1 | //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Pass to verify generated machine code. The following is checked: |
10 | // |
11 | // Operand counts: All explicit operands must be present. |
12 | // |
13 | // Register classes: All physical and virtual register operands must be |
14 | // compatible with the register class required by the instruction descriptor. |
15 | // |
16 | // Register live intervals: Registers must be defined only once, and must be |
17 | // defined before use. |
18 | // |
19 | // The machine code verifier is enabled with the command-line option |
20 | // -verify-machineinstrs. |
21 | //===----------------------------------------------------------------------===// |
22 | |
23 | #include "llvm/CodeGen/MachineVerifier.h" |
24 | #include "llvm/ADT/BitVector.h" |
25 | #include "llvm/ADT/DenseMap.h" |
26 | #include "llvm/ADT/DenseSet.h" |
27 | #include "llvm/ADT/DepthFirstIterator.h" |
28 | #include "llvm/ADT/PostOrderIterator.h" |
29 | #include "llvm/ADT/STLExtras.h" |
30 | #include "llvm/ADT/SetOperations.h" |
31 | #include "llvm/ADT/SmallPtrSet.h" |
32 | #include "llvm/ADT/SmallVector.h" |
33 | #include "llvm/ADT/StringRef.h" |
34 | #include "llvm/ADT/Twine.h" |
35 | #include "llvm/CodeGen/CodeGenCommonISel.h" |
36 | #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
37 | #include "llvm/CodeGen/LiveInterval.h" |
38 | #include "llvm/CodeGen/LiveIntervals.h" |
39 | #include "llvm/CodeGen/LiveRangeCalc.h" |
40 | #include "llvm/CodeGen/LiveStacks.h" |
41 | #include "llvm/CodeGen/LiveVariables.h" |
42 | #include "llvm/CodeGen/MachineBasicBlock.h" |
43 | #include "llvm/CodeGen/MachineConvergenceVerifier.h" |
44 | #include "llvm/CodeGen/MachineDominators.h" |
45 | #include "llvm/CodeGen/MachineFrameInfo.h" |
46 | #include "llvm/CodeGen/MachineFunction.h" |
47 | #include "llvm/CodeGen/MachineFunctionPass.h" |
48 | #include "llvm/CodeGen/MachineInstr.h" |
49 | #include "llvm/CodeGen/MachineInstrBundle.h" |
50 | #include "llvm/CodeGen/MachineMemOperand.h" |
51 | #include "llvm/CodeGen/MachineOperand.h" |
52 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
53 | #include "llvm/CodeGen/PseudoSourceValue.h" |
54 | #include "llvm/CodeGen/RegisterBank.h" |
55 | #include "llvm/CodeGen/RegisterBankInfo.h" |
56 | #include "llvm/CodeGen/SlotIndexes.h" |
57 | #include "llvm/CodeGen/StackMaps.h" |
58 | #include "llvm/CodeGen/TargetInstrInfo.h" |
59 | #include "llvm/CodeGen/TargetLowering.h" |
60 | #include "llvm/CodeGen/TargetOpcodes.h" |
61 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
62 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
63 | #include "llvm/CodeGenTypes/LowLevelType.h" |
64 | #include "llvm/IR/BasicBlock.h" |
65 | #include "llvm/IR/Constants.h" |
66 | #include "llvm/IR/EHPersonalities.h" |
67 | #include "llvm/IR/Function.h" |
68 | #include "llvm/IR/InlineAsm.h" |
69 | #include "llvm/IR/Instructions.h" |
70 | #include "llvm/InitializePasses.h" |
71 | #include "llvm/MC/LaneBitmask.h" |
72 | #include "llvm/MC/MCAsmInfo.h" |
73 | #include "llvm/MC/MCDwarf.h" |
74 | #include "llvm/MC/MCInstrDesc.h" |
75 | #include "llvm/MC/MCRegisterInfo.h" |
76 | #include "llvm/MC/MCTargetOptions.h" |
77 | #include "llvm/Pass.h" |
78 | #include "llvm/Support/Casting.h" |
79 | #include "llvm/Support/ErrorHandling.h" |
80 | #include "llvm/Support/ManagedStatic.h" |
81 | #include "llvm/Support/MathExtras.h" |
82 | #include "llvm/Support/ModRef.h" |
83 | #include "llvm/Support/Mutex.h" |
84 | #include "llvm/Support/raw_ostream.h" |
85 | #include "llvm/Target/TargetMachine.h" |
86 | #include <algorithm> |
87 | #include <cassert> |
88 | #include <cstddef> |
89 | #include <cstdint> |
90 | #include <iterator> |
91 | #include <string> |
92 | #include <utility> |
93 | |
94 | using namespace llvm; |
95 | |
96 | namespace { |
97 | |
98 | /// Used the by the ReportedErrors class to guarantee only one error is reported |
99 | /// at one time. |
100 | static ManagedStatic<sys::SmartMutex<true>> ReportedErrorsLock; |
101 | |
102 | struct MachineVerifier { |
103 | MachineVerifier(MachineFunctionAnalysisManager &MFAM, const char *b, |
104 | raw_ostream *OS, bool AbortOnError = true) |
105 | : MFAM(&MFAM), OS(OS ? *OS : nulls()), Banner(b), |
106 | ReportedErrs(AbortOnError) {} |
107 | |
108 | MachineVerifier(Pass *pass, const char *b, raw_ostream *OS, |
109 | bool AbortOnError = true) |
110 | : PASS(pass), OS(OS ? *OS : nulls()), Banner(b), |
111 | ReportedErrs(AbortOnError) {} |
112 | |
113 | MachineVerifier(const char *b, LiveVariables *LiveVars, |
114 | LiveIntervals *LiveInts, LiveStacks *LiveStks, |
115 | SlotIndexes *Indexes, raw_ostream *OS, |
116 | bool AbortOnError = true) |
117 | : OS(OS ? *OS : nulls()), Banner(b), LiveVars(LiveVars), |
118 | LiveInts(LiveInts), LiveStks(LiveStks), Indexes(Indexes), |
119 | ReportedErrs(AbortOnError) {} |
120 | |
121 | /// \returns true if no problems were found. |
122 | bool verify(const MachineFunction &MF); |
123 | |
124 | MachineFunctionAnalysisManager *MFAM = nullptr; |
125 | Pass *const PASS = nullptr; |
126 | raw_ostream &OS; |
127 | const char *Banner; |
128 | const MachineFunction *MF = nullptr; |
129 | const TargetMachine *TM = nullptr; |
130 | const TargetInstrInfo *TII = nullptr; |
131 | const TargetRegisterInfo *TRI = nullptr; |
132 | const MachineRegisterInfo *MRI = nullptr; |
133 | const RegisterBankInfo *RBI = nullptr; |
134 | |
135 | // Avoid querying the MachineFunctionProperties for each operand. |
136 | bool isFunctionRegBankSelected = false; |
137 | bool isFunctionSelected = false; |
138 | bool isFunctionTracksDebugUserValues = false; |
139 | |
140 | using RegVector = SmallVector<Register, 16>; |
141 | using RegMaskVector = SmallVector<const uint32_t *, 4>; |
142 | using RegSet = DenseSet<Register>; |
143 | using RegMap = DenseMap<Register, const MachineInstr *>; |
144 | using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; |
145 | |
146 | const MachineInstr *FirstNonPHI = nullptr; |
147 | const MachineInstr *FirstTerminator = nullptr; |
148 | BlockSet FunctionBlocks; |
149 | |
150 | BitVector regsReserved; |
151 | RegSet regsLive; |
152 | RegVector regsDefined, regsDead, regsKilled; |
153 | RegMaskVector regMasks; |
154 | |
155 | SlotIndex lastIndex; |
156 | |
157 | // Add Reg and any sub-registers to RV |
158 | void addRegWithSubRegs(RegVector &RV, Register Reg) { |
159 | RV.push_back(Elt: Reg); |
160 | if (Reg.isPhysical()) |
161 | append_range(C&: RV, R: TRI->subregs(Reg: Reg.asMCReg())); |
162 | } |
163 | |
164 | struct BBInfo { |
165 | // Is this MBB reachable from the MF entry point? |
166 | bool reachable = false; |
167 | |
168 | // Vregs that must be live in because they are used without being |
169 | // defined. Map value is the user. vregsLiveIn doesn't include regs |
170 | // that only are used by PHI nodes. |
171 | RegMap vregsLiveIn; |
172 | |
173 | // Regs killed in MBB. They may be defined again, and will then be in both |
174 | // regsKilled and regsLiveOut. |
175 | RegSet regsKilled; |
176 | |
177 | // Regs defined in MBB and live out. Note that vregs passing through may |
178 | // be live out without being mentioned here. |
179 | RegSet regsLiveOut; |
180 | |
181 | // Vregs that pass through MBB untouched. This set is disjoint from |
182 | // regsKilled and regsLiveOut. |
183 | RegSet vregsPassed; |
184 | |
185 | // Vregs that must pass through MBB because they are needed by a successor |
186 | // block. This set is disjoint from regsLiveOut. |
187 | RegSet vregsRequired; |
188 | |
189 | // Set versions of block's predecessor and successor lists. |
190 | BlockSet Preds, Succs; |
191 | |
192 | BBInfo() = default; |
193 | |
194 | // Add register to vregsRequired if it belongs there. Return true if |
195 | // anything changed. |
196 | bool addRequired(Register Reg) { |
197 | if (!Reg.isVirtual()) |
198 | return false; |
199 | if (regsLiveOut.count(V: Reg)) |
200 | return false; |
201 | return vregsRequired.insert(V: Reg).second; |
202 | } |
203 | |
204 | // Same for a full set. |
205 | bool addRequired(const RegSet &RS) { |
206 | bool Changed = false; |
207 | for (Register Reg : RS) |
208 | Changed |= addRequired(Reg); |
209 | return Changed; |
210 | } |
211 | |
212 | // Same for a full map. |
213 | bool addRequired(const RegMap &RM) { |
214 | bool Changed = false; |
215 | for (const auto &I : RM) |
216 | Changed |= addRequired(Reg: I.first); |
217 | return Changed; |
218 | } |
219 | |
220 | // Live-out registers are either in regsLiveOut or vregsPassed. |
221 | bool isLiveOut(Register Reg) const { |
222 | return regsLiveOut.count(V: Reg) || vregsPassed.count(V: Reg); |
223 | } |
224 | }; |
225 | |
226 | // Extra register info per MBB. |
227 | DenseMap<const MachineBasicBlock *, BBInfo> MBBInfoMap; |
228 | |
229 | bool isReserved(Register Reg) { |
230 | return Reg.id() < regsReserved.size() && regsReserved.test(Idx: Reg.id()); |
231 | } |
232 | |
233 | bool isAllocatable(Register Reg) const { |
234 | return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(RegNo: Reg) && |
235 | !regsReserved.test(Idx: Reg.id()); |
236 | } |
237 | |
238 | // Analysis information if available |
239 | LiveVariables *LiveVars = nullptr; |
240 | LiveIntervals *LiveInts = nullptr; |
241 | LiveStacks *LiveStks = nullptr; |
242 | SlotIndexes *Indexes = nullptr; |
243 | |
244 | /// A class to track the number of reported error and to guarantee that only |
245 | /// one error is reported at one time. |
246 | class ReportedErrors { |
247 | unsigned NumReported = 0; |
248 | bool AbortOnError; |
249 | |
250 | public: |
251 | /// \param AbortOnError -- If set, abort after printing the first error. |
252 | ReportedErrors(bool AbortOnError) : AbortOnError(AbortOnError) {} |
253 | |
254 | ~ReportedErrors() { |
255 | if (!hasError()) |
256 | return; |
257 | if (AbortOnError) |
258 | report_fatal_error(reason: "Found " + Twine(NumReported) + |
259 | " machine code errors." ); |
260 | // Since we haven't aborted, release the lock to allow other threads to |
261 | // report errors. |
262 | ReportedErrorsLock->unlock(); |
263 | } |
264 | |
265 | /// Increment the number of reported errors. |
266 | /// \returns true if this is the first reported error. |
267 | bool increment() { |
268 | // If this is the first error this thread has encountered, grab the lock |
269 | // to prevent other threads from reporting errors at the same time. |
270 | // Otherwise we assume we already have the lock. |
271 | if (!hasError()) |
272 | ReportedErrorsLock->lock(); |
273 | ++NumReported; |
274 | return NumReported == 1; |
275 | } |
276 | |
277 | /// \returns true if an error was reported. |
278 | bool hasError() { return NumReported; } |
279 | }; |
280 | ReportedErrors ReportedErrs; |
281 | |
282 | // This is calculated only when trying to verify convergence control tokens. |
283 | // Similar to the LLVM IR verifier, we calculate this locally instead of |
284 | // relying on the pass manager. |
285 | MachineDominatorTree DT; |
286 | |
287 | void visitMachineFunctionBefore(); |
288 | void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); |
289 | void visitMachineBundleBefore(const MachineInstr *MI); |
290 | |
291 | /// Verify that all of \p MI's virtual register operands are scalars. |
292 | /// \returns True if all virtual register operands are scalar. False |
293 | /// otherwise. |
294 | bool verifyAllRegOpsScalar(const MachineInstr &MI, |
295 | const MachineRegisterInfo &MRI); |
296 | bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); |
297 | |
298 | bool verifyGIntrinsicSideEffects(const MachineInstr *MI); |
299 | bool verifyGIntrinsicConvergence(const MachineInstr *MI); |
300 | void verifyPreISelGenericInstruction(const MachineInstr *MI); |
301 | |
302 | void visitMachineInstrBefore(const MachineInstr *MI); |
303 | void visitMachineOperand(const MachineOperand *MO, unsigned MONum); |
304 | void visitMachineBundleAfter(const MachineInstr *MI); |
305 | void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); |
306 | void visitMachineFunctionAfter(); |
307 | |
308 | void report(const char *msg, const MachineFunction *MF); |
309 | void report(const char *msg, const MachineBasicBlock *MBB); |
310 | void report(const char *msg, const MachineInstr *MI); |
311 | void report(const char *msg, const MachineOperand *MO, unsigned MONum, |
312 | LLT MOVRegType = LLT{}); |
313 | void report(const Twine &Msg, const MachineInstr *MI); |
314 | |
315 | void report_context(const LiveInterval &LI) const; |
316 | void report_context(const LiveRange &LR, VirtRegOrUnit VRegOrUnit, |
317 | LaneBitmask LaneMask) const; |
318 | void report_context(const LiveRange::Segment &S) const; |
319 | void report_context(const VNInfo &VNI) const; |
320 | void report_context(SlotIndex Pos) const; |
321 | void report_context(MCPhysReg PhysReg) const; |
322 | void report_context_liverange(const LiveRange &LR) const; |
323 | void report_context_lanemask(LaneBitmask LaneMask) const; |
324 | void report_context_vreg(Register VReg) const; |
325 | void report_context_vreg_regunit(VirtRegOrUnit VRegOrUnit) const; |
326 | |
327 | void verifyInlineAsm(const MachineInstr *MI); |
328 | |
329 | void checkLiveness(const MachineOperand *MO, unsigned MONum); |
330 | void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, |
331 | SlotIndex UseIdx, const LiveRange &LR, |
332 | VirtRegOrUnit VRegOrUnit, |
333 | LaneBitmask LaneMask = LaneBitmask::getNone()); |
334 | void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, |
335 | SlotIndex DefIdx, const LiveRange &LR, |
336 | VirtRegOrUnit VRegOrUnit, bool SubRangeCheck = false, |
337 | LaneBitmask LaneMask = LaneBitmask::getNone()); |
338 | |
339 | void markReachable(const MachineBasicBlock *MBB); |
340 | void calcRegsPassed(); |
341 | void checkPHIOps(const MachineBasicBlock &MBB); |
342 | |
343 | void calcRegsRequired(); |
344 | void verifyLiveVariables(); |
345 | void verifyLiveIntervals(); |
346 | void verifyLiveInterval(const LiveInterval &); |
347 | void verifyLiveRangeValue(const LiveRange &, const VNInfo *, VirtRegOrUnit, |
348 | LaneBitmask); |
349 | void verifyLiveRangeSegment(const LiveRange &, |
350 | const LiveRange::const_iterator I, VirtRegOrUnit, |
351 | LaneBitmask); |
352 | void verifyLiveRange(const LiveRange &, VirtRegOrUnit, |
353 | LaneBitmask LaneMask = LaneBitmask::getNone()); |
354 | |
355 | void verifyStackFrame(); |
356 | /// Check that the stack protector is the top-most object in the stack. |
357 | void verifyStackProtector(); |
358 | |
359 | void verifySlotIndexes() const; |
360 | void verifyProperties(const MachineFunction &MF); |
361 | }; |
362 | |
363 | struct MachineVerifierLegacyPass : public MachineFunctionPass { |
364 | static char ID; // Pass ID, replacement for typeid |
365 | |
366 | const std::string Banner; |
367 | |
368 | MachineVerifierLegacyPass(std::string banner = std::string()) |
369 | : MachineFunctionPass(ID), Banner(std::move(banner)) { |
370 | initializeMachineVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); |
371 | } |
372 | |
373 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
374 | AU.addUsedIfAvailable<LiveStacksWrapperLegacy>(); |
375 | AU.addUsedIfAvailable<LiveVariablesWrapperPass>(); |
376 | AU.addUsedIfAvailable<SlotIndexesWrapperPass>(); |
377 | AU.addUsedIfAvailable<LiveIntervalsWrapperPass>(); |
378 | AU.setPreservesAll(); |
379 | MachineFunctionPass::getAnalysisUsage(AU); |
380 | } |
381 | |
382 | bool runOnMachineFunction(MachineFunction &MF) override { |
383 | // Skip functions that have known verification problems. |
384 | // FIXME: Remove this mechanism when all problematic passes have been |
385 | // fixed. |
386 | if (MF.getProperties().hasFailsVerification()) |
387 | return false; |
388 | |
389 | MachineVerifier(this, Banner.c_str(), &errs()).verify(MF); |
390 | return false; |
391 | } |
392 | }; |
393 | |
394 | } // end anonymous namespace |
395 | |
396 | PreservedAnalyses |
397 | MachineVerifierPass::run(MachineFunction &MF, |
398 | MachineFunctionAnalysisManager &MFAM) { |
399 | // Skip functions that have known verification problems. |
400 | // FIXME: Remove this mechanism when all problematic passes have been |
401 | // fixed. |
402 | if (MF.getProperties().hasFailsVerification()) |
403 | return PreservedAnalyses::all(); |
404 | MachineVerifier(MFAM, Banner.c_str(), &errs()).verify(MF); |
405 | return PreservedAnalyses::all(); |
406 | } |
407 | |
408 | char MachineVerifierLegacyPass::ID = 0; |
409 | |
410 | INITIALIZE_PASS(MachineVerifierLegacyPass, "machineverifier" , |
411 | "Verify generated machine code" , false, false) |
412 | |
413 | FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { |
414 | return new MachineVerifierLegacyPass(Banner); |
415 | } |
416 | |
417 | void llvm::verifyMachineFunction(const std::string &Banner, |
418 | const MachineFunction &MF) { |
419 | // TODO: Use MFAM after porting below analyses. |
420 | // LiveVariables *LiveVars; |
421 | // LiveIntervals *LiveInts; |
422 | // LiveStacks *LiveStks; |
423 | // SlotIndexes *Indexes; |
424 | MachineVerifier(nullptr, Banner.c_str(), &errs()).verify(MF); |
425 | } |
426 | |
427 | bool MachineFunction::verify(Pass *p, const char *Banner, raw_ostream *OS, |
428 | bool AbortOnError) const { |
429 | return MachineVerifier(p, Banner, OS, AbortOnError).verify(MF: *this); |
430 | } |
431 | |
432 | bool MachineFunction::verify(MachineFunctionAnalysisManager &MFAM, |
433 | const char *Banner, raw_ostream *OS, |
434 | bool AbortOnError) const { |
435 | return MachineVerifier(MFAM, Banner, OS, AbortOnError).verify(MF: *this); |
436 | } |
437 | |
438 | bool MachineFunction::verify(LiveIntervals *LiveInts, SlotIndexes *Indexes, |
439 | const char *Banner, raw_ostream *OS, |
440 | bool AbortOnError) const { |
441 | return MachineVerifier(Banner, /*LiveVars=*/nullptr, LiveInts, |
442 | /*LiveStks=*/nullptr, Indexes, OS, AbortOnError) |
443 | .verify(MF: *this); |
444 | } |
445 | |
446 | void MachineVerifier::verifySlotIndexes() const { |
447 | if (Indexes == nullptr) |
448 | return; |
449 | |
450 | // Ensure the IdxMBB list is sorted by slot indexes. |
451 | SlotIndex Last; |
452 | for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), |
453 | E = Indexes->MBBIndexEnd(); I != E; ++I) { |
454 | assert(!Last.isValid() || I->first > Last); |
455 | Last = I->first; |
456 | } |
457 | } |
458 | |
459 | void MachineVerifier::verifyProperties(const MachineFunction &MF) { |
460 | // If a pass has introduced virtual registers without clearing the |
461 | // NoVRegs property (or set it without allocating the vregs) |
462 | // then report an error. |
463 | if (MF.getProperties().hasNoVRegs() && MRI->getNumVirtRegs()) |
464 | report(msg: "Function has NoVRegs property but there are VReg operands" , MF: &MF); |
465 | } |
466 | |
467 | bool MachineVerifier::verify(const MachineFunction &MF) { |
468 | this->MF = &MF; |
469 | TM = &MF.getTarget(); |
470 | TII = MF.getSubtarget().getInstrInfo(); |
471 | TRI = MF.getSubtarget().getRegisterInfo(); |
472 | RBI = MF.getSubtarget().getRegBankInfo(); |
473 | MRI = &MF.getRegInfo(); |
474 | |
475 | const MachineFunctionProperties &Props = MF.getProperties(); |
476 | const bool isFunctionFailedISel = Props.hasFailedISel(); |
477 | |
478 | // If we're mid-GlobalISel and we already triggered the fallback path then |
479 | // it's expected that the MIR is somewhat broken but that's ok since we'll |
480 | // reset it and clear the FailedISel attribute in ResetMachineFunctions. |
481 | if (isFunctionFailedISel) |
482 | return true; |
483 | |
484 | isFunctionRegBankSelected = Props.hasRegBankSelected(); |
485 | isFunctionSelected = Props.hasSelected(); |
486 | isFunctionTracksDebugUserValues = Props.hasTracksDebugUserValues(); |
487 | |
488 | if (PASS) { |
489 | auto *LISWrapper = PASS->getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); |
490 | LiveInts = LISWrapper ? &LISWrapper->getLIS() : nullptr; |
491 | // We don't want to verify LiveVariables if LiveIntervals is available. |
492 | auto *LVWrapper = PASS->getAnalysisIfAvailable<LiveVariablesWrapperPass>(); |
493 | if (!LiveInts) |
494 | LiveVars = LVWrapper ? &LVWrapper->getLV() : nullptr; |
495 | auto *LSWrapper = PASS->getAnalysisIfAvailable<LiveStacksWrapperLegacy>(); |
496 | LiveStks = LSWrapper ? &LSWrapper->getLS() : nullptr; |
497 | auto *SIWrapper = PASS->getAnalysisIfAvailable<SlotIndexesWrapperPass>(); |
498 | Indexes = SIWrapper ? &SIWrapper->getSI() : nullptr; |
499 | } |
500 | if (MFAM) { |
501 | MachineFunction &Func = const_cast<MachineFunction &>(MF); |
502 | LiveInts = MFAM->getCachedResult<LiveIntervalsAnalysis>(IR&: Func); |
503 | if (!LiveInts) |
504 | LiveVars = MFAM->getCachedResult<LiveVariablesAnalysis>(IR&: Func); |
505 | // TODO: LiveStks = MFAM->getCachedResult<LiveStacksAnalysis>(Func); |
506 | Indexes = MFAM->getCachedResult<SlotIndexesAnalysis>(IR&: Func); |
507 | } |
508 | |
509 | verifySlotIndexes(); |
510 | |
511 | verifyProperties(MF); |
512 | |
513 | visitMachineFunctionBefore(); |
514 | for (const MachineBasicBlock &MBB : MF) { |
515 | visitMachineBasicBlockBefore(MBB: &MBB); |
516 | // Keep track of the current bundle header. |
517 | const MachineInstr *CurBundle = nullptr; |
518 | // Do we expect the next instruction to be part of the same bundle? |
