llvm/CodeGen/PseudoSourceValue.h" |
| 54 | #include "llvm/CodeGen/RegisterBank.h" |
| 55 | #include "llvm/CodeGen/RegisterBankInfo.h" |
| 56 | #include "llvm/CodeGen/SlotIndexes.h" |
| 57 | #include "llvm/CodeGen/StackMaps.h" |
| 58 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 59 | #include "llvm/CodeGen/TargetLowering.h" |
| 60 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 61 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 62 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 63 | #include "llvm/CodeGenTypes/LowLevelType.h" |
| 64 | #include "llvm/IR/BasicBlock.h" |
| 65 | #include "llvm/IR/Constants.h" |
| 66 | #include "llvm/IR/EHPersonalities.h" |
| 67 | #include "llvm/IR/Function.h" |
| 68 | #include "llvm/IR/InlineAsm.h" |
| 69 | #include "llvm/IR/Instructions.h" |
| 70 | #include "llvm/InitializePasses.h" |
| 71 | #include "llvm/MC/LaneBitmask.h" |
| 72 | #include "llvm/MC/MCAsmInfo.h" |
| 73 | #include "llvm/MC/MCDwarf.h" |
| 74 | #include "llvm/MC/MCInstrDesc.h" |
| 75 | #include "llvm/MC/MCRegisterInfo.h" |
| 76 | #include "llvm/MC/MCTargetOptions.h" |
| 77 | #include "llvm/Pass.h" |
| 78 | #include "llvm/Support/Casting.h" |
| 79 | #include "llvm/Support/ErrorHandling.h" |
| 80 | #include "llvm/Support/ManagedStatic.h" |
| 81 | #include "llvm/Support/MathExtras.h" |
| 82 | #include "llvm/Support/ModRef.h" |
| 83 | #include "llvm/Support/Mutex.h" |
| 84 | #include "llvm/Support/raw_ostream.h" |
| 85 | #include "llvm/Target/TargetMachine.h" |
| 86 | #include <algorithm> |
| 87 | #include <cassert> |
| 88 | #include <cstddef> |
| 89 | #include <cstdint> |
| 90 | #include <iterator> |
| 91 | #include <string> |
| 92 | #include <utility> |
| 93 | |
| 94 | using namespace llvm; |
| 95 | |
| 96 | namespace { |
| 97 | |
| 98 | /// Used the by the ReportedErrors class to guarantee only one error is reported |
| 99 | /// at one time. |
| 100 | static ManagedStatic<sys::SmartMutex<true>> ReportedErrorsLock; |
| 101 | |
| 102 | struct MachineVerifier { |
| 103 | MachineVerifier(MachineFunctionAnalysisManager &MFAM, const char *b, |
| 104 | raw_ostream *OS, bool AbortOnError = true) |
| 105 | : MFAM(&MFAM), OS(OS ? *OS : nulls()), Banner(b), |
| 106 | ReportedErrs(AbortOnError) {} |
| 107 | |
| 108 | MachineVerifier(Pass *pass, const char *b, raw_ostream *OS, |
| 109 | bool AbortOnError = true) |
| 110 | : PASS(pass), OS(OS ? *OS : nulls()), Banner(b), |
| 111 | ReportedErrs(AbortOnError) {} |
| 112 | |
| 113 | MachineVerifier(const char *b, LiveVariables *LiveVars, |
| 114 | LiveIntervals *LiveInts, LiveStacks *LiveStks, |
| 115 | SlotIndexes *Indexes, raw_ostream *OS, |
| 116 | bool AbortOnError = true) |
| 117 | : OS(OS ? *OS : nulls()), Banner(b), LiveVars(LiveVars), |
| 118 | LiveInts(LiveInts), LiveStks(LiveStks), Indexes(Indexes), |
| 119 | ReportedErrs(AbortOnError) {} |
| 120 | |
| 121 | /// \returns true if no problems were found. |
| 122 | bool verify(const MachineFunction &MF); |
| 123 | |
| 124 | MachineFunctionAnalysisManager *MFAM = nullptr; |
| 125 | Pass *const PASS = nullptr; |
| 126 | raw_ostream &OS; |
| 127 | const char *Banner; |
| 128 | const MachineFunction *MF = nullptr; |
| 129 | const TargetMachine *TM = nullptr; |
| 130 | const TargetInstrInfo *TII = nullptr; |
| 131 | const TargetRegisterInfo *TRI = nullptr; |
| 132 | const MachineRegisterInfo *MRI = nullptr; |
| 133 | const RegisterBankInfo *RBI = nullptr; |
| 134 | |
| 135 | // Avoid querying the MachineFunctionProperties for each operand. |
| 136 | bool isFunctionRegBankSelected = false; |
| 137 | bool isFunctionSelected = false; |
| 138 | bool isFunctionTracksDebugUserValues = false; |
| 139 | |
| 140 | using RegVector = SmallVector<Register, 16>; |
| 141 | using RegMaskVector = SmallVector<const uint32_t *, 4>; |
| 142 | using RegSet = DenseSet<Register>; |
| 143 | using RegMap = DenseMap<Register, const MachineInstr *>; |
| 144 | using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; |
| 145 | |
| 146 | const MachineInstr *FirstNonPHI = nullptr; |
| 147 | const MachineInstr *FirstTerminator = nullptr; |
| 148 | BlockSet FunctionBlocks; |
| 149 | |
| 150 | BitVector regsReserved; |
| 151 | RegSet regsLive; |
| 152 | RegVector regsDefined, regsDead, regsKilled; |
| 153 | RegMaskVector regMasks; |
| 154 | |
| 155 | SlotIndex lastIndex; |
| 156 | |
| 157 | // Add Reg and any sub-registers to RV |
| 158 | void addRegWithSubRegs(RegVector &RV, Register Reg) { |
| 159 | RV.push_back(Elt: Reg); |
| 160 | if (Reg.isPhysical()) |
| 161 | append_range(C&: RV, R: TRI->subregs(Reg: Reg.asMCReg())); |
| 162 | } |
| 163 | |
| 164 | struct BBInfo { |
| 165 | // Is this MBB reachable from the MF entry point? |
| 166 | bool reachable = false; |
| 167 | |
| 168 | // Vregs that must be live in because they are used without being |
| 169 | // defined. Map value is the user. vregsLiveIn doesn't include regs |
| 170 | // that only are used by PHI nodes. |
| 171 | RegMap vregsLiveIn; |
| 172 | |
| 173 | // Regs killed in MBB. They may be defined again, and will then be in both |
| 174 | // regsKilled and regsLiveOut. |
| 175 | RegSet regsKilled; |
| 176 | |
| 177 | // Regs defined in MBB and live out. Note that vregs passing through may |
| 178 | // be live out without being mentioned here. |
| 179 | RegSet regsLiveOut; |
| 180 | |
| 181 | // Vregs that pass through MBB untouched. This set is disjoint from |
| 182 | // regsKilled and regsLiveOut. |
| 183 | RegSet vregsPassed; |
| 184 | |
| 185 | // Vregs that must pass through MBB because they are needed by a successor |
| 186 | // block. This set is disjoint from regsLiveOut. |
| 187 | RegSet vregsRequired; |
| 188 | |
| 189 | // Set versions of block's predecessor and successor lists. |
| 190 | BlockSet Preds, Succs; |
| 191 | |
| 192 | BBInfo() = default; |
| 193 | |
| 194 | // Add register to vregsRequired if it belongs there. Return true if |
| 195 | // anything changed. |
| 196 | bool addRequired(Register Reg) { |
| 197 | if (!Reg.isVirtual()) |
| 198 | return false; |
| 199 | if (regsLiveOut.count(V: Reg)) |
| 200 | return false; |
| 201 | return vregsRequired.insert(V: Reg).second; |
| 202 | } |
| 203 | |
| 204 | // Same for a full set. |
| 205 | bool addRequired(const RegSet &RS) { |
| 206 | bool Changed = false; |
| 207 | for (Register Reg : RS) |
| 208 | Changed |= addRequired(Reg); |
| 209 | return Changed; |
| 210 | } |
| 211 | |
| 212 | // Same for a full map. |
| 213 | bool addRequired(const RegMap &RM) { |
| 214 | bool Changed = false; |
| 215 | for (const auto &I : RM) |
| 216 | Changed |= addRequired(Reg: I.first); |
| 217 | return Changed; |
| 218 | } |
| 219 | |
| 220 | // Live-out registers are either in regsLiveOut or vregsPassed. |
| 221 | bool isLiveOut(Register Reg) const { |
| 222 | return regsLiveOut.count(V: Reg) || vregsPassed.count(V: Reg); |
| 223 | } |
| 224 | }; |
| 225 | |
| 226 | // Extra register info per MBB. |
| 227 | DenseMap<const MachineBasicBlock *, BBInfo> MBBInfoMap; |
| 228 | |
| 229 | bool isReserved(Register Reg) { |
| 230 | return Reg.id() < regsReserved.size() && regsReserved.test(Idx: Reg.id()); |
| 231 | } |
| 232 | |
| 233 | bool isAllocatable(Register Reg) const { |
| 234 | return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(RegNo: Reg) && |
| 235 | !regsReserved.test(Idx: Reg.id()); |
| 236 | } |
| 237 | |
| 238 | // Analysis information if available |
| 239 | LiveVariables *LiveVars = nullptr; |
| 240 | LiveIntervals *LiveInts = nullptr; |
| 241 | LiveStacks *LiveStks = nullptr; |
| 242 | SlotIndexes *Indexes = nullptr; |
| 243 | |
| 244 | /// A class to track the number of reported error and to guarantee that only |
| 245 | /// one error is reported at one time. |
| 246 | class ReportedErrors { |
| 247 | unsigned NumReported = 0; |
| 248 | bool AbortOnError; |
| 249 | |
| 250 | public: |
| 251 | /// \param AbortOnError -- If set, abort after printing the first error. |
| 252 | ReportedErrors(bool AbortOnError) : AbortOnError(AbortOnError) {} |
| 253 | |
| 254 | ~ReportedErrors() { |
| 255 | if (!hasError()) |
| 256 | return; |
| 257 | if (AbortOnError) |
| 258 | report_fatal_error(reason: "Found " + Twine(NumReported) + |
| 259 | " machine code errors." ); |
| 260 | // Since we haven't aborted, release the lock to allow other threads to |
| 261 | // report errors. |
| 262 | ReportedErrorsLock->unlock(); |
| 263 | } |
| 264 | |
| 265 | /// Increment the number of reported errors. |
| 266 | /// \returns true if this is the first reported error. |
| 267 | bool increment() { |
| 268 | // If this is the first error this thread has encountered, grab the lock |
| 269 | // to prevent other threads from reporting errors at the same time. |
| 270 | // Otherwise we assume we already have the lock. |
| 271 | if (!hasError()) |
| 272 | ReportedErrorsLock->lock(); |
| 273 | ++NumReported; |
| 274 | return NumReported == 1; |
| 275 | } |
| 276 | |
| 277 | /// \returns true if an error was reported. |
| 278 | bool hasError() { return NumReported; } |
| 279 | }; |
| 280 | ReportedErrors ReportedErrs; |
| 281 | |
| 282 | // This is calculated only when trying to verify convergence control tokens. |
| 283 | // Similar to the LLVM IR verifier, we calculate this locally instead of |
| 284 | // relying on the pass manager. |
| 285 | MachineDominatorTree DT; |
| 286 | |
| 287 | void visitMachineFunctionBefore(); |
| 288 | void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); |
| 289 | void visitMachineBundleBefore(const MachineInstr *MI); |
| 290 | |
| 291 | /// Verify that all of \p MI's virtual register operands are scalars. |
| 292 | /// \returns True if all virtual register operands are scalar. False |
| 293 | /// otherwise. |
| 294 | bool verifyAllRegOpsScalar(const MachineInstr &MI, |
| 295 | const MachineRegisterInfo &MRI); |
| 296 | bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); |
| 297 | |
| 298 | bool verifyGIntrinsicSideEffects(const MachineInstr *MI); |
| 299 | bool verifyGIntrinsicConvergence(const MachineInstr *MI); |
| 300 | void verifyPreISelGenericInstruction(const MachineInstr *MI); |
| 301 | |
| 302 | void visitMachineInstrBefore(const MachineInstr *MI); |
| 303 | void visitMachineOperand(const MachineOperand *MO, unsigned MONum); |
| 304 | void visitMachineBundleAfter(const MachineInstr *MI); |
| 305 | void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); |
| 306 | void visitMachineFunctionAfter(); |
| 307 | |
| 308 | void report(const char *msg, const MachineFunction *MF); |
| 309 | void report(const char *msg, const MachineBasicBlock *MBB); |
| 310 | void report(const char *msg, const MachineInstr *MI); |
| 311 | void report(const char *msg, const MachineOperand *MO, unsigned MONum, |
| 312 | LLT MOVRegType = LLT{}); |
| 313 | void report(const Twine &Msg, const MachineInstr *MI); |
| 314 | |
| 315 | void report_context(const LiveInterval &LI) const; |
| 316 | void report_context(const LiveRange &LR, VirtRegOrUnit VRegOrUnit, |
| 317 | LaneBitmask LaneMask) const; |
| 318 | void report_context(const LiveRange::Segment &S) const; |
| 319 | void report_context(const VNInfo &VNI) const; |
| 320 | void report_context(SlotIndex Pos) const; |
| 321 | void report_context(MCPhysReg PhysReg) const; |
| 322 | void report_context_liverange(const LiveRange &LR) const; |
| 323 | void report_context_lanemask(LaneBitmask LaneMask) const; |
| 324 | void report_context_vreg(Register VReg) const; |
| 325 | void report_context_vreg_regunit(VirtRegOrUnit VRegOrUnit) const; |
| 326 | |
| 327 | void verifyInlineAsm(const MachineInstr *MI); |
| 328 | |
| 329 | void checkLiveness(const MachineOperand *MO, unsigned MONum); |
| 330 | void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, |
| 331 | SlotIndex UseIdx, const LiveRange &LR, |
| 332 | VirtRegOrUnit VRegOrUnit, |
| 333 | LaneBitmask LaneMask = LaneBitmask::getNone()); |
| 334 | void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, |
| 335 | SlotIndex DefIdx, const LiveRange &LR, |
| 336 | VirtRegOrUnit VRegOrUnit, bool SubRangeCheck = false, |
| 337 | LaneBitmask LaneMask = LaneBitmask::getNone()); |
| 338 | |
| 339 | void markReachable(const MachineBasicBlock *MBB); |
| 340 | void calcRegsPassed(); |
| 341 | void checkPHIOps(const MachineBasicBlock &MBB); |
| 342 | |
| 343 | void calcRegsRequired(); |
| 344 | void verifyLiveVariables(); |
| 345 | void verifyLiveIntervals(); |
| 346 | void verifyLiveInterval(const LiveInterval &); |
| 347 | void verifyLiveRangeValue(const LiveRange &, const VNInfo *, VirtRegOrUnit, |
| 348 | LaneBitmask); |
| 349 | void verifyLiveRangeSegment(const LiveRange &, |
| 350 | const LiveRange::const_iterator I, VirtRegOrUnit, |
| 351 | LaneBitmask); |
| 352 | void verifyLiveRange(const LiveRange &, VirtRegOrUnit, |
| 353 | LaneBitmask LaneMask = LaneBitmask::getNone()); |
| 354 | |
| 355 | void verifyStackFrame(); |
| 356 | /// Check that the stack protector is the top-most object in the stack. |
| 357 | void verifyStackProtector(); |
| 358 | |
| 359 | void verifySlotIndexes() const; |
| 360 | void verifyProperties(const MachineFunction &MF); |
| 361 | }; |
| 362 | |
| 363 | struct MachineVerifierLegacyPass : public MachineFunctionPass { |
| 364 | static char ID; // Pass ID, replacement for typeid |
| 365 | |
| 366 | const std::string Banner; |
| 367 | |
| 368 | MachineVerifierLegacyPass(std::string banner = std::string()) |
| 369 | : MachineFunctionPass(ID), Banner(std::move(banner)) { |
| 370 | initializeMachineVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); |
| 371 | } |
| 372 | |
| 373 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 374 | AU.addUsedIfAvailable<LiveStacksWrapperLegacy>(); |
| 375 | AU.addUsedIfAvailable<LiveVariablesWrapperPass>(); |
| 376 | AU.addUsedIfAvailable<SlotIndexesWrapperPass>(); |
| 377 | AU.addUsedIfAvailable<LiveIntervalsWrapperPass>(); |
| 378 | AU.setPreservesAll(); |
| 379 | MachineFunctionPass::getAnalysisUsage(AU); |
| 380 | } |
| 381 | |
| 382 | bool runOnMachineFunction(MachineFunction &MF) override { |
| 383 | // Skip functions that have known verification problems. |
| 384 | // FIXME: Remove this mechanism when all problematic passes have been |
| 385 | // fixed. |
| 386 | if (MF.getProperties().hasFailsVerification()) |
| 387 | return false; |
| 388 | |
| 389 | MachineVerifier(this, Banner.c_str(), &errs()).verify(MF); |
| 390 | return false; |
| 391 | } |
| 392 | }; |
| 393 | |
| 394 | } // end anonymous namespace |
| 395 | |
| 396 | PreservedAnalyses |
| 397 | MachineVerifierPass::run(MachineFunction &MF, |
| 398 | MachineFunctionAnalysisManager &MFAM) { |
| 399 | // Skip functions that have known verification problems. |
| 400 | // FIXME: Remove this mechanism when all problematic passes have been |
| 401 | // fixed. |
| 402 | if (MF.getProperties().hasFailsVerification()) |
| 403 | return PreservedAnalyses::all(); |
| 404 | MachineVerifier(MFAM, Banner.c_str(), &errs()).verify(MF); |
| 405 | return PreservedAnalyses::all(); |
| 406 | } |
| 407 | |
| 408 | char MachineVerifierLegacyPass::ID = 0; |
| 409 | |
| 410 | INITIALIZE_PASS(MachineVerifierLegacyPass, "machineverifier" , |
| 411 | "Verify generated machine code" , false, false) |
| 412 | |
| 413 | FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { |
| 414 | return new MachineVerifierLegacyPass(Banner); |
| 415 | } |
| 416 | |
| 417 | void llvm::verifyMachineFunction(const std::string &Banner, |
| 418 | const MachineFunction &MF) { |
| 419 | // TODO: Use MFAM after porting below analyses. |
| 420 | // LiveVariables *LiveVars; |
| 421 | // LiveIntervals *LiveInts; |
| 422 | // LiveStacks *LiveStks; |
| 423 | // SlotIndexes *Indexes; |
| 424 | MachineVerifier(nullptr, Banner.c_str(), &errs()).verify(MF); |
| 425 | } |
| 426 | |
| 427 | bool MachineFunction::verify(Pass *p, const char *Banner, raw_ostream *OS, |
| 428 | bool AbortOnError) const { |
| 429 | return MachineVerifier(p, Banner, OS, AbortOnError).verify(MF: *this); |
| 430 | } |
| 431 | |
| 432 | bool MachineFunction::verify(MachineFunctionAnalysisManager &MFAM, |
| 433 | const char *Banner, raw_ostream *OS, |
| 434 | bool AbortOnError) const { |
| 435 | return MachineVerifier(MFAM, Banner, OS, AbortOnError).verify(MF: *this); |
| 436 | } |
| 437 | |
| 438 | bool MachineFunction::verify(LiveIntervals *LiveInts, SlotIndexes *Indexes, |
| 439 | const char *Banner, raw_ostream *OS, |
| 440 | bool AbortOnError) const { |
| 441 | return MachineVerifier(Banner, /*LiveVars=*/nullptr, LiveInts, |
| 442 | /*LiveStks=*/nullptr, Indexes, OS, AbortOnError) |
| 443 | .verify(MF: *this); |
| 444 | } |
| 445 | |
| 446 | void MachineVerifier::verifySlotIndexes() const { |
| 447 | if (Indexes == nullptr) |
| 448 | return; |
| 449 | |
| 450 | // Ensure the IdxMBB list is sorted by slot indexes. |
| 451 | SlotIndex Last; |
| 452 | for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), |
| 453 | E = Indexes->MBBIndexEnd(); I != E; ++I) { |
| 454 | assert(!Last.isValid() || I->first > Last); |
| 455 | Last = I->first; |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | void MachineVerifier::verifyProperties(const MachineFunction &MF) { |
| 460 | // If a pass has introduced virtual registers without clearing the |
| 461 | // NoVRegs property (or set it without allocating the vregs) |
| 462 | // then report an error. |
| 463 | if (MF.getProperties().hasNoVRegs() && MRI->getNumVirtRegs()) |
| 464 | report(msg: "Function has NoVRegs property but there are VReg operands" , MF: &MF); |
| 465 | } |
| 466 | |
| 467 | bool MachineVerifier::verify(const MachineFunction &MF) { |
| 468 | this->MF = &MF; |
| 469 | TM = &MF.getTarget(); |
| 470 | TII = MF.getSubtarget().getInstrInfo(); |
| 471 | TRI = MF.getSubtarget().getRegisterInfo(); |
| 472 | RBI = MF.getSubtarget().getRegBankInfo(); |
| 473 | MRI = &MF.getRegInfo(); |
| 474 | |
| 475 | const MachineFunctionProperties &Props = MF.getProperties(); |
| 476 | const bool isFunctionFailedISel = Props.hasFailedISel(); |
| 477 | |
| 478 | // If we're mid-GlobalISel and we already triggered the fallback path then |
| 479 | // it's expected that the MIR is somewhat broken but that's ok since we'll |
| 480 | // reset it and clear the FailedISel attribute in ResetMachineFunctions. |
| 481 | if (isFunctionFailedISel) |
| 482 | return true; |
| 483 | |
| 484 | isFunctionRegBankSelected = Props.hasRegBankSelected(); |
| 485 | isFunctionSelected = Props.hasSelected(); |
| 486 | isFunctionTracksDebugUserValues = Props.hasTracksDebugUserValues(); |
| 487 | |
| 488 | if (PASS) { |
| 489 | auto *LISWrapper = PASS->getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); |
| 490 | LiveInts = LISWrapper ? &LISWrapper->getLIS() : nullptr; |
| 491 | // We don't want to verify LiveVariables if LiveIntervals is available. |
| 492 | auto *LVWrapper = PASS->getAnalysisIfAvailable<LiveVariablesWrapperPass>(); |
| 493 | if (!LiveInts) |
| 494 | LiveVars = LVWrapper ? &LVWrapper->getLV() : nullptr; |
| 495 | auto *LSWrapper = PASS->getAnalysisIfAvailable<LiveStacksWrapperLegacy>(); |
| 496 | LiveStks = LSWrapper ? &LSWrapper->getLS() : nullptr; |
| 497 | auto *SIWrapper = PASS->getAnalysisIfAvailable<SlotIndexesWrapperPass>(); |
| 498 | Indexes = SIWrapper ? &SIWrapper->getSI() : nullptr; |
| 499 | } |
| 500 | if (MFAM) { |
| 501 | MachineFunction &Func = const_cast<MachineFunction &>(MF); |
| 502 | LiveInts = MFAM->getCachedResult<LiveIntervalsAnalysis>(IR&: Func); |
| 503 | if (!LiveInts) |
| 504 | LiveVars = MFAM->getCachedResult<LiveVariablesAnalysis>(IR&: Func); |
| 505 | // TODO: LiveStks = MFAM->getCachedResult<LiveStacksAnalysis>(Func); |
| 506 | Indexes = MFAM->getCachedResult<SlotIndexesAnalysis>(IR&: Func); |
| 507 | } |
| 508 | |
| 509 | verifySlotIndexes(); |
| 510 | |
| 511 | verifyProperties(MF); |
| 512 | |
| 513 | visitMachineFunctionBefore(); |
| 514 | for (const MachineBasicBlock &MBB : MF) { |
| 515 | visitMachineBasicBlockBefore(MBB: &MBB); |
| 516 | // Keep track of the current bundle header. |
| 517 | const MachineInstr *CurBundle = nullptr; |
| 518 | // Do we expect the next instruction to be part of the same bundle? |
| 519 | bool InBundle = false; |
| 520 | |
| 521 | for (const MachineInstr &MI : MBB.instrs()) { |
| 522 | if (MI.getParent() != &MBB) { |
| 523 | report(msg: "Bad instruction parent pointer" , MBB: &MBB); |
| 524 | OS << "Instruction: " << MI; |
| 525 | continue; |
| 526 | } |
| 527 | |
| 528 | // Check for consistent bundle flags. |
| 529 | if (InBundle && !MI.isBundledWithPred()) |
| 530 | report(msg: "Missing BundledPred flag, " |
| 531 | "BundledSucc was set on predecessor" , |
| 532 | MI: &MI); |
| 533 | if (!InBundle && MI.isBundledWithPred()) |
| 534 | report(msg: "BundledPred flag is set, " |
| 535 | "but BundledSucc not set on predecessor" , |
| 536 | MI: &MI); |
| 537 | |
| 538 | // Is this a bundle header? |
| 539 | if (!MI.isInsideBundle()) { |
| 540 | if (CurBundle) |
| 541 | visitMachineBundleAfter(MI: CurBundle); |
| 542 | CurBundle = &MI; |
| 543 | visitMachineBundleBefore(MI: CurBundle); |
| 544 | } else if (!CurBundle) |
| 545 | report(msg: "No bundle header" , MI: &MI); |
| 546 | visitMachineInstrBefore(MI: &MI); |
| 547 | for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { |
| 548 | const MachineOperand &Op = MI.getOperand(i: I); |
| 549 | if (Op.getParent() != &MI) { |
| 550 | // Make sure to use correct addOperand / removeOperand / ChangeTo |
| 551 | // functions when replacing operands of a MachineInstr. |
| 552 | report(msg: "Instruction has operand with wrong parent set" , MI: &MI); |
| 553 | } |
| 554 | |
| 555 | visitMachineOperand(MO: &Op, MONum: I); |
| 556 | } |
| 557 | |
| 558 | // Was this the last bundled instruction? |
| 559 | InBundle = MI.isBundledWithSucc(); |
| 560 | } |
| 561 | if (CurBundle) |
| 562 | visitMachineBundleAfter(MI: CurBundle); |
| 563 | if (InBundle) |
| 564 | report(msg: "BundledSucc flag set on last instruction in block" , MI: &MBB.back()); |
| 565 | visitMachineBasicBlockAfter(MBB: &MBB); |
