1 | //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file This implements the ScheduleDAGInstrs class, which implements |
10 | /// re-scheduling of MachineInstrs. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/CodeGen/ScheduleDAGInstrs.h" |
15 | |
16 | #include "llvm/ADT/IntEqClasses.h" |
17 | #include "llvm/ADT/MapVector.h" |
18 | #include "llvm/ADT/SmallVector.h" |
19 | #include "llvm/ADT/SparseSet.h" |
20 | #include "llvm/ADT/iterator_range.h" |
21 | #include "llvm/Analysis/AliasAnalysis.h" |
22 | #include "llvm/Analysis/ValueTracking.h" |
23 | #include "llvm/CodeGen/LiveIntervals.h" |
24 | #include "llvm/CodeGen/LivePhysRegs.h" |
25 | #include "llvm/CodeGen/MachineBasicBlock.h" |
26 | #include "llvm/CodeGen/MachineFrameInfo.h" |
27 | #include "llvm/CodeGen/MachineFunction.h" |
28 | #include "llvm/CodeGen/MachineInstr.h" |
29 | #include "llvm/CodeGen/MachineInstrBundle.h" |
30 | #include "llvm/CodeGen/MachineMemOperand.h" |
31 | #include "llvm/CodeGen/MachineOperand.h" |
32 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
33 | #include "llvm/CodeGen/PseudoSourceValue.h" |
34 | #include "llvm/CodeGen/RegisterPressure.h" |
35 | #include "llvm/CodeGen/ScheduleDAG.h" |
36 | #include "llvm/CodeGen/ScheduleDFS.h" |
37 | #include "llvm/CodeGen/SlotIndexes.h" |
38 | #include "llvm/CodeGen/TargetInstrInfo.h" |
39 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
40 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
41 | #include "llvm/Config/llvm-config.h" |
42 | #include "llvm/IR/Constants.h" |
43 | #include "llvm/IR/Function.h" |
44 | #include "llvm/IR/Type.h" |
45 | #include "llvm/IR/Value.h" |
46 | #include "llvm/MC/LaneBitmask.h" |
47 | #include "llvm/MC/MCRegisterInfo.h" |
48 | #include "llvm/Support/Casting.h" |
49 | #include "llvm/Support/CommandLine.h" |
50 | #include "llvm/Support/Compiler.h" |
51 | #include "llvm/Support/Debug.h" |
52 | #include "llvm/Support/ErrorHandling.h" |
53 | #include "llvm/Support/Format.h" |
54 | #include "llvm/Support/raw_ostream.h" |
55 | #include <algorithm> |
56 | #include <cassert> |
57 | #include <iterator> |
58 | #include <utility> |
59 | #include <vector> |
60 | |
61 | using namespace llvm; |
62 | |
63 | #define DEBUG_TYPE "machine-scheduler" |
64 | |
65 | static cl::opt<bool> |
66 | EnableAASchedMI("enable-aa-sched-mi" , cl::Hidden, |
67 | cl::desc("Enable use of AA during MI DAG construction" )); |
68 | |
69 | static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi" , cl::Hidden, |
70 | cl::init(Val: true), cl::desc("Enable use of TBAA during MI DAG construction" )); |
71 | |
72 | static cl::opt<bool> |
73 | EnableSchedModel("schedmodel" , cl::Hidden, cl::init(Val: true), |
74 | cl::desc("Use TargetSchedModel for latency lookup" )); |
75 | |
76 | static cl::opt<bool> |
77 | EnableSchedItins("scheditins" , cl::Hidden, cl::init(Val: true), |
78 | cl::desc("Use InstrItineraryData for latency lookup" )); |
79 | |
80 | // Note: the two options below might be used in tuning compile time vs |
81 | // output quality. Setting HugeRegion so large that it will never be |
82 | // reached means best-effort, but may be slow. |
83 | |
84 | // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) |
85 | // together hold this many SUs, a reduction of maps will be done. |
86 | static cl::opt<unsigned> HugeRegion("dag-maps-huge-region" , cl::Hidden, |
87 | cl::init(Val: 1000), cl::desc("The limit to use while constructing the DAG " |
88 | "prior to scheduling, at which point a trade-off " |
89 | "is made to avoid excessive compile time." )); |
90 | |
91 | static cl::opt<unsigned> ReductionSize( |
92 | "dag-maps-reduction-size" , cl::Hidden, |
93 | cl::desc("A huge scheduling region will have maps reduced by this many " |
94 | "nodes at a time. Defaults to HugeRegion / 2." )); |
95 | |
96 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
97 | static cl::opt<bool> SchedPrintCycles( |
98 | "sched-print-cycles" , cl::Hidden, cl::init(false), |
99 | cl::desc("Report top/bottom cycles when dumping SUnit instances" )); |
100 | #endif |
101 | |
102 | static unsigned getReductionSize() { |
103 | // Always reduce a huge region with half of the elements, except |
104 | // when user sets this number explicitly. |
105 | if (ReductionSize.getNumOccurrences() == 0) |
106 | return HugeRegion / 2; |
107 | return ReductionSize; |
108 | } |
109 | |
110 | static void dumpSUList(const ScheduleDAGInstrs::SUList &L) { |
111 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
112 | dbgs() << "{ " ; |
113 | for (const SUnit *SU : L) { |
114 | dbgs() << "SU(" << SU->NodeNum << ")" ; |
115 | if (SU != L.back()) |
116 | dbgs() << ", " ; |
117 | } |
118 | dbgs() << "}\n" ; |
119 | #endif |
120 | } |
121 | |
122 | ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, |
123 | const MachineLoopInfo *mli, |
124 | bool RemoveKillFlags) |
125 | : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), |
126 | RemoveKillFlags(RemoveKillFlags), |
127 | UnknownValue(UndefValue::get( |
128 | T: Type::getVoidTy(C&: mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) { |
129 | DbgValues.clear(); |
130 | |
131 | const TargetSubtargetInfo &ST = mf.getSubtarget(); |
132 | SchedModel.init(TSInfo: &ST, EnableSModel: EnableSchedModel, EnableSItins: EnableSchedItins); |
133 | } |
134 | |
135 | /// If this machine instr has memory reference information and it can be |
136 | /// tracked to a normal reference to a known object, return the Value |
137 | /// for that object. This function returns false the memory location is |
138 | /// unknown or may alias anything. |
139 | static bool getUnderlyingObjectsForInstr(const MachineInstr *MI, |
140 | const MachineFrameInfo &MFI, |
141 | UnderlyingObjectsVector &Objects, |
142 | const DataLayout &DL) { |
143 | auto AllMMOsOkay = [&]() { |
144 | for (const MachineMemOperand *MMO : MI->memoperands()) { |
145 | // TODO: Figure out whether isAtomic is really necessary (see D57601). |
146 | if (MMO->isVolatile() || MMO->isAtomic()) |
147 | return false; |
148 | |
149 | if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { |
150 | // Function that contain tail calls don't have unique PseudoSourceValue |
151 | // objects. Two PseudoSourceValues might refer to the same or |
152 | // overlapping locations. The client code calling this function assumes |
153 | // this is not the case. So return a conservative answer of no known |
154 | // object. |
155 | if (MFI.hasTailCall()) |
156 | return false; |
157 | |
158 | // For now, ignore PseudoSourceValues which may alias LLVM IR values |
159 | // because the code that uses this function has no way to cope with |
160 | // such aliases. |
161 | if (PSV->isAliased(&MFI)) |
162 | return false; |
163 | |
164 | bool MayAlias = PSV->mayAlias(&MFI); |
165 | Objects.emplace_back(Args&: PSV, Args&: MayAlias); |
166 | } else if (const Value *V = MMO->getValue()) { |
167 | SmallVector<Value *, 4> Objs; |
168 | if (!getUnderlyingObjectsForCodeGen(V, Objects&: Objs)) |
169 | return false; |
170 | |
171 | for (Value *V : Objs) { |
172 | assert(isIdentifiedObject(V)); |
173 | Objects.emplace_back(Args&: V, Args: true); |
174 | } |
175 | } else |
176 | return false; |
177 | } |
178 | return true; |
179 | }; |
180 | |
181 | if (!AllMMOsOkay()) { |
182 | Objects.clear(); |
183 | return false; |
184 | } |
185 | |
186 | return true; |
187 | } |
188 | |
189 | void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { |
190 | BB = bb; |
191 | } |
192 | |
193 | void ScheduleDAGInstrs::finishBlock() { |
194 | // Subclasses should no longer refer to the old block. |
195 | BB = nullptr; |
196 | } |
197 | |
198 | void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, |
199 | MachineBasicBlock::iterator begin, |
200 | MachineBasicBlock::iterator end, |
201 | unsigned regioninstrs) { |
202 | assert(bb == BB && "startBlock should set BB" ); |
203 | RegionBegin = begin; |
204 | RegionEnd = end; |
205 | NumRegionInstrs = regioninstrs; |