519 | bool InBundle = false; |
520 | |
521 | for (const MachineInstr &MI : MBB.instrs()) { |
522 | if (MI.getParent() != &MBB) { |
523 | report(msg: "Bad instruction parent pointer" , MBB: &MBB); |
524 | OS << "Instruction: " << MI; |
525 | continue; |
526 | } |
527 | |
528 | // Check for consistent bundle flags. |
529 | if (InBundle && !MI.isBundledWithPred()) |
530 | report(msg: "Missing BundledPred flag, " |
531 | "BundledSucc was set on predecessor" , |
532 | MI: &MI); |
533 | if (!InBundle && MI.isBundledWithPred()) |
534 | report(msg: "BundledPred flag is set, " |
535 | "but BundledSucc not set on predecessor" , |
536 | MI: &MI); |
537 | |
538 | // Is this a bundle header? |
539 | if (!MI.isInsideBundle()) { |
540 | if (CurBundle) |
541 | visitMachineBundleAfter(MI: CurBundle); |
542 | CurBundle = &MI; |
543 | visitMachineBundleBefore(MI: CurBundle); |
544 | } else if (!CurBundle) |
545 | report(msg: "No bundle header" , MI: &MI); |
546 | visitMachineInstrBefore(MI: &MI); |
547 | for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { |
548 | const MachineOperand &Op = MI.getOperand(i: I); |
549 | if (Op.getParent() != &MI) { |
550 | // Make sure to use correct addOperand / removeOperand / ChangeTo |
551 | // functions when replacing operands of a MachineInstr. |
552 | report(msg: "Instruction has operand with wrong parent set" , MI: &MI); |
553 | } |
554 | |
555 | visitMachineOperand(MO: &Op, MONum: I); |
556 | } |
557 | |
558 | // Was this the last bundled instruction? |
559 | InBundle = MI.isBundledWithSucc(); |
560 | } |
561 | if (CurBundle) |
562 | visitMachineBundleAfter(MI: CurBundle); |
563 | if (InBundle) |
564 | report(msg: "BundledSucc flag set on last instruction in block" , MI: &MBB.back()); |
565 | visitMachineBasicBlockAfter(MBB: &MBB); |
566 | } |
567 | visitMachineFunctionAfter(); |
568 | |
569 | // Clean up. |
570 | regsLive.clear(); |
571 | regsDefined.clear(); |
572 | regsDead.clear(); |
573 | regsKilled.clear(); |
574 | regMasks.clear(); |
575 | MBBInfoMap.clear(); |
576 | |
577 | return !ReportedErrs.hasError(); |
578 | } |
579 | |
580 | void MachineVerifier::report(const char *msg, const MachineFunction *MF) { |
581 | assert(MF); |
582 | OS << '\n'; |
583 | if (ReportedErrs.increment()) { |
584 | if (Banner) |
585 | OS << "# " << Banner << '\n'; |
586 | |
587 | if (LiveInts != nullptr) |
588 | LiveInts->print(O&: OS); |
589 | else |
590 | MF->print(OS, Indexes); |
591 | } |
592 | |
593 | OS << "*** Bad machine code: " << msg << " ***\n" |
594 | << "- function: " << MF->getName() << '\n'; |
595 | } |
596 | |
597 | void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { |
598 | assert(MBB); |
599 | report(msg, MF: MBB->getParent()); |
600 | OS << "- basic block: " << printMBBReference(MBB: *MBB) << ' ' << MBB->getName() |
601 | << " (" << (const void *)MBB << ')'; |
602 | if (Indexes) |
603 | OS << " [" << Indexes->getMBBStartIdx(mbb: MBB) << ';' |
604 | << Indexes->getMBBEndIdx(mbb: MBB) << ')'; |
605 | OS << '\n'; |
606 | } |
607 | |
608 | void MachineVerifier::report(const char *msg, const MachineInstr *MI) { |
609 | assert(MI); |
610 | report(msg, MBB: MI->getParent()); |
611 | OS << "- instruction: " ; |
612 | if (Indexes && Indexes->hasIndex(instr: *MI)) |
613 | OS << Indexes->getInstructionIndex(MI: *MI) << '\t'; |
614 | MI->print(OS, /*IsStandalone=*/true); |
615 | } |
616 | |
617 | void MachineVerifier::report(const char *msg, const MachineOperand *MO, |
618 | unsigned MONum, LLT MOVRegType) { |
619 | assert(MO); |
620 | report(msg, MI: MO->getParent()); |
621 | OS << "- operand " << MONum << ": " ; |
622 | MO->print(os&: OS, TypeToPrint: MOVRegType, TRI); |
623 | OS << '\n'; |
624 | } |
625 | |
626 | void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { |
627 | report(msg: Msg.str().c_str(), MI); |
628 | } |
629 | |
630 | void MachineVerifier::report_context(SlotIndex Pos) const { |
631 | OS << "- at: " << Pos << '\n'; |
632 | } |
633 | |
634 | void MachineVerifier::report_context(const LiveInterval &LI) const { |
635 | OS << "- interval: " << LI << '\n'; |
636 | } |
637 | |
638 | void MachineVerifier::report_context(const LiveRange &LR, |
639 | VirtRegOrUnit VRegOrUnit, |
640 | LaneBitmask LaneMask) const { |
641 | report_context_liverange(LR); |
642 | report_context_vreg_regunit(VRegOrUnit); |
643 | if (LaneMask.any()) |
644 | report_context_lanemask(LaneMask); |
645 | } |
646 | |
647 | void MachineVerifier::report_context(const LiveRange::Segment &S) const { |
648 | OS << "- segment: " << S << '\n'; |
649 | } |
650 | |
651 | void MachineVerifier::report_context(const VNInfo &VNI) const { |
652 | OS << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n" ; |
653 | } |
654 | |
655 | void MachineVerifier::report_context_liverange(const LiveRange &LR) const { |
656 | OS << "- liverange: " << LR << '\n'; |
657 | } |
658 | |
659 | void MachineVerifier::report_context(MCPhysReg PReg) const { |
660 | OS << "- p. register: " << printReg(Reg: PReg, TRI) << '\n'; |
661 | } |
662 | |
663 | void MachineVerifier::report_context_vreg(Register VReg) const { |
664 | OS << "- v. register: " << printReg(Reg: VReg, TRI) << '\n'; |
665 | } |
666 | |
667 | void MachineVerifier::report_context_vreg_regunit( |
668 | VirtRegOrUnit VRegOrUnit) const { |
669 | if (VRegOrUnit.isVirtualReg()) { |
670 | report_context_vreg(VReg: VRegOrUnit.asVirtualReg()); |
671 | } else { |
672 | OS << "- regunit: " << printRegUnit(Unit: VRegOrUnit.asMCRegUnit(), TRI) |
673 | << '\n'; |
674 | } |
675 | } |
676 | |
677 | void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { |
678 | OS << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; |
679 | } |
680 | |
681 | void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { |
682 | BBInfo &MInfo = MBBInfoMap[MBB]; |
683 | if (!MInfo.reachable) { |
684 | MInfo.reachable = true; |
685 | for (const MachineBasicBlock *Succ : MBB->successors()) |
686 | markReachable(MBB: Succ); |
687 | } |
688 | } |
689 | |
690 | void MachineVerifier::visitMachineFunctionBefore() { |
691 | lastIndex = SlotIndex(); |
692 | regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() |
693 | : TRI->getReservedRegs(MF: *MF); |
694 | |
695 | if (!MF->empty()) |
696 | markReachable(MBB: &MF->front()); |
697 | |
698 | // Build a set of the basic blocks in the function. |
699 | FunctionBlocks.clear(); |
700 | for (const auto &MBB : *MF) { |
701 | FunctionBlocks.insert(Ptr: &MBB); |
702 | BBInfo &MInfo = MBBInfoMap[&MBB]; |
703 | |
704 | MInfo.Preds.insert_range(R: MBB.predecessors()); |
705 | if (MInfo.Preds.size() != MBB.pred_size()) |
706 | report(msg: "MBB has duplicate entries in its predecessor list." , MBB: &MBB); |
707 | |
708 | MInfo.Succs.insert_range(R: MBB.successors()); |
709 | if (MInfo.Succs.size() != MBB.succ_size()) |
710 | report(msg: "MBB has duplicate entries in its successor list." , MBB: &MBB); |
711 | } |
712 | |
713 | // Check that the register use lists are sane. |
714 | MRI->verifyUseLists(); |
715 | |
716 | if (!MF->empty()) { |
717 | verifyStackFrame(); |
718 | verifyStackProtector(); |
719 | } |
720 | } |
721 | |
722 | void |
723 | MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { |
724 | FirstTerminator = nullptr; |
725 | FirstNonPHI = nullptr; |
726 | |
727 | if (!MF->getProperties().hasNoPHIs() && MRI->tracksLiveness()) { |
728 | // If this block has allocatable physical registers live-in, check that |
729 | // it is an entry block or landing pad. |
730 | for (const auto &LI : MBB->liveins()) { |
731 | if (isAllocatable(Reg: LI.PhysReg) && !MBB->isEHPad() && |
732 | MBB->getIterator() != MBB->getParent()->begin() && |
733 | !MBB->isInlineAsmBrIndirectTarget()) { |
734 | report(msg: "MBB has allocatable live-in, but isn't entry, landing-pad, or " |
735 | "inlineasm-br-indirect-target." , |
736 | MBB); |
737 | report_context(PReg: LI.PhysReg); |
738 | } |
739 | } |
740 | } |
741 | |
742 | if (MBB->isIRBlockAddressTaken()) { |
743 | if (!MBB->getAddressTakenIRBlock()->hasAddressTaken()) |
744 | report(msg: "ir-block-address-taken is associated with basic block not used by " |
745 | "a blockaddress." , |
746 | MBB); |
747 | } |
748 | |
749 | // Count the number of landing pad successors. |
750 | SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; |
751 | for (const auto *succ : MBB->successors()) { |
752 | if (succ->isEHPad()) |
753 | LandingPadSuccs.insert(Ptr: succ); |
754 | if (!FunctionBlocks.count(Ptr: succ)) |
755 | report(msg: "MBB has successor that isn't part of the function." , MBB); |
756 | if (!MBBInfoMap[succ].Preds.count(Ptr: MBB)) { |
757 | report(msg: "Inconsistent CFG" , MBB); |
758 | OS << "MBB is not in the predecessor list of the successor " |
759 | << printMBBReference(MBB: *succ) << ".\n" ; |
760 | } |
761 | } |
762 | |
763 | // Check the predecessor list. |
764 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
765 | if (!FunctionBlocks.count(Ptr: Pred)) |
766 | report(msg: "MBB has predecessor that isn't part of the function." , MBB); |
767 | if (!MBBInfoMap[Pred].Succs.count(Ptr: MBB)) { |
768 | report(msg: "Inconsistent CFG" , MBB); |
769 | OS << "MBB is not in the successor list of the predecessor " |
770 | << printMBBReference(MBB: *Pred) << ".\n" ; |
771 | } |
772 | } |
773 | |
774 | const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); |
775 | const BasicBlock *BB = MBB->getBasicBlock(); |
776 | const Function &F = MF->getFunction(); |
777 | if (LandingPadSuccs.size() > 1 && |
778 | !(AsmInfo && |
779 | AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && |
780 | BB && isa<SwitchInst>(Val: BB->getTerminator())) && |
781 | !isScopedEHPersonality(Pers: classifyEHPersonality(Pers: F.getPersonalityFn()))) |
782 | report(msg: "MBB has more than one landing pad successor" , MBB); |
783 | |
784 | // Call analyzeBranch. If it succeeds, there several more conditions to check. |
785 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
786 | SmallVector<MachineOperand, 4> Cond; |
787 | if (!TII->analyzeBranch(MBB&: *const_cast<MachineBasicBlock *>(MBB), TBB, FBB, |
788 | Cond)) { |
789 | // Ok, analyzeBranch thinks it knows what's going on with this block. Let's |
790 | // check whether its answers match up with reality. |
791 | if (!TBB && !FBB) { |
792 | // Block falls through to its successor. |
793 | if (!MBB->empty() && MBB->back().isBarrier() && |
794 | !TII->isPredicated(MI: MBB->back())) { |
795 | report(msg: "MBB exits via unconditional fall-through but ends with a " |
796 | "barrier instruction!" , MBB); |
797 | } |
798 | if (!Cond.empty()) { |
799 | report(msg: "MBB exits via unconditional fall-through but has a condition!" , |
800 | MBB); |
801 | } |
802 | } else if (TBB && !FBB && Cond.empty()) { |
803 | // Block unconditionally branches somewhere. |
804 | if (MBB->empty()) { |
805 | report(msg: "MBB exits via unconditional branch but doesn't contain " |
806 | "any instructions!" , MBB); |
807 | } else if (!MBB->back().isBarrier()) { |
808 | report(msg: "MBB exits via unconditional branch but doesn't end with a " |
809 | "barrier instruction!" , MBB); |
810 | } else if (!MBB->back().isTerminator()) { |
811 | report(msg: "MBB exits via unconditional branch but the branch isn't a " |
812 | "terminator instruction!" , MBB); |
813 | } |
814 | } else if (TBB && !FBB && !Cond.empty()) { |
815 | // Block conditionally branches somewhere, otherwise falls through. |
816 | if (MBB->empty()) { |
817 | report(msg: "MBB exits via conditional branch/fall-through but doesn't " |
818 | "contain any instructions!" , MBB); |
819 | } else if (MBB->back().isBarrier()) { |
820 | report(msg: "MBB exits via conditional branch/fall-through but ends with a " |
821 | "barrier instruction!" , MBB); |
822 | } else if (!MBB->back().isTerminator()) { |
823 | report(msg: "MBB exits via conditional branch/fall-through but the branch " |
824 | "isn't a terminator instruction!" , MBB); |
825 | } |
826 | } else if (TBB && FBB) { |
827 | // Block conditionally branches somewhere, otherwise branches |
828 | // somewhere else. |
829 | if (MBB->empty()) { |
830 | report(msg: "MBB exits via conditional branch/branch but doesn't " |
831 | "contain any instructions!" , MBB); |
832 | } else if (!MBB->back().isBarrier()) { |
833 | report(msg: "MBB exits via conditional branch/branch but doesn't end with a " |
834 | "barrier instruction!" , MBB); |
835 | } else if (!MBB->back().isTerminator()) { |
836 | report(msg: "MBB exits via conditional branch/branch but the branch " |
837 | "isn't a terminator instruction!" , MBB); |
838 | } |
839 | if (Cond.empty()) { |
840 | report(msg: "MBB exits via conditional branch/branch but there's no " |
841 | "condition!" , MBB); |
842 | } |
843 | } else { |
844 | report(msg: "analyzeBranch returned invalid data!" , MBB); |
845 | } |
846 | |
847 | // Now check that the successors match up with the answers reported by |
848 | // analyzeBranch. |
849 | if (TBB && !MBB->isSuccessor(MBB: TBB)) |
850 | report(msg: "MBB exits via jump or conditional branch, but its target isn't a " |
851 | "CFG successor!" , |
852 | MBB); |
853 | if (FBB && !MBB->isSuccessor(MBB: FBB)) |
854 | report(msg: "MBB exits via conditional branch, but its target isn't a CFG " |
855 | "successor!" , |
856 | MBB); |
857 | |
858 | // There might be a fallthrough to the next block if there's either no |
859 | // unconditional true branch, or if there's a condition, and one of the |
860 | // branches is missing. |
861 | bool Fallthrough = !TBB || (!Cond.empty() && !FBB); |
862 | |
863 | // A conditional fallthrough must be an actual CFG successor, not |
864 | // unreachable. (Conversely, an unconditional fallthrough might not really |
865 | // be a successor, because the block might end in unreachable.) |
866 | if (!Cond.empty() && !FBB) { |
867 | MachineFunction::const_iterator MBBI = std::next(x: MBB->getIterator()); |
868 | if (MBBI == MF->end()) { |
869 | report(msg: "MBB conditionally falls through out of function!" , MBB); |
870 | } else if (!MBB->isSuccessor(MBB: &*MBBI)) |
871 | report(msg: "MBB exits via conditional branch/fall-through but the CFG " |
872 | "successors don't match the actual successors!" , |
873 | MBB); |
874 | } |
875 | |
876 | // Verify that there aren't any extra un-accounted-for successors. |
877 | for (const MachineBasicBlock *SuccMBB : MBB->successors()) { |
878 | // If this successor is one of the branch targets, it's okay. |
879 | if (SuccMBB == TBB || SuccMBB == FBB) |
880 | continue; |
881 | // If we might have a fallthrough, and the successor is the fallthrough |
882 | // block, that's also ok. |
883 | if (Fallthrough && SuccMBB == MBB->getNextNode()) |
884 | continue; |
885 | // Also accept successors which are for exception-handling or might be |
886 | // inlineasm_br targets. |
887 | if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) |
888 | continue; |
889 | report(msg: "MBB has unexpected successors which are not branch targets, " |
890 | "fallthrough, EHPads, or inlineasm_br targets." , |
891 | MBB); |
892 | } |
893 | } |
894 | |
895 | regsLive.clear(); |
896 | if (MRI->tracksLiveness()) { |
897 | for (const auto &LI : MBB->liveins()) { |
898 | if (!LI.PhysReg.isPhysical()) { |
899 | report(msg: "MBB live-in list contains non-physical register" , MBB); |
900 | continue; |
901 | } |
902 | regsLive.insert_range(R: TRI->subregs_inclusive(Reg: LI.PhysReg)); |
903 | } |
904 | } |
905 | |
906 | const MachineFrameInfo &MFI = MF->getFrameInfo(); |
907 | BitVector PR = MFI.getPristineRegs(MF: *MF); |
908 | for (unsigned I : PR.set_bits()) |
909 | regsLive.insert_range(R: TRI->subregs_inclusive(Reg: I)); |
910 | |
911 | regsKilled.clear(); |
912 | regsDefined.clear(); |
913 | |
914 | if (Indexes) |
915 | lastIndex = Indexes->getMBBStartIdx(mbb: MBB); |
916 | } |
917 | |
918 | // This function gets called for all bundle headers, including normal |
919 | // stand-alone unbundled instructions. |
920 | void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { |
921 | if (Indexes && Indexes->hasIndex(instr: *MI)) { |
922 | SlotIndex idx = Indexes->getInstructionIndex(MI: *MI); |
923 | if (!(idx > lastIndex)) { |
924 | report(msg: "Instruction index out of order" , MI); |
925 | OS << "Last instruction was at " << lastIndex << '\n'; |
926 | } |
927 | lastIndex = idx; |
928 | } |
929 | |
930 | // Ensure non-terminators don't follow terminators. |
931 | if (MI->isTerminator()) { |
932 | if (!FirstTerminator) |
933 | FirstTerminator = MI; |
934 | } else if (FirstTerminator) { |
935 | // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to |
936 | // precede non-terminators. |
937 | if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) { |
938 | report(msg: "Non-terminator instruction after the first terminator" , MI); |
939 | OS << "First terminator was:\t" << *FirstTerminator; |
940 | } |
941 | } |
942 | } |
943 | |
944 | // The operands on an INLINEASM instruction must follow a template. |
945 | // Verify that the flag operands make sense. |
946 | void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { |
947 | // The first two operands on INLINEASM are the asm string and global flags. |
948 | if (MI->getNumOperands() < 2) { |
949 | report(msg: "Too few operands on inline asm" , MI); |
950 | return; |
951 | } |
952 | if (!MI->getOperand(i: 0).isSymbol()) |
953 | report(msg: "Asm string must be an external symbol" , MI); |
954 | if (!MI->getOperand(i: 1).isImm()) |
955 | report(msg: "Asm flags must be an immediate" , MI); |
956 | // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, |
957 | // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, |
958 | // and Extra_IsConvergent = 32. |
959 | if (!isUInt<6>(x: MI->getOperand(i: 1).getImm())) |
960 | report(msg: "Unknown asm flags" , MO: &MI->getOperand(i: 1), MONum: 1); |
961 | |
962 | static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed" ); |
963 | |
964 | unsigned OpNo = InlineAsm::MIOp_FirstOperand; |
965 | unsigned NumOps; |
966 | for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { |
967 | const MachineOperand &MO = MI->getOperand(i: OpNo); |
968 | // There may be implicit ops after the fixed operands. |
969 | if (!MO.isImm()) |
970 | break; |
971 | const InlineAsm::Flag F(MO.getImm()); |
972 | NumOps = 1 + F.getNumOperandRegisters(); |
973 | } |
974 | |
975 | if (OpNo > MI->getNumOperands()) |
976 | report(msg: "Missing operands in last group" , MI); |
977 | |
978 | // An optional MDNode follows the groups. |
979 | if (OpNo < MI->getNumOperands() && MI->getOperand(i: OpNo).isMetadata()) |
980 | ++OpNo; |
981 | |
982 | // All trailing operands must be implicit registers. |
983 | for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { |
984 | const MachineOperand &MO = MI->getOperand(i: OpNo); |
985 | if (!MO.isReg() || !MO.isImplicit()) |
986 | report(msg: "Expected implicit register after groups" , MO: &MO, MONum: OpNo); |
987 | } |
988 | |
989 | if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) { |
990 | const MachineBasicBlock *MBB = MI->getParent(); |
991 | |
992 | for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands(); |
993 | i != e; ++i) { |
994 | const MachineOperand &MO = MI->getOperand(i); |
995 | |
996 | if (!MO.isMBB()) |
997 | continue; |
998 | |
999 | // Check the successor & predecessor lists look ok, assume they are |
1000 | // not. Find the indirect target without going through the successors. |
1001 | const MachineBasicBlock *IndirectTargetMBB = MO.getMBB(); |
1002 | if (!IndirectTargetMBB) { |
1003 | report(msg: "INLINEASM_BR indirect target does not exist" , MO: &MO, MONum: i); |
1004 | break; |
1005 | } |
1006 | |
1007 | if (!MBB->isSuccessor(MBB: IndirectTargetMBB)) |
1008 | report(msg: "INLINEASM_BR indirect target missing from successor list" , MO: &MO, |
1009 | MONum: i); |
1010 | |
1011 | if (!IndirectTargetMBB->isPredecessor(MBB)) |
1012 | report(msg: "INLINEASM_BR indirect target predecessor list missing parent" , |
1013 | MO: &MO, MONum: i); |
1014 | } |
1015 | } |
1016 | } |
1017 | |
1018 | bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, |
1019 | const MachineRegisterInfo &MRI) { |
1020 | if (none_of(Range: MI.explicit_operands(), P: [&MRI](const MachineOperand &Op) { |
1021 | if (!Op.isReg()) |
1022 | return false; |
1023 | const auto Reg = Op.getReg(); |
1024 | if (Reg.isPhysical()) |
1025 | return false; |
1026 | return !MRI.getType(Reg).isScalar(); |
1027 | })) |
1028 | return true; |
1029 | report(msg: "All register operands must have scalar types" , MI: &MI); |
1030 | return false; |
1031 | } |
1032 | |
1033 | /// Check that types are consistent when two operands need to have the same |
1034 | /// number of vector elements. |
1035 | /// \return true if the types are valid. |
1036 | bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, |
1037 | const MachineInstr *MI) { |
1038 | if (Ty0.isVector() != Ty1.isVector()) { |
1039 | report(msg: "operand types must be all-vector or all-scalar" , MI); |
1040 | // Generally we try to report as many issues as possible at once, but in |
1041 | // this case it's not clear what should we be comparing the size of the |
1042 | // scalar with: the size of the whole vector or its lane. Instead of |
1043 | // making an arbitrary choice and emitting not so helpful message, let's |