| 566 | } |
| 567 | visitMachineFunctionAfter(); |
| 568 | |
| 569 | // Clean up. |
| 570 | regsLive.clear(); |
| 571 | regsDefined.clear(); |
| 572 | regsDead.clear(); |
| 573 | regsKilled.clear(); |
| 574 | regMasks.clear(); |
| 575 | MBBInfoMap.clear(); |
| 576 | |
| 577 | return !ReportedErrs.hasError(); |
| 578 | } |
| 579 | |
| 580 | void MachineVerifier::report(const char *msg, const MachineFunction *MF) { |
| 581 | assert(MF); |
| 582 | OS << '\n'; |
| 583 | if (ReportedErrs.increment()) { |
| 584 | if (Banner) |
| 585 | OS << "# " << Banner << '\n'; |
| 586 | |
| 587 | if (LiveInts != nullptr) |
| 588 | LiveInts->print(O&: OS); |
| 589 | else |
| 590 | MF->print(OS, Indexes); |
| 591 | } |
| 592 | |
| 593 | OS << "*** Bad machine code: " << msg << " ***\n" |
| 594 | << "- function: " << MF->getName() << '\n'; |
| 595 | } |
| 596 | |
| 597 | void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { |
| 598 | assert(MBB); |
| 599 | report(msg, MF: MBB->getParent()); |
| 600 | OS << "- basic block: " << printMBBReference(MBB: *MBB) << ' ' << MBB->getName() |
| 601 | << " (" << (const void *)MBB << ')'; |
| 602 | if (Indexes) |
| 603 | OS << " [" << Indexes->getMBBStartIdx(mbb: MBB) << ';' |
| 604 | << Indexes->getMBBEndIdx(mbb: MBB) << ')'; |
| 605 | OS << '\n'; |
| 606 | } |
| 607 | |
| 608 | void MachineVerifier::report(const char *msg, const MachineInstr *MI) { |
| 609 | assert(MI); |
| 610 | report(msg, MBB: MI->getParent()); |
| 611 | OS << "- instruction: " ; |
| 612 | if (Indexes && Indexes->hasIndex(instr: *MI)) |
| 613 | OS << Indexes->getInstructionIndex(MI: *MI) << '\t'; |
| 614 | MI->print(OS, /*IsStandalone=*/true); |
| 615 | } |
| 616 | |
| 617 | void MachineVerifier::report(const char *msg, const MachineOperand *MO, |
| 618 | unsigned MONum, LLT MOVRegType) { |
| 619 | assert(MO); |
| 620 | report(msg, MI: MO->getParent()); |
| 621 | OS << "- operand " << MONum << ": " ; |
| 622 | MO->print(os&: OS, TypeToPrint: MOVRegType, TRI); |
| 623 | OS << '\n'; |
| 624 | } |
| 625 | |
| 626 | void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { |
| 627 | report(msg: Msg.str().c_str(), MI); |
| 628 | } |
| 629 | |
| 630 | void MachineVerifier::report_context(SlotIndex Pos) const { |
| 631 | OS << "- at: " << Pos << '\n'; |
| 632 | } |
| 633 | |
| 634 | void MachineVerifier::report_context(const LiveInterval &LI) const { |
| 635 | OS << "- interval: " << LI << '\n'; |
| 636 | } |
| 637 | |
| 638 | void MachineVerifier::report_context(const LiveRange &LR, |
| 639 | VirtRegOrUnit VRegOrUnit, |
| 640 | LaneBitmask LaneMask) const { |
| 641 | report_context_liverange(LR); |
| 642 | report_context_vreg_regunit(VRegOrUnit); |
| 643 | if (LaneMask.any()) |
| 644 | report_context_lanemask(LaneMask); |
| 645 | } |
| 646 | |
| 647 | void MachineVerifier::report_context(const LiveRange::Segment &S) const { |
| 648 | OS << "- segment: " << S << '\n'; |
| 649 | } |
| 650 | |
| 651 | void MachineVerifier::report_context(const VNInfo &VNI) const { |
| 652 | OS << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n" ; |
| 653 | } |
| 654 | |
| 655 | void MachineVerifier::report_context_liverange(const LiveRange &LR) const { |
| 656 | OS << "- liverange: " << LR << '\n'; |
| 657 | } |
| 658 | |
| 659 | void MachineVerifier::report_context(MCPhysReg PReg) const { |
| 660 | OS << "- p. register: " << printReg(Reg: PReg, TRI) << '\n'; |
| 661 | } |
| 662 | |
| 663 | void MachineVerifier::report_context_vreg(Register VReg) const { |
| 664 | OS << "- v. register: " << printReg(Reg: VReg, TRI) << '\n'; |
| 665 | } |
| 666 | |
| 667 | void MachineVerifier::report_context_vreg_regunit( |
| 668 | VirtRegOrUnit VRegOrUnit) const { |
| 669 | if (VRegOrUnit.isVirtualReg()) { |
| 670 | report_context_vreg(VReg: VRegOrUnit.asVirtualReg()); |
| 671 | } else { |
| 672 | OS << "- regunit: " << printRegUnit(Unit: VRegOrUnit.asMCRegUnit(), TRI) |
| 673 | << '\n'; |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { |
| 678 | OS << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; |
| 679 | } |
| 680 | |
| 681 | void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { |
| 682 | BBInfo &MInfo = MBBInfoMap[MBB]; |
| 683 | if (!MInfo.reachable) { |
| 684 | MInfo.reachable = true; |
| 685 | for (const MachineBasicBlock *Succ : MBB->successors()) |
| 686 | markReachable(MBB: Succ); |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | void MachineVerifier::visitMachineFunctionBefore() { |
| 691 | lastIndex = SlotIndex(); |
| 692 | regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() |
| 693 | : TRI->getReservedRegs(MF: *MF); |
| 694 | |
| 695 | if (!MF->empty()) |
| 696 | markReachable(MBB: &MF->front()); |
| 697 | |
| 698 | // Build a set of the basic blocks in the function. |
| 699 | FunctionBlocks.clear(); |
| 700 | for (const auto &MBB : *MF) { |
| 701 | FunctionBlocks.insert(Ptr: &MBB); |
| 702 | BBInfo &MInfo = MBBInfoMap[&MBB]; |
| 703 | |
| 704 | MInfo.Preds.insert_range(R: MBB.predecessors()); |
| 705 | if (MInfo.Preds.size() != MBB.pred_size()) |
| 706 | report(msg: "MBB has duplicate entries in its predecessor list." , MBB: &MBB); |
| 707 | |
| 708 | MInfo.Succs.insert_range(R: MBB.successors()); |
| 709 | if (MInfo.Succs.size() != MBB.succ_size()) |
| 710 | report(msg: "MBB has duplicate entries in its successor list." , MBB: &MBB); |
| 711 | } |
| 712 | |
| 713 | // Check that the register use lists are sane. |
| 714 | MRI->verifyUseLists(); |
| 715 | |
| 716 | if (!MF->empty()) { |
| 717 | verifyStackFrame(); |
| 718 | verifyStackProtector(); |
| 719 | } |
| 720 | } |
| 721 | |
| 722 | void |
| 723 | MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { |
| 724 | FirstTerminator = nullptr; |
| 725 | FirstNonPHI = nullptr; |
| 726 | |
| 727 | if (!MF->getProperties().hasNoPHIs() && MRI->tracksLiveness()) { |
| 728 | // If this block has allocatable physical registers live-in, check that |
| 729 | // it is an entry block or landing pad. |
| 730 | for (const auto &LI : MBB->liveins()) { |
| 731 | if (isAllocatable(Reg: LI.PhysReg) && !MBB->isEHPad() && |
| 732 | MBB->getIterator() != MBB->getParent()->begin() && |
| 733 | !MBB->isInlineAsmBrIndirectTarget()) { |
| 734 | report(msg: "MBB has allocatable live-in, but isn't entry, landing-pad, or " |
| 735 | "inlineasm-br-indirect-target." , |
| 736 | MBB); |
| 737 | report_context(PReg: LI.PhysReg); |
| 738 | } |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | if (MBB->isIRBlockAddressTaken()) { |
| 743 | if (!MBB->getAddressTakenIRBlock()->hasAddressTaken()) |
| 744 | report(msg: "ir-block-address-taken is associated with basic block not used by " |
| 745 | "a blockaddress." , |
| 746 | MBB); |
| 747 | } |
| 748 | |
| 749 | // Count the number of landing pad successors. |
| 750 | SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; |
| 751 | for (const auto *succ : MBB->successors()) { |
| 752 | if (succ->isEHPad()) |
| 753 | LandingPadSuccs.insert(Ptr: succ); |
| 754 | if (!FunctionBlocks.count(Ptr: succ)) |
| 755 | report(msg: "MBB has successor that isn't part of the function." , MBB); |
| 756 | if (!MBBInfoMap[succ].Preds.count(Ptr: MBB)) { |
| 757 | report(msg: "Inconsistent CFG" , MBB); |
| 758 | OS << "MBB is not in the predecessor list of the successor " |
| 759 | << printMBBReference(MBB: *succ) << ".\n" ; |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | // Check the predecessor list. |
| 764 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
| 765 | if (!FunctionBlocks.count(Ptr: Pred)) |
| 766 | report(msg: "MBB has predecessor that isn't part of the function." , MBB); |
| 767 | if (!MBBInfoMap[Pred].Succs.count(Ptr: MBB)) { |
| 768 | report(msg: "Inconsistent CFG" , MBB); |
| 769 | OS << "MBB is not in the successor list of the predecessor " |
| 770 | << printMBBReference(MBB: *Pred) << ".\n" ; |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); |
| 775 | const BasicBlock *BB = MBB->getBasicBlock(); |
| 776 | const Function &F = MF->getFunction(); |
| 777 | if (LandingPadSuccs.size() > 1 && |
| 778 | !(AsmInfo && |
| 779 | AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && |
| 780 | BB && isa<SwitchInst>(Val: BB->getTerminator())) && |
| 781 | !isScopedEHPersonality(Pers: classifyEHPersonality(Pers: F.getPersonalityFn()))) |
| 782 | report(msg: "MBB has more than one landing pad successor" , MBB); |
| 783 | |
| 784 | // Call analyzeBranch. If it succeeds, there several more conditions to check. |
| 785 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| 786 | SmallVector<MachineOperand, 4> Cond; |
| 787 | if (!TII->analyzeBranch(MBB&: *const_cast<MachineBasicBlock *>(MBB), TBB, FBB, |
| 788 | Cond)) { |
| 789 | // Ok, analyzeBranch thinks it knows what's going on with this block. Let's |
| 790 | // check whether its answers match up with reality. |
| 791 | if (!TBB && !FBB) { |
| 792 | // Block falls through to its successor. |
| 793 | if (!MBB->empty() && MBB->back().isBarrier() && |
| 794 | !TII->isPredicated(MI: MBB->back())) { |
| 795 | report(msg: "MBB exits via unconditional fall-through but ends with a " |
| 796 | "barrier instruction!" , MBB); |
| 797 | } |
| 798 | if (!Cond.empty()) { |
| 799 | report(msg: "MBB exits via unconditional fall-through but has a condition!" , |
| 800 | MBB); |
| 801 | } |
| 802 | } else if (TBB && !FBB && Cond.empty()) { |
| 803 | // Block unconditionally branches somewhere. |
| 804 | if (MBB->empty()) { |
| 805 | report(msg: "MBB exits via unconditional branch but doesn't contain " |
| 806 | "any instructions!" , MBB); |
| 807 | } else if (!MBB->back().isBarrier()) { |
| 808 | report(msg: "MBB exits via unconditional branch but doesn't end with a " |
| 809 | "barrier instruction!" , MBB); |
| 810 | } else if (!MBB->back().isTerminator()) { |
| 811 | report(msg: "MBB exits via unconditional branch but the branch isn't a " |
| 812 | "terminator instruction!" , MBB); |
| 813 | } |
| 814 | } else if (TBB && !FBB && !Cond.empty()) { |
| 815 | // Block conditionally branches somewhere, otherwise falls through. |
| 816 | if (MBB->empty()) { |
| 817 | report(msg: "MBB exits via conditional branch/fall-through but doesn't " |
| 818 | "contain any instructions!" , MBB); |
| 819 | } else if (MBB->back().isBarrier()) { |
| 820 | report(msg: "MBB exits via conditional branch/fall-through but ends with a " |
| 821 | "barrier instruction!" , MBB); |
| 822 | } else if (!MBB->back().isTerminator()) { |
| 823 | report(msg: "MBB exits via conditional branch/fall-through but the branch " |
| 824 | "isn't a terminator instruction!" , MBB); |
| 825 | } |
| 826 | } else if (TBB && FBB) { |
| 827 | // Block conditionally branches somewhere, otherwise branches |
| 828 | // somewhere else. |
| 829 | if (MBB->empty()) { |
| 830 | report(msg: "MBB exits via conditional branch/branch but doesn't " |
| 831 | "contain any instructions!" , MBB); |
| 832 | } else if (!MBB->back().isBarrier()) { |
| 833 | report(msg: "MBB exits via conditional branch/branch but doesn't end with a " |
| 834 | "barrier instruction!" , MBB); |
| 835 | } else if (!MBB->back().isTerminator()) { |
| 836 | report(msg: "MBB exits via conditional branch/branch but the branch " |
| 837 | "isn't a terminator instruction!" , MBB); |
| 838 | } |
| 839 | if (Cond.empty()) { |
| 840 | report(msg: "MBB exits via conditional branch/branch but there's no " |
| 841 | "condition!" , MBB); |
| 842 | } |
| 843 | } else { |
| 844 | report(msg: "analyzeBranch returned invalid data!" , MBB); |
| 845 | } |
| 846 | |
| 847 | // Now check that the successors match up with the answers reported by |
| 848 | // analyzeBranch. |
| 849 | if (TBB && !MBB->isSuccessor(MBB: TBB)) |
| 850 | report(msg: "MBB exits via jump or conditional branch, but its target isn't a " |
| 851 | "CFG successor!" , |
| 852 | MBB); |
| 853 | if (FBB && !MBB->isSuccessor(MBB: FBB)) |
| 854 | report(msg: "MBB exits via conditional branch, but its target isn't a CFG " |
| 855 | "successor!" , |
| 856 | MBB); |
| 857 | |
| 858 | // There might be a fallthrough to the next block if there's either no |
| 859 | // unconditional true branch, or if there's a condition, and one of the |
| 860 | // branches is missing. |
| 861 | bool Fallthrough = !TBB || (!Cond.empty() && !FBB); |
| 862 | |
| 863 | // A conditional fallthrough must be an actual CFG successor, not |
| 864 | // unreachable. (Conversely, an unconditional fallthrough might not really |
| 865 | // be a successor, because the block might end in unreachable.) |
| 866 | if (!Cond.empty() && !FBB) { |
| 867 | MachineFunction::const_iterator MBBI = std::next(x: MBB->getIterator()); |
| 868 | if (MBBI == MF->end()) { |
| 869 | report(msg: "MBB conditionally falls through out of function!" , MBB); |
| 870 | } else if (!MBB->isSuccessor(MBB: &*MBBI)) |
| 871 | report(msg: "MBB exits via conditional branch/fall-through but the CFG " |
| 872 | "successors don't match the actual successors!" , |
| 873 | MBB); |
| 874 | } |
| 875 | |
| 876 | // Verify that there aren't any extra un-accounted-for successors. |
| 877 | for (const MachineBasicBlock *SuccMBB : MBB->successors()) { |
| 878 | // If this successor is one of the branch targets, it's okay. |
| 879 | if (SuccMBB == TBB || SuccMBB == FBB) |
| 880 | continue; |
| 881 | // If we might have a fallthrough, and the successor is the fallthrough |
| 882 | // block, that's also ok. |
| 883 | if (Fallthrough && SuccMBB == MBB->getNextNode()) |
| 884 | continue; |
| 885 | // Also accept successors which are for exception-handling or might be |
| 886 | // inlineasm_br targets. |
| 887 | if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) |
| 888 | continue; |
| 889 | report(msg: "MBB has unexpected successors which are not branch targets, " |
| 890 | "fallthrough, EHPads, or inlineasm_br targets." , |
| 891 | MBB); |
| 892 | } |
| 893 | } |
| 894 | |
| 895 | regsLive.clear(); |
| 896 | if (MRI->tracksLiveness()) { |
| 897 | for (const auto &LI : MBB->liveins()) { |
| 898 | if (!LI.PhysReg.isPhysical()) { |
| 899 | report(msg: "MBB live-in list contains non-physical register" , MBB); |
| 900 | continue; |
| 901 | } |
| 902 | regsLive.insert_range(R: TRI->subregs_inclusive(Reg: LI.PhysReg)); |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | const MachineFrameInfo &MFI = MF->getFrameInfo(); |
| 907 | BitVector PR = MFI.getPristineRegs(MF: *MF); |
| 908 | for (unsigned I : PR.set_bits()) |
| 909 | regsLive.insert_range(R: TRI->subregs_inclusive(Reg: I)); |
| 910 | |
| 911 | regsKilled.clear(); |
| 912 | regsDefined.clear(); |
| 913 | |
| 914 | if (Indexes) |
| 915 | lastIndex = Indexes->getMBBStartIdx(mbb: MBB); |
| 916 | } |
| 917 | |
| 918 | // This function gets called for all bundle headers, including normal |
| 919 | // stand-alone unbundled instructions. |
| 920 | void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { |
| 921 | if (Indexes && Indexes->hasIndex(instr: *MI)) { |
| 922 | SlotIndex idx = Indexes->getInstructionIndex(MI: *MI); |
| 923 | if (!(idx > lastIndex)) { |
| 924 | report(msg: "Instruction index out of order" , MI); |
| 925 | OS << "Last instruction was at " << lastIndex << '\n'; |
| 926 | } |
| 927 | lastIndex = idx; |
| 928 | } |
| 929 | |
| 930 | // Ensure non-terminators don't follow terminators. |
| 931 | if (MI->isTerminator()) { |
| 932 | if (!FirstTerminator) |
| 933 | FirstTerminator = MI; |
| 934 | } else if (FirstTerminator) { |
| 935 | // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to |
| 936 | // precede non-terminators. |
| 937 | if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) { |
| 938 | report(msg: "Non-terminator instruction after the first terminator" , MI); |
| 939 | OS << "First terminator was:\t" << *FirstTerminator; |
| 940 | } |
| 941 | } |
| 942 | } |
| 943 | |
| 944 | // The operands on an INLINEASM instruction must follow a template. |
| 945 | // Verify that the flag operands make sense. |
| 946 | void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { |
| 947 | // The first two operands on INLINEASM are the asm string and global flags. |
| 948 | if (MI->getNumOperands() < 2) { |
| 949 | report(msg: "Too few operands on inline asm" , MI); |
| 950 | return; |
| 951 | } |
| 952 | if (!MI->getOperand(i: 0).isSymbol()) |
| 953 | report(msg: "Asm string must be an external symbol" , MI); |
| 954 | if (!MI->getOperand(i: 1).isImm()) |
| 955 | report(msg: "Asm flags must be an immediate" , MI); |
| 956 | // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, |
| 957 | // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, |
| 958 | // and Extra_IsConvergent = 32. |
| 959 | if (!isUInt<6>(x: MI->getOperand(i: 1).getImm())) |
| 960 | report(msg: "Unknown asm flags" , MO: &MI->getOperand(i: 1), MONum: 1); |
| 961 | |
| 962 | static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed" ); |
| 963 | |
| 964 | unsigned OpNo = InlineAsm::MIOp_FirstOperand; |
| 965 | unsigned NumOps; |
| 966 | for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { |
| 967 | const MachineOperand &MO = MI->getOperand(i: OpNo); |
| 968 | // There may be implicit ops after the fixed operands. |
| 969 | if (!MO.isImm()) |
| 970 | break; |
| 971 | const InlineAsm::Flag F(MO.getImm()); |
| 972 | NumOps = 1 + F.getNumOperandRegisters(); |
| 973 | } |
| 974 | |
| 975 | if (OpNo > MI->getNumOperands()) |
| 976 | report(msg: "Missing operands in last group" , MI); |
| 977 | |
| 978 | // An optional MDNode follows the groups. |
| 979 | if (OpNo < MI->getNumOperands() && MI->getOperand(i: OpNo).isMetadata()) |
| 980 | ++OpNo; |
| 981 | |
| 982 | // All trailing operands must be implicit registers. |
| 983 | for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { |
| 984 | const MachineOperand &MO = MI->getOperand(i: OpNo); |
| 985 | if (!MO.isReg() || !MO.isImplicit()) |
| 986 | report(msg: "Expected implicit register after groups" , MO: &MO, MONum: OpNo); |
| 987 | } |
| 988 | |
| 989 | if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) { |
| 990 | const MachineBasicBlock *MBB = MI->getParent(); |
| 991 | |
| 992 | for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands(); |
| 993 | i != e; ++i) { |
| 994 | const MachineOperand &MO = MI->getOperand(i); |
| 995 | |
| 996 | if (!MO.isMBB()) |
| 997 | continue; |
| 998 | |
| 999 | // Check the successor & predecessor lists look ok, assume they are |
| 1000 | // not. Find the indirect target without going through the successors. |
| 1001 | const MachineBasicBlock *IndirectTargetMBB = MO.getMBB(); |
| 1002 | if (!IndirectTargetMBB) { |
| 1003 | report(msg: "INLINEASM_BR indirect target does not exist" , MO: &MO, MONum: i); |
| 1004 | break; |
| 1005 | } |
| 1006 | |
| 1007 | if (!MBB->isSuccessor(MBB: IndirectTargetMBB)) |
| 1008 | report(msg: "INLINEASM_BR indirect target missing from successor list" , MO: &MO, |
| 1009 | MONum: i); |
| 1010 | |
| 1011 | if (!IndirectTargetMBB->isPredecessor(MBB)) |
| 1012 | report(msg: "INLINEASM_BR indirect target predecessor list missing parent" , |
| 1013 | MO: &MO, MONum: i); |
| 1014 | } |
| 1015 | } |
| 1016 | } |
| 1017 | |
| 1018 | bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, |
| 1019 | const MachineRegisterInfo &MRI) { |
| 1020 | if (none_of(Range: MI.explicit_operands(), P: [&MRI](const MachineOperand &Op) { |
| 1021 | if (!Op.isReg()) |
| 1022 | return false; |
| 1023 | const auto Reg = Op.getReg(); |
| 1024 | if (Reg.isPhysical()) |
| 1025 | return false; |
| 1026 | return !MRI.getType(Reg).isScalar(); |
| 1027 | })) |
| 1028 | return true; |
| 1029 | report(msg: "All register operands must have scalar types" , MI: &MI); |
| 1030 | return false; |
| 1031 | } |
| 1032 | |
| 1033 | /// Check that types are consistent when two operands need to have the same |
| 1034 | /// number of vector elements. |
| 1035 | /// \return true if the types are valid. |
| 1036 | bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, |
| 1037 | const MachineInstr *MI) { |
| 1038 | if (Ty0.isVector() != Ty1.isVector()) { |
| 1039 | report(msg: "operand types must be all-vector or all-scalar" , MI); |
| 1040 | // Generally we try to report as many issues as possible at once, but in |
| 1041 | // this case it's not clear what should we be comparing the size of the |
| 1042 | // scalar with: the size of the whole vector or its lane. Instead of |
| 1043 | // making an arbitrary choice and emitting not so helpful message, let's |
| 1044 | // avoid the extra noise and stop here. |
| 1045 | return false; |
| 1046 | } |
| 1047 | |
| 1048 | if (Ty0.isVector() && Ty0.getElementCount() != Ty1.getElementCount()) { |
| 1049 | report(msg: "operand types must preserve number of vector elements" , MI); |
| 1050 | return false; |
| 1051 | } |
| 1052 | |
| 1053 | return true; |
| 1054 | } |
| 1055 | |
| 1056 | bool MachineVerifier::verifyGIntrinsicSideEffects(const MachineInstr *MI) { |
| 1057 | auto Opcode = MI->getOpcode(); |
| 1058 | bool NoSideEffects = Opcode == TargetOpcode::G_INTRINSIC || |
| 1059 | Opcode == TargetOpcode::G_INTRINSIC_CONVERGENT; |
| 1060 | unsigned IntrID = cast<GIntrinsic>(Val: MI)->getIntrinsicID(); |
| 1061 | if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { |
| 1062 | AttributeSet Attrs = Intrinsic::getFnAttributes( |
| 1063 | C&: MF->getFunction().getContext(), id: static_cast<Intrinsic::ID>(IntrID)); |
| 1064 | bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory(); |
| 1065 | if (NoSideEffects && DeclHasSideEffects) { |
| 1066 | report(Msg: Twine(TII->getName(Opcode), |
| 1067 | " used with intrinsic that accesses memory" ), |
| 1068 | MI); |
| 1069 | return false; |
| 1070 | } |
| 1071 | if (!NoSideEffects && !DeclHasSideEffects) { |
| 1072 | report(Msg: Twine(TII->getName(Opcode), " used with readnone intrinsic" ), MI); |
| 1073 | return false; |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | return true; |
| 1078 | } |
| 1079 | |
| 1080 | bool MachineVerifier::verifyGIntrinsicConvergence(const MachineInstr *MI) { |
| 1081 | auto Opcode = MI->getOpcode(); |