206 | } |
207 | |
208 | void ScheduleDAGInstrs::exitRegion() { |
209 | // Nothing to do. |
210 | } |
211 | |
212 | void ScheduleDAGInstrs::addSchedBarrierDeps() { |
213 | MachineInstr *ExitMI = |
214 | RegionEnd != BB->end() |
215 | ? &*skipDebugInstructionsBackward(It: RegionEnd, Begin: RegionBegin) |
216 | : nullptr; |
217 | ExitSU.setInstr(ExitMI); |
218 | // Add dependencies on the defs and uses of the instruction. |
219 | if (ExitMI) { |
220 | const MCInstrDesc &MIDesc = ExitMI->getDesc(); |
221 | for (const MachineOperand &MO : ExitMI->all_uses()) { |
222 | unsigned OpIdx = MO.getOperandNo(); |
223 | Register Reg = MO.getReg(); |
224 | if (Reg.isPhysical()) { |
225 | // addPhysRegDataDeps uses the provided operand index to retrieve |
226 | // the operand use cycle from the scheduling model. If the operand |
227 | // is "fake" (e.g., an operand of a call instruction used to pass |
228 | // an argument to the called function.), the scheduling model may not |
229 | // have an entry for it. If this is the case, pass -1 as operand index, |
230 | // which will cause addPhysRegDataDeps to add an artificial dependency. |
231 | // FIXME: Using hasImplicitUseOfPhysReg here is inaccurate as it misses |
232 | // aliases. When fixing, make sure to update addPhysRegDataDeps, too. |
233 | bool IsRealUse = OpIdx < MIDesc.getNumOperands() || |
234 | MIDesc.hasImplicitUseOfPhysReg(Reg); |
235 | for (MCRegUnit Unit : TRI->regunits(Reg)) |
236 | Uses.insert(Val: PhysRegSUOper(&ExitSU, IsRealUse ? OpIdx : -1, Unit)); |
237 | } else if (Reg.isVirtual() && MO.readsReg()) { |
238 | addVRegUseDeps(SU: &ExitSU, OperIdx: OpIdx); |
239 | } |
240 | } |
241 | } |
242 | if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { |
243 | // For others, e.g. fallthrough, conditional branch, assume the exit |
244 | // uses all the registers that are livein to the successor blocks. |
245 | for (const MachineBasicBlock *Succ : BB->successors()) { |
246 | for (const auto &LI : Succ->liveins()) { |
247 | for (MCRegUnitMaskIterator U(LI.PhysReg, TRI); U.isValid(); ++U) { |
248 | auto [Unit, Mask] = *U; |
249 | if ((Mask & LI.LaneMask).any() && !Uses.contains(Key: Unit)) |
250 | Uses.insert(Val: PhysRegSUOper(&ExitSU, -1, Unit)); |
251 | } |
252 | } |
253 | } |
254 | } |
255 | } |
256 | |
257 | /// MO is an operand of SU's instruction that defines a physical register. Adds |
258 | /// data dependencies from SU to any uses of the physical register. |
259 | void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { |
260 | const MachineOperand &MO = SU->getInstr()->getOperand(i: OperIdx); |
261 | assert(MO.isDef() && "expect physreg def" ); |
262 | Register Reg = MO.getReg(); |
263 | |
264 | // Ask the target if address-backscheduling is desirable, and if so how much. |
265 | const TargetSubtargetInfo &ST = MF.getSubtarget(); |
266 | |
267 | // Only use any non-zero latency for real defs/uses, in contrast to |
268 | // "fake" operands added by regalloc. |
269 | const MCInstrDesc &DefMIDesc = SU->getInstr()->getDesc(); |
270 | bool ImplicitPseudoDef = (OperIdx >= DefMIDesc.getNumOperands() && |
271 | !DefMIDesc.hasImplicitDefOfPhysReg(Reg)); |
272 | for (MCRegUnit Unit : TRI->regunits(Reg)) { |
273 | for (RegUnit2SUnitsMap::iterator I = Uses.find(Key: Unit); I != Uses.end(); |
274 | ++I) { |
275 | SUnit *UseSU = I->SU; |
276 | if (UseSU == SU) |
277 | continue; |
278 | |
279 | // Adjust the dependence latency using operand def/use information, |
280 | // then allow the target to perform its own adjustments. |
281 | MachineInstr *UseInstr = nullptr; |
282 | int UseOpIdx = I->OpIdx; |
283 | bool ImplicitPseudoUse = false; |
284 | SDep Dep; |
285 | if (UseOpIdx < 0) { |
286 | Dep = SDep(SU, SDep::Artificial); |
287 | } else { |
288 | // Set the hasPhysRegDefs only for physreg defs that have a use within |
289 | // the scheduling region. |
290 | SU->hasPhysRegDefs = true; |
291 | |
292 | UseInstr = UseSU->getInstr(); |
293 | Register UseReg = UseInstr->getOperand(i: UseOpIdx).getReg(); |
294 | const MCInstrDesc &UseMIDesc = UseInstr->getDesc(); |
295 | ImplicitPseudoUse = UseOpIdx >= ((int)UseMIDesc.getNumOperands()) && |
296 | !UseMIDesc.hasImplicitUseOfPhysReg(Reg: UseReg); |
297 | |
298 | Dep = SDep(SU, SDep::Data, UseReg); |
299 | } |
300 | if (!ImplicitPseudoDef && !ImplicitPseudoUse) { |
301 | Dep.setLatency(SchedModel.computeOperandLatency(DefMI: SU->getInstr(), DefOperIdx: OperIdx, |
302 | UseMI: UseInstr, UseOperIdx: UseOpIdx)); |
303 | } else { |
304 | Dep.setLatency(0); |
305 | } |
306 | ST.adjustSchedDependency(Def: SU, DefOpIdx: OperIdx, Use: UseSU, UseOpIdx, Dep, SchedModel: &SchedModel); |
307 | UseSU->addPred(D: Dep); |
308 | } |
309 | } |
310 | } |
311 | |
312 | /// Adds register dependencies (data, anti, and output) from this SUnit |
313 | /// to following instructions in the same scheduling region that depend the |
314 | /// physical register referenced at OperIdx. |
315 | void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { |
316 | MachineInstr *MI = SU->getInstr(); |
317 | MachineOperand &MO = MI->getOperand(i: OperIdx); |
318 | Register Reg = MO.getReg(); |
319 | // We do not need to track any dependencies for constant registers. |
320 | if (MRI.isConstantPhysReg(PhysReg: Reg)) |
321 | return; |
322 | |
323 | const TargetSubtargetInfo &ST = MF.getSubtarget(); |
324 | |
325 | // Optionally add output and anti dependencies. For anti |
326 | // dependencies we use a latency of 0 because for a multi-issue |
327 | // target we want to allow the defining instruction to issue |
328 | // in the same cycle as the using instruction. |
329 | // TODO: Using a latency of 1 here for output dependencies assumes |
330 | // there's no cost for reusing registers. |
331 | SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; |
332 | for (MCRegUnit Unit : TRI->regunits(Reg)) { |
333 | for (RegUnit2SUnitsMap::iterator I = Defs.find(Key: Unit); I != Defs.end(); |
334 | ++I) { |
335 | SUnit *DefSU = I->SU; |
336 | if (DefSU == &ExitSU) |
337 | continue; |
338 | MachineInstr *DefInstr = DefSU->getInstr(); |
339 | MachineOperand &DefMO = DefInstr->getOperand(i: I->OpIdx); |
340 | if (DefSU != SU && |
341 | (Kind != SDep::Output || !MO.isDead() || !DefMO.isDead())) { |
342 | SDep Dep(SU, Kind, DefMO.getReg()); |
343 | if (Kind != SDep::Anti) { |
344 | Dep.setLatency( |
345 | SchedModel.computeOutputLatency(DefMI: MI, DefOperIdx: OperIdx, DepMI: DefInstr)); |
346 | } |
347 | ST.adjustSchedDependency(Def: SU, DefOpIdx: OperIdx, Use: DefSU, UseOpIdx: I->OpIdx, Dep, |
348 | SchedModel: &SchedModel); |
349 | DefSU->addPred(D: Dep); |
350 | } |
351 | } |
352 | } |
353 | |
354 | if (MO.isUse()) { |
355 | SU->hasPhysRegUses = true; |
356 | // Either insert a new Reg2SUnits entry with an empty SUnits list, or |
357 | // retrieve the existing SUnits list for this register's uses. |
358 | // Push this SUnit on the use list. |
359 | for (MCRegUnit Unit : TRI->regunits(Reg)) |
360 | Uses.insert(Val: PhysRegSUOper(SU, OperIdx, Unit)); |
361 | if (RemoveKillFlags) |
362 | MO.setIsKill(false); |
363 | } else { |
364 | addPhysRegDataDeps(SU, OperIdx); |
365 | |
366 | // Clear previous uses and defs of this register and its subregisters. |
367 | for (MCRegUnit Unit : TRI->regunits(Reg)) { |
368 | Uses.eraseAll(K: Unit); |
369 | if (!MO.isDead()) |
370 | Defs.eraseAll(K: Unit); |
371 | } |
372 | |
373 | if (MO.isDead() && SU->isCall) { |
374 | // Calls will not be reordered because of chain dependencies (see |
375 | // below). Since call operands are dead, calls may continue to be added |
376 | // to the DefList making dependence checking quadratic in the size of |
377 | // the block. Instead, we leave only one call at the back of the |
378 | // DefList. |
379 | for (MCRegUnit Unit : TRI->regunits(Reg)) { |
380 | RegUnit2SUnitsMap::RangePair P = Defs.equal_range(K: Unit); |
381 | RegUnit2SUnitsMap::iterator B = P.first; |
382 | RegUnit2SUnitsMap::iterator I = P.second; |