1044 | // avoid the extra noise and stop here. |
1045 | return false; |
1046 | } |
1047 | |
1048 | if (Ty0.isVector() && Ty0.getElementCount() != Ty1.getElementCount()) { |
1049 | report(msg: "operand types must preserve number of vector elements" , MI); |
1050 | return false; |
1051 | } |
1052 | |
1053 | return true; |
1054 | } |
1055 | |
1056 | bool MachineVerifier::verifyGIntrinsicSideEffects(const MachineInstr *MI) { |
1057 | auto Opcode = MI->getOpcode(); |
1058 | bool NoSideEffects = Opcode == TargetOpcode::G_INTRINSIC || |
1059 | Opcode == TargetOpcode::G_INTRINSIC_CONVERGENT; |
1060 | unsigned IntrID = cast<GIntrinsic>(Val: MI)->getIntrinsicID(); |
1061 | if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { |
1062 | AttributeSet Attrs = Intrinsic::getFnAttributes( |
1063 | C&: MF->getFunction().getContext(), id: static_cast<Intrinsic::ID>(IntrID)); |
1064 | bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory(); |
1065 | if (NoSideEffects && DeclHasSideEffects) { |
1066 | report(Msg: Twine(TII->getName(Opcode), |
1067 | " used with intrinsic that accesses memory" ), |
1068 | MI); |
1069 | return false; |
1070 | } |
1071 | if (!NoSideEffects && !DeclHasSideEffects) { |
1072 | report(Msg: Twine(TII->getName(Opcode), " used with readnone intrinsic" ), MI); |
1073 | return false; |
1074 | } |
1075 | } |
1076 | |
1077 | return true; |
1078 | } |
1079 | |
1080 | bool MachineVerifier::verifyGIntrinsicConvergence(const MachineInstr *MI) { |
1081 | auto Opcode = MI->getOpcode(); |
1082 | bool NotConvergent = Opcode == TargetOpcode::G_INTRINSIC || |
1083 | Opcode == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS; |
1084 | unsigned IntrID = cast<GIntrinsic>(Val: MI)->getIntrinsicID(); |
1085 | if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { |
1086 | AttributeSet Attrs = Intrinsic::getFnAttributes( |
1087 | C&: MF->getFunction().getContext(), id: static_cast<Intrinsic::ID>(IntrID)); |
1088 | bool DeclIsConvergent = Attrs.hasAttribute(Kind: Attribute::Convergent); |
1089 | if (NotConvergent && DeclIsConvergent) { |
1090 | report(Msg: Twine(TII->getName(Opcode), " used with a convergent intrinsic" ), |
1091 | MI); |
1092 | return false; |
1093 | } |
1094 | if (!NotConvergent && !DeclIsConvergent) { |
1095 | report( |
1096 | Msg: Twine(TII->getName(Opcode), " used with a non-convergent intrinsic" ), |
1097 | MI); |
1098 | return false; |
1099 | } |
1100 | } |
1101 | |
1102 | return true; |
1103 | } |
1104 | |
1105 | void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { |
1106 | if (isFunctionSelected) |
1107 | report(msg: "Unexpected generic instruction in a Selected function" , MI); |
1108 | |
1109 | const MCInstrDesc &MCID = MI->getDesc(); |
1110 | unsigned NumOps = MI->getNumOperands(); |
1111 | |
1112 | // Branches must reference a basic block if they are not indirect |
1113 | if (MI->isBranch() && !MI->isIndirectBranch()) { |
1114 | bool HasMBB = false; |
1115 | for (const MachineOperand &Op : MI->operands()) { |
1116 | if (Op.isMBB()) { |
1117 | HasMBB = true; |
1118 | break; |
1119 | } |
1120 | } |
1121 | |
1122 | if (!HasMBB) { |
1123 | report(msg: "Branch instruction is missing a basic block operand or " |
1124 | "isIndirectBranch property" , |
1125 | MI); |
1126 | } |
1127 | } |
1128 | |
1129 | // Check types. |
1130 | SmallVector<LLT, 4> Types; |
1131 | for (unsigned I = 0, E = std::min(a: MCID.getNumOperands(), b: NumOps); |
1132 | I != E; ++I) { |
1133 | if (!MCID.operands()[I].isGenericType()) |
1134 | continue; |
1135 | // Generic instructions specify type equality constraints between some of |
1136 | // their operands. Make sure these are consistent. |
1137 | size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex(); |
1138 | Types.resize(N: std::max(a: TypeIdx + 1, b: Types.size())); |
1139 | |
1140 | const MachineOperand *MO = &MI->getOperand(i: I); |
1141 | if (!MO->isReg()) { |
1142 | report(msg: "generic instruction must use register operands" , MI); |
1143 | continue; |
1144 | } |
1145 | |
1146 | LLT OpTy = MRI->getType(Reg: MO->getReg()); |
1147 | // Don't report a type mismatch if there is no actual mismatch, only a |
1148 | // type missing, to reduce noise: |
1149 | if (OpTy.isValid()) { |
1150 | // Only the first valid type for a type index will be printed: don't |
1151 | // overwrite it later so it's always clear which type was expected: |
1152 | if (!Types[TypeIdx].isValid()) |
1153 | Types[TypeIdx] = OpTy; |
1154 | else if (Types[TypeIdx] != OpTy) |
1155 | report(msg: "Type mismatch in generic instruction" , MO, MONum: I, MOVRegType: OpTy); |
1156 | } else { |
1157 | // Generic instructions must have types attached to their operands. |
1158 | report(msg: "Generic instruction is missing a virtual register type" , MO, MONum: I); |
1159 | } |
1160 | } |
1161 | |
1162 | // Generic opcodes must not have physical register operands. |
1163 | for (unsigned I = 0; I < MI->getNumOperands(); ++I) { |
1164 | const MachineOperand *MO = &MI->getOperand(i: I); |
1165 | if (MO->isReg() && MO->getReg().isPhysical()) |
1166 | report(msg: "Generic instruction cannot have physical register" , MO, MONum: I); |
1167 | } |
1168 | |
1169 | // Avoid out of bounds in checks below. This was already reported earlier. |
1170 | if (MI->getNumOperands() < MCID.getNumOperands()) |
1171 | return; |
1172 | |
1173 | StringRef ErrorInfo; |
1174 | if (!TII->verifyInstruction(MI: *MI, ErrInfo&: ErrorInfo)) |
1175 | report(msg: ErrorInfo.data(), MI); |
1176 | |
1177 | // Verify properties of various specific instruction types |
1178 | unsigned Opc = MI->getOpcode(); |
1179 | switch (Opc) { |
1180 | case TargetOpcode::G_ASSERT_SEXT: |
1181 | case TargetOpcode::G_ASSERT_ZEXT: { |
1182 | std::string OpcName = |
1183 | Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT" ; |
1184 | if (!MI->getOperand(i: 2).isImm()) { |
1185 | report(Msg: Twine(OpcName, " expects an immediate operand #2" ), MI); |
1186 | break; |
1187 | } |
1188 | |
1189 | Register Dst = MI->getOperand(i: 0).getReg(); |
1190 | Register Src = MI->getOperand(i: 1).getReg(); |
1191 | LLT SrcTy = MRI->getType(Reg: Src); |
1192 | int64_t Imm = MI->getOperand(i: 2).getImm(); |
1193 | if (Imm <= 0) { |
1194 | report(Msg: Twine(OpcName, " size must be >= 1" ), MI); |
1195 | break; |
1196 | } |
1197 | |
1198 | if (Imm >= SrcTy.getScalarSizeInBits()) { |
1199 | report(Msg: Twine(OpcName, " size must be less than source bit width" ), MI); |
1200 | break; |
1201 | } |
1202 | |
1203 | const RegisterBank *SrcRB = RBI->getRegBank(Reg: Src, MRI: *MRI, TRI: *TRI); |
1204 | const RegisterBank *DstRB = RBI->getRegBank(Reg: Dst, MRI: *MRI, TRI: *TRI); |
1205 | |
1206 | // Allow only the source bank to be set. |
1207 | if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) { |
1208 | report(Msg: Twine(OpcName, " cannot change register bank" ), MI); |
1209 | break; |
1210 | } |
1211 | |
1212 | // Don't allow a class change. Do allow member class->regbank. |
1213 | const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Reg: Dst); |
1214 | if (DstRC && DstRC != MRI->getRegClassOrNull(Reg: Src)) { |
1215 | report( |
1216 | Msg: Twine(OpcName, " source and destination register classes must match" ), |
1217 | MI); |
1218 | break; |
1219 | } |
1220 | |
1221 | break; |
1222 | } |
1223 | |
1224 | case TargetOpcode::G_CONSTANT: |
1225 | case TargetOpcode::G_FCONSTANT: { |
1226 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1227 | if (DstTy.isVector()) |
1228 | report(msg: "Instruction cannot use a vector result type" , MI); |
1229 | |
1230 | if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { |
1231 | if (!MI->getOperand(i: 1).isCImm()) { |
1232 | report(msg: "G_CONSTANT operand must be cimm" , MI); |
1233 | break; |
1234 | } |
1235 | |
1236 | const ConstantInt *CI = MI->getOperand(i: 1).getCImm(); |
1237 | if (CI->getBitWidth() != DstTy.getSizeInBits()) |
1238 | report(msg: "inconsistent constant size" , MI); |
1239 | } else { |
1240 | if (!MI->getOperand(i: 1).isFPImm()) { |
1241 | report(msg: "G_FCONSTANT operand must be fpimm" , MI); |
1242 | break; |
1243 | } |
1244 | const ConstantFP *CF = MI->getOperand(i: 1).getFPImm(); |
1245 | |
1246 | if (APFloat::getSizeInBits(Sem: CF->getValueAPF().getSemantics()) != |
1247 | DstTy.getSizeInBits()) { |
1248 | report(msg: "inconsistent constant size" , MI); |
1249 | } |
1250 | } |
1251 | |
1252 | break; |
1253 | } |
1254 | case TargetOpcode::G_LOAD: |
1255 | case TargetOpcode::G_STORE: |
1256 | case TargetOpcode::G_ZEXTLOAD: |
1257 | case TargetOpcode::G_SEXTLOAD: { |
1258 | LLT ValTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1259 | LLT PtrTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1260 | if (!PtrTy.isPointer()) |
1261 | report(msg: "Generic memory instruction must access a pointer" , MI); |
1262 | |
1263 | // Generic loads and stores must have a single MachineMemOperand |
1264 | // describing that access. |
1265 | if (!MI->hasOneMemOperand()) { |
1266 | report(msg: "Generic instruction accessing memory must have one mem operand" , |
1267 | MI); |
1268 | } else { |
1269 | const MachineMemOperand &MMO = **MI->memoperands_begin(); |
1270 | if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || |
1271 | MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { |
1272 | if (TypeSize::isKnownGE(LHS: MMO.getSizeInBits().getValue(), |
1273 | RHS: ValTy.getSizeInBits())) |
1274 | report(msg: "Generic extload must have a narrower memory type" , MI); |
1275 | } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { |
1276 | if (TypeSize::isKnownGT(LHS: MMO.getSize().getValue(), |
1277 | RHS: ValTy.getSizeInBytes())) |
1278 | report(msg: "load memory size cannot exceed result size" , MI); |
1279 | |
1280 | if (MMO.getRanges()) { |
1281 | ConstantInt *i = |
1282 | mdconst::extract<ConstantInt>(MD: MMO.getRanges()->getOperand(I: 0)); |
1283 | const LLT RangeTy = LLT::scalar(SizeInBits: i->getIntegerType()->getBitWidth()); |
1284 | const LLT MemTy = MMO.getMemoryType(); |
1285 | if (MemTy.getScalarType() != RangeTy || |
1286 | ValTy.isScalar() != MemTy.isScalar() || |
1287 | (ValTy.isVector() && |
1288 | ValTy.getNumElements() != MemTy.getNumElements())) { |
1289 | report(msg: "range is incompatible with the result type" , MI); |
1290 | } |
1291 | } |
1292 | } else if (MI->getOpcode() == TargetOpcode::G_STORE) { |
1293 | if (TypeSize::isKnownLT(LHS: ValTy.getSizeInBytes(), |
1294 | RHS: MMO.getSize().getValue())) |
1295 | report(msg: "store memory size cannot exceed value size" , MI); |
1296 | } |
1297 | |
1298 | const AtomicOrdering Order = MMO.getSuccessOrdering(); |
1299 | if (Opc == TargetOpcode::G_STORE) { |
1300 | if (Order == AtomicOrdering::Acquire || |
1301 | Order == AtomicOrdering::AcquireRelease) |
1302 | report(msg: "atomic store cannot use acquire ordering" , MI); |
1303 | |
1304 | } else { |
1305 | if (Order == AtomicOrdering::Release || |
1306 | Order == AtomicOrdering::AcquireRelease) |
1307 | report(msg: "atomic load cannot use release ordering" , MI); |
1308 | } |
1309 | } |
1310 | |
1311 | break; |
1312 | } |
1313 | case TargetOpcode::G_PHI: { |
1314 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1315 | if (!DstTy.isValid() || !all_of(Range: drop_begin(RangeOrContainer: MI->operands()), |
1316 | P: [this, &DstTy](const MachineOperand &MO) { |
1317 | if (!MO.isReg()) |
1318 | return true; |
1319 | LLT Ty = MRI->getType(Reg: MO.getReg()); |
1320 | if (!Ty.isValid() || (Ty != DstTy)) |
1321 | return false; |
1322 | return true; |
1323 | })) |
1324 | report(msg: "Generic Instruction G_PHI has operands with incompatible/missing " |
1325 | "types" , |
1326 | MI); |
1327 | break; |
1328 | } |
1329 | case TargetOpcode::G_BITCAST: { |
1330 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1331 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1332 | if (!DstTy.isValid() || !SrcTy.isValid()) |
1333 | break; |
1334 | |
1335 | if (SrcTy.isPointer() != DstTy.isPointer()) |
1336 | report(msg: "bitcast cannot convert between pointers and other types" , MI); |
1337 | |
1338 | if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) |
1339 | report(msg: "bitcast sizes must match" , MI); |
1340 | |
1341 | if (SrcTy == DstTy) |
1342 | report(msg: "bitcast must change the type" , MI); |
1343 | |
1344 | break; |
1345 | } |
1346 | case TargetOpcode::G_INTTOPTR: |
1347 | case TargetOpcode::G_PTRTOINT: |
1348 | case TargetOpcode::G_ADDRSPACE_CAST: { |
1349 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1350 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1351 | if (!DstTy.isValid() || !SrcTy.isValid()) |
1352 | break; |
1353 | |
1354 | verifyVectorElementMatch(Ty0: DstTy, Ty1: SrcTy, MI); |
1355 | |
1356 | DstTy = DstTy.getScalarType(); |
1357 | SrcTy = SrcTy.getScalarType(); |
1358 | |
1359 | if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { |
1360 | if (!DstTy.isPointer()) |
1361 | report(msg: "inttoptr result type must be a pointer" , MI); |
1362 | if (SrcTy.isPointer()) |
1363 | report(msg: "inttoptr source type must not be a pointer" , MI); |
1364 | } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { |
1365 | if (!SrcTy.isPointer()) |
1366 | report(msg: "ptrtoint source type must be a pointer" , MI); |
1367 | if (DstTy.isPointer()) |
1368 | report(msg: "ptrtoint result type must not be a pointer" , MI); |
1369 | } else { |
1370 | assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); |
1371 | if (!SrcTy.isPointer() || !DstTy.isPointer()) |
1372 | report(msg: "addrspacecast types must be pointers" , MI); |
1373 | else { |
1374 | if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) |
1375 | report(msg: "addrspacecast must convert different address spaces" , MI); |
1376 | } |
1377 | } |
1378 | |
1379 | break; |
1380 | } |
1381 | case TargetOpcode::G_PTR_ADD: { |
1382 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1383 | LLT PtrTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1384 | LLT OffsetTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
1385 | if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) |
1386 | break; |
1387 | |
1388 | if (!PtrTy.isPointerOrPointerVector()) |
1389 | report(msg: "gep first operand must be a pointer" , MI); |
1390 | |
1391 | if (OffsetTy.isPointerOrPointerVector()) |
1392 | report(msg: "gep offset operand must not be a pointer" , MI); |
1393 | |
1394 | if (PtrTy.isPointerOrPointerVector()) { |
1395 | const DataLayout &DL = MF->getDataLayout(); |
1396 | unsigned AS = PtrTy.getAddressSpace(); |
1397 | unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8; |
1398 | if (OffsetTy.getScalarSizeInBits() != IndexSizeInBits) { |
1399 | report(msg: "gep offset operand must match index size for address space" , |
1400 | MI); |
1401 | } |
1402 | } |
1403 | |
1404 | // TODO: Is the offset allowed to be a scalar with a vector? |
1405 | break; |
1406 | } |
1407 | case TargetOpcode::G_PTRMASK: { |
1408 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1409 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1410 | LLT MaskTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
1411 | if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) |
1412 | break; |
1413 | |
1414 | if (!DstTy.isPointerOrPointerVector()) |
1415 | report(msg: "ptrmask result type must be a pointer" , MI); |
1416 | |
1417 | if (!MaskTy.getScalarType().isScalar()) |
1418 | report(msg: "ptrmask mask type must be an integer" , MI); |
1419 | |
1420 | verifyVectorElementMatch(Ty0: DstTy, Ty1: MaskTy, MI); |
1421 | break; |
1422 | } |
1423 | case TargetOpcode::G_SEXT: |
1424 | case TargetOpcode::G_ZEXT: |
1425 | case TargetOpcode::G_ANYEXT: |
1426 | case TargetOpcode::G_TRUNC: |
1427 | case TargetOpcode::G_FPEXT: |
1428 | case TargetOpcode::G_FPTRUNC: { |
1429 | // Number of operands and presense of types is already checked (and |
1430 | // reported in case of any issues), so no need to report them again. As |
1431 | // we're trying to report as many issues as possible at once, however, the |
1432 | // instructions aren't guaranteed to have the right number of operands or |
1433 | // types attached to them at this point |
1434 | assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}" ); |
1435 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1436 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1437 | if (!DstTy.isValid() || !SrcTy.isValid()) |
1438 | break; |
1439 | |
1440 | if (DstTy.isPointerOrPointerVector() || SrcTy.isPointerOrPointerVector()) |
1441 | report(msg: "Generic extend/truncate can not operate on pointers" , MI); |
1442 | |
1443 | verifyVectorElementMatch(Ty0: DstTy, Ty1: SrcTy, MI); |
1444 | |
1445 | unsigned DstSize = DstTy.getScalarSizeInBits(); |
1446 | unsigned SrcSize = SrcTy.getScalarSizeInBits(); |
1447 | switch (MI->getOpcode()) { |
1448 | default: |
1449 | if (DstSize <= SrcSize) |
1450 | report(msg: "Generic extend has destination type no larger than source" , MI); |
1451 | break; |
1452 | case TargetOpcode::G_TRUNC: |
1453 | case TargetOpcode::G_FPTRUNC: |
1454 | if (DstSize >= SrcSize) |
1455 | report(msg: "Generic truncate has destination type no smaller than source" , |
1456 | MI); |
1457 | break; |
1458 | } |
1459 | break; |
1460 | } |
1461 | case TargetOpcode::G_SELECT: { |
1462 | LLT SelTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1463 | LLT CondTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1464 | if (!SelTy.isValid() || !CondTy.isValid()) |
1465 | break; |
1466 | |
1467 | // Scalar condition select on a vector is valid. |
1468 | if (CondTy.isVector()) |
1469 | verifyVectorElementMatch(Ty0: SelTy, Ty1: CondTy, MI); |
1470 | break; |
1471 | } |
1472 | case TargetOpcode::G_MERGE_VALUES: { |
1473 | // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, |
1474 | // e.g. s2N = MERGE sN, sN |
1475 | // Merging multiple scalars into a vector is not allowed, should use |
1476 | // G_BUILD_VECTOR for that. |
1477 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1478 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1479 | if (DstTy.isVector() || SrcTy.isVector()) |
1480 | report(msg: "G_MERGE_VALUES cannot operate on vectors" , MI); |
1481 | |
1482 | const unsigned NumOps = MI->getNumOperands(); |
1483 | if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) |
1484 | report(msg: "G_MERGE_VALUES result size is inconsistent" , MI); |
1485 | |
1486 | for (unsigned I = 2; I != NumOps; ++I) { |
1487 | if (MRI->getType(Reg: MI->getOperand(i: I).getReg()) != SrcTy) |
1488 | report(msg: "G_MERGE_VALUES source types do not match" , MI); |
1489 | } |
1490 | |
1491 | break; |
1492 | } |
1493 | case TargetOpcode::G_UNMERGE_VALUES: { |
1494 | unsigned NumDsts = MI->getNumOperands() - 1; |
1495 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1496 | for (unsigned i = 1; i < NumDsts; ++i) { |
1497 | if (MRI->getType(Reg: MI->getOperand(i).getReg()) != DstTy) { |
1498 | report(msg: "G_UNMERGE_VALUES destination types do not match" , MI); |
1499 | break; |
1500 | } |
1501 | } |
1502 | |
1503 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: NumDsts).getReg()); |
1504 | if (DstTy.isVector()) { |
1505 | // This case is the converse of G_CONCAT_VECTORS. |
1506 | if (!SrcTy.isVector() || |
1507 | (SrcTy.getScalarType() != DstTy.getScalarType() && |
1508 | !SrcTy.isPointerVector()) || |
1509 | SrcTy.isScalableVector() != DstTy.isScalableVector() || |
1510 | SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) |
1511 | report(msg: "G_UNMERGE_VALUES source operand does not match vector " |
1512 | "destination operands" , |
1513 | MI); |
1514 | } else if (SrcTy.isVector()) { |
1515 | // This case is the converse of G_BUILD_VECTOR, but relaxed to allow |
1516 | // mismatched types as long as the total size matches: |
1517 | // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>) |
1518 | if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) |
1519 | report(msg: "G_UNMERGE_VALUES vector source operand does not match scalar " |
1520 | "destination operands" , |
1521 | MI); |
1522 | } else { |
1523 | // This case is the converse of G_MERGE_VALUES. |
1524 | if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) { |
1525 | report(msg: "G_UNMERGE_VALUES scalar source operand does not match scalar " |
1526 | "destination operands" , |
1527 | MI); |
1528 | } |
1529 | } |
1530 | break; |
1531 | } |
1532 | case TargetOpcode::G_BUILD_VECTOR: { |
1533 | // Source types must be scalars, dest type a vector. Total size of scalars |
1534 | // must match the dest vector size. |
1535 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1536 | LLT SrcEltTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1537 | if (!DstTy.isVector() || SrcEltTy.isVector()) { |
1538 | report(msg: "G_BUILD_VECTOR must produce a vector from scalar operands" , MI); |
1539 | break; |
1540 | } |
1541 | |
1542 | if (DstTy.getElementType() != SrcEltTy) |
1543 | report(msg: "G_BUILD_VECTOR result element type must match source type" , MI); |
1544 | |
1545 | if (DstTy.getNumElements() != MI->getNumOperands() - 1) |
1546 | report(msg: "G_BUILD_VECTOR must have an operand for each elemement" , MI); |
1547 | |
1548 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands(), N: 2)) |
1549 | if (MRI->getType(Reg: MI->getOperand(i: 1).getReg()) != MRI->getType(Reg: MO.getReg())) |