| 1082 | bool NotConvergent = Opcode == TargetOpcode::G_INTRINSIC || |
| 1083 | Opcode == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS; |
| 1084 | unsigned IntrID = cast<GIntrinsic>(Val: MI)->getIntrinsicID(); |
| 1085 | if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { |
| 1086 | AttributeSet Attrs = Intrinsic::getFnAttributes( |
| 1087 | C&: MF->getFunction().getContext(), id: static_cast<Intrinsic::ID>(IntrID)); |
| 1088 | bool DeclIsConvergent = Attrs.hasAttribute(Kind: Attribute::Convergent); |
| 1089 | if (NotConvergent && DeclIsConvergent) { |
| 1090 | report(Msg: Twine(TII->getName(Opcode), " used with a convergent intrinsic" ), |
| 1091 | MI); |
| 1092 | return false; |
| 1093 | } |
| 1094 | if (!NotConvergent && !DeclIsConvergent) { |
| 1095 | report( |
| 1096 | Msg: Twine(TII->getName(Opcode), " used with a non-convergent intrinsic" ), |
| 1097 | MI); |
| 1098 | return false; |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | return true; |
| 1103 | } |
| 1104 | |
| 1105 | void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { |
| 1106 | if (isFunctionSelected) |
| 1107 | report(msg: "Unexpected generic instruction in a Selected function" , MI); |
| 1108 | |
| 1109 | const MCInstrDesc &MCID = MI->getDesc(); |
| 1110 | unsigned NumOps = MI->getNumOperands(); |
| 1111 | |
| 1112 | // Branches must reference a basic block if they are not indirect |
| 1113 | if (MI->isBranch() && !MI->isIndirectBranch()) { |
| 1114 | bool HasMBB = false; |
| 1115 | for (const MachineOperand &Op : MI->operands()) { |
| 1116 | if (Op.isMBB()) { |
| 1117 | HasMBB = true; |
| 1118 | break; |
| 1119 | } |
| 1120 | } |
| 1121 | |
| 1122 | if (!HasMBB) { |
| 1123 | report(msg: "Branch instruction is missing a basic block operand or " |
| 1124 | "isIndirectBranch property" , |
| 1125 | MI); |
| 1126 | } |
| 1127 | } |
| 1128 | |
| 1129 | // Check types. |
| 1130 | SmallVector<LLT, 4> Types; |
| 1131 | for (unsigned I = 0, E = std::min(a: MCID.getNumOperands(), b: NumOps); |
| 1132 | I != E; ++I) { |
| 1133 | if (!MCID.operands()[I].isGenericType()) |
| 1134 | continue; |
| 1135 | // Generic instructions specify type equality constraints between some of |
| 1136 | // their operands. Make sure these are consistent. |
| 1137 | size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex(); |
| 1138 | Types.resize(N: std::max(a: TypeIdx + 1, b: Types.size())); |
| 1139 | |
| 1140 | const MachineOperand *MO = &MI->getOperand(i: I); |
| 1141 | if (!MO->isReg()) { |
| 1142 | report(msg: "generic instruction must use register operands" , MI); |
| 1143 | continue; |
| 1144 | } |
| 1145 | |
| 1146 | LLT OpTy = MRI->getType(Reg: MO->getReg()); |
| 1147 | // Don't report a type mismatch if there is no actual mismatch, only a |
| 1148 | // type missing, to reduce noise: |
| 1149 | if (OpTy.isValid()) { |
| 1150 | // Only the first valid type for a type index will be printed: don't |
| 1151 | // overwrite it later so it's always clear which type was expected: |
| 1152 | if (!Types[TypeIdx].isValid()) |
| 1153 | Types[TypeIdx] = OpTy; |
| 1154 | else if (Types[TypeIdx] != OpTy) |
| 1155 | report(msg: "Type mismatch in generic instruction" , MO, MONum: I, MOVRegType: OpTy); |
| 1156 | } else { |
| 1157 | // Generic instructions must have types attached to their operands. |
| 1158 | report(msg: "Generic instruction is missing a virtual register type" , MO, MONum: I); |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | // Generic opcodes must not have physical register operands. |
| 1163 | for (unsigned I = 0; I < MI->getNumOperands(); ++I) { |
| 1164 | const MachineOperand *MO = &MI->getOperand(i: I); |
| 1165 | if (MO->isReg() && MO->getReg().isPhysical()) |
| 1166 | report(msg: "Generic instruction cannot have physical register" , MO, MONum: I); |
| 1167 | } |
| 1168 | |
| 1169 | // Avoid out of bounds in checks below. This was already reported earlier. |
| 1170 | if (MI->getNumOperands() < MCID.getNumOperands()) |
| 1171 | return; |
| 1172 | |
| 1173 | StringRef ErrorInfo; |
| 1174 | if (!TII->verifyInstruction(MI: *MI, ErrInfo&: ErrorInfo)) |
| 1175 | report(msg: ErrorInfo.data(), MI); |
| 1176 | |
| 1177 | // Verify properties of various specific instruction types |
| 1178 | unsigned Opc = MI->getOpcode(); |
| 1179 | switch (Opc) { |
| 1180 | case TargetOpcode::G_ASSERT_SEXT: |
| 1181 | case TargetOpcode::G_ASSERT_ZEXT: { |
| 1182 | std::string OpcName = |
| 1183 | Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT" ; |
| 1184 | if (!MI->getOperand(i: 2).isImm()) { |
| 1185 | report(Msg: Twine(OpcName, " expects an immediate operand #2" ), MI); |
| 1186 | break; |
| 1187 | } |
| 1188 | |
| 1189 | Register Dst = MI->getOperand(i: 0).getReg(); |
| 1190 | Register Src = MI->getOperand(i: 1).getReg(); |
| 1191 | LLT SrcTy = MRI->getType(Reg: Src); |
| 1192 | int64_t Imm = MI->getOperand(i: 2).getImm(); |
| 1193 | if (Imm <= 0) { |
| 1194 | report(Msg: Twine(OpcName, " size must be >= 1" ), MI); |
| 1195 | break; |
| 1196 | } |
| 1197 | |
| 1198 | if (Imm >= SrcTy.getScalarSizeInBits()) { |
| 1199 | report(Msg: Twine(OpcName, " size must be less than source bit width" ), MI); |
| 1200 | break; |
| 1201 | } |
| 1202 | |
| 1203 | const RegisterBank *SrcRB = RBI->getRegBank(Reg: Src, MRI: *MRI, TRI: *TRI); |
| 1204 | const RegisterBank *DstRB = RBI->getRegBank(Reg: Dst, MRI: *MRI, TRI: *TRI); |
| 1205 | |
| 1206 | // Allow only the source bank to be set. |
| 1207 | if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) { |
| 1208 | report(Msg: Twine(OpcName, " cannot change register bank" ), MI); |
| 1209 | break; |
| 1210 | } |
| 1211 | |
| 1212 | // Don't allow a class change. Do allow member class->regbank. |
| 1213 | const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Reg: Dst); |
| 1214 | if (DstRC && DstRC != MRI->getRegClassOrNull(Reg: Src)) { |
| 1215 | report( |
| 1216 | Msg: Twine(OpcName, " source and destination register classes must match" ), |
| 1217 | MI); |
| 1218 | break; |
| 1219 | } |
| 1220 | |
| 1221 | break; |
| 1222 | } |
| 1223 | |
| 1224 | case TargetOpcode::G_CONSTANT: |
| 1225 | case TargetOpcode::G_FCONSTANT: { |
| 1226 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1227 | if (DstTy.isVector()) |
| 1228 | report(msg: "Instruction cannot use a vector result type" , MI); |
| 1229 | |
| 1230 | if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { |
| 1231 | if (!MI->getOperand(i: 1).isCImm()) { |
| 1232 | report(msg: "G_CONSTANT operand must be cimm" , MI); |
| 1233 | break; |
| 1234 | } |
| 1235 | |
| 1236 | const ConstantInt *CI = MI->getOperand(i: 1).getCImm(); |
| 1237 | if (CI->getBitWidth() != DstTy.getSizeInBits()) |
| 1238 | report(msg: "inconsistent constant size" , MI); |
| 1239 | } else { |
| 1240 | if (!MI->getOperand(i: 1).isFPImm()) { |
| 1241 | report(msg: "G_FCONSTANT operand must be fpimm" , MI); |
| 1242 | break; |
| 1243 | } |
| 1244 | const ConstantFP *CF = MI->getOperand(i: 1).getFPImm(); |
| 1245 | |
| 1246 | if (APFloat::getSizeInBits(Sem: CF->getValueAPF().getSemantics()) != |
| 1247 | DstTy.getSizeInBits()) { |
| 1248 | report(msg: "inconsistent constant size" , MI); |
| 1249 | } |
| 1250 | } |
| 1251 | |
| 1252 | break; |
| 1253 | } |
| 1254 | case TargetOpcode::G_LOAD: |
| 1255 | case TargetOpcode::G_STORE: |
| 1256 | case TargetOpcode::G_ZEXTLOAD: |
| 1257 | case TargetOpcode::G_SEXTLOAD: { |
| 1258 | LLT ValTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1259 | LLT PtrTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1260 | if (!PtrTy.isPointer()) |
| 1261 | report(msg: "Generic memory instruction must access a pointer" , MI); |
| 1262 | |
| 1263 | // Generic loads and stores must have a single MachineMemOperand |
| 1264 | // describing that access. |
| 1265 | if (!MI->hasOneMemOperand()) { |
| 1266 | report(msg: "Generic instruction accessing memory must have one mem operand" , |
| 1267 | MI); |
| 1268 | } else { |
| 1269 | const MachineMemOperand &MMO = **MI->memoperands_begin(); |
| 1270 | if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || |
| 1271 | MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { |
| 1272 | if (TypeSize::isKnownGE(LHS: MMO.getSizeInBits().getValue(), |
| 1273 | RHS: ValTy.getSizeInBits())) |
| 1274 | report(msg: "Generic extload must have a narrower memory type" , MI); |
| 1275 | } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { |
| 1276 | if (TypeSize::isKnownGT(LHS: MMO.getSize().getValue(), |
| 1277 | RHS: ValTy.getSizeInBytes())) |
| 1278 | report(msg: "load memory size cannot exceed result size" , MI); |
| 1279 | |
| 1280 | if (MMO.getRanges()) { |
| 1281 | ConstantInt *i = |
| 1282 | mdconst::extract<ConstantInt>(MD: MMO.getRanges()->getOperand(I: 0)); |
| 1283 | const LLT RangeTy = LLT::scalar(SizeInBits: i->getIntegerType()->getBitWidth()); |
| 1284 | const LLT MemTy = MMO.getMemoryType(); |
| 1285 | if (MemTy.getScalarType() != RangeTy || |
| 1286 | ValTy.isScalar() != MemTy.isScalar() || |
| 1287 | (ValTy.isVector() && |
| 1288 | ValTy.getNumElements() != MemTy.getNumElements())) { |
| 1289 | report(msg: "range is incompatible with the result type" , MI); |
| 1290 | } |
| 1291 | } |
| 1292 | } else if (MI->getOpcode() == TargetOpcode::G_STORE) { |
| 1293 | if (TypeSize::isKnownLT(LHS: ValTy.getSizeInBytes(), |
| 1294 | RHS: MMO.getSize().getValue())) |
| 1295 | report(msg: "store memory size cannot exceed value size" , MI); |
| 1296 | } |
| 1297 | |
| 1298 | const AtomicOrdering Order = MMO.getSuccessOrdering(); |
| 1299 | if (Opc == TargetOpcode::G_STORE) { |
| 1300 | if (Order == AtomicOrdering::Acquire || |
| 1301 | Order == AtomicOrdering::AcquireRelease) |
| 1302 | report(msg: "atomic store cannot use acquire ordering" , MI); |
| 1303 | |
| 1304 | } else { |
| 1305 | if (Order == AtomicOrdering::Release || |
| 1306 | Order == AtomicOrdering::AcquireRelease) |
| 1307 | report(msg: "atomic load cannot use release ordering" , MI); |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | break; |
| 1312 | } |
| 1313 | case TargetOpcode::G_PHI: { |
| 1314 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1315 | if (!DstTy.isValid() || !all_of(Range: drop_begin(RangeOrContainer: MI->operands()), |
| 1316 | P: [this, &DstTy](const MachineOperand &MO) { |
| 1317 | if (!MO.isReg()) |
| 1318 | return true; |
| 1319 | LLT Ty = MRI->getType(Reg: MO.getReg()); |
| 1320 | if (!Ty.isValid() || (Ty != DstTy)) |
| 1321 | return false; |
| 1322 | return true; |
| 1323 | })) |
| 1324 | report(msg: "Generic Instruction G_PHI has operands with incompatible/missing " |
| 1325 | "types" , |
| 1326 | MI); |
| 1327 | break; |
| 1328 | } |
| 1329 | case TargetOpcode::G_BITCAST: { |
| 1330 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1331 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1332 | if (!DstTy.isValid() || !SrcTy.isValid()) |
| 1333 | break; |
| 1334 | |
| 1335 | if (SrcTy.isPointer() != DstTy.isPointer()) |
| 1336 | report(msg: "bitcast cannot convert between pointers and other types" , MI); |
| 1337 | |
| 1338 | if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) |
| 1339 | report(msg: "bitcast sizes must match" , MI); |
| 1340 | |
| 1341 | if (SrcTy == DstTy) |
| 1342 | report(msg: "bitcast must change the type" , MI); |
| 1343 | |
| 1344 | break; |
| 1345 | } |
| 1346 | case TargetOpcode::G_INTTOPTR: |
| 1347 | case TargetOpcode::G_PTRTOINT: |
| 1348 | case TargetOpcode::G_ADDRSPACE_CAST: { |
| 1349 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1350 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1351 | if (!DstTy.isValid() || !SrcTy.isValid()) |
| 1352 | break; |
| 1353 | |
| 1354 | verifyVectorElementMatch(Ty0: DstTy, Ty1: SrcTy, MI); |
| 1355 | |
| 1356 | DstTy = DstTy.getScalarType(); |
| 1357 | SrcTy = SrcTy.getScalarType(); |
| 1358 | |
| 1359 | if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { |
| 1360 | if (!DstTy.isPointer()) |
| 1361 | report(msg: "inttoptr result type must be a pointer" , MI); |
| 1362 | if (SrcTy.isPointer()) |
| 1363 | report(msg: "inttoptr source type must not be a pointer" , MI); |
| 1364 | } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { |
| 1365 | if (!SrcTy.isPointer()) |
| 1366 | report(msg: "ptrtoint source type must be a pointer" , MI); |
| 1367 | if (DstTy.isPointer()) |
| 1368 | report(msg: "ptrtoint result type must not be a pointer" , MI); |
| 1369 | } else { |
| 1370 | assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); |
| 1371 | if (!SrcTy.isPointer() || !DstTy.isPointer()) |
| 1372 | report(msg: "addrspacecast types must be pointers" , MI); |
| 1373 | else { |
| 1374 | if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) |
| 1375 | report(msg: "addrspacecast must convert different address spaces" , MI); |
| 1376 | } |
| 1377 | } |
| 1378 | |
| 1379 | break; |
| 1380 | } |
| 1381 | case TargetOpcode::G_PTR_ADD: { |
| 1382 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1383 | LLT PtrTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1384 | LLT OffsetTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
| 1385 | if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) |
| 1386 | break; |
| 1387 | |
| 1388 | if (!PtrTy.isPointerOrPointerVector()) |
| 1389 | report(msg: "gep first operand must be a pointer" , MI); |
| 1390 | |
| 1391 | if (OffsetTy.isPointerOrPointerVector()) |
| 1392 | report(msg: "gep offset operand must not be a pointer" , MI); |
| 1393 | |
| 1394 | if (PtrTy.isPointerOrPointerVector()) { |
| 1395 | const DataLayout &DL = MF->getDataLayout(); |
| 1396 | unsigned AS = PtrTy.getAddressSpace(); |
| 1397 | unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8; |
| 1398 | if (OffsetTy.getScalarSizeInBits() != IndexSizeInBits) { |
| 1399 | report(msg: "gep offset operand must match index size for address space" , |
| 1400 | MI); |
| 1401 | } |
| 1402 | } |
| 1403 | |
| 1404 | // TODO: Is the offset allowed to be a scalar with a vector? |
| 1405 | break; |
| 1406 | } |
| 1407 | case TargetOpcode::G_PTRMASK: { |
| 1408 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1409 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1410 | LLT MaskTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
| 1411 | if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) |
| 1412 | break; |
| 1413 | |
| 1414 | if (!DstTy.isPointerOrPointerVector()) |
| 1415 | report(msg: "ptrmask result type must be a pointer" , MI); |
| 1416 | |
| 1417 | if (!MaskTy.getScalarType().isScalar()) |
| 1418 | report(msg: "ptrmask mask type must be an integer" , MI); |
| 1419 | |
| 1420 | verifyVectorElementMatch(Ty0: DstTy, Ty1: MaskTy, MI); |
| 1421 | break; |
| 1422 | } |
| 1423 | case TargetOpcode::G_SEXT: |
| 1424 | case TargetOpcode::G_ZEXT: |
| 1425 | case TargetOpcode::G_ANYEXT: |
| 1426 | case TargetOpcode::G_TRUNC: |
| 1427 | case TargetOpcode::G_FPEXT: |
| 1428 | case TargetOpcode::G_FPTRUNC: { |
| 1429 | // Number of operands and presense of types is already checked (and |
| 1430 | // reported in case of any issues), so no need to report them again. As |
| 1431 | // we're trying to report as many issues as possible at once, however, the |
| 1432 | // instructions aren't guaranteed to have the right number of operands or |
| 1433 | // types attached to them at this point |
| 1434 | assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}" ); |
| 1435 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1436 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1437 | if (!DstTy.isValid() || !SrcTy.isValid()) |
| 1438 | break; |
| 1439 | |
| 1440 | if (DstTy.isPointerOrPointerVector() || SrcTy.isPointerOrPointerVector()) |
| 1441 | report(msg: "Generic extend/truncate can not operate on pointers" , MI); |
| 1442 | |
| 1443 | verifyVectorElementMatch(Ty0: DstTy, Ty1: SrcTy, MI); |
| 1444 | |
| 1445 | unsigned DstSize = DstTy.getScalarSizeInBits(); |
| 1446 | unsigned SrcSize = SrcTy.getScalarSizeInBits(); |
| 1447 | switch (MI->getOpcode()) { |
| 1448 | default: |
| 1449 | if (DstSize <= SrcSize) |
| 1450 | report(msg: "Generic extend has destination type no larger than source" , MI); |
| 1451 | break; |
| 1452 | case TargetOpcode::G_TRUNC: |
| 1453 | case TargetOpcode::G_FPTRUNC: |
| 1454 | if (DstSize >= SrcSize) |
| 1455 | report(msg: "Generic truncate has destination type no smaller than source" , |
| 1456 | MI); |
| 1457 | break; |
| 1458 | } |
| 1459 | break; |
| 1460 | } |
| 1461 | case TargetOpcode::G_SELECT: { |
| 1462 | LLT SelTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1463 | LLT CondTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1464 | if (!SelTy.isValid() || !CondTy.isValid()) |
| 1465 | break; |
| 1466 | |
| 1467 | // Scalar condition select on a vector is valid. |
| 1468 | if (CondTy.isVector()) |
| 1469 | verifyVectorElementMatch(Ty0: SelTy, Ty1: CondTy, MI); |
| 1470 | break; |
| 1471 | } |
| 1472 | case TargetOpcode::G_MERGE_VALUES: { |
| 1473 | // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, |
| 1474 | // e.g. s2N = MERGE sN, sN |
| 1475 | // Merging multiple scalars into a vector is not allowed, should use |
| 1476 | // G_BUILD_VECTOR for that. |
| 1477 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1478 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1479 | if (DstTy.isVector() || SrcTy.isVector()) |
| 1480 | report(msg: "G_MERGE_VALUES cannot operate on vectors" , MI); |
| 1481 | |
| 1482 | const unsigned NumOps = MI->getNumOperands(); |
| 1483 | if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) |
| 1484 | report(msg: "G_MERGE_VALUES result size is inconsistent" , MI); |
| 1485 | |
| 1486 | for (unsigned I = 2; I != NumOps; ++I) { |
| 1487 | if (MRI->getType(Reg: MI->getOperand(i: I).getReg()) != SrcTy) |
| 1488 | report(msg: "G_MERGE_VALUES source types do not match" , MI); |
| 1489 | } |
| 1490 | |
| 1491 | break; |
| 1492 | } |
| 1493 | case TargetOpcode::G_UNMERGE_VALUES: { |
| 1494 | unsigned NumDsts = MI->getNumOperands() - 1; |
| 1495 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1496 | for (unsigned i = 1; i < NumDsts; ++i) { |
| 1497 | if (MRI->getType(Reg: MI->getOperand(i).getReg()) != DstTy) { |
| 1498 | report(msg: "G_UNMERGE_VALUES destination types do not match" , MI); |
| 1499 | break; |
| 1500 | } |
| 1501 | } |
| 1502 | |
| 1503 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: NumDsts).getReg()); |
| 1504 | if (DstTy.isVector()) { |
| 1505 | // This case is the converse of G_CONCAT_VECTORS. |
| 1506 | if (!SrcTy.isVector() || |
| 1507 | (SrcTy.getScalarType() != DstTy.getScalarType() && |
| 1508 | !SrcTy.isPointerVector()) || |
| 1509 | SrcTy.isScalableVector() != DstTy.isScalableVector() || |
| 1510 | SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) |
| 1511 | report(msg: "G_UNMERGE_VALUES source operand does not match vector " |
| 1512 | "destination operands" , |
| 1513 | MI); |
| 1514 | } else if (SrcTy.isVector()) { |
| 1515 | // This case is the converse of G_BUILD_VECTOR, but relaxed to allow |
| 1516 | // mismatched types as long as the total size matches: |
| 1517 | // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>) |
| 1518 | if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) |
| 1519 | report(msg: "G_UNMERGE_VALUES vector source operand does not match scalar " |
| 1520 | "destination operands" , |
| 1521 | MI); |
| 1522 | } else { |
| 1523 | // This case is the converse of G_MERGE_VALUES. |
| 1524 | if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) { |
| 1525 | report(msg: "G_UNMERGE_VALUES scalar source operand does not match scalar " |
| 1526 | "destination operands" , |
| 1527 | MI); |
| 1528 | } |
| 1529 | } |
| 1530 | break; |
| 1531 | } |
| 1532 | case TargetOpcode::G_BUILD_VECTOR: { |
| 1533 | // Source types must be scalars, dest type a vector. Total size of scalars |
| 1534 | // must match the dest vector size. |
| 1535 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1536 | LLT SrcEltTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1537 | if (!DstTy.isVector() || SrcEltTy.isVector()) { |
| 1538 | report(msg: "G_BUILD_VECTOR must produce a vector from scalar operands" , MI); |
| 1539 | break; |
| 1540 | } |
| 1541 | |
| 1542 | if (DstTy.getElementType() != SrcEltTy) |
| 1543 | report(msg: "G_BUILD_VECTOR result element type must match source type" , MI); |
| 1544 | |
| 1545 | if (DstTy.getNumElements() != MI->getNumOperands() - 1) |
| 1546 | report(msg: "G_BUILD_VECTOR must have an operand for each elemement" , MI); |
| 1547 | |
| 1548 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands(), N: 2)) |
| 1549 | if (MRI->getType(Reg: MI->getOperand(i: 1).getReg()) != MRI->getType(Reg: MO.getReg())) |
| 1550 | report(msg: "G_BUILD_VECTOR source operand types are not homogeneous" , MI); |
| 1551 | |
| 1552 | break; |
| 1553 | } |
| 1554 | case TargetOpcode::G_BUILD_VECTOR_TRUNC: { |
| 1555 | // Source types must be scalars, dest type a vector. Scalar types must be |
| 1556 | // larger than the dest vector elt type, as this is a truncating operation. |
| 1557 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1558 | LLT SrcEltTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1559 | if (!DstTy.isVector() || SrcEltTy.isVector()) |
| 1560 | report(msg: "G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands" , |
| 1561 | MI); |
| 1562 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands(), N: 2)) |
| 1563 | if (MRI->getType(Reg: MI->getOperand(i: 1).getReg()) != MRI->getType(Reg: MO.getReg())) |
| 1564 | report(msg: "G_BUILD_VECTOR_TRUNC source operand types are not homogeneous" , |
| 1565 | MI); |
| 1566 | if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) |
| 1567 | report(msg: "G_BUILD_VECTOR_TRUNC source operand types are not larger than " |
| 1568 | "dest elt type" , |
| 1569 | MI); |
| 1570 | break; |
| 1571 | } |
| 1572 | case TargetOpcode::G_CONCAT_VECTORS: { |
| 1573 | // Source types should be vectors, and total size should match the dest |
| 1574 | // vector size. |