383 | for (bool isBegin = I == B; !isBegin; /* empty */) { |
384 | isBegin = (--I) == B; |
385 | if (!I->SU->isCall) |
386 | break; |
387 | I = Defs.erase(I); |
388 | } |
389 | } |
390 | } |
391 | |
392 | // Defs are pushed in the order they are visited and never reordered. |
393 | for (MCRegUnit Unit : TRI->regunits(Reg)) |
394 | Defs.insert(Val: PhysRegSUOper(SU, OperIdx, Unit)); |
395 | } |
396 | } |
397 | |
398 | LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const |
399 | { |
400 | Register Reg = MO.getReg(); |
401 | // No point in tracking lanemasks if we don't have interesting subregisters. |
402 | const TargetRegisterClass &RC = *MRI.getRegClass(Reg); |
403 | if (!RC.HasDisjunctSubRegs) |
404 | return LaneBitmask::getAll(); |
405 | |
406 | unsigned SubReg = MO.getSubReg(); |
407 | if (SubReg == 0) |
408 | return RC.getLaneMask(); |
409 | return TRI->getSubRegIndexLaneMask(SubIdx: SubReg); |
410 | } |
411 | |
412 | bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) { |
413 | auto RegUse = CurrentVRegUses.find(Key: MO.getReg()); |
414 | if (RegUse == CurrentVRegUses.end()) |
415 | return true; |
416 | return (RegUse->LaneMask & getLaneMaskForMO(MO)).none(); |
417 | } |
418 | |
419 | /// Adds register output and data dependencies from this SUnit to instructions |
420 | /// that occur later in the same scheduling region if they read from or write to |
421 | /// the virtual register defined at OperIdx. |
422 | /// |
423 | /// TODO: Hoist loop induction variable increments. This has to be |
424 | /// reevaluated. Generally, IV scheduling should be done before coalescing. |
425 | void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { |
426 | MachineInstr *MI = SU->getInstr(); |
427 | MachineOperand &MO = MI->getOperand(i: OperIdx); |
428 | Register Reg = MO.getReg(); |
429 | |
430 | LaneBitmask DefLaneMask; |
431 | LaneBitmask KillLaneMask; |
432 | if (TrackLaneMasks) { |
433 | bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); |
434 | DefLaneMask = getLaneMaskForMO(MO); |
435 | // If we have a <read-undef> flag, none of the lane values comes from an |
436 | // earlier instruction. |
437 | KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; |
438 | |
439 | if (MO.getSubReg() != 0 && MO.isUndef()) { |
440 | // There may be other subregister defs on the same instruction of the same |
441 | // register in later operands. The lanes of other defs will now be live |
442 | // after this instruction, so these should not be treated as killed by the |
443 | // instruction even though they appear to be killed in this one operand. |
444 | for (const MachineOperand &OtherMO : |
445 | llvm::drop_begin(RangeOrContainer: MI->operands(), N: OperIdx + 1)) |
446 | if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg) |
447 | KillLaneMask &= ~getLaneMaskForMO(MO: OtherMO); |
448 | } |
449 | |
450 | // Clear undef flag, we'll re-add it later once we know which subregister |
451 | // Def is first. |
452 | MO.setIsUndef(false); |
453 | } else { |
454 | DefLaneMask = LaneBitmask::getAll(); |
455 | KillLaneMask = LaneBitmask::getAll(); |
456 | } |
457 | |
458 | if (MO.isDead()) { |
459 | assert(deadDefHasNoUse(MO) && "Dead defs should have no uses" ); |
460 | } else { |
461 | // Add data dependence to all uses we found so far. |
462 | const TargetSubtargetInfo &ST = MF.getSubtarget(); |
463 | for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Key: Reg), |
464 | E = CurrentVRegUses.end(); I != E; /*empty*/) { |
465 | LaneBitmask LaneMask = I->LaneMask; |
466 | // Ignore uses of other lanes. |
467 | if ((LaneMask & KillLaneMask).none()) { |
468 | ++I; |
469 | continue; |
470 | } |
471 | |
472 | if ((LaneMask & DefLaneMask).any()) { |
473 | SUnit *UseSU = I->SU; |
474 | MachineInstr *Use = UseSU->getInstr(); |
475 | SDep Dep(SU, SDep::Data, Reg); |
476 | Dep.setLatency(SchedModel.computeOperandLatency(DefMI: MI, DefOperIdx: OperIdx, UseMI: Use, |
477 | UseOperIdx: I->OperandIndex)); |
478 | ST.adjustSchedDependency(Def: SU, DefOpIdx: OperIdx, Use: UseSU, UseOpIdx: I->OperandIndex, Dep, |
479 | SchedModel: &SchedModel); |
480 | UseSU->addPred(D: Dep); |
481 | } |
482 | |
483 | LaneMask &= ~KillLaneMask; |
484 | // If we found a Def for all lanes of this use, remove it from the list. |
485 | if (LaneMask.any()) { |
486 | I->LaneMask = LaneMask; |
487 | ++I; |
488 | } else |
489 | I = CurrentVRegUses.erase(I); |
490 | } |
491 | } |
492 | |
493 | // Shortcut: Singly defined vregs do not have output/anti dependencies. |
494 | if (MRI.hasOneDef(RegNo: Reg)) |
495 | return; |
496 | |
497 | // Add output dependence to the next nearest defs of this vreg. |
498 | // |
499 | // Unless this definition is dead, the output dependence should be |
500 | // transitively redundant with antidependencies from this definition's |
501 | // uses. We're conservative for now until we have a way to guarantee the uses |
502 | // are not eliminated sometime during scheduling. The output dependence edge |
503 | // is also useful if output latency exceeds def-use latency. |
504 | LaneBitmask LaneMask = DefLaneMask; |
505 | for (VReg2SUnit &V2SU : make_range(x: CurrentVRegDefs.find(Key: Reg), |
506 | y: CurrentVRegDefs.end())) { |
507 | // Ignore defs for other lanes. |
508 | if ((V2SU.LaneMask & LaneMask).none()) |
509 | continue; |
510 | // Add an output dependence. |
511 | SUnit *DefSU = V2SU.SU; |
512 | // Ignore additional defs of the same lanes in one instruction. This can |
513 | // happen because lanemasks are shared for targets with too many |
514 | // subregisters. We also use some representration tricks/hacks where we |
515 | // add super-register defs/uses, to imply that although we only access parts |
516 | // of the reg we care about the full one. |
517 | if (DefSU == SU) |
518 | continue; |
519 | SDep Dep(SU, SDep::Output, Reg); |
520 | Dep.setLatency( |
521 | SchedModel.computeOutputLatency(DefMI: MI, DefOperIdx: OperIdx, DepMI: DefSU->getInstr())); |
522 | DefSU->addPred(D: Dep); |
523 | |
524 | // Update current definition. This can get tricky if the def was about a |
525 | // bigger lanemask before. We then have to shrink it and create a new |
526 | // VReg2SUnit for the non-overlapping part. |
527 | LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; |
528 | LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; |
529 | V2SU.SU = SU; |
530 | V2SU.LaneMask = OverlapMask; |
531 | if (NonOverlapMask.any()) |
532 | CurrentVRegDefs.insert(Val: VReg2SUnit(Reg, NonOverlapMask, DefSU)); |
533 | } |
534 | // If there was no CurrentVRegDefs entry for some lanes yet, create one. |
535 | if (LaneMask.any()) |
536 | CurrentVRegDefs.insert(Val: VReg2SUnit(Reg, LaneMask, SU)); |
537 | } |
538 | |
539 | /// Adds a register data dependency if the instruction that defines the |
540 | /// virtual register used at OperIdx is mapped to an SUnit. Add a register |
541 | /// antidependency from this SUnit to instructions that occur later in the same |
542 | /// scheduling region if they write the virtual register. |
543 | /// |
544 | /// TODO: Handle ExitSU "uses" properly. |
545 | void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { |
546 | const MachineInstr *MI = SU->getInstr(); |
547 | assert(!MI->isDebugOrPseudoInstr()); |
548 | |
549 | const MachineOperand &MO = MI->getOperand(i: OperIdx); |
550 | Register Reg = MO.getReg(); |
551 | |
552 | // Remember the use. Data dependencies will be added when we find the def. |
553 | LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) |
554 | : LaneBitmask::getAll(); |
555 | CurrentVRegUses.insert(Val: VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); |
556 | |
557 | // Add antidependences to the following defs of the vreg. |
558 | for (VReg2SUnit &V2SU : make_range(x: CurrentVRegDefs.find(Key: Reg), |
559 | y: CurrentVRegDefs.end())) { |
560 | // Ignore defs for unrelated lanes. |
561 | LaneBitmask PrevDefLaneMask = V2SU.LaneMask; |