1550 | report(msg: "G_BUILD_VECTOR source operand types are not homogeneous" , MI); |
1551 | |
1552 | break; |
1553 | } |
1554 | case TargetOpcode::G_BUILD_VECTOR_TRUNC: { |
1555 | // Source types must be scalars, dest type a vector. Scalar types must be |
1556 | // larger than the dest vector elt type, as this is a truncating operation. |
1557 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1558 | LLT SrcEltTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1559 | if (!DstTy.isVector() || SrcEltTy.isVector()) |
1560 | report(msg: "G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands" , |
1561 | MI); |
1562 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands(), N: 2)) |
1563 | if (MRI->getType(Reg: MI->getOperand(i: 1).getReg()) != MRI->getType(Reg: MO.getReg())) |
1564 | report(msg: "G_BUILD_VECTOR_TRUNC source operand types are not homogeneous" , |
1565 | MI); |
1566 | if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) |
1567 | report(msg: "G_BUILD_VECTOR_TRUNC source operand types are not larger than " |
1568 | "dest elt type" , |
1569 | MI); |
1570 | break; |
1571 | } |
1572 | case TargetOpcode::G_CONCAT_VECTORS: { |
1573 | // Source types should be vectors, and total size should match the dest |
1574 | // vector size. |
1575 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1576 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1577 | if (!DstTy.isVector() || !SrcTy.isVector()) |
1578 | report(msg: "G_CONCAT_VECTOR requires vector source and destination operands" , |
1579 | MI); |
1580 | |
1581 | if (MI->getNumOperands() < 3) |
1582 | report(msg: "G_CONCAT_VECTOR requires at least 2 source operands" , MI); |
1583 | |
1584 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands(), N: 2)) |
1585 | if (MRI->getType(Reg: MI->getOperand(i: 1).getReg()) != MRI->getType(Reg: MO.getReg())) |
1586 | report(msg: "G_CONCAT_VECTOR source operand types are not homogeneous" , MI); |
1587 | if (DstTy.getElementCount() != |
1588 | SrcTy.getElementCount() * (MI->getNumOperands() - 1)) |
1589 | report(msg: "G_CONCAT_VECTOR num dest and source elements should match" , MI); |
1590 | break; |
1591 | } |
1592 | case TargetOpcode::G_ICMP: |
1593 | case TargetOpcode::G_FCMP: { |
1594 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1595 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
1596 | |
1597 | if ((DstTy.isVector() != SrcTy.isVector()) || |
1598 | (DstTy.isVector() && |
1599 | DstTy.getElementCount() != SrcTy.getElementCount())) |
1600 | report(msg: "Generic vector icmp/fcmp must preserve number of lanes" , MI); |
1601 | |
1602 | break; |
1603 | } |
1604 | case TargetOpcode::G_SCMP: |
1605 | case TargetOpcode::G_UCMP: { |
1606 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1607 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1608 | |
1609 | if (SrcTy.isPointerOrPointerVector()) { |
1610 | report(msg: "Generic scmp/ucmp does not support pointers as operands" , MI); |
1611 | break; |
1612 | } |
1613 | |
1614 | if (DstTy.isPointerOrPointerVector()) { |
1615 | report(msg: "Generic scmp/ucmp does not support pointers as a result" , MI); |
1616 | break; |
1617 | } |
1618 | |
1619 | if (DstTy.getScalarSizeInBits() < 2) { |
1620 | report(msg: "Result type must be at least 2 bits wide" , MI); |
1621 | break; |
1622 | } |
1623 | |
1624 | if ((DstTy.isVector() != SrcTy.isVector()) || |
1625 | (DstTy.isVector() && |
1626 | DstTy.getElementCount() != SrcTy.getElementCount())) { |
1627 | report(msg: "Generic vector scmp/ucmp must preserve number of lanes" , MI); |
1628 | break; |
1629 | } |
1630 | |
1631 | break; |
1632 | } |
1633 | case TargetOpcode::G_EXTRACT: { |
1634 | const MachineOperand &SrcOp = MI->getOperand(i: 1); |
1635 | if (!SrcOp.isReg()) { |
1636 | report(msg: "extract source must be a register" , MI); |
1637 | break; |
1638 | } |
1639 | |
1640 | const MachineOperand &OffsetOp = MI->getOperand(i: 2); |
1641 | if (!OffsetOp.isImm()) { |
1642 | report(msg: "extract offset must be a constant" , MI); |
1643 | break; |
1644 | } |
1645 | |
1646 | unsigned DstSize = MRI->getType(Reg: MI->getOperand(i: 0).getReg()).getSizeInBits(); |
1647 | unsigned SrcSize = MRI->getType(Reg: SrcOp.getReg()).getSizeInBits(); |
1648 | if (SrcSize == DstSize) |
1649 | report(msg: "extract source must be larger than result" , MI); |
1650 | |
1651 | if (DstSize + OffsetOp.getImm() > SrcSize) |
1652 | report(msg: "extract reads past end of register" , MI); |
1653 | break; |
1654 | } |
1655 | case TargetOpcode::G_INSERT: { |
1656 | const MachineOperand &SrcOp = MI->getOperand(i: 2); |
1657 | if (!SrcOp.isReg()) { |
1658 | report(msg: "insert source must be a register" , MI); |
1659 | break; |
1660 | } |
1661 | |
1662 | const MachineOperand &OffsetOp = MI->getOperand(i: 3); |
1663 | if (!OffsetOp.isImm()) { |
1664 | report(msg: "insert offset must be a constant" , MI); |
1665 | break; |
1666 | } |
1667 | |
1668 | unsigned DstSize = MRI->getType(Reg: MI->getOperand(i: 0).getReg()).getSizeInBits(); |
1669 | unsigned SrcSize = MRI->getType(Reg: SrcOp.getReg()).getSizeInBits(); |
1670 | |
1671 | if (DstSize <= SrcSize) |
1672 | report(msg: "inserted size must be smaller than total register" , MI); |
1673 | |
1674 | if (SrcSize + OffsetOp.getImm() > DstSize) |
1675 | report(msg: "insert writes past end of register" , MI); |
1676 | |
1677 | break; |
1678 | } |
1679 | case TargetOpcode::G_JUMP_TABLE: { |
1680 | if (!MI->getOperand(i: 1).isJTI()) |
1681 | report(msg: "G_JUMP_TABLE source operand must be a jump table index" , MI); |
1682 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1683 | if (!DstTy.isPointer()) |
1684 | report(msg: "G_JUMP_TABLE dest operand must have a pointer type" , MI); |
1685 | break; |
1686 | } |
1687 | case TargetOpcode::G_BRJT: { |
1688 | if (!MRI->getType(Reg: MI->getOperand(i: 0).getReg()).isPointer()) |
1689 | report(msg: "G_BRJT src operand 0 must be a pointer type" , MI); |
1690 | |
1691 | if (!MI->getOperand(i: 1).isJTI()) |
1692 | report(msg: "G_BRJT src operand 1 must be a jump table index" , MI); |
1693 | |
1694 | const auto &IdxOp = MI->getOperand(i: 2); |
1695 | if (!IdxOp.isReg() || MRI->getType(Reg: IdxOp.getReg()).isPointer()) |
1696 | report(msg: "G_BRJT src operand 2 must be a scalar reg type" , MI); |
1697 | break; |
1698 | } |
1699 | case TargetOpcode::G_INTRINSIC: |
1700 | case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: |
1701 | case TargetOpcode::G_INTRINSIC_CONVERGENT: |
1702 | case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: { |
1703 | // TODO: Should verify number of def and use operands, but the current |
1704 | // interface requires passing in IR types for mangling. |
1705 | const MachineOperand &IntrIDOp = MI->getOperand(i: MI->getNumExplicitDefs()); |
1706 | if (!IntrIDOp.isIntrinsicID()) { |
1707 | report(msg: "G_INTRINSIC first src operand must be an intrinsic ID" , MI); |
1708 | break; |
1709 | } |
1710 | |
1711 | if (!verifyGIntrinsicSideEffects(MI)) |
1712 | break; |
1713 | if (!verifyGIntrinsicConvergence(MI)) |
1714 | break; |
1715 | |
1716 | break; |
1717 | } |
1718 | case TargetOpcode::G_SEXT_INREG: { |
1719 | if (!MI->getOperand(i: 2).isImm()) { |
1720 | report(msg: "G_SEXT_INREG expects an immediate operand #2" , MI); |
1721 | break; |
1722 | } |
1723 | |
1724 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1725 | int64_t Imm = MI->getOperand(i: 2).getImm(); |
1726 | if (Imm <= 0) |
1727 | report(msg: "G_SEXT_INREG size must be >= 1" , MI); |
1728 | if (Imm >= SrcTy.getScalarSizeInBits()) |
1729 | report(msg: "G_SEXT_INREG size must be less than source bit width" , MI); |
1730 | break; |
1731 | } |
1732 | case TargetOpcode::G_BSWAP: { |
1733 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1734 | if (DstTy.getScalarSizeInBits() % 16 != 0) |
1735 | report(msg: "G_BSWAP size must be a multiple of 16 bits" , MI); |
1736 | break; |
1737 | } |
1738 | case TargetOpcode::G_VSCALE: { |
1739 | if (!MI->getOperand(i: 1).isCImm()) { |
1740 | report(msg: "G_VSCALE operand must be cimm" , MI); |
1741 | break; |
1742 | } |
1743 | if (MI->getOperand(i: 1).getCImm()->isZero()) { |
1744 | report(msg: "G_VSCALE immediate cannot be zero" , MI); |
1745 | break; |
1746 | } |
1747 | break; |
1748 | } |
1749 | case TargetOpcode::G_STEP_VECTOR: { |
1750 | if (!MI->getOperand(i: 1).isCImm()) { |
1751 | report(msg: "operand must be cimm" , MI); |
1752 | break; |
1753 | } |
1754 | |
1755 | if (!MI->getOperand(i: 1).getCImm()->getValue().isStrictlyPositive()) { |
1756 | report(msg: "step must be > 0" , MI); |
1757 | break; |
1758 | } |
1759 | |
1760 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1761 | if (!DstTy.isScalableVector()) { |
1762 | report(msg: "Destination type must be a scalable vector" , MI); |
1763 | break; |
1764 | } |
1765 | |
1766 | // <vscale x 2 x p0> |
1767 | if (!DstTy.getElementType().isScalar()) { |
1768 | report(msg: "Destination element type must be scalar" , MI); |
1769 | break; |
1770 | } |
1771 | |
1772 | if (MI->getOperand(i: 1).getCImm()->getBitWidth() != |
1773 | DstTy.getElementType().getScalarSizeInBits()) { |
1774 | report(msg: "step bitwidth differs from result type element bitwidth" , MI); |
1775 | break; |
1776 | } |
1777 | break; |
1778 | } |
1779 | case TargetOpcode::G_INSERT_SUBVECTOR: { |
1780 | const MachineOperand &Src0Op = MI->getOperand(i: 1); |
1781 | if (!Src0Op.isReg()) { |
1782 | report(msg: "G_INSERT_SUBVECTOR first source must be a register" , MI); |
1783 | break; |
1784 | } |
1785 | |
1786 | const MachineOperand &Src1Op = MI->getOperand(i: 2); |
1787 | if (!Src1Op.isReg()) { |
1788 | report(msg: "G_INSERT_SUBVECTOR second source must be a register" , MI); |
1789 | break; |
1790 | } |
1791 | |
1792 | const MachineOperand &IndexOp = MI->getOperand(i: 3); |
1793 | if (!IndexOp.isImm()) { |
1794 | report(msg: "G_INSERT_SUBVECTOR index must be an immediate" , MI); |
1795 | break; |
1796 | } |
1797 | |
1798 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1799 | LLT Src1Ty = MRI->getType(Reg: Src1Op.getReg()); |
1800 | |
1801 | if (!DstTy.isVector()) { |
1802 | report(msg: "Destination type must be a vector" , MI); |
1803 | break; |
1804 | } |
1805 | |
1806 | if (!Src1Ty.isVector()) { |
1807 | report(msg: "Second source must be a vector" , MI); |
1808 | break; |
1809 | } |
1810 | |
1811 | if (DstTy.getElementType() != Src1Ty.getElementType()) { |
1812 | report(msg: "Element type of vectors must be the same" , MI); |
1813 | break; |
1814 | } |
1815 | |
1816 | if (Src1Ty.isScalable() != DstTy.isScalable()) { |
1817 | report(msg: "Vector types must both be fixed or both be scalable" , MI); |
1818 | break; |
1819 | } |
1820 | |
1821 | if (ElementCount::isKnownGT(LHS: Src1Ty.getElementCount(), |
1822 | RHS: DstTy.getElementCount())) { |
1823 | report(msg: "Second source must be smaller than destination vector" , MI); |
1824 | break; |
1825 | } |
1826 | |
1827 | uint64_t Idx = IndexOp.getImm(); |
1828 | uint64_t Src1MinLen = Src1Ty.getElementCount().getKnownMinValue(); |
1829 | if (IndexOp.getImm() % Src1MinLen != 0) { |
1830 | report(msg: "Index must be a multiple of the second source vector's " |
1831 | "minimum vector length" , |
1832 | MI); |
1833 | break; |
1834 | } |
1835 | |
1836 | uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue(); |
1837 | if (Idx >= DstMinLen || Idx + Src1MinLen > DstMinLen) { |
1838 | report(msg: "Subvector type and index must not cause insert to overrun the " |
1839 | "vector being inserted into" , |
1840 | MI); |
1841 | break; |
1842 | } |
1843 | |
1844 | break; |
1845 | } |
1846 | case TargetOpcode::G_EXTRACT_SUBVECTOR: { |
1847 | const MachineOperand &SrcOp = MI->getOperand(i: 1); |
1848 | if (!SrcOp.isReg()) { |
1849 | report(msg: "G_EXTRACT_SUBVECTOR first source must be a register" , MI); |
1850 | break; |
1851 | } |
1852 | |
1853 | const MachineOperand &IndexOp = MI->getOperand(i: 2); |
1854 | if (!IndexOp.isImm()) { |
1855 | report(msg: "G_EXTRACT_SUBVECTOR index must be an immediate" , MI); |
1856 | break; |
1857 | } |
1858 | |
1859 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1860 | LLT SrcTy = MRI->getType(Reg: SrcOp.getReg()); |
1861 | |
1862 | if (!DstTy.isVector()) { |
1863 | report(msg: "Destination type must be a vector" , MI); |
1864 | break; |
1865 | } |
1866 | |
1867 | if (!SrcTy.isVector()) { |
1868 | report(msg: "Source must be a vector" , MI); |
1869 | break; |
1870 | } |
1871 | |
1872 | if (DstTy.getElementType() != SrcTy.getElementType()) { |
1873 | report(msg: "Element type of vectors must be the same" , MI); |
1874 | break; |
1875 | } |
1876 | |
1877 | if (SrcTy.isScalable() != DstTy.isScalable()) { |
1878 | report(msg: "Vector types must both be fixed or both be scalable" , MI); |
1879 | break; |
1880 | } |
1881 | |
1882 | if (ElementCount::isKnownGT(LHS: DstTy.getElementCount(), |
1883 | RHS: SrcTy.getElementCount())) { |
1884 | report(msg: "Destination vector must be smaller than source vector" , MI); |
1885 | break; |
1886 | } |
1887 | |
1888 | uint64_t Idx = IndexOp.getImm(); |
1889 | uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue(); |
1890 | if (Idx % DstMinLen != 0) { |
1891 | report(msg: "Index must be a multiple of the destination vector's minimum " |
1892 | "vector length" , |
1893 | MI); |
1894 | break; |
1895 | } |
1896 | |
1897 | uint64_t SrcMinLen = SrcTy.getElementCount().getKnownMinValue(); |
1898 | if (Idx >= SrcMinLen || Idx + DstMinLen > SrcMinLen) { |
1899 | report(msg: "Destination type and index must not cause extract to overrun the " |
1900 | "source vector" , |
1901 | MI); |
1902 | break; |
1903 | } |
1904 | |
1905 | break; |
1906 | } |
1907 | case TargetOpcode::G_SHUFFLE_VECTOR: { |
1908 | const MachineOperand &MaskOp = MI->getOperand(i: 3); |
1909 | if (!MaskOp.isShuffleMask()) { |
1910 | report(msg: "Incorrect mask operand type for G_SHUFFLE_VECTOR" , MI); |
1911 | break; |
1912 | } |
1913 | |
1914 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1915 | LLT Src0Ty = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1916 | LLT Src1Ty = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
1917 | |
1918 | if (Src0Ty != Src1Ty) |
1919 | report(msg: "Source operands must be the same type" , MI); |
1920 | |
1921 | if (Src0Ty.getScalarType() != DstTy.getScalarType()) |
1922 | report(msg: "G_SHUFFLE_VECTOR cannot change element type" , MI); |
1923 | |
1924 | // Don't check that all operands are vector because scalars are used in |
1925 | // place of 1 element vectors. |
1926 | int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; |
1927 | int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; |
1928 | |
1929 | ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); |
1930 | |
1931 | if (static_cast<int>(MaskIdxes.size()) != DstNumElts) |
1932 | report(msg: "Wrong result type for shufflemask" , MI); |
1933 | |
1934 | for (int Idx : MaskIdxes) { |
1935 | if (Idx < 0) |
1936 | continue; |
1937 | |
1938 | if (Idx >= 2 * SrcNumElts) |
1939 | report(msg: "Out of bounds shuffle index" , MI); |
1940 | } |
1941 | |
1942 | break; |
1943 | } |
1944 | |
1945 | case TargetOpcode::G_SPLAT_VECTOR: { |
1946 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1947 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1948 | |
1949 | if (!DstTy.isScalableVector()) { |
1950 | report(msg: "Destination type must be a scalable vector" , MI); |
1951 | break; |
1952 | } |
1953 | |
1954 | if (!SrcTy.isScalar() && !SrcTy.isPointer()) { |
1955 | report(msg: "Source type must be a scalar or pointer" , MI); |
1956 | break; |
1957 | } |
1958 | |
1959 | if (TypeSize::isKnownGT(LHS: DstTy.getElementType().getSizeInBits(), |
1960 | RHS: SrcTy.getSizeInBits())) { |
1961 | report(msg: "Element type of the destination must be the same size or smaller " |
1962 | "than the source type" , |
1963 | MI); |
1964 | break; |
1965 | } |
1966 | |
1967 | break; |
1968 | } |
1969 | case TargetOpcode::G_EXTRACT_VECTOR_ELT: { |
1970 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1971 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1972 | LLT IdxTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
1973 | |
1974 | if (!DstTy.isScalar() && !DstTy.isPointer()) { |
1975 | report(msg: "Destination type must be a scalar or pointer" , MI); |
1976 | break; |
1977 | } |
1978 | |
1979 | if (!SrcTy.isVector()) { |
1980 | report(msg: "First source must be a vector" , MI); |
1981 | break; |
1982 | } |
1983 | |
1984 | auto TLI = MF->getSubtarget().getTargetLowering(); |
1985 | if (IdxTy.getSizeInBits() != TLI->getVectorIdxWidth(DL: MF->getDataLayout())) { |
1986 | report(msg: "Index type must match VectorIdxTy" , MI); |
1987 | break; |
1988 | } |
1989 | |
1990 | break; |
1991 | } |
1992 | case TargetOpcode::G_INSERT_VECTOR_ELT: { |
1993 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1994 | LLT VecTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1995 | LLT ScaTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
1996 | LLT IdxTy = MRI->getType(Reg: MI->getOperand(i: 3).getReg()); |
1997 | |
1998 | if (!DstTy.isVector()) { |
1999 | report(msg: "Destination type must be a vector" , MI); |
2000 | break; |
2001 | } |
2002 | |
2003 | if (VecTy != DstTy) { |
2004 | report(msg: "Destination type and vector type must match" , MI); |
2005 | break; |
2006 | } |
2007 | |
2008 | if (!ScaTy.isScalar() && !ScaTy.isPointer()) { |
2009 | report(msg: "Inserted element must be a scalar or pointer" , MI); |
2010 | break; |
2011 | } |
2012 | |
2013 | auto TLI = MF->getSubtarget().getTargetLowering(); |
2014 | if (IdxTy.getSizeInBits() != TLI->getVectorIdxWidth(DL: MF->getDataLayout())) { |
2015 | report(msg: "Index type must match VectorIdxTy" , MI); |
2016 | break; |
2017 | } |
2018 | |
2019 | break; |
2020 | } |
2021 | case TargetOpcode::G_DYN_STACKALLOC: { |
2022 | const MachineOperand &DstOp = MI->getOperand(i: 0); |
2023 | const MachineOperand &AllocOp = MI->getOperand(i: 1); |
2024 | const MachineOperand &AlignOp = MI->getOperand(i: 2); |
2025 | |
2026 | if (!DstOp.isReg() || !MRI->getType(Reg: DstOp.getReg()).isPointer()) { |
2027 | report(msg: "dst operand 0 must be a pointer type" , MI); |
2028 | break; |
2029 | } |
2030 | |
2031 | if (!AllocOp.isReg() || !MRI->getType(Reg: AllocOp.getReg()).isScalar()) { |
2032 | report(msg: "src operand 1 must be a scalar reg type" , MI); |
2033 | break; |
2034 | } |
2035 | |
2036 | if (!AlignOp.isImm()) { |
2037 | report(msg: "src operand 2 must be an immediate type" , MI); |
2038 | break; |
2039 | } |
2040 | break; |
2041 | } |
2042 | case TargetOpcode::G_MEMCPY_INLINE: |
2043 | case TargetOpcode::G_MEMCPY: |
2044 | case TargetOpcode::G_MEMMOVE: { |
2045 | ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); |
2046 | if (MMOs.size() != 2) { |
2047 | report(msg: "memcpy/memmove must have 2 memory operands" , MI); |
2048 | break; |
2049 | } |
2050 | |
2051 | if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || |
2052 | (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { |
2053 | report(msg: "wrong memory operand types" , MI); |
2054 | break; |
2055 | } |
2056 | |
2057 | if (MMOs[0]->getSize() != MMOs[1]->getSize()) |
2058 | report(msg: "inconsistent memory operand sizes" , MI); |
2059 | |
2060 | LLT DstPtrTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
2061 | LLT SrcPtrTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
2062 | |
2063 | if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { |
2064 | report(msg: "memory instruction operand must be a pointer" , MI); |
2065 | break; |
2066 | } |
2067 | |
2068 | if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) |
2069 | report(msg: "inconsistent store address space" , MI); |
2070 | if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) |
2071 | report(msg: "inconsistent load address space" , MI); |
2072 | |
2073 | if (Opc != TargetOpcode::G_MEMCPY_INLINE) |
2074 | if (!MI->getOperand(i: 3).isImm() || (MI->getOperand(i: 3).getImm() & ~1LL)) |
2075 | report(msg: "'tail' flag (operand 3) must be an immediate 0 or 1" , MI); |
2076 | |
2077 | break; |
2078 | } |
2079 | case TargetOpcode::G_BZERO: |
2080 | case TargetOpcode::G_MEMSET: { |
2081 | ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); |
2082 | std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero" ; |
2083 | if (MMOs.size() != 1) { |
2084 | report(Msg: Twine(Name, " must have 1 memory operand" ), MI); |
2085 | break; |
2086 | } |
2087 | |
2088 | if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { |
2089 | report(Msg: Twine(Name, " memory operand must be a store" ), MI); |
2090 | break; |
2091 | } |
2092 | |
2093 | LLT DstPtrTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
2094 | if (!DstPtrTy.isPointer()) { |
2095 | report(Msg: Twine(Name, " operand must be a pointer" ), MI); |
2096 | break; |
2097 | } |
2098 | |
2099 | if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) |
2100 | report(Msg: "inconsistent " + Twine(Name, " address space" ), MI); |
2101 | |
2102 | if (!MI->getOperand(i: MI->getNumOperands() - 1).isImm() || |
2103 | (MI->getOperand(i: MI->getNumOperands() - 1).getImm() & ~1LL)) |
2104 | report(msg: "'tail' flag (last operand) must be an immediate 0 or 1" , MI); |
2105 | |
2106 | break; |
2107 | } |