| 1575 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1576 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1577 | if (!DstTy.isVector() || !SrcTy.isVector()) |
| 1578 | report(msg: "G_CONCAT_VECTOR requires vector source and destination operands" , |
| 1579 | MI); |
| 1580 | |
| 1581 | if (MI->getNumOperands() < 3) |
| 1582 | report(msg: "G_CONCAT_VECTOR requires at least 2 source operands" , MI); |
| 1583 | |
| 1584 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands(), N: 2)) |
| 1585 | if (MRI->getType(Reg: MI->getOperand(i: 1).getReg()) != MRI->getType(Reg: MO.getReg())) |
| 1586 | report(msg: "G_CONCAT_VECTOR source operand types are not homogeneous" , MI); |
| 1587 | if (DstTy.getElementCount() != |
| 1588 | SrcTy.getElementCount() * (MI->getNumOperands() - 1)) |
| 1589 | report(msg: "G_CONCAT_VECTOR num dest and source elements should match" , MI); |
| 1590 | break; |
| 1591 | } |
| 1592 | case TargetOpcode::G_ICMP: |
| 1593 | case TargetOpcode::G_FCMP: { |
| 1594 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1595 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
| 1596 | |
| 1597 | if ((DstTy.isVector() != SrcTy.isVector()) || |
| 1598 | (DstTy.isVector() && |
| 1599 | DstTy.getElementCount() != SrcTy.getElementCount())) |
| 1600 | report(msg: "Generic vector icmp/fcmp must preserve number of lanes" , MI); |
| 1601 | |
| 1602 | break; |
| 1603 | } |
| 1604 | case TargetOpcode::G_SCMP: |
| 1605 | case TargetOpcode::G_UCMP: { |
| 1606 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1607 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1608 | |
| 1609 | if (SrcTy.isPointerOrPointerVector()) { |
| 1610 | report(msg: "Generic scmp/ucmp does not support pointers as operands" , MI); |
| 1611 | break; |
| 1612 | } |
| 1613 | |
| 1614 | if (DstTy.isPointerOrPointerVector()) { |
| 1615 | report(msg: "Generic scmp/ucmp does not support pointers as a result" , MI); |
| 1616 | break; |
| 1617 | } |
| 1618 | |
| 1619 | if (DstTy.getScalarSizeInBits() < 2) { |
| 1620 | report(msg: "Result type must be at least 2 bits wide" , MI); |
| 1621 | break; |
| 1622 | } |
| 1623 | |
| 1624 | if ((DstTy.isVector() != SrcTy.isVector()) || |
| 1625 | (DstTy.isVector() && |
| 1626 | DstTy.getElementCount() != SrcTy.getElementCount())) { |
| 1627 | report(msg: "Generic vector scmp/ucmp must preserve number of lanes" , MI); |
| 1628 | break; |
| 1629 | } |
| 1630 | |
| 1631 | break; |
| 1632 | } |
| 1633 | case TargetOpcode::G_EXTRACT: { |
| 1634 | const MachineOperand &SrcOp = MI->getOperand(i: 1); |
| 1635 | if (!SrcOp.isReg()) { |
| 1636 | report(msg: "extract source must be a register" , MI); |
| 1637 | break; |
| 1638 | } |
| 1639 | |
| 1640 | const MachineOperand &OffsetOp = MI->getOperand(i: 2); |
| 1641 | if (!OffsetOp.isImm()) { |
| 1642 | report(msg: "extract offset must be a constant" , MI); |
| 1643 | break; |
| 1644 | } |
| 1645 | |
| 1646 | unsigned DstSize = MRI->getType(Reg: MI->getOperand(i: 0).getReg()).getSizeInBits(); |
| 1647 | unsigned SrcSize = MRI->getType(Reg: SrcOp.getReg()).getSizeInBits(); |
| 1648 | if (SrcSize == DstSize) |
| 1649 | report(msg: "extract source must be larger than result" , MI); |
| 1650 | |
| 1651 | if (DstSize + OffsetOp.getImm() > SrcSize) |
| 1652 | report(msg: "extract reads past end of register" , MI); |
| 1653 | break; |
| 1654 | } |
| 1655 | case TargetOpcode::G_INSERT: { |
| 1656 | const MachineOperand &SrcOp = MI->getOperand(i: 2); |
| 1657 | if (!SrcOp.isReg()) { |
| 1658 | report(msg: "insert source must be a register" , MI); |
| 1659 | break; |
| 1660 | } |
| 1661 | |
| 1662 | const MachineOperand &OffsetOp = MI->getOperand(i: 3); |
| 1663 | if (!OffsetOp.isImm()) { |
| 1664 | report(msg: "insert offset must be a constant" , MI); |
| 1665 | break; |
| 1666 | } |
| 1667 | |
| 1668 | unsigned DstSize = MRI->getType(Reg: MI->getOperand(i: 0).getReg()).getSizeInBits(); |
| 1669 | unsigned SrcSize = MRI->getType(Reg: SrcOp.getReg()).getSizeInBits(); |
| 1670 | |
| 1671 | if (DstSize <= SrcSize) |
| 1672 | report(msg: "inserted size must be smaller than total register" , MI); |
| 1673 | |
| 1674 | if (SrcSize + OffsetOp.getImm() > DstSize) |
| 1675 | report(msg: "insert writes past end of register" , MI); |
| 1676 | |
| 1677 | break; |
| 1678 | } |
| 1679 | case TargetOpcode::G_JUMP_TABLE: { |
| 1680 | if (!MI->getOperand(i: 1).isJTI()) |
| 1681 | report(msg: "G_JUMP_TABLE source operand must be a jump table index" , MI); |
| 1682 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1683 | if (!DstTy.isPointer()) |
| 1684 | report(msg: "G_JUMP_TABLE dest operand must have a pointer type" , MI); |
| 1685 | break; |
| 1686 | } |
| 1687 | case TargetOpcode::G_BRJT: { |
| 1688 | if (!MRI->getType(Reg: MI->getOperand(i: 0).getReg()).isPointer()) |
| 1689 | report(msg: "G_BRJT src operand 0 must be a pointer type" , MI); |
| 1690 | |
| 1691 | if (!MI->getOperand(i: 1).isJTI()) |
| 1692 | report(msg: "G_BRJT src operand 1 must be a jump table index" , MI); |
| 1693 | |
| 1694 | const auto &IdxOp = MI->getOperand(i: 2); |
| 1695 | if (!IdxOp.isReg() || MRI->getType(Reg: IdxOp.getReg()).isPointer()) |
| 1696 | report(msg: "G_BRJT src operand 2 must be a scalar reg type" , MI); |
| 1697 | break; |
| 1698 | } |
| 1699 | case TargetOpcode::G_INTRINSIC: |
| 1700 | case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: |
| 1701 | case TargetOpcode::G_INTRINSIC_CONVERGENT: |
| 1702 | case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: { |
| 1703 | // TODO: Should verify number of def and use operands, but the current |
| 1704 | // interface requires passing in IR types for mangling. |
| 1705 | const MachineOperand &IntrIDOp = MI->getOperand(i: MI->getNumExplicitDefs()); |
| 1706 | if (!IntrIDOp.isIntrinsicID()) { |
| 1707 | report(msg: "G_INTRINSIC first src operand must be an intrinsic ID" , MI); |
| 1708 | break; |
| 1709 | } |
| 1710 | |
| 1711 | if (!verifyGIntrinsicSideEffects(MI)) |
| 1712 | break; |
| 1713 | if (!verifyGIntrinsicConvergence(MI)) |
| 1714 | break; |
| 1715 | |
| 1716 | break; |
| 1717 | } |
| 1718 | case TargetOpcode::G_SEXT_INREG: { |
| 1719 | if (!MI->getOperand(i: 2).isImm()) { |
| 1720 | report(msg: "G_SEXT_INREG expects an immediate operand #2" , MI); |
| 1721 | break; |
| 1722 | } |
| 1723 | |
| 1724 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1725 | int64_t Imm = MI->getOperand(i: 2).getImm(); |
| 1726 | if (Imm <= 0) |
| 1727 | report(msg: "G_SEXT_INREG size must be >= 1" , MI); |
| 1728 | if (Imm >= SrcTy.getScalarSizeInBits()) |
| 1729 | report(msg: "G_SEXT_INREG size must be less than source bit width" , MI); |
| 1730 | break; |
| 1731 | } |
| 1732 | case TargetOpcode::G_BSWAP: { |
| 1733 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1734 | if (DstTy.getScalarSizeInBits() % 16 != 0) |
| 1735 | report(msg: "G_BSWAP size must be a multiple of 16 bits" , MI); |
| 1736 | break; |
| 1737 | } |
| 1738 | case TargetOpcode::G_VSCALE: { |
| 1739 | if (!MI->getOperand(i: 1).isCImm()) { |
| 1740 | report(msg: "G_VSCALE operand must be cimm" , MI); |
| 1741 | break; |
| 1742 | } |
| 1743 | if (MI->getOperand(i: 1).getCImm()->isZero()) { |
| 1744 | report(msg: "G_VSCALE immediate cannot be zero" , MI); |
| 1745 | break; |
| 1746 | } |
| 1747 | break; |
| 1748 | } |
| 1749 | case TargetOpcode::G_STEP_VECTOR: { |
| 1750 | if (!MI->getOperand(i: 1).isCImm()) { |
| 1751 | report(msg: "operand must be cimm" , MI); |
| 1752 | break; |
| 1753 | } |
| 1754 | |
| 1755 | if (!MI->getOperand(i: 1).getCImm()->getValue().isStrictlyPositive()) { |
| 1756 | report(msg: "step must be > 0" , MI); |
| 1757 | break; |
| 1758 | } |
| 1759 | |
| 1760 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1761 | if (!DstTy.isScalableVector()) { |
| 1762 | report(msg: "Destination type must be a scalable vector" , MI); |
| 1763 | break; |
| 1764 | } |
| 1765 | |
| 1766 | // <vscale x 2 x p0> |
| 1767 | if (!DstTy.getElementType().isScalar()) { |
| 1768 | report(msg: "Destination element type must be scalar" , MI); |
| 1769 | break; |
| 1770 | } |
| 1771 | |
| 1772 | if (MI->getOperand(i: 1).getCImm()->getBitWidth() != |
| 1773 | DstTy.getElementType().getScalarSizeInBits()) { |
| 1774 | report(msg: "step bitwidth differs from result type element bitwidth" , MI); |
| 1775 | break; |
| 1776 | } |
| 1777 | break; |
| 1778 | } |
| 1779 | case TargetOpcode::G_INSERT_SUBVECTOR: { |
| 1780 | const MachineOperand &Src0Op = MI->getOperand(i: 1); |
| 1781 | if (!Src0Op.isReg()) { |
| 1782 | report(msg: "G_INSERT_SUBVECTOR first source must be a register" , MI); |
| 1783 | break; |
| 1784 | } |
| 1785 | |
| 1786 | const MachineOperand &Src1Op = MI->getOperand(i: 2); |
| 1787 | if (!Src1Op.isReg()) { |
| 1788 | report(msg: "G_INSERT_SUBVECTOR second source must be a register" , MI); |
| 1789 | break; |
| 1790 | } |
| 1791 | |
| 1792 | const MachineOperand &IndexOp = MI->getOperand(i: 3); |
| 1793 | if (!IndexOp.isImm()) { |
| 1794 | report(msg: "G_INSERT_SUBVECTOR index must be an immediate" , MI); |
| 1795 | break; |
| 1796 | } |
| 1797 | |
| 1798 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1799 | LLT Src1Ty = MRI->getType(Reg: Src1Op.getReg()); |
| 1800 | |
| 1801 | if (!DstTy.isVector()) { |
| 1802 | report(msg: "Destination type must be a vector" , MI); |
| 1803 | break; |
| 1804 | } |
| 1805 | |
| 1806 | if (!Src1Ty.isVector()) { |
| 1807 | report(msg: "Second source must be a vector" , MI); |
| 1808 | break; |
| 1809 | } |
| 1810 | |
| 1811 | if (DstTy.getElementType() != Src1Ty.getElementType()) { |
| 1812 | report(msg: "Element type of vectors must be the same" , MI); |
| 1813 | break; |
| 1814 | } |
| 1815 | |
| 1816 | if (Src1Ty.isScalable() != DstTy.isScalable()) { |
| 1817 | report(msg: "Vector types must both be fixed or both be scalable" , MI); |
| 1818 | break; |
| 1819 | } |
| 1820 | |
| 1821 | if (ElementCount::isKnownGT(LHS: Src1Ty.getElementCount(), |
| 1822 | RHS: DstTy.getElementCount())) { |
| 1823 | report(msg: "Second source must be smaller than destination vector" , MI); |
| 1824 | break; |
| 1825 | } |
| 1826 | |
| 1827 | uint64_t Idx = IndexOp.getImm(); |
| 1828 | uint64_t Src1MinLen = Src1Ty.getElementCount().getKnownMinValue(); |
| 1829 | if (IndexOp.getImm() % Src1MinLen != 0) { |
| 1830 | report(msg: "Index must be a multiple of the second source vector's " |
| 1831 | "minimum vector length" , |
| 1832 | MI); |
| 1833 | break; |
| 1834 | } |
| 1835 | |
| 1836 | uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue(); |
| 1837 | if (Idx >= DstMinLen || Idx + Src1MinLen > DstMinLen) { |
| 1838 | report(msg: "Subvector type and index must not cause insert to overrun the " |
| 1839 | "vector being inserted into" , |
| 1840 | MI); |
| 1841 | break; |
| 1842 | } |
| 1843 | |
| 1844 | break; |
| 1845 | } |
| 1846 | case TargetOpcode::G_EXTRACT_SUBVECTOR: { |
| 1847 | const MachineOperand &SrcOp = MI->getOperand(i: 1); |
| 1848 | if (!SrcOp.isReg()) { |
| 1849 | report(msg: "G_EXTRACT_SUBVECTOR first source must be a register" , MI); |
| 1850 | break; |
| 1851 | } |
| 1852 | |
| 1853 | const MachineOperand &IndexOp = MI->getOperand(i: 2); |
| 1854 | if (!IndexOp.isImm()) { |
| 1855 | report(msg: "G_EXTRACT_SUBVECTOR index must be an immediate" , MI); |
| 1856 | break; |
| 1857 | } |
| 1858 | |
| 1859 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1860 | LLT SrcTy = MRI->getType(Reg: SrcOp.getReg()); |
| 1861 | |
| 1862 | if (!DstTy.isVector()) { |
| 1863 | report(msg: "Destination type must be a vector" , MI); |
| 1864 | break; |
| 1865 | } |
| 1866 | |
| 1867 | if (!SrcTy.isVector()) { |
| 1868 | report(msg: "Source must be a vector" , MI); |
| 1869 | break; |
| 1870 | } |
| 1871 | |
| 1872 | if (DstTy.getElementType() != SrcTy.getElementType()) { |
| 1873 | report(msg: "Element type of vectors must be the same" , MI); |
| 1874 | break; |
| 1875 | } |
| 1876 | |
| 1877 | if (SrcTy.isScalable() != DstTy.isScalable()) { |
| 1878 | report(msg: "Vector types must both be fixed or both be scalable" , MI); |
| 1879 | break; |
| 1880 | } |
| 1881 | |
| 1882 | if (ElementCount::isKnownGT(LHS: DstTy.getElementCount(), |
| 1883 | RHS: SrcTy.getElementCount())) { |
| 1884 | report(msg: "Destination vector must be smaller than source vector" , MI); |
| 1885 | break; |
| 1886 | } |
| 1887 | |
| 1888 | uint64_t Idx = IndexOp.getImm(); |
| 1889 | uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue(); |
| 1890 | if (Idx % DstMinLen != 0) { |
| 1891 | report(msg: "Index must be a multiple of the destination vector's minimum " |
| 1892 | "vector length" , |
| 1893 | MI); |
| 1894 | break; |
| 1895 | } |
| 1896 | |
| 1897 | uint64_t SrcMinLen = SrcTy.getElementCount().getKnownMinValue(); |
| 1898 | if (Idx >= SrcMinLen || Idx + DstMinLen > SrcMinLen) { |
| 1899 | report(msg: "Destination type and index must not cause extract to overrun the " |
| 1900 | "source vector" , |
| 1901 | MI); |
| 1902 | break; |
| 1903 | } |
| 1904 | |
| 1905 | break; |
| 1906 | } |
| 1907 | case TargetOpcode::G_SHUFFLE_VECTOR: { |
| 1908 | const MachineOperand &MaskOp = MI->getOperand(i: 3); |
| 1909 | if (!MaskOp.isShuffleMask()) { |
| 1910 | report(msg: "Incorrect mask operand type for G_SHUFFLE_VECTOR" , MI); |
| 1911 | break; |
| 1912 | } |
| 1913 | |
| 1914 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1915 | LLT Src0Ty = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1916 | LLT Src1Ty = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
| 1917 | |
| 1918 | if (Src0Ty != Src1Ty) |
| 1919 | report(msg: "Source operands must be the same type" , MI); |
| 1920 | |
| 1921 | if (Src0Ty.getScalarType() != DstTy.getScalarType()) |
| 1922 | report(msg: "G_SHUFFLE_VECTOR cannot change element type" , MI); |
| 1923 | |
| 1924 | // Don't check that all operands are vector because scalars are used in |
| 1925 | // place of 1 element vectors. |
| 1926 | int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; |
| 1927 | int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; |
| 1928 | |
| 1929 | ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); |
| 1930 | |
| 1931 | if (static_cast<int>(MaskIdxes.size()) != DstNumElts) |
| 1932 | report(msg: "Wrong result type for shufflemask" , MI); |
| 1933 | |
| 1934 | for (int Idx : MaskIdxes) { |
| 1935 | if (Idx < 0) |
| 1936 | continue; |
| 1937 | |
| 1938 | if (Idx >= 2 * SrcNumElts) |
| 1939 | report(msg: "Out of bounds shuffle index" , MI); |
| 1940 | } |
| 1941 | |
| 1942 | break; |
| 1943 | } |
| 1944 | |
| 1945 | case TargetOpcode::G_SPLAT_VECTOR: { |
| 1946 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1947 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1948 | |
| 1949 | if (!DstTy.isScalableVector()) { |
| 1950 | report(msg: "Destination type must be a scalable vector" , MI); |
| 1951 | break; |
| 1952 | } |
| 1953 | |
| 1954 | if (!SrcTy.isScalar() && !SrcTy.isPointer()) { |
| 1955 | report(msg: "Source type must be a scalar or pointer" , MI); |
| 1956 | break; |
| 1957 | } |
| 1958 | |
| 1959 | if (TypeSize::isKnownGT(LHS: DstTy.getElementType().getSizeInBits(), |
| 1960 | RHS: SrcTy.getSizeInBits())) { |
| 1961 | report(msg: "Element type of the destination must be the same size or smaller " |
| 1962 | "than the source type" , |
| 1963 | MI); |
| 1964 | break; |
| 1965 | } |
| 1966 | |
| 1967 | break; |
| 1968 | } |
| 1969 | case TargetOpcode::G_EXTRACT_VECTOR_ELT: { |
| 1970 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1971 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1972 | LLT IdxTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
| 1973 | |
| 1974 | if (!DstTy.isScalar() && !DstTy.isPointer()) { |
| 1975 | report(msg: "Destination type must be a scalar or pointer" , MI); |
| 1976 | break; |
| 1977 | } |
| 1978 | |
| 1979 | if (!SrcTy.isVector()) { |
| 1980 | report(msg: "First source must be a vector" , MI); |
| 1981 | break; |
| 1982 | } |
| 1983 | |
| 1984 | auto TLI = MF->getSubtarget().getTargetLowering(); |
| 1985 | if (IdxTy.getSizeInBits() != TLI->getVectorIdxWidth(DL: MF->getDataLayout())) { |
| 1986 | report(msg: "Index type must match VectorIdxTy" , MI); |
| 1987 | break; |
| 1988 | } |
| 1989 | |
| 1990 | break; |
| 1991 | } |
| 1992 | case TargetOpcode::G_INSERT_VECTOR_ELT: { |
| 1993 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 1994 | LLT VecTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 1995 | LLT ScaTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
| 1996 | LLT IdxTy = MRI->getType(Reg: MI->getOperand(i: 3).getReg()); |
| 1997 | |
| 1998 | if (!DstTy.isVector()) { |
| 1999 | report(msg: "Destination type must be a vector" , MI); |
| 2000 | break; |
| 2001 | } |
| 2002 | |
| 2003 | if (VecTy != DstTy) { |
| 2004 | report(msg: "Destination type and vector type must match" , MI); |
| 2005 | break; |
| 2006 | } |
| 2007 | |
| 2008 | if (!ScaTy.isScalar() && !ScaTy.isPointer()) { |
| 2009 | report(msg: "Inserted element must be a scalar or pointer" , MI); |
| 2010 | break; |
| 2011 | } |
| 2012 | |
| 2013 | auto TLI = MF->getSubtarget().getTargetLowering(); |
| 2014 | if (IdxTy.getSizeInBits() != TLI->getVectorIdxWidth(DL: MF->getDataLayout())) { |
| 2015 | report(msg: "Index type must match VectorIdxTy" , MI); |
| 2016 | break; |
| 2017 | } |
| 2018 | |
| 2019 | break; |
| 2020 | } |
| 2021 | case TargetOpcode::G_DYN_STACKALLOC: { |
| 2022 | const MachineOperand &DstOp = MI->getOperand(i: 0); |
| 2023 | const MachineOperand &AllocOp = MI->getOperand(i: 1); |
| 2024 | const MachineOperand &AlignOp = MI->getOperand(i: 2); |
| 2025 | |
| 2026 | if (!DstOp.isReg() || !MRI->getType(Reg: DstOp.getReg()).isPointer()) { |
| 2027 | report(msg: "dst operand 0 must be a pointer type" , MI); |
| 2028 | break; |
| 2029 | } |
| 2030 | |
| 2031 | if (!AllocOp.isReg() || !MRI->getType(Reg: AllocOp.getReg()).isScalar()) { |
| 2032 | report(msg: "src operand 1 must be a scalar reg type" , MI); |
| 2033 | break; |
| 2034 | } |
| 2035 | |
| 2036 | if (!AlignOp.isImm()) { |
| 2037 | report(msg: "src operand 2 must be an immediate type" , MI); |
| 2038 | break; |
| 2039 | } |
| 2040 | break; |
| 2041 | } |
| 2042 | case TargetOpcode::G_MEMCPY_INLINE: |
| 2043 | case TargetOpcode::G_MEMCPY: |
| 2044 | case TargetOpcode::G_MEMMOVE: { |
| 2045 | ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); |
| 2046 | if (MMOs.size() != 2) { |
| 2047 | report(msg: "memcpy/memmove must have 2 memory operands" , MI); |
| 2048 | break; |
| 2049 | } |
| 2050 | |
| 2051 | if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || |
| 2052 | (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { |
| 2053 | report(msg: "wrong memory operand types" , MI); |
| 2054 | break; |
| 2055 | } |
| 2056 | |
| 2057 | if (MMOs[0]->getSize() != MMOs[1]->getSize()) |
| 2058 | report(msg: "inconsistent memory operand sizes" , MI); |
| 2059 | |
| 2060 | LLT DstPtrTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 2061 | LLT SrcPtrTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 2062 | |
| 2063 | if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { |
| 2064 | report(msg: "memory instruction operand must be a pointer" , MI); |
| 2065 | break; |
| 2066 | } |
| 2067 | |
| 2068 | if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) |
| 2069 | report(msg: "inconsistent store address space" , MI); |
| 2070 | if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) |
| 2071 | report(msg: "inconsistent load address space" , MI); |
| 2072 | |
| 2073 | if (Opc != TargetOpcode::G_MEMCPY_INLINE) |
| 2074 | if (!MI->getOperand(i: 3).isImm() || (MI->getOperand(i: 3).getImm() & ~1LL)) |
| 2075 | report(msg: "'tail' flag (operand 3) must be an immediate 0 or 1" , MI); |
| 2076 | |
| 2077 | break; |
| 2078 | } |
| 2079 | case TargetOpcode::G_BZERO: |
| 2080 | case TargetOpcode::G_MEMSET: { |
| 2081 | ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); |
| 2082 | std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero" ; |
| 2083 | if (MMOs.size() != 1) { |
| 2084 | report(Msg: Twine(Name, " must have 1 memory operand" ), MI); |
| 2085 | break; |
| 2086 | } |
| 2087 | |
| 2088 | if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { |
| 2089 | report(Msg: Twine(Name, " memory operand must be a store" ), MI); |
| 2090 | break; |
| 2091 | } |
| 2092 | |
| 2093 | LLT DstPtrTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 2094 | if (!DstPtrTy.isPointer()) { |
| 2095 | report(Msg: Twine(Name, " operand must be a pointer" ), MI); |
| 2096 | break; |
| 2097 | } |
| 2098 | |
| 2099 | if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) |
| 2100 | report(Msg: "inconsistent " + Twine(Name, " address space" ), MI); |
| 2101 | |
| 2102 | if (!MI->getOperand(i: MI->getNumOperands() - 1).isImm() || |
| 2103 | (MI->getOperand(i: MI->getNumOperands() - 1).getImm() & ~1LL)) |
| 2104 | report(msg: "'tail' flag (last operand) must be an immediate 0 or 1" , MI); |
| 2105 | |
| 2106 | break; |
| 2107 | } |
| 2108 | case TargetOpcode::G_UBSANTRAP: { |
| 2109 | const MachineOperand &KindOp = MI->getOperand(i: 0); |
| 2110 | if (!MI->getOperand(i: 0).isImm()) { |
| 2111 | report(msg: "Crash kind must be an immediate" , MO: &KindOp, MONum: 0); |
| 2112 | break; |
| 2113 | } |
| 2114 | int64_t Kind = MI->getOperand(i: 0).getImm(); |
| 2115 | if (!isInt<8>(x: Kind)) |
| 2116 | report(msg: "Crash kind must be 8 bit wide" , MO: &KindOp, MONum: 0); |
| 2117 | break; |
| 2118 | } |
| 2119 | case TargetOpcode::G_VECREDUCE_SEQ_FADD: |
| 2120 | case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { |
| 2121 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 2122 | LLT Src1Ty = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 2123 | LLT Src2Ty = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
| 2124 | if (!DstTy.isScalar()) |
| 2125 | report(msg: "Vector reduction requires a scalar destination type" , MI); |
| 2126 | if (!Src1Ty.isScalar()) |
| 2127 | report(msg: "Sequential FADD/FMUL vector reduction requires a scalar 1st operand" , MI); |