562 | if ((PrevDefLaneMask & LaneMask).none()) |
563 | continue; |
564 | if (V2SU.SU == SU) |
565 | continue; |
566 | |
567 | V2SU.SU->addPred(D: SDep(SU, SDep::Anti, Reg)); |
568 | } |
569 | } |
570 | |
571 | |
572 | void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, |
573 | unsigned Latency) { |
574 | if (SUa->getInstr()->mayAlias(AA: getAAForDep(), Other: *SUb->getInstr(), UseTBAA)) { |
575 | SDep Dep(SUa, SDep::MayAliasMem); |
576 | Dep.setLatency(Latency); |
577 | SUb->addPred(D: Dep); |
578 | } |
579 | } |
580 | |
581 | /// Creates an SUnit for each real instruction, numbered in top-down |
582 | /// topological order. The instruction order A < B, implies that no edge exists |
583 | /// from B to A. |
584 | /// |
585 | /// Map each real instruction to its SUnit. |
586 | /// |
587 | /// After initSUnits, the SUnits vector cannot be resized and the scheduler may |
588 | /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs |
589 | /// instead of pointers. |
590 | /// |
591 | /// MachineScheduler relies on initSUnits numbering the nodes by their order in |
592 | /// the original instruction list. |
593 | void ScheduleDAGInstrs::initSUnits() { |
594 | // We'll be allocating one SUnit for each real instruction in the region, |
595 | // which is contained within a basic block. |
596 | SUnits.reserve(n: NumRegionInstrs); |
597 | |
598 | for (MachineInstr &MI : make_range(x: RegionBegin, y: RegionEnd)) { |
599 | if (MI.isDebugOrPseudoInstr()) |
600 | continue; |
601 | |
602 | SUnit *SU = newSUnit(MI: &MI); |
603 | MISUnitMap[&MI] = SU; |
604 | |
605 | SU->isCall = MI.isCall(); |
606 | SU->isCommutable = MI.isCommutable(); |
607 | |
608 | // Assign the Latency field of SU using target-provided information. |
609 | SU->Latency = SchedModel.computeInstrLatency(MI: SU->getInstr()); |
610 | |
611 | // If this SUnit uses a reserved or unbuffered resource, mark it as such. |
612 | // |
613 | // Reserved resources block an instruction from issuing and stall the |
614 | // entire pipeline. These are identified by BufferSize=0. |
615 | // |
616 | // Unbuffered resources prevent execution of subsequent instructions that |
617 | // require the same resources. This is used for in-order execution pipelines |
618 | // within an out-of-order core. These are identified by BufferSize=1. |
619 | if (SchedModel.hasInstrSchedModel()) { |
620 | const MCSchedClassDesc *SC = getSchedClass(SU); |
621 | for (const MCWriteProcResEntry &PRE : |
622 | make_range(x: SchedModel.getWriteProcResBegin(SC), |
623 | y: SchedModel.getWriteProcResEnd(SC))) { |
624 | switch (SchedModel.getProcResource(PIdx: PRE.ProcResourceIdx)->BufferSize) { |
625 | case 0: |
626 | SU->hasReservedResource = true; |
627 | break; |
628 | case 1: |
629 | SU->isUnbuffered = true; |
630 | break; |
631 | default: |
632 | break; |
633 | } |
634 | } |
635 | } |
636 | } |
637 | } |
638 | |
639 | class ScheduleDAGInstrs::Value2SUsMap |
640 | : public SmallMapVector<ValueType, SUList, 4> { |
641 | /// Current total number of SUs in map. |
642 | unsigned NumNodes = 0; |
643 | |
644 | /// 1 for loads, 0 for stores. (see comment in SUList) |
645 | unsigned TrueMemOrderLatency; |
646 | |
647 | public: |
648 | Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {} |
649 | |
650 | /// To keep NumNodes up to date, insert() is used instead of |
651 | /// this operator w/ push_back(). |
652 | ValueType &operator[](const SUList &Key) { |
653 | llvm_unreachable("Don't use. Use insert() instead." ); }; |
654 | |
655 | /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling |
656 | /// reduce(). |
657 | void inline insert(SUnit *SU, ValueType V) { |
658 | MapVector::operator[](Key: V).push_back(x: SU); |
659 | NumNodes++; |
660 | } |
661 | |
662 | /// Clears the list of SUs mapped to V. |
663 | void inline clearList(ValueType V) { |
664 | iterator Itr = find(Key: V); |
665 | if (Itr != end()) { |
666 | assert(NumNodes >= Itr->second.size()); |
667 | NumNodes -= Itr->second.size(); |
668 | |
669 | Itr->second.clear(); |
670 | } |
671 | } |
672 | |
673 | /// Clears map from all contents. |
674 | void clear() { |
675 | SmallMapVector<ValueType, SUList, 4>::clear(); |
676 | NumNodes = 0; |
677 | } |
678 | |
679 | unsigned inline size() const { return NumNodes; } |
680 | |
681 | /// Counts the number of SUs in this map after a reduction. |
682 | void reComputeSize() { |
683 | NumNodes = 0; |
684 | for (auto &I : *this) |
685 | NumNodes += I.second.size(); |
686 | } |
687 | |
688 | unsigned inline getTrueMemOrderLatency() const { |
689 | return TrueMemOrderLatency; |
690 | } |
691 | |
692 | void dump(); |
693 | }; |
694 | |
695 | void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, |
696 | Value2SUsMap &Val2SUsMap) { |
697 | for (auto &I : Val2SUsMap) |
698 | addChainDependencies(SU, SUs&: I.second, |
699 | Latency: Val2SUsMap.getTrueMemOrderLatency()); |
700 | } |
701 | |
702 | void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, |
703 | Value2SUsMap &Val2SUsMap, |
704 | ValueType V) { |
705 | Value2SUsMap::iterator Itr = Val2SUsMap.find(Key: V); |
706 | if (Itr != Val2SUsMap.end()) |
707 | addChainDependencies(SU, SUs&: Itr->second, |
708 | Latency: Val2SUsMap.getTrueMemOrderLatency()); |
709 | } |
710 | |
711 | void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { |
712 | assert(BarrierChain != nullptr); |
713 | |
714 | for (auto &[V, SUs] : map) { |
715 | (void)V; |
716 | for (auto *SU : SUs) |
717 | SU->addPredBarrier(SU: BarrierChain); |
718 | } |
719 | map.clear(); |
720 | } |
721 | |
722 | void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { |
723 | assert(BarrierChain != nullptr); |
724 | |
725 | // Go through all lists of SUs. |
726 | for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { |
727 | Value2SUsMap::iterator CurrItr = I++; |
728 | SUList &sus = CurrItr->second; |
729 | SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); |
730 | for (; SUItr != SUEE; ++SUItr) { |
731 | // Stop on BarrierChain or any instruction above it. |
732 | if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) |
733 | break; |
734 | |
735 | (*SUItr)->addPredBarrier(SU: BarrierChain); |
736 | } |
737 | |
738 | // Remove also the BarrierChain from list if present. |
739 | if (SUItr != SUEE && *SUItr == BarrierChain) |
740 | SUItr++; |
741 | |
742 | // Remove all SUs that are now successors of BarrierChain. |
743 | if (SUItr != sus.begin()) |
744 | sus.erase(first: sus.begin(), last: SUItr); |
745 | } |
746 | |
747 | // Remove all entries with empty su lists. |
748 | map.remove_if(Pred: [&](std::pair<ValueType, SUList> &mapEntry) { |
749 | return (mapEntry.second.empty()); }); |
750 | |
751 | // Recompute the size of the map (NumNodes). |
752 | map.reComputeSize(); |
753 | } |
754 | |
755 | void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA, |
756 | RegPressureTracker *RPTracker, |
757 | PressureDiffs *PDiffs, |
758 | LiveIntervals *LIS, |
759 | bool TrackLaneMasks) { |
760 | const TargetSubtargetInfo &ST = MF.getSubtarget(); |
761 | bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI |
762 | : ST.useAA(); |
763 | if (UseAA && AA) |
764 | AAForDep.emplace(args&: *AA); |
765 | |
766 | BarrierChain = nullptr; |
767 | |
768 | this->TrackLaneMasks = TrackLaneMasks; |
769 | MISUnitMap.clear(); |
770 | ScheduleDAG::clearDAG(); |
771 | |
772 | // Create an SUnit for each real instruction. |
773 | initSUnits(); |
774 | |
775 | if (PDiffs) |
776 | PDiffs->init(N: SUnits.size()); |
777 | |
778 | // We build scheduling units by walking a block's instruction list |
779 | // from bottom to top. |
780 | |
781 | // Each MIs' memory operand(s) is analyzed to a list of underlying |
782 | // objects. The SU is then inserted in the SUList(s) mapped from the |
783 | // Value(s). Each Value thus gets mapped to lists of SUs depending |
784 | // on it, stores and loads kept separately. Two SUs are trivially |
785 | // non-aliasing if they both depend on only identified Values and do |