2108 | case TargetOpcode::G_UBSANTRAP: { |
2109 | const MachineOperand &KindOp = MI->getOperand(i: 0); |
2110 | if (!MI->getOperand(i: 0).isImm()) { |
2111 | report(msg: "Crash kind must be an immediate" , MO: &KindOp, MONum: 0); |
2112 | break; |
2113 | } |
2114 | int64_t Kind = MI->getOperand(i: 0).getImm(); |
2115 | if (!isInt<8>(x: Kind)) |
2116 | report(msg: "Crash kind must be 8 bit wide" , MO: &KindOp, MONum: 0); |
2117 | break; |
2118 | } |
2119 | case TargetOpcode::G_VECREDUCE_SEQ_FADD: |
2120 | case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { |
2121 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
2122 | LLT Src1Ty = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
2123 | LLT Src2Ty = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
2124 | if (!DstTy.isScalar()) |
2125 | report(msg: "Vector reduction requires a scalar destination type" , MI); |
2126 | if (!Src1Ty.isScalar()) |
2127 | report(msg: "Sequential FADD/FMUL vector reduction requires a scalar 1st operand" , MI); |
2128 | if (!Src2Ty.isVector()) |
2129 | report(msg: "Sequential FADD/FMUL vector reduction must have a vector 2nd operand" , MI); |
2130 | break; |
2131 | } |
2132 | case TargetOpcode::G_VECREDUCE_FADD: |
2133 | case TargetOpcode::G_VECREDUCE_FMUL: |
2134 | case TargetOpcode::G_VECREDUCE_FMAX: |
2135 | case TargetOpcode::G_VECREDUCE_FMIN: |
2136 | case TargetOpcode::G_VECREDUCE_FMAXIMUM: |
2137 | case TargetOpcode::G_VECREDUCE_FMINIMUM: |
2138 | case TargetOpcode::G_VECREDUCE_ADD: |
2139 | case TargetOpcode::G_VECREDUCE_MUL: |
2140 | case TargetOpcode::G_VECREDUCE_AND: |
2141 | case TargetOpcode::G_VECREDUCE_OR: |
2142 | case TargetOpcode::G_VECREDUCE_XOR: |
2143 | case TargetOpcode::G_VECREDUCE_SMAX: |
2144 | case TargetOpcode::G_VECREDUCE_SMIN: |
2145 | case TargetOpcode::G_VECREDUCE_UMAX: |
2146 | case TargetOpcode::G_VECREDUCE_UMIN: { |
2147 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
2148 | if (!DstTy.isScalar()) |
2149 | report(msg: "Vector reduction requires a scalar destination type" , MI); |
2150 | break; |
2151 | } |
2152 | |
2153 | case TargetOpcode::G_SBFX: |
2154 | case TargetOpcode::G_UBFX: { |
2155 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
2156 | if (DstTy.isVector()) { |
2157 | report(msg: "Bitfield extraction is not supported on vectors" , MI); |
2158 | break; |
2159 | } |
2160 | break; |
2161 | } |
2162 | case TargetOpcode::G_SHL: |
2163 | case TargetOpcode::G_LSHR: |
2164 | case TargetOpcode::G_ASHR: |
2165 | case TargetOpcode::G_ROTR: |
2166 | case TargetOpcode::G_ROTL: { |
2167 | LLT Src1Ty = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
2168 | LLT Src2Ty = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
2169 | if (Src1Ty.isVector() != Src2Ty.isVector()) { |
2170 | report(msg: "Shifts and rotates require operands to be either all scalars or " |
2171 | "all vectors" , |
2172 | MI); |
2173 | break; |
2174 | } |
2175 | break; |
2176 | } |
2177 | case TargetOpcode::G_LLROUND: |
2178 | case TargetOpcode::G_LROUND: { |
2179 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
2180 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
2181 | if (!DstTy.isValid() || !SrcTy.isValid()) |
2182 | break; |
2183 | if (SrcTy.isPointer() || DstTy.isPointer()) { |
2184 | StringRef Op = SrcTy.isPointer() ? "Source" : "Destination" ; |
2185 | report(Msg: Twine(Op, " operand must not be a pointer type" ), MI); |
2186 | } else if (SrcTy.isScalar()) { |
2187 | verifyAllRegOpsScalar(MI: *MI, MRI: *MRI); |
2188 | break; |
2189 | } else if (SrcTy.isVector()) { |
2190 | verifyVectorElementMatch(Ty0: SrcTy, Ty1: DstTy, MI); |
2191 | break; |
2192 | } |
2193 | break; |
2194 | } |
2195 | case TargetOpcode::G_IS_FPCLASS: { |
2196 | LLT DestTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
2197 | LLT DestEltTy = DestTy.getScalarType(); |
2198 | if (!DestEltTy.isScalar()) { |
2199 | report(msg: "Destination must be a scalar or vector of scalars" , MI); |
2200 | break; |
2201 | } |
2202 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
2203 | LLT SrcEltTy = SrcTy.getScalarType(); |
2204 | if (!SrcEltTy.isScalar()) { |
2205 | report(msg: "Source must be a scalar or vector of scalars" , MI); |
2206 | break; |
2207 | } |
2208 | if (!verifyVectorElementMatch(Ty0: DestTy, Ty1: SrcTy, MI)) |
2209 | break; |
2210 | const MachineOperand &TestMO = MI->getOperand(i: 2); |
2211 | if (!TestMO.isImm()) { |
2212 | report(msg: "floating-point class set (operand 2) must be an immediate" , MI); |
2213 | break; |
2214 | } |
2215 | int64_t Test = TestMO.getImm(); |
2216 | if (Test < 0 || Test > fcAllFlags) { |
2217 | report(msg: "Incorrect floating-point class set (operand 2)" , MI); |
2218 | break; |
2219 | } |
2220 | break; |
2221 | } |
2222 | case TargetOpcode::G_PREFETCH: { |
2223 | const MachineOperand &AddrOp = MI->getOperand(i: 0); |
2224 | if (!AddrOp.isReg() || !MRI->getType(Reg: AddrOp.getReg()).isPointer()) { |
2225 | report(msg: "addr operand must be a pointer" , MO: &AddrOp, MONum: 0); |
2226 | break; |
2227 | } |
2228 | const MachineOperand &RWOp = MI->getOperand(i: 1); |
2229 | if (!RWOp.isImm() || (uint64_t)RWOp.getImm() >= 2) { |
2230 | report(msg: "rw operand must be an immediate 0-1" , MO: &RWOp, MONum: 1); |
2231 | break; |
2232 | } |
2233 | const MachineOperand &LocalityOp = MI->getOperand(i: 2); |
2234 | if (!LocalityOp.isImm() || (uint64_t)LocalityOp.getImm() >= 4) { |
2235 | report(msg: "locality operand must be an immediate 0-3" , MO: &LocalityOp, MONum: 2); |
2236 | break; |
2237 | } |
2238 | const MachineOperand &CacheTypeOp = MI->getOperand(i: 3); |
2239 | if (!CacheTypeOp.isImm() || (uint64_t)CacheTypeOp.getImm() >= 2) { |
2240 | report(msg: "cache type operand must be an immediate 0-1" , MO: &CacheTypeOp, MONum: 3); |
2241 | break; |
2242 | } |
2243 | break; |
2244 | } |
2245 | case TargetOpcode::G_ASSERT_ALIGN: { |
2246 | if (MI->getOperand(i: 2).getImm() < 1) |
2247 | report(msg: "alignment immediate must be >= 1" , MI); |
2248 | break; |
2249 | } |
2250 | case TargetOpcode::G_CONSTANT_POOL: { |
2251 | if (!MI->getOperand(i: 1).isCPI()) |
2252 | report(msg: "Src operand 1 must be a constant pool index" , MI); |
2253 | if (!MRI->getType(Reg: MI->getOperand(i: 0).getReg()).isPointer()) |
2254 | report(msg: "Dst operand 0 must be a pointer" , MI); |
2255 | break; |
2256 | } |
2257 | case TargetOpcode::G_PTRAUTH_GLOBAL_VALUE: { |
2258 | const MachineOperand &AddrOp = MI->getOperand(i: 1); |
2259 | if (!AddrOp.isReg() || !MRI->getType(Reg: AddrOp.getReg()).isPointer()) |
2260 | report(msg: "addr operand must be a pointer" , MO: &AddrOp, MONum: 1); |
2261 | break; |
2262 | } |
2263 | default: |
2264 | break; |
2265 | } |
2266 | } |
2267 | |
2268 | void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { |
2269 | const MCInstrDesc &MCID = MI->getDesc(); |
2270 | if (MI->getNumOperands() < MCID.getNumOperands()) { |
2271 | report(msg: "Too few operands" , MI); |
2272 | OS << MCID.getNumOperands() << " operands expected, but " |
2273 | << MI->getNumOperands() << " given.\n" ; |
2274 | } |
2275 | |
2276 | if (MI->getFlag(Flag: MachineInstr::NoConvergent) && !MCID.isConvergent()) |
2277 | report(msg: "NoConvergent flag expected only on convergent instructions." , MI); |
2278 | |
2279 | if (MI->isPHI()) { |
2280 | if (MF->getProperties().hasNoPHIs()) |
2281 | report(msg: "Found PHI instruction with NoPHIs property set" , MI); |
2282 | |
2283 | if (FirstNonPHI) |
2284 | report(msg: "Found PHI instruction after non-PHI" , MI); |
2285 | } else if (FirstNonPHI == nullptr) |
2286 | FirstNonPHI = MI; |
2287 | |
2288 | // Check the tied operands. |
2289 | if (MI->isInlineAsm()) |
2290 | verifyInlineAsm(MI); |
2291 | |
2292 | // Check that unspillable terminators define a reg and have at most one use. |
2293 | if (TII->isUnspillableTerminator(MI)) { |
2294 | if (!MI->getOperand(i: 0).isReg() || !MI->getOperand(i: 0).isDef()) |
2295 | report(msg: "Unspillable Terminator does not define a reg" , MI); |
2296 | Register Def = MI->getOperand(i: 0).getReg(); |
2297 | if (Def.isVirtual() && !MF->getProperties().hasNoPHIs() && |
2298 | std::distance(first: MRI->use_nodbg_begin(RegNo: Def), last: MRI->use_nodbg_end()) > 1) |
2299 | report(msg: "Unspillable Terminator expected to have at most one use!" , MI); |
2300 | } |
2301 | |
2302 | // A fully-formed DBG_VALUE must have a location. Ignore partially formed |
2303 | // DBG_VALUEs: these are convenient to use in tests, but should never get |
2304 | // generated. |
2305 | if (MI->isDebugValue() && MI->getNumOperands() == 4) |
2306 | if (!MI->getDebugLoc()) |
2307 | report(msg: "Missing DebugLoc for debug instruction" , MI); |
2308 | |
2309 | // Meta instructions should never be the subject of debug value tracking, |
2310 | // they don't create a value in the output program at all. |
2311 | if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) |
2312 | report(msg: "Metadata instruction should not have a value tracking number" , MI); |
2313 | |
2314 | // Check the MachineMemOperands for basic consistency. |
2315 | for (MachineMemOperand *Op : MI->memoperands()) { |
2316 | if (Op->isLoad() && !MI->mayLoad()) |
2317 | report(msg: "Missing mayLoad flag" , MI); |
2318 | if (Op->isStore() && !MI->mayStore()) |
2319 | report(msg: "Missing mayStore flag" , MI); |
2320 | } |
2321 | |
2322 | // Debug values must not have a slot index. |
2323 | // Other instructions must have one, unless they are inside a bundle. |
2324 | if (LiveInts) { |
2325 | bool mapped = !LiveInts->isNotInMIMap(Instr: *MI); |
2326 | if (MI->isDebugOrPseudoInstr()) { |
2327 | if (mapped) |
2328 | report(msg: "Debug instruction has a slot index" , MI); |
2329 | } else if (MI->isInsideBundle()) { |
2330 | if (mapped) |
2331 | report(msg: "Instruction inside bundle has a slot index" , MI); |
2332 | } else { |
2333 | if (!mapped) |
2334 | report(msg: "Missing slot index" , MI); |
2335 | } |
2336 | } |
2337 | |
2338 | unsigned Opc = MCID.getOpcode(); |
2339 | if (isPreISelGenericOpcode(Opcode: Opc) || isPreISelGenericOptimizationHint(Opcode: Opc)) { |
2340 | verifyPreISelGenericInstruction(MI); |
2341 | return; |
2342 | } |
2343 | |
2344 | StringRef ErrorInfo; |
2345 | if (!TII->verifyInstruction(MI: *MI, ErrInfo&: ErrorInfo)) |
2346 | report(msg: ErrorInfo.data(), MI); |
2347 | |
2348 | // Verify properties of various specific instruction types |
2349 | switch (MI->getOpcode()) { |
2350 | case TargetOpcode::COPY: { |
2351 | const MachineOperand &DstOp = MI->getOperand(i: 0); |
2352 | const MachineOperand &SrcOp = MI->getOperand(i: 1); |
2353 | const Register SrcReg = SrcOp.getReg(); |
2354 | const Register DstReg = DstOp.getReg(); |
2355 | |
2356 | LLT DstTy = MRI->getType(Reg: DstReg); |
2357 | LLT SrcTy = MRI->getType(Reg: SrcReg); |
2358 | if (SrcTy.isValid() && DstTy.isValid()) { |
2359 | // If both types are valid, check that the types are the same. |
2360 | if (SrcTy != DstTy) { |
2361 | report(msg: "Copy Instruction is illegal with mismatching types" , MI); |
2362 | OS << "Def = " << DstTy << ", Src = " << SrcTy << '\n'; |
2363 | } |
2364 | |
2365 | break; |
2366 | } |
2367 | |
2368 | if (!SrcTy.isValid() && !DstTy.isValid()) |
2369 | break; |
2370 | |
2371 | // If we have only one valid type, this is likely a copy between a virtual |
2372 | // and physical register. |
2373 | TypeSize SrcSize = TRI->getRegSizeInBits(Reg: SrcReg, MRI: *MRI); |
2374 | TypeSize DstSize = TRI->getRegSizeInBits(Reg: DstReg, MRI: *MRI); |
2375 | if (SrcReg.isPhysical() && DstTy.isValid()) { |
2376 | const TargetRegisterClass *SrcRC = |
2377 | TRI->getMinimalPhysRegClassLLT(Reg: SrcReg, Ty: DstTy); |
2378 | if (SrcRC) |
2379 | SrcSize = TRI->getRegSizeInBits(RC: *SrcRC); |
2380 | } |
2381 | |
2382 | if (DstReg.isPhysical() && SrcTy.isValid()) { |
2383 | const TargetRegisterClass *DstRC = |
2384 | TRI->getMinimalPhysRegClassLLT(Reg: DstReg, Ty: SrcTy); |
2385 | if (DstRC) |
2386 | DstSize = TRI->getRegSizeInBits(RC: *DstRC); |
2387 | } |
2388 | |
2389 | // The next two checks allow COPY between physical and virtual registers, |
2390 | // when the virtual register has a scalable size and the physical register |
2391 | // has a fixed size. These checks allow COPY between *potentialy* mismatched |
2392 | // sizes. However, once RegisterBankSelection occurs, MachineVerifier should |
2393 | // be able to resolve a fixed size for the scalable vector, and at that |
2394 | // point this function will know for sure whether the sizes are mismatched |
2395 | // and correctly report a size mismatch. |
2396 | if (SrcReg.isPhysical() && DstReg.isVirtual() && DstSize.isScalable() && |
2397 | !SrcSize.isScalable()) |
2398 | break; |
2399 | if (SrcReg.isVirtual() && DstReg.isPhysical() && SrcSize.isScalable() && |
2400 | !DstSize.isScalable()) |
2401 | break; |
2402 | |
2403 | if (SrcSize.isNonZero() && DstSize.isNonZero() && SrcSize != DstSize) { |
2404 | if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { |
2405 | report(msg: "Copy Instruction is illegal with mismatching sizes" , MI); |
2406 | OS << "Def Size = " << DstSize << ", Src Size = " << SrcSize << '\n'; |
2407 | } |
2408 | } |
2409 | break; |
2410 | } |
2411 | case TargetOpcode::STATEPOINT: { |
2412 | StatepointOpers SO(MI); |
2413 | if (!MI->getOperand(i: SO.getIDPos()).isImm() || |
2414 | !MI->getOperand(i: SO.getNBytesPos()).isImm() || |
2415 | !MI->getOperand(i: SO.getNCallArgsPos()).isImm()) { |
2416 | report(msg: "meta operands to STATEPOINT not constant!" , MI); |
2417 | break; |
2418 | } |
2419 | |
2420 | auto VerifyStackMapConstant = [&](unsigned Offset) { |
2421 | if (Offset >= MI->getNumOperands()) { |
2422 | report(msg: "stack map constant to STATEPOINT is out of range!" , MI); |
2423 | return; |
2424 | } |
2425 | if (!MI->getOperand(i: Offset - 1).isImm() || |
2426 | MI->getOperand(i: Offset - 1).getImm() != StackMaps::ConstantOp || |
2427 | !MI->getOperand(i: Offset).isImm()) |
2428 | report(msg: "stack map constant to STATEPOINT not well formed!" , MI); |
2429 | }; |
2430 | VerifyStackMapConstant(SO.getCCIdx()); |
2431 | VerifyStackMapConstant(SO.getFlagsIdx()); |
2432 | VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); |
2433 | VerifyStackMapConstant(SO.getNumGCPtrIdx()); |
2434 | VerifyStackMapConstant(SO.getNumAllocaIdx()); |
2435 | VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); |
2436 | |
2437 | // Verify that all explicit statepoint defs are tied to gc operands as |
2438 | // they are expected to be a relocation of gc operands. |
2439 | unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); |
2440 | unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; |
2441 | for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { |
2442 | unsigned UseOpIdx; |
2443 | if (!MI->isRegTiedToUseOperand(DefOpIdx: Idx, UseOpIdx: &UseOpIdx)) { |
2444 | report(msg: "STATEPOINT defs expected to be tied" , MI); |
2445 | break; |
2446 | } |
2447 | if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { |
2448 | report(msg: "STATEPOINT def tied to non-gc operand" , MI); |
2449 | break; |
2450 | } |
2451 | } |
2452 | |
2453 | // TODO: verify we have properly encoded deopt arguments |
2454 | } break; |
2455 | case TargetOpcode::INSERT_SUBREG: { |
2456 | unsigned InsertedSize; |
2457 | if (unsigned SubIdx = MI->getOperand(i: 2).getSubReg()) |
2458 | InsertedSize = TRI->getSubRegIdxSize(Idx: SubIdx); |
2459 | else |
2460 | InsertedSize = TRI->getRegSizeInBits(Reg: MI->getOperand(i: 2).getReg(), MRI: *MRI); |
2461 | unsigned SubRegSize = TRI->getSubRegIdxSize(Idx: MI->getOperand(i: 3).getImm()); |
2462 | if (SubRegSize < InsertedSize) { |
2463 | report(msg: "INSERT_SUBREG expected inserted value to have equal or lesser " |
2464 | "size than the subreg it was inserted into" , MI); |
2465 | break; |
2466 | } |
2467 | } break; |
2468 | case TargetOpcode::REG_SEQUENCE: { |
2469 | unsigned NumOps = MI->getNumOperands(); |
2470 | if (!(NumOps & 1)) { |
2471 | report(msg: "Invalid number of operands for REG_SEQUENCE" , MI); |
2472 | break; |
2473 | } |
2474 | |
2475 | for (unsigned I = 1; I != NumOps; I += 2) { |
2476 | const MachineOperand &RegOp = MI->getOperand(i: I); |
2477 | const MachineOperand &SubRegOp = MI->getOperand(i: I + 1); |
2478 | |
2479 | if (!RegOp.isReg()) |
2480 | report(msg: "Invalid register operand for REG_SEQUENCE" , MO: &RegOp, MONum: I); |
2481 | |
2482 | if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 || |
2483 | SubRegOp.getImm() >= TRI->getNumSubRegIndices()) { |
2484 | report(msg: "Invalid subregister index operand for REG_SEQUENCE" , |
2485 | MO: &SubRegOp, MONum: I + 1); |
2486 | } |
2487 | } |
2488 | |
2489 | Register DstReg = MI->getOperand(i: 0).getReg(); |
2490 | if (DstReg.isPhysical()) |
2491 | report(msg: "REG_SEQUENCE does not support physical register results" , MI); |
2492 | |
2493 | if (MI->getOperand(i: 0).getSubReg()) |
2494 | report(msg: "Invalid subreg result for REG_SEQUENCE" , MI); |
2495 | |
2496 | break; |
2497 | } |
2498 | } |
2499 | } |
2500 | |
2501 | void |
2502 | MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { |
2503 | const MachineInstr *MI = MO->getParent(); |
2504 | const MCInstrDesc &MCID = MI->getDesc(); |
2505 | unsigned NumDefs = MCID.getNumDefs(); |
2506 | if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) |
2507 | NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; |
2508 | |
2509 | // The first MCID.NumDefs operands must be explicit register defines |
2510 | if (MONum < NumDefs) { |
2511 | const MCOperandInfo &MCOI = MCID.operands()[MONum]; |
2512 | if (!MO->isReg()) |
2513 | report(msg: "Explicit definition must be a register" , MO, MONum); |
2514 | else if (!MO->isDef() && !MCOI.isOptionalDef()) |
2515 | report(msg: "Explicit definition marked as use" , MO, MONum); |
2516 | else if (MO->isImplicit()) |
2517 | report(msg: "Explicit definition marked as implicit" , MO, MONum); |
2518 | } else if (MONum < MCID.getNumOperands()) { |
2519 | const MCOperandInfo &MCOI = MCID.operands()[MONum]; |
2520 | // Don't check if it's the last operand in a variadic instruction. See, |
2521 | // e.g., LDM_RET in the arm back end. Check non-variadic operands only. |
2522 | bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; |
2523 | if (!IsOptional) { |
2524 | if (MO->isReg()) { |
2525 | if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) |
2526 | report(msg: "Explicit operand marked as def" , MO, MONum); |
2527 | if (MO->isImplicit()) |
2528 | report(msg: "Explicit operand marked as implicit" , MO, MONum); |
2529 | } |
2530 | |
2531 | // Check that an instruction has register operands only as expected. |
2532 | if (MCOI.OperandType == MCOI::OPERAND_REGISTER && |
2533 | !MO->isReg() && !MO->isFI()) |
2534 | report(msg: "Expected a register operand." , MO, MONum); |
2535 | if (MO->isReg()) { |
2536 | if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || |
2537 | (MCOI.OperandType == MCOI::OPERAND_PCREL && |
2538 | !TII->isPCRelRegisterOperandLegal(MO: *MO))) |
2539 | report(msg: "Expected a non-register operand." , MO, MONum); |
2540 | } |
2541 | } |
2542 | |
2543 | int TiedTo = MCID.getOperandConstraint(OpNum: MONum, Constraint: MCOI::TIED_TO); |
2544 | if (TiedTo != -1) { |
2545 | if (!MO->isReg()) |
2546 | report(msg: "Tied use must be a register" , MO, MONum); |
2547 | else if (!MO->isTied()) |
2548 | report(msg: "Operand should be tied" , MO, MONum); |
2549 | else if (unsigned(TiedTo) != MI->findTiedOperandIdx(OpIdx: MONum)) |
2550 | report(msg: "Tied def doesn't match MCInstrDesc" , MO, MONum); |
2551 | else if (MO->getReg().isPhysical()) { |
2552 | const MachineOperand &MOTied = MI->getOperand(i: TiedTo); |
2553 | if (!MOTied.isReg()) |
2554 | report(msg: "Tied counterpart must be a register" , MO: &MOTied, MONum: TiedTo); |
2555 | else if (MOTied.getReg().isPhysical() && |
2556 | MO->getReg() != MOTied.getReg()) |
2557 | report(msg: "Tied physical registers must match." , MO: &MOTied, MONum: TiedTo); |
2558 | } |
2559 | } else if (MO->isReg() && MO->isTied()) |
2560 | report(msg: "Explicit operand should not be tied" , MO, MONum); |
2561 | } else if (!MI->isVariadic()) { |
2562 | // ARM adds %reg0 operands to indicate predicates. We'll allow that. |
2563 | if (!MO->isValidExcessOperand()) |
2564 | report(msg: "Extra explicit operand on non-variadic instruction" , MO, MONum); |
2565 | } |
2566 | |
2567 | switch (MO->getType()) { |
2568 | case MachineOperand::MO_Register: { |
2569 | // Verify debug flag on debug instructions. Check this first because reg0 |
2570 | // indicates an undefined debug value. |
2571 | if (MI->isDebugInstr() && MO->isUse()) { |
2572 | if (!MO->isDebug()) |
2573 | report(msg: "Register operand must be marked debug" , MO, MONum); |
2574 | } else if (MO->isDebug()) { |
2575 | report(msg: "Register operand must not be marked debug" , MO, MONum); |
2576 | } |
2577 | |
2578 | const Register Reg = MO->getReg(); |
2579 | if (!Reg) |
2580 | return; |
2581 | if (MRI->tracksLiveness() && !MI->isDebugInstr()) |
2582 | checkLiveness(MO, MONum); |
2583 | |
2584 | if (MO->isDef() && MO->isUndef() && !MO->getSubReg() && |
2585 | MO->getReg().isVirtual()) // TODO: Apply to physregs too |
2586 | report(msg: "Undef virtual register def operands require a subregister" , MO, MONum); |