| 2128 | if (!Src2Ty.isVector()) |
| 2129 | report(msg: "Sequential FADD/FMUL vector reduction must have a vector 2nd operand" , MI); |
| 2130 | break; |
| 2131 | } |
| 2132 | case TargetOpcode::G_VECREDUCE_FADD: |
| 2133 | case TargetOpcode::G_VECREDUCE_FMUL: |
| 2134 | case TargetOpcode::G_VECREDUCE_FMAX: |
| 2135 | case TargetOpcode::G_VECREDUCE_FMIN: |
| 2136 | case TargetOpcode::G_VECREDUCE_FMAXIMUM: |
| 2137 | case TargetOpcode::G_VECREDUCE_FMINIMUM: |
| 2138 | case TargetOpcode::G_VECREDUCE_ADD: |
| 2139 | case TargetOpcode::G_VECREDUCE_MUL: |
| 2140 | case TargetOpcode::G_VECREDUCE_AND: |
| 2141 | case TargetOpcode::G_VECREDUCE_OR: |
| 2142 | case TargetOpcode::G_VECREDUCE_XOR: |
| 2143 | case TargetOpcode::G_VECREDUCE_SMAX: |
| 2144 | case TargetOpcode::G_VECREDUCE_SMIN: |
| 2145 | case TargetOpcode::G_VECREDUCE_UMAX: |
| 2146 | case TargetOpcode::G_VECREDUCE_UMIN: { |
| 2147 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 2148 | if (!DstTy.isScalar()) |
| 2149 | report(msg: "Vector reduction requires a scalar destination type" , MI); |
| 2150 | break; |
| 2151 | } |
| 2152 | |
| 2153 | case TargetOpcode::G_SBFX: |
| 2154 | case TargetOpcode::G_UBFX: { |
| 2155 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 2156 | if (DstTy.isVector()) { |
| 2157 | report(msg: "Bitfield extraction is not supported on vectors" , MI); |
| 2158 | break; |
| 2159 | } |
| 2160 | break; |
| 2161 | } |
| 2162 | case TargetOpcode::G_SHL: |
| 2163 | case TargetOpcode::G_LSHR: |
| 2164 | case TargetOpcode::G_ASHR: |
| 2165 | case TargetOpcode::G_ROTR: |
| 2166 | case TargetOpcode::G_ROTL: { |
| 2167 | LLT Src1Ty = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 2168 | LLT Src2Ty = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
| 2169 | if (Src1Ty.isVector() != Src2Ty.isVector()) { |
| 2170 | report(msg: "Shifts and rotates require operands to be either all scalars or " |
| 2171 | "all vectors" , |
| 2172 | MI); |
| 2173 | break; |
| 2174 | } |
| 2175 | break; |
| 2176 | } |
| 2177 | case TargetOpcode::G_LLROUND: |
| 2178 | case TargetOpcode::G_LROUND: { |
| 2179 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 2180 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 2181 | if (!DstTy.isValid() || !SrcTy.isValid()) |
| 2182 | break; |
| 2183 | if (SrcTy.isPointer() || DstTy.isPointer()) { |
| 2184 | StringRef Op = SrcTy.isPointer() ? "Source" : "Destination" ; |
| 2185 | report(Msg: Twine(Op, " operand must not be a pointer type" ), MI); |
| 2186 | } else if (SrcTy.isScalar()) { |
| 2187 | verifyAllRegOpsScalar(MI: *MI, MRI: *MRI); |
| 2188 | break; |
| 2189 | } else if (SrcTy.isVector()) { |
| 2190 | verifyVectorElementMatch(Ty0: SrcTy, Ty1: DstTy, MI); |
| 2191 | break; |
| 2192 | } |
| 2193 | break; |
| 2194 | } |
| 2195 | case TargetOpcode::G_IS_FPCLASS: { |
| 2196 | LLT DestTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
| 2197 | LLT DestEltTy = DestTy.getScalarType(); |
| 2198 | if (!DestEltTy.isScalar()) { |
| 2199 | report(msg: "Destination must be a scalar or vector of scalars" , MI); |
| 2200 | break; |
| 2201 | } |
| 2202 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
| 2203 | LLT SrcEltTy = SrcTy.getScalarType(); |
| 2204 | if (!SrcEltTy.isScalar()) { |
| 2205 | report(msg: "Source must be a scalar or vector of scalars" , MI); |
| 2206 | break; |
| 2207 | } |
| 2208 | if (!verifyVectorElementMatch(Ty0: DestTy, Ty1: SrcTy, MI)) |
| 2209 | break; |
| 2210 | const MachineOperand &TestMO = MI->getOperand(i: 2); |
| 2211 | if (!TestMO.isImm()) { |
| 2212 | report(msg: "floating-point class set (operand 2) must be an immediate" , MI); |
| 2213 | break; |
| 2214 | } |
| 2215 | int64_t Test = TestMO.getImm(); |
| 2216 | if (Test < 0 || Test > fcAllFlags) { |
| 2217 | report(msg: "Incorrect floating-point class set (operand 2)" , MI); |
| 2218 | break; |
| 2219 | } |
| 2220 | break; |
| 2221 | } |
| 2222 | case TargetOpcode::G_PREFETCH: { |
| 2223 | const MachineOperand &AddrOp = MI->getOperand(i: 0); |
| 2224 | if (!AddrOp.isReg() || !MRI->getType(Reg: AddrOp.getReg()).isPointer()) { |
| 2225 | report(msg: "addr operand must be a pointer" , MO: &AddrOp, MONum: 0); |
| 2226 | break; |
| 2227 | } |
| 2228 | const MachineOperand &RWOp = MI->getOperand(i: 1); |
| 2229 | if (!RWOp.isImm() || (uint64_t)RWOp.getImm() >= 2) { |
| 2230 | report(msg: "rw operand must be an immediate 0-1" , MO: &RWOp, MONum: 1); |
| 2231 | break; |
| 2232 | } |
| 2233 | const MachineOperand &LocalityOp = MI->getOperand(i: 2); |
| 2234 | if (!LocalityOp.isImm() || (uint64_t)LocalityOp.getImm() >= 4) { |
| 2235 | report(msg: "locality operand must be an immediate 0-3" , MO: &LocalityOp, MONum: 2); |
| 2236 | break; |
| 2237 | } |
| 2238 | const MachineOperand &CacheTypeOp = MI->getOperand(i: 3); |
| 2239 | if (!CacheTypeOp.isImm() || (uint64_t)CacheTypeOp.getImm() >= 2) { |
| 2240 | report(msg: "cache type operand must be an immediate 0-1" , MO: &CacheTypeOp, MONum: 3); |
| 2241 | break; |
| 2242 | } |
| 2243 | break; |
| 2244 | } |
| 2245 | case TargetOpcode::G_ASSERT_ALIGN: { |
| 2246 | if (MI->getOperand(i: 2).getImm() < 1) |
| 2247 | report(msg: "alignment immediate must be >= 1" , MI); |
| 2248 | break; |
| 2249 | } |
| 2250 | case TargetOpcode::G_CONSTANT_POOL: { |
| 2251 | if (!MI->getOperand(i: 1).isCPI()) |
| 2252 | report(msg: "Src operand 1 must be a constant pool index" , MI); |
| 2253 | if (!MRI->getType(Reg: MI->getOperand(i: 0).getReg()).isPointer()) |
| 2254 | report(msg: "Dst operand 0 must be a pointer" , MI); |
| 2255 | break; |
| 2256 | } |
| 2257 | case TargetOpcode::G_PTRAUTH_GLOBAL_VALUE: { |
| 2258 | const MachineOperand &AddrOp = MI->getOperand(i: 1); |
| 2259 | if (!AddrOp.isReg() || !MRI->getType(Reg: AddrOp.getReg()).isPointer()) |
| 2260 | report(msg: "addr operand must be a pointer" , MO: &AddrOp, MONum: 1); |
| 2261 | break; |
| 2262 | } |
| 2263 | default: |
| 2264 | break; |
| 2265 | } |
| 2266 | } |
| 2267 | |
| 2268 | void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { |
| 2269 | const MCInstrDesc &MCID = MI->getDesc(); |
| 2270 | if (MI->getNumOperands() < MCID.getNumOperands()) { |
| 2271 | report(msg: "Too few operands" , MI); |
| 2272 | OS << MCID.getNumOperands() << " operands expected, but " |
| 2273 | << MI->getNumOperands() << " given.\n" ; |
| 2274 | } |
| 2275 | |
| 2276 | if (MI->getFlag(Flag: MachineInstr::NoConvergent) && !MCID.isConvergent()) |
| 2277 | report(msg: "NoConvergent flag expected only on convergent instructions." , MI); |
| 2278 | |
| 2279 | if (MI->isPHI()) { |
| 2280 | if (MF->getProperties().hasNoPHIs()) |
| 2281 | report(msg: "Found PHI instruction with NoPHIs property set" , MI); |
| 2282 | |
| 2283 | if (FirstNonPHI) |
| 2284 | report(msg: "Found PHI instruction after non-PHI" , MI); |
| 2285 | } else if (FirstNonPHI == nullptr) |
| 2286 | FirstNonPHI = MI; |
| 2287 | |
| 2288 | // Check the tied operands. |
| 2289 | if (MI->isInlineAsm()) |
| 2290 | verifyInlineAsm(MI); |
| 2291 | |
| 2292 | // Check that unspillable terminators define a reg and have at most one use. |
| 2293 | if (TII->isUnspillableTerminator(MI)) { |
| 2294 | if (!MI->getOperand(i: 0).isReg() || !MI->getOperand(i: 0).isDef()) |
| 2295 | report(msg: "Unspillable Terminator does not define a reg" , MI); |
| 2296 | Register Def = MI->getOperand(i: 0).getReg(); |
| 2297 | if (Def.isVirtual() && !MF->getProperties().hasNoPHIs() && |
| 2298 | std::distance(first: MRI->use_nodbg_begin(RegNo: Def), last: MRI->use_nodbg_end()) > 1) |
| 2299 | report(msg: "Unspillable Terminator expected to have at most one use!" , MI); |
| 2300 | } |
| 2301 | |
| 2302 | // A fully-formed DBG_VALUE must have a location. Ignore partially formed |
| 2303 | // DBG_VALUEs: these are convenient to use in tests, but should never get |
| 2304 | // generated. |
| 2305 | if (MI->isDebugValue() && MI->getNumOperands() == 4) |
| 2306 | if (!MI->getDebugLoc()) |
| 2307 | report(msg: "Missing DebugLoc for debug instruction" , MI); |
| 2308 | |
| 2309 | // Meta instructions should never be the subject of debug value tracking, |
| 2310 | // they don't create a value in the output program at all. |
| 2311 | if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) |
| 2312 | report(msg: "Metadata instruction should not have a value tracking number" , MI); |
| 2313 | |
| 2314 | // Check the MachineMemOperands for basic consistency. |
| 2315 | for (MachineMemOperand *Op : MI->memoperands()) { |
| 2316 | if (Op->isLoad() && !MI->mayLoad()) |
| 2317 | report(msg: "Missing mayLoad flag" , MI); |
| 2318 | if (Op->isStore() && !MI->mayStore()) |
| 2319 | report(msg: "Missing mayStore flag" , MI); |
| 2320 | } |
| 2321 | |
| 2322 | // Debug values must not have a slot index. |
| 2323 | // Other instructions must have one, unless they are inside a bundle. |
| 2324 | if (LiveInts) { |
| 2325 | bool mapped = !LiveInts->isNotInMIMap(Instr: *MI); |
| 2326 | if (MI->isDebugOrPseudoInstr()) { |
| 2327 | if (mapped) |
| 2328 | report(msg: "Debug instruction has a slot index" , MI); |
| 2329 | } else if (MI->isInsideBundle()) { |
| 2330 | if (mapped) |
| 2331 | report(msg: "Instruction inside bundle has a slot index" , MI); |
| 2332 | } else { |
| 2333 | if (!mapped) |
| 2334 | report(msg: "Missing slot index" , MI); |
| 2335 | } |
| 2336 | } |
| 2337 | |
| 2338 | unsigned Opc = MCID.getOpcode(); |
| 2339 | if (isPreISelGenericOpcode(Opcode: Opc) || isPreISelGenericOptimizationHint(Opcode: Opc)) { |
| 2340 | verifyPreISelGenericInstruction(MI); |
| 2341 | return; |
| 2342 | } |
| 2343 | |
| 2344 | StringRef ErrorInfo; |
| 2345 | if (!TII->verifyInstruction(MI: *MI, ErrInfo&: ErrorInfo)) |
| 2346 | report(msg: ErrorInfo.data(), MI); |
| 2347 | |
| 2348 | // Verify properties of various specific instruction types |
| 2349 | switch (MI->getOpcode()) { |
| 2350 | case TargetOpcode::COPY: { |
| 2351 | const MachineOperand &DstOp = MI->getOperand(i: 0); |
| 2352 | const MachineOperand &SrcOp = MI->getOperand(i: 1); |
| 2353 | const Register SrcReg = SrcOp.getReg(); |
| 2354 | const Register DstReg = DstOp.getReg(); |
| 2355 | |
| 2356 | LLT DstTy = MRI->getType(Reg: DstReg); |
| 2357 | LLT SrcTy = MRI->getType(Reg: SrcReg); |
| 2358 | if (SrcTy.isValid() && DstTy.isValid()) { |
| 2359 | // If both types are valid, check that the types are the same. |
| 2360 | if (SrcTy != DstTy) { |
| 2361 | report(msg: "Copy Instruction is illegal with mismatching types" , MI); |
| 2362 | OS << "Def = " << DstTy << ", Src = " << SrcTy << '\n'; |
| 2363 | } |
| 2364 | |
| 2365 | break; |
| 2366 | } |
| 2367 | |
| 2368 | if (!SrcTy.isValid() && !DstTy.isValid()) |
| 2369 | break; |
| 2370 | |
| 2371 | // If we have only one valid type, this is likely a copy between a virtual |
| 2372 | // and physical register. |
| 2373 | TypeSize SrcSize = TRI->getRegSizeInBits(Reg: SrcReg, MRI: *MRI); |
| 2374 | TypeSize DstSize = TRI->getRegSizeInBits(Reg: DstReg, MRI: *MRI); |
| 2375 | if (SrcReg.isPhysical() && DstTy.isValid()) { |
| 2376 | const TargetRegisterClass *SrcRC = |
| 2377 | TRI->getMinimalPhysRegClassLLT(Reg: SrcReg, Ty: DstTy); |
| 2378 | if (SrcRC) |
| 2379 | SrcSize = TRI->getRegSizeInBits(RC: *SrcRC); |
| 2380 | } |
| 2381 | |
| 2382 | if (DstReg.isPhysical() && SrcTy.isValid()) { |
| 2383 | const TargetRegisterClass *DstRC = |
| 2384 | TRI->getMinimalPhysRegClassLLT(Reg: DstReg, Ty: SrcTy); |
| 2385 | if (DstRC) |
| 2386 | DstSize = TRI->getRegSizeInBits(RC: *DstRC); |
| 2387 | } |
| 2388 | |
| 2389 | // The next two checks allow COPY between physical and virtual registers, |
| 2390 | // when the virtual register has a scalable size and the physical register |
| 2391 | // has a fixed size. These checks allow COPY between *potentialy* mismatched |
| 2392 | // sizes. However, once RegisterBankSelection occurs, MachineVerifier should |
| 2393 | // be able to resolve a fixed size for the scalable vector, and at that |
| 2394 | // point this function will know for sure whether the sizes are mismatched |
| 2395 | // and correctly report a size mismatch. |
| 2396 | if (SrcReg.isPhysical() && DstReg.isVirtual() && DstSize.isScalable() && |
| 2397 | !SrcSize.isScalable()) |
| 2398 | break; |
| 2399 | if (SrcReg.isVirtual() && DstReg.isPhysical() && SrcSize.isScalable() && |
| 2400 | !DstSize.isScalable()) |
| 2401 | break; |
| 2402 | |
| 2403 | if (SrcSize.isNonZero() && DstSize.isNonZero() && SrcSize != DstSize) { |
| 2404 | if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { |
| 2405 | report(msg: "Copy Instruction is illegal with mismatching sizes" , MI); |
| 2406 | OS << "Def Size = " << DstSize << ", Src Size = " << SrcSize << '\n'; |
| 2407 | } |
| 2408 | } |
| 2409 | break; |
| 2410 | } |
| 2411 | case TargetOpcode::STATEPOINT: { |
| 2412 | StatepointOpers SO(MI); |
| 2413 | if (!MI->getOperand(i: SO.getIDPos()).isImm() || |
| 2414 | !MI->getOperand(i: SO.getNBytesPos()).isImm() || |
| 2415 | !MI->getOperand(i: SO.getNCallArgsPos()).isImm()) { |
| 2416 | report(msg: "meta operands to STATEPOINT not constant!" , MI); |
| 2417 | break; |
| 2418 | } |
| 2419 | |
| 2420 | auto VerifyStackMapConstant = [&](unsigned Offset) { |
| 2421 | if (Offset >= MI->getNumOperands()) { |
| 2422 | report(msg: "stack map constant to STATEPOINT is out of range!" , MI); |
| 2423 | return; |
| 2424 | } |
| 2425 | if (!MI->getOperand(i: Offset - 1).isImm() || |
| 2426 | MI->getOperand(i: Offset - 1).getImm() != StackMaps::ConstantOp || |
| 2427 | !MI->getOperand(i: Offset).isImm()) |
| 2428 | report(msg: "stack map constant to STATEPOINT not well formed!" , MI); |
| 2429 | }; |
| 2430 | VerifyStackMapConstant(SO.getCCIdx()); |
| 2431 | VerifyStackMapConstant(SO.getFlagsIdx()); |
| 2432 | VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); |
| 2433 | VerifyStackMapConstant(SO.getNumGCPtrIdx()); |
| 2434 | VerifyStackMapConstant(SO.getNumAllocaIdx()); |
| 2435 | VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); |
| 2436 | |
| 2437 | // Verify that all explicit statepoint defs are tied to gc operands as |
| 2438 | // they are expected to be a relocation of gc operands. |
| 2439 | unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); |
| 2440 | unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; |
| 2441 | for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { |
| 2442 | unsigned UseOpIdx; |
| 2443 | if (!MI->isRegTiedToUseOperand(DefOpIdx: Idx, UseOpIdx: &UseOpIdx)) { |
| 2444 | report(msg: "STATEPOINT defs expected to be tied" , MI); |
| 2445 | break; |
| 2446 | } |
| 2447 | if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { |
| 2448 | report(msg: "STATEPOINT def tied to non-gc operand" , MI); |
| 2449 | break; |
| 2450 | } |
| 2451 | } |
| 2452 | |
| 2453 | // TODO: verify we have properly encoded deopt arguments |
| 2454 | } break; |
| 2455 | case TargetOpcode::INSERT_SUBREG: { |
| 2456 | unsigned InsertedSize; |
| 2457 | if (unsigned SubIdx = MI->getOperand(i: 2).getSubReg()) |
| 2458 | InsertedSize = TRI->getSubRegIdxSize(Idx: SubIdx); |
| 2459 | else |
| 2460 | InsertedSize = TRI->getRegSizeInBits(Reg: MI->getOperand(i: 2).getReg(), MRI: *MRI); |
| 2461 | unsigned SubRegSize = TRI->getSubRegIdxSize(Idx: MI->getOperand(i: 3).getImm()); |
| 2462 | if (SubRegSize < InsertedSize) { |
| 2463 | report(msg: "INSERT_SUBREG expected inserted value to have equal or lesser " |
| 2464 | "size than the subreg it was inserted into" , MI); |
| 2465 | break; |
| 2466 | } |
| 2467 | } break; |
| 2468 | case TargetOpcode::REG_SEQUENCE: { |
| 2469 | unsigned NumOps = MI->getNumOperands(); |
| 2470 | if (!(NumOps & 1)) { |
| 2471 | report(msg: "Invalid number of operands for REG_SEQUENCE" , MI); |
| 2472 | break; |
| 2473 | } |
| 2474 | |
| 2475 | for (unsigned I = 1; I != NumOps; I += 2) { |
| 2476 | const MachineOperand &RegOp = MI->getOperand(i: I); |
| 2477 | const MachineOperand &SubRegOp = MI->getOperand(i: I + 1); |
| 2478 | |
| 2479 | if (!RegOp.isReg()) |
| 2480 | report(msg: "Invalid register operand for REG_SEQUENCE" , MO: &RegOp, MONum: I); |
| 2481 | |
| 2482 | if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 || |
| 2483 | SubRegOp.getImm() >= TRI->getNumSubRegIndices()) { |
| 2484 | report(msg: "Invalid subregister index operand for REG_SEQUENCE" , |
| 2485 | MO: &SubRegOp, MONum: I + 1); |
| 2486 | } |
| 2487 | } |
| 2488 | |
| 2489 | Register DstReg = MI->getOperand(i: 0).getReg(); |
| 2490 | if (DstReg.isPhysical()) |
| 2491 | report(msg: "REG_SEQUENCE does not support physical register results" , MI); |
| 2492 | |
| 2493 | if (MI->getOperand(i: 0).getSubReg()) |
| 2494 | report(msg: "Invalid subreg result for REG_SEQUENCE" , MI); |
| 2495 | |
| 2496 | break; |
| 2497 | } |
| 2498 | } |
| 2499 | } |
| 2500 | |
| 2501 | void |
| 2502 | MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { |
| 2503 | const MachineInstr *MI = MO->getParent(); |
| 2504 | const MCInstrDesc &MCID = MI->getDesc(); |
| 2505 | unsigned NumDefs = MCID.getNumDefs(); |
| 2506 | if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) |
| 2507 | NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; |
| 2508 | |
| 2509 | // The first MCID.NumDefs operands must be explicit register defines |
| 2510 | if (MONum < NumDefs) { |
| 2511 | const MCOperandInfo &MCOI = MCID.operands()[MONum]; |
| 2512 | if (!MO->isReg()) |
| 2513 | report(msg: "Explicit definition must be a register" , MO, MONum); |
| 2514 | else if (!MO->isDef() && !MCOI.isOptionalDef()) |
| 2515 | report(msg: "Explicit definition marked as use" , MO, MONum); |
| 2516 | else if (MO->isImplicit()) |
| 2517 | report(msg: "Explicit definition marked as implicit" , MO, MONum); |
| 2518 | } else if (MONum < MCID.getNumOperands()) { |
| 2519 | const MCOperandInfo &MCOI = MCID.operands()[MONum]; |
| 2520 | // Don't check if it's the last operand in a variadic instruction. See, |
| 2521 | // e.g., LDM_RET in the arm back end. Check non-variadic operands only. |
| 2522 | bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; |
| 2523 | if (!IsOptional) { |
| 2524 | if (MO->isReg()) { |
| 2525 | if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) |
| 2526 | report(msg: "Explicit operand marked as def" , MO, MONum); |
| 2527 | if (MO->isImplicit()) |
| 2528 | report(msg: "Explicit operand marked as implicit" , MO, MONum); |
| 2529 | } |
| 2530 | |
| 2531 | // Check that an instruction has register operands only as expected. |
| 2532 | if (MCOI.OperandType == MCOI::OPERAND_REGISTER && |
| 2533 | !MO->isReg() && !MO->isFI()) |
| 2534 | report(msg: "Expected a register operand." , MO, MONum); |
| 2535 | if (MO->isReg()) { |
| 2536 | if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || |
| 2537 | (MCOI.OperandType == MCOI::OPERAND_PCREL && |
| 2538 | !TII->isPCRelRegisterOperandLegal(MO: *MO))) |
| 2539 | report(msg: "Expected a non-register operand." , MO, MONum); |
| 2540 | } |
| 2541 | } |
| 2542 | |
| 2543 | int TiedTo = MCID.getOperandConstraint(OpNum: MONum, Constraint: MCOI::TIED_TO); |
| 2544 | if (TiedTo != -1) { |
| 2545 | if (!MO->isReg()) |
| 2546 | report(msg: "Tied use must be a register" , MO, MONum); |
| 2547 | else if (!MO->isTied()) |
| 2548 | report(msg: "Operand should be tied" , MO, MONum); |
| 2549 | else if (unsigned(TiedTo) != MI->findTiedOperandIdx(OpIdx: MONum)) |
| 2550 | report(msg: "Tied def doesn't match MCInstrDesc" , MO, MONum); |
| 2551 | else if (MO->getReg().isPhysical()) { |
| 2552 | const MachineOperand &MOTied = MI->getOperand(i: TiedTo); |
| 2553 | if (!MOTied.isReg()) |
| 2554 | report(msg: "Tied counterpart must be a register" , MO: &MOTied, MONum: TiedTo); |
| 2555 | else if (MOTied.getReg().isPhysical() && |
| 2556 | MO->getReg() != MOTied.getReg()) |
| 2557 | report(msg: "Tied physical registers must match." , MO: &MOTied, MONum: TiedTo); |
| 2558 | } |
| 2559 | } else if (MO->isReg() && MO->isTied()) |
| 2560 | report(msg: "Explicit operand should not be tied" , MO, MONum); |
| 2561 | } else if (!MI->isVariadic()) { |
| 2562 | // ARM adds %reg0 operands to indicate predicates. We'll allow that. |
| 2563 | if (!MO->isValidExcessOperand()) |
| 2564 | report(msg: "Extra explicit operand on non-variadic instruction" , MO, MONum); |
| 2565 | } |
| 2566 | |
| 2567 | switch (MO->getType()) { |
| 2568 | case MachineOperand::MO_Register: { |
| 2569 | // Verify debug flag on debug instructions. Check this first because reg0 |
| 2570 | // indicates an undefined debug value. |
| 2571 | if (MI->isDebugInstr() && MO->isUse()) { |
| 2572 | if (!MO->isDebug()) |
| 2573 | report(msg: "Register operand must be marked debug" , MO, MONum); |
| 2574 | } else if (MO->isDebug()) { |
| 2575 | report(msg: "Register operand must not be marked debug" , MO, MONum); |
| 2576 | } |
| 2577 | |
| 2578 | const Register Reg = MO->getReg(); |
| 2579 | if (!Reg) |
| 2580 | return; |
| 2581 | if (MRI->tracksLiveness() && !MI->isDebugInstr()) |
| 2582 | checkLiveness(MO, MONum); |
| 2583 | |
| 2584 | if (MO->isDef() && MO->isUndef() && !MO->getSubReg() && |
| 2585 | MO->getReg().isVirtual()) // TODO: Apply to physregs too |
| 2586 | report(msg: "Undef virtual register def operands require a subregister" , MO, MONum); |
| 2587 | |
| 2588 | // Verify the consistency of tied operands. |
| 2589 | if (MO->isTied()) { |
| 2590 | unsigned OtherIdx = MI->findTiedOperandIdx(OpIdx: MONum); |
| 2591 | const MachineOperand &OtherMO = MI->getOperand(i: OtherIdx); |
| 2592 | if (!OtherMO.isReg()) |
| 2593 | report(msg: "Must be tied to a register" , MO, MONum); |
| 2594 | if (!OtherMO.isTied()) |
| 2595 | report(msg: "Missing tie flags on tied operand" , MO, MONum); |
| 2596 | if (MI->findTiedOperandIdx(OpIdx: OtherIdx) != MONum) |
| 2597 | report(msg: "Inconsistent tie links" , MO, MONum); |
| 2598 | if (MONum < MCID.getNumDefs()) { |
| 2599 | if (OtherIdx < MCID.getNumOperands()) { |
| 2600 | if (-1 == MCID.getOperandConstraint(OpNum: OtherIdx, Constraint: MCOI::TIED_TO)) |
| 2601 | report(msg: "Explicit def tied to explicit use without tie constraint" , |