786 | // not share any common Value. |
787 | Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); |
788 | |
789 | // Certain memory accesses are known to not alias any SU in Stores |
790 | // or Loads, and have therefore their own 'NonAlias' |
791 | // domain. E.g. spill / reload instructions never alias LLVM I/R |
792 | // Values. It would be nice to assume that this type of memory |
793 | // accesses always have a proper memory operand modelling, and are |
794 | // therefore never unanalyzable, but this is conservatively not |
795 | // done. |
796 | Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); |
797 | |
798 | // Track all instructions that may raise floating-point exceptions. |
799 | // These do not depend on one other (or normal loads or stores), but |
800 | // must not be rescheduled across global barriers. Note that we don't |
801 | // really need a "map" here since we don't track those MIs by value; |
802 | // using the same Value2SUsMap data type here is simply a matter of |
803 | // convenience. |
804 | Value2SUsMap FPExceptions; |
805 | |
806 | // Remove any stale debug info; sometimes BuildSchedGraph is called again |
807 | // without emitting the info from the previous call. |
808 | DbgValues.clear(); |
809 | FirstDbgValue = nullptr; |
810 | |
811 | assert(Defs.empty() && Uses.empty() && |
812 | "Only BuildGraph should update Defs/Uses" ); |
813 | Defs.setUniverse(TRI->getNumRegs()); |
814 | Uses.setUniverse(TRI->getNumRegs()); |
815 | |
816 | assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs" ); |
817 | assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses" ); |
818 | unsigned NumVirtRegs = MRI.getNumVirtRegs(); |
819 | CurrentVRegDefs.setUniverse(NumVirtRegs); |
820 | CurrentVRegUses.setUniverse(NumVirtRegs); |
821 | |
822 | // Model data dependencies between instructions being scheduled and the |
823 | // ExitSU. |
824 | addSchedBarrierDeps(); |
825 | |
826 | // Walk the list of instructions, from bottom moving up. |
827 | MachineInstr *DbgMI = nullptr; |
828 | for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; |
829 | MII != MIE; --MII) { |
830 | MachineInstr &MI = *std::prev(x: MII); |
831 | if (DbgMI) { |
832 | DbgValues.emplace_back(args&: DbgMI, args: &MI); |
833 | DbgMI = nullptr; |
834 | } |
835 | |
836 | if (MI.isDebugValue() || MI.isDebugPHI()) { |
837 | DbgMI = &MI; |
838 | continue; |
839 | } |
840 | |
841 | if (MI.isDebugLabel() || MI.isDebugRef() || MI.isPseudoProbe()) |
842 | continue; |
843 | |
844 | SUnit *SU = MISUnitMap[&MI]; |
845 | assert(SU && "No SUnit mapped to this MI" ); |
846 | |
847 | if (RPTracker) { |
848 | RegisterOperands RegOpers; |
849 | RegOpers.collect(MI, TRI: *TRI, MRI, TrackLaneMasks, IgnoreDead: false); |
850 | if (TrackLaneMasks) { |
851 | SlotIndex SlotIdx = LIS->getInstructionIndex(Instr: MI); |
852 | RegOpers.adjustLaneLiveness(LIS: *LIS, MRI, Pos: SlotIdx); |
853 | } |
854 | if (PDiffs != nullptr) |
855 | PDiffs->addInstruction(Idx: SU->NodeNum, RegOpers, MRI); |
856 | |
857 | if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI) |
858 | RPTracker->recedeSkipDebugValues(); |
859 | assert(&*RPTracker->getPos() == &MI && "RPTracker in sync" ); |
860 | RPTracker->recede(RegOpers); |
861 | } |
862 | |
863 | assert( |
864 | (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && |
865 | "Cannot schedule terminators or labels!" ); |
866 | |
867 | // Add register-based dependencies (data, anti, and output). |
868 | // For some instructions (calls, returns, inline-asm, etc.) there can |
869 | // be explicit uses and implicit defs, in which case the use will appear |
870 | // on the operand list before the def. Do two passes over the operand |
871 | // list to make sure that defs are processed before any uses. |
872 | bool HasVRegDef = false; |
873 | for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { |
874 | const MachineOperand &MO = MI.getOperand(i: j); |
875 | if (!MO.isReg() || !MO.isDef()) |
876 | continue; |
877 | Register Reg = MO.getReg(); |
878 | if (Reg.isPhysical()) { |
879 | addPhysRegDeps(SU, OperIdx: j); |
880 | } else if (Reg.isVirtual()) { |
881 | HasVRegDef = true; |
882 | addVRegDefDeps(SU, OperIdx: j); |
883 | } |
884 | } |
885 | // Now process all uses. |
886 | for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { |
887 | const MachineOperand &MO = MI.getOperand(i: j); |
888 | // Only look at use operands. |
889 | // We do not need to check for MO.readsReg() here because subsequent |
890 | // subregister defs will get output dependence edges and need no |
891 | // additional use dependencies. |
892 | if (!MO.isReg() || !MO.isUse()) |
893 | continue; |
894 | Register Reg = MO.getReg(); |
895 | if (Reg.isPhysical()) { |
896 | addPhysRegDeps(SU, OperIdx: j); |
897 | } else if (Reg.isVirtual() && MO.readsReg()) { |
898 | addVRegUseDeps(SU, OperIdx: j); |
899 | } |
900 | } |
901 | |
902 | // If we haven't seen any uses in this scheduling region, create a |
903 | // dependence edge to ExitSU to model the live-out latency. This is required |
904 | // for vreg defs with no in-region use, and prefetches with no vreg def. |
905 | // |
906 | // FIXME: NumDataSuccs would be more precise than NumSuccs here. This |
907 | // check currently relies on being called before adding chain deps. |
908 | if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { |
909 | SDep Dep(SU, SDep::Artificial); |
910 | Dep.setLatency(SU->Latency - 1); |
911 | ExitSU.addPred(D: Dep); |
912 | } |
913 | |
914 | // Add memory dependencies (Note: isStoreToStackSlot and |
915 | // isLoadFromStackSLot are not usable after stack slots are lowered to |
916 | // actual addresses). |
917 | |
918 | const TargetInstrInfo *TII = ST.getInstrInfo(); |
919 | // This is a barrier event that acts as a pivotal node in the DAG. |
920 | if (TII->isGlobalMemoryObject(MI: &MI)) { |
921 | |
922 | // Become the barrier chain. |
923 | if (BarrierChain) |
924 | BarrierChain->addPredBarrier(SU); |
925 | BarrierChain = SU; |
926 | |
927 | LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" |
928 | << BarrierChain->NodeNum << ").\n" ); |
929 | |
930 | // Add dependencies against everything below it and clear maps. |
931 | addBarrierChain(map&: Stores); |
932 | addBarrierChain(map&: Loads); |
933 | addBarrierChain(map&: NonAliasStores); |
934 | addBarrierChain(map&: NonAliasLoads); |
935 | addBarrierChain(map&: FPExceptions); |
936 | |
937 | continue; |
938 | } |
939 | |
940 | // Instructions that may raise FP exceptions may not be moved |
941 | // across any global barriers. |
942 | if (MI.mayRaiseFPException()) { |
943 | if (BarrierChain) |
944 | BarrierChain->addPredBarrier(SU); |
945 | |
946 | FPExceptions.insert(SU, V: UnknownValue); |
947 | |
948 | if (FPExceptions.size() >= HugeRegion) { |
949 | LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n" ); |
950 | Value2SUsMap empty; |
951 | reduceHugeMemNodeMaps(stores&: FPExceptions, loads&: empty, N: getReductionSize()); |
952 | } |
953 | } |
954 | |
955 | // If it's not a store or a variant load, we're done. |
956 | if (!MI.mayStore() && |
957 | !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad())) |
958 | continue; |
959 | |
960 | // Always add dependecy edge to BarrierChain if present. |
961 | if (BarrierChain) |
962 | BarrierChain->addPredBarrier(SU); |
963 | |
964 | // Find the underlying objects for MI. The Objs vector is either |
965 | // empty, or filled with the Values of memory locations which this |
966 | // SU depends on. |
967 | UnderlyingObjectsVector Objs; |
968 | bool ObjsFound = getUnderlyingObjectsForInstr(MI: &MI, MFI, Objects&: Objs, |
969 | DL: MF.getDataLayout()); |
970 | |
971 | if (MI.mayStore()) { |
972 | if (!ObjsFound) { |
973 | // An unknown store depends on all stores and loads. |
974 | addChainDependencies(SU, Val2SUsMap&: Stores); |
975 | addChainDependencies(SU, Val2SUsMap&: NonAliasStores); |
976 | addChainDependencies(SU, Val2SUsMap&: Loads); |