2587 | |
2588 | // Verify the consistency of tied operands. |
2589 | if (MO->isTied()) { |
2590 | unsigned OtherIdx = MI->findTiedOperandIdx(OpIdx: MONum); |
2591 | const MachineOperand &OtherMO = MI->getOperand(i: OtherIdx); |
2592 | if (!OtherMO.isReg()) |
2593 | report(msg: "Must be tied to a register" , MO, MONum); |
2594 | if (!OtherMO.isTied()) |
2595 | report(msg: "Missing tie flags on tied operand" , MO, MONum); |
2596 | if (MI->findTiedOperandIdx(OpIdx: OtherIdx) != MONum) |
2597 | report(msg: "Inconsistent tie links" , MO, MONum); |
2598 | if (MONum < MCID.getNumDefs()) { |
2599 | if (OtherIdx < MCID.getNumOperands()) { |
2600 | if (-1 == MCID.getOperandConstraint(OpNum: OtherIdx, Constraint: MCOI::TIED_TO)) |
2601 | report(msg: "Explicit def tied to explicit use without tie constraint" , |
2602 | MO, MONum); |
2603 | } else { |
2604 | if (!OtherMO.isImplicit()) |
2605 | report(msg: "Explicit def should be tied to implicit use" , MO, MONum); |
2606 | } |
2607 | } |
2608 | } |
2609 | |
2610 | // Verify two-address constraints after the twoaddressinstruction pass. |
2611 | // Both twoaddressinstruction pass and phi-node-elimination pass call |
2612 | // MRI->leaveSSA() to set MF as not IsSSA, we should do the verification |
2613 | // after twoaddressinstruction pass not after phi-node-elimination pass. So |
2614 | // we shouldn't use the IsSSA as the condition, we should based on |
2615 | // TiedOpsRewritten property to verify two-address constraints, this |
2616 | // property will be set in twoaddressinstruction pass. |
2617 | unsigned DefIdx; |
2618 | if (MF->getProperties().hasTiedOpsRewritten() && MO->isUse() && |
2619 | MI->isRegTiedToDefOperand(UseOpIdx: MONum, DefOpIdx: &DefIdx) && |
2620 | Reg != MI->getOperand(i: DefIdx).getReg()) |
2621 | report(msg: "Two-address instruction operands must be identical" , MO, MONum); |
2622 | |
2623 | // Check register classes. |
2624 | unsigned SubIdx = MO->getSubReg(); |
2625 | |
2626 | if (Reg.isPhysical()) { |
2627 | if (SubIdx) { |
2628 | report(msg: "Illegal subregister index for physical register" , MO, MONum); |
2629 | return; |
2630 | } |
2631 | if (MONum < MCID.getNumOperands()) { |
2632 | if (const TargetRegisterClass *DRC = |
2633 | TII->getRegClass(MCID, OpNum: MONum, TRI, MF: *MF)) { |
2634 | if (!DRC->contains(Reg)) { |
2635 | report(msg: "Illegal physical register for instruction" , MO, MONum); |
2636 | OS << printReg(Reg, TRI) << " is not a " |
2637 | << TRI->getRegClassName(Class: DRC) << " register.\n" ; |
2638 | } |
2639 | } |
2640 | } |
2641 | if (MO->isRenamable()) { |
2642 | if (MRI->isReserved(PhysReg: Reg)) { |
2643 | report(msg: "isRenamable set on reserved register" , MO, MONum); |
2644 | return; |
2645 | } |
2646 | } |
2647 | } else { |
2648 | // Virtual register. |
2649 | const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); |
2650 | if (!RC) { |
2651 | // This is a generic virtual register. |
2652 | |
2653 | // Do not allow undef uses for generic virtual registers. This ensures |
2654 | // getVRegDef can never fail and return null on a generic register. |
2655 | // |
2656 | // FIXME: This restriction should probably be broadened to all SSA |
2657 | // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still |
2658 | // run on the SSA function just before phi elimination. |
2659 | if (MO->isUndef()) |
2660 | report(msg: "Generic virtual register use cannot be undef" , MO, MONum); |
2661 | |
2662 | // Debug value instruction is permitted to use undefined vregs. |
2663 | // This is a performance measure to skip the overhead of immediately |
2664 | // pruning unused debug operands. The final undef substitution occurs |
2665 | // when debug values are allocated in LDVImpl::handleDebugValue, so |
2666 | // these verifications always apply after this pass. |
2667 | if (isFunctionTracksDebugUserValues || !MO->isUse() || |
2668 | !MI->isDebugValue() || !MRI->def_empty(RegNo: Reg)) { |
2669 | // If we're post-Select, we can't have gvregs anymore. |
2670 | if (isFunctionSelected) { |
2671 | report(msg: "Generic virtual register invalid in a Selected function" , |
2672 | MO, MONum); |
2673 | return; |
2674 | } |
2675 | |
2676 | // The gvreg must have a type and it must not have a SubIdx. |
2677 | LLT Ty = MRI->getType(Reg); |
2678 | if (!Ty.isValid()) { |
2679 | report(msg: "Generic virtual register must have a valid type" , MO, |
2680 | MONum); |
2681 | return; |
2682 | } |
2683 | |
2684 | const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); |
2685 | const RegisterBankInfo *RBI = MF->getSubtarget().getRegBankInfo(); |
2686 | |
2687 | // If we're post-RegBankSelect, the gvreg must have a bank. |
2688 | if (!RegBank && isFunctionRegBankSelected) { |
2689 | report(msg: "Generic virtual register must have a bank in a " |
2690 | "RegBankSelected function" , |
2691 | MO, MONum); |
2692 | return; |
2693 | } |
2694 | |
2695 | // Make sure the register fits into its register bank if any. |
2696 | if (RegBank && Ty.isValid() && !Ty.isScalableVector() && |
2697 | RBI->getMaximumSize(RegBankID: RegBank->getID()) < Ty.getSizeInBits()) { |
2698 | report(msg: "Register bank is too small for virtual register" , MO, |
2699 | MONum); |
2700 | OS << "Register bank " << RegBank->getName() << " too small(" |
2701 | << RBI->getMaximumSize(RegBankID: RegBank->getID()) << ") to fit " |
2702 | << Ty.getSizeInBits() << "-bits\n" ; |
2703 | return; |
2704 | } |
2705 | } |
2706 | |
2707 | if (SubIdx) { |
2708 | report(msg: "Generic virtual register does not allow subregister index" , MO, |
2709 | MONum); |
2710 | return; |
2711 | } |
2712 | |
2713 | // If this is a target specific instruction and this operand |
2714 | // has register class constraint, the virtual register must |
2715 | // comply to it. |
2716 | if (!isPreISelGenericOpcode(Opcode: MCID.getOpcode()) && |
2717 | MONum < MCID.getNumOperands() && |
2718 | TII->getRegClass(MCID, OpNum: MONum, TRI, MF: *MF)) { |
2719 | report(msg: "Virtual register does not match instruction constraint" , MO, |
2720 | MONum); |
2721 | OS << "Expect register class " |
2722 | << TRI->getRegClassName(Class: TII->getRegClass(MCID, OpNum: MONum, TRI, MF: *MF)) |
2723 | << " but got nothing\n" ; |
2724 | return; |
2725 | } |
2726 | |
2727 | break; |
2728 | } |
2729 | if (SubIdx) { |
2730 | const TargetRegisterClass *SRC = |
2731 | TRI->getSubClassWithSubReg(RC, Idx: SubIdx); |
2732 | if (!SRC) { |
2733 | report(msg: "Invalid subregister index for virtual register" , MO, MONum); |
2734 | OS << "Register class " << TRI->getRegClassName(Class: RC) |
2735 | << " does not support subreg index " |
2736 | << TRI->getSubRegIndexName(SubIdx) << '\n'; |
2737 | return; |
2738 | } |
2739 | if (RC != SRC) { |
2740 | report(msg: "Invalid register class for subregister index" , MO, MONum); |
2741 | OS << "Register class " << TRI->getRegClassName(Class: RC) |
2742 | << " does not fully support subreg index " |
2743 | << TRI->getSubRegIndexName(SubIdx) << '\n'; |
2744 | return; |
2745 | } |
2746 | } |
2747 | if (MONum < MCID.getNumOperands()) { |
2748 | if (const TargetRegisterClass *DRC = |
2749 | TII->getRegClass(MCID, OpNum: MONum, TRI, MF: *MF)) { |
2750 | if (SubIdx) { |
2751 | const TargetRegisterClass *SuperRC = |
2752 | TRI->getLargestLegalSuperClass(RC, *MF); |
2753 | if (!SuperRC) { |
2754 | report(msg: "No largest legal super class exists." , MO, MONum); |
2755 | return; |
2756 | } |
2757 | DRC = TRI->getMatchingSuperRegClass(A: SuperRC, B: DRC, Idx: SubIdx); |
2758 | if (!DRC) { |
2759 | report(msg: "No matching super-reg register class." , MO, MONum); |
2760 | return; |
2761 | } |
2762 | } |
2763 | if (!RC->hasSuperClassEq(RC: DRC)) { |
2764 | report(msg: "Illegal virtual register for instruction" , MO, MONum); |
2765 | OS << "Expected a " << TRI->getRegClassName(Class: DRC) |
2766 | << " register, but got a " << TRI->getRegClassName(Class: RC) |
2767 | << " register\n" ; |
2768 | } |
2769 | } |
2770 | } |
2771 | } |
2772 | break; |
2773 | } |
2774 | |
2775 | case MachineOperand::MO_RegisterMask: |
2776 | regMasks.push_back(Elt: MO->getRegMask()); |
2777 | break; |
2778 | |
2779 | case MachineOperand::MO_MachineBasicBlock: |
2780 | if (MI->isPHI() && !MO->getMBB()->isSuccessor(MBB: MI->getParent())) |
2781 | report(msg: "PHI operand is not in the CFG" , MO, MONum); |
2782 | break; |
2783 | |
2784 | case MachineOperand::MO_FrameIndex: |
2785 | if (LiveStks && LiveStks->hasInterval(Slot: MO->getIndex()) && |
2786 | LiveInts && !LiveInts->isNotInMIMap(Instr: *MI)) { |
2787 | int FI = MO->getIndex(); |
2788 | LiveInterval &LI = LiveStks->getInterval(Slot: FI); |
2789 | SlotIndex Idx = LiveInts->getInstructionIndex(Instr: *MI); |
2790 | |
2791 | bool stores = MI->mayStore(); |
2792 | bool loads = MI->mayLoad(); |
2793 | // For a memory-to-memory move, we need to check if the frame |
2794 | // index is used for storing or loading, by inspecting the |
2795 | // memory operands. |
2796 | if (stores && loads) { |
2797 | for (auto *MMO : MI->memoperands()) { |
2798 | const PseudoSourceValue *PSV = MMO->getPseudoValue(); |
2799 | if (PSV == nullptr) continue; |
2800 | const FixedStackPseudoSourceValue *Value = |
2801 | dyn_cast<FixedStackPseudoSourceValue>(Val: PSV); |
2802 | if (Value == nullptr) continue; |
2803 | if (Value->getFrameIndex() != FI) continue; |
2804 | |
2805 | if (MMO->isStore()) |
2806 | loads = false; |
2807 | else |
2808 | stores = false; |
2809 | break; |
2810 | } |
2811 | if (loads == stores) |
2812 | report(msg: "Missing fixed stack memoperand." , MI); |
2813 | } |
2814 | if (loads && !LI.liveAt(index: Idx.getRegSlot(EC: true))) { |
2815 | report(msg: "Instruction loads from dead spill slot" , MO, MONum); |
2816 | OS << "Live stack: " << LI << '\n'; |
2817 | } |
2818 | if (stores && !LI.liveAt(index: Idx.getRegSlot())) { |
2819 | report(msg: "Instruction stores to dead spill slot" , MO, MONum); |
2820 | OS << "Live stack: " << LI << '\n'; |
2821 | } |
2822 | } |
2823 | break; |
2824 | |
2825 | case MachineOperand::MO_CFIIndex: |
2826 | if (MO->getCFIIndex() >= MF->getFrameInstructions().size()) |
2827 | report(msg: "CFI instruction has invalid index" , MO, MONum); |
2828 | break; |
2829 | |
2830 | default: |
2831 | break; |
2832 | } |
2833 | } |
2834 | |
2835 | void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, |
2836 | unsigned MONum, SlotIndex UseIdx, |
2837 | const LiveRange &LR, |
2838 | VirtRegOrUnit VRegOrUnit, |
2839 | LaneBitmask LaneMask) { |
2840 | const MachineInstr *MI = MO->getParent(); |
2841 | |
2842 | if (!LR.verify()) { |
2843 | report(msg: "invalid live range" , MO, MONum); |
2844 | report_context_liverange(LR); |
2845 | report_context_vreg_regunit(VRegOrUnit); |
2846 | report_context(Pos: UseIdx); |
2847 | return; |
2848 | } |
2849 | |
2850 | LiveQueryResult LRQ = LR.Query(Idx: UseIdx); |
2851 | bool HasValue = LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut()); |
2852 | // Check if we have a segment at the use, note however that we only need one |
2853 | // live subregister range, the others may be dead. |
2854 | if (!HasValue && LaneMask.none()) { |
2855 | report(msg: "No live segment at use" , MO, MONum); |
2856 | report_context_liverange(LR); |
2857 | report_context_vreg_regunit(VRegOrUnit); |
2858 | report_context(Pos: UseIdx); |
2859 | } |
2860 | if (MO->isKill() && !LRQ.isKill()) { |
2861 | report(msg: "Live range continues after kill flag" , MO, MONum); |
2862 | report_context_liverange(LR); |
2863 | report_context_vreg_regunit(VRegOrUnit); |
2864 | if (LaneMask.any()) |
2865 | report_context_lanemask(LaneMask); |
2866 | report_context(Pos: UseIdx); |
2867 | } |
2868 | } |
2869 | |
2870 | void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, |
2871 | unsigned MONum, SlotIndex DefIdx, |
2872 | const LiveRange &LR, |
2873 | VirtRegOrUnit VRegOrUnit, |
2874 | bool SubRangeCheck, |
2875 | LaneBitmask LaneMask) { |
2876 | if (!LR.verify()) { |
2877 | report(msg: "invalid live range" , MO, MONum); |
2878 | report_context_liverange(LR); |
2879 | report_context_vreg_regunit(VRegOrUnit); |
2880 | if (LaneMask.any()) |
2881 | report_context_lanemask(LaneMask); |
2882 | report_context(Pos: DefIdx); |
2883 | } |
2884 | |
2885 | if (const VNInfo *VNI = LR.getVNInfoAt(Idx: DefIdx)) { |
2886 | // The LR can correspond to the whole reg and its def slot is not obliged |
2887 | // to be the same as the MO' def slot. E.g. when we check here "normal" |
2888 | // subreg MO but there is other EC subreg MO in the same instruction so the |
2889 | // whole reg has EC def slot and differs from the currently checked MO' def |
2890 | // slot. For example: |
2891 | // %0 [16e,32r:0) 0@16e L..3 [16e,32r:0) 0@16e L..C [16r,32r:0) 0@16r |
2892 | // Check that there is an early-clobber def of the same superregister |
2893 | // somewhere is performed in visitMachineFunctionAfter() |
2894 | if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) || |
2895 | !SlotIndex::isSameInstr(A: VNI->def, B: DefIdx) || |
2896 | (VNI->def != DefIdx && |
2897 | (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) { |
2898 | report(msg: "Inconsistent valno->def" , MO, MONum); |
2899 | report_context_liverange(LR); |
2900 | report_context_vreg_regunit(VRegOrUnit); |
2901 | if (LaneMask.any()) |
2902 | report_context_lanemask(LaneMask); |
2903 | report_context(VNI: *VNI); |
2904 | report_context(Pos: DefIdx); |
2905 | } |
2906 | } else { |
2907 | report(msg: "No live segment at def" , MO, MONum); |
2908 | report_context_liverange(LR); |
2909 | report_context_vreg_regunit(VRegOrUnit); |
2910 | if (LaneMask.any()) |
2911 | report_context_lanemask(LaneMask); |
2912 | report_context(Pos: DefIdx); |
2913 | } |
2914 | // Check that, if the dead def flag is present, LiveInts agree. |
2915 | if (MO->isDead()) { |
2916 | LiveQueryResult LRQ = LR.Query(Idx: DefIdx); |
2917 | if (!LRQ.isDeadDef()) { |
2918 | assert(VRegOrUnit.isVirtualReg() && "Expecting a virtual register." ); |
2919 | // A dead subreg def only tells us that the specific subreg is dead. There |
2920 | // could be other non-dead defs of other subregs, or we could have other |
2921 | // parts of the register being live through the instruction. So unless we |
2922 | // are checking liveness for a subrange it is ok for the live range to |
2923 | // continue, given that we have a dead def of a subregister. |
2924 | if (SubRangeCheck || MO->getSubReg() == 0) { |
2925 | report(msg: "Live range continues after dead def flag" , MO, MONum); |
2926 | report_context_liverange(LR); |
2927 | report_context_vreg_regunit(VRegOrUnit); |
2928 | if (LaneMask.any()) |
2929 | report_context_lanemask(LaneMask); |
2930 | } |
2931 | } |
2932 | } |
2933 | } |
2934 | |
2935 | void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { |
2936 | const MachineInstr *MI = MO->getParent(); |
2937 | const Register Reg = MO->getReg(); |
2938 | const unsigned SubRegIdx = MO->getSubReg(); |
2939 | |
2940 | const LiveInterval *LI = nullptr; |
2941 | if (LiveInts && Reg.isVirtual()) { |
2942 | if (LiveInts->hasInterval(Reg)) { |
2943 | LI = &LiveInts->getInterval(Reg); |
2944 | if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() && |
2945 | !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(VReg: Reg)) |
2946 | report(msg: "Live interval for subreg operand has no subranges" , MO, MONum); |
2947 | } else { |
2948 | report(msg: "Virtual register has no live interval" , MO, MONum); |
2949 | } |
2950 | } |
2951 | |
2952 | // Both use and def operands can read a register. |
2953 | if (MO->readsReg()) { |
2954 | if (MO->isKill()) |
2955 | addRegWithSubRegs(RV&: regsKilled, Reg); |
2956 | |
2957 | // Check that LiveVars knows this kill (unless we are inside a bundle, in |
2958 | // which case we have already checked that LiveVars knows any kills on the |
2959 | // bundle header instead). |
2960 | if (LiveVars && Reg.isVirtual() && MO->isKill() && |
2961 | !MI->isBundledWithPred()) { |
2962 | LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); |
2963 | if (!is_contained(Range&: VI.Kills, Element: MI)) |
2964 | report(msg: "Kill missing from LiveVariables" , MO, MONum); |
2965 | } |
2966 | |
2967 | // Check LiveInts liveness and kill. |
2968 | if (LiveInts && !LiveInts->isNotInMIMap(Instr: *MI)) { |
2969 | SlotIndex UseIdx; |
2970 | if (MI->isPHI()) { |
2971 | // PHI use occurs on the edge, so check for live out here instead. |
2972 | UseIdx = LiveInts->getMBBEndIdx( |
2973 | mbb: MI->getOperand(i: MONum + 1).getMBB()).getPrevSlot(); |
2974 | } else { |
2975 | UseIdx = LiveInts->getInstructionIndex(Instr: *MI); |
2976 | } |
2977 | // Check the cached regunit intervals. |
2978 | if (Reg.isPhysical() && !isReserved(Reg)) { |
2979 | for (MCRegUnit Unit : TRI->regunits(Reg: Reg.asMCReg())) { |
2980 | if (MRI->isReservedRegUnit(Unit)) |
2981 | continue; |
2982 | if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit)) |
2983 | checkLivenessAtUse(MO, MONum, UseIdx, LR: *LR, VRegOrUnit: VirtRegOrUnit(Unit)); |
2984 | } |
2985 | } |
2986 | |
2987 | if (Reg.isVirtual()) { |
2988 | // This is a virtual register interval. |
2989 | checkLivenessAtUse(MO, MONum, UseIdx, LR: *LI, VRegOrUnit: VirtRegOrUnit(Reg)); |
2990 | |
2991 | if (LI->hasSubRanges() && !MO->isDef()) { |
2992 | LaneBitmask MOMask = SubRegIdx != 0 |
2993 | ? TRI->getSubRegIndexLaneMask(SubIdx: SubRegIdx) |
2994 | : MRI->getMaxLaneMaskForVReg(Reg); |
2995 | LaneBitmask LiveInMask; |
2996 | for (const LiveInterval::SubRange &SR : LI->subranges()) { |
2997 | if ((MOMask & SR.LaneMask).none()) |
2998 | continue; |
2999 | checkLivenessAtUse(MO, MONum, UseIdx, LR: SR, VRegOrUnit: VirtRegOrUnit(Reg), |
3000 | LaneMask: SR.LaneMask); |
3001 | LiveQueryResult LRQ = SR.Query(Idx: UseIdx); |
3002 | if (LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut())) |
3003 | LiveInMask |= SR.LaneMask; |
3004 | } |
3005 | // At least parts of the register has to be live at the use. |
3006 | if ((LiveInMask & MOMask).none()) { |
3007 | report(msg: "No live subrange at use" , MO, MONum); |
3008 | report_context(LI: *LI); |
3009 | report_context(Pos: UseIdx); |
3010 | } |
3011 | // For PHIs all lanes should be live |
3012 | if (MI->isPHI() && LiveInMask != MOMask) { |
3013 | report(msg: "Not all lanes of PHI source live at use" , MO, MONum); |
3014 | report_context(LI: *LI); |
3015 | report_context(Pos: UseIdx); |
3016 | } |
3017 | } |
3018 | } |
3019 | } |
3020 | |
3021 | // Use of a dead register. |
3022 | if (!regsLive.count(V: Reg)) { |
3023 | if (Reg.isPhysical()) { |
3024 | // Reserved registers may be used even when 'dead'. |
3025 | bool Bad = !isReserved(Reg); |
3026 | // We are fine if just any subregister has a defined value. |
3027 | if (Bad) { |
3028 | |
3029 | for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { |
3030 | if (regsLive.count(V: SubReg)) { |
3031 | Bad = false; |
3032 | break; |
3033 | } |
3034 | } |
3035 | } |
3036 | // If there is an additional implicit-use of a super register we stop |
3037 | // here. By definition we are fine if the super register is not |
3038 | // (completely) dead, if the complete super register is dead we will |
3039 | // get a report for its operand. |
3040 | if (Bad) { |
3041 | for (const MachineOperand &MOP : MI->uses()) { |
3042 | if (!MOP.isReg() || !MOP.isImplicit()) |
3043 | continue; |
3044 | |
3045 | if (!MOP.getReg().isPhysical()) |
3046 | continue; |
3047 | |
3048 | if (MOP.getReg() != Reg && |
3049 | all_of(Range: TRI->regunits(Reg), P: [&](const MCRegUnit RegUnit) { |
3050 | return llvm::is_contained(Range: TRI->regunits(Reg: MOP.getReg()), |
3051 | Element: RegUnit); |
3052 | })) |
3053 | Bad = false; |
3054 | } |
3055 | } |
3056 | if (Bad) |
3057 | report(msg: "Using an undefined physical register" , MO, MONum); |
3058 | } else if (MRI->def_empty(RegNo: Reg)) { |
3059 | report(msg: "Reading virtual register without a def" , MO, MONum); |
3060 | } else { |
3061 | BBInfo &MInfo = MBBInfoMap[MI->getParent()]; |
3062 | // We don't know which virtual registers are live in, so only complain |
3063 | // if vreg was killed in this MBB. Otherwise keep track of vregs that |
3064 | // must be live in. PHI instructions are handled separately. |
3065 | if (MInfo.regsKilled.count(V: Reg)) |
3066 | report(msg: "Using a killed virtual register" , MO, MONum); |
3067 | else if (!MI->isPHI()) |
3068 | MInfo.vregsLiveIn.insert(KV: std::make_pair(x: Reg, y&: MI)); |
3069 | } |
3070 | } |
3071 | } |
3072 | |
3073 | if (MO->isDef()) { |
3074 | // Register defined. |
3075 | // TODO: verify that earlyclobber ops are not used. |
3076 | if (MO->isDead()) |
3077 | addRegWithSubRegs(RV&: regsDead, Reg); |
3078 | else |
3079 | addRegWithSubRegs(RV&: regsDefined, Reg); |
3080 | |
3081 | // Verify SSA form. |
3082 | if (MRI->isSSA() && Reg.isVirtual() && |
3083 | std::next(x: MRI->def_begin(RegNo: Reg)) != MRI->def_end()) |
3084 | report(msg: "Multiple virtual register defs in SSA form" , MO, MONum); |
3085 | |
3086 | // Check LiveInts for a live segment, but only for virtual registers. |
3087 | if (LiveInts && !LiveInts->isNotInMIMap(Instr: *MI)) { |
3088 | SlotIndex DefIdx = LiveInts->getInstructionIndex(Instr: *MI); |
3089 | DefIdx = DefIdx.getRegSlot(EC: MO->isEarlyClobber()); |
3090 | |
3091 | if (Reg.isVirtual()) { |