| 2602 | MO, MONum); |
| 2603 | } else { |
| 2604 | if (!OtherMO.isImplicit()) |
| 2605 | report(msg: "Explicit def should be tied to implicit use" , MO, MONum); |
| 2606 | } |
| 2607 | } |
| 2608 | } |
| 2609 | |
| 2610 | // Verify two-address constraints after the twoaddressinstruction pass. |
| 2611 | // Both twoaddressinstruction pass and phi-node-elimination pass call |
| 2612 | // MRI->leaveSSA() to set MF as not IsSSA, we should do the verification |
| 2613 | // after twoaddressinstruction pass not after phi-node-elimination pass. So |
| 2614 | // we shouldn't use the IsSSA as the condition, we should based on |
| 2615 | // TiedOpsRewritten property to verify two-address constraints, this |
| 2616 | // property will be set in twoaddressinstruction pass. |
| 2617 | unsigned DefIdx; |
| 2618 | if (MF->getProperties().hasTiedOpsRewritten() && MO->isUse() && |
| 2619 | MI->isRegTiedToDefOperand(UseOpIdx: MONum, DefOpIdx: &DefIdx) && |
| 2620 | Reg != MI->getOperand(i: DefIdx).getReg()) |
| 2621 | report(msg: "Two-address instruction operands must be identical" , MO, MONum); |
| 2622 | |
| 2623 | // Check register classes. |
| 2624 | unsigned SubIdx = MO->getSubReg(); |
| 2625 | |
| 2626 | if (Reg.isPhysical()) { |
| 2627 | if (SubIdx) { |
| 2628 | report(msg: "Illegal subregister index for physical register" , MO, MONum); |
| 2629 | return; |
| 2630 | } |
| 2631 | if (MONum < MCID.getNumOperands()) { |
| 2632 | if (const TargetRegisterClass *DRC = |
| 2633 | TII->getRegClass(MCID, OpNum: MONum, TRI, MF: *MF)) { |
| 2634 | if (!DRC->contains(Reg)) { |
| 2635 | report(msg: "Illegal physical register for instruction" , MO, MONum); |
| 2636 | OS << printReg(Reg, TRI) << " is not a " |
| 2637 | << TRI->getRegClassName(Class: DRC) << " register.\n" ; |
| 2638 | } |
| 2639 | } |
| 2640 | } |
| 2641 | if (MO->isRenamable()) { |
| 2642 | if (MRI->isReserved(PhysReg: Reg)) { |
| 2643 | report(msg: "isRenamable set on reserved register" , MO, MONum); |
| 2644 | return; |
| 2645 | } |
| 2646 | } |
| 2647 | } else { |
| 2648 | // Virtual register. |
| 2649 | const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); |
| 2650 | if (!RC) { |
| 2651 | // This is a generic virtual register. |
| 2652 | |
| 2653 | // Do not allow undef uses for generic virtual registers. This ensures |
| 2654 | // getVRegDef can never fail and return null on a generic register. |
| 2655 | // |
| 2656 | // FIXME: This restriction should probably be broadened to all SSA |
| 2657 | // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still |
| 2658 | // run on the SSA function just before phi elimination. |
| 2659 | if (MO->isUndef()) |
| 2660 | report(msg: "Generic virtual register use cannot be undef" , MO, MONum); |
| 2661 | |
| 2662 | // Debug value instruction is permitted to use undefined vregs. |
| 2663 | // This is a performance measure to skip the overhead of immediately |
| 2664 | // pruning unused debug operands. The final undef substitution occurs |
| 2665 | // when debug values are allocated in LDVImpl::handleDebugValue, so |
| 2666 | // these verifications always apply after this pass. |
| 2667 | if (isFunctionTracksDebugUserValues || !MO->isUse() || |
| 2668 | !MI->isDebugValue() || !MRI->def_empty(RegNo: Reg)) { |
| 2669 | // If we're post-Select, we can't have gvregs anymore. |
| 2670 | if (isFunctionSelected) { |
| 2671 | report(msg: "Generic virtual register invalid in a Selected function" , |
| 2672 | MO, MONum); |
| 2673 | return; |
| 2674 | } |
| 2675 | |
| 2676 | // The gvreg must have a type and it must not have a SubIdx. |
| 2677 | LLT Ty = MRI->getType(Reg); |
| 2678 | if (!Ty.isValid()) { |
| 2679 | report(msg: "Generic virtual register must have a valid type" , MO, |
| 2680 | MONum); |
| 2681 | return; |
| 2682 | } |
| 2683 | |
| 2684 | const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); |
| 2685 | const RegisterBankInfo *RBI = MF->getSubtarget().getRegBankInfo(); |
| 2686 | |
| 2687 | // If we're post-RegBankSelect, the gvreg must have a bank. |
| 2688 | if (!RegBank && isFunctionRegBankSelected) { |
| 2689 | report(msg: "Generic virtual register must have a bank in a " |
| 2690 | "RegBankSelected function" , |
| 2691 | MO, MONum); |
| 2692 | return; |
| 2693 | } |
| 2694 | |
| 2695 | // Make sure the register fits into its register bank if any. |
| 2696 | if (RegBank && Ty.isValid() && !Ty.isScalableVector() && |
| 2697 | RBI->getMaximumSize(RegBankID: RegBank->getID()) < Ty.getSizeInBits()) { |
| 2698 | report(msg: "Register bank is too small for virtual register" , MO, |
| 2699 | MONum); |
| 2700 | OS << "Register bank " << RegBank->getName() << " too small(" |
| 2701 | << RBI->getMaximumSize(RegBankID: RegBank->getID()) << ") to fit " |
| 2702 | << Ty.getSizeInBits() << "-bits\n" ; |
| 2703 | return; |
| 2704 | } |
| 2705 | } |
| 2706 | |
| 2707 | if (SubIdx) { |
| 2708 | report(msg: "Generic virtual register does not allow subregister index" , MO, |
| 2709 | MONum); |
| 2710 | return; |
| 2711 | } |
| 2712 | |
| 2713 | // If this is a target specific instruction and this operand |
| 2714 | // has register class constraint, the virtual register must |
| 2715 | // comply to it. |
| 2716 | if (!isPreISelGenericOpcode(Opcode: MCID.getOpcode()) && |
| 2717 | MONum < MCID.getNumOperands() && |
| 2718 | TII->getRegClass(MCID, OpNum: MONum, TRI, MF: *MF)) { |
| 2719 | report(msg: "Virtual register does not match instruction constraint" , MO, |
| 2720 | MONum); |
| 2721 | OS << "Expect register class " |
| 2722 | << TRI->getRegClassName(Class: TII->getRegClass(MCID, OpNum: MONum, TRI, MF: *MF)) |
| 2723 | << " but got nothing\n" ; |
| 2724 | return; |
| 2725 | } |
| 2726 | |
| 2727 | break; |
| 2728 | } |
| 2729 | if (SubIdx) { |
| 2730 | const TargetRegisterClass *SRC = |
| 2731 | TRI->getSubClassWithSubReg(RC, Idx: SubIdx); |
| 2732 | if (!SRC) { |
| 2733 | report(msg: "Invalid subregister index for virtual register" , MO, MONum); |
| 2734 | OS << "Register class " << TRI->getRegClassName(Class: RC) |
| 2735 | << " does not support subreg index " |
| 2736 | << TRI->getSubRegIndexName(SubIdx) << '\n'; |
| 2737 | return; |
| 2738 | } |
| 2739 | if (RC != SRC) { |
| 2740 | report(msg: "Invalid register class for subregister index" , MO, MONum); |
| 2741 | OS << "Register class " << TRI->getRegClassName(Class: RC) |
| 2742 | << " does not fully support subreg index " |
| 2743 | << TRI->getSubRegIndexName(SubIdx) << '\n'; |
| 2744 | return; |
| 2745 | } |
| 2746 | } |
| 2747 | if (MONum < MCID.getNumOperands()) { |
| 2748 | if (const TargetRegisterClass *DRC = |
| 2749 | TII->getRegClass(MCID, OpNum: MONum, TRI, MF: *MF)) { |
| 2750 | if (SubIdx) { |
| 2751 | const TargetRegisterClass *SuperRC = |
| 2752 | TRI->getLargestLegalSuperClass(RC, *MF); |
| 2753 | if (!SuperRC) { |
| 2754 | report(msg: "No largest legal super class exists." , MO, MONum); |
| 2755 | return; |
| 2756 | } |
| 2757 | DRC = TRI->getMatchingSuperRegClass(A: SuperRC, B: DRC, Idx: SubIdx); |
| 2758 | if (!DRC) { |
| 2759 | report(msg: "No matching super-reg register class." , MO, MONum); |
| 2760 | return; |
| 2761 | } |
| 2762 | } |
| 2763 | if (!RC->hasSuperClassEq(RC: DRC)) { |
| 2764 | report(msg: "Illegal virtual register for instruction" , MO, MONum); |
| 2765 | OS << "Expected a " << TRI->getRegClassName(Class: DRC) |
| 2766 | << " register, but got a " << TRI->getRegClassName(Class: RC) |
| 2767 | << " register\n" ; |
| 2768 | } |
| 2769 | } |
| 2770 | } |
| 2771 | } |
| 2772 | break; |
| 2773 | } |
| 2774 | |
| 2775 | case MachineOperand::MO_RegisterMask: |
| 2776 | regMasks.push_back(Elt: MO->getRegMask()); |
| 2777 | break; |
| 2778 | |
| 2779 | case MachineOperand::MO_MachineBasicBlock: |
| 2780 | if (MI->isPHI() && !MO->getMBB()->isSuccessor(MBB: MI->getParent())) |
| 2781 | report(msg: "PHI operand is not in the CFG" , MO, MONum); |
| 2782 | break; |
| 2783 | |
| 2784 | case MachineOperand::MO_FrameIndex: |
| 2785 | if (LiveStks && LiveStks->hasInterval(Slot: MO->getIndex()) && |
| 2786 | LiveInts && !LiveInts->isNotInMIMap(Instr: *MI)) { |
| 2787 | int FI = MO->getIndex(); |
| 2788 | LiveInterval &LI = LiveStks->getInterval(Slot: FI); |
| 2789 | SlotIndex Idx = LiveInts->getInstructionIndex(Instr: *MI); |
| 2790 | |
| 2791 | bool stores = MI->mayStore(); |
| 2792 | bool loads = MI->mayLoad(); |
| 2793 | // For a memory-to-memory move, we need to check if the frame |
| 2794 | // index is used for storing or loading, by inspecting the |
| 2795 | // memory operands. |
| 2796 | if (stores && loads) { |
| 2797 | for (auto *MMO : MI->memoperands()) { |
| 2798 | const PseudoSourceValue *PSV = MMO->getPseudoValue(); |
| 2799 | if (PSV == nullptr) continue; |
| 2800 | const FixedStackPseudoSourceValue *Value = |
| 2801 | dyn_cast<FixedStackPseudoSourceValue>(Val: PSV); |
| 2802 | if (Value == nullptr) continue; |
| 2803 | if (Value->getFrameIndex() != FI) continue; |
| 2804 | |
| 2805 | if (MMO->isStore()) |
| 2806 | loads = false; |
| 2807 | else |
| 2808 | stores = false; |
| 2809 | break; |
| 2810 | } |
| 2811 | if (loads == stores) |
| 2812 | report(msg: "Missing fixed stack memoperand." , MI); |
| 2813 | } |
| 2814 | if (loads && !LI.liveAt(index: Idx.getRegSlot(EC: true))) { |
| 2815 | report(msg: "Instruction loads from dead spill slot" , MO, MONum); |
| 2816 | OS << "Live stack: " << LI << '\n'; |
| 2817 | } |
| 2818 | if (stores && !LI.liveAt(index: Idx.getRegSlot())) { |
| 2819 | report(msg: "Instruction stores to dead spill slot" , MO, MONum); |
| 2820 | OS << "Live stack: " << LI << '\n'; |
| 2821 | } |
| 2822 | } |
| 2823 | break; |
| 2824 | |
| 2825 | case MachineOperand::MO_CFIIndex: |
| 2826 | if (MO->getCFIIndex() >= MF->getFrameInstructions().size()) |
| 2827 | report(msg: "CFI instruction has invalid index" , MO, MONum); |
| 2828 | break; |
| 2829 | |
| 2830 | default: |
| 2831 | break; |
| 2832 | } |
| 2833 | } |
| 2834 | |
| 2835 | void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, |
| 2836 | unsigned MONum, SlotIndex UseIdx, |
| 2837 | const LiveRange &LR, |
| 2838 | VirtRegOrUnit VRegOrUnit, |
| 2839 | LaneBitmask LaneMask) { |
| 2840 | const MachineInstr *MI = MO->getParent(); |
| 2841 | |
| 2842 | if (!LR.verify()) { |
| 2843 | report(msg: "invalid live range" , MO, MONum); |
| 2844 | report_context_liverange(LR); |
| 2845 | report_context_vreg_regunit(VRegOrUnit); |
| 2846 | report_context(Pos: UseIdx); |
| 2847 | return; |
| 2848 | } |
| 2849 | |
| 2850 | LiveQueryResult LRQ = LR.Query(Idx: UseIdx); |
| 2851 | bool HasValue = LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut()); |
| 2852 | // Check if we have a segment at the use, note however that we only need one |
| 2853 | // live subregister range, the others may be dead. |
| 2854 | if (!HasValue && LaneMask.none()) { |
| 2855 | report(msg: "No live segment at use" , MO, MONum); |
| 2856 | report_context_liverange(LR); |
| 2857 | report_context_vreg_regunit(VRegOrUnit); |
| 2858 | report_context(Pos: UseIdx); |
| 2859 | } |
| 2860 | if (MO->isKill() && !LRQ.isKill()) { |
| 2861 | report(msg: "Live range continues after kill flag" , MO, MONum); |
| 2862 | report_context_liverange(LR); |
| 2863 | report_context_vreg_regunit(VRegOrUnit); |
| 2864 | if (LaneMask.any()) |
| 2865 | report_context_lanemask(LaneMask); |
| 2866 | report_context(Pos: UseIdx); |
| 2867 | } |
| 2868 | } |
| 2869 | |
| 2870 | void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, |
| 2871 | unsigned MONum, SlotIndex DefIdx, |
| 2872 | const LiveRange &LR, |
| 2873 | VirtRegOrUnit VRegOrUnit, |
| 2874 | bool SubRangeCheck, |
| 2875 | LaneBitmask LaneMask) { |
| 2876 | if (!LR.verify()) { |
| 2877 | report(msg: "invalid live range" , MO, MONum); |
| 2878 | report_context_liverange(LR); |
| 2879 | report_context_vreg_regunit(VRegOrUnit); |
| 2880 | if (LaneMask.any()) |
| 2881 | report_context_lanemask(LaneMask); |
| 2882 | report_context(Pos: DefIdx); |
| 2883 | } |
| 2884 | |
| 2885 | if (const VNInfo *VNI = LR.getVNInfoAt(Idx: DefIdx)) { |
| 2886 | // The LR can correspond to the whole reg and its def slot is not obliged |
| 2887 | // to be the same as the MO' def slot. E.g. when we check here "normal" |
| 2888 | // subreg MO but there is other EC subreg MO in the same instruction so the |
| 2889 | // whole reg has EC def slot and differs from the currently checked MO' def |
| 2890 | // slot. For example: |
| 2891 | // %0 [16e,32r:0) 0@16e L..3 [16e,32r:0) 0@16e L..C [16r,32r:0) 0@16r |
| 2892 | // Check that there is an early-clobber def of the same superregister |
| 2893 | // somewhere is performed in visitMachineFunctionAfter() |
| 2894 | if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) || |
| 2895 | !SlotIndex::isSameInstr(A: VNI->def, B: DefIdx) || |
| 2896 | (VNI->def != DefIdx && |
| 2897 | (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) { |
| 2898 | report(msg: "Inconsistent valno->def" , MO, MONum); |
| 2899 | report_context_liverange(LR); |
| 2900 | report_context_vreg_regunit(VRegOrUnit); |
| 2901 | if (LaneMask.any()) |
| 2902 | report_context_lanemask(LaneMask); |
| 2903 | report_context(VNI: *VNI); |
| 2904 | report_context(Pos: DefIdx); |
| 2905 | } |
| 2906 | } else { |
| 2907 | report(msg: "No live segment at def" , MO, MONum); |
| 2908 | report_context_liverange(LR); |
| 2909 | report_context_vreg_regunit(VRegOrUnit); |
| 2910 | if (LaneMask.any()) |
| 2911 | report_context_lanemask(LaneMask); |
| 2912 | report_context(Pos: DefIdx); |
| 2913 | } |
| 2914 | // Check that, if the dead def flag is present, LiveInts agree. |
| 2915 | if (MO->isDead()) { |
| 2916 | LiveQueryResult LRQ = LR.Query(Idx: DefIdx); |
| 2917 | if (!LRQ.isDeadDef()) { |
| 2918 | assert(VRegOrUnit.isVirtualReg() && "Expecting a virtual register." ); |
| 2919 | // A dead subreg def only tells us that the specific subreg is dead. There |
| 2920 | // could be other non-dead defs of other subregs, or we could have other |
| 2921 | // parts of the register being live through the instruction. So unless we |
| 2922 | // are checking liveness for a subrange it is ok for the live range to |
| 2923 | // continue, given that we have a dead def of a subregister. |
| 2924 | if (SubRangeCheck || MO->getSubReg() == 0) { |
| 2925 | report(msg: "Live range continues after dead def flag" , MO, MONum); |
| 2926 | report_context_liverange(LR); |
| 2927 | report_context_vreg_regunit(VRegOrUnit); |
| 2928 | if (LaneMask.any()) |
| 2929 | report_context_lanemask(LaneMask); |
| 2930 | } |
| 2931 | } |
| 2932 | } |
| 2933 | } |
| 2934 | |
| 2935 | void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { |
| 2936 | const MachineInstr *MI = MO->getParent(); |
| 2937 | const Register Reg = MO->getReg(); |
| 2938 | const unsigned SubRegIdx = MO->getSubReg(); |
| 2939 | |
| 2940 | const LiveInterval *LI = nullptr; |
| 2941 | if (LiveInts && Reg.isVirtual()) { |
| 2942 | if (LiveInts->hasInterval(Reg)) { |
| 2943 | LI = &LiveInts->getInterval(Reg); |
| 2944 | if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() && |
| 2945 | !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(VReg: Reg)) |
| 2946 | report(msg: "Live interval for subreg operand has no subranges" , MO, MONum); |
| 2947 | } else { |
| 2948 | report(msg: "Virtual register has no live interval" , MO, MONum); |
| 2949 | } |
| 2950 | } |
| 2951 | |
| 2952 | // Both use and def operands can read a register. |
| 2953 | if (MO->readsReg()) { |
| 2954 | if (MO->isKill()) |
| 2955 | addRegWithSubRegs(RV&: regsKilled, Reg); |
| 2956 | |
| 2957 | // Check that LiveVars knows this kill (unless we are inside a bundle, in |
| 2958 | // which case we have already checked that LiveVars knows any kills on the |
| 2959 | // bundle header instead). |
| 2960 | if (LiveVars && Reg.isVirtual() && MO->isKill() && |
| 2961 | !MI->isBundledWithPred()) { |
| 2962 | LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); |
| 2963 | if (!is_contained(Range&: VI.Kills, Element: MI)) |
| 2964 | report(msg: "Kill missing from LiveVariables" , MO, MONum); |
| 2965 | } |
| 2966 | |
| 2967 | // Check LiveInts liveness and kill. |
| 2968 | if (LiveInts && !LiveInts->isNotInMIMap(Instr: *MI)) { |
| 2969 | SlotIndex UseIdx; |
| 2970 | if (MI->isPHI()) { |
| 2971 | // PHI use occurs on the edge, so check for live out here instead. |
| 2972 | UseIdx = LiveInts->getMBBEndIdx( |
| 2973 | mbb: MI->getOperand(i: MONum + 1).getMBB()).getPrevSlot(); |
| 2974 | } else { |
| 2975 | UseIdx = LiveInts->getInstructionIndex(Instr: *MI); |
| 2976 | } |
| 2977 | // Check the cached regunit intervals. |
| 2978 | if (Reg.isPhysical() && !isReserved(Reg)) { |
| 2979 | for (MCRegUnit Unit : TRI->regunits(Reg: Reg.asMCReg())) { |
| 2980 | if (MRI->isReservedRegUnit(Unit)) |
| 2981 | continue; |
| 2982 | if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit)) |
| 2983 | checkLivenessAtUse(MO, MONum, UseIdx, LR: *LR, VRegOrUnit: VirtRegOrUnit(Unit)); |
| 2984 | } |
| 2985 | } |
| 2986 | |
| 2987 | if (Reg.isVirtual()) { |
| 2988 | // This is a virtual register interval. |
| 2989 | checkLivenessAtUse(MO, MONum, UseIdx, LR: *LI, VRegOrUnit: VirtRegOrUnit(Reg)); |
| 2990 | |
| 2991 | if (LI->hasSubRanges() && !MO->isDef()) { |
| 2992 | LaneBitmask MOMask = SubRegIdx != 0 |
| 2993 | ? TRI->getSubRegIndexLaneMask(SubIdx: SubRegIdx) |
| 2994 | : MRI->getMaxLaneMaskForVReg(Reg); |
| 2995 | LaneBitmask LiveInMask; |
| 2996 | for (const LiveInterval::SubRange &SR : LI->subranges()) { |
| 2997 | if ((MOMask & SR.LaneMask).none()) |
| 2998 | continue; |
| 2999 | checkLivenessAtUse(MO, MONum, UseIdx, LR: SR, VRegOrUnit: VirtRegOrUnit(Reg), |
| 3000 | LaneMask: SR.LaneMask); |
| 3001 | LiveQueryResult LRQ = SR.Query(Idx: UseIdx); |
| 3002 | if (LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut())) |
| 3003 | LiveInMask |= SR.LaneMask; |
| 3004 | } |
| 3005 | // At least parts of the register has to be live at the use. |
| 3006 | if ((LiveInMask & MOMask).none()) { |
| 3007 | report(msg: "No live subrange at use" , MO, MONum); |
| 3008 | report_context(LI: *LI); |
| 3009 | report_context(Pos: UseIdx); |
| 3010 | } |
| 3011 | // For PHIs all lanes should be live |
| 3012 | if (MI->isPHI() && LiveInMask != MOMask) { |
| 3013 | report(msg: "Not all lanes of PHI source live at use" , MO, MONum); |
| 3014 | report_context(LI: *LI); |
| 3015 | report_context(Pos: UseIdx); |
| 3016 | } |
| 3017 | } |
| 3018 | } |
| 3019 | } |
| 3020 | |
| 3021 | // Use of a dead register. |
| 3022 | if (!regsLive.count(V: Reg)) { |
| 3023 | if (Reg.isPhysical()) { |
| 3024 | // Reserved registers may be used even when 'dead'. |
| 3025 | bool Bad = !isReserved(Reg); |
| 3026 | // We are fine if just any subregister has a defined value. |
| 3027 | if (Bad) { |
| 3028 | |
| 3029 | for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { |
| 3030 | if (regsLive.count(V: SubReg)) { |
| 3031 | Bad = false; |
| 3032 | break; |
| 3033 | } |
| 3034 | } |
| 3035 | } |
| 3036 | // If there is an additional implicit-use of a super register we stop |
| 3037 | // here. By definition we are fine if the super register is not |
| 3038 | // (completely) dead, if the complete super register is dead we will |
| 3039 | // get a report for its operand. |
| 3040 | if (Bad) { |
| 3041 | for (const MachineOperand &MOP : MI->uses()) { |
| 3042 | if (!MOP.isReg() || !MOP.isImplicit()) |
| 3043 | continue; |
| 3044 | |
| 3045 | if (!MOP.getReg().isPhysical()) |
| 3046 | continue; |
| 3047 | |
| 3048 | if (MOP.getReg() != Reg && |
| 3049 | all_of(Range: TRI->regunits(Reg), P: [&](const MCRegUnit RegUnit) { |
| 3050 | return llvm::is_contained(Range: TRI->regunits(Reg: MOP.getReg()), |
| 3051 | Element: RegUnit); |
| 3052 | })) |
| 3053 | Bad = false; |
| 3054 | } |
| 3055 | } |
| 3056 | if (Bad) |
| 3057 | report(msg: "Using an undefined physical register" , MO, MONum); |
| 3058 | } else if (MRI->def_empty(RegNo: Reg)) { |
| 3059 | report(msg: "Reading virtual register without a def" , MO, MONum); |
| 3060 | } else { |
| 3061 | BBInfo &MInfo = MBBInfoMap[MI->getParent()]; |
| 3062 | // We don't know which virtual registers are live in, so only complain |
| 3063 | // if vreg was killed in this MBB. Otherwise keep track of vregs that |
| 3064 | // must be live in. PHI instructions are handled separately. |
| 3065 | if (MInfo.regsKilled.count(V: Reg)) |
| 3066 | report(msg: "Using a killed virtual register" , MO, MONum); |
| 3067 | else if (!MI->isPHI()) |
| 3068 | MInfo.vregsLiveIn.insert(KV: std::make_pair(x: Reg, y&: MI)); |
| 3069 | } |
| 3070 | } |
| 3071 | } |
| 3072 | |
| 3073 | if (MO->isDef()) { |
| 3074 | // Register defined. |
| 3075 | // TODO: verify that earlyclobber ops are not used. |
| 3076 | if (MO->isDead()) |
| 3077 | addRegWithSubRegs(RV&: regsDead, Reg); |
| 3078 | else |
| 3079 | addRegWithSubRegs(RV&: regsDefined, Reg); |
| 3080 | |
| 3081 | // Verify SSA form. |
| 3082 | if (MRI->isSSA() && Reg.isVirtual() && |
| 3083 | std::next(x: MRI->def_begin(RegNo: Reg)) != MRI->def_end()) |
| 3084 | report(msg: "Multiple virtual register defs in SSA form" , MO, MONum); |
| 3085 | |
| 3086 | // Check LiveInts for a live segment, but only for virtual registers. |
| 3087 | if (LiveInts && !LiveInts->isNotInMIMap(Instr: *MI)) { |
| 3088 | SlotIndex DefIdx = LiveInts->getInstructionIndex(Instr: *MI); |
| 3089 | DefIdx = DefIdx.getRegSlot(EC: MO->isEarlyClobber()); |
| 3090 | |
| 3091 | if (Reg.isVirtual()) { |
| 3092 | checkLivenessAtDef(MO, MONum, DefIdx, LR: *LI, VRegOrUnit: VirtRegOrUnit(Reg)); |
| 3093 | |
| 3094 | if (LI->hasSubRanges()) { |
| 3095 | LaneBitmask MOMask = SubRegIdx != 0 |
| 3096 | ? TRI->getSubRegIndexLaneMask(SubIdx: SubRegIdx) |
| 3097 | : MRI->getMaxLaneMaskForVReg(Reg); |
| 3098 | for (const LiveInterval::SubRange &SR : LI->subranges()) { |
| 3099 | if ((SR.LaneMask & MOMask).none()) |
| 3100 | continue; |
| 3101 | checkLivenessAtDef(MO, MONum, DefIdx, LR: SR, VRegOrUnit: VirtRegOrUnit(Reg), SubRangeCheck: true, |
| 3102 | LaneMask: SR.LaneMask); |