977 | addChainDependencies(SU, Val2SUsMap&: NonAliasLoads); |
978 | |
979 | // Map this store to 'UnknownValue'. |
980 | Stores.insert(SU, V: UnknownValue); |
981 | } else { |
982 | // Add precise dependencies against all previously seen memory |
983 | // accesses mapped to the same Value(s). |
984 | for (const UnderlyingObject &UnderlObj : Objs) { |
985 | ValueType V = UnderlObj.getValue(); |
986 | bool ThisMayAlias = UnderlObj.mayAlias(); |
987 | |
988 | // Add dependencies to previous stores and loads mapped to V. |
989 | addChainDependencies(SU, Val2SUsMap&: (ThisMayAlias ? Stores : NonAliasStores), V); |
990 | addChainDependencies(SU, Val2SUsMap&: (ThisMayAlias ? Loads : NonAliasLoads), V); |
991 | } |
992 | // Update the store map after all chains have been added to avoid adding |
993 | // self-loop edge if multiple underlying objects are present. |
994 | for (const UnderlyingObject &UnderlObj : Objs) { |
995 | ValueType V = UnderlObj.getValue(); |
996 | bool ThisMayAlias = UnderlObj.mayAlias(); |
997 | |
998 | // Map this store to V. |
999 | (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); |
1000 | } |
1001 | // The store may have dependencies to unanalyzable loads and |
1002 | // stores. |
1003 | addChainDependencies(SU, Val2SUsMap&: Loads, V: UnknownValue); |
1004 | addChainDependencies(SU, Val2SUsMap&: Stores, V: UnknownValue); |
1005 | } |
1006 | } else { // SU is a load. |
1007 | if (!ObjsFound) { |
1008 | // An unknown load depends on all stores. |
1009 | addChainDependencies(SU, Val2SUsMap&: Stores); |
1010 | addChainDependencies(SU, Val2SUsMap&: NonAliasStores); |
1011 | |
1012 | Loads.insert(SU, V: UnknownValue); |
1013 | } else { |
1014 | for (const UnderlyingObject &UnderlObj : Objs) { |
1015 | ValueType V = UnderlObj.getValue(); |
1016 | bool ThisMayAlias = UnderlObj.mayAlias(); |
1017 | |
1018 | // Add precise dependencies against all previously seen stores |
1019 | // mapping to the same Value(s). |
1020 | addChainDependencies(SU, Val2SUsMap&: (ThisMayAlias ? Stores : NonAliasStores), V); |
1021 | |
1022 | // Map this load to V. |
1023 | (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); |
1024 | } |
1025 | // The load may have dependencies to unanalyzable stores. |
1026 | addChainDependencies(SU, Val2SUsMap&: Stores, V: UnknownValue); |
1027 | } |
1028 | } |
1029 | |
1030 | // Reduce maps if they grow huge. |
1031 | if (Stores.size() + Loads.size() >= HugeRegion) { |
1032 | LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n" ); |
1033 | reduceHugeMemNodeMaps(stores&: Stores, loads&: Loads, N: getReductionSize()); |
1034 | } |
1035 | if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { |
1036 | LLVM_DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n" ); |
1037 | reduceHugeMemNodeMaps(stores&: NonAliasStores, loads&: NonAliasLoads, N: getReductionSize()); |
1038 | } |
1039 | } |
1040 | |
1041 | if (DbgMI) |
1042 | FirstDbgValue = DbgMI; |
1043 | |
1044 | Defs.clear(); |
1045 | Uses.clear(); |
1046 | CurrentVRegDefs.clear(); |
1047 | CurrentVRegUses.clear(); |
1048 | |
1049 | Topo.MarkDirty(); |
1050 | } |
1051 | |
1052 | raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { |
1053 | PSV->printCustom(O&: OS); |
1054 | return OS; |
1055 | } |
1056 | |
1057 | void ScheduleDAGInstrs::Value2SUsMap::dump() { |
1058 | for (const auto &[ValType, SUs] : *this) { |
1059 | if (isa<const Value *>(Val: ValType)) { |
1060 | const Value *V = cast<const Value *>(Val: ValType); |
1061 | if (isa<UndefValue>(Val: V)) |
1062 | dbgs() << "Unknown" ; |
1063 | else |
1064 | V->printAsOperand(O&: dbgs()); |
1065 | } else if (isa<const PseudoSourceValue *>(Val: ValType)) |
1066 | dbgs() << cast<const PseudoSourceValue *>(Val: ValType); |
1067 | else |
1068 | llvm_unreachable("Unknown Value type." ); |
1069 | |
1070 | dbgs() << " : " ; |
1071 | dumpSUList(L: SUs); |
1072 | } |
1073 | } |
1074 | |
1075 | void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, |
1076 | Value2SUsMap &loads, unsigned N) { |
1077 | LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n" ; stores.dump(); |
1078 | dbgs() << "Loading SUnits:\n" ; loads.dump()); |
1079 | |
1080 | // Insert all SU's NodeNums into a vector and sort it. |
1081 | std::vector<unsigned> NodeNums; |
1082 | NodeNums.reserve(n: stores.size() + loads.size()); |
1083 | for (const auto &[V, SUs] : stores) { |
1084 | (void)V; |
1085 | for (const auto *SU : SUs) |
1086 | NodeNums.push_back(x: SU->NodeNum); |
1087 | } |
1088 | for (const auto &[V, SUs] : loads) { |
1089 | (void)V; |
1090 | for (const auto *SU : SUs) |
1091 | NodeNums.push_back(x: SU->NodeNum); |
1092 | } |
1093 | llvm::sort(C&: NodeNums); |
1094 | |
1095 | // The N last elements in NodeNums will be removed, and the SU with |
1096 | // the lowest NodeNum of them will become the new BarrierChain to |
1097 | // let the not yet seen SUs have a dependency to the removed SUs. |
1098 | assert(N <= NodeNums.size()); |
1099 | SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; |
1100 | if (BarrierChain) { |
1101 | // The aliasing and non-aliasing maps reduce independently of each |
1102 | // other, but share a common BarrierChain. Check if the |
1103 | // newBarrierChain is above the former one. If it is not, it may |
1104 | // introduce a loop to use newBarrierChain, so keep the old one. |
1105 | if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { |
1106 | BarrierChain->addPredBarrier(SU: newBarrierChain); |
1107 | BarrierChain = newBarrierChain; |
1108 | LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU(" |
1109 | << BarrierChain->NodeNum << ").\n" ); |
1110 | } |
1111 | else |
1112 | LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU(" |
1113 | << BarrierChain->NodeNum << ").\n" ); |
1114 | } |
1115 | else |
1116 | BarrierChain = newBarrierChain; |
1117 | |
1118 | insertBarrierChain(map&: stores); |
1119 | insertBarrierChain(map&: loads); |
1120 | |
1121 | LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n" ; stores.dump(); |
1122 | dbgs() << "Loading SUnits:\n" ; loads.dump()); |
1123 | } |
1124 | |
1125 | static void toggleKills(const MachineRegisterInfo &MRI, LiveRegUnits &LiveRegs, |
1126 | MachineInstr &MI, bool addToLiveRegs) { |
1127 | for (MachineOperand &MO : MI.operands()) { |
1128 | if (!MO.isReg() || !MO.readsReg()) |
1129 | continue; |
1130 | Register Reg = MO.getReg(); |
1131 | if (!Reg) |
1132 | continue; |
1133 | |
1134 | // Things that are available after the instruction are killed by it. |
1135 | bool IsKill = LiveRegs.available(Reg); |
1136 | |
1137 | // Exception: Do not kill reserved registers |
1138 | MO.setIsKill(IsKill && !MRI.isReserved(PhysReg: Reg)); |
1139 | if (addToLiveRegs) |
1140 | LiveRegs.addReg(Reg); |
1141 | } |
1142 | } |
1143 | |
1144 | void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) { |
1145 | LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n'); |
1146 | |
1147 | LiveRegs.init(TRI: *TRI); |
1148 | LiveRegs.addLiveOuts(MBB); |
1149 | |
1150 | // Examine block from end to start... |
1151 | for (MachineInstr &MI : llvm::reverse(C&: MBB)) { |
1152 | if (MI.isDebugOrPseudoInstr()) |
1153 | continue; |
1154 | |
1155 | // Update liveness. Registers that are defed but not used in this |
1156 | // instruction are now dead. Mark register and all subregs as they |
1157 | // are completely defined. |
1158 | for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { |
1159 | const MachineOperand &MO = *O; |
1160 | if (MO.isReg()) { |
1161 | if (!MO.isDef()) |
1162 | continue; |
1163 | Register Reg = MO.getReg(); |
1164 | if (!Reg) |
1165 | continue; |
1166 | LiveRegs.removeReg(Reg); |
1167 | } else if (MO.isRegMask()) { |
1168 | LiveRegs.removeRegsNotPreserved(RegMask: MO.getRegMask()); |
1169 | } |
1170 | } |
1171 | |
1172 | // If there is a bundle header fix it up first. |
1173 | if (!MI.isBundled()) { |
1174 | toggleKills(MRI, LiveRegs, MI, addToLiveRegs: true); |
1175 | } else { |