3092 | checkLivenessAtDef(MO, MONum, DefIdx, LR: *LI, VRegOrUnit: VirtRegOrUnit(Reg)); |
3093 | |
3094 | if (LI->hasSubRanges()) { |
3095 | LaneBitmask MOMask = SubRegIdx != 0 |
3096 | ? TRI->getSubRegIndexLaneMask(SubIdx: SubRegIdx) |
3097 | : MRI->getMaxLaneMaskForVReg(Reg); |
3098 | for (const LiveInterval::SubRange &SR : LI->subranges()) { |
3099 | if ((SR.LaneMask & MOMask).none()) |
3100 | continue; |
3101 | checkLivenessAtDef(MO, MONum, DefIdx, LR: SR, VRegOrUnit: VirtRegOrUnit(Reg), SubRangeCheck: true, |
3102 | LaneMask: SR.LaneMask); |
3103 | } |
3104 | } |
3105 | } |
3106 | } |
3107 | } |
3108 | } |
3109 | |
3110 | // This function gets called after visiting all instructions in a bundle. The |
3111 | // argument points to the bundle header. |
3112 | // Normal stand-alone instructions are also considered 'bundles', and this |
3113 | // function is called for all of them. |
3114 | void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { |
3115 | BBInfo &MInfo = MBBInfoMap[MI->getParent()]; |
3116 | set_union(S1&: MInfo.regsKilled, S2: regsKilled); |
3117 | set_subtract(S1&: regsLive, S2: regsKilled); regsKilled.clear(); |
3118 | // Kill any masked registers. |
3119 | while (!regMasks.empty()) { |
3120 | const uint32_t *Mask = regMasks.pop_back_val(); |
3121 | for (Register Reg : regsLive) |
3122 | if (Reg.isPhysical() && |
3123 | MachineOperand::clobbersPhysReg(RegMask: Mask, PhysReg: Reg.asMCReg())) |
3124 | regsDead.push_back(Elt: Reg); |
3125 | } |
3126 | set_subtract(S1&: regsLive, S2: regsDead); regsDead.clear(); |
3127 | set_union(S1&: regsLive, S2: regsDefined); regsDefined.clear(); |
3128 | } |
3129 | |
3130 | void |
3131 | MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { |
3132 | MBBInfoMap[MBB].regsLiveOut = regsLive; |
3133 | regsLive.clear(); |
3134 | |
3135 | if (Indexes) { |
3136 | SlotIndex stop = Indexes->getMBBEndIdx(mbb: MBB); |
3137 | if (!(stop > lastIndex)) { |
3138 | report(msg: "Block ends before last instruction index" , MBB); |
3139 | OS << "Block ends at " << stop << " last instruction was at " << lastIndex |
3140 | << '\n'; |
3141 | } |
3142 | lastIndex = stop; |
3143 | } |
3144 | } |
3145 | |
3146 | namespace { |
3147 | // This implements a set of registers that serves as a filter: can filter other |
3148 | // sets by passing through elements not in the filter and blocking those that |
3149 | // are. Any filter implicitly includes the full set of physical registers upon |
3150 | // creation, thus filtering them all out. The filter itself as a set only grows, |
3151 | // and needs to be as efficient as possible. |
3152 | struct VRegFilter { |
3153 | // Add elements to the filter itself. \pre Input set \p FromRegSet must have |
3154 | // no duplicates. Both virtual and physical registers are fine. |
3155 | template <typename RegSetT> void add(const RegSetT &FromRegSet) { |
3156 | SmallVector<Register, 0> VRegsBuffer; |
3157 | filterAndAdd(FromRegSet, VRegsBuffer); |
3158 | } |
3159 | // Filter \p FromRegSet through the filter and append passed elements into \p |
3160 | // ToVRegs. All elements appended are then added to the filter itself. |
3161 | // \returns true if anything changed. |
3162 | template <typename RegSetT> |
3163 | bool filterAndAdd(const RegSetT &FromRegSet, |
3164 | SmallVectorImpl<Register> &ToVRegs) { |
3165 | unsigned SparseUniverse = Sparse.size(); |
3166 | unsigned NewSparseUniverse = SparseUniverse; |
3167 | unsigned NewDenseSize = Dense.size(); |
3168 | size_t Begin = ToVRegs.size(); |
3169 | for (Register Reg : FromRegSet) { |
3170 | if (!Reg.isVirtual()) |
3171 | continue; |
3172 | unsigned Index = Reg.virtRegIndex(); |
3173 | if (Index < SparseUniverseMax) { |
3174 | if (Index < SparseUniverse && Sparse.test(Idx: Index)) |
3175 | continue; |
3176 | NewSparseUniverse = std::max(a: NewSparseUniverse, b: Index + 1); |
3177 | } else { |
3178 | if (Dense.count(V: Reg)) |
3179 | continue; |
3180 | ++NewDenseSize; |
3181 | } |
3182 | ToVRegs.push_back(Elt: Reg); |
3183 | } |
3184 | size_t End = ToVRegs.size(); |
3185 | if (Begin == End) |
3186 | return false; |
3187 | // Reserving space in sets once performs better than doing so continuously |
3188 | // and pays easily for double look-ups (even in Dense with SparseUniverseMax |
3189 | // tuned all the way down) and double iteration (the second one is over a |
3190 | // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). |
3191 | Sparse.resize(N: NewSparseUniverse); |
3192 | Dense.reserve(Size: NewDenseSize); |
3193 | for (unsigned I = Begin; I < End; ++I) { |
3194 | Register Reg = ToVRegs[I]; |
3195 | unsigned Index = Reg.virtRegIndex(); |
3196 | if (Index < SparseUniverseMax) |
3197 | Sparse.set(Index); |
3198 | else |
3199 | Dense.insert(V: Reg); |
3200 | } |
3201 | return true; |
3202 | } |
3203 | |
3204 | private: |
3205 | static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; |
3206 | // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound |
3207 | // are tracked by Dense. The only purpose of the threashold and the Dense set |
3208 | // is to have a reasonably growing memory usage in pathological cases (large |
3209 | // number of very sparse VRegFilter instances live at the same time). In |
3210 | // practice even in the worst-by-execution time cases having all elements |
3211 | // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more |
3212 | // space efficient than if tracked by Dense. The threashold is set to keep the |
3213 | // worst-case memory usage within 2x of figures determined empirically for |
3214 | // "all Dense" scenario in such worst-by-execution-time cases. |
3215 | BitVector Sparse; |
3216 | DenseSet<Register> Dense; |
3217 | }; |
3218 | |
3219 | // Implements both a transfer function and a (binary, in-place) join operator |
3220 | // for a dataflow over register sets with set union join and filtering transfer |
3221 | // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. |
3222 | // Maintains out_b as its state, allowing for O(n) iteration over it at any |
3223 | // time, where n is the size of the set (as opposed to O(U) where U is the |
3224 | // universe). filter_b implicitly contains all physical registers at all times. |
3225 | class FilteringVRegSet { |
3226 | VRegFilter Filter; |
3227 | SmallVector<Register, 0> VRegs; |
3228 | |
3229 | public: |
3230 | // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. |
3231 | // Both virtual and physical registers are fine. |
3232 | template <typename RegSetT> void addToFilter(const RegSetT &RS) { |
3233 | Filter.add(RS); |
3234 | } |
3235 | // Passes \p RS through the filter_b (transfer function) and adds what's left |
3236 | // to itself (out_b). |
3237 | template <typename RegSetT> bool add(const RegSetT &RS) { |
3238 | // Double-duty the Filter: to maintain VRegs a set (and the join operation |
3239 | // a set union) just add everything being added here to the Filter as well. |
3240 | return Filter.filterAndAdd(RS, VRegs); |
3241 | } |
3242 | using const_iterator = decltype(VRegs)::const_iterator; |
3243 | const_iterator begin() const { return VRegs.begin(); } |
3244 | const_iterator end() const { return VRegs.end(); } |
3245 | size_t size() const { return VRegs.size(); } |
3246 | }; |
3247 | } // namespace |
3248 | |
3249 | // Calculate the largest possible vregsPassed sets. These are the registers that |
3250 | // can pass through an MBB live, but may not be live every time. It is assumed |
3251 | // that all vregsPassed sets are empty before the call. |
3252 | void MachineVerifier::calcRegsPassed() { |
3253 | if (MF->empty()) |
3254 | // ReversePostOrderTraversal doesn't handle empty functions. |
3255 | return; |
3256 | |
3257 | for (const MachineBasicBlock *MB : |
3258 | ReversePostOrderTraversal<const MachineFunction *>(MF)) { |
3259 | FilteringVRegSet VRegs; |
3260 | BBInfo &Info = MBBInfoMap[MB]; |
3261 | assert(Info.reachable); |
3262 | |
3263 | VRegs.addToFilter(RS: Info.regsKilled); |
3264 | VRegs.addToFilter(RS: Info.regsLiveOut); |
3265 | for (const MachineBasicBlock *Pred : MB->predecessors()) { |
3266 | const BBInfo &PredInfo = MBBInfoMap[Pred]; |
3267 | if (!PredInfo.reachable) |
3268 | continue; |
3269 | |
3270 | VRegs.add(RS: PredInfo.regsLiveOut); |
3271 | VRegs.add(RS: PredInfo.vregsPassed); |
3272 | } |
3273 | Info.vregsPassed.reserve(Size: VRegs.size()); |
3274 | Info.vregsPassed.insert_range(R&: VRegs); |
3275 | } |
3276 | } |
3277 | |
3278 | // Calculate the set of virtual registers that must be passed through each basic |
3279 | // block in order to satisfy the requirements of successor blocks. This is very |
3280 | // similar to calcRegsPassed, only backwards. |
3281 | void MachineVerifier::calcRegsRequired() { |
3282 | // First push live-in regs to predecessors' vregsRequired. |
3283 | SmallPtrSet<const MachineBasicBlock*, 8> todo; |
3284 | for (const auto &MBB : *MF) { |
3285 | BBInfo &MInfo = MBBInfoMap[&MBB]; |
3286 | for (const MachineBasicBlock *Pred : MBB.predecessors()) { |
3287 | BBInfo &PInfo = MBBInfoMap[Pred]; |
3288 | if (PInfo.addRequired(RM: MInfo.vregsLiveIn)) |
3289 | todo.insert(Ptr: Pred); |
3290 | } |
3291 | |
3292 | // Handle the PHI node. |
3293 | for (const MachineInstr &MI : MBB.phis()) { |
3294 | for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { |
3295 | // Skip those Operands which are undef regs or not regs. |
3296 | if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) |
3297 | continue; |
3298 | |
3299 | // Get register and predecessor for one PHI edge. |
3300 | Register Reg = MI.getOperand(i).getReg(); |
3301 | const MachineBasicBlock *Pred = MI.getOperand(i: i + 1).getMBB(); |
3302 | |
3303 | BBInfo &PInfo = MBBInfoMap[Pred]; |
3304 | if (PInfo.addRequired(Reg)) |
3305 | todo.insert(Ptr: Pred); |
3306 | } |
3307 | } |
3308 | } |
3309 | |
3310 | // Iteratively push vregsRequired to predecessors. This will converge to the |
3311 | // same final state regardless of DenseSet iteration order. |
3312 | while (!todo.empty()) { |
3313 | const MachineBasicBlock *MBB = *todo.begin(); |
3314 | todo.erase(Ptr: MBB); |
3315 | BBInfo &MInfo = MBBInfoMap[MBB]; |
3316 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
3317 | if (Pred == MBB) |
3318 | continue; |
3319 | BBInfo &SInfo = MBBInfoMap[Pred]; |
3320 | if (SInfo.addRequired(RS: MInfo.vregsRequired)) |
3321 | todo.insert(Ptr: Pred); |
3322 | } |
3323 | } |
3324 | } |
3325 | |
3326 | // Check PHI instructions at the beginning of MBB. It is assumed that |
3327 | // calcRegsPassed has been run so BBInfo::isLiveOut is valid. |
3328 | void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { |
3329 | BBInfo &MInfo = MBBInfoMap[&MBB]; |
3330 | |
3331 | SmallPtrSet<const MachineBasicBlock*, 8> seen; |
3332 | for (const MachineInstr &Phi : MBB) { |
3333 | if (!Phi.isPHI()) |
3334 | break; |
3335 | seen.clear(); |
3336 | |
3337 | const MachineOperand &MODef = Phi.getOperand(i: 0); |
3338 | if (!MODef.isReg() || !MODef.isDef()) { |
3339 | report(msg: "Expected first PHI operand to be a register def" , MO: &MODef, MONum: 0); |
3340 | continue; |
3341 | } |
3342 | if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || |
3343 | MODef.isEarlyClobber() || MODef.isDebug()) |
3344 | report(msg: "Unexpected flag on PHI operand" , MO: &MODef, MONum: 0); |
3345 | Register DefReg = MODef.getReg(); |
3346 | if (!DefReg.isVirtual()) |
3347 | report(msg: "Expected first PHI operand to be a virtual register" , MO: &MODef, MONum: 0); |
3348 | |
3349 | for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { |
3350 | const MachineOperand &MO0 = Phi.getOperand(i: I); |
3351 | if (!MO0.isReg()) { |
3352 | report(msg: "Expected PHI operand to be a register" , MO: &MO0, MONum: I); |
3353 | continue; |
3354 | } |
3355 | if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || |
3356 | MO0.isDebug() || MO0.isTied()) |
3357 | report(msg: "Unexpected flag on PHI operand" , MO: &MO0, MONum: I); |
3358 | |
3359 | const MachineOperand &MO1 = Phi.getOperand(i: I + 1); |
3360 | if (!MO1.isMBB()) { |
3361 | report(msg: "Expected PHI operand to be a basic block" , MO: &MO1, MONum: I + 1); |
3362 | continue; |
3363 | } |
3364 | |
3365 | const MachineBasicBlock &Pre = *MO1.getMBB(); |
3366 | if (!Pre.isSuccessor(MBB: &MBB)) { |
3367 | report(msg: "PHI input is not a predecessor block" , MO: &MO1, MONum: I + 1); |
3368 | continue; |
3369 | } |
3370 | |
3371 | if (MInfo.reachable) { |
3372 | seen.insert(Ptr: &Pre); |
3373 | BBInfo &PrInfo = MBBInfoMap[&Pre]; |
3374 | if (!MO0.isUndef() && PrInfo.reachable && |
3375 | !PrInfo.isLiveOut(Reg: MO0.getReg())) |
3376 | report(msg: "PHI operand is not live-out from predecessor" , MO: &MO0, MONum: I); |
3377 | } |
3378 | } |
3379 | |
3380 | // Did we see all predecessors? |
3381 | if (MInfo.reachable) { |
3382 | for (MachineBasicBlock *Pred : MBB.predecessors()) { |
3383 | if (!seen.count(Ptr: Pred)) { |
3384 | report(msg: "Missing PHI operand" , MI: &Phi); |
3385 | OS << printMBBReference(MBB: *Pred) |
3386 | << " is a predecessor according to the CFG.\n" ; |
3387 | } |
3388 | } |
3389 | } |
3390 | } |
3391 | } |
3392 | |
3393 | static void |
3394 | verifyConvergenceControl(const MachineFunction &MF, MachineDominatorTree &DT, |
3395 | std::function<void(const Twine &Message)> FailureCB, |
3396 | raw_ostream &OS) { |
3397 | MachineConvergenceVerifier CV; |
3398 | CV.initialize(OS: &OS, FailureCB, F: MF); |
3399 | |
3400 | for (const auto &MBB : MF) { |
3401 | CV.visit(BB: MBB); |
3402 | for (const auto &MI : MBB.instrs()) |
3403 | CV.visit(I: MI); |
3404 | } |
3405 | |
3406 | if (CV.sawTokens()) { |
3407 | DT.recalculate(Func&: const_cast<MachineFunction &>(MF)); |
3408 | CV.verify(DT); |
3409 | } |
3410 | } |
3411 | |
3412 | void MachineVerifier::visitMachineFunctionAfter() { |
3413 | auto FailureCB = [this](const Twine &Message) { |
3414 | report(msg: Message.str().c_str(), MF); |
3415 | }; |
3416 | verifyConvergenceControl(MF: *MF, DT, FailureCB, OS); |
3417 | |
3418 | calcRegsPassed(); |
3419 | |
3420 | for (const MachineBasicBlock &MBB : *MF) |
3421 | checkPHIOps(MBB); |
3422 | |
3423 | // Now check liveness info if available |
3424 | calcRegsRequired(); |
3425 | |
3426 | // Check for killed virtual registers that should be live out. |
3427 | for (const auto &MBB : *MF) { |
3428 | BBInfo &MInfo = MBBInfoMap[&MBB]; |
3429 | for (Register VReg : MInfo.vregsRequired) |
3430 | if (MInfo.regsKilled.count(V: VReg)) { |
3431 | report(msg: "Virtual register killed in block, but needed live out." , MBB: &MBB); |
3432 | OS << "Virtual register " << printReg(Reg: VReg) |
3433 | << " is used after the block.\n" ; |
3434 | } |
3435 | } |
3436 | |
3437 | if (!MF->empty()) { |
3438 | BBInfo &MInfo = MBBInfoMap[&MF->front()]; |
3439 | for (Register VReg : MInfo.vregsRequired) { |
3440 | report(msg: "Virtual register defs don't dominate all uses." , MF); |
3441 | report_context_vreg(VReg); |
3442 | } |
3443 | } |
3444 | |
3445 | if (LiveVars) |
3446 | verifyLiveVariables(); |
3447 | if (LiveInts) |
3448 | verifyLiveIntervals(); |
3449 | |
3450 | // Check live-in list of each MBB. If a register is live into MBB, check |
3451 | // that the register is in regsLiveOut of each predecessor block. Since |
3452 | // this must come from a definition in the predecesssor or its live-in |
3453 | // list, this will catch a live-through case where the predecessor does not |
3454 | // have the register in its live-in list. This currently only checks |
3455 | // registers that have no aliases, are not allocatable and are not |
3456 | // reserved, which could mean a condition code register for instance. |
3457 | if (MRI->tracksLiveness()) |
3458 | for (const auto &MBB : *MF) |
3459 | for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { |
3460 | MCRegister LiveInReg = P.PhysReg; |
3461 | bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); |
3462 | if (hasAliases || isAllocatable(Reg: LiveInReg) || isReserved(Reg: LiveInReg)) |
3463 | continue; |
3464 | for (const MachineBasicBlock *Pred : MBB.predecessors()) { |
3465 | BBInfo &PInfo = MBBInfoMap[Pred]; |
3466 | if (!PInfo.regsLiveOut.count(V: LiveInReg)) { |
3467 | report(msg: "Live in register not found to be live out from predecessor." , |
3468 | MBB: &MBB); |
3469 | OS << TRI->getName(RegNo: LiveInReg) << " not found to be live out from " |
3470 | << printMBBReference(MBB: *Pred) << '\n'; |
3471 | } |
3472 | } |
3473 | } |
3474 | |
3475 | for (auto CSInfo : MF->getCallSitesInfo()) |
3476 | if (!CSInfo.first->isCall()) |
3477 | report(msg: "Call site info referencing instruction that is not call" , MF); |
3478 | |
3479 | // If there's debug-info, check that we don't have any duplicate value |
3480 | // tracking numbers. |
3481 | if (MF->getFunction().getSubprogram()) { |
3482 | DenseSet<unsigned> SeenNumbers; |
3483 | for (const auto &MBB : *MF) { |
3484 | for (const auto &MI : MBB) { |
3485 | if (auto Num = MI.peekDebugInstrNum()) { |
3486 | auto Result = SeenNumbers.insert(V: (unsigned)Num); |
3487 | if (!Result.second) |
3488 | report(msg: "Instruction has a duplicated value tracking number" , MI: &MI); |
3489 | } |
3490 | } |
3491 | } |
3492 | } |
3493 | } |
3494 | |
3495 | void MachineVerifier::verifyLiveVariables() { |
3496 | assert(LiveVars && "Don't call verifyLiveVariables without LiveVars" ); |
3497 | for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { |
3498 | Register Reg = Register::index2VirtReg(Index: I); |
3499 | LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); |
3500 | for (const auto &MBB : *MF) { |
3501 | BBInfo &MInfo = MBBInfoMap[&MBB]; |
3502 | |
3503 | // Our vregsRequired should be identical to LiveVariables' AliveBlocks |
3504 | if (MInfo.vregsRequired.count(V: Reg)) { |
3505 | if (!VI.AliveBlocks.test(Idx: MBB.getNumber())) { |
3506 | report(msg: "LiveVariables: Block missing from AliveBlocks" , MBB: &MBB); |
3507 | OS << "Virtual register " << printReg(Reg) |
3508 | << " must be live through the block.\n" ; |
3509 | } |
3510 | } else { |
3511 | if (VI.AliveBlocks.test(Idx: MBB.getNumber())) { |
3512 | report(msg: "LiveVariables: Block should not be in AliveBlocks" , MBB: &MBB); |
3513 | OS << "Virtual register " << printReg(Reg) |
3514 | << " is not needed live through the block.\n" ; |
3515 | } |
3516 | } |
3517 | } |
3518 | } |
3519 | } |
3520 | |
3521 | void MachineVerifier::verifyLiveIntervals() { |
3522 | assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts" ); |
3523 | for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { |
3524 | Register Reg = Register::index2VirtReg(Index: I); |
3525 | |
3526 | // Spilling and splitting may leave unused registers around. Skip them. |
3527 | if (MRI->reg_nodbg_empty(RegNo: Reg)) |
3528 | continue; |
3529 | |
3530 | if (!LiveInts->hasInterval(Reg)) { |
3531 | report(msg: "Missing live interval for virtual register" , MF); |
3532 | OS << printReg(Reg, TRI) << " still has defs or uses\n" ; |
3533 | continue; |
3534 | } |
3535 | |
3536 | const LiveInterval &LI = LiveInts->getInterval(Reg); |
3537 | assert(Reg == LI.reg() && "Invalid reg to interval mapping" ); |
3538 | verifyLiveInterval(LI); |
3539 | } |
3540 | |
3541 | // Verify all the cached regunit intervals. |
3542 | for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) |
3543 | if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit: i)) |
3544 | verifyLiveRange(*LR, VirtRegOrUnit(i)); |
3545 | } |
3546 | |
3547 | void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, |
3548 | const VNInfo *VNI, |
3549 | VirtRegOrUnit VRegOrUnit, |
3550 | LaneBitmask LaneMask) { |
3551 | if (VNI->isUnused()) |
3552 | return; |
3553 | |
3554 | const VNInfo *DefVNI = LR.getVNInfoAt(Idx: VNI->def); |
3555 | |
3556 | if (!DefVNI) { |
3557 | report(msg: "Value not live at VNInfo def and not marked unused" , MF); |
3558 | report_context(LR, VRegOrUnit, LaneMask); |
3559 | report_context(VNI: *VNI); |
3560 | return; |
3561 | } |
3562 | |
3563 | if (DefVNI != VNI) { |
3564 | report(msg: "Live segment at def has different VNInfo" , MF); |
3565 | report_context(LR, VRegOrUnit, LaneMask); |
3566 | report_context(VNI: *VNI); |
3567 | return; |
3568 | } |
3569 | |
3570 | const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(index: VNI->def); |
3571 | if (!MBB) { |
3572 | report(msg: "Invalid VNInfo definition index" , MF); |
3573 | report_context(LR, VRegOrUnit, LaneMask); |
3574 | report_context(VNI: *VNI); |
3575 | return; |
3576 | } |
3577 | |
3578 | if (VNI->isPHIDef()) { |
3579 | if (VNI->def != LiveInts->getMBBStartIdx(mbb: MBB)) { |
3580 | report(msg: "PHIDef VNInfo is not defined at MBB start" , MBB); |
3581 | report_context(LR, VRegOrUnit, LaneMask); |
3582 | report_context(VNI: *VNI); |
3583 | } |
3584 | return; |
3585 | } |
3586 | |
3587 | // Non-PHI def. |
3588 | const MachineInstr *MI = LiveInts->getInstructionFromIndex(index: VNI->def); |
3589 | if (!MI) { |
3590 | report(msg: "No instruction at VNInfo def index" , MBB); |
3591 | report_context(LR, VRegOrUnit, LaneMask); |
3592 | report_context(VNI: *VNI); |
3593 | return; |
3594 | } |
3595 | |
3596 | bool hasDef = false; |
3597 | bool isEarlyClobber = false; |
3598 | for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { |
3599 | if (!MOI->isReg() || !MOI->isDef()) |
3600 | continue; |