| 3103 | } |
| 3104 | } |
| 3105 | } |
| 3106 | } |
| 3107 | } |
| 3108 | } |
| 3109 | |
| 3110 | // This function gets called after visiting all instructions in a bundle. The |
| 3111 | // argument points to the bundle header. |
| 3112 | // Normal stand-alone instructions are also considered 'bundles', and this |
| 3113 | // function is called for all of them. |
| 3114 | void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { |
| 3115 | BBInfo &MInfo = MBBInfoMap[MI->getParent()]; |
| 3116 | set_union(S1&: MInfo.regsKilled, S2: regsKilled); |
| 3117 | set_subtract(S1&: regsLive, S2: regsKilled); regsKilled.clear(); |
| 3118 | // Kill any masked registers. |
| 3119 | while (!regMasks.empty()) { |
| 3120 | const uint32_t *Mask = regMasks.pop_back_val(); |
| 3121 | for (Register Reg : regsLive) |
| 3122 | if (Reg.isPhysical() && |
| 3123 | MachineOperand::clobbersPhysReg(RegMask: Mask, PhysReg: Reg.asMCReg())) |
| 3124 | regsDead.push_back(Elt: Reg); |
| 3125 | } |
| 3126 | set_subtract(S1&: regsLive, S2: regsDead); regsDead.clear(); |
| 3127 | set_union(S1&: regsLive, S2: regsDefined); regsDefined.clear(); |
| 3128 | } |
| 3129 | |
| 3130 | void |
| 3131 | MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { |
| 3132 | MBBInfoMap[MBB].regsLiveOut = regsLive; |
| 3133 | regsLive.clear(); |
| 3134 | |
| 3135 | if (Indexes) { |
| 3136 | SlotIndex stop = Indexes->getMBBEndIdx(mbb: MBB); |
| 3137 | if (!(stop > lastIndex)) { |
| 3138 | report(msg: "Block ends before last instruction index" , MBB); |
| 3139 | OS << "Block ends at " << stop << " last instruction was at " << lastIndex |
| 3140 | << '\n'; |
| 3141 | } |
| 3142 | lastIndex = stop; |
| 3143 | } |
| 3144 | } |
| 3145 | |
| 3146 | namespace { |
| 3147 | // This implements a set of registers that serves as a filter: can filter other |
| 3148 | // sets by passing through elements not in the filter and blocking those that |
| 3149 | // are. Any filter implicitly includes the full set of physical registers upon |
| 3150 | // creation, thus filtering them all out. The filter itself as a set only grows, |
| 3151 | // and needs to be as efficient as possible. |
| 3152 | struct VRegFilter { |
| 3153 | // Add elements to the filter itself. \pre Input set \p FromRegSet must have |
| 3154 | // no duplicates. Both virtual and physical registers are fine. |
| 3155 | template <typename RegSetT> void add(const RegSetT &FromRegSet) { |
| 3156 | SmallVector<Register, 0> VRegsBuffer; |
| 3157 | filterAndAdd(FromRegSet, VRegsBuffer); |
| 3158 | } |
| 3159 | // Filter \p FromRegSet through the filter and append passed elements into \p |
| 3160 | // ToVRegs. All elements appended are then added to the filter itself. |
| 3161 | // \returns true if anything changed. |
| 3162 | template <typename RegSetT> |
| 3163 | bool filterAndAdd(const RegSetT &FromRegSet, |
| 3164 | SmallVectorImpl<Register> &ToVRegs) { |
| 3165 | unsigned SparseUniverse = Sparse.size(); |
| 3166 | unsigned NewSparseUniverse = SparseUniverse; |
| 3167 | unsigned NewDenseSize = Dense.size(); |
| 3168 | size_t Begin = ToVRegs.size(); |
| 3169 | for (Register Reg : FromRegSet) { |
| 3170 | if (!Reg.isVirtual()) |
| 3171 | continue; |
| 3172 | unsigned Index = Reg.virtRegIndex(); |
| 3173 | if (Index < SparseUniverseMax) { |
| 3174 | if (Index < SparseUniverse && Sparse.test(Idx: Index)) |
| 3175 | continue; |
| 3176 | NewSparseUniverse = std::max(a: NewSparseUniverse, b: Index + 1); |
| 3177 | } else { |
| 3178 | if (Dense.count(V: Reg)) |
| 3179 | continue; |
| 3180 | ++NewDenseSize; |
| 3181 | } |
| 3182 | ToVRegs.push_back(Elt: Reg); |
| 3183 | } |
| 3184 | size_t End = ToVRegs.size(); |
| 3185 | if (Begin == End) |
| 3186 | return false; |
| 3187 | // Reserving space in sets once performs better than doing so continuously |
| 3188 | // and pays easily for double look-ups (even in Dense with SparseUniverseMax |
| 3189 | // tuned all the way down) and double iteration (the second one is over a |
| 3190 | // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). |
| 3191 | Sparse.resize(N: NewSparseUniverse); |
| 3192 | Dense.reserve(Size: NewDenseSize); |
| 3193 | for (unsigned I = Begin; I < End; ++I) { |
| 3194 | Register Reg = ToVRegs[I]; |
| 3195 | unsigned Index = Reg.virtRegIndex(); |
| 3196 | if (Index < SparseUniverseMax) |
| 3197 | Sparse.set(Index); |
| 3198 | else |
| 3199 | Dense.insert(V: Reg); |
| 3200 | } |
| 3201 | return true; |
| 3202 | } |
| 3203 | |
| 3204 | private: |
| 3205 | static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; |
| 3206 | // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound |
| 3207 | // are tracked by Dense. The only purpose of the threashold and the Dense set |
| 3208 | // is to have a reasonably growing memory usage in pathological cases (large |
| 3209 | // number of very sparse VRegFilter instances live at the same time). In |
| 3210 | // practice even in the worst-by-execution time cases having all elements |
| 3211 | // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more |
| 3212 | // space efficient than if tracked by Dense. The threashold is set to keep the |
| 3213 | // worst-case memory usage within 2x of figures determined empirically for |
| 3214 | // "all Dense" scenario in such worst-by-execution-time cases. |
| 3215 | BitVector Sparse; |
| 3216 | DenseSet<Register> Dense; |
| 3217 | }; |
| 3218 | |
| 3219 | // Implements both a transfer function and a (binary, in-place) join operator |
| 3220 | // for a dataflow over register sets with set union join and filtering transfer |
| 3221 | // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. |
| 3222 | // Maintains out_b as its state, allowing for O(n) iteration over it at any |
| 3223 | // time, where n is the size of the set (as opposed to O(U) where U is the |
| 3224 | // universe). filter_b implicitly contains all physical registers at all times. |
| 3225 | class FilteringVRegSet { |
| 3226 | VRegFilter Filter; |
| 3227 | SmallVector<Register, 0> VRegs; |
| 3228 | |
| 3229 | public: |
| 3230 | // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. |
| 3231 | // Both virtual and physical registers are fine. |
| 3232 | template <typename RegSetT> void addToFilter(const RegSetT &RS) { |
| 3233 | Filter.add(RS); |
| 3234 | } |
| 3235 | // Passes \p RS through the filter_b (transfer function) and adds what's left |
| 3236 | // to itself (out_b). |
| 3237 | template <typename RegSetT> bool add(const RegSetT &RS) { |
| 3238 | // Double-duty the Filter: to maintain VRegs a set (and the join operation |
| 3239 | // a set union) just add everything being added here to the Filter as well. |
| 3240 | return Filter.filterAndAdd(RS, VRegs); |
| 3241 | } |
| 3242 | using const_iterator = decltype(VRegs)::const_iterator; |
| 3243 | const_iterator begin() const { return VRegs.begin(); } |
| 3244 | const_iterator end() const { return VRegs.end(); } |
| 3245 | size_t size() const { return VRegs.size(); } |
| 3246 | }; |
| 3247 | } // namespace |
| 3248 | |
| 3249 | // Calculate the largest possible vregsPassed sets. These are the registers that |
| 3250 | // can pass through an MBB live, but may not be live every time. It is assumed |
| 3251 | // that all vregsPassed sets are empty before the call. |
| 3252 | void MachineVerifier::calcRegsPassed() { |
| 3253 | if (MF->empty()) |
| 3254 | // ReversePostOrderTraversal doesn't handle empty functions. |
| 3255 | return; |
| 3256 | |
| 3257 | for (const MachineBasicBlock *MB : |
| 3258 | ReversePostOrderTraversal<const MachineFunction *>(MF)) { |
| 3259 | FilteringVRegSet VRegs; |
| 3260 | BBInfo &Info = MBBInfoMap[MB]; |
| 3261 | assert(Info.reachable); |
| 3262 | |
| 3263 | VRegs.addToFilter(RS: Info.regsKilled); |
| 3264 | VRegs.addToFilter(RS: Info.regsLiveOut); |
| 3265 | for (const MachineBasicBlock *Pred : MB->predecessors()) { |
| 3266 | const BBInfo &PredInfo = MBBInfoMap[Pred]; |
| 3267 | if (!PredInfo.reachable) |
| 3268 | continue; |
| 3269 | |
| 3270 | VRegs.add(RS: PredInfo.regsLiveOut); |
| 3271 | VRegs.add(RS: PredInfo.vregsPassed); |
| 3272 | } |
| 3273 | Info.vregsPassed.reserve(Size: VRegs.size()); |
| 3274 | Info.vregsPassed.insert_range(R&: VRegs); |
| 3275 | } |
| 3276 | } |
| 3277 | |
| 3278 | // Calculate the set of virtual registers that must be passed through each basic |
| 3279 | // block in order to satisfy the requirements of successor blocks. This is very |
| 3280 | // similar to calcRegsPassed, only backwards. |
| 3281 | void MachineVerifier::calcRegsRequired() { |
| 3282 | // First push live-in regs to predecessors' vregsRequired. |
| 3283 | SmallPtrSet<const MachineBasicBlock*, 8> todo; |
| 3284 | for (const auto &MBB : *MF) { |
| 3285 | BBInfo &MInfo = MBBInfoMap[&MBB]; |
| 3286 | for (const MachineBasicBlock *Pred : MBB.predecessors()) { |
| 3287 | BBInfo &PInfo = MBBInfoMap[Pred]; |
| 3288 | if (PInfo.addRequired(RM: MInfo.vregsLiveIn)) |
| 3289 | todo.insert(Ptr: Pred); |
| 3290 | } |
| 3291 | |
| 3292 | // Handle the PHI node. |
| 3293 | for (const MachineInstr &MI : MBB.phis()) { |
| 3294 | for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { |
| 3295 | // Skip those Operands which are undef regs or not regs. |
| 3296 | if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) |
| 3297 | continue; |
| 3298 | |
| 3299 | // Get register and predecessor for one PHI edge. |
| 3300 | Register Reg = MI.getOperand(i).getReg(); |
| 3301 | const MachineBasicBlock *Pred = MI.getOperand(i: i + 1).getMBB(); |
| 3302 | |
| 3303 | BBInfo &PInfo = MBBInfoMap[Pred]; |
| 3304 | if (PInfo.addRequired(Reg)) |
| 3305 | todo.insert(Ptr: Pred); |
| 3306 | } |
| 3307 | } |
| 3308 | } |
| 3309 | |
| 3310 | // Iteratively push vregsRequired to predecessors. This will converge to the |
| 3311 | // same final state regardless of DenseSet iteration order. |
| 3312 | while (!todo.empty()) { |
| 3313 | const MachineBasicBlock *MBB = *todo.begin(); |
| 3314 | todo.erase(Ptr: MBB); |
| 3315 | BBInfo &MInfo = MBBInfoMap[MBB]; |
| 3316 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
| 3317 | if (Pred == MBB) |
| 3318 | continue; |
| 3319 | BBInfo &SInfo = MBBInfoMap[Pred]; |
| 3320 | if (SInfo.addRequired(RS: MInfo.vregsRequired)) |
| 3321 | todo.insert(Ptr: Pred); |
| 3322 | } |
| 3323 | } |
| 3324 | } |
| 3325 | |
| 3326 | // Check PHI instructions at the beginning of MBB. It is assumed that |
| 3327 | // calcRegsPassed has been run so BBInfo::isLiveOut is valid. |
| 3328 | void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { |
| 3329 | BBInfo &MInfo = MBBInfoMap[&MBB]; |
| 3330 | |
| 3331 | SmallPtrSet<const MachineBasicBlock*, 8> seen; |
| 3332 | for (const MachineInstr &Phi : MBB) { |
| 3333 | if (!Phi.isPHI()) |
| 3334 | break; |
| 3335 | seen.clear(); |
| 3336 | |
| 3337 | const MachineOperand &MODef = Phi.getOperand(i: 0); |
| 3338 | if (!MODef.isReg() || !MODef.isDef()) { |
| 3339 | report(msg: "Expected first PHI operand to be a register def" , MO: &MODef, MONum: 0); |
| 3340 | continue; |
| 3341 | } |
| 3342 | if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || |
| 3343 | MODef.isEarlyClobber() || MODef.isDebug()) |
| 3344 | report(msg: "Unexpected flag on PHI operand" , MO: &MODef, MONum: 0); |
| 3345 | Register DefReg = MODef.getReg(); |
| 3346 | if (!DefReg.isVirtual()) |
| 3347 | report(msg: "Expected first PHI operand to be a virtual register" , MO: &MODef, MONum: 0); |
| 3348 | |
| 3349 | for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { |
| 3350 | const MachineOperand &MO0 = Phi.getOperand(i: I); |
| 3351 | if (!MO0.isReg()) { |
| 3352 | report(msg: "Expected PHI operand to be a register" , MO: &MO0, MONum: I); |
| 3353 | continue; |
| 3354 | } |
| 3355 | if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || |
| 3356 | MO0.isDebug() || MO0.isTied()) |
| 3357 | report(msg: "Unexpected flag on PHI operand" , MO: &MO0, MONum: I); |
| 3358 | |
| 3359 | const MachineOperand &MO1 = Phi.getOperand(i: I + 1); |
| 3360 | if (!MO1.isMBB()) { |
| 3361 | report(msg: "Expected PHI operand to be a basic block" , MO: &MO1, MONum: I + 1); |
| 3362 | continue; |
| 3363 | } |
| 3364 | |
| 3365 | const MachineBasicBlock &Pre = *MO1.getMBB(); |
| 3366 | if (!Pre.isSuccessor(MBB: &MBB)) { |
| 3367 | report(msg: "PHI input is not a predecessor block" , MO: &MO1, MONum: I + 1); |
| 3368 | continue; |
| 3369 | } |
| 3370 | |
| 3371 | if (MInfo.reachable) { |
| 3372 | seen.insert(Ptr: &Pre); |
| 3373 | BBInfo &PrInfo = MBBInfoMap[&Pre]; |
| 3374 | if (!MO0.isUndef() && PrInfo.reachable && |
| 3375 | !PrInfo.isLiveOut(Reg: MO0.getReg())) |
| 3376 | report(msg: "PHI operand is not live-out from predecessor" , MO: &MO0, MONum: I); |
| 3377 | } |
| 3378 | } |
| 3379 | |
| 3380 | // Did we see all predecessors? |
| 3381 | if (MInfo.reachable) { |
| 3382 | for (MachineBasicBlock *Pred : MBB.predecessors()) { |
| 3383 | if (!seen.count(Ptr: Pred)) { |
| 3384 | report(msg: "Missing PHI operand" , MI: &Phi); |
| 3385 | OS << printMBBReference(MBB: *Pred) |
| 3386 | << " is a predecessor according to the CFG.\n" ; |
| 3387 | } |
| 3388 | } |
| 3389 | } |
| 3390 | } |
| 3391 | } |
| 3392 | |
| 3393 | static void |
| 3394 | verifyConvergenceControl(const MachineFunction &MF, MachineDominatorTree &DT, |
| 3395 | std::function<void(const Twine &Message)> FailureCB, |
| 3396 | raw_ostream &OS) { |
| 3397 | MachineConvergenceVerifier CV; |
| 3398 | CV.initialize(OS: &OS, FailureCB, F: MF); |
| 3399 | |
| 3400 | for (const auto &MBB : MF) { |
| 3401 | CV.visit(BB: MBB); |
| 3402 | for (const auto &MI : MBB.instrs()) |
| 3403 | CV.visit(I: MI); |
| 3404 | } |
| 3405 | |
| 3406 | if (CV.sawTokens()) { |
| 3407 | DT.recalculate(Func&: const_cast<MachineFunction &>(MF)); |
| 3408 | CV.verify(DT); |
| 3409 | } |
| 3410 | } |
| 3411 | |
| 3412 | void MachineVerifier::visitMachineFunctionAfter() { |
| 3413 | auto FailureCB = [this](const Twine &Message) { |
| 3414 | report(msg: Message.str().c_str(), MF); |
| 3415 | }; |
| 3416 | verifyConvergenceControl(MF: *MF, DT, FailureCB, OS); |
| 3417 | |
| 3418 | calcRegsPassed(); |
| 3419 | |
| 3420 | for (const MachineBasicBlock &MBB : *MF) |
| 3421 | checkPHIOps(MBB); |
| 3422 | |
| 3423 | // Now check liveness info if available |
| 3424 | calcRegsRequired(); |
| 3425 | |
| 3426 | // Check for killed virtual registers that should be live out. |
| 3427 | for (const auto &MBB : *MF) { |
| 3428 | BBInfo &MInfo = MBBInfoMap[&MBB]; |
| 3429 | for (Register VReg : MInfo.vregsRequired) |
| 3430 | if (MInfo.regsKilled.count(V: VReg)) { |
| 3431 | report(msg: "Virtual register killed in block, but needed live out." , MBB: &MBB); |
| 3432 | OS << "Virtual register " << printReg(Reg: VReg) |
| 3433 | << " is used after the block.\n" ; |
| 3434 | } |
| 3435 | } |
| 3436 | |
| 3437 | if (!MF->empty()) { |
| 3438 | BBInfo &MInfo = MBBInfoMap[&MF->front()]; |
| 3439 | for (Register VReg : MInfo.vregsRequired) { |
| 3440 | report(msg: "Virtual register defs don't dominate all uses." , MF); |
| 3441 | report_context_vreg(VReg); |
| 3442 | } |
| 3443 | } |
| 3444 | |
| 3445 | if (LiveVars) |
| 3446 | verifyLiveVariables(); |
| 3447 | if (LiveInts) |
| 3448 | verifyLiveIntervals(); |
| 3449 | |
| 3450 | // Check live-in list of each MBB. If a register is live into MBB, check |
| 3451 | // that the register is in regsLiveOut of each predecessor block. Since |
| 3452 | // this must come from a definition in the predecesssor or its live-in |
| 3453 | // list, this will catch a live-through case where the predecessor does not |
| 3454 | // have the register in its live-in list. This currently only checks |
| 3455 | // registers that have no aliases, are not allocatable and are not |
| 3456 | // reserved, which could mean a condition code register for instance. |
| 3457 | if (MRI->tracksLiveness()) |
| 3458 | for (const auto &MBB : *MF) |
| 3459 | for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { |
| 3460 | MCRegister LiveInReg = P.PhysReg; |
| 3461 | bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); |
| 3462 | if (hasAliases || isAllocatable(Reg: LiveInReg) || isReserved(Reg: LiveInReg)) |
| 3463 | continue; |
| 3464 | for (const MachineBasicBlock *Pred : MBB.predecessors()) { |
| 3465 | BBInfo &PInfo = MBBInfoMap[Pred]; |
| 3466 | if (!PInfo.regsLiveOut.count(V: LiveInReg)) { |
| 3467 | report(msg: "Live in register not found to be live out from predecessor." , |
| 3468 | MBB: &MBB); |
| 3469 | OS << TRI->getName(RegNo: LiveInReg) << " not found to be live out from " |
| 3470 | << printMBBReference(MBB: *Pred) << '\n'; |
| 3471 | } |
| 3472 | } |
| 3473 | } |
| 3474 | |
| 3475 | for (auto CSInfo : MF->getCallSitesInfo()) |
| 3476 | if (!CSInfo.first->isCall()) |
| 3477 | report(msg: "Call site info referencing instruction that is not call" , MF); |
| 3478 | |
| 3479 | // If there's debug-info, check that we don't have any duplicate value |
| 3480 | // tracking numbers. |
| 3481 | if (MF->getFunction().getSubprogram()) { |
| 3482 | DenseSet<unsigned> SeenNumbers; |
| 3483 | for (const auto &MBB : *MF) { |
| 3484 | for (const auto &MI : MBB) { |
| 3485 | if (auto Num = MI.peekDebugInstrNum()) { |
| 3486 | auto Result = SeenNumbers.insert(V: (unsigned)Num); |
| 3487 | if (!Result.second) |
| 3488 | report(msg: "Instruction has a duplicated value tracking number" , MI: &MI); |
| 3489 | } |
| 3490 | } |
| 3491 | } |
| 3492 | } |
| 3493 | } |
| 3494 | |
| 3495 | void MachineVerifier::verifyLiveVariables() { |
| 3496 | assert(LiveVars && "Don't call verifyLiveVariables without LiveVars" ); |
| 3497 | for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { |
| 3498 | Register Reg = Register::index2VirtReg(Index: I); |
| 3499 | LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); |
| 3500 | for (const auto &MBB : *MF) { |
| 3501 | BBInfo &MInfo = MBBInfoMap[&MBB]; |
| 3502 | |
| 3503 | // Our vregsRequired should be identical to LiveVariables' AliveBlocks |
| 3504 | if (MInfo.vregsRequired.count(V: Reg)) { |
| 3505 | if (!VI.AliveBlocks.test(Idx: MBB.getNumber())) { |
| 3506 | report(msg: "LiveVariables: Block missing from AliveBlocks" , MBB: &MBB); |
| 3507 | OS << "Virtual register " << printReg(Reg) |
| 3508 | << " must be live through the block.\n" ; |
| 3509 | } |
| 3510 | } else { |
| 3511 | if (VI.AliveBlocks.test(Idx: MBB.getNumber())) { |
| 3512 | report(msg: "LiveVariables: Block should not be in AliveBlocks" , MBB: &MBB); |
| 3513 | OS << "Virtual register " << printReg(Reg) |
| 3514 | << " is not needed live through the block.\n" ; |
| 3515 | } |
| 3516 | } |
| 3517 | } |
| 3518 | } |
| 3519 | } |
| 3520 | |
| 3521 | void MachineVerifier::verifyLiveIntervals() { |
| 3522 | assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts" ); |
| 3523 | for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { |
| 3524 | Register Reg = Register::index2VirtReg(Index: I); |
| 3525 | |
| 3526 | // Spilling and splitting may leave unused registers around. Skip them. |
| 3527 | if (MRI->reg_nodbg_empty(RegNo: Reg)) |
| 3528 | continue; |
| 3529 | |
| 3530 | if (!LiveInts->hasInterval(Reg)) { |
| 3531 | report(msg: "Missing live interval for virtual register" , MF); |
| 3532 | OS << printReg(Reg, TRI) << " still has defs or uses\n" ; |
| 3533 | continue; |
| 3534 | } |
| 3535 | |
| 3536 | const LiveInterval &LI = LiveInts->getInterval(Reg); |
| 3537 | assert(Reg == LI.reg() && "Invalid reg to interval mapping" ); |
| 3538 | verifyLiveInterval(LI); |
| 3539 | } |
| 3540 | |
| 3541 | // Verify all the cached regunit intervals. |
| 3542 | for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) |
| 3543 | if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit: i)) |
| 3544 | verifyLiveRange(*LR, VirtRegOrUnit(i)); |
| 3545 | } |
| 3546 | |
| 3547 | void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, |
| 3548 | const VNInfo *VNI, |
| 3549 | VirtRegOrUnit VRegOrUnit, |
| 3550 | LaneBitmask LaneMask) { |
| 3551 | if (VNI->isUnused()) |
| 3552 | return; |
| 3553 | |
| 3554 | const VNInfo *DefVNI = LR.getVNInfoAt(Idx: VNI->def); |
| 3555 | |
| 3556 | if (!DefVNI) { |
| 3557 | report(msg: "Value not live at VNInfo def and not marked unused" , MF); |
| 3558 | report_context(LR, VRegOrUnit, LaneMask); |
| 3559 | report_context(VNI: *VNI); |
| 3560 | return; |
| 3561 | } |
| 3562 | |
| 3563 | if (DefVNI != VNI) { |
| 3564 | report(msg: "Live segment at def has different VNInfo" , MF); |
| 3565 | report_context(LR, VRegOrUnit, LaneMask); |
| 3566 | report_context(VNI: *VNI); |
| 3567 | return; |
| 3568 | } |
| 3569 | |
| 3570 | const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(index: VNI->def); |
| 3571 | if (!MBB) { |
| 3572 | report(msg: "Invalid VNInfo definition index" , MF); |
| 3573 | report_context(LR, VRegOrUnit, LaneMask); |
| 3574 | report_context(VNI: *VNI); |
| 3575 | return; |
| 3576 | } |
| 3577 | |
| 3578 | if (VNI->isPHIDef()) { |
| 3579 | if (VNI->def != LiveInts->getMBBStartIdx(mbb: MBB)) { |
| 3580 | report(msg: "PHIDef VNInfo is not defined at MBB start" , MBB); |
| 3581 | report_context(LR, VRegOrUnit, LaneMask); |
| 3582 | report_context(VNI: *VNI); |
| 3583 | } |
| 3584 | return; |
| 3585 | } |
| 3586 | |
| 3587 | // Non-PHI def. |
| 3588 | const MachineInstr *MI = LiveInts->getInstructionFromIndex(index: VNI->def); |
| 3589 | if (!MI) { |
| 3590 | report(msg: "No instruction at VNInfo def index" , MBB); |
| 3591 | report_context(LR, VRegOrUnit, LaneMask); |
| 3592 | report_context(VNI: *VNI); |
| 3593 | return; |
| 3594 | } |
| 3595 | |
| 3596 | bool hasDef = false; |
| 3597 | bool isEarlyClobber = false; |
| 3598 | for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { |
| 3599 | if (!MOI->isReg() || !MOI->isDef()) |
| 3600 | continue; |
| 3601 | if (VRegOrUnit.isVirtualReg()) { |
| 3602 | if (MOI->getReg() != VRegOrUnit.asVirtualReg()) |
| 3603 | continue; |
| 3604 | } else { |
| 3605 | if (!MOI->getReg().isPhysical() || |
| 3606 | !TRI->hasRegUnit(Reg: MOI->getReg(), RegUnit: VRegOrUnit.asMCRegUnit())) |
| 3607 | continue; |