1176 | MachineBasicBlock::instr_iterator Bundle = MI.getIterator(); |
1177 | if (MI.isBundle()) |
1178 | toggleKills(MRI, LiveRegs, MI, addToLiveRegs: false); |
1179 | |
1180 | // Some targets make the (questionable) assumtion that the instructions |
1181 | // inside the bundle are ordered and consequently only the last use of |
1182 | // a register inside the bundle can kill it. |
1183 | MachineBasicBlock::instr_iterator I = std::next(x: Bundle); |
1184 | while (I->isBundledWithSucc()) |
1185 | ++I; |
1186 | do { |
1187 | if (!I->isDebugOrPseudoInstr()) |
1188 | toggleKills(MRI, LiveRegs, MI&: *I, addToLiveRegs: true); |
1189 | --I; |
1190 | } while (I != Bundle); |
1191 | } |
1192 | } |
1193 | } |
1194 | |
1195 | void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const { |
1196 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1197 | dumpNodeName(SU); |
1198 | if (SchedPrintCycles) |
1199 | dbgs() << " [TopReadyCycle = " << SU.TopReadyCycle |
1200 | << ", BottomReadyCycle = " << SU.BotReadyCycle << "]" ; |
1201 | dbgs() << ": " ; |
1202 | SU.getInstr()->dump(); |
1203 | #endif |
1204 | } |
1205 | |
1206 | void ScheduleDAGInstrs::dump() const { |
1207 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1208 | if (EntrySU.getInstr() != nullptr) |
1209 | dumpNodeAll(EntrySU); |
1210 | for (const SUnit &SU : SUnits) |
1211 | dumpNodeAll(SU); |
1212 | if (ExitSU.getInstr() != nullptr) |
1213 | dumpNodeAll(ExitSU); |
1214 | #endif |
1215 | } |
1216 | |
1217 | std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { |
1218 | std::string s; |
1219 | raw_string_ostream oss(s); |
1220 | if (SU == &EntrySU) |
1221 | oss << "<entry>" ; |
1222 | else if (SU == &ExitSU) |
1223 | oss << "<exit>" ; |
1224 | else |
1225 | SU->getInstr()->print(OS&: oss, /*IsStandalone=*/true); |
1226 | return s; |
1227 | } |
1228 | |
1229 | /// Return the basic block label. It is not necessarily unique because a block |
1230 | /// contains multiple scheduling regions. But it is fine for visualization. |
1231 | std::string ScheduleDAGInstrs::getDAGName() const { |
1232 | return "dag." + BB->getFullName(); |
1233 | } |
1234 | |
1235 | bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { |
1236 | return SuccSU == &ExitSU || !Topo.IsReachable(SU: PredSU, TargetSU: SuccSU); |
1237 | } |
1238 | |
1239 | bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) { |
1240 | if (SuccSU != &ExitSU) { |
1241 | // Do not use WillCreateCycle, it assumes SD scheduling. |
1242 | // If Pred is reachable from Succ, then the edge creates a cycle. |
1243 | if (Topo.IsReachable(SU: PredDep.getSUnit(), TargetSU: SuccSU)) |
1244 | return false; |
1245 | Topo.AddPredQueued(Y: SuccSU, X: PredDep.getSUnit()); |
1246 | } |
1247 | SuccSU->addPred(D: PredDep, /*Required=*/!PredDep.isArtificial()); |
1248 | // Return true regardless of whether a new edge needed to be inserted. |
1249 | return true; |
1250 | } |
1251 | |
1252 | //===----------------------------------------------------------------------===// |
1253 | // SchedDFSResult Implementation |
1254 | //===----------------------------------------------------------------------===// |
1255 | |
1256 | namespace llvm { |
1257 | |
1258 | /// Internal state used to compute SchedDFSResult. |
1259 | class SchedDFSImpl { |
1260 | SchedDFSResult &R; |
1261 | |
1262 | /// Join DAG nodes into equivalence classes by their subtree. |
1263 | IntEqClasses SubtreeClasses; |
1264 | /// List PredSU, SuccSU pairs that represent data edges between subtrees. |
1265 | std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs; |
1266 | |
1267 | struct RootData { |
1268 | unsigned NodeID; |
1269 | unsigned ParentNodeID; ///< Parent node (member of the parent subtree). |
1270 | unsigned SubInstrCount = 0; ///< Instr count in this tree only, not |
1271 | /// children. |
1272 | |
1273 | RootData(unsigned id): NodeID(id), |
1274 | ParentNodeID(SchedDFSResult::InvalidSubtreeID) {} |
1275 | |
1276 | unsigned getSparseSetIndex() const { return NodeID; } |
1277 | }; |
1278 | |
1279 | SparseSet<RootData> RootSet; |
1280 | |
1281 | public: |
1282 | SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { |
1283 | RootSet.setUniverse(R.DFSNodeData.size()); |
1284 | } |
1285 | |
1286 | /// Returns true if this node been visited by the DFS traversal. |
1287 | /// |
1288 | /// During visitPostorderNode the Node's SubtreeID is assigned to the Node |
1289 | /// ID. Later, SubtreeID is updated but remains valid. |
1290 | bool isVisited(const SUnit *SU) const { |
1291 | return R.DFSNodeData[SU->NodeNum].SubtreeID |
1292 | != SchedDFSResult::InvalidSubtreeID; |
1293 | } |
1294 | |
1295 | /// Initializes this node's instruction count. We don't need to flag the node |
1296 | /// visited until visitPostorder because the DAG cannot have cycles. |
1297 | void visitPreorder(const SUnit *SU) { |
1298 | R.DFSNodeData[SU->NodeNum].InstrCount = |
1299 | SU->getInstr()->isTransient() ? 0 : 1; |
1300 | } |
1301 | |
1302 | /// Called once for each node after all predecessors are visited. Revisit this |
1303 | /// node's predecessors and potentially join them now that we know the ILP of |
1304 | /// the other predecessors. |
1305 | void visitPostorderNode(const SUnit *SU) { |
1306 | // Mark this node as the root of a subtree. It may be joined with its |
1307 | // successors later. |
1308 | R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; |
1309 | RootData RData(SU->NodeNum); |
1310 | RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; |
1311 | |
1312 | // If any predecessors are still in their own subtree, they either cannot be |
1313 | // joined or are large enough to remain separate. If this parent node's |
1314 | // total instruction count is not greater than a child subtree by at least |
1315 | // the subtree limit, then try to join it now since splitting subtrees is |
1316 | // only useful if multiple high-pressure paths are possible. |
1317 | unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; |
1318 | for (const SDep &PredDep : SU->Preds) { |
1319 | if (PredDep.getKind() != SDep::Data) |
1320 | continue; |
1321 | unsigned PredNum = PredDep.getSUnit()->NodeNum; |
1322 | if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) |
1323 | joinPredSubtree(PredDep, Succ: SU, /*CheckLimit=*/false); |
1324 | |
1325 | // Either link or merge the TreeData entry from the child to the parent. |
1326 | if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { |
1327 | // If the predecessor's parent is invalid, this is a tree edge and the |
1328 | // current node is the parent. |
1329 | if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) |
1330 | RootSet[PredNum].ParentNodeID = SU->NodeNum; |
1331 | } |
1332 | else if (RootSet.count(Key: PredNum)) { |
1333 | // The predecessor is not a root, but is still in the root set. This |
1334 | // must be the new parent that it was just joined to. Note that |
1335 | // RootSet[PredNum].ParentNodeID may either be invalid or may still be |
1336 | // set to the original parent. |
1337 | RData.SubInstrCount += RootSet[PredNum].SubInstrCount; |
1338 | RootSet.erase(Key: PredNum); |
1339 | } |
1340 | } |
1341 | RootSet[SU->NodeNum] = RData; |
1342 | } |
1343 | |
1344 | /// Called once for each tree edge after calling visitPostOrderNode on |
1345 | /// the predecessor. Increment the parent node's instruction count and |
1346 | /// preemptively join this subtree to its parent's if it is small enough. |
1347 | void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { |
1348 | R.DFSNodeData[Succ->NodeNum].InstrCount |
1349 | += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; |
1350 | joinPredSubtree(PredDep, Succ); |
1351 | } |
1352 | |
1353 | /// Adds a connection for cross edges. |
1354 | void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { |
1355 | ConnectionPairs.emplace_back(args: PredDep.getSUnit(), args&: Succ); |
1356 | } |
1357 | |
1358 | /// Sets each node's subtree ID to the representative ID and record |