3601 | if (VRegOrUnit.isVirtualReg()) { |
3602 | if (MOI->getReg() != VRegOrUnit.asVirtualReg()) |
3603 | continue; |
3604 | } else { |
3605 | if (!MOI->getReg().isPhysical() || |
3606 | !TRI->hasRegUnit(Reg: MOI->getReg(), RegUnit: VRegOrUnit.asMCRegUnit())) |
3607 | continue; |
3608 | } |
3609 | if (LaneMask.any() && |
3610 | (TRI->getSubRegIndexLaneMask(SubIdx: MOI->getSubReg()) & LaneMask).none()) |
3611 | continue; |
3612 | hasDef = true; |
3613 | if (MOI->isEarlyClobber()) |
3614 | isEarlyClobber = true; |
3615 | } |
3616 | |
3617 | if (!hasDef) { |
3618 | report(msg: "Defining instruction does not modify register" , MI); |
3619 | report_context(LR, VRegOrUnit, LaneMask); |
3620 | report_context(VNI: *VNI); |
3621 | } |
3622 | |
3623 | // Early clobber defs begin at USE slots, but other defs must begin at |
3624 | // DEF slots. |
3625 | if (isEarlyClobber) { |
3626 | if (!VNI->def.isEarlyClobber()) { |
3627 | report(msg: "Early clobber def must be at an early-clobber slot" , MBB); |
3628 | report_context(LR, VRegOrUnit, LaneMask); |
3629 | report_context(VNI: *VNI); |
3630 | } |
3631 | } else if (!VNI->def.isRegister()) { |
3632 | report(msg: "Non-PHI, non-early clobber def must be at a register slot" , MBB); |
3633 | report_context(LR, VRegOrUnit, LaneMask); |
3634 | report_context(VNI: *VNI); |
3635 | } |
3636 | } |
3637 | |
3638 | void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, |
3639 | const LiveRange::const_iterator I, |
3640 | VirtRegOrUnit VRegOrUnit, |
3641 | LaneBitmask LaneMask) { |
3642 | const LiveRange::Segment &S = *I; |
3643 | const VNInfo *VNI = S.valno; |
3644 | assert(VNI && "Live segment has no valno" ); |
3645 | |
3646 | if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(ValNo: VNI->id)) { |
3647 | report(msg: "Foreign valno in live segment" , MF); |
3648 | report_context(LR, VRegOrUnit, LaneMask); |
3649 | report_context(S); |
3650 | report_context(VNI: *VNI); |
3651 | } |
3652 | |
3653 | if (VNI->isUnused()) { |
3654 | report(msg: "Live segment valno is marked unused" , MF); |
3655 | report_context(LR, VRegOrUnit, LaneMask); |
3656 | report_context(S); |
3657 | } |
3658 | |
3659 | const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(index: S.start); |
3660 | if (!MBB) { |
3661 | report(msg: "Bad start of live segment, no basic block" , MF); |
3662 | report_context(LR, VRegOrUnit, LaneMask); |
3663 | report_context(S); |
3664 | return; |
3665 | } |
3666 | SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(mbb: MBB); |
3667 | if (S.start != MBBStartIdx && S.start != VNI->def) { |
3668 | report(msg: "Live segment must begin at MBB entry or valno def" , MBB); |
3669 | report_context(LR, VRegOrUnit, LaneMask); |
3670 | report_context(S); |
3671 | } |
3672 | |
3673 | const MachineBasicBlock *EndMBB = |
3674 | LiveInts->getMBBFromIndex(index: S.end.getPrevSlot()); |
3675 | if (!EndMBB) { |
3676 | report(msg: "Bad end of live segment, no basic block" , MF); |
3677 | report_context(LR, VRegOrUnit, LaneMask); |
3678 | report_context(S); |
3679 | return; |
3680 | } |
3681 | |
3682 | // Checks for non-live-out segments. |
3683 | if (S.end != LiveInts->getMBBEndIdx(mbb: EndMBB)) { |
3684 | // RegUnit intervals are allowed dead phis. |
3685 | if (!VRegOrUnit.isVirtualReg() && VNI->isPHIDef() && S.start == VNI->def && |
3686 | S.end == VNI->def.getDeadSlot()) |
3687 | return; |
3688 | |
3689 | // The live segment is ending inside EndMBB |
3690 | const MachineInstr *MI = |
3691 | LiveInts->getInstructionFromIndex(index: S.end.getPrevSlot()); |
3692 | if (!MI) { |
3693 | report(msg: "Live segment doesn't end at a valid instruction" , MBB: EndMBB); |
3694 | report_context(LR, VRegOrUnit, LaneMask); |
3695 | report_context(S); |
3696 | return; |
3697 | } |
3698 | |
3699 | // The block slot must refer to a basic block boundary. |
3700 | if (S.end.isBlock()) { |
3701 | report(msg: "Live segment ends at B slot of an instruction" , MBB: EndMBB); |
3702 | report_context(LR, VRegOrUnit, LaneMask); |
3703 | report_context(S); |
3704 | } |
3705 | |
3706 | if (S.end.isDead()) { |
3707 | // Segment ends on the dead slot. |
3708 | // That means there must be a dead def. |
3709 | if (!SlotIndex::isSameInstr(A: S.start, B: S.end)) { |
3710 | report(msg: "Live segment ending at dead slot spans instructions" , MBB: EndMBB); |
3711 | report_context(LR, VRegOrUnit, LaneMask); |
3712 | report_context(S); |
3713 | } |
3714 | } |
3715 | |
3716 | // After tied operands are rewritten, a live segment can only end at an |
3717 | // early-clobber slot if it is being redefined by an early-clobber def. |
3718 | // TODO: Before tied operands are rewritten, a live segment can only end at |
3719 | // an early-clobber slot if the last use is tied to an early-clobber def. |
3720 | if (MF->getProperties().hasTiedOpsRewritten() && S.end.isEarlyClobber()) { |
3721 | if (I + 1 == LR.end() || (I + 1)->start != S.end) { |
3722 | report(msg: "Live segment ending at early clobber slot must be " |
3723 | "redefined by an EC def in the same instruction" , |
3724 | MBB: EndMBB); |
3725 | report_context(LR, VRegOrUnit, LaneMask); |
3726 | report_context(S); |
3727 | } |
3728 | } |
3729 | |
3730 | // The following checks only apply to virtual registers. Physreg liveness |
3731 | // is too weird to check. |
3732 | if (VRegOrUnit.isVirtualReg()) { |
3733 | // A live segment can end with either a redefinition, a kill flag on a |
3734 | // use, or a dead flag on a def. |
3735 | bool hasRead = false; |
3736 | bool hasSubRegDef = false; |
3737 | bool hasDeadDef = false; |
3738 | for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { |
3739 | if (!MOI->isReg() || MOI->getReg() != VRegOrUnit.asVirtualReg()) |
3740 | continue; |
3741 | unsigned Sub = MOI->getSubReg(); |
3742 | LaneBitmask SLM = |
3743 | Sub != 0 ? TRI->getSubRegIndexLaneMask(SubIdx: Sub) : LaneBitmask::getAll(); |
3744 | if (MOI->isDef()) { |
3745 | if (Sub != 0) { |
3746 | hasSubRegDef = true; |
3747 | // An operand %0:sub0 reads %0:sub1..n. Invert the lane |
3748 | // mask for subregister defs. Read-undef defs will be handled by |
3749 | // readsReg below. |
3750 | SLM = ~SLM; |
3751 | } |
3752 | if (MOI->isDead()) |
3753 | hasDeadDef = true; |
3754 | } |
3755 | if (LaneMask.any() && (LaneMask & SLM).none()) |
3756 | continue; |
3757 | if (MOI->readsReg()) |
3758 | hasRead = true; |
3759 | } |
3760 | if (S.end.isDead()) { |
3761 | // Make sure that the corresponding machine operand for a "dead" live |
3762 | // range has the dead flag. We cannot perform this check for subregister |
3763 | // liveranges as partially dead values are allowed. |
3764 | if (LaneMask.none() && !hasDeadDef) { |
3765 | report( |
3766 | msg: "Instruction ending live segment on dead slot has no dead flag" , |
3767 | MI); |
3768 | report_context(LR, VRegOrUnit, LaneMask); |
3769 | report_context(S); |
3770 | } |
3771 | } else { |
3772 | if (!hasRead) { |
3773 | // When tracking subregister liveness, the main range must start new |
3774 | // values on partial register writes, even if there is no read. |
3775 | if (!MRI->shouldTrackSubRegLiveness(VReg: VRegOrUnit.asVirtualReg()) || |
3776 | LaneMask.any() || !hasSubRegDef) { |
3777 | report(msg: "Instruction ending live segment doesn't read the register" , |
3778 | MI); |
3779 | report_context(LR, VRegOrUnit, LaneMask); |
3780 | report_context(S); |
3781 | } |
3782 | } |
3783 | } |
3784 | } |
3785 | } |
3786 | |
3787 | // Now check all the basic blocks in this live segment. |
3788 | MachineFunction::const_iterator MFI = MBB->getIterator(); |
3789 | // Is this live segment the beginning of a non-PHIDef VN? |
3790 | if (S.start == VNI->def && !VNI->isPHIDef()) { |
3791 | // Not live-in to any blocks. |
3792 | if (MBB == EndMBB) |
3793 | return; |
3794 | // Skip this block. |
3795 | ++MFI; |
3796 | } |
3797 | |
3798 | SmallVector<SlotIndex, 4> Undefs; |
3799 | if (LaneMask.any()) { |
3800 | LiveInterval &OwnerLI = LiveInts->getInterval(Reg: VRegOrUnit.asVirtualReg()); |
3801 | OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, MRI: *MRI, Indexes: *Indexes); |
3802 | } |
3803 | |
3804 | while (true) { |
3805 | assert(LiveInts->isLiveInToMBB(LR, &*MFI)); |
3806 | // We don't know how to track physregs into a landing pad. |
3807 | if (!VRegOrUnit.isVirtualReg() && MFI->isEHPad()) { |
3808 | if (&*MFI == EndMBB) |
3809 | break; |
3810 | ++MFI; |
3811 | continue; |
3812 | } |
3813 | |
3814 | // Is VNI a PHI-def in the current block? |
3815 | bool IsPHI = VNI->isPHIDef() && |
3816 | VNI->def == LiveInts->getMBBStartIdx(mbb: &*MFI); |
3817 | |
3818 | // Check that VNI is live-out of all predecessors. |
3819 | for (const MachineBasicBlock *Pred : MFI->predecessors()) { |
3820 | SlotIndex PEnd = LiveInts->getMBBEndIdx(mbb: Pred); |
3821 | // Predecessor of landing pad live-out on last call. |
3822 | if (MFI->isEHPad()) { |
3823 | for (const MachineInstr &MI : llvm::reverse(C: *Pred)) { |
3824 | if (MI.isCall()) { |
3825 | PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex(); |
3826 | break; |
3827 | } |
3828 | } |
3829 | } |
3830 | const VNInfo *PVNI = LR.getVNInfoBefore(Idx: PEnd); |
3831 | |
3832 | // All predecessors must have a live-out value. However for a phi |
3833 | // instruction with subregister intervals |
3834 | // only one of the subregisters (not necessarily the current one) needs to |
3835 | // be defined. |
3836 | if (!PVNI && (LaneMask.none() || !IsPHI)) { |
3837 | if (LiveRangeCalc::isJointlyDominated(MBB: Pred, Defs: Undefs, Indexes: *Indexes)) |
3838 | continue; |
3839 | report(msg: "Register not marked live out of predecessor" , MBB: Pred); |
3840 | report_context(LR, VRegOrUnit, LaneMask); |
3841 | report_context(VNI: *VNI); |
3842 | OS << " live into " << printMBBReference(MBB: *MFI) << '@' |
3843 | << LiveInts->getMBBStartIdx(mbb: &*MFI) << ", not live before " << PEnd |
3844 | << '\n'; |
3845 | continue; |
3846 | } |
3847 | |
3848 | // Only PHI-defs can take different predecessor values. |
3849 | if (!IsPHI && PVNI != VNI) { |
3850 | report(msg: "Different value live out of predecessor" , MBB: Pred); |
3851 | report_context(LR, VRegOrUnit, LaneMask); |
3852 | OS << "Valno #" << PVNI->id << " live out of " |
3853 | << printMBBReference(MBB: *Pred) << '@' << PEnd << "\nValno #" << VNI->id |
3854 | << " live into " << printMBBReference(MBB: *MFI) << '@' |
3855 | << LiveInts->getMBBStartIdx(mbb: &*MFI) << '\n'; |
3856 | } |
3857 | } |
3858 | if (&*MFI == EndMBB) |
3859 | break; |
3860 | ++MFI; |
3861 | } |
3862 | } |
3863 | |
3864 | void MachineVerifier::verifyLiveRange(const LiveRange &LR, |
3865 | VirtRegOrUnit VRegOrUnit, |
3866 | LaneBitmask LaneMask) { |
3867 | for (const VNInfo *VNI : LR.valnos) |
3868 | verifyLiveRangeValue(LR, VNI, VRegOrUnit, LaneMask); |
3869 | |
3870 | for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) |
3871 | verifyLiveRangeSegment(LR, I, VRegOrUnit, LaneMask); |
3872 | } |
3873 | |
3874 | void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { |
3875 | Register Reg = LI.reg(); |
3876 | assert(Reg.isVirtual()); |
3877 | verifyLiveRange(LR: LI, VRegOrUnit: VirtRegOrUnit(Reg)); |
3878 | |
3879 | if (LI.hasSubRanges()) { |
3880 | LaneBitmask Mask; |
3881 | LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); |
3882 | for (const LiveInterval::SubRange &SR : LI.subranges()) { |
3883 | if ((Mask & SR.LaneMask).any()) { |
3884 | report(msg: "Lane masks of sub ranges overlap in live interval" , MF); |
3885 | report_context(LI); |
3886 | } |
3887 | if ((SR.LaneMask & ~MaxMask).any()) { |
3888 | report(msg: "Subrange lanemask is invalid" , MF); |
3889 | report_context(LI); |
3890 | } |
3891 | if (SR.empty()) { |
3892 | report(msg: "Subrange must not be empty" , MF); |
3893 | report_context(LR: SR, VRegOrUnit: VirtRegOrUnit(LI.reg()), LaneMask: SR.LaneMask); |
3894 | } |
3895 | Mask |= SR.LaneMask; |
3896 | verifyLiveRange(LR: SR, VRegOrUnit: VirtRegOrUnit(LI.reg()), LaneMask: SR.LaneMask); |
3897 | if (!LI.covers(Other: SR)) { |
3898 | report(msg: "A Subrange is not covered by the main range" , MF); |
3899 | report_context(LI); |
3900 | } |
3901 | } |
3902 | } |
3903 | |
3904 | // Check the LI only has one connected component. |
3905 | ConnectedVNInfoEqClasses ConEQ(*LiveInts); |
3906 | unsigned NumComp = ConEQ.Classify(LR: LI); |
3907 | if (NumComp > 1) { |
3908 | report(msg: "Multiple connected components in live interval" , MF); |
3909 | report_context(LI); |
3910 | for (unsigned comp = 0; comp != NumComp; ++comp) { |
3911 | OS << comp << ": valnos" ; |
3912 | for (const VNInfo *I : LI.valnos) |
3913 | if (comp == ConEQ.getEqClass(VNI: I)) |
3914 | OS << ' ' << I->id; |
3915 | OS << '\n'; |
3916 | } |
3917 | } |
3918 | } |
3919 | |
3920 | namespace { |
3921 | |
3922 | // FrameSetup and FrameDestroy can have zero adjustment, so using a single |
3923 | // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the |
3924 | // value is zero. |
3925 | // We use a bool plus an integer to capture the stack state. |
3926 | struct StackStateOfBB { |
3927 | StackStateOfBB() = default; |
3928 | StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) |
3929 | : EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), |
3930 | ExitIsSetup(ExitSetup) {} |
3931 | |
3932 | // Can be negative, which means we are setting up a frame. |
3933 | int EntryValue = 0; |
3934 | int ExitValue = 0; |
3935 | bool EntryIsSetup = false; |
3936 | bool ExitIsSetup = false; |
3937 | }; |
3938 | |
3939 | } // end anonymous namespace |
3940 | |
3941 | /// Make sure on every path through the CFG, a FrameSetup <n> is always followed |
3942 | /// by a FrameDestroy <n>, stack adjustments are identical on all |
3943 | /// CFG edges to a merge point, and frame is destroyed at end of a return block. |
3944 | void MachineVerifier::verifyStackFrame() { |
3945 | unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); |
3946 | unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); |
3947 | if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) |
3948 | return; |
3949 | |
3950 | SmallVector<StackStateOfBB, 8> SPState; |
3951 | SPState.resize(N: MF->getNumBlockIDs()); |
3952 | df_iterator_default_set<const MachineBasicBlock*> Reachable; |
3953 | |
3954 | // Visit the MBBs in DFS order. |
3955 | for (df_ext_iterator<const MachineFunction *, |
3956 | df_iterator_default_set<const MachineBasicBlock *>> |
3957 | DFI = df_ext_begin(G: MF, S&: Reachable), DFE = df_ext_end(G: MF, S&: Reachable); |
3958 | DFI != DFE; ++DFI) { |
3959 | const MachineBasicBlock *MBB = *DFI; |
3960 | |
3961 | StackStateOfBB BBState; |
3962 | // Check the exit state of the DFS stack predecessor. |
3963 | if (DFI.getPathLength() >= 2) { |
3964 | const MachineBasicBlock *StackPred = DFI.getPath(n: DFI.getPathLength() - 2); |
3965 | assert(Reachable.count(StackPred) && |
3966 | "DFS stack predecessor is already visited.\n" ); |
3967 | BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; |
3968 | BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; |
3969 | BBState.ExitValue = BBState.EntryValue; |
3970 | BBState.ExitIsSetup = BBState.EntryIsSetup; |
3971 | } |
3972 | |
3973 | if ((int)MBB->getCallFrameSize() != -BBState.EntryValue) { |
3974 | report(msg: "Call frame size on entry does not match value computed from " |
3975 | "predecessor" , |
3976 | MBB); |
3977 | OS << "Call frame size on entry " << MBB->getCallFrameSize() |
3978 | << " does not match value computed from predecessor " |
3979 | << -BBState.EntryValue << '\n'; |
3980 | } |
3981 | |
3982 | // Update stack state by checking contents of MBB. |
3983 | for (const auto &I : *MBB) { |
3984 | if (I.getOpcode() == FrameSetupOpcode) { |
3985 | if (BBState.ExitIsSetup) |
3986 | report(msg: "FrameSetup is after another FrameSetup" , MI: &I); |
3987 | if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) |
3988 | report(msg: "AdjustsStack not set in presence of a frame pseudo " |
3989 | "instruction." , MI: &I); |
3990 | BBState.ExitValue -= TII->getFrameTotalSize(I); |
3991 | BBState.ExitIsSetup = true; |
3992 | } |
3993 | |
3994 | if (I.getOpcode() == FrameDestroyOpcode) { |
3995 | int Size = TII->getFrameTotalSize(I); |
3996 | if (!BBState.ExitIsSetup) |
3997 | report(msg: "FrameDestroy is not after a FrameSetup" , MI: &I); |
3998 | int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : |
3999 | BBState.ExitValue; |
4000 | if (BBState.ExitIsSetup && AbsSPAdj != Size) { |
4001 | report(msg: "FrameDestroy <n> is after FrameSetup <m>" , MI: &I); |
4002 | OS << "FrameDestroy <" << Size << "> is after FrameSetup <" |
4003 | << AbsSPAdj << ">.\n" ; |
4004 | } |
4005 | if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) |
4006 | report(msg: "AdjustsStack not set in presence of a frame pseudo " |
4007 | "instruction." , MI: &I); |
4008 | BBState.ExitValue += Size; |
4009 | BBState.ExitIsSetup = false; |
4010 | } |
4011 | } |
4012 | SPState[MBB->getNumber()] = BBState; |
4013 | |
4014 | // Make sure the exit state of any predecessor is consistent with the entry |
4015 | // state. |
4016 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
4017 | if (Reachable.count(Ptr: Pred) && |
4018 | (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || |
4019 | SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { |
4020 | report(msg: "The exit stack state of a predecessor is inconsistent." , MBB); |
4021 | OS << "Predecessor " << printMBBReference(MBB: *Pred) << " has exit state (" |
4022 | << SPState[Pred->getNumber()].ExitValue << ", " |
4023 | << SPState[Pred->getNumber()].ExitIsSetup << "), while " |
4024 | << printMBBReference(MBB: *MBB) << " has entry state (" |
4025 | << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n" ; |
4026 | } |
4027 | } |
4028 | |
4029 | // Make sure the entry state of any successor is consistent with the exit |
4030 | // state. |
4031 | for (const MachineBasicBlock *Succ : MBB->successors()) { |
4032 | if (Reachable.count(Ptr: Succ) && |
4033 | (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || |
4034 | SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { |
4035 | report(msg: "The entry stack state of a successor is inconsistent." , MBB); |
4036 | OS << "Successor " << printMBBReference(MBB: *Succ) << " has entry state (" |
4037 | << SPState[Succ->getNumber()].EntryValue << ", " |
4038 | << SPState[Succ->getNumber()].EntryIsSetup << "), while " |
4039 | << printMBBReference(MBB: *MBB) << " has exit state (" |
4040 | << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n" ; |
4041 | } |
4042 | } |
4043 | |
4044 | // Make sure a basic block with return ends with zero stack adjustment. |
4045 | if (!MBB->empty() && MBB->back().isReturn()) { |
4046 | if (BBState.ExitIsSetup) |
4047 | report(msg: "A return block ends with a FrameSetup." , MBB); |
4048 | if (BBState.ExitValue) |
4049 | report(msg: "A return block ends with a nonzero stack adjustment." , MBB); |
4050 | } |
4051 | } |
4052 | } |
4053 | |
4054 | void MachineVerifier::verifyStackProtector() { |
4055 | const MachineFrameInfo &MFI = MF->getFrameInfo(); |
4056 | if (!MFI.hasStackProtectorIndex()) |
4057 | return; |
4058 | // Only applicable when the offsets of frame objects have been determined, |
4059 | // which is indicated by a non-zero stack size. |
4060 | if (!MFI.getStackSize()) |
4061 | return; |
4062 | const TargetFrameLowering &TFI = *MF->getSubtarget().getFrameLowering(); |
4063 | bool StackGrowsDown = |
4064 | TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; |
4065 | unsigned FI = MFI.getStackProtectorIndex(); |
4066 | int64_t SPStart = MFI.getObjectOffset(ObjectIdx: FI); |
4067 | int64_t SPEnd = SPStart + MFI.getObjectSize(ObjectIdx: FI); |
4068 | for (unsigned I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { |
4069 | if (I == FI) |
4070 | continue; |
4071 | if (MFI.isDeadObjectIndex(ObjectIdx: I)) |
4072 | continue; |
4073 | // FIXME: Skip non-default stack objects, as some targets may place them |
4074 | // above the stack protector. This is a workaround for the fact that |
4075 | // backends such as AArch64 may place SVE stack objects *above* the stack |
4076 | // protector. |
4077 | if (MFI.getStackID(ObjectIdx: I) != TargetStackID::Default) |
4078 | continue; |
4079 | // Skip variable-sized objects because they do not have a fixed offset. |
4080 | if (MFI.isVariableSizedObjectIndex(ObjectIdx: I)) |
4081 | continue; |
4082 | // FIXME: Skip spill slots which may be allocated above the stack protector. |
4083 | // Ideally this would only skip callee-saved registers, but we don't have |
4084 | // that information here. For example, spill-slots used for scavenging are |
4085 | // not described in CalleeSavedInfo. |
4086 | if (MFI.isSpillSlotObjectIndex(ObjectIdx: I)) |
4087 | continue; |
4088 | int64_t ObjStart = MFI.getObjectOffset(ObjectIdx: I); |
4089 | int64_t ObjEnd = ObjStart + MFI.getObjectSize(ObjectIdx: I); |
4090 | if (SPStart < ObjEnd && ObjStart < SPEnd) { |
4091 | report(msg: "Stack protector overlaps with another stack object" , MF); |
4092 | break; |
4093 | } |
4094 | if ((StackGrowsDown && SPStart <= ObjStart) || |
4095 | (!StackGrowsDown && SPStart >= ObjStart)) { |
4096 | report(msg: "Stack protector is not the top-most object on the stack" , MF); |
4097 | break; |
4098 | } |
4099 | } |
4100 | } |
4101 | |