| 3608 | } |
| 3609 | if (LaneMask.any() && |
| 3610 | (TRI->getSubRegIndexLaneMask(SubIdx: MOI->getSubReg()) & LaneMask).none()) |
| 3611 | continue; |
| 3612 | hasDef = true; |
| 3613 | if (MOI->isEarlyClobber()) |
| 3614 | isEarlyClobber = true; |
| 3615 | } |
| 3616 | |
| 3617 | if (!hasDef) { |
| 3618 | report(msg: "Defining instruction does not modify register" , MI); |
| 3619 | report_context(LR, VRegOrUnit, LaneMask); |
| 3620 | report_context(VNI: *VNI); |
| 3621 | } |
| 3622 | |
| 3623 | // Early clobber defs begin at USE slots, but other defs must begin at |
| 3624 | // DEF slots. |
| 3625 | if (isEarlyClobber) { |
| 3626 | if (!VNI->def.isEarlyClobber()) { |
| 3627 | report(msg: "Early clobber def must be at an early-clobber slot" , MBB); |
| 3628 | report_context(LR, VRegOrUnit, LaneMask); |
| 3629 | report_context(VNI: *VNI); |
| 3630 | } |
| 3631 | } else if (!VNI->def.isRegister()) { |
| 3632 | report(msg: "Non-PHI, non-early clobber def must be at a register slot" , MBB); |
| 3633 | report_context(LR, VRegOrUnit, LaneMask); |
| 3634 | report_context(VNI: *VNI); |
| 3635 | } |
| 3636 | } |
| 3637 | |
| 3638 | void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, |
| 3639 | const LiveRange::const_iterator I, |
| 3640 | VirtRegOrUnit VRegOrUnit, |
| 3641 | LaneBitmask LaneMask) { |
| 3642 | const LiveRange::Segment &S = *I; |
| 3643 | const VNInfo *VNI = S.valno; |
| 3644 | assert(VNI && "Live segment has no valno" ); |
| 3645 | |
| 3646 | if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(ValNo: VNI->id)) { |
| 3647 | report(msg: "Foreign valno in live segment" , MF); |
| 3648 | report_context(LR, VRegOrUnit, LaneMask); |
| 3649 | report_context(S); |
| 3650 | report_context(VNI: *VNI); |
| 3651 | } |
| 3652 | |
| 3653 | if (VNI->isUnused()) { |
| 3654 | report(msg: "Live segment valno is marked unused" , MF); |
| 3655 | report_context(LR, VRegOrUnit, LaneMask); |
| 3656 | report_context(S); |
| 3657 | } |
| 3658 | |
| 3659 | const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(index: S.start); |
| 3660 | if (!MBB) { |
| 3661 | report(msg: "Bad start of live segment, no basic block" , MF); |
| 3662 | report_context(LR, VRegOrUnit, LaneMask); |
| 3663 | report_context(S); |
| 3664 | return; |
| 3665 | } |
| 3666 | SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(mbb: MBB); |
| 3667 | if (S.start != MBBStartIdx && S.start != VNI->def) { |
| 3668 | report(msg: "Live segment must begin at MBB entry or valno def" , MBB); |
| 3669 | report_context(LR, VRegOrUnit, LaneMask); |
| 3670 | report_context(S); |
| 3671 | } |
| 3672 | |
| 3673 | const MachineBasicBlock *EndMBB = |
| 3674 | LiveInts->getMBBFromIndex(index: S.end.getPrevSlot()); |
| 3675 | if (!EndMBB) { |
| 3676 | report(msg: "Bad end of live segment, no basic block" , MF); |
| 3677 | report_context(LR, VRegOrUnit, LaneMask); |
| 3678 | report_context(S); |
| 3679 | return; |
| 3680 | } |
| 3681 | |
| 3682 | // Checks for non-live-out segments. |
| 3683 | if (S.end != LiveInts->getMBBEndIdx(mbb: EndMBB)) { |
| 3684 | // RegUnit intervals are allowed dead phis. |
| 3685 | if (!VRegOrUnit.isVirtualReg() && VNI->isPHIDef() && S.start == VNI->def && |
| 3686 | S.end == VNI->def.getDeadSlot()) |
| 3687 | return; |
| 3688 | |
| 3689 | // The live segment is ending inside EndMBB |
| 3690 | const MachineInstr *MI = |
| 3691 | LiveInts->getInstructionFromIndex(index: S.end.getPrevSlot()); |
| 3692 | if (!MI) { |
| 3693 | report(msg: "Live segment doesn't end at a valid instruction" , MBB: EndMBB); |
| 3694 | report_context(LR, VRegOrUnit, LaneMask); |
| 3695 | report_context(S); |
| 3696 | return; |
| 3697 | } |
| 3698 | |
| 3699 | // The block slot must refer to a basic block boundary. |
| 3700 | if (S.end.isBlock()) { |
| 3701 | report(msg: "Live segment ends at B slot of an instruction" , MBB: EndMBB); |
| 3702 | report_context(LR, VRegOrUnit, LaneMask); |
| 3703 | report_context(S); |
| 3704 | } |
| 3705 | |
| 3706 | if (S.end.isDead()) { |
| 3707 | // Segment ends on the dead slot. |
| 3708 | // That means there must be a dead def. |
| 3709 | if (!SlotIndex::isSameInstr(A: S.start, B: S.end)) { |
| 3710 | report(msg: "Live segment ending at dead slot spans instructions" , MBB: EndMBB); |
| 3711 | report_context(LR, VRegOrUnit, LaneMask); |
| 3712 | report_context(S); |
| 3713 | } |
| 3714 | } |
| 3715 | |
| 3716 | // After tied operands are rewritten, a live segment can only end at an |
| 3717 | // early-clobber slot if it is being redefined by an early-clobber def. |
| 3718 | // TODO: Before tied operands are rewritten, a live segment can only end at |
| 3719 | // an early-clobber slot if the last use is tied to an early-clobber def. |
| 3720 | if (MF->getProperties().hasTiedOpsRewritten() && S.end.isEarlyClobber()) { |
| 3721 | if (I + 1 == LR.end() || (I + 1)->start != S.end) { |
| 3722 | report(msg: "Live segment ending at early clobber slot must be " |
| 3723 | "redefined by an EC def in the same instruction" , |
| 3724 | MBB: EndMBB); |
| 3725 | report_context(LR, VRegOrUnit, LaneMask); |
| 3726 | report_context(S); |
| 3727 | } |
| 3728 | } |
| 3729 | |
| 3730 | // The following checks only apply to virtual registers. Physreg liveness |
| 3731 | // is too weird to check. |
| 3732 | if (VRegOrUnit.isVirtualReg()) { |
| 3733 | // A live segment can end with either a redefinition, a kill flag on a |
| 3734 | // use, or a dead flag on a def. |
| 3735 | bool hasRead = false; |
| 3736 | bool hasSubRegDef = false; |
| 3737 | bool hasDeadDef = false; |
| 3738 | for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { |
| 3739 | if (!MOI->isReg() || MOI->getReg() != VRegOrUnit.asVirtualReg()) |
| 3740 | continue; |
| 3741 | unsigned Sub = MOI->getSubReg(); |
| 3742 | LaneBitmask SLM = |
| 3743 | Sub != 0 ? TRI->getSubRegIndexLaneMask(SubIdx: Sub) : LaneBitmask::getAll(); |
| 3744 | if (MOI->isDef()) { |
| 3745 | if (Sub != 0) { |
| 3746 | hasSubRegDef = true; |
| 3747 | // An operand %0:sub0 reads %0:sub1..n. Invert the lane |
| 3748 | // mask for subregister defs. Read-undef defs will be handled by |
| 3749 | // readsReg below. |
| 3750 | SLM = ~SLM; |
| 3751 | } |
| 3752 | if (MOI->isDead()) |
| 3753 | hasDeadDef = true; |
| 3754 | } |
| 3755 | if (LaneMask.any() && (LaneMask & SLM).none()) |
| 3756 | continue; |
| 3757 | if (MOI->readsReg()) |
| 3758 | hasRead = true; |
| 3759 | } |
| 3760 | if (S.end.isDead()) { |
| 3761 | // Make sure that the corresponding machine operand for a "dead" live |
| 3762 | // range has the dead flag. We cannot perform this check for subregister |
| 3763 | // liveranges as partially dead values are allowed. |
| 3764 | if (LaneMask.none() && !hasDeadDef) { |
| 3765 | report( |
| 3766 | msg: "Instruction ending live segment on dead slot has no dead flag" , |
| 3767 | MI); |
| 3768 | report_context(LR, VRegOrUnit, LaneMask); |
| 3769 | report_context(S); |
| 3770 | } |
| 3771 | } else { |
| 3772 | if (!hasRead) { |
| 3773 | // When tracking subregister liveness, the main range must start new |
| 3774 | // values on partial register writes, even if there is no read. |
| 3775 | if (!MRI->shouldTrackSubRegLiveness(VReg: VRegOrUnit.asVirtualReg()) || |
| 3776 | LaneMask.any() || !hasSubRegDef) { |
| 3777 | report(msg: "Instruction ending live segment doesn't read the register" , |
| 3778 | MI); |
| 3779 | report_context(LR, VRegOrUnit, LaneMask); |
| 3780 | report_context(S); |
| 3781 | } |
| 3782 | } |
| 3783 | } |
| 3784 | } |
| 3785 | } |
| 3786 | |
| 3787 | // Now check all the basic blocks in this live segment. |
| 3788 | MachineFunction::const_iterator MFI = MBB->getIterator(); |
| 3789 | // Is this live segment the beginning of a non-PHIDef VN? |
| 3790 | if (S.start == VNI->def && !VNI->isPHIDef()) { |
| 3791 | // Not live-in to any blocks. |
| 3792 | if (MBB == EndMBB) |
| 3793 | return; |
| 3794 | // Skip this block. |
| 3795 | ++MFI; |
| 3796 | } |
| 3797 | |
| 3798 | SmallVector<SlotIndex, 4> Undefs; |
| 3799 | if (LaneMask.any()) { |
| 3800 | LiveInterval &OwnerLI = LiveInts->getInterval(Reg: VRegOrUnit.asVirtualReg()); |
| 3801 | OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, MRI: *MRI, Indexes: *Indexes); |
| 3802 | } |
| 3803 | |
| 3804 | while (true) { |
| 3805 | assert(LiveInts->isLiveInToMBB(LR, &*MFI)); |
| 3806 | // We don't know how to track physregs into a landing pad. |
| 3807 | if (!VRegOrUnit.isVirtualReg() && MFI->isEHPad()) { |
| 3808 | if (&*MFI == EndMBB) |
| 3809 | break; |
| 3810 | ++MFI; |
| 3811 | continue; |
| 3812 | } |
| 3813 | |
| 3814 | // Is VNI a PHI-def in the current block? |
| 3815 | bool IsPHI = VNI->isPHIDef() && |
| 3816 | VNI->def == LiveInts->getMBBStartIdx(mbb: &*MFI); |
| 3817 | |
| 3818 | // Check that VNI is live-out of all predecessors. |
| 3819 | for (const MachineBasicBlock *Pred : MFI->predecessors()) { |
| 3820 | SlotIndex PEnd = LiveInts->getMBBEndIdx(mbb: Pred); |
| 3821 | // Predecessor of landing pad live-out on last call. |
| 3822 | if (MFI->isEHPad()) { |
| 3823 | for (const MachineInstr &MI : llvm::reverse(C: *Pred)) { |
| 3824 | if (MI.isCall()) { |
| 3825 | PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex(); |
| 3826 | break; |
| 3827 | } |
| 3828 | } |
| 3829 | } |
| 3830 | const VNInfo *PVNI = LR.getVNInfoBefore(Idx: PEnd); |
| 3831 | |
| 3832 | // All predecessors must have a live-out value. However for a phi |
| 3833 | // instruction with subregister intervals |
| 3834 | // only one of the subregisters (not necessarily the current one) needs to |
| 3835 | // be defined. |
| 3836 | if (!PVNI && (LaneMask.none() || !IsPHI)) { |
| 3837 | if (LiveRangeCalc::isJointlyDominated(MBB: Pred, Defs: Undefs, Indexes: *Indexes)) |
| 3838 | continue; |
| 3839 | report(msg: "Register not marked live out of predecessor" , MBB: Pred); |
| 3840 | report_context(LR, VRegOrUnit, LaneMask); |
| 3841 | report_context(VNI: *VNI); |
| 3842 | OS << " live into " << printMBBReference(MBB: *MFI) << '@' |
| 3843 | << LiveInts->getMBBStartIdx(mbb: &*MFI) << ", not live before " << PEnd |
| 3844 | << '\n'; |
| 3845 | continue; |
| 3846 | } |
| 3847 | |
| 3848 | // Only PHI-defs can take different predecessor values. |
| 3849 | if (!IsPHI && PVNI != VNI) { |
| 3850 | report(msg: "Different value live out of predecessor" , MBB: Pred); |
| 3851 | report_context(LR, VRegOrUnit, LaneMask); |
| 3852 | OS << "Valno #" << PVNI->id << " live out of " |
| 3853 | << printMBBReference(MBB: *Pred) << '@' << PEnd << "\nValno #" << VNI->id |
| 3854 | << " live into " << printMBBReference(MBB: *MFI) << '@' |
| 3855 | << LiveInts->getMBBStartIdx(mbb: &*MFI) << '\n'; |
| 3856 | } |
| 3857 | } |
| 3858 | if (&*MFI == EndMBB) |
| 3859 | break; |
| 3860 | ++MFI; |
| 3861 | } |
| 3862 | } |
| 3863 | |
| 3864 | void MachineVerifier::verifyLiveRange(const LiveRange &LR, |
| 3865 | VirtRegOrUnit VRegOrUnit, |
| 3866 | LaneBitmask LaneMask) { |
| 3867 | for (const VNInfo *VNI : LR.valnos) |
| 3868 | verifyLiveRangeValue(LR, VNI, VRegOrUnit, LaneMask); |
| 3869 | |
| 3870 | for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) |
| 3871 | verifyLiveRangeSegment(LR, I, VRegOrUnit, LaneMask); |
| 3872 | } |
| 3873 | |
| 3874 | void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { |
| 3875 | Register Reg = LI.reg(); |
| 3876 | assert(Reg.isVirtual()); |
| 3877 | verifyLiveRange(LR: LI, VRegOrUnit: VirtRegOrUnit(Reg)); |
| 3878 | |
| 3879 | if (LI.hasSubRanges()) { |
| 3880 | LaneBitmask Mask; |
| 3881 | LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); |
| 3882 | for (const LiveInterval::SubRange &SR : LI.subranges()) { |
| 3883 | if ((Mask & SR.LaneMask).any()) { |
| 3884 | report(msg: "Lane masks of sub ranges overlap in live interval" , MF); |
| 3885 | report_context(LI); |
| 3886 | } |
| 3887 | if ((SR.LaneMask & ~MaxMask).any()) { |
| 3888 | report(msg: "Subrange lanemask is invalid" , MF); |
| 3889 | report_context(LI); |
| 3890 | } |
| 3891 | if (SR.empty()) { |
| 3892 | report(msg: "Subrange must not be empty" , MF); |
| 3893 | report_context(LR: SR, VRegOrUnit: VirtRegOrUnit(LI.reg()), LaneMask: SR.LaneMask); |
| 3894 | } |
| 3895 | Mask |= SR.LaneMask; |
| 3896 | verifyLiveRange(LR: SR, VRegOrUnit: VirtRegOrUnit(LI.reg()), LaneMask: SR.LaneMask); |
| 3897 | if (!LI.covers(Other: SR)) { |
| 3898 | report(msg: "A Subrange is not covered by the main range" , MF); |
| 3899 | report_context(LI); |
| 3900 | } |
| 3901 | } |
| 3902 | } |
| 3903 | |
| 3904 | // Check the LI only has one connected component. |
| 3905 | ConnectedVNInfoEqClasses ConEQ(*LiveInts); |
| 3906 | unsigned NumComp = ConEQ.Classify(LR: LI); |
| 3907 | if (NumComp > 1) { |
| 3908 | report(msg: "Multiple connected components in live interval" , MF); |
| 3909 | report_context(LI); |
| 3910 | for (unsigned comp = 0; comp != NumComp; ++comp) { |
| 3911 | OS << comp << ": valnos" ; |
| 3912 | for (const VNInfo *I : LI.valnos) |
| 3913 | if (comp == ConEQ.getEqClass(VNI: I)) |
| 3914 | OS << ' ' << I->id; |
| 3915 | OS << '\n'; |
| 3916 | } |
| 3917 | } |
| 3918 | } |
| 3919 | |
| 3920 | namespace { |
| 3921 | |
| 3922 | // FrameSetup and FrameDestroy can have zero adjustment, so using a single |
| 3923 | // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the |
| 3924 | // value is zero. |
| 3925 | // We use a bool plus an integer to capture the stack state. |
| 3926 | struct StackStateOfBB { |
| 3927 | StackStateOfBB() = default; |
| 3928 | StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) |
| 3929 | : EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), |
| 3930 | ExitIsSetup(ExitSetup) {} |
| 3931 | |
| 3932 | // Can be negative, which means we are setting up a frame. |
| 3933 | int EntryValue = 0; |
| 3934 | int ExitValue = 0; |
| 3935 | bool EntryIsSetup = false; |
| 3936 | bool ExitIsSetup = false; |
| 3937 | }; |
| 3938 | |
| 3939 | } // end anonymous namespace |
| 3940 | |
| 3941 | /// Make sure on every path through the CFG, a FrameSetup <n> is always followed |
| 3942 | /// by a FrameDestroy <n>, stack adjustments are identical on all |
| 3943 | /// CFG edges to a merge point, and frame is destroyed at end of a return block. |
| 3944 | void MachineVerifier::verifyStackFrame() { |
| 3945 | unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); |
| 3946 | unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); |
| 3947 | if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) |
| 3948 | return; |
| 3949 | |
| 3950 | SmallVector<StackStateOfBB, 8> SPState; |
| 3951 | SPState.resize(N: MF->getNumBlockIDs()); |
| 3952 | df_iterator_default_set<const MachineBasicBlock*> Reachable; |
| 3953 | |
| 3954 | // Visit the MBBs in DFS order. |
| 3955 | for (df_ext_iterator<const MachineFunction *, |
| 3956 | df_iterator_default_set<const MachineBasicBlock *>> |
| 3957 | DFI = df_ext_begin(G: MF, S&: Reachable), DFE = df_ext_end(G: MF, S&: Reachable); |
| 3958 | DFI != DFE; ++DFI) { |
| 3959 | const MachineBasicBlock *MBB = *DFI; |
| 3960 | |
| 3961 | StackStateOfBB BBState; |
| 3962 | // Check the exit state of the DFS stack predecessor. |
| 3963 | if (DFI.getPathLength() >= 2) { |
| 3964 | const MachineBasicBlock *StackPred = DFI.getPath(n: DFI.getPathLength() - 2); |
| 3965 | assert(Reachable.count(StackPred) && |
| 3966 | "DFS stack predecessor is already visited.\n" ); |
| 3967 | BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; |
| 3968 | BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; |
| 3969 | BBState.ExitValue = BBState.EntryValue; |
| 3970 | BBState.ExitIsSetup = BBState.EntryIsSetup; |
| 3971 | } |
| 3972 | |
| 3973 | if ((int)MBB->getCallFrameSize() != -BBState.EntryValue) { |
| 3974 | report(msg: "Call frame size on entry does not match value computed from " |
| 3975 | "predecessor" , |
| 3976 | MBB); |
| 3977 | OS << "Call frame size on entry " << MBB->getCallFrameSize() |
| 3978 | << " does not match value computed from predecessor " |
| 3979 | << -BBState.EntryValue << '\n'; |
| 3980 | } |
| 3981 | |
| 3982 | // Update stack state by checking contents of MBB. |
| 3983 | for (const auto &I : *MBB) { |
| 3984 | if (I.getOpcode() == FrameSetupOpcode) { |
| 3985 | if (BBState.ExitIsSetup) |
| 3986 | report(msg: "FrameSetup is after another FrameSetup" , MI: &I); |
| 3987 | if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) |
| 3988 | report(msg: "AdjustsStack not set in presence of a frame pseudo " |
| 3989 | "instruction." , MI: &I); |
| 3990 | BBState.ExitValue -= TII->getFrameTotalSize(I); |
| 3991 | BBState.ExitIsSetup = true; |
| 3992 | } |
| 3993 | |
| 3994 | if (I.getOpcode() == FrameDestroyOpcode) { |
| 3995 | int Size = TII->getFrameTotalSize(I); |
| 3996 | if (!BBState.ExitIsSetup) |
| 3997 | report(msg: "FrameDestroy is not after a FrameSetup" , MI: &I); |
| 3998 | int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : |
| 3999 | BBState.ExitValue; |
| 4000 | if (BBState.ExitIsSetup && AbsSPAdj != Size) { |
| 4001 | report(msg: "FrameDestroy <n> is after FrameSetup <m>" , MI: &I); |
| 4002 | OS << "FrameDestroy <" << Size << "> is after FrameSetup <" |
| 4003 | << AbsSPAdj << ">.\n" ; |
| 4004 | } |
| 4005 | if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) |
| 4006 | report(msg: "AdjustsStack not set in presence of a frame pseudo " |
| 4007 | "instruction." , MI: &I); |
| 4008 | BBState.ExitValue += Size; |
| 4009 | BBState.ExitIsSetup = false; |
| 4010 | } |
| 4011 | } |
| 4012 | SPState[MBB->getNumber()] = BBState; |
| 4013 | |
| 4014 | // Make sure the exit state of any predecessor is consistent with the entry |
| 4015 | // state. |
| 4016 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
| 4017 | if (Reachable.count(Ptr: Pred) && |
| 4018 | (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || |
| 4019 | SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { |
| 4020 | report(msg: "The exit stack state of a predecessor is inconsistent." , MBB); |
| 4021 | OS << "Predecessor " << printMBBReference(MBB: *Pred) << " has exit state (" |
| 4022 | << SPState[Pred->getNumber()].ExitValue << ", " |
| 4023 | << SPState[Pred->getNumber()].ExitIsSetup << "), while " |
| 4024 | << printMBBReference(MBB: *MBB) << " has entry state (" |
| 4025 | << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n" ; |
| 4026 | } |
| 4027 | } |
| 4028 | |
| 4029 | // Make sure the entry state of any successor is consistent with the exit |
| 4030 | // state. |
| 4031 | for (const MachineBasicBlock *Succ : MBB->successors()) { |
| 4032 | if (Reachable.count(Ptr: Succ) && |
| 4033 | (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || |
| 4034 | SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { |
| 4035 | report(msg: "The entry stack state of a successor is inconsistent." , MBB); |
| 4036 | OS << "Successor " << printMBBReference(MBB: *Succ) << " has entry state (" |
| 4037 | << SPState[Succ->getNumber()].EntryValue << ", " |
| 4038 | << SPState[Succ->getNumber()].EntryIsSetup << "), while " |
| 4039 | << printMBBReference(MBB: *MBB) << " has exit state (" |
| 4040 | << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n" ; |
| 4041 | } |
| 4042 | } |
| 4043 | |
| 4044 | // Make sure a basic block with return ends with zero stack adjustment. |
| 4045 | if (!MBB->empty() && MBB->back().isReturn()) { |
| 4046 | if (BBState.ExitIsSetup) |
| 4047 | report(msg: "A return block ends with a FrameSetup." , MBB); |
| 4048 | if (BBState.ExitValue) |
| 4049 | report(msg: "A return block ends with a nonzero stack adjustment." , MBB); |
| 4050 | } |
| 4051 | } |
| 4052 | } |
| 4053 | |
| 4054 | void MachineVerifier::verifyStackProtector() { |
| 4055 | const MachineFrameInfo &MFI = MF->getFrameInfo(); |
| 4056 | if (!MFI.hasStackProtectorIndex()) |
| 4057 | return; |
| 4058 | // Only applicable when the offsets of frame objects have been determined, |
| 4059 | // which is indicated by a non-zero stack size. |
| 4060 | if (!MFI.getStackSize()) |
| 4061 | return; |
| 4062 | const TargetFrameLowering &TFI = *MF->getSubtarget().getFrameLowering(); |
| 4063 | bool StackGrowsDown = |
| 4064 | TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; |
| 4065 | unsigned FI = MFI.getStackProtectorIndex(); |
| 4066 | int64_t SPStart = MFI.getObjectOffset(ObjectIdx: FI); |
| 4067 | int64_t SPEnd = SPStart + MFI.getObjectSize(ObjectIdx: FI); |
| 4068 | for (unsigned I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { |
| 4069 | if (I == FI) |
| 4070 | continue; |
| 4071 | if (MFI.isDeadObjectIndex(ObjectIdx: I)) |
| 4072 | continue; |
| 4073 | // FIXME: Skip non-default stack objects, as some targets may place them |
| 4074 | // above the stack protector. This is a workaround for the fact that |
| 4075 | // backends such as AArch64 may place SVE stack objects *above* the stack |
| 4076 | // protector. |
| 4077 | if (MFI.getStackID(ObjectIdx: I) != TargetStackID::Default) |
| 4078 | continue; |
| 4079 | // Skip variable-sized objects because they do not have a fixed offset. |
| 4080 | if (MFI.isVariableSizedObjectIndex(ObjectIdx: I)) |
| 4081 | continue; |
| 4082 | // FIXME: Skip spill slots which may be allocated above the stack protector. |
| 4083 | // Ideally this would only skip callee-saved registers, but we don't have |
| 4084 | // that information here. For example, spill-slots used for scavenging are |
| 4085 | // not described in CalleeSavedInfo. |
| 4086 | if (MFI.isSpillSlotObjectIndex(ObjectIdx: I)) |
| 4087 | continue; |
| 4088 | int64_t ObjStart = MFI.getObjectOffset(ObjectIdx: I); |
| 4089 | int64_t ObjEnd = ObjStart + MFI.getObjectSize(ObjectIdx: I); |
| 4090 | if (SPStart < ObjEnd && ObjStart < SPEnd) { |
| 4091 | report(msg: "Stack protector overlaps with another stack object" , MF); |
| 4092 | break; |
| 4093 | } |
| 4094 | if ((StackGrowsDown && SPStart <= ObjStart) || |
| 4095 | (!StackGrowsDown && SPStart >= ObjStart)) { |
| 4096 | report(msg: "Stack protector is not the top-most object on the stack" , MF); |
| 4097 | break; |
| 4098 | } |
| 4099 | } |
| 4100 | } |
| 4101 | |