1359 | /// connections between trees. |
1360 | void finalize() { |
1361 | SubtreeClasses.compress(); |
1362 | R.DFSTreeData.resize(N: SubtreeClasses.getNumClasses()); |
1363 | assert(SubtreeClasses.getNumClasses() == RootSet.size() |
1364 | && "number of roots should match trees" ); |
1365 | for (const RootData &Root : RootSet) { |
1366 | unsigned TreeID = SubtreeClasses[Root.NodeID]; |
1367 | if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) |
1368 | R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; |
1369 | R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; |
1370 | // Note that SubInstrCount may be greater than InstrCount if we joined |
1371 | // subtrees across a cross edge. InstrCount will be attributed to the |
1372 | // original parent, while SubInstrCount will be attributed to the joined |
1373 | // parent. |
1374 | } |
1375 | R.SubtreeConnections.resize(new_size: SubtreeClasses.getNumClasses()); |
1376 | R.SubtreeConnectLevels.resize(new_size: SubtreeClasses.getNumClasses()); |
1377 | LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n" ); |
1378 | for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { |
1379 | R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; |
1380 | LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree " |
1381 | << R.DFSNodeData[Idx].SubtreeID << '\n'); |
1382 | } |
1383 | for (const auto &[Pred, Succ] : ConnectionPairs) { |
1384 | unsigned PredTree = SubtreeClasses[Pred->NodeNum]; |
1385 | unsigned SuccTree = SubtreeClasses[Succ->NodeNum]; |
1386 | if (PredTree == SuccTree) |
1387 | continue; |
1388 | unsigned Depth = Pred->getDepth(); |
1389 | addConnection(FromTree: PredTree, ToTree: SuccTree, Depth); |
1390 | addConnection(FromTree: SuccTree, ToTree: PredTree, Depth); |
1391 | } |
1392 | } |
1393 | |
1394 | protected: |
1395 | /// Joins the predecessor subtree with the successor that is its DFS parent. |
1396 | /// Applies some heuristics before joining. |
1397 | bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, |
1398 | bool CheckLimit = true) { |
1399 | assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges" ); |
1400 | |
1401 | // Check if the predecessor is already joined. |
1402 | const SUnit *PredSU = PredDep.getSUnit(); |
1403 | unsigned PredNum = PredSU->NodeNum; |
1404 | if (R.DFSNodeData[PredNum].SubtreeID != PredNum) |
1405 | return false; |
1406 | |
1407 | // Four is the magic number of successors before a node is considered a |
1408 | // pinch point. |
1409 | unsigned NumDataSucs = 0; |
1410 | for (const SDep &SuccDep : PredSU->Succs) { |
1411 | if (SuccDep.getKind() == SDep::Data) { |
1412 | if (++NumDataSucs >= 4) |
1413 | return false; |
1414 | } |
1415 | } |
1416 | if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) |
1417 | return false; |
1418 | R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; |
1419 | SubtreeClasses.join(a: Succ->NodeNum, b: PredNum); |
1420 | return true; |
1421 | } |
1422 | |
1423 | /// Called by finalize() to record a connection between trees. |
1424 | void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { |
1425 | if (!Depth) |
1426 | return; |
1427 | |
1428 | do { |
1429 | SmallVectorImpl<SchedDFSResult::Connection> &Connections = |
1430 | R.SubtreeConnections[FromTree]; |
1431 | for (SchedDFSResult::Connection &C : Connections) { |
1432 | if (C.TreeID == ToTree) { |
1433 | C.Level = std::max(a: C.Level, b: Depth); |
1434 | return; |
1435 | } |
1436 | } |
1437 | Connections.push_back(Elt: SchedDFSResult::Connection(ToTree, Depth)); |
1438 | FromTree = R.DFSTreeData[FromTree].ParentTreeID; |
1439 | } while (FromTree != SchedDFSResult::InvalidSubtreeID); |
1440 | } |
1441 | }; |
1442 | |
1443 | } // end namespace llvm |
1444 | |
1445 | namespace { |
1446 | |
1447 | /// Manage the stack used by a reverse depth-first search over the DAG. |
1448 | class SchedDAGReverseDFS { |
1449 | std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack; |
1450 | |
1451 | public: |
1452 | bool isComplete() const { return DFSStack.empty(); } |
1453 | |
1454 | void follow(const SUnit *SU) { |
1455 | DFSStack.emplace_back(args&: SU, args: SU->Preds.begin()); |
1456 | } |
1457 | void advance() { ++DFSStack.back().second; } |
1458 | |
1459 | const SDep *backtrack() { |
1460 | DFSStack.pop_back(); |
1461 | return DFSStack.empty() ? nullptr : std::prev(x: DFSStack.back().second); |
1462 | } |
1463 | |
1464 | const SUnit *getCurr() const { return DFSStack.back().first; } |
1465 | |
1466 | SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } |
1467 | |
1468 | SUnit::const_pred_iterator getPredEnd() const { |
1469 | return getCurr()->Preds.end(); |
1470 | } |
1471 | }; |
1472 | |
1473 | } // end anonymous namespace |
1474 | |
1475 | static bool hasDataSucc(const SUnit *SU) { |
1476 | for (const SDep &SuccDep : SU->Succs) { |
1477 | if (SuccDep.getKind() == SDep::Data && |
1478 | !SuccDep.getSUnit()->isBoundaryNode()) |
1479 | return true; |
1480 | } |
1481 | return false; |
1482 | } |
1483 | |
1484 | /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first |
1485 | /// search from this root. |
1486 | void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { |
1487 | if (!IsBottomUp) |
1488 | llvm_unreachable("Top-down ILP metric is unimplemented" ); |
1489 | |
1490 | SchedDFSImpl Impl(*this); |
1491 | for (const SUnit &SU : SUnits) { |
1492 | if (Impl.isVisited(SU: &SU) || hasDataSucc(SU: &SU)) |
1493 | continue; |
1494 | |
1495 | SchedDAGReverseDFS DFS; |
1496 | Impl.visitPreorder(SU: &SU); |
1497 | DFS.follow(SU: &SU); |
1498 | while (true) { |
1499 | // Traverse the leftmost path as far as possible. |
1500 | while (DFS.getPred() != DFS.getPredEnd()) { |
1501 | const SDep &PredDep = *DFS.getPred(); |
1502 | DFS.advance(); |
1503 | // Ignore non-data edges. |
1504 | if (PredDep.getKind() != SDep::Data |
1505 | || PredDep.getSUnit()->isBoundaryNode()) { |
1506 | continue; |
1507 | } |
1508 | // An already visited edge is a cross edge, assuming an acyclic DAG. |
1509 | if (Impl.isVisited(SU: PredDep.getSUnit())) { |
1510 | Impl.visitCrossEdge(PredDep, Succ: DFS.getCurr()); |
1511 | continue; |
1512 | } |
1513 | Impl.visitPreorder(SU: PredDep.getSUnit()); |
1514 | DFS.follow(SU: PredDep.getSUnit()); |
1515 | } |
1516 | // Visit the top of the stack in postorder and backtrack. |
1517 | const SUnit *Child = DFS.getCurr(); |
1518 | const SDep *PredDep = DFS.backtrack(); |
1519 | Impl.visitPostorderNode(SU: Child); |
1520 | if (PredDep) |
1521 | Impl.visitPostorderEdge(PredDep: *PredDep, Succ: DFS.getCurr()); |
1522 | if (DFS.isComplete()) |
1523 | break; |
1524 | } |
1525 | } |
1526 | Impl.finalize(); |
1527 | } |
1528 | |
1529 | /// The root of the given SubtreeID was just scheduled. For all subtrees |
1530 | /// connected to this tree, record the depth of the connection so that the |
1531 | /// nearest connected subtrees can be prioritized. |
1532 | void SchedDFSResult::scheduleTree(unsigned SubtreeID) { |
1533 | for (const Connection &C : SubtreeConnections[SubtreeID]) { |
1534 | SubtreeConnectLevels[C.TreeID] = |
1535 | std::max(a: SubtreeConnectLevels[C.TreeID], b: C.Level); |
1536 | LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @" |
1537 | << SubtreeConnectLevels[C.TreeID] << '\n'); |
1538 | } |
1539 | } |
1540 | |
1541 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1542 | LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { |
1543 | OS << InstrCount << " / " << Length << " = " ; |
1544 | if (!Length) |
1545 | OS << "BADILP" ; |
1546 | else |
1547 | OS << format("%g" , ((double)InstrCount / Length)); |
1548 | } |
1549 | |
1550 | LLVM_DUMP_METHOD void ILPValue::dump() const { |
1551 | dbgs() << *this << '\n'; |
1552 | } |
1553 | |
1554 | namespace llvm { |
1555 | |
1556 | LLVM_ATTRIBUTE_UNUSED |
1557 | raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { |
1558 | Val.print(OS); |
1559 | return OS; |
1560 | } |
1561 | |
1562 | } // end namespace llvm |
1563 | |
1564 | #endif |
1565 